Patent application title: COMBINATION IMMUNOTHERAPIES COMPRISING IL-15 SUPERAGONISTS
Inventors:
IPC8 Class: AA61K3900FI
USPC Class:
1 1
Class name:
Publication date: 2020-05-21
Patent application number: 20200155662
Abstract:
Methods and compositions for generating enhanced immune responses using
adenovirus vectors that allow for multiple vaccinations in combination
with an IL-15 superagonist complex in subjects in need thereof are
provided.Claims:
1. A composition comprising a first recombinant adenovirus vector
comprising a nucleic acid sequence encoding an antigen, and: a) a second
recombinant adenovirus vector comprising a nucleic acid sequence encoding
an IL-15N72D domain of an interleukin-15 (IL-15) superagonist complex and
an IL-15R.alpha.Su/Fc fusion domain of the IL-15 superagonist complex; or
b) a third recombinant adenovirus vector comprising a nucleic acid
sequence encoding an IL-15N72D domain of an IL-15 superagonist complex
and fourth recombinant adenovirus vector comprising a nucleic acid
sequence encoding an IL-15R.alpha.Su/Fc fusion domain of the IL-15
superagonist complex.
2. The composition of claim 1, wherein the antigen is a CEA antigen with at least 85% sequence identity to SEQ ID NO: 3 or SEQ ID NO: 4.
3.-5. (canceled)
6. The composition of claim 1, wherein the IL-15 superagonist complex is a multimeric protein complex.
7.-10. (canceled)
11. The composition of claim 1, wherein the IL-15 superagonist complex is ALT-803.
12.-19. (canceled)
20. The composition of claim 1, wherein the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprise recombinant replication defective adenovirus vectors.
21. The composition of claim 20, wherein the recombinant replication defective adenovirus vectors are adenovirus subtype 5 (Ad5)-based vectors.
22.-24. (canceled)
25. The composition of claim 1, wherein the composition comprises at least 1.times.10.sup.9 viral particles in a single dose.
26.-54. (canceled)
55. The composition of claim 1, wherein the composition or the first recombinant adenovirus vector further comprises a nucleic acid sequences encoding a costimulatory molecule.
56.-59. (canceled)
60. The composition of claim 1, wherein the composition further comprises an immune pathway checkpoint modulator.
61.-68. (canceled)
69. The composition of claim 1, wherein the composition further comprises an anti-CEA antibody, a chemotherapeutic agent, a population of engineered natural killer (NK) cells.
70.-79. (canceled)
80. A method of treating a subject in need thereof, the method comprising administering to the subject the composition of claim 1.
81. A method of treating a subject in need thereof, the method comprising administering to the subject a first recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen, and: a) a second recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15N72D domain of an interleukin-15 (IL-15) superagonist complex and an IL-15R.alpha.Su/Fc fusion domain of the IL-15 superagonist complex; or b) a third recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15N72D domain of an IL-15 superagonist complex and fourth recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15R.alpha.Su/Fc fusion domain of the IL-15 superagonist complex.
82. The method of claim 81, wherein the antigen is a CEA antigen.
83.-85. (canceled)
86. The method of any one of claim 81, wherein the IL-15 superagonist complex is a multimeric protein complex.
87.-90. (canceled)
91. The method of claim 81, wherein the IL-15 superagonist complex is ALT-803.
92.-99. (canceled)
100. The method of claim 81, wherein the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprise recombinant replication defective adenovirus vectors.
101. The method of any one of claims 100, wherein the recombinant replication defective adenovirus vectors are adenovirus subtype 5 (Ad5)-based vectors.
102.-134. (canceled)
135. The method of claim 81, wherein the method further comprises administering the first recombinant adenovirus vector, wherein the first recombinant adenovirus vector further comprises a nucleic acid sequence encoding a costimulatory molecule.
136.-139. (canceled)
140. The method of claim 81, wherein the method further comprises administering to the subject an immune pathway checkpoint modulator, an anti-CEA antibody, a chemotherapeutic agent or a population of engineered natural killer (NK) cells.
141.-199. (canceled)
200. The method of claim 81, wherein the disease is a cancer.
201. The method of claim 200, wherein the cancer is selected from the group consisting of prostate cancer, colon cancer, breast cancer, or gastric cancer.
202. The method of claim 200, wherein the cancer is prostate cancer.
203. The method of claim 200, wherein the cancer is colon cancer.
204. (canceled)
Description:
CROSS REFERENCE
[0001] This application claims the benefit of U.S. Provisional Patent Application No. 62/511,845, filed May 26, 2017, the entire disclosure of which is incorporated by reference.
BACKGROUND
[0002] Vaccines help the body fight disease by training the immune system to recognize and destroy harmful substances and diseased cells. Vaccines can be largely grouped into two types, preventive and treatment vaccines. Preventative vaccines are given to healthy people to prevent the development of specific diseases, while treatment vaccines, also referred to as immunotherapies, are given to a person who has been diagnosed with disease to help stop the disease from growing and spreading or as a preventive. Viral vaccines are currently being developed to help fight infectious diseases and cancers. These viral vaccines work by inducing expression of a small fraction of genes associated with a disease within the host's cells, which in turn, enhance the host's immune system to identify and destroy diseased cells. As such, clinical response of a viral based vaccine can be limited by the ability of vaccine to obtain a high-level immunogenicity and have sustained long-term expression.
[0003] Cancer immunotherapy achieved by delivering viral vaccines encoding tumor-associated antigens (TAA) may have survival benefits; however, limitations to these strategies exist and more immunologically potent vaccines are needed. The present invention addresses this limitation by combining the administration of a vaccine with an IL-15 superagonist to enhance the efficacy and effectiveness of a vaccine in a patient.
SUMMARY
[0004] In various aspects, the present disclosure provides a composition comprising a first recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen, and: a) a second recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15N72D domain of an interleukin-15 (IL-15) superagonist complex and an IL-15R.alpha.Su/Fc fusion domain of the IL-15 superagonist complex; or b) a third recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15N72D domain of an IL-15 superagonist complex and fourth recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15R.alpha.Su/Fc fusion domain of the IL-15 superagonist complex.
[0005] In some aspects, the antigen is a CEA antigen. In further aspects, the CEA antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 3 or SEQ ID NO: 4. In some aspects, the nucleotide sequence encoding the antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 1 or SEQ ID NO: 100. In some aspects, the first recombinant adenovirus vector comprises a sequence having at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97% or at least 99% sequence identity to one of: SEQ ID NO: 2; or positions 1057 to 3165 of SEQ ID NO: 2.
[0006] In some aspects, the IL-15 superagonist complex is a multimeric protein complex. In some aspects, the multimeric protein complex comprises two IL-15N72D domains and a dimeric IL-15R.alpha.Su/Fc fusion domain, and wherein the dimeric IL-15R.alpha./Fc fusion domain comprises a dimer of an IL-15 R.alpha. domain and an Fc fusion protein. In some aspects, the IL-15R.alpha. domain is a human IL-15R.alpha.Su comprising amino acids 1-65 of a mature human IL-15R.alpha. protein. In further aspects, the Fc fusion protein is a human IgG1 Fc protein comprising the CH2--CH3 region of human IgG1. In some aspects the CH2--CH3 region comprises 232 amino acids. In further aspects, the IL-15 superagonist complex is ALT-803.
[0007] In some aspects, the nucleic acid sequence encoding the IL-15N72D domain and the IL-15R.alpha.Su/Fc fusion domain of the second recombinant adenovirus vector encodes an amino acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 110. In further aspects, the nucleic acid sequence encoding the IL-15N72D domain and the IL-15R.alpha.Su/Fc fusion domain of the second recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 109.
[0008] In some aspects, the nucleic acid sequence encoding the IL-15N72D domain of the third recombinant adenovirus vector encodes an amino acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 81. In further aspects, the nucleic acid sequence encoding the IL-15N72D domain comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 107.
[0009] In some aspects, the nucleic acid sequence encoding the IL-15R.alpha.Su/Fc fusion domain of the fourth recombinant adenovirus vector encodes an amino acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 82. In further aspects, the nucleic acid sequence encoding the IL-15R.alpha.Su/Fc fusion domain comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 108.
[0010] In some aspects, the IL-15 superagonist complex exhibits a median effective concentration (EC.sub.50) for supporting IL-15-dependent cell growth that is greater than 2-fold lower, greater than 3-fold lower, greater than 4-fold lower, greater than 5-fold lower, greater than 6-fold lower, greater than 7-fold lower, greater than 8-fold lower, greater than 9-fold lower, greater than 10-fold lower, greater than 15-fold lower, greater than 20-fold lower, greater than 25-fold lower, greater than 30-fold lower, greater than 35-fold lower, greater than 40-fold lower, greater than 45-fold lower, greater than 50-fold lower, greater than 55-fold lower, greater than 60-fold lower, greater than 65-fold lower, greater than 70-fold lower, greater than 75-fold lower, greater than 80-fold lower, greater than 85-fold lower, greater than 90-fold lower, greater than 95-fold lower, or greater than 100-fold lower than the EC.sub.50of a free IL-15 cytokine.
[0011] In some aspects, the IL-15 superagonist complex exhibits a median effective concentration (EC.sub.50) for supporting IL-15-dependent cell growth that is greater than 10-fold lower than the EC.sub.50of a free IL-15 cytokine. In some aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprise recombinant replication defective adenovirus vectors. In some aspects, the recombinant replication defective adenovirus vectors are adenovirus subtype 5 (Ad5)-based vectors. In further aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprise a deletion in an E1 region, and E2b region, an E3 region, an E4 region, or any combination thereof.
[0012] In some aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprises a deletion in an E1 region. In further aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprises a deletion in an E1 region and E2b region.
[0013] In some aspects, the composition comprises at least 1.times.10.sup.9 viral particles, at least 1.times.10.sup.10 viral particles, at least 1.times.10.sup.11 viral particles, at least 5.times.10.sup.11 viral particles, at least 1.times.10.sup.12 viral particles, or at least 5.times.10.sup.12 viral particles in a single dose. In further aspects, the composition comprises 1.times.10.sup.9-5.times.10.sup.12 viral particles in a single dose.
[0014] In some aspects, the composition further comprises a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof. In some aspects, the recombinant first adenovirus vector further comprises a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof. In some aspects, the composition further comprises a fifth recombinant adenovirus vector comprising a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof. In some aspects, the fifth recombinant adenovirus vector comprises an adenovirus subtype 5 (Ad5)-based vector. In further aspects, the adenovirus subtype 5 (Ad5)-based vector comprises a deletion in an E1 region, an E2b region, an E3 region, an E4 region, or any combination thereof.
[0015] In some aspects, the composition further comprises a sixth recombinant adenovirus vector comprising a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof. In some aspects, the sixth recombinant adenovirus vector comprises an adenovirus subtype 5 (Ad5)-based vector. In further aspects, the adenovirus subtype 5 (Ad5)-based vector comprises a deletion in an E1 region, an E2b region, an E3 region, an E4 region, or any combination thereof.
[0016] In further aspects, the additional target antigen is a tumor neo-antigen, tumor-neo-epitope, tumor-specific, tumor-specific antigen, tumor-associated antigen, tissue-specific antigen, bacterial antigen, viral antigen, yeast antigen, fungal antigen, protozoan antigen, parasite antigen, mitogen, or a combination thereof.
[0017] In further aspects, the additional target antigen is human epidermal growth factor receptor 1 (HER1), human epidermal growth factor receptor 2 (HER2/neu), human epidermal growth factor receptor 3 (HER3), human epidermal growth factor receptor 4 (HER4), prostate-specific antigen (PSA), PSMA, folate receptor alpha, WT1, p53, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, BAGE, DAM-6, DAM-10, GAGE-1, GAGE-2, GAGE-8, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, NA88-A, NY-ESO-1, MART-1, MC1R, Gp100, PSA, PSM, Tyrosinase, TRP-1, TRP-2, ART-4, CAMEL, CEA, Cyp-B, BRCA1, Brachyury, Brachyury (TIVS7-2, polymorphism), Brachyury (IVS7 T/C polymorphism), T Brachyury, T, hTERT, hTRT, iCE, MUC1, MUC1 (VNTR polymorphism), MUC1c, MUC1n, MUC2, PRAME, P15, RU1, RU2, SART-1, SART-3, AFP, .beta.-catenin/m, Caspase-8/m, CDK-4/m, ELF2M, GnT-V, G250, HSP70-2M, HST-2, KIAA0205, MUM-1, MUM-2, MUM-3, Myosin/m, RAGE, SART-2, TRP-2/INT2, 707-AP, Annexin II, CDC27/m, TPI/mbcr-abl, ETV6/AML, LDLR/FUT, Pml/RAR.alpha., HPV E6, HPV E7, and TEL/AML1.
[0018] In some aspects, the fifth recombinant adenovirus vector comprises a nucleic acid sequence encoding for a MUC1-C antigen. In further aspects, the MUC1-C antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 7. In some aspects, the nucleic acid sequence encoding for the MUC1-C antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, or SEQ ID NO: 101.
[0019] In still further aspects, the MUC1-C antigen is a modified MUC1 antigen comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 7. In some aspects, the modified MUC1 antigen is encoded for by a nucleic acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, or SEQ ID NO: 101.
[0020] In still further aspects, the MUC-1 antigen is a modified antigen having one or more mutations at positions 93, 141-142, 149-151, 392, 404, 406, 422, 430-431, 444-445, or 460 of SEQ ID NO: 7.
[0021] In still further aspects, the fifth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to positions 1105-2532 of SEQ ID NO: 8. In some aspects, the fifth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 8.
[0022] In some aspects, the MUC1-C antigen binds to HLA-A2, HLA-A3, HLA-A24, or a combination thereof.
[0023] In some aspects, the sixth recombinant adenovirus vector comprises a nucleic acid sequence encoding for a Brachyury antigen. In further aspects, the Brachyury antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 12 or SEQ ID NO: 14. In some aspects, the nucleic acid sequence encoding for the Brachyury antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 9, SEQ ID NO: 10, or SEQ ID NO: 102.
[0024] In still further aspects, the Brachyury antigen is a modified Brachyury antigen having an amino acid sequence at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 14 or SEQ ID NO: 102.
[0025] In some aspects, the sixth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to positions 1045 to 2277 of SEQ ID NO: 13. In some aspects, the sixth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 13.
[0026] In some aspects, the sixth recombinant adenovirus vector comprises a nucleotide sequence at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to positions 520-1824 of SEQ ID NO: 9. In some aspects, the Brachyury antigen is a modified Brachyury antigen comprising an amino acid sequence set forth in WLLPGTSTV (SEQ ID NO: 15). In some aspects, the Brachyury antigen binds to HLA-A2.
[0027] In some aspects, the composition or the first recombinant adenovirus vector further comprises a nucleic acid sequence encoding a costimulatory molecule. In further aspects, the costimulatory molecule comprises B7, ICAM-1, LFA-3, or a combination thereof. In still further aspects, the costimulatory molecule comprises a combination of B7, ICAM-1, and LFA-3. In some aspects, the composition further comprises a plurality of nucleic acid sequences encoding a plurality of costimulatory molecules positioned in the first recombinant adenovirus vector. In some aspects, the composition further comprises a plurality of nucleic acid sequences encoding a plurality of costimulatory molecules positioned in separate recombinant adenovirus vectors.
[0028] In some aspects, the composition further comprises an immune pathway checkpoint modulator. In some aspects, the immune pathway checkpoint modulator activates or potentiates an immune response. In other aspects, the immune pathway checkpoint inhibits an immune response. In some aspects, the immune pathway checkpoint modulator targets an endogenous immune pathway checkpoint protein or fragment thereof selected from the group consisting of: PD1, PDL1, PDL2, CD28, CD80, CD86, CTLA4, B7RP1, ICOS, B7RPI, B7-H3, B7-H4, BTLA, HVEM, KIR, TCR, LAGS, CD137, CD137L, OX40, OX40L, CD27, CD70, CD40, CD40L, TIM3, GALS, ADORA, CD276, VTCN1, IDO1, KIR3DL1, HAVCR2, VISTA, and CD244. In further aspects, the immune pathway checkpoint modulator targets a PD1 protein.
[0029] In some aspects, the immune pathway checkpoint modulator comprises siRNAs, antisense, small molecules, mimic, a recombinant form of a ligand, a recombinant form of a receptor, antibodies, or a combination thereof. In some aspects, the immune pathway checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody. In further aspects, the immune pathway checkpoint inhibitor is Avelumab. In some aspects, the immune response is increased at least 2-, at least 3-, at least 4-, at least 5-, at least 6-, at least 7-, at least 8-, at least 9-, at least 10-, at least 15-, at least 20-, or at least 25-fold.
[0030] In some aspects, the composition further comprises an anti-CEA antibody. In further aspects, the anti-CEA antibody is NEO-201, COL1, COL2, COL3, COL4, COLS, COL6, COL7, COL8, COL9, COL10, COL11, COL12, COL13, COL14, COL15, arcitumomab, besilesomab, labetuzumab, or altumomab. In still further aspects, the anti-CEA antibody is NEO-201
[0031] In some aspects, the composition further comprises a chemotherapeutic agent. In further aspects, the chemotherapeutic agent is 5-FU, leucovorin, or oxaliplatin, or any combination thereof.
[0032] In some aspects, the composition further comprises a population of engineered natural killer (NK) cells. In further aspects, the engineered NK cells comprise one or more NK cells that have been modified as essentially lacking the expression of MR (killer inhibitory receptors), one or more NK cells that have been modified to express a high affinity CD16 variant, and one or more NK cells that have been modified to express one or more CARs (chimeric antigen receptors), or any combinations thereof. In still further aspects, the engineered NK cells comprise one or more NK cells that have been modified as essentially lacking the expression MR. In further aspects, the engineered NK cells comprise one or more NK cells that have been modified to express a high affinity CD16 variant. In further aspects, the engineered NK cells comprise one or more NK cells that have been modified to express one or more CARs.
[0033] In some aspects, the CAR is a CAR for a tumor neo-antigen, tumor neo-epitope, WT1, p53, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, BAGE, DAM-6, DAM-10, Folate receptor alpha, GAGE-1, GAGE-2, GAGE-8, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, NA88-A, NY-ESO-1, MART-1, MC1R, Gp100, Tyrosinase, TRP-1, TRP-2, ART-4, CAMEL, CEA, Cyp-B, Her2/neu, Her3, BRCA1, Brachyury, Brachyury (TIVS7-2, polymorphism), Brachyury (IVS7 T/C polymorphism), T Brachyury, T, hTERT, hTRT, iCE, MUC1, MUC1 (VNTR polymorphism), MUC1c, MUC1n, MUC2, PRAME, P15, RU1, RU2, SART-1, SART-3, AFP, .beta.-catenin/m, Caspase-8/m, CDK-4/m, ELF2M, GnT-V, G250, HSP70-2M, HST-2, KIAA0205, MUM-1, MUM-2, MUM-3, Myosin/m, RAGE, SART-2, TRP-2/INT2, 707-AP, Annexin II, CDC27/m, TPl/mbcr-abl, ETV6/AML, LDLR/FUT, Pml/RAR.alpha., TEL/AML1, or any combination thereof.
[0034] In various aspects, the present disclosure provides a method of treating a subject in need thereof, the method comprising administering to the subject any one of the above compositions.
[0035] In various aspects, the present disclosure provides method of treating a subject in need thereof, the method comprising administering to the subject a first recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen, and: a) a second recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15N72D domain of an interleukin-15 (IL-15) superagonist complex and an IL-15R.alpha.Su/Fc fusion domain of the IL-15 superagonist complex; or b) a third recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15N72D domain of an IL-15 superagonist complex and fourth recombinant adenovirus vector comprising a nucleic acid sequence encoding an IL-15R.alpha.Su/Fc fusion domain of the IL-15 superagonist complex.
[0036] In some aspects, the antigen is a CEA antigen. In further aspects, the CEA antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 3 or SEQ ID NO: 4. In further aspects, the nucleic acid sequence encoding the antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97% or at least 99% sequence identity to SEQ ID NO: 1 or SEQ ID NO: 100. In still further aspects, the first recombinant adenovirus vector comprises a sequence having at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97% or at least 99% sequence identity to one of: SEQ ID NO: 2; or positions 1057 to 3165 of SEQ ID NO: 2.
[0037] In some aspects, the IL-15 superagonist complex is a multimeric protein complex. In further aspects, the multimeric protein complex comprises two IL-15N72D domains and a dimeric IL-15R.alpha.Su/Fc fusion domain, and wherein the dimeric IL-15R.alpha./Fc fusion domain comprises a dimer of an IL-15 R.alpha. domain and an Fc fusion protein. In still further aspects, the IL-15R.alpha. domain is a human IL-15R.alpha.Su comprising amino acids 1-65 of a mature human IL-15R.alpha. protein. In still further aspects, the Fc fusion protein is a human IgG1 Fc protein comprising the CH2--CH3 region of human IgG1. In still further aspects, the CH2--CH3 region comprises 232 amino acids.
[0038] In some aspects, the IL-15 superagonist complex is ALT-803.
[0039] In some aspects, the nucleic acid sequence encoding the IL-15N72D domain and the IL-15R.alpha.Su/Fc fusion domain of the second recombinant adenovirus vector encodes an amino acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 110. In further aspects, the nucleic acid sequence encoding the IL-15N72D domain and the IL-15R.alpha.Su/Fc fusion domain of the second recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 109.
[0040] In some aspects, the nucleic acid sequence encoding the IL-15N72D domain of the third recombinant adenovirus vector encodes an amino acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 81. In further aspects, the nucleic acid sequence encoding the IL-15N72D domain comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 107.
[0041] In some aspects, the nucleic acid sequence encoding the IL-15R.alpha.Su/Fc fusion domain of the fourth recombinant adenovirus vector encodes an amino acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 82. In further aspects, the nucleic acid sequence encoding the IL-15R.alpha.Su/Fc fusion domain comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 108.
[0042] In some aspects, the IL-15 superagonist complex exhibits a median effective concentration (EC.sub.50) for supporting IL-15-dependent cell growth that is greater than 2-fold lower, greater than 3-fold lower, greater than 4-fold lower, greater than 5-fold lower, greater than 6-fold lower, greater than 7-fold lower, greater than 8-fold lower, greater than 9-fold lower, greater than 10-fold lower, greater than 15-fold lower, greater than 20-fold lower, greater than 25-fold lower, greater than 30-fold lower, greater than 35-fold lower, greater than 40-fold lower, greater than 45-fold lower, greater than 50-fold lower, greater than 55-fold lower, greater than 60-fold lower, greater than 65-fold lower, greater than 70-fold lower, greater than 75-fold lower, greater than 80-fold lower, greater than 85-fold lower, greater than 90-fold lower, greater than 95-fold lower, or greater than 100-fold lower than the EC.sub.50of a free IL-15 cytokine. In some aspects, the IL-15 superagonist complex exhibits a median effective concentration (EC.sub.50) for supporting IL-15-dependent cell growth that is greater than 10-fold lower than the EC.sub.50 of a free IL-15 cytokine.
[0043] In some aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprise recombinant replication defective adenovirus vectors. In some aspects, the recombinant replication defective adenovirus vectors are adenovirus subtype 5 (Ad5)-based vectors. In further aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprise a deletion in an E1 region, and E2b region, an E3 region, an E4 region, or any combination thereof.
[0044] In some aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprises a deletion in an E1 region. In further aspects, the first recombinant adenovirus vector, the second recombinant adenovirus vector, the third recombinant adenovirus vector, and the fourth recombinant adenovirus vector comprises a deletion in an E1 region and E2b region. In some aspects, the method comprises administering at least 1.times.10.sup.9 viral particles, at least 1.times.10.sup.10 viral particles, at least 1.times.10.sup.11 viral particles, or 5.times.10.sup.11 viral particles of the recombinant adenovirus vector in a single dose. In some aspects, the method comprises administering 1.times.10.sup.9-5.times.10.sup.11 viral particles of the recombinant adenovirus vector in a single dose. In some aspects, the method further comprises administering to the subject a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof. In some aspects, the first recombinant adenovirus vector further comprises a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof.
[0045] In some aspects, the method further comprises administering to the subject a fifth recombinant adenovirus vector comprising a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof. In some aspects, the fifth recombinant adenovirus vector comprises an adenovirus subtype 5 (Ad5)-based vector. In further aspects, the adenovirus subtype 5 (Ad5)-based vector comprises a deletion in an E1 region, an E2b region, an E3 region, an E4 region, or any combination thereof.
[0046] In some aspects, the method further comprises administering to the subject a sixth recombinant adenovirus vector comprising a nucleic acid sequence encoding one or more additional target antigens or immunological epitopes thereof. In some aspects, the sixth recombinant adenovirus vector comprises an adenovirus subtype 5 (Ad5)-based vector. In further aspects, the adenovirus subtype 5 (Ad5)-based vector comprises a deletion in an E1 region, an E2b region, an E3 region, an E4 region, or any combination thereof.
[0047] In some aspects, the additional target antigen is a tumor neo-antigen, tumor-neo-epitope, tumor-specific, tumor-specific antigen, tumor-associated antigen, tissue-specific antigen, bacterial antigen, viral antigen, yeast antigen, fungal antigen, protozoan antigen, parasite antigen, mitogen, or a combination thereof.
[0048] In some aspects, the additional target antigen is human epidermal growth factor receptor 1 (HER1), human epidermal growth factor receptor 2 (HER2/neu), human epidermal growth factor receptor 3 (HER3), human epidermal growth factor receptor 4 (HER4), prostate-specific antigen (PSA), PSMA, folate receptor alpha, WT1, p53, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, BAGE, DAM-6, DAM-10, GAGE-1, GAGE-2, GAGE-8, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, NA88-A, NY-ESO-1, MART-1, MC1R, Gp100, PSA, PSM, Tyrosinase, TRP-1, TRP-2, ART-4, CAMEL, CEA, Cyp-B, BRCA1, Brachyury, Brachyury (TIVS7-2, polymorphism), Brachyury (IVS7 T/C polymorphism), T Brachyury, T, hTERT, hTRT, iCE, MUC1, MUC1 (VNTR polymorphism), MUC1c, MUC1n, MUC2, PRAME, P15, RU1, RU2, SART-1, SART-3, AFP, .beta.-catenin/m, Caspase-8/m, CDK-4/m, ELF2M, GnT-V, G250, HSP70-2M, HST-2, KIAA0205, MUM-1, MUM-2, MUM-3, Myosin/m, RAGE, SART-2, TRP-2/INT2, 707-AP, Annexin II, CDC27/m, TPI/mbcr-abl, ETV6/AML, LDLR/FUT, Pml/RAR.alpha., HPV E6, HPV E7, and TEL/AML1.
[0049] In some aspects, the fifth recombinant adenovirus vector comprises a nucleic acid sequence encoding for a MUC1-C antigen. In further aspects, the MUC1-C antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 7. In further aspects, the nucleic acid sequence encoding for the MUC1-C antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, or SEQ ID NO: 101. In some aspects, the MUC1-C antigen is a modified MUC1 antigen comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 7. In some aspects, the modified MUC1 antigen is encoded for by a nucleic acid sequence comprising at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, or SEQ ID NO: 101. In some aspects, the MUC-1 antigen is a modified antigen having one or more mutations at positions 94, 141-142, 149-151, 392, 404, 406, 422, 430-431, 444-445, or 460 of SEQ ID NO: 7.
[0050] In some aspects, the fifth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to positions 1105-2532 of SEQ ID NO: 8. In some aspects, the fifth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 8. In some aspects, the MUC1-C antigen binds to HLA-A2, HLA-A3, HLA-A24, or a combination thereof.
[0051] In some aspects, the sixth recombinant adenovirus vector comprises a nucleic acid sequence encoding for a Brachyury antigen. In some aspects, the Brachyury antigen comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 12 or SEQ ID NO: 14. In some aspects, the nucleic acid sequence encoding for the Brachury antigen comprioses at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 9, SEQ ID NO: 10, or SEQ ID NO: 102. In further aspects, the Brachyury antigen is a modified Brachyury antigen having an amino acid sequence at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 14 or SEQ ID NO: 102. In some aspects, the sixth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to positions 1045 to 2277 of SEQ ID NO: 13. In further aspects, the sixth recombinant adenovirus vector comprises at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 13.
[0052] In some aspects, the sixth recombinant adenovirus vector comprises a nucleotide sequence at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to positions 520-1824 of SEQ ID NO: 9. In some aspects, the Brachyury antigen is a modified Brachyury antigen comprising an amino acid sequence set forth in WLLPGTSTV (SEQ ID NO: 15).
[0053] In some aspects, the Brachyury antigen binds to HLA-A2.
[0054] In some aspects, the method further comprises administering the first recombinant adenovirus vector, wherein the first recombinant adenovirus vector further comprises a nucleic acid sequence encoding a costimulatory molecule. In further aspects, the costimulatory molecule comprises B7, ICAM-1, LFA-3, or a combination thereof. In some aspects, the costimulatory molecule comprises a combination of B7, ICAM-1, and LFA-3. In some aspects, the method further comprises administering to the subject a plurality of nucleic acid sequences encoding a plurality of costimulatory molecules positioned in the first recombinant adenovirus vector. In some aspects, the method further comprises administering to the subject a plurality of nucleic acid sequences encoding a plurality of costimulatory molecules positioned in separate recombinant adenovirus vectors.
[0055] In some aspects, the method further comprises administering to the subject an immune pathway checkpoint modulator. In further aspects, the immune pathway checkpoint modulator activates or potentiates an immune response. In some aspects, the immune pathway checkpoint inhibits an immune response. In some aspects, the immune pathway checkpoint modulator targets an endogenous immune pathway checkpoint protein or fragment thereof selected from the group consisting of: PD1, PDL1, PDL2, CD28, CD80, CD86, CTLA4, B7RP1, ICOS, B7RPI, B7-H3, B7-H4, BTLA, HVEM, KIR, TCR, LAGS, CD137, CD137L, OX40, OX4OL, CD27, CD70, CD40, CD4OL, TIM3, GALS, ADORA, CD276, VTCN1, ID01, KIR3DL1, HAVCR2, VISTA, and CD244.
[0056] In some aspects, the immune pathway checkpoint modulator targets a PD1 protein. In some aspects, the immune pathway checkpoint modulator comprises siRNAs, antisense, small molecules, mimic, a recombinant form of a ligand, a recombinant form of a receptor, antibodies, or a combination thereof. In some aspects, the immune pathway checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody. In some aspects, the immune pathway checkpoint inhibitor is Avelumab. In further aspects, the Avelumab is administered to the subject at least once, at least twice, or at least three times a week. In some aspects, Avelumab is administered on day 1 of week 1, day 1 of week 2, day 1 of week 4, day 1 of week 8, day 1 of week 12, and day 1 of week 16. In further aspects, Avelumab is administered after administration of recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen. In further aspects, Avelumab is administered to the subject at a dose comprising 1 mg/kg to 20 mg/kg. In still further aspects, the dose comprises 10 mg/kg.
[0057] In some aspects, an immune response is increased at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or at least 25 fold over basal level. In some aspects, the method further comprises administering to the subject an anti-CEA antibody. In further aspects, the anti-CEA antibody is NEO-201, COL1, COL2, COL3, COL4, COLS, COL6, COLT, COL8, COL9, COL10, COL11, COL12, COL13, COL14, COL15, arcitumomab, besilesomab, labetuzumab, or altumomab. In still further aspects, the anti-CEA antibody is NEO-201. In further aspects, the NEO-201 antibody is administered at a dose comprising 3 mg/kg. In further still aspects, the NEO-201 antibody is administered intravenously on day 1, day 15, and day 22. In some aspects, the method further comprises administering to the subject a chemotherapeutic agent. In further aspects, the chemotherapeutic agent is 5-FU, leucovorin, or oxaliplatin, or any combination thereof.
[0058] In some aspects, the method further comprises administering to the subject a population of engineered natural killer (NK) cells. In further aspects, the population of engineered NK cells are infused intravenously on day 9, day 11, day 18, day 22, day 27, day 33, or any combination thereof. In further aspects, the population of engineered NK cells comprises a dose of at least 2.times.10.sup.9 engineered NK cells. In further aspects, the engineered NK cells comprise one or more NK cells that have been modified as essentially lacking the expression of MR (killer inhibitory receptors), one or more NK cells that have been modified to express a high affinity CD16 variant, and one or more NK cells that have been modified to express one or more CARs (chimeric antigen receptors), or any combinations thereof. In further still aspects, the engineered NK cells comprise one or more NK cells that have been modified as essentially lacking the expression MR. In further still aspects, the engineered NK cells comprise one or more NK cells that have been modified to express a high affinity CD16 variant. In further still aspects, the engineered NK cells comprise one or more NK cells that have been modified to express one or more CARs.
[0059] In some aspects, the CAR is a CAR for a tumor neo-antigen, tumor neo-epitope, WT1, p53, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, BAGE, DAM-6, DAM-10, Folate receptor alpha, GAGE-1, GAGE-2, GAGE-8, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, NA88-A, NY-ESO-1, MART-1, MC1R, Gp100, Tyrosinase, TRP-1, TRP-2, ART-4, CAMEL, CEA, Cyp-B, Her2/neu, Her3, BRCA1, Brachyury, Brachyury (TIVS7-2, polymorphism), Brachyury (IVS7 T/C polymorphism), T Brachyury, T, hTERT, hTRT, iCE, MUC1, MUC1 (VNTR polymorphism), MUC1c, MUC1n, MUC2, PRAME, P15, RU1, RU2, SART-1, SART-3, AFP, .beta.-catenin/m, Caspase-8/m, CDK-4/m, ELF2M, GnT-V, G250, HSP70-2M, HST-2, KIAA0205, MUM-1, MUM-2, MUM-3, Myosin/m, RAGE, SART-2, TRP-2/INT2, 707-AP, Annexin II, CDC27/m, TPl/mbcr-abl, ETV6/AML, LDLR/FUT, Pml/RAR.alpha., TEL/AML1, or any combination thereof.
[0060] In some aspects, the administering is of 0.1-5 .mu.g of the IL-15 superagonist complex as a single dose. In further aspects, the administering is of 1 .mu.g of the IL-15 superagonist complex as a single dose. In some aspects, the administering is of the IL-15 superagonist complex is administered within 1 day, within 2 days, within 3 days, within 4 days, within 5 days, or within 6 days of administration of the recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen. In some aspects, the administering is of the IL-15 superagonist complex is administered 3 days after administration of the recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen. In some aspects, the administering is of a single dose of the IL-15 superagonist complex is administered more than once over a 21 day period.
[0061] In some aspects, the administering is of a single dose of the recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen is administered more than once over a 21 day period. In some aspects, the administering is of the recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen is administered on Day 7, Day 14, and Day 21. In some aspects, the administering is of the IL-15 superagonist complex, and is administered on Day 10 and Day 17. In some aspects, the administering comprises administering over an 8-week period.
[0062] In some aspects, the recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen is administered on weeks 3 and 6. In further aspects, the IL-15 superagonist complex is administered on weeks 1, 2, 4, 5, 7, and 8. In some aspects, the administering is of the IL-15 superagonist complex is administered at least once, at least twice, at least three times, at least four times, or at least five times in a dosing regimen. In some aspects, the administering is of the recombinant adenovirus vector comprising a nucleic acid sequence encoding an antigen is administered at least once, at least twice, at least three times, at least four times, or at least five times in a dosing regimen.
[0063] In some aspects, the CEA antigen induces an immune response. In further aspects, the immune response is measured as antigen specific antibody response. In further aspects, the immune response is measured as antigen specific cell-mediated immunity (CMI). In further aspects, the immune response is measured as antigen specific IFN-.gamma. secretion. In further aspects, the immune response is measured as antigen specific IL-2 secretion. In further aspects, the immune response against the antigen is measured by ELISpot assay. In further aspects, the immune response is measured by T-cell lysis of CAP-1 pulsed antigen-presenting cells, allogeneic antigen expressing cells from a tumor cell line or from an autologous tumor. In still further aspects, the replication defective adenovirus infects dendritic cells in the subject and wherein the infected dendritic cells present the antigen, thereby inducing the immune response.
[0064] In some aspects, the administering comprises subcutaneous, parenteral, intravenous, intramuscular, or intraperitoneal administration. In some aspects, the subject has or does not have a proliferative disease cancer. In some aspects, the subject has colorectal adenocarcinoma, metastatic colorectal cancer, advanced CEA expressing colorectal cancer, breast cancer, lung cancer, bladder cancer, or pancreas cancer. In some aspects, the subject has at least 1, 2, or 3 sites of metastatic disease. In some aspects, the subject comprises cells overexpressing CEA. In further aspects, the cells overexpressing CEA, overexpress CEA by at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 times over a baseline CEA expression in a non-cancer cell. In still further aspects, the cells overexpressing CEA comprise cancer cells.
[0065] In some aspects, the subject has a diagnosed disease predisposition. In some aspects, the subject has a stable disease. In some aspects, the subject has a genetic predisposition for a disease. In some aspects, the disease is a cancer. In further aspects, the cancer is selected from the group consisting of prostate cancer, colon cancer, breast cancer, or gastric cancer. In further aspects, the cancer is prostate cancer. In further aspects, the cancer is colon cancer. In some aspects, the subject is a human.
INCORPORATION BY REFERENCE
[0066] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
[0067] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
[0068] FIG. 1 illustrates a schematic of the ALT-803 super-agonist.
[0069] FIG. 2 illustrates study design and results for an Ad5 [E1-]-CEA vaccine in combination with ALT-803 therapy.
[0070] FIG. 2A illustrates an administration regimen used to evaluate combination administration of an Ad5 [E1-]-CEA vaccine and ALT-803 therapy in CEA-expressing, tumor-bearing mice.
[0071] FIG. 2B illustrates a survival curve showing percent survival in CEA-expressing, tumor-bearing mice which received no treatment, ALT-803 alone on days 10 and 17, an Ad5 [E1-]-CEA vaccine on days 7, 14, and 21, or an Ad5[El-]-CEA vaccine on days 7, 14, 21 with ALT-803 injections on days 10 and 17.
[0072] FIG. 3 illustrates a survival curve showing percent survival in CEA-expressing, tumor-bearing mice which received Ad5 [E1-, E2b-]-Null vaccine alone, Ad5 [E1-, E2b-]-Null vaccine with ALT-803, Ad5 [E1-, E2b-]-CEA vaccine alone, or Ad5 [E1-, E2b-]-CEA vaccine with ALT-803.
DETAILED DESCRIPTION
[0073] The following passages describe different aspects of certain embodiments in greater detail. Each aspect may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature of features indicated as being preferred or advantageous.
[0074] Unless otherwise indicated, any embodiment can be combined with any other embodiment. A variety of aspects can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range as if explicitly written out. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range. When ranges are present, the ranges include the range endpoints.
[0075] To address the low immunogenicity of self-tumor antigens, a variety of advanced, multi-component vaccination strategies including combination therapy with an IL-15 superagonist, ALT-803. Some embodiments relate to recombinant viral vectors that provide innate pro-inflammatory signals, while simultaneously engineered to express the antigen of interest, such as CEA. Of particular interest are adenovirus serotype-5 (Ad5)-based immunotherapeutics that can be used in humans to induce robust T-cell-mediated immune (CMI) responses, all while maintaining an extensive safety profile.
[0076] Compared to first generation adenovirus vectors, certain embodiments of the Second Generation E2b deleted adenovirus vectors contain additional deletions in the DNA polymerase gene (pol) and deletions of the pre-terminal protein (pTP). E2b deleted vectors have up to a 13 kb gene-carrying capacity as compared to the 5 to 6 kb capacity of First Generation adenovirus vectors, easily providing space for nucleic acid sequences encoding any of a variety of target antigens. The E2b deleted adenovirus vectors also have reduced adverse reactions as compared to first generation adenovirus vectors.
[0077] It has been discovered that Ad5 [E1-, E2b-] vectors are not only are safer than, but appear to be superior to Ad5 [E1-] vectors in regard to induction of antigen specific immune responses, making them much better suitable as a platform to deliver CEA vaccines that can result in a clinical response. In other cases, immune induction may take months. Ad5 [E1-, E2b-] vectors not only are safer than, but appear to be superior to Ad5 [E1-] vectors in regard to induction of antigen specific immune responses, making them much better suitable as a platform to deliver CEA vaccines that can result in a clinical response.
[0078] Certain embodiments use the new Ad5 [E1-, E2b-] vector system to deliver a long sought-after need for the development of a therapeutic vaccine against CEA, overcome barriers found with other Ad5 systems and permit the immunization of people who have previously been exposed to Ad5.
[0079] The innate immune response to wild type Ad can be complex, and it appears that Ad proteins expressed from adenovirus vectors play an important role. Specifically, the deletions of pre-terminal protein and DNA polymerase in the E2b deleted vectors appear to reduce inflammation during the first 24 to 72 h following injection, whereas First Generation adenovirus vectors stimulate inflammation during this period. In addition, it has been reported that the additional replication block created by E2b deletion also leads to a 10,000-fold reduction in expression of Ad late genes, well beyond that afforded by E1, E3 deletions alone. The decreased levels of Ad proteins produced by E2b deleted adenovirus vectors effectively reduce the potential for competitive, undesired, immune responses to Ad antigens, responses that prevent repeated use of the platform in Ad immunized or exposed individuals. The reduced induction of inflammatory response by second generation E2b deleted vectors results in increased potential for the vectors to express desired vaccine antigens during the infection of antigen presenting cells (i.e., dendritic cells), decreasing the potential for antigenic competition, resulting in greater immunization of the vaccine to the desired antigen relative to identical attempts with First Generation adenovirus vectors. E2b deleted adenovirus vectors provide an improved Ad-based vaccine candidate that is safer, more effective, and more versatile than previously described vaccine candidates using First Generation adenovirus vectors.
[0080] First generation vectors can have reduced efficacy due to Ad-specific neutralizing antibodies. Without being bound by theory, Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, for example by virtue of diminished late phase viral protein expression, may avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts.
[0081] Some embodiments relate to methods and compositions (e.g., viral vectors) for generating immune responses against target antigens, in particular, those associated or related to infectious disease or proliferative cell disease such as cancer. Some embodiments relate to methods and compositions for generating immune responses in an individual against target antigens, in particular, those related to cell proliferation diseases such as cancer. In some embodiments, compositions and methods described herein relate to generating an immune response in an individual against cells expressing and/or presenting a target antigen or a target antigen signature comprising at least one target antigen.
[0082] The compositions and methods can be used to generate an immune response against a target antigen expressed and/or presented by a cell. For example, the compositions and methods can be used to generate immune responses against a carcinoembryonic antigen (CEA), such as CEA expressed or presented by a cell. For example, the compositions and methods can be used to generate an immune response against CEA(6D) expressed or presented by a cell. For example, the compositions and methods can be used to generate an immune response against Mucin 1 (MUC1) expressed and/or presented by a cell. For example, the compositions and methods can be used to generate an immune response against MUC1c expressed and/or presented by a cell. For example, the compositions and methods can be used to generate an immune response against Brachyury (T protein (T)) expressed and/or presented by a cell.
[0083] The compositions and methods can be used to generate an immune response against multiple target antigens expressed and/or presented by a cell. For example, the compositions and methods can be used to generate an immune response against CEA.
[0084] A modified form of CEA can be used in a vaccine directed to raising an immune response against CEA or cells expressing and/or presenting CEA. In particular, some embodiments provide an improved Ad-based vaccine such that multiple vaccinations against one or more antigenic target entity can be achieved. In some embodiments, the improved Ad-based vaccine comprises a replication defective adenovirus carrying a target antigen, a fragment, a variant or a variant fragment thereof, such as Ad5 [E1-, E2b-]-CEA(6D). Variants or fragments of target antigens, such as CEA, can be selected based on a variety of factors, including immunogenic potential. A mutant CEA, CEA(6D) can utilized for its increased capability to raise an immune response relative to the CEA(WT). Importantly, vaccination can be performed in the presence of preexisting immunity to the Ad or administered to subjects previously immunized multiple times with the Ad vector as described herein or other Ad vectors. The Ad vectors can be administered to subjects multiple times to induce an immune response against an antigen of interest, such as CEA, including but not limited to, the production of antibodies and CMI responses against one or more target antigens.
[0085] As used herein, unless otherwise indicated, the article "a" means one or more unless explicitly otherwise provided for. As used herein, unless otherwise indicated, terms such as "contain," "containing," "include," "including," and the like mean "comprising." As used herein, unless otherwise indicated, the term "or" can be conjunctive or disjunctive. As used herein, unless otherwise indicated, any embodiment can be combined with any other embodiment.
[0086] An "adenovirus" (Ad) refers to non-enveloped DNA viruses from the family Adenoviridae. These viruses can be found in, but are not limited to, human, avian, bovine, porcine and canine species. Some embodiments contemplate the use of any Ad from any of the four genera of the family Adenoviridae (e.g., Aviadenovirus, Mastadenovirus, Atadenovirus and Siadenovirus) as the basis of an E2b deleted virus vector, or vector containing other deletions as described herein. In addition, several serotypes are found in each species. Ad also pertains to genetic derivatives of any of these viral serotypes, including but not limited to, genetic mutations, deletions or transpositions.
[0087] A "helper adenovirus" or "helper virus" refers to an Ad that can supply viral functions that a particular host cell cannot (the host may provide Ad gene products such as E1 proteins). This virus is used to supply, in trans, functions (e.g., proteins) that are lacking in a second virus, or helper dependent virus (e.g., a gutted or gutless virus, or a virus deleted for a particular region such as E2b or other region as described herein); the first replication-incompetent virus is said to "help" the second, helper dependent virus thereby permitting the production of the second viral genome in a cell.
[0088] An "adenovirus 5 null (Ad5-null)" refers to a non-replicating Ad that does not contain any heterologous nucleic acid sequences for expression.
[0089] A "first generation adenovirus" refers to an Ad that has the early region 1 (E1) deleted. In additional cases, the early region 3 (E3) may also be deleted.
[0090] "Gutted" or "gutless" refers to an Ad vector that has been deleted of all viral coding regions.
[0091] "Transfection" refers to the introduction of foreign nucleic acid into eukaryotic cells. Exemplary means of transfection include calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, retroviral infection, and biolistics.
[0092] "Stable transfection" or "stably transfected" refers to the introduction and integration of foreign nucleic acid, DNA or RNA, into the genome of the transfected cell. The term "stable transfectant" refers to a cell which has stably integrated foreign DNA into the genomic DNA.
[0093] A "reporter gene" indicates a nucleotide sequence that encodes a reporter molecule (e.g., an enzyme). A "reporter molecule" is detectable in any of a variety of detection systems, including, but not limited to, enzyme-based detection assays (e.g., ELISA, histochemical assays), fluorescent, radioactive, and luminescent systems. The E. coli .beta.-galactosidase gene, green fluorescent protein (GFP), the human placental alkaline phosphatase gene, the chloramphenicol acetyltransferase (CAT) gene; and other reporter genes may be employed.
[0094] A "heterologous sequence" refers to a nucleotide sequence that is ligated to, or is manipulated to become ligated to, a nucleic acid sequence to which it is not ligated in nature, or to which it is ligated at a different location in nature. Heterologous nucleic acid may include a naturally occurring nucleotide sequence or some modification relative to the naturally occurring sequence.
[0095] A "transgene" refers to any gene coding region, either natural or heterologous nucleic acid sequences or fused homologous or heterologous nucleic acid sequences, introduced into cells or a genome of subject. Transgenes may be carried on any viral vector used to introduce transgenes to the cells of the subject.
[0096] A "second generation adenovirus" refers to an Ad that has all or parts of the E1, E2, E3, and, in certain embodiments, E4 DNA gene sequences deleted (removed) from the virus.
[0097] A "subject" refers to any animal, including, but not limited to, humans, non-human primates (e.g., rhesus or other types of macaques), mice, pigs, horses, donkeys, cows, sheep, rats and fowls.
[0098] An "immunogenic fragment" refers to a fragment of a polypeptide that is specifically recognized (i.e., specifically bound) by a B-cell and/or T-cell surface antigen receptor resulting in a generation of an immune response specifically against a fragment.
[0099] A "target antigen" or "target protein" refers to a molecule, such as a protein, against which an immune response is to be directed.
[0100] "E2b deleted" refers to a DNA sequence mutated in such a way so as to prevent expression and/or function of at least one E2b gene product. Thus, in certain embodiments, "E2b deleted" is used in relation to a specific DNA sequence that is deleted (removed) from an Ad genome. E2b deleted or "containing a deletion within an E2b region" refers to a deletion of at least one base pair within an E2b region of an Ad genome. Thus, in certain embodiments, more than one base pair is deleted and in further embodiments, at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 base pairs are deleted. In another embodiment, a deletion is of more than 150, 160, 170, 180, 190, 200, 250, or 300 base pairs within an E2b region of an Ad genome. An E2b deletion may be a deletion that prevents expression and/or function of at least one E2b gene product and therefore, encompasses deletions within exons of encoding portions of E2b-specific proteins as well as deletions within promoter and leader sequences. In certain embodiments, an E2b deletion is a deletion that prevents expression and/or function of one or both a DNA polymerase and a preterminal protein of an E2b region. In a further embodiment, "E2b deleted" refers to one or more point mutations in a DNA sequence of this region of an Ad genome such that one or more encoded proteins is non-functional. Such mutations include residues that are replaced with a different residue leading to a change in an amino acid sequence that result in a nonfunctional protein.
[0101] "E1-deleted" refers to a DNA sequence that is mutated in such a way so as to prevent expression and/or function of at least one E1 gene product. Thus, in certain embodiments, "E1 deleted" is used in relation to a specific DNA sequence that is deleted (removed) from the Ad genome. E1 deleted or "containing a deletion within the E1 region" refers to a deletion of at least one base pair within the E1 region of the Ad genome. Thus, in certain embodiments, more than one base pair is deleted and in further embodiments, at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 base pairs are deleted. In another embodiment, the deletion is of more than 150, 160, 170, 180, 190, 200, 250, or 300 base pairs within the E1 region of the Ad genome. An E1 deletion may be a deletion that prevents expression and/or function of at least one E1 gene product and therefore, encompasses deletions within exons of encoding portions of E1-specific proteins as well as deletions within promoter and leader sequences. In certain embodiments, an El deletion is a deletion that prevents expression and/or function of one or both of a trans-acting transcriptional regulatory factor of the E1 region. In a further embodiment, "E1 deleted" refers to one or more point mutations in the DNA sequence of this region of an Ad genome such that one or more encoded proteins is non-functional. Such mutations include residues that are replaced with a different residue leading to a change in the amino acid sequence that result in a nonfunctional protein.
[0102] "Generating an immune response" or "inducing an immune response" refers to a statistically significant change, e.g., increase or decrease, in the number of one or more immune cells (T-cells, B-cells, antigen-presenting cells, dendritic cells, neutrophils, and the like) or in the activity of one or more of these immune cells (CTL activity, HTL activity, cytokine secretion, change in profile of cytokine secretion, etc.).
[0103] The terms "nucleic acid" and "polynucleotide" are used essentially interchangeably herein. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (e.g. genomic, cDNA, or synthetic) or RNA molecules. RNA molecules may include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide as described herein, and a polynucleotide may, but need not, be linked to other molecules and/or support materials. An isolated polynucleotide, as used herein, means that a polynucleotide is substantially away from other coding sequences. For example, an isolated DNA molecule as used herein does not contain large portions of unrelated coding DNA, such as large chromosomal fragments or other functional genes or polypeptide coding regions. This refers to the DNA molecule as originally isolated, and does not exclude genes or coding regions later added to the segment recombinantly in the laboratory.
[0104] As will be understood by those skilled in the art, the polynucleotides can include genomic sequences, extra-genomic and plasmid-encoded sequences and smaller engineered gene segments that express, or may be adapted to express target antigens as described herein, fragments of antigens, peptides and the like. Such segments may be naturally isolated, or modified synthetically by the hand of man.
[0105] Typically, polynucleotide variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the immunogenicity of the epitope of the polypeptide encoded by the variant polynucleotide or such that the immunogenicity of the heterologous target protein is not substantially diminished relative to a polypeptide encoded by the native polynucleotide sequence. In some cases, the one or more substitutions, additions, deletions and/or insertions may result in an increased immunogenicity of the epitope of the polypeptide encoded by the variant polynucleotide. As described elsewhere herein, the polynucleotide variants can encode a variant of the target antigen, or a fragment (e.g., an epitope) thereof wherein the propensity of the variant polypeptide or fragment (e.g., epitope) thereof to react with antigen-specific antisera and/or T-cell lines or clones is not substantially diminished relative to the native polypeptide. The polynucleotide variants can encode a variant of the target antigen, or a fragment thereof wherein the propensity of the variant polypeptide or fragment thereof to react with antigen-specific antisera and/or T-cell lines or clones is substantially increased relative to the native polypeptide.
[0106] The term "variants" should also be understood to encompass homologous genes of xenogenic origin. In particular embodiments, variants or fragments of target antigens are modified such that they have one or more reduced biological activities. For example, an oncogenic protein target antigen may be modified to reduce or eliminate the oncogenic activity of the protein, or a viral protein may be modified to reduce or eliminate one or more activities or the viral protein. An example of a modified CEA protein is a CEA having a N610D mutation, resulting in a variant protein with increased immunogenicity.
[0107] When comparing polynucleotide sequences, two sequences are "identical" if the sequence of nucleotides in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software using default parameters. Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman, Add. APL. Math 2:482 (1981), by the identity alignment algorithm of Needleman and Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity methods of Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA), or by inspection. One example of algorithms that are suitable for determining percent sequence identity and sequence similarity is the BLAST and BLAST 2.0 algorithms. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides. Software for performing BLAST analysis is publicly available through the National Center for Biotechnology Information. In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program uses as defaults a word length (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix alignments, (B) of 50, expectation (E) of 10, M=5, N=-4 and a comparison of both strands.
[0108] The "percentage of sequence identity" can be determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence and multiplying the results by 100 to yield the percentage of sequence identity.
[0109] It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a particular antigen of interest, or fragment thereof, as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of some embodiments. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).
Viral Vectors for Immunotherapies and Vaccines
[0110] Recombinant viral vectors can be used to express protein coding genes or antigens (e.g., TAAs (tumor-associated antigens) and/or IDAAs (infectious-disease associated antigens)). The advantages of recombinant viral vector based vaccines and immunotherapy include high efficiency gene transduction, highly specific delivery of genes to target cells, induction of robust immune responses, and increased cellular immunity. Certain embodiments provide for recombinant adenovirus vectors comprising deletions or insertions of crucial regions of the viral genome. The viral vectors of provided herein can comprise heterologous nucleic acid sequences that encode one or more target antigens of interest, or variants, fragments or fusions thereof, against which it is desired to generate an immune response.
[0111] Suitable viral vectors that can be used with the methods and compositions as provided herein, include but are not limited to retroviruses, lentiviruses, provirus, Vaccinia virus, adenoviruses, adeno-associated viruses, self-complementary adeno-associated virus, Cytomegalovirus, Sendai virus, HPV virus, or adenovirus. In some embodiments, the viral vector can be replication-competent. In some embodiments, the viral vector can be replication-defective. Replication-defective viral vectors can be deleted of coding regions that serve to encode for proteins that are involved in replication and packaging. These viruses can infect cells and deliver a payload without killing the cell.Depending on the viral vector, the typical maximum length of an allowable DNA or cDNA insert in a replication-defective viral vector is can be about 8-10 kilobases (kB).
[0112] Retroviruses have been used to express antigens, such as an enveloped, single-stranded RNA virus that contains reverse transcriptase. Retrovirus vectors can be replication-defective. Retrovirus vectors can be of murine or avian origin. Retrovirus vectors can be from Moloney murine leukemia virus (MoMLV). Retrovirus vectors can be used that require genome integration for gene expression. Retrovirus vectors can be used to provide long-term gene expression. For example, retrovirus vectors can have a genome size of approximately 7-11 kb and the vector can harbor 7-8 kb long foreign DNA inserts. Retrovirus vectors can be used to display low immunogenicity and most patients do not show pre-existing immunity to retroviral vectors. Retrovirus vectors can be used to infect dividing cells. Retrovirus vectors can be used to not infect non-dividing cells.
[0113] Lentivirus vectors can be used to express antigens. Lentiviruses can constitute a subclass of retroviruses. Lentivirus vectors can infect non-dividing cells. Lentivirus vectors can be used to infect dividing cells. Lentivirus vectors can be used to infect both non-dividing and dividing cells. Lentiviruses can exhibit broader tropism than retroviruses. Several proteins such as tat and rev regulate the replication of lentiviruses. These regulatory proteins can be typically absent in retroviruses. HIV is an exemplary lentiviral vector that is genetically modified to deliever a transgene. The advantages of lentivirus vectors are similar to those of retroviral vectors. HIV-based vectors can be generated, for example, by deleting the HIV viral envelope and some of the regulatory genes not required during vector production. Instead of parental envelope, several chimeric or modified envelope vectors are generated because it determines the cell and tissue specificity.
[0114] Cytomegalovirus (CMV) vectors have been used to express antigens and are a member of the herpesviruses. Species-specific CMVs can be used (e.g., human CMV (HCMV), e.g., human herpesvirus type 5. HCMV contains a 235-kb double-stranded linear DNA genome surrounded by a capsid. The envelope contains glycoproteins gB and gH, which bind to cellular receptors.
[0115] Sendai virus (SeV) vectors have been used to express antigens. The SeV virus is a member of the Paramyxovirus family. SeV is an enveloped, single-stranded RNA virus. The SeV genome encodes six protein and two envelope glycoproteins, HN and F proteins, that mediate cell entry and determine its tropism. SeV vectors that lack F protein can be used as a replication-defective virus to improve the safety of the vector. SeV vector produced in a packaging cell can be used to expresses the F protein. An F gene-deleted and transgene-inserted genome can be transfected into a packaging cell. SeV contains RNA dependent RNA polymerase and viral genome localizes to the cytoplasm. This ensures that fast gene expression occurs soon after infection and the genotoxic advantage of SeV. SeV vectors can be used to exhibit highly efficient gene transfer. SeV vectors can be used to transduce both dividing and non-dividing cells. SeV vectors can be used to transduce non-dividing cells. SeV vectors can be used to transduce dividing cells. SeV vectors can be used, for example, to efficiently transduce human airway epithelial cells. SeV vectors can be, for example, administered by a mucosal (e.g., oral and nasal) route. Intranasal administration can be used to potentially reduce the influence of a pre-existing immunity to SeV, as compared to intramuscular administration. Compared to other viral vectors, its transgene capacity (3.4 kb) is low. SeV is highly homologous to the human parainfluenza type 1 (hPIV-1) virus; thus, a pre-existing immunity against hPIV-1 can work against the use of SeV.
Adenovirus Vectors
[0116] In general, adenoviruses are attractive for clinical because they can have a broad tropism, they can infect a variety of dividing and non-dividing cell types and they can be used systemically as well as through more selective mucosal surfaces in a mammalian body. In addition, their relative thermostability further facilitates their clinical use. Adenoviruses are a family of DNA viruses characterized by an icosahedral, non-enveloped capsid containing a linear double-stranded genome. Generally, adenoviruses are found as non-enveloped viruses comprising double-stranded DNA genome approximated .about.30-35 kilobases in size. Of the human Ads, none are associated with any neoplastic disease, and only cause relatively mild, self-limiting illness in immunocompetent individuals. The first genes expressed by the virus are the E1 genes, which act to initiate high-level gene expression from the other Ad5 gene promoters present in the wild type genome. Viral DNA replication and assembly of progeny virions occur within the nucleus of infected cells, and the entire life cycle takes about 36 hr with an output of approximately 10.sup.4 virions per cell. The wild type Ad5 genome is approximately 36 kb, and encodes genes that are divided into early and late viral functions, depending on whether they are expressed before or after DNA replication. The early/late delineation is nearly absolute, since it has been demonstrated that super-infection of cells previously infected with an Ad5 results in lack of late gene expression from the super-infecting virus until after it has replicated its own genome. Without being bound by theory, this is likely due to a replication dependent cis-activation of the Ad5 major late promoter (MLP), preventing late gene expression (primarily the Ad5 capsid proteins) until replicated genomes are present to be encapsulated. The composition and methods as described herein, in some embodiments, take advantage of features in the development of advanced generation Ad vectors/vaccines. The linear genome of the adenovirus can be flanked by two origins for DNA replication (ITRs) and can have eight units for RNA polymerase II-mediated transcription. The genome can carry five early regions including E1A, E1B, E2, E3, E4, and E5, two regions expressed after initiation of viral replication (IX and IVa2), and a single late region (L), which can be subdivided into L1-L5. Some adenoviruses can further encode one or two species of RNA called virus-associated (VA) RNA.
[0117] Adenoviruses that induce innate and adaptive immune responses in human patient are provided. By deletion or insertion of crucial regions of the viral genome, recombinant vectors are provided that have been engineered to increase their predictability and reduce unwanted side effects. In some aspects, there is provided an adenovirus vector comprising the genome deletion or insertion selected from the group consisting of: E1A, E1B, E2, E3, E4, E5, IX, IVa2, L1, L2, L3, L4, and L5, and any combination thereof.
[0118] Certain embodiments provide recombinant adenovirus vectors comprising an altered capsid. Generally, the capsid of an adenovirus primarily comprises 20 triangular facets of an icosahedron, each icosahedron containing 12 copies of hexon trimers. In addition, there are also other several additional minor capsid proteins, IIIa, VI, VIII, and IX.
[0119] Certain embodiments provide recombinant adenovirus vectors comprising one or more altered fiber proteins. In general, the fiber proteins, which also form trimers, are inserted at the 12 vertices into the pentameric penton bases. The fiber can comprise of a thin N-terminal tail, a shaft, and a knob domain. The shaft can comprise a variable number of (3-strand repeats. The knob can comprise one or more loops A, B, C, D, E, F, G, H, I, J. The fiber knob loops can bind to cellular receptors. Certain embodiments provide adenovirus vectors to be used in vaccine systems for the treatment of cancers and infectious diseases.
[0120] Suitable adenoviruses that can be used with the present methods and compositions of the disclosure include but are not limited to species-specific adenovirus including human subgroups A, B1, B2, C, D, E and F or their crucial genomic regions as provided herein, which subgroups can further be classified into immunologically distinct serotypes. Further, suitable adenoviruses that can be used with the present methods and compositions of the disclosure include, but are not limited to, species-specific adenovirus or their crucial genomic regions identified from primates, bovines, fowls, reptiles, or frogs.
[0121] Some adenoviruses serotypes preferentially target distinct organs. Serotypes such as AdHu1, AdHu2, and AdHu5 (subgenus C), generally effect the infect upper respiratory, while subgenera A and F effect gastrointestinal organs. Certain embodiments provide recombinant adenovirus vectors to be used in preferentially target distinct organs for the treatment of organ-specific cancers or organ-specific infectious diseases. In some applications, the recombinant adenovirus vector is altered to reduce tropism to a specific organ in a mammal. In some applications, the recombinant adenovirus vector is altered to increase tropism to a specific organ in a mammal.
[0122] The tropism of an adenovirus can be determined by their ability to attach to host cell receptors. In some instances, the process of host cell attachment can involve the initial binding of the distal knob domain of the fiber to a host cell surface molecule followed by binding of the RGD motif within the penton base with aV integrins. Certain embodiments provide recombinant adenovirus vectors with altered tropism such that they can be genetic engineered to infect specific cell types of a host. Certain embodiments provide recombinant adenovirus vectors with altered tropism for the treatment of cell-specific cancers or cell-specific infectious diseases. Certain embodiments provide recombinant adenovirus vectors with altered fiber knob from one or more adenoviruses of subgroups A, B, C, D, or F, or a combination thereof or the insertion of RGD sequences. In some applications, the recombinant adenovirus vectors comprising an altered fiber knob results in a vector with reduced tropism for one or more particular cell types. In some applications, the recombinant adenovirus vectors comprising an altered fiber knob results in a vector with enhanced tropism for one or more particular cell types. In some applications, the recombinant adenovirus vectors comprising an altered fiber knob results in a vector with reduced product-specific B or T-cell responses. In some applications, the recombinant adenovirus vectors comprising an altered fiber knob results in a vector with enhanced product-specific B or T-cell responses.
[0123] Certain embodiments provide recombinant adenovirus vectors that are coated with other molecules to circumvent the effects of virus-neutralizing antibodies or improve transduction in to a host cell. Certain embodiments provide recombinant adenovirus vectors that are coated with an adaptor molecule that aids in the attachment of the vector to a host cell receptor. By way of example an adenovirus vector can be coated with adaptor molecule that connects coxsackie Ad receptor (CAR) with CD4OL resulting in increased transduction of dendritic cells, thereby enhancing immune responses in a subject. Other adenovirus vectors similarly engineered for enhancing the attachment to other target cell types are also contemplated.
Ad5 Vectors
[0124] Studies in humans and animals have demonstrated that pre-existing immunity against Ad5 can be an inhibitory factor to commercial use of Ad-based vaccines. The preponderance of humans have antibody against Ad5, the most widely used subtype for human vaccines, with two-thirds of humans studied having lympho-proliferative responses against Ad5. This pre-existing immunity can inhibit immunization or re-immunization using typical Ad5 vaccines and may preclude the immunization of a vaccine against a second antigen, using an Ad5 vector, at a later time. Overcoming the problem of pre-existing anti-vector immunity has been a subject of intense investigation. Investigations using alternative human (non-Ad5 based) Ad5 subtypes or even non-human forms of Ad5 have been examined. Even if these approaches succeed in an initial immunization, subsequent vaccinations may be problematic due to immune responses to the novel Ad5 subtype. To avoid the Ad5 immunization barrier, and improve upon the limited efficacy of first generation Ad5 [E1-] vectors to induce optimal immune responses, some embodiments relate to a next generation Ad5 vector based vaccine platform.
[0125] First generation, or E1-deleted adenovirus vectors Ad5 [E1-] are constructed such that a transgene replaces only the E1 region of genes. Typically, about 90% of the wild-type Ad5 genome is retained in the vector. Ad5 [E1-] vectors have a decreased ability to replicate and cannot produce infectious virus after infection of cells that do not express the Ad5 E1 genes. The recombinant Ad5 [E1-] vectors are propagated in human cells (e.g., 293 cells) allowing for Ad5 [E1-] vector replication and packaging. Ad5 [E1-] vectors have a number of positive attributes; one of the most important is their relative ease for scale up and cGMP production. Currently, well over 220 human clinical trials utilize Ad5 [E1-] vectors, with more than two thousand subjects given the virus sc, im, or iv. Additionally, Ad5 vectors do not integrate; their genomes remain episomal. Generally, for vectors that do not integrate into the host genome, the risk for insertional mutagenesis and/or germ-line transmission is extremely low if at all. Conventional Ad5 [E1-] vectors have a carrying capacity that approaches 7 kb.
[0126] Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, provide an opportunity to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. The new Ad5 platform has additional deletions in the E2b region, removing the DNA polymerase and the preterminal protein genes. The Ad5 [E1-, E2b-] platform has an expanded cloning capacity that is sufficient to allow inclusion of many possible genes. Ad5 [E1-, E2b-] vectors have up to about 12 kb gene-carrying capacity as compared to the 7 kb capacity of Ad5 [E1-] vectors, providing space for multiple genes if needed. In some embodiments, an insert of more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 kb is introduced into an Ad5 vector, such as the Ad5 [E1-, E2b-] vector. Deletion of the E2b region confers advantageous immune properties on the Ad5 vectors, often eliciting potent immune responses to target transgene antigens while minimizing the immune responses to Ad viral proteins.
[0127] In various embodiments, Ad5 [E1-, E2b-] vectors induce a potent CMI, as well as antibodies against the vector expressed vaccine antigens even in the presence of Ad immunity. Ad5 [E1-, E2b-] vectors also have reduced adverse reactions as compared to Ad5 [E1-] vectors, in particular the appearance of hepatotoxicity and tissue damage. A key aspect of these Ad5 vectors is that expression of Ad late genes is greatly reduced. For example, production of the capsid fiber proteins could be detected in vivo for Ad5 [E1-] vectors, while fiber expression was ablated from Ad5 [E1-, E2b-] vector vaccines. The innate immune response to wild type Ad is complex. Proteins deleted from the Ad5 [E1-, E2b-] vectors generally play an important role. Specifically, Ad5 [E1-, E2b-] vectors with deletions of preterminal protein or DNA polymerase display reduced inflammation during the first 24 to 72 h following injection compared to Ad5 [E1-] vectors. In various embodiments, the lack of Ad5 gene expression renders infected cells invisible to anti-Ad activity and permits infected cells to express the transgene for extended periods of time, which develops immunity to the target.
[0128] Some embodiments contemplate increasing the capability for the Ad5 [E1-, E2b-] vectors to transduce dendritic cells, improving antigen specific immune responses in the vaccine by taking advantage of the reduced inflammatory response against Ad5 [E1-, E2b-] vector viral proteins and the resulting evasion of pre-existing Ad immunity.
Replication Defective Ad5 Vectors
[0129] Attempts to overcome anti-Ad immunity have included use of alternative Ad serotypes and/or alterations in the Ad5 viral capsid protein each with limited success and the potential for significantly altering biodistribution of the resultant vaccines. Therefore, a completely novel approach was attempted by further reducing the expression of viral proteins from the E1 deleted Ad5 vectors, proteins known to be targets of pre-existing Ad immunity. Specifically, a novel recombinant Ad5 platform has been described with deletions in the early 1 (E1) gene region and additional deletions in the early 2b (E2b) gene region (Ad5 [E1-, E2b-]). Deletion of the E2b region (that encodes DNA polymerase and the pre-terminal protein) results in decreased viral DNA replication and late phase viral protein expression. This vector platform can be used to induce CMI responses in animal models of cancer and infectious disease and more importantly, this recombinant Ad5 gene delivery platform overcomes the barrier of Ad5 immunity and can be used in the setting of pre-existing and/or vector-induced Ad immunity thus enabling multiple homologous administrations of the vaccine. In particular embodiments, some embodiments relate to a replication defective adenovirus vector of serotype 5 comprising a sequence encoding an immunogenic polypeptide. The immunogenic polypeptide may be a mutant, natural variant, or a fragment thereof.
[0130] In some embodiments, the replication defective adenovirus vector comprises a modified sequence encoding a polypeptide with at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identity to a wild-type immunogenic polypeptide or a fragment thereof. In some embodiments, the replication defective adenovirus vector comprises a modified sequence encoding a subunit of a wild-type polypeptide. The compositions and methods, in some embodiments, relate to an adenovirus-derived vector comprising at least 60% sequence identity to SEQ ID NO: 3 or SEQ ID NO: 100.
[0131] In some embodiments, an adenovirus-derived vector, optionally relating to a replication defective adenovirus, comprises a sequence with at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.8%, or 99.9% identity to SEQ ID NO: 3 or SEQ ID NO: 100 or a sequence generated from SEQ ID NO: 3 or SEQ ID NO: 100 by alternative codon replacements. In various embodiments, the adenovirus-derived vectors described herein have a deletion in the E2b region, and optionally, in the E1 region, the deletion conferring a variety of advantages to the use of the vectors in immunotherapy as described herein.
[0132] In some embodiments, a CEA antigen of the present disclosure can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 3 or SEQ ID NO: 4. In some embodiments, the nucleic acid sequence encoding for a CEA antigen of the present disclosure can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 1, SEQ ID NO: 100, or positions 1057 to 3165 of SEQ ID NO: 2. In some embodiments, a replication defective adenovirus vector (e.g., Ad5 [E1-, E2b-]) encoding for a CEA antigen can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 2 or positions 1057 to 3165 of SEQ ID NO: 2.
[0133] Certain regions within the adenovirus genome serve essential functions and may need to be substantially conserved when constructing the replication defective adenovirus vectors. These regions are further described in Lauer et al., J. Gen. Virol., 85, 2615-25 (2004), Leza et al., J. Virol., p. 3003-13 (1988), and Miralles et al., J. Bio Chem., Vol. 264, No. 18, p. 10763-72 (1983), which are incorporated by reference in their entirety. Recombinant nucleic acid vectors comprising a sequence with identity values of at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.8%, 99.9%, or 100% to a portion of SEQ ID NO: 3 or SEQ ID NO: 100, such as a portion comprising at least about 100, 250, 500, 1000 or more bases of SEQ ID NO: 3 or SEQ ID NO: 100 are used in some embodiments.
[0134] Certain embodiments contemplate the use of E2b deleted adenovirus vectors, such as those described in U.S. Pat. Nos. 6,063,622; 6,451,596; 6,057,158; 6,083,750; and 8,298,549, which are each incorporated herein by reference in their entirety. The vectors with deletions in the E2b regions in many cases cripple viral protein expression and/or decrease the frequency of generating replication competent Ad (RCA). Propagation of these E2b deleted adenovirus vectors can be done utilizing cell lines that express the deleted E2b gene products. Such packaging cell lines are provided herein; e.g., E.C7 (formally called C-7), derived from the HEK-2p3 cell line.
[0135] Further, the E2b gene products, DNA polymerase and preterminal protein, can be constitutively expressed in E.C7, or similar cells along with the E1 gene products. Transfer of gene segments from the Ad genome to the production cell line has immediate benefits: (1) increased carrying capacity; and, (2) a decreased potential of RCA generation, typically requiring two or more independent recombination events to generate RCA. The El, Ad DNA polymerase and/or preterminal protein expressing cell lines used in some embodiments can enable the propagation of adenovirus vectors with a carrying capacity approaching 13 kb, without the need for a contaminating helper virus. In addition, when genes critical to the viral life cycle are deleted (e.g., the E2b genes), a further crippling of Ad to replicate or express other viral gene proteins occurs. This can decrease immune recognition of infected cells, and extend durations of foreign transgene expression.
[0136] E1, DNA polymerase, and preterminal protein deleted vectors are typically unable to express the respective proteins from the E1 and E2b regions. Further, they may show a lack of expression of most of the viral structural proteins. For example, the major late promoter (MLP) of Ad is responsible for transcription of the late structural proteins L1 through L5. Though the MLP is minimally active prior to Ad genome replication, the highly toxic Ad late genes are primarily transcribed and translated from the mLP only after viral genome replication has occurred. This cis-dependent activation of late gene transcription is a feature of DNA viruses in general, such as in the growth of polyoma and SV-40. The DNA polymerase and preterminal proteins are important for Ad replication (unlike the E4 or protein IX proteins). Their deletion can be extremely detrimental to adenovirus vector late gene expression, and the toxic effects of that expression in cells such as APCs.
[0137] The adenovirus vectors can include a deletion in the E2b region of the Ad genome and, optionally, the E1 region. In some cases, such vectors do not have any other regions of the Ad genome deleted. The adenovirus vectors can include a deletion in the E2b region of the Ad genome and deletions in the E1 and E3 regions. In some cases, such vectors have no other regions deleted. The adenovirus vectors can include a deletion in the E2b region of the Ad genome and deletions in the E1, E3 and partial or complete removal of the E4 regions. In some cases, such vectors have no other deletions. The adenovirus vectors can include a deletion in the E2b region of the Ad genome and deletions in the E1 and/or E4 regions. In some cases, such vectors contain no other deletions. The adenovirus vectors can include a deletion in the E2a, E2b and/or E4 regions of the Ad genome. In some cases, such vectors have no other deletions. The adenovirus vectors can have the E1 and/or DNA polymerase functions of the E2b region deleted. In some cases, such vectors have no other deletions. The adenovirus vectors can have the E1 and/or the preterminal protein functions of the E2b region deleted. In some cases, such vectors have no other deletions. The adenovirus vectors can have the E1, DNA polymerase and/or the preterminal protein functions deleted. In some cases, such vectors have no other deletions. The adenovirus vectors can have at least a portion of the E2b region and/or the E1 region. In some cases, such vectors are not gutted adenovirus vectors. In this regard, the vectors may be deleted for both the DNA polymerase and the preterminal protein functions of the E2b region. The adenovirus vectors can have a deletion in the E1, E2b and/or 100K regions of the adenovirus genome. The adenovirus vectors can comprise vectors having the E1, E2b and/or protease functions deleted. In some cases, such vectors have no other deletions. The adenovirus vectors can have the E1 and/or the E2b regions deleted, while the fiber genes have been modified by mutation or other alterations (for example to alter Ad tropism). Removal of genes from the E3 or E4 regions may be added to any of the adenovirus vectors mentioned. In certain embodiments, adenovirus vectors may have a deletion in the E1 region, the E2b region, the E3 region, the E4 region, or any combination thereof. In certain embodiments, the adenovirus vector may be a gutted adenovirus vector.
[0138] Other regions of the Ad genome can be deleted. A "deletion" in a particular region of the Ad genome refers to a specific DNA sequence that is mutated or removed in such a way so as to prevent expression and/or function of at least one gene product encoded by that region (e.g., E2b functions of DNA polymerase or preterminal protein function). Deletions can encompass deletions within exons encoding portions of proteins as well as deletions within promoter and leader sequences. A deletion within a particular region refers to a deletion of at least one base pair within that region of the Ad genome. More than one base pair can be deleted. For example, at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 base pairs can be deleted from a particular region. The deletion can be more than 150, 160, 170, 180, 190, 200, 250, or 300 base pairs within a particular region of the Ad genome. These deletions can prevent expression and/or function of the gene product encoded by the region. For example, a particular region of the Ad genome can include one or more point mutations such that one or more encoded proteins is non-functional. Such mutations include residues that are replaced with a different residue leading to a change in the amino acid sequence that result in a nonfunctional protein. Exemplary deletions or mutations in the Ad genome include one or more of E1a, E1b, E2a, E2b, E3, E4, L1, L2, L3, L4, L5, TP, POL, IV, and VA regions. Deleted adenovirus vectors can be made, for example, using recombinant techniques.
[0139] Ad vectors in certain embodiments can be successfully grown to high titers using an appropriate packaging cell line that constitutively expresses E2b gene products and products of any of the necessary genes that may have been deleted. HEK-293-derived cells that not only constitutively express the E1 and DNA polymerase proteins, but also the Ad-preterminal protein, can be used. E.C7 cells can be used, for example, to grow high titer stocks of the adenovirus vectors.
[0140] To delete critical genes from self-propagating adenovirus vectors, proteins encoded by the targeted genes can first be coexpressed in HEK-293 cells, or similar, along with E1 proteins. For example, those proteins which are non-toxic when coexpressed constitutively (or toxic proteins inducibly-expressed) can be selectively utilized. Coexpression in HEK-293 cells of the E1 and E4 genes is possible (for example utilizing inducible, not constitutive, promoters). The E1 and protein IX genes, a virion structural protein, can be coexpressed. Further coexpression of the E1, E4, and protein IX genes is also possible. E1 and 100K genes can be expressed in trans-complementing cell lines, as can E1 and protease genes.
[0141] Cell lines coexpressing E1 and E2b gene products for use in growing high titers of E2b deleted Ad particles can be used. Useful cell lines constitutively express the approximately 140 kDa Ad-DNA polymerase and/or the approximately 90 kDa preterminal protein. Cell lines that have high-level, constitutive coexpression of the E1, DNA polymerase, and preterminal proteins, without toxicity (e.g., E.C7), are desirable for use in propagating Ad for use in multiple vaccinations. These cell lines permit the propagation of adenovirus vectors deleted for the E1, DNA polymerase, and preterminal proteins.
[0142] The recombinant Ad can be propagated using, for example, tissue culture plates containing E.C7 cells infected with Ad vector virus stocks at an appropriate MOI (e.g., 5) and incubated at 37.degree. C. for 40-96 h. The infected cells can be harvested, resuspended in 10 mM Tris-Cl (pH 8.0), and sonicated, and the virus can be purified by two rounds of cesium chloride density centrifugation. The virus containing band can be desalted over a column, sucrose or glycerol can be added, and aliquots can be stored at -80.degree. C. Virus can be placed in a solution designed to enhance its stability, such as A195. The titer of the stock can be measured (e.g., by measurement of the optical density at 260 nm of an aliquot of the virus after lysis). Plasmid DNA, either linear or circular, encompassing the entire recombinant E2b deleted adenovirus vector can be transfected into E.C7, or similar cells, and incubated at 37.degree. C. until evidence of viral production is present (e.g., cytopathic effect). Conditioned media from cells can be used to infect more cells to expand the amount of virus produced before purification. Purification can be accomplished, for example, by two rounds of cesium chloride density centrifugation or selective filtration. Virus may be purified by chromatography using commercially available products or custom chromatographic columns.
[0143] The compositions as described herein can comprise enough virus to ensure that cells to be infected are confronted with a certain number of viruses. Thus, some embodiments provide a stock of recombinant Ad, such as an RCA-free stock of recombinant Ad. Viral stocks can vary considerably in titer, depending largely on viral genotype and the protocol and cell lines used to prepare them. Viral stocks can have a titer of at least about 10.sup.6, 10.sup.7, or 10.sup.8 pfu/mL, or higher, such as at least about 10.sup.9, 10.sup.10, 10.sup.11, or 10.sup.12 pfu/mL. Depending on the nature of the recombinant virus and the packaging cell line, a viral stock can have a titer of even about 10.sup.13 particles/ml or higher.
[0144] A replication defective adenovirus vector (e.g., SEQ ID NO: 2) can comprise a sequence encoding a target antigen, a fragment thereof, or a variant thereof, at a suitable position. In some embodiments, a replication defective adenovirus vector (e.g., SEQ ID NO: 2) can comprise a sequence encoding a target antigen described herein, or a fragment, a variant, or a variant fragment thereof, at a position replacing the nucleic acid sequence encoding a CEA or a variant CEA (e.g., SEQ ID NO: 1 or SEQ ID NO: 100). In some embodiments, a replication defective adenovirus vector (e.g., SEQ ID NO: 2) can comprise a sequence encoding a target antigen described herein, or a fragment, a variant, or a variant fragment thereof, at a position replacing the nucleic acid sequence encoding a CEA or a variant CEA (e.g., SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 100).
Polynucleotides and Variants Encoding Antigen Targets
[0145] Certain embodiments provide nucleic acid sequences, also referred to herein as polynucleotides that encode one or more target antigens of interest, or fragments or variants thereof. As such, some embodiments provide polynucleotides that encode target antigens from any source as described further herein, vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors. In order to express a desired target antigen polypeptide, nucleotide sequences encoding the polypeptide, or functional equivalents, can be inserted into an appropriate Ad vector (e.g., using recombinant techniques). The appropriate adenovirus vector may contain the necessary elements for the transcription and translation of the inserted coding sequence and any desired linkers. Methods which are well known to those skilled in the art may be used to construct these adenovirus vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination.
[0146] Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a target antigen polypeptide/protein/epitope or a portion thereof) or may comprise a sequence that encodes a variant, fragment, or derivative of such a sequence. Polynucleotide sequences can encode target antigen proteins. In some embodiments, polynucleotides represent a novel gene sequence optimized for expression in specific cell types that may substantially vary from the native nucleotide sequence or variant but encode a similar protein antigen.
[0147] In other related embodiments, polynucleotide variants have substantial identity to native sequences encoding proteins (e.g., target antigens of interest), for example those comprising at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a native polynucleotide sequence encoding the polypeptides (e.g., BLAST analysis using standard parameters). These values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Polynucleotides can encode a protein comprising for example at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a protein sequence encoded by a native polynucleotide sequence.
[0148] Polynucleotides can comprise at least about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 11, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 or more contiguous nucleotides encoding a polypeptide (e.g., target protein antigens), and all intermediate lengths there between. "Intermediate lengths", in this context, refers to any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through 200-500; 500-1,000, and the like. A polynucleotide sequence may be extended at one or both ends by additional nucleotides not found in the native sequence encoding a polypeptide, such as an epitope or heterologous target protein. This additional sequence may consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides or more, at either end of the disclosed sequence or at both ends of the disclosed sequence.
[0149] The polynucleotides, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, expression control sequences, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. Illustrative polynucleotide segments with total lengths of about 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many embodiments.
[0150] A mutagenesis approach, such as site-specific mutagenesis, can be employed to prepare target antigen sequences. Specific modifications in a polypeptide sequence can be made through mutagenesis of the underlying polynucleotides that encode them. Site-specific mutagenesis can be used to make mutants through the use of oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. For example, a primer comprising about 14 to about 25 nucleotides or so in length can be employed, with about 5 to about 10 residues on both sides of the junction of the sequence being altered. Mutations may be made in a selected polynucleotide sequence to improve, alter, decrease, modify, or otherwise change the properties of the polynucleotide, and/or alter the properties, activity, composition, stability, or primary sequence of the encoded polypeptide.
[0151] Mutagenesis of polynucleotide sequences can be used to alter one or more properties of the encoded polypeptide, such as the immunogenicity of an epitope comprised in a polypeptide or the oncogenicity of a target antigen. Assays to test the immunogenicity of a polypeptide include, but are not limited to, T-cell cytotoxicity assays (CTL/chromium release assays), T-cell proliferation assays, intracellular cytokine staining, ELISA, ELISpot, etc. Other ways to obtain sequence variants of peptides and the DNA sequences encoding them can be employed. For example, recombinant vectors encoding the desired peptide sequence may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants.
[0152] Polynucleotide segments or fragments encoding the polypeptides as described herein may be readily prepared by, for example, directly synthesizing the fragment by chemical means. Fragments may be obtained by application of nucleic acid reproduction technology, such as PCR, by introducing selected sequences into recombinant vectors for recombinant production.
[0153] A variety of vector/host systems may be utilized to contain and produce polynucleotide sequences. Exemplary systems include microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA vectors; yeast transformed with yeast vectors; insect cell systems infected with virus vectors (e.g., baculovirus); plant cell systems transformed with virus vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
[0154] Control elements or regulatory sequences present in an Ad vector may include those non-translated regions of the vector-enhancers, promoters, and 5' and 3' untranslated regions. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, sequences encoding a polypeptide of interest may be ligated into an Ad transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing the polypeptide in infected host cells. In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
[0155] Specific initiation signals may also be used to achieve more efficient translation of sequences encoding a polypeptide of interest (e.g., ATG initiation codon and adjacent sequences). Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used. Specific termination sequences, either for transcription or translation, may also be incorporated in order to achieve efficient translation of the sequence encoding the polypeptide of choice.
[0156] A variety of protocols for detecting and measuring the expression of polynucleotide-encoded products (e.g., target antigens), can be used (e.g., using polyclonal or monoclonal antibodies specific for the product). Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on a given polypeptide may be preferred for some applications, but a competitive binding assay may also be employed.
[0157] The Ad vectors can comprise a product that can be detected or selected for, such as a reporter gene whose product can be detected, such as by fluorescence, enzyme activity on a chromogenic or fluorescent substrate, and the like, or selected for by growth conditions. Exemplary reporter genes include green fluorescent protein (GFP), .beta.-galactosidase, chloramphenicol acetyltransferase (CAT), luciferase, neomycin phosphotransferase, secreted alkaline phosphatase (SEAP), and human growth hormone (HGH). Exemplary selectable markers include drug resistances, such as neomycin (G418), hygromycin, and the like.
[0158] The Ad vectors can also comprise a promoter or expression control sequence. The choice of the promoter will depend in part upon the targeted cell type and the degree or type of control desired. Promoters that are suitable include, without limitation, constitutive, inducible, tissue specific, cell type specific, temporal specific, or event-specific. Examples of constitutive or nonspecific promoters include the SV40 early promoter, the SV40 late promoter, CMV early gene promoter, bovine papilloma virus promoter, and adenovirus promoter. In addition to viral promoters, cellular promoters are also amenable and useful in some embodiments. In particular, cellular promoters for the so-called housekeeping genes are useful (e.g., (.beta.-actin). Viral promoters are generally stronger promoters than cellular promoters. Inducible promoters may also be used. These promoters include MMTV LTR, inducible by dexamethasone, metallothionein, inducible by heavy metals, and promoters with cAMP response elements, inducible by cAMP, heat shock promoter. By using an inducible promoter, the nucleic acid may be delivered to a cell and will remain quiescent until the addition of the inducer. This allows further control on the timing of production of the protein of interest. Event-type specific promoters (e.g., HIV LTR) can be used, which are active or upregulated only upon the occurrence of an event, such as tumorigenicity or viral infection, for example. The HIV LTR promoter is inactive unless the tat gene product is present, which occurs upon viral infection. Some event-type promoters are also tissue-specific. Preferred event-type specific promoters include promoters activated upon viral infection.
[0159] Examples of promoters include promoters for .alpha.-fetoprotein, .alpha.-actin, myo D, carcinoembryonic antigen, VEGF-receptor; FGF receptor; TEK or tie 2; tie; urokinase receptor; E- and P-selectins; VCAM-1; endoglin; endosialin; .alpha.V-.beta.3 integrin; endothelin-1; ICAM-3; E9 antigen; von Willebrand factor; CD44; CD40; vascular-endothelial cadherin; notch 4, high molecular weight melanoma-associated antigen; prostate specific antigen-1, probasin, FGF receptor, VEGF receptor, erb B2; erb B3; erb B4; MUC-1; HSP-27; int-1; int-2, CEA, HBEGF receptor; EGF receptor; tyrosinase, MAGE, IL-2 receptor; prostatic acid phosphatase, probasin, prostate specific membrane antigen, .alpha.-crystallin, PDGF receptor, integrin receptor, .alpha.-actin, SM1 and SM2 myosin heavy chains, calponin-h1, SM22 .alpha.-angiotensin receptor, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, immunoglobulin heavy chain, immunoglobulin light chain, and CD4.
[0160] Repressor sequences, negative regulators, or tissue-specific silencers may be inserted to reduce non-specific expression of the polynucleotide. Multiple repressor elements may be inserted in the promoter region. Repression of transcription is independent of the orientation of repressor elements or distance from the promoter. One type of repressor sequence is an insulator sequence. Such sequences inhibit transcription and can silence background transcription. Negative regulatory elements can be located in the promoter regions of a number of different genes. The repressor element can function as a repressor of transcription in the absence of factors, such as steroids, as does the NSE in the promoter region of the ovalbumin gene. These negative regulatory elements can bind specific protein complexes from oviduct, none of which are sensitive to steroids. Three different elements are located in the promoter of the ovalbumin gene. In some embodiments, oligonucleotides corresponding to portions of these elements can repress viral transcription of the TK reporter. For example, one such silencer element is TCTCTCCNA (SEQ ID NO: 11), which has sequence identity with silencers that are present in other genes.
[0161] Elements that increase the expression of the desired target antigen can be incorporated into the nucleic acid sequence of the Ad vectors described herein. Exemplary elements include internal ribosome binding sites (IRESs). IRESs can increase translation efficiency. As well, other sequences may enhance expression. For some genes, sequences especially at the 5' end may inhibit transcription and/or translation. These sequences are usually palindromes that can form hairpin structures. In some cases, such sequences in the nucleic acid to be delivered are deleted. Expression levels of the transcript or translated product can be assayed to confirm or ascertain which sequences affect expression. Transcript levels may be assayed by any known method, including Northern blot hybridization, RNase probe protection and the like. Protein levels may be assayed by any known method, including ELISA.
Antigen-Specific Immunotherapies and Vaccines
[0162] Certain embodiments provide single antigen immunization against CEA utilizing such vectors and other vectors as provided herein. Certain embodiments provide prophylactic vaccines against CEA. Further, in various embodiments, the composition and methods provide herein can lead to clinical responses, such as altered disease progression or life expectancy.
[0163] Ad5 [E1-] vectors encoding a variety of antigens can be used to efficiently transduce 95% of ex vivo exposed DC's to high titers of the vector. In certain embodiments, increasing levels of foreign gene expression in the DC was found to correlate with increasing multiplicities of infection (MOI) with the vector. DCs infected with Ad5 [E1-] vectors can encode a variety of antigens (including the tumor antigens MART-1, MAGE-A4, DF3/MUC1, p53, hugp100 melanoma antigen, polyoma virus middle--T antigen) that have the propensity to induce antigen specific CTL responses, have an enhanced antigen presentation capacity, and/or have an improved ability to initiate T-cell proliferation in mixed lymphocyte reactions. Immunization of animals with dendritic cells (DCs) previously transduced by Ad5 vectors encoding tumor specific antigens can be used to induce significant levels of protection for the animals when challenged with tumor cells expressing the respective antigen. Interestingly, intra-tumoral injection of Ads encoding IL-7 is less effective than injection of DCs transduced with IL-7 encoding Ad5 vectors at inducing antitumor immunity. Ex vivo transduction of DCs by Ad5 vectors is contemplated in certain embodiments. Ex vivo DC transduction strategies can been used to induce recipient host tolerance. For example, Ad5 mediated delivery of the CTLA4Ig into DCs can block interactions of the DCs CD80 with CD28 molecules present on T-cells.
[0164] Ad5 vector capsid interactions with DCs may trigger several beneficial responses, which may be enhancing the propensity of DCs to present antigens encoded by Ad5 vectors. For example, immature DCs, though specialized in antigen uptake, are relatively inefficient effectors of T-cell activation. DC maturation coincides with the enhanced ability of DCs to drive T-cell immunity. In some instances, the compositions and methods take advantage of an Ad5 infection resulting in direct induction of DC maturation Ad vector infection of immature bone marrow derived DCs from mice may upregulate cell surface markers normally associated with DC maturation (MHC I and II, CD40, CD80, CD86, and ICAM-1) as well as down-regulation of CD11c, an integrin down regulated upon myeloid DC maturation. In some instances, Ad vector infection triggers IL-12 production by DCs, a marker of DC maturation. Without being bound by theory, these events may possibly be due to Ad5 triggered activation of NF-.kappa.B pathways. Mature DCs can be efficiently transduced by Ad vectors, and do not lose their functional potential to stimulate the proliferation of naive T-cells at lower MOI, as demonstrated by mature CD83+ human DC (derived from peripheral blood monocytes). However, mature DCs may also be less infectable than immature ones. Modification of capsid proteins can be used as a strategy to optimize infection of DC by Ad vectors, as well as enhancing functional maturation, for example using the CD4OL receptor as a viral vector receptor, rather than using the normal CAR receptor infection mechanisms.
[0165] In some embodiments, the compositions and methods comprising an Ad5 [E1-, E2b-] vector(s) CEA vaccine have effects of increased overall survival (OS) within the bounds of technical safety. In some embodiments, the compositions and methods comprising an Ad5 [E1-, E2b-] vector(s) CEA vaccine have effects of increased overall survival (OS) within the bounds of technical safety. In certain embodiments, the compositions and methods comprising an Ad5 [E1-, E2b-] vector(s) CEA vaccine have effects of increased overall survival (OS) within the bounds of technical safety.
[0166] In some embodiments, the antigen targets are associated with benign tumors. In some embodiments, the antigens targeted are associated with pre-cancerous tumors.
[0167] In some embodiments, the antigens targeted are associated with carcinomas, in situ carcinomas, metastatic tumors, neuroblastoma, sarcomas, myosarcoma, leiomyosarcoma, retinoblastoma, hepatoma, rhabdomyo sarcoma, plasmocytomas, adenomas, gliomas, thymomas, or osteosarcoma. In some embodiments, the antigens targeted are associated with a specific type of cancer such as neurologic cancers, brain cancer, thyroid cancer, head and neck cancer, melanoma, leukemia, acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), and chronic lymphocytic leukemia (CLL), non-Hodgkin's lymphoma, multiple myeloma, Hodgkin's disease, breast cancer, bladder cancer, prostate cancer, colorectal cancer, colon cancer, kidney cancer, renal cell carcinoma, pancreatic cancer, esophageal cancer, lung cancer, mesothelioma, ovarian cancer, cervical cancer, endometrial cancer, uterine cancer, germ cell tumors, testicular cancer, gastric cancer, or other cancers, or any clinical (e.g., TNM, Histopathological, Staging or Grading systems or a combination thereof) or molecular subtype thereof. In some embodiments, the antigens targeted are associated with a specific clinical or molecular subtype of cancer. By way of example, breast cancer can be divided into at least four molecular subtypes including Luminal A, Luminal B, Triple negative/basal-like, and HER2 type. By way of example, prostate cancer can be subdivided TNM, Gleason score, or molecular expression of the PSA protein.
[0168] As noted above, the adenovirus vectors comprise nucleic acid sequences that encode one or more target proteins or antigens of interest. In this regard, the vectors may contain nucleic acid encoding 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more different target antigens of interest. The target antigens may be a full-length protein or may be a fragment (e.g., an epitope) thereof. The adenovirus vectors may contain nucleic acid sequences encoding multiple fragments or epitopes from one target protein of interest or may contain one or more fragments or epitopes from numerous different target proteins of interest. A target antigen may comprise any substance against which it is desirable to generate an immune response but generally, the target antigen is a protein. A target antigen may comprise a full-length protein, a subunit of a protein, an isoform of a protein, or a fragment thereof that induces an immune response (i.e., an immunogenic fragment). A target antigen or fragment thereof may be modified, e.g., to reduce one or more biological activities of the target antigen or to enhance its immunogenicity. The target antigen or target protein can be CEA.
[0169] In certain embodiments, immunogenic fragments bind to an MHC class I or class II molecule. An immunogenic fragment may "bind to" an MHC class I or class II molecule if such binding is detectable using any assay known in the art. For example, the ability of a polypeptide to bind to MHC class I may be evaluated indirectly by monitoring the ability to promote incorporation of .sup.125I labeled .beta.-2-microglobulin (.beta.-2m) into MHC class I/.beta.2m/peptide heterotrimeric complexes. Alternatively, functional peptide competition assays that are known in the art may be employed. Immunogenic fragments of polypeptides may generally be identified using well known techniques. Representative techniques for identifying immunogenic fragments include screening polypeptides for the ability to react with antigen-specific antisera and/or T-cell lines or clones. An immunogenic fragment of a particular target polypeptide is a fragment that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full-length target polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). In other words, an immunogenic fragment may react within such assays at a level that is similar to or greater than the reactivity of the full-length polypeptide. Such screens may be performed using methods known in the art.
[0170] In some embodiments, the viral vectors comprise heterologous nucleic acid sequences that encode one or more proteins, variants thereof, fusions thereof, or fragments thereof, that can modulate the immune response. In some embodiments, the viral vector encodes one or more antibodies against specific antigens, such as anthrax protective antigen, permitting passive immunotherapy. In some embodiments, the viral vectors comprise heterologous nucleic acid sequences encoding one or more proteins having therapeutic effect (e.g., anti-viral, anti-bacterial, anti-parasitic, or anti-tumor function). In some embodiments, the Second Generation E2b deleted adenovirus vectors comprise a heterologous nucleic acid sequence. In some embodiments, the heterologous nucleic acid sequence is CEA, a variant, a portion, or any combination thereof.
[0171] Target antigens include, but are not limited to, antigens derived from a variety of tumor proteins. In some embodiments, parts or variants of tumor proteins are employed as target antigens. In some embodiments, parts or variants of tumor proteins being employed as target antigens have a modified, for example, increased ability to effect and immune response against the tumor protein or cells containing the same. A vaccine can vaccinate against an antigen. A vaccine can also target an epitope. An antigen can be a tumor cell antigen. An epitope can be a tumor cell epitope. Such a tumor cell epitope may be derived from a wide variety of tumor antigens, such as antigens from tumors resulting from mutations, shared tumor specific antigens, differentiation antigens, and antigens overexpressed in tumors. Tumor-associated antigens (TAAs) may be antigens not normally expressed by the host; they can be mutated, truncated, misfolded, or otherwise abnormal manifestations of molecules normally expressed by the host; they can be identical to molecules normally expressed but expressed at abnormally high levels; or they can be expressed in a context or environment that is abnormal. Tumor-associated antigens may be, for example, proteins or protein fragments, complex carbohydrates, gangliosides, haptens, nucleic acids, other biological molecules or any combinations thereof.
[0172] Illustrative useful tumor proteins include, but are not limited to any one or more of, CEA, human epidermal growth factor receptor 1 (HER1), human epidermal growth factor receptor 2 (HER2/neu), human epidermal growth factor receptor 3 (HER3), human epidermal growth factor receptor 4 (HER4), MUC1, Prostate-specific antigen (PSA), PSMA, WT1, p53, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, BAGE, DAM-6, DAM-10, GAGE-1, GAGE-2, GAGE-8, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, NA88-A, NY-ESO-1, MART-1, MC1R, Gp100, PSA, PSM, Tyrosinase, TRP-1, TRP-2, ART-4, CAMEL, CEA, Cyp-B, BRCA1, Brachyury, Brachyury (TIVS7-2, polymorphism), Brachyury (IVS7 T/C polymorphism), T Brachyury, T, hTERT, hTRT, iCE, MUC1, MUC1 (VNTR polymorphism), MUC1c, MUC1n, MUC2, PRAME, P15, RU1, RU2, SART-1, SART-3, AFP, .beta.-catenin/m, Caspase-8/m, CDK-4/m, ELF2M, GnT-V, G250, HSP70-2M, HST-2, KIAA0205, MUM-1, MUM-2, MUM-3, Myosin/m, RAGE, SART-2, TRP-2/INT2, 707-AP, Annexin II, CDC27/m, TPI/mbcr-abl, ETV6/AML, LDLR/FUT, Pml/RAR.alpha., HPV E6, HPV E7, and TEL/AML1.
[0173] In some embodiments, the viral vector comprises a target antigen sequence encoding a modified polypeptide selected from CEA, human epidermal growth factor receptor 1 (HER1), human epidermal growth factor receptor 2 (HER2/neu), human epidermal growth factor receptor 3 (HER3), human epidermal growth factor receptor 4 (HER4), MUC1, Prostate-specific antigen (PSA), PSMA (i.e., PSM), WT1, p53, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, BAGE, DAM-6, DAM-10, GAGE-1, GAGE-2, GAGE-8, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, NA88-A, NY-ESO-1, MART-1, MC1R, Gp100, Tyrosinase, TRP-1, TRP-2, ART-4, CAMEL, Cyp-B, BRCA1, Brachyury, Brachyury (TIVS7-2, polymorphism), Brachyury (IVS7 T/C polymorphism), T Brachyury, T, hTERT, hTRT, iCE, MUC1 (VNTR polymorphism), MUC1c, MUC1n, MUC2, PRAME, P15, RU1, RU2, SART-1, SART-3, AFP, .beta.-catenin/m, Caspase-8/m, CDK-4/m, ELF2M, GnT-V, G250, HSP70-2M, HST-2, KIAA0205, MUM-1, MUM-2, MUM-3, Myosin/m, RAGE, SART-2, TRP-2/INT2, 707-AP, Annexin II, CDC27/m, TPI/mbcr-abl, ETV6/AML, LDLR/FUT, Pml/RAR.alpha., HPV E6, HPV E7, and TEL/AML1, wherein the polypeptide or a fragment thereof has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to the corresponding native sequence.
[0174] Additional illustrative useful tumor proteins useful include, but are not limited to any one or more of alpha-actinin-4, ARTC1, CAR-ABL fusion protein (b3a2), B-RAF, CASP-5, CASP-8, beta-catenin, Cdc27, CDK4, CDKN2A, COA-1, dek-can fusion protein, EFTUD2, Elongation factor 2, ETV6-AML1 fusion protein, FLT3-ITD, FN1, GPNMB, LDLR-fucosyltransferase fusion protein, HLA-A2d, HLA-A1 ld, hsp70-2, KIAAO205, MART2, ME1, MUM-1f, MUM-2, MUM-3, neo-PAP, Myosin class I, NFYC, OGT, OS-9, p53, pml-RARalpha fusion protein, PRDX5, PTPRK, K-ras, N-ras, RBAF600, SIRT2, SNRPD1, SYT-SSX1- or -SSX2 fusion protein, TGF-betaRII, triosephosphate isomerase, BAGE-1, GnTVf, HERV-K-MEL, KK-LC-1, KM-HN-1, LAGE-1, MAGE-A9, MAGE-C2, mucink, NA-88, NY-ESO-1/LAGE-2, SAGE, Sp17, SSX-2, SSX-4, TAG-1, TAG-2, TRAG-3, TRP2-INT2g, XAGE-1b, gp100/Pme117, Kallikrein 4, mammaglobin-A, Melan-A/MART-1, NY-BR-1, OA1, PSA, RAB38/NY-MEL-1, TRP-1/gp75, TRP-2, tyrosinase, adipophilin, AIM-2, ALDH1A1, BCLX (L), BCMA, BING-4, CPSF, cyclin D1, DKK1, ENAH (hMena), EP-CAM, EphA3, EZH2, FGFS, G250/MN/CAIX, IL13Ralpha2, intestinal carboxyl esterase, alpha fetoprotein, M-CSFT, MCSP, mdm-2, MMP-2, PBF, PRAME, RAGE-1, RGSS, RNF43, RU2AS, secernin 1, SOX10, STEAP1, survivin, Telomerase, and/or VEGF.
[0175] Tumor-associated antigens may be antigens from infectious agents associated with human malignancies. Examples of infectious agents associated with human malignancies include Epstein-Barr virus, Helicobacter pylori, Hepatitis B virus, Hepatitis C virus, Human heresvirus-8, Human immunodeficiency virus, Human papillomavirus, Human T-cell leukemia virus, liver flukes, and Schistosoma haematobium.
CEA Antigen Targets
[0176] CEA represents an attractive target antigen for immunotherapy since it is over-expressed in nearly all colorectal cancers and pancreatic cancers, and is also expressed by some lung and breast cancers, and uncommon tumors such as medullary thyroid cancer, but is not expressed in other cells of the body except for low-level expression in gastrointestinal epithelium. CEA contains epitopes that may be recognized in an MHC restricted fashion by T-cells.
[0177] It was discovered that multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen CEA, induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of pre-existing or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of pre-existing Ad5 immunity in a majority (61.3%) of patients. Importantly, there was minimal toxicity, and overall patient survival (48% at 12 months) was similar regardless of pre-existing Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5 specific immunity.
[0178] CEA antigen specific CMI can be, for example, greater than 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 5000, 10000, or more IFN-.gamma. spot forming cells (SFC) per 10.sup.6 peripheral blood mononuclear cells (PBMC). In some embodiments, the immune response is raised in a human subject with a preexisting inverse Ad5 neutralizing antibody titer of greater than 50, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 8000, 9000, 1000, 12000, 15000 or higher. The immune response may comprise a cell-mediated immunity and/or a humoral immunity as described herein. The immune response may be measured by one or more of intracellular cytokine staining (ICS), ELISpot, proliferation assays, cytotoxic T-cell assays including chromium release or equivalent assays, and gene expression analysis using any number of polymerase chain reaction (PCR) or RT-PCR based assays, as described herein and to the extent they are available to a person skilled in the art, as well as any other suitable assays known in the art for measuring immune response.
[0179] In some embodiments, the replication defective adenovirus vector comprises a modified sequence encoding a subunit with at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to a wild-type subunit of the polypeptide.
[0180] The immunogenic polypeptide may be a mutant CEA or a fragment thereof. In some embodiments, the immunogenic polypeptide comprises a mutant CEA with an Asn->Asp substitution at position 610. In some embodiments, the replication defective adenovirus vector comprises a sequence encoding a polypeptide with at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to the immunogenic polypeptide. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the sequence of SEQ ID NO: 1 or SEQ ID NO: 100.
[0181] In some embodiments, the sequence encoding the immunogenic polypeptide comprises a sequence with at least 70% 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to SEQ ID NO: 1 or SEQ ID NO: 100 or a sequence generated from SEQ ID NO: 1 or SEQ ID NO: 100 by alternative codon replacements. In some embodiments, the immunogenic polypeptide encoded by the adenovirus vectors comprise up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, or more point mutations, such as single amino acid substitutions or deletions, as compared to a wild-type human CEA sequence.
[0182] In some embodiments, the immunogenic polypeptide comprises a sequence from SEQ ID NO: 2 or a modified version, e.g., comprising up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, or more point mutations, such as single amino acid substitutions or deletions, of SEQ ID NO: 1 or SEQ ID NO: 100.
[0183] Members of the CEA gene family are subdivided into three subgroups based on sequence similarity, developmental expression patterns and their biological functions: the CEA-related Cell Adhesion Molecule (CEACAM) subgroup containing twelve genes (CEACAM1, CEACAM3-CEACAM8, CEACAM16 and CEACAM18-CEACAM21), the Pregnancy Specific Glycoprotein (PSG) subgroup containing eleven closely related genes (PSG1-PSG11) and a subgroup of eleven pseudogenes (CEACAMP1-CEACAMP11). Most members of the CEACAM subgroup have similar structures that consist of an extracellular Ig-like domains composed of a single N-terminal V-set domain, with structural homology to the immunoglobulin variable domains, followed by varying numbers of C2-set domains of A or B subtypes, a transmembrane domain and a cytoplasmic domain. There are two members of CEACAM subgroup (CEACAM16 and CEACAM20) that show a few exceptions in the organization of their structures. CEACAM16 contains two Ig-like V-type domains at its N and C termini and CEACAM20 contains a truncated Ig-like V-type 1 domain. The CEACAM molecules can be anchored to the cell surface via their transmembrane domains (CEACAM5 thought CEACAM8) or directly linked to glycophosphatidylinositol (GPI) lipid moiety (CEACAM5, CEACAM18 thought CEACAM21).
[0184] CEA family members are expressed in different cell types and have a wide range of biological functions. CEACAMs are found prominently on most epithelial cells and are present on different leucocytes. In humans, CEACAM1, the ancestor member of CEA family, is expressed on the apical side of epithelial and endothelial cells as well as on lymphoid and myeloid cells. CEACAM1 mediates cell-cell adhesion through hemophilic (CEACAM1 to CEACAM1) as well as heterothallic (e.g., CEACAM1 to CEACAM5) interactions. In addition, CEACAM1 is involved in many other biological processes, such as angiogenesis, cell migration, and immune functions. CEACAM3 and CEACAM4 expression is largely restricted to granulocytes, and they are able to convey uptake and destruction of several bacterial pathogens including Neisseria, Moraxella, and Haemophilus species.
[0185] Thus, in various embodiments, compositions and methods relate to raising an immune response against a CEA, selected from the group consisting of CEACAM1, CEACAM3, CEACAM4, CEACAM5, CEACAM6, CEACAM7, CEACAM8, CEACAM16, CEACAM18, CEACAM19, CEACAM20, CEACAM21, PSG1, PSG2, PSG3, PSG4, PSG5, PSG6, PSG7, PSG8, PSG9, and PSG11. An immune response may be raised against cells, e.g. cancer cells, expressing or overexpressing one or more of the CEAs, using the methods and compositions. In some embodiments, the overexpression of the one or more CEAs in such cancer cells is over 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 fold or more compared to non-cancer cells.
[0186] In certain embodiments, the CEA antigen used herein is a wild-type CEA antigen or a modified CEA antigen having a least a mutation in YLSGANLNL (SEQ ID NO: 3), a CAP1 epitope of CEA. The mutation can be conservative or non-conservative, substitution, addition, or deletion. In certain embodiments, the CEA antigen used herein has an amino acid sequence set forth in YLSGADLNL (SEQ ID NO: 4), a mutated CAP1 epitope. In further embodiments, the first replication-defective vector or a replication-defective vectors that express CEA has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identical to any portion of SEQ ID NO: 2 (the predicted sequence of an adenovirus vector expressing a modified CEA antigen), such as positions 1057 to 3165 of SEQ ID NO: 2 or full-length SEQ ID NO: 2.
Mucin Family Antigen Targets
[0187] The human mucin family (MUC1 to MUC21) includes secreted and transmembrane mucins that play a role in forming protective mucous barriers on epithelial surfaces in the body. These proteins function in to protecting the epithelia lining the respiratory, gastrointestinal tracts, and lining ducts in important organs such as, for example the mammary gland, liver, stomach, pancreas, and kidneys.
[0188] MUC1 (CD227) is a TAA that is over-expressed on a majority of human carcinomas and several hematologic malignancies. MUC1 (GenBank: X80761.1, NCBI: NM_001204285.1) and activates many important cellular pathways known to be involved in human disease. MUC1 is a heterodimeric protein formed by two subunits that is commonly overexpressed in several human cancers. MUC1 undergoes autoproteolysis to generate two subunits MUC1n and MUC1c that, in turn, form a stable noncovalent heterodimer.
[0189] The MUC1 C-terminal subunit (MUC1c) can comprise a 58 amino acid extracellular domain (ED), a 28 amino acid transmembrane domain (TM), and a 72 amino acid cytoplasmic domain (CD). The MUC1c also can contain a "CQC" motif that can allow for dimerization of MUC1 and it can also impart oncogenic function to a cell. In some cases, MUC1 can in part oncogenic function through inducing cellular signaling via MUC1c. MUC1c can interact with EGFR, ErbB2 and other receptor tyrosine kinases and contributing to the activation of the PI3K.fwdarw.AKT and MEK.fwdarw.ERK cellular pathways. In the nucleus, MUC1c activates the Wnt/.beta.-catenin, STAT and NF-.kappa.B RelA cellular pathways. In some cases, MUC1 can impart oncogenic function through inducing cellular signaling via MUC1n. The MUC1 N-terminal subunit (MUC1n) can comprise variable numbers of 20 amino acid tandem repeats that can be glycosylated. MUC1 is normally expressed at the surface of glandular epithelial cells and is over-expressed and aberrantly glycosylated in carcinomas. MUC1 is a TAA that can be utilized as a target for tumor immunotherapy. Several clinical trials have been and are being performed to evaluate the use of MUC1 in immunotherapeutic vaccines. Importantly, these trials indicate that immunotherapy with MUC1 targeting is safe and may provide survival benefit.
[0190] However, clinical trials have also shown that MUC1 is a relatively poor immunogen. To overcome this, the present disclosure provides a T lymphocyte immune enhancer peptide sequence in the C terminus region of the MUC1 oncoprotein (MUC1-C or MUC1c). Compared with the native peptide sequence, the agonist in their modified MUC1-C (a) bound HLA-A2 at lower peptide concentrations, (b) demonstrated a higher avidity for HLA-A2, (c) when used with antigen-presenting cells, induced the production of more IFN-.gamma. by T-cells than with the use of the native peptide, and (d) was capable of more efficiently generating MUC1-specific human T-cell lines from cancer patients. Importantly, T-cell lines generated using the agonist epitope were more efficient than those generated with the native epitope for the lysis of targets pulsed with the native epitope and in the lysis of HLA-A2 human tumor cells expressing MUC1. Additionally, the present disclosure provides additional CD8+ cytotoxic T lymphocyte immune enhancer agonist sequence epitopes of MUC1-C.
[0191] Certain embodiments provide a potent MUC1-C modified for immune enhancer capability (mMUC1-C or MUC1-C or MUC1c). Certain embodiments provide a potent MUC1-C modified for immune enhancer capability incorporated it into a recombinant Ad5 [E1-, E2b-] platform to produce a new and more potent immunotherapeutic vaccine. For example, the immunotherapeutic vaccine can be Ad5 [E1-, E2b-]-mMUC1-C for treating MUC1 expressing cancers or infectious diseases.
[0192] Post-translational modifications play an important role in controlling protein function in the body and in human disease. For example, in addition to proteolytic cleavage discussed above, MUC1 can have several post-translational modifications such as glycosylation, sialylation, palmitoylation, or a combination thereof at specific amino acid residues. Provided herein are immunotherapies targeting glycosylation, sialylation, phosphorylation, or palmitoylation modifications of MUC1.
[0193] MUC1 can be highly glycosylated (N- and O-linked carbohydrates and sialic acid at varying degrees on serine and threonine residues within each tandem repeat, ranging from mono- to penta-glycosylation). Differentially O-glycosylated in breast carcinomas with 3,4-linked GlcNAc. N-glycosylation consists of high-mannose, acidic complex-type and hybrid glycans in the secreted form MUC1/SEC, and neutral complex-type in the transmembrane form, MUC1/TM.4. Certain embodiments provide immunotherapies targeting differentially O-glycosylated forms of MUC1.
[0194] Further, MUC1 can be sialylated. Membrane-shed glycoproteins from kidney and breast cancer cells have preferentially sialyated core 1 structures, while secreted forms from the same tissues display mainly core 2 structures. The O-glycosylated content is overlapping in both these tissues with terminal fucose and galactose, 2- and 3-linked galactose, 3- and 3,6-linked GalNAc-ol and 4-linked GlcNAc predominating. Certain embodiments provide immunotherapies targeting various sialylation forms of MUC1. Dual palmitoylation on cysteine residues in the CQC motif is required for recycling from endosomes back to the plasma membrane. Certain embodiments provide for immunotherapies targeting various palmitoylation forms of MUC1.
[0195] Phosphorylation can affect MUC11's ability to induce specific cell signaling responses that are important for human health. Certain embodiments provide for immunotherapies targeting various phosphorylated forms of MUCl. For example, MUC1 can be phosphorylated on tyrosine and serine residues in the C-terminal domain. Phosphorylation on tyrosines in the C-terminal domain can increase nuclear location of MUC1 and .beta.-catenin. Phosphorylation by PKC delta can induce binding of MUC1 to .beta.-catenin/CTNNB1 and decrease formation of .beta.-catenin/E-cadherin complexes. Src-mediated phosphorylation of MUC1 can inhibits interaction with GSK3B. Src- and EGFR-mediated phosphorylation of MUC1 on Tyr-1229 can increase binding to .beta.-catenin/CTNNB1. GSK3B-mediated phosphorylation of MUC1 on Ser-1227 can decrease this interaction but restores the formation of the .beta.-cadherin/E-cadherin complex. PDGFR-mediated phosphorylation of MUC1 can increase nuclear colocalization of MUC1CT and CTNNB1. Certain embodiments provide immunotherapies targeting different phosphorylated forms of MUC1, MUC1c and MUC1n known to regulate its cell signaling abilities.
[0196] The disclosure provides for immunotherapies that modulate MUC1c cytoplasmic domain and its functions in the cell. The disclosure provides for immunotherapies that comprise modulating a CQC motif in MUC1c. The disclosure provides for immunotherapies that comprise modulating the extracellular domain (ED), the transmembrane domain (TM), the cytoplasmic domain (CD) of MUC1c, or a combination thereof. The disclosure provides for immunotherapies that comprise modulating MUC1c's ability to induce cellular signaling through EGFR, ErbB2 or other receptor tyrosine kinases. The disclosure provides for immunotherapies that comprise modulating MUC1c's ability to induce PI3K.fwdarw.AKT, MEK.fwdarw.ERK, Wnt/.beta.-catenin, STAT, NF-.kappa.B RelA cellular pathways, or combination thereof. In some embodiments, the MUC1c immunotherapy can further comprise CEA.
[0197] The disclosure also provides for immunotherapies that modulate MUC1n and its cellular functions. The disclosure also provides for immunotherapies comprising tandem repeats of MUC1n, the glycosylation sites on the tandem repeats of MUC1n, or a combination thereof. In some embodiments, the MUC1n immunotherapy further comprises CEA.
[0198] The disclosure also provides vaccines comprising MUC1n, MUC1c, CEA, or a combination thereof. The disclosure provides vaccines comprising MUC1c and CEA. The disclosure also provides vaccines targeting MUC1n and CEA. In some embodiments, the antigen combination is contained in one vector as provided herein. In some embodiments, the antigen combination is contained in a separate vector as provided herein.
[0199] Some embodiments relate to a replication defective adenovirus vector of serotype 5 comprising a sequence encoding an immunogenic polypeptide. The immunogenic polypeptide may be an isoform of MUC1 or a subunit or a fragment thereof. In some embodiments, the replication defective adenovirus vector comprises a sequence encoding a polypeptide with at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to the immunogenic polypeptide. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the sequence of SEQ ID NO: 102. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the sequence of SEQ ID NO: 5. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the following sequence identified by SEQ ID NO: 6. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the following sequence identified by SEQ ID NO: 9. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the sequence of SEQ ID NO: 102. In some embodiments, the sequence encoding the immunogenic polypeptide comprises a sequence with at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9% identity to SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 101, SEQ ID NO: 9 , SEQ ID NO: 102 or a sequence generated from SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 101, SEQ ID NO: 9 or SEQ ID NO: 102 by alternative codon replacements. In some embodiments, the immunogenic polypeptide encoded by the adenovirus vectors described herein comprising up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, or more point mutations, such as single amino acid substitutions or deletions, as compared to a wild-type human MUC1 sequence.
[0200] In certain embodiments, the MUC1 antigen used herein is a wild-type MUC1 antigen or a modified MUC1 antigen. In certain embodiments, the modified MUC1 antigen has at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, 100% identity to SEQ ID NO: 7 (a mutated MUC1 protein sequence) or SEQ ID NO: 101 (a modified MUC1 nucleotide sequence). In certain embodiments, the MUC-1 antigen is a modified antigen having one or more mutations at positions 93, 141-142, 149-151, 392, 404, 406, 422, 430-431, 444-445, or 460 of SEQ ID NO: 7. The mutation can be conservative or non-conservative, substitution, addition, or deletion. In further embodiments, the MUC-1 antigen binds to HLA-A2, HLA-A3, HLA-A24, or a combination thereof. In certain embodiments, the third replication-defective vector or a replication-defective vector that express MUC1 has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or100% identical to SEQ ID NO: 5 (MUC_1 wild-type nucleotide sequence). In further embodiments, the third replication-defective vector or a replication-defective vector that express MUC1 has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identical to SEQ ID NO: 6 (a mutated MUC1 nucleotide sequence). In further embodiments, the third replication-defective vector or a replication-defective vector that express MUC1 has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identical to SEQ ID NO: 101 (a modified MUC1 nucleotide sequence, also referred to herein as MUC1-c). In certain embodiments, the third replication-defective vector or a replication-defective vector that express MUC1 has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identical to any portion of or full-length SEQ ID NO: 8 (the predicted sequence of an adenovirus vector expressing a modified MUC-1 antigen), such as positions 1033-2858 of SEQ ID NO: 8.
[0201] In some embodiments, a MUC1 antigen disclosed herein can be a MUC1-C antigen. In some embodiments, the MUC1-C antigen can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 7. In some embodiments, a nucleic acid sequence encoding for a MUC1-C antigen disclosed herein can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 101, or positions 1105-2532 of SEQ ID NO: 8. In some embodiments, the MUC-1C antigen is a modified MUC1 antigen. The modified MUC1 ntigen can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 7. The modified MUC1 antigen can be further encoded for by a nucleic acid sequence having at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, positions 1105-2532 of SEQ ID NO: 8, or SEQ ID NO: 101. The MUC-1 antigen can be modified by having a mutation at any of positions 93, 141-142, 149-151, 392, 404, 406, 422, 430-431, 444-445, or 460 of SEQ ID NO: 7.
[0202] In some embodiments, a recombinant adenovirus vector (e.g., Ad5 [E1-, E2b-]) encoding for a MUC-1 antigen of the present disclosure can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 8 or positions 1105-2532 of SEQ ID NO: 8
Brachyury Antigen Targets
[0203] Certain embodiments provide immunotherapies that comprise one or more antigens to Brachyury. Brachyury (also known as the "T" protein in humans) is a member of the T-box family of transcription factors that play key roles during early development, mostly in the formation and differentiation of normal mesoderm and is characterized by a highly conserved DNA-binding domain designated as T-domain. The epithelial to mesenchymal transition (EMT) is a key step during the progression of primary tumors into a metastatic state in which Brachyury plays a crucial role. The expression of Brachyury in human carcinoma cells induces changes characteristic of EMT, including up-regulation of mesenchymal markers, down-regulation of epithelial markers, and an increase in cell migration and invasion. Conversely, inhibition of Brachyury resulted in down-regulation of mesenchymal markers and loss of cell migration and invasion and diminished the ability of human tumor cells to form metastases. Brachyury can function to mediate epithelial-mesenchymal transition and promotes invasion.
[0204] The disclosure also provides for immunotherapies that modulate Brachyury effect on epithelial-mesenchymal transition function in cell proliferation diseases, such as cancer. The disclosure also provides for immunotherapies that modulate Brachyury's ability to promote invasion in cell proliferation diseases, such as cancer. The disclosure also provides for immunotherapies that modulate the DNA binding function of T-box domain of Brachyury. In some embodiments, the Brachyury immunotherapy can further comprise one or more antigens to CEA or MUC1, MUC1c, or MUC1n.
[0205] Brachyury expression is nearly undetectable in most normal human tissues and is highly restricted to human tumors and often overexpressed making it an attractive target antigen for immunotherapy. In human, Brachyury is encoded by the T gene (GenBank: AJ001699.1, NCBI: NM_003181.3). There are at least two different isoforms produced by alternative splicing found in humans. Each isoform has a number of natural variants.
[0206] Brachyury is immunogenic and Brachyury-specific CD8+ T-cells expanded in vitro can lyse Brachyury expressing tumor cells. These features of Brachyury make it an attractive TAA for immunotherapy. The Brachyury protein is a T-box transcription factor. It can bind to a specific DNA element, a near palindromic sequence "TCACACCT" through a region in its N-terminus, called the T-box to activate gene transcription when bound to such a site.
[0207] The disclosure also provides vaccines comprising Brachyury, CEA, or a combination thereof. In some embodiments, the antigen combination is contained in one vector as provided herein. In some embodiments, the antigen combination is contained in a separate vector as provided herein.
[0208] In particular embodiments, there is provided a replication defective adenovirus vector of serotype 5 comprising a sequence encoding an immunogenic polypeptide. The immunogenic polypeptide may be an isoform of Brachyury or a subunit or a fragment thereof. In some embodiments, the replication defective adenovirus vector comprises a sequence encoding a polypeptide with at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to the immunogenic polypeptide. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the following sequence identified by SEQ ID NO: 101. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the following sequence identified by SEQ ID NO: 7. In some embodiments, the replication defective adenovirus vector comprises a sequence encoding a polypeptide with at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to the immunogenic polypeptide. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the following sequence identified by SEQ ID NO: 102. In some embodiments, the sequence encoding the immunogenic polypeptide comprises the sequence of SEQ ID NO: 8. In some embodiments, the sequence encoding the immunogenic polypeptide comprises a sequence with at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% identity to SEQ ID NO: 7, SEQ ID NO: 101, SEQ ID NO: 8 or a sequence generated from SEQ ID NO: 7, SEQ ID NO: 101, or SEQ ID NO: 8 by alternative codon replacements. In some embodiments, the immunogenic polypeptide encoded by the adenovirus vectors described herein comprising up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, or more point mutations, such as single amino acid substitutions or deletions, as compared to a wild-type human Brachyury sequence.
[0209] In certain embodiments, the Brachyury antigen used herein is a wild-type antigen or a modified antigen. In certain embodiments, the Brachyury antigen binds to HLA-A2. In further embodiments, the Brachyury antigen is a modified Brachyury antigen comprising an amino acid sequence set forth in WLLPGTSTV (SEQ ID NO: 15), a HLA-A2 epitope of Brachyury. In further embodiments, the Brachyury antigen is a modified Brachyury antigen having an amino acid sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identity to SEQ ID NO: 14, a modified Brachyury protein sequence. In certain embodiments, the replication-defective vector has a nucleotide sequence at least 80% identical SEQ ID NO: 10 or positions 1033 to 2283 of SEQ ID NO: 13. In further embodiments, the second replication-defective vector has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identical to any portion or full-length of SEQ ID NO: 13 (the predicted sequence of an adenovirus vector express a modified Brachyury antigen), such as positions 1033 to 2283 of SEQ ID NO: 13. In some embodiments, the Brachyury antigen is a modified Brachyury antigen having an amino acid sequence at least 80% identical to SEQ ID NO: 12 (another mutated Brachyury protein sequence). In certain embodiments, the second replication-defective vector or a replication-defective vector that express Brachyury has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identical to positions 520-1824 of SEQ ID NO: 9 (wild-type Brachyury), SEQ ID NO: 9, SEQ ID NO: 10, or SEQ ID NO: 102. In certain embodiments, the second replication-defective vector or a replication-defective vector that express Brachyury has a nucleotide sequence at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% identical to SEQ ID NO: 102.
[0210] In some embodiments, a Brahcyury antigen of the present disclosure can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 12 or SEQ ID NO: 14. A nucleic acid sequence encoding for a Brachyury antigen of the present disclosure can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 9, SEQ ID NO: 10, positions 1045 to 2277 of SEQ ID NO: 13, or SEQ ID NO: 102. In some embodiments, the Brachyury antigen can be a modified Brachyury antigen. The modified Brachyury antigen can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 14, positions 1045 to 2277 of SEQ ID NO: 13, or SEQ ID NO: 102. In some embodiments, an adenovirus vector (e.g., Ad5 [El-, E2b-]) encoding for a Brachyury antigen disclosed herein can have at least 80%, at least 85%, at least 87%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 13 or positions 1045 to 2277 of SEQ ID NO: 13.
Infectious Disease-Associated Antigen Targets
[0211] Target antigens include, but are not limited to, antigens derived from any of a variety of infectious agents such as parasites, bacteria, virus, prions, and the like. An infectious agent may refer to any living organism capable of infecting a host. Infectious agents include, for example, bacteria, any variety of viruses, such as, single stranded RNA viruses, single stranded DNA viruses, fungi, parasites, and protozoa.
[0212] Examples of infectious disease associated target antigens that can be used with the compositions and the methods can be derived from the following: Actinobacillus spp., Actinomyces spp., Adenovirus (types 1, 2, 3, 4, 5, 6, and 7), Adenovirus (types 40 and 41), Aerococcus spp., Aeromonas hydrophila, Ancylo stoma duodenale, Angiostrongylus cantonensis, Ascaris lumbricoides, Ascaris spp., Aspergillus spp., Babesia spp, B. microti, Bacillus anthracis, Bacillus cereus, Bacteroides spp., Balantidium coli, Bartonella bacilliformis, Blastomyces dermatitidis, Bluetongue virus, Bordetella bronchiseptica, Bordetella pertussis, Borrelia afzelii, Borrelia burgdorferi, Borrelia garinii, Branhamella catarrhalis, Brucella spp. (B. abortus, B. canis, B. melitensis, B. suis), Brugia spp., Burkholderia, (Pseudomonas) mallei, Burkholderia (Pseudomonas) pseudomallei, California serogroup, Campylobacter fetus subsp. Fetus, Campylobacter jejuni, C. coli, C. fetus subsp. Jejuni, Candida albicans, Capnocytophaga spp., Chikungunya virus, Chlamydia psittaci, Chlamydia trachomatis, Citrobacter spp., Clonorchis sinensis, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Clostridium tetani, Clostridium spp. (with the exception of those species listed above), Coccidioides immitis, Colorado tick fever virus, Corynebacterium diphtheriae, Coxiella burnetii, Coxsackievirus, Creutzfeldt-Jakob agent, Kuru agent, Crimean-Congo hemorrhagic fever virus, Cryptococcus neoformans, Cryptosporidium parvum, Cytomegalovirus, Cyclospora cayatanesis, Dengue virus (1, 2, 3, 4), Diphtheroids, Eastern (Western) equine encephalitis virus, Ebola virus, Echinococcus granulosus, Echinococcus multilocularis, Echovirus, Edwardsiella tarda, Entamoeba histolytica, Enterobacter spp., Enterovirus 70, Epidermophyton floccosum, Ehrlichia spp., Ehrlichia sennetsu, Microsporum spp., Trichophyton spp., Epstein-Barr virus, Escherichia coli, enterohemorrhagic, Escherichia coli, enteroinvasive, Escherichia coli, enteropathogenic, Escherichia coli, enterotoxigenic, Fasciola hepatica, Francisella tularensis, Fusobacterium spp., Gemella haemolysans, Giardia lamblia, Guanarito virus, Haemophilus ducreyi, Haemophilus influenzae (group b), Hantavirus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Herpes simplex virus, Herpesvirus simiae, Histoplasma capsulatum, Human coronavirus, Human immunodeficiency virus, Human papillomavirus, Human rotavirus, Human T-lymphotrophic virus, Influenza virus including H5N1, Junin virus/Machupo virus, Klebsiella spp., Kyasanur Forest disease virus, Lactobacillus spp., Lassa virus, Legionella pneumophila, Leishmania major, Leishmania infantum, Leishmania spp., Leptospira interrogans, Listeria monocytogenes, Lymphocytic choriomeningitis virus, Machupo virus, Marburg virus, Measles virus, Micrococcus spp., Moraxella spp., Mycobacterium spp. (other than M. bovis, M. tuberculosis, M. avium, M. leprae), Mycobacterium tuberculosis, M. bovis, Mycoplasma hominis, M. orale, M. salivarium, M. fermentans, Mycoplasma pneumoniae, Naegleria fowleri, Necator americanus, Neisseria gonorrhoeae, Neisseria meningitides, Neisseria spp. (other than N. gonorrhoeae and N. meningitidis), Nocardia spp., Norwalk virus, Omsk hemorrhagic fever virus, Onchocerca volvulus, Opisthorchis spp., Parvovirus B19, Pasteurella spp., Peptococcus spp., Peptostreptococcus spp., Plasmodium falciparum, Plasmodium vivax, Plasmodium spp., Plesiomonas shigelloides, Powassan encephalitis virus, Proteus spp., Pseudomonas spp. (other than P. mallei, P. pseudomallei), Rabies virus, Respiratory syncytial virus, Rhinovirus, Rickettsia akari, Rickettsia prowazekii, R. Canada, Rickettsia rickettsii, Rift Valley virus, Ross river virus/O'Nyong-Nyong virus, Rubella virus, Salmonella choleraesuis, Salmonella paratyphi, Salmonella typhi, Salmonella spp. (with the exception of those species listed above), Schistosoma spp., Scrapie agent, Serratia spp.,Shigella spp., Sindbis virus, Sporothrix schenckii, St. Louis encephalitis virus, Murray Valley encephalitis virus, Staphylococcus aureus, Streptobacillus moniliformis, Streptococcus agalactiae, Streptococcus faecalis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus salivarius, Taenia saginata, Taenia solium, Toxocara canis, T. cati, T. cruzi, Toxoplasma gondii, Treponema pallidum, Trichinella spp., Trichomonas vaginalis, Trichuris trichiura, Trypanosoma brucei, Trypanosoma cruzi, Ureaplasma urealyticum, Vaccinia virus, Varicella-zoster virus, eastern equine encephalitis virus (EEEV), severe acute respiratory virus (SARS), Venezuelan equine encephalitis virus (VEEV), Vesicular stomatitis virus, Vibrio cholerae, serovar 01, Vibrio parahaemolyticus, West Nile virus, Wuchereria bancrofti, Yellow fever virus, Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis. Target antigens may include proteins, or variants or fragments thereof, produced by any of the infectious organisms.
[0213] A number of viruses are associated with viral hemorrhagic fever, including filoviruses (e.g., Ebola, Marburg, and Reston), arenaviruses (e.g. Lassa, Junin, and Machupo), and bunyaviruses. In addition, phleboviruses, including, for example, Rift Valley fever virus, have been identified as etiologic agents of viral hemorrhagic fever. Etiological agents of hemorrhagic fever and associated inflammation may also include paramyxoviruses, particularly respiratory syncytial virus. In addition, other viruses causing hemorrhagic fevers in man have been identified as belonging to the following virus groups: togavirus (Chikungunya), flavivirus (dengue, yellow fever, Kyasanur Forest disease, Omsk hemorrhagic fever), nairovirus (Crimian-Congo hemorrhagic fever) and hantavirus (hemorrhagic fever with renal syndrome, nephropathic epidemia). Furthermore, Sin Nombre virus was identified as the etiologic agent of the 1993 outbreak of hantavirus pulmonary syndrome in the American Southwest.
[0214] Target antigens may include viral coat proteins, i.e., influenza neuraminidase and hemagglutinin, HIV gp160 or derivatives thereof, HIV Gag, HIV Nef, HIV Pol, SARS coat proteins, herpes virion proteins, WNV proteins, etc. Target antigens may also include bacterial surface proteins including pneumococcal PsaA, PspA, LytA, surface or virulence associated proteins of bacterial pathogens such as Nisseria gonnorhea, outer membrane proteins or surface proteases.
Personalized Tumor-Associated Antigens
[0215] In certain embodiments tumor-associated antigens used with the compositions and methods as described herein may be identified directly from an individual with a proliferative disease or cancer. In certain embodiments, cancers may include benign tumors, metastatic tumors, carcinomas, or sarcomas and the like. In some embodiments, a personalized tumor antigen comprises CEA characterized from a patient and further utilized as the target antigen as a whole, in part or as a variant.
[0216] In this regard, screens can be carried out using a variety of known technologies to identify tumor target antigens from an individual. For example, in one embodiment, a tumor biopsy is taken from a patient, RNA is isolated from the tumor cells and screened using a gene chip (for example, from Affymetrix, Santa Clara, Calif.) and a tumor antigen is identified. Once the tumor target antigen is identified, it may then be cloned, expressed, and purified using techniques known in the art.
[0217] This target antigen can then linked to one or more epitopes or incorporated or linked to cassettes or viral vectors described herein and administered to the patient in order to alter the immune response to the target molecule isolated from the tumor. In this manner, "personalized" immunotherapy and vaccines are contemplated in certain embodiments. Where cancer is genetic (i.e., inherited), for example, the patient has been identified to have a BRAC1 or BRAC2 mutation, the vaccine can be used prophylactically. When the cancer is sporadic this immunotherapy can be used to reduce the size of the tumor, enhance overall survival and reduce reoccurrence of the cancer in a subject.
Combination Immunotherapy with Ad5-CEA Vaccines and IL-15 Superagonists
[0218] Certain embodiments provide combination immunotherapy compositions for the treatment of cancers. In some aspects, combination immunotherapies provided herein can comprise a multi-targeted immunotherapeutic approach against antigens associated with the development of cancer such as tumor associated antigen (TAA) or antigens know to be involved in a particular infectious disease, such as infectious disease associated antigen (IDAA). In some aspects, combination immunotherapies and vaccines provided herein can comprise a multi-targeted antigen signature immunotherapeutic approach against antigens associated with the development of cancer. The compositions and methods, in various embodiments, provide viral based vectors expressing CEA or a variant of CEA for immunization of a disease, as provided herein. These vectors can raise an immune response against CEA.
[0219] Ad5-Based Vaccines in Combination Therapy
[0220] In some aspects, the vector can comprise at least one antigen, such as CEA. In some aspects, the vector can comprise at least two antigens. In some aspects, the vector can comprise at least three antigens. In some aspects, the vector can comprise more than three antigens. In some aspects, the vaccine formulation can comprise 1:1 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:2 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:3 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:4 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:5 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:6 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:7 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:8 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:9 ratio of vector to antigen. In some aspects, the vaccine can comprise 1:10 ratio of vector to antigen.
[0221] In some aspects, the vaccine can be a single-antigen vaccine, for example and Ad5[E1-, E2b-]-CEA vaccine. In some aspects, the vaccine can comprise a combination vaccine, wherein the vaccine can comprise at least two vectors each containing at least a single antigen. In some aspects the vaccine can be a combination vaccine, wherein the vaccine can comprise at least three vectors each containing at least a single antigen target. In some aspects the vaccine can comprise a combination vaccine, wherein the vaccine comprises more than three vectors each containing at least a single antigen.
[0222] In some aspects, the vaccine can be a combination vaccine, wherein the vaccine can comprise at least two vectors, wherein a first vector of the at least two vectors can comprise at least a single antigen and wherein a second vector of the at least two vectors can comprise at least two antigens. In some aspects, the vaccine can comprise a combination vaccine, wherein the vaccine can comprise at least three vectors, wherein a first vector of the at least three vectors can comprise at least a single antigen and wherein a second vector of the at least three vectors can comprise at least two antigens. In some aspects, the vaccine can be a combination vaccine, wherein the vaccine can comprise three or more vectors, wherein a first vector of the three or more vectors can comprise at least a single antigen and wherein a second vector of the three or more vectors can comprise at least two antigens. In some aspects, the vaccine can be a combination vaccine, wherein the vaccine can comprise more than three vectors each containing at least two antigens.
[0223] When a mixture of different antigens are simultaneously administered or expressed from a same or different vector in an individual, they may compete with one another. As a result the formulations comprising different concentration and ratios of expressed antigens in a combination immunotherapy or vaccine must be evaluated and tailored to the individual or group of individuals to ensure that effective and sustained immune responses occur after administration.
[0224] Composition that comprises multiple antigens can be present at various ratios. For example, formulations with more than vector can have various ratios. For example, immunotherapies or vaccines can have two different vectors in a stoichiometry of 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1 :7, 1:8, 1:9, 1:10, 1:15, 1:20, 1:30, 2:1, 2:3, 2:4, 2:5, 2:6, 2:7, 2:8, 3:1, 3:3, 3:4, 3:5, 3:6, 3:7, 3:8, 3: 1, 3:3, 3:4, 3:5, 3:6, 3:7, 3:8, 4: 1, 4:3, 4:5, 4:6, 4:7, 4:8, 5: 1, 5:3, 5:4, 5:6, 5:7, 5:8, 6:1, 6:3, 6:4, 6:5, 6:7, 6:8, 7: 1, 7:3, 7:4, 7:5, 7:6, 7:8, 8: 1, 8:3, 8:4, 8:5, 8:6, or 8:7. For example, immunotherapies or vaccines can have three different vectors in a stoichiometry of: 1:1:1, 1:2:1, 1:3:1, 1:4:1, 1:5:1, 1:6:1, 1:7:1, 1:8:1, 2:1:1, 2:3:1, 2:4:1, 2:5:1, 2:6:1, 2:7:1, 2:8:1, 3:1, 3:3:1, 3:4:1, 3:5:1, 3:6:1, 3:7:1, 3:8:1, 3:1:1, 3:3:1, 3:4:1, 3:5:1, 3:6:1, 3:7:1, 3:8:1, 4:1:1, 4:3:1, 4:4:1, 4:5:1, 4:6:1, 4:7:1, 4:8:1, 5:1:1, 5:3:1, 5:4:1, 5:5:1, 5:6:1, 5:7:1, 5:8:1, 6:1:1, 6:3:1, 6:4:1, 6:5:1, 6:6:1, 6:7:1, 6:8:1, 7:1:1, 7:3:1, 7:4:1, 7:5:1, 7:6:1, 7:7:1, 7:8:1, 8:1:1, 8:3:1, 8:4:1, 8:5:1, 8:6:1, 8:7:1, 8:8:1, 1:1:2, 1:2:2, 1:3:2, 1:4:2, 1:5:2, 1:6:2, 1:7:2, 1:8:2, 2:1:2, 2:3:2, 2:4:2, 2:5:2, 2:6:2, 2:7:2, 2:8:2, 3:1:2, 3:3:2, 3:4:2, 3:5:2, 3:6:2, 3:7:2, 3:8:2, 3:1:2, 3:3:2, 3:4:2, 3:5:2, 3:6:2, 3:7:2, 3:8:2, 4:1:2, 4:3:2, 4:4:2, 4:5:2, 4:6:2, 4:7:2, 4:8:2, 5:1:2, 5:3:2, 5:4:2, 5:5:2, 5:6:2, 5:7:2, 5:8:2, 6:1:2, 6:3:2, 6:4:2, 6:5:2, 6:6:2, 6:7:2, 6:8:2, 7:1:2, 7:3:2, 7:4:2, 7:5:2, 7:6:2, 7:7:2, 7:8:2, 8:1:2, 8:3:2, 8:4:2, 8:5:2, 8:6:2, 8:7:2, 8:8:2, 1:1:3, 1:2:3, 1:3:3, 1:4:3, 1:5:3, 1:6:3, 1:7:3, 1:8:3, 2:1:3, 2:3:3, 2:4:3, 2:5:3, 2:6:3, 2:7:3, 2:8:3, 3:1:3, 3:3:3, 3:4:3, 3:5:3, 3:6:3, 3:7:3, 3:8:3, 3:1:3, 3:3:3, 3:4:3, 3:5:3, 3:6:3, 3:7:3, 3:8:3, 4:1:3, 4:3:3, 4:4:3, 4:5:3, 4:6:3, 4:7:3, 4:8:3, 5:1:3, 5:3:3, 5:4:3, 5:5:3, 5:6:3, 5:7:3, 5:8:3, 6:1:3, 6:3:3, 6:4:3, 6:5:3, 6:6:3, 6:7:3, 6:8:3, 7:1:3, 7:3:3, 7:4:3, 7:5:3, 7:6:3, 7:7:3, 7:8:3, 8:1:3, 8:3:3, 8:4:3, 8:5:3, 8:6:3, 8:7:3, 8:8:3, 1:1:4, 1:2:4, 1:3:4, 1:4:4, 1:5:4, 1:6:4, 1:7:4, 1:8:4, 2:1:4, 2:3:4, 2:4:4, 2:5:4, 2:6:4, 2:7:4, 2:8:4, 3:1:4, 3:3:4, 3:4:4, 3:5:4, 3:6:4, 3:7:4, 3:8:4, 3:1:4, 3:3:4, 3:4:4, 3:5:4, 3:6:4, 3:7:4, 3:8:4, 4:1:4, 4:3:4, 4:4:4, 4:5:4, 4:6:4, 4:7:4, 4:8:4, 5:1:4, 5:3:4, 5:4:4, 5:5:4, 5:6:4, 5:7:4, 5:8:4, 6:1:4, 6:3:4, 6:4:4, 6:5:4, 6:6:4, 6:7:4, 6:8:4, 7:1:4, 7:3:4, 7:4:4, 7:5:4, 7:6:4, 7:7:4, 7:8:4, 8:1:4, 8:3:4, 8:4:3, 8:5:4, 8:6:4, 8:7:4, 8:8:4, 1:1:5, 1:2:5, 1:3:5, 1:4:5, 1:5:5, 1:6:5, 1:7:5, 1:8:5, 2:1:5, 2:3:5, 2:4:5, 2:5:5, 2:6:5, 2:7:5, 2:8:5, 3:1:5, 3:3:5, 3:4:5, 3:5:5, 3:6:5, 3:7:5, 3:8:5, 3:1:5, 3:3:5, 3:4:5, 3:5:5, 3:6:5, 3:7:5, 3:8:5, 4:1:5, 4:3:5, 4:4:5, 4:5:5, 4:6:5, 4:7:5, 4:8:5, 5:1:5, 5:3:5, 5:4:5, 5:5:5, 5:6:5, 5:7:5, 5:8:5, 6:1:5, 6:3:5, 6:4:5, 6:5:5, 6:6:5, 6:7:5, 6:8:5, 7:1:5, 7:3:5, 7:4:5, 7:5:5, 7:6:5, 7:7:5, 7:8:5, 8:1:5, 8:3:5, 8:4:5, 8:5:5, 8:6:5, 8:7:5, 8:8:5, 1:1:6, 1:2:6, 1:3:6, 1:4:6, 1:5:6, 1:6:6, 1:7:6, 1:8:6, 2:1:6, 2:3:6, 2:4:6, 2:5:6, 2:6:6, 2:7:6, 2:8:6, 3:1:6, 3:3:6, 3:4:6, 3:5:6, 3:6:6, 3:7:6, 3:8:6, 3:1:6, 3:3:6, 3:4:6, 3:5:6, 3:6:6, 3:7:6, 3:8:6, 4:1:6, 4:3:6, 4:4:6, 4:5:6, 4:6:6, 4:7:6, 4:8:6, 5:1:6, 5:3:6, 5:4:6, 5:5:6, 5:6:6, 5:7:6, 5:8:6, 6:1:6, 6:3:6, 6:4:6, 6:5:6, 6:6:6, 6:7:6, 6:8:6, 7:1:6, 7:3:6, 7:4:6, 7:5:6, 7:6:6, 7:7:6, 7:8:6, 8:1:6, 8:3:6, 8:4:6, 8:5:6, 8:6:5, 8:7:6, 8:8:6, 1:1:7, 1:2:7, 1:3:7, 1:4:7, 1:5:7, 1:6:7, 1:7:7, 1:8:7, 2:1:7, 2:3:7, 2:4:7, 2:5:7, 2:6:7, 2:7:7, 2:8:7, 3:1:7, 3:3:7, 3:4:7, 3:5:7, 3:6:7, 3:7:7, 3:8:7, 3:1:7, 3:3:7, 3:4:7, 3:5:7, 3:6:7, 3:7:7, 3:8:7, 4:1:7, 4:3:7, 4:4:7, 4:5:7, 4:6:7, 4:7:7, 4:8:7, 5:1:7, 5:3:7, 5:4:7, 5:5:7, 5:6:7, 5:7:7, 5:8:7, 6:1:7, 6:3:7, 6:4:7, 6:5:7, 6:6:7, 6:7:7, 6:8:7, 7:1:7, 7:3:7, 7:4:7, 7:5:7, 7:6:7, 7:7:7, 7:8:7, 8:1:7, 8:3:7, 8:4:7, 8:5:7, 8:6:5, 8:7:7, or 8:8:7.
[0225] Certain embodiments provide combination immunotherapies comprising multi-targeted immunotherapeutic directed TAAs. Certain embodiments provide combination immunotherapies comprising multi-targeted immunotherapeutic directed to IDAAs.
[0226] Certain embodiments provide a combination immunotherapies or vaccines comprising: at least two, at least three, or more than three different target antigens comprising a sequence encoding a modified CEA. For example, a combination immunotherapy or vaccine can comprise at least two, at least three, or more than three different target antigens comprising a sequence encoding a modified CEA, wherein the modified CEA comprises a sequence with an identity value of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% to SEQ ID NO: 1 or SEQ ID NO: 100. In some embodiments, the modified CEA comprises a sequence with an identity value of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% SEQ ID NO: 1 and has a Asn->Asp substitution at position 610. In some embodiments, the CEA comprises a sequence of YLSGANLNL (SEQ ID NO: 3), a CAP1 epitope of CEA or YLSGADLNL (SEQ ID NO: 4), a mutated CAP1 epitope. The Ad5-CEA expressing vector can have a sequence as set forth in SEQ ID NO: 2.
[0227] IL-15 Superagonist in Combination Therapy with Ad5 Vaccines
[0228] The present invention provides compositions for combination therapy including an Ad5 [E1-, E2b-]-CEA vaccine and an IL-15 super-agonist complex. In certain embodiments, the present invention provides a method of treating a CEA-expressing cancer in a subject, the method comprising: administering to the individual a first pharmaceutical composition comprising a replication-defective vector comprising a nucleic acid sequence encoding a CEA antigen or any suitable antigen; and administering to the individual an IL-15 super-agonist. In some embodiments, the IL-15 super-agonist is any molecule or molecular complex that binds to and activates IL-15 receptors. In certain embodiments, the IL-15 super-agonist is ALT-803, a molecular complex of IL-15N72D, an IL-15R.alpha.Su domain, and an IgG1 Fc domain. The composition of ALT-803 and methods of producing and using ALT-803 are described in U.S. Patent Application Publication 2015/0374790, which is herein incorporated by reference.
[0229] Interleukin 15 (IL-15) is a naturally occurring inflammatory cytokine secreted after viral infections. Secreted IL-15 can carry out its function by signaling via its cognate receptor on effector immune cells, and thus, can lead to overall enhancement of effector immune cell activity.
[0230] Based on IL-15's broad ability to stimulate and maintain cellular immune responses, it is believed to be a promising immunotherapeutic drug that could potentially cure certain cancers. However, major limitations in clinical development of IL-15 can include low production yields in standard mammalian cell expression systems and short serum half-life. Moreover, the IL-15:IL-15R.alpha. complex, comprising proteins co-expressed by the same cell, rather than the free IL-15 cytokine, can be responsible for stimulating immune effector cells bearing IL-15 .beta..gamma.c receptor.
[0231] To contend with these shortcomings, a novel IL-15 superagonist mutant (IL-15N72D) was identified that has increased ability to bind IL-15R.beta..gamma.c and enhanced biological activity. Addition of either mouse or human IL-15R.alpha. and Fc fusion protein (the Fc region of immunoglobulin) to equal molar concentrations of IL-15N72D can provide a further increase in IL-15 biologic activity, such that IL-15N72D:IL-15R.alpha./Fc super-agonist complex exhibits a median effective concentration (EC.sub.50) for supporting IL-15-dependent cell growth that was greater than 10-fold lower than that of free IL-15 cytokine.
[0232] Thus, in some embodiments, the present disclosure provides a IL-15N72D:IL-15R.alpha./Fc super-agonist complex with an EC.sub.50 for supporting IL-15-dependent cell growth that is greater than 2-fold lower, greater than 3-fold lower, greater than 4-fold lower, greater than 5-fold lower, greater than 6-fold lower, greater than 7-fold lower, greater than 8-fold lower, greater than 9-fold lower, greater than 10-fold lower, greater than 15-fold lower, greater than 20-fold lower, greater than 25-fold lower, greater than 30-fold lower, greater than 35-fold lower, greater than 40-fold lower, greater than 45-fold lower, greater than 50-fold lower, greater than 55-fold lower, greater than 60-fold lower, greater than 65-fold lower, greater than 70-fold lower, greater than 75-fold lower, greater than 80-fold lower, greater than 85-fold lower, greater than 90-fold lower, greater than 95-fold lower, or greater than 100-fold lower than that of free IL-15 cytokine.
[0233] In some embodiments, the interaction of IL-15N72D, soluble IL-15R.alpha., and Fc fusion protein have been exploited to create a biologically active protein complex, ALT-803. It is known that a soluble IL-15R.alpha. fragment, containing the so-called "sushi" domain at the N terminus (Su), bears most of the structural elements responsible for high affinity cytokine binding. A soluble fusion protein can be generated by linking the human IL-15R.alpha.Su domain (amino acids 1-65 of the mature human IL-15R.alpha. protein) with the human IgG1 CH2--CH3 region containing the Fc domain (232 amino acids). This IL-15R.alpha.Su/IgG1 Fc fusion protein has the advantages of dimer formation through disulfide bonding via IgG1 domains and ease of purification using standard Protein A affinity chromatography methods. A diagram of ALT-803 superagonist is presented in FIG. 1.
[0234] ALT-803 is a soluble complex consisting of 2 protein subunits of a human IL-15 variant (two IL-15N72D subunits) associated with high affinity to a dimeric IL-15R.alpha. sushi domain/human IgG1 Fcfusion protein and. The IL-15 variant is a 114-amino acid polypeptide comprising the mature human IL-15 cytokine sequence with an Asn to Asp substitution at position 72 of helix C N72D). The human IL-15R sushi domain/human IgG1 Fc fusion protein comprises the sushi domain of the IL-15R subunit (amino acids 1-65 of the mature human IL-15R.alpha. protein) linked with the human IgG1 CH2-CH3 region containing the Fc domain (232 amino acids). Aside from the N72D substitution, all of the protein sequences are human. Based on the amino acid sequence of the subunits, the calculated molecular weight of the complex comprising two IL-15N72D polypeptides and a disulfide linked homodimeric IL-15R.alpha.Su/IgG1 Fc protein is 92.4 kDa. Each IL-15N720 polypeptide has a calculated molecular weight of approximately 12.8 kDa and the IL-15R.alpha.Su/IgG 1 Fc fusion protein has a calculated molecular weight of approximately 33.4 kDa. Both the IL-15N72D and IL-15R.alpha.Su/IgG 1 Fc proteins are glycosylated resulting in an apparent molecular weight of ALT- 803 as approximately 114 kDa by size exclusion chromatography. The isoelectric point (pI) determined for ALT-803 can range from approximately 5.6 to 6.5. Thus, the fusion protein can be negatively charged at pH 7. The calculated molar extinction coefficient at A280 for ALT-803 is 116,540 M or, in other words, one OD280 is equivalent to 0.79 mg/mL solution of ALT-803.
[0235] Additionally, it has been demonstrated that intracellular complex formation with IL-15R.alpha. prevents IL-15 degradation in the endoplasm reticulum and facilitates its secretion. Using a co-expression strategy in Chinese hamster ovary (CHO) cells, the IL-15N72D and IL-15R.alpha.Su/IgG1 Fc proteins can be produced at high levels and formed a soluble, stable complex. The biological activity of CHO-produced ALT-803 complex can be equivalent to in-vitro assembled IL-15N72D:IL-15R.alpha.Su/IgG1 Fc complexes in standard cell-based potency assays using IL-15-dependent cell lines. The methods provided herein, thus represent a better approach for generating active, fully characterized cGMP grade IL-15:IL-15R.alpha. complex than current strategies employing in vitro assembly of individually produced and, in some cases, refolded proteins.
[0236] Recent studies show that ALT-803 (1) can promote the development of high effector NK cells and CD8+ T cell responders of the innate phenotype, (2) can enhance the function of NK cells, and (3) can play a vital role in reducing tumor metastasis and ultimately survival, especially in combination with checkpoint inhibitors, which are further described below.
[0237] In some embodiments, an IL-15 super-agonist or an IL-15 super-agonist complex, ALT-803, can be administered parenterally, subcutaneously, intramuscularly, by intravenous infusion, by implantation, intraperitoneally, or intravesicularly. In some embodiments 0.1-5 .mu.g of the IL-15 superagonist can be administered in a single dose. In some embodiments, 0.1-0.2 .mu.g, 0.2-0.3 .mu.g, 0.3-0.4 .mu.g, 0.4-0.5 .mu.g, 0.5-0.6 .mu.g, 0.6-0.7 .mu.g, 0.7-0.8 .mu.g, 0.8-0.9 .mu.g, 0.9-1 .mu.g, 1-1.5 .mu.g, 1.5- 2 .mu.g, 2-2.5 .mu.g, 2.5-3 .mu.g, 3-3.5 .mu.g, 3.5-4 .mu.g, 4-4.5 .mu.g, or 4.5-5 .mu.g of the IL-15 superagonistcan be administered in a single dose. In certain embodiments, 1 .mu.g of the ALT-803 can be administered in a single dose. In some embodiments, ALT-803 can be administered at an effective dose of from about 0.1 .mu.g/kg to abut 100 mg/kg body weight, e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, or 900 mg/kg body weight or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, or 100 mg/kg body weight. In some embodiments, an IL-15 superagonist can be administered with an Ad5 [E1-, E2b-]-CEA vaccine. In some embodiments, an IL-15 superagonist can be administered as a mixture with the Ad5 [E1-, E2b]-CEA vaccine. In other embodiments, an IL-15 superagonist can be administered as a separate dose immediately before or after the Ad5 [E1-, E2b-]-CEA vaccine. In other embodiments, an ALT-803 is administered within 1 day, within 2 days, within 3 days, within 4 days, within 5 days, or within 6 days of administration of an Ad5 [E1-, E2b-]-CEA vaccine. In some embodiments, an ALT-803 is administered 3 days after an Ad5 [E1-, E2b-]-CEA vaccine. In some embodiments, ALT-803 is administered continuously or several times per day, e.g., every 1 hour, every 2 hours, every 3 hours, every 4 hours, every 5 hours, every 6 hours, every 7 hours, every 8 hours, every 9 hours, every 10 hours, every 11 hours, or every 12 hours. Daily effective doses of ALT-803 can include from 0.1 mg/kg and 100 mg/kg body weight, e.g., 0.1, 0.3, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 99 mg/kg body weight. In some embodiments, ALT-803 is administered once per week, twice per week, three times per week, four times per week, five times per week, six times per week, or seven times per week. Effective weekly doses of ALT-803 include between 0.0001 mg/kg and 4 mg/kg body weight, e.g., 0.001, 0.003, 0.005, 0.01. 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, or 4 mg/kg body weight. ALT-803 can be administered at a dose from from about 0.1 .mu.g/kg body weight to about 5000 .mu.g/kg body weight; or from about 1 .mu.g/kg body weight to about 4000 .mu.g/kg body weight or from about 10 .mu.g/kg body weight to about 3000 .mu.g/kg body weight. In other embodiments, ALT-803 can be administered at a dose of about 0.1, 0.3, 0.5, 1, 3, 5, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, 3500, 4000, 4500, or 5000 .mu.g/kg. In some embodiments, ALT-803 can be administered at a dose from about 0.5 .mu.g compound/kg body weight to about 20 mg compound/kg body weight. In other embodiments, the doses may be about 0.5, 1, 3, 6, 10, or 20 mg/kg body weight. In some embodiments, or example in parenteral administration, ALT-803 can be administerered at a dose of about 0.5 .mu.g/kg-about 15 .mu.g/kg (e.g., 0.5, 1, 3, 5, 10, or 15 .mu.g/kg).
[0238] In some embodiments, a subject in need thereof receiving combination therapy with the Ad5 [E1-, E2b-]-CEA vaccine and ALT-803 is administered one or more dose of the Ad5 [E1-, E2b-]-CEA vaccine and ALT-803 over a 21-day period. For example, as shown in FIG. 2A, a subject in need thereof can be administered the Ad-CEA vaccine on Day 7, Day 14, and Day 21. Additionally, a subject in need thereof can be administered the IL-15 superagonist (ALT-803) on Day 10 and Day 17. In some embodiments, a subject in need thereof receiving combination therapy with the Ad5 [E1-, E2b-]-CEA vaccine and ALT-803 is administered one or more dose of the Ad5 [E1-, E2b-]-CEA vaccine and ALT-803 over an 8-week period. In some embodiments, a subject can be administered the Ad5 [E1-, E2b-]-CEA vaccine on weeks 3 and 6 and can be administered the IL-15 superagonist (ALT-803) on weeks 1, 2, 4, 5, 7, and 8. Thus, in some embodiments, the subject is administered more than one dose of ALT-803 in a complete dosing regimen. In some embodiments, the subject can be administered at least 1 dose, at least 2 doses, at least 3 doses, at least 4 doses, or at least 5 doses of the IL-15 superagonist. In certain embodiments, the subject can be administered one less dose of ALT-803 than the Ad5 [E1-, E2b-]-CEA vaccine.
[0239] In some embodiments, the IL-15 superagonist, such as ALT-803, can be encoded as an immunological fusion with the CEA antigen. For example, in some embodiments the Ad5 [E1-, E2b-] vaccine can encode for CEA and ALT-803 (Ad5 [E1-, E2b-]-CEA/ALT-803). In these embodiments, upon administration to a subject in need thereof, Ad5 [E1-, E2b-] vectors encoding for CEA and ALT-803 induce expression of CEA and ALT-803 as an immunological fusion, which is therapeutically active.
[0240] Combination therapy with Ad5[E1-, E2b-] vectors encoding for CEA and ALT-803 can result in boosting the immune response, such that the combination of both therapeutic moieties acts to synergistically boost the immune response than either therapy alone. For example, combination therapy with Ad5[E1-, E2b-] vectors encoding for CEA and ALT-803 can result in synergistic enhancement of stimulation of antigen-specific effector CD4+ and CD8+ T cells, stimulation of NK cell response directed towards killing infected cells, stimulation of neutrophils or monocyte cell responses directed towards killing infected cells via antibody dependent cell-mediated cytotoxicity (ADCC) or antibody dependent cellular phagocytosis (ADCP) mechanisms. Combination therapy with Ad5[E1-, E2b-] vectors encoding for CEA and ALT-803 can synergistically boost any one of the above responses, or a combination of the above responses, to vastly improve survival outcomes after administration to a subject in need thereof.
Combination Therapies of Ad5-Vacccines with Further Immunotherapies
[0241] In further embodiments, the present invention provides compositions for further combination therapies which include the Ad5 [E1-, E2b-]-CEA vaccine, an IL-15 super-agonist, such as ALT-803, and one or more of the following agents: a chemotherapeutic agent, costimulatory molecules, checkpoint inhibitors, antibodies against a specific antigen (e.g., CEA), engineered NK cells, or any combination thereof. For example, the present invention provides a method of treating a CEA-expressing cancer in an individual in need thereof, the method comprising: administering to the individual a first pharmaceutical composition comprising a replication-defective vector comprising a nucleic acid sequence encoding a CEA antigen or any suitable antigen, administering to the individual an IL-15 superagonist such as ALT-803, and administering to the individual an anti-CEA antibody and engineered NK cells. In some embodiments, the method can further comprise administering to the individual a VEGF inhibitor, a chemotherapy, or a combination thereof. In other embodiments, the method can further comprise administering to the individual engineered NK cells and a checkpoint inhibitor. Any combination of chemotherapeutic agents, costimulatory molecules, checkpoint inhibitors, antibodies against a specific antigen (e.g., CEA), or engineered NK cells can be included in combination therapy with the Ad5 [E1-, E2b-] vaccine encoding for an antigen, such as CEA, and an IL-15 super-agonist or super-agonist complex, such as ALT-803.
[0242] In certain embodiments, the chemotherapy used herein is capecitabine, leucovorin, fluorouracil, oxaliplatin, fluoropyrimidine, irinotecan, mitomycin, regorafenib, cetuxinab, panitumumab, acetinophen, or a combination thereof. In particular embodiments, the chemotherapy used herein is FOLFOX (leucovorin, fluorouracil and oxaliplatin) or capecitabine. In certain embodiments, the immune checkpoint inhibitor is an anti-PD-1 or anti-PD-L1 antibody, such as avelumab. In certain embodiments, the VEGF inhibitor is an anti-VEGF antibody, such as bevacizumab. The agents which can be used in combination therapy alongside the replication defective vector and ALT-803 are described in further detail below.
[0243] FOLFOX (5-fluorouracil, leucovorin, oxaliplatin)
[0244] A randomized trial comparing irinotecan and bolus fluorouracil plus leucovorin (IFL, control combination), oxaliplatin and infused fluorouracil plus leucovorin (FOLFOX), or irinotecan and oxaliplatin (IROX) established the FOLFOX combination, given for a total of 6 months, as the standard of care for first line treatment in patients with metastatic colorectal cancer (mCRC). Though multiple infusion schedules of FOLFOX have been validated, typically denominated as `modified FOLFOX, there are no essential changes in the constituent cytotoxic agents of the regimen. Of these, mFOLFOX6 is one of the most widely used.
[0245] Oxaliplatin, however, is very difficult for patients to receive for greater than 6 months (12 cycles) due to progressive neurotoxicity. Though 6 months of combination therapy remains the standard of care in mCRC, clinical judgment may influence the decision to limit the number of oxaliplatin-containing cycles towards the end of treatment Other trials, including the CAIRO3 study, have demonstrated the feasibility and benefit of discontinuation of oxaliplatin after a 3 month "induction" period with continuation of 5-FU and leucovorin as "maintenance" therapy.
[0246] Bevacizumab (Avastin.RTM.)
[0247] Addition of bevacizumab to first-line 5-FU and Oxaliplatin containing regimens was demonstrated to increase time to progression in mCRC patients with a manageable side effect profile and non-overlapping toxicities. Later trials indicated that continuing bevacizumab beyond first progression (in combination with subsequent chemotherapy) improved overall survival in an unselected group of patients by KRAS mutational status, which has led to its approved use in the maintenance setting.
[0248] Capecitabine
[0249] This agent is a prodrug that is enzymatically converted to 5-fluorouracil by 3 enzymatic steps following oral ingestion. As an orally active fluoropyrimidine, capecitabine has been approved for use in the adjuvant setting. In the advanced colon cancer setting, it has been shown to be equally efficacious as 5-fluorouracil, though with more reported rates of hand-foot syndrome. This agent offers the convenience of the oral route with its benefits of reducing infusion commitments for patients in the maintenance setting, while achieving high concentrations intratumorally, given the higher concentrations of thymidine phosphorylase in tumor as compared to normal tissues.
[0250] Costimulatory Molecules
[0251] In addition to the use of a recombinant adenovirus-based vector vaccine containing target antigens such as a CEA antigen or epitope, co-stimulatory molecules can be incorporated into said vaccine to increase immunogenicity. Initiation of an immune response requires at least two signals for the activation of naive T cells by APCs (Damle, et al. J Immunol 148: 1985-92 (1992); Guinan, et al. Blood 84: 3261-82 (1994); Hellstrom, et al. Cancer Chemother Pharmacol 38: S40-44 (1996); Hodge, et al. Cancer Res 39: 5800-07 (1999)). An antigen specific first signal is delivered through the T cell receptor (TCR) via the peptide/major histocompatability complex (MHC) and causes the T cell to enter the cell cycle. A second, or costimulatory, signal may be delivered for cytokine production and proliferation.
[0252] At least three distinct molecules normally found on the surface of professional antigen presenting cells (APCs) have been reported as capable of providing the second signal critical for T cell activation: B7-1 (CD80), ICAM-1 (CD54), and LFA-3 (human CD58) (Damle, et al. J Immunol 148: 1985-92 (1992); Guinan, et al. Blood 84: 3261-82 (1994); Wingren, et al. Crit Rev Immunol 15: 235-53 (1995); Parra, et al. Scand. J Immunol 38: 508-14 (1993); Hellstrom, et al. Ann NY Acad Sci 690: 225-30 (1993); Parra, et al. J Immunol 158: 637-42 (1997); Sperling, et al. J Immunol 157: 3909-17 (1996); Dubey, et al. J Immunol 155: 45-57 (1995); Cavallo, et al. Eur J Immunol 25: 1154-62 (1995)).
[0253] These costimulatory molecules have distinct T cell ligands. B7-1 interacts with the CD28 and CTLA-4 molecules, ICAM-1 interacts with the CD11a/CD18 (LFA-1/.beta.2 integrin) complex, and LFA-3 interacts with the CD2 (LFA-2) molecules. Therefore, in a preferred embodiment, it would be desirable to have a recombinant adenovirus vector that contains B7-1, ICAM-1, and LFA-3, respectively, that, when combined with a recombinant adenovirus-based vector vaccine containing one or more nucleic acids encoding target antigens such as a HER2/neu antigen or epitope, will further increase/enhance anti-tumor immune responses directed to specific target antigens.
[0254] Natural Killer (NK) Cells
[0255] In certain embodiments, native or engineered NK cells may be provided to be administered to a subject in need thereof, in combination with adenoviral vector-based compositions and IL-15 superagonist or other immunotherapies as described herein.
[0256] The immune system is a tapestry of diverse families of immune cells each with its own distinct role in protecting from infections and diseases. Among these immune cells are the natural killer, or NK, cells as the body's first line of defense. NK cells have the innate ability to rapidly seek and destroy abnormal cells, such as cancer or virally-infected cells, without prior exposure or activation by other support molecules. In contrast to adaptive immune cells such as T cells, NK cells have been utilized as a cell-based "off-the-shelf" treatment in phase 1 clinical trials, and have demonstrated tumor killing abilities for cancer.
[0257] aNK Cells
[0258] In addition to native NK cells, there may be provided NK cells for administering to a patient that has do not express Killer Inhibitory Receptors (KIR), which diseased cells often exploit to evade the killing function of NK cells. This unique activated NK, or aNK, cell lack these inhibitory receptors while retaining the broad array of activating receptors which enable the selective targeting and killing of diseased cells. aNK cells also carry a larger pay load of granzyme and perforin containing granules, thereby enabling them to deliver a far greater payload of lethal enzymes to multiple targets.
[0259] taNK Cells
[0260] Chimeric antigen receptor (CAR) technology is among the most novel cancer therapy approaches currently in development. CARs are proteins that allow immune effector cells to target cancer cells displaying specific surface antigen(target-activated Natural Killer) is a platform in which aNK cells are engineered with one or more CARs to target proteins found on cancers and is then integrated with a wide spectrum of CARs. This strategy has multiple advantages over other CAR approaches using patient or donor sourced effector cells such as autologous T-cells, especially in terms of scalability, quality control and consistency.
[0261] Much of the cancer cell killing relies upon ADCC (antibody dependent cell-mediated cytotoxicity) whereupon effector immune cells attach to antibodies, which are in turn bound to the target cancer cell, thereby facilitating killing of the cancer by the effector cell. NK cells are the key effector cell in the body for ADCC and utilize a specialized receptor (CD16) to bind antibodies.
[0262] haNK Cells
[0263] Studies have shown that perhaps only 20% of the human population uniformly expresses the "high-affinity" variant of CD16, which is strongly correlated with more favorable therapeutic outcomes compared to patients with the "low-affinity" CD16. Additionally, many cancer patients have severely weakened immune systems due to chemotherapy, the disease itself or other factors.
[0264] In certain aspects, haNK cells are modified to express high-affinity CD16. As such, haNK cells may potentiate the therapeutic efficacy of a broad spectrum of antibodies directed against cancer cells.
[0265] Anti-CEA Antibodies
[0266] In some embodiments, compositions are administered with one or more antibodies targeted to CEA, or anti-CEA antibodies. In some embodiments, the composition comprises a replication-defective vector comprising a nucleotide sequence encoding a target antigen, such as CEA, MUC1, Brachyury, or a combination thereof, or any suitable antigens.
[0267] Anti-CEA antibodies can be used to generate an immune response against a target antigen expressed and/or presented by a cell. In certain embodiments, the compositions and methods can be used to generate immune responses against a carcinoembryonic antigen (CEA), such as CEA expressed or presented by a cell. For example, the compositions and methods can be used to generate an immune response against CEA(6D) expressed or presented by a cell.
[0268] CEA has been shown to be overexpressed on a variety of cancers. In some embodiments, the targeted patient population administered anti-CEA antibody therapy may be individuals with CEA expressing colorectal cancer, head and neck cancer, liver cancer, breast cancer, lung cancer, bladder cancer, or pancreas cancer.
[0269] The present invention provides for a novel monoclonal antibody that specifically binds a CPAA. This monoclonal antibody, identified as "16C3", which refers to the number assigned to its hybridoma clone. Herein, 16C3 also refers to the portion of the monoclonal antibody, the paratope or CDRs, that bind specifically with a CPAA epitope identified as 16C3 because of its ability to bind the 16C3 antibody. The several recombinant and humanized forms of 16C3 described herein may be referred to by the same name.
[0270] The present invention includes, within its scope, DNA sequences encoding the variable regions of the light and heavy chains of the anti-CPAA antibody of the present invention. A nucleic acid sequence encoding the variable region of the light chain of the 16C3 antibody is presented in SEQ ID NO: 16. A nucleic acid sequence encoding the variable region of the heavy chain of the 16C3 antibody is presented in SEQ ID NO: 17.
[0271] The present invention includes, within its scope, a peptide of the 16C3 light chain comprising the amino acid sequence of SEQ ID NO: 18 and SEQ ID NO: 19; and a peptide of the 16C3 heavy chain comprising the amino acid sequence depicted in SEQ ID NO: 99 and SEQ ID NO: 20. Further, the present invention includes the CDR regions depicted for the 16C3 kappa light chain which are the residues underlined in SEQ ID NO: 18, having the amino acids of CDR 1: GASENIYGALN (SEQ ID NO: 21); CDR 2: GASNLAD (SEQ ID NO: 22); and CDR 3: QNVLSSPYT (SEQ ID NO: 23); as well as the amino acids the light chain underlined in SEQ ID NO: 19, which include CDR 1: QASENIYGALN (SEQ ID NO: 24); CDR 2: GASNLAT (SEQ ID NO: 25); and CDR 3: QQVLSSPYT (SEQ ID NO: 26). The invention similarly identifies the CDR regions for the heavy chain, underlined in FIG. 5, which include the amino acids for CDR 1: GYTFTDYAMH (SEQ ID NO: 27); CDR 2: LISTYSGDTKYNQNFKG (SEQ ID NO: 28); and CDR 3: GDYSGSRYWFAY (SEQ ID NO: 29); as well as the amino acids the heavy chain underlined in FIG. 12, which include CDR 1: GYTFTDYAMH (SEQ ID NO: 27); CDR 2: LISTYSGDTKYNQKFQG (SEQ ID NO: 30); and CDR 3: GDYSGSRYWFAY (SEQ ID NO: 31).
[0272] In the present application, the 16C3 antibody is also referred to as the NEO-201 antibody.
[0273] In certain embodiments, anti-CEA antibodies used can be COL1, COL2, COL3, COL4, COL5, COL6, COL7, COL8, COL9, COL10, COL11, COL12, COL13, COL14, COL15, arcitumomab, besilesomab, labetuzumab, altumomab, or NEO-201. In certain embodiments, the anti-CEA antibody can be murine, chimeric, or humanized.
[0274] In certain embodiments, the anti-CEA antibody binds to a CEA overexpressing cell 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more over a baseline CEA expression in a non-cancer cell.
[0275] Immune Pathway Checkpoint Modulators
[0276] In some embodiments, compositions are administered with one or more immune checkpoint modulator, such as immune checkpoint inhibitors. In some embodiments, the composition comprises a replication-defective vector comprising a nucleotide sequence encoding a target antigen, such as CEA, or any suitable antigens.
[0277] A balance between activation and inhibitory signals regulates the interaction between T lymphocytes and disease cells, wherein T-cell responses are initiated through antigen recognition by the T-cell receptor (TCR). The inhibitory pathways and signals are referred to as immune checkpoints. In normal circumstances, immune checkpoints play a critical role in control and prevention of autoimmunity and also protect from tissue damage in response to pathogenic infection.
[0278] In certain aspects, there are provided combination immunotherapies comprising viral vector based vaccines and compositions for modulating immune checkpoint inhibitory pathways for the treatment of cancer and infectious diseases. In some embodiments, modulating is increasing expression or activity of a gene or protein. In some embodiments, modulating is decreasing expression or activity of a gene or protein. In some embodiments, modulating affects a family of genes or proteins.
[0279] Certain embodiments provide combination immunotherapies comprising multi-targeted immunotherapeutic directed to TAAs and molecular compositions comprising an immune pathway checkpoint modulator that targets at least one immune checkpoint protein of the immune inhibitory pathway. Certain embodiments provide combination immunotherapies comprising multi-targeted immunotherapeutic directed to IDAAs and molecular compositions comprising an immune pathway checkpoint modulator that targets at least one immune checkpoint protein of the immune inhibitory pathway. Certain embodiments provide a combination immunotherapies or vaccines comprising: at least two, at least three, or more than three different target antigens comprising a sequence encoding a modified CEA, and at least one molecular composition comprising an immune pathway checkpoint modulator. For example, a combination immunotherapy or vaccine can comprise at least two, at least three, or more than three different target antigens comprising a sequence encoding a modified CEA, wherein the modified CEA comprises a sequence with an identity value of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.9% to SEQ ID NO: 1 or SEQ ID NO: 100 and at least one molecular composition comprising an immune pathway checkpoint modulator. In some embodiments, the modified CEA comprises a sequence with an identity value of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, or 100% SEQ ID NO: 1 has a Asn.fwdarw.Asp substitution at position 610 or SEQ ID NO: 100.
[0280] In general, the immune inhibitory pathways are initiated by ligand-receptor interactions. It is now clear that in diseases, the disease can co-opt immune-checkpoint pathways as mechanism for inducing immune resistance in a subject.
[0281] The induction of immune resistance or immune inhibitory pathways in a subject by a given disease can be blocked by molecular compositions such as siRNAs, antisense, small molecules, mimic, a recombinant form of ligand, receptor or protein, or antibodies (which can be an Ig fusion protein) that are known to modulate one or more of the Immune Inhibitory Pathways, or any combination thereof. For example, preliminary clinical findings with blockers of immune-checkpoint proteins, such as Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) have shown promise for enhancing antitumor immunity.
[0282] Because diseased cells can express multiple inhibitory ligands, and disease-infiltrating lymphocytes express multiple inhibitory receptors, dual or triple blockade of immune checkpoints proteins may enhance anti-disease immunity. Combination immunotherapies as provide herein can comprise one or more molecular compositions of the following immune-checkpoint proteins: PD1, PDL1, PDL2, CD28, CD80, CD86, CTLA4, B7RP1, ICOS, B7RPI, B7-H3 (also known as CD276), B7-H4 (also known as B7-S1, B7x and VCTN1), BTLA (also known as CD272), HVEM, KIR, TCR, LAG3 (also known as CD223), CD137, CD137L, OX40, OX40L, CD27, CD70, CD40, CD4OL, TIM3 (also known as HAVcr2), GALS, and A2aR. In some embodiments, the molecular composition comprises siRNAs. In some embodiments, the molecular composition comprises a small molecule. In some embodiments, the molecular composition comprises a recombinant form of a ligand. In some embodiments, the molecular composition comprises a recombinant form of a receptor. In some embodiments, the molecular composition comprises an antibody. In some embodiments, the combination therapy comprises more than one molecular composition and/or more than one type of molecular composition. As it will be appreciated by those in the art, future discovered proteins of the immune checkpoint inhibitory pathways are also envisioned to be encompassed in certain aspects.
[0283] In some embodiments, combination immunotherapies comprise molecular compositions for the modulation of CTLA4. In some embodiments, combination immunotherapies comprise molecular compositions for the modulation PD1. In some embodiments, combination immunotherapies comprise molecular compositions for the modulation PDL1. In some embodiments, combination immunotherapies comprise molecular compositions for the modulation LAGS. In some embodiments, combination immunotherapies comprise molecular compositions for the modulation B7-H3. In some embodiments, combination immunotherapies comprise molecular compositions for the modulation B7-H4. In some embodiments, combination immunotherapies comprise molecular compositions for the modulation TIM3. In some embodiments, modulation is an increase or enhancement of expression. In other embodiments, modulation is the decrease of absence of expression.
[0284] Two exemplary immune checkpoint inhibitors include the cytotoxic T lymphocyte associated antigen-4 (CTLA-4) and the programmed cell death protein-1 (PD1). CTLA-4 can be expressed exclusively on T-cells where it regulates early stages of T-cell activation. CTLA-4 interacts with the co-stimulatory T-cell receptor CD28 which can result in signaling that inhibits T-cell activity. Once TCR antigen recognition occurs, CD28 signaling may enhance TCR signaling, in some cases leading to activated T-cells, and CTLA-4 inhibits the signaling activity of CD28. Certain embodiments provide immunotherapies as provided herein in combination with anti-CTLA-4 monoclonal antibody for the treatment of proliferative disease and cancer. Certain embodiments provide immunotherapies as provided herein in combination with CTLA-4 molecular compositions for the treatment of proliferative disease and cancer.
[0285] Programmed death cell protein ligand-1 (PDL1) is a member of the B7 family and is distributed in various tissues and cell types. PDL1 can interact with PD1 inhibiting T-cell activation and CTL mediated lysis. Significant expression of PDL1 has been demonstrated on various human tumors and PDL1 expression is one of the key mechanisms in which tumors evade host antitumor immune responses. Programmed death-ligand 1 (PDL1) and programmed cell death protein-1 (PD1) interact as immune checkpoints. This interaction can be a major tolerance mechanism which results in the blunting of anti-tumor immune responses and subsequent tumor progression. PD1 is present on activated T cells and PDL1, the primary ligand of PD1, is often expressed on tumor cells and antigen-presenting cells (APC) as well as other cells, including B cells. PDL1 interacts with PD1 on T cells inhibiting T cell activation and cytotoxic T lymphocyte (CTL) mediated lysis. Certain embodiments provide immunotherapies as provided herein in combination with anti-PD1 or anti-PDL1 monoclonal antibody for the treatment of proliferative disease and cancer. Certain embodiments provide immunotherapies as provided herein in combination with PD1 or anti-PDL1 molecular compositions for the treatment of proliferative disease and cancer. Certain embodiments provide immunotherapies as provided herein in combination with anti-CTLA-4 and anti-PD1 monoclonal antibodies for the treatment of proliferative disease and cancer. Certain embodiments provide immunotherapies as provided herein in combination with anti-CTLA-4 and PDL1 monoclonal antibodies for the treatment of proliferative disease and cancer. Certain embodiments provide immunotherapies as provided herein in combination with anti-CTLA-4, anti-PD1, PDL1, monoclonal antibodies, or a combination thereof, for the treatment of proliferative disease and cancer.
[0286] Certain embodiments provide immunotherapies as provided herein in combination with several antibodies directed against the PD-L1/PD-1 pathway that are in clinical development for cancer treatment. In certain embodiments, anti-PD-L1 antibodies may be used. Compared with anti-PD-1 antibodies that target T-cells, anti-PDL1 antibodies that target tumor cells are expected to have less side effects, including a lower risk of autoimmune-related safety issues, as blockade of PD-L1 leaves the PD-L2/PD-1 pathway intact to promote peripheral self-tolerance.
[0287] To this end, avelumab, a fully human IgG1 anti-PDL1 antibody (drug code MSB0010718C) has been produced. Avelumab selectively binds to PD-L1 and competitively blocks its interaction with PD-1.
[0288] Avelumab is also cross-reactive with murine PD-L1, thus allowing in vivo pharmacology studies to be conducted in normal laboratory mice. However, due to immunogenicity directed against the fully human avelumab molecule, the dosing regimen was limited to three doses given within a week. In some embodiments, avelumab can be administered at a dose of 1 mg/kg-20 mg/kg. In some embodiments, avelumab can also be administered at 1 mg/kg, 3 mg/kg, 10 mg/kg, and 20 mg/kg. In some embodiments, the addition of Avelumab, or any other immune pathway checkpoint modulator, in the dosing regimen can increase the immune response by at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or at least 25-fold. In some embodiments, Aveluman is administered to a subject at least once, at least twice, or at least three times a week. In some embodiments, Avelumab is administered on day 1 of week 1, day 1 of week 2, day 1 of week 4, day 1 of week 8, day 1 of week 12, and day 1 of week 16. Avelumab can be administered on the same day as immunization with the Ad5 [E1-, E2b-]-CEA vaccine of the present disclosure. In these instances, Avelumab infusion occurs after immunization with the Ad5 [E1-, E2b-]-CEA vaccine.
[0289] The key preclinical pharmacology findings for avelumab are summarized below. Avelumab showed functional enhancement of primary T cell activation in vitro in response to antigen-specific and antigen non-specific stimuli; and significant inhibition of in vivo tumor growth (PD-L1 expressing MC38 colon carcinoma) as a monotherapy. Its in vivo efficacy is driven by CD8+ T cells, as evidenced by complete abrogation of anti-tumor activity when this cell type was systemically depleted. Its combination with localized, fractionated radiotherapy resulted in complete regression of established tumors with generation of anti-tumor immune memory. Its use in chemotherapy combinations also showed promising activity: additive combination effect when partnered with oxaliplatin and 5-fluorouracil (5-FU) (core components of FOLFOX [oxaliplatin, 5-FU, and folinic acid]) against MC38 colon tumors; significant increase in survival when partnered with gemcitabine against PANCO2 pancreatic tumors. Its antibody-dependent cell-mediated cytotoxicity (ADCC) was demonstrated against human tumor cells in vitro; furthermore, studies in ADCC deficient settings in vivo support a contribution of ADCC to anti-tumor efficacy. Additional findings of Avelumab include: no complement-dependent cytotoxicity was observed in vitro. Immunomonitoring assays with translational relevance for the clinic further support an immunological mechanism of action: consistent increases in CD8+PD-1+ T cells and CD8+ effector memory T cells as measured by fluorescence-activated cell sorter (FACS); enhanced tumor-antigen specific CD8+ T cell responses as measured by pentamer staining and enzyme-linked immunosorbent spot (ELISPOT) assays.
[0290] Despite reports indicating that anti-tumor radiographic responses were unlikely using agents that interfere with PD-1-PD-L1 binding in colorectal cancer, there have been reports of radiographic responses. Additionally, a correlation has been demonstrated in multiple clinical trials indicating that PD-L1 expression levels on tumor tissue predict the likelihood of radiographic response. However, it has become clear that PD-L1 expression, as it is currently measured, is not a definitive requirement for anti-tumor efficacy. It has been noted that colorectal tumors rarely express PD-L1 compared with other tumors that are more likely to respond to PD-1-PD-L1 blockade. However, it is known that a strong anti-tumor T cell response, producing IFN-gamma, will induce PD-L1 expression.
[0291] In some embodiments, without being bound by theory, it was contemplated that an underlying immune response is necessary for PD-1-PD-L1 blockade to have an anti-tumor effect. Without being bound by theory, it was further contemplated that this combination of an immune checkpoint inhibitor with the standard therapy and an adenoviral vector composition uch as Ad-CEA immunizations or Ad-CEA immunizations may be capable of induction of PD-L1 expression and thereby increase the anti-tumor activity of PD-1-PD-L1 blockade.
[0292] Immune checkpoint molecules can be expressed by T cells. Immune checkpoint molecules can effectively serve as "brakes" to down-modulate or inhibit an immune response. Immune checkpoint molecules include, but are not limited to Programmed Death 1 (PD1, also known as PDCD1 or CD279, accession number: NM_005018), Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4, also known as CD152, GenBank accession number AF414120.1), LAG3 (also known as CD223, accession number: NM_002286.5), Tim3 (also known as HAVCR2, GenBank accession number: JX049979.1), BTLA (also known as CD272, accession number: NM_181780.3), BY55 (also known as CD160, GenBank accession number: CR541888.1), TIGIT (also known as IVSTM3, accession number: NM_173799), LAIR1 (also known as CD305, GenBank accession number: CR542051.1), SIGLECIO (GeneBank accession number: AY358337.1), 2B4 (also known as CD244, accession number: NM_001166664.1), PPP2CA, PPP2CB, PTPN6, PTPN22, CD96, CRTAM, SIGLEC7, SIGLEC9, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBRII, TGFRBRI, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, ILIORA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3 which directly inhibit immune cells. For example, PD1 can be combined with an adenoviral vaccine to treat a patient in need thereof. TABLE 1, without being exhaustive, shows exemplary immune checkpoint genes that can be inactivated to improve the efficiency of the adenoviral vaccine. Immune checkpoints gene can be selected from such genes listed in TABLE 1 and others involved in co-inhibitory receptor function, cell death, cytokine signaling, arginine tryptophan starvation, TCR signaling, Induced T-reg repression, transcription factors controlling exhaustion or anergy, and hypoxia mediated tolerance.
TABLE-US-00001 TABLE 1 Exemplary Immune Checkpoint Genes Gene NCBI # Genome Symbol (GRCh38.p2) Start Stop location ADORA2A 135 24423597 24442360 22q11.23 CD276 80381 73684281 73714518 15q23-q24 VTCN1 79679 117143587 117270368 1p13.1 BTLA 151888 112463966 112499702 3q13.2 CTLA4 1493 203867788 203873960 2q33 IDO1 3620 39913809 39928790 8p12-p11 KIR3DL1 3811 54816438 54830778 19q13.4 LAG3 3902 6772483 6778455 12p13.32 PDCD1 5133 241849881 241858908 2q37.3 HAVCR2 84868 157085832 157109237 5q33.3 VISTA 64115 71747556 71773580 10q22.1 CD244 51744 160830158 160862902 1q23.3 CISH 1154 50606454 50611831 3p21.3
[0293] The combination of an adenoviral-based vaccine and an immune pathway checkpoint modulator may result in reduction in cancer recurrences in treated patients, as compared to either agent alone. In yet another embodiment the combination of an adenoviral-based vaccine and an immune pathway checkpoint modulator may result in reduction in the presence or appearance of metastases or micro metastases in treated patients, as compared to either agent alone. In another embodiment, the combination of an adenoviral-based vaccine and an immune pathway checkpoint modulator may result improved overall survival of treated patients, as compared to either agent alone. In some cases, the combination of an adenoviral vaccine and an immune pathway checkpoint modulator may increase the frequency or intensity of tumor-specific T cell responses in patients compared to either agent alone.
[0294] Some embodiments also disclose the use of immune checkpoint inhibition to improve performance of an adenoviral vector-based vaccine. The immune checkpoint inhibition may be administered at the time of the vaccine. The immune checkpoint inhibition may also be administered after a vaccine. Immune checkpoint inhibition may occur simultaneously to an adenoviral vaccine administration. Immune checkpoint inhibition may occur 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, or 60 minutes after vaccination. Immune checkpoint inhibition may also occur 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 hours post vaccination. In some cases, immune inhibition may occur 1, 2, 3, 4, 5, 6, or 7 days after vaccination. Immune checkpoint inhibition may occur at any time before or after vaccination.
[0295] In another aspect, there is provided a vaccine comprising an antigen and an immune pathway checkpoint modulator. Some embodiments pertain to a method for treating a subject having a condition that would benefit from downregulation of an immune checkpoint, PD1 for example, and its natural binding partner(s) on cells of the subject.
[0296] An immune pathway checkpoint modulator may be combined with an adenoviral vaccine comprising nucleotide sequences encoding any antigen. For example, an antigen can be MUC1c, HERS, Brachyury, HER2NEU, CEA, PMSA, or PSA. An immune pathway checkpoint modulator may produce a synergistic effect when combined with a vaccine. An immune pathway checkpoint modulator may also produce an additive effect when combined with a vaccine.
[0297] In particular embodiments, a checkpoint immune inhibitor may be combined with a vector comprising nucleotide sequences encoding any antigen, optionally with a chemotherapy or any other cancer care or therapy, such as VEGF inhibitors, angiogenesis inhibitors, radiation, other immune therapy, or any suitable cancer care or therapy.
Immunological Fusion Partner Antigen Targets
[0298] The viral vectors or composition described herein may further comprise nucleic acid sequences that encode proteins, or an "immunological fusion partner," that can increase the immunogenicity of the target antigen such as a tumor neo-antigen or neo-epitope. In this regard, the protein produced following immunization with the viral vector containing such a protein may be a fusion protein comprising the target antigen of interest fused to a protein that increases the immunogenicity of the target antigen of interest.
[0299] In one embodiment, such an immunological fusion partner is derived from a Mycobacterium sp., such as a Mycobacterium tuberculosis-derived Ra12 fragment. The immunological fusion partner derived from Mycobacterium sp. can be any one of the sequences set forth in SEQ ID NO: 32-SEQ ID NO: 40. Ra12 compositions and methods for their use in enhancing the expression and/or immunogenicity of heterologous polynucleotide/polypeptide sequences are described in U.S. Pat. No. 7,009,042, which is herein incorporated by reference in its entirety. Briefly, Ra12 refers to a polynucleotide region that is a subsequence of a Mycobacterium tuberculosis MTB32A nucleic acid. MTB32A is a serine protease of 32 kDa encoded by a gene in virulent and avirulent strains of M. tuberculosis. The nucleotide sequence and amino acid sequence of MTB32A have been described (see, e.g., U.S. Pat. No. 7,009,042; Skeiky et al., Infection and Immun. 67:3998-4007 (1999), incorporated herein by reference in their entirety). C-terminal fragments of the MTB32A coding sequence can be expressed at high levels and remain as soluble polypeptides throughout the purification process. Moreover, Ra12 may enhance the immunogenicity of heterologous immunogenic polypeptides with which it is fused. A Ra12 fusion polypeptide can comprise a 14 kDa C-terminal fragment corresponding to amino acid residues 192 to 323 of MTB32A. Other Ra12 polynucleotides generally can comprise at least about 15, 30, 60, 100, 200, 300, or more nucleotides that encode a portion of a Ra12 polypeptide. Ra12 polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a Ra12 polypeptide or a portion thereof) or may comprise a variant of such a sequence. Ra12 polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the biological activity of the encoded fusion polypeptide is not substantially diminished, relative to a fusion polypeptide comprising a native Ra12 polypeptide. Variants can have at least about 70%, 80%, or 90% identity, or more, to a polynucleotide sequence that encodes a native Ra12 polypeptide or a portion thereof.
[0300] In certain aspects, an immunological fusion partner can be derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenzae B. The immunological fusion partner derived from protein D can be the sequence set forth in SEQ ID NO: 41. In some cases, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids). A protein D derivative may be lipidated. Within certain embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes, which may increase the expression level in E. coli and may function as an expression enhancer. The lipid tail may ensure optimal presentation of the antigen to antigen presenting cells. Other fusion partners can include the non-structural protein from influenza virus, NS1 (hemagglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.
[0301] In certain aspects, the immunological fusion partner can be the protein known as LYTA, or a portion thereof (particularly a C-terminal portion). The immunological fusion partner derived from LYTA can the sequence set forth in SEQ ID NO: 42. LYTA is derived from Streptococcus pneumoniae, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of E. coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus can be employed. Within another embodiment, a repeat portion of LYTA may be incorporated into a fusion polypeptide. A repeat portion can, for example, be found in the C-terminal region starting at residue 178. One particular repeat portion incorporates residues 188-305.
[0302] In some embodiments, the target antigen is fused to an immunological fusion partner, also referred to herein as an "immunogenic component," comprising a cytokine selected from the group of IFN-.gamma., TNF.alpha., IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda.IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, and MIF. The target antigen fusion can produce a protein with substantial identity to one or more of IFN-.gamma., TNF.alpha. IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, and MIF. The target antigen fusion can encode a nucleic acid encoding a protein with substantial identity to one or more of IFN-.gamma., TNF.alpha., IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, and MIF. In some embodiments, the target antigen fusion further comprises one or more immunological fusion partner, also referred to herein as an "immunogenic components," comprising a cytokine selected from the group of IFN-.gamma., TNF.alpha., IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, and MIF. The sequence of IFN-.gamma. can be, but is not limited to, a sequence as set forth in SEQ ID NO: 43. The sequence of TNF.alpha. can be, but is not limited to, a sequence as set forth in SEQ ID NO: 44. The sequence of IL-2 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 45. The sequence of IL-8 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 46. The sequence of IL-12 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 47. The sequence of IL-18 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 48. The sequence of IL-7 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 49. The sequence of IL-3 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 50. The sequence of IL-4 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 51. The sequence of IL-5 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 52. The sequence of IL-6 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 53. The sequence of IL-9 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 54. The sequence of IL-10 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 55. The sequence of IL-13 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 56. The sequence of IL-15 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 57. The sequence of IL-16 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 103. The sequence of IL-17 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 104. The sequence of IL-23 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 105. The sequence of IL-32 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 106.
[0303] In some embodiments, the target antigen is fused or linked to an immunological fusion partner, also referred to herein as an "immunogenic component," comprising a cytokine selected from the group of IFN-.gamma., TNF.alpha. IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.alpha., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, and MIF. In some embodiments, the target antigen is co-expressed in a cell with an immunological fusion partner, also referred to herein as an "immunogenic component," comprising a cytokine selected from the group of IFN-.gamma., TNF.alpha. IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, and MIF. In some embodiments, the immunogenic component is selected from the group consisting of IL-7, a nucleic acid encoding IL-7, a protein with substantial identity to IL-7, and a nucleic acid encoding a protein with substantial identity to IL-7. In some embodiments, the adjuvant is selected from the group consisting of IL-15, a nucleic acid encoding IL-15, a protein with substantial identity to IL-15, and a nucleic acid encoding a protein with substantial identity to IL-15.
[0304] In some embodiments, the target antigen is fused or linked to an immunological fusion partner, comprising CpG ODN (a non-limiting example sequence is shown in SEQ ID NO: 58), cholera toxin (a non-limiting example sequence is shown in SEQ ID NO: 59), a truncated A subunit coding region derived from a bacterial ADP-ribosylating exotoxin (a non-limiting example sequence is shown in (a non-limiting example sequence is shown in SEQ ID NO: 60), a truncated B subunit coding region derived from a bacterial ADP-ribosylating exotoxin (a non-limiting example sequence is shown in SEQ ID NO: 61), Hp91 (a non-limiting example sequence is shown in SEQ ID NO: 62), CCL20 (a non-limiting example sequence is shown in SEQ ID NO: 63), CCL3 (a non-limiting example sequence is shown in SEQ ID NO: 64), GM-CSF (a non-limiting example sequence is shown in SEQ ID NO: 65), G-CSF (a non-limiting example sequence is shown in SEQ ID NO: 66), LPS peptide mimic (non-limiting example sequences are shown in SEQ ID NO: 67 - SEQ ID NO: 78), shiga toxin (a non-limiting example sequence is shown in SEQ ID NO: 79), diphtheria toxin (a non-limiting example sequence is shown in SEQ ID NO: 80), or CRM.sub.197 (a non-limiting example sequence is shown in SEQ ID NO: 83).
[0305] In some embodiments, the target antigen (e.g., CEA) is fused or linked to an immunological fusion partner comprising an IL-15 superagonist complex, in which both the target antigen and immunological fusion partner (e.g., an IL-15 superagonist complex) are encoded together in one adenovirus vector (e.g., an Ad5 [E1-, E2b-]). In some embodiments, an adenovirus vector encoding for the target antigen is codelivered with a separate adenovirus vector encoding for the immunological fusion partner (e.g., the domains of the IL-15 superagonist complex). In some embodiments, the IL-15 superagonist can be a novel IL-15 superagonist mutant (IL-15N72D). In certain embodiments, addition of either mouse or human IL-15R.alpha. and Fc fusion protein (the Fc region of immunoglobulin) to equal molar concentrations of IL-15N72D can provide a further increase in IL-15 biologic activity, such that IL-15N72D:IL-15R.alpha./Fc super-agonist complex exhibits a median effective concentration (EC.sub.50) for supporting IL-15-dependent cell growth that can be greater than10-fold lower than that of free IL-15 cytokine.
[0306] In some embodiments, the IL-15 super agonist is a biologically active protein complex of IL-15N72D, soluble IL-15R.alpha., and Fc fusion protein, also known as ALT-803. It is known that a soluble IL-15R.alpha. fragment, containing the so-called "sushi" domain at the N terminus (Su), can bear most of the structural elements responsible for high affinity cytokine binding. A soluble fusion protein can be generated by linking the human IL-15R.alpha.Su domain (amino acids 1-65 of the mature human IL-15R.alpha. protein) with the human IgG1 CH2--CH3 region containing the Fc domain (232 amino acids). This IL-15R.alpha.Su/IgG1 Fc fusion protein can have the advantages of dimer formation through disulfide bonding via IgG1 domains and ease of purification using standard Protein A affinity chromatography methods.
[0307] In some embodiments, ALT-803 can have a soluble complex consisting of 2 protein subunits of a human IL-15 variant associated with high affinity to a dimeric IL-15R.alpha. sushi domain/human IgG1 Fc fusion protein. The IL-15 variant is a 114 amino acid polypeptide comprising the mature human IL-15 cytokine sequence with an Asn to Asp substitution at position 72 of helix C N72D). The human IL-15R sushi domain/human IgG1 Fc fusion protein comprises the sushi domain of the IL-15R subunit (amino acids 1-65 of the mature human IL-15R.alpha. protein) linked with the human IgG1 CH2--CH3 region containing the Fc domain (232 amino acids). Aside from the N72D substitution, all of the protein sequences are human. Based on the amino acid sequence of the subunits, the calculated molecular weight of the complex comprising two IL-15N72D polypeptides (an example IL-15N72D amino acid sequence is shown in SEQ ID NO: 81 and an example IL-15N72D nucleotide sequence is shown in SEQ ID NO: 107) and a disulfide linked homodimeric IL- 15R.alpha.Su/IgG1 Fc protein (an example amino acid sequence of the IL-15R.alpha.Su/Fc domain is shown in SEQ ID NO: 82 and an example nucleotide sequence of the IL-15 R.alpha.Su/Fc domain is shown in SEQ ID NO: 108) is 92.4 kDa. In some embodiments the two chains of IL-15 R.alpha.Su/Fc dimerize.
[0308] In some embodiments, a recombinant vector described herein (e.g., an Ad5 [E1-, E2b-]) can encode for each domain of an IL-15 superagonist complex. For example, an IL-15N72D polypeptide chain can be encoded for in an adenovirus vector (e.g., an Ad5 [E1-, E2b-]), wherein the adenovirus vector encodes for a sequence comprising at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 107. Separately an IL-15R.alpha.Su/IgG1 Fc protein can be encoded for in a different adenovirus vector (e.g., an Ad5 [E1-, E2b-]), wherein the adenovirus vector encodes for a sequence comprising at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 108. These adenovirus vectors can be delivered together alongside a separate adenovirus vector (e.g., an Ad5 [E1-, E2b-]) encoding for CEA. Upon expression in a cell, two IL-15N72D polypeptides and two IL- 15R.alpha.Su/IgG1 Fc proteins can come together to form the IL-15 superagonist complex (ALT-803).
[0309] In other embodiments, a single recombinant vector described herein (e.g., an Ad5 [E1-, E2b-]) can encode for an IL-15N72D and IL- 15R.alpha.Su/IgG1 Fc, separated by a Gly-Ser-Gly linker and a 2A sequence from Thosea asigna virus (EGRGSLLTCGDVEENPGP; SEQ ID NO: 111). This adenovirus vector can be delivered together alongside a separate adenovirus vector (e.g., an Ad5 [E1-, E2b-]) encoding for CEA. Upon expression in a cell, two IL-15N72D polypeptides and two IL-15R.alpha.Su/IgG1 Fc protein can come together to form the IL-15 superagonist complex (ALT-803).
[0310] Each IL-15N720 polypeptide has a calculated molecular weight of approximately 12.8 kDa and the IL-15R.alpha.Su/IgG 1 Fc fusion protein has a calculated molecular weight of approximately 33.4 kDa. Both the IL-15N72D and IL-15R.alpha.Su/IgG 1 Fc proteins can be glycosylated resulting in an apparent molecular weight of ALT-803 of approximately 114 kDa by size exclusion chromatography. The isoelectric point (pI) determined for ALT-803 can range from approximately 5.6 to 6.5. Thus, the fusion protein can be negatively charged at pH 7.
[0311] Any of the immunogenicity enhancing agents described herein can be fused or linked to a target antigen by expressing the immunogenicity enhancing agents and the target antigen in the same recombinant vector, using any recombinant vector described herein.
[0312] Nucleic acid sequences that encode for such immunogenicity enhancing agents can be any one of SEQ ID NO: 32-SEQ ID NO: 83 and SEQ ID NO: 103-SEQ ID NO: 110 and are summarized in TABLE 2.
TABLE-US-00002 TABLE 2 Sequences of Immunogenicity Enhancing Agents SEQ ID NO Sequence SEQ ID NO: 32 TAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHIGPTAFL GLGVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVDGAPINSAT AMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGPPA SEQ ID NO: 33 MHHHHHHTAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTV HIGPTAFLGLGVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVD GAPINSATAMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGP PAEFDDDDKDPPDPHQPDMTKGYCPGGRWGFGDLAVCDGEKYPD GSFWHQWMQTWFTGPQFYFDCVSGGEPLPGPPPPGGCGGAIPSEQP NAP SEQ ID NO: 34 MHHHHHHTAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTV HIGPTAFLGLGVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVD GAPINSATAMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGP PAEFPLVPRGSPMGSDVRDLNALLPAVPSLGGGGGCALPVSGAAQ WAPVLDFAPPGASAYGSLGGPAPPPAPPPPPPPPPHSFIKQEPSWGGA EPHEEQCLSAFTVHFSGQFTGTAGACRYGPFGPPPPSQASSGQARMF PNAPYLPSCLESQPAIRNQGYSTVTFDGTPSYGHTPSHHAAQFPNHS FKHEDPMGQQGSLGEQQYSVPPPVYGCHTPTDSCTGSQALLLRTPY SSDNLYQMTSQLECMTWNQMNLGATLKGHSTGYESDNHTTPILCG AQYRIHTHGVFRGIQDVRRVPGVAPTLVRSASETSEKRPFMCAYSG CNKRYFKLSHLQMHSRKHTGEKPYQCDFKDCERRFFRSDQLKRHQ RRHTGVKPFQCKTCQRKFSRSDHLKTHTRTHTGEKPFSCRWPSCQK KFARSDELVRHHNMHQRNMTKLQLAL SEQ ID NO: 35 MHHHHHHTAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTV HIGPTAFLGLGVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVD GAPINSATAMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGP PAEFIEGRGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAI DELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF SEQ ID NO: 36 MHHHHHHTAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTV HIGPTAFLGLGVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVD GAPINSATAMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGP PAEFMVDFGALPPEINSARMYAGPGSASLVAAAQMWDSVASDLFS AASAFQSVVWGLTVGSWIGSSAGLMVAAASPYVAWMSVTAGQAE LTAAQVRVAAAAYETAYGLTVPPPVIAENRAELMILIATNLLGQNT PAIAVNEAEYGEMWAQDAAAMFGYAAATATATATLLPFEEAPEMT SAGGLLEQAAAVEEASDTAAANQLMNNVPQALQQLAQPTQGTTPS SKLGGLWKTVSPHRSPISNMVSMANNHMSMTNSGVSMTNTLSSML KGFAPAAAAQAVQTAAQNGVRAMSSLGSSLGSSGLGGGVAANLG RAASVGSLSVPQAWAAANQAVTPAARALPLTSLTSAAERGPGQML GGLPVGQMGARAGGGLSGVLRVPPRPYVMPHSPAAGDIAPPALSQ DRFADFPALPLDPSAMVAQVGPQVVNINTKLGYNNAVGAGTGIVID PNGVVLTNNHVIAGATDINAFSVGSGQTYGVDVVGYDRTQDVAVL QLRGAGGLPSAAIGGGVAVGEPVVAMGNSGGQGGTPRAVPGRVV ALGQTVQASDSLTGAEETLNGLIQFDAAIQPGDSGGPVVNGLGQVV GMNTAAS SEQ ID NO: 37 TAASDNFQLSQGGQGFAIPIGQAMAIAGQI SEQ ID NO: 38 TAASDNFQLSQGGQGFAIPIGQAMAIAGQIKLPTVHIGPTAFLGLGV VDNNGNGARVQRVVGSAPAASLGISTGDVITAVDGAPINSATAMA DALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGPPA SEQ ID NO: 39 TAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHIGPTAFL GLGVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVDGAPINSAT AMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAE SEQ ID NO: 40 MSNSRRRSLRWSWLLSVLAAVGLGLATAPAQAAPPALSQDRFADF PALPLDPSAMVAQVGPQVVNINTKLGYNNAVGAGTGIVIDPNGVVL TNNHVIAGATDINAFSVGSGQTYGVDVVGYDRTQDVAVLQLRGAG GLPSAAIGGGVAVGEPVVAMGNSGGQGGTPRAVPGRVVALGQTV QASDSLTGAEETLNGLIQFDAAIQPGDSGGPVVNGLGQVVGMNTA ASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHIGPTAFLGL GVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVDGAPINSATA MADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGPPA SEQ ID NO: 41 MKLKTLALSLLAAGVLAGCSSHSSNMANTQMKSDKIIIAHRGASGY LPEHTLESKALAFAQQADYLEQDLAMTKDGRLVVIHDHFLDGLTD VAKKFPHRHRKDGRYYVIDFTLKEIQSLEMTENFETKDGKQAQVYP NRFPLWKSHFRIHTFEDEIEFIQGLEKSTGKKVGIYPEIKAPWFHHQN GKDIAAETLKVLKKYGYDKKTDMVYLQTFDFNELKRIKTELLPQM GMDLKLVQLIAYTDWKETQEKDPKGYWVNYNYDWMFKPGAMAE VVKYADGVGPGWYMLVNKEESKPDNIVYTPLVKELAQYNVEVHP YTVRKDALPAFFTDVNQMYDVLLNKSGATGVFTDFPDTGVEFLKGI K SEQ ID NO: 42 MEINVSKLRTDLPQVGVQPYRQVHAHSTGNPHSTVQNEADYHWRK DPELGFFSHIVGNGCIMQVGPVDNGAWDVGGGWNAETYAAVELIE SHSTKEEFMTDYRLYIELLRNLADEAGLPKTLDTGSLAGIKTHEYCT NNQPNNHSDHVDPYPYLAKWGISREQFKHDIENGLTIETGWQKNDT GYWYVHSDGSYPKDKFEKINGTWYYFDSSGYMLADRWRKHTDGN WYWFDNSGEMATGWKKIADKWYYFNEEGAMKTGWVKYKDTWY YLDAKEGAMVSNAFIQSADGTGWYYLKPDGTLADRPEFRMSQMA SEQ ID NO: 43 MKYTSYILAFQLCIVLGSLGCYCQDPYVKEAENLKKYFNAGHSDVA DNGTLFLGILKNWKEESDRKIMQSQIVSFYFKLFKNFKDDQSIQKSV ETIKEDMNVKFFNSNKKKRDDFEKLTNYSVTDLNVQRKAIHELIQV MAELSPAAKTGKRKRSQMLFRGRRASQ SEQ ID NO: 44 MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLF CLLHFGVIGPQREEFPRDLSLISPLAQAVRSSSRTPSDKPVAHVVANP QAEGQLQWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVLFK GQGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKP WYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL SEQ ID NO: 45 MYRMQLLSCIALSLALVTNSAPTSSSTKKTQLQLEHLLLDLQMILNG INNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLA QSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRW ITFCQSIISTLT SEQ ID NO: 46 MTSKLAVALLAAFLISAALCEGAVLPRSAKELRCQCIKTYSKPFHPK FIKELRVIESGPHCANTEIIVKLSDGRELCLDPKENWVQRVVEKFLK RAENS SEQ ID NO: 47 MEPLVTWVVPLLFLFLLSRQGAACRTSECCFQDPPYPDADSGSASG PRDLRCYRISSDRYECSWQYEGPTAGVSHFLRCCLSSGRCCYFAAG SATRLQFSDQAGVSVLYTVTLWVESWARNQTEKSPEVTLQLYNSV KYEPPLGDIKVSKLAGQLRMEWETPDNQVGAEVQFRHRTPSSPWK LGDCGPQDDDTESCLCPLEMNVAQEFQLRRRQLGSQGSSWSKWSS PVCVPPENPPQPQVRFSVEQLGQDGRRRLTLKEQPTQLELPEGCQGL APGTEVTYRLQLHMLSCPCKAKATRTLHLGKMPYLSGAAYNVAVI SSNQFGPGLNQTWHIPADTHTEPVALNISVGTNGTTMYWPARAQS MTYCIEWQPVGQDGGLATCSLTAPQDPDPAGMATYSWSRESGAM GQEKCYYITIFASAHPEKLTLWSTVLSTYHFGGNASAAGTPHHVSV KNHSLDSVSVDWAPSLLSTCPGVLKEYVVRCRDEDSKQVSEHPVQP TETQVTLSGLRAGVAYTVQVRADTAWLRGVWSQPQRFSIEVQVSD WLIFFASLGSFLSILLVGVLGYLGLNRAARHLCPPLPTPCASSAIEFPG GKETWQWINPVDFQEEASLQEALVVEMSWDKGERTEPLEKTELPE GAPELALDTELSLEDGDRCKAKM SEQ ID NO: 48 MAAEPVEDNCINFVAMKFIDNTLYFIAEDDENLESDYFGKLESKLSV IRNLNDQVLFIDQGNRPLFEDMTDSDCRDNAPRTIFIISMYKDSQPRG MAVTISVKCEKISTLSCENKIISFKEMNPPDNIKDTKSDIIFFQRSVPG HDNKMQFESSSYEGYFLACEKERDLFKLILKKEDELGDRSIMFTVQ NED SEQ ID NO: 49 MFHVSFRYIFGLPPLILVLLPVASSDCDIEGKDGKQYESVLMVSIDQL LDSMKEIGSNCLNNEFNFFKRHICDANKEGMFLFRAARKLRQFLKM NSTGDFDLHLLKVSEGTTILLNCTGQVKGRKPAALGEAQPTKSLEE NKSLKEQKKLNDLCFLKRLLQEIKTCWNKILMGTKEH SEQ ID NO: 50 MSRLPVLLLLQLLVRPGLQAPMTQTTSLKTSWVNCSNMIDEIITHLK QPPLPLLDFNNLNGEDQDILMENNLRRPNLEAFNRAVKSLQNASAIE SILKNLLPCLPLATAAPTRHPIHIKDGDWNEFRRKLTFYLKTLENAQ AQQTTLSLAIF SEQ ID NO: 51 MGLTSQLLPPLFFLLACAGNFVHGHKCDITLQEIIKTLNSLTEQKTLC TELTVTDIFAASKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATA QQFHRHKQLIRFLKRLDRNLWGLAGLNSCPVKEANQSTLENFLERL KTIMREKYSKCSS SEQ ID NO: 52 MRMLLHLSLLALGAAYVYAIPTEIPTSALVKETLALLSTHRTLLIAN ETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTVERLFKNLSLIK KYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWIIES SEQ ID NO: 53 MNSFSTSAFGPVAFSLGLLLVLPAAFPAPVPPGEDSKDVAAPHRQPL TSSERIDKQIRYILDGISALRKETCNKSNMCESSKEALAENNLNLPK MAEKDGCFQSGFNEETCLVKIITGLLEFEVYLEYLQNRFESSEEQAR AVQMSTKVLIQFLQKKAKNLDAITTPDPTTNASLLTKLQAQNQWLQ DMTTHLILRSFKEFLQSSLRALRQM SEQ ID NO: 54 MVLTSALLLCSVAGQGCPTLAGILDINFLINKMQEDPASKCHCSAN VTSCLCLGIPSDNCTRPCFSERLSQMTNTTMQTRYPLIFSRVKKSVE VLKNNKCPYFSCEQPCNQTTAGNALTFLKSLLEIFQKEKMRGMRGK I SEQ ID NO: 55 MHSSALLCCLVLLTGVRASPGQGTQSENSCTHFPGNLPNMLRDLRD AFSRVKTFFQMKDQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLE EVMPQAENQDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKA VEQVKNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN SEQ ID NO: 56 MALLLTTVIALTCLGGFASPGPVPPSTALRELIEELVNITQNQKAPLC NGSMVWSINLTAGMYCAALESLINVSGCSAIEKTQRMLSGFCPHKV SAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLFREGQFNRNFESIIICR DRT SEQ ID NO: 57 MDFQVQIFSFLLISASVIMSRANWVNVISDLKKIEDLIQSMHIDATLY TESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSL SSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS SEQ ID NO: 58 MEGDGSDPEPPDAGEDSKSENGENAPIYCICRKPDINCFMIGCDNCN EWFHGDCIRITEKMAKAIREWYCRECREKDPKLEIRYRHKKSRERD GNERDSSEPRDEGGGRKRPVPDPNLQRRAGSGTGVGAMLARGSAS PHKSSPQPLVATPSQHHQQQQQQIKRSARMCGECEACRRTEDCGHC DFCRDMKKFGGPNKIRQKCRLRQCQLRARESYKYFPSSLSPVTPSES LPRPRRPLPTQQQPQPSQKLGRIREDEGAVASSTVKEPPEATATPEPL SDEDLPLDPDLYQDFCAGAFDDNGLPWMSDTEESPFLDPALRKRAV KVKHVKRREKKSEKKKEERYKRHRQKQKHKDKWKHPERADAKD PASLPQCLGPGCVRPAQPSSKYCSDDCGMKLAANRIYEILPQRIQQW QQSPCIAEEHGKKLLERIRREQQSARTRLQEMERRFHELEAIILRAKQ QAVREDEESNEGDSDDTDLQIFCVSCGHPINPRVALRHMERCYAKY ESQTSFGSMYPTRIEGATRLFCDVYNPQSKTYCKRLQVLCPEHSRDP KVPADEVCGCPLVRDVFELTGDFCRLPKRQCNRHYCWEKLRRAEV DLERVRVWYKLDELFEQERNVRTAMTNRAGLLALMLHQTIQHDPL TTDLRSSADR SEQ ID NO: 59 MIKLKFGVFFTVLLSSAYAHGTPQNITDLCAEYHNTQIYTLNDKIFS YTESLAGKREMAIITFKNGAIFQVEVPGSQHIDSQKKAIERMKDTLRI AYLTEAKVEKLCVWNNKTPHAIAAISMAN SEQ ID NO: 60 MVKIIFVFFIFLSSFSYANDDKLYRADSRPPDEIKQSGGLMPRGQNEY FDRGTQMNINLYDHARGTQTGFVRHDDGYVSTSISLRSAHLVGQTI LSGHSTYYIYVIATAPNMFNVNDVLGAYSPHPDEQEVSALGGIPYSQ IYGWYRVHFGVLDEQLHRNRGYRDRYYSNLDIAPAADGYGLAGFP PEHRAWREEPWIHHAPPGCGNAPRSSMSNTCDEKTQSLGVKFLDEY QSKVKRQIFSGYQSDIDTHNRIKDEL SEQ ID NO: 61 MIKLKFGVFFTVLLSSAYAHGTPQNITDLCAEYHNTQIHTLNDKILS YTESLAGNREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLR IAYLTEAKVEKLCVWNNKTPHAIAAISMAN SEQ ID NO: 62 DPNAPKRPPSAFFLFCSE SEQ ID NO: 63 MCCTKSLLLAALMSVLLLHLCGESEAASNFDCCLGYTDRILHPKFIV GFTRQLANEGCDINAIIFHTKKKLSVCANPKQTWVKYIVRLLSKKV KNM SEQ ID NO: 64 MQVSTAALAVLLCTMALCNQFSASLAADTPTACCFSYTSRQIPQNFI ADYFETSSQCSKPGVIFLTKRSRQVCADPSEEWVQKYVSDLELSA SEQ ID NO: 65 MWLQSLLLLGTVACSISAPARSPSPSTQPWEHVNAIQEARRLLNLSR DTAAEMNETVEVISEMFDLQEPTCLQTRLELYKQGLRGSLTKLKGP LTMMASHYKQHCPPTPETSCATQIITFESFKENLKDFLLVIPFDCWEP VQE SEQ ID NO: 66 MAGPATQSPMKLMALQLLLWHSALWTVQEATPLGPASSLPQSFLL KCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAPL SSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQL DVADFATTIWQQMEELGMAPALQPTQGAMPAFASAFQRRAGGVL VASHLQSFLEVSYRVLRHLAQP SEQ ID NO: 67 QEINSSY SEQ ID NO: 68 SHPRLSA SEQ ID NO: 69 SMPNPMV SEQ ID NO: 70 GLQQVLL SEQ ID NO: 71 HELSVLL SEQ ID NO: 72 YAPQRLP SEQ ID NO: 73 TPRTLPT SEQ ID NO: 74 APVHSSI SEQ ID NO: 75 APPHALS SEQ ID NO: 76 TFSNRFI SEQ ID NO: 77 VVPTPPY
SEQ ID NO: 78 ELAPDSP SEQ ID NO: 79 TPDCVTGKVEYTKYNDDDTFTVKVGDKELFTNRWNLQSLLLSAQIT GMTVTIKQNACHNGGGFSEVIFR SEQ ID NO: 80 MSRKLFASILIGALLGIGAPPSAHAGADDVVDSSKSFVMENFSSYHG TKPGYVDSIQKGIQKPKSGTQGNYDDDWKGFYSTDNKYDAAGYSV DNENPLSGKAGGVVKVTYPGLTKVLALKVDNAETIKKELGLSLTEP LMEQVGTEEFIKRFGDGASRVVLSLPFAEGSSSVEYINNWEQAKALS VELEINFETRGKRGQDAMYEYMAQACAGNRVRRSVGSSLSCINLD WDVIRDKTKTKIESLKEHGPIKNKMSESPNKTVSEEKAKQYLEEFH QTALEHPELSELKTVTGTNPVFAGANYAAWAVNVAQVIDSETADN LEKTTAALSILPGIGSVMGIADGAVHHNTEEIVAQSIALSSLMVAQAI PLVGELVDIGFAAYNFVESIINLFQVVHNSYNRPAYSPGHKTQPFLH DGYAVSWNTVEDSIIRTGFQGESGHDIKITAENTPLPIAGVLLPTIPG KLDVNKSKTHISVNGRKIRMRCRAIDGDVTFCRPKSPVYVGNGVHA NLHVAFHRSSSEKIHSNEISSDSIGVLGYQKTVDHTKVNSKLSLFFEI KS SEQ ID NO: 81 NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLEL QVISLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNI KEFLQSFVHIVQMFINTS SEQ ID NO: 82 ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVL NKATNVAHWTTPSLKCIREPKSCDKTHTCPPCPAPELLGGPSVFLFP PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEW ESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGK SEQ ID NO: 83 GADDVVDSSKSFVMENFSSYHGTKPGYVDSIQKGIQKPKSGTQGNY DDDWKEFYSTDNKYDAAGYSVDNENPLSGKAGGVVKVTYPGLTK VLALKVDNAETIKKELGLSLTEPLMEQVGTEEFIKRFGDGASRVVLS LPFAEGSSSVEYINNWEQAKALSVELEINFETRGKRGQDAMYEYMA QACAGNRVRRSVGSSLSCINLDWDVIRDKTKTKIESLKEHGPIKNK MSESPNKTVSEEKAKQYLEEFHQTALEHPELSELKTVTGTNPVFAG ANYAAWAVNVAQVIDSETADNLEKTTAALSILPGIGSVMGIADGAV HHNTEEIVAQSIALSSLMVAQAIPLVGELVDIGFAAYNFVESIINLFQ VVHNSYNRPAYSPGHKTQPFLHDGYAVSWNTVEDSIIRTGFQGESG HDIKITAENTPLPIAGVLLPTIPGKLDVNKSKTHISVNGRKIRMRCRAI DGDVTFCRPKSPVYVGNGVHANLHVAFHRSSSEKIHSNEISSDSIGV LGYQKTVDHTKVNSKLSLFFEIKS SEQ ID NO: 103 MESHSRAGKSRKSAKFRSISRSLMLCNAKTSDDGSSPDEKYPDPFEI SLAQGKEGIFHSSVQLADTSEAGPSSVPDLALASEAAQLQAAGNDR GKTCRRIFFMKESSTASSREKPGKLEAQSSNFLFPKACHQRARSNST SVNPYCTREIDFPMTKKSAAPTDRQPYSLCSNRKSLSQQLDCPAGK AAGTSRPTRSLSTAQLVQPSGGLQASVISNIVLMKGQAKGLGFSIVG GKDSIYGPIGIYVKTIFAGGAAAADGRLQEGDEILELNGESMAGLTH QDALQKFKQAKKGLLTLTVRTRLTAPPSLCSHLSPPLCRSLSSSTCIT KDSSSFALESPSAPISTAKPNYRIMVEVSLQKEAGVGLGIGLCSVPYF QCISGIFVHTLSPGSVAHLDGRLRCGDEIVEISDSPVHCLTLNEVYTIL SRCDPGPVPIIVSRHPDPQVSEQQLKEAVAQAVENTKFGKERHQWS LEGVKRLESSWHGRPTLEKEREKNSAPPHRRAQKVMIRSSSDSSYM SGSPGGSPGSGSAEKPSSDVDISTHSPSLPLAREPVVLSIASSRLPQES PPLPESRDSHPPLRLKKSFEILVRKPMSSKPKPPPRKYFKSDSDPQKS LEERENSSCSSGHTPPTCGQEARELLPLLLPQEDTAGRSPSASAGCPG PGIGPQTKSSTEGEPGWRRASPVTQTSPIKHPLLKRQARMDYSFDTT AEDPWVRISDCIKNLFSPIMSENHGHMPLQPNASLNEEEGTQGHPDG TPPKLDTANGTPKVYKSADSSTVKKGPPVAPKPAWFRQSLKGLRNR ASDPRGLPDPALSTQPAPASREHLGSHIRASSSSSSIRQRISSFETFGSS QLPDKGAQRLSLQPSSGEAAKPLGKHEEGRFSGLLGRGAAPTLVPQ QPEQVLSSGSPAASEARDPGVSESPPPGRQPNQKTLPPGPDPLLRLLS TQAEESQGPVLKMPSQRARSFPLTRSQSCETKLLDEKTSKLYSISSQ VSSAVMKSLLCLPSSISCAQTPCIPKEGASPTSSSNEDSAANGSAETS ALDTGFSLNLSELREYTEGLTEAKEDDDGDHSSLQSGQSVISLLSSEE LKKLIEEVKVLDEATLKQLDGIHVTILHKEEGAGLGFSLAGGADLEN KVITVHRVFPNGLASQEGTIQKGNEVLSINGKSLKGTTHHDALAILR QAREPRQAVIVTRKLTPEAMPDLNSSTDSAASASAASDVSVESTEAT VCTVTLEKMSAGLGFSLEGGKGSLHGDKPLTINRIFKGAASEQSETV QPGDEILQLGGTAMQGLTRFEAWNIIKALPDGPVTIVIRRKSLQSKE TTAAGDS SEQ ID NO: 104 MTPGKTSLVSLLLLLSLEAIVKAGITIPRNPGCPNSEDKNFPRTVMVN LNIHNRNTNTNPKRSSDYYNRSTSPWNLHRNEDPERYPSVIWEAKC RHLGCINADGNVDYHMNSVPIQQEILVLRREPPHCPNSFRLEKILVS VGCTCVTPIVHHVA SEQ ID NO: 105 RAVPGGSSPAWTQCQQLSQKLCTLAWSAHPLVGHMDLREEGDEET TNDVPHIQCGDGCDPQGLRDNSQFCLQRIHQGLIFYEKLLGSDIFTG EPSLLPDSPVGQLHASLLGLSQLLQPEGHHWETQQIPSLSPSQPWQR LLLRFKILRSLQAFVAVAARVFAHGAATLSPIWELKKDVYVVELDW YPDAPGEMVVLTCDTPEEDGITWTLDQSSEVLGSGKTLTIQVKEFG DAGQYTCHKGGEVLSHSLLLLHKKEDGIWSTDILKDQKEPKNKTFL RCEAKNYSGRFTCWWLTTISTDLTFSVKSSRGSSDPQGVTCGAATL SAERVRGDNKEYEYSVECQEDSACPAAEESLPIEVMVDAVHKLKYE NYTSSFFIRDIIKPDPPKNLQLKPLKNSRQVEVSWEYPDTWSTPHSYF SLTFCVQVQGKSKREKKDRVFTDKTSATVICRKNASISVRAQDRYY SSSWSEWASVPCS SEQ ID NO: 106 MCFPKVLSDDMKKLKARMVMLLPTSAQGLGAWVSACDTEDTVGH LGPWRDKDPALWCQLCLSSQHQAIERFYDKMQNAESGRGQVMSSL AELEDDFKEGYLETVAAYYEEQHPELTPLLEKERDGLRCRGNRSPV PDVEDPATEEPGESFCDKVMRWFQAMLQRLQTWWHGVLAWVKE KVVALVHAVQALWKQFQSFCCSLSELFMSSFQSYGAPRGDKEELTP QKCSEPQSSK SEQ ID NO: 107 AACTGGGTGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCT TATTCAATCTATGCATATTGATGCTACTTTATATACGGAAAGTGA TGTTCACCCCAGTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTT GGAGTTACAAGTTATTTCACTTGAGTCCGGAGATGCAAGTATTCA TGATACAGTAGAAAATCTGATCATCCTAGCAAACGACAGTTTGT CTTCTAATGGGAATGTAACAGAATCTGGATGCAAAGAATGTGAG GAACTGGAGGAAAAAAATATTAAAGAATTTTTGCAGAGTTTTGT ACATATTGTCCAAATGTTCATCAACACTTCTTAA SEQ ID NO: 108 ATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTG GGTCAAGAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTA ACTCTGGTTTCAAGCGTAAAGCCGGCACGTCCAGCCTGACGGAG TGCGTGTTGAACAAGGCCACGAATGTCGCCCACTGGACAACCCC CAGTCTCAAATGTATTAGAGAGCCCAAATCTTGTGACAAAACTC ACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCA CGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGG ACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGG GCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG ATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAA GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGG GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGA GCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC TCCGGGTAAATAA SEQ ID NO: 109 ATGGAAACCGACACCCTGCTGCTGTGGGTGCTGCTGCTGTGGGT GCCAGGCAGCACAGGCAACTGGGTCAACGTGATCAGCGACCTGA AGAAGATCGAGGACCTGATCCAGAGCATGCACATCGACGCCACC CTGTACACCGAGAGCGACGTGCACCCCAGCTGCAAAGTGACCGC CATGAAGTGCTTTCTGCTGGAACTGCAAGTGATCAGCCTGGAAA GCGGCGACGCCAGCATCCACGACACCGTGGAAAACCTGATCATC CTGGCCAACGACAGCCTGAGCAGCAACGGCAACGTGACCGAGTC CGGCTGCAAAGAGTGCGAGGAACTGGAAGAGAAGAATATCAAA GAGTTCCTGCAGAGCTTCGTGCACATCGTGCAGATGTTCATCAAC ACCAGCGGCTCTGGCGAGGGCAGAGGCAGCCTGCTGACATGCGG AGATGTGGAAGAGAACCCTGGCCCCATGGACCGGCTGACCAGCT CTTTTCTGCTGCTGATCGTGCCCGCCTACGTGCTGAGCATCACCT GTCCCCCACCCATGAGCGTGGAACACGCCGACATCTGGGTCAAG AGCTACAGCCTGTACAGCCGGGAACGGTACATCTGCAACAGCGG CTTCAAGCGGAAGGCCGGCACCAGCAGCCTGACCGAGTGTGTGC TGAACAAGGCCACCAACGTGGCCCACTGGACCACCCCTAGCCTG AAGTGCATCAGAGAGCCCAAGAGCTGCGACAAGACCCACACAT GCCCCCCTTGTCCTGCCCCTGAACTGCTGGGAGGCCCTAGCGTGT TCCTGTTCCCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGG ACCCCCGAAGTGACCTGCGTGGTGGTGGATGTGTCCCACGAGGA CCCTGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAAGTGC ACAACGCCAAGACCAAGCCCAGAGAGGAACAGTACAACAGCAC CTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGC TGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTG CCTGCCCCCATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCC CCGCGAACCCCAGGTGTACACACTGCCCCCTAGCAGGGACGAGC TGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAGGGCTTCT ACCCCAGCGACATTGCCGTGGAATGGGAGAGCAACGGCCAGCCC GAGAACAACTACAAGACCACCCCCCCTGTGCTGGACAGCGACGG CTCATTCTTCCTGTACTCCAAGCTGACAGTGGACAAGAGCCGGTG GCAGCAGGGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCC TGCACAACCACTACACCCAGAAGTCCCTGAGCCTGAGCCCCGGC AAATGA SEQ ID NO: 110 METDTLLLWVLLLWVPGSTGNWVNVISDLKKIEDLIQSMHIDATLY TESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANDSL SSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSGSGEGRGS LLTCGDVEENPGPMDRLTSSFLLLIVPAYVLSITCPPPMSVEHADIW VKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPSL KCIREPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY TLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK
[0313] In some embodiments, the nucleic acid sequences for the target antigen and the immunological fusion partner are not separated by any nucleic acids. In other embodiments, a nucleic acid sequence that encodes for a linker can be inserted between the nucleic acid sequence encoding for any target antigen described herein and the nucleic acid sequence encoding for any immunological fusion partner described herein. Thus, in certain embodiments, the protein produced following immunization with the viral vector containing a target antigen, a linker, and an immunological fusion partner can be a fusion protein comprising the target antigen of interest followed by the linker and ending with the immunological fusion partner, thus linking the target antigen to an immunological fusion partner that increases the immunogenicity of the target antigen of interest via a linker. In some embodiments, the sequence of linker nucleic acids can be from about 1 to about 150 nucleic acids long, from about 5 to about 100 nucleic acids along, or from about 10 to about 50 nucleic acids in length. In some embodiments, the nucleic acid sequences may encode one or more amino acid residues. In some embodiments, the amino acid sequence of the linker can be from about 1 to about 50, or about 5 to about 25 amino acid residues in length. In some embodiments, the sequence of the linker comprises less than 10 amino acids. In some embodiments, the linker can be a polyalanine linker, a polyglycine linker, or a linker with both alanines and glycines.
[0314] Nucleic acid sequences that encode for such linkers can be any one of SEQ ID NO: 84-SEQ ID NO: 98 and are summarized in TABLE 3.
TABLE-US-00003 TABLE 3 Sequences of Linkers SEQ ID NO Sequence SEQ ID NO: 84 MAVPMQLSCSR SEQ ID NO: 85 RSTG SEQ ID NO: 86 TR SEQ ID NO: 87 RSQ SEQ ID NO: 88 RSAGE SEQ ID NO: 89 RS SEQ ID NO: 90 GG SEQ ID NO: 91 GSGGSGGSG SEQ ID NO: 92 GGSGGSGGSGG SEQ ID NO: 93 GGSGGSGGSGGSGG SEQ ID NO: 94 GGSGGSGGSGGSGGSGG SEQ ID NO: 95 GGSGGSGGSGGSGGSGGSGG SEQ ID NO: 96 GGSGGSGGSGGSGGSGGSGGSGG SEQ ID NO: 97 GGSGGSGGSGGSGGSG SEQ ID NO: 98 GSGGSGGSGGSGGSGG
Formulations of Vaccines or ALT-803
[0315] Some embodiments provide pharmaceutical compositions comprising a vaccination and ALT-803 regimen that can be administered either alone or together with a pharmaceutically acceptable carrier or excipient, by any routes, and such administration can be carried out in both single and multiple dosages. More particularly, the pharmaceutical composition can be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hand candies, powders, sprays, aqueous suspensions, injectable solutions, elixirs, syrups, in drug delivery devices for implantation and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc. Moreover, such oral pharmaceutical formulations can be suitably sweetened and/or flavored by means of various agents of the type commonly employed for such purposes. The compositions described throughout can be formulated into a pharmaceutical medicament and be used to treat a human or mammal, in need thereof, diagnosed with a disease, e.g., cancer.
[0316] For administration, viral vector or ALT-803 stock can be combined with an appropriate buffer, physiologically acceptable carrier, excipient or the like. In certain embodiments, an appropriate number of virus vector particles (VP) or ALT-803 proteins are administered in an appropriate buffer, such as, sterile PBS or saline. In certain embodiment, vector compositions and ALT-803 comositions disclosed herein are provided in specific formulations for subcutaneously, parenterally, intravenously, intramuscularly, or even intraperitoneally administration. In certain embodiments, formulations in a solution of the active compounds as free base or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, squalene-based emulsion, Squalene-based oil-in-water emulsions, water-in-oil emulsions, oil-in-water emulsions, nonaqueous emulsions, water-in-paraffin oil emulsion, and mixtures thereof and in oils. In other embodiments, viral vectors may are provided in specific formulations for pill form administration by swallowing or by suppository.
[0317] Illustrative pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (see, e.g., U.S. Pat. No. 5,466,468). Fluid forms to the extent that easy syringability exists may be preferred. Forms that are stable under the conditions of manufacture and storage are provided in some embodiments. In various embodiments, forms are preserved against the contaminating action of microorganisms, such as bacteria, molds and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. The prevention of the action of microorganisms can be facilitated by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and thimerosal. It may be suitable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
[0318] In one embodiment, for parenteral administration in an aqueous solution, the solution can be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage may be dissolved in 1 mL of isotonic NaCl solution and either added to 1000 mL of hypodermoclysis fluid or injected at the proposed site of infusion, (see, e.g., "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage may occur depending on the condition of the subject being treated.
[0319] Carriers of formulation can comprise any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, suspending agents, solubilizing agents, stabilizing agents, pH-adjusting agent (such as hydrochloric id, sodium hydroxide or a suitable buffer, 1,3-butanediol, Ringer's solution, and isotonic sodium chloride solution and dextrose solution), tonicity adjusting agents, preservatives (e.g., methyl, ethyl or n-propyl p-hydroxybenzoate) and the like. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
[0320] Pharmaceutical formulations can be provided as a unit dose, (e.g., in single-dose ampoules, syringes or bags), or in vials containing several doses and in which a suitable preservative may be added (see below). Therapeutic moieties can be formulated in microspheres, microcapsules, nanoparticles, or liposomes.
Formulation of Viral Vectors with Immunostimulants
[0321] In certain embodiments, the viral vectors may be administered in conjunction with one or more immunostimulants, such as an adjuvant. An immunostimulant refers to essentially any substance that enhances or potentiates an immune response (antibody and/or cell-mediated) to an antigen. One type of immunostimulant comprises an adjuvant. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories); Merck Adjuvant 65 (Merck and Company, Inc.) AS-2 (SmithKline Beecham); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, IFN-.gamma., TNF.alpha., IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, MIF and others, like growth factors, may also be used as adjuvants.
[0322] In some embodiments, the adjuvant is selected from the group consisting of IL-15, a nucleic acid encoding IL-15, a protein with substantial identity to IL-15, and a nucleic acid encoding a protein with substantial identity to IL-15.
[0323] Within certain embodiments, the adjuvant composition can be one that induces an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-.gamma., TNF.alpha., IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient may support an immune response that includes Th1- and/or Th2-type responses. Within certain embodiments, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. Thus, various embodiments relate to therapies raising an immune response against a target antigen, for example CEA, using cytokines, e.g., IFN-.gamma., TNF.alpha., IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta., and/or MIF supplied concurrently with a replication defective viral vector treatment. In some embodiments, a cytokine or a nucleic acid encoding a cytokine, is administered together with a replication defective viral described herein. In some embodiments, cytokine administration is performed prior or subsequent to viral vector administration. In some embodiments, a replication defective viral vector capable of raising an immune response against a target antigen, for example CEA, further comprises a sequence encoding a cytokine.
[0324] Certain illustrative adjuvants for eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, such as 3-de-O-acylated monophosphoryl lipid A, together with an aluminum salt. MPL.RTM. adjuvants are commercially available (see, e.g., U.S. Pat. Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. (see, e.g., WO 96/02555, WO 99/33488 and U.S. Pat. Nos. 6,008,200 and 5,856,462). Immunostimulatory DNA sequences can also be used. Another adjuvant for use comprises a saponin, such as Quil A, or derivatives thereof, including QS21 and QS7 (Aquila Biopharmaceuticals Inc.), Escin; Digitonin; or Gypsophila or Chenopodium quinoa saponins. Other formulations may include more than one saponin in the adjuvant combinations, e.g., combinations of at least two of the following group comprising QS21, QS7, Quil A, .beta.-escin, or digitonin.
[0325] In some embodiments, the compositions may be delivered by intranasal sprays, inhalation, and/or other aerosol delivery vehicles. The delivery of drugs using intranasal microparticle resins and lysophosphatidyl-glycerol compounds can be employed (see, e.g., U.S. Pat. No. 5,725,871). Likewise, illustrative transmucosal drug delivery in the form of a polytetrafluoroetheylene support matrix can be employed (see, e.g., U.S. Pat. No. 5,780,045).
[0326] Liposomes, nanocapsules, microparticles, lipid particles, vesicles, and the like, can be used for the introduction of the compositions into suitable hot cells/organisms. Compositions as described herein may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like. Alternatively, compositions as described herein can be bound, either covalently or non-covalently, to the surface of such carrier vehicles. Liposomes can be used effectively to introduce genes, various drugs, radiotherapeutic agents, enzymes, viruses, transcription factors, allosteric effectors and the like, into a variety of cultured cell lines and animals. Furthermore, the use of liposomes does not appear to be associated with autoimmune responses or unacceptable toxicity after systemic delivery. In some embodiments, liposomes are formed from phospholipids dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (i.e. multilamellar vesicles (MLVs).
[0327] In some embodiments, pharmaceutically-acceptable nanocapsule formulations of the compositions are provided. Nanocapsules can generally entrap compounds in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 .mu.m) may be designed using polymers able to be degraded in vivo.
[0328] The compositions in some embodiments comprise or are administered with a chemotherapeutic agent (e.g., a chemical compound useful in the treatment of cancer). Chemotherapeutic cancer agents that can be used in combination with the disclosed T cell include, but are not limited to, mitotic inhibitors (vinca alkaloids), such as vincristine, vinblastine, vindesine and Navelbine.TM. (vinorelbine,5'-noranhydroblastine); topoisomerase I inhibitors, such as camptothecin compounds (e.g., Camptosar.TM. (irinotecan HCL), Hycamtin.TM. (topotecan HCL) and other compounds derived from camptothecin and its analogues); podophyllotoxin derivatives, such as etoposide, teniposide and mitopodozide; alkylating agents such as cisplatin, cyclophosphamide, nitrogen mustard, trimethylene thiophosphoramide, carmustine, busulfan, chlorambucil, belustine, uracil mustard, chlomaphazin, and dacarbazine; antimetabolites such as cytosine arabino side, fluorouracil, methotrexate, mercaptopurine, azathioprime, and procarbazine; antibiotics, such as doxorubicin, bleomycin, dactinomycin, daunorubicin, mithramycin, mitomycin, mytomycin C, and daunomycin; anti-tumor antibodies; dacarbazine; azacytidine; amsacrine; melphalan; ifosfamide; and mitoxantrone.
[0329] Compositions disclosed herein can be administered in combination with other anti-tumor agents, including cytotoxic/antineoplastic agents and anti-angiogenic agents. Cytotoxic/anti-neoplastic agents can be defined as agents who attack and kill cancer cells. Some cytotoxic/anti-neoplastic agents can be alkylating agents, which alkylate the genetic material in tumor cells, e.g., cis-platin, cyclophosphamide, nitrogen mustard, trimethylene thiophosphoramide, carmustine, busulfan, chlorambucil, belustine, uracil mustard, chlomaphazin, and dacabazine. Other cytotoxic/anti-neoplastic agents can be antimetabolites for tumor cells, e.g., cytosine arabinoside, fluorouracil, methotrexate, mercaptopuirine, azathioprime, and procarbazine. Other cytotoxic/anti-neoplastic agents can be antibiotics, e.g., doxorubicin, bleomycin, dactinomycin, daunorubicin, mithramycin, mitomycin, mytomycin C, and daunomycin. There are numerous liposomal formulations commercially available for these compounds. Still other cytotoxic/anti-neoplastic agents can be mitotic inhibitors (vinca alkaloids). These include vincristine, vinblastine and etoposide. Miscellaneous cytotoxic/anti-neoplastic agents include taxol and its derivatives, L-asparaginase, anti-tumor antibodies, dacarbazine, azacytidine, amsacrine, melphalan, VM-26, ifosfamide, mitoxantrone, and vindesine.
[0330] Anti-angiogenic agents can also be used. Suitable anti-angiogenic agents for use in the disclosed methods and compositions include anti-VEGF antibodies, including humanized and chimeric antibodies, anti-VEGF aptamers and antisense oligonucleotides. Other inhibitors of angiogenesis include angiostatin, endostatin, interferons, interleukin 1 (including .alpha. and .beta.) interleukin 12, retinoic acid, and tissue inhibitors of metalloproteinase-1 and -2 (TIMP-1 and -2). Small molecules, including topoisomerases such as razoxane, a topoisomerase II inhibitor with anti-angiogenic activity, can also be used.
Methods of Preparation of Ad5 Vaccines
[0331] In some embodiments, compositions and methods make use of human cytolytic T-cells (CTLs), such as those that recognize CEAs epitopes which bind to selected MHC molecules, e.g. HLA- A2, A3, and A24. Individuals expressing MHC molecules of certain serotypes, e.g. HLA-A2, A3, and A24 may be selected for therapy using the methods and compositions as described herein. For example, individuals expressing MHC molecules of certain serotypes, e.g. HLA- A2, A3, and A24, may be selected for a therapy including raising an immune response against CEAs, using the methods and compositions described herein.
[0332] In various embodiments, these T-cells can be generated by in vitro cultures using antigen-presenting cells pulsed with the epitope of interest to stimulate peripheral blood mononuclear cells. In addition, T-cell lines can also be generated after stimulation with CEA latex beads, CEA protein-pulsed plastic adherent peripheral blood mononuclear cells, or DCs sensitized with CEAsRNA. T-cells can also be generated from patients immunized with a vaccine vector encoding CEAs immunogen. HLA A2--presented peptides from CEAs can further be found in primary gastrointestinal tumors.
[0333] Some embodiments relate to an HLA A2 restricted epitope of CEAs, CAP-1, a nine amino acid sequence (YLSGANLNL; SEQ ID NO: 3), with ability to stimulate CTLs from cancer patients immunized with vaccine- CEAs. Cap-1(6D) (YLSGADLNL; SEQ ID NO: 4) is a peptide analog of CAP-1. Its sequence includes a heteroclitic (nonanchor position) mutation, resulting in an amino acid change from Asn to Asp, enhancing recognition by the T-cell receptor. The Asn to Asp mutation appears to not cause any change in the binding of the peptide to HLA A2. Compared with the non-mutated CAP-1 epitope, Cap-1(6D) can enhance the sensitization of CTLs by 100 to 1,000 times. CTL lines can be elicited from peripheral blood mononuclear cells of healthy volunteers by in vitro sensitization to the Cap-1(6D) peptide, but not significantly to the CAP-1 peptide. These cell lines can lyse human tumor cells expressing endogenous CEA. Thus, polypeptide sequences comprising CAP-1 or CAP-1(6D), nucleic acid sequences encoding such sequences, an adenovirus vectors; for example replication defective adenovirus vectors, comprising such nucleic acid sequences are provided in some embodiments.
Methods of Treatment with Ad5 Vaccines
[0334] The adenovirus vectors can be used in a number of vaccine settings for generating an immune response against one or more target antigens as described herein. Some embodiments provide methods of generating an immune response against any target antigen, such as those described elsewhere herein. The adenovirus vectors are of particular importance because of the unexpected finding that they can be used to generate immune responses in subjects who have preexisting immunity to Ad and can be used in vaccination regimens that include multiple rounds of immunization using the adenovirus vectors, regimens not possible using previous generation adenovirus vectors.
[0335] In some embodiments, a first or a second replication defective adenovirus infects dendritic cells in the human and wherein the infected dendritic cells present the antigen, thereby inducing the immune response.
[0336] Generally, generating an immune response comprises an induction of a humoral response and/or a cell-mediated response. It may desirable to increase an immune response against a target antigen of interest. Generating an immune response may involve a decrease in the activity and/or number of certain cells of the immune system or a decrease in the level and/or activity of certain cytokines or other effector molecules. Any suitable methods for detecting alterations in an immune response (e.g., cell numbers, cytokine expression, cell activity) can be used in some embodiments. Illustrative methods useful in this context include intracellular cytokine staining (ICS), ELISpot, proliferation assays, cytotoxic T-cell assays including chromium release or equivalent assays, and gene expression analysis using any number of polymerase chain reaction (PCR) or RT-PCR based assays.
[0337] Generating an immune response can comprise an increase in target antigen-specific CTL activity of between 1.5 and 5-fold in a subject administered the adenovirus vectors as described herein as compared to a control. In another embodiment, generating an immune response comprises an increase in target-specific CTL activity of about 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 15, 16, 17, 18, 19, 20, or more fold in a subject administered the adenovirus vectors as compared to a control.
[0338] Generating an immune response can comprise an increase in target antigen-specific HTL activity, such as proliferation of helper T-cells, of between 1.5 and 5-fold in a subject administered the adenovirus vectors that comprise nucleic acid encoding the target antigen as compared to an appropriate control. In another embodiment, generating an immune response comprises an increase in target-specific HTL activity of about 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 15, 16, 17, 18, 19, 20, or more fold as compared to a control. In this context, HTL activity may comprise an increase as described above, or decrease, in production of a particular cytokine, such as interferon-.gamma. (IFN-.gamma.), interleukin-1 (IL-1), IL-2, IL-3, IL-6, IL-7, IL-12, IL-15, tumor necrosis factor-.alpha. (TNF-.alpha.), granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte-colony stimulating factor (G-CSF), or other cytokines. In this regard, generating an immune response may comprise a shift from a Th2 type response to a Th1 type response or in certain embodiments a shift from a Th1 type response to a Th2 type response. In other embodiments, generating an immune response may comprise the stimulation of a predominantly Th1 or a Th2 type response.
[0339] Generating an immune response can comprise an increase in target-specific antibody production of between 1.5 and 5-fold in a subject administered the adenovirus vectors as compared to an appropriate control. In another embodiment, generating an immune response comprises an increase in target-specific antibody production of about 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 15, 16, 17, 18, 19, 20, or more fold in a subject administered the adenovirus vector as compared to a control.
[0340] In some embodiments, the recombinant viral vector affects overexpression of the antigen in transfected cells. In some embodiments, the recombinant viral induces a specific immune response against cells expressing the antigen in a human that is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25-fold over basal. In some embodiments, the human has an inverse Ad5 neutralizing antibody titer of greater than 50, 75, 100, 125, 150, 160, 175, 200, 225, 250, 275, or 300 prior to the administering step. In some embodiments, the human has an inverse Ad5 neutralizing antibody titer of greater than 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, or 4767. In some embodiments, the immune response is measured as antigen specific antibody response.
[0341] In some embodiments, the immune response is measured as antigen specific cell-mediated immunity (CMI). In some embodiments, the immune response is measured as antigen specific IFN-.gamma. secretion. In some embodiments, the immune response is measured as antigen specific IL-2 secretion. In some embodiments, the immune response against the antigen is measured by ELISpot assay. In some embodiments, the antigen specific CMI is greater than 25, 50, 75, 100, 150, 200, 250, or 300 IFN-.gamma. spot forming cells (SFC) per 10.sup.6 peripheral blood mononuclear cells (PBMC). In some embodiments, the immune response is measured by T-cell lysis of CAP-1 pulsed antigen-presenting cells, allogeneic antigen expressing cells from a tumor cell line or from an autologous tumor.
[0342] Thus, some embodiments provide methods for generating an immune response against a target antigen of interest comprising administering to the individual an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) a nucleic acid encoding the target antigen; and readministering the adenovirus vector at least once to the individual; thereby generating an immune response against the target antigen. In certain embodiments, the vector administered to the individual is not a gutted vector. In particular embodiments, the target antigen may be a wild-type protein, a fragment, a variant, or a variant fragment thereof. In some embodiments, the target antigen comprises CEA, a fragment, a variant, or a variant fragment thereof.
[0343] In a further embodiment, there is provided methods for generating an immune response against a target antigen in an individual, wherein the individual has preexisting immunity to Ad, by administering to the individual an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) a nucleic acid encoding the target antigen; and readministering the adenovirus vector at least once to the individual; thereby generating an immune response against the target antigen. In particular embodiments, the target antigen may be a wild-type protein, a fragment, a variant, or a variant fragment thereof. In some embodiments, the target antigen comprises CEA, a fragment, a variant, or a variant fragment thereof.
[0344] With regard to preexisting immunity to Ad, this can be determined using any suitable methods, such as antibody-based assays to test for the presence of Ad antibodies. Further, in certain embodiments, the methods include first determining that an individual has preexisting immunity to Ad then administering the E2b deleted adenovirus vectors as described herein.
[0345] One embodiment provides a method of generating an immune response against one or more target antigens in an individual comprising administering to the individual a first adenovirus vector comprising a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and a nucleic acid encoding at least one target antigen; administering to the individual a second adenovirus vector comprising a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and a nucleic acid encoding at least one target antigen, wherein the at least one target antigen of the second adenovirus vector is the same or different from the at least one target antigen of the first adenovirus vector. In particular embodiments, the target antigen may be a wild-type protein, a fragment, a variant, or a variant fragment thereof. In some embodiments, the target antigen comprises CEA, a fragment, a variant, or a variant fragment thereof.
[0346] Thus, multiple immunizations with the same E2b deleted adenovirus vector or multiple immunizations with different E2b deleted adenovirus vectors are contemplated in some embodiments. In each case, the adenovirus vectors may comprise nucleic acid sequences that encode one or more target antigens as described elsewhere herein. In certain embodiments, the methods comprise multiple immunizations with an E2b deleted adenovirus encoding one target antigen, and re-administration of the same adenovirus vector multiple times, thereby inducing an immune response against the target antigen. In some embodiments, the target antigen comprises CEA, a fragment, a variant, or a variant fragment thereof.
[0347] In a further embodiment, the methods comprise immunization with a first adenovirus vector that encodes one or more target antigens, and then administration with a second adenovirus vector that encodes one or more target antigens that may be the same or different from those antigens encoded by the first adenovirus vector. In this regard, one of the encoded target antigens may be different or all of the encoded antigens may be different, or some may be the same and some may be different. Further, in certain embodiments, the methods include administering the first adenovirus vector multiple times and administering the second adenovirus multiple times. In this regard, the methods comprise administering the first adenovirus vector 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more times and administering the second adenovirus vector 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more times. The order of administration may comprise administering the first adenovirus one or multiple times in a row followed by administering the second adenovirus vector one or multiple times in a row. In certain embodiments, the methods include alternating administration of the first and the second adenovirus vectors as one administration each, two administrations each, three administrations each, and so on. In certain embodiments, the first and the second adenovirus vectors are administered simultaneously. In other embodiments, the first and the second adenovirus vectors are administered sequentially. In some embodiments, the target antigen comprises CEA, a fragment, a variant, or a variant fragment thereof.
[0348] As would be readily understood by the skilled artisan, more than two adenovirus vectors may be used in the methods. Three, 4, 5, 6, 7, 8, 9, 10, or more different adenovirus vectors may be used in the methods as described herein. In certain embodiments, the methods comprise administering more than one E2b deleted adenovirus vector at a time. In this regard, immune responses against multiple target antigens of interest can be generated by administering multiple different adenovirus vectors simultaneously, each comprising nucleic acid sequences encoding one or more target antigens.
[0349] The adenovirus vectors can be used to generate an immune response against a cancer, such as carcinomas or sarcomas (e.g., solid tumors, lymphomas and leukemia). The adenovirus vectors can be used to generate an immune response against an infectious disease, such as a cancer, such as any CEA-expressing cancer, Brachyury-expressing cancer, MUC1-expessing cancer, an epithelial cancer, a neurologic cancer, melanoma, non-Hodgkin's lymphoma, Hodgkin's disease, leukemia, plasmocytomas, adenomas, gliomas, thymomas, breast cancer, prostate cancer, colorectal cancer, kidney cancer, renal cell carcinoma, uterine cancer, pancreatic cancer, esophageal cancer, lung cancer, ovarian cancer, cervical cancer, testicular cancer, gastric cancer, multiple myeloma, hepatoma, acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), and chronic lymphocytic leukemia (CLL), gastrointestinal cancer, or other cancers.
[0350] In one aspect, a method of selecting a human for administration of the compositions is provided comprising: determining a HLA subtype of the human; and administering the composition to the human, if the HLA subtype is determined to be one of a preselected subgroup of HLA subtypes. In some embodiments, the preselected subgroup of HLA subtypes comprises one or more of HLA-A2, HLA-A3, and HLA-A24.
[0351] In some embodiments, the human is not concurrently being treated by any one of steroids, corticosteroids, and immunosuppressive agents. In some embodiments, the human does not have an autoimmune disease. In some embodiments, the human does not have inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis, scleroderma, multiple sclerosis, viral hepatitis, or HIV. In some embodiments, the human has or may have in the future an infectious disease. In some embodiments, the human has autoimmune related thyroid disease or vitiligo. In some embodiments, the human has or may have in the future a proliferative disease cancer. In some embodiments, the human has colorectal adenocarcinoma, metastatic colorectal cancer, advanced CEA expressing colorectal cancer, advanced MUC1-C, Brachyury, or CEA expressing colorectal cancer, breast cancer, lung cancer, bladder cancer, or pancreas cancer. In some embodiments, the human has at least 1, 2, or 3 sites of metastatic disease. In some embodiments, the human comprises cells overexpressing CEA. In some embodiments, the cells overexpressing CEA, overexpress the CEA by at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 times over a baseline CEA expression in a non-cancer cell. In some embodiments, the cells overexpressing CEA comprise cancer cells. In some embodiments, the human comprises cells overexpressing MUC1-C, Brachyury, or CEA. In some embodiments, the cells overexpressing MUC1-C, Brachyury, or CEA, overexpress the MUC1-C, Brachyury, or CEA by at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 times over a baseline MUC1-C, Brachyury, or CEA expression in a non-cancer cell. In some embodiments, the cells overexpressing MUC1-C, Brachyury, or CEA comprise cancer cells. In some embodiments, the subject has a diagnosed disease predisposition. In some embodiments, the subject has a stable disease. In some embodiments, the subject has a genetic predisposition for a disease. In some embodiments, the disease is a cancer. In some embodiments, the cancer is selected from the group consisting of prostate cancer, colon cancer, breast cancer, or gastric cancer. In some embodiments, the cancer is prostate cancer.
[0352] Some embodiments provide combination multi-targeted vaccines, immunotherapies and methods for enhanced therapeutic response to complex diseases such as infectious diseases and cancers. For example, in some embodiments, a subject can be administered a combination Ad5 vaccine as apart of the immunization strategy during treatment. For example, in some embodiments, a first and second replication defective adenovirus vector can be administered, each encoding for a different antigen. In some embodiments, the first or the second replication defective adenovirus vector comprises a sequence with at least 80% sequence identity to SEQ ID NO: 2. In some embodiments, the first or the second replication defective adenovirus vector comprises a region with at least 80% sequence identity to a region in SEQ ID NO: 2 selected from 26048-26177, 26063-26141, 1-103, 54-103, 32214-32315, and 32214-32262. In some embodiments, the first or the second replication defective adenovirus vector comprises a region with at least 80% sequence identity to a region in SEQ ID NO: 2 between positions 1057 and 3165. In some embodiments, the first or second replication defective adenovirus vector comprises a sequence encoding a MUC1-C, Brachyury, or CEA antigen; wherein the MUC1-C antigen is encoded by a sequence with at least 80% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, or SEQ ID NO: 101; wherein the Brachyury antigen is encoded by a sequence with at least 80% sequence identity to SEQ ID NO: 9, SEQ ID NO: 10, or SEQ ID NO: 102; wherein the CEA antigen is encoded by a sequence with at least 80% sequence identity to SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 100.
[0353] Methods are also provided for treating or ameliorating the symptoms of any of the infectious diseases or cancers as described herein. The methods of treatment comprise administering the adenovirus vectors one or more times to individuals suffering from or at risk from suffering from an infectious disease or cancer as described herein. As such, some embodiments provide methods for vaccinating against infectious diseases or cancers in individuals who are at risk of developing such a disease. Individuals at risk may be individuals who may be exposed to an infectious agent at some time or have been previously exposed but do not yet have symptoms of infection or individuals having a genetic predisposition to developing a cancer or being particularly susceptible to an infectious agent. Individuals suffering from an infectious disease or cancer described herein may be determined to express and/or present a target antigen, which may be use to guide the therapies herein. For example, an example can be found to express and/or present a target antigen and an adenovirus vector encoding the target antigen, a variant, a fragment or a variant fragment thereof may be administered subsequently.
[0354] Some embodiments contemplate the use of adenovirus vectors for the in vivo delivery of nucleic acids encoding a target antigen, or a fragment, a variant, or a variant fragment thereof. Once injected into a subject, the nucleic acid sequence is expressed resulting in an immune response against the antigen encoded by the sequence. The adenovirus vector vaccine can be administered in an "effective amount", that is, an amount of adenovirus vector that is effective in a selected route or routes of administration to elicit an immune response as described elsewhere herein. An effective amount can induce an immune response effective to facilitate protection or treatment of the host against the target infectious agent or cancer. The amount of vector in each vaccine dose is selected as an amount which induces an immune, immunoprotective or other immunotherapeutic response without significant adverse effects generally associated with typical vaccines. Once vaccinated, subjects may be monitored to determine the efficacy of the vaccine treatment. Monitoring the efficacy of vaccination may be performed by any method known to a person of ordinary skill in the art. In some embodiments, blood or fluid samples may be assayed to detect levels of antibodies. In other embodiments, ELISpot assays may be performed to detect a cell-mediated immune response from circulating blood cells or from lymphoid tissue cells.
[0355] Routes and frequency of administration of the therapeutic compositions described herein, as well as dosage, may vary from individual to individual, and from disease to disease, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration), in pill form (e.g., swallowing, suppository for vaginal or rectal delivery). In certain embodiments, between 1 and 10 doses may be administered over a 52-week period. In certain embodiments, 6 doses are administered, at intervals of 1 month, and further booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. As such, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more doses may be administered over a 1 year period or over shorter or longer periods, such as over 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 week periods. Doses may be administered at 1, 2, 3, 4, 5, or 6 week intervals or longer intervals.
[0356] A vaccine can be infused over a period of less than about 4 hours, and more preferably, over a period of less than about 3 hours. For example, the first 25-50 mg could be infused within 30 minutes, preferably within 15 min, and the remainder infused over the next 2-3 hrs. More generally, the dosage of an administered vaccine construct may be administered as one dosage every 2 or 3 weeks, repeated for a total of at least 3 dosages. Or, the construct may be administered twice per week for 4-6 weeks. The dosing schedule can optionally be repeated at other intervals and dosage may be given through various parenteral routes, with appropriate adjustment of the dose and schedule. Compositions can be administered to a patient in conjunction with (e.g., before, simultaneously, or following) any number of relevant treatment modalities.
[0357] A suitable dose is an amount of an adenovirus vector that, when administered as described above, is capable of promoting a target antigen immune response as described elsewhere herein. In certain embodiments, the immune response is at least 10-50% above the basal (i.e., untreated) level. In certain embodiments, the immune response is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 125, 150, 200, 250, 300, 400, 500, or more over the basal level. Such response can be monitored by measuring the target antigen(s) antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing patient tumor or infected cells in vitro, or other methods known in the art for monitoring immune responses. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome of the disease in question in vaccinated patients as compared to non-vaccinated patients. In some embodiments, the improved clinical outcome comprises treating disease, reducing the symptoms of a disease, changing the progression of a disease, or extending life.
[0358] In general, an appropriate dosage and treatment regimen provides the adenovirus vectors in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome for the particular disease being treated in treated patients as compared to non-treated patients. The monitoring data can be evaluated over time. The progression of a disease over time can be altered. Such improvements in clinical outcome would be readily recognized by a treating physician. Increases in preexisting immune responses to a target protein can generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.
[0359] While one advantage is the capability to administer multiple vaccinations with the same or different adenovirus vectors, particularly in individuals with preexisting immunity to Ad, the adenoviral vaccines may also be administered as part of a prime and boost regimen. A mixed modality priming and booster inoculation scheme may result in an enhanced immune response. Thus, one aspect is a method of priming a subject with a plasmid vaccine, such as a plasmid vector comprising a target antigen of interest, by administering the plasmid vaccine at least one time, allowing a predetermined length of time to pass, and then boosting by administering the adenovirus vector. Multiple primings, e.g., 1-4, may be employed, although more may be used. The length of time between priming and boost may typically vary from about four months to a year, but other time frames may be used. In certain embodiments, subjects may be primed 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more times with plasmid vaccines, and then boosted 4 months later with the adenovirus vector.
[0360] Any of the compositions provided herein may be administered to an individual. "Individual" may be used interchangeably with "subject" or "patient." An individual may be a mammal, for example a human or animal such as a non-human primate, a rodent, a rabbit, a rat, a mouse, a horse, a donkey, a goat, a cat, a dog, a cow, a pig, or a sheep. In embodiments, the individual is a human. In embodiments, the individual is a fetus, an embryo, or a child. In some cases, the compositions provided herein are administered to a cell ex vivo. In some cases, the compositions provided herein are administered to an individual as a method of treating a disease or disorder. In some embodiments, the individual has a genetic disease. In some cases, the individual is at risk of having the disease, such as any of the diseases described herein. In some embodiments, the individual is at increased risk of having a disease or disorder caused by insufficient amount of a protein or insufficient activity of a protein. If an individual is "at an increased risk" of having a disease or disorder, the method involves preventative or prophylactic treatment. For example, an individual can be at an increased risk of having such a disease or disorder because of family history of the disease. Typically, individuals at an increased risk of having such a disease or disorder benefit from prophylactic treatment (e.g., by preventing or delaying the onset or progression of the disease or disorder).
[0361] In some cases, a subject does not have a disease. In some cases, the treatment is administered before onset of a disease. A subject may have undetected disease. A subject may have a low disease burden. A subject may also have a high disease burden. In certain cases, a subject may be administered a treatment as described herein according to a grading scale. A grading scale can be a Gleason classification. A Gleason classification reflects how different tumor tissue is from normal prostate tissue. It uses a scale from 1 to 5. A physician gives a cancer a number based on the patterns and growth of the cancer cells. The lower the number, the more normal the cancer cells look and the lower the grade. The higher the number, the less normal the cancer cells look and the higher the grade. In certain cases, a treatment may be administered to a patient with a low Gleason score. Particularly, a patient with a Gleason score of 3 or below may be administered a treatment as described herein. In some embodiments, the subject has a Gleason score of 6 or less. In some embodiments, the subject has a Gleason score greater than 6.
[0362] Various embodiments relate to compositions and methods for raising an immune response against CEA antigens in selected patient populations. Accordingly, methods and compositions may target patients with a cancer including, but not limited to, carcinomas or sarcomas such as neurologic cancers, melanoma, non-Hodgkin's lymphoma, Hodgkin's disease, leukemia, plasmocytomas, adenomas, gliomas, thymomas, breast cancer, gastrointestinal cancer, prostate cancer, colorectal cancer, kidney cancer, renal cell carcinoma, uterine cancer, pancreatic cancer, esophageal cancer, lung cancer, ovarian cancer, cervical cancer, testicular cancer, gastric cancer, multiple myeloma, hepatoma, acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), and chronic lymphocytic leukemia (CLL), or other cancers can be targeted for therapy. In some cases, the targeted patient population may be limited to individuals having colorectal adenocarcinoma, metastatic colorectal cancer, advanced CEA expressing colorectal cancer, head and neck cancer, liver cancer, breast cancer, lung cancer, bladder cancer, or pancreas cancer. A histologically confirmed diagnosis of a selected cancer, for example colorectal adenocarcinoma, may be used. A particular disease stage or progression may be selected, for example, patients with one or more of a metastatic, recurrent, stage III, or stage IV cancer may be selected for therapy with the methods and compositions. In some embodiments, patients may be required to have received and, optionally, progressed through other therapies including but not limited to fluoropyrimidine, irinotecan, oxaliplatin, bevacizumab, cetuximab, or panitumumab containing therapies. In some cases, individual's refusal to accept such therapies may allow the patient to be included in a therapy eligible pool with methods and compositions. In some embodiments, individuals to receive therapy using the methods and compositions may be required to have an estimated life expectancy of at least, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 21, or 24 months. The patient pool to receive a therapy using the methods and compositions may be limited by age. For example, individuals who are older than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 30, 35, 40, 50, 60, or more years old can be eligible for therapy with methods and compositions. For another example, individuals who are younger than 75, 70, 65, 60, 55, 50, 40, 35, 30, 25, 20, or fewer years old can be eligible for therapy with methods and compositions.
[0363] In some embodiments, patients receiving therapy using the methods and compositions are limited to individuals with adequate hematologic function, for example with one or more of a WBC count of at least 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 or more per microliter, a hemoglobin level of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or higher g/dL, a platelet count of at least 50,000; 60,000; 70,000; 75,000; 90,000; 100,000; 110,000; 120,000; 130,000; 140,000; 150,000 or more per microliter; with a PT-INR value of less than or equal to 0.8, 1.0, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, 2.5, 3.0, or higher, a PTT value of less than or equal to 1.2, 1.4, 1.5, 1.6, 1.8, 2.0 X ULN or more. In various embodiments, hematologic function indicator limits are chosen differently for individuals in different gender and age groups, for example 0-5, 5-10, 10-15, 15-18, 18-21, 21-30, 30-40, 40-50, 50-60, 60-70, 70-80, or older than 80.
[0364] In some embodiments, patients receiving therapy using the methods and compositions are limited to individuals with adequate renal and/or hepatic function, for example with one or more of a serum creatinine level of less than or equal to 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2 mg/dL or more, a bilirubin level of 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2 mg/dL or more, while allowing a higher limit for Gilbert's syndrome, for example, less than or equal to 1.5, 1.6, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, or 2.4 mg/dL, an ALT and AST value of less than or equal to less than or equal to 1.5, 2.0, 2.5, 3.0 x upper limit of normal (ULN) or more. In various embodiments, renal or hepatic function indicator limits are chosen differently for individuals in different gender and age groups, for example 0-5, 5-10, 10-15, 15-18, 18-21, 21-30, 30-40, 40-50, 50-60, 60-70, 70-80, or older than 80.
[0365] In some embodiments, the K-ras mutation status of individuals who are candidates for a therapy using the methods and compositions as described herein can be determined. Individuals with a preselected K-ras mutational status can be included in an eligible patient pool for therapies using the methods and compositions as described herein.
[0366] In various embodiments, patients receiving therapy using the methods and compositions as described herein are limited to individuals without concurrent cytotoxic chemotherapy or radiation therapy, a history of, or current, brain metastases, a history of autoimmune disease, such as but not restricted to, inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis, scleroderma, multiple sclerosis, thyroid disease and vitiligo, serious intercurrent chronic or acute illness, such as cardiac disease (NYHA class III or IV), or hepatic disease, a medical or psychological impediment to probable compliance with the protocol, concurrent (or within the last 5 years) second malignancy other than non-melanoma skin cancer, cervical carcinoma in situ, controlled superficial bladder cancer, or other carcinoma in situ that has been treated, an active acute or chronic infection including: a urinary tract infection, HIV (e.g., as determined by ELISA and confirmed by Western Blot), and chronic hepatitis, or concurrent steroid therapy (or other immuno-suppressives, such as azathioprine or cyclosporin A). In some cases, patients with at least 3, 4, 5, 6, 7, 8, 9, or 10 weeks of discontinuation of any steroid therapy (except that used as pre-medication for chemotherapy or contrast-enhanced studies) may be included in a pool of eligible individuals for therapy using the methods and compositions as described herein.
[0367] In some embodiments, patients receiving therapy using the methods and compositions as described herein include individuals with thyroid disease and vitiligo.
[0368] In various embodiments, samples, for example serum or urine samples, from the individuals or candidate individuals for a therapy using the methods and compositions as described herein may be collected. Samples may be collected before, during, and/or after the therapy for example, within 2, 4, 6, 8, 10 weeks prior to the start of the therapy, within 1 week, 10 day, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, or 12 weeks from the start of the therapy, within 2, 4, 6, 8, 10 weeks prior to the start of the therapy, within 1 week, 10 day, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 9 weeks, or 12 weeks from the start of the therapy, in 1 week, 10 day, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 9 weeks, or 12 weeks intervals during the therapy, in 1 month, 3 month, 6 month, 1 year, 2 year intervals after the therapy, within 1 month, 3 months, 6 months, 1 year, 2 years, or longer after the therapy, for a duration of 6 months, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 years, or longer. The samples may be tested for any of the hematologic, renal, or hepatic function indicators described herein as well as suitable others known in the art, for example a .beta.-HCG for women with childbearing potential. In that regard, hematologic and biochemical tests, including cell blood counts with differential, PT, INR and PTT, tests measuring Na, K, Cl, CO.sub.2, BUN, creatinine, Ca, total protein, albumin, total bilirubin, alkaline phosphatase, AST, ALT and glucose may be used in some embodiments. In some embodiments, the presence or the amount of HIV antibody, Hepatitis BsAg, or Hepatitis C antibody are determined in a sample from individuals or candidate individuals for a therapy using the methods and compositions as described herein. Biological markers, such as antibodies to CEA or the neutralizing antibodies to Ad5 vector can be tested in a sample, such as serum, from individuals or candidate individuals for a therapy using the methods and compositions as described herein. In some cases, one or more samples, such as a blood sample can be collected and archived from an individuals or candidate individuals for a therapy using the methods and compositions as described herein. Collected samples can be assayed for immunologic evaluation. Individuals or candidate individuals for a therapy using the methods and compositions as described hereincan be evaluated in imaging studies, for example using CT scans or MRI of the chest, abdomen, or pelvis. Imaging studies can be performed before, during, or after therapy using the methods and compositions as described herein, during, and/or after the therapy, for example, within 2, 4, 6, 8, 10 weeks prior to the start of the therapy, within 1 week, 10 day, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, or 12 weeks from the start of the therapy, within 2, 4, 6, 8, 10 weeks prior to the start of the therapy, within 1 week, 10 day, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 9 weeks, or 12 weeks from the start of the therapy, in 1 week, 10 day, 2 week, 3 week, 4 week, 6 week, 8 week, 9 week, or 12 week intervals during the therapy, in 1 month, 3 month, 6 month, 1 year, 2 year intervals after the therapy, within 1 month, 3 months, 6 months, 1 year, 2 years, or longer after the therapy, for a duration of 6 months, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 years, or longer.
[0369] With regard to treatment of a condition with Ad5 vectors encoding for CEA, MUC1-C, and Brachyury, in one aspect, a method of generating an immune response in a human to each antigen, or any combination thereof is provided comprising administering to the human the composition. In some embodiments, the administering step is repeated at least once. In some embodiments, the administering step is repeated after about 2, 3, 4, 5, or 6 weeks following a previous administering step. In some embodiments, the administering step is repeated after about 2, 3, 4, 5, or 6 months following a previous administering step. In some embodiments, the administering step is repeated twice.
[0370] In one aspect, a method of treatment is provided comprising: selecting a first phase of treatment and a second phase of treatment; during the first phase, administering to a human a total of 3 times, in about 3 week intervals, a first composition comprising a first replication defective adenovirus vector encoding a MUC1-C antigen; and during the second phase, administering to the human a total of 3 times, in about 3 month intervals, a second composition comprising a second replication defective adenovirus vector encoding an antigen that induces an immune response in a human against cells expressing the MUC1-C antigen.
[0371] In one aspect, a method of treatment is provided comprising: selecting a first phase and a second phase of treatment; during the first phase, administering to a human a total of 3 times, in about 3 week intervals, a first composition comprising a first replication defective adenovirus vector encoding a Brachyury antigen; and during the second phase, administering to the human a total of 3 times, in about 3 month intervals, a second composition comprising a second replication defective adenovirus vector encoding an antigen that induces an immune response in a human against cells expressing the Brachyury antigen.
[0372] In one aspect, a method of treatment is provided comprising: selecting a first phase of treatment and a second phase of treatment; during the first phase, administering to a human a total of 3 times, in about 3 week intervals, a first composition comprising a first replication defective adenovirus vector encoding at least two antigens selected from the group consisting of a MUC1-C antigen, a Brachyury antigen, and a CEA antigen; and during the second phase, administering to the human a total of 3 times, in about 3 month intervals, a second composition comprising a second replication defective adenovirus vector encoding an antigen that induces an immune response in a human against cells expressing the at least two antigens. In some embodiments, the second phase starts about 3 months after the end of the first phase.
[0373] In one aspect, a method of treatment is provided comprising: selecting a first phase of treatment and a second phase of treatment; during the first phase, administering to a human, a total of n times, a first composition comprising a first replication defective adenovirus vector encoding a Brachyury antigen; during the second phase, administering the human, a total of m times, a second composition comprising a second replication defective adenovirus vector encoding an antigen that induces an immune response in a human against cells expressing the Brachyury antigen.
[0374] In one aspect, a method of treatment is provided comprising: selecting a first phase of treatment and a second phase of treatment; during the first phase, administering to a human, a total of n times, a first composition comprising a first replication defective adenovirus vector encoding a MUC1-C antigen; during the second phase, administering the human, a total of m times, a second composition comprising a second replication defective adenovirus vector encoding an antigen that induces an immune response in a human against cells expressing the MUC1-C antigen.
[0375] In one aspect, a method of treatment is provided comprising: selecting a first phase of treatment and a second phase of treatment; during the first phase, administering to a human, a total of n times, a first composition comprising a first replication defective adenovirus vector encoding at least two antigens selected from the group consisting of a MUC1-C antigen, a Brachyury antigen, and a CEA antigen; during the second phase, administering the human, a total of m times, a second composition comprising a second replication defective adenovirus vector encoding the at least two antigens that induces an immune response in a human against cells expressing the at least two antigens. In some embodiments, n is greater than 1. In some embodiments, n is 3. In some embodiments, m is greater than 1. In some embodiments, m is 3. In some embodiments, the first phase is at least 2, 3, 4, 5, 6, 7, or 8 weeks. In some embodiments, the second phase is at least 2, 3, 4, 5, 6, 7, or 8 months. In some embodiments, the second phase starts 3-16 weeks after first phase ends. In some embodiments, in the first phase two administrations of the replication defective adenovirus are at least 18 days apart. In some embodiments, in the first phase two administrations of the replication defective adenovirus are about 21 days apart. In some embodiments, in the first phase two administrations of the replication defective adenovirus are at most 24 days apart. In some embodiments, in the second phase two administrations of the replication defective adenovirus are at least 10 weeks apart. In some embodiments, in the second phase two administrations of the replication defective adenovirus are about 13 weeks apart. In some embodiments, in the second phase two administrations of the replication defective adenovirus are at most 16 weeks apart. In some embodiments, the method further comprises administering a molecular composition comprising an immune pathway checkpoint modulator.
[0376] In one aspect, a method of treatment is provided comprising: selecting a first phase of treatment and a second phase of treatment; during the first phase, administering to a human, a total of n times, a first composition comprising a first replication defective adenovirus vector encoding an antigen that induces an immune response in a human against cells expressing a MUC1-C, Brachyury, or CEA antigen; and during the second phase, administering the human, a total of m times, a second composition comprising a second replication defective adenovirus vector encoding an antigen that is capable of inducing an immune response directed towards cells expressing MUC1-C, Brachyury, or CEA antigen in a human; wherein a molecular composition comprising and an immune pathway checkpoint modulator is administered during the first phase, the second phase, or both.
[0377] In one aspect, a method of treating a subject in need thereof is provided, comprising administering to the subject: (a) a recombinant replication deficient adenovirus vector encoding (i) a MUC1-C antigen, (ii) a Brachyury antigen, or (iii) at least two antigens selected from the group consisting of a MUC1-C antigen, a Brachyury antigen, and a CEA antigen; and (b) a molecular composition comprising an immune pathway checkpoint modulator; thereby generating an immune response in the subject. In some embodiments, (a) and (b) are administered in series. In some embodiments, (a) and (b) are administered at the same time. In some embodiments, (a) and (b) are administered a month apart.
Dosages and Administration of Ad5 Vaccines
[0378] Compositions and methods as described herein contemplate various dosage and administration regimens during therapy. Patients may receive one or more replication defective adenovirus or adenovirus vector, for example Ad5 [E1-, E2B-]-CEA(6D), that is capable of raising an immune response in an individual against a target antigen described herein. Patients can also receive one or more replication defective adenovirus or adenovirus vector, for example Ad5 [E1-, E2B-]-CEA(6D), Ad5 [E1-, E2b-]-MUC1, Ad5 [E1-, E2b-]-MUC1c, Ad5 [E1-, E2b-]-MUCln, or Ad5 [E1-, E2b-]-T (i.e., Ad5 [E1-, E2b-]-Brachyury) that is capable of raising an immune response in an individual against a target antigen described herein. In various embodiments, the replication defective adenovirus is administered at a dose that suitable for effecting such immune response. In some cases, the replication defective adenovirus is administered at a dose that is greater than or equal to 1.times.10.sup.9, 2.times.10.sup.9, 3.times.10.sup.9, 4.times.10.sup.9, 5.times.10.sup.9, 6.times.10.sup.9, 7.times.10.sup.9, 8.times.10.sup.9, 9.times.10.sup.9, 1.times.10.sup.10, 2.times.10.sup.10, 3.times.10.sup.10, 4.times.10.sup.10, 5.times.10.sup.10, 6.times.10.sup.10, 7.times.10.sup.10, 8.times.10.sup.10, 9.times.10.sup.10, 1.times.10.sup.11, 2.times.10.sup.11, 3.times.10.sup.11, 4.times.10.sup.11, 5.times.10.sup.11, 6.times.10.sup.11, 7.times.10.sup.11, 8.times.10.sup.11, 9.times.10.sup.11, 1.times.10.sup.12, 1.5.times.10.sup.12, 2.times.10.sup.12, 3.times.10.sup.12, 4.times.10.sup.12, 5.times.10.sup.12 or more virus particles (VP) per immunization. In some cases, the replication defective adenovirus is administered at a dose that is less than or equal to 1.times.10.sup.9, 2.times.10.sup.9, 3.times.10.sup.9, 4.times.10.sup.9, 5.times.10.sup.9, 6.times.10.sup.9, 7.times.10.sup.9, 8.times.10.sup.9, 9.times.10.sup.9, 1.times.10.sup.10, 2.times.10.sup.10, 3.times.10.sup.10, 4.times.10.sup.10, 5.times.10.sup.10, 6.times.10.sup.10, 7.times.10.sup.10, 8.times.10.sup.10, 9.times.10.sup.10, 1.times.10.sup.11, 2.times.10.sup.11, 3.times.10.sup.11, 4.times.10.sup.11, 5.times.10.sup.11, 6.times.10.sup.11, 7.times.10.sup.11, 8.times.10.sup.11, 9.times.10.sup.11, 1.times.10.sup.12, 1.5.times.10.sup.12, 2.times.10.sup.12, 3.times.10.sup.12, 4.times.10.sup.12, 5.times.10.sup.12, or more virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose of 1.times.10.sup.9-5.times.10.sup.12 virus particles per immunization. In some embodiments, the composition comprises at least 1.0.times.10.sup.11, 2.0.times.10.sup.11, 3.0.times.10.sup.11, 3.5.times.10.sup.11, 4.0.times.10.sup.11, 4.4.times.10.sup.11, 4.8.times.10.sup.11, 4.9.times.10.sup.11, 4.95.times.10.sup.11, or 4.99.times.10.sup.11 virus particles comprising the recombinant nucleic acid vector. In some embodiments, the composition comprises at most 7.0.times.10.sup.11, 6.5.times.10.sup.11, 6.0.times.10.sup.11, 5.5.times.10.sup.11, 5.2.times.10.sup.11, 5.1.times.10.sup.11, 5.05.times.10.sup.11, or 5.01.times.10.sup.11 virus particles. In some embodiments, the composition comprises 1.0.times.10.sup.11-7.0.times.10.sup.11 or 1.0-5.5.times.10.sup.11 virus particles. In some embodiments, the composition comprises 4.5.times.10.sup.11-5.5.times.10.sup.11 virus particles. In some embodiments, the composition comprises 4.8.times.10.sup.11-5.2.times.10.sup.11 virus particles. In some embodiments, the composition comprises 4.9.times.10.sup.11-5.1.times.10.sup.11 virus particles. In some embodiments, the composition comprises 4.95.times.10.sup.11-5.05.times.10.sup.11 virus particles. In some embodiments, the composition comprises 4.99.times.10.sup.11-5.01.times.10.sup.11 virus particles.
[0379] In various embodiments, a desired dose described herein is administered in a suitable volume of formulation buffer, for example a volume of about 0.1-10 mL, 0.2-8mL, 0.3-7mL, 0.4-6 mL, 0.5-5 mL, 0.6-4 mL, 0.7-3 mL, 0.8-2 mL, 0.9-1.5 mL, 0.95-1.2 mL, or 1.0-1.1 mL. Those of skill in the art appreciate that the volume may fall within any range bounded by any of these values (e.g., about 0.5 mL to about 1.1 mL). Administration of virus particles can be through a variety of suitable paths for delivery, for example it can be by injection (e.g., intradermally, intracutaneously, intramuscularly, intravenously or subcutaneously), intranasally (e.g., by aspiration), in pill form (e.g. swallowing, suppository for vaginal or rectal delivery. In some embodiments, a subcutaneous delivery may be preferred and can offer greater access to dendritic cells.
[0380] Administration of virus particles to an individual may be repeated. Repeated deliveries of virus particles may follow a schedule or alternatively, may be performed on an as needed basis. For example, an individual's immunity against a target antigen, for example CEA, may be tested and replenished as necessary with additional deliveries. In some embodiments, schedules for delivery include administrations of virus particles at regular intervals. Joint delivery regimens may be designed comprising one or more of a period with a schedule and/or a period of need based administration assessed prior to administration. For example, a therapy regimen may include an administration, such as subcutaneous administration once every three weeks then another immunotherapy treatment every three months until removed from therapy for any reason including death. Another example regimen comprises three administrations every three weeks then another set of three immunotherapy treatments every three months. Another example regimen comprises a first period with a first number of administrations at a first frequency, a second period with a second number of administrations at a second frequency, a third period with a third number of administrations at a third frequency, etc., and optionally one or more periods with undetermined number of administrations on an as needed basis. The number of administrations in each period can be independently selected and can for example be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more. The frequency of the administration in each period can also be independently selected, can for example be about every day, every other day, every third day, twice a week, once a week, once every other week, every three weeks, every month, every six weeks, every other month, every third month, every fourth month, every fifth month, every sixth month, once a year, etc. The therapy can take a total period of up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30, 36 months, or more. The scheduled interval between immunizations may be modified so that the interval between immunizations is revised by up to a fifth, a fourth, a third, or half of the interval. For example, for a 3-week interval schedule, an immunization may be repeated between 20 and 28 days (3 weeks-1 day to 3 weeks +7 days). For the first 3 immunizations, if the second and/or third immunization is delayed, the subsequent immunizations may be shifted allowing a minimum amount of buffer between immunizations. For example, for a three week interval schedule, if an immunization is delayed, the subsequent immunization may be scheduled to occur no earlier than 17, 18, 19, or 20 days after the previous immunization.
[0381] Compositions, such as Ad5 [E1-, E2B-]-CEA(6D) virus particles, can be provided in various states, for example, at room temperature, on ice, or frozen. Compositions may be provided in a container of a suitable size, for example a vial of 2 mL vial. In one embodiment, a 2-ml vial with 1.0 mL of extractable vaccine contains 5.times.10.sup.11 total virus particles/mL. Storage conditions including temperature and humidity may vary. For example, compositions for use in therapy may be stored at room temperature, 4.degree. C., -20.degree. C., or lower.
[0382] In various embodiments, general evaluations are performed on the individuals receiving treatment according to the methods and compositions as described herein. One or more of any tests may be performed as needed or in a scheduled basis, such as on weeks 0, 3, 6, etc. A different set of tests may be performed concurrent with immunization vs. at time points without immunization.
[0383] General evaluations may include one or more of medical history, ECOG Performance Score, Karnofsky performance status, and complete physical examination with weight by the attending physician. Any other treatments, medications, biologics, or blood products that the patient is receiving or has received since the last visit may be recorded. Patients may be followed at the clinic for a suitable period, for example approximately 30 minutes, following receipt of vaccine to monitor for any adverse reactions. Local and systemic reactogenicity after each dose of vaccine will may be assessed daily for a selected time, for example for 3 days (on the day of immunization and 2 days thereafter). Diary cards may be used to report symptoms and a ruler may be used to measure local reactogenicity. Immunization injection sites may be assessed. CT scans or MRI of the chest, abdomen, and pelvis may be performed.
[0384] In various embodiments, hematological and biochemical evaluations are performed on the individuals receiving treatment according to the methods and compositions as described herein. One or more of any tests may be performed as needed or in a scheduled basis, such as on weeks 0, 3, 6, etc. A different set of tests may be performed concurrent with immunization vs. at time points without immunization. Hematological and biochemical evaluations may include one or more of blood test for chemistry and hematology, CBC with differential, Na, K, Cl, CO.sub.2, BUN, creatinine, Ca, total protein, albumin, total bilirubin, alkaline phosphatase, AST, ALT, glucose, and ANA
[0385] In various embodiments, biological markers are evaluated on individuals receiving treatment according to the methods and compositions as described herein. One or more of any tests may be performed as needed or in a scheduled basis, such as on weeks 0, 3, 6, etc. A different set of tests may be performed concurrent with immunization vs. at time points without immunization.
[0386] Biological marker evaluations may include one or more of measuring antibodies to CEA or the Ad5 vector, from a serum sample of adequate volume, for example about 5m1Biomarkers (e.g., CEA or CA15-3) may be reviewed if determined and available.
[0387] In various embodiments, an immunological assessment is performed on individuals receiving treatment according to the methods and compositions as described herein. One or more of any tests may be performed as needed or in a scheduled basis, such as on weeks 0, 3, 6, etc. A different set of tests may be performed concurrent with immunization vs. at time points without immunization.
[0388] Peripheral blood, for example about 90 mL may be drawn prior to each immunization and at a time after at least some of the immunizations, to determine whether there is an effect on the immune response at specific time points during the study and/or after a specific number of immunizations. Immunological assessment may include one or more of assaying peripheral blood mononuclear cells (PBMC) for T-cell responses to CEA using ELISpot, proliferation assays, multi-parameter flow cytometric analysis, and cytoxicity assays. Serum from each blood draw may be archived and sent and determined.
[0389] In various embodiments, a tumor assessment is performed on individuals receiving treatment according to the methods and compositions as described herein. One or more of any tests may be performed as needed or in a scheduled basis, such as prior to treatment, on weeks 0, 3, 6 etc. A different set of tests may be performed concurrent with immunization vs. at time points without immunization. Tumor assessment may include one or more of CT or MRI scans of chest, abdomen, or pelvis performed prior to treatment, at a time after at least some of the immunizations and at approximately every three months following the completion of a selected number, for example 2, 3, or 4, of first treatments and for example until removal from treatment.
[0390] Immune responses against a target antigen described herein, such as CEA, may be evaluated from a sample, such as a peripheral blood sample of an individual using one or more suitable tests for immune response, such as ELISpot, cytokine flow cytometry, or antibody response. A positive immune response can be determined by measuring a T-cell response. A T-cell response can be considered positive if the mean number of spots adjusted for background in six wells with antigen exceeds the number of spots in six control wells by 10 and the difference between single values of the six wells containing antigen and the six control wells is statistically significant at a level of p.ltoreq.0.05 using the Student's t-test. Immunogenicity assays may occur prior to each immunization and at scheduled time points during the period of the treatment. For example, a time point for an immunogenicity assay at around week 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 24, 30, 36, or 48 of a treatment may be scheduled even without a scheduled immunization at this time. In some cases, an individual may be considered evaluable for immune response if they receive at least a minimum number of immunizations, for example 1, 2, 3, 4, 5, 6, 7, 8, 9, or more immunizations.
[0391] In some embodiments, disease progression or clinical response determination is made according to the RECIST 1.1 criteria among patients with measurable/evaluable disease. In some embodiments, therapies using the methods and compositions as described herein affect a Complete Response (CR; disappearance of all target lesions for target lesions or disappearance of all non-target lesions and normalization of tumor marker level for non-target lesions) in an individual receiving the therapy. In some embodiments, therapies using the methods and compositions affect a Partial Response (PR; at least a 30% decrease in the sum of the LD of target lesions, taking as reference the baseline sum LD for target lesions) in an individual receiving the therapy.
[0392] In some embodiments, therapies using the methods and compositions affect a Stable Disease (SD; neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD, taking as reference the smallest sum LD since the treatment started for target lesions) in an individual receiving the therapy. In some embodiments, therapies using the methods and compositions as described herein affect an Incomplete Response/ Stable Disease (SD; persistence of one or more non-target lesion(s) or/and maintenance of tumor marker level above the normal limits for non-target lesions) in an individual receiving the therapy. In some embodiments, therapies using the methods and compositions as described herein affect a Progressive Disease (PD; at least a 20% increase in the sum of the LD of target lesions, taking as reference the smallest sum LD recorded since the treatment started or the appearance of one or more new lesions for target lesions or persistence of one or more non-target lesion(s) or/and maintenance of tumor marker level above the normal limits for non-target lesions) in an individual receiving the therapy.
Kits for Combination Therapy Using Ad5 Vaccines and ALT-803
[0393] The compositions, immunotherapy, or vaccines may be supplied in the form of a kit. Certain embodiments provide compositions, methods and kits for generating an immune response in an individual to fight infectious diseases and cancer. Certain embodiments provide compositions, methods and kits for generating an immune response against a target antigen or cells expressing or presenting a target antigen or a target antigen signature comprising at least one target antigen. The kits may further comprise instructions regarding the dosage and or administration including treatment regimen information. In some embodiments, the instructions are for the treatment of a proliferative disease or cancer. In some embodiments, the instructions are for the treatment of an infectious disease.
[0394] In some embodiments, kits comprise the compositions and methods for providing combination Ad5-CEA vaccines and ALT-803. In some embodiment's kits may further comprise components useful in administering the kit components and instructions on how to prepare the components. In some embodiments, the kit can further comprise software for conducting monitoring patient before and after treatment with appropriate laboratory tests, or communicating results and patient data with medical staff. In some embodiments, the kit comprises multiple effective doses of Ad5[E1-, E2b-]-CEA vaccines and multiple effective doses of ALT-803.
[0395] In one aspect, a kit for inducing an immune response in a human is provided comprising: a composition comprising a therapeutic solution of a volume in the range of 0.8-1.2 mL, the therapeutic solution comprising at least 1.0.times.10.sup.11 virus particles; wherein the virus particles comprise a recombinant replication defective adenovirus vector; a composition comprising of a therapeutic solution of a molecular composition comprising an immune pathway checkpoint modulator and; instructions.
[0396] In some embodiments, the therapeutic solution comprises 1.0.times.10.sup.11-5.5.times.10.sup.11 virus particles. In some embodiments, adenovirus vector is capable of effecting overexpression of the modified CEA in transfected cells. In some embodiments, therapeutic solution comprises a first, second and third replication defective adenovirus vector each comprising an antigen selected from the group consisting of a CEA antigen, and combinations thereof. In some embodiments, the adenovirus vector comprises a nucleic acid sequence encoding an antigen that induces a specific immune response against CEA expressing cells in a human.
[0397] In some embodiments, the kit further comprises an immunogenic component. In some embodiments, the immunogenic component comprises a cytokine selected from the group of IFN-.gamma., TNF.alpha. IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF-1), IFN-.alpha., IFN-.beta., IL-1.alpha., IL-1.beta., IL-1RA, IL-11, IL-17A, IL-17F, IL-19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31, IL-33, IL-34, IL-35, IL-36.alpha.,.beta.,.lamda., IL-36Ra, IL-37, TSLP, LIF, OSM, LT-.alpha., LT-.beta., CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-.beta.1, and MIF. In some embodiments, the immunogenic component is selected from the group consisting of IL-7, a nucleic acid encoding IL-7, a protein with substantial identity to IL-7, and a nucleic acid encoding a protein with substantial identity to IL-7. In some embodiments, the kit further comprises IL-15, a nucleic acid encoding for IL-15, a protein with substantial identity to IL-14, or a nucleic acid encoding a protein with substantial identity to IL-15.
[0398] The components comprising the kit may be in dry or liquid form. If they are in dry form, the kit may include a solution to solubilize the dried material. The kit may also include transfer factor in liquid or dry form. If the transfer factor is in dry form, the kit will include a solution to solubilize the transfer factor. The kit may also include containers for mixing and preparing the components. The kit may also include instrument for assisting with the administration such for example needles, tubing, applicator, inhalant, syringe, pipette, forceps, measured spoon, eye dropper or any such medically approved delivery vehicle. In some embodiments, the kits or drug delivery systems as described herein also include a means for containing compositions disclosed herein in close confinement for commercial sale and distribution.
EXAMPLES
[0399] The following examples are included to further describe some aspects of the present disclosure, and should not be used to limit the scope of the invention.
Example 1
Peptides and Vectors
[0400] This example describes peptides and vectors. The following HLA-A2 and HLA-A24 binding peptides were used in this and other examples: (a) the HLA-A2 binding CEA agonist peptide CAP1-6D (YLSGADLNL (SEQ ID NO: 4)). All peptides were greater than 96% pure.
[0401] Ad5 [E1-, E2b-]-CEA was constructed and produced. Briefly, the transgene was sub-cloned into the E1 region of the Ad5 [El-, E2b-] vector using a homologous recombination-based approach. The replication deficient virus was propagated in the E.C7 packaging cell line, CsCl.sub.2 purified, and titered. Viral infectious titer was determined as plaque-forming units (PFUs) on an E.C7 cell monolayer. The VP concentration was determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm. The CEA transgene also contained a modified CEA containing the highly immunogenic epitope CAP1-6D.
Example 2
GLP Production of Clinical Grade Multi-targeted Vaccine
[0402] This example shows the production of clinical-grade multi-target vaccine using good laboratory practice (GLP) standards. Previously, the Ad5 [E1-, E2b-]-CEA(6D) product was produced using a 5 L Cell Bioreactor under GLP conditions in accordance with good manufacturing practice standards. This example shows that the Ad5 [E1-, E2b-]-mMUC1-C and the Ad5 [E1-, E2b-]-Brachyury products can be produced in a 5 L Cell Bioreactor using a similar approach.
[0403] Briefly, vials of the E.C7 manufacturing cell line are thawed, transferred into a T225 flask, and initially cultured at 37 .degree. C. in 5% CO.sub.2 in DMEM containing 10% FBS/4 mM L-glutamine. After expansion, the E.C7 cells will be expanded using 10-layered CellSTACKS (CS-10) and transitioned to FreeStyle serum-free medium (SFM). The E.C7 cells will be cultured in SFM for 24 hours at 37 .degree. C. in 5% CO.sub.2 to a target density of 5.times.10.sup.5 cells/mL in the Cell Bioreactor. The E.C7 cells will then be infected with Ad5 [E1-, E2b-]-mMUC1-C or Ad5 [E1-, E2b-]-Brachyury, respectively, and cultured for 48 hours.
[0404] Mid-stream processing will be performed in an identical manner as that used to prepare clinical grade Ad5 [E1-, E2b-]-CEA(6D) product under IND14325. Thirty minutes before harvest, Benzonase nuclease will be added to the culture to promote better cell pelleting for concentration. After pelleting by centrifugation, the supernatant will be discarded and the pellets re-suspended in Lysis Buffer containing 1% Polysorbate-20 for 90 minutes at room temperature. The lysate will then be treated with Benzonase and the reaction quenched by addition of 5M NaCl. The slurry will be centrifuged and the pellet discarded. The lysate will be clarified by filtration and subjected to a two-column ion exchange procedure.
[0405] To purify the vaccine products, a two-column anion exchange procedure will be performed. A first column will be packed with Q Sepharose XL resin, sanitized, and equilibrated with loading buffer. The clarified lysate will be loaded onto the column and washed with loading buffer. The vaccine product will be eluted and the main elution peak (eluate) containing Ad5 [E1-, E2b-]-mMUC1-C or Ad5 [E1-, E2b-]-Brachyury is carried forward to the next step. A second column will be packed with Source 15Q resin, sanitized, and equilibrated with loading buffer. The eluate from the first anion exchange column will be loaded onto the second column and the vaccine product eluted with a gradient starting at 100% Buffer A (20 mM Tris, 1 mM MgCl.sub.2, pH 8.0) running to 50% Buffer B (20 mM Tris, 1 mM MgCl.sub.2, 2M NaCl, pH 8.0). The elution peak containing Ad5 [E1-, E2b-]-mMUC1-C or Ad5 [E1-, E2b-]-Brachyury will be collected and stored overnight at 2-8.degree. C. The peak elution fraction will be processed through a tangential flow filtration (TFF) system for concentration and diafiltration against formulation buffer (20 mM Tris, 25 mM NaCl, 2.5% (v/v) glycerol, pH 8.0). After processing, the final vaccine product will be sterile filtered, dispensed into aliquots, and stored at .ltoreq.-60.degree. C. A highly purified product approaching 100% purity is typically produced and similar results for these products are predicted.
[0406] The concentration and total number of VP product produced will be determined spectrophotometrically. Product purity is assessed by HPLC. Infectious activity is determined by performing an Ad5 hexon-staining assay for infectious particles using kits.
[0407] Western blots will be performed using lysates from vector transfected A549 cells to verify mMUC1-C or Brachyury expression. Quality control tests will be performed to determine that the final vaccine products are mycoplasma-free, have no microbial bioburden, and exhibit endotoxin levels less than 2.5 endotoxin units (EU) per mL. To confirm immunogenicity, the individual vectors will tested in mice as described below (Example 8).
Example 3
Pre-Clinical Studies of Ad5 [E1-]-CEA(6D) Vaccine in Combination with ALT-803 Therapy
[0408] This example describes pre-clinical studies of Ad5 [E1]-CEA(6D) vaccine in combination with ALT-803 therapy. A commercially obtained Ad5-based vector containing CEA (Ad5 [E1-]-CEA) combined with ALT-803 injections in CEA transgenic mice bearing CEA expressing tumors was evaluated. FIG. 2A illustrates the tumor implantation and dosing regimen used in this study. Groups of mice were implanted with CEA expressing murine MC32-CEA tumor cells (Day 0). One group received no treatment. A second group received injections with ALT-803 (1 .mu.g SC) alone on days 10 and 17, respectively. A third group received injections with Ad5 [E1-]-CEA (1.times.10.sup.10 VP SC) on days 7, 14, and 21, respectively. A fourth group received injections with (A) Ad5 [E1-]-CEA on days 7, 14, and 21 and (B) with ALT-803 on days 10 and 17, respectively.
[0409] All mice were monitored for tumor growth and tumor volumes were measured over the course of 35 days. When tumors reached a volume of greater than 2000 mm.sup.3, mice were euthanized. As shown in FIG. 2B, when mice were injected with ALT-803 alone on days 10 and 17, there was no difference in survival as compared to untreated control mice Similarly, when mice were injected with Ad5 [E1-]-CEA alone on days 7, 14, and 21, there was no difference in survival as compared to untreated control mice. However, when mice were injected first with Ad5 [E1-]-CEA on days 7, 14, and 21 and then subsequently injected with ALT-803 on days 10 and 17, a difference in survival was observed. Twenty percent (20%) of untreated control mice survived at 35 days as compared to 60% of the Ad5 [E1-]-CEA /ALT-803 treated mice. These results indicate that an anti-tumor immune responses can be augmented by first immunizing with an Ad5 [E1-]-CEA vaccine to induce a CEA directed anti-tumor immune response and then treating with ALT-803.
Example 4
Pre-Clinical Studies of Ad5 [E1-, E2b-]-CEA(6D) Vaccine in Combination with ALT-803 Therapy
[0410] This example describes pre-clinical studies of Ad5 [E1-, E2b-]-CEA(6D) vaccine in combination with ALT-803 therapy. An Ad5-based vector containing CEA (Ad5 [E1-, E2b-]-CEA) combined with ALT-803 injections in CEA transgenic mice bearing CEA expressing tumors was evaluated. Groups of mice were implanted with 10.sup.6 CEA expressing murine MC38-CEA tumor cells (Day 0). Mice were separated into four separate groups (n=10 per group). One group received administration of an Ad5[E1-, E2b-]-Null vector containing no antigen at a dose of 1.times.10.sup.10 VPs subcutaneously (SC) on days 1, 7, and 14. A second group received injections with an Ad5[E1-, E2b-]-Null vector containing no antigen at a dose of 1.times.10.sup.10 VPs SC on days 1, 7, and 14 and ALT-803 (4 .mu.g SC) alone on days 4, 11, and 18, respectively. A third group received injections with an Ad5[E1-, E2b-]-CEA vector at a dose of 1.times.10.sup.10 VPs SC on days 1, 7, and 14. A fourth group received injections with an Ad5[E1-, E2b-]-CEA vector at a dose of 1.times.10.sup.10 VPs SC on days 1, 7, and 14 and ALT-803 (1 .mu.g SC) alone on days 4, 11, and 18, respectively.
[0411] Ad5[E1-, E2b-]-Null and Ad59E1-, E2b-]-CEA vaccines were administered on days 1, 7, and 14, respectively. ALT-803 was administered on days 4, 11, and 18, respectively. All mice were monitored for tumor growth and tumor volumes were measured over the course of 35 days. When tumors reached a volume of greater than 1500 mm.sup.3, mice were euthanized. Percent survival is shown in FIG. 3 over a 55-day period. Percent survival for the group administered the Ad5[E1-, E2b-]-Null vaccine with ALT-803 was 50%. Percent survival for the group administered the Ad5[E1-, E2b-]-CEA vaccine alone was 70%. Percent survival for the group administered the Ad5[E1-, E2b-]-CEA vaccine with ALT-803 was the highest at 90%. These results indicate that a immune responses can be augmented by first immunizing with an Ad5 [E1-, E2b]-CEA vaccine to induce a CEA directed anti-tumor immune response and then treating with ALT-803.
Example 5
Phase 1b and Phase 2 Clinical Studies of Ad5 [E1-, E2b-]-CEA(6D) Vaccine in Combination with ALT-803 Therapy
[0412] This example describes Phase 1b and Phase 2 clinical studies evaluating combination therapy with Ad5 [E1-, E2b-]-CEA(6D) vaccine and ALT-803, an IL-15 super-agonist. Subjects enrolled in clinical studies have carcinoembryonic antigen (CEA)-expressing cancers. Subjects previously have been treated for locally advanced or metastatic CEA-expressing cancer. The clinical study includes a Phase 1b arm in which the Ad5 [E1-, E2b-]-CEA(6D) vaccine is given at a fixed dose and dose-esclation is performed with ALT-803 unless de-esclaration is required. The Phase 2 arm will include additional safety studies for the maximum tolerated dose (MTD) and preliminary efficacy data in serveral indications known to express CEA. The primary objective of the Phase lb study is to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of Ad5 [E1-, E2b-]-CEA(6D) vaccine and ALT-803 combination treatment in subjects with CEA-expressing cancers whose tumor has recurred after standard-of-care treatment. The primary objectives of the Phase 2 study is to determine the overall safety and tolerability profile for the MTD dose of the Ad5 [E1-, E2b-]-CEA(6D) vaccine plus ALT-803 combination treatment in subjects with CEA expressing cancers whose tumor has recurred after standard-of-care treatment. Preliminary evaluation of the overall response rate (ORR) for the MTD dose of the Ad5 [E1-, E2b-]-CEA(6D) vaccine plus ALT-803 combination treatment in the following indications known to express CEA: (1) histologically confirmed unresectable locally advanced or metastatic medullary thyroid cancer that expresses CEA and have progressed on at least cabozantinib or vandetanib, (2) histologically confirmed unresectable locally advanced or metastatic colon cancer that expresses CEA and have progressed on at least one prior standard-of-care treatment with a FOLFIRI- or FOLFOX-based combination therapy, (3) histologically confirmed unresectable locally advanced or metastatic ovarian cancer that expresses CEA and have progressed on at least one prior standard-of-care--based combination therapy, (4) histologically confirmed unresectable locally advanced or metastatic breast cancer that expresses CEA and have progressed on at least one prior standard-of-care--based combination therapy, (5) histologically confirmed unresectable locally advanced or metastatic lung cancer that expresses CEA and have progressed on at least one prior standard-of-care--based combination therapy, (6) histologically confirmed unresectable locally advanced or metastatic pancreatic cancer that expresses CEA and have progressed on at least one prior standard-of-care--based combination therapy, and (7) other histologically confirmed unresectable locally advanced or metastatic cancers that express CEA and have progressed on at least one prior standard-of-care--based combination therapy.
[0413] Secondary objectives of the clinical studies include preliminary evaluation of duration of response, progression-free survival (PFS), and overall survival (OS) for the MTD dose of the Ad5 [E1-, E2b-]-CEA(6D) vaccine plus ALT-803 combination treatment in the indications outlined above. Explorartory objectives of the clinical studies include evaluating the immunogenicity against CEA over the course of treatment with combined Ad5 [E1-, E2b-]-CEA(6D) vaccine plus ALT-803 and determining the genomic, transcriptomic, and proteomic profile of subjects' tumors to identify gene mutations, gene amplifications, RNA-expression levels, and protein-expression levels. Correlations between genomic, transcriptomic, and proteomic profiles and efficacy outcome are assessed. Additional exploratory objectives include determining the tumor molecular profiles and correlation to safety and efficacy, as well as assessing changes in circulating tumor DNA (ctDNA) and circulating tumor RNA (ctRNA) using a genomics panel.
[0414] Dose Escalation. Studies are conducted in conformity with Good Clinical Practice and involves a previously determined safe dose of the Ad5 [E1-, E2b-]-CEA(6D) vaccine (5.times.10.sup.11 virus particles (VPs)/dose). In the Phase lb study, the ALT-803 dose is escalated using the standard 3+3 design. Dose levels include (1) Level 1: Ad5 [E1-, E2b-]-CEA(6D) vaccine (5.times.10.sup.11 VP/dose) and ALT-803 (10 .mu.g/kg/dose) and (2) Level 2: Ad5 [E1-, E2b-]-CEA(6D) vaccine (5.times.10.sup.11 VP/dose) and ALT-803 (15 .mu.g/kg/dose). If needed, the dose of the Ad5 [E1-, E2b-]-CEA(6D) vaccine is de-escalated to 1.times.10.sup.11 VP/dose. If needed, the dose of ALT-803 is de-escalated to 6 .mu.g/kg/dose.
[0415] Three to six subjects are sequentially enrolled with a fixed dose of the Ad5 [E1-, E2b-]-CEA(6D) vaccine and escalating doses of ALT-803. Two ALT-803 dose levels are planned, 10 ug/kg/dose, and 15 ug/kg/dose (with a de-escalation dose if required). During each cohort enrollment, there are a minimum of 7 days between enrolling successive subjects. DLTs are monitored continuously during treatments. In Phase 2, subjects with CEA-expressing indications are treated at the MTD.
[0416] Endpoints. The primary endopoints for the Phase lb study includes DLTs and the MTD. The primary endpoints for the Phase 2 study includes treatment-emergent adverse events (AEs) and serious adverse events (SAEs), clinically significant changes in safety laboratory tests, physical examinations, electrocardiograms (ECGs), and vital signs. Secondary endpoints include duration of response, PFS, and OS. Exploratory endpoints include assessing immunenicity of the Ad5 [E1-, E2b-]-CEA(6D) vaccine by flow cytometric and ELISpot analysis of T-cell frequency, activation status, cytokine profiles, and CEA antibody, adenovirus antibody levels, and potential antibody development against the IL-15N72D:IL-15R.alpha.Su/IgG1 Fc complex, correlation of tumor molecular profiles (genomic, transcriptomic, and proteomic) with safety and efficacy, and assessment of changes in circulating tumor DNA (ctDNA) and circulating tumor RNA (ctRNA) with a genomics panel.
[0417] Number of Subjects. Up to 12 subjects are enrolled in the Phase 1b study with 3 to 6 subjects sequentially enrolled starting at Dose Level 1. In the Phase 2 study, up to 20 subjects for each indication are enrolled and treated at the MTD determined in Phase lb. Subjects from the Phase 1b study who were treated at the MTD are included in the Phase 2 enrollment targets as appropriate.
[0418] Duration of Treatment. Subjects receive treatments during three-week cycles for a planned three cycles (eight weeks total). Subjects receive treatment unless they experience progressive disease (PD), DLT, withdraw consent, or if it is determineed it is no longer in their best medical interest to continue treatment.
[0419] Evaluation of Endpoints. Safety endpoints include assessment of DLT and MTD, treatment-emergent AE, SAE, and clinically significant changes in safety laboratory tests, such as changes in ECG, physical examinations, and vital signs. Toxicities are determined using the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) Version 4.03.
[0420] Tumor response is determined according to the Response Evaluation Criteria In Solid Tumors (RECIST) Version 1.1; duration of response, PFS, and OS are also evaluated. Exploratory immune analysis includes detection and quantification of T-cell immune responses by flow cytometry and ELISpot. CEA, adenoviral antibody levels, and potential antibody development against the IL-15N72D:IL-15R.alpha.Su/IgG1 Fc complex are determined by enzyme-linked immunosorbent assay (ELISA). Molecular profiling and analysis is carried out as follows. Genomic sequencing of tumor cells from tissue relative to non-tumor cells from whole blood is profiled to identify the genomic variances that may contribute to response or disease progression and provide an understanding of molecular abnormalities. RNA sequencing is conducted to provide expression data and give relevance to DNA mutations. Quantitative proteomics analysis is conducted to determine the exact amounts of specific proteins and to confirm expression of genes that are correlative of response and disease progression. All genomic, transcriptomic, and proteomic molecular analyses are retrospective and exploratory. Plasma is collected and PCR is used to assess expression levels, and directly measure fusion genes and mutations in circulating DNA and RNA.
Subject Eligibility
[0421] Subject eligibility is defined by inclusion criteria and exclusion criteria. Inclusion criteria include the following conditions: (1) age .gtoreq.18 years, (2) subjects with a histologically confirmed diagnosis of locally advanced or metastatic malignancy who were previously treated with at least one method of standard therapy known to have a possible survival benefit or refused such therapy, (3) the tumor must express CEA as defined by immunohistochemical staining (at least 50% of the tumor with at least moderate intensity of staining) or must be known to be universally CEA positive (i.e., colon and rectal cancer). For inclusion criteria (3), if the CEA-expressing cancer is colorectal cancer, pathologic or clinical confirmation of adenocarcinoma is required. Data should be derived from the primary site or most recent metastatic biopsy sample available. Importantly, subjects must (4): have a recent FFPE tumor biopsy specimen that was obtained following the conclusion of the most recent anticancer treatment and be willing to release the specimen for tumor molecular profiling analysis. If an historic specimen is not available, the subject must be willing to undergo a biopsy during the screening period. Collection of tumor tissue and whole blood for genomics at screening is optional for Phase lb and mandatory for Phase 2 of this study. Further inclusion criteria include the following conditions: (5) subjects who have received prior CEA-targeted immunotherapy (e.g., vaccine or antibody) are eligible for this trial if this treatment was discontinued at least 3 months prior to enrollment, (6) resolution of all toxic side effects of prior chemotherapy, radiotherapy, or surgical procedures to NCI CTCAE grade .ltoreq.1, (7) ability to understand and provide signed informed consent that fulfills Institutional Review Board (IRB)'s guidelines, (8): an ECOG performance status of 0 or 1, (9) subjects who are taking medications that do not have a known history of immunosuppression are eligible for this trial, (10) adequate hematologic function at screening, as follows: WBC count .gtoreq.3000/microliter, hemoglobin .gtoreq.9 g/dL (may not transfuse or use erythropoietin to achieve this level), platelets .gtoreq.75,000/microliter, prothrombin (PT)-international normalized ratio (INR) <1.5, and partial thromboplastin time (PTT) <1.5.times. upper limit of normal (ULN), and (11) adequate renal and hepatic function at screening, as follows: serum creatinine <2.0 mg/dL, bilirubin <1.5 mg/dL (except for Gilbert's syndrome which will allow bilirubin <2.0 mg/dL), alanine aminotransferase (ALT).ltoreq.2.5.times.ULN, and aspartate aminotransferase (AST).ltoreq.2.5.times.ULN. Inclusion crieteria (12) includes the condition that female subjects of childbearing potential and women <12 months since the onset of menopause must agree to use acceptable contraceptive methods for the duration of the study and for 7 months following the last injection of study medication. If employing contraception, two of the following precautions must be used: vasectomy of partner, tubal ligation, vaginal diaphragm, intrauterine device, condom and spermicidal (gel/foam/cream/vaginal suppository), or total abstinence. Male subjects must be surgically sterile or must agree to use a condom and acceptable contraceptive method with their partner. Female subjects who are post-menopausal are defined as those with an absence of menses for >12 consecutive months. Finally, inclusion criterion (13) requires that subjects must have the ability to attend required study visits and return for adequate follow-up, as required by this protocol.
[0422] Exclusion criteria include following conditions: (1) participation in an investigational drug or device study within 30 days of screening for this study, (2) pregnant and nursing women, (3) subjects with ongoing everolimus or other cancer therapy that interferes with the induction of immune responses, and (4) subjects with concurrent cytotoxic chemotherapy or radiation therapy. Regarding condition (4), there must be at least one month between any other prior chemotherapy (or radiotherapy) and study treatment. Any prior CEA-targeted immunotherapy (vaccine) must have been discontinued at least 3 months before initiation of study treatment. Subjects must have recovered from all acute toxicities from prior treatment prior to screening for this study. Further exclusion criteria include (5) active brain or central nervous system metastasis, seizures requiring anticonvulsant treatment, cerebrovascular accident (<6 months), or transient ischemic attack, (6) subjects with a history of autoimmune disease (active or past), such as but not restricted to inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis, scleroderma, or multiple sclerosis (autoimmune-related thyroid disease and vitiligo are permitted), (7) subjects with serious intercurrent chronic or acute illness, such as cardiac or pulmonary disease, hepatic disease, or other illness considered by the Investigator as high risk for investigational drug treatment, (8) subjects with a history of heart disease, such as congestive heart failure (class II, III, or IV defined by the New York Heart Association functional classification), history of unstable or poorly controlled angina, or history (<1 year) of ventricular arrhythmia, (9) subjects with a medical or psychological impediment that would impair the ability of the subject to receive therapy per protocol or impact ability to comply with the protocol or protocol-required visits and procedures, (10) history of malignancy except for the following: adequately treated non-melanoma skin cancer, cervical carcinoma in situ, superficial bladder cancer, or other carcinoma that has been in complete remission without treatment for more than 5 years, (11) presence of a known active acute or chronic infection, including human immunodeficiency virus (HIV, as determined by enzyme-linked immunosorbent assay [ELISA] and confirmed by western blot) and hepatitis B and hepatitis C virus (HBV/HCV, as determined by HBsAg and hepatitis C serology), and (12) subjects on systemic intravenous or oral steroid therapy (or other immunosuppressives, such as azathioprine or cyclosporin A) are excluded on the basis of potential immune suppression. Regarding exclusion criterion (12), subjects must have had at least 6 weeks of discontinuation of any steroid therapy (except that used as premedication for chemotherapy or contrast-enhanced studies) prior to enrollment. Exclusion criteria also include (13) subjects with known allergy or hypersensitivity to any component of the investigational product are excluded, (14) subjects with acute or chronic skin disorders that will interfere with injection into the skin of the extremities or subsequent assessment of potential skin reactions, and (15) subjects vaccinated with a live (attenuated) vaccine (e.g., FluMist.RTM.) or a killed (inactivated)/subunit vaccine (e.g., PNEUMOVAX.RTM., Fluzone.RTM.) within 28 days or 14 days, respectively, of the first planned dose of Ad5 [E1-, E2b-]-CEA(6D) vaccine or ALT 803.
Treatment Procedures
[0423] The Ad5 [E1-, E2b-]-CEA(6D) vaccine is provided in 2-mL single-dose vials. Each single-dose vial contains a sterile suspension of the Ad5 [E1-, E2b-]-CEA(6D) vaccine at 5.times.10.sup.11 VP intended for single dose administration and contains ARM formulation buffer (20 mM TRIS, 25 mM NaCl, 2.5% glycerol, pH 8.0). Each vial contains approximately 1.3 mL of the vaccine.
[0424] ALT-803 is supplied as a sterile solution for subcutaneous injection. ALT-803 is provided at a concentration of 1.2 mg per 1 mL (1.2 mg/mL) and contains Phosphate Buffered Saline (Sodium Chloride (USP) 8.18 g/l; Sodium Phosphate Dibasic (USP) 1.43 g/L; Potassium Phosphate Monobasic (NF) 1.36 g/L, pH 7.4). Each vial contains approximately 1.2 mL of ALT-803. The product is stored at 2-8.degree. C. until used.
[0425] Storage. The Ad5 [E1-, E2b-]-CEA(6D) vaccine is stored in freezer conditions of .ltoreq.-20.degree. C. until used. ALT-803 is stored at 2-8.degree. C. until used.
[0426] Dose Preparation. The dose of Ad5 [E1-, E2b-]-CEA(6D) vaccine to be injected is 5.times.10.sup.11 VP (Cohort 1 and 2) or 1.times.10.sup.11 VP (dose level -1) per 1 mL. Prior to injection, the appropriate vial is removed from the freezer and allowed to thaw at controlled room temperature (20-25.degree. C.) for at least 20 minutes and not more than 30 minutes, after which it is kept at 2-8.degree. C. Each vial is sealed with a rubber stopper and has a white flip-off seal. The rubber stopper is secured to the vial with an aluminum-crimped seal. The thawed vial is swirled and then, using aseptic technique, the appropriate volume is withdrawn from the appropriate vial using a 1-mL syringe. The vaccine dose is injected as soon as possible using a 1 to 1/2 inch, 20 to 25-gauge needle. Storage of the vaccine in the vial at 2-8.degree. C. does not exceed 12 hours and once the vaccine is thawed, it is not refrozen.
[0427] Dose Preparation--5.times.10.sup.11 Virus Particles. 1 mL of contents is withdrawn from the vial, and the injection site is prepared with alcohol. The dose is administered to the subject by subcutaneous (SC) injection in the thigh without any further manipulation.
[0428] Dose Preparation--1.times.10.sup.11 Virus Particles. From a 5.0-mL vial of 0.9% sterile saline, 1 mL of fluid is removed using a 1.0 mL tuberculin syringe, leaving 4 mL. Then, using another 1.0 mL tuberculin syringe, 1 mL is removed from the vial containing the Ad5 [E1-, E2b-]-CEA(6D) vaccine, and added into the 4 mL of sterile saline remaining in the 5-mL sterile saline vial. The contents are mixed by inverting the 5 mL solution of diluted Ad5 [E1-, E2b-]-CEA(6D) vaccine. 1 mL of the diluted Ad5 [E1-, E2b-]-CEA(6D) vaccine is withdrawn and the injection site is prepared with alcohol, and administered to the subject by SC injection in the thigh.
[0429] ALT-803 Dose Preparation. ALT-803 dose calculation is based on actual body weight. The calculated amount of ALT- 803 is drawn into a syringe/or subcutaneous injection. The stock concentration is 1 mg/mL. Doses are drawn directly into the syringe for injection.
[0430] Administration. The Ad5 [E1-, E2b-]-CEA(6D) vaccine is administered on weeks 0, 3, and 6 for a total of three (3) immunizations on an outpatient basis. All study drug administration treatment occurs within .+-.5 days of the planned visit date. All immunizations of the vaccine are given by SC injection in the thigh after preparation of the site with alcohol. Injection site reactions were reported in previous Phase 1/2 studies with the Ad5 [E1-, E2b-]-CEA(6D) and are monitored during the study. Either thigh is used for the initial injection. Subsequent injections are given in the same thigh as the initial injection and are separated by at least 5 cm. Subjects remain in the clinic for a minimum of 60 minutes after the first injection and 30 minutes after subsequent injections to allow for the evaluation of vital signs and for monitoring of injection site reactions. For the first injection, vital signs are assessed 30 and 60 minutes after the injection. Vital signs are assessed 30 minutes after the subsequent injections. ALT-803 is administered once a week for two weeks following treatment with the Ad5 [E1-, E2b-]-CEA(6D) vaccine. A window of -1/+3 days for weekly ALT-803 dosing is allowed in the event of scheduling issues (i.e., holiday, bad weather or other scheduling issues). Any dose that cannot be accommodated within this window is skipped and the dose not made up. Injection sites should be in a different limb than the Ad5 [E1-, E2b-]-CEA(6D) vaccine and, and each injection site should be separated by at least 5 cm. Doses of ALT-803 are administered on an outpatient basis. If the first dose of the first cycle is well tolerated after 2 hours of monitoring, subsequent doses are administered with 30-minute post treatment monitoring. Both the Ad5 [E1-, E2b-]-CEA(6D) vaccine and ALT-803 are administed by subcutaneous (SC) injection.
Dose Limiting Toxicity and Maximum Tolerated Dose
[0431] A DLT is defined as: (1) any grade 3 or greater toxicity as defined by the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) Version 4.03 or (2) any grade 2 or higher autoimmune reaction or immediate hypersensitivity reaction. In addition, the following criteria will apply: any toxicity that is not clearly unrelated to the study treatment that is of grade 3 and does not resolve to grade 1 or lower (or to baseline or lower, if a subject enters the study with a toxicity that is grade 2 or higher) within a week despite the use of medical intervention, or that is of grade 4, but with exceptions as follows: (1) any grade 3 or 4 lymphopenia, leukopenia, and neutropenia that recovers within 14 days is not a DLT, (2) grade .gtoreq.3 neutropenia with infection is a DLT, (3) any grade 3 or 4 thrombocytopenia or anemia that recovers within 14 days is not a DLT, (4) a grade 4 thrombocytopenia (without clinical sequalae) of less than or equal to 1 week duration and/or return to grade 2 or less will not trigger DLT (5) grade .gtoreq.3 thrombocytopenia with bleeding is a DLT, (6) nausea or vomiting controllable with anti-emetics within 72 hours is not a DLT, (7) hypotension (systolic pressure <90 mm Hg) of grade <3 that is of limited duration (less than 72 hours) or can be managed with hydration measures as described in Section 5.9.1 is not a DLT, (8) hypotension of grade 3 that persists for >4 hours and requires hospitalization is a DLT. A precautionary admission for observation after grade 3 hypotension that persists for .ltoreq.4 hours is not a DLT, (9) grade >3 arrhythmia of any kind is a DLT, (10) absolute lymphocyte count (ALC) .gtoreq.50,000/.mu.L sustained for 14 days is a DLT, and (11) white blood cell (WBC) count .gtoreq.60,000/.mu.L sustained for 14 days is a DLT. The MTD is defined as the highest dose level with an observed incidence of DLT in <33% of subjects enrolled in a cohort.
[0432] Dose Escalation. Dose escalation is performed as shown in TABLE 4.
TABLE-US-00004 TABLE 4 Dose Levels Cohort ALT-803 1 10 .mu.g/kg/dose 2 15 .mu.g/kg/dose Dose level (-1) 6 .mu./kg/dose Cohort Ad5 [E1-, E2b-]-CEA(6D) vaccine 1 and 2 5 .times. 10.sup.11 VP/dose Dose level (-1) 1 .times. 10.sup.11 VP/dose
[0433] Cohort 1 Ad5 [E1-, E2b-]-CEA(6D) vaccine at 5.times.10.sup.11 VP plus ALT-803 10 .mu.g/kg/dose. If none of the initial 3 subjects experience a DLT, dose escalation to Cohort 2 is initiated. If 1 of the initial 3 subjects experiences a DLT, 3 additional subjects are enrolled into Cohort 1 for a total of 6 subjects. If .ltoreq.1 of 6 subjects experience a DLT, escalation to Cohort 2 is initiated. If .gtoreq.2 of the initial 3 subjects or of the 6 total subjects experience a DLT, enrollment into the de-escalation Cohort -1 is initiated.
[0434] Cohort 2 Ad5 [E1-, E2b-]-CEA(6D) vaccine at 5.times.10.sup.11 VP plus ALT-803 at 15 .mu.g/kg/dose. If .ltoreq.1 of the initial 3 subjects experience a DLT, 3 additional subjects are enrolled into Cohort 2 for a total of 6 subjects. If .ltoreq.1 of 6 subjects experience a DLT, this dose level is defined as the MTD. If .gtoreq.2 of the initial 3 subjects, or if .gtoreq.2 of a total 6 subjects experience a DLT, enrollment into the next lower dose level is resumed: (1) if six subjects have been already treated in Cohort 1, that dose is defined as the MTD, (2) if three subjects have been treated in Cohort 1, 3 additional subjects are enrolled at this dose level for a total of 6 subjects. If .ltoreq.1 of 6 subjects experience a DLT, that dose is defined as the MTD. If .gtoreq.2 of 6 subjects experience a DLT, enrollment into the de-escalation Cohort -1 is initiated. If a DLT is related to the Ad5 [E1-, E2b-]-CEA(6D) vaccine, then the dose is reduced to 1.times.10.sup.11 VP/dose. If a DLT is related to ALT-803, then the dose is reduced to 6 .mu.g/kg/dose.
Efficacy Assessments
[0435] Survival. After the subject completes or withdraws from the study, all subjects are followed for survival every 3 months for 12 months and then approximately every 6 months thereafter for an additional 12 months.
[0436] Antitumor Response. Tumor assessments may include the following evaluations: physical examination (with photograph and measurement of skin lesions, as applicable); cross-sectional imaging using computed tomography (CT) or magnetic resonance imaging (MRI) scan of the chest, abdomen, and pelvis (pelvis scan is optional unless known pelvic disease is present at baseline); nuclear bone scan for subjects with known/suspected bone lesions; and CT or MRI scan of the brain (only as clinically warranted based on symptoms/findings). The preferred method of disease assessment is CT with contrast. If CT with contrast is contraindicated, CT of the chest without contrast and MRI scan of the abdomen/pelvis with contrast is preferred. At baseline, tumor lesions are selected and categorized as target or non-target lesions. Target lesions include those lesions that can be accurately measured in at least 1 dimension as .gtoreq.20 mm with conventional techniques or .gtoreq.10 mm with CT scan. Malignant lymph nodes with a short axis diameter .gtoreq.15 mm can be considered target lesions. Up to a maximum of 2 target lesions per organ and 5 target lesions in total are identified at baseline. These lesions should be representative of all involved organs and selected based on their size (those with the longest diameter) and their suitability for accurate repeated measurements. A sum of the longest lesion diameter (LLD) for all target lesions is calculated and reported as the baseline sum LLD. For malignant lymph nodes identified as target lesions, the short axis diameter is used in the sum of LLD calculation. All other lesions (or sites of disease) should be identified as non-target lesions (including bone lesions). All post-baseline response assessments follow the same lesions identified at baseline. The same mode of assessment (e.g., CT) used to identify/evaluate lesions at baseline is used throughout the course of the study unless subject safety necessitates a change (e.g., allergic reaction to contrast media).
[0437] RECIST Response Criteria. Antitumor activity is evaluated with target and/or non-target lesions according to RECIST Version 1.1as summarized below.
[0438] Target Response. Percentage change in target lesion size is evaluated by the following formulae: (1) when determining complete response or partial response: [(Post value--Baseline value)/Baseline value].times.100, (2) when determining progressive disease: [(Post value--Smallest value since treatment started)/(Smallest value since treatment started)].times.100. Target response is classified according to the RECIST Version 1.1 Target Lesion Response Criteria in TABLE 5.
TABLE-US-00005 TABLE 5 RECIST Target Response Criteria Target Response Criteria Definition Complete Disappearance of all target lesions. Any pathological lymph nodes Response (CR) (whether target or non-target) must have reduction in short axis to < 10 mm. Partial At least a 30% decrease in the sum of diameters of target lesions, Response (PR) taking as reference the baseline sum diameters. Stable Neither sufficient shrinkage to qualify for PR nor sufficient increase Disease (SD) to qualify for PD, taking as reference the smallest sum diameters while on study. Progressive At least a 20% increase in the sum of diameters of target lesions, Disease (PD) taking as reference the smallest sum diameters while on study (this includes the baseline sum if that is the smallest on study). In addition to the relative increase of 20%, the sum must also demonstrate an absolute increase of 5 mm. (Note: the appearance of one or more lesions is also considered progression).
[0439] Non-target response is classified according to the RECIST Version 1.1 Non-Target Lesion Response Criteria in TABLE 6.
TABLE-US-00006 TABLE 6 RECIST Non-Target Response Criteria Non-Target Response Criteria Definition CR Disappearance of all non-target lesions and normalization of tumor marker level. All lymph nodes must be non- pathological in size (<10 mm short axis). Non-CR/ Persistence of one or more non-target lesion(s) and/or Non-PD maintenance of tumor marker level above the normal limits. PD Unequivocal progression of existing non-target lesions. (Note: the appearance of one or more new lesions is also considered progression).
[0440] Overall response is classified according to the RECIST Version 1.1 Overall Response Criteria in TABLE 7.
TABLE-US-00007 TABLE 7 RECIST Overall Response Criteria Target Lesions Non-Target Lesions New Lesions Overall Response CR CR No CR CR Non-CR/Non-PD No PR CR Not Evaluated No PR PR Non-PD or not No PR all evaluated SD Non-PD or not No SD all evaluated Not all Non-PD No Inevaluable evaluated PD Any Yes or No PD Any PD Yes or No PD Any Any Yes PD
Exploratory Pharmacodynamic Assessments
[0441] Peripheral Blood Collection. Subjects have approximately 90 mL of peripheral blood drawn to evaluate the study drug's effect on the immune response at specific time points during the study and/or after a specified injection. Immune monitoring blood draws is done at baseline, and at weeks 3, 6, 8, 9, 18, or any combination thereof.
[0442] Samples Collected. Five to six, 10-mL green top heparin tubes for PBMC samples and two 8-mL red top tubes for serum samples are drawn. Samples are processed for susbsequent analyses.
[0443] Immune Sample Analysis. Analyses of PBMCs in blood are performed as follows. Pre- and post-therapy PBMCs, isolated by Ficoll-Hypaque density gradient separation, are analyzed for antigen-specific immune responses using ELISpot assays for IFN-.gamma. or granzyme B secretion after exposure to CEA peptides. Flow cytometry is utilized to assess T cell responses using intracellular cytokine staining assay for IFN-.gamma. or TNF-.alpha. expression after exposure to CEA peptides. Flow cytometry analysis for the expression of CD107a on cells is utilized to test for degranulating cells such as CD8+ T cells and NK cells, for example, activated NK cells. PBMCs are stimulated in vitro with overlapping 15-mer peptide pools encoding the tumor-associated antigen CEA. Control peptide pools involve the use of irrelevant antigen peptide pools as a negative control and CEFT peptide mix as a positive control. CEFT is a mixture of peptides of CMV, Epstein-Barr virus, influenza, and tetanus toxin. Post-stimulation analyses of CD4 and CD8 T cells will involve the production of IFN-.gamma., TNF-.alpha., and CD107a expression. Sera is analyzed pre- and post-therapy for CEA directed antibody, neutralizing antibody titer to adenovirus (serotype 5), and for potential antibody development against the IL-15N72D:IL-15R.alpha.Su/IgG1 Fc complex.
Genomics, Transcriptomics, and Proteomics Molecular Analysis
[0444] Rationale for Tumor Molecular Profiling. Genomic sequencing of tumor cells from tissue relative to non-tumor cells from whole blood is profiled to identify the genomic variances that may contribute to response or disease progression and provide an understanding of molecular abnormalities. RNA sequencing is conducted to provide expression data and give relevance to DNA mutations. Quantitative proteomics analysis is conducted to determine the exact amounts of specific proteins and to confirm expression of genes that are correlative of response and disease progression. All genomic, transcriptomic, and proteomic molecular analyses are retrospective and exploratory.
[0445] Sample Collection and Analysis. Exploratory genomics, transcriptomics, and proteomics molecular profiling are performed on formalin-fixed, paraffin-embedded (FFPE) tumor tissue and whole blood (subject matched normal comparator against the tumor tissue) by next-generation sequencing and mass spectrometry-based quantitative proteomics. Collection of tumor tissue and whole blood at screening is optional for Phase lb and mandatory for Phase 2 of this study. Tumor tissue and whole blood samples are collected according to the instruction cards included in the Tissue Specimen Kit and Blood Specimen Kit. The kits include the materials necessary to collect and ship FFPE tumor tissue and whole blood samples.
[0446] A single FFPE tumor tissue block is required for the extraction of tumor DNA, tumor RNA, and tumor protein (TABLE 8). A whole blood sample is required for the extraction of subject normal DNA.
[0447] Circulating Tumor DNA and RNA Assays. Blood-based ctRNA and ctDNA testing identify targets and monitor changes in targets. During treatment, 20 mL of whole blood are collected at baseline and weeks 3, 6, and 8 for analysis of circulating DNA and RNA. Whole blood is drawn into Cell-Free RNA BCT.RTM. tubes or Cell-Free DNA BCT.RTM. tubes containing RNA or DNA stabilizers, respectively (TABLE 8).
TABLE-US-00008 TABLE 8 Schedule of Collection for Exploratory Molecular Profiling Weeks 3, 6, Exploratory Molecular Profiling Baseline and 8 Whole blood (normal comparator against tumor) 1 PAXgene Blood DNA tube (2.5 mL).sup.a X 1 Streck Cell-Free RNA BCT .RTM. (10.0 mL) X X 1 Streck Cell-Free DNA BCT .RTM. (10.0 mL) X X Formalin-fixed, paraffin-embedded tumor tissue.sup.b A minimum tissue surface area of 25 mm.sup.2, X 75 thick, with at least 30% malignant tissue .sup.aWhole blood to be collected at screening only for genomic sequencing. Requires 2.5 mL of subject's whole blood in 1 PAXgene Blood DNA tube, provided in the Blood Specimen Kit. .sup.bFFPE tissue block to be collected at screening for genomic sequencing, RNA sequencing, and proteomic analysis. A single block meeting the minimum requirements for genomics, transcriptomics, and proteomics is required. A historic FFPE tissue block is acceptable if the specimen was taken following the completion of the subject's most recent anti-cancer therapy. Otherwise, a fresh biopsy specimen will need to be obtained and prepared as an FFPE tissue block, and collected per local pathology laboratory procedures. Optional tissue will be requested at week 8.
Statistical Considerations
[0448] Safety Analysis. DLTs are evaluated continuously in a cohort. An overall assessment of whether to escalate to the next dose level is made at least 3 weeks after the last subject in the previous cohort has received their first injection. A dose level is considered safe if <33% of subjects treated at a dose level experience a DLT (i.e., 0 of 3, .ltoreq.1 of 6, .ltoreq.2 of 9, .ltoreq.3 of 12, .ltoreq.4 of 15, or .ltoreq.5 of 18 subjects). Safety is evaluated in 3 or 6 subjects at each dose level in the dose escalation component of the study. Safety will continue to be monitored among additional subjects treated at the MTD in the dose expansion component of the study. A subject is considered evaluable for safety if treated with at least one injection. DLTs are observed through 9 weeks to accommodate the safety evaluation of multiple treatments.
[0449] Overall safety is assessed by descriptive analyses using tabulated frequencies of AEs by grade using CTCAE Version 4.03 within dose cohorts and for the overall study population in terms of treatment-emergent AEs, SAEs, and clinically significant changes in safety laboratory tests, physical examinations, ECGs, vital signs.
[0450] Efficacy Analysis--Obejctive Tumor Response and Disease Control Rate. The percentage of subjects that achieve an objective confirmed complete or partial overall tumor response using RECIST Version 1.1 is evaluated by dose cohort and overall. The 95% confidence interval of the response rate is evaluated. Disease control (confirmed response or SD lasting for at least 4 months) is analyzed in a similar manner.
[0451] Efficacy Analysis--Duration of Response. The duration of the overall response is evaluated by dose cohort and overall. The duration of overall response is measured from the time measurement criteria are met for CR or PR (whichever is first recorded) until the first date that recurrent or PD is objectively documented (taking as reference for PD the smallest measurements recorded since the treatment started).
[0452] Efficacy Analysis--Progression-Free Survival. PFS is evaluated by dose cohort and overall using Kaplan-Meier methods. PFS is defined as the time from the date of first treatment to the date of disease progression or death (any cause) whichever occurs first. Subjects who do not have disease progression or have not died at the end of follow up are censored at the last known date the subject was progression free.
[0453] Efficacy Analysis--Overall Survival. OS is evaluated by dose cohort and overall using the Kaplan-Meier method. OS is defined as the time from the date of first treatment to the date of death from any cause. Subjects who are alive at the end of follow up are censored at the last known date alive.
[0454] Efficacy Analysis--Exploratory Immune Response Analysis. The percentage of subjects with a positive immune response is evaluated by dose cohorts and overall. A positive immune response is defined by flow cytometric readout (cytokine production or CD107a expression) or ELISpot analysis or CMI reactivity in ex vivo stimulation assays.
[0455] Efficacy Analysis--Statistical Power and Analysis Plan. For ELISpot CMI studies, groups of at least five total PBMC samples from individual patients in the phase 1 cohorts appropriately power the studies. Assuming non-specific and/or background activity results in 10 (.+-.10 SD) IFN-.gamma. spot forming cells (SFC) from baseline PBMC samples versus a minimum of 50 (.+-.10 SD) SFC observed from treatment PBMC samples in ELISpot CMI determinations, the statistical power is >95% for a 95% confidence interval. In flow cytometry studies and based on prior studies with mouse spleen cell samples, a TNF-.alpha. and/or IFN-.gamma. expressing cell has an assumed background response of approximately 0.1% (.+-.0.4 SD) for CD4.sup.+/CD8.sup.+ lymphocytes from PBMC baseline samples. After treatments, a TNF-.alpha., IFN-.gamma., and/or CD107a expression of at least 0.6% (.+-.0.4 SD) is detected. Groups of at least 5 total samples from individual patients in the phase 1 cohorts for these flow cytometry studies will give a statistical power of 80% for a 95% confidence interval.
[0456] Statistical analyses of data are performed. For ELISpot analyses on individual PBMC samples, Student T tests (PRISM software) are performed among the treatment samples to determine any significant differences. For flow cytometry analyses on individual PBMC samples, Student T tests are performed on percentages of TNF-.alpha., INF-.gamma., and/or CD107a and/or IFN-.gamma. expressing cells among the treatment samples to determine any significant differences in cell populations.
[0457] Determination of Sample Size. It is expected that up to 12 subjects are enrolled in the Phase lb study with three to six subjects sequentially enrolled starting at dose level 1. In the Phase 2 study, 20 subjects for each indication are enrolled and treated at the MTD determined in Phase 1b. Subjects from the Phase lb study who were treated at the MTD are included in the Phase 2 enrollment targets.
Example 6
Treatment of Cancer with Ad5 [E1- E2b-]-CEA(6D) Vaccine in Combination with ALT-803 Therapy
[0458] This example describes treatment of cancer in a subject in need thereof with Ad5 [E1-, E2b-]-CEA(6D) vaccine in combination with ALT-803 therapy. Subjects with CEA-expressing tumors are immunized with the Ad5[E1-, E2b-]-CEA vaccine. The Ad5[E1-, E2b-]-CEA vaccine is administered at a dose of 5.times.10.sup.11 virus particles (VPs) by subcutaneous (SC) injection. Vaccinations are repeated up to 3 times total over a 3-week period. The Ad5[E1-, E2b-]-CEA vaccine is administered on days 7, 14, and 21, respectively. Subjects are also administered a super-agonist/super-agonist complex, such as ALT-803, at a dose of 1 .mu.g SC on days 10 and 17, respectively.
[0459] Subjects in need thereof have CEA-expressing cancer cells, such as CEA-expressing colorectal cancer. Subjects are any mammal, such as a human or a non-human primate.
Example 7
Treatment of Cancer with Ad5 [E1- E2b-]-CEA(6D) Vaccine in Combination with ALT-803 Therapy and Engineered NK Cells
[0460] This example describes treatment of cancer in a subject in need thereof with Ad5 [E1-, E2b-]-CEA(6D) vaccine in combination with ALT-803 therapy and engineered NK cells. Subjects with CEA-expressing tumors are immunized with the Ad5[E1-, E2b-]-CEA vaccine. The Ad5[E1-, E2b-]-CEA vaccine is administered at a dose of 5.times.10.sup.11 virus particles (VPs) by subcutaneous (SC) injection. The Ad5[E1-, E2b-]-CEA vaccine is administered on days 7, 14, and 21, respectively. Subjects are also administered ALT-803 at a dose of 1 .mu.g SC on days 10 and 17, respectively.
[0461] Subjects are additionally administered aNK cells. aNK cells are infused intravenously on days 9, 11, 18, 22, 27, and 33 at a dose of 2.times.10.sup.9 cells per treatment. Subjects in need thereof have CEA-expressing cancer cells, such as colorectal cancer. Subjects are any mammal, such as a human or a non-human primate.
Example 8
Treatment of Cancer with Ad5 [E1- E2b-]-CEA(6D) Vaccine in Combination with ALT-803 Therapy and an Anti-CEA Antibody
[0462] This example describes treatment of cancer in a subject in need thereof with Ad5 [E1-, E2b-]-CEA(6D) vaccine in combination with ALT-803 therapy and an anti-CEA antibody. Subjects with CEA-expressing tumors are immunized with the Ad5[E1-, E2b-]-CEA vaccine. The Ad5 [E1-, E2b-]-CEA vaccine is administered at a dose of 5.times.10.sup.11 virus particles (VPs) by subcutaneous (SC) injection. The Ad5 [E1-, E2b-]-CEA vaccine is administered on days 7, 14, and 21, respectively. Subjects are also administered ALT-803 at a dose of 1 .mu.g SC on days 10 and 17, respectively.
[0463] Subjects are additionally administered an anti-CEA antibody, such as a NEO-201 antibody. NEO-201 antibody is infused in subjects at a dose of 3 mg/kg administered IV every on days 1, 15, and 22. This occurs over a 2 to 3-month period. Subjects in need thereof have CEA-expressing cancer cells, such as colorectal cancer. Subjects are any mammal, such as a human or a non-human primate.
Example 9
Treatment of Cancer with Ad5 [E1-, E2b-]-CEA(6D) Vaccine in Combination with ALT-803 Therapy and FOLFOX-B, Avelumab, and NK Cell Therapy
[0464] This example describes treatment of cancer with Ad5 [E1-, E2b-]-CEA(6D) vaccine in combination with ALT-803 therapy and FOLFOX-B, Avelumab, NEO-201 antibody, and NK cell therapy. Subjects with CEA-expressing tumors are immunized with the Ad5 [E1-, E2b-]-CEA vaccine. The Ad5[E1-, E2b-]-CEA vaccine is administered at a dose of 5.times.10.sup.11 virus particles (VPs) by subcutaneous (SC) injection. Vaccinations are repeated up to 3 times total over a 3-week period. The Ad5[E1-, E2b-]-CEA vaccine is administered on days 7, 14, and 21, respectively. Subjects are also administered a super-agonist/super-agonist complex, such as ALT-803, at a dose of 1 .mu.g SC on days 10 and 17, respectively.
[0465] Anti-PD-1 monoclonal antibody, a checkpoint inhibitor, is (avelumab) infused in in order to enhance the vaccine effect. As a routine precaution, subjects enrolled in this trial are observed for 1 hour post infusion, in an area with resuscitation equipment and emergency agents. At all times during avelumab treatment, immediate emergency treatment of an infusion-related reaction or a severe hypersensitivity reaction according to institutional standards must be assured. In order to treat possible anaphylactic reactions, for instance, dexamethasone 10 mg and epinephrine in a 1:1000 dilution or equivalents are available along with equipment for assisted ventilation. Subjects receive intravenous infusion of avelumab over 1 hour (-10 minutes/+20 minutes, i.e., 50 to 80 minutes) as applicable at a dose of 10 mg/kg. Treatment with avelumab starts on the second vaccine treatment 3 weeks after the first vaccine injection. Alternatively, treatment with avelumab starts concurrently with the first vaccine treatment. An immune response against the CEA tumor-associated antigens (TAAs) is induced and then enhanced by injections with anti-PD-1 that will interfere with the inhibitory effect of the immune checkpoint pathway. Anti-PD-1 antibody is injected into subjects at a dose of 3 mg/kg administered IV after a vaccination beginning on week 3. This infusion (injection) procedure is repeated on weeks 9 and 12.
[0466] Following Avelumab administration, FOLFOX therapy is administered intravenously. Oxaliplatin 85 mg/m.sup.2 is administered IV over 2 hours on day 1 or 2, Leucovorin*400 mg/m.sup.2 is administered IV over 2 hours on day 1 or 2, 5-FU*400 mg/m.sup.2 is administered IV bolus on day 1 or 2, and 5-FU*2400 mg/m.sup.2 is administered IV over 46 hours to start on day 1 or 2.5-Fluorouracil and leucovorin should be administered separately to avoid the formation of a precipitate. Per package insert, leucovorin is administered first.
[0467] Engineered NK cells, specifically aNK cells, are infused on days 9, 11, 18, 22, 27, and 33 at a dose of 2.times.10.sup.9 cells per treatment.
[0468] A NEO-201 antibody is infused in subjects at a dose of 3 mg/kg administered IV on days 1, 15, and 22 after infusions with haNK cells delivered to patients above. This occurs over a 2- to 3-month period.
[0469] A subject in need thereof has any stage of disease progression, including metastatic colorectal cancer or advanced stage colorectal cancer. Subjects are any mammal, such as a human or a non-human primate. Administration is performed intravenously by infusion or subcutaneously. Administration of each therapy is given or days, weeks, or months. Therapies are administered once or multiple types, depending on the agent being delivered.
Example 10
Treatment of Cancer with Ad5 [E1-, E2b-]-CEA(6D) Vaccine and ALT-803 Therapy in Combination with Ad5 [E1-, E2b-]-Brachyury and Ad5 [E1-, E2b-]-MUC1
[0470] This example describes treatment of cancer with Ad5 [E1-, E2b-]-CEA(6D) Vaccine and ALT-803 therapy in combination with Ad5 [E1-, E2b-]-Brachyury and Ad5 [E1-, E2b-]-MUC1.The following HLA-A2 and HLA-A24 binding peptides were used in this and other examples: (a) the HLA-A2 binding CEA agonist peptide CAP1-6D (YLSGADLNL (SEQ ID NO: 4)), (b) the HLA-A2 MUC1 agonist peptide P93L (ALWGQDVTSV (SEQ ID NO: 112)), (c) the HLA-A24 binding MUC1 agonist peptide C6A (KYHPMSEYAL (SEQ ID NO: 113)), and (d) the HLA-A2 binding brachyury agonist peptide (WLLPGTSTV (SEQ ID NO: 15)). All peptides were greater than 96% pure. Ad5 [E1-, E2b-]-brachyury, Ad5 [E1-, E2b-]-CEA and Ad5 [E1-, E2b-]-MUC1 were constructed and produced. Briefly, the transgenes were sub-cloned into the E1 region of the Ad5 [E1-, E2b-] vector using a homologous recombination-based approach. The replication deficient virus was propagated in the E.C7 packaging cell line, CsCl.sub.2 purified, and titered. Viral infectious titer was determined as plaque-forming units (PFUs) on an E.C7 cell monolayer. The VP concentration was determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm. The CEA transgene also contained a modified CEA containing the highly immunogenic epitope CAP1-6D. The sequence encoding for the human Brachyury protein (T, NM_003181.3) was modified by introducing the enhancer T-cell HLA-A2 epitope (WLLPGTSTV; SEQ ID NO: 15) and removal of a 25-amino acid fragment involved in DNA binding. The resulting construct was subsequently subcloned into the Ad5 vector to generate the Ad5 [E1-, E2b-]-Brachyury construct. The MUC1 molecule consisted of two regions: the N-terminus (MUC1-n), which is the large extracellular domain of MUC1, and the C-terminus (MUC1-c), which has three regions: a small extracellular domain, a single transmembrane domain, and a cytoplasmic tail. The cytoplasmic tail contained sites for interaction with signaling proteins and acts as an oncogene and a driver of cancer motility, invasiveness and metastasis. For construction of the Ad5 [E1-, E2b-]-MUC1, the entire MUC1 transgene, including eight agonist epitopes, was subcloned into the Ad5 vector. The agonist epitopes included in the Ad5 [E1-, E2b-]-MUC1 vector bind to HLA-A2 (epitope P93L in the N-terminus, V1A and V2A in the VNTR region, and C1A, C2A and C3A in the C-terminus), HLA-A3 (epitope C5A), and HLA-A24 (epitope C6A in the C-terminus). The Tri-Ad5 vaccine was produced by combining of 10.sup.10 VP of Ad5 [E1-, E2b-]-Brachyury, Ad5 [E1-, E2b-]-CEA and Ad5 [E1-, E2b-]-MUC1 at a ratio of 1:1:1 (3.times.10.sup.10 VP total).
[0471] Subjects with CEA-expressing tumors are immunized by subcutaneous injection with a mixture of 5.times.10.sup.11 virus paticles (VPs) of the Ad5[E1-, E2b-]-CEA vaccine, 5.times.10.sup.11 VPs of the Ad5[E1-, E2b-]-Brachyury vaccine, and 5.times.10.sup.11 VPs of the Ad5[E1-, E2b-]-MUC1 vaccine. Vaccinations are repeated up to 3 times total over a 3-week period. The Ad5[E1-, E2b-]-CEA, Ad5[E1-, E2b-]-Brachyury, Ad5[E1-, E2b-]-MUC1 vaccine mixture is administered on days 7, 14, and 21, respectively. Subjects are also administered a super-agonist/super-agonist complex, such as ALT-803, at a dose of 1 .mu.g SC on days 10 and 17, respectively. Subjects in need thereof have CEA-expressing cancer cells, such as CEA-expressing colorectal cancer. Subjects are any mammal, such as a human or a non-human primate.
Example 11
Treatment of Cancer with Ad5 [E1-, E2b-]-CEA(6D) Vaccine in Combination with ALT-803 and a Checkpoint Inhibitor
[0472] This example describes treatment of cancer with Ad5 [E1-, E2b-]-CEA(6D) vaccine in combination with ALT-803 therapy and a checkpoint inhibitor. Subjects with CEA-expressing tumors are immunized with the Ad5 [E1-, E2b-]-CEA vaccine. The Ad5[E1-, E2b-]-CEA vaccine is administered at a dose of 5.times.10.sup.11 virus particles (VPs) by subcutaneous (SC) injection. Vaccinations are repeated up to 3 times total over a 3-week period. The Ad5 [E1-, E2b-]-CEA vaccine is administered on days 7, 14, and 21, respectively. Subjects are also administered a super-agonist/super-agonist complex, such as ALT-803, at a dose of 1 .mu.g SC on days 10 and 17, respectively.
[0473] The checkpoint inhibitor administered in combination therapy is an anti-PD-1 monoclonal antibody, such as Avelumab. An anti-PD-1 monoclonal antibody (avelumab) is infused in in order to enhance the vaccine effect. As a routine precaution, subjects enrolled in this trial are observed for 1 hour post infusion, in an area with resuscitation equipment and emergency agents. At all times during avelumab treatment, immediate emergency treatment of an infusion-related reaction or a severe hypersensitivity reaction according to institutional standards must be assured. In order to treat possible anaphylactic reactions, for instance, dexamethasone 10 mg and epinephrine in a 1:1000 dilution or equivalents are available along with equipment for assisted ventilation. Subjects receive intravenous infusion of avelumab over 1 hour (-10 minutes/+20 minutes, i.e., 50 to 80 minutes) as applicable at a dose of 10 mg/kg. Treatment with avelumab starts on the second vaccine treatment 3 weeks after the first vaccine injection. Alternatively, treatment with avelumab starts concurrently with the first vaccine treatment. An immune response against the CEA tumor-associated antigens (TAAs) is induced and then enhanced by injections with anti-PD-1 that will interfere with the inhibitory effect of the immune checkpoint pathway. Anti-PD-1 antibody is injected into subjects at a dose of 3 mg/kg administered IV after a vaccination beginning on week 3. This infusion (injection) procedure is repeated on weeks 9 and 12.
[0474] A subject in need thereof has any stage of disease progression, including metastatic colorectal cancer or advanced stage colorectal cancer. Subjects are any mammal, such as a human or a non-human primate. Administration is performed intravenously by infusion or subcutaneously. Administration of each therapy is given or days, weeks, or months. Therapies are administered once or multiple types, depending on the agent being delivered.
Example 12
Treatment of Cancer with Ad5 [E1-, E2b-]-CEA(6D) Vaccine in Combination with ALT-803, Low Dose Chemotherapy, and Low Dose Irradiation
[0475] This example describes treatment of cancer with Ad5 [E1-, E2b-]-CEA(6D) vaccine in combination with ALT-803 therapy, low dose chemotherapy, and low dose irradiation. Subjects with CEA-expressing tumors are immunized with the Ad5 [E1-, E2b-]-CEA vaccine. The Ad5[E1-, E2b-]-CEA vaccine is administered at a dose of 5.times.10.sup.11 virus particles (VPs) by subcutaneous (SC) injection. Vaccinations are repeated up to 3 times total over a 3-week period. The Ad5 [E1-, E2b-]-CEA vaccine is administered on days 7, 14, and 21, respectively. Subjects are also administered a super-agonist/super-agonist complex, such as ALT-803, at a dose of 1 .mu.g SC on days 10 and 17, respectively.
[0476] Subjects are also administered low dose chemotherapy. The chemotherapy is cyclophosphamide. The chemotherapy is administered, orally or intravenously, at a dose that is lower than the clinical standard of care dosing. For example, the chemotherapy is administered at 50 mg twice a day (BID) on days 1-5 and 8-12 every 2 weeks for a total of 8 weeks.
[0477] Subjects are also, optionally, administered low dose radiation. The low dose radiation is administered at a dose that is lower than the clinical standard of care dosing. Concurrent sterotactic body radiotherapy (SBRT) at 8 Gy is given on day 8, 22, 36, 50 (every 2 weeks for 4 doses). Radiation is administered to all feasible tumor sites using SBRT. Subjects in need thereof have CEA-expressing cancer, and the cancer is eliminated. Subjects are any mammal, such as a human or a non-human animal.
[0478] While preferred embodiments of the present invention have been shown and described herein, it will be apparent to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
TABLE-US-00009 SEQ ID NO Sequence SEQ ID NO: 1 ATGGAGTCTCCCTCGGCCCCTCCCCACAGATGGTGCATCCCCTGG CAGAGGCTCCTGCTCACAGCCTCACTTCTAACCTTCTGGAACCCG CCCACCACTGCCAAGCTCACTATTGAATCCACGCCGTTCAATGTC GCAGAGGGGAAGGAGGTGCTTCTACTTGTCCACAATCTGCCCCAG CATCTTTTTGGCTACAGCTGGTACAAAGGTGAAAGAGTGGATGGC AACCGTCAAATTATAGGATATGTAATAGGAACTCAACAAGCTACC CCAGGGCCCGCATACAGTGGTCGAGAGATAATATACCCCAATGC ATCCCTGCTGATCCAGAACATCATCCAGAATGACACAGGATTCTA CACCCTACACGTCATAAAGTCAGATCTTGTGAATGAAGAAGCAAC TGGCCAGTTCCGGGTATACCCGGAGCTGCCCAAGCCCTCCATCTC CAGCAACAACTCCAAACCCGTGGAGGACAAGGATGCTGTGGCCT TCACCTGTGAACCTGAGACTCAGGACGCAACCTACCTGTGGTGGG TAAACAATCAGAGCCTCCCGGTCAGTCCCAGGCTGCAGCTGTCCA ATGGCAACAGGACCCTCACTCTATTCAATGTCACAAGAAATGACA CAGCAAGCTACAAATGTGAAACCCAGAACCCAGTGAGTGCCAGG CGCAGTGATTCAGTCATCCTGAATGTCCTCTATGGCCCGGATGCC CCCACCATTTCCCCTCTAAACACATCTTACAGATCAGGGGAAAAT CTGAACCTCTCCTGCCACGCAGCCTCTAACCCACCTGCACAGTAC TCTTGGTTTGTCAATGGGACTTTCCAGCAATCCACCCAAGAGCTCT TTATCCCCAACATCACTGTGAATAATAGTGGATCCTATACGTGCC AAGCCCATAACTCAGACACTGGCCTCAATAGGACCACAGTCACG ACGATCACAGTCTATGCAGAGCCACCCAAACCCTTCATCACCAGC AACAACTCCAACCCCGTGGAGGATGAGGATGCTGTAGCCTTAACC TGTGAACCTGAGATTCAGAACACAACCTACCTGTGGTGGGTAAAT AATCAGAGCCTCCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGAC AACAGGACCCTCACTCTACTCAGTGTCACAAGGAATGATGTAGGA CCCTATGAGTGTGGAATCCAGAACGAATTAAGTGTTGACCACAGC GACCCAGTCATCCTGAATGTCCTCTATGGCCCAGACGACCCCACC ATTTCCCCCTCATACACCTATTACCGTCCAGGGGTGAACCTCAGC CTCTCCTGCCATGCAGCCTCTAACCCACCTGCACAGTATTCTTGGC TGATTGATGGGAACATCCAGCAACACACACAAGAGCTCTTTATCT CCAACATCACTGAGAAGAACAGCGGACTCTATACCTGCCAGGCC AATAACTCAGCCAGTGGCCACAGCAGGACTACAGTCAAGACAAT CACAGTCTCTGCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAA CTCCAAACCCGTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGA ACCTGAGGCTCAGAACACAACCTACCTGTGGTGGGTAAATGGTCA GAGCCTCCCAGTCAGTCCCAGGCTGCAGCTGTCCAATGGCAACAG GACCCTCACTCTATTCAATGTCACAAGAAATGACGCAAGAGCCTA TGTATGTGGAATCCAGAACTCAGTGAGTGCAAACCGCAGTGACCC AGTCACCCTGGATGTCCTCTATGGGCCGGACACCCCCATCATTTC CCCCCCAGACTCGTCTTACCTTTCGGGAGCGAACCTCAACCTCTCC TGCCACTCGGCCTCTAACCCATCCCCGCAGTATTCTTGGCGTATCA ATGGGATACCGCAGCAACACACACAAGTTCTCTTTATCGCCAAAA TCACGCCAAATAATAACGGGACCTATGCCTGTTTTGTCTCTAACTT GGCTACTGGCCGCAATAATTCCATAGTCAAGAGCATCACAGTCTC TGCATCTGGAACTTCTCCTGGTCTCTCAGCTGGGGCCACTGTCGGC ATCATGATTGGAGTGCTGGTTGGGGTTGCTCTGATATAG SEQ ID NO: 2 CATCATCAATAATATACCTTATTTTGGATTGAAGCCAATATGATA ATGAGGGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGG GGCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGT GGCGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTT TGGTGTGCGCCGGTGTACACAGGAAGTGACAATTTTCGCGCGGTT TTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTT GGCCATTTTCGCGGGAAAACTGAATAAGAGGAAGTGAAATCTGA ATAATTTTGTGTTACTCATAGCGCGTAATACTGTAATAGTAATCA ATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTT ACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGAC CCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACG CCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGG TAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGT ACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCAT TATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTAC ATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGC AGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTC CAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACC AAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATA AGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGAGATCTGGT ACCGTCGACGCGGCCGCTCGAGCCTAAGCTTGGTACCGAGCTCGG ATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGGCTTAAAGG TACCCAGAGCAGACAGCCGCCACCATGGAGTCTCCCTCGGCCCCT CCCCACAGATGGTGCATCCCCTGGCAGAGGCTCCTGCTCACAGCC TCACTTCTAACCTTCTGGAACCCGCCCACCACTGCCAAGCTCACT ATTGAATCCACGCCGTTCAATGTCGCAGAGGGGAAGGAGGTGCTT CTACTTGTCCACAATCTGCCCCAGCATCTTTTTGGCTACAGCTGGT ACAAAGGTGAAAGAGTGGATGGCAACCGTCAAATTATAGGATAT GTAATAGGAACTCAACAAGCTACCCCAGGGCCCGCATACAGTGG TCGAGAGATAATATACCCCAATGCATCCCTGCTGATCCAGAACAT CATCCAGAATGACACAGGATTCTACACCCTACACGTCATAAAGTC AGATCTTGTGAATGAAGAAGCAACTGGCCAGTTCCGGGTATACCC GGAGCTGCCCAAGCCCTCCATCTCCAGCAACAACTCCAAACCCGT GGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCA GGACGCAACCTACCTGTGGTGGGTAAACAATCAGAGCCTCCCGGT CAGTCCCAGGCTGCAGCTGTCCAATGGCAACAGGACCCTCACTCT ATTCAATGTCACAAGAAATGACACAGCAAGCTACAAATGTGAAA CCCAGAACCCAGTGAGTGCCAGGCGCAGTGATTCAGTCATCCTGA ATGTCCTCTATGGCCCGGATGCCCCCACCATTTCCCCTCTAAACAC ATCTTACAGATCAGGGGAAAATCTGAACCTCTCCTGCCACGCAGC CTCTAACCCACCTGCACAGTACTCTTGGTTTGTCAATGGGACTTTC CAGCAATCCACCCAAGAGCTCTTTATCCCCAACATCACTGTGAAT AATAGTGGATCCTATACGTGCCAAGCCCATAACTCAGACACTGGC CTCAATAGGACCACAGTCACGACGATCACAGTCTATGCAGAGCCA CCCAAACCCTTCATCACCAGCAACAACTCCAACCCCGTGGAGGAT GAGGATGCTGTAGCCTTAACCTGTGAACCTGAGATTCAGAACACA ACCTACCTGTGGTGGGTAAATAATCAGAGCCTCCCGGTCAGTCCC AGGCTGCAGCTGTCCAATGACAACAGGACCCTCACTCTACTCAGT GTCACAAGGAATGATGTAGGACCCTATGAGTGTGGAATCCAGAA CGAATTAAGTGTTGACCACAGCGACCCAGTCATCCTGAATGTCCT CTATGGCCCAGACGACCCCACCATTTCCCCCTCATACACCTATTAC CGTCCAGGGGTGAACCTCAGCCTCTCCTGCCATGCAGCCTCTAAC CCACCTGCACAGTATTCTTGGCTGATTGATGGGAACATCCAGCAA CACACACAAGAGCTCTTTATCTCCAACATCACTGAGAAGAACAGC GGACTCTATACCTGCCAGGCCAATAACTCAGCCAGTGGCCACAGC AGGACTACAGTCAAGACAATCACAGTCTCTGCGGAGCTGCCCAA GCCCTCCATCTCCAGCAACAACTCCAAACCCGTGGAGGACAAGG ATGCTGTGGCCTTCACCTGTGAACCTGAGGCTCAGAACACAACCT ACCTGTGGTGGGTAAATGGTCAGAGCCTCCCAGTCAGTCCCAGGC TGCAGCTGTCCAATGGCAACAGGACCCTCACTCTATTCAATGTCA CAAGAAATGACGCAAGAGCCTATGTATGTGGAATCCAGAACTCA GTGAGTGCAAACCGCAGTGACCCAGTCACCCTGGATGTCCTCTAT GGGCCGGACACCCCCATCATTTCCCCCCCAGACTCGTCTTACCTTT CGGGAGCGGACCTCAACCTCTCCTGCCACTCGGCCTCTAACCCAT CCCCGCAGTATTCTTGGCGTATCAATGGGATACCGCAGCAACACA CACAAGTTCTCTTTATCGCCAAAATCACGCCAAATAATAACGGGA CCTATGCCTGTTTTGTCTCTAACTTGGCTACTGGCCGCAATAATTC CATAGTCAAGAGCATCACAGTCTCTGCATCTGGAACTTCTCCTGG TCTCTCAGCTGGGGCCACTGTCGGCATCATGATTGGAGTGCTGGT TGGGGTTGCTCTGATATAGCAGCCCTGGTGTAGTTTCTTCATTTCA GGAAGACTGACAGTTGTTTTGCTTCTTCCTTAAAGCATTTGCAACA GCTACAGTCTAAAATTGCTTCTTTACCAAGGATATTTACAGAAAA GACTCTGACCAGAGATCGAGACCATCCTCTAGATAAGATATCCGA TCCACCGGATCTAGATAACTGATCATAATCAGCCATACCACATTT GTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGA ACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTAT TGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTT CACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCC AAACTCATCAATGTATCTTAACGCGGATCTGGGCGTGGTTAAGGG TGGGAAAGAATATATAAGGTGGGGGTCTTATGTAGTTTTGTATCT GTTTTGCAGCAGCCGCCGCCGCCATGAGCACCAACTCGTTTGATG GAAGCATTGTGAGCTCATATTTGACAACGCGCATGCCCCCATGGG CCGGGGTGCGTCAGAATGTGATGGGCTCCAGCATTGATGGTCGCC CCGTCCTGCCCGCAAACTCTACTACCTTGACCTACGAGACCGTGT CTGGAACGCCGTTGGAGACTGCAGCCTCCGCCGCCGCTTCAGCCG CTGCAGCCACCGCCCGCGGGATTGTGACTGACTTTGCTTTCCTGA GCCCGCTTGCAAGCAGTGCAGCTTCCCGTTCATCCGCCCGCGATG ACAAGTTGACGGCTCTTTTGGCACAATTGGATTCTTTGACCCGGG AACTTAATGTCGTTTCTCAGCAGCTGTTGGATCTGCGCCAGCAGG TTTCTGCCCTGAAGGCTTCCTCCCCTCCCAATGCGGTTTAAAACAT AAATAAAAAACCAGACTCTGTTTGGATTTGGATCAAGCAAGTGTC TTGCTGTCTTTATTTAGGGGTTTTGCGCGCGCGGTAGGCCCGGGA CCAGCGGTCTCGGTCGTTGAGGGTCCTGTGTATTTTTTCCAGGACG TGGTAAAGGTGACTCTGGATGTTCAGATACATGGGCATAAGCCCG TCTCTGGGGTGGAGGTAGCACCACTGCAGAGCTTCATGCTGCGGG GTGGTGTTGTAGATGATCCAGTCGTAGCAGGAGCGCTGGGCGTGG TGCCTAAAAATGTCTTTCAGTAGCAAGCTGATTGCCAGGGGCAGG CCCTTGGTGTAAGTGTTTACAAAGCGGTTAAGCTGGGATGGGTGC ATACGTGGGGATATGAGATGCATCTTGGACTGTATTTTTAGGTTG GCTATGTTCCCAGCCATATCCCTCCGGGGATTCATGTTGTGCAGA ACCACCAGCACAGTGTATCCGGTGCACTTGGGAAATTTGTCATGT AGCTTAGAAGGAAATGCGTGGAAGAACTTGGAGACGCCCTTGTG ACCTCCAAGATTTTCCATGCATTCGTCCATAATGATGGCAATGGG CCCACGGGCGGCGGCCTGGGCGAAGATATTTCTGGGATCACTAAC GTCATAGTTGTGTTCCAGGATGAGATCGTCATAGGCCATTTTTAC AAAGCGCGGGCGGAGGGTGCCAGACTGCGGTATAATGGTTCCAT CCGGCCCAGGGGCGTAGTTACCCTCACAGATTTGCATTTCCCACG CTTTGAGTTCAGATGGGGGGATCATGTCTACCTGCGGGGCGATGA AGAAAACGGTTTCCGGGGTAGGGGAGATCAGCTGGGAAGAAAGC AGGTTCCTGAGCAGCTGCGACTTACCGCAGCCGGTGGGCCCGTAA ATCACACCTATTACCGGCTGCAACTGGTAGTTAAGAGAGCTGCAG CTGCCGTCATCCCTGAGCAGGGGGGCCACTTCGTTAAGCATGTCC CTGACTCGCATGTTTTCCCTGACCAAATCCGCCAGAAGGCGCTCG CCGCCCAGCGATAGCAGTTCTTGCAAGGAAGCAAAGTTTTTCAAC GGTTTGAGACCGTCCGCCGTAGGCATGCTTTTGAGCGTTTGACCA AGCAGTTCCAGGCGGTCCCACAGCTCGGTCACCTGCTCTACGGCA TCTCGATCCAGCATATCTCCTCGTTTCGCGGGTTGGGGCGGCTTTC GCTGTACGGCAGTAGTCGGTGCTCGTCCAGACGGGCCAGGGTCAT GTCTTTCCACGGGCGCAGGGTCCTCGTCAGCGTAGTCTGGGTCAC GGTGAAGGGGTGCGCTCCGGGCTGCGCGCTGGCCAGGGTGCGCTT GAGGCTGGTCCTGCTGGTGCTGAAGCGCTGCCGGTCTTCGCCCTG CGCGTCGGCCAGGTAGCATTTGACCATGGTGTCATAGTCCAGCCC CTCCGCGGCGTGGCCCTTGGCGCGCAGCTTGCCCTTGGAGGAGGC GCCGCACGAGGGGCAGTGCAGACTTTTGAGGGCGTAGAGCTTGG GCGCGAGAAATACCGATTCCGGGGAGTAGGCATCCGCGCCGCAG GCCCCGCAGACGGTCTCGCATTCCACGAGCCAGGTGAGCTCTGGC CGTTCGGGGTCAAAAACCAGGTTTCCCCCATGCTTTTTGATGCGTT TCTTACCTCTGGTTTCCATGAGCCGGTGTCCACGCTCGGTGACGA AAAGGCTGTCCGTGTCCCCGTATACAGACTTGAGAGGCCTGTCCT CGAGCGGTGTTCCGCGGTCCTCCTCGTATAGAAACTCGGACCACT CTGAGACAAAGGCTCGCGTCCAGGCCAGCACGAAGGAGGCTAAG TGGGAGGGGTAGCGGTCGTTGTCCACTAGGGGGTCCACTCGCTCC AGGGTGTGAAGACACATGTCGCCCTCTTCGGCATCAAGGAAGGTG ATTGGTTTGTAGGTGTAGGCCACGTGACCGGGTGTTCCTGAAGGG GGGCTATAAAAGGGGGTGGGGGCGCGTTCGTCCTCACTCTCTTCC GCATCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTC TGAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAA AACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTG AGGGTGGCCGCATCCATCTGGTCAGAAAAGACAATCTTTTTGTTG TCAAGCTTGGTGGCAAACGACCCGTAGAGGGCGTTGGACAGCAA CTTGGCGATGGAGCGCAGGGTTTGGTTTTTGTCGCGATCGGCGCG CTCCTTGGCCGCGATGTTTAGCTGCACGTATTCGCGCGCAACGCA CCGCCATTCGGGAAAGACGGTGGTGCGCTCGTCGGGCACCAGGT GCACGCGCCAACCGCGGTTGTGCAGGGTGACAAGGTCAACGCTG GTGGCTACCTCTCCGCGTAGGCGCTCGTTGGTCCAGCAGAGGCGG CCGCCCTTGCGCGAGCAGAATGGCGGTAGGGGGTCTAGCTGCGTC TCGTCCGGGGGGTCTGCGTCCACGGTAAAGACCCCGGGCAGCAG GCGCGCGTCGAAGTAGTCTATCTTGCATCCTTGCAAGTCTAGCGC CTGCTGCCATGCGCGGGCGGCAAGCGCGCGCTCGTATGGGTTGAG TGGGGGACCCCATGGCATGGGGTGGGTGAGCGCGGAGGCGTACA TGCCGCAAATGTCGTAAACGTAGAGGGGCTCTCTGAGTATTCCAA GATATGTAGGGTAGCATCTTCCACCGCGGATGCTGGCGCGCACGT AATCGTATAGTTCGTGCGAGGGAGCGAGGAGGTCGGGACCGAGG TTGCTACGGGCGGGCTGCTCTGCTCGGAAGACTATCTGCCTGAAG ATGGCATGTGAGTTGGATGATATGGTTGGACGCTGGAAGACGTTG AAGCTGGCGTCTGTGAGACCTACCGCGTCACGCACGAAGGAGGC GTAGGAGTCGCGCAGCTTGTTGACCAGCTCGGCGGTGACCTGCAC GTCTAGGGCGCAGTAGTCCAGGGTTTCCTTGATGATGTCATACTT ATCCTGTCCCTTTTTTTTCCACAGCTCGCGGTTGAGGACAAACTCT TCGCGGTCTTTCCAGTACTCTTGGATCGGAAACCCGTCGGCCTCC GAACGGTAAGAGCCTAGCATGTAGAACTGGTTGACGGCCTGGTA GGCGCAGCATCCCTTTTCTACGGGTAGCGCGTATGCCTGCGCGGC CTTCCGGCATGACCAGCATGAAGGGCACGAGCTGCTTCCCAAAGG CCCCCATCCAAGTATAGGTCTCTACATCGTAGGTGACAAAGAGAC GCTCGGTGCGAGGATGCGAGCCGATCGGGAAGAACTGGATCTCC CGCCACCAATTGGAGGAGTGGCTATTGATGTGGTGAAAGTAGAA GTCCCTGCGACGGGCCGAACACTCGTGCTGGCTTTTGTAAAAACG TGCGCAGTACTGGCAGCGGTGCACGGGCTGTACATCCTGCACGAG GTTGACCTGACGACCGCGCACAAGGAAGCAGAGTGGGAATTTGA GCCCCTCGCCTGGCGGGTTTGGCTGGTGGTCTTCTACTTCGGCTGC TTGTCCTTGACCGTCTGGCTGCTCGAGGGGAGTTACGGTGGATCG GACCACCACGCCGCGCGAGCCCAAAGTCCAGATGTCCGCGCGCG GCGGTCGGAGCTTGATGACAACATCGCGCAGATGGGAGCTGTCC ATGGTCTGGAGCTCCCGCGGCGTCAGGTCAGGCGGGAGCTCCTGC AGGTTTACCTCGCATAGACGGGTCAGGGCGCGGGCTAGATCCAG GTGATACCTAATTTCCAGGGGCTGGTTGGTGGCGGCGTCGATGGC TTGCAAGAGGCCGCATCCCCGCGGCGCGACTACGGTACCGCGCG GCGGGCGGTGGGCCGCGGGGGTGTCCTTGGATGATGCATCTAAA AGCGGTGACGCGGGCGAGCCCCCGGAGGTAGGGGGGGCTCCGGA CCCGCCGGGAGAGGGGGCAGGGGCACGTCGGCGCCGCGCGCGGG CAGGAGCTGGTGCTGCGCGCGTAGGTTGCTGGCGAACGCGACGA CGCGGCGGTTGATCTCCTGAATCTGGCGCCTCTGCGTGAAGACGA CGGGCCCGGTGAGCTTGAACCTGAAAGAGAGTTCGACAGAATCA ATTTCGGTGTCGTTGACGGCGGCCTGGCGCAAAATCTCCTGCACG TCTCCTGAGTTGTCTTGATAGGCGATCTCGGCCATGAACTGCTCG ATCTCTTCCTCCTGGAGATCTCCGCGTCCGGCTCGCTCCACGGTGG CGGCGAGGTCGTTGGAAATGCGGGCCATGAGCTGCGAGAAGGCG TTGAGGCCTCCCTCGTTCCAGACGCGGCTGTAGACCACGCCCCCT TCGGCATCGCGGGCGCGCATGACCACCTGCGCGAGATTGAGCTCC ACGTGCCGGGCGAAGACGGCGTAGTTTCGCAGGCGCTGAAAGAG GTAGTTGAGGGTGGTGGCGGTGTGTTCTGCCACGAAGAAGTACAT AACCCAGCGTCGCAACGTGGATTCGTTGATAATTGTTGTGTAGGT ACTCCGCCGCCGAGGGACCTGAGCGAGTCCGCATCGACCGGATC GGAAAACCTCTCGAGAAAGGCGTCTAACCAGTCACAGTCGCAAG GTAGGCTGAGCACCGTGGCGGGCGGCAGCGGGCGGCGGTCGGGG TTGTTTCTGGCGGAGGTGCTGCTGATGATGTAATTAAAGTAGGCG GTCTTGAGACGGCGGATGGTCGACAGAAGCACCATGTCCTTGGGT CCGGCCTGCTGAATGCGCAGGCGGTCGGCCATGCCCCAGGCTTCG
TTTTGACATCGGCGCAGGTCTTTGTAGTAGTCTTGCATGAGCCTTT CTACCGGCACTTCTTCTTCTCCTTCCTCTTGTCCTGCATCTCTTGCA TCTATCGCTGCGGCGGCGGCGGAGTTTGGCCGTAGGTGGCGCCCT CTTCCTCCCATGCGTGTGACCCCGAAGCCCCTCATCGGCTGAAGC AGGGCTAGGTCGGCGACAACGCGCTCGGCTAATATGGCCTGCTGC ACCTGCGTGAGGGTAGACTGGAAGTCATCCATGTCCACAAAGCG GTGGTATGCGCCCGTGTTGATGGTGTAAGTGCAGTTGGCCATAAC GGACCAGTTAACGGTCTGGTGACCCGGCTGCGAGAGCTCGGTGTA CCTGAGACGCGAGTAAGCCCTCGAGTCAAATACGTAGTCGTTGCA AGTCCGCACCAGGTACTGGTATCCCACCAAAAAGTGCGGCGGCG GCTGGCGGTAGAGGGGCCAGCGTAGGGTGGCCGGGGCTCCGGGG GCGAGATCTTCCAACATAAGGCGATGATATCCGTAGATGTACCTG GACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGAAA GTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAAAAAGTGCTC CATGGTCGGGACGCTCTGGCCGGTCAGGCGCGCGCAATCGTTGAC GCTCTAGCGTGCAAAAGGAGAGCCTGTAAGCGGGCACTCTTCCGT GGTCTGGTGGATAAATTCGCAAGGGTATCATGGCGGACGACCGG GGTTCGAGCCCCGTATCCGGCCGTCCGCCGTGATCCATGCGGTTA CCGCCCGCGTGTCGAACCCAGGTGTGCGACGTCAGACAACGGGG GAGTGCTCCTTTTGGCTTCCTTCCAGGCGCGGCGGCTGCTGCGCTA GCTTTTTTGGCCACTGGCCGCGCGCAGCGTAAGCGGTTAGGCTGG AAAGCGAAAGCATTAAGTGGCTCGCTCCCTGTAGCCGGAGGGTTA TTTTCCAAGGGTTGAGTCGCGGGACCCCCGGTTCGAGTCTCGGAC CGGCCGGACTGCGGCGAACGGGGGTTTGCCTCCCCGTCATGCAAG ACCCCGCTTGCAAATTCCTCCGGAAACAGGGACGAGCCCCTTTTT TGCTTTTCCCAGATGCATCCGGTGCTGCGGCAGATGCGCCCCCCT CCTCAGCAGCGGCAAGAGCAAGAGCAGCGGCAGACATGCAGGGC ACCCTCCCCTCCTCCTACCGCGTCAGGAGGGGCGACATCCGCGGT TGACGCGGCAGCAGATGGTGATTACGAACCCCCGCGGCGCCGGG CCCGGCACTACCTGGACTTGGAGGAGGGCGAGGGCCTGGCGCGG CTAGGAGCGCCCTCTCCTGAGCGGCACCCAAGGGTGCAGCTGAA GCGTGATACGCGTGAGGCGTACGTGCCGCGGCAGAACCTGTTTCG CGACCGCGAGGGAGAGGAGCCCGAGGAGATGCGGGATCGAAAGT TCCACGCAGGGCGCGAGCTGCGGCATGGCCTGAATCGCGAGCGG TTGCTGCGCGAGGAGGACTTTGAGCCCGACGCGCGAACCGGGATT AGTCCCGCGCGCGCACACGTGGCGGCCGCCGACCTGGTAACCGC ATACGAGCAGACGGTGAACCAGGAGATTAACTTTCAAAAAAGCT TTAACAACCACGTGCGTACGCTTGTGGCGCGCGAGGAGGTGGCTA TAGGACTGATGCATCTGTGGGACTTTGTAAGCGCGCTGGAGCAAA ACCCAAATAGCAAGCCGCTCATGGCGCAGCTGTTCCTTATAGTGC AGCACAGCAGGGACAACGAGGCATTCAGGGATGCGCTGCTAAAC ATAGTAGAGCCCGAGGGCCGCTGGCTGCTCGATTTGATAAACATC CTGCAGAGCATAGTGGTGCAGGAGCGCAGCTTGAGCCTGGCTGA CAAGGTGGCCGCCATCAACTATTCCATGCTTAGCCTGGGCAAGTT TTACGCCCGCAAGATATACCATACCCCTTACGTTCCCATAGACAA GGAGGTAAAGATCGAGGGGTTCTACATGCGCATGGCGCTGAAGG TGCTTACCTTGAGCGACGACCTGGGCGTTTATCGCAACGAGCGCA TCCACAAGGCCGTGAGCGTGAGCCGGCGGCGCGAGCTCAGCGAC CGCGAGCTGATGCACAGCCTGCAAAGGGCCCTGGCTGGCACGGG CAGCGGCGATAGAGAGGCCGAGTCCTACTTTGACGCGGGCGCTG ACCTGCGCTGGGCCCCAAGCCGACGCGCCCTGGAGGCAGCTGGG GCCGGACCTGGGCTGGCGGTGGCACCCGCGCGCGCTGGCAACGT CGGCGGCGTGGAGGAATATGACGAGGACGATGAGTACGAGCCAG AGGACGGCGAGTACTAAGCGGTGATGTTTCTGATCAGATGATGCA AGACGCAACGGACCCGGCGGTGCGGGCGGCGCTGCAGAGCCAGC CGTCCGGCCTTAACTCCACGGACGACTGGCGCCAGGTCATGGACC GCATCATGTCGCTGACTGCGCGCAATCCTGACGCGTTCCGGCAGC AGCCGCAGGCCAACCGGCTCTCCGCAATTCTGGAAGCGGTGGTCC CGGCGCGCGCAAACCCCACGCACGAGAAGGTGCTGGCGATCGTA AACGCGCTGGCCGAAAACAGGGCCATCCGGCCCGACGAGGCCGG CCTGGTCTACGACGCGCTGCTTCAGCGCGTGGCTCGTTACAACAG CGGCAACGTGCAGACCAACCTGGACCGGCTGGTGGGGGATGTGC GCGAGGCCGTGGCGCAGCGTGAGCGCGCGCAGCAGCAGGGCAAC CTGGGCTCCATGGTTGCACTAAACGCCTTCCTGAGTACACAGCCC GCCAACGTGCCGCGGGGACAGGAGGACTACACCAACTTTGTGAG CGCACTGCGGCTAATGGTGACTGAGACACCGCAAAGTGAGGTGT ACCAGTCTGGGCCAGACTATTTTTTCCAGACCAGTAGACAAGGCC TGCAGACCGTAAACCTGAGCCAGGCTTTCAAAAACTTGCAGGGGC TGTGGGGGGTGCGGGCTCCCACAGGCGACCGCGCGACCGTGTCTA GCTTGCTGACGCCCAACTCGCGCCTGTTGCTGCTGCTAATAGCGC CCTTCACGGACAGTGGCAGCGTGTCCCGGGACACATACCTAGGTC ACTTGCTGACACTGTACCGCGAGGCCATAGGTCAGGCGCATGTGG ACGAGCATACTTTCCAGGAGATTACAAGTGTCAGCCGCGCGCTGG GGCAGGAGGACACGGGCAGCCTGGAGGCAACCCTAAACTACCTG CTGACCAACCGGCGGCAGAAGATCCCCTCGTTGCACAGTTTAAAC AGCGAGGAGGAGCGCATTTTGCGCTACGTGCAGCAGAGCGTGAG CCTTAACCTGATGCGCGACGGGGTAACGCCCAGCGTGGCGCTGGA CATGACCGCGCGCAACATGGAACCGGGCATGTATGCCTCAAACC GGCCGTTTATCAACCGCCTAATGGACTACTTGCATCGCGCGGCCG CCGTGAACCCCGAGTATTTCACCAATGCCATCTTGAACCCGCACT GGCTACCGCCCCCTGGTTTCTACACCGGGGGATTCGAGGTGCCCG AGGGTAACGATGGATTCCTCTGGGACGACATAGACGACAGCGTG TTTTCCCCGCAACCGCAGACCCTGCTAGAGTTGCAACAGCGCGAG CAGGCAGAGGCGGCGCTGCGAAAGGAAAGCTTCCGCAGGCCAAG CAGCTTGTCCGATCTAGGCGCTGCGGCCCCGCGGTCAGATGCTAG TAGCCCATTTCCAAGCTTGATAGGGTCTCTTACCAGCACTCGCAC CACCCGCCCGCGCCTGCTGGGCGAGGAGGAGTACCTAAACAACT CGCTGCTGCAGCCGCAGCGCGAAAAAAACCTGCCTCCGGCATTTC CCAACAACGGGATAGAGAGCCTAGTGGACAAGATGAGTAGATGG AAGACGTACGCGCAGGAGCACAGGGACGTGCCAGGCCCGCGCCC GCCCACCCGTCGTCAAAGGCACGACCGTCAGCGGGGTCTGGTGTG GGAGGACGATGACTCGGCAGACGACAGCAGCGTCCTGGATTTGG GAGGGAGTGGCAACCCGTTTGCGCACCTTCGCCCCAGGCTGGGGA GAATGTTTTAAAAAAAAAAAAGCATGATGCAAAATAAAAAACTC ACCAAGGCCATGGCACCGAGCGTTGGTTTTCTTGTATTCCCCTTAG TATGCGGCGCGCGGCGATGTATGAGGAAGGTCCTCCTCCCTCCTA CGAGAGTGTGGTGAGCGCGGCGCCAGTGGCGGCGGCGCTGGGTT CTCCCTTCGATGCTCCCCTGGACCCGCCGTTTGTGCCTCCGCGGTA CCTGCGGCCTACCGGGGGGAGAAACAGCATCCGTTACTCTGAGTT GGCACCCCTATTCGACACCACCCGTGTGTACCTGGTGGACAACAA GTCAACGGATGTGGCATCCCTGAACTACCAGAACGACCACAGCA ACTTTCTGACCACGGTCATTCAAAACAATGACTACAGCCCGGGGG AGGCAAGCACACAGACCATCAATCTTGACGACCGGTCGCACTGG GGCGGCGACCTGAAAACCATCCTGCATACCAACATGCCAAATGTG AACGAGTTCATGTTTACCAATAAGTTTAAGGCGCGGGTGATGGTG TCGCGCTTGCCTACTAAGGACAATCAGGTGGAGCTGAAATACGAG TGGGTGGAGTTCACGCTGCCCGAGGGCAACTACTCCGAGACCATG ACCATAGACCTTATGAACAACGCGATCGTGGAGCACTACTTGAAA GTGGGCAGACAGAACGGGGTTCTGGAAAGCGACATCGGGGTAAA GTTTGACACCCGCAACTTCAGACTGGGGTTTGACCCCGTCACTGG TCTTGTCATGCCTGGGGTATATACAAACGAAGCCTTCCATCCAGA CATCATTTTGCTGCCAGGATGCGGGGTGGACTTCACCCACAGCCG CCTGAGCAACTTGTTGGGCATCCGCAAGCGGCAACCCTTCCAGGA GGGCTTTAGGATCACCTACGATGATCTGGAGGGTGGTAACATTCC CGCACTGTTGGATGTGGACGCCTACCAGGCGAGCTTGAAAGATGA CACCGAACAGGGCGGGGGTGGCGCAGGCGGCAGCAACAGCAGTG GCAGCGGCGCGGAAGAGAACTCCAACGCGGCAGCCGCGGCAATG CAGCCGGTGGAGGACATGAACGATCATGCCATTCGCGGCGACAC CTTTGCCACACGGGCTGAGGAGAAGCGCGCTGAGGCCGAAGCAG CGGCCGAAGCTGCCGCCCCCGCTGCGCAACCCGAGGTCGAGAAG CCTCAGAAGAAACCGGTGATCAAACCCCTGACAGAGGACAGCAA GAAACGCAGTTACAACCTAATAAGCAATGACAGCACCTTCACCCA GTACCGCAGCTGGTACCTTGCATACAACTACGGCGACCCTCAGAC CGGAATCCGCTCATGGACCCTGCTTTGCACTCCTGACGTAACCTG CGGCTCGGAGCAGGTCTACTGGTCGTTGCCAGACATGATGCAAGA CCCCGTGACCTTCCGCTCCACGCGCCAGATCAGCAACTTTCCGGT GGTGGGCGCCGAGCTGTTGCCCGTGCACTCCAAGAGCTTCTACAA CGACCAGGCCGTCTACTCCCAACTCATCCGCCAGTTTACCTCTCTG ACCCACGTGTTCAATCGCTTTCCCGAGAACCAGATTTTGGCGCGC CCGCCAGCCCCCACCATCACCACCGTCAGTGAAAACGTTCCTGCT CTCACAGATCACGGGACGCTACCGCTGCGCAACAGCATCGGAGG AGTCCAGCGAGTGACCATTACTGACGCCAGACGCCGCACCTGCCC CTACGTTTACAAGGCCCTGGGCATAGTCTCGCCGCGCGTCCTATC GAGCCGCACTTTTTGAGCAAGCATGTCCATCCTTATATCGCCCAG CAATAACACAGGCTGGGGCCTGCGCTTCCCAAGCAAGATGTTTGG CGGGGCCAAGAAGCGCTCCGACCAACACCCAGTGCGCGTGCGCG GGCACTACCGCGCGCCCTGGGGCGCGCACAAACGCGGCCGCACT GGGCGCACCACCGTCGATGACGCCATCGACGCGGTGGTGGAGGA GGCGCGCAACTACACGCCCACGCCGCCACCAGTGTCCACAGTGG ACGCGGCCATTCAGACCGTGGTGCGCGGAGCCCGGCGCTATGCTA AAATGAAGAGACGGCGGAGGCGCGTAGCACGTCGCCACCGCCGC CGACCCGGCACTGCCGCCCAACGCGCGGCGGCGGCCCTGCTTAAC CGCGCACGTCGCACCGGCCGACGGGCGGCCATGCGGGCCGCTCG AAGGCTGGCCGCGGGTATTGTCACTGTGCCCCCCAGGTCCAGGCG ACGAGCGGCCGCCGCAGCAGCCGCGGCCATTAGTGCTATGACTCA GGGTCGCAGGGGCAACGTGTATTGGGTGCGCGACTCGGTTAGCG GCCTGCGCGTGCCCGTGCGCACCCGCCCCCCGCGCAACTAGATTG CAAGAAAAAACTACTTAGACTCGTACTGTTGTATGTATCCAGCGG CGGCGGCGCGCAACGAAGCTATGTCCAAGCGCAAAATCAAAGAA GAGATGCTCCAGGTCATCGCGCCGGAGATCTATGGCCCCCCGAAG AAGGAAGAGCAGGATTACAAGCCCCGAAAGCTAAAGCGGGTCAA AAAGAAAAAGAAAGATGATGATGATGAACTTGACGACGAGGTGG AACTGCTGCACGCTACCGCGCCCAGGCGACGGGTACAGTGGAAA GGTCGACGCGTAAAACGTGTTTTGCGACCCGGCACCACCGTAGTC TTTACGCCCGGTGAGCGCTCCACCCGCACCTACAAGCGCGTGTAT GATGAGGTGTACGGCGACGAGGACCTGCTTGAGCAGGCCAACGA GCGCCTCGGGGAGTTTGCCTACGGAAAGCGGCATAAGGACATGC TGGCGTTGCCGCTGGACGAGGGCAACCCAACACCTAGCCTAAAG CCCGTAACACTGCAGCAGGTGCTGCCCGCGCTTGCACCGTCCGAA GAAAAGCGCGGCCTAAAGCGCGAGTCTGGTGACTTGGCACCCAC CGTGCAGCTGATGGTACCCAAGCGCCAGCGACTGGAAGATGTCTT GGAAAAAATGACCGTGGAACCTGGGCTGGAGCCCGAGGTCCGCG TGCGGCCAATCAAGCAGGTGGCGCCGGGACTGGGCGTGCAGACC GTGGACGTTCAGATACCCACTACCAGTAGCACCAGTATTGCCACC GCCACAGAGGGCATGGAGACACAAACGTCCCCGGTTGCCTCAGC GGTGGCGGATGCCGCGGTGCAGGCGGTCGCTGCGGCCGCGTCCA AGACCTCTACGGAGGTGCAAACGGACCCGTGGATGTTTCGCGTTT CAGCCCCCCGGCGCCCGCGCCGTTCGAGGAAGTACGGCGCCGCC AGCGCGCTACTGCCCGAATATGCCCTACATCCTTCCATTGCGCCT ACCCCCGGCTATCGTGGCTACACCTACCGCCCCAGAAGACGAGCA ACTACCCGACGCCGAACCACCACTGGAACCCGCCGCCGCCGTCGC CGTCGCCAGCCCGTGCTGGCCCCGATTTCCGTGCGCAGGGTGGCT CGCGAAGGAGGCAGGACCCTGGTGCTGCCAACAGCGCGCTACCA CCCCAGCATCGTTTAAAAGCCGGTCTTTGTGGTTCTTGCAGATATG GCCCTCACCTGCCGCCTCCGTTTCCCGGTGCCGGGATTCCGAGGA AGAATGCACCGTAGGAGGGGCATGGCCGGCCACGGCCTGACGGG CGGCATGCGTCGTGCGCACCACCGGCGGCGGCGCGCGTCGCACC GTCGCATGCGCGGCGGTATCCTGCCCCTCCTTATTCCACTGATCGC CGCGGCGATTGGCGCCGTGCCCGGAATTGCATCCGTGGCCTTGCA GGCGCAGAGACACTGATTAAAAACAAGTTGCATGTGGAAAAATC AAAATAAAAAGTCTGGACTCTCACGCTCGCTTGGTCCTGTAACTA TTTTGTAGAATGGAAGACATCAACTTTGCGTCTCTGGCCCCGCGA CACGGCTCGCGCCCGTTCATGGGAAACTGGCAAGATATCGGCACC AGCAATATGAGCGGTGGCGCCTTCAGCTGGGGCTCGCTGTGGAGC GGCATTAAAAATTTCGGTTCCACCGTTAAGAACTATGGCAGCAAG GCCTGGAACAGCAGCACAGGCCAGATGCTGAGGGATAAGTTGAA AGAGCAAAATTTCCAACAAAAGGTGGTAGATGGCCTGGCCTCTG GCATTAGCGGGGTGGTGGACCTGGCCAACCAGGCAGTGCAAAAT AAGATTAACAGTAAGCTTGATCCCCGCCCTCCCGTAGAGGAGCCT CCACCGGCCGTGGAGACAGTGTCTCCAGAGGGGCGTGGCGAAAA GCGTCCGCGCCCCGACAGGGAAGAAACTCTGGTGACGCAAATAG ACGAGCCTCCCTCGTACGAGGAGGCACTAAAGCAAGGCCTGCCC ACCACCCGTCCCATCGCGCCCATGGCTACCGGAGTGCTGGGCCAG CACACACCCGTAACGCTGGACCTGCCTCCCCCCGCCGACACCCAG CAGAAACCTGTGCTGCCAGGCCCGACCGCCGTTGTTGTAACCCGT CCTAGCCGCGCGTCCCTGCGCCGCGCCGCCAGCGGTCCGCGATCG TTGCGGCCCGTAGCCAGTGGCAACTGGCAAAGCACACTGAACAG CATCGTGGGTCTGGGGGTGCAATCCCTGAAGCGCCGACGATGCTT CTGATAGCTAACGTGTCGTATGTGTGTCATGTATGCGTCCATGTCG CCGCCAGAGGAGCTGCTGAGCCGCCGCGCGCCCGCTTTCCAAGAT GGCTACCCCTTCGATGATGCCGCAGTGGTCTTACATGCACATCTC GGGCCAGGACGCCTCGGAGTACCTGAGCCCCGGGCTGGTGCAGTT TGCCCGCGCCACCGAGACGTACTTCAGCCTGAATAACAAGTTTAG AAACCCCACGGTGGCGCCTACGCACGACGTGACCACAGACCGGT CCCAGCGTTTGACGCTGCGGTTCATCCCTGTGGACCGTGAGGATA CTGCGTACTCGTACAAGGCGCGGTTCACCCTAGCTGTGGGTGATA ACCGTGTGCTGGACATGGCTTCCACGTACTTTGACATCCGCGGCG TGCTGGACAGGGGCCCTACTTTTAAGCCCTACTCTGGCACTGCCT ACAACGCCCTGGCTCCCAAGGGTGCCCCAAATCCTTGCGAATGGG ATGAAGCTGCTACTGCTCTTGAAATAAACCTAGAAGAAGAGGAC GATGACAACGAAGACGAAGTAGACGAGCAAGCTGAGCAGCAAA AAACTCACGTATTTGGGCAGGCGCCTTATTCTGGTATAAATATTA CAAAGGAGGGTATTCAAATAGGTGTCGAAGGTCAAACACCTAAA TATGCCGATAAAACATTTCAACCTGAACCTCAAATAGGAGAATCT CAGTGGTACGAAACAGAAATTAATCATGCAGCTGGGAGAGTCCT AAAAAAGACTACCCCAATGAAACCATGTTACGGTTCATATGCAAA ACCCACAAATGAAAATGGAGGGCAAGGCATTCTTGTAAAGCAAC AAAATGGAAAGCTAGAAAGTCAAGTGGAAATGCAATTTTTCTCA ACTACTGAGGCAGCCGCAGGCAATGGTGATAACTTGACTCCTAAA GTGGTATTGTACAGTGAAGATGTAGATATAGAAACCCCAGACACT CATATTTCTTACATGCCCACTATTAAGGAAGGTAACTCACGAGAA CTAATGGGCCAACAATCTATGCCCAACAGGCCTAATTACATTGCT TTTAGGGACAATTTTATTGGTCTAATGTATTACAACAGCACGGGT AATATGGGTGTTCTGGCGGGCCAAGCATCGCAGTTGAATGCTGTT GTAGATTTGCAAGACAGAAACACAGAGCTTTCATACCAGCTTTTG CTTGATTCCATTGGTGATAGAACCAGGTACTTTTCTATGTGGAATC AGGCTGTTGACAGCTATGATCCAGATGTTAGAATTATTGAAAATC ATGGAACTGAAGATGAACTTCCAAATTACTGCTTTCCACTGGGAG GTGTGATTAATACAGAGACTCTTACCAAGGTAAAACCTAAAACAG GTCAGGAAAATGGATGGGAAAAAGATGCTACAGAATTTTCAGAT AAAAATGAAATAAGAGTTGGAAATAATTTTGCCATGGAAATCAA TCTAAATGCCAACCTGTGGAGAAATTTCCTGTACTCCAACATAGC GCTGTATTTGCCCGACAAGCTAAAGTACAGTCCTTCCAACGTAAA AATTTCTGATAACCCAAACACCTACGACTACATGAACAAGCGAGT GGTGGCTCCCGGGCTAGTGGACTGCTACATTAACCTTGGAGCACG CTGGTCCCTTGACTATATGGACAACGTCAACCCATTTAACCACCA CCGCAATGCTGGCCTGCGCTACCGCTCAATGTTGCTGGGCAATGG TCGCTATGTGCCCTTCCACATCCAGGTGCCTCAGAAGTTCTTTGCC ATTAAAAACCTCCTTCTCCTGCCGGGCTCATACACCTACGAGTGG AACTTCAGGAAGGATGTTAACATGGTTCTGCAGAGCTCCCTAGGA AATGACCTAAGGGTTGACGGAGCCAGCATTAAGTTTGATAGCATT TGCCTTTACGCCACCTTCTTCCCCATGGCCCACAACACCGCCTCCA CGCTTGAGGCCATGCTTAGAAACGACACCAACGACCAGTCCTTTA ACGACTATCTCTCCGCCGCCAACATGCTCTACCCTATACCCGCCA ACGCTACCAACGTGCCCATATCCATCCCCTCCCGCAACTGGGCGG CTTTCCGCGGCTGGGCCTTCACGCGCCTTAAGACTAAGGAAACCC CATCACTGGGCTCGGGCTACGACCCTTATTACACCTACTCTGGCTC TATACCCTACCTAGATGGAACCTTTTACCTCAACCACACCTTTAAG AAGGTGGCCATTACCTTTGACTCTTCTGTCAGCTGGCCTGGCAAT GACCGCCTGCTTACCCCCAACGAGTTTGAAATTAAGCGCTCAGTT GACGGGGAGGGTTACAACGTTGCCCAGTGTAACATGACCAAAGA
CTGGTTCCTGGTACAAATGCTAGCTAACTATAACATTGGCTACCA GGGCTTCTATATCCCAGAGAGCTACAAGGACCGCATGTACTCCTT CTTTAGAAACTTCCAGCCCATGAGCCGTCAGGTGGTGGATGATAC TAAATACAAGGACTACCAACAGGTGGGCATCCTACACCAACACA ACAACTCTGGATTTGTTGGCTACCTTGCCCCCACCATGCGCGAAG GACAGGCCTACCCTGCTAACTTCCCCTATCCGCTTATAGGCAAGA CCGCAGTTGACAGCATTACCCAGAAAAAGTTTCTTTGCGATCGCA CCCTTTGGCGCATCCCATTCTCCAGTAACTTTATGTCCATGGGCGC ACTCACAGACCTGGGCCAAAACCTTCTCTACGCCAACTCCGCCCA CGCGCTAGACATGACTTTTGAGGTGGATCCCATGGACGAGCCCAC CCTTCTTTATGTTTTGTTTGAAGTCTTTGACGTGGTCCGTGTGCAC CAGCCGCACCGCGGCGTCATCGAAACCGTGTACCTGCGCACGCCC TTCTCGGCCGGCAACGCCACAACATAAAGAAGCAAGCAACATCA ACAACAGCTGCCGCCATGGGCTCCAGTGAGCAGGAACTGAAAGC CATTGTCAAAGATCTTGGTTGTGGGCCATATTTTTTGGGCACCTAT GACAAGCGCTTTCCAGGCTTTGTTTCTCCACACAAGCTCGCCTGC GCCATAGTCAATACGGCCGGTCGCGAGACTGGGGGCGTACACTG GATGGCCTTTGCCTGGAACCCGCACTCAAAAACATGCTACCTCTT TGAGCCCTTTGGCTTTTCTGACCAGCGACTCAAGCAGGTTTACCA GTTTGAGTACGAGTCACTCCTGCGCCGTAGCGCCATTGCTTCTTCC CCCGACCGCTGTATAACGCTGGAAAAGTCCACCCAAAGCGTACA GGGGCCCAACTCGGCCGCCTGTGGACTATTCTGCTGCATGTTTCTC CACGCCTTTGCCAACTGGCCCCAAACTCCCATGGATCACAACCCC ACCATGAACCTTATTACCGGGGTACCCAACTCCATGCTCAACAGT CCCCAGGTACAGCCCACCCTGCGTCGCAACCAGGAACAGCTCTAC AGCTTCCTGGAGCGCCACTCGCCCTACTTCCGCAGCCACAGTGCG CAGATTAGGAGCGCCACTTCTTTTTGTCACTTGAAAAACATGTAA AAATAATGTACTAGAGACACTTTCAATAAAGGCAAATGCTTTTAT TTGTACACTCTCGGGTGATTATTTACCCCCACCCTTGCCGTCTGCG CCGTTTAAAAATCAAAGGGGTTCTGCCGCGCATCGCTATGCGCCA CTGGCAGGGACACGTTGCGATACTGGTGTTTAGTGCTCCACTTAA ACTCAGGCACAACCATCCGCGGCAGCTCGGTGAAGTTTTCACTCC ACAGGCTGCGCACCATCACCAACGCGTTTAGCAGGTCGGGCGCCG ATATCTTGAAGTCGCAGTTGGGGCCTCCGCCCTGCGCGCGCGAGT TGCGATACACAGGGTTGCAGCACTGGAACACTATCAGCGCCGGGT GGTGCACGCTGGCCAGCACGCTCTTGTCGGAGATCAGATCCGCGT CCAGGTCCTCCGCGTTGCTCAGGGCGAACGGAGTCAACTTTGGTA GCTGCCTTCCCAAAAAGGGCGCGTGCCCAGGCTTTGAGTTGCACT CGCACCGTAGTGGCATCAAAAGGTGACCGTGCCCGGTCTGGGCGT TAGGATACAGCGCCTGCATAAAAGCCTTGATCTGCTTAAAAGCCA CCTGAGCCTTTGCGCCTTCAGAGAAGAACATGCCGCAAGACTTGC CGGAAAACTGATTGGCCGGACAGGCCGCGTCGTGCACGCAGCAC CTTGCGTCGGTGTTGGAGATCTGCACCACATTTCGGCCCCACCGG TTCTTCACGATCTTGGCCTTGCTAGACTGCTCCTTCAGCGCGCGCT GCCCGTTTTCGCTCGTCACATCCATTTCAATCACGTGCTCCTTATT TATCATAATGCTTCCGTGTAGACACTTAAGCTCGCCTTCGATCTCA GCGCAGCGGTGCAGCCACAACGCGCAGCCCGTGGGCTCGTGATG CTTGTAGGTCACCTCTGCAAACGACTGCAGGTACGCCTGCAGGAA TCGCCCCATCATCGTCACAAAGGTCTTGTTGCTGGTGAAGGTCAG CTGCAACCCGCGGTGCTCCTCGTTCAGCCAGGTCTTGCATACGGC CGCCAGAGCTTCCACTTGGTCAGGCAGTAGTTTGAAGTTCGCCTT TAGATCGTTATCCACGTGGTACTTGTCCATCAGCGCGCGCGCAGC CTCCATGCCCTTCTCCCACGCAGACACGATCGGCACACTCAGCGG GTTCATCACCGTAATTTCACTTTCCGCTTCGCTGGGCTCTTCCTCTT CCTCTTGCGTCCGCATACCACGCGCCACTGGGTCGTCTTCATTCAG CCGCCGCACTGTGCGCTTACCTCCTTTGCCATGCTTGATTAGCACC GGTGGGTTGCTGAAACCCACCATTTGTAGCGCCACATCTTCTCTTT CTTCCTCGCTGTCCACGATTACCTCTGGTGATGGCGGGCGCTCGG GCTTGGGAGAAGGGCGCTTCTTTTTCTTCTTGGGCGCAATGGCCA AATCCGCCGCCGAGGTCGATGGCCGCGGGCTGGGTGTGCGCGGC ACCAGCGCGTCTTGTGATGAGTCTTCCTCGTCCTCGGACTCGATAC GCCGCCTCATCCGCTTTTTTGGGGGCGCCCGGGGAGGCGGCGGCG ACGGGGACGGGGACGACACGTCCTCCATGGTTGGGGGACGTCGC GCCGCACCGCGTCCGCGCTCGGGGGTGGTTTCGCGCTGCTCCTCT TCCCGACTGGCCATTTCCTTCTCCTATAGGCAGAAAAAGATCATG GAGTCAGTCGAGAAGAAGGACAGCCTAACCGCCCCCTCTGAGTTC GCCACCACCGCCTCCACCGATGCCGCCAACGCGCCTACCACCTTC CCCGTCGAGGCACCCCCGCTTGAGGAGGAGGAAGTGATTATCGA GCAGGACCCAGGTTTTGTAAGCGAAGACGACGAGGACCGCTCAG TACCAACAGAGGATAAAAAGCAAGACCAGGACAACGCAGAGGC AAACGAGGAACAAGTCGGGCGGGGGGACGAAAGGCATGGCGAC TACCTAGATGTGGGAGACGACGTGCTGTTGAAGCATCTGCAGCGC CAGTGCGCCATTATCTGCGACGCGTTGCAAGAGCGCAGCGATGTG CCCCTCGCCATAGCGGATGTCAGCCTTGCCTACGAACGCCACCTA TTCTCACCGCGCGTACCCCCCAAACGCCAAGAAAACGGCACATGC GAGCCCAACCCGCGCCTCAACTTCTACCCCGTATTTGCCGTGCCA GAGGTGCTTGCCACCTATCACATCTTTTTCCAAAACTGCAAGATA CCCCTATCCTGCCGTGCCAACCGCAGCCGAGCGGACAAGCAGCTG GCCTTGCGGCAGGGCGCTGTCATACCTGATATCGCCTCGCTCAAC GAAGTGCCAAAAATCTTTGAGGGTCTTGGACGCGACGAGAAGCG CGCGGCAAACGCTCTGCAACAGGAAAACAGCGAAAATGAAAGTC ACTCTGGAGTGTTGGTGGAACTCGAGGGTGACAACGCGCGCCTAG CCGTACTAAAACGCAGCATCGAGGTCACCCACTTTGCCTACCCGG CACTTAACCTACCCCCCAAGGTCATGAGCACAGTCATGAGTGAGC TGATCGTGCGCCGTGCGCAGCCCCTGGAGAGGGATGCAAATTTGC AAGAACAAACAGAGGAGGGCCTACCCGCAGTTGGCGACGAGCAG CTAGCGCGCTGGCTTCAAACGCGCGAGCCTGCCGACTTGGAGGAG CGACGCAAACTAATGATGGCCGCAGTGCTCGTTACCGTGGAGCTT GAGTGCATGCAGCGGTTCTTTGCTGACCCGGAGATGCAGCGCAAG CTAGAGGAAACATTGCACTACACCTTTCGACAGGGCTACGTACGC CAGGCCTGCAAGATCTCCAACGTGGAGCTCTGCAACCTGGTCTCC TACCTTGGAATTTTGCACGAAAACCGCCTTGGGCAAAACGTGCTT CATTCCACGCTCAAGGGCGAGGCGCGCCGCGACTACGTCCGCGAC TGCGTTTACTTATTTCTATGCTACACCTGGCAGACGGCCATGGGC GTTTGGCAGCAGTGCTTGGAGGAGTGCAACCTCAAGGAGCTGCA GAAACTGCTAAAGCAAAACTTGAAGGACCTATGGACGGCCTTCA ACGAGCGCTCCGTGGCCGCGCACCTGGCGGACATCATTTTCCCCG AACGCCTGCTTAAAACCCTGCAACAGGGTCTGCCAGACTTCACCA GTCAAAGCATGTTGCAGAACTTTAGGAACTTTATCCTAGAGCGCT CAGGAATCTTGCCCGCCACCTGCTGTGCACTTCCTAGCGACTTTGT GCCCATTAAGTACCGCGAATGCCCTCCGCCGCTTTGGGGCCACTG CTACCTTCTGCAGCTAGCCAACTACCTTGCCTACCACTCTGACATA ATGGAAGACGTGAGCGGTGACGGTCTACTGGAGTGTCACTGTCGC TGCAACCTATGCACCCCGCACCGCTCCCTGGTTTGCAATTCGCAG CTGCTTAACGAAAGTCAAATTATCGGTACCTTTGAGCTGCAGGGT CCCTCGCCTGACGAAAAGTCCGCGGCTCCGGGGTTGAAACTCACT CCGGGGCTGTGGACGTCGGCTTACCTTCGCAAATTTGTACCTGAG GACTACCACGCCCACGAGATTAGGTTCTACGAAGACCAATCCCGC CCGCCTAATGCGGAGCTTACCGCCTGCGTCATTACCCAGGGCCAC ATTCTTGGCCAATTGCAAGCCATCAACAAAGCCCGCCAAGAGTTT CTGCTACGAAAGGGACGGGGGGTTTACTTGGACCCCCAGTCCGGC GAGGAGCTCAACCCAATCCCCCCGCCGCCGCAGCCCTATCAGCAG CAGCCGCGGGCCCTTGCTTCCCAGGATGGCACCCAAAAAGAAGCT GCAGCTGCCGCCGCCACCCACGGACGAGGAGGAATACTGGGACA GTCAGGCAGAGGAGGTTTTGGACGAGGAGGAGGAGGACATGATG GAAGACTGGGAGAGCCTAGACGAGGAAGCTTCCGAGGTCGAAGA GGTGTCAGACGAAACACCGTCACCCTCGGTCGCATTCCCCTCGCC GGCGCCCCAGAAATCGGCAACCGGTTCCAGCATGGCTACAACCTC CGCTCCTCAGGCGCCGCCGGCACTGCCCGTTCGCCGACCCAACCG TAGATGGGACACCACTGGAACCAGGGCCGGTAAGTCCAAGCAGC CGCCGCCGTTAGCCCAAGAGCAACAACAGCGCCAAGGCTACCGC TCATGGCGCGGGCACAAGAACGCCATAGTTGCTTGCTTGCAAGAC TGTGGGGGCAACATCTCCTTCGCCCGCCGCTTTCTTCTCTACCATC ACGGCGTGGCCTTCCCCCGTAACATCCTGCATTACTACCGTCATCT CTACAGCCCATACTGCACCGGCGGCAGCGGCAGCAACAGCAGCG GCCACACAGAAGCAAAGGCGACCGGATAGCAAGACTCTGACAAA GCCCAAGAAATCCACAGCGGCGGCAGCAGCAGGAGGAGGAGCGC TGCGTCTGGCGCCCAACGAACCCGTATCGACCCGCGAGCTTAGAA ACAGGATTTTTCCCACTCTGTATGCTATATTTCAACAGAGCAGGG GCCAAGAACAAGAGCTGAAAATAAAAAACAGGTCTCTGCGATCC CTCACCCGCAGCTGCCTGTATCACAAAAGCGAAGATCAGCTTCGG CGCACGCTGGAAGACGCGGAGGCTCTCTTCAGTAAATACTGCGCG CTGACTCTTAAGGACTAGTTTCGCGCCCTTTCTCAAATTTAAGCGC GAAAACTACGTCATCTCCAGCGGCCACACCCGGCGCCAGCACCTG TTGTCAGCGCCATTATGAGCAAGGAAATTCCCACGCCCTACATGT GGAGTTACCAGCCACAAATGGGACTTGCGGCTGGAGCTGCCCAA GACTACTCAACCCGAATAAACTACATGAGCGCGGGACCCCACAT GATATCCCGGGTCAACGGAATACGCGCCCACCGAAACCGAATTCT CCTGGAACAGGCGGCTATTACCACCACACCTCGTAATAACCTTAA TCCCCGTAGTTGGCCCGCTGCCCTGGTGTACCAGGAAAGTCCCGC TCCCACCACTGTGGTACTTCCCAGAGACGCCCAGGCCGAAGTTCA GATGACTAACTCAGGGGCGCAGCTTGCGGGCGGCTTTCGTCACAG GGTGCGGTCGCCCGGGCAGGGTATAACTCACCTGACAATCAGAG GGCGAGGTATTCAGCTCAACGACGAGTCGGTGAGCTCCTCGCTTG GTCTCCGTCCGGACGGGACATTTCAGATCGGCGGCGCCGGCCGCT CTTCATTCACGCCTCGTCAGGCAATCCTAACTCTGCAGACCTCGTC CTCTGAGCCGCGCTCTGGAGGCATTGGAACTCTGCAATTTATTGA GGAGTTTGTGCCATCGGTCTACTTTAACCCCTTCTCGGGACCTCCC GGCCACTATCCGGATCAATTTATTCCTAACTTTGACGCGGTAAAG GACTCGGCGGACGGCTACGACTGAATGTTAAGTGGAGAGGCAGA GCAACTGCGCCTGAAACACCTGGTCCACTGTCGCCGCCACAAGTG CTTTGCCCGCGACTCCGGTGAGTTTTGCTACTTTGAATTGCCCGAG GATCATATCGAGGGCCCGGCGCACGGCGTCCGGCTTACCGCCCAG GGAGAGCTTGCCCGTAGCCTGATTCGGGAGTTTACCCAGCGCCCC CTGCTAGTTGAGCGGGACAGGGGACCCTGTGTTCTCACTGTGATT TGCAACTGTCCTAACCCTGGATTACATCAAGATCCTCTAGTTAAT GTCAGGTCGCCTAAGTCGATTAACTAGAGTACCCGGGGATCTTAT TCCCTTTAACTAATAAAAAAAAATAATAAAGCATCACTTACTTAA AATCAGTTAGCAAATTTCTGTCCAGTTTATTCAGCAGCACCTCCTT GCCCTCCTCCCAGCTCTGGTATTGCAGCTTCCTCCTGGCTGCAAAC TTTCTCCACAATCTAAATGGAATGTCAGTTTCCTCCTGTTCCTGTC CATCCGCACCCACTATCTTCATGTTGTTGCAGATGAAGCGCGCAA GACCGTCTGAAGATACCTTCAACCCCGTGTATCCATATGACACGG AAACCGGTCCTCCAACTGTGCCTTTTCTTACTCCTCCCTTTGTATC CCCCAATGGGTTTCAAGAGAGTCCCCCTGGGGTACTCTCTTTGCG CCTATCCGAACCTCTAGTTACCTCCAATGGCATGCTTGCGCTCAA AATGGGCAACGGCCTCTCTCTGGACGAGGCCGGCAACCTTACCTC CCAAAATGTAACCACTGTGAGCCCACCTCTCAAAAAAACCAAGTC AAACATAAACCTGGAAATATCTGCACCCCTCACAGTTACCTCAGA AGCCCTAACTGTGGCTGCCGCCGCACCTCTAATGGTCGCGGGCAA CACACTCACCATGCAATCACAGGCCCCGCTAACCGTGCACGACTC CAAACTTAGCATTGCCACCCAAGGACCCCTCACAGTGTCAGAAGG AAAGCTAGCCCTGCAAACATCAGGCCCCCTCACCACCACCGATAG CAGTACCCTTACTATCACTGCCTCACCCCCTCTAACTACTGCCACT GGTAGCTTGGGCATTGACTTGAAAGAGCCCATTTATACACAAAAT GGAAAACTAGGACTAAAGTACGGGGCTCCTTTGCATGTAACAGA CGACCTAAACACTTTGACCGTAGCAACTGGTCCAGGTGTGACTAT TAATAATACTTCCTTGCAAACTAAAGTTACTGGAGCCTTGGGTTTT GATTCACAAGGCAATATGCAACTTAATGTAGCAGGAGGACTAAG GATTGATTCTCAAAACAGACGCCTTATACTTGATGTTAGTTATCCG TTTGATGCTCAAAACCAACTAAATCTAAGACTAGGACAGGGCCCT CTTTTTATAAACTCAGCCCACAACTTGGATATTAACTACAACAAA GGCCTTTACTTGTTTACAGCTTCAAACAATTCCAAAAAGCTTGAG GTTAACCTAAGCACTGCCAAGGGGTTGATGTTTGACGCTACAGCC ATAGCCATTAATGCAGGAGATGGGCTTGAATTTGGTTCACCTAAT GCACCAAACACAAATCCCCTCAAAACAAAAATTGGCCATGGCCT AGAATTTGATTCAAACAAGGCTATGGTTCCTAAACTAGGAACTGG CCTTAGTTTTGACAGCACAGGTGCCATTACAGTAGGAAACAAAAA TAATGATAAGCTAACTTTGTGGACCACACCAGCTCCATCTCCTAA CTGTAGACTAAATGCAGAGAAAGATGCTAAACTCACTTTGGTCTT AACAAAATGTGGCAGTCAAATACTTGCTACAGTTTCAGTTTTGGC TGTTAAAGGCAGTTTGGCTCCAATATCTGGAACAGTTCAAAGTGC TCATCTTATTATAAGATTTGACGAAAATGGAGTGCTACTAAACAA TTCCTTCCTGGACCCAGAATATTGGAACTTTAGAAATGGAGATCT TACTGAAGGCACAGCCTATACAAACGCTGTTGGATTTATGCCTAA CCTATCAGCTTATCCAAAATCTCACGGTAAAACTGCCAAAAGTAA CATTGTCAGTCAAGTTTACTTAAACGGAGACAAAACTAAACCTGT AACACTAACCATTACACTAAACGGTACACAGGAAACAGGAGACA CAACTCCAAGTGCATACTCTATGTCATTTTCATGGGACTGGTCTGG CCACAACTACATTAATGAAATATTTGCCACATCCTCTTACACTTTT TCATACATTGCCCAAGAATAAAGAATCGTTTGTGTTATGTTTCAA CGTGTTTATTTTTCAATTGCAGAAAATTTCAAGTCATTTTTCATTC AGTAGTATAGCCCCACCACCACATAGCTTATACAGATCACCGTAC CTTAATCAAACTCACAGAACCCTAGTATTCAACCTGCCACCTCCC TCCCAACACACAGAGTACACAGTCCTTTCTCCCCGGCTGGCCTTA AAAAGCATCATATCATGGGTAACAGACATATTCTTAGGTGTTATA TTCCACACGGTTTCCTGTCGAGCCAAACGCTCATCAGTGATATTA ATAAACTCCCCGGGCAGCTCACTTAAGTTCATGTCGCTGTCCAGC TGCTGAGCCACAGGCTGCTGTCCAACTTGCGGTTGCTTAACGGGC GGCGAAGGAGAAGTCCACGCCTACATGGGGGTAGAGTCATAATC GTGCATCAGGATAGGGCGGTGGTGCTGCAGCAGCGCGCGAATAA ACTGCTGCCGCCGCCGCTCCGTCCTGCAGGAATACAACATGGCAG TGGTCTCCTCAGCGATGATTCGCACCGCCCGCAGCATAAGGCGCC TTGTCCTCCGGGCACAGCAGCGCACCCTGATCTCACTTAAATCAG CACAGTAACTGCAGCACAGCACCACAATATTGTTCAAAATCCCAC AGTGCAAGGCGCTGTATCCAAAGCTCATGGCGGGGACCACAGAA CCCACGTGGCCATCATACCACAAGCGCAGGTAGATTAAGTGGCG ACCCCTCATAAACACGCTGGACATAAACATTACCTCTTTTGGCAT GTTGTAATTCACCACCTCCCGGTACCATATAAACCTCTGATTAAA CATGGCGCCATCCACCACCATCCTAAACCAGCTGGCCAAAACCTG CCCGCCGGCTATACACTGCAGGGAACCGGGACTGGAACAATGAC AGTGGAGAGCCCAGGACTCGTAACCATGGATCATCATGCTCGTCA TGATATCAATGTTGGCACAACACAGGCACACGTGCATACACTTCC TCAGGATTACAAGCTCCTCCCGCGTTAGAACCATATCCCAGGGAA CAACCCATTCCTGAATCAGCGTAAATCCCACACTGCAGGGAAGAC CTCGCACGTAACTCACGTTGTGCATTGTCAAAGTGTTACATTCGG GCAGCAGCGGATGATCCTCCAGTATGGTAGCGCGGGTTTCTGTCT CAAAAGGAGGTAGACGATCCCTACTGTACGGAGTGCGCCGAGAC AACCGAGATCGTGTTGGTCGTAGTGTCATGCCAAATGGAACGCCG GACGTAGTCATATTTCCTGAAGCAAAACCAGGTGCGGGCGTGACA AACAGATCTGCGTCTCCGGTCTCGCCGCTTAGATCGCTCTGTGTA GTAGTTGTAGTATATCCACTCTCTCAAAGCATCCAGGCGCCCCCT GGCTTCGGGTTCTATGTAAACTCCTTCATGCGCCGCTGCCCTGATA ACATCCACCACCGCAGAATAAGCCACACCCAGCCAACCTACACAT TCGTTCTGCGAGTCACACACGGGAGGAGCGGGAAGAGCTGGAAG AACCATGTTTTTTTTTTTATTCCAAAAGATTATCCAAAACCTCAAA ATGAAGATCTATTAAGTGAACGCGCTCCCCTCCGGTGGCGTGGTC AAACTCTACAGCCAAAGAACAGATAATGGCATTTGTAAGATGTTG CACAATGGCTTCCAAAAGGCAAACGGCCCTCACGTCCAAGTGGA CGTAAAGGCTAAACCCTTCAGGGTGAATCTCCTCTATAAACATTC CAGCACCTTCAACCATGCCCAAATAATTCTCATCTCGCCACCTTCT CAATATATCTCTAAGCAAATCCCGAATATTAAGTCCGGCCATTGT AAAAATCTGCTCCAGAGCGCCCTCCACCTTCAGCCTCAAGCAGCG AATCATGATTGCAAAAATTCAGGTTCCTCACAGACCTGTATAAGA TTCAAAAGCGGAACATTAACAAAAATACCGCGATCCCGTAGGTCC CTTCGCAGGGCCAGCTGAACATAATCGTGCAGGTCTGCACGGACC AGCGCGGCCACTTCCCCGCCAGGAACCATGACAAAAGAACCCAC ACTGATTATGACACGCATACTCGGAGCTATGCTAACCAGCGTAGC CCCGATGTAAGCTTGTTGCATGGGCGGCGATATAAAATGCAAGGT GCTGCTCAAAAAATCAGGCAAAGCCTCGCGCAAAAAAGAAAGCA CATCGTAGTCATGCTCATGCAGATAAAGGCAGGTAAGCTCCGGAA
CCACCACAGAAAAAGACACCATTTTTCTCTCAAACATGTCTGCGG GTTTCTGCATAAACACAAAATAAAATAACAAAAAAACATTTAAA CATTAGAAGCCTGTCTTACAACAGGAAAAACAACCCTTATAAGCA TAAGACGGACTACGGCCATGCCGGCGTGACCGTAAAAAAACTGG TCACCGTGATTAAAAAGCACCACCGACAGCTCCTCGGTCATGTCC GGAGTCATAATGTAAGACTCGGTAAACACATCAGGTTGATTCACA TCGGTCAGTGCTAAAAAGCGACCGAAATAGCCCGGGGGAATACA TACCCGCAGGCGTAGAGACAACATTACAGCCCCCATAGGAGGTA TAACAAAATTAATAGGAGAGAAAAACACATAAACACCTGAAAAA CCCTCCTGCCTAGGCAAAATAGCACCCTCCCGCTCCAGAACAACA TACAGCGCTTCCACAGCGGCAGCCATAACAGTCAGCCTTACCAGT AAAAAAGAAAACCTATTAAAAAAACACCACTCGACACGGCACCA GCTCAATCAGTCACAGTGTAAAAAAGGGCCAAGTGCAGAGCGAG TATATATAGGACTAAAAAATGACGTAACGGTTAAAGTCCACAAA AAACACCCAGAAAACCGCACGCGAACCTACGCCCAGAAACGAAA GCCAAAAAACCCACAACTTCCTCAAATCGTCACTTCCGTTTTCCC ACGTTACGTCACTTCCCATTTTAAGAAAACTACAATTCCCAACAC ATACAAGTTACTCCGCCCTAAAACCTACGTCACCCGCCCCGTTCC CACGCCCCGCGCCACGTCACAAACTCCACCCCCTCATTATCATAT TGGCTTCAATCCAAAATAAGGTATATTATTGATGAT SEQ ID NO: 3 YLSGANLNL SEQ ID NO: 4 YLSGADLNL SEQ ID NO: 5 CGCTCCACCTCTCAAGCAGCCAGCGCCTGCCTGAATCTGTTCTGC CCCCTCCCCACCCATTTCACCACCACCATGACACCGGGCACCCAG TCTCCTTTCTTCCTGCTGCTGCTCCTCACAGTGCTTACAGTTGTTAC GGGTTCTGGTCATGCAAGCTCTACCCCAGGTGGAGAAAAGGAGA CTTCGGCTACCCAGAGAAGTTCAGTGCCCAGCTCTACTGAGAAGA ATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGCCACAGCCCCG GTTCAGGCTCCTCCACCACTCAGGGACAGGATGTCACTCTGGCCC CGGCCACGGAACCAGCTTCAGGTTCAGCTGCCACCTGGGGACAG GATGTCACCTCGGTCCCAGTCACCAGGCCAGCCCTGGGCTCCACC ACCCCGCCAGCCCACGATGTCACCTCAGCCCCGGACAACAAGCCA GCCCCGGGCTCCACCGCCCCCCCAGCCCACGGTGTCACCTCGGCC CCGGACACCAGGCCGGCCCCGGGCTCCACCGCCCCCCCAGCCCAT GGTGTCACCTCGGCCCCGGACAACAGGCCCGCCTTGGGCTCCACC GCCCCTCCAGTCCACAATGTCACCTCGGCCTCAGGCTCTGCATCA GGCTCAGCTTCTACTCTGGTGCACAACGGCACCTCTGCCAGGGCT ACCACAACCCCAGCCAGCAAGAGCACTCCATTCTCAATTCCCAGC CACCACTCTGATACTCCTACCACCCTTGCCAGCCATAGCACCAAG ACTGATGCCAGTAGCACTCACCATAGCACGGTACCTCCTCTCACC TCCTCCAATCACAGCACTTCTCCCCAGTTGTCTACTGGGGTCTCTT TCTTTTTCCTGTCTTTTCACATTTCAAACCTCCAGTTTAATTCCTCT CTGGAAGATCCCAGCACCGACTACTACCAAGAGCTGCAGAGAGA CATTTCTGAAATGTTTTTGCAGATTTATAAACAAGGGGGTTTTCTG GGCCTCTCCAATATTAAGTTCAGGCCAGGATCTGTGGTGGTACAA TTGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCACGACGTG GAGACACAGTTCAATCAGTATAAAACGGAAGCAGCCTCTCGATAT AACCTGACGATCTCAGACGTCAGCGTGAGTGATGTGCCATTTCCT TTCTCTGCCCAGTCTGGGGCTGGGGTGCCAGGCTGGGGCATCGCG CTGCTGGTGCTGGTCTGTGTTCTGGTTGCGCTGGCCATTGTCTATC TCATTGCCTTGGCTGTCTGTCAGTGCCGCCGAAAGAACTACGGGC AGCTGGACATCTTTCCAGCCCGGGATACCTACCATCCTATGAGCG AGTACCCCACCTACCACACCCATGGGCGCTATGTGCCCCCTAGCA GTACCGATCGTAGCCCCTATGAGAAGGTTTCTGCAGGTAATGGTG GCAGCAGCCTCTCTTACACAAACCCAGCAGTGGCAGCCACTTCTG CCAACTTGTAGGGGCACGTCGCCCGCTGAGCTGAGTGGCCAGCCA GTGCCATTCCACTCCACTCAGGTTCTTCAGGGCCAGAGCCCCTGC ACCCTGTTTGGGCTGGTGAGCTGGGAGTTCAGGTGGGCTGCTCAC AGCCTCCTTCAGAGGCCCCACCAATTTCTCGGACACTTCTCAGTGT GTGGAAGCTCATGTGGGCCCCTGAGGGCTCATGCCTGGGAAGTGT TGTGGTGGGGGCTCCCAGGAGGACTGGCCCAGAGAGCCCTGAGA TAGCGGGGATCCTGAACTGGACTGAATAAAACGTGGTCTCCCACT GCGCCAAAAAAAAAAAAAAAAA SEQ ID NO: 6 CGCTCCACCTCTCAAGCAGCCAGCGCCTGCCTGAATCTGTTCTGC CCCCTCCCCACCCATTTCACCACCACCATGACACCGGGCACCCAG TCTCCTTTCTTCCTGCTGCTGCTCCTCACAGTGCTTACAGTTGTTAC GGGTTCTGGTCATGCAAGCTCTACCCCAGGTGGAGAAAAGGAGA CTTCGGCTACCCAGAGAAGTTCAGTGCCCAGCTCTACTGAGAAGA ATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGCCACAGCCCCG GTTCAGGCTCCTCCACCACTCAGGGACAGGATGTCACTCTGGCCC CGGCCACGGAACCAGCTTCAGGTTCAGCTGCCCTTTGGGGACAGG ATGTCACCTCGGTCCCAGTCACCAGGCCAGCCCTGGGCTCCACCA CCCCGCCAGCCCACGATGTCACCTCAGCCCCGGACAACAAGCCAG CCCCGGGCTCCACCGCCCCCCCAGCCCACGGTGTCACCTCGTATC TTGACACCAGGCCGGCCCCGGTTTATCTTGCCCCCCCAGCCCATG GTGTCACCTCGGCCCCGGACAACAGGCCCGCCTTGGGCTCCACCG CCCCTCCAGTCCACAATGTCACCTCGGCCTCAGGCTCTGCATCAG GCTCAGCTTCTACTCTGGTGCACAACGGCACCTCTGCCAGGGCTA CCACAACCCCAGCCAGCAAGAGCACTCCATTCTCAATTCCCAGCC ACCACTCTGATACTCCTACCACCCTTGCCAGCCATAGCACCAAGA CTGATGCCAGTAGCACTCACCATAGCACGGTACCTCCTCTCACCT CCTCCAATCACAGCACTTCTCCCCAGTTGTCTACTGGGGTCTCTTT CTTTTTCCTGTCTTTTCACATTTCAAACCTCCAGTTTAATTCCTCTC TGGAAGATCCCAGCACCGACTACTACCAAGAGCTGCAGAGAGAC ATTTCTGAAATGTTTTTGCAGATTTATAAACAAGGGGGTTTTCTGG GCCTCTCCAATATTAAGTTCAGGCCAGGATCTGTGGTGGTACAAT TGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCACGACGTGG AGACACAGTTCAATCAGTATAAAACGGAAGCAGCCTCTCGATATA ACCTGACGATCTCAGACGTCAGCGTGAGTGATGTGCCATTTCCTT TCTCTGCCCAGTCTGGGGCTGGGGTGCCAGGCTGGGGCATCGCGC TGCTGGTGCTGGTCTGTGTTCTGGTTTATCTGGCCATTGTCTATCT CATTGCCTTGGCTGTCGCTCAGGTTCGCCGAAAGAACTACGGGCA GCTGGACATCTTTCCAGCCCGGGATAAATACCATCCTATGAGCGA GTACGCTCTTTACCACACCCATGGGCGCTATGTGCCCCCTAGCAG TCTTTTCCGTAGCCCCTATGAGAAGGTTTCTGCAGGTAATGGTGG CAGCTATCTCTCTTACACAAACCCAGCAGTGGCAGCCGCTTCTGC CAACTTGTAGGGGCACGTCGCCCGCTGAGCTGAGTGGCCAGCCAG TGCCATTCCACTCCACTCAGGTTCTTCAGGGCCAGAGCCCCTGCA CCCTGTTTGGGCTGGTGAGCTGGGAGTTCAGGTGGGCTGCTCACA GCCTCCTTCAGAGGCCCCACCAATTTCTCGGACACTTCTCAGTGTG TGGAAGCTCATGTGGGCCCCTGAGGGCTCATGCCTGGGAAGTGTT GTGGTGGGGGCTCCCAGGAGGACTGGCCCAGAGAGCCCTGAGAT AGCGGGGATCCTGAACTGGACTGAATAAAACGTGGTCTCCCACTG CGCCAAAAAAAAAAAAAAAAA SEQ ID NO: 7 MTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSS TEKNAVSMTSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAALWG QDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTAPPAHGVTSYL DTRPAPVYLAPPAHGVTSAPDNRPALGSTAPPVHNVTSASGSASGSA STLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASSTH HSTVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQE LQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHD VETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIAL LVLVCVLVYLAIVYLIALAVAQVRRKNYGQLDIFPARDKYHPMSEY ALYHTHGRYVPPSSLFRSPYEKVSAGNGGSYLSYTNPAVAAASANL SEQ ID NO: 8 CATCATCAATAATATACCTTATTTTGGATTGAAGCCAATATGATA ATGAGGGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGG GGCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGT GGCGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTT TGGTGTGCGCCGGTGTACACAGGAAGTGACAATTTTCGCGCGGTT TTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTT GGCCATTTTCGCGGGAAAACTGAATAAGAGGAAGTGAAATCTGA ATAATTTTGTGTTACTCATAGCGCGTAATACTGTAATAGTAATCA ATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTT ACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGAC CCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACG CCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGG TAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGT ACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCAT TATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTAC ATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGC AGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTC CAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACC AAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATA AGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGAGATCTGGT ACCGTCGACGCGGCCGCTCGAGCCTAAGCTTCTAGATGCATGCTC GAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTGCT CGCTCCACCTCTCAAGCAGCCAGCGCCTGCCTGAATCTGTTCTGC CCCCTCCCCACCCATTTCACCACCACCATGACACCGGGCACCCAG TCTCCTTTCTTCCTGCTGCTGCTCCTCACAGTGCTTACAGTTGTTAC GGGTTCTGGTCATGCAAGCTCTACCCCAGGTGGAGAAAAGGAGA CTTCGGCTACCCAGAGAAGTTCAGTGCCCAGCTCTACTGAGAAGA ATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGCCACAGCCCCG GTTCAGGCTCCTCCACCACTCAGGGACAGGATGTCACTCTGGCCC CGGCCACGGAACCAGCTTCAGGTTCAGCTGCCCTTTGGGGACAGG ATGTCACCTCGGTCCCAGTCACCAGGCCAGCCCTGGGCTCCACCA CCCCGCCAGCCCACGATGTCACCTCAGCCCCGGACAACAAGCCAG CCCCGGGCTCCACCGCCCCCCCAGCCCACGGTGTCACCTCGTATC TTGACACCAGGCCGGCCCCGGTTTATCTTGCCCCCCCAGCCCATG GTGTCACCTCGGCCCCGGACAACAGGCCCGCCTTGGGCTCCACCG CCCCTCCAGTCCACAATGTCACCTCGGCCTCAGGCTCTGCATCAG GCTCAGCTTCTACTCTGGTGCACAACGGCACCTCTGCCAGGGCTA CCACAACCCCAGCCAGCAAGAGCACTCCATTCTCAATTCCCAGCC ACCACTCTGATACTCCTACCACCCTTGCCAGCCATAGCACCAAGA CTGATGCCAGTAGCACTCACCATAGCACGGTACCTCCTCTCACCT CCTCCAATCACAGCACTTCTCCCCAGTTGTCTACTGGGGTCTCTTT CTTTTTCCTGTCTTTTCACATTTCAAACCTCCAGTTTAATTCCTCTC TGGAAGATCCCAGCACCGACTACTACCAAGAGCTGCAGAGAGAC ATTTCTGAAATGTTTTTGCAGATTTATAAACAAGGGGGTTTTCTGG GCCTCTCCAATATTAAGTTCAGGCCAGGATCTGTGGTGGTACAAT TGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCACGACGTGG AGACACAGTTCAATCAGTATAAAACGGAAGCAGCCTCTCGATATA ACCTGACGATCTCAGACGTCAGCGTGAGTGATGTGCCATTTCCTT TCTCTGCCCAGTCTGGGGCTGGGGTGCCAGGCTGGGGCATCGCGC TGCTGGTGCTGGTCTGTGTTCTGGTTTATCTGGCCATTGTCTATCT CATTGCCTTGGCTGTCGCTCAGGTTCGCCGAAAGAACTACGGGCA GCTGGACATCTTTCCAGCCCGGGATAAATACCATCCTATGAGCGA GTACGCTCTTTACCACACCCATGGGCGCTATGTGCCCCCTAGCAG TCTTTTCCGTAGCCCCTATGAGAAGGTTTCTGCAGGTAATGGTGG CAGCTATCTCTCTTACACAAACCCAGCAGTGGCAGCCGCTTCTGC CAACTTGTAGGGGCACGTCGCCCGCTGAGCTGAGTGGCCAGCCAG TGCCATTCCACTCCACTCAGGTTCTTCAGGGCCAGAGCCCCTGCA CCCTGTTTGGGCTGGTGAGCTGGGAGTTCAGGTGGGCTGCTCACA GCCTCCTTCAGAGGCCCCACCAATTTCTCGGACACTTCTCAGTGTG TGGAAGCTCATGTGGGCCCCTGAGGGCTCATGCCTGGGAAGTGTT GTGGTGGGGGCTCCCAGGAGGACTGGCCCAGAGAGCCCTGAGAT AGCGGGGATCCTGAACTGGACTGAATAAAACGTGGTCTCCCACTG CGCCAAAAAAAAAAAAAAAAACGATCCACCGGATCTAGATAACT GATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTA AAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAAT GCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACA AATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTT CACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTA ACGCGGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAG GTGCAGACCCTGCGAGTGTGGCGGTAAACATATTAGGAACCAGC CTGTGATGCTGGATGTGACCGAGGAGCTGAGGCCCGATCACTTGG TGCTGGCCTGCACCCGCGCTGAGTTTGGCTCTAGCGATGAAGATA CAGATTGAGGTACTGAAATGTGTGGGCGTGGCTTAAGGGTGGGA AAGAATATATAAGGTGGGGGTCTTATGTAGTTTTGTATCTGTTTTG CAGCAGCCGCCGCCGCCATGAGCACCAACTCGTTTGATGGAAGCA TTGTGAGCTCATATTTGACAACGCGCATGCCCCCATGGGCCGGGG TGCGTCAGAATGTGATGGGCTCCAGCATTGATGGTCGCCCCGTCC TGCCCGCAAACTCTACTACCTTGACCTACGAGACCGTGTCTGGAA CGCCGTTGGAGACTGCAGCCTCCGCCGCCGCTTCAGCCGCTGCAG CCACCGCCCGCGGGATTGTGACTGACTTTGCTTTCCTGAGCCCGCT TGCAAGCAGTGCAGCTTCCCGTTCATCCGCCCGCGATGACAAGTT GACGGCTCTTTTGGCACAATTGGATTCTTTGACCCGGGAACTTAA TGTCGTTTCTCAGCAGCTGTTGGATCTGCGCCAGCAGGTTTCTGCC CTGAAGGCTTCCTCCCCTCCCAATGCGGTTTAAAACATAAATAAA AAACCAGACTCTGTTTGGATTTGGATCAAGCAAGTGTCTTGCTGT CTTTATTTAGGGGTTTTGCGCGCGCGGTAGGCCCGGGACCAGCGG TCTCGGTCGTTGAGGGTCCTGTGTATTTTTTCCAGGACGTGGTAAA GGTGACTCTGGATGTTCAGATACATGGGCATAAGCCCGTCTCTGG GGTGGAGGTAGCACCACTGCAGAGCTTCATGCTGCGGGGTGGTGT TGTAGATGATCCAGTCGTAGCAGGAGCGCTGGGCGTGGTGCCTAA AAATGTCTTTCAGTAGCAAGCTGATTGCCAGGGGCAGGCCCTTGG TGTAAGTGTTTACAAAGCGGTTAAGCTGGGATGGGTGCATACGTG GGGATATGAGATGCATCTTGGACTGTATTTTTAGGTTGGCTATGTT CCCAGCCATATCCCTCCGGGGATTCATGTTGTGCAGAACCACCAG CACAGTGTATCCGGTGCACTTGGGAAATTTGTCATGTAGCTTAGA AGGAAATGCGTGGAAGAACTTGGAGACGCCCTTGTGACCTCCAA GATTTTCCATGCATTCGTCCATAATGATGGCAATGGGCCCACGGG CGGCGGCCTGGGCGAAGATATTTCTGGGATCACTAACGTCATAGT TGTGTTCCAGGATGAGATCGTCATAGGCCATTTTTACAAAGCGCG GGCGGAGGGTGCCAGACTGCGGTATAATGGTTCCATCCGGCCCAG GGGCGTAGTTACCCTCACAGATTTGCATTTCCCACGCTTTGAGTTC AGATGGGGGGATCATGTCTACCTGCGGGGCGATGAAGAAAACGG TTTCCGGGGTAGGGGAGATCAGCTGGGAAGAAAGCAGGTTCCTG AGCAGCTGCGACTTACCGCAGCCGGTGGGCCCGTAAATCACACCT ATTACCGGCTGCAACTGGTAGTTAAGAGAGCTGCAGCTGCCGTCA TCCCTGAGCAGGGGGGCCACTTCGTTAAGCATGTCCCTGACTCGC ATGTTTTCCCTGACCAAATCCGCCAGAAGGCGCTCGCCGCCCAGC GATAGCAGTTCTTGCAAGGAAGCAAAGTTTTTCAACGGTTTGAGA CCGTCCGCCGTAGGCATGCTTTTGAGCGTTTGACCAAGCAGTTCC AGGCGGTCCCACAGCTCGGTCACCTGCTCTACGGCATCTCGATCC AGCATATCTCCTCGTTTCGCGGGTTGGGGCGGCTTTCGCTGTACG GCAGTAGTCGGTGCTCGTCCAGACGGGCCAGGGTCATGTCTTTCC ACGGGCGCAGGGTCCTCGTCAGCGTAGTCTGGGTCACGGTGAAG GGGTGCGCTCCGGGCTGCGCGCTGGCCAGGGTGCGCTTGAGGCTG GTCCTGCTGGTGCTGAAGCGCTGCCGGTCTTCGCCCTGCGCGTCG GCCAGGTAGCATTTGACCATGGTGTCATAGTCCAGCCCCTCCGCG GCGTGGCCCTTGGCGCGCAGCTTGCCCTTGGAGGAGGCGCCGCAC GAGGGGCAGTGCAGACTTTTGAGGGCGTAGAGCTTGGGCGCGAG AAATACCGATTCCGGGGAGTAGGCATCCGCGCCGCAGGCCCCGC AGACGGTCTCGCATTCCACGAGCCAGGTGAGCTCTGGCCGTTCGG GGTCAAAAACCAGGTTTCCCCCATGCTTTTTGATGCGTTTCTTACC TCTGGTTTCCATGAGCCGGTGTCCACGCTCGGTGACGAAAAGGCT GTCCGTGTCCCCGTATACAGACTTGAGAGGCCTGTCCTCGAGCGG TGTTCCGCGGTCCTCCTCGTATAGAAACTCGGACCACTCTGAGAC AAAGGCTCGCGTCCAGGCCAGCACGAAGGAGGCTAAGTGGGAGG GGTAGCGGTCGTTGTCCACTAGGGGGTCCACTCGCTCCAGGGTGT GAAGACACATGTCGCCCTCTTCGGCATCAAGGAAGGTGATTGGTT TGTAGGTGTAGGCCACGTGACCGGGTGTTCCTGAAGGGGGGCTAT AAAAGGGGGTGGGGGCGCGTTCGTCCTCACTCTCTTCCGCATCGC TGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTGAAAAG
CGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGG AGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGG CCGCATCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTT GGTGGCAAACGACCCGTAGAGGGCGTTGGACAGCAACTTGGCGA TGGAGCGCAGGGTTTGGTTTTTGTCGCGATCGGCGCGCTCCTTGG CCGCGATGTTTAGCTGCACGTATTCGCGCGCAACGCACCGCCATT CGGGAAAGACGGTGGTGCGCTCGTCGGGCACCAGGTGCACGCGC CAACCGCGGTTGTGCAGGGTGACAAGGTCAACGCTGGTGGCTACC TCTCCGCGTAGGCGCTCGTTGGTCCAGCAGAGGCGGCCGCCCTTG CGCGAGCAGAATGGCGGTAGGGGGTCTAGCTGCGTCTCGTCCGG GGGGTCTGCGTCCACGGTAAAGACCCCGGGCAGCAGGCGCGCGT CGAAGTAGTCTATCTTGCATCCTTGCAAGTCTAGCGCCTGCTGCC ATGCGCGGGCGGCAAGCGCGCGCTCGTATGGGTTGAGTGGGGGA CCCCATGGCATGGGGTGGGTGAGCGCGGAGGCGTACATGCCGCA AATGTCGTAAACGTAGAGGGGCTCTCTGAGTATTCCAAGATATGT AGGGTAGCATCTTCCACCGCGGATGCTGGCGCGCACGTAATCGTA TAGTTCGTGCGAGGGAGCGAGGAGGTCGGGACCGAGGTTGCTAC GGGCGGGCTGCTCTGCTCGGAAGACTATCTGCCTGAAGATGGCAT GTGAGTTGGATGATATGGTTGGACGCTGGAAGACGTTGAAGCTGG CGTCTGTGAGACCTACCGCGTCACGCACGAAGGAGGCGTAGGAG TCGCGCAGCTTGTTGACCAGCTCGGCGGTGACCTGCACGTCTAGG GCGCAGTAGTCCAGGGTTTCCTTGATGATGTCATACTTATCCTGTC CCTTTTTTTTCCACAGCTCGCGGTTGAGGACAAACTCTTCGCGGTC TTTCCAGTACTCTTGGATCGGAAACCCGTCGGCCTCCGAACGGTA AGAGCCTAGCATGTAGAACTGGTTGACGGCCTGGTAGGCGCAGC ATCCCTTTTCTACGGGTAGCGCGTATGCCTGCGCGGCCTTCCGGC ATGACCAGCATGAAGGGCACGAGCTGCTTCCCAAAGGCCCCCATC CAAGTATAGGTCTCTACATCGTAGGTGACAAAGAGACGCTCGGTG CGAGGATGCGAGCCGATCGGGAAGAACTGGATCTCCCGCCACCA ATTGGAGGAGTGGCTATTGATGTGGTGAAAGTAGAAGTCCCTGCG ACGGGCCGAACACTCGTGCTGGCTTTTGTAAAAACGTGCGCAGTA CTGGCAGCGGTGCACGGGCTGTACATCCTGCACGAGGTTGACCTG ACGACCGCGCACAAGGAAGCAGAGTGGGAATTTGAGCCCCTCGC CTGGCGGGTTTGGCTGGTGGTCTTCTACTTCGGCTGCTTGTCCTTG ACCGTCTGGCTGCTCGAGGGGAGTTACGGTGGATCGGACCACCAC GCCGCGCGAGCCCAAAGTCCAGATGTCCGCGCGCGGCGGTCGGA GCTTGATGACAACATCGCGCAGATGGGAGCTGTCCATGGTCTGGA GCTCCCGCGGCGTCAGGTCAGGCGGGAGCTCCTGCAGGTTTACCT CGCATAGACGGGTCAGGGCGCGGGCTAGATCCAGGTGATACCTA ATTTCCAGGGGCTGGTTGGTGGCGGCGTCGATGGCTTGCAAGAGG CCGCATCCCCGCGGCGCGACTACGGTACCGCGCGGCGGGCGGTG GGCCGCGGGGGTGTCCTTGGATGATGCATCTAAAAGCGGTGACGC GGGCGAGCCCCCGGAGGTAGGGGGGGCTCCGGACCCGCCGGGAG AGGGGGCAGGGGCACGTCGGCGCCGCGCGCGGGCAGGAGCTGGT GCTGCGCGCGTAGGTTGCTGGCGAACGCGACGACGCGGCGGTTG ATCTCCTGAATCTGGCGCCTCTGCGTGAAGACGACGGGCCCGGTG AGCTTGAACCTGAAAGAGAGTTCGACAGAATCAATTTCGGTGTCG TTGACGGCGGCCTGGCGCAAAATCTCCTGCACGTCTCCTGAGTTG TCTTGATAGGCGATCTCGGCCATGAACTGCTCGATCTCTTCCTCCT GGAGATCTCCGCGTCCGGCTCGCTCCACGGTGGCGGCGAGGTCGT TGGAAATGCGGGCCATGAGCTGCGAGAAGGCGTTGAGGCCTCCC TCGTTCCAGACGCGGCTGTAGACCACGCCCCCTTCGGCATCGCGG GCGCGCATGACCACCTGCGCGAGATTGAGCTCCACGTGCCGGGCG AAGACGGCGTAGTTTCGCAGGCGCTGAAAGAGGTAGTTGAGGGT GGTGGCGGTGTGTTCTGCCACGAAGAAGTACATAACCCAGCGTCG CAACGTGGATTCGTTGATAATTGTTGTGTAGGTACTCCGCCGCCG AGGGACCTGAGCGAGTCCGCATCGACCGGATCGGAAAACCTCTC GAGAAAGGCGTCTAACCAGTCACAGTCGCAAGGTAGGCTGAGCA CCGTGGCGGGCGGCAGCGGGCGGCGGTCGGGGTTGTTTCTGGCG GAGGTGCTGCTGATGATGTAATTAAAGTAGGCGGTCTTGAGACGG CGGATGGTCGACAGAAGCACCATGTCCTTGGGTCCGGCCTGCTGA ATGCGCAGGCGGTCGGCCATGCCCCAGGCTTCGTTTTGACATCGG CGCAGGTCTTTGTAGTAGTCTTGCATGAGCCTTTCTACCGGCACTT CTTCTTCTCCTTCCTCTTGTCCTGCATCTCTTGCATCTATCGCTGCG GCGGCGGCGGAGTTTGGCCGTAGGTGGCGCCCTCTTCCTCCCATG CGTGTGACCCCGAAGCCCCTCATCGGCTGAAGCAGGGCTAGGTCG GCGACAACGCGCTCGGCTAATATGGCCTGCTGCACCTGCGTGAGG GTAGACTGGAAGTCATCCATGTCCACAAAGCGGTGGTATGCGCCC GTGTTGATGGTGTAAGTGCAGTTGGCCATAACGGACCAGTTAACG GTCTGGTGACCCGGCTGCGAGAGCTCGGTGTACCTGAGACGCGAG TAAGCCCTCGAGTCAAATACGTAGTCGTTGCAAGTCCGCACCAGG TACTGGTATCCCACCAAAAAGTGCGGCGGCGGCTGGCGGTAGAG GGGCCAGCGTAGGGTGGCCGGGGCTCCGGGGGCGAGATCTTCCA ACATAAGGCGATGATATCCGTAGATGTACCTGGACATCCAGGTGA TGCCGGCGGCGGTGGTGGAGGCGCGCGGAAAGTCGCGGACGCGG TTCCAGATGTTGCGCAGCGGCAAAAAGTGCTCCATGGTCGGGACG CTCTGGCCGGTCAGGCGCGCGCAATCGTTGACGCTCTAGCGTGCA AAAGGAGAGCCTGTAAGCGGGCACTCTTCCGTGGTCTGGTGGATA AATTCGCAAGGGTATCATGGCGGACGACCGGGGTTCGAGCCCCGT ATCCGGCCGTCCGCCGTGATCCATGCGGTTACCGCCCGCGTGTCG AACCCAGGTGTGCGACGTCAGACAACGGGGGAGTGCTCCTTTTGG CTTCCTTCCAGGCGCGGCGGCTGCTGCGCTAGCTTTTTTGGCCACT GGCCGCGCGCAGCGTAAGCGGTTAGGCTGGAAAGCGAAAGCATT AAGTGGCTCGCTCCCTGTAGCCGGAGGGTTATTTTCCAAGGGTTG AGTCGCGGGACCCCCGGTTCGAGTCTCGGACCGGCCGGACTGCGG CGAACGGGGGTTTGCCTCCCCGTCATGCAAGACCCCGCTTGCAAA TTCCTCCGGAAACAGGGACGAGCCCCTTTTTTGCTTTTCCCAGATG CATCCGGTGCTGCGGCAGATGCGCCCCCCTCCTCAGCAGCGGCAA GAGCAAGAGCAGCGGCAGACATGCAGGGCACCCTCCCCTCCTCCT ACCGCGTCAGGAGGGGCGACATCCGCGGTTGACGCGGCAGCAGA TGGTGATTACGAACCCCCGCGGCGCCGGGCCCGGCACTACCTGGA CTTGGAGGAGGGCGAGGGCCTGGCGCGGCTAGGAGCGCCCTCTC CTGAGCGGCACCCAAGGGTGCAGCTGAAGCGTGATACGCGTGAG GCGTACGTGCCGCGGCAGAACCTGTTTCGCGACCGCGAGGGAGA GGAGCCCGAGGAGATGCGGGATCGAAAGTTCCACGCAGGGCGCG AGCTGCGGCATGGCCTGAATCGCGAGCGGTTGCTGCGCGAGGAG GACTTTGAGCCCGACGCGCGAACCGGGATTAGTCCCGCGCGCGCA CACGTGGCGGCCGCCGACCTGGTAACCGCATACGAGCAGACGGT GAACCAGGAGATTAACTTTCAAAAAAGCTTTAACAACCACGTGCG TACGCTTGTGGCGCGCGAGGAGGTGGCTATAGGACTGATGCATCT GTGGGACTTTGTAAGCGCGCTGGAGCAAAACCCAAATAGCAAGC CGCTCATGGCGCAGCTGTTCCTTATAGTGCAGCACAGCAGGGACA ACGAGGCATTCAGGGATGCGCTGCTAAACATAGTAGAGCCCGAG GGCCGCTGGCTGCTCGATTTGATAAACATCCTGCAGAGCATAGTG GTGCAGGAGCGCAGCTTGAGCCTGGCTGACAAGGTGGCCGCCAT CAACTATTCCATGCTTAGCCTGGGCAAGTTTTACGCCCGCAAGAT ATACCATACCCCTTACGTTCCCATAGACAAGGAGGTAAAGATCGA GGGGTTCTACATGCGCATGGCGCTGAAGGTGCTTACCTTGAGCGA CGACCTGGGCGTTTATCGCAACGAGCGCATCCACAAGGCCGTGAG CGTGAGCCGGCGGCGCGAGCTCAGCGACCGCGAGCTGATGCACA GCCTGCAAAGGGCCCTGGCTGGCACGGGCAGCGGCGATAGAGAG GCCGAGTCCTACTTTGACGCGGGCGCTGACCTGCGCTGGGCCCCA AGCCGACGCGCCCTGGAGGCAGCTGGGGCCGGACCTGGGCTGGC GGTGGCACCCGCGCGCGCTGGCAACGTCGGCGGCGTGGAGGAAT ATGACGAGGACGATGAGTACGAGCCAGAGGACGGCGAGTACTAA GCGGTGATGTTTCTGATCAGATGATGCAAGACGCAACGGACCCGG CGGTGCGGGCGGCGCTGCAGAGCCAGCCGTCCGGCCTTAACTCCA CGGACGACTGGCGCCAGGTCATGGACCGCATCATGTCGCTGACTG CGCGCAATCCTGACGCGTTCCGGCAGCAGCCGCAGGCCAACCGG CTCTCCGCAATTCTGGAAGCGGTGGTCCCGGCGCGCGCAAACCCC ACGCACGAGAAGGTGCTGGCGATCGTAAACGCGCTGGCCGAAAA CAGGGCCATCCGGCCCGACGAGGCCGGCCTGGTCTACGACGCGCT GCTTCAGCGCGTGGCTCGTTACAACAGCGGCAACGTGCAGACCAA CCTGGACCGGCTGGTGGGGGATGTGCGCGAGGCCGTGGCGCAGC GTGAGCGCGCGCAGCAGCAGGGCAACCTGGGCTCCATGGTTGCA CTAAACGCCTTCCTGAGTACACAGCCCGCCAACGTGCCGCGGGGA CAGGAGGACTACACCAACTTTGTGAGCGCACTGCGGCTAATGGTG ACTGAGACACCGCAAAGTGAGGTGTACCAGTCTGGGCCAGACTA TTTTTTCCAGACCAGTAGACAAGGCCTGCAGACCGTAAACCTGAG CCAGGCTTTCAAAAACTTGCAGGGGCTGTGGGGGGTGCGGGCTCC CACAGGCGACCGCGCGACCGTGTCTAGCTTGCTGACGCCCAACTC GCGCCTGTTGCTGCTGCTAATAGCGCCCTTCACGGACAGTGGCAG CGTGTCCCGGGACACATACCTAGGTCACTTGCTGACACTGTACCG CGAGGCCATAGGTCAGGCGCATGTGGACGAGCATACTTTCCAGG AGATTACAAGTGTCAGCCGCGCGCTGGGGCAGGAGGACACGGGC AGCCTGGAGGCAACCCTAAACTACCTGCTGACCAACCGGCGGCA GAAGATCCCCTCGTTGCACAGTTTAAACAGCGAGGAGGAGCGCA TTTTGCGCTACGTGCAGCAGAGCGTGAGCCTTAACCTGATGCGCG ACGGGGTAACGCCCAGCGTGGCGCTGGACATGACCGCGCGCAAC ATGGAACCGGGCATGTATGCCTCAAACCGGCCGTTTATCAACCGC CTAATGGACTACTTGCATCGCGCGGCCGCCGTGAACCCCGAGTAT TTCACCAATGCCATCTTGAACCCGCACTGGCTACCGCCCCCTGGTT TCTACACCGGGGGATTCGAGGTGCCCGAGGGTAACGATGGATTCC TCTGGGACGACATAGACGACAGCGTGTTTTCCCCGCAACCGCAGA CCCTGCTAGAGTTGCAACAGCGCGAGCAGGCAGAGGCGGCGCTG CGAAAGGAAAGCTTCCGCAGGCCAAGCAGCTTGTCCGATCTAGG CGCTGCGGCCCCGCGGTCAGATGCTAGTAGCCCATTTCCAAGCTT GATAGGGTCTCTTACCAGCACTCGCACCACCCGCCCGCGCCTGCT GGGCGAGGAGGAGTACCTAAACAACTCGCTGCTGCAGCCGCAGC GCGAAAAAAACCTGCCTCCGGCATTTCCCAACAACGGGATAGAG AGCCTAGTGGACAAGATGAGTAGATGGAAGACGTACGCGCAGGA GCACAGGGACGTGCCAGGCCCGCGCCCGCCCACCCGTCGTCAAA GGCACGACCGTCAGCGGGGTCTGGTGTGGGAGGACGATGACTCG GCAGACGACAGCAGCGTCCTGGATTTGGGAGGGAGTGGCAACCC GTTTGCGCACCTTCGCCCCAGGCTGGGGAGAATGTTTTAAAAAAA AAAAAGCATGATGCAAAATAAAAAACTCACCAAGGCCATGGCAC CGAGCGTTGGTTTTCTTGTATTCCCCTTAGTATGCGGCGCGCGGCG ATGTATGAGGAAGGTCCTCCTCCCTCCTACGAGAGTGTGGTGAGC GCGGCGCCAGTGGCGGCGGCGCTGGGTTCTCCCTTCGATGCTCCC CTGGACCCGCCGTTTGTGCCTCCGCGGTACCTGCGGCCTACCGGG GGGAGAAACAGCATCCGTTACTCTGAGTTGGCACCCCTATTCGAC ACCACCCGTGTGTACCTGGTGGACAACAAGTCAACGGATGTGGCA TCCCTGAACTACCAGAACGACCACAGCAACTTTCTGACCACGGTC ATTCAAAACAATGACTACAGCCCGGGGGAGGCAAGCACACAGAC CATCAATCTTGACGACCGGTCGCACTGGGGCGGCGACCTGAAAAC CATCCTGCATACCAACATGCCAAATGTGAACGAGTTCATGTTTAC CAATAAGTTTAAGGCGCGGGTGATGGTGTCGCGCTTGCCTACTAA GGACAATCAGGTGGAGCTGAAATACGAGTGGGTGGAGTTCACGC TGCCCGAGGGCAACTACTCCGAGACCATGACCATAGACCTTATGA ACAACGCGATCGTGGAGCACTACTTGAAAGTGGGCAGACAGAAC GGGGTTCTGGAAAGCGACATCGGGGTAAAGTTTGACACCCGCAA CTTCAGACTGGGGTTTGACCCCGTCACTGGTCTTGTCATGCCTGGG GTATATACAAACGAAGCCTTCCATCCAGACATCATTTTGCTGCCA GGATGCGGGGTGGACTTCACCCACAGCCGCCTGAGCAACTTGTTG GGCATCCGCAAGCGGCAACCCTTCCAGGAGGGCTTTAGGATCACC TACGATGATCTGGAGGGTGGTAACATTCCCGCACTGTTGGATGTG GACGCCTACCAGGCGAGCTTGAAAGATGACACCGAACAGGGCGG GGGTGGCGCAGGCGGCAGCAACAGCAGTGGCAGCGGCGCGGAAG AGAACTCCAACGCGGCAGCCGCGGCAATGCAGCCGGTGGAGGAC ATGAACGATCATGCCATTCGCGGCGACACCTTTGCCACACGGGCT GAGGAGAAGCGCGCTGAGGCCGAAGCAGCGGCCGAAGCTGCCGC CCCCGCTGCGCAACCCGAGGTCGAGAAGCCTCAGAAGAAACCGG TGATCAAACCCCTGACAGAGGACAGCAAGAAACGCAGTTACAAC CTAATAAGCAATGACAGCACCTTCACCCAGTACCGCAGCTGGTAC CTTGCATACAACTACGGCGACCCTCAGACCGGAATCCGCTCATGG ACCCTGCTTTGCACTCCTGACGTAACCTGCGGCTCGGAGCAGGTC TACTGGTCGTTGCCAGACATGATGCAAGACCCCGTGACCTTCCGC TCCACGCGCCAGATCAGCAACTTTCCGGTGGTGGGCGCCGAGCTG TTGCCCGTGCACTCCAAGAGCTTCTACAACGACCAGGCCGTCTAC TCCCAACTCATCCGCCAGTTTACCTCTCTGACCCACGTGTTCAATC GCTTTCCCGAGAACCAGATTTTGGCGCGCCCGCCAGCCCCCACCA TCACCACCGTCAGTGAAAACGTTCCTGCTCTCACAGATCACGGGA CGCTACCGCTGCGCAACAGCATCGGAGGAGTCCAGCGAGTGACC ATTACTGACGCCAGACGCCGCACCTGCCCCTACGTTTACAAGGCC CTGGGCATAGTCTCGCCGCGCGTCCTATCGAGCCGCACTTTTTGA GCAAGCATGTCCATCCTTATATCGCCCAGCAATAACACAGGCTGG GGCCTGCGCTTCCCAAGCAAGATGTTTGGCGGGGCCAAGAAGCG CTCCGACCAACACCCAGTGCGCGTGCGCGGGCACTACCGCGCGCC CTGGGGCGCGCACAAACGCGGCCGCACTGGGCGCACCACCGTCG ATGACGCCATCGACGCGGTGGTGGAGGAGGCGCGCAACTACACG CCCACGCCGCCACCAGTGTCCACAGTGGACGCGGCCATTCAGACC GTGGTGCGCGGAGCCCGGCGCTATGCTAAAATGAAGAGACGGCG GAGGCGCGTAGCACGTCGCCACCGCCGCCGACCCGGCACTGCCG CCCAACGCGCGGCGGCGGCCCTGCTTAACCGCGCACGTCGCACCG GCCGACGGGCGGCCATGCGGGCCGCTCGAAGGCTGGCCGCGGGT ATTGTCACTGTGCCCCCCAGGTCCAGGCGACGAGCGGCCGCCGCA GCAGCCGCGGCCATTAGTGCTATGACTCAGGGTCGCAGGGGCAA CGTGTATTGGGTGCGCGACTCGGTTAGCGGCCTGCGCGTGCCCGT GCGCACCCGCCCCCCGCGCAACTAGATTGCAAGAAAAAACTACTT AGACTCGTACTGTTGTATGTATCCAGCGGCGGCGGCGCGCAACGA AGCTATGTCCAAGCGCAAAATCAAAGAAGAGATGCTCCAGGTCA TCGCGCCGGAGATCTATGGCCCCCCGAAGAAGGAAGAGCAGGAT TACAAGCCCCGAAAGCTAAAGCGGGTCAAAAAGAAAAAGAAAG ATGATGATGATGAACTTGACGACGAGGTGGAACTGCTGCACGCTA CCGCGCCCAGGCGACGGGTACAGTGGAAAGGTCGACGCGTAAAA CGTGTTTTGCGACCCGGCACCACCGTAGTCTTTACGCCCGGTGAG CGCTCCACCCGCACCTACAAGCGCGTGTATGATGAGGTGTACGGC GACGAGGACCTGCTTGAGCAGGCCAACGAGCGCCTCGGGGAGTT TGCCTACGGAAAGCGGCATAAGGACATGCTGGCGTTGCCGCTGG ACGAGGGCAACCCAACACCTAGCCTAAAGCCCGTAACACTGCAG CAGGTGCTGCCCGCGCTTGCACCGTCCGAAGAAAAGCGCGGCCTA AAGCGCGAGTCTGGTGACTTGGCACCCACCGTGCAGCTGATGGTA CCCAAGCGCCAGCGACTGGAAGATGTCTTGGAAAAAATGACCGT GGAACCTGGGCTGGAGCCCGAGGTCCGCGTGCGGCCAATCAAGC AGGTGGCGCCGGGACTGGGCGTGCAGACCGTGGACGTTCAGATA CCCACTACCAGTAGCACCAGTATTGCCACCGCCACAGAGGGCATG GAGACACAAACGTCCCCGGTTGCCTCAGCGGTGGCGGATGCCGC GGTGCAGGCGGTCGCTGCGGCCGCGTCCAAGACCTCTACGGAGGT GCAAACGGACCCGTGGATGTTTCGCGTTTCAGCCCCCCGGCGCCC GCGCCGTTCGAGGAAGTACGGCGCCGCCAGCGCGCTACTGCCCG AATATGCCCTACATCCTTCCATTGCGCCTACCCCCGGCTATCGTGG CTACACCTACCGCCCCAGAAGACGAGCAACTACCCGACGCCGAA CCACCACTGGAACCCGCCGCCGCCGTCGCCGTCGCCAGCCCGTGC TGGCCCCGATTTCCGTGCGCAGGGTGGCTCGCGAAGGAGGCAGG ACCCTGGTGCTGCCAACAGCGCGCTACCACCCCAGCATCGTTTAA AAGCCGGTCTTTGTGGTTCTTGCAGATATGGCCCTCACCTGCCGCC TCCGTTTCCCGGTGCCGGGATTCCGAGGAAGAATGCACCGTAGGA GGGGCATGGCCGGCCACGGCCTGACGGGCGGCATGCGTCGTGCG CACCACCGGCGGCGGCGCGCGTCGCACCGTCGCATGCGCGGCGG TATCCTGCCCCTCCTTATTCCACTGATCGCCGCGGCGATTGGCGCC GTGCCCGGAATTGCATCCGTGGCCTTGCAGGCGCAGAGACACTGA TTAAAAACAAGTTGCATGTGGAAAAATCAAAATAAAAAGTCTGG ACTCTCACGCTCGCTTGGTCCTGTAACTATTTTGTAGAATGGAAG ACATCAACTTTGCGTCTCTGGCCCCGCGACACGGCTCGCGCCCGT TCATGGGAAACTGGCAAGATATCGGCACCAGCAATATGAGCGGT GGCGCCTTCAGCTGGGGCTCGCTGTGGAGCGGCATTAAAAATTTC GGTTCCACCGTTAAGAACTATGGCAGCAAGGCCTGGAACAGCAG CACAGGCCAGATGCTGAGGGATAAGTTGAAAGAGCAAAATTTCC AACAAAAGGTGGTAGATGGCCTGGCCTCTGGCATTAGCGGGGTG GTGGACCTGGCCAACCAGGCAGTGCAAAATAAGATTAACAGTAA GCTTGATCCCCGCCCTCCCGTAGAGGAGCCTCCACCGGCCGTGGA
GACAGTGTCTCCAGAGGGGCGTGGCGAAAAGCGTCCGCGCCCCG ACAGGGAAGAAACTCTGGTGACGCAAATAGACGAGCCTCCCTCG TACGAGGAGGCACTAAAGCAAGGCCTGCCCACCACCCGTCCCATC GCGCCCATGGCTACCGGAGTGCTGGGCCAGCACACACCCGTAAC GCTGGACCTGCCTCCCCCCGCCGACACCCAGCAGAAACCTGTGCT GCCAGGCCCGACCGCCGTTGTTGTAACCCGTCCTAGCCGCGCGTC CCTGCGCCGCGCCGCCAGCGGTCCGCGATCGTTGCGGCCCGTAGC CAGTGGCAACTGGCAAAGCACACTGAACAGCATCGTGGGTCTGG GGGTGCAATCCCTGAAGCGCCGACGATGCTTCTGATAGCTAACGT GTCGTATGTGTGTCATGTATGCGTCCATGTCGCCGCCAGAGGAGC TGCTGAGCCGCCGCGCGCCCGCTTTCCAAGATGGCTACCCCTTCG ATGATGCCGCAGTGGTCTTACATGCACATCTCGGGCCAGGACGCC TCGGAGTACCTGAGCCCCGGGCTGGTGCAGTTTGCCCGCGCCACC GAGACGTACTTCAGCCTGAATAACAAGTTTAGAAACCCCACGGTG GCGCCTACGCACGACGTGACCACAGACCGGTCCCAGCGTTTGACG CTGCGGTTCATCCCTGTGGACCGTGAGGATACTGCGTACTCGTAC AAGGCGCGGTTCACCCTAGCTGTGGGTGATAACCGTGTGCTGGAC ATGGCTTCCACGTACTTTGACATCCGCGGCGTGCTGGACAGGGGC CCTACTTTTAAGCCCTACTCTGGCACTGCCTACAACGCCCTGGCTC CCAAGGGTGCCCCAAATCCTTGCGAATGGGATGAAGCTGCTACTG CTCTTGAAATAAACCTAGAAGAAGAGGACGATGACAACGAAGAC GAAGTAGACGAGCAAGCTGAGCAGCAAAAAACTCACGTATTTGG GCAGGCGCCTTATTCTGGTATAAATATTACAAAGGAGGGTATTCA AATAGGTGTCGAAGGTCAAACACCTAAATATGCCGATAAAACATT TCAACCTGAACCTCAAATAGGAGAATCTCAGTGGTACGAAACAG AAATTAATCATGCAGCTGGGAGAGTCCTAAAAAAGACTACCCCA ATGAAACCATGTTACGGTTCATATGCAAAACCCACAAATGAAAAT GGAGGGCAAGGCATTCTTGTAAAGCAACAAAATGGAAAGCTAGA AAGTCAAGTGGAAATGCAATTTTTCTCAACTACTGAGGCAGCCGC AGGCAATGGTGATAACTTGACTCCTAAAGTGGTATTGTACAGTGA AGATGTAGATATAGAAACCCCAGACACTCATATTTCTTACATGCC CACTATTAAGGAAGGTAACTCACGAGAACTAATGGGCCAACAAT CTATGCCCAACAGGCCTAATTACATTGCTTTTAGGGACAATTTTAT TGGTCTAATGTATTACAACAGCACGGGTAATATGGGTGTTCTGGC GGGCCAAGCATCGCAGTTGAATGCTGTTGTAGATTTGCAAGACAG AAACACAGAGCTTTCATACCAGCTTTTGCTTGATTCCATTGGTGAT AGAACCAGGTACTTTTCTATGTGGAATCAGGCTGTTGACAGCTAT GATCCAGATGTTAGAATTATTGAAAATCATGGAACTGAAGATGAA CTTCCAAATTACTGCTTTCCACTGGGAGGTGTGATTAATACAGAG ACTCTTACCAAGGTAAAACCTAAAACAGGTCAGGAAAATGGATG GGAAAAAGATGCTACAGAATTTTCAGATAAAAATGAAATAAGAG TTGGAAATAATTTTGCCATGGAAATCAATCTAAATGCCAACCTGT GGAGAAATTTCCTGTACTCCAACATAGCGCTGTATTTGCCCGACA AGCTAAAGTACAGTCCTTCCAACGTAAAAATTTCTGATAACCCAA ACACCTACGACTACATGAACAAGCGAGTGGTGGCTCCCGGGCTA GTGGACTGCTACATTAACCTTGGAGCACGCTGGTCCCTTGACTAT ATGGACAACGTCAACCCATTTAACCACCACCGCAATGCTGGCCTG CGCTACCGCTCAATGTTGCTGGGCAATGGTCGCTATGTGCCCTTCC ACATCCAGGTGCCTCAGAAGTTCTTTGCCATTAAAAACCTCCTTCT CCTGCCGGGCTCATACACCTACGAGTGGAACTTCAGGAAGGATGT TAACATGGTTCTGCAGAGCTCCCTAGGAAATGACCTAAGGGTTGA CGGAGCCAGCATTAAGTTTGATAGCATTTGCCTTTACGCCACCTTC TTCCCCATGGCCCACAACACCGCCTCCACGCTTGAGGCCATGCTT AGAAACGACACCAACGACCAGTCCTTTAACGACTATCTCTCCGCC GCCAACATGCTCTACCCTATACCCGCCAACGCTACCAACGTGCCC ATATCCATCCCCTCCCGCAACTGGGCGGCTTTCCGCGGCTGGGCC TTCACGCGCCTTAAGACTAAGGAAACCCCATCACTGGGCTCGGGC TACGACCCTTATTACACCTACTCTGGCTCTATACCCTACCTAGATG GAACCTTTTACCTCAACCACACCTTTAAGAAGGTGGCCATTACCT TTGACTCTTCTGTCAGCTGGCCTGGCAATGACCGCCTGCTTACCCC CAACGAGTTTGAAATTAAGCGCTCAGTTGACGGGGAGGGTTACA ACGTTGCCCAGTGTAACATGACCAAAGACTGGTTCCTGGTACAAA TGCTAGCTAACTATAACATTGGCTACCAGGGCTTCTATATCCCAG AGAGCTACAAGGACCGCATGTACTCCTTCTTTAGAAACTTCCAGC CCATGAGCCGTCAGGTGGTGGATGATACTAAATACAAGGACTACC AACAGGTGGGCATCCTACACCAACACAACAACTCTGGATTTGTTG GCTACCTTGCCCCCACCATGCGCGAAGGACAGGCCTACCCTGCTA ACTTCCCCTATCCGCTTATAGGCAAGACCGCAGTTGACAGCATTA CCCAGAAAAAGTTTCTTTGCGATCGCACCCTTTGGCGCATCCCATT CTCCAGTAACTTTATGTCCATGGGCGCACTCACAGACCTGGGCCA AAACCTTCTCTACGCCAACTCCGCCCACGCGCTAGACATGACTTT TGAGGTGGATCCCATGGACGAGCCCACCCTTCTTTATGTTTTGTTT GAAGTCTTTGACGTGGTCCGTGTGCACCAGCCGCACCGCGGCGTC ATCGAAACCGTGTACCTGCGCACGCCCTTCTCGGCCGGCAACGCC ACAACATAAAGAAGCAAGCAACATCAACAACAGCTGCCGCCATG GGCTCCAGTGAGCAGGAACTGAAAGCCATTGTCAAAGATCTTGGT TGTGGGCCATATTTTTTGGGCACCTATGACAAGCGCTTTCCAGGCT TTGTTTCTCCACACAAGCTCGCCTGCGCCATAGTCAATACGGCCG GTCGCGAGACTGGGGGCGTACACTGGATGGCCTTTGCCTGGAACC CGCACTCAAAAACATGCTACCTCTTTGAGCCCTTTGGCTTTTCTGA CCAGCGACTCAAGCAGGTTTACCAGTTTGAGTACGAGTCACTCCT GCGCCGTAGCGCCATTGCTTCTTCCCCCGACCGCTGTATAACGCT GGAAAAGTCCACCCAAAGCGTACAGGGGCCCAACTCGGCCGCCT GTGGACTATTCTGCTGCATGTTTCTCCACGCCTTTGCCAACTGGCC CCAAACTCCCATGGATCACAACCCCACCATGAACCTTATTACCGG GGTACCCAACTCCATGCTCAACAGTCCCCAGGTACAGCCCACCCT GCGTCGCAACCAGGAACAGCTCTACAGCTTCCTGGAGCGCCACTC GCCCTACTTCCGCAGCCACAGTGCGCAGATTAGGAGCGCCACTTC TTTTTGTCACTTGAAAAACATGTAAAAATAATGTACTAGAGACAC TTTCAATAAAGGCAAATGCTTTTATTTGTACACTCTCGGGTGATTA TTTACCCCCACCCTTGCCGTCTGCGCCGTTTAAAAATCAAAGGGG TTCTGCCGCGCATCGCTATGCGCCACTGGCAGGGACACGTTGCGA TACTGGTGTTTAGTGCTCCACTTAAACTCAGGCACAACCATCCGC GGCAGCTCGGTGAAGTTTTCACTCCACAGGCTGCGCACCATCACC AACGCGTTTAGCAGGTCGGGCGCCGATATCTTGAAGTCGCAGTTG GGGCCTCCGCCCTGCGCGCGCGAGTTGCGATACACAGGGTTGCAG CACTGGAACACTATCAGCGCCGGGTGGTGCACGCTGGCCAGCAC GCTCTTGTCGGAGATCAGATCCGCGTCCAGGTCCTCCGCGTTGCT CAGGGCGAACGGAGTCAACTTTGGTAGCTGCCTTCCCAAAAAGG GCGCGTGCCCAGGCTTTGAGTTGCACTCGCACCGTAGTGGCATCA AAAGGTGACCGTGCCCGGTCTGGGCGTTAGGATACAGCGCCTGCA TAAAAGCCTTGATCTGCTTAAAAGCCACCTGAGCCTTTGCGCCTT CAGAGAAGAACATGCCGCAAGACTTGCCGGAAAACTGATTGGCC GGACAGGCCGCGTCGTGCACGCAGCACCTTGCGTCGGTGTTGGAG ATCTGCACCACATTTCGGCCCCACCGGTTCTTCACGATCTTGGCCT TGCTAGACTGCTCCTTCAGCGCGCGCTGCCCGTTTTCGCTCGTCAC ATCCATTTCAATCACGTGCTCCTTATTTATCATAATGCTTCCGTGT AGACACTTAAGCTCGCCTTCGATCTCAGCGCAGCGGTGCAGCCAC AACGCGCAGCCCGTGGGCTCGTGATGCTTGTAGGTCACCTCTGCA AACGACTGCAGGTACGCCTGCAGGAATCGCCCCATCATCGTCACA AAGGTCTTGTTGCTGGTGAAGGTCAGCTGCAACCCGCGGTGCTCC TCGTTCAGCCAGGTCTTGCATACGGCCGCCAGAGCTTCCACTTGG TCAGGCAGTAGTTTGAAGTTCGCCTTTAGATCGTTATCCACGTGGT ACTTGTCCATCAGCGCGCGCGCAGCCTCCATGCCCTTCTCCCACG CAGACACGATCGGCACACTCAGCGGGTTCATCACCGTAATTTCAC TTTCCGCTTCGCTGGGCTCTTCCTCTTCCTCTTGCGTCCGCATACC ACGCGCCACTGGGTCGTCTTCATTCAGCCGCCGCACTGTGCGCTT ACCTCCTTTGCCATGCTTGATTAGCACCGGTGGGTTGCTGAAACC CACCATTTGTAGCGCCACATCTTCTCTTTCTTCCTCGCTGTCCACG ATTACCTCTGGTGATGGCGGGCGCTCGGGCTTGGGAGAAGGGCGC TTCTTTTTCTTCTTGGGCGCAATGGCCAAATCCGCCGCCGAGGTCG ATGGCCGCGGGCTGGGTGTGCGCGGCACCAGCGCGTCTTGTGATG AGTCTTCCTCGTCCTCGGACTCGATACGCCGCCTCATCCGCTTTTT TGGGGGCGCCCGGGGAGGCGGCGGCGACGGGGACGGGGACGAC ACGTCCTCCATGGTTGGGGGACGTCGCGCCGCACCGCGTCCGCGC TCGGGGGTGGTTTCGCGCTGCTCCTCTTCCCGACTGGCCATTTCCT TCTCCTATAGGCAGAAAAAGATCATGGAGTCAGTCGAGAAGAAG GACAGCCTAACCGCCCCCTCTGAGTTCGCCACCACCGCCTCCACC GATGCCGCCAACGCGCCTACCACCTTCCCCGTCGAGGCACCCCCG CTTGAGGAGGAGGAAGTGATTATCGAGCAGGACCCAGGTTTTGTA AGCGAAGACGACGAGGACCGCTCAGTACCAACAGAGGATAAAAA GCAAGACCAGGACAACGCAGAGGCAAACGAGGAACAAGTCGGG CGGGGGGACGAAAGGCATGGCGACTACCTAGATGTGGGAGACGA CGTGCTGTTGAAGCATCTGCAGCGCCAGTGCGCCATTATCTGCGA CGCGTTGCAAGAGCGCAGCGATGTGCCCCTCGCCATAGCGGATGT CAGCCTTGCCTACGAACGCCACCTATTCTCACCGCGCGTACCCCC CAAACGCCAAGAAAACGGCACATGCGAGCCCAACCCGCGCCTCA ACTTCTACCCCGTATTTGCCGTGCCAGAGGTGCTTGCCACCTATCA CATCTTTTTCCAAAACTGCAAGATACCCCTATCCTGCCGTGCCAAC CGCAGCCGAGCGGACAAGCAGCTGGCCTTGCGGCAGGGCGCTGT CATACCTGATATCGCCTCGCTCAACGAAGTGCCAAAAATCTTTGA GGGTCTTGGACGCGACGAGAAGCGCGCGGCAAACGCTCTGCAAC AGGAAAACAGCGAAAATGAAAGTCACTCTGGAGTGTTGGTGGAA CTCGAGGGTGACAACGCGCGCCTAGCCGTACTAAAACGCAGCAT CGAGGTCACCCACTTTGCCTACCCGGCACTTAACCTACCCCCCAA GGTCATGAGCACAGTCATGAGTGAGCTGATCGTGCGCCGTGCGCA GCCCCTGGAGAGGGATGCAAATTTGCAAGAACAAACAGAGGAGG GCCTACCCGCAGTTGGCGACGAGCAGCTAGCGCGCTGGCTTCAAA CGCGCGAGCCTGCCGACTTGGAGGAGCGACGCAAACTAATGATG GCCGCAGTGCTCGTTACCGTGGAGCTTGAGTGCATGCAGCGGTTC TTTGCTGACCCGGAGATGCAGCGCAAGCTAGAGGAAACATTGCA CTACACCTTTCGACAGGGCTACGTACGCCAGGCCTGCAAGATCTC CAACGTGGAGCTCTGCAACCTGGTCTCCTACCTTGGAATTTTGCA CGAAAACCGCCTTGGGCAAAACGTGCTTCATTCCACGCTCAAGGG CGAGGCGCGCCGCGACTACGTCCGCGACTGCGTTTACTTATTTCT ATGCTACACCTGGCAGACGGCCATGGGCGTTTGGCAGCAGTGCTT GGAGGAGTGCAACCTCAAGGAGCTGCAGAAACTGCTAAAGCAAA ACTTGAAGGACCTATGGACGGCCTTCAACGAGCGCTCCGTGGCCG CGCACCTGGCGGACATCATTTTCCCCGAACGCCTGCTTAAAACCC TGCAACAGGGTCTGCCAGACTTCACCAGTCAAAGCATGTTGCAGA ACTTTAGGAACTTTATCCTAGAGCGCTCAGGAATCTTGCCCGCCA CCTGCTGTGCACTTCCTAGCGACTTTGTGCCCATTAAGTACCGCGA ATGCCCTCCGCCGCTTTGGGGCCACTGCTACCTTCTGCAGCTAGCC AACTACCTTGCCTACCACTCTGACATAATGGAAGACGTGAGCGGT GACGGTCTACTGGAGTGTCACTGTCGCTGCAACCTATGCACCCCG CACCGCTCCCTGGTTTGCAATTCGCAGCTGCTTAACGAAAGTCAA ATTATCGGTACCTTTGAGCTGCAGGGTCCCTCGCCTGACGAAAAG TCCGCGGCTCCGGGGTTGAAACTCACTCCGGGGCTGTGGACGTCG GCTTACCTTCGCAAATTTGTACCTGAGGACTACCACGCCCACGAG ATTAGGTTCTACGAAGACCAATCCCGCCCGCCTAATGCGGAGCTT ACCGCCTGCGTCATTACCCAGGGCCACATTCTTGGCCAATTGCAA GCCATCAACAAAGCCCGCCAAGAGTTTCTGCTACGAAAGGGACG GGGGGTTTACTTGGACCCCCAGTCCGGCGAGGAGCTCAACCCAAT CCCCCCGCCGCCGCAGCCCTATCAGCAGCAGCCGCGGGCCCTTGC TTCCCAGGATGGCACCCAAAAAGAAGCTGCAGCTGCCGCCGCCA CCCACGGACGAGGAGGAATACTGGGACAGTCAGGCAGAGGAGGT TTTGGACGAGGAGGAGGAGGACATGATGGAAGACTGGGAGAGCC TAGACGAGGAAGCTTCCGAGGTCGAAGAGGTGTCAGACGAAACA CCGTCACCCTCGGTCGCATTCCCCTCGCCGGCGCCCCAGAAATCG GCAACCGGTTCCAGCATGGCTACAACCTCCGCTCCTCAGGCGCCG CCGGCACTGCCCGTTCGCCGACCCAACCGTAGATGGGACACCACT GGAACCAGGGCCGGTAAGTCCAAGCAGCCGCCGCCGTTAGCCCA AGAGCAACAACAGCGCCAAGGCTACCGCTCATGGCGCGGGCACA AGAACGCCATAGTTGCTTGCTTGCAAGACTGTGGGGGCAACATCT CCTTCGCCCGCCGCTTTCTTCTCTACCATCACGGCGTGGCCTTCCC CCGTAACATCCTGCATTACTACCGTCATCTCTACAGCCCATACTGC ACCGGCGGCAGCGGCAGCAACAGCAGCGGCCACACAGAAGCAAA GGCGACCGGATAGCAAGACTCTGACAAAGCCCAAGAAATCCACA GCGGCGGCAGCAGCAGGAGGAGGAGCGCTGCGTCTGGCGCCCAA CGAACCCGTATCGACCCGCGAGCTTAGAAACAGGATTTTTCCCAC TCTGTATGCTATATTTCAACAGAGCAGGGGCCAAGAACAAGAGCT GAAAATAAAAAACAGGTCTCTGCGATCCCTCACCCGCAGCTGCCT GTATCACAAAAGCGAAGATCAGCTTCGGCGCACGCTGGAAGACG CGGAGGCTCTCTTCAGTAAATACTGCGCGCTGACTCTTAAGGACT AGTTTCGCGCCCTTTCTCAAATTTAAGCGCGAAAACTACGTCATCT CCAGCGGCCACACCCGGCGCCAGCACCTGTTGTCAGCGCCATTAT GAGCAAGGAAATTCCCACGCCCTACATGTGGAGTTACCAGCCACA AATGGGACTTGCGGCTGGAGCTGCCCAAGACTACTCAACCCGAAT AAACTACATGAGCGCGGGACCCCACATGATATCCCGGGTCAACG GAATACGCGCCCACCGAAACCGAATTCTCCTGGAACAGGCGGCT ATTACCACCACACCTCGTAATAACCTTAATCCCCGTAGTTGGCCC GCTGCCCTGGTGTACCAGGAAAGTCCCGCTCCCACCACTGTGGTA CTTCCCAGAGACGCCCAGGCCGAAGTTCAGATGACTAACTCAGGG GCGCAGCTTGCGGGCGGCTTTCGTCACAGGGTGCGGTCGCCCGGG CAGGGTATAACTCACCTGACAATCAGAGGGCGAGGTATTCAGCTC AACGACGAGTCGGTGAGCTCCTCGCTTGGTCTCCGTCCGGACGGG ACATTTCAGATCGGCGGCGCCGGCCGCTCTTCATTCACGCCTCGT CAGGCAATCCTAACTCTGCAGACCTCGTCCTCTGAGCCGCGCTCT GGAGGCATTGGAACTCTGCAATTTATTGAGGAGTTTGTGCCATCG GTCTACTTTAACCCCTTCTCGGGACCTCCCGGCCACTATCCGGATC AATTTATTCCTAACTTTGACGCGGTAAAGGACTCGGCGGACGGCT ACGACTGAATGTTAAGTGGAGAGGCAGAGCAACTGCGCCTGAAA CACCTGGTCCACTGTCGCCGCCACAAGTGCTTTGCCCGCGACTCC GGTGAGTTTTGCTACTTTGAATTGCCCGAGGATCATATCGAGGGC CCGGCGCACGGCGTCCGGCTTACCGCCCAGGGAGAGCTTGCCCGT AGCCTGATTCGGGAGTTTACCCAGCGCCCCCTGCTAGTTGAGCGG GACAGGGGACCCTGTGTTCTCACTGTGATTTGCAACTGTCCTAAC CCTGGATTACATCAAGATCCTCTAGTTAATGTCAGGTCGCCTAAG TCGATTAACTAGAGTACCCGGGGATCTTATTCCCTTTAACTAATA AAAAAAAATAATAAAGCATCACTTACTTAAAATCAGTTAGCAAAT TTCTGTCCAGTTTATTCAGCAGCACCTCCTTGCCCTCCTCCCAGCT CTGGTATTGCAGCTTCCTCCTGGCTGCAAACTTTCTCCACAATCTA AATGGAATGTCAGTTTCCTCCTGTTCCTGTCCATCCGCACCCACTA TCTTCATGTTGTTGCAGATGAAGCGCGCAAGACCGTCTGAAGATA CCTTCAACCCCGTGTATCCATATGACACGGAAACCGGTCCTCCAA CTGTGCCTTTTCTTACTCCTCCCTTTGTATCCCCCAATGGGTTTCAA GAGAGTCCCCCTGGGGTACTCTCTTTGCGCCTATCCGAACCTCTA GTTACCTCCAATGGCATGCTTGCGCTCAAAATGGGCAACGGCCTC TCTCTGGACGAGGCCGGCAACCTTACCTCCCAAAATGTAACCACT GTGAGCCCACCTCTCAAAAAAACCAAGTCAAACATAAACCTGGA AATATCTGCACCCCTCACAGTTACCTCAGAAGCCCTAACTGTGGC TGCCGCCGCACCTCTAATGGTCGCGGGCAACACACTCACCATGCA ATCACAGGCCCCGCTAACCGTGCACGACTCCAAACTTAGCATTGC CACCCAAGGACCCCTCACAGTGTCAGAAGGAAAGCTAGCCCTGC AAACATCAGGCCCCCTCACCACCACCGATAGCAGTACCCTTACTA TCACTGCCTCACCCCCTCTAACTACTGCCACTGGTAGCTTGGGCAT TGACTTGAAAGAGCCCATTTATACACAAAATGGAAAACTAGGACT AAAGTACGGGGCTCCTTTGCATGTAACAGACGACCTAAACACTTT GACCGTAGCAACTGGTCCAGGTGTGACTATTAATAATACTTCCTT GCAAACTAAAGTTACTGGAGCCTTGGGTTTTGATTCACAAGGCAA TATGCAACTTAATGTAGCAGGAGGACTAAGGATTGATTCTCAAAA CAGACGCCTTATACTTGATGTTAGTTATCCGTTTGATGCTCAAAAC CAACTAAATCTAAGACTAGGACAGGGCCCTCTTTTTATAAACTCA GCCCACAACTTGGATATTAACTACAACAAAGGCCTTTACTTGTTT ACAGCTTCAAACAATTCCAAAAAGCTTGAGGTTAACCTAAGCACT GCCAAGGGGTTGATGTTTGACGCTACAGCCATAGCCATTAATGCA GGAGATGGGCTTGAATTTGGTTCACCTAATGCACCAAACACAAAT CCCCTCAAAACAAAAATTGGCCATGGCCTAGAATTTGATTCAAAC AAGGCTATGGTTCCTAAACTAGGAACTGGCCTTAGTTTTGACAGC ACAGGTGCCATTACAGTAGGAAACAAAAATAATGATAAGCTAAC TTTGTGGACCACACCAGCTCCATCTCCTAACTGTAGACTAAATGC
AGAGAAAGATGCTAAACTCACTTTGGTCTTAACAAAATGTGGCAG TCAAATACTTGCTACAGTTTCAGTTTTGGCTGTTAAAGGCAGTTTG GCTCCAATATCTGGAACAGTTCAAAGTGCTCATCTTATTATAAGA TTTGACGAAAATGGAGTGCTACTAAACAATTCCTTCCTGGACCCA GAATATTGGAACTTTAGAAATGGAGATCTTACTGAAGGCACAGCC TATACAAACGCTGTTGGATTTATGCCTAACCTATCAGCTTATCCAA AATCTCACGGTAAAACTGCCAAAAGTAACATTGTCAGTCAAGTTT ACTTAAACGGAGACAAAACTAAACCTGTAACACTAACCATTACAC TAAACGGTACACAGGAAACAGGAGACACAACTCCAAGTGCATAC TCTATGTCATTTTCATGGGACTGGTCTGGCCACAACTACATTAATG AAATATTTGCCACATCCTCTTACACTTTTTCATACATTGCCCAAGA ATAAAGAATCGTTTGTGTTATGTTTCAACGTGTTTATTTTTCAATT GCAGAAAATTTCAAGTCATTTTTCATTCAGTAGTATAGCCCCACC ACCACATAGCTTATACAGATCACCGTACCTTAATCAAACTCACAG AACCCTAGTATTCAACCTGCCACCTCCCTCCCAACACACAGAGTA CACAGTCCTTTCTCCCCGGCTGGCCTTAAAAAGCATCATATCATG GGTAACAGACATATTCTTAGGTGTTATATTCCACACGGTTTCCTGT CGAGCCAAACGCTCATCAGTGATATTAATAAACTCCCCGGGCAGC TCACTTAAGTTCATGTCGCTGTCCAGCTGCTGAGCCACAGGCTGC TGTCCAACTTGCGGTTGCTTAACGGGCGGCGAAGGAGAAGTCCAC GCCTACATGGGGGTAGAGTCATAATCGTGCATCAGGATAGGGCG GTGGTGCTGCAGCAGCGCGCGAATAAACTGCTGCCGCCGCCGCTC CGTCCTGCAGGAATACAACATGGCAGTGGTCTCCTCAGCGATGAT TCGCACCGCCCGCAGCATAAGGCGCCTTGTCCTCCGGGCACAGCA GCGCACCCTGATCTCACTTAAATCAGCACAGTAACTGCAGCACAG CACCACAATATTGTTCAAAATCCCACAGTGCAAGGCGCTGTATCC AAAGCTCATGGCGGGGACCACAGAACCCACGTGGCCATCATACC ACAAGCGCAGGTAGATTAAGTGGCGACCCCTCATAAACACGCTG GACATAAACATTACCTCTTTTGGCATGTTGTAATTCACCACCTCCC GGTACCATATAAACCTCTGATTAAACATGGCGCCATCCACCACCA TCCTAAACCAGCTGGCCAAAACCTGCCCGCCGGCTATACACTGCA GGGAACCGGGACTGGAACAATGACAGTGGAGAGCCCAGGACTCG TAACCATGGATCATCATGCTCGTCATGATATCAATGTTGGCACAA CACAGGCACACGTGCATACACTTCCTCAGGATTACAAGCTCCTCC CGCGTTAGAACCATATCCCAGGGAACAACCCATTCCTGAATCAGC GTAAATCCCACACTGCAGGGAAGACCTCGCACGTAACTCACGTTG TGCATTGTCAAAGTGTTACATTCGGGCAGCAGCGGATGATCCTCC AGTATGGTAGCGCGGGTTTCTGTCTCAAAAGGAGGTAGACGATCC CTACTGTACGGAGTGCGCCGAGACAACCGAGATCGTGTTGGTCGT AGTGTCATGCCAAATGGAACGCCGGACGTAGTCATATTTCCTGAA GCAAAACCAGGTGCGGGCGTGACAAACAGATCTGCGTCTCCGGT CTCGCCGCTTAGATCGCTCTGTGTAGTAGTTGTAGTATATCCACTC TCTCAAAGCATCCAGGCGCCCCCTGGCTTCGGGTTCTATGTAAAC TCCTTCATGCGCCGCTGCCCTGATAACATCCACCACCGCAGAATA AGCCACACCCAGCCAACCTACACATTCGTTCTGCGAGTCACACAC GGGAGGAGCGGGAAGAGCTGGAAGAACCATGTTTTTTTTTTTATT CCAAAAGATTATCCAAAACCTCAAAATGAAGATCTATTAAGTGAA CGCGCTCCCCTCCGGTGGCGTGGTCAAACTCTACAGCCAAAGAAC AGATAATGGCATTTGTAAGATGTTGCACAATGGCTTCCAAAAGGC AAACGGCCCTCACGTCCAAGTGGACGTAAAGGCTAAACCCTTCAG GGTGAATCTCCTCTATAAACATTCCAGCACCTTCAACCATGCCCA AATAATTCTCATCTCGCCACCTTCTCAATATATCTCTAAGCAAATC CCGAATATTAAGTCCGGCCATTGTAAAAATCTGCTCCAGAGCGCC CTCCACCTTCAGCCTCAAGCAGCGAATCATGATTGCAAAAATTCA GGTTCCTCACAGACCTGTATAAGATTCAAAAGCGGAACATTAACA AAAATACCGCGATCCCGTAGGTCCCTTCGCAGGGCCAGCTGAACA TAATCGTGCAGGTCTGCACGGACCAGCGCGGCCACTTCCCCGCCA GGAACCATGACAAAAGAACCCACACTGATTATGACACGCATACT CGGAGCTATGCTAACCAGCGTAGCCCCGATGTAAGCTTGTTGCAT GGGCGGCGATATAAAATGCAAGGTGCTGCTCAAAAAATCAGGCA AAGCCTCGCGCAAAAAAGAAAGCACATCGTAGTCATGCTCATGC AGATAAAGGCAGGTAAGCTCCGGAACCACCACAGAAAAAGACAC CATTTTTCTCTCAAACATGTCTGCGGGTTTCTGCATAAACACAAAA TAAAATAACAAAAAAACATTTAAACATTAGAAGCCTGTCTTACAA CAGGAAAAACAACCCTTATAAGCATAAGACGGACTACGGCCATG CCGGCGTGACCGTAAAAAAACTGGTCACCGTGATTAAAAAGCAC CACCGACAGCTCCTCGGTCATGTCCGGAGTCATAATGTAAGACTC GGTAAACACATCAGGTTGATTCACATCGGTCAGTGCTAAAAAGCG ACCGAAATAGCCCGGGGGAATACATACCCGCAGGCGTAGAGACA ACATTACAGCCCCCATAGGAGGTATAACAAAATTAATAGGAGAG AAAAACACATAAACACCTGAAAAACCCTCCTGCCTAGGCAAAAT AGCACCCTCCCGCTCCAGAACAACATACAGCGCTTCCACAGCGGC AGCCATAACAGTCAGCCTTACCAGTAAAAAAGAAAACCTATTAA AAAAACACCACTCGACACGGCACCAGCTCAATCAGTCACAGTGT AAAAAAGGGCCAAGTGCAGAGCGAGTATATATAGGACTAAAAAA TGACGTAACGGTTAAAGTCCACAAAAAACACCCAGAAAACCGCA CGCGAACCTACGCCCAGAAACGAAAGCCAAAAAACCCACAACTT CCTCAAATCGTCACTTCCGTTTTCCCACGTTACGTCACTTCCCATT TTAAGAAAACTACAATTCCCAACACATACAAGTTACTCCGCCCTA AAACCTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCAC AAACTCCACCCCCTCATTATCATATTGGCTTCAATCCAAAATAAG GTATATTATTGATGAT SEQ ID NO: 9 GGAGGACACTTCTCAGAAGGGGTTGTTTTGCTTTTGCTTATTTCCG TCCATTTCCCTCTCTGCGCGCGGACCTTCCTTTTCCAGATGGTGAG AGCCGCGGGGACACCCGACGCCGGGGCAGGCTGATCCACGATCC TGGGTGTGCGTAACGCCGCCTGGGGCTCCGTGGGCGAGGGACGT GTGGGGACAGGTGCACCGGAAACTGCCAGACTGGAGAGTTGAGG CATCGGAGGCGCGAGAACAGCACTACTACTGCGGCGAGACGAGC GCGGCGCATCCCAAAGCCCGGCCAAATGCGCTCGTCCCTGGGAG GGGAGGGAGGCGCGCCTGGAGCGGGGACAGTCTTGGTCCGCGCC CTCCTCCCGGGTCTGTGCCGGGACCCGGGACCCGGGAGCCGTCGC AGGTCTCGGTCCAAGGGGCCCCTTTTCTCGGAAGGGCGGCGGCCA AGAGCAGGGAAGGTGGATCTCAGGTAGCGAGTCTGGGCTTCGGG GACGGCGGGGAGGGGAGCCGGACGGGAGGATGAGCTCCCCTGGC ACCGAGAGCGCGGGAAAGAGCCTGCAGTACCGAGTGGACCACCT GCTGAGCGCCGTGGAGAATGAGCTGCAGGCGGGCAGCGAGAAGG GCGACCCCACAGAGCGCGAACTGCGCGTGGGCCTGGAGGAGAGC GAGCTGTGGCTGCGCTTCAAGGAGCTCACCAATGAGATGATCGTG ACCAAGAACGGCAGGAGGATGTTTCCGGTGCTGAAGGTGAACGT GTCTGGCCTGGACCCCAACGCCATGTACTCCTTCCTGCTGGACTTC GTGGCGGCGGACAACCACCGCTGGAAGTACGTGAACGGGGAATG GGTGCCGGGGGGCAAGCCGGAGCCGCAGGCGCCCAGCTGCGTCT ACATCCACCCCGACTCGCCCAACTTCGGGGCCCACTGGATGAAGG CTCCCGTCTCCTTCAGCAAAGTCAAGCTCACCAACAAGCTCAACG GAGGGGGCCAGATCATGCTGAACTCCTTGCATAAGTATGAGCCTC GAATCCACATAGTGAGAGTTGGGGGTCCACAGCGCATGATCACC AGCCACTGCTTCCCTGAGACCCAGTTCATAGCGGTGACTGCTTAT CAGAACGAGGAGATCACAGCTCTTAAAATTAAGTACAATCCATTT GCAAAAGCTTTCCTTGATGCAAAGGAAAGAAGTGATCACAAAGA GATGATGGAGGAACCCGGAGACAGCCAGCAACCTGGGTACTCCC AATGGGGGTGGCTTCTTCCTGGAACCAGCACCCTGTGTCCACCTG CAAATCCTCATCCTCAGTTTGGAGGTGCCCTCTCCCTCCCCTCCAC GCACAGCTGTGACAGGTACCCAACCCTGAGGAGCCACCGGTCCTC ACCCTACCCCAGCCCCTATGCTCATCGGAACAATTCTCCAACCTA TTCTGACAACTCACCTGCATGTTTATCCATGCTGCAATCCCATGAC AATTGGTCCAGCCTTGGAATGCCTGCCCATCCCAGCATGCTCCCC GTGAGCCACAATGCCAGCCCACCTACCAGCTCCAGTCAGTACCCC AGCCTGTGGTCTGTGAGCAACGGCGCCGTCACCCCGGGCTCCCAG GCAGCAGCCGTGTCCAACGGGCTGGGGGCCCAGTTCTTCCGGGGC TCCCCCGCGCACTACACACCCCTCACCCATCCGGTCTCGGCGCCC TCTTCCTCGGGATCCCCACTGTACGAAGGGGCGGCCGCGGCCACA GACATCGTGGACAGCCAGTACGACGCCGCAGCCCAAGGCCGCCT CATAGCCTCATGGACACCTGTGTCGCCACCTTCCATGTGAAGCAG CAAGGCCCAGGTCCCGAAAGATGCAGTGACTTTTTGTCGTGGCAG CCAGTGGTGACTGGATTGACCTACTAGGTACCCAGTGGCAGTCTC AGGTTAAGAAGGAAATGCAGCCTCAGTAACTTCCTTTTCAAAGCA GTGGAGGAGCACACGGCACCTTTCCCCAGAGCCCCAGCATCCCTT GCTCACACCTGCAGTAGCGGTGCTGTCCCAGGTGGCTTACAGATG AACCCAACTGTGGAGATGATGCAGTTGGCCCAACCTCACTGACGG TGAAAAAATGTTTGCCAGGGTCCAGAAACTTTTTTTGGTTTATTTC TCATACAGTGTATTGGCAACTTTGGCACACCAGAATTTGTAAACT CCACCAGTCCTACTTTAGTGAGATAAAAAGCACACTCTTAATCTT CTTCCTTGTTGCTTTCAAGTAGTTAGAGTTGAGCTGTTAAGGACAG AATAAAATCATAGTTGAGGACAGCAGGTTTTAGTTGAATTGAAAA TTTGACTGCTCTGCCCCCTAGAATGTGTGTATTTTAAGCATATGTA GCTAATCTCTTGTGTTGTTAAACTATAACTGTTTCATATTTTTCTTT TGACAAAGTAGCCAAAGACAATCAGCAGAAAGCATTTTCTGCAA AATAAACGCAATATGCAAAAAAAAAAAAAAAAAA SEQ ID NO: 10 TCTAGAGCCACCATGAGCTCCCCTGGCACCGAGAGCGCGGGAAA GAGCCTGCAGTACCGAGTGGACCACCTGCTGAGCGCCGTGGAGA ATGAGCTGCAGGCGGGCAGCGAGAAGGGCGACCCCACAGAGCGC GAACTGCGCGTGGGCCTGGAGGAGAGCGAGCTGTGGCTGCGCTT CAAGGAGCTCACCAATGAGATGATCGTGACCAAGAACGGCAGGA GGATGTTTCCGGTGCTGAAGGTGAACGTGTCTGGCCTGGACCCCA ACGCCATGTACTCCTTCCTGCTGGACTTCGTGGCGGCGGACAACC ACCGCTGGAAGTACGTGAACGGGGAATGGGTGCCGGGGGGCAAG CCGGAGCCGCAGGCGCCCAGCTGCGTCTACATCCACCCCGACTCG CCCAACTTCGGGGCCCACTGGATGAAGGCTCCCGTCTCCTTCAGC AAAGTCAAGCTCACCAACAAGCTCAACGGAGGGGGCCAGATCAT GCTGAACTCCTTGCATAAGTATGAGCCTCGAATCCACATAGTGAG AGTTGGGGGTCCACAGCGCATGATCACCAGCCACTGCTTCCCTGA GACCCAGTTCATAGCGGTGACTGCTAGAAGTGATCACAAAGAGA TGATGGAGGAACCCGGAGACAGCCAGCAACCTGGGTACTCCCAA TGGGGGTGGCTTCTTCCTGGAACCAGCACCGTGTGTCCACCTGCA AATCCTCATCCTCAGTTTGGAGGTGCCCTCTCCCTCCCCTCCACGC ACAGCTGTGACAGGTACCCAACCCTGAGGAGCCACCGGTCCTCAC CCTACCCCAGCCCCTATGCTCATCGGAACAATTCTCCAACCTATTC TGACAACTCACCTGCATGTTTATCCATGCTGCAATCCCATGACAA TTGGTCCAGCCTTGGAATGCCTGCCCATCCCAGCATGCTCCCCGT GAGCCACAATGCCAGCCCACCTACCAGCTCCAGTCAGTACCCCAG CCTGTGGTCTGTGAGCAACGGCGCCGTCACCCCGGGCTCCCAGGC AGCAGCCGTGTCCAACGGGCTGGGGGCCCAGTTCTTCCGGGGCTC CCCCGCGCACTACACACCCCTCACCCATCCGGTCTCGGCGCCCTC TTCCTCGGGATCCCCACTGTACGAAGGGGCGGCCGCGGCCACAGA CATCGTGGACAGCCAGTACGACGCCGCAGCCCAAGGCCGCCTCAT AGCCTCATGGACACCTGTGTCGCCACCTTCCATGTGAGATATC SEQ ID NO: 11 TCTCTCCNA SEQ ID NO: 12 MSSPGTESAGKSLQYRVDHLLSAVENELQAGSEKGDPTERELRVGLE ESELWLRFKELTNEMIVTKNGRRMFPVLKVNVSGLDPNAMYSFLLD FVAADNHRWKYVNGEWVPGGKPEPQAPSCVYIHPDSPNFGAHWMK APVSFSKVKLTNKLNGGGQIMLNSLHKYEPRIHIVRVGDPQRMITSH CFPETQFIAVTAYQNEEITALKIKYNPFAKAFLDAKERSDHKEMMEE PGDSQQPGYSQWGWLLPGTSTLCPPANPHPQFGGALSLPSTHSCDRY PTLRSHRSSPYPSPYAHRNNSPTYSDNSPACLSMLQSHDNWSSLGMP AHPSMLPVSHNASPPTSSSQYPSLWSVSNGAVTPGSQAAAVTNGLG AQFFRGSPAHYTPLTHPVSAPSSSGSPLYEGAAAATNIVDSQYDAAA QGRLIASWTPVSPPSM SEQ ID NO: 13 CATCATCAATAATATACCTTATTTTGGATTGAAGCCAATATGATA ATGAGGGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGG GGCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGT GGCGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTT TGGTGTGCGCCGGTGTACACAGGAAGTGACAATTTTCGCGCGGTT TTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTT GGCCATTTTCGCGGGAAAACTGAATAAGAGGAAGTGAAATCTGA ATAATTTTGTGTTACTCATAGCGCGTAATACTGTAATAGTAATCA ATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTT ACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGAC CCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACG CCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGG TAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGT ACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCAT TATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTAC ATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGC AGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTC CAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACC AAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATA AGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGAGATCTGGT ACCGTCGACGCGGCCGCTCGAGCCTAAGCTTCTAGATGCATGCTC GAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTGCT TCTAGAGCCACCATGAGCTCCCCTGGCACCGAGAGCGCGGGAAA GAGCCTGCAGTACCGAGTGGACCACCTGCTGAGCGCCGTGGAGA ATGAGCTGCAGGCGGGCAGCGAGAAGGGCGACCCCACAGAGCGC GAACTGCGCGTGGGCCTGGAGGAGAGCGAGCTGTGGCTGCGCTT CAAGGAGCTCACCAATGAGATGATCGTGACCAAGAACGGCAGGA GGATGTTTCCGGTGCTGAAGGTGAACGTGTCTGGCCTGGACCCCA ACGCCATGTACTCCTTCCTGCTGGACTTCGTGGCGGCGGACAACC ACCGCTGGAAGTACGTGAACGGGGAATGGGTGCCGGGGGGCAAG CCGGAGCCGCAGGCGCCCAGCTGCGTCTACATCCACCCCGACTCG CCCAACTTCGGGGCCCACTGGATGAAGGCTCCCGTCTCCTTCAGC AAAGTCAAGCTCACCAACAAGCTCAACGGAGGGGGCCAGATCAT GCTGAACTCCTTGCATAAGTATGAGCCTCGAATCCACATAGTGAG AGTTGGGGGTCCACAGCGCATGATCACCAGCCACTGCTTCCCTGA GACCCAGTTCATAGCGGTGACTGCTAGAAGTGATCACAAAGAGA TGATGGAGGAACCCGGAGACAGCCAGCAACCTGGGTACTCCCAA TGGGGGTGGCTTCTTCCTGGAACCAGCACCGTGTGTCCACCTGCA AATCCTCATCCTCAGTTTGGAGGTGCCCTCTCCCTCCCCTCCACGC ACAGCTGTGACAGGTACCCAACCCTGAGGAGCCACCGGTCCTCAC CCTACCCCAGCCCCTATGCTCATCGGAACAATTCTCCAACCTATTC TGACAACTCACCTGCATGTTTATCCATGCTGCAATCCCATGACAA TTGGTCCAGCCTTGGAATGCCTGCCCATCCCAGCATGCTCCCCGT GAGCCACAATGCCAGCCCACCTACCAGCTCCAGTCAGTACCCCAG CCTGTGGTCTGTGAGCAACGGCGCCGTCACCCCGGGCTCCCAGGC AGCAGCCGTGTCCAACGGGCTGGGGGCCCAGTTCTTCCGGGGCTC CCCCGCGCACTACACACCCCTCACCCATCCGGTCTCGGCGCCCTC TTCCTCGGGATCCCCACTGTACGAAGGGGCGGCCGCGGCCACAGA CATCGTGGACAGCCAGTACGACGCCGCAGCCCAAGGCCGCCTCAT AGCCTCATGGACACCTGTGTCGCCACCTTCCATGTGAGATATCCG ATCCACCGGATCTAGATAACTGATCATAATCAGCCATACCACATT TGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTG AACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTT ATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAAT TTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGT CCAAACTCATCAATGTATCTTAACGCGGATCTGGAAGGTGCTGAG GTACGATGAGACCCGCACCAGGTGCAGACCCTGCGAGTGTGGCG GTAAACATATTAGGAACCAGCCTGTGATGCTGGATGTGACCGAGG AGCTGAGGCCCGATCACTTGGTGCTGGCCTGCACCCGCGCTGAGT TTGGCTCTAGCGATGAAGATACAGATTGAGGTACTGAAATGTGTG GGCGTGGCTTAAGGGTGGGAAAGAATATATAAGGTGGGGGTCTT ATGTAGTTTTGTATCTGTTTTGCAGCAGCCGCCGCCGCCATGAGC ACCAACTCGTTTGATGGAAGCATTGTGAGCTCATATTTGACAACG CGCATGCCCCCATGGGCCGGGGTGCGTCAGAATGTGATGGGCTCC AGCATTGATGGTCGCCCCGTCCTGCCCGCAAACTCTACTACCTTG ACCTACGAGACCGTGTCTGGAACGCCGTTGGAGACTGCAGCCTCC GCCGCCGCTTCAGCCGCTGCAGCCACCGCCCGCGGGATTGTGACT GACTTTGCTTTCCTGAGCCCGCTTGCAAGCAGTGCAGCTTCCCGTT
CATCCGCCCGCGATGACAAGTTGACGGCTCTTTTGGCACAATTGG ATTCTTTGACCCGGGAACTTAATGTCGTTTCTCAGCAGCTGTTGGA TCTGCGCCAGCAGGTTTCTGCCCTGAAGGCTTCCTCCCCTCCCAAT GCGGTTTAAAACATAAATAAAAAACCAGACTCTGTTTGGATTTGG ATCAAGCAAGTGTCTTGCTGTCTTTATTTAGGGGTTTTGCGCGCGC GGTAGGCCCGGGACCAGCGGTCTCGGTCGTTGAGGGTCCTGTGTA TTTTTTCCAGGACGTGGTAAAGGTGACTCTGGATGTTCAGATACA TGGGCATAAGCCCGTCTCTGGGGTGGAGGTAGCACCACTGCAGA GCTTCATGCTGCGGGGTGGTGTTGTAGATGATCCAGTCGTAGCAG GAGCGCTGGGCGTGGTGCCTAAAAATGTCTTTCAGTAGCAAGCTG ATTGCCAGGGGCAGGCCCTTGGTGTAAGTGTTTACAAAGCGGTTA AGCTGGGATGGGTGCATACGTGGGGATATGAGATGCATCTTGGAC TGTATTTTTAGGTTGGCTATGTTCCCAGCCATATCCCTCCGGGGAT TCATGTTGTGCAGAACCACCAGCACAGTGTATCCGGTGCACTTGG GAAATTTGTCATGTAGCTTAGAAGGAAATGCGTGGAAGAACTTGG AGACGCCCTTGTGACCTCCAAGATTTTCCATGCATTCGTCCATAAT GATGGCAATGGGCCCACGGGCGGCGGCCTGGGCGAAGATATTTC TGGGATCACTAACGTCATAGTTGTGTTCCAGGATGAGATCGTCAT AGGCCATTTTTACAAAGCGCGGGCGGAGGGTGCCAGACTGCGGT ATAATGGTTCCATCCGGCCCAGGGGCGTAGTTACCCTCACAGATT TGCATTTCCCACGCTTTGAGTTCAGATGGGGGGATCATGTCTACCT GCGGGGCGATGAAGAAAACGGTTTCCGGGGTAGGGGAGATCAGC TGGGAAGAAAGCAGGTTCCTGAGCAGCTGCGACTTACCGCAGCC GGTGGGCCCGTAAATCACACCTATTACCGGCTGCAACTGGTAGTT AAGAGAGCTGCAGCTGCCGTCATCCCTGAGCAGGGGGGCCACTTC GTTAAGCATGTCCCTGACTCGCATGTTTTCCCTGACCAAATCCGCC AGAAGGCGCTCGCCGCCCAGCGATAGCAGTTCTTGCAAGGAAGC AAAGTTTTTCAACGGTTTGAGACCGTCCGCCGTAGGCATGCTTTT GAGCGTTTGACCAAGCAGTTCCAGGCGGTCCCACAGCTCGGTCAC CTGCTCTACGGCATCTCGATCCAGCATATCTCCTCGTTTCGCGGGT TGGGGCGGCTTTCGCTGTACGGCAGTAGTCGGTGCTCGTCCAGAC GGGCCAGGGTCATGTCTTTCCACGGGCGCAGGGTCCTCGTCAGCG TAGTCTGGGTCACGGTGAAGGGGTGCGCTCCGGGCTGCGCGCTGG CCAGGGTGCGCTTGAGGCTGGTCCTGCTGGTGCTGAAGCGCTGCC GGTCTTCGCCCTGCGCGTCGGCCAGGTAGCATTTGACCATGGTGT CATAGTCCAGCCCCTCCGCGGCGTGGCCCTTGGCGCGCAGCTTGC CCTTGGAGGAGGCGCCGCACGAGGGGCAGTGCAGACTTTTGAGG GCGTAGAGCTTGGGCGCGAGAAATACCGATTCCGGGGAGTAGGC ATCCGCGCCGCAGGCCCCGCAGACGGTCTCGCATTCCACGAGCCA GGTGAGCTCTGGCCGTTCGGGGTCAAAAACCAGGTTTCCCCCATG CTTTTTGATGCGTTTCTTACCTCTGGTTTCCATGAGCCGGTGTCCA CGCTCGGTGACGAAAAGGCTGTCCGTGTCCCCGTATACAGACTTG AGAGGCCTGTCCTCGAGCGGTGTTCCGCGGTCCTCCTCGTATAGA AACTCGGACCACTCTGAGACAAAGGCTCGCGTCCAGGCCAGCAC GAAGGAGGCTAAGTGGGAGGGGTAGCGGTCGTTGTCCACTAGGG GGTCCACTCGCTCCAGGGTGTGAAGACACATGTCGCCCTCTTCGG CATCAAGGAAGGTGATTGGTTTGTAGGTGTAGGCCACGTGACCGG GTGTTCCTGAAGGGGGGCTATAAAAGGGGGTGGGGGCGCGTTCG TCCTCACTCTCTTCCGCATCGCTGTCTGCGAGGGCCAGCTGTTGGG GTGAGTACTCCCTCTGAAAAGCGGGCATGACTTCTGCGCTAAGAT TGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCG CGGTGATGCCTTTGAGGGTGGCCGCATCCATCTGGTCAGAAAAGA CAATCTTTTTGTTGTCAAGCTTGGTGGCAAACGACCCGTAGAGGG CGTTGGACAGCAACTTGGCGATGGAGCGCAGGGTTTGGTTTTTGT CGCGATCGGCGCGCTCCTTGGCCGCGATGTTTAGCTGCACGTATT CGCGCGCAACGCACCGCCATTCGGGAAAGACGGTGGTGCGCTCG TCGGGCACCAGGTGCACGCGCCAACCGCGGTTGTGCAGGGTGAC AAGGTCAACGCTGGTGGCTACCTCTCCGCGTAGGCGCTCGTTGGT CCAGCAGAGGCGGCCGCCCTTGCGCGAGCAGAATGGCGGTAGGG GGTCTAGCTGCGTCTCGTCCGGGGGGTCTGCGTCCACGGTAAAGA CCCCGGGCAGCAGGCGCGCGTCGAAGTAGTCTATCTTGCATCCTT GCAAGTCTAGCGCCTGCTGCCATGCGCGGGCGGCAAGCGCGCGCT CGTATGGGTTGAGTGGGGGACCCCATGGCATGGGGTGGGTGAGC GCGGAGGCGTACATGCCGCAAATGTCGTAAACGTAGAGGGGCTC TCTGAGTATTCCAAGATATGTAGGGTAGCATCTTCCACCGCGGAT GCTGGCGCGCACGTAATCGTATAGTTCGTGCGAGGGAGCGAGGA GGTCGGGACCGAGGTTGCTACGGGCGGGCTGCTCTGCTCGGAAG ACTATCTGCCTGAAGATGGCATGTGAGTTGGATGATATGGTTGGA CGCTGGAAGACGTTGAAGCTGGCGTCTGTGAGACCTACCGCGTCA CGCACGAAGGAGGCGTAGGAGTCGCGCAGCTTGTTGACCAGCTC GGCGGTGACCTGCACGTCTAGGGCGCAGTAGTCCAGGGTTTCCTT GATGATGTCATACTTATCCTGTCCCTTTTTTTTCCACAGCTCGCGG TTGAGGACAAACTCTTCGCGGTCTTTCCAGTACTCTTGGATCGGA AACCCGTCGGCCTCCGAACGGTAAGAGCCTAGCATGTAGAACTG GTTGACGGCCTGGTAGGCGCAGCATCCCTTTTCTACGGGTAGCGC GTATGCCTGCGCGGCCTTCCGGCATGACCAGCATGAAGGGCACGA GCTGCTTCCCAAAGGCCCCCATCCAAGTATAGGTCTCTACATCGT AGGTGACAAAGAGACGCTCGGTGCGAGGATGCGAGCCGATCGGG AAGAACTGGATCTCCCGCCACCAATTGGAGGAGTGGCTATTGATG TGGTGAAAGTAGAAGTCCCTGCGACGGGCCGAACACTCGTGCTG GCTTTTGTAAAAACGTGCGCAGTACTGGCAGCGGTGCACGGGCTG TACATCCTGCACGAGGTTGACCTGACGACCGCGCACAAGGAAGC AGAGTGGGAATTTGAGCCCCTCGCCTGGCGGGTTTGGCTGGTGGT CTTCTACTTCGGCTGCTTGTCCTTGACCGTCTGGCTGCTCGAGGGG AGTTACGGTGGATCGGACCACCACGCCGCGCGAGCCCAAAGTCC AGATGTCCGCGCGCGGCGGTCGGAGCTTGATGACAACATCGCGC AGATGGGAGCTGTCCATGGTCTGGAGCTCCCGCGGCGTCAGGTCA GGCGGGAGCTCCTGCAGGTTTACCTCGCATAGACGGGTCAGGGCG CGGGCTAGATCCAGGTGATACCTAATTTCCAGGGGCTGGTTGGTG GCGGCGTCGATGGCTTGCAAGAGGCCGCATCCCCGCGGCGCGACT ACGGTACCGCGCGGCGGGCGGTGGGCCGCGGGGGTGTCCTTGGA TGATGCATCTAAAAGCGGTGACGCGGGCGAGCCCCCGGAGGTAG GGGGGGCTCCGGACCCGCCGGGAGAGGGGGCAGGGGCACGTCGG CGCCGCGCGCGGGCAGGAGCTGGTGCTGCGCGCGTAGGTTGCTG GCGAACGCGACGACGCGGCGGTTGATCTCCTGAATCTGGCGCCTC TGCGTGAAGACGACGGGCCCGGTGAGCTTGAACCTGAAAGAGAG TTCGACAGAATCAATTTCGGTGTCGTTGACGGCGGCCTGGCGCAA AATCTCCTGCACGTCTCCTGAGTTGTCTTGATAGGCGATCTCGGCC ATGAACTGCTCGATCTCTTCCTCCTGGAGATCTCCGCGTCCGGCTC GCTCCACGGTGGCGGCGAGGTCGTTGGAAATGCGGGCCATGAGC TGCGAGAAGGCGTTGAGGCCTCCCTCGTTCCAGACGCGGCTGTAG ACCACGCCCCCTTCGGCATCGCGGGCGCGCATGACCACCTGCGCG AGATTGAGCTCCACGTGCCGGGCGAAGACGGCGTAGTTTCGCAG GCGCTGAAAGAGGTAGTTGAGGGTGGTGGCGGTGTGTTCTGCCAC GAAGAAGTACATAACCCAGCGTCGCAACGTGGATTCGTTGATAAT TGTTGTGTAGGTACTCCGCCGCCGAGGGACCTGAGCGAGTCCGCA TCGACCGGATCGGAAAACCTCTCGAGAAAGGCGTCTAACCAGTC ACAGTCGCAAGGTAGGCTGAGCACCGTGGCGGGCGGCAGCGGGC GGCGGTCGGGGTTGTTTCTGGCGGAGGTGCTGCTGATGATGTAAT TAAAGTAGGCGGTCTTGAGACGGCGGATGGTCGACAGAAGCACC ATGTCCTTGGGTCCGGCCTGCTGAATGCGCAGGCGGTCGGCCATG CCCCAGGCTTCGTTTTGACATCGGCGCAGGTCTTTGTAGTAGTCTT GCATGAGCCTTTCTACCGGCACTTCTTCTTCTCCTTCCTCTTGTCCT GCATCTCTTGCATCTATCGCTGCGGCGGCGGCGGAGTTTGGCCGT AGGTGGCGCCCTCTTCCTCCCATGCGTGTGACCCCGAAGCCCCTC ATCGGCTGAAGCAGGGCTAGGTCGGCGACAACGCGCTCGGCTAA TATGGCCTGCTGCACCTGCGTGAGGGTAGACTGGAAGTCATCCAT GTCCACAAAGCGGTGGTATGCGCCCGTGTTGATGGTGTAAGTGCA GTTGGCCATAACGGACCAGTTAACGGTCTGGTGACCCGGCTGCGA GAGCTCGGTGTACCTGAGACGCGAGTAAGCCCTCGAGTCAAATAC GTAGTCGTTGCAAGTCCGCACCAGGTACTGGTATCCCACCAAAAA GTGCGGCGGCGGCTGGCGGTAGAGGGGCCAGCGTAGGGTGGCCG GGGCTCCGGGGGCGAGATCTTCCAACATAAGGCGATGATATCCGT AGATGTACCTGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAG GCGCGCGGAAAGTCGCGGACGCGGTTCCAGATGTTGCGCAGCGG CAAAAAGTGCTCCATGGTCGGGACGCTCTGGCCGGTCAGGCGCGC GCAATCGTTGACGCTCTAGCGTGCAAAAGGAGAGCCTGTAAGCG GGCACTCTTCCGTGGTCTGGTGGATAAATTCGCAAGGGTATCATG GCGGACGACCGGGGTTCGAGCCCCGTATCCGGCCGTCCGCCGTGA TCCATGCGGTTACCGCCCGCGTGTCGAACCCAGGTGTGCGACGTC AGACAACGGGGGAGTGCTCCTTTTGGCTTCCTTCCAGGCGCGGCG GCTGCTGCGCTAGCTTTTTTGGCCACTGGCCGCGCGCAGCGTAAG CGGTTAGGCTGGAAAGCGAAAGCATTAAGTGGCTCGCTCCCTGTA GCCGGAGGGTTATTTTCCAAGGGTTGAGTCGCGGGACCCCCGGTT CGAGTCTCGGACCGGCCGGACTGCGGCGAACGGGGGTTTGCCTCC CCGTCATGCAAGACCCCGCTTGCAAATTCCTCCGGAAACAGGGAC GAGCCCCTTTTTTGCTTTTCCCAGATGCATCCGGTGCTGCGGCAGA TGCGCCCCCCTCCTCAGCAGCGGCAAGAGCAAGAGCAGCGGCAG ACATGCAGGGCACCCTCCCCTCCTCCTACCGCGTCAGGAGGGGCG ACATCCGCGGTTGACGCGGCAGCAGATGGTGATTACGAACCCCCG CGGCGCCGGGCCCGGCACTACCTGGACTTGGAGGAGGGCGAGGG CCTGGCGCGGCTAGGAGCGCCCTCTCCTGAGCGGCACCCAAGGGT GCAGCTGAAGCGTGATACGCGTGAGGCGTACGTGCCGCGGCAGA ACCTGTTTCGCGACCGCGAGGGAGAGGAGCCCGAGGAGATGCGG GATCGAAAGTTCCACGCAGGGCGCGAGCTGCGGCATGGCCTGAA TCGCGAGCGGTTGCTGCGCGAGGAGGACTTTGAGCCCGACGCGC GAACCGGGATTAGTCCCGCGCGCGCACACGTGGCGGCCGCCGAC CTGGTAACCGCATACGAGCAGACGGTGAACCAGGAGATTAACTTT CAAAAAAGCTTTAACAACCACGTGCGTACGCTTGTGGCGCGCGAG GAGGTGGCTATAGGACTGATGCATCTGTGGGACTTTGTAAGCGCG CTGGAGCAAAACCCAAATAGCAAGCCGCTCATGGCGCAGCTGTTC CTTATAGTGCAGCACAGCAGGGACAACGAGGCATTCAGGGATGC GCTGCTAAACATAGTAGAGCCCGAGGGCCGCTGGCTGCTCGATTT GATAAACATCCTGCAGAGCATAGTGGTGCAGGAGCGCAGCTTGA GCCTGGCTGACAAGGTGGCCGCCATCAACTATTCCATGCTTAGCC TGGGCAAGTTTTACGCCCGCAAGATATACCATACCCCTTACGTTC CCATAGACAAGGAGGTAAAGATCGAGGGGTTCTACATGCGCATG GCGCTGAAGGTGCTTACCTTGAGCGACGACCTGGGCGTTTATCGC AACGAGCGCATCCACAAGGCCGTGAGCGTGAGCCGGCGGCGCGA GCTCAGCGACCGCGAGCTGATGCACAGCCTGCAAAGGGCCCTGG CTGGCACGGGCAGCGGCGATAGAGAGGCCGAGTCCTACTTTGAC GCGGGCGCTGACCTGCGCTGGGCCCCAAGCCGACGCGCCCTGGA GGCAGCTGGGGCCGGACCTGGGCTGGCGGTGGCACCCGCGCGCG CTGGCAACGTCGGCGGCGTGGAGGAATATGACGAGGACGATGAG TACGAGCCAGAGGACGGCGAGTACTAAGCGGTGATGTTTCTGATC AGATGATGCAAGACGCAACGGACCCGGCGGTGCGGGCGGCGCTG CAGAGCCAGCCGTCCGGCCTTAACTCCACGGACGACTGGCGCCAG GTCATGGACCGCATCATGTCGCTGACTGCGCGCAATCCTGACGCG TTCCGGCAGCAGCCGCAGGCCAACCGGCTCTCCGCAATTCTGGAA GCGGTGGTCCCGGCGCGCGCAAACCCCACGCACGAGAAGGTGCT GGCGATCGTAAACGCGCTGGCCGAAAACAGGGCCATCCGGCCCG ACGAGGCCGGCCTGGTCTACGACGCGCTGCTTCAGCGCGTGGCTC GTTACAACAGCGGCAACGTGCAGACCAACCTGGACCGGCTGGTG GGGGATGTGCGCGAGGCCGTGGCGCAGCGTGAGCGCGCGCAGCA GCAGGGCAACCTGGGCTCCATGGTTGCACTAAACGCCTTCCTGAG TACACAGCCCGCCAACGTGCCGCGGGGACAGGAGGACTACACCA ACTTTGTGAGCGCACTGCGGCTAATGGTGACTGAGACACCGCAAA GTGAGGTGTACCAGTCTGGGCCAGACTATTTTTTCCAGACCAGTA GACAAGGCCTGCAGACCGTAAACCTGAGCCAGGCTTTCAAAAAC TTGCAGGGGCTGTGGGGGGTGCGGGCTCCCACAGGCGACCGCGC GACCGTGTCTAGCTTGCTGACGCCCAACTCGCGCCTGTTGCTGCT GCTAATAGCGCCCTTCACGGACAGTGGCAGCGTGTCCCGGGACAC ATACCTAGGTCACTTGCTGACACTGTACCGCGAGGCCATAGGTCA GGCGCATGTGGACGAGCATACTTTCCAGGAGATTACAAGTGTCAG CCGCGCGCTGGGGCAGGAGGACACGGGCAGCCTGGAGGCAACCC TAAACTACCTGCTGACCAACCGGCGGCAGAAGATCCCCTCGTTGC ACAGTTTAAACAGCGAGGAGGAGCGCATTTTGCGCTACGTGCAGC AGAGCGTGAGCCTTAACCTGATGCGCGACGGGGTAACGCCCAGC GTGGCGCTGGACATGACCGCGCGCAACATGGAACCGGGCATGTA TGCCTCAAACCGGCCGTTTATCAACCGCCTAATGGACTACTTGCA TCGCGCGGCCGCCGTGAACCCCGAGTATTTCACCAATGCCATCTT GAACCCGCACTGGCTACCGCCCCCTGGTTTCTACACCGGGGGATT CGAGGTGCCCGAGGGTAACGATGGATTCCTCTGGGACGACATAG ACGACAGCGTGTTTTCCCCGCAACCGCAGACCCTGCTAGAGTTGC AACAGCGCGAGCAGGCAGAGGCGGCGCTGCGAAAGGAAAGCTTC CGCAGGCCAAGCAGCTTGTCCGATCTAGGCGCTGCGGCCCCGCGG TCAGATGCTAGTAGCCCATTTCCAAGCTTGATAGGGTCTCTTACC AGCACTCGCACCACCCGCCCGCGCCTGCTGGGCGAGGAGGAGTA CCTAAACAACTCGCTGCTGCAGCCGCAGCGCGAAAAAAACCTGC CTCCGGCATTTCCCAACAACGGGATAGAGAGCCTAGTGGACAAG ATGAGTAGATGGAAGACGTACGCGCAGGAGCACAGGGACGTGCC AGGCCCGCGCCCGCCCACCCGTCGTCAAAGGCACGACCGTCAGC GGGGTCTGGTGTGGGAGGACGATGACTCGGCAGACGACAGCAGC GTCCTGGATTTGGGAGGGAGTGGCAACCCGTTTGCGCACCTTCGC CCCAGGCTGGGGAGAATGTTTTAAAAAAAAAAAAGCATGATGCA AAATAAAAAACTCACCAAGGCCATGGCACCGAGCGTTGGTTTTCT TGTATTCCCCTTAGTATGCGGCGCGCGGCGATGTATGAGGAAGGT CCTCCTCCCTCCTACGAGAGTGTGGTGAGCGCGGCGCCAGTGGCG GCGGCGCTGGGTTCTCCCTTCGATGCTCCCCTGGACCCGCCGTTTG TGCCTCCGCGGTACCTGCGGCCTACCGGGGGGAGAAACAGCATCC GTTACTCTGAGTTGGCACCCCTATTCGACACCACCCGTGTGTACCT GGTGGACAACAAGTCAACGGATGTGGCATCCCTGAACTACCAGA ACGACCACAGCAACTTTCTGACCACGGTCATTCAAAACAATGACT ACAGCCCGGGGGAGGCAAGCACACAGACCATCAATCTTGACGAC CGGTCGCACTGGGGCGGCGACCTGAAAACCATCCTGCATACCAAC ATGCCAAATGTGAACGAGTTCATGTTTACCAATAAGTTTAAGGCG CGGGTGATGGTGTCGCGCTTGCCTACTAAGGACAATCAGGTGGAG CTGAAATACGAGTGGGTGGAGTTCACGCTGCCCGAGGGCAACTA CTCCGAGACCATGACCATAGACCTTATGAACAACGCGATCGTGGA GCACTACTTGAAAGTGGGCAGACAGAACGGGGTTCTGGAAAGCG ACATCGGGGTAAAGTTTGACACCCGCAACTTCAGACTGGGGTTTG ACCCCGTCACTGGTCTTGTCATGCCTGGGGTATATACAAACGAAG CCTTCCATCCAGACATCATTTTGCTGCCAGGATGCGGGGTGGACT TCACCCACAGCCGCCTGAGCAACTTGTTGGGCATCCGCAAGCGGC AACCCTTCCAGGAGGGCTTTAGGATCACCTACGATGATCTGGAGG GTGGTAACATTCCCGCACTGTTGGATGTGGACGCCTACCAGGCGA GCTTGAAAGATGACACCGAACAGGGCGGGGGTGGCGCAGGCGGC AGCAACAGCAGTGGCAGCGGCGCGGAAGAGAACTCCAACGCGGC AGCCGCGGCAATGCAGCCGGTGGAGGACATGAACGATCATGCCA TTCGCGGCGACACCTTTGCCACACGGGCTGAGGAGAAGCGCGCTG AGGCCGAAGCAGCGGCCGAAGCTGCCGCCCCCGCTGCGCAACCC GAGGTCGAGAAGCCTCAGAAGAAACCGGTGATCAAACCCCTGAC AGAGGACAGCAAGAAACGCAGTTACAACCTAATAAGCAATGACA GCACCTTCACCCAGTACCGCAGCTGGTACCTTGCATACAACTACG GCGACCCTCAGACCGGAATCCGCTCATGGACCCTGCTTTGCACTC CTGACGTAACCTGCGGCTCGGAGCAGGTCTACTGGTCGTTGCCAG ACATGATGCAAGACCCCGTGACCTTCCGCTCCACGCGCCAGATCA GCAACTTTCCGGTGGTGGGCGCCGAGCTGTTGCCCGTGCACTCCA AGAGCTTCTACAACGACCAGGCCGTCTACTCCCAACTCATCCGCC AGTTTACCTCTCTGACCCACGTGTTCAATCGCTTTCCCGAGAACCA GATTTTGGCGCGCCCGCCAGCCCCCACCATCACCACCGTCAGTGA AAACGTTCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAA CAGCATCGGAGGAGTCCAGCGAGTGACCATTACTGACGCCAGAC GCCGCACCTGCCCCTACGTTTACAAGGCCCTGGGCATAGTCTCGC CGCGCGTCCTATCGAGCCGCACTTTTTGAGCAAGCATGTCCATCC TTATATCGCCCAGCAATAACACAGGCTGGGGCCTGCGCTTCCCAA GCAAGATGTTTGGCGGGGCCAAGAAGCGCTCCGACCAACACCCA GTGCGCGTGCGCGGGCACTACCGCGCGCCCTGGGGCGCGCACAA ACGCGGCCGCACTGGGCGCACCACCGTCGATGACGCCATCGACG CGGTGGTGGAGGAGGCGCGCAACTACACGCCCACGCCGCCACCA GTGTCCACAGTGGACGCGGCCATTCAGACCGTGGTGCGCGGAGCC
CGGCGCTATGCTAAAATGAAGAGACGGCGGAGGCGCGTAGCACG TCGCCACCGCCGCCGACCCGGCACTGCCGCCCAACGCGCGGCGGC GGCCCTGCTTAACCGCGCACGTCGCACCGGCCGACGGGCGGCCAT GCGGGCCGCTCGAAGGCTGGCCGCGGGTATTGTCACTGTGCCCCC CAGGTCCAGGCGACGAGCGGCCGCCGCAGCAGCCGCGGCCATTA GTGCTATGACTCAGGGTCGCAGGGGCAACGTGTATTGGGTGCGCG ACTCGGTTAGCGGCCTGCGCGTGCCCGTGCGCACCCGCCCCCCGC GCAACTAGATTGCAAGAAAAAACTACTTAGACTCGTACTGTTGTA TGTATCCAGCGGCGGCGGCGCGCAACGAAGCTATGTCCAAGCGC AAAATCAAAGAAGAGATGCTCCAGGTCATCGCGCCGGAGATCTA TGGCCCCCCGAAGAAGGAAGAGCAGGATTACAAGCCCCGAAAGC TAAAGCGGGTCAAAAAGAAAAAGAAAGATGATGATGATGAACTT GACGACGAGGTGGAACTGCTGCACGCTACCGCGCCCAGGCGACG GGTACAGTGGAAAGGTCGACGCGTAAAACGTGTTTTGCGACCCG GCACCACCGTAGTCTTTACGCCCGGTGAGCGCTCCACCCGCACCT ACAAGCGCGTGTATGATGAGGTGTACGGCGACGAGGACCTGCTT GAGCAGGCCAACGAGCGCCTCGGGGAGTTTGCCTACGGAAAGCG GCATAAGGACATGCTGGCGTTGCCGCTGGACGAGGGCAACCCAA CACCTAGCCTAAAGCCCGTAACACTGCAGCAGGTGCTGCCCGCGC TTGCACCGTCCGAAGAAAAGCGCGGCCTAAAGCGCGAGTCTGGT GACTTGGCACCCACCGTGCAGCTGATGGTACCCAAGCGCCAGCGA CTGGAAGATGTCTTGGAAAAAATGACCGTGGAACCTGGGCTGGA GCCCGAGGTCCGCGTGCGGCCAATCAAGCAGGTGGCGCCGGGAC TGGGCGTGCAGACCGTGGACGTTCAGATACCCACTACCAGTAGCA CCAGTATTGCCACCGCCACAGAGGGCATGGAGACACAAACGTCC CCGGTTGCCTCAGCGGTGGCGGATGCCGCGGTGCAGGCGGTCGCT GCGGCCGCGTCCAAGACCTCTACGGAGGTGCAAACGGACCCGTG GATGTTTCGCGTTTCAGCCCCCCGGCGCCCGCGCCGTTCGAGGAA GTACGGCGCCGCCAGCGCGCTACTGCCCGAATATGCCCTACATCC TTCCATTGCGCCTACCCCCGGCTATCGTGGCTACACCTACCGCCCC AGAAGACGAGCAACTACCCGACGCCGAACCACCACTGGAACCCG CCGCCGCCGTCGCCGTCGCCAGCCCGTGCTGGCCCCGATTTCCGT GCGCAGGGTGGCTCGCGAAGGAGGCAGGACCCTGGTGCTGCCAA CAGCGCGCTACCACCCCAGCATCGTTTAAAAGCCGGTCTTTGTGG TTCTTGCAGATATGGCCCTCACCTGCCGCCTCCGTTTCCCGGTGCC GGGATTCCGAGGAAGAATGCACCGTAGGAGGGGCATGGCCGGCC ACGGCCTGACGGGCGGCATGCGTCGTGCGCACCACCGGCGGCGG CGCGCGTCGCACCGTCGCATGCGCGGCGGTATCCTGCCCCTCCTT ATTCCACTGATCGCCGCGGCGATTGGCGCCGTGCCCGGAATTGCA TCCGTGGCCTTGCAGGCGCAGAGACACTGATTAAAAACAAGTTGC ATGTGGAAAAATCAAAATAAAAAGTCTGGACTCTCACGCTCGCTT GGTCCTGTAACTATTTTGTAGAATGGAAGACATCAACTTTGCGTC TCTGGCCCCGCGACACGGCTCGCGCCCGTTCATGGGAAACTGGCA AGATATCGGCACCAGCAATATGAGCGGTGGCGCCTTCAGCTGGG GCTCGCTGTGGAGCGGCATTAAAAATTTCGGTTCCACCGTTAAGA ACTATGGCAGCAAGGCCTGGAACAGCAGCACAGGCCAGATGCTG AGGGATAAGTTGAAAGAGCAAAATTTCCAACAAAAGGTGGTAGA TGGCCTGGCCTCTGGCATTAGCGGGGTGGTGGACCTGGCCAACCA GGCAGTGCAAAATAAGATTAACAGTAAGCTTGATCCCCGCCCTCC CGTAGAGGAGCCTCCACCGGCCGTGGAGACAGTGTCTCCAGAGG GGCGTGGCGAAAAGCGTCCGCGCCCCGACAGGGAAGAAACTCTG GTGACGCAAATAGACGAGCCTCCCTCGTACGAGGAGGCACTAAA GCAAGGCCTGCCCACCACCCGTCCCATCGCGCCCATGGCTACCGG AGTGCTGGGCCAGCACACACCCGTAACGCTGGACCTGCCTCCCCC CGCCGACACCCAGCAGAAACCTGTGCTGCCAGGCCCGACCGCCGT TGTTGTAACCCGTCCTAGCCGCGCGTCCCTGCGCCGCGCCGCCAG CGGTCCGCGATCGTTGCGGCCCGTAGCCAGTGGCAACTGGCAAAG CACACTGAACAGCATCGTGGGTCTGGGGGTGCAATCCCTGAAGCG CCGACGATGCTTCTGATAGCTAACGTGTCGTATGTGTGTCATGTAT GCGTCCATGTCGCCGCCAGAGGAGCTGCTGAGCCGCCGCGCGCCC GCTTTCCAAGATGGCTACCCCTTCGATGATGCCGCAGTGGTCTTA CATGCACATCTCGGGCCAGGACGCCTCGGAGTACCTGAGCCCCGG GCTGGTGCAGTTTGCCCGCGCCACCGAGACGTACTTCAGCCTGAA TAACAAGTTTAGAAACCCCACGGTGGCGCCTACGCACGACGTGAC CACAGACCGGTCCCAGCGTTTGACGCTGCGGTTCATCCCTGTGGA CCGTGAGGATACTGCGTACTCGTACAAGGCGCGGTTCACCCTAGC TGTGGGTGATAACCGTGTGCTGGACATGGCTTCCACGTACTTTGA CATCCGCGGCGTGCTGGACAGGGGCCCTACTTTTAAGCCCTACTC TGGCACTGCCTACAACGCCCTGGCTCCCAAGGGTGCCCCAAATCC TTGCGAATGGGATGAAGCTGCTACTGCTCTTGAAATAAACCTAGA AGAAGAGGACGATGACAACGAAGACGAAGTAGACGAGCAAGCT GAGCAGCAAAAAACTCACGTATTTGGGCAGGCGCCTTATTCTGGT ATAAATATTACAAAGGAGGGTATTCAAATAGGTGTCGAAGGTCA AACACCTAAATATGCCGATAAAACATTTCAACCTGAACCTCAAAT AGGAGAATCTCAGTGGTACGAAACAGAAATTAATCATGCAGCTG GGAGAGTCCTAAAAAAGACTACCCCAATGAAACCATGTTACGGTT CATATGCAAAACCCACAAATGAAAATGGAGGGCAAGGCATTCTT GTAAAGCAACAAAATGGAAAGCTAGAAAGTCAAGTGGAAATGCA ATTTTTCTCAACTACTGAGGCAGCCGCAGGCAATGGTGATAACTT GACTCCTAAAGTGGTATTGTACAGTGAAGATGTAGATATAGAAAC CCCAGACACTCATATTTCTTACATGCCCACTATTAAGGAAGGTAA CTCACGAGAACTAATGGGCCAACAATCTATGCCCAACAGGCCTAA TTACATTGCTTTTAGGGACAATTTTATTGGTCTAATGTATTACAAC AGCACGGGTAATATGGGTGTTCTGGCGGGCCAAGCATCGCAGTTG AATGCTGTTGTAGATTTGCAAGACAGAAACACAGAGCTTTCATAC CAGCTTTTGCTTGATTCCATTGGTGATAGAACCAGGTACTTTTCTA TGTGGAATCAGGCTGTTGACAGCTATGATCCAGATGTTAGAATTA TTGAAAATCATGGAACTGAAGATGAACTTCCAAATTACTGCTTTC CACTGGGAGGTGTGATTAATACAGAGACTCTTACCAAGGTAAAAC CTAAAACAGGTCAGGAAAATGGATGGGAAAAAGATGCTACAGAA TTTTCAGATAAAAATGAAATAAGAGTTGGAAATAATTTTGCCATG GAAATCAATCTAAATGCCAACCTGTGGAGAAATTTCCTGTACTCC AACATAGCGCTGTATTTGCCCGACAAGCTAAAGTACAGTCCTTCC AACGTAAAAATTTCTGATAACCCAAACACCTACGACTACATGAAC AAGCGAGTGGTGGCTCCCGGGCTAGTGGACTGCTACATTAACCTT GGAGCACGCTGGTCCCTTGACTATATGGACAACGTCAACCCATTT AACCACCACCGCAATGCTGGCCTGCGCTACCGCTCAATGTTGCTG GGCAATGGTCGCTATGTGCCCTTCCACATCCAGGTGCCTCAGAAG TTCTTTGCCATTAAAAACCTCCTTCTCCTGCCGGGCTCATACACCT ACGAGTGGAACTTCAGGAAGGATGTTAACATGGTTCTGCAGAGCT CCCTAGGAAATGACCTAAGGGTTGACGGAGCCAGCATTAAGTTTG ATAGCATTTGCCTTTACGCCACCTTCTTCCCCATGGCCCACAACAC CGCCTCCACGCTTGAGGCCATGCTTAGAAACGACACCAACGACCA GTCCTTTAACGACTATCTCTCCGCCGCCAACATGCTCTACCCTATA CCCGCCAACGCTACCAACGTGCCCATATCCATCCCCTCCCGCAAC TGGGCGGCTTTCCGCGGCTGGGCCTTCACGCGCCTTAAGACTAAG GAAACCCCATCACTGGGCTCGGGCTACGACCCTTATTACACCTAC TCTGGCTCTATACCCTACCTAGATGGAACCTTTTACCTCAACCACA CCTTTAAGAAGGTGGCCATTACCTTTGACTCTTCTGTCAGCTGGCC TGGCAATGACCGCCTGCTTACCCCCAACGAGTTTGAAATTAAGCG CTCAGTTGACGGGGAGGGTTACAACGTTGCCCAGTGTAACATGAC CAAAGACTGGTTCCTGGTACAAATGCTAGCTAACTATAACATTGG CTACCAGGGCTTCTATATCCCAGAGAGCTACAAGGACCGCATGTA CTCCTTCTTTAGAAACTTCCAGCCCATGAGCCGTCAGGTGGTGGA TGATACTAAATACAAGGACTACCAACAGGTGGGCATCCTACACCA ACACAACAACTCTGGATTTGTTGGCTACCTTGCCCCCACCATGCG CGAAGGACAGGCCTACCCTGCTAACTTCCCCTATCCGCTTATAGG CAAGACCGCAGTTGACAGCATTACCCAGAAAAAGTTTCTTTGCGA TCGCACCCTTTGGCGCATCCCATTCTCCAGTAACTTTATGTCCATG GGCGCACTCACAGACCTGGGCCAAAACCTTCTCTACGCCAACTCC GCCCACGCGCTAGACATGACTTTTGAGGTGGATCCCATGGACGAG CCCACCCTTCTTTATGTTTTGTTTGAAGTCTTTGACGTGGTCCGTG TGCACCAGCCGCACCGCGGCGTCATCGAAACCGTGTACCTGCGCA CGCCCTTCTCGGCCGGCAACGCCACAACATAAAGAAGCAAGCAA CATCAACAACAGCTGCCGCCATGGGCTCCAGTGAGCAGGAACTG AAAGCCATTGTCAAAGATCTTGGTTGTGGGCCATATTTTTTGGGC ACCTATGACAAGCGCTTTCCAGGCTTTGTTTCTCCACACAAGCTCG CCTGCGCCATAGTCAATACGGCCGGTCGCGAGACTGGGGGCGTAC ACTGGATGGCCTTTGCCTGGAACCCGCACTCAAAAACATGCTACC TCTTTGAGCCCTTTGGCTTTTCTGACCAGCGACTCAAGCAGGTTTA CCAGTTTGAGTACGAGTCACTCCTGCGCCGTAGCGCCATTGCTTCT TCCCCCGACCGCTGTATAACGCTGGAAAAGTCCACCCAAAGCGTA CAGGGGCCCAACTCGGCCGCCTGTGGACTATTCTGCTGCATGTTT CTCCACGCCTTTGCCAACTGGCCCCAAACTCCCATGGATCACAAC CCCACCATGAACCTTATTACCGGGGTACCCAACTCCATGCTCAAC AGTCCCCAGGTACAGCCCACCCTGCGTCGCAACCAGGAACAGCTC TACAGCTTCCTGGAGCGCCACTCGCCCTACTTCCGCAGCCACAGT GCGCAGATTAGGAGCGCCACTTCTTTTTGTCACTTGAAAAACATG TAAAAATAATGTACTAGAGACACTTTCAATAAAGGCAAATGCTTT TATTTGTACACTCTCGGGTGATTATTTACCCCCACCCTTGCCGTCT GCGCCGTTTAAAAATCAAAGGGGTTCTGCCGCGCATCGCTATGCG CCACTGGCAGGGACACGTTGCGATACTGGTGTTTAGTGCTCCACT TAAACTCAGGCACAACCATCCGCGGCAGCTCGGTGAAGTTTTCAC TCCACAGGCTGCGCACCATCACCAACGCGTTTAGCAGGTCGGGCG CCGATATCTTGAAGTCGCAGTTGGGGCCTCCGCCCTGCGCGCGCG AGTTGCGATACACAGGGTTGCAGCACTGGAACACTATCAGCGCCG GGTGGTGCACGCTGGCCAGCACGCTCTTGTCGGAGATCAGATCCG CGTCCAGGTCCTCCGCGTTGCTCAGGGCGAACGGAGTCAACTTTG GTAGCTGCCTTCCCAAAAAGGGCGCGTGCCCAGGCTTTGAGTTGC ACTCGCACCGTAGTGGCATCAAAAGGTGACCGTGCCCGGTCTGGG CGTTAGGATACAGCGCCTGCATAAAAGCCTTGATCTGCTTAAAAG CCACCTGAGCCTTTGCGCCTTCAGAGAAGAACATGCCGCAAGACT TGCCGGAAAACTGATTGGCCGGACAGGCCGCGTCGTGCACGCAG CACCTTGCGTCGGTGTTGGAGATCTGCACCACATTTCGGCCCCAC CGGTTCTTCACGATCTTGGCCTTGCTAGACTGCTCCTTCAGCGCGC GCTGCCCGTTTTCGCTCGTCACATCCATTTCAATCACGTGCTCCTT ATTTATCATAATGCTTCCGTGTAGACACTTAAGCTCGCCTTCGATC TCAGCGCAGCGGTGCAGCCACAACGCGCAGCCCGTGGGCTCGTG ATGCTTGTAGGTCACCTCTGCAAACGACTGCAGGTACGCCTGCAG GAATCGCCCCATCATCGTCACAAAGGTCTTGTTGCTGGTGAAGGT CAGCTGCAACCCGCGGTGCTCCTCGTTCAGCCAGGTCTTGCATAC GGCCGCCAGAGCTTCCACTTGGTCAGGCAGTAGTTTGAAGTTCGC CTTTAGATCGTTATCCACGTGGTACTTGTCCATCAGCGCGCGCGC AGCCTCCATGCCCTTCTCCCACGCAGACACGATCGGCACACTCAG CGGGTTCATCACCGTAATTTCACTTTCCGCTTCGCTGGGCTCTTCC TCTTCCTCTTGCGTCCGCATACCACGCGCCACTGGGTCGTCTTCAT TCAGCCGCCGCACTGTGCGCTTACCTCCTTTGCCATGCTTGATTAG CACCGGTGGGTTGCTGAAACCCACCATTTGTAGCGCCACATCTTC TCTTTCTTCCTCGCTGTCCACGATTACCTCTGGTGATGGCGGGCGC TCGGGCTTGGGAGAAGGGCGCTTCTTTTTCTTCTTGGGCGCAATG GCCAAATCCGCCGCCGAGGTCGATGGCCGCGGGCTGGGTGTGCG CGGCACCAGCGCGTCTTGTGATGAGTCTTCCTCGTCCTCGGACTC GATACGCCGCCTCATCCGCTTTTTTGGGGGCGCCCGGGGAGGCGG CGGCGACGGGGACGGGGACGACACGTCCTCCATGGTTGGGGGAC GTCGCGCCGCACCGCGTCCGCGCTCGGGGGTGGTTTCGCGCTGCT CCTCTTCCCGACTGGCCATTTCCTTCTCCTATAGGCAGAAAAAGAT CATGGAGTCAGTCGAGAAGAAGGACAGCCTAACCGCCCCCTCTG AGTTCGCCACCACCGCCTCCACCGATGCCGCCAACGCGCCTACCA CCTTCCCCGTCGAGGCACCCCCGCTTGAGGAGGAGGAAGTGATTA TCGAGCAGGACCCAGGTTTTGTAAGCGAAGACGACGAGGACCGC TCAGTACCAACAGAGGATAAAAAGCAAGACCAGGACAACGCAGA GGCAAACGAGGAACAAGTCGGGCGGGGGGACGAAAGGCATGGC GACTACCTAGATGTGGGAGACGACGTGCTGTTGAAGCATCTGCAG CGCCAGTGCGCCATTATCTGCGACGCGTTGCAAGAGCGCAGCGAT GTGCCCCTCGCCATAGCGGATGTCAGCCTTGCCTACGAACGCCAC CTATTCTCACCGCGCGTACCCCCCAAACGCCAAGAAAACGGCACA TGCGAGCCCAACCCGCGCCTCAACTTCTACCCCGTATTTGCCGTG CCAGAGGTGCTTGCCACCTATCACATCTTTTTCCAAAACTGCAAG ATACCCCTATCCTGCCGTGCCAACCGCAGCCGAGCGGACAAGCAG CTGGCCTTGCGGCAGGGCGCTGTCATACCTGATATCGCCTCGCTC AACGAAGTGCCAAAAATCTTTGAGGGTCTTGGACGCGACGAGAA GCGCGCGGCAAACGCTCTGCAACAGGAAAACAGCGAAAATGAAA GTCACTCTGGAGTGTTGGTGGAACTCGAGGGTGACAACGCGCGCC TAGCCGTACTAAAACGCAGCATCGAGGTCACCCACTTTGCCTACC CGGCACTTAACCTACCCCCCAAGGTCATGAGCACAGTCATGAGTG AGCTGATCGTGCGCCGTGCGCAGCCCCTGGAGAGGGATGCAAATT TGCAAGAACAAACAGAGGAGGGCCTACCCGCAGTTGGCGACGAG CAGCTAGCGCGCTGGCTTCAAACGCGCGAGCCTGCCGACTTGGAG GAGCGACGCAAACTAATGATGGCCGCAGTGCTCGTTACCGTGGA GCTTGAGTGCATGCAGCGGTTCTTTGCTGACCCGGAGATGCAGCG CAAGCTAGAGGAAACATTGCACTACACCTTTCGACAGGGCTACGT ACGCCAGGCCTGCAAGATCTCCAACGTGGAGCTCTGCAACCTGGT CTCCTACCTTGGAATTTTGCACGAAAACCGCCTTGGGCAAAACGT GCTTCATTCCACGCTCAAGGGCGAGGCGCGCCGCGACTACGTCCG CGACTGCGTTTACTTATTTCTATGCTACACCTGGCAGACGGCCATG GGCGTTTGGCAGCAGTGCTTGGAGGAGTGCAACCTCAAGGAGCT GCAGAAACTGCTAAAGCAAAACTTGAAGGACCTATGGACGGCCT TCAACGAGCGCTCCGTGGCCGCGCACCTGGCGGACATCATTTTCC CCGAACGCCTGCTTAAAACCCTGCAACAGGGTCTGCCAGACTTCA CCAGTCAAAGCATGTTGCAGAACTTTAGGAACTTTATCCTAGAGC GCTCAGGAATCTTGCCCGCCACCTGCTGTGCACTTCCTAGCGACTT TGTGCCCATTAAGTACCGCGAATGCCCTCCGCCGCTTTGGGGCCA CTGCTACCTTCTGCAGCTAGCCAACTACCTTGCCTACCACTCTGAC ATAATGGAAGACGTGAGCGGTGACGGTCTACTGGAGTGTCACTGT CGCTGCAACCTATGCACCCCGCACCGCTCCCTGGTTTGCAATTCG CAGCTGCTTAACGAAAGTCAAATTATCGGTACCTTTGAGCTGCAG GGTCCCTCGCCTGACGAAAAGTCCGCGGCTCCGGGGTTGAAACTC ACTCCGGGGCTGTGGACGTCGGCTTACCTTCGCAAATTTGTACCT GAGGACTACCACGCCCACGAGATTAGGTTCTACGAAGACCAATCC CGCCCGCCTAATGCGGAGCTTACCGCCTGCGTCATTACCCAGGGC CACATTCTTGGCCAATTGCAAGCCATCAACAAAGCCCGCCAAGAG TTTCTGCTACGAAAGGGACGGGGGGTTTACTTGGACCCCCAGTCC GGCGAGGAGCTCAACCCAATCCCCCCGCCGCCGCAGCCCTATCAG CAGCAGCCGCGGGCCCTTGCTTCCCAGGATGGCACCCAAAAAGA AGCTGCAGCTGCCGCCGCCACCCACGGACGAGGAGGAATACTGG GACAGTCAGGCAGAGGAGGTTTTGGACGAGGAGGAGGAGGACAT GATGGAAGACTGGGAGAGCCTAGACGAGGAAGCTTCCGAGGTCG AAGAGGTGTCAGACGAAACACCGTCACCCTCGGTCGCATTCCCCT CGCCGGCGCCCCAGAAATCGGCAACCGGTTCCAGCATGGCTACA ACCTCCGCTCCTCAGGCGCCGCCGGCACTGCCCGTTCGCCGACCC AACCGTAGATGGGACACCACTGGAACCAGGGCCGGTAAGTCCAA GCAGCCGCCGCCGTTAGCCCAAGAGCAACAACAGCGCCAAGGCT ACCGCTCATGGCGCGGGCACAAGAACGCCATAGTTGCTTGCTTGC AAGACTGTGGGGGCAACATCTCCTTCGCCCGCCGCTTTCTTCTCTA CCATCACGGCGTGGCCTTCCCCCGTAACATCCTGCATTACTACCGT CATCTCTACAGCCCATACTGCACCGGCGGCAGCGGCAGCAACAGC AGCGGCCACACAGAAGCAAAGGCGACCGGATAGCAAGACTCTGA CAAAGCCCAAGAAATCCACAGCGGCGGCAGCAGCAGGAGGAGG AGCGCTGCGTCTGGCGCCCAACGAACCCGTATCGACCCGCGAGCT TAGAAACAGGATTTTTCCCACTCTGTATGCTATATTTCAACAGAG CAGGGGCCAAGAACAAGAGCTGAAAATAAAAAACAGGTCTCTGC GATCCCTCACCCGCAGCTGCCTGTATCACAAAAGCGAAGATCAGC TTCGGCGCACGCTGGAAGACGCGGAGGCTCTCTTCAGTAAATACT GCGCGCTGACTCTTAAGGACTAGTTTCGCGCCCTTTCTCAAATTTA AGCGCGAAAACTACGTCATCTCCAGCGGCCACACCCGGCGCCAG CACCTGTTGTCAGCGCCATTATGAGCAAGGAAATTCCCACGCCCT ACATGTGGAGTTACCAGCCACAAATGGGACTTGCGGCTGGAGCTG CCCAAGACTACTCAACCCGAATAAACTACATGAGCGCGGGACCC CACATGATATCCCGGGTCAACGGAATACGCGCCCACCGAAACCG AATTCTCCTGGAACAGGCGGCTATTACCACCACACCTCGTAATAA CCTTAATCCCCGTAGTTGGCCCGCTGCCCTGGTGTACCAGGAAAG
TCCCGCTCCCACCACTGTGGTACTTCCCAGAGACGCCCAGGCCGA AGTTCAGATGACTAACTCAGGGGCGCAGCTTGCGGGCGGCTTTCG TCACAGGGTGCGGTCGCCCGGGCAGGGTATAACTCACCTGACAAT CAGAGGGCGAGGTATTCAGCTCAACGACGAGTCGGTGAGCTCCTC GCTTGGTCTCCGTCCGGACGGGACATTTCAGATCGGCGGCGCCGG CCGCTCTTCATTCACGCCTCGTCAGGCAATCCTAACTCTGCAGACC TCGTCCTCTGAGCCGCGCTCTGGAGGCATTGGAACTCTGCAATTT ATTGAGGAGTTTGTGCCATCGGTCTACTTTAACCCCTTCTCGGGAC CTCCCGGCCACTATCCGGATCAATTTATTCCTAACTTTGACGCGGT AAAGGACTCGGCGGACGGCTACGACTGAATGTTAAGTGGAGAGG CAGAGCAACTGCGCCTGAAACACCTGGTCCACTGTCGCCGCCACA AGTGCTTTGCCCGCGACTCCGGTGAGTTTTGCTACTTTGAATTGCC CGAGGATCATATCGAGGGCCCGGCGCACGGCGTCCGGCTTACCGC CCAGGGAGAGCTTGCCCGTAGCCTGATTCGGGAGTTTACCCAGCG CCCCCTGCTAGTTGAGCGGGACAGGGGACCCTGTGTTCTCACTGT GATTTGCAACTGTCCTAACCCTGGATTACATCAAGATCCTCTAGTT AATGTCAGGTCGCCTAAGTCGATTAACTAGAGTACCCGGGGATCT TATTCCCTTTAACTAATAAAAAAAAATAATAAAGCATCACTTACT TAAAATCAGTTAGCAAATTTCTGTCCAGTTTATTCAGCAGCACCTC CTTGCCCTCCTCCCAGCTCTGGTATTGCAGCTTCCTCCTGGCTGCA AACTTTCTCCACAATCTAAATGGAATGTCAGTTTCCTCCTGTTCCT GTCCATCCGCACCCACTATCTTCATGTTGTTGCAGATGAAGCGCG CAAGACCGTCTGAAGATACCTTCAACCCCGTGTATCCATATGACA CGGAAACCGGTCCTCCAACTGTGCCTTTTCTTACTCCTCCCTTTGT ATCCCCCAATGGGTTTCAAGAGAGTCCCCCTGGGGTACTCTCTTT GCGCCTATCCGAACCTCTAGTTACCTCCAATGGCATGCTTGCGCTC AAAATGGGCAACGGCCTCTCTCTGGACGAGGCCGGCAACCTTACC TCCCAAAATGTAACCACTGTGAGCCCACCTCTCAAAAAAACCAAG TCAAACATAAACCTGGAAATATCTGCACCCCTCACAGTTACCTCA GAAGCCCTAACTGTGGCTGCCGCCGCACCTCTAATGGTCGCGGGC AACACACTCACCATGCAATCACAGGCCCCGCTAACCGTGCACGAC TCCAAACTTAGCATTGCCACCCAAGGACCCCTCACAGTGTCAGAA GGAAAGCTAGCCCTGCAAACATCAGGCCCCCTCACCACCACCGAT AGCAGTACCCTTACTATCACTGCCTCACCCCCTCTAACTACTGCCA CTGGTAGCTTGGGCATTGACTTGAAAGAGCCCATTTATACACAAA ATGGAAAACTAGGACTAAAGTACGGGGCTCCTTTGCATGTAACAG ACGACCTAAACACTTTGACCGTAGCAACTGGTCCAGGTGTGACTA TTAATAATACTTCCTTGCAAACTAAAGTTACTGGAGCCTTGGGTTT TGATTCACAAGGCAATATGCAACTTAATGTAGCAGGAGGACTAA GGATTGATTCTCAAAACAGACGCCTTATACTTGATGTTAGTTATCC GTTTGATGCTCAAAACCAACTAAATCTAAGACTAGGACAGGGCCC TCTTTTTATAAACTCAGCCCACAACTTGGATATTAACTACAACAA AGGCCTTTACTTGTTTACAGCTTCAAACAATTCCAAAAAGCTTGA GGTTAACCTAAGCACTGCCAAGGGGTTGATGTTTGACGCTACAGC CATAGCCATTAATGCAGGAGATGGGCTTGAATTTGGTTCACCTAA TGCACCAAACACAAATCCCCTCAAAACAAAAATTGGCCATGGCCT AGAATTTGATTCAAACAAGGCTATGGTTCCTAAACTAGGAACTGG CCTTAGTTTTGACAGCACAGGTGCCATTACAGTAGGAAACAAAAA TAATGATAAGCTAACTTTGTGGACCACACCAGCTCCATCTCCTAA CTGTAGACTAAATGCAGAGAAAGATGCTAAACTCACTTTGGTCTT AACAAAATGTGGCAGTCAAATACTTGCTACAGTTTCAGTTTTGGC TGTTAAAGGCAGTTTGGCTCCAATATCTGGAACAGTTCAAAGTGC TCATCTTATTATAAGATTTGACGAAAATGGAGTGCTACTAAACAA TTCCTTCCTGGACCCAGAATATTGGAACTTTAGAAATGGAGATCT TACTGAAGGCACAGCCTATACAAACGCTGTTGGATTTATGCCTAA CCTATCAGCTTATCCAAAATCTCACGGTAAAACTGCCAAAAGTAA CATTGTCAGTCAAGTTTACTTAAACGGAGACAAAACTAAACCTGT AACACTAACCATTACACTAAACGGTACACAGGAAACAGGAGACA CAACTCCAAGTGCATACTCTATGTCATTTTCATGGGACTGGTCTGG CCACAACTACATTAATGAAATATTTGCCACATCCTCTTACACTTTT TCATACATTGCCCAAGAATAAAGAATCGTTTGTGTTATGTTTCAA CGTGTTTATTTTTCAATTGCAGAAAATTTCAAGTCATTTTTCATTC AGTAGTATAGCCCCACCACCACATAGCTTATACAGATCACCGTAC CTTAATCAAACTCACAGAACCCTAGTATTCAACCTGCCACCTCCC TCCCAACACACAGAGTACACAGTCCTTTCTCCCCGGCTGGCCTTA AAAAGCATCATATCATGGGTAACAGACATATTCTTAGGTGTTATA TTCCACACGGTTTCCTGTCGAGCCAAACGCTCATCAGTGATATTA ATAAACTCCCCGGGCAGCTCACTTAAGTTCATGTCGCTGTCCAGC TGCTGAGCCACAGGCTGCTGTCCAACTTGCGGTTGCTTAACGGGC GGCGAAGGAGAAGTCCACGCCTACATGGGGGTAGAGTCATAATC GTGCATCAGGATAGGGCGGTGGTGCTGCAGCAGCGCGCGAATAA ACTGCTGCCGCCGCCGCTCCGTCCTGCAGGAATACAACATGGCAG TGGTCTCCTCAGCGATGATTCGCACCGCCCGCAGCATAAGGCGCC TTGTCCTCCGGGCACAGCAGCGCACCCTGATCTCACTTAAATCAG CACAGTAACTGCAGCACAGCACCACAATATTGTTCAAAATCCCAC AGTGCAAGGCGCTGTATCCAAAGCTCATGGCGGGGACCACAGAA CCCACGTGGCCATCATACCACAAGCGCAGGTAGATTAAGTGGCG ACCCCTCATAAACACGCTGGACATAAACATTACCTCTTTTGGCAT GTTGTAATTCACCACCTCCCGGTACCATATAAACCTCTGATTAAA CATGGCGCCATCCACCACCATCCTAAACCAGCTGGCCAAAACCTG CCCGCCGGCTATACACTGCAGGGAACCGGGACTGGAACAATGAC AGTGGAGAGCCCAGGACTCGTAACCATGGATCATCATGCTCGTCA TGATATCAATGTTGGCACAACACAGGCACACGTGCATACACTTCC TCAGGATTACAAGCTCCTCCCGCGTTAGAACCATATCCCAGGGAA CAACCCATTCCTGAATCAGCGTAAATCCCACACTGCAGGGAAGAC CTCGCACGTAACTCACGTTGTGCATTGTCAAAGTGTTACATTCGG GCAGCAGCGGATGATCCTCCAGTATGGTAGCGCGGGTTTCTGTCT CAAAAGGAGGTAGACGATCCCTACTGTACGGAGTGCGCCGAGAC AACCGAGATCGTGTTGGTCGTAGTGTCATGCCAAATGGAACGCCG GACGTAGTCATATTTCCTGAAGCAAAACCAGGTGCGGGCGTGACA AACAGATCTGCGTCTCCGGTCTCGCCGCTTAGATCGCTCTGTGTA GTAGTTGTAGTATATCCACTCTCTCAAAGCATCCAGGCGCCCCCT GGCTTCGGGTTCTATGTAAACTCCTTCATGCGCCGCTGCCCTGATA ACATCCACCACCGCAGAATAAGCCACACCCAGCCAACCTACACAT TCGTTCTGCGAGTCACACACGGGAGGAGCGGGAAGAGCTGGAAG AACCATGTTTTTTTTTTTATTCCAAAAGATTATCCAAAACCTCAAA ATGAAGATCTATTAAGTGAACGCGCTCCCCTCCGGTGGCGTGGTC AAACTCTACAGCCAAAGAACAGATAATGGCATTTGTAAGATGTTG CACAATGGCTTCCAAAAGGCAAACGGCCCTCACGTCCAAGTGGA CGTAAAGGCTAAACCCTTCAGGGTGAATCTCCTCTATAAACATTC CAGCACCTTCAACCATGCCCAAATAATTCTCATCTCGCCACCTTCT CAATATATCTCTAAGCAAATCCCGAATATTAAGTCCGGCCATTGT AAAAATCTGCTCCAGAGCGCCCTCCACCTTCAGCCTCAAGCAGCG AATCATGATTGCAAAAATTCAGGTTCCTCACAGACCTGTATAAGA TTCAAAAGCGGAACATTAACAAAAATACCGCGATCCCGTAGGTCC CTTCGCAGGGCCAGCTGAACATAATCGTGCAGGTCTGCACGGACC AGCGCGGCCACTTCCCCGCCAGGAACCATGACAAAAGAACCCAC ACTGATTATGACACGCATACTCGGAGCTATGCTAACCAGCGTAGC CCCGATGTAAGCTTGTTGCATGGGCGGCGATATAAAATGCAAGGT GCTGCTCAAAAAATCAGGCAAAGCCTCGCGCAAAAAAGAAAGCA CATCGTAGTCATGCTCATGCAGATAAAGGCAGGTAAGCTCCGGAA CCACCACAGAAAAAGACACCATTTTTCTCTCAAACATGTCTGCGG GTTTCTGCATAAACACAAAATAAAATAACAAAAAAACATTTAAA CATTAGAAGCCTGTCTTACAACAGGAAAAACAACCCTTATAAGCA TAAGACGGACTACGGCCATGCCGGCGTGACCGTAAAAAAACTGG TCACCGTGATTAAAAAGCACCACCGACAGCTCCTCGGTCATGTCC GGAGTCATAATGTAAGACTCGGTAAACACATCAGGTTGATTCACA TCGGTCAGTGCTAAAAAGCGACCGAAATAGCCCGGGGGAATACA TACCCGCAGGCGTAGAGACAACATTACAGCCCCCATAGGAGGTA TAACAAAATTAATAGGAGAGAAAAACACATAAACACCTGAAAAA CCCTCCTGCCTAGGCAAAATAGCACCCTCCCGCTCCAGAACAACA TACAGCGCTTCCACAGCGGCAGCCATAACAGTCAGCCTTACCAGT AAAAAAGAAAACCTATTAAAAAAACACCACTCGACACGGCACCA GCTCAATCAGTCACAGTGTAAAAAAGGGCCAAGTGCAGAGCGAG TATATATAGGACTAAAAAATGACGTAACGGTTAAAGTCCACAAA AAACACCCAGAAAACCGCACGCGAACCTACGCCCAGAAACGAAA GCCAAAAAACCCACAACTTCCTCAAATCGTCACTTCCGTTTTCCC ACGTTACGTCACTTCCCATTTTAAGAAAACTACAATTCCCAACAC ATACAAGTTACTCCGCCCTAAAACCTACGTCACCCGCCCCGTTCC CACGCCCCGCGCCACGTCACAAACTCCACCCCCTCATTATCATAT TGGCTTCAATCCAAAATAAGGTATATTATTGATGAT SEQ ID NO: 14 MSSPGTESAGKSLQYRVDHLLSAVENELQAGSEKGDPTERELRVGLE ESELWLRFKELTNEMIVTKNGRRMFPVLKVNVSGLDPNAMYSFLLD FVAADNHRWKYVNGEWVPGGKPEPQAPSCVYIHPDSPNFGAHWMK APVSFSKVKLTNKLNGGGQIMLNSLHKYEPRIHIVRVGGPQRMITSH CFPETQFIAVTARSDHKEMMEEPGDSQQPGYSQWGWLLPGTSTVCP PANPHPQFGGALSLPSTHSCDRYPTLRSHRSSPYPSPYAHRNNSPTYS DNSPACLSMLQSHDNWSSLGMPAHPSMLPVSHNASPPTSSSQYPSL WSVSNGAVTPGSQAAAVSNGLGAQFFRGSPAHYTPLTHPVSAPSSSG SPLYEGAAAATDIVDSQYDAAAQGRLIASWTPVSPPSM SEQ ID NO: 15 WLLPGTSTV SEQ ID NO: 16 GCGGGGCAGCCTCACACAGAACACACACAGATATGGGTGTACCC ACTCAGCTCCTGTTGCTGTGGCTTACAGTCGTAGTTGTCAGATGTG ACATCCAGATGACTCAGTCTCCAGCTTCACTGTCTGCATCTGTGG GAGAAACTGTCACCATCACATGTGGAGCAAGTGAGAATATTTACG GTGCTTTAAATTGGTATCAGCGGAAACAGGGAAAATCTCCTCAGC TCCTGATTTATGGCGCAAGTAATTTGGCAGATGGCATGTCATCGA GGTTCAGTGGCAGTGGATCTGGTAGACAGTATTCTCTCAAGATCA GTAGCCTGCATCCTGACGATTTTGCAACGTATTACTGTCAAAATG TATTAAGTAGTCCGTACACGTTCGGAGGGGGGACCAAGCTGGAA ATAAAACGGGCTGATGCTGCACCAACTGTATCCATCTTCCCACCA TCCAGTGAGCAGTTAACATCTGGAGGTGCCTCAGTCGTGTGCTTC TTGAACAACTTCTACCCCAAAGACATCAATGTCAAGTGGAAGATT GATGGCAGTGAACGACAAAATGGCGTCCTGAACAGTTGGACTGA TCAGGACAGCAAAGACAGCACCTACAGCATGAGCAGCACCCTCA CGTTGACCAAGGACGAGTATGAACGACATAACAGCTATACCTGTG AGGCCACTCACAAGACACCAACTTCACCCATTGTCAAGAGCTTCA ACAGGAATGAGTGT AGACAAAGGTCCTGAGACGCCACCACC AGCTCCCCAGCTCCATCCTATCTTCCCTTCTAAGGTCTTGGAGGCT TCCCCACAAGCGACCTACCACTGTTGCGGTGCTCCAAACCTCCTC CCCACCTCCTTCTCCTCCTCCTCCCTTTCCTTGGCTTTTATCATGCT AATATTTGCAGAAAATATTCAATAAAGTGAGTCTTTGCACAAAAA AAAAAAAAAAAAAAAAAAAAA SEQ ID NO: 17 ACGCGGGACACAGTAGTCTCTACAGTCACAGGAGTACACAGGAC ATTGCCATGGGTTGGAGCTGTATCATCTTCTTTCTGGTAGCAACA GCTACAGGTGTGCACTCCCAGGTCCAGCTGCAGCAGTCTGGGCCT GAGGTGGTGAGGCCTGGGGTCTCAGTGAAGATTTCCTGCAAGGGT TCCGGCTACACATTCACTGATTATGCTATGCACTGGGTGAAGCAG AGTCATGCAAAGAGTCTCGAGTGGATTGGACTTATTAGTACTTAC AGTGGTGATACAAAGTACAACCAGAACTTTAAGGGCAAGGCCAC AATGACTGTAGACAAATCCTCCAACACAGCCTATATGGAACTTGC CAGATTGACATCTGAGGATTCTGCCATCTATTACTGTGCAAGAGG GGATTATTCCGGTAGTAGGTACTGGTTTGCTTACTGGGGCCAAGG GACTCTGGTCACTGTCTCTGCAGCCAAAACGACACCCCCATCTGT CTATCCACTGGCCCCTGGATCTGCTGCCCAAACTAACTCCATGGT GACCCTGGGATGCCTGGTCAAGGGCTATTTCCCTGAGCCAGTGAC AGTGACCTGGAACTCTGGATCCCTGTCCAGCGGTGTGCACACCTT CCCAGCTGTCCTGCAGTCTGACCTCTACACTCTGAGCAGCTCAGT GACTGTCCCCTCCAGCACCTGGCCCAGCGAGACCGTCACCTGCAA CGTTGCCCACCCGGCCAGCAGCACCAAGGTGGACAAGAAAATTG TGCCCAGGGATTGTGGTTGTAAGCCTTGCATATGTACAGTCCCAG AAGTATCATCTGTCTTCATCTTCCCCCCAAAGCCCAAGGATGTGCT CACCATTACTCTGACTCCTAAGGTCACGTGTGTTGTGGTAGACAT CAGCAAGGATGATCCCGAGGTCCAGTTCAGCTGGTTTGTAGATGA TGTGGAGGTGCACACAGCTCAGACGCAACCCCGGGAGGAGCAGT TCAACAGCACTTTCCGCTCAGTCAGTGAACTTCCCATCATGCACC AGGACTGGCTCAATGGCAAGGAGTTCAAATGCAGGGTCAACAGT GCAGCTTTCCCTGCCCCCATCGAGAAAACCATCTCCAAAACCAAA GGCAGACCGAAGGCTCCACAGGTGTACACCATTCCACCTCCCAAG GAGCAGATGGCCAAGGATAAAGTCAGTCTGACCTGCATGATAAC AGACTTCTTCCCTGAAGACATTACTGTGGAGTGGCAGTGGAATGG GCAGCCAGCGGAGAACTACAAGAACACTCAGCCCATCATGGACA CAGATGGCTCTTACTTCGTCTACAGCAAGCTCAATGTGCAGAAGA GCAACTGGGAGGCAGGAAATACTTTCACCTGCTCTGTGTTACATG AGGGCCTGCACAACCACCATACTGAGAAGAGCCTCTCCCACTCTC CTGGTAAA TCCCAGTGTCCTTGGAGCCCTCTGGCCCTACAGG ACTTTGACACCTACCTCCACCCCTCCCTGTATAAATAAAGCACCC AGCACTGCCTCGGGACCCTGCATAAAAAAAAAAAAAAAAAAAAA AAAAAAA SEQ ID NO: 18 LMTQSPASLSASVGETVTITCGASENIYGALNWYQRKQGKSPQLLIY GASNLADGMSSRFSGSGSGRQYSLKISSLHPDDVATYYCQNVLSSPY TFGGGTKLEIKKG SEQ ID NO: 19 MGVPTQLLLLWLTVVVVRC/DIQMTQSPSSLSASVGDRVTITCQASE NIYGALNWYQRKPGKSPKLLIYGASNLATGMPSRFSGSGSGTDYTF TISSLQPEDIATYYCQQVLSSPYTFGGGTKLEIKR/TVAAPSVFIFPPSD EQLKSGTASVVCLINNFYPREAKVQWKVDNALQSGNSQESVTEQDS KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC SEQ ID NO: 20 LEESGPEVVRPGVSVKISCKGSGYTFTDYAMHWVKQSHAKSLEWIG LISTYSGDTKYNQNFKGKATMTVDKSSNTAYMELARLTSEDSAIYY CARGDYSGSRYWFAYWGQGTTVTR SEQ ID NO: 21 GASENIYGALN SEQ ID NO: 22 GASNLAD SEQ ID NO: 23 QNVLSSPYT SEQ ID NO: 24 QASENIYGALN SEQ ID NO: 25 GASNLAT SEQ ID NO: 26 QQVLSSPYT SEQ ID NO: 27 GYTFTDYAMH SEQ ID NO: 28 LISTYSGDTKYNQNFKG SEQ ID NO: 29 GDYSGSRYWFAY SEQ ID NO: 30 LISTYSGDTKYNQKFQG SEQ ID NO: 31 GDYSGSRYWFAY SEQ ID NO: 99 MGWSCIIFFLVATATGVHS/QVQLVQSGAEVKKPGASVKVSCKASG YTFTDYAMHWVRQAPGQRLEWMGLISTYSGDTKYNQNFQGRVT MTVDKSASTAYMELSSLRSEDTAVYYCARGDYSGSRYWFAYWGQ GTLVTVSS/ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
SEQ ID NO: ATGGAGTCTCCCTCGGCCCCTCCCCACAGATGGTGCATCCCCTGG 100 CAGAGGCTCCTGCTCACAGCCTCACTTCTAACCTTCTGGAACCCG CCCACCACTGCCAAGCTCACTATTGAATCCACGCCGTTCAATGTC GCAGAGGGGAAGGAGGTGCTTCTACTTGTCCACAATCTGCCCCAG CATCTTTTTGGCTACAGCTGGTACAAAGGTGAAAGAGTGGATGGC AACCGTCAAATTATAGGATATGTAATAGGAACTCAACAAGCTACC CCAGGGCCCGCATACAGTGGTCGAGAGATAATATACCCCAATGC ATCCCTGCTGATCCAGAACATCATCCAGAATGACACAGGATTCTA CACCCTACACGTCATAAAGTCAGATCTTGTGAATGAAGAAGCAAC TGGCCAGTTCCGGGTATACCCGGAGCTGCCCAAGCCCTCCATCTC CAGCAACAACTCCAAACCCGTGGAGGACAAGGATGCTGTGGCCT TCACCTGTGAACCTGAGACTCAGGACGCAACCTACCTGTGGTGGG TAAACAATCAGAGCCTCCCGGTCAGTCCCAGGCTGCAGCTGTCCA ATGGCAACAGGACCCTCACTCTATTCAATGTCACAAGAAATGACA CAGCAAGCTACAAATGTGAAACCCAGAACCCAGTGAGTGCCAGG CGCAGTGATTCAGTCATCCTGAATGTCCTCTATGGCCCGGATGCC CCCACCATTTCCCCTCTAAACACATCTTACAGATCAGGGGAAAAT CTGAACCTCTCCTGCCACGCAGCCTCTAACCCACCTGCACAGTAC TCTTGGTTTGTCAATGGGACTTTCCAGCAATCCACCCAAGAGCTCT TTATCCCCAACATCACTGTGAATAATAGTGGATCCTATACGTGCC AAGCCCATAACTCAGACACTGGCCTCAATAGGACCACAGTCACG ACGATCACAGTCTATGCAGAGCCACCCAAACCCTTCATCACCAGC AACAACTCCAACCCCGTGGAGGATGAGGATGCTGTAGCCTTAACC TGTGAACCTGAGATTCAGAACACAACCTACCTGTGGTGGGTAAAT AATCAGAGCCTCCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGAC AACAGGACCCTCACTCTACTCAGTGTCACAAGGAATGATGTAGGA CCCTATGAGTGTGGAATCCAGAACGAATTAAGTGTTGACCACAGC GACCCAGTCATCCTGAATGTCCTCTATGGCCCAGACGACCCCACC ATTTCCCCCTCATACACCTATTACCGTCCAGGGGTGAACCTCAGC CTCTCCTGCCATGCAGCCTCTAACCCACCTGCACAGTATTCTTGGC TGATTGATGGGAACATCCAGCAACACACACAAGAGCTCTTTATCT CCAACATCACTGAGAAGAACAGCGGACTCTATACCTGCCAGGCC AATAACTCAGCCAGTGGCCACAGCAGGACTACAGTCAAGACAAT CACAGTCTCTGCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAA CTCCAAACCCGTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGA ACCTGAGGCTCAGAACACAACCTACCTGTGGTGGGTAAATGGTCA GAGCCTCCCAGTCAGTCCCAGGCTGCAGCTGTCCAATGGCAACAG GACCCTCACTCTATTCAATGTCACAAGAAATGACGCAAGAGCCTA TGTATGTGGAATCCAGAACTCAGTGAGTGCAAACCGCAGTGACCC AGTCACCCTGGATGTCCTCTATGGGCCGGACACCCCCATCATTTC CCCCCCAGACTCGTCTTACCTTTCGGGAGCGGACCTCAACCTCTCC TGCCACTCGGCCTCTAACCCATCCCCGCAGTATTCTTGGCGTATCA ATGGGATACCGCAGCAACACACACAAGTTCTCTTTATCGCCAAAA TCACGCCAAATAATAACGGGACCTATGCCTGTTTTGTCTCTAACTT GGCTACTGGCCGCAATAATTCCATAGTCAAGAGCATCACAGTCTC TGCATCTGGAACTTCTCCTGGTCTCTCAGCTGGGGCCACTGTCGGC ATCATGATTGGAGTGCTGGTTGGGGTTGCTCTGATATAG SEQ ID NO: ATGACACCGGGCACCCAGTCTCCTTTCTTCCTGCTGCTGCTCCTCA 101 CAGTGCTTACAGTTGTTACGGGTTCTGGTCATGCAAGCTCTACCCC AGGTGGAGAAAAGGAGACTTCGGCTACCCAGAGAAGTTCAGTGC CCAGCTCTACTGAGAAGAATGCTGTGAGTATGACCAGCAGCGTAC TCTCCAGCCACAGCCCCGGTTCAGGCTCCTCCACCACTCAGGGAC AGGATGTCACTCTGGCCCCGGCCACGGAACCAGCTTCAGGTTCAG CTGCCCTTTGGGGACAGGATGTCACCTCGGTCCCAGTCACCAGGC CAGCCCTGGGCTCCACCACCCCGCCAGCCCACGATGTCACCTCAG CCCCGGACAACAAGCCAGCCCCGGGCTCCACCGCCCCCCCAGCCC ACGGTGTCACCTCGTATCTTGACACCAGGCCGGCCCCGGTTTATC TTGCCCCCCCAGCCCATGGTGTCACCTCGGCCCCGGACAACAGGC CCGCCTTGGGCTCCACCGCCCCTCCAGTCCACAATGTCACCTCGG CCTCAGGCTCTGCATCAGGCTCAGCTTCTACTCTGGTGCACAACG GCACCTCTGCCAGGGCTACCACAACCCCAGCCAGCAAGAGCACTC CATTCTCAATTCCCAGCCACCACTCTGATACTCCTACCACCCTTGC CAGCCATAGCACCAAGACTGATGCCAGTAGCACTCACCATAGCAC GGTACCTCCTCTCACCTCCTCCAATCACAGCACTTCTCCCCAGTTG TCTACTGGGGTCTCTTTCTTTTTCCTGTCTTTTCACATTTCAAACCT CCAGTTTAATTCCTCTCTGGAAGATCCCAGCACCGACTACTACCA AGAGCTGCAGAGAGACATTTCTGAAATGTTTTTGCAGATTTATAA ACAAGGGGGTTTTCTGGGCCTCTCCAATATTAAGTTCAGGCCAGG ATCTGTGGTGGTACAATTGACTCTGGCCTTCCGAGAAGGTACCAT CAATGTCCACGACGTGGAGACACAGTTCAATCAGTATAAAACGG AAGCAGCCTCTCGATATAACCTGACGATCTCAGACGTCAGCGTGA GTGATGTGCCATTTCCTTTCTCTGCCCAGTCTGGGGCTGGGGTGCC AGGCTGGGGCATCGCGCTGCTGGTGCTGGTCTGTGTTCTGGTTTAT CTGGCCATTGTCTATCTCATTGCCTTGGCTGTCGCTCAGGTTCGCC GAAAGAACTACGGGCAGCTGGACATCTTTCCAGCCCGGGATAAA TACCATCCTATGAGCGAGTACGCTCTTTACCACACCCATGGGCGC TATGTGCCCCCTAGCAGTCTTTTCCGTAGCCCCTATGAGAAGGTTT CTGCAGGTAATGGTGGCAGCTATCTCTCTTACACAAACCCAGCAG TGGCAGCCGCTTCTGCCAACTTGTAG SEQ ID NO: ATGAGCTCCCCTGGCACCGAGAGCGCGGGAAAGAGCCTGCAGTA 102 CCGAGTGGACCACCTGCTGAGCGCCGTGGAGAATGAGCTGCAGG CGGGCAGCGAGAAGGGCGACCCCACAGAGCGCGAACTGCGCGTG GGCCTGGAGGAGAGCGAGCTGTGGCTGCGCTTCAAGGAGCTCAC CAATGAGATGATCGTGACCAAGAACGGCAGGAGGATGTTTCCGG TGCTGAAGGTGAACGTGTCTGGCCTGGACCCCAACGCCATGTACT CCTTCCTGCTGGACTTCGTGGCGGCGGACAACCACCGCTGGAAGT ACGTGAACGGGGAATGGGTGCCGGGGGGCAAGCCGGAGCCGCAG GCGCCCAGCTGCGTCTACATCCACCCCGACTCGCCCAACTTCGGG GCCCACTGGATGAAGGCTCCCGTCTCCTTCAGCAAAGTCAAGCTC ACCAACAAGCTCAACGGAGGGGGCCAGATCATGCTGAACTCCTT GCATAAGTATGAGCCTCGAATCCACATAGTGAGAGTTGGGGGTCC ACAGCGCATGATCACCAGCCACTGCTTCCCTGAGACCCAGTTCAT AGCGGTGACTGCTAGAAGTGATCACAAAGAGATGATGGAGGAAC CCGGAGACAGCCAGCAACCTGGGTACTCCCAATGGGGGTGGCTTC TTCCTGGAACCAGCACCGTGTGTCCACCTGCAAATCCTCATCCTC AGTTTGGAGGTGCCCTCTCCCTCCCCTCCACGCACAGCTGTGACA GGTACCCAACCCTGAGGAGCCACCGGTCCTCACCCTACCCCAGCC CCTATGCTCATCGGAACAATTCTCCAACCTATTCTGACAACTCACC TGCATGTTTATCCATGCTGCAATCCCATGACAATTGGTCCAGCCTT GGAATGCCTGCCCATCCCAGCATGCTCCCCGTGAGCCACAATGCC AGCCCACCTACCAGCTCCAGTCAGTACCCCAGCCTGTGGTCTGTG AGCAACGGCGCCGTCACCCCGGGCTCCCAGGCAGCAGCCGTGTCC AACGGGCTGGGGGCCCAGTTCTTCCGGGGCTCCCCCGCGCACTAC ACACCCCTCACCCATCCGGTCTCGGCGCCCTCTTCCTCGGGATCCC CACTGTACGAAGGGGCGGCCGCGGCCACAGACATCGTGGACAGC CAGTACGACGCCGCAGCCCAAGGCCGCCTCATAGCCTCATGGACA CCTGTGTCGCCACCTTCCATGTGA
Sequence CWU
1
1
11312109DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 1atggagtctc cctcggcccc tccccacaga tggtgcatcc
cctggcagag gctcctgctc 60acagcctcac ttctaacctt ctggaacccg cccaccactg
ccaagctcac tattgaatcc 120acgccgttca atgtcgcaga ggggaaggag gtgcttctac
ttgtccacaa tctgccccag 180catctttttg gctacagctg gtacaaaggt gaaagagtgg
atggcaaccg tcaaattata 240ggatatgtaa taggaactca acaagctacc ccagggcccg
catacagtgg tcgagagata 300atatacccca atgcatccct gctgatccag aacatcatcc
agaatgacac aggattctac 360accctacacg tcataaagtc agatcttgtg aatgaagaag
caactggcca gttccgggta 420tacccggagc tgcccaagcc ctccatctcc agcaacaact
ccaaacccgt ggaggacaag 480gatgctgtgg ccttcacctg tgaacctgag actcaggacg
caacctacct gtggtgggta 540aacaatcaga gcctcccggt cagtcccagg ctgcagctgt
ccaatggcaa caggaccctc 600actctattca atgtcacaag aaatgacaca gcaagctaca
aatgtgaaac ccagaaccca 660gtgagtgcca ggcgcagtga ttcagtcatc ctgaatgtcc
tctatggccc ggatgccccc 720accatttccc ctctaaacac atcttacaga tcaggggaaa
atctgaacct ctcctgccac 780gcagcctcta acccacctgc acagtactct tggtttgtca
atgggacttt ccagcaatcc 840acccaagagc tctttatccc caacatcact gtgaataata
gtggatccta tacgtgccaa 900gcccataact cagacactgg cctcaatagg accacagtca
cgacgatcac agtctatgca 960gagccaccca aacccttcat caccagcaac aactccaacc
ccgtggagga tgaggatgct 1020gtagccttaa cctgtgaacc tgagattcag aacacaacct
acctgtggtg ggtaaataat 1080cagagcctcc cggtcagtcc caggctgcag ctgtccaatg
acaacaggac cctcactcta 1140ctcagtgtca caaggaatga tgtaggaccc tatgagtgtg
gaatccagaa cgaattaagt 1200gttgaccaca gcgacccagt catcctgaat gtcctctatg
gcccagacga ccccaccatt 1260tccccctcat acacctatta ccgtccaggg gtgaacctca
gcctctcctg ccatgcagcc 1320tctaacccac ctgcacagta ttcttggctg attgatggga
acatccagca acacacacaa 1380gagctcttta tctccaacat cactgagaag aacagcggac
tctatacctg ccaggccaat 1440aactcagcca gtggccacag caggactaca gtcaagacaa
tcacagtctc tgcggagctg 1500cccaagccct ccatctccag caacaactcc aaacccgtgg
aggacaagga tgctgtggcc 1560ttcacctgtg aacctgaggc tcagaacaca acctacctgt
ggtgggtaaa tggtcagagc 1620ctcccagtca gtcccaggct gcagctgtcc aatggcaaca
ggaccctcac tctattcaat 1680gtcacaagaa atgacgcaag agcctatgta tgtggaatcc
agaactcagt gagtgcaaac 1740cgcagtgacc cagtcaccct ggatgtcctc tatgggccgg
acacccccat catttccccc 1800ccagactcgt cttacctttc gggagcgaac ctcaacctct
cctgccactc ggcctctaac 1860ccatccccgc agtattcttg gcgtatcaat gggataccgc
agcaacacac acaagttctc 1920tttatcgcca aaatcacgcc aaataataac gggacctatg
cctgttttgt ctctaacttg 1980gctactggcc gcaataattc catagtcaag agcatcacag
tctctgcatc tggaacttct 2040cctggtctct cagctggggc cactgtcggc atcatgattg
gagtgctggt tggggttgct 2100ctgatatag
2109232315DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 2catcatcaat aatatacctt
attttggatt gaagccaata tgataatgag ggggtggagt 60ttgtgacgtg gcgcggggcg
tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120gatgttgcaa gtgtggcgga
acacatgtaa gcgacggatg tggcaaaagt gacgtttttg 180gtgtgcgccg gtgtacacag
gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240taaatttggg cgtaaccgag
taagatttgg ccattttcgc gggaaaactg aataagagga 300agtgaaatct gaataatttt
gtgttactca tagcgcgtaa tactgtaata gtaatcaatt 360acggggtcat tagttcatag
cccatatatg gagttccgcg ttacataact tacggtaaat 420ggcccgcctg gctgaccgcc
caacgacccc cgcccattga cgtcaataat gacgtatgtt 480cccatagtaa cgccaatagg
gactttccat tgacgtcaat gggtggagta tttacggtaa 540actgcccact tggcagtaca
tcaagtgtat catatgccaa gtacgccccc tattgacgtc 600aatgacggta aatggcccgc
ctggcattat gcccagtaca tgaccttatg ggactttcct 660acttggcagt acatctacgt
attagtcatc gctattacca tggtgatgcg gttttggcag 720tacatcaatg ggcgtggata
gcggtttgac tcacggggat ttccaagtct ccaccccatt 780gacgtcaatg ggagtttgtt
ttggcaccaa aatcaacggg actttccaaa atgtcgtaac 840aactccgccc cattgacgca
aatgggcggt aggcgtgtac ggtgggaggt ctatataagc 900agagctggtt tagtgaaccg
tcagatccgc tagagatctg gtaccgtcga cgcggccgct 960cgagcctaag cttggtaccg
agctcggatc cactagtaac ggccgccagt gtgctggaat 1020tcggcttaaa ggtacccaga
gcagacagcc gccaccatgg agtctccctc ggcccctccc 1080cacagatggt gcatcccctg
gcagaggctc ctgctcacag cctcacttct aaccttctgg 1140aacccgccca ccactgccaa
gctcactatt gaatccacgc cgttcaatgt cgcagagggg 1200aaggaggtgc ttctacttgt
ccacaatctg ccccagcatc tttttggcta cagctggtac 1260aaaggtgaaa gagtggatgg
caaccgtcaa attataggat atgtaatagg aactcaacaa 1320gctaccccag ggcccgcata
cagtggtcga gagataatat accccaatgc atccctgctg 1380atccagaaca tcatccagaa
tgacacagga ttctacaccc tacacgtcat aaagtcagat 1440cttgtgaatg aagaagcaac
tggccagttc cgggtatacc cggagctgcc caagccctcc 1500atctccagca acaactccaa
acccgtggag gacaaggatg ctgtggcctt cacctgtgaa 1560cctgagactc aggacgcaac
ctacctgtgg tgggtaaaca atcagagcct cccggtcagt 1620cccaggctgc agctgtccaa
tggcaacagg accctcactc tattcaatgt cacaagaaat 1680gacacagcaa gctacaaatg
tgaaacccag aacccagtga gtgccaggcg cagtgattca 1740gtcatcctga atgtcctcta
tggcccggat gcccccacca tttcccctct aaacacatct 1800tacagatcag gggaaaatct
gaacctctcc tgccacgcag cctctaaccc acctgcacag 1860tactcttggt ttgtcaatgg
gactttccag caatccaccc aagagctctt tatccccaac 1920atcactgtga ataatagtgg
atcctatacg tgccaagccc ataactcaga cactggcctc 1980aataggacca cagtcacgac
gatcacagtc tatgcagagc cacccaaacc cttcatcacc 2040agcaacaact ccaaccccgt
ggaggatgag gatgctgtag ccttaacctg tgaacctgag 2100attcagaaca caacctacct
gtggtgggta aataatcaga gcctcccggt cagtcccagg 2160ctgcagctgt ccaatgacaa
caggaccctc actctactca gtgtcacaag gaatgatgta 2220ggaccctatg agtgtggaat
ccagaacgaa ttaagtgttg accacagcga cccagtcatc 2280ctgaatgtcc tctatggccc
agacgacccc accatttccc cctcatacac ctattaccgt 2340ccaggggtga acctcagcct
ctcctgccat gcagcctcta acccacctgc acagtattct 2400tggctgattg atgggaacat
ccagcaacac acacaagagc tctttatctc caacatcact 2460gagaagaaca gcggactcta
tacctgccag gccaataact cagccagtgg ccacagcagg 2520actacagtca agacaatcac
agtctctgcg gagctgccca agccctccat ctccagcaac 2580aactccaaac ccgtggagga
caaggatgct gtggccttca cctgtgaacc tgaggctcag 2640aacacaacct acctgtggtg
ggtaaatggt cagagcctcc cagtcagtcc caggctgcag 2700ctgtccaatg gcaacaggac
cctcactcta ttcaatgtca caagaaatga cgcaagagcc 2760tatgtatgtg gaatccagaa
ctcagtgagt gcaaaccgca gtgacccagt caccctggat 2820gtcctctatg ggccggacac
ccccatcatt tcccccccag actcgtctta cctttcggga 2880gcggacctca acctctcctg
ccactcggcc tctaacccat ccccgcagta ttcttggcgt 2940atcaatggga taccgcagca
acacacacaa gttctcttta tcgccaaaat cacgccaaat 3000aataacggga cctatgcctg
ttttgtctct aacttggcta ctggccgcaa taattccata 3060gtcaagagca tcacagtctc
tgcatctgga acttctcctg gtctctcagc tggggccact 3120gtcggcatca tgattggagt
gctggttggg gttgctctga tatagcagcc ctggtgtagt 3180ttcttcattt caggaagact
gacagttgtt ttgcttcttc cttaaagcat ttgcaacagc 3240tacagtctaa aattgcttct
ttaccaagga tatttacaga aaagactctg accagagatc 3300gagaccatcc tctagataag
atatccgatc caccggatct agataactga tcataatcag 3360ccataccaca tttgtagagg
ttttacttgc tttaaaaaac ctcccacacc tccccctgaa 3420cctgaaacat aaaatgaatg
caattgttgt tgttaacttg tttattgcag cttataatgg 3480ttacaaataa agcaatagca
tcacaaattt cacaaataaa gcattttttt cactgcattc 3540tagttgtggt ttgtccaaac
tcatcaatgt atcttaacgc ggatctgggc gtggttaagg 3600gtgggaaaga atatataagg
tgggggtctt atgtagtttt gtatctgttt tgcagcagcc 3660gccgccgcca tgagcaccaa
ctcgtttgat ggaagcattg tgagctcata tttgacaacg 3720cgcatgcccc catgggccgg
ggtgcgtcag aatgtgatgg gctccagcat tgatggtcgc 3780cccgtcctgc ccgcaaactc
tactaccttg acctacgaga ccgtgtctgg aacgccgttg 3840gagactgcag cctccgccgc
cgcttcagcc gctgcagcca ccgcccgcgg gattgtgact 3900gactttgctt tcctgagccc
gcttgcaagc agtgcagctt cccgttcatc cgcccgcgat 3960gacaagttga cggctctttt
ggcacaattg gattctttga cccgggaact taatgtcgtt 4020tctcagcagc tgttggatct
gcgccagcag gtttctgccc tgaaggcttc ctcccctccc 4080aatgcggttt aaaacataaa
taaaaaacca gactctgttt ggatttggat caagcaagtg 4140tcttgctgtc tttatttagg
ggttttgcgc gcgcggtagg cccgggacca gcggtctcgg 4200tcgttgaggg tcctgtgtat
tttttccagg acgtggtaaa ggtgactctg gatgttcaga 4260tacatgggca taagcccgtc
tctggggtgg aggtagcacc actgcagagc ttcatgctgc 4320ggggtggtgt tgtagatgat
ccagtcgtag caggagcgct gggcgtggtg cctaaaaatg 4380tctttcagta gcaagctgat
tgccaggggc aggcccttgg tgtaagtgtt tacaaagcgg 4440ttaagctggg atgggtgcat
acgtggggat atgagatgca tcttggactg tatttttagg 4500ttggctatgt tcccagccat
atccctccgg ggattcatgt tgtgcagaac caccagcaca 4560gtgtatccgg tgcacttggg
aaatttgtca tgtagcttag aaggaaatgc gtggaagaac 4620ttggagacgc ccttgtgacc
tccaagattt tccatgcatt cgtccataat gatggcaatg 4680ggcccacggg cggcggcctg
ggcgaagata tttctgggat cactaacgtc atagttgtgt 4740tccaggatga gatcgtcata
ggccattttt acaaagcgcg ggcggagggt gccagactgc 4800ggtataatgg ttccatccgg
cccaggggcg tagttaccct cacagatttg catttcccac 4860gctttgagtt cagatggggg
gatcatgtct acctgcgggg cgatgaagaa aacggtttcc 4920ggggtagggg agatcagctg
ggaagaaagc aggttcctga gcagctgcga cttaccgcag 4980ccggtgggcc cgtaaatcac
acctattacc ggctgcaact ggtagttaag agagctgcag 5040ctgccgtcat ccctgagcag
gggggccact tcgttaagca tgtccctgac tcgcatgttt 5100tccctgacca aatccgccag
aaggcgctcg ccgcccagcg atagcagttc ttgcaaggaa 5160gcaaagtttt tcaacggttt
gagaccgtcc gccgtaggca tgcttttgag cgtttgacca 5220agcagttcca ggcggtccca
cagctcggtc acctgctcta cggcatctcg atccagcata 5280tctcctcgtt tcgcgggttg
gggcggcttt cgctgtacgg cagtagtcgg tgctcgtcca 5340gacgggccag ggtcatgtct
ttccacgggc gcagggtcct cgtcagcgta gtctgggtca 5400cggtgaaggg gtgcgctccg
ggctgcgcgc tggccagggt gcgcttgagg ctggtcctgc 5460tggtgctgaa gcgctgccgg
tcttcgccct gcgcgtcggc caggtagcat ttgaccatgg 5520tgtcatagtc cagcccctcc
gcggcgtggc ccttggcgcg cagcttgccc ttggaggagg 5580cgccgcacga ggggcagtgc
agacttttga gggcgtagag cttgggcgcg agaaataccg 5640attccgggga gtaggcatcc
gcgccgcagg ccccgcagac ggtctcgcat tccacgagcc 5700aggtgagctc tggccgttcg
gggtcaaaaa ccaggtttcc cccatgcttt ttgatgcgtt 5760tcttacctct ggtttccatg
agccggtgtc cacgctcggt gacgaaaagg ctgtccgtgt 5820ccccgtatac agacttgaga
ggcctgtcct cgagcggtgt tccgcggtcc tcctcgtata 5880gaaactcgga ccactctgag
acaaaggctc gcgtccaggc cagcacgaag gaggctaagt 5940gggaggggta gcggtcgttg
tccactaggg ggtccactcg ctccagggtg tgaagacaca 6000tgtcgccctc ttcggcatca
aggaaggtga ttggtttgta ggtgtaggcc acgtgaccgg 6060gtgttcctga aggggggcta
taaaaggggg tgggggcgcg ttcgtcctca ctctcttccg 6120catcgctgtc tgcgagggcc
agctgttggg gtgagtactc cctctgaaaa gcgggcatga 6180cttctgcgct aagattgtca
gtttccaaaa acgaggagga tttgatattc acctggcccg 6240cggtgatgcc tttgagggtg
gccgcatcca tctggtcaga aaagacaatc tttttgttgt 6300caagcttggt ggcaaacgac
ccgtagaggg cgttggacag caacttggcg atggagcgca 6360gggtttggtt tttgtcgcga
tcggcgcgct ccttggccgc gatgtttagc tgcacgtatt 6420cgcgcgcaac gcaccgccat
tcgggaaaga cggtggtgcg ctcgtcgggc accaggtgca 6480cgcgccaacc gcggttgtgc
agggtgacaa ggtcaacgct ggtggctacc tctccgcgta 6540ggcgctcgtt ggtccagcag
aggcggccgc ccttgcgcga gcagaatggc ggtagggggt 6600ctagctgcgt ctcgtccggg
gggtctgcgt ccacggtaaa gaccccgggc agcaggcgcg 6660cgtcgaagta gtctatcttg
catccttgca agtctagcgc ctgctgccat gcgcgggcgg 6720caagcgcgcg ctcgtatggg
ttgagtgggg gaccccatgg catggggtgg gtgagcgcgg 6780aggcgtacat gccgcaaatg
tcgtaaacgt agaggggctc tctgagtatt ccaagatatg 6840tagggtagca tcttccaccg
cggatgctgg cgcgcacgta atcgtatagt tcgtgcgagg 6900gagcgaggag gtcgggaccg
aggttgctac gggcgggctg ctctgctcgg aagactatct 6960gcctgaagat ggcatgtgag
ttggatgata tggttggacg ctggaagacg ttgaagctgg 7020cgtctgtgag acctaccgcg
tcacgcacga aggaggcgta ggagtcgcgc agcttgttga 7080ccagctcggc ggtgacctgc
acgtctaggg cgcagtagtc cagggtttcc ttgatgatgt 7140catacttatc ctgtcccttt
tttttccaca gctcgcggtt gaggacaaac tcttcgcggt 7200ctttccagta ctcttggatc
ggaaacccgt cggcctccga acggtaagag cctagcatgt 7260agaactggtt gacggcctgg
taggcgcagc atcccttttc tacgggtagc gcgtatgcct 7320gcgcggcctt ccggcatgac
cagcatgaag ggcacgagct gcttcccaaa ggcccccatc 7380caagtatagg tctctacatc
gtaggtgaca aagagacgct cggtgcgagg atgcgagccg 7440atcgggaaga actggatctc
ccgccaccaa ttggaggagt ggctattgat gtggtgaaag 7500tagaagtccc tgcgacgggc
cgaacactcg tgctggcttt tgtaaaaacg tgcgcagtac 7560tggcagcggt gcacgggctg
tacatcctgc acgaggttga cctgacgacc gcgcacaagg 7620aagcagagtg ggaatttgag
cccctcgcct ggcgggtttg gctggtggtc ttctacttcg 7680gctgcttgtc cttgaccgtc
tggctgctcg aggggagtta cggtggatcg gaccaccacg 7740ccgcgcgagc ccaaagtcca
gatgtccgcg cgcggcggtc ggagcttgat gacaacatcg 7800cgcagatggg agctgtccat
ggtctggagc tcccgcggcg tcaggtcagg cgggagctcc 7860tgcaggttta cctcgcatag
acgggtcagg gcgcgggcta gatccaggtg atacctaatt 7920tccaggggct ggttggtggc
ggcgtcgatg gcttgcaaga ggccgcatcc ccgcggcgcg 7980actacggtac cgcgcggcgg
gcggtgggcc gcgggggtgt ccttggatga tgcatctaaa 8040agcggtgacg cgggcgagcc
cccggaggta gggggggctc cggacccgcc gggagagggg 8100gcaggggcac gtcggcgccg
cgcgcgggca ggagctggtg ctgcgcgcgt aggttgctgg 8160cgaacgcgac gacgcggcgg
ttgatctcct gaatctggcg cctctgcgtg aagacgacgg 8220gcccggtgag cttgaacctg
aaagagagtt cgacagaatc aatttcggtg tcgttgacgg 8280cggcctggcg caaaatctcc
tgcacgtctc ctgagttgtc ttgataggcg atctcggcca 8340tgaactgctc gatctcttcc
tcctggagat ctccgcgtcc ggctcgctcc acggtggcgg 8400cgaggtcgtt ggaaatgcgg
gccatgagct gcgagaaggc gttgaggcct ccctcgttcc 8460agacgcggct gtagaccacg
cccccttcgg catcgcgggc gcgcatgacc acctgcgcga 8520gattgagctc cacgtgccgg
gcgaagacgg cgtagtttcg caggcgctga aagaggtagt 8580tgagggtggt ggcggtgtgt
tctgccacga agaagtacat aacccagcgt cgcaacgtgg 8640attcgttgat aattgttgtg
taggtactcc gccgccgagg gacctgagcg agtccgcatc 8700gaccggatcg gaaaacctct
cgagaaaggc gtctaaccag tcacagtcgc aaggtaggct 8760gagcaccgtg gcgggcggca
gcgggcggcg gtcggggttg tttctggcgg aggtgctgct 8820gatgatgtaa ttaaagtagg
cggtcttgag acggcggatg gtcgacagaa gcaccatgtc 8880cttgggtccg gcctgctgaa
tgcgcaggcg gtcggccatg ccccaggctt cgttttgaca 8940tcggcgcagg tctttgtagt
agtcttgcat gagcctttct accggcactt cttcttctcc 9000ttcctcttgt cctgcatctc
ttgcatctat cgctgcggcg gcggcggagt ttggccgtag 9060gtggcgccct cttcctccca
tgcgtgtgac cccgaagccc ctcatcggct gaagcagggc 9120taggtcggcg acaacgcgct
cggctaatat ggcctgctgc acctgcgtga gggtagactg 9180gaagtcatcc atgtccacaa
agcggtggta tgcgcccgtg ttgatggtgt aagtgcagtt 9240ggccataacg gaccagttaa
cggtctggtg acccggctgc gagagctcgg tgtacctgag 9300acgcgagtaa gccctcgagt
caaatacgta gtcgttgcaa gtccgcacca ggtactggta 9360tcccaccaaa aagtgcggcg
gcggctggcg gtagaggggc cagcgtaggg tggccggggc 9420tccgggggcg agatcttcca
acataaggcg atgatatccg tagatgtacc tggacatcca 9480ggtgatgccg gcggcggtgg
tggaggcgcg cggaaagtcg cggacgcggt tccagatgtt 9540gcgcagcggc aaaaagtgct
ccatggtcgg gacgctctgg ccggtcaggc gcgcgcaatc 9600gttgacgctc tagcgtgcaa
aaggagagcc tgtaagcggg cactcttccg tggtctggtg 9660gataaattcg caagggtatc
atggcggacg accggggttc gagccccgta tccggccgtc 9720cgccgtgatc catgcggtta
ccgcccgcgt gtcgaaccca ggtgtgcgac gtcagacaac 9780gggggagtgc tccttttggc
ttccttccag gcgcggcggc tgctgcgcta gcttttttgg 9840ccactggccg cgcgcagcgt
aagcggttag gctggaaagc gaaagcatta agtggctcgc 9900tccctgtagc cggagggtta
ttttccaagg gttgagtcgc gggacccccg gttcgagtct 9960cggaccggcc ggactgcggc
gaacgggggt ttgcctcccc gtcatgcaag accccgcttg 10020caaattcctc cggaaacagg
gacgagcccc ttttttgctt ttcccagatg catccggtgc 10080tgcggcagat gcgcccccct
cctcagcagc ggcaagagca agagcagcgg cagacatgca 10140gggcaccctc ccctcctcct
accgcgtcag gaggggcgac atccgcggtt gacgcggcag 10200cagatggtga ttacgaaccc
ccgcggcgcc gggcccggca ctacctggac ttggaggagg 10260gcgagggcct ggcgcggcta
ggagcgccct ctcctgagcg gcacccaagg gtgcagctga 10320agcgtgatac gcgtgaggcg
tacgtgccgc ggcagaacct gtttcgcgac cgcgagggag 10380aggagcccga ggagatgcgg
gatcgaaagt tccacgcagg gcgcgagctg cggcatggcc 10440tgaatcgcga gcggttgctg
cgcgaggagg actttgagcc cgacgcgcga accgggatta 10500gtcccgcgcg cgcacacgtg
gcggccgccg acctggtaac cgcatacgag cagacggtga 10560accaggagat taactttcaa
aaaagcttta acaaccacgt gcgtacgctt gtggcgcgcg 10620aggaggtggc tataggactg
atgcatctgt gggactttgt aagcgcgctg gagcaaaacc 10680caaatagcaa gccgctcatg
gcgcagctgt tccttatagt gcagcacagc agggacaacg 10740aggcattcag ggatgcgctg
ctaaacatag tagagcccga gggccgctgg ctgctcgatt 10800tgataaacat cctgcagagc
atagtggtgc aggagcgcag cttgagcctg gctgacaagg 10860tggccgccat caactattcc
atgcttagcc tgggcaagtt ttacgcccgc aagatatacc 10920atacccctta cgttcccata
gacaaggagg taaagatcga ggggttctac atgcgcatgg 10980cgctgaaggt gcttaccttg
agcgacgacc tgggcgttta tcgcaacgag cgcatccaca 11040aggccgtgag cgtgagccgg
cggcgcgagc tcagcgaccg cgagctgatg cacagcctgc 11100aaagggccct ggctggcacg
ggcagcggcg atagagaggc cgagtcctac tttgacgcgg 11160gcgctgacct gcgctgggcc
ccaagccgac gcgccctgga ggcagctggg gccggacctg 11220ggctggcggt ggcacccgcg
cgcgctggca acgtcggcgg cgtggaggaa tatgacgagg 11280acgatgagta cgagccagag
gacggcgagt actaagcggt gatgtttctg atcagatgat 11340gcaagacgca acggacccgg
cggtgcgggc ggcgctgcag agccagccgt ccggccttaa 11400ctccacggac gactggcgcc
aggtcatgga ccgcatcatg tcgctgactg cgcgcaatcc 11460tgacgcgttc cggcagcagc
cgcaggccaa ccggctctcc gcaattctgg aagcggtggt 11520cccggcgcgc gcaaacccca
cgcacgagaa ggtgctggcg atcgtaaacg cgctggccga 11580aaacagggcc atccggcccg
acgaggccgg cctggtctac gacgcgctgc ttcagcgcgt 11640ggctcgttac aacagcggca
acgtgcagac caacctggac cggctggtgg gggatgtgcg 11700cgaggccgtg gcgcagcgtg
agcgcgcgca gcagcagggc aacctgggct ccatggttgc 11760actaaacgcc ttcctgagta
cacagcccgc caacgtgccg cggggacagg aggactacac 11820caactttgtg agcgcactgc
ggctaatggt gactgagaca ccgcaaagtg aggtgtacca 11880gtctgggcca gactattttt
tccagaccag tagacaaggc ctgcagaccg taaacctgag 11940ccaggctttc aaaaacttgc
aggggctgtg gggggtgcgg gctcccacag gcgaccgcgc 12000gaccgtgtct agcttgctga
cgcccaactc gcgcctgttg ctgctgctaa tagcgccctt 12060cacggacagt ggcagcgtgt
cccgggacac atacctaggt cacttgctga cactgtaccg 12120cgaggccata ggtcaggcgc
atgtggacga gcatactttc caggagatta caagtgtcag 12180ccgcgcgctg gggcaggagg
acacgggcag cctggaggca accctaaact acctgctgac 12240caaccggcgg cagaagatcc
cctcgttgca cagtttaaac agcgaggagg agcgcatttt 12300gcgctacgtg cagcagagcg
tgagccttaa cctgatgcgc gacggggtaa cgcccagcgt 12360ggcgctggac atgaccgcgc
gcaacatgga accgggcatg tatgcctcaa accggccgtt 12420tatcaaccgc ctaatggact
acttgcatcg cgcggccgcc gtgaaccccg agtatttcac 12480caatgccatc ttgaacccgc
actggctacc gccccctggt ttctacaccg ggggattcga 12540ggtgcccgag ggtaacgatg
gattcctctg ggacgacata gacgacagcg tgttttcccc 12600gcaaccgcag accctgctag
agttgcaaca gcgcgagcag gcagaggcgg cgctgcgaaa 12660ggaaagcttc cgcaggccaa
gcagcttgtc cgatctaggc gctgcggccc cgcggtcaga 12720tgctagtagc ccatttccaa
gcttgatagg gtctcttacc agcactcgca ccacccgccc 12780gcgcctgctg ggcgaggagg
agtacctaaa caactcgctg ctgcagccgc agcgcgaaaa 12840aaacctgcct ccggcatttc
ccaacaacgg gatagagagc ctagtggaca agatgagtag 12900atggaagacg tacgcgcagg
agcacaggga cgtgccaggc ccgcgcccgc ccacccgtcg 12960tcaaaggcac gaccgtcagc
ggggtctggt gtgggaggac gatgactcgg cagacgacag 13020cagcgtcctg gatttgggag
ggagtggcaa cccgtttgcg caccttcgcc ccaggctggg 13080gagaatgttt taaaaaaaaa
aaagcatgat gcaaaataaa aaactcacca aggccatggc 13140accgagcgtt ggttttcttg
tattcccctt agtatgcggc gcgcggcgat gtatgaggaa 13200ggtcctcctc cctcctacga
gagtgtggtg agcgcggcgc cagtggcggc ggcgctgggt 13260tctcccttcg atgctcccct
ggacccgccg tttgtgcctc cgcggtacct gcggcctacc 13320ggggggagaa acagcatccg
ttactctgag ttggcacccc tattcgacac cacccgtgtg 13380tacctggtgg acaacaagtc
aacggatgtg gcatccctga actaccagaa cgaccacagc 13440aactttctga ccacggtcat
tcaaaacaat gactacagcc cgggggaggc aagcacacag 13500accatcaatc ttgacgaccg
gtcgcactgg ggcggcgacc tgaaaaccat cctgcatacc 13560aacatgccaa atgtgaacga
gttcatgttt accaataagt ttaaggcgcg ggtgatggtg 13620tcgcgcttgc ctactaagga
caatcaggtg gagctgaaat acgagtgggt ggagttcacg 13680ctgcccgagg gcaactactc
cgagaccatg accatagacc ttatgaacaa cgcgatcgtg 13740gagcactact tgaaagtggg
cagacagaac ggggttctgg aaagcgacat cggggtaaag 13800tttgacaccc gcaacttcag
actggggttt gaccccgtca ctggtcttgt catgcctggg 13860gtatatacaa acgaagcctt
ccatccagac atcattttgc tgccaggatg cggggtggac 13920ttcacccaca gccgcctgag
caacttgttg ggcatccgca agcggcaacc cttccaggag 13980ggctttagga tcacctacga
tgatctggag ggtggtaaca ttcccgcact gttggatgtg 14040gacgcctacc aggcgagctt
gaaagatgac accgaacagg gcgggggtgg cgcaggcggc 14100agcaacagca gtggcagcgg
cgcggaagag aactccaacg cggcagccgc ggcaatgcag 14160ccggtggagg acatgaacga
tcatgccatt cgcggcgaca cctttgccac acgggctgag 14220gagaagcgcg ctgaggccga
agcagcggcc gaagctgccg cccccgctgc gcaacccgag 14280gtcgagaagc ctcagaagaa
accggtgatc aaacccctga cagaggacag caagaaacgc 14340agttacaacc taataagcaa
tgacagcacc ttcacccagt accgcagctg gtaccttgca 14400tacaactacg gcgaccctca
gaccggaatc cgctcatgga ccctgctttg cactcctgac 14460gtaacctgcg gctcggagca
ggtctactgg tcgttgccag acatgatgca agaccccgtg 14520accttccgct ccacgcgcca
gatcagcaac tttccggtgg tgggcgccga gctgttgccc 14580gtgcactcca agagcttcta
caacgaccag gccgtctact cccaactcat ccgccagttt 14640acctctctga cccacgtgtt
caatcgcttt cccgagaacc agattttggc gcgcccgcca 14700gcccccacca tcaccaccgt
cagtgaaaac gttcctgctc tcacagatca cgggacgcta 14760ccgctgcgca acagcatcgg
aggagtccag cgagtgacca ttactgacgc cagacgccgc 14820acctgcccct acgtttacaa
ggccctgggc atagtctcgc cgcgcgtcct atcgagccgc 14880actttttgag caagcatgtc
catccttata tcgcccagca ataacacagg ctggggcctg 14940cgcttcccaa gcaagatgtt
tggcggggcc aagaagcgct ccgaccaaca cccagtgcgc 15000gtgcgcgggc actaccgcgc
gccctggggc gcgcacaaac gcggccgcac tgggcgcacc 15060accgtcgatg acgccatcga
cgcggtggtg gaggaggcgc gcaactacac gcccacgccg 15120ccaccagtgt ccacagtgga
cgcggccatt cagaccgtgg tgcgcggagc ccggcgctat 15180gctaaaatga agagacggcg
gaggcgcgta gcacgtcgcc accgccgccg acccggcact 15240gccgcccaac gcgcggcggc
ggccctgctt aaccgcgcac gtcgcaccgg ccgacgggcg 15300gccatgcggg ccgctcgaag
gctggccgcg ggtattgtca ctgtgccccc caggtccagg 15360cgacgagcgg ccgccgcagc
agccgcggcc attagtgcta tgactcaggg tcgcaggggc 15420aacgtgtatt gggtgcgcga
ctcggttagc ggcctgcgcg tgcccgtgcg cacccgcccc 15480ccgcgcaact agattgcaag
aaaaaactac ttagactcgt actgttgtat gtatccagcg 15540gcggcggcgc gcaacgaagc
tatgtccaag cgcaaaatca aagaagagat gctccaggtc 15600atcgcgccgg agatctatgg
ccccccgaag aaggaagagc aggattacaa gccccgaaag 15660ctaaagcggg tcaaaaagaa
aaagaaagat gatgatgatg aacttgacga cgaggtggaa 15720ctgctgcacg ctaccgcgcc
caggcgacgg gtacagtgga aaggtcgacg cgtaaaacgt 15780gttttgcgac ccggcaccac
cgtagtcttt acgcccggtg agcgctccac ccgcacctac 15840aagcgcgtgt atgatgaggt
gtacggcgac gaggacctgc ttgagcaggc caacgagcgc 15900ctcggggagt ttgcctacgg
aaagcggcat aaggacatgc tggcgttgcc gctggacgag 15960ggcaacccaa cacctagcct
aaagcccgta acactgcagc aggtgctgcc cgcgcttgca 16020ccgtccgaag aaaagcgcgg
cctaaagcgc gagtctggtg acttggcacc caccgtgcag 16080ctgatggtac ccaagcgcca
gcgactggaa gatgtcttgg aaaaaatgac cgtggaacct 16140gggctggagc ccgaggtccg
cgtgcggcca atcaagcagg tggcgccggg actgggcgtg 16200cagaccgtgg acgttcagat
acccactacc agtagcacca gtattgccac cgccacagag 16260ggcatggaga cacaaacgtc
cccggttgcc tcagcggtgg cggatgccgc ggtgcaggcg 16320gtcgctgcgg ccgcgtccaa
gacctctacg gaggtgcaaa cggacccgtg gatgtttcgc 16380gtttcagccc cccggcgccc
gcgccgttcg aggaagtacg gcgccgccag cgcgctactg 16440cccgaatatg ccctacatcc
ttccattgcg cctacccccg gctatcgtgg ctacacctac 16500cgccccagaa gacgagcaac
tacccgacgc cgaaccacca ctggaacccg ccgccgccgt 16560cgccgtcgcc agcccgtgct
ggccccgatt tccgtgcgca gggtggctcg cgaaggaggc 16620aggaccctgg tgctgccaac
agcgcgctac caccccagca tcgtttaaaa gccggtcttt 16680gtggttcttg cagatatggc
cctcacctgc cgcctccgtt tcccggtgcc gggattccga 16740ggaagaatgc accgtaggag
gggcatggcc ggccacggcc tgacgggcgg catgcgtcgt 16800gcgcaccacc ggcggcggcg
cgcgtcgcac cgtcgcatgc gcggcggtat cctgcccctc 16860cttattccac tgatcgccgc
ggcgattggc gccgtgcccg gaattgcatc cgtggccttg 16920caggcgcaga gacactgatt
aaaaacaagt tgcatgtgga aaaatcaaaa taaaaagtct 16980ggactctcac gctcgcttgg
tcctgtaact attttgtaga atggaagaca tcaactttgc 17040gtctctggcc ccgcgacacg
gctcgcgccc gttcatggga aactggcaag atatcggcac 17100cagcaatatg agcggtggcg
ccttcagctg gggctcgctg tggagcggca ttaaaaattt 17160cggttccacc gttaagaact
atggcagcaa ggcctggaac agcagcacag gccagatgct 17220gagggataag ttgaaagagc
aaaatttcca acaaaaggtg gtagatggcc tggcctctgg 17280cattagcggg gtggtggacc
tggccaacca ggcagtgcaa aataagatta acagtaagct 17340tgatccccgc cctcccgtag
aggagcctcc accggccgtg gagacagtgt ctccagaggg 17400gcgtggcgaa aagcgtccgc
gccccgacag ggaagaaact ctggtgacgc aaatagacga 17460gcctccctcg tacgaggagg
cactaaagca aggcctgccc accacccgtc ccatcgcgcc 17520catggctacc ggagtgctgg
gccagcacac acccgtaacg ctggacctgc ctccccccgc 17580cgacacccag cagaaacctg
tgctgccagg cccgaccgcc gttgttgtaa cccgtcctag 17640ccgcgcgtcc ctgcgccgcg
ccgccagcgg tccgcgatcg ttgcggcccg tagccagtgg 17700caactggcaa agcacactga
acagcatcgt gggtctgggg gtgcaatccc tgaagcgccg 17760acgatgcttc tgatagctaa
cgtgtcgtat gtgtgtcatg tatgcgtcca tgtcgccgcc 17820agaggagctg ctgagccgcc
gcgcgcccgc tttccaagat ggctacccct tcgatgatgc 17880cgcagtggtc ttacatgcac
atctcgggcc aggacgcctc ggagtacctg agccccgggc 17940tggtgcagtt tgcccgcgcc
accgagacgt acttcagcct gaataacaag tttagaaacc 18000ccacggtggc gcctacgcac
gacgtgacca cagaccggtc ccagcgtttg acgctgcggt 18060tcatccctgt ggaccgtgag
gatactgcgt actcgtacaa ggcgcggttc accctagctg 18120tgggtgataa ccgtgtgctg
gacatggctt ccacgtactt tgacatccgc ggcgtgctgg 18180acaggggccc tacttttaag
ccctactctg gcactgccta caacgccctg gctcccaagg 18240gtgccccaaa tccttgcgaa
tgggatgaag ctgctactgc tcttgaaata aacctagaag 18300aagaggacga tgacaacgaa
gacgaagtag acgagcaagc tgagcagcaa aaaactcacg 18360tatttgggca ggcgccttat
tctggtataa atattacaaa ggagggtatt caaataggtg 18420tcgaaggtca aacacctaaa
tatgccgata aaacatttca acctgaacct caaataggag 18480aatctcagtg gtacgaaaca
gaaattaatc atgcagctgg gagagtccta aaaaagacta 18540ccccaatgaa accatgttac
ggttcatatg caaaacccac aaatgaaaat ggagggcaag 18600gcattcttgt aaagcaacaa
aatggaaagc tagaaagtca agtggaaatg caatttttct 18660caactactga ggcagccgca
ggcaatggtg ataacttgac tcctaaagtg gtattgtaca 18720gtgaagatgt agatatagaa
accccagaca ctcatatttc ttacatgccc actattaagg 18780aaggtaactc acgagaacta
atgggccaac aatctatgcc caacaggcct aattacattg 18840cttttaggga caattttatt
ggtctaatgt attacaacag cacgggtaat atgggtgttc 18900tggcgggcca agcatcgcag
ttgaatgctg ttgtagattt gcaagacaga aacacagagc 18960tttcatacca gcttttgctt
gattccattg gtgatagaac caggtacttt tctatgtgga 19020atcaggctgt tgacagctat
gatccagatg ttagaattat tgaaaatcat ggaactgaag 19080atgaacttcc aaattactgc
tttccactgg gaggtgtgat taatacagag actcttacca 19140aggtaaaacc taaaacaggt
caggaaaatg gatgggaaaa agatgctaca gaattttcag 19200ataaaaatga aataagagtt
ggaaataatt ttgccatgga aatcaatcta aatgccaacc 19260tgtggagaaa tttcctgtac
tccaacatag cgctgtattt gcccgacaag ctaaagtaca 19320gtccttccaa cgtaaaaatt
tctgataacc caaacaccta cgactacatg aacaagcgag 19380tggtggctcc cgggctagtg
gactgctaca ttaaccttgg agcacgctgg tcccttgact 19440atatggacaa cgtcaaccca
tttaaccacc accgcaatgc tggcctgcgc taccgctcaa 19500tgttgctggg caatggtcgc
tatgtgccct tccacatcca ggtgcctcag aagttctttg 19560ccattaaaaa cctccttctc
ctgccgggct catacaccta cgagtggaac ttcaggaagg 19620atgttaacat ggttctgcag
agctccctag gaaatgacct aagggttgac ggagccagca 19680ttaagtttga tagcatttgc
ctttacgcca ccttcttccc catggcccac aacaccgcct 19740ccacgcttga ggccatgctt
agaaacgaca ccaacgacca gtcctttaac gactatctct 19800ccgccgccaa catgctctac
cctatacccg ccaacgctac caacgtgccc atatccatcc 19860cctcccgcaa ctgggcggct
ttccgcggct gggccttcac gcgccttaag actaaggaaa 19920ccccatcact gggctcgggc
tacgaccctt attacaccta ctctggctct ataccctacc 19980tagatggaac cttttacctc
aaccacacct ttaagaaggt ggccattacc tttgactctt 20040ctgtcagctg gcctggcaat
gaccgcctgc ttacccccaa cgagtttgaa attaagcgct 20100cagttgacgg ggagggttac
aacgttgccc agtgtaacat gaccaaagac tggttcctgg 20160tacaaatgct agctaactat
aacattggct accagggctt ctatatccca gagagctaca 20220aggaccgcat gtactccttc
tttagaaact tccagcccat gagccgtcag gtggtggatg 20280atactaaata caaggactac
caacaggtgg gcatcctaca ccaacacaac aactctggat 20340ttgttggcta ccttgccccc
accatgcgcg aaggacaggc ctaccctgct aacttcccct 20400atccgcttat aggcaagacc
gcagttgaca gcattaccca gaaaaagttt ctttgcgatc 20460gcaccctttg gcgcatccca
ttctccagta actttatgtc catgggcgca ctcacagacc 20520tgggccaaaa ccttctctac
gccaactccg cccacgcgct agacatgact tttgaggtgg 20580atcccatgga cgagcccacc
cttctttatg ttttgtttga agtctttgac gtggtccgtg 20640tgcaccagcc gcaccgcggc
gtcatcgaaa ccgtgtacct gcgcacgccc ttctcggccg 20700gcaacgccac aacataaaga
agcaagcaac atcaacaaca gctgccgcca tgggctccag 20760tgagcaggaa ctgaaagcca
ttgtcaaaga tcttggttgt gggccatatt ttttgggcac 20820ctatgacaag cgctttccag
gctttgtttc tccacacaag ctcgcctgcg ccatagtcaa 20880tacggccggt cgcgagactg
ggggcgtaca ctggatggcc tttgcctgga acccgcactc 20940aaaaacatgc tacctctttg
agccctttgg cttttctgac cagcgactca agcaggttta 21000ccagtttgag tacgagtcac
tcctgcgccg tagcgccatt gcttcttccc ccgaccgctg 21060tataacgctg gaaaagtcca
cccaaagcgt acaggggccc aactcggccg cctgtggact 21120attctgctgc atgtttctcc
acgcctttgc caactggccc caaactccca tggatcacaa 21180ccccaccatg aaccttatta
ccggggtacc caactccatg ctcaacagtc cccaggtaca 21240gcccaccctg cgtcgcaacc
aggaacagct ctacagcttc ctggagcgcc actcgcccta 21300cttccgcagc cacagtgcgc
agattaggag cgccacttct ttttgtcact tgaaaaacat 21360gtaaaaataa tgtactagag
acactttcaa taaaggcaaa tgcttttatt tgtacactct 21420cgggtgatta tttaccccca
cccttgccgt ctgcgccgtt taaaaatcaa aggggttctg 21480ccgcgcatcg ctatgcgcca
ctggcaggga cacgttgcga tactggtgtt tagtgctcca 21540cttaaactca ggcacaacca
tccgcggcag ctcggtgaag ttttcactcc acaggctgcg 21600caccatcacc aacgcgttta
gcaggtcggg cgccgatatc ttgaagtcgc agttggggcc 21660tccgccctgc gcgcgcgagt
tgcgatacac agggttgcag cactggaaca ctatcagcgc 21720cgggtggtgc acgctggcca
gcacgctctt gtcggagatc agatccgcgt ccaggtcctc 21780cgcgttgctc agggcgaacg
gagtcaactt tggtagctgc cttcccaaaa agggcgcgtg 21840cccaggcttt gagttgcact
cgcaccgtag tggcatcaaa aggtgaccgt gcccggtctg 21900ggcgttagga tacagcgcct
gcataaaagc cttgatctgc ttaaaagcca cctgagcctt 21960tgcgccttca gagaagaaca
tgccgcaaga cttgccggaa aactgattgg ccggacaggc 22020cgcgtcgtgc acgcagcacc
ttgcgtcggt gttggagatc tgcaccacat ttcggcccca 22080ccggttcttc acgatcttgg
ccttgctaga ctgctccttc agcgcgcgct gcccgttttc 22140gctcgtcaca tccatttcaa
tcacgtgctc cttatttatc ataatgcttc cgtgtagaca 22200cttaagctcg ccttcgatct
cagcgcagcg gtgcagccac aacgcgcagc ccgtgggctc 22260gtgatgcttg taggtcacct
ctgcaaacga ctgcaggtac gcctgcagga atcgccccat 22320catcgtcaca aaggtcttgt
tgctggtgaa ggtcagctgc aacccgcggt gctcctcgtt 22380cagccaggtc ttgcatacgg
ccgccagagc ttccacttgg tcaggcagta gtttgaagtt 22440cgcctttaga tcgttatcca
cgtggtactt gtccatcagc gcgcgcgcag cctccatgcc 22500cttctcccac gcagacacga
tcggcacact cagcgggttc atcaccgtaa tttcactttc 22560cgcttcgctg ggctcttcct
cttcctcttg cgtccgcata ccacgcgcca ctgggtcgtc 22620ttcattcagc cgccgcactg
tgcgcttacc tcctttgcca tgcttgatta gcaccggtgg 22680gttgctgaaa cccaccattt
gtagcgccac atcttctctt tcttcctcgc tgtccacgat 22740tacctctggt gatggcgggc
gctcgggctt gggagaaggg cgcttctttt tcttcttggg 22800cgcaatggcc aaatccgccg
ccgaggtcga tggccgcggg ctgggtgtgc gcggcaccag 22860cgcgtcttgt gatgagtctt
cctcgtcctc ggactcgata cgccgcctca tccgcttttt 22920tgggggcgcc cggggaggcg
gcggcgacgg ggacggggac gacacgtcct ccatggttgg 22980gggacgtcgc gccgcaccgc
gtccgcgctc gggggtggtt tcgcgctgct cctcttcccg 23040actggccatt tccttctcct
ataggcagaa aaagatcatg gagtcagtcg agaagaagga 23100cagcctaacc gccccctctg
agttcgccac caccgcctcc accgatgccg ccaacgcgcc 23160taccaccttc cccgtcgagg
cacccccgct tgaggaggag gaagtgatta tcgagcagga 23220cccaggtttt gtaagcgaag
acgacgagga ccgctcagta ccaacagagg ataaaaagca 23280agaccaggac aacgcagagg
caaacgagga acaagtcggg cggggggacg aaaggcatgg 23340cgactaccta gatgtgggag
acgacgtgct gttgaagcat ctgcagcgcc agtgcgccat 23400tatctgcgac gcgttgcaag
agcgcagcga tgtgcccctc gccatagcgg atgtcagcct 23460tgcctacgaa cgccacctat
tctcaccgcg cgtacccccc aaacgccaag aaaacggcac 23520atgcgagccc aacccgcgcc
tcaacttcta ccccgtattt gccgtgccag aggtgcttgc 23580cacctatcac atctttttcc
aaaactgcaa gataccccta tcctgccgtg ccaaccgcag 23640ccgagcggac aagcagctgg
ccttgcggca gggcgctgtc atacctgata tcgcctcgct 23700caacgaagtg ccaaaaatct
ttgagggtct tggacgcgac gagaagcgcg cggcaaacgc 23760tctgcaacag gaaaacagcg
aaaatgaaag tcactctgga gtgttggtgg aactcgaggg 23820tgacaacgcg cgcctagccg
tactaaaacg cagcatcgag gtcacccact ttgcctaccc 23880ggcacttaac ctacccccca
aggtcatgag cacagtcatg agtgagctga tcgtgcgccg 23940tgcgcagccc ctggagaggg
atgcaaattt gcaagaacaa acagaggagg gcctacccgc 24000agttggcgac gagcagctag
cgcgctggct tcaaacgcgc gagcctgccg acttggagga 24060gcgacgcaaa ctaatgatgg
ccgcagtgct cgttaccgtg gagcttgagt gcatgcagcg 24120gttctttgct gacccggaga
tgcagcgcaa gctagaggaa acattgcact acacctttcg 24180acagggctac gtacgccagg
cctgcaagat ctccaacgtg gagctctgca acctggtctc 24240ctaccttgga attttgcacg
aaaaccgcct tgggcaaaac gtgcttcatt ccacgctcaa 24300gggcgaggcg cgccgcgact
acgtccgcga ctgcgtttac ttatttctat gctacacctg 24360gcagacggcc atgggcgttt
ggcagcagtg cttggaggag tgcaacctca aggagctgca 24420gaaactgcta aagcaaaact
tgaaggacct atggacggcc ttcaacgagc gctccgtggc 24480cgcgcacctg gcggacatca
ttttccccga acgcctgctt aaaaccctgc aacagggtct 24540gccagacttc accagtcaaa
gcatgttgca gaactttagg aactttatcc tagagcgctc 24600aggaatcttg cccgccacct
gctgtgcact tcctagcgac tttgtgccca ttaagtaccg 24660cgaatgccct ccgccgcttt
ggggccactg ctaccttctg cagctagcca actaccttgc 24720ctaccactct gacataatgg
aagacgtgag cggtgacggt ctactggagt gtcactgtcg 24780ctgcaaccta tgcaccccgc
accgctccct ggtttgcaat tcgcagctgc ttaacgaaag 24840tcaaattatc ggtacctttg
agctgcaggg tccctcgcct gacgaaaagt ccgcggctcc 24900ggggttgaaa ctcactccgg
ggctgtggac gtcggcttac cttcgcaaat ttgtacctga 24960ggactaccac gcccacgaga
ttaggttcta cgaagaccaa tcccgcccgc ctaatgcgga 25020gcttaccgcc tgcgtcatta
cccagggcca cattcttggc caattgcaag ccatcaacaa 25080agcccgccaa gagtttctgc
tacgaaaggg acggggggtt tacttggacc cccagtccgg 25140cgaggagctc aacccaatcc
ccccgccgcc gcagccctat cagcagcagc cgcgggccct 25200tgcttcccag gatggcaccc
aaaaagaagc tgcagctgcc gccgccaccc acggacgagg 25260aggaatactg ggacagtcag
gcagaggagg ttttggacga ggaggaggag gacatgatgg 25320aagactggga gagcctagac
gaggaagctt ccgaggtcga agaggtgtca gacgaaacac 25380cgtcaccctc ggtcgcattc
ccctcgccgg cgccccagaa atcggcaacc ggttccagca 25440tggctacaac ctccgctcct
caggcgccgc cggcactgcc cgttcgccga cccaaccgta 25500gatgggacac cactggaacc
agggccggta agtccaagca gccgccgccg ttagcccaag 25560agcaacaaca gcgccaaggc
taccgctcat ggcgcgggca caagaacgcc atagttgctt 25620gcttgcaaga ctgtgggggc
aacatctcct tcgcccgccg ctttcttctc taccatcacg 25680gcgtggcctt cccccgtaac
atcctgcatt actaccgtca tctctacagc ccatactgca 25740ccggcggcag cggcagcaac
agcagcggcc acacagaagc aaaggcgacc ggatagcaag 25800actctgacaa agcccaagaa
atccacagcg gcggcagcag caggaggagg agcgctgcgt 25860ctggcgccca acgaacccgt
atcgacccgc gagcttagaa acaggatttt tcccactctg 25920tatgctatat ttcaacagag
caggggccaa gaacaagagc tgaaaataaa aaacaggtct 25980ctgcgatccc tcacccgcag
ctgcctgtat cacaaaagcg aagatcagct tcggcgcacg 26040ctggaagacg cggaggctct
cttcagtaaa tactgcgcgc tgactcttaa ggactagttt 26100cgcgcccttt ctcaaattta
agcgcgaaaa ctacgtcatc tccagcggcc acacccggcg 26160ccagcacctg ttgtcagcgc
cattatgagc aaggaaattc ccacgcccta catgtggagt 26220taccagccac aaatgggact
tgcggctgga gctgcccaag actactcaac ccgaataaac 26280tacatgagcg cgggacccca
catgatatcc cgggtcaacg gaatacgcgc ccaccgaaac 26340cgaattctcc tggaacaggc
ggctattacc accacacctc gtaataacct taatccccgt 26400agttggcccg ctgccctggt
gtaccaggaa agtcccgctc ccaccactgt ggtacttccc 26460agagacgccc aggccgaagt
tcagatgact aactcagggg cgcagcttgc gggcggcttt 26520cgtcacaggg tgcggtcgcc
cgggcagggt ataactcacc tgacaatcag agggcgaggt 26580attcagctca acgacgagtc
ggtgagctcc tcgcttggtc tccgtccgga cgggacattt 26640cagatcggcg gcgccggccg
ctcttcattc acgcctcgtc aggcaatcct aactctgcag 26700acctcgtcct ctgagccgcg
ctctggaggc attggaactc tgcaatttat tgaggagttt 26760gtgccatcgg tctactttaa
ccccttctcg ggacctcccg gccactatcc ggatcaattt 26820attcctaact ttgacgcggt
aaaggactcg gcggacggct acgactgaat gttaagtgga 26880gaggcagagc aactgcgcct
gaaacacctg gtccactgtc gccgccacaa gtgctttgcc 26940cgcgactccg gtgagttttg
ctactttgaa ttgcccgagg atcatatcga gggcccggcg 27000cacggcgtcc ggcttaccgc
ccagggagag cttgcccgta gcctgattcg ggagtttacc 27060cagcgccccc tgctagttga
gcgggacagg ggaccctgtg ttctcactgt gatttgcaac 27120tgtcctaacc ctggattaca
tcaagatcct ctagttaatg tcaggtcgcc taagtcgatt 27180aactagagta cccggggatc
ttattccctt taactaataa aaaaaaataa taaagcatca 27240cttacttaaa atcagttagc
aaatttctgt ccagtttatt cagcagcacc tccttgccct 27300cctcccagct ctggtattgc
agcttcctcc tggctgcaaa ctttctccac aatctaaatg 27360gaatgtcagt ttcctcctgt
tcctgtccat ccgcacccac tatcttcatg ttgttgcaga 27420tgaagcgcgc aagaccgtct
gaagatacct tcaaccccgt gtatccatat gacacggaaa 27480ccggtcctcc aactgtgcct
tttcttactc ctccctttgt atcccccaat gggtttcaag 27540agagtccccc tggggtactc
tctttgcgcc tatccgaacc tctagttacc tccaatggca 27600tgcttgcgct caaaatgggc
aacggcctct ctctggacga ggccggcaac cttacctccc 27660aaaatgtaac cactgtgagc
ccacctctca aaaaaaccaa gtcaaacata aacctggaaa 27720tatctgcacc cctcacagtt
acctcagaag ccctaactgt ggctgccgcc gcacctctaa 27780tggtcgcggg caacacactc
accatgcaat cacaggcccc gctaaccgtg cacgactcca 27840aacttagcat tgccacccaa
ggacccctca cagtgtcaga aggaaagcta gccctgcaaa 27900catcaggccc cctcaccacc
accgatagca gtacccttac tatcactgcc tcaccccctc 27960taactactgc cactggtagc
ttgggcattg acttgaaaga gcccatttat acacaaaatg 28020gaaaactagg actaaagtac
ggggctcctt tgcatgtaac agacgaccta aacactttga 28080ccgtagcaac tggtccaggt
gtgactatta ataatacttc cttgcaaact aaagttactg 28140gagccttggg ttttgattca
caaggcaata tgcaacttaa tgtagcagga ggactaagga 28200ttgattctca aaacagacgc
cttatacttg atgttagtta tccgtttgat gctcaaaacc 28260aactaaatct aagactagga
cagggccctc tttttataaa ctcagcccac aacttggata 28320ttaactacaa caaaggcctt
tacttgttta cagcttcaaa caattccaaa aagcttgagg 28380ttaacctaag cactgccaag
gggttgatgt ttgacgctac agccatagcc attaatgcag 28440gagatgggct tgaatttggt
tcacctaatg caccaaacac aaatcccctc aaaacaaaaa 28500ttggccatgg cctagaattt
gattcaaaca aggctatggt tcctaaacta ggaactggcc 28560ttagttttga cagcacaggt
gccattacag taggaaacaa aaataatgat aagctaactt 28620tgtggaccac accagctcca
tctcctaact gtagactaaa tgcagagaaa gatgctaaac 28680tcactttggt cttaacaaaa
tgtggcagtc aaatacttgc tacagtttca gttttggctg 28740ttaaaggcag tttggctcca
atatctggaa cagttcaaag tgctcatctt attataagat 28800ttgacgaaaa tggagtgcta
ctaaacaatt ccttcctgga cccagaatat tggaacttta 28860gaaatggaga tcttactgaa
ggcacagcct atacaaacgc tgttggattt atgcctaacc 28920tatcagctta tccaaaatct
cacggtaaaa ctgccaaaag taacattgtc agtcaagttt 28980acttaaacgg agacaaaact
aaacctgtaa cactaaccat tacactaaac ggtacacagg 29040aaacaggaga cacaactcca
agtgcatact ctatgtcatt ttcatgggac tggtctggcc 29100acaactacat taatgaaata
tttgccacat cctcttacac tttttcatac attgcccaag 29160aataaagaat cgtttgtgtt
atgtttcaac gtgtttattt ttcaattgca gaaaatttca 29220agtcattttt cattcagtag
tatagcccca ccaccacata gcttatacag atcaccgtac 29280cttaatcaaa ctcacagaac
cctagtattc aacctgccac ctccctccca acacacagag 29340tacacagtcc tttctccccg
gctggcctta aaaagcatca tatcatgggt aacagacata 29400ttcttaggtg ttatattcca
cacggtttcc tgtcgagcca aacgctcatc agtgatatta 29460ataaactccc cgggcagctc
acttaagttc atgtcgctgt ccagctgctg agccacaggc 29520tgctgtccaa cttgcggttg
cttaacgggc ggcgaaggag aagtccacgc ctacatgggg 29580gtagagtcat aatcgtgcat
caggataggg cggtggtgct gcagcagcgc gcgaataaac 29640tgctgccgcc gccgctccgt
cctgcaggaa tacaacatgg cagtggtctc ctcagcgatg 29700attcgcaccg cccgcagcat
aaggcgcctt gtcctccggg cacagcagcg caccctgatc 29760tcacttaaat cagcacagta
actgcagcac agcaccacaa tattgttcaa aatcccacag 29820tgcaaggcgc tgtatccaaa
gctcatggcg gggaccacag aacccacgtg gccatcatac 29880cacaagcgca ggtagattaa
gtggcgaccc ctcataaaca cgctggacat aaacattacc 29940tcttttggca tgttgtaatt
caccacctcc cggtaccata taaacctctg attaaacatg 30000gcgccatcca ccaccatcct
aaaccagctg gccaaaacct gcccgccggc tatacactgc 30060agggaaccgg gactggaaca
atgacagtgg agagcccagg actcgtaacc atggatcatc 30120atgctcgtca tgatatcaat
gttggcacaa cacaggcaca cgtgcataca cttcctcagg 30180attacaagct cctcccgcgt
tagaaccata tcccagggaa caacccattc ctgaatcagc 30240gtaaatccca cactgcaggg
aagacctcgc acgtaactca cgttgtgcat tgtcaaagtg 30300ttacattcgg gcagcagcgg
atgatcctcc agtatggtag cgcgggtttc tgtctcaaaa 30360ggaggtagac gatccctact
gtacggagtg cgccgagaca accgagatcg tgttggtcgt 30420agtgtcatgc caaatggaac
gccggacgta gtcatatttc ctgaagcaaa accaggtgcg 30480ggcgtgacaa acagatctgc
gtctccggtc tcgccgctta gatcgctctg tgtagtagtt 30540gtagtatatc cactctctca
aagcatccag gcgccccctg gcttcgggtt ctatgtaaac 30600tccttcatgc gccgctgccc
tgataacatc caccaccgca gaataagcca cacccagcca 30660acctacacat tcgttctgcg
agtcacacac gggaggagcg ggaagagctg gaagaaccat 30720gttttttttt ttattccaaa
agattatcca aaacctcaaa atgaagatct attaagtgaa 30780cgcgctcccc tccggtggcg
tggtcaaact ctacagccaa agaacagata atggcatttg 30840taagatgttg cacaatggct
tccaaaaggc aaacggccct cacgtccaag tggacgtaaa 30900ggctaaaccc ttcagggtga
atctcctcta taaacattcc agcaccttca accatgccca 30960aataattctc atctcgccac
cttctcaata tatctctaag caaatcccga atattaagtc 31020cggccattgt aaaaatctgc
tccagagcgc cctccacctt cagcctcaag cagcgaatca 31080tgattgcaaa aattcaggtt
cctcacagac ctgtataaga ttcaaaagcg gaacattaac 31140aaaaataccg cgatcccgta
ggtcccttcg cagggccagc tgaacataat cgtgcaggtc 31200tgcacggacc agcgcggcca
cttccccgcc aggaaccatg acaaaagaac ccacactgat 31260tatgacacgc atactcggag
ctatgctaac cagcgtagcc ccgatgtaag cttgttgcat 31320gggcggcgat ataaaatgca
aggtgctgct caaaaaatca ggcaaagcct cgcgcaaaaa 31380agaaagcaca tcgtagtcat
gctcatgcag ataaaggcag gtaagctccg gaaccaccac 31440agaaaaagac accatttttc
tctcaaacat gtctgcgggt ttctgcataa acacaaaata 31500aaataacaaa aaaacattta
aacattagaa gcctgtctta caacaggaaa aacaaccctt 31560ataagcataa gacggactac
ggccatgccg gcgtgaccgt aaaaaaactg gtcaccgtga 31620ttaaaaagca ccaccgacag
ctcctcggtc atgtccggag tcataatgta agactcggta 31680aacacatcag gttgattcac
atcggtcagt gctaaaaagc gaccgaaata gcccggggga 31740atacataccc gcaggcgtag
agacaacatt acagccccca taggaggtat aacaaaatta 31800ataggagaga aaaacacata
aacacctgaa aaaccctcct gcctaggcaa aatagcaccc 31860tcccgctcca gaacaacata
cagcgcttcc acagcggcag ccataacagt cagccttacc 31920agtaaaaaag aaaacctatt
aaaaaaacac cactcgacac ggcaccagct caatcagtca 31980cagtgtaaaa aagggccaag
tgcagagcga gtatatatag gactaaaaaa tgacgtaacg 32040gttaaagtcc acaaaaaaca
cccagaaaac cgcacgcgaa cctacgccca gaaacgaaag 32100ccaaaaaacc cacaacttcc
tcaaatcgtc acttccgttt tcccacgtta cgtcacttcc 32160cattttaaga aaactacaat
tcccaacaca tacaagttac tccgccctaa aacctacgtc 32220acccgccccg ttcccacgcc
ccgcgccacg tcacaaactc caccccctca ttatcatatt 32280ggcttcaatc caaaataagg
tatattattg atgat 3231539PRTHomo sapiens 3Tyr
Leu Ser Gly Ala Asn Leu Asn Leu1 549PRTHomo sapiens 4Tyr
Leu Ser Gly Ala Asp Leu Asn Leu1 551826DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
5cgctccacct ctcaagcagc cagcgcctgc ctgaatctgt tctgccccct ccccacccat
60ttcaccacca ccatgacacc gggcacccag tctcctttct tcctgctgct gctcctcaca
120gtgcttacag ttgttacggg ttctggtcat gcaagctcta ccccaggtgg agaaaaggag
180acttcggcta cccagagaag ttcagtgccc agctctactg agaagaatgc tgtgagtatg
240accagcagcg tactctccag ccacagcccc ggttcaggct cctccaccac tcagggacag
300gatgtcactc tggccccggc cacggaacca gcttcaggtt cagctgccac ctggggacag
360gatgtcacct cggtcccagt caccaggcca gccctgggct ccaccacccc gccagcccac
420gatgtcacct cagccccgga caacaagcca gccccgggct ccaccgcccc cccagcccac
480ggtgtcacct cggccccgga caccaggccg gccccgggct ccaccgcccc cccagcccat
540ggtgtcacct cggccccgga caacaggccc gccttgggct ccaccgcccc tccagtccac
600aatgtcacct cggcctcagg ctctgcatca ggctcagctt ctactctggt gcacaacggc
660acctctgcca gggctaccac aaccccagcc agcaagagca ctccattctc aattcccagc
720caccactctg atactcctac cacccttgcc agccatagca ccaagactga tgccagtagc
780actcaccata gcacggtacc tcctctcacc tcctccaatc acagcacttc tccccagttg
840tctactgggg tctctttctt tttcctgtct tttcacattt caaacctcca gtttaattcc
900tctctggaag atcccagcac cgactactac caagagctgc agagagacat ttctgaaatg
960tttttgcaga tttataaaca agggggtttt ctgggcctct ccaatattaa gttcaggcca
1020ggatctgtgg tggtacaatt gactctggcc ttccgagaag gtaccatcaa tgtccacgac
1080gtggagacac agttcaatca gtataaaacg gaagcagcct ctcgatataa cctgacgatc
1140tcagacgtca gcgtgagtga tgtgccattt cctttctctg cccagtctgg ggctggggtg
1200ccaggctggg gcatcgcgct gctggtgctg gtctgtgttc tggttgcgct ggccattgtc
1260tatctcattg ccttggctgt ctgtcagtgc cgccgaaaga actacgggca gctggacatc
1320tttccagccc gggataccta ccatcctatg agcgagtacc ccacctacca cacccatggg
1380cgctatgtgc cccctagcag taccgatcgt agcccctatg agaaggtttc tgcaggtaat
1440ggtggcagca gcctctctta cacaaaccca gcagtggcag ccacttctgc caacttgtag
1500gggcacgtcg cccgctgagc tgagtggcca gccagtgcca ttccactcca ctcaggttct
1560tcagggccag agcccctgca ccctgtttgg gctggtgagc tgggagttca ggtgggctgc
1620tcacagcctc cttcagaggc cccaccaatt tctcggacac ttctcagtgt gtggaagctc
1680atgtgggccc ctgagggctc atgcctggga agtgttgtgg tgggggctcc caggaggact
1740ggcccagaga gccctgagat agcggggatc ctgaactgga ctgaataaaa cgtggtctcc
1800cactgcgcca aaaaaaaaaa aaaaaa
182661826DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 6cgctccacct ctcaagcagc cagcgcctgc
ctgaatctgt tctgccccct ccccacccat 60ttcaccacca ccatgacacc gggcacccag
tctcctttct tcctgctgct gctcctcaca 120gtgcttacag ttgttacggg ttctggtcat
gcaagctcta ccccaggtgg agaaaaggag 180acttcggcta cccagagaag ttcagtgccc
agctctactg agaagaatgc tgtgagtatg 240accagcagcg tactctccag ccacagcccc
ggttcaggct cctccaccac tcagggacag 300gatgtcactc tggccccggc cacggaacca
gcttcaggtt cagctgccct ttggggacag 360gatgtcacct cggtcccagt caccaggcca
gccctgggct ccaccacccc gccagcccac 420gatgtcacct cagccccgga caacaagcca
gccccgggct ccaccgcccc cccagcccac 480ggtgtcacct cgtatcttga caccaggccg
gccccggttt atcttgcccc cccagcccat 540ggtgtcacct cggccccgga caacaggccc
gccttgggct ccaccgcccc tccagtccac 600aatgtcacct cggcctcagg ctctgcatca
ggctcagctt ctactctggt gcacaacggc 660acctctgcca gggctaccac aaccccagcc
agcaagagca ctccattctc aattcccagc 720caccactctg atactcctac cacccttgcc
agccatagca ccaagactga tgccagtagc 780actcaccata gcacggtacc tcctctcacc
tcctccaatc acagcacttc tccccagttg 840tctactgggg tctctttctt tttcctgtct
tttcacattt caaacctcca gtttaattcc 900tctctggaag atcccagcac cgactactac
caagagctgc agagagacat ttctgaaatg 960tttttgcaga tttataaaca agggggtttt
ctgggcctct ccaatattaa gttcaggcca 1020ggatctgtgg tggtacaatt gactctggcc
ttccgagaag gtaccatcaa tgtccacgac 1080gtggagacac agttcaatca gtataaaacg
gaagcagcct ctcgatataa cctgacgatc 1140tcagacgtca gcgtgagtga tgtgccattt
cctttctctg cccagtctgg ggctggggtg 1200ccaggctggg gcatcgcgct gctggtgctg
gtctgtgttc tggtttatct ggccattgtc 1260tatctcattg ccttggctgt cgctcaggtt
cgccgaaaga actacgggca gctggacatc 1320tttccagccc gggataaata ccatcctatg
agcgagtacg ctctttacca cacccatggg 1380cgctatgtgc cccctagcag tcttttccgt
agcccctatg agaaggtttc tgcaggtaat 1440ggtggcagct atctctctta cacaaaccca
gcagtggcag ccgcttctgc caacttgtag 1500gggcacgtcg cccgctgagc tgagtggcca
gccagtgcca ttccactcca ctcaggttct 1560tcagggccag agcccctgca ccctgtttgg
gctggtgagc tgggagttca ggtgggctgc 1620tcacagcctc cttcagaggc cccaccaatt
tctcggacac ttctcagtgt gtggaagctc 1680atgtgggccc ctgagggctc atgcctggga
agtgttgtgg tgggggctcc caggaggact 1740ggcccagaga gccctgagat agcggggatc
ctgaactgga ctgaataaaa cgtggtctcc 1800cactgcgcca aaaaaaaaaa aaaaaa
18267475PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
7Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr1
5 10 15Val Leu Thr Val Val Thr
Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25
30Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val
Pro Ser Ser 35 40 45Thr Glu Lys
Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 50
55 60Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln
Asp Val Thr Leu65 70 75
80Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Leu Trp Gly Gln
85 90 95Asp Val Thr Ser Val Pro
Val Thr Arg Pro Ala Leu Gly Ser Thr Thr 100
105 110Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn
Lys Pro Ala Pro 115 120 125Gly Ser
Thr Ala Pro Pro Ala His Gly Val Thr Ser Tyr Leu Asp Thr 130
135 140Arg Pro Ala Pro Val Tyr Leu Ala Pro Pro Ala
His Gly Val Thr Ser145 150 155
160Ala Pro Asp Asn Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val His
165 170 175Asn Val Thr Ser
Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu 180
185 190Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr
Thr Pro Ala Ser Lys 195 200 205Ser
Thr Pro Phe Ser Ile Pro Ser His His Ser Asp Thr Pro Thr Thr 210
215 220Leu Ala Ser His Ser Thr Lys Thr Asp Ala
Ser Ser Thr His His Ser225 230 235
240Thr Val Pro Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln
Leu 245 250 255Ser Thr Gly
Val Ser Phe Phe Phe Leu Ser Phe His Ile Ser Asn Leu 260
265 270Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser
Thr Asp Tyr Tyr Gln Glu 275 280
285Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly 290
295 300Gly Phe Leu Gly Leu Ser Asn Ile
Lys Phe Arg Pro Gly Ser Val Val305 310
315 320Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile
Asn Val His Asp 325 330
335Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr
340 345 350Asn Leu Thr Ile Ser Asp
Val Ser Val Ser Asp Val Pro Phe Pro Phe 355 360
365Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp Gly Ile Ala
Leu Leu 370 375 380Val Leu Val Cys Val
Leu Val Tyr Leu Ala Ile Val Tyr Leu Ile Ala385 390
395 400Leu Ala Val Ala Gln Val Arg Arg Lys Asn
Tyr Gly Gln Leu Asp Ile 405 410
415Phe Pro Ala Arg Asp Lys Tyr His Pro Met Ser Glu Tyr Ala Leu Tyr
420 425 430His Thr His Gly Arg
Tyr Val Pro Pro Ser Ser Leu Phe Arg Ser Pro 435
440 445Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Tyr
Leu Ser Tyr Thr 450 455 460Asn Pro Ala
Val Ala Ala Ala Ser Ala Asn Leu465 470
475832040DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 8catcatcaat aatatacctt attttggatt
gaagccaata tgataatgag ggggtggagt 60ttgtgacgtg gcgcggggcg tgggaacggg
gcgggtgacg tagtagtgtg gcggaagtgt 120gatgttgcaa gtgtggcgga acacatgtaa
gcgacggatg tggcaaaagt gacgtttttg 180gtgtgcgccg gtgtacacag gaagtgacaa
ttttcgcgcg gttttaggcg gatgttgtag 240taaatttggg cgtaaccgag taagatttgg
ccattttcgc gggaaaactg aataagagga 300agtgaaatct gaataatttt gtgttactca
tagcgcgtaa tactgtaata gtaatcaatt 360acggggtcat tagttcatag cccatatatg
gagttccgcg ttacataact tacggtaaat 420ggcccgcctg gctgaccgcc caacgacccc
cgcccattga cgtcaataat gacgtatgtt 480cccatagtaa cgccaatagg gactttccat
tgacgtcaat gggtggagta tttacggtaa 540actgcccact tggcagtaca tcaagtgtat
catatgccaa gtacgccccc tattgacgtc 600aatgacggta aatggcccgc ctggcattat
gcccagtaca tgaccttatg ggactttcct 660acttggcagt acatctacgt attagtcatc
gctattacca tggtgatgcg gttttggcag 720tacatcaatg ggcgtggata gcggtttgac
tcacggggat ttccaagtct ccaccccatt 780gacgtcaatg ggagtttgtt ttggcaccaa
aatcaacggg actttccaaa atgtcgtaac 840aactccgccc cattgacgca aatgggcggt
aggcgtgtac ggtgggaggt ctatataagc 900agagctggtt tagtgaaccg tcagatccgc
tagagatctg gtaccgtcga cgcggccgct 960cgagcctaag cttctagatg catgctcgag
cggccgccag tgtgatggat atctgcagaa 1020ttcgcccttg ctcgctccac ctctcaagca
gccagcgcct gcctgaatct gttctgcccc 1080ctccccaccc atttcaccac caccatgaca
ccgggcaccc agtctccttt cttcctgctg 1140ctgctcctca cagtgcttac agttgttacg
ggttctggtc atgcaagctc taccccaggt 1200ggagaaaagg agacttcggc tacccagaga
agttcagtgc ccagctctac tgagaagaat 1260gctgtgagta tgaccagcag cgtactctcc
agccacagcc ccggttcagg ctcctccacc 1320actcagggac aggatgtcac tctggccccg
gccacggaac cagcttcagg ttcagctgcc 1380ctttggggac aggatgtcac ctcggtccca
gtcaccaggc cagccctggg ctccaccacc 1440ccgccagccc acgatgtcac ctcagccccg
gacaacaagc cagccccggg ctccaccgcc 1500cccccagccc acggtgtcac ctcgtatctt
gacaccaggc cggccccggt ttatcttgcc 1560cccccagccc atggtgtcac ctcggccccg
gacaacaggc ccgccttggg ctccaccgcc 1620cctccagtcc acaatgtcac ctcggcctca
ggctctgcat caggctcagc ttctactctg 1680gtgcacaacg gcacctctgc cagggctacc
acaaccccag ccagcaagag cactccattc 1740tcaattccca gccaccactc tgatactcct
accacccttg ccagccatag caccaagact 1800gatgccagta gcactcacca tagcacggta
cctcctctca cctcctccaa tcacagcact 1860tctccccagt tgtctactgg ggtctctttc
tttttcctgt cttttcacat ttcaaacctc 1920cagtttaatt cctctctgga agatcccagc
accgactact accaagagct gcagagagac 1980atttctgaaa tgtttttgca gatttataaa
caagggggtt ttctgggcct ctccaatatt 2040aagttcaggc caggatctgt ggtggtacaa
ttgactctgg ccttccgaga aggtaccatc 2100aatgtccacg acgtggagac acagttcaat
cagtataaaa cggaagcagc ctctcgatat 2160aacctgacga tctcagacgt cagcgtgagt
gatgtgccat ttcctttctc tgcccagtct 2220ggggctgggg tgccaggctg gggcatcgcg
ctgctggtgc tggtctgtgt tctggtttat 2280ctggccattg tctatctcat tgccttggct
gtcgctcagg ttcgccgaaa gaactacggg 2340cagctggaca tctttccagc ccgggataaa
taccatccta tgagcgagta cgctctttac 2400cacacccatg ggcgctatgt gccccctagc
agtcttttcc gtagccccta tgagaaggtt 2460tctgcaggta atggtggcag ctatctctct
tacacaaacc cagcagtggc agccgcttct 2520gccaacttgt aggggcacgt cgcccgctga
gctgagtggc cagccagtgc cattccactc 2580cactcaggtt cttcagggcc agagcccctg
caccctgttt gggctggtga gctgggagtt 2640caggtgggct gctcacagcc tccttcagag
gccccaccaa tttctcggac acttctcagt 2700gtgtggaagc tcatgtgggc ccctgagggc
tcatgcctgg gaagtgttgt ggtgggggct 2760cccaggagga ctggcccaga gagccctgag
atagcgggga tcctgaactg gactgaataa 2820aacgtggtct cccactgcgc caaaaaaaaa
aaaaaaaacg atccaccgga tctagataac 2880tgatcataat cagccatacc acatttgtag
aggttttact tgctttaaaa aacctcccac 2940acctccccct gaacctgaaa cataaaatga
atgcaattgt tgttgttaac ttgtttattg 3000cagcttataa tggttacaaa taaagcaata
gcatcacaaa tttcacaaat aaagcatttt 3060tttcactgca ttctagttgt ggtttgtcca
aactcatcaa tgtatcttaa cgcggatctg 3120gaaggtgctg aggtacgatg agacccgcac
caggtgcaga ccctgcgagt gtggcggtaa 3180acatattagg aaccagcctg tgatgctgga
tgtgaccgag gagctgaggc ccgatcactt 3240ggtgctggcc tgcacccgcg ctgagtttgg
ctctagcgat gaagatacag attgaggtac 3300tgaaatgtgt gggcgtggct taagggtggg
aaagaatata taaggtgggg gtcttatgta 3360gttttgtatc tgttttgcag cagccgccgc
cgccatgagc accaactcgt ttgatggaag 3420cattgtgagc tcatatttga caacgcgcat
gcccccatgg gccggggtgc gtcagaatgt 3480gatgggctcc agcattgatg gtcgccccgt
cctgcccgca aactctacta ccttgaccta 3540cgagaccgtg tctggaacgc cgttggagac
tgcagcctcc gccgccgctt cagccgctgc 3600agccaccgcc cgcgggattg tgactgactt
tgctttcctg agcccgcttg caagcagtgc 3660agcttcccgt tcatccgccc gcgatgacaa
gttgacggct cttttggcac aattggattc 3720tttgacccgg gaacttaatg tcgtttctca
gcagctgttg gatctgcgcc agcaggtttc 3780tgccctgaag gcttcctccc ctcccaatgc
ggtttaaaac ataaataaaa aaccagactc 3840tgtttggatt tggatcaagc aagtgtcttg
ctgtctttat ttaggggttt tgcgcgcgcg 3900gtaggcccgg gaccagcggt ctcggtcgtt
gagggtcctg tgtatttttt ccaggacgtg 3960gtaaaggtga ctctggatgt tcagatacat
gggcataagc ccgtctctgg ggtggaggta 4020gcaccactgc agagcttcat gctgcggggt
ggtgttgtag atgatccagt cgtagcagga 4080gcgctgggcg tggtgcctaa aaatgtcttt
cagtagcaag ctgattgcca ggggcaggcc 4140cttggtgtaa gtgtttacaa agcggttaag
ctgggatggg tgcatacgtg gggatatgag 4200atgcatcttg gactgtattt ttaggttggc
tatgttccca gccatatccc tccggggatt 4260catgttgtgc agaaccacca gcacagtgta
tccggtgcac ttgggaaatt tgtcatgtag 4320cttagaagga aatgcgtgga agaacttgga
gacgcccttg tgacctccaa gattttccat 4380gcattcgtcc ataatgatgg caatgggccc
acgggcggcg gcctgggcga agatatttct 4440gggatcacta acgtcatagt tgtgttccag
gatgagatcg tcataggcca tttttacaaa 4500gcgcgggcgg agggtgccag actgcggtat
aatggttcca tccggcccag gggcgtagtt 4560accctcacag atttgcattt cccacgcttt
gagttcagat ggggggatca tgtctacctg 4620cggggcgatg aagaaaacgg tttccggggt
aggggagatc agctgggaag aaagcaggtt 4680cctgagcagc tgcgacttac cgcagccggt
gggcccgtaa atcacaccta ttaccggctg 4740caactggtag ttaagagagc tgcagctgcc
gtcatccctg agcagggggg ccacttcgtt 4800aagcatgtcc ctgactcgca tgttttccct
gaccaaatcc gccagaaggc gctcgccgcc 4860cagcgatagc agttcttgca aggaagcaaa
gtttttcaac ggtttgagac cgtccgccgt 4920aggcatgctt ttgagcgttt gaccaagcag
ttccaggcgg tcccacagct cggtcacctg 4980ctctacggca tctcgatcca gcatatctcc
tcgtttcgcg ggttggggcg gctttcgctg 5040tacggcagta gtcggtgctc gtccagacgg
gccagggtca tgtctttcca cgggcgcagg 5100gtcctcgtca gcgtagtctg ggtcacggtg
aaggggtgcg ctccgggctg cgcgctggcc 5160agggtgcgct tgaggctggt cctgctggtg
ctgaagcgct gccggtcttc gccctgcgcg 5220tcggccaggt agcatttgac catggtgtca
tagtccagcc cctccgcggc gtggcccttg 5280gcgcgcagct tgcccttgga ggaggcgccg
cacgaggggc agtgcagact tttgagggcg 5340tagagcttgg gcgcgagaaa taccgattcc
ggggagtagg catccgcgcc gcaggccccg 5400cagacggtct cgcattccac gagccaggtg
agctctggcc gttcggggtc aaaaaccagg 5460tttcccccat gctttttgat gcgtttctta
cctctggttt ccatgagccg gtgtccacgc 5520tcggtgacga aaaggctgtc cgtgtccccg
tatacagact tgagaggcct gtcctcgagc 5580ggtgttccgc ggtcctcctc gtatagaaac
tcggaccact ctgagacaaa ggctcgcgtc 5640caggccagca cgaaggaggc taagtgggag
gggtagcggt cgttgtccac tagggggtcc 5700actcgctcca gggtgtgaag acacatgtcg
ccctcttcgg catcaaggaa ggtgattggt 5760ttgtaggtgt aggccacgtg accgggtgtt
cctgaagggg ggctataaaa gggggtgggg 5820gcgcgttcgt cctcactctc ttccgcatcg
ctgtctgcga gggccagctg ttggggtgag 5880tactccctct gaaaagcggg catgacttct
gcgctaagat tgtcagtttc caaaaacgag 5940gaggatttga tattcacctg gcccgcggtg
atgcctttga gggtggccgc atccatctgg 6000tcagaaaaga caatcttttt gttgtcaagc
ttggtggcaa acgacccgta gagggcgttg 6060gacagcaact tggcgatgga gcgcagggtt
tggtttttgt cgcgatcggc gcgctccttg 6120gccgcgatgt ttagctgcac gtattcgcgc
gcaacgcacc gccattcggg aaagacggtg 6180gtgcgctcgt cgggcaccag gtgcacgcgc
caaccgcggt tgtgcagggt gacaaggtca 6240acgctggtgg ctacctctcc gcgtaggcgc
tcgttggtcc agcagaggcg gccgcccttg 6300cgcgagcaga atggcggtag ggggtctagc
tgcgtctcgt ccggggggtc tgcgtccacg 6360gtaaagaccc cgggcagcag gcgcgcgtcg
aagtagtcta tcttgcatcc ttgcaagtct 6420agcgcctgct gccatgcgcg ggcggcaagc
gcgcgctcgt atgggttgag tgggggaccc 6480catggcatgg ggtgggtgag cgcggaggcg
tacatgccgc aaatgtcgta aacgtagagg 6540ggctctctga gtattccaag atatgtaggg
tagcatcttc caccgcggat gctggcgcgc 6600acgtaatcgt atagttcgtg cgagggagcg
aggaggtcgg gaccgaggtt gctacgggcg 6660ggctgctctg ctcggaagac tatctgcctg
aagatggcat gtgagttgga tgatatggtt 6720ggacgctgga agacgttgaa gctggcgtct
gtgagaccta ccgcgtcacg cacgaaggag 6780gcgtaggagt cgcgcagctt gttgaccagc
tcggcggtga cctgcacgtc tagggcgcag 6840tagtccaggg tttccttgat gatgtcatac
ttatcctgtc cctttttttt ccacagctcg 6900cggttgagga caaactcttc gcggtctttc
cagtactctt ggatcggaaa cccgtcggcc 6960tccgaacggt aagagcctag catgtagaac
tggttgacgg cctggtaggc gcagcatccc 7020ttttctacgg gtagcgcgta tgcctgcgcg
gccttccggc atgaccagca tgaagggcac 7080gagctgcttc ccaaaggccc ccatccaagt
ataggtctct acatcgtagg tgacaaagag 7140acgctcggtg cgaggatgcg agccgatcgg
gaagaactgg atctcccgcc accaattgga 7200ggagtggcta ttgatgtggt gaaagtagaa
gtccctgcga cgggccgaac actcgtgctg 7260gcttttgtaa aaacgtgcgc agtactggca
gcggtgcacg ggctgtacat cctgcacgag 7320gttgacctga cgaccgcgca caaggaagca
gagtgggaat ttgagcccct cgcctggcgg 7380gtttggctgg tggtcttcta cttcggctgc
ttgtccttga ccgtctggct gctcgagggg 7440agttacggtg gatcggacca ccacgccgcg
cgagcccaaa gtccagatgt ccgcgcgcgg 7500cggtcggagc ttgatgacaa catcgcgcag
atgggagctg tccatggtct ggagctcccg 7560cggcgtcagg tcaggcggga gctcctgcag
gtttacctcg catagacggg tcagggcgcg 7620ggctagatcc aggtgatacc taatttccag
gggctggttg gtggcggcgt cgatggcttg 7680caagaggccg catccccgcg gcgcgactac
ggtaccgcgc ggcgggcggt gggccgcggg 7740ggtgtccttg gatgatgcat ctaaaagcgg
tgacgcgggc gagcccccgg aggtaggggg 7800ggctccggac ccgccgggag agggggcagg
ggcacgtcgg cgccgcgcgc gggcaggagc 7860tggtgctgcg cgcgtaggtt gctggcgaac
gcgacgacgc ggcggttgat ctcctgaatc 7920tggcgcctct gcgtgaagac gacgggcccg
gtgagcttga acctgaaaga gagttcgaca 7980gaatcaattt cggtgtcgtt gacggcggcc
tggcgcaaaa tctcctgcac gtctcctgag 8040ttgtcttgat aggcgatctc ggccatgaac
tgctcgatct cttcctcctg gagatctccg 8100cgtccggctc gctccacggt ggcggcgagg
tcgttggaaa tgcgggccat gagctgcgag 8160aaggcgttga ggcctccctc gttccagacg
cggctgtaga ccacgccccc ttcggcatcg 8220cgggcgcgca tgaccacctg cgcgagattg
agctccacgt gccgggcgaa gacggcgtag 8280tttcgcaggc gctgaaagag gtagttgagg
gtggtggcgg tgtgttctgc cacgaagaag 8340tacataaccc agcgtcgcaa cgtggattcg
ttgataattg ttgtgtaggt actccgccgc 8400cgagggacct gagcgagtcc gcatcgaccg
gatcggaaaa cctctcgaga aaggcgtcta 8460accagtcaca gtcgcaaggt aggctgagca
ccgtggcggg cggcagcggg cggcggtcgg 8520ggttgtttct ggcggaggtg ctgctgatga
tgtaattaaa gtaggcggtc ttgagacggc 8580ggatggtcga cagaagcacc atgtccttgg
gtccggcctg ctgaatgcgc aggcggtcgg 8640ccatgcccca ggcttcgttt tgacatcggc
gcaggtcttt gtagtagtct tgcatgagcc 8700tttctaccgg cacttcttct tctccttcct
cttgtcctgc atctcttgca tctatcgctg 8760cggcggcggc ggagtttggc cgtaggtggc
gccctcttcc tcccatgcgt gtgaccccga 8820agcccctcat cggctgaagc agggctaggt
cggcgacaac gcgctcggct aatatggcct 8880gctgcacctg cgtgagggta gactggaagt
catccatgtc cacaaagcgg tggtatgcgc 8940ccgtgttgat ggtgtaagtg cagttggcca
taacggacca gttaacggtc tggtgacccg 9000gctgcgagag ctcggtgtac ctgagacgcg
agtaagccct cgagtcaaat acgtagtcgt 9060tgcaagtccg caccaggtac tggtatccca
ccaaaaagtg cggcggcggc tggcggtaga 9120ggggccagcg tagggtggcc ggggctccgg
gggcgagatc ttccaacata aggcgatgat 9180atccgtagat gtacctggac atccaggtga
tgccggcggc ggtggtggag gcgcgcggaa 9240agtcgcggac gcggttccag atgttgcgca
gcggcaaaaa gtgctccatg gtcgggacgc 9300tctggccggt caggcgcgcg caatcgttga
cgctctagcg tgcaaaagga gagcctgtaa 9360gcgggcactc ttccgtggtc tggtggataa
attcgcaagg gtatcatggc ggacgaccgg 9420ggttcgagcc ccgtatccgg ccgtccgccg
tgatccatgc ggttaccgcc cgcgtgtcga 9480acccaggtgt gcgacgtcag acaacggggg
agtgctcctt ttggcttcct tccaggcgcg 9540gcggctgctg cgctagcttt tttggccact
ggccgcgcgc agcgtaagcg gttaggctgg 9600aaagcgaaag cattaagtgg ctcgctccct
gtagccggag ggttattttc caagggttga 9660gtcgcgggac ccccggttcg agtctcggac
cggccggact gcggcgaacg ggggtttgcc 9720tccccgtcat gcaagacccc gcttgcaaat
tcctccggaa acagggacga gccccttttt 9780tgcttttccc agatgcatcc ggtgctgcgg
cagatgcgcc cccctcctca gcagcggcaa 9840gagcaagagc agcggcagac atgcagggca
ccctcccctc ctcctaccgc gtcaggaggg 9900gcgacatccg cggttgacgc ggcagcagat
ggtgattacg aacccccgcg gcgccgggcc 9960cggcactacc tggacttgga ggagggcgag
ggcctggcgc ggctaggagc gccctctcct 10020gagcggcacc caagggtgca gctgaagcgt
gatacgcgtg aggcgtacgt gccgcggcag 10080aacctgtttc gcgaccgcga gggagaggag
cccgaggaga tgcgggatcg aaagttccac 10140gcagggcgcg agctgcggca tggcctgaat
cgcgagcggt tgctgcgcga ggaggacttt 10200gagcccgacg cgcgaaccgg gattagtccc
gcgcgcgcac acgtggcggc cgccgacctg 10260gtaaccgcat acgagcagac ggtgaaccag
gagattaact ttcaaaaaag ctttaacaac 10320cacgtgcgta cgcttgtggc gcgcgaggag
gtggctatag gactgatgca tctgtgggac 10380tttgtaagcg cgctggagca aaacccaaat
agcaagccgc tcatggcgca gctgttcctt 10440atagtgcagc acagcaggga caacgaggca
ttcagggatg cgctgctaaa catagtagag 10500cccgagggcc gctggctgct cgatttgata
aacatcctgc agagcatagt ggtgcaggag 10560cgcagcttga gcctggctga caaggtggcc
gccatcaact attccatgct tagcctgggc 10620aagttttacg cccgcaagat ataccatacc
ccttacgttc ccatagacaa ggaggtaaag 10680atcgaggggt tctacatgcg catggcgctg
aaggtgctta ccttgagcga cgacctgggc 10740gtttatcgca acgagcgcat ccacaaggcc
gtgagcgtga gccggcggcg cgagctcagc 10800gaccgcgagc tgatgcacag cctgcaaagg
gccctggctg gcacgggcag cggcgataga 10860gaggccgagt cctactttga cgcgggcgct
gacctgcgct gggccccaag ccgacgcgcc 10920ctggaggcag ctggggccgg acctgggctg
gcggtggcac ccgcgcgcgc tggcaacgtc 10980ggcggcgtgg aggaatatga cgaggacgat
gagtacgagc cagaggacgg cgagtactaa 11040gcggtgatgt ttctgatcag atgatgcaag
acgcaacgga cccggcggtg cgggcggcgc 11100tgcagagcca gccgtccggc cttaactcca
cggacgactg gcgccaggtc atggaccgca 11160tcatgtcgct gactgcgcgc aatcctgacg
cgttccggca gcagccgcag gccaaccggc 11220tctccgcaat tctggaagcg gtggtcccgg
cgcgcgcaaa ccccacgcac gagaaggtgc 11280tggcgatcgt aaacgcgctg gccgaaaaca
gggccatccg gcccgacgag gccggcctgg 11340tctacgacgc gctgcttcag cgcgtggctc
gttacaacag cggcaacgtg cagaccaacc 11400tggaccggct ggtgggggat gtgcgcgagg
ccgtggcgca gcgtgagcgc gcgcagcagc 11460agggcaacct gggctccatg gttgcactaa
acgccttcct gagtacacag cccgccaacg 11520tgccgcgggg acaggaggac tacaccaact
ttgtgagcgc actgcggcta atggtgactg 11580agacaccgca aagtgaggtg taccagtctg
ggccagacta ttttttccag accagtagac 11640aaggcctgca gaccgtaaac ctgagccagg
ctttcaaaaa cttgcagggg ctgtgggggg 11700tgcgggctcc cacaggcgac cgcgcgaccg
tgtctagctt gctgacgccc aactcgcgcc 11760tgttgctgct gctaatagcg cccttcacgg
acagtggcag cgtgtcccgg gacacatacc 11820taggtcactt gctgacactg taccgcgagg
ccataggtca ggcgcatgtg gacgagcata 11880ctttccagga gattacaagt gtcagccgcg
cgctggggca ggaggacacg ggcagcctgg 11940aggcaaccct aaactacctg ctgaccaacc
ggcggcagaa gatcccctcg ttgcacagtt 12000taaacagcga ggaggagcgc attttgcgct
acgtgcagca gagcgtgagc cttaacctga 12060tgcgcgacgg ggtaacgccc agcgtggcgc
tggacatgac cgcgcgcaac atggaaccgg 12120gcatgtatgc ctcaaaccgg ccgtttatca
accgcctaat ggactacttg catcgcgcgg 12180ccgccgtgaa ccccgagtat ttcaccaatg
ccatcttgaa cccgcactgg ctaccgcccc 12240ctggtttcta caccggggga ttcgaggtgc
ccgagggtaa cgatggattc ctctgggacg 12300acatagacga cagcgtgttt tccccgcaac
cgcagaccct gctagagttg caacagcgcg 12360agcaggcaga ggcggcgctg cgaaaggaaa
gcttccgcag gccaagcagc ttgtccgatc 12420taggcgctgc ggccccgcgg tcagatgcta
gtagcccatt tccaagcttg atagggtctc 12480ttaccagcac tcgcaccacc cgcccgcgcc
tgctgggcga ggaggagtac ctaaacaact 12540cgctgctgca gccgcagcgc gaaaaaaacc
tgcctccggc atttcccaac aacgggatag 12600agagcctagt ggacaagatg agtagatgga
agacgtacgc gcaggagcac agggacgtgc 12660caggcccgcg cccgcccacc cgtcgtcaaa
ggcacgaccg tcagcggggt ctggtgtggg 12720aggacgatga ctcggcagac gacagcagcg
tcctggattt gggagggagt ggcaacccgt 12780ttgcgcacct tcgccccagg ctggggagaa
tgttttaaaa aaaaaaaagc atgatgcaaa 12840ataaaaaact caccaaggcc atggcaccga
gcgttggttt tcttgtattc cccttagtat 12900gcggcgcgcg gcgatgtatg aggaaggtcc
tcctccctcc tacgagagtg tggtgagcgc 12960ggcgccagtg gcggcggcgc tgggttctcc
cttcgatgct cccctggacc cgccgtttgt 13020gcctccgcgg tacctgcggc ctaccggggg
gagaaacagc atccgttact ctgagttggc 13080acccctattc gacaccaccc gtgtgtacct
ggtggacaac aagtcaacgg atgtggcatc 13140cctgaactac cagaacgacc acagcaactt
tctgaccacg gtcattcaaa acaatgacta 13200cagcccgggg gaggcaagca cacagaccat
caatcttgac gaccggtcgc actggggcgg 13260cgacctgaaa accatcctgc ataccaacat
gccaaatgtg aacgagttca tgtttaccaa 13320taagtttaag gcgcgggtga tggtgtcgcg
cttgcctact aaggacaatc aggtggagct 13380gaaatacgag tgggtggagt tcacgctgcc
cgagggcaac tactccgaga ccatgaccat 13440agaccttatg aacaacgcga tcgtggagca
ctacttgaaa gtgggcagac agaacggggt 13500tctggaaagc gacatcgggg taaagtttga
cacccgcaac ttcagactgg ggtttgaccc 13560cgtcactggt cttgtcatgc ctggggtata
tacaaacgaa gccttccatc cagacatcat 13620tttgctgcca ggatgcgggg tggacttcac
ccacagccgc ctgagcaact tgttgggcat 13680ccgcaagcgg caacccttcc aggagggctt
taggatcacc tacgatgatc tggagggtgg 13740taacattccc gcactgttgg atgtggacgc
ctaccaggcg agcttgaaag atgacaccga 13800acagggcggg ggtggcgcag gcggcagcaa
cagcagtggc agcggcgcgg aagagaactc 13860caacgcggca gccgcggcaa tgcagccggt
ggaggacatg aacgatcatg ccattcgcgg 13920cgacaccttt gccacacggg ctgaggagaa
gcgcgctgag gccgaagcag cggccgaagc 13980tgccgccccc gctgcgcaac ccgaggtcga
gaagcctcag aagaaaccgg tgatcaaacc 14040cctgacagag gacagcaaga aacgcagtta
caacctaata agcaatgaca gcaccttcac 14100ccagtaccgc agctggtacc ttgcatacaa
ctacggcgac cctcagaccg gaatccgctc 14160atggaccctg ctttgcactc ctgacgtaac
ctgcggctcg gagcaggtct actggtcgtt 14220gccagacatg atgcaagacc ccgtgacctt
ccgctccacg cgccagatca gcaactttcc 14280ggtggtgggc gccgagctgt tgcccgtgca
ctccaagagc ttctacaacg accaggccgt 14340ctactcccaa ctcatccgcc agtttacctc
tctgacccac gtgttcaatc gctttcccga 14400gaaccagatt ttggcgcgcc cgccagcccc
caccatcacc accgtcagtg aaaacgttcc 14460tgctctcaca gatcacggga cgctaccgct
gcgcaacagc atcggaggag tccagcgagt 14520gaccattact gacgccagac gccgcacctg
cccctacgtt tacaaggccc tgggcatagt 14580ctcgccgcgc gtcctatcga gccgcacttt
ttgagcaagc atgtccatcc ttatatcgcc 14640cagcaataac acaggctggg gcctgcgctt
cccaagcaag atgtttggcg gggccaagaa 14700gcgctccgac caacacccag tgcgcgtgcg
cgggcactac cgcgcgccct ggggcgcgca 14760caaacgcggc cgcactgggc gcaccaccgt
cgatgacgcc atcgacgcgg tggtggagga 14820ggcgcgcaac tacacgccca cgccgccacc
agtgtccaca gtggacgcgg ccattcagac 14880cgtggtgcgc ggagcccggc gctatgctaa
aatgaagaga cggcggaggc gcgtagcacg 14940tcgccaccgc cgccgacccg gcactgccgc
ccaacgcgcg gcggcggccc tgcttaaccg 15000cgcacgtcgc accggccgac gggcggccat
gcgggccgct cgaaggctgg ccgcgggtat 15060tgtcactgtg ccccccaggt ccaggcgacg
agcggccgcc gcagcagccg cggccattag 15120tgctatgact cagggtcgca ggggcaacgt
gtattgggtg cgcgactcgg ttagcggcct 15180gcgcgtgccc gtgcgcaccc gccccccgcg
caactagatt gcaagaaaaa actacttaga 15240ctcgtactgt tgtatgtatc cagcggcggc
ggcgcgcaac gaagctatgt ccaagcgcaa 15300aatcaaagaa gagatgctcc aggtcatcgc
gccggagatc tatggccccc cgaagaagga 15360agagcaggat tacaagcccc gaaagctaaa
gcgggtcaaa aagaaaaaga aagatgatga 15420tgatgaactt gacgacgagg tggaactgct
gcacgctacc gcgcccaggc gacgggtaca 15480gtggaaaggt cgacgcgtaa aacgtgtttt
gcgacccggc accaccgtag tctttacgcc 15540cggtgagcgc tccacccgca cctacaagcg
cgtgtatgat gaggtgtacg gcgacgagga 15600cctgcttgag caggccaacg agcgcctcgg
ggagtttgcc tacggaaagc ggcataagga 15660catgctggcg ttgccgctgg acgagggcaa
cccaacacct agcctaaagc ccgtaacact 15720gcagcaggtg ctgcccgcgc ttgcaccgtc
cgaagaaaag cgcggcctaa agcgcgagtc 15780tggtgacttg gcacccaccg tgcagctgat
ggtacccaag cgccagcgac tggaagatgt 15840cttggaaaaa atgaccgtgg aacctgggct
ggagcccgag gtccgcgtgc ggccaatcaa 15900gcaggtggcg ccgggactgg gcgtgcagac
cgtggacgtt cagataccca ctaccagtag 15960caccagtatt gccaccgcca cagagggcat
ggagacacaa acgtccccgg ttgcctcagc 16020ggtggcggat gccgcggtgc aggcggtcgc
tgcggccgcg tccaagacct ctacggaggt 16080gcaaacggac ccgtggatgt ttcgcgtttc
agccccccgg cgcccgcgcc gttcgaggaa 16140gtacggcgcc gccagcgcgc tactgcccga
atatgcccta catccttcca ttgcgcctac 16200ccccggctat cgtggctaca cctaccgccc
cagaagacga gcaactaccc gacgccgaac 16260caccactgga acccgccgcc gccgtcgccg
tcgccagccc gtgctggccc cgatttccgt 16320gcgcagggtg gctcgcgaag gaggcaggac
cctggtgctg ccaacagcgc gctaccaccc 16380cagcatcgtt taaaagccgg tctttgtggt
tcttgcagat atggccctca cctgccgcct 16440ccgtttcccg gtgccgggat tccgaggaag
aatgcaccgt aggaggggca tggccggcca 16500cggcctgacg ggcggcatgc gtcgtgcgca
ccaccggcgg cggcgcgcgt cgcaccgtcg 16560catgcgcggc ggtatcctgc ccctccttat
tccactgatc gccgcggcga ttggcgccgt 16620gcccggaatt gcatccgtgg ccttgcaggc
gcagagacac tgattaaaaa caagttgcat 16680gtggaaaaat caaaataaaa agtctggact
ctcacgctcg cttggtcctg taactatttt 16740gtagaatgga agacatcaac tttgcgtctc
tggccccgcg acacggctcg cgcccgttca 16800tgggaaactg gcaagatatc ggcaccagca
atatgagcgg tggcgccttc agctggggct 16860cgctgtggag cggcattaaa aatttcggtt
ccaccgttaa gaactatggc agcaaggcct 16920ggaacagcag cacaggccag atgctgaggg
ataagttgaa agagcaaaat ttccaacaaa 16980aggtggtaga tggcctggcc tctggcatta
gcggggtggt ggacctggcc aaccaggcag 17040tgcaaaataa gattaacagt aagcttgatc
cccgccctcc cgtagaggag cctccaccgg 17100ccgtggagac agtgtctcca gaggggcgtg
gcgaaaagcg tccgcgcccc gacagggaag 17160aaactctggt gacgcaaata gacgagcctc
cctcgtacga ggaggcacta aagcaaggcc 17220tgcccaccac ccgtcccatc gcgcccatgg
ctaccggagt gctgggccag cacacacccg 17280taacgctgga cctgcctccc cccgccgaca
cccagcagaa acctgtgctg ccaggcccga 17340ccgccgttgt tgtaacccgt cctagccgcg
cgtccctgcg ccgcgccgcc agcggtccgc 17400gatcgttgcg gcccgtagcc agtggcaact
ggcaaagcac actgaacagc atcgtgggtc 17460tgggggtgca atccctgaag cgccgacgat
gcttctgata gctaacgtgt cgtatgtgtg 17520tcatgtatgc gtccatgtcg ccgccagagg
agctgctgag ccgccgcgcg cccgctttcc 17580aagatggcta ccccttcgat gatgccgcag
tggtcttaca tgcacatctc gggccaggac 17640gcctcggagt acctgagccc cgggctggtg
cagtttgccc gcgccaccga gacgtacttc 17700agcctgaata acaagtttag aaaccccacg
gtggcgccta cgcacgacgt gaccacagac 17760cggtcccagc gtttgacgct gcggttcatc
cctgtggacc gtgaggatac tgcgtactcg 17820tacaaggcgc ggttcaccct agctgtgggt
gataaccgtg tgctggacat ggcttccacg 17880tactttgaca tccgcggcgt gctggacagg
ggccctactt ttaagcccta ctctggcact 17940gcctacaacg ccctggctcc caagggtgcc
ccaaatcctt gcgaatggga tgaagctgct 18000actgctcttg aaataaacct agaagaagag
gacgatgaca acgaagacga agtagacgag 18060caagctgagc agcaaaaaac tcacgtattt
gggcaggcgc cttattctgg tataaatatt 18120acaaaggagg gtattcaaat aggtgtcgaa
ggtcaaacac ctaaatatgc cgataaaaca 18180tttcaacctg aacctcaaat aggagaatct
cagtggtacg aaacagaaat taatcatgca 18240gctgggagag tcctaaaaaa gactacccca
atgaaaccat gttacggttc atatgcaaaa 18300cccacaaatg aaaatggagg gcaaggcatt
cttgtaaagc aacaaaatgg aaagctagaa 18360agtcaagtgg aaatgcaatt tttctcaact
actgaggcag ccgcaggcaa tggtgataac 18420ttgactccta aagtggtatt gtacagtgaa
gatgtagata tagaaacccc agacactcat 18480atttcttaca tgcccactat taaggaaggt
aactcacgag aactaatggg ccaacaatct 18540atgcccaaca ggcctaatta cattgctttt
agggacaatt ttattggtct aatgtattac 18600aacagcacgg gtaatatggg tgttctggcg
ggccaagcat cgcagttgaa tgctgttgta 18660gatttgcaag acagaaacac agagctttca
taccagcttt tgcttgattc cattggtgat 18720agaaccaggt acttttctat gtggaatcag
gctgttgaca gctatgatcc agatgttaga 18780attattgaaa atcatggaac tgaagatgaa
cttccaaatt actgctttcc actgggaggt 18840gtgattaata cagagactct taccaaggta
aaacctaaaa caggtcagga aaatggatgg 18900gaaaaagatg ctacagaatt ttcagataaa
aatgaaataa gagttggaaa taattttgcc 18960atggaaatca atctaaatgc caacctgtgg
agaaatttcc tgtactccaa catagcgctg 19020tatttgcccg acaagctaaa gtacagtcct
tccaacgtaa aaatttctga taacccaaac 19080acctacgact acatgaacaa gcgagtggtg
gctcccgggc tagtggactg ctacattaac 19140cttggagcac gctggtccct tgactatatg
gacaacgtca acccatttaa ccaccaccgc 19200aatgctggcc tgcgctaccg ctcaatgttg
ctgggcaatg gtcgctatgt gcccttccac 19260atccaggtgc ctcagaagtt ctttgccatt
aaaaacctcc ttctcctgcc gggctcatac 19320acctacgagt ggaacttcag gaaggatgtt
aacatggttc tgcagagctc cctaggaaat 19380gacctaaggg ttgacggagc cagcattaag
tttgatagca tttgccttta cgccaccttc 19440ttccccatgg cccacaacac cgcctccacg
cttgaggcca tgcttagaaa cgacaccaac 19500gaccagtcct ttaacgacta tctctccgcc
gccaacatgc tctaccctat acccgccaac 19560gctaccaacg tgcccatatc catcccctcc
cgcaactggg cggctttccg cggctgggcc 19620ttcacgcgcc ttaagactaa ggaaacccca
tcactgggct cgggctacga cccttattac 19680acctactctg gctctatacc ctacctagat
ggaacctttt acctcaacca cacctttaag 19740aaggtggcca ttacctttga ctcttctgtc
agctggcctg gcaatgaccg cctgcttacc 19800cccaacgagt ttgaaattaa gcgctcagtt
gacggggagg gttacaacgt tgcccagtgt 19860aacatgacca aagactggtt cctggtacaa
atgctagcta actataacat tggctaccag 19920ggcttctata tcccagagag ctacaaggac
cgcatgtact ccttctttag aaacttccag 19980cccatgagcc gtcaggtggt ggatgatact
aaatacaagg actaccaaca ggtgggcatc 20040ctacaccaac acaacaactc tggatttgtt
ggctaccttg cccccaccat gcgcgaagga 20100caggcctacc ctgctaactt cccctatccg
cttataggca agaccgcagt tgacagcatt 20160acccagaaaa agtttctttg cgatcgcacc
ctttggcgca tcccattctc cagtaacttt 20220atgtccatgg gcgcactcac agacctgggc
caaaaccttc tctacgccaa ctccgcccac 20280gcgctagaca tgacttttga ggtggatccc
atggacgagc ccacccttct ttatgttttg 20340tttgaagtct ttgacgtggt ccgtgtgcac
cagccgcacc gcggcgtcat cgaaaccgtg 20400tacctgcgca cgcccttctc ggccggcaac
gccacaacat aaagaagcaa gcaacatcaa 20460caacagctgc cgccatgggc tccagtgagc
aggaactgaa agccattgtc aaagatcttg 20520gttgtgggcc atattttttg ggcacctatg
acaagcgctt tccaggcttt gtttctccac 20580acaagctcgc ctgcgccata gtcaatacgg
ccggtcgcga gactgggggc gtacactgga 20640tggcctttgc ctggaacccg cactcaaaaa
catgctacct ctttgagccc tttggctttt 20700ctgaccagcg actcaagcag gtttaccagt
ttgagtacga gtcactcctg cgccgtagcg 20760ccattgcttc ttcccccgac cgctgtataa
cgctggaaaa gtccacccaa agcgtacagg 20820ggcccaactc ggccgcctgt ggactattct
gctgcatgtt tctccacgcc tttgccaact 20880ggccccaaac tcccatggat cacaacccca
ccatgaacct tattaccggg gtacccaact 20940ccatgctcaa cagtccccag gtacagccca
ccctgcgtcg caaccaggaa cagctctaca 21000gcttcctgga gcgccactcg ccctacttcc
gcagccacag tgcgcagatt aggagcgcca 21060cttctttttg tcacttgaaa aacatgtaaa
aataatgtac tagagacact ttcaataaag 21120gcaaatgctt ttatttgtac actctcgggt
gattatttac ccccaccctt gccgtctgcg 21180ccgtttaaaa atcaaagggg ttctgccgcg
catcgctatg cgccactggc agggacacgt 21240tgcgatactg gtgtttagtg ctccacttaa
actcaggcac aaccatccgc ggcagctcgg 21300tgaagttttc actccacagg ctgcgcacca
tcaccaacgc gtttagcagg tcgggcgccg 21360atatcttgaa gtcgcagttg gggcctccgc
cctgcgcgcg cgagttgcga tacacagggt 21420tgcagcactg gaacactatc agcgccgggt
ggtgcacgct ggccagcacg ctcttgtcgg 21480agatcagatc cgcgtccagg tcctccgcgt
tgctcagggc gaacggagtc aactttggta 21540gctgccttcc caaaaagggc gcgtgcccag
gctttgagtt gcactcgcac cgtagtggca 21600tcaaaaggtg accgtgcccg gtctgggcgt
taggatacag cgcctgcata aaagccttga 21660tctgcttaaa agccacctga gcctttgcgc
cttcagagaa gaacatgccg caagacttgc 21720cggaaaactg attggccgga caggccgcgt
cgtgcacgca gcaccttgcg tcggtgttgg 21780agatctgcac cacatttcgg ccccaccggt
tcttcacgat cttggccttg ctagactgct 21840ccttcagcgc gcgctgcccg ttttcgctcg
tcacatccat ttcaatcacg tgctccttat 21900ttatcataat gcttccgtgt agacacttaa
gctcgccttc gatctcagcg cagcggtgca 21960gccacaacgc gcagcccgtg ggctcgtgat
gcttgtaggt cacctctgca aacgactgca 22020ggtacgcctg caggaatcgc cccatcatcg
tcacaaaggt cttgttgctg gtgaaggtca 22080gctgcaaccc gcggtgctcc tcgttcagcc
aggtcttgca tacggccgcc agagcttcca 22140cttggtcagg cagtagtttg aagttcgcct
ttagatcgtt atccacgtgg tacttgtcca 22200tcagcgcgcg cgcagcctcc atgcccttct
cccacgcaga cacgatcggc acactcagcg 22260ggttcatcac cgtaatttca ctttccgctt
cgctgggctc ttcctcttcc tcttgcgtcc 22320gcataccacg cgccactggg tcgtcttcat
tcagccgccg cactgtgcgc ttacctcctt 22380tgccatgctt gattagcacc ggtgggttgc
tgaaacccac catttgtagc gccacatctt 22440ctctttcttc ctcgctgtcc acgattacct
ctggtgatgg cgggcgctcg ggcttgggag 22500aagggcgctt ctttttcttc ttgggcgcaa
tggccaaatc cgccgccgag gtcgatggcc 22560gcgggctggg tgtgcgcggc accagcgcgt
cttgtgatga gtcttcctcg tcctcggact 22620cgatacgccg cctcatccgc ttttttgggg
gcgcccgggg aggcggcggc gacggggacg 22680gggacgacac gtcctccatg gttgggggac
gtcgcgccgc accgcgtccg cgctcggggg 22740tggtttcgcg ctgctcctct tcccgactgg
ccatttcctt ctcctatagg cagaaaaaga 22800tcatggagtc agtcgagaag aaggacagcc
taaccgcccc ctctgagttc gccaccaccg 22860cctccaccga tgccgccaac gcgcctacca
ccttccccgt cgaggcaccc ccgcttgagg 22920aggaggaagt gattatcgag caggacccag
gttttgtaag cgaagacgac gaggaccgct 22980cagtaccaac agaggataaa aagcaagacc
aggacaacgc agaggcaaac gaggaacaag 23040tcgggcgggg ggacgaaagg catggcgact
acctagatgt gggagacgac gtgctgttga 23100agcatctgca gcgccagtgc gccattatct
gcgacgcgtt gcaagagcgc agcgatgtgc 23160ccctcgccat agcggatgtc agccttgcct
acgaacgcca cctattctca ccgcgcgtac 23220cccccaaacg ccaagaaaac ggcacatgcg
agcccaaccc gcgcctcaac ttctaccccg 23280tatttgccgt gccagaggtg cttgccacct
atcacatctt tttccaaaac tgcaagatac 23340ccctatcctg ccgtgccaac cgcagccgag
cggacaagca gctggccttg cggcagggcg 23400ctgtcatacc tgatatcgcc tcgctcaacg
aagtgccaaa aatctttgag ggtcttggac 23460gcgacgagaa gcgcgcggca aacgctctgc
aacaggaaaa cagcgaaaat gaaagtcact 23520ctggagtgtt ggtggaactc gagggtgaca
acgcgcgcct agccgtacta aaacgcagca 23580tcgaggtcac ccactttgcc tacccggcac
ttaacctacc ccccaaggtc atgagcacag 23640tcatgagtga gctgatcgtg cgccgtgcgc
agcccctgga gagggatgca aatttgcaag 23700aacaaacaga ggagggccta cccgcagttg
gcgacgagca gctagcgcgc tggcttcaaa 23760cgcgcgagcc tgccgacttg gaggagcgac
gcaaactaat gatggccgca gtgctcgtta 23820ccgtggagct tgagtgcatg cagcggttct
ttgctgaccc ggagatgcag cgcaagctag 23880aggaaacatt gcactacacc tttcgacagg
gctacgtacg ccaggcctgc aagatctcca 23940acgtggagct ctgcaacctg gtctcctacc
ttggaatttt gcacgaaaac cgccttgggc 24000aaaacgtgct tcattccacg ctcaagggcg
aggcgcgccg cgactacgtc cgcgactgcg 24060tttacttatt tctatgctac acctggcaga
cggccatggg cgtttggcag cagtgcttgg 24120aggagtgcaa cctcaaggag ctgcagaaac
tgctaaagca aaacttgaag gacctatgga 24180cggccttcaa cgagcgctcc gtggccgcgc
acctggcgga catcattttc cccgaacgcc 24240tgcttaaaac cctgcaacag ggtctgccag
acttcaccag tcaaagcatg ttgcagaact 24300ttaggaactt tatcctagag cgctcaggaa
tcttgcccgc cacctgctgt gcacttccta 24360gcgactttgt gcccattaag taccgcgaat
gccctccgcc gctttggggc cactgctacc 24420ttctgcagct agccaactac cttgcctacc
actctgacat aatggaagac gtgagcggtg 24480acggtctact ggagtgtcac tgtcgctgca
acctatgcac cccgcaccgc tccctggttt 24540gcaattcgca gctgcttaac gaaagtcaaa
ttatcggtac ctttgagctg cagggtccct 24600cgcctgacga aaagtccgcg gctccggggt
tgaaactcac tccggggctg tggacgtcgg 24660cttaccttcg caaatttgta cctgaggact
accacgccca cgagattagg ttctacgaag 24720accaatcccg cccgcctaat gcggagctta
ccgcctgcgt cattacccag ggccacattc 24780ttggccaatt gcaagccatc aacaaagccc
gccaagagtt tctgctacga aagggacggg 24840gggtttactt ggacccccag tccggcgagg
agctcaaccc aatccccccg ccgccgcagc 24900cctatcagca gcagccgcgg gcccttgctt
cccaggatgg cacccaaaaa gaagctgcag 24960ctgccgccgc cacccacgga cgaggaggaa
tactgggaca gtcaggcaga ggaggttttg 25020gacgaggagg aggaggacat gatggaagac
tgggagagcc tagacgagga agcttccgag 25080gtcgaagagg tgtcagacga aacaccgtca
ccctcggtcg cattcccctc gccggcgccc 25140cagaaatcgg caaccggttc cagcatggct
acaacctccg ctcctcaggc gccgccggca 25200ctgcccgttc gccgacccaa ccgtagatgg
gacaccactg gaaccagggc cggtaagtcc 25260aagcagccgc cgccgttagc ccaagagcaa
caacagcgcc aaggctaccg ctcatggcgc 25320gggcacaaga acgccatagt tgcttgcttg
caagactgtg ggggcaacat ctccttcgcc 25380cgccgctttc ttctctacca tcacggcgtg
gccttccccc gtaacatcct gcattactac 25440cgtcatctct acagcccata ctgcaccggc
ggcagcggca gcaacagcag cggccacaca 25500gaagcaaagg cgaccggata gcaagactct
gacaaagccc aagaaatcca cagcggcggc 25560agcagcagga ggaggagcgc tgcgtctggc
gcccaacgaa cccgtatcga cccgcgagct 25620tagaaacagg atttttccca ctctgtatgc
tatatttcaa cagagcaggg gccaagaaca 25680agagctgaaa ataaaaaaca ggtctctgcg
atccctcacc cgcagctgcc tgtatcacaa 25740aagcgaagat cagcttcggc gcacgctgga
agacgcggag gctctcttca gtaaatactg 25800cgcgctgact cttaaggact agtttcgcgc
cctttctcaa atttaagcgc gaaaactacg 25860tcatctccag cggccacacc cggcgccagc
acctgttgtc agcgccatta tgagcaagga 25920aattcccacg ccctacatgt ggagttacca
gccacaaatg ggacttgcgg ctggagctgc 25980ccaagactac tcaacccgaa taaactacat
gagcgcggga ccccacatga tatcccgggt 26040caacggaata cgcgcccacc gaaaccgaat
tctcctggaa caggcggcta ttaccaccac 26100acctcgtaat aaccttaatc cccgtagttg
gcccgctgcc ctggtgtacc aggaaagtcc 26160cgctcccacc actgtggtac ttcccagaga
cgcccaggcc gaagttcaga tgactaactc 26220aggggcgcag cttgcgggcg gctttcgtca
cagggtgcgg tcgcccgggc agggtataac 26280tcacctgaca atcagagggc gaggtattca
gctcaacgac gagtcggtga gctcctcgct 26340tggtctccgt ccggacggga catttcagat
cggcggcgcc ggccgctctt cattcacgcc 26400tcgtcaggca atcctaactc tgcagacctc
gtcctctgag ccgcgctctg gaggcattgg 26460aactctgcaa tttattgagg agtttgtgcc
atcggtctac tttaacccct tctcgggacc 26520tcccggccac tatccggatc aatttattcc
taactttgac gcggtaaagg actcggcgga 26580cggctacgac tgaatgttaa gtggagaggc
agagcaactg cgcctgaaac acctggtcca 26640ctgtcgccgc cacaagtgct ttgcccgcga
ctccggtgag ttttgctact ttgaattgcc 26700cgaggatcat atcgagggcc cggcgcacgg
cgtccggctt accgcccagg gagagcttgc 26760ccgtagcctg attcgggagt ttacccagcg
ccccctgcta gttgagcggg acaggggacc 26820ctgtgttctc actgtgattt gcaactgtcc
taaccctgga ttacatcaag atcctctagt 26880taatgtcagg tcgcctaagt cgattaacta
gagtacccgg ggatcttatt ccctttaact 26940aataaaaaaa aataataaag catcacttac
ttaaaatcag ttagcaaatt tctgtccagt 27000ttattcagca gcacctcctt gccctcctcc
cagctctggt attgcagctt cctcctggct 27060gcaaactttc tccacaatct aaatggaatg
tcagtttcct cctgttcctg tccatccgca 27120cccactatct tcatgttgtt gcagatgaag
cgcgcaagac cgtctgaaga taccttcaac 27180cccgtgtatc catatgacac ggaaaccggt
cctccaactg tgccttttct tactcctccc 27240tttgtatccc ccaatgggtt tcaagagagt
ccccctgggg tactctcttt gcgcctatcc 27300gaacctctag ttacctccaa tggcatgctt
gcgctcaaaa tgggcaacgg cctctctctg 27360gacgaggccg gcaaccttac ctcccaaaat
gtaaccactg tgagcccacc tctcaaaaaa 27420accaagtcaa acataaacct ggaaatatct
gcacccctca cagttacctc agaagcccta 27480actgtggctg ccgccgcacc tctaatggtc
gcgggcaaca cactcaccat gcaatcacag 27540gccccgctaa ccgtgcacga ctccaaactt
agcattgcca cccaaggacc cctcacagtg 27600tcagaaggaa agctagccct gcaaacatca
ggccccctca ccaccaccga tagcagtacc 27660cttactatca ctgcctcacc ccctctaact
actgccactg gtagcttggg cattgacttg 27720aaagagccca tttatacaca aaatggaaaa
ctaggactaa agtacggggc tcctttgcat 27780gtaacagacg acctaaacac tttgaccgta
gcaactggtc caggtgtgac tattaataat 27840acttccttgc aaactaaagt tactggagcc
ttgggttttg attcacaagg caatatgcaa 27900cttaatgtag caggaggact aaggattgat
tctcaaaaca gacgccttat acttgatgtt 27960agttatccgt ttgatgctca aaaccaacta
aatctaagac taggacaggg ccctcttttt 28020ataaactcag cccacaactt ggatattaac
tacaacaaag gcctttactt gtttacagct 28080tcaaacaatt ccaaaaagct tgaggttaac
ctaagcactg ccaaggggtt gatgtttgac 28140gctacagcca tagccattaa tgcaggagat
gggcttgaat ttggttcacc taatgcacca 28200aacacaaatc ccctcaaaac aaaaattggc
catggcctag aatttgattc aaacaaggct 28260atggttccta aactaggaac tggccttagt
tttgacagca caggtgccat tacagtagga 28320aacaaaaata atgataagct aactttgtgg
accacaccag ctccatctcc taactgtaga 28380ctaaatgcag agaaagatgc taaactcact
ttggtcttaa caaaatgtgg cagtcaaata 28440cttgctacag tttcagtttt ggctgttaaa
ggcagtttgg ctccaatatc tggaacagtt 28500caaagtgctc atcttattat aagatttgac
gaaaatggag tgctactaaa caattccttc 28560ctggacccag aatattggaa ctttagaaat
ggagatctta ctgaaggcac agcctataca 28620aacgctgttg gatttatgcc taacctatca
gcttatccaa aatctcacgg taaaactgcc 28680aaaagtaaca ttgtcagtca agtttactta
aacggagaca aaactaaacc tgtaacacta 28740accattacac taaacggtac acaggaaaca
ggagacacaa ctccaagtgc atactctatg 28800tcattttcat gggactggtc tggccacaac
tacattaatg aaatatttgc cacatcctct 28860tacacttttt catacattgc ccaagaataa
agaatcgttt gtgttatgtt tcaacgtgtt 28920tatttttcaa ttgcagaaaa tttcaagtca
tttttcattc agtagtatag ccccaccacc 28980acatagctta tacagatcac cgtaccttaa
tcaaactcac agaaccctag tattcaacct 29040gccacctccc tcccaacaca cagagtacac
agtcctttct ccccggctgg ccttaaaaag 29100catcatatca tgggtaacag acatattctt
aggtgttata ttccacacgg tttcctgtcg 29160agccaaacgc tcatcagtga tattaataaa
ctccccgggc agctcactta agttcatgtc 29220gctgtccagc tgctgagcca caggctgctg
tccaacttgc ggttgcttaa cgggcggcga 29280aggagaagtc cacgcctaca tgggggtaga
gtcataatcg tgcatcagga tagggcggtg 29340gtgctgcagc agcgcgcgaa taaactgctg
ccgccgccgc tccgtcctgc aggaatacaa 29400catggcagtg gtctcctcag cgatgattcg
caccgcccgc agcataaggc gccttgtcct 29460ccgggcacag cagcgcaccc tgatctcact
taaatcagca cagtaactgc agcacagcac 29520cacaatattg ttcaaaatcc cacagtgcaa
ggcgctgtat ccaaagctca tggcggggac 29580cacagaaccc acgtggccat cataccacaa
gcgcaggtag attaagtggc gacccctcat 29640aaacacgctg gacataaaca ttacctcttt
tggcatgttg taattcacca cctcccggta 29700ccatataaac ctctgattaa acatggcgcc
atccaccacc atcctaaacc agctggccaa 29760aacctgcccg ccggctatac actgcaggga
accgggactg gaacaatgac agtggagagc 29820ccaggactcg taaccatgga tcatcatgct
cgtcatgata tcaatgttgg cacaacacag 29880gcacacgtgc atacacttcc tcaggattac
aagctcctcc cgcgttagaa ccatatccca 29940gggaacaacc cattcctgaa tcagcgtaaa
tcccacactg cagggaagac ctcgcacgta 30000actcacgttg tgcattgtca aagtgttaca
ttcgggcagc agcggatgat cctccagtat 30060ggtagcgcgg gtttctgtct caaaaggagg
tagacgatcc ctactgtacg gagtgcgccg 30120agacaaccga gatcgtgttg gtcgtagtgt
catgccaaat ggaacgccgg acgtagtcat 30180atttcctgaa gcaaaaccag gtgcgggcgt
gacaaacaga tctgcgtctc cggtctcgcc 30240gcttagatcg ctctgtgtag tagttgtagt
atatccactc tctcaaagca tccaggcgcc 30300ccctggcttc gggttctatg taaactcctt
catgcgccgc tgccctgata acatccacca 30360ccgcagaata agccacaccc agccaaccta
cacattcgtt ctgcgagtca cacacgggag 30420gagcgggaag agctggaaga accatgtttt
tttttttatt ccaaaagatt atccaaaacc 30480tcaaaatgaa gatctattaa gtgaacgcgc
tcccctccgg tggcgtggtc aaactctaca 30540gccaaagaac agataatggc atttgtaaga
tgttgcacaa tggcttccaa aaggcaaacg 30600gccctcacgt ccaagtggac gtaaaggcta
aacccttcag ggtgaatctc ctctataaac 30660attccagcac cttcaaccat gcccaaataa
ttctcatctc gccaccttct caatatatct 30720ctaagcaaat cccgaatatt aagtccggcc
attgtaaaaa tctgctccag agcgccctcc 30780accttcagcc tcaagcagcg aatcatgatt
gcaaaaattc aggttcctca cagacctgta 30840taagattcaa aagcggaaca ttaacaaaaa
taccgcgatc ccgtaggtcc cttcgcaggg 30900ccagctgaac ataatcgtgc aggtctgcac
ggaccagcgc ggccacttcc ccgccaggaa 30960ccatgacaaa agaacccaca ctgattatga
cacgcatact cggagctatg ctaaccagcg 31020tagccccgat gtaagcttgt tgcatgggcg
gcgatataaa atgcaaggtg ctgctcaaaa 31080aatcaggcaa agcctcgcgc aaaaaagaaa
gcacatcgta gtcatgctca tgcagataaa 31140ggcaggtaag ctccggaacc accacagaaa
aagacaccat ttttctctca aacatgtctg 31200cgggtttctg cataaacaca aaataaaata
acaaaaaaac atttaaacat tagaagcctg 31260tcttacaaca ggaaaaacaa cccttataag
cataagacgg actacggcca tgccggcgtg 31320accgtaaaaa aactggtcac cgtgattaaa
aagcaccacc gacagctcct cggtcatgtc 31380cggagtcata atgtaagact cggtaaacac
atcaggttga ttcacatcgg tcagtgctaa 31440aaagcgaccg aaatagcccg ggggaataca
tacccgcagg cgtagagaca acattacagc 31500ccccatagga ggtataacaa aattaatagg
agagaaaaac acataaacac ctgaaaaacc 31560ctcctgccta ggcaaaatag caccctcccg
ctccagaaca acatacagcg cttccacagc 31620ggcagccata acagtcagcc ttaccagtaa
aaaagaaaac ctattaaaaa aacaccactc 31680gacacggcac cagctcaatc agtcacagtg
taaaaaaggg ccaagtgcag agcgagtata 31740tataggacta aaaaatgacg taacggttaa
agtccacaaa aaacacccag aaaaccgcac 31800gcgaacctac gcccagaaac gaaagccaaa
aaacccacaa cttcctcaaa tcgtcacttc 31860cgttttccca cgttacgtca cttcccattt
taagaaaact acaattccca acacatacaa 31920gttactccgc cctaaaacct acgtcacccg
ccccgttccc acgccccgcg ccacgtcaca 31980aactccaccc cctcattatc atattggctt
caatccaaaa taaggtatat tattgatgat 3204092500DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
9ggaggacact tctcagaagg ggttgttttg cttttgctta tttccgtcca tttccctctc
60tgcgcgcgga ccttcctttt ccagatggtg agagccgcgg ggacacccga cgccggggca
120ggctgatcca cgatcctggg tgtgcgtaac gccgcctggg gctccgtggg cgagggacgt
180gtggggacag gtgcaccgga aactgccaga ctggagagtt gaggcatcgg aggcgcgaga
240acagcactac tactgcggcg agacgagcgc ggcgcatccc aaagcccggc caaatgcgct
300cgtccctggg aggggaggga ggcgcgcctg gagcggggac agtcttggtc cgcgccctcc
360tcccgggtct gtgccgggac ccgggacccg ggagccgtcg caggtctcgg tccaaggggc
420cccttttctc ggaagggcgg cggccaagag cagggaaggt ggatctcagg tagcgagtct
480gggcttcggg gacggcgggg aggggagccg gacgggagga tgagctcccc tggcaccgag
540agcgcgggaa agagcctgca gtaccgagtg gaccacctgc tgagcgccgt ggagaatgag
600ctgcaggcgg gcagcgagaa gggcgacccc acagagcgcg aactgcgcgt gggcctggag
660gagagcgagc tgtggctgcg cttcaaggag ctcaccaatg agatgatcgt gaccaagaac
720ggcaggagga tgtttccggt gctgaaggtg aacgtgtctg gcctggaccc caacgccatg
780tactccttcc tgctggactt cgtggcggcg gacaaccacc gctggaagta cgtgaacggg
840gaatgggtgc cggggggcaa gccggagccg caggcgccca gctgcgtcta catccacccc
900gactcgccca acttcggggc ccactggatg aaggctcccg tctccttcag caaagtcaag
960ctcaccaaca agctcaacgg agggggccag atcatgctga actccttgca taagtatgag
1020cctcgaatcc acatagtgag agttgggggt ccacagcgca tgatcaccag ccactgcttc
1080cctgagaccc agttcatagc ggtgactgct tatcagaacg aggagatcac agctcttaaa
1140attaagtaca atccatttgc aaaagctttc cttgatgcaa aggaaagaag tgatcacaaa
1200gagatgatgg aggaacccgg agacagccag caacctgggt actcccaatg ggggtggctt
1260cttcctggaa ccagcaccct gtgtccacct gcaaatcctc atcctcagtt tggaggtgcc
1320ctctccctcc cctccacgca cagctgtgac aggtacccaa ccctgaggag ccaccggtcc
1380tcaccctacc ccagccccta tgctcatcgg aacaattctc caacctattc tgacaactca
1440cctgcatgtt tatccatgct gcaatcccat gacaattggt ccagccttgg aatgcctgcc
1500catcccagca tgctccccgt gagccacaat gccagcccac ctaccagctc cagtcagtac
1560cccagcctgt ggtctgtgag caacggcgcc gtcaccccgg gctcccaggc agcagccgtg
1620tccaacgggc tgggggccca gttcttccgg ggctcccccg cgcactacac acccctcacc
1680catccggtct cggcgccctc ttcctcggga tccccactgt acgaaggggc ggccgcggcc
1740acagacatcg tggacagcca gtacgacgcc gcagcccaag gccgcctcat agcctcatgg
1800acacctgtgt cgccaccttc catgtgaagc agcaaggccc aggtcccgaa agatgcagtg
1860actttttgtc gtggcagcca gtggtgactg gattgaccta ctaggtaccc agtggcagtc
1920tcaggttaag aaggaaatgc agcctcagta acttcctttt caaagcagtg gaggagcaca
1980cggcaccttt ccccagagcc ccagcatccc ttgctcacac ctgcagtagc ggtgctgtcc
2040caggtggctt acagatgaac ccaactgtgg agatgatgca gttggcccaa cctcactgac
2100ggtgaaaaaa tgtttgccag ggtccagaaa ctttttttgg tttatttctc atacagtgta
2160ttggcaactt tggcacacca gaatttgtaa actccaccag tcctacttta gtgagataaa
2220aagcacactc ttaatcttct tccttgttgc tttcaagtag ttagagttga gctgttaagg
2280acagaataaa atcatagttg aggacagcag gttttagttg aattgaaaat ttgactgctc
2340tgccccctag aatgtgtgta ttttaagcat atgtagctaa tctcttgtgt tgttaaacta
2400taactgtttc atatttttct tttgacaaag tagccaaaga caatcagcag aaagcatttt
2460ctgcaaaata aacgcaatat gcaaaaaaaa aaaaaaaaaa
2500101251DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 10tctagagcca ccatgagctc ccctggcacc
gagagcgcgg gaaagagcct gcagtaccga 60gtggaccacc tgctgagcgc cgtggagaat
gagctgcagg cgggcagcga gaagggcgac 120cccacagagc gcgaactgcg cgtgggcctg
gaggagagcg agctgtggct gcgcttcaag 180gagctcacca atgagatgat cgtgaccaag
aacggcagga ggatgtttcc ggtgctgaag 240gtgaacgtgt ctggcctgga ccccaacgcc
atgtactcct tcctgctgga cttcgtggcg 300gcggacaacc accgctggaa gtacgtgaac
ggggaatggg tgccgggggg caagccggag 360ccgcaggcgc ccagctgcgt ctacatccac
cccgactcgc ccaacttcgg ggcccactgg 420atgaaggctc ccgtctcctt cagcaaagtc
aagctcacca acaagctcaa cggagggggc 480cagatcatgc tgaactcctt gcataagtat
gagcctcgaa tccacatagt gagagttggg 540ggtccacagc gcatgatcac cagccactgc
ttccctgaga cccagttcat agcggtgact 600gctagaagtg atcacaaaga gatgatggag
gaacccggag acagccagca acctgggtac 660tcccaatggg ggtggcttct tcctggaacc
agcaccgtgt gtccacctgc aaatcctcat 720cctcagtttg gaggtgccct ctccctcccc
tccacgcaca gctgtgacag gtacccaacc 780ctgaggagcc accggtcctc accctacccc
agcccctatg ctcatcggaa caattctcca 840acctattctg acaactcacc tgcatgttta
tccatgctgc aatcccatga caattggtcc 900agccttggaa tgcctgccca tcccagcatg
ctccccgtga gccacaatgc cagcccacct 960accagctcca gtcagtaccc cagcctgtgg
tctgtgagca acggcgccgt caccccgggc 1020tcccaggcag cagccgtgtc caacgggctg
ggggcccagt tcttccgggg ctcccccgcg 1080cactacacac ccctcaccca tccggtctcg
gcgccctctt cctcgggatc cccactgtac 1140gaaggggcgg ccgcggccac agacatcgtg
gacagccagt acgacgccgc agcccaaggc 1200cgcctcatag cctcatggac acctgtgtcg
ccaccttcca tgtgagatat c 1251119DNAGallus
gallusmodified_base(8)..(8)a, c, t, g, unknown or other 11tctctccna
912435PRTArtificial SequenceDescription of Artificial Sequence Synthetic
polypeptide 12Met Ser Ser Pro Gly Thr Glu Ser Ala Gly Lys Ser Leu Gln
Tyr Arg1 5 10 15Val Asp
His Leu Leu Ser Ala Val Glu Asn Glu Leu Gln Ala Gly Ser 20
25 30Glu Lys Gly Asp Pro Thr Glu Arg Glu
Leu Arg Val Gly Leu Glu Glu 35 40
45Ser Glu Leu Trp Leu Arg Phe Lys Glu Leu Thr Asn Glu Met Ile Val 50
55 60Thr Lys Asn Gly Arg Arg Met Phe Pro
Val Leu Lys Val Asn Val Ser65 70 75
80Gly Leu Asp Pro Asn Ala Met Tyr Ser Phe Leu Leu Asp Phe
Val Ala 85 90 95Ala Asp
Asn His Arg Trp Lys Tyr Val Asn Gly Glu Trp Val Pro Gly 100
105 110Gly Lys Pro Glu Pro Gln Ala Pro Ser
Cys Val Tyr Ile His Pro Asp 115 120
125Ser Pro Asn Phe Gly Ala His Trp Met Lys Ala Pro Val Ser Phe Ser
130 135 140Lys Val Lys Leu Thr Asn Lys
Leu Asn Gly Gly Gly Gln Ile Met Leu145 150
155 160Asn Ser Leu His Lys Tyr Glu Pro Arg Ile His Ile
Val Arg Val Gly 165 170
175Asp Pro Gln Arg Met Ile Thr Ser His Cys Phe Pro Glu Thr Gln Phe
180 185 190Ile Ala Val Thr Ala Tyr
Gln Asn Glu Glu Ile Thr Ala Leu Lys Ile 195 200
205Lys Tyr Asn Pro Phe Ala Lys Ala Phe Leu Asp Ala Lys Glu
Arg Ser 210 215 220Asp His Lys Glu Met
Met Glu Glu Pro Gly Asp Ser Gln Gln Pro Gly225 230
235 240Tyr Ser Gln Trp Gly Trp Leu Leu Pro Gly
Thr Ser Thr Leu Cys Pro 245 250
255Pro Ala Asn Pro His Pro Gln Phe Gly Gly Ala Leu Ser Leu Pro Ser
260 265 270Thr His Ser Cys Asp
Arg Tyr Pro Thr Leu Arg Ser His Arg Ser Ser 275
280 285Pro Tyr Pro Ser Pro Tyr Ala His Arg Asn Asn Ser
Pro Thr Tyr Ser 290 295 300Asp Asn Ser
Pro Ala Cys Leu Ser Met Leu Gln Ser His Asp Asn Trp305
310 315 320Ser Ser Leu Gly Met Pro Ala
His Pro Ser Met Leu Pro Val Ser His 325
330 335Asn Ala Ser Pro Pro Thr Ser Ser Ser Gln Tyr Pro
Ser Leu Trp Ser 340 345 350Val
Ser Asn Gly Ala Val Thr Pro Gly Ser Gln Ala Ala Ala Val Thr 355
360 365Asn Gly Leu Gly Ala Gln Phe Phe Arg
Gly Ser Pro Ala His Tyr Thr 370 375
380Pro Leu Thr His Pro Val Ser Ala Pro Ser Ser Ser Gly Ser Pro Leu385
390 395 400Tyr Glu Gly Ala
Ala Ala Ala Thr Asn Ile Val Asp Ser Gln Tyr Asp 405
410 415Ala Ala Ala Gln Gly Arg Leu Ile Ala Ser
Trp Thr Pro Val Ser Pro 420 425
430Pro Ser Met 4351331465DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 13catcatcaat aatatacctt
attttggatt gaagccaata tgataatgag ggggtggagt 60ttgtgacgtg gcgcggggcg
tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120gatgttgcaa gtgtggcgga
acacatgtaa gcgacggatg tggcaaaagt gacgtttttg 180gtgtgcgccg gtgtacacag
gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240taaatttggg cgtaaccgag
taagatttgg ccattttcgc gggaaaactg aataagagga 300agtgaaatct gaataatttt
gtgttactca tagcgcgtaa tactgtaata gtaatcaatt 360acggggtcat tagttcatag
cccatatatg gagttccgcg ttacataact tacggtaaat 420ggcccgcctg gctgaccgcc
caacgacccc cgcccattga cgtcaataat gacgtatgtt 480cccatagtaa cgccaatagg
gactttccat tgacgtcaat gggtggagta tttacggtaa 540actgcccact tggcagtaca
tcaagtgtat catatgccaa gtacgccccc tattgacgtc 600aatgacggta aatggcccgc
ctggcattat gcccagtaca tgaccttatg ggactttcct 660acttggcagt acatctacgt
attagtcatc gctattacca tggtgatgcg gttttggcag 720tacatcaatg ggcgtggata
gcggtttgac tcacggggat ttccaagtct ccaccccatt 780gacgtcaatg ggagtttgtt
ttggcaccaa aatcaacggg actttccaaa atgtcgtaac 840aactccgccc cattgacgca
aatgggcggt aggcgtgtac ggtgggaggt ctatataagc 900agagctggtt tagtgaaccg
tcagatccgc tagagatctg gtaccgtcga cgcggccgct 960cgagcctaag cttctagatg
catgctcgag cggccgccag tgtgatggat atctgcagaa 1020ttcgcccttg cttctagagc
caccatgagc tcccctggca ccgagagcgc gggaaagagc 1080ctgcagtacc gagtggacca
cctgctgagc gccgtggaga atgagctgca ggcgggcagc 1140gagaagggcg accccacaga
gcgcgaactg cgcgtgggcc tggaggagag cgagctgtgg 1200ctgcgcttca aggagctcac
caatgagatg atcgtgacca agaacggcag gaggatgttt 1260ccggtgctga aggtgaacgt
gtctggcctg gaccccaacg ccatgtactc cttcctgctg 1320gacttcgtgg cggcggacaa
ccaccgctgg aagtacgtga acggggaatg ggtgccgggg 1380ggcaagccgg agccgcaggc
gcccagctgc gtctacatcc accccgactc gcccaacttc 1440ggggcccact ggatgaaggc
tcccgtctcc ttcagcaaag tcaagctcac caacaagctc 1500aacggagggg gccagatcat
gctgaactcc ttgcataagt atgagcctcg aatccacata 1560gtgagagttg ggggtccaca
gcgcatgatc accagccact gcttccctga gacccagttc 1620atagcggtga ctgctagaag
tgatcacaaa gagatgatgg aggaacccgg agacagccag 1680caacctgggt actcccaatg
ggggtggctt cttcctggaa ccagcaccgt gtgtccacct 1740gcaaatcctc atcctcagtt
tggaggtgcc ctctccctcc cctccacgca cagctgtgac 1800aggtacccaa ccctgaggag
ccaccggtcc tcaccctacc ccagccccta tgctcatcgg 1860aacaattctc caacctattc
tgacaactca cctgcatgtt tatccatgct gcaatcccat 1920gacaattggt ccagccttgg
aatgcctgcc catcccagca tgctccccgt gagccacaat 1980gccagcccac ctaccagctc
cagtcagtac cccagcctgt ggtctgtgag caacggcgcc 2040gtcaccccgg gctcccaggc
agcagccgtg tccaacgggc tgggggccca gttcttccgg 2100ggctcccccg cgcactacac
acccctcacc catccggtct cggcgccctc ttcctcggga 2160tccccactgt acgaaggggc
ggccgcggcc acagacatcg tggacagcca gtacgacgcc 2220gcagcccaag gccgcctcat
agcctcatgg acacctgtgt cgccaccttc catgtgagat 2280atccgatcca ccggatctag
ataactgatc ataatcagcc ataccacatt tgtagaggtt 2340ttacttgctt taaaaaacct
cccacacctc cccctgaacc tgaaacataa aatgaatgca 2400attgttgttg ttaacttgtt
tattgcagct tataatggtt acaaataaag caatagcatc 2460acaaatttca caaataaagc
atttttttca ctgcattcta gttgtggttt gtccaaactc 2520atcaatgtat cttaacgcgg
atctggaagg tgctgaggta cgatgagacc cgcaccaggt 2580gcagaccctg cgagtgtggc
ggtaaacata ttaggaacca gcctgtgatg ctggatgtga 2640ccgaggagct gaggcccgat
cacttggtgc tggcctgcac ccgcgctgag tttggctcta 2700gcgatgaaga tacagattga
ggtactgaaa tgtgtgggcg tggcttaagg gtgggaaaga 2760atatataagg tgggggtctt
atgtagtttt gtatctgttt tgcagcagcc gccgccgcca 2820tgagcaccaa ctcgtttgat
ggaagcattg tgagctcata tttgacaacg cgcatgcccc 2880catgggccgg ggtgcgtcag
aatgtgatgg gctccagcat tgatggtcgc cccgtcctgc 2940ccgcaaactc tactaccttg
acctacgaga ccgtgtctgg aacgccgttg gagactgcag 3000cctccgccgc cgcttcagcc
gctgcagcca ccgcccgcgg gattgtgact gactttgctt 3060tcctgagccc gcttgcaagc
agtgcagctt cccgttcatc cgcccgcgat gacaagttga 3120cggctctttt ggcacaattg
gattctttga cccgggaact taatgtcgtt tctcagcagc 3180tgttggatct gcgccagcag
gtttctgccc tgaaggcttc ctcccctccc aatgcggttt 3240aaaacataaa taaaaaacca
gactctgttt ggatttggat caagcaagtg tcttgctgtc 3300tttatttagg ggttttgcgc
gcgcggtagg cccgggacca gcggtctcgg tcgttgaggg 3360tcctgtgtat tttttccagg
acgtggtaaa ggtgactctg gatgttcaga tacatgggca 3420taagcccgtc tctggggtgg
aggtagcacc actgcagagc ttcatgctgc ggggtggtgt 3480tgtagatgat ccagtcgtag
caggagcgct gggcgtggtg cctaaaaatg tctttcagta 3540gcaagctgat tgccaggggc
aggcccttgg tgtaagtgtt tacaaagcgg ttaagctggg 3600atgggtgcat acgtggggat
atgagatgca tcttggactg tatttttagg ttggctatgt 3660tcccagccat atccctccgg
ggattcatgt tgtgcagaac caccagcaca gtgtatccgg 3720tgcacttggg aaatttgtca
tgtagcttag aaggaaatgc gtggaagaac ttggagacgc 3780ccttgtgacc tccaagattt
tccatgcatt cgtccataat gatggcaatg ggcccacggg 3840cggcggcctg ggcgaagata
tttctgggat cactaacgtc atagttgtgt tccaggatga 3900gatcgtcata ggccattttt
acaaagcgcg ggcggagggt gccagactgc ggtataatgg 3960ttccatccgg cccaggggcg
tagttaccct cacagatttg catttcccac gctttgagtt 4020cagatggggg gatcatgtct
acctgcgggg cgatgaagaa aacggtttcc ggggtagggg 4080agatcagctg ggaagaaagc
aggttcctga gcagctgcga cttaccgcag ccggtgggcc 4140cgtaaatcac acctattacc
ggctgcaact ggtagttaag agagctgcag ctgccgtcat 4200ccctgagcag gggggccact
tcgttaagca tgtccctgac tcgcatgttt tccctgacca 4260aatccgccag aaggcgctcg
ccgcccagcg atagcagttc ttgcaaggaa gcaaagtttt 4320tcaacggttt gagaccgtcc
gccgtaggca tgcttttgag cgtttgacca agcagttcca 4380ggcggtccca cagctcggtc
acctgctcta cggcatctcg atccagcata tctcctcgtt 4440tcgcgggttg gggcggcttt
cgctgtacgg cagtagtcgg tgctcgtcca gacgggccag 4500ggtcatgtct ttccacgggc
gcagggtcct cgtcagcgta gtctgggtca cggtgaaggg 4560gtgcgctccg ggctgcgcgc
tggccagggt gcgcttgagg ctggtcctgc tggtgctgaa 4620gcgctgccgg tcttcgccct
gcgcgtcggc caggtagcat ttgaccatgg tgtcatagtc 4680cagcccctcc gcggcgtggc
ccttggcgcg cagcttgccc ttggaggagg cgccgcacga 4740ggggcagtgc agacttttga
gggcgtagag cttgggcgcg agaaataccg attccgggga 4800gtaggcatcc gcgccgcagg
ccccgcagac ggtctcgcat tccacgagcc aggtgagctc 4860tggccgttcg gggtcaaaaa
ccaggtttcc cccatgcttt ttgatgcgtt tcttacctct 4920ggtttccatg agccggtgtc
cacgctcggt gacgaaaagg ctgtccgtgt ccccgtatac 4980agacttgaga ggcctgtcct
cgagcggtgt tccgcggtcc tcctcgtata gaaactcgga 5040ccactctgag acaaaggctc
gcgtccaggc cagcacgaag gaggctaagt gggaggggta 5100gcggtcgttg tccactaggg
ggtccactcg ctccagggtg tgaagacaca tgtcgccctc 5160ttcggcatca aggaaggtga
ttggtttgta ggtgtaggcc acgtgaccgg gtgttcctga 5220aggggggcta taaaaggggg
tgggggcgcg ttcgtcctca ctctcttccg catcgctgtc 5280tgcgagggcc agctgttggg
gtgagtactc cctctgaaaa gcgggcatga cttctgcgct 5340aagattgtca gtttccaaaa
acgaggagga tttgatattc acctggcccg cggtgatgcc 5400tttgagggtg gccgcatcca
tctggtcaga aaagacaatc tttttgttgt caagcttggt 5460ggcaaacgac ccgtagaggg
cgttggacag caacttggcg atggagcgca gggtttggtt 5520tttgtcgcga tcggcgcgct
ccttggccgc gatgtttagc tgcacgtatt cgcgcgcaac 5580gcaccgccat tcgggaaaga
cggtggtgcg ctcgtcgggc accaggtgca cgcgccaacc 5640gcggttgtgc agggtgacaa
ggtcaacgct ggtggctacc tctccgcgta ggcgctcgtt 5700ggtccagcag aggcggccgc
ccttgcgcga gcagaatggc ggtagggggt ctagctgcgt 5760ctcgtccggg gggtctgcgt
ccacggtaaa gaccccgggc agcaggcgcg cgtcgaagta 5820gtctatcttg catccttgca
agtctagcgc ctgctgccat gcgcgggcgg caagcgcgcg 5880ctcgtatggg ttgagtgggg
gaccccatgg catggggtgg gtgagcgcgg aggcgtacat 5940gccgcaaatg tcgtaaacgt
agaggggctc tctgagtatt ccaagatatg tagggtagca 6000tcttccaccg cggatgctgg
cgcgcacgta atcgtatagt tcgtgcgagg gagcgaggag 6060gtcgggaccg aggttgctac
gggcgggctg ctctgctcgg aagactatct gcctgaagat 6120ggcatgtgag ttggatgata
tggttggacg ctggaagacg ttgaagctgg cgtctgtgag 6180acctaccgcg tcacgcacga
aggaggcgta ggagtcgcgc agcttgttga ccagctcggc 6240ggtgacctgc acgtctaggg
cgcagtagtc cagggtttcc ttgatgatgt catacttatc 6300ctgtcccttt tttttccaca
gctcgcggtt gaggacaaac tcttcgcggt ctttccagta 6360ctcttggatc ggaaacccgt
cggcctccga acggtaagag cctagcatgt agaactggtt 6420gacggcctgg taggcgcagc
atcccttttc tacgggtagc gcgtatgcct gcgcggcctt 6480ccggcatgac cagcatgaag
ggcacgagct gcttcccaaa ggcccccatc caagtatagg 6540tctctacatc gtaggtgaca
aagagacgct cggtgcgagg atgcgagccg atcgggaaga 6600actggatctc ccgccaccaa
ttggaggagt ggctattgat gtggtgaaag tagaagtccc 6660tgcgacgggc cgaacactcg
tgctggcttt tgtaaaaacg tgcgcagtac tggcagcggt 6720gcacgggctg tacatcctgc
acgaggttga cctgacgacc gcgcacaagg aagcagagtg 6780ggaatttgag cccctcgcct
ggcgggtttg gctggtggtc ttctacttcg gctgcttgtc 6840cttgaccgtc tggctgctcg
aggggagtta cggtggatcg gaccaccacg ccgcgcgagc 6900ccaaagtcca gatgtccgcg
cgcggcggtc ggagcttgat gacaacatcg cgcagatggg 6960agctgtccat ggtctggagc
tcccgcggcg tcaggtcagg cgggagctcc tgcaggttta 7020cctcgcatag acgggtcagg
gcgcgggcta gatccaggtg atacctaatt tccaggggct 7080ggttggtggc ggcgtcgatg
gcttgcaaga ggccgcatcc ccgcggcgcg actacggtac 7140cgcgcggcgg gcggtgggcc
gcgggggtgt ccttggatga tgcatctaaa agcggtgacg 7200cgggcgagcc cccggaggta
gggggggctc cggacccgcc gggagagggg gcaggggcac 7260gtcggcgccg cgcgcgggca
ggagctggtg ctgcgcgcgt aggttgctgg cgaacgcgac 7320gacgcggcgg ttgatctcct
gaatctggcg cctctgcgtg aagacgacgg gcccggtgag 7380cttgaacctg aaagagagtt
cgacagaatc aatttcggtg tcgttgacgg cggcctggcg 7440caaaatctcc tgcacgtctc
ctgagttgtc ttgataggcg atctcggcca tgaactgctc 7500gatctcttcc tcctggagat
ctccgcgtcc ggctcgctcc acggtggcgg cgaggtcgtt 7560ggaaatgcgg gccatgagct
gcgagaaggc gttgaggcct ccctcgttcc agacgcggct 7620gtagaccacg cccccttcgg
catcgcgggc gcgcatgacc acctgcgcga gattgagctc 7680cacgtgccgg gcgaagacgg
cgtagtttcg caggcgctga aagaggtagt tgagggtggt 7740ggcggtgtgt tctgccacga
agaagtacat aacccagcgt cgcaacgtgg attcgttgat 7800aattgttgtg taggtactcc
gccgccgagg gacctgagcg agtccgcatc gaccggatcg 7860gaaaacctct cgagaaaggc
gtctaaccag tcacagtcgc aaggtaggct gagcaccgtg 7920gcgggcggca gcgggcggcg
gtcggggttg tttctggcgg aggtgctgct gatgatgtaa 7980ttaaagtagg cggtcttgag
acggcggatg gtcgacagaa gcaccatgtc cttgggtccg 8040gcctgctgaa tgcgcaggcg
gtcggccatg ccccaggctt cgttttgaca tcggcgcagg 8100tctttgtagt agtcttgcat
gagcctttct accggcactt cttcttctcc ttcctcttgt 8160cctgcatctc ttgcatctat
cgctgcggcg gcggcggagt ttggccgtag gtggcgccct 8220cttcctccca tgcgtgtgac
cccgaagccc ctcatcggct gaagcagggc taggtcggcg 8280acaacgcgct cggctaatat
ggcctgctgc acctgcgtga gggtagactg gaagtcatcc 8340atgtccacaa agcggtggta
tgcgcccgtg ttgatggtgt aagtgcagtt ggccataacg 8400gaccagttaa cggtctggtg
acccggctgc gagagctcgg tgtacctgag acgcgagtaa 8460gccctcgagt caaatacgta
gtcgttgcaa gtccgcacca ggtactggta tcccaccaaa 8520aagtgcggcg gcggctggcg
gtagaggggc cagcgtaggg tggccggggc tccgggggcg 8580agatcttcca acataaggcg
atgatatccg tagatgtacc tggacatcca ggtgatgccg 8640gcggcggtgg tggaggcgcg
cggaaagtcg cggacgcggt tccagatgtt gcgcagcggc 8700aaaaagtgct ccatggtcgg
gacgctctgg ccggtcaggc gcgcgcaatc gttgacgctc 8760tagcgtgcaa aaggagagcc
tgtaagcggg cactcttccg tggtctggtg gataaattcg 8820caagggtatc atggcggacg
accggggttc gagccccgta tccggccgtc cgccgtgatc 8880catgcggtta ccgcccgcgt
gtcgaaccca ggtgtgcgac gtcagacaac gggggagtgc 8940tccttttggc ttccttccag
gcgcggcggc tgctgcgcta gcttttttgg ccactggccg 9000cgcgcagcgt aagcggttag
gctggaaagc gaaagcatta agtggctcgc tccctgtagc 9060cggagggtta ttttccaagg
gttgagtcgc gggacccccg gttcgagtct cggaccggcc 9120ggactgcggc gaacgggggt
ttgcctcccc gtcatgcaag accccgcttg caaattcctc 9180cggaaacagg gacgagcccc
ttttttgctt ttcccagatg catccggtgc tgcggcagat 9240gcgcccccct cctcagcagc
ggcaagagca agagcagcgg cagacatgca gggcaccctc 9300ccctcctcct accgcgtcag
gaggggcgac atccgcggtt gacgcggcag cagatggtga 9360ttacgaaccc ccgcggcgcc
gggcccggca ctacctggac ttggaggagg gcgagggcct 9420ggcgcggcta ggagcgccct
ctcctgagcg gcacccaagg gtgcagctga agcgtgatac 9480gcgtgaggcg tacgtgccgc
ggcagaacct gtttcgcgac cgcgagggag aggagcccga 9540ggagatgcgg gatcgaaagt
tccacgcagg gcgcgagctg cggcatggcc tgaatcgcga 9600gcggttgctg cgcgaggagg
actttgagcc cgacgcgcga accgggatta gtcccgcgcg 9660cgcacacgtg gcggccgccg
acctggtaac cgcatacgag cagacggtga accaggagat 9720taactttcaa aaaagcttta
acaaccacgt gcgtacgctt gtggcgcgcg aggaggtggc 9780tataggactg atgcatctgt
gggactttgt aagcgcgctg gagcaaaacc caaatagcaa 9840gccgctcatg gcgcagctgt
tccttatagt gcagcacagc agggacaacg aggcattcag 9900ggatgcgctg ctaaacatag
tagagcccga gggccgctgg ctgctcgatt tgataaacat 9960cctgcagagc atagtggtgc
aggagcgcag cttgagcctg gctgacaagg tggccgccat 10020caactattcc atgcttagcc
tgggcaagtt ttacgcccgc aagatatacc atacccctta 10080cgttcccata gacaaggagg
taaagatcga ggggttctac atgcgcatgg cgctgaaggt 10140gcttaccttg agcgacgacc
tgggcgttta tcgcaacgag cgcatccaca aggccgtgag 10200cgtgagccgg cggcgcgagc
tcagcgaccg cgagctgatg cacagcctgc aaagggccct 10260ggctggcacg ggcagcggcg
atagagaggc cgagtcctac tttgacgcgg gcgctgacct 10320gcgctgggcc ccaagccgac
gcgccctgga ggcagctggg gccggacctg ggctggcggt 10380ggcacccgcg cgcgctggca
acgtcggcgg cgtggaggaa tatgacgagg acgatgagta 10440cgagccagag gacggcgagt
actaagcggt gatgtttctg atcagatgat gcaagacgca 10500acggacccgg cggtgcgggc
ggcgctgcag agccagccgt ccggccttaa ctccacggac 10560gactggcgcc aggtcatgga
ccgcatcatg tcgctgactg cgcgcaatcc tgacgcgttc 10620cggcagcagc cgcaggccaa
ccggctctcc gcaattctgg aagcggtggt cccggcgcgc 10680gcaaacccca cgcacgagaa
ggtgctggcg atcgtaaacg cgctggccga aaacagggcc 10740atccggcccg acgaggccgg
cctggtctac gacgcgctgc ttcagcgcgt ggctcgttac 10800aacagcggca acgtgcagac
caacctggac cggctggtgg gggatgtgcg cgaggccgtg 10860gcgcagcgtg agcgcgcgca
gcagcagggc aacctgggct ccatggttgc actaaacgcc 10920ttcctgagta cacagcccgc
caacgtgccg cggggacagg aggactacac caactttgtg 10980agcgcactgc ggctaatggt
gactgagaca ccgcaaagtg aggtgtacca gtctgggcca 11040gactattttt tccagaccag
tagacaaggc ctgcagaccg taaacctgag ccaggctttc 11100aaaaacttgc aggggctgtg
gggggtgcgg gctcccacag gcgaccgcgc gaccgtgtct 11160agcttgctga cgcccaactc
gcgcctgttg ctgctgctaa tagcgccctt cacggacagt 11220ggcagcgtgt cccgggacac
atacctaggt cacttgctga cactgtaccg cgaggccata 11280ggtcaggcgc atgtggacga
gcatactttc caggagatta caagtgtcag ccgcgcgctg 11340gggcaggagg acacgggcag
cctggaggca accctaaact acctgctgac caaccggcgg 11400cagaagatcc cctcgttgca
cagtttaaac agcgaggagg agcgcatttt gcgctacgtg 11460cagcagagcg tgagccttaa
cctgatgcgc gacggggtaa cgcccagcgt ggcgctggac 11520atgaccgcgc gcaacatgga
accgggcatg tatgcctcaa accggccgtt tatcaaccgc 11580ctaatggact acttgcatcg
cgcggccgcc gtgaaccccg agtatttcac caatgccatc 11640ttgaacccgc actggctacc
gccccctggt ttctacaccg ggggattcga ggtgcccgag 11700ggtaacgatg gattcctctg
ggacgacata gacgacagcg tgttttcccc gcaaccgcag 11760accctgctag agttgcaaca
gcgcgagcag gcagaggcgg cgctgcgaaa ggaaagcttc 11820cgcaggccaa gcagcttgtc
cgatctaggc gctgcggccc cgcggtcaga tgctagtagc 11880ccatttccaa gcttgatagg
gtctcttacc agcactcgca ccacccgccc gcgcctgctg 11940ggcgaggagg agtacctaaa
caactcgctg ctgcagccgc agcgcgaaaa aaacctgcct 12000ccggcatttc ccaacaacgg
gatagagagc ctagtggaca agatgagtag atggaagacg 12060tacgcgcagg agcacaggga
cgtgccaggc ccgcgcccgc ccacccgtcg tcaaaggcac 12120gaccgtcagc ggggtctggt
gtgggaggac gatgactcgg cagacgacag cagcgtcctg 12180gatttgggag ggagtggcaa
cccgtttgcg caccttcgcc ccaggctggg gagaatgttt 12240taaaaaaaaa aaagcatgat
gcaaaataaa aaactcacca aggccatggc accgagcgtt 12300ggttttcttg tattcccctt
agtatgcggc gcgcggcgat gtatgaggaa ggtcctcctc 12360cctcctacga gagtgtggtg
agcgcggcgc cagtggcggc ggcgctgggt tctcccttcg 12420atgctcccct ggacccgccg
tttgtgcctc cgcggtacct gcggcctacc ggggggagaa 12480acagcatccg ttactctgag
ttggcacccc tattcgacac cacccgtgtg tacctggtgg 12540acaacaagtc aacggatgtg
gcatccctga actaccagaa cgaccacagc aactttctga 12600ccacggtcat tcaaaacaat
gactacagcc cgggggaggc aagcacacag accatcaatc 12660ttgacgaccg gtcgcactgg
ggcggcgacc tgaaaaccat cctgcatacc aacatgccaa 12720atgtgaacga gttcatgttt
accaataagt ttaaggcgcg ggtgatggtg tcgcgcttgc 12780ctactaagga caatcaggtg
gagctgaaat acgagtgggt ggagttcacg ctgcccgagg 12840gcaactactc cgagaccatg
accatagacc ttatgaacaa cgcgatcgtg gagcactact 12900tgaaagtggg cagacagaac
ggggttctgg aaagcgacat cggggtaaag tttgacaccc 12960gcaacttcag actggggttt
gaccccgtca ctggtcttgt catgcctggg gtatatacaa 13020acgaagcctt ccatccagac
atcattttgc tgccaggatg cggggtggac ttcacccaca 13080gccgcctgag caacttgttg
ggcatccgca agcggcaacc cttccaggag ggctttagga 13140tcacctacga tgatctggag
ggtggtaaca ttcccgcact gttggatgtg gacgcctacc 13200aggcgagctt gaaagatgac
accgaacagg gcgggggtgg cgcaggcggc agcaacagca 13260gtggcagcgg cgcggaagag
aactccaacg cggcagccgc ggcaatgcag ccggtggagg 13320acatgaacga tcatgccatt
cgcggcgaca cctttgccac acgggctgag gagaagcgcg 13380ctgaggccga agcagcggcc
gaagctgccg cccccgctgc gcaacccgag gtcgagaagc 13440ctcagaagaa accggtgatc
aaacccctga cagaggacag caagaaacgc agttacaacc 13500taataagcaa tgacagcacc
ttcacccagt accgcagctg gtaccttgca tacaactacg 13560gcgaccctca gaccggaatc
cgctcatgga ccctgctttg cactcctgac gtaacctgcg 13620gctcggagca ggtctactgg
tcgttgccag acatgatgca agaccccgtg accttccgct 13680ccacgcgcca gatcagcaac
tttccggtgg tgggcgccga gctgttgccc gtgcactcca 13740agagcttcta caacgaccag
gccgtctact cccaactcat ccgccagttt acctctctga 13800cccacgtgtt caatcgcttt
cccgagaacc agattttggc gcgcccgcca gcccccacca 13860tcaccaccgt cagtgaaaac
gttcctgctc tcacagatca cgggacgcta ccgctgcgca 13920acagcatcgg aggagtccag
cgagtgacca ttactgacgc cagacgccgc acctgcccct 13980acgtttacaa ggccctgggc
atagtctcgc cgcgcgtcct atcgagccgc actttttgag 14040caagcatgtc catccttata
tcgcccagca ataacacagg ctggggcctg cgcttcccaa 14100gcaagatgtt tggcggggcc
aagaagcgct ccgaccaaca cccagtgcgc gtgcgcgggc 14160actaccgcgc gccctggggc
gcgcacaaac gcggccgcac tgggcgcacc accgtcgatg 14220acgccatcga cgcggtggtg
gaggaggcgc gcaactacac gcccacgccg ccaccagtgt 14280ccacagtgga cgcggccatt
cagaccgtgg tgcgcggagc ccggcgctat gctaaaatga 14340agagacggcg gaggcgcgta
gcacgtcgcc accgccgccg acccggcact gccgcccaac 14400gcgcggcggc ggccctgctt
aaccgcgcac gtcgcaccgg ccgacgggcg gccatgcggg 14460ccgctcgaag gctggccgcg
ggtattgtca ctgtgccccc caggtccagg cgacgagcgg 14520ccgccgcagc agccgcggcc
attagtgcta tgactcaggg tcgcaggggc aacgtgtatt 14580gggtgcgcga ctcggttagc
ggcctgcgcg tgcccgtgcg cacccgcccc ccgcgcaact 14640agattgcaag aaaaaactac
ttagactcgt actgttgtat gtatccagcg gcggcggcgc 14700gcaacgaagc tatgtccaag
cgcaaaatca aagaagagat gctccaggtc atcgcgccgg 14760agatctatgg ccccccgaag
aaggaagagc aggattacaa gccccgaaag ctaaagcggg 14820tcaaaaagaa aaagaaagat
gatgatgatg aacttgacga cgaggtggaa ctgctgcacg 14880ctaccgcgcc caggcgacgg
gtacagtgga aaggtcgacg cgtaaaacgt gttttgcgac 14940ccggcaccac cgtagtcttt
acgcccggtg agcgctccac ccgcacctac aagcgcgtgt 15000atgatgaggt gtacggcgac
gaggacctgc ttgagcaggc caacgagcgc ctcggggagt 15060ttgcctacgg aaagcggcat
aaggacatgc tggcgttgcc gctggacgag ggcaacccaa 15120cacctagcct aaagcccgta
acactgcagc aggtgctgcc cgcgcttgca ccgtccgaag 15180aaaagcgcgg cctaaagcgc
gagtctggtg acttggcacc caccgtgcag ctgatggtac 15240ccaagcgcca gcgactggaa
gatgtcttgg aaaaaatgac cgtggaacct gggctggagc 15300ccgaggtccg cgtgcggcca
atcaagcagg tggcgccggg actgggcgtg cagaccgtgg 15360acgttcagat acccactacc
agtagcacca gtattgccac cgccacagag ggcatggaga 15420cacaaacgtc cccggttgcc
tcagcggtgg cggatgccgc ggtgcaggcg gtcgctgcgg 15480ccgcgtccaa gacctctacg
gaggtgcaaa cggacccgtg gatgtttcgc gtttcagccc 15540cccggcgccc gcgccgttcg
aggaagtacg gcgccgccag cgcgctactg cccgaatatg 15600ccctacatcc ttccattgcg
cctacccccg gctatcgtgg ctacacctac cgccccagaa 15660gacgagcaac tacccgacgc
cgaaccacca ctggaacccg ccgccgccgt cgccgtcgcc 15720agcccgtgct ggccccgatt
tccgtgcgca gggtggctcg cgaaggaggc aggaccctgg 15780tgctgccaac agcgcgctac
caccccagca tcgtttaaaa gccggtcttt gtggttcttg 15840cagatatggc cctcacctgc
cgcctccgtt tcccggtgcc gggattccga ggaagaatgc 15900accgtaggag gggcatggcc
ggccacggcc tgacgggcgg catgcgtcgt gcgcaccacc 15960ggcggcggcg cgcgtcgcac
cgtcgcatgc gcggcggtat cctgcccctc cttattccac 16020tgatcgccgc ggcgattggc
gccgtgcccg gaattgcatc cgtggccttg caggcgcaga 16080gacactgatt aaaaacaagt
tgcatgtgga aaaatcaaaa taaaaagtct ggactctcac 16140gctcgcttgg tcctgtaact
attttgtaga atggaagaca tcaactttgc gtctctggcc 16200ccgcgacacg gctcgcgccc
gttcatggga aactggcaag atatcggcac cagcaatatg 16260agcggtggcg ccttcagctg
gggctcgctg tggagcggca ttaaaaattt cggttccacc 16320gttaagaact atggcagcaa
ggcctggaac agcagcacag gccagatgct gagggataag 16380ttgaaagagc aaaatttcca
acaaaaggtg gtagatggcc tggcctctgg cattagcggg 16440gtggtggacc tggccaacca
ggcagtgcaa aataagatta acagtaagct tgatccccgc 16500cctcccgtag aggagcctcc
accggccgtg gagacagtgt ctccagaggg gcgtggcgaa 16560aagcgtccgc gccccgacag
ggaagaaact ctggtgacgc aaatagacga gcctccctcg 16620tacgaggagg cactaaagca
aggcctgccc accacccgtc ccatcgcgcc catggctacc 16680ggagtgctgg gccagcacac
acccgtaacg ctggacctgc ctccccccgc cgacacccag 16740cagaaacctg tgctgccagg
cccgaccgcc gttgttgtaa cccgtcctag ccgcgcgtcc 16800ctgcgccgcg ccgccagcgg
tccgcgatcg ttgcggcccg tagccagtgg caactggcaa 16860agcacactga acagcatcgt
gggtctgggg gtgcaatccc tgaagcgccg acgatgcttc 16920tgatagctaa cgtgtcgtat
gtgtgtcatg tatgcgtcca tgtcgccgcc agaggagctg 16980ctgagccgcc gcgcgcccgc
tttccaagat ggctacccct tcgatgatgc cgcagtggtc 17040ttacatgcac atctcgggcc
aggacgcctc ggagtacctg agccccgggc tggtgcagtt 17100tgcccgcgcc accgagacgt
acttcagcct gaataacaag tttagaaacc ccacggtggc 17160gcctacgcac gacgtgacca
cagaccggtc ccagcgtttg acgctgcggt tcatccctgt 17220ggaccgtgag gatactgcgt
actcgtacaa ggcgcggttc accctagctg tgggtgataa 17280ccgtgtgctg gacatggctt
ccacgtactt tgacatccgc ggcgtgctgg acaggggccc 17340tacttttaag ccctactctg
gcactgccta caacgccctg gctcccaagg gtgccccaaa 17400tccttgcgaa tgggatgaag
ctgctactgc tcttgaaata aacctagaag aagaggacga 17460tgacaacgaa gacgaagtag
acgagcaagc tgagcagcaa aaaactcacg tatttgggca 17520ggcgccttat tctggtataa
atattacaaa ggagggtatt caaataggtg tcgaaggtca 17580aacacctaaa tatgccgata
aaacatttca acctgaacct caaataggag aatctcagtg 17640gtacgaaaca gaaattaatc
atgcagctgg gagagtccta aaaaagacta ccccaatgaa 17700accatgttac ggttcatatg
caaaacccac aaatgaaaat ggagggcaag gcattcttgt 17760aaagcaacaa aatggaaagc
tagaaagtca agtggaaatg caatttttct caactactga 17820ggcagccgca ggcaatggtg
ataacttgac tcctaaagtg gtattgtaca gtgaagatgt 17880agatatagaa accccagaca
ctcatatttc ttacatgccc actattaagg aaggtaactc 17940acgagaacta atgggccaac
aatctatgcc caacaggcct aattacattg cttttaggga 18000caattttatt ggtctaatgt
attacaacag cacgggtaat atgggtgttc tggcgggcca 18060agcatcgcag ttgaatgctg
ttgtagattt gcaagacaga aacacagagc tttcatacca 18120gcttttgctt gattccattg
gtgatagaac caggtacttt tctatgtgga atcaggctgt 18180tgacagctat gatccagatg
ttagaattat tgaaaatcat ggaactgaag atgaacttcc 18240aaattactgc tttccactgg
gaggtgtgat taatacagag actcttacca aggtaaaacc 18300taaaacaggt caggaaaatg
gatgggaaaa agatgctaca gaattttcag ataaaaatga 18360aataagagtt ggaaataatt
ttgccatgga aatcaatcta aatgccaacc tgtggagaaa 18420tttcctgtac tccaacatag
cgctgtattt gcccgacaag ctaaagtaca gtccttccaa 18480cgtaaaaatt tctgataacc
caaacaccta cgactacatg aacaagcgag tggtggctcc 18540cgggctagtg gactgctaca
ttaaccttgg agcacgctgg tcccttgact atatggacaa 18600cgtcaaccca tttaaccacc
accgcaatgc tggcctgcgc taccgctcaa tgttgctggg 18660caatggtcgc tatgtgccct
tccacatcca ggtgcctcag aagttctttg ccattaaaaa 18720cctccttctc ctgccgggct
catacaccta cgagtggaac ttcaggaagg atgttaacat 18780ggttctgcag agctccctag
gaaatgacct aagggttgac ggagccagca ttaagtttga 18840tagcatttgc ctttacgcca
ccttcttccc catggcccac aacaccgcct ccacgcttga 18900ggccatgctt agaaacgaca
ccaacgacca gtcctttaac gactatctct ccgccgccaa 18960catgctctac cctatacccg
ccaacgctac caacgtgccc atatccatcc cctcccgcaa 19020ctgggcggct ttccgcggct
gggccttcac gcgccttaag actaaggaaa ccccatcact 19080gggctcgggc tacgaccctt
attacaccta ctctggctct ataccctacc tagatggaac 19140cttttacctc aaccacacct
ttaagaaggt ggccattacc tttgactctt ctgtcagctg 19200gcctggcaat gaccgcctgc
ttacccccaa cgagtttgaa attaagcgct cagttgacgg 19260ggagggttac aacgttgccc
agtgtaacat gaccaaagac tggttcctgg tacaaatgct 19320agctaactat aacattggct
accagggctt ctatatccca gagagctaca aggaccgcat 19380gtactccttc tttagaaact
tccagcccat gagccgtcag gtggtggatg atactaaata 19440caaggactac caacaggtgg
gcatcctaca ccaacacaac aactctggat ttgttggcta 19500ccttgccccc accatgcgcg
aaggacaggc ctaccctgct aacttcccct atccgcttat 19560aggcaagacc gcagttgaca
gcattaccca gaaaaagttt ctttgcgatc gcaccctttg 19620gcgcatccca ttctccagta
actttatgtc catgggcgca ctcacagacc tgggccaaaa 19680ccttctctac gccaactccg
cccacgcgct agacatgact tttgaggtgg atcccatgga 19740cgagcccacc cttctttatg
ttttgtttga agtctttgac gtggtccgtg tgcaccagcc 19800gcaccgcggc gtcatcgaaa
ccgtgtacct gcgcacgccc ttctcggccg gcaacgccac 19860aacataaaga agcaagcaac
atcaacaaca gctgccgcca tgggctccag tgagcaggaa 19920ctgaaagcca ttgtcaaaga
tcttggttgt gggccatatt ttttgggcac ctatgacaag 19980cgctttccag gctttgtttc
tccacacaag ctcgcctgcg ccatagtcaa tacggccggt 20040cgcgagactg ggggcgtaca
ctggatggcc tttgcctgga acccgcactc aaaaacatgc 20100tacctctttg agccctttgg
cttttctgac cagcgactca agcaggttta ccagtttgag 20160tacgagtcac tcctgcgccg
tagcgccatt gcttcttccc ccgaccgctg tataacgctg 20220gaaaagtcca cccaaagcgt
acaggggccc aactcggccg cctgtggact attctgctgc 20280atgtttctcc acgcctttgc
caactggccc caaactccca tggatcacaa ccccaccatg 20340aaccttatta ccggggtacc
caactccatg ctcaacagtc cccaggtaca gcccaccctg 20400cgtcgcaacc aggaacagct
ctacagcttc ctggagcgcc actcgcccta cttccgcagc 20460cacagtgcgc agattaggag
cgccacttct ttttgtcact tgaaaaacat gtaaaaataa 20520tgtactagag acactttcaa
taaaggcaaa tgcttttatt tgtacactct cgggtgatta 20580tttaccccca cccttgccgt
ctgcgccgtt taaaaatcaa aggggttctg ccgcgcatcg 20640ctatgcgcca ctggcaggga
cacgttgcga tactggtgtt tagtgctcca cttaaactca 20700ggcacaacca tccgcggcag
ctcggtgaag ttttcactcc acaggctgcg caccatcacc 20760aacgcgttta gcaggtcggg
cgccgatatc ttgaagtcgc agttggggcc tccgccctgc 20820gcgcgcgagt tgcgatacac
agggttgcag cactggaaca ctatcagcgc cgggtggtgc 20880acgctggcca gcacgctctt
gtcggagatc agatccgcgt ccaggtcctc cgcgttgctc 20940agggcgaacg gagtcaactt
tggtagctgc cttcccaaaa agggcgcgtg cccaggcttt 21000gagttgcact cgcaccgtag
tggcatcaaa aggtgaccgt gcccggtctg ggcgttagga 21060tacagcgcct gcataaaagc
cttgatctgc ttaaaagcca cctgagcctt tgcgccttca 21120gagaagaaca tgccgcaaga
cttgccggaa aactgattgg ccggacaggc cgcgtcgtgc 21180acgcagcacc ttgcgtcggt
gttggagatc tgcaccacat ttcggcccca ccggttcttc 21240acgatcttgg ccttgctaga
ctgctccttc agcgcgcgct gcccgttttc gctcgtcaca 21300tccatttcaa tcacgtgctc
cttatttatc ataatgcttc cgtgtagaca cttaagctcg 21360ccttcgatct cagcgcagcg
gtgcagccac aacgcgcagc ccgtgggctc gtgatgcttg 21420taggtcacct ctgcaaacga
ctgcaggtac gcctgcagga atcgccccat catcgtcaca 21480aaggtcttgt tgctggtgaa
ggtcagctgc aacccgcggt gctcctcgtt cagccaggtc 21540ttgcatacgg ccgccagagc
ttccacttgg tcaggcagta gtttgaagtt cgcctttaga 21600tcgttatcca cgtggtactt
gtccatcagc gcgcgcgcag cctccatgcc cttctcccac 21660gcagacacga tcggcacact
cagcgggttc atcaccgtaa tttcactttc cgcttcgctg 21720ggctcttcct cttcctcttg
cgtccgcata ccacgcgcca ctgggtcgtc ttcattcagc 21780cgccgcactg tgcgcttacc
tcctttgcca tgcttgatta gcaccggtgg gttgctgaaa 21840cccaccattt gtagcgccac
atcttctctt tcttcctcgc tgtccacgat tacctctggt 21900gatggcgggc gctcgggctt
gggagaaggg cgcttctttt tcttcttggg cgcaatggcc 21960aaatccgccg ccgaggtcga
tggccgcggg ctgggtgtgc gcggcaccag cgcgtcttgt 22020gatgagtctt cctcgtcctc
ggactcgata cgccgcctca tccgcttttt tgggggcgcc 22080cggggaggcg gcggcgacgg
ggacggggac gacacgtcct ccatggttgg gggacgtcgc 22140gccgcaccgc gtccgcgctc
gggggtggtt tcgcgctgct cctcttcccg actggccatt 22200tccttctcct ataggcagaa
aaagatcatg gagtcagtcg agaagaagga cagcctaacc 22260gccccctctg agttcgccac
caccgcctcc accgatgccg ccaacgcgcc taccaccttc 22320cccgtcgagg cacccccgct
tgaggaggag gaagtgatta tcgagcagga cccaggtttt 22380gtaagcgaag acgacgagga
ccgctcagta ccaacagagg ataaaaagca agaccaggac 22440aacgcagagg caaacgagga
acaagtcggg cggggggacg aaaggcatgg cgactaccta 22500gatgtgggag acgacgtgct
gttgaagcat ctgcagcgcc agtgcgccat tatctgcgac 22560gcgttgcaag agcgcagcga
tgtgcccctc gccatagcgg atgtcagcct tgcctacgaa 22620cgccacctat tctcaccgcg
cgtacccccc aaacgccaag aaaacggcac atgcgagccc 22680aacccgcgcc tcaacttcta
ccccgtattt gccgtgccag aggtgcttgc cacctatcac 22740atctttttcc aaaactgcaa
gataccccta tcctgccgtg ccaaccgcag ccgagcggac 22800aagcagctgg ccttgcggca
gggcgctgtc atacctgata tcgcctcgct caacgaagtg 22860ccaaaaatct ttgagggtct
tggacgcgac gagaagcgcg cggcaaacgc tctgcaacag 22920gaaaacagcg aaaatgaaag
tcactctgga gtgttggtgg aactcgaggg tgacaacgcg 22980cgcctagccg tactaaaacg
cagcatcgag gtcacccact ttgcctaccc ggcacttaac 23040ctacccccca aggtcatgag
cacagtcatg agtgagctga tcgtgcgccg tgcgcagccc 23100ctggagaggg atgcaaattt
gcaagaacaa acagaggagg gcctacccgc agttggcgac 23160gagcagctag cgcgctggct
tcaaacgcgc gagcctgccg acttggagga gcgacgcaaa 23220ctaatgatgg ccgcagtgct
cgttaccgtg gagcttgagt gcatgcagcg gttctttgct 23280gacccggaga tgcagcgcaa
gctagaggaa acattgcact acacctttcg acagggctac 23340gtacgccagg cctgcaagat
ctccaacgtg gagctctgca acctggtctc ctaccttgga 23400attttgcacg aaaaccgcct
tgggcaaaac gtgcttcatt ccacgctcaa gggcgaggcg 23460cgccgcgact acgtccgcga
ctgcgtttac ttatttctat gctacacctg gcagacggcc 23520atgggcgttt ggcagcagtg
cttggaggag tgcaacctca aggagctgca gaaactgcta 23580aagcaaaact tgaaggacct
atggacggcc ttcaacgagc gctccgtggc cgcgcacctg 23640gcggacatca ttttccccga
acgcctgctt aaaaccctgc aacagggtct gccagacttc 23700accagtcaaa gcatgttgca
gaactttagg aactttatcc tagagcgctc aggaatcttg 23760cccgccacct gctgtgcact
tcctagcgac tttgtgccca ttaagtaccg cgaatgccct 23820ccgccgcttt ggggccactg
ctaccttctg cagctagcca actaccttgc ctaccactct 23880gacataatgg aagacgtgag
cggtgacggt ctactggagt gtcactgtcg ctgcaaccta 23940tgcaccccgc accgctccct
ggtttgcaat tcgcagctgc ttaacgaaag tcaaattatc 24000ggtacctttg agctgcaggg
tccctcgcct gacgaaaagt ccgcggctcc ggggttgaaa 24060ctcactccgg ggctgtggac
gtcggcttac cttcgcaaat ttgtacctga ggactaccac 24120gcccacgaga ttaggttcta
cgaagaccaa tcccgcccgc ctaatgcgga gcttaccgcc 24180tgcgtcatta cccagggcca
cattcttggc caattgcaag ccatcaacaa agcccgccaa 24240gagtttctgc tacgaaaggg
acggggggtt tacttggacc cccagtccgg cgaggagctc 24300aacccaatcc ccccgccgcc
gcagccctat cagcagcagc cgcgggccct tgcttcccag 24360gatggcaccc aaaaagaagc
tgcagctgcc gccgccaccc acggacgagg aggaatactg 24420ggacagtcag gcagaggagg
ttttggacga ggaggaggag gacatgatgg aagactggga 24480gagcctagac gaggaagctt
ccgaggtcga agaggtgtca gacgaaacac cgtcaccctc 24540ggtcgcattc ccctcgccgg
cgccccagaa atcggcaacc ggttccagca tggctacaac 24600ctccgctcct caggcgccgc
cggcactgcc cgttcgccga cccaaccgta gatgggacac 24660cactggaacc agggccggta
agtccaagca gccgccgccg ttagcccaag agcaacaaca 24720gcgccaaggc taccgctcat
ggcgcgggca caagaacgcc atagttgctt gcttgcaaga 24780ctgtgggggc aacatctcct
tcgcccgccg ctttcttctc taccatcacg gcgtggcctt 24840cccccgtaac atcctgcatt
actaccgtca tctctacagc ccatactgca ccggcggcag 24900cggcagcaac agcagcggcc
acacagaagc aaaggcgacc ggatagcaag actctgacaa 24960agcccaagaa atccacagcg
gcggcagcag caggaggagg agcgctgcgt ctggcgccca 25020acgaacccgt atcgacccgc
gagcttagaa acaggatttt tcccactctg tatgctatat 25080ttcaacagag caggggccaa
gaacaagagc tgaaaataaa aaacaggtct ctgcgatccc 25140tcacccgcag ctgcctgtat
cacaaaagcg aagatcagct tcggcgcacg ctggaagacg 25200cggaggctct cttcagtaaa
tactgcgcgc tgactcttaa ggactagttt cgcgcccttt 25260ctcaaattta agcgcgaaaa
ctacgtcatc tccagcggcc acacccggcg ccagcacctg 25320ttgtcagcgc cattatgagc
aaggaaattc ccacgcccta catgtggagt taccagccac 25380aaatgggact tgcggctgga
gctgcccaag actactcaac ccgaataaac tacatgagcg 25440cgggacccca catgatatcc
cgggtcaacg gaatacgcgc ccaccgaaac cgaattctcc 25500tggaacaggc ggctattacc
accacacctc gtaataacct taatccccgt agttggcccg 25560ctgccctggt gtaccaggaa
agtcccgctc ccaccactgt ggtacttccc agagacgccc 25620aggccgaagt tcagatgact
aactcagggg cgcagcttgc gggcggcttt cgtcacaggg 25680tgcggtcgcc cgggcagggt
ataactcacc tgacaatcag agggcgaggt attcagctca 25740acgacgagtc ggtgagctcc
tcgcttggtc tccgtccgga cgggacattt cagatcggcg 25800gcgccggccg ctcttcattc
acgcctcgtc aggcaatcct aactctgcag acctcgtcct 25860ctgagccgcg ctctggaggc
attggaactc tgcaatttat tgaggagttt gtgccatcgg 25920tctactttaa ccccttctcg
ggacctcccg gccactatcc ggatcaattt attcctaact 25980ttgacgcggt aaaggactcg
gcggacggct acgactgaat gttaagtgga gaggcagagc 26040aactgcgcct gaaacacctg
gtccactgtc gccgccacaa gtgctttgcc cgcgactccg 26100gtgagttttg ctactttgaa
ttgcccgagg atcatatcga gggcccggcg cacggcgtcc 26160ggcttaccgc ccagggagag
cttgcccgta gcctgattcg ggagtttacc cagcgccccc 26220tgctagttga gcgggacagg
ggaccctgtg ttctcactgt gatttgcaac tgtcctaacc 26280ctggattaca tcaagatcct
ctagttaatg tcaggtcgcc taagtcgatt aactagagta 26340cccggggatc ttattccctt
taactaataa aaaaaaataa taaagcatca cttacttaaa 26400atcagttagc aaatttctgt
ccagtttatt cagcagcacc tccttgccct cctcccagct 26460ctggtattgc agcttcctcc
tggctgcaaa ctttctccac aatctaaatg gaatgtcagt 26520ttcctcctgt tcctgtccat
ccgcacccac tatcttcatg ttgttgcaga tgaagcgcgc 26580aagaccgtct gaagatacct
tcaaccccgt gtatccatat gacacggaaa ccggtcctcc 26640aactgtgcct tttcttactc
ctccctttgt atcccccaat gggtttcaag agagtccccc 26700tggggtactc tctttgcgcc
tatccgaacc tctagttacc tccaatggca tgcttgcgct 26760caaaatgggc aacggcctct
ctctggacga ggccggcaac cttacctccc aaaatgtaac 26820cactgtgagc ccacctctca
aaaaaaccaa gtcaaacata aacctggaaa tatctgcacc 26880cctcacagtt acctcagaag
ccctaactgt ggctgccgcc gcacctctaa tggtcgcggg 26940caacacactc accatgcaat
cacaggcccc gctaaccgtg cacgactcca aacttagcat 27000tgccacccaa ggacccctca
cagtgtcaga aggaaagcta gccctgcaaa catcaggccc 27060cctcaccacc accgatagca
gtacccttac tatcactgcc tcaccccctc taactactgc 27120cactggtagc ttgggcattg
acttgaaaga gcccatttat acacaaaatg gaaaactagg 27180actaaagtac ggggctcctt
tgcatgtaac agacgaccta aacactttga ccgtagcaac 27240tggtccaggt gtgactatta
ataatacttc cttgcaaact aaagttactg gagccttggg 27300ttttgattca caaggcaata
tgcaacttaa tgtagcagga ggactaagga ttgattctca 27360aaacagacgc cttatacttg
atgttagtta tccgtttgat gctcaaaacc aactaaatct 27420aagactagga cagggccctc
tttttataaa ctcagcccac aacttggata ttaactacaa 27480caaaggcctt tacttgttta
cagcttcaaa caattccaaa aagcttgagg ttaacctaag 27540cactgccaag gggttgatgt
ttgacgctac agccatagcc attaatgcag gagatgggct 27600tgaatttggt tcacctaatg
caccaaacac aaatcccctc aaaacaaaaa ttggccatgg 27660cctagaattt gattcaaaca
aggctatggt tcctaaacta ggaactggcc ttagttttga 27720cagcacaggt gccattacag
taggaaacaa aaataatgat aagctaactt tgtggaccac 27780accagctcca tctcctaact
gtagactaaa tgcagagaaa gatgctaaac tcactttggt 27840cttaacaaaa tgtggcagtc
aaatacttgc tacagtttca gttttggctg ttaaaggcag 27900tttggctcca atatctggaa
cagttcaaag tgctcatctt attataagat ttgacgaaaa 27960tggagtgcta ctaaacaatt
ccttcctgga cccagaatat tggaacttta gaaatggaga 28020tcttactgaa ggcacagcct
atacaaacgc tgttggattt atgcctaacc tatcagctta 28080tccaaaatct cacggtaaaa
ctgccaaaag taacattgtc agtcaagttt acttaaacgg 28140agacaaaact aaacctgtaa
cactaaccat tacactaaac ggtacacagg aaacaggaga 28200cacaactcca agtgcatact
ctatgtcatt ttcatgggac tggtctggcc acaactacat 28260taatgaaata tttgccacat
cctcttacac tttttcatac attgcccaag aataaagaat 28320cgtttgtgtt atgtttcaac
gtgtttattt ttcaattgca gaaaatttca agtcattttt 28380cattcagtag tatagcccca
ccaccacata gcttatacag atcaccgtac cttaatcaaa 28440ctcacagaac cctagtattc
aacctgccac ctccctccca acacacagag tacacagtcc 28500tttctccccg gctggcctta
aaaagcatca tatcatgggt aacagacata ttcttaggtg 28560ttatattcca cacggtttcc
tgtcgagcca aacgctcatc agtgatatta ataaactccc 28620cgggcagctc acttaagttc
atgtcgctgt ccagctgctg agccacaggc tgctgtccaa 28680cttgcggttg cttaacgggc
ggcgaaggag aagtccacgc ctacatgggg gtagagtcat 28740aatcgtgcat caggataggg
cggtggtgct gcagcagcgc gcgaataaac tgctgccgcc 28800gccgctccgt cctgcaggaa
tacaacatgg cagtggtctc ctcagcgatg attcgcaccg 28860cccgcagcat aaggcgcctt
gtcctccggg cacagcagcg caccctgatc tcacttaaat 28920cagcacagta actgcagcac
agcaccacaa tattgttcaa aatcccacag tgcaaggcgc 28980tgtatccaaa gctcatggcg
gggaccacag aacccacgtg gccatcatac cacaagcgca 29040ggtagattaa gtggcgaccc
ctcataaaca cgctggacat aaacattacc tcttttggca 29100tgttgtaatt caccacctcc
cggtaccata taaacctctg attaaacatg gcgccatcca 29160ccaccatcct aaaccagctg
gccaaaacct gcccgccggc tatacactgc agggaaccgg 29220gactggaaca atgacagtgg
agagcccagg actcgtaacc atggatcatc atgctcgtca 29280tgatatcaat gttggcacaa
cacaggcaca cgtgcataca cttcctcagg attacaagct 29340cctcccgcgt tagaaccata
tcccagggaa caacccattc ctgaatcagc gtaaatccca 29400cactgcaggg aagacctcgc
acgtaactca cgttgtgcat tgtcaaagtg ttacattcgg 29460gcagcagcgg atgatcctcc
agtatggtag cgcgggtttc tgtctcaaaa ggaggtagac 29520gatccctact gtacggagtg
cgccgagaca accgagatcg tgttggtcgt agtgtcatgc 29580caaatggaac gccggacgta
gtcatatttc ctgaagcaaa accaggtgcg ggcgtgacaa 29640acagatctgc gtctccggtc
tcgccgctta gatcgctctg tgtagtagtt gtagtatatc 29700cactctctca aagcatccag
gcgccccctg gcttcgggtt ctatgtaaac tccttcatgc 29760gccgctgccc tgataacatc
caccaccgca gaataagcca cacccagcca acctacacat 29820tcgttctgcg agtcacacac
gggaggagcg ggaagagctg gaagaaccat gttttttttt 29880ttattccaaa agattatcca
aaacctcaaa atgaagatct attaagtgaa cgcgctcccc 29940tccggtggcg tggtcaaact
ctacagccaa agaacagata atggcatttg taagatgttg 30000cacaatggct tccaaaaggc
aaacggccct cacgtccaag tggacgtaaa ggctaaaccc 30060ttcagggtga atctcctcta
taaacattcc agcaccttca accatgccca aataattctc 30120atctcgccac cttctcaata
tatctctaag caaatcccga atattaagtc cggccattgt 30180aaaaatctgc tccagagcgc
cctccacctt cagcctcaag cagcgaatca tgattgcaaa 30240aattcaggtt cctcacagac
ctgtataaga ttcaaaagcg gaacattaac aaaaataccg 30300cgatcccgta ggtcccttcg
cagggccagc tgaacataat cgtgcaggtc tgcacggacc 30360agcgcggcca cttccccgcc
aggaaccatg acaaaagaac ccacactgat tatgacacgc 30420atactcggag ctatgctaac
cagcgtagcc ccgatgtaag cttgttgcat gggcggcgat 30480ataaaatgca aggtgctgct
caaaaaatca ggcaaagcct cgcgcaaaaa agaaagcaca 30540tcgtagtcat gctcatgcag
ataaaggcag gtaagctccg gaaccaccac agaaaaagac 30600accatttttc tctcaaacat
gtctgcgggt ttctgcataa acacaaaata aaataacaaa 30660aaaacattta aacattagaa
gcctgtctta caacaggaaa aacaaccctt ataagcataa 30720gacggactac ggccatgccg
gcgtgaccgt aaaaaaactg gtcaccgtga ttaaaaagca 30780ccaccgacag ctcctcggtc
atgtccggag tcataatgta agactcggta aacacatcag 30840gttgattcac atcggtcagt
gctaaaaagc gaccgaaata gcccggggga atacataccc 30900gcaggcgtag agacaacatt
acagccccca taggaggtat aacaaaatta ataggagaga 30960aaaacacata aacacctgaa
aaaccctcct gcctaggcaa aatagcaccc tcccgctcca 31020gaacaacata cagcgcttcc
acagcggcag ccataacagt cagccttacc agtaaaaaag 31080aaaacctatt aaaaaaacac
cactcgacac ggcaccagct caatcagtca cagtgtaaaa 31140aagggccaag tgcagagcga
gtatatatag gactaaaaaa tgacgtaacg gttaaagtcc 31200acaaaaaaca cccagaaaac
cgcacgcgaa cctacgccca gaaacgaaag ccaaaaaacc 31260cacaacttcc tcaaatcgtc
acttccgttt tcccacgtta cgtcacttcc cattttaaga 31320aaactacaat tcccaacaca
tacaagttac tccgccctaa aacctacgtc acccgccccg 31380ttcccacgcc ccgcgccacg
tcacaaactc caccccctca ttatcatatt ggcttcaatc 31440caaaataagg tatattattg
atgat 3146514410PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
14Met Ser Ser Pro Gly Thr Glu Ser Ala Gly Lys Ser Leu Gln Tyr Arg1
5 10 15Val Asp His Leu Leu Ser
Ala Val Glu Asn Glu Leu Gln Ala Gly Ser 20 25
30Glu Lys Gly Asp Pro Thr Glu Arg Glu Leu Arg Val Gly
Leu Glu Glu 35 40 45Ser Glu Leu
Trp Leu Arg Phe Lys Glu Leu Thr Asn Glu Met Ile Val 50
55 60Thr Lys Asn Gly Arg Arg Met Phe Pro Val Leu Lys
Val Asn Val Ser65 70 75
80Gly Leu Asp Pro Asn Ala Met Tyr Ser Phe Leu Leu Asp Phe Val Ala
85 90 95Ala Asp Asn His Arg Trp
Lys Tyr Val Asn Gly Glu Trp Val Pro Gly 100
105 110Gly Lys Pro Glu Pro Gln Ala Pro Ser Cys Val Tyr
Ile His Pro Asp 115 120 125Ser Pro
Asn Phe Gly Ala His Trp Met Lys Ala Pro Val Ser Phe Ser 130
135 140Lys Val Lys Leu Thr Asn Lys Leu Asn Gly Gly
Gly Gln Ile Met Leu145 150 155
160Asn Ser Leu His Lys Tyr Glu Pro Arg Ile His Ile Val Arg Val Gly
165 170 175Gly Pro Gln Arg
Met Ile Thr Ser His Cys Phe Pro Glu Thr Gln Phe 180
185 190Ile Ala Val Thr Ala Arg Ser Asp His Lys Glu
Met Met Glu Glu Pro 195 200 205Gly
Asp Ser Gln Gln Pro Gly Tyr Ser Gln Trp Gly Trp Leu Leu Pro 210
215 220Gly Thr Ser Thr Val Cys Pro Pro Ala Asn
Pro His Pro Gln Phe Gly225 230 235
240Gly Ala Leu Ser Leu Pro Ser Thr His Ser Cys Asp Arg Tyr Pro
Thr 245 250 255Leu Arg Ser
His Arg Ser Ser Pro Tyr Pro Ser Pro Tyr Ala His Arg 260
265 270Asn Asn Ser Pro Thr Tyr Ser Asp Asn Ser
Pro Ala Cys Leu Ser Met 275 280
285Leu Gln Ser His Asp Asn Trp Ser Ser Leu Gly Met Pro Ala His Pro 290
295 300Ser Met Leu Pro Val Ser His Asn
Ala Ser Pro Pro Thr Ser Ser Ser305 310
315 320Gln Tyr Pro Ser Leu Trp Ser Val Ser Asn Gly Ala
Val Thr Pro Gly 325 330
335Ser Gln Ala Ala Ala Val Ser Asn Gly Leu Gly Ala Gln Phe Phe Arg
340 345 350Gly Ser Pro Ala His Tyr
Thr Pro Leu Thr His Pro Val Ser Ala Pro 355 360
365Ser Ser Ser Gly Ser Pro Leu Tyr Glu Gly Ala Ala Ala Ala
Thr Asp 370 375 380Ile Val Asp Ser Gln
Tyr Asp Ala Ala Ala Gln Gly Arg Leu Ile Ala385 390
395 400Ser Trp Thr Pro Val Ser Pro Pro Ser Met
405 410159PRTArtificial SequenceDescription
of Artificial Sequence Synthetic peptide 15Trp Leu Leu Pro Gly Thr
Ser Thr Val1 516965DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 16gcggggcagc ctcacacaga
acacacacag atatgggtgt acccactcag ctcctgttgc 60tgtggcttac agtcgtagtt
gtcagatgtg acatccagat gactcagtct ccagcttcac 120tgtctgcatc tgtgggagaa
actgtcacca tcacatgtgg agcaagtgag aatatttacg 180gtgctttaaa ttggtatcag
cggaaacagg gaaaatctcc tcagctcctg atttatggcg 240caagtaattt ggcagatggc
atgtcatcga ggttcagtgg cagtggatct ggtagacagt 300attctctcaa gatcagtagc
ctgcatcctg acgattttgc aacgtattac tgtcaaaatg 360tattaagtag tccgtacacg
ttcggagggg ggaccaagct ggaaataaaa cgggctgatg 420ctgcaccaac tgtatccatc
ttcccaccat ccagtgagca gttaacatct ggaggtgcct 480cagtcgtgtg cttcttgaac
aacttctacc ccaaagacat caatgtcaag tggaagattg 540atggcagtga acgacaaaat
ggcgtcctga acagttggac tgatcaggac agcaaagaca 600gcacctacag catgagcagc
accctcacgt tgaccaagga cgagtatgaa cgacataaca 660gctatacctg tgaggccact
cacaagacac caacttcacc cattgtcaag agcttcaaca 720ggaatgagtg ttagagacaa
aggtcctgag acgccaccac cagctcccca gctccatcct 780atcttccctt ctaaggtctt
ggaggcttcc ccacaagcga cctaccactg ttgcggtgct 840ccaaacctcc tccccacctc
cttctcctcc tcctcccttt ccttggcttt tatcatgcta 900atatttgcag aaaatattca
ataaagtgag tctttgcaca aaaaaaaaaa aaaaaaaaaa 960aaaaa
965171575DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
17acgcgggaca cagtagtctc tacagtcaca ggagtacaca ggacattgcc atgggttgga
60gctgtatcat cttctttctg gtagcaacag ctacaggtgt gcactcccag gtccagctgc
120agcagtctgg gcctgaggtg gtgaggcctg gggtctcagt gaagatttcc tgcaagggtt
180ccggctacac attcactgat tatgctatgc actgggtgaa gcagagtcat gcaaagagtc
240tcgagtggat tggacttatt agtacttaca gtggtgatac aaagtacaac cagaacttta
300agggcaaggc cacaatgact gtagacaaat cctccaacac agcctatatg gaacttgcca
360gattgacatc tgaggattct gccatctatt actgtgcaag aggggattat tccggtagta
420ggtactggtt tgcttactgg ggccaaggga ctctggtcac tgtctctgca gccaaaacga
480cacccccatc tgtctatcca ctggcccctg gatctgctgc ccaaactaac tccatggtga
540ccctgggatg cctggtcaag ggctatttcc ctgagccagt gacagtgacc tggaactctg
600gatccctgtc cagcggtgtg cacaccttcc cagctgtcct gcagtctgac ctctacactc
660tgagcagctc agtgactgtc ccctccagca cctggcccag cgagaccgtc acctgcaacg
720ttgcccaccc ggccagcagc accaaggtgg acaagaaaat tgtgcccagg gattgtggtt
780gtaagccttg catatgtaca gtcccagaag tatcatctgt cttcatcttc cccccaaagc
840ccaaggatgt gctcaccatt actctgactc ctaaggtcac gtgtgttgtg gtagacatca
900gcaaggatga tcccgaggtc cagttcagct ggtttgtaga tgatgtggag gtgcacacag
960ctcagacgca accccgggag gagcagttca acagcacttt ccgctcagtc agtgaacttc
1020ccatcatgca ccaggactgg ctcaatggca aggagttcaa atgcagggtc aacagtgcag
1080ctttccctgc ccccatcgag aaaaccatct ccaaaaccaa aggcagaccg aaggctccac
1140aggtgtacac cattccacct cccaaggagc agatggccaa ggataaagtc agtctgacct
1200gcatgataac agacttcttc cctgaagaca ttactgtgga gtggcagtgg aatgggcagc
1260cagcggagaa ctacaagaac actcagccca tcatggacac agatggctct tacttcgtct
1320acagcaagct caatgtgcag aagagcaact gggaggcagg aaatactttc acctgctctg
1380tgttacatga gggcctgcac aaccaccata ctgagaagag cctctcccac tctcctggta
1440aatgatccca gtgtccttgg agccctctgg ccctacagga ctttgacacc tacctccacc
1500cctccctgta taaataaagc acccagcact gcctcgggac cctgcataaa aaaaaaaaaa
1560aaaaaaaaaa aaaaa
157518107PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 18Leu Met Thr Gln Ser Pro Ala Ser Leu Ser Ala
Ser Val Gly Glu Thr1 5 10
15Val Thr Ile Thr Cys Gly Ala Ser Glu Asn Ile Tyr Gly Ala Leu Asn
20 25 30Trp Tyr Gln Arg Lys Gln Gly
Lys Ser Pro Gln Leu Leu Ile Tyr Gly 35 40
45Ala Ser Asn Leu Ala Asp Gly Met Ser Ser Arg Phe Ser Gly Ser
Gly 50 55 60Ser Gly Arg Gln Tyr Ser
Leu Lys Ile Ser Ser Leu His Pro Asp Asp65 70
75 80Val Ala Thr Tyr Tyr Cys Gln Asn Val Leu Ser
Ser Pro Tyr Thr Phe 85 90
95Gly Gly Gly Thr Lys Leu Glu Ile Lys Lys Gly 100
10519233PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 19Met Gly Val Pro Thr Gln Leu Leu Leu Leu Trp
Leu Thr Val Val Val1 5 10
15Val Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala
20 25 30Ser Val Gly Asp Arg Val Thr
Ile Thr Cys Gln Ala Ser Glu Asn Ile 35 40
45Tyr Gly Ala Leu Asn Trp Tyr Gln Arg Lys Pro Gly Lys Ser Pro
Lys 50 55 60Leu Leu Ile Tyr Gly Ala
Ser Asn Leu Ala Thr Gly Met Pro Ser Arg65 70
75 80Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr
Phe Thr Ile Ser Ser 85 90
95Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Val Leu Ser
100 105 110Ser Pro Tyr Thr Phe Gly
Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr 115 120
125Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
Gln Leu 130 135 140Lys Ser Gly Thr Ala
Ser Val Val Cys Leu Ile Asn Asn Phe Tyr Pro145 150
155 160Arg Glu Ala Lys Val Gln Trp Lys Val Asp
Asn Ala Leu Gln Ser Gly 165 170
175Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
180 185 190Ser Leu Ser Ser Thr
Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 195
200 205Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu
Ser Ser Pro Val 210 215 220Thr Lys Ser
Phe Asn Arg Gly Glu Cys225 23020116PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
20Leu Glu Glu Ser Gly Pro Glu Val Val Arg Pro Gly Val Ser Val Lys1
5 10 15Ile Ser Cys Lys Gly Ser
Gly Tyr Thr Phe Thr Asp Tyr Ala Met His 20 25
30Trp Val Lys Gln Ser His Ala Lys Ser Leu Glu Trp Ile
Gly Leu Ile 35 40 45Ser Thr Tyr
Ser Gly Asp Thr Lys Tyr Asn Gln Asn Phe Lys Gly Lys 50
55 60Ala Thr Met Thr Val Asp Lys Ser Ser Asn Thr Ala
Tyr Met Glu Leu65 70 75
80Ala Arg Leu Thr Ser Glu Asp Ser Ala Ile Tyr Tyr Cys Ala Arg Gly
85 90 95Asp Tyr Ser Gly Ser Arg
Tyr Trp Phe Ala Tyr Trp Gly Gln Gly Thr 100
105 110Thr Val Thr Arg 1152111PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 21Gly
Ala Ser Glu Asn Ile Tyr Gly Ala Leu Asn1 5
10227PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 22Gly Ala Ser Asn Leu Ala Asp1
5239PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 23Gln Asn Val Leu Ser Ser Pro Tyr Thr1
52411PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 24Gln Ala Ser Glu Asn Ile Tyr Gly Ala Leu Asn1 5
10257PRTArtificial SequenceDescription of Artificial
Sequence Synthetic peptide 25Gly Ala Ser Asn Leu Ala Thr1
5269PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 26Gln Gln Val Leu Ser Ser Pro Tyr Thr1
52710PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 27Gly Tyr Thr Phe Thr Asp Tyr Ala Met His1 5
102817PRTArtificial SequenceDescription of Artificial
Sequence Synthetic peptide 28Leu Ile Ser Thr Tyr Ser Gly Asp Thr Lys
Tyr Asn Gln Asn Phe Lys1 5 10
15Gly2912PRTArtificial SequenceDescription of Artificial Sequence
Synthetic peptide 29Gly Asp Tyr Ser Gly Ser Arg Tyr Trp Phe Ala Tyr1
5 103017PRTArtificial SequenceDescription
of Artificial Sequence Synthetic peptide 30Leu Ile Ser Thr Tyr Ser
Gly Asp Thr Lys Tyr Asn Gln Lys Phe Gln1 5
10 15Gly3112PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptide 31Gly Asp Tyr Ser Gly Ser Arg
Tyr Trp Phe Ala Tyr1 5
1032132PRTMycobacterium sp. 32Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln
Gly Gly Gln Gly Phe1 5 10
15Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser
20 25 30Gly Gly Gly Ser Pro Thr Val
His Ile Gly Pro Thr Ala Phe Leu Gly 35 40
45Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg
Val 50 55 60Val Gly Ser Ala Pro Ala
Ala Ser Leu Gly Ile Ser Thr Gly Asp Val65 70
75 80Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser
Ala Thr Ala Met Ala 85 90
95Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp
100 105 110Gln Thr Lys Ser Gly Gly
Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 115 120
125Gly Pro Pro Ala 13033230PRTMycobacterium sp. 33Met His
His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu1 5
10 15Ser Gln Gly Gly Gln Gly Phe Ala
Ile Pro Ile Gly Gln Ala Met Ala 20 25
30Ile Ala Gly Gln Ile Arg Ser Gly Gly Gly Ser Pro Thr Val His
Ile 35 40 45Gly Pro Thr Ala Phe
Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn 50 55
60Gly Ala Arg Val Gln Arg Val Val Gly Ser Ala Pro Ala Ala
Ser Leu65 70 75 80Gly
Ile Ser Thr Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile
85 90 95Asn Ser Ala Thr Ala Met Ala
Asp Ala Leu Asn Gly His His Pro Gly 100 105
110Asp Val Ile Ser Val Thr Trp Gln Thr Lys Ser Gly Gly Thr
Arg Thr 115 120 125Gly Asn Val Thr
Leu Ala Glu Gly Pro Pro Ala Glu Phe Asp Asp Asp 130
135 140Asp Lys Asp Pro Pro Asp Pro His Gln Pro Asp Met
Thr Lys Gly Tyr145 150 155
160Cys Pro Gly Gly Arg Trp Gly Phe Gly Asp Leu Ala Val Cys Asp Gly
165 170 175Glu Lys Tyr Pro Asp
Gly Ser Phe Trp His Gln Trp Met Gln Thr Trp 180
185 190Phe Thr Gly Pro Gln Phe Tyr Phe Asp Cys Val Ser
Gly Gly Glu Pro 195 200 205Leu Pro
Gly Pro Pro Pro Pro Gly Gly Cys Gly Gly Ala Ile Pro Ser 210
215 220Glu Gln Pro Asn Ala Pro225
23034578PRTMycobacterium sp. 34Met His His His His His His Thr Ala Ala
Ser Asp Asn Phe Gln Leu1 5 10
15Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
20 25 30Ile Ala Gly Gln Ile Arg
Ser Gly Gly Gly Ser Pro Thr Val His Ile 35 40
45Gly Pro Thr Ala Phe Leu Gly Leu Gly Val Val Asp Asn Asn
Gly Asn 50 55 60Gly Ala Arg Val Gln
Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu65 70
75 80Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
Val Asp Gly Ala Pro Ile 85 90
95Asn Ser Ala Thr Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly
100 105 110Asp Val Ile Ser Val
Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr 115
120 125Gly Asn Val Thr Leu Ala Glu Gly Pro Pro Ala Glu
Phe Pro Leu Val 130 135 140Pro Arg Gly
Ser Pro Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu145
150 155 160Leu Pro Ala Val Pro Ser Leu
Gly Gly Gly Gly Gly Cys Ala Leu Pro 165
170 175Val Ser Gly Ala Ala Gln Trp Ala Pro Val Leu Asp
Phe Ala Pro Pro 180 185 190Gly
Ala Ser Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala 195
200 205Pro Pro Pro Pro Pro Pro Pro Pro Pro
His Ser Phe Ile Lys Gln Glu 210 215
220Pro Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala225
230 235 240Phe Thr Val His
Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys 245
250 255Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro
Ser Gln Ala Ser Ser Gly 260 265
270Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu
275 280 285Ser Gln Pro Ala Ile Arg Asn
Gln Gly Tyr Ser Thr Val Thr Phe Asp 290 295
300Gly Thr Pro Ser Tyr Gly His Thr Pro Ser His His Ala Ala Gln
Phe305 310 315 320Pro Asn
His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser
325 330 335Leu Gly Glu Gln Gln Tyr Ser
Val Pro Pro Pro Val Tyr Gly Cys His 340 345
350Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu
Arg Thr 355 360 365Pro Tyr Ser Ser
Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys 370
375 380Met Thr Trp Asn Gln Met Asn Leu Gly Ala Thr Leu
Lys Gly His Ser385 390 395
400Thr Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala
405 410 415Gln Tyr Arg Ile His
Thr His Gly Val Phe Arg Gly Ile Gln Asp Val 420
425 430Arg Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg
Ser Ala Ser Glu 435 440 445Thr Ser
Glu Lys Arg Pro Phe Met Cys Ala Tyr Ser Gly Cys Asn Lys 450
455 460Arg Tyr Phe Lys Leu Ser His Leu Gln Met His
Ser Arg Lys His Thr465 470 475
480Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe
485 490 495Phe Arg Ser Asp
Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val 500
505 510Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys
Phe Ser Arg Ser Asp 515 520 525His
Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser 530
535 540Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe
Ala Arg Ser Asp Glu Leu545 550 555
560Val Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln
Leu 565 570 575Ala
Leu35220PRTMycobacterium sp. 35Met His His His His His His Thr Ala Ala
Ser Asp Asn Phe Gln Leu1 5 10
15Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
20 25 30Ile Ala Gly Gln Ile Arg
Ser Gly Gly Gly Ser Pro Thr Val His Ile 35 40
45Gly Pro Thr Ala Phe Leu Gly Leu Gly Val Val Asp Asn Asn
Gly Asn 50 55 60Gly Ala Arg Val Gln
Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu65 70
75 80Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
Val Asp Gly Ala Pro Ile 85 90
95Asn Ser Ala Thr Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly
100 105 110Asp Val Ile Ser Val
Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr 115
120 125Gly Asn Val Thr Leu Ala Glu Gly Pro Pro Ala Glu
Phe Ile Glu Gly 130 135 140Arg Gly Ser
Gly Cys Pro Leu Leu Glu Asn Val Ile Ser Lys Thr Ile145
150 155 160Asn Pro Gln Val Ser Lys Thr
Glu Tyr Lys Glu Leu Leu Gln Glu Phe 165
170 175Ile Asp Asp Asn Ala Thr Thr Asn Ala Ile Asp Glu
Leu Lys Glu Cys 180 185 190Phe
Leu Asn Gln Thr Asp Glu Thr Leu Ser Asn Val Glu Val Phe Met 195
200 205Gln Leu Ile Tyr Asp Ser Ser Leu Cys
Asp Leu Phe 210 215
22036729PRTMycobacterium sp. 36Met His His His His His His Thr Ala Ala
Ser Asp Asn Phe Gln Leu1 5 10
15Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
20 25 30Ile Ala Gly Gln Ile Arg
Ser Gly Gly Gly Ser Pro Thr Val His Ile 35 40
45Gly Pro Thr Ala Phe Leu Gly Leu Gly Val Val Asp Asn Asn
Gly Asn 50 55 60Gly Ala Arg Val Gln
Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu65 70
75 80Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
Val Asp Gly Ala Pro Ile 85 90
95Asn Ser Ala Thr Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly
100 105 110Asp Val Ile Ser Val
Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr 115
120 125Gly Asn Val Thr Leu Ala Glu Gly Pro Pro Ala Glu
Phe Met Val Asp 130 135 140Phe Gly Ala
Leu Pro Pro Glu Ile Asn Ser Ala Arg Met Tyr Ala Gly145
150 155 160Pro Gly Ser Ala Ser Leu Val
Ala Ala Ala Gln Met Trp Asp Ser Val 165
170 175Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln
Ser Val Val Trp 180 185 190Gly
Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly Leu Met Val 195
200 205Ala Ala Ala Ser Pro Tyr Val Ala Trp
Met Ser Val Thr Ala Gly Gln 210 215
220Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala Ala Tyr Glu225
230 235 240Thr Ala Tyr Gly
Leu Thr Val Pro Pro Pro Val Ile Ala Glu Asn Arg 245
250 255Ala Glu Leu Met Ile Leu Ile Ala Thr Asn
Leu Leu Gly Gln Asn Thr 260 265
270Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln
275 280 285Asp Ala Ala Ala Met Phe Gly
Tyr Ala Ala Ala Thr Ala Thr Ala Thr 290 295
300Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr Ser Ala
Gly305 310 315 320Gly Leu
Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser Asp Thr Ala
325 330 335Ala Ala Asn Gln Leu Met Asn
Asn Val Pro Gln Ala Leu Gln Gln Leu 340 345
350Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu Gly
Gly Leu 355 360 365Trp Lys Thr Val
Ser Pro His Arg Ser Pro Ile Ser Asn Met Val Ser 370
375 380Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly
Val Ser Met Thr385 390 395
400Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala
405 410 415Gln Ala Val Gln Thr
Ala Ala Gln Asn Gly Val Arg Ala Met Ser Ser 420
425 430Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly
Gly Val Ala Ala 435 440 445Asn Leu
Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val Pro Gln Ala 450
455 460Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala
Ala Arg Ala Leu Pro465 470 475
480Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly Gln Met Leu
485 490 495Gly Gly Leu Pro
Val Gly Gln Met Gly Ala Arg Ala Gly Gly Gly Leu 500
505 510Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr
Val Met Pro His Ser 515 520 525Pro
Ala Ala Gly Asp Ile Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe 530
535 540Ala Asp Phe Pro Ala Leu Pro Leu Asp Pro
Ser Ala Met Val Ala Gln545 550 555
560Val Gly Pro Gln Val Val Asn Ile Asn Thr Lys Leu Gly Tyr Asn
Asn 565 570 575Ala Val Gly
Ala Gly Thr Gly Ile Val Ile Asp Pro Asn Gly Val Val 580
585 590Leu Thr Asn Asn His Val Ile Ala Gly Ala
Thr Asp Ile Asn Ala Phe 595 600
605Ser Val Gly Ser Gly Gln Thr Tyr Gly Val Asp Val Val Gly Tyr Asp 610
615 620Arg Thr Gln Asp Val Ala Val Leu
Gln Leu Arg Gly Ala Gly Gly Leu625 630
635 640Pro Ser Ala Ala Ile Gly Gly Gly Val Ala Val Gly
Glu Pro Val Val 645 650
655Ala Met Gly Asn Ser Gly Gly Gln Gly Gly Thr Pro Arg Ala Val Pro
660 665 670Gly Arg Val Val Ala Leu
Gly Gln Thr Val Gln Ala Ser Asp Ser Leu 675 680
685Thr Gly Ala Glu Glu Thr Leu Asn Gly Leu Ile Gln Phe Asp
Ala Ala 690 695 700Ile Gln Pro Gly Asp
Ser Gly Gly Pro Val Val Asn Gly Leu Gly Gln705 710
715 720Val Val Gly Met Asn Thr Ala Ala Ser
7253730PRTMycobacterium sp. 37Thr Ala Ala Ser Asp Asn Phe Gln
Leu Ser Gln Gly Gly Gln Gly Phe1 5 10
15Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile
20 25 3038128PRTMycobacterium
sp. 38Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe1
5 10 15Ala Ile Pro Ile Gly
Gln Ala Met Ala Ile Ala Gly Gln Ile Lys Leu 20
25 30Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
Leu Gly Val Val 35 40 45Asp Asn
Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser Ala 50
55 60Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp
Val Ile Thr Ala Val65 70 75
80Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu Asn
85 90 95Gly His His Pro Gly
Asp Val Ile Ser Val Thr Trp Gln Thr Lys Ser 100
105 110Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu
Gly Pro Pro Ala 115 120
12539128PRTMycobacterium sp. 39Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser
Gln Gly Gly Gln Gly Phe1 5 10
15Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser
20 25 30Gly Gly Gly Ser Pro Thr
Val His Ile Gly Pro Thr Ala Phe Leu Gly 35 40
45Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln
Arg Val 50 55 60Val Gly Ser Ala Pro
Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val65 70
75 80Ile Thr Ala Val Asp Gly Ala Pro Ile Asn
Ser Ala Thr Ala Met Ala 85 90
95Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp
100 105 110Gln Thr Lys Ser Gly
Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 115
120 12540355PRTMycobacterium sp. 40Met Ser Asn Ser Arg
Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser1 5
10 15Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr
Ala Pro Ala Gln Ala 20 25
30Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
35 40 45Pro Leu Asp Pro Ser Ala Met Val
Ala Gln Val Gly Pro Gln Val Val 50 55
60Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr65
70 75 80Gly Ile Val Ile Asp
Pro Asn Gly Val Val Leu Thr Asn Asn His Val 85
90 95Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser
Val Gly Ser Gly Gln 100 105
110Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
115 120 125Val Leu Gln Leu Arg Gly Ala
Gly Gly Leu Pro Ser Ala Ala Ile Gly 130 135
140Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser
Gly145 150 155 160Gly Gln
Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu
165 170 175Gly Gln Thr Val Gln Ala Ser
Asp Ser Leu Thr Gly Ala Glu Glu Thr 180 185
190Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly
Asp Ser 195 200 205Gly Gly Pro Val
Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr 210
215 220Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly
Gln Gly Phe Ala225 230 235
240Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
245 250 255Gly Gly Ser Pro Thr
Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu 260
265 270Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
Gln Arg Val Val 275 280 285Gly Ser
Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile 290
295 300Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala
Thr Ala Met Ala Asp305 310 315
320Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln
325 330 335Thr Lys Ser Gly
Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly 340
345 350Pro Pro Ala 35541364PRTHaemophilus
influenzae 41Met Lys Leu Lys Thr Leu Ala Leu Ser Leu Leu Ala Ala Gly Val
Leu1 5 10 15Ala Gly Cys
Ser Ser His Ser Ser Asn Met Ala Asn Thr Gln Met Lys 20
25 30Ser Asp Lys Ile Ile Ile Ala His Arg Gly
Ala Ser Gly Tyr Leu Pro 35 40
45Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gln Gln Ala Asp 50
55 60Tyr Leu Glu Gln Asp Leu Ala Met Thr
Lys Asp Gly Arg Leu Val Val65 70 75
80Ile His Asp His Phe Leu Asp Gly Leu Thr Asp Val Ala Lys
Lys Phe 85 90 95Pro His
Arg His Arg Lys Asp Gly Arg Tyr Tyr Val Ile Asp Phe Thr 100
105 110Leu Lys Glu Ile Gln Ser Leu Glu Met
Thr Glu Asn Phe Glu Thr Lys 115 120
125Asp Gly Lys Gln Ala Gln Val Tyr Pro Asn Arg Phe Pro Leu Trp Lys
130 135 140Ser His Phe Arg Ile His Thr
Phe Glu Asp Glu Ile Glu Phe Ile Gln145 150
155 160Gly Leu Glu Lys Ser Thr Gly Lys Lys Val Gly Ile
Tyr Pro Glu Ile 165 170
175Lys Ala Pro Trp Phe His His Gln Asn Gly Lys Asp Ile Ala Ala Glu
180 185 190Thr Leu Lys Val Leu Lys
Lys Tyr Gly Tyr Asp Lys Lys Thr Asp Met 195 200
205Val Tyr Leu Gln Thr Phe Asp Phe Asn Glu Leu Lys Arg Ile
Lys Thr 210 215 220Glu Leu Leu Pro Gln
Met Gly Met Asp Leu Lys Leu Val Gln Leu Ile225 230
235 240Ala Tyr Thr Asp Trp Lys Glu Thr Gln Glu
Lys Asp Pro Lys Gly Tyr 245 250
255Trp Val Asn Tyr Asn Tyr Asp Trp Met Phe Lys Pro Gly Ala Met Ala
260 265 270Glu Val Val Lys Tyr
Ala Asp Gly Val Gly Pro Gly Trp Tyr Met Leu 275
280 285Val Asn Lys Glu Glu Ser Lys Pro Asp Asn Ile Val
Tyr Thr Pro Leu 290 295 300Val Lys Glu
Leu Ala Gln Tyr Asn Val Glu Val His Pro Tyr Thr Val305
310 315 320Arg Lys Asp Ala Leu Pro Ala
Phe Phe Thr Asp Val Asn Gln Met Tyr 325
330 335Asp Val Leu Leu Asn Lys Ser Gly Ala Thr Gly Val
Phe Thr Asp Phe 340 345 350Pro
Asp Thr Gly Val Glu Phe Leu Lys Gly Ile Lys 355
36042313PRTStreptococcus pneumoniae 42Met Glu Ile Asn Val Ser Lys Leu Arg
Thr Asp Leu Pro Gln Val Gly1 5 10
15Val Gln Pro Tyr Arg Gln Val His Ala His Ser Thr Gly Asn Pro
His 20 25 30Ser Thr Val Gln
Asn Glu Ala Asp Tyr His Trp Arg Lys Asp Pro Glu 35
40 45Leu Gly Phe Phe Ser His Ile Val Gly Asn Gly Cys
Ile Met Gln Val 50 55 60Gly Pro Val
Asp Asn Gly Ala Trp Asp Val Gly Gly Gly Trp Asn Ala65 70
75 80Glu Thr Tyr Ala Ala Val Glu Leu
Ile Glu Ser His Ser Thr Lys Glu 85 90
95Glu Phe Met Thr Asp Tyr Arg Leu Tyr Ile Glu Leu Leu Arg
Asn Leu 100 105 110Ala Asp Glu
Ala Gly Leu Pro Lys Thr Leu Asp Thr Gly Ser Leu Ala 115
120 125Gly Ile Lys Thr His Glu Tyr Cys Thr Asn Asn
Gln Pro Asn Asn His 130 135 140Ser Asp
His Val Asp Pro Tyr Pro Tyr Leu Ala Lys Trp Gly Ile Ser145
150 155 160Arg Glu Gln Phe Lys His Asp
Ile Glu Asn Gly Leu Thr Ile Glu Thr 165
170 175Gly Trp Gln Lys Asn Asp Thr Gly Tyr Trp Tyr Val
His Ser Asp Gly 180 185 190Ser
Tyr Pro Lys Asp Lys Phe Glu Lys Ile Asn Gly Thr Trp Tyr Tyr 195
200 205Phe Asp Ser Ser Gly Tyr Met Leu Ala
Asp Arg Trp Arg Lys His Thr 210 215
220Asp Gly Asn Trp Tyr Trp Phe Asp Asn Ser Gly Glu Met Ala Thr Gly225
230 235 240Trp Lys Lys Ile
Ala Asp Lys Trp Tyr Tyr Phe Asn Glu Glu Gly Ala 245
250 255Met Lys Thr Gly Trp Val Lys Tyr Lys Asp
Thr Trp Tyr Tyr Leu Asp 260 265
270Ala Lys Glu Gly Ala Met Val Ser Asn Ala Phe Ile Gln Ser Ala Asp
275 280 285Gly Thr Gly Trp Tyr Tyr Leu
Lys Pro Asp Gly Thr Leu Ala Asp Arg 290 295
300Pro Glu Phe Arg Met Ser Gln Met Ala305
31043166PRTHomo sapiens 43Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu
Cys Ile Val Leu1 5 10
15Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu
20 25 30Asn Leu Lys Lys Tyr Phe Asn
Ala Gly His Ser Asp Val Ala Asp Asn 35 40
45Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser
Asp 50 55 60Arg Lys Ile Met Gln Ser
Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe65 70
75 80Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys
Ser Val Glu Thr Ile 85 90
95Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg
100 105 110Asp Asp Phe Glu Lys Leu
Thr Asn Tyr Ser Val Thr Asp Leu Asn Val 115 120
125Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu
Leu Ser 130 135 140Pro Ala Ala Lys Thr
Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg145 150
155 160Gly Arg Arg Ala Ser Gln
16544233PRTHomo sapiens 44Met Ser Thr Glu Ser Met Ile Arg Asp Val Glu Leu
Ala Glu Glu Ala1 5 10
15Leu Pro Lys Lys Thr Gly Gly Pro Gln Gly Ser Arg Arg Cys Leu Phe
20 25 30Leu Ser Leu Phe Ser Phe Leu
Ile Val Ala Gly Ala Thr Thr Leu Phe 35 40
45Cys Leu Leu His Phe Gly Val Ile Gly Pro Gln Arg Glu Glu Phe
Pro 50 55 60Arg Asp Leu Ser Leu Ile
Ser Pro Leu Ala Gln Ala Val Arg Ser Ser65 70
75 80Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His
Val Val Ala Asn Pro 85 90
95Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu
100 105 110Leu Ala Asn Gly Val Glu
Leu Arg Asp Asn Gln Leu Val Val Pro Ser 115 120
125Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe Lys Gly
Gln Gly 130 135 140Cys Pro Ser Thr His
Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala145 150
155 160Val Ser Tyr Gln Thr Lys Val Asn Leu Leu
Ser Ala Ile Lys Ser Pro 165 170
175Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu
180 185 190Pro Ile Tyr Leu Gly
Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu 195
200 205Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe
Ala Glu Ser Gly 210 215 220Gln Val Tyr
Phe Gly Ile Ile Ala Leu225 23045153PRTHomo sapiens 45Met
Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu1
5 10 15Val Thr Asn Ser Ala Pro Thr
Ser Ser Ser Thr Lys Lys Thr Gln Leu 20 25
30Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn
Gly Ile 35 40 45Asn Asn Tyr Lys
Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 50 55
60Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln
Cys Leu Glu65 70 75
80Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys
85 90 95Asn Phe His Leu Arg Pro
Arg Asp Leu Ile Ser Asn Ile Asn Val Ile 100
105 110Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met
Cys Glu Tyr Ala 115 120 125Asp Glu
Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 130
135 140Cys Gln Ser Ile Ile Ser Thr Leu Thr145
1504699PRTHomo sapiens 46Met Thr Ser Lys Leu Ala Val Ala Leu Leu
Ala Ala Phe Leu Ile Ser1 5 10
15Ala Ala Leu Cys Glu Gly Ala Val Leu Pro Arg Ser Ala Lys Glu Leu
20 25 30Arg Cys Gln Cys Ile Lys
Thr Tyr Ser Lys Pro Phe His Pro Lys Phe 35 40
45Ile Lys Glu Leu Arg Val Ile Glu Ser Gly Pro His Cys Ala
Asn Thr 50 55 60Glu Ile Ile Val Lys
Leu Ser Asp Gly Arg Glu Leu Cys Leu Asp Pro65 70
75 80Lys Glu Asn Trp Val Gln Arg Val Val Glu
Lys Phe Leu Lys Arg Ala 85 90
95Glu Asn Ser47662PRTHomo sapiens 47Met Glu Pro Leu Val Thr Trp Val
Val Pro Leu Leu Phe Leu Phe Leu1 5 10
15Leu Ser Arg Gln Gly Ala Ala Cys Arg Thr Ser Glu Cys Cys
Phe Gln 20 25 30Asp Pro Pro
Tyr Pro Asp Ala Asp Ser Gly Ser Ala Ser Gly Pro Arg 35
40 45Asp Leu Arg Cys Tyr Arg Ile Ser Ser Asp Arg
Tyr Glu Cys Ser Trp 50 55 60Gln Tyr
Glu Gly Pro Thr Ala Gly Val Ser His Phe Leu Arg Cys Cys65
70 75 80Leu Ser Ser Gly Arg Cys Cys
Tyr Phe Ala Ala Gly Ser Ala Thr Arg 85 90
95Leu Gln Phe Ser Asp Gln Ala Gly Val Ser Val Leu Tyr
Thr Val Thr 100 105 110Leu Trp
Val Glu Ser Trp Ala Arg Asn Gln Thr Glu Lys Ser Pro Glu 115
120 125Val Thr Leu Gln Leu Tyr Asn Ser Val Lys
Tyr Glu Pro Pro Leu Gly 130 135 140Asp
Ile Lys Val Ser Lys Leu Ala Gly Gln Leu Arg Met Glu Trp Glu145
150 155 160Thr Pro Asp Asn Gln Val
Gly Ala Glu Val Gln Phe Arg His Arg Thr 165
170 175Pro Ser Ser Pro Trp Lys Leu Gly Asp Cys Gly Pro
Gln Asp Asp Asp 180 185 190Thr
Glu Ser Cys Leu Cys Pro Leu Glu Met Asn Val Ala Gln Glu Phe 195
200 205Gln Leu Arg Arg Arg Gln Leu Gly Ser
Gln Gly Ser Ser Trp Ser Lys 210 215
220Trp Ser Ser Pro Val Cys Val Pro Pro Glu Asn Pro Pro Gln Pro Gln225
230 235 240Val Arg Phe Ser
Val Glu Gln Leu Gly Gln Asp Gly Arg Arg Arg Leu 245
250 255Thr Leu Lys Glu Gln Pro Thr Gln Leu Glu
Leu Pro Glu Gly Cys Gln 260 265
270Gly Leu Ala Pro Gly Thr Glu Val Thr Tyr Arg Leu Gln Leu His Met
275 280 285Leu Ser Cys Pro Cys Lys Ala
Lys Ala Thr Arg Thr Leu His Leu Gly 290 295
300Lys Met Pro Tyr Leu Ser Gly Ala Ala Tyr Asn Val Ala Val Ile
Ser305 310 315 320Ser Asn
Gln Phe Gly Pro Gly Leu Asn Gln Thr Trp His Ile Pro Ala
325 330 335Asp Thr His Thr Glu Pro Val
Ala Leu Asn Ile Ser Val Gly Thr Asn 340 345
350Gly Thr Thr Met Tyr Trp Pro Ala Arg Ala Gln Ser Met Thr
Tyr Cys 355 360 365Ile Glu Trp Gln
Pro Val Gly Gln Asp Gly Gly Leu Ala Thr Cys Ser 370
375 380Leu Thr Ala Pro Gln Asp Pro Asp Pro Ala Gly Met
Ala Thr Tyr Ser385 390 395
400Trp Ser Arg Glu Ser Gly Ala Met Gly Gln Glu Lys Cys Tyr Tyr Ile
405 410 415Thr Ile Phe Ala Ser
Ala His Pro Glu Lys Leu Thr Leu Trp Ser Thr 420
425 430Val Leu Ser Thr Tyr His Phe Gly Gly Asn Ala Ser
Ala Ala Gly Thr 435 440 445Pro His
His Val Ser Val Lys Asn His Ser Leu Asp Ser Val Ser Val 450
455 460Asp Trp Ala Pro Ser Leu Leu Ser Thr Cys Pro
Gly Val Leu Lys Glu465 470 475
480Tyr Val Val Arg Cys Arg Asp Glu Asp Ser Lys Gln Val Ser Glu His
485 490 495Pro Val Gln Pro
Thr Glu Thr Gln Val Thr Leu Ser Gly Leu Arg Ala 500
505 510Gly Val Ala Tyr Thr Val Gln Val Arg Ala Asp
Thr Ala Trp Leu Arg 515 520 525Gly
Val Trp Ser Gln Pro Gln Arg Phe Ser Ile Glu Val Gln Val Ser 530
535 540Asp Trp Leu Ile Phe Phe Ala Ser Leu Gly
Ser Phe Leu Ser Ile Leu545 550 555
560Leu Val Gly Val Leu Gly Tyr Leu Gly Leu Asn Arg Ala Ala Arg
His 565 570 575Leu Cys Pro
Pro Leu Pro Thr Pro Cys Ala Ser Ser Ala Ile Glu Phe 580
585 590Pro Gly Gly Lys Glu Thr Trp Gln Trp Ile
Asn Pro Val Asp Phe Gln 595 600
605Glu Glu Ala Ser Leu Gln Glu Ala Leu Val Val Glu Met Ser Trp Asp 610
615 620Lys Gly Glu Arg Thr Glu Pro Leu
Glu Lys Thr Glu Leu Pro Glu Gly625 630
635 640Ala Pro Glu Leu Ala Leu Asp Thr Glu Leu Ser Leu
Glu Asp Gly Asp 645 650
655Arg Cys Lys Ala Lys Met 66048193PRTHomo sapiens 48Met Ala
Ala Glu Pro Val Glu Asp Asn Cys Ile Asn Phe Val Ala Met1 5
10 15Lys Phe Ile Asp Asn Thr Leu Tyr
Phe Ile Ala Glu Asp Asp Glu Asn 20 25
30Leu Glu Ser Asp Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val
Ile 35 40 45Arg Asn Leu Asn Asp
Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro 50 55
60Leu Phe Glu Asp Met Thr Asp Ser Asp Cys Arg Asp Asn Ala
Pro Arg65 70 75 80Thr
Ile Phe Ile Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met
85 90 95Ala Val Thr Ile Ser Val Lys
Cys Glu Lys Ile Ser Thr Leu Ser Cys 100 105
110Glu Asn Lys Ile Ile Ser Phe Lys Glu Met Asn Pro Pro Asp
Asn Ile 115 120 125Lys Asp Thr Lys
Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly 130
135 140His Asp Asn Lys Met Gln Phe Glu Ser Ser Ser Tyr
Glu Gly Tyr Phe145 150 155
160Leu Ala Cys Glu Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys
165 170 175Glu Asp Glu Leu Gly
Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu 180
185 190Asp49177PRTHomo sapiens 49Met Phe His Val Ser Phe
Arg Tyr Ile Phe Gly Leu Pro Pro Leu Ile1 5
10 15Leu Val Leu Leu Pro Val Ala Ser Ser Asp Cys Asp
Ile Glu Gly Lys 20 25 30Asp
Gly Lys Gln Tyr Glu Ser Val Leu Met Val Ser Ile Asp Gln Leu 35
40 45Leu Asp Ser Met Lys Glu Ile Gly Ser
Asn Cys Leu Asn Asn Glu Phe 50 55
60Asn Phe Phe Lys Arg His Ile Cys Asp Ala Asn Lys Glu Gly Met Phe65
70 75 80Leu Phe Arg Ala Ala
Arg Lys Leu Arg Gln Phe Leu Lys Met Asn Ser 85
90 95Thr Gly Asp Phe Asp Leu His Leu Leu Lys Val
Ser Glu Gly Thr Thr 100 105
110Ile Leu Leu Asn Cys Thr Gly Gln Val Lys Gly Arg Lys Pro Ala Ala
115 120 125Leu Gly Glu Ala Gln Pro Thr
Lys Ser Leu Glu Glu Asn Lys Ser Leu 130 135
140Lys Glu Gln Lys Lys Leu Asn Asp Leu Cys Phe Leu Lys Arg Leu
Leu145 150 155 160Gln Glu
Ile Lys Thr Cys Trp Asn Lys Ile Leu Met Gly Thr Lys Glu
165 170 175His50152PRTHomo sapiens 50Met
Ser Arg Leu Pro Val Leu Leu Leu Leu Gln Leu Leu Val Arg Pro1
5 10 15Gly Leu Gln Ala Pro Met Thr
Gln Thr Thr Ser Leu Lys Thr Ser Trp 20 25
30Val Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu
Lys Gln 35 40 45Pro Pro Leu Pro
Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln 50 55
60Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu
Glu Ala Phe65 70 75
80Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile
85 90 95Leu Lys Asn Leu Leu Pro
Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr 100
105 110Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn
Glu Phe Arg Arg 115 120 125Lys Leu
Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln 130
135 140Thr Thr Leu Ser Leu Ala Ile Phe145
15051153PRTHomo sapiens 51Met Gly Leu Thr Ser Gln Leu Leu Pro Pro
Leu Phe Phe Leu Leu Ala1 5 10
15Cys Ala Gly Asn Phe Val His Gly His Lys Cys Asp Ile Thr Leu Gln
20 25 30Glu Ile Ile Lys Thr Leu
Asn Ser Leu Thr Glu Gln Lys Thr Leu Cys 35 40
45Thr Glu Leu Thr Val Thr Asp Ile Phe Ala Ala Ser Lys Asn
Thr Thr 50 55 60Glu Lys Glu Thr Phe
Cys Arg Ala Ala Thr Val Leu Arg Gln Phe Tyr65 70
75 80Ser His His Glu Lys Asp Thr Arg Cys Leu
Gly Ala Thr Ala Gln Gln 85 90
95Phe His Arg His Lys Gln Leu Ile Arg Phe Leu Lys Arg Leu Asp Arg
100 105 110Asn Leu Trp Gly Leu
Ala Gly Leu Asn Ser Cys Pro Val Lys Glu Ala 115
120 125Asn Gln Ser Thr Leu Glu Asn Phe Leu Glu Arg Leu
Lys Thr Ile Met 130 135 140Arg Glu Lys
Tyr Ser Lys Cys Ser Ser145 15052134PRTHomo sapiens 52Met
Arg Met Leu Leu His Leu Ser Leu Leu Ala Leu Gly Ala Ala Tyr1
5 10 15Val Tyr Ala Ile Pro Thr Glu
Ile Pro Thr Ser Ala Leu Val Lys Glu 20 25
30Thr Leu Ala Leu Leu Ser Thr His Arg Thr Leu Leu Ile Ala
Asn Glu 35 40 45Thr Leu Arg Ile
Pro Val Pro Val His Lys Asn His Gln Leu Cys Thr 50 55
60Glu Glu Ile Phe Gln Gly Ile Gly Thr Leu Glu Ser Gln
Thr Val Gln65 70 75
80Gly Gly Thr Val Glu Arg Leu Phe Lys Asn Leu Ser Leu Ile Lys Lys
85 90 95Tyr Ile Asp Gly Gln Lys
Lys Lys Cys Gly Glu Glu Arg Arg Arg Val 100
105 110Asn Gln Phe Leu Asp Tyr Leu Gln Glu Phe Leu Gly
Val Met Asn Thr 115 120 125Glu Trp
Ile Ile Glu Ser 13053212PRTHomo sapiens 53Met Asn Ser Phe Ser Thr Ser
Ala Phe Gly Pro Val Ala Phe Ser Leu1 5 10
15Gly Leu Leu Leu Val Leu Pro Ala Ala Phe Pro Ala Pro
Val Pro Pro 20 25 30Gly Glu
Asp Ser Lys Asp Val Ala Ala Pro His Arg Gln Pro Leu Thr 35
40 45Ser Ser Glu Arg Ile Asp Lys Gln Ile Arg
Tyr Ile Leu Asp Gly Ile 50 55 60Ser
Ala Leu Arg Lys Glu Thr Cys Asn Lys Ser Asn Met Cys Glu Ser65
70 75 80Ser Lys Glu Ala Leu Ala
Glu Asn Asn Leu Asn Leu Pro Lys Met Ala 85
90 95Glu Lys Asp Gly Cys Phe Gln Ser Gly Phe Asn Glu
Glu Thr Cys Leu 100 105 110Val
Lys Ile Ile Thr Gly Leu Leu Glu Phe Glu Val Tyr Leu Glu Tyr 115
120 125Leu Gln Asn Arg Phe Glu Ser Ser Glu
Glu Gln Ala Arg Ala Val Gln 130 135
140Met Ser Thr Lys Val Leu Ile Gln Phe Leu Gln Lys Lys Ala Lys Asn145
150 155 160Leu Asp Ala Ile
Thr Thr Pro Asp Pro Thr Thr Asn Ala Ser Leu Leu 165
170 175Thr Lys Leu Gln Ala Gln Asn Gln Trp Leu
Gln Asp Met Thr Thr His 180 185
190Leu Ile Leu Arg Ser Phe Lys Glu Phe Leu Gln Ser Ser Leu Arg Ala
195 200 205Leu Arg Gln Met
21054140PRTHomo sapiens 54Met Val Leu Thr Ser Ala Leu Leu Leu Cys Ser Val
Ala Gly Gln Gly1 5 10
15Cys Pro Thr Leu Ala Gly Ile Leu Asp Ile Asn Phe Leu Ile Asn Lys
20 25 30Met Gln Glu Asp Pro Ala Ser
Lys Cys His Cys Ser Ala Asn Val Thr 35 40
45Ser Cys Leu Cys Leu Gly Ile Pro Ser Asp Asn Cys Thr Arg Pro
Cys 50 55 60Phe Ser Glu Arg Leu Ser
Gln Met Thr Asn Thr Thr Met Gln Thr Arg65 70
75 80Tyr Pro Leu Ile Phe Ser Arg Val Lys Lys Ser
Val Glu Val Leu Lys 85 90
95Asn Asn Lys Cys Pro Tyr Phe Ser Cys Glu Gln Pro Cys Asn Gln Thr
100 105 110Thr Ala Gly Asn Ala Leu
Thr Phe Leu Lys Ser Leu Leu Glu Ile Phe 115 120
125Gln Lys Glu Lys Met Arg Gly Met Arg Gly Lys Ile 130
135 14055178PRTHomo sapiens 55Met His Ser
Ser Ala Leu Leu Cys Cys Leu Val Leu Leu Thr Gly Val1 5
10 15Arg Ala Ser Pro Gly Gln Gly Thr Gln
Ser Glu Asn Ser Cys Thr His 20 25
30Phe Pro Gly Asn Leu Pro Asn Met Leu Arg Asp Leu Arg Asp Ala Phe
35 40 45Ser Arg Val Lys Thr Phe Phe
Gln Met Lys Asp Gln Leu Asp Asn Leu 50 55
60Leu Leu Lys Glu Ser Leu Leu Glu Asp Phe Lys Gly Tyr Leu Gly Cys65
70 75 80Gln Ala Leu Ser
Glu Met Ile Gln Phe Tyr Leu Glu Glu Val Met Pro 85
90 95Gln Ala Glu Asn Gln Asp Pro Asp Ile Lys
Ala His Val Asn Ser Leu 100 105
110Gly Glu Asn Leu Lys Thr Leu Arg Leu Arg Leu Arg Arg Cys His Arg
115 120 125Phe Leu Pro Cys Glu Asn Lys
Ser Lys Ala Val Glu Gln Val Lys Asn 130 135
140Ala Phe Asn Lys Leu Gln Glu Lys Gly Ile Tyr Lys Ala Met Ser
Glu145 150 155 160Phe Asp
Ile Phe Ile Asn Tyr Ile Glu Ala Tyr Met Thr Met Lys Ile
165 170 175Arg Asn56145PRTHomo sapiens
56Met Ala Leu Leu Leu Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly1
5 10 15Phe Ala Ser Pro Gly Pro
Val Pro Pro Ser Thr Ala Leu Arg Glu Leu 20 25
30Ile Glu Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala
Pro Leu Cys 35 40 45Asn Gly Ser
Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys 50
55 60Ala Ala Leu Glu Ser Leu Ile Asn Val Ser Gly Cys
Ser Ala Ile Glu65 70 75
80Lys Thr Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala
85 90 95Gly Gln Phe Ser Ser Leu
His Val Arg Asp Thr Lys Ile Glu Val Ala 100
105 110Gln Phe Val Lys Asp Leu Leu Leu His Leu Lys Lys
Leu Phe Arg Glu 115 120 125Gly Gln
Phe Asn Arg Asn Phe Glu Ser Ile Ile Ile Cys Arg Asp Arg 130
135 140Thr14557136PRTHomo sapiens 57Met Asp Phe Gln
Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser1 5
10 15Val Ile Met Ser Arg Ala Asn Trp Val Asn
Val Ile Ser Asp Leu Lys 20 25
30Lys Ile Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala Thr Leu Tyr
35 40 45Thr Glu Ser Asp Val His Pro Ser
Cys Lys Val Thr Ala Met Lys Cys 50 55
60Phe Leu Leu Glu Leu Gln Val Ile Ser Leu Glu Ser Gly Asp Ala Ser65
70 75 80Ile His Asp Thr Val
Glu Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu 85
90 95Ser Ser Asn Gly Asn Val Thr Glu Ser Gly Cys
Lys Glu Cys Glu Glu 100 105
110Leu Glu Glu Lys Asn Ile Lys Glu Phe Leu Gln Ser Phe Val His Ile
115 120 125Val Gln Met Phe Ile Asn Thr
Ser 130 13558656PRTHomo sapiens 58Met Glu Gly Asp Gly
Ser Asp Pro Glu Pro Pro Asp Ala Gly Glu Asp1 5
10 15Ser Lys Ser Glu Asn Gly Glu Asn Ala Pro Ile
Tyr Cys Ile Cys Arg 20 25
30Lys Pro Asp Ile Asn Cys Phe Met Ile Gly Cys Asp Asn Cys Asn Glu
35 40 45Trp Phe His Gly Asp Cys Ile Arg
Ile Thr Glu Lys Met Ala Lys Ala 50 55
60Ile Arg Glu Trp Tyr Cys Arg Glu Cys Arg Glu Lys Asp Pro Lys Leu65
70 75 80Glu Ile Arg Tyr Arg
His Lys Lys Ser Arg Glu Arg Asp Gly Asn Glu 85
90 95Arg Asp Ser Ser Glu Pro Arg Asp Glu Gly Gly
Gly Arg Lys Arg Pro 100 105
110Val Pro Asp Pro Asn Leu Gln Arg Arg Ala Gly Ser Gly Thr Gly Val
115 120 125Gly Ala Met Leu Ala Arg Gly
Ser Ala Ser Pro His Lys Ser Ser Pro 130 135
140Gln Pro Leu Val Ala Thr Pro Ser Gln His His Gln Gln Gln Gln
Gln145 150 155 160Gln Ile
Lys Arg Ser Ala Arg Met Cys Gly Glu Cys Glu Ala Cys Arg
165 170 175Arg Thr Glu Asp Cys Gly His
Cys Asp Phe Cys Arg Asp Met Lys Lys 180 185
190Phe Gly Gly Pro Asn Lys Ile Arg Gln Lys Cys Arg Leu Arg
Gln Cys 195 200 205Gln Leu Arg Ala
Arg Glu Ser Tyr Lys Tyr Phe Pro Ser Ser Leu Ser 210
215 220Pro Val Thr Pro Ser Glu Ser Leu Pro Arg Pro Arg
Arg Pro Leu Pro225 230 235
240Thr Gln Gln Gln Pro Gln Pro Ser Gln Lys Leu Gly Arg Ile Arg Glu
245 250 255Asp Glu Gly Ala Val
Ala Ser Ser Thr Val Lys Glu Pro Pro Glu Ala 260
265 270Thr Ala Thr Pro Glu Pro Leu Ser Asp Glu Asp Leu
Pro Leu Asp Pro 275 280 285Asp Leu
Tyr Gln Asp Phe Cys Ala Gly Ala Phe Asp Asp Asn Gly Leu 290
295 300Pro Trp Met Ser Asp Thr Glu Glu Ser Pro Phe
Leu Asp Pro Ala Leu305 310 315
320Arg Lys Arg Ala Val Lys Val Lys His Val Lys Arg Arg Glu Lys Lys
325 330 335Ser Glu Lys Lys
Lys Glu Glu Arg Tyr Lys Arg His Arg Gln Lys Gln 340
345 350Lys His Lys Asp Lys Trp Lys His Pro Glu Arg
Ala Asp Ala Lys Asp 355 360 365Pro
Ala Ser Leu Pro Gln Cys Leu Gly Pro Gly Cys Val Arg Pro Ala 370
375 380Gln Pro Ser Ser Lys Tyr Cys Ser Asp Asp
Cys Gly Met Lys Leu Ala385 390 395
400Ala Asn Arg Ile Tyr Glu Ile Leu Pro Gln Arg Ile Gln Gln Trp
Gln 405 410 415Gln Ser Pro
Cys Ile Ala Glu Glu His Gly Lys Lys Leu Leu Glu Arg 420
425 430Ile Arg Arg Glu Gln Gln Ser Ala Arg Thr
Arg Leu Gln Glu Met Glu 435 440
445Arg Arg Phe His Glu Leu Glu Ala Ile Ile Leu Arg Ala Lys Gln Gln 450
455 460Ala Val Arg Glu Asp Glu Glu Ser
Asn Glu Gly Asp Ser Asp Asp Thr465 470
475 480Asp Leu Gln Ile Phe Cys Val Ser Cys Gly His Pro
Ile Asn Pro Arg 485 490
495Val Ala Leu Arg His Met Glu Arg Cys Tyr Ala Lys Tyr Glu Ser Gln
500 505 510Thr Ser Phe Gly Ser Met
Tyr Pro Thr Arg Ile Glu Gly Ala Thr Arg 515 520
525Leu Phe Cys Asp Val Tyr Asn Pro Gln Ser Lys Thr Tyr Cys
Lys Arg 530 535 540Leu Gln Val Leu Cys
Pro Glu His Ser Arg Asp Pro Lys Val Pro Ala545 550
555 560Asp Glu Val Cys Gly Cys Pro Leu Val Arg
Asp Val Phe Glu Leu Thr 565 570
575Gly Asp Phe Cys Arg Leu Pro Lys Arg Gln Cys Asn Arg His Tyr Cys
580 585 590Trp Glu Lys Leu Arg
Arg Ala Glu Val Asp Leu Glu Arg Val Arg Val 595
600 605Trp Tyr Lys Leu Asp Glu Leu Phe Glu Gln Glu Arg
Asn Val Arg Thr 610 615 620Ala Met Thr
Asn Arg Ala Gly Leu Leu Ala Leu Met Leu His Gln Thr625
630 635 640Ile Gln His Asp Pro Leu Thr
Thr Asp Leu Arg Ser Ser Ala Asp Arg 645
650 65559124PRTVibrio cholerae 59Met Ile Lys Leu Lys Phe
Gly Val Phe Phe Thr Val Leu Leu Ser Ser1 5
10 15Ala Tyr Ala His Gly Thr Pro Gln Asn Ile Thr Asp
Leu Cys Ala Glu 20 25 30Tyr
His Asn Thr Gln Ile Tyr Thr Leu Asn Asp Lys Ile Phe Ser Tyr 35
40 45Thr Glu Ser Leu Ala Gly Lys Arg Glu
Met Ala Ile Ile Thr Phe Lys 50 55
60Asn Gly Ala Ile Phe Gln Val Glu Val Pro Gly Ser Gln His Ile Asp65
70 75 80Ser Gln Lys Lys Ala
Ile Glu Arg Met Lys Asp Thr Leu Arg Ile Ala 85
90 95Tyr Leu Thr Glu Ala Lys Val Glu Lys Leu Cys
Val Trp Asn Asn Lys 100 105
110Thr Pro His Ala Ile Ala Ala Ile Ser Met Ala Asn 115
12060258PRTVibrio sp. 60Met Val Lys Ile Ile Phe Val Phe Phe Ile Phe
Leu Ser Ser Phe Ser1 5 10
15Tyr Ala Asn Asp Asp Lys Leu Tyr Arg Ala Asp Ser Arg Pro Pro Asp
20 25 30Glu Ile Lys Gln Ser Gly Gly
Leu Met Pro Arg Gly Gln Asn Glu Tyr 35 40
45Phe Asp Arg Gly Thr Gln Met Asn Ile Asn Leu Tyr Asp His Ala
Arg 50 55 60Gly Thr Gln Thr Gly Phe
Val Arg His Asp Asp Gly Tyr Val Ser Thr65 70
75 80Ser Ile Ser Leu Arg Ser Ala His Leu Val Gly
Gln Thr Ile Leu Ser 85 90
95Gly His Ser Thr Tyr Tyr Ile Tyr Val Ile Ala Thr Ala Pro Asn Met
100 105 110Phe Asn Val Asn Asp Val
Leu Gly Ala Tyr Ser Pro His Pro Asp Glu 115 120
125Gln Glu Val Ser Ala Leu Gly Gly Ile Pro Tyr Ser Gln Ile
Tyr Gly 130 135 140Trp Tyr Arg Val His
Phe Gly Val Leu Asp Glu Gln Leu His Arg Asn145 150
155 160Arg Gly Tyr Arg Asp Arg Tyr Tyr Ser Asn
Leu Asp Ile Ala Pro Ala 165 170
175Ala Asp Gly Tyr Gly Leu Ala Gly Phe Pro Pro Glu His Arg Ala Trp
180 185 190Arg Glu Glu Pro Trp
Ile His His Ala Pro Pro Gly Cys Gly Asn Ala 195
200 205Pro Arg Ser Ser Met Ser Asn Thr Cys Asp Glu Lys
Thr Gln Ser Leu 210 215 220Gly Val Lys
Phe Leu Asp Glu Tyr Gln Ser Lys Val Lys Arg Gln Ile225
230 235 240Phe Ser Gly Tyr Gln Ser Asp
Ile Asp Thr His Asn Arg Ile Lys Asp 245
250 255Glu Leu61124PRTVibrio cholerae 61Met Ile Lys Leu
Lys Phe Gly Val Phe Phe Thr Val Leu Leu Ser Ser1 5
10 15Ala Tyr Ala His Gly Thr Pro Gln Asn Ile
Thr Asp Leu Cys Ala Glu 20 25
30Tyr His Asn Thr Gln Ile His Thr Leu Asn Asp Lys Ile Leu Ser Tyr
35 40 45Thr Glu Ser Leu Ala Gly Asn Arg
Glu Met Ala Ile Ile Thr Phe Lys 50 55
60Asn Gly Ala Thr Phe Gln Val Glu Val Pro Gly Ser Gln His Ile Asp65
70 75 80Ser Gln Lys Lys Ala
Ile Glu Arg Met Lys Asp Thr Leu Arg Ile Ala 85
90 95Tyr Leu Thr Glu Ala Lys Val Glu Lys Leu Cys
Val Trp Asn Asn Lys 100 105
110Thr Pro His Ala Ile Ala Ala Ile Ser Met Ala Asn 115
1206218PRTHomo sapiens 62Asp Pro Asn Ala Pro Lys Arg Pro Pro Ser Ala
Phe Phe Leu Phe Cys1 5 10
15Ser Glu6396PRTHomo sapiens 63Met Cys Cys Thr Lys Ser Leu Leu Leu Ala
Ala Leu Met Ser Val Leu1 5 10
15Leu Leu His Leu Cys Gly Glu Ser Glu Ala Ala Ser Asn Phe Asp Cys
20 25 30Cys Leu Gly Tyr Thr Asp
Arg Ile Leu His Pro Lys Phe Ile Val Gly 35 40
45Phe Thr Arg Gln Leu Ala Asn Glu Gly Cys Asp Ile Asn Ala
Ile Ile 50 55 60Phe His Thr Lys Lys
Lys Leu Ser Val Cys Ala Asn Pro Lys Gln Thr65 70
75 80Trp Val Lys Tyr Ile Val Arg Leu Leu Ser
Lys Lys Val Lys Asn Met 85 90
956492PRTHomo sapiens 64Met Gln Val Ser Thr Ala Ala Leu Ala Val Leu
Leu Cys Thr Met Ala1 5 10
15Leu Cys Asn Gln Phe Ser Ala Ser Leu Ala Ala Asp Thr Pro Thr Ala
20 25 30Cys Cys Phe Ser Tyr Thr Ser
Arg Gln Ile Pro Gln Asn Phe Ile Ala 35 40
45Asp Tyr Phe Glu Thr Ser Ser Gln Cys Ser Lys Pro Gly Val Ile
Phe 50 55 60Leu Thr Lys Arg Ser Arg
Gln Val Cys Ala Asp Pro Ser Glu Glu Trp65 70
75 80Val Gln Lys Tyr Val Ser Asp Leu Glu Leu Ser
Ala 85 9065144PRTHomo sapiens 65Met Trp
Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile1 5
10 15Ser Ala Pro Ala Arg Ser Pro Ser
Pro Ser Thr Gln Pro Trp Glu His 20 25
30Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg
Asp 35 40 45Thr Ala Ala Glu Met
Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe 50 55
60Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu
Tyr Lys65 70 75 80Gln
Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met
85 90 95Met Ala Ser His Tyr Lys Gln
His Cys Pro Pro Thr Pro Glu Thr Ser 100 105
110Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn
Leu Lys 115 120 125Asp Phe Leu Leu
Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 130
135 14066204PRTHomo sapiens 66Met Ala Gly Pro Ala Thr Gln
Ser Pro Met Lys Leu Met Ala Leu Gln1 5 10
15Leu Leu Leu Trp His Ser Ala Leu Trp Thr Val Gln Glu
Ala Thr Pro 20 25 30Leu Gly
Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu 35
40 45Glu Gln Val Arg Lys Ile Gln Gly Asp Gly
Ala Ala Leu Gln Glu Lys 50 55 60Leu
Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu65
70 75 80Gly His Ser Leu Gly Ile
Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser 85
90 95Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu
His Ser Gly Leu 100 105 110Phe
Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu 115
120 125Leu Gly Pro Thr Leu Asp Thr Leu Gln
Leu Asp Val Ala Asp Phe Ala 130 135
140Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu145
150 155 160Gln Pro Thr Gln
Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg 165
170 175Arg Ala Gly Gly Val Leu Val Ala Ser His
Leu Gln Ser Phe Leu Glu 180 185
190Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 195
200677PRTArtificial SequenceDescription of Artificial Sequence
Synthetic peptide 67Gln Glu Ile Asn Ser Ser Tyr1
5687PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 68Ser His Pro Arg Leu Ser Ala1 5697PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 69Ser
Met Pro Asn Pro Met Val1 5707PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 70Gly
Leu Gln Gln Val Leu Leu1 5717PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 71His
Glu Leu Ser Val Leu Leu1 5727PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 72Tyr
Ala Pro Gln Arg Leu Pro1 5737PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 73Thr
Pro Arg Thr Leu Pro Thr1 5747PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 74Ala
Pro Val His Ser Ser Ile1 5757PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 75Ala
Pro Pro His Ala Leu Ser1 5767PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 76Thr
Phe Ser Asn Arg Phe Ile1 5777PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 77Val
Val Pro Thr Pro Pro Tyr1 5787PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 78Glu
Leu Ala Pro Asp Ser Pro1 57969PRTShigella dysenteria 1
79Thr Pro Asp Cys Val Thr Gly Lys Val Glu Tyr Thr Lys Tyr Asn Asp1
5 10 15Asp Asp Thr Phe Thr Val
Lys Val Gly Asp Lys Glu Leu Phe Thr Asn 20 25
30Arg Trp Asn Leu Gln Ser Leu Leu Leu Ser Ala Gln Ile
Thr Gly Met 35 40 45Thr Val Thr
Ile Lys Gln Asn Ala Cys His Asn Gly Gly Gly Phe Ser 50
55 60Glu Val Ile Phe Arg6580560PRTCorynephage omega
80Met Ser Arg Lys Leu Phe Ala Ser Ile Leu Ile Gly Ala Leu Leu Gly1
5 10 15Ile Gly Ala Pro Pro Ser
Ala His Ala Gly Ala Asp Asp Val Val Asp 20 25
30Ser Ser Lys Ser Phe Val Met Glu Asn Phe Ser Ser Tyr
His Gly Thr 35 40 45Lys Pro Gly
Tyr Val Asp Ser Ile Gln Lys Gly Ile Gln Lys Pro Lys 50
55 60Ser Gly Thr Gln Gly Asn Tyr Asp Asp Asp Trp Lys
Gly Phe Tyr Ser65 70 75
80Thr Asp Asn Lys Tyr Asp Ala Ala Gly Tyr Ser Val Asp Asn Glu Asn
85 90 95Pro Leu Ser Gly Lys Ala
Gly Gly Val Val Lys Val Thr Tyr Pro Gly 100
105 110Leu Thr Lys Val Leu Ala Leu Lys Val Asp Asn Ala
Glu Thr Ile Lys 115 120 125Lys Glu
Leu Gly Leu Ser Leu Thr Glu Pro Leu Met Glu Gln Val Gly 130
135 140Thr Glu Glu Phe Ile Lys Arg Phe Gly Asp Gly
Ala Ser Arg Val Val145 150 155
160Leu Ser Leu Pro Phe Ala Glu Gly Ser Ser Ser Val Glu Tyr Ile Asn
165 170 175Asn Trp Glu Gln
Ala Lys Ala Leu Ser Val Glu Leu Glu Ile Asn Phe 180
185 190Glu Thr Arg Gly Lys Arg Gly Gln Asp Ala Met
Tyr Glu Tyr Met Ala 195 200 205Gln
Ala Cys Ala Gly Asn Arg Val Arg Arg Ser Val Gly Ser Ser Leu 210
215 220Ser Cys Ile Asn Leu Asp Trp Asp Val Ile
Arg Asp Lys Thr Lys Thr225 230 235
240Lys Ile Glu Ser Leu Lys Glu His Gly Pro Ile Lys Asn Lys Met
Ser 245 250 255Glu Ser Pro
Asn Lys Thr Val Ser Glu Glu Lys Ala Lys Gln Tyr Leu 260
265 270Glu Glu Phe His Gln Thr Ala Leu Glu His
Pro Glu Leu Ser Glu Leu 275 280
285Lys Thr Val Thr Gly Thr Asn Pro Val Phe Ala Gly Ala Asn Tyr Ala 290
295 300Ala Trp Ala Val Asn Val Ala Gln
Val Ile Asp Ser Glu Thr Ala Asp305 310
315 320Asn Leu Glu Lys Thr Thr Ala Ala Leu Ser Ile Leu
Pro Gly Ile Gly 325 330
335Ser Val Met Gly Ile Ala Asp Gly Ala Val His His Asn Thr Glu Glu
340 345 350Ile Val Ala Gln Ser Ile
Ala Leu Ser Ser Leu Met Val Ala Gln Ala 355 360
365Ile Pro Leu Val Gly Glu Leu Val Asp Ile Gly Phe Ala Ala
Tyr Asn 370 375 380Phe Val Glu Ser Ile
Ile Asn Leu Phe Gln Val Val His Asn Ser Tyr385 390
395 400Asn Arg Pro Ala Tyr Ser Pro Gly His Lys
Thr Gln Pro Phe Leu His 405 410
415Asp Gly Tyr Ala Val Ser Trp Asn Thr Val Glu Asp Ser Ile Ile Arg
420 425 430Thr Gly Phe Gln Gly
Glu Ser Gly His Asp Ile Lys Ile Thr Ala Glu 435
440 445Asn Thr Pro Leu Pro Ile Ala Gly Val Leu Leu Pro
Thr Ile Pro Gly 450 455 460Lys Leu Asp
Val Asn Lys Ser Lys Thr His Ile Ser Val Asn Gly Arg465
470 475 480Lys Ile Arg Met Arg Cys Arg
Ala Ile Asp Gly Asp Val Thr Phe Cys 485
490 495Arg Pro Lys Ser Pro Val Tyr Val Gly Asn Gly Val
His Ala Asn Leu 500 505 510His
Val Ala Phe His Arg Ser Ser Ser Glu Lys Ile His Ser Asn Glu 515
520 525Ile Ser Ser Asp Ser Ile Gly Val Leu
Gly Tyr Gln Lys Thr Val Asp 530 535
540His Thr Lys Val Asn Ser Lys Leu Ser Leu Phe Phe Glu Ile Lys Ser545
550 555 56081114PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
81Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp Leu Ile1
5 10 15Gln Ser Met His Ile Asp
Ala Thr Leu Tyr Thr Glu Ser Asp Val His 20 25
30Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu
Glu Leu Gln 35 40 45Val Ile Ser
Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu 50
55 60Asn Leu Ile Ile Leu Ala Asn Asp Ser Leu Ser Ser
Asn Gly Asn Val65 70 75
80Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys Asn Ile
85 90 95Lys Glu Phe Leu Gln Ser
Phe Val His Ile Val Gln Met Phe Ile Asn 100
105 110Thr Ser82297PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 82Ile Thr Cys Pro Pro Pro
Met Ser Val Glu His Ala Asp Ile Trp Val1 5
10 15Lys Ser Tyr Ser Leu Tyr Ser Arg Glu Arg Tyr Ile
Cys Asn Ser Gly 20 25 30Phe
Lys Arg Lys Ala Gly Thr Ser Ser Leu Thr Glu Cys Val Leu Asn 35
40 45Lys Ala Thr Asn Val Ala His Trp Thr
Thr Pro Ser Leu Lys Cys Ile 50 55
60Arg Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro65
70 75 80Ala Pro Glu Leu Leu
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 85
90 95Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val 100 105
110Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
115 120 125Val Asp Gly Val Glu Val His
Asn Ala Lys Thr Lys Pro Arg Glu Glu 130 135
140Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
His145 150 155 160Gln Asp
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
165 170 175Ala Leu Pro Ala Pro Ile Glu
Lys Thr Ile Ser Lys Ala Lys Gly Gln 180 185
190Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu 195 200 205Thr Lys Asn Gln
Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 210
215 220Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn225 230 235
240Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
245 250 255Tyr Ser Lys Leu Thr
Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 260
265 270Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
His Tyr Thr Gln 275 280 285Lys Ser
Leu Ser Leu Ser Pro Gly Lys 290
29583535PRTCorynebacterium diphtheriae 83Gly Ala Asp Asp Val Val Asp Ser
Ser Lys Ser Phe Val Met Glu Asn1 5 10
15Phe Ser Ser Tyr His Gly Thr Lys Pro Gly Tyr Val Asp Ser
Ile Gln 20 25 30Lys Gly Ile
Gln Lys Pro Lys Ser Gly Thr Gln Gly Asn Tyr Asp Asp 35
40 45Asp Trp Lys Glu Phe Tyr Ser Thr Asp Asn Lys
Tyr Asp Ala Ala Gly 50 55 60Tyr Ser
Val Asp Asn Glu Asn Pro Leu Ser Gly Lys Ala Gly Gly Val65
70 75 80Val Lys Val Thr Tyr Pro Gly
Leu Thr Lys Val Leu Ala Leu Lys Val 85 90
95Asp Asn Ala Glu Thr Ile Lys Lys Glu Leu Gly Leu Ser
Leu Thr Glu 100 105 110Pro Leu
Met Glu Gln Val Gly Thr Glu Glu Phe Ile Lys Arg Phe Gly 115
120 125Asp Gly Ala Ser Arg Val Val Leu Ser Leu
Pro Phe Ala Glu Gly Ser 130 135 140Ser
Ser Val Glu Tyr Ile Asn Asn Trp Glu Gln Ala Lys Ala Leu Ser145
150 155 160Val Glu Leu Glu Ile Asn
Phe Glu Thr Arg Gly Lys Arg Gly Gln Asp 165
170 175Ala Met Tyr Glu Tyr Met Ala Gln Ala Cys Ala Gly
Asn Arg Val Arg 180 185 190Arg
Ser Val Gly Ser Ser Leu Ser Cys Ile Asn Leu Asp Trp Asp Val 195
200 205Ile Arg Asp Lys Thr Lys Thr Lys Ile
Glu Ser Leu Lys Glu His Gly 210 215
220Pro Ile Lys Asn Lys Met Ser Glu Ser Pro Asn Lys Thr Val Ser Glu225
230 235 240Glu Lys Ala Lys
Gln Tyr Leu Glu Glu Phe His Gln Thr Ala Leu Glu 245
250 255His Pro Glu Leu Ser Glu Leu Lys Thr Val
Thr Gly Thr Asn Pro Val 260 265
270Phe Ala Gly Ala Asn Tyr Ala Ala Trp Ala Val Asn Val Ala Gln Val
275 280 285Ile Asp Ser Glu Thr Ala Asp
Asn Leu Glu Lys Thr Thr Ala Ala Leu 290 295
300Ser Ile Leu Pro Gly Ile Gly Ser Val Met Gly Ile Ala Asp Gly
Ala305 310 315 320Val His
His Asn Thr Glu Glu Ile Val Ala Gln Ser Ile Ala Leu Ser
325 330 335Ser Leu Met Val Ala Gln Ala
Ile Pro Leu Val Gly Glu Leu Val Asp 340 345
350Ile Gly Phe Ala Ala Tyr Asn Phe Val Glu Ser Ile Ile Asn
Leu Phe 355 360 365Gln Val Val His
Asn Ser Tyr Asn Arg Pro Ala Tyr Ser Pro Gly His 370
375 380Lys Thr Gln Pro Phe Leu His Asp Gly Tyr Ala Val
Ser Trp Asn Thr385 390 395
400Val Glu Asp Ser Ile Ile Arg Thr Gly Phe Gln Gly Glu Ser Gly His
405 410 415Asp Ile Lys Ile Thr
Ala Glu Asn Thr Pro Leu Pro Ile Ala Gly Val 420
425 430Leu Leu Pro Thr Ile Pro Gly Lys Leu Asp Val Asn
Lys Ser Lys Thr 435 440 445His Ile
Ser Val Asn Gly Arg Lys Ile Arg Met Arg Cys Arg Ala Ile 450
455 460Asp Gly Asp Val Thr Phe Cys Arg Pro Lys Ser
Pro Val Tyr Val Gly465 470 475
480Asn Gly Val His Ala Asn Leu His Val Ala Phe His Arg Ser Ser Ser
485 490 495Glu Lys Ile His
Ser Asn Glu Ile Ser Ser Asp Ser Ile Gly Val Leu 500
505 510Gly Tyr Gln Lys Thr Val Asp His Thr Lys Val
Asn Ser Lys Leu Ser 515 520 525Leu
Phe Phe Glu Ile Lys Ser 530 5358411PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 84Met
Ala Val Pro Met Gln Leu Ser Cys Ser Arg1 5
10854PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 85Arg Ser Thr Gly1862PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptide 86Thr Arg1873PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 87Arg
Ser Gln1885PRTArtificial SequenceDescription of Artificial Sequence
Synthetic peptide 88Arg Ser Ala Gly Glu1
5892PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 89Arg Ser1902PRTArtificial SequenceDescription of Artificial
Sequence Synthetic peptide 90Gly Gly1919PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 91Gly
Ser Gly Gly Ser Gly Gly Ser Gly1 59211PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 92Gly
Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly1 5
109314PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 93Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly1
5 109417PRTArtificial SequenceDescription
of Artificial Sequence Synthetic peptide 94Gly Gly Ser Gly Gly Ser
Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly1 5
10 15Gly9520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptide 95Gly Gly Ser Gly Gly Ser Gly
Gly Ser Gly Gly Ser Gly Gly Ser Gly1 5 10
15Gly Ser Gly Gly 209623PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 96Gly
Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly1
5 10 15Gly Ser Gly Gly Ser Gly Gly
209716PRTArtificial SequenceDescription of Artificial Sequence
Synthetic peptide 97Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser
Gly Gly Ser Gly1 5 10
159816PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 98Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly
Gly1 5 10
1599470PRTArtificial SequenceDescription of Artificial Sequence Synthetic
polypeptide 99Met Gly Trp Ser Cys Ile Ile Phe Phe Leu Val Ala Thr
Ala Thr Gly1 5 10 15Val
His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 20
25 30Pro Gly Ala Ser Val Lys Val Ser
Cys Lys Ala Ser Gly Tyr Thr Phe 35 40
45Thr Asp Tyr Ala Met His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu
50 55 60Glu Trp Met Gly Leu Ile Ser Thr
Tyr Ser Gly Asp Thr Lys Tyr Asn65 70 75
80Gln Asn Phe Gln Gly Arg Val Thr Met Thr Val Asp Lys
Ser Ala Ser 85 90 95Thr
Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val
100 105 110Tyr Tyr Cys Ala Arg Gly Asp
Tyr Ser Gly Ser Arg Tyr Trp Phe Ala 115 120
125Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr
Lys 130 135 140Gly Pro Ser Val Phe Pro
Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly145 150
155 160Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp
Tyr Phe Pro Glu Pro 165 170
175Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
180 185 190Phe Pro Ala Val Leu Gln
Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 195 200
205Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile
Cys Asn 210 215 220Val Asn His Lys Pro
Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro225 230
235 240Lys Ser Cys Asp Lys Thr His Thr Cys Pro
Pro Cys Pro Ala Pro Glu 245 250
255Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
260 265 270Thr Leu Met Ile Ser
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 275
280 285Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
Tyr Val Asp Gly 290 295 300Val Glu Val
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn305
310 315 320Ser Thr Tyr Arg Val Val Ser
Val Leu Thr Val Leu His Gln Asp Trp 325
330 335Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
Lys Ala Leu Pro 340 345 350Ala
Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 355
360 365Pro Gln Val Tyr Thr Leu Pro Pro Ser
Arg Asp Glu Leu Thr Lys Asn 370 375
380Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile385
390 395 400Ala Val Glu Trp
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 405
410 415Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys 420 425
430Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
435 440 445Ser Val Met His Glu Ala Leu
His Asn His Tyr Thr Gln Lys Ser Leu 450 455
460Ser Leu Ser Pro Gly Lys465
4701002109DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 100atggagtctc cctcggcccc tccccacaga
tggtgcatcc cctggcagag gctcctgctc 60acagcctcac ttctaacctt ctggaacccg
cccaccactg ccaagctcac tattgaatcc 120acgccgttca atgtcgcaga ggggaaggag
gtgcttctac ttgtccacaa tctgccccag 180catctttttg gctacagctg gtacaaaggt
gaaagagtgg atggcaaccg tcaaattata 240ggatatgtaa taggaactca acaagctacc
ccagggcccg catacagtgg tcgagagata 300atatacccca atgcatccct gctgatccag
aacatcatcc agaatgacac aggattctac 360accctacacg tcataaagtc agatcttgtg
aatgaagaag caactggcca gttccgggta 420tacccggagc tgcccaagcc ctccatctcc
agcaacaact ccaaacccgt ggaggacaag 480gatgctgtgg ccttcacctg tgaacctgag
actcaggacg caacctacct gtggtgggta 540aacaatcaga gcctcccggt cagtcccagg
ctgcagctgt ccaatggcaa caggaccctc 600actctattca atgtcacaag aaatgacaca
gcaagctaca aatgtgaaac ccagaaccca 660gtgagtgcca ggcgcagtga ttcagtcatc
ctgaatgtcc tctatggccc ggatgccccc 720accatttccc ctctaaacac atcttacaga
tcaggggaaa atctgaacct ctcctgccac 780gcagcctcta acccacctgc acagtactct
tggtttgtca atgggacttt ccagcaatcc 840acccaagagc tctttatccc caacatcact
gtgaataata gtggatccta tacgtgccaa 900gcccataact cagacactgg cctcaatagg
accacagtca cgacgatcac agtctatgca 960gagccaccca aacccttcat caccagcaac
aactccaacc ccgtggagga tgaggatgct 1020gtagccttaa cctgtgaacc tgagattcag
aacacaacct acctgtggtg ggtaaataat 1080cagagcctcc cggtcagtcc caggctgcag
ctgtccaatg acaacaggac cctcactcta 1140ctcagtgtca caaggaatga tgtaggaccc
tatgagtgtg gaatccagaa cgaattaagt 1200gttgaccaca gcgacccagt catcctgaat
gtcctctatg gcccagacga ccccaccatt 1260tccccctcat acacctatta ccgtccaggg
gtgaacctca gcctctcctg ccatgcagcc 1320tctaacccac ctgcacagta ttcttggctg
attgatggga acatccagca acacacacaa 1380gagctcttta tctccaacat cactgagaag
aacagcggac tctatacctg ccaggccaat 1440aactcagcca gtggccacag caggactaca
gtcaagacaa tcacagtctc tgcggagctg 1500cccaagccct ccatctccag caacaactcc
aaacccgtgg aggacaagga tgctgtggcc 1560ttcacctgtg aacctgaggc tcagaacaca
acctacctgt ggtgggtaaa tggtcagagc 1620ctcccagtca gtcccaggct gcagctgtcc
aatggcaaca ggaccctcac tctattcaat 1680gtcacaagaa atgacgcaag agcctatgta
tgtggaatcc agaactcagt gagtgcaaac 1740cgcagtgacc cagtcaccct ggatgtcctc
tatgggccgg acacccccat catttccccc 1800ccagactcgt cttacctttc gggagcggac
ctcaacctct cctgccactc ggcctctaac 1860ccatccccgc agtattcttg gcgtatcaat
gggataccgc agcaacacac acaagttctc 1920tttatcgcca aaatcacgcc aaataataac
gggacctatg cctgttttgt ctctaacttg 1980gctactggcc gcaataattc catagtcaag
agcatcacag tctctgcatc tggaacttct 2040cctggtctct cagctggggc cactgtcggc
atcatgattg gagtgctggt tggggttgct 2100ctgatatag
21091011428DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
101atgacaccgg gcacccagtc tcctttcttc ctgctgctgc tcctcacagt gcttacagtt
60gttacgggtt ctggtcatgc aagctctacc ccaggtggag aaaaggagac ttcggctacc
120cagagaagtt cagtgcccag ctctactgag aagaatgctg tgagtatgac cagcagcgta
180ctctccagcc acagccccgg ttcaggctcc tccaccactc agggacagga tgtcactctg
240gccccggcca cggaaccagc ttcaggttca gctgcccttt ggggacagga tgtcacctcg
300gtcccagtca ccaggccagc cctgggctcc accaccccgc cagcccacga tgtcacctca
360gccccggaca acaagccagc cccgggctcc accgcccccc cagcccacgg tgtcacctcg
420tatcttgaca ccaggccggc cccggtttat cttgcccccc cagcccatgg tgtcacctcg
480gccccggaca acaggcccgc cttgggctcc accgcccctc cagtccacaa tgtcacctcg
540gcctcaggct ctgcatcagg ctcagcttct actctggtgc acaacggcac ctctgccagg
600gctaccacaa ccccagccag caagagcact ccattctcaa ttcccagcca ccactctgat
660actcctacca cccttgccag ccatagcacc aagactgatg ccagtagcac tcaccatagc
720acggtacctc ctctcacctc ctccaatcac agcacttctc cccagttgtc tactggggtc
780tctttctttt tcctgtcttt tcacatttca aacctccagt ttaattcctc tctggaagat
840cccagcaccg actactacca agagctgcag agagacattt ctgaaatgtt tttgcagatt
900tataaacaag ggggttttct gggcctctcc aatattaagt tcaggccagg atctgtggtg
960gtacaattga ctctggcctt ccgagaaggt accatcaatg tccacgacgt ggagacacag
1020ttcaatcagt ataaaacgga agcagcctct cgatataacc tgacgatctc agacgtcagc
1080gtgagtgatg tgccatttcc tttctctgcc cagtctgggg ctggggtgcc aggctggggc
1140atcgcgctgc tggtgctggt ctgtgttctg gtttatctgg ccattgtcta tctcattgcc
1200ttggctgtcg ctcaggttcg ccgaaagaac tacgggcagc tggacatctt tccagcccgg
1260gataaatacc atcctatgag cgagtacgct ctttaccaca cccatgggcg ctatgtgccc
1320cctagcagtc ttttccgtag cccctatgag aaggtttctg caggtaatgg tggcagctat
1380ctctcttaca caaacccagc agtggcagcc gcttctgcca acttgtag
14281021233DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 102atgagctccc ctggcaccga gagcgcggga
aagagcctgc agtaccgagt ggaccacctg 60ctgagcgccg tggagaatga gctgcaggcg
ggcagcgaga agggcgaccc cacagagcgc 120gaactgcgcg tgggcctgga ggagagcgag
ctgtggctgc gcttcaagga gctcaccaat 180gagatgatcg tgaccaagaa cggcaggagg
atgtttccgg tgctgaaggt gaacgtgtct 240ggcctggacc ccaacgccat gtactccttc
ctgctggact tcgtggcggc ggacaaccac 300cgctggaagt acgtgaacgg ggaatgggtg
ccggggggca agccggagcc gcaggcgccc 360agctgcgtct acatccaccc cgactcgccc
aacttcgggg cccactggat gaaggctccc 420gtctccttca gcaaagtcaa gctcaccaac
aagctcaacg gagggggcca gatcatgctg 480aactccttgc ataagtatga gcctcgaatc
cacatagtga gagttggggg tccacagcgc 540atgatcacca gccactgctt ccctgagacc
cagttcatag cggtgactgc tagaagtgat 600cacaaagaga tgatggagga acccggagac
agccagcaac ctgggtactc ccaatggggg 660tggcttcttc ctggaaccag caccgtgtgt
ccacctgcaa atcctcatcc tcagtttgga 720ggtgccctct ccctcccctc cacgcacagc
tgtgacaggt acccaaccct gaggagccac 780cggtcctcac cctaccccag cccctatgct
catcggaaca attctccaac ctattctgac 840aactcacctg catgtttatc catgctgcaa
tcccatgaca attggtccag ccttggaatg 900cctgcccatc ccagcatgct ccccgtgagc
cacaatgcca gcccacctac cagctccagt 960cagtacccca gcctgtggtc tgtgagcaac
ggcgccgtca ccccgggctc ccaggcagca 1020gccgtgtcca acgggctggg ggcccagttc
ttccggggct cccccgcgca ctacacaccc 1080ctcacccatc cggtctcggc gccctcttcc
tcgggatccc cactgtacga aggggcggcc 1140gcggccacag acatcgtgga cagccagtac
gacgccgcag cccaaggccg cctcatagcc 1200tcatggacac ctgtgtcgcc accttccatg
tga 12331031331PRTHomo sapiens 103Met Glu
Ser His Ser Arg Ala Gly Lys Ser Arg Lys Ser Ala Lys Phe1 5
10 15Arg Ser Ile Ser Arg Ser Leu Met
Leu Cys Asn Ala Lys Thr Ser Asp 20 25
30Asp Gly Ser Ser Pro Asp Glu Lys Tyr Pro Asp Pro Phe Glu Ile
Ser 35 40 45Leu Ala Gln Gly Lys
Glu Gly Ile Phe His Ser Ser Val Gln Leu Ala 50 55
60Asp Thr Ser Glu Ala Gly Pro Ser Ser Val Pro Asp Leu Ala
Leu Ala65 70 75 80Ser
Glu Ala Ala Gln Leu Gln Ala Ala Gly Asn Asp Arg Gly Lys Thr
85 90 95Cys Arg Arg Ile Phe Phe Met
Lys Glu Ser Ser Thr Ala Ser Ser Arg 100 105
110Glu Lys Pro Gly Lys Leu Glu Ala Gln Ser Ser Asn Phe Leu
Phe Pro 115 120 125Lys Ala Cys His
Gln Arg Ala Arg Ser Asn Ser Thr Ser Val Asn Pro 130
135 140Tyr Cys Thr Arg Glu Ile Asp Phe Pro Met Thr Lys
Lys Ser Ala Ala145 150 155
160Pro Thr Asp Arg Gln Pro Tyr Ser Leu Cys Ser Asn Arg Lys Ser Leu
165 170 175Ser Gln Gln Leu Asp
Cys Pro Ala Gly Lys Ala Ala Gly Thr Ser Arg 180
185 190Pro Thr Arg Ser Leu Ser Thr Ala Gln Leu Val Gln
Pro Ser Gly Gly 195 200 205Leu Gln
Ala Ser Val Ile Ser Asn Ile Val Leu Met Lys Gly Gln Ala 210
215 220Lys Gly Leu Gly Phe Ser Ile Val Gly Gly Lys
Asp Ser Ile Tyr Gly225 230 235
240Pro Ile Gly Ile Tyr Val Lys Thr Ile Phe Ala Gly Gly Ala Ala Ala
245 250 255Ala Asp Gly Arg
Leu Gln Glu Gly Asp Glu Ile Leu Glu Leu Asn Gly 260
265 270Glu Ser Met Ala Gly Leu Thr His Gln Asp Ala
Leu Gln Lys Phe Lys 275 280 285Gln
Ala Lys Lys Gly Leu Leu Thr Leu Thr Val Arg Thr Arg Leu Thr 290
295 300Ala Pro Pro Ser Leu Cys Ser His Leu Ser
Pro Pro Leu Cys Arg Ser305 310 315
320Leu Ser Ser Ser Thr Cys Ile Thr Lys Asp Ser Ser Ser Phe Ala
Leu 325 330 335Glu Ser Pro
Ser Ala Pro Ile Ser Thr Ala Lys Pro Asn Tyr Arg Ile 340
345 350Met Val Glu Val Ser Leu Gln Lys Glu Ala
Gly Val Gly Leu Gly Ile 355 360
365Gly Leu Cys Ser Val Pro Tyr Phe Gln Cys Ile Ser Gly Ile Phe Val 370
375 380His Thr Leu Ser Pro Gly Ser Val
Ala His Leu Asp Gly Arg Leu Arg385 390
395 400Cys Gly Asp Glu Ile Val Glu Ile Ser Asp Ser Pro
Val His Cys Leu 405 410
415Thr Leu Asn Glu Val Tyr Thr Ile Leu Ser Arg Cys Asp Pro Gly Pro
420 425 430Val Pro Ile Ile Val Ser
Arg His Pro Asp Pro Gln Val Ser Glu Gln 435 440
445Gln Leu Lys Glu Ala Val Ala Gln Ala Val Glu Asn Thr Lys
Phe Gly 450 455 460Lys Glu Arg His Gln
Trp Ser Leu Glu Gly Val Lys Arg Leu Glu Ser465 470
475 480Ser Trp His Gly Arg Pro Thr Leu Glu Lys
Glu Arg Glu Lys Asn Ser 485 490
495Ala Pro Pro His Arg Arg Ala Gln Lys Val Met Ile Arg Ser Ser Ser
500 505 510Asp Ser Ser Tyr Met
Ser Gly Ser Pro Gly Gly Ser Pro Gly Ser Gly 515
520 525Ser Ala Glu Lys Pro Ser Ser Asp Val Asp Ile Ser
Thr His Ser Pro 530 535 540Ser Leu Pro
Leu Ala Arg Glu Pro Val Val Leu Ser Ile Ala Ser Ser545
550 555 560Arg Leu Pro Gln Glu Ser Pro
Pro Leu Pro Glu Ser Arg Asp Ser His 565
570 575Pro Pro Leu Arg Leu Lys Lys Ser Phe Glu Ile Leu
Val Arg Lys Pro 580 585 590Met
Ser Ser Lys Pro Lys Pro Pro Pro Arg Lys Tyr Phe Lys Ser Asp 595
600 605Ser Asp Pro Gln Lys Ser Leu Glu Glu
Arg Glu Asn Ser Ser Cys Ser 610 615
620Ser Gly His Thr Pro Pro Thr Cys Gly Gln Glu Ala Arg Glu Leu Leu625
630 635 640Pro Leu Leu Leu
Pro Gln Glu Asp Thr Ala Gly Arg Ser Pro Ser Ala 645
650 655Ser Ala Gly Cys Pro Gly Pro Gly Ile Gly
Pro Gln Thr Lys Ser Ser 660 665
670Thr Glu Gly Glu Pro Gly Trp Arg Arg Ala Ser Pro Val Thr Gln Thr
675 680 685Ser Pro Ile Lys His Pro Leu
Leu Lys Arg Gln Ala Arg Met Asp Tyr 690 695
700Ser Phe Asp Thr Thr Ala Glu Asp Pro Trp Val Arg Ile Ser Asp
Cys705 710 715 720Ile Lys
Asn Leu Phe Ser Pro Ile Met Ser Glu Asn His Gly His Met
725 730 735Pro Leu Gln Pro Asn Ala Ser
Leu Asn Glu Glu Glu Gly Thr Gln Gly 740 745
750His Pro Asp Gly Thr Pro Pro Lys Leu Asp Thr Ala Asn Gly
Thr Pro 755 760 765Lys Val Tyr Lys
Ser Ala Asp Ser Ser Thr Val Lys Lys Gly Pro Pro 770
775 780Val Ala Pro Lys Pro Ala Trp Phe Arg Gln Ser Leu
Lys Gly Leu Arg785 790 795
800Asn Arg Ala Ser Asp Pro Arg Gly Leu Pro Asp Pro Ala Leu Ser Thr
805 810 815Gln Pro Ala Pro Ala
Ser Arg Glu His Leu Gly Ser His Ile Arg Ala 820
825 830Ser Ser Ser Ser Ser Ser Ile Arg Gln Arg Ile Ser
Ser Phe Glu Thr 835 840 845Phe Gly
Ser Ser Gln Leu Pro Asp Lys Gly Ala Gln Arg Leu Ser Leu 850
855 860Gln Pro Ser Ser Gly Glu Ala Ala Lys Pro Leu
Gly Lys His Glu Glu865 870 875
880Gly Arg Phe Ser Gly Leu Leu Gly Arg Gly Ala Ala Pro Thr Leu Val
885 890 895Pro Gln Gln Pro
Glu Gln Val Leu Ser Ser Gly Ser Pro Ala Ala Ser 900
905 910Glu Ala Arg Asp Pro Gly Val Ser Glu Ser Pro
Pro Pro Gly Arg Gln 915 920 925Pro
Asn Gln Lys Thr Leu Pro Pro Gly Pro Asp Pro Leu Leu Arg Leu 930
935 940Leu Ser Thr Gln Ala Glu Glu Ser Gln Gly
Pro Val Leu Lys Met Pro945 950 955
960Ser Gln Arg Ala Arg Ser Phe Pro Leu Thr Arg Ser Gln Ser Cys
Glu 965 970 975Thr Lys Leu
Leu Asp Glu Lys Thr Ser Lys Leu Tyr Ser Ile Ser Ser 980
985 990Gln Val Ser Ser Ala Val Met Lys Ser Leu
Leu Cys Leu Pro Ser Ser 995 1000
1005Ile Ser Cys Ala Gln Thr Pro Cys Ile Pro Lys Glu Gly Ala Ser
1010 1015 1020Pro Thr Ser Ser Ser Asn
Glu Asp Ser Ala Ala Asn Gly Ser Ala 1025 1030
1035Glu Thr Ser Ala Leu Asp Thr Gly Phe Ser Leu Asn Leu Ser
Glu 1040 1045 1050Leu Arg Glu Tyr Thr
Glu Gly Leu Thr Glu Ala Lys Glu Asp Asp 1055 1060
1065Asp Gly Asp His Ser Ser Leu Gln Ser Gly Gln Ser Val
Ile Ser 1070 1075 1080Leu Leu Ser Ser
Glu Glu Leu Lys Lys Leu Ile Glu Glu Val Lys 1085
1090 1095Val Leu Asp Glu Ala Thr Leu Lys Gln Leu Asp
Gly Ile His Val 1100 1105 1110Thr Ile
Leu His Lys Glu Glu Gly Ala Gly Leu Gly Phe Ser Leu 1115
1120 1125Ala Gly Gly Ala Asp Leu Glu Asn Lys Val
Ile Thr Val His Arg 1130 1135 1140Val
Phe Pro Asn Gly Leu Ala Ser Gln Glu Gly Thr Ile Gln Lys 1145
1150 1155Gly Asn Glu Val Leu Ser Ile Asn Gly
Lys Ser Leu Lys Gly Thr 1160 1165
1170Thr His His Asp Ala Leu Ala Ile Leu Arg Gln Ala Arg Glu Pro
1175 1180 1185Arg Gln Ala Val Ile Val
Thr Arg Lys Leu Thr Pro Glu Ala Met 1190 1195
1200Pro Asp Leu Asn Ser Ser Thr Asp Ser Ala Ala Ser Ala Ser
Ala 1205 1210 1215Ala Ser Asp Val Ser
Val Glu Ser Thr Glu Ala Thr Val Cys Thr 1220 1225
1230Val Thr Leu Glu Lys Met Ser Ala Gly Leu Gly Phe Ser
Leu Glu 1235 1240 1245Gly Gly Lys Gly
Ser Leu His Gly Asp Lys Pro Leu Thr Ile Asn 1250
1255 1260Arg Ile Phe Lys Gly Ala Ala Ser Glu Gln Ser
Glu Thr Val Gln 1265 1270 1275Pro Gly
Asp Glu Ile Leu Gln Leu Gly Gly Thr Ala Met Gln Gly 1280
1285 1290Leu Thr Arg Phe Glu Ala Trp Asn Ile Ile
Lys Ala Leu Pro Asp 1295 1300 1305Gly
Pro Val Thr Ile Val Ile Arg Arg Lys Ser Leu Gln Ser Lys 1310
1315 1320Glu Thr Thr Ala Ala Gly Asp Ser
1325 1330104155PRTHomo sapiens 104Met Thr Pro Gly Lys Thr
Ser Leu Val Ser Leu Leu Leu Leu Leu Ser1 5
10 15Leu Glu Ala Ile Val Lys Ala Gly Ile Thr Ile Pro
Arg Asn Pro Gly 20 25 30Cys
Pro Asn Ser Glu Asp Lys Asn Phe Pro Arg Thr Val Met Val Asn 35
40 45Leu Asn Ile His Asn Arg Asn Thr Asn
Thr Asn Pro Lys Arg Ser Ser 50 55
60Asp Tyr Tyr Asn Arg Ser Thr Ser Pro Trp Asn Leu His Arg Asn Glu65
70 75 80Asp Pro Glu Arg Tyr
Pro Ser Val Ile Trp Glu Ala Lys Cys Arg His 85
90 95Leu Gly Cys Ile Asn Ala Asp Gly Asn Val Asp
Tyr His Met Asn Ser 100 105
110Val Pro Ile Gln Gln Glu Ile Leu Val Leu Arg Arg Glu Pro Pro His
115 120 125Cys Pro Asn Ser Phe Arg Leu
Glu Lys Ile Leu Val Ser Val Gly Cys 130 135
140Thr Cys Val Thr Pro Ile Val His His Val Ala145
150 155105476PRTHomo sapiens 105Arg Ala Val Pro Gly Gly
Ser Ser Pro Ala Trp Thr Gln Cys Gln Gln1 5
10 15Leu Ser Gln Lys Leu Cys Thr Leu Ala Trp Ser Ala
His Pro Leu Val 20 25 30Gly
His Met Asp Leu Arg Glu Glu Gly Asp Glu Glu Thr Thr Asn Asp 35
40 45Val Pro His Ile Gln Cys Gly Asp Gly
Cys Asp Pro Gln Gly Leu Arg 50 55
60Asp Asn Ser Gln Phe Cys Leu Gln Arg Ile His Gln Gly Leu Ile Phe65
70 75 80Tyr Glu Lys Leu Leu
Gly Ser Asp Ile Phe Thr Gly Glu Pro Ser Leu 85
90 95Leu Pro Asp Ser Pro Val Gly Gln Leu His Ala
Ser Leu Leu Gly Leu 100 105
110Ser Gln Leu Leu Gln Pro Glu Gly His His Trp Glu Thr Gln Gln Ile
115 120 125Pro Ser Leu Ser Pro Ser Gln
Pro Trp Gln Arg Leu Leu Leu Arg Phe 130 135
140Lys Ile Leu Arg Ser Leu Gln Ala Phe Val Ala Val Ala Ala Arg
Val145 150 155 160Phe Ala
His Gly Ala Ala Thr Leu Ser Pro Ile Trp Glu Leu Lys Lys
165 170 175Asp Val Tyr Val Val Glu Leu
Asp Trp Tyr Pro Asp Ala Pro Gly Glu 180 185
190Met Val Val Leu Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile
Thr Trp 195 200 205Thr Leu Asp Gln
Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu Thr 210
215 220Ile Gln Val Lys Glu Phe Gly Asp Ala Gly Gln Tyr
Thr Cys His Lys225 230 235
240Gly Gly Glu Val Leu Ser His Ser Leu Leu Leu Leu His Lys Lys Glu
245 250 255Asp Gly Ile Trp Ser
Thr Asp Ile Leu Lys Asp Gln Lys Glu Pro Lys 260
265 270Asn Lys Thr Phe Leu Arg Cys Glu Ala Lys Asn Tyr
Ser Gly Arg Phe 275 280 285Thr Cys
Trp Trp Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser Val 290
295 300Lys Ser Ser Arg Gly Ser Ser Asp Pro Gln Gly
Val Thr Cys Gly Ala305 310 315
320Ala Thr Leu Ser Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr Glu
325 330 335Tyr Ser Val Glu
Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala Glu Glu 340
345 350Ser Leu Pro Ile Glu Val Met Val Asp Ala Val
His Lys Leu Lys Tyr 355 360 365Glu
Asn Tyr Thr Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp 370
375 380Pro Pro Lys Asn Leu Gln Leu Lys Pro Leu
Lys Asn Ser Arg Gln Val385 390 395
400Glu Val Ser Trp Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser
Tyr 405 410 415Phe Ser Leu
Thr Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu 420
425 430Lys Lys Asp Arg Val Phe Thr Asp Lys Thr
Ser Ala Thr Val Ile Cys 435 440
445Arg Lys Asn Ala Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser 450
455 460Ser Ser Trp Ser Glu Trp Ala Ser
Val Pro Cys Ser465 470 475106234PRTHomo
sapiens 106Met Cys Phe Pro Lys Val Leu Ser Asp Asp Met Lys Lys Leu Lys
Ala1 5 10 15Arg Met Val
Met Leu Leu Pro Thr Ser Ala Gln Gly Leu Gly Ala Trp 20
25 30Val Ser Ala Cys Asp Thr Glu Asp Thr Val
Gly His Leu Gly Pro Trp 35 40
45Arg Asp Lys Asp Pro Ala Leu Trp Cys Gln Leu Cys Leu Ser Ser Gln 50
55 60His Gln Ala Ile Glu Arg Phe Tyr Asp
Lys Met Gln Asn Ala Glu Ser65 70 75
80Gly Arg Gly Gln Val Met Ser Ser Leu Ala Glu Leu Glu Asp
Asp Phe 85 90 95Lys Glu
Gly Tyr Leu Glu Thr Val Ala Ala Tyr Tyr Glu Glu Gln His 100
105 110Pro Glu Leu Thr Pro Leu Leu Glu Lys
Glu Arg Asp Gly Leu Arg Cys 115 120
125Arg Gly Asn Arg Ser Pro Val Pro Asp Val Glu Asp Pro Ala Thr Glu
130 135 140Glu Pro Gly Glu Ser Phe Cys
Asp Lys Val Met Arg Trp Phe Gln Ala145 150
155 160Met Leu Gln Arg Leu Gln Thr Trp Trp His Gly Val
Leu Ala Trp Val 165 170
175Lys Glu Lys Val Val Ala Leu Val His Ala Val Gln Ala Leu Trp Lys
180 185 190Gln Phe Gln Ser Phe Cys
Cys Ser Leu Ser Glu Leu Phe Met Ser Ser 195 200
205Phe Gln Ser Tyr Gly Ala Pro Arg Gly Asp Lys Glu Glu Leu
Thr Pro 210 215 220Gln Lys Cys Ser Glu
Pro Gln Ser Ser Lys225 230107345DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
107aactgggtga atgtaataag tgatttgaaa aaaattgaag atcttattca atctatgcat
60attgatgcta ctttatatac ggaaagtgat gttcacccca gttgcaaagt aacagcaatg
120aagtgctttc tcttggagtt acaagttatt tcacttgagt ccggagatgc aagtattcat
180gatacagtag aaaatctgat catcctagca aacgacagtt tgtcttctaa tgggaatgta
240acagaatctg gatgcaaaga atgtgaggaa ctggaggaaa aaaatattaa agaatttttg
300cagagttttg tacatattgt ccaaatgttc atcaacactt cttaa
345108894DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 108atcacgtgcc ctccccccat gtccgtggaa
cacgcagaca tctgggtcaa gagctacagc 60ttgtactcca gggagcggta catttgtaac
tctggtttca agcgtaaagc cggcacgtcc 120agcctgacgg agtgcgtgtt gaacaaggcc
acgaatgtcg cccactggac aacccccagt 180ctcaaatgta ttagagagcc caaatcttgt
gacaaaactc acacatgccc accgtgccca 240gcacctgaac tcctgggggg accgtcagtc
ttcctcttcc ccccaaaacc caaggacacc 300ctcatgatct cccggacccc tgaggtcaca
tgcgtggtgg tggacgtgag ccacgaagac 360cctgaggtca agttcaactg gtacgtggac
ggcgtggagg tgcataatgc caagacaaag 420ccgcgggagg agcagtacaa cagcacgtac
cgtgtggtca gcgtcctcac cgtcctgcac 480caggactggc tgaatggcaa ggagtacaag
tgcaaggtct ccaacaaagc cctcccagcc 540cccatcgaga aaaccatctc caaagccaaa
gggcagcccc gagaaccaca ggtgtacacc 600ctgcccccat cccgggatga gctgaccaag
aaccaggtca gcctgacctg cctggtcaaa 660ggcttctatc ccagcgacat cgccgtggag
tgggagagca atgggcagcc ggagaacaac 720tacaagacca cgcctcccgt gctggactcc
gacggctcct tcttcctcta cagcaagctc 780accgtggaca agagcaggtg gcagcagggg
aacgtcttct catgctccgt gatgcatgag 840gctctgcaca accactacac gcagaagagc
ctctccctgt ctccgggtaa ataa 8941091416DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
109atggaaaccg acaccctgct gctgtgggtg ctgctgctgt gggtgccagg cagcacaggc
60aactgggtca acgtgatcag cgacctgaag aagatcgagg acctgatcca gagcatgcac
120atcgacgcca ccctgtacac cgagagcgac gtgcacccca gctgcaaagt gaccgccatg
180aagtgctttc tgctggaact gcaagtgatc agcctggaaa gcggcgacgc cagcatccac
240gacaccgtgg aaaacctgat catcctggcc aacgacagcc tgagcagcaa cggcaacgtg
300accgagtccg gctgcaaaga gtgcgaggaa ctggaagaga agaatatcaa agagttcctg
360cagagcttcg tgcacatcgt gcagatgttc atcaacacca gcggctctgg cgagggcaga
420ggcagcctgc tgacatgcgg agatgtggaa gagaaccctg gccccatgga ccggctgacc
480agctcttttc tgctgctgat cgtgcccgcc tacgtgctga gcatcacctg tcccccaccc
540atgagcgtgg aacacgccga catctgggtc aagagctaca gcctgtacag ccgggaacgg
600tacatctgca acagcggctt caagcggaag gccggcacca gcagcctgac cgagtgtgtg
660ctgaacaagg ccaccaacgt ggcccactgg accaccccta gcctgaagtg catcagagag
720cccaagagct gcgacaagac ccacacatgc cccccttgtc ctgcccctga actgctggga
780ggccctagcg tgttcctgtt ccccccaaag cccaaggaca ccctgatgat cagccggacc
840cccgaagtga cctgcgtggt ggtggatgtg tcccacgagg accctgaagt gaagttcaat
900tggtacgtgg acggcgtgga agtgcacaac gccaagacca agcccagaga ggaacagtac
960aacagcacct accgggtggt gtccgtgctg accgtgctgc accaggactg gctgaacggc
1020aaagagtaca agtgcaaggt gtccaacaag gccctgcctg cccccatcga gaaaaccatc
1080agcaaggcca agggccagcc ccgcgaaccc caggtgtaca cactgccccc tagcagggac
1140gagctgacca agaaccaggt gtccctgacc tgtctcgtga agggcttcta ccccagcgac
1200attgccgtgg aatgggagag caacggccag cccgagaaca actacaagac caccccccct
1260gtgctggaca gcgacggctc attcttcctg tactccaagc tgacagtgga caagagccgg
1320tggcagcagg gcaacgtgtt cagctgcagc gtgatgcacg aggccctgca caaccactac
1380acccagaagt ccctgagcct gagccccggc aaatga
1416110471PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 110Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu
Leu Leu Trp Val Pro1 5 10
15Gly Ser Thr Gly Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile
20 25 30Glu Asp Leu Ile Gln Ser Met
His Ile Asp Ala Thr Leu Tyr Thr Glu 35 40
45Ser Asp Val His Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe
Leu 50 55 60Leu Glu Leu Gln Val Ile
Ser Leu Glu Ser Gly Asp Ala Ser Ile His65 70
75 80Asp Thr Val Glu Asn Leu Ile Ile Leu Ala Asn
Asp Ser Leu Ser Ser 85 90
95Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu
100 105 110Glu Lys Asn Ile Lys Glu
Phe Leu Gln Ser Phe Val His Ile Val Gln 115 120
125Met Phe Ile Asn Thr Ser Gly Ser Gly Glu Gly Arg Gly Ser
Leu Leu 130 135 140Thr Cys Gly Asp Val
Glu Glu Asn Pro Gly Pro Met Asp Arg Leu Thr145 150
155 160Ser Ser Phe Leu Leu Leu Ile Val Pro Ala
Tyr Val Leu Ser Ile Thr 165 170
175Cys Pro Pro Pro Met Ser Val Glu His Ala Asp Ile Trp Val Lys Ser
180 185 190Tyr Ser Leu Tyr Ser
Arg Glu Arg Tyr Ile Cys Asn Ser Gly Phe Lys 195
200 205Arg Lys Ala Gly Thr Ser Ser Leu Thr Glu Cys Val
Leu Asn Lys Ala 210 215 220Thr Asn Val
Ala His Trp Thr Thr Pro Ser Leu Lys Cys Ile Arg Glu225
230 235 240Pro Lys Ser Cys Asp Lys Thr
His Thr Cys Pro Pro Cys Pro Ala Pro 245
250 255Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
Pro Lys Pro Lys 260 265 270Asp
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 275
280 285Asp Val Ser His Glu Asp Pro Glu Val
Lys Phe Asn Trp Tyr Val Asp 290 295
300Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr305
310 315 320Asn Ser Thr Tyr
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 325
330 335Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
Val Ser Asn Lys Ala Leu 340 345
350Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
355 360 365Glu Pro Gln Val Tyr Thr Leu
Pro Pro Ser Arg Asp Glu Leu Thr Lys 370 375
380Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
Asp385 390 395 400Ile Ala
Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
405 410 415Thr Thr Pro Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser 420 425
430Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
Phe Ser 435 440 445Cys Ser Val Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 450
455 460Leu Ser Leu Ser Pro Gly Lys465
47011118PRTThosea asigna virus 111Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly
Asp Val Glu Glu Asn Pro1 5 10
15Gly Pro11210PRTArtificial SequenceDescription of Artificial
Sequence Synthetic peptide 112Ala Leu Trp Gly Gln Asp Val Thr Ser
Val1 5 1011310PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 113Lys
Tyr His Pro Met Ser Glu Tyr Ala Leu1 5 10
User Contributions:
Comment about this patent or add new information about this topic: