Patent application title: METHODS AND MEANS OF INCREASING THE WATER USE EFFICIENCY OF PLANTS
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
1 1
Class name:
Publication date: 2020-05-14
Patent application number: 20200149059
Abstract:
The invention relates to methods of producing a desired phenotype in a
plant by manipulation of gene expression within the plant. The method
relates to means which inhibit the level of PK220 gene expression or
activity, wherein a desired phenotype such as increased water use
efficiency relative to a wild type control plant. The invention also
relates to nucleic acid sequences and constructs useful such methods and
methods of generating and isolating plants having decreased PK220
expression or activity.Claims:
1. A method of increasing water use efficiency in a plant, comprising: a)
introducing a nucleic acid construct to a plant, a plant tissue culture
or a plant cell to obtain a modified plant, a modified plant tissue
culture or a modified plant cell, wherein the nucleic acid construct
inhibits the expression or activity of a PK220 gene; b) growing the
modified plant or regenerating a plant from the modified plant tissue
culture or the modified plant cell; and c) selecting a plant having
increased water use efficiency relative to a wild type plant.
2. The method of claim 1, wherein the nucleic acid construct comprises an antisense sequence, siRNA, hairpin, miRNA, artificial miRNA, each of which is complementary to a nucleic acid sequence encoding a PK220 polypeptide.
3. The method of claim 1, wherein the nucleic acid construct comprises a sequence of at least 19 nucleotides.
4. A plant produced by the method of claim 1, wherein the plant has increased water use efficiency relative to a wild type plant.
5. A seed produced by the plant of claim 4, wherein the seed produces a plant having increased water use efficiency relative to a wild type plant.
6. A method of producing a drought tolerant plant, comprising: a) introducing a nucleic acid construct to a plant, a plant tissue culture or a plant cell to obtain a modified plant, a modified plant tissue culture or a modified plant cell, wherein the nucleic acid construct inhibits the expression or activity of a PK220 gene; b) growing the modified plant or regenerating a plant from the modified plant tissue culture or the modified plant cell; and c) selecting a plant having increased drought tolerance relative to a wild type plant.
7. The method of claim 6, wherein the nucleic acid construct comprises an antisense sequence, siRNA, hairpin, miRNA, artificial miRNA, each of which is complementary to a nucleic acid sequence encoding a PK220 polypeptide.
8. The method of claim 6, wherein the nucleic acid construct comprises a sequence of at least 19 nucleotides.
9. A plant produced by the method of claim 6, wherein the plant has increased drought tolerance relative to a wild type plant.
10. A seed produced by the plant of claim 9, wherein the seed produces a plant having increased drought tolerance relative to a wild type plant.
11. A method of producing a cold stress tolerant plant, comprising: a) introducing a nucleic acid construct to a plant, a plant tissue culture or a plant cell to obtain a modified plant, a modified plant tissue culture or a modified plant cell, wherein the nucleic acid construct inhibits the expression or activity of a PK220 gene; b) growing the modified plant or regenerating a plant from the modified plant tissue culture or the modified plant cell; and c) selecting a plant having increased cold stress tolerance relative to a wild type plant.
12. The method of claim 11, wherein the nucleic acid construct comprises an antisense sequence, siRNA, hairpin, miRNA, artificial miRNA, each of which is complementary to a nucleic acid sequence encoding a PK220 polypeptide.
13. The method of claim 11, wherein the nucleic acid construct comprises a sequence of at least 19 nucleotides.
14. A plant produced by the method of claim 11, wherein the plant has increased cold stress tolerance relative to a wild type plant.
15. A seed produced by the plant of claim 14, wherein the seed produces a plant having increased cold stress tolerance relative to a wild type plant.
16. A method of producing a plant tolerant to low nitrogen conditions, comprising: a) introducing a nucleic acid construct to a plant, a plant tissue culture or a plant cell to obtain a modified plant, a modified plant tissue culture or a modified plant cell, wherein the nucleic acid construct inhibits the expression or activity of a PK220 gene; b) growing the modified plant or regenerating a plant from the modified plant tissue culture or the modified plant cell; and c) selecting a plant having increased tolerance to low nitrogen conditions relative to a wild type plant.
17. The method of claim 16, wherein the nucleic acid construct comprises an antisense sequence, siRNA, hairpin, miRNA, artificial miRNA, each of which is complementary to a nucleic acid sequence encoding a PK220 polypeptide.
18. The method of claim 16, wherein the nucleic acid construct comprises a sequence of at least 19 nucleotides.
19. A plant produced by the method of claim 16, wherein the plant has increased tolerance to low nitrogen conditions relative to a wild type plant.
20. A seed produced by the plant of claim 19, wherein the seed produces a plant having increased tolerance to low nitrogen conditions relative to a wild type plant.
21. The method of claim 1, wherein the nucleic acid construct introduces a mutation into the PK220 gene, thereby inhibiting the expression or activity of the PK220 gene.
22. The method of claim 6, wherein the nucleic acid construct introduces a mutation into the PK220 gene, thereby inhibiting the expression or activity of the PK220 gene.
23. The method of claim 11, wherein the nucleic acid construct introduces a mutation into the PK220 gene, thereby inhibiting the expression or activity of the PK220 gene.
24. The method of claim 16, wherein the nucleic acid construct introduces a mutation into the PK220 gene, thereby inhibiting the expression or activity of the PK220 gene.
25. A method of modifying a plant genome, comprising introducing a nucleic acid construct to a plant, a plant tissue culture or a plant cell having a PK220 gene to obtain a modified plant, a modified plant tissue culture or a modified plant cell, wherein the nucleic acid construct introduces a mutation into the PK220 gene.
Description:
REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of U.S. patent application Ser. No. 16/019,077, filed on Jun. 26, 2018, which is a continuation of U.S. patent application Ser. No. 15/266,276, filed on Sep. 15, 2016, now U.S. Pat. No. 10,036,035, which is a continuation of U.S. patent application Ser. No. 12/483,660, filed on Jun. 12, 2009, now U.S. Pat. No. 9,453,238, which claims the benefit of U.S. Ser. No. 61/132,067, filed Jun. 13, 2008, the contents of each of which are incorporated herein by reference in their entirety.
INCORPORATION-BY-REFERENCE OF SEQUENCE LISTING
[0002] The contents of the text file named "PREP-017_C03US SEQ LISTING.txt", which was created on Nov. 7, 2019 and is 225 KB in size, are hereby incorporated by reference in their entireties.
FIELD OF THE INVENTION
[0003] The invention is in the field of plant molecular biology and relates to transgenic plants having novel phenotypes, methods of producing such plants and polynucleotides and polypeptides useful in such methods. More specifically, the invention relates to inhibition of a protein kinase and transgenic plants having inhibited protein kinase activity.
BACKGROUND OF THE INVENTION
[0004] Water is essential for plant survival, growth and reproduction. Assimilation of carbon dioxide by photosynthesis is directly linked to water loss through the stomata. Crop productivity which is closely linked to biomass production is dependent on plant water use efficiency (WUE) especially in water limited conditions (Passioura 1994 and Sinclair 1994, in Physiology and Determination of Crop Yield). Water use efficiency over a period of plant's growth can be calculated as the ratio of biomass produced per unit of water transpired (Sinclair 1994). Instantaneous measurements of water use efficiency can also be obtained as the ratio of carbon dioxide assimilation to transpiration using gas exchange measurements (Farquhar and Sharkey 1994, in Physiology and Determination of Crop Yield). Since there is a close correlation between crop productivity and water use efficiency, many attempts have been made to study and understand this relationship and the genetic components involved. To maximize the productivity and yield of a crop, efforts have been made to try to improve the water use efficiency of plants (Condon et al., 2002, Araus et al., 2002, Davies et al., 2002). Higher water use efficiency can be achieved either by increasing the biomass production and carbon dioxide assimilation or by reducing the transpiration water loss. Reduced transpiration, especially under non-limiting water conditions can be associated with reduced growth rate and therefore reduced crop productivity. This poses a dilemma on how to improve crop productivity and yield under water limited conditions but also maintain it under irrigated or non-limited water conditions (Condon et al., 2002).
[0005] Improvements to water use efficiency, to date, have used plant breeding methods whereby high water use efficiency varieties were crossed with the more productive but lower water use efficiency varieties in hope of improvements in crop yield under water limited conditions (Condon et al., 2002, Araus et al., 2002). Quantitative trait loci (QTL) approaches to identifying the components of water use efficiency have been the most common methods historically used (Mian et al., 1996, Martin et al., 1989, Thumma et al., 2001, Price et al., 2002), and more recently attempts have been made to engineer improved plants by molecular genetic means.
[0006] The first gene associated with water use efficiency was ERECTA. The ERECTA gene was first identified as a gene functioning in inflorescence development and organ morphogenesis (Torii et al., 1996)). It was later found by QTL mapping to be a major contributor to transpiration efficiency, defined as water transpired per carbon dioxide assimilated, an opposite indicator to water use efficiency in Arabidopsis (Masle et al., 2005). ERECTA encodes a putative leucin-rich repeat receptor-like kinase (LRR-RLK). The regulatory mechanism of LRR-RLK is yet to be understood although it was suggested due to, at least in part, the effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact. The normal transpiration efficiency was restored upon complementation using wild type ERECTA in mutant exacta. However, it is not known whether overexpression of ERECTA in transgenic Arabidopsis will result in reduced transpiration efficiency or enhanced water use efficiency. It is the only report showing a plant receptor-like kinase to be involved in transpiration efficiency or water use efficiency.
[0007] Another Arabidopsis gene implicated in water use efficiency is the HARDY gene, found through the phenotypic screening of an activation tagged mutant collection (Karaba et al., 2007). Overexpression of HARDY in rice resulted in improved water use efficiency by enhancing photosynthetic assimilation and reducing transpiration. The transgenic rice with increased expression of HARDY exhibited increased shoot biomass under optimal water conditions and increased root biomass under water limited conditions. Overexpression of HARDY in Arabidopsis resulted in thicker leaves with more mesophyll cells and in rice increased leaf biomass and bundle sheet cells. These modifications contributed to enhanced photosynthetic activity and efficiency (Karaba et al., 2007).
[0008] Protein kinases are a large family of enzymes that modify proteins by addition of phosphate groups (phosphorylation). Protein kinases constitute about 2% of all eukaryotic genes, many of which mediate the response of eukaryotic cells to external stimuli. All single subunit protein kinases contain a common catalytic domain near the carboxyl terminus while the amino terminus plays a regulatory role.
[0009] Plant receptor-like kinases are serine/threonine protein kinases with a predicted signal peptide at the amino terminus, a single transmembrane region and a cytoplasmic kinase domain. There are more than 610 RLKs potentially encoded in Arabidopsis (Shiu and Bleecker 2001). Receptor-like kinases are often part of a signaling cascade. They interpret extracellular signals, through ligand binding, and phosphorylate targets in a signaling cascade which in turn affect downstream cell processes, such as gene expression (Hardie 1999).
[0010] Identification of genes that can be manipulated to provide beneficial characteristics is highly desirable. So too are means and methods of utilizing the identified genes to effect the desirable characteristics. The receptor-like kinase identified as At2g25220 in the TAIR database is one serine/threonine kinase, and a member of the large gene family of receptor-like kinases with over 600 members in Arabidopsis (Shiu et al., 2001). However, except for annotation of the sequence as a kinase no function or role for the At2g25220 gene has been disclosed. In the present invention a high water use efficiency gene (HWE) has been identified that when its expression or activity is inhibited results in beneficial phenotypes, such as, enhancement of plant biomass accumulation relative to the water used. This occurs under both water limited and non-limited conditions and ensures better growth and therefore greater productivity of the plants.
SUMMARY OF THE INVENTION
[0011] This invention is bases upon the discovery of a mutation in the PK220 gene that results in a plant with an altered phenotype such for example, increased water use efficiency, increased drought tolerance, reduced sensitivity to cold temperature and reduced inhibition of seedling growth in low nitrogen conditions compared to plants without the mutation.
[0012] More specifically, the invention relates to the identification of a mutant plant that comprises a mutation in the PK220 gene also referred to herein as the HWE gene. The PK220 gene is a receptor-like protein kinase. Inhibition of the expression or activity of the PK220 gene in plants provides beneficial phenotypes such as improved water use efficiency in a plant. The improved water use efficiency phenotype results in plants having improved drought tolerance.
[0013] In one aspect the invention provides a method of producing a transgenic plant, by transforming a plant, a plant tissue culture, or a plant cell with a vector containing a nucleic acid construct that inhibits the expression or activity of a PK220 gene to obtain a plant, tissue culture or a plant cell with decreased PK220 expression or activity and growing the plant or regenerating a plant from the plant tissue culture or plant cell. wherein a plant having increased water use efficiency is produced.
[0014] Accordingly, the present invention provides a method of producing a plant having an improved property, wherein the method includes inhibiting the expression or activity of an endogenous PK220 gene, wherein a plant is produced having an advantageous phenotype or improved property. In a particular embodiment, the present invention provides a method for producing plants having increased water use efficiency, wherein the method includes include generation of transgenic plants and modification of plants genome using the methods described herein.
[0015] Water use efficiency refers to the ratio between the amounts of biomass produced per unit water transpired when measured gravimetrically and the ratio of photosynthetic rate to the rate of transpiration when measured using gas exchange quantification of a leaf or shoot. As used herein, the term "increased water use efficiency" refers to a plant water use efficiency that is 2, 4, 5, 6, 8, 10, 20 or more fold greater as compared to the water use efficiency of a corresponding wild-type plant. For example, a plant having increased water use efficiency as compared to a wild-type plant may have 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60% 70%, 75% or greater water use efficiency than the corresponding wild-type plant.
[0016] The methods of the invention involve inhibiting or reduced the expression or activity of an endogenous gene, such as PK220, wherein a plant is produced having an advantageous phenotype or improved property, such as increased water use efficiency. In one aspect, the invention provides a method of producing a plant having increased water use efficiency relative to a wild-type plant, by introducing into a plant cell a nucleic acid construct that inhibits or reduces the expression or activity of PK220. For example, a plant having increased water use efficiency relative to a wild type plant is produced by a) providing a nucleic acid construct containing a promoter operably linked to a nucleic acid construct that inhibits PK220 activity; b) inserting the nucleic construct into a vector; c) transforming a plant, tissue culture, or a plant cell with the vector to obtain a plant, tissue culture or a plant cell with decreased PK220 activity; d) growing the plant or regenerating a plant from the tissue culture or plant cell, wherein a plant having increased water use efficiency relative to a wild type plant is produced. The construct includes a promoter such as a constitutive promoter, a tissue specific promoter or an inducible promoter. Preferably, the tissue specific promoter is a root promoter. A preferable inducible promoter is a drought inducible promoter.
[0017] The term "nucleic acid construct" refers to a full length gene sequence or portion thereof, wherein a portion is preferably at least 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100, or 150 nucleotides in length, or the compliment thereof. Alternatively it may be an oligonucleotide, single or double stranded and made up of DNA or RNA or a DNA-RNA duplex. In a particular embodiment, the nucleic acid construct contains the full length PK220 gene sequence, or a portion thereof, wherein the portion of the PK220 sequence is at least 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100, or 150 nucleotides in length, or its compliment.
[0018] Also provided by the invention is a transgenic plant having an advantageous phenotype or improved property such as increased water use efficiency, produced by the methods described herein.
[0019] In another aspect the invention provides a plant having a non-naturally occurring mutation in an PK220 gene, wherein the plant has decreased PK220 expression or activity and the plant has increased water use efficiency relative to a wild-type control. Decreased PK220 expression or activity refers to a 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, or 75-fold reduction or greater, at the DNA, RNA or protein level of an PK220 gene as compared to wild-type PK220, or a 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60 or 75 fold reduction of PK220 activity as compared to wild-type PK220 activity. PK220 activity includes but is not limited kinase activity at serine and or threonine amino acid residues of substrate polypeptides, where it participates in phosphorylation reactions.
[0020] The invention further provides a transgenic seed produced by the transgenic plant(s) of the invention, wherein the seed produces plant having an advantageous phenotype or improved property such as for example, increased water use efficiency relative to a wild-type plant.
[0021] In another embodiment, the invention provides nucleic acids for expression of nucleic acids in a plant cell to produce a transgenic plant having an advantageous phenotype or improved property such as increased water use efficiency.
[0022] Exemplary sequences encoding a wild type PK220 gene or portion thereof that find use in aspects of the present invention are described in SEQ ID NO's: 1, 7, 9, 11, 12, 13, 24, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 84, 86, 88, 90, 92, 94, 96, 98, 100, 153, 161 and 193. Exemplary sequences encoding a mutated PK220 gene are described in SEQ ID NO's:3 and 5. Exemplary sequences that are useful for constructs to downregulate PK220 expression or activity are described in SEQ ID NO's: 12, 13, 147, 149, 153, 161, 168 and 174. The invention further provides compositions which contain the nucleic acids of the invention for expression in a plant cell to produce the transgenic plants described herein.
[0023] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[0024] Other features and advantages of the invention will be apparent from and are encompassed by the following detailed description and claims.
DETAILED DESCRIPTION
[0025] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[0026] For convenience, before further description of the present invention, certain terms employed in the specification, examples and claims are defined herein. These definitions should be read in light of the remainder of the disclosure and as understood by a person of ordinary skill in the art.
[0027] A "promoter sequence", or "promoter", means a nucleic acid sequence capable of inducing transcription of an operably linked gene sequence in a plant cell. Promoters include for example (but not limited to) constitutive promoters, tissue specific promoters such as a root promoter, an inducible promoters such as a drought inducible promoter or an endogenous promoters such as a promoter normally associated with a gene of interest, i.e. a PK220 gene
[0028] The term "expression cassette" means a vector construct wherein a gene or nucleic acid sequence is transcribed. Additionally, the expressed mRNA may be translated into a polypeptide.
[0029] The terms "expression" or "overexpression" are used interchangeably and mean the expression of a gene such that the transgene is expressed. The total level of expression in a cell may be elevated relative to a wild-type cell.
[0030] The term "non-naturally occurring mutation" refers to any method that introduces mutations into a plant or plant population. For example, chemical mutagenesis such as ethane methyl sulfonate or methanesulfonic acid ethyl ester, fast neutron mutagenesis, DNA insertional means such as a T-DNA insertion or site directed mutagenesis methods.
[0031] The term "drought stress" refers to a condition where plant growth or productivity is inhibited relative to a plant where water is not limiting. The term "water-stress" is used synonymously and interchangeably with the drought water stress.
[0032] The term "drought tolerance" refers to the ability of a plant to outperform a wildtype plant under drought stress conditions or water limited conditions or to use less water during grow and development relative to a wildtype plant.
[0033] The "term water use efficiency" is an expression of the ratio between the amounts of biomass produced per unit water transpired when measured gravimetrically and the ratio of photosynthetic rate to the rate of transpiration when measured using gas exchange quantification of a leaf or shoot.
[0034] The term "dry weight" means plant tissue that has been dried to remove the majority of the cellular water and is used synonymously and interchangeably with the term biomass.
[0035] The term "null" is defined as a segregated sibling of a transgenic line that has lost the inserted transgene and is therefore used a control line.
[0036] A number of various standard abbreviations have been used throughout the disclosure, such as g, gram; WT, wild-type; DW, dry weight; WUE, water use efficiency; d, day.
[0037] The term "hwe116" means a plant having a mutation in a PK220 gene.
[0038] The HWE gene is referred to as a PK220 gene sequence and a protein encoded by a PK220 gene is referred to as a PK220 polypeptide or protein. The terms HWE and PK220 are synonymous.
[0039] The term "PK220 nucleic acid" refers to at least a portion of a PK220 nucleic acid. Similarly the term "PK220 protein" or "PK220 polypeptide" refers to at least a portion thereof. A portion is of at least 21 nucleotides in length with respect to a nucleic acid and a portion of a protein or polypeptide is at least 7 amino acids. The term "AtPK220" refers to an Arabidopsis thaliana PK220 gene, the term "BnPK220" refers to a Brassica napus PK220 gene.
[0040] The invention is based in part on the discovery of plants having an improved agronomic property, for example, increased water use efficiency, increased drought tolerance, reduced sensitivity to cold temperature and reduced inhibition of seedling growth in low nitrogen conditions relative to a wild type control. The gene responsible for the beneficial phenotype has been determined and shown to be an inhibited PK220 gene.
[0041] Methods of producing a plant, including a mutant plant, a transgenic plant or genetically modified plant, having increased water use efficiency are disclosed herein. Specifically the invention identifies a PK220 gene that when expression or activity of the PK220 gene is inhibited, a plant having a beneficial phenotype is obtained.
Determining Homology Between Two or More Sequences
[0042] To determine the percent homology between two amino acid sequences or between two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in either of the sequences being compared for optimal alignment between the sequences). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").
[0043] The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch (1970). Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the coding sequence portion of the DNA sequence shown in SEQ ID NO:1.
[0044] The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region. The term "percentage of positive residues" is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical and conservative amino acid substitutions, as defined above, occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of positive residues.
Inhibition of Endogenous PK220 Expression and Activity
[0045] An aspect of the invention pertains to means and methods of inhibiting or reducing PK220 gene expression and activity, optionally, resulting in an inhibition or reduction of PK220 protein expression and activity. The term "PK220 expression or activity" embraces both these levels of inhibition or reduction. Decreased PK220 expression or activity refers to a 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, or 75-fold reduction or greater, at the DNA, RNA or protein level of an PK220 gene as compared to wild-type PK220, or a 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60 or 75 fold reduction of PK220 protein activity as compared to wild-type PK220 activity. PK220 protein activity includes but is not limited kinase activity at serine and or threonine amino acid residues of substrate polypeptides, where it participates in phosphorylation reactions. Methods of measuring serine/threonine kinase activity are known to those in the art.
[0046] There are numerous methods known to those skilled in the art of achieving such inhibition that effect a variety of steps in a gene expression pathway, for example transcriptional regulation, post transcriptional and translational regulation. Such methods include, but are not limited to, antisense methods, RNAi constructs, including all hairpin constructs and RNAi constructs useful for inhibition by dsRNA-directed DNA methylation or inhibition by mRNA degradation or inhibition of translation, microRNA (miRNA), including artificial miRNA (amiRNA) (Schwab et al., 2006) technologies, mutagenesis and TILLING methods, in vivo site specific mutagenesis techniques and dominant/negative inhibition approaches.
[0047] A preferred method of gene inhibition involves RNA inhibition (RNAi) also known as hairpin constructs. A portion of the gene to inhibit is used and cloned in a sense and antisense direction having a spacer separating the sense and antisense portions. The size of the gene portions should be at least 20 nucleotides in length and the spacer may be a little as 13 nucleotides (Kennerdell and Carthew, 2000) in length and may be an intron sequence, a coding or non-coding sequence.
[0048] Antisense is a common approach wherein the target gene, or a portion thereof, is expressed in an antisense orientation resulting in inhibition of the endogenous gene expression and activity. The antisense portions need not be a full length gene nor be 100% identical. Provided that the antisense is at least about 70% or more identical to the endogenous target gene and of least 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100, or 150 nucleotides in length. Preferably, 50 nucleotides or greater in length the desired inhibition will be obtained.
[0049] Sequences encoding a wild type PK220 gene or portion thereof that are useful in preparing constructs for PK220 inhibition include for example, SEQ ID NO's: 1, 7, 9, 11, 12, 13, 24, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 84, 86, 88, 90, 92, 94, 96, 98, 100, 153, 161 and 193. Exemplary sequences that are useful for constructs to downregulate PK220 expression or activity are described in SEQ ID NO's: 12, 13, 147, 149, 153, 161, 168 and 174.
[0050] When using an antisense strategy of down-regulation, inhibition of endogenous gene activity can be selectively targeted to the gene or genes of choice by proper selection of a fragment or portion for antisense expression. Selection of a sequence that is present in the target gene sequence and not present in related genes (non-target gene) or is less than 70% conserved in the non-target sequences results in specificity of gene inhibition.
[0051] Alternatively, amiRNA inhibition can be used to inhibit gene expression and activity in a more specific manner than other RNAi methods. In contrast to siRNA that requires a perfect match between the small RNA and the target mRNA, amiRNA allows up to 5 mismatches with no more than 2 consecutive mismatches. The construction of amiRNA needs to meet certain criteria described in Schawab et al. (2006). This provides a method to down-regulate a target gene expression or activity using a gene portion comprising of at least a 21 nucleotide sequence of PK220.
[0052] Dominant/negative inhibition is analogous to competitive inhibition of biochemical reactions. Expression of a modified or mutant polypeptide that lacks full functionality competes with the wild type or endogenous polypeptide thereby reducing the total gene/protein activity. For example an expressed protein may bind to a protein complex or enzyme subunit to produce a non-functional complex. Alternatively the expressed protein may bind substrate but not have activity to perform the native function. Expression of sufficient levels of non active protein will reduce or inhibit the overall function.
[0053] Expression of PK220 genes that produce a PK220 protein that is deficient in activity can be used for dominant/negative down-regulation of gene activity. This is analogous to competitive inhibition. A PK220 polypeptide is produced that, for example, may associate with or bind to a target molecule but lacks endogenous activity. An example of such an inactive PK220 is the AtPK220 sequence isolated from the hwe116 mutant and disclosed as SEQ ID NO:3. A target molecule may be an interacting protein of a nucleic acid sequence. In this manner the endogenous PK220 protein is effectively diluted and downstream responses will be attenuated.
[0054] In vivo site specific mutagenesis is available whereby one can introduce a mutation into a cells genome to create a specific mutation. The method as essentially described in Dong et al. (2006) or US patent application publication number 20060162024 which refer to the methods of oligonucleotide-directed gene repair. Alternatively one may use chimeric RNA/DNA oligonucleotides essentially as described Beetham (1999). Accordingly, a premature stop codon may be generated in the cells' endogenous gene thereby producing a specific null mutant. Alternatively, the mutation may interfere with splicing of the initial transcript thereby creating a non-translatable mRNA or a mRNA that produces an altered polypeptide which does not possess endogenous activity. Preferable mutations that result loss or reduction of PK220 expression or activity include a C to T conversion at nucleotide position 874 when numbered in accordance with SEQ ID NOs: 1 or 3 or a nucleotide mutation that results in an amino acid change from a Leucine (L) codon (CTT) to a Phenylalanine (F) codon (TTT) at amino acid position 292 when numbered in accordance with SEQ ID NOs: 2 or 4.
[0055] TILLING is a method of isolating mutations in a known gene from an EMS-mutagenized population. The population is screened by methods essentially as described in (Greene et al., 2003).
[0056] Other strategies of gene inhibition will be apparent to the skilled worker including those not discussed here and those developed in the future.
Identification of AtPK220 Homologues
[0057] Homologues of Arabidopsis thaliana PK220 (AtPK220) were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990 and Altschul et al., 1997). The tblastn or blastn sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff and Henikoff, 1992). The output of a BLAST report provides a score that takes into account the alignment of similar or identical residues and any gaps needed in order to align the sequences. The scoring matrix assigns a score for aligning any possible pair of sequences. The P values reflect how many times one expects to see a score occur by chance. Higher scores are preferred and a low threshold P value threshold is preferred. These are the sequence identity criteria. The tblastn sequence analysis program was used to query a polypeptide sequence against six-way translations of sequences in a nucleotide database. Hits with a P value less than -25, preferably less than -70, and more preferably less than -100, were identified as homologous sequences (exemplary selected sequence criteria). The blastn sequence analysis program was used to query a nucleotide sequence against a nucleotide sequence database. In this case too, higher scores were preferred and a preferred threshold P value was less than -13, preferably less than -50, and more preferably less than -100.
[0058] A PK220 gene can be isolated via standard PCR amplification techniques. Use of primers to conserved regions of a PK220 gene and PCR amplification produces a fragment or full length copy of the desired gene. Template may be DNA, genomic or a cDNA library, or RNA or mRNA for use with reverse transcriptase PCR (RtPCR) techniques. Conserved regions can be identified using sequence comparison tools such as BLAST or CLUSTALW for example. Suitable primers have been used and described elsewhere in this application.
[0059] Alternatively, a fragment of a sequence from a PK220 gene is .sup.32P-radiolabeled by random priming (Sambrook et al., 1989) and used to screen a plant genomic library (the exemplary test polynucleotides). As an example, total plant DNA from Arabidopsis thaliana, Nicotiana tabacum, Lycopersicon pimpinellifolium, Prunus avium, Prunus cerasus, Cucumis sativus, or Oryza sativa are isolated according to Stockinger et al. (Stockinger et al., 1996). Approximately 2 to 10 .mu.g of each DNA sample are restriction digested, transferred to nylon membrane (Micron Separations, Westboro, Mass.) and hybridized. Hybridization conditions are: 42.degree. C. in 50% formamide, 5.times.SSC, 20 mM phosphate buffer 1.times.Denhardt's, 10% dextran sulfate, and 100 .mu.g/ml herring sperm DNA. Four low stringency washes at RT in 2.times.SSC, 0.05% sodium sarcosyl and 0.02% sodium pyrophosphate are performed prior to high stringency washes at 55.degree. C. in 0.2.times.SSC, 0.05% sodium sarcosyl and 0.01% sodium pyrophosphate. High stringency washes are performed until no counts are detected in the washout according to Walling et al. (Walling et al., 1988). Positive isolates are identified, purified and sequenced. Other methods are available for hybridization, for example the ExpressHyb hybridization solution available from Clonetech.
PK220 Recombinant Expression Vectors and Host Cells
[0060] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a PK220 protein, a PK220 gene or genomic sequence or portions thereof and analogs or homologs thereof. As used herein the term expression vector includes vectors which are designed to provide transcription of the nucleic acid sequence. Transcribed sequences may be designed to inhibit the endogenous expression or activity of an endogenous gene activity correlating to the transcribed sequence. Optionally, the transcribed nucleic acid need not be translated but rather inhibits the endogenous gene expression as in antisense or hairpin down-regulation methodology. Alternatively, the transcribed nucleic acid may be translated into a polypeptide or protein product. The polypeptide may be a non-full length, mutant or modified variant of the endogenous protein. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication). Other vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors or plant transformation vectors, binary or otherwise, which serve equivalent functions.
[0061] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
[0062] The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences) or inducible promoters (e.g., induced in response to abiotic factors such as environmental conditions, heat, drought, nutrient status or physiological status of the cell or biotic such as pathogen responsive). Examples of suitable promoters include for example constitutive promoters, ABA inducible promoters, tissue specific promoters and abiotic or biotic inducible promoters. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired as well as timing and location of expression, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., PK220 proteins, mutant forms of PK220 proteins, fusion proteins, etc.).
[0063] The recombinant expression vectors of the invention can be designed for expression of PK220 genes, PK220 proteins, or portions thereof, in prokaryotic or eukaryotic cells. For example, PK220 genes or PK220 proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors)) yeast cells, plant cells or mammalian cells. Suitable host cells are discussed further in Goeddel (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
[0064] In one embodiment, a nucleic acid of the invention is expressed in plants cells using a plant expression vector. Examples of plant expression vectors systems include tumor inducing (Ti) plasmid or portion thereof found in Agrobacterium, cauliflower mosaic virus (CaMV) DNA and vectors such as pBI121.
[0065] For expression in plants, the recombinant expression cassette will contain in addition to the PK220 nucleic acids, a promoter region that functions in a plant cell, a transcription initiation site (if the coding sequence to transcribed lacks one), and optionally a transcription termination/polyadenylation sequence. The termination/polyadenylation region may be obtained from the same gene as the promoter sequence or may be obtained from different genes. Unique restriction enzyme sites at the 5' and 3' ends of the cassette are typically included to allow for easy insertion into a pre-existing vector.
[0066] Examples of suitable promoters include promoters from plant viruses such as the 35S promoter from cauliflower mosaic virus (CaMV) (Odell et al., 1985), promoters from genes such as rice actin (McElroy et al., 1990), ubiquitin (Christensen et al., 1992; pEMU (Last et al., 1991), MAS (Velten et al., 1984), maize H3 histone (Lepetit et al., 1992); and Atanassvoa et al., 1992), the 5'- or 3'-promoter derived from T-DNA of Agrobacterium tumefaciens, the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Pat. No. 5,683,439), the Nos promoter, the rubisco promoter, the GRP1-8 promoter, ALS promoter, (WO 96/30530), a synthetic promoter, such as Rsyn7, SCP and UCP promoters, ribulose-1,3-diphosphate carboxylase, fruit-specific promoters, heat shock promoters, seed-specific promoters and other transcription initiation regions from various plant genes, for example, including the various opine initiation regions, such as for example, octopine, mannopine, and nopaline. In some cases a promoter associated with the gene of interest (e.g. PK220) may be used to express a construct targeting the gene of interest, for example the native AtPK220 promoter (P.sub.PK). Additional regulatory elements that may be connected to a PK220 encoding nucleic acid sequence for expression in plant cells include terminators, polyadenylation sequences, and nucleic acid sequences encoding signal peptides that permit localization within a plant cell or secretion of the protein from the cell. Such regulatory elements and methods for adding or exchanging these elements with the regulatory elements of PK220 gene are known and include, but are not limited to, 3' termination and/or polyadenylation regions such as those of the Agrobacterium tumefaciens nopaline synthase (nos) gene (Bevan et al., 1983); the potato proteinase inhibitor II (PINII) gene (Keil et al., 1986) and hereby incorporated by reference); and An et al. (1989); and the CaMV 19S gene (Mogen et al., 1990).
[0067] Plant signal sequences, including, but not limited to, signal-peptide encoding DNA/RNA sequences which target proteins to the extracellular matrix of the plant cell (Dratewka-Kos et al., 1989) and the Nicotiana plumbaginifolia extension gene (De Loose et al., 1991), or signal peptides which target proteins to the vacuole like the sweet potato sporamin gene (Matsuoka et al., 1991) and the barley lectin gene (Wilkins et al., 1990), or signals which cause proteins to be secreted such as that of PRIb (Lund et al., 1992), or those which target proteins to the plastids such as that of rapeseed enoyl-ACP reductase (Verwoert et al., 1994) are useful in the invention.
[0068] In another embodiment, the recombinant expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. For example, the promoter associated with a coding sequence identified in the TAIR data base as At2g44790 (P.sub.4790) is a root specific promoter. Especially useful in connection with the nucleic acids of the present invention are expression systems which are operable in plants. These include systems which are under control of a tissue-specific promoter, as well as those which involve promoters that are operable in all plant tissues.
[0069] Organ-specific promoters are also well known. For example, the chalcone synthase-A gene (van der Meer et al., 1990) or the dihydroflavonol-4-reductase (dfr) promoter (Elomaa et al., 1998) direct expression in specific floral tissues. Also available are the patatin class I promoter is transcriptionally activated only in the potato tuber and can be used to target gene expression in the tuber (Bevan, 1986). Another potato-specific promoter is the granule-bound starch synthase (GBSS) promoter (Visser et al., 1991).
[0070] Other organ-specific promoters appropriate for a desired target organ can be isolated using known procedures. These control sequences are generally associated with genes uniquely expressed in the desired organ. In a typical higher plant, each organ has thousands of mRNAs that are absent from other organ systems (reviewed in Goldberg, 1986).
[0071] The resulting expression system or cassette is ligated into or otherwise constructed to be included in a recombinant vector which is appropriate for plant transformation. The vector may also contain a selectable marker gene by which transformed plant cells can be identified in culture. The marker gene may encode antibiotic resistance. These markers include resistance to G418, hygromycin, bleomycin, kanamycin, and gentamicin. Alternatively the marker gene may encode a herbicide tolerance gene that provides tolerance to glufosinate or glyphosate type herbicides. After transforming the plant cells, those cells having the vector will be identified by their ability to grow on a medium containing the particular antibiotic or herbicide. Replication sequences, of bacterial or viral origin, are generally also included to allow the vector to be cloned in a bacterial or phage host, preferably a broad host range prokaryotic origin of replication is included. A selectable marker for bacteria should also be included to allow selection of bacterial cells bearing the desired construct. Suitable prokaryotic selectable markers also include resistance to antibiotics such as kanamycin or tetracycline.
[0072] Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art. For instance, in the case of Agrobacterium transformations, T-DNA sequences will also be included for subsequent transfer to plant chromosomes.
[0073] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell.
[0074] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a polypeptide of the invention encoded in an open reading frame of a polynucleotide of the invention. Accordingly, the invention further provides methods for producing a polypeptide using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.
[0075] A number of cell types may act as suitable host cell for expression of a polypeptide encoded by an open reading frame in a polynucleotide of the invention. Plant host cells include, for example, plant cells that could function as suitable hosts for the expression of a polynucleotide of the invention include epidermal cells, mesophyll and other ground tissues, and vascular tissues in leaves, stems, floral organs, and roots from a variety of plant species, such as Arabidopsis thaliana, Nicotiana tabacum, Brassica napus, Zea mays, Oryza sativa, Gossypium hirsutum and Glycine max.
[0076] Expression of PK220 nucleic acids encoding a PK220 protein that is not fully functional can be useful in a dominant/negative inhibition method. A PK220 variant polypeptide, or portion thereof, is expressed in a plant such that it has partial functionality. The variant polypeptide may for example have the ability to bind other molecules but does not permit proper activity of the complex, resulting in overall inhibition of PK220 activity.
Transformed Plants Cells and Transgenic Plants
[0077] The invention includes a protoplast, plants cell, plant tissue and plant (e.g., monocot or dicot) transformed with a PK220 nucleic acid, a vector containing a PK220 nucleic acid or an expression vector containing a PK220 nucleic acid. As used herein, "plant" is meant to include not only a whole plant but also a portion thereof (i.e., cells, and tissues, including for example, leaves, stems, shoots, roots, flowers, fruits and seeds).
[0078] The plant can be any plant type including, for example, species from the genera Arabidopsis, Brassica, Oryza, Zea, Sorghum, Brachypodium, Miscanthus, Gossypium, Triticum, Glycine, Pisum, Phaseolus, Lycopersicon, Trifolium, Cannabis, Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Brow aalia, Lolium, Avena, Hordeum, Secale, Picea, Caco, and Populus.
[0079] The invention also includes cells, tissues, including for example, leaves, stems, shoots, roots, flowers, fruits and seeds and the progeny derived from the transformed plant.
[0080] Numerous methods for introducing foreign genes into plants are known and can be used to insert a gene into a plant host, including biological and physical plant transformation protocols (See, for example, Miki et al., (1993) "Procedure for Introducing Foreign DNA into Plants", In: Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson, eds., CRC Press, Inc., Boca Raton, pages 67-88; and Andrew Bent in, Clough S J and Bent AF, (1998) "Floral dipping: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana"). The methods chosen vary with the host plant, and include chemical transfection methods such as calcium phosphate, polyethylene glycol (PEG) transformation, microorganism-mediated gene transfer such as Agrobacterium (Horsch et al., 1985), electroporation, protoplast transformation, micro-injection, flower dipping and biolistic bombardment.
Agrobacterium-Mediated Transformation
[0081] The most widely utilized method for introducing an expression vector into plants is based on the natural transformation system of Agrobacterium tumefaciens and A. rhizogenes which are plant pathogenic bacteria which genetically transform plant cells. The Ti and Ri plasmids of A. tumefaciens and A. rhizogenes, respectfully, carry genes responsible for genetic transformation of plants (See, for example, Kado, 1991). Descriptions of the Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided in Gruber et al. (1993). and Moloney et al., (1989).
[0082] Transgenic Arabidopsis plants can be produced easily by the method of dipping flowering plants into an Agrobacterium culture, based on the method of Andrew Bent in, Clough S J and Bent A F, 1998. Floral dipping: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Wild type plants are grown until the plant has both developing flowers and open flowers. The plants are inverted for 1 minute into a solution of Agrobacterium culture carrying the appropriate gene construct. Plants are then left horizontal in a tray and kept covered for two days to maintain humidity and then righted and bagged to continue growth and seed development. Mature seed is bulk harvested.
Direct Gene Transfer
[0083] A generally applicable method of plant transformation is microprojectile-mediated transformation, where DNA is carried on the surface of microprojectiles measuring about 1 to 4 .mu.m. The expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate the plant cell walls and membranes. (Sanford et al., 1993; Klein et al., 1992).
[0084] Plant transformation can also be achieved by the Aerosol Beam Injector (ABI) method described in U.S. Pat. Nos. 5,240,842, 6,809,232. Aerosol beam technology is used to accelerate wet or dry particles to speeds enabling the particles to penetrate living cells. Aerosol beam technology employs the jet expansion of an inert gas as it passes from a region of higher gas pressure to a region of lower gas pressure through a small orifice. The expanding gas accelerates aerosol droplets, containing nucleic acid molecules to be introduced into a cell or tissue. The accelerated particles are positioned to impact a preferred target, for example a plant cell. The particles are constructed as droplets of a sufficiently small size so that the cell survives the penetration. The transformed cell or tissue is grown to produce a plant by standard techniques known to those in the applicable art.
Regeneration of Transformants
[0085] The development or regeneration of plants from either single plant protoplasts or various explants is well known in the art (Weissbach and Weissbach, 1988). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
[0086] The development or regeneration of plants containing the foreign, exogenous gene that encodes a polypeptide of interest introduced by Agrobacterium from leaf explants can be achieved by methods well known in the art such as described (Horsch et al., 1985). In this procedure, transformants are cultured in the presence of a selection agent and in a medium that induces the regeneration of shoots in the plant strain being transformed as described (Fraley et al., 1983). In particular, U.S. Pat. No. 5,349,124 (specification incorporated herein by reference) details the creation of genetically transformed lettuce cells and plants resulting therefrom which express hybrid crystal proteins conferring insecticidal activity against Lepidopteran larvae to such plants.
[0087] This procedure typically produces shoots within two to four months and those shoots are then transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Shoots that rooted in the presence of the selective agent to form plantlets are then transplanted to soil or other media to allow the production of roots. These procedures vary depending upon the particular plant strain employed, such variations being well known in the art.
[0088] Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants, or pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important, preferably inbred lines. Conversely, pollen from plants of those important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
[0089] A preferred transgenic plant is an independent segregate and can transmit the PK220 gene construct to its progeny. A more preferred transgenic plant is homozygous for the gene construct, and transmits that gene construct to all offspring on sexual mating. Seed from a transgenic plant may be grown in the field or greenhouse, and resulting sexually mature transgenic plants are self-pollinated to generate true breeding plants. The progeny from these plants become true breeding lines that are evaluated for decreased expression of the PK220 gene.
Method of Producing Transgenic Plants
[0090] Also included in the invention are methods of producing a transgenic plant having increased water use efficiency, reduced sensitivity to cold temperature and reduced inhibition of seedling growth in low nitrogen conditions, relative to a wild type plant. The method includes introducing into one or more plant cells a compound that inhibits or reduces PK220 expression or activity in the plant to generate a transgenic plant cell and regenerating a transgenic plant from the transgenic cell. The compound can be, e.g., (i) a PK220 polypeptide; (ii) a PK220 nucleic acid, analog, homologue, orthologue, portion, variant or complement thereof; (iii) a nucleic acid that decreases expression of a PK220 nucleic acid. A nucleic acid that decreases expression of a PK220 nucleic acid may include promoters or enhancer elements. The PK220 nucleic acid can be either endogenous or exogenous, for example an Arabidoposis PK220 nucleic acid may be introduced into a Brassica or corn species. Preferably, the compound is a PK220 nucleic acid sequence endogenous to the species being transformed. Alternatively, the compound is a PK220 nucleic acid sequence exogenous to the species being transformed and having at least 70%, 75%, 80%, 85%, 90% or greater homology to the endogenous target sequence.
[0091] In various aspects the transgenic plant has an altered phenotype as compared to a wild type plant (i.e., untransformed). By altered phenotype is meant that the plant has a one or more characteristic that is different from the wild type plant. For example, when the transgenic plant has been contacted with a compound that decreases the expression or activity of a PK220 nucleic acid, the plant has a phenotype such as increased water use efficiency, reduced sensitivity to cold temperature and reduced inhibition of seedling growth in low nitrogen conditions, relative to a wild type plant.
[0092] The plant can be any plant type including, for example, species from the genera Arabidopsis, Brassica, Oryza, Zea, Sorghum, Brachypodium, Miscanthus, Gossypium, Triticum, Glycine, Pisum, Phaseolus, Lycopersicon, Trifolium, Cannabis, Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Brow aalia, Lolium, Avena, Hordeum, Secale, Picea, Caco, and Populus.
Examples
Identification of High Water Use Efficiency Mutant Hwe116
[0093] An Arabidopsis EMS mutant (Columbia background) was identified initially as having drought tolerant properties. The mutant was tested for water use efficiency under optimal and drought conditions. The result showed that the drought tolerant nature of this mutant is due to its higher water use efficiency under both water stressed and optimal water conditions. Thus, this mutant is named hwe116.
Map Based Cloning of Hwe116
[0094] A F2 population was generated by crossing the hwe116 mutant to the Landsberg erecta (Ler) ecotype of Arabidopsis thaliana and the resulting population was used for map-based cloning by assaying for drought tolerance and subsequently confirming the presence of the higher water use efficiency trait in the mutant. The water-loss per unit dry weight of the F2 plants was measured over a 5-day drought treatment and the data was normalized for QTL analysis relative to the hwe116 mutant and the two wild type ecotypes, Landsberg erecta and Columbia. Leaf tissues were collected from all F2 and control plants used in the phenotyping experiments for genotyping. QTL analysis was conducted using MAPMAKER 3.0 and WinQTLCart 2.5. To further specify the mutations within the QTL peak, celery endonuclease I (CEL I) was used.
Mutation Detection Using CEL I Nuclease
[0095] Celery endonuclease I (CEL I), cleaves DNA with high specificity at sites of base-pair substitution that creates a mismatch between wild type and mutant alleles and has been reportedly used for detecting mutations in EMS mutants (Yang et al., 2000; Oleykowski et al., 1998).
[0096] DNA fragments of about 5 kb were amplified by optimized PCR using hwe116 or parent Columbia genomic DNA as template. Equal amounts of the amplified products were mixed together and then subjected to a cycle of denaturing and annealing to form heteroduplex DNA. Incubation with CEL I at 42.degree. C. for 20 minutes cleaves the heteroduplex DNA at points of mutation, and DNA fragments were visualized by 1% agarose gel electrophoresis and ethidium bromide staining.
[0097] Using this method a 5 kb PCR product was amplified using primers SEQ ID NO:102 and SEQ ID NO:104, and templates: hwe116, and the control Columbia type. The heteroduplexes formed PCR products resulted in smaller fragments (1.4 and 3.6 kb) after CEL I digestion. Overlapping sub-fragments (about 3 kb) were amplified using primers SEQ ID NO:104 and SEQ ID NO:105 to more narrowly define the mutation location. The sub-fragment was sequenced and a C nucleotide was found to have been mutated to T nucleotide in hwe116.
[0098] The mutation of interest was identified as a C to T conversion at nucleotide position 874 of SEQ ID NO's:1 and 3 that resulted in an amino acid change from a Leucine (L) codon (CTT) to a Phenylalanine (F) codon (TTT) at amino acid position 292. The gene harboring the mutation was identified as a Serine/Threonine protein kinase (Ser/Thr PK). The wild type gene was identified as being identical to Genbank Accession Number At2g25220. This Ser/Thr protein kinase is referred to as AtPK220 herein, and the mutated form identified in hwe116 is referred to as AtPK220L292F.
Transcriptional Evaluation
[0099] Northern analysis and RT-PCR indicate that the expression level and transcript size of the AtPK220 gene in hwe116 is unchanged relative to the wild type control.
Initial Cloning of Partial AtPK220L292F and AtPK220 Sequences
[0100] Based on the TAIR annotation, partial sequences of AtPK220L292F (AtPK220L292F(p)) and partial AtPK220 (AtPK220(p)) were amplified by RT-PCRs using the primers SEQ ID NO:106 and SEQ ID NO:107 which included BamHI and PstI restriction sites for cloning and template RNA isolated from hwe116 and the control plant (Columbia), respectively). The resulting partial AtPK220L292F nucleotide sequence is shown as SEQ ID NO:5 and the corresponding amino acid sequence as SEQ ID NO:6. The resulting partial AtPK220 nucleotide sequence is shown as SEQ ID NO:7 and the corresponding amino acid sequence as SEQ ID NO:8.
Kinase Activity Assay of a Partial AtPK220L292F Protein Expressed in E. coli
[0101] The PCR products were digested with BamHI and PstI, and inserted into the expression vector: pMAL-c2 (New England Biolabs, Beverly, Mass.) to form an in-frame fusion protein with the malE gene for expression of the maltose-binding protein: MBP-AtPK220L292F(p) and MBP-AtPK220(p). The fusion proteins were expressed in E. coli and purified using amylose-affinity chromatography as described by the manufacturer (New England Biolabs). Fractions containing the fusion proteins were pooled and concentrated (Centriprep-30 concentrator, Amicon). SDS-PAGE was used to analyze the expression level, size and purity of the fusion proteins.
[0102] Activity assays were carried out according to (Huang et al., 2000). The kinase autophosphorylation assay mixtures (30 .mu.l) contained kinase reaction buffer (50 mM Tris, pH 7.5, 10 mM MgCl.sub.2, 10 mM MnCl.sub.2), 1 .mu.Ci [.gamma.-.sup.32P] ATP and 10 ng of purified AtPK220L292F(p) or MBP-AtPK220(p). For the trans-phosphorylation assays, myelin basic protein (3 .mu.g) was added to each assay. The reactions were started by the addition of the enzymes. After incubation at room temperature for 30 min, the reactions were terminated by the addition of 30 .mu.g of Laemmli sample buffer (Laemmli, 1970). The samples were heated at 95.degree. C. for 5 min and then loaded on a 15% SDS-polyacrylamide gel. The gels were stained with Coomassie blue R-250, then de-stained and dried. The .sup.32P-labeled bands were detected using Kodak X-Omat AR film.
[0103] The wild type MBP-AtPK220(p) fusion protein was able to phosphorylate the artificial substrate in the in vitro activity assay, indicating that the assay system was effective and the MBP-AtPK220(p) fusion protein was capable of activity. In contrast, the hwe116 mutant form, MBP-AtPK220L292F(p), was unable to catalyse phosphorylation of the model substrate. The single point mutation is sufficient to abolish activity of the AtPK220(p) gene from hwe116.
Isolation of Full-Length cDNA Sequence of AtPK220
[0104] The annotation of AtPK220 (At2g25220) in the TAIR database identifies a 5' start codon, termination signal and 3' UTR sequence. Analysis of the 5' portion of the annotated sequence suggested an alternative 5' sequence and start codon location. To determine the AtPK220 genes' 5' region and the likely start codon SMART RACE (Rapid Amplification of cDNA Ends, CloneTech) was performed.
[0105] A specific primer, SEQ ID NO:108, was designed for the 5' RACE and yielded a 450 bp PCR product. Sequence data obtained of the 450 bp 5' RACE product indicated that the TAIR annotation of AtPK220 was missing the 5' 186 bp that included 39 bp of 5' UTR sequence and 147 bp of coding sequence. An intron of 324 bp, located 8 bp upstream of the TAIR identified ATG start codon of AtPK220 was also missing from the genomic annotation in TAIR.
[0106] Compiling the 5' RACE results and TAIR database annotation yields the full-length cDNA of AtPK220 (SEQ ID NO:9). The sequence was determined to be 1542 bp in length, which included 39 bp of 5' UTR, 204 bp of 3'UTR, and 1299 bp of coding region. The AtPK220 coding region is identified as SEQ ID NO:1 and encodes a protein of 432 amino acids and is identified as SEQ ID NO:2. Comparison of AtPK220 to its closest homolog, At4g32000, shows an additional sequence of 51 bp is present in AtPK220, that includes the sequence of nucleotides 368-418 of SEQ ID NO:9. This sequence provides a target sequence for down-regulation constructs designed to specifically down-regulate the AtPK220 gene but not non-target genes such as At4g32000.
[0107] Sequence analysis of AtPK220 indicates that this Ser/Thr PK belongs to a receptor-like protein kinase family, possessing a signal peptide (1-29), an extracellular domain (30-67), a single transmembrane domain (68-88), an ATP-binding domain (152-175 as determined by Prosite) a Ser/Thr protein kinase active-site domain (267-279 as determined by the InterPro method) and an activation loop (289-298, 303-316).
Rescue of the hwe116 Mutant by AtPK220
[0108] Constructs for the expression of wild-type AtPK220 were generated and transformed into the hwe116 mutant. The construct was constitutively expressed from a CaMV 35S promoter and referred to as 35S-AtPK220.
35S-AtPK220
[0109] The primer pair SEQ ID NO:109 and SEQ ID NO:110 was used to amplify a fragment comprising the full length open reading frame (ORF) of AtPK220. The primer pair SEQ ID NO:111 and SEQ ID NO:110 was used to amplify a fragment comprising a portion of AtPK220 ORF. The amplified fragments were digested with restriction enzymes SmaI and BamHI and cloned into a pEGAD vector digested with the same restriction enzymes. The fragment comprising the full length open reading frame of AtPK220 resulting from the PCR and subsequent restriction digestion is disclosed as SEQ ID NO:10. The fragment comprising a portion of the AtPK220 ORF resulting from the PCR and subsequent restriction digestion is disclosed as SEQ ID NO:11.
[0110] The 35S-AtPK220 construct was transformed into Arabidopsis hwe116. The transgenic lines were recovered and advanced to T3 homozygous lines. These lines are tested for their drought tolerance and water use efficiency characteristics. The 35S-AtPK220 construct restores the wild type phenotypes.
T-DNA Knockout Lines and Physiology Assessment
[0111] SALK T-DNA knockout lines of AtPK220 and two close homologous genes in which are identified as TAIR Accession numbers AT4G32000 (SEQ ID NO:16) and AT5G11020 (SEQ ID NO:18) were obtained from ABRC and advanced to homozygosity. They are listed as follows;
[0112] AtPK220: SALK_147838;
[0113] AtPK32000 (AT4G32000): SALK_060167, SALK_029937 and SALK_121979;
[0114] AtPK11020 (AT5G11020): SAIL_1260_H05.
[0115] Analysis of gene expression levels by either RT-PCR or Northern analysis demonstrated that the target genes in the knockout lines was either significantly reduced or completely abolished. These knockout lines were used for physiological assessment. Only the knockout line of AtPK220 (SALK_147838) showed significant drought tolerance and higher water use efficiency, indicating that AtPK220 is the target gene and responsible for the water use efficiency phenotype of hwe116. The closely related genes AT4G32000 and AT5G11020 are not functionally redundant and inhibition of these genes is insufficient to generate the hwe116 phenotype.
Inhibition of the Protein Activity for PK220 in Arabidopsis
[0116] Inhibition of gene activity can be achieved by a variety of technical means, for example, antisense expression, RNAi or hairpin constructs, in vivo mutagenesis, dominant negative approaches or generation of a mutant population and selection of appropriate lines by screening means. Provided are examples of said means to produce plants having inhibited PK220 gene expression and or activity.
Down-Regulation of PK220 by RNAi
[0117] Constructs were designed for RNAi inhibition of PK220 using hairpin (HP) constructs. The constructs comprised a 288 bp or a 154 bp of AtPK220 cDNA sequence to produce constructs referred to as (270)PK220 and (150)PK220. The 288 bp (270)PK220 fragment comprises 10 bp of intron sequence that was included in the PCR primer during construction of these PCR products. Vector constructs using these fragments can be made to drive expression under the control of a promoter of choice that will be apparent to one of skill in the art. In these examples a constitutive promoter (35S CaMV), or the native AtPK220 promoter (P.sub.PK) was used. Two fragments, or portions, of the AtPK220 gene were selected, first a 288 bp fragment At(270)PK220 (SEQ ID NO:13) and second a 154 bp fragment At(150)PK220 (SEQ ID NO:12) were selected from a divergent region of AtPK220 as compared to its closest homologue At4g32000.
35S-HP-At(270)PK220 and 35S-HP-At(150)PK220
[0118] The hairpin constructs (HP) 35S-HP-At(270)PK220 and 35S-HP-At(150)PK220 constructs were generated as follows. The sense fragments of (270)PK220 and (150)PK220 were amplified by RT-PCR using primer pairs of SEQ ID NO:134/SEQ ID NO:115 and SEQ ID NO:114/SEQ ID NO:115, respectively. The PCR products were digested with SacI, and inserted into a binary vector pBI121tGUS at the SacI site, respectively. The resulting vectors were then used to subclone the antisense fragments of (270)PK220 and (150)PK220 that were derived from RT-PCR products amplified using primer pairs of SEQ ID NO:112/SEQ ID NO:117, and SEQ ID NO:116/SEQ ID NO:117, respectively. Both the vector and PCR products were digested with BamHI and XbaI for subcloning.
P.sub.PK-HP-At(270)PK220 and P.sub.PK-HP-At(150)PK220
[0119] The P.sub.PK-HP-At(270)PK220 and P.sub.PK-HP-At(150)PK220 constructs were made from 35S-HP-At(270)PK220 or 35S-HP-At(150)PK220 respectively by replacing the 35S promoter sequence with AtPK220 promoter sequence (SEQ ID NO:14). The 35S promoter sequence was removed from 35S-HP-At(270)PK220 and 35S-HP-At(150)PK220 by Hind III and Xba I double digestion. The linearized plasmid was then treated with Klenow fragment of DNA polymerase I to generate blunt ends and self-ligated to form a new plasmid, in which XbaI site was restored while Hind III was gone. By using this restored XbaI site, a Nhe I DNA fragment of AtPK220 promoter was cloned upstream of HP-At(270) and HP-At(150) sequence to produce the final plasmids of P.sub.PK-HP-At(270)PK220 and P.sub.PK-HP-At(150)PK220. AtPK220 promoter sequence (SEQ ID NO:14) was amplified by PCR from Arabidopsis (Columbia) genome using primer pairs of SEQ ID NO:135/SEQ ID NO:136.
P.sub.4790-HP-At(270)PK220
[0120] To specifically down-regulate endogenous AtPK220, a strong root promoter P.sub.4790 was identified and found to be highly expressed in the roots of Arabidopsis, particularly in the endodermis, pericycle, and stele. The P.sub.4790 promoter is associated with a coding sequence identified as At2g44790 and the expression characteristics of P.sub.4790 are similar to that of wild type AtPK220 expression. The P.sub.4790 was used to replace the constitutive 35S promoter in 35S-HP-At(270)PK220. The promoter of At2g44790 was amplified using Arabidopsis (Col) genomic DNA as template and primers SEQ ID NO:151 and SEQ ID NO:152. The amplified promoter fragment has the length of 1475 base-pairs right upstream the ATG start codon of At2g44790 according to TAIR annotation. The 1475 bp-P.sub.4790 fragment is identified a SEQ ID NO:150. Hind III and Xba I restriction sites were introduced to the 5' and 3' end of the promoter fragment by primer design. The promoter sequence was then used to replace the 35S promoter in 35S-HP-At(270)PK plasmids by HindIII/XbaI double digestion, which resulted in the final constructs of pBI-P.sub.4790-HP-At(270)PK.
Down-Regulation of BnPK220 in Brassica Using RNAi
35S-HP-Bn(340)PK
[0121] To down-regulate the AtPK220 homolog in Brassica species, a hairpin construct was made using a 338 bp fragment of BnPK220 (SEQ ID NO;153) as the sense and anti-sense portions, and pBI300tGUS as the vector. Two pairs of primers SEQ ID NO:154 and SEQ ID NO:155; and SEQ ID NO:156 and SEQ ID NO:157 with unique restriction sites were designed according to BnPK220 sequence. A PCR fragment of 338 bp in length was amplified using Brassica napus cDNA as the template and the two pairs of primers, respectively. The SacI fragment was then inserted into pBI300tGUS at the SacI site downstream of the tGUS spacer in an antisense orientation. The resulting plasmid was subsequently used for cloning of a XbaI-BamI fragment in a sense orientation at the XbaI and BamHI sites. The vector pBI121tGUS was modified within the NPT II selectable marker gene and named pBI300. The NPT II gene in the vector pBI121 contains a point mutation (G to T at position 3383, amino acid change E182D). To restore the gene with its WT version, the NheI-BstBI fragment (positions 2715-3648) was replaced with the corresponding NheI-BstBI fragment from plasmid pRD400 (PNAS, 87:3435-3439, 1990; Gene, 122:383-384, 1992).
P.sub.4790-HP-Bn(340)PK
[0122] The P.sub.4790 promoter of At2g44790 was used to control expression of a hairpin construct to down-regulate endogenous BnPK220 in Brassica. The plasmid of 35S-HP-Bn(340)PK was digested with HindIII and XbaI to replace the 35S promoter with the P.sub.4790 promoter.
Down-Regulation of PK220 by Antisense
[0123] The construct 35S-antisenseAtPK220 was made to down-regulate expression of AtPK220 via antisense. The antisense fragment was generated using PCR and the primer pair SEQ ID NO:106/SEQ ID NO:113. The synthesised product was digested with BamHI and XbaI to yield a 1177 bp sequence comprising 1160 bp of AtPK220 (SEQ ID NO:11). Included at the 5' end were 10 bp of intron sequence and at the 3' end, 7 bp of 3' UTR sequence, which were retained from the PCR primers. The 1177 bp fragment was cloned in an antisense orientation to the 35S promoter in pBI121w/oGUS at the BamHI and XbaI.
Down-Regulation of PK220 by AmiRNA
[0124] An artificial microRNA (amiRNA) construct was also made to down-regulate the expression of AtPK220 in Arabidopsis. An Arabidopsis genomic DNA fragment containing microRNA319a gene (SEQ ID NO:148), was amplified by PCR using Arabidopsis (Col) genomic DNA as template and primers listed as SEQ ID NO:141 and SEQ ID NO:142. The backbone of miR319a was then used to construct amiRPK220 (SEQ ID NO:149), in which a 21 bp fragment of miRNA319a gene in both antisense and sense orientations was replaced by a 21 bp DNA fragment of AtPK220 using recombinant PCR. Three pairs of primers: SEQ ID NO:141/SEQ ID NO:144; SEQ ID NO:143/SEQ ID NO:146 and SEQ ID NO:145/SEQ ID NO:142 were designed for the construction. The final PCR product was digested with BamHI and XbaI, and subsequently cloned into pBI121w/o GUS for transformation into Arabidopsis or other plant species of choice.
Inhibition of PK220 Via Dominant-Negative Strategy
35S-AtPK220L292F
[0125] For expression of a non-functional AtPK220 sequence the AtPK220L292F from hwe116 was PCR amplified by RT-PCR using forward and reverse primers SEQ ID NO:118 and SEQ ID NO:110. The PCR product was digested with the restriction enzymes BamHI and XbaI (SEQ ID NO:121) and ligated into the binary vector pBI121w/oGUS. The sequence of SEQ ID NO:121 comprises the AtPK220L292F open reading frame (SEQ ID NO:3) and an additional 3 bp at the 5' end and 7 bp at the 3' end that are derived from UTR sequences (SEQ ID NO:121). The final construct, 35S-AtPK220L292F, was used to generate Arabidopsis and Brassica transgenic plants that were advanced to homozygosity for physiology assessment. Additionally, the vector is used to transform a plant species of choice and can be a dicot or a monocot.
P.sub.4790-AtPK220L292F
[0126] The HindIII-XbaI fragment of the root promoter P.sub.4790 was used to replace 35S promoter in pBI300, and then AtPK220L292F sequence was put downstream P.sub.4790 by XbaI and BamHI digestion to generate the P.sub.4790-driven dominant-negative construct. The resulting plasmid was then used for Brassica transformation. Additionally, the vector is used to transform a plant species of choice and can be a dicot or a monocot.
Down-Regulation of AtPK220 Homologs in a Monocot Species Using RNAi P.sub.BdUBQ-HP-Bd(272)PK
[0127] An expression cassette was constructed and inserted into two different vector backbones, the first being into the PacI-AscI sites of pUCAP and the second being into the PacI-AscI sites of pBF012. pBF012 is identical to pBINPLUS/ARS except that the potato-Ubi3 driven NPTII cassette has been excised via FseI digestion followed by self-ligation.
[0128] Brachypodium distachyon PK220 (BdPK220) was amplified using primer combinations SEQ ID NO:158 (bWET XbaI F) plus SEQ ID NO:159 (bWET BamHI R) having XbaI or BamHI sites respectively in the primers and SEQ ID NO:158 (bWET XbaI F) plus SEQ ID NO:160 (bWET ClaI R) having XbaI or ClaI sites respectively in the primers. PCR products were digested with the indicated restriction enzymes giving a 272 bp fragment (SEQ ID NO:161).
[0129] The hairpin spacer sequence, BdWx intron 1 (SEQ ID NO:164), was amplified with SEQ ID NO:162 (bWx BamHI F) plus SEQ ID NO:163 (bWx ClaI R) primers having BamHI or ClaI sites respectively in the primers and digested with the indicated restriction enzymes. The B. distachyon Wx gene is a homologue of the rice GBSS waxy gene, although the introns show little conservation.
[0130] The three fragments were ligated together into the XbaI site of the pUCAP MCS resulting in BdWx intron 1 sequence being flanked by Bd(272)PK220 target sequences in opposite orientations. The B. distachyon ubiquitin (BdUBQ) promoter contains an internal BamHI site, so the RNAi cassette was amplified with primers SEQ ID NO:200 (bWET BamHI end1) and SEQ ID NO:165 (bWET BamHI end2) which create BamHI cohesive ends without the need for BamHI digestion. The BamHI RNAi fragment was then ligated into the BamHI site of pUCAP already containing BdUBQ promoter and BdUBQT terminator resulting in the intermediate clone pBF067. The pBF067 complete insert was amplified with SEQ ID NO:166 (BdUBQ PvuI F) and SEQ ID NO:167 (BdUBQT PacI R), digested with PvuI and PacI and subsequently ligated into the PacI site of pUCAP or pBF012 vectors already containing a BdGOS2 driven mutant NPTII selectable marker in the AscI-PacI sites, resulting in pBF108 and pBF109, respectively. This mutant NPTII gene is commonly found in cloning vectors. There is only a single base pair difference from the wild type.
[0131] This cassette is in the PacI-AscI sites of pUCAP for the shuttle/bombardment vector pBF108 and in the PacI-AscI sites of pBF012 for the binary vector pBF109.
P.sub.BdUBQ-HP-Pv(251)PK
[0132] An expression cassette was constructed and inserted into two different vector backbones, the first being into the PacI-AscI sites of pUCAP and the second being into the PacI-AscI sites of pBF012. A fragment of Panicum virgatum PK220 being 251 bp in length (Pv(251)PK220) and identified as SEQ ID NO:168 was amplified using primer combinations SEQ ID NO:169 (PvWET XbaI F) plus SEQ ID NO:170 (PvWET BamHI R) and SEQ ID NO:169 (PvWET XbaI F) plus SEQ ID NO:171 (PvWET ClaI R). PCR products were digested with the indicated restriction enzymes. No sequence information exists regarding the PvWx intron 1 so the BdWx intron 1 was used as the spacer sequence in this construct. This sequence was amplified with SEQ ID NO:162 (bWx BamHI F) plus SEQ ID NO:163 (bWx ClaI R) primers and digested with the indicated restriction enzymes.
[0133] The three fragments were then ligated together into the XbaI site of the pUCAP MCS resulting in BdWx intron 1 sequence being flanked by Pv(251)PK220 target sequences in opposite orientations. No PvUBQ promoter sequence was available so the BdUBQ promoter and terminator are used in this construct. The BdUBQ promoter contains an internal BamHI site, so the RNAi cassette was amplified with primers SEQ ID NO:172 (PvWET BamHI end1) and SEQ ID NO:173 (PvWET BamHI end2) which create BamHI cohesive ends without the need for BamHI digestion. The BamHI RNAi fragment was then ligated into the BamHI site of pUCAP already containing BdUBQ promoter and BdUBQT terminator resulting in the intermediate clone pBF152. The pBF152 complete insert was amplified with SEQ ID NO:166 (BdUBQ PvuI F) and SEQ ID NO:167 (BdUBQT PacI R), digested with PvuI and PacI and subsequently ligated into the PacI site of pUCAP or pBF012 vectors already containing BdGOS2 driven wildtype NPTII in the AscI-PacI sites, resulting in pBF169 and pBF170, respectively.
P.sub.SbUBQHP-Sb(261)PK
[0134] An expression cassette was constructed and inserted into two different vector backbones, the first being into the PacI-AscI sites of pUCAP and the second being into the PacI-AscI sites of pBF012. A fragment of Sorghum bicolor PK220 (SbPK220) being 261 bp in length (Sb(261)PK220) and identified as SEQ ID NO:174 was amplified using primer combinations SEQ ID NO:175 (SbWET XbaI F) plus SEQ ID NO:176 (SbWET BamHI R) and SEQ ID NO:175 (SbWET XbaI F) plus SEQ ID NO:177 (SbWET ClaI R). PCR products were digested with the indicated restriction enzymes to give a Sb(261)PK220 fragment. The hairpin spacer sequence, SbWx intron 1 (SEQ ID NO:178), was amplified with primers SEQ ID NO:179 (SbWx BamHI) plus SEQ ID NO:180 (SbWx ClaI R) and digested with the indicated restriction enzymes. The three fragments were then ligated together into the XbaI site of the pUCAP MCS resulting in SbWx intron 1 sequence being flanked by SbWET target sequences in opposite orientations. BamHI cohesive ends were added to the RNAi cassette via amplification with primers SEQ ID NO:181 (SbWET BamHI end1) and SEQ ID NO:182 (SbWET BamHI end2). The BamHI RNAi fragment was then ligated into the BamHI site of pUCAP already containing SbUBQ promoter and SbUBQT terminator resulting in the intermediate clone pBF151. The pBF151 complete insert was amplified with SEQ ID NO:192 (SbUBQ PvuI F) and SEQ ID NO:167 (BdUBQT PacI R), digested with PvuI and PacI and subsequently ligated into the PacI site of pUCAP or pBF012 vectors already containing BdGOS2 driven wildtype NPTII in the AscI-PacI sites, resulting in pBF158 and pBF171, respectively.
[0135] A SbGOS2 promoter was identified from the Sorghum genome sequence was amplified and using the primer pair SEQ ID NO:184 (SbGOS2 HindIII F) and SEQ ID NO:185 (SbGOS2 HindIII R) a 1000 bp fragment of the GOS2 promoter, identified as SEQ ID NO:183, was PCR amplified and cloned using the HindIII restriction sites.
[0136] A SbUBQ promoter was identified from the Sorghum genome sequence was amplified and using the primer pair SEQ ID NO:187 (SbUBQ PstI F) and SEQ ID NO:188 (SbUBQ PstI R) a 1000 bp fragment of the UBQ promoter, identified as SEQ ID NO:186, was PCR amplified and cloned using the PstI restriction sites.
[0137] A SbUBQ terminator was identified from the Sorghum genome sequence was amplified and using the primer pair SEQ ID NO:190 (SbUBQT KpnI F) and SEQ ID NO:191 (SbUBQT KpnI R) a 239 bp fragment of the UBQ terminator, identified as SEQ ID NO:189, was PCR amplified and cloned using the KpnI restriction sites.
Miscanthus giganteus (MgPK220) RNAi
[0138] Expression constructs designed to down regulate via a hairpin strategy can be devised following the same strategy as described above. Resulting in a construct that may comprise the following elements, a BdGOS2-wtNPTII-BdUBQT selectable marker cassette and a BdUBQ-(MgPK220 hairpin-RNAi cassette)-BdUBQT in a vector of choice such as pUCAP and pBF012
AtPK220 Promoter Isolation and Cloning
[0139] The AtPK220 promoter was isolated using a PCR approach using Arabidopsis (Columbia ecotype) genomic DNA as template. The 5' primer, SEQ ID NO:119, was designed near the adjacent gene and the 3' primer, SEQ ID NO:120, located 25 bp upstream of the ATG start codon of the AtPK220 gene. The amplified product was digested with BamHI and SmaI and cloned into pBI101. The digested fragment, SEQ ID NO:14, was 1510 bp in length. The resulting construct was named P.sub.AtPK220-GUS.
AtPK220 Promoter Activity Analysis Using GUS Assay
[0140] P.sub.AtPK220-GUS was transformed into Arabidopsis plants using flower dipping, and the transgenic plants were advanced to T3 homozygorsity. Various tissues including young seedlings and leaves, stems, flowers, siliques, and roots from T3 flowering plants were collected, stained in X-Gluc solution at 37 C overnight, de-stained with ethanol solution, and examined under a microscope. The results showed that the promoter of AtPK220 was expressed mainly in endodermis and pericycle cells of root tissue and was also found in leaf trichomes and seed coat of developing seeds. Of significance was the observation that expression of P.sub.AtPK220-GUS was suppressed by water stress.
Sub-Cellular Localisation of AtPK220 Proteins in Arabidopsis
[0141] Expression of a full length wild type AtPK220-GFP fusion protein in transgenic Arabidopsis was used to locate the sub-cellular localization of the native protein. The primer pair SEQ ID NO:109 and SEQ ID NO:110 produced a fragment that was digested with SmaI and BamHI to yield a fragment comprising the full length open reading frame of AtPK220 and is disclosed as SEQ ID NO:10 and cloned downstream, in frame with the green fluorescence protein (GFP) in a pEGAD plasmid at the SmaI and BamHI sites. Additionally, the AtPK220 coding sequence was amplified using primer pair SEQ ID NO:198 and SEQ ID NO:199 and inserted upstream and in frame with GFP by AgeI digestion of pEGAD plasmid and the amplified AtPK220 fragment.
[0142] The 35S-GFP-AtPK220 and 35S-AtPK220-GFP constructs were transformed into Arabidopsis plants and homozygous transgenic plants (root tissues) were used for visual screening of GFP signal under confocal microscope. Green fluorescence was detected along plasma membrane, suggesting that AtPK220 protein was associated with plasma membrane in roots and that AtPK220 possibly functions as receptor kinase to sense or transduce environmental signals.
Isolation of BnPK220 from Brassica napus by 5' and 3' RACE
[0143] To isolate the homologous gene of AtPK220 from canola, a blast search (BLASTn) of NCBI Nucleotide Collection (nr/nt, est) and TIGR (DFCI) Brassica napus EST Database was done using AtPK220 sequence. Based on the sequences with highest similarity, a pair of primers, SEQ ID NO:122 and SEQ ID NO:123 were designed and used to PCR amplify a partial fragment of BnPK220. Both mRNA and genomic DNA isolated from Brassica leaves were used as template for these amplifications. A DNA fragment of about 500 bp was obtained by PCR from canola genomic DNA template. Sequence analysis of this PCR product showed that it shares a high identity with AtPK220 in nucleotide sequence as well in the intron organisation.
[0144] Based on the partial sequence of BnPK220, 5' and 3' RACE was performed to isolate the full length BnPK220 cDNA. For 3' RACE a forward primer, SEQ ID NO:124 and a nested primer, SEQ ID NO:125, were used. For 5' RACE a reverse primer, SEQ ID NO:126, and its nest primer, SEQ ID NO:127, were designed. RACE-ready cDNA for either 5' RACE or 3' RACE was made from RNA isolated from young Brassica leaves.
[0145] The 5' RACE yielded an amplified DNA of about 650 bp in length; and 3' RACE yielded a DNA of about 1 kb in size. Sequencing of these two RACE fragments showed high sequence similarity with AtPK220. A full-length mRNA of BnPK220 sequence was assembled by combining 5'RACE, partial BnPK220 fragment and 3' RACE results.
[0146] A full length BnPK220 cDNA was amplified by RT-PCR using the PCR primers SEQ ID NO:128 and SEQ ID NO:129. This cDNA comprises an ORF of 1302 nucleotides (SEQ ID NO:25) and encodes a protein of 433 amino acids (SEQ ID NO:26). Another full length BnPK220 cDNA was also amplified by the RT-PCR using cDNA made from B. napus. This cDNA (SEQ ID NO: 193) is 98.6% identical to SEQ ID NO:25, and encodes a protein (SEQ ID NO:194) of 99.3% identical to SEQ ID NO:26.
Isolation of Full-Length GmPK220 from Soybean by 5' RACE
[0147] A Blastn search of NCBI EST database, a homolog of AtPK220 was found as a soybean (Glycine max) EST, CX709060.1. From this homolog, a unigene cluster of 13 ESTs was retrieved from a soybean EST database. A contig was then assembled from these 13 ESTs, which covers a majority of the gene sequence.
[0148] The full-length sequence of GmPK220 (SEQ ID NO:41) was determined by combining the assembled contig, 5' RACE and 3' RACE results. The 5' RACE was performed using the primers of SEQ ID NO:130 for primary RACE PCR and SEQ ID NO:131 for nested RACE PCR. The 3' RACE was performed using the primers of SEQ ID NO:137 for primary RACE PCR and SEQ ID NO:138 for nested RACE PCR. GmPK220 encodes a protein as shown in SEQ ID NO:42.
Isolation of OsPK220 (Rice) Sequence by Database Mining
[0149] The rice genome (Oryza sativa, japonica cultivar) has been completely sequenced and is publically available. The homolog of AtPK220 in rice was determined by BLAST search of a rice EST database and by BLASTP search of a genomic sequence database. The target having the highest score was identified as Accession number Os05g0319700.
[0150] Os05g0319700 is abbreviated as OsPK220, and disclosed as SEQ ID NO:59, which encodes a protein disclosed as SEQ ID NO:60.
Isolation of ZmPK220 (Corn) Sequence
[0151] Two candidate homologs were found by BLAST search of the TIGR EST database, one a unigene Accession number TC333547 and the second Accession number C0439063.
[0152] Accession number TC333547 is 2125 nucleotides in length and contains an open reading frame of 1377 nucleotides (SEQ ID NO:77) encoding a protein of 458 amino acids (SEQ ID NO:78). This translated protein is full-length and is larger than AtPK220 protein. The C-terminal kinase domain is highly conserved between the Arabidopsis and corn protein sequence, however, the N-terminal sequence is more variable.
[0153] C0439063 is a short EST sequence and is missing 5' terminal sequence. The missing sequence was obtained by RACE methods. Two 5' RACE primers were designed based on the alignment between AtPK220 and C0439063. The primary 5' RACE primer is SEQ ID NO:132 and the nested 5' RACE primer is SEQ ID NO:133. The 3' RACE was also performed using the primers of SEQ ID NO:139 for primary RACE PCR and SEQ ID NO:140 for nested RACE PCR. The ZmPK220 (SEQ ID NO:79) sequence was assembled based on 5' RACE, 3' RACE results and C0439063 EST sequences. The corresponding protein sequence was listed as SEQ ID NO:80.
[0154] Sequence analysis shows that C0439063 has higher sequence similarity with rice OsPK220 than TC333547.
Isolation of BdPK220 Sequence from Brachipodium Distachyon (Bd)
[0155] Brachipodium is one of the model monocot plants for functional genomic research. A contig was assembled from public ESTs or GSSs, and it covers a 3' portion of BdPK220 according to homologue alignment. RACE using Bd81RAR1 primer (SEQ ID NO: 195) and Bd81RAR2 primer (SEQ ID NO: 196) designed from the contig and using Brachipodium leaf cDNA produced a unique fragment of about 650 bp. The assembling of the RACE sequence and the contig gave the full length BdPK220 sequence (SEQ ID NO:24), which encodes a protein of 461 amino acids (SEQ ID NO: 197).
Determination of GsPK220 (Cotton) Sequence by Database Mining
[0156] A BLAST search of a cotton (Gossypium) TIGR-EST database identified a sequence cluster identified as Accession number TC79117, that has high similarity with AtPK220. This cluster has two overlapping ESTs, TC79117 which is referred herein as GsPK220) and consists of an open reading frame of 1086 nucleotides (SEQ ID NO:81). The largest open reading frame encodes a protein of 361 amino acids (SEQ ID NO:82).
Drought Tolerant Phenotype of hwe116 Mutant Found Under Water Limited Conditions and High Water Use Efficiency Under Both Drought and Optimal Conditions
[0157] Two groups of plants were grown (5 plants per 3'' pot filled with the same amount of soil-less mix) under optimal conditions in a growth chamber (22 C, 18 hr light, 150 uE, 70% relative humidity) until first day of flower (n=6 per entry per treatment). At first flower all plants were supplied with the same amount of water (optimal levels) but one group of plants was used for the optimal treatment and the other for drought treatments. In the optimal treatment the pots were weighed daily to determine daily water loss and then watered back up to optimal levels. In the drought treatment, pots were weighed daily to determine water loss and allowed to dry out. Plants were harvested on days 0, 2 and 4 of drought and optimal treatments for shoot biomass determinations. Lower water loss relative to shoot dry weight (DW) as compared to control, under drought conditions indicates a drought tolerant phenotype. The ratio of shoot dry weight accumulated to water lost during the treatment period provides a measure of water use efficiency (WUE). The hwe116 plants were delayed in flowering by 1 to 2 days. Water loss relative to shoot biomass was significantly lower (by 22%) in hwe116 than parent control under drought conditions. This result indicates that the mutant is drought tolerant. It has also been found that under optimal conditions the water loss relative to shoot DW was also significantly lower in the mutant (by 41%) as compared to the parent control. This result is consistent with higher water use efficiency phenotype. Calculations of water use efficiency showed that under both drought (Table 1) and optimal (Table 2) conditions hwe116 mutant uses water more efficiently because it accumulated more shoot biomass with less water (drought) or the same amount of biomass with less water (optimal).
TABLE-US-00001 TABLE 1 Water Use Efficiency (WUE) under drought conditions shoot DW WUE accumulated- water lost - (g shootDW acc/ Entry day 0 to 4 (g) day 0 to 4 (g) kg water lost) hwe116 0.146 56.5 2.58 (+13%) Parent 0.134 58.6 2.28
TABLE-US-00002 TABLE 2 Water Use Efficiency (WUE) under optimal conditions shoot DW accumulated- water lost - WUE (g shootDW acc/ entry day 0 to 4 (g) day 0 to 4 (g) kg water lost) hwe116 0.276 92.3 2.99 (+22%) Parent 0.271 110.6 2.45
[0158] The final result of enhanced water use efficiency in the mutant is greater shoot DW biomass as shown in Table 3 (harvested on day 4 from 1.sup.st flower).
TABLE-US-00003 TABLE 3 Final shoot DW biomass Drought - Optimal - shoot DW (g) shoot DW (g) entry Mean S.E. Mean S.E. hwe116 0.354 0.014 0.449 0.017 parent 0.300 0.011 0.414 0.011 hwe116 as % of parent 118% 108%
The hwe116 Mutant Maintains Higher Soil Water Content During Drought Treatment, Reaches Water-Stress Conditions Later and Shows Yield Protection Following Drought Stress During Flowering Relative to Control Plants.
[0159] An experiment was set up with 5 plants per 4'' pot filled with the same amount of soilless mix. Two groups of plants (optimal and drought) were grown under optimal conditions in a growth chamber (22 C, 18 hr light, 150 uE, 70% relative humidity) until first day of flower (n=9 per entry and per group). At first flower all plants were supplied with the same amount of water and further water was withdrawn for the drought treated group of plants. The optimal group was watered daily as before. Pots in the drought treated group were weighed daily for 6 days of treatment to determine soil water content. After 6 days of drought treatment plants were re-watered and allowed to complete their lifecycle as the optimal group under optimal conditions. At maturity the seeds were harvested from each pot and the seed yield was determined for both optimal and drought treated plants. The results of changes in soil water content during the drought treatments were determined. Soil water content was measured as percentage of initial amount of water in the pot. The results indicate that the mutant was able to retain water in pots longer and therefore it reached the stress level (around 25% soil water content) 1 day later and wilted 1 day later than control. This treatment caused a yield reduction of 17% from optimal levels in the mutant, whereas in control the yield reduction was 41%. Therefore the mutant demonstrated a yield protection of 24% relative to control, following a drought treatment.
The hwe116 Mutant Seedlings Showed Less Sensitivity to Cold Stress.
[0160] Two groups of plants with 8 replicates per entry were grown with 3 plants per 3'' pot under optimal conditions of 22.degree. C. and short days to prolong vegetative growth and delay flowering (10 hr light 150 uE, and 14 hr dark), 70% relative humidity in a growth chamber. At 10 days of age (3 days post-transplanting of seedlings into soil from agar plates) the cold treatment group was placed in a chamber at 8.degree. C. for 11 more days of growth while the optimal group was maintained at 22.degree. C. Plants were harvested for shoot dry weight (DW) determinations at 21 days of age. The results are shown in Table 4. The hwe116 mutant had smaller seedlings under optimal conditions than those of controls but after cold exposure the shoot DW was equivalent to that of the parent and as percentage of the optimal DW it was higher than that of both controls by 9 and 15% indicating that the growth of the mutant was not as inhibited by cold as that of controls.
TABLE-US-00004 TABLE 4 shoot dry weight under optimal and cold conditions. optimal (22.degree. C.) Cold (8.degree. C.) shoot DW (mg) shoot DW (mg) shoot DW Entry Mean S.E. Mean S.E. % of optimal hwe116 6.65 0.30 2.85 0.13 43% parent 9.16 0.21 2.58 0.11 28% WT 9.30 0.20 3.18 0.21 34%
The hwe116 Mutant has Thicker Leaves and Higher Chlorophyll Content Per Leaf Area. The Mutant Showed Delayed Leaf Senescence and Resistance to Oxidative Stress.
[0161] Plants were grown 1 per 3'' pot under optimal growth conditions in a growth chamber (16 hr light, 300 uE, 22.degree. C., 70% relative humidity). Early into flowering three leaf disks (86.6 um2 each) were taken from three youngest fully developed leaves and placed in petri dishes containing filter paper with 5 uM N,N'-Dimethyl-4,4'-bipyridinium dichloride (paraquat) solution as an oxidizing agent. Plates with leaf disks were placed under continuous light of 150 uE for 25 hours. This resulted in chlorophyll bleaching. The differences between the mutant and controls in the extent of bleaching were quantified by measuring chlorophyll content of the leaf disks. A leaf disk was also removed from leaves that have not been exposed to paraquat treatment and optimal chlorophyll content was determined. These disks were also weighed. The results showed that the mutant had higher total chlorophyll content per leaf surface area (Table 5), however the leaves of this mutant are thicker (leaf disks were 15 to 24% heavier in the mutant compared to those of controls). Chlorophyll content per gram of fresh leaf tissue was, therefore, not different. There were no differences between chlorophyll a to b ratios between the mutant and controls. The hwe116 mutant showed resistance to the oxidative stress as indicated by 5 to 7% higher chlorophyll content following paraquat treatment (Table 5). Leaf senescence was also delayed in the hwe116 mutant (data not shown).
TABLE-US-00005 TABLE 5 Effect of oxidative stress on chlorophyll content of leaves. Optimal 5 uM paraquat in 24 hr light Chl (a + b) - (mg/m2) Chl (a + b) - (mg/m2) % of Entry Mean Std Err Mean Std Err opt hwe116 303.7 6.7 67.9 4.4 20% Parent 259.6 4.3 39.5 5.9 15% WT 250.2 5.7 32.1 2.9 13%
The Growth of Mutant hwe116 Seedlings Showed Less Inhibition on Low Nitrogen Containing Media.
[0162] Twelve seedlings were grown on an agar plate (6 plates per entry) containing 1/2 MS growth media with optimal (20 mM) or low (0.3 mM) nitrogen content. Plates were placed in a growth room with an 18 hr light period (100 uE) for 6 days in a vertical position, then plates were placed horizontally and seedlings were grown for another 4 days before the shoots were harvested. The average seedling shoot DW after 10 days of growth was calculated per plate. The results are shown in Table 6. The shoot DW of hwe116 mutant grown under optimal conditions was significantly reduced but when grown on low nitrogen there were no differences. The shoot DW on low nitrogen in the mutant was 3 to 7% greater than in controls when compared to the optimal nitrogen levels. This indicates that the mutant may have better nitrogen use efficiency.
TABLE-US-00006 TABLE 6 Effect of nitrogen on seedling shoot DW Average seedling shoot DW (mg) Optimal nitrogen Low nitrogen Entry Mean S.E. Mean S.E. % Opt hwe116 1.03 0.03 0.23 0.01 22 Parent 1.34 0.04 0.20 0.01 15 WT 1.22 0.03 0.23 0.02 19
Knockout Mutant of PK220 Showed Drought Tolerant Trends and Higher Water Use Efficiency Under Drought Treatment.
[0163] Plant lines obtained from the SALK institute that were T-DNA knockouts in the AtPK220 gene (SALK_147838) were grown (5 per 3''pot) under optimal conditions in a growth chamber (18 hr light, 150 uE, 22.degree. C., 60% relative humidity) until first open flower (n=8 per entry and per harvest). The drought treatment was started by watering all plants with the same amount of water and cessation of further watering. Pots were weighed daily and plants were harvested for shoot DW determinations on days 0, 2 and 4 of the drought treatment. The result showed that water lost from pots in 2 days relative to shoot DW on day 2 was significantly lower (by 13%) for the knockout mutant and its shoot DW was also significantly greater (by 24%) on day 2 as compared to control wild-type. This result is consistent with drought tolerant phenotype.
[0164] The results showed that the water use efficiency of the knockout mutant was greater than that of the control-WT as the knockout mutant was able to accumulate more shoot biomass in the 2 days of treatment while using the same amount of water as control (Table 7).
TABLE-US-00007 TABLE 7 Water use efficiency under drought treatment WUE entry g water lost g shoot DW gain (g shoot/kg water) PK220- 43.1 0.059 1.37 knockout WT 42.9 0.035 0.82
Transgenic Lines of 35S-HP-At(270)PK220 Construct in Arabidopsis Showed Drought Tolerance.
[0165] Plants were grown (5 per 3'' pot and 8 pots per entry per harvest) under optimal conditions in a growth chamber (18 hr light, 150 uE, 22.degree. C., 60% relative humidity) until first day of flower. The drought treatment was started by watering all pots with the same amount of water and cessation of further watering. Pots were weighed daily for water loss determinations and plants were harvested for shoot biomass on day 4 of drought treatment. The results (Table 8) showed that 11 out of 13 transgenic lines demonstrated a drought tolerant phenotype (having a lower water loss over 2 days relative to shoot biomass on day 4). Four of the lines showed a slight delay in flowering (1 day), as did the hwe116 mutant. The final shoot biomass on day 4 was greater for most of the transgenic lines as compared to control WT. These results are indicative of a drought tolerant phenotype in the transgenic lines down-regulated in PK220 expression. As examples, the reduction in expression level of AtPK220 for the top 3 performing lines: 65-4, 38-5, and 59-3, are 75%, 47% and 58%.
TABLE-US-00008 TABLE 8 Drought tolerance and shoot DW (day 4) for 35S-HP-At(270)PK220 transgenic lines relative to wild type (WT) and the hwe116 mutant relative to parent control. drought tolerance shoot DW entry % of control % of control 65-4 119% 132% 38-5 116% 124% 59-3 112% 119% 33-7 111% 114% 54-11 108% 115% 56-3 107% 115% 43-11 107% 113% 23-8 106% 111% 12-2 106% 110% 63-4 104% 110% 32-1 104% 109% 30-3 101% 104% 74-2 101% 107% WT 100% 100% hwe116 186% 106% parent 100% 100%
Drought Tolerance of 35S-HP-At(270)PK220 Transgenic Lines in Arabidopsis and Enhanced Water Use Efficiency were Confirmed.
[0166] The transgenic lines of 35S-HP-At(270)PK220 were grown with 5 per 3'' pot under optimal conditions in a growth chamber (18 hr light, 150 uE, 22.degree. C., 60% relative humidity) until first flower (n=8). Drought treatment was started at first flower by watering all the pots with the same amount of water and cessation of further watering. The pots were weighed daily for the 4 days of drought treatment and plants were harvested on days 0, 2 and 4 of treatment. The results confirmed that water lost in 2 days relative to shoot biomass on day 2 was lower in five transgenic lines relative to controls, confirming their drought tolerant phenotype (Table 9). The shoot DW on day 2 was greater in 5 of the transgenic lines.
TABLE-US-00009 TABLE 9 Drought tolerance and shoot DW for 35S- HP-At(270)PK220 transgenic lines drought tolerance shoot DW entry % of WT % of WT 59-3 110% 105% 65-4 110% 98% 38-5 107% 109% 33-7 103% 106% 56-3 102% 95% 54-11 101% 103% null (65-1) 99% 99% WT 100% 100%
[0167] The water use efficiency was greater than that of controls during the 4 days of drought treatment for three transgenic lines and this enhanced water use efficiency was due to greater shoot DW accumulation (Table 10).
TABLE-US-00010 TABLE 10 Water use efficiency between day 0 and 4 of the drought treatment in transgenic lines of 35S-HP-At(270)PK220. shoot DW WUE (g shoot/ accumulated (g) water lost (g) kg water) entry d 0-d 4 d 0 to d 4 d 0 to d 4 65-4 0.090 62.5 1.44 (+22 to 33%) 12-2 0.079 62.2 1.27 (+7 to 17%) 56-3 0.079 62.7 1.25 (+6 to 16%) null (65-1) 0.068 62.7 1.08 WT 0.073 61.9 1.18
Transgenic Lines of 35S-HP-At(270)PK220 in Arabidopsis had Lower Water Loss Relative to Shoot Biomass and Enhanced WUE Under Optimal Conditions.
[0168] Plants of 35S-HP-At(270)PK220 transgenic lines 65-7 and 59-5, WT Columbia, hwe116 mutant and its parent were grown (5 per 3'' pot) under optimal conditions in a growth chamber (22.degree. C., 18 hr light--200 uE, 60% relative humidity) until first flower (n=8 per entry, per harvest). At first flower all pots in the water limited group were watered with the same amount of water (to a pot weight of 120 g in first 4 days and to 130 g for last 3 days (as plants grew larger they required more water). Pots were weighed daily to determine daily water loss and plants were harvested on day 0 and day 7 of this treatment. Water use efficiency (WUE) was calculated from the ratio of shoot biomass accumulated to water lost. The results are shown in Table 11.
TABLE-US-00011 TABLE 11 Water Use Efficiency under optimal conditions shoot DW WUE (g shoot/ accumulated (g) water lost (g) kg water) entry d 0-d 4 d 0 to d 4 d 0 to d 4 59-5 0.514 223 3.31 (+4%) 65-4 0.671 276 2.43 (+9%) WT 0.517 232 2.23 hwe116 0.420 191 2.19 (5%) parent 0.421 202 2.08
The results show that under optimal water conditions the two transgenic lines and the mutant had enhanced water use efficiency. Growth Rates of the 35S-HP-At(270)PK220 Transgenic Arabidopsis were Greater than Those of Controls During Both Optimal and Water Limited Conditions.
[0169] Plants of 35S-HP-At(270)PK220 transgenic line 65-4 and WT Columbia were grown (5 per 3'' pot) under optimal conditions in a growth chamber (22.degree. C., 18 hr light--150 uE, 60% relative humidity) until first flower (n=8 per entry, per treatment and per harvest). At first flower all pots in the water limited group were watered with the same amount of water (to a pot weight of 95 g), and further watering was stopped for 2 days. It took 2 days for the water limited group of plants to reach about 30% of initial soil water content (about 55 g total pot weight), referred to as pre-treatment. At that time the water limited treatment was deemed to have started (day 0 of treatment) and plants were watered daily up to a total pot weight of 55 g for 3 days, and up to 65 g in the following 4 days (until day 7 of treatment). The optimal group was maintained under optimal conditions by watering the pots daily up to 100 g total pot weight in the 2 pre-treatment days, the first 3 days of treatment and then up to 130 g in the last 4 days of treatment (as plants grew larger they required more water). The daily water loss from the pots was measured for all the plants and plants in both groups were harvested on days 0, 1, 2, 3, 5, and 7 of treatment for shoot dry weight determinations. The water loss relative to the shoot biomass (drought tolerant phenotype) was calculated over the initial two days before the start of treatment, during the first 3 days of treatment and during the last 4 days of treatment. The results under both optimal (Table 12) and water limited (Table 13) conditions are shown. The transgenic line 65-4 lost less water relative to shoot biomass than WT in both optimal and water limited conditions. Under limited water conditions this is consistent with enhanced drought tolerance phenotype.
TABLE-US-00012 TABLE 12 Water loss in g/shoot DW in g under optimal conditions. Entry pre-treatment d 0-d 3 d 3-d 7 65-4 231 .+-. 9 162 .+-. 3 237 .+-. 5 WT 275 .+-. 8 178 .+-. 7 243 .+-. 6
TABLE-US-00013 TABLE 13 Water loss in g/shoot DW in g and Drought tolerance (as percentage of WT) under water limited conditions. pre-treatment d 0-d 3 d 3-d 7 (drought toler. (drought toler. (drought toler. Entry in % of WT) in % of WT) in % of WT) 65-4 174 .+-. 2 (108%) 83 .+-. 2 (115%) 153 .+-. 6 (113%) WT 189 .+-. 4 (100%) 97 .+-. 4 (100%) 175 .+-. 4 (100%)
[0170] Growth rates of the plants were calculated over the seven days of both treatments. The results showed that transgenic line 65-4 had larger plants (up to 24%) than the wild type throughout the treatment under both conditions. The growth rate (shoot dry weight accumulated per day over the 7 days of treatment) was slightly greater for the transgenic line under both optimal and water limited conditions (63.3 and 21.3 mg shoot/day, respectively) than that of WT control (58.3 and 20.4 mg shoot/day, respectively).
The Transgenic Line of 35S-HP-At(270)PK220 Arabidopsis and the Hwe116 Mutant Grow Better Under Limited Nitrogen Conditions than Controls.
[0171] The 35S-HP-At(270)PK220 transgenic line 65-5, its segregated null control (null 65-1) and wild-type (WT) plus the hwe116 mutant and its parent control were analyzed for growth characteristics of young seedling under optimal and limited nitrogen conditions. Nitrogen content refers to the available nitrogen for plant growth, including nitrate and ammonium sources. Seedlings were grown on agar plates (10 per plate and 5 plates per entry and per treatment) containing either optimal nutrients (including 20 mM nitrogen) or low (limiting to growth) nitrogen (optimal all nutrients except for nitrogen being 0.5 mM). Plates were placed in a growth chamber at 18 hr lights of 200 uE and 22.degree. C. Seedlings were grown for 14 days before being harvested for shoot biomass (8 seedlings) and chlorophyll determinations (2 seedlings). On optimal plates there were no differences in average seedling shoot biomass except for the hwe116 mutant, as shown before had slightly smaller seedling shoot DW (not significant). On low nitrogen the hwe116 mutant had significantly bigger seedling shoot DW and showed 30% less inhibition in growth as compared to its parent. The transgenic line 65-5 showed slightly greater shoot DW than controls and was 5% to 7% less inhibited in growth than the controls (Table 14).
TABLE-US-00014 TABLE 14 Effect of nitrogen on seedling shoot DW Average seedling shoot DW (mg) Optimal N (20 mM) Low N (0.5 mM) entry Mean Std Err Mean Std Err % of opt 65-5 5.3 0.1 2.9 0.1 56% WT 5.5 0.3 2.8 0.1 51% hwe116 4.8 0.2 3.8 0.3 80% parent 5.1 0.2 2.6 0.1 50%
[0172] The total chlorophyll content of seedling shoots grown under low N levels reflected the shoot DW results. Chlorophyll content is very closely linked to available N and one of the major symptoms of N-deficiency in plants is leaf chlorosis or bleaching. Table 15 shows that chlorophyll content of the transgenic line 65-5 and the mutant hwe116 was reduced less than that of the controls.
TABLE-US-00015 TABLE 15 Effects of nitrogen on seedling shoot total chlorophyll content seedling shoot chlorophyll content (ug/g) Optimal N (20 mM) Low N (0.5 mM) entry Mean Std Err Mean Std Err % of opt 65-5 902 35 244 22 27% WT 854 102 156 17 18% hwe116 1006 51 376 37 37% parent 836 59 208 47 25%
[0173] These results confirmed that the hwe116 mutant grew better on limited nitrogen and the transgenic line showed the same trends. Therefore, down-regulation of the PK220 gene in plants appears to result in increased nitrogen use efficiency (accumulation of more biomass per unit of available nitrogen).
The Transgenic Line of 35S-HP-At(270)PK220 Arabidopsis and the Hwe116 Mutant Germinate Faster and have Higher Rates of Germination in the Cold.
[0174] Germination under cold (10.degree. C.) conditions was assessed in the transgenic line 65-5 carrying the 35S-HP-At(270)PK220 construct relative to WT-control and that of the hwe116 mutant relative to its parental control on agar plates containing optimal growth media. Four plates per entry with 30 seeds each were prepared and placed in the chamber at 10.degree. C., 18 hr light (200 uE). Germination (emergence of the radicle) scored as a percentage of viable seeds, was noted twice daily for 5 days starting with day 5 from placing of seeds on plates (no germination before day 5). Once no further changes were observed in germination all plates were placed in a chamber at 22.degree. C. to check for viability of the seeds that had not germinated. All entries showed 98 to 100% seed viability, the hwe116 mutant had 94%. viabilty. The results of the germination assessment at 10.degree. C. (Table 16) indicate that the transgenic line 65-5 germinated sooner than it's WT-control. The hwe116 mutant had higher rates of germination in the cold than its parent control. These data, together with the evidence that the mutant grows better under cold conditions are indicative of a greater seed and seedling vigor under cold stress
TABLE-US-00016 TABLE 16 percentage germination of viable seeds at 10.degree. C. Hours @ 10.degree. C. % Viable entry #reps 114.5 121 139 145 163 169 188.5 212.5 235 241 Seed 65-5 4 15.1 32.8 75.7 80.7 90.0 90.8 90.8 92.5 93.3 94.2 99.2 WT 4 5.9 16.0 55.4 62.9 78.1 79.0 80.7 80.7 81.5 81.5 98.4 hwe116 4 15.9 28.4 67.5 81.4 94.2 98.0 99.0 99.0 100.0 100.0 94.0 Parent 4 6.7 26.7 72.5 77.5 85.0 85.0 85.9 85.9 85.9 85.9 100.0
Gas Exchange Measurements Support Higher WUE in Transgenic 35S-HP-At(270)PK220 Arabidopsis Under Optimal Conditions
[0175] Plants of two transgenic lines and WT were grown in four inch diameter pots (one per pot) under optimal conditions in a growth chamber at 18 hr light (200 uE), 22.degree. C., 60% RH. Eight days from first open flower gas exchange measurements were made on the youngest, fully developed leaf of 10 to 11 replicates per entry. Photosynthesis and transpiration rates were measured inside the growth chamber at the ambient growth light and temperature conditions and 400 ppm carbon dioxide using Li-6400 and Arabidopsis leaf cuvette. From the ratio of photosynthesis to transpiration instantaneous water use efficiency (WUE) was calculated. The results are shown in Table 17. The WUE in the transgenic lines was 11 and 18% greater than that of the WT. This data is consistent with the WUE measurements over a period of few days using the ratio of biomass accumulated to water lost in transpiration.
TABLE-US-00017 TABLE 17 Photosynthesis (umol carbon dioxide/m2/s), transpiration (mmol H2O/m2/s) and WUE measured under optimal growth conditions. Phots. Trans. WUE (umol/ Photos. (mmol/ Trans. (Photos/ WUE entry m2/s) (% WT) m2/s) (% WT) Trans) (% WT) 59-6 3.9 .+-. 0.2 105% 4.2 .+-. 0.5 95% 1.03 .+-. 0.11 118% 65-5 3.6 .+-. 0.2 97% 3.8 .+-. 0.4 86% 0.97 .+-. 0.13 111% WT 3.7 .+-. 0.2 4.4 .+-. 0.2 0.87 .+-. 0.05
Drought Tolerance of 35S-HP-At(270)PK220 Transgenic Arabidopsis Results in Seed Yield and Biomass Protection Following Drought Stress.
[0176] Plants of two transgenic lines and the WT were grown (5 per 3 inch pot containing equal amount of soil) under optimal conditions in a growth chamber (22 C, 18 hr light of 200 uE, 60% RH) until first open flower. At first flower the drought treatment was applied to half of the plants while the other half was maintained under optimal conditions until maturity. The drought treatment consisted of watering all the plants to the same saturated water level. Plants were then weighed daily to monitor water loss from the pots and their water content was equalized daily by watering all pots to the level of the heaviest pot. As a result the soil water content was declining and reached stress levels with plants wilting on day 4. Plants were maintained at that stress level for another 2 days and on day 6 all plants were re-watered and maintained under optimal conditions for the rest of their life cycle. At maturity both optimal and drought plants were harvested for seed and shoot biomass. The impact of drought stress on both seed yield and shoot biomass was determined by comparing the optimal and drought treated plants. The results are shown in Table 18. Under optimal conditions the seed yield and the final shoot biomass of the transgenic lines was 7 to 10% higher than that of the WT. Following the drought stress during flowering the reduction in seed yield and the shoot biomass were not as great in transgenic plants as in the WT, resulting in seed yield protection of 5-7% and shoot biomass protection of 4%. The protection was calculated as the difference between the transgenics and WT in seed yield or shoot biomass a percentage of optimal.
TABLE-US-00018 TABLE 18 Seed yield and final shoot biomass from optimal and drought stressed plants, n = 10 Seed yield- Seed yield- Shoot DW- drought % of Shoot DW- % of entry opt (g) opt (g) (g) opt drought (g) opt 59-6 1.29 .+-. 0.05 2.96 .+-. 0.13 1.06 .+-. 0.03 82% 2.37 .+-. 0.07 80% 65-5 1.27 .+-. 0.03 2.89 .+-. 0.08 1.01 .+-. 0.02 80% 2.32 .+-. 0.06 80% WT 1.18 .+-. 0.04 2.69 .+-. 0.10 0.89 .+-. 0.02 75% 2.04 .+-. 0.05 76%
Over-Expression of Wild Type AtPK220 in hwe116.2 Background can Restore the WT Phenotype
[0177] Transgenic plants of 35S-AtPK220 (in hwe116.2) were grown (5 per 3 inch pot) under optimal conditions in a growth chamber as described above until the first open flower. Drought treatment was applied by watering all plants to the same saturated level. Further watering was withheld. Plants were weighed daily to determine the daily water loss and all plants were harvested on day 4 of treatment by which time all plants showed wilting. The water loss relative to final shoot biomass was used to calculate drought tolerance where that of WT was assumed at 100%. The data are shown in Table 19. Three transgenic lines showed a reduction in drought tolerance from the mutant levels as indicated by increased water loss relative to shoot biomass. The three transgenic lines also flowered earlier than the mutant line and similar to the time that the WT lines flowered. These results support the conclusion that the AtPK220 gene mutation in hwe116.2 is responsible for the altered phenotypes observed and expression of a WT gene restore the WT characteristics of a mutant plant.
TABLE-US-00019 TABLE 19 Water loss relative to shoot biomass and drought tolerance, n = 8 Water lost in Drought tolerance entry Days to flower 3 d/shoot DW d 4 (% of WT) 28-4 20.9 .+-. 0.1 155.1 .+-. 3.1 111% 2-4 21.8 .+-. 0.1 164.7 .+-. 2.4 105% 7-11 21.6 .+-. 0.1 177.9 .+-. 4.4 97% hwe116.2 23.1 .+-. 0.2 134.9 .+-. 3.6 117% WT 20.8 .+-. 0.2 173.4 .+-. 5.1 100%
Down Regulation of AtPK220 with the AtPK220-Promoter (P.sub.PK) in Arabidopsis Results in Enhanced Drought Tolerance of Plants
[0178] Arabidopsis plants of P.sub.PK-HP-At(270)PK220 were grown (5 per 3 inch pot) under optimal conditions in a growth chamber as mentioned above until the first open flower. Drought treatment was applied then by watering all plants to the same saturated level. Further water was withheld. Plants were weighed daily to determine the daily water loss and all plants were harvested on day 4 of treatment (all plants were wilted). The water loss relative to final shoot biomass was used to calculate drought tolerance where that of WT was assumed at 100%. The results of this study are shown in Table 20.
TABLE-US-00020 TABLE 20 Water loss relative to shoot biomass and drought tolerance, n = 8 Water lost in Drought tolerance entry Days to flower 3 d/shootDW d 4 (% WT) 14-04 22 158 .+-. 5 116% 15-06 20 183 .+-. 8 104% 45-3 20 185 .+-. 9 103% WT 20 190 .+-. 9 100%
[0179] One of the transgenic lines, 14-04, showed significantly greater drought tolerance than the wild type control as indicated by lower water loss relative to shoot biomass. This result is supported by data from line 14-04 that showed nearly complete inhibition of PK220 gene expression. The expression of AtPK220 was reduced by nearly 96% in the roots compared to WT. These results indicate that down regulation of PK220 in the roots is sufficient to achieve significant drought tolerance phenotype and presumably enhanced water use efficiency.
Overexpression of Brassica napus PK220 in the Arabidopsis Hwe116 Mutant can Restore the WT Phenotype
[0180] Transgenic plants of 35S-BnPK220 (in hwe116) plus two null controls (segregated siblings of the transgenic lines without the transgene, therefore hwe116 mutant) were grown (5 per 3 inch pot) under optimal conditions in a growth chamber as mentioned above until the first open flower. Drought treatment was applied then by watering all plants to the same saturated level. Further water was withheld. Plants were weighed daily to determine the daily water loss and all plants were harvested on day 4 of treatment (all plants were wilted). The water loss relative to final shoot biomass was used to calculate drought tolerance where that of WT was assumed at 100%. The results of this study are shown in Table 21. The results indicate that 6 lines had a reduction of 8% or more in drought tolerance as compared to the nulls (the hwe116 mutant background) and therefore restoration towards the WT phenotype. This indicates that BnPK220 is functional and can work in the Arabidopsis.
TABLE-US-00021 TABLE 21 Water loss relative to shoot DW and drought tolerance, n = 8 Water lost in Drought tolerance entry 3 d/shoot DW d 4 (% of null) 106-11 148 .+-. 6 98% 67-6 150 .+-. 4 97% 51-6 152 .+-. 4 96% 5-1 152 .+-. 2 95% 74-12 157 .+-. 5 92% 38-7 160 .+-. 5 90% 70-2 161 .+-. 2 89% 97-3 164 .+-. 5 87% 31-6 165 .+-. 4 87% 93-8 172 .+-. 4 82% Null 38-10 146 .+-. 3 100% Null 90-7 135 .+-. 5 107%
Transgenic Brassica Lines Having a 35S-AtPK220L292F Construct Showed Drought Tolerance and Higher Water Use Efficiency
[0181] Down regulation of endogenous PK220 activity was demonstrated using a dominant negative strategy by expression of the mutant allele of the AtPK220 gene in Brassica napus. Three Brassica napus transgenic lines having the Arabidopsis mutant AtPK220L292F gene and one null control line (a segregated sibling of the transgenic line lacking the transgene) per line were grown in 4.5 inch diameter pots containing equal amounts of soilless mix (Sunshine Professional Organic Mix #7) under optimal conditions of 16 hr light (400 uE) and 22 C day/18 C night temperature. At the four leaf stage, two treatments were applied. In the optimal treatment plants were watered to saturation and pots were covered with plastic bags to prevent any water loss from the pots due to evaporation. These plants were weighed daily for 7 days to determine the water loss from the pots due to transpiration and the same amount of water was added back daily to each pot to maintain the plants under optimal water conditions. In the drought treatment all plants were watered to saturation levels. Pots were covered with plastic and were weighed daily. However, these pots were watered daily to the level of the heaviest pots. This treatment went for 7 days with the soil water content gradually reaching stress levels. Plants started to wilt by day 5. At the end of the 7 days both groups of plants were harvested for shoot biomass determinations.
[0182] Gas exchange measurements were done on drought treated plants of two transgenic lines plus their nulls on days 3 and 4 of the treatment. Photosynthesis and transpiration were measured on leaf 3 under steady state growth conditions of 400 uE light, 400 ppm carbon dioxide and 22 C using Li-6400. From the ratio of photosynthesis to transpiration, water use efficiency (WUE) was calculated. The drought treated plants were used to calculate the drought tolerance (as percentage of their nulls). This was done using the ratio of cumulative daily transpirational water loss between days 3 and 7, relative to the final shoot dry weight and normalizing it to the nulls (set at 100%).
[0183] The results in Table 22 indicate that transgenic lines had strong trends toward greater drought tolerance. This was a result of lower water loss relative to shoot dry weight, a phenotype present also under optimal conditions.
[0184] The gas exchange data (Table 23) showed that on both days 3 and 4 of the drought treatment the transgenic plants had slightly higher WUE than controls (4 to 16%).
[0185] Water use efficiency calculated from the ratio of photosynthesis to transpiration provides only a single point, instantaneous measurement rather than cumulative measurement over the period of treatment and as a result may be of lesser magnitude.
[0186] In conclusion, the data with transgenic 35S-AtPK220L292F Brassica plants indicate that water use efficiency technology is transferable to Brassica when using a AtPK220L292F gene from a heterologous species.
TABLE-US-00022 TABLE 22 Water loss between days 3 and 7 relative to final shoot dry weight under optimal and drought treatment. Drought tolerance (% of the appropriate null). n = 8 optimal - g drought - g water lost water lost d 3-7/g d 3-7/g Drought tolerance entry shootDW d 7 shootDW d 7 (% of null) Tr-05 172 .+-. 6 121 .+-. 5 109% Null-05 190 .+-. 4 133 .+-. 7 100% Tr-27 194 .+-. 6 134 .+-. 7 113% Null-27 205 .+-. 8 155 .+-. 11 100% Tr-09 171 .+-. 10 129 .+-. 3 113% Null-09 178 .+-. 17 149 .+-. 13 100%
TABLE-US-00023 TABLE 23 Photosynthesis (umol carbon dioxide/m2/s), Transpiration (mmol H2O/m2/s) and WUE (Photos/Trans on days 3 and 4 of drought treatment. n = 8 Photos Trans. WUE Photos. Trans. WUE entry D3 D3 D3 D4 D4 D4 Tr-05 13.4 .+-. 1.2 2.1 .+-. 0.2 6.6 .+-. 0.2 11.6 .+-. 1.3 1.9 .+-. 0.2 6.1 .+-. 0.4 (116% (104% of null) of null) Null-05 14.4 .+-. 1.1 2.5 .+-. 0.2 5.7 .+-. 0.2 12.6 .+-. 1.2 2.2 .+-. 0.2 5.9 .+-. 0.3 Tr-27 14.1 .+-. 0.7 2.4 .+-. 0.2 5.9 .+-. 0.3 11.4 .+-. 1.6 1.9 .+-. 0.3 6.2 .+-. 0.5 (105% (108% of null) of null) Null-27 14.1 .+-. 1.3 2.5 .+-. 0.1 5.6 .+-. 0.5 13.7 .+-. 1.0 2.4 .+-. 0.1 5.7 .+-. 0.4
TABLE-US-00024 SEQUENCE ID REFERENCE CHART SPECIES SEQ ID NO: REFERENCE ARABIDOPSIS THALIANA SEQ ID NO: 1 AtPK220 NT 1299 ARABIDOPSIS THALIANA SEQ ID NO: 2 AtPK220 AA 432 ARABIDOPSIS THALIANA SEQ ID NO: 3 AtPK220L292F NT 1299 ARABIDOPSIS THALIANA SEQ ID NO: 4 AtPK220L292F AA 432 ARABIDOPSIS THALIANA SEQ ID NO: 5 AtPK220L292F_partial NT 1160 ARABIDOPSIS THALIANA SEQ ID NO: 6 AtPK220L292F_partial_orf AA 383 ARABIDOPSIS THALIANA SEQ ID NO: 7 AtPK220_partial NT 1160 ARABIDOPSIS THALIANA SEQ ID NO: 8 AtPK220_partial_orf AA 383 ARABIDOPSIS THALIANA SEQ ID NO: 9 AtPK220_with_UTR NT 1542 ARABIDOPSIS THALIANA SEQ ID NO: 10 AtPK220_for_35s-AtPK220 NT 1309 ARABIDOPSIS THALIANA SEQ ID NO: 11 AtPK220_partial NT 1177 ARABIDOPSIS THALIANA SEQ ID NO: 12 At(150)PK NT 154 ARABIDOPSIS THALIANA SEQ ID NO: 13 At(270)PK NT 288 ARABIDOPSIS THALIANA SEQ ID NO: 14 AtPK220_promoter NT 1510 ARABIDOPSIS THALIANA SEQ ID NO: 15 At4g32000_UTR NT 157 ARABIDOPSIS THALIANA SEQ ID NO: 16 At4g32000 NT 1257 ARABIDOPSIS THALIANA SEQ ID NO: 17 At4g32000 AA 418 ARABIDOPSIS THALIANA SEQ ID NO: 18 At5g11020 NT 1302 ARABIDOPSIS THALIANA SEQ ID NO: 19 At5g11020 AA 433 ARABIDOPSIS THALIANA SEQ ID NO: 20 At2g25440 NT 2016 ARABIDOPSIS THALIANA SEQ ID NO: 21 At2g25440 AA 671 ARABIDOPSIS THALIANA SEQ ID NO: 22 At2g23890 NT 1662 ARABIDOPSIS THALIANA SEQ ID NO: 23 At2g23890 AA 553 BRACHYPODIUM SEQ ID NO: 24 BdPK220 NT 1386 DISTACHYON BRASSICA NAPUS SEQ ID NO: 25 BnPK220 NT 1302 BRASSICA NAPUS SEQ ID NO: 26 BnPK220 AA 433 CICHORIUM ENDIVIA SEQ ID NO: 27 EL362007.1 NT 657 CICHORIUM ENDIVIA SEQ ID NO: 28 EL362007.1_ORF AA 218 CITRUS CLEMENTINA SEQ ID NO: 29 CX290402.1 NT 474 CITRUS CLEMENTINA SEQ ID NO: 30 CX290402.1_ORF AA 157 CITRUS SINENSIS SEQ ID NO: 31 CK934154.1 NT 770 CITRUS SINENSIS SEQ ID NO: 32 CK934154.1_ORF AA 257 COFFEA CANEPHORA SEQ ID NO: 33 DV708241.1 NT 621 COFFEA CANEPHORA SEQ ID NO: 34 DV708241.1_ORF AA 206 EUCALYPTUS GUNNII SEQ ID NO: 35 CT986101.1 NT 411 EUCALYPTUS GUNNII SEQ ID NO: 36 CT986101.1_ORF AA 136 FESTUCA ARUNDINACEA SEQ ID NO: 37 DT714073 NT 522 FESTUCA ARUNDINACEA SEQ ID NO: 38 DT714073_ORF AA 173 GINKGO BILOBA SEQ ID NO: 39 EX942240.1 NT 740 GINKGO BILOBA SEQ ID NO: 40 EX942240.1_ORF AA 247 GLYCINE MAX SEQ ID NO: 41 GmPK220 NT 1254 GLYCINE MAX SEQ ID NO: 42 GmPK220 AA 418 HELIANTHUS SEQ ID NO: 43 EE622910.1 NT 702 ARGOPHYLLUS HELIANTHUS SEQ ID NO: 44 EE622910.1_ORF AA 233 ARGOPHYLLUS HELIANTHUS CILIARIS SEQ ID NO: 45 EL429543.1 NT 752 HELIANTHUS CILIARIS SEQ ID NO: 46 EL429543.1_ORF AA 251 HELIANTHUS EXILIS SEQ ID NO: 47 EE654885.1 NT 630 HELIANTHUS EXILIS SEQ ID NO: 48 EE654885.1_ORF AA 209 HORDEUM VULGARE SEQ ID NO: 49 TC151622 NT 780 HORDEUM VULGARE SEQ ID NO: 50 TC151622_ORF AA 259 IPOMOEA BATATAS SEQ ID NO: 51 EE883089.1 NT 816 IPOMOEA BATATAS SEQ ID NO: 52 EE883089.1_ORF AA 272 LACTUCA SATIVA SEQ ID NO: 53 DW125133.1 NT 867 LACTUCA SATIVA SEQ ID NO: 54 DW125133.1_ORF AA 288 MEDICAGO TRUNCATULA SEQ ID NO: 55 Contig NT 804 MEDICAGO TRUNCATULA SEQ ID NO: 56 Contig AA 267 NICOTIANA TABACUM SEQ ID NO: 57 BP131484.1 NT 636 NICOTIANA TABACUM SEQ ID NO: 58 BP131484.1 AA 211 ORYZA SATIVA SEQ ID NO: 59 NM_001061720.1 NT 1437 ORYZA SATIVA SEQ ID NO: 60 NP_001055185.1 AA 478 PHYSCOMITRELLA SEQ ID NO: 61 EDQ75046.1_cds NT 891 PHYSCOMITRELLA SEQ ID NO: 62 EDQ75046.1 AA 297 PICEA SEQ ID NO: 63 TC12392 NT 1065 PICEA SEQ ID NO: 64 TC12392_orf AA 354 PINUS SEQ ID NO: 65 CT578985.1 NT 596 PINUS SEQ ID NO: 66 CT578985.1_ORF AA 199 POPULUS SEQ ID NO: 67 TC76879 NT 1377 POPULUS SEQ ID NO: 68 TC76879_ORF AA 459 SACCHARUM SEQ ID NO: 69 TC46535 NT 693 OFFICINARUM SACCHARUM SEQ ID NO: 70 TC46535_ORF AA 230 OFFICINARUM TRIPHYSARIA SEQ ID NO: 71 DR169688.1 NT 414 VERSICOLOR TRIPHYSARIA SEQ ID NO: 72 DR169688.1_ORF AA 137 VERSICOLOR TRITICUM AESTIVUM SEQ ID NO: 73 TC254793 NT 1140 TRITICUM AESTIVUM SEQ ID NO: 74 TC254793_ORF AA 380 VITIS VINIFERA SEQ ID NO: 75 CAO44295.1_cds NT 978 VITIS VINIFERA SEQ ID NO: 76 CAO44295.1 AA 325 ZEA MAYS SEQ ID NO: 77 TC333547 NT 1377 ZEA MAYS SEQ ID NO: 78 TC333547_ORF AA 458 ZEA MAYS SEQ ID NO: 79 ZmPK220 NT 1188 ZEA MAYS SEQ ID NO: 80 ZmPK220 AA 396 GOSSYPIUM SEQ ID NO: 81 TC79117 NT 1086 GOSSYPIUM SEQ ID NO: 82 TC79117_ORF AA 361 SOLANUM SEQ ID NO: 83 Contig3 NT 1089 LYCOPERSICUM AQUILEGIA SEQ ID NO: 84 DR918821 NT 875 AQUILEGIA SEQ ID NO: 85 DR918821_ORF AA 292 CENTAUREA MACULOSA SEQ ID NO: 86 EL933228.1 NT 696 CENTAUREA MACULOSA SEQ ID NO: 87 EL933228.1_ORF AA 231 CICHORIUM INTYBUS SEQ ID NO: 88 EH693146.1 NT 842 CICHORIUM INTYBUS SEQ ID NO: 89 EH693146.1_ORF AA 281 CUCUMIS MELO SEQ ID NO: 90 AM742189.1 NT 495 CUCUMIS MELO SEQ ID NO: 91 AM742189.1_ORF AA 164 ERAGROSTIS CURVULA SEQ ID NO: 92 EH186232.1 NT 375 ERAGROSTIS CURVULA SEQ ID NO: 93 EH186232.1_ORF AA 124 GERBERA HYBRID SEQ ID NO: 94 AJ753651.1 NT 414 GERBERA HYBRID SEQ ID NO: 95 AJ753651.1_ORF AA 137 HELIANTHUS PARADOXUS SEQ ID NO: 96 EL488199.1 NT 498 HELIANTHUS PARADOXUS SEQ ID NO: 97 EL488199.1_ORF AA 165 IPOMOEA NIL SEQ ID NO: 98 BJ566706.1 NT 612 IPOMOEA NIL SEQ ID NO: 99 BJ566706.1_ORF AA 203 NUPHAR ADVENA SEQ ID NO: 100 DT603238.1 NT 708 NUPHAR ADVENA SEQ ID NO: 101 DT603238.1_ORF AA 235 SYNTHETIC PRIMER SEQ ID NO: 102 747F NT 30 SYNTHETIC PRIMER SEQ ID NO: 103 747R NT 34 SYNTHETIC PRIMER SEQ ID NO: 104 C747F2 NT 32 SYNTHETIC PRIMER SEQ ID NO: 105 C747R2 NT 31 SYNTHETIC PRIMER SEQ ID NO: 106 A220BamF1 NT 42 SYNTHETIC PRIMER SEQ ID NO: 107 A220PstR NT 40 SYNTHETIC PRIMER SEQ ID NO: 108 K188R NT 30 SYNTHETIC PRIMER SEQ ID NO: 109 A220A1SmaF2 NT 53 SYNTHETIC PRIMER SEQ ID NO: 110 A220BamR NT 38 SYNTHETIC PRIMER SEQ ID NO: 111 A220SmaF NT 41 SYNTHETIC PRIMER SEQ ID NO: 112 A220BamF2 NT 41 SYNTHETIC PRIMER SEQ ID NO: 113 A220XbaR NT 39 SYNTHETIC PRIMER SEQ ID NO: 114 K116SacF NT 35 SYNTHETIC PRIMER SEQ ID NO: 115 K270SacR NT 37 SYNTHETIC PRIMER SEQ ID NO: 116 K116BamF NT 37 SYNTHETIC PRIMER SEQ ID NO: 117 K270XbaR NT 40 SYNTHETIC PRIMER SEQ ID NO: 118 PK81A1XbaF NT 52
SYNTHETIC PRIMER SEQ ID NO: 119 K81PmBamF NT 47 SYNTHETIC PRIMER SEQ ID NO: 120 Pm81SmaR2 NT 41 ARABIDOPSIS THALIANA SEQ ID NO: 121 AtPK220L292F_with_UTR NT 1309 SYNTHETIC PRIMER SEQ ID NO: 122 Bn81F NT 25 SYNTHETIC PRIMER SEQ ID NO: 123 Bn81R NT 32 SYNTHETIC PRIMER SEQ ID NO: 124 Bn81RAF1 NT 32 SYNTHETIC PRIMER SEQ ID NO: 125 Bn81RAF2 NT 32 SYNTHETIC PRIMER SEQ ID NO: 126 Bn81RAR1 NT 31 SYNTHETIC PRIMER SEQ ID NO: 127 Bn81RAR2 NT 37 SYNTHETIC PRIMER SEQ ID NO: 128 Bn81F1 NT 28 SYNTHETIC PRIMER SEQ ID NO: 129 Bn81R1 NT 27 SYNTHETIC PRIMER SEQ ID NO: 130 Gm81RAR1 NT 27 SYNTHETIC PRIMER SEQ ID NO: 131 Gm81RAR2 NT 29 SYNTHETIC PRIMER SEQ ID NO: 132 Cn81RAR1 NT 29 SYNTHETIC PRIMER SEQ ID NO: 133 Cn81RAR2 NT 28 SYNTHETIC PRIMER SEQ ID NO: 134 A220SacF NT 41 SYNTHETIC PRIMER SEQ ID NO: 135 Pm81NheF NT 47 SYNTHETIC PRIMER SEQ ID NO: 136 Pm81NheR NT 43 SYNTHETIC PRIMER SEQ ID NO: 137 Gm81RAF1 NT 29 SYNTHETIC PRIMER SEQ ID NO: 138 Gm81RAF2 NT 31 SYNTHETIC PRIMER SEQ ID NO: 139 Zm81RAF1 NT 31 SYNTHETIC PRIMER SEQ ID NO: 140 Zm81RAF2 NT 27 SYNTHETIC PRIMER SEQ ID NO: 141 MiR319XbaF NT 31 SYNTHETIC PRIMER SEQ ID NO: 142 MiR319BamR NT 33 SYNTHETIC PRIMER SEQ ID NO: 143 MiPK220F1 NT 40 SYNTHETIC PRIMER SEQ ID NO: 144 MiPK220R1 NT 35 SYNTHETIC PRIMER SEQ ID NO: 145 MiPK220F2 NT 35 SYNTHETIC PRIMER SEQ ID NO: 146 MiPK220R2 NT 42 ARTIFICIAL SEQUENCE SEQ ID NO: 147 Synthesized_gene_fragment NT 21 ARABIDOPSIS THALIANA SEQ ID NO: 148 At4g23713_w_genomic NT 399 ARTIFICIAL SEQUENCE SEQ ID NO: 149 Artificial_micro_RNA_construct NT 399 ARABIDOPSIS THALIANA SEQ ID NO: 150 Promoter At2g44790 NT 1475 SYNTHETIC PRIMER SEQ ID NO: 151 P790-H3-F NT 31 SYNTHETIC PRIMER SEQ ID NO: 152 P790-Xb-R NT 31 BRASSICA NAPUS SEQ ID NO: 153 BnPK220 NT 338 SYNTHETIC PRIMER SEQ ID NO: 154 Bn340BamF NT 38 SYNTHETIC PRIMER SEQ ID NO: 155 Bn340XbaR NT 37 SYNTHETIC PRIMER SEQ ID NO: 156 Bn340SacF NT 38 SYNTHETIC PRIMER SEQ ID NO: 157 Bn340SacR NT 37 SYNTHETIC PRIMER SEQ ID NO: 158 bWET XbaI F NT 24 SYNTHETIC PRIMER SEQ ID NO: 159 bWET BamHI R NT 28 SYNTHETIC PRIMER SEQ ID NO: 160 bWET ClaI R NT 28 BRACHYPODIUM SEQ ID NO: 161 BdPK220 NT 272 DISTACHYON SYNTHETIC PRIMER SEQ ID NO: 162 bWx BamHIF NT 31 SYNTHETIC PRIMER SEQ ID NO: 163 bWx ClaI R NT 30 BRACHYPODIUM SEQ ID NO: 164 BdWx intron 1 NT 1174 DISTACHYON SYNTHETIC PRIMER SEQ ID NO: 165 bWET BamHI end2 NT 22 SYNTHETIC PRIMER SEQ ID NO: 166 BdUBQ PvuI F NT 30 SYNTHETIC PRIMER SEQ ID NO: 167 BdUBQT PacI R NT 28 PANICUM VIRGATUM SEQ ID NO: 168 Pv(251)PK220 NT 251 SYNTHETIC PRIMER SEQ ID NO: 169 PvWET XbaI F NT 27 SYNTHETIC PRIMER SEQ ID NO: 170 PvWET BamHI R NT 27 SYNTHETIC PRIMER SEQ ID NO: 171 PvWET ClaI R NT 27 SYNTHETIC PRIMER SEQ ID NO: 172 PvWET BamHI end1 NT 25 SYNTHETIC PRIMER SEQ ID NO: 173 PvWET BamHI end2 NT 21 SORGHUN BICOLOR SEQ ID NO: 174 Sb(261)PK220 NT 261 SYNTHETIC PRIMER SEQ ID NO: 175 SbWET XbaI F NT 26 SYNTHETIC PRIMER SEQ ID NO: 176 SbWET BamHI R NT 28 SYNTHETIC PRIMER SEQ ID NO: 177 SbWET ClaI R NT 28 SORGHUN BICOLOR SEQ ID NO: 178 SbWx intron 1 NT 273 SYNTHETIC PRIMER SEQ ID NO: 179 SbWx BamHI NT 30 SYNTHETIC PRIMER SEQ ID NO: 180 SbWx ClaI R NT 34 SYNTHETIC PRIMER SEQ ID NO: 181 SbWET BamHI end1 NT 24 SYNTHETIC PRIMER SEQ ID NO: 182 SbWET BamHI end2 NT 21 SORGHUN BICOLOR SEQ ID NO: 183 SbGOS2 promoter NT 1000 SYNTHETIC PRIMER SEQ ID NO: 184 SbGOS2 HindIII F NT 28 SYNTHETIC PRIMER SEQ ID NO: 185 SbGOS2 HindIII R NT 30 SORGHUN BICOLOR SEQ ID NO: 186 SbUBQ promoter NT 1000 SYNTHETIC PRIMER SEQ ID NO: 187 SbUBQ PstI F NT 26 SYNTHETIC PRIMER SEQ ID NO: 188 SbUBQ PstI R NT 28 SORGHUN BICOLOR SEQ ID NO: 189 SbUBQ terminator NT 239 SYNTHETIC PRIMER SEQ ID NO: 190 SbUBQT KpnI F NT 27 SYNTHETIC PRIMER SEQ ID NO: 191 SbUBQT KpnI R NT 27 SYNTHETIC PRIMER SEQ ID NO: 192 SbUBQ PvuI F NT 34 BRASSICA NAPUS SEQ ID NO: 193 BnPK220 NT 1302 BRASSICA NAPUS SEQ ID NO: 194 BnPK220 AA 433 SYNTHETIC PRIMER SEQ ID NO: 195 Bd81RAR1 NT 31 SYNTHETIC PRIMER SEQ ID NO: 196 Bd81RAR2 NT 32 BRACHYPODIUM SEQ ID NO: 197 BdPK220 AA 461 DISTACHYON SYNTHETIC PRIMER SEQ ID NO: 198 A200A1AgeF NT 53 SYNTHETIC PRIMER SEQ ID NO: 199 A220AgeR NT 39 SYNTHETIC PRIMER SEQ ID NO: 200 bWET BamHI end1 NT 18 Sequences >SEQ ID NO: 1 ATGAGAGAGCTTCTTCTTCTTCTTCTTCTTCATTTTCAGTCTCTAATTCTTTTGATGATCTTCATCACT GTCTCTGCTTCTTCTGCTTCAAATCCTTCTTTAGCTCCTGTTTACTCTTCCATGGCTACATTCTCTCCT CGAATCCAAATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTGATTGGTCTC ATAATCAGTTTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTATCGCAAGAA CCAATCTCCAAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTGTTAATGAGA CGACTTGGCTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAATTTTTCGAT ATCAAGACCCTCGAGAAAGCGACAGGCGGTTTTAAAGAAAGTAGTGTAATCGGACAAGGCGGTTT CGGATGCGTTTACAAGGGTTGTTTGGACAATAACGTTAAAGCAGCGGTCAAGAAGATCGAGAACG TTAGCCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGACTTGTTGAGCAAGATCCATCACTCGA ACGTTATATCATTGTTGGGCTCTGCAAGCGAAATCAACTCGAGTTTCATCGTTTATGAGCTTATGGA GAAAGGATCATTAGATGAACAGTTACATGGGCCTTCTCGTGGATCAGCTCTAACATGGCACATGCG TATGAAGATTGCTCTTGATACAGCTAGAGGACTAGAGTATCTCCATGAGCATTGTCGTCCACCAGT TATCCACAGAGATTTGAAATCTTCGAATATTCTTCTTGATTCTTCCTTCAACGCCAAGATTTCAGAT TTCGGTCTTGCTGTATCGCTGGATGAACATGGCAAGAACAACATTAAACTCTCTGGGACACTTGGT TATGTTGCCCCGGAATACCTCCTTGACGGAAAACTGACGGATAAGAGTGATGTTTATGCATTTGGG GTAGTTCTGCTTGAACTCTTGTTGGGTAGACGACCAGTTGAAAAATTAACTCCAGCTCAATGCCAA TCTCTTGTAACTTGGGCAATGCCACAACTTACCGATAGATCCAAGCTTCCAAACATTGTGGATGCC GTTATAAAAGATACAATGGATCTCAAACACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCGTG CAGCCAGAACCAAGTTACCGGCCGTTGATAACCGATGTTCTTCACTCACTTGTTCCACTGGTTCCGG TAGAGCTAGGAGGGACTCTCCGGTTAACAAGATGA >SEQ ID NO: 2 MRELLLLLLLHFQSLILLMIFITVSASSASNPSLAPVYSSMATFSPRIQMGSGEEDRFDAHKKLLIGLIISFS SLGLIILFCFGFWVYRKNQSPKSINNSDSESGNSFSLLMRRLGSIKTQRRTSIQKGYVQFFDIKTLEKATG GFKESSVIGQGGFGCVYKGCLDNNVKAAVKKIENVSQEAKREFQNEVDLLSKIHHSNVISLLGSASEINS SFIVYELMEKGSLDEQLHGPSRGSALTWHMRMKIALDTARGLEYLHEHCRPPVIHRDLKSSNILLDSSFN AKISDFGLAVSLDEHGKNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLGRRPVEKLTPAQ CQSLVTWAMPQLTDRSKLPNIVDAVIKDTMDLKHLYQVAAMAVLCVQPEPSYRPLITDVLHSLVPLVP VELGGTLRLTR >SEQ ID NO: 3 ATGAGAGAGCTTCTTCTTCTTCTTCTTCTTCATTTTCAGTCTCTAATTCTTTTGATGATCTTCATCACT GTCTCTGCTTCTTCTGCTTCAAATCCTTCTTTAGCTCCTGTTTACTCTTCCATGGCTACATTCTCTCCT CGAATCCAAATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTGATTGGTCTC ATAATCAGTTTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTATCGCAAGAA CCAATCTCCAAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTGTTAATGAGA CGACTTGGCTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAATTTTTCGAT ATCAAGACCCTCGAGAAAGCGACAGGCGGTTTTAAAGAAAGTAGTGTAATCGGACAAGGCGGTTT CGGATGCGTTTACAAGGGTTGTTTGGACAATAACGTTAAAGCAGCGGTCAAGAAGATCGAGAACG TTAGCCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGACTTGTTGAGCAAGATCCATCACTCGA ACGTTATATCATTGTTGGGCTCTGCAAGCGAAATCAACTCGAGTTTCATCGTTTATGAGCTTATGGA GAAAGGATCATTAGATGAACAGTTACATGGGCCTTCTCGTGGATCAGCTCTAACATGGCACATGCG TATGAAGATTGCTCTTGATACAGCTAGAGGACTAGAGTATCTCCATGAGCATTGTCGTCCACCAGT TATCCACAGAGATTTGAAATCTTCGAATATTCTTCTTGATTCTTCCTTCAACGCCAAGATTTCAGAT TTCGGTTTTGCTGTATCGCTGGATGAACATGGCAAGAACAACATTAAACTCTCTGGGACACTTGGTT ATGTTGCCCCGGAATACCTCCTTGACGGAAAACTGACGGATAAGAGTGATGTTTATGCATTTGGGG TAGTTCTGCTTGAACTCTTGTTGGGTAGACGACCAGTTGAAAAATTAACTCCAGCTCAATGCCAATC TCTTGTAACTTGGGCAATGCCACAACTTACCGATAGATCCAAGCTTCCAAACATTGTGGATGCCGTT ATAAAAGATACAATGGATCTCAAACACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCGTGCAG CCAGAACCAAGTTACCGGCCGTTGATAACCGATGTTCTTCACTCACTTGTTCCACTGGTTCCGGTAG AGCTAGGAGGGACTCTCCGGTTAACAAGATGA >SEQ ID NO: 4 MRELLLLLLLHFQSLILLMIFITVSASSASNPSLAPVYSSMATFSPRIQMGSGEEDRFDAHKKLLIGLIISFS SLGLIILFCFGFWVYRKNQSPKSINNSDSESGNSFSLLMRRLGSIKTQRRTSIQKGYVQFFDIKTLEKATG GFKESSVIGQGGFGCVYKGCLDNNVKAAVKKIENVSQEAKREFQNEVDLLSKIHHSNVISLLGSASEINS SFIVYELMEKGSLDEQLHGPSRGSALTWHMRMKIALDTARGLEYLHEHCRPPVIHRDLKSSNILLDSSFN AKISDFGFAVSLDEHGKNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLGRRPVEKLTPAQ CQSLVTWAMPQLTDRSKLPNIVDAVIKDTMDLKHLYQVAAMAVLCVQPEPSYRPLITDVLHSLVPLVP VELGGTLRLTR >SEQ ID NO: 5 ATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTGATTGGTCTCATAATCAGT TTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTATCGCAAGAACCAATCTCC AAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTGTTAATGAGACGACTTGG CTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAATTTTTCGATATCAAGAC CCTCGAGAAAGCGACAGGCGGTTTTAAAGAAAGTAGTGTAATCGGACAAGGCGGTTTCGGATGCG TTTACAAGGGTTGTTTGGACAATAACGTTAAAGCAGCGGTCAAGAAGATCGAGAACGTTAGCCAA GAAGCAAAACGAGAATTTCAGAATGAAGTTGACTTGTTGAGCAAGATCCATCACTCGAACGTTATA TCATTGTTGGGCTCTGCAAGCGAAATCAACTCGAGTTTCATCGTTTATGAGCTTATGGAGAAAGGA TCATTAGATGAACAGTTACATGGGCCTTCTCGTGGATCAGCTCTAACATGGCACATGCGTATGAAG ATTGCTCTTGATACAGCTAGAGGACTAGAGTATCTCCATGAGCATTGTCGTCCACCAGTTATCCACA GAGATTTGAAATCTTCGAATATTCTTCTTGATTCTTCCTTCAACGCCAAGATTTCAGATTTCGGTTTT GCTGTATCGCTGGATGAACATGGCAAGAACAACATTAAACTCTCTGGGACACTTGGTTATGTTGCC CCGGAATACCTCCTTGACGGAAAACTGACGGATAAGAGTGATGTTTATGCATTTGGGGTAGTTCTG CTTGAACTCTTGTTGGGTAGACGACCAGTTGAAAAATTAACTCCAGCTCAATGCCAATCTCTTGTAA CTTGGGCAATGCCACAACTTACCGATAGATCCAAGCTTCCAAACATTGTGGATGCCGTTATAAAAG ATACAATGGATCTCAAACACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCGTGCAGCCAGAAC CAAGTTACCGGCCGTTGATAACCGATGTTCTTCACTCACTTGTTCCACTGGTTCCGGTAGAGCTAGG AGGGACTCTCCGGTTAACAAGATGATTCACAGA
>SEQ ID NO: 6 MGSGEEDRFDAHKKLLIGLIISFSSLGLIILFCFGFWVYRKNQSPKSINNSDSESGNSFSLLMRRLGSIKTQ RRTSIQKGYVQFFDIKTLEKATGGFKESSVIGQGGFGCVYKGCLDNNVKAAVKKIENVSQEAKREFQNE VDLLSKIHHSNVISLLGSASEINSSFIVYELMEKGSLDEQLHGPSRGSALTWHMRMKIALDTARGLEYLH EHCRPPVIHRDLKSSNILLDSSFNAKISDFGFAVSLDEHGKNNIKLSGTLGYVAPEYLLDGKLTDKSDVY AFGVVLLELLLGRRPVEKLTPAQCQSLVTWAMPQLTDRSKLPNIVDAVIKDTMDLKHLYQVAAMAVL CVQPEPSYRPLITDVLHSLVPLVPVELGGTLRLTR >SEQ ID NO: 7 ATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTGATTGGTCTCATAATCAGT TTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTATCGCAAGAACCAATCTCC AAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTGTTAATGAGACGACTTGG CTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAATTTTTCGATATCAAGAC CCTCGAGAAAGCGACAGGCGGTTTTAAAGAAAGTAGTGTAATCGGACAAGGCGGTTTCGGATGCG TTTACAAGGGTTGTTTGGACAATAACGTTAAAGCAGCGGTCAAGAAGATCGAGAACGTTAGCCAA GAAGCAAAACGAGAATTTCAGAATGAAGTTGACTTGTTGAGCAAGATCCATCACTCGAACGTTATA TCATTGTTGGGCTCTGCAAGCGAAATCAACTCGAGTTTCATCGTTTATGAGCTTATGGAGAAAGGA TCATTAGATGAACAGTTACATGGGCCTTCTCGTGGATCAGCTCTAACATGGCACATGCGTATGAAG ATTGCTCTTGATACAGCTAGAGGACTAGAGTATCTCCATGAGCATTGTCGTCCACCAGTTATCCACA GAGATTTGAAATCTTCGAATATTCTTCTTGATTCTTCCTTCAACGCCAAGATTTCAGATTTCGGTCTT GCTGTATCGCTGGATGAACATGGCAAGAACAACATTAAACTCTCTGGGACACTTGGTTATGTTGCC CCGGAATACCTCCTTGACGGAAAACTGACGGATAAGAGTGATGTTTATGCATTTGGGGTAGTTCTG CTTGAACTCTTGTTGGGTAGACGACCAGTTGAAAAATTAACTCCAGCTCAATGCCAATCTCTTGTAA CTTGGGCAATGCCACAACTTACCGATAGATCCAAGCTTCCAAACATTGTGGATGCCGTTATAAAAG ATACAATGGATCTCAAACACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCGTGCAGCCAGAAC CAAGTTACCGGCCGTTGATAACCGATGTTCTTCACTCACTTGTTCCACTGGTTCCGGTAGAGCTAGG AGGGACTCTCCGGTTAACAAGATGATTCACAGA >SEQ ID NO: 8 MGSGEEDRFDAHKKLLIGLIISFSSLGLIILFCFGFWVYRKNQSPKSINNSDSESGNSFSLLMRRLGSIKTQ RRTSIQKGYVQFFDIKTLEKATGGFKESSVIGQGGFGCVYKGCLDNNVKAAVKKIENVSQEAKREFQNE VDLLSKIHHSNVISLLGSASEINSSFIVYELMEKGSLDEQLHGPSRGSALTWHMRMKIALDTARGLEYLH EHCRPPVIHRDLKSSNILLDSSFNAKISDFGLAVSLDEHGKNNIKLSGTLGYVAPEYLLDGKLTDKSDVY AFGVVLLELLLGRRPVEKLTPAQCQSLVTWAMPQLTDRSKLPNIVDAVIKDTMDLKHLYQVAAMAVL CVQPEPSYRPLITDVLHSLVPLVPVELGGTLRLTR >SEQ ID NO: 9 ATCAAAAACTTTTCTTTTCTTAGCAAAAAAAACAAAAAAATGAGAGAGCTTCTTCTTCTTCTTCTTC TTCATTTTCAGTCTCTAATTCTTTTGATGATCTTCATCACTGTCTCTGCTTCTTCTGCTTCAAATCCTT CTTTAGCTCCTGTTTACTCTTCCATGGCTACATTCTCTCCTCGAATCCAAATGGGAAGTGGTGAAGA AGATAGATTTGATGCTCATAAGAAACTTCTGATTGGTCTCATAATCAGTTTCTCTTCTCTTGGCCTT ATAATCTTGTTCTGTTTTGGCTTTTGGGTTTATCGCAAGAACCAATCTCCAAAATCCATCAACAACT CAGATTCTGAGAGTGGGAATTCATTTTCCTTGTTAATGAGACGACTTGGCTCGATTAAAACTCAGA GAAGAACTTCTATCCAAAAGGGTTACGTGCAATTTTTCGATATCAAGACCCTCGAGAAAGCGACAG GCGGTTTTAAAGAAAGTAGTGTAATCGGACAAGGCGGTTTCGGATGCGTTTACAAGGGTTGTTTGG ACAATAACGTTAAAGCAGCGGTCAAGAAGATCGAGAACGTTAGCCAAGAAGCAAAACGAGAATTT CAGAATGAAGTTGACTTGTTGAGCAAGATCCATCACTCGAACGTTATATCATTGTTGGGCTCTGCA AGCGAAATCAACTCGAGTTTCATCGTTTATGAGCTTATGGAGAAAGGATCATTAGATGAACAGTTA CATGGGCCTTCTCGTGGATCAGCTCTAACATGGCACATGCGTATGAAGATTGCTCTTGATACAGCT AGAGGACTAGAGTATCTCCATGAGCATTGTCGTCCACCAGTTATCCACAGAGATTTGAAATCTTCG AATATTCTTCTTGATTCTTCCTTCAACGCCAAGATTTCAGATTTCGGTCTTGCTGTATCGCTGGATGA ACATGGCAAGAACAACATTAAACTCTCTGGGACACTTGGTTATGTTGCCCCGGAATACCTCCTTGA CGGAAAACTGACGGATAAGAGTGATGTTTATGCATTTGGGGTAGTTCTGCTTGAACTCTTGTTGGG TAGACGACCAGTTGAAAAATTAACTCCAGCTCAATGCCAATCTCTTGTAACTTGGGCAATGCCACA ACTTACCGATAGATCCAAGCTTCCAAACATTGTGGATGCCGTTATAAAAGATACAATGGATCTCAA ACACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCGTGCAGCCAGAACCAAGTTACCGGCCGTT GATAACCGATGTTCTTCACTCACTTGTTCCACTGGTTCCGGTAGAGCTAGGAGGGACTCTCCGGTTA ACAAGATGATTCACAGAAACACGCCAAAAGAAATCCAAAGCCATTTAGATGATTTTCTTTTATCCT TTGCCTTTATATTTTTTTGTATAGGGTTATGATCCACTCATCTGAAAGTTTGGGGGTAAGAATGTGA GAATATAAGTTTTCAGGGTTGTTGAGTTCTATATAATTATATTTGTTTCTTTTTATTGTCAAATATAA TTATATTTTTGT >SEQ ID NO: 10 AAAATGAGAGAGCTTCTTCTTCTTCTTCTTCTTCATTTTCAGTCTCTAATTCTTTTGATGATCTTCATC ACTGTCTCTGCTTCTTCTGCTTCAAATCCTTCTTTAGCTCCTGTTTACTCTTCCATGGCTACATTCTCT CCTCGAATCCAAATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTGATTGGT CTCATAATCAGTTTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTATCGCAA GAACCAATCTCCAAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTGTTAATG AGACGACTTGGCTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAATTTTTC GATATCAAGACCCTCGAGAAAGCGACAGGCGGTTTTAAAGAAAGTAGTGTAATCGGACAAGGCGG TTTCGGATGCGTTTACAAGGGTTGTTTGGACAATAACGTTAAAGCAGCGGTCAAGAAGATCGAGAA CGTTAGCCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGACTTGTTGAGCAAGATCCATCACTC GAACGTTATATCATTGTTGGGCTCTGCAAGCGAAATCAACTCGAGTTTCATCGTTTATGAGCTTATG GAGAAAGGATCATTAGATGAACAGTTACATGGGCCTTCTCGTGGATCAGCTCTAACATGGCACATG CGTATGAAGATTGCTCTTGATACAGCTAGAGGACTAGAGTATCTCCATGAGCATTGTCGTCCACCA GTTATCCACAGAGATTTGAAATCTTCGAATATTCTTCTTGATTCTTCCTTCAACGCCAAGATTTCAG ATTTCGGTCTTGCTGTATCGCTGGATGAACATGGCAAGAACAACATTAAACTCTCTGGGACACTTG GTTATGTTGCCCCGGAATACCTCCTTGACGGAAAACTGACGGATAAGAGTGATGTTTATGCATTTG GGGTAGTTCTGCTTGAACTCTTGTTGGGTAGACGACCAGTTGAAAAATTAACTCCAGCTCAATGCC AATCTCTTGTAACTTGGGCAATGCCACAACTTACCGATAGATCCAAGCTTCCAAACATTGTGGATG CCGTTATAAAAGATACAATGGATCTCAAACACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCG TGCAGCCAGAACCAAGTTACCGGCCGTTGATAACCGATGTTCTTCACTCACTTGTTCCACTGGTTCC GGTAGAGCTAGGAGGGACTCTCCGGTTAACAAGATGATTCACAG >SEQ ID NO: 11 TCTGTGTCAGGAATCCAAATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTG ATTGGTCTCATAATCAGTTTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTAT CGCAAGAACCAATCTCCAAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTG TTAATGAGACGACTTGGCTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAA TTTTTCGATATCAAGACCCTCGAGAAAGCGACAGGCGGTTTTAAAGAAAGTAGTGTAATCGGACAA GGCGGTTTCGGATGCGTTTACAAGGGTTGTTTGGACAATAACGTTAAAGCAGCGGTCAAGAAGATC GAGAACGTTAGCCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGACTTGTTGAGCAAGATCCA TCACTCGAACGTTATATCATTGTTGGGCTCTGCAAGCGAAATCAACTCGAGTTTCATCGTTTATGAG CTTATGGAGAAAGGATCATTAGATGAACAGTTACATGGGCCTTCTCGTGGATCAGCTCTAACATGG CACATGCGTATGAAGATTGCTCTTGATACAGCTAGAGGACTAGAGTATCTCCATGAGCATTGTCGT CCACCAGTTATCCACAGAGATTTGAAATCTTCGAATATTCTTCTTGATTCTTCCTTCAACGCCAAGA TTTCAGATTTCGGTCTTGCTGTATCGCTGGATGAACATGGCAAGAACAACATTAAACTCTCTGGGA CACTTGGTTATGTTGCCCCGGAATACCTCCTTGACGGAAAACTGACGGATAAGAGTGATGTTTATG CATTTGGGGTAGTTCTGCTTGAACTCTTGTTGGGTAGACGACCAGTTGAAAAATTAACTCCAGCTCA ATGCCAATCTCTTGTAACTTGGGCAATGCCACAACTTACCGATAGATCCAAGCTTCCAAACATTGT GGATGCCGTTATAAAAGATACAATGGATCTCAAACACTTATACCAGGTAGCAGCCATGGCTGTGTT GTGCGTGCAGCCAGAACCAAGTTACCGGCCGTTGATAACCGATGTTCTTCACTCACTTGTTCCACTG GTTCCGGTAGAGCTAGGAGGGACTCTCCGGTTAACAAGATGATTCACAG >SEQ ID NO: 12 TCGCAAGAACCAATCTCCAAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTT GTTAATGAGACGACTTGGCTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCA ATTTTTCGATATCAAGACCCTC >SEQ ID NO: 13 TCTGTGTCAGGAATCCAAATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTG ATTGGTCTCATAATCAGTTTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTAT CGCAAGAACCAATCTCCAAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTG TTAATGAGACGACTTGGCTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAA TTTTTCGATATCAAGACCCTC >SEQ ID NO: 14 TGTTAAAAGCGATTTATAATTTACACCGTTTTGGTGTATATTTCTATCTATCCTTTTACAAGACCTAT ATATGTTATGTTATGGTGGTGTACTATTTTAAGTGAGCGACATAGTATTTTCTTCATATAGCTAATT AATCAACAACAATTTCCCAACTTACAACTATTTGCGTACTTTAAACTTATATTGAAAGAGAACTAC AAAATTATTTTTTTGTACAAGAGAATTATGGTCTTCGGATCAATAATTTCTCTAGATATAATATGTA AAGCCAACCCTATAATTTGTAAAATCCATGATTTGATATAATTTTCTTTTAAAATTGTGAATTGGCA GACAAAAACAACATTACATTTTGATTTAAATTCATAACTTTGACTTGCTAAGGAAACACCATGATT CATTTTTTGTCATTTGTTACATCATCACTAGAAATATTTGATCTAACTTTATTATGATAATAGACTAC ATACTACATATGCAGTTACGATTTTAAATACTACATATTTAAGCGTGTTTAAACTGTAACCATATCA TATAAAATGACATATCTAAAAGTGATTTTCAATATTTTGATATGATATGTGTTGTAGCACGGATAAT GATCTAATTTTTAAGTAATAAGCTTGTTCATTACAAAAGAGAAGAAAGTAGTATTGGGCCATGATT ATGTAAGGACAAAATAGGAAGATGTGGAAGAAGCCATTCGAGGGTTTTATTACAAAAACAGAGTA TATAATTGGTCATAATGTTTTATTCACTTAATTTAACATTATTGCATTATATTTTCATGAACACATAT TTCTTTAACTAAAAATATACACATATTTCTTATTGTAGATGAAGTGAAAAGAACAATATTTGGGTTC ACATCTATGGGTGAATCCTTTTAATCACCCCCTAAAATAAAAAAGGTGCCATATTTCTATTTTTAGA GAAAGATATAGAGCACCATTGGAGTGGTTTTGCTCCAAATATAGAGTTTAGAGAAATATATAATAC ACCATTGGAGATGCTCTAAAATGAATTTATTTATTTATTTAGATGGAAGATTCTAATTGGTTAGAAA AAGAGGAAGTGAATAATAGGATTCACCTATAAGAGTGAACCCAAGTATTTTTAAGAGATAATGTGT AAAGTAAATAGATGGTCATTGTGTGAATTATGAATAGAACCATGGTTTTCCATTTTTAATTGCTTAA CATAGGGTAATCAACAATGGGGTTTAATATGTCAATAGACAATAGTAAAGAAAGTATTTGATCTAT CCCAAATCTTTCTTCGTTCGTTAGTTCATCACTTTCTTTCTTTTTGGTTATATTAATGGTAGAGAACT AAAAATTCAACTTTTTATTCAAAAGCTCCCTTTCTCTTTCCCTCCTTTATTTGCCATAAAAGTGATTT CAAGAAGACAGCGAGAGAGAAAGTGATAGTTCGTTCACTCTTCGCTTTCTCAAGAATTTCAAAACA CCAAAAAAGTCTTTAGATTGAATTTCATCAAAAACTTTTC >SEQ ID NO: 15 AGACAAGAAAAAAGGAAACAAAATTTTATGAAAGAGATCTCCATTAGAGAAAGAGAGAGCGAGA GAGAGATTAATCTTGGAAGAGCAATCTCACATTCTCACACTGCTCTTAGAAAATCTCTCTTTCACCA TTAAAAATCCCAAAGAGTCTGGAGAA >SEQ ID NO: 16 ATGGGAAAGATTCTTCATCTTCTTCTTCTTCTTCTTAAGGTCTCTGTTCTTGAATTCATCATTAGTGT TTCTGCTTTTACTTCACCTGCTTCACAGCCTTCTCTTTCTCCTGTTTACACTTCCATGGCTTCCTTTTC TCCAGGGATCCACATGGGCAAAGGCCAAGAACACAAGTTAGATGCACACAAGAAACTTCTAATCG CTCTCATAATCACCTCATCTTCTCTAGGACTAATACTTGTATCTTGTTTATGCTTTTGGGTTTATTGG TCTAAGAAATCTCCCAAAAACACCAAGAACTCAGGTGAGAGTAGGATTTCATTATCCAAGAAGGG CTTTGTGCAGTCCTTCGATTACAAGACACTAGAGAAAGCAACAGGCGGTTTCAAAGACGGTAATCT TATAGGACGAGGCGGGTTCGGAGATGTTTACAAGGCCTGTTTAGGCAACAACACTCTAGCAGCAGT CAAAAAGATCGAAAACGTTAGTCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGATTTGTTGA GCAAGATTCACCACCCGAACATCATCTCATTGTTTGGATATGGAAATGAACTCAGTTCGAGTTTTAT CGTCTACGAGCTGATGGAAAGCGGATCATTGGATACACAGTTACACGGACCTTCTCGGGGATCGGC TTTAACATGGCACATGCGGATGAAGATTGCTCTTGATACAGCAAGAGCTGTTGAGTATCTCCACGA GCGTTGTCGTCCTCCGGTTATCCACAGAGATCTTAAATCGTCAAATATTCTCCTTGATTCTTCCTTCA ACGCCAAGATTTCGGATTTTGGTCTTGCGGTAATGGTGGGGGCTCACGGCAAAAACAACATTAAAC TATCAGGAACACTTGGTTATGTTGCTCCAGAATATCTCCTAGATGGAAAATTGACGGATAAGAGTG ATGTTTATGCGTTTGGTGTGGTTTTACTTGAACTCTTGTTAGGAAGACGGCCGGTTGAGAAATTGAG TTCGGTTCAGTGTCAATCTCTTGTCACTTGGGCAATGCCCCAACTTACGGATAGATCAAAGCTTCCG AAAATCGTGGATCCGGTTATCAAAGATACAATGGATCATAAGCACTTATACCAGGTGGCAGCCGTG GCAGTGCTTTGTGTACAACCAGAACCGAGTTATCGACCGTTGATAACCGATGTTCTTCACTCACTAG TTCCATTGGTTCCGGTAGAGCTAGGAGGGACTCTCCGGTTAATACCATCATCGTCTTGA >SEQ ID NO: 17 MGKILHLLLLLLKVSVLEFIISVSAFTSPASQPSLSPVYTSMASFSPGIHMGKGQEHKLDAHKKLLIALIIT SSSLGLILVSCLCFWVYWSKKSPKNTKNSGESRISLSKKGFVQSFDYKTLEKATGGFKDGNLIGRGGFG DVYKACLGNNTLAAVKKIENVSQEAKREFQNEVDLLSKIHHPNIISLFGYGNELSSSFIVYELMESGSLD TQLHGPSRGSALTWHMRMKIALDTARAVEYLHERCRPPVIHRDLKSSNILLDSSFNAKISDFGLAVMVG AHGKNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLGRRPVEKLSSVQCQSLVTWAMPQL TDRSKLPKIVDPVIKDTMDHKHLYQVAAVAVLCVQPEPSYRPLITDVLHSLVPLVPVELGGTLRLIPSSS >SEQ ID NO: 18 ATGAAGCAAATTGTTATAACAGCTCTTGTTTTACTACAAGCTTATGTTCTTCATCAATCCACATGTG TTATGTCCCTTACTACACAAGAATCTCCTTCTCCTCAACCTTCTGCTTTCACTCCCGCCTTATCTCCT GATTATCAACAGAGAGAGAAGGAATTGCATAAACAAGAGAGTAACAACATGAGACTGGTTATTTC ACTAGCAGCTACATTTTCCTTAGTTGGTATAATCTTACTTTGCTCTCTGCTTTATTGGTTTTGCCATA GGAGAAGAAACCTCAAGAGCTCAGGTTGTGGGTGTAGTGGAATCACATTCTTGAATCGGTTTAGTC GCTCAAAAACATTAGACAAGAGAACTACAAAGCAGGGAACAGTGTCATTGATCGATTACAATATA CTAGAAGAAGGAACTAGTGGTTTCAAGGAGAGTAACATTTTGGGTCAAGGTGGATTTGGATGTGTA TATTCTGCCACATTAGAGAACAACATTTCAGCTGCGGTTAAGAAGCTAGACTGTGCCAATGAAGAT GCAGCAAAGGAATTTAAGAGTGAGGTTGAGATATTGAGTAAGCTCCAGCACCCGAATATAATATC CCTTTTGGGTTATAGCACGAATGATACTGCGAGATTCATTGTCTATGAGCTGATGCCAAACGTTTCT CTGGAATCTCATTTACACGGATCTTCTCAGGGTTCGGCGATCACATGGCCTATGAGGATGAAGATT GCTCTTGATGTAACAAGGGGATTAGAATATTTGCATGAACATTGTCATCCAGCAATCATTCACAGG GACTTGAAATCATCCAACATCTTATTAGATAGCAATTTCAATGCTAAGATTTCAGATTTTGGTCTAG CTGTTGTTGATGGGCCAAAGAACAAGAACCATAAACTTTCCGGGACAGTTGGCTACGTTGCACCAG AGTATCTTCTCAACGGCCAATTGACAGAAAAGAGCGACGTGTATGCTTTTGGAGTAGTGTTATTAG AGCTTTTACTCGGGAAAAAACCTGTGGAGAAACTAGCTCCCGGTGAATGCCAATCCATCATCACTT GGGCAATGCCTTATCTCACTGATAGAACCAAGTTACCAAGCGTCATAGATCCTGCGATTAAAGATA CGATGGACTTGAAACACCTTTACCAGGTAGCGGCAGTGGCGATTTTGTGCGTGCAGCCAGAACCGA GTTATAGACCGTTGATTACAGACGTCTTGCATTCTCTTATACCTTTGGTTCCAATGGAACTTGGTGG AACCTTAAAAACCATCAAATGTGCTTCAATGGATCACTGTTAA >SEQ ID NO: 19 MKQIVITALVLLQAYVLHQSTCVMSLTTQESPSPQPSAFTPALSPDYQQREKELHKQESNNMRLVISLA ATFSLVGIILLCSLLYWFCHRRRNLKSSGCGCSGITFLNRFSRSKTLDKRTTKQGTVSLIDYNILEEGTSGF KESNILGQGGFGCVYSATLENNISAAVKKLDCANEDAAKEFKSEVEILSKLQHPNIISLLGYSTNDTARFI VYELMPNVSLESHLHGSSQGSAITWPMRMKIALDVTRGLEYLHEHCHPAIIHRDLKSSNILLDSNFNAKI SDFGLAVVDGPKNKNHKLSGTVGYVAPEYLLNGQLTEKSDVYAFGVVLLELLLGKKPVEKLAPGECQ SIITWAMPYLTDRTKLPSVIDPAIKDTMDLKHLYQVAAVAILCVQPEPSYRPLITDVLHSLIPLVPMELGG TLKTIKCASMDHC >SEQ ID NO: 20 ATGAAGACTATGTCCAAATCGTCTTTGCGTTTGCATTTTCTCTCGCTACTCTTACTTTGTTGTGTCTC CCCTTCAAGCTTTGTCATTATAAGATTCATTACACATAATCATTTTGATGGTCTAGTACGTTGTCATC CCCACAAGTTTCAAGCCCTTACGCAGTTCAAGAACGAGTTTGATACCCGCCGTTGCAACCACAGTA ACTACTTTAATGGAATCTGGTGTGATAACTCCAAGGTGCGGTCACAAAGCTACGACTACGGGACTG TCTCAGTGGAACTCTCAAATCAAACAGTAGCCTCTTCCAGTTTCATCATCTTCGCTACCTTGATCTC TCTCACAACAACTTCACCTCCTCTTCCCTCCCTTCCGAGTTTGTTTCCCACTTTGCGGAATCTAACCA AGCTCACAGTTTTAGACCTTTCTCATAATCACTTCTCCGGAACTTTGAAGCCCAACAATAGCCTCTT TGAGTTACACCACCTTCGTTACCTTAATCTCGAGGTCAACAACTTCAGTTCCTCACTCCCTTCCGAG TTTGGCTATCTCAACAATTTACAGCACTGTGGCCTCAAAGAGTTCCCAAACATATTCAAGACCCTTA AAAAAATGGAGGCTATAGACGTATCCAACAATAGAATCAACGGGAAAATCCCTGAGTGGTTATGG AGCCTTCCTCTTCTTCATTTAGTGAATATTTTAAATAATTCTTTTGACGGTTTCGAAGGATCAACGG AAGTTTTAGTAAATTCATCGGTTCGGATATTACTTTTGGAGTCAAACAACTTTGAAGGAGCACTTCC TAGTCTACCACACTCTATCAACGCCTTCTCCGCGGGTCATAACAATTTCACTGGAGAGATACCTCTT TCAATCTGCACCAGAACCTCACTTGGTGTCCTTGATCTAAACTACAACAACCTCATTGGTCCGGTTT CTCAATGTTTGAGTAATGTCACGTTTGTAAATCTCCGGAAAAACAATTTGGAAGGAACTATTCCTG AGACTTTCATTGTCGGTTCCTCGATAAGGACACTTGATGTTGGATACAATCGACTAACGGGAAAGC TTCCAAGGTCTCTTTTGAACTGCTCATCTCTAGAGTTTCTAAGCGTTGACAACAACAGAATCAAAGA CACATTTCCTTTCTGGCTCAAGGCTTTACCAAAGTTACAAGTCCTTACCCTAAGTTCAAACAAGTTT TATGGTCCTATATCTCCTCCTCATCAAGGTCCTCTCGGGTTTCCAGAGCTGAGAATACTTGAGATAT CTGATAATAAGTTTACTGGAAGCTTGTCGTCAAGATACTTTGAGAATTGGAAAGCATCGTCCGCCA TGATGAATGAATATGTGGGTTTATATATGGTTTACGAGAAGAATCCTTATGGTGTAGTTGTCTATAC CTTTTTGGATCGTATAGATTTGAAATACAAAGGTCTAAACATGGAGCAAGCGAGGGTTCTCACTTC CTACAGCGCCATTGATTTTTCTAGAAATCTACTTGAAGGAAATATTCCTGAATCCATTGGACTTTTA AAGGCATTGATTGCACTAAACTTATCGAACAACGCTTTTACAGGCCATATTCCTCAGTCTTTGGCAA ATCTTAAGGAGCTCCAGTCACTAGACATGTCTAGGAACCAACTCTCAGGGACTATTCCTAATGGAC TCAAGCAACTCTCGTTTTTGGCTTACATAAGTGTGTCTCATAACCAACTCAAGGGTGAAATACCAC AAGGAACACAAATTACTGGGCAATTGAAATCTTCCTTTGAAGGGAATGTAGGACTTTGTGGTCTTC CTCTCGAGGAAAGGTGCTTCGACAATAGTGCATCTCCAACGCAGCACCACAAGCAAGACGAAGAA GAAGAAGAAGAACAAGTGTTACACTGGAAAGCGGTGGCAATGGGGTATGGACCTGGATTGTTGGT TGGATTTGCAATTGCATATGTCATTGCTTCATACAAGCCGGAGTGGCTAACCAAGATAATTGGTCC GAATAAGCGCAGAAACTAG >SEQ ID NO: 21 MKTMSKSSLRLHFLSLLLLCCVSPSSFVIIRFITHNHFDGLVRCHPHKFQALTQFKNEFDTRRCNHSNYF NGIWCDNSKVRSQSYDYGTVSVELSNQTVASSSFIIFATLISLTTTSPPLPSLPSLFPTLRNLTKLTVLDLS HNHFSGTLKPNNSLFELHHLRYLNLEVNNFSSSLPSEFGYLNNLQHCGLKEFPNIFKTLKKMEAIDVSNN RINGKIPEWLWSLPLLHLVNILNNSFDGFEGSTEVLVNSSVRILLLESNNFEGALPSLPHSINAFSAGHNN FTGEIPLSICTRTSLGVLDLNYNNLIGPVSQCLSNVTFVNLRKNNLEGTIPETFIVGSSIRTLDVGYNRLTG KLPRSLLNCSSLEFLSVDNNRIKDTFPFWLKALPKLQVLTLSSNKFYGPISPPHQGPLGFPELRILEISDNK FTGSLSSRYFENWKASSAMMNEYVGLYMVYEKNPYGVVVYTFLDRIDLKYKGLNMEQARVLTSYSAI DFSRNLLEGNIPESIGLLKALIALNLSNNAFTGHIPQSLANLKELQSLDMSRNQLSGTIPNGLKQLSFLAYI SVSHNQLKGEIPQGTQITGQLKSSFEGNVGLCGLPLEERCFDNSASPTQHHKQDEEEEEEQVLHWKAVA MGYGPGLLVGFAIAYVIASYKPEWLTKIIGPNKRRN
>SEQ ID NO: 22 ATGACTTCCTCTCGCCGTCTTCTTCTTCCTCTCGGAGCATCGCTCACTAGAGGAAGATTTTCTTCCGA TCAAATCCGAAATGGATTTCTAAGAAACTTCCGTGGATTCGCCACCGTAACTTCGTCGGAACCGGC CTTAGCCAATCTGGAAGCGAAATATGCCGTAGCGTTGCCAGAATGTTCAACAGTAGAGGACGAGA TCACGAAGATCCGTCATGAATTCGAGTTAGCGAAACAGAGGTTTCTTAATATCCCTGAAGCTATTA ATAGTATGCCGAAGATGAATCCTCAAGGGATATATGTGAATAAGAATCTGAGATTGGATAATATAC AAGTTTATGGATTTGATTATGATTACACTTTGGCACATTACTCTTCTCACTTACAGAGTTTGATCTAT GATCTTGCCAAGAAACATATGGTTAATGAGTTTAGATATCCTGATGTTTGCACTCAGTTTGAGTATG ATCCTACTTTTCCAATCCGTGGGTTGTACTATGATAAACTAAAAGGATGCCTCATGAAATTGGATTT CTTCGGTTCAATCGAGCCAGATGGGTGTTATTTTGGTCGTCGTAAGCTTAGTAGGAAGGAAATAGA AAGCATGTATGGAACGCGGCACATAGGTCGTGATCAAGCGAGAGGTTTGGTGGGATTGATGGATTT CTTCTGTTTTAGCGAGGCGTGTCTTATAGCAGACATGGTGCAATATTTTGTTGACGCCAAACTTGAG TTTGATGCCTCTAACATCTACAATGATGTCAATCGTGCTATTCAACATGTCCATAGAAGTGGATTGG TTCATAGAGGAATTCTTGCTGATCCCAACAGATATTTGCTAAAAAATGGTCAGCTTCTACGTTTCCT GAGAATGCTAAAAGATAAAGGAAAGAAGCTTTTTTTGCTGACCAACTCTCCGTATAATTTTGTTGA TGGCGGAATGCGCTTTCTAATGGAGGAATCTTTTGGCTTCGGAGATTCCTGGCGAGAACTCTTTGAT GTTGTGATTGCTAAAGCAAATAAACCAGAATTTTACACATCTGAGCACCCTTTCCGTTGTTATGATT CGGAGAGGGATAATTTGGCATTTACAAAAGTGGATGCATTTGACCCAAAGAAAGTTTATTATCATG GTTGTCTTAAATCCTTCCTTGAAATCACAAAGTGGCATGGCCCTGAGGTGATTTATTTCGGAGATCA CTTATTTAGTGATCTAAGAGGGCCTTCAAAAGCTGGTTGGCGAACTGCTGCCATAATTCATGAGCT CGAGCGAGAGATACAGATACAAAATGATGATAGCTACCGGTTTGAGCAGGCCAAGTTCCATATTAT CCAAGAGTTACTCGGTAGATTTCACGCGACTGTATCAAACAATCAGAGAAGTGAAGCATGCCAATC ACTTTTGGATGAGCTGAACAATGCGAGGCAGAGAGCAAGAGACACGATGAAACAAATGTTCAACA GATCGTTTGGAGCTACATTTGTCACAGACACTGGTCAAGAATCAGCATTCTCTTATCACATCCACCA ATACGCAGACGTTTATACCAGTAAACCTGAGAACTTTCTGTTATACCGACCTGAAGCCTGGCTTCA CGTTCCTTACGATATCAAGATCATGCCACATCATGTCAAGGTTGCTTCAACCCTTTTCAAAACCTGA >SEQ ID NO: 23 MTSSRRLLLPLGASLTRGRFSSDQIRNGFLRNFRGFATVTSSEPALANLEAKYAVALPECSTVEDEITKIR HEFELAKQRFLNIPEAINSMPKMNPQGIYVNKNLRLDNIQVYGFDYDYTLAHYSSHLQSLIYDLAKKHM VNEFRYPDVCTQFEYDPTFPIRGLYYDKLKGCLMKLDFFGSIEPDGCYFGRRKLSRKEIESMYGTRHIGR DQARGLVGLMDFFCFSEACLIADMVQYFVDAKLEFDASNIYNDVNRAIQHVHRSGLVHRGILADPNRY LLKNGQLLRFLRMLKDKGKKLFLLTNSPYNFVDGGMRFLMEESFGFGDSWRELFDVVIAKANKPEFYT SEHPFRCYDSERDNLAFTKVDAFDPKKVYYHGCLKSFLEITKWHGPEVIYFGDHLFSDLRGPSKAGWRT AAIIHELEREIQIQNDDSYRFEQAKFHIIQELLGRFHATVSNNQRSEACQSLLDELNNARQRARDTMKQM FNRSFGATFVTDTGQESAFSYHIHQYADVYTSKPENFLLYRPEAWLHVPYDIKIMPHHVKVASTLFKT >SEQ ID NO: 24 ATGGAGATTCCGGCGGCGCCGCCGCCTCCATTGCCGGTGCTGTGCTCGTACGTCGTCTTC TTGCTGCTGCTGTCTTCGTGCTCACTGGCCAGAGGGAGGATCGCGGTTTCTTCCCCGGGC CCGTCGCCTGTGGCCGCCGCCGTTACAGCCAATGAGACCGCTTCATCCTCTTCTTCTCCG GTGTTTCCGGCCGCTCCTCCCGTCGTGATCACAGTGGTGAGGCACCACCATTACCACCGG GAGCTGGTCATCTCCGCTGTCCTCGCCTGCGTCGCCACCGCCATGATCCTCCTCTCCACA CTCTACGCCTGGACGATGTGGCGGCGGTCTCGCCGGACCCCCCACGGCGGCAAGGGCCGC GGCCGGAGATCAGGGATCACACTGGTGCCAATCCTGAGCAAGTTCAATTCAGTGAAGATG AGCAGGAAGGGGGGCCTTGTGACGATGATCGAGTACCCGTCGCTGGAGGCGGCGACAGGC AAGTTCGGCGAGAGCAATGTGCTCGGTGTCGGCGGCTTCGGTTGCGTTTATAAGGCGGCG TTTGATGGCGGTGCCACCGCCGCCGTGAAGAGGCTTGAAGGCGGCGGGCCGGATTGCGAG AAGGAATTCGAGAATGAGCTGGATTTGCTTGGCAGGATCAGGCACCCAAACATAGTGTCT CTCCTGGGCTTCTGTGTCCATGGTGGCAATCACTACATTGTTTATGAGCTCATGGAGAAG GGATCATTGGAGACACAGCTGCATGGGTCTTCACATGGATCTGCTCTGAGCTGGCACGTT CGGATGAAGATCGCGCTCGATACGGCGAGGGGATTAGAGTATCTTCATGAGCACTGCAAT CCACCTGTGATCCATAGGGATCTGAAACCTTCTAATATACTTTTAGATTCAGACTTCAAT GCTAAGATTGCAGATTTTGGCCTTGCGGTCACCGGTGGGAATCTCAACAAAGGGAACCTG AAGCTTTCCGGGACCTTGGGTTATGTAGCCCCTGAGTACTTATTAGATGGGAAGTTGACT GAGAAGAGCGATGTATACGCATTTGGAGTAGTGCTTCTAGAGCTCCTGATGGGAAGGAAG CCTGTTGAGAAAATGTCACCATCTCAGTGCCAATCAATTGTGTCATGGGCTATGCCTCAG CTGACCGACAGATCGAAGCTCCCCAACATAATTGACCTGGTGATCAAGGACACCATGGAC CCAAAACACTTGTACCAAGTTGCAGCAGTGGCTGTTCTATGTGTGCAGCCCGAACCGAGC TACAGACCACTGATAACAGATGTTCTCCACTCTCTTGTTCCTCTAGTGCCTGCGGAGCTC GGAGGAACACTCAGGGTTGCAGAGCCACCTTCACCTTCTCCAGACCAAAGACATTATCCT TGTTGA >SEQ ID NO: 25 ATGAAGAAACTGGTTCATCTTCAGTTTTTGTTTCTTGTCAAGATCTTTGCTACTCAATTCCTCACTCC TTCTTCATCATCTTTTGCTGCTTCAAATCCTTCTATAGCTCCTGTTTACACCTCCATGACTACTTTCTC TCCAGGAATTCAAATGGGAAGTGGTGAAGAACACAGATTAGATGCACATAAGAAACTCCTGATTG GTCTTATAATCAGTTCCTCTTCTCTTGGTATCATAATCTTGATTTGCTTTGGCTTCTGGATGTACTGT CGCAAGAAAGCTCCCAAACCCATCAAGATTCCGGATGCCGAGAGTGGGACTTCATCATTTTCAATG TTTGTGAGGCGGCTAAGCTCAATTAAAACTCACAGAACATCTAGCAATCAGGGTTATGTGCAGCGT TTCGATTCCAAGACGCTAGAGAAAGCGACAGGCGGTTTCAAAGACAGTAATGTAATCGGACAGGG CGGTTTCGGATGCGTTTACAAGGCTTCTTTGGACAGCAACACTAAAGCAGCGGTTAAAAAGATCGA AAACGTTACCCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGAGCTGTTGAGCAAGATCCAGC ACTCCAATATTATATCATTGTTGGGCTCTGCAAGTGAAATCAACTCGAGTTTCGTCGTTTATGAGTT GATGGAGAAAGGATCCTTAGATGATCAGTTACATGGACCTTCGTGTGGATCCGCTCTAACATGGCA TATGCGTATGAAGATTGCTCTAGATACAGCTAGAGGACTAGAGTATCTCCATGAACATTGTCGTCC ACCAGTTATCCACAGGGACCTGAAATCGTCTAATATTCTTCTTGATTCTTCCTTCAATGCCAAGATT TCAGATTTTGGTCTGGCTGTATCGGTTGGAGTGCATGGGAGTAACAACATTAAACTCTCTGGGACA CTTGGTTATGTTGCCCCGGAATATCTCCTAGACGGAAAGTTGACGGATAAGAGTGATGTCTATGCA TTTGGGGTGGTTCTTCTTGAACTTTTGTTGGGTAGGCGGCCGGTTGAGAAATTGAGTCCATCTCAGT GTCAATCTCTTGTGACTTGGGCAATGCCACAACTTACCGATAGATCGAAACTCCCAAACATCGTGG ATCCGGTTATAAAAGATACAATGGATCTTAAGCACTTATACCAAGTAGCAGCCATGGCTGTGCTGT GCGTACAGCCAGAACCGAGTTACCGGCCGCTGATAACCGATGTTCTTCATTCACTTGTTCCATTGGT TCCGGTAGAGCTAGGAGGGACTCTCCGGTTAACCCGATGA >SEQ ID NO: 26 MKKLVHLQFLFLVKIFATQFLTPSSSSFAASNPSIAPVYTSMTTFSPGIQMGSGEEHRLDAHKKLLIGLIIS SSSLGIIILICFGFWMYCRKKAPKPIKIPDAESGTSSFSMFVRRLSSIKTHRTSSNQGYVQRFDSKTLEKAT GGFKDSNVIGQGGFGCVYKASLDSNTKAAVKKIENVTQEAKREFQNEVELLSKIQHSNIISLLGSASEIN SSFVVYELMEKGSLDDQLHGPSCGSALTWHMRMKIALDTARGLEYLHEHCRPPVIHRDLKSSNILLDSS FNAKISDFGLAVSVGVHGSNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLGRRPVEKLSP SQCQSLVTWAMPQLTDRSKLPNIVDPVIKDTMDLKHLYQVAAMAVLCVQPEPSYRPLITDVLHSLVPL VPVELGGTLRLTR >SEQ ID NO: 27 ATTTTTGGTGTTGAAATGATGCACAACGGATCTTTGGAATCCCAATTGCATGGTCCGTCTCATGGAA CTGGCTTAAGCTGGCAGCATCGAATGAAAATTGCACTTGATATTGCACGAGGACTAGAGTATCTTC ACGAGCGCTGTACCCCGCCTGTGATTCATAGAGATCTGAAATCGTCCAACATTCTTCTAGGTTCGA ACTACAATGCTAAACTTTCTGATTTCGGGCTCGCGATTACTGGTGGGATTCAGGGCAAGAACAACG TAAAGCTTTCGGGAACATTAGGTTATGTAGCTCCAGAATACCTCTTAGATGGTAAACTTACTGATA AAAGTGATGTTTATGCGTTTGGAGTTGTACTTCTTGAACTTTTGATAGGTAGAAAACCAGTGGAGA AAATGTCACCATCTCAATGCCAATCTATCGTTACATGGGCAATGCCTCAACTAACCGACCGATCAA AGCTTCCTAACATCGTTGATCCCGTGATTAGAGATACAATGGACTTGAAGCACTTGTATCAAGTTG CTGCGGTTGCTGTGCTATGTGTACAACCGGAACCGAGTTACAGGCCATTGATAACAGATGTTTTGC ATTCGTTCATCCCACTTGTACCTGTTGAGCTTGGAGGGTCGCTAAGAGTTACCGAATCTTGA >SEQ ID NO: 28 IFGVEMMHNGSLESQLHGPSHGTGLSWQHRMKIALDIARGLEYLHERCTPPVIHRDLKSSNILLGSNYN AKLSDFGLAITGGIQGKNNVKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLIGRKPVEKMSPSQ CQSIVTWAMPQLTDRSKLPNIVDPVIRDTMDLKHLYQVAAVAVLCVQPEPSYRPLITDVLHSFIPLVPVE LGGSLRVTES >SEQ ID NO: 29 AATTCGGCACGAGGGCTGGATTCCAGTTTTAATGCAAAGCTTTCAGATTTTGGCCTTTCTGTGACTG CTGGAACCCAGAGTAGGAATGTTAAGATCTCTGGAACTCTGGGTTATGTTGCCCCGGAGTACCTAT TAGAAGGAAAACTAACTGATAAAAGTGATGTATATGCTTTCGGAGTTGTATTGCTGGAACTTTTGA TGGGGAGAAGGCCTGTGGAAAAGATGTCACCAACTCAATGTCAATCAATGGTCACATGGGCCATG CCTCAGCTCACCGATAGATCAAAGCTTCCAAACATTGTGGATCCAGTAATTAGAGACACAATGGAT TTAAAGCACTTATACCAGGTAGCCGCTGTGGCAGTGCTATGTATACAACCTGAACCAAGTTATAGG CCATTGATAACCGACGTTCTGCATTCCCTCATTCCTCTTGTACCTACCGACCTTGGAGGGTCACTCC GAGTGACCTAA >SEQ ID NO: 30 NSARGLDSSFNAKLSDFGLSVTAGTQSRNVKISGTLGYVAPEYLLEGKLTDKSDVYAFGVVLLELLMG RRPVEKMSPTQCQSMVTWAMPQLTDRSKLPNIVDPVIRDTMDLKHLYQVAAVAVLCIQPEPSYRPLITD VLHSLIPLVPTDLGGSLRVT >SEQ ID NO: 31 GGATTGTGTTTGTGGCTTTATCATTTGAAGTACTCCTTCAAATCCAGTAACAAGAATGCAAAGAGC AAAGATTCTGAGAATGGAGTTGTGTTATCATCATTTTTGGGCAAATTCACTTCTGTGAGGATGGTTA GTAAGAAGGGATCTGCTATTTCATTTATTGAGTATAAGCTGTTAGAGAAAGCCACCGACAGTTTTC ATGAGAGTAATATATTGGGTGAGGGTGGATTTGGATGTGTTTACAAGGCTAAATTGGATGATAACT TGCACGTCGCTGTCAAAAAATTAGATTGTGCAACACAAGATGCCGGCAGAGAATTTGAGAATGAG GTGGATTTGCTGAGTAATATTCACCACCCAAATGTTGTTTGTCTGTTGGGTTATAGTGCTCATGATG ACACAAGGTTTATTGTTTATGAATTGATGGAAAATCGGTCCCTTGATATTCAATTGCATGGTCCTTC TCATGGATCAGCATTGACTTGGCATATGCGAATGAAAATTGCTCTTGATACCGCTAGAGGATTAGA ATATTTACATGAGCACTGCAACCCTGCAGTCATTCATAGAGATCTGAAATCCTCCAATATACTTCTA GATTCCAAGTTTAATGCTAAGCTCTCAGATTTTGGTCTTGCCATAACCGATGGATCCCAAAACAAG AACAATCTTAAGCTTTCGGGCACTTTGGGATATGTGGCTCCCGAGTATCTTTTAGATGGTAAATTGA CAGACAAGAGTGATGTCTATGCTTTTGGAGTTGTGCTTCT >SEQ ID NO: 32 GLCLWLYHLKYSFKSSNKNAKSKDSENGVVLSSFLGKFTSVRMVSKKGSAISFIEYKLLEKATDSFHES NILGEGGFGCVYKAKLDDNLHVAVKKLDCATQDAGREFENEVDLLSNIHHPNVVCLLGYSAHDDTRFI VYELMENRSLDIQLHGPSHGSALTWHMRMKIALDTARGLEYLHEHCNPAVIHRDLKSSNILLDSKFNA KLSDFGLAITDGSQNKNNLKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLL >SEQ ID NO: 33 GCATTGACATGGCATCTTAGGATGAAAATTGCCCTTGATGTAGCTAGAGGATTAGAATTTTTGCAT GAGCACTGCCACCCAGCAGTGATCCATAGAGATCTGAAATCATCTAATATCCTTCTGGATTCAAAT CTCAATGCTAAGCTATCTGATTTTGGTCTTGCCATTCTTGATGGGGCTCAAAATAAGAACAACATCA AGCTTTCTGGAACCTTGGGCTATGTAGCTCCAGAGTACCTCTTAGATGGTAAATTGACTGACAAGA GTGATGTTTATGCTTTTGGAGTGGTGCTTTTGGAGCTTCTCCTGAGAAGAAAGCCTGTGGAGAAGCT GGCACCAGCTCAATGCCAATCTATAGTCACATGGGCTATGCCTCAGCTGACAGATAGATCAAAGCT TCCAAACATCGTGGATCCTGTGATTAGAAATGCTATGGATATAAAGCACTTATTCCAGGTTGCTGC AGTCGCTGTGCTATGCGTGCAGCCTGAACCAAGCTATCGACCACTGATAACAGATGTGTTGCATTC CCTTGTTCCCCTTGTTCCTATGGAGCTTGGCGGGACGCTCAGAGTTGAACGACCTGCTTCTGTGACC TCTCTGTTGATTGATTCTACCTGA >SEQ ID NO: 34 ALTWHLRMKIALDVARGLEFLHEHCHPAVIHRDLKSSNILLDSNLNAKLSDFGLAILDGAQNKNNIKLS GTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLRRKPVEKLAPAQCQSIVTWAMPQLTDRSKLPNIV DPVIRNAMDIKHLFQVAAVAVLCVQPEPSYRPLITDVLHSLVPLVPMELGGTLRVERPASVTSLLIDST >SEQ ID NO: 35 ACTGAGGTGACCCGGAAGAAAAACAGGGTAAAGCTATCGGGCACTTTGGGTTATGTAGCCCCAGA ATATGTCTTGGATGGTAAATTGACTGATAAGAGTGATGTCTATGCCTTTGGAGTTGTGCTTTTGGAG CTCCTTTTGAGAAGAAGGCCTCTTGAGATAGTAGCACCCACTCAGTGCCAGTCTATTGTTACATGG GCCATGCCTCAGCTGACCGACCGAACTAAGCTTCCAGATATTGTGGATCCTGTAATTAGAGATGCG ATGGATGTCAAGCACTTATACCAGGCAGCTGCTGTTGCTGTTTTGTGTCTGCAACCAGAACCGATCT ACCGGCCACTGATAACGGATGTACTCCACTCTCTCATTCCACTTGTACCCGTTGAACTTGGGGGAAC GCTGAAGACCTAG >SEQ ID NO: 36 TEVTRKKNRVKLSGTLGYVAPEYVLDGKLTDKSDVYAFGVVLLELLLRRRPLEIVAPTQCQSIVTWAM PQLTDRTKLPDIVDPVIRDAMDVKHLYQAAAVAVLCLQPEPIYRPLITDVLHSLIPLVPVELGGTLKT >SEQ ID NO: 37 ACGAGGCCTCGTGCCATACTTTTGGATTCAGATTTCAATGCCAAGATTTCGGATTTCGGTCTTGCAG TGTCAAGTGGAAATCGCACCAAAGGTAATCTGAAGCTTTCCGGAACTTTGGGCTATGTTGCTCCTG AGTACTTATTAGACGGGAAGTTGACAGAGAAGAGTGATGTATATGCGTTCGGAGTAGTACTTCTTG AGCTTTTGTTAGGAAGGAGGCCAATTGAGAAGATGGCCCCATCTCAATGCCAATCAATTGTTACAT GGGCCATGCCTCAGCTAATTGACAGATCAAAGCTCCCAACCATAATTGACCCCGTGATCAGGAACA CGATGGACCTGAAGCACTTGTACCAAGTTGCTGCAGTGGCTGTGCTCTGTGTGCAGCCAGAACCAA GTTATAGGCCACTAATCACAGATGTGCTCCACTCTCTGATTCCCCTGGTGCCCATGGAGCTCGGAG GGTCACTGAGGGCTACCTTGGAATCGCCTCGCGTATCACAACATCGTTCTCCCTGCTGA >SEQ ID NO: 38 TRPRAILLDSDFNAKISDFGLAVSSGNRTKGNLKLSGTLGYVAPEYLLDGKLTEKSDVYAFGVVLLELL LGRRPIEKMAPSQCQSIVTWAMPQLIDRSKLPTIIDPVIRNTMDLKHLYQVAAVAVLCVQPEPSYRPLIT DVLHSLIPLVPMELGGSLRATLESPRVSQHRSPC >SEQ ID NO: 39 CCTTTATTGAATAGATTGAACTCCTTCCGTGGTTCTAGGAGAAAGGGATGTGCATATATAATTGAAT ATTCTCTGCTGCAAGCAGCCACAAATAATTTTAGTACAAGTGACATCCTTGGAGAGGGTGGTTTTG GGTGTGTATACAGAGCTAGGTTAGATGATGATTTCTTTGCTGCTGTGAAGAAGTTAGATGAGGGCA GCAAGCAGGCTGAGTATGAATTTCAGAATGAAGTTGAACTAATGAGCAAAATCAGACATCCAAAT CTTGTTTCTTTGCTGGGGTTCTGCATTCATGGGAAGACTCGGTTGCTAGTCTACGAGCTCATGCAAA ATGGTTCTTTGGAAGACCAATTACATGGGCCATCTCATGGATCCGCACTTACATGGTACCTGCGCAT GAAAATAGCCCTTGATTCAGCAAGGGGTCTAGAACACTTGCACGAGCACTGCAATCCTGCTGTGAT TCATCGTGATTTCAAATCATCAAATATCCTTCTGGATGCAAGCTTCAATGCCAAGCTTTCAGATTTT GGTCTTGCAGTAACAGCTGCAGGAGGTATTGGTAATGCTAATGTCGAGCTACTGGGCACTTTGGGA TATGTAGCTCCAGAATACCTGCTTGATGGCAAGTTGACGGAGAAAAGTGATGTCTATGGATTTGGA GTTGTTCTTTTGGAGCTAATTATGGGAAGAAAGCCAGTTGATAAATCTGTGGCAACTGAAAGTCAA TCGCTAGTTTC >SEQ ID NO: 40 PLLNRLNSFRGSRRKGCAYIIEYSLLQAATNNFSTSDILGEGGFGCVYRARLDDDFFAAVKKLDEGSKQ AEYEFQNEVELMSKIRHPNLVSLLGFCIHGKTRLLVYELMQNGSLEDQLHGPSHGSALTWYLRMKIAL DSARGLEHLHEHCNPAVIHRDFKSSNILLDASFNAKLSDFGLAVTAAGGIGNANVELLGTLGYVAPEYL LDGKLTEKSDVYGFGVVLLELIMGRKPVDKSVATESQSLVS >SEQ ID NO: 41 ATGAAAATGAAGCTTCTCCTCATGCTTCTTCTTCTTGTTCTTCTTCTTCACCAACCCATTTGGGCTGC AGACCCTCCTGCTTCTTCTCCTGCTTTATCTCCAGGGGAGGAGCAGCATCACCGGAATAATAAAGT GGTAATAGCTATCGTCGTAGCCACCACTGCACTTGCTGCACTCATTTTCAGTTTCTTATGCTTCTGG GTTTATCATCATACCAAGTATCCAACAAAATCCAAATTCAAATCCAAAAATTTTCGAAGTCCAGAT GCAGAGAAGGGGATCACCTTAGCACCGTTTGTGAGTAAATTCAGTTCCATCAAGATTGTTGGCATG GACGGGTATGTTCCAATAATTGACTATAAGCAAATAGAAAAAACGACCAATAATTTTCAAGAAAG TAACATCTTGGGTGAGGGCGGTTTTGGACGTGTTTACAAGGCTTGTTTGGATCATAACTTGGATGTT GCAGTCAAAAAACTACATTGTGAGACTCAACATGCTGAGAGAGAATTTGAGAACGAGGTGAATAT GTTAAGCAAAATTCAGCATCCGAATATAATATCTTTACTGGGTTGTAGCATGGATGGTTACACGAG GCTCGTTGTCTATGAGCTGATGCATAATGGATCATTGGAAGCTCAGTTACATGGACCTTCTCATGGC TCGGCATTGACTTGGCACATGAGGATGAAGATTGCTCTTGACACAGCAAGAGGATTAGAATATCTG CACGAGCACTGTCACCCTGCAGTGATCCATAGGGATATGAAATCTTCTAATATTCTCTTAGATGCA AACTTCAATGCCAAGCTGTCTGATTTTGGTCTTGCCTTAACTGATGGGTCCCAAAGCAAGAAGAAC ATTAAACTATCGGGTACCTTGGGATACGTAGCACCGGAGTATCTTCTAGATGGTAAATTAAGTGAT AAAAGTGATGTCTATGCTTTTGGGGTTGTGCTATTGGAGCTCCTACTAGGAAGGAAGCCAGTAGAA AAACTGGTACCAGCTCAATGCCAATCTATTGTCACATGGGCCATGCCACACCTCACGGACAGATCC AAGCTTCCAAGCATTGTGGATCCAGTGATTAAGAATACAATGGATCCCAAGCACTTGTACCAGGTT GCTGCTGTAGCTGTGCTGTGCGTGCAACCAGAACCTAGTTACCGTCCACTGATCATTGATGTTCTTC ACTCACTCATCCCTCTTGTTCCCATTGAGCTTGGAGGAACACTAAGAGTTTCACAAGTAATT >SEQ ID NO: 42 MKMKLLLMLLLLVLLLHQPIWAADPPASSPALSPGEEQHHRNNKVVIAIVVATTALAALIFSFLCFWVY HHTKYPTKSKFKSKNFRSPDAEKGITLAPFVSKFSSIKIVGMDGYVPIIDYKQIEKTTNNFQESNILGEGGF GRVYKACLDHNLDVAVKKLHCETQHAEREFENEVNMLSKIQHPNIISLLGCSMDGYTRLVVYELMHN GSLEAQLHGPSHGSALTWHMRMKIALDTARGLEYLHEHCHPAVIHRDMKSSNILLDANFNAKLSDFGL ALTDGSQSKKNIKLSGTLGYVAPEYLLDGKLSDKSDVYAFGVVLLELLLGRKPVEKLVPAQCQSIVTW AMPHLTDRSKLPSIVDPVIKNTMDPKHLYQVAAVAVLCVQPEPSYRPLIIDVLHSLIPLVPIELGGTLRVS QVI >SEQ ID NO: 43 ACTCAAGCATCAAAATATTGTAAATCTTTTGGGTATTGTGTTCATGATGACACAAGGTTTTTGGTCT ATGAAATGATGCATCAAGGCTCTTTGGACTCACAATTGCATGGACCAACTCATGGAACCGCATTAA CCTGGCATCGAAGAATGAAAGTCGCACTTGATATTGCTCGAGGATTAGAGTATCTTCATGAACGAT GCAACCCGCCTGTGATTCATAGAGATCTTAAGTCATCGAACATTTTGCTAGATTCCAATTTCAATGC TAAAATTTCGAATTTTGCACTTGCTACCACTGAGCTCCATGCGAAGAACAAAGTTAAGCTTTCGGCT ACTTCTGGTTATTTGGCTCCGGAATACCTATCAGAAGGTAAACTTACCGATAAAAGCGACGTATAT GCATTCGGAGTAGTACTTCTTGGGCTTTTAATCGGTAGAAAACCAGTGGAGAAAATGTCACCATCT
TTATTTCAATCTATTGTCACATGGGCAATGCCTCAGTTAACAGACCGGTCAAAGCTTCCAAACATCG TTGACCCTGTGATTAGAGATACAATGGACCTGAAGCACTTATATCAAGTTGCTGCTGTAGCCGTAC TTTGCGTGCAACCCGAACCAAGTTACAGACCGTTGATTACAGACGTACTACACTCATTCATTCCACT CGTACCCGTTGATCTTGGAGGGTCATTAAGAGCTTAA >SEQ ID NO: 44 TQASKYCKSFGYCVHDDTRFLVYEMMHQGSLDSQLHGPTHGTALTWHRRMKVALDIARGLEYLHER CNPPVIHRDLKSSNILLDSNFNAKISNFALATTELHAKNKVKLSATSGYLAPEYLSEGKLTDKSDVYAFG VVLLGLLIGRKPVEKMSPSLFQSIVTWAMPQLTDRSKLPNIVDPVIRDTMDLKHLYQVAAVAVLCVQPE PSYRPLITDVLHSFIPLVPVDLGGSLRA >SEQ ID NO: 45 CGATCATTTCGTTGCGGCTGTAAAAAACTCCATGGTCCAGAACCAGATGCCCAAAAAGGGTTTGAG AATGAAGTAGATTGGTTAGGTAAACTCAAGCATCAAAATATTGTAAATTTTTTGGGTTATTGTGTTC ATGATGACACAAGGTTTTTGGTCTATGAAATGATGCATCAAGGCTCTTTGGACTCACAATTGCATG GACCAACTCATGGAACCGCATTAACCTGGCATCGAAGAATGAAAGTCGCACTTGATATTGCTCGAG GATTAGAGTATCTTCATGAACGATGCAACCCGCCTGTGATTCATAGAGATCTCAAGTCATCGAACA TTTTGCTAGATTCCAATTTCAATGCTAAAATTTCGAATTTTGCACTTGCTACCACTGAGCTCCATGC GAAGAACAAAGTTAAGCTTTCGGGTACTTCTGGTTATTTGGCTCCGGAATACCTATCCGAAGGTAA ACTTACCGATAAAAGTGATGTATATGCATTCGGAGTAGTACTTCTTGAGCTTTTAATCGGTAGAAA ACCAGTGGAGAAAATGTCACCATCTTTATTTCAATCTATTGTCACATGGGCAATGCCTCAGCTAAC AGACCGGTCAAAGCTTCCAAACATTGTTGACCCTGTGATTAGAGATACAATGGACCTGAAGCACTT GTATCAAGTTGCTGCTGTAGCCGTACTTTGCGTGCAACCCGAACCAAGTTACAGACCGTTGATTAC AGACGTACTACACTCATTCATTCC >SEQ ID NO: 46 RSFRCGCKKLHGPEPDAQKGFENEVDWLGKLKHQNIVNFLGYCVHDDTRFLVYEMMHQGSLDSQLH GPTHGTALTWHRRMKVALDIARGLEYLHERCNPPVIHRDLKSSNILLDSNFNAKISNFALATIELHAKN KVKLSGTSGYLAPEYLSEGKLTDKSDVYAFGVVLLELLIGRKPVEKMSPSLFQSIVTWAMPQLTDRSKL PNIVDPVIRDTMDLKHLYQVAAVAVLCVQPEPSYRPLITDVLHSFIP >SEQ ID NO: 47 ATGATGCATCAAGACTCTTTGGACTCACAATTGCATGGACCAACTCATGGAACCGCATTAACCTGG CATCGAAGAATGAAAGTCGCACTTGATATTGCTCGAGGATTAGAGTATCTTCATGAACGATGCAAC CCGCCTGTGATTCATAGAGATCTCAAGTCATCGAACATTTTGCTAGATTCCAATTTCAATGCTAAAA TTTCGAATTTTGCACTTGCTACCACTGAGCTCCATGCGAAGAACAAAGTTAAGCTTTCGGGTACTTC TGGTTATTTGGCTCCGGAATACCTATCCGAAGGTAAACTTACCGATAAAAGTGATGTATATGCATT CGGAGTAGTACTTCTTGAGCTTTTAATCGGTAGAAAACCAGTGGAGAAAATGTCACCATCTTTATTT CAATCTATTGTCACATGGGCAATGCCTCAGCTAACAGACCGGTCAAAGCTTCCAAACATTGTTGAC CCTGTGATTAGAGATACAATGGACCTGAAGCACTTGTATCAAGTTGCTGCTGTAGCCGTACTTTGC GTGCAACCCGAACCAAGTTACAGACCGTTGATTACAGACGTACTACACTCATTCATTCCACTCGTA CCCGTTGATCTTGGAGGGTCATTAAGAGCTTAA >SEQ ID NO: 48 MMHQDSLDSQLHGPTHGTALTWHRRMKVALDIARGLEYLHERCNPPVIHRDLKSSNILLDSNFNAKIS NFALATTELHAKNKVKLSGTSGYLAPEYLSEGKLTDKSDVYAFGVVLLELLIGRKPVEKMSPSLFQSIV TWAMPQLTDRSKLPNIVDPVIRDTMDLKHLYQVAAVAVLCVQPEPSYRPLITDVLHSFIPLVPVDLGGS LRA >SEQ ID NO: 49 AATTTGAGAGGTGAGCTGGATTTGCTTCAGAGGATTCAGCATTCGAATATAGTGTCCCTTGTGGGC TTCTGCATTCATGAGGAGAACCGCTTCATTGTTTATGAGCTGATGGTGAATGGATCACTTGAAACA CAGCTTCATGGGCCATCACATGGATCAGCTCTGAGTTGGCACATTCGGATGAAGATTGCTCTTGAT ACAGCAAGGGGATTGGAGTATCTTCACGAGCACTGCAATCCACCAATCATCCATAGGGATCTGAAG TCGTCTAACATACTTTTGAATTCAGACTTTAATGCAAAGATTTCAGATTTTGGCCTTGCAGTGACAA GTGGAAATCGCAGCAAAGGGAATCTGAAGCTTTCCGGTACTTTGGGTTATGTTGCCCCTGAGTACT TACTAGATGGGAAGTTGACTGAGAAGAGCGATGTATATGCATTTGGAGTAGTACTTCTTGAGCTTC TTTTGGGAAGGAGGCCAGTTGAGAAGATGGCACCATCTCAGTGTCAATCAATTGTTACATGGGCCA TGCCCCAGCTAATTGACAGATCCAAGCTCCCTACCATAATCGACCCCGTGATCAGGGACACGATGG ATCGGAAGCACTTGTACCAAGTTGCTGCAGTGGCTGTGCTCTGCGTGCAGCCAGAACCAAGCTACA GGCCACTGATCACAGATGTCCTCCACTCTCTGATTCCCCTGGTGCCCATGGACCTTGGAGGGACGCT GAGGATCAACCCGGAATCGCCTTGCACGACACGAAATCAATCTCCCTGCTGA >SEQ ID NO: 50 NLRGELDLLQRIQHSNIVSLVGFCIHEENRFIVYELMVNGSLETQLHGPSHGSALSWHIRMKIALDTARG LEYLHEHCNPPIIHRDLKSSNILLNSDFNAKISDFGLAVTSGNRSKGNLKLSGTLGYVAPEYLLDGKLTE KSDVYAFGVVLLELLLGRRPVEKMAPSQCQSIVTWAMPQLIDRSKLPTIIDPVIRDTMDRKHLYQVAAV AVLCVQPEPSYRPLITDVLHSLIPLVPMDLGGTLRINPESPCTTRNQSPC >SEQ ID NO: 51 CGGGGGCTCTTATCACTCATTGCTGCTGCTACTGCACTGGGTACAAGCTTATTGCTCATGGGTTGCT TCTGGATTTATCATAGAAAGAAAATCCACAAATCTCATGACATTATTCATAGCCCAGATGTAGTTA AAGGTCTTGCATTATCCTCATATATTAGCAAATACAACTCCTTCAAGTCGAATTGTGTGAAACGAC ATGTCTCGTTGTGGGAGTACAATACACTCGAGTCGGCCACAAATAGTTTTCAAGAAAGCGAGATCT TGGGTGGAGGGGGGTTCGGGCTTGTGTACAAGGGAAAACTAGAAGACAACTTGTATGTAGCTGTG AAGAGGCTGGAAGTTGGAAGACAAAACGCAATTAAAGAATTCGAGGCTGAAATAGAGGTATTGGG CACGATTCAGCACCCGAATATAATTTCGTTGTTGGGATATAGCATTCATGCTGACACGAGGCTGCT AGTTTATGAACTGATGCAGAATGGATCTCTGGAGTATCAACTACATGGACCTTCCCATGGATCAGC ATTAGCGTGGCATAATAGATTGAAAATCGCACTTGATACAGCAAGGGGATTAGAATATTTACATGA ACATTGCAAACCACCAGTTATCCATAGAGATCTGAAATCCTCCAATATTCTTCTAGATGCCAACTTC AATGCCAAGATCTCAGATTTTGGTCTTGCTGTGCGCGATGGGGCTCAAAACAAAAATAACATTAAG CTCTCGGGAACCGTTGGCTATGTAGCTCCAGAATACCTATTAGATGGAATACTAACAGATAAAAGT GATGTTTATGGCTTCCGAGTTGTA >SEQ ID NO: 52 RGLLSLIAAATALGTSLLLMGCFWIYHRKKIHKSHDIIHSPDVVKGLALSSYISKYNSFKSNCVKRHVSL WEYNTLESATNSFQESEILGGGGFGLVYKGKLEDNLYVAVKRLEVGRQNAIKEFEAEIEVLGTIQHPNII SLLGYSIHADTRLLVYELMQNGSLEYQLHGPSHGSALAWHNRLKIALDTARGLEYLHEHCKPPVIHRDL KSSNILLDANFNAKISDFGLAVRDGAQNKNNIKLSGTVGYVAPEYLLDGILTDKSDVYGFRVV >SEQ ID NO: 53 GGGGATATACGTGTAGAATCAGCAACAAATAACTTCGGTGAAAGCGAGATATTAGGCGTAGGTGG ATTTGGATGCGTGTATAAAGCTCGACTCGATGATAATTTGCATGTAGCTGTTAAAAGATTAGATGG TATTAGTCAAGACGCCATTAAAGAATTCCAGACGGAGGTGGATCTATTGAGTAAAATTCATCATCC GAATATCATCACCTTATTGGGATATTGTGTTAATGATGAAACCAAGCTTCTTGTTTATGAACTGATG CATAATGGATCTTTAGAAACTCAATTACATGGGCCTTCCAGTGGATCCAATTTAACATGGCATTGC AGGATGAAGATTGCTCTAGATACAGCAAGAGGATTAGAATATTTGCATGAGAACTGCAAACCATC GGTGATTCATAGAGATCTGAAATCATCTAATATCCTTCTGGATTCCAGCTTCAATGCTAAGCTTTCA GATTTTGGTCTTGCTATAATGGATGGGGCCCAGAACAAAAACAACATTAAGCTTTCAGGGACATTG GGTTATGTAGCTCCCGAGTATCTTTTAGATGGAAAATTGACGGATAAAAGTGACGTGTATGCGTTT GGAGTTGTGCTTTTAGAGCTTTTACTTGGAAGGCGACCTGTAGAAAAATTAGCAGAGTCGCAATGC CAATCTATTGTCACTTGGGCTATGCCACAATTAACAGACAGATCAAAGCTTCCGAATATTGTAGAT CCCGTGATCAGATACACAATGGATCTCAAGCACCTGTACCAAGTTGCTGCGGTGGCTGTGTTATGT GTACAACCCGGACCAAGCTACCGGCCATTTATAAACCGACGTCTTGCATTCTCTGATCCCTCTTGTT CCCCGTGA >SEQ ID NO: 54 GDIRVESATNNFGESEILGVGGFGCVYKARLDDNLHVAVKRLDGISQDAIKEFQTEVDLLSKIHHPNIITL LGYCVNDETKLLVYELMHNGSLETQLHGPSSGSNLTWHCRMKIALDTARGLEYLHENCKPSVIHRDLK SSNILLDSSFNAKLSDFGLAIMDGAQNKNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLG RRPVEKLAESQCQSIVTWAMPQLTDRSKLPNIVDPVIRYTMDLKHLYQVAAVAVLCVQPGPSYRPFINR RLAFSDPSCSP >SEQ ID NO: 55 AAGTTGAACTGTGAATGTCAATATGCTGAGAGAGAATTTGAGAATGAGGTGGATTTGTTAAGTAAA ATTCAACATCCAAATGTAATTTCTCTACTGGGCTGTAGCAGTAATGAGGATTCAAGGTTTATTGTCT ATGAGTTGATGCAAAATGGATCATTGGAAACTCAATTACATGGACCATCTCATGGCTCAGCATTGA CTTGGCATATGAGGATGAAGATTGCTCTTGACACAGCTAGAGGTTTAAAATATCTGCATGAGCACT GCTACCCTGCAGTGATCCATAGAGATCTGAAATCTTCTAATATTCTTTTAGATGCAAACTTCAATGC CAAGCTTTCTGATTTTGGTCTTGCAATAACTGATGGGTCCCAAAACAAGAATAACATCAAGCTTTC AGGCACATTGGGGTATGTTGCCCCGGAGTATCTTTTAGATGGTAAATTGACAGATAAAAGTGATGT GTATGCTTTTGGAGTTGTGCTTCTTGAGCTTCTATTAGGAAGAAAGCCTGTGGAAAAACTTACACCA TCTCAATGCCAGTCTATTGTCACATGGGCCATGCCACAGCTCACAGACAGATCCAAGCTTCCAAAC ATTGTGGATAATGTGATTAAGAATACAATGGATCCTAAGCACTTATACCAGGTTGCTGCTGTGGCT GTATTATGTGTGCAACCAGAGCCGTGCTACCGCCCTTTGATTGCAGATGTTCTACACTCCCTCATCC CTCTTGTACCTGTTGAGCTTGGAGGAACACTCAGAGTTGCACAAGTGACGCAGCAACCTAAGAATT CTAGTTAA >SEQ ID NO: 56 KLNCECQYAEREFENEVDLLSKIQHPNVISLLGCSSNEDSRFIVYELMQNGSLETQLHGPSHGSALTWH MRMKIALDTARGLKYLHEHCYPAVIHRDLKSSNILLDANFNAKLSDFGLAITDGSQNKNNIKLSGTLGY VAPEYLLDGKLTDKSDVYAFGVVLLELLLGRKPVEKLTPSQCQSIVTWAMPQLTDRSKLPNIVDNVIKN TMDPKHLYQVAAVAVLCVQPEPCYRPLIADVLHSLIPLVPVELGGTLRVAQVTQQPKNSS >SEQ ID NO: 57 CAGTTGCATGGACCTCCTCGTGGATCAGCTTTGAATTGGCATCTTCGCATGGAAATTGCATTGGATG TGGCTAGGGGACTAGAATACCTCCATGAGCGCTGTAACCCCCCTGTAATCCATAGAGATCTCAAAT CGTCTAATGTTCTATTGGATTCCTACTTCAATGCAAAGCTTTCTGACTTTTGGCCTAGCTATAGCTG GATGGAACTTAAACAAGAGCACCGTAAAGTCTTTCGGGAACTCTGGGATATGTGGCTCCAGAGTTA CCTCTTAGATGGGAAATTAACTGATAAGAGTGATGTCTATGCTTTCGGCATTATACTTCTGGAGCTT CTAATGGGGAGAAGACCATTGGAGAAACTAGCAGGAGCTCAGTGCCAATCTATCGTCACATGGGC AATGCCACAGCTTACTGACAGGTCAAAGCTCCCAAATATTGTTGATCCTGTCATCAGAAACGGAAT GGGCCTCAAGCACTTGTATCAAGTTGCTGCTGTAGCCGTGCTATGTGTACAACCAGAACCAAGTTA CCGACCACTGATAACAGATGTCCTGCACTCCTTCATTCCCCTTGTACCAATTGAGCTTGGTGGGTCC TTGAGAGTTGTGGATTCTGCATTATCTGTTAACGCATAA >SEQ ID NO: 58 QLHGPPRGSALNWHLRMEIALDVARGLEYLHERCNPPVIHRDLKSSNVLLDSYFNAKLSDFWPSYSWM ELKQEHRKVFRELWDMWLQSYLLDGKLTDKSDVYAFGIILLELLMGRRPLEKLAGAQCQSIVTWAMP QLTDRSKLPNIVDPVIRNGMGLKHLYQVAAVAVLCVQPEPSYRPLITDVLHSFIPLVPIELGGSLRVVDS ALSVNA >SEQ ID NO: 59 ATGGAGATGGCGCTAACTCCATTGCCGCTCCTGTGTTCGTCCGTCTTGTTCTTGGTGCTATCTTCGTG CTCGTTGGCCAATGGGAGGGATACGCCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTC TTCTTCTTCTTCTTCTTCTTCTTCTCCGGCGACGTCTACTGTGGCCACCGGCATTTCCGCCGCCGCCG CCGCCGCCGCCAATGGGACGGCCGCCTTGTCTTCGGCAGTTCCGGCGCCTCCGCCTGTTGTGATCGT AGTGCACCACCATTTCCACCGCGAGCTGGTCATCGCCGCCGTCCTCGCCTGCATCGCCACCGTCAC GATCTTCCTTTCCACGCTCTACGCTTGGACACTATGGCGGCGATCTCGCCGGAGCACCGGCGGCAA GGTCACCAGGAGCTCAGACGCAGCGAAGGGGATCAAGCTGGTGCCGATCTTGAGCAGGTTCAACT CGGTGAAGATGAGCAGGAAGAGGCTGGTTGGGATGTTCGAGTACCCGTCGCTGGAGGCAGCGACA GAGAAGTTCAGCGAGAGCAACATGCTCGGTGTCGGCGGGTTTGGCCGCGTCTACAAGGCGGCGTTC GACGCCGGAGTTACCGCGGCGGTGAAGCGGCTCGACGGCGGCGGGCCCGACTGCGAGAAGGAATT CGAGAATGAGCTGGATTTGCTTGGCAGGATCAGGCACCCCAACATTGTGTCCCTCTTGGGCTTCTGT ATCCATGAGGGGAATCACTACATTGTTTATGAGCTGATGGAGAAGGGATCACTGGAAACACAGCTT CATGGGTCTTCACATGGATCAACTCTGAGCTGGCACATCCGGATGAAGATCGCCCTTGACACGGCC AGGGGATTAGAGTACCTTCATGAGCACTGCAGTCCACCAGTGATCCATAGGGATCTGAAATCGTCT AACATACTTTTGGATTCAGACTTCAATGCTAAGATTGCAGATTTTGGTCTTGCTGTGTCTAGTGGGA GTGTCAACAAAGGGAGTGTGAAGCTCTCCGGGACCTTGGGTTATGTAGCTCCTGAGTACTTGTTGG ATGGGAAGTTGACTGAAAAGAGCGATGTATACGCGTTCGGAGTAGTGCTTCTAGAGCTCCTTATGG GGAGGAAGCCTGTTGAGAAGATGTCACCATCTCAGTGCCAATCAATTGTGACATGGGCAATGCCAC AGTTGACCGACAGATCGAAGCTCCCCAGCATAGTTGACCCAGTGATCAAGGACACCATGGATCCA AAACACCTGTACCAAGTTGCAGCAGTGGCTGTTCTATGCGTGCAGGCTGAACCAAGCTACAGGCCA CTGATCACAGATGTGCTCCACTCTCTTGTTCCTCTAGTGCCGACGGAGCTCGGAGGAACACTAAGA GCTGGAGAGCCACCTTCCCCGAACCTGAGGAATTCTCCATGCTGA >SEQ ID NO: 60 MEMALTPLPLLCSSVLFLVLSSCSLANGRDTPSSSSSSSSSSSSSSSSSSSSSSPATSTVATGISAAAAAAAN GTAALSSAVPAPPPVVIVVHHHFHRELVIAAVLACIATVTIFLSTLYAWTLWRRSRRSTGGKVTRSSDAA KGIKLVPILSRFNSVKMSRKRLVGMFEYPSLEAATEKFSESNMLGVGGFGRVYKAAFDAGVTAAVKRL DGGGPDCEKEFENELDLLGRIRHPNIVSLLGFCIHEGNHYIVYELMEKGSLETQLHGSSHGSTLSWHIRM KIALDTARGLEYLHEHCSPPVIHRDLKSSNILLDSDFNAKIADFGLAVSSGSVNKGSVKLSGTLGYVAPE YLLDGKLIEKSDVYAFGVVLLELLMGRKPVEKMSPSQCQSIVTWAMPQLTDRSKLPSIVDPVIKDTMD PKHLYQVAAVAVLCVQAEPSYRPLITDVLHSLVPLVPTELGGTLRAGEPPSPNLRNSPC >SEQ ID NO: 61 TACTCTCTTTTACAAACTGCTACGAACAACTTCAGCTCCTCCAATTTGCTGGGCGAGGGAAGTTTCG GGCATGTGTATAAAGCGAGACTCGATTATGATGTCTATGCCGCTGTAAAGAGACTTACCAGCGTAG GAAAACAGCCCCAAAAAGAACTCCAGGGAGAGGTGGATCTGATGTGCAAGATAAGACATCCCAAC TTGGTGGCTCTCCTGGGCTATTCAAATGACGGCCCAGAGCCCTTGGTTGTGTACGAGCTCATGCAG AATGGTTCACTTCATGATCAGCTTCATGGCCCCTCATGCGGGAGTGCACTCACCTGGTACCTACGAC TAAAGATTGCTCTTGAAGCTGCCAGCAGAGGACTGGAGCACCTGCATGAAAGCTGCAAGCCTGCA ATAATCCACAGAGACTTCAAGGCATCCAACATCCTCTTGGACGCCAGCTTCAATGCGAAGGTGTCC GACTTTGGTATAGCGGTAGCTCTGGAGGAAGGTGGCGTGGTGAAAGACGACGTACAAGTGCAAGG CACCTTCGGGTACATTGCTCCTGAGTACCTGATGGACGGGACATTGACAGAGAAGAGTGATGTTTA CGGATTTGGAGTAGTATTGCTTGAGCTGCTGACAGGCAGACTGCCCATTGATACGTCCTTACCACTC GGATCGCAATCTCTAGTGACATGGGTAACACCCATACTAACTAACCGAGCAAAGCTGATGGAAGTT ATCGACCCCACCCTTCAAGATACGCTGAACGTGAAGCAACTTCACCAGGTGGCCGCAGTGGCAGTC CTTTGCGTCCAAGCGGAACCCAGCTACCGCCCTCTCATCGCCGACGTGGTTCAGTCACTGGCTCCGC TGGTGCCTCAAGAGCTCGGCGGCGCATTGCGA >SEQ ID NO: 62 YSLLQTATNNFSSSNLLGEGSFGHVYKARLDYDVYAAVKRLTSVGKQPQKELQGEVDLMCKIRHPNLV ALLGYSNDGPEPLVVYELMQNGSLHDQLHGPSCGSALTWYLRLKIALEAASRGLEHLHESCKPAIIHRD FKASNILLDASFNAKVSDFGIAVALEEGGVVKDDVQVQGTFGYIAPEYLMDGTLTEKSDVYGFGVVLL ELLTGRLPIDTSLPLGSQSLVTWVTPILTNRAKLMEVIDPTLQDTLNVKQLHQVAAVAVLCVQAEPSYR PLIADVVQSLAPLVPQELGGALR >SEQ ID NO: 63 ACCTCAGATGCCTATAGGGGTATTCCACTCATGCCTCTCCTGAATCGTTTGAACTCCCGTATTTCCA AGAAGAAGGGATGTGCAACTGCAATTGAATATTCTAAGCTGCAAGCAGCTACAAATAACTTCAGC AGCAATAACATTCTTGGAGAGGGTGGATTTGCGTGTGTATACAAGGCCATGTTTGATGATGATTCC TTTGCTGCTGTGAAGAAGCTAGATGAGGGTAGCAGACAGGCTGAGCATGAATTTCAGAATGAAGT GGAGCTGATGAGCAAAATCCGACATCCAAACCTTGTTTCTTTGCTTGGGTTCTGCTCTCATGAAAAT ACACGGTTCTTAGTATATGATCTGATGCAGAATGGCTCTTTGGAAGACCAATTACATGGGCCATCT CACGGATCTGCACTTACATGGTTTTTGCGCATAAAGATAGCACTTGATTCAGCAAGGGGTCTAGAA CACTTGCATGAGCACTGCAACCCTGCAGTGATTCATCGAGATTTCAAATCATCAAATATTCTTCTTG ATGCAAGCTTCAACGCCAAGCTTTCAGATTTTGGTCTTGCAGTAACAAGTGCAGGATGTGCTGGCA ATACAAATATTGATCTAGTAGGGACATTGGGATATGTAGCTCCAGAATACCTACTTGATGGTAAAT TGACAGAGAAAAGTGATGTCTATGCATATGGAGTTGTTTTGTTGGAGCTACTTTTTGGAAGAAAGC CAATTGATAAATCTCTACCAAGTGAATGCCAATCTCTCATTTCTTGGGCAATGCCACAGCTAACAG ATAGAGAAAAGCTCCCAACTATAGTAGACCCCATGATCAAAGGCACAATGAACTTGAAACACCTA TATCAAGTAGCAGCTGTTGCAATGCTATGTGTGCAGCCAGAACCCAGTTACAGGCCATTAATAGCT GACGTTGTGCACTCTCTCATTCCTCTCGTACCAATAGAACTCGGGGGAACTTTAAAGCTCTCTAATG CACGACCCACTGAGATGAAGTTATTTACTTCTTCCCAATGCAGTGTTGAGATTGCTTCCAACCCAAA ATTGTGA >SEQ ID NO: 64 TSDAYRGIPLMPLLNRLNSRISKKKGCATAIEYSKLQAATNNFSSNNILGEGGFACVYKAMFDDDSFAA VKKLDEGSRQAEHEFQNEVELMSKIRHPNLVSLLGFCSHENTRFLVYDLMQNGSLEDQLHGPSHGSAL TWFLRIKIALDSARGLEHLHEHCNPAVIHRDFKSSNILLDASFNAKLSDFGLAVTSAGCAGNTNIDLVGT LGYVAPEYLLDGKLTEKSDVYAYGVVLLELLFGRKPIDKSLPSECQSLISWAMPQLTDREKLPTIVDPMI KGTMNLKHLYQVAAVAMLCVQPEPSYRPLIADVVHSLIPLVPIELGGTLKLSNARPTEMKLFTSSQCSV EIASNPKL >SEQ ID NO: 65 AATTCGGCACGAGGAGAACACTTGCACGAGCACTGCAACCCTGCAGTGATTCACCGAGATTTCAAA TCATCAAATATTCTTCTTGATGCAAGCTTCAACGCCAAGCTTTCAGATTTTGGTCTTGCAGTAAAAA GTGCAGGATGTGCTGGTAACACAAATATTGATCTAGTAGGGACATTGGGATATGTAGCTCCAGAAT ACATGCTTGATGGTAAATTGACAGAGAAAAGTGATGTCTATGCATATGGAGTTGTTTTGTTAGAGC TACTTTTTGGAAGAAAGCCAATTGATAAATCTCTACCAAGTGAATGCCAATCTCTCATTTCTTGGGC AATGCCACAGCTAACAGATAGAGAAAAGCTCCCGACTATAATAGATCCCATGATCAAAGGCGCAA TGAACTTGAAACACCTATATCAAGTGGCAGCTGTTGCAGTGCTATGTGTGCAGCCAGAACCCAGTT ACAGGCCATTAATAGCTGACGTTGTGCACTCTCTCATTCCTCTCGTACCAGTAGAACTTGGGGGAA CATTAAAGTCATCACCCACTGAGATGAAGTCATTTGCTTCTTCCCAATGCAGTGCCCACGTTGCTTC >SEQ ID NO: 66 NSARGEHLHEHCNPAVIHRDFKSSNILLDASFNAKLSDFGLAVKSAGCAGNTNIDLVGTLGYVAPEYML DGKLIEKSDVYAYGVVLLELLFGRKPIDKSLPSECQSLISWAMPQLTDREKLPTIIDPMIKGAMNLKHLY QVAAVAVLCVQPEPSYRPLIADVVHSLIPLVPVELGGTLKSSPTEMKSFASSQCSAHVAS
>SEQ ID NO: 67 ATGTTCTTGTTTCCTAAAACAGTTCCTATTTGGTTTTTTCATCTGTGTCTAGTAGCAGTTCATGCCAT ACAAGAAGACCCACCTGTCCCTTCACCATCTCCCTCTCTCATTTCTCCTATTTCAACTTCAATGGCTG CCTTCTCTCCAGGGGTTGAATCGGAAATGGGAATCAAAGACCACCCCCAGCATGATGACCTCCACA GGAAAATAATCTTGTTGCTCACTGTTGCTTGTTGCATACTTGTTATCATCCTTCTTTCTTTGTGTTCTT GTTTCATTTACTATAAGAAGTCCTCACAAAAGAAAAAAGCTACTCGGTGTTCAGATGTGGAGAAAG GGCTTTCATTGGCACCATTTTTGGGCAAATTCAGTTCCTTGAAAATGGTTAGTAATAGGGGATCTGT TTCATTAATTGAGTATAAGATACTAGAGAAAGGAACAAACAATTTTGGCGATGATAAATTGTTGGG AAAGGGAGGATTTGGACGTGTATATAAGGCTGTAATGGAAGATGACTCAAGTGCTGCAGTCAAGA AACTAGACTGCGCAACTGATGATGCGCAGAGAGAATTTGAGAATGAGGTGGATTTGTTAAGCAAA TTTCACCATCCAAATATAATTTCTATTGTGGGTTTTAGTGTTCATGAGGAGATGGGGTTCATTATTT ATGAGTTAATGCCAAATGGGTGCCTTGAAGATCTACTGCATGGACCTTCTCGTGGATCTTCACTAA ATTGGCATTTAAGGTTGAAAATTGCTCTTGATACAGCAAGAGGATTAGAATATCTGCATGAATTCT GCAAGCCAGCAGTGATCCATAGAGATCTGAAATCATCGAATATTCTTTTGGACGCCAACTTCAATG CCAAGCTGTCAGATTTTGGTCTTGCTGTAGCTGATAGCTCTCATAACAAGAAAAAGCTCAAGCTTTC AGGCACTGTGGGTTATGTAGCCCCAGAGTATATGTTAGATGGTGAATTGACGGATAAGAGTGATGT CTATGCTTTTGGAGTTGTGCTTCTAGAGCTTCTATTAGGAAGAAGGCCTGTAGAAAAACTGACACC AGCTCATTGCCAATCTATAGTAACATGGGCCATGCCTCAGCTCACTAACAGAGCTGTGCTTCCAAC CCTTGTGGATCCTGTGATCAGAGATTCAGTAGATGAGAAGTACTTGTTCCAGGTTGCAGCAGTAGC CGTGTTGTGTATTCAACCAGAGCCAAGTTACCGCCCTCTCATAACAGATGTTGTGCACTCTCTCGTC CCATTAGTTCCTCTTGAGCTTGGAGGGACACTAAGAGTTCCACAGCCTACAACTCCCAGAGGTCAA CGACAAGGCCCATCAAAGAAACTGTTTTTGGATGGTGCTGCCTCTGCT >SEQ ID NO: 68 MFLFPKTVPIWFFHLCLVAVHAIQEDPPVPSPSPSLISPISTSMAAFSPGVESEMGIKDHPQHDDLHRKIIL LLTVACCILVIILLSLCSCFIYYKKSSQKKKATRCSDVEKGLSLAPFLGKFSSLKMVSNRGSVSLIEYKILE KGTNNFGDDKLLGKGGFGRVYKAVMEDDSSAAVKKLDCATDDAQREFENEVDLLSKFHHPNIISIVGF SVHEEMGFIIYELMPNGCLEDLLHGPSRGSSLNWHLRLKIALDTARGLEYLHEFCKPAVIHRDLKSSNIL LDANFNAKLSDFGLAVADSSHNKKKLKLSGTVGYVAPEYMLDGELTDKSDVYAFGVVLLELLLGRRP VEKLTPAHCQSIVTWAMPQLTNRAVLPTLVDPVIRDSVDEKYLFQVAAVAVLCIQPEPSYRPLITDVVH SLVPLVPLELGGTLRVPQPTTPRGQRQGPSKKLFLDGAASA >SEQ ID NO: 69 GCTGCTGCGGTGAAGAGATTGGATGGTGGGGCTGGGGCACATGATTGCGAGAAGGAATTCGAGAA TGAGTTAGATTTGCTTGGAAAGATTCGGCATCCGAACATTGTGTCCCTTGTGGGCTTCTGTATTCAT GAGGAGAACCGTTTCATTGTTTATGAGCTGATAGAGAATGGGTCGTTGGATTCACAACTTCATGGG CCATCACATGGTTCAGCTCTGAGCTGGCATATTCGGATGAAGATTGCTCTTGACACGGCAAGGGGA TTAGAGTACCTGCATGAGCACTGCAACCCACCAGTTATCCATAGGGATCTGAAGTCATCTAACATA CTTTTAGATTCAGACTTCAGTGCTAAGATTTCAGATTTTGGCCTTGCGGTGATTAGTGGGAATCACA GCAAAGGGAATTTAAAGCTTTCTGGGACTATGGGCTATGTGGCCCCTGAGTACTTATTGGATGGGA AGTTGACTGAGAAGAGCGATGTATATGCGTTTGGGGTGGTACTTCTAGAACTTCTACTGGGAAGGA AACCTGTTGAGAAGATGGCACAATCTCAATGCCAATCAATTGTTACATGGGCCATGCCTCAGCTAA CTGATAGATCCAAACTCCCTAACATAATTGATCCCATGATCAAGAACACAATGGATCTGAAACACT TGTACCAAGTTGCTGCAATGGCTGTGCTCTGA >SEQ ID NO: 70 AAAVKRLDGGAGAHDCEKEFENELDLLGKIRHPNIVSLVGFCIHEENRFIVYELIENGSLDSQLHGPSHG SALSWHIRMKIALDTARGLEYLHEHCNPPVIHRDLKSSNILLDSDFSAKISDFGLAVISGNHSKGNLKLSG TMGYVAPEYLLDGKLIEKSDVYAFGVVLLELLLGRKPVEKMAQSQCQSIVTWAMPQLTDRSKLPNIID PMIKNTMDLKHLYQVAAMAVL >SEQ ID NO: 71 ACCCTCGGTTATGTAGCTCCTGAGTATCTGTTAGATGGTAAGTTAACAGAGAAAAGCGATGTGTAT GGGTTTGGAGTAGTGTTACTCGAGCTTCTGCTTGGGAAGAAGCCTATGGAGAAAGTGGCAACAACA GCAACTCAGTGCCAGATGATAGTCACATGGACCATGCCTCAGCTCACTGACAGAACGAAACTTCCG AATATCGTGGATCCGGTGATCAGAAACTCCATGGATTTAAAGCACTTGTACCAGGTTGCTGCTGTG GCAGTATTGTGTGTGCAGCCAGAACCGAGTTATCGGCCATTGATAACTGATATTTTGCATTCTCTTG TGCCCCTTGTCCCTGTTGAGCTTGGTGGGACGCTCAGGAACTCGATAACAATGGCTACAACAACAA TATCTCCTGAAAGCTAA >SEQ ID NO: 72 TLGYVAPEYLLDGKLTEKSDVYGFGVVLLELLLGKKPMEKVATTATQCQMIVTWTMPQLTDRTKLPNI VDPVIRNSMDLKHLYQVAAVAVLCVQPEPSYRPLITDILHSLVPLVPVELGGTLRNSITMATTTISPES >SEQ ID NO: 73 CGGCACGAGGGGCTGGTGGCCATGATCGAGTACCCGTCGCTGGAGGCGGCGACGGGCAAGTTCAG CGAGAGCAACGTGCTCGGCGTCGGCGGGTTCGGCTGCGTCTACAAGGCGGCGTTCGACGGCGGCG CCACCGCCGCCGTGAAGAGGCTCGAAGGCGGCGAGCCGGACTGCGAGAAGGAGTTCGAGAATGAG CTGGACTTGCTTGGCAGGATCAGGCACCCAAACATAGTGTCCCTCCTGGGCTTCTGCGTCCATGGT GGCAATCACTACATTGTTTATGAGCTCATGGAGAAGGGATCATTGGAGACACAACTGCATGGGCCT TCACATGGATCGGCTATGAGCTGGCACGTCCGGATGAAGATCGCGCTCGACACGGCGAGGGGATT AGAGTATCTTCATGAGCACTGCAATCCACCAGTCATCCATAGGGATCTGAAATCGTCTAATATACT CTTGGATTCAGACTTCAATGCTAAGATTGCAGATTTTGGCCTTGCAGTGACAAGTGGGAATCTTGA CAAAGGGAACCTGAAGATCTCTGGGACCTTGGGATATGTAGCTCCCGAGTACTTATTAGATGGGAA GTTGACCGAGAAGAGCGACGTCTACGCGTTTGGAGTAGTGCTTCTAGAGCTCCTGATGGGGAGGAA GCCTGTTGAGAAGATGTCACCATCTCAGTGCCAATCAATTGTGTCATGGGCCATGCCTCAGCTAAC CGACAGATCGAAGCTACCCAACATCATCGACCCGGTGATCAAGGACACAATGGACCCAAAGCATT TATACCAAGTTGCGGCGGTGGCCGTTCTATGCGTGCAGCCCGAACCGAGTTACAGACCGCTGATAA CAGACGTTCTCCACTCCCTTGTTCCTCTGGTACCCGCGGATCTCGGGGGGAACGCTCAGAGTTACA GAGCCGCATTCTCCACACCAAATGTACCATCCCTCTTGAGAAGTGATCCTACAAGTTTCGTCGAAG CGGGGAAAGCGAATNTATACGGTCCAGCGGTAGATGGCTGTTATTTTGGTACTTATATCTCACCCT GTCCTGCTGCTTATCTTAGGATGAGTGANGAGCTCCNACCTGCTGCTTTTGCTGGTTGGGCAGAGA GAATACAGTTCTGGTTAGGATTG >SEQ ID NO: 74 RHEGLVAMIEYPSLEAATGKFSESNVLGVGGFGCVYKAAFDGGATAAVKRLEGGEPDCEKEFENELDL LGRIRHPNIVSLLGFCVHGGNHYIVYELMEKGSLETQLHGPSHGSAMSWHVRMKIALDTARGLEYLHE HCNPPVIHRDLKSSNILLDSDFNAKIADFGLAVTSGNLDKGNLKISGTLGYVAPEYLLDGKLTEKSDVY AFGVVLLELLMGRKPVEKMSPSQCQSIVSWAMPQLTDRSKLPNIIDPVIKDTMDPKHLYQVAAVAVLC VQPEPSYRPLITDVLHSLVPLVPADLGGNAQSYRAAFSTPNVPSLLRSDPTSFVEAGKANXYGPAVDGC YFGTYISPCPAAYLRMSXELXPAAFAGWAERIQFWLGL >SEQ ID NO: 75 ATGAAAGTGATTGGGAGAAAGGGTTATGTCTCTTTTATTGATTATAAGGTACTAGAAACTGCAACA AACAATTTTCAGGAAAGTAATATCCTGGGTGAGGGCGGGTTTGGTTGCGTCTACAAGGCGCGGTTG GATGATAACTCCCATGTGGCTGTGAAGAAGATAGATGGTAGAGGCCAGGATGCTGAGAGAGAATT TGAGAATGAGGTGGATTTGTTGACTAAAATTCAGCACCCAAATATAATTTCTCTCCTGGGTTACAG CAGTCATGAGGAGTCAAAGTTTCTTGTCTATGAGCTGATGCAGAATGGATCTCTGGAAACTGAATT GCACGGACCTTCTCATGGATCATCTCTAACTTGGCATATTCGAATGAAAATCGCTCTGGATGCAGC AAGAGGATTAGAGTATCTACATGAGCACTGCAACCCACCAGTCATCCATAGAGATCTTAAATCATC TAATATTCTTCTGGATTCAAACTTCAATGCCAAGCTTTCGGATTTTGGTCTAGCTGTAATTGATGGG CCTCAAAACAAGAACAACTTGAAGCTTTCAGGCACCCTGGGTTATCTAGCTCCTGAGTATCTTTTAG ATGGTAAACTGACTGATAAGAGTGATGTGTATGCATTTGGAGTGGTGCTTCTAGAGCTACTACTGG GAAGAAAGCCTGTGGAAAAACTGGCACCAGCTCAATGCCAGTCCATTGTCACATGGGCCATGCCA CAGCTGACTGACAGATCAAAGCTCCCAGGCATCGTTGACCCTGTGGTCAGAGACACGATGGATCTA AAGCATTTATACCAAGTTGCTGCTGTAGCTGTGCTATGTGTGCAACCAGAACCAAGTTACCGGCCA TTGATAACAGATGTTCTGCACTCCCTCATCCCACTCGTTCCAGTTGAGTTGGGAGGGATGCTAAAA GTTACCCAGCAAGCGCCGCCTATCAACACCACTGCACCTTCTGCTGGAGGTTGA >SEQ ID NO: 76 MKVIGRKGYVSFIDYKVLETATNNFQESNILGEGGFGCVYKARLDDNSHVAVKKIDGRGQDAEREFEN EVDLLTKIQHPNIISLLGYSSHEESKFLVYELMQNGSLETELHGPSHGSSLTWHIRMKIALDAARGLEYL HEHCNPPVIHRDLKSSNILLDSNFNAKLSDFGLAVIDGPQNKNNLKLSGTLGYLAPEYLLDGKLTDKSD VYAFGVVLLELLLGRKPVEKLAPAQCQSIVTWAMPQLTDRSKLPGIVDPVVRDTMDLKHLYQVAAVA VLCVQPEPSYRPLITDVLHSLIPLVPVELGGMLKVTQQAPPINTTAPSAGG >SEQ ID NO: 77 ATGCCGCCGCCATCGCCGCTCCTCCGTTCCTCCGCCTTCGTCGTCTTGCTGCTCCTGGTGTGTCGCCC GTTGTTGGTCGCCAATGGGAGGGCCACGCCGCCTTCTCCGGGATGGCCACCGGCGGCTCAGCCCGC GCTGCAGCCTGCACCCACCGCCAGCGGCGGCGTGGCCTCCGTGCTTCCTTCGGCCGTGGCGCCTCC TCCCTTAGGTGTGGTTGTGGCGGAGAGGCACCACCACCTCAGCAGGGAGCTCGTCGCTGCCATTAT CCTCTCATCCGTCGCCAGCGTCGTGATCCCCATTGCCGCGCTGTATGCCTTCTTGCTGTGGCGACGA TCACGGCGAGCCCTGGTGGATTCCAAGGACACCCAGAGCATAGATACCGCAAGGATTGCTTTTGCG CCGATGTTGAACAGCTTTGGCTCGTACAAGACTACCAAGAAGAGTGCCGCGGCGATGATGGATTAC ACATCTTTGGAGGCAGCGACAGAAAACTTCAGTGAGAGCAATGTCCTTGGATTTGGTGGGTTTGGG TCTGTGTACAAAGCCAATTTTGATGGGAGGTTTGCTGCTGCGGTGAAGAGACTGGATGGTGGGGCA CATGATTGCAAGAAGGAATTCGAGAATGAGCTAGACTTGCTTGGGAAGATTCGACATCCGAACATC GTGTCCCTTGTGGGCTTCTGCATTCATGAGGAGAACCGTTTCGTTGTTTATGAGCTGATGGAGAGTG GGTCGTTGGATTCGCAACTTCATGGGCCATCACATGGTTCAGCTCTGAGCTGGCATATTCGGATGA AGATTGCTCTCGACACAGCAAGGGGATTAGAGTACCTGCATGAGCACTGCAACCCACCGGTTATCC ATAGGGATCTTAAGTCATCTAACATACTTTTAGATTCAGACTTCAGCGCTAAGATTTCAGACTTTGG CCTGGCAGTGACTAGTGGGAATCACAGCAAAGGGAATTTAAAGCTTTCTGGGACTATGGGCTATGT GGCTCCTGAGTACTTATTAGATGGGAAGCTGACTGAGAAGAGCGATGTATACGCGTTTGGGGTAGT ACTTCTAGAACTCCTGCTGGGAAGGAAACCTGTCGAGAAGATGGCACAATCTCAGTGCCGATCAAT CGTTACATGGGCCATGCCTCAGCTAACTGATAGATCCAAGCTCCCGAACATAATTGATCCCATGAT CAAGAACACAATGGATCTGAAACACTTGTACCAAGTTGCTGCAGTGGCCGTGCTCTGCGTGCAGCC AGAGCCGAGTTACAGGCCACTGATCACCGACGTGCTTCACTCACTGGTACCTCTAGTGCCCACGGA GCTTGGAGGAACGCTGAGGATCGGCCCGGAATCGCCCTACCTACGCTACTAA >SEQ ID NO: 78 MPPPSPLLRSSAFVVLLLLVCRPLLVANGRATPPSPGWPPAAQPALQPAPTASGGVASVLPSAVAPPPLG VVVAERHHHLSRELVAAIILSSVASVVIPIAALYAFLLWRRSRRALVDSKDTQSIDTARIAFAPMLNSFGS YKTTKKSAAAMMDYTSLEAATENFSESNVLGFGGFGSVYKANFDGRFAAAVKRLDGGAHDCKKEFE NELDLLGKIRHPNIVSLVGFCIHEENRFVVYELMESGSLDSQLHGPSHGSALSWHIRMKIALDTARGLEY LHEHCNPPVIHRDLKSSNILLDSDFSAKISDFGLAVTSGNHSKGNLKLSGTMGYVAPEYLLDGKLTEKSD VYAFGVVLLELLLGRKPVEKMAQSQCRSIVTWAMPQLTDRSKLPNIIDPMIKNTMDLKHLYQVAAVAV LCVQPEPSYRPLITDVLHSLVPLVPTELGGTLRIGPESPYLRY >SEQ ID NO: 79 ATGTTGCTCGCGTGTCCTGCAGTGATCATCGTGGAGCGCCACCGTCATTTCCACCGTGAGCTAGTCA TCGCCTCCATCCTCGCCTCAATCGCCATGGTCGCGATTATCCTCTCCACGCTGTACGCGTGGATCCC GCGCAGGCGGTCCCGCCGGCTGCCCCGCGGCATGAGCGCAGACACCGCGAGGGGGATCATGCTGG CGCCGATCCTGAGCAAGTTCAACTCGCTCAAGACGAGCAGGAAGGGGCTCGTGGCGATGATCGAG TACCCGTCGCTGGAGGCAGCGACAGGGGGGTTCAGTGAGAGCAACGTGCTCGGCGTAGGCGGCTT CGGTTGCGTCTACAAGGCAGTCTTCGATGGCGGCGTTACCGCGGCGGTCAAGAGGCTGGAGGGAG GTGGCCCTGAGTGCGAGAAGGAATTCGAGAATGAGCTGGATCTGCTTGGCAGGATTCGGCACCCC AACATCGTGTCCCTGCTGGGCTTTTGTGTTCACGAGGGGAATCACTACATTGTTTATGAGCTCATGG AGAAGGGATCCCTGGACACACAGCTGCATGGGGCCTCACATGGATCAGCGCTGACCTGGCATATCC GGATGAAGATCGCACTCGACATGGCCAGGGGATTAGAATACCTCCATGAGCACTGCAGTCCACCA GTGATCCATAGGGATCTGAAGTCATCTAACATACTTTTAGATTCTGACTTCAATGCTAAGATTTCAG ATTTTGGTCTTGCAGTGACCAGTGGGAACATTGACAAGGGAAGCATGAAGCTTTCTGGGACCTTGG GTTATGTGGCCCCTGAGTACCTATTAGATGGGAAGCTGACTGAAAAGAGTGACGTATATGCATTTG GAGTGGTGCTTCTTGAGCTACTAATGGGAAGGAAGCCTGTCGAGAAGATGAGTCAAACTCAGTGCC AATCAATTGTGACGTGGGCCATGCCGCAGCTGACTGACAGAACAAAACTTCCCAACATAGTTGACC CAGTGATCAGGGACACCATGGATCCAAAGCATTTGTACCAAGTGGCAGCAGTGGCAGTTCTATGTG TGCAACCAGAACCAAGTTACAGACCGCTGATTACTGATGTTCTCCACTCTCTTGTCCCTCTAGTCCC TGTGGAGCTCGGAGGGACACTGAGGGTTGTAGAGCCACCTTCCCCAAACCTAAAACATTCTCCTTG T >SEQ ID NO: 80 MLLACPAVIIVERHRHFHRELVIASILASIAMVAIILSTLYAWIPRRRSRRLPRGMSADTARGIMLAPILSK FNSLKTSRKGLVAMIEYPSLEAATGGFSESNVLGVGGFGCVYKAVFDGGVTAAVKRLEGGGPECEKEF ENELDLLGRIRHPNIVSLLGFCVHEGNHYIVYELMEKGSLDTQLHGASHGSALTWHIRMKIALDMARGL EYLHEHCSPPVIHRDLKSSNILLDSDFNAKISDFGLAVTSGNIDKGSMKLSGTLGYVAPEYLLDGKLTEK SDVYAFGVVLLELLMGRKPVEKMSQTQCQSIVTWAMPQLTDRTKLPNIVDPVIRDTMDPKHLYQVAA VAVLCVQPEPSYRPLITDVLHSLVPLVPVELGGTLRVVEPPSPNLKHSPC >SEQ ID NO: 81 ATGAAGAAGAAGCTTGTGCTGCATCTGCTTCTTTTCCTTGTTTGTGCTCTTGAAAACATTGTTTTGGC CGTACAAGGCCCTGCTTCATCACCCATTTCTACTCCCATCTCTGCTTCAATGGCTGCCTTCTCTCCAG CTGGGATTCAACTTGGAGGTGAGGAGCACAAGAAAATGGATCCAACCAAGAAAATGTTATTAGCT CTCATTCTTGCTTGCTCTTCATTGGGTGCAATTATCTCTTCCTTGTTCTGTTTATGGATTTATTACAG GAAGAATTCAAGCAAATCCTCTAAAAATGGCGCTAAGAGCTCAGATGGTGAAAAAGGGAATGGTT TGGCACCATATTTGGGTAAATTCAAGTCTATGAGGACGGTTTCCAAAGAGGGTTATGCTTCGTTTAT GGACTATAAGATACTTGAAAAAGCTACAAACAAGTTCCATCATGGTAACATTCTGGGTGAGGGTGG ATTTGGATGTGTTTACAAGGCTCAATTCAATGATGGTTCTTATGCTGCTGTTAAGAAGTTGGACTGT GCAAGCCAAGATGCTGAAAAAGAATATGAGAATGAGGTGGGTTTGCTATGTAGATTTAAGCATTCC AATATAATTTCACTGTTGGGTTATAGCAGTGATAACGATACAAGGTTTATTGTTTATGAGTTGATGG AAAATGGTTCTTTGGAAACTCAATTACATGGACCTTCTCATGGTTCATCATTAACTTGGCATAGGAG GATGAAAATTGCTTTGGATACAGCAAGAGGATTAGAATATCTACATGAGCATTGCAATCCACCAGT CATCCATAGAGATCTGAAATCATCTAATATACTTTTGGATTTGGACTTCAATGCAAAGCTTTCAGAT TTTGGTCTTGCAGTAACTGATGCGGCAACAAACAAGAATAACTTGAAGCTTTCGGGTACTTTAGGT TATCTAGCTCCAGAATACCTTTTAGATGGTAAATTAACAGATAAGAGTGATGTTTATGCATTCGGTG TTGTGCTGCTCGAACTTCTATTGGGACGAAAGGCTGTTGAAAAATTATCACAACTCAGTGCCAATC TTAGGTCCATTTGGGCATAG >SEQ ID NO: 82 MKKKLVLHLLLFLVCALENIVLAVQGPASSPISTPISASMAAFSPAGIQLGGEEHKKMDPTKKMLLALIL ACSSLGAIISSLFCLWIYYRKNSSKSSKNGAKSSDGEKGNGLAPYLGKFKSMRTVSKEGYASFMDYKIL EKATNKFHHGNILGEGGFGCVYKAQFNDGSYAAVKKLDCASQDAEKEYENEVGLLCRFKHSNIISLLG YSSDNDTRFIVYELMENGSLETQLHGPSHGSSLTWHRRMKIALDTARGLEYLHEHCNPPVIHRDLKSSNI LLDLDFNAKLSDFGLAVTDAATNKNNLKLSGTLGYLAPEYLLDGKLTDKSDVYAFGVVLLELLLGRKA VEKLSQLSANLRSIWA >SEQ ID NO: 83 GGAGTGGGAATTGAGAAGCAGCCACCCACCCACCCACCCTATGGATAAAAATAGAAGGCTGTTGA TAGCACTCATTGTAGCTTCTACTGCATTAGGACTAATCTTTATCTTCATCATTTTATTCTGGATTTTT CACAAAAGATTTCACACCTCAGATGTTGTGAAGGGAATGAGTAGGAAAACATTGGTTTCTTTAATG GACTACAACATACTTGAATCAGCCACCAACAAATTTAAAGAAACTGAGATTTTAGGTGAGGGGGG TTTTGGATGTGTGTACAAAGCTAAATTGGAAGACAATTTTTATGTAGCTGTCAAGAAACTAACCCA AAATTCCATTAAAGAATTTGAGACTGAGTTAGAGTTGTTGAGTCAAATGCAACATCCCAATATTAT TTCATTGTTGGGATATTGCATCCACAGTGAAACAAGATTGCTTGTCTATGAACTCATGCAAAATGG ATCACTAGAAACTCAATTACATGGGCCTTCCCGTGGATCAGCATTAACTTGGCATCGCAGGATAAA AATTGCCCTTGATGCAGCAAGAGGAATAGAATATTTACATGAGCAGCGCCATCCCCCTGTAATTCA TAGAGATCTGAAATCATCTAATATTCTTTTAGATTCCAACTTCAATGCAAAGGTAAAACTTTTTATG TAGAAATTATACTAGGACTAGTTTTCCCTCTATTAATCTTGTGTTGTGATTAATTTTAGCTGTCAGAT TTTGGTCTTGCTGTGTTGAGTGGGGCTCAAAACAAAAACAATATCAAGCTTTCTGGAACTATAGGT TATGTAGCGCCTGAATACATGTTAGATGGAAAATTAAGTGATAAAAGTGATGTTTATGGTTTTGGA GTAGTACTTTTGGAGCTGTTATTGGGAAGGCGGCCTGTAGAAAAGGAGGCAGCCACTGAATGTCAG TCTATAGTGACATGGGCCATGCCTCAGCTGACAGATAGATCAAAGCTTCCAAACATTGTTGATCCT GTCATACAAAACACAATGGATTTAAAGCATNTGTATCAGGTTGCTGCAGGTGCTCTATTATGTGTTC AGCCAGAGCCAAGCTATCGTCCCGTATAA >SEQ ID NO: 84 GAGTATCAGTTATTGGAAGCTGCAACTGACAATTTTAGTGAGAGTAATATTTTGGGAGAAGGTGGA TTTGGATGTGTTTACAAAGCATGTTTTGATAACAACTTTCTCGCTGCTGTCAAGAGAATGGATGTTG GTGGGCAAGATGCAGAAAGAGAATTTGAGAAAGAAGTAGATTTGTTGAATAGAATTCAGCATCCG GATATAATTTCCCTGTTGGGTTATTGTATTCATGATGAGACAAGGTTCATCATTTATGAACTAATGC AGAACGGATCTTTGGAAAGACAATTACATGGACCTTCTCATGGATCGGCTTTAACTTGGCATATCC GGATGAAAATTGCACTTGATACAGCAAGAGCATTAGAATATCTCCATGAGAATTGCAACCCTCCTG TGATCCACAGAGATCTGAAATCATCCAATATACTTTTGGATTCTAATTTCAAGGCCAAGATTTCAGA TTTTGGTCTTGCTGTAATTTCTGGGAGTCAAAACAAGAACAACATTAAGCTTTCAGGCACTCTTGGT TATGTTGCTCCAGAATATCTGTTAGATGGTAAATTGACTGACAAAAGTGATGTCTATGCTTTTGGGG TTATCCTTCTAGAACTCCTAATGGGAAGAAAACCTGTAGAGAAAATGACACGAACTCAGTGTCAAT CTATCGTTACATGGGCCATGCCTCAACTCACTGATAGATCAAAGCTACCAAACATTGTTGATCCTGT GATTAAAAACACAATGGATTTGAAGCATTTGTTCCAAGTTGCTGCTGTAGCTGTACTGTGTGTACA ACCAGAACCAAGTTACCGGCCATTAATCACAGATGTCCTTCACTCCCTCGTACCCCTTGTTCCTGTC GATCTTGGAGG >SEQ ID NO: 85 EYQLLEAATDNFSESNILGEGGFGCVYKACFDNNFLAAVKRMDVGGQDAEREFEKEVDLLNRIQHPDII SLLGYCIHDETRFIIYELMQNGSLERQLHGPSHGSALTWHIRMKIALDTARALEYLHENCNPPVIHRDLK SSNILLDSNFKAKISDFGLAVISGSQNKNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVILLELLMGR KPVEKMTRTQCQSIVTWAMPQLTDRSKLPNIVDPVIKNTMDLKHLFQVAAVAVLCVQPEPSYRPLITDV LHSLVPLVPVDLGG >SEQ ID NO: 86 TGTGCTCATGATGAGACCAAACTACTTGTTTACGAACTTATGCACAATGGTTCGTTAGAAACTCAAT TACACGGTCCTTCTTGTGGATCCAATTTAACATGGCATTGTCGGATGAAAATTGCGCTAGATATAGC GAGAGGATTGGAATATTTACATGAACACTGCAAACCATCTGTGATTCATAGAGATTTGAAGTCATC TAACATCCTTTTGGATTCAAAATTCAATGCCAAGCTTTCGGATTTCGGTCTTGCTGTGATGAACGGT
GCCAATACCAAAAACATTAAGCTTTCGGGGACGTTGGGTTACGTAGCTCCCGAGTATCTTTTAAAT GGGAAATTGACCGATAAAAGTGACGTCTACGCATTCGGAGTTGTACTTTTAGAGCTTCTACTCAAA AGGCGGCCTGTCGAAAAACTAGCACCATCCGAGTGCCAGTCCATCGTCACTTGGGCTATGCCGCAA CTAACAGACAGAACAAAGCTTCCGAGTGTTATAGATCCCGTGATCAGGGACACGATGGATCTTAAA CACTTGTATCAAGTGGCGGCTGTGGCTGTGTTGTGTGTTCAACCGGAACCGGGATACCGGCCGTTG ATAACCGACGTCTTGCATTCTCTGGTTCCTCTCGTGCCGGTTGAACTCGGAGGGACTCTACGAGTTG CGGAAACAGGTTGCGGCACAGTTGACTTATGA >SEQ ID NO: 87 CAHDETKLLVYELMHNGSLETQLHGPSCGSNLTWHCRMKIALDIARGLEYLHEHCKPSVIHRDLKSSNI LLDSKFNAKLSDFGLAVMNGANTKNIKLSGTLGYVAPEYLLNGKLTDKSDVYAFGVVLLELLLKRRPV EKLAPSECQSIVTWAMPQLTDRTKLPSVIDPVIRDTMDLKHLYQVAAVAVLCVQPEPGYRPLITDVLHS LVPLVPVELGGTLRVAETGCGTVDL >SEQ ID NO: 88 TGGATTTGGATGCGTTTAAAAGCTCAACTCAATGATAACTTATTAGTTGCGGTCAAACGACTAGAC AATAAAAGTCAAAATTCCATCAAAGAATTCCAGACGGAAGTGAATATTTTGAGTAAAATTCAACAT CCAAATATAATTAGTTTGTTGGGATATTGCGATCATGATGAAAGCAAGCTACTTGTTTACGAATTG ATGCAAAATGGTTCTTTAGAAACTCAGTTACATGGGCCTTCTTGTGGATCCAATTTAACATGGTATT GCCGGATGAAAATTGCCCTAGATATAGCAAGAGGATTGGAATATTTACATGAACACTCCAAACCAT CTGTGATTCATAGAGATCTCAAATCATCTAATATACTTCTTGATTCAAATTTCAATGCAAAGCTTTC GGATTTTGGTCTTGCGGTGATGGAAGGTGCAAATAGCAAAAACATTAAACTTTCGGGGACATTGGG ATACGTAGCACCCGAATATCTTTTAGATGGGAAATTAACCGATAAAAGTGACGTGTATGCATTTGG AGTCGTACTTTTTGAGCTTTTACTCAGAAGACGACACGTTGAAAAACTAGAATCATCACAATCCCG CCAATCTATTGTCACTTGGGCGATGCCACTACTAATGGACAGATCGAAGCTTCCGAGTGTGATAGA TCCTGTGATTAGGGATACAATGGATCTTAAACATCTTTATCAAGTGGCTGCGGTGGCGGTGTTGTGT GTTCAATCGGAACCGAGTTACCGTCCGTTGATAACCGATGTTTTACATTCTCTTGTTCCTCTTGTCCC GGTTGAACTTGGAGGGACACTTAGAGTTGTAGAAAAGAGTGTTGT >SEQ ID NO: 89 WIWMRLKAQLNDNLLVAVKRLDNKSQNSIKEFQTEVNILSKIQHPNIISLLGYCDHDESKLLVYELMQN GSLETQLHGPSCGSNLTWYCRMKIALDIARGLEYLHEHSKPSVIHRDLKSSNILLDSNFNAKLSDFGLAV MEGANSKNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLFELLLRRRHVEKLESSQSRQSIVTWAM PLLMDRSKLPSVIDPVIRDTMDLKHLYQVAAVAVLCVQSEPSYRPLITDVLHSLVPLVPVELGGTLRVV EKSVV >SEQ ID NO: 90 ATTCTTTTAGATGCAAACTTCAATGCCAAGCTTTCTGATTTTGGCTTGTCTGTCATTGTTGGAGCAC AAAACAAGAATGATATAAAGCTTTCCGGAACGATGGGTTATGTTGCTCCTGAATATCTTTTAGATG GTAAATTGACTGATAAAAGTGATGTCTATGCTTTTGGAGTTGTGCTTTTGGAGCTTCTTTTAGGAAG AAGGCCTGTTGAAAAACTGGCACCATCTCAATGTCAATCCATTGTCACATGGGCTATGCCTCAACT CACTGATAGATCAAAGTTACCCGATATCGTTGATCCGGTGATCAGACACACAATGGACCCTAAACA TTTATTTCAGGTTGCTGCTGTCGCCGTGCTGTGTGTGCAACCAGAACCGAGCTATCGTCCCCTAATA ACAGATCTTTTGCACTCTCTTATTCCTCTTGTTCCTGTTGAGCTAGGAGGTACTCACAGATCATCAA CATCACAAGCTCCTGTGGCTCCAGCTTAG >SEQ ID NO: 91 ILLDANFNAKLSDFGLSVIVGAQNKNDIKLSGTMGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLGRRP VEKLAPSQCQSIVTWAMPQLTDRSKLPDIVDPVIRHTMDPKHLFQVAAVAVLCVQPEPSYRPLITDLLH SLIPLVPVELGGTHRSSTSQAPVAPA >SEQ ID NO: 92 GATGGGAAGCTCACCGAGAAAAGCGACGTGTACGCGTTTGGCATAGTGCTTCTTGAGCTGCTAATG GGAAGGAAGCCTGTTGAGAAGTTGAGTCAATCTCAGTGCCAATCAATTGTGACTTGGGCCATGCCC CAACTGACAGACAGATCAAAACTTCCCAACATAATTGACCCAGTGATCAGGGACACAATGGATCC AAAGCACTTGTATCAGGTTGCAGCAGTGGCTGTTCTATGCGTGCAACCAGAACCGAGTTACAGACC ACTGATAACGGATGTTCTCCACTCTTTAGTTCCTCTAGTGCCTGTGGAGCTTGGTGGGACACTAAGG GTTGCAGAGCCACCGTCCCCAAACCAAAATCATTCTCCTCGTTGA >SEQ ID NO: 93 DGKLTEKSDVYAFGIVLLELLMGRKPVEKLSQSQCQSIVTWAMPQLTDRSKLPNIIDPVIRDTMDPKHL YQVAAVAVLCVQPEPSYRPLITDVLHSLVPLVPVELGGTLRVAEPPSPNQNHSPR >SEQ ID NO: 94 GGGGTTCATGGCAAGAACAATATAAAACTTTCAGGAACTTTAGGATATGTCGCGCCGGAATACCTT TTAGATGGTAAACTTACTGATAAAAGTGACGTTTATGCGTTTGGAGTTGTGCTTCTCGAGCTTTTGA TAGGACGAAAACCCGTGGAGAAAATGTCACCATTTCAATGCCAATTTATCGTTACATGGGCAATGC CTCAGCTAACGGACAGATCGAAGCTTCCTAATCTTGTGGATCCTGTGATTAGAGATACTATGGACT TGAAGCCCTTATATCAAGTTGCGGCTGTAACTGTGTTATGTGTACAACCCGAACCAAGTTACCGCC CATTAATAACGGATGTTTTGCATTCGTTCATCCCACTTGTACCTGCTGATCTTGGAGGGTCGTTAAA AGTTGTCGACTTTTAA >SEQ ID NO: 95 GVHGKNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLIGRKPVEKMSPFQCQFIVTWAMPQ LTDRSKLPNLVDPVIRDTMDLKPLYQVAAVTVLCVQPEPSYRPLITDVLHSFIPLVPADLGGSLKVVDF >SEQ ID NO: 96 ATCGTGTTCCATTTTGGTTGTTGTCTAAAGCTTTCAGATTTTGGTCTTGCTGTAATGGATGGAGCCC AGAACAAAAACAACATCAAGCTTTCAGGGACATTGGGTTATGTAGCTCCAGAGTATCTTTTAGATG GAAAACTGACCGACAAAAGTGATGTATATGCATTTGGAGTTGTACTTTTAGAGCTTCTACTTGGAA GACGGCCTGTAGAAAAACTGGCCGCATCTCAATGCCAATCTATCGTCACTTGGGCCATGCCACAGC TAACAGACAGATCAAAGCTCCCAAATATTGTCGATCCTGTAATCAGATATACGATGGATCTCAAAC ACTTGTACCAAGTTGCTGCCGTGGCAGTGCTGTGTGTGCAACCAGAGCCAAGTTACCGGCCATTAA TAACCGATGTTTTGCATTCTCTTATCCCTCTTGTTCCGGTGGAGCTCGGGGGAACTCTAAAAGCTCC ACAAACAAGGTCTTCGGTAACAAATGACCCGTGA >SEQ ID NO: 97 IVFHFGCCLKLSDFGLAVMDGAQNKNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLGRR PVEKLAASQCQSIVTWAMPQLTDRSKLPNIVDPVIRYTMDLKHLYQVAAVAVLCVQPEPSYRPLITDVL HSLIPLVPVELGGTLKAPQTRSSVTNDP >SEQ ID NO: 98 CGTGGATCAACTTTAAGTTGGCCTCTCCGAATGAAAATTGCTTTGGATATTGCAAGAGGATTAGAA TACCTTCACGAGCGTTGCAACCCCCCTGTGATCCATAGGCATCTCAAATCGTCTAATATTCTTCTTG ATTCCAGCTTCAACGCAAAGATTTCTGATTTTGGCCTTTCTGTAACTGGCGGAAACCTAAGCAAGA ACATAACCAAGATTTCGGGATCACTGGGTTATCTTGCTCCAGAGTATCTCTTAGACGGTAAACTAA CTGATAAGAGTGATGTGTATGGTTTTGGCATTATTCTTCTAGAGCTTTTGATGGGTAAAAGGCCAGT GGAGAAAGTGGGAGAAACTAAGTGCCAATCAATAGTTACATGGGCTATGCCCCAGCTTACGGACC GATCAAAGCTTCCGAATATTGTTGACCCTACGATCAGGAACACAATGGATGTTAAGCATTTATATC AGGTTGCGGCTGTAGCTGTGTTATGTGTGCAACCGGAGCCAAGCTATAGGCCATTGATAACTGATG TACTACACTCCTTCATTCCACTTGTACCAAATGAACTCGGGGGGTCGCTTAGGGTAGTGGATTCTAC TCCCCATTGCTCATAG >SEQ ID NO: 99 RGSTLSWPLRMKIALDIARGLEYLHERCNPPVIHRHLKSSNILLDSSFNAKISDFGLSVTGGNLSKNITKIS GSLGYLAPEYLLDGKLTDKSDVYGFGIILLELLMGKRPVEKVGETKCQSIVTWAMPQLTDRSKLPNIVD PTIRNTMDVKHLYQVAAVAVLCVQPEPSYRPLITDVLHSFIPLVPNELGGSLRVVDSTPHCS >SEQ ID NO: 100 TTAGATAATGGCGGACCCGATTGTCAACGAGAATTCGAGAATGAGGTTGATTTGATGAGTAGAATT AGGCATCCAAATGTGGTTTCTTTATTGGGTTATTGCATTCATGGAGAAACCAGGCTTCTTGTCTATG AAATGATGCAAAACGGGACGTTGGAATCGCTATTGCATGGACCATCACATGGATCCTCACTAACTT GGCACATTCGTATGAAGATCGCCCTCGACACAGCAAGAGGCCTCGAGTATCTGCATGAACACTGCG ACCCCTCTGTGATCCACCGTGACCTGAAGCCTTCTAACATTCTTTTGGATTCCAACTACAATTCCAA GCTCTCAGACTTTGGTCTTGCAGTCACTGTTGGAAGCCAGAATCAAACCAACATTAAGATTCTAGG GACACTGGGTTACCTTGCACCAGAGTACGTTTTGAATGGCAAATTGACAGAGAAAAGTGATGTGTT TGCTTTTGGAGTTGTCCTGTTGGAGCTTCTCATGGGCAAGAAACCAGTGGAGAAGATGGCATCCCC TCCATGCCAATCCATTGTCACATGGGCGATGCCTCATCTTACTGACAGAATTAAGCTTCCAAATATC ATTGATCCTGTTATTAGAAACACCATGGATCTGAAACACTTGTACCAGGTTGCAGCTGTTGCTGTTC TCTGCGTACAACCAGAGCCCCAGTTATCGTCCTCTGATAACTGA >SEQ ID NO: 101 LDNGGPDCQREFENEVDLMSRIRHPNVVSLLGYCIHGETRLLVYEMMQNGTLESLLHGPSHGSSLTWHI RMKIALDTARGLEYLHEHCDPSVIHRDLKPSNILLDSNYNSKLSDFGLAVTVGSQNQTNIKILGTLGYLA PEYVLNGKLTEKSDVFAFGVVLLELLMGKKPVEKMASPPCQSIVTWAMPHLTDRIKLPNIIDPVIRNTM DLKHLYQVAAVAVLCVQPEPQLSSSDN >SEQ ID NO: 102 TCGGCTCGGCCCAGAACAAGATCGCAAGAC >SEQ ID NO: 103 CTACATTCTCTCCTCGTATTATTCCTCGTTGACT >SEQ ID NO: 104 ACTTTCAGATGAGTGGATCATAACCCTATACA >SEQ ID NO: 105 AGATACAATGGATCTCAAACACTTATACCAG >SEQ ID NO: 106 AAAGGATCCATGGGAAGTGGTGAAGAAGATAGATTTGATGCT >SEQ ID NO: 107 TTTCTGCAGTCTGTGAATCATCTTGTTAACCGGAGAGTCC >SEQ ID NO: 108 TCTGAGTTTTAATCGAGCCAAGTCGTCTCA >SEQ ID NO: 109 TATCCCGGGAAAATGAGAGAGCTTCTTCTTCTTCTTCTTCTTCATTTTCAGTC >SEQ ID NO: 110 TTTGGATCCTGTGAATCATCTTGTTAACCGGAGAGTCC >SEQ ID NO: 111 ATACCCGGGTCTGTGTCAGGAATCCAAATGGGAAGTGGTGA >SEQ ID NO: 112 AAAGGATCCTCTGTGTCAGGAATCCAAATGGGAAGTGGTGA >SEQ ID NO: 113 AAATCTAGACTGTGAATCATCTTGTTAACCGGAGAGTCC >SEQ ID NO: 114 ATAGAGCTCGCAAGAACCAATCTCCAAAATCCATC >SEQ ID NO: 115 ATAGAGCTCGAGGGTCTTGATATCGAAAAATTGCACG >SEQ ID NO: 116 ATAGGATCCTCGCAAGAACCAATCTCCAAAATCCATC >SEQ ID NO: 117 ATATCTAGACTCGAGGGTCTTGATATCGAAAAATTGCACG >SEQ ID NO: 118 ATATCTAGAAAATGAGAGAGCTTCTTCTTCTTCTTCTTCTTCATTTTCAGTC >SEQ ID NO: 119 ATAGGATCCTGTTAAAAGCGATTTATAATTTACACCGTTTTGGTGTA >SEQ ID NO: 120 ATACCCGGGAAAAGTTTTTGATGAAATTCAATCTAAAGACT >SEQ ID NO: 121 AAAATGAGAGAGCTTCTTCTTCTTCTTCTTCTTCATTTTCAGTCTCTAATTCTTTTGATGATCTTCATC ACTGTCTCTGCTTCTTCTGCTTCAAATCCTTCTTTAGCTCCTGTTTACTCTTCCATGGCTACATTCTCT CCTCGAATCCAAATGGGAAGTGGTGAAGAAGATAGATTTGATGCTCATAAGAAACTTCTGATTGGT CTCATAATCAGTTTCTCTTCTCTTGGCCTTATAATCTTGTTCTGTTTTGGCTTTTGGGTTTATCGCAA GAACCAATCTCCAAAATCCATCAACAACTCAGATTCTGAGAGTGGGAATTCATTTTCCTTGTTAATG AGACGACTTGGCTCGATTAAAACTCAGAGAAGAACTTCTATCCAAAAGGGTTACGTGCAATTTTTC GATATCAAGACCCTCGAGAAAGCGACAGGCGGTTTTAAAGAAAGTAGTGTAATCGGACAAGGCGG TTTCGGATGCGTTTACAAGGGTTGTTTGGACAATAACGTTAAAGCAGCGGTCAAGAAGATCGAGAA CGTTAGCCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGACTTGTTGAGCAAGATCCATCACTC GAACGTTATATCATTGTTGGGCTCTGCAAGCGAAATCAACTCGAGTTTCATCGTTTATGAGCTTATG GAGAAAGGATCATTAGATGAACAGTTACATGGGCCTTCTCGTGGATCAGCTCTAACATGGCACATG CGTATGAAGATTGCTCTTGATACAGCTAGAGGACTAGAGTATCTCCATGAGCATTGTCGTCCACCA GTTATCCACAGAGATTTGAAATCTTCGAATATTCTTCTTGATTCTTCCTTCAACGCCAAGATTTCAG ATTTCGGTTTTGCTGTATCGCTGGATGAACATGGCAAGAACAACATTAAACTCTCTGGGACACTTG GTTATGTTGCCCCGGAATACCTCCTTGACGGAAAACTGACGGATAAGAGTGATGTTTATGCATTTG GGGTAGTTCTGCTTGAACTCTTGTTGGGTAGACGACCAGTTGAAAAATTAACTCCAGCTCAATGCC AATCTCTTGTAACTTGGGCAATGCCACAACTTACCGATAGATCCAAGCTTCCAAACATTGTGGATG CCGTTATAAAAGATACAATGGATCTCAAACACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCG TGCAGCCAGAACCAAGTTACCGGCCGTTGATAACCGATGTTCTTCACTCACTTGTTCCACTGGTTCC GGTAGAGCTAGGAGGGACTCTCCGGTTAACAAGATGATTCACAG >SEQ ID NO: 122 TCGGACAAGGCGGTTTCGGATGCGT >SEQ ID NO: 123 TAGTCCTCTAGCTGTATCAAGAGCAATCTTCA >SEQ ID NO: 124 TATCATTGTTGGGCTCTGCAAGTGAAATCAAC >SEQ ID NO: 125 TGGAGAAAGGATCCTTAGATGATCAGTTACAT >SEQ ID NO: 126 TCCATGTAACTGATCATCTAAGGATCCTTTC >SEQ ID NO: 127 ATAAACGACGAAACTCGAGTTGATTTCACTTGCAGAG >SEQ ID NO: 128 AAAATGAAGAAACTGGTTCATCTTCAGT >SEQ ID NO: 129 TAGACTTCTATTCTCACATTCTTACAC >SEQ ID NO: 130 TCCAATGATCCATTATGCATCAGCTCA >SEQ ID NO: 131 TCGTTCTCAAATTCTCTCTCAGCATGTTG >SEQ ID NO: 132 TCCGGATATGCCAGGTCAGCGCTGATCCA >SEQ ID NO: 133 TCCAGGGATCCCTTCTCCATGAGCTCAT >SEQ ID NO: 134 AAAGAGCTCTCTGTGTCAGGAATCCAAATGGGAAGTGGTGA >SEQ ID NO: 135 ATAGCTAGCTGTTAAAAGCGATTTATAATTTACACCGTTTTGGTGTA >SEQ ID NO: 136 ATAGCTAGCAGAAAAGTTTTTGATGAAATTCAATCTAAAGACT
>SEQ ID NO: 137 TCTGGGTTTATCATCATACCAAGTATCCA >SEQ ID NO: 138 ATTCAGTTCCATCAAGATTGTTGGCATGGAC >SEQ ID NO: 139 TGGAGGGAGGTGGCCCTGAGTGCGAGAAGGA >SEQ ID NO: 140 GCTGGATCTGCTTGGCAGGATTCGGCA >SEQ ID NO: 141 ATATCTAGATGCTAGGTTATAGATCCATGCA >SEQ ID NO: 142 ATAGGATCCACCAGAACTATATATACGAAGGCA >SEQ ID NO: 143 AGGACGACTTGGCTCGATTAAAATCACAGGTCGTGATATG >SEQ ID NO: 144 TAATCGAGCCAAGTCGTCCTACATATATATTCCTA >SEQ ID NO: 145 TAATCGAGCCAAGTCGTCCTCTCTTTTGTATTCCA >SEQ ID NO: 146 AGGACGACTTGGCTCGATTAAAATCAAAGAGAATCAATGATC >SEQ ID NO: 147 GACGACTTGGCTCGATTAAAA >SEQ ID NO: 148 TGCTAGGTTATAGATCCATGCAAATATGGAGTAGATGTACAAACACACGCTCGGACGCATATTACA CATGTTCATACACTTAATACTCGCTGTTTTGAATTGATGTTTTAGGAATATATATGTAGAGAGAGCT TCCTTGAGTCCATTCACAGGTCGTGATATGATTCAATTAGCTTCCGACTCATTCATCCAAATACCGA GTCGCCAAAATTCAAACTAGACTCGTTAAATGAATGAATGATGCGGTAGACAAATTGGATCATTGA TTCTCTTTGATTGGACTGAAGGGAGCTCCCTCTCTCTTTTGTATTCCAATTTTCTTGATTAATCTTTC CTGCACAAAAACATGCTTGATCCACTAAGTGACATATATGCTGCCTTCGTATATATAGTTCTGGT >SEQ ID NO: 149 TGCTAGGTTATAGATCCATGCAAATATGGAGTAGATGTACAAACACACGCTCGGACGCATATTACA CATGTTCATACACTTAATACTCGCTGTTTTGAATTGATGTTTTAGGAATATATATGTAGGACGACTT GGCTCGATTAAAATCACAGGTCGTGATATGATTCAATTAGCTTCCGACTCATTCATCCAAATACCG AGTCGCCAAAATTCAAACTAGACTCGTTAAATGAATGAATGATGCGGTAGACAAATTGGATCATTG ATTCTCTTTGATTTTAATCGAGCCAAGTCGTCCTCTCTTTTGTATTCCAATTTTCTTGATTAATCTTTC CTGCACAAAAACATGCTTGATCCACTAAGTGACATATATGCTGCCTTCGTATATATAGTTCTGGT >SEQ ID NO: 150 CTTAGCCAATGGATGAGGATGACACGATAATGATAATCAAAGATCAACATGGCACGCTCAAGACC GCCTTTAGAAGTCCTCTCTAAATTCTTTCTTCCGATCTCCTAAATATGTTTTGTTTTGGTCAAATAAA TTGATAGGTAATACTTAGTGATTATACTATTTGGTTTTTGTTTTATCATTGACTATTTCACTTTTATA AATCAAATACTTATCAAAATTGTTCTTTCCGTATGTATTCATATTTTCTAATATTGTAAAGATTTGTT TCACCTAACATCTGTACCCATCTTTGATCATTGACAAAATATATATTAGAATGGCCTTAGAACGTGT TAGGCATCTTCCTACTATTATCATATTACCTAATCCCCAATTTTATTACATTTTTTAATTTCTAAAAG AGCTTGAATATAATGTCATTTCGAATATCTCTGTTCATCTTTTTTTTTTTCTGTGCGACTTCTGACCC AAAGCCTTCGACGATTTTTTCCAATCTGAAAACTTTTGAATAAGGAACTTAGTCAATGGTCAACAC CTTGCTAATTAAACAAAGTTCCATTGATACAATAATGAGATTTTTGTACATTAACGCTTTCATATAG TTTTTGCGATTCAACAGATAATCTTAAAATTAAGGAGTCCTATTGATAAAGTCTTGTTCAAACGTAC AAACTCAATCCACACAAAACCTTCATAAAATACGATATAGGAAATAAAGATTGTTTTTGCGTGAGA AAATACTATATGAACTCAAAAGATTTTAAAACAATTTGTATTAATACATAAACAATTGTTGTGATA CACCCGTGTAAAATTTTAAGATTGTTTTTTTCTGAAATTCTTCAAGGAAACTTATAGCTTAAAATCT ACACTTCAAATACTCTGTTTTAAAGGCATTAAAAATAACTGCGTTTCAGAAAAATATTGAAATTTTA GCTGATCTTTTGCTACAAATTTAAGGAATCTTGGCACCTGCAGAATCTATAACATGTTCATTAAGTA ATGCAATAGTTATACAATTATACATTATTTGCATCATACTTATATTATAGTGATATTAACAAACCCA TGTTCTCAGCACACTTTTACGTAGAAAAACATAAAAACCCAAATAGGAAGAAGCCACTCATAAGG ATAATGGGTTTATATAATTCACAGCAAAGAAAGCCATCGAACTATTCGATTAATTATCCATTCTTTT TTTTTTTAGTTTGAATGTATAAGAACAAAGAGTTGTTACGCATCATGACAATGTCTTAGAAAACAA AAGAAATGAATAAAAAAGTAAAACGAAAAATAAAAAGTGAGGATGAAGTTGTTGAATGAGTTGG CGAGGCGGCGACTTTTTCATACATTCCATTTACTTAATTCCTAAAGTCCTTCTCACATCTCTTTGTTA TATAATGACACCATAACCATTTCTTCTCTTCACAATCTTTACAAGAATATCTCTCTTCTACAGTAAA CAAAAA >SEQ ID NO: 151 ACGTAAGCTTCTTAGCCAATGGATGAGGATG >SEQ ID NO: 152 ACGTTCTAGATTTTTGTTTACTGTAGAAGAG >SEQ ID NO: 153 TGCTGCTTCAAATCCTTCTATAGCTCCTGTTTATACCACCATGACTACTTTCTCTCCAGGAATTCAAA TGGGAAGTGGTGAAGAACACAGATTAGATGCACATAAGAAACTCCTGATTGGTCTTATAATCAGTT CCTCTTCTCTTGGTATCGTAATCTTGATTTGCTTTGGCTTCTGGATGTACTGTCGCAAGAAAGCTCCC AAACCCATCAAGATTCCGGATGCTGAGAGTGGGACTTCATCATTTTCAATGTTTGTGAGGCGGCTA AGCTCAATCAAAACTCAGAGAACATCTAGCAATCAGGGTTATGTGCAGCGTTTCGATTCCAAGACG CTAG >SEQ ID NO: 154 TATGGATCCTGCTGCTTCAAATCCTTCTATAGCTCCTG >SEQ ID NO: 155 TATTCTAGACTAGCGTCTTGGAATCGAAACGCTGCAC >SEQ ID NO: 156 TATGAGCTCTGCTGCTTCAAATCCTTCTATAGCTCCTG >SEQ ID NO: 157 TATGAGCTCCTAGCGTCTTGGAATCGAAACGCTGCAC >SEQ ID NO: 158 GCAGATCGCTCCTCCCGTCGTGAT >SEQ ID NO: 159 CGCCTAGG AGCGACGGGTACTCGATCAT >SEQ ID NO: 160 CCTAGCTA AGCGACGGGTACTCGATCAT >SEQ ID NO: 161 GCTCCTCCCGTCGTGATCACAGTGGTGAGGCACCACCATTACCACCGGGAGCTGGTCATCTCCGCT GTCCTCGCCTGCGTCGCCACCGCCATGATCCTCCTCTCCACACTCTACGCCTGGACGATGTGGCGGC GGTCTCGCCGGACCCCCCACGGCGGCAAGGGCCGCGGCCGGAGATCAGGGATCACACTGGTGCCA ATCCTGAGCAAGTTCAATTCAGTGAAGATGAGCAGGAAGGGGGGCCTTGTGACGATGATCGAGTA CCCGTCGCT >SEQ ID NO: 162 CGGGATCCCGGCATAACAAACTCGTGCATCC >SEQ ID NO: 163 CCATCGATGGCGCCAAACACAATA GCT CAA >SEQ ID NO: 164 GTAAGTAATTTCAAGTTTAAGTTTCATAAGCATAACAAACTCGTGCATCCAATTTGAACCATTTTAC TGTCCTGGCATCCTCTAAATATTTCCTTGATTATCAGCTTATCTTCATCCCATTGAATCAGAAAATTA CCAACCCTTGTTTTAGCTTTAATCATTGTTATTTGTTGTCTGAGGGGCTACACTGTTTCTTTATATTG GTGAAGGAGTTACCAGGCAAAAATTCCCACCTCCTGATATTAGCAGAGACCCCCTTTTTTGTGCCT GTATGCATACTAACAAATAATACAGATGGAAATATGTATATTTGTTATATCATGGATTGATGCTTTA TGTTTAGCAAGTCCATGCAATGGTAGTCAAAAGATGTAAACTTTTGAATGATATATTGGGGCTTTA GATTAGCCATTTTTACCCTCACTTGAAAATGACAATTTTGCCCTTCCGATCTACTTTCTCTTGTCACC TCAGGCAGGCTCTTGAAAGTTCTTATCCCTGAATTCCGTGGAAGTTTATTATTCTAATGTTATAGTT TACTTAAAGTGTCGCATAATCTACTAGAGCCTAATGGAAGTACTGATGGACTTTGTTTTGCTACAAT CACTGCTTGCAAGAATGACTACTTTGGGGCATTTCTAATATATTATTGATATTTCTATGATGTATTG TTGTCCATGTACTTCAGTCCTTACAGCGACTAGTCCTATTTCTGCATTGATAAATTGTTCACTGTCAG ACCATCTTGAGTGGCAAGAATGAGTATAACATGTCTTGTTTTTCTGTGATTTCAAGGTAAGCGCACA TGCGCACAGTGTACACCGTCACCACATGTGAGTACACCCCCTAGTACACATGTAAAAAAAGCACAG TCCAGTTATTAAATGGACCATTGGCATTGATTGTCGTGTTTATAGGAGTAAAGATACATGTAAACA CTAATTCATTGGGAGATATAAATTTATACTACCATTGAATGTGACATAGGCTCTAAGGTTTTTAGTT CAGCATTTCGAAAGAGCTTTGTTTGGTTGGCTTGGGATGGAATCAGGTGACAACATTTTTGGGTTGC AGCAAATTTAATATTGATTGAGGAGGCATACAACGAAATCATTGAGCTATTGTGTTTGGCGTTACA TCTATGGAATTTCTTCTAATCTGATTATTGTTTGTA >SEQ ID NO: 165 GATCCGCTCCTCCCGTCGTGAT >SEQ ID NO: 166 AACGCGATCGCTTGCATGCCTGCAGTAGAC >SEQ ID NO: 167 GACTTAATTAAGAATTCGAGCTCGGGTA >SEQ ID NO: 168 TCGTAGTGCACCACCATTTCCACCGCGAGCTGGTCATCGCCGCCGTCCTCGCCTGCATCGCCACCGT CACGATCTTCCTTTCCACGCTCTACGCTTGGACACTATGGCGGCGATCTCGCCGGAGCACCGGCGG CAAGGTCACCAGGAGCTCAGACGCAGCGAAGGGGATCAAGCTGGTGCCGATCTTGAGCAGGTTCA ACTCGGTGAAGATGAGCAGGAAGAGGCTGGTTGGGATGTTCGAGTACCCGTCG >SEQ ID NO: 169 GCAGATCTCGTAGTGCACCACCATTTC >SEQ ID NO: 170 CGCCTAGGCGACGGGTACTCGAACATC >SEQ ID NO: 171 CCTAGCTACGACGGGTACTCGAACATC >SEQ ID NO: 172 GATCCTCGTAGTGCACCACCATTTC >SEQ ID NO: 173 CTCGTAGTGCACCACCATTTC >SEQ ID NO: 174 AATGGGACCGCCTCCGTTGCTCCGGCGGTGCCGGCGCCGCCTCCCGTCGTGATCATCGTGGAGCGG CGCCATCATTTCCACCGCGAGCTAGTCATCGCCTCCGTTCTCGCCTCCATCGCCATCGTCGCGATTA TCCTCTCCACGCTCTATGCGTGGATCCTGTGGCGGCGGTCTCGCCGGCTGCCCAGCGGCAAGGGCG CCAGGAGCGCAGACACCGCGAGGGGAATCATGCTGGTGCCGATCCTGAGCAAGTTCCACTCA >SEQ ID NO: 175 GCAGATCAATGGGACCGCCTCCGTTG >SEQ ID NO: 176 CGCCTAGGTGAGTGGAACTTGCTCAGGA >SEQ ID NO: 177 CCTAGCTATGAGTGGAACTTGCTCAGGA >SEQ ID NO: 178 GTAAGTATTCTTGCAACACATTACTATTTTCAATAACCACAAGTTTAAAAGCTTGAGTCCATTTCGC AAACCAGTTGTTCATAACCAAATTCTTAGGTAATTAGGTCCAATTGAGAAAATCTGATCATTGAAC ACTAGCAGGAAATAACTCAGACATAGTTTCTGCATACTATAATGATGCTTAATATATTTGTTCTCTT TTGAGATTGTATTGCATAGACATTTCTGTGTAAAATAATGTTTTACATCATGTATATATATCACTTTT TATAG >SEQ ID NO: 179 CGGGATCCTTCTTGCAACACATTACTATTT >SEQ ID NO: 180 CCATCGATGAAATGTCTATGCAATACAATCTCAA >SEQ ID NO: 181 GATCCAATGGGACCGCCTCCGTTG >SEQ ID NO: 182 CAATGGGACCGCCTCCGTTGA >SEQ ID NO: 183 GGCCCCGGCCGCGCGCGTCTCCGTGTCCTCCGCGACTGTGCACGTTTCGTCGGGAGCGGCGTGCCC ACGCCCACCCCCCGTCCACCAGCCAGCAACCGACGGCACTGGTGACACGCGGCTGGTCCGCTCGGT CCGCCCCGCGGCTCCAGATCACGGCAAGCGCGCCCGCCGCCCGCTGCTGCGCTGCGCTGCACGTCC CGCCCTGACGCCACGCCACGCCAAGCGCGACACGACACGACACGACACGACCCGACCCCCGCCAA CGAAACGCCGAAACGCGGCAACGCGTGACGGGCGCGCATGGTCGATGCTCTACCCGCGCGTCCGC CCCACGCCAATCTCCCGGCGGGTCCCTCGTGGGACGGGGAACGCGATGCGGCTGCAGGCTGCGAC CGCGACCGCGACCGCGACCGCGCCCACGTGAAGGCAGGCAGGCAGCCCCGGAGCGGGCGCGGCG GTGGGCCAACGACGCGTTGCCGTCGCGAATCTTCTTCTGGCCACGGCCAAGGGCCAATCGCCCGCT CCGCTCCGCTCCGCACTCCGCCTCCGCTAGGGAATATGGAACCCGATCCCACGGCCCTCTGGGTCT GGTCGACGGGTCCTCTCGCCGTGGCAGCTGCTTCCCGGACCGGAGGATCGCTGAGCGCGGACGCCA CTGCCATTGCCGTCCGACTATAGTTGTTAATTACCATAAAATAATTTGTTAACGATAAAACCCGTGT CAGGCACCGTCGTCTGGACGCTGCTATGGGATAACCATTCGCGTACGTCGGTTGTATGGGTGGGAT CCTCTGCGGCACGCCATTCTGGTGCTGCTAGTGGAATAGACAAAAAAAGGGCCGACGGTGTTTGCT CGTGGCAGGCCACACAGAGTGACAACCAGAGTGGTTGCCGCAAAAACAACCAATCACACAAAAAG TGTTGTACCGGTGGAGGACAGCCATTAATCAGCAGGCCGGCTTCGCGGCCAAAAGAAACGGAGAA GAGGAAAAAGGGGGGC >SEQ ID NO: 184 TCCCAAGCTTGCGCGTCTCCGTGTCCTC >SEQ ID NO: 185 AGTAAAGCTTCCCCCTTTTTCCTCTTCTCC >SEQ ID NO: 186 TAATGGTCGAGTGAGGCCCGTATAGATGTAGTTAAATAGCTAAAATTTTTGGAGAAATAAGCATTT TTTTGGAAGAATATATTTAAACATGGGCTTGTAAAACTTGGCTGTAAAGATTTGGAATTTAGGATCT TGGAGCCCCAAAACTGTATAAACTTGCTTAGGGACCCGTGTCTTGTGTGTTGCAGACCAAAAAATT TAGAAAGCATCTAAACACCTATTTGAATGTAAAGTTTACAGCCAAAAGTTTTAGGATGTAAAGATT TGGGATCTAAAAGTAGTCATTAGGAAATAACACGTTAGAGAGAGAGAGTAGATCTTCTTATTGGTT TCTCATGCACTAATCGAACCAATCACTGGACCACTTGAACCAAACTTTATCACATTGAACTTTGTCA GTTCAGTTCGAACGCAGGACTGGAGCTGCCCTTAAGGCCAATTGCTCAAGATTCATTCAACAATTG AAACATCTCCCATGATTAAATCAGTATAAGGTTGCTATGGTCTTGCTTGACAAAGTTTTTTTTTTGA GGGAATTTCAACTAAATTTTTGAGTGAAACTATCAAATACTGATTTTAAAAATTTTTTATAAAAGGA AGCGCAGAGATAAAAGGCCATCTATGCTACAAAAGTACCCAAAAATGTAATCCTAAAGTATGAAT TGCATTTTTTTTGTTTGGACGAAAGGAAAGGAGTATTACCACAAGAATGATATCATCTTCATATTTA GATCTTTTTTGGGTAAAGCTTGAGATTCTCTAAATATAGAGAAATCAGAAGAAAAAAAAACCGTGT TTTGGTGGTTTTGATTTCTAGCCTCCACAATAACTTTGACGGCGTCGACAAGTCTAACGGACACCAA GCAGCGAACCACCAGCGCCGAGCCAAGCGAAGCAGACGGCCGAGACGTTGACACCTTCGGCGCGG CATCTCTCGAGAGTTCCGCTCCGGCGCTCCACCTCCACCGCTGGCGGTTTCTTATTCCGTTCCGTTCC GCCT >SEQ ID NO: 187 AACTGCAGGGTCGAGTGAGGCCCGTA
>SEQ ID NO: 188 TTCTGCAGGGAACGGAACGGAATAAGAA >SEQ ID NO: 189 GCCGTGGGTCGTTTAAGCTGCCGCTGTACCTGTGTCGTCTGGTGCCTTCTGGTGTACCTGGGAGGTT GTCGTCTATCAAGTATCTGTGGTTGGTGTCATGAGTCAGTGAGTCCCAATACTGTTCGTGTCCTGTG TGCATTATACCCAAAACTGTTATGGGCAAATCATGAATAAGCTTGATGTTCGAACTTAAAAGTCTC TGCTCAATATGGTATTATGGTTGTTTTTGTTCGTCTCCT >SEQ ID NO: 190 TAGGTACCGCCGTGGGTCGTTTAAGCT >SEQ ID NO: 191 AAGGTACCAGGAGACGAACAAAAACAA >SEQ ID NO: 192 AACGCGATCGTAATGGTCGAGTGAGGCCCGTATA >SEQ ID NO: 193 ATGAAGAAACTGGTTCATCTTCAGTTTCTGTTTCTTGTCAAGATCTTTGCTACTCAATTC CTCACTCCTTCTTCATCATCTTTTGCTGCTTCAAATCCTTCTATAGCTCCTGTTTATACC ACCATGACTACTTTCTCTCCAGGAATTCAAATGGGAAGTGGTGAAGAACACAGATTAGAT GCACATAAGAAACTCCTGATTGGTCTTATAATCAGTTCCTCTTCTCTTGGTATCGTAATC TTGATTTGCTTTGGCTTCTGGATGTACTGTCGCAAGAAAGCTCCCAAACCCATCAAGATT CCGGATGCTGAGAGTGGGACTTCATCATTTTCAATGTTTGTGAGGCGGCTAAGCTCAATC AAAACTCAGAGAACATCTAGCAATCAGGGTTATGTGCAGCGTTTCGATTCCAAGACGCTA GAGAAAGCGACAGGCGGTTTCAAAGACAGTAATGTAATCGGACAGGGCGGTTTCGGATGC GTTTACAAGGCTTCTTTGGACAGCAACACTAAAGCAGCGGTTAAAAAGATCGAAAACGTT AGCCAAGAAGCAAAACGAGAATTTCAGAATGAAGTTGAGCTGTTGAGCAAGATCCAGCAC TCCAATATTATATCATTGTTGGGCTCTGCAAGTGAAATCAACTCGAGTTTCGTCGTTTAT GAGTTGATGGAGAAAGGATCCTTAGATGATCAGTTACATGGACCTTCGTGTGGATCCGCT CTAACATGGCATATGCGTATGAAGATTGCTCTAGATACAGCTAGAGGATTAGAGTATCTC CATGAACATTGTCGTCCACCAGTTATCCACAGGGACCTGAAATCGTCTAATATACTTCTT GATTCTTCCTTCAATGCCAAGATTTCAGATTTTGGTCTGGCTGTATCGGTTGGAGTGCAT GGGAGTAACAACATTAAACTCTCTGGGACACTTGGTTATGTTGCCCCGGAATATCTCCTA GACGGAAAGTTGACGGATAAGAGTGATGTCTATGCATTTGGGGTGGTTCTTCTTGAACTT TTGTTGGGTAGAAGGCCGGTTGAGAAATTGAGTCCATCTCAGTGTCAATCTCTTGTGACT TGGGCAATGCCACAACTTACCGATAGATCGAAACTCCCAAACATCGTGGATCCGGTTATA AAAGATACAATGGATCTTAAGCACTTATACCAGGTAGCAGCCATGGCTGTGTTGTGCGTT CAGCCAGAACCGAGTTACCGGCCGCTGATAACCGATGTTCTTCACTCACTTGTTCCATTG GTTCCGGTCGAACTAGGAGGGACTCTCCGGTTAACCCGATGA >SEQ ID NO: 194 MKKLVHLQFLFLVKIFATQFLTPSSSSFAASNPSIAPVYTTMTTFSPGIQMGSGEEHRLD AHKKLLIGLIISSSSLGIVILICFGFWMYCRKKAPKPIKIPDAESGTSSFSAVVRRLSSI KTQRTSSNQGYVQRFDSKTLEKATGGFKDSNVIGQGGFGCVYKASLDSNTKAAVKKIENV SQEAKREFQNEVELLSKIQHSNITSLLGSASEINSSFVVYELMEKGSLDDQLHGPSCGSA LTWHMRMKIALDTARGLEYLHEHCRPPVIHRDLKSSNILLDSSFNAKISDFGLAVSVGVH GSNNIKLSGTLGYVAPEYLLDGKLTDKSDVYAFGVVLLELLLGRRPVEKLSPSQCQSLVT WAMPQLTDRSKLPNIVDPVIKDTMDLKHLYQVAAMAVLCVQPEPSYRPLITDVLHSLVPL VPVELGGTLRLTR >SEQ ID NO: 195 AATCCAGCTCATTCTGGAATTCCTTCTCGCA >SEQ ID NO: 196 TGAACTTGCTCAGGATTGGCACCAGTGTGATC >SEQ ID NO: 197 MEIPAAPPPPLPVLCSYVVFLLLLSSCSLARGRIAVSSPGPSPVAAAVTANETASSSSSP VFPAAPPVVITVVRHHHYHRELVISAVLACVATAMILLSTLYAWTMWRRSRRTPHGGKGR GRRSGITLVPILSKFNSVKMSRKGGLVTMIEYPSLEAATGKFGESNVLGVGGFGCVYKAA FDGGATAAVKRLEGGGPDCEKEFENELDLLGRIRHPNIVSLLGFCVHGGNHYIVYELMEK GSLETQLHGSSHGSALSWHVRMKIALDTARGLEYLHEHCNPPVIHRDLKPSNILLDSDFN AKIADFGLAVTGGNLNKGNLKLSGTLGYVAPEYLLDGKLTEKSDVYAFGVVLLELLMGRK PVEKMSPSQCQSIVSWAMPQLTDRSKLPNIIDLVIKDTMDPKHLYQVAAVAVLCVQPEPS YRPLITDVLHSLVPLVPAELGGTLRVAEPPSPSPDQRHYPC >SEQ ID NO: 198 TATACCGGTAAAATGAGAGAGCTTCTTCTTCTTCTTCTTCTTCATTTTCAGTC >SEQ ID NO: 199 ATATACCGGTCTTGTTAACCGGAGAGTCCCTCCTAGCTC >SEQ ID NO: 200 CGCTCCTCCCGTCGTGAT
LITERATURE
[0187] 1. Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
[0188] 2. Altschul S F, Madden T L, Schiffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acid Res. 25: 3389-3402.
[0189] 3. An G, Mitra A, Choi H K, Costa M A, An K, Thornburg R W, Ryan C A. (1989) Functional analysis of the 3' control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1: 115-122.
[0190] 4. Araus L J, Slafer G A, Reynolds M P, Royo C (2002) Plant Breeding and drought in C3 cereals: What should we breed for? Annals of Botany 89: 925-940.
[0191] 5. Atanassvoa R, Chaubet N, Gigot C (1992) A 126 bp fragment of a plant histone gene promoter confers preferential expression in meristems of transgenic Arabidopsis. Plant Journal 2(3): 291-300.
[0192] 6. Beetham P R, Kipp P B, Sawycky X L, Arntzen C J, May G D (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proceedings of the National Academy of Science USA, 96: 8774-8778.
[0193] 7. Bevan M, Barnes W M, Chilton M D (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl. Acids Res. 12: 369-385.
[0194] 8. Bevan M, Barker R, Goldsbrough A, Jarvis M, Kavanagh T, Iturriaga G. (1986) The structure and transcription start site of a major potato tuber protein gene. Nucleic Acids Research 14: 4625-4636.
[0195] 9. Christensen A H, Sharrock R A, Quail P H. (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675-689.
[0196] 10. Condon A G, Richards R A, Rebetzke G J, Farquhar G D (2002) Improving Intrinsic Water-Use Efficiency and crop yield. Crop Science 42:122-131.
[0197] 11. Davies W J, Wilkinson S, Loveys B R (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol. 153: 449-460.
[0198] 12. De Loose M, Gheysen G, Tire C, Gielen J, Villarroel R, Genetello C, Van Montagu M, Depicker A, Inze D (1991) The extensin signal peptide allows secretion of a heterologous protein from protoplasts. Gene 99: 95-100.
[0199] 13. Dong C, Beetham P, Vincent K, Sharp P (2006) Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Reports 25: 457-465.
[0200] 14. Dratewka-Kos E, Rahman S, Grzelczak Z F, Kennedy T D, Murray R K, Lane B G (1989) Polypeptide structure of germin as deduced from cDNA sequencing. J. Biol. Chem. 264: 4896-4900.
[0201] 15. Elomaa P, Mehto M, Kotilainen M, Helariutta Y, Nevalainen L, Teen T H (1998) A bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). The Plant Journal 16(1): 93-99.
[0202] 16. Farquhar G D and Sharky T D (1994) Photosynthesis and carbon assimilation (p187) in Physiology and Determination of Crop Yield, ASA, CSSA, SSSA, Madison Wis. USA.
[0203] 17. Fraley R T, Rogers S G, Horsch R B, Sanders P R, Flick J S, Adams S P, Bittner M L, Brand L A, Fink C L, Fry J S, Galluppi G R, Goldberg S B, Hoffmann N L, Woo S C (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA. 80(15): 4803-4807.
[0204] 18. Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
[0205] 19. Goldberg R B (1986) Regulation of plant gene expression. Philos Trans R Soc London Ser B 314: 343-353.
[0206] 20. Greene E A, Codomo C A, Taylor N E, Henikoff J G, Till B J, Reynolds S H, Enns L C, Burtner C, Johnson J E, Odden A R, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164(2):731-740.
[0207] 21. Gruber et al. "Vectors for Plant Transformation" in Methods in Plant Molecular Biology and Biotechnology, Glick B. R. and Thompson, J. E. Eds. (CRC Press, Inc., Boca Raton, 1993) pages 89-119.
[0208] 22. Hardie D G (1999) PLANT PROTEIN SERINE/THREONINE KINASES: Classification and Functions. Annu Rev Plant Physiol Plant Mol Biol. 50:97-131.
[0209] 23. Henikoff S, and Henikoff J G (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89: 10915-10919.
[0210] 24. Horsch R, Fry J E, Hoffmann N, Eichholtz D, Rogers S, Fraley R T (1985) A simple and general method for transferring genes into plants. Science 227:1229-1231.
[0211] 25. Huang Y, Li H, Gupta R, Morris P C, Luan S, Kieber J J. (2000) ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol. 122(4):1301-1310.
[0212] 26. Kado C I, Hooykaas P J (1991) Molecular mechanisms of crown gall tumorigenesis. Crit. Rev. Plant Sci. 10: 1-32.
[0213] 27. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja K N, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerant gene. Proc. Natl. Acad. Sci. USA 104: 15270-15272.
[0214] 28. Keil M, Sanchez-Serrano J, Schell J, Willmitzer L (1986) Primary structure of a proteinase inhibitor II gene from potato (Solanum tuberosum). Nucl. Acids Res. 14: 5641-5650.
[0215] 29. Laemmli, U K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(259): 680-685.
[0216] 30. Last D I, Brettell R I, Chamberlain D A, Chaudhury A M, Larkin P J, Marsh E L, Peacock W J, Dennis E S (1991) pEmu: an improved promoter for gene expression in cereal cells Theor. Appl. Genet. 81: 581-588.
[0217] 31. Lepetit M, Ehling M, Chaubet N, Gigot C (1992) A plant histone gene promoter can direct both replication-dependent and -independent gene expression in transgenic plants. Mol. Gen. Genet., 231: 276-285.
[0218] 32. Lund P, Dunsmuir P (1992) A plant signal sequence enhances the secretion of bacterial ChiA in transgenic tobacco. Plant Mol. Biol. 18: 47-53.
[0219] 33. McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2(2): 163-171.
[0220] 34. Mian MAR, Bailey M A, Ashley D A, Wells R, Carter T E Jr, Parrott W A, Boerma H R (1996) Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci. 36: 1252-1257.
[0221] 35. Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction Fragment Length Polymorphisms Associated with Water Use Efficiency in Tomato. Science. 243(4899):1725-1728.
[0222] 36. Masle J, Gilmore S R, Farquhar G D (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436: 866-870
[0223] 37. Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc. Nat'l Acad. Sci. USA 88: 834-838.
[0224] 38. van der Meer I M, Spelt C E, Mol J N, Stuitje A R (1990) Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrida: a 67 bp promoter region directs flower-specific expression. Plant Molecular Biology 15(1): 95-109.
[0225] 39. Mogen B D, MacDonald M H, Graybosch R, Hunt A G (1990) Upstream sequences other than AAUAAA are required for efficient messenger RNA 3'-end formation in plants. Plant Cell 2: 1261-1272.
[0226] 40. Moloney M M, Walker J M, Sharma K K (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Reports 8: 238-242.
[0227] 41. Needleman S B, Wunsch C D (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48: 443-453.
[0228] 42. Odell J T, Nagy F, Chua N H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812.
[0229] 43. Oleykowski C A, Bronson Mullins C R, Godwin A K, Yeung A T (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26(20): 4597-4602.
[0230] 44. Sanford J C, Smith F D, Russell J A (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217: 483-509.
[0231] 45. Klein T M, Arentzen R, Lewis P A, Fitzpatrick-McElligott S (1992) Transformation of microbes, plants and animals by particle bombardment. Biotechnology 10: 286-291.
[0232] 46. Sambrook J, Fritsch E F, Maniatis T (1989) Molecular Cloning. A Laboratory Manual, 2.sup.nd Ed., Cold Spring Harbor Laboratory Press, New York
[0233] 47. Sinclair T R (1994) Limits to crop yield. in Physiology and Determination of Crop Yield, ASA, CSSA, SSSA, Madison Wis. USA.
[0234] 48. Price A H, Cairns J E, Horton P, Jones H G, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental Botany 53: 989-1004.
[0235] 49. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5): 1121-1133.
[0236] 50. Shiu S H, Bleecker A B (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA. 98(19): 10763-10768.
[0237] 51. Stockinger E J, Mulinix C A, Long C M, Brettin T S, Iezzoni A F (1996) A linkage map of sweet cherry based on RAPD analysis of a microspore-derived callus culture population. J. Heredity 87: 214-218.
[0238] 52. Thumma B R, Naidu B P, Chandra A, Cameron D F, Bahnisch L M, Liu C (2001) Identification of causal relationship among traits related to drought resistance in Stylosanthes scabra using QTL analysis. Journal of Experimental Botany 52: 203-214.
[0239] 53. Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R F, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell. 8(4): 735-746.
[0240] 54. Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J. 3: 2723-2730.
[0241] 55. Verwoert I I, Linden K H, Nijkamp H J, Stuitje A R (1994) Developmental specific expression and organelle targeting of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase in transgenic rape and tobacco seeds. Plant Mol. Biol. 26: 189-202.
[0242] 56. Visser R G, Stolte A, Jacobsen E (1991) Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Molecular Biology 17: 691-699.
[0243] 57. Walling L L, Chang Y C, Demmin D S, Holzer F M (1988) Isolation, characterization and evolutionary relatedness of three members from the soybean multigene family encoding chlorophyll a/b binding proteins. Nucl. Acids Res. 16: 10477-10492.
[0244] 58. Weissbach A and Weissbach H Eds. (1988) Methods for plant molecular biology. Academic Press (San Diego).
[0245] 59. Wilkins T A, Bednarek S Y, Raikhel N V (1990) Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell 2: 301-313.
[0246] 60. Yang B, Wen X, Kodali N S, Oleykowski C A, Miller C G, Kulinski J, Besack D, Yeung J A, Kowalski D, Yeung A T (2000) Purification, cloning, and characterization of the CEL I nuclease. Biochemistry. 39(13): 3533-3541.
Sequence CWU
1
1
20011299DNAARABIDOPSIS THALIANA 1atgagagagc ttcttcttct tcttcttctt
cattttcagt ctctaattct tttgatgatc 60ttcatcactg tctctgcttc ttctgcttca
aatccttctt tagctcctgt ttactcttcc 120atggctacat tctctcctcg aatccaaatg
ggaagtggtg aagaagatag atttgatgct 180cataagaaac ttctgattgg tctcataatc
agtttctctt ctcttggcct tataatcttg 240ttctgttttg gcttttgggt ttatcgcaag
aaccaatctc caaaatccat caacaactca 300gattctgaga gtgggaattc attttccttg
ttaatgagac gacttggctc gattaaaact 360cagagaagaa cttctatcca aaagggttac
gtgcaatttt tcgatatcaa gaccctcgag 420aaagcgacag gcggttttaa agaaagtagt
gtaatcggac aaggcggttt cggatgcgtt 480tacaagggtt gtttggacaa taacgttaaa
gcagcggtca agaagatcga gaacgttagc 540caagaagcaa aacgagaatt tcagaatgaa
gttgacttgt tgagcaagat ccatcactcg 600aacgttatat cattgttggg ctctgcaagc
gaaatcaact cgagtttcat cgtttatgag 660cttatggaga aaggatcatt agatgaacag
ttacatgggc cttctcgtgg atcagctcta 720acatggcaca tgcgtatgaa gattgctctt
gatacagcta gaggactaga gtatctccat 780gagcattgtc gtccaccagt tatccacaga
gatttgaaat cttcgaatat tcttcttgat 840tcttccttca acgccaagat ttcagatttc
ggtcttgctg tatcgctgga tgaacatggc 900aagaacaaca ttaaactctc tgggacactt
ggttatgttg ccccggaata cctccttgac 960ggaaaactga cggataagag tgatgtttat
gcatttgggg tagttctgct tgaactcttg 1020ttgggtagac gaccagttga aaaattaact
ccagctcaat gccaatctct tgtaacttgg 1080gcaatgccac aacttaccga tagatccaag
cttccaaaca ttgtggatgc cgttataaaa 1140gatacaatgg atctcaaaca cttataccag
gtagcagcca tggctgtgtt gtgcgtgcag 1200ccagaaccaa gttaccggcc gttgataacc
gatgttcttc actcacttgt tccactggtt 1260ccggtagagc taggagggac tctccggtta
acaagatga 12992432PRTARABIDOPSIS THALIANA 2Met
Arg Glu Leu Leu Leu Leu Leu Leu Leu His Phe Gln Ser Leu Ile1
5 10 15Leu Leu Met Ile Phe Ile Thr
Val Ser Ala Ser Ser Ala Ser Asn Pro 20 25
30Ser Leu Ala Pro Val Tyr Ser Ser Met Ala Thr Phe Ser Pro
Arg Ile 35 40 45Gln Met Gly Ser
Gly Glu Glu Asp Arg Phe Asp Ala His Lys Lys Leu 50 55
60Leu Ile Gly Leu Ile Ile Ser Phe Ser Ser Leu Gly Leu
Ile Ile Leu65 70 75
80Phe Cys Phe Gly Phe Trp Val Tyr Arg Lys Asn Gln Ser Pro Lys Ser
85 90 95Ile Asn Asn Ser Asp Ser
Glu Ser Gly Asn Ser Phe Ser Leu Leu Met 100
105 110Arg Arg Leu Gly Ser Ile Lys Thr Gln Arg Arg Thr
Ser Ile Gln Lys 115 120 125Gly Tyr
Val Gln Phe Phe Asp Ile Lys Thr Leu Glu Lys Ala Thr Gly 130
135 140Gly Phe Lys Glu Ser Ser Val Ile Gly Gln Gly
Gly Phe Gly Cys Val145 150 155
160Tyr Lys Gly Cys Leu Asp Asn Asn Val Lys Ala Ala Val Lys Lys Ile
165 170 175Glu Asn Val Ser
Gln Glu Ala Lys Arg Glu Phe Gln Asn Glu Val Asp 180
185 190Leu Leu Ser Lys Ile His His Ser Asn Val Ile
Ser Leu Leu Gly Ser 195 200 205Ala
Ser Glu Ile Asn Ser Ser Phe Ile Val Tyr Glu Leu Met Glu Lys 210
215 220Gly Ser Leu Asp Glu Gln Leu His Gly Pro
Ser Arg Gly Ser Ala Leu225 230 235
240Thr Trp His Met Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly
Leu 245 250 255Glu Tyr Leu
His Glu His Cys Arg Pro Pro Val Ile His Arg Asp Leu 260
265 270Lys Ser Ser Asn Ile Leu Leu Asp Ser Ser
Phe Asn Ala Lys Ile Ser 275 280
285Asp Phe Gly Leu Ala Val Ser Leu Asp Glu His Gly Lys Asn Asn Ile 290
295 300Lys Leu Ser Gly Thr Leu Gly Tyr
Val Ala Pro Glu Tyr Leu Leu Asp305 310
315 320Gly Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe
Gly Val Val Leu 325 330
335Leu Glu Leu Leu Leu Gly Arg Arg Pro Val Glu Lys Leu Thr Pro Ala
340 345 350Gln Cys Gln Ser Leu Val
Thr Trp Ala Met Pro Gln Leu Thr Asp Arg 355 360
365Ser Lys Leu Pro Asn Ile Val Asp Ala Val Ile Lys Asp Thr
Met Asp 370 375 380Leu Lys His Leu Tyr
Gln Val Ala Ala Met Ala Val Leu Cys Val Gln385 390
395 400Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr
Asp Val Leu His Ser Leu 405 410
415Val Pro Leu Val Pro Val Glu Leu Gly Gly Thr Leu Arg Leu Thr Arg
420 425 43031299DNAARABIDOPSIS
THALIANA 3atgagagagc ttcttcttct tcttcttctt cattttcagt ctctaattct
tttgatgatc 60ttcatcactg tctctgcttc ttctgcttca aatccttctt tagctcctgt
ttactcttcc 120atggctacat tctctcctcg aatccaaatg ggaagtggtg aagaagatag
atttgatgct 180cataagaaac ttctgattgg tctcataatc agtttctctt ctcttggcct
tataatcttg 240ttctgttttg gcttttgggt ttatcgcaag aaccaatctc caaaatccat
caacaactca 300gattctgaga gtgggaattc attttccttg ttaatgagac gacttggctc
gattaaaact 360cagagaagaa cttctatcca aaagggttac gtgcaatttt tcgatatcaa
gaccctcgag 420aaagcgacag gcggttttaa agaaagtagt gtaatcggac aaggcggttt
cggatgcgtt 480tacaagggtt gtttggacaa taacgttaaa gcagcggtca agaagatcga
gaacgttagc 540caagaagcaa aacgagaatt tcagaatgaa gttgacttgt tgagcaagat
ccatcactcg 600aacgttatat cattgttggg ctctgcaagc gaaatcaact cgagtttcat
cgtttatgag 660cttatggaga aaggatcatt agatgaacag ttacatgggc cttctcgtgg
atcagctcta 720acatggcaca tgcgtatgaa gattgctctt gatacagcta gaggactaga
gtatctccat 780gagcattgtc gtccaccagt tatccacaga gatttgaaat cttcgaatat
tcttcttgat 840tcttccttca acgccaagat ttcagatttc ggttttgctg tatcgctgga
tgaacatggc 900aagaacaaca ttaaactctc tgggacactt ggttatgttg ccccggaata
cctccttgac 960ggaaaactga cggataagag tgatgtttat gcatttgggg tagttctgct
tgaactcttg 1020ttgggtagac gaccagttga aaaattaact ccagctcaat gccaatctct
tgtaacttgg 1080gcaatgccac aacttaccga tagatccaag cttccaaaca ttgtggatgc
cgttataaaa 1140gatacaatgg atctcaaaca cttataccag gtagcagcca tggctgtgtt
gtgcgtgcag 1200ccagaaccaa gttaccggcc gttgataacc gatgttcttc actcacttgt
tccactggtt 1260ccggtagagc taggagggac tctccggtta acaagatga
12994432PRTARABIDOPSIS THALIANA 4Met Arg Glu Leu Leu Leu Leu
Leu Leu Leu His Phe Gln Ser Leu Ile1 5 10
15Leu Leu Met Ile Phe Ile Thr Val Ser Ala Ser Ser Ala
Ser Asn Pro 20 25 30Ser Leu
Ala Pro Val Tyr Ser Ser Met Ala Thr Phe Ser Pro Arg Ile 35
40 45Gln Met Gly Ser Gly Glu Glu Asp Arg Phe
Asp Ala His Lys Lys Leu 50 55 60Leu
Ile Gly Leu Ile Ile Ser Phe Ser Ser Leu Gly Leu Ile Ile Leu65
70 75 80Phe Cys Phe Gly Phe Trp
Val Tyr Arg Lys Asn Gln Ser Pro Lys Ser 85
90 95Ile Asn Asn Ser Asp Ser Glu Ser Gly Asn Ser Phe
Ser Leu Leu Met 100 105 110Arg
Arg Leu Gly Ser Ile Lys Thr Gln Arg Arg Thr Ser Ile Gln Lys 115
120 125Gly Tyr Val Gln Phe Phe Asp Ile Lys
Thr Leu Glu Lys Ala Thr Gly 130 135
140Gly Phe Lys Glu Ser Ser Val Ile Gly Gln Gly Gly Phe Gly Cys Val145
150 155 160Tyr Lys Gly Cys
Leu Asp Asn Asn Val Lys Ala Ala Val Lys Lys Ile 165
170 175Glu Asn Val Ser Gln Glu Ala Lys Arg Glu
Phe Gln Asn Glu Val Asp 180 185
190Leu Leu Ser Lys Ile His His Ser Asn Val Ile Ser Leu Leu Gly Ser
195 200 205Ala Ser Glu Ile Asn Ser Ser
Phe Ile Val Tyr Glu Leu Met Glu Lys 210 215
220Gly Ser Leu Asp Glu Gln Leu His Gly Pro Ser Arg Gly Ser Ala
Leu225 230 235 240Thr Trp
His Met Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly Leu
245 250 255Glu Tyr Leu His Glu His Cys
Arg Pro Pro Val Ile His Arg Asp Leu 260 265
270Lys Ser Ser Asn Ile Leu Leu Asp Ser Ser Phe Asn Ala Lys
Ile Ser 275 280 285Asp Phe Gly Phe
Ala Val Ser Leu Asp Glu His Gly Lys Asn Asn Ile 290
295 300Lys Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu
Tyr Leu Leu Asp305 310 315
320Gly Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe Gly Val Val Leu
325 330 335Leu Glu Leu Leu Leu
Gly Arg Arg Pro Val Glu Lys Leu Thr Pro Ala 340
345 350Gln Cys Gln Ser Leu Val Thr Trp Ala Met Pro Gln
Leu Thr Asp Arg 355 360 365Ser Lys
Leu Pro Asn Ile Val Asp Ala Val Ile Lys Asp Thr Met Asp 370
375 380Leu Lys His Leu Tyr Gln Val Ala Ala Met Ala
Val Leu Cys Val Gln385 390 395
400Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu His Ser Leu
405 410 415Val Pro Leu Val
Pro Val Glu Leu Gly Gly Thr Leu Arg Leu Thr Arg 420
425 43051160DNAARABIDOPSIS THALIANA 5atgggaagtg
gtgaagaaga tagatttgat gctcataaga aacttctgat tggtctcata 60atcagtttct
cttctcttgg ccttataatc ttgttctgtt ttggcttttg ggtttatcgc 120aagaaccaat
ctccaaaatc catcaacaac tcagattctg agagtgggaa ttcattttcc 180ttgttaatga
gacgacttgg ctcgattaaa actcagagaa gaacttctat ccaaaagggt 240tacgtgcaat
ttttcgatat caagaccctc gagaaagcga caggcggttt taaagaaagt 300agtgtaatcg
gacaaggcgg tttcggatgc gtttacaagg gttgtttgga caataacgtt 360aaagcagcgg
tcaagaagat cgagaacgtt agccaagaag caaaacgaga atttcagaat 420gaagttgact
tgttgagcaa gatccatcac tcgaacgtta tatcattgtt gggctctgca 480agcgaaatca
actcgagttt catcgtttat gagcttatgg agaaaggatc attagatgaa 540cagttacatg
ggccttctcg tggatcagct ctaacatggc acatgcgtat gaagattgct 600cttgatacag
ctagaggact agagtatctc catgagcatt gtcgtccacc agttatccac 660agagatttga
aatcttcgaa tattcttctt gattcttcct tcaacgccaa gatttcagat 720ttcggttttg
ctgtatcgct ggatgaacat ggcaagaaca acattaaact ctctgggaca 780cttggttatg
ttgccccgga atacctcctt gacggaaaac tgacggataa gagtgatgtt 840tatgcatttg
gggtagttct gcttgaactc ttgttgggta gacgaccagt tgaaaaatta 900actccagctc
aatgccaatc tcttgtaact tgggcaatgc cacaacttac cgatagatcc 960aagcttccaa
acattgtgga tgccgttata aaagatacaa tggatctcaa acacttatac 1020caggtagcag
ccatggctgt gttgtgcgtg cagccagaac caagttaccg gccgttgata 1080accgatgttc
ttcactcact tgttccactg gttccggtag agctaggagg gactctccgg 1140ttaacaagat
gattcacaga
11606383PRTARABIDOPSIS THALIANA 6Met Gly Ser Gly Glu Glu Asp Arg Phe Asp
Ala His Lys Lys Leu Leu1 5 10
15Ile Gly Leu Ile Ile Ser Phe Ser Ser Leu Gly Leu Ile Ile Leu Phe
20 25 30Cys Phe Gly Phe Trp Val
Tyr Arg Lys Asn Gln Ser Pro Lys Ser Ile 35 40
45Asn Asn Ser Asp Ser Glu Ser Gly Asn Ser Phe Ser Leu Leu
Met Arg 50 55 60Arg Leu Gly Ser Ile
Lys Thr Gln Arg Arg Thr Ser Ile Gln Lys Gly65 70
75 80Tyr Val Gln Phe Phe Asp Ile Lys Thr Leu
Glu Lys Ala Thr Gly Gly 85 90
95Phe Lys Glu Ser Ser Val Ile Gly Gln Gly Gly Phe Gly Cys Val Tyr
100 105 110Lys Gly Cys Leu Asp
Asn Asn Val Lys Ala Ala Val Lys Lys Ile Glu 115
120 125Asn Val Ser Gln Glu Ala Lys Arg Glu Phe Gln Asn
Glu Val Asp Leu 130 135 140Leu Ser Lys
Ile His His Ser Asn Val Ile Ser Leu Leu Gly Ser Ala145
150 155 160Ser Glu Ile Asn Ser Ser Phe
Ile Val Tyr Glu Leu Met Glu Lys Gly 165
170 175Ser Leu Asp Glu Gln Leu His Gly Pro Ser Arg Gly
Ser Ala Leu Thr 180 185 190Trp
His Met Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly Leu Glu 195
200 205Tyr Leu His Glu His Cys Arg Pro Pro
Val Ile His Arg Asp Leu Lys 210 215
220Ser Ser Asn Ile Leu Leu Asp Ser Ser Phe Asn Ala Lys Ile Ser Asp225
230 235 240Phe Gly Phe Ala
Val Ser Leu Asp Glu His Gly Lys Asn Asn Ile Lys 245
250 255Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro
Glu Tyr Leu Leu Asp Gly 260 265
270Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe Gly Val Val Leu Leu
275 280 285Glu Leu Leu Leu Gly Arg Arg
Pro Val Glu Lys Leu Thr Pro Ala Gln 290 295
300Cys Gln Ser Leu Val Thr Trp Ala Met Pro Gln Leu Thr Asp Arg
Ser305 310 315 320Lys Leu
Pro Asn Ile Val Asp Ala Val Ile Lys Asp Thr Met Asp Leu
325 330 335Lys His Leu Tyr Gln Val Ala
Ala Met Ala Val Leu Cys Val Gln Pro 340 345
350Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu His Ser
Leu Val 355 360 365Pro Leu Val Pro
Val Glu Leu Gly Gly Thr Leu Arg Leu Thr Arg 370 375
38071160DNAARABIDOPSIS THALIANA 7atgggaagtg gtgaagaaga
tagatttgat gctcataaga aacttctgat tggtctcata 60atcagtttct cttctcttgg
ccttataatc ttgttctgtt ttggcttttg ggtttatcgc 120aagaaccaat ctccaaaatc
catcaacaac tcagattctg agagtgggaa ttcattttcc 180ttgttaatga gacgacttgg
ctcgattaaa actcagagaa gaacttctat ccaaaagggt 240tacgtgcaat ttttcgatat
caagaccctc gagaaagcga caggcggttt taaagaaagt 300agtgtaatcg gacaaggcgg
tttcggatgc gtttacaagg gttgtttgga caataacgtt 360aaagcagcgg tcaagaagat
cgagaacgtt agccaagaag caaaacgaga atttcagaat 420gaagttgact tgttgagcaa
gatccatcac tcgaacgtta tatcattgtt gggctctgca 480agcgaaatca actcgagttt
catcgtttat gagcttatgg agaaaggatc attagatgaa 540cagttacatg ggccttctcg
tggatcagct ctaacatggc acatgcgtat gaagattgct 600cttgatacag ctagaggact
agagtatctc catgagcatt gtcgtccacc agttatccac 660agagatttga aatcttcgaa
tattcttctt gattcttcct tcaacgccaa gatttcagat 720ttcggtcttg ctgtatcgct
ggatgaacat ggcaagaaca acattaaact ctctgggaca 780cttggttatg ttgccccgga
atacctcctt gacggaaaac tgacggataa gagtgatgtt 840tatgcatttg gggtagttct
gcttgaactc ttgttgggta gacgaccagt tgaaaaatta 900actccagctc aatgccaatc
tcttgtaact tgggcaatgc cacaacttac cgatagatcc 960aagcttccaa acattgtgga
tgccgttata aaagatacaa tggatctcaa acacttatac 1020caggtagcag ccatggctgt
gttgtgcgtg cagccagaac caagttaccg gccgttgata 1080accgatgttc ttcactcact
tgttccactg gttccggtag agctaggagg gactctccgg 1140ttaacaagat gattcacaga
11608383PRTARABIDOPSIS
THALIANA 8Met Gly Ser Gly Glu Glu Asp Arg Phe Asp Ala His Lys Lys Leu
Leu1 5 10 15Ile Gly Leu
Ile Ile Ser Phe Ser Ser Leu Gly Leu Ile Ile Leu Phe 20
25 30Cys Phe Gly Phe Trp Val Tyr Arg Lys Asn
Gln Ser Pro Lys Ser Ile 35 40
45Asn Asn Ser Asp Ser Glu Ser Gly Asn Ser Phe Ser Leu Leu Met Arg 50
55 60Arg Leu Gly Ser Ile Lys Thr Gln Arg
Arg Thr Ser Ile Gln Lys Gly65 70 75
80Tyr Val Gln Phe Phe Asp Ile Lys Thr Leu Glu Lys Ala Thr
Gly Gly 85 90 95Phe Lys
Glu Ser Ser Val Ile Gly Gln Gly Gly Phe Gly Cys Val Tyr 100
105 110Lys Gly Cys Leu Asp Asn Asn Val Lys
Ala Ala Val Lys Lys Ile Glu 115 120
125Asn Val Ser Gln Glu Ala Lys Arg Glu Phe Gln Asn Glu Val Asp Leu
130 135 140Leu Ser Lys Ile His His Ser
Asn Val Ile Ser Leu Leu Gly Ser Ala145 150
155 160Ser Glu Ile Asn Ser Ser Phe Ile Val Tyr Glu Leu
Met Glu Lys Gly 165 170
175Ser Leu Asp Glu Gln Leu His Gly Pro Ser Arg Gly Ser Ala Leu Thr
180 185 190Trp His Met Arg Met Lys
Ile Ala Leu Asp Thr Ala Arg Gly Leu Glu 195 200
205Tyr Leu His Glu His Cys Arg Pro Pro Val Ile His Arg Asp
Leu Lys 210 215 220Ser Ser Asn Ile Leu
Leu Asp Ser Ser Phe Asn Ala Lys Ile Ser Asp225 230
235 240Phe Gly Leu Ala Val Ser Leu Asp Glu His
Gly Lys Asn Asn Ile Lys 245 250
255Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu Leu Asp Gly
260 265 270Lys Leu Thr Asp Lys
Ser Asp Val Tyr Ala Phe Gly Val Val Leu Leu 275
280 285Glu Leu Leu Leu Gly Arg Arg Pro Val Glu Lys Leu
Thr Pro Ala Gln 290 295 300Cys Gln Ser
Leu Val Thr Trp Ala Met Pro Gln Leu Thr Asp Arg Ser305
310 315 320Lys Leu Pro Asn Ile Val Asp
Ala Val Ile Lys Asp Thr Met Asp Leu 325
330 335Lys His Leu Tyr Gln Val Ala Ala Met Ala Val Leu
Cys Val Gln Pro 340 345 350Glu
Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu His Ser Leu Val 355
360 365Pro Leu Val Pro Val Glu Leu Gly Gly
Thr Leu Arg Leu Thr Arg 370 375
38091542DNAARABIDOPSIS THALIANA 9atcaaaaact tttcttttct tagcaaaaaa
aacaaaaaaa tgagagagct tcttcttctt 60cttcttcttc attttcagtc tctaattctt
ttgatgatct tcatcactgt ctctgcttct 120tctgcttcaa atccttcttt agctcctgtt
tactcttcca tggctacatt ctctcctcga 180atccaaatgg gaagtggtga agaagataga
tttgatgctc ataagaaact tctgattggt 240ctcataatca gtttctcttc tcttggcctt
ataatcttgt tctgttttgg cttttgggtt 300tatcgcaaga accaatctcc aaaatccatc
aacaactcag attctgagag tgggaattca 360ttttccttgt taatgagacg acttggctcg
attaaaactc agagaagaac ttctatccaa 420aagggttacg tgcaattttt cgatatcaag
accctcgaga aagcgacagg cggttttaaa 480gaaagtagtg taatcggaca aggcggtttc
ggatgcgttt acaagggttg tttggacaat 540aacgttaaag cagcggtcaa gaagatcgag
aacgttagcc aagaagcaaa acgagaattt 600cagaatgaag ttgacttgtt gagcaagatc
catcactcga acgttatatc attgttgggc 660tctgcaagcg aaatcaactc gagtttcatc
gtttatgagc ttatggagaa aggatcatta 720gatgaacagt tacatgggcc ttctcgtgga
tcagctctaa catggcacat gcgtatgaag 780attgctcttg atacagctag aggactagag
tatctccatg agcattgtcg tccaccagtt 840atccacagag atttgaaatc ttcgaatatt
cttcttgatt cttccttcaa cgccaagatt 900tcagatttcg gtcttgctgt atcgctggat
gaacatggca agaacaacat taaactctct 960gggacacttg gttatgttgc cccggaatac
ctccttgacg gaaaactgac ggataagagt 1020gatgtttatg catttggggt agttctgctt
gaactcttgt tgggtagacg accagttgaa 1080aaattaactc cagctcaatg ccaatctctt
gtaacttggg caatgccaca acttaccgat 1140agatccaagc ttccaaacat tgtggatgcc
gttataaaag atacaatgga tctcaaacac 1200ttataccagg tagcagccat ggctgtgttg
tgcgtgcagc cagaaccaag ttaccggccg 1260ttgataaccg atgttcttca ctcacttgtt
ccactggttc cggtagagct aggagggact 1320ctccggttaa caagatgatt cacagaaaca
cgccaaaaga aatccaaagc catttagatg 1380attttctttt atcctttgcc tttatatttt
tttgtatagg gttatgatcc actcatctga 1440aagtttgggg gtaagaatgt gagaatataa
gttttcaggg ttgttgagtt ctatataatt 1500atatttgttt ctttttattg tcaaatataa
ttatattttt gt 1542101309DNAARABIDOPSIS THALIANA
10aaaatgagag agcttcttct tcttcttctt cttcattttc agtctctaat tcttttgatg
60atcttcatca ctgtctctgc ttcttctgct tcaaatcctt ctttagctcc tgtttactct
120tccatggcta cattctctcc tcgaatccaa atgggaagtg gtgaagaaga tagatttgat
180gctcataaga aacttctgat tggtctcata atcagtttct cttctcttgg ccttataatc
240ttgttctgtt ttggcttttg ggtttatcgc aagaaccaat ctccaaaatc catcaacaac
300tcagattctg agagtgggaa ttcattttcc ttgttaatga gacgacttgg ctcgattaaa
360actcagagaa gaacttctat ccaaaagggt tacgtgcaat ttttcgatat caagaccctc
420gagaaagcga caggcggttt taaagaaagt agtgtaatcg gacaaggcgg tttcggatgc
480gtttacaagg gttgtttgga caataacgtt aaagcagcgg tcaagaagat cgagaacgtt
540agccaagaag caaaacgaga atttcagaat gaagttgact tgttgagcaa gatccatcac
600tcgaacgtta tatcattgtt gggctctgca agcgaaatca actcgagttt catcgtttat
660gagcttatgg agaaaggatc attagatgaa cagttacatg ggccttctcg tggatcagct
720ctaacatggc acatgcgtat gaagattgct cttgatacag ctagaggact agagtatctc
780catgagcatt gtcgtccacc agttatccac agagatttga aatcttcgaa tattcttctt
840gattcttcct tcaacgccaa gatttcagat ttcggtcttg ctgtatcgct ggatgaacat
900ggcaagaaca acattaaact ctctgggaca cttggttatg ttgccccgga atacctcctt
960gacggaaaac tgacggataa gagtgatgtt tatgcatttg gggtagttct gcttgaactc
1020ttgttgggta gacgaccagt tgaaaaatta actccagctc aatgccaatc tcttgtaact
1080tgggcaatgc cacaacttac cgatagatcc aagcttccaa acattgtgga tgccgttata
1140aaagatacaa tggatctcaa acacttatac caggtagcag ccatggctgt gttgtgcgtg
1200cagccagaac caagttaccg gccgttgata accgatgttc ttcactcact tgttccactg
1260gttccggtag agctaggagg gactctccgg ttaacaagat gattcacag
1309111177DNAARABIDOPSIS THALIANA 11tctgtgtcag gaatccaaat gggaagtggt
gaagaagata gatttgatgc tcataagaaa 60cttctgattg gtctcataat cagtttctct
tctcttggcc ttataatctt gttctgtttt 120ggcttttggg tttatcgcaa gaaccaatct
ccaaaatcca tcaacaactc agattctgag 180agtgggaatt cattttcctt gttaatgaga
cgacttggct cgattaaaac tcagagaaga 240acttctatcc aaaagggtta cgtgcaattt
ttcgatatca agaccctcga gaaagcgaca 300ggcggtttta aagaaagtag tgtaatcgga
caaggcggtt tcggatgcgt ttacaagggt 360tgtttggaca ataacgttaa agcagcggtc
aagaagatcg agaacgttag ccaagaagca 420aaacgagaat ttcagaatga agttgacttg
ttgagcaaga tccatcactc gaacgttata 480tcattgttgg gctctgcaag cgaaatcaac
tcgagtttca tcgtttatga gcttatggag 540aaaggatcat tagatgaaca gttacatggg
ccttctcgtg gatcagctct aacatggcac 600atgcgtatga agattgctct tgatacagct
agaggactag agtatctcca tgagcattgt 660cgtccaccag ttatccacag agatttgaaa
tcttcgaata ttcttcttga ttcttccttc 720aacgccaaga tttcagattt cggtcttgct
gtatcgctgg atgaacatgg caagaacaac 780attaaactct ctgggacact tggttatgtt
gccccggaat acctccttga cggaaaactg 840acggataaga gtgatgttta tgcatttggg
gtagttctgc ttgaactctt gttgggtaga 900cgaccagttg aaaaattaac tccagctcaa
tgccaatctc ttgtaacttg ggcaatgcca 960caacttaccg atagatccaa gcttccaaac
attgtggatg ccgttataaa agatacaatg 1020gatctcaaac acttatacca ggtagcagcc
atggctgtgt tgtgcgtgca gccagaacca 1080agttaccggc cgttgataac cgatgttctt
cactcacttg ttccactggt tccggtagag 1140ctaggaggga ctctccggtt aacaagatga
ttcacag 117712154DNAARABIDOPSIS THALIANA
12tcgcaagaac caatctccaa aatccatcaa caactcagat tctgagagtg ggaattcatt
60ttccttgtta atgagacgac ttggctcgat taaaactcag agaagaactt ctatccaaaa
120gggttacgtg caatttttcg atatcaagac cctc
15413288DNAARABIDOPSIS THALIANA 13tctgtgtcag gaatccaaat gggaagtggt
gaagaagata gatttgatgc tcataagaaa 60cttctgattg gtctcataat cagtttctct
tctcttggcc ttataatctt gttctgtttt 120ggcttttggg tttatcgcaa gaaccaatct
ccaaaatcca tcaacaactc agattctgag 180agtgggaatt cattttcctt gttaatgaga
cgacttggct cgattaaaac tcagagaaga 240acttctatcc aaaagggtta cgtgcaattt
ttcgatatca agaccctc 288141510DNAARABIDOPSIS THALIANA
14tgttaaaagc gatttataat ttacaccgtt ttggtgtata tttctatcta tccttttaca
60agacctatat atgttatgtt atggtggtgt actattttaa gtgagcgaca tagtattttc
120ttcatatagc taattaatca acaacaattt cccaacttac aactatttgc gtactttaaa
180cttatattga aagagaacta caaaattatt tttttgtaca agagaattat ggtcttcgga
240tcaataattt ctctagatat aatatgtaaa gccaacccta taatttgtaa aatccatgat
300ttgatataat tttcttttaa aattgtgaat tggcagacaa aaacaacatt acattttgat
360ttaaattcat aactttgact tgctaaggaa acaccatgat tcattttttg tcatttgtta
420catcatcact agaaatattt gatctaactt tattatgata atagactaca tactacatat
480gcagttacga ttttaaatac tacatattta agcgtgttta aactgtaacc atatcatata
540aaatgacata tctaaaagtg attttcaata ttttgatatg atatgtgttg tagcacggat
600aatgatctaa tttttaagta ataagcttgt tcattacaaa agagaagaaa gtagtattgg
660gccatgatta tgtaaggaca aaataggaag atgtggaaga agccattcga gggttttatt
720acaaaaacag agtatataat tggtcataat gttttattca cttaatttaa cattattgca
780ttatattttc atgaacacat atttctttaa ctaaaaatat acacatattt cttattgtag
840atgaagtgaa aagaacaata tttgggttca catctatggg tgaatccttt taatcacccc
900ctaaaataaa aaaggtgcca tatttctatt tttagagaaa gatatagagc accattggag
960tggttttgct ccaaatatag agtttagaga aatatataat acaccattgg agatgctcta
1020aaatgaattt atttatttat ttagatggaa gattctaatt ggttagaaaa agaggaagtg
1080aataatagga ttcacctata agagtgaacc caagtatttt taagagataa tgtgtaaagt
1140aaatagatgg tcattgtgtg aattatgaat agaaccatgg ttttccattt ttaattgctt
1200aacatagggt aatcaacaat ggggtttaat atgtcaatag acaatagtaa agaaagtatt
1260tgatctatcc caaatctttc ttcgttcgtt agttcatcac tttctttctt tttggttata
1320ttaatggtag agaactaaaa attcaacttt ttattcaaaa gctccctttc tctttccctc
1380ctttatttgc cataaaagtg atttcaagaa gacagcgaga gagaaagtga tagttcgttc
1440actcttcgct ttctcaagaa tttcaaaaca ccaaaaaagt ctttagattg aatttcatca
1500aaaacttttc
151015157DNAARABIDOPSIS THALIANA 15agacaagaaa aaaggaaaca aaattttatg
aaagagatct ccattagaga aagagagagc 60gagagagaga ttaatcttgg aagagcaatc
tcacattctc acactgctct tagaaaatct 120ctctttcacc attaaaaatc ccaaagagtc
tggagaa 157161257DNAARABIDOPSIS THALIANA
16atgggaaaga ttcttcatct tcttcttctt cttcttaagg tctctgttct tgaattcatc
60attagtgttt ctgcttttac ttcacctgct tcacagcctt ctctttctcc tgtttacact
120tccatggctt ccttttctcc agggatccac atgggcaaag gccaagaaca caagttagat
180gcacacaaga aacttctaat cgctctcata atcacctcat cttctctagg actaatactt
240gtatcttgtt tatgcttttg ggtttattgg tctaagaaat ctcccaaaaa caccaagaac
300tcaggtgaga gtaggatttc attatccaag aagggctttg tgcagtcctt cgattacaag
360acactagaga aagcaacagg cggtttcaaa gacggtaatc ttataggacg aggcgggttc
420ggagatgttt acaaggcctg tttaggcaac aacactctag cagcagtcaa aaagatcgaa
480aacgttagtc aagaagcaaa acgagaattt cagaatgaag ttgatttgtt gagcaagatt
540caccacccga acatcatctc attgtttgga tatggaaatg aactcagttc gagttttatc
600gtctacgagc tgatggaaag cggatcattg gatacacagt tacacggacc ttctcgggga
660tcggctttaa catggcacat gcggatgaag attgctcttg atacagcaag agctgttgag
720tatctccacg agcgttgtcg tcctccggtt atccacagag atcttaaatc gtcaaatatt
780ctccttgatt cttccttcaa cgccaagatt tcggattttg gtcttgcggt aatggtgggg
840gctcacggca aaaacaacat taaactatca ggaacacttg gttatgttgc tccagaatat
900ctcctagatg gaaaattgac ggataagagt gatgtttatg cgtttggtgt ggttttactt
960gaactcttgt taggaagacg gccggttgag aaattgagtt cggttcagtg tcaatctctt
1020gtcacttggg caatgcccca acttacggat agatcaaagc ttccgaaaat cgtggatccg
1080gttatcaaag atacaatgga tcataagcac ttataccagg tggcagccgt ggcagtgctt
1140tgtgtacaac cagaaccgag ttatcgaccg ttgataaccg atgttcttca ctcactagtt
1200ccattggttc cggtagagct aggagggact ctccggttaa taccatcatc gtcttga
125717418PRTARABIDOPSIS THALIANA 17Met Gly Lys Ile Leu His Leu Leu Leu
Leu Leu Leu Lys Val Ser Val1 5 10
15Leu Glu Phe Ile Ile Ser Val Ser Ala Phe Thr Ser Pro Ala Ser
Gln 20 25 30Pro Ser Leu Ser
Pro Val Tyr Thr Ser Met Ala Ser Phe Ser Pro Gly 35
40 45Ile His Met Gly Lys Gly Gln Glu His Lys Leu Asp
Ala His Lys Lys 50 55 60Leu Leu Ile
Ala Leu Ile Ile Thr Ser Ser Ser Leu Gly Leu Ile Leu65 70
75 80Val Ser Cys Leu Cys Phe Trp Val
Tyr Trp Ser Lys Lys Ser Pro Lys 85 90
95Asn Thr Lys Asn Ser Gly Glu Ser Arg Ile Ser Leu Ser Lys
Lys Gly 100 105 110Phe Val Gln
Ser Phe Asp Tyr Lys Thr Leu Glu Lys Ala Thr Gly Gly 115
120 125Phe Lys Asp Gly Asn Leu Ile Gly Arg Gly Gly
Phe Gly Asp Val Tyr 130 135 140Lys Ala
Cys Leu Gly Asn Asn Thr Leu Ala Ala Val Lys Lys Ile Glu145
150 155 160Asn Val Ser Gln Glu Ala Lys
Arg Glu Phe Gln Asn Glu Val Asp Leu 165
170 175Leu Ser Lys Ile His His Pro Asn Ile Ile Ser Leu
Phe Gly Tyr Gly 180 185 190Asn
Glu Leu Ser Ser Ser Phe Ile Val Tyr Glu Leu Met Glu Ser Gly 195
200 205Ser Leu Asp Thr Gln Leu His Gly Pro
Ser Arg Gly Ser Ala Leu Thr 210 215
220Trp His Met Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Ala Val Glu225
230 235 240Tyr Leu His Glu
Arg Cys Arg Pro Pro Val Ile His Arg Asp Leu Lys 245
250 255Ser Ser Asn Ile Leu Leu Asp Ser Ser Phe
Asn Ala Lys Ile Ser Asp 260 265
270Phe Gly Leu Ala Val Met Val Gly Ala His Gly Lys Asn Asn Ile Lys
275 280 285Leu Ser Gly Thr Leu Gly Tyr
Val Ala Pro Glu Tyr Leu Leu Asp Gly 290 295
300Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe Gly Val Val Leu
Leu305 310 315 320Glu Leu
Leu Leu Gly Arg Arg Pro Val Glu Lys Leu Ser Ser Val Gln
325 330 335Cys Gln Ser Leu Val Thr Trp
Ala Met Pro Gln Leu Thr Asp Arg Ser 340 345
350Lys Leu Pro Lys Ile Val Asp Pro Val Ile Lys Asp Thr Met
Asp His 355 360 365Lys His Leu Tyr
Gln Val Ala Ala Val Ala Val Leu Cys Val Gln Pro 370
375 380Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu
His Ser Leu Val385 390 395
400Pro Leu Val Pro Val Glu Leu Gly Gly Thr Leu Arg Leu Ile Pro Ser
405 410 415Ser
Ser181302DNAARABIDOPSIS THALIANA 18atgaagcaaa ttgttataac agctcttgtt
ttactacaag cttatgttct tcatcaatcc 60acatgtgtta tgtcccttac tacacaagaa
tctccttctc ctcaaccttc tgctttcact 120cccgccttat ctcctgatta tcaacagaga
gagaaggaat tgcataaaca agagagtaac 180aacatgagac tggttatttc actagcagct
acattttcct tagttggtat aatcttactt 240tgctctctgc tttattggtt ttgccatagg
agaagaaacc tcaagagctc aggttgtggg 300tgtagtggaa tcacattctt gaatcggttt
agtcgctcaa aaacattaga caagagaact 360acaaagcagg gaacagtgtc attgatcgat
tacaatatac tagaagaagg aactagtggt 420ttcaaggaga gtaacatttt gggtcaaggt
ggatttggat gtgtatattc tgccacatta 480gagaacaaca tttcagctgc ggttaagaag
ctagactgtg ccaatgaaga tgcagcaaag 540gaatttaaga gtgaggttga gatattgagt
aagctccagc acccgaatat aatatccctt 600ttgggttata gcacgaatga tactgcgaga
ttcattgtct atgagctgat gccaaacgtt 660tctctggaat ctcatttaca cggatcttct
cagggttcgg cgatcacatg gcctatgagg 720atgaagattg ctcttgatgt aacaagggga
ttagaatatt tgcatgaaca ttgtcatcca 780gcaatcattc acagggactt gaaatcatcc
aacatcttat tagatagcaa tttcaatgct 840aagatttcag attttggtct agctgttgtt
gatgggccaa agaacaagaa ccataaactt 900tccgggacag ttggctacgt tgcaccagag
tatcttctca acggccaatt gacagaaaag 960agcgacgtgt atgcttttgg agtagtgtta
ttagagcttt tactcgggaa aaaacctgtg 1020gagaaactag ctcccggtga atgccaatcc
atcatcactt gggcaatgcc ttatctcact 1080gatagaacca agttaccaag cgtcatagat
cctgcgatta aagatacgat ggacttgaaa 1140cacctttacc aggtagcggc agtggcgatt
ttgtgcgtgc agccagaacc gagttataga 1200ccgttgatta cagacgtctt gcattctctt
atacctttgg ttccaatgga acttggtgga 1260accttaaaaa ccatcaaatg tgcttcaatg
gatcactgtt aa 130219433PRTARABIDOPSIS THALIANA 19Met
Lys Gln Ile Val Ile Thr Ala Leu Val Leu Leu Gln Ala Tyr Val1
5 10 15Leu His Gln Ser Thr Cys Val
Met Ser Leu Thr Thr Gln Glu Ser Pro 20 25
30Ser Pro Gln Pro Ser Ala Phe Thr Pro Ala Leu Ser Pro Asp
Tyr Gln 35 40 45Gln Arg Glu Lys
Glu Leu His Lys Gln Glu Ser Asn Asn Met Arg Leu 50 55
60Val Ile Ser Leu Ala Ala Thr Phe Ser Leu Val Gly Ile
Ile Leu Leu65 70 75
80Cys Ser Leu Leu Tyr Trp Phe Cys His Arg Arg Arg Asn Leu Lys Ser
85 90 95Ser Gly Cys Gly Cys Ser
Gly Ile Thr Phe Leu Asn Arg Phe Ser Arg 100
105 110Ser Lys Thr Leu Asp Lys Arg Thr Thr Lys Gln Gly
Thr Val Ser Leu 115 120 125Ile Asp
Tyr Asn Ile Leu Glu Glu Gly Thr Ser Gly Phe Lys Glu Ser 130
135 140Asn Ile Leu Gly Gln Gly Gly Phe Gly Cys Val
Tyr Ser Ala Thr Leu145 150 155
160Glu Asn Asn Ile Ser Ala Ala Val Lys Lys Leu Asp Cys Ala Asn Glu
165 170 175Asp Ala Ala Lys
Glu Phe Lys Ser Glu Val Glu Ile Leu Ser Lys Leu 180
185 190Gln His Pro Asn Ile Ile Ser Leu Leu Gly Tyr
Ser Thr Asn Asp Thr 195 200 205Ala
Arg Phe Ile Val Tyr Glu Leu Met Pro Asn Val Ser Leu Glu Ser 210
215 220His Leu His Gly Ser Ser Gln Gly Ser Ala
Ile Thr Trp Pro Met Arg225 230 235
240Met Lys Ile Ala Leu Asp Val Thr Arg Gly Leu Glu Tyr Leu His
Glu 245 250 255His Cys His
Pro Ala Ile Ile His Arg Asp Leu Lys Ser Ser Asn Ile 260
265 270Leu Leu Asp Ser Asn Phe Asn Ala Lys Ile
Ser Asp Phe Gly Leu Ala 275 280
285Val Val Asp Gly Pro Lys Asn Lys Asn His Lys Leu Ser Gly Thr Val 290
295 300Gly Tyr Val Ala Pro Glu Tyr Leu
Leu Asn Gly Gln Leu Thr Glu Lys305 310
315 320Ser Asp Val Tyr Ala Phe Gly Val Val Leu Leu Glu
Leu Leu Leu Gly 325 330
335Lys Lys Pro Val Glu Lys Leu Ala Pro Gly Glu Cys Gln Ser Ile Ile
340 345 350Thr Trp Ala Met Pro Tyr
Leu Thr Asp Arg Thr Lys Leu Pro Ser Val 355 360
365Ile Asp Pro Ala Ile Lys Asp Thr Met Asp Leu Lys His Leu
Tyr Gln 370 375 380Val Ala Ala Val Ala
Ile Leu Cys Val Gln Pro Glu Pro Ser Tyr Arg385 390
395 400Pro Leu Ile Thr Asp Val Leu His Ser Leu
Ile Pro Leu Val Pro Met 405 410
415Glu Leu Gly Gly Thr Leu Lys Thr Ile Lys Cys Ala Ser Met Asp His
420 425
430Cys202016DNAARABIDOPSIS THALIANA 20atgaagacta tgtccaaatc gtctttgcgt
ttgcattttc tctcgctact cttactttgt 60tgtgtctccc cttcaagctt tgtcattata
agattcatta cacataatca ttttgatggt 120ctagtacgtt gtcatcccca caagtttcaa
gcccttacgc agttcaagaa cgagtttgat 180acccgccgtt gcaaccacag taactacttt
aatggaatct ggtgtgataa ctccaaggtg 240cggtcacaaa gctacgacta cgggactgtc
tcagtggaac tctcaaatca aacagtagcc 300tcttccagtt tcatcatctt cgctaccttg
atctctctca caacaacttc acctcctctt 360ccctcccttc cgagtttgtt tcccactttg
cggaatctaa ccaagctcac agttttagac 420ctttctcata atcacttctc cggaactttg
aagcccaaca atagcctctt tgagttacac 480caccttcgtt accttaatct cgaggtcaac
aacttcagtt cctcactccc ttccgagttt 540ggctatctca acaatttaca gcactgtggc
ctcaaagagt tcccaaacat attcaagacc 600cttaaaaaaa tggaggctat agacgtatcc
aacaatagaa tcaacgggaa aatccctgag 660tggttatgga gccttcctct tcttcattta
gtgaatattt taaataattc ttttgacggt 720ttcgaaggat caacggaagt tttagtaaat
tcatcggttc ggatattact tttggagtca 780aacaactttg aaggagcact tcctagtcta
ccacactcta tcaacgcctt ctccgcgggt 840cataacaatt tcactggaga gatacctctt
tcaatctgca ccagaacctc acttggtgtc 900cttgatctaa actacaacaa cctcattggt
ccggtttctc aatgtttgag taatgtcacg 960tttgtaaatc tccggaaaaa caatttggaa
ggaactattc ctgagacttt cattgtcggt 1020tcctcgataa ggacacttga tgttggatac
aatcgactaa cgggaaagct tccaaggtct 1080cttttgaact gctcatctct agagtttcta
agcgttgaca acaacagaat caaagacaca 1140tttcctttct ggctcaaggc tttaccaaag
ttacaagtcc ttaccctaag ttcaaacaag 1200ttttatggtc ctatatctcc tcctcatcaa
ggtcctctcg ggtttccaga gctgagaata 1260cttgagatat ctgataataa gtttactgga
agcttgtcgt caagatactt tgagaattgg 1320aaagcatcgt ccgccatgat gaatgaatat
gtgggtttat atatggttta cgagaagaat 1380ccttatggtg tagttgtcta tacctttttg
gatcgtatag atttgaaata caaaggtcta 1440aacatggagc aagcgagggt tctcacttcc
tacagcgcca ttgatttttc tagaaatcta 1500cttgaaggaa atattcctga atccattgga
cttttaaagg cattgattgc actaaactta 1560tcgaacaacg cttttacagg ccatattcct
cagtctttgg caaatcttaa ggagctccag 1620tcactagaca tgtctaggaa ccaactctca
gggactattc ctaatggact caagcaactc 1680tcgtttttgg cttacataag tgtgtctcat
aaccaactca agggtgaaat accacaagga 1740acacaaatta ctgggcaatt gaaatcttcc
tttgaaggga atgtaggact ttgtggtctt 1800cctctcgagg aaaggtgctt cgacaatagt
gcatctccaa cgcagcacca caagcaagac 1860gaagaagaag aagaagaaca agtgttacac
tggaaagcgg tggcaatggg gtatggacct 1920ggattgttgg ttggatttgc aattgcatat
gtcattgctt catacaagcc ggagtggcta 1980accaagataa ttggtccgaa taagcgcaga
aactag 201621671PRTARABIDOPSIS THALIANA 21Met
Lys Thr Met Ser Lys Ser Ser Leu Arg Leu His Phe Leu Ser Leu1
5 10 15Leu Leu Leu Cys Cys Val Ser
Pro Ser Ser Phe Val Ile Ile Arg Phe 20 25
30Ile Thr His Asn His Phe Asp Gly Leu Val Arg Cys His Pro
His Lys 35 40 45Phe Gln Ala Leu
Thr Gln Phe Lys Asn Glu Phe Asp Thr Arg Arg Cys 50 55
60Asn His Ser Asn Tyr Phe Asn Gly Ile Trp Cys Asp Asn
Ser Lys Val65 70 75
80Arg Ser Gln Ser Tyr Asp Tyr Gly Thr Val Ser Val Glu Leu Ser Asn
85 90 95Gln Thr Val Ala Ser Ser
Ser Phe Ile Ile Phe Ala Thr Leu Ile Ser 100
105 110Leu Thr Thr Thr Ser Pro Pro Leu Pro Ser Leu Pro
Ser Leu Phe Pro 115 120 125Thr Leu
Arg Asn Leu Thr Lys Leu Thr Val Leu Asp Leu Ser His Asn 130
135 140His Phe Ser Gly Thr Leu Lys Pro Asn Asn Ser
Leu Phe Glu Leu His145 150 155
160His Leu Arg Tyr Leu Asn Leu Glu Val Asn Asn Phe Ser Ser Ser Leu
165 170 175Pro Ser Glu Phe
Gly Tyr Leu Asn Asn Leu Gln His Cys Gly Leu Lys 180
185 190Glu Phe Pro Asn Ile Phe Lys Thr Leu Lys Lys
Met Glu Ala Ile Asp 195 200 205Val
Ser Asn Asn Arg Ile Asn Gly Lys Ile Pro Glu Trp Leu Trp Ser 210
215 220Leu Pro Leu Leu His Leu Val Asn Ile Leu
Asn Asn Ser Phe Asp Gly225 230 235
240Phe Glu Gly Ser Thr Glu Val Leu Val Asn Ser Ser Val Arg Ile
Leu 245 250 255Leu Leu Glu
Ser Asn Asn Phe Glu Gly Ala Leu Pro Ser Leu Pro His 260
265 270Ser Ile Asn Ala Phe Ser Ala Gly His Asn
Asn Phe Thr Gly Glu Ile 275 280
285Pro Leu Ser Ile Cys Thr Arg Thr Ser Leu Gly Val Leu Asp Leu Asn 290
295 300Tyr Asn Asn Leu Ile Gly Pro Val
Ser Gln Cys Leu Ser Asn Val Thr305 310
315 320Phe Val Asn Leu Arg Lys Asn Asn Leu Glu Gly Thr
Ile Pro Glu Thr 325 330
335Phe Ile Val Gly Ser Ser Ile Arg Thr Leu Asp Val Gly Tyr Asn Arg
340 345 350Leu Thr Gly Lys Leu Pro
Arg Ser Leu Leu Asn Cys Ser Ser Leu Glu 355 360
365Phe Leu Ser Val Asp Asn Asn Arg Ile Lys Asp Thr Phe Pro
Phe Trp 370 375 380Leu Lys Ala Leu Pro
Lys Leu Gln Val Leu Thr Leu Ser Ser Asn Lys385 390
395 400Phe Tyr Gly Pro Ile Ser Pro Pro His Gln
Gly Pro Leu Gly Phe Pro 405 410
415Glu Leu Arg Ile Leu Glu Ile Ser Asp Asn Lys Phe Thr Gly Ser Leu
420 425 430Ser Ser Arg Tyr Phe
Glu Asn Trp Lys Ala Ser Ser Ala Met Met Asn 435
440 445Glu Tyr Val Gly Leu Tyr Met Val Tyr Glu Lys Asn
Pro Tyr Gly Val 450 455 460Val Val Tyr
Thr Phe Leu Asp Arg Ile Asp Leu Lys Tyr Lys Gly Leu465
470 475 480Asn Met Glu Gln Ala Arg Val
Leu Thr Ser Tyr Ser Ala Ile Asp Phe 485
490 495Ser Arg Asn Leu Leu Glu Gly Asn Ile Pro Glu Ser
Ile Gly Leu Leu 500 505 510Lys
Ala Leu Ile Ala Leu Asn Leu Ser Asn Asn Ala Phe Thr Gly His 515
520 525Ile Pro Gln Ser Leu Ala Asn Leu Lys
Glu Leu Gln Ser Leu Asp Met 530 535
540Ser Arg Asn Gln Leu Ser Gly Thr Ile Pro Asn Gly Leu Lys Gln Leu545
550 555 560Ser Phe Leu Ala
Tyr Ile Ser Val Ser His Asn Gln Leu Lys Gly Glu 565
570 575Ile Pro Gln Gly Thr Gln Ile Thr Gly Gln
Leu Lys Ser Ser Phe Glu 580 585
590Gly Asn Val Gly Leu Cys Gly Leu Pro Leu Glu Glu Arg Cys Phe Asp
595 600 605Asn Ser Ala Ser Pro Thr Gln
His His Lys Gln Asp Glu Glu Glu Glu 610 615
620Glu Glu Gln Val Leu His Trp Lys Ala Val Ala Met Gly Tyr Gly
Pro625 630 635 640Gly Leu
Leu Val Gly Phe Ala Ile Ala Tyr Val Ile Ala Ser Tyr Lys
645 650 655Pro Glu Trp Leu Thr Lys Ile
Ile Gly Pro Asn Lys Arg Arg Asn 660 665
670221662DNAARABIDOPSIS THALIANA 22atgacttcct ctcgccgtct
tcttcttcct ctcggagcat cgctcactag aggaagattt 60tcttccgatc aaatccgaaa
tggatttcta agaaacttcc gtggattcgc caccgtaact 120tcgtcggaac cggccttagc
caatctggaa gcgaaatatg ccgtagcgtt gccagaatgt 180tcaacagtag aggacgagat
cacgaagatc cgtcatgaat tcgagttagc gaaacagagg 240tttcttaata tccctgaagc
tattaatagt atgccgaaga tgaatcctca agggatatat 300gtgaataaga atctgagatt
ggataatata caagtttatg gatttgatta tgattacact 360ttggcacatt actcttctca
cttacagagt ttgatctatg atcttgccaa gaaacatatg 420gttaatgagt ttagatatcc
tgatgtttgc actcagtttg agtatgatcc tacttttcca 480atccgtgggt tgtactatga
taaactaaaa ggatgcctca tgaaattgga tttcttcggt 540tcaatcgagc cagatgggtg
ttattttggt cgtcgtaagc ttagtaggaa ggaaatagaa 600agcatgtatg gaacgcggca
cataggtcgt gatcaagcga gaggtttggt gggattgatg 660gatttcttct gttttagcga
ggcgtgtctt atagcagaca tggtgcaata ttttgttgac 720gccaaacttg agtttgatgc
ctctaacatc tacaatgatg tcaatcgtgc tattcaacat 780gtccatagaa gtggattggt
tcatagagga attcttgctg atcccaacag atatttgcta 840aaaaatggtc agcttctacg
tttcctgaga atgctaaaag ataaaggaaa gaagcttttt 900ttgctgacca actctccgta
taattttgtt gatggcggaa tgcgctttct aatggaggaa 960tcttttggct tcggagattc
ctggcgagaa ctctttgatg ttgtgattgc taaagcaaat 1020aaaccagaat tttacacatc
tgagcaccct ttccgttgtt atgattcgga gagggataat 1080ttggcattta caaaagtgga
tgcatttgac ccaaagaaag tttattatca tggttgtctt 1140aaatccttcc ttgaaatcac
aaagtggcat ggccctgagg tgatttattt cggagatcac 1200ttatttagtg atctaagagg
gccttcaaaa gctggttggc gaactgctgc cataattcat 1260gagctcgagc gagagataca
gatacaaaat gatgatagct accggtttga gcaggccaag 1320ttccatatta tccaagagtt
actcggtaga tttcacgcga ctgtatcaaa caatcagaga 1380agtgaagcat gccaatcact
tttggatgag ctgaacaatg cgaggcagag agcaagagac 1440acgatgaaac aaatgttcaa
cagatcgttt ggagctacat ttgtcacaga cactggtcaa 1500gaatcagcat tctcttatca
catccaccaa tacgcagacg tttataccag taaacctgag 1560aactttctgt tataccgacc
tgaagcctgg cttcacgttc cttacgatat caagatcatg 1620ccacatcatg tcaaggttgc
ttcaaccctt ttcaaaacct ga 166223553PRTARABIDOPSIS
THALIANA 23Met Thr Ser Ser Arg Arg Leu Leu Leu Pro Leu Gly Ala Ser Leu
Thr1 5 10 15Arg Gly Arg
Phe Ser Ser Asp Gln Ile Arg Asn Gly Phe Leu Arg Asn 20
25 30Phe Arg Gly Phe Ala Thr Val Thr Ser Ser
Glu Pro Ala Leu Ala Asn 35 40
45Leu Glu Ala Lys Tyr Ala Val Ala Leu Pro Glu Cys Ser Thr Val Glu 50
55 60Asp Glu Ile Thr Lys Ile Arg His Glu
Phe Glu Leu Ala Lys Gln Arg65 70 75
80Phe Leu Asn Ile Pro Glu Ala Ile Asn Ser Met Pro Lys Met
Asn Pro 85 90 95Gln Gly
Ile Tyr Val Asn Lys Asn Leu Arg Leu Asp Asn Ile Gln Val 100
105 110Tyr Gly Phe Asp Tyr Asp Tyr Thr Leu
Ala His Tyr Ser Ser His Leu 115 120
125Gln Ser Leu Ile Tyr Asp Leu Ala Lys Lys His Met Val Asn Glu Phe
130 135 140Arg Tyr Pro Asp Val Cys Thr
Gln Phe Glu Tyr Asp Pro Thr Phe Pro145 150
155 160Ile Arg Gly Leu Tyr Tyr Asp Lys Leu Lys Gly Cys
Leu Met Lys Leu 165 170
175Asp Phe Phe Gly Ser Ile Glu Pro Asp Gly Cys Tyr Phe Gly Arg Arg
180 185 190Lys Leu Ser Arg Lys Glu
Ile Glu Ser Met Tyr Gly Thr Arg His Ile 195 200
205Gly Arg Asp Gln Ala Arg Gly Leu Val Gly Leu Met Asp Phe
Phe Cys 210 215 220Phe Ser Glu Ala Cys
Leu Ile Ala Asp Met Val Gln Tyr Phe Val Asp225 230
235 240Ala Lys Leu Glu Phe Asp Ala Ser Asn Ile
Tyr Asn Asp Val Asn Arg 245 250
255Ala Ile Gln His Val His Arg Ser Gly Leu Val His Arg Gly Ile Leu
260 265 270Ala Asp Pro Asn Arg
Tyr Leu Leu Lys Asn Gly Gln Leu Leu Arg Phe 275
280 285Leu Arg Met Leu Lys Asp Lys Gly Lys Lys Leu Phe
Leu Leu Thr Asn 290 295 300Ser Pro Tyr
Asn Phe Val Asp Gly Gly Met Arg Phe Leu Met Glu Glu305
310 315 320Ser Phe Gly Phe Gly Asp Ser
Trp Arg Glu Leu Phe Asp Val Val Ile 325
330 335Ala Lys Ala Asn Lys Pro Glu Phe Tyr Thr Ser Glu
His Pro Phe Arg 340 345 350Cys
Tyr Asp Ser Glu Arg Asp Asn Leu Ala Phe Thr Lys Val Asp Ala 355
360 365Phe Asp Pro Lys Lys Val Tyr Tyr His
Gly Cys Leu Lys Ser Phe Leu 370 375
380Glu Ile Thr Lys Trp His Gly Pro Glu Val Ile Tyr Phe Gly Asp His385
390 395 400Leu Phe Ser Asp
Leu Arg Gly Pro Ser Lys Ala Gly Trp Arg Thr Ala 405
410 415Ala Ile Ile His Glu Leu Glu Arg Glu Ile
Gln Ile Gln Asn Asp Asp 420 425
430Ser Tyr Arg Phe Glu Gln Ala Lys Phe His Ile Ile Gln Glu Leu Leu
435 440 445Gly Arg Phe His Ala Thr Val
Ser Asn Asn Gln Arg Ser Glu Ala Cys 450 455
460Gln Ser Leu Leu Asp Glu Leu Asn Asn Ala Arg Gln Arg Ala Arg
Asp465 470 475 480Thr Met
Lys Gln Met Phe Asn Arg Ser Phe Gly Ala Thr Phe Val Thr
485 490 495Asp Thr Gly Gln Glu Ser Ala
Phe Ser Tyr His Ile His Gln Tyr Ala 500 505
510Asp Val Tyr Thr Ser Lys Pro Glu Asn Phe Leu Leu Tyr Arg
Pro Glu 515 520 525Ala Trp Leu His
Val Pro Tyr Asp Ile Lys Ile Met Pro His His Val 530
535 540Lys Val Ala Ser Thr Leu Phe Lys Thr545
550241386DNABRACHYPODIUM DISTACHYON 24atggagattc cggcggcgcc
gccgcctcca ttgccggtgc tgtgctcgta cgtcgtcttc 60ttgctgctgc tgtcttcgtg
ctcactggcc agagggagga tcgcggtttc ttccccgggc 120ccgtcgcctg tggccgccgc
cgttacagcc aatgagaccg cttcatcctc ttcttctccg 180gtgtttccgg ccgctcctcc
cgtcgtgatc acagtggtga ggcaccacca ttaccaccgg 240gagctggtca tctccgctgt
cctcgcctgc gtcgccaccg ccatgatcct cctctccaca 300ctctacgcct ggacgatgtg
gcggcggtct cgccggaccc cccacggcgg caagggccgc 360ggccggagat cagggatcac
actggtgcca atcctgagca agttcaattc agtgaagatg 420agcaggaagg ggggccttgt
gacgatgatc gagtacccgt cgctggaggc ggcgacaggc 480aagttcggcg agagcaatgt
gctcggtgtc ggcggcttcg gttgcgttta taaggcggcg 540tttgatggcg gtgccaccgc
cgccgtgaag aggcttgaag gcggcgggcc ggattgcgag 600aaggaattcg agaatgagct
ggatttgctt ggcaggatca ggcacccaaa catagtgtct 660ctcctgggct tctgtgtcca
tggtggcaat cactacattg tttatgagct catggagaag 720ggatcattgg agacacagct
gcatgggtct tcacatggat ctgctctgag ctggcacgtt 780cggatgaaga tcgcgctcga
tacggcgagg ggattagagt atcttcatga gcactgcaat 840ccacctgtga tccataggga
tctgaaacct tctaatatac ttttagattc agacttcaat 900gctaagattg cagattttgg
ccttgcggtc accggtggga atctcaacaa agggaacctg 960aagctttccg ggaccttggg
ttatgtagcc cctgagtact tattagatgg gaagttgact 1020gagaagagcg atgtatacgc
atttggagta gtgcttctag agctcctgat gggaaggaag 1080cctgttgaga aaatgtcacc
atctcagtgc caatcaattg tgtcatgggc tatgcctcag 1140ctgaccgaca gatcgaagct
ccccaacata attgacctgg tgatcaagga caccatggac 1200ccaaaacact tgtaccaagt
tgcagcagtg gctgttctat gtgtgcagcc cgaaccgagc 1260tacagaccac tgataacaga
tgttctccac tctcttgttc ctctagtgcc tgcggagctc 1320ggaggaacac tcagggttgc
agagccacct tcaccttctc cagaccaaag acattatcct 1380tgttga
1386251302DNABRASSICA NAPUS
25atgaagaaac tggttcatct tcagtttttg tttcttgtca agatctttgc tactcaattc
60ctcactcctt cttcatcatc ttttgctgct tcaaatcctt ctatagctcc tgtttacacc
120tccatgacta ctttctctcc aggaattcaa atgggaagtg gtgaagaaca cagattagat
180gcacataaga aactcctgat tggtcttata atcagttcct cttctcttgg tatcataatc
240ttgatttgct ttggcttctg gatgtactgt cgcaagaaag ctcccaaacc catcaagatt
300ccggatgccg agagtgggac ttcatcattt tcaatgtttg tgaggcggct aagctcaatt
360aaaactcaca gaacatctag caatcagggt tatgtgcagc gtttcgattc caagacgcta
420gagaaagcga caggcggttt caaagacagt aatgtaatcg gacagggcgg tttcggatgc
480gtttacaagg cttctttgga cagcaacact aaagcagcgg ttaaaaagat cgaaaacgtt
540acccaagaag caaaacgaga atttcagaat gaagttgagc tgttgagcaa gatccagcac
600tccaatatta tatcattgtt gggctctgca agtgaaatca actcgagttt cgtcgtttat
660gagttgatgg agaaaggatc cttagatgat cagttacatg gaccttcgtg tggatccgct
720ctaacatggc atatgcgtat gaagattgct ctagatacag ctagaggact agagtatctc
780catgaacatt gtcgtccacc agttatccac agggacctga aatcgtctaa tattcttctt
840gattcttcct tcaatgccaa gatttcagat tttggtctgg ctgtatcggt tggagtgcat
900gggagtaaca acattaaact ctctgggaca cttggttatg ttgccccgga atatctccta
960gacggaaagt tgacggataa gagtgatgtc tatgcatttg gggtggttct tcttgaactt
1020ttgttgggta ggcggccggt tgagaaattg agtccatctc agtgtcaatc tcttgtgact
1080tgggcaatgc cacaacttac cgatagatcg aaactcccaa acatcgtgga tccggttata
1140aaagatacaa tggatcttaa gcacttatac caagtagcag ccatggctgt gctgtgcgta
1200cagccagaac cgagttaccg gccgctgata accgatgttc ttcattcact tgttccattg
1260gttccggtag agctaggagg gactctccgg ttaacccgat ga
130226433PRTBRASSICA NAPUS 26Met Lys Lys Leu Val His Leu Gln Phe Leu Phe
Leu Val Lys Ile Phe1 5 10
15Ala Thr Gln Phe Leu Thr Pro Ser Ser Ser Ser Phe Ala Ala Ser Asn
20 25 30Pro Ser Ile Ala Pro Val Tyr
Thr Ser Met Thr Thr Phe Ser Pro Gly 35 40
45Ile Gln Met Gly Ser Gly Glu Glu His Arg Leu Asp Ala His Lys
Lys 50 55 60Leu Leu Ile Gly Leu Ile
Ile Ser Ser Ser Ser Leu Gly Ile Ile Ile65 70
75 80Leu Ile Cys Phe Gly Phe Trp Met Tyr Cys Arg
Lys Lys Ala Pro Lys 85 90
95Pro Ile Lys Ile Pro Asp Ala Glu Ser Gly Thr Ser Ser Phe Ser Met
100 105 110Phe Val Arg Arg Leu Ser
Ser Ile Lys Thr His Arg Thr Ser Ser Asn 115 120
125Gln Gly Tyr Val Gln Arg Phe Asp Ser Lys Thr Leu Glu Lys
Ala Thr 130 135 140Gly Gly Phe Lys Asp
Ser Asn Val Ile Gly Gln Gly Gly Phe Gly Cys145 150
155 160Val Tyr Lys Ala Ser Leu Asp Ser Asn Thr
Lys Ala Ala Val Lys Lys 165 170
175Ile Glu Asn Val Thr Gln Glu Ala Lys Arg Glu Phe Gln Asn Glu Val
180 185 190Glu Leu Leu Ser Lys
Ile Gln His Ser Asn Ile Ile Ser Leu Leu Gly 195
200 205Ser Ala Ser Glu Ile Asn Ser Ser Phe Val Val Tyr
Glu Leu Met Glu 210 215 220Lys Gly Ser
Leu Asp Asp Gln Leu His Gly Pro Ser Cys Gly Ser Ala225
230 235 240Leu Thr Trp His Met Arg Met
Lys Ile Ala Leu Asp Thr Ala Arg Gly 245
250 255Leu Glu Tyr Leu His Glu His Cys Arg Pro Pro Val
Ile His Arg Asp 260 265 270Leu
Lys Ser Ser Asn Ile Leu Leu Asp Ser Ser Phe Asn Ala Lys Ile 275
280 285Ser Asp Phe Gly Leu Ala Val Ser Val
Gly Val His Gly Ser Asn Asn 290 295
300Ile Lys Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu Leu305
310 315 320Asp Gly Lys Leu
Thr Asp Lys Ser Asp Val Tyr Ala Phe Gly Val Val 325
330 335Leu Leu Glu Leu Leu Leu Gly Arg Arg Pro
Val Glu Lys Leu Ser Pro 340 345
350Ser Gln Cys Gln Ser Leu Val Thr Trp Ala Met Pro Gln Leu Thr Asp
355 360 365Arg Ser Lys Leu Pro Asn Ile
Val Asp Pro Val Ile Lys Asp Thr Met 370 375
380Asp Leu Lys His Leu Tyr Gln Val Ala Ala Met Ala Val Leu Cys
Val385 390 395 400Gln Pro
Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu His Ser
405 410 415Leu Val Pro Leu Val Pro Val
Glu Leu Gly Gly Thr Leu Arg Leu Thr 420 425
430Arg27657DNACICHORIUM ENDIVIA 27atttttggtg ttgaaatgat
gcacaacgga tctttggaat cccaattgca tggtccgtct 60catggaactg gcttaagctg
gcagcatcga atgaaaattg cacttgatat tgcacgagga 120ctagagtatc ttcacgagcg
ctgtaccccg cctgtgattc atagagatct gaaatcgtcc 180aacattcttc taggttcgaa
ctacaatgct aaactttctg atttcgggct cgcgattact 240ggtgggattc agggcaagaa
caacgtaaag ctttcgggaa cattaggtta tgtagctcca 300gaatacctct tagatggtaa
acttactgat aaaagtgatg tttatgcgtt tggagttgta 360cttcttgaac ttttgatagg
tagaaaacca gtggagaaaa tgtcaccatc tcaatgccaa 420tctatcgtta catgggcaat
gcctcaacta accgaccgat caaagcttcc taacatcgtt 480gatcccgtga ttagagatac
aatggacttg aagcacttgt atcaagttgc tgcggttgct 540gtgctatgtg tacaaccgga
accgagttac aggccattga taacagatgt tttgcattcg 600ttcatcccac ttgtacctgt
tgagcttgga gggtcgctaa gagttaccga atcttga 65728218PRTCICHORIUM
ENDIVIA 28Ile Phe Gly Val Glu Met Met His Asn Gly Ser Leu Glu Ser Gln
Leu1 5 10 15His Gly Pro
Ser His Gly Thr Gly Leu Ser Trp Gln His Arg Met Lys 20
25 30Ile Ala Leu Asp Ile Ala Arg Gly Leu Glu
Tyr Leu His Glu Arg Cys 35 40
45Thr Pro Pro Val Ile His Arg Asp Leu Lys Ser Ser Asn Ile Leu Leu 50
55 60Gly Ser Asn Tyr Asn Ala Lys Leu Ser
Asp Phe Gly Leu Ala Ile Thr65 70 75
80Gly Gly Ile Gln Gly Lys Asn Asn Val Lys Leu Ser Gly Thr
Leu Gly 85 90 95Tyr Val
Ala Pro Glu Tyr Leu Leu Asp Gly Lys Leu Thr Asp Lys Ser 100
105 110Asp Val Tyr Ala Phe Gly Val Val Leu
Leu Glu Leu Leu Ile Gly Arg 115 120
125Lys Pro Val Glu Lys Met Ser Pro Ser Gln Cys Gln Ser Ile Val Thr
130 135 140Trp Ala Met Pro Gln Leu Thr
Asp Arg Ser Lys Leu Pro Asn Ile Val145 150
155 160Asp Pro Val Ile Arg Asp Thr Met Asp Leu Lys His
Leu Tyr Gln Val 165 170
175Ala Ala Val Ala Val Leu Cys Val Gln Pro Glu Pro Ser Tyr Arg Pro
180 185 190Leu Ile Thr Asp Val Leu
His Ser Phe Ile Pro Leu Val Pro Val Glu 195 200
205Leu Gly Gly Ser Leu Arg Val Thr Glu Ser 210
21529474DNACITRUS CLEMENTINA 29aattcggcac gagggctgga ttccagtttt
aatgcaaagc tttcagattt tggcctttct 60gtgactgctg gaacccagag taggaatgtt
aagatctctg gaactctggg ttatgttgcc 120ccggagtacc tattagaagg aaaactaact
gataaaagtg atgtatatgc tttcggagtt 180gtattgctgg aacttttgat ggggagaagg
cctgtggaaa agatgtcacc aactcaatgt 240caatcaatgg tcacatgggc catgcctcag
ctcaccgata gatcaaagct tccaaacatt 300gtggatccag taattagaga cacaatggat
ttaaagcact tataccaggt agccgctgtg 360gcagtgctat gtatacaacc tgaaccaagt
tataggccat tgataaccga cgttctgcat 420tccctcattc ctcttgtacc taccgacctt
ggagggtcac tccgagtgac ctaa 47430157PRTCITRUS CLEMENTINA 30Asn
Ser Ala Arg Gly Leu Asp Ser Ser Phe Asn Ala Lys Leu Ser Asp1
5 10 15Phe Gly Leu Ser Val Thr Ala
Gly Thr Gln Ser Arg Asn Val Lys Ile 20 25
30Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu Leu Glu
Gly Lys 35 40 45Leu Thr Asp Lys
Ser Asp Val Tyr Ala Phe Gly Val Val Leu Leu Glu 50 55
60Leu Leu Met Gly Arg Arg Pro Val Glu Lys Met Ser Pro
Thr Gln Cys65 70 75
80Gln Ser Met Val Thr Trp Ala Met Pro Gln Leu Thr Asp Arg Ser Lys
85 90 95Leu Pro Asn Ile Val Asp
Pro Val Ile Arg Asp Thr Met Asp Leu Lys 100
105 110His Leu Tyr Gln Val Ala Ala Val Ala Val Leu Cys
Ile Gln Pro Glu 115 120 125Pro Ser
Tyr Arg Pro Leu Ile Thr Asp Val Leu His Ser Leu Ile Pro 130
135 140Leu Val Pro Thr Asp Leu Gly Gly Ser Leu Arg
Val Thr145 150 15531770DNACITRUS SINENSIS
31ggattgtgtt tgtggcttta tcatttgaag tactccttca aatccagtaa caagaatgca
60aagagcaaag attctgagaa tggagttgtg ttatcatcat ttttgggcaa attcacttct
120gtgaggatgg ttagtaagaa gggatctgct atttcattta ttgagtataa gctgttagag
180aaagccaccg acagttttca tgagagtaat atattgggtg agggtggatt tggatgtgtt
240tacaaggcta aattggatga taacttgcac gtcgctgtca aaaaattaga ttgtgcaaca
300caagatgccg gcagagaatt tgagaatgag gtggatttgc tgagtaatat tcaccaccca
360aatgttgttt gtctgttggg ttatagtgct catgatgaca caaggtttat tgtttatgaa
420ttgatggaaa atcggtccct tgatattcaa ttgcatggtc cttctcatgg atcagcattg
480acttggcata tgcgaatgaa aattgctctt gataccgcta gaggattaga atatttacat
540gagcactgca accctgcagt cattcataga gatctgaaat cctccaatat acttctagat
600tccaagttta atgctaagct ctcagatttt ggtcttgcca taaccgatgg atcccaaaac
660aagaacaatc ttaagctttc gggcactttg ggatatgtgg ctcccgagta tcttttagat
720ggtaaattga cagacaagag tgatgtctat gcttttggag ttgtgcttct
77032257PRTCITRUS SINENSIS 32Gly Leu Cys Leu Trp Leu Tyr His Leu Lys Tyr
Ser Phe Lys Ser Ser1 5 10
15Asn Lys Asn Ala Lys Ser Lys Asp Ser Glu Asn Gly Val Val Leu Ser
20 25 30Ser Phe Leu Gly Lys Phe Thr
Ser Val Arg Met Val Ser Lys Lys Gly 35 40
45Ser Ala Ile Ser Phe Ile Glu Tyr Lys Leu Leu Glu Lys Ala Thr
Asp 50 55 60Ser Phe His Glu Ser Asn
Ile Leu Gly Glu Gly Gly Phe Gly Cys Val65 70
75 80Tyr Lys Ala Lys Leu Asp Asp Asn Leu His Val
Ala Val Lys Lys Leu 85 90
95Asp Cys Ala Thr Gln Asp Ala Gly Arg Glu Phe Glu Asn Glu Val Asp
100 105 110Leu Leu Ser Asn Ile His
His Pro Asn Val Val Cys Leu Leu Gly Tyr 115 120
125Ser Ala His Asp Asp Thr Arg Phe Ile Val Tyr Glu Leu Met
Glu Asn 130 135 140Arg Ser Leu Asp Ile
Gln Leu His Gly Pro Ser His Gly Ser Ala Leu145 150
155 160Thr Trp His Met Arg Met Lys Ile Ala Leu
Asp Thr Ala Arg Gly Leu 165 170
175Glu Tyr Leu His Glu His Cys Asn Pro Ala Val Ile His Arg Asp Leu
180 185 190Lys Ser Ser Asn Ile
Leu Leu Asp Ser Lys Phe Asn Ala Lys Leu Ser 195
200 205Asp Phe Gly Leu Ala Ile Thr Asp Gly Ser Gln Asn
Lys Asn Asn Leu 210 215 220Lys Leu Ser
Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu Leu Asp225
230 235 240Gly Lys Leu Thr Asp Lys Ser
Asp Val Tyr Ala Phe Gly Val Val Leu 245
250 255Leu33621DNACOFFEA CANEPHORA 33gcattgacat
ggcatcttag gatgaaaatt gcccttgatg tagctagagg attagaattt 60ttgcatgagc
actgccaccc agcagtgatc catagagatc tgaaatcatc taatatcctt 120ctggattcaa
atctcaatgc taagctatct gattttggtc ttgccattct tgatggggct 180caaaataaga
acaacatcaa gctttctgga accttgggct atgtagctcc agagtacctc 240ttagatggta
aattgactga caagagtgat gtttatgctt ttggagtggt gcttttggag 300cttctcctga
gaagaaagcc tgtggagaag ctggcaccag ctcaatgcca atctatagtc 360acatgggcta
tgcctcagct gacagataga tcaaagcttc caaacatcgt ggatcctgtg 420attagaaatg
ctatggatat aaagcactta ttccaggttg ctgcagtcgc tgtgctatgc 480gtgcagcctg
aaccaagcta tcgaccactg ataacagatg tgttgcattc ccttgttccc 540cttgttccta
tggagcttgg cgggacgctc agagttgaac gacctgcttc tgtgacctct 600ctgttgattg
attctacctg a
62134206PRTCOFFEA CANEPHORA 34Ala Leu Thr Trp His Leu Arg Met Lys Ile Ala
Leu Asp Val Ala Arg1 5 10
15Gly Leu Glu Phe Leu His Glu His Cys His Pro Ala Val Ile His Arg
20 25 30Asp Leu Lys Ser Ser Asn Ile
Leu Leu Asp Ser Asn Leu Asn Ala Lys 35 40
45Leu Ser Asp Phe Gly Leu Ala Ile Leu Asp Gly Ala Gln Asn Lys
Asn 50 55 60Asn Ile Lys Leu Ser Gly
Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu65 70
75 80Leu Asp Gly Lys Leu Thr Asp Lys Ser Asp Val
Tyr Ala Phe Gly Val 85 90
95Val Leu Leu Glu Leu Leu Leu Arg Arg Lys Pro Val Glu Lys Leu Ala
100 105 110Pro Ala Gln Cys Gln Ser
Ile Val Thr Trp Ala Met Pro Gln Leu Thr 115 120
125Asp Arg Ser Lys Leu Pro Asn Ile Val Asp Pro Val Ile Arg
Asn Ala 130 135 140Met Asp Ile Lys His
Leu Phe Gln Val Ala Ala Val Ala Val Leu Cys145 150
155 160Val Gln Pro Glu Pro Ser Tyr Arg Pro Leu
Ile Thr Asp Val Leu His 165 170
175Ser Leu Val Pro Leu Val Pro Met Glu Leu Gly Gly Thr Leu Arg Val
180 185 190Glu Arg Pro Ala Ser
Val Thr Ser Leu Leu Ile Asp Ser Thr 195 200
20535411DNAEUCALYPTUS GUNNII 35actgaggtga cccggaagaa aaacagggta
aagctatcgg gcactttggg ttatgtagcc 60ccagaatatg tcttggatgg taaattgact
gataagagtg atgtctatgc ctttggagtt 120gtgcttttgg agctcctttt gagaagaagg
cctcttgaga tagtagcacc cactcagtgc 180cagtctattg ttacatgggc catgcctcag
ctgaccgacc gaactaagct tccagatatt 240gtggatcctg taattagaga tgcgatggat
gtcaagcact tataccaggc agctgctgtt 300gctgttttgt gtctgcaacc agaaccgatc
taccggccac tgataacgga tgtactccac 360tctctcattc cacttgtacc cgttgaactt
gggggaacgc tgaagaccta g 41136136PRTEUCALYPTUS GUNNII 36Thr
Glu Val Thr Arg Lys Lys Asn Arg Val Lys Leu Ser Gly Thr Leu1
5 10 15Gly Tyr Val Ala Pro Glu Tyr
Val Leu Asp Gly Lys Leu Thr Asp Lys 20 25
30Ser Asp Val Tyr Ala Phe Gly Val Val Leu Leu Glu Leu Leu
Leu Arg 35 40 45Arg Arg Pro Leu
Glu Ile Val Ala Pro Thr Gln Cys Gln Ser Ile Val 50 55
60Thr Trp Ala Met Pro Gln Leu Thr Asp Arg Thr Lys Leu
Pro Asp Ile65 70 75
80Val Asp Pro Val Ile Arg Asp Ala Met Asp Val Lys His Leu Tyr Gln
85 90 95Ala Ala Ala Val Ala Val
Leu Cys Leu Gln Pro Glu Pro Ile Tyr Arg 100
105 110Pro Leu Ile Thr Asp Val Leu His Ser Leu Ile Pro
Leu Val Pro Val 115 120 125Glu Leu
Gly Gly Thr Leu Lys Thr 130 13537522DNAFESTUCA
ARUNDINACEA 37acgaggcctc gtgccatact tttggattca gatttcaatg ccaagatttc
ggatttcggt 60cttgcagtgt caagtggaaa tcgcaccaaa ggtaatctga agctttccgg
aactttgggc 120tatgttgctc ctgagtactt attagacggg aagttgacag agaagagtga
tgtatatgcg 180ttcggagtag tacttcttga gcttttgtta ggaaggaggc caattgagaa
gatggcccca 240tctcaatgcc aatcaattgt tacatgggcc atgcctcagc taattgacag
atcaaagctc 300ccaaccataa ttgaccccgt gatcaggaac acgatggacc tgaagcactt
gtaccaagtt 360gctgcagtgg ctgtgctctg tgtgcagcca gaaccaagtt ataggccact
aatcacagat 420gtgctccact ctctgattcc cctggtgccc atggagctcg gagggtcact
gagggctacc 480ttggaatcgc ctcgcgtatc acaacatcgt tctccctgct ga
52238173PRTFESTUCA ARUNDINACEA 38Thr Arg Pro Arg Ala Ile Leu
Leu Asp Ser Asp Phe Asn Ala Lys Ile1 5 10
15Ser Asp Phe Gly Leu Ala Val Ser Ser Gly Asn Arg Thr
Lys Gly Asn 20 25 30Leu Lys
Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu Leu 35
40 45Asp Gly Lys Leu Thr Glu Lys Ser Asp Val
Tyr Ala Phe Gly Val Val 50 55 60Leu
Leu Glu Leu Leu Leu Gly Arg Arg Pro Ile Glu Lys Met Ala Pro65
70 75 80Ser Gln Cys Gln Ser Ile
Val Thr Trp Ala Met Pro Gln Leu Ile Asp 85
90 95Arg Ser Lys Leu Pro Thr Ile Ile Asp Pro Val Ile
Arg Asn Thr Met 100 105 110Asp
Leu Lys His Leu Tyr Gln Val Ala Ala Val Ala Val Leu Cys Val 115
120 125Gln Pro Glu Pro Ser Tyr Arg Pro Leu
Ile Thr Asp Val Leu His Ser 130 135
140Leu Ile Pro Leu Val Pro Met Glu Leu Gly Gly Ser Leu Arg Ala Thr145
150 155 160Leu Glu Ser Pro
Arg Val Ser Gln His Arg Ser Pro Cys 165
17039740DNAGINKGO BILOBA 39cctttattga atagattgaa ctccttccgt ggttctagga
gaaagggatg tgcatatata 60attgaatatt ctctgctgca agcagccaca aataatttta
gtacaagtga catccttgga 120gagggtggtt ttgggtgtgt atacagagct aggttagatg
atgatttctt tgctgctgtg 180aagaagttag atgagggcag caagcaggct gagtatgaat
ttcagaatga agttgaacta 240atgagcaaaa tcagacatcc aaatcttgtt tctttgctgg
ggttctgcat tcatgggaag 300actcggttgc tagtctacga gctcatgcaa aatggttctt
tggaagacca attacatggg 360ccatctcatg gatccgcact tacatggtac ctgcgcatga
aaatagccct tgattcagca 420aggggtctag aacacttgca cgagcactgc aatcctgctg
tgattcatcg tgatttcaaa 480tcatcaaata tccttctgga tgcaagcttc aatgccaagc
tttcagattt tggtcttgca 540gtaacagctg caggaggtat tggtaatgct aatgtcgagc
tactgggcac tttgggatat 600gtagctccag aatacctgct tgatggcaag ttgacggaga
aaagtgatgt ctatggattt 660ggagttgttc ttttggagct aattatggga agaaagccag
ttgataaatc tgtggcaact 720gaaagtcaat cgctagtttc
74040247PRTGINKGO BILOBA 40Pro Leu Leu Asn Arg Leu
Asn Ser Phe Arg Gly Ser Arg Arg Lys Gly1 5
10 15Cys Ala Tyr Ile Ile Glu Tyr Ser Leu Leu Gln Ala
Ala Thr Asn Asn 20 25 30Phe
Ser Thr Ser Asp Ile Leu Gly Glu Gly Gly Phe Gly Cys Val Tyr 35
40 45Arg Ala Arg Leu Asp Asp Asp Phe Phe
Ala Ala Val Lys Lys Leu Asp 50 55
60Glu Gly Ser Lys Gln Ala Glu Tyr Glu Phe Gln Asn Glu Val Glu Leu65
70 75 80Met Ser Lys Ile Arg
His Pro Asn Leu Val Ser Leu Leu Gly Phe Cys 85
90 95Ile His Gly Lys Thr Arg Leu Leu Val Tyr Glu
Leu Met Gln Asn Gly 100 105
110Ser Leu Glu Asp Gln Leu His Gly Pro Ser His Gly Ser Ala Leu Thr
115 120 125Trp Tyr Leu Arg Met Lys Ile
Ala Leu Asp Ser Ala Arg Gly Leu Glu 130 135
140His Leu His Glu His Cys Asn Pro Ala Val Ile His Arg Asp Phe
Lys145 150 155 160Ser Ser
Asn Ile Leu Leu Asp Ala Ser Phe Asn Ala Lys Leu Ser Asp
165 170 175Phe Gly Leu Ala Val Thr Ala
Ala Gly Gly Ile Gly Asn Ala Asn Val 180 185
190Glu Leu Leu Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu
Leu Asp 195 200 205Gly Lys Leu Thr
Glu Lys Ser Asp Val Tyr Gly Phe Gly Val Val Leu 210
215 220Leu Glu Leu Ile Met Gly Arg Lys Pro Val Asp Lys
Ser Val Ala Thr225 230 235
240Glu Ser Gln Ser Leu Val Ser 245411254DNAGLYCINE MAX
41atgaaaatga agcttctcct catgcttctt cttcttgttc ttcttcttca ccaacccatt
60tgggctgcag accctcctgc ttcttctcct gctttatctc caggggagga gcagcatcac
120cggaataata aagtggtaat agctatcgtc gtagccacca ctgcacttgc tgcactcatt
180ttcagtttct tatgcttctg ggtttatcat cataccaagt atccaacaaa atccaaattc
240aaatccaaaa attttcgaag tccagatgca gagaagggga tcaccttagc accgtttgtg
300agtaaattca gttccatcaa gattgttggc atggacgggt atgttccaat aattgactat
360aagcaaatag aaaaaacgac caataatttt caagaaagta acatcttggg tgagggcggt
420tttggacgtg tttacaaggc ttgtttggat cataacttgg atgttgcagt caaaaaacta
480cattgtgaga ctcaacatgc tgagagagaa tttgagaacg aggtgaatat gttaagcaaa
540attcagcatc cgaatataat atctttactg ggttgtagca tggatggtta cacgaggctc
600gttgtctatg agctgatgca taatggatca ttggaagctc agttacatgg accttctcat
660ggctcggcat tgacttggca catgaggatg aagattgctc ttgacacagc aagaggatta
720gaatatctgc acgagcactg tcaccctgca gtgatccata gggatatgaa atcttctaat
780attctcttag atgcaaactt caatgccaag ctgtctgatt ttggtcttgc cttaactgat
840gggtcccaaa gcaagaagaa cattaaacta tcgggtacct tgggatacgt agcaccggag
900tatcttctag atggtaaatt aagtgataaa agtgatgtct atgcttttgg ggttgtgcta
960ttggagctcc tactaggaag gaagccagta gaaaaactgg taccagctca atgccaatct
1020attgtcacat gggccatgcc acacctcacg gacagatcca agcttccaag cattgtggat
1080ccagtgatta agaatacaat ggatcccaag cacttgtacc aggttgctgc tgtagctgtg
1140ctgtgcgtgc aaccagaacc tagttaccgt ccactgatca ttgatgttct tcactcactc
1200atccctcttg ttcccattga gcttggagga acactaagag tttcacaagt aatt
125442418PRTGLYCINE MAX 42Met Lys Met Lys Leu Leu Leu Met Leu Leu Leu Leu
Val Leu Leu Leu1 5 10
15His Gln Pro Ile Trp Ala Ala Asp Pro Pro Ala Ser Ser Pro Ala Leu
20 25 30Ser Pro Gly Glu Glu Gln His
His Arg Asn Asn Lys Val Val Ile Ala 35 40
45Ile Val Val Ala Thr Thr Ala Leu Ala Ala Leu Ile Phe Ser Phe
Leu 50 55 60Cys Phe Trp Val Tyr His
His Thr Lys Tyr Pro Thr Lys Ser Lys Phe65 70
75 80Lys Ser Lys Asn Phe Arg Ser Pro Asp Ala Glu
Lys Gly Ile Thr Leu 85 90
95Ala Pro Phe Val Ser Lys Phe Ser Ser Ile Lys Ile Val Gly Met Asp
100 105 110Gly Tyr Val Pro Ile Ile
Asp Tyr Lys Gln Ile Glu Lys Thr Thr Asn 115 120
125Asn Phe Gln Glu Ser Asn Ile Leu Gly Glu Gly Gly Phe Gly
Arg Val 130 135 140Tyr Lys Ala Cys Leu
Asp His Asn Leu Asp Val Ala Val Lys Lys Leu145 150
155 160His Cys Glu Thr Gln His Ala Glu Arg Glu
Phe Glu Asn Glu Val Asn 165 170
175Met Leu Ser Lys Ile Gln His Pro Asn Ile Ile Ser Leu Leu Gly Cys
180 185 190Ser Met Asp Gly Tyr
Thr Arg Leu Val Val Tyr Glu Leu Met His Asn 195
200 205Gly Ser Leu Glu Ala Gln Leu His Gly Pro Ser His
Gly Ser Ala Leu 210 215 220Thr Trp His
Met Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly Leu225
230 235 240Glu Tyr Leu His Glu His Cys
His Pro Ala Val Ile His Arg Asp Met 245
250 255Lys Ser Ser Asn Ile Leu Leu Asp Ala Asn Phe Asn
Ala Lys Leu Ser 260 265 270Asp
Phe Gly Leu Ala Leu Thr Asp Gly Ser Gln Ser Lys Lys Asn Ile 275
280 285Lys Leu Ser Gly Thr Leu Gly Tyr Val
Ala Pro Glu Tyr Leu Leu Asp 290 295
300Gly Lys Leu Ser Asp Lys Ser Asp Val Tyr Ala Phe Gly Val Val Leu305
310 315 320Leu Glu Leu Leu
Leu Gly Arg Lys Pro Val Glu Lys Leu Val Pro Ala 325
330 335Gln Cys Gln Ser Ile Val Thr Trp Ala Met
Pro His Leu Thr Asp Arg 340 345
350Ser Lys Leu Pro Ser Ile Val Asp Pro Val Ile Lys Asn Thr Met Asp
355 360 365Pro Lys His Leu Tyr Gln Val
Ala Ala Val Ala Val Leu Cys Val Gln 370 375
380Pro Glu Pro Ser Tyr Arg Pro Leu Ile Ile Asp Val Leu His Ser
Leu385 390 395 400Ile Pro
Leu Val Pro Ile Glu Leu Gly Gly Thr Leu Arg Val Ser Gln
405 410 415Val Ile43702DNAHELIANTHUS
ARGOPHYLLUS 43actcaagcat caaaatattg taaatctttt gggtattgtg ttcatgatga
cacaaggttt 60ttggtctatg aaatgatgca tcaaggctct ttggactcac aattgcatgg
accaactcat 120ggaaccgcat taacctggca tcgaagaatg aaagtcgcac ttgatattgc
tcgaggatta 180gagtatcttc atgaacgatg caacccgcct gtgattcata gagatcttaa
gtcatcgaac 240attttgctag attccaattt caatgctaaa atttcgaatt ttgcacttgc
taccactgag 300ctccatgcga agaacaaagt taagctttcg gctacttctg gttatttggc
tccggaatac 360ctatcagaag gtaaacttac cgataaaagc gacgtatatg cattcggagt
agtacttctt 420gggcttttaa tcggtagaaa accagtggag aaaatgtcac catctttatt
tcaatctatt 480gtcacatggg caatgcctca gttaacagac cggtcaaagc ttccaaacat
cgttgaccct 540gtgattagag atacaatgga cctgaagcac ttatatcaag ttgctgctgt
agccgtactt 600tgcgtgcaac ccgaaccaag ttacagaccg ttgattacag acgtactaca
ctcattcatt 660ccactcgtac ccgttgatct tggagggtca ttaagagctt aa
70244233PRTHELIANTHUS ARGOPHYLLUS 44Thr Gln Ala Ser Lys Tyr
Cys Lys Ser Phe Gly Tyr Cys Val His Asp1 5
10 15Asp Thr Arg Phe Leu Val Tyr Glu Met Met His Gln
Gly Ser Leu Asp 20 25 30Ser
Gln Leu His Gly Pro Thr His Gly Thr Ala Leu Thr Trp His Arg 35
40 45Arg Met Lys Val Ala Leu Asp Ile Ala
Arg Gly Leu Glu Tyr Leu His 50 55
60Glu Arg Cys Asn Pro Pro Val Ile His Arg Asp Leu Lys Ser Ser Asn65
70 75 80Ile Leu Leu Asp Ser
Asn Phe Asn Ala Lys Ile Ser Asn Phe Ala Leu 85
90 95Ala Thr Thr Glu Leu His Ala Lys Asn Lys Val
Lys Leu Ser Ala Thr 100 105
110Ser Gly Tyr Leu Ala Pro Glu Tyr Leu Ser Glu Gly Lys Leu Thr Asp
115 120 125Lys Ser Asp Val Tyr Ala Phe
Gly Val Val Leu Leu Gly Leu Leu Ile 130 135
140Gly Arg Lys Pro Val Glu Lys Met Ser Pro Ser Leu Phe Gln Ser
Ile145 150 155 160Val Thr
Trp Ala Met Pro Gln Leu Thr Asp Arg Ser Lys Leu Pro Asn
165 170 175Ile Val Asp Pro Val Ile Arg
Asp Thr Met Asp Leu Lys His Leu Tyr 180 185
190Gln Val Ala Ala Val Ala Val Leu Cys Val Gln Pro Glu Pro
Ser Tyr 195 200 205Arg Pro Leu Ile
Thr Asp Val Leu His Ser Phe Ile Pro Leu Val Pro 210
215 220Val Asp Leu Gly Gly Ser Leu Arg Ala225
23045752DNAHELIANTHUS CILIARIS 45cgatcatttc gttgcggctg taaaaaactc
catggtccag aaccagatgc ccaaaaaggg 60tttgagaatg aagtagattg gttaggtaaa
ctcaagcatc aaaatattgt aaattttttg 120ggttattgtg ttcatgatga cacaaggttt
ttggtctatg aaatgatgca tcaaggctct 180ttggactcac aattgcatgg accaactcat
ggaaccgcat taacctggca tcgaagaatg 240aaagtcgcac ttgatattgc tcgaggatta
gagtatcttc atgaacgatg caacccgcct 300gtgattcata gagatctcaa gtcatcgaac
attttgctag attccaattt caatgctaaa 360atttcgaatt ttgcacttgc taccactgag
ctccatgcga agaacaaagt taagctttcg 420ggtacttctg gttatttggc tccggaatac
ctatccgaag gtaaacttac cgataaaagt 480gatgtatatg cattcggagt agtacttctt
gagcttttaa tcggtagaaa accagtggag 540aaaatgtcac catctttatt tcaatctatt
gtcacatggg caatgcctca gctaacagac 600cggtcaaagc ttccaaacat tgttgaccct
gtgattagag atacaatgga cctgaagcac 660ttgtatcaag ttgctgctgt agccgtactt
tgcgtgcaac ccgaaccaag ttacagaccg 720ttgattacag acgtactaca ctcattcatt
cc 75246251PRTHELIANTHUS CILIARIS 46Arg
Ser Phe Arg Cys Gly Cys Lys Lys Leu His Gly Pro Glu Pro Asp1
5 10 15Ala Gln Lys Gly Phe Glu Asn
Glu Val Asp Trp Leu Gly Lys Leu Lys 20 25
30His Gln Asn Ile Val Asn Phe Leu Gly Tyr Cys Val His Asp
Asp Thr 35 40 45Arg Phe Leu Val
Tyr Glu Met Met His Gln Gly Ser Leu Asp Ser Gln 50 55
60Leu His Gly Pro Thr His Gly Thr Ala Leu Thr Trp His
Arg Arg Met65 70 75
80Lys Val Ala Leu Asp Ile Ala Arg Gly Leu Glu Tyr Leu His Glu Arg
85 90 95Cys Asn Pro Pro Val Ile
His Arg Asp Leu Lys Ser Ser Asn Ile Leu 100
105 110Leu Asp Ser Asn Phe Asn Ala Lys Ile Ser Asn Phe
Ala Leu Ala Thr 115 120 125Thr Glu
Leu His Ala Lys Asn Lys Val Lys Leu Ser Gly Thr Ser Gly 130
135 140Tyr Leu Ala Pro Glu Tyr Leu Ser Glu Gly Lys
Leu Thr Asp Lys Ser145 150 155
160Asp Val Tyr Ala Phe Gly Val Val Leu Leu Glu Leu Leu Ile Gly Arg
165 170 175Lys Pro Val Glu
Lys Met Ser Pro Ser Leu Phe Gln Ser Ile Val Thr 180
185 190Trp Ala Met Pro Gln Leu Thr Asp Arg Ser Lys
Leu Pro Asn Ile Val 195 200 205Asp
Pro Val Ile Arg Asp Thr Met Asp Leu Lys His Leu Tyr Gln Val 210
215 220Ala Ala Val Ala Val Leu Cys Val Gln Pro
Glu Pro Ser Tyr Arg Pro225 230 235
240Leu Ile Thr Asp Val Leu His Ser Phe Ile Pro
245 25047630DNAHELIANTHUS EXILIS 47atgatgcatc aagactcttt
ggactcacaa ttgcatggac caactcatgg aaccgcatta 60acctggcatc gaagaatgaa
agtcgcactt gatattgctc gaggattaga gtatcttcat 120gaacgatgca acccgcctgt
gattcataga gatctcaagt catcgaacat tttgctagat 180tccaatttca atgctaaaat
ttcgaatttt gcacttgcta ccactgagct ccatgcgaag 240aacaaagtta agctttcggg
tacttctggt tatttggctc cggaatacct atccgaaggt 300aaacttaccg ataaaagtga
tgtatatgca ttcggagtag tacttcttga gcttttaatc 360ggtagaaaac cagtggagaa
aatgtcacca tctttatttc aatctattgt cacatgggca 420atgcctcagc taacagaccg
gtcaaagctt ccaaacattg ttgaccctgt gattagagat 480acaatggacc tgaagcactt
gtatcaagtt gctgctgtag ccgtactttg cgtgcaaccc 540gaaccaagtt acagaccgtt
gattacagac gtactacact cattcattcc actcgtaccc 600gttgatcttg gagggtcatt
aagagcttaa 63048209PRTHELIANTHUS
EXILIS 48Met Met His Gln Asp Ser Leu Asp Ser Gln Leu His Gly Pro Thr His1
5 10 15Gly Thr Ala Leu
Thr Trp His Arg Arg Met Lys Val Ala Leu Asp Ile 20
25 30Ala Arg Gly Leu Glu Tyr Leu His Glu Arg Cys
Asn Pro Pro Val Ile 35 40 45His
Arg Asp Leu Lys Ser Ser Asn Ile Leu Leu Asp Ser Asn Phe Asn 50
55 60Ala Lys Ile Ser Asn Phe Ala Leu Ala Thr
Thr Glu Leu His Ala Lys65 70 75
80Asn Lys Val Lys Leu Ser Gly Thr Ser Gly Tyr Leu Ala Pro Glu
Tyr 85 90 95Leu Ser Glu
Gly Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe Gly 100
105 110Val Val Leu Leu Glu Leu Leu Ile Gly Arg
Lys Pro Val Glu Lys Met 115 120
125Ser Pro Ser Leu Phe Gln Ser Ile Val Thr Trp Ala Met Pro Gln Leu 130
135 140Thr Asp Arg Ser Lys Leu Pro Asn
Ile Val Asp Pro Val Ile Arg Asp145 150
155 160Thr Met Asp Leu Lys His Leu Tyr Gln Val Ala Ala
Val Ala Val Leu 165 170
175Cys Val Gln Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu
180 185 190His Ser Phe Ile Pro Leu
Val Pro Val Asp Leu Gly Gly Ser Leu Arg 195 200
205Ala49780DNAHORDEUM VULGARE 49aatttgagag gtgagctgga
tttgcttcag aggattcagc attcgaatat agtgtccctt 60gtgggcttct gcattcatga
ggagaaccgc ttcattgttt atgagctgat ggtgaatgga 120tcacttgaaa cacagcttca
tgggccatca catggatcag ctctgagttg gcacattcgg 180atgaagattg ctcttgatac
agcaagggga ttggagtatc ttcacgagca ctgcaatcca 240ccaatcatcc atagggatct
gaagtcgtct aacatacttt tgaattcaga ctttaatgca 300aagatttcag attttggcct
tgcagtgaca agtggaaatc gcagcaaagg gaatctgaag 360ctttccggta ctttgggtta
tgttgcccct gagtacttac tagatgggaa gttgactgag 420aagagcgatg tatatgcatt
tggagtagta cttcttgagc ttcttttggg aaggaggcca 480gttgagaaga tggcaccatc
tcagtgtcaa tcaattgtta catgggccat gccccagcta 540attgacagat ccaagctccc
taccataatc gaccccgtga tcagggacac gatggatcgg 600aagcacttgt accaagttgc
tgcagtggct gtgctctgcg tgcagccaga accaagctac 660aggccactga tcacagatgt
cctccactct ctgattcccc tggtgcccat ggaccttgga 720gggacgctga ggatcaaccc
ggaatcgcct tgcacgacac gaaatcaatc tccctgctga 78050259PRTHORDEUM VULGARE
50Asn Leu Arg Gly Glu Leu Asp Leu Leu Gln Arg Ile Gln His Ser Asn1
5 10 15Ile Val Ser Leu Val Gly
Phe Cys Ile His Glu Glu Asn Arg Phe Ile 20 25
30Val Tyr Glu Leu Met Val Asn Gly Ser Leu Glu Thr Gln
Leu His Gly 35 40 45Pro Ser His
Gly Ser Ala Leu Ser Trp His Ile Arg Met Lys Ile Ala 50
55 60Leu Asp Thr Ala Arg Gly Leu Glu Tyr Leu His Glu
His Cys Asn Pro65 70 75
80Pro Ile Ile His Arg Asp Leu Lys Ser Ser Asn Ile Leu Leu Asn Ser
85 90 95Asp Phe Asn Ala Lys Ile
Ser Asp Phe Gly Leu Ala Val Thr Ser Gly 100
105 110Asn Arg Ser Lys Gly Asn Leu Lys Leu Ser Gly Thr
Leu Gly Tyr Val 115 120 125Ala Pro
Glu Tyr Leu Leu Asp Gly Lys Leu Thr Glu Lys Ser Asp Val 130
135 140Tyr Ala Phe Gly Val Val Leu Leu Glu Leu Leu
Leu Gly Arg Arg Pro145 150 155
160Val Glu Lys Met Ala Pro Ser Gln Cys Gln Ser Ile Val Thr Trp Ala
165 170 175Met Pro Gln Leu
Ile Asp Arg Ser Lys Leu Pro Thr Ile Ile Asp Pro 180
185 190Val Ile Arg Asp Thr Met Asp Arg Lys His Leu
Tyr Gln Val Ala Ala 195 200 205Val
Ala Val Leu Cys Val Gln Pro Glu Pro Ser Tyr Arg Pro Leu Ile 210
215 220Thr Asp Val Leu His Ser Leu Ile Pro Leu
Val Pro Met Asp Leu Gly225 230 235
240Gly Thr Leu Arg Ile Asn Pro Glu Ser Pro Cys Thr Thr Arg Asn
Gln 245 250 255Ser Pro
Cys51816DNAIPOMOEA BATATAS 51cgggggctct tatcactcat tgctgctgct actgcactgg
gtacaagctt attgctcatg 60ggttgcttct ggatttatca tagaaagaaa atccacaaat
ctcatgacat tattcatagc 120ccagatgtag ttaaaggtct tgcattatcc tcatatatta
gcaaatacaa ctccttcaag 180tcgaattgtg tgaaacgaca tgtctcgttg tgggagtaca
atacactcga gtcggccaca 240aatagttttc aagaaagcga gatcttgggt ggaggggggt
tcgggcttgt gtacaaggga 300aaactagaag acaacttgta tgtagctgtg aagaggctgg
aagttggaag acaaaacgca 360attaaagaat tcgaggctga aatagaggta ttgggcacga
ttcagcaccc gaatataatt 420tcgttgttgg gatatagcat tcatgctgac acgaggctgc
tagtttatga actgatgcag 480aatggatctc tggagtatca actacatgga ccttcccatg
gatcagcatt agcgtggcat 540aatagattga aaatcgcact tgatacagca aggggattag
aatatttaca tgaacattgc 600aaaccaccag ttatccatag agatctgaaa tcctccaata
ttcttctaga tgccaacttc 660aatgccaaga tctcagattt tggtcttgct gtgcgcgatg
gggctcaaaa caaaaataac 720attaagctct cgggaaccgt tggctatgta gctccagaat
acctattaga tggaatacta 780acagataaaa gtgatgttta tggcttccga gttgta
81652272PRTIPOMOEA BATATAS 52Arg Gly Leu Leu Ser
Leu Ile Ala Ala Ala Thr Ala Leu Gly Thr Ser1 5
10 15Leu Leu Leu Met Gly Cys Phe Trp Ile Tyr His
Arg Lys Lys Ile His 20 25
30Lys Ser His Asp Ile Ile His Ser Pro Asp Val Val Lys Gly Leu Ala
35 40 45Leu Ser Ser Tyr Ile Ser Lys Tyr
Asn Ser Phe Lys Ser Asn Cys Val 50 55
60Lys Arg His Val Ser Leu Trp Glu Tyr Asn Thr Leu Glu Ser Ala Thr65
70 75 80Asn Ser Phe Gln Glu
Ser Glu Ile Leu Gly Gly Gly Gly Phe Gly Leu 85
90 95Val Tyr Lys Gly Lys Leu Glu Asp Asn Leu Tyr
Val Ala Val Lys Arg 100 105
110Leu Glu Val Gly Arg Gln Asn Ala Ile Lys Glu Phe Glu Ala Glu Ile
115 120 125Glu Val Leu Gly Thr Ile Gln
His Pro Asn Ile Ile Ser Leu Leu Gly 130 135
140Tyr Ser Ile His Ala Asp Thr Arg Leu Leu Val Tyr Glu Leu Met
Gln145 150 155 160Asn Gly
Ser Leu Glu Tyr Gln Leu His Gly Pro Ser His Gly Ser Ala
165 170 175Leu Ala Trp His Asn Arg Leu
Lys Ile Ala Leu Asp Thr Ala Arg Gly 180 185
190Leu Glu Tyr Leu His Glu His Cys Lys Pro Pro Val Ile His
Arg Asp 195 200 205Leu Lys Ser Ser
Asn Ile Leu Leu Asp Ala Asn Phe Asn Ala Lys Ile 210
215 220Ser Asp Phe Gly Leu Ala Val Arg Asp Gly Ala Gln
Asn Lys Asn Asn225 230 235
240Ile Lys Leu Ser Gly Thr Val Gly Tyr Val Ala Pro Glu Tyr Leu Leu
245 250 255Asp Gly Ile Leu Thr
Asp Lys Ser Asp Val Tyr Gly Phe Arg Val Val 260
265 27053867DNALACTUCA SATIVA 53ggggatatac gtgtagaatc
agcaacaaat aacttcggtg aaagcgagat attaggcgta 60ggtggatttg gatgcgtgta
taaagctcga ctcgatgata atttgcatgt agctgttaaa 120agattagatg gtattagtca
agacgccatt aaagaattcc agacggaggt ggatctattg 180agtaaaattc atcatccgaa
tatcatcacc ttattgggat attgtgttaa tgatgaaacc 240aagcttcttg tttatgaact
gatgcataat ggatctttag aaactcaatt acatgggcct 300tccagtggat ccaatttaac
atggcattgc aggatgaaga ttgctctaga tacagcaaga 360ggattagaat atttgcatga
gaactgcaaa ccatcggtga ttcatagaga tctgaaatca 420tctaatatcc ttctggattc
cagcttcaat gctaagcttt cagattttgg tcttgctata 480atggatgggg cccagaacaa
aaacaacatt aagctttcag ggacattggg ttatgtagct 540cccgagtatc ttttagatgg
aaaattgacg gataaaagtg acgtgtatgc gtttggagtt 600gtgcttttag agcttttact
tggaaggcga cctgtagaaa aattagcaga gtcgcaatgc 660caatctattg tcacttgggc
tatgccacaa ttaacagaca gatcaaagct tccgaatatt 720gtagatcccg tgatcagata
cacaatggat ctcaagcacc tgtaccaagt tgctgcggtg 780gctgtgttat gtgtacaacc
cggaccaagc taccggccat ttataaaccg acgtcttgca 840ttctctgatc cctcttgttc
cccgtga 86754288PRTLACTUCA SATIVA
54Gly Asp Ile Arg Val Glu Ser Ala Thr Asn Asn Phe Gly Glu Ser Glu1
5 10 15Ile Leu Gly Val Gly Gly
Phe Gly Cys Val Tyr Lys Ala Arg Leu Asp 20 25
30Asp Asn Leu His Val Ala Val Lys Arg Leu Asp Gly Ile
Ser Gln Asp 35 40 45Ala Ile Lys
Glu Phe Gln Thr Glu Val Asp Leu Leu Ser Lys Ile His 50
55 60His Pro Asn Ile Ile Thr Leu Leu Gly Tyr Cys Val
Asn Asp Glu Thr65 70 75
80Lys Leu Leu Val Tyr Glu Leu Met His Asn Gly Ser Leu Glu Thr Gln
85 90 95Leu His Gly Pro Ser Ser
Gly Ser Asn Leu Thr Trp His Cys Arg Met 100
105 110Lys Ile Ala Leu Asp Thr Ala Arg Gly Leu Glu Tyr
Leu His Glu Asn 115 120 125Cys Lys
Pro Ser Val Ile His Arg Asp Leu Lys Ser Ser Asn Ile Leu 130
135 140Leu Asp Ser Ser Phe Asn Ala Lys Leu Ser Asp
Phe Gly Leu Ala Ile145 150 155
160Met Asp Gly Ala Gln Asn Lys Asn Asn Ile Lys Leu Ser Gly Thr Leu
165 170 175Gly Tyr Val Ala
Pro Glu Tyr Leu Leu Asp Gly Lys Leu Thr Asp Lys 180
185 190Ser Asp Val Tyr Ala Phe Gly Val Val Leu Leu
Glu Leu Leu Leu Gly 195 200 205Arg
Arg Pro Val Glu Lys Leu Ala Glu Ser Gln Cys Gln Ser Ile Val 210
215 220Thr Trp Ala Met Pro Gln Leu Thr Asp Arg
Ser Lys Leu Pro Asn Ile225 230 235
240Val Asp Pro Val Ile Arg Tyr Thr Met Asp Leu Lys His Leu Tyr
Gln 245 250 255Val Ala Ala
Val Ala Val Leu Cys Val Gln Pro Gly Pro Ser Tyr Arg 260
265 270Pro Phe Ile Asn Arg Arg Leu Ala Phe Ser
Asp Pro Ser Cys Ser Pro 275 280
28555804DNAMEDICAGO TRUNCATULA 55aagttgaact gtgaatgtca atatgctgag
agagaatttg agaatgaggt ggatttgtta 60agtaaaattc aacatccaaa tgtaatttct
ctactgggct gtagcagtaa tgaggattca 120aggtttattg tctatgagtt gatgcaaaat
ggatcattgg aaactcaatt acatggacca 180tctcatggct cagcattgac ttggcatatg
aggatgaaga ttgctcttga cacagctaga 240ggtttaaaat atctgcatga gcactgctac
cctgcagtga tccatagaga tctgaaatct 300tctaatattc ttttagatgc aaacttcaat
gccaagcttt ctgattttgg tcttgcaata 360actgatgggt cccaaaacaa gaataacatc
aagctttcag gcacattggg gtatgttgcc 420ccggagtatc ttttagatgg taaattgaca
gataaaagtg atgtgtatgc ttttggagtt 480gtgcttcttg agcttctatt aggaagaaag
cctgtggaaa aacttacacc atctcaatgc 540cagtctattg tcacatgggc catgccacag
ctcacagaca gatccaagct tccaaacatt 600gtggataatg tgattaagaa tacaatggat
cctaagcact tataccaggt tgctgctgtg 660gctgtattat gtgtgcaacc agagccgtgc
taccgccctt tgattgcaga tgttctacac 720tccctcatcc ctcttgtacc tgttgagctt
ggaggaacac tcagagttgc acaagtgacg 780cagcaaccta agaattctag ttaa
80456267PRTMEDICAGO TRUNCATULA 56Lys
Leu Asn Cys Glu Cys Gln Tyr Ala Glu Arg Glu Phe Glu Asn Glu1
5 10 15Val Asp Leu Leu Ser Lys Ile
Gln His Pro Asn Val Ile Ser Leu Leu 20 25
30Gly Cys Ser Ser Asn Glu Asp Ser Arg Phe Ile Val Tyr Glu
Leu Met 35 40 45Gln Asn Gly Ser
Leu Glu Thr Gln Leu His Gly Pro Ser His Gly Ser 50 55
60Ala Leu Thr Trp His Met Arg Met Lys Ile Ala Leu Asp
Thr Ala Arg65 70 75
80Gly Leu Lys Tyr Leu His Glu His Cys Tyr Pro Ala Val Ile His Arg
85 90 95Asp Leu Lys Ser Ser Asn
Ile Leu Leu Asp Ala Asn Phe Asn Ala Lys 100
105 110Leu Ser Asp Phe Gly Leu Ala Ile Thr Asp Gly Ser
Gln Asn Lys Asn 115 120 125Asn Ile
Lys Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu 130
135 140Leu Asp Gly Lys Leu Thr Asp Lys Ser Asp Val
Tyr Ala Phe Gly Val145 150 155
160Val Leu Leu Glu Leu Leu Leu Gly Arg Lys Pro Val Glu Lys Leu Thr
165 170 175Pro Ser Gln Cys
Gln Ser Ile Val Thr Trp Ala Met Pro Gln Leu Thr 180
185 190Asp Arg Ser Lys Leu Pro Asn Ile Val Asp Asn
Val Ile Lys Asn Thr 195 200 205Met
Asp Pro Lys His Leu Tyr Gln Val Ala Ala Val Ala Val Leu Cys 210
215 220Val Gln Pro Glu Pro Cys Tyr Arg Pro Leu
Ile Ala Asp Val Leu His225 230 235
240Ser Leu Ile Pro Leu Val Pro Val Glu Leu Gly Gly Thr Leu Arg
Val 245 250 255Ala Gln Val
Thr Gln Gln Pro Lys Asn Ser Ser 260
26557636DNANICOTIANA TABACUM 57cagttgcatg gacctcctcg tggatcagct
ttgaattggc atcttcgcat ggaaattgca 60ttggatgtgg ctaggggact agaatacctc
catgagcgct gtaacccccc tgtaatccat 120agagatctca aatcgtctaa tgttctattg
gattcctact tcaatgcaaa gctttctgac 180ttttggccta gctatagctg gatggaactt
aaacaagagc accgtaaagt ctttcgggaa 240ctctgggata tgtggctcca gagttacctc
ttagatggga aattaactga taagagtgat 300gtctatgctt tcggcattat acttctggag
cttctaatgg ggagaagacc attggagaaa 360ctagcaggag ctcagtgcca atctatcgtc
acatgggcaa tgccacagct tactgacagg 420tcaaagctcc caaatattgt tgatcctgtc
atcagaaacg gaatgggcct caagcacttg 480tatcaagttg ctgctgtagc cgtgctatgt
gtacaaccag aaccaagtta ccgaccactg 540ataacagatg tcctgcactc cttcattccc
cttgtaccaa ttgagcttgg tgggtccttg 600agagttgtgg attctgcatt atctgttaac
gcataa 63658211PRTNICOTIANA TABACUM 58Gln
Leu His Gly Pro Pro Arg Gly Ser Ala Leu Asn Trp His Leu Arg1
5 10 15Met Glu Ile Ala Leu Asp Val
Ala Arg Gly Leu Glu Tyr Leu His Glu 20 25
30Arg Cys Asn Pro Pro Val Ile His Arg Asp Leu Lys Ser Ser
Asn Val 35 40 45Leu Leu Asp Ser
Tyr Phe Asn Ala Lys Leu Ser Asp Phe Trp Pro Ser 50 55
60Tyr Ser Trp Met Glu Leu Lys Gln Glu His Arg Lys Val
Phe Arg Glu65 70 75
80Leu Trp Asp Met Trp Leu Gln Ser Tyr Leu Leu Asp Gly Lys Leu Thr
85 90 95Asp Lys Ser Asp Val Tyr
Ala Phe Gly Ile Ile Leu Leu Glu Leu Leu 100
105 110Met Gly Arg Arg Pro Leu Glu Lys Leu Ala Gly Ala
Gln Cys Gln Ser 115 120 125Ile Val
Thr Trp Ala Met Pro Gln Leu Thr Asp Arg Ser Lys Leu Pro 130
135 140Asn Ile Val Asp Pro Val Ile Arg Asn Gly Met
Gly Leu Lys His Leu145 150 155
160Tyr Gln Val Ala Ala Val Ala Val Leu Cys Val Gln Pro Glu Pro Ser
165 170 175Tyr Arg Pro Leu
Ile Thr Asp Val Leu His Ser Phe Ile Pro Leu Val 180
185 190Pro Ile Glu Leu Gly Gly Ser Leu Arg Val Val
Asp Ser Ala Leu Ser 195 200 205Val
Asn Ala 210591437DNAORYZA SATIVA 59atggagatgg cgctaactcc attgccgctc
ctgtgttcgt ccgtcttgtt cttggtgcta 60tcttcgtgct cgttggccaa tgggagggat
acgccttctt cttcttcttc ttcttcttct 120tcttcttctt cttcttcttc ttcttcttct
tcttcttctt ctccggcgac gtctactgtg 180gccaccggca tttccgccgc cgccgccgcc
gccgccaatg ggacggccgc cttgtcttcg 240gcagttccgg cgcctccgcc tgttgtgatc
gtagtgcacc accatttcca ccgcgagctg 300gtcatcgccg ccgtcctcgc ctgcatcgcc
accgtcacga tcttcctttc cacgctctac 360gcttggacac tatggcggcg atctcgccgg
agcaccggcg gcaaggtcac caggagctca 420gacgcagcga aggggatcaa gctggtgccg
atcttgagca ggttcaactc ggtgaagatg 480agcaggaaga ggctggttgg gatgttcgag
tacccgtcgc tggaggcagc gacagagaag 540ttcagcgaga gcaacatgct cggtgtcggc
gggtttggcc gcgtctacaa ggcggcgttc 600gacgccggag ttaccgcggc ggtgaagcgg
ctcgacggcg gcgggcccga ctgcgagaag 660gaattcgaga atgagctgga tttgcttggc
aggatcaggc accccaacat tgtgtccctc 720ttgggcttct gtatccatga ggggaatcac
tacattgttt atgagctgat ggagaaggga 780tcactggaaa cacagcttca tgggtcttca
catggatcaa ctctgagctg gcacatccgg 840atgaagatcg cccttgacac ggccagggga
ttagagtacc ttcatgagca ctgcagtcca 900ccagtgatcc atagggatct gaaatcgtct
aacatacttt tggattcaga cttcaatgct 960aagattgcag attttggtct tgctgtgtct
agtgggagtg tcaacaaagg gagtgtgaag 1020ctctccggga ccttgggtta tgtagctcct
gagtacttgt tggatgggaa gttgactgaa 1080aagagcgatg tatacgcgtt cggagtagtg
cttctagagc tccttatggg gaggaagcct 1140gttgagaaga tgtcaccatc tcagtgccaa
tcaattgtga catgggcaat gccacagttg 1200accgacagat cgaagctccc cagcatagtt
gacccagtga tcaaggacac catggatcca 1260aaacacctgt accaagttgc agcagtggct
gttctatgcg tgcaggctga accaagctac 1320aggccactga tcacagatgt gctccactct
cttgttcctc tagtgccgac ggagctcgga 1380ggaacactaa gagctggaga gccaccttcc
ccgaacctga ggaattctcc atgctga 143760478PRTORYZA SATIVA 60Met Glu Met
Ala Leu Thr Pro Leu Pro Leu Leu Cys Ser Ser Val Leu1 5
10 15Phe Leu Val Leu Ser Ser Cys Ser Leu
Ala Asn Gly Arg Asp Thr Pro 20 25
30Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser
35 40 45Ser Ser Ser Ser Ser Ser Pro
Ala Thr Ser Thr Val Ala Thr Gly Ile 50 55
60Ser Ala Ala Ala Ala Ala Ala Ala Asn Gly Thr Ala Ala Leu Ser Ser65
70 75 80Ala Val Pro Ala
Pro Pro Pro Val Val Ile Val Val His His His Phe 85
90 95His Arg Glu Leu Val Ile Ala Ala Val Leu
Ala Cys Ile Ala Thr Val 100 105
110Thr Ile Phe Leu Ser Thr Leu Tyr Ala Trp Thr Leu Trp Arg Arg Ser
115 120 125Arg Arg Ser Thr Gly Gly Lys
Val Thr Arg Ser Ser Asp Ala Ala Lys 130 135
140Gly Ile Lys Leu Val Pro Ile Leu Ser Arg Phe Asn Ser Val Lys
Met145 150 155 160Ser Arg
Lys Arg Leu Val Gly Met Phe Glu Tyr Pro Ser Leu Glu Ala
165 170 175Ala Thr Glu Lys Phe Ser Glu
Ser Asn Met Leu Gly Val Gly Gly Phe 180 185
190Gly Arg Val Tyr Lys Ala Ala Phe Asp Ala Gly Val Thr Ala
Ala Val 195 200 205Lys Arg Leu Asp
Gly Gly Gly Pro Asp Cys Glu Lys Glu Phe Glu Asn 210
215 220Glu Leu Asp Leu Leu Gly Arg Ile Arg His Pro Asn
Ile Val Ser Leu225 230 235
240Leu Gly Phe Cys Ile His Glu Gly Asn His Tyr Ile Val Tyr Glu Leu
245 250 255Met Glu Lys Gly Ser
Leu Glu Thr Gln Leu His Gly Ser Ser His Gly 260
265 270Ser Thr Leu Ser Trp His Ile Arg Met Lys Ile Ala
Leu Asp Thr Ala 275 280 285Arg Gly
Leu Glu Tyr Leu His Glu His Cys Ser Pro Pro Val Ile His 290
295 300Arg Asp Leu Lys Ser Ser Asn Ile Leu Leu Asp
Ser Asp Phe Asn Ala305 310 315
320Lys Ile Ala Asp Phe Gly Leu Ala Val Ser Ser Gly Ser Val Asn Lys
325 330 335Gly Ser Val Lys
Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr 340
345 350Leu Leu Asp Gly Lys Leu Thr Glu Lys Ser Asp
Val Tyr Ala Phe Gly 355 360 365Val
Val Leu Leu Glu Leu Leu Met Gly Arg Lys Pro Val Glu Lys Met 370
375 380Ser Pro Ser Gln Cys Gln Ser Ile Val Thr
Trp Ala Met Pro Gln Leu385 390 395
400Thr Asp Arg Ser Lys Leu Pro Ser Ile Val Asp Pro Val Ile Lys
Asp 405 410 415Thr Met Asp
Pro Lys His Leu Tyr Gln Val Ala Ala Val Ala Val Leu 420
425 430Cys Val Gln Ala Glu Pro Ser Tyr Arg Pro
Leu Ile Thr Asp Val Leu 435 440
445His Ser Leu Val Pro Leu Val Pro Thr Glu Leu Gly Gly Thr Leu Arg 450
455 460Ala Gly Glu Pro Pro Ser Pro Asn
Leu Arg Asn Ser Pro Cys465 470
47561891DNAPHYSCOMITRELLA 61tactctcttt tacaaactgc tacgaacaac ttcagctcct
ccaatttgct gggcgaggga 60agtttcgggc atgtgtataa agcgagactc gattatgatg
tctatgccgc tgtaaagaga 120cttaccagcg taggaaaaca gccccaaaaa gaactccagg
gagaggtgga tctgatgtgc 180aagataagac atcccaactt ggtggctctc ctgggctatt
caaatgacgg cccagagccc 240ttggttgtgt acgagctcat gcagaatggt tcacttcatg
atcagcttca tggcccctca 300tgcgggagtg cactcacctg gtacctacga ctaaagattg
ctcttgaagc tgccagcaga 360ggactggagc acctgcatga aagctgcaag cctgcaataa
tccacagaga cttcaaggca 420tccaacatcc tcttggacgc cagcttcaat gcgaaggtgt
ccgactttgg tatagcggta 480gctctggagg aaggtggcgt ggtgaaagac gacgtacaag
tgcaaggcac cttcgggtac 540attgctcctg agtacctgat ggacgggaca ttgacagaga
agagtgatgt ttacggattt 600ggagtagtat tgcttgagct gctgacaggc agactgccca
ttgatacgtc cttaccactc 660ggatcgcaat ctctagtgac atgggtaaca cccatactaa
ctaaccgagc aaagctgatg 720gaagttatcg accccaccct tcaagatacg ctgaacgtga
agcaacttca ccaggtggcc 780gcagtggcag tcctttgcgt ccaagcggaa cccagctacc
gccctctcat cgccgacgtg 840gttcagtcac tggctccgct ggtgcctcaa gagctcggcg
gcgcattgcg a 89162297PRTPHYSCOMITRELLA 62Tyr Ser Leu Leu Gln
Thr Ala Thr Asn Asn Phe Ser Ser Ser Asn Leu1 5
10 15Leu Gly Glu Gly Ser Phe Gly His Val Tyr Lys
Ala Arg Leu Asp Tyr 20 25
30Asp Val Tyr Ala Ala Val Lys Arg Leu Thr Ser Val Gly Lys Gln Pro
35 40 45Gln Lys Glu Leu Gln Gly Glu Val
Asp Leu Met Cys Lys Ile Arg His 50 55
60Pro Asn Leu Val Ala Leu Leu Gly Tyr Ser Asn Asp Gly Pro Glu Pro65
70 75 80Leu Val Val Tyr Glu
Leu Met Gln Asn Gly Ser Leu His Asp Gln Leu 85
90 95His Gly Pro Ser Cys Gly Ser Ala Leu Thr Trp
Tyr Leu Arg Leu Lys 100 105
110Ile Ala Leu Glu Ala Ala Ser Arg Gly Leu Glu His Leu His Glu Ser
115 120 125Cys Lys Pro Ala Ile Ile His
Arg Asp Phe Lys Ala Ser Asn Ile Leu 130 135
140Leu Asp Ala Ser Phe Asn Ala Lys Val Ser Asp Phe Gly Ile Ala
Val145 150 155 160Ala Leu
Glu Glu Gly Gly Val Val Lys Asp Asp Val Gln Val Gln Gly
165 170 175Thr Phe Gly Tyr Ile Ala Pro
Glu Tyr Leu Met Asp Gly Thr Leu Thr 180 185
190Glu Lys Ser Asp Val Tyr Gly Phe Gly Val Val Leu Leu Glu
Leu Leu 195 200 205Thr Gly Arg Leu
Pro Ile Asp Thr Ser Leu Pro Leu Gly Ser Gln Ser 210
215 220Leu Val Thr Trp Val Thr Pro Ile Leu Thr Asn Arg
Ala Lys Leu Met225 230 235
240Glu Val Ile Asp Pro Thr Leu Gln Asp Thr Leu Asn Val Lys Gln Leu
245 250 255His Gln Val Ala Ala
Val Ala Val Leu Cys Val Gln Ala Glu Pro Ser 260
265 270Tyr Arg Pro Leu Ile Ala Asp Val Val Gln Ser Leu
Ala Pro Leu Val 275 280 285Pro Gln
Glu Leu Gly Gly Ala Leu Arg 290 295631065DNAPICEA
63acctcagatg cctatagggg tattccactc atgcctctcc tgaatcgttt gaactcccgt
60atttccaaga agaagggatg tgcaactgca attgaatatt ctaagctgca agcagctaca
120aataacttca gcagcaataa cattcttgga gagggtggat ttgcgtgtgt atacaaggcc
180atgtttgatg atgattcctt tgctgctgtg aagaagctag atgagggtag cagacaggct
240gagcatgaat ttcagaatga agtggagctg atgagcaaaa tccgacatcc aaaccttgtt
300tctttgcttg ggttctgctc tcatgaaaat acacggttct tagtatatga tctgatgcag
360aatggctctt tggaagacca attacatggg ccatctcacg gatctgcact tacatggttt
420ttgcgcataa agatagcact tgattcagca aggggtctag aacacttgca tgagcactgc
480aaccctgcag tgattcatcg agatttcaaa tcatcaaata ttcttcttga tgcaagcttc
540aacgccaagc tttcagattt tggtcttgca gtaacaagtg caggatgtgc tggcaataca
600aatattgatc tagtagggac attgggatat gtagctccag aatacctact tgatggtaaa
660ttgacagaga aaagtgatgt ctatgcatat ggagttgttt tgttggagct actttttgga
720agaaagccaa ttgataaatc tctaccaagt gaatgccaat ctctcatttc ttgggcaatg
780ccacagctaa cagatagaga aaagctccca actatagtag accccatgat caaaggcaca
840atgaacttga aacacctata tcaagtagca gctgttgcaa tgctatgtgt gcagccagaa
900cccagttaca ggccattaat agctgacgtt gtgcactctc tcattcctct cgtaccaata
960gaactcgggg gaactttaaa gctctctaat gcacgaccca ctgagatgaa gttatttact
1020tcttcccaat gcagtgttga gattgcttcc aacccaaaat tgtga
106564354PRTPICEA 64Thr Ser Asp Ala Tyr Arg Gly Ile Pro Leu Met Pro Leu
Leu Asn Arg1 5 10 15Leu
Asn Ser Arg Ile Ser Lys Lys Lys Gly Cys Ala Thr Ala Ile Glu 20
25 30Tyr Ser Lys Leu Gln Ala Ala Thr
Asn Asn Phe Ser Ser Asn Asn Ile 35 40
45Leu Gly Glu Gly Gly Phe Ala Cys Val Tyr Lys Ala Met Phe Asp Asp
50 55 60Asp Ser Phe Ala Ala Val Lys Lys
Leu Asp Glu Gly Ser Arg Gln Ala65 70 75
80Glu His Glu Phe Gln Asn Glu Val Glu Leu Met Ser Lys
Ile Arg His 85 90 95Pro
Asn Leu Val Ser Leu Leu Gly Phe Cys Ser His Glu Asn Thr Arg
100 105 110Phe Leu Val Tyr Asp Leu Met
Gln Asn Gly Ser Leu Glu Asp Gln Leu 115 120
125His Gly Pro Ser His Gly Ser Ala Leu Thr Trp Phe Leu Arg Ile
Lys 130 135 140Ile Ala Leu Asp Ser Ala
Arg Gly Leu Glu His Leu His Glu His Cys145 150
155 160Asn Pro Ala Val Ile His Arg Asp Phe Lys Ser
Ser Asn Ile Leu Leu 165 170
175Asp Ala Ser Phe Asn Ala Lys Leu Ser Asp Phe Gly Leu Ala Val Thr
180 185 190Ser Ala Gly Cys Ala Gly
Asn Thr Asn Ile Asp Leu Val Gly Thr Leu 195 200
205Gly Tyr Val Ala Pro Glu Tyr Leu Leu Asp Gly Lys Leu Thr
Glu Lys 210 215 220Ser Asp Val Tyr Ala
Tyr Gly Val Val Leu Leu Glu Leu Leu Phe Gly225 230
235 240Arg Lys Pro Ile Asp Lys Ser Leu Pro Ser
Glu Cys Gln Ser Leu Ile 245 250
255Ser Trp Ala Met Pro Gln Leu Thr Asp Arg Glu Lys Leu Pro Thr Ile
260 265 270Val Asp Pro Met Ile
Lys Gly Thr Met Asn Leu Lys His Leu Tyr Gln 275
280 285Val Ala Ala Val Ala Met Leu Cys Val Gln Pro Glu
Pro Ser Tyr Arg 290 295 300Pro Leu Ile
Ala Asp Val Val His Ser Leu Ile Pro Leu Val Pro Ile305
310 315 320Glu Leu Gly Gly Thr Leu Lys
Leu Ser Asn Ala Arg Pro Thr Glu Met 325
330 335Lys Leu Phe Thr Ser Ser Gln Cys Ser Val Glu Ile
Ala Ser Asn Pro 340 345 350Lys
Leu65596DNAPINUS 65aattcggcac gaggagaaca cttgcacgag cactgcaacc ctgcagtgat
tcaccgagat 60ttcaaatcat caaatattct tcttgatgca agcttcaacg ccaagctttc
agattttggt 120cttgcagtaa aaagtgcagg atgtgctggt aacacaaata ttgatctagt
agggacattg 180ggatatgtag ctccagaata catgcttgat ggtaaattga cagagaaaag
tgatgtctat 240gcatatggag ttgttttgtt agagctactt tttggaagaa agccaattga
taaatctcta 300ccaagtgaat gccaatctct catttcttgg gcaatgccac agctaacaga
tagagaaaag 360ctcccgacta taatagatcc catgatcaaa ggcgcaatga acttgaaaca
cctatatcaa 420gtggcagctg ttgcagtgct atgtgtgcag ccagaaccca gttacaggcc
attaatagct 480gacgttgtgc actctctcat tcctctcgta ccagtagaac ttgggggaac
attaaagtca 540tcacccactg agatgaagtc atttgcttct tcccaatgca gtgcccacgt
tgcttc 59666199PRTPINUS 66Asn Ser Ala Arg Gly Glu His Leu His Glu
His Cys Asn Pro Ala Val1 5 10
15Ile His Arg Asp Phe Lys Ser Ser Asn Ile Leu Leu Asp Ala Ser Phe
20 25 30Asn Ala Lys Leu Ser Asp
Phe Gly Leu Ala Val Lys Ser Ala Gly Cys 35 40
45Ala Gly Asn Thr Asn Ile Asp Leu Val Gly Thr Leu Gly Tyr
Val Ala 50 55 60Pro Glu Tyr Met Leu
Asp Gly Lys Leu Thr Glu Lys Ser Asp Val Tyr65 70
75 80Ala Tyr Gly Val Val Leu Leu Glu Leu Leu
Phe Gly Arg Lys Pro Ile 85 90
95Asp Lys Ser Leu Pro Ser Glu Cys Gln Ser Leu Ile Ser Trp Ala Met
100 105 110Pro Gln Leu Thr Asp
Arg Glu Lys Leu Pro Thr Ile Ile Asp Pro Met 115
120 125Ile Lys Gly Ala Met Asn Leu Lys His Leu Tyr Gln
Val Ala Ala Val 130 135 140Ala Val Leu
Cys Val Gln Pro Glu Pro Ser Tyr Arg Pro Leu Ile Ala145
150 155 160Asp Val Val His Ser Leu Ile
Pro Leu Val Pro Val Glu Leu Gly Gly 165
170 175Thr Leu Lys Ser Ser Pro Thr Glu Met Lys Ser Phe
Ala Ser Ser Gln 180 185 190Cys
Ser Ala His Val Ala Ser 195671377DNAPOPULUS 67atgttcttgt
ttcctaaaac agttcctatt tggttttttc atctgtgtct agtagcagtt 60catgccatac
aagaagaccc acctgtccct tcaccatctc cctctctcat ttctcctatt 120tcaacttcaa
tggctgcctt ctctccaggg gttgaatcgg aaatgggaat caaagaccac 180ccccagcatg
atgacctcca caggaaaata atcttgttgc tcactgttgc ttgttgcata 240cttgttatca
tccttctttc tttgtgttct tgtttcattt actataagaa gtcctcacaa 300aagaaaaaag
ctactcggtg ttcagatgtg gagaaagggc tttcattggc accatttttg 360ggcaaattca
gttccttgaa aatggttagt aataggggat ctgtttcatt aattgagtat 420aagatactag
agaaaggaac aaacaatttt ggcgatgata aattgttggg aaagggagga 480tttggacgtg
tatataaggc tgtaatggaa gatgactcaa gtgctgcagt caagaaacta 540gactgcgcaa
ctgatgatgc gcagagagaa tttgagaatg aggtggattt gttaagcaaa 600tttcaccatc
caaatataat ttctattgtg ggttttagtg ttcatgagga gatggggttc 660attatttatg
agttaatgcc aaatgggtgc cttgaagatc tactgcatgg accttctcgt 720ggatcttcac
taaattggca tttaaggttg aaaattgctc ttgatacagc aagaggatta 780gaatatctgc
atgaattctg caagccagca gtgatccata gagatctgaa atcatcgaat 840attcttttgg
acgccaactt caatgccaag ctgtcagatt ttggtcttgc tgtagctgat 900agctctcata
acaagaaaaa gctcaagctt tcaggcactg tgggttatgt agccccagag 960tatatgttag
atggtgaatt gacggataag agtgatgtct atgcttttgg agttgtgctt 1020ctagagcttc
tattaggaag aaggcctgta gaaaaactga caccagctca ttgccaatct 1080atagtaacat
gggccatgcc tcagctcact aacagagctg tgcttccaac ccttgtggat 1140cctgtgatca
gagattcagt agatgagaag tacttgttcc aggttgcagc agtagccgtg 1200ttgtgtattc
aaccagagcc aagttaccgc cctctcataa cagatgttgt gcactctctc 1260gtcccattag
ttcctcttga gcttggaggg acactaagag ttccacagcc tacaactccc 1320agaggtcaac
gacaaggccc atcaaagaaa ctgtttttgg atggtgctgc ctctgct
137768459PRTPOPULUS 68Met Phe Leu Phe Pro Lys Thr Val Pro Ile Trp Phe Phe
His Leu Cys1 5 10 15Leu
Val Ala Val His Ala Ile Gln Glu Asp Pro Pro Val Pro Ser Pro 20
25 30Ser Pro Ser Leu Ile Ser Pro Ile
Ser Thr Ser Met Ala Ala Phe Ser 35 40
45Pro Gly Val Glu Ser Glu Met Gly Ile Lys Asp His Pro Gln His Asp
50 55 60Asp Leu His Arg Lys Ile Ile Leu
Leu Leu Thr Val Ala Cys Cys Ile65 70 75
80Leu Val Ile Ile Leu Leu Ser Leu Cys Ser Cys Phe Ile
Tyr Tyr Lys 85 90 95Lys
Ser Ser Gln Lys Lys Lys Ala Thr Arg Cys Ser Asp Val Glu Lys
100 105 110Gly Leu Ser Leu Ala Pro Phe
Leu Gly Lys Phe Ser Ser Leu Lys Met 115 120
125Val Ser Asn Arg Gly Ser Val Ser Leu Ile Glu Tyr Lys Ile Leu
Glu 130 135 140Lys Gly Thr Asn Asn Phe
Gly Asp Asp Lys Leu Leu Gly Lys Gly Gly145 150
155 160Phe Gly Arg Val Tyr Lys Ala Val Met Glu Asp
Asp Ser Ser Ala Ala 165 170
175Val Lys Lys Leu Asp Cys Ala Thr Asp Asp Ala Gln Arg Glu Phe Glu
180 185 190Asn Glu Val Asp Leu Leu
Ser Lys Phe His His Pro Asn Ile Ile Ser 195 200
205Ile Val Gly Phe Ser Val His Glu Glu Met Gly Phe Ile Ile
Tyr Glu 210 215 220Leu Met Pro Asn Gly
Cys Leu Glu Asp Leu Leu His Gly Pro Ser Arg225 230
235 240Gly Ser Ser Leu Asn Trp His Leu Arg Leu
Lys Ile Ala Leu Asp Thr 245 250
255Ala Arg Gly Leu Glu Tyr Leu His Glu Phe Cys Lys Pro Ala Val Ile
260 265 270His Arg Asp Leu Lys
Ser Ser Asn Ile Leu Leu Asp Ala Asn Phe Asn 275
280 285Ala Lys Leu Ser Asp Phe Gly Leu Ala Val Ala Asp
Ser Ser His Asn 290 295 300Lys Lys Lys
Leu Lys Leu Ser Gly Thr Val Gly Tyr Val Ala Pro Glu305
310 315 320Tyr Met Leu Asp Gly Glu Leu
Thr Asp Lys Ser Asp Val Tyr Ala Phe 325
330 335Gly Val Val Leu Leu Glu Leu Leu Leu Gly Arg Arg
Pro Val Glu Lys 340 345 350Leu
Thr Pro Ala His Cys Gln Ser Ile Val Thr Trp Ala Met Pro Gln 355
360 365Leu Thr Asn Arg Ala Val Leu Pro Thr
Leu Val Asp Pro Val Ile Arg 370 375
380Asp Ser Val Asp Glu Lys Tyr Leu Phe Gln Val Ala Ala Val Ala Val385
390 395 400Leu Cys Ile Gln
Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val 405
410 415Val His Ser Leu Val Pro Leu Val Pro Leu
Glu Leu Gly Gly Thr Leu 420 425
430Arg Val Pro Gln Pro Thr Thr Pro Arg Gly Gln Arg Gln Gly Pro Ser
435 440 445Lys Lys Leu Phe Leu Asp Gly
Ala Ala Ser Ala 450 45569693DNASACCHARUM OFFICINARUM
69gctgctgcgg tgaagagatt ggatggtggg gctggggcac atgattgcga gaaggaattc
60gagaatgagt tagatttgct tggaaagatt cggcatccga acattgtgtc ccttgtgggc
120ttctgtattc atgaggagaa ccgtttcatt gtttatgagc tgatagagaa tgggtcgttg
180gattcacaac ttcatgggcc atcacatggt tcagctctga gctggcatat tcggatgaag
240attgctcttg acacggcaag gggattagag tacctgcatg agcactgcaa cccaccagtt
300atccataggg atctgaagtc atctaacata cttttagatt cagacttcag tgctaagatt
360tcagattttg gccttgcggt gattagtggg aatcacagca aagggaattt aaagctttct
420gggactatgg gctatgtggc ccctgagtac ttattggatg ggaagttgac tgagaagagc
480gatgtatatg cgtttggggt ggtacttcta gaacttctac tgggaaggaa acctgttgag
540aagatggcac aatctcaatg ccaatcaatt gttacatggg ccatgcctca gctaactgat
600agatccaaac tccctaacat aattgatccc atgatcaaga acacaatgga tctgaaacac
660ttgtaccaag ttgctgcaat ggctgtgctc tga
69370230PRTSACCHARUM OFFICINARUM 70Ala Ala Ala Val Lys Arg Leu Asp Gly
Gly Ala Gly Ala His Asp Cys1 5 10
15Glu Lys Glu Phe Glu Asn Glu Leu Asp Leu Leu Gly Lys Ile Arg
His 20 25 30Pro Asn Ile Val
Ser Leu Val Gly Phe Cys Ile His Glu Glu Asn Arg 35
40 45Phe Ile Val Tyr Glu Leu Ile Glu Asn Gly Ser Leu
Asp Ser Gln Leu 50 55 60His Gly Pro
Ser His Gly Ser Ala Leu Ser Trp His Ile Arg Met Lys65 70
75 80Ile Ala Leu Asp Thr Ala Arg Gly
Leu Glu Tyr Leu His Glu His Cys 85 90
95Asn Pro Pro Val Ile His Arg Asp Leu Lys Ser Ser Asn Ile
Leu Leu 100 105 110Asp Ser Asp
Phe Ser Ala Lys Ile Ser Asp Phe Gly Leu Ala Val Ile 115
120 125Ser Gly Asn His Ser Lys Gly Asn Leu Lys Leu
Ser Gly Thr Met Gly 130 135 140Tyr Val
Ala Pro Glu Tyr Leu Leu Asp Gly Lys Leu Thr Glu Lys Ser145
150 155 160Asp Val Tyr Ala Phe Gly Val
Val Leu Leu Glu Leu Leu Leu Gly Arg 165
170 175Lys Pro Val Glu Lys Met Ala Gln Ser Gln Cys Gln
Ser Ile Val Thr 180 185 190Trp
Ala Met Pro Gln Leu Thr Asp Arg Ser Lys Leu Pro Asn Ile Ile 195
200 205Asp Pro Met Ile Lys Asn Thr Met Asp
Leu Lys His Leu Tyr Gln Val 210 215
220Ala Ala Met Ala Val Leu225 23071414DNATRIPHYSARIA
VERSICOLOR 71accctcggtt atgtagctcc tgagtatctg ttagatggta agttaacaga
gaaaagcgat 60gtgtatgggt ttggagtagt gttactcgag cttctgcttg ggaagaagcc
tatggagaaa 120gtggcaacaa cagcaactca gtgccagatg atagtcacat ggaccatgcc
tcagctcact 180gacagaacga aacttccgaa tatcgtggat ccggtgatca gaaactccat
ggatttaaag 240cacttgtacc aggttgctgc tgtggcagta ttgtgtgtgc agccagaacc
gagttatcgg 300ccattgataa ctgatatttt gcattctctt gtgccccttg tccctgttga
gcttggtggg 360acgctcagga actcgataac aatggctaca acaacaatat ctcctgaaag
ctaa 41472137PRTTRIPHYSARIA VERSICOLOR 72Thr Leu Gly Tyr Val Ala
Pro Glu Tyr Leu Leu Asp Gly Lys Leu Thr1 5
10 15Glu Lys Ser Asp Val Tyr Gly Phe Gly Val Val Leu
Leu Glu Leu Leu 20 25 30Leu
Gly Lys Lys Pro Met Glu Lys Val Ala Thr Thr Ala Thr Gln Cys 35
40 45Gln Met Ile Val Thr Trp Thr Met Pro
Gln Leu Thr Asp Arg Thr Lys 50 55
60Leu Pro Asn Ile Val Asp Pro Val Ile Arg Asn Ser Met Asp Leu Lys65
70 75 80His Leu Tyr Gln Val
Ala Ala Val Ala Val Leu Cys Val Gln Pro Glu 85
90 95Pro Ser Tyr Arg Pro Leu Ile Thr Asp Ile Leu
His Ser Leu Val Pro 100 105
110Leu Val Pro Val Glu Leu Gly Gly Thr Leu Arg Asn Ser Ile Thr Met
115 120 125Ala Thr Thr Thr Ile Ser Pro
Glu Ser 130 135731140DNATRITICUM
AESTIVUMmisc_feature(1000)..(1000)n is a, c, g, or
tmisc_feature(1080)..(1080)n is a, c, g, or tmisc_feature(1088)..(1088)n
is a, c, g, or t 73cggcacgagg ggctggtggc catgatcgag tacccgtcgc tggaggcggc
gacgggcaag 60ttcagcgaga gcaacgtgct cggcgtcggc gggttcggct gcgtctacaa
ggcggcgttc 120gacggcggcg ccaccgccgc cgtgaagagg ctcgaaggcg gcgagccgga
ctgcgagaag 180gagttcgaga atgagctgga cttgcttggc aggatcaggc acccaaacat
agtgtccctc 240ctgggcttct gcgtccatgg tggcaatcac tacattgttt atgagctcat
ggagaaggga 300tcattggaga cacaactgca tgggccttca catggatcgg ctatgagctg
gcacgtccgg 360atgaagatcg cgctcgacac ggcgagggga ttagagtatc ttcatgagca
ctgcaatcca 420ccagtcatcc atagggatct gaaatcgtct aatatactct tggattcaga
cttcaatgct 480aagattgcag attttggcct tgcagtgaca agtgggaatc ttgacaaagg
gaacctgaag 540atctctggga ccttgggata tgtagctccc gagtacttat tagatgggaa
gttgaccgag 600aagagcgacg tctacgcgtt tggagtagtg cttctagagc tcctgatggg
gaggaagcct 660gttgagaaga tgtcaccatc tcagtgccaa tcaattgtgt catgggccat
gcctcagcta 720accgacagat cgaagctacc caacatcatc gacccggtga tcaaggacac
aatggaccca 780aagcatttat accaagttgc ggcggtggcc gttctatgcg tgcagcccga
accgagttac 840agaccgctga taacagacgt tctccactcc cttgttcctc tggtacccgc
ggatctcggg 900gggaacgctc agagttacag agccgcattc tccacaccaa atgtaccatc
cctcttgaga 960agtgatccta caagtttcgt cgaagcgggg aaagcgaatn tatacggtcc
agcggtagat 1020ggctgttatt ttggtactta tatctcaccc tgtcctgctg cttatcttag
gatgagtgan 1080gagctccnac ctgctgcttt tgctggttgg gcagagagaa tacagttctg
gttaggattg 114074380PRTTRITICUM AESTIVUMmisc_feature(334)..(334)Xaa can
be any naturally occurring amino acidmisc_feature(360)..(360)Xaa can be
any naturally occurring amino acidmisc_feature(363)..(363)Xaa can be any
naturally occurring amino acid 74Arg His Glu Gly Leu Val Ala Met Ile Glu
Tyr Pro Ser Leu Glu Ala1 5 10
15Ala Thr Gly Lys Phe Ser Glu Ser Asn Val Leu Gly Val Gly Gly Phe
20 25 30Gly Cys Val Tyr Lys Ala
Ala Phe Asp Gly Gly Ala Thr Ala Ala Val 35 40
45Lys Arg Leu Glu Gly Gly Glu Pro Asp Cys Glu Lys Glu Phe
Glu Asn 50 55 60Glu Leu Asp Leu Leu
Gly Arg Ile Arg His Pro Asn Ile Val Ser Leu65 70
75 80Leu Gly Phe Cys Val His Gly Gly Asn His
Tyr Ile Val Tyr Glu Leu 85 90
95Met Glu Lys Gly Ser Leu Glu Thr Gln Leu His Gly Pro Ser His Gly
100 105 110Ser Ala Met Ser Trp
His Val Arg Met Lys Ile Ala Leu Asp Thr Ala 115
120 125Arg Gly Leu Glu Tyr Leu His Glu His Cys Asn Pro
Pro Val Ile His 130 135 140Arg Asp Leu
Lys Ser Ser Asn Ile Leu Leu Asp Ser Asp Phe Asn Ala145
150 155 160Lys Ile Ala Asp Phe Gly Leu
Ala Val Thr Ser Gly Asn Leu Asp Lys 165
170 175Gly Asn Leu Lys Ile Ser Gly Thr Leu Gly Tyr Val
Ala Pro Glu Tyr 180 185 190Leu
Leu Asp Gly Lys Leu Thr Glu Lys Ser Asp Val Tyr Ala Phe Gly 195
200 205Val Val Leu Leu Glu Leu Leu Met Gly
Arg Lys Pro Val Glu Lys Met 210 215
220Ser Pro Ser Gln Cys Gln Ser Ile Val Ser Trp Ala Met Pro Gln Leu225
230 235 240Thr Asp Arg Ser
Lys Leu Pro Asn Ile Ile Asp Pro Val Ile Lys Asp 245
250 255Thr Met Asp Pro Lys His Leu Tyr Gln Val
Ala Ala Val Ala Val Leu 260 265
270Cys Val Gln Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu
275 280 285His Ser Leu Val Pro Leu Val
Pro Ala Asp Leu Gly Gly Asn Ala Gln 290 295
300Ser Tyr Arg Ala Ala Phe Ser Thr Pro Asn Val Pro Ser Leu Leu
Arg305 310 315 320Ser Asp
Pro Thr Ser Phe Val Glu Ala Gly Lys Ala Asn Xaa Tyr Gly
325 330 335Pro Ala Val Asp Gly Cys Tyr
Phe Gly Thr Tyr Ile Ser Pro Cys Pro 340 345
350Ala Ala Tyr Leu Arg Met Ser Xaa Glu Leu Xaa Pro Ala Ala
Phe Ala 355 360 365Gly Trp Ala Glu
Arg Ile Gln Phe Trp Leu Gly Leu 370 375
38075978DNAVITIS VINIFERA 75atgaaagtga ttgggagaaa gggttatgtc tcttttattg
attataaggt actagaaact 60gcaacaaaca attttcagga aagtaatatc ctgggtgagg
gcgggtttgg ttgcgtctac 120aaggcgcggt tggatgataa ctcccatgtg gctgtgaaga
agatagatgg tagaggccag 180gatgctgaga gagaatttga gaatgaggtg gatttgttga
ctaaaattca gcacccaaat 240ataatttctc tcctgggtta cagcagtcat gaggagtcaa
agtttcttgt ctatgagctg 300atgcagaatg gatctctgga aactgaattg cacggacctt
ctcatggatc atctctaact 360tggcatattc gaatgaaaat cgctctggat gcagcaagag
gattagagta tctacatgag 420cactgcaacc caccagtcat ccatagagat cttaaatcat
ctaatattct tctggattca 480aacttcaatg ccaagctttc ggattttggt ctagctgtaa
ttgatgggcc tcaaaacaag 540aacaacttga agctttcagg caccctgggt tatctagctc
ctgagtatct tttagatggt 600aaactgactg ataagagtga tgtgtatgca tttggagtgg
tgcttctaga gctactactg 660ggaagaaagc ctgtggaaaa actggcacca gctcaatgcc
agtccattgt cacatgggcc 720atgccacagc tgactgacag atcaaagctc ccaggcatcg
ttgaccctgt ggtcagagac 780acgatggatc taaagcattt ataccaagtt gctgctgtag
ctgtgctatg tgtgcaacca 840gaaccaagtt accggccatt gataacagat gttctgcact
ccctcatccc actcgttcca 900gttgagttgg gagggatgct aaaagttacc cagcaagcgc
cgcctatcaa caccactgca 960ccttctgctg gaggttga
97876325PRTVITIS VINIFERA 76Met Lys Val Ile Gly
Arg Lys Gly Tyr Val Ser Phe Ile Asp Tyr Lys1 5
10 15Val Leu Glu Thr Ala Thr Asn Asn Phe Gln Glu
Ser Asn Ile Leu Gly 20 25
30Glu Gly Gly Phe Gly Cys Val Tyr Lys Ala Arg Leu Asp Asp Asn Ser
35 40 45His Val Ala Val Lys Lys Ile Asp
Gly Arg Gly Gln Asp Ala Glu Arg 50 55
60Glu Phe Glu Asn Glu Val Asp Leu Leu Thr Lys Ile Gln His Pro Asn65
70 75 80Ile Ile Ser Leu Leu
Gly Tyr Ser Ser His Glu Glu Ser Lys Phe Leu 85
90 95Val Tyr Glu Leu Met Gln Asn Gly Ser Leu Glu
Thr Glu Leu His Gly 100 105
110Pro Ser His Gly Ser Ser Leu Thr Trp His Ile Arg Met Lys Ile Ala
115 120 125Leu Asp Ala Ala Arg Gly Leu
Glu Tyr Leu His Glu His Cys Asn Pro 130 135
140Pro Val Ile His Arg Asp Leu Lys Ser Ser Asn Ile Leu Leu Asp
Ser145 150 155 160Asn Phe
Asn Ala Lys Leu Ser Asp Phe Gly Leu Ala Val Ile Asp Gly
165 170 175Pro Gln Asn Lys Asn Asn Leu
Lys Leu Ser Gly Thr Leu Gly Tyr Leu 180 185
190Ala Pro Glu Tyr Leu Leu Asp Gly Lys Leu Thr Asp Lys Ser
Asp Val 195 200 205Tyr Ala Phe Gly
Val Val Leu Leu Glu Leu Leu Leu Gly Arg Lys Pro 210
215 220Val Glu Lys Leu Ala Pro Ala Gln Cys Gln Ser Ile
Val Thr Trp Ala225 230 235
240Met Pro Gln Leu Thr Asp Arg Ser Lys Leu Pro Gly Ile Val Asp Pro
245 250 255Val Val Arg Asp Thr
Met Asp Leu Lys His Leu Tyr Gln Val Ala Ala 260
265 270Val Ala Val Leu Cys Val Gln Pro Glu Pro Ser Tyr
Arg Pro Leu Ile 275 280 285Thr Asp
Val Leu His Ser Leu Ile Pro Leu Val Pro Val Glu Leu Gly 290
295 300Gly Met Leu Lys Val Thr Gln Gln Ala Pro Pro
Ile Asn Thr Thr Ala305 310 315
320Pro Ser Ala Gly Gly 325771377DNAZEA MAYS
77atgccgccgc catcgccgct cctccgttcc tccgccttcg tcgtcttgct gctcctggtg
60tgtcgcccgt tgttggtcgc caatgggagg gccacgccgc cttctccggg atggccaccg
120gcggctcagc ccgcgctgca gcctgcaccc accgccagcg gcggcgtggc ctccgtgctt
180ccttcggccg tggcgcctcc tcccttaggt gtggttgtgg cggagaggca ccaccacctc
240agcagggagc tcgtcgctgc cattatcctc tcatccgtcg ccagcgtcgt gatccccatt
300gccgcgctgt atgccttctt gctgtggcga cgatcacggc gagccctggt ggattccaag
360gacacccaga gcatagatac cgcaaggatt gcttttgcgc cgatgttgaa cagctttggc
420tcgtacaaga ctaccaagaa gagtgccgcg gcgatgatgg attacacatc tttggaggca
480gcgacagaaa acttcagtga gagcaatgtc cttggatttg gtgggtttgg gtctgtgtac
540aaagccaatt ttgatgggag gtttgctgct gcggtgaaga gactggatgg tggggcacat
600gattgcaaga aggaattcga gaatgagcta gacttgcttg ggaagattcg acatccgaac
660atcgtgtccc ttgtgggctt ctgcattcat gaggagaacc gtttcgttgt ttatgagctg
720atggagagtg ggtcgttgga ttcgcaactt catgggccat cacatggttc agctctgagc
780tggcatattc ggatgaagat tgctctcgac acagcaaggg gattagagta cctgcatgag
840cactgcaacc caccggttat ccatagggat cttaagtcat ctaacatact tttagattca
900gacttcagcg ctaagatttc agactttggc ctggcagtga ctagtgggaa tcacagcaaa
960gggaatttaa agctttctgg gactatgggc tatgtggctc ctgagtactt attagatggg
1020aagctgactg agaagagcga tgtatacgcg tttggggtag tacttctaga actcctgctg
1080ggaaggaaac ctgtcgagaa gatggcacaa tctcagtgcc gatcaatcgt tacatgggcc
1140atgcctcagc taactgatag atccaagctc ccgaacataa ttgatcccat gatcaagaac
1200acaatggatc tgaaacactt gtaccaagtt gctgcagtgg ccgtgctctg cgtgcagcca
1260gagccgagtt acaggccact gatcaccgac gtgcttcact cactggtacc tctagtgccc
1320acggagcttg gaggaacgct gaggatcggc ccggaatcgc cctacctacg ctactaa
137778458PRTZEA MAYS 78Met Pro Pro Pro Ser Pro Leu Leu Arg Ser Ser Ala
Phe Val Val Leu1 5 10
15Leu Leu Leu Val Cys Arg Pro Leu Leu Val Ala Asn Gly Arg Ala Thr
20 25 30Pro Pro Ser Pro Gly Trp Pro
Pro Ala Ala Gln Pro Ala Leu Gln Pro 35 40
45Ala Pro Thr Ala Ser Gly Gly Val Ala Ser Val Leu Pro Ser Ala
Val 50 55 60Ala Pro Pro Pro Leu Gly
Val Val Val Ala Glu Arg His His His Leu65 70
75 80Ser Arg Glu Leu Val Ala Ala Ile Ile Leu Ser
Ser Val Ala Ser Val 85 90
95Val Ile Pro Ile Ala Ala Leu Tyr Ala Phe Leu Leu Trp Arg Arg Ser
100 105 110Arg Arg Ala Leu Val Asp
Ser Lys Asp Thr Gln Ser Ile Asp Thr Ala 115 120
125Arg Ile Ala Phe Ala Pro Met Leu Asn Ser Phe Gly Ser Tyr
Lys Thr 130 135 140Thr Lys Lys Ser Ala
Ala Ala Met Met Asp Tyr Thr Ser Leu Glu Ala145 150
155 160Ala Thr Glu Asn Phe Ser Glu Ser Asn Val
Leu Gly Phe Gly Gly Phe 165 170
175Gly Ser Val Tyr Lys Ala Asn Phe Asp Gly Arg Phe Ala Ala Ala Val
180 185 190Lys Arg Leu Asp Gly
Gly Ala His Asp Cys Lys Lys Glu Phe Glu Asn 195
200 205Glu Leu Asp Leu Leu Gly Lys Ile Arg His Pro Asn
Ile Val Ser Leu 210 215 220Val Gly Phe
Cys Ile His Glu Glu Asn Arg Phe Val Val Tyr Glu Leu225
230 235 240Met Glu Ser Gly Ser Leu Asp
Ser Gln Leu His Gly Pro Ser His Gly 245
250 255Ser Ala Leu Ser Trp His Ile Arg Met Lys Ile Ala
Leu Asp Thr Ala 260 265 270Arg
Gly Leu Glu Tyr Leu His Glu His Cys Asn Pro Pro Val Ile His 275
280 285Arg Asp Leu Lys Ser Ser Asn Ile Leu
Leu Asp Ser Asp Phe Ser Ala 290 295
300Lys Ile Ser Asp Phe Gly Leu Ala Val Thr Ser Gly Asn His Ser Lys305
310 315 320Gly Asn Leu Lys
Leu Ser Gly Thr Met Gly Tyr Val Ala Pro Glu Tyr 325
330 335Leu Leu Asp Gly Lys Leu Thr Glu Lys Ser
Asp Val Tyr Ala Phe Gly 340 345
350Val Val Leu Leu Glu Leu Leu Leu Gly Arg Lys Pro Val Glu Lys Met
355 360 365Ala Gln Ser Gln Cys Arg Ser
Ile Val Thr Trp Ala Met Pro Gln Leu 370 375
380Thr Asp Arg Ser Lys Leu Pro Asn Ile Ile Asp Pro Met Ile Lys
Asn385 390 395 400Thr Met
Asp Leu Lys His Leu Tyr Gln Val Ala Ala Val Ala Val Leu
405 410 415Cys Val Gln Pro Glu Pro Ser
Tyr Arg Pro Leu Ile Thr Asp Val Leu 420 425
430His Ser Leu Val Pro Leu Val Pro Thr Glu Leu Gly Gly Thr
Leu Arg 435 440 445Ile Gly Pro Glu
Ser Pro Tyr Leu Arg Tyr 450 455791188DNAZEA MAYS
79atgttgctcg cgtgtcctgc agtgatcatc gtggagcgcc accgtcattt ccaccgtgag
60ctagtcatcg cctccatcct cgcctcaatc gccatggtcg cgattatcct ctccacgctg
120tacgcgtgga tcccgcgcag gcggtcccgc cggctgcccc gcggcatgag cgcagacacc
180gcgaggggga tcatgctggc gccgatcctg agcaagttca actcgctcaa gacgagcagg
240aaggggctcg tggcgatgat cgagtacccg tcgctggagg cagcgacagg ggggttcagt
300gagagcaacg tgctcggcgt aggcggcttc ggttgcgtct acaaggcagt cttcgatggc
360ggcgttaccg cggcggtcaa gaggctggag ggaggtggcc ctgagtgcga gaaggaattc
420gagaatgagc tggatctgct tggcaggatt cggcacccca acatcgtgtc cctgctgggc
480ttttgtgttc acgaggggaa tcactacatt gtttatgagc tcatggagaa gggatccctg
540gacacacagc tgcatggggc ctcacatgga tcagcgctga cctggcatat ccggatgaag
600atcgcactcg acatggccag gggattagaa tacctccatg agcactgcag tccaccagtg
660atccataggg atctgaagtc atctaacata cttttagatt ctgacttcaa tgctaagatt
720tcagattttg gtcttgcagt gaccagtggg aacattgaca agggaagcat gaagctttct
780gggaccttgg gttatgtggc ccctgagtac ctattagatg ggaagctgac tgaaaagagt
840gacgtatatg catttggagt ggtgcttctt gagctactaa tgggaaggaa gcctgtcgag
900aagatgagtc aaactcagtg ccaatcaatt gtgacgtggg ccatgccgca gctgactgac
960agaacaaaac ttcccaacat agttgaccca gtgatcaggg acaccatgga tccaaagcat
1020ttgtaccaag tggcagcagt ggcagttcta tgtgtgcaac cagaaccaag ttacagaccg
1080ctgattactg atgttctcca ctctcttgtc cctctagtcc ctgtggagct cggagggaca
1140ctgagggttg tagagccacc ttccccaaac ctaaaacatt ctccttgt
118880396PRTZEA MAYS 80Met Leu Leu Ala Cys Pro Ala Val Ile Ile Val Glu
Arg His Arg His1 5 10
15Phe His Arg Glu Leu Val Ile Ala Ser Ile Leu Ala Ser Ile Ala Met
20 25 30Val Ala Ile Ile Leu Ser Thr
Leu Tyr Ala Trp Ile Pro Arg Arg Arg 35 40
45Ser Arg Arg Leu Pro Arg Gly Met Ser Ala Asp Thr Ala Arg Gly
Ile 50 55 60Met Leu Ala Pro Ile Leu
Ser Lys Phe Asn Ser Leu Lys Thr Ser Arg65 70
75 80Lys Gly Leu Val Ala Met Ile Glu Tyr Pro Ser
Leu Glu Ala Ala Thr 85 90
95Gly Gly Phe Ser Glu Ser Asn Val Leu Gly Val Gly Gly Phe Gly Cys
100 105 110Val Tyr Lys Ala Val Phe
Asp Gly Gly Val Thr Ala Ala Val Lys Arg 115 120
125Leu Glu Gly Gly Gly Pro Glu Cys Glu Lys Glu Phe Glu Asn
Glu Leu 130 135 140Asp Leu Leu Gly Arg
Ile Arg His Pro Asn Ile Val Ser Leu Leu Gly145 150
155 160Phe Cys Val His Glu Gly Asn His Tyr Ile
Val Tyr Glu Leu Met Glu 165 170
175Lys Gly Ser Leu Asp Thr Gln Leu His Gly Ala Ser His Gly Ser Ala
180 185 190Leu Thr Trp His Ile
Arg Met Lys Ile Ala Leu Asp Met Ala Arg Gly 195
200 205Leu Glu Tyr Leu His Glu His Cys Ser Pro Pro Val
Ile His Arg Asp 210 215 220Leu Lys Ser
Ser Asn Ile Leu Leu Asp Ser Asp Phe Asn Ala Lys Ile225
230 235 240Ser Asp Phe Gly Leu Ala Val
Thr Ser Gly Asn Ile Asp Lys Gly Ser 245
250 255Met Lys Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro
Glu Tyr Leu Leu 260 265 270Asp
Gly Lys Leu Thr Glu Lys Ser Asp Val Tyr Ala Phe Gly Val Val 275
280 285Leu Leu Glu Leu Leu Met Gly Arg Lys
Pro Val Glu Lys Met Ser Gln 290 295
300Thr Gln Cys Gln Ser Ile Val Thr Trp Ala Met Pro Gln Leu Thr Asp305
310 315 320Arg Thr Lys Leu
Pro Asn Ile Val Asp Pro Val Ile Arg Asp Thr Met 325
330 335Asp Pro Lys His Leu Tyr Gln Val Ala Ala
Val Ala Val Leu Cys Val 340 345
350Gln Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu His Ser
355 360 365Leu Val Pro Leu Val Pro Val
Glu Leu Gly Gly Thr Leu Arg Val Val 370 375
380Glu Pro Pro Ser Pro Asn Leu Lys His Ser Pro Cys385
390 395811086DNAGOSSYPIUM 81atgaagaaga agcttgtgct
gcatctgctt cttttccttg tttgtgctct tgaaaacatt 60gttttggccg tacaaggccc
tgcttcatca cccatttcta ctcccatctc tgcttcaatg 120gctgccttct ctccagctgg
gattcaactt ggaggtgagg agcacaagaa aatggatcca 180accaagaaaa tgttattagc
tctcattctt gcttgctctt cattgggtgc aattatctct 240tccttgttct gtttatggat
ttattacagg aagaattcaa gcaaatcctc taaaaatggc 300gctaagagct cagatggtga
aaaagggaat ggtttggcac catatttggg taaattcaag 360tctatgagga cggtttccaa
agagggttat gcttcgttta tggactataa gatacttgaa 420aaagctacaa acaagttcca
tcatggtaac attctgggtg agggtggatt tggatgtgtt 480tacaaggctc aattcaatga
tggttcttat gctgctgtta agaagttgga ctgtgcaagc 540caagatgctg aaaaagaata
tgagaatgag gtgggtttgc tatgtagatt taagcattcc 600aatataattt cactgttggg
ttatagcagt gataacgata caaggtttat tgtttatgag 660ttgatggaaa atggttcttt
ggaaactcaa ttacatggac cttctcatgg ttcatcatta 720acttggcata ggaggatgaa
aattgctttg gatacagcaa gaggattaga atatctacat 780gagcattgca atccaccagt
catccataga gatctgaaat catctaatat acttttggat 840ttggacttca atgcaaagct
ttcagatttt ggtcttgcag taactgatgc ggcaacaaac 900aagaataact tgaagctttc
gggtacttta ggttatctag ctccagaata ccttttagat 960ggtaaattaa cagataagag
tgatgtttat gcattcggtg ttgtgctgct cgaacttcta 1020ttgggacgaa aggctgttga
aaaattatca caactcagtg ccaatcttag gtccatttgg 1080gcatag
108682361PRTGOSSYPIUM 82Met
Lys Lys Lys Leu Val Leu His Leu Leu Leu Phe Leu Val Cys Ala1
5 10 15Leu Glu Asn Ile Val Leu Ala
Val Gln Gly Pro Ala Ser Ser Pro Ile 20 25
30Ser Thr Pro Ile Ser Ala Ser Met Ala Ala Phe Ser Pro Ala
Gly Ile 35 40 45Gln Leu Gly Gly
Glu Glu His Lys Lys Met Asp Pro Thr Lys Lys Met 50 55
60Leu Leu Ala Leu Ile Leu Ala Cys Ser Ser Leu Gly Ala
Ile Ile Ser65 70 75
80Ser Leu Phe Cys Leu Trp Ile Tyr Tyr Arg Lys Asn Ser Ser Lys Ser
85 90 95Ser Lys Asn Gly Ala Lys
Ser Ser Asp Gly Glu Lys Gly Asn Gly Leu 100
105 110Ala Pro Tyr Leu Gly Lys Phe Lys Ser Met Arg Thr
Val Ser Lys Glu 115 120 125Gly Tyr
Ala Ser Phe Met Asp Tyr Lys Ile Leu Glu Lys Ala Thr Asn 130
135 140Lys Phe His His Gly Asn Ile Leu Gly Glu Gly
Gly Phe Gly Cys Val145 150 155
160Tyr Lys Ala Gln Phe Asn Asp Gly Ser Tyr Ala Ala Val Lys Lys Leu
165 170 175Asp Cys Ala Ser
Gln Asp Ala Glu Lys Glu Tyr Glu Asn Glu Val Gly 180
185 190Leu Leu Cys Arg Phe Lys His Ser Asn Ile Ile
Ser Leu Leu Gly Tyr 195 200 205Ser
Ser Asp Asn Asp Thr Arg Phe Ile Val Tyr Glu Leu Met Glu Asn 210
215 220Gly Ser Leu Glu Thr Gln Leu His Gly Pro
Ser His Gly Ser Ser Leu225 230 235
240Thr Trp His Arg Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly
Leu 245 250 255Glu Tyr Leu
His Glu His Cys Asn Pro Pro Val Ile His Arg Asp Leu 260
265 270Lys Ser Ser Asn Ile Leu Leu Asp Leu Asp
Phe Asn Ala Lys Leu Ser 275 280
285Asp Phe Gly Leu Ala Val Thr Asp Ala Ala Thr Asn Lys Asn Asn Leu 290
295 300Lys Leu Ser Gly Thr Leu Gly Tyr
Leu Ala Pro Glu Tyr Leu Leu Asp305 310
315 320Gly Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe
Gly Val Val Leu 325 330
335Leu Glu Leu Leu Leu Gly Arg Lys Ala Val Glu Lys Leu Ser Gln Leu
340 345 350Ser Ala Asn Leu Arg Ser
Ile Trp Ala 355 360831089DNASOLANUM
LYCOPERSICUMmisc_feature(1024)..(1024)n is a, c, g, or t 83ggagtgggaa
ttgagaagca gccacccacc cacccaccct atggataaaa atagaaggct 60gttgatagca
ctcattgtag cttctactgc attaggacta atctttatct tcatcatttt 120attctggatt
tttcacaaaa gatttcacac ctcagatgtt gtgaagggaa tgagtaggaa 180aacattggtt
tctttaatgg actacaacat acttgaatca gccaccaaca aatttaaaga 240aactgagatt
ttaggtgagg ggggttttgg atgtgtgtac aaagctaaat tggaagacaa 300tttttatgta
gctgtcaaga aactaaccca aaattccatt aaagaatttg agactgagtt 360agagttgttg
agtcaaatgc aacatcccaa tattatttca ttgttgggat attgcatcca 420cagtgaaaca
agattgcttg tctatgaact catgcaaaat ggatcactag aaactcaatt 480acatgggcct
tcccgtggat cagcattaac ttggcatcgc aggataaaaa ttgcccttga 540tgcagcaaga
ggaatagaat atttacatga gcagcgccat ccccctgtaa ttcatagaga 600tctgaaatca
tctaatattc ttttagattc caacttcaat gcaaaggtaa aactttttat 660gtagaaatta
tactaggact agttttccct ctattaatct tgtgttgtga ttaattttag 720ctgtcagatt
ttggtcttgc tgtgttgagt ggggctcaaa acaaaaacaa tatcaagctt 780tctggaacta
taggttatgt agcgcctgaa tacatgttag atggaaaatt aagtgataaa 840agtgatgttt
atggttttgg agtagtactt ttggagctgt tattgggaag gcggcctgta 900gaaaaggagg
cagccactga atgtcagtct atagtgacat gggccatgcc tcagctgaca 960gatagatcaa
agcttccaaa cattgttgat cctgtcatac aaaacacaat ggatttaaag 1020catntgtatc
aggttgctgc aggtgctcta ttatgtgttc agccagagcc aagctatcgt 1080cccgtataa
108984875DNAAQUILEGIA 84gagtatcagt tattggaagc tgcaactgac aattttagtg
agagtaatat tttgggagaa 60ggtggatttg gatgtgttta caaagcatgt tttgataaca
actttctcgc tgctgtcaag 120agaatggatg ttggtgggca agatgcagaa agagaatttg
agaaagaagt agatttgttg 180aatagaattc agcatccgga tataatttcc ctgttgggtt
attgtattca tgatgagaca 240aggttcatca tttatgaact aatgcagaac ggatctttgg
aaagacaatt acatggacct 300tctcatggat cggctttaac ttggcatatc cggatgaaaa
ttgcacttga tacagcaaga 360gcattagaat atctccatga gaattgcaac cctcctgtga
tccacagaga tctgaaatca 420tccaatatac ttttggattc taatttcaag gccaagattt
cagattttgg tcttgctgta 480atttctggga gtcaaaacaa gaacaacatt aagctttcag
gcactcttgg ttatgttgct 540ccagaatatc tgttagatgg taaattgact gacaaaagtg
atgtctatgc ttttggggtt 600atccttctag aactcctaat gggaagaaaa cctgtagaga
aaatgacacg aactcagtgt 660caatctatcg ttacatgggc catgcctcaa ctcactgata
gatcaaagct accaaacatt 720gttgatcctg tgattaaaaa cacaatggat ttgaagcatt
tgttccaagt tgctgctgta 780gctgtactgt gtgtacaacc agaaccaagt taccggccat
taatcacaga tgtccttcac 840tccctcgtac cccttgttcc tgtcgatctt ggagg
87585292PRTAQUILEGIA 85Glu Tyr Gln Leu Leu Glu Ala
Ala Thr Asp Asn Phe Ser Glu Ser Asn1 5 10
15Ile Leu Gly Glu Gly Gly Phe Gly Cys Val Tyr Lys Ala
Cys Phe Asp 20 25 30Asn Asn
Phe Leu Ala Ala Val Lys Arg Met Asp Val Gly Gly Gln Asp 35
40 45Ala Glu Arg Glu Phe Glu Lys Glu Val Asp
Leu Leu Asn Arg Ile Gln 50 55 60His
Pro Asp Ile Ile Ser Leu Leu Gly Tyr Cys Ile His Asp Glu Thr65
70 75 80Arg Phe Ile Ile Tyr Glu
Leu Met Gln Asn Gly Ser Leu Glu Arg Gln 85
90 95Leu His Gly Pro Ser His Gly Ser Ala Leu Thr Trp
His Ile Arg Met 100 105 110Lys
Ile Ala Leu Asp Thr Ala Arg Ala Leu Glu Tyr Leu His Glu Asn 115
120 125Cys Asn Pro Pro Val Ile His Arg Asp
Leu Lys Ser Ser Asn Ile Leu 130 135
140Leu Asp Ser Asn Phe Lys Ala Lys Ile Ser Asp Phe Gly Leu Ala Val145
150 155 160Ile Ser Gly Ser
Gln Asn Lys Asn Asn Ile Lys Leu Ser Gly Thr Leu 165
170 175Gly Tyr Val Ala Pro Glu Tyr Leu Leu Asp
Gly Lys Leu Thr Asp Lys 180 185
190Ser Asp Val Tyr Ala Phe Gly Val Ile Leu Leu Glu Leu Leu Met Gly
195 200 205Arg Lys Pro Val Glu Lys Met
Thr Arg Thr Gln Cys Gln Ser Ile Val 210 215
220Thr Trp Ala Met Pro Gln Leu Thr Asp Arg Ser Lys Leu Pro Asn
Ile225 230 235 240Val Asp
Pro Val Ile Lys Asn Thr Met Asp Leu Lys His Leu Phe Gln
245 250 255Val Ala Ala Val Ala Val Leu
Cys Val Gln Pro Glu Pro Ser Tyr Arg 260 265
270Pro Leu Ile Thr Asp Val Leu His Ser Leu Val Pro Leu Val
Pro Val 275 280 285Asp Leu Gly Gly
29086696DNACENTAUREA MACULOSA 86tgtgctcatg atgagaccaa actacttgtt
tacgaactta tgcacaatgg ttcgttagaa 60actcaattac acggtccttc ttgtggatcc
aatttaacat ggcattgtcg gatgaaaatt 120gcgctagata tagcgagagg attggaatat
ttacatgaac actgcaaacc atctgtgatt 180catagagatt tgaagtcatc taacatcctt
ttggattcaa aattcaatgc caagctttcg 240gatttcggtc ttgctgtgat gaacggtgcc
aataccaaaa acattaagct ttcggggacg 300ttgggttacg tagctcccga gtatctttta
aatgggaaat tgaccgataa aagtgacgtc 360tacgcattcg gagttgtact tttagagctt
ctactcaaaa ggcggcctgt cgaaaaacta 420gcaccatccg agtgccagtc catcgtcact
tgggctatgc cgcaactaac agacagaaca 480aagcttccga gtgttataga tcccgtgatc
agggacacga tggatcttaa acacttgtat 540caagtggcgg ctgtggctgt gttgtgtgtt
caaccggaac cgggataccg gccgttgata 600accgacgtct tgcattctct ggttcctctc
gtgccggttg aactcggagg gactctacga 660gttgcggaaa caggttgcgg cacagttgac
ttatga 69687231PRTCENTAUREA MACULOSA 87Cys
Ala His Asp Glu Thr Lys Leu Leu Val Tyr Glu Leu Met His Asn1
5 10 15Gly Ser Leu Glu Thr Gln Leu
His Gly Pro Ser Cys Gly Ser Asn Leu 20 25
30Thr Trp His Cys Arg Met Lys Ile Ala Leu Asp Ile Ala Arg
Gly Leu 35 40 45Glu Tyr Leu His
Glu His Cys Lys Pro Ser Val Ile His Arg Asp Leu 50 55
60Lys Ser Ser Asn Ile Leu Leu Asp Ser Lys Phe Asn Ala
Lys Leu Ser65 70 75
80Asp Phe Gly Leu Ala Val Met Asn Gly Ala Asn Thr Lys Asn Ile Lys
85 90 95Leu Ser Gly Thr Leu Gly
Tyr Val Ala Pro Glu Tyr Leu Leu Asn Gly 100
105 110Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe Gly
Val Val Leu Leu 115 120 125Glu Leu
Leu Leu Lys Arg Arg Pro Val Glu Lys Leu Ala Pro Ser Glu 130
135 140Cys Gln Ser Ile Val Thr Trp Ala Met Pro Gln
Leu Thr Asp Arg Thr145 150 155
160Lys Leu Pro Ser Val Ile Asp Pro Val Ile Arg Asp Thr Met Asp Leu
165 170 175Lys His Leu Tyr
Gln Val Ala Ala Val Ala Val Leu Cys Val Gln Pro 180
185 190Glu Pro Gly Tyr Arg Pro Leu Ile Thr Asp Val
Leu His Ser Leu Val 195 200 205Pro
Leu Val Pro Val Glu Leu Gly Gly Thr Leu Arg Val Ala Glu Thr 210
215 220Gly Cys Gly Thr Val Asp Leu225
23088842DNACICHORIUM INTYBUS 88tggatttgga tgcgtttaaa agctcaactc
aatgataact tattagttgc ggtcaaacga 60ctagacaata aaagtcaaaa ttccatcaaa
gaattccaga cggaagtgaa tattttgagt 120aaaattcaac atccaaatat aattagtttg
ttgggatatt gcgatcatga tgaaagcaag 180ctacttgttt acgaattgat gcaaaatggt
tctttagaaa ctcagttaca tgggccttct 240tgtggatcca atttaacatg gtattgccgg
atgaaaattg ccctagatat agcaagagga 300ttggaatatt tacatgaaca ctccaaacca
tctgtgattc atagagatct caaatcatct 360aatatacttc ttgattcaaa tttcaatgca
aagctttcgg attttggtct tgcggtgatg 420gaaggtgcaa atagcaaaaa cattaaactt
tcggggacat tgggatacgt agcacccgaa 480tatcttttag atgggaaatt aaccgataaa
agtgacgtgt atgcatttgg agtcgtactt 540tttgagcttt tactcagaag acgacacgtt
gaaaaactag aatcatcaca atcccgccaa 600tctattgtca cttgggcgat gccactacta
atggacagat cgaagcttcc gagtgtgata 660gatcctgtga ttagggatac aatggatctt
aaacatcttt atcaagtggc tgcggtggcg 720gtgttgtgtg ttcaatcgga accgagttac
cgtccgttga taaccgatgt tttacattct 780cttgttcctc ttgtcccggt tgaacttgga
gggacactta gagttgtaga aaagagtgtt 840gt
84289281PRTCICHORIUM INTYBUS 89Trp Ile
Trp Met Arg Leu Lys Ala Gln Leu Asn Asp Asn Leu Leu Val1 5
10 15Ala Val Lys Arg Leu Asp Asn Lys
Ser Gln Asn Ser Ile Lys Glu Phe 20 25
30Gln Thr Glu Val Asn Ile Leu Ser Lys Ile Gln His Pro Asn Ile
Ile 35 40 45Ser Leu Leu Gly Tyr
Cys Asp His Asp Glu Ser Lys Leu Leu Val Tyr 50 55
60Glu Leu Met Gln Asn Gly Ser Leu Glu Thr Gln Leu His Gly
Pro Ser65 70 75 80Cys
Gly Ser Asn Leu Thr Trp Tyr Cys Arg Met Lys Ile Ala Leu Asp
85 90 95Ile Ala Arg Gly Leu Glu Tyr
Leu His Glu His Ser Lys Pro Ser Val 100 105
110Ile His Arg Asp Leu Lys Ser Ser Asn Ile Leu Leu Asp Ser
Asn Phe 115 120 125Asn Ala Lys Leu
Ser Asp Phe Gly Leu Ala Val Met Glu Gly Ala Asn 130
135 140Ser Lys Asn Ile Lys Leu Ser Gly Thr Leu Gly Tyr
Val Ala Pro Glu145 150 155
160Tyr Leu Leu Asp Gly Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe
165 170 175Gly Val Val Leu Phe
Glu Leu Leu Leu Arg Arg Arg His Val Glu Lys 180
185 190Leu Glu Ser Ser Gln Ser Arg Gln Ser Ile Val Thr
Trp Ala Met Pro 195 200 205Leu Leu
Met Asp Arg Ser Lys Leu Pro Ser Val Ile Asp Pro Val Ile 210
215 220Arg Asp Thr Met Asp Leu Lys His Leu Tyr Gln
Val Ala Ala Val Ala225 230 235
240Val Leu Cys Val Gln Ser Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp
245 250 255Val Leu His Ser
Leu Val Pro Leu Val Pro Val Glu Leu Gly Gly Thr 260
265 270Leu Arg Val Val Glu Lys Ser Val Val
275 28090495DNACUCUMIS MELO 90attcttttag atgcaaactt
caatgccaag ctttctgatt ttggcttgtc tgtcattgtt 60ggagcacaaa acaagaatga
tataaagctt tccggaacga tgggttatgt tgctcctgaa 120tatcttttag atggtaaatt
gactgataaa agtgatgtct atgcttttgg agttgtgctt 180ttggagcttc ttttaggaag
aaggcctgtt gaaaaactgg caccatctca atgtcaatcc 240attgtcacat gggctatgcc
tcaactcact gatagatcaa agttacccga tatcgttgat 300ccggtgatca gacacacaat
ggaccctaaa catttatttc aggttgctgc tgtcgccgtg 360ctgtgtgtgc aaccagaacc
gagctatcgt cccctaataa cagatctttt gcactctctt 420attcctcttg ttcctgttga
gctaggaggt actcacagat catcaacatc acaagctcct 480gtggctccag cttag
49591164PRTCUCUMIS MELO
91Ile Leu Leu Asp Ala Asn Phe Asn Ala Lys Leu Ser Asp Phe Gly Leu1
5 10 15Ser Val Ile Val Gly Ala
Gln Asn Lys Asn Asp Ile Lys Leu Ser Gly 20 25
30Thr Met Gly Tyr Val Ala Pro Glu Tyr Leu Leu Asp Gly
Lys Leu Thr 35 40 45Asp Lys Ser
Asp Val Tyr Ala Phe Gly Val Val Leu Leu Glu Leu Leu 50
55 60Leu Gly Arg Arg Pro Val Glu Lys Leu Ala Pro Ser
Gln Cys Gln Ser65 70 75
80Ile Val Thr Trp Ala Met Pro Gln Leu Thr Asp Arg Ser Lys Leu Pro
85 90 95Asp Ile Val Asp Pro Val
Ile Arg His Thr Met Asp Pro Lys His Leu 100
105 110Phe Gln Val Ala Ala Val Ala Val Leu Cys Val Gln
Pro Glu Pro Ser 115 120 125Tyr Arg
Pro Leu Ile Thr Asp Leu Leu His Ser Leu Ile Pro Leu Val 130
135 140Pro Val Glu Leu Gly Gly Thr His Arg Ser Ser
Thr Ser Gln Ala Pro145 150 155
160Val Ala Pro Ala92375DNAERAGROSTIS CURVULA 92gatgggaagc tcaccgagaa
aagcgacgtg tacgcgtttg gcatagtgct tcttgagctg 60ctaatgggaa ggaagcctgt
tgagaagttg agtcaatctc agtgccaatc aattgtgact 120tgggccatgc cccaactgac
agacagatca aaacttccca acataattga cccagtgatc 180agggacacaa tggatccaaa
gcacttgtat caggttgcag cagtggctgt tctatgcgtg 240caaccagaac cgagttacag
accactgata acggatgttc tccactcttt agttcctcta 300gtgcctgtgg agcttggtgg
gacactaagg gttgcagagc caccgtcccc aaaccaaaat 360cattctcctc gttga
37593124PRTERAGROSTIS
CURVULA 93Asp Gly Lys Leu Thr Glu Lys Ser Asp Val Tyr Ala Phe Gly Ile
Val1 5 10 15Leu Leu Glu
Leu Leu Met Gly Arg Lys Pro Val Glu Lys Leu Ser Gln 20
25 30Ser Gln Cys Gln Ser Ile Val Thr Trp Ala
Met Pro Gln Leu Thr Asp 35 40
45Arg Ser Lys Leu Pro Asn Ile Ile Asp Pro Val Ile Arg Asp Thr Met 50
55 60Asp Pro Lys His Leu Tyr Gln Val Ala
Ala Val Ala Val Leu Cys Val65 70 75
80Gln Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu
His Ser 85 90 95Leu Val
Pro Leu Val Pro Val Glu Leu Gly Gly Thr Leu Arg Val Ala 100
105 110Glu Pro Pro Ser Pro Asn Gln Asn His
Ser Pro Arg 115 12094414DNAGERBERA HYBRID
94ggggttcatg gcaagaacaa tataaaactt tcaggaactt taggatatgt cgcgccggaa
60taccttttag atggtaaact tactgataaa agtgacgttt atgcgtttgg agttgtgctt
120ctcgagcttt tgataggacg aaaacccgtg gagaaaatgt caccatttca atgccaattt
180atcgttacat gggcaatgcc tcagctaacg gacagatcga agcttcctaa tcttgtggat
240cctgtgatta gagatactat ggacttgaag cccttatatc aagttgcggc tgtaactgtg
300ttatgtgtac aacccgaacc aagttaccgc ccattaataa cggatgtttt gcattcgttc
360atcccacttg tacctgctga tcttggaggg tcgttaaaag ttgtcgactt ttaa
41495137PRTGERBERA HYBRID 95Gly Val His Gly Lys Asn Asn Ile Lys Leu Ser
Gly Thr Leu Gly Tyr1 5 10
15Val Ala Pro Glu Tyr Leu Leu Asp Gly Lys Leu Thr Asp Lys Ser Asp
20 25 30Val Tyr Ala Phe Gly Val Val
Leu Leu Glu Leu Leu Ile Gly Arg Lys 35 40
45Pro Val Glu Lys Met Ser Pro Phe Gln Cys Gln Phe Ile Val Thr
Trp 50 55 60Ala Met Pro Gln Leu Thr
Asp Arg Ser Lys Leu Pro Asn Leu Val Asp65 70
75 80Pro Val Ile Arg Asp Thr Met Asp Leu Lys Pro
Leu Tyr Gln Val Ala 85 90
95Ala Val Thr Val Leu Cys Val Gln Pro Glu Pro Ser Tyr Arg Pro Leu
100 105 110Ile Thr Asp Val Leu His
Ser Phe Ile Pro Leu Val Pro Ala Asp Leu 115 120
125Gly Gly Ser Leu Lys Val Val Asp Phe 130
13596498DNAHELIANTHUS PARADOXUS 96atcgtgttcc attttggttg ttgtctaaag
ctttcagatt ttggtcttgc tgtaatggat 60ggagcccaga acaaaaacaa catcaagctt
tcagggacat tgggttatgt agctccagag 120tatcttttag atggaaaact gaccgacaaa
agtgatgtat atgcatttgg agttgtactt 180ttagagcttc tacttggaag acggcctgta
gaaaaactgg ccgcatctca atgccaatct 240atcgtcactt gggccatgcc acagctaaca
gacagatcaa agctcccaaa tattgtcgat 300cctgtaatca gatatacgat ggatctcaaa
cacttgtacc aagttgctgc cgtggcagtg 360ctgtgtgtgc aaccagagcc aagttaccgg
ccattaataa ccgatgtttt gcattctctt 420atccctcttg ttccggtgga gctcggggga
actctaaaag ctccacaaac aaggtcttcg 480gtaacaaatg acccgtga
49897165PRTHELIANTHUS PARADOXUS 97Ile
Val Phe His Phe Gly Cys Cys Leu Lys Leu Ser Asp Phe Gly Leu1
5 10 15Ala Val Met Asp Gly Ala Gln
Asn Lys Asn Asn Ile Lys Leu Ser Gly 20 25
30Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu Leu Asp Gly Lys
Leu Thr 35 40 45Asp Lys Ser Asp
Val Tyr Ala Phe Gly Val Val Leu Leu Glu Leu Leu 50 55
60Leu Gly Arg Arg Pro Val Glu Lys Leu Ala Ala Ser Gln
Cys Gln Ser65 70 75
80Ile Val Thr Trp Ala Met Pro Gln Leu Thr Asp Arg Ser Lys Leu Pro
85 90 95Asn Ile Val Asp Pro Val
Ile Arg Tyr Thr Met Asp Leu Lys His Leu 100
105 110Tyr Gln Val Ala Ala Val Ala Val Leu Cys Val Gln
Pro Glu Pro Ser 115 120 125Tyr Arg
Pro Leu Ile Thr Asp Val Leu His Ser Leu Ile Pro Leu Val 130
135 140Pro Val Glu Leu Gly Gly Thr Leu Lys Ala Pro
Gln Thr Arg Ser Ser145 150 155
160Val Thr Asn Asp Pro 16598612DNAIPOMOEA NIL
98cgtggatcaa ctttaagttg gcctctccga atgaaaattg ctttggatat tgcaagagga
60ttagaatacc ttcacgagcg ttgcaacccc cctgtgatcc ataggcatct caaatcgtct
120aatattcttc ttgattccag cttcaacgca aagatttctg attttggcct ttctgtaact
180ggcggaaacc taagcaagaa cataaccaag atttcgggat cactgggtta tcttgctcca
240gagtatctct tagacggtaa actaactgat aagagtgatg tgtatggttt tggcattatt
300cttctagagc ttttgatggg taaaaggcca gtggagaaag tgggagaaac taagtgccaa
360tcaatagtta catgggctat gccccagctt acggaccgat caaagcttcc gaatattgtt
420gaccctacga tcaggaacac aatggatgtt aagcatttat atcaggttgc ggctgtagct
480gtgttatgtg tgcaaccgga gccaagctat aggccattga taactgatgt actacactcc
540ttcattccac ttgtaccaaa tgaactcggg gggtcgctta gggtagtgga ttctactccc
600cattgctcat ag
61299203PRTIPOMOEA NIL 99Arg Gly Ser Thr Leu Ser Trp Pro Leu Arg Met Lys
Ile Ala Leu Asp1 5 10
15Ile Ala Arg Gly Leu Glu Tyr Leu His Glu Arg Cys Asn Pro Pro Val
20 25 30Ile His Arg His Leu Lys Ser
Ser Asn Ile Leu Leu Asp Ser Ser Phe 35 40
45Asn Ala Lys Ile Ser Asp Phe Gly Leu Ser Val Thr Gly Gly Asn
Leu 50 55 60Ser Lys Asn Ile Thr Lys
Ile Ser Gly Ser Leu Gly Tyr Leu Ala Pro65 70
75 80Glu Tyr Leu Leu Asp Gly Lys Leu Thr Asp Lys
Ser Asp Val Tyr Gly 85 90
95Phe Gly Ile Ile Leu Leu Glu Leu Leu Met Gly Lys Arg Pro Val Glu
100 105 110Lys Val Gly Glu Thr Lys
Cys Gln Ser Ile Val Thr Trp Ala Met Pro 115 120
125Gln Leu Thr Asp Arg Ser Lys Leu Pro Asn Ile Val Asp Pro
Thr Ile 130 135 140Arg Asn Thr Met Asp
Val Lys His Leu Tyr Gln Val Ala Ala Val Ala145 150
155 160Val Leu Cys Val Gln Pro Glu Pro Ser Tyr
Arg Pro Leu Ile Thr Asp 165 170
175Val Leu His Ser Phe Ile Pro Leu Val Pro Asn Glu Leu Gly Gly Ser
180 185 190Leu Arg Val Val Asp
Ser Thr Pro His Cys Ser 195 200100708DNANUPHAR
ADVENA 100ttagataatg gcggacccga ttgtcaacga gaattcgaga atgaggttga
tttgatgagt 60agaattaggc atccaaatgt ggtttcttta ttgggttatt gcattcatgg
agaaaccagg 120cttcttgtct atgaaatgat gcaaaacggg acgttggaat cgctattgca
tggaccatca 180catggatcct cactaacttg gcacattcgt atgaagatcg ccctcgacac
agcaagaggc 240ctcgagtatc tgcatgaaca ctgcgacccc tctgtgatcc accgtgacct
gaagccttct 300aacattcttt tggattccaa ctacaattcc aagctctcag actttggtct
tgcagtcact 360gttggaagcc agaatcaaac caacattaag attctaggga cactgggtta
ccttgcacca 420gagtacgttt tgaatggcaa attgacagag aaaagtgatg tgtttgcttt
tggagttgtc 480ctgttggagc ttctcatggg caagaaacca gtggagaaga tggcatcccc
tccatgccaa 540tccattgtca catgggcgat gcctcatctt actgacagaa ttaagcttcc
aaatatcatt 600gatcctgtta ttagaaacac catggatctg aaacacttgt accaggttgc
agctgttgct 660gttctctgcg tacaaccaga gccccagtta tcgtcctctg ataactga
708101235PRTNUPHAR ADVENA 101Leu Asp Asn Gly Gly Pro Asp Cys
Gln Arg Glu Phe Glu Asn Glu Val1 5 10
15Asp Leu Met Ser Arg Ile Arg His Pro Asn Val Val Ser Leu
Leu Gly 20 25 30Tyr Cys Ile
His Gly Glu Thr Arg Leu Leu Val Tyr Glu Met Met Gln 35
40 45Asn Gly Thr Leu Glu Ser Leu Leu His Gly Pro
Ser His Gly Ser Ser 50 55 60Leu Thr
Trp His Ile Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly65
70 75 80Leu Glu Tyr Leu His Glu His
Cys Asp Pro Ser Val Ile His Arg Asp 85 90
95Leu Lys Pro Ser Asn Ile Leu Leu Asp Ser Asn Tyr Asn
Ser Lys Leu 100 105 110Ser Asp
Phe Gly Leu Ala Val Thr Val Gly Ser Gln Asn Gln Thr Asn 115
120 125Ile Lys Ile Leu Gly Thr Leu Gly Tyr Leu
Ala Pro Glu Tyr Val Leu 130 135 140Asn
Gly Lys Leu Thr Glu Lys Ser Asp Val Phe Ala Phe Gly Val Val145
150 155 160Leu Leu Glu Leu Leu Met
Gly Lys Lys Pro Val Glu Lys Met Ala Ser 165
170 175Pro Pro Cys Gln Ser Ile Val Thr Trp Ala Met Pro
His Leu Thr Asp 180 185 190Arg
Ile Lys Leu Pro Asn Ile Ile Asp Pro Val Ile Arg Asn Thr Met 195
200 205Asp Leu Lys His Leu Tyr Gln Val Ala
Ala Val Ala Val Leu Cys Val 210 215
220Gln Pro Glu Pro Gln Leu Ser Ser Ser Asp Asn225 230
23510230DNAARTIFICIAL SEQUENCESynthetic Primer 102tcggctcggc
ccagaacaag atcgcaagac
3010334DNAARTIFICIAL SEQUENCESynthetic Primer 103ctacattctc tcctcgtatt
attcctcgtt gact 3410432DNAARTIFICIAL
SEQUENCESynthetic Primer 104actttcagat gagtggatca taaccctata ca
3210531DNAARTIFICIAL SEQUENCESynthetic Primer
105agatacaatg gatctcaaac acttatacca g
3110642DNAARTIFICIAL SEQUENCESynthetic Primer 106aaaggatcca tgggaagtgg
tgaagaagat agatttgatg ct 4210740DNAARTIFICIAL
SEQUENCESynthetic Primer 107tttctgcagt ctgtgaatca tcttgttaac cggagagtcc
4010830DNAARTIFICIAL SEQUENCESynthetic Primer
108tctgagtttt aatcgagcca agtcgtctca
3010953DNAARTIFICIAL SEQUENCESynthetic Primer 109tatcccggga aaatgagaga
gcttcttctt cttcttcttc ttcattttca gtc 5311038DNAARTIFICIAL
SEQUENCESynthetic Primer 110tttggatcct gtgaatcatc ttgttaaccg gagagtcc
3811141DNAARTIFICIAL SEQUENCESynthetic Primer
111atacccgggt ctgtgtcagg aatccaaatg ggaagtggtg a
4111241DNAARTIFICIAL SEQUENCESynthetic Primer 112aaaggatcct ctgtgtcagg
aatccaaatg ggaagtggtg a 4111339DNAARTIFICIAL
SEQUENCESynthetic Primer 113aaatctagac tgtgaatcat cttgttaacc ggagagtcc
3911435DNAARTIFICIAL SEQUENCESynthetic Primer
114atagagctcg caagaaccaa tctccaaaat ccatc
3511537DNAARTIFICIAL SEQUENCESynthetic Primer 115atagagctcg agggtcttga
tatcgaaaaa ttgcacg 3711637DNAARTIFICIAL
SEQUENCESynthetic Primer 116ataggatcct cgcaagaacc aatctccaaa atccatc
3711740DNAARTIFICIAL SEQUENCESynthetic Primer
117atatctagac tcgagggtct tgatatcgaa aaattgcacg
4011852DNAARTIFICIAL SEQUENCESynthetic Primer 118atatctagaa aatgagagag
cttcttcttc ttcttcttct tcattttcag tc 5211947DNAARTIFICIAL
SEQUENCESynthetic Primer 119ataggatcct gttaaaagcg atttataatt tacaccgttt
tggtgta 4712041DNAARTIFICIAL SEQUENCESynthetic Primer
120atacccggga aaagtttttg atgaaattca atctaaagac t
411211309DNAARABIDOPSIS THALIANA 121aaaatgagag agcttcttct tcttcttctt
cttcattttc agtctctaat tcttttgatg 60atcttcatca ctgtctctgc ttcttctgct
tcaaatcctt ctttagctcc tgtttactct 120tccatggcta cattctctcc tcgaatccaa
atgggaagtg gtgaagaaga tagatttgat 180gctcataaga aacttctgat tggtctcata
atcagtttct cttctcttgg ccttataatc 240ttgttctgtt ttggcttttg ggtttatcgc
aagaaccaat ctccaaaatc catcaacaac 300tcagattctg agagtgggaa ttcattttcc
ttgttaatga gacgacttgg ctcgattaaa 360actcagagaa gaacttctat ccaaaagggt
tacgtgcaat ttttcgatat caagaccctc 420gagaaagcga caggcggttt taaagaaagt
agtgtaatcg gacaaggcgg tttcggatgc 480gtttacaagg gttgtttgga caataacgtt
aaagcagcgg tcaagaagat cgagaacgtt 540agccaagaag caaaacgaga atttcagaat
gaagttgact tgttgagcaa gatccatcac 600tcgaacgtta tatcattgtt gggctctgca
agcgaaatca actcgagttt catcgtttat 660gagcttatgg agaaaggatc attagatgaa
cagttacatg ggccttctcg tggatcagct 720ctaacatggc acatgcgtat gaagattgct
cttgatacag ctagaggact agagtatctc 780catgagcatt gtcgtccacc agttatccac
agagatttga aatcttcgaa tattcttctt 840gattcttcct tcaacgccaa gatttcagat
ttcggttttg ctgtatcgct ggatgaacat 900ggcaagaaca acattaaact ctctgggaca
cttggttatg ttgccccgga atacctcctt 960gacggaaaac tgacggataa gagtgatgtt
tatgcatttg gggtagttct gcttgaactc 1020ttgttgggta gacgaccagt tgaaaaatta
actccagctc aatgccaatc tcttgtaact 1080tgggcaatgc cacaacttac cgatagatcc
aagcttccaa acattgtgga tgccgttata 1140aaagatacaa tggatctcaa acacttatac
caggtagcag ccatggctgt gttgtgcgtg 1200cagccagaac caagttaccg gccgttgata
accgatgttc ttcactcact tgttccactg 1260gttccggtag agctaggagg gactctccgg
ttaacaagat gattcacag 130912225DNAARTIFICIAL
SEQUENCESynthetic Primer 122tcggacaagg cggtttcgga tgcgt
2512332DNAARTIFICIAL SEQUENCESynthetic Primer
123tagtcctcta gctgtatcaa gagcaatctt ca
3212432DNAARTIFICIAL SEQUENCESynthetic Primer 124tatcattgtt gggctctgca
agtgaaatca ac 3212532DNAARTIFICIAL
SEQUENCESynthetic Primer 125tggagaaagg atccttagat gatcagttac at
3212631DNAARTIFICIAL SEQUENCESynthetic Primer
126tccatgtaac tgatcatcta aggatccttt c
3112737DNAARTIFICIAL SEQUENCESynthetic Primer 127ataaacgacg aaactcgagt
tgatttcact tgcagag 3712828DNAARTIFICIAL
SEQUENCESynthetic Primer 128aaaatgaaga aactggttca tcttcagt
2812927DNAARTIFICIAL SEQUENCESynthetic Primer
129tagacttcta ttctcacatt cttacac
2713027DNAARTIFICIAL SEQUENCESynthetic Primer 130tccaatgatc cattatgcat
cagctca 2713129DNAARTIFICIAL
SEQUENCESynthetic Primer 131tcgttctcaa attctctctc agcatgttg
2913229DNAARTIFICIAL SEQUENCESynthetic Primer
132tccggatatg ccaggtcagc gctgatcca
2913328DNAARTIFICIAL SEQUENCESynthetic Primer 133tccagggatc ccttctccat
gagctcat 2813441DNAARTIFICIAL
SEQUENCESynthetic Primer 134aaagagctct ctgtgtcagg aatccaaatg ggaagtggtg a
4113547DNAARTIFICIAL SEQUENCESynthetic Primer
135atagctagct gttaaaagcg atttataatt tacaccgttt tggtgta
4713643DNAARTIFICIAL SEQUENCESynthetic Primer 136atagctagca gaaaagtttt
tgatgaaatt caatctaaag act 4313729DNAARTIFICIAL
SEQUENCESynthetic Primer 137tctgggttta tcatcatacc aagtatcca
2913831DNAARTIFICIAL SEQUENCESynthetic Primer
138attcagttcc atcaagattg ttggcatgga c
3113931DNAARTIFICIAL SEQUENCESynthetic Primer 139tggagggagg tggccctgag
tgcgagaagg a 3114027DNAARTIFICIAL
SEQUENCESynthetic Primer 140gctggatctg cttggcagga ttcggca
2714131DNAARTIFICIAL SEQUENCESynthetic Primer
141atatctagat gctaggttat agatccatgc a
3114233DNAARTIFICIAL SEQUENCESynthetic Primer 142ataggatcca ccagaactat
atatacgaag gca 3314340DNAARTIFICIAL
SEQUENCESynthetic Primer 143aggacgactt ggctcgatta aaatcacagg tcgtgatatg
4014435DNAARTIFICIAL SEQUENCESynthetic Primer
144taatcgagcc aagtcgtcct acatatatat tccta
3514535DNAARTIFICIAL SEQUENCESynthetic Primer 145taatcgagcc aagtcgtcct
ctcttttgta ttcca 3514642DNAARTIFICIAL
SEQUENCESynthetic Primer 146aggacgactt ggctcgatta aaatcaaaga gaatcaatga
tc 4214721DNAARTIFICIAL SEQUENCESynthesized gene
fragment 147gacgacttgg ctcgattaaa a
21148399DNAARABIDOPSIS THALIANA 148tgctaggtta tagatccatg
caaatatgga gtagatgtac aaacacacgc tcggacgcat 60attacacatg ttcatacact
taatactcgc tgttttgaat tgatgtttta ggaatatata 120tgtagagaga gcttccttga
gtccattcac aggtcgtgat atgattcaat tagcttccga 180ctcattcatc caaataccga
gtcgccaaaa ttcaaactag actcgttaaa tgaatgaatg 240atgcggtaga caaattggat
cattgattct ctttgattgg actgaaggga gctccctctc 300tcttttgtat tccaattttc
ttgattaatc tttcctgcac aaaaacatgc ttgatccact 360aagtgacata tatgctgcct
tcgtatatat agttctggt 399149399DNAARTIFICIAL
SEQUENCEArtificial microRNA construct 149tgctaggtta tagatccatg caaatatgga
gtagatgtac aaacacacgc tcggacgcat 60attacacatg ttcatacact taatactcgc
tgttttgaat tgatgtttta ggaatatata 120tgtaggacga cttggctcga ttaaaatcac
aggtcgtgat atgattcaat tagcttccga 180ctcattcatc caaataccga gtcgccaaaa
ttcaaactag actcgttaaa tgaatgaatg 240atgcggtaga caaattggat cattgattct
ctttgatttt aatcgagcca agtcgtcctc 300tcttttgtat tccaattttc ttgattaatc
tttcctgcac aaaaacatgc ttgatccact 360aagtgacata tatgctgcct tcgtatatat
agttctggt 3991501475DNAARABIDOPSIS THALIANA
150cttagccaat ggatgaggat gacacgataa tgataatcaa agatcaacat ggcacgctca
60agaccgcctt tagaagtcct ctctaaattc tttcttccga tctcctaaat atgttttgtt
120ttggtcaaat aaattgatag gtaatactta gtgattatac tatttggttt ttgttttatc
180attgactatt tcacttttat aaatcaaata cttatcaaaa ttgttctttc cgtatgtatt
240catattttct aatattgtaa agatttgttt cacctaacat ctgtacccat ctttgatcat
300tgacaaaata tatattagaa tggccttaga acgtgttagg catcttccta ctattatcat
360attacctaat ccccaatttt attacatttt ttaatttcta aaagagcttg aatataatgt
420catttcgaat atctctgttc atcttttttt ttttctgtgc gacttctgac ccaaagcctt
480cgacgatttt ttccaatctg aaaacttttg aataaggaac ttagtcaatg gtcaacacct
540tgctaattaa acaaagttcc attgatacaa taatgagatt tttgtacatt aacgctttca
600tatagttttt gcgattcaac agataatctt aaaattaagg agtcctattg ataaagtctt
660gttcaaacgt acaaactcaa tccacacaaa accttcataa aatacgatat aggaaataaa
720gattgttttt gcgtgagaaa atactatatg aactcaaaag attttaaaac aatttgtatt
780aatacataaa caattgttgt gatacacccg tgtaaaattt taagattgtt tttttctgaa
840attcttcaag gaaacttata gcttaaaatc tacacttcaa atactctgtt ttaaaggcat
900taaaaataac tgcgtttcag aaaaatattg aaattttagc tgatcttttg ctacaaattt
960aaggaatctt ggcacctgca gaatctataa catgttcatt aagtaatgca atagttatac
1020aattatacat tatttgcatc atacttatat tatagtgata ttaacaaacc catgttctca
1080gcacactttt acgtagaaaa acataaaaac ccaaatagga agaagccact cataaggata
1140atgggtttat ataattcaca gcaaagaaag ccatcgaact attcgattaa ttatccattc
1200tttttttttt tagtttgaat gtataagaac aaagagttgt tacgcatcat gacaatgtct
1260tagaaaacaa aagaaatgaa taaaaaagta aaacgaaaaa taaaaagtga ggatgaagtt
1320gttgaatgag ttggcgaggc ggcgactttt tcatacattc catttactta attcctaaag
1380tccttctcac atctctttgt tatataatga caccataacc atttcttctc ttcacaatct
1440ttacaagaat atctctcttc tacagtaaac aaaaa
147515131DNAARTIFICIAL SEQUENCESynthetic Primer 151acgtaagctt cttagccaat
ggatgaggat g 3115231DNAARTIFICIAL
SEQUENCESynthetic Primer 152acgttctaga tttttgttta ctgtagaaga g
31153338DNABRASSICA NAPUS 153tgctgcttca
aatccttcta tagctcctgt ttataccacc atgactactt tctctccagg 60aattcaaatg
ggaagtggtg aagaacacag attagatgca cataagaaac tcctgattgg 120tcttataatc
agttcctctt ctcttggtat cgtaatcttg atttgctttg gcttctggat 180gtactgtcgc
aagaaagctc ccaaacccat caagattccg gatgctgaga gtgggacttc 240atcattttca
atgtttgtga ggcggctaag ctcaatcaaa actcagagaa catctagcaa 300tcagggttat
gtgcagcgtt tcgattccaa gacgctag
33815438DNAARTIFICIAL SEQUENCESynthetic Primer 154tatggatcct gctgcttcaa
atccttctat agctcctg 3815537DNAARTIFICIAL
SEQUENCESynthetic Primer 155tattctagac tagcgtcttg gaatcgaaac gctgcac
3715638DNAARTIFICIAL SEQUENCESynthetic Primer
156tatgagctct gctgcttcaa atccttctat agctcctg
3815737DNAARTIFICIAL SEQUENCESynthetic Primer 157tatgagctcc tagcgtcttg
gaatcgaaac gctgcac 3715824DNAARTIFICIAL
SEQUENCESynthetic Primer 158gcagatcgct cctcccgtcg tgat
2415928DNAARTIFICIAL SEQUENCESynthetic Primer
159cgcctaggag cgacgggtac tcgatcat
2816028DNAARTIFICIAL SEQUENCESynthetic Primer 160cctagctaag cgacgggtac
tcgatcat 28161272DNABRACHYPODIUM
DISTACHYON 161gctcctcccg tcgtgatcac agtggtgagg caccaccatt accaccggga
gctggtcatc 60tccgctgtcc tcgcctgcgt cgccaccgcc atgatcctcc tctccacact
ctacgcctgg 120acgatgtggc ggcggtctcg ccggaccccc cacggcggca agggccgcgg
ccggagatca 180gggatcacac tggtgccaat cctgagcaag ttcaattcag tgaagatgag
caggaagggg 240ggccttgtga cgatgatcga gtacccgtcg ct
27216231DNAARTIFICIAL SEQUENCESynthetic Primer 162cgggatcccg
gcataacaaa ctcgtgcatc c
3116330DNAARTIFICIAL SEQUENCESynthetic Primer 163ccatcgatgg cgccaaacac
aatagctcaa 301641174DNABRACHYPODIUM
DISTACHYON 164gtaagtaatt tcaagtttaa gtttcataag cataacaaac tcgtgcatcc
aatttgaacc 60attttactgt cctggcatcc tctaaatatt tccttgatta tcagcttatc
ttcatcccat 120tgaatcagaa aattaccaac ccttgtttta gctttaatca ttgttatttg
ttgtctgagg 180ggctacactg tttctttata ttggtgaagg agttaccagg caaaaattcc
cacctcctga 240tattagcaga gacccccttt tttgtgcctg tatgcatact aacaaataat
acagatggaa 300atatgtatat ttgttatatc atggattgat gctttatgtt tagcaagtcc
atgcaatggt 360agtcaaaaga tgtaaacttt tgaatgatat attggggctt tagattagcc
atttttaccc 420tcacttgaaa atgacaattt tgcccttccg atctactttc tcttgtcacc
tcaggcaggc 480tcttgaaagt tcttatccct gaattccgtg gaagtttatt attctaatgt
tatagtttac 540ttaaagtgtc gcataatcta ctagagccta atggaagtac tgatggactt
tgttttgcta 600caatcactgc ttgcaagaat gactactttg gggcatttct aatatattat
tgatatttct 660atgatgtatt gttgtccatg tacttcagtc cttacagcga ctagtcctat
ttctgcattg 720ataaattgtt cactgtcaga ccatcttgag tggcaagaat gagtataaca
tgtcttgttt 780ttctgtgatt tcaaggtaag cgcacatgcg cacagtgtac accgtcacca
catgtgagta 840caccccctag tacacatgta aaaaaagcac agtccagtta ttaaatggac
cattggcatt 900gattgtcgtg tttataggag taaagataca tgtaaacact aattcattgg
gagatataaa 960tttatactac cattgaatgt gacataggct ctaaggtttt tagttcagca
tttcgaaaga 1020gctttgtttg gttggcttgg gatggaatca ggtgacaaca tttttgggtt
gcagcaaatt 1080taatattgat tgaggaggca tacaacgaaa tcattgagct attgtgtttg
gcgttacatc 1140tatggaattt cttctaatct gattattgtt tgta
117416522DNAARTIFICIAL SEQUENCESynthetic Primer 165gatccgctcc
tcccgtcgtg at
2216630DNAARTIFICIAL SEQUENCESynthetic Primer 166aacgcgatcg cttgcatgcc
tgcagtagac 3016728DNAARTIFICIAL
SEQUENCESynthetic Primer 167gacttaatta agaattcgag ctcgggta
28168251DNAPANICUM VIRGATUM 168tcgtagtgca
ccaccatttc caccgcgagc tggtcatcgc cgccgtcctc gcctgcatcg 60ccaccgtcac
gatcttcctt tccacgctct acgcttggac actatggcgg cgatctcgcc 120ggagcaccgg
cggcaaggtc accaggagct cagacgcagc gaaggggatc aagctggtgc 180cgatcttgag
caggttcaac tcggtgaaga tgagcaggaa gaggctggtt gggatgttcg 240agtacccgtc g
25116927DNAARTIFICIAL SEQUENCESynthetic Primer 169gcagatctcg tagtgcacca
ccatttc 2717027DNAARTIFICIAL
SEQUENCESynthetic Primer 170cgcctaggcg acgggtactc gaacatc
2717127DNAARTIFICIAL SEQUENCESynthetic Primer
171cctagctacg acgggtactc gaacatc
2717225DNAARTIFICIAL SEQUENCESynthetic Primer 172gatcctcgta gtgcaccacc
atttc 2517321DNAARTIFICIAL
SEQUENCESynthetic Primer 173ctcgtagtgc accaccattt c
21174261DNASORGHUM BICOLOR 174aatgggaccg
cctccgttgc tccggcggtg ccggcgccgc ctcccgtcgt gatcatcgtg 60gagcggcgcc
atcatttcca ccgcgagcta gtcatcgcct ccgttctcgc ctccatcgcc 120atcgtcgcga
ttatcctctc cacgctctat gcgtggatcc tgtggcggcg gtctcgccgg 180ctgcccagcg
gcaagggcgc caggagcgca gacaccgcga ggggaatcat gctggtgccg 240atcctgagca
agttccactc a
26117526DNAARTIFICIAL SEQUENCESynthetic Primer 175gcagatcaat gggaccgcct
ccgttg 2617628DNAARTIFICIAL
SEQUENCESynthetic Primer 176cgcctaggtg agtggaactt gctcagga
2817728DNAARTIFICIAL SEQUENCESynthetic Primer
177cctagctatg agtggaactt gctcagga
28178273DNASORGHUM BICOLOR 178gtaagtattc ttgcaacaca ttactatttt caataaccac
aagtttaaaa gcttgagtcc 60atttcgcaaa ccagttgttc ataaccaaat tcttaggtaa
ttaggtccaa ttgagaaaat 120ctgatcattg aacactagca ggaaataact cagacatagt
ttctgcatac tataatgatg 180cttaatatat ttgttctctt ttgagattgt attgcataga
catttctgtg taaaataatg 240ttttacatca tgtatatata tcacttttta tag
27317930DNAARTIFICIAL SEQUENCESynthetic Primer
179cgggatcctt cttgcaacac attactattt
3018034DNAARTIFICIAL SEQUENCESynthetic Primer 180ccatcgatga aatgtctatg
caatacaatc tcaa 3418124DNAARTIFICIAL
SEQUENCESynthetic Primer 181gatccaatgg gaccgcctcc gttg
2418221DNAARTIFICIAL SEQUENCESynthetic Primer
182caatgggacc gcctccgttg a
211831000DNASORGHUM BICOLOR 183ggccccggcc gcgcgcgtct ccgtgtcctc
cgcgactgtg cacgtttcgt cgggagcggc 60gtgcccacgc ccaccccccg tccaccagcc
agcaaccgac ggcactggtg acacgcggct 120ggtccgctcg gtccgccccg cggctccaga
tcacggcaag cgcgcccgcc gcccgctgct 180gcgctgcgct gcacgtcccg ccctgacgcc
acgccacgcc aagcgcgaca cgacacgaca 240cgacacgacc cgacccccgc caacgaaacg
ccgaaacgcg gcaacgcgtg acgggcgcgc 300atggtcgatg ctctacccgc gcgtccgccc
cacgccaatc tcccggcggg tccctcgtgg 360gacggggaac gcgatgcggc tgcaggctgc
gaccgcgacc gcgaccgcga ccgcgcccac 420gtgaaggcag gcaggcagcc ccggagcggg
cgcggcggtg ggccaacgac gcgttgccgt 480cgcgaatctt cttctggcca cggccaaggg
ccaatcgccc gctccgctcc gctccgcact 540ccgcctccgc tagggaatat ggaacccgat
cccacggccc tctgggtctg gtcgacgggt 600cctctcgccg tggcagctgc ttcccggacc
ggaggatcgc tgagcgcgga cgccactgcc 660attgccgtcc gactatagtt gttaattacc
ataaaataat ttgttaacga taaaacccgt 720gtcaggcacc gtcgtctgga cgctgctatg
ggataaccat tcgcgtacgt cggttgtatg 780ggtgggatcc tctgcggcac gccattctgg
tgctgctagt ggaatagaca aaaaaagggc 840cgacggtgtt tgctcgtggc aggccacaca
gagtgacaac cagagtggtt gccgcaaaaa 900caaccaatca cacaaaaagt gttgtaccgg
tggaggacag ccattaatca gcaggccggc 960ttcgcggcca aaagaaacgg agaagaggaa
aaaggggggc 100018428DNAARTIFICIAL
SEQUENCESynthetic Primer 184tcccaagctt gcgcgtctcc gtgtcctc
2818530DNAARTIFICIAL SEQUENCESynthetic Primer
185agtaaagctt cccccttttt cctcttctcc
301861000DNASORGHUM BICOLOR 186taatggtcga gtgaggcccg tatagatgta
gttaaatagc taaaattttt ggagaaataa 60gcattttttt ggaagaatat atttaaacat
gggcttgtaa aacttggctg taaagatttg 120gaatttagga tcttggagcc ccaaaactgt
ataaacttgc ttagggaccc gtgtcttgtg 180tgttgcagac caaaaaattt agaaagcatc
taaacaccta tttgaatgta aagtttacag 240ccaaaagttt taggatgtaa agatttggga
tctaaaagta gtcattagga aataacacgt 300tagagagaga gagtagatct tcttattggt
ttctcatgca ctaatcgaac caatcactgg 360accacttgaa ccaaacttta tcacattgaa
ctttgtcagt tcagttcgaa cgcaggactg 420gagctgccct taaggccaat tgctcaagat
tcattcaaca attgaaacat ctcccatgat 480taaatcagta taaggttgct atggtcttgc
ttgacaaagt tttttttttg agggaatttc 540aactaaattt ttgagtgaaa ctatcaaata
ctgattttaa aaatttttta taaaaggaag 600cgcagagata aaaggccatc tatgctacaa
aagtacccaa aaatgtaatc ctaaagtatg 660aattgcattt tttttgtttg gacgaaagga
aaggagtatt accacaagaa tgatatcatc 720ttcatattta gatctttttt gggtaaagct
tgagattctc taaatataga gaaatcagaa 780gaaaaaaaaa ccgtgttttg gtggttttga
tttctagcct ccacaataac tttgacggcg 840tcgacaagtc taacggacac caagcagcga
accaccagcg ccgagccaag cgaagcagac 900ggccgagacg ttgacacctt cggcgcggca
tctctcgaga gttccgctcc ggcgctccac 960ctccaccgct ggcggtttct tattccgttc
cgttccgcct 100018726DNAARTIFICIAL
SEQUENCESynthetic Primer 187aactgcaggg tcgagtgagg cccgta
2618828DNAARTIFICIAL SEQUENCESynthetic Primer
188ttctgcaggg aacggaacgg aataagaa
28189239DNASORGHUM BICOLOR 189gccgtgggtc gtttaagctg ccgctgtacc tgtgtcgtct
ggtgccttct ggtgtacctg 60ggaggttgtc gtctatcaag tatctgtggt tggtgtcatg
agtcagtgag tcccaatact 120gttcgtgtcc tgtgtgcatt atacccaaaa ctgttatggg
caaatcatga ataagcttga 180tgttcgaact taaaagtctc tgctcaatat ggtattatgg
ttgtttttgt tcgtctcct 23919027DNAARTIFICIAL SEQUENCESynthetic Primer
190taggtaccgc cgtgggtcgt ttaagct
2719127DNAARTIFICIAL SEQUENCESynthetic Primer 191aaggtaccag gagacgaaca
aaaacaa 2719234DNAARTIFICIAL
SEQUENCESynthetic Primer 192aacgcgatcg taatggtcga gtgaggcccg tata
341931302DNABRASSICA NAPUS 193atgaagaaac
tggttcatct tcagtttctg tttcttgtca agatctttgc tactcaattc 60ctcactcctt
cttcatcatc ttttgctgct tcaaatcctt ctatagctcc tgtttatacc 120accatgacta
ctttctctcc aggaattcaa atgggaagtg gtgaagaaca cagattagat 180gcacataaga
aactcctgat tggtcttata atcagttcct cttctcttgg tatcgtaatc 240ttgatttgct
ttggcttctg gatgtactgt cgcaagaaag ctcccaaacc catcaagatt 300ccggatgctg
agagtgggac ttcatcattt tcaatgtttg tgaggcggct aagctcaatc 360aaaactcaga
gaacatctag caatcagggt tatgtgcagc gtttcgattc caagacgcta 420gagaaagcga
caggcggttt caaagacagt aatgtaatcg gacagggcgg tttcggatgc 480gtttacaagg
cttctttgga cagcaacact aaagcagcgg ttaaaaagat cgaaaacgtt 540agccaagaag
caaaacgaga atttcagaat gaagttgagc tgttgagcaa gatccagcac 600tccaatatta
tatcattgtt gggctctgca agtgaaatca actcgagttt cgtcgtttat 660gagttgatgg
agaaaggatc cttagatgat cagttacatg gaccttcgtg tggatccgct 720ctaacatggc
atatgcgtat gaagattgct ctagatacag ctagaggatt agagtatctc 780catgaacatt
gtcgtccacc agttatccac agggacctga aatcgtctaa tatacttctt 840gattcttcct
tcaatgccaa gatttcagat tttggtctgg ctgtatcggt tggagtgcat 900gggagtaaca
acattaaact ctctgggaca cttggttatg ttgccccgga atatctccta 960gacggaaagt
tgacggataa gagtgatgtc tatgcatttg gggtggttct tcttgaactt 1020ttgttgggta
gaaggccggt tgagaaattg agtccatctc agtgtcaatc tcttgtgact 1080tgggcaatgc
cacaacttac cgatagatcg aaactcccaa acatcgtgga tccggttata 1140aaagatacaa
tggatcttaa gcacttatac caggtagcag ccatggctgt gttgtgcgtt 1200cagccagaac
cgagttaccg gccgctgata accgatgttc ttcactcact tgttccattg 1260gttccggtcg
aactaggagg gactctccgg ttaacccgat ga
1302194433PRTBRASSICA NAPUS 194Met Lys Lys Leu Val His Leu Gln Phe Leu
Phe Leu Val Lys Ile Phe1 5 10
15Ala Thr Gln Phe Leu Thr Pro Ser Ser Ser Ser Phe Ala Ala Ser Asn
20 25 30Pro Ser Ile Ala Pro Val
Tyr Thr Thr Met Thr Thr Phe Ser Pro Gly 35 40
45Ile Gln Met Gly Ser Gly Glu Glu His Arg Leu Asp Ala His
Lys Lys 50 55 60Leu Leu Ile Gly Leu
Ile Ile Ser Ser Ser Ser Leu Gly Ile Val Ile65 70
75 80Leu Ile Cys Phe Gly Phe Trp Met Tyr Cys
Arg Lys Lys Ala Pro Lys 85 90
95Pro Ile Lys Ile Pro Asp Ala Glu Ser Gly Thr Ser Ser Phe Ser Met
100 105 110Phe Val Arg Arg Leu
Ser Ser Ile Lys Thr Gln Arg Thr Ser Ser Asn 115
120 125Gln Gly Tyr Val Gln Arg Phe Asp Ser Lys Thr Leu
Glu Lys Ala Thr 130 135 140Gly Gly Phe
Lys Asp Ser Asn Val Ile Gly Gln Gly Gly Phe Gly Cys145
150 155 160Val Tyr Lys Ala Ser Leu Asp
Ser Asn Thr Lys Ala Ala Val Lys Lys 165
170 175Ile Glu Asn Val Ser Gln Glu Ala Lys Arg Glu Phe
Gln Asn Glu Val 180 185 190Glu
Leu Leu Ser Lys Ile Gln His Ser Asn Ile Ile Ser Leu Leu Gly 195
200 205Ser Ala Ser Glu Ile Asn Ser Ser Phe
Val Val Tyr Glu Leu Met Glu 210 215
220Lys Gly Ser Leu Asp Asp Gln Leu His Gly Pro Ser Cys Gly Ser Ala225
230 235 240Leu Thr Trp His
Met Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly 245
250 255Leu Glu Tyr Leu His Glu His Cys Arg Pro
Pro Val Ile His Arg Asp 260 265
270Leu Lys Ser Ser Asn Ile Leu Leu Asp Ser Ser Phe Asn Ala Lys Ile
275 280 285Ser Asp Phe Gly Leu Ala Val
Ser Val Gly Val His Gly Ser Asn Asn 290 295
300Ile Lys Leu Ser Gly Thr Leu Gly Tyr Val Ala Pro Glu Tyr Leu
Leu305 310 315 320Asp Gly
Lys Leu Thr Asp Lys Ser Asp Val Tyr Ala Phe Gly Val Val
325 330 335Leu Leu Glu Leu Leu Leu Gly
Arg Arg Pro Val Glu Lys Leu Ser Pro 340 345
350Ser Gln Cys Gln Ser Leu Val Thr Trp Ala Met Pro Gln Leu
Thr Asp 355 360 365Arg Ser Lys Leu
Pro Asn Ile Val Asp Pro Val Ile Lys Asp Thr Met 370
375 380Asp Leu Lys His Leu Tyr Gln Val Ala Ala Met Ala
Val Leu Cys Val385 390 395
400Gln Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr Asp Val Leu His Ser
405 410 415Leu Val Pro Leu Val
Pro Val Glu Leu Gly Gly Thr Leu Arg Leu Thr 420
425 430Arg19531DNAARTIFICIAL SEQUENCESynthetic Primer
195aatccagctc attctggaat tccttctcgc a
3119632DNAARTIFICIAL SEQUENCESynthetic Primer 196tgaacttgct caggattggc
accagtgtga tc 32197461PRTBRACHYPODIUM
DISTACHYON 197Met Glu Ile Pro Ala Ala Pro Pro Pro Pro Leu Pro Val Leu Cys
Ser1 5 10 15Tyr Val Val
Phe Leu Leu Leu Leu Ser Ser Cys Ser Leu Ala Arg Gly 20
25 30Arg Ile Ala Val Ser Ser Pro Gly Pro Ser
Pro Val Ala Ala Ala Val 35 40
45Thr Ala Asn Glu Thr Ala Ser Ser Ser Ser Ser Pro Val Phe Pro Ala 50
55 60Ala Pro Pro Val Val Ile Thr Val Val
Arg His His His Tyr His Arg65 70 75
80Glu Leu Val Ile Ser Ala Val Leu Ala Cys Val Ala Thr Ala
Met Ile 85 90 95Leu Leu
Ser Thr Leu Tyr Ala Trp Thr Met Trp Arg Arg Ser Arg Arg 100
105 110Thr Pro His Gly Gly Lys Gly Arg Gly
Arg Arg Ser Gly Ile Thr Leu 115 120
125Val Pro Ile Leu Ser Lys Phe Asn Ser Val Lys Met Ser Arg Lys Gly
130 135 140Gly Leu Val Thr Met Ile Glu
Tyr Pro Ser Leu Glu Ala Ala Thr Gly145 150
155 160Lys Phe Gly Glu Ser Asn Val Leu Gly Val Gly Gly
Phe Gly Cys Val 165 170
175Tyr Lys Ala Ala Phe Asp Gly Gly Ala Thr Ala Ala Val Lys Arg Leu
180 185 190Glu Gly Gly Gly Pro Asp
Cys Glu Lys Glu Phe Glu Asn Glu Leu Asp 195 200
205Leu Leu Gly Arg Ile Arg His Pro Asn Ile Val Ser Leu Leu
Gly Phe 210 215 220Cys Val His Gly Gly
Asn His Tyr Ile Val Tyr Glu Leu Met Glu Lys225 230
235 240Gly Ser Leu Glu Thr Gln Leu His Gly Ser
Ser His Gly Ser Ala Leu 245 250
255Ser Trp His Val Arg Met Lys Ile Ala Leu Asp Thr Ala Arg Gly Leu
260 265 270Glu Tyr Leu His Glu
His Cys Asn Pro Pro Val Ile His Arg Asp Leu 275
280 285Lys Pro Ser Asn Ile Leu Leu Asp Ser Asp Phe Asn
Ala Lys Ile Ala 290 295 300Asp Phe Gly
Leu Ala Val Thr Gly Gly Asn Leu Asn Lys Gly Asn Leu305
310 315 320Lys Leu Ser Gly Thr Leu Gly
Tyr Val Ala Pro Glu Tyr Leu Leu Asp 325
330 335Gly Lys Leu Thr Glu Lys Ser Asp Val Tyr Ala Phe
Gly Val Val Leu 340 345 350Leu
Glu Leu Leu Met Gly Arg Lys Pro Val Glu Lys Met Ser Pro Ser 355
360 365Gln Cys Gln Ser Ile Val Ser Trp Ala
Met Pro Gln Leu Thr Asp Arg 370 375
380Ser Lys Leu Pro Asn Ile Ile Asp Leu Val Ile Lys Asp Thr Met Asp385
390 395 400Pro Lys His Leu
Tyr Gln Val Ala Ala Val Ala Val Leu Cys Val Gln 405
410 415Pro Glu Pro Ser Tyr Arg Pro Leu Ile Thr
Asp Val Leu His Ser Leu 420 425
430Val Pro Leu Val Pro Ala Glu Leu Gly Gly Thr Leu Arg Val Ala Glu
435 440 445Pro Pro Ser Pro Ser Pro Asp
Gln Arg His Tyr Pro Cys 450 455
46019853DNAARTIFICIAL SEQUENCESynthetic Primer 198tataccggta aaatgagaga
gcttcttctt cttcttcttc ttcattttca gtc 5319939DNAARTIFICIAL
SEQUENCESynthetic Primer 199atataccggt cttgttaacc ggagagtccc tcctagctc
3920018DNAARTIFICIAL SEQUENCESynthetic Primer
200cgctcctccc gtcgtgat
18
User Contributions:
Comment about this patent or add new information about this topic: