Patent application title: Production of Steviol Glycosides in Microorganisms
Inventors:
IPC8 Class: AC12P1956FI
USPC Class:
1 1
Class name:
Publication date: 2020-05-07
Patent application number: 20200140912
Abstract:
Recombinant microorganisms, plants, and plant cells are disclosed that
have been engineered to express novel recombinant genes encoding steviol
biosynthetic enzymes and UDP-glycosyltransferases (UGTs). Such
microorganisms plants, or plant cells can produce steviol or steviol
glycosides, e.g., rubusoside or Rebaudioside A, which can be used as
natural sweeteners in food products and dietary supplements.Claims:
1. A method for producing Rebaudioside D (RebD), Rebaudioside E (RebE),
or a mixture thereof, comprising contacting a precursor steviol glycoside
having a 13-O-glucose, a 19-O-glucose, or both the 13-O-glucose and the
19-O-glucose with a polypeptide capable of beta 1,2 glycosylation of the
C-2' of the 13-O-glucose, 19-O-glucose, or both the 13-O-glucose and the
19-O-glucose of the precursor steviol glycoside and a UDP-glucose in a
reaction mixture under suitable conditions for the transfer of one or
more glucose moiety to the C2' of the 13-O-glucose, 19-O-glucose or both
13-O-glucose and 19-O-glucose in the precursor steviol glycoside; thereby
producing RebD, RebE, or a mixture thereof.
2. The method of claim 1, comprising further contacting the reaction mixture with: (a) a polypeptide capable of glycosylating a precursor steviol glycoside having a C-13 hydroxyl group present in the reaction mixture at its C-13 hydroxyl group; and/or (b) a polypeptide capable of glycosylating a precursor steviol glycoside having a C-19 carboxyl group present in the reaction mixture at its C-19 carboxyl group; and/or (c) a polypeptide capable of beta 1,3 glycosylation of the C3' of the 13-O-glucose, of the 19-O-glucose or both the 13-O-glucose and the 19-O-glucose of the precursor steviol glycoside having a 13-O-glucose, a 19-O-glucose, or both the 13-O-glucose and the 19-O-glucose present in the reaction mixture.
3. The method of claim 1, which is an in vitro method comprising supplying the UDP-glucose or a cell-free system for regeneration of the UDP-glucose.
4. The method of claim 2, which is an in vitro method comprising supplying the one or more UDP-sugars or supplying a cell-free system for regeneration of the one or more UDP-sugars, and wherein the conversion of the precursor steviol glycoside into RebD, RebE, or a mixture thereof requires multiple reactions that can be carried out together or stepwise.
5. The method of claim 1, wherein RebD is produced from Rebaudioside A (RebA) upon transfer of the glucose moiety from the UDP-glucose to the 19-O-glucose of RebA.
6. The method of claim 5, wherein RebA is provided as a plant extract.
7. The method of claim 1, wherein RebE is produced from stevioside upon transfer of the glucose moiety from the UDP-glucose to the 19-O-glucose of stevioside.
8. The method of claim 3, wherein phosphatases are added to the reaction mixture.
9. The method of claim 2, wherein RebD is produced from stevioside, and stevioside is contacted with the polypeptide capable of transferring the glucose moiety to the C-2' of the 19-O-glucose in the precursor steviol glycoside and with the polypeptide capable of beta 1,3 glycosylation of the C3' of the 13-O-glucose in the precursor steviol glycoside.
10. The method of claim 1, wherein the polypeptide capable of transferring the glucose moiety to the C-2' of the 13-O-glucose, 19-O-glucose or both 13-O-glucose and 19-O-glucose in the precursor steviol glycoside is expressed by a recombinant microorganism comprising a gene coding for the polypeptide.
11. The method of claim 2, wherein one or more of the polypeptides are expressed by a recombinant microorganism comprising one or more genes coding for the one or more polypeptides.
12. The method of claim 10, wherein the microorganism belongs to the species Saccharomyces cerevisiae, Escherichia coli, Yarrowia lipolytica, or Pichia pastoris.
13. The method of claim 1, wherein the polypeptide has a higher activity for beta 1,2 glycosylation of the C-2' of the 19-O-glucose of the precursor steviol glycoside as compared to the beta 1,2 glycosylation of the C-2' of the 13-O-glucose of the precursor steviol glycoside.
14. The method of claim 1, wherein the polypeptide capable of beta 1,2 glycosylation of the C-2' of the 13-O-glucose, 19-O-glucose or both 13-O-glucose and 19-O-glucose comprises: (a) a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:5; or (b) a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 76 or 78.
15. The method of claim 2, wherein: (a) the polypeptide capable of glycosylating the precursor steviol glycoside having a C-13 hydroxyl group present in the reaction mixture at its C-13 hydroxyl group is a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 3; and/or (b) the polypeptide capable of glycosylating the precursor steviol glycoside having a C-19 carboxyl group present in the reaction mixture at its C-19 carboxyl group is a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 1; and/or (c) the polypeptide capable of beta 1,3 glycosylation of the C3' of the 13-O-glucose, of the 19-O-glucose or both the 13-O-glucose and the 19-O-glucose of the precursor steviol glycoside is a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 7.
16. A method of producing Rebaudioside D (RebD), Rebaudioside E (RebE), or a composition thereof, comprising growing a recombinant microorganism comprising a recombinant gene encoding a polypeptide capable of beta 1,2 glycosylation of the C-2' of the 13-O-glucose, 19-O-glucose, or both the 13-O-glucose and the 19-O-glucose of the precursor steviol glycoside having a 13-O-glucose, a 19-O-glucose, or both the 13-O-glucose and the 19-O-glucose, in a culture medium comprising a precursor steviol glycoside under conditions in which the gene encoding the polypeptide is expressed and RebD, RebE, or a composition thereof is produced.
17. The method of claim 16, wherein RebA is the precursor steviol glycoside and RebD or a composition thereof is produced.
18. The method of claim 16, wherein the microorganism further comprises a gene encoding a polypeptide capable of beta 1,3 glycosylation of the C3' of the 13-O-glucose, of the 19-O-glucose or both the 13-O-glucose and the 19-O-glucose of the precursor steviol glycoside having a 13-O-glucose, a 19-O-glucose, or both the 13-O-glucose and the 19-O-glucose, wherein the microorganism is grown under conditions wherein the genes coding for the polypeptides are expressed, wherein rubusoside or 1,2-stevioside is the precursor steviol glycoside and RebD is produced.
19. The method of claim 18, wherein the microorganism further comprises a gene encoding a polypeptide capable of glycosylating a precursor steviol glycoside having a C-19 carboxyl group, wherein the microorganism is grown under conditions wherein the genes coding for the polypeptides are expressed, wherein steviol-13-O-glucoside (13-SMG) is the precursor steviol glycoside and RebD is produced.
20. The method of claim 18, wherein the microorganism further comprises a gene encoding a polypeptide capable of glycosylating a precursor steviol glycoside at its C-13-hydroxyl group, wherein the microorganism is grown under conditions wherein the genes coding for the polypeptides are expressed, wherein steviol-19-O-glucoside (19-SMG) is the precursor steviol glycoside and RebD is produced.
21. The method of claim 16, wherein the polypeptide has a higher activity for beta 1,2 glycosylation of the C-2' of the 19-O-glucose of the precursor steviol glycoside as compared to the beta 1,2 glycosylation of the C-2' of the 13-O-glucose of the precursor steviol glycoside.
22. The method of claim 16, wherein the polypeptide capable of beta 1,2 glycosylation of the C-2' of the 13-O-glucose, 19-O-glucose or both 13-O-glucose and 19-O-glucose comprises: (a) a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:5; or (b) a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 76 or 78.
23. The method of claim 18, wherein the polypeptide capable of beta 1,3 glycosylation of the C3' of the 13-O-glucose, of the 19-O-glucose or both the 13-O-glucose and the 19-O-glucose of the precursor steviol glycoside is a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 7.
24. The method of claim 19, wherein the polypeptide capable of glycosylating a precursor steviol glycoside present in the reaction mixture at its C-19 carboxyl group is a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 1.
25. The method of claim 20, wherein the polypeptide capable of glycosylating the precursor steviol glycoside having a C-13 hydroxyl group present in the reaction mixture at its C-13 hydroxyl group is a polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID: 3.
26. The method of claim 16, wherein the microorganism belongs to the species Saccharomyces cerevisiae, Escherichia coli, Yarrowia lipolytica, or Pichia pastoris.
Description:
SEQUENCE LISTING
[0001] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 2, 2011, is named 25933WO1.txt and is 483,406 bytes in size.
TECHNICAL FIELD
[0002] This disclosure relates to the recombinant production of steviol and steviol glycosides. In particular, this disclosure relates to the production of steviol and steviol glycosides such as rubusoside and/or rebaudioside A by recombinant hosts such as recombinant microorganisms, plants, or plant cells. This disclosure also provides compositions containing steviol glycosides.
BACKGROUND
[0003] Sweeteners are well known as ingredients used most commonly in the food, beverage, or confectionary industries. The sweetener can either be incorporated into a final food product during production or for stand-alone use, when appropriately diluted, as a tabletop sweetener or an at-home replacement for sugars in baking. Sweeteners include natural sweeteners such as sucrose, high fructose corn syrup, molasses, maple syrup, and honey and artificial sweeteners such as aspartame, saccharine and sucralose. Stevia extract is a natural sweetener that can be isolated and extracted from a perennial shrub, Stevia rebaudiana. Stevia is commonly grown in South America and Asia for commercial production of stevia extract. Stevia extract, purified to various degrees, is used commercially as a high intensity sweetener in foods and in blends or alone as a tabletop sweetener.
[0004] Extracts of the Stevia plant contain rebaudiosides and other steviol glycosides that contribute to the sweet flavor, although the amount of each glycoside often varies among different production batches. Existing commercial products are predominantly rebaudioside A with lesser amounts of other glycosides such as rebaudioside C, D, and F. Stevia extracts may also contain contaminants such as plant-derived compounds that contribute to off-flavors. These off-flavors can be more or less problematic depending on the food system or application of choice. Potential contaminants include pigments, lipids, proteins, phenolics, saccharides, spathulenol and other sesquiterpenes, labdane diterpenes, monoterpenes, decanoic acid, 8,11,14-eicosatrienoic acid, 2-methyloctadecane, pentacosane, octacosane, tetracosane, octadecanol, stigmasterol, .beta.-sitosterol, .alpha.- and .beta.-amyrin, lupeol, .beta.-amryin acetate, pentacyclic triterpene, centauredin, quercitin, epi-alpha-cadinol, carophyllenes and derivatives, beta-pinene, beta-sitosterol, and gibberellin.
SUMMARY
[0005] Provided herein is a recombinant host, such as a microorganism, comprising one or more biosynthesis genes whose expression results in production of steviol. Such genes include a gene encoding a copalyl diphosphate synthase, a gene encoding a kaurene synthase, a gene encoding a kaurene oxidase; and a gene encoding a steviol synthetase. The recombinant host can include a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase, in place of the genes encoding copalyl diphosphate synthase and kaurene synthase. At least one of the genes is a recombinant gene. In some embodiments the recombinant host further comprises a gene encoding a geranylgeranyl diphosphate synthase. The recombinant host can further comprise a gene encoding a truncated HMG-CoA reductase and/or a gene encoding a CPR. The expression of one or more of the genes can be inducible.
[0006] In one aspect, this document features a recombinant host that includes a recombinant gene encoding a UGT91D2 polypeptide (e.g., a UGT91D2e or UGT91D2m polypeptide). The UGT91 D2 polypeptide can have at least 90% identity (e.g., at least 95% or 99% identity) to the amino acid sequence set forth in SEQ ID NO:5. The UGT91D2 polypeptide can include at least one amino acid substitution at residues 1-19, 27-38, 44-87, 96-120, 125-141, 159-184, 199-202, 215-380, or 387-473 of SEQ ID NO:5. For example, the UGT91 D2 polypeptide can include an amino acid substitution at one or more residues selected from the group consisting of residues 30, 93, 99, 122, 140, 142, 148, 153, 156, 195, 196, 199, 206, 207, 211, 221, 286, 343, 427, and 438 of SEQ ID NO:5. In one embodiment, the UGT91D2 polypeptide includes an arginine at residue 206, a cysteine at residue 207, and an arginine at residue 343 relative to SEQ ID NO:5. In one embodiment, the UGT91D2 polypeptide includes a phenylalanine at residue 30, a glutamine at residue 93, a valine at residue 99, a phenylalanine at residue 122, a tyrosine at residue 140, a cysteine at residue 142, a threonine at residue 148, an alanine at residue 153, a serine at residue 156, a methionine at residue 195, a glutamic acid at residue 196, a glutamic acid at residue 199, a methionine at residue 211, a phenylalanine at residue 221, an alanine at residue 286, an asparagine at residue 427, or an alanine at residue 438 relative to SEQ ID NO:5. The polypeptide can have the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:95.
[0007] A host described herein further can include a recombinant gene encoding a UGT85C polypeptide having at least 90% identity to the amino acid sequence set forth in SEQ ID NO:3. For example, the UGT85C polypeptide can include one or more amino acid substitutions at residues 9, 10, 13, 15, 21, 27, 60, 65, 71, 87, 91, 220, 243, 270, 289, 298, 334, 336, 350, 368, 389, 394, 397, 418, 420, 440, 441, 444, and 471 of SEQ ID NO:3.
[0008] A host described herein further can include a recombinant gene encoding a UGT76G polypeptide having at least 90% identity to the amino acid sequence set forth in SEQ ID NO:7. For example, the UGT76G polypeptide can have one or more amino acid substitutions at residues 29, 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 266, 273, 274, 284, 285, 291, 330, 331, and 346 of SEQ ID NO:7.
[0009] This document also features a recombinant host that includes a recombinant gene encoding a UGT85C polypeptide having at least 90% identity to the amino acid sequence set forth in SEQ ID NO:3, and having one or more amino acid substitutions at residues 9, 10, 13, 15, 21, 27, 60, 65, 71, 87, 91, 220, 243, 270, 289, 298, 334, 336, 350, 368, 389, 394, 397, 418, 420, 440, 441, 444, and 471 of SEQ ID NO:3. For example, the UGT85C polypeptide can include substitutions at residues 13, 15, 60, 270, 289, and 418 of SEQ ID NO:3. For example, the UGT85C polypeptide can include a) substitutions at residues 13, 60, and 270 of SEQ ID NO:3; b) substitutions at residues 60 and 87 of SEQ ID NO:3; c) substitutions at residues 65, 71, 220, 243, and 270 of SEQ ID NO:3; d) substitutions at residues 65, 71, 220, 243, 270, and 441 of SEQ ID NO:3; e) substitutions at residues 65, 71, 220, 389, and 394 of SEQ ID NO:3; f) substitutions at residues 65, 71, 270, and 289 of SEQ ID NO:3; g) substitutions at residues 15 and 65 of SEQ ID NO:3; h) substitutions at residues 65 and 270 of SEQ ID NO:3; i) substitutions at residues 65 and 440 of SEQ ID NO:3; j) substitutions at residues 65 and 441 of SEQ ID NO:3; k) substitutions at residues 65 and 418 of SEQ ID NO:3; 1) substitutions at residues 220, 243, 270, and 334 of SEQ ID NO:3; or m) substitutions at residues 270 and 289 of SEQ ID NO:3.
[0010] In another aspect, this document features a recombinant host that includes a recombinant gene encoding a UGT76G polypeptide having at least 90% identity to the amino acid sequence set forth in SEQ ID NO:7, and having one or more amino acid substitutions at residues 29, 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 266, 273, 274, 284, 285, 291, 330, 331, and 346. For example, the UGT76G polypeptide can have a) substitutions at amino acid residues 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, and 291; b) substitutions at residues 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 266, 273, 274, 284, 285, and 291; or c) substitutions at residues 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 266, 273, 274, 284, 285, 291, 330, 331, and 346.
[0011] Any of the hosts described herein further can include a gene encoding a UGT74G1 polypeptide (e.g., a recombinant gene encoding a UGT74G1 polypeptide).
[0012] Any of the hosts described herein further can include one or more of: (i) a gene encoding a geranylgeranyl diphosphate synthase; (ii) a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase, or a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase; (iii) a gene encoding a kaurene oxidase; (iv) a gene encoding a steviol synthetase; (v) a gene encoding a truncated HMG-CoA; (vi) a gene encoding a CPR; (vii) a gene encoding a rhamnose synthetase; (viii) a gene encoding a UDP-glucose dehydrogenase; and (ix) a gene encoding a UDP-glucuronic acid decarboxylase. At least one of the genes of (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), or (ix) can be a recombinant gene. In some embodiments, each of the genes of (i), (ii), (iii), and (iv) is a recombinant gene.
[0013] This document also features an isolated nucleic acid encoding a polypeptide having at least 90% sequence identity (e.g., at least 95% or 99% sequence identity) to the amino acid sequence set forth in SEQ ID NO:5. The polypeptide can include at least one amino acid substitution at residues 1-19, 27-38, 44-87, 96-120, 125-141, 159-184, 199-202, 215-380, or 387-473 of SEQ ID NO:5. The polypeptide can include an amino acid substitution at one or more residues selected from the group consisting of residues 30, 93, 99, 122, 140, 142, 148, 153, 156, 195, 196, 199, 206, 207, 211, 221, 286, 343, 427, and 438 of SEQ ID NO:5. The polypeptide can include an arginine at residue 206, a cysteine at residue 207, and an arginine at residue 343 of SEQ ID NO:5. In some embodiments, the polypeptide includes a phenylalanine at residue 30, a glutamine at residue 93, a valine at residue 99, a phenylalanine at residue 122, a tyrosine at residue 140, a cysteine at residue 142, a threonine at residue 148, an alanine at residue 153, a serine at residue 156, a methionine at residue 195, a glutamic acid at residue 196, a glutamic acid at residue 199, a methionine at residue 211, a phenylalanine at residue 221, an alanine at residue 286, an asparagine at residue 427, or an alanine at residue 438 of SEQ ID NO:5.
[0014] In another aspect, this document features an isolated polypeptide having an amino acid sequence with at least 90% identity to the amino acid sequence of SEQ ID NO:5.
[0015] This document also features a recombinant host that includes (i) a gene encoding a geranylgeranyl diphosphate synthase; (ii) a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase, or a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase; (iii) a gene encoding a kaurene oxidase; and (iv) a gene encoding a steviol synthetase; wherein at least one of said genes. The host can produce steviol when cultured under conditions in which each of the genes is expressed, and can accumulate to at least 1 mg/L in the culture medium. The geranylgeranyl diphosphate synthase can have greater than 90% sequence identity to one of the amino acid sequences set forth in SEQ ID NOs: 121-128. The copalyl diphosphate synthase can have greater than 90% sequence identity to one of the amino acid sequences set forth in SEQ ID NOs: 129-131. The kaurene synthase can have greater than 90% sequence identity to one of the amino acid sequences set forth in 132-135. The kaurene oxidase can have greater than 90% sequence identity to one of the amino acid sequences set forth in 138-141. The steviol synthetase can have greater than 90% sequence identity to one of the amino acid sequences set forth in SEQ ID NOs: 142-146. The host further can include a gene encoding a truncated HMG-CoA and/or a gene encoding a CPR.
[0016] Any of the recombinant hosts further can include one or more of a gene encoding a UGT74G polypeptide, a UGT85C2 polypeptide, a UGT76G1 polypeptide, or a UGT91D2 polypeptide.
[0017] Any of the recombinant hosts can produce at least one steviol glycoside when cultured under conditions in which each of the genes is expressed. The steviol glycoside can be selected from the group consisting of steviol-13-O-glucoside, steviol-19-O-glucoside, rubusoside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, and dulcoside A. The steviol glycoside can accumulate to at least 1 mg/liter (e.g., at least 10 mg/liter or 20 mg/liter) of culture medium when cultured under said conditions.
[0018] Any of the recombinant hosts further can include one or more of i) a gene encoding a deoxyxylulose 5-phosphate synthase (DXS); ii) a gene encoding a D-1-deoxyxylulose 5-phosphate reductoisomerase (DXR); iii) a gene encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (CMS); iv) a gene encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (CMK); v) a gene encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS); vi) a gene encoding a 1-hydroxy-2-methyl-2(E)-butenyl 4-diphosphate synthase (HDS); or vii) a gene encoding a 1-hydroxy-2-methyl-2(E)-butenyl 4-diphosphate reductase (HDR).
[0019] Any of the recombinant hosts further can include one or more of ix) a gene encoding a acetoacetyl-CoA thiolase; x) a gene encoding a truncated HMG-CoA reductase; xi) a gene encoding a mevalonate kinase; xii) a gene encoding a phosphomevalonate kinase; or xiii) a gene encoding a mevalonate pyrophosphate decarboxylase.
[0020] In any of the hosts described herein, expression of one or more of the genes can be inducible.
[0021] Any of the hosts described herein can be a microorganism (e.g., a Saccharomycete such as Saccharomyces cerevisiae, or Escherichia coli), or a plant or plant cell (e.g., a Stevia such as a Stevia rebaudiana, Physcomitrella, or tobacco plant or plant cell).
[0022] In another aspect, this document features a method of producing steviol or a steviol glycoside. The method includes growing a host described herein in a culture medium, under conditions in which the genes are expressed; and recovering the steviol or steviol glycoside produced by the host. The growing step can include inducing expression of one or more of the genes. The steviol or steviol glycoside is selected from the group consisting of steviol-13-O-glucoside, steviol-19-O-glucoside, rubusoside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, and dulcoside A.
[0023] Also provided herein is a method of producing steviol or a steviol glycoside. The method includes growing a microorganism in a culture medium, under conditions in which a geranylgeranyl diphosphate synthase, copalyl diphosphate synthase, kaurene synthase, kaurene oxidase, kaurenoic acid 13-hydroxylase gene and optionally a UGT74G1 and/or a UGT85C2 gene are expressed, and recovering the steviol or steviol glycoside produced by the microorganism. The microorganism can be a Saccharomyces spp. In some embodiments, the growing step comprises inducing expression of one or more of the geranylgeranyl diphosphate synthase, copalyl diphosphate synthase, kaurene synthase, kaurene oxidase, kaurenoic acid 13-hydroxylase, UGT74G1 and UGT85C2 genes. In some embodiments, the recovering step comprises purifying the steviol or steviol glycoside from the culture medium by HPLC. The steviol or steviol glycoside can be steviol, rubusoside, rebaudioside C, rebaudioside F, or dulcoside A.
[0024] Also provided herein is a recombinant Saccharomyces strain, comprising one or more biosynthesis genes whose expression results in production of ent-kaurene. The biosynthesis genes include a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase, or a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase. The strain produces ent-kaurene upon expression of the copalyl diphosphate synthase and the kaurene synthase.
[0025] In another aspect, this document features an isolated nucleic acid having greater than 90% sequence identity (e.g., greater than 95% or 99% sequence identity) to one of the nucleotide sequences set forth in SEQ ID NOs: 18-25, 34-36, 4-43, 48, 49, 52-55, 60-64, 70-72, 77, or 79.
[0026] This document also features a recombinant host that includes (i) a gene encoding a UGT74G1; (ii) a gene encoding a UGT85C2; (iii) a gene encoding a UGT76G1; and (iv) a gene encoding a UGT91D2, wherein at least one of said genes is a recombinant gene. In some embodiments, each of the genes is a recombinant gene. The host can produce at least one steviol glycoside when cultured under conditions in which each of the genes is expressed. The host further can include (a) a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase, or a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase; (b) a gene encoding a kaurene oxidase; (c) a gene encoding a steviol synthetase; and (d) a gene encoding a geranylgeranyl diphosphate synthase. The steviol glycoside can be rebaudioside A, rebaudioside D or rebaudioside E. This document also features a steviol glycoside composition produced by such a host. The composition can have greater than 4% rebaudioside D by weight of total steviol glycosides and a reduced level of stevia plant-derived contaminants relative to a stevia extract. The composition can have greater than 4% rebaudioside E by weight of total steviol glycosides and a reduced level of stevia plant-derived contaminants relative to a stevia extract.
[0027] Also featured herein is an isolated nucleic acid encoding a polypeptide having greater than 90% sequence identity to the amino acid sequences of UGT91D2e and UGT91D2m, excluding the amino acid sequence of UGT91D2m, as well as the isolated polypeptides having greater than 90% sequence identity to the amino acid sequence of UGT91D2e or UGT91D2m, excluding the amino acid sequence of UGT91 D2m.
[0028] This document also features steviol glycoside composition produced by the host described herein. The composition having reduced levels of stevia plant-derived contaminants relative to a stevia extract.
[0029] In another aspect, this document features a recombinant host. The host includes (i) a recombinant gene encoding a UGT91D2; (ii) a recombinant gene encoding a UGT74G1; (iii) a recombinant gene encoding a UGT85C2; (iv) a recombinant gene encoding a UGT76G1; and (v) a gene encoding a rhamnose synthetase, wherein the host produces at least one steviol glycoside when cultured under conditions in which each of the genes is expressed. The host further can include (a) a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase, or a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase; (b) a gene encoding a kaurene oxidase; (c) a gene encoding a steviol synthetase; and (d) a gene encoding a geranylgeranyl diphosphate synthase. The steviol glycoside can be rebaudioside C or dulcoside A. This document also features a steviol glycoside composition produced by such a host. The composition has greater than 15% rebaudioside C by weight of total steviol glycosides and a reduced level of stevia plant-derived contaminants relative to a stevia extract. A steviol glycoside composition produced by such a host also is featured. The composition can have greater than 15% dulcoside A by weight of total steviol glycosides and a reduced level of stevia plant-derived contaminants relative to a stevia extract.
[0030] This document also features a recombinant host. The host includes (i) a recombinant gene encoding a UGT91D2; (ii) a recombinant gene encoding a UGT74G1; (iii) a recombinant gene encoding a UGT85C2; (iv) a recombinant gene encoding a UGT76G1; (v) a gene encoding a UDP-glucose dehydrogenase; and (vi) a gene encoding a UDP-glucuronic acid decarboxylase, wherein the host produces at least one steviol glycoside when cultured under conditions in which each of the genes is expressed. The host further can include (a) a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase, or a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase; (b) a gene encoding a kaurene oxidase; (c) a gene encoding a steviol synthetase; and (d) a gene encoding a geranylgeranyl diphosphate synthase. The steviol glycoside can be rebaudioside F. This document also features a steviol glycoside composition produced by such hosts. The composition can have greater than 4% rebaudioside F by weight of total steviol glycosides and a reduced level of stevia plant-derived contaminants relative to a stevia extract.
[0031] In another aspect, this document features a method of producing a steviol glycoside composition. The method includes growing a host described herein in a culture medium, under conditions in which each of the genes is expressed; and recovering the steviol glycoside composition produced by the host, wherein the recovered composition is enriched for rebaudioside A, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F or dulcoside A relative to the steviol glycoside composition of a wild-type Stevia plant. The steviol glycoside composition produced by the host (e.g., microorganism) can have a reduced level of stevia plant-derived contaminants relative to a stevia extract.
[0032] This document also features a food product that includes a steviol glycoside composition enriched for rebaudioside A, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F or dulcoside A relative to the steviol glycoside composition of a wild-type Stevia plant.
[0033] In another aspect, this document features a method of identifying whether a polymorphism is associated with variation in a trait. The method includes determining whether one or more genetic polymorphisms in a population of plants is associated with the locus for a polypeptide set forth in SEQ ID NO:5 and functional homologs thereof; and measuring the correlation between variation in the trait in plants of the population and the presence of the one or more genetic polymorphisms in plants of the population, thereby identifying whether or not the one or more genetic polymorphisms are associated with variation in the trait.
[0034] In yet another aspect, this document features a method of making a plant line. The method includes determining whether one or more genetic polymorphisms in a population of plants is associated with the locus for a polypeptide set forth in SEQ ID NO:5 and functional homologs thereof; identifying one or more plants in the population in which the presence of at least one of the genetic polymorphisms is associated with variation in a trait; crossing one or more of the identified plants with itself or a different plant to produce seed; crossing at least one progeny plant grown from the seed with itself or a different plant; and repeating the crossing steps for an additional 0-5 generations to make said plant line, wherein at least one of the genetic polymorphisms is present in the plant line.
[0035] This document also features a method for transferring a second sugar moiety to the C-2' of a glucose in a steviol glycoside. The method includes contacting the steviol glycoside with a UGT91 D2 polypeptide and a UDP-sugar under suitable reaction conditions for the transfer of the second sugar moiety to the steviol glycoside. The UGT91D2 polypeptide can have at least 90% sequence identity (e.g., at least 95% or 99%) to the amino acid sequence set forth in SEQ ID NO:5. The UGT91D2 polypeptide can include at least one amino acid substitution at residues 1-19, 27-38, 44-87, 96-120, 125-141, 159-184, 199-202, 215-380, or 387-473 of SEQ ID NO:5. The UGT91D2 polypeptide can include an amino acid substitution at one or more residues selected from the group consisting of residues 30, 93, 99, 122, 140, 142, 148, 153, 156, 195, 196, 199, 206, 207, 211, 221, 286, 343, 427, and 438 of SEQ ID NO:5. The steviol glycoside can be selected from the group consisting of steviol-13-O-glucoside, rubusoside, stevioside, and Rebaudioside A. The steviol glycoside can be rubusoside and the second sugar moiety is glucose, and stevioside is produced upon transfer of the second glucose moiety. The steviol glycoside can be stevioside and the second sugar moiety can be glucose, and Rebaudioside E is produced upon transfer of the second glucose moiety. The steviol glycoside can be stevioside, wherein stevioside is contacted with the UGT91D2 polypeptide and a UGT76G1 polypeptide under suitable reaction conditions to produce Rebaudioside D. The steviol glycoside can be steviol-13-O-glucoside and steviol-1,2 bioside is produced upon transfer of said second glucose moiety. The steviol glycoside can be steviol-13-O-glucoside and steviol-1,2-xylobioside is produced upon transfer of the second sugar moiety. The steviol glycoside can be steviol-13-O-glucoside and steviol-1,2-rhamnobioside can be produced upon transfer of the second sugar moiety. The steviol glycoside can be Rebaudioside A, and Rebaudioside D is produced upon transfer of a second glucose moiety.
[0036] In another aspect, this document features a method of determining the presence of a polynucleotide in a Stevia plant. The method includes contacting at least one probe or primer pair with nucleic acid from the Stevia plant, wherein the probe or primer pair is specific for a polynucleotide that encodes a UGT polypeptide, wherein the UGT polypeptide has at least 90% sequence identity to SEQ ID NO: 5, SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO:7 and determining whether or not the polynucleotide is present in said Stevia plant.
[0037] This document also features a kit for genotyping a Stevia biological sample. The kit includes a primer pair that specifically amplifies, or a probe that specifically hybridizes to, a polynucleotide that encodes a UGT polypeptide having at least 90% sequence identity to SEQ ID NO: 5, SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO:7.
[0038] Also provided herein is a recombinant microorganism, comprising one or more biosynthesis genes whose expression results in production of one or more steviol glycosides. The biosynthesis genes include a gene encoding a geranylgeranyl diphosphate synthase, a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase, a gene encoding a kaurene oxidase, a gene encoding a steviol synthetase, and a gene encoding a UGT74G1 and/or a UGT85C2. At least one of the genes is a recombinant gene. The microorganism can comprise a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase in place of the genes encoding copalyl diphosphate synthase and kaurene synthase.
[0039] The recombinant microorganism produces at least one steviol glycoside when cultured under conditions in which each of the genes is expressed. The steviol glycoside can be rubusoside, rebaudioside C, rebaudioside F, dulcoside B, or dulcoside A.
[0040] The recombinant microorganism can be a Saccharomycete, e.g., Saccharomyces cerevisiae, and can have one or more genetic modifications that reduce EXG1 and EXG2 glycoside hydrolase activity relative to a control microorganism that lacks such genetic modifications, and can have one or more genetic modifications that reduce ergosterol biosynthesis relative to a control microorganism that lacks such genetic modifications. The Saccharomycete produces rubusoside when cultured under conditions in which each of the genes is expressed. The rubusoside can accumulate to at least 10 mg/liter of culture medium. The Saccharomycete can be a Saccharomyces cerevisiae strain designated CEY171, CEY191, or CEY213.
[0041] The recombinant microorganism can further comprise a gene encoding an SM12UGT and a gene encoding a UGT76G1, and produce a steviol glycoside when cultured under conditions in which each of the genes is expressed. The steviol glycoside can be rebaudioside A.
[0042] Also provided herein is a recombinant microorganism, comprising one or more biosynthesis genes whose expression results in production of at least one steviol glycoside. The biosynthesis genes include a gene encoding an SM12UGT, a gene encoding a UGT74G1, a gene encoding a UGT76G1 and a gene encoding a UGT85C2. The recombinant microorganism produces rebaudioside A or rebaudioside B when cultured under conditions in which each of the genes is expressed. The rebaudioside A or rebaudioside B can accumulate to at least 1 mg/L in the culture medium.
[0043] Also featured herein is a recombinant microorganism, comprising a gene encoding a UGT91D2 polypeptide, e.g., a recombinant UGT91D2 gene.
[0044] Also featured herein is a recombinant microorganism, comprising a gene encoding a geranylgeranyl diphosphate synthase, a gene encoding a bifunctional copalyl diphosphate synthase and kaurene synthase (or a gene encoding a copalyl diphosphate synthase and a gene encoding a kaurene synthase), a gene encoding a kaurene oxidase, a gene encoding a steviol synthetase, a gene encoding a UGT74G1, a gene encoding a UGT85C2, a gene encoding a UGT76G1, and a gene encoding a UGT91D2. At least one of the genes is a recombinant gene. The recombinant microorganism can produce at least one steviol glycoside, e.g., rebaudioside A, rebaudioside B, and/or rebaudioside F, when cultured under conditions in which each of the genes is expressed. The recombinant microorganism can accumulate at least 20 mg of steviol glycoside per liter of culture medium when cultured under such conditions. The recombinant microorganism can be a Saccharomycete, e.g., Saccharomyces cerevisiae, and can have one or more genetic modifications that reduce EXG1 and EXG2 glycoside hydrolase activity relative to a control microorganism that lacks such genetic modifications, and can have one or more genetic modifications that reduce ergosterol biosynthesis relative to a control microorganism that lacks such genetic modifications.
[0045] Also featured herein is a recombinant microorganism, comprising a gene encoding a UGT74G1, a gene encoding a UGT85C2, a gene encoding a UGT76G1, and a gene encoding a UGT91D2. At least one of the genes is a recombinant gene. The recombinant microorganism can produce a steviol glycoside, e.g., rebaudioside A or rebaudioside B, when cultured under conditions in which each of the genes is expressed. The rebaudioside A or rebaudioside B can accumulate to at least 15 mg/L in the culture medium.
[0046] The recombinant microorganisms described above can further comprise a gene encoding a deoxyxylulose 5-phosphate synthase (DXS), and/or a gene encoding a D-1-deoxyxylulose 5-phosphate reductoisomerase (DXR), and/or a gene encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (CMS), and/or a gene encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (CMK), and/or a gene encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS), and/or a gene encoding a 1-hydroxy-2-methyl-2(E)-butenyl 4-diphosphate synthase (HDS), and/or a gene encoding a 1-hydroxy-2-methyl-2(E)-butenyl 4-diphosphate reductase (HDR).
[0047] The recombinant microorganisms described above can further comprise a gene encoding a acetoacetyl-CoA thiolase, and/or a gene encoding a truncated HMG-CoA reductase, and/or a gene encoding a mevalonate kinase, and/or a gene encoding a phosphomevalonate kinase, and/or a gene encoding a mevalonate pyrophosphate decarboxylase.
[0048] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting. Other features and advantages of the invention will be apparent from the following detailed description. Applicants reserve the right to alternatively claim any disclosed invention using the transitional phrase "comprising," "consisting essentially of," or "consisting of," according to standard practice in patent law.
DESCRIPTION OF DRAWINGS
[0049] FIG. 1 is a scheme illustrating the biosynthesis of steviol from geranylgeranyl diphosphate.
[0050] FIGS. 2A-D show representative pathways for the biosynthesis of steviol glycosides from steviol.
[0051] FIG. 3 shows chemical structures for various steviol glycosides.
[0052] FIG. 4 is a schematic representation of rebA production in Saccharomyces cerevisiae.
[0053] FIG. 5 is a schematic representation of the concatenation of genes to form cYACs.
[0054] FIG. 6 shows rubusoside production by yeast strain CEY13 under various culture conditions.
[0055] FIG. 7 shows data obtained from .sup.1H and .sup.13C NMR analysis of the compound produced by yeast strain CEY213, compared to literature values for rubusoside.
[0056] FIG. 8 is an alignment of UGT91D1 and UGT91D2 amino acid sequences (SEQ ID NOs: 14, 16, 12, 5, and 10, respectively).
[0057] FIG. 9 shows Rebaudioside A, stevioside, and rubusoside production by yeast CEY213 containing plasmid pMUS47 after 24 and 99 hours of culture.
[0058] FIG. 10A is a graph illustrating the concentrations of RebA, rubusoside and 19-SMG in supernatants. FIG. 10B is a graph of the concentrations of RebA, rubusoside and 19-SMG measured in cell pellets, for experiments where yeast cells were fed with 100 .mu.M steviol. In both graphs, the first set of bars represents the untagged control strains; the second set of bars represents the strain containing the UGT74G1, UGT76G1, and UGT91D2e fusion proteins in which the N-terminal 158 amino acids of the MDM2 protein are fused to each UGT, and a UGT85C2 fusion protein in which four repeats of the synthetic PMI peptide is fused in-frame to the N-terminus of 85C2. The y-axis is concentration in micromolar units.
[0059] Like reference symbols in the various drawings indicate like elements.
DETAILED DESCRIPTION
[0060] Two glycosides, stevioside and rebaudioside A, are the primary compounds in commercially-produced stevia extracts. Stevioside is reported to have a more bitter and less sweet taste than rebaudioside A and, therefore, a higher proportion of rebaudioside A in an extract preparation is preferred. However, the composition of stevia extract can vary from lot to lot depending on the soil and climate in which the plants are grown. Depending upon the sourced plant, the climate conditions, and the extraction process, the amount of rebaudioside A in commercial preparations is reported to vary from 20 to 97% of the total steviol glycoside content, typically >50-80% and sometimes as high as >95-97% of the total steviol glycosides. Moreover, other steviol glycosides are present in varying amounts in stevia extracts, which further complicates the ability to produce a sweetener with a consistent taste profile by extraction and purification from Stevia plants. For example, Rebaudioside B is typically present at less than 1-2%, whereas Rebaudioside C can be present at levels as high as 7-15%. Rebaudioside D is typically present in levels of 2% or less, and Rebaudioside F is typically present in compositions at 3.5% or less of the total steviol glycosides. Even trace amounts of the minor steviol glycosides are reported to affect the flavor profile of a Stevia extract. Additionally, it is thought that some of the contaminants from the Stevia plant, even at very low concentrations, may also provide off-flavors to some of the commercially available plant extracts.
[0061] This document is based on the discovery that recombinant hosts such as plant cells, plants, or microorganisms can be developed that express polypeptides useful for the biosynthesis of steviol. Further, such hosts can express Uridine 5'-diphospho (UDP) glycosyl transferases suitable for producing steviol glycosides such as rubusoside and rebaudioside A. Recombinant microorganisms are particularly useful hosts. Expression of these biosynthetic polypeptides in various microbial chassis allows steviol and its glycosides to be produced in a consistent, reproducible manner from energy and carbon sources such as sugars, glycerol, CO.sub.2, H.sub.2, and sunlight. The proportion of each steviol glycoside produced by a recombinant host can be tailored by incorporating preselected biosynthetic enzymes into the hosts and expressing them at appropriate levels, to produce a sweetener composition with a consistent taste profile. Furthermore, the concentrations of steviol glycosides produced by recombinant hosts are expected to be higher than the levels of steviol glycosides produced in the Stevia plant, which improves the efficiency of the downstream purification. Such sweetener compositions contain little or no plant based contaminants, relative to the amount of contaminants present in Stevia extracts.
[0062] At least one of the genes is a recombinant gene, the particular recombinant gene(s) depending on the species or strain selected for use. Additional genes or biosynthetic modules can be included in order to increase steviol and glycoside yield, improve efficiency with which energy and carbon sources are converted to steviol and its glycosides, and/or to enhance productivity from the cell culture or plant. Such additional biosynthetic modules include genes involved in the synthesis of the terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. Additional biosynthetic modules include terpene synthase and terpene cyclase genes, such as genes encoding geranylgeranyl diphosphate synthase and copalyl diphosphate synthase; these genes may be endogenous genes or recombinant genes.
I. Steviol and Steviol Glycoside Biosynthesis Polypeptides
A. Steviol Biosynthesis Polypeptides
[0063] Chemical structures for several of the compounds found in Stevia extracts are shown in FIG. 3, including the diterpene steviol and various steviol glycosides. CAS numbers are shown in Table A below. See also, Steviol Glycosides Chemical and Technical Assessment 69th JECFA, prepared by Harriet Wallin, Food Agric. Org. (2007).
TABLE-US-00001 TABLE A COMPOUND CAS# Steviol 471-80-7 Rebaudioside A 58543-16-1 Steviolbioside 41093-60-1 Stevioside 57817-89-7 Rebaudioside B 58543-17-2 Rebaudioside C 63550-99-2 Rebaudioside D 63279-13-0 Rebaudioside E 63279-14-1 Rebaudioside F 438045-89-7 Rubusoside 63849-39-4 Dulcoside A 64432-06-0
[0064] It has been discovered that expression of certain genes in a host such as a microorganism confers the ability to synthesize steviol upon that host. As discussed in more detail below, one or more of such genes may be present naturally in a host. Typically, however, one or more of such genes are recombinant genes that have been transformed into a host that does not naturally possess them.
[0065] The biochemical pathway to produce steviol involves formation of geranylgeranyl diphosphate, cyclization to (-) copalyl diphosphate, followed by oxidation and hydroxylation to form steviol. See FIG. 1. Thus, conversion of geranylgeranyl diphosphate to steviol in a recombinant microorganism involves the expression of a gene encoding a kaurene synthase (KS), a gene encoding a kaurene oxidase (KO), and a gene encoding a steviol synthetase (KAH). Steviol synthetase also is known as kaurenoic acid 13-hydroxylase.
[0066] Suitable KS polypeptides are known. For example, suitable KS enzymes include those made by Stevia rebaudiana, Zea mays and Populus trichocarpa. See, SEQ ID NOs: 132-135. Nucleotide sequences encoding these polypeptides are described in more detail below. See, for example, Table 3 and SEQ ID NOs: 40-47.
[0067] Suitable KO polypeptides are known. For example, suitable KO enzymes include those made by Stevia rebaudiana, Arabidopsis thaliana, Gibberella fujikoroi and Trametes versicolor. See, SEQ ID NOs: 138-141. Nucleotide sequences encoding these polypeptides are described in more detail below. See, for example, Table 5 and SEQ ID NOs: 52-59.
[0068] Suitable KAH polypeptides are known. For example, suitable KAH enzymes include those made by Stevia rebaudiana, Arabidopsis thaliana, Vitis vinifera and Medicago trunculata. See, e.g., SEQ ID NOs: 142-146; U.S. Patent Publication No. 2008-0271205; U.S. Patent Publication No. 2008-0064063 and Genbank Accession No. gi 189098312. The steviol synthetase from Arabidopsis thaliana is classified as a CYP714A2. Nucleotide sequences encoding these polypeptides are described in more detail below. See, for example, Table 6 and SEQ ID NOs: 60-69.
[0069] In some embodiments, a recombinant microorganism contains a recombinant gene encoding a KO and/or a KAH polypeptide. Such microorganisms also typically contain a recombinant gene encoding a cytochrome P450 reductase (CPR) polypeptide, since certain combinations of KO and/or KAH polypeptides require expression of an exogenous CPR polypeptide. In particular, the activity of a KO and/or a KAH polypeptide of plant origin can be significantly increased by the inclusion of a recombinant gene encoding an exogenous CPR polypeptide. Suitable CPR polypeptides are known. For example, suitable CPR enzymes include those made by Stevia rebaudiana, Arabidopsis thaliana, and Giberella fiujikuroi. See, e.g., SEQ ID NOs: 147-149. Nucleotide sequences encoding these polypeptides are described in more detail below. See, for example, Table 7 and SEQ ID NOs: 70-75.
[0070] Expression in a recombinant microorganism of these genes results in the conversion of geranylgeranyl diphosphate to steviol.
B. Steviol Glycoside Biosynthesis Polypeptides
[0071] In some embodiments, a recombinant host described herein can convert steviol to a steviol glycoside. Such a host (e.g., microorganism) contains genes encoding one or more UDP Glycosyl Transferases, also known as UGTs. UGTs transfer a monosaccharide unit from an activated nucleotide sugar to an acceptor moiety, in this case, an --OH or --COOH moiety on steviol or steviol derivative. UGTs have been classified into families and subfamilies based on sequence homology. Li et al. J. Biol. Chem. 276:4338-4343 (2001).
B. 1 Rubusoside Biosynthesis Polypeptides
[0072] The biosynthesis of rubusoside involves glycosylation of the 13-OH and the 19-COOH of steviol. See FIG. 2A. It has been discovered that conversion of steviol to rubusoside in a recombinant host such as a microorganism can be accomplished by the expression of gene(s) encoding UGTs 85C2 and 74G1, which transfer a glucose unit to the 13-OH or the 19-COOH, respectively, of steviol.
[0073] Thus, a suitable UGT85C2 functions as a uridine 5'-diphospho glucosyl: steviol 13-OH transferase, and a uridine 5'-diphospho glucosyl: steviol-19-O-glucoside 13-OH transferase. Functional UGT85C2 polypeptides also may catalyze glucosyl transferase reactions that utilize steviol glycoside substrates other than steviol and steviol-19-O-glucoside.
[0074] A suitable UGT74G1 polypeptide functions as a uridine 5'-diphospho glucosyl: steviol 19-COOH transferase and a uridine 5'-diphospho glucosyl: steviol-13-O-glucoside 19-COOH transferase. Functional UGT74G1 polypeptides also may catalyze glycosyl transferase reactions that utilize steviol glycoside substrates other than steviol and steviol-13-O-glucoside, or that transfer sugar moieties from donors other than uridine diphosphate glucose.
[0075] A recombinant microorganism expressing a functional UGT74G1 and a functional UGT85C2 can make rubusoside and both steviol monosides (i.e., Steviol 13-O-monoglucoside and Steviol 19-O-monoglucoside) when fed steviol in the medium. One or more of such genes may be present naturally in the host. Typically, however, such genes are recombinant genes that have been transformed into a host (e.g., microorganism) that does not naturally possess them.
[0076] As used herein, the term recombinant host is intended to refer to a host, the genome of which has been augmented by at least one incorporated DNA sequence. Such DNA sequences include but are not limited to genes that are not naturally present, DNA sequences that are not normally transcribed into RNA or translated into a protein ("expressed"), and other genes or DNA sequences which one desires to introduce into the non-recombinant host. It will be appreciated that typically the genome of a recombinant host described herein is augmented through the stable introduction of one or more recombinant genes. Generally, the introduced DNA is not originally resident in the host that is the recipient of the DNA, but it is within the scope of the invention to isolate a DNA segment from a given host, and to subsequently introduce one or more additional copies of that DNA into the same host, e.g., to enhance production of the product of a gene or alter the expression pattern of a gene. In some instances, the introduced DNA will modify or even replace an endogenous gene or DNA sequence by, e.g., homologous recombination or site-directed mutagenesis. Suitable recombinant hosts include microorganisms, plant cells, and plants.
[0077] The term "recombinant gene" refers to a gene or DNA sequence that is introduced into a recipient host, regardless of whether the same or a similar gene or DNA sequence may already be present in such a host. "Introduced," or "augmented" in this context, is known in the art to mean introduced or augmented by the hand of man. Thus, a recombinant gene may be a DNA sequence from another species, or may be a DNA sequence that originated from or is present in the same species, but has been incorporated into a host by genetic engineering methods to form a recombinant host. It will be appreciated that a recombinant gene that is introduced into a host can be identical to a DNA sequence that is normally present in the host being transformed, and is introduced to provide one or more additional copies of the DNA to thereby permit overexpression or modified expression of the gene product of that DNA.
[0078] Suitable UGT74G1 and UGT85C2 polypeptides include those made by Stevia rebaudiana. Genes encoding functional UGT74G1 and UGT85C2 polypeptides from Stevia are reported in Richman, et al. Plant J. 41: 56-67 (2005). Amino acid sequences of S. rebaudiana UGT74G1 and UGT85C2 polypeptides are set forth in SEQ ID NOs: 1 and 3, respectively. Nucleotide sequences encoding UGT74G1 and UGT85C2 that have been optimized for expression in yeast are set forth in SEQ ID NOs: 2 and 4, respectively. See also the UGT85C2 and UGT74G1 variants described in Examples 17 and 18, respectively.
[0079] In some embodiments, the recombinant host is a microorganism. The recombinant microorganism can be grown on media containing steviol in order to produce rubusoside. In other embodiments, however, the recombinant microorganism expresses one or more recombinant genes involved in steviol biosynthesis, e.g., a CDPS gene, a KS gene, a KO gene and/or a KAH gene. Thus, a microorganism containing a CDPS gene, a KS gene, a KO gene and a KAH gene in addition to a UGT74G1 and a UGT85C2 gene is capable of producing both steviol monosides and rubusoside without the necessity for including steviol in the culture media.
[0080] In some embodiments, the recombinant microorganism further expresses a recombinant gene encoding a geranylgeranyl diphosphate synthase (GGPPS). Suitable GGPPS polypeptides are known. For example, suitable GGPPS enzymes include those made by Stevia rebaudiana, Gibberella fujikuroi, Mus musculus, Thalassiosira pseudonana, Streptomyces clavuligerus, Sulidobus acidocaldarius, Synechococcus sp. and Arabidopsis thaliana. See, SEQ ID NOs: 121-128. Nucleotide sequences encoding these polypeptides are described in more detail below. See Table 1 and SEQ ID NOs: 18-33. In some embodiments, the recombinant microorganism further expresses recombinant genes involved in diterpene biosynthesis or production of terpenoid precursors, e.g., genes in the methylerythritol 4-phosphate (MEP) pathway or genes in the mevalonate (MEV) pathway discussed below.
B. 2 Rebaudioside A Biosynthesis Polypeptides
[0081] The biosynthesis of rebaudioside A involves glucosylation of the aglycone steviol. Specifically, rebaudioside A can be formed by glucosylation of the 13-OH of steviol which forms the 13-O-steviolmonoside, glucosylation of the C-2' of the 13-O-glucose of steviolmonoside which forms steviol-1,2-bioside, glucosylation of the C-19 carboxyl of steviol-1,2-bioside which forms stevioside, and glucosylation of the C-3' of the C-13-O-glucose of stevioside. The order in which each glucosylation reaction occurs can vary. See FIG. 2A.
[0082] It has been discovered that conversion of steviol to rebaudioside A in a recombinant host can be accomplished by the expression of gene(s) encoding the following functional UGTs: 74G1, 85C2, 76G1 and 91D2. Thus, a recombinant microorganism expressing these four UGTs can make rebaudioside A when fed steviol in the medium. Typically, one or more of these genes are recombinant genes that have been transformed into a microorganism that does not naturally possess them. It has also been discovered that UGTs designated herein as SM12UGT can be substituted for UGT91D2.
[0083] Suitable UGT74G1 and UGT85C2 polypeptides include those discussed above. A suitable UGT76G1 adds a glucose moiety to the C-3' of the C-13-O-glucose of the acceptor molecule, a steviol 1,2 glycoside. Thus, UGT76G1 functions, for example, as a uridine 5'-diphospho glucosyl: steviol 13-O-1,2 glucoside C-3' glucosyl transferase and a uridine 5'-diphospho glucosyl: steviol-19-O-glucose, 13-O-1,2 bioside C-3' glucosyl transferase. Functional UGT76G1 polypeptides may also catalyze glucosyl transferase reactions that utilize steviol glycoside substrates that contain sugars other than glucose, e.g., steviol rhamnosides and steviol xylosides. See, FIGS. 2A, 2B, 2C and 2D. Suitable UGT76G1 polypeptides include those made by S. rebaudiana and reported in Richman, et al. Plant J. 41: 56-67 (2005). The amino acid sequence of a S. rebaudiana UGT76G1 polypeptide is set forth in SEQ ID NO:7. The nucleotide sequence encoding the UGT76G1 polypeptide of SEQ ID NO:7 has been optimized for expression in yeast and is set forth in SEQ TD NO:8. See also the UGT76G1 variants set forth in Example 18.
[0084] A suitable UGT91D2 polypeptide functions as a uridine 5'-diphospho glucosyl: steviol-13-O-glucoside transferase (also referred to as a steviol-13-monoglucoside 1,2-glucosylase), transferring a glucose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, steviol-13-O-glucoside. Typically, a suitable UGT91 D2 polypeptide also functions as a uridine 5'-diphospho glucosyl: rubusoside transferase transferring a glucose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, rubusoside.
[0085] Functional UGT91D2 polypeptides may also catalyze reactions that utilize steviol glycoside substrates other than steviol-13-O-glucoside and rubusoside, e.g., functional UGT91D2 polypeptides may utilize stevioside as a substrate, transferring a glucose moiety to the C-2' of the 19-O-glucose residue to produce Rebaudioside E. Functional UGT91 D2 polypeptides may also utilize Rebaudioside A as a substrate, transferring a glucose moiety to the C-2' of the 19-O-glucose residue to produce Rebaudioside D. However, a functional UGT91D2 polypeptide typically does not transfer a glucose moiety to steviol compounds having a 1,3-bound glucose at the C-13 position, i.e., transfer of a glucose moiety to steviol 1,3-bioside and 1,3-stevioside does not occur.
[0086] Functional UGT91D2 polypeptides can transfer sugar moieties from donors other than uridine diphosphate glucose. For example, a functional UGT91 D2 polypeptide can act as a uridine 5'-diphospho D-xylosyl: steviol-13-O-glucoside transferase, transferring a xylose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, steviol-13-O-glucoside. As another example, a functional UGT91D2 polypeptide can act as a uridine 5'-diphospho L-rhamnosyl: steviol-13-O-glucoside transferase, transferring a rhamnose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, steviol-13-O-glucoside
[0087] Suitable functional UGT91D2 polypeptides include those disclosed herein, e.g., the polypeptides designated UGT91D2e and UGT91D2m. The amino acid sequence of an exemplary UGT91D2e polypeptide from Stevia rebaudiana is set forth in SEQ ID NO: 5. SEQ ID NO:6 is a nucleotide sequence encoding the polypeptide of SEQ ID NO:5 that has been codon optimized for expression in yeast. The S. rebaudiana nucleotide sequence encoding the polypeptide of SEQ ID NO:5 is set forth in SEQ ID NO:9. The amino acid sequences of exemplary UGT91D2m polypeptides from S. rebaudiana are set forth in SEQ ID NOs: 10 and 12, and are encoded by the nucleic acid sequences set forth in SEQ ID NOs: 11 and 13, respectively. See also the UGT91D2 variants of Example 16, e.g., a variant containing a substitution at amino acid residues 206, 207, and 343.
[0088] As indicated above, UGTs designated herein as SM12UGT can be substituted for UGT91D2. Suitable functional SM12UGT polypeptides include those made by Ipomoea purpurea (Japanese morning glory) and described in Morita et al. Plant J. 42, 353-363 (2005). The amino acid sequence encoding the I. purpurea IP3GGT polypeptide is set forth in SEQ ID NO:76. SEQ ID NO:77 is a nucleotide sequence encoding the polypeptide of SEQ ID NO:76 that has been codon optimized for expression in yeast. Another suitable SM12UGT polypeptide is a Bp94B1 polypeptide having an R25S mutation. See Osmani et al. Plant Phys. 148: 1295-1308 (2008) and Sawada et al. J. Biol. Chem. 280:899-906 (2005). The amino acid sequence encoding the Bellis perennis (red daisy) UGT94B1 polypeptide is set forth in SEQ ID NO:78. SEQ ID NO:79 is the nucleotide sequence encoding the polypeptide of SEQ ID NO:78 that has been codon optimized for expression in yeast.
[0089] In some embodiments, the recombinant microorganism is grown on media containing steviol-13-O-glucoside or steviol-19-O-glucoside in order to produce rebaudioside A. In such embodiments, the microorganism contains and expresses genes encoding a functional UGT91D2, a functional UGT74G1 and a functional UGT76G1, and is capable of producing rebaudioside A when it is fed steviol, one or both of the steviolmonosides, or rubusoside in the culture media.
[0090] In other embodiments, the recombinant microorganism is grown on media containing rubusoside in order to produce rebaudioside A. In such embodiments, the microorganism contains and expresses genes encoding a functional UGT91D2 and a functional UGT76G1, and is capable of producing rebaudioside A when it is fed rubusoside in the culture media.
[0091] In other embodiments the recombinant microorganism expresses one or more genes involved in steviol biosynthesis, e.g., a CDPS gene, a KS gene, a KO gene and/or a KAH gene. Thus, for example, a microorganism containing a CDPS gene, a KS gene, a KO gene and a KAH gene, in addition to a UGT74G1, a UGT85C2, a UGT91D2 gene and a UGT76G1 gene, is capable of producing rebaudioside A without the necessity for including steviol in the culture media.
[0092] In some embodiments, the recombinant microorganism further contains and expresses a recombinant GGPPS gene in order to provide increased levels of the diterpene precursor geranylgeranyl diphosphate, for increased flux through the rebaudioside A biosynthetic pathway. In some embodiments, the recombinant microorganism further contains and expresses recombinant genes involved in diterpene biosynthesis or production of terpenoid precursors, e.g., genes in the MEP or MEV pathway discussed below.
B. 3 Dulcoside A and Rebaudioside C Biosynthesis Polypeptides
[0093] The biosynthesis of rebaudioside C and/or dulcoside A involves glucosylation and rhamnosylation of the aglycone steviol. Specifically, dulcoside A can be formed by glucosylation of the 13-OH of steviol which forms steviol-13-O-glucoside, rhamnosylation of the C-2' of the 13-O-glucose of steviol-13-O-glucoside which forms the 1,2 rhamnobioside, and glucosylation of the C-19 carboxyl of the 1,2 rhamnobioside. Rebaudioside C can be formed by glucosylation of the C-3' of the C-13-O-glucose of dulcoside A. The order in which each glycosylation reaction occurs can vary. See FIG. 2B.
[0094] It has been discovered that conversion of steviol to dulcoside A in a recombinant host can be accomplished by the expression of gene(s) encoding the following functional UGTs: 85C2, 91D2, and 74G1. Thus, a recombinant microorganism expressing these three UGTs and a rhamnose synthetase can make dulcoside A when fed steviol in the medium. Alternatively, a recombinant microorganism expressing two UGTs, 91 D2 and 74G1, and rhamnose synthetase can make dulcoside A when fed the monoside, steviol-13-O-glucoside or steviol-19-O-glucoside, in the medium. Similarly, conversion of steviol to rebaudioside C in a recombinant microorganism can be accomplished by the expression of gene(s) encoding UGTs 85C2, 91D2, 74G1, and 76G1 and rhamnose synthetase when fed steviol, by the expression of genes encoding UGTs 91D2, 74G1 and 76G1, and rhamnose synthetase when fed steviol-13-O-glucoside, by the expression of genes encoding UGTs 85C2, 91D2 and 76G1, and rhamnose synthetase when fed steviol-19-O-glucoside, or by the expression of genes encoding UGTs 91D2 and 76G1 and rhamonse synthetase when fed rubusoside. Typically, one or more of these genes are recombinant genes that have been transformed into a microorganism that does not naturally possess them.
[0095] Suitable UGT91D2, UGT74G1, UGT76G1 and UGT85C2 polypeptides include the functional UGT polypeptides discussed herein. Rhamnose synthetase provides increased amounts of the UDP-rhamnose donor for rhamnosylation of the steviol compound acceptor. Suitable rhamnose synthetases include those made by Arabidopsis thaliana, such as the product of the A. thaliana RHM2 gene.
[0096] In some embodiments, a UGT79B3 polypeptide is substituted for a UGT91D2 polypeptide. Suitable UGT79B3 polypeptides include those made by Arabidopsis thaliana, which are capable of rhamnosylation of steviol 13-O-monoside in vitro. A. thaliana UGT79B3 can rhamnosylate glucosylated compounds to form 1,2-rhamnosides. The amino acid sequence of an Arabidopsis thaliana UGT79B3 is set forth in SEQ ID NO: 150. The nucleotide sequence encoding the amino acid sequence of SEQ ID NO:150 is set forth in SEQ ID NO:151.
[0097] In some embodiments rebaudioside C can be produced using in vitro methods while supplying the appropriate UDP-sugar or a cell-free system for regeneration of UDP-sugars. See, for example, "An integrated cell-free metabolic platform for protein production and synthetic biology" by Jewett M C, Calhoun K A, Voloshin A, Wuu J J and Swartz J R in Molecular Systems Biology, 4, article 220 (2008). Reactions may be carried out together, or stepwise. For instance, rebaudioside C may be produced from rubusoside with the addition of stoichiometric amounts of UDP-rhamnose and UGT91d2e, followed by addition of UGT76G1 and an excess or stoichiometric supply of UDP-glucose. In some embodiments phosphatases are used to remove secondary products and improve the reaction yields.
[0098] In other embodiments, the recombinant host expresses one or more genes involved in steviol biosynthesis, e.g., a CDPS gene, a KS gene, a KO gene and/or a KAH gene. Thus, for example, a microorganism containing a CDPS gene, a KS gene, a KO gene and a KAH gene, in addition to a UGT85C2, a UGT74G1, a UGT91D2 gene and a UGT76G1 gene, is capable of producing rebaudioside C without the necessity for including steviol in the culture media. In addition, the recombinant host typically expresses an endogenous or a recombinant gene encoding a rhamnose synthetase. Such a gene is useful in order to provide increased amounts of the UDP-rhamnose donor for rhamnosylation of the steviol compound acceptor. Suitable rhamnose synthetases include those made by Arabidopsis thaliana, such as the product of the A. thaliana RHM2 gene.
[0099] One with skill in the art will recognize that by modulating relative expression levels of different UGT genes as well as modulating the availability of UDP-rhamnose, a recombinant host can be tailored to specifically produce steviol and steviol glycoside products in a desired proportion. Transcriptional regulation of steviol biosynthesis genes, and steviol glycoside biosynthesis genes can be achieved by a combination of transcriptional activation and repression using techniques known to those in the art. For in vitro reactions, one with skill in the art will recognize that addition of different levels of UGT enzymes in combination or under conditions which impact the relative activities of the different UGTS in combination will direct synthesis towards a desired proportion of each steviol glycoside.
[0100] In some embodiments, the recombinant host further contains and expresses a recombinant GGPPS gene in order to provide increased levels of the diterpene precursor geranylgeranyl diphosphate, for increased flux through the rebaudioside A biosynthetic pathway. In some embodiments, the recombinant host further contains a genetic construct to silence or reduce the expression of non-steviol pathways consuming geranylgeranyl diphosphate, ent-Kaurenoic acid or farnesyl pyrophosphate, thereby providing increased flux through the steviol and steviol glycosides biosynthetic pathways. For example, flux to sterol production pathways such as ergosterol may be reduced by downregulation of the ERG9 gene. In cells that produce gibberellins, gibberellin synthesis may be downregulated to increase flux of ent-kaurenoic acid to steviol. In carotenoid-producing organisms, flux to steviol may be increased by downregulation of one or more carotenoid biosynthetic genes.
[0101] In some embodiments, the recombinant host further contains and expresses recombinant genes involved in diterpene biosynthesis or production of terpenoid precursors, e.g., genes in the MEP or MEV pathway discussed below.
[0102] In some embodiments, a recombinant host such as a microorganism produces steviol glycoside compositions that have greater than at least 15% rebaudioside C of the total steviol glycosides, e.g., at least 20% rebaudioside C, 30-40% rebaudioside C, 40-50% rebaudioside C, 50-60% rebaudioside C, 60-70% rebaudioside C, 70-80% rebaudioside C, 80-90% rebaudioside C. In some embodiments, a recombinant host such as a microorganism produces steviol glycoside compositions that have at least 90% rebaudioside C, e.g., 90-99% rebaudioside C. Other steviol glycosides present may include those depicted in FIGS. 2 A and B such as steviol monosides, steviol glucobiosides, steviol rhamnobiosides, rebaudioside A, and Dulcoside A. In some embodiments, the rebaudioside C-enriched composition produced by the host can be further purified and the rebaudioside C or Dulcoside A so purified may then be mixed with other steviol glycosides, flavors, or sweeteners to obtain a desired flavor system or sweetening composition. For instance, a rebaudioside C-enriched composition produced by a recombinant microorganism can be combined with a rebaudioside A, F, or D-enriched composition produced by a different recombinant microorganism, with rebaudioside A, F, or D purified from a Stevia extract, or with rebaudioside A, F, or D produced in vitro.
B. 4 Rebaudioside E and Rebaudioside D Biosynthesis Polypeptides
[0103] The biosynthesis of rebaudioside E and/or rebaudioside D involves glucosylation of the aglycone steviol. Specifically, rebaudioside E can be formed by glucosylation of the 13-OH of steviol which forms steviol-13-O-glucoside, glucosylation of the C-2' of the 13-O-glucose of steviol-13-O-glucoside which forms the steviol-1,2-bioside, glucosylation of the C-19 carboxyl of the 1,2-bioside to form 1,2-stevioside, and glucosylation of the C-2' of the 19-O-glucose of the 1,2-stevioside to form rebaudioside E. Rebaudioside D can be formed by glucosylation of the C-3' of the C-13-O-glucose of rebaudioside E. The order in which each glycosylation reaction occurs can vary. For example, the glucosylation of the C-2' of the 19-O-glucose may be the last step in the pathway, wherein Rebaudioside A is an intermediate in the pathway. See FIG. 2C.
[0104] It has been discovered that conversion of steviol to rebaudioside D in a recombinant host can be accomplished by the expression of gene(s) encoding the following functional UGTs: 85C2, 91D2, 74G1 and 76G1. Thus, a recombinant microorganism expressing these four UGTs can make rebaudioside D when fed steviol in the medium. Alternatively, a recombinant microorganism expressing two functional UGTs, 91 D2 and 76G1, can make rebaudioside D when fed rubusoside or 1,2-stevioside in the medium. As another alternative, a recombinant microorganism expressing three functional UGTs, 74G1, 91D2 and 76G1, can make rebaudioside D when fed the monoside, steviol-13-O-glucoside, in the medium. Similarly, conversion of steviol-19-O-glucoside to rebaudioside D in a recombinant microorganism can be accomplished by the expression of genes encoding UGTs 85C2, 91D2 and 76G1 when fed steviol-19-O-glucoside. Typically, one or more of these genes are recombinant genes that have been transformed into a host that does not naturally possess them.
[0105] Suitable UGT91D2, UGT74G1, UGT76G1 and UGT85C2 polypeptides include the functional UGT polypeptides discussed herein. In some embodiments, a UGT79B3 polypeptide is substituted for a UGT91, as discussed above.
[0106] In some embodiments, rebaudioside D or rebaudioside E can be produced using in vitro methods while supplying the appropriate UDP-sugar or a cell-free system for regeneration of UDP-sugars. See, for example, Jewett M C, et al. Molecular Systems Biology, Vol. 4, article 220 (2008). Conversions requiring multiple reactions may be carried out together, or stepwise. Rebaudioside D may be produced from Rebaudioside A that is commercially available enriched extract or produced via biosynthesis, with the addition of stoichiometric or excess amounts of UDP-glucose and UGT91D2e. In some embodiments phosphatases are used to remove secondary products and improve the reaction yields.
[0107] One with skill in the art will recognize that by modulating relative expression levels of different UGT genes, a recombinant host can be tailored to specifically produce steviol and steviol glycoside products in a desired proportion. Transcriptional regulation of steviol biosynthesis genes and steviol glycoside biosynthesis genes can be achieved by a combination of transcriptional activation and repression using techniques known to those in the art. For in vitro reactions, one with skill in the art will recognize that addition of different levels of UGT enzymes in combination or under conditions which impact the relative activities of the different UGTS in combination will direct synthesis towards a desired proportion of each steviol glycoside. One with skill in the art will recognize that a higher proportion of rebaudioside D or E or more efficient conversion to rebaudioside D or E can be obtained with a diglycosylation enzyme that has a higher activity for the 19-O-glucoside reaction as compared to the 13-O-glucoside reaction (substrates rebaudioside A and stevioside).
[0108] In other embodiments, the recombinant host expresses one or more genes involved in steviol biosynthesis, e.g., a CDPS gene, a KS gene, a KO gene and/or a KAH gene. Thus, for example, a microorganism containing a CDPS gene, a KS gene, a KO gene and a KAH gene, in addition to a UGT85C2, a UGT74G1, a UGT91D2 gene and a UGT76G1 gene, is capable of producing rebaudiosides E and D without the necessity for including steviol in the culture media.
[0109] In some embodiments, the recombinant host further contains and expresses a recombinant GGPPS gene in order to provide increased levels of the diterpene precursor geranylgeranyl diphosphate, for increased flux through the steviol biosynthetic pathway. In some embodiments, the recombinant host further contains a genetic construct to silence the expression of non-steviol pathways consuming geranylgeranyl diphosphate, ent-Kaurenoic acid or farnesyl pyrophosphate, thereby providing increased flux through the steviol and steviol glycosides biosynthetic pathways. For example, flux to sterol production pathways such as ergosterol may be reduced by downregulation of the ERG9 gene. In cells that produce gibberellins, gibberellin synthesis may be downregulated to increase flux of ent-kaurenoic acid to steviol. In carotenoid-producing organisms, flux to steviol may be increased by downregulation of one or more carotenoid biosynthetic genes. In some embodiments, the recombinant host further contains and expresses recombinant genes involved in diterpene biosynthesis or production of terpenoid precursors, e.g., genes in the MEP or MEV pathways discussed below.
[0110] In some embodiments, a recombinant host such as a microorganism produces rebaudioside D-enriched steviol glycoside compositions that have greater than at least 3% rebaudioside D by weight total steviol glycosides, e.g., at least 4% rebaudioside D at least 5% rebaudioside D, 10-20% rebaudioside D, 20-30% rebaudioside D, 30-40% rebaudioside D, 40-50% rebaudioside D, 50-60% rebaudioside D, 60-70% rebaudioside D, 70-80% rebaudioside D. In some embodiments, a recombinant host such as a microorganism produces steviol glycoside compositions that have at least 90% rebaudioside D, e.g., 90-99% rebaudioside D. Other steviol glycosides present may include those depicted in FIG. 2 C such as steviol monosides, steviol glucobiosides, rebaudioside A, rebaudioside E, and stevioside. In some embodiments, the rebaudioside D-enriched composition produced by the host (e.g., microorganism) can be further purified and the rebaudioside D or rebaudioside E so purified can then be mixed with other steviol glycosides, flavors, or sweeteners to obtain a desired flavor system or sweetening composition. For instance, a rebaudioside D-enriched composition produced by a recombinant host can be combined with a rebaudioside A, C, or F-enriched composition produced by a different recombinant host, with rebaudioside A, F, or C purified from a Stevia extract, or with rebaudioside A, F, or C produced in vitro.
B. 5 Rebaudioside F Biosynthesis Polypeptides
[0111] The biosynthesis of rebaudioside F involves glucosylation and xylosylation of the aglycone steviol. Specifically, rebaudioside F can be formed by glucosylation of the 13-OH of steviol which forms steviol-13-O-glucoside, xylosylation of the C-2' of the 13-O-glucose of steviol-13-O-glucoside which forms steviol-1,2-xylobioside, glucosylation of the C-19 carboxyl of the 1,2-xylobioside to form 1,2-stevioxyloside, and glucosylation of the C-3' of the C-13-O-glucose of 1,2-stevioxyloside to form rebaudioside F. The order in which each glycosylation reaction occurs can vary. See FIG. 2D.
[0112] It has been discovered that conversion of steviol to rebaudioside F in a recombinant host can be accomplished by the expression of genes encoding the following functional UGTs: 85C2, 91D2, 74G1 and 76G01, along with endogenous or recombinantly expressed UDP-glucose dehydrogenase and UDP-glucuronic acid decarboxylase. Thus, a recombinant microorganism expressing these four UGTs along with endogenous or recombinant UDP-glucose dehydrogenase and UDP-glucuronic acid decarboxylase can make rebaudioside F when fed steviol in the medium. Alternatively, a recombinant microorganism expressing two functional UGTs, 91 D2 and 7601, can make rebaudioside F when fed rubusoside in the medium. As another alternative, a recombinant microorganism expressing a functional UGT 76G1 can make rebaudioside F when fed 1,2 steviorhamnoside. As another alternative, a recombinant microorganism expressing three functional UGTs, 74G1, 91D2 and 76G1, can make rebaudioside F when fed the monoside, steviol-13-O-glucoside, in the medium. Similarly, conversion of steviol-19-O-glucoside to rebaudioside F in a recombinant microorganism can be accomplished by the expression of genes encoding UGTs 85C2, 91 D2 and 76G1 when fed steviol-19-O-glucoside. Typically, one or more of these genes are recombinant genes that have been transformed into a host that does not naturally possess them.
[0113] Suitable UGT91D2, UGT74G1, UGT76G1 and UGT85C2 polypeptides include the functional UGT polypeptides discussed herein. In some embodiments, a UGT79B3 polypeptide is substituted for a UGT91, as discussed above. UDP-glucose dehydrogenase and UDP-glucuronic acid decarboxylase provide increased amounts of the UDP-xylose donor for xylosylation of the steviol compound acceptor. Suitable UDP-glucose dehydrogenases and UDP-glucuronic acid decarboxylases include those made by Arabidopsis thaliana or Cryptococcus neoformans. For example, suitable UDP-glucose dehydrogenase and UDP-glucuronic acid decarboxylases polypeptides can be encoded by the A. thaliana UGD1 gene and UXS3 gene, respectively. See, Oka and Jigami, FEBS J. 273:2645-2657 (2006).
[0114] In some embodiments rebaudioside F can be produced using in vitro methods while supplying the appropriate UDP-sugar or a cell-free system for regeneration of UDP-sugars. See, for example, Jewett M C, et al. Molecular Systems Biology, Vol. 4, article 220 (2008). Reactions may be carried out together, or stepwise. For instance, rebaudioside F may be produced from rubusoside with the addition of stoichiometric amounts of UDP-xylose and UGT91D2e, followed by addition of UGT76G1 and an excess or stoichiometric supply of UDP-glucose. In some embodiments phosphatases are used to remove secondary products and improve the reaction yields.
[0115] In other embodiments, the recombinant host expresses one or more genes involved in steviol biosynthesis, e.g., a CDPS gene, a KS gene, a KO gene and/or a KAH gene. Thus, for example, a microorganism containing a CDPS gene, a KS gene, a KO gene and a KAH gene, in addition to a UGT85C2, a UGT74G1, a UGT91D2 gene and a UGT76G1 gene, is capable of producing rebaudioside F without the necessity for including steviol in the culture media. In addition, the recombinant host typically expresses an endogenous or a recombinant gene encoding a UDP-glucose dehydrogenase and a UDP-glucuronic acid decarboxylase. Such genes are useful in order to provide increased amounts of the UDP-xylose donor for xylosylation of the steviol compound acceptor. Suitable UDP-glucose dehydrogenases and UDP-glucuronic acid decarboxylases include those made by Arabidopsis thaliana or Cryptococcus neoformans. For example, suitable UDP-glucose dehydrogenase and UDP-glucuronic acid decarboxylases polypeptides can be encoded by the A. thaliana UGD1 gene and UXS3 gene, respectively. See, Oka and Jigami, FEBS J. 273:2645-2657 (2006).
[0116] One with skill in the art will recognize that by modulating relative expression levels of different UGT genes as well as modulating the availability of UDP-xylose, a recombinant microorganism can be tailored to specifically produce steviol and steviol glycoside products in a desired proportion. Transcriptional regulation of steviol biosynthesis genes can be achieved by a combination of transcriptional activation and repression using techniques known to those in the art. For in vitro reactions, one with skill in the art will recognize that addition of different levels of UGT enzymes in combination or under conditions which impact the relative activities of the different UGTS in combination will direct synthesis towards a desired proportion of each steviol glycosides.
[0117] In some embodiments, the recombinant host further contains and expresses a recombinant GGPPS gene in order to provide increased levels of the diterpene precursor geranylgeranyl diphosphate, for increased flux through the steviol biosynthetic pathway. In some embodiments, the recombinant host further contains a genetic construct to silence the expression of non-steviol pathways consuming geranylgeranyl diphosphate, ent-Kaurenoic acid or farnesyl pyrophosphate, thereby providing increased flux through the steviol and steviol glycosides biosynthetic pathways. For example, flux to sterol production pathways such as ergosterol may be reduced by downregulation of the ERG9 gene. In cells that produce gibberellins, gibberellin synthesis may be downregulated to increase flux of ent-kaurenoic acid to steviol. In carotenoid-producing organisms, flux to steviol may be increased by downregulation of one or more carotenoid biosynthetic genes. In some embodiments, the recombinant host further contains and expresses recombinant genes involved in diterpene biosynthesis, e.g., genes in the MEP pathway discussed below.
[0118] In some embodiments, a recombinant host such as a microorganism produces rebaudioside F-enriched steviol glycoside compositions that have greater than at least 4% rebaudioside F by weight total steviol glycosides, e.g., at least 5% rebaudioside F, at least 6% of rebaudioside F, 10-20% rebaudioside F, 20-30% rebaudioside F, 30-40% rebaudioside F, 40-50% rebaudioside F, 50-60% rebaudioside F, 60-70% rebaudioside F, 70-80% rebaudioside F. In some embodiments, a recombinant host such as a microorganism produces steviol glycoside compositions that have at least 90% rebaudioside F, e.g., 90-99% rebaudioside F. Other steviol glycosides present may include those depicted in FIGS. 2 A and D such as steviol monosides, steviol glucobiosides, steviol xylobiosides, rebaudioside A, stevioxyloside, rubusoside and stevioside. In some embodiments, the rebaudioside F-enriched composition produced by the host can be mixed with other steviol glycosides, flavors, or sweeteners to obtain a desired flavor system or sweetening composition. For instance, a rebaudioside F-enriched composition produced by a recombinant microorganism can be combined with a rebaudioside A, C, or D-enriched composition produced by a different recombinant microorganism, with rebaudioside A, C, or D purified from a Stevia extract, or with rebaudioside A, C, or D produced in vitro.
C. Other Polypeptides
[0119] Genes for additional polypeptides whose expression facilitates more efficient or larger scale production of steviol or a steviol glycoside can also be introduced into a recombinant host. For example, a recombinant microorganism, plant, or plant cell can also contain one or more genes encoding a geranylgeranyl diphosphate synthase (GGPPS, also referred to as GGDPS). As another example, the recombinant host can contain one or more genes encoding a rhamnose synthetase, or one or more genes encoding a UDP-glucose dehydrogenase and/or a UDP-glucuronic acid decarboxylase. As another example, a recombinant host can also contain one or more genes encoding a cytochrome P450 reductase (CPR). Expression of a recombinant CPR facilitates the cycling of NADP+ to regenerate NADPH, which is utilized as a cofactor for terpenoid biosynthesis. Other methods can be used to regenerate NADHP levels as well. In circumstances where NADPH becomes limiting; strains can be further modified to include exogenous transhydrogenase genes. See, e.g., Sauer et al., J. Biol. Chem. 279: 6613-6619 (2004). Other methods are known to those with skill in the art to reduce or otherwise modify the ratio of NADH/NADPH such that the desired cofactor level is increased.
[0120] As another example, the recombinant host can contain one or more genes encoding one or more enzymes in the MEP pathway or the mevalonate pathway. Such genes are useful because they can increase the flux of carbon into the diterpene biosynthesis pathway, producing geranylgeranyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate generated by the pathway. The geranylgeranyl diphosphate so produced can be directed towards steviol and steviol glycoside biosynthesis due to expression of steviol biosynthesis polypeptides and steviol glycoside biosynthesis polypeptides.
C. 1 MEP Biosynthesis Polypeptides
[0121] In some embodiments, a recombinant host contains one or more genes encoding enzymes involved in the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes in the MEP pathway include deoxyxylulose 5-phosphate synthase (DXS), D-1-deoxyxylulose 5-phosphate reductoisomerase (DXR), 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (CMS), 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (CMK), 4-diphosphocytidyl-2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS), 1-hydroxy-2-methyl-2(E)-butenyl 4-diphosphate synthase (HDS) and 1-hydroxy-2-methyl-2(E)-butenyl 4-diphosphate reductase (HDR). One or more DXS genes, DXR genes, CMS genes, CMK genes, MCS genes, HDS genes and/or HDR genes can be incorporated into a recombinant microorganism. See, Rodriguez-Concepcion and Boronat, Plant Phys. 130: 1079-1089 (2002).
[0122] Suitable genes encoding DXS, DXR, CMS, CMK, MCS, HDS and/or HDR polypeptides include those made by E. coli, Arabidopsis thaliana and Synechococcus leopoliensis. Nucleotide sequences encoding DXR polypeptides are described, for example, in U.S. Pat. No. 7,335,815.
C. 2 Mevalonate Biosynthesis Polypeptides
[0123] In some embodiments, a recombinant host contains one or more genes encoding enzymes involved in the mevalonate pathway for isoprenoid biosynthesis. Genes suitable for transformation into a host encode enzymes in the mevalonate pathway such as a truncated 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase (tHMG), and/or a gene encoding a mevalonate kinase (MK), and/or a gene encoding a phosphomevalonate kinase (PMK), and/or a gene encoding a mevalonate pyrophosphate decarboxylase (MPPD). Thus, one or more HMG-CoA reductase genes, MK genes, PMK genes, and/or MPPD genes can be incorporated into a recombinant host such as a microorganism.
[0124] Suitable genes encoding mevalonate pathway polypeptides are known. For example, suitable polypeptides include those made by E. coli, Paracoccus denitrificans, Saccharomyces cerevisiae, Arabidopsis thaliana, Kitasatospora griseola, Homo sapiens, Drosophila melanogaster, Gallus gallus, Streptomyces sp. KO-3988, Nicotiana attenuata, Kitasatospora griseola, Hevea brasiliensis, Enterococcus faecium and Haematococcus pluvialis. See, e.g., U.S. Pat. Nos. 7,183,089, 5,460,949, and 5,306,862.
D. Functional Homolous
[0125] Functional homologs of the polypeptides described above are also suitable for use in producing steviol or steviol glycosides in a recombinant host. A functional homolog is a polypeptide that has sequence similarity to a reference polypeptide, and that carries out one or more of the biochemical or physiological function(s) of the reference polypeptide. A functional homolog and the reference polypeptide may be natural occurring polypeptides, and the sequence similarity may be due to convergent or divergent evolutionary events. As such, functional homologs are sometimes designated in the literature as homologs, or orthologs, or paralogs. Variants of a naturally occurring functional homolog, such as polypeptides encoded by mutants of a wild type coding sequence, may themselves be functional homologs. Functional homologs can also be created via site-directed mutagenesis of the coding sequence for a polypeptide, or by combining domains from the coding sequences for different naturally-occurring polypeptides ("domain swapping"). Techniques for modifying genes encoding functional UGT polypeptides described herein are known and include, inter alia, directed evolution techniques, site-directed mutagenesis techniques and random mutagenesis techniques, and can be useful to increase specific activity of a polypeptide, alter substrate specificity, alter expression levels, alter subcellular location, or modify polypeptide:polypeptide interactions in a desired manner. Such modified polypeptides are considered functional homologs. The term "functional homolog" is sometimes applied to the nucleic acid that encodes a functionally homologous polypeptide.
[0126] Functional homologs can be identified by analysis of nucleotide and polypeptide sequence alignments. For example, performing a query on a database of nucleotide or polypeptide sequences can identify homologs of steviol or steviol glycoside biosynthesis polypeptides. Sequence analysis can involve BLAST, Reciprocal BLAST, or PSI-BLAST analysis of nonredundant databases using a GGPPS, a CDPS, a KS, a KO or a KAH amino acid sequence as the reference sequence. Amino acid sequence is, in some instances, deduced from the nucleotide sequence. Those polypeptides in the database that have greater than 40% sequence identity are candidates for further evaluation for suitability as a steviol or steviol glycoside biosynthesis polypeptide. Amino acid sequence similarity allows for conservative amino acid substitutions, such as substitution of one hydrophobic residue for another or substitution of one polar residue for another. If desired, manual inspection of such candidates can be carried out in order to narrow the number of candidates to be further evaluated. Manual inspection can be performed by selecting those candidates that appear to have domains present in steviol biosynthesis polypeptides, e.g., conserved functional domains.
[0127] Conserved regions can be identified by locating a region within the primary amino acid sequence of a steviol or a steviol glycoside biosynthesis polypeptide that is a repeated sequence, forms some secondary structure (e.g., helices and beta sheets), establishes positively or negatively charged domains, or represents a protein motif or domain. See, e.g., the Pfam web site describing consensus sequences for a variety of protein motifs and domains on the World Wide Web at sanger.ac.uk/Software/Pfam/and pfam.janelia.org/. The information included at the Pfam database is described in Sonnhammer et al., Nucl. Acids Res., 26:320-322 (1998); Sonnhammer et al., Proteins. 28:405-420 (1997); and Bateman et al., Nucl. Acids Res., 27:260-262 (1999). Conserved regions also can be determined by aligning sequences of the same or related polypeptides from closely related species. Closely related species preferably are from the same family. In some embodiments, alignment of sequences from two different species is adequate.
[0128] Typically, polypeptides that exhibit at least about 40% amino acid sequence identity are useful to identify conserved regions. Conserved regions of related polypeptides exhibit at least 45% amino acid sequence identity (e.g., at least 50%, at least 60%/o, at least 70%, at least 80%, or at least 90% amino acid sequence identity). In some embodiments, a conserved region exhibits at least 92%, 94%, 96%, 98%, or 99% amino acid sequence identity.
[0129] For example, polypeptides suitable for producing steviol glycosides in a recombinant host include functional homologs of UGT91D2e, UGT91D2m, UGT85C, and UGT76G. Such homologs have greater than 90% (e.g., at least 95% or 99%) sequence identity to the amino acid sequence of UGT91D2e (SEQ ID NO:5), UGT91D2m (SEQ ID NO:10), UGT85C (SEQ ID NO:3), or UGT76G (SEQ ID NO:7). Variants of UGT91D2, UGT85C, and UGT76G polypeptides typically have 10 or fewer amino acid substitutions within the primary amino acid sequence, e.g., 7 or fewer amino acid substitutions, 5 or conservative amino acid substitutions, or between 1 and 5 substitutions. However, in some embodiments, variants of UGT91D2, UGT85C, and UGT76G polypeptides can have 10 or more amino acid substitutions (e.g., 10, 15, 20, 25, 30, 35, 10-20, 10-35, 20-30, or 25-35 amino acid substitutions). The substitutions may be conservative, or in some embodiments, non-conservative. Non-limiting examples of non-conservative changes in UGT91D2e polypeptides include glycine to arginine and tryptophan to arginine. Non-limiting examples of non-conservative substitutions in UGT76G polypeptides include valine to glutamic acid, glycine to glutamic acid, glutamine to alanine, and serine to proline. Non-limiting examples of changes to UGT85C polypeptides include histidine to aspartic acid, proline to serine, lysine to threonine, and threonine to arginine.
[0130] In some embodiments, a useful UGT91 D2 homolog can have amino acid substitutions (e.g., conservative amino acid substitutions) in regions of the polypeptide that are outside of predicted loops, e.g., residues 20-26, 39-43, 88-95, 121-124, 142-158, 185-198, and 203-214 are predicted loops in the N-terminal domain and residues 381-386 are predicted loops in the C-terminal domain of SEQ ID NO:5. For example, a useful UGT91D2 homolog can include at least one amino acid substitution at residues 1-19, 27-38, 44-87, 96-120, 125-141, 159-184, 199-202, 215-380, or 387-473 of SEQ ID NO:5. In some embodiments, a UGT91D2 homolog can have an amino acid substitution at one or more residues selected from the group consisting of residues 30, 93, 99, 122, 140, 142, 148, 153, 156, 195, 196, 199, 206, 207, 211, 221, 286, 343, 427, and 438 of SEQ ID NO:5. For example, a UGT91D2 functional homolog can have an amino acid substitution at one or more of residues 206, 207, and 343, such as an arginine at residue 206, a cysteine at residue 207, and an arginine at residue 343 of SEQ ID NO:5. See, SEQ ID NO:95. Other functional homologs of UGT91 D2 can have one or more of the following: a tyrosine or phenylalanine at residue 30, a proline or glutamine at residue 93, a serine or valine at residue 99, a tyrosine or a phenylalanine at residue 122, a histidine or tyrosine at residue 140, a serine or cysteine at residue 142, an alanine or threonine at residue 148, a methionine at residue 152, an alanine at residue 153, an alanine or serine at residue 156, a glycine at residue 162, a leucine or methionine at residue 195, a glutamic acid at residue 196, a lysine or glutamic acid at residue 199, a leucine or methionine at residue 211, a leucine at residue 213, a serine or phenylalanine at residue 221, a valine or isoleucine at residue 253, a valine or alanine at residue 286, a lysine or asparagine at residue 427, an alanine at residue 438, and either an alanine or threonine at residue 462 of SEQ ID NO:5. See, Examples 11 and 16, and Tables 12 and 14. A useful variant UGT91 D2 polypeptide also can be constructed based on the alignment set forth in FIG. 8.
[0131] In some embodiments, a useful UGT85C homolog can have one or more amino acid substitutions at residues 9, 10, 13, 15, 21, 27, 60, 65, 71, 87, 91, 220, 243, 270, 289, 298, 334, 336, 350, 368, 389, 394, 397, 418, 420, 440, 441, 444, and 471 of SEQ ID NO:3. Non-limiting examples of useful UGT85C homologs include polypeptides having substitutions (with respect to SEQ ID NO:3) at residue 65; at residue 65 in combination with residue 15, 270, 418, 440, or 441; residues 13, 15, 60, 270, 289, and 418; substitutions at residues 13, 60, and 270; substitutions at residues 60 and 87; substitutions at residues 65, 71, 220, 243, and 270; substitutions at residues 65, 71, 220, 243, 270, and 441; substitutions at residues 65, 71, 220, 389, and 394; substitutions at residues 65, 71, 270, and 289; substitutions at residues 220, 243, 270, and 334; or substitutions at residues 270 and 289. See, Example 17 and Table 15.
[0132] In some embodiments, a useful UGT76G homolog can have one or more amino acid substitutions at residues 29, 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 266, 273, 274, 284, 285, 291, 330, 331, and 346 of SEQ ID NO:7. Non-limiting examples of useful UGT76G homologs include polypeptides having substitutions (with respect to SEQ ID NO:7) at residues 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, and 291; residues 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 266, 273, 274, 284, 285, and 291; or residues 74, 87, 91, 116, 123, 125, 126, 130, 145, 192, 193, 194, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 266, 273, 274, 284, 285, 291, 330, 331, and 346. See, Example 18 and Table 16.
[0133] Methods to modify the substrate specificity of, for example UGT91D2e, are known to those skilled in the art, and include without limitation site-directed/rational mutagenesis approaches, random directed evolution approaches and combinations in which random mutagenesis/saturation techniques are performed near the active site of the enzyme. For example see Sarah A. Osmani, et al. Phytochemistry 70 (2009) 325-347.
[0134] A candidate sequence typically has a length that is from 80 percent to 200 percent of the length of the reference sequence, e.g., 82, 85, 87, 89, 90, 93, 95, 97, 99, 100, 105, 110, 115, 120, 130, 140, 150, 160, 170, 180, 190, or 200 percent of the length of the reference sequence. A percent identity for any candidate nucleic acid or polypeptide relative to a reference nucleic acid or polypeptide can be determined as follows. A reference sequence (e.g., a nucleic acid sequence or an amino acid sequence) is aligned to one or more candidate sequences using the computer program ClustalW (version 1.83, default parameters), which allows alignments of nucleic acid or polypeptide sequences to be carried out across their entire length (global alignment). Chenna et al., Nucleic Acids Res., 31(13):3497-500 (2003).
[0135] ClustalW calculates the best match between a reference and one or more candidate sequences, and aligns them so that identities, similarities and differences can be determined. Gaps of one or more residues can be inserted into a reference sequence, a candidate sequence, or both, to maximize sequence alignments. For fast pairwise alignment of nucleic acid sequences, the following default parameters are used: word size: 2; window size: 4; scoring method: percentage; number of top diagonals: 4; and gap penalty: 5. For multiple alignment of nucleic acid sequences, the following parameters are used: gap opening penalty: 10.0; gap extension penalty: 5.0; and weight transitions: yes. For fast pairwise alignment of protein sequences, the following parameters are used: word size: 1; window size: 5; scoring method: percentage; number of top diagonals: 5; gap penalty: 3. For multiple alignment of protein sequences, the following parameters are used: weight matrix: blosum; gap opening penalty: 10.0; gap extension penalty: 0.05; hydrophilic gaps: on; hydrophilic residues: Gly, Pro, Scr, Asn, Asp, Gln, Glu, Arg, and Lys; residue-specific gap penalties: on. The ClustalW output is a sequence alignment that reflects the relationship between sequences. ClustalW can be run, for example, at the Baylor College of Medicine Search Launcher site on the World Wide Web (searchlauncher.bcm.tmc.edu/multi-align/multi-align.html) and at the European Bioinformatics Institute site on the World Wide Web (ebi.ac.uk/clustalw).
[0136] To determine percent identity of a candidate nucleic acid or amino acid sequence to a reference sequence, the sequences are aligned using ClustalW, the number of identical matches in the alignment is divided by the length of the reference sequence, and the result is multiplied by 100. It is noted that the percent identity value can be rounded to the nearest tenth. For example, 78.11, 78.12, 78.13, and 78.14 are rounded down to 78.1, while 78.15, 78.16, 78.17, 78.18, and 78.19 are rounded up to 78.2.
[0137] It will be appreciated that a functional UGT91D2 polypeptide can include additional amino acids that are not involved in glucosylation or other enzymatic activities carried out by UGT91D2, and thus such a polypeptide can be longer than would otherwise be the case. For example, a UGT91D2 polypeptide can include a purification tag, a chloroplast transit peptide, a mitochondrial transit peptide, an amyloplast peptide, signal peptide, or a secretion tag added to the amino or carboxy terminus. In some embodiments, a UGT91D2 polypeptide includes an amino acid sequence that functions as a reporter, e.g., a green fluorescent protein or yellow fluorescent protein.
II. Steviol and Steviol Glycoside Biosynthesis Nucleic Acids
[0138] A recombinant gene encoding a polypeptide described herein comprises the coding sequence for that polypeptide, operably linked in sense orientation to one or more regulatory regions suitable for expressing the polypeptide. Because many microorganisms are capable of expressing multiple gene products from a polycistronic mRNA, multiple polypeptides can be expressed under the control of a single regulatory region for those microorganisms, if desired. A coding sequence and a regulatory region are considered to be operably linked when the regulatory region and coding sequence are positioned so that the regulatory region is effective for regulating transcription or translation of the sequence. Typically, the translation initiation site of the translational reading frame of the coding sequence is positioned between one and about fifty nucleotides downstream of the regulatory region for a monocistronic gene.
[0139] In many cases, the coding sequence for a polypeptide described herein is identified in a species other than the recombinant host, i.e., is a heterologous nucleic acid. Thus, if the recombinant host is a microorganism, the coding sequence can be from other prokaryotic or eukaryotic microorganisms, from plants or from animals. In some case, however, the coding sequence is a sequence that is native to the host and is being reintroduced into that organism. A native sequence can often be distinguished from the naturally occurring sequence by the presence of non-natural sequences linked to the exogenous nucleic acid, e.g., non-native regulatory sequences flanking a native sequence in a recombinant nucleic acid construct. In addition, stably transformed exogenous nucleic acids typically are integrated at positions other than the position where the native sequence is found.
[0140] "Regulatory region" refers to a nucleic acid having nucleotide sequences that influence transcription or translation initiation and rate, and stability and/or mobility of a transcription or translation product. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5' and 3' untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, introns, and combinations thereof. A regulatory region typically comprises at least a core (basal) promoter. A regulatory region also may include at least one control element, such as an enhancer sequence, an upstream element or an upstream activation region (UAR). A regulatory region is operably linked to a coding sequence by positioning the regulatory region and the coding sequence so that the regulatory region is effective for regulating transcription or translation of the sequence. For example, to operably link a coding sequence and a promoter sequence, the translation initiation site of the translational reading frame of the coding sequence is typically positioned between one and about fifty nucleotides downstream of the promoter. A regulatory region can, however, be positioned as much as about 5,000 nucleotides upstream of the translation initiation site, or about 2,000 nucleotides upstream of the transcription start site.
[0141] The choice of regulatory regions to be included depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and preferential expression during certain culture stages. It is a routine matter for one of skill in the art to modulate the expression of a coding sequence by appropriately selecting and positioning regulatory regions relative to the coding sequence. It will be understood that more than one regulatory region may be present, e.g., introns, enhancers, upstream activation regions, transcription terminators, and inducible elements.
[0142] One or more genes can be combined in a recombinant nucleic acid construct in "modules" useful for a discrete aspect of steviol and/or steviol glycoside production. Combining a plurality of genes in a module, particularly a polycistronic module, facilitates the use of the module in a variety of species. For example, a steviol biosynthesis gene cluster, or a UGT gene cluster, can be combined in a polycistronic module such that, after insertion of a suitable regulatory region, the module can be introduced into a wide variety of species. As another example, a UGT gene cluster can be combined such that each UGT coding sequence is operably linked to a separate regulatory region, to form a UGT module. Such a module can be used in those species for which monocistronic expression is necessary or desirable. In addition to genes useful for steviol or steviol glycoside production, a recombinant construct typically also contains an origin of replication, and one or more selectable markers for maintenance of the construct in appropriate species.
[0143] It will be appreciated that because of the degeneracy of the genetic code, a number of nucleic acids can encode a particular polypeptide; i.e., for many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino acid. Thus, codons in the coding sequence for a given polypeptide can be modified such that optimal expression in a particular host is obtained, using appropriate codon bias tables for that host (e.g., microorganism). SEQ ID NOs: 18-25, 34-36, 40-43, 48-49, 52-55, 60-64, and 70-72 set forth nucleotide sequences encoding certain enzymes for steviol and steviol glycoside biosynthesis, modified for increased expression in yeast. As isolated nucleic acids, these modified sequences can exist as purified molecules and can be incorporated into a vector or a virus for use in constructing modules for recombinant nucleic acid constructs.
[0144] In some cases, it is desirable to inhibit one or more functions of an endogenous polypeptide in order to divert metabolic intermediates towards steviol or steviol glycoside biosynthesis. For example, it may be desirable to downregulate synthesis of sterols in a yeast strain in order to further increase steviol or steviol glycoside production, e.g., by downregulating squalene epoxidase. As another example, it may be desirable to inhibit degradative functions of certain endogenous gene products, e.g., glycohydrolases that remove glucose moieties from secondary metabolites. As another example, expression of membrane transporters involved in transport of steviol glycosides can be inhibited, such that secretion of glycosylated steviosides is inhibited. Such regulation can be beneficial in that secretion of steviol glycosides can be inhibited for a desired period of time during culture of the microorganism, thereby increasing the yield of glycoside product(s) at harvest. In such cases, a nucleic acid that inhibits expression of the polypeptide or gene product may be included in a recombinant construct that is transformed into the strain. Alternatively, mutagenesis can be used to generate mutants in genes for which it is desired to inhibit function.
III. Hosts
A. Microorganisms
[0145] A number of prokaryotes and eukaryotes are suitable for use in constructing the recombinant microorganisms described herein, e.g., gram-negative bacteria, yeast and fungi. A species and strain selected for use as a steviol or steviol glycoside production strain is first analyzed to determine which production genes are endogenous to the strain and which genes are not present. Genes for which an endogenous counterpart is not present in the strain are assembled in one or more recombinant constructs, which are then transformed into the strain in order to supply the missing function(s).
[0146] Exemplary prokaryotic and eukaryotic species are described in more detail below. However, it will be appreciated that other species may be suitable. For example, suitable species may be in a genus selected from the group consisting of Agaricus, Aspergillus, Bacillus, Candida, Corynebacterium, Escherichia, Fusarium/Gibberella, Kluyvemmyces, Laetiporus, Lentinus, Phaffia, Phanerochaete, Pichia, Physcomitrella, Rhodoturula, Saccharomyces, Schizosaccharomyces, Sphaceloma, Xanthophyllomyces and Yarrowia. Exemplary species from such genera include Lentinus tigrinus, Laetiporus sulphureus, Phanerochaete chrysosporium, Pichia pastoris, Physcomitrella patens, Rhodoturula glutinis 32, Rhodoturula mucilaginosa, Phaffia rhodozyma UBV-AX, Xanthophyllomyces dendrorhous, Fusarium fujikuroi/Gibberella fujikuroi, Candida utilis and Yarrowia lipolytica. In some embodiments, a microorganism can be an Ascomycete such as Gibberella fujikuroi, Kluyveromyces lactis, Schizosaccharomyces pombe, Aspergillus niger, or Saccharomyces cerevisiae. In some embodiments, a microorganism can be a prokaryote such as Escherichia coli, Rhodobacter sphaeroides, or Rhodobacter capsulatus. It will be appreciated that certain microorganisms can be used to screen and test genes of interest in a high throughput manner, while other microorganisms with desired productivity or growth characteristics can be used for large-scale production of steviol glycosides.
[0147] Saccharomyces cerevisiae
[0148] Saccharomyces cerevisiae is a widely used chassis organism in synthetic biology, and can be used as the recombinant microorganism platform. There are libraries of mutants, plasmids, detailed computer models of metabolism and other information available for S. cerevisiae, allowing for rational design of various modules to enhance product yield. Methods are known for making recombinant microorganisms.
[0149] A steviol biosynthesis gene cluster can be expressed in yeast using any of a number of known promoters. Strains that overproduce terpenes are known and can be used to increase the amount of geranylgeranyl diphosphate available for steviol and steviol glycoside production.
[0150] Aspergillus spp.
[0151] Aspergillus species such as A. oryzae, A. niger and A. sojae are widely used microorganisms in food production, and can also be used as the recombinant microorganism platform. Nucleotide sequences are available for genomes of A. nidulans, A. fumigatus, A. oryzae, A. clavatus, A. flavus, A. niger, and A. terreus, allowing rational design and modification of endogenous pathways to enhance flux and increase product yield. Metabolic models have been developed for Aspergillus, as well as transcriptomic studies and proteomics studies. A. niger is cultured for the industrial production of a number of food ingredients such as citric acid and gluconic acid, and thus species such as A. niger are generally suitable for the production of food ingredients such as steviol and steviol glycosides. Example 23 describes cloning methodology for production of steviol glycosides in Aspergillus nidulans.
[0152] Escherichia coli
[0153] Escherichia coli, another widely used platform organism in synthetic biology, can also be used as the recombinant microorganism platform. Similar to Saccharomyces, there are libraries of mutants, plasmids, detailed computer models of metabolism and other information available for E. coli, allowing for rational design of various modules to enhance product yield. Methods similar to those described above for Saccharomyces can be used to make recombinant E. coli microorganisms.
[0154] Agaricus, Gibberella, and Phanerochaete spp.
[0155] Agaricus, Gibberella, and Phanerochaete spp. can be useful because they are known to produce large amounts of gibberellin in culture. Thus, the terpene precursors for producing large amounts of steviol and steviol glycosides are already produced by endogenous genes. Thus, modules containing recombinant genes for steviol or steviol glycoside biosynthesis polypeptides can be introduced into species from such genera without the necessity of introducing mevalonate or MEP pathway genes.
[0156] Rhodobacter spp.
[0157] Rhodobacter can be use as the recombinant microorganism platform. Similar to E. coli, there are libraries of mutants available as well as suitable plasmid vectors, allowing for rational design of various modules to enhance product yield. Isoprenoid pathways have been engineered in membraneous bacterial species of Rhodobacter for increased production of carotenoid and CoQ10. See, U.S. Patent Publication Nos. 20050003474 and 20040078846. Methods similar to those described above for E. coli can be used to make recombinant Rhodobacter microorganisms.
[0158] Physcomitrella spp.
[0159] Physcomitrella mosses, when grown in suspension culture, have characteristics similar to yeast or other fungal cultures. This genera is becoming an important type of cell for production of plant secondary metabolites, which can be difficult to produce in other types of cells. Example 22 describes production of active UGT enzymes in the steviol glycoside pathway in P. patens.
B. Plant Cells or Plants
[0160] In some embodiments, the nucleic acids and polypeptides described herein are introduced into plants or plant cells to increase overall steviol glycoside production or enrich for the production of specific steviol glycosides in proportion to others. Thus, a host can be a plant or a plant cell that includes at least one recombinant gene described herein. A plant or plant cell can be transformed by having a recombinant gene integrated into its genome, i.e., can be stably transformed. Stably transformed cells typically retain the introduced nucleic acid with each cell division. A plant or plant cell can also be transiently transformed such that the recombinant gene is not integrated into its genome. Transiently transformed cells typically lose all or some portion of the introduced nucleic acid with each cell division such that the introduced nucleic acid cannot be detected in daughter cells after a sufficient number of cell divisions. Both transiently transformed and stably transformed transgenic plants and plant cells can be useful in the methods described herein.
[0161] Transgenic plant cells used in methods described herein can constitute part or all of a whole plant. Such plants can be grown in a manner suitable for the species under consideration, either in a growth chamber, a greenhouse, or in a field. Transgenic plants can be bred as desired for a particular purpose, e.g., to introduce a recombinant nucleic acid into other lines, to transfer a recombinant nucleic acid to other species, or for further selection of other desirable traits. Alternatively, transgenic plants can be propagated vegetatively for those species amenable to such techniques. As used herein, a transgenic plant also refers to progeny of an initial transgenic plant provided the progeny inherits the transgene. Seeds produced by a transgenic plant can be grown and then selfed (or outcrossed and selfed) to obtain seeds homozygous for the nucleic acid construct.
[0162] Transgenic plants can be grown in suspension culture, or tissue or organ culture. For the purposes of this invention, solid and/or liquid tissue culture techniques can be used. When using solid medium, transgenic plant cells can be placed directly onto the medium or can be placed onto a filter that is then placed in contact with the medium. When using liquid medium, transgenic plant cells can be placed onto a flotation device, e.g., a porous membrane that contacts the liquid medium.
[0163] When transiently transformed plant cells are used, a reporter sequence encoding a reporter polypeptide having a reporter activity can be included in the transformation procedure and an assay for reporter activity or expression can be performed at a suitable time after transformation. A suitable time for conducting the assay typically is about 1-21 days after transformation, e.g., about 1-14 days, about 1-7 days, or about 1-3 days. The use of transient assays is particularly convenient for rapid analysis in different species, or to confirm expression of a heterologous polypeptide whose expression has not previously been confirmed in particular recipient cells.
[0164] Techniques for introducing nucleic acids into monocotyledonous and dicotyledonous plants are known in the art, and include, without limitation, Agrobacterium-mediated transformation, viral vector-mediated transformation, electroporation and particle gun transformation, U.S. Pat. Nos. 5,538,880; 5,204,253; 6,329,571; and 6,013,863. If a cell or cultured tissue is used as the recipient tissue for transformation, plants can be regenerated from transformed cultures if desired, by techniques known to those skilled in the art.
[0165] A population of transgenic plants can be screened and/or selected for those members of the population that have a trait or phenotype conferred by expression of the transgene. For example, a population of progeny of a single transformation event can be screened for those plants having a desired level of expression of a steviol or steviol glycoside biosynthesis polypeptide or nucleic acid. Physical and biochemical methods can be used to identify expression levels. These include Southern analysis or PCR amplification for detection of a polynucleotide; Northern blots, SI RNase protection, primer-extension, or RT-PCR amplification for detecting RNA transcripts; enzymatic assays for detecting enzyme or ribozyme activity of polypeptides and polynucleotides; and protein gel electrophoresis, Western blots, immunoprecipitation, and enzyme-linked immunoassays to detect polypeptides. Other techniques such as in situ hybridization, enzyme staining, and immunostaining also can be used to detect the presence or expression of polypeptides and/or nucleic acids. Methods for performing all of the referenced techniques are known. As an alternative, a population of plants comprising independent transformation events can be screened for those plants having a desired trait, such as production of a steviol glycoside or modulated biosynthesis of a steviol glycoside. Selection and/or screening can be carried out over one or more generations, and/or in more than one geographic location. In some cases, transgenic plants can be grown and selected under conditions which induce a desired phenotype or are otherwise necessary to produce a desired phenotype in a transgenic plant. In addition, selection and/or screening can be applied during a particular developmental stage in which the phenotype is expected to be exhibited by the plant. Selection and/or screening can be carried out to choose those transgenic plants having a statistically significant difference in a steviol glycoside level relative to a control plant that lacks the transgene.
[0166] The nucleic acids, recombinant genes, and constructs described herein can be used to transform a number of monocotyledonous and dicotyledonous plants and plant cell systems. Non-limiting examples of suitable monocots include, for example, cereal crops such as rice, rye, sorghum, millet, wheat, maize, and barley. The plant may be a non-cereal monocot such as asparagus, banana, or onion. The plant also may be a dicot such as stevia (Stevia rebaudiana), soybean, cotton, sunflower, pea, geranium, spinach, or tobacco. In some cases, the plant may contain the precursor pathways for phenyl phosphate production such as the mevalonate pathway, typically found in the cytoplasm and mitochondria. The non-mevalonate pathway is more often found in plant plastids [Dubey, et al., 2003 J. Biosci. 28 637-646]. One with skill in the art may target expression of steviol glycoside biosynthesis polypeptides to the appropriate organelle through the use of leader sequences, such that steviol glycoside biosynthesis occurs in the desired location of the plant cell. One with skill in the art will use appropriate promoters to direct synthesis, e.g., to the leaf of a plant, if so desired. Expression may also occur in tissue cultures such as callus culture or hairy root culture, if so desired.
[0167] In one embodiment, one or more nucleic acid or polypeptides described herein are introduced into Stevia (e.g., Stevia rebaudiana) such that overall steviol glycoside biosynthesis is increased or that the overall steviol glycoside composition is selectively enriched for one or more specific steviol glycosides. For example, one or more recombinant genes can be introduced into Stevia such that one or more of the following are expressed: a UGT91D enzyme such as UGT91D2e (e.g., SEQ ID NO:5 or a functional homolog thereof), UGT91D2m (e.g., SEQ ID NO:10); a UGT85C enzyme such as a variant set forth in Table 15, or a UGT76G1 enzyme such as a variant set forth in Example 18. Nucleic acid constructs typically include a suitable promoter (e.g., 35S, e35S, or ssRUBISCO promoters) operably linked to a nucleic acid encoding the UGT polypeptide. Nucleic acids can be introduced into Stevia by Agrobacterium-mediated transformation; electroporation-mediated gene transfer to protoplasts; or by particle bombardment. See, e.g., Singh, et al., Compendium of Transgenic Crop Plants: Transgenic Sugar, Tuber and Fiber, Edited by Chittaranjan Kole and Timothy C. Hall, Blackwell Publishing Ltd. (2008), pp. 97-115. For particle bombardment of stevia leaf derived callus, the parameters can be as follows: 6 cm distance, 1100 psi He pressure, gold particles, and one bombardment.
[0168] Stevia plants can be regenerated by somatic embryogenesis as described by Singh et al., 2008, supra. In particular, leaf segments (approximately 1-2 cm long) can be removed from 5 to 6-week-old in vitro raised plants and incubated (adaxial side down) on MS medium supplemented with B5 vitamins, 30 g sucrose and 3 g Gelrite. 2,4-dichlorophenoxyacetic acid (2,4-D) can be used in combination with 6-benzyl adenine (BA), kinetin (KN), or zeatin. Proembryogenic masses appear after 8 weeks of subculture. Within 2-3 weeks of subcultures, somatic embryos will appear on the surface of cultures. Embryos can be matured in medium containing BA in combination with 2,4-D, a-naphthaleneacetic acid (NAA), or indolbutyric acid (IBA). Mature somatic embryos that germinate and form plantlets can be excised from calli. After plantlets reach 3-4 weeks, the plantlets can be transferred to pots with vermiculite and grown for 6-8 weeks in growth chambers for acclimatization and transferred to greenhouses.
[0169] In one embodiment, steviol glycosides are produced in rice. Rice and maize are readily transformable using techniques such as Agrobacterium-mediated transformation. Binary vector systems are commonly utilized for Agrobacterium exogenous gene introduction to monocots. See, for example, U.S. Pat. Nos. 6,215,051 and 6,329,571. In a binary vector system, one vector contains the T-DNA region, which includes a gene of interest (e.g., a UGT described herein) and the other vector is a disarmed Ti plasmid containing the vir region. Co-integrated vectors and mobilizable vectors also can be used. The types and pretreatment of tissues to be transformed, the strain of Agrobacterium used, the duration of the inoculation, the prevention of overgrowth and necrosis by the Agrobacterium, can be readily adjusted by one of skill in the art. Immature embryo cells of rice can be prepared for transformation with Agrobacterium using binary vectors. The culture medium used is supplemented with phenolic compounds. Alternatively, the transformation can be done in planta using vacuum infiltration. See, for example, WO 2000037663, WO 2000063400, and WO 2001012828.
IV. Methods of Producing Steviol and Steviol Glycosides
[0170] Recombinant hosts described herein can be used in methods to produce steviol or steviol glycosides. For example, if the recombinant host is a microorganism, the method can include growing the recombinant microorganism in a culture medium under conditions in which steviol and/or steviol glycoside biosynthesis genes are expressed. The recombinant microorganism may be grown in a fed batch or continuous process. Typically, the recombinant microorganism is grown in a fermentor at a defined temperature(s) for a desired period of time. Depending on the particular microorganism used in the method, other recombinant genes such as isopentenyl biosynthesis genes and terpene synthase and cyclase genes may also be present and expressed. Levels of substrates and intermediates, e.g., isopentenyl diphosphate, dimethylallyl diphosphate, geranylgeranyl diphosphate, kaurene and kaurenoic acid, can be determined by extracting samples from culture media for analysis according to published methods.
[0171] After the recombinant microorganism has been grown in culture for the desired period of time, steviol and/or one or more steviol glycosides can then be recovered from the culture using various techniques known in the art. If the recombinant host is a plant or plant cells, steviol or steviol glycosides can be extracted from the plant tissue using various techniques known in the art. For example, a crude lysate of the cultured microorganism or plant tissue can be centrifuged to obtain a supernatant. The resulting supernatant can then be applied to a chromatography column, e.g., a C-18 column, and washed with water to remove hydrophilic compounds, followed by elution of the compound(s) of interest with a solvent such as methanol. The compound(s) can then be further purified by preparative HPLC. See also WO 2009/140394.
[0172] The amount of steviol or steviol glycoside produced can be from about 1 mg/l to about 1,500 mg/1, e.g., about 1 to about 10 mg/1, about 3 to about 10 mg/1, about 5 to about 20 mg/l, about 10 to about 50 mg/1, about 10 to about 100 mg/l, about 25 to about 500 mg/1, about 100 to about 1,500 mg/1, or about 200 to about 1,000 mg/l. In general, longer culture times will lead to greater amounts of product. Thus, the recombinant microorganism can be cultured for from 1 day to 7 days, from 1 day to 5 days, from 3 days to 5 days, about 3 days, about 4 days, or about 5 days.
[0173] It will be appreciated that the various genes and modules discussed herein can be present in two or more recombinant microorganisms rather than a single microorganism. When a plurality of recombinant microorganisms is used, they can be grown in a mixed culture to produce steviol and/or steviol glycosides. For example, a first microorganism can comprise one or more biosynthesis genes for producing steviol while a second microorganism comprises steviol glycoside biosynthesis genes. Alternatively, the two or more microorganisms each can be grown in a separate culture medium and the product of the first culture medium, e.g., steviol, can be introduced into second culture medium to be converted into a subsequent intermediate, or into an end product such as rebaudioside A. The product produced by the second, or final microorganism is then recovered. It will also be appreciated that in some embodiments, a recombinant microorganism is grown using nutrient sources other than a culture medium and utilizing a system other than a fermentor.
[0174] Steviol glycosides do not necessarily have equivalent performance in different food systems. It is therefore desirable to have the ability to direct the synthesis to steviol glycoside compositions of choice. Recombinant hosts described herein can produce compositions that are selectively enriched for specific steviol glycosides and have a consistent taste profile. Thus, the recombinant microorganisms, plants, and plant cells described herein can facilitate the production of compositions that are tailored to meet the sweetening profile desired for a given food product and that have a proportion of each steviol glycoside that is consistent from batch to batch. Microorganisms described herein do not produce the undesired plant byproducts found in Stevia extracts. Thus, steviol glycoside compositions produced by the recombinant microorganisms described herein are distinguishable from compositions derived from Stevia plants.
V. Food Products
[0175] The steviol and steviol glycosides obtained by the methods disclosed herein can be used to make food products, dietary supplements and sweetener compositions. For example, substantially pure steviol or steviol glycoside such as rebaudioside A can be included in food products such as ice cream, carbonated beverages, fruit juices, yogurts, baked goods, chewing gums, hard and soft candies, and sauces. Substantially pure steviol or steviol glycoside can also be included in non-food products such as pharmaceutical products, medicinal products, dietary supplements and nutritional supplements. Substantially pure steviol or steviol glycosides may also be included in animal feed products for both the agriculture industry and the companion animal industry. Alternatively, a mixture of steviol and/or steviol glycosides can be made by culturing recombinant microorganisms separately or growing different plants/plant cells, each producing a specific steviol or steviol glycoside, recovering the steviol or steviol glycoside in substantially pure form from each microorganism or plant/plant cells and then combining the compounds to obtain a mixture containing each compound in the desired proportion. The recombinant microorganisms, plants, and plant cells described herein permit more precise and consistent mixtures to be obtained compared to current Stevia products. In another alternative, a substantially pure steviol or steviol glycoside can be incorporated into a food product along with other sweeteners, e.g. saccharin, dextrose, sucrose, fructose, erythritol, aspartame, sucralose, monatin, or acesulfame potassium. The weight ratio of steviol or steviol glycoside relative to other sweeteners can be varied as desired to achieve a satisfactory taste in the final food product. See, e.g., U.S. Patent Publication No. 2007/0128311. In some embodiments, the steviol or steviol glycoside may be provided with a flavor (e.g., citrus) as a flavor modulator. For example, Rebaudioside C can be used as a sweetness enhancer or sweetness modulator, in particular for carbohydrate based sweeteners, such that the amount of sugar can be reduced in the food product.
[0176] Compositions produced by a recombinant microorganism, plant, or plant cell described herein can be incorporated into food products. For example, a steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a food product in an amount ranging from about 20 mg steviol glycoside/kg food product to about 1800 mg steviol glycoside/kg food product on a dry weight basis, depending on the type of steviol glycoside and food product. For example, a steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a dessert, cold confectionary (e.g., ice cream), dairy product (e.g., yogurt), or beverage (e.g., a carbonated beverage) such that the food product has a maximum of 500 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a baked good (e.g., a biscuit) such that the food product has a maximum of 300 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a sauce (e.g., chocolate syrup) or vegetable product (e.g., pickles) such that the food product has a maximum of 1000 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a bread such that the food product has a maximum of 160 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a hard or soft candy such that the food product has a maximum of 1600 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a processed fruit product (e.g., fruit juices, fruit filling, jams, and jellies) such that the food product has a maximum of 1000 mg steviol glycoside/kg food on a dry weight basis.
[0177] For example, such a steviol glycoside composition can have from 90-99% rebaudioside A and an undetectable amount of stevia plant-derived contaminants, and be incorporated into a food product at from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis.
[0178] Such a steviol glycoside composition can be a rebaudioside B-enriched composition having greater than 3% rebaudioside B and be incorporated into the food product such that the amount of rebaudioside B in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the rebaudioside B-enriched composition has an undetectable amount of stevia plant-derived contaminants.
[0179] Such a steviol glycoside composition can be a rebaudioside C-enriched composition having greater than 15% rebaudioside C and be incorporated into the food product such that the amount of rebaudioside C in the product is from 20-600 mg/kg, e.g., 100-600 mg/kg, 20-100 mg/kg, 20-95 mg/kg, 20-250 mg/kg, 50-75 mg/kg or 50-95 mg/kg on a dry weight basis. Typically, the rebaudioside C-enriched composition has an undetectable amount of stevia plant-derived contaminants.
[0180] Such a steviol glycoside composition can be a rebaudioside D-enriched composition having greater than 3% rebaudioside D and be incorporated into the food product such that the amount of rebaudioside D in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the rebaudioside D-enriched composition has an undetectable amount of stevia plant-derived contaminants.
[0181] Such a steviol glycoside composition can be a rebaudioside E-enriched composition having greater than 3% rebaudioside E and be incorporated into the food product such that the amount of rebaudioside E in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the rebaudioside E-enriched composition has an undetectable amount of stevia plant-derived contaminants.
[0182] Such a steviol glycoside composition can be a rebaudioside F-enriched composition having greater than 4% rebaudioside F and be incorporated into the food product such that the amount of rebaudioside F in the product is from 25-1000 mg/kg, e.g., 100-600 mg/kg 25-100 mg/kg, 25-95 mg/kg, 50-75 mg/kg or 50-95 mg/kg on a dry weight basis. Typically, the rebaudioside F-enriched composition has an undetectable amount of stevia plant-derived contaminants.
[0183] Such a steviol glycoside composition can be a dulcoside A-enriched composition having greater than 4% dulcoside A and be incorporated into the food product such that the amount of dulcoside A in the product is from 25-1000 mg/kg, e.g., 100-600 mg/kg, 25-100 mg/kg, 25-95 mg/kg, 50-75 mg/kg or 50-95 mg/kg on a dry weight basis. Typically, the dulcoside A-enriched composition has an undetectable amount of stevia plant-derived contaminants.
[0184] In some embodiments, a substantially pure steviol or steviol glycoside is incorporated into a tabletop sweetener or "cup-for-cup" product. Such products typically are diluted to the appropriate sweetness level with one or more bulking agents, e.g., maltodextrins, known to those skilled in the art. Steviol glycoside compositions enriched for rebaudioside A, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, or dulcoside A can be package in a sachet, for example, at from 10,000 to 30,000 mg steviol glycoside/kg product on a dry weight basis, for tabletop use.
VI. Plant Breeding
[0185] A. Polymorphisms
[0186] Polymorphisms among the nucleic acids described herein (e.g., UGT91D2 nucleic acids) can be used as markers in plant genetic mapping and plant breeding programs in Stevia. See, e.g., Yao et al., Genome. 1999, 42:657-661. Thus, the polymorphisms described herein can be used in a method of identifying whether that polymorphism is associated with variation in a trait. The method involves measuring the correlation between variation in the trait in plants of a Stevia line or population and the presence of one or more genetic polymorphisms in those plants, thereby identifying whether or not the genetic polymorphisms are associated with variation in the trait. Typically, the trait is the total amount of steviol glycosides present in leaves of the plant, although the trait also can be the amount of a particular steviol glycoside, e.g., rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, or dulcoside A. In some embodiments, the trait is the amount of steviol, or the amount of an isoprenoid precursor. A statistically significant correlation between the trait and the presence of the polymorphic marker is determined using an appropriate parametric or non-parametric statistic, e.g., Chi-square test, Student's t-test, Mann-Whitney test, or F-test. A statistically significant correlation between, for example, the amount of rebaudioside A in a plant and presence of a polymorphic marker indicates that the marker may be useful in a marker-assisted breeding program for selection of altered rebaudioside A levels.
[0187] Polymorphisms may be detected by means known in the art, including without limitation, restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA detection (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR) or microsatellites. Discovery, detection, and genotyping of polymorphisms have been described in the literature. See, e.g., Henry, ed. (2001) Plant Genotyping. The DNA Fingerprinting of Plants Wallingford: CABI Publishing; and Phillips and Vasil, eds. (2001) DNA-based Markers in Plants Dordrecht: Kluwer Academic Publishers. For example, a primer or probe derived from the nucleic acid sequences set forth in SEQ ID NO:6, SEQ ID NO:9, or SEQ ID NO:96, or the complements thereof, can be used to identify one or more individual plants that possess the polymorphic allele that is correlated with a desired steviol glycoside composition. Those plants then can be used in a breeding program to combine the polymorphic allele with a plurality of other alleles at other loci that are correlated with the desired steviol glycoside composition. As will be evident to one of skill, the number and type of markers required can differ, depending on the trait(s) to be selected for and the degree of correlation for each marker. The methods, therefore, involve detecting a plurality of polymorphisms in the genome of the plant in certain embodiments. It will be appreciated that the method may further comprise storing the results of the step of detecting the plurality of polymorphisms on a computer readable medium.
[0188] Thus, in some embodiments, a method for identifying Stevia plant lines or populations comprises supplying a nucleic acid sample for a Stevia plant, providing amplification primers for amplifying a region of a Stevia plant corresponding to a UGT gene having 90% or greater sequence identity to a nucleic acid encoding the polypeptides set forth in SEQ ID NOs: 1, 3, 5, or 7, present in the sample, applying the amplification primers to the nucleic acid sample such that amplification of the region occurs, and identifying plants having a desired trait based on the presence of one or more polymorphisms in the amplified nucleic acid sample that correlate with the trait.
[0189] In some embodiments, a method of determining the presence of a polynucleotide in a Stevia plant involves contacting at least one probe or primer pair with nucleic acid from the plant. The probe or primer pair is specific for a polynucleotide that encodes a UGT polypeptide having at least 90% sequence identity to SEQ ID NOs: 1, 3, 5, or 7. The presence or absence of the polynucleotide is then determined.
[0190] In addition to methods for detecting polymorphisms and determining the genotype of a Stevia plant, kits suitable for carrying out the methods are also described, as well as a computer readable medium produced by such methods that contains data generated by the methods. A kit for genotyping a Stevia biological sample includes a primer pair that specifically amplifies, or a probe that specifically hybridizes to, a polynucleotide that encodes a UGT polypeptide having at least 90% sequence identity to SEQ ID NOs: 1, 3, 5, or 7. Such kits typically have the primer or probe contained within suitable packaging material.
[0191] In some embodiments of the methods and kits described herein, one or more sets of oligonucleotides, each capable of recognizing the presence or absence of a specific and defined genomic position, is used. For polyploid Stevia lines or populations, more oligonucleotides are desirable. The lower limit is one oligonucleotide pair and the upper limit is set by the desired resolution capacity of the method and the test kit. Hybridization of the oligonucleotides to DNA from the Stevia plant is preferably recorded in situ by any conventional labelling system, applying for instance terminal transferase and conventional recordable labels. As an alternative to in situ labelling the hybridized sample DNA may be released from the solid support and subsequently hybridized with labelled polynucleotide sequences corresponding to each of the original oligonucleotide sequences attached to the solid support. Hybridization is optionally reversible and the solid support can be returned to its original state for reuse. A labelled dideoxynucleotide can be incorporated at the end of the oligonucleotide provided that the oligonucleotide is hybridized to genomic DNA as template. The nucleotide sequence at the genomic position adjacent to the region matching the oligonucleotide is known and therefore the particular nucleotide which will be incorporated (A, C, G, T or U) is known. Co-dominant scoring is achieved using paired, i.e. two or parallel, i.e. three, flanking oligonucleotide sequences. The results obtained are recorded as full, empty, failure or null alleles and can be used to distinguish between heterozygous and/or homozygous genotypes. Optional post-hybridization treatments, including washing and digestion, are provided in order to remove sample DNA not fully hybridized to the solid support-attached oligonucleotide sequences, for example before and after labelling. The presence or absence of hybridization is recorded using a method allowing the recording of the hybridization state, typically on a computer readable medium.
[0192] B. Breeding Programs
[0193] Stevia is typically an outcrossing species, although self-polination is occasionally observed. Thus, a Stevia plant breeding program typically involves the use of one or more of: recurrent selection mass selection, bulk selection, and intercrossing. These techniques can be used alone or in combination with one or more other techniques in a breeding program. See, Yadav et al., Can. J. Plant Sci. 91: 1-27 (2011). Each identified plant can be crossed to a different plant to produce seed, which is then germinated to form progeny plants. Seed from one or more progeny plants possessing the desired phenotype(s) and desired polymorphism(s) is composited and then randomly mated to form a subsequent progeny generation. The breeding program can repeat these steps for an additional 0 to 5 generations as appropriate in order to achieve the desired stability in the resulting plant population, which retains the polymorphic allele(s). In most breeding programs, analysis for the particular polymorphic allele will be carried out in each generation, although analysis can be carried out in alternate generations if desired. Selfing of progeny plants may be carried out for those stevia lines and populations in which selfing is feasible.
[0194] Recurrent selection is a method used in a plant breeding program to improve a population of plants. The method entails individual plants cross pollinating with each other to form progeny. The progeny are grown and the superior progeny selected by any number of selection methods, which include individual plant, half-sib progeny, full-sib progeny and selfed progeny. The selected progeny are self pollinated or cross pollinated with each other to form progeny for another population. This population is planted and again superior plants are selected to self pollinate or cross pollinate with each other. Recurrent selection is a cyclical process and therefore can be repeated as many times as desired. The objective of recurrent selection is to improve the traits of a population. The improved population can then be used as a source of breeding material to obtain new varieties for commercial or breeding use, including the production of a synthetic cultivar. A synthetic cultivar is the resultant progeny formed by the intercrossing of several selected varieties. The number of parental plant varieties, populations, wild accessions, ecotypes, etc., that are used to generate a synthetic can vary from as little as 10 to as much as 500. Typically, about 100 to 300 varieties, populations, etc., are used a parents for the synthetic variety. Seed from the parental seed production plot of a synthetic variety can be sold to the farmer. Alternatively, seed from the parental seed production plot can subsequently undergo one or two generations of multiplication, depending on the amount of seed produced in the parental plot and the demand for seed.
[0195] Mass selection is a useful technique when used in conjunction with molecular marker-assisted selection. In mass selection, seeds from individuals are selected based on phenotype or genotype. These selected seeds are then bulked and used to grow the next generation. Bulk selection requires growing a population of plants in a bulk plot, allowing the plants to self-pollinate, harvesting the seed in bulk and then using a sample of the seed harvested in bulk to plant the next generation. Also, instead of self pollination, directed pollination could be used as part of the breeding program.
[0196] Thus, in some embodiments, a method of making a Stevia plant line or population involves identifying one or more plants in the line or population in which the presence of a polymorphism at a locus having nucleotide sequence encoding a polypeptide that is at least 90% identical to SEQ ID NOs: 1, 3, 5, or 7 is associated with variation in a trait of interest. The identified plant(s) is then crossed with itself or a different stevia plant to produce seed, and at least one progeny plant grown from the seed is again crossed with itself or a different stevia plant for an additional 0-5 generations to make a line or population that possesses the polymorphism.
[0197] In some cases, selection for other useful traits is also carried out, e.g., selection for disease resistance. Selection for such other traits can be carried out before, during or after identification of individual plants that possess the desired polymorphic allele.
[0198] Marker-assisted breeding techniques may be used in addition to, or as an alternative to, other sorts of identification techniques.
[0199] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
VI. Examples
Example 1--Construction of Kaurene Biosynthesis Pathway Genes
[0200] A nucleotide sequence encoding a truncated baker's yeast HMG CoA reductase was cloned into a yeast high copy episomal plasmid vector such that the coding sequence was operably linked to and under the transcriptional control of a promoter which can be repressed by the amino acid methionine. See, U.S. Pat. Nos. 5,460,949 and 5,306,862.
[0201] Nucleotide sequences encoding the GGPPS enzymes shown in Table 1 were modified for expression in yeast (see SEQ ID NOs: 18-25) and cloned into an E. coli vector such that the coding sequence was operably linked to and under the transcriptional control of a yeast promoter which can be repressed by the amino acid methionine. The name for each expression cassette-containing plasmid ("entry vector") is also shown in Table 1. The nucleotide sequences from the source organisms from which the polypeptides were originally identified are set forth in SEQ ID NOs: 26-33. Other entry vectors were constructed using GGPPS enzymes expressed by an unmodified nucleotide sequence from Catharanthus roseus designated EV270, an unmodified nucleotide sequence from Aspergillus nidulans designated C301 and an unmodified nucleotide sequence from Xanthophyllomyces dendrorhous designated C413.
TABLE-US-00002 TABLE 1 GGPPS Clones Enzyme Source Accession Plasmid Construct Length SEQ ID SEQ ID Organism gi Number Number Name Name (nts) (DNA) (protein) Stevia rebaudiana 90289577 ABD92926 pMUS14 MM-1 1086 18 121 Gibberella fujikuroi 3549881 CAA75568 pMUS15 MM-2 1029 19 122 Mus musculus 47124116 AAH69913 pMUS16 MM-3 903 20 123 Thalassiosira pseudonana 223997332 XP_002288339 pMUS17 MM-4 1020 21 124 Streptomyces clavuligerus 254389342 ZP_05004570 pMUS18 MM-5 1068 22 125 Sulfulobus acidocaldarius 506371 BAA43200 pMUS19 MM-6 993 23 126 Synechococcus sp. 86553638 ABC98596 pMUS20 MM-7 894 24 127 Arabidopsis thaliana 15234534 NP_195399 pMUS21 MM-8 1113 25 128
[0202] Nucleotide sequences encoding the CDPS enzymes shown in Table 2 were modified for expression in yeast (see SEQ ID NOs: 34-36) and cloned into yeast entry vectors. The nucleotide sequences from the source organisms from which the polypeptides were originally identified are set forth in SEQ ID NOs: 37-39. Other entry vectors were constructed using CDPS enzymes expressed by an unmodified nucleotide sequence from Arabidopsis thaliana designated EV64, an unmodified nucleotide sequence from Zea mays designated EV65 and an unmodified nucleotide sequence from Lycopersicon esculentum designated EV66.
TABLE-US-00003 TABLE 2 CDPS Clones Enzyme Source Accession Plasmid Construct Length SEQ ID: SEQ ID Organism gi Number Number Name Name (nts) (DNA) (protein) Stevia rebaudiana 2642661 AAB87091 pMUS22 MM-9 2364 34 129 Streptomyces clavuligerus 197705855 EDY51667 pMUS23 MM-10 1584 35 130 Bradyrhizobium japonicum 529968 AAC28895.1 pMUS24 MM-11 1551 36 131
[0203] Nucleotide sequences encoding the KS enzymes shown in Table 3 were modified for expression in yeast (see SEQ ID NOs: 40-43) and cloned into yeast entry vectors. The nucleotide sequences from the source organisms from which the polypeptides were originally identified are set forth in SEQ ID NOs: 44-47. Other entry vectors were constructed using KS enzymes expressed by an unmodified nucleotide sequence from Arabidopsis thaliana designated EV70, an unmodified nucleotide sequence from Cucurbita maxima designated EV71 and an unmodified nucleotide sequence from Cucumis sativus designated EV72.
TABLE-US-00004 TABLE 3 KS Clones Enzyme Source Accession Plasmid Construct Length SEQ ID SEQ ID Organism gi Number Number Name Name (nts) (DNA) (protein) Stevia rebaudiana 4959241 AAD34295 pMUS25 MM-12 2355 40 132 Stevia rebaudiana 4959239 AAD34294 pMUS26 MM-13 2355 41 133 Zea mays 162458963 NP_001105097 pMUS27 MM-14 1773 42 134 Populus trichocarpa 224098838 XP_002311286 pMUS28 MM-15 2232 43 135
[0204] Nucleotide sequences encoding the CDPS-KS fusion enzymes shown in Table 4 were modified for expression in yeast (see SEQ ID NOs: 48 and 49) and cloned into yeast entry vectors. The nucleotide sequences from the source organisms from which the polypeptides were originally identified are set forth in SEQ ID NOs: 50 and 51.
TABLE-US-00005 TABLE 4 CDPS-KS Clones Enzyme Source Accession Plasmid Construct Length SEQ ID SEQ ID Organism gi Number Number Name Name (nts) (DNA) (protein) Phomopsis amygdali 186704306 BAG30962 pMUS29 MM-16 2952 48 136 Physcomitrella patens 146325986 BAF61135 pMUS30 MM-17 2646 49 137
[0205] Nucleotide sequences encoding the KO enzymes shown in Table 5 were modified for expression in yeast (see SEQ ID NOs: 52-55) and cloned into yeast entry vectors. The nucleotide sequences from the source organisms from which the polypeptides were originally identified are set forth in SEQ ID NOs: 56-59.
TABLE-US-00006 TABLE 5 KO Clones Enzyme Source Accession Plasmid Construct Length SEQ ID SEQ ID Organism gi Number Number Name Name (nts) (DNA) (protein) Stevia rebaudiana 76446107 ABA42921 pMUS31 MM-18 1542 52 138 Arabidopsis thaliana 3342249 AAC39505 pMUS32 MM-19 1530 53 139 Gibberella fujikoroi 4127832 CAA76703 pMUS33 MM-20 1578 54 140 Trametes versicolor 14278967 BAB59027 pMUS34 MM-21 1500 55 141
[0206] Nucleotide sequences encoding the KAH enzymes shown in Table 6 were modified for expression in yeast (see SEQ ID NOs: 60-64) and cloned into yeast entry vectors. The nucleotide sequences from the source organisms from which the polypeptides were originally identified are set forth in SEQ ID NOs: 65-69.
TABLE-US-00007 TABLE 6 KAH Clones Enzyme Source Accession Plasmid Construct Length SEQ ID SEQ ID Organism gi Number Number Name Name (nts) (DNA) (protein) Stevia rebaudiana --* pMUS35 MM-22 1578 60 142 Stevia rebaudiana 189418962 ACD93722 pMUS36 MM-23 1431 61 143 Arabidopsis thaliana 15238644 NP_197872 pMUS37 MM-24 1578 62 144 Vitis vinifera 225458454 XP_002282091 pMUS38 MM-25 1590 63 145 Medicago trunculata 84514135 ABC59076 pMUS39 MM-26 1440 64 146 *= Sequence is shown in U.S. Patent Publication No. 2008-0064063.
[0207] Nucleotide sequences encoding the CPR enzymes shown in Table 7 were modified for expression in yeast (see SEQ ID NOs: 70-72) and cloned into yeast entry vectors. The nucleotide sequences from the source organisms from which the polypeptides were originally identified are set forth in SEQ ID NOs: 73-75.
TABLE-US-00008 TABLE 7 CPR Clones Enzyme Source Accession Plasmid Construct Length SEQ ID SEQ ID Organism gi Number Number Name Name (nts) (DNA) (protein) Stevia rebaudiana 93211213 ABB88839 pMUS40 MM-27 2133 70 147 Arabidopsis thaliana 15233853 NP_194183 pMUS41 MM-28 2079 71 148 Giberella fujikuroi 32562989 CAE09055 pMUS42 MM-29 2142 72 149
Example 2--Construction of Steviol Glycoside Pathway Genes
[0208] Integration vectors containing nucleotide sequences encoding the UGT85C2 and UGT74G1 enzymes listed in Table 8 were transformed into yeast. Transformants were obtained that contained UGT85C2, or UGT85C2 and UGT74G1, integrated into the genome.
TABLE-US-00009 TABLE 8 UGT Clones Source Accession Plasmid Length Organism UGT No. gi Number Number Type Name (nucleotides) SEQ ID Stevia rebaudiana UGT85C2 37993660 AY345978.1 Integration pMUS11 1446 4 vector Stevia rebaudiana UGT74G1 37993668 AY345982 Integration pMUS12 1383 2 vector Stevia rebaudiana UGT76G1 37993652 AY345974 Integration pMUS13 1377 8 vector Ipomoea purpurea IP3GGT 62857205 AB192315.1 High copy pMUS10 1380 77 vector Bellis perennis UGT94B1 56550538 AB190262.1 High copy pEF1156 1317 79 R25S mutant (wild type) (wild type) vector (wild type) Arabidopsis thaliana UGT79B3 28951020 BT005370.1 High copy pEF1153 1362 151 vector
[0209] Nucleotide sequences encoding the IP3GGT and UGT94B1 R25S enzymes were modified for expression in yeast (see SEQ ID NOs: 77 and 79) and cloned into yeast entry vectors. Amino acid sequences for IP3GGT and UGT94B1 R25S are set forth in SEQ ID NOs: 76 and 78, respectively. The high copy episomal vector containing a modified IP3GGT nucleotide sequence was designated pEF1155. The high copy episomal vector containing a modified UGT94B1 R25S nucleotide sequence was designated pEF1156.
Example 3--Construction of Yeast Strains
[0210] A yeast strain designated EFSC301 was modified by replacing the endogenous ERG9 promoter with the copper inducible CUP1 promoter. Strain EFSC301 is a derivative of EUROSCARF collection yeast strain BY4742. See, the world wide web at uni-frankfurt.de/fb15/mikro/euroscarf/data/by.html. In standard yeast growth medium, the ERG9 gene is transcribed at very low levels, since the concentration of copper in such medium is low. The decrease in ergosterol production in this strain results in increased amounts of isoprene units available for steviol biosynthesis. The yeast strain was also modified by genomically integrating the Stevia UGT85C2 and UGT74G1 genes, each under the transcriptional control of the strong constitutive GPD1 promoter. See Table 8. The strain has one copy of each of the Stevia UGT85C2 and UGT74G1 genes integrated in the MUS1241 strain genome.
Example 4--Analysis of Steviol Glycoside Pathway Gene Expression in Yeast
[0211] To examine steviol glycoside biosynthesis in yeast, the expression cassettes of the 36 entry vectors of Tables 1-7 and Example 1 were randomly concatenated in ligation reactions to create artificial yeast chromosomes ("eYACs"). The process is shown schematically in FIG. 5.
[0212] Two different sets of ligations were carried out. Ligation set A included all genes listed in Tables 1-7, except that no bi-functional CDPS-KS genes (Table 4) were included. Ligation set B included all genes listed in Tables 1-7 except that no mono-functional CDPS and KS genes (Tables 2-3) were included.
[0213] From 30 to 200 .mu.g of DNA was prepared from each of the cassette-containing entry vectors. The gene expression cassettes were released from each vector by digestion with the restriction enzyme AscI. The cassettes were then randomly concatenated into eYACs by ligation with T4 ligase in a 3 hour reaction. The success of the concatenation reaction was assessed by the viscosity of the reaction mixture, since concatenated DNA is highly viscous. DNA fragments ("arms") containing a centromere, two telomeres and the LEU2 and TRP1 selection markers were added to the end of the concatenated expression cassettes, thereby creating functional eYACs.
[0214] The eYACs were transformed into spheroplasts of the competent yeast strain MUS1243 by zymolyase digestion of the yeast cell wall, followed by treatment with a CaCl.sub.2/PEG buffer, making the spheroplasts permeable to large molecules such as eYACs.
[0215] After transformation, the yeast spheroplasts were embedded in a noble agar based solid growth medium, in which regeneration of the cell wall can take place. Colonies appeared from 4-8 days after inoculation. The regeneration medium lacked the amino acids leucine and tryptophan, thus selecting for the presence of double-armed eYACs in the yeast cells.
[0216] About 3,000 transformants were obtained for each set. Each transformant was re-streaked and tested for yeast strain markers and the genetic presence of both arms of the eYAC, i.e., the LEU2 and TRP1 markers. More than 97% of the transformants had the correct genotype. Each transformant was given a CEY designation number.
[0217] Initially, 24 CEYs from each set were grown for 24 hours in 2 ml of Synthetic Complete medium (SC), without methionine, so as to induce gene expression from the eYACs. After 24 hours, the supernatant from each culture was collected and subjected to LC-MS (Liquid Chromatography-coupled Mass Spectrometry (Triple Quadropole)) analysis for the presence of rubusoside. Since the Stevia UGT74G1 and UGT85C2 genes are co-expressed in each CEY transformant, the expected end product when steviol is produced is rubusoside (steviol-(13-.beta.-D-glucopyranosyloxy)-.beta.-D-glucopyranosyl ester).
[0218] None of the CEYs from set B produced detectable levels of rubusoside, whereas 7 of the CEYs from set A did. Strain CEY19 was the top producer. CEY19 produced a compound with a mass of 665.2, which could correspond to a sodium adduct of rubusoside. A compound with a mass of 643.2 also was seen, and probably corresponds to protonated rubusoside. MS-MS-based molecular fractionation of the 665.2 mass compound resulted in a break down mass of 503.2, which corresponds to steviol monoside as a sodium adduct. Since the mass, the fractionation pattern, the HPLC spectrum, and the retention standard of this compound corresponded exactly to that of a rubusoside standard produced in vitro by the glucosylation of steviol using Stevia enzymes 85C2 and 74G1, the compound produced by CEY was determined to be rubusoside.
[0219] Additional Screening for Rubusoside Production
[0220] An additional 95 clones from set A and 95 clones from set B were grown in 96 deep-well trays in 1 ml SC medium without methionine. Supernatants from each of these cultures were combined in pools of two clones, analyzed by LC-MS, and the MS signal/noise ratio determined. The MS s/n ratio is an approximate measure of the relative rubusoside content. When a pool of 2 CEYs was found to produce rubusoside, each clone in that pool was analyzed separately. The results showed that no set B CEYs produced rubusoside, while at least 28 CEYs from set A produced detectable levels of rubusoside.
[0221] Identification of Genes Present in Rubusoside Producing CEY Clones
[0222] To correlate the gene content of eYACs to rubusoside production, a PCR protocol was developed in which similar sized fragments (0.5 kb) of all the possible cYAC-borne genes could be amplified. Internal primers of 20-25 nt were placed so that a similar annealing temperature could be used to amplify all genes. Genomic DNA, which includes eYAC DNA, was prepared from 4 CEYs with no rubusoside production, 4 with low rubusoside production and 6 with high to very high rubusoside production. Using equimolar amounts of these 14 DNA preparations, analytical PCR was performed for all 37 genes for these 14 CEYs, as well as positive and negative controls. All genes were amplified except one, apparently due to primer failure.
[0223] The genes present in the six high rubusoside-producing CEY strains are shown in Table 9. The genes present in the eight low or no rubusoside-producing CEY strains are shown in Table 10.
TABLE-US-00010 TABLE 9 Genes Present in High Rubusoside-Producing CEY Strains HIGH production VERY high production Gene CEY50 CEY176 CEY19 CEY173 CEY191 CEY213 tHMG1 + + + + - + MM-1 - + + + + - MM-2 - + + + + - MM-3 + + + + + + MM-4 + + + - + + MM-5 + + + + + + MM-6 + + + + + + MM-7 - + - + + - MM-8 + + + + - + EV270 + + - + + + C301 + + + + + + C413 + + - + + + MM-9 + + + + + + MM-10 + - - + + + MM-11 + + - + + + EV64 + + + + + + EV65 - - + + + + EV66 + + + + + + MM-12 + - - + + + MM-13 + + + + + + MM-14 + + + + + + MM-15 - - - - + - EV70 - + + + - - EV71 Primers failed EV72 + + + + + + MM-18 + + + + + - MM-19 + - + - + + MM-20 + + + + + + MM-21 - - + + - + MM-22 + + + + + + MM-23 + - + + - + MM-24 + + + + + + MM-25 + + + + + + MM-26 + + + + + + MM-27 + + + + + + MM-28 - - - - - - MM-29 + + + + + +
TABLE-US-00011 TABLE 10 Genes Present in CEY Strains Producing Low or No Rubusoside NO rubusoside production LOW production Gene CEY162 CEY169 CEY171 CEY188 CEY75 CEY147 CEY214 CEY87 tHMG1 - - - - - - + + MM-1 + + + + - + - - MM-2 + - + + + + + + MM-3 + + + + + + + + MM-4 - - + - - + - + MM-5 + + + + + + + + MM-6 + + + - + + + + MM-7 + - + + + + + + MM-8 + + + + + + + + EV270 + + + + + + + + C301 + + + + + + + + C413 + + + + + + + + MM-9 + + + + - + + + MM-10 + + + + - + + + MM-11 + + + + + + + - EV64 + + + + - + + + EV65 + - - - + - + - EV66 + + + + + + + + MM-12 + + + + + + + + MM-13 + + + + + + + + MM-14 + + + + + + + + MM-15 + - + - + + - + EV70 + + + + + + + + EV71 Primers failed EV72 + + + + + + + + MM-18 + + + + + + + + MM-19 + + + + + + + + MM-20 + + + + + + + + MM-21 - + - - - + - + MM-22 + + + + + - + + MM-23 + - + - + + - + MM-24 + - + + + + + + MM-25 + - + + + + + + MM-26 + + + + + - + + MM-27 + + + + + + + + MM-28 - - + - - - - + MM-29 + + + + - + + +
Example 5--Modification of Yeast Culture Conditions
[0224] Experiments were carried out with strain CEY213 in order to determine culture conditions conducive to maximum rubusoside production. The starting material was a glycerol freezer stock (-80.degree. C.) of CEY213. Frozen cells originally came from an agar plate containing SC yeast medium without tryptophan, leucine and histidine (SC-TLH), and containing 2 mM methionine. Five ml of liquid SC-TLH medium containing 2 mM methionine was inoculated with a loop-full of freeze stock CEY213 yeast cells. eYAC expression in CEY213 is repressed under these conditions. The cells were grown overnight at 30.degree. C. with slow shaking (170 rpm) and were designated as "pre-cultures."
[0225] The CEY 213 pre-cultures were used to inoculate 25-50 ml of SC media without methionine, in which the parameters indicated below were varied. Rubusoside production under each of the growth conditions was measured by centrifuging 500 .mu.l of each culture medium, transferring 250 .mu.l of the supernatant to a new tube, adding 250 .mu.l methanol, shaking thoroughly and centrifuging for 10 minutes at maximum speed. An aliquot of the supernatant was analyzed for rubusoside production by LC-MS.
[0226] Copper Levels
[0227] CEY213 precultures were grown in SC medium to which 50 .mu.M bathocuproinedisulfonic acid was added. Bathocuproinedisulfonic acid chelates copper in the growth medium. The ERG9 gene in CEY213 has been modified so that expression is controlled by the CUP1 promoter. A decrease in copper levels in the medium will further decrease ERG9 activity and thereby increase the amount of isoprene units available for steviol biosynthesis.
[0228] Chelation of copper ions in the growth medium had a detrimental effect on growth of the yeast culture and rubusoside production was decreased proportionally. These results suggested that even without copper chelation, strain CEY213 is at its minimum rate of ergosterol biosynthesis, and no more isoprene units can be diverted from ergosterol biosynthesis towards steviol glycoside production.
[0229] Glucose
[0230] Doubling the available glucose from 2 to 4% had a marginal effect on rubusoside production, about a 5-10% increase in rubusoside production.
[0231] Limiting Available Nitrogen
[0232] CEY213 pre-cultures were grown under conditions of limited available nitrogen. Limiting nitrogen during growth of yeast in culture is known to increase production of ergosterol. When the concentration of NH.sub.4SO.sub.4 was decreased from 4 g/1 to 2, 1 or 0.4 g/l, the growth rate of CEY213 decreased in proportion to the amount of nitrogen. Rubusoside production decreased proportionally with the decrease in growth.
[0233] Aeration of Cultures
[0234] CEY213 was grown in Ehrlenmeyer flasks with or without baffles. The results indicated that there was at best a marginal effect of increased aeration via the use of baffles. If anything, the lack of aeration via the lack of baffles increased production.
[0235] Optical Density at Initiation, Fermentation Time and Growth Temperature
[0236] Cultures were initiated at two different optical densities, OD.sub.600=0.1 or OD.sub.600=1.0 of pre-cultured CEY213. Fermentation was then carried out for 24, 48, 72 or 144 hours at a temperature of 20, 25 or 30.degree. C.
[0237] As shown in FIG. 6, the density of the batch culture at fermentation start, the culture temperature and the length of time in fermentation, in combination, had a significant effect on the amount of rubusoside produced by CEY213. Thus, 144 hours growth of a culture with a starting density of OD.sub.600=1.0, at 30.degree. C., resulted in the production of no less than 8.5 mgs/liter of rubusoside.
Example 6--Large Scale Production of Rubusoside
[0238] A series of fermentation experiments with CEY213 were performed using 3 kinds of yeast medium (rich medium and two types of synthetic medium), varying inoculation density, and changing timing of eYAC gene cassette expression.
[0239] Batch Fermentation Conditions
[0240] Batch fermentation was carried out by centrifuging a CEY213 pre-culture, discarding the supernatant and re-suspending the cells in 6 liters of SC-TLH medium containing 100 .mu.M methionine and 4% glucose. The OD.sub.600 was adjusted to 1.0 in a 100 ml Ehrlenmeyer flask without baffles and the cells were allowed to grow for 144 hours at 30.degree. C. with slow shaking.
[0241] Recovery of Rubusoside
[0242] After fermentation, the culture was centrifuged and the supernatant was mixed with an equal volume of methanol, shaken thoroughly, and centrifuged to remove precipitated material. The resulting supernatant was purified by flash C18-silica column chromatography with methanol as the eluent, followed by preparative HPLC to obtain one major compound, with one additional minor compound detected.
[0243] The purified compound was analyzed by .sup.1H and .sup.13C NMR, and the data are shown in FIG. 7. The compound was confirmed to be rubusoside based on comparison to .sup.1H and .sup.13C NMR literature values for rubusoside. Quantitative analysis indicated that CEY213 fermentation produced 12.8 mgs/liter of rubusoside.
Example 7--IP3GGT Activity
[0244] 1. Enzymatic Activity of Ipomoea purpurea 3GGT Glycosyltransferase In Vitro
[0245] The enzymatic activity of Ipomoea purpurea 3GGT glycosyltransferase (IP3GGT) using steviol as a substrate was determined in vitro. Genes for Stevia rebaudiana UGT85C2 and IP3GGT glycosyltransferase were each expressed in E. coli and each enzyme was purified.
[0246] The enzymatic reaction was performed in two steps. First, 0.5 mM steviol (9.55 mgs total) was incubated with ca. 0.5 .mu.g UGT85C2 enzyme for 16 hours at 30.degree. C. in a reaction buffer (containing 1 mM UDP-glucose, 100 mM Tris-HCl (pH 8.0), 5 mM MgCl.sub.2, 1 mM KCl, 0.1 U/ul calf intestine phosphatase). Then ca. 0.5 .mu.g IP3GGT enzyme was added and the reaction mixture incubated for an additional 20 hours at 30.degree. C.
[0247] Analysis of the reaction products indicated about 100% conversion of steviol to steviol-13-O-monoside, 25% of which was further glycosylated into stevio-13-O-1,2-bioside. The theoretical steviol-13-O-1,2-bioside yield was about 4.8 mg. The reaction mixture was then subjected to preparative HPLC, which yielded 2.5 mg steviol-13-O-1,2-bioside (52% purification yield). Using LC-MS, the mass of the purified compound had a different retention time than rubusoside and steviol-13-O-1,3-bioside. The purified compound was subjected to .sup.1H NMR, heteronuclear single quantum coherence (HSQC)-NMR and heteronuclear multiple bond correlation (HMBC)-NMR analysis, which confirmed that the compound was steviol-13-O-1,2-bioside.
[0248] 2. In Vivo Expression of IP3GGT in Steviol- or Steviol Monoside-Fed Yeast
[0249] To determine whether the IP3GGT was active in yeast, the 2.mu. high copy (episomal) plasmid, pMUS10, containing an unmodified IP3GGT coding sequence operably linked to a strong GPD1 promoter was transformed into the yeast strain MUS1245. MUS1245 contains a genomically integrated UGT85C2 expression cassette. The resulting yeast strain was grown in SC medium without histidine to select for the continued presence of the IP3GGT expression plasmid, at a starting density of OD.sub.600=0.2. Steviol or steviol monoside was added to the medium at 3 mM. After growth for 72 hours at 30.degree. C., culture supernatants were assayed for the presence of steviol and steviol glucosides by HPLC.
[0250] LC-MS analysis indicated that no 1,2-glucosylated steviol-13-O-glucoside was detected after feeding with steviol, although steviol-13-O-monoside could be detected. In contrast, low but detectable amounts of the steviol 1,2-bioside were produced by MUS1245 carrying pMUS10 after feeding with steviol-13-O-monoside. These results show that the native Ipomoea purpurea 3GGT coding sequence is expressed in yeast at levels sufficient to obtain detectable in vivo conversion of steviol monoside to steviol 1,2-bioside.
Example 8--Modification of Yeast Strains
[0251] EXG1 and EXG2
[0252] S. cerevisiae may contain enzymes that degrade the 1,2 or 1,3 sugar bonds in steviol 1,2- and steviol 1,3-biosides. To test this possibility, yeast strain CEY213 was grown for 3 days at 30.degree. C. on media containing 0.1 mM of each of the two biosides. LC-MS analysis of the culture showed the level of 1,2-bioside to be stable, whereas the 1,3-bond in the 1,3-bioside appeared to completely hydrolyse within the limits of detection of the assay.
[0253] Twenty-five S. cerevisiae mutants, each disrupted in one known or putative glycoside hydrolase gene, were examined for their ability to degrade steviol biosides. A culture of each yeast mutant was grown as described above on media containing steviol 1,3-bioside and analyzed by LC-MS. The yeast strain carrying a mutation in the EXG1 (exo-1,3-.beta.-glucanase) gene was found to have lost most of the 1,3-bioside hydrolysing activity. The nucleotide sequence of the yeast EXG1 gene is reported in Vazquez de Aldana et al. Gene 97:173-182 (1991). The yeast strain carrying a mutation in the EXG2 gene (another exo-1,3-.beta.-glucanase) showed a small decrease in hydrolysing activity. Correa, et al., Current Genetics 22:283-288 (1992).
[0254] A double mutant yeast strain (exg1 exg2) was made. When the double mutant strain was grown on media containing steviol 1,3-bioside, no hydrolysis of the bioside was detected.
Example 9--Increased Titer of Steviol Biosynthesis
[0255] Individual clones of enzymes from each of the different enzyme classes tested in Example 4 (and Table 11) were examined using eYAC technology to identify particular clones that exhibited the greatest production of steviol from isopentenyl pyrophoshate and farnesyl pyrophosphate. The GGPPS, KO and KAH enzymes have been tested on eYACs, individually or in the case of GGPPS enzymes individually or in pools of two (e.g., Synechococcus sp.+S. acidocaldarius GGPPS or Aspergillus nidulans GGPPS alone), in a S. cerevisiae strain expressing all remaining enzymatic steps in the steviol pathway. The results indicated that the Synechococcus spp. GGPPS clone MM-7 (encoded by SEQ ID NO:24) was the most efficient. GGPPS clones from Aspergillus nidulans and Sulfulobus acidocaldarius also were quite active. The results also indicated that among the KO and KAH clones, the Stevia KO clone MM-18 (encoded by SEQ ID NO:52) and the A. thaliana KAH clone MM-24 (encoded by SEQ ID NO:62) resulted in the greatest steviol production.
TABLE-US-00012 TABLE 11 Accession Coding Coding Sequence Source Organism Enzyme gi Number Number Sequence Length (nucleotides) Stevia rebaudiana GGPPS-1 158104429 ABD92926 MM-1 1086 Gibberella GGPPS-2 3549881 CAA75568 MM-2 1029 fujikoroi Mus musculus GGPPS-3 BC069913.1 MM-3 903 Thalassiosira GGPPS-4 223997332 XP_002288339 MM-4 1020 pseudonana Sulfulobus GGPPS-6 506371 BAA43200 MM-6 993 acidocaldarius Synechococcus sp. GGPPS-7 86553638 ABC98596 MM-7 894 Cantharanthus GGPPS-9 1063275 X92893 EV270 1074 roseus Aspergillus GGPPS-10 29468175 AF479566 C301 1191 nidulans Xanthophyllomyces GGPPS11 63145970 DQ016502 C413 1131 dendrorhous Stevia rebaudiana CDPS-1 2642661 AAB87091 MM-9 2364 Streptomyces CDPS-2 197705855 EDY51667 MM-10 1584 clavuligerus Bradyrhizobium CDPS-3 529968 AAC28895.1 MM-11 1551 japonicum Arabidopsis CDPS-4 18412041 NM_116512 EV-64 2409 thaliana Zea mays CDPS-5 50082774 AY562490 EV-65 2484 Lycopersicon CDPS-6 6009477 AB015675 EV-66 2403 esculentum Stevia rebaudiana KS-1 4959241 AAD34295 MM-12 2355 Stevia rebaudiana KS-2 4959239 AAD34294 MM-13 2355 Zea mays KS-3 162458963 NP_001105097 MM-14 1773 Populus KS-4 224098838 XP_002311286 MM-15 2232 trichocarpa Arabidopsis KS-5 3056724 AF034774 EV-70 2358 thaliana Cucurbita maxima KS-6 1431869 U43904 EV-71 2370 Cucumis sativus KS-7 21326756 AB045310 EV-72 2358 Stevia rebaudiana KO-1 76446107 ABA42921 MM-18 1542 Arabidopsis KO-2 3342249 AAC39505 MM-19 1530 thaliana Gibberella KO-3 74676162 O94142 MM-20 1578 fujikoroi Trametes KO-4 14278966 AB057426 MM-21 1500 versicolor Stevia rebaudiana KAH-1 * MM-22 1578 Stevia rebaudiana KAH-2 189418962 ACD93722 MM-23 1431 Arabidopsis KAH-3 15238644 NM_122399 MM-24 1578 thaliana Vitis vinifera KAH4 225458453 XM_002282055 MM-25 1590 Medicago KAH5 84514134 DQ335781 MM-26 1440 trunculata Stevia rebaudiana CPR-1 189098311 DQ269454.4 MM-27 2133 Arabidopis CPR-2 145343899 NM_118585 MM-28 2079 thaliana Gibberella CPR-3 32562988 AJ576025.1 MM-29 2142 fujikoroi * U.S. Patent Publication No. 20080064063
[0256] S. cerevisiae strain CEY213, described in Example 4, was transformed with high copy plasmids carrying one of the CDPS or KS genes shown in Table 11, operably linked to the strong GPD1 promoter. Preliminary experiments indicated that overexpression of the Stevia rebaudiana CDPS (CDPS-1, encoded by SEQ ID NO:34) in CEY213 gave an increase in rubusoside production relative to CEY213 that lacked the high copy CDPS-1 overexpressing plasmid. The experiments also indicated that the Stevia rebaudiana KO (KO-1, encoded by SEQ ID NO:52) was the most active KO of the two tested.
[0257] To construct a yeast strain with consistently high levels of steviol glycoside production, expression cassettes containing the GGPPS-10 clone, the KO-1 clone (SEQ ID NO:52) and the KAH-3 clone (SEQ ID NO:62) were stably integrated into the genome of the S. cerevisiae strain CEN.PK 111-61A. Expression of these cassettes was driven by the constitutive GPD1 and TP11 promoters. In addition, expression cassettes containing KS-1 (SEQ ID NO:40), CDPS-1 (SEQ ID NO:34) and UGT74G1 (SEQ ID NO:2) were stably integrated into the genome. The resulting yeast strain, EFSC1751, however, did not produce any steviol-19-O-monoside when grown at laboratory scale under the conditions described in Example 6.
[0258] To determine the basis for the lack of steviol glycoside production in EFSC1751, CDPS-3, CDPS-4, CDPS-5 and CPR-1 genes, alone or in combination, were expressed in strain EFSC1751. CPR-1 is from Stevia rebaudiana and its sequence can be found at Genbank Accession DQ269454.4. The results showed that CPR-1, when expressed with either CDPS-3, CDPS-4 or CDPS-5, resulted in production of steviol-19-O-monoside in EFSC1751. None of these genes alone in the same strain resulted in any production. These results indicate that the genomically integrated copy of CDPS-1, Stevia enzyme, is non-functional in this yeast construct, whereas the Bradyrhizoblum, Arabidopsis or Zea CDPS clones were functional in this construct. In addition, the plant-derived KAH and/or KO genes integrated into the chromosome for this construct appear to require an exogenous CPR for activity. The CPR from Giberella fujikuroi (MM-29) also appears to be able to work with plant-derived KAH and/or KO polypeptides.
[0259] The two leading GGPPS candidates, GGPPS-6 (encoded by SEQ ID NO:23) and GGPPS-7 (encoded by SEQ ID NO:24), were further expressed individually in a S. cerevisiae strain that has a functional steviol glycoside pathway (including UGT74G1) but no GGPPS genes. Transformants then were analyzed for the production of 19-SMG by LC-MS analysis of culture samples that had been boiled in 50% DMSO for 5 minutes and centrifuged at 16000 relative centrifugal force (RCF) for 5 minutes. It was found that many transformants containing the GGPPS-6-expressing plasmid did not produce 19-SMG.
[0260] Very few transformants were obtained containing GGPPS-7, indicating that GGPPS-7 (Synechococcus sp.) may be the more active of the two enzymes, and that the activity could be high enough to confer toxicity. For example, a dramatic increase in GGPP production could result in a drain on a downstream pathway such as ergosterol production. To test this hypothesis, a UPC2-1 gene was co-expressed with GGPPS-7, and ergosterol feeding of the cells was attempted to see if this would rescue growth of cells. However, cell growth was not rescued.
[0261] Cell toxicity also may be due to an accumulation of GGPP or a metabolite of GGPP. To test this hypothesis, CDPS-5 was further overexpressed in the GGPPS-7-expressing yeast strain to see if the toxicity could be alleviated by increased GGPP usage. CDPS-5 over-expression did appear to rescue growth to some extent since transformants with a plasmid overexpressing this enzyme along with the GGPPS-7 gave rise to a few colonies. The number of transformants was still low. Over-expression of CDPS-5 in a similar strain but with GGPPS-10 instead of GGPPS-7 resulted in a doubling of steviol glycoside production, and these results together could suggest that CDPS is a limiting bottleneck in the introduced steviol glycoside biosynthesis pathway.
[0262] In summary, based upon production of 19-SMG or rubusoside in test tube cell cultures at 30.degree. C. with yeast medium+2% glucose, for 24-72 hours, the following conclusions were made with the eYAC constructs: KS-1 (Stevia rebaudiana, encoded by SEQ ID NO:40), KO-1 (S. rebaudiana, encoded by SEQ ID NO:52) and KAH-1 (S. rebaudiana) or KAH-3 (Arabidopsis thaliana, encoded by SEQ ID NO:62) appear to be the best combinations for the steviol pathway. GGPPS-7 (Synechococcus sp.) appears to show the highest amount of activity for this step, but if downstream bottlenecks occur overexpression also could lead to toxicity and overall lower levels of steviol glycosides. All combinations of CDPS and CPR gene analogs were tested and it was found that all 3 CPRs in Table 11 were active, and that combinations of CPR-1 (S. rebaudiana, encoded by SEQ ID NO:70) or CPR-3 (Gibberella fujikuroi, encoded by SEQ ID NO:72) with either CDPS-5 (Zea mays) or CDPS-4 (A. thaliana) were particularly useful. CDPS-5 appears to be the optimal CDPS in the pathway. Combinations can be further tested in a reporter strain with reduced flux to sterol pathways.
[0263] To investigate the potential for even higher activity of the CDPS from Zea mays (CDPS-5), this gene was expressed from a 2 micron multicopy plasmid using the GPD promoter, with and without a plastid signal peptide, to determine if activity is higher in the cytoplasm when targeting sequences are removed. The nucleotide sequence and amino acid sequence of the CDPS-5 from Zea mays and containing the chloroplast signal peptide are set forth in SEQ ID NOs: 80 and 81, respectively. The chloroplast signal peptide is encoded by nucleotides 1-150 of SEQ ID NO:80, and corresponds to amino acids 1 to 50 of SEQ ID NO:81. The plasmid was transformed into the stable rubusoside producer strain (EFSC1859) that has GGPPS-10, CDPS-5, KS-1, KO-1, KAH-3, CPR-1 and UGT74G1 (SEQ ID NO:2) integrated into the genome and expressed from the strong constitutive GPD and TPI promoters. Furthermore, in strain EFSC1859, expression of squalene synthase, which is encoded by ERG9, was downregulated by displacement of the endogenous promoter with the CUP1 inducible promoter. In addition to these genes, strain EFSC1859 also expresses UGT85C2 (SEQ ID NO:3) from a 2 micron multicopy vector using a GPD1 promoter. Rubusoside and 19-SMG production were measured by LC-MS to estimate the production level. The removal of the plastid leader sequence did not appear to increase steviol glycoside production as compared to the wild-type sequence. However, this work demonstrates that the leader sequences can be removed without causing a loss of steviol pathway function.
[0264] Similarly, plasmids were constructed for CPR-3, KAH-3 and KO-1 without membrane anchoring sequences (i.e., nucleotides 4-63 of SEQ ID NO:72; nucleotides 4-87 of SEQ ID NO:62; and nucleotides 1-117 of SEQ ID NO:52) and were transformed into strain EFSC1859 with the UGT85C2 integrated on the chromosome rather than on a plasmid. It is expected that these enzymes will be functional without the anchoring sequence.
Example 10--Identification of Steviol-1,3-O-Monoglucoside 1,2-Glucosyltransferase Sequences
[0265] Stevia EST Analysis
[0266] A tBLASTN search of a Stevia (Stevia rebaudiana) leaf EST (Expressed Sequence Tags) database (Brandle et al., Plant Mol. Biol. 50:613-622, 2002) was carried out using complete Ipomoea (Ipomoea purpurea) UGT79 type UGT (IP3GGT), Bellis (Bellis perennis) UGT94B1, Stevia UGT79A2, Stevia UGT76G1 and Stevia UGT91D1 amino acid sequences as queries, thus representing UGTs from all Family 1 glycosyltransferase sub-families known to primarily contain diglycosyltransferases. Partial sequences for 9 previously undescribed UGT genes were identified. One of the partial sequences was from the UGT79 sub-family ("79-EV1"), one from the UGT 76 sub-family ("76-EV1") and two from the UGT 91 sub-family ("91-EV-1" and "91-EV2"), as well as members of the UGT 71, 72, 78, 84 and 88 sub-families. Seven of the partial sequences were isolated using Stevia cDNA or cDNA libraries as the PCR template for isolation. In addition, two Stevia members of the UGT 76 sub-family were isolated, GenBank accession ACT33422.1 which is a member of the 76G1 sub-family (Mohankumar), and GenBank accession ACM47734.1 which is a member of the 76G2 (Yang) sub-family.
[0267] Pyrosequencing
[0268] Additional UGT clones were identified and isolated by performing pyrosequencing with Stevia cDNA as follows. Stevia mRNA was prepared from Stevia leaves, using the Ambion.RTM. Micro Poly Purist.TM. mRNA preparation kit. As a quality control, reverse transcribed mRNA was tested for the presence of the Stevia Rebaudioside A pathway UGT genes 85C2, 74G1 and 76G1, by employing analytical PCR with oligonucleotide primers identical to 21 nucleotides at the 5'- and 3'-termini of each sequence. The amplified full length mRNA was then used for pyrosequencing and contig assembly (MOgene, St. Louis, Mo. USA). About 3.4 million reads of an average length of 393 nucleotides were performed, and the resulting raw sequences used to obtain 25907 sequence contigs. A database was constructed, containing publicly available amino acid sequences of a total of ca. 1,500 UGTs. About 150 of the sequenced UGTs were fully annotated UGTs from a wide variety of sub-families. The remaining sequenced UGTs were partially annotated homologs of these. A BLASTX search was performed (CLC Genomics, Muehltal, Germany), using the 25907 Stevia EST contigs as query, to the fabricated UGT database (Genetic code=1, Low complexity=Yes, Expect value=10.0, Word size=3, No of processors=2, Matrix=BLOSUM62, Gap cost (open)=11, Gap cost (extension)=1). The results suggested that sequences for more than 90 previously unknown UGTs from Stevia were present in the pyrosequencing database.
[0269] No additional members of the UGT 79 sub-family or the UGT 94 sub-family were identified in the pyrosequencing database. However, the analysis showed new members of the UGT 76 and 91 sub-families. For a few of the genes, full length sequence data was immediately available from the pyrosequencing EST data. A previously constructed Stevia plasmid cDNA library was used to obtain full-length sequences for those members for which partial sequence data was obtained. An oligonucleotide primer identical to each specific, partial UGT sequence was combined with an oligonucleotide primer identical to the library plasmid vector sequence. These primers were employed in PCR to obtain the full length product, which was subsequently sequenced. Based on the full length sequence, a second PCR was performed using a proof-reading PCR polymerase enzyme for amplification of the full length UGT gene from a Stevia cDNA library as the template for the reaction. Using this strategy, five members of the UGT 76 sub-family, six members of the UGT 91 sub-family, as well as ten members of other UGT sub-families were isolated.
[0270] Each of the 7 UGTs identified from the Stevia EST database, the 2 publicly available Stevia UGT 76 sequences, and the 21 UGTs identified from pyrosequencing was cloned into the E. coli expression vectors pET30A+ or pETDuet (making use of the HIS-tag for purification purposes) and expressed in the autolysis-prone E. coli strains XjA and XjB. For a large number of these UGTs, expression of the UGT protein resulted in the formation of inclusion bodies. In order to overcome formation of those inclusion bodies, some of these UGTs were expressed in the low temperature expression strain "Arctic Express" (Agilent Technologies). For those which failed to express in this system, coupled in vitro transcription-translation of PCR products (TNT.RTM.T7 Quick for PCR DNA kit, Promega) was attempted, allowing successful expression of the remaining UGTs. Efficiency of the reaction was ensured by labeling with .sup.35S-methionine, separation on SDS-PAGE and phosphorimaging detection of a protein band of the expected size for the UGT protein in question.
[0271] UGT polypeptides from each clone, expressed as described above, were tested for 1,2-glycosylation activity, using steviol-13-O-monoglucoside as substrate. In vitro transcribed/translated protein, corresponding to approximately one fifth of the total protein formed in a 25 .mu.L reaction, was used in an in vitro reaction, using 0.5 mM steviol-13-O-monoglucoside (SMG) as substrate, in a reaction buffer (containing 1 mM UDP-glucose, 100 mM Tris-HCl (pH 8.0), 5 mM MgCl.sub.2, 1 mM KCl, 0.1 U/.mu.l calf intestine phosphatase). The reaction mixture was incubated at 30.degree. C. for 20 hours. The reaction mixture was then analyzed by LC-MS analysis for the presence of Steviol-1,2-bioside. LC-MS analyses were performed using an Agilent 1100 Series HPLC system (Agilent Technologies) fitted with a Phenomenex.RTM. Synergy Hydro-RP column (250.times.3 mm, 3 .mu.m particles, 80 .ANG. pore size) and hyphenated to a TSQ Quantum (ThermoFisher Scientific) triple quadropole mass spectrometer with electrospray ionization. Elution was carried out using a mobile phase (30.degree. C.) containing MeCN (0.01% Formic acid) and H.sub.2O (0.01% Formic acid) by applying a gradient composed of 0.6.fwdarw.0.4 ml/min, 5% MeCN for 4 min; 0.4 ml/min, 5.fwdarw.40% MeCN for 2 min; 0.4 ml/min, 40.fwdarw.55% MeCN for 11 min; 0.4-1.0 ml/min, 55.fwdarw.100% MeCN for 3 min. Steviol biosides were detected using SIM (Single Ion Monitoring) on Mw 665.2 [M+Na.sup.+]. None of the 30 UGT enzymes tested exhibited detectable steviol-13-O-monoglucoside glycosylation activity.
[0272] The nucleotide sequences of the six UGT91 members identified by pyrosequencing were compared to the sequence of Stevia UGT91D1 in Genbank Accession No. AY345980. It appeared that the GenBank sequence encoded 12 additional amino acids at the N-terminus, relative to the six sequences identified by pyrosequencing. To re-test UGT91D1 family members for activity, UGT91D1 sequences were re-isolated by PCR amplification of Stevia leaf cDNA. The resulting PCR products were cloned into a plasmid vector and enzymatic activity for each product was measured as described above by: GST-tagged expression in E. coli, coupled in vitro transcription-translation, and/or in vivo expression in yeast. Steviol 1,2-glucosylation activity was detected from one clone by all three methods. This clone was designated UGT91D2e. The amino acid sequence of UGT91 D2e is set forth in SEQ ID NO:5. In contrast, no 1,2-glucosylation activity was detected from a clone having the same sequence as described by Accession No. AY345980 (Protein Accession number AAR06918), but lacking the 12 amino acids of the amino terminus.
Example 11--Analysis of UGT91D2e Sequences
Sequence Variants of UGT91D2e
[0273] As evidenced in FIG. 19B, a small number of amino acid modifications exist between the active (91D2e) variants and the closest inactive homologs (91D1). The 91D1 genes cloned by Ma et al., Shi Yan Sheng Wu Xue Bao. 2003 36(2):123-9 (Protein Accession number AAM53963, GI:21435782) and Brandle et al., supra (Protein Accession number AAR06918, GI:37993665) did not exhibit the 1,2-glycosylating activity required for RebA biosynthesis. To ascertain which amino acids are required for activity, 21 single site-directed mutants were created such that the amino acid in UGT91D2e (SEQ ID NO:5) was changed to the corresponding amino acid in an inactive homolog. See Table 12. In addition, a site-directed mutation was made such that position 364 (S.fwdarw.P) also was changed. The mutants were made using the QuikChange.RTM. II Site-Directed Mutagenesis kit according to manufacturer's protocols (Agilent Technologies, Santa Clara, Calif.), and the pGEX-4TI vectors were transformed into a XJb Autolysis E. coli strain (ZymoResearch, Orange, Calif.). A mutant was not made to change residue 162 from a glycine to an aspartic acid.
[0274] In order to assess the activity of the mutant enzymes, a substrate-feeding experiment was performed in vitro using protein produced in E. coli. Initially, E. coli cells were grown overnight at 30.degree. C., followed by induction with 3 mM arabinose and 0.1 mM IPTG, and further incubation at 20.degree. C. For the in vitro assay, cells were induced overnight at 20.degree. C., lysed by a freeze/thaw cycle, and the crude cell extract used for an enzymatic reaction in which the substrates were 0.5 mM steviol-13-O-glucoside and 0.5 mM rubusoside.
[0275] The results are shown in Table 12 for the steviol monoglucoside (SMG) and Rubusoside (Rub) substrates. A "+" indicates that diglycosylation activity was detected, a "-" indicates activity was not detected, and "NA" indicates the assay was not performed. The noted mutations are based on the numbering of the 91D2e sequence (SEQ ID NO:5).
[0276] As some of the genes have a tendency to express in inclusion bodies in E. coli, the coding sequences that did not show activity in the E. coli experiments also were produced by coupled in vitro transcription-translation of PCR products (TNT.RTM.T7 Quick for PCR DNA kit, Promega) as above in Example 10. Briefly, 2 .mu.L of DNA from the PCR amplification of the five single mutants and the wild type enzyme were incubated for 90 minutes at 30.degree. C. with the kit master mix and 1 .mu.L L-[.sup.35S]-Methionine, in a total of 25 .mu.L reaction. For each sample, a volume of 2 .mu.L final reaction was run on a SDS-PAGE gel. All six proteins showed similar levels of soluble recombinant protein as judged by visual observation of the SDS-PAGE gel. The results for the in vitro-translated proteins are shown on the right side of Table 12. The percentages in this table indicate the approximate amount of conversion of substrate to product based on relative peak areas of substrate and product.
TABLE-US-00013 TABLE 12 E. coli E. coli in vitro in vitro protein protein protein protein Mutation SMG Rub SMG Rub Y30.fwdarw.F + + NA NA P93.fwdarw.Q + + NA NA S99.fwdarw.V + + NA NA Y122.fwdarw.F + + NA NA H.fwdarw.140Y + + NA NA S142.fwdarw.C + + NA NA T144.fwdarw.I - - 5.9% 0.05% A148.fwdarw.T + + NA NA M152.fwdarw.L - - 25.1% 0.85% G153.fwdarw.A + + NA NA A156.fwdarw.S + + NA NA L195.fwdarw.M + + NA NA V196.fwdarw.E + + NA NA K199.fwdarw.E + + NA NA L211.fwdarw.M + + NA NA L213.fwdarw.F - - 29.4% 1.59% S221.fwdarw.F + + NA NA V286.fwdarw.A + + NA NA S364.fwdarw.P - - 4.1% 0.4% G384.fwdarw.C - - 14.1% 1.28% K427.fwdarw.N + + NA NA E438.fwdarw.A + + NA NA
[0277] The approximate amount of diglycosylation activity as compared to UGT91D2e (SEQ ID NO:5) was found to be: 6.1% for T144S, 26.2% for M152L, 30.7% for L213F, 4.3% for S364P, and 14.7% for G384C using 13-SMG as substrate. For rubusoside, the approximate amount of diglycosylation activity as compared to UGT91D2e was 1.4%, 23.4%, 43.7%, 10.9% and 35.2% for T144S, M152L, L213F, S364P, and G384C, respectively.
[0278] These results indicate that 5 of the 22 amino acid mutations were noticeably deleterious for activity when done in isolation. It is also possible that combinations of the other 17 mutations also could result in inactivity or loss of activity.
[0279] By aligning the 91D2e sequences and the variants described above with proteins termed At72B1, Mt85H2, VvGT1 and Mt71G1 (Osmani et al (2009) Phytochemistry 70, 325-347), and analyzing predicted tertiary structures (alpha helices, beta-sheets, and coil regions), regions can be identified where mutations are likely to result in loss of diglycosylation activity. The first three mutations that are deleterious are found in the N-terminal domain, in regions that are thought to be loops. The N-terminal domain (amino acid residues 1-240), in particular the predicted loop regions of the N-terminal domain (amino acids 20-26, 39-43, 88-95, 121-124, 142-158, 185-198, and 203-214), are thought to be primarily responsible for binding of the glucose acceptor molecule substrate. The fourth mutation that appears to be deleterious for activity is found in the C-terminal domain, in a region that is believed to be the C5 loop (corresponding to amino acids 381-386). This loop is also thought to be important for glucose acceptor substrate specificity. Nineteen of the twenty-two mutations that separate the inactive versus the active rubusoside diglycosylase enzymes are located within five amino acids of the predicted acceptor substrate binding regions of 91D2e. Therefore it is likely that the published 91D1 enzymes catalyze a glycosyl transferase reaction between UDP-glucose and an alternative acceptor substrate.
Example 12--Production of Rebaudioside A in Yeast
Production of Rebaudioside A in Steviol-Fed Yeast
[0280] The yeast strain EFSC1580, which contains a genomically integrated UGT74G1 expression cassette, was transformed with three different 2p high copy (episomal) plasmids for co-expression of Stevia UGTs 91D2e (SEQ ID NO:5), 85C2 (SEQ ID NO:3), and 76G1 (SEQ ID NO:7). The three plasmids, designated pMUS44, pMUS7 and pMUS9, contain coding sequences for UGT91D2e, UGT85C2 and UGT76G1, respectively, operably linked to the strong GPD1 promoter. The resulting yeast strain was grown in SC medium without uracil, histidine, and leucine to select for the continued presence of the pMUS44, pMUS7 and pMUS9 expression plasmids. Steviol was added to the medium to a final concentration of 250.mu.M, and the strain was cultured at 30.degree. C. At 18 hours and 72 hours of culture, aliquots of the supernatants and cell pellets were analyzed for the presence of Rebaudioside A by LC-MS. LC-MS analyses were performed using an Agilent 1100 Series HPLC system (Agilent Technologies, Wilmington, Del., USA) fitted with a Phenomenex.RTM. Synergy Hydro-RP column (250.times.3 mm, 3 .mu.m particles, 80 .ANG. pore size) and hyphenated to a TSQ Quantum (ThermoFisher Scientific) triple quadropole mass spectrometer with electrospray ionization. Elution was carried out using a mobile phase (30.degree. C.) containing MeCN (0.01% Formic acid) and H2O (0.01% Formic acid) by applying a gradient composed of 0.6-0.4 ml/min, 5% MeCN for 4 min; 0.4 ml/min, 5.fwdarw.40% MeCN for 2 min; 0.4 ml/min, 40.fwdarw.55% MeCN for 11 min; 0.4.fwdarw.1.0 ml/min, 55.fwdarw.100% MeCN for 3 min. Steviol biosides were detected using SIM (Single Ion Monitoring).
[0281] LC-MS results showed that detectable amounts of Rebaudioside A were found in the supernatant at 18 and 72 hours of culture when strain EFSC1580 containing pMUS44, pMUS7 and pMUS9 was grown in the presence of steviol. The product co-eluted with a Rebaudioside A standard and the expected mass was confirmed as the [M+Na].sup.+=989. By comparing the absorbance of the product to the absorbance of a 10 .mu.M Rebaudioside A standard, the accumulation in the supernatant of the cell culture was estimated to be more than 6 mg/L at 18 hours, and more than 15 mg/L at 72 hours.
Production of Rebaudioside A and Rebaudioside D in Glucose-Fed Yeast
[0282] Yeast strain CEY213, described in Example 4, contains steviol biosynthetic pathway genes expressed from eYACs as well as genomically integrated UGT74G1 and UGT85C2 expression cassettes. Strain CEY213 produces rubusoside, as described in Example 6.
[0283] Strain CEY213 was transformed with a 2p high copy (cpisomal) dual expression plasmid, pMUS47, for simultaneous expression of UGT91D2e (SEQ ID NO:5) and UGT76G1 (SEQ ID NO:7). The pMUS47 plasmid contains two expression cassettes, one having the coding sequence of UGT91D2e and the other having the coding sequence of UGT76G1. Both coding sequences are operably linked to the strong constitutive GPD1 promoter. The resulting yeast strain was pre-cultured overnight at 30.degree. C. in SC medium without histidine, leucine and tryptophan in order to maintain selection for the presence of eYACs, without uracil in order to maintain selection for the presence pMUS47, and finally with methionine (2 mM) in order to suppress promoters present on the eYACs. The next day, the cells were washed and transferred to an identical medium, but without methionine, for induction of the eYAC promoters. Samples were collected after 24 hours and 99 hours of incubation, and supernatants and cell pellets analyzed for the presence of Rebaudioside A and Rebaudioside D, using LC-MS as described above.
[0284] The results showed that detectable amounts of Rebaudioside A were found in the supernatants at both 24 and 99 hours. The product co-cluted with a Rebaudioside A standard and the expected mass was confirmed as the [M+Na]=989. By comparing the absorbance of the product to a 10 .mu.M Rebaudioside A standard, the accumulation of Rebaudioside A in the supernatant was estimated to be more than 3 mg/L at 24 hours and more than 6 mg/L at 99 hours. See FIG. 9. The results also indicated that small amounts of stevioside and rubusoside were present in the yeast cell pellet and that detectable amounts of stevioside and rubusoside were present in the culture supernatant. See FIG. 9.
[0285] The results also showed that small but detectable amounts of Rebaudioside D were produced, suggesting that UGT91D2e is capable of conjugating an additional glucose to the 19-O glucose of either stevioside producing Rebaudioside E or directly to the 19-O glucose of Rebaudioside A. These results also suggest that UGT76G1 may be capable of accepting Rebaudioside E as a substrate to produce Rebaudioside D. See FIG. 2C.
Example 13--Production of Rebaudioside A with Codon Optimized Sequences for UGT Sequences
[0286] Optimal coding sequences for UGT 91d2e, 74G1, 76G1, and 85C2 were designed and synthesized for yeast expression using two methodologies, supplied by GeneArt (Regensburg, Germany) (SEQ ID NOs: 6, 2, 8, and 4, respectively) or DNA 2.0 (Menlo Park, Calif.) (SEQ ID NOs: 84, 83, 85, and 82, respectively). The amino acid sequences of UGT 91d2c, 74G1, 76G1, and 85C2 (SEQ ID NOs: 5, 1, 7, and 3, respectively) were not changed.
[0287] High copy number plasmids containing expression cassettes with all four optimized UGTs were constructed and expressed, and their activity compared to expression products of similar constructs containing wild-type sequences. The plasmids were transformed into the universal Watchmaker strain, EFSC301 (described in Example 3). UGTs were inserted in high copy (2.mu.) vectors and expressed from a strong constitutive promoter (GPD1) (vectors P423-GPD, P424-GPD, P425-GPD, and P426-GPD). After overnight growth and re-inoculation in fresh media at an OD.sub.600 of 0.25, the culture medium (SC-leu-trp-ura-his) was supplemented with 25 .mu.M steviol (final concentration), and production of Rubusoside (Rub), 19-SMG (19SMG) and RcbA (RcbA) was measured in the media after 24h. The experiment was repeated, in part due to the fact that 19-SMG was undetectable in one of the first samples.
[0288] The results from the two separate studies, shown in Table 13 below, indicate that all eight of the codon-optimized UGTs were active. However, enzyme expression for at least one of the codon-optimized UGTs in each strategy was reduced by the new codon optimization algorithm used to make the constructs. It appears that in the GeneArt modified constructs (SEQ ID NOs: 6, 2, 8, and 4), a bottleneck was potentially created between rubusoside and RebA. It is expected that individual enzyme activity assays and expression analyses of these coding sequences expressed in the yeast strains will allow for the optimal combination of UGT genes in the pathway.
TABLE-US-00014 TABLE 13 RebA 19SMG Rub (.mu.M) (.mu.M) (.mu.M) Wild-type 3.2 17.2 4.9 1.7 14.0 3.2 DNA2.0 4.4 12.4 4.6 1.7 10.8 3.1 GeneArt 1.2 nd 4.6 0.8 11.1 4.5 nd = below detection limit
Example 14--Production of Rebaudioside A Using UGTs with Sequence Tags
[0289] Fusions of small peptides or protein binding domains with the UGT proteins 85C2, 91D2e, 74G1, and 76G1 can promote interactions between the UGTs (channeling) or aid in targeting/anchoring the UGTs to specific components of the yeast cells.
[0290] To assess if scaffolding of the UGTs in the RebA pathway could result in active pathway enzymes, the DNA 2.0 codon-optimized UGTs 85C2 and 74G1 were fused in-frame to a string of 4 high-affinity, short (also known as PMI) peptides that resemble the p53 protein motif. The p53 protein motif interacts with the MDM2 protein in humans (see Li et al., J Mol Biol. 2010, 398(2):200-13). DNA 2.0 codon-optimized UGTs 85C2, 91D2e, 74G1 and 76G1 (SEQ ID NOs: 82, 84, 83, and 85, respectively) were fused in-frame to the first 158 amino acids of the human protein MDM2 (gene accession number ABT17086). A small GS-rich linker region also was fused just prior to the N-terminal methionine of the UGTs. Unfused, the affinity of PMI/MDM2 binding is in the low nM range representing a high-affinity binding. Yeast cells transformed with the above constructs are expected to produce a UGT scaffold around the 4.times.PMI (P53-like) peptide repeat fused N-terminally to the 85C2 protein (designated 85C2_P53) scaffold.
[0291] The laboratory yeast strain BY4741, deleted for TRP1, was transformed with expression plasmids p423-426 GPD (Mumberg et al, Gene, 156 (1995), 119-122) expressing Stevia rebaudiana UGTs 74G1, 76G1 and 91D2e with N-terminal, in-frame fusions of the first 158 amino acids of human MDM2 protein, and expressing Stevia rebaudiana UGT85C2 with an N-terminal in-frame fusion of 4 repeats of the synthetic PMI peptide (4.times.TSFAEYWNLLSP, SEQ ID NO:86). See SEQ ID NOs: 88, 90, 92, and 94 for the amino acid sequences of the 85C2, 74G1, 91D2e, and 76G1 fusion proteins, respectively; see SEQ ID NOs: 89, 92, 93, and 95 for the nucleotide sequences encoding the fusion proteins. This yeast strain and a control strain (expressing the four UGT's without any fusions) were grown overnight in synthetic yeast medium selecting for the presence of plasmids and then transferred the next day to a 96 deep-well tray containing synthetic yeast medium to a cell density giving an OD.sub.600 of 1. A final concentration of 100 .mu.M steviol was added. After 72 hours, samples were taken and analysed by LC-MS, as described in Example 12. As indicated in FIGS. 10A and 10B, the UGTs are active in yeast when expressed with the various fusion tags.
Example 15--UGT91D2e Activity
[0292] Additional sub-family 91 UGTs were cloned using cDNA/library preparations made from 3 Stevia sources of different genetic backgrounds. Oligonucleotide primers identical to UGT91 D1/91 D2e were used for PCR amplification of the cDNA preparations, and the resulting PCR products of correct size were cloned into appropriate plasmid vectors. Numerous clones from each experiment were sequenced, and the sequencing results showed that UGT91D nucleic acids with slight variations in sequence could be amplified. The twenty UGT9 D variants with the greatest differences in sequence relative to UGT91D2c were expressed by in vitro transcription-translation followed by enzymatic testing for steviol-13-O-monoglucoside-1,2-glucosylating activity. One of the variants showed weak 1,2-bioside glucosylation activity, while the reminder showed no detectable glucosylation activity. It therefore appears that UGT91 D2 polypeptides are the primary steviol-13-O-monoglucoside-1,2-glucosylating enzymes in Stevia.
Enzymatic Activity of UGT91D2e
[0293] UGT91D2e (SEQ ID NO:5), made by coupled in vitro transcription-translation, was tested for the ability to xylosylate and rhamnosylate steviol-13-O-monoglucoside in an in vitro enzyme assay, using UDP-xylose or UDP-rhamnose as the sugar donors rather than UDP-glucose.
[0294] The xylosylation assay was performed as follows: 3 mM UDP-glucuronic acid was mixed with ca. 1 .mu.g Arabidopsis thaliana-encoded UDP-glucuronic acid decarboxylase UXS3 (produced in E. coli and then purified), 100 mM Tris-HCl (pH 8.0), 1 mM DTT, 6 .mu.g BSA, 1 mM MgCl.sub.2, and 1% calf intestine phosphatase. The reaction mixture was incubated for 30 minutes at 30.degree. C., in order for UDP-glucuronic acid to be turned into UDP-xylose. Then 1.5 mM steviol-13-O-monoglucoside substrate and ca. 0.5 .mu.g UGT91D2e enzyme made as described in Example 9 was added to the mixture, which was allowed to incubate at 30.degree. C. for an additional 20 hours.
[0295] The rhamnosylation assay was performed in the following way: 3 mM UDP-glucose was mixed with 0.6 .mu.g of each of the N-terminal and C-terminal parts of Arabidopsis thaliana-encoded RHM2 rhamnose synthetase (produced in E. coli and then purified), 100 mM Tris-HCl (pH 8.0), 1 mM DTT, 1.5 mM NADPH, 1.5 mM NAD+, 6 .mu.g BSA, 1 mM MgCl.sub.2, and 1% calf intestine phosphatase. The reaction mixture was incubated for 30 minutes at 30.degree. C., in order for UDP-glucose to be turned into UDP-rhamnose. Then 1.5 mM steviol-13-O-monoglucoside substrate and ca. 0.5 .mu.g UGT91D2e enzyme was added to the mixture, which was allowed to incubate at 30.degree. C. for an additional 20 hours.
[0296] The results indicated that UGT91D2e was capable of carrying out xylosylation of the steviol-13-O-monoglucoside substrate at about one half to one third the rate observed with UDP-glucose, forming 1,2-xylosylated steviol-13-O-monoside, which is a precursor to Rebaudioside F. UGT91D2c was capable of carrying out rhamnosylation of the steviol-13-O-monoglucoside substrate at about the same rate as the rate observed with UDP-glucose, forming 1,2-rhamnosylated steviol-13-O-monoside, which is a precursor for Rebaudioside C (Dulcoside B). These results indicate that synthesis of appropriate precursor molecules and expression of appropriate UGTs in vivo should result in the production of Rebaudioside F and C in vivo. See FIGS. 2B and 2D.
[0297] UGT91D2e also was tested for its ability to 1,2-glucosylate substrates other than steviol-13-O-monoglucoside in vitro, i.e., rubusoside, steviol-1,3-bioside and 1,3-stevioside. The results indicated that UGT 91D2e was not active when a 1,3-bound glucose was present (e.g., steviol 1,3-bioside and 1,3-stevioside), while UGT 91D2e was active regardless of primary glucosylation at the 19-O position. These results suggest that steviol 1,3-bioside and 1,3-stevioside are likely not present in the in vivo Stevia pathway for rebA formation. See FIG. 2A and FIG. 3.
Example 16--UGT91D Homologs
[0298] Different ecotypes of S. rebaudiana are genetically diverse. Investigation of 96 clones of 91Ds from different Stevia RNA accessions revealed many amino acid changes between six investigated ecotypes (e.g., at nucleotide 74 (resulting in an amino acid change of G to D), 89 (Y to F), 131 (V to A), 137 (F to S), 278 (P to Q), 295 (S to V or P), 331 (E to Q), 365 (Y to F), 395 (A to V), 418 (H to Y), 425 (S to G), 431 (T to 1), 442 (A to T), 454 (M to L), 458 (G to A), 466 (A to S), 485 (G to D), 583 (L to M), 587 (V to E), 595 (K to E), 614 (D to G), 616 (G to R), 631 (L to M), 637 (L to F), 662 (S to F), 664 (K to E), 671 (Y to C), 857 (V to A), 867 (S to R), 919 (F to L), 989 (V to A), 1000 (R to C), 1090 (S to P), 1150 (G to C), 1232 (L to S), 1281 (K to N), 1313 (E to A), 1354 (Q to R), and 1369 (V to I)), as numbered with respect to the nucleotide sequence of 91D2e set forth in SEQ ID NO:9. Some additional variation from these polymorphisms was noted, which is likely due to sequencing or PCR errors, particularly if the polymorphisms were found only once. Twenty coding regions were chosen for further analysis. See Table 14 for descriptions of clones that were isolated. The numbering of the amino acids in Table 14 is based on the amino acid sequence of UGT91D2e set forth in SEQ ID NO:5.
TABLE-US-00015 TABLE 14 Clone Mutations as compared to UGT91D2e (SEQ ID NO: 5) 1 +1 frameshift between residues 119-145 in the nucleotide sequence, G165V, I367V, L388P 2 27 bp deletion starting at nucleotide 728, K214R 3 D205G, V286A, Y443C 4 L28P, Y30F, P93Q, S99V, E111Q, I118V, Y122F, H140Y, S142C, T144I, A148T, M152L, G153A, A156S, G162D, L195M, V196E, K199E, L211M, L213F, S221F, L411S, V425A 5 G206R, Y207C, W343R 6 Q13R, F46S, S99P, D395G 7 Y30F, S364P, G384C, K427N, E438A 8 Y94C, A132V, Y224C, G384C, K427N, E438A, Q455R 9 K222E, T341M, G384C 10 Y94C, A132V, Y224C, K313N, R334C, G384C 11 Y30F, K222E, V286A, G384C, K427N, E438A 12 Y30F, P93Q, S99V, Y122F, H140Y, S142C, T144I, T145N, A148T, M152L, G153A, A156S, G162D, L195M, V196E, K199E, L211M, L213F, S221F, V286A S289R, R334C, G384C, K427N, E438A 13 V44A, I136V, G374D, V457I, N463S 14 I60S, K97R, Q103R, F181S, L411S 15 V244A, F307L 16 H140Y, S142C, T144I, A148T, M152L, G153A, A156S 17 L195M, V196E, K199E, L211M, L213F, S221F, V286A, R334C, G384C, K427N, E438A 18 V169A, R334C, G384C, K427N, E438A 19 G25D, Y30F, P93Q, S99V, Y122F, H140Y, S142C, T144I, A148T, M152L, G153A, A156S, G162D, L195M, V196E, K199E, L211M, L213F, S221F, V286A, G384C 20 I64T, V323A, V330A, G384C, K427N, E438A
[0299] All of the clones in Table 14 were tested for activity using 13-SMG as a substrate. Clone 5 had weak 1,2-glycosylating activity whereas the remaining nineteen did not appear to have activity under the conditions tested. The sequence of clone 5 is set forth in SEQ ID NO:95 and has the following mutations with respect to wild-type UGT92D2e (SEQ ID NO:5): G206R, Y207C, and W343R.
Example 17--UGT85C Homologs
[0300] The genetic diversity of UGT85Cs from six different S. rebaudiana ecotypes was examined to identify homologs that have the same or enhanced activity in pathways for steviol glycoside production. PCR primers were designed that were specific for UGT85C genes, and PCR reactions were carried out on cDNA (some were done on cDNA libraries, some were done on cDNA preparations). The resulting PCR products were cloned and 96 clones were sequenced. Amino acid polymorphisms were mapped and 16 UGT 85C clones were chosen with varying common polymorphism representation. See Table 15. Additional modifications were also noted for some clones, but could be due to PCR errors or were not common polymorphisms. Polymorphisms are described with respect to the nucleotide and amino acid numbering of the wild-type S. rebaudiana UGT85C nucleotide sequence set forth in Accession No. AY345978.1 (see Table 8).
TABLE-US-00016 TABLE 15 Allele 38 44 179 194 212 260 659 728 809 866 1001 1007 1116 1181 1190 1253 1319 1322 Amino Acid # Clone 13 15 60 65 71 87 220 243 270 289 334 336 389 394 397 418 440 441 1 V-F F-L H-D T-M Q-H E-V 2 V-F H-D T-M 3 H-D E-V 4 H-D I-F 6 H-D P-S 7 H-D 8 H-D T-M 13 A-S T-M A-V I-V 16 A-S E-Q K-T R-W T-R 17 A-S E-Q K-T R-W T-R H-N 19 A-S E-Q K-T A-V I-V 20 A-S E-Q T-M Q-H 21 F-L A-S 22 A-S I-F G-D 23 A-S T-A 24 A-S T-M Q-H 26 A-S T-M 27 A-S I-T 28 A-S 29 A-S G-D 30 A-S H-N 31 A-S E-V 32 A-S P-S 33 K-T R-W T-R L-S 36 T-M 37 T-M Q-H 38 T-M I-T 39 H-D T-M 41 L-S
[0301] The clones were expressed through coupled in vitro transcription-translation of PCR products (TNT.RTM.T7 Quick for PCR DNA kit, Promega) and assayed for glycosylation activity on the substrates steviol and steviol-19-O-glucoside (0.5 mM), as described in previous examples. The UGT85Cs produced from clones 1, 4, 16, 17, 19, 20, 21, 26, 29, 30, 31, 37, and 39 were soluble and were able to convert 19-SMG to rubusoside in a 90 min assay. The UGT85C produced from clone 27 was considered insoluble. Although UGT85Cs produced from clones 2 and 33 were considered insoluble, trace amounts of rubusoside were produced despite the protein band not being visible. These experiments were independently performed three times. The experiments showed that the following amino acid mutations did not result in a loss of activity: V13F, F15L, H60D, A65S, E71Q, I87F, K220T, R243W, T270M, T270R, Q289H, L334S, A389V, 1394V, P397S, E418V, G440D, and H441N. Additional mutations that were seen in active clones include K9E in clone 37, K10R in clone 26, Q21H in clone 2, M27V in clone 30, L91P in clone 4, Y298C in clone 31, K350T in clone 37, H368R in clone 1, G420R in clone 19, L431P in clone 4, R444G in clone 16, and M471T in clone 30.
[0302] The only common polymorphisms that were not tested were T270A and 1336T, which are both fairly conservative substitutions. Clone 17 had the most changes incorporated as compared to UGT85C, 6/480 amino acids. The 17-20 amino acids that appear to be changeable represent approximately a 4% difference at the amino acid level.
[0303] Generally, there is low genetic diversity among the 85Cs and it is likely that all of the 85C homologs with the common polymorphisms set forth in Table 15 will be active.
Example 18--UGT76G Homologs
[0304] The genetic diversity of UGT76Gs from six different S. rebaudiana ecotypes was examined to identify homologs that have the same or enhanced activity in pathways for steviol glycoside production. PCR primers were designed that were specific for UGT76G, and PCR reactions were carried out on preparations of cDNA (cDNA libraries or cDNA preparations). The resulting PCR fragments were cloned and 96 clones were sequenced. Common amino acid polymorphisms were mapped and sixteen UGT76G clones chosen, with varying polymorphism representation, including (amino acid numbering): R10S, 116L, F22V, M291, K52S, V74K/E, P80S, L85A, V87S/G, L91P, 192F, 193F, H96Y, G97R, L108V, E113D, G116E, A123T, Q125A, 1126L, Y128H, T130A, L1421, V145M, S147N, N151T, F1521, H153L, H155Y, V156D, Q160L, E163D, L167F, P169L, K188N, K191Q, C192S/F, S193G/A, F194Y, M196N, K198Q, K199(I, V, Q), Y200(L, A, G), Y203I, F204L, E205G, N206K, 1207M, T2081, V217I/F, E226Q, S228P, L230V, V2331, 1234T, E236D, 1237F, S253P, P266Q, S273P, R274S, G284T/A, T285S, 287-3 bp deletion, R298H, P326A, L330V, G331A, P341L, L3461, S376L, D377A, G379A, L380F, S438P, and K44 IN. Generally, there was very high diversity among the 76Gs.
[0305] The clones were expressed through in vitro translation and assayed for glycosylation activity using 0.5 mM steviol-13-O-glucoside and 0.5 mM stevioside as substrates, as described in previous examples. Reactions were carried out for 90 min at 30.degree. C. The native 76G1 activity was found in the new 76Gs designated 76G_C4, 76G_G7 and 76G_H12, by formation of 1,3-bioside when steviol-13-O-glucoside was used as substrate. Activity in this case was determined comparatively to the positive control, the functional 76G1. Clones 76G_G7 and 76G_H12 produced slightly higher levels of Reb A than the control but 76G_C4 had slightly less Reb A than the control. The number of changes in these clones represents a difference of about 7% at the amino acid level, from the control enzyme. SEQ ID NOs: 98, 100, and 102 set forth the amino acid sequence of 76G_C4, 76G_G7, and 76G_H12, respectively. SEQ ID NOs: 97, 99, and 101 set forth the nucleotide sequences encoding 76G_C4, 76G_G7, and 76G_H12, respectively. SEQ ID NOs: 98, 100, and 102 set forth the amino acid sequence of 76G_C4, 76G_G7, and 76G_H12, respectively. SEQ ID NOs: 97, 99, and 101 set forth the nucleotide sequences encoding 76G_C4, 76G_G7, and 76G_H12, respectively.
[0306] Table 16 summarizes the amino acid changes of the 76G clones that had activity, as compared to the wildtype enzyme. There are a large number of overlapping polymorphisms in the active clones, thus it is expected that these polymorphisms do not cause a loss of activity for the enzyme. It appears that certain mutations are frequent in inactive clones, such as the P.fwdarw.S mutation at position 80 or the F.fwdarw.V mutation at position 22.
TABLE-US-00017 TABLE 16 Clone Mutations 76G_G7 M29I, V74E, V87G, L91P, G116E, A123T, Q125A, I126L, T130A, V145M, C192S, S193A, F194Y, M196N, K198Q, K199I, Y200L, Y203I, F204L, E205G, N206K, I207M, T208I, P266Q, S273P, R274S, G284T, T285S, 287-3 bp deletion, L330V, G331A, L346I 76G_H12 M29I, V74E, V87G, L91P, G116E, A123T, Q125A, I126L, T130A, V145M, C192S, S193A, F194Y, M196N, K198Q, K199I, Y200L, Y203I, F204L, E205G, N206K, I207M, T208I, P266Q, S273P, R274S, G284T, T285S, 287-3 bp deletion 76G_C4 M29I, V74E, V87G, L91P, G116E, A123T, Q125A, I126L, T130A, V145M, C192S, S193A, F194Y, M196N, K198Q, K199I, Y200L, Y203I, F204L, E205G, N206K, I207M, T208I
Example 19--Expression of Truncated Yeast HMG-CoA Reductase and Other HMG-CoA Reductases
[0307] In S. cerevisiae, the mevalonate pathway is heavily regulated, for example, at the level of the enzyme 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Expressing a truncated HMG-CoA reductase (tHMG1, encoding an enzyme stabilized from degradation) is one method in which flux towards PPP production can be increased in yeast. For example, expression of tHMG1 in yeast has led to dramatic overproduction of .beta.-carotene. See, Verwaal et al., 2007, Appl. Environ. Microbiol. 73:4342. Interestingly, such yeast did not show a darker orange coloration on solid growth medium as was expected, but rather a stronger yellow color, likely due to even higher over-production of the intermediate phytoene.
[0308] To determine if expression of HMG-CoA reductase could be used to improve flux to the steviol and steviol glycoside pathways, a yeast reporter strain for testing isoprenoid flux was prepared by substituting the inherent promoter of the ERG9 gene with a CUP1 promoter. See, U.S. Patent Application No. 61/346,853, filed May 20, 2010.
[0309] The genes used to produce the yeast strain are shown in Table 17. The genes from the source organisms were codon optimized according to DNA 2.0 Inc.TM.. For the purpose of monitoring the cellular prenyl phosphate availability, a construct was produced which had a high copy number plasmid containing gene expression cassettes (methionine-repressible promoters) with the genes for the three enzymes needed to turn prenyl phosphates into .beta.-carotene (GGPP synthase from Xanthophyllomyces dendrorhous, phytoene synthase and beta carotene synthase from X. dendrorhous, and zeta carotene synthase and delta carotene synthase from Neurospora crassa). See, Verwaal et al., 2007 supra; and U.S. Patent Application No. 61/346,853.
TABLE-US-00018 TABLE 17 Sources of HMG CoA Reductases and other Mevalonate Genes SEQ ID Size Gene (codon SEQ ID Accession# Organism Enzyme (nt) name optimized) (protein) XM_001467423 Leishmania infantum Acetyl-CoA C- 1323 MEV-4 103 104 acetyltransferase YML075C Saccharomyces cerevisiae Truncated HMG 1584 tHMG1 105 106 (tHMG1) EU263989 Ganoderma lucidum 3-HMG-CoA 3681 MEV-11 107 108 reductase BC153262 Bos taurus 3-HMG-CoA 2667 MEV-12 109 110 reductase AAD47596 Artemisia annua 3-HMG-CoA 1704 MEV-13 111 112 reductase AAB62280 Trypanosoma cruzi 3-HMG-CoA 1308 MEV-14 113 114 reductase CAG41604 Staph aureus 3-HMG-CoA 1281 MEV-15 115 116 reductase DNA2.0 Archaeoglobus fulgidus 3-HMG-CoA 1311 HMG 117 118 sequence reductase reductase DNA2.0 Pseudomonas mevalonii 3-HMG-CoA 1287 HMG 119 120 sequence reductase reductase
[0310] The yeast tHMG1 was expressed in the CEN.PK-based yeast strain that produces .beta.-carotene, resulting in a color change from orange to light yellow. Interestingly, expression of the full length HMGs from Artemisia annua, Trypanosoma cruzi and Staphylococcus aureus, as well as the NADH-dependent HMG's from Pseudomonas mevalonii and Archeoglobus fulgidus produced a similar result, indicating these genes also improve the flux through the mevalonate pathway in yeast (similar overexpression of Bos taurus HMG had no such effect). Finally, the same color change was seen after over-expression of Leishmania infantum acetyl-CoA C-acetyltransferase (first enzyme of mevalonate pathway, described in Tabe 17) or native S. cerevisiae (CAB1, YDR531W) or B. subtilis, (acc. No. YP004204141) pantothenate kinases (known to result in increased acetyl-CoA production).
[0311] To test if the color change in these experiments were indeed due to higher GGPP availability, the yeast tHMG1, P. mevalonii or S. aureus HMGs, or B. subtilis pantothenate kinase were expressed in a stable 19-SMG producer strain. None of these constructs appeared to produce an increase in 19-SMG or rubusoside production (UGT85C2 co-expressed) under the conditions tested. Mevalonate feeding to the yeast reporter strain also did not result in increased rubusoside production. The rubusoside reporter strain, however, has not been genetically modified to reduce the ERG9-encoded flux towards ergosterol biosynthesis. It is expected that control of flux to ergosterol production would result in increased steviol glycoside production using the HMG reductase genes and other mevalonate pathway genes found to be beneficial to beta-carotene production.
Example 20--Production of RebC In Vivo
[0312] The synthesis of a precursor molecule to Rebaudioside C, steviol-13-O-glucopyranosyl-1,2-rhamnoside, was shown in vitro in Example 15. In that example steviol-13-O-monoglucoside was used as a substrate, along with UDP-glucose and the Arabidopsis thaliana RHM2 enzyme (locus tag AT1G53500) and UGT91D2e. To further demonstrate the pathway shown in FIG. 2B, production of Rebaudioside C from steviol was accomplished in vivo.
[0313] A yeast strain capable of producing Rebaudioside C was constructed, and production of rebaudioside C and rebaudioside A was assayed by LC-MS. A modified Saccharomyces cerevisiae strain BY4742 was constructed and designated EYS583-7A. The use of BY4742 has been described by Naesby et al., Microb Cell Fact. 8:45 (2009) All four UGTs (91D2d, 76G1, 74G1, and 85C2) were constitutively expressed in plasmids with GPD promoters. This type of strain has been described by Naesby et. al, Microb Cell Fact. 8:45 (2009). UGT85C2 was inserted in plasmid P423 GPD (ATCC #87355), UGT74G1 was cloned into P424 GPD (ATCC #87357) and both UGT91D2e and UGT76G1 were cloned into P425-GPD (ATCC #87359) with 91D2e in the original multiple cloning site (MCS), and 76G1 inserted with an additional GPD promoter and a CYC terminator. The resulting strain was transformed with plasmid P426 GPD (ATCC #87361) containing the RHM2 gene expressed from the GPD promoter. The strain was grown on SC medium lacking histidine, leucine, tryptophan and uracil for 24 hours. The culture was then re-inoculated to an OD.sub.600 of 0.4 in fresh media containing 25 .mu.M steviol, and the yeast was allowed to grow for 72 more hours before detecting if Rebaudioside C was present in the supernatant and the cell pellets. Rebaudioside C was quantified using an authentic Rebaudioside C standard (Chromadex, Irvine Calif.). A total of 1.27 .mu.M.+-.0.36 .mu.M of RebC was detected in the supernatant. Similarly, 3.17 .mu.M.+-.1.09 .mu.M RebA was detected in the cell pellet One of skill in the art will recognize that different ratios of RebC to RebA can be obtained by modulation of the activity of the RHM2 enzyme and/or by usage of UGT91D2e or UGT76G1-like enzymes with higher activity for the UDP-rhamnose reactions. The alternative UGTs can be mutagenized versions of the wildtype enzymes or unique enzymes that are obtained through discovery initiatives.
[0314] One of skill in the art will recognize that a yeast strain capable of production of Rebaudioside A from glucose, such as strain CEY213 transformed with a plasmid containing UGT91D2e and UGT76G1 in Example 12 would produce Rebaudioside C with the addition of the RHM2 gene either via a vector or integrated into the chromosome.
Example 21--Production of Steviol Glycosides Using UGTs Expressed in Escherichia coli
Activity of UGT Enzymes in Gram Negative Bacteria
[0315] The wildtype genes for UGTs 91D2e, 74G1, 76G1, and 85C2 were cloned individually into E. coli XjB-autolysis BL21(DE3) cells using the pET30 vector system from Novagen (EMD4 Biosciences, Madison, Wis.), except for UGT91D2e, which was cloned into a pGEX 4T-1 (GE Healthcare, Uppsala, Sweden) vector. Similar cloning was described in Examples 7 and 10. All vectors use an IPTG-inducible promoter. Plasmid DNA was transformed into chemically competent cells as described by the vendor.
[0316] Transformants displaying the desired antibiotic resistance were grown overnight at 30.degree. C. in 2 mL cultures using NZCYM--media and antibiotic. For in vivo feedings, 5 cultures were grown: UGT 91d2e, 74G1, 76G1, and 85C2 individually, and a mix of all 4 clones. The following day, the cultures were induced to a final concentration of 0.3 mM IPTG and 3 mM arabinose, and grown 2 days at 20.degree. C. in the presence of 50 .mu.M steviol (UGT74G1, UGT85C2 and the quadruple mix) or 50 .mu.M rubusoside (UGT91D2e and UGT76G1). The temperature was raised to 30.degree. C. and the cells were grown for one more day. The cells were then harvested by centrifugation at 4000 rpm for 5 min., and the supernatants were removed for LC-MS analysis. The cells were resuspended in 50% DMSO, lysed at 80.degree. C. for 5 min and the lysates were analyzed by LC-MS.
[0317] For in vitro assays, transformants displaying the desired antibiotic resistance were grown overnight at 30.degree. C. in 2 mL cultures using NZCYM--media and antibiotic. The following day, the cultures were induced to a final concentration of 0.3 mM IPTG and 3 mM arabinose, and grown for 24h at 20.degree. C. The cells were then harvested by centrifugation at 4000 rpm for 5 min and resuspended in 200 .mu.L GT-buffer (RBC Bioscience) and 3 tablets/100 ml of Complete mini, protease inhibitor (Roche), transferred to Eppendorf tubes, vortexed and frozen at -80.degree. C. for 1.5 hour. Cells were thawed on ice, and left at room temperature for 3 minutes. When approximately half-way thawed, 15 .mu.l of 0.14 mg/ml H.sub.2O DNase solution+30 .mu.l 0.05M MgCl.sub.2 was added to each tube and the samples were incubated for approximately 5 minutes at room temperature. The cells were centrifuged at maximum speed for 5 minutes. One-hundred L of supernatant (lysate) was transferred to fresh microfuge tubes, and 100 .mu.L of glycerol was added.
[0318] Enzyme assays were performed by adding 15.15 .mu.L H.sub.2O, 7.5 .mu.L 4.times.Buffer (400 mM Tris, 20 mM MgCl2, 4 mM KCl), 0.3 .mu.L FastAP.TM. (1 u/.mu.L) from Fermentas, 0.45 .mu.L of a 100 mM stock of UDP-glucose, 0.6 .mu.L of substrate (steviol or rubusoside) and 6 .mu.L of the crude enzyme preparations described above. UGT74G1, UGT85C2, as well as all four UGTs mixed were incubated with steviol. UGT 76G1 and 85C2 were incubated with rubusoside. The enzyme assays were incubated overnight at 37.degree. C. Following centrifugation at 4000 rpm for 5 minutes, 30 .mu.L samples were transferred to a fresh 96 well plate and 30 .mu.L of DMSO was added. The samples were then subjected to LC-MS analysis. Similar in vitro experiments were also done using steviol 1,2-bioside (for UGT76G1 and UGT74G1) or Rebaudioside B (for UGT74G1) as substrates.
[0319] No activity was detected in the in vivo feedings. Table 18 illustrates the results for the in vitro assays.
TABLE-US-00019 TABLE 18 Tube UGT Clone(s) Substrate fed Product detected 1 74G1 Steviol 19-SMG, low levels of rubusoside 2 85G1 Steviol 13-SMG, low levels of rubusoside 3 76G1 Rubusoside 1,3-stevioside, an unknown tetra- glycoside 4 91D2c Rubusoside stevioside 5 Mix of 4 crude UGT Steviol Rubusoside, 1,3-stevioside, trace RebA preparations (no mono sides) 6 76G1 Steviol 1,2-bioside Rebaudioside B 7 74G1 Steviol 1,2-bioside Stevioside 8 74G1 Rebaudioside B Rebaudioside A
[0320] These results indicate that the UGT enzymes are all active in E. coli cells. However, the substrates may not be readily imported into the cytoplasm. It is expected that if the steviol were produced in E. coli from precursor pathways, the production of the various steviol glycoside products would be feasible from glucose. It is unexpected that the 74G1 and 85G1 UGTs, which have slightly overlapping substrate specificities, can produce rubusoside from steviol singly. The mix of the four crude enzyme preparations gave very low levels of the monosides, which indicates that the conversion to di- and tri-glycosides was efficient. With respect to UGT91D2e, the preparation that was used had lost some of its original activity after long-term storage. It is expected that a fresh preparation of the enzyme would have yielded higher levels of Rebaudioside A.
Example 22--Production of Steviol Glycosides in Physcomitrella Patens Feeding Experiments in Moss Cells
[0321] The genes for UGT 91d2e, 74G1, 76G1, and 85C2 were cloned into Physcomitrella patens using the pTHUbi:Gateway vector system described in U.S. Patent Publication No. 20100297722. This vector uses a strong maize Ubiquitin promoter. PCR primers were designed to amplify the coding regions in previous examples (native sequences) with the addition of "CACC" upstream of the start codon. Plasmid DNA was digested with SwaI and used for transformation into protoplasts (generally around 0.5.times.10.sup.6 protoplasts). Transformants displaying the desired resistance were grown 1 day in 10 mL cultures and then fed either steviol, rubusoside, or buffer+DMSO as indicated by Table 19. One-half mL of buffer containing substrate was added per 10 mL of culture, and final concentrations of 0.1% DMSO, 50 .mu.M steviol or rubusoside, and 0.125 mM phosphate buffer were added to the cultures. A positive control was done where the YFP (yellow fluorescent protein) was expressed in the presence of steviol or just buffer and DMSO. Cultures were grown 2 more days prior to separation of cells and freezing in liquid nitrogen until further analysis. In some cases multiple UGT-containing plasmids were transformed into the same protoplast cells, to illustrate conversion of multiple steps within the moss cells.
TABLE-US-00020 TABLE 19 Tube UGT Gene(s) Substrate fed 1 YFP (control) none 2 YFP Steviol (50 .mu.M) 3 74G1 none 4 76G1 none 5 85C2 none 6 91D2E none 7 74G1 Steviol (50 .mu.M) 8 76G1 Steviol (50 .mu.M) 9 85C2 Steviol (50 .mu.M) 10 91D2E Steviol (50 .mu.M) 11 74G1/85C2 none 12 74G1/85C2 Steviol (50 .mu.M) 13 74G1/85C2/91D2E none 14 74G1/85C2/91D2E Steviol (50 .mu.M) 15 76G1 Rubusoside (50 .mu.M) 16 91D2E Rubusoside (50 .mu.M) 17 76G1/91D2E none 18 76G1/91D2E Rubusoside (50 .mu.M)
[0322] Expression was positive in the controls (tubes 1 and 2) as measured by fluorescent signal observation. The supernatants from the experiments were analyzed by LC-MS; 200 .mu.L of each supernatant sample was mixed with an equal volume of 50 percent DMSO. The samples were spun (15,700 relative centrifugal force, 10 minutes) and 100 microliters of the resulting supernatant was analyzed by LC-MS.
[0323] Protoplast pellets were thawed on ice and 10 mM Tris-HCl pH 8 containing 3 tablets/100 ml of Complete Mini Protease Inhibitor (Roche) was added to reach a final volume of 150 .mu.L. The solutions were divided in two: 75 .mu.L was transferred to a new tube and protoplasts were pelleted (15,700 relative centrifugal force, 1 minute). Pellets were washed with 75 .mu.L Milli-Q water before resuspension in 150 .mu.L DMSO (50 percent). Samples were then heated (80 degrees Celsius, 10 minutes), vortexed and centrifuged (15,700 relative centrifugal force, 10 minutes). Fifty L of the resulting supernatant was analyzed by LC-MS.
[0324] No steviol glycoside production was detectable in supernatants or pellets. It is unknown if the steviol and rubusoside can be transported into moss cells.
In Vitro Feeding of Pellet Extracts
[0325] In vitro feeding experiments were conducted with samples 1, 3, 4, 5, 6, 11, 13 and 17). Glass beads (425-600 microns) were added to the remaining 75 .mu.L of the original resuspensions and protoplasts were mechanically lysed by vortexing 3 times, 2 minutes each time, at 4 degrees Celsius and storage on ice in between vortexing. The samples were spun (15,700 relative centrifugal force, 10 minutes, 4 degrees Celsius) and 6 .mu.L of resulting supernatants was used in in vitro enzyme reactions. For the enzyme reactions FastAP.TM. phosphatase (Fermentas) was used (0.3 U/reaction) and the UDP-glucose:substrate ratio was 5. The samples were fed either steviol or rubusoside according to Table 20.
TABLE-US-00021 TABLE 20 Cell extract from tube UGT Gene(s) Substrate fed 1 YFP None 1 YFP 0.5 mM steviol 1 YFP 0.5 mM rubusoside 3 74G1 0.5 mM steviol 4 76G1 0.5 mM rubusoside 5 85C2 0.5 mM steviol 6 91D2E 0.5 mM rubusoside 11 74G1/85C2 0.5 mM steviol 13 74G1/85C2/91D2E 0.5 mM steviol 17 76G1/91D2E 0.5 mM rubusoside
[0326] Reactions were incubated at 30.degree. C. overnight. After incubation, an equal amount of DMSO (100 percent) was added to the samples and mixed, then the sample was spun (15,700 relative centrifugal force, 10 minutes) and 30 .mu.L of the resulting supernatant was analyzed by LC-MS.
[0327] LC-MS analysis showed conversion of rubusoside to 1,3-stevioside by UGT76G1. None of the other steviol glycosides were detectable. It is unknown if soluble expression of the UGTs occurred in Physcomitrella. It is expected if one UGT is active in the moss cells, the others would also be active if expression occurred. In addition, the cloning was done in a transient manner. Stable integration of the genes is expected to produce additional clones that are active for UGT activity when tested.
[0328] Methods are known to those with skill in the art for increasing soluble expression of recombinant proteins. Alternative promoters, ribosome binding sites, codon usage, co-expression with chaperones, and change in temperature are non-limiting examples of methods for increasing soluble expression of recombinant proteins.
Example 23--Production of Steviol Glycosides in Aspergillus nidulans
Activity of UGT Enzymes in Fungal Cells
[0329] The native genes for UGT 91D2e, 74G1, 76G1, and 85C2 were cloned into Aspergillus nidulans using a PCR-fabricated expression cassette and the USER vector system. Cloning methods are described in Hansen et al., Appl. Environ. Microbiol. 77: 3044-3051 (2011). Briefly, a nucleotide sequence encoding each UGT was inserted between the constitutive PgpdA promoter and the TtrpC terminator, in a vector containing additionally two targeting sequences for genomic integration and argB as selection marker. Plasmid DNA was transformed into A. nidulans protoplasts according to Nielsen et al., Fungal Genet. Biol. 43:54-64 (2006) and Johnstone et al., EMBO J. 4:1307-1311 (1985). Transformants displaying the desired resistance were grown for 48 hours in 150 mL cultures using minimal media (1% Glucose; 10 mM NaNO.sub.3; mineral mix).
[0330] Cell lysates prepared by disruption of the mycelia with glass beads were used to determine the activities of the individual UGTs in in vitro. The cell lysates of strains expressing 74G1 and 85C2 were incubated with 0.5 mM steviol and the strains expressing 76G1 and 91D2c were incubated with 0.5 mM steviol-13-O-glucoside for 24 hours, and the supernatants further analyzed using LC/MS. No steviol glycosides were detected.
[0331] It is unknown whether soluble expression of the UGT enzymes was achieved as these products are not typically visible on SDS-PAGE. Since Aspergillus and Saccharomyces are both fungi, it is expected that additional experimentation would result in active clones. Methods are known to those with skill in the art for increasing soluble expression of recombinant proteins. Alternative promoters, inducer levels, ribosome binding sites, codon usage, co-expression with chaperones, and change in temperature are non-limiting examples of methods for increasing soluble expression of recombinant proteins.
OTHER EMBODIMENTS
[0332] It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Sequence CWU
1
1
1511460PRTStevia rebaudiana 1Met Ala Glu Gln Gln Lys Ile Lys Lys Ser Pro
His Val Leu Leu Ile1 5 10
15Pro Phe Pro Leu Gln Gly His Ile Asn Pro Phe Ile Gln Phe Gly Lys
20 25 30Arg Leu Ile Ser Lys Gly Val
Lys Thr Thr Leu Val Thr Thr Ile His 35 40
45Thr Leu Asn Ser Thr Leu Asn His Ser Asn Thr Thr Thr Thr Ser
Ile 50 55 60Glu Ile Gln Ala Ile Ser
Asp Gly Cys Asp Glu Gly Gly Phe Met Ser65 70
75 80Ala Gly Glu Ser Tyr Leu Glu Thr Phe Lys Gln
Val Gly Ser Lys Ser 85 90
95Leu Ala Asp Leu Ile Lys Lys Leu Gln Ser Glu Gly Thr Thr Ile Asp
100 105 110Ala Ile Ile Tyr Asp Ser
Met Thr Glu Trp Val Leu Asp Val Ala Ile 115 120
125Glu Phe Gly Ile Asp Gly Gly Ser Phe Phe Thr Gln Ala Cys
Val Val 130 135 140Asn Ser Leu Tyr Tyr
His Val His Lys Gly Leu Ile Ser Leu Pro Leu145 150
155 160Gly Glu Thr Val Ser Val Pro Gly Phe Pro
Val Leu Gln Arg Trp Glu 165 170
175Thr Pro Leu Ile Leu Gln Asn His Glu Gln Ile Gln Ser Pro Trp Ser
180 185 190Gln Met Leu Phe Gly
Gln Phe Ala Asn Ile Asp Gln Ala Arg Trp Val 195
200 205Phe Thr Asn Ser Phe Tyr Lys Leu Glu Glu Glu Val
Ile Glu Trp Thr 210 215 220Arg Lys Ile
Trp Asn Leu Lys Val Ile Gly Pro Thr Leu Pro Ser Met225
230 235 240Tyr Leu Asp Lys Arg Leu Asp
Asp Asp Lys Asp Asn Gly Phe Asn Leu 245
250 255Tyr Lys Ala Asn His His Glu Cys Met Asn Trp Leu
Asp Asp Lys Pro 260 265 270Lys
Glu Ser Val Val Tyr Val Ala Phe Gly Ser Leu Val Lys His Gly 275
280 285Pro Glu Gln Val Glu Glu Ile Thr Arg
Ala Leu Ile Asp Ser Asp Val 290 295
300Asn Phe Leu Trp Val Ile Lys His Lys Glu Glu Gly Lys Leu Pro Glu305
310 315 320Asn Leu Ser Glu
Val Ile Lys Thr Gly Lys Gly Leu Ile Val Ala Trp 325
330 335Cys Lys Gln Leu Asp Val Leu Ala His Glu
Ser Val Gly Cys Phe Val 340 345
350Thr His Cys Gly Phe Asn Ser Thr Leu Glu Ala Ile Ser Leu Gly Val
355 360 365Pro Val Val Ala Met Pro Gln
Phe Ser Asp Gln Thr Thr Asn Ala Lys 370 375
380Leu Leu Asp Glu Ile Leu Gly Val Gly Val Arg Val Lys Ala Asp
Glu385 390 395 400Asn Gly
Ile Val Arg Arg Gly Asn Leu Ala Ser Cys Ile Lys Met Ile
405 410 415Met Glu Glu Glu Arg Gly Val
Ile Ile Arg Lys Asn Ala Val Lys Trp 420 425
430Lys Asp Leu Ala Lys Val Ala Val His Glu Gly Gly Ser Ser
Asp Asn 435 440 445Asp Ile Val Glu
Phe Val Ser Glu Leu Ile Lys Ala 450 455
46021383DNAStevia rebaudiana 2atggcagagc aacaaaagat caaaaagtca
cctcacgtct tacttattcc atttcctctg 60caaggacata tcaacccatt catacaattt
gggaaaagat tgattagtaa gggtgtaaag 120acaacactgg taaccactat ccacactttg
aattctactc tgaaccactc aaatactact 180actacaagta tagaaattca agctatatca
gacggatgcg atgagggtgg ctttatgtct 240gccggtgaat cttacttgga aacattcaag
caagtgggat ccaagtctct ggccgatcta 300atcaaaaagt tacagagtga aggcaccaca
attgacgcca taatctacga ttctatgaca 360gagtgggttt tagacgttgc tatcgaattt
ggtattgatg gaggttcctt tttcacacaa 420gcatgtgttg tgaattctct atactaccat
gtgcataaag ggttaatctc tttaccattg 480ggtgaaactg tttcagttcc aggttttcca
gtgttacaac gttgggaaac cccattgatc 540ttacaaaatc atgaacaaat acaatcacct
tggtcccaga tgttgtttgg tcaattcgct 600aacatcgatc aagcaagatg ggtctttact
aattcattct ataagttaga ggaagaggta 660attgaatgga ctaggaagat ctggaatttg
aaagtcattg gtccaacatt gccatcaatg 720tatttggaca aaagacttga tgatgataaa
gataatggtt tcaatttgta caaggctaat 780catcacgaat gtatgaattg gctggatgac
aaaccaaagg aatcagttgt atatgttgct 840ttcggctctc ttgttaaaca tggtccagaa
caagttgagg agattacaag agcacttata 900gactctgacg taaacttttt gtgggtcatt
aagcacaaag aggaggggaa actgccagaa 960aacctttctg aagtgataaa gaccggaaaa
ggtctaatcg ttgcttggtg taaacaattg 1020gatgttttag ctcatgaatc tgtaggctgt
tttgtaacac attgcggatt caactctaca 1080ctagaagcca tttccttagg cgtacctgtc
gttgcaatgc ctcagttctc cgatcagaca 1140accaacgcta aacttttgga cgaaatacta
ggggtgggtg tcagagttaa agcagacgag 1200aatggtatcg tcagaagagg gaacctagct
tcatgtatca aaatgatcat ggaagaggaa 1260agaggagtta tcataaggaa aaacgcagtt
aagtggaagg atcttgcaaa ggttgccgtc 1320catgaaggcg gctcttcaga taatgatatt
gttgaatttg tgtccgaact aatcaaagcc 1380taa
13833481PRTStevia rebaudiana 3Met Asp
Ala Met Ala Thr Thr Glu Lys Lys Pro His Val Ile Phe Ile1 5
10 15Pro Phe Pro Ala Gln Ser His Ile
Lys Ala Met Leu Lys Leu Ala Gln 20 25
30Leu Leu His His Lys Gly Leu Gln Ile Thr Phe Val Asn Thr Asp
Phe 35 40 45Ile His Asn Gln Phe
Leu Glu Ser Ser Gly Pro His Cys Leu Asp Gly 50 55
60Ala Pro Gly Phe Arg Phe Glu Thr Ile Pro Asp Gly Val Ser
His Ser65 70 75 80Pro
Glu Ala Ser Ile Pro Ile Arg Glu Ser Leu Leu Arg Ser Ile Glu
85 90 95Thr Asn Phe Leu Asp Arg Phe
Ile Asp Leu Val Thr Lys Leu Pro Asp 100 105
110Pro Pro Thr Cys Ile Ile Ser Asp Gly Phe Leu Ser Val Phe
Thr Ile 115 120 125Asp Ala Ala Lys
Lys Leu Gly Ile Pro Val Met Met Tyr Trp Thr Leu 130
135 140Ala Ala Cys Gly Phe Met Gly Phe Tyr His Ile His
Ser Leu Ile Glu145 150 155
160Lys Gly Phe Ala Pro Leu Lys Asp Ala Ser Tyr Leu Thr Asn Gly Tyr
165 170 175Leu Asp Thr Val Ile
Asp Trp Val Pro Gly Met Glu Gly Ile Arg Leu 180
185 190Lys Asp Phe Pro Leu Asp Trp Ser Thr Asp Leu Asn
Asp Lys Val Leu 195 200 205Met Phe
Thr Thr Glu Ala Pro Gln Arg Ser His Lys Val Ser His His 210
215 220Ile Phe His Thr Phe Asp Glu Leu Glu Pro Ser
Ile Ile Lys Thr Leu225 230 235
240Ser Leu Arg Tyr Asn His Ile Tyr Thr Ile Gly Pro Leu Gln Leu Leu
245 250 255Leu Asp Gln Ile
Pro Glu Glu Lys Lys Gln Thr Gly Ile Thr Ser Leu 260
265 270His Gly Tyr Ser Leu Val Lys Glu Glu Pro Glu
Cys Phe Gln Trp Leu 275 280 285Gln
Ser Lys Glu Pro Asn Ser Val Val Tyr Val Asn Phe Gly Ser Thr 290
295 300Thr Val Met Ser Leu Glu Asp Met Thr Glu
Phe Gly Trp Gly Leu Ala305 310 315
320Asn Ser Asn His Tyr Phe Leu Trp Ile Ile Arg Ser Asn Leu Val
Ile 325 330 335Gly Glu Asn
Ala Val Leu Pro Pro Glu Leu Glu Glu His Ile Lys Lys 340
345 350Arg Gly Phe Ile Ala Ser Trp Cys Ser Gln
Glu Lys Val Leu Lys His 355 360
365Pro Ser Val Gly Gly Phe Leu Thr His Cys Gly Trp Gly Ser Thr Ile 370
375 380Glu Ser Leu Ser Ala Gly Val Pro
Met Ile Cys Trp Pro Tyr Ser Trp385 390
395 400Asp Gln Leu Thr Asn Cys Arg Tyr Ile Cys Lys Glu
Trp Glu Val Gly 405 410
415Leu Glu Met Gly Thr Lys Val Lys Arg Asp Glu Val Lys Arg Leu Val
420 425 430Gln Glu Leu Met Gly Glu
Gly Gly His Lys Met Arg Asn Lys Ala Lys 435 440
445Asp Trp Lys Glu Lys Ala Arg Ile Ala Ile Ala Pro Asn Gly
Ser Ser 450 455 460Ser Leu Asn Ile Asp
Lys Met Val Lys Glu Ile Thr Val Leu Ala Arg465 470
475 480Asn41446DNAStevia rebaudiana 4atggatgcaa
tggcaactac tgagaaaaag cctcatgtga tcttcattcc atttcctgca 60caatctcaca
taaaggcaat gctaaagtta gcacaactat tacaccataa gggattacag 120ataactttcg
tgaataccga cttcatccat aatcaatttc tggaatctag tggccctcat 180tgtttggacg
gagccccagg gtttagattc gaaacaattc ctgacggtgt ttcacattcc 240ccagaggcct
ccatcccaat aagagagagt ttactgaggt caatagaaac caactttttg 300gatcgtttca
ttgacttggt cacaaaactt ccagacccac caacttgcat aatctctgat 360ggctttctgt
cagtgtttac tatcgacgct gccaaaaagt tgggtatccc agttatgatg 420tactggactc
ttgctgcatg cggtttcatg ggtttctatc acatccattc tcttatcgaa 480aagggttttg
ctccactgaa agatgcatca tacttaacca acggctacct ggatactgtt 540attgactggg
taccaggtat ggaaggtata agacttaaag attttccttt ggattggtct 600acagacctta
atgataaagt attgatgttt actacagaag ctccacaaag atctcataag 660gtttcacatc
atatctttca cacctttgat gaattggaac catcaatcat caaaaccttg 720tctctaagat
acaatcatat ctacactatt ggtccattac aattacttct agatcaaatt 780cctgaagaga
aaaagcaaac tggtattaca tccttacacg gctactcttt agtgaaagag 840gaaccagaat
gttttcaatg gctacaaagt aaagagccta attctgtggt ctacgtcaac 900ttcggaagta
caacagtcat gtccttggaa gatatgactg aatttggttg gggccttgct 960aattcaaatc
attactttct atggattatc aggtccaatt tggtaatagg ggaaaacgcc 1020gtattacctc
cagaattgga ggaacacatc aaaaagagag gtttcattgc ttcctggtgt 1080tctcaggaaa
aggtattgaa acatccttct gttggtggtt tccttactca ttgcggttgg 1140ggctctacaa
tcgaatcact aagtgcagga gttccaatga tttgttggcc atattcatgg 1200gaccaactta
caaattgtag gtatatctgt aaagagtggg aagttggatt agaaatggga 1260acaaaggtta
aacgtgatga agtgaaaaga ttggttcagg agttgatggg ggaaggtggc 1320cacaagatga
gaaacaaggc caaagattgg aaggaaaaag ccagaattgc tattgctcct 1380aacgggtcat
cctctctaaa cattgataag atggtcaaag agattacagt cttagccaga 1440aactaa
14465473PRTStevia
rebaudiana 5Met Ala Thr Ser Asp Ser Ile Val Asp Asp Arg Lys Gln Leu His
Val1 5 10 15Ala Thr Phe
Pro Trp Leu Ala Phe Gly His Ile Leu Pro Tyr Leu Gln 20
25 30Leu Ser Lys Leu Ile Ala Glu Lys Gly His
Lys Val Ser Phe Leu Ser 35 40
45Thr Thr Arg Asn Ile Gln Arg Leu Ser Ser His Ile Ser Pro Leu Ile 50
55 60Asn Val Val Gln Leu Thr Leu Pro Arg
Val Gln Glu Leu Pro Glu Asp65 70 75
80Ala Glu Ala Thr Thr Asp Val His Pro Glu Asp Ile Pro Tyr
Leu Lys 85 90 95Lys Ala
Ser Asp Gly Leu Gln Pro Glu Val Thr Arg Phe Leu Glu Gln 100
105 110His Ser Pro Asp Trp Ile Ile Tyr Asp
Tyr Thr His Tyr Trp Leu Pro 115 120
125Ser Ile Ala Ala Ser Leu Gly Ile Ser Arg Ala His Phe Ser Val Thr
130 135 140Thr Pro Trp Ala Ile Ala Tyr
Met Gly Pro Ser Ala Asp Ala Met Ile145 150
155 160Asn Gly Ser Asp Gly Arg Thr Thr Val Glu Asp Leu
Thr Thr Pro Pro 165 170
175Lys Trp Phe Pro Phe Pro Thr Lys Val Cys Trp Arg Lys His Asp Leu
180 185 190Ala Arg Leu Val Pro Tyr
Lys Ala Pro Gly Ile Ser Asp Gly Tyr Arg 195 200
205Met Gly Leu Val Leu Lys Gly Ser Asp Cys Leu Leu Ser Lys
Cys Tyr 210 215 220His Glu Phe Gly Thr
Gln Trp Leu Pro Leu Leu Glu Thr Leu His Gln225 230
235 240Val Pro Val Val Pro Val Gly Leu Leu Pro
Pro Glu Ile Pro Gly Asp 245 250
255Glu Lys Asp Glu Thr Trp Val Ser Ile Lys Lys Trp Leu Asp Gly Lys
260 265 270Gln Lys Gly Ser Val
Val Tyr Val Ala Leu Gly Ser Glu Val Leu Val 275
280 285Ser Gln Thr Glu Val Val Glu Leu Ala Leu Gly Leu
Glu Leu Ser Gly 290 295 300Leu Pro Phe
Val Trp Ala Tyr Arg Lys Pro Lys Gly Pro Ala Lys Ser305
310 315 320Asp Ser Val Glu Leu Pro Asp
Gly Phe Val Glu Arg Thr Arg Asp Arg 325
330 335Gly Leu Val Trp Thr Ser Trp Ala Pro Gln Leu Arg
Ile Leu Ser His 340 345 350Glu
Ser Val Cys Gly Phe Leu Thr His Cys Gly Ser Gly Ser Ile Val 355
360 365Glu Gly Leu Met Phe Gly His Pro Leu
Ile Met Leu Pro Ile Phe Gly 370 375
380Asp Gln Pro Leu Asn Ala Arg Leu Leu Glu Asp Lys Gln Val Gly Ile385
390 395 400Glu Ile Pro Arg
Asn Glu Glu Asp Gly Cys Leu Thr Lys Glu Ser Val 405
410 415Ala Arg Ser Leu Arg Ser Val Val Val Glu
Lys Glu Gly Glu Ile Tyr 420 425
430Lys Ala Asn Ala Arg Glu Leu Ser Lys Ile Tyr Asn Asp Thr Lys Val
435 440 445Glu Lys Glu Tyr Val Ser Gln
Phe Val Asp Tyr Leu Glu Lys Asn Ala 450 455
460Arg Ala Val Ala Ile Asp His Glu Ser465
47061422DNAStevia rebaudiana 6atggctacat ctgattctat tgttgatgac aggaagcagt
tgcatgtggc tactttccct 60tggcttgctt tcggtcatat actgccttac ctacaactat
caaaactgat agctgaaaaa 120ggacataaag tgtcattcct ttcaacaact agaaacattc
aaagattatc ttcccacata 180tcaccattga ttaacgtcgt tcaattgaca cttccaagag
tacaggaatt accagaagat 240gctgaagcta caacagatgt gcatcctgaa gatatccctt
acttgaaaaa ggcatccgat 300ggattacagc ctgaggtcac tagattcctt gagcaacaca
gtccagattg gatcatatac 360gactacactc actattggtt gccttcaatt gcagcatcac
taggcatttc tagggcacat 420ttcagtgtaa ccacaccttg ggccattgct tacatgggtc
catccgctga tgctatgatt 480aacggcagtg atggtagaac taccgttgaa gatttgacaa
ccccaccaaa gtggtttcca 540tttccaacta aagtctgttg gagaaaacac gacttagcaa
gactggttcc atacaaggca 600ccaggaatct cagacggcta tagaatgggt ttagtcctta
aagggtctga ctgcctattg 660tctaagtgtt accatgagtt tgggacacaa tggctaccac
ttttggaaac attacaccaa 720gttcctgtcg taccagttgg tctattacct ccagaaatcc
ctggtgatga gaaggacgag 780acttgggttt caatcaaaaa gtggttagac gggaagcaaa
aaggctcagt ggtatatgtg 840gcactgggtt ccgaagtttt agtatctcaa acagaagttg
tggaacttgc cttaggtttg 900gaactatctg gattgccatt tgtctgggcc tacagaaaac
caaaaggccc tgcaaagtcc 960gattcagttg aattgccaga cggctttgtc gagagaacta
gagatagagg gttggtatgg 1020acttcatggg ctccacaatt gagaatcctg agtcacgaat
ctgtgtgcgg tttcctaaca 1080cattgtggtt ctggttctat agttgaagga ctgatgtttg
gtcatccact tatcatgttg 1140ccaatctttg gtgaccagcc tttgaatgca cgtctgttag
aagataaaca agttggaatt 1200gaaatcccac gtaatgagga agatggatgt ttaaccaagg
agtctgtggc cagatcatta 1260cgttccgttg tcgttgaaaa ggaaggcgaa atctacaagg
ccaatgcccg tgaactttca 1320aagatctaca atgacacaaa agtagagaag gaatatgttt
ctcaatttgt agattaccta 1380gagaaaaacg ctagagccgt agctattgat catgaatcct
aa 14227458PRTStevia rebaudiana 7Met Glu Asn Lys Thr
Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile1 5
10 15Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn
Pro Ile Leu Gln Leu 20 25
30Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45Asn Phe Asn Lys Pro Lys Thr Ser
Asn Tyr Pro His Phe Thr Phe Arg 50 55
60Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro65
70 75 80Thr His Gly Pro Leu
Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His 85
90 95Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu
Leu Met Leu Ala Ser 100 105
110Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125Phe Ala Gln Ser Val Ala Asp
Ser Leu Asn Leu Arg Arg Leu Val Leu 130 135
140Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro
Gln145 150 155 160Phe Asp
Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175Glu Gln Ala Ser Gly Phe Pro
Met Leu Lys Val Lys Asp Ile Lys Ser 180 185
190Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys
Met Ile 195 200 205Lys Gln Thr Lys
Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu 210
215 220Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu
Ile Pro Ala Pro225 230 235
240Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255Leu Leu Asp His Asp
Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro 260
265 270Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr
Ser Glu Val Asp 275 280 285Glu Lys
Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln 290
295 300Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val
Lys Gly Ser Thr Trp305 310 315
320Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335Lys Trp Val Pro
Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala 340
345 350Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu
Glu Ser Val Cys Glu 355 360 365Gly
Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn 370
375 380Ala Arg Tyr Met Ser Asp Val Leu Lys Val
Gly Val Tyr Leu Glu Asn385 390 395
400Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met
Val 405 410 415Asp Glu Glu
Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln 420
425 430Lys Ala Asp Val Ser Leu Met Lys Gly Gly
Ser Ser Tyr Glu Ser Leu 435 440
445Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu 450
45581377DNAStevia rebaudiana 8atggaaaaca agaccgaaac aacagttaga cgtaggcgta
gaatcattct gtttccagta 60ccttttcaag ggcacatcaa tccaatacta caactagcca
acgttttgta ctctaaaggt 120ttttctatta caatctttca caccaatttc aacaaaccaa
aaacatccaa ttacccacat 180ttcacattca gattcatact tgataatgat ccacaagatg
aacgtatttc aaacttacct 240acccacggtc ctttagctgg aatgagaatt ccaatcatca
atgaacatgg tgccgatgag 300cttagaagag aattagagtt acttatgttg gcatccgaag
aggacgagga agtctcttgt 360ctgattactg acgctctatg gtactttgcc caatctgtgg
ctgatagttt gaatttgagg 420agattggtac taatgacatc cagtctgttt aactttcacg
ctcatgttag tttaccacaa 480tttgacgaat tgggatactt ggaccctgat gacaagacta
ggttagagga acaggcctct 540ggttttccta tgttgaaagt caaagatatc aagtctgcct
attctaattg gcaaatcttg 600aaagagatct taggaaagat gatcaaacag acaaaggctt
catctggagt gatttggaac 660agtttcaaag agttagaaga gtctgaattg gagactgtaa
tcagagaaat tccagcacct 720tcattcctga taccattacc aaaacatttg actgcttcct
cttcctcttt gttggatcat 780gacagaacag tttttcaatg gttggaccaa caaccaccta
gttctgtttt gtacgtgtca 840tttggtagta cttctgaagt cgatgaaaag gacttccttg
aaatcgcaag aggcttagtc 900gatagtaagc agtcattcct ttgggtcgtg cgtccaggtt
tcgtgaaagg ctcaacatgg 960gtcgaaccac ttccagatgg ttttctaggc gaaagaggta
gaatagtcaa atgggttcct 1020caacaggaag ttttagctca tggcgctatt ggggcattct
ggactcattc cggatggaat 1080tcaactttag aatcagtatg cgaaggggta cctatgatct
tttcagattt tggtcttgat 1140caaccactga acgcaagata catgtctgat gttttgaaag
tgggtgtata tctagaaaat 1200ggctgggaaa ggggtgaaat agctaatgca ataagacgtg
ttatggttga tgaagagggg 1260gagtatatca gacaaaacgc aagagtgctg aagcaaaagg
ccgacgtttc tctaatgaag 1320ggaggctctt catacgaatc cttagaatct cttgtttcct
acatttcatc actgtaa 137791422DNAStevia rebaudiana 9atggctacca
gtgactccat agttgacgac cgtaagcagc ttcatgttgc gacgttccca 60tggcttgctt
tcggtcacat cctcccttac cttcagcttt cgaaattgat agctgaaaag 120ggtcacaaag
tctcgtttct ttctaccacc agaaacattc aacgtctctc ttctcatatc 180tcgccactca
taaatgttgt tcaactcaca cttccacgtg tccaagagct gccggaggat 240gcagaggcga
ccactgacgt ccaccctgaa gatattccat atctcaagaa ggcttctgat 300ggtcttcaac
cggaggtcac ccggtttcta gaacaacact ctccggactg gattatttat 360gattatactc
actactggtt gccatccatc gcggctagcc tcggtatctc acgagcccac 420ttctccgtca
ccactccatg ggccattgct tatatgggac cctcagctga cgccatgata 480aatggttcag
atggtcgaac cacggttgag gatctcacga caccgcccaa gtggtttccc 540tttccgacca
aagtatgctg gcggaagcat gatcttgccc gactggtgcc ttacaaagct 600ccggggatat
ctgatggata ccgtatgggg ctggttctta agggatctga ttgtttgctt 660tccaaatgtt
accatgagtt tggaactcaa tggctacctc ttttggagac actacaccaa 720gtaccggtgg
ttccggtggg attactgcca ccggaaatac ccggagacga gaaagatgaa 780acatgggtgt
caatcaagaa atggctcgat ggtaaacaaa aaggcagtgt ggtgtacgtt 840gcattaggaa
gcgaggtttt ggtgagccaa accgaggttg ttgagttagc attgggtctc 900gagctttctg
ggttgccatt tgtttgggct tatagaaaac caaaaggtcc cgcgaagtca 960gactcggtgg
agttgccaga cgggttcgtg gaacgaactc gtgaccgtgg gttggtctgg 1020acgagttggg
cacctcagtt acgaatactg agccatgagt cggtttgtgg tttcttgact 1080cattgtggtt
ctggatcaat tgtggaaggg ctaatgtttg gtcaccctct aatcatgcta 1140ccgatttttg
gggaccaacc tctgaatgct cgattactgg aggacaaaca ggtgggaatc 1200gagataccaa
gaaatgagga agatggttgc ttgaccaagg agtcggttgc tagatcactg 1260aggtccgttg
ttgtggaaaa agaaggggag atctacaagg cgaacgcgag ggagctgagt 1320aaaatctata
acgacactaa ggttgaaaaa gaatatgtaa gccaattcgt agactatttg 1380gaaaagaatg
cgcgtgcggt tgccatcgat catgagagtt aa
142210473PRTStevia rebaudiana 10Met Ala Thr Ser Asp Ser Ile Val Asp Asp
Arg Lys Gln Leu His Val1 5 10
15Ala Thr Phe Pro Trp Leu Ala Phe Gly His Ile Leu Pro Tyr Leu Gln
20 25 30Leu Ser Lys Leu Ile Ala
Glu Lys Gly His Lys Val Ser Phe Leu Ser 35 40
45Thr Thr Arg Asn Ile Gln Arg Leu Ser Ser His Ile Ser Pro
Leu Ile 50 55 60Asn Val Val Gln Leu
Thr Leu Pro Arg Val Gln Glu Leu Pro Glu Asp65 70
75 80Ala Glu Ala Thr Thr Asp Val His Pro Glu
Asp Ile Pro Tyr Leu Lys 85 90
95Lys Ala Ser Asp Gly Leu Gln Pro Glu Val Thr Arg Phe Leu Glu Gln
100 105 110His Ser Pro Asp Trp
Ile Ile Tyr Asp Tyr Thr His Tyr Trp Leu Pro 115
120 125Ser Ile Ala Ala Ser Leu Gly Ile Ser Arg Ala His
Phe Ser Val Thr 130 135 140Thr Pro Trp
Ala Ile Ala Tyr Met Gly Pro Ser Ala Asp Ala Met Ile145
150 155 160Asn Gly Ser Asp Gly Arg Thr
Thr Val Glu Asp Leu Thr Thr Pro Pro 165
170 175Lys Trp Phe Pro Phe Pro Thr Lys Val Cys Trp Arg
Lys His Asp Leu 180 185 190Ala
Arg Leu Val Pro Tyr Lys Ala Pro Gly Ile Ser Asp Gly Tyr Arg 195
200 205Met Gly Leu Val Leu Lys Gly Ser Asp
Cys Leu Leu Ser Lys Cys Tyr 210 215
220His Glu Phe Gly Thr Gln Trp Leu Pro Leu Leu Glu Thr Leu His Gln225
230 235 240Val Pro Val Val
Pro Val Gly Leu Leu Pro Pro Glu Val Pro Gly Asp 245
250 255Glu Lys Asp Glu Thr Trp Val Ser Ile Lys
Lys Trp Leu Asp Gly Lys 260 265
270Gln Lys Gly Ser Val Val Tyr Val Ala Leu Gly Ser Glu Val Leu Val
275 280 285Ser Gln Thr Glu Val Val Glu
Leu Ala Leu Gly Leu Glu Leu Ser Gly 290 295
300Leu Pro Phe Val Trp Ala Tyr Arg Lys Pro Lys Gly Pro Ala Lys
Ser305 310 315 320Asp Ser
Val Glu Leu Pro Asp Gly Phe Val Glu Arg Thr Arg Asp Arg
325 330 335Gly Leu Val Trp Thr Ser Trp
Ala Pro Gln Leu Arg Ile Leu Ser His 340 345
350Glu Ser Val Cys Gly Phe Leu Thr His Cys Gly Ser Gly Ser
Ile Val 355 360 365Glu Gly Leu Met
Phe Gly His Pro Leu Ile Met Leu Pro Ile Phe Gly 370
375 380Asp Gln Pro Leu Asn Ala Arg Leu Leu Glu Asp Lys
Gln Val Gly Ile385 390 395
400Glu Ile Pro Arg Asn Glu Glu Asp Gly Cys Leu Thr Lys Glu Ser Val
405 410 415Ala Arg Ser Leu Arg
Ser Val Val Val Glu Lys Glu Gly Glu Ile Tyr 420
425 430Lys Ala Asn Ala Arg Glu Leu Ser Lys Ile Tyr Asn
Asp Thr Lys Val 435 440 445Glu Lys
Glu Tyr Val Ser Gln Phe Val Asp Tyr Leu Glu Lys Asn Thr 450
455 460Arg Ala Val Ala Ile Asp His Glu Ser465
470111422DNAStevia rebaudiana 11atggctacca gtgactccat agttgacgac
cgtaagcagc ttcatgttgc gacgttccca 60tggcttgctt tcggtcacat cctcccttac
cttcagcttt cgaaattgat agctgaaaag 120ggtcacaaag tctcgtttct ttctaccacc
agaaacattc aacgtctctc ttctcatatc 180tcgccactca taaatgttgt tcaactcaca
cttccacgtg tccaagagct gccggaggat 240gcagaggcga ccactgacgt ccaccctgaa
gatattccat atctcaagaa ggcttctgat 300ggtcttcaac cggaggtcac ccggtttcta
gaacaacact ctccggactg gattatttat 360gattatactc actactggtt gccatccatc
gcggctagcc tcggtatctc acgagcccac 420ttctccgtca ccactccatg ggccattgct
tatatgggac cctcagctga cgccatgata 480aatggttcag atggtcgaac cacggttgag
gatctcacga caccgcccaa gtggtttccc 540tttccgacca aagtatgctg gcggaagcat
gatcttgccc gactggtgcc ttacaaagct 600ccggggatat ctgatggata ccgtatgggg
ctggttctta agggatctga ttgtttgctt 660tccaaatgtt accatgagtt tggaactcaa
tggctacctc ttttggagac actacaccaa 720gtaccggtgg ttccggtggg attactgcca
ccggaagtac ccggagacga gaaagatgaa 780acatgggtgt caatcaagaa atggctcgat
ggtaaacaaa aaggcagtgt ggtgtacgtt 840gcattaggaa gcgaggtttt ggtgagccaa
accgaggttg ttgagttagc attgggtctc 900gagctttctg ggttgccatt tgtttgggct
tatagaaaac caaaaggtcc cgcgaagtca 960gactcggtgg agttgccaga cgggttcgtg
gaacgaactc gtgaccgtgg gttggtctgg 1020acgagttggg cacctcagtt acgaatactg
agccatgagt cggtttgtgg tttcttgact 1080cattgtggtt ctggatcaat tgtggaaggg
ctaatgtttg gtcaccctct aatcatgcta 1140ccgatttttg gggaccaacc tctgaatgct
cgattactgg aggacaaaca ggtgggaatc 1200gagataccaa gaaatgagga agatggttgc
ttgaccaagg agtcggttgc tagatcactg 1260aggtccgttg ttgtggaaaa agaaggggag
atctacaagg cgaacgcgag ggagctgagt 1320aaaatctata acgacactaa ggttgaaaaa
gaatatgtaa gccaattcgt agactatttg 1380gaaaagaata cgcgtgcggt tgccatcgat
catgagagtt aa 142212473PRTStevia rebaudiana 12Met
Ala Thr Ser Asp Ser Ile Val Asp Asp Arg Lys Gln Leu His Val1
5 10 15Ala Thr Phe Pro Trp Leu Ala
Phe Gly His Ile Leu Pro Phe Leu Gln 20 25
30Leu Ser Lys Leu Ile Ala Glu Lys Gly His Lys Val Ser Phe
Leu Ser 35 40 45Thr Thr Arg Asn
Ile Gln Arg Leu Ser Ser His Ile Ser Pro Leu Ile 50 55
60Asn Val Val Gln Leu Thr Leu Pro Arg Val Gln Glu Leu
Pro Glu Asp65 70 75
80Ala Glu Ala Thr Thr Asp Val His Pro Glu Asp Ile Gln Tyr Leu Lys
85 90 95Lys Ala Val Asp Gly Leu
Gln Pro Glu Val Thr Arg Phe Leu Glu Gln 100
105 110His Ser Pro Asp Trp Ile Ile Tyr Asp Phe Thr His
Tyr Trp Leu Pro 115 120 125Ser Ile
Ala Ala Ser Leu Gly Ile Ser Arg Ala Tyr Phe Cys Val Ile 130
135 140Thr Pro Trp Thr Ile Ala Tyr Leu Ala Pro Ser
Ser Asp Ala Met Ile145 150 155
160Asn Asp Ser Asp Gly Arg Thr Thr Val Glu Asp Leu Thr Thr Pro Pro
165 170 175Lys Trp Phe Pro
Phe Pro Thr Lys Val Cys Trp Arg Lys His Asp Leu 180
185 190Ala Arg Met Glu Pro Tyr Glu Ala Pro Gly Ile
Ser Asp Gly Tyr Arg 195 200 205Met
Gly Met Val Phe Lys Gly Ser Asp Cys Leu Leu Phe Lys Cys Tyr 210
215 220His Glu Phe Gly Thr Gln Trp Leu Pro Leu
Leu Glu Thr Leu His Gln225 230 235
240Val Pro Val Val Pro Val Gly Leu Leu Pro Pro Glu Ile Pro Gly
Asp 245 250 255Glu Lys Asp
Glu Thr Trp Val Ser Ile Lys Lys Trp Leu Asp Gly Lys 260
265 270Gln Lys Gly Ser Val Val Tyr Val Ala Leu
Gly Ser Glu Ala Leu Val 275 280
285Ser Gln Thr Glu Val Val Glu Leu Ala Leu Gly Leu Glu Leu Ser Gly 290
295 300Leu Pro Phe Val Trp Ala Tyr Arg
Lys Pro Lys Gly Pro Ala Lys Ser305 310
315 320Asp Ser Val Glu Leu Pro Asp Gly Phe Val Glu Arg
Thr Arg Asp Arg 325 330
335Gly Leu Val Trp Thr Ser Trp Ala Pro Gln Leu Arg Ile Leu Ser His
340 345 350Glu Ser Val Cys Gly Phe
Leu Thr His Cys Gly Ser Gly Ser Ile Val 355 360
365Glu Gly Leu Met Phe Gly His Pro Leu Ile Met Leu Pro Leu
Phe Gly 370 375 380Asp Gln Pro Leu Asn
Ala Arg Leu Leu Glu Asp Lys Gln Val Gly Ile385 390
395 400Glu Ile Pro Arg Asn Glu Glu Asp Gly Cys
Leu Thr Lys Glu Ser Val 405 410
415Ala Arg Ser Leu Arg Ser Val Val Val Glu Asn Glu Gly Glu Ile Tyr
420 425 430Lys Ala Asn Ala Arg
Glu Leu Ser Lys Ile Tyr Asn Asp Thr Lys Val 435
440 445Glu Lys Glu Tyr Val Ser Gln Phe Val Asp Tyr Leu
Glu Lys Asn Ala 450 455 460Arg Ala Val
Ala Ile Asp His Glu Ser465 470131422DNAStevia rebaudiana
13atggctacca gtgactccat agttgacgac cgtaagcagc ttcatgttgc gacgttccca
60tggcttgctt tcggtcacat cctccctttc cttcagcttt cgaaattgat agctgaaaag
120ggtcacaaag tctcgtttct ttctaccacc agaaacattc aacgtctctc ttctcatatc
180tcgccactca taaatgttgt tcaactcaca cttccacgtg tccaagagct gccggaggat
240gcagaggcga ccactgacgt ccaccctgaa gatattcaat atctcaagaa ggctgttgat
300ggtcttcaac cggaggtcac ccggtttcta gaacaacact ctccggactg gattatttat
360gattttactc actactggtt gccatccatc gcggctagcc tcggtatctc acgagcctac
420ttctgcgtca tcactccatg gaccattgct tatttggcac cctcatctga cgccatgata
480aatgattcag atggtcgaac cacggttgag gatctcacga caccgcccaa gtggtttccc
540tttccgacca aagtatgctg gcggaagcat gatcttgccc gaatggagcc ttacgaagct
600ccagggatat ctgatggata ccgtatgggg atggttttta agggatctga ttgtttgctt
660ttcaaatgtt accatgagtt tggaactcaa tggctacctc ttttggagac actacaccaa
720gtaccggtgg ttccggtggg attactgccg ccggaaatac ccggagacga gaaagatgaa
780acatgggtgt caatcaagaa atggctcgat ggtaaacaaa aaggcagtgt ggtgtacgtt
840gcattaggaa gcgaggcttt ggtgagccaa accgaggttg ttgagttagc attgggtctc
900gagctttctg ggttgccatt tgtttgggct tatagaaaac caaaaggtcc cgcgaagtca
960gactcggtgg agttgccaga cgggttcgtg gaacgaactc gtgaccgtgg gttggtctgg
1020acgagttggg cacctcagtt acgaatactg agccatgagt cggtttgtgg tttcttgact
1080cattgtggtt ctggatcaat tgtggaaggg ctaatgtttg gtcaccctct aatcatgcta
1140ccgctttttg gggaccaacc tctgaatgct cgattactgg aggacaaaca ggtgggaatc
1200gagataccaa gaaatgagga agatggttgc ttgaccaagg agtcggttgc tagatcactg
1260aggtccgttg ttgtggaaaa cgaaggggag atctacaagg cgaacgcgag ggagctgagt
1320aaaatctata acgacactaa ggtggaaaaa gaatatgtaa gccaattcgt agactatttg
1380gaaaagaatg cgcgtgcggt tgccatcgat catgagagtt aa
142214485PRTStevia rebaudiana 14Met Tyr Asn Val Thr Tyr His Gln Asn Ser
Lys Ala Met Ala Thr Ser1 5 10
15Asp Ser Ile Val Asp Asp Arg Lys Gln Leu His Val Ala Thr Phe Pro
20 25 30Trp Leu Ala Phe Gly His
Ile Leu Pro Phe Leu Gln Leu Ser Lys Leu 35 40
45Ile Ala Glu Lys Gly His Lys Val Ser Phe Leu Ser Thr Thr
Arg Asn 50 55 60Ile Gln Arg Leu Ser
Ser His Ile Ser Pro Leu Ile Asn Val Val Gln65 70
75 80Leu Thr Leu Pro Arg Val Gln Glu Leu Pro
Glu Asp Ala Glu Ala Thr 85 90
95Thr Asp Val His Pro Glu Asp Ile Gln Tyr Leu Lys Lys Ala Val Asp
100 105 110Gly Leu Gln Pro Glu
Val Thr Arg Phe Leu Glu Gln His Ser Pro Asp 115
120 125Trp Ile Ile Tyr Asp Phe Thr His Tyr Trp Leu Pro
Ser Ile Ala Ala 130 135 140Ser Leu Gly
Ile Ser Arg Ala Tyr Phe Cys Val Ile Thr Pro Trp Thr145
150 155 160Ile Ala Tyr Leu Ala Pro Ser
Ser Asp Ala Met Ile Asn Asp Ser Asp 165
170 175Gly Arg Thr Thr Val Glu Asp Leu Thr Thr Pro Pro
Lys Trp Phe Pro 180 185 190Phe
Pro Thr Lys Val Cys Trp Arg Lys His Asp Leu Ala Arg Met Glu 195
200 205Pro Tyr Glu Ala Pro Gly Ile Ser Asp
Gly Tyr Arg Met Gly Met Val 210 215
220Phe Lys Gly Ser Asp Cys Leu Leu Phe Lys Cys Tyr His Glu Phe Gly225
230 235 240Thr Gln Trp Leu
Pro Leu Leu Glu Thr Leu His Gln Val Pro Val Val 245
250 255Pro Val Gly Leu Leu Pro Pro Glu Ile Pro
Gly Asp Glu Lys Asp Glu 260 265
270Thr Trp Val Ser Ile Lys Lys Trp Leu Asp Gly Lys Gln Lys Gly Ser
275 280 285Val Val Tyr Val Ala Leu Gly
Ser Glu Ala Leu Val Ser Gln Thr Glu 290 295
300Val Val Glu Leu Ala Leu Gly Leu Glu Leu Ser Gly Leu Pro Phe
Val305 310 315 320Trp Ala
Tyr Arg Lys Pro Lys Gly Pro Ala Lys Ser Asp Ser Val Glu
325 330 335Leu Pro Asp Gly Phe Val Glu
Arg Thr Arg Asp Arg Gly Leu Val Trp 340 345
350Thr Ser Trp Ala Pro Gln Leu Arg Ile Leu Ser His Glu Ser
Val Cys 355 360 365Gly Phe Leu Thr
His Cys Gly Ser Gly Ser Ile Val Glu Gly Leu Met 370
375 380Phe Gly His Pro Leu Ile Met Leu Pro Ile Phe Cys
Asp Gln Pro Leu385 390 395
400Asn Ala Arg Leu Leu Glu Asp Lys Gln Val Gly Ile Glu Ile Pro Arg
405 410 415Asn Glu Glu Asp Gly
Cys Leu Thr Lys Glu Ser Val Ala Arg Ser Leu 420
425 430Arg Ser Val Val Val Glu Asn Glu Gly Glu Ile Tyr
Lys Ala Asn Ala 435 440 445Arg Ala
Leu Ser Lys Ile Tyr Asn Asp Thr Lys Val Glu Lys Glu Tyr 450
455 460Val Ser Gln Phe Val Asp Tyr Leu Glu Lys Asn
Ala Arg Ala Val Ala465 470 475
480Ile Asp His Glu Ser 485151458DNAStevia rebaudiana
15atgtacaacg ttacttatca tcaaaattca aaagcaatgg ctaccagtga ctccatagtt
60gacgaccgta agcagcttca tgttgcgacg ttcccatggc ttgctttcgg tcacatcctc
120cctttccttc agctttcgaa attgatagct gaaaagggtc acaaagtctc gtttctttct
180accaccagaa acattcaacg tctctcttct catatctcgc cactcataaa tgttgttcaa
240ctcacacttc cacgtgtcca agagctgccg gaggatgcag aggcgaccac tgacgtccac
300cctgaagata ttcaatatct caagaaggct gttgatggtc ttcaaccgga ggtcacccgg
360tttctagaac aacactctcc ggactggatt atttatgatt ttactcacta ctggttgcca
420tccatcgcgg ctagcctcgg tatctcacga gcctacttct gcgtcatcac tccatggacc
480attgcttatt tggcaccctc atctgacgcc atgataaatg attcagatgg tcgaaccacg
540gttgaggatc tcacgacacc gcccaagtgg tttccctttc cgaccaaagt atgctggcgg
600aagcatgatc ttgcccgaat ggagccttac gaagctccgg ggatatctga tggataccgt
660atggggatgg tttttaaggg atctgattgt ttgcttttca aatgttacca tgagtttgga
720actcaatggc tacctctttt ggagacacta caccaagtac cggtggttcc ggtgggatta
780ctgccgccgg aaatacccgg agacgagaaa gatgaaacat gggtgtcaat caagaaatgg
840ctcgatggta aacaaaaagg cagtgtggtg tacgttgcat taggaagcga ggctttggtg
900agccaaaccg aggttgttga gttagcattg ggtctcgagc tttctgggtt gccatttgtt
960tgggcttata gaaaaccaaa aggtcccgcg aagtcagact cggtggagtt gccagacggg
1020ttcgtggaac gaactcgtga ccgtgggttg gtctggacga gttgggcacc tcagttacga
1080atactgagcc acgagtcagt ttgtggtttc ttgactcatt gtggttctgg atcaattgtg
1140gaagggctaa tgtttggtca ccctctaatc atgctaccga ttttttgtga ccaacctctg
1200aatgctcgat tactggagga caaacaggtg ggaatcgaga taccaagaaa tgaggaagat
1260ggttgcttga ccaaggagtc ggttgctaga tcactgaggt ccgttgttgt ggaaaacgaa
1320ggggagatct acaaggcgaa cgcgagggcg ctgagtaaaa tctataacga cactaaggtg
1380gaaaaagaat atgtaagcca attcgtagac tatttggaaa agaatgcgcg tgcggttgcc
1440atcgatcatg agagttaa
145816473PRTStevia rebaudiana 16Met Ala Thr Ser Asp Ser Ile Val Asp Asp
Arg Lys Gln Leu His Val1 5 10
15Ala Thr Phe Pro Trp Leu Ala Phe Gly His Ile Leu Pro Phe Leu Gln
20 25 30Leu Ser Lys Leu Ile Ala
Glu Lys Gly His Lys Val Ser Phe Leu Ser 35 40
45Thr Thr Arg Asn Ile Gln Arg Leu Ser Ser His Ile Ser Pro
Leu Ile 50 55 60Asn Val Val Gln Leu
Thr Leu Pro Arg Val Gln Glu Leu Pro Glu Asp65 70
75 80Ala Glu Ala Thr Thr Asp Val His Pro Glu
Asp Ile Gln Tyr Leu Lys 85 90
95Lys Ala Val Asp Gly Leu Gln Pro Glu Val Thr Arg Phe Leu Glu Gln
100 105 110His Ser Pro Asp Trp
Ile Ile Tyr Asp Phe Thr His Tyr Trp Leu Pro 115
120 125Ser Ile Ala Ala Ser Leu Gly Ile Ser Arg Ala Tyr
Phe Cys Val Ile 130 135 140Thr Pro Trp
Thr Ile Ala Tyr Leu Ala Pro Ser Ser Asp Ala Met Ile145
150 155 160Asn Asp Ser Asp Gly Arg Thr
Thr Val Glu Asp Leu Thr Thr Pro Pro 165
170 175Lys Trp Phe Pro Phe Pro Thr Lys Val Cys Trp Arg
Lys His Asp Leu 180 185 190Ala
Arg Met Glu Pro Tyr Glu Ala Pro Gly Ile Ser Asp Gly Tyr Arg 195
200 205Met Gly Met Val Phe Lys Gly Ser Asp
Cys Leu Leu Phe Lys Cys Tyr 210 215
220His Glu Phe Gly Thr Gln Trp Leu Pro Leu Leu Glu Thr Leu His Gln225
230 235 240Val Pro Val Val
Pro Val Gly Leu Leu Pro Pro Glu Ile Pro Gly Asp 245
250 255Glu Lys Asp Glu Thr Trp Val Ser Ile Lys
Lys Trp Leu Asp Gly Lys 260 265
270Gln Lys Gly Ser Val Val Tyr Val Ala Leu Gly Ser Glu Ala Leu Val
275 280 285Ser Gln Thr Glu Val Val Glu
Leu Ala Leu Gly Leu Glu Leu Ser Gly 290 295
300Leu Pro Phe Val Trp Ala Tyr Arg Lys Pro Lys Gly Pro Ala Lys
Ser305 310 315 320Asp Ser
Val Glu Leu Pro Asp Gly Phe Val Glu Arg Thr Arg Asp Arg
325 330 335Gly Leu Val Trp Thr Ser Trp
Ala Pro Gln Leu Arg Ile Leu Ser His 340 345
350Glu Ser Val Cys Gly Phe Leu Thr His Cys Gly Ser Gly Ser
Ile Val 355 360 365Glu Gly Leu Met
Phe Gly His Pro Leu Ile Met Leu Pro Ile Phe Cys 370
375 380Asp Gln Pro Leu Asn Ala Arg Leu Leu Glu Asp Lys
Gln Val Gly Ile385 390 395
400Glu Ile Pro Arg Asn Glu Glu Asp Gly Cys Leu Thr Lys Glu Ser Val
405 410 415Ala Arg Ser Leu Arg
Ser Val Val Val Glu Asn Glu Gly Glu Ile Tyr 420
425 430Lys Ala Asn Ala Arg Ala Leu Ser Lys Ile Tyr Asn
Asp Thr Lys Val 435 440 445Glu Lys
Glu Tyr Val Ser Gln Phe Val Asp Tyr Leu Glu Lys Asn Ala 450
455 460Arg Ala Val Ala Ile Asp His Glu Ser465
470171422DNAStevia rebaudiana 17atggctacca gtgactccat agttgacgac
cgtaagcagc ttcatgttgc gacgttccca 60tggcttgctt tcggtcacat cctccctttc
cttcagcttt cgaaattgat agctgaaaag 120ggtcacaaag tctcgtttct ttctaccacc
agaaacattc aacgtctctc ttctcatatc 180tcgccactca taaatgttgt tcaactcaca
cttccacgtg tccaagagct gccggaggat 240gcagaggcga ccactgacgt ccaccctgaa
gatattcaat atctcaagaa ggctgttgat 300ggtcttcaac cggaggtcac ccggtttcta
gaacaacact ctccggactg gattatttat 360gattttactc actactggtt gccatccatc
gcggctagcc tcggtatctc acgagcctac 420ttctgcgtca tcactccatg gaccattgct
tatttggcac cctcatctga cgccatgata 480aatgattcag atggtcgaac cacggttgag
gatctcacga caccgcccaa gtggtttccc 540tttccgacca aagtatgctg gcggaagcat
gatcttgccc gaatggagcc ttacgaagct 600ccggggatat ctgatggata ccgtatgggg
atggttttta agggatctga ttgtttgctt 660ttcaaatgtt accatgagtt tggaactcaa
tggctacctc ttttggagac actacaccaa 720gtaccggtgg ttccggtggg attactgccg
ccggaaatac ccggagacga gaaagatgaa 780acatgggtgt caatcaagaa atggctcgat
ggtaaacaaa aaggcagtgt ggtgtacgtt 840gcattaggaa gcgaggcttt ggtgagccaa
accgaggttg ttgagttagc attgggtctc 900gagctttctg ggttgccatt tgtttgggct
tatagaaaac caaaaggtcc cgcgaagtca 960gactcggtgg agttgccaga cgggttcgtg
gaacgaactc gtgaccgtgg gttggtctgg 1020acgagttggg cacctcagtt acgaatactg
agccacgagt cagtttgtgg tttcttgact 1080cattgtggtt ctggatcaat tgtggaaggg
ctaatgtttg gtcaccctct aatcatgcta 1140ccgatttttt gtgaccaacc tctgaatgct
cgattactgg aggacaaaca ggtgggaatc 1200gagataccaa gaaatgagga agatggttgc
ttgaccaagg agtcggttgc tagatcactg 1260aggtccgttg ttgtggaaaa cgaaggggag
atctacaagg cgaacgcgag ggcgctgagt 1320aaaatctata acgacactaa ggtggaaaaa
gaatatgtaa gccaattcgt agactatttg 1380gaaaagaatg cgcgtgcggt tgccatcgat
catgagagtt aa 1422181086DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
18atggctttgg taaacccaac cgctcttttc tatggtacct ctatcagaac aagacctaca
60aacttactaa atccaactca aaagctaaga ccagtttcat catcttcctt accttctttc
120tcatcagtta gtgcgattct tactgaaaaa catcaatcta atccttctga gaacaacaat
180ttgcaaactc atctagaaac tcctttcaac tttgatagtt atatgttgga aaaagtcaac
240atggttaacg aggcgcttga tgcatctgtc ccactaaaag acccaatcaa aatccatgaa
300tccatgagat actctttatt ggcaggcggt aagagaatca gaccaatgat gtgtattgca
360gcctgcgaaa tagtcggagg taatatcctt aacgccatgc cagccgcatg tgccgtggaa
420atgattcata ctatgtcttt ggtgcatgac gatcttccat gtatggataa tgatgacttc
480agaagaggta aacctatttc acacaaggtc tacggggagg aaatggcagt attgaccggc
540gatgctttac taagtttatc tttcgaacat atagctactg ctacaaaggg tgtatcaaag
600gatagaatcg tcagagctat aggggagttg gcccgttcag ttggctccga aggtttagtg
660gctggacaag ttgtagatat cttgtcagag ggtgctgatg ttggattaga tcacctagaa
720tacattcaca tccacaaaac agcaatgttg cttgagtcct cagtagttat tggcgctatc
780atgggaggag gatctgatca gcagatcgaa aagttgagaa aattcgctag atctattggt
840ctactattcc aagttgtgga tgacattttg gatgttacaa aatctaccga agagttgggg
900aaaacagctg gtaaggattt gttgacagat aagacaactt acccaaagtt gttaggtata
960gaaaagtcca gagaatttgc cgaaaaactt aacaaggaag cacaagagca attaagtggc
1020tttgatagac gtaaggcagc tcctttgatc gcgttagcca actacaatgc gtaccgtcaa
1080aattga
1086191029DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 19atggctgagc aacaaatatc taacttgctg
tctatgtttg atgcttcaca tgctagtcag 60aaattagaaa ttactgtcca aatgatggac
acataccatt acagagaaac gcctccagat 120tcctcatctt ctgaaggcgg ttcattgtct
agatacgacg agagaagagt ctctttgcct 180ctcagtcata atgctgcctc tccagatatt
gtatcacaac tatgtttttc cactgcaatg 240tcttcagagt tgaatcacag atggaaatct
caaagattaa aggtggccga ttctccttac 300aactatatcc taacattacc atcaaaagga
attagaggtg cctttatcga ttccctgaac 360gtatggttgg aggttccaga ggatgaaaca
tcagtcatca aggaagttat tggtatgctc 420cacaactctt cattaatcat tgatgacttc
caagataatt ctccacttag aagaggaaag 480ccatctaccc atacagtctt cggccctgcc
caggctatca atactgctac ttacgttata 540gttaaagcaa tcgaaaagat acaagacata
gtgggacacg atgcattggc agatgttacg 600ggtactatta caactatttt ccaaggtcag
gccatggact tgtggtggac agcaaatgca 660atcgttccat caatacagga atacttactt
atggtaaacg ataaaaccgg tgctctcttt 720agactgagtt tggagttgtt agctctgaat
tccgaagcca gtatttctga ctctgcttta 780gaaagtttat ctagtgctgt ttccttgcta
ggtcaatact tccaaatcag agacgactat 840atgaacttga tcgataacaa gtatacagat
cagaaaggct tctgcgaaga tcttgatgaa 900ggcaagtact cactaacact tattcatgcc
ctccaaactg attcatccga tctactgacc 960aacatccttt caatgagaag agtgcaagga
aagttaacgg cacaaaagag atgttggttc 1020tggaaatga
102920903DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
20atggaaaaga ctaaggagaa agcagaacgt atcttgctgg agccatacag atacttatta
60caactaccag gaaagcaagt ccgttctaaa ctatcacaag cgttcaatca ctggttaaaa
120gttcctgaag ataagttaca aatcattatt gaagtcacag aaatgctaca caatgcttct
180ttactgatcg atgatataga ggattcttcc aaactgagaa gaggttttcc tgtcgctcat
240tccatatacg gggtaccaag tgtaatcaac tcagctaatt acgtctactt cttgggattg
300gaaaaagtat tgacattaga tcatccagac gctgtaaagc tattcaccag acaacttctt
360gaattgcatc aaggtcaagg tttggatatc tattggagag acacttatac ttgcccaaca
420gaagaggagt acaaagcaat ggttctacaa aagactggcg gtttgttcgg acttgccgtt
480ggtctgatgc aacttttctc tgattacaag gaggacttaa agcctctgtt ggataccttg
540ggcttgtttt tccagattag agatgactac gctaacttac attcaaagga atattcagaa
600aacaaatcat tctgtgaaga tttgactgaa gggaagttta gttttccaac aatccacgcc
660atttggtcaa gaccagaatc tactcaagtg caaaacattc tgcgtcagag aacagagaat
720attgacatca aaaagtattg tgttcagtac ttggaagatg ttggttcttt tgcttacaca
780agacatacac ttagagaatt agaggcaaaa gcatacaagc aaatagaagc ctgtggaggc
840aatccttctc tagtggcatt ggttaaacat ttgtccaaaa tgttcaccga ggaaaacaag
900taa
903211020DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 21atggcaagat tctattttct taacgcacta
ttgatggtta tctcattaca atcaactaca 60gccttcactc cagctaaact tgcttatcca
acaacaacaa cagctctaaa tgtcgcctcc 120gccgaaactt ctttcagtct agatgaatac
ttggcctcta agataggacc tatagagtct 180gccttggaag catcagtcaa atccagaatt
ccacagaccg ataagatctg cgaatctatg 240gcctactctt tgatggcagg aggcaagaga
attagaccag tgttgtgtat cgctgcatgt 300gagatgttcg gtggatccca agatgtcgct
atgcctactg ctgtggcatt agaaatgata 360cacacaatgt ctttgattca tgatgatttg
ccatccatgg ataacgatga cttgagaaga 420ggtaaaccaa caaaccatgt cgttttcggc
gaagatgtag ctattcttgc aggtgactct 480ttattgtcaa cttccttcga gcacgtcgct
agagaaacaa aaggagtgtc agcagaaaag 540atcgtggatg ttatcgctag attaggcaaa
tctgttggtg ccgagggcct tgctggcggt 600caagttatgg acttagaatg tgaagctaaa
ccaggtacca cattagacga cttgaaatgg 660attcatatcc ataaaaccgc tacattgtta
caagttgctg tagcttctgg tgcagttcta 720ggtggtgcaa ctcctgaaga ggttgctgca
tgcgagttgt ttgctatgaa tataggtctt 780gcctttcaag ttgccgacga tatccttgat
gtaaccgctt catcagaaga tttgggtaaa 840actgcaggca aagatgaagc tactgataag
acaacttacc caaagttatt aggattagaa 900gagagtaagg catacgcaag acaactaatc
gatgaagcca aggaaagttt ggctcctttt 960ggagatagag ctgccccttt attggccatt
gcagatttca ttattgatag aaagaattga 1020221068DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
22atgcacttag caccacgtag agtccctaga ggtagaagat caccacctga cagagttcct
60gaaagacaag gtgccttggg tagaagacgt ggagctggct ctactggctg tgcccgtgct
120gctgctggtg ttcaccgtag aagaggagga ggcgaggctg atccatcagc tgctgtgcat
180agaggctggc aagccggtgg tggcaccggt ttgcctgatg aggtggtgtc taccgcagcc
240gccttagaaa tgtttcatgc ttttgcttta atccatgatg atatcatgga tgatagtgca
300actagaagag gctccccaac tgttcacaga gccctagctg atcgtttagg cgctgctctg
360gacccagatc aggccggtca actaggagtt tctactgcta tcttggttgg agatctggct
420ttgacatggt ccgatgaatt gttatacgct ccattgactc cacatagact ggcagcagta
480ctaccattgg taacagctat gagagctgaa accgttcatg gccaatatct tgatataact
540agtgctagaa gacctgggac cgatacttct cttgcattga gaatagccag atataagaca
600gcagcttaca caatggaacg tccactgcac attggtgcag ccctggctgg ggcaagacca
660gaactattag cagggctttc agcatacgcc ttgccagctg gagaagcctt ccaattggca
720gatgacctgc taggcgtctt cggtgatcca agacgtacag ggaaacctga cctagatgat
780cttagaggtg gaaagcatac tgtcttagtc gccttggcaa gagaacatgc cactccagaa
840cagagacaca cattggatac attattgggt acaccaggtc ttgatagaca aggcgcttca
900agactaagat gcgtattggt agcaactggt gcaagagccg aagccgaaag acttattaca
960gagagaagag atcaagcatt aactgcattg aacgcattaa cactgccacc tcctttagct
1020gaggcattag caagattgac attagggtct acagctcatc ctgcctaa
106823993DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 23atgtcatatt tcgataacta cttcaatgag
atagttaatt ccgtgaacga catcattaag 60tcttacatct ctggcgacgt accaaaacta
tacgaagcct cctaccattt gtttacatca 120ggaggaaaga gactaagacc attgatcctt
acaatttctt ctgatctttt cggtggacag 180agagaaagag catactatgc tggcgcagca
atcgaagttt tgcacacatt cactttggtt 240cacgatgata tcatggatca agataacatt
cgtagaggtc ttcctactgt acatgtcaag 300tatggcctac ctttggccat tttagctggt
gacttattgc atgcaaaagc ctttcaattg 360ttgactcagg cattgagagg tctaccatct
gaaactatca tcaaggcgtt tgatatcttt 420acaagatcta tcattatcat atcagaaggt
caagctgtcg atatggaatt cgaagataga 480attgatatca aggaacaaga gtatttggat
atgatatctc gtaaaaccgc tgccttattc 540tcagcttctt cttccattgg ggcgttgata
gctggagcta atgataacga tgtgagatta 600atgtccgatt tcggtacaaa tcttgggatc
gcatttcaaa ttgtagatga tatacttggt 660ttaacagctg atgaaaaaga gctaggaaaa
cctgttttca gtgatatcag agaaggtaaa 720aagaccatat tagtcattaa gactttagaa
ttgtgtaagg aagacgagaa aaagattgtg 780ttaaaagcgc taggcaacaa gtcagcatca
aaggaagagt tgatgagttc tgctgacata 840atcaaaaagt actcattgga ttacgcctac
aacttagctg agaaatacta caaaaacgcc 900atcgattctc taaatcaagt ttcaagtaaa
agtgatattc cagggaaggc attgaaatat 960cttgctgaat tcaccatcag aagacgtaag
taa 99324894DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
24atggtcgcac aaactttcaa cctggatacc tacttatccc aaagacaaca acaagttgaa
60gaggccctaa gtgctgctct tgtgccagct tatcctgaga gaatatacga agctatgaga
120tactccctcc tggcaggtgg caaaagatta agacctatct tatgtttagc tgcttgcgaa
180ttggcaggtg gttctgttga acaagccatg ccaactgcgt gtgcacttga aatgatccat
240acaatgtcac taattcatga tgacctgcca gccatggata acgatgattt cagaagagga
300aagccaacta atcacaaggt gttcggggaa gatatagcca tcttagcggg tgatgcgctt
360ttagcttacg cttttgaaca tattgcttct caaacaagag gagtaccacc tcaattggtg
420ctacaagtta ttgctagaat cggacacgcc gttgctgcaa caggcctcgt tggaggccaa
480gtcgtagacc ttgaatctga aggtaaagct atttccttag aaacattgga gtatattcac
540tcacataaga ctggagcctt gctggaagca tcagttgtct caggcggtat tctcgcaggg
600gcagatgaag agcttttggc cagattgtct cattacgcta gagatatagg cttggctttt
660caaatcgtcg atgatatcct ggatgttact gctacatctg aacagttggg gaaaaccgct
720ggtaaagacc aggcagccgc aaaggcaact tatccaagtc tattgggttt agaagcctct
780agacagaaag cggaagagtt gattcaatct gctaaggaag ccttaagacc ttacggttca
840caagcagagc cactcctagc gctggcagac ttcatcacac gtcgtcagca ttaa
894251116DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 25atggcctctg ttactttggg ttcctggatc
gtcgtccacc accataacca tcaccatcca 60tcatctatcc taactaaatc tcgttcaaga
tcctgtccta ttacactaac caaaccaatc 120tcttttcgtt caaagagaac agtttcctct
agtagttcta tcgtgtcctc tagtgtcgtc 180actaaggaag acaatctgag acagtctgaa
ccttcttcct ttgatttcat gtcatatatc 240attactaagg cagaactagt gaataaggct
cttgattcag cagttccatt aagagagcca 300ttgaaaatcc atgaagcaat gagatactct
cttctagctg gcgggaagag agtcagacct 360gtactctgca tagcagcgtg cgaattagtt
ggtggcgagg aatcaaccgc tatgcctgcc 420gcttgtgctg tagaaatgat tcatacaatg
tcactgatac acgatgattt gccatgtatg 480gataacgatg atctgagaag gggtaagcca
actaaccata aggttttcgg cgaagatgtt 540gccgtcttag ctggtgatgc tttgttatct
ttcgcgttcg aacatttggc atccgcaaca 600tcaagtgatg ttgtgtcacc agtaagagta
gttagagcag ttggagaact ggctaaagct 660attggaactg agggtttagt tgcaggtcaa
gtcgtcgata tctcttccga aggtcttgat 720ttgaatgatg taggtcttga acatctcgaa
ttcatccatc ttcacaagac agctgcactt 780ttagaagcca gtgcggttct cggcgcaatt
gttggcggag ggagtgatga cgaaattgag 840agattgagga agtttgctag atgtatagga
ttactgttcc aagtagtaga cgatatacta 900gatgtgacaa agtcttccaa agagttggga
aaaacagctg gtaaagattt gattgccgac 960aaattgacct accctaagat tatggggcta
gaaaaatcaa gagaatttgc cgagaaactc 1020aatagagagg cgcgtgatca actgttgggt
ttcgattctg ataaagttgc accactctta 1080gccttagcca actacatcgc ttacagacaa
aactaa 1116261086DNAStevia rebaudiana
26atggctcttg taaatcccac agctttgttc tatggaacct ccataagaac cagacccaca
60aacttgctca acccgaccca aaaacttcga cccgtttcct cgtcttcttt gccttccttc
120tcttcagttt ctgcaatctt gacggaaaaa caccaatcaa acccatcaga aaacaataac
180ttgcaaaccc atctcgaaac accattcaat ttcgactctt acatgctgga gaaagtaaac
240atggtgaatg aagctctgga cgcctcggtt ccactcaaag acccgataaa gatccatgaa
300tccatgcggt actcccttct agctggcggg aaacgcatcc gaccgatgat gtgcatcgcc
360gcttgcgaaa tagtcggagg caacatatta aacgccatgc cagctgcatg cgcggtcgag
420atgattcaca ccatgtcact agttcatgac gaccttccat gcatggataa cgacgacttc
480cgacgtggaa aaccaataag ccacaaggtg tacggtgaag aaatggcggt tctaaccggg
540gacgcgttac tctcattatc cttcgaacat atcgcgaccg cgacaaaagg cgtatccaaa
600gacaggatcg tccgagccat tggtgaactc gcaaggtccg ttggctcgga gggtttggtc
660gccggtcagg tggttgatat tttatccgaa ggggctgatg ttgggttaga ccacttggag
720tatattcata tacacaagac tgcaatgttg cttgagagct cggtcgtgat cggcgcgatc
780atgggcggtg ggtctgacca acagatcgaa aagttgcgaa agtttgcgag atcgattggt
840ttgttgtttc aggtggtaga tgatattctt gatgtcacaa agtcgactga ggaattgggg
900aaaacggcgg gaaaagattt gctgacggac aagacaacgt atccgaagtt gttggggatc
960gaaaaatcga gagaatttgc ggagaaatta aacaaggaag cgcaagaaca attgtcgggg
1020tttgatcgcc gcaaggcggc tccgttaatt gcccttgcta attacaatgc ttataggcaa
1080aactga
1086271029DNAGibberella fujikuroi 27atggctgaac aacagatctc caaccttctt
tcaatgtttg atgcttctca cgcaagccag 60aagttggaga ttacggttca gatgatggat
acctaccatt acagagaaac tcctccagac 120tcttcctctt cagaaggcgg ttccttatct
cgctatgatg agcgacgggt ctcccttccg 180ctctctcaca atgcagcctc cccagacata
gtctcccagt tatgcttctc aacagctatg 240agctcggagc tcaatcacag gtggaagtca
cagcgcctca aggttgctga ctctccctac 300aactacatcc tgactcttcc atctaaaggt
attcgtgggg ctttcattga ctcactgaat 360gtctggctcg aggtccccga agacgagacc
tcggtgatca aagaggtgat tggcatgctc 420cacaactcgt ctctcataat cgatgacttc
caagacaact ccccacttcg gcggggcaag 480ccatctacac atactgtctt cggtccagca
caagcaatca acacagcaac atatgtcatc 540gtcaaggcca tcgagaaaat acaggatatc
gtcggtcacg atgcattggc agatgtaact 600ggcactataa ccacaatctt ccagggtcag
gcaatggatc tgtggtggac tgctaatgcc 660attgttccgt ctatccaaga atatctcctg
atggtcaatg acaagactgg tgccctgttc 720aggttatcgc ttgaactact ggcgctgaac
tctgaagcat ccatcagtga cagcgcgctt 780gaatctctca gcagcgctgt ctcactgctc
gggcagtatt tccagataag agatgattac 840atgaatctca ttgacaacaa gtatactgat
cagaaaggat tttgcgagga tctggacgag 900gggaaatact cgttgactct aatccatgct
ctgcagaccg actccagcga ccttctcacc 960aacatcttat cgatgagaag agtccaagga
aaacttacgg cgcagaaaag atgctggttt 1020tggaagtga
102928903DNAMus musculus 28atggagaaaa
ctaaagagaa agctgagagg attcttctag agccctatag gtacttactt 60cagttaccag
gtaaacaggt gagaagcaaa ctttcacagg catttaatca ctggctgaaa 120gttccagaag
acaagctaca gattatcatt gaagtgactg aaatgttgca taatgccagt 180ttactcattg
atgatattga agacagttca aagctccgac gtggtttccc agtggctcac 240agcatctatg
gtgtcccatc tgtcattaat tctgccaatt acgtctactt ccttggactg 300gaaaaagtct
taacccttga tcacccggat gcggtgaagc ttttcacacg ccagcttctg 360gaacttcatc
agggacaagg cctcgatatt tactggaggg acacctacac ttgtccaact 420gaagaagaat
ataaagccat ggtgttgcag aagacaggtg gtttgtttgg attagcagta 480ggtcttatgc
agctgttctc tgattacaaa gaagatctaa agccactgct tgacacactt 540gggctctttt
tccagattag agatgattat gccaatctac actccaaaga atacagtgaa 600aacaaaagtt
tctgtgaaga cttgacagaa gggaagttct cattccccac tatccatgcc 660atttggtcaa
ggccagaaag cacccaggta cagaacatcc tgcgccagag aacagagaat 720atagatatta
aaaagtattg tgtgcagtac ctggaggatg taggttcttt tgcatacact 780cgacacactc
ttagagagct tgaagctaaa gcctacaaac aaattgaggc ctgtggtggg 840aacccttcac
tagtggcttt agtcaagcac ttaagtaaga tgttcacaga agaaaataaa 900taa
903291020DNAThalassiosira pseudonana 29atggctcgtt tctacttcct gaacgctctc
ctcatggtga tttctttaca aagcaccacg 60gcattcaccc cggcaaaact cgcctaccca
acaaccacca ctgcattaaa cgttgcctct 120gccgaaacat catttagcct cgatgaatac
ctagcctcca aaatcggacc cattgaatca 180gctctcgagg catctgtcaa atctcgcatt
cctcaaactg acaagatatg cgagtctatg 240gcatactcac tcatggctgg aggaaagcgt
atccgtcccg ttttgtgcat tgctgcttgt 300gaaatgtttg ggggaagtca agatgtggct
atgccgacgg ctgtggcttt ggagatgatt 360catactatga gtcttattca tgacgatttg
ccttcaatgg acaacgatga tctccgacga 420ggaaagccaa ctaatcatgt tgtctttgga
gaggatgttg ctattcttgc tggggattct 480cttctcagta cgtcttttga acatgttgcc
cgtgaaacca aaggagtgtc agctgaaaag 540attgtagatg ttatcgctcg cctcgggaag
tctgtgggtg cagagggtct tgctggtgga 600caggttatgg atcttgagtg tgaggcgaag
ccaggaacta ccctcgacga tctcaagtgg 660attcacattc acaaaactgc cactcttctt
caagtggcag tggcatcagg tgctgttctt 720ggaggggcca caccagagga ggttgctgct
tgtgaactgt tcgcaatgaa tattggactt 780gccttccagg tcgctgatga tattttggac
gtgacggcat cgagtgagga tcttggcaaa 840actgctggaa aggatgaagc cacagataag
acaacttatc ctaagctttt gggattggag 900gagagtaagg catacgctcg acaactcata
gacgaagcaa aggaatcttt ggctcctttc 960ggtgatcgtg ctgctccatt gttggcaatt
gccgacttta tcattgatcg aaagaactag 1020301068DNAStreptomyces clavuligerus
30atgcacctgg ctccccgccg agtaccgcgc ggccgtcgaa gcccacctga ccgcgttcct
60gaacgccaag gagcgctcgg ccgccgccgg ggggccggtt ccacaggatg tgcccgcgct
120gctgcgggag ttcatcggcg ccgggggggg ggggaagcgg atccgtccgc tgctgtgcat
180cgcggctggc aggccggcgg cggaacagga ctgccggacg aggtggtgtc cacagcggcg
240gcgctggaga tgttccacgc gttcgcgctg atccacgacg acatcatgga tgactccgcg
300accaggcgcg gcagcccgac ggtgcaccgg gcactcgccg accggctcgg cgccgctctc
360gaccccgacc aagccggaca actgggggtg agcacggcga tcctcgtcgg ggacctcgcc
420ctgacctggt cggacgaact gctgtacgct cccctgaccc cccaccggct ggccgcggta
480ctgcccctgg tcacggccat gcgcgcggaa acggtccacg gccagtacct ggacatcacc
540tccgcccgcc ggcccggcac ggacacctca ctggcgctgc gaatcgcgcg ctacaaaacc
600gctgcttaca ccatggaacg ccccctgcac atcggagcag cgctcgccgg cgcacgaccg
660gaactcctgg cagggctcag cgcctacgcg ctgccggcgg gcgaggcatt ccagctcgcc
720gacgacctcc tgggagtgtt cggcgatcca cggagaaccg gcaaacccga cctcgacgac
780ctccgcggcg gcaagcacac cgtcctcgtg gccctcgccc gggaacacgc cacacctgaa
840cagcggcaca ccctggacac cctgctcggc acaccaggcc tcgaccggca gggcgcgtcc
900cggctgcgct gcgtcctcgt cgccaccggg gcccgggcgg aagccgaacg cctgatcacc
960gaacggcgcg accaggccct caccgcgctc aacgccctga cactgccccc accgctcgcc
1020gaggcactcg cccgcctcac cctcgggagt accgcacacc cggcctga
106831993DNASulfulobus acidicaldarius 31atgagttact ttgacaacta ttttaatgag
attgttaatt ctgtaaacga cattattaag 60agctatatat ctggagatgt tcctaaacta
tatgaagcct catatcattt gtttacatct 120ggaggtaaga ggttaagacc attaatctta
actatatcat cagatttatt cggaggacag 180agagaaagag cttattatgc aggtgcagct
attgaagttc ttcatacttt tacgcttgtg 240catgatgata ttatggatca agataatatc
agaagagggt tacccacagt ccacgtgaaa 300tacggcttac ccttagcaat attagctggg
gatttactac atgcaaaggc ttttcagctc 360ttaacccagg ctcttagagg tttgccaagt
gaaaccataa ttaaggcttt cgatattttc 420actcgttcaa taataattat atccgaagga
caggcagtag atatggaatt tgaggacaga 480attgatataa aggagcagga ataccttgac
atgatctcac gtaagacagc tgcattattc 540tcggcatcct caagtatagg cgcacttatt
gctggtgcta atgataatga tgtaagactg 600atgtctgatt tcggtacgaa tctaggtatt
gcatttcaga ttgttgacga tatcttaggt 660ctaacagcag acgaaaagga acttggaaag
cctgttttta gtgatattag ggagggtaaa 720aagactatac ttgtaataaa aacactggag
ctttgtaaag aggacgagaa gaagattgtc 780ctaaaggcgt taggtaataa gtcagcctca
aaagaagaat taatgagctc agcagatata 840attaagaaat actctttaga ttatgcatac
aatttagcag agaaatatta taaaaatgct 900atagactctt taaatcaagt ctcctctaag
agtgatatac ctggaaaggc tttaaaatat 960ctagctgaat ttacgataag aaggagaaaa
taa 99332894DNASynechococcus sp.
32ttggttgccc aaaccttcaa cctggacacc tacttgagcc aacgccagca acaggtggaa
60gaggcgcttt ctgcggcatt ggttcccgcc tatccggagc gcatttacga ggcgatgcgc
120tacagcctgc tggcgggggg gaaacgcctg aggccgatcc tctgtctggc ggcctgtgag
180ttggccggcg gctctgtgga gcaggccatg cccaccgcct gcgccctgga gatgatccac
240accatgtcgc tgatccacga cgatctgccg gcgatggaca acgacgattt tcgccgcggc
300aagcccacca atcacaaggt attcggcgag gatatcgcca ttttggcagg agatgccctg
360ttggcctatg cctttgagca tatcgccagc caaacgcggg gggtgccgcc gcagttggtg
420ctgcaagtca ttgcccgcat tggccatgct gtggcggcaa ccggcttggt agggggccag
480gtggtggatc tggagtccga aggcaaagcc atttccctag aaactttgga gtacatccac
540agtcacaaga cgggtgctct gctggaggcc tcggtggttt cgggagggat cctggcaggg
600gccgatgagg agctgctggc gcggctgagc cactacgctc gggacatcgg cctggctttt
660cagatcgtgg acgacatttt ggatgttact gccaccagcg agcaactggg caaaacggca
720ggcaaggatc aagctgccgc caaagccacc taccccagct tgttgggcct agaggcttcc
780cggcagaaag ctgaggaact gatccaatcg gccaaggagg cgttgcgccc ctacggatcc
840caggccgagc ccctgttggc tctggccgat ttcatcaccc gccgccagca ttga
894331116DNAArabidopsis thaliana 33atggcttcag tgactctagg ttcatggatt
gttgttcacc accacaatca tcatcatcca 60tcttcaatcc ttaccaaatc cagatccaga
tcttgtccta taactcttac taaacccatc 120tcctttcgat caaaacgcac cgtttcatca
tcttcttcaa tcgtttcttc ttccgttgtt 180acaaaagaag acaatctacg ccaatctgaa
ccatcctctt tcgatttcat gtcgtacatc 240atcaccaaag ccgaattagt caacaaagct
ttagattcag ctgttcctct ccgtgagcca 300ctcaagatcc acgaagcgat gcgttactct
cttctcgccg gtggcaaaag agttagacca 360gttctctgca tcgctgcttg tgaactcgtc
ggaggtgaag aatcaaccgc tatgccagca 420gcttgcgccg tcgagatgat tcacaccatg
tcgttgatcc acgacgatct cccttgtatg 480gataacgacg atctccgccg tggaaaaccg
accaaccaca aagtgtttgg tgaagacgtc 540gctgttttag ccggagacgc gcttctctct
ttcgctttcg agcatttagc ttcggcgacg 600agttctgatg ttgtttctcc ggtgagagtg
gttcgagccg ttggagaatt ggctaaagcg 660ataggaacag aagggttagt ggcgggtcaa
gtcgtggata ttagtagtga agggttagat 720ttaaacgacg tcggtttaga gcatttggag
tttatccatt tgcataaaac ggcggcgttg 780cttgaagctt ctgctgtttt gggagctatt
gttggtggag gaagtgatga tgagattgag 840aggttaagaa agtttgcgag atgtattggt
ttgttgtttc aggtggttga tgatatcttg 900gatgtgacga aatcgtcgaa agagttaggg
aaaactgctg ggaaagattt gattgctgat 960aagttgacgt atcctaagat tatgggtttg
gagaaatcga gagagtttgc tgagaaattg 1020aatagagagg ctcgtgatca gcttttaggg
tttgattctg ataaggttgc tcctttgttg 1080gctttggcta attacattgc ctatagacag
aactga 1116342364DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
34atgaaaaccg ggtttatctc accagcaaca gtatttcatc acagaatctc accagcgacc
60actttcagac atcacttatc acctgctact acaaactcta caggcattgt cgccttaaga
120gacatcaact tcagatgtaa agcagtttct aaagagtact ctgatctgtt gcagaaagat
180gaggcttctt tcacaaaatg ggacgatgac aaggtgaaag atcatcttga taccaacaaa
240aacttatacc caaatgatga gattaaggaa tttgttgaat cagtaaaggc tatgttcggt
300agtatgaatg acggggagat aaacgtctct gcatacgata ctgcatgggt tgctttggtt
360caagatgtcg atggatcagg tagtcctcag ttcccttctt ctttagaatg gattgccaac
420aatcaattgt cagatggatc atggggagat catttgctgt tctcagctca cgatagaatc
480atcaacacat tagcatgcgt tattgcactt acaagttgga atgttcatcc ttctaagtgt
540gaaaaaggtt tgaattttct gagagaaaac atttgcaaat tagaagatga aaacgcagaa
600catatgccaa ttggttttga agtaacattc ccatcactaa ttgatatcgc gaaaaagttg
660aacattgaag tacctgagga tactccagca cttaaagaga tctacgcacg tagagatatc
720aagttaacta agatcccaat ggaagttctt cacaaggtac ctactacttt gttacattct
780ttggaaggaa tgcctgattt ggagtgggaa aaactgttaa agctacaatg taaagatggt
840agtttcttgt tttccccatc tagtaccgca ttcgccctaa tgcaaacaaa agatgagaaa
900tgcttacagt atctaacaaa tatcgtcact aagttcaacg gtggcgtgcc taatgtgtac
960ccagtcgatt tgtttgaaca tatttgggtt gttgatagac tgcagagatt ggggattgcc
1020agatacttca aatcagagat aaaagattgt gtagagtata tcaataagta ctggaccaaa
1080aatggaattt gttgggctag aaatactcac gttcaagata tcgatgatac agccatggga
1140ttcagagtgt tgagagcgca cggttatgac gtcactccag atgtttttag acaatttgaa
1200aaagatggta aattcgtttg ctttgcaggg caatcaacac aagccgtgac aggaatgttt
1260aacgtttaca gagcctctca aatgttgttc ccaggggaga gaattttgga agatgccaaa
1320aagttctctt acaattactt aaaggaaaag caaagtacca acgaattgct ggataaatgg
1380ataatcgcta aagatctacc tggtgaagtt ggttatgctc tggatatccc atggtatgct
1440tccttaccaa gattggaaac tcgttattac cttgaacaat acggcggtga agatgatgtc
1500tggataggca agacattata cagaatgggt tacgtgtcca ataacacata tctagaaatg
1560gcaaagctgg attacaataa ctatgttgca gtccttcaat tagaatggta cacaatacaa
1620caatggtacg tcgatattgg tatagagaag ttcgaatctg acaacatcaa gtcagtcctg
1680gtttcttact acttggctgc ggcttcaata ttcgaacctg agagatctaa ggagagaatc
1740gcttgggcaa agacaacaat cttagtcgat aagatcacat caattttcga ttcctctcag
1800tcaagtaagg aagatattac tgcctttatt gacaagtttc gtaacaagtc ctcctctaaa
1860aagcactcta tcaacggtga accatggcat gaagttatgg tagctttgaa aaagacctta
1920cacggctttg ctctggatgc tcttatgact cattctcaag atatacatcc acagttacat
1980caagcctggg aaatgtggtt gactaaacta caagacggcg tagatgttac tgctgagcta
2040atggtccaaa tgatcaacat gactgctggc agatgggtat caaaggaatt acttactcat
2100ccacaatatc aaagattgtc tactgtgaca aattctgtgt gtcacgatat taccaaactt
2160cacaatttca aggagaattc caccacagtg gattcaaagg ttcaggaact agtccagttg
2220gtttttagtg acacaccaga tgatttggat caagatatga aacaaacatt cctgacagtg
2280atgaagacat tctactacaa ggcgtggtgt gatccaaaca ctataaacga tcatatatct
2340aaagttttcg aaatcgtaat ttga
2364351584DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 35atgcctgatg cacacgatgc tccacctcca
caaataagac agagaacact agtagatgag 60gctacccaac tgctaactga gtccgcagaa
gatgcatggg gtgaagtcag tgtgtcagaa 120tacgaaacag caaggctagt tgcccatgct
acatggttag gtggacacgc cacaagagtg 180gccttccttc tggagagaca acacgaagac
gggtcatggg gtccaccagg tggatatagg 240ttagtcccta cattatctgc tgttcacgca
ttattgacat gtcttgcctc tcctgctcag 300gatcatggcg ttccacatga tagactttta
agagctgttg acgcaggctt gactgccttg 360agaagattgg ggacatctga ctccccacct
gatactatag cagttgagct ggttatccca 420tctttgctag agggcattca acacttactg
gaccctgctc atcctcatag tagaccagcc 480ttctctcaac atagaggctc tcttgtttgt
cctggtggac tagatgggag aactctagga 540gctttgagat cacacgccgc agcaggtaca
ccagtaccag gaaaagtctg gcacgcttcc 600gagactttgg gcttgagtac cgaagctgct
tctcacttgc aaccagccca aggtataatc 660ggtggctctg ctgctgccac agcaacatgg
ctaaccaggg ttgcaccatc tcaacagtca 720gattctgcca gaagatacct tgaggaatta
caacacagat actctggccc agttccttcc 780attaccccta tcacatactt cgaaagagca
tggttattga acaattttgc agcagccggt 840gttccttgtg aggctccagc tgctttgttg
gattccttag aagcagcact tacaccacaa 900ggtgctcctg ctggagcagg attgcctcca
gatgctgatg atacagccgc tgtgttgctt 960gcattggcaa cacatgggag aggtagaaga
ccagaagtac tgatggatta caggactgac 1020gggtatttcc aatgctttat tggggaaagg
actccatcaa tttcaacaaa cgctcacgta 1080ttggaaacat tagggcatca tgtggcccaa
catccacaag atagagccag atacggatca 1140gccatggata ccgcatcagc ttggctgctg
gcagctcaaa agcaagatgg ctcttggtta 1200gataaatggc atgcctcacc atactacgct
actgtttgtt gcacacaagc cctagccgct 1260catgcaagtc ctgcaactgc accagctaga
cagagagctg tcagatgggt tttagccaca 1320caaagatccg atggcggttg gggtctatgg
cattcaactg ttgaagagac tgcttatgcc 1380ttacagatct tggccccacc ttctggtggt
ggcaatatcc cagtccaaca agcacttact 1440agaggcagag caagattgtg tggagccttg
ccactgactc ctttatggca tgataaggat 1500ttgtatactc cagtaagagt agtcagagct
gccagagctg ctgctctgta cactaccaga 1560gatctattgt taccaccatt gtaa
1584361551DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
36atgaacgccc tatccgaaca cattttgtct gaattgagaa gattattgtc tgaaatgagt
60gatggcggat ctgttggtcc atctgtgtat gatacggccc aggccctaag attccacggt
120aacgtaacag gtagacaaga tgcatatgct tggttgatcg cccagcaaca agcagatgga
180ggttggggct ctgccgactt tccactcttt agacatgctc caacatgggc tgcacttctc
240gcattacaaa gagctgatcc acttcctggc gcagcagacg cagttcagac cgcaacaaga
300ttcttgcaaa gacaaccaga tccatacgct catgccgttc ctgaggatgc ccctattggt
360gctgaactga tcttgcctca gttttgtgga gaggctgctt ggttgttggg aggtgtggcc
420ttccctagac acccagccct attaccatta agacaggctt gtttagtcaa actgggtgca
480gtcgccatgt tgccttcagg acacccattg ctccactcct gggaggcatg gggtacttct
540ccaacaacag cctgtccaga cgatgatggt tctataggta tctcaccagc agctacagcc
600gcctggagag cccaggctgt gaccagaggc tcaactcctc aagtgggcag agctgacgca
660tacttacaaa tggcttcaag agcaacgaga tcaggcatag aaggagtctt ccctaatgtt
720tggcctataa acgtattcga accatgctgg tcactgtaca ctctccatct tgccggtctg
780ttcgcccatc cagcactggc tgaggctgta agagttatcg ttgctcaact tgaagcaaga
840ttgggagtgc atggcctcgg accagcttta cattttgctg ccgacgctga tgatactgca
900gttgccttat gcgttctgca tttggctggc agagatcctg cagttgacgc attgagacat
960tttgaaattg gtgagctctt tgttacattc ccaggagaga gaaatgctag tgtctctacg
1020aacattcacg ctcttcatgc tttgagattg ttaggtaaac cagctgccgg agcaagtgca
1080tacgtcgaag caaatagaaa tccacatggt ttgtgggaca acgaaaaatg gcacgtttca
1140tggctttatc caactgcaca cgccgttgca gctctagctc aaggcaagcc tcaatggaga
1200gatgaaagag cactagccgc tctactacaa gctcaaagag atgatggtgg ttggggagct
1260ggtagaggat ccactttcga ggaaaccgcc tacgctcttt tcgctttaca cgttatggac
1320ggatctgagg aagccacagg cagaagaaga atcgctcaag tcgtcgcaag agccttagaa
1380tggatgctag ctagacatgc cgcacatgga ttaccacaaa caccactctg gattggtaag
1440gaattgtact gtcctactag agtcgtaaga gtagctgagc tagctggcct gtggttagca
1500ttaagatggg gtagaagagt attagctgaa ggtgctggtg ctgcacctta a
1551372364DNAStevia rebaudiana 37atgaagaccg gcttcatctc tcccgccacc
gtcttccacc accgtatttc tccggcaacc 60accttccgcc accacctttc tccggcgacc
accaactcca ctggaattgt agctcttaga 120gacatcaact tccggtgtaa agcggtatcc
aaagagtact ctgatttact acaaaaagat 180gaggcttcat ttaccaagtg ggacgatgac
aaagtgaagg accatttgga cacaaataag 240aatttgtatc caaacgatga gatcaaggag
tttgttgaga gcgtgaaagc aatgtttggt 300tctatgaatg acggagaaat aaatgtgtca
gcgtatgata cggcttgggt tgcactcgtg 360caagatgttg atggaagtgg ttcccctcaa
tttccatcaa gtttggagtg gatcgcgaac 420aatcaactct cagatgggtc ttggggcgat
catttgttat tttcggctca tgataggatc 480attaacacgt tggcatgtgt tatagcgctt
acttcttgga acgtccatcc aagtaaatgt 540gaaaaaggac tgaattttct tagagaaaac
atatgtaaac tcgaagacga gaacgcggaa 600catatgccaa ttggttttga agtcacgttc
ccgtcgctaa tagatatcgc aaagaagcta 660aatattgaag ttcctgagga tactcctgcc
ttaaaagaaa tttatgcaag aagagacata 720aaactcacaa agataccaat ggaagtattg
cacaaagtgc ccacaacttt acttcatagt 780ttggaaggaa tgccagattt ggaatgggaa
aaacttctga aattgcaatg caaagatgga 840tcatttctgt tttctccatc atctactgct
tttgcactca tgcaaacaaa agatgaaaag 900tgtcttcagt atttgacaaa tattgttacc
aaattcaatg gtggagttcc gaatgtgtac 960ccggtggatc tattcgaaca tatttgggta
gttgatcgac ttcaacgact tgggattgct 1020cgttatttca aatcagagat caaagattgc
gttgaatata ttaacaagta ttggacaaag 1080aatgggattt gttgggcaag aaacacgcac
gtacaagata ttgatgatac cgcaatggga 1140tttagggttt taagagcaca tggttatgat
gttactccag atgtatttcg acaatttgag 1200aaggatggta aattcgtatg tttcgctgga
cagtcaacac aagccgtcac cggaatgttc 1260aatgtgtata gagcgtcaca aatgctcttt
cccggagaaa gaattcttga agatgcaaag 1320aaattttcat ataattattt gaaagaaaaa
caatcgacaa atgagcttct tgataaatgg 1380atcatcgcca aagacttacc tggagaggtt
ggatatgcgc tagacatacc atggtatgca 1440agcttaccgc gactcgagac aagatattac
ttagagcaat acgggggcga ggatgatgtt 1500tggattggaa aaactctata caggatggga
tatgtgagca ataatacgta ccttgaaatg 1560gccaaattgg actacaataa ctatgtggcc
gtgcttcaac tcgaatggta cactatccag 1620caatggtatg ttgatatcgg tatcgaaaag
tttgaaagtg acaatatcaa aagcgtatta 1680gtgtcgtatt acttggctgc agccagcata
ttcgagccgg aaaggtccaa ggaacgaatc 1740gcgtgggcta aaaccaccat attagttgac
aagatcacct caatttttga ttcatcacaa 1800tcctcaaaag aggacataac agcctttata
gacaaattta ggaacaaatc gtcttctaag 1860aagcattcaa taaatggaga accatggcac
gaggtgatgg ttgcactgaa aaagacccta 1920cacggcttcg ctttggatgc actcatgact
catagtcaag acatccaccc gcaactccat 1980caagcttggg agatgtggtt gacgaaattg
caagatggag tagatgtgac agcggaatta 2040atggtacaaa tgataaatat gacagctggt
cgttgggtat ccaaagaact tttaactcat 2100cctcaatacc aacgcctctc aaccgtcaca
aatagtgtgt gtcacgatat aactaagctc 2160cataacttca aggagaattc cacgacggta
gactcgaaag ttcaagaact agtgcaactt 2220gtgtttagcg acacgcccga tgatcttgat
caggatatga aacagacgtt tctaaccgtc 2280atgaaaacct tctactacaa ggcgtggtgt
gatccgaaca cgataaatga ccatatctcc 2340aaggtgttcg agattgtaat atga
2364381584DNAStreptomyces clavuligerus
38ttgcccgacg cgcatgatgc ccctccgcct cagatacgac agcggaccct tgtcgatgag
60gcgacgcaac tcctcacgga gtcggccgag gacgcctggg gtgaggtgtc cgtgtccgag
120tacgaaacgg cgcggctggt ggcccacgcc acctggctcg gcggtcacgc cacacgggtg
180gccttcctgc tggagcggca gcatgaggac ggctcgtggg gcccgcccgg cgggtaccgt
240ctcgtaccca cgctgagtgc cgtacacgcc ctgctcacct gtctggcgtc tcccgcgcag
300gaccacggag tgcctcatga ccggctcctg cgcgcagttg acgcgggcct gacggcactg
360cgtcgtcttg ggacgagcga cagcccgccg gacaccattg cggtcgaact ggtcataccc
420tcgctccttg agggcatcca gcacctcctg gacccggcgc acccgcattc ccgacccgct
480ttttcgcaac accgcggcag cctcgtctgc cccgggggcc tcgacggccg cacgctgggg
540gccttgcgct cccacgccgc agccggcaca cctgtcccgg gcaaggtgtg gcacgcctcg
600gaaaccttgg ggctatcgac cgaggcagcc tcccaccttc aacccgccca gggcatcatc
660ggtggctccg ccgccgcgac agcaacatgg ctcaccaggg tcgccccgtc gcaacagagc
720gacagcgcac ggcgctacct ggaagaactc cagcaccgat acagcggccc ggtgccctcc
780atcaccccga tcacctattt cgaacgggcc tggctgctca acaacttcgc tgccgcgggg
840gttccatgcg aggctccggc agcccttctc gacagcctgg aggcagcgct cacaccacag
900ggcgctccag cgggtgcggg actgccgccg gacgcggatg acaccgccgc cgttctgctg
960gcgcttgcca cgcacggccg cgggcgccgt cccgaggtcc tcatggacta ccgcacggac
1020ggctacttcc agtgcttcat cggcgaacgc accccttcca tcagcaccaa tgcccatgtc
1080ctggagacgc tcggtcacca cgtcgcccaa caccctcagg acagggcccg atacggctca
1140gccatggaca ccgcatcagc gtggctcctc gcggctcaga agcaggatgg cagctggctc
1200gacaagtggc acgcctcccc ctactacgcc accgtctgct gcacccaggc actggcagcc
1260cacgcttccc ctgccaccgc ccccgcacgg cagcgtgctg tgcggtgggt gctggcaaca
1320caacgctcgg acggcggctg gggcctgtgg cactccacgg tcgaggagac cgcctacgcc
1380ctgcagatcc tcgccccacc ttccggcggc gggaacatcc ccgtgcaaca ggcgctcacc
1440agggggcgcg cccgcctctg cggcgctttg ccgctgactc ccctatggca tgacaaggac
1500ctgtacacgc cggtacgtgt cgtccgcgcc gcccgtgccg ccgccctgta caccacccgt
1560gacctgcttc tgccgcccct gtga
1584391551DNABradyrhizobium japonicum 39gtgaacgcgc tgtccgaaca tatcctttcc
gaattgcgcc gcctgctgag cgaaatgagc 60gatggcggca gcgtcggtcc gtccgtctac
gacacggcgc aggcgctgcg cttccacggc 120aacgtcaccg gtcggcagga cgcatacgcg
tggctcatcg cgcagcaaca ggccgacggc 180ggatggggaa gcgcggactt cccgctgttc
cgccatgcgc ccacgtgggc ggcgttactg 240gcattgcagc gtgccgatcc tcttcccgga
gctgcggacg cagtccagac tgcaacgagg 300ttcctccagc gccagcccga tccctacgca
catgcggtgc cagaagacgc gccgatcggc 360gcggagctga tcctgccgca gttttgcggt
gaggccgcat ggttgctggg tggcgtagcg 420tttccgcgcc atcctgcgct gttgccattg
cggcaagcgt gcctggtcaa gctgggggcg 480gtggcgatgt tgccgagcgg ccatccgttg
ctacactcct gggaagcctg ggggacgtcg 540ccgaccaccg catgcccgga tgacgacggc
agcatcggca tcagtccggc ggccaccgcc 600gcgtggcgtg cccaggccgt gacacggggg
agcacgccgc aggtcgggcg cgccgatgcg 660tatctgcaga tggcatcgcg ggcgacgcgc
agcggcatcg aaggtgtctt tcccaacgtc 720tggccgatca atgtgttcga gccatgctgg
tcgctgtaca ccctgcatct ggccgggctt 780ttcgcgcatc ccgcgctcgc ggaggcggtt
cgcgtgatcg tcgcgcagct cgaggcccgt 840ctgggcgtgc acggtctggg cccggccttg
cacttcgcgg ctgatgcgga cgacaccgcc 900gttgcgttgt gcgtcctgca ccttgcaggc
cgtgacccgg cggtcgatgc gttgcgccat 960ttcgaaatcg gcgagctgtt cgtcaccttc
cccggcgaac gcaatgcctc ggtgtcgacc 1020aacattcatg ccctgcatgc gttgcgactg
ttgggaaagc ccgccgcggg cgccagcgcg 1080tacgtcgagg ccaatcgcaa cccgcacggt
ctatgggaca acgaaaaatg gcacgtttcg 1140tggctgtatc ccaccgcgca tgcggtcgct
gcgctggcgc aaggcaagcc ccagtggcga 1200gatgagcgcg cgctggcggc gctgctgcag
gcgcagcgcg acgacggtgg ctggggcgcg 1260ggtcgcgggt ccacgttcga ggaaaccgcc
tatgcgctgt ttgcgttgca cgtgatggat 1320gggagcgaag aggcgacagg gcgccggcgc
atcgcgcagg tggtggcgcg tgcgctggag 1380tggatgctcg cccgccatgc ggcgcatgga
ttgccgcaga cgccgctgtg gatcggcaag 1440gaactgtatt gccccactcg ggtcgtgcgc
gtggccgaac tcgccgggtt gtggctggcg 1500cttcgttggg ggcggcgcgt cctggccgag
ggggcaggag cggcgccatg a 1551402355DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
40atgaatttga gtttgtgtat agcatctcca ctattgacca aatctaatag accagctgct
60ttatcagcaa ttcatacagc tagtacatcc catggtggcc aaaccaaccc tacgaatctg
120ataatcgata cgaccaagga gagaatacaa aaacaattca aaaatgttga aatttcagtt
180tcttcttatg atactgcgtg ggttgccatg gttccatcac ctaattctcc aaagtctcca
240tgtttcccag aatgtttgaa ttggctgatt aacaaccagt tgaatgatgg atcttggggt
300ttagtcaatc acacgcacaa tcacaaccat ccacttttga aagattcttt atcctcaact
360ttggcttgca tcgtggccct aaagagatgg aacgtaggtg aggatcagat taacaagggg
420cttagtttca ttgaatctaa cttggcttcc gcgactgaaa aatctcaacc atctccaata
480ggattcgata tcatctttcc aggtctgtta gagtacgcca aaaatctaga tatcaactta
540ctgtctaagc aaactgattt ctcactaatg ttacacaaga gagaattaga acaaaagaga
600tgtcattcaa acgaaatgga tggttaccta gcttatatct ctgaaggtct tggtaatctt
660tacgattgga atatggtgaa aaagtaccag atgaaaaatg gctcagtttt caattcccct
720tctgcaactg cggcagcatt cattaaccat caaaatccag gatgcctgaa ctatttgaat
780tcactactag acaaattcgg caacgcagtt ccaactgtat accctcacga tttgtttatc
840agattgagta tggtggatac aattgaaaga cttggtatat cccaccactt tagagtcgag
900atcaaaaatg ttttggatga gacataccgt tgttgggtgg agagagatga acaaatcttt
960atggatgttg tgacgtgcgc gttggccttt agattgttgc gtattaacgg ttacgaagtt
1020agtccagatc cacttgccga aattacaaac gaattagctt taaaggatga atacgccgct
1080cttgaaacat atcatgcgtc acatatcctt taccaagagg acttatcatc tggaaaacaa
1140attcttaaat ctgctgattt cctgaaggaa atcatatcca ctgatagtaa tagactgtcc
1200aaactgatcc ataaagaggt tgaaaatgca cttaagttcc ctattaacac cggcttagaa
1260cgtattaaca caagacgtaa catccagctt tacaacgtag acaatactag aatcttgaaa
1320accacttacc attcttccaa catatcaaac actgattacc taagattagc tgttgaagat
1380ttctacacat gtcagtctat ctatagagaa gagctgaaag gattagagag atgggtcgtt
1440gagaataagc tagatcaatt gaaatttgcc agacaaaaga cagcttattg ttacttctca
1500gttgccgcca ctttatcaag tccagaattg tcagatgcac gtatttcttg ggctaaaaac
1560ggaattttga caactgttgt tgatgatttc tttgatattg gcgggacaat cgacgaattg
1620acaaacctga ttcaatgcgt tgaaaagtgg aatgtcgatg tcgataaaga ctgttgctca
1680gaacatgtta gaatactgtt cttggctctg aaagatgcta tctgttggat cggggatgag
1740gctttcaaat ggcaagctag agatgtgacg tctcacgtca ttcaaacctg gctagaactg
1800atgaactcta tgttgagaga agcaatttgg actagagatg catacgttcc tacattaaac
1860gagtatatgg aaaacgctta tgtctccttt gctttgggtc ctatcgttaa gcctgccata
1920tactttgtag gaccaaagct atccgaggaa atcgtcgaat catcagaata ccataacttg
1980ttcaagttaa tgtccacaca aggcagatta cttaatgata ttcattcttt caaaagagag
2040tttaaggaag gaaagttaaa tgctgttgct ctgcatcttt ctaatggcga aagtggtaaa
2100gtcgaagagg aagtagttga ggaaatgatg atgatgatca aaaacaagag aaaggagttg
2160atgaaactaa tcttcgaaga gaacggttca attgttccta gagcatgtaa ggatgcattt
2220tggaacatgt gtcatgtgct aaactttttc tacgcaaacg acgatggttt tactgggaac
2280acaatactag atacagtaaa agacatcata tacaaccctt tggtcttagt aaacgaaaac
2340gaggagcaaa gataa
2355412355DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 41atgaatctgt ccctttgtat agctagtcca
ctgttgacaa aatcttctag accaactgct 60ctttctgcaa ttcatactgc cagtactagt
catggaggtc aaacaaaccc aacaaatttg 120ataatcgata ctactaagga gagaatccaa
aagctattca aaaatgttga aatctcagta 180tcatcttatg acaccgcatg ggttgcaatg
gtgccatcac ctaattcccc aaaaagtcca 240tgttttccag agtgcttgaa ttggttaatc
aataatcagt taaacgatgg ttcttggggt 300ttagtcaacc acactcataa ccacaatcat
ccattattga aggactcttt atcatcaaca 360ttagcctgta ttgttgcatt gaaaagatgg
aatgtaggtg aagatcaaat caacaagggt 420ttatcattca tagaatccaa tctagcttct
gctaccgaca aatcacaacc atctccaatc 480gggttcgaca taatcttccc tggtttgctg
gagtatgcca aaaaccttga tatcaactta 540ctgtctaaac aaacagattt ctctttgatg
ctacacaaaa gagagttaga gcagaaaaga 600tgccattcta acgaaattga cgggtactta
gcatatatct cagaaggttt gggtaatttg 660tatgactgga acatggtcaa aaagtatcag
atgaaaaatg gatccgtatt caattctcct 720tctgcaactg ccgcagcatt cattaatcat
caaaaccctg ggtgtcttaa ctacttgaac 780tcactattag ataagtttgg aaatgcagtt
ccaacagtct atcctttgga cttgtacatc 840agattatcta tggttgacac tatagagaga
ttaggtattt ctcatcattt cagagttgag 900atcaaaaatg ttttggacga gacatacaga
tgttgggtcg aaagagatga gcaaatcttt 960atggatgtcg tgacctgcgc tctggctttt
agattgctaa ggatacacgg atacaaagta 1020tctcctgatc aactggctga gattacaaac
gaactggctt tcaaagacga atacgccgca 1080ttagaaacat accatgcatc ccaaatactt
taccaggaag acctaagttc aggaaaacaa 1140atcttgaagt ctgcagattt cctgaaaggc
attctgtcta cagatagtaa taggttgtct 1200aaattgatac acaaggaagt agaaaacgca
ctaaagtttc ctattaacac tggtttagag 1260agaatcaata ctaggagaaa cattcagctg
tacaacgtag ataatacaag gattcttaag 1320accacctacc atagttcaaa catttccaac
acctattact taagattagc tgtcgaagac 1380ttttacactt gtcaatcaat ctacagagag
gagttaaagg gcctagaaag atgggtagtt 1440caaaacaagt tggatcaact gaagtttgct
agacagaaga cagcatactg ttatttctct 1500gttgctgcta ccctttcatc cccagaattg
tctgatgcca gaataagttg ggccaaaaat 1560ggtattctta caactgtagt cgatgatttc
tttgatattg gaggtactat tgatgaactg 1620acaaatctta ttcaatgtgt tgaaaagtgg
aacgtggatg tagataagga ttgctgcagt 1680gaacatgtga gaatactttt cctggctcta
aaagatgcaa tatgttggat tggcgacgag 1740gccttcaagt ggcaagctag agatgttaca
tctcatgtca tccaaacttg gcttgaactg 1800atgaactcaa tgctaagaga agcaatctgg
acaagagatg catacgttcc aacattgaac 1860gaatacatgg aaaacgctta cgtctcattt
gccttgggtc ctattgttaa gccagccata 1920tactttgttg ggccaaagtt atccgaagag
attgttgagt cttccgaata tcataaccta 1980ttcaagttaa tgtcaacaca aggcagactt
ctgaacgata tccactcctt caaaagagaa 2040ttcaaggaag gtaagctaaa cgctgttgct
ttgcacttgt ctaatggtga atctggcaaa 2100gtggaagagg aagtcgttga ggaaatgatg
atgatgatca aaaacaagag aaaggaattg 2160atgaaattga ttttcgagga aaatggttca
atcgtaccta gagcttgtaa agatgctttt 2220tggaatatgt gccatgttct taacttcttt
tacgctaatg atgatggctt cactggaaat 2280acaatattgg atacagttaa agatatcatc
tacaacccac ttgttttggt caatgagaac 2340gaggaacaaa gataa
2355421773DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
42atggctatgc cagtgaagct aacacctgcg tcattatcct taaaagctgt gtgctgcaga
60ttctcatccg gtggccatgc tttgagattc gggagtagtc tgccatgttg gagaaggacc
120cctacccaaa gatctacttc ttcctctact actagaccag ctgccgaagt gtcatcaggt
180aagagtaaac aacatgatca ggaagctagt gaagcgacta tcagacaaca attacaactt
240gtggatgtcc tggagaatat gggaatatcc agacattttg ctgcagagat aaagtgcata
300ctagacagaa cttacagatc ttggttacaa agacacgagg aaatcatgct ggacactatg
360acatgtgcta tggcttttag aatcctaaga ttgaacggat acaacgtttc atcagatgaa
420ctataccacg ttgtagaggc atctggtctg cataattctt tgggtgggta tcttaacgat
480accagaacac tacttgaatt acacaaggct tcaacagtta gtatctctga ggatgaatct
540atcttagatt caattggctc tagatccaga acattgctta gagaacaatt ggagtctggt
600ggcgcactga gaaagccttc tttattcaaa gaggttgaac atgcactgga tggacctttt
660tacaccacac ttgatagact tcatcatagg tggaatattg aaaacttcaa cattattgag
720caacacatgt tggagactcc atacttatct aaccagcata catcaaggga tatcctagca
780ttgtcaatta gagatttttc ctcctcacaa ttcacttatc aacaagagct acagcatctg
840gagagttggg ttaaggaatg tagattagat caactacagt tcgcaagaca gaaattagcg
900tacttttacc tatcagccgc aggcaccatg ttttctcctg agctttctga tgcgagaaca
960ttatgggcca aaaacggggt gttgacaact attgttgatg atttctttga tgttgccggt
1020tctaaagagg aattggaaaa cttagtcatg ctggtcgaaa tgtgggatga acatcacaaa
1080gttgaattct attctgagca ggtcgaaatc atcttctctt ccatctacga ttctgtcaac
1140caattgggtg agaaggcctc tttggttcaa gacagatcaa ttacaaaaca ccttgttgaa
1200atatggttag acttgttaaa gtccatgatg acggaagttg aatggagact gtcaaaatac
1260gtgcctacag aaaaggaata catgattaat gcctctctta tcttcggcct aggtccaatc
1320gttttaccag ctttgtattt cgttggtcca aagatttcag aaagtatagt aaaggaccca
1380gaatatgatg aattgttcaa actaatgtca acatgtggta gattgttgaa tgacgtgcaa
1440acgttcgaaa gagaatacaa tgagggtaaa ctgaattctg tcagtctatt ggttcttcac
1500ggaggcccaa tgtctatttc agacgcaaag aggaaattac aaaagcctat tgatacgtgt
1560agaagagatc ttctttcttt ggtccttaga gaagagtctg tagtaccaag accatgtaag
1620gaactattct ggaaaatgtg taaagtgtgc tatttctttt actcaacaac tgatgggttt
1680tctagtcaag tcgaaagagc aaaagaggta gacgctgtca taaatgagcc actgaagttg
1740caaggttctc atacactggt atctgatgtt taa
1773432232DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 43atgcagaact tccatggtac aaaggaaagg
atcaaaaaga tgtttgacaa gattgaattg 60tccgtttctt cttatgatac agcctgggtt
gcaatggtcc catcccctga ttgcccagaa 120acaccttgtt ttccagaatg tactaaatgg
atcctagaaa atcagttggg tgatggtagt 180tggtcacttc ctcatggcaa tccacttcta
gttaaagatg cattatcttc cactcttgct 240tgtattctgg ctcttaaaag atggggaatc
ggtgaggaac agattaacaa aggactgaga 300ttcatagaac tcaactctgc tagtgtaacc
gataacgaac aacacaaacc aattggattt 360gacattatct ttccaggtat gattgaatac
gctatagact tagacctgaa tctaccacta 420aaaccaactg acattaactc catgttgcat
cgtagagccc ttgaattgac atcaggtgga 480ggcaaaaatc tagaaggtag aagagcttac
ttggcctacg tctctgaagg aatcggtaag 540ctgcaagatt gggaaatggc tatgaaatac
caacgtaaaa acggatctct gttcaatagt 600ccatcaacaa ctgcagctgc attcatccat
atacaagatg ctgaatgcct ccactatatt 660cgttctcttc tccagaaatt tggaaacgca
gtccctacaa tataccctct cgatatctat 720gccagacttt caatggtaga tgccctggaa
cgtcttggta ttgatagaca tttcagaaag 780gagagaaagt tcgttctgga tgaaacatac
agattttggt tgcaaggaga agaggagatt 840ttctccgata acgcaacctg tgctttggcc
ttcagaatat tgagacttaa tggttacgat 900gtctctcttg aagatcactt ctctaactct
ctgggcggtt acttaaagga ctcaggagca 960gctttagaac tgtacagagc cctccaattg
tcttacccag acgagtccct cctggaaaag 1020caaaattcta gaacttctta cttcttaaaa
caaggtttat ccaatgtctc cctctgtggt 1080gacagattgc gtaaaaacat aattggagag
gtgcatgatg ctttaaactt ttccgaccac 1140gctaacttac aaagattagc tattcgtaga
aggattaagc attacgctac tgacgataca 1200aggattctaa aaacttccta cagatgctca
acaatcggta accaagattt tctaaaactt 1260gcagtggaag atttcaatat ctgtcaatca
atacaaagag aggaattcaa gcatattgaa 1320agatgggtcg ttgaaagacg tctagacaag
ttaaagttcg ctagacaaaa agaggcctat 1380tgctatttct cagccgcagc aacattgttt
gcccctgaat tgtctgatgc tagaatgtct 1440tgggccaaaa atggtgtatt gacaactgtg
gttgatgatt tcttcgatgt cggaggctct 1500gaagaggaat tagttaactt gatagaattg
atcgagcgtt gggatgtgaa tggcagtgca 1560gatttttgta gtgaggaagt tgagattatc
tattctgcta tccactcaac tatctctgaa 1620ataggtgata agtcatttgg ctggcaaggt
agagatgtaa agtctcaagt tatcaagatc 1680tggctggact tattgaaatc aatgttaact
gaagctcaat ggtcttcaaa caagtctgtt 1740cctaccctag atgagtatat gacaaccgcc
catgtttcat tcgcacttgg tccaattgta 1800cttccagcct tatacttcgt tggcccaaag
ttgtcagaag aggttgcagg tcatcctgaa 1860ctactaaacc tctacaaagt cacatctact
tgtggcagac tactgaatga ttggagaagt 1920tttaagagag aatccgagga aggtaagctc
aacgctatta gtttatacat gatccactcc 1980ggtggtgctt ctacagaaga ggaaacaatc
gaacatttca aaggtttgat tgattctcag 2040agaaggcaac tgttacaatt ggtgttgcaa
gagaaggata gtatcatacc tagaccatgt 2100aaagatctat tttggaatat gattaagtta
ttacacactt tctacatgaa agatgatggc 2160ttcacctcaa atgagatgag gaatgtagtt
aaggcaatca ttaacgaacc aatctcactg 2220gatgaattat ga
2232442355DNAStevia rebaudiana
44atgaatcttt cactatgcat cgcgtcccct ttgttaacca aatcaaatcg acccgcggct
60ctgtcagcta ttcatacagc atcaacttca catggtggac aaactaatcc cactaatctg
120atcattgata caaccaaaga acggatccaa aaacagttta aaaatgtaga aatttctgtt
180tcttcatatg acacagcatg ggtagccatg gtcccttctc caaactcacc caaatcgcct
240tgtttccctg agtgtctcaa ttggttaatt aataatcagc ttaatgatgg ttcatggggt
300cttgttaatc acactcataa tcataatcac ccgttgctta aagattctct atcttcaaca
360ttagcatgta ttgttgcatt aaaaagatgg aatgttgggg aagatcaaat aaataaaggt
420ctaagtttta ttgagtcaaa tcttgcttca gctactgaaa aaagtcaacc atctcccatt
480ggttttgaca tcatatttcc tggtttgctt gagtatgcga aaaacttgga cataaacctc
540ctttcaaaac aaacagattt tagtttgatg ctacataaga gggaattgga gcaaaaaaga
600tgccattcaa atgagatgga tggatacttg gcgtatatct ctgaaggact cggtaattta
660tatgattgga atatggtgaa gaaatatcag atgaaaaatg gttctgtttt caactcacca
720tcagcaacag ctgctgcttt cattaatcat caaaatcctg gttgtcttaa ttatttaaat
780tcacttttgg acaagtttgg taatgcagtc ccaacagttt atcctcatga tttatttatc
840cgactttcta tggttgacac aattgaaaga ttaggaattt cacaccattt cagagtggaa
900attaaaaatg ttttagatga aacatacaga tgttgggtgg aacgagatga gcaaatattc
960atggatgttg taacatgtgc tttagccttt cggttattaa ggatcaatgg gtatgaagtt
1020tccccagatc cattggctga aattactaat gaattagctt tgaaagacga atatgcagct
1080cttgaaacat atcatgcgtc acatatatta taccaagagg atttatcttc tggaaaacaa
1140atcttgaagt cagctgattt cctcaaagag ataatatcca ctgattcaaa caggctttct
1200aaattaattc acaaagaggt ggaaaatgct cttaagttcc ctatcaatac cggtttagaa
1260cgcataaaca ctagacgaaa tatacagctt tacaatgtag acaatacaag aattctgaaa
1320actacatatc actcatcaaa tattagtaac actgattacc taaggttggc tgttgaagat
1380ttctacacct gccaatctat ttatcgtgaa gaattaaaag gtcttgaaag gtgggtggta
1440gagaataagt tggaccagct caagtttgct aggcaaaaga ccgcctactg ttatttctct
1500gttgctgcaa cactttcgtc tcccgaatta tcagatgcgc gtatttcatg ggccaaaaat
1560ggcatattaa ctacagtagt tgatgacttt tttgatatcg gtggtacaat cgatgaattg
1620accaacctga ttcaatgtgt tgaaaaatgg aatgtagatg tcgacaagga ttgttgttca
1680gagcatgttc ggattttatt tttagcatta aaagatgcaa tctgttggat tggagatgaa
1740gcttttaaat ggcaagcgcg cgatgtaact agccatgtta ttcaaacttg gttggaacta
1800atgaatagta tgttgagaga agctatatgg acaagagatg cttatgtgcc aacattaaat
1860gaatatatgg aaaacgctta cgtgtcattt gcattaggcc cgattgtcaa gccggctatt
1920tactttgtgg ggcccaaatt atcagaggag attgttgaaa gctctgaata tcataatcta
1980tttaagctaa tgagcacgca gggtcgactt ctaaacgata tccatagctt caagagggaa
2040tttaaggaag gcaaattaaa cgcggtagca ttgcatttga gtaacggaga aagtgggaaa
2100gtggaagaag aggttgtgga ggagatgatg atgatgatta aaaacaagag gaaagaatta
2160atgaaattaa tttttgaaga aaatggtagc attgttccta gagcttgtaa agatgcattt
2220tggaacatgt gtcacgtgtt gaattttttt tacgcaaacg atgacgggtt tactggaaac
2280acgattcttg atactgtgaa ggacatcatt tacaacccgt tggtgcttgt gaatgaaaat
2340gaagaacaaa ggtaa
2355452355DNAStevia rebaudiana 45atgaatcttt cactatgcat tgcgtcccct
ttgttaacca aatcaagtcg acccacggct 60ctgtcagcta ttcatacagc atcaacttca
catggtggac aaactaatcc cactaatctg 120atcattgata caaccaaaga acggatccaa
aaactgttta aaaatgtaga aatttctgtt 180tcttcatatg acacagcatg ggtagccatg
gtcccttctc caaactcacc caaatcgcct 240tgtttccctg agtgtctcaa ttggttaatt
aataatcagc ttaatgatgg ttcatggggt 300cttgttaatc acactcataa tcataatcac
ccgttgctta aagattctct atcttcaaca 360ttagcatgta ttgttgcatt aaaaagatgg
aatgttgggg aagatcaaat aaataaaggt 420ctaagtttta ttgagtcaaa tcttgcttca
gcaactgaca aaagtcaacc atctcccatt 480ggttttgata tcatatttcc tggtttgctt
gagtatgcga aaaacttgga cataaacctc 540ctttcaaaac aaacagattt tagtttgatg
ctacataaga gggaattgga gcaaaaaaga 600tgccattcaa atgagattga tggatacttg
gcgtatatct ctgaaggact cggtaattta 660tatgattgga atatggtgaa gaaatatcag
atgaaaaatg gttctgtttt caactcacca 720tcagcaacag cagctgcttt cattaatcat
caaaatcccg gttgtcttaa ttatttaaat 780tcacttttgg acaagtttgg taatgcagtc
ccaacagttt atcctcttga tttatatatc 840cggctttcta tggttgacac aattgaaaga
ttaggaattt cacaccattt cagagtggaa 900attaaaaatg ttttagatga aacatacaga
tgttgggtgg aacgagatga gcaaatattc 960atggatgttg taacatgtgc tttagccttt
cggttattaa ggatccacgg gtataaagtc 1020tccccagatc aattggctga aattactaat
gaattagctt tcaaagacga atacgcagct 1080cttgaaacat atcatgcatc acagatatta
taccaagagg atttatcttc tggaaaacaa 1140atcttgaagt cagctgattt cctcaaaggg
atattatcca ctgattcaaa caggctttct 1200aaattaattc acaaagaggt ggaaaatgct
cttaagttcc ctatcaatac cggtttagaa 1260cgcataaaca ctagacgaaa tatacagctt
tacaatgtag acaatacaag aattctgaaa 1320actacatatc actcatcaaa tattagtaac
acttattacc taaggttggc tgttgaagat 1380ttctacacct gccaatctat ttatcgtgaa
gaattaaaag gtcttgaaag gtgggtggta 1440cagaataagt tggaccagct caagtttgct
aggcaaaaga ccgcctactg ttatttctct 1500gttgctgcaa cactttcgtc tcccgaatta
tcagatgcgc gtatttcatg ggccaaaaat 1560ggcatattaa ctacagtagt tgatgacttt
tttgatatcg gtggtacaat cgatgaattg 1620accaacctga ttcaatgtgt tgaaaaatgg
aatgtagatg tcgacaagga ttgttgttca 1680gagcatgttc ggattttatt tttagcatta
aaagatgcaa tctgttggat tggagatgaa 1740gcttttaaat ggcaagcgcg cgatgtaact
agccatgtta ttcaaacttg gttggaacta 1800atgaatagta tgttgagaga agctatatgg
acaagagatg cttatgtgcc aacattaaat 1860gaatatatgg aaaacgctta cgtgtcattt
gcattaggcc cgattgtcaa gccggctatt 1920tactttgtgg ggcccaaatt atcagaggag
attgttgaaa gctctgaata tcataatcta 1980tttaagctaa tgagcacgca gggtcgactt
ctaaacgata tccatagctt caagagggaa 2040tttaaggaag gcaaattaaa cgcggtagca
ttgcatttga gtaacggaga aagtgggaaa 2100gtggaagaag aggttgtgga ggagatgatg
atgatgatta aaaacaagag gaaagaatta 2160atgaaattaa tttttgaaga aaatggtagc
attgttccta gagcttgtaa agatgcattt 2220tggaacatgt gtcacgtgtt gaattttttt
tacgcaaacg atgacgggtt tactggaaac 2280acgattcttg atactgtgaa ggacatcatt
tacaacccgt tggtgcttgt gaatgaaaat 2340gaagaacaaa ggtaa
2355461773DNAZea mays 46atggccatgc
cagtgaagct gactcctgcc tccctctcgc tgaaggcggt ctgctgccgc 60ttcagctccg
gagggcatgc gctgcgcttc ggctcgtcgc taccgtgctg gaggaggacg 120ccgacgcaac
ggagcacgtc gtcgtctacg acgcgccctg cggctgaggt tagctctggc 180aaaagcaagc
agcacgatca agaagcatcg gaggctacga taagacagca gctccagcta 240gtcgatgtgc
ttgagaacat ggggatttct cggcattttg ctgctgaaat caaatgcatc 300cttgacagga
catacagaag ttggttacag agacatgagg aaattatgct ggacacaatg 360acctgtgcga
tggcatttcg tattctaagg ttgaatggat acaatgtctc ttctgatgag 420ttgtatcatg
ttgttgaagc ttccggactc cataattcac ttggaggata tctcaatgat 480acaagaacct
tgttagaatt acacaaggcc tcgacagtta gtatctctga agatgagtct 540atcctggata
gcataggctc aaggtcacgt accttactga gggaacaact agagtctggt 600ggtgctctac
gaaaaccttc actctttaaa gaggtggaac atgctctgga cggtcccttc 660tacaccacat
tggaccgtct acaccatagg tggaacatcg aaaatttcaa tattatagag 720cagcacatgc
tagagacacc atacttgtca aatcaacata ccagtagaga tattctagcg 780ttgagtatta
gagacttcag ttcctctcag tttacttacc agcaagaact tcaacatctt 840gaaagctggg
tgaaagagtg caggttagac cagctacaat ttgcgcgaca gaagttggca 900tacttctact
tgtctgctgc tggcaccatg ttctctcctg agctgtctga tgctcgaact 960ttgtgggcca
aaaatggtgt gctcacaact attgttgacg acttctttga tgttgcggga 1020tcaaaagaag
aacttgaaaa ccttgtcatg ttggttgaga tgtgggacga gcatcacaaa 1080gttgagttct
actcagaaca agtagagatt atattttctt caatttatga ctcagttaac 1140caacttggtg
aaaaggcttc tttggtacaa gaccgcagta ttaccaaaca cctagtagaa 1200atatggttgg
atttgctaaa gtctatgatg acagaggtag agtggcgttt gagcaaatat 1260gtgccaacag
agaaggaata catgataaat gcatctttaa tatttggact aggccccatt 1320gtattgccag
cattatattt tgttgggcca aagatctcag agtctattgt taaagatcca 1380gaatatgatg
aattgttcaa actgatgagc acatgtggtc gcctcttgaa tgatgttcag 1440acttttgaga
gggagtacaa cgagggcaag ttgaatagtg tttctctcct cgttcttcat 1500ggtggcccca
tgtccatatc agacgccaaa aggaaattac agaagcccat agacacatgc 1560agaagagacc
tcctaagttt agttcttcgt gaagaaagtg ttgttcctag gccctgcaag 1620gaattatttt
ggaaaatgtg caaggtgtgc tacttcttct actcgacgac ggatgggttt 1680agctcacaag
tggagagggc taaagaagtg gatgcggtga tcaatgagcc actaaagcta 1740caaggaagtc
atacgctggt gtctgatgtg tga
1773472232DNAPopulus trichocarpa 47atgcagaact ttcatggaac taaggaaagg
atcaagaaga tgtttgataa gattgaattg 60tcagtgtctt catatgacac tgcttgggtg
gcaatggtcc catctccaga ttgtccggaa 120actccttgtt ttccagagtg cacaaaatgg
attttggaaa atcaacttgg tgatggctcc 180tggagtcttc ctcatggcaa tccattatta
gttaaggatg ctctttcatc tacattagcg 240tgcatccttg cattgaagcg atggggtatc
ggtgaagaac aaataaataa aggccttcga 300tttattgagt tgaattccgc ttcagttacg
gataacgagc aacataaacc aattggattt 360gatataatat ttcctggcat gattgaatat
gccatagatt tggatttgaa cctccctttg 420aagccgacag atataaattc catgctccac
aggagggctt tggagcttac aagtggcggt 480ggcaagaact tggagggaag aagagcctac
ttagcatatg tttcggaagg aattggaaaa 540ttacaggatt gggaaatggc catgaaatat
caaagaaaga atggatcact gttcaattca 600ccatccacca cagcagctgc ctttattcat
attcaagatg ctgagtgtct ccattatatt 660cgttcactct tacagaagtt tgggaatgca
gttccaacca tttatccttt ggatatatat 720gctcgtcttt ctatggttga tgctcttgaa
aggttgggaa tcgatcggca ttttaggaag 780gaaagaaaat ttgttttgga cgaaacatac
cgattttggt tgcaggggga ggaagagata 840ttttctgata atgccacttg tgctttggca
tttaggatat tacgtttgaa cggatatgat 900gtctctctag aagatcattt ctctaattca
ctgggaggat atttgaagga ttcgggagct 960gccttagagt tgtacagagc tctgcagcta
agttatccag atgaatcact tctggaaaaa 1020caaaattctc ggacaagcta tttcctgaaa
cagggattat ccaacgtttc actttgtgga 1080gataggcttc gtaaaaatat tatcggagag
gtgcatgatg ctctcaattt ttctgaccat 1140gcaaatttgc aacgcttagc tatcagaaga
agaattaaac attatgctac agatgatacg 1200aggattttga aaacttcgta tcgttgttcg
actattggta accaggattt tctcaaattg 1260gctgtagaag acttcaatat ctgtcaatca
atacagcgtg aagaatttaa acatatcgag 1320aggtgggttg tagagaggag actggacaag
ctaaagtttg ctaggcagaa ggaggcctac 1380tgttacttct ctgctgcagc aactctcttc
gctccagaac tatctgatgc acgcatgtca 1440tgggcaaaaa atggtgtgct tactactgtt
gttgatgact tctttgatgt tggtggttct 1500gaagaagaac tggtaaacct tattgaattg
attgagaggt gggatgtcaa tggcagtgct 1560gatttttgtt ctgaggaagt tgagatcata
tattcggcaa ttcacagcac tataagtgag 1620ataggagaca aatctttcgg atggcaagga
cgcgatgtga aaagtcaggt tatcaagatt 1680tggttggatt tgctcaaatc catgttgaca
gaagcacaat ggtcaagtaa caaatcagtg 1740ccgacccttg atgaatatat gacaactgca
catgtatcgt tcgctctagg gcctattgtt 1800cttccagctc tgtattttgt ggggcctaag
ctttcagagg aggttgctgg acatcctgaa 1860ttgcttaatc tatacaaggt tacgagcact
tgcgggcgtc tgctcaatga ctggagaagc 1920tttaagagag aatctgaaga agggaaattg
aatgccatct cattgtacat gattcacagc 1980ggtggtgctt caactgaaga agagaccatc
gaacatttta aaggattgat cgacagccag 2040agaagacaat tgcttcaatt agttttgcag
gaaaaggata gtataattcc tagaccctgc 2100aaggatttgt tttggaacat gataaaatta
ttgcacacgt tctacatgaa ggatgatgga 2160ttcacttcaa acgagatgag aaatgttgtc
aaggcaataa taaatgaacc catctctcta 2220gatgaattat aa
2232482952DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
48atggaatttg atgaaccatt ggttgacgaa gcaagatctt tagtgcagcg tactttacaa
60gattatgatg acagatacgg cttcggtact atgtcatgtg ctgcttatga tacagcctgg
120gtgtctttag ttacaaaaac agtcgatggg agaaaacaat ggcttttccc agagtgtttt
180gaatttctac tagaaacaca atctgatgcc ggaggatggg aaatcgggaa ttcagcacca
240atcgacggta tattgaatac agctgcatcc ttacttgctc taaaacgtca cgttcaaact
300gagcaaatca tccaacctca acatgaccat aaggatctag caggtagagc tgaacgtgcc
360gctgcatctt tgagagcaca attggctgca ttggatgtgt ctacaactga acacgtcggt
420tttgagataa ttgttcctgc aatgctagac ccattagaag ccgaagatcc atctctagtt
480ttcgattttc cagctaggaa acctttgatg aagattcatg atgctaagat gagtagattc
540aggccagaat acttgtatgg caaacaacca atgaccgcct tacattcatt agaggctttc
600ataggcaaaa tcgacttcga taaggtaaga caccaccgta cccatgggtc tatgatgggt
660tctccttcat ctaccgcagc ctacttaatg cacgcttcac aatgggatgg tgactcagag
720gcttacctta gacacgtgat taaacacgca gcagggcagg gaactggtgc tgtaccatct
780gctttcccat caacacattt tgagtcatct tggattctta ccacattgtt tagagctgga
840ttttcagctt ctcatcttgc ctgtgatgag ttgaacaagt tggtcgagat acttgagggc
900tcattcgaga aggaaggtgg ggcaatcggt tacgctccag ggtttcaagc agatgttgat
960gatactgcta aaacaataag tacattagca gtccttggaa gagatgctac accaagacaa
1020atgatcaagg tatttgaagc taatacacat tttagaacat accctggtga aagagatcct
1080tctttgacag ctaattgtaa tgctctatca gccttactac accaaccaga tgcagcaatg
1140tatggatctc aaattcaaaa gattaccaaa tttgtctgtg actattggtg gaagtctgat
1200ggtaagatta aagataagtg gaacacttgc tacttgtacc catctgtctt attagttgag
1260gttttggttg atcttgttag tttattggag cagggtaaat tgcctgatgt tttggatcaa
1320gagcttcaat acagagtcgc catcacattg ttccaagcat gtttaaggcc attactagac
1380caagatgccg aaggatcatg gaacaagtct atcgaagcca cagcctacgg catccttatc
1440ctaactgaag ctaggagagt ttgtttcttc gacagattgt ctgagccatt gaatgaggca
1500atccgtagag gtatcgcttt cgccgactct atgtctggaa ctgaagctca gttgaactac
1560atttggatcg aaaaggttag ttacgcacct gcattattga ctaaatccta tttgttagca
1620gcaagatggg ctgctaagtc tcctttaggc gcttccgtag gctcttcttt gtggactcca
1680ccaagagaag gattggataa gcatgtcaga ttattccatc aagctgagtt attcagatcc
1740cttccagaat gggaattaag agcctccatg attgaagcag ctttgttcac accacttcta
1800agagcacata gactagacgt tttccctaga caagatgtag gtgaagacaa atatcttgat
1860gtagttccat tcttttggac tgccgctaac aacagagata gaacttacgc ttccactcta
1920ttcctttacg atatgtgttt tatcgcaatg ttaaacttcc agttagacga attcatggag
1980gccacagccg gtatcttatt cagagatcat atggatgatt tgaggcaatt gattcatgat
2040cttttggcag agaaaacttc cccaaagagt tctggtagaa gtagtcaggg cacaaaagat
2100gctgactcag gtatagagga agacgtgtca atgtccgatt cagcttcaga ttcccaggat
2160agaagtccag aatacgactt ggttttcagt gcattgagta cctttacaaa acatgtcttg
2220caacacccat ctatacaaag tgcctctgta tgggatagaa aactacttgc tagagagatg
2280aaggcttact tacttgctca tatccaacaa gcagaagatt caactccatt gtctgaattg
2340aaagatgtgc ctcaaaagac tgatgtaaca agagtttcta catctactac taccttcttt
2400aactgggtta gaacaacttc cgcagaccat atatcctgcc catactcctt ccactttgta
2460gcatgccatc taggcgcagc attgtcacct aaagggtcta acggtgattg ctatccttca
2520gctggtgaga agttcttggc agctgcagtc tgcagacatt tggccaccat gtgtagaatg
2580tacaacgatc ttggatcagc tgaacgtgat tctgatgaag gtaatttgaa ctccttggac
2640ttccctgaat tcgccgattc cgcaggaaac ggagggatag aaattcagaa ggccgctcta
2700ttaaggttag ctgagtttga gagagattca tacttagagg ccttccgtcg tttacaagat
2760gaatccaata gagttcacgg tccagccggt ggtgatgaag ccagattgtc cagaaggaga
2820atggcaatcc ttgaattctt cgcccagcag gtagatttgt acggtcaagt atacgtcatt
2880agggatattt ccgctcgtat tcctaaaaac gaggttgaga aaaagagaaa attggatgat
2940gctttcaatt ga
2952492646DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 49atggcttcta gtacacttat ccaaaacaga
tcatgtggcg tcacatcatc tatgtcaagt 60tttcaaatct tcagaggtca accactaaga
tttcctggca ctagaacccc agctgcagtt 120caatgcttga aaaagaggag atgccttagg
ccaaccgaat ccgtactaga atcatctcct 180ggctctggtt catatagaat agtaactggc
ccttctggaa ttaaccctag ttctaacggg 240cacttgcaag agggttcctt gactcacagg
ttaccaatac caatggaaaa atctatcgat 300aacttccaat ctactctata tgtgtcagat
atttggtctg aaacactaca gagaactgaa 360tgtttgctac aagtaactga aaacgtccag
atgaatgagt ggattgagga aattagaatg 420tactttagaa atatgacttt aggtgaaatt
tccatgtccc cttacgacac tgcttgggtg 480gctagagttc cagcgttgga cggttctcat
gggcctcaat tccacagatc tttgcaatgg 540attatcgaca accaattacc agatggggac
tggggcgaac cttctctttt cttgggttac 600gatagagttt gtaatacttt agcctgtgtg
attgcgttga aaacatgggg tgttggggca 660caaaacgttg aaagaggaat tcagttccta
caatctaaca tatacaagat ggaggaagat 720gacgctaatc atatgccaat aggattcgaa
atcgtattcc ctgctatgat ggaagatgcc 780aaagcattag gtttggattt gccatacgat
gctactattt tgcaacagat ttcagccgaa 840agagagaaaa agatgaaaaa gatcccaatg
gcaatggtgt acaaataccc aaccacttta 900cttcactcct tagaaggctt gcatagagaa
gttgattgga ataagttgtt acaattacaa 960tctgaaaatg gtagttttct ttattcacct
gcttcaaccg catgcgcctt aatgtacact 1020aaggacgtta aatgttttga ttacttaaac
cagttgttga tcaagttcga ccacgcatgc 1080ccaaatgtat atccagtcga tctattcgaa
agattatgga tggttgacag attgcagaga 1140ttagggatct ccagatactt tgaaagagag
attagagatt gtttacaata cgtctacaga 1200tattggaaag attgtggaat cggatgggct
tctaactctt ccgtacaaga tgttgatgat 1260acagccatgg cgtttagact tttaaggact
catggtttcg acgtaaagga agattgcttt 1320agacagtttt tcaaggacgg agaattcttc
tgcttcgcag gccaatcatc tcaagcagtt 1380acaggcatgt ttaatctttc aagagccagt
caaacattgt ttccaggaga atctttattg 1440aaaaaggcta gaaccttctc tagaaacttc
ttgagaacaa agcatgagaa caacgaatgt 1500ttcgataaat ggatcattac taaagatttg
gctggtgaag tcgagtataa cttgaccttc 1560ccatggtatg cctctttgcc tagattagaa
cataggacat acttagatca atatggaatc 1620gatgatatct ggataggcaa atctttatac
aaaatgcctg ctgttaccaa cgaagttttc 1680ctaaagttgg caaaggcaga ctttaacatg
tgtcaagctc tacacaaaaa ggaattggaa 1740caagtgataa agtggaacgc gtcctgtcaa
ttcagagatc ttgaattcgc cagacaaaaa 1800tcagtagaat gctattttgc tggtgcagcc
acaatgttcg aaccagaaat ggttcaagct 1860agattagtct gggcaagatg ttgtgtattg
acaactgtct tagacgatta ctttgaccac 1920gggacacctg ttgaggaact tagagtgttt
gttcaagctg tcagaacatg gaatccagag 1980ttgatcaacg gtttgccaga gcaagctaaa
atcttgttta tgggcttata caaaacagtt 2040aacacaattg cagaggaagc attcatggca
cagaaaagag acgtccatca tcatttgaaa 2100cactattggg acaagttgat aacaagtgcc
ctaaaggagg ccgaatgggc agagtcaggt 2160tacgtcccaa catttgatga atacatggaa
gtagctgaaa tttctgttgc tctagaacca 2220attgtctgta gtaccttgtt ctttgcgggt
catagactag atgaggatgt tctagatagt 2280tacgattacc atctagttat gcatttggta
aacagagtcg gtagaatctt gaatgatata 2340caaggcatga agagggaggc ttcacaaggt
aagatctcat cagttcaaat ctacatggag 2400gaacatccat ctgttccatc tgaggccatg
gcgatcgctc atcttcaaga gttagttgat 2460aattcaatgc agcaattgac atacgaagtt
cttaggttca ctgcggttcc aaaaagttgt 2520aagagaatcc acttgaatat ggctaaaatc
atgcatgcct tctacaagga tactgatgga 2580ttctcatccc ttactgcaat gacaggattc
gtcaaaaagg ttcttttcga acctgtgcct 2640gagtaa
2646502952DNAPhomopsis amygdali
50atggagttcg atgaaccact tgtggacgag gcgaggtcct tggtccaaag aaccctgcaa
60gattatgacg accgctatgg ctttggcact atgagctgtg cggcctatga cacagcatgg
120gtatcgctgg tgactaaaac agtcgatggg cgtaaacaat ggttgttccc tgagtgcttc
180gaatttctcc tagaaacgca gtccgatgct ggcggctggg aaatcggcaa cagcgcaccc
240atcgatggga tccttaacac tgctgcttca ctgctggcat tgaagcgcca cgtccaaaca
300gagcagatta ttcagccgca acacgaccat aaagacctgg ccgggcgtgc ggaaagagcg
360gcggcgtctt tgcgagcaca gttggcggct ctggatgtgt cgacaacgga gcatgtgggc
420ttcgaaatca tcgtcccggc catgctcgac cctctcgagg ccgaagaccc gtctttggtg
480ttcgactttc cagcacgcaa accactgatg aagatccacg acgctaagat gtcgcgattc
540cgaccagagt acctctacgg taaacagccg atgacggcat tgcattcgct cgaggccttt
600atcgggaaaa tagacttcga caaagtacgg catcacagga cacacggttc gatgatgggg
660tcgccctcgt cgacggctgc atacctgatg catgcttctc agtgggacgg cgactctgag
720gcctatctac gccatgtcat caagcacgca gctggccagg gcaccggagc tgttccgagt
780gcatttcctt cgacgcattt cgagtcttct tggattttga caacattgtt tcgagctggg
840ttctcagcct ctcatctagc atgcgacgaa ttaaacaagc tggtagagat cctcgaaggc
900tcatttgaga aagaaggggg agccatcggt tatgctcctg ggtttcaagc agatgtggat
960gataccgcaa agaccatctc cactttggct gtgcttggga gagatgccac tccccggcaa
1020atgatcaagg tttttgaagc caatacacac tttcggactt accctggtga aagagatcca
1080agcttgactg ccaattgcaa cgcgctctcg gctcttcttc accagccaga cgcagcaatg
1140tacggcagcc agatccagaa gatcacaaag tttgtttgtg actactggtg gaaaagtgac
1200ggcaaaatca aggacaagtg gaatacctgc tacttgtatc catcggtcct cctcgtcgag
1260gtgttagtag accttgtgtc cctgttggag caaggaaagc tacccgacgt gctggatcag
1320gagctgcaat acagggtcgc cattacgtta ttccaggcct gcttgcgacc gctacttgat
1380caagatgctg aaggttcatg gaacaaatcc attgaagcca cagcctacgg cattctaatc
1440cttacggagg cgcggcgagt atgctttttt gaccgtctga gtgagcctct gaatgaggct
1500attcgacgcg ggattgcgtt tgcagattcg atgagcggta ctgaagctca gctgaattat
1560atatggatcg agaaagtgag ctacgcacct gctcttctga ccaaatcata cctcctcgca
1620gctcggtggg cggcaaagtc cccgcttggc gcttccgttg gatccagcct ttggacgcct
1680ccaagagaag gcttggataa gcacgtccgt ctattccacc aggcagagct cttcaggtcg
1740ttgccggagt gggagctgcg cgcgtccatg atcgaggcag ccctgttcac tcctttgctg
1800cgtgcgcata ggctggatgt atttccacgc caagacgtcg gcgaggacaa gtacctggac
1860gttgtgccgt tcttctggac ggccgccaat aaccgcgatc gcacgtacgc atccactctg
1920tttctgtatg acatgtgctt tatcgccatg cttaacttcc agctggatga gttcatggag
1980gctacagcgg gaatcctctt ccgggaccat atggatgatt tgcgccaact catccacgac
2040ctgcttgccg aaaagacgag ccccaagtca tcgggcagaa gtagccaagg aaccaaagac
2100gcggactcgg gcatcgaaga agacgtttct atgagcgact cagcgtcaga ctcccaggac
2160cgcagccctg aatacgacct ggtcttctct gcgctctcta ccttcaccaa acatgtcctg
2220cagcaccctt caatccagtc agccagtgtc tgggatagga aactactcgc tcgcgagatg
2280aaagcatacc tcctagctca tattcaacag gctgaggaca gcacgccctt gagtgagctc
2340aaggacgtcc ctcaaaaaac tgacgtgaca cgcgtctcaa cgtccacaac gactttcttc
2400aactgggtac gcacaacatc cgcagaccac atatcctgcc catattcatt ccatttcgtg
2460gcgtgtcacc tcggcgccgc gctgagcccc aagggcagca acggcgactg ttacccgtca
2520gccggtgaaa agttcctcgc ggccgccgta tgccgccatt tggccacgat gtgccgcatg
2580tacaatgact tgggatcggc ggagcgcgac agtgacgagg gaaatttgaa ttcactcgac
2640tttcccgagt tcgccgactc agcggggaat ggtgggattg agatccagaa agctgccttg
2700ctcaggctgg ccgagttcga acgcgactcg tatctcgagg ctttccggcg acttcaggat
2760gaaagcaacc gcgttcacgg accggctggt ggggatgaag ccagactcag caggcggcgc
2820atggccatcc ttgagttctt tgcccagcag gtggacttgt atggccaggt ctacgttatt
2880cgcgatatct cggccaggat tccaaagaac gaggttgaga agaaaaggaa actagatgat
2940gctttcaatt ag
2952512646DNAPhyscomitrella patens 51atggcttcca gcaccttgat acagaatcgc
tcttgtggcg ttacgtcaag catgtcttcc 60tttcagattt ttcgagggca acctctacgt
tttccaggca ctagaactcc tgctgcagtt 120caatgcctaa agaagcgtcg atgtttgcga
cctactgaat cagtcctcga gagctctcct 180ggtagcggat cttacaggat tgtaactgga
ccctccggca tcaatccttc ttcaaacggc 240cacttgcaag aggggtccct tactcacaga
cttccgatac ccatggaaaa atccattgat 300aacttccagt ctactttgta cgtatcagac
atatggtcag aaaccttgca aagaacggaa 360tgtttgttgc aggtgactga gaatgtacag
atgaacgagt ggattgagga aatcagaatg 420tacttccgaa atatgacact gggggaaata
tccatgtctc catacgacac agcttgggta 480gcgcgagtgc cagcgctgga tggctcacat
ggccctcagt tccatcggtc tttgcagtgg 540attattgata atcagctccc ggatggcgat
tggggtgaac cgtctctttt ccttggatac 600gatcgcgttt gcaacactct cgcctgtgta
attgccctga aaacttgggg tgttggggct 660cagaacgtag agcgtggaat ccagtttctg
caatctaaca tctacaaaat ggaggaagat 720gacgccaatc atatgccgat tggatttgag
attgtcttcc cagcgatgat ggaagatgcc 780aaggcactgg gactggattt accatacgat
gccactatct tgcaacaaat ctcggctgaa 840agagagaaga aaatgaaaaa gattcctatg
gcgatggtgt acaagtaccc cactactttg 900ctgcattctc tggaaggcct gcaccgggaa
gtggactgga acaagctcct ccagctacag 960tccgagaatg gctcctttct gtattcaccc
gcatccactg catgcgcact tatgtacaca 1020aaagatgtga agtgcttcga ctacttgaac
cagctcctca tcaagttcga ccacgcttgt 1080ccaaacgtgt accccgttga tctcttcgag
cgtttgtgga tggtagaccg cctacaaagg 1140ctgggaatat cccgctactt cgagcgagaa
atcagagact gtctacaata tgtataccga 1200tactggaagg attgtggtat tggctgggca
agcaattcgt ccgtgcagga cgtggacgac 1260acggccatgg ccttccgcct tctccgcaca
cacggattcg acgtcaagga ggactgcttc 1320agacagtttt tcaaagatgg tgagttcttc
tgcttcgccg gccagtccag ccaagccgtc 1380acgggaatgt tcaacctcag cagagcatcg
caaacgctct tcccagggga atcactccta 1440aaaaaggcca gaaccttttc cagaaacttt
ttgagaacca agcatgaaaa caatgaatgc 1500ttcgacaagt ggataatcac gaaggatcta
gcgggcgagg tggaatacaa tctcacattc 1560ccctggtatg ctagccttcc tcgtcttgag
catcgcacct acttggacca atatgggatt 1620gatgatatct ggattggcaa gtcgctctac
aaaatgccgg ccgtcaccaa cgaagtgttt 1680ctcaaattgg ccaaagccga cttcaacatg
tgccaagctc ttcacaagaa ggaactcgag 1740caggtcatca aatggaatgc cagctgccaa
tttagagacc tcgagtttgc tagacagaaa 1800tccgtggagt gctacttcgc aggcgctgca
accatgtttg agcccgaaat ggtgcaggcg 1860aggctcgttt gggcacgctg ttgcgtgctc
accaccgttc tagacgatta cttcgatcac 1920ggtacacctg tggaagagct tcgggttttt
gtgcaggccg taaggacttg gaatcccgag 1980ctcatcaacg gactacctga gcaagccaag
attctcttta tgggactgta caagactgtg 2040aacactatcg ccgaggaggc attcatggca
cagaaacgag acgtacatca tcatctcaag 2100cattactggg acaaattgat cacttcagct
ttgaaagaag ccgaatgggc agagtccggc 2160tacgtcccca ccttcgacga gtatatggaa
gtcgctgaaa tctccgtcgc actagagccc 2220attgtatgta gcactctctt cttcgccggc
cataggctcg atgaggatgt gcttgacagt 2280tatgactacc atcttgtcat gcatctcgtc
aaccgcgtag gtcgcatcct caacgacatc 2340caaggaatga agagggaagc cagccaaggg
aagatatcga gcgtgcagat ctacatggag 2400gagcatccaa gtgtgccttc agaggccatg
gccatcgctc atctgcagga attggtcgac 2460aactccatgc aacagctgac atacgaagtg
ctgcgcttca ctgcagtccc gaagtcctgt 2520aagagaatcc atttaaacat ggcgaagatc
atgcacgctt tctacaagga cactgatggg 2580ttttcgtcac tgacagccat gacagggttt
gtgaagaagg tgctcttcga gccagtacct 2640gaatag
2646521542DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
52atggatgctg tgacgggttt gttaactgtc ccagcaaccg ctataactat tggtggaact
60gctgtagcat tggcggtagc gctaatcttt tggtacctga aatcctacac atcagctaga
120agatcccaat caaatcatct tccaagagtg cctgaagtcc caggtgttcc attgttagga
180aatctgttac aattgaagga gaaaaagcca tacatgactt ttacgagatg ggcagcgaca
240tatggaccta tctatagtat caaaactggg gctacaagta tggttgtggt atcatctaat
300gagatagcca aggaggcatt ggtgaccaga ttccaatcca tatctacaag gaacttatct
360aaagccctga aagtacttac agcagataag acaatggtcg caatgtcaga ttatgatgat
420tatcataaaa cagttaagag acacatactg accgccgtct tgggtcctaa tgcacagaaa
480aagcatagaa ttcacagaga tatcatgatg gataacatat ctactcaact tcatgaattc
540gtgaaaaaca acccagaaca ggaagaggta gaccttagaa aaatctttca atctgagtta
600ttcggcttag ctatgagaca agccttagga aaggatgttg aaagtttgta cgttgaagac
660ctgaaaatca ctatgaatag agacgaaatc tttcaagtcc ttgttgttga tccaatgatg
720ggagcaatcg atgttgattg gagagacttc tttccatacc taaagtgggt cccaaacaaa
780aagttcgaaa atactattca acaaatgtac atcagaagag aagctgttat gaaatcttta
840atcaaagagc acaaaaagag aatagcgtca ggcgaaaagc taaatagtta tatcgattac
900cttttatctg aagctcaaac tttaaccgat cagcaactat tgatgtcctt gtgggaacca
960atcattgaat cttcagatac aacaatggtc acaacagaat gggcaatgta cgaattagct
1020aaaaacccta aattgcaaga taggttgtac agagacatta agtccgtctg tggatctgaa
1080aagataaccg aagagcatct atcacagctg ccttacatta cagctatttt ccacgaaaca
1140ctgagaagac actcaccagt tcctatcatt cctctaagac atgtacatga agataccgtt
1200ctaggcggct accatgttcc tgctggcaca gaacttgccg ttaacatcta cggttgcaac
1260atggacaaaa acgtttggga aaatccagag gaatggaacc cagaaagatt catgaaagag
1320aatgagacaa ttgattttca aaagacgatg gccttcggtg gtggtaagag agtttgtgct
1380ggttccttgc aagccctttt aactgcatct attgggattg ggagaatggt tcaagagttc
1440gaatggaaac tgaaggatat gactcaagag gaagtgaaca cgataggcct aactacacaa
1500atgttaagac cattgagagc tattatcaaa cctaggatct aa
1542531530DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 53atggcatttt tctctatgat ttcaattttg
ttgggatttg ttatttcttc tttcatcttc 60atctttttct tcaaaaagtt acttagtttt
agtaggaaaa acatgtcaga agtttctact 120ttgccaagtg ttccagtagt gcctggtttt
ccagttattg ggaatttgtt gcaactaaag 180gagaaaaagc ctcataaaac tttcactaga
tggtcagaga tatatggacc tatctactct 240ataaagatgg gttcttcatc tcttattgta
ttgaacagta cagaaactgc taaggaagca 300atggtcacta gattttcatc aatatctacc
agaaaattgt caaacgccct aacagttcta 360acctgcgata agtctatggt cgccacttct
gattatgatg acttccacaa attagttaag 420agatgtttgc taaatggact tcttggtgct
aatgctcaaa agagaaaaag acactacaga 480gatgctttga ttgaaaatgt gagttccaag
ctacatgcac acgctagaga tcatccacaa 540gagccagtta actttagagc aattttcgaa
cacgaattgt ttggtgtagc attaaagcaa 600gccttcggta aagacgtaga atccatatac
gtcaaggagt taggcgtaac attatcaaaa 660gatgaaatct ttaaggtgct tgtacatgat
atgatggagg gtgcaattga tgtagattgg 720agagatttct tcccatattt gaaatggatc
cctaataagt cttttgaagc taggatacaa 780caaaagcaca agagaagact agctgttatg
aacgcactta tacaggacag attgaagcaa 840aatgggtctg aatcagatga tgattgttac
cttaacttct taatgtctga ggctaaaaca 900ttgactaagg aacagatcgc aatccttgtc
tgggaaacaa tcattgaaac agcagatact 960accttagtca caactgaatg ggccatatac
gagctagcca aacatccatc tgtgcaagat 1020aggttgtgta aggagatcca gaacgtgtgt
ggtggagaga aattcaagga agagcagttg 1080tcacaagttc cttaccttaa cggcgttttc
catgaaacct tgagaaaata ctcacctgca 1140ccattagttc ctattagata cgcccacgaa
gatacacaaa tcggtggcta ccatgttcca 1200gctgggtccg aaattgctat aaacatctac
gggtgcaaca tggacaaaaa gagatgggaa 1260agaccagaag attggtggcc agaaagattc
ttagatgatg gcaaatatga aacatctgat 1320ttgcataaaa caatggcttt cggagctggc
aaaagagtgt gtgccggtgc tctacaagcc 1380tccctaatgg ctggtatcgc tattggtaga
ttggtccaag agttcgaatg gaaacttaga 1440gatggtgaag aggaaaatgt cgatacttat
gggttaacat ctcaaaagtt atacccacta 1500atggcaatca tcaatcctag aagatcctaa
1530541578DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
54atgagtaagt ctaatagtat gaattctaca tcacacgaaa ccctttttca acaattggtc
60ttgggtttgg accgtatgcc attgatggat gttcactggt tgatctacgt tgctttcggc
120gcatggttat gttcttatgt gatacatgtt ttatcatctt cctctacagt aaaagtgcca
180gttgttggat acaggtctgt attcgaacct acatggttgc ttagacttag attcgtctgg
240gaaggtggct ctatcatagg tcaagggtac aataagttta aagactctat tttccaagtt
300aggaaattgg gaactgatat tgtcattata ccacctaact atattgatga agtgagaaaa
360ttgtcacagg acaagactag atcagttgaa cctttcatta atgattttgc aggtcaatac
420acaagaggca tggttttctt gcaatctgac ttacaaaacc gtgttataca acaaagacta
480actccaaaat tggtttcctt gaccaaggtc atgaaggaag agttggatta tgctttaaca
540aaagagatgc ctgatatgaa aaatgacgaa tgggtagaag tagatatcag tagtataatg
600gtgagattga tttccaggat ctccgccaga gtctttctag ggcctgaaca ctgtcgtaac
660caggaatggt tgactactac agcagaatat tcagaatcac ttttcattac agggtttatc
720ttaagagttg tacctcatat cttaagacca ttcatcgccc ctctattacc ttcatacagg
780actctactta gaaacgtttc aagtggtaga agagtcatcg gtgacatcat aagatctcag
840caaggggatg gtaacgaaga tatactttcc tggatgagag atgctgccac aggagaggaa
900aagcaaatcg ataacattgc tcagagaatg ttaattcttt ctttagcatc aatccacact
960actgcgatga ccatgacaca tgccatgtac gatctatgtg cttgccctga gtacattgaa
1020ccattaagag atgaagttaa atctgttgtt ggggcttctg gctgggacaa gacagcgtta
1080aacagatttc ataagttgga ctccttccta aaagagtcac aaagattcaa cccagtattc
1140ttattgacat tcaatagaat ctaccatcaa tctatgacct tatcagatgg cactaacatt
1200ccatctggaa cacgtattgc tgttccatca cacgcaatgt tgcaagattc tgcacatgtc
1260ccaggtccaa ccccacctac tgaatttgat ggattcagat atagtaagat acgttctgat
1320agtaactacg cacaaaagta cctattctcc atgaccgatt cttcaaacat ggctttcgga
1380tacggcaagt atgcttgtcc aggtagattt tacgcgtcta atgagatgaa actaacatta
1440gccattttgt tgctacaatt tgagttcaaa ctaccagatg gtaaaggtcg tcctagaaat
1500atcactatcg attctgatat gattccagac ccaagagcta gactttgcgt cagaaaaaga
1560tcacttagag atgaatga
1578551500DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 55atggaagatc ctactgtctt atatgcttgt
cttgccattg cagttgcaac tttcgttgtt 60agatggtaca gagatccatt gagatccatc
ccaacagttg gtggttccga tttgcctatt 120ctatcttaca tcggcgcact aagatggaca
agacgtggca gagagatact tcaagaggga 180tatgatggct acagaggatc tacattcaaa
atcgcgatgt tagaccgttg gatcgtgatc 240gcaaatggtc ctaaactagc tgatgaagtc
agacgtagac cagatgaaga gttaaacttt 300atggacggat taggagcatt cgtccaaact
aagtacacct taggtgaagc tattcataac 360gatccatacc atgtcgatat cataagagaa
aaactaacaa gaggccttcc agccgtgctt 420cctgatgtca ttgaagagtt gacacttgcg
gttagacagt acattccaac agaaggtgat 480gaatgggtgt ccgtaaactg ttcaaaggcc
gcaagagata ttgttgctag agcttctaat 540agagtctttg taggtttgcc tgcttgcaga
aaccaaggtt acttagattt ggcaatagac 600tttacattgt ctgttgtcaa ggatagagcc
atcatcaata tgtttccaga attgttgaag 660ccaatagttg gcagagttgt aggtaacgcc
accagaaatg ttcgtagagc tgttcctttt 720gttgctccat tggtggagga aagacgtaga
cttatggaag agtacggtga agactggtct 780gaaaaaccta atgatatgtt acagtggata
atggatgaag ctgcatccag agatagttca 840gtgaaggcaa tcgcagagag attgttaatg
gtgaacttcg cggctattca tacctcatca 900aacactatca ctcatgcttt gtaccacctt
gccgaaatgc ctgaaacttt gcaaccactt 960agagaagaga tcgaaccatt agtcaaagag
gagggctgga ccaaggctgc tatgggaaaa 1020atgtggtggt tagattcatt tctaagagaa
tctcaaagat acaatggcat taacatcgta 1080tctttaacta gaatggctga caaagatatt
acattgagtg atggcacatt tttgccaaaa 1140ggtactctag tggccgttcc agcgtattct
actcatagag atgatgctgt ctacgctgat 1200gccttagtat tcgatccttt cagattctca
cgtatgagag cgagagaagg tgaaggtaca 1260aagcaccagt tcgttaatac ttcagtcgag
tacgttccat ttggtcacgg aaagcatgct 1320tgtccaggaa gattcttcgc cgcaaacgaa
ttgaaagcaa tgttggctta cattgttcta 1380aactatgatg taaagttgcc tggtgacggt
aaacgtccat tgaacatgta ttggggtcca 1440acagttttgc ctgcaccagc aggccaagta
ttgttcagaa agagacaagt tagtctataa 1500561542DNAStevia rebaudiana
56atggatgccg tcaccggttt gctgacagtt ccggcaaccg caataaccat cggcggtacg
60gccgtcgcac tcgccgtcgc tctgatattc tggtacctca aaagctacac atctgcacgc
120aggagccaat caaaccatct ccctcgggtt cccgaggtac ctggtgtgcc attattgggg
180aatttattgc agttgaagga gaagaaacct tacatgactt ttacaagatg ggcggcaact
240tatggtccga tttattcgat taaaaccgga gcaacttcta tggtggtcgt cagttcaaat
300gaaattgcaa aggaggcatt ggttaccaga tttcaatcta tctcaaccag aaacctatca
360aaggcattaa aggttctcac agcagataaa accatggtgg cgatgagtga ttatgatgat
420tatcataaga ctgtcaaacg ccatatactg accgctgttt tgggaccaaa tgctcagaag
480aaacaccgca tccataggga catcatgatg gataatatat caacccaact tcatgaattt
540gttaaaaata atcctgaaca agaggaagtg gatctaagga aaatattcca atccgaactt
600tttggattag ctatgagaca agcattggga aaggatgtgg agagcttata tgttgaggat
660cttaaaatca ccatgaaccg agacgagata tttcaggtat tggttgttga cccgatgatg
720ggtgcaattg acgtcgactg gagagatttc ttcccgtatc taaagtgggt cccgaataaa
780aagtttgaaa acacgatcca acaaatgtat atccggagag aagctgtgat gaagtctctt
840attaaagaac ataaaaaacg tattgcatcc ggagagaaat taaacagcta cattgattac
900ttgctatcgg aagcacaaac gttaaccgat caacaactac ttatgtctct atgggaacct
960attattgaat catcagacac cactatggtt acaactgaat gggctatgta tgaacttgca
1020aaaaacccca aacttcagga tcgtttgtat cgggatatca aaagtgtttg cgggtcagag
1080aagattacag aagaacactt gtctcaactg ccatacataa ctgccatttt tcatgaaacc
1140ttgagaaggc atagtccagt tcctataatt ccattaagac acgtgcatga agacacagtg
1200ttaggagggt accatgtgcc agctggaacc gagctagcgg taaacattta tggatgtaac
1260atggataaga atgtgtggga gaatcctgaa gaatggaatc cagagagatt catgaaggaa
1320aatgaaacga tagatttcca gaaaacaatg gcgtttggag gtggaaagcg cgtatgtgct
1380ggttcgcttc aagcattgtt gactgcttcc attggaattg gaagaatggt gcaagagttt
1440gagtggaaac tgaaagayat gacccaagaa gaagttaata cgattgggct tacgacccag
1500atgcttcgtc cactgcgggc cataataaag cccaggatat ga
1542571530DNAArabidopsis thaliana 57atggccttct tctccatgat ctccattctc
cttggctttg ttatctcctc cttcatcttc 60atcttcttct tcaagaaact tctctccttc
tccagaaaga acatgtctga agtctccact 120ctcccctctg ttccagtggt accagggttt
cctgttattg ggaacttgct gcaactaaaa 180gagaagaaac ctcacaagac tttcactaga
tggtcagaga tttatggtcc tatttactct 240ataaagatgg gttcttcttc tcttattgtc
ctcaattcta ctgagactgc caaagaggcc 300atggtgacgc ggttttcgtc tatctcaacg
aggaagttgt caaatgcgtt gacagtcctt 360acttgtgaca aatctatggt tgctactagt
gattatgatg atttccacaa gttggtgaaa 420cggtgtctct tgaacggtct tttgggtgct
aatgcacaga aacgaaaaag acattacaga 480gatgcactca ttgaaaatgt gtcttccaag
ttgcatgccc atgctaggga ccatccacaa 540gaacctgtaa acttcagagc tatatttgag
catgagcttt tcggtgtagc attgaagcaa 600gcttttggga aagatgtgga atccatttat
gttaaagaac tcggtgtgac tttgtcgaaa 660gacgagatct tcaaggtttt agtacatgac
atgatggaag gtgcaattga tgttgattgg 720agagacttct tcccatactt gaaatggatt
ccaaataaaa gttttgaagc aagaatccag 780caaaagcata aacgtagact cgcggtgatg
aatgctctga ttcaagatcg actgaagcag 840aatggttcag aatcggatga tgattgctat
ctcaacttct tgatgtcgga agcgaaaaca 900ctaaccaagg agcaaattgc tatcttggtt
tgggagacga ttatcgagac agctgacact 960actttggtta caactgaatg ggccatctat
gagctcgcta agcatccaag tgtccaagat 1020cgtctgtgta aagaaatcca aaatgtctgc
ggaggagaaa agttcaaaga agagcaattg 1080tctcaagttc cttatctcaa tggagtattc
catgaaacgc ttaggaaata cagtcctgct 1140cctctagtcc ccattcgcta tgcccacgaa
gatacgcaaa tcggaggcta tcatgtccct 1200gcaggaagtg agattgcaat aaacatctat
ggatgcaaca tggataagaa gcgttgggag 1260agaccagagg actggtggcc ggagcggttt
cttgatgatg gcaaatacga aacgtcggat 1320cttcacaaga caatggcgtt tggagcggga
aagagggttt gtgctggtgc tcttcaagca 1380tctctcatgg caggcattgc cattgggagg
ttagtgcaag aattcgagtg gaagcttaga 1440gacggtgaag aagagaatgt ggatacatat
ggcttgacct ctcagaagct ttatcctctt 1500atggctatta tcaatccaag gcgttcttaa
1530581578DNAGibberella fujikoroi
58atgagtaagt ccaacagcat gaacagtacc agccatgaaa cgttattcca gcagctcgtc
60ttaggtcttg acagaatgcc gctaatggac gttcactggc tgatctacgt ggcctttggc
120gcttggttat gctcttatgt catccatgtc ctatcgtcct cttctacagt caaagtgccc
180gtcgtaggct accgcagcgt ctttgagcct acatggcttc tccgtttgcg ctttgtttgg
240gaagggggat ctatcatcgg ccaaggctac aacaaattta aagactctat cttccaggtg
300cgaaagcttg gtaccgatat cgtcatcatc ccgccaaact acatcgatga ggtcagaaag
360ctgtcccaag acaagactcg ctcggtcgag cccttcatca atgactttgc gggacagtat
420acacggggca tggtctttct gcaaagtgat ttgcagaacc gtgtgattca gcagcggttg
480acgccaaaac tcgtatcgtt gacaaaggta atgaaggagg agcttgacta tgccttgacc
540aaagagatgc ctgacatgaa gaatgatgaa tgggttgaag tcgacatttc ttccatcatg
600gtcaggctca tatcacgcat ctcagccaga gtgtttctcg gtccagagca ctgccgcaac
660caagaatggt tgacgaccac tgcagagtac agcgagagcc tgttcataac tggctttatt
720ctccgcgttg tcccccatat tctaagacca ttcatagccc cgctgctacc ctcctacaga
780acactacttc gcaacgtctc gtcaggtcga agagttattg gagacatcat tcgctcccag
840caaggtgatg gcaacgagga catcctgtca tggatgaggg atgctgcgac aggggaagaa
900aagcaaattg acaacattgc ccagcggatg cttatcctga gtctcgcgtc tattcacact
960acggcaatga cgatgacgca tgctatgtat gacttatgtg cttgccctga gtacatagag
1020cctcttagag atgaggtcaa aagtgtcgtt ggcgctagtg gttgggacaa gacggcgttg
1080aatcgattcc acaaactcga cagctttctc aaagagtcac aacgcttcaa ccccgtgttc
1140ctcttaacgt tcaatcgcat ttatcaccaa tccatgacac tctcagatgg caccaacatc
1200ccatcaggca ctcgcatcgc ggttccctct cacgcgatgc ttcaggactc agcgcatgtc
1260ccaggcccga cgccaccaac cgagtttgat ggatttagat actcaaagat tcgctcagac
1320tcaaactatg cacagaaata tctcttctcc atgactgatt ctagtaacat ggcgtttggg
1380tatgggaaat acgcctgccc agggcggttc tatgcatcta atgagatgaa gctgactttg
1440gcgatactcc ttttacaatt tgagttcaag ttgccagatg ggaaaggaag accacgaaat
1500atcactattg atagtgacat gatacctgat ccgagagcta ggctgtgcgt taggaagcga
1560tcactgagag atgaatga
1578591500DNATrametes versicolor 59atggaggatc ccaccgtact ctacgcttgc
ctcgccatcg ctgtcgctac tttcgttgtc 60agatggtaca gagacccgct tcggtccatt
cctacggttg ggggctctga ccttcccatc 120ctctcataca tcggggcgct caggtggacc
cgccgcggaa gagagatact gcaagaaggt 180tatgatgggt atcgcggatc cacgttcaag
atcgcgatgc tcgaccggtg gatcgtcatc 240gccaacggcc caaagctcgc cgacgaggtg
aggaggcgtc ctgacgaaga gctaaacttc 300atggacggac tgggagcgtt cgtgcagacg
aagtataccc ttggggaagc aatccacaat 360gacccgtacc acgtggacat tattcgtgag
aagctgacgc gaggcctccc ggcagtcctg 420ccggacgtca tcgaggaact cacgctagcc
gttcgccagt acatcccgac ggaaggagat 480gaatgggtca gcgtgaactg ctccaaagca
gcgcgggaca tcgtcgcccg ggcaagcaac 540cgcgtctttg tcgggttgcc cgcttgccgc
aaccagggtt atctcgacct cgccattgac 600ttcaccctga gcgttgtcaa agacagggcg
atcatcaata tgttcccgga gttgctgaaa 660cctatcgtcg gacgcgtggt tggaaatgcc
actaggaacg tgcgccgcgc ggtcccattc 720gtagcgccgt tggtggagga acgtcgccgc
ctcatggagg agtacggtga ggattggtcg 780gagaaaccga acgacatgct ccagtggatc
atggacgagg cagcctcgcg ggactcctcc 840gtcaaagcga tcgctgagcg tcttctcatg
gtcaactttg ccgcaattca cacgtcgtcg 900aacaccatca cccacgctct ttaccacctc
gccgagatgc cggagaccct acagccgctg 960cgggaagaga tcgagccgct cgtcaaggaa
gaaggctgga cgaaggccgc catgggcaag 1020atgtggtggc tcgacagctt cctgcgggag
tcacagcgct acaatggcat caacatcgtc 1080tccctgacgc gcatggccga caaggacata
acgctcagcg acggcacgtt cctcccgaag 1140ggcacgctcg tcgcggtccc cgcgtactcg
acgcaccgcg acgacgcggt gtacgcggac 1200gcgctggtct tcgacccgtt ccgcttctcc
cgcatgcgcg cccgcgaggg cgagggcacg 1260aagcaccagt tcgtcaacac ctccgtggag
tacgtgccct tcggccacgg gaagcacgcc 1320tgccccgggc ggttcttcgc ggccaacgag
ctgaaggcga tgctcgcgta catcgtgctc 1380aactacgacg tgaagctgcc cggcgatggc
aagcgccccc tgaacatgta ctggggcccg 1440acggtcttgc ctgctccggc tgggcaggtg
ctcttccgca agaggcaggt gtcgctgtag 1500601578DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
60atgggtttgt tcccattaga ggattcctac gcgctggtct ttgaaggact agcaataaca
60ctggctttgt actatctact gtctttcatc tacaaaacat ctaaaaagac atgtacacct
120cctaaagcat ctggtgaaat cattccaatt acaggaatca tattgaatct gctatctggc
180tcaagtggtc tacctattat cttagcactt gcctctttag cagacagatg tggtcctatt
240ttcaccatta ggctgggtat taggagagtg ctagtagtat caaattggga aatcgctaag
300gagattttca ctacccacga tttgatagtt tctaatagac caaaatactt agccgctaag
360attcttggtt tcaattatgt ttcattctct ttcgctccat acggcccata ttgggtcgga
420atcagaaaga ttattgctac aaaactaatg tcttcttcca gacttcagaa gttgcaattt
480gtaagagttt ttgaactaga aaactctatg aaatctatca gagaatcatg gaaggagaaa
540aaggatgaag agggaaaggt attagttgag atgaaaaagt ggttctggga actgaatatg
600aacatagtgt taaggacagt tgctggtaaa caatacactg gtacagttga tgatgccgat
660gcaaagcgta tctccgagtt attcagagaa tggtttcact acactggcag atttgtcgtt
720ggagacgctt ttccttttct aggttggttg gacctgggcg gatacaaaaa gacaatggaa
780ttagttgcta gtagattgga ctcaatggtc agtaaatggt tagatgagca tcgtaaaaag
840caagctaacg atgacaaaaa ggaggatatg gatttcatgg atatcatgat ctccatgaca
900gaagcaaatt caccacttga aggatacggc actgatacta ttatcaagac cacatgtatg
960actttgattg tttcaggagt tgatacaacc tcaatcgtac ttacttgggc cttatcactt
1020ttgttaaaca acagagatac tttgaaaaag gcacaagagg aattagatat gtgcgtaggt
1080aaaggaagac aagtcaacga gtctgatctt gttaacttga tatacttgga agcagtgctt
1140aaagaggctt taagacttta cccagcagcg ttcttaggcg gaccaagagc attcttggaa
1200gattgtactg ttgctggtta tagaattcca aagggcacct gcttgttgat taacatgtgg
1260aaactgcata gagatccaaa catttggagt gatccttgcg aattcaagcc agaaagattt
1320ttgacaccta atcaaaagga tgttgatgtg atcggtatgg atttcgaatt gataccattt
1380ggtgccggca gaagatattg tccaggtact agattggctt tacagatgtt gcatatcgta
1440ttagcgacat tgctgcaaaa cttcgaaatg tcaacaccaa acgatgcgcc agtcgatatg
1500actgcttctg ttggcatgac aaatgccaaa gcatcacctt tagaagtctt gctatcacct
1560cgtgttaaat ggtcctaa
1578611431DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 61atgatacaag ttttaactcc aattctactc
ttcctcatct tcttcgtttt ctggaaagtc 60tacaaacatc aaaagactaa aatcaatcta
ccaccaggtt ccttcggctg gccatttttg 120ggtgaaacct tagccttact tagagcaggc
tgggattctg agccagaaag attcgtaaga 180gagcgtatca aaaagcatgg atctccactt
gttttcaaga catcactatt tggagacaga 240ttcgctgttc tttgcggtcc agctggtaat
aagtttttgt tctgcaacga aaacaaatta 300gtggcatctt ggtggccagt ccctgtaagg
aagttgttcg gtaaaagttt actcacaata 360agaggagatg aagcaaaatg gatgagaaaa
atgctattgt cttacttggg tccagatgca 420tttgccacac attatgccgt tactatggat
gttgtaacac gtagacatat tgatgtccat 480tggaggggca aggaggaagt taatgtattt
caaacagtta agttgtacgc attcgaatta 540gcttgtagat tattcatgaa cctagatgac
ccaaaccaca tcgcgaaact cggtagtctt 600ttcaacattt tcctcaaagg gatcatcgag
cttcctatag acgttcctgg aactagattt 660tactccagta aaaaggccgc agctgccatt
agaattgaat tgaaaaagct cattaaagct 720agaaaactcg aattgaagga gggtaaggcg
tcttcttcac aggacttgct ttctcatcta 780ttaacatcac ctgatgagaa tgggatgttc
ttgacagaag aggaaatagt cgataacatt 840ctacttttgt tattcgctgg tcacgatacc
tctgcactat caataacact tttgatgaaa 900accttaggtg aacacagtga tgtgtacgac
aaggttttga aggaacaatt agaaatttcc 960aaaacaaagg aggcttggga atcactaaag
tgggaagata tccagaagat gaagtactca 1020tggtcagtaa tctgtgaagt catgagattg
aatcctcctg tcatagggac atacagagag 1080gcgttggttg atatcgacta tgctggttac
actatcccaa aaggatggaa gttgcattgg 1140tcagctgttt ctactcaaag agacgaagcc
aatttcgaag atgtaactag attcgatcca 1200tccagatttg aaggggcagg ccctactcca
ttcacatttg tgcctttcgg tggaggtcct 1260agaatgtgtt taggcaaaga gtttgccagg
ttagaagtgt tagcatttct ccacaacatt 1320gttaccaact ttaagtggga tcttctaatc
cctgatgaga agatcgaata tgatccaatg 1380gctactccag ctaagggctt gccaattaga
cttcatccac accaagtcta a 1431621578DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
62atggagtctt tagtggttca tacagtaaat gctatctggt gtattgtaat cgtcgggatt
60ttctcagttg gttatcacgt ttacggtaga gctgtggtcg aacaatggag aatgagaaga
120tcactgaagc tacaaggtgt taaaggccca ccaccatcca tcttcaatgg taacgtctca
180gaaatgcaac gtatccaatc cgaagctaaa cactgctctg gcgataacat tatctcacat
240gattattctt cttcattatt cccacacttc gatcactgga gaaaacagta cggcagaatc
300tacacatact ctactggatt aaagcaacac ttgtacatca atcatccaga aatggtgaag
360gagctatctc agactaacac attgaacttg ggtagaatca cccatataac caaaagattg
420aatcctatct taggtaacgg aatcataacc tctaatggtc ctcattgggc ccatcagcgt
480agaattatcg cctacgagtt tactcatgat aagatcaagg gtatggttgg tttgatggtt
540gagtctgcta tgcctatgtt gaataagtgg gaggagatgg taaagagagg cggagaaatg
600ggatgcgaca taagagttga tgaggacttg aaagatgttt cagcagatgt gattgcaaaa
660gcctgtttcg gatcctcatt ttctaaaggt aaggctattt tctctatgat aagagatttg
720cttacagcta tcacaaagag aagtgttcta ttcagattca acggattcac tgatatggtc
780tttgggagta aaaagcatgg tgacgttgat atagacgctt tagaaatgga attggaatca
840tccatttggg aaactgtcaa ggaacgtgaa atagaatgta aagatactca caaaaaggat
900ctgatgcaat tgattttgga aggggcaatg cgttcatgtg acggtaacct ttgggataaa
960tcagcatata gaagatttgt tgtagataat tgtaaatcta tctacttcgc agggcatgat
1020agtacagctg tctcagtgtc atggtgtttg atgttactgg ccctaaaccc atcatggcaa
1080gttaagatcc gtgatgaaat tctgtcttct tgcaaaaatg gtattccaga tgccgaaagt
1140atcccaaacc ttaaaacagt gactatggtt attcaagaga caatgagatt ataccctcca
1200gcaccaatcg tcgggagaga agcctctaaa gatatcagat tgggcgatct agttgttcct
1260aaaggcgtct gtatatggac actaatacca gctttacaca gagatcctga gatttgggga
1320ccagatgcaa acgatttcaa accagaaaga ttttctgaag gaatttcaaa ggcttgtaag
1380tatcctcaaa gttacattcc atttggtctg ggtcctagaa catgcgttgg taaaaacttt
1440ggcatgatgg aagtaaaggt tcttgtttcc ctgattgtct ccaagttctc tttcactcta
1500tctcctacct accaacatag tcctagtcac aaacttttag tagaaccaca acatggggtg
1560gtaattagag tggtttaa
1578631590DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 63atgtacttcc tactacaata cctcaacatc
acaaccgttg gtgtctttgc cacattgttt 60ctctcttatt gtttacttct ctggagaagt
agagcgggta acaaaaagat tgccccagaa 120gctgccgctg catggcctat tatcggccac
ctccacttac ttgcaggtgg atcccatcaa 180ctaccacata ttacattggg taacatggca
gataagtacg gtcctgtatt cacaatcaga 240ataggcttgc atagagctgt agttgtctca
tcttgggaaa tggcaaagga atgttcaaca 300gctaatgatc aagtgtcttc ttcaagacct
gaactattag cttctaagtt gttgggttat 360aactacgcca tgtttggttt ttcaccatac
ggttcatact ggagagaaat gagaaagatc 420atctctctcg aattactatc taattccaga
ttggaactat tgaaagatgt tagagcctca 480gaagttgtca catctattaa ggaactatac
aaattgtggg cggaaaagaa gaatgagtca 540ggattggttt ctgtcgagat gaaacaatgg
ttcggagatt tgactttaaa cgtgatcttg 600agaatggtgg ctggtaaaag atacttctcc
gcgagtgacg cttcagaaaa caaacaggcc 660cagcgttgta gaagagtctt cagagaattc
ttccatctct ccggcttgtt tgtggttgct 720gatgctatac cttttcttgg atggctcgat
tggggaagac acgagaagac cttgaaaaag 780accgccatag aaatggattc catcgcccag
gagtggcttg aggaacatag acgtagaaaa 840gattctggag atgataattc tacccaagat
ttcatggacg ttatgcaatc tgtgctagat 900ggcaaaaatc taggcggata cgatgctgat
acgattaaca aggctacatg cttaactctt 960atatcaggtg gcagtgatac tactgtagtt
tctttgacat gggctcttag tcttgtgtta 1020aacaatagag atactttgaa aaaggcacag
gaagagttag acatccaagt cggtaaggaa 1080agattggtta acgagcaaga catcagtaag
ttagtttact tgcaagcaat agtaaaagag 1140acactcagac tttatccacc aggtcctttg
ggtggtttga gacaattcac tgaagattgt 1200acactaggtg gctatcacgt ttcaaaagga
actagattaa tcatgaactt atccaagatt 1260caaaaagatc cacgtatttg gtctgatcct
actgaattcc aaccagagag attccttacg 1320actcataaag atgtcgatcc acgtggtaaa
cactttgaat tcattccatt cggtgcagga 1380agacgtgcat gtcctggtat cacattcgga
ttacaagtac tacatctaac attggcatct 1440ttcttgcatg cgtttgaatt ttcaacacca
tcaaatgagc aggttaacat gagagaatca 1500ttaggtctta cgaatatgaa atctacccca
ttagaagttt tgatttctcc aagactatcc 1560cttaattgct tcaaccttat gaaaatttga
1590641440DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
64atggaaccta acttttactt gtcattacta ttgttgttcg tgaccttcat ttctttaagt
60ctgtttttca tcttttacaa acaaaagtcc ccattgaatt tgccaccagg gaaaatgggt
120taccctatca taggtgaaag tttagaattc ctatccacag gctggaaggg acatcctgaa
180aagttcatat ttgatagaat gcgtaagtac agtagtgagt tattcaagac ttctattgta
240ggcgaatcca cagttgtttg ctgtggggca gctagtaaca aattcctatt ctctaacgaa
300aacaaactgg taactgcctg gtggccagat tctgttaaca aaatcttccc aacaacttca
360ctggattcta atttgaagga ggaatctata aagatgagaa agttgctgcc acagttcttc
420aaaccagaag cacttcaaag atacgtcggc gttatggatg taatcgcaca aagacatttt
480gtcactcact gggacaacaa aaatgagatc acagtttatc cacttgctaa aagatacact
540ttcttgcttg cgtgtagact gttcatgtct gttgaggatg aaaatcatgt ggcgaaattc
600tcagacccat tccaactaat cgctgcaggc atcatttcac ttcctatcga tcttcctggt
660actccattca acaaggccat aaaggcttca aatttcatta gaaaagagct gataaagatt
720atcaaacaaa gacgtgttga tctggcagag ggtacagcat ctccaaccca ggatatcttg
780tcacatatgc tattaacatc tgatgaaaac ggtaaatcta tgaacgagtt gaacattgcc
840gacaagattc ttggactatt gataggaggc cacgatacag cttcagtagc ttgcacattt
900ctagtgaagt acttaggaga attaccacat atctacgata aagtctacca agagcaaatg
960gaaattgcca agtccaaacc tgctggggaa ttgttgaatt gggatgactt gaaaaagatg
1020aagtattcat ggaatgtggc atgtgaggta atgagattgt caccaccttt acaaggtggt
1080tttagagagg ctataactga ctttatgttt aacggtttct ctattccaaa agggtggaag
1140ttatactggt ccgccaactc tacacacaaa aatgcagaat gtttcccaat gcctgagaaa
1200ttcgatccta ccagatttga aggtaatggt ccagcgcctt atacatttgt accattcggt
1260ggaggcccta gaatgtgtcc tggaaaggaa tacgctagat tagaaatctt ggttttcatg
1320cataatctgg tcaaacgttt taagtgggaa aaggttattc cagacgaaaa gattattgtc
1380gatccattcc caatcccagc taaagatctt ccaatccgtt tgtatcctca caaagcttaa
1440651572DNAStevia rebaudiana 65atgggtctct tccctttgga agatagttac
gcactcgtct ttgaaggttt agcaataact 60actctagctc tctactactt attatccttc
atctataaaa cctctaaaaa gacttgtact 120ccacctaaag caagcggtga gcaccctata
acaggccact taaaccttct tagtggttca 180tccggtcttc cccatctagc cttagcatct
ttggctgacc gatgtgggcc catattcacc 240atccgacttg gcatacgtag agttttggtg
gttagtaatt gggaaattgc taaggagatc 300ttcactaccc atgatttgat tgtttcaaac
cgtcccaaat acctcgctgc aaagattttg 360ggattcaact atgtgtcctt ttcgtttgct
ccatatggcc cctattgggt tggaatccgt 420aagatcatcg ccacaaaact gatgtcaagt
agcaggctcc agaagcttca gtttgtccga 480gttttcgaac tagaaaactc catgaaaagc
atacgcgagt cttggaaaga gaaaaaagac 540gaagaaggta aagtgttggt ggagatgaaa
aaatggtttt gggaattgaa tatgaatata 600gttcttagaa ctgttgctgg taaacagtac
actggaactg ttgatgatgc ggatgcgaag 660aggattagtg aattgtttag agaatggttt
cattacacag gaaggtttgt tgtgggagat 720gcttttcctt ttcttgggtg gttggatttg
ggtggatata agaagaccat ggaactagtg 780gcttccagac tagattccat ggtctcaaaa
tggttagacg agcatcgcaa aaagcaggct 840aacgacgaca aaaaagagga catggatttc
atggacatca tgatatcgat gactgaagcc 900aattcccctt tggagggtta tggtacggat
acaataatta aaaccacttg catgactctt 960attgtcagtg gtgtagatac aacctccatc
gtgctaactt gggcactctc gttactactg 1020aacaaccgtg acactcttaa gaaagctcaa
gaagagctag acatgtgtgt gggaaaaggt 1080cgacaagtaa acgaatcaga tctagtaaac
ctaatctacc ttgaagccgt attaaaagaa 1140gcattgcgac tatacccagc agcattcctt
ggaggtccta gagccttttt agaagactgc 1200accgtggcag ggtaccgtat cccaaaaggc
acatgtctac ttattaacat gtggaaactt 1260catcgtgatc caaacatatg gtcagaccca
tgtgagttta aaccagagag gttcttaacc 1320ccaaaccaaa aggacgtaga tgttattgga
atggattttg agttaatccc atttggtgcg 1380ggaagaaggt attgtccagg gacacgtttg
gcattacaaa tgttacacat agttctggcc 1440actctactac aaaactttga gatgtcaact
ccaaatgatg cacccgttga tatgaccgcg 1500agtgttggaa tgacaaatgc gaaggcaagt
ccacttgaag ttctactttc gccacgtgtt 1560aagtggtcat ag
1572661431DNAStevia rebaudiana
66atgattcaag ttctaacacc gatccttctc ttcctcattt tcttcgtttt ctggaaggtt
60tacaagcacc agaaaaccaa aatcaatctt ccaccgggaa gcttcggatg gccatttctg
120ggcgaaactc tggcactcct acgtgcaggt tgggactcag agccggagag atttgttcgt
180gaacggatca agaaacacgg aagtcctcta gtgtttaaga cgtcgttgtt tggcgaccgt
240tttgcggtgt tgtgtggacc tgccggaaac aagttcctgt tctgcaacga gaacaagctg
300gtggcgtcgt ggtggccggt tccggtgagg aagcttttcg gcaagtctct gctcacgatt
360cgtggtgatg aagctaagtg gatgaggaag atgttgttat cgtatctcgg tcctgatgct
420ttcgcaactc attatgccgt caccatggac gtcgtcaccc gtcggcatat cgacgttcat
480tggcgaggga aggaagaggt gaacgtattc caaaccgtta agttatatgc ctttgagctt
540gcatgtcgtt tattcatgaa cctagacgac ccaaaccaca ttgcaaaact cggttccttg
600ttcaacattt tcttgaaagg catcattgag cttccaatcg acgtcccagg gacacgattt
660tatagctcca aaaaagcagc agcagctatc aggattgaac taaaaaaatt gattaaagca
720agaaaactgg aactgaaaga agggaaggca tcatcttcac aagacctctt atcacatttg
780cttacatctc cagatgaaaa tggtatgttt ctaaccgaag aagagattgt agacaacatc
840ttgttactac tctttgcggg tcatgatacc tcggctcttt caatcacttt gctcatgaag
900actcttggcg aacattctga tgtttatgac aaggtgttaa aagagcaact agagatatcg
960aagacgaaag aagcatggga gtccctgaaa tgggaggaca tacaaaagat gaaatactcc
1020tggagtgtta tatgtgaagt catgagacta aatccacctg ttataggaac ctatagagag
1080gcccttgtgg atattgatta tgcgggttat accatcccca aaggatggaa gctgcactgg
1140agtgctgtat cgacacaaag ggacgaggct aactttgaag acgtaacacg ttttgaccca
1200tcacggtttg aaggcgcagg accgactcca ttcacctttg ttccgtttgg aggggggcct
1260agaatgtgtt tagggaaaga atttgctcga ttggaagtac ttgcgtttct tcacaatatt
1320gtcaccaatt tcaaatggga cctgttgata cctgatgaga aaatagaata tgatcccatg
1380gctaccccag caaaggggct tccaattcgt cttcatcccc atcaagtttg a
1431671578DNAArabidopsis thaliana 67atggagagtt tggttgttca tacggtaaat
gcaatttggt gcatagttat tgtcggaatc 60ttcagcgtag gttatcatgt gtatggaaga
gcggtggtgg agcagtggag gatgcggagg 120agtttaaagt tgcaaggcgt gaagggtcct
ccaccgtcga tctttaacgg caatgtgtcg 180gagatgcaac ggattcagtc ggaggctaaa
cactgttccg gcgataacat catttctcat 240gactattctt cttctctatt tcctcatttc
gatcactggc gaaaacaata cggaaggatt 300tacacatact caacggggtt aaagcagcac
ctttacataa accacccgga aatggtgaag 360gagcttagcc aaaccaacac acttaacctt
ggtagaatca ctcacatcac caaacgcctt 420aaccccattc tcggcaatgg catcatcacc
tctaatgggc ctcattgggc ccatcaacgt 480cgtatcattg cctatgagtt tacccacgac
aaaatcaagg gaatggttgg tttaatggtg 540gaatctgcca tgccaatgtt gaacaaatgg
gaagagatgg tgaaaagagg aggagaaatg 600ggttgtgaca taagagtgga cgaagacctt
aaggatgtct cagctgatgt catcgctaag 660gcttgctttg ggagctcttt ttcaaaaggc
aaagcaatat tctctatgat tagggatctt 720ttaaccgcca ttactaaacg aagcgtcctc
ttcagattca atggcttcac tgatatggtg 780tttggaagta agaagcatgg tgatgtggat
attgatgcgc ttgagatgga attagaatct 840tctatatggg aaacggttaa ggagagggaa
attgaatgta aggatactca caagaaggat 900ctaatgcagt tgatactcga gggagcgatg
cgaagctgcg atggtaactt gtgggacaag 960tcagcctata gacggtttgt ggtggacaat
tgcaagagca tctatttcgc cggacatgat 1020tcaaccgcag tctcagtgtc ttggtgcctt
atgctcctcg ctctcaatcc tagttggcag 1080gttaaaattc gcgatgaaat cttgagttct
tgcaagaatg gcattcccga cgcagaatca 1140attcctaatc tcaaaacggt gacaatggta
atacaagaaa caatgagact atacccacca 1200gcaccaatcg tgggaagaga agcatccaaa
gacataagac ttggagacct tgtggtgcca 1260aaaggagtgt gcatttggac actcattcct
gccttacacc gagaccccga gatctgggga 1320ccagacgcaa acgacttcaa gccagagagg
tttagtgagg gaatctctaa ggcttgcaaa 1380taccctcagt catacatccc atttggcctt
ggaccaagaa catgcgtagg caaaaacttt 1440ggtatgatgg aagtgaaagt gcttgtttca
cttattgtct caaagttcag ttttactctt 1500tccccgactt atcagcactc tccaagccat
aaactccttg tagagcctca acatggtgtt 1560gtcattaggg ttgtttga
1578681590DNAVitis vinifera 68atgtatttcc
ttctccaata cctaaacatc accacggtcg gagtctttgc cacacttttc 60ctttcctact
gtctattatt atggaggtct agagctggta acaaaaaaat agcacctgaa 120gctgctgctg
catggcccat aatcggtcac ctacacctgt tagctggtgg ttctcatcag 180cttccccaca
taaccttggg aaacatggcc gacaaatatg gaccggtctt cacaattcgg 240attgggttgc
atcgagctgt ggtggtaagt tcttgggaga tggctaaaga atgctcgacc 300gccaatgacc
aggtttcatc ctcgcgtccc gaacttttag cctcaaaact tttgggctac 360aactacgcca
tgtttggttt ctctccatac ggttcttact ggcgtgaaat gcgcaagata 420atcagcctag
agctactctc taacagccgc ttagagctgc tgaaggacgt ccgagcttca 480gaagtggtga
catccataaa agagctatac aagctctggg cagagaaaaa aaatgaatcg 540ggccttgtct
cggtggagat gaagcagtgg tttggagact tgactctgaa cgtaattctt 600aggatggtgg
cagggaagcg ttatttcagt gcttcagatg caagtgaaaa taaacaggcg 660cagaggtgcc
ggagagtgtt cagggaattc tttcatttgt cagggctctt tgtggtggcg 720gacgctattc
catttcttgg atggctcgac tgggggagac atgagaaaac cctaaagaag 780acagcaatag
aaatggacag tattgctcaa gaatggttag aggagcaccg tcggaggaaa 840gactccggtg
atgataatag tacgcaagac ttcatggatg tgatgcagtc agttcttgat 900ggcaaaaacc
ttggtggtta cgacgctgat accatcaata aagccacatg cctgactcta 960atctccggag
gtagcgacac aactgttgtc tctctaacat gggcactctc tcttgtacta 1020aacaaccgtg
acaccttaaa aaaagctcaa gaagaattag acatccaagt tggtaaggaa 1080agattagtga
atgaacaaga tataagtaag ttggtctatc tccaagccat tgttaaagag 1140acattacggt
tatatccacc aggaccactt ggaggactac gccaatttac cgaggattgc 1200accttgggtg
gataccatgt ctctaaaggc acccgtttaa taatgaacct ttcgaagatc 1260caaaaggatc
caagaatttg gtcagatccg acagaattcc aaccagagag gtttctcacc 1320acccataaag
atgttgatcc tcggggaaaa cattttgagt ttataccatt tggagctggt 1380cgaagagcat
gtccaggaat aacttttggt cttcaagtat tacatttaac attggctagt 1440ttcttacatg
cgtttgaatt ttcaactcca tcaaatgaac aggtcaatat gcgcgagagc 1500cttggactta
caaatatgaa atctacccca cttgaagttc tcatttctcc acgcttatca 1560ttgaattgtt
ttaacctaat gaagatataa
1590691440DNAMedicago trunculata 69atggagccta atttctatct ctcccttctc
cttctctttg tcactttcat atctctctct 60ctttttttca tattctacaa acagaaatct
ccattaaatt tgccacctgg taaaatgggt 120tacccaatca taggtgaaag ccttgagttc
ttatcaacag gatggaaagg acatcctgaa 180aaattcattt tcgaccgtat gcgtaaatat
tcctcagaac tctttaaaac atcaatcgta 240ggagaatcta cggtggtttg ttgcggagca
gcaagtaaca agtttttgtt ttcaaacgag 300aataaacttg tgactgcatg gtggccagat
agtgtaaaca aaatcttccc tactacttct 360cttgactcta acttgaagga agaatccatc
aagatgagaa aattgcttcc acaattcttt 420aaacccgaag ctctacaacg ttatgttggt
gtcatggatg ttattgctca aagacatttt 480gttactcatt gggataataa aaatgaaatc
accgtctacc ccttggccaa gaggtacacc 540tttttgttag cttgtcggtt gttcatgagc
gttgaagacg agaatcatgt agcaaaattt 600agtgatccat ttcagttaat tgcggccgga
atcatatctc taccaattga tttgccagga 660acaccattca acaaagctat aaaggcctca
aactttataa gaaaggagtt gattaagatc 720ataaagcaaa ggagggtaga tttggcagaa
gggacagcat caccaacaca agatatattg 780tctcacatgt tgttgacaag tgatgaaaat
ggaaagagta tgaatgaact taatattgct 840gataagattc ttggcctttt gatcggagga
catgacactg ctagcgtcgc atgcactttc 900cttgtcaaat atctcggcga gttacctcac
atttatgata aagtctatca agagcaaatg 960gaaattgcaa aatcgaaacc agcaggagaa
ttgttgaatt gggatgacct gaagaaaatg 1020aaatactctt ggaacgtagc ttgtgaagta
atgagacttt cccctccact ccaaggaggt 1080ttcagggaag ccatcactga ctttatgttc
aatggattct caattcctaa gggatggaag 1140ctttattgga gtgcaaattc aacacataag
aacgcagaat gttttcccat gccagagaaa 1200tttgacccaa caagatttga aggaaatgga
ccagctcctt atacttttgt tccctttggt 1260ggaggaccaa ggatgtgtcc tggaaaagag
tatgcaagat tagaaatact tgttttcatg 1320cacaatttgg tgaaaaggtt taagtgggaa
aaggtgattc cagatgagaa gattattgtt 1380gatccattcc ccatccctgc aaaggatctt
ccaattcgcc tttatccaca caaagcttaa 1440702133DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
70atgcaatcag attcagtcaa agtctctcca tttgatttgg tttccgctgc tatgaatggc
60aaggcaatgg aaaagttgaa cgctagtgaa tctgaagatc caacaacatt gcctgcacta
120aagatgctag ttgaaaatag agaattgttg acactgttca caacttcctt cgcagttctt
180attgggtgtc ttgtatttct aatgtggaga cgttcatcct ctaaaaagct ggtacaagat
240ccagttccac aagttatcgt tgtaaagaag aaagagaagg agtcagaggt tgatgacggg
300aaaaagaaag tttctatttt ctacggcaca caaacaggaa ctgccgaagg ttttgctaaa
360gcattagtcg aggaagcaaa agtgagatat gaaaagacct ctttcaaggt tatcgatcta
420gatgactacg ctgcagatga tgatgaatat gaggaaaaac tgaaaaagga atccttagcc
480ttcttcttct tggccacata cggtgatggt gaacctactg ataatgctgc taacttctac
540aagtggttca cagaaggcga cgataaaggt gaatggctga aaaagttaca atacggagta
600tttggtttag gtaacagaca atatgaacat ttcaacaaga tcgctattgt agttgatgat
660aaacttactg aaatgggagc caaaagatta gtaccagtag gattagggga tgatgatcag
720tgtatagaag atgacttcac cgcctggaag gaattggtat ggccagaatt ggatcaactt
780ttaagggacg aagatgatac ttctgtgact accccataca ctgcagccgt attggagtac
840agagtggttt accatgataa accagcagac tcatatgctg aagatcaaac ccatacaaac
900ggtcatgttg ttcatgatgc acagcatcct tcaagatcta atgtggcttt caaaaaggaa
960ctacacacct ctcaatcaga taggtcttgt actcacttag aattcgatat ttctcacaca
1020ggactgtctt acgaaactgg cgatcacgtt ggcgtttatt ccgagaactt gtccgaagtt
1080gtcgatgaag cactaaaact gttagggtta tcaccagaca catacttctc agtccatgct
1140gataaggagg atgggacacc tatcggtggt gcttcactac caccaccttt tcctccttgc
1200acattgagag acgctctaac cagatacgca gatgtcttat cctcacctaa aaaggtagct
1260ttgctggcat tggctgctca tgctagtgat cctagtgaag ccgataggtt aaagttcctg
1320gcttcaccag ccggaaaaga tgaatatgca caatggatcg tcgccaacca acgttctttg
1380ctagaagtga tgcaaagttt tccatctgcc aagcctccat taggtgtgtt cttcgcagca
1440gtagctccac gtttacaacc aagatactac tctatcagtt catctcctaa gatgtctcct
1500aacagaatac atgttacatg tgctttggtg tacgagacta ctccagcagg cagaattcac
1560agaggattgt gttcaacctg gatgaaaaat gctgtccctt taacagagtc acctgattgc
1620tctcaagcat ccattttcgt tagaacatca aatttcagac ttccagtgga tccaaaagtt
1680ccagtcatta tgataggacc aggcactggt cttgccccat tcaggggctt tcttcaagag
1740agattggcct tgaaggaatc tggtacagaa ttgggttctt ctatcttttt ctttggttgc
1800cgtaatagaa aagttgactt tatctacgag gacgagctta acaattttgt tgagacagga
1860gcattgtcag aattgatcgt cgcattttca agagaaggga ctgccaaaga gtacgttcag
1920cacaagatga gtcaaaaagc ctccgatata tggaaacttc taagtgaagg tgcctatctt
1980tatgtctgtg gcgatgcaaa gggcatggcc aaggatgtcc atagaactct gcatacaatt
2040gttcaggaac aagggagtct ggattcttcc aaggctgaat tgtacgtcaa aaacttacag
2100atgtctggaa gatacttaag agatgtttgg taa
2133712079DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 71atgacttctg cactttatgc ctccgatctt
ttcaaacaat tgaaaagtat catgggaacg 60gattctttgt ccgatgatgt tgtattagtt
attgctacaa cttctctggc actggttgct 120ggtttcgttg tcttattgtg gaaaaagacc
acggcagatc gttccggcga gctaaagcca 180ctaatgatcc ctaagtctct gatggcgaaa
gatgaggatg atgacttaga tctaggttct 240ggaaaaacga gagtctctat cttcttcggc
acacaaaccg gaacagccga aggattcgct 300aaagcacttt cagaagagat caaagcaaga
tacgaaaagg cggctgtaaa agtaatcgat 360ttggatgatt acgctgccga tgatgaccaa
tatgaggaaa agttgaaaaa ggaaacattg 420gctttctttt gtgtagccac gtatggtgat
ggtgaaccaa ccgataacgc cgcaagattc 480tacaagtggt ttactgaaga gaacgaaaga
gatatcaagt tgcagcaact tgcttacggc 540gtttttgcct taggtaacag acaatacgag
cactttaaca agataggtat tgtcttagat 600gaagagttat gcaaaaaggg tgcgaagaga
ttgattgaag tcggtttagg agatgatgat 660caatctatcg aggatgactt taatgcatgg
aaggaatctt tgtggtctga attagataag 720ttacttaagg acgaagatga taaatccgtt
gccactccat acacagccgt cattccagaa 780tatagagtag ttactcatga tccaagattc
acaacacaga aatcaatgga aagtaatgtg 840gctaatggta atactaccat cgatattcat
catccatgta gagtagacgt tgcagttcaa 900aaggaattgc acactcatga atcagacaga
tcttgcatac atcttgaatt tgatatatca 960cgtactggta tcacttacga aacaggtgat
cacgtgggtg tctacgctga aaaccatgtt 1020gaaattgtag aggaagctgg aaagttgttg
ggccatagtt tagatcttgt tttctcaatt 1080catgccgata aagaggatgg ctcaccacta
gaaagtgcag tgcctccacc atttccagga 1140ccatgcaccc taggtaccgg tttagctcgt
tacgcggatc tgttaaatcc tccacgtaaa 1200tcagctctag tggccttggc tgcgtacgcc
acagaacctt ctgaggcaga aaaactgaaa 1260catctaactt caccagatgg taaggatgaa
tactcacaat ggatagtagc tagtcaacgt 1320tctttactag aagttatggc tgctttccca
tccgctaaac ctcctttggg tgttttcttc 1380gccgcaatag cgcctagact gcaaccaaga
tactattcaa tttcatcctc acctagactg 1440gcaccatcaa gagttcatgt cacatccgct
ttagtgtacg gtccaactcc tactggtaga 1500atccataagg gcgtttgttc aacatggatg
aaaaacgcgg ttccagcaga gaagtctcac 1560gaatgttctg gtgctccaat ctttatcaga
gcctccaact tcaaactgcc ttccaatcct 1620tctactccta ttgtcatggt cggtcctggt
acaggtcttg ctccattcag aggtttctta 1680caagagagaa tggccttaaa ggaggatggt
gaagagttgg gatcttcttt gttgtttttc 1740ggctgtagaa acagacaaat ggatttcatc
tacgaagatg aactgaataa ctttgtagat 1800caaggagtta tttcagagtt gataatggct
ttttctagag aaggtgctca gaaggagtac 1860gtccaacaca aaatgatgga aaaggccgca
caagtttggg acttaatcaa agaggaaggc 1920tatctatatg tctgtggtga tgcaaagggt
atggcaagag atgttcacag aacacttcat 1980actatagtcc aggaacagga aggcgttagt
tcttctgaag cggaagcaat tgtgaaaaag 2040ttacaaacag agggaagata cttgagagat
gtgtggtaa 2079722142DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
72atggcagaat tagatacact tgatatagta gtattaggtg ttatcttttt gggtactgtg
60gcatacttta ctaagggtaa attgtggggt gttaccaagg atccatacgc taacggattc
120gctgcaggtg gtgcttccaa gcctggcaga actagaaaca tcgtcgaagc tatggaggaa
180tcaggtaaaa actgtgttgt tttctacggc agtcaaacag gtacagcgga ggattacgca
240tcaagacttg caaaggaagg aaagtccaga ttcggtttga acactatgat cgccgatcta
300gaagattatg acttcgataa cttagacact gttccatctg ataacatcgt tatgtttgta
360ttggctactt acggtgaagg cgaaccaaca gataacgccg tggatttcta tgagttcatt
420actggcgaag atgcctcttt caatgagggc aacgatcctc cactaggtaa cttgaattac
480gttgcgttcg gtctgggcaa caatacctac gaacactaca actcaatggt caggaacgtt
540aacaaggctc tagaaaagtt aggagctcat agaattggag aagcaggtga gggtgacgac
600ggagctggaa ctatggaaga ggacttttta gcttggaaag atccaatgtg ggaagccttg
660gctaaaaaga tgggcttgga ggaaagagaa gctgtatatg aacctatttt cgctatcaat
720gagagagatg atttgacccc tgaagcgaat gaggtatact tgggagaacc taataagcta
780cacttggaag gtacagcgaa aggtccattc aactcccaca acccatatat cgcaccaatt
840gcagaatcat acgaactttt ctcagctaag gatagaaatt gtctgcatat ggaaattgat
900atttctggta gtaatctaaa gtatgaaaca ggcgaccata tcgcgatctg gcctaccaac
960ccaggtgaag aggtcaacaa atttcttgac attctagatc tgtctggtaa gcaacattcc
1020gtcgtaacag tgaaagcctt agaacctaca gccaaagttc cttttccaaa tccaactacc
1080tacgatgcta tattgagata ccatctggaa atatgcgctc cagtttctag acagtttgtc
1140tcaactttag cagcattcgc ccctaatgat gatatcaaag ctgagatgaa ccgtttggga
1200tcagacaaag attacttcca cgaaaagaca ggaccacatt actacaatat cgctagattt
1260ttggcctcag tctctaaagg tgaaaaatgg acaaagatac cattttctgc tttcatagaa
1320ggccttacaa aactacaacc aagatactat tctatctctt cctctagttt agttcagcct
1380aaaaagatta gtattactgc tgttgtcgaa tctcagcaaa ttccaggtag agatgaccca
1440ttcagaggtg tagcgactaa ctacttgttc gctttgaagc agaaacaaaa cggtgatcca
1500aatccagctc cttttggcca atcatacgag ttgacaggac caaggaataa gtatgatggt
1560atacatgttc cagtccatgt aagacattct aactttaagc taccatctga tccaggcaaa
1620cctattatca tgatcggtcc aggtaccggt gttgcccctt ttagaggctt cgtccaagag
1680agggcaaaac aagccagaga tggtgtagaa gttggtaaaa cactgctgtt ctttggatgt
1740agaaagagta cagaagattt catgtatcaa aaagagtggc aagagtacaa ggaagctctt
1800ggcgacaaat tcgaaatgat tacagctttt tcaagagaag gatctaaaaa ggtttatgtt
1860caacacagac tgaaggaaag atcaaaggaa gtttctgatc ttctatccca aaaagcatac
1920ttctacgttt gcggagacgc cgcacatatg gcacgtgaag tgaacactgt gttagcacag
1980atcatagcag aaggccgtgg tgtatcagaa gccaagggtg aggaaattgt caaaaacatg
2040agatcagcaa atcaatacca agtgtgttct gatttcgtaa ctttacactg taaagagaca
2100acatacgcga attcagaatt gcaagaggat gtctggagtt aa
2142732133DNAStevia rebaudiana 73atgcaatcag attccgtaaa agtgtcgccg
ttcgatctcg tatctgcagc tatgaacgga 60aaagcaatgg agaaattgaa cgcatcggaa
tcggaagatc cgacgacgct accggcgttg 120aagatgctgg tggagaatcg cgagctgctg
acactgttta cgacgtcgtt tgctgtattg 180atcggatgtc tcgtgttttt gatgtggcgg
agatcgtcct cgaagaaact ggttcaggat 240ccggtgccgc aggtaatcgt tgttaagaag
aaagagaagg agtctgaggt tgatgatggc 300aagaagaaag tttcgatatt ctacggaact
caaacaggaa ccgctgaagg ttttgccaag 360gcacttgtag aggaagctaa agttcgatat
gaaaagacat cctttaaagt tattgatctg 420gatgattatg ctgctgatga cgatgagtat
gaggagaagc ttaagaaaga atctttggcg 480tttttctttt tggcaacgta tggagatggt
gaaccaacag ataatgcagc caatttttac 540aaatggttta cagagggaga tgacaaaggc
gaatggctga agaaacttca atatggcgtg 600tttggcctcg gtaacagaca atatgagcat
ttcaataaga ttgcaatagt ggttgatgac 660aaactcacag aaatgggcgc aaaacgcctt
gttcctgtgg gtcttggaga tgacgatcaa 720tgtatagaag atgactttac agcatggaaa
gagttagtgt ggcccgagtt ggatcaattg 780ttgcgtgatg aggatgacac gagtgttacg
actccttaca ctgctgcggt tttggaatac 840cgagttgtat atcatgataa acctgcagac
tcgtatgcag aagatcaaac tcatacaaat 900ggtcatgttg ttcatgatgc tcaacatcca
tctagatcca atgtggcatt taaaaaggaa 960ttgcacacct ctcaatctga ccggtcttgc
actcatttgg aatttgatat ctctcacacc 1020gggctatcat acgagacggg ggatcatgtt
ggtgtctaca gtgagaatct aagtgaagtt 1080gtagatgaag ctttaaaatt actcggtttg
tcacccgaca cttatttctc agtccatgct 1140gacaaggaag acggaacacc tattggcggc
gcctccttgc cgccaccttt ccctccatgc 1200actttaagag atgcattaac gcgctacgca
gatgttttga gttctcctaa aaaggttgct 1260ttgcttgctc tggctgctca tgcttctgat
cctagcgaag ccgatcgatt aaaatttcta 1320gcatctccgg ctggcaagga tgaatatgct
caatggatag ttgcaaacca aagaagtctt 1380cttgaagtta tgcagtcatt tccgtcagct
aaaccgccac ttggtgtttt cttcgcagct 1440gtcgccccac gtttacaacc tcgatattac
tcgatttctt cttctccaaa gatgtcacca 1500aacagaattc atgtgacttg tgcattagtt
tatgagacaa cacctgcagg acgtattcac 1560agaggattgt gttcaacatg gatgaagaat
gctgtgcctt tgaccgaaag tccagattgt 1620agtcaggcgt cgatttttgt tagaacgtct
aacttccgac ttccggttga cccgaaagtc 1680ccggtcatca tgatcggtcc cgggactggg
ttagcccctt tcagaggttt tcttcaagaa 1740cggttagctt tgaaggaatc tggaaccgaa
ctcgggtcat ctattttctt tttcggatgc 1800agaaaccgca aagtggattt tatatacgaa
gacgaactaa acaactttgt ggagaccggt 1860gctttatcgg agcttattgt tgcattctcc
cgtgaaggaa ccgcaaagga gtatgtgcaa 1920cataaaatga gccagaaggc ttcagatatc
tggaagttgc tttcagaggg agcatattta 1980tatgtatgtg gtgatgctaa aggcatggct
aaagatgtac acagaaccct tcacacaatt 2040gtacaagaac agggatctct agattcttcc
aaggcagaat tgtatgtaaa gaacctacaa 2100atgtcgggaa gatatcttcg tgatgtttgg
taa 2133742079DNAArabidopsis thaliana
74atgacttctg ctttgtatgc ttccgatttg tttaagcagc tcaagtcaat tatggggaca
60gattcgttat ccgacgatgt tgtacttgtg attgcaacga cgtctttggc actagtagct
120ggatttgtgg tgttgttatg gaagaaaacg acggcggatc ggagcgggga gctgaagcct
180ttgatgatcc ctaagtctct tatggctaag gacgaggatg atgatttgga tttgggatcc
240gggaagacta gagtctctat cttcttcggt acgcagactg gaacagctga gggatttgct
300aaggcattat ccgaagaaat caaagcgaga tatgaaaaag cagcagtcaa agtcattgac
360ttggatgact atgctgccga tgatgaccag tatgaagaga aattgaagaa ggaaactttg
420gcatttttct gtgttgctac ttatggagat ggagagccta ctgacaatgc tgccagattt
480tacaaatggt ttacggagga aaatgaacgg gatataaagc ttcaacaact agcatatggt
540gtgtttgctc ttggtaatcg ccaatatgaa cattttaata agatcgggat agttcttgat
600gaagagttat gtaagaaagg tgcaaagcgt cttattgaag tcggtctagg agatgatgat
660cagagcattg aggatgattt taatgcctgg aaagaatcac tatggtctga gctagacaag
720ctcctcaaag acgaggatga taaaagtgtg gcaactcctt atacagctgt tattcctgaa
780taccgggtgg tgactcatga tcctcggttt acaactcaaa aatcaatgga atcaaatgtg
840gccaatggaa atactactat tgacattcat catccctgca gagttgatgt tgctgtgcag
900aaggagcttc acacacatga atctgatcgg tcttgcattc atctcgagtt cgacatatcc
960aggacgggta ttacatatga aacaggtgac catgtaggtg tatatgctga aaatcatgtt
1020gaaatagttg aagaagctgg aaaattgctt ggccactctt tagatttagt attttccata
1080catgctgaca aggaagatgg ctccccattg gaaagcgcag tgccgcctcc tttccctggt
1140ccatgcacac ttgggactgg tttggcaaga tacgcagacc ttttgaaccc tcctcgaaag
1200tctgcgttag ttgccttggc ggcctatgcc actgaaccaa gtgaagccga gaaacttaag
1260cacctgacat cacctgatgg aaaggatgag tactcacaat ggattgttgc aagtcagaga
1320agtcttttag aggtgatggc tgcttttcca tctgcaaaac ccccactagg tgtatttttt
1380gctgcaatag ctcctcgtct acaacctcgt tactactcca tctcatcctc gccaagattg
1440gcgccaagta gagttcatgt tacatccgca ctagtatatg gtccaactcc tactggtaga
1500atccacaagg gtgtgtgttc tacgtggatg aagaatgcag ttcctgcgga gaaaagtcat
1560gaatgtagtg gagccccaat ctttattcga gcatctaatt tcaagttacc atccaaccct
1620tcaactccaa tcgttatggt gggacctggg actgggctgg caccttttag aggttttctg
1680caggaaagga tggcactaaa agaagatgga gaagaactag gttcatcttt gctcttcttt
1740gggtgtagaa atcgacagat ggactttata tacgaggatg agctcaataa ttttgttgat
1800caaggcgtaa tatctgagct catcatggca ttctcccgtg aaggagctca gaaggagtat
1860gttcaacata agatgatgga gaaggcagca caagtttggg atctaataaa ggaagaagga
1920tatctctatg tatgcggtga tgctaagggc atggcgaggg acgtccaccg aactctacac
1980accattgttc aggagcagga aggtgtgagt tcgtcagagg cagaggctat agttaagaaa
2040cttcaaaccg aaggaagata cctcagagat gtctggtga
2079752142DNAGiberella fujikuroi 75atggctgaac tcgacactct ggacatcgtc
gtcctcggcg ttatcttcct cggaacggtt 60gcatacttta caaagggcaa gctatggggt
gttaccaagg atccctacgc gaatggcttc 120gctgccggcg gcgcttctaa gccgggtcgc
acgaggaaca tcgtcgaggc aatggaagaa 180tccggcaaga actgtgttgt cttctatggt
tctcagaccg gtactgctga agattatgct 240tctcgcctcg ccaaggaggg taagagtcga
ttcggactaa acaccatgat tgccgatctt 300gaggactacg atttcgacaa cctggatacc
gttcccagtg acaacattgt catgttcgtt 360ctcgcaactt atggtgaagg tgagcctacc
gataacgcgg tcgacttcta tgaattcatt 420accggcgagg atgccagctt caatgagggc
aatgatcctc cgctgggcaa cctcaactac 480gttgctttcg gtctcggaaa caacacgtac
gagcactaca actctatggt ccgcaatgtt 540aacaaggctc tcgagaagct tggcgctcac
cgcatcggtg aagctggtga gggtgatgat 600ggtgctggta ccatggaaga ggacttcttg
gcctggaagg atcccatgtg ggaagccctc 660gctaagaaaa tgggactgga agagcgtgaa
gcagtctacg agcctatttt tgccattaac 720gaacgcgacg acctgactcc tgaagccaat
gaagtgtatc tcggtgagcc caacaagctg 780catctcgaag gcaccgccaa gggaccattc
aactctcaca acccctacat tgcccctatc 840gctgaatctt atgagttgtt ctccgccaag
gacagaaact gcctccacat ggaaattgac 900atcagcggtt ctaacctcaa gtacgaaact
ggagaccata ttgctatctg gcctaccaac 960cctggtgagg aggtcaacaa attcctggat
attctcgacc tctctggaaa gcagcacagc 1020gttgtcactg tcaaggctct cgagcctacc
gccaaggttc ctttccccaa ccctacaacc 1080tacgatgcca ttctgcgata ccacctcgag
atctgcgctc ctgtttcacg tcaattcgtc 1140tctactctcg ccgcatttgc tcccaacgat
gatatcaagg ctgagatgaa ccgccttggc 1200agcgataagg attatttcca cgagaagact
ggcccgcatt actacaacat tgcccgtttc 1260cttgccagcg tcagcaaggg cgagaagtgg
accaaaatcc cgttctctgc cttcatcgag 1320ggtctcacca agctccagcc ccgttactac
tccatttctt cctcgtctct ggttcagccc 1380aagaaaatct cgatcactgc cgtcgttgaa
tcccagcaga ttcctggccg ggatgatcct 1440ttccgtggtg ttgctacaaa ctatcttttt
gccctaaagc aaaagcagaa cggtgacccc 1500aaccctgcac cttttggtca gagctacgag
cttacaggcc cccgcaataa gtatgatggc 1560atccacgttc ctgtccatgt tcgtcactcc
aacttcaagc tcccctcgga ccccggtaag 1620cccatcatca tgattggtcc tggtactggt
gtcgctccct tccgcggttt cgtgcaggag 1680cgtgctaagc aagcccgtga tggtgttgag
gttggaaaga cactcttgtt ctttggttgc 1740cgaaagtcaa ccgaggattt catgtaccaa
aaggagtggc aggaatacaa ggaggctctt 1800ggcgataagt ttgaaatgat caccgccttt
tctcgagagg gctccaagaa ggtttatgtt 1860cagcaccgac ttaaggagcg atctaaggag
gtcagcgatc tgctctccca gaaggcttat 1920ttctatgtct gcggtgatgc agcccacatg
gcccgcgagg tcaataccgt cttggcacaa 1980atcattgccg agggacgtgg ggtgtctgag
gccaagggcg aggagatcgt gaagaacatg 2040agatcagcga accaatacca ggtatgtagt
gactttgtta ctcttcactg caaagaaacc 2100acatatgcta actcagaatt acaggaggat
gtttggtcat ag 214276459PRTIpomoea purpurea 76Met Gly
Ser Gln Ala Thr Thr Tyr His Met Ala Met Tyr Pro Trp Phe1 5
10 15Gly Val Gly His Leu Thr Gly Phe
Phe Arg Leu Ala Asn Lys Leu Ala 20 25
30Gly Lys Gly His Arg Ile Ser Phe Leu Ile Pro Lys Asn Thr Gln
Ser 35 40 45Lys Leu Glu Ser Phe
Asn Leu His Pro His Leu Ile Ser Phe Val Pro 50 55
60Ile Val Val Pro Ser Ile Pro Gly Leu Pro Pro Gly Ala Glu
Thr Thr65 70 75 80Ser
Asp Val Pro Phe Pro Ser Thr His Leu Leu Met Glu Ala Met Asp
85 90 95Lys Thr Gln Asn Asp Ile Glu
Ile Ile Leu Lys Asp Leu Lys Val Asp 100 105
110Val Val Phe Tyr Asp Phe Thr His Trp Leu Pro Ser Leu Ala
Arg Lys 115 120 125Ile Gly Ile Lys
Ser Val Phe Tyr Ser Thr Ile Ser Pro Leu Met His 130
135 140Gly Tyr Ala Leu Ser Pro Glu Arg Arg Val Val Gly
Lys Gln Leu Thr145 150 155
160Glu Ala Asp Met Met Lys Ala Pro Ala Ser Phe Pro Asp Pro Ser Ile
165 170 175Lys Leu His Ala His
Glu Ala Arg Gly Phe Thr Ala Arg Thr Val Met 180
185 190Lys Phe Gly Gly Asp Ile Thr Phe Phe Asp Arg Ile
Phe Thr Ala Val 195 200 205Ser Glu
Ser Asp Gly Leu Ala Tyr Ser Thr Cys Arg Glu Ile Glu Gly 210
215 220Gln Phe Cys Asp Tyr Ile Glu Thr Gln Phe Gln
Lys Pro Val Leu Leu225 230 235
240Ala Gly Pro Ala Leu Pro Val Pro Ser Lys Ser Thr Met Glu Gln Lys
245 250 255Trp Ser Asp Trp
Leu Gly Lys Phe Lys Glu Gly Ser Val Ile Tyr Cys 260
265 270Ala Phe Gly Ser Glu Cys Thr Leu Arg Lys Asp
Lys Phe Gln Glu Leu 275 280 285Leu
Trp Gly Leu Glu Leu Thr Gly Met Pro Phe Phe Ala Ala Leu Lys 290
295 300Pro Pro Phe Glu Thr Glu Ser Val Glu Ala
Ala Ile Pro Glu Glu Leu305 310 315
320Lys Glu Lys Ile Gln Gly Arg Gly Ile Val His Gly Glu Trp Val
Gln 325 330 335Gln Gln Leu
Phe Leu Gln His Pro Ser Val Gly Cys Phe Val Ser His 340
345 350Cys Gly Trp Ala Ser Leu Ser Glu Ala Leu
Val Asn Asp Cys Gln Ile 355 360
365Val Leu Leu Pro Gln Val Gly Asp Gln Ile Ile Asn Ala Arg Ile Met 370
375 380Ser Val Ser Leu Lys Val Gly Val
Glu Val Glu Lys Gly Glu Glu Asp385 390
395 400Gly Val Phe Ser Arg Glu Ser Val Cys Lys Ala Val
Lys Ala Val Met 405 410
415Asp Glu Lys Ser Glu Ile Gly Arg Glu Val Arg Gly Asn His Asp Lys
420 425 430Leu Arg Gly Phe Leu Met
Asn Ala Asp Leu Asp Ser Lys Tyr Met Asp 435 440
445Ser Phe Asn Gln Lys Leu Gln Asp Leu Leu Gly 450
455771380DNAIpomoea purpurea 77atgggttctc aagctacaac ttaccatatg
gccatgtatc catggtttgg ggttggacat 60ttgactggtt tcttccgttt ggcaaacaaa
ttagctggca aaggacatag aatctcattt 120ctaattccta aaaacactca atctaagtta
gaatctttca accttcatcc acacttaatc 180tcttttgtgc ctatcgttgt cccaagtata
ccaggcctgc cacctggtgc agagactaca 240tcagatgttc ctttcccaag tacacatttg
ctaatggaag caatggacaa gactcaaaac 300gatatagaga ttatcctgaa ggatcttaaa
gtagatgttg ttttctatga ttttactcac 360tggttgcctt ctctggccag aaagattggc
attaagagtg tcttttactc caccatttct 420cctttaatgc atggatatgc tttatcacca
gaaagacgtg tagttggtaa gcaattgaca 480gaggcagata tgatgaaggc cccagcttct
ttcccagacc catccattaa gctacatgca 540catgaagcta ggggttttac agccagaacc
gttatgaaat tcggtggtga catcaccttt 600ttcgatagaa tattcacagc agtttccgaa
agtgatggcc tggcctactc tacttgtaga 660gagatcgagg gacaattctg tgattacatt
gaaacacaat tccagaagcc agtcttgtta 720gccggtccag ctttgccagt cccatccaaa
tccactatgg aacaaaagtg gtcagattgg 780ttggggaaat tcaaggaagg ctccgtcatc
tactgtgctt tcgggtctga atgtacattg 840agaaaggaca aatttcagga acttttatgg
ggtttggaat tgacaggaat gcctttcttc 900gctgctctga agccaccttt tgagactgag
tctgttgagg ctgctatccc tgaggaacta 960aaggaaaaga ttcagggaag aggtatagta
catggagaat gggtacaaca acaattgttt 1020cttcaacacc catctgtcgg gtgcttcgtt
tctcactgcg gctgggcaag tttatctgaa 1080gcccttgtta atgattgtca aatcgtgtta
cttccacaag ttggcgatca gattatcaac 1140gccagaataa tgtcagtatc acttaaagtg
ggcgtggaag ttgaaaaggg tgaggaggac 1200ggtgtctttt caagagaatc tgtgtgcaag
gctgttaaag cagtaatgga tgaaaaatct 1260gaaatcggta gagaagtcag aggtaatcat
gataaactga ggggtttctt gatgaatgca 1320gacttagatt caaagtacat ggattcattc
aatcaaaagc tacaagattt gctaggttaa 138078438PRTBellis perennis 78Met Asp
Ser Lys Ile Asp Ser Lys Thr Phe Arg Val Val Met Leu Pro1 5
10 15Trp Leu Ala Tyr Ser His Ile Ser
Ser Phe Leu Val Phe Ala Lys Arg 20 25
30Leu Thr Asn His Asn Phe His Ile Tyr Ile Cys Ser Ser Gln Thr
Asn 35 40 45Met Gln Tyr Leu Lys
Asn Asn Leu Thr Ser Gln Tyr Ser Lys Ser Ile 50 55
60Gln Leu Ile Glu Leu Asn Leu Pro Ser Ser Ser Glu Leu Pro
Leu Gln65 70 75 80Tyr
His Thr Thr His Gly Leu Pro Pro His Leu Thr Lys Thr Leu Ser
85 90 95Asp Asp Tyr Gln Lys Ser Gly
Pro Asp Phe Glu Thr Ile Leu Ile Lys 100 105
110Leu Asn Pro His Leu Val Ile Tyr Asp Phe Asn Gln Leu Trp
Ala Pro 115 120 125Glu Val Ala Ser
Thr Leu His Ile Pro Ser Ile Gln Leu Leu Ser Gly 130
135 140Cys Val Ala Leu Tyr Ala Leu Asp Ala His Leu Tyr
Thr Lys Pro Leu145 150 155
160Asp Glu Asn Leu Ala Lys Phe Pro Phe Pro Glu Ile Tyr Pro Lys Asn
165 170 175Arg Asp Ile Pro Lys
Gly Gly Ser Lys Tyr Ile Glu Arg Phe Val Asp 180
185 190Cys Met Arg Arg Ser Cys Glu Ile Ile Leu Val Arg
Ser Thr Met Glu 195 200 205Leu Glu
Gly Lys Tyr Ile Asp Tyr Leu Ser Lys Thr Leu Gly Lys Lys 210
215 220Val Leu Pro Val Gly Pro Leu Val Gln Glu Ala
Ser Leu Leu Gln Asp225 230 235
240Asp His Ile Trp Ile Met Lys Trp Leu Asp Lys Lys Glu Glu Ser Ser
245 250 255Val Val Phe Val
Cys Phe Gly Ser Glu Tyr Ile Leu Ser Asp Asn Glu 260
265 270Ile Glu Asp Ile Ala Tyr Gly Leu Glu Leu Ser
Gln Val Ser Phe Val 275 280 285Trp
Ala Ile Arg Ala Lys Thr Ser Ala Leu Asn Gly Phe Ile Asp Arg 290
295 300Val Gly Asp Lys Gly Leu Val Ile Asp Lys
Trp Val Pro Gln Ala Asn305 310 315
320Ile Leu Ser His Ser Ser Thr Gly Gly Phe Ile Ser His Cys Gly
Trp 325 330 335Ser Ser Thr
Met Glu Ser Ile Arg Tyr Gly Val Pro Ile Ile Ala Met 340
345 350Pro Met Gln Phe Asp Gln Pro Tyr Asn Ala
Arg Leu Met Glu Thr Val 355 360
365Gly Ala Gly Ile Glu Val Gly Arg Asp Gly Glu Gly Arg Leu Lys Arg 370
375 380Glu Glu Ile Ala Ala Val Val Arg
Lys Val Val Val Glu Asp Ser Gly385 390
395 400Glu Ser Ile Arg Glu Lys Ala Lys Glu Leu Gly Glu
Ile Met Lys Lys 405 410
415Asn Met Glu Ala Glu Val Asp Gly Ile Val Ile Glu Asn Leu Val Lys
420 425 430Leu Cys Glu Met Asn Asn
435791317DNABellis perennis 79atggattcta aaatcgattc aaagacattc
agagtcgtta tgttgccttg gcttgcatac 60tcacacattt catcattcct agtgtttgcc
aagagactaa caaatcataa cttccacatc 120tacatttgtt cctctcaaac aaatatgcaa
tacctgaaaa acaacttgac gtctcagtat 180tcaaaatcta tacaactgat tgagttgaat
cttccatcta gttccgaatt gcctctgcag 240tatcatacta ctcacggact accaccacac
cttacgaaaa cattgtctga tgattatcaa 300aagtccggac ctgactttga aaccattttg
atcaaattga acccacatct ggtaatctac 360gactttaatc aactttgggc tccagaggtt
gctagtacac ttcatattcc atccatacag 420ttactgtctg gttgcgtcgc cttatatgcc
ttagacgccc atctgtacac aaagccacta 480gacgaaaact tggctaagtt tcctttccca
gaaatctatc ctaaaaacag agatattcct 540aagggaggta gtaaatacat cgaaaggttc
gtagactgta tgagaagatc ttgtgaaatc 600atattagtca gaagtaccat ggaacttgaa
ggaaaataca ttgattactt gtctaagaca 660ttagggaaaa aggtgttgcc agtagggcct
ctggtgcaag aggcttcttt gttgcaagat 720gatcatatat ggattatgaa gtggttagac
aaaaaggagg agtcatccgt cgtgtttgtt 780tgttttggtt ctgagtacat cttatcagac
aacgaaatag aagatattgc ttatggccta 840gagttgtccc aagtaagttt cgtttgggca
ataagagcta agacttctgc cttaaatggc 900ttcattgata gagtgggtga taaaggctta
gtcatcgata aatgggttcc acaggctaac 960atcttatctc actcttctac tggtggattc
attagtcatt gcggttggtc atcaacaatg 1020gaatctatta gatatggggt tcctattatc
gccatgccaa tgcaattcga tcaaccttac 1080aatgctaggt tgatggaaac tgttggtgca
ggtatcgaag ttggcagaga tggcgaaggt 1140agattgaaaa gagaagagat tgctgccgtg
gttagaaagg tcgttgttga agattctggg 1200gaatccataa gggagaaggc aaaggaattg
ggagaaatca tgaaaaaaaa catggaggcc 1260gaagtagatg gtatagtgat tgaaaatcta
gttaagctat gtgagatgaa caattaa 1317802490DNAZea mays 80atggttttgt
cttcttcttg tactacagta ccacacttat cttcattagc tgtcgtgcaa 60cttggtcctt
ggagcagtag gattaaaaag aaaaccgata ctgttgcagt accagccgct 120gcaggaaggt
ggagaagggc cttggctaga gcacagcaca catcagaatc cgcagctgtc 180gcaaagggca
gcagtttgac ccctatagtg agaactgacg ctgagtcaag gagaacaaga 240tggccaaccg
atgacgatga cgccgaacct ttagtggatg agatcagggc aatgcttact 300tccatgtctg
atggtgacat ttccgtgagc gcatacgata cagcctgggt cggattggtt 360ccaagattag
acggcggtga aggtcctcaa tttccagcag ctgtgagatg gataagaaat 420aaccagttgc
ctgacggaag ttggggcgat gccgcattat tctctgccta tgacaggctt 480atcaataccc
ttgcctgcgt tgtaactttg acaaggtggt ccctagaacc agagatgaga 540ggtagaggac
tatctttttt gggtaggaac atgtggaaat tagcaactga agatgaagag 600tcaatgccta
ttggcttcga attagcattt ccatctttga tagagcttgc taagagccta 660ggtgtccatg
acttccctta tgatcaccag gccctacaag gaatctactc ttcaagagag 720atcaaaatga
agaggattcc aaaagaagtg atgcataccg ttccaacatc aatattgcac 780agtttggagg
gtatgcctgg cctagattgg gctaaactac ttaaactaca gagcagcgac 840ggaagttttt
tgttctcacc agctgccact gcatatgctt taatgaatac cggagatgac 900aggtgtttta
gctacatcga tagaacagta aagaaattca acggcggcgt ccctaatgtt 960tatccagtgg
atctatttga acatatttgg gccgttgata gacttgaaag attaggaatc 1020tccaggtact
tccaaaagga gatcgaacaa tgcatggatt atgtaaacag gcattggact 1080gaggacggta
tttgttgggc aaggaactct gatgtcaaag aggtggacga cacagctatg 1140gcctttagac
ttcttaggtt gcacggctac agcgtcagtc ctgatgtgtt taaaaacttc 1200gaaaaggacg
gtgaattttt cgcatttgtc ggacagtcta atcaagctgt taccggtatg 1260tacaacttaa
acagagcaag ccagatatcc ttcccaggcg aggatgtgct tcatagagct 1320ggtgccttct
catatgagtt cttgaggaga aaagaagcag agggagcttt gagggacaag 1380tggatcattt
ctaaagatct acctggtgaa gttgtgtata ctttggattt tccatggtac 1440ggcaacttac
ctagagtcga ggccagagac tacctagagc aatacggagg tggtgatgac 1500gtttggattg
gcaagacatt gtataggatg ccacttgtaa acaatgatgt atatttggaa 1560ttggcaagaa
tggatttcaa ccactgccag gctttgcatc agttagagtg gcaaggacta 1620aaaagatggt
atactgaaaa taggttgatg gactttggtg tcgcccaaga agatgccctt 1680agagcttatt
ttcttgcagc cgcatctgtt tacgagcctt gtagagctgc cgagaggctt 1740gcatgggcta
gagccgcaat actagctaac gccgtgagca cccacttaag aaatagccca 1800tcattcagag
aaaggttaga gcattctctt aggtgtagac ctagtgaaga gacagatggc 1860tcctggttta
actcctcaag tggctctgat gcagttttag taaaggctgt cttaagactt 1920actgattcat
tagccaggga agcacagcca atccatggag gtgacccaga agatattata 1980cacaagttgt
taagatctgc ttgggccgag tgggttaggg aaaaggcaga cgctgccgat 2040agcgtgtgca
atggtagttc tgcagtagaa caagagggat caagaatggt ccatgataaa 2100cagacctgtc
tattattggc tagaatgatc gaaatttctg ccggtagggc agctggtgaa 2160gcagccagtg
aggacggcga tagaagaata attcaattaa caggctccat ctgcgacagt 2220cttaagcaaa
aaatgctagt ttcacaggac cctgaaaaaa atgaagagat gatgtctcac 2280gtggatgacg
aattgaagtt gaggattaga gagttcgttc aatatttgct tagactaggt 2340gaaaaaaaga
ctggatctag cgaaaccagg caaacatttt taagtatagt gaaatcatgt 2400tactatgctg
ctcattgccc acctcatgtc gttgatagac acattagtag agtgattttc 2460gagccagtaa
gtgccgcaaa gtaaccgcgg 249081827PRTZea
mays 81Met Val Leu Ser Ser Ser Cys Thr Thr Val Pro His Leu Ser Ser Leu1
5 10 15Ala Val Val Gln Leu
Gly Pro Trp Ser Ser Arg Ile Lys Lys Lys Thr 20
25 30Asp Thr Val Ala Val Pro Ala Ala Ala Gly Arg Trp
Arg Arg Ala Leu 35 40 45Ala Arg
Ala Gln His Thr Ser Glu Ser Ala Ala Val Ala Lys Gly Ser 50
55 60Ser Leu Thr Pro Ile Val Arg Thr Asp Ala Glu
Ser Arg Arg Thr Arg65 70 75
80Trp Pro Thr Asp Asp Asp Asp Ala Glu Pro Leu Val Asp Glu Ile Arg
85 90 95Ala Met Leu Thr Ser
Met Ser Asp Gly Asp Ile Ser Val Ser Ala Tyr 100
105 110Asp Thr Ala Trp Val Gly Leu Val Pro Arg Leu Asp
Gly Gly Glu Gly 115 120 125Pro Gln
Phe Pro Ala Ala Val Arg Trp Ile Arg Asn Asn Gln Leu Pro 130
135 140Asp Gly Ser Trp Gly Asp Ala Ala Leu Phe Ser
Ala Tyr Asp Arg Leu145 150 155
160Ile Asn Thr Leu Ala Cys Val Val Thr Leu Thr Arg Trp Ser Leu Glu
165 170 175Pro Glu Met Arg
Gly Arg Gly Leu Ser Phe Leu Gly Arg Asn Met Trp 180
185 190Lys Leu Ala Thr Glu Asp Glu Glu Ser Met Pro
Ile Gly Phe Glu Leu 195 200 205Ala
Phe Pro Ser Leu Ile Glu Leu Ala Lys Ser Leu Gly Val His Asp 210
215 220Phe Pro Tyr Asp His Gln Ala Leu Gln Gly
Ile Tyr Ser Ser Arg Glu225 230 235
240Ile Lys Met Lys Arg Ile Pro Lys Glu Val Met His Thr Val Pro
Thr 245 250 255Ser Ile Leu
His Ser Leu Glu Gly Met Pro Gly Leu Asp Trp Ala Lys 260
265 270Leu Leu Lys Leu Gln Ser Ser Asp Gly Ser
Phe Leu Phe Ser Pro Ala 275 280
285Ala Thr Ala Tyr Ala Leu Met Asn Thr Gly Asp Asp Arg Cys Phe Ser 290
295 300Tyr Ile Asp Arg Thr Val Lys Lys
Phe Asn Gly Gly Val Pro Asn Val305 310
315 320Tyr Pro Val Asp Leu Phe Glu His Ile Trp Ala Val
Asp Arg Leu Glu 325 330
335Arg Leu Gly Ile Ser Arg Tyr Phe Gln Lys Glu Ile Glu Gln Cys Met
340 345 350Asp Tyr Val Asn Arg His
Trp Thr Glu Asp Gly Ile Cys Trp Ala Arg 355 360
365Asn Ser Asp Val Lys Glu Val Asp Asp Thr Ala Met Ala Phe
Arg Leu 370 375 380Leu Arg Leu His Gly
Tyr Ser Val Ser Pro Asp Val Phe Lys Asn Phe385 390
395 400Glu Lys Asp Gly Glu Phe Phe Ala Phe Val
Gly Gln Ser Asn Gln Ala 405 410
415Val Thr Gly Met Tyr Asn Leu Asn Arg Ala Ser Gln Ile Ser Phe Pro
420 425 430Gly Glu Asp Val Leu
His Arg Ala Gly Ala Phe Ser Tyr Glu Phe Leu 435
440 445Arg Arg Lys Glu Ala Glu Gly Ala Leu Arg Asp Lys
Trp Ile Ile Ser 450 455 460Lys Asp Leu
Pro Gly Glu Val Val Tyr Thr Leu Asp Phe Pro Trp Tyr465
470 475 480Gly Asn Leu Pro Arg Val Glu
Ala Arg Asp Tyr Leu Glu Gln Tyr Gly 485
490 495Gly Gly Asp Asp Val Trp Ile Gly Lys Thr Leu Tyr
Arg Met Pro Leu 500 505 510Val
Asn Asn Asp Val Tyr Leu Glu Leu Ala Arg Met Asp Phe Asn His 515
520 525Cys Gln Ala Leu His Gln Leu Glu Trp
Gln Gly Leu Lys Arg Trp Tyr 530 535
540Thr Glu Asn Arg Leu Met Asp Phe Gly Val Ala Gln Glu Asp Ala Leu545
550 555 560Arg Ala Tyr Phe
Leu Ala Ala Ala Ser Val Tyr Glu Pro Cys Arg Ala 565
570 575Ala Glu Arg Leu Ala Trp Ala Arg Ala Ala
Ile Leu Ala Asn Ala Val 580 585
590Ser Thr His Leu Arg Asn Ser Pro Ser Phe Arg Glu Arg Leu Glu His
595 600 605Ser Leu Arg Cys Arg Pro Ser
Glu Glu Thr Asp Gly Ser Trp Phe Asn 610 615
620Ser Ser Ser Gly Ser Asp Ala Val Leu Val Lys Ala Val Leu Arg
Leu625 630 635 640Thr Asp
Ser Leu Ala Arg Glu Ala Gln Pro Ile His Gly Gly Asp Pro
645 650 655Glu Asp Ile Ile His Lys Leu
Leu Arg Ser Ala Trp Ala Glu Trp Val 660 665
670Arg Glu Lys Ala Asp Ala Ala Asp Ser Val Cys Asn Gly Ser
Ser Ala 675 680 685Val Glu Gln Glu
Gly Ser Arg Met Val His Asp Lys Gln Thr Cys Leu 690
695 700Leu Leu Ala Arg Met Ile Glu Ile Ser Ala Gly Arg
Ala Ala Gly Glu705 710 715
720Ala Ala Ser Glu Asp Gly Asp Arg Arg Ile Ile Gln Leu Thr Gly Ser
725 730 735Ile Cys Asp Ser Leu
Lys Gln Lys Met Leu Val Ser Gln Asp Pro Glu 740
745 750Lys Asn Glu Glu Met Met Ser His Val Asp Asp Glu
Leu Lys Leu Arg 755 760 765Ile Arg
Glu Phe Val Gln Tyr Leu Leu Arg Leu Gly Glu Lys Lys Thr 770
775 780Gly Ser Ser Glu Thr Arg Gln Thr Phe Leu Ser
Ile Val Lys Ser Cys785 790 795
800Tyr Tyr Ala Ala His Cys Pro Pro His Val Val Asp Arg His Ile Ser
805 810 815Arg Val Ile Phe
Glu Pro Val Ser Ala Ala Lys 820
825821461DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 82actagtaaaa tggatgcaat ggcaactact
gagaaaaagc ctcatgtgat cttcattcca 60tttcctgcac aatctcacat aaaggcaatg
ctaaagttag cacaactatt acaccataag 120ggattacaga taactttcgt gaataccgac
ttcatccata atcaatttct ggaatctagt 180ggccctcatt gtttggacgg agccccaggg
tttagattcg aaacaattcc tgacggtgtt 240tcacattccc cagaggcctc catcccaata
agagagagtt tactgaggtc aatagaaacc 300aactttttgg atcgtttcat tgacttggtc
acaaaacttc cagacccacc aacttgcata 360atctctgatg gctttctgtc agtgtttact
atcgacgctg ccaaaaagtt gggtatccca 420gttatgatgt actggactct tgctgcatgc
ggtttcatgg gtttctatca catccattct 480cttatcgaaa agggttttgc tccactgaaa
gatgcatcat acttaaccaa cggctacctg 540gatactgtta ttgactgggt accaggtatg
gaaggtataa gacttaaaga ttttcctttg 600gattggtcta cagaccttaa tgataaagta
ttgatgttta ctacagaagc tccacaaaga 660tctcataagg tttcacatca tatctttcac
acctttgatg aattggaacc atcaatcatc 720aaaaccttgt ctctaagata caatcatatc
tacactattg gtccattaca attacttcta 780gatcaaattc ctgaagagaa aaagcaaact
ggtattacat ccttacacgg ctactcttta 840gtgaaagagg aaccagaatg ttttcaatgg
ctacaaagta aagagcctaa ttctgtggtc 900tacgtcaact tcggaagtac aacagtcatg
tccttggaag atatgactga atttggttgg 960ggccttgcta attcaaatca ttactttcta
tggattatca ggtccaattt ggtaataggg 1020gaaaacgccg tattacctcc agaattggag
gaacacatca aaaagagagg tttcattgct 1080tcctggtgtt ctcaggaaaa ggtattgaaa
catccttctg ttggtggttt ccttactcat 1140tgcggttggg gctctacaat cgaatcacta
agtgcaggag ttccaatgat ttgttggcca 1200tattcatggg accaacttac aaattgtagg
tatatctgta aagagtggga agttggatta 1260gaaatgggaa caaaggttaa acgtgatgaa
gtgaaaagat tggttcagga gttgatgggg 1320gaaggtggcc acaagatgag aaacaaggcc
aaagattgga aggaaaaagc cagaattgct 1380attgctccta acgggtcatc ctctctaaac
attgataaga tggtcaaaga gattacagtc 1440ttagccagaa actaagtcga c
1461831398DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
83actagtaaaa tggcagagca acaaaagatc aaaaagtcac ctcacgtctt acttattcca
60tttcctctgc aaggacatat caacccattc atacaatttg ggaaaagatt gattagtaag
120ggtgtaaaga caacactggt aaccactatc cacactttga attctactct gaaccactca
180aatactacta ctacaagtat agaaattcaa gctatatcag acggatgcga tgagggtggc
240tttatgtctg ccggtgaatc ttacttggaa acattcaagc aagtgggatc caagtctctg
300gccgatctaa tcaaaaagtt acagagtgaa ggcaccacaa ttgacgccat aatctacgat
360tctatgacag agtgggtttt agacgttgct atcgaatttg gtattgatgg aggttccttt
420ttcacacaag catgtgttgt gaattctcta tactaccatg tgcataaagg gttaatctct
480ttaccattgg gtgaaactgt ttcagttcca ggttttccag tgttacaacg ttgggaaacc
540ccattgatct tacaaaatca tgaacaaata caatcacctt ggtcccagat gttgtttggt
600caattcgcta acatcgatca agcaagatgg gtctttacta attcattcta taagttagag
660gaagaggtaa ttgaatggac taggaagatc tggaatttga aagtcattgg tccaacattg
720ccatcaatgt atttggacaa aagacttgat gatgataaag ataatggttt caatttgtac
780aaggctaatc atcacgaatg tatgaattgg ctggatgaca aaccaaagga atcagttgta
840tatgttgctt tcggctctct tgttaaacat ggtccagaac aagttgagga gattacaaga
900gcacttatag actctgacgt aaactttttg tgggtcatta agcacaaaga ggaggggaaa
960ctgccagaaa acctttctga agtgataaag accggaaaag gtctaatcgt tgcttggtgt
1020aaacaattgg atgttttagc tcatgaatct gtaggctgtt ttgtaacaca ttgcggattc
1080aactctacac tagaagccat ttccttaggc gtacctgtcg ttgcaatgcc tcagttctcc
1140gatcagacaa ccaacgctaa acttttggac gaaatactag gggtgggtgt cagagttaaa
1200gcagacgaga atggtatcgt cagaagaggg aacctagctt catgtatcaa aatgatcatg
1260gaagaggaaa gaggagttat cataaggaaa aacgcagtta agtggaagga tcttgcaaag
1320gttgccgtcc atgaaggcgg ctcttcagat aatgatattg ttgaatttgt gtccgaacta
1380atcaaagcct aagtcgac
1398841437DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 84actagtaaaa tggctacatc tgattctatt
gttgatgaca ggaagcagtt gcatgtggct 60actttccctt ggcttgcttt cggtcatata
ctgccttacc tacaactatc aaaactgata 120gctgaaaaag gacataaagt gtcattcctt
tcaacaacta gaaacattca aagattatct 180tcccacatat caccattgat taacgtcgtt
caattgacac ttccaagagt acaggaatta 240ccagaagatg ctgaagctac aacagatgtg
catcctgaag atatccctta cttgaaaaag 300gcatccgatg gattacagcc tgaggtcact
agattccttg agcaacacag tccagattgg 360atcatatacg actacactca ctattggttg
ccttcaattg cagcatcact aggcatttct 420agggcacatt tcagtgtaac cacaccttgg
gccattgctt acatgggtcc atccgctgat 480gctatgatta acggcagtga tggtagaact
accgttgaag atttgacaac cccaccaaag 540tggtttccat ttccaactaa agtctgttgg
agaaaacacg acttagcaag actggttcca 600tacaaggcac caggaatctc agacggctat
agaatgggtt tagtccttaa agggtctgac 660tgcctattgt ctaagtgtta ccatgagttt
gggacacaat ggctaccact tttggaaaca 720ttacaccaag ttcctgtcgt accagttggt
ctattacctc cagaaatccc tggtgatgag 780aaggacgaga cttgggtttc aatcaaaaag
tggttagacg ggaagcaaaa aggctcagtg 840gtatatgtgg cactgggttc cgaagtttta
gtatctcaaa cagaagttgt ggaacttgcc 900ttaggtttgg aactatctgg attgccattt
gtctgggcct acagaaaacc aaaaggccct 960gcaaagtccg attcagttga attgccagac
ggctttgtcg agagaactag agatagaggg 1020ttggtatgga cttcatgggc tccacaattg
agaatcctga gtcacgaatc tgtgtgcggt 1080ttcctaacac attgtggttc tggttctata
gttgaaggac tgatgtttgg tcatccactt 1140atcatgttgc caatctttgg tgaccagcct
ttgaatgcac gtctgttaga agataaacaa 1200gttggaattg aaatcccacg taatgaggaa
gatggatgtt taaccaagga gtctgtggcc 1260agatcattac gttccgttgt cgttgaaaag
gaaggcgaaa tctacaaggc caatgcccgt 1320gaactttcaa agatctacaa tgacacaaaa
gtagagaagg aatatgtttc tcaatttgta 1380gattacctag agaaaaacgc tagagccgta
gctattgatc atgaatccta agtcgac 1437851392DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
85actagtaaaa tggaaaacaa gaccgaaaca acagttagac gtaggcgtag aatcattctg
60tttccagtac cttttcaagg gcacatcaat ccaatactac aactagccaa cgttttgtac
120tctaaaggtt tttctattac aatctttcac accaatttca acaaaccaaa aacatccaat
180tacccacatt tcacattcag attcatactt gataatgatc cacaagatga acgtatttca
240aacttaccta cccacggtcc tttagctgga atgagaattc caatcatcaa tgaacatggt
300gccgatgagc ttagaagaga attagagtta cttatgttgg catccgaaga ggacgaggaa
360gtctcttgtc tgattactga cgctctatgg tactttgccc aatctgtggc tgatagtttg
420aatttgagga gattggtact aatgacatcc agtctgttta actttcacgc tcatgttagt
480ttaccacaat ttgacgaatt gggatacttg gaccctgatg acaagactag gttagaggaa
540caggcctctg gttttcctat gttgaaagtc aaagatatca agtctgccta ttctaattgg
600caaatcttga aagagatctt aggaaagatg atcaaacaga caaaggcttc atctggagtg
660atttggaaca gtttcaaaga gttagaagag tctgaattgg agactgtaat cagagaaatt
720ccagcacctt cattcctgat accattacca aaacatttga ctgcttcctc ttcctctttg
780ttggatcatg acagaacagt ttttcaatgg ttggaccaac aaccacctag ttctgttttg
840tacgtgtcat ttggtagtac ttctgaagtc gatgaaaagg acttccttga aatcgcaaga
900ggcttagtcg atagtaagca gtcattcctt tgggtcgtgc gtccaggttt cgtgaaaggc
960tcaacatggg tcgaaccact tccagatggt tttctaggcg aaagaggtag aatagtcaaa
1020tgggttcctc aacaggaagt tttagctcat ggcgctattg gggcattctg gactcattcc
1080ggatggaatt caactttaga atcagtatgc gaaggggtac ctatgatctt ttcagatttt
1140ggtcttgatc aaccactgaa cgcaagatac atgtctgatg ttttgaaagt gggtgtatat
1200ctagaaaatg gctgggaaag gggtgaaata gctaatgcaa taagacgtgt tatggttgat
1260gaagaggggg agtatatcag acaaaacgca agagtgctga agcaaaaggc cgacgtttct
1320ctaatgaagg gaggctcttc atacgaatcc ttagaatctc ttgtttccta catttcatca
1380ctgtaagtcg ac
13928612PRTArtificial SequenceDescription of Artificial Sequence
Synthetic peptide 86Thr Ser Phe Ala Glu Tyr Trp Asn Leu Leu Ser Pro1
5 10871602DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
87atgaccagct ttgccgagta ttggaatctg ttaagtccca cttcttttgc agaatattgg
60aaccttctat caccgacgag tttcgcggag tactggaatt tgttttctcc aacatcgttc
120gctgaatact ggaacttact cagccctgct agtaaaatgg atgcaatggc aactactgag
180aaaaagcctc atgtgatctt cattccattt cctgcacaat ctcacataaa ggcaatgcta
240aagttagcac aactattaca ccataaggga ttacagataa ctttcgtgaa taccgacttc
300atccataatc aatttctgga atctagtggc cctcattgtt tggacggagc cccagggttt
360agattcgaaa caattcctga cggtgtttca cattccccag aggcctccat cccaataaga
420gagagtttac tgaggtcaat agaaaccaac tttttggatc gtttcattga cttggtcaca
480aaacttccag acccaccaac ttgcataatc tctgatggct ttctgtcagt gtttactatc
540gacgctgcca aaaagttggg tatcccagtt atgatgtact ggactcttgc tgcatgcggt
600ttcatgggtt tctatcacat ccattctctt atcgaaaagg gttttgctcc actgaaagat
660gcatcatact taaccaacgg ctacctggat actgttattg actgggtacc aggtatggaa
720ggtataagac ttaaagattt tcctttggat tggtctacag accttaatga taaagtattg
780atgtttacta cagaagctcc acaaagatct cataaggttt cacatcatat ctttcacacc
840tttgatgaat tggaaccatc aatcatcaaa accttgtctc taagatacaa tcatatctac
900actattggtc cattacaatt acttctagat caaattcctg aagagaaaaa gcaaactggt
960attacatcct tacacggcta ctctttagtg aaagaggaac cagaatgttt tcaatggcta
1020caaagtaaag agcctaattc tgtggtctac gtcaacttcg gaagtacaac agtcatgtcc
1080ttggaagata tgactgaatt tggttggggc cttgctaatt caaatcatta ctttctatgg
1140attatcaggt ccaatttggt aataggggaa aacgccgtat tacctccaga attggaggaa
1200cacatcaaaa agagaggttt cattgcttcc tggtgttctc aggaaaaggt attgaaacat
1260ccttctgttg gtggtttcct tactcattgc ggttggggct ctacaatcga atcactaagt
1320gcaggagttc caatgatttg ttggccatat tcatgggacc aacttacaaa ttgtaggtat
1380atctgtaaag agtgggaagt tggattagaa atgggaacaa aggttaaacg tgatgaagtg
1440aaaagattgg ttcaggagtt gatgggggaa ggtggccaca agatgagaaa caaggccaaa
1500gattggaagg aaaaagccag aattgctatt gctcctaacg ggtcatcctc tctaaacatt
1560gataagatgg tcaaagagat tacagtctta gccagaaact aa
160288533PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 88Met Thr Ser Phe Ala Glu Tyr Trp Asn Leu Leu
Ser Pro Thr Ser Phe1 5 10
15Ala Glu Tyr Trp Asn Leu Leu Ser Pro Thr Ser Phe Ala Glu Tyr Trp
20 25 30Asn Leu Phe Ser Pro Thr Ser
Phe Ala Glu Tyr Trp Asn Leu Leu Ser 35 40
45Pro Ala Ser Lys Met Asp Ala Met Ala Thr Thr Glu Lys Lys Pro
His 50 55 60Val Ile Phe Ile Pro Phe
Pro Ala Gln Ser His Ile Lys Ala Met Leu65 70
75 80Lys Leu Ala Gln Leu Leu His His Lys Gly Leu
Gln Ile Thr Phe Val 85 90
95Asn Thr Asp Phe Ile His Asn Gln Phe Leu Glu Ser Ser Gly Pro His
100 105 110Cys Leu Asp Gly Ala Pro
Gly Phe Arg Phe Glu Thr Ile Pro Asp Gly 115 120
125Val Ser His Ser Pro Glu Ala Ser Ile Pro Ile Arg Glu Ser
Leu Leu 130 135 140Arg Ser Ile Glu Thr
Asn Phe Leu Asp Arg Phe Ile Asp Leu Val Thr145 150
155 160Lys Leu Pro Asp Pro Pro Thr Cys Ile Ile
Ser Asp Gly Phe Leu Ser 165 170
175Val Phe Thr Ile Asp Ala Ala Lys Lys Leu Gly Ile Pro Val Met Met
180 185 190Tyr Trp Thr Leu Ala
Ala Cys Gly Phe Met Gly Phe Tyr His Ile His 195
200 205Ser Leu Ile Glu Lys Gly Phe Ala Pro Leu Lys Asp
Ala Ser Tyr Leu 210 215 220Thr Asn Gly
Tyr Leu Asp Thr Val Ile Asp Trp Val Pro Gly Met Glu225
230 235 240Gly Ile Arg Leu Lys Asp Phe
Pro Leu Asp Trp Ser Thr Asp Leu Asn 245
250 255Asp Lys Val Leu Met Phe Thr Thr Glu Ala Pro Gln
Arg Ser His Lys 260 265 270Val
Ser His His Ile Phe His Thr Phe Asp Glu Leu Glu Pro Ser Ile 275
280 285Ile Lys Thr Leu Ser Leu Arg Tyr Asn
His Ile Tyr Thr Ile Gly Pro 290 295
300Leu Gln Leu Leu Leu Asp Gln Ile Pro Glu Glu Lys Lys Gln Thr Gly305
310 315 320Ile Thr Ser Leu
His Gly Tyr Ser Leu Val Lys Glu Glu Pro Glu Cys 325
330 335Phe Gln Trp Leu Gln Ser Lys Glu Pro Asn
Ser Val Val Tyr Val Asn 340 345
350Phe Gly Ser Thr Thr Val Met Ser Leu Glu Asp Met Thr Glu Phe Gly
355 360 365Trp Gly Leu Ala Asn Ser Asn
His Tyr Phe Leu Trp Ile Ile Arg Ser 370 375
380Asn Leu Val Ile Gly Glu Asn Ala Val Leu Pro Pro Glu Leu Glu
Glu385 390 395 400His Ile
Lys Lys Arg Gly Phe Ile Ala Ser Trp Cys Ser Gln Glu Lys
405 410 415Val Leu Lys His Pro Ser Val
Gly Gly Phe Leu Thr His Cys Gly Trp 420 425
430Gly Ser Thr Ile Glu Ser Leu Ser Ala Gly Val Pro Met Ile
Cys Trp 435 440 445Pro Tyr Ser Trp
Asp Gln Leu Thr Asn Cys Arg Tyr Ile Cys Lys Glu 450
455 460Trp Glu Val Gly Leu Glu Met Gly Thr Lys Val Lys
Arg Asp Glu Val465 470 475
480Lys Arg Leu Val Gln Glu Leu Met Gly Glu Gly Gly His Lys Met Arg
485 490 495Asn Lys Ala Lys Asp
Trp Lys Glu Lys Ala Arg Ile Ala Ile Ala Pro 500
505 510Asn Gly Ser Ser Ser Leu Asn Ile Asp Lys Met Val
Lys Glu Ile Thr 515 520 525Val Leu
Ala Arg Asn 530891893DNAArtificial SequenceDescription of Artificial
Sequence Synthetic polynucleotide 89atgtgcaata ccaacatgtc tgtacctact
gatggtgctg taaccacctc acagattcca 60gcttcggaac aagagaccct ggttagacca
aagccattgc ttttgaagtt attaaagtct 120gttggtgcac aaaaagacac ttatactatg
aaagaggttc ttttttatct tggccagtat 180attatgacta aacgattata tgatgagaag
caacaacata ttgtatattg ttcaaatgat 240cttctaggag atttgtttgg cgtgccaagc
ttctctgtga aagagcacag gaaaatatat 300accatgatct acaggaactt ggtagtagtc
aatcagcagg aatcatcgga ctcaggtaca 360tctgtgagtg agaacaggtg tcaccttgaa
ggtgggagtg atcaaaagga ccttgtacaa 420gagcttcagg aagagaaacc ttcatcttca
catttggttt ctagaccatc taccggtggt 480agcggatcct ctggaggcag tgctagtaaa
atggcagagc aacaaaagat caaaaagtca 540cctcacgtct tacttattcc atttcctctg
caaggacata tcaacccatt catacaattt 600gggaaaagat tgattagtaa gggtgtaaag
acaacactgg taaccactat ccacactttg 660aattctactc tgaaccactc aaatactact
actacaagta tagaaattca agctatatca 720gacggatgcg atgagggtgg ctttatgtct
gccggtgaat cttacttgga aacattcaag 780caagtgggat ccaagtctct ggccgatcta
atcaaaaagt tacagagtga aggcaccaca 840attgacgcca taatctacga ttctatgaca
gagtgggttt tagacgttgc tatcgaattt 900ggtattgatg gaggttcctt tttcacacaa
gcatgtgttg tgaattctct atactaccat 960gtgcataaag ggttaatctc tttaccattg
ggtgaaactg tttcagttcc aggttttcca 1020gtgttacaac gttgggaaac cccattgatc
ttacaaaatc atgaacaaat acaatcacct 1080tggtcccaga tgttgtttgg tcaattcgct
aacatcgatc aagcaagatg ggtctttact 1140aattcattct ataagttaga ggaagaggta
attgaatgga ctaggaagat ctggaatttg 1200aaagtcattg gtccaacatt gccatcaatg
tatttggaca aaagacttga tgatgataaa 1260gataatggtt tcaatttgta caaggctaat
catcacgaat gtatgaattg gctggatgac 1320aaaccaaagg aatcagttgt atatgttgct
ttcggctctc ttgttaaaca tggtccagaa 1380caagttgagg agattacaag agcacttata
gactctgacg taaacttttt gtgggtcatt 1440aagcacaaag aggaggggaa actgccagaa
aacctttctg aagtgataaa gaccggaaaa 1500ggtctaatcg ttgcttggtg taaacaattg
gatgttttag ctcatgaatc tgtaggctgt 1560tttgtaacac attgcggatt caactctaca
ctagaagcca tttccttagg cgtacctgtc 1620gttgcaatgc ctcagttctc cgatcagaca
accaacgcta aacttttgga cgaaatacta 1680ggggtgggtg tcagagttaa agcagacgag
aatggtatcg tcagaagagg gaacctagct 1740tcatgtatca aaatgatcat ggaagaggaa
agaggagtta tcataaggaa aaacgcagtt 1800aagtggaagg atcttgcaaa ggttgccgtc
catgaaggcg gctcttcaga taatgatatt 1860gttgaatttg tgtccgaact aatcaaagcc
taa 189390630PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
90Met Cys Asn Thr Asn Met Ser Val Pro Thr Asp Gly Ala Val Thr Thr1
5 10 15Ser Gln Ile Pro Ala Ser
Glu Gln Glu Thr Leu Val Arg Pro Lys Pro 20 25
30Leu Leu Leu Lys Leu Leu Lys Ser Val Gly Ala Gln Lys
Asp Thr Tyr 35 40 45Thr Met Lys
Glu Val Leu Phe Tyr Leu Gly Gln Tyr Ile Met Thr Lys 50
55 60Arg Leu Tyr Asp Glu Lys Gln Gln His Ile Val Tyr
Cys Ser Asn Asp65 70 75
80Leu Leu Gly Asp Leu Phe Gly Val Pro Ser Phe Ser Val Lys Glu His
85 90 95Arg Lys Ile Tyr Thr Met
Ile Tyr Arg Asn Leu Val Val Val Asn Gln 100
105 110Gln Glu Ser Ser Asp Ser Gly Thr Ser Val Ser Glu
Asn Arg Cys His 115 120 125Leu Glu
Gly Gly Ser Asp Gln Lys Asp Leu Val Gln Glu Leu Gln Glu 130
135 140Glu Lys Pro Ser Ser Ser His Leu Val Ser Arg
Pro Ser Thr Gly Gly145 150 155
160Ser Gly Ser Ser Gly Gly Ser Ala Ser Lys Met Ala Glu Gln Gln Lys
165 170 175Ile Lys Lys Ser
Pro His Val Leu Leu Ile Pro Phe Pro Leu Gln Gly 180
185 190His Ile Asn Pro Phe Ile Gln Phe Gly Lys Arg
Leu Ile Ser Lys Gly 195 200 205Val
Lys Thr Thr Leu Val Thr Thr Ile His Thr Leu Asn Ser Thr Leu 210
215 220Asn His Ser Asn Thr Thr Thr Thr Ser Ile
Glu Ile Gln Ala Ile Ser225 230 235
240Asp Gly Cys Asp Glu Gly Gly Phe Met Ser Ala Gly Glu Ser Tyr
Leu 245 250 255Glu Thr Phe
Lys Gln Val Gly Ser Lys Ser Leu Ala Asp Leu Ile Lys 260
265 270Lys Leu Gln Ser Glu Gly Thr Thr Ile Asp
Ala Ile Ile Tyr Asp Ser 275 280
285Met Thr Glu Trp Val Leu Asp Val Ala Ile Glu Phe Gly Ile Asp Gly 290
295 300Gly Ser Phe Phe Thr Gln Ala Cys
Val Val Asn Ser Leu Tyr Tyr His305 310
315 320Val His Lys Gly Leu Ile Ser Leu Pro Leu Gly Glu
Thr Val Ser Val 325 330
335Pro Gly Phe Pro Val Leu Gln Arg Trp Glu Thr Pro Leu Ile Leu Gln
340 345 350Asn His Glu Gln Ile Gln
Ser Pro Trp Ser Gln Met Leu Phe Gly Gln 355 360
365Phe Ala Asn Ile Asp Gln Ala Arg Trp Val Phe Thr Asn Ser
Phe Tyr 370 375 380Lys Leu Glu Glu Glu
Val Ile Glu Trp Thr Arg Lys Ile Trp Asn Leu385 390
395 400Lys Val Ile Gly Pro Thr Leu Pro Ser Met
Tyr Leu Asp Lys Arg Leu 405 410
415Asp Asp Asp Lys Asp Asn Gly Phe Asn Leu Tyr Lys Ala Asn His His
420 425 430Glu Cys Met Asn Trp
Leu Asp Asp Lys Pro Lys Glu Ser Val Val Tyr 435
440 445Val Ala Phe Gly Ser Leu Val Lys His Gly Pro Glu
Gln Val Glu Glu 450 455 460Ile Thr Arg
Ala Leu Ile Asp Ser Asp Val Asn Phe Leu Trp Val Ile465
470 475 480Lys His Lys Glu Glu Gly Lys
Leu Pro Glu Asn Leu Ser Glu Val Ile 485
490 495Lys Thr Gly Lys Gly Leu Ile Val Ala Trp Cys Lys
Gln Leu Asp Val 500 505 510Leu
Ala His Glu Ser Val Gly Cys Phe Val Thr His Cys Gly Phe Asn 515
520 525Ser Thr Leu Glu Ala Ile Ser Leu Gly
Val Pro Val Val Ala Met Pro 530 535
540Gln Phe Ser Asp Gln Thr Thr Asn Ala Lys Leu Leu Asp Glu Ile Leu545
550 555 560Gly Val Gly Val
Arg Val Lys Ala Asp Glu Asn Gly Ile Val Arg Arg 565
570 575Gly Asn Leu Ala Ser Cys Ile Lys Met Ile
Met Glu Glu Glu Arg Gly 580 585
590Val Ile Ile Arg Lys Asn Ala Val Lys Trp Lys Asp Leu Ala Lys Val
595 600 605Ala Val His Glu Gly Gly Ser
Ser Asp Asn Asp Ile Val Glu Phe Val 610 615
620Ser Glu Leu Ile Lys Ala625 630911932DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
91atgtgcaata ccaacatgtc tgtacctact gatggtgctg taaccacctc acagattcca
60gcttcggaac aagagaccct ggttagacca aagccattgc ttttgaagtt attaaagtct
120gttggtgcac aaaaagacac ttatactatg aaagaggttc ttttttatct tggccagtat
180attatgacta aacgattata tgatgagaag caacaacata ttgtatattg ttcaaatgat
240cttctaggag atttgtttgg cgtgccaagc ttctctgtga aagagcacag gaaaatatat
300accatgatct acaggaactt ggtagtagtc aatcagcagg aatcatcgga ctcaggtaca
360tctgtgagtg agaacaggtg tcaccttgaa ggtgggagtg atcaaaagga ccttgtacaa
420gagcttcagg aagagaaacc ttcatcttca catttggttt ctagaccatc taccggtggt
480agcggatcct ctggaggcag tgctagtaaa atggctacat ctgattctat tgttgatgac
540aggaagcagt tgcatgtggc tactttccct tggcttgctt tcggtcatat actgccttac
600ctacaactat caaaactgat agctgaaaaa ggacataaag tgtcattcct ttcaacaact
660agaaacattc aaagattatc ttcccacata tcaccattga ttaacgtcgt tcaattgaca
720cttccaagag tacaggaatt accagaagat gctgaagcta caacagatgt gcatcctgaa
780gatatccctt acttgaaaaa ggcatccgat ggattacagc ctgaggtcac tagattcctt
840gagcaacaca gtccagattg gatcatatac gactacactc actattggtt gccttcaatt
900gcagcatcac taggcatttc tagggcacat ttcagtgtaa ccacaccttg ggccattgct
960tacatgggtc catccgctga tgctatgatt aacggcagtg atggtagaac taccgttgaa
1020gatttgacaa ccccaccaaa gtggtttcca tttccaacta aagtctgttg gagaaaacac
1080gacttagcaa gactggttcc atacaaggca ccaggaatct cagacggcta tagaatgggt
1140ttagtcctta aagggtctga ctgcctattg tctaagtgtt accatgagtt tgggacacaa
1200tggctaccac ttttggaaac attacaccaa gttcctgtcg taccagttgg tctattacct
1260ccagaaatcc ctggtgatga gaaggacgag acttgggttt caatcaaaaa gtggttagac
1320gggaagcaaa aaggctcagt ggtatatgtg gcactgggtt ccgaagtttt agtatctcaa
1380acagaagttg tggaacttgc cttaggtttg gaactatctg gattgccatt tgtctgggcc
1440tacagaaaac caaaaggccc tgcaaagtcc gattcagttg aattgccaga cggctttgtc
1500gagagaacta gagatagagg gttggtatgg acttcatggg ctccacaatt gagaatcctg
1560agtcacgaat ctgtgtgcgg tttcctaaca cattgtggtt ctggttctat agttgaagga
1620ctgatgtttg gtcatccact tatcatgttg ccaatctttg gtgaccagcc tttgaatgca
1680cgtctgttag aagataaaca agttggaatt gaaatcccac gtaatgagga agatggatgt
1740ttaaccaagg agtctgtggc cagatcatta cgttccgttg tcgttgaaaa ggaaggcgaa
1800atctacaagg ccaatgcccg tgaactttca aagatctaca atgacacaaa agtagagaag
1860gaatatgttt ctcaatttgt agattaccta gagaaaaacg ctagagccgt agctattgat
1920catgaatcct aa
193292643PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 92Met Cys Asn Thr Asn Met Ser Val Pro Thr Asp
Gly Ala Val Thr Thr1 5 10
15Ser Gln Ile Pro Ala Ser Glu Gln Glu Thr Leu Val Arg Pro Lys Pro
20 25 30Leu Leu Leu Lys Leu Leu Lys
Ser Val Gly Ala Gln Lys Asp Thr Tyr 35 40
45Thr Met Lys Glu Val Leu Phe Tyr Leu Gly Gln Tyr Ile Met Thr
Lys 50 55 60Arg Leu Tyr Asp Glu Lys
Gln Gln His Ile Val Tyr Cys Ser Asn Asp65 70
75 80Leu Leu Gly Asp Leu Phe Gly Val Pro Ser Phe
Ser Val Lys Glu His 85 90
95Arg Lys Ile Tyr Thr Met Ile Tyr Arg Asn Leu Val Val Val Asn Gln
100 105 110Gln Glu Ser Ser Asp Ser
Gly Thr Ser Val Ser Glu Asn Arg Cys His 115 120
125Leu Glu Gly Gly Ser Asp Gln Lys Asp Leu Val Gln Glu Leu
Gln Glu 130 135 140Glu Lys Pro Ser Ser
Ser His Leu Val Ser Arg Pro Ser Thr Gly Gly145 150
155 160Ser Gly Ser Ser Gly Gly Ser Ala Ser Lys
Met Ala Thr Ser Asp Ser 165 170
175Ile Val Asp Asp Arg Lys Gln Leu His Val Ala Thr Phe Pro Trp Leu
180 185 190Ala Phe Gly His Ile
Leu Pro Tyr Leu Gln Leu Ser Lys Leu Ile Ala 195
200 205Glu Lys Gly His Lys Val Ser Phe Leu Ser Thr Thr
Arg Asn Ile Gln 210 215 220Arg Leu Ser
Ser His Ile Ser Pro Leu Ile Asn Val Val Gln Leu Thr225
230 235 240Leu Pro Arg Val Gln Glu Leu
Pro Glu Asp Ala Glu Ala Thr Thr Asp 245
250 255Val His Pro Glu Asp Ile Pro Tyr Leu Lys Lys Ala
Ser Asp Gly Leu 260 265 270Gln
Pro Glu Val Thr Arg Phe Leu Glu Gln His Ser Pro Asp Trp Ile 275
280 285Ile Tyr Asp Tyr Thr His Tyr Trp Leu
Pro Ser Ile Ala Ala Ser Leu 290 295
300Gly Ile Ser Arg Ala His Phe Ser Val Thr Thr Pro Trp Ala Ile Ala305
310 315 320Tyr Met Gly Pro
Ser Ala Asp Ala Met Ile Asn Gly Ser Asp Gly Arg 325
330 335Thr Thr Val Glu Asp Leu Thr Thr Pro Pro
Lys Trp Phe Pro Phe Pro 340 345
350Thr Lys Val Cys Trp Arg Lys His Asp Leu Ala Arg Leu Val Pro Tyr
355 360 365Lys Ala Pro Gly Ile Ser Asp
Gly Tyr Arg Met Gly Leu Val Leu Lys 370 375
380Gly Ser Asp Cys Leu Leu Ser Lys Cys Tyr His Glu Phe Gly Thr
Gln385 390 395 400Trp Leu
Pro Leu Leu Glu Thr Leu His Gln Val Pro Val Val Pro Val
405 410 415Gly Leu Leu Pro Pro Glu Ile
Pro Gly Asp Glu Lys Asp Glu Thr Trp 420 425
430Val Ser Ile Lys Lys Trp Leu Asp Gly Lys Gln Lys Gly Ser
Val Val 435 440 445Tyr Val Ala Leu
Gly Ser Glu Val Leu Val Ser Gln Thr Glu Val Val 450
455 460Glu Leu Ala Leu Gly Leu Glu Leu Ser Gly Leu Pro
Phe Val Trp Ala465 470 475
480Tyr Arg Lys Pro Lys Gly Pro Ala Lys Ser Asp Ser Val Glu Leu Pro
485 490 495Asp Gly Phe Val Glu
Arg Thr Arg Asp Arg Gly Leu Val Trp Thr Ser 500
505 510Trp Ala Pro Gln Leu Arg Ile Leu Ser His Glu Ser
Val Cys Gly Phe 515 520 525Leu Thr
His Cys Gly Ser Gly Ser Ile Val Glu Gly Leu Met Phe Gly 530
535 540His Pro Leu Ile Met Leu Pro Ile Phe Gly Asp
Gln Pro Leu Asn Ala545 550 555
560Arg Leu Leu Glu Asp Lys Gln Val Gly Ile Glu Ile Pro Arg Asn Glu
565 570 575Glu Asp Gly Cys
Leu Thr Lys Glu Ser Val Ala Arg Ser Leu Arg Ser 580
585 590Val Val Val Glu Lys Glu Gly Glu Ile Tyr Lys
Ala Asn Ala Arg Glu 595 600 605Leu
Ser Lys Ile Tyr Asn Asp Thr Lys Val Glu Lys Glu Tyr Val Ser 610
615 620Gln Phe Val Asp Tyr Leu Glu Lys Asn Ala
Arg Ala Val Ala Ile Asp625 630 635
640His Glu Ser931887DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 93atgtgcaata ccaacatgtc
tgtacctact gatggtgctg taaccacctc acagattcca 60gcttcggaac aagagaccct
ggttagacca aagccattgc ttttgaagtt attaaagtct 120gttggtgcac aaaaagacac
ttatactatg aaagaggttc ttttttatct tggccagtat 180attatgacta aacgattata
tgatgagaag caacaacata ttgtatattg ttcaaatgat 240cttctaggag atttgtttgg
cgtgccaagc ttctctgtga aagagcacag gaaaatatat 300accatgatct acaggaactt
ggtagtagtc aatcagcagg aatcatcgga ctcaggtaca 360tctgtgagtg agaacaggtg
tcaccttgaa ggtgggagtg atcaaaagga ccttgtacaa 420gagcttcagg aagagaaacc
ttcatcttca catttggttt ctagaccatc taccggtggt 480agcggatcct ctggaggcag
tgctagtaaa atggaaaaca agaccgaaac aacagttaga 540cgtaggcgta gaatcattct
gtttccagta ccttttcaag ggcacatcaa tccaatacta 600caactagcca acgttttgta
ctctaaaggt ttttctatta caatctttca caccaatttc 660aacaaaccaa aaacatccaa
ttacccacat ttcacattca gattcatact tgataatgat 720ccacaagatg aacgtatttc
aaacttacct acccacggtc ctttagctgg aatgagaatt 780ccaatcatca atgaacatgg
tgccgatgag cttagaagag aattagagtt acttatgttg 840gcatccgaag aggacgagga
agtctcttgt ctgattactg acgctctatg gtactttgcc 900caatctgtgg ctgatagttt
gaatttgagg agattggtac taatgacatc cagtctgttt 960aactttcacg ctcatgttag
tttaccacaa tttgacgaat tgggatactt ggaccctgat 1020gacaagacta ggttagagga
acaggcctct ggttttccta tgttgaaagt caaagatatc 1080aagtctgcct attctaattg
gcaaatcttg aaagagatct taggaaagat gatcaaacag 1140acaaaggctt catctggagt
gatttggaac agtttcaaag agttagaaga gtctgaattg 1200gagactgtaa tcagagaaat
tccagcacct tcattcctga taccattacc aaaacatttg 1260actgcttcct cttcctcttt
gttggatcat gacagaacag tttttcaatg gttggaccaa 1320caaccaccta gttctgtttt
gtacgtgtca tttggtagta cttctgaagt cgatgaaaag 1380gacttccttg aaatcgcaag
aggcttagtc gatagtaagc agtcattcct ttgggtcgtg 1440cgtccaggtt tcgtgaaagg
ctcaacatgg gtcgaaccac ttccagatgg ttttctaggc 1500gaaagaggta gaatagtcaa
atgggttcct caacaggaag ttttagctca tggcgctatt 1560ggggcattct ggactcattc
cggatggaat tcaactttag aatcagtatg cgaaggggta 1620cctatgatct tttcagattt
tggtcttgat caaccactga acgcaagata catgtctgat 1680gttttgaaag tgggtgtata
tctagaaaat ggctgggaaa ggggtgaaat agctaatgca 1740ataagacgtg ttatggttga
tgaagagggg gagtatatca gacaaaacgc aagagtgctg 1800aagcaaaagg ccgacgtttc
tctaatgaag ggaggctctt catacgaatc cttagaatct 1860cttgtttcct acatttcatc
actgtaa 188794628PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
94Met Cys Asn Thr Asn Met Ser Val Pro Thr Asp Gly Ala Val Thr Thr1
5 10 15Ser Gln Ile Pro Ala Ser
Glu Gln Glu Thr Leu Val Arg Pro Lys Pro 20 25
30Leu Leu Leu Lys Leu Leu Lys Ser Val Gly Ala Gln Lys
Asp Thr Tyr 35 40 45Thr Met Lys
Glu Val Leu Phe Tyr Leu Gly Gln Tyr Ile Met Thr Lys 50
55 60Arg Leu Tyr Asp Glu Lys Gln Gln His Ile Val Tyr
Cys Ser Asn Asp65 70 75
80Leu Leu Gly Asp Leu Phe Gly Val Pro Ser Phe Ser Val Lys Glu His
85 90 95Arg Lys Ile Tyr Thr Met
Ile Tyr Arg Asn Leu Val Val Val Asn Gln 100
105 110Gln Glu Ser Ser Asp Ser Gly Thr Ser Val Ser Glu
Asn Arg Cys His 115 120 125Leu Glu
Gly Gly Ser Asp Gln Lys Asp Leu Val Gln Glu Leu Gln Glu 130
135 140Glu Lys Pro Ser Ser Ser His Leu Val Ser Arg
Pro Ser Thr Gly Gly145 150 155
160Ser Gly Ser Ser Gly Gly Ser Ala Ser Lys Met Glu Asn Lys Thr Glu
165 170 175Thr Thr Val Arg
Arg Arg Arg Arg Ile Ile Leu Phe Pro Val Pro Phe 180
185 190Gln Gly His Ile Asn Pro Ile Leu Gln Leu Ala
Asn Val Leu Tyr Ser 195 200 205Lys
Gly Phe Ser Ile Thr Ile Phe His Thr Asn Phe Asn Lys Pro Lys 210
215 220Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
Phe Ile Leu Asp Asn Asp225 230 235
240Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro Thr His Gly Pro Leu
Ala 245 250 255Gly Met Arg
Ile Pro Ile Ile Asn Glu His Gly Ala Asp Glu Leu Arg 260
265 270Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
Glu Glu Asp Glu Glu Val 275 280
285Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr Phe Ala Gln Ser Val Ala 290
295 300Asp Ser Leu Asn Leu Arg Arg Leu
Val Leu Met Thr Ser Ser Leu Phe305 310
315 320Asn Phe His Ala His Val Ser Leu Pro Gln Phe Asp
Glu Leu Gly Tyr 325 330
335Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu Glu Gln Ala Ser Gly Phe
340 345 350Pro Met Leu Lys Val Lys
Asp Ile Lys Ser Ala Tyr Ser Asn Trp Gln 355 360
365Ile Leu Lys Glu Ile Leu Gly Lys Met Ile Lys Gln Thr Lys
Ala Ser 370 375 380Ser Gly Val Ile Trp
Asn Ser Phe Lys Glu Leu Glu Glu Ser Glu Leu385 390
395 400Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
Ser Phe Leu Ile Pro Leu 405 410
415Pro Lys His Leu Thr Ala Ser Ser Ser Ser Leu Leu Asp His Asp Arg
420 425 430Thr Val Phe Gln Trp
Leu Asp Gln Gln Pro Pro Ser Ser Val Leu Tyr 435
440 445Val Ser Phe Gly Ser Thr Ser Glu Val Asp Glu Lys
Asp Phe Leu Glu 450 455 460Ile Ala Arg
Gly Leu Val Asp Ser Lys Gln Ser Phe Leu Trp Val Val465
470 475 480Arg Pro Gly Phe Val Lys Gly
Ser Thr Trp Val Glu Pro Leu Pro Asp 485
490 495Gly Phe Leu Gly Glu Arg Gly Arg Ile Val Lys Trp
Val Pro Gln Gln 500 505 510Glu
Val Leu Ala His Gly Ala Ile Gly Ala Phe Trp Thr His Ser Gly 515
520 525Trp Asn Ser Thr Leu Glu Ser Val Cys
Glu Gly Val Pro Met Ile Phe 530 535
540Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn Ala Arg Tyr Met Ser Asp545
550 555 560Val Leu Lys Val
Gly Val Tyr Leu Glu Asn Gly Trp Glu Arg Gly Glu 565
570 575Ile Ala Asn Ala Ile Arg Arg Val Met Val
Asp Glu Glu Gly Glu Tyr 580 585
590Ile Arg Gln Asn Ala Arg Val Leu Lys Gln Lys Ala Asp Val Ser Leu
595 600 605Met Lys Gly Gly Ser Ser Tyr
Glu Ser Leu Glu Ser Leu Val Ser Tyr 610 615
620Ile Ser Ser Leu62595473PRTStevia rebaudiana 95Met Ala Thr Ser Asp
Ser Ile Val Asp Asp Arg Lys Gln Leu His Val1 5
10 15Ala Thr Phe Pro Trp Leu Ala Phe Gly His Ile
Leu Pro Tyr Leu Gln 20 25
30Leu Ser Lys Leu Ile Ala Glu Lys Gly His Lys Val Ser Phe Leu Ser
35 40 45Thr Thr Arg Asn Ile Gln Arg Leu
Ser Ser His Ile Ser Pro Leu Ile 50 55
60Asn Val Val Gln Leu Thr Leu Pro Arg Val Gln Glu Leu Pro Glu Asp65
70 75 80Ala Glu Ala Thr Thr
Asp Val His Pro Glu Asp Ile Pro Tyr Leu Lys 85
90 95Lys Ala Ser Asp Gly Leu Gln Pro Glu Val Thr
Arg Phe Leu Glu Gln 100 105
110His Ser Pro Asp Trp Ile Ile Tyr Asp Tyr Thr His Tyr Trp Leu Pro
115 120 125Ser Ile Ala Ala Ser Leu Gly
Ile Ser Arg Ala His Phe Ser Val Thr 130 135
140Thr Pro Trp Ala Ile Ala Tyr Met Gly Pro Ser Ala Asp Ala Met
Ile145 150 155 160Asn Gly
Ser Asp Gly Arg Thr Thr Val Glu Asp Leu Thr Thr Pro Pro
165 170 175Lys Trp Phe Pro Phe Pro Thr
Lys Val Cys Trp Arg Lys His Asp Leu 180 185
190Ala Arg Leu Val Pro Tyr Lys Ala Pro Gly Ile Ser Asp Arg
Cys Arg 195 200 205Met Gly Leu Val
Leu Lys Gly Ser Asp Cys Leu Leu Ser Lys Cys Tyr 210
215 220His Glu Phe Gly Thr Gln Trp Leu Pro Leu Leu Glu
Thr Leu His Gln225 230 235
240Val Pro Val Val Pro Val Gly Leu Leu Pro Pro Glu Ile Pro Gly Asp
245 250 255Glu Lys Asp Glu Thr
Trp Val Ser Ile Lys Lys Trp Leu Asp Gly Lys 260
265 270Gln Lys Gly Ser Val Val Tyr Val Ala Leu Gly Ser
Glu Val Leu Val 275 280 285Ser Gln
Thr Glu Val Val Glu Leu Ala Leu Gly Leu Glu Leu Ser Gly 290
295 300Leu Pro Phe Val Trp Ala Tyr Arg Lys Pro Lys
Gly Pro Ala Lys Ser305 310 315
320Asp Ser Val Glu Leu Pro Asp Gly Phe Val Glu Arg Thr Arg Asp Arg
325 330 335Gly Leu Val Trp
Thr Ser Arg Ala Pro Gln Leu Arg Ile Leu Ser His 340
345 350Glu Ser Val Cys Gly Phe Leu Thr His Cys Gly
Ser Gly Ser Ile Val 355 360 365Glu
Gly Leu Met Phe Gly His Pro Leu Ile Met Leu Pro Ile Phe Gly 370
375 380Asp Gln Pro Leu Asn Ala Arg Leu Leu Glu
Asp Lys Gln Val Gly Ile385 390 395
400Glu Ile Pro Arg Asn Glu Glu Asp Gly Cys Leu Thr Lys Glu Ser
Val 405 410 415Ala Arg Ser
Leu Arg Ser Val Val Val Glu Lys Glu Gly Glu Ile Tyr 420
425 430Lys Ala Asn Ala Arg Glu Leu Ser Lys Ile
Tyr Asn Asp Thr Lys Val 435 440
445Glu Lys Glu Tyr Val Ser Gln Phe Val Asp Tyr Leu Glu Lys Asn Ala 450
455 460Arg Ala Val Ala Ile Asp His Glu
Ser465 470961422DNAStevia rebaudiana 96atggctacca
gtgactccat agttgacgac cgtaagcagc ttcatgttgc gacgttccca 60tggcttgctt
tcggtcacat cctcccttac cttcagcttt cgaaattgat agctgaaaag 120ggtcacaaag
tctcgtttct ttctaccacc agaaacattc aacgtctctc ttctcatatc 180tcgccactca
taaatgttgt tcaactcaca cttccacgtg tccaagagct gccggaggat 240gcagaggcga
ccactgacgt ccaccctgaa gatattccat atctcaagaa ggcttctgat 300ggtcttcaac
cggaggtcac ccggtttcta gaacaacact ctccggactg gattatttat 360gattatactc
actactggtt gccatccatc gcggctagcc tcggtatctc acgagcccac 420ttctccgtca
ccactccatg ggccattgct tatatgggac cctcagctga cgccatgata 480aatggttcag
atggtcgaac cacggttgag gatctcacga caccgcccaa gtggtttccc 540tttccgacca
aagtatgctg gcggaagcat gatcttgccc gactggtgcc ttacaaagct 600ccggggatat
ctgatcgatg ccgtatgggg ctggttctta agggatctga ttgtttgctc 660tccaaatgtt
accatgagtt tggaactcaa tggctacctc ttttggagac actacaccaa 720gtaccggtgg
ttccggtggg attactgcca ccggaaatac ccggagacga gaaagatgaa 780acatgggtgt
caatcaagaa atggctcgat ggtaaacaaa aaggcagtgt ggtgtacgtt 840gcattaggaa
gcgaggtttt ggtgagccaa accgaggttg ttgagttagc attgggtctc 900gagctttctg
ggttgccatt tgtttgggct tatagaaaac caaaaggtcc cgcgaagtca 960gactcggtgg
agttgccaga cgggttcgtg gaacgaactc gtgaccgtgg gttggtctgg 1020acgagtcggg
cacctcagtt acgaatactg agccatgagt cggtttgtgg gttcttgacg 1080cattgtggtt
ctggatcaat tgtggaaggg ctaatgtttg gtcaccctct aatcatgcta 1140ccgatttttg
gggaccaacc tctgaatgct cgattactgg aggacaaaca ggtgggaatc 1200gagataccaa
gaaatgagga agatggttgc ttgaccaagg agtcggttgc tagatcactg 1260aggtccgttg
ttgtggaaaa agaaggggag atctacaagg cgaacgcgag ggagctgagt 1320aaaatctata
acgacactaa ggttgaaaaa gaatatgtaa gccaattcgt agactatttg 1380gaaaagaatg
cgcgtgcggt tgccatcgat catgagagtt aa
1422971380DNAStevia rebaudiana 97atggaaaata aaacggagac caccgttcgc
cggcgccgga gaataatatt attcccggta 60ccatttcaag gccacattaa cccaattctt
cagctagcca atgtgttgta ctctaaagga 120ttcagtatca ccatctttca caccaacttc
aacaaaccca aaacatctaa ttaccctcac 180ttcactttca gattcatcct cgacaacgac
ccacaagacg aacgcatttc caatctaccg 240actcatggtc cgctcgctgg tatgcggatt
ccgattatca acgaacacgg agctgacgaa 300ttacgacgcg aactggaact gttgatgtta
gcttctgaag aagatgaaga ggtatcgtgt 360ttaatcacgg atgctctttg gtacttcgcg
caatctgttg ctgacagtct taacctccga 420cggcttgttt tgatgacaag cagcttgttt
aattttcatg cacatgtttc acttcctcag 480tttgatgagc ttggttacct cgatcctgat
gacaaaaccc gtttggaaga acaagcgagt 540gggtttccta tgctaaaagt gaaagacatc
aagtctgcgt attcgaactg gcaaatactc 600aaagagatat tagggaagat gataaaacaa
acaaaagcat cttcaggagt catctggaac 660tcatttaagg aactcgaaga gtctgagctc
gaaactgtta tccgtgagat cccggctcca 720agtttcttga taccactccc caagcatttg
acagcctctt ccagcagctt actagaccac 780gatcgaaccg tttttccatg gttagaccaa
caaccgtcac gttcggtact gtatgttagt 840tttggtagtg gtactgaagt actggatgag
aaagatttct tggaaatagc tcgtgggttg 900gttgatagca agcagtcgtt tttatgggtg
gttcgacctg ggtttgtcaa gggttcgacg 960tgggtcgaac cgttgccaga tgggttcttg
ggtgaaagag gacgtattgt gaaatgggtt 1020ccacagcaag aagtgctagc tcatggagca
ataggcgcat tctggactca tagcggatgg 1080aactctacgt tggaaagcgt ttgtgaaggt
gttcctatga ttttctcgga ttttgggctc 1140gatcaaccgt tgaatgctag atacatgagt
gatgttttga aggtaggggt gtatttggaa 1200aatgggtggg aaagaggaga gatagcaaat
gcaataagaa gagttatggt ggatgaagaa 1260ggagaataca ttagacagaa tgcaagagtt
ttgaaacaaa aggcagatgt ttctttgatg 1320aagggtggtt cgtcttacga atcattagag
tctctagttt cttacatttc atcgttgtaa 138098459PRTStevia rebaudiana 98Met
Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile1
5 10 15Leu Phe Pro Val Pro Phe Gln
Gly His Ile Asn Pro Ile Leu Gln Leu 20 25
30Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe
His Thr 35 40 45Asn Phe Asn Lys
Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg 50 55
60Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser
Asn Leu Pro65 70 75
80Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95Gly Ala Asp Glu Leu Arg
Arg Glu Leu Glu Leu Leu Met Leu Ala Ser 100
105 110Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp
Ala Leu Trp Tyr 115 120 125Phe Ala
Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu 130
135 140Met Thr Ser Ser Leu Phe Asn Phe His Ala His
Val Ser Leu Pro Gln145 150 155
160Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175Glu Gln Ala Ser
Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser 180
185 190Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile
Leu Gly Lys Met Ile 195 200 205Lys
Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu 210
215 220Leu Glu Glu Ser Glu Leu Glu Thr Val Ile
Arg Glu Ile Pro Ala Pro225 230 235
240Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser
Ser 245 250 255Leu Leu Asp
His Asp Arg Thr Val Phe Pro Trp Leu Asp Gln Gln Pro 260
265 270Ser Arg Ser Val Leu Tyr Val Ser Phe Gly
Ser Gly Thr Glu Val Leu 275 280
285Asp Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys 290
295 300Gln Ser Phe Leu Trp Val Val Arg
Pro Gly Phe Val Lys Gly Ser Thr305 310
315 320Trp Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu
Arg Gly Arg Ile 325 330
335Val Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly
340 345 350Ala Phe Trp Thr His Ser
Gly Trp Asn Ser Thr Leu Glu Ser Val Cys 355 360
365Glu Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln
Pro Leu 370 375 380Asn Ala Arg Tyr Met
Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu385 390
395 400Asn Gly Trp Glu Arg Gly Glu Ile Ala Asn
Ala Ile Arg Arg Val Met 405 410
415Val Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys
420 425 430Gln Lys Ala Asp Val
Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser 435
440 445Leu Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu 450
455991380DNAStevia rebaudianamodified_base(861)..(863)a,
c, t, g, unknown or other 99atggaaaata aaacggagac caccgttcgc cggcgccgga
gaataatatt attcccggta 60ccatttcaag gccacattaa cccaattctt cagctagcca
atgtgttgta ctctaaagga 120ttcagtatca ccatctttca caccaacttc aacaaaccca
aaacatctaa ttaccctcac 180ttcactttca gattcatcct cgacaacgac ccacaagacg
aacgcatttc caatctaccg 240actcatggtc cgctcgctgg tatgcggatt ccgattatca
acgaacacgg agctgacgaa 300ttacgacgcg aactggaact gttgatgtta gcttctgaag
aagatgaaga ggtatcgtgt 360ttaatcacgg atgctctttg gtacttcgcg caatctgttg
ctgacagtct taacctccga 420cggcttgttt tgatgacaag cagcttgttt aattttcatg
cacatgtttc acttcctcag 480tttgatgagc ttggttacct cgatcctgat gacaaaaccc
gtttggaaga acaagcgagt 540gggtttccta tgctaaaagt gaaagacatc aagtctgcgt
attcgaactg gcaaatactc 600aaagagatat tagggaagat gataaaacaa acaaaagcat
cttcaggagt catctggaac 660tcatttaagg aactcgaaga gtctgagctc gaaactgtta
tccgtgagat cccggctcca 720agtttcttga taccactccc caagcatttg acagcctctt
ccagcagctt actagaccac 780gatcgaaccg tttttcaatg gttagaccaa caaccgccaa
gttcggtact gtatgttagt 840tttggtagta ctagtgaagt nnnggatgag aaagatttct
tggaaatagc tcgtgggttg 900gttgatagca agcagtcgtt tttatgggtg gttcgacctg
ggtttgtcaa gggttcgacg 960tgggtcgaac cgttgccaga tgggttcgtg gccgaaagag
ggcgtattgt gaaatgggtt 1020ccgcaacagg aagtgatagc tcatggagca atcggtgcat
tctggactca tagcggatgg 1080aactctacat tggaaagcgt ttgtgaaggt gttcctatga
ttttctcgga ttttgggctc 1140gatcaaccgt tgaatgctag atacatgagt gatgttttga
aggtaggggt gtatttggaa 1200aatgggtggg aaagaggaga gatagcaaat gcaatacgaa
gagttatggt ggatgaagaa 1260ggagaataca ttagacagaa tgcaagagtt ttgaaacaaa
aggcagatgt ttctttgatg 1320aagggtggtt catcttacga atcattagag tctctagttt
cttacatttc atcgttgtaa 1380100459PRTStevia
rebaudianaMOD_RES(288)..(288)Any amino acid 100Met Glu Asn Lys Thr Glu
Thr Thr Val Arg Arg Arg Arg Arg Ile Ile1 5
10 15Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro
Ile Leu Gln Leu 20 25 30Ala
Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr 35
40 45Asn Phe Asn Lys Pro Lys Thr Ser Asn
Tyr Pro His Phe Thr Phe Arg 50 55
60Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro65
70 75 80Thr His Gly Pro Leu
Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His 85
90 95Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu
Leu Met Leu Ala Ser 100 105
110Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125Phe Ala Gln Ser Val Ala Asp
Ser Leu Asn Leu Arg Arg Leu Val Leu 130 135
140Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro
Gln145 150 155 160Phe Asp
Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175Glu Gln Ala Ser Gly Phe Pro
Met Leu Lys Val Lys Asp Ile Lys Ser 180 185
190Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys
Met Ile 195 200 205Lys Gln Thr Lys
Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu 210
215 220Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu
Ile Pro Ala Pro225 230 235
240Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255Leu Leu Asp His Asp
Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro 260
265 270Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr
Ser Glu Val Xaa 275 280 285Asp Glu
Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys 290
295 300Gln Ser Phe Leu Trp Val Val Arg Pro Gly Phe
Val Lys Gly Ser Thr305 310 315
320Trp Val Glu Pro Leu Pro Asp Gly Phe Val Ala Glu Arg Gly Arg Ile
325 330 335Val Lys Trp Val
Pro Gln Gln Glu Val Ile Ala His Gly Ala Ile Gly 340
345 350Ala Phe Trp Thr His Ser Gly Trp Asn Ser Thr
Leu Glu Ser Val Cys 355 360 365Glu
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu 370
375 380Asn Ala Arg Tyr Met Ser Asp Val Leu Lys
Val Gly Val Tyr Leu Glu385 390 395
400Asn Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val
Met 405 410 415Val Asp Glu
Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys 420
425 430Gln Lys Ala Asp Val Ser Leu Met Lys Gly
Gly Ser Ser Tyr Glu Ser 435 440
445Leu Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu 450
4551011380DNAStevia rebaudianamodified_base(861)..(863)a, c, t, g,
unknown or other 101atggaaaata aaacggagac caccgttcgc cggcgccgga
gaataatatt attcccggta 60ccatttcaag gccacattaa cccaattctt cagctagcca
atgtgttgta ctctaaagga 120ttcagtatca ccatctttca caccaacttc aacaaaccca
aaacatctaa ttaccctcac 180ttcactttca gattcatcct cgacaacgac ccacaagacg
aacgcatttc caatctaccg 240actcatggtc cgctcgctgg tatgcggatt ccgattatca
acgaacacgg agctgacgaa 300ttacgacgcg aactggaact gttgatgtta gcttctgaag
aagatgaaga ggtatcgtgt 360ttaatcacgg atgctctttg gtacttcgcg caatctgttg
ctgacagtct taacctccga 420cggcttgttt tgatgacaag cagcttgttt aattttcatg
cacatgtttc acttcctcag 480tttgatgagc ttggttacct cgatcctgat gacaaaaccc
gtttggaaga acaagcgagt 540gggtttccta tgctaaaagt gaaagacatc aagtctgcgt
attcgaactg gcaaatactc 600aaagagatat tagggaagat gataaaacaa acaaaagcat
cttcaggagt catctggaac 660tcatttaagg aactcgaaga gtctgagctc gaaactgtta
tccgtgagat cccggctcca 720agtttcttga taccactccc caagcatttg acagcctctt
ccagcagctt actagaccac 780gatcgaaccg tttttcaatg gttagaccaa caaccgccaa
gttcggtact gtatgttagt 840tttggtagta ctagtgaagt nnnggatgag aaagatttct
tggaaatagc tcgtgggttg 900gttgatagca agcagtcgtt tttatgggtg gttcgacctg
ggtttgtcaa gggttcgacg 960tgggtcgaac cgttgccaga tgggttcttg ggtgaaagag
gacgtattgt gaaatgggtt 1020ccacagcaag aagtgctagc tcatggagca ataggcgcat
tctggactca tagcggatgg 1080aactctacgt tggaaagcgt ttgtgaaggt gttcctatga
ttttctcgga ttttgggctc 1140gatcaaccgt tgaatgctag atacatgagt gatgttttga
aggtaggggt gtatttggaa 1200aatgggtggg aaagaggaga gatagcaaat gcaataagaa
gagttatggt ggatgaagaa 1260ggagaataca ttagacagaa tgcaagagtt ttgaaacaaa
aggcagatgt ttctttgatg 1320aagggtggtt cgtcttacga atcattagag tctctagttt
cttacatttc atcgttgtaa 1380102459PRTStevia
rebaudianaMOD_RES(288)..(288)Any amino acid 102Met Glu Asn Lys Thr Glu
Thr Thr Val Arg Arg Arg Arg Arg Ile Ile1 5
10 15Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro
Ile Leu Gln Leu 20 25 30Ala
Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr 35
40 45Asn Phe Asn Lys Pro Lys Thr Ser Asn
Tyr Pro His Phe Thr Phe Arg 50 55
60Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro65
70 75 80Thr His Gly Pro Leu
Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His 85
90 95Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu
Leu Met Leu Ala Ser 100 105
110Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125Phe Ala Gln Ser Val Ala Asp
Ser Leu Asn Leu Arg Arg Leu Val Leu 130 135
140Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro
Gln145 150 155 160Phe Asp
Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175Glu Gln Ala Ser Gly Phe Pro
Met Leu Lys Val Lys Asp Ile Lys Ser 180 185
190Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys
Met Ile 195 200 205Lys Gln Thr Lys
Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu 210
215 220Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu
Ile Pro Ala Pro225 230 235
240Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255Leu Leu Asp His Asp
Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro 260
265 270Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr
Ser Glu Val Xaa 275 280 285Asp Glu
Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys 290
295 300Gln Ser Phe Leu Trp Val Val Arg Pro Gly Phe
Val Lys Gly Ser Thr305 310 315
320Trp Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile
325 330 335Val Lys Trp Val
Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly 340
345 350Ala Phe Trp Thr His Ser Gly Trp Asn Ser Thr
Leu Glu Ser Val Cys 355 360 365Glu
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu 370
375 380Asn Ala Arg Tyr Met Ser Asp Val Leu Lys
Val Gly Val Tyr Leu Glu385 390 395
400Asn Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val
Met 405 410 415Val Asp Glu
Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys 420
425 430Gln Lys Ala Asp Val Ser Leu Met Lys Gly
Gly Ser Ser Tyr Glu Ser 435 440
445Leu Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu 450
4551031323DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 103atgcattcta ccagacatat cttaagacaa
agggccgtcc tagttacagg cgctagaaca 60ccattcgtga aatcatttgg ggctcttatg
aaagcagata ccttggaatt ggcatcagca 120tcagtcgctg ggttgctgaa caagacctca
ctggacccta gagatatcga tcatatcgtt 180tggggtaatg ttgtacttca aggatcagct
cataactgcg ccagagaaat agttatcgac 240cttaacatgc ctaaaaagat catcggtaat
ttgacatcta tggcctgtgc ttcaggctta 300tcttctttgt cacaagcctg tatgctaata
gagggtggtc atgccgatgt cgtcattgct 360ggcggttctg attcagtctc caacactgaa
gtgcctttgc caagatccgt cacttacggt 420ctaatgatgg cccaaaggaa gggtgttatg
ggcttcttta aggaagcagg atacaaccca 480ttcaaatggt ttccaggcgg tattgcttta
accgaacgta gtacaggaaa aactatgggt 540tggcatggag acttaattgc tgagttaaac
tctatatcta gagatgacca ggaagccctg 600gctgtggctt ctcatgcaaa tgctgctaga
gcagaaaaag ctgggtactt taaggaggaa 660attgtacctg tgacaatcga caaaaagggc
aaaaagactg aagtaacatg tgatgatgtt 720atgcaaagag atacagaaaa gatgaaggcc
aagatgccat cattgaagcc tgttttcaga 780aaagagggag gtacaataac agcagccact
tccagtactc tgactgatgg tggctctgca 840atgttggtta tgtcagagga aaaggccaaa
aagttgggtt atccaactga tgtctgcgtg 900aagtcttggt atttcagtgg tatcgatcct
tacccacaac ttttgttagc accagttcta 960ggttggggtc cagctttgaa aaaggccgga
ttaaccccta aagatatcga tttgtacgaa 1020attcacgaag catttgctgc acaagttcta
gccacaatta agtgtttgaa gtctcaggaa 1080ttcttcgata ggtacgctaa cggtgcaaag
ccagtattaa ctgaggatat tgatctttct 1140aaactaaatg ttaatggcgg ttccttagca
cttggccacc cattcgccgc tacaggaggt 1200agaatcgtaa tctctctagc aaatgagttg
agaagatccg gaaagagaca cgggctggtc 1260agtatttgtg cagctggagg gttaggcgga
gtagctatac ttgagcatac agcaagtaag 1320taa
1323104440PRTLeishmania infantum 104Met
His Ser Thr Arg His Ile Leu Arg Gln Arg Ala Val Leu Val Thr1
5 10 15Gly Ala Arg Thr Pro Phe Val
Lys Ser Phe Gly Ala Leu Met Lys Ala 20 25
30Asp Thr Leu Glu Leu Ala Ser Ala Ser Val Ala Gly Leu Leu
Asn Lys 35 40 45Thr Ser Leu Asp
Pro Arg Asp Ile Asp His Ile Val Trp Gly Asn Val 50 55
60Val Leu Gln Gly Ser Ala His Asn Cys Ala Arg Glu Ile
Val Ile Asp65 70 75
80Leu Asn Met Pro Lys Lys Ile Ile Gly Asn Leu Thr Ser Met Ala Cys
85 90 95Ala Ser Gly Leu Ser Ser
Leu Ser Gln Ala Cys Met Leu Ile Glu Gly 100
105 110Gly His Ala Asp Val Val Ile Ala Gly Gly Ser Asp
Ser Val Ser Asn 115 120 125Thr Glu
Val Pro Leu Pro Arg Ser Val Thr Tyr Gly Leu Met Met Ala 130
135 140Gln Arg Lys Gly Val Met Gly Phe Phe Lys Glu
Ala Gly Tyr Asn Pro145 150 155
160Phe Lys Trp Phe Pro Gly Gly Ile Ala Leu Thr Glu Arg Ser Thr Gly
165 170 175Lys Thr Met Gly
Trp His Gly Asp Leu Ile Ala Glu Leu Asn Ser Ile 180
185 190Ser Arg Asp Asp Gln Glu Ala Leu Ala Val Ala
Ser His Ala Asn Ala 195 200 205Ala
Arg Ala Glu Lys Ala Gly Tyr Phe Lys Glu Glu Ile Val Pro Val 210
215 220Thr Ile Asp Lys Lys Gly Lys Lys Thr Glu
Val Thr Cys Asp Asp Val225 230 235
240Met Gln Arg Asp Thr Glu Lys Met Lys Ala Lys Met Pro Ser Leu
Lys 245 250 255Pro Val Phe
Arg Lys Glu Gly Gly Thr Ile Thr Ala Ala Thr Ser Ser 260
265 270Thr Leu Thr Asp Gly Gly Ser Ala Met Leu
Val Met Ser Glu Glu Lys 275 280
285Ala Lys Lys Leu Gly Tyr Pro Thr Asp Val Cys Val Lys Ser Trp Tyr 290
295 300Phe Ser Gly Ile Asp Pro Tyr Pro
Gln Leu Leu Leu Ala Pro Val Leu305 310
315 320Gly Trp Gly Pro Ala Leu Lys Lys Ala Gly Leu Thr
Pro Lys Asp Ile 325 330
335Asp Leu Tyr Glu Ile His Glu Ala Phe Ala Ala Gln Val Leu Ala Thr
340 345 350Ile Lys Cys Leu Lys Ser
Gln Glu Phe Phe Asp Arg Tyr Ala Asn Gly 355 360
365Ala Lys Pro Val Leu Thr Glu Asp Ile Asp Leu Ser Lys Leu
Asn Val 370 375 380Asn Gly Gly Ser Leu
Ala Leu Gly His Pro Phe Ala Ala Thr Gly Gly385 390
395 400Arg Ile Val Ile Ser Leu Ala Asn Glu Leu
Arg Arg Ser Gly Lys Arg 405 410
415His Gly Leu Val Ser Ile Cys Ala Ala Gly Gly Leu Gly Gly Val Ala
420 425 430Ile Leu Glu His Thr
Ala Ser Lys 435 4401051584DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
105atggcagctg accaattggt gaaaactgaa gtcaccaaga agtcttttac tgctcctgta
60caaaaggctt ctacaccagt tttaaccaat aaaacagtca tttctggatc gaaagtcaaa
120agtttatcat ctgcgcaatc gagctcatca ggaccttcat catctagtga ggaagatgat
180tcccgcgata ttgaaagctt ggataagaaa atacgtcctt tagaagaatt agaagcatta
240ttaagtagtg gaaatacaaa acaattgaag aacaaagagg tcgctgcctt ggttattcac
300ggtaagttac ctttgtacgc tttggagaaa aaattaggtg atactacgag agcggttgcg
360gtacgtagga aggctctttc aattttggca gaagctcctg tattagcatc tgatcgttta
420ccatataaaa attatgacta cgaccgcgta tttggcgctt gttgtgaaaa tgttataggt
480tacatgcctt tgcccgttgg tgttataggc cccttggtta tcgatggtac atcttatcat
540ataccaatgg caactacaga gggttgtttg gtagcttctg ccatgcgtgg ctgtaaggca
600atcaatgctg gcggtggtgc aacaactgtt ttaactaagg atggtatgac aagaggccca
660gtagtccgtt tcccaacttt gaaaagatct ggtgcctgta agatatggtt agactcagaa
720gagggacaaa acgcaattaa aaaagctttt aactctacat caagatttgc acgtctgcaa
780catattcaaa cttgtctagc aggagattta ctcttcatga gatttagaac aactactggt
840gacgcaatgg gtatgaatat gatttctaaa ggtgtcgaat actcattaaa gcaaatggta
900gaagagtatg gctgggaaga tatggaggtt gtctccgttt ctggtaacta ctgtaccgac
960aaaaaaccag ctgccatcaa ctggatcgaa ggtcgtggta agagtgtcgt cgcagaagct
1020actattcctg gtgatgttgt cagaaaagtg ttaaaaagtg atgtttccgc attggttgag
1080ttgaacattg ctaagaattt ggttggatct gcaatggctg ggtctgttgg tggatttaac
1140gcacatgcag ctaatttagt gacagctgtt ttcttggcat taggacaaga tcctgcacaa
1200aatgttgaaa gttccaactg tataacattg atgaaagaag tggacggtga tttgagaatt
1260tccgtatcca tgccatccat cgaagtaggt accatcggtg gtggtactgt tctagaacca
1320caaggtgcca tgttggactt attaggtgta agaggcccgc atgctaccgc tcctggtacc
1380aacgcacgtc aattagcaag aatagttgcc tgtgccgtct tggcaggtga attatcctta
1440tgtgctgccc tagcagccgg ccatttggtt caaagtcata tgacccacaa caggaaacct
1500gctgaaccaa caaaacctaa caatttggac gccactgata taaatcgttt gaaagatggg
1560tccgtcacct gcattaaatc ctaa
1584106527PRTSaccharomyces cerevisiae 106Met Ala Ala Asp Gln Leu Val Lys
Thr Glu Val Thr Lys Lys Ser Phe1 5 10
15Thr Ala Pro Val Gln Lys Ala Ser Thr Pro Val Leu Thr Asn
Lys Thr 20 25 30Val Ile Ser
Gly Ser Lys Val Lys Ser Leu Ser Ser Ala Gln Ser Ser 35
40 45Ser Ser Gly Pro Ser Ser Ser Ser Glu Glu Asp
Asp Ser Arg Asp Ile 50 55 60Glu Ser
Leu Asp Lys Lys Ile Arg Pro Leu Glu Glu Leu Glu Ala Leu65
70 75 80Leu Ser Ser Gly Asn Thr Lys
Gln Leu Lys Asn Lys Glu Val Ala Ala 85 90
95Leu Val Ile His Gly Lys Leu Pro Leu Tyr Ala Leu Glu
Lys Lys Leu 100 105 110Gly Asp
Thr Thr Arg Ala Val Ala Val Arg Arg Lys Ala Leu Ser Ile 115
120 125Leu Ala Glu Ala Pro Val Leu Ala Ser Asp
Arg Leu Pro Tyr Lys Asn 130 135 140Tyr
Asp Tyr Asp Arg Val Phe Gly Ala Cys Cys Glu Asn Val Ile Gly145
150 155 160Tyr Met Pro Leu Pro Val
Gly Val Ile Gly Pro Leu Val Ile Asp Gly 165
170 175Thr Ser Tyr His Ile Pro Met Ala Thr Thr Glu Gly
Cys Leu Val Ala 180 185 190Ser
Ala Met Arg Gly Cys Lys Ala Ile Asn Ala Gly Gly Gly Ala Thr 195
200 205Thr Val Leu Thr Lys Asp Gly Met Thr
Arg Gly Pro Val Val Arg Phe 210 215
220Pro Thr Leu Lys Arg Ser Gly Ala Cys Lys Ile Trp Leu Asp Ser Glu225
230 235 240Glu Gly Gln Asn
Ala Ile Lys Lys Ala Phe Asn Ser Thr Ser Arg Phe 245
250 255Ala Arg Leu Gln His Ile Gln Thr Cys Leu
Ala Gly Asp Leu Leu Phe 260 265
270Met Arg Phe Arg Thr Thr Thr Gly Asp Ala Met Gly Met Asn Met Ile
275 280 285Ser Lys Gly Val Glu Tyr Ser
Leu Lys Gln Met Val Glu Glu Tyr Gly 290 295
300Trp Glu Asp Met Glu Val Val Ser Val Ser Gly Asn Tyr Cys Thr
Asp305 310 315 320Lys Lys
Pro Ala Ala Ile Asn Trp Ile Glu Gly Arg Gly Lys Ser Val
325 330 335Val Ala Glu Ala Thr Ile Pro
Gly Asp Val Val Arg Lys Val Leu Lys 340 345
350Ser Asp Val Ser Ala Leu Val Glu Leu Asn Ile Ala Lys Asn
Leu Val 355 360 365Gly Ser Ala Met
Ala Gly Ser Val Gly Gly Phe Asn Ala His Ala Ala 370
375 380Asn Leu Val Thr Ala Val Phe Leu Ala Leu Gly Gln
Asp Pro Ala Gln385 390 395
400Asn Val Glu Ser Ser Asn Cys Ile Thr Leu Met Lys Glu Val Asp Gly
405 410 415Asp Leu Arg Ile Ser
Val Ser Met Pro Ser Ile Glu Val Gly Thr Ile 420
425 430Gly Gly Gly Thr Val Leu Glu Pro Gln Gly Ala Met
Leu Asp Leu Leu 435 440 445Gly Val
Arg Gly Pro His Ala Thr Ala Pro Gly Thr Asn Ala Arg Gln 450
455 460Leu Ala Arg Ile Val Ala Cys Ala Val Leu Ala
Gly Glu Leu Ser Leu465 470 475
480Cys Ala Ala Leu Ala Ala Gly His Leu Val Gln Ser His Met Thr His
485 490 495Asn Arg Lys Pro
Ala Glu Pro Thr Lys Pro Asn Asn Leu Asp Ala Thr 500
505 510Asp Ile Asn Arg Leu Lys Asp Gly Ser Val Thr
Cys Ile Lys Ser 515 520
5251073681DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 107atgagagctg tccttagatt gttatcaaca
catactgttt tctctcctat tgaaacaatt 60gtatctgttt tcgtgttagc tacattagct
tacttccaca tcttgtccgg aatcaagcac 120tcaagtttct ttgcatcttc tcatcctcct
gctatcagac ctgcttttgc acatctgacc 180aacggggaat gggttgccgt ctcccaacat
gattggactg aagcatggaa gcatcctggc 240ggttcacttg atgcattaga acttcaacaa
gtagttttca ctttagatga caagactcaa 300ccatctgctg tgctagatgc atccgcaatt
agtcagcact tagtttccaa tgttcctgca 360ttatctggaa aagcctactc ttcattgtgc
caccatccaa atgtatcagg cacctcctgt 420tttacatcag tttctggtcc aggagcttca
ccaatcttga cactgagttt taagcctgga 480actagagacg attggttagg atcattaagg
aaggagaaaa ctatcacact agatggggtt 540aagtacgacg ttggagccgg aaaaagacaa
gagtcaatcg gcgatatgga atcatctaag 600tgggttgctt atgcattatc agctttggta
cttagatttt gggaattaac aaaggcagat 660tccttagata tactagtggt tctaactggg
tacatcctaa tgcacgtaac attcatgaga 720ttgttcttgg catccagagc acttggcagt
aacttttggt tatcagctgg catattctcc 780tccgcaacaa tttctttcct attcacttta
ccaatgtgta gatctatgga tattccactt 840gatccaattg ccttgacaga agccctgcca
ttcttggtgt gtaccgtagg ttttgacaaa 900ccacttagat tggcaagagc tgtgatggct
catcctaata tccttaaacc tcaagatgat 960ggtaggatga aagctgccgg agatgtcatt
cttgaggcac tggacagagt tggtaacatg 1020atattgagag attacgcttt agagatcgca
gttctattcg ttggcgttaa ctccagagtt 1080ggcggtctta aggaattttg tgctgtagct
gcagcattac ttgctatgga cagattaatg 1140acattcacac tttatacagc agtgttaacc
atcatggttg aggtaaggcg tatcaaaaag 1200gtcagagata tgactaaggc tagatctaga
agttcttcta ttaccgccgt tacagccaac 1260ggcaccgcca taagaggcgt tttgagtaga
aaatcttcaa aacaatctgt gacagaacca 1320gagacaacta aaaacctaag acaaagagcc
actgattcag ccatcggtgt taagggttca 1380ttgctgaaag atggaggcag attgcaggaa
gccgaggaga atccaatggc aagattaaag 1440ctattgttaa tcgcttcctt cttaacacta
cacatcttga acttttgtac tactttgact 1500tcagccacag ctaacgcaag acatcaaaga
catcctttta gaaccgttca agaggtagta 1560ccaattccta gagttgacat tactacccca
gccatagcca atatcttgtc tcatctagct 1620gtggctcagg aacctatgtt cactgttgtt
ggcagtgaac ctatcgaact tcttgttaaa 1680gtcgctgctc cagtctacgt ccatgctcta
ccattggccc ctgctttaag agcttcaaac 1740actaatactg gagaagctat tgaaaacttt
atgagttcat ggtctagtct ggtaggtgac 1800ccagttgtta gtaagtggat cgtagcattg
ctagctgtct ctgttgcatt gaatggatac 1860ttgttaaagg gtatagccgc aggttccggg
ttggctgcca tgagagctgt tagatctcaa 1920ggtgttcgtt tcagatctag agctagaagt
atcgtaaaga tatctgatga acctgagcca 1980gagccagaac actctatcga cccagcacca
gtagtgttct tcgcttccgc agcaccagct 2040gtagaggccc ctgctccagc tcctgcacct
gaaccagaac caccagtcaa cagaccacca 2100ccattgacta ttttctcaag accactgaac
ttagaaacag tggacaaaaa gttacaagat 2160gctctgccaa taagatcccc accacctgtt
gaaccaatca ctccagaatc tagagaagtg 2220gaaccaaccc aagtagaagt aagatctcta
gctgaatgtg tggatgtgtt cgagaatggg 2280ccaagaccag tctcagtggc tttaaagact
ctgaatgatg aggaagttat cctgctttgc 2340caaacaggta agatagctcc atatgcattg
gttaagatgt tggctgattt cgatagggcc 2400gtacgtgtca gaagagcact tattagtaga
gcttcacgta caaaaacttt agaaaactca 2460ctggttccta tgaaagatta tgattacgcc
agagtcatgg gtgcctgttg tgaaaacgtt 2520atcggataca tgccattacc actagggatt
gcaggtccat tgaagattga tggcttgatg 2580tatcctatac caatggcaac cgcagaaggt
accttggttg catctacttc taggggctgt 2640aaggccttaa atgctggtgg aggggtcaca
actgtcttga cagcagatgg catgacaaga 2700gggccagcta tagactttcc ttccatcgtc
agagctgcag aggctaaggc cttcattgaa 2760tcagaagatg gatacgctac aatcagggag
gctttcgagt ctacttctag atttgccaag 2820ttgcaaaaga tcaagtgtgc actagctggt
cgtactcttt ttgtcagatt tgctactaga 2880acaggagatg ccatgggtat gaacatgatt
tctaaggcta ccgaaaaggc acttgatgtc 2940ctgagtcacg agttccctga aatggtcgtc
cttgctttgt ctggtaacta ctgcacagac 3000aaaaagcctg cagctatttc atggatcgaa
ggtaggggaa aatctattgt agcagaagca 3060gttattcctg gtaaggtcgt taagtcagtc
ctgaaaacaa cagtcgagtc tctttgcaat 3120gtcaacacta agaaaaacct gattggttca
gccatggcag gttctgttgg tggtttcaac 3180gctcatgccg ccaacatcct aacagctgtg
ttcctagcca caggtcagga tcctgctcaa 3240aatgtcgaat cttctaattg catgacttta
atggaaccaa caaacggcgg tgaggatttg 3300ctaatgacaa tttcaatgcc atgtatagag
gtaggaaccg ttggtggagg gacaattctg 3360gaaccacaag gtgcagtttt ggatttgttg
ggcgttagag gggctcaccc tactaatcct 3420ggtcaaaacg ctcaacagtt agccagaatt
atcgcatcag ctgtaatggc aggcgaattg 3480tctttgataa gtgccttagc cgcaggtcat
ttggttagag ctcatcttgc ccacaatcgt 3540tctcaattga atacaccaat gccatccaga
ccacatactc ctggccctga ggatgtctca 3600catgtgcagc agctacctac accatctgca
tctgatgata aaggtgttac agctcaaggt 3660tacgttgtcg aagcaaaata a
36811081226PRTGanoderma lucidum 108Met
Arg Ala Val Leu Arg Leu Leu Ser Thr His Thr Val Phe Ser Pro1
5 10 15Ile Glu Thr Ile Val Ser Val
Phe Val Leu Ala Thr Leu Ala Tyr Phe 20 25
30His Ile Leu Ser Gly Ile Lys His Ser Ser Phe Phe Ala Ser
Ser His 35 40 45Pro Pro Ala Ile
Arg Pro Ala Phe Ala His Leu Thr Asn Gly Glu Trp 50 55
60Val Ala Val Ser Gln His Asp Trp Thr Glu Ala Trp Lys
His Pro Gly65 70 75
80Gly Ser Leu Asp Ala Leu Glu Leu Gln Gln Val Val Phe Thr Leu Asp
85 90 95Asp Lys Thr Gln Pro Ser
Ala Val Leu Asp Ala Ser Ala Ile Ser Gln 100
105 110His Leu Val Ser Asn Val Pro Ala Leu Ser Gly Lys
Ala Tyr Ser Ser 115 120 125Leu Cys
His His Pro Asn Val Ser Gly Thr Ser Cys Phe Thr Ser Val 130
135 140Ser Gly Pro Gly Ala Ser Pro Ile Leu Thr Leu
Ser Phe Lys Pro Gly145 150 155
160Thr Arg Asp Asp Trp Leu Gly Ser Leu Arg Lys Glu Lys Thr Ile Thr
165 170 175Leu Asp Gly Val
Lys Tyr Asp Val Gly Ala Gly Lys Arg Gln Glu Ser 180
185 190Ile Gly Asp Met Glu Ser Ser Lys Trp Val Ala
Tyr Ala Leu Ser Ala 195 200 205Leu
Val Leu Arg Phe Trp Glu Leu Thr Lys Ala Asp Ser Leu Asp Ile 210
215 220Leu Val Val Leu Thr Gly Tyr Ile Leu Met
His Val Thr Phe Met Arg225 230 235
240Leu Phe Leu Ala Ser Arg Ala Leu Gly Ser Asn Phe Trp Leu Ser
Ala 245 250 255Gly Ile Phe
Ser Ser Ala Thr Ile Ser Phe Leu Phe Thr Leu Pro Met 260
265 270Cys Arg Ser Met Asp Ile Pro Leu Asp Pro
Ile Ala Leu Thr Glu Ala 275 280
285Leu Pro Phe Leu Val Cys Thr Val Gly Phe Asp Lys Pro Leu Arg Leu 290
295 300Ala Arg Ala Val Met Ala His Pro
Asn Ile Leu Lys Pro Gln Asp Asp305 310
315 320Gly Arg Met Lys Ala Ala Gly Asp Val Ile Leu Glu
Ala Leu Asp Arg 325 330
335Val Gly Asn Met Ile Leu Arg Asp Tyr Ala Leu Glu Ile Ala Val Leu
340 345 350Phe Val Gly Val Asn Ser
Arg Val Gly Gly Leu Lys Glu Phe Cys Ala 355 360
365Val Ala Ala Ala Leu Leu Ala Met Asp Arg Leu Met Thr Phe
Thr Leu 370 375 380Tyr Thr Ala Val Leu
Thr Ile Met Val Glu Val Arg Arg Ile Lys Lys385 390
395 400Val Arg Asp Met Thr Lys Ala Arg Ser Arg
Ser Ser Ser Ile Thr Ala 405 410
415Val Thr Ala Asn Gly Thr Ala Ile Arg Gly Val Leu Ser Arg Lys Ser
420 425 430Ser Lys Gln Ser Val
Thr Glu Pro Glu Thr Thr Lys Asn Leu Arg Gln 435
440 445Arg Ala Thr Asp Ser Ala Ile Gly Val Lys Gly Ser
Leu Leu Lys Asp 450 455 460Gly Gly Arg
Leu Gln Glu Ala Glu Glu Asn Pro Met Ala Arg Leu Lys465
470 475 480Leu Leu Leu Ile Ala Ser Phe
Leu Thr Leu His Ile Leu Asn Phe Cys 485
490 495Thr Thr Leu Thr Ser Ala Thr Ala Asn Ala Arg His
Gln Arg His Pro 500 505 510Phe
Arg Thr Val Gln Glu Val Val Pro Ile Pro Arg Val Asp Ile Thr 515
520 525Thr Pro Ala Ile Ala Asn Ile Leu Ser
His Leu Ala Val Ala Gln Glu 530 535
540Pro Met Phe Thr Val Val Gly Ser Glu Pro Ile Glu Leu Leu Val Lys545
550 555 560Val Ala Ala Pro
Val Tyr Val His Ala Leu Pro Leu Ala Pro Ala Leu 565
570 575Arg Ala Ser Asn Thr Asn Thr Gly Glu Ala
Ile Glu Asn Phe Met Ser 580 585
590Ser Trp Ser Ser Leu Val Gly Asp Pro Val Val Ser Lys Trp Ile Val
595 600 605Ala Leu Leu Ala Val Ser Val
Ala Leu Asn Gly Tyr Leu Leu Lys Gly 610 615
620Ile Ala Ala Gly Ser Gly Leu Ala Ala Met Arg Ala Val Arg Ser
Gln625 630 635 640Gly Val
Arg Phe Arg Ser Arg Ala Arg Ser Ile Val Lys Ile Ser Asp
645 650 655Glu Pro Glu Pro Glu Pro Glu
His Ser Ile Asp Pro Ala Pro Val Val 660 665
670Phe Phe Ala Ser Ala Ala Pro Ala Val Glu Ala Pro Ala Pro
Ala Pro 675 680 685Ala Pro Glu Pro
Glu Pro Pro Val Asn Arg Pro Pro Pro Leu Thr Ile 690
695 700Phe Ser Arg Pro Leu Asn Leu Glu Thr Val Asp Lys
Lys Leu Gln Asp705 710 715
720Ala Leu Pro Ile Arg Ser Pro Pro Pro Val Glu Pro Ile Thr Pro Glu
725 730 735Ser Arg Glu Val Glu
Pro Thr Gln Val Glu Val Arg Ser Leu Ala Glu 740
745 750Cys Val Asp Val Phe Glu Asn Gly Pro Arg Pro Val
Ser Val Ala Leu 755 760 765Lys Thr
Leu Asn Asp Glu Glu Val Ile Leu Leu Cys Gln Thr Gly Lys 770
775 780Ile Ala Pro Tyr Ala Leu Val Lys Met Leu Ala
Asp Phe Asp Arg Ala785 790 795
800Val Arg Val Arg Arg Ala Leu Ile Ser Arg Ala Ser Arg Thr Lys Thr
805 810 815Leu Glu Asn Ser
Leu Val Pro Met Lys Asp Tyr Asp Tyr Ala Arg Val 820
825 830Met Gly Ala Cys Cys Glu Asn Val Ile Gly Tyr
Met Pro Leu Pro Leu 835 840 845Gly
Ile Ala Gly Pro Leu Lys Ile Asp Gly Leu Met Tyr Pro Ile Pro 850
855 860Met Ala Thr Ala Glu Gly Thr Leu Val Ala
Ser Thr Ser Arg Gly Cys865 870 875
880Lys Ala Leu Asn Ala Gly Gly Gly Val Thr Thr Val Leu Thr Ala
Asp 885 890 895Gly Met Thr
Arg Gly Pro Ala Ile Asp Phe Pro Ser Ile Val Arg Ala 900
905 910Ala Glu Ala Lys Ala Phe Ile Glu Ser Glu
Asp Gly Tyr Ala Thr Ile 915 920
925Arg Glu Ala Phe Glu Ser Thr Ser Arg Phe Ala Lys Leu Gln Lys Ile 930
935 940Lys Cys Ala Leu Ala Gly Arg Thr
Leu Phe Val Arg Phe Ala Thr Arg945 950
955 960Thr Gly Asp Ala Met Gly Met Asn Met Ile Ser Lys
Ala Thr Glu Lys 965 970
975Ala Leu Asp Val Leu Ser His Glu Phe Pro Glu Met Val Val Leu Ala
980 985 990Leu Ser Gly Asn Tyr Cys
Thr Asp Lys Lys Pro Ala Ala Ile Ser Trp 995 1000
1005Ile Glu Gly Arg Gly Lys Ser Ile Val Ala Glu Ala
Val Ile Pro 1010 1015 1020Gly Lys Val
Val Lys Ser Val Leu Lys Thr Thr Val Glu Ser Leu 1025
1030 1035Cys Asn Val Asn Thr Lys Lys Asn Leu Ile Gly
Ser Ala Met Ala 1040 1045 1050Gly Ser
Val Gly Gly Phe Asn Ala His Ala Ala Asn Ile Leu Thr 1055
1060 1065Ala Val Phe Leu Ala Thr Gly Gln Asp Pro
Ala Gln Asn Val Glu 1070 1075 1080Ser
Ser Asn Cys Met Thr Leu Met Glu Pro Thr Asn Gly Gly Glu 1085
1090 1095Asp Leu Leu Met Thr Ile Ser Met Pro
Cys Ile Glu Val Gly Thr 1100 1105
1110Val Gly Gly Gly Thr Ile Leu Glu Pro Gln Gly Ala Val Leu Asp
1115 1120 1125Leu Leu Gly Val Arg Gly
Ala His Pro Thr Asn Pro Gly Gln Asn 1130 1135
1140Ala Gln Gln Leu Ala Arg Ile Ile Ala Ser Ala Val Met Ala
Gly 1145 1150 1155Glu Leu Ser Leu Ile
Ser Ala Leu Ala Ala Gly His Leu Val Arg 1160 1165
1170Ala His Leu Ala His Asn Arg Ser Gln Leu Asn Thr Pro
Met Pro 1175 1180 1185Ser Arg Pro His
Thr Pro Gly Pro Glu Asp Val Ser His Val Gln 1190
1195 1200Gln Leu Pro Thr Pro Ser Ala Ser Asp Asp Lys
Gly Val Thr Ala 1205 1210 1215Gln Gly
Tyr Val Val Glu Ala Lys 1220
12251092667DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 109atgttatcaa gattgttcag aatgcatggt
ctatttgttg cttctcaccc ttgggaagta 60atagttggta ctgtaacatt aacgatctgt
atgatgtcta tgaacatgtt taccggaaac 120aacaagattt gtggttggaa ttatgagtgt
cctaagctgg aagaggatgt gttgagttca 180gacatcatca tacttactat aacaagatgc
attgcaatat tgtatatcta cttccaattt 240caaaacctta gacaattggg tagtaaatac
atcctaggca tcgccggatt gttcactatt 300ttctctagtt ttgttttctc aaccgtcgtt
attcactttt tggacaaaga gttaactggt 360ttgaacgaag ctctaccatt cttcttgctg
ctggtagatt tgtccagagc ttccgcttta 420gctaaattcg ctctgtcctc taattctcaa
gatgaagtta gagagaatat agcaagggga 480atggccatac ttggacctac tttcacactt
gatgcccttg tcgaatgttt ggttattggg 540gttggcacaa tgtccggcgt tagacagtta
gaaatcatgt gttgttttgg ctgtatgagt 600gtcttggcta actactttgt ctttatgaca
ttctttccag cttgcgtttc tttggtattg 660gagctgtcaa gagaatcaag agaaggcaga
ccaatatggc aactatcaca tttcgccaga 720gtgttagaag aggaggaaaa caaacctaat
cctgtcacac agagagtgaa aatgatcatg 780tctttgggtt tagtcctagt gcatgctcat
tctagatgga tcgcagatcc atcccctcag 840aattctacag ctgataactc taaagttagt
ttaggtttag atgaaaatgt aagtaagagg 900attgaacctt ccgtgtcttt gtggcaattc
tacttatcaa aaatgatttc catggatatt 960gaacaagtga taacgttgtc tttggcttta
ttgttagccg ttaagtacat tttctttgag 1020caagccgaaa cggaatctac attatcactg
aaaaacccaa ttacatcccc agtcgttacc 1080cagaaaaaga taactgatga ttgctgtaga
agagatccag tgttggtcag gaatgatcaa 1140aagttccacg ccatggagga ggaaactagg
aaaaacagag aaaggaaagt tgaagttatc 1200aagcctctat tagcagaaaa tgacacttca
catagggcca ctttcgttgt cggcaattca 1260tctcttttag gtacgtcatt ggagctggaa
acacaggaac cagaaatgga actaccagtt 1320gaaccaagac caaatgagga atgtttgcaa
atactagaga acgctgaaaa gggagccaag 1380ttcctatctg atgccgagat tatccagctg
gtcaatgcca agcacattcc tgcctacaag 1440ttggaaaccc ttatggagac acatgagaga
ggtgtgtcta ttaggagaca attactatct 1500aaaaagttac ctgaaccaag ttccctacaa
tacctgcctt atagagatta caattactcc 1560ttggtaatgg gagcttgttg tgaaaatgtc
attgggtaca tgccaattcc agtgggtgtc 1620gccggtccac tatgtttgga cggtaaggaa
tttcaagtac ctatggcaac gactgaaggc 1680tgcttagttg catctacaaa cagaggttgt
agagccattg gattaggtgg cggtgcttct 1740tcaagagtct tggctgacgg tatgactaga
ggtcctgttg tgagatttcc tagggcctgt 1800gactctgcag aagttaaggc ttggttggaa
actccagaag gtttcaccgt aatcaaagag 1860gcctttgatt ccacatcaag ggtggccaga
ttacaaaaac tacacatgtc tgtcgctggg 1920agaaatctgt atatcagatt tcaatccaga
tccggcgacg caatgggtat gaatatgatt 1980tcaaaaggga cagaaaaggc tttgtcaaag
ctgcaggagt atttcccaga gatgcaaatc 2040ttggccgtat ctggcaacta ttgcacagac
aaaaagcctg ccgccatcaa ctggattgaa 2100ggaagaggca aatctgtggt ttgtgaagct
gtaattccag ccaaagttgt tagagaagtg 2160ttaaagacca caacagaagc tatgattgaa
gtaaacataa acaaaaactt agtagggtct 2220gccatggctg gttcaattgg aggatacaac
gctcatgctg ccaatattgt aaccgctatc 2280tacatcgcat gtggacaaga tgctgcccaa
aatgtcggtt cctcaaattg catcacattg 2340atggaagcat ctggccctac aaacgaggat
ttgtatatca gttgcacaat gccatctata 2400gaaataggga ctgtgggagg aggaactaac
ttacttccac agcaagcctg cttacaaatg 2460ctgggtgtac aaggagcctg tagagataat
ccaggggaga acgctagaca acttgccaga 2520attgtttgtg ggacagttat ggctggtgaa
cttagtctaa tggcagcttt ggctgctggg 2580cacctggtga gatctcatat gattcataat
agaagtaaga ttaaccttca agatttgcaa 2640ggtacgtgta cgaaaaaggc tgcctaa
2667110888PRTBos taurus 110Met Leu Ser
Arg Leu Phe Arg Met His Gly Leu Phe Val Ala Ser His1 5
10 15Pro Trp Glu Val Ile Val Gly Thr Val
Thr Leu Thr Ile Cys Met Met 20 25
30Ser Met Asn Met Phe Thr Gly Asn Asn Lys Ile Cys Gly Trp Asn Tyr
35 40 45Glu Cys Pro Lys Leu Glu Glu
Asp Val Leu Ser Ser Asp Ile Ile Ile 50 55
60Leu Thr Ile Thr Arg Cys Ile Ala Ile Leu Tyr Ile Tyr Phe Gln Phe65
70 75 80Gln Asn Leu Arg
Gln Leu Gly Ser Lys Tyr Ile Leu Gly Ile Ala Gly 85
90 95Leu Phe Thr Ile Phe Ser Ser Phe Val Phe
Ser Thr Val Val Ile His 100 105
110Phe Leu Asp Lys Glu Leu Thr Gly Leu Asn Glu Ala Leu Pro Phe Phe
115 120 125Leu Leu Leu Val Asp Leu Ser
Arg Ala Ser Ala Leu Ala Lys Phe Ala 130 135
140Leu Ser Ser Asn Ser Gln Asp Glu Val Arg Glu Asn Ile Ala Arg
Gly145 150 155 160Met Ala
Ile Leu Gly Pro Thr Phe Thr Leu Asp Ala Leu Val Glu Cys
165 170 175Leu Val Ile Gly Val Gly Thr
Met Ser Gly Val Arg Gln Leu Glu Ile 180 185
190Met Cys Cys Phe Gly Cys Met Ser Val Leu Ala Asn Tyr Phe
Val Phe 195 200 205Met Thr Phe Phe
Pro Ala Cys Val Ser Leu Val Leu Glu Leu Ser Arg 210
215 220Glu Ser Arg Glu Gly Arg Pro Ile Trp Gln Leu Ser
His Phe Ala Arg225 230 235
240Val Leu Glu Glu Glu Glu Asn Lys Pro Asn Pro Val Thr Gln Arg Val
245 250 255Lys Met Ile Met Ser
Leu Gly Leu Val Leu Val His Ala His Ser Arg 260
265 270Trp Ile Ala Asp Pro Ser Pro Gln Asn Ser Thr Ala
Asp Asn Ser Lys 275 280 285Val Ser
Leu Gly Leu Asp Glu Asn Val Ser Lys Arg Ile Glu Pro Ser 290
295 300Val Ser Leu Trp Gln Phe Tyr Leu Ser Lys Met
Ile Ser Met Asp Ile305 310 315
320Glu Gln Val Ile Thr Leu Ser Leu Ala Leu Leu Leu Ala Val Lys Tyr
325 330 335Ile Phe Phe Glu
Gln Ala Glu Thr Glu Ser Thr Leu Ser Leu Lys Asn 340
345 350Pro Ile Thr Ser Pro Val Val Thr Gln Lys Lys
Ile Thr Asp Asp Cys 355 360 365Cys
Arg Arg Asp Pro Val Leu Val Arg Asn Asp Gln Lys Phe His Ala 370
375 380Met Glu Glu Glu Thr Arg Lys Asn Arg Glu
Arg Lys Val Glu Val Ile385 390 395
400Lys Pro Leu Leu Ala Glu Asn Asp Thr Ser His Arg Ala Thr Phe
Val 405 410 415Val Gly Asn
Ser Ser Leu Leu Gly Thr Ser Leu Glu Leu Glu Thr Gln 420
425 430Glu Pro Glu Met Glu Leu Pro Val Glu Pro
Arg Pro Asn Glu Glu Cys 435 440
445Leu Gln Ile Leu Glu Asn Ala Glu Lys Gly Ala Lys Phe Leu Ser Asp 450
455 460Ala Glu Ile Ile Gln Leu Val Asn
Ala Lys His Ile Pro Ala Tyr Lys465 470
475 480Leu Glu Thr Leu Met Glu Thr His Glu Arg Gly Val
Ser Ile Arg Arg 485 490
495Gln Leu Leu Ser Lys Lys Leu Pro Glu Pro Ser Ser Leu Gln Tyr Leu
500 505 510Pro Tyr Arg Asp Tyr Asn
Tyr Ser Leu Val Met Gly Ala Cys Cys Glu 515 520
525Asn Val Ile Gly Tyr Met Pro Ile Pro Val Gly Val Ala Gly
Pro Leu 530 535 540Cys Leu Asp Gly Lys
Glu Phe Gln Val Pro Met Ala Thr Thr Glu Gly545 550
555 560Cys Leu Val Ala Ser Thr Asn Arg Gly Cys
Arg Ala Ile Gly Leu Gly 565 570
575Gly Gly Ala Ser Ser Arg Val Leu Ala Asp Gly Met Thr Arg Gly Pro
580 585 590Val Val Arg Phe Pro
Arg Ala Cys Asp Ser Ala Glu Val Lys Ala Trp 595
600 605Leu Glu Thr Pro Glu Gly Phe Thr Val Ile Lys Glu
Ala Phe Asp Ser 610 615 620Thr Ser Arg
Val Ala Arg Leu Gln Lys Leu His Met Ser Val Ala Gly625
630 635 640Arg Asn Leu Tyr Ile Arg Phe
Gln Ser Arg Ser Gly Asp Ala Met Gly 645
650 655Met Asn Met Ile Ser Lys Gly Thr Glu Lys Ala Leu
Ser Lys Leu Gln 660 665 670Glu
Tyr Phe Pro Glu Met Gln Ile Leu Ala Val Ser Gly Asn Tyr Cys 675
680 685Thr Asp Lys Lys Pro Ala Ala Ile Asn
Trp Ile Glu Gly Arg Gly Lys 690 695
700Ser Val Val Cys Glu Ala Val Ile Pro Ala Lys Val Val Arg Glu Val705
710 715 720Leu Lys Thr Thr
Thr Glu Ala Met Ile Glu Val Asn Ile Asn Lys Asn 725
730 735Leu Val Gly Ser Ala Met Ala Gly Ser Ile
Gly Gly Tyr Asn Ala His 740 745
750Ala Ala Asn Ile Val Thr Ala Ile Tyr Ile Ala Cys Gly Gln Asp Ala
755 760 765Ala Gln Asn Val Gly Ser Ser
Asn Cys Ile Thr Leu Met Glu Ala Ser 770 775
780Gly Pro Thr Asn Glu Asp Leu Tyr Ile Ser Cys Thr Met Pro Ser
Ile785 790 795 800Glu Ile
Gly Thr Val Gly Gly Gly Thr Asn Leu Leu Pro Gln Gln Ala
805 810 815Cys Leu Gln Met Leu Gly Val
Gln Gly Ala Cys Arg Asp Asn Pro Gly 820 825
830Glu Asn Ala Arg Gln Leu Ala Arg Ile Val Cys Gly Thr Val
Met Ala 835 840 845Gly Glu Leu Ser
Leu Met Ala Ala Leu Ala Ala Gly His Leu Val Arg 850
855 860Ser His Met Ile His Asn Arg Ser Lys Ile Asn Leu
Gln Asp Leu Gln865 870 875
880Gly Thr Cys Thr Lys Lys Ala Ala
8851111704DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 111atggatttga gaaggaaatt accacctaag
cctccatctt caacaacaac aaaacagcca 60agtcataggt cccattctcc tacgccaatt
ccaaaggctt cagatgcatt gcctcttcca 120ttgtacctga ccaatacgtt tttcttcact
cttttctttt ccgtagcata ttacctgttg 180cataggtgga gagacaagat tagatccgga
acacctttac acgttgtgac actgactgaa 240ctatccgcaa ttgtactgct gattgcttcc
ttcatctatc ttttaggctt tttcggtatt 300gattttgtgc aatctttcac atcaagagaa
aatgagcaac taaacaacga tgatcacaac 360gtcgtgtcaa caaacaatgt tttatctgat
agaaggttag tttacgacta tggattcgat 420gtgacaggag acaacgataa cgataatgat
gacgatgtta ttgtgaaaag tgtcgtttct 480ggggaagtta attcttatag tttggaggct
tccctaggag attgttacag agccgcaaag 540attagaaaga gagccgtcga gagaattgtc
gggagagaag tattaggctt gggtttcgag 600ggatttgatt atgaatctat cctggggcaa
tgttgtgaaa tgcctatcgg gtacgtccaa 660gtgccagtag gtgtcgctgg acctttattg
ttaaatggtg gggaattcat ggttccaatg 720gctacaactg aaggctgtct tgtagcttcc
actaatagag gttgtaaagc catatgctta 780tcaggtggtg ccactgccat attgctaaaa
gatggtatga caagagcccc agtagtgaga 840ttcgccacag ctgagagagc ttcacaacta
aagttttact tggaagatgg tgtcaatttc 900gatacattgt ctgttgtctt taacaaaagt
tcaagatttg ccagattgca aaacatccaa 960tgctcaattg ccggtaaaaa cttgtacatt
aggtttactt gctccacagg cgacgccatg 1020ggtatgaaca tggtttcaaa aggagtacaa
aatgtattag actttttaca aaatgatttt 1080cctgatatgg acgtaattgg gatctcttgg
aagttctgct ctgacaaaaa gccaacagct 1140gtcaactgga ttgagggcag aggaaagtct
gtcgttttcc aggccgtaat taccaaaaag 1200gtggttagaa agtctgcact gaaccctcaa
acttgcacat gtagaacttt gacctgttta 1260agaccattat tggttctgct acttctggtt
ttgctagtgg acttaatgca tatgcttcat 1320atcgtgtctg ccgtgttcat cgctaccggt
caagatccag ctcagaatat cgaatctagt 1380cactgtatca ctatgatgga ggctgtcaac
aatggtaagg atttgcacgt taatgttacg 1440atgccatcta tagaagttgg cacggtggga
ggtggcactc agctagcctc tcaatcagcc 1500tgtttgaact tgcttggtgt aaagggtgcc
tgtatagaat ccccaggatc aaacgcccag 1560ttgttagcta gaatcgttgc tggttctgtt
ctggcaggcg aattaagttt gatgtcagct 1620ataagtgctg ggcaactagt taaatctcat
atgaaataca ataggtctag tagagatatg 1680tcagcaatag cttctaaggt ctaa
1704112567PRTArtemisia annua 112Met Asp
Leu Arg Arg Lys Leu Pro Pro Lys Pro Pro Ser Ser Thr Thr1 5
10 15Thr Lys Gln Pro Ser His Arg Ser
His Ser Pro Thr Pro Ile Pro Lys 20 25
30Ala Ser Asp Ala Leu Pro Leu Pro Leu Tyr Leu Thr Asn Thr Phe
Phe 35 40 45Phe Thr Leu Phe Phe
Ser Val Ala Tyr Tyr Leu Leu His Arg Trp Arg 50 55
60Asp Lys Ile Arg Ser Gly Thr Pro Leu His Val Val Thr Leu
Thr Glu65 70 75 80Leu
Ser Ala Ile Val Leu Leu Ile Ala Ser Phe Ile Tyr Leu Leu Gly
85 90 95Phe Phe Gly Ile Asp Phe Val
Gln Ser Phe Thr Ser Arg Glu Asn Glu 100 105
110Gln Leu Asn Asn Asp Asp His Asn Val Val Ser Thr Asn Asn
Val Leu 115 120 125Ser Asp Arg Arg
Leu Val Tyr Asp Tyr Gly Phe Asp Val Thr Gly Asp 130
135 140Asn Asp Asn Asp Asn Asp Asp Asp Val Ile Val Lys
Ser Val Val Ser145 150 155
160Gly Glu Val Asn Ser Tyr Ser Leu Glu Ala Ser Leu Gly Asp Cys Tyr
165 170 175Arg Ala Ala Lys Ile
Arg Lys Arg Ala Val Glu Arg Ile Val Gly Arg 180
185 190Glu Val Leu Gly Leu Gly Phe Glu Gly Phe Asp Tyr
Glu Ser Ile Leu 195 200 205Gly Gln
Cys Cys Glu Met Pro Ile Gly Tyr Val Gln Val Pro Val Gly 210
215 220Val Ala Gly Pro Leu Leu Leu Asn Gly Gly Glu
Phe Met Val Pro Met225 230 235
240Ala Thr Thr Glu Gly Cys Leu Val Ala Ser Thr Asn Arg Gly Cys Lys
245 250 255Ala Ile Cys Leu
Ser Gly Gly Ala Thr Ala Ile Leu Leu Lys Asp Gly 260
265 270Met Thr Arg Ala Pro Val Val Arg Phe Ala Thr
Ala Glu Arg Ala Ser 275 280 285Gln
Leu Lys Phe Tyr Leu Glu Asp Gly Val Asn Phe Asp Thr Leu Ser 290
295 300Val Val Phe Asn Lys Ser Ser Arg Phe Ala
Arg Leu Gln Asn Ile Gln305 310 315
320Cys Ser Ile Ala Gly Lys Asn Leu Tyr Ile Arg Phe Thr Cys Ser
Thr 325 330 335Gly Asp Ala
Met Gly Met Asn Met Val Ser Lys Gly Val Gln Asn Val 340
345 350Leu Asp Phe Leu Gln Asn Asp Phe Pro Asp
Met Asp Val Ile Gly Ile 355 360
365Ser Trp Lys Phe Cys Ser Asp Lys Lys Pro Thr Ala Val Asn Trp Ile 370
375 380Glu Gly Arg Gly Lys Ser Val Val
Phe Gln Ala Val Ile Thr Lys Lys385 390
395 400Val Val Arg Lys Ser Ala Leu Asn Pro Gln Thr Cys
Thr Cys Arg Thr 405 410
415Leu Thr Cys Leu Arg Pro Leu Leu Val Leu Leu Leu Leu Val Leu Leu
420 425 430Val Asp Leu Met His Met
Leu His Ile Val Ser Ala Val Phe Ile Ala 435 440
445Thr Gly Gln Asp Pro Ala Gln Asn Ile Glu Ser Ser His Cys
Ile Thr 450 455 460Met Met Glu Ala Val
Asn Asn Gly Lys Asp Leu His Val Asn Val Thr465 470
475 480Met Pro Ser Ile Glu Val Gly Thr Val Gly
Gly Gly Thr Gln Leu Ala 485 490
495Ser Gln Ser Ala Cys Leu Asn Leu Leu Gly Val Lys Gly Ala Cys Ile
500 505 510Glu Ser Pro Gly Ser
Asn Ala Gln Leu Leu Ala Arg Ile Val Ala Gly 515
520 525Ser Val Leu Ala Gly Glu Leu Ser Leu Met Ser Ala
Ile Ser Ala Gly 530 535 540Gln Leu Val
Lys Ser His Met Lys Tyr Asn Arg Ser Ser Arg Asp Met545
550 555 560Ser Ala Ile Ala Ser Lys Val
5651131308DNAArtificial SequenceDescription of Artificial
Sequence Synthetic polynucleotide 113atgtttagaa gagctatact
gttaggatgc tctgctgcca agacaccatg gtctgagtgt 60tctaacgctc aattagttga
tgcagttaag tctagaaaga tctcattcta cggtcttgaa 120caagccttgg aaccagatta
tagaagggct atcgaagtaa ggagagaggt tgtctctgaa 180atcgcctcac aacagccaga
agcaaaaaag aagcaatccg cattgcacac aataccattt 240gagaattatg attggaataa
ggtcgttggc caaaactgtg aaaacattat tggatacgtc 300ccaataccac tgggcgttgc
tggccctatt ttgattgatg gtaaagagta cccaatacca 360atggctacaa cagaaggcgc
tttggtcgct agtactcata gaggtgctag agctattaca 420agatccggag gttgtaagac
attgttatta ggtgaaggta tgacaagagc accagtggtt 480gaattgcctt cattagagga
agctgggcgt ttgcacaagt actgtaatga gaacttctta 540tctttaaagg aagcatttga
atcaactacc caatatggaa aacttaattc tttaaagtgc 600gtactagctg gtagaaaagc
ataccttaga ttcagagcca ctacaggcga tgctatgggc 660atgaacatga taacaaaggg
tgtagacaaa gcactgtctg ttctacagca acatttccct 720tcaatggaaa tcctagccct
aagtggtaat tactgtaccg acaaaaagcc atctgctgta 780aattggattg atggcagagg
taaatcagtg gttgcagaag ccactttatt ggctgatgtt 840gtcgaagata ctctgaaatg
tacagtcgat tctttggtat ccttgaatat cgacaaaaac 900cttgttgggt cagctatggc
tggttctgtt ggaggtttta acgcccaggc tgcaaacgct 960gtggcagcca ttttcattgc
aaccggtcaa gatcctgctc aagtggtaga aagttcaatg 1020tgtatcacta caatgtccaa
ggtaggtaac gatctattga tctctgtgac catgccttct 1080atcgaggtcg gggtcgtggg
aggagggact ggtcttgctg cccaaagagg atgcttagag 1140ttaatagggt gcggaggccc
atctaaggag tctcctggta ctaatgccca acttctaagt 1200agagttgttg cagctggcgt
tttatcagcc gaactttcct tgatgtccgg actggcagca 1260ggtcatctat tgtcagcaca
tatgagattg aacagaaaga agaaataa 1308114435PRTTrypanosoma
cruzi 114Met Phe Arg Arg Ala Ile Leu Leu Gly Cys Ser Ala Ala Lys Thr Pro1
5 10 15Trp Ser Glu Cys
Ser Asn Ala Gln Leu Val Asp Ala Val Lys Ser Arg 20
25 30Lys Ile Ser Phe Tyr Gly Leu Glu Gln Ala Leu
Glu Pro Asp Tyr Arg 35 40 45Arg
Ala Ile Glu Val Arg Arg Glu Val Val Ser Glu Ile Ala Ser Gln 50
55 60Gln Pro Glu Ala Lys Lys Lys Gln Ser Ala
Leu His Thr Ile Pro Phe65 70 75
80Glu Asn Tyr Asp Trp Asn Lys Val Val Gly Gln Asn Cys Glu Asn
Ile 85 90 95Ile Gly Tyr
Val Pro Ile Pro Leu Gly Val Ala Gly Pro Ile Leu Ile 100
105 110Asp Gly Lys Glu Tyr Pro Ile Pro Met Ala
Thr Thr Glu Gly Ala Leu 115 120
125Val Ala Ser Thr His Arg Gly Ala Arg Ala Ile Thr Arg Ser Gly Gly 130
135 140Cys Lys Thr Leu Leu Leu Gly Glu
Gly Met Thr Arg Ala Pro Val Val145 150
155 160Glu Leu Pro Ser Leu Glu Glu Ala Gly Arg Leu His
Lys Tyr Cys Asn 165 170
175Glu Asn Phe Leu Ser Leu Lys Glu Ala Phe Glu Ser Thr Thr Gln Tyr
180 185 190Gly Lys Leu Asn Ser Leu
Lys Cys Val Leu Ala Gly Arg Lys Ala Tyr 195 200
205Leu Arg Phe Arg Ala Thr Thr Gly Asp Ala Met Gly Met Asn
Met Ile 210 215 220Thr Lys Gly Val Asp
Lys Ala Leu Ser Val Leu Gln Gln His Phe Pro225 230
235 240Ser Met Glu Ile Leu Ala Leu Ser Gly Asn
Tyr Cys Thr Asp Lys Lys 245 250
255Pro Ser Ala Val Asn Trp Ile Asp Gly Arg Gly Lys Ser Val Val Ala
260 265 270Glu Ala Thr Leu Leu
Ala Asp Val Val Glu Asp Thr Leu Lys Cys Thr 275
280 285Val Asp Ser Leu Val Ser Leu Asn Ile Asp Lys Asn
Leu Val Gly Ser 290 295 300Ala Met Ala
Gly Ser Val Gly Gly Phe Asn Ala Gln Ala Ala Asn Ala305
310 315 320Val Ala Ala Ile Phe Ile Ala
Thr Gly Gln Asp Pro Ala Gln Val Val 325
330 335Glu Ser Ser Met Cys Ile Thr Thr Met Ser Lys Val
Gly Asn Asp Leu 340 345 350Leu
Ile Ser Val Thr Met Pro Ser Ile Glu Val Gly Val Val Gly Gly 355
360 365Gly Thr Gly Leu Ala Ala Gln Arg Gly
Cys Leu Glu Leu Ile Gly Cys 370 375
380Gly Gly Pro Ser Lys Glu Ser Pro Gly Thr Asn Ala Gln Leu Leu Ser385
390 395 400Arg Val Val Ala
Ala Gly Val Leu Ser Ala Glu Leu Ser Leu Met Ser 405
410 415Gly Leu Ala Ala Gly His Leu Leu Ser Ala
His Met Arg Leu Asn Arg 420 425
430Lys Lys Lys 4351151281DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 115atgcaatccc
tggacaaaaa ctttagacac ttatcaagac aacagaagtt acaacagcta 60gttgataaac
aatggctatc agaggaacaa ttcaatattc tacttaacca cccacttatt 120gatgaagagg
tagcaaactc attgatagaa aatgtcatcg cacagggcgc actgcctgtt 180ggtttactac
caaatatcat cgttgatgac aaagcatacg tcgtgcctat gatggtggaa 240gagccatctg
ttgttgccgc tgcttcatac ggcgctaaat tggtgaacca aacaggtggt 300ttcaaaaccg
tgtcctcaga acgtatcatg ataggtcaaa tagtatttga tggagtcgat 360gataccgaga
aactgtctgc agatatcaag gctcttgaaa aacaaatcca tcagattgca 420gatgaggctt
acccttctat taaggccaga ggtggaggct atcaaaggat cgccatcgat 480acattcccag
aacaacagtt gctttcattg aaggttttcg ttgatactaa ggatgctatg 540ggcgctaata
tgttaaacac aatcctagaa gcaatcacag cctttttgaa aaacgaattc 600ccacaatctg
atatcttgat gtctatcctt tccaaccacg caacagccag tgttgtcaag 660gtccagggtg
aaatagacgt taaggatttg gcaagaggag aacgtactgg agaagaggtc 720gctaagagaa
tggaaagagc atctgtgtta gctcaagtgg acattcatag agcagcaaca 780cacaataagg
gtgttatgaa tggcattcat gctgtagtct tggctacagg taatgatact 840agaggtgcag
aagcctctgc tcacgcttac gcttccaaag acggtcaata tagagggata 900gctacatgga
gatacgatca agagagacaa aggttaatag gaactataga agttccaatg 960actctggcca
ttgttggtgg cggtaccaag gtactgccta ttgctaaggc ctctttagaa 1020ctgttaaacg
tagaaagtgc ccaagagttg ggacatgttg tcgctgccgt tggactagct 1080caaaacttcg
ctgcatgtag agctttggtt tccgaaggta ttcaacaagg gcatatgtct 1140ttgcaataca
agtctttagc catcgtagtc ggggctaagg gcgatgaaat tgctcaggta 1200gccgaagcac
taaagcaaga gccaagagca aacactcaag ttgcagagag aattttgcaa 1260gatttgagaa
gtcaacaata a
1281116426PRTStaphylococcus aureus 116Met Gln Ser Leu Asp Lys Asn Phe Arg
His Leu Ser Arg Gln Gln Lys1 5 10
15Leu Gln Gln Leu Val Asp Lys Gln Trp Leu Ser Glu Glu Gln Phe
Asn 20 25 30Ile Leu Leu Asn
His Pro Leu Ile Asp Glu Glu Val Ala Asn Ser Leu 35
40 45Ile Glu Asn Val Ile Ala Gln Gly Ala Leu Pro Val
Gly Leu Leu Pro 50 55 60Asn Ile Ile
Val Asp Asp Lys Ala Tyr Val Val Pro Met Met Val Glu65 70
75 80Glu Pro Ser Val Val Ala Ala Ala
Ser Tyr Gly Ala Lys Leu Val Asn 85 90
95Gln Thr Gly Gly Phe Lys Thr Val Ser Ser Glu Arg Ile Met
Ile Gly 100 105 110Gln Ile Val
Phe Asp Gly Val Asp Asp Thr Glu Lys Leu Ser Ala Asp 115
120 125Ile Lys Ala Leu Glu Lys Gln Ile His Gln Ile
Ala Asp Glu Ala Tyr 130 135 140Pro Ser
Ile Lys Ala Arg Gly Gly Gly Tyr Gln Arg Ile Ala Ile Asp145
150 155 160Thr Phe Pro Glu Gln Gln Leu
Leu Ser Leu Lys Val Phe Val Asp Thr 165
170 175Lys Asp Ala Met Gly Ala Asn Met Leu Asn Thr Ile
Leu Glu Ala Ile 180 185 190Thr
Ala Phe Leu Lys Asn Glu Phe Pro Gln Ser Asp Ile Leu Met Ser 195
200 205Ile Leu Ser Asn His Ala Thr Ala Ser
Val Val Lys Val Gln Gly Glu 210 215
220Ile Asp Val Lys Asp Leu Ala Arg Gly Glu Arg Thr Gly Glu Glu Val225
230 235 240Ala Lys Arg Met
Glu Arg Ala Ser Val Leu Ala Gln Val Asp Ile His 245
250 255Arg Ala Ala Thr His Asn Lys Gly Val Met
Asn Gly Ile His Ala Val 260 265
270Val Leu Ala Thr Gly Asn Asp Thr Arg Gly Ala Glu Ala Ser Ala His
275 280 285Ala Tyr Ala Ser Lys Asp Gly
Gln Tyr Arg Gly Ile Ala Thr Trp Arg 290 295
300Tyr Asp Gln Glu Arg Gln Arg Leu Ile Gly Thr Ile Glu Val Pro
Met305 310 315 320Thr Leu
Ala Ile Val Gly Gly Gly Thr Lys Val Leu Pro Ile Ala Lys
325 330 335Ala Ser Leu Glu Leu Leu Asn
Val Glu Ser Ala Gln Glu Leu Gly His 340 345
350Val Val Ala Ala Val Gly Leu Ala Gln Asn Phe Ala Ala Cys
Arg Ala 355 360 365Leu Val Ser Glu
Gly Ile Gln Gln Gly His Met Ser Leu Gln Tyr Lys 370
375 380Ser Leu Ala Ile Val Val Gly Ala Lys Gly Asp Glu
Ile Ala Gln Val385 390 395
400Ala Glu Ala Leu Lys Gln Glu Pro Arg Ala Asn Thr Gln Val Ala Glu
405 410 415Arg Ile Leu Gln Asp
Leu Arg Ser Gln Gln 420
4251171311DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 117atgcaggtct taagattgga taggagacat
tacaaaagtg gcaagattag aagagcaatg 60agttctagaa ttcctggttt ctacaaattg
tcagtcgagg aaagactgaa aaaggttgct 120gaatttgcag ggttatctga tgaggaagtg
aaagctgttt tgtcacaagg tttacctttg 180gacgtagctg atagaatgat cgaaaatgtg
atcggtacat ttgaattacc acttggtata 240gcaaccaatt tccttattga tggcaaggat
tatctaatcc ctatggctat agaggaacca 300tcagtagttg cagctgcttc taacgcagct
agaatggcca gagagtctgg cgggtttaca 360actgattaca cagggtccct gatgattggt
caaattcaag tcacaaaact gttgaatcca 420aatgcagcta agttcgaagt tctacgtcaa
aaagacgaaa tcatagaaag agcaaatgag 480tgtgatccaa tgttggtgaa tttgggcggt
ggatgtaaag atatagaagc aagggtgatc 540gatacaatca tgggtaagat gctaattgtt
catctgatcg ttgatgttaa agacgctatg 600ggtgcaaatg ctgtcaacac tatgtgtgaa
aaagttgctc ctttcatcga acgtattact 660gggggaaagg tctatcttag aatcatttcc
aacttggctg catatagact tgctagagca 720aaggccgttt ttgacaaaga cgttattggc
ggagaggagg ttgtagaagg gatcatgctt 780gcatacgcct tcgctgccgc tgacccattt
cgttgcgcca cccacaataa gggtatcatg 840aatggcatat cagccttaat gatcgctaca
ggaaacgact ttagagccat tgaagcagga 900gctcattcct atgctgcaat aggtggatac
aaaccactaa ctacctacga agttgataga 960aaaggtaatc tagtaggcac aattgaaata
cctatggcag taggcgtgat tggtggtgca 1020accaaagtca acccactagc caagatctct
cttaagatac taggagtgaa cactgctgaa 1080gagttagcca gagtcgcagc cgctctaggt
ttggctcaaa actttgctgc cttaagagcc 1140ttggccacag aaggtatcca aagaggtcac
atggaattac atgccaggaa cttagcaatc 1200atggctggag ctactggaga tgaggttgac
agagttgtag agattatggt gagagatggc 1260aaaatcagat tggactacgc taaggaagta
ttggagagac tgcgttccta a 1311118436PRTArchaeoglobus fulgidus
118Met Gln Val Leu Arg Leu Asp Arg Arg His Tyr Lys Ser Gly Lys Ile1
5 10 15Arg Arg Ala Met Ser Ser
Arg Ile Pro Gly Phe Tyr Lys Leu Ser Val 20 25
30Glu Glu Arg Leu Lys Lys Val Ala Glu Phe Ala Gly Leu
Ser Asp Glu 35 40 45Glu Val Lys
Ala Val Leu Ser Gln Gly Leu Pro Leu Asp Val Ala Asp 50
55 60Arg Met Ile Glu Asn Val Ile Gly Thr Phe Glu Leu
Pro Leu Gly Ile65 70 75
80Ala Thr Asn Phe Leu Ile Asp Gly Lys Asp Tyr Leu Ile Pro Met Ala
85 90 95Ile Glu Glu Pro Ser Val
Val Ala Ala Ala Ser Asn Ala Ala Arg Met 100
105 110Ala Arg Glu Ser Gly Gly Phe Thr Thr Asp Tyr Thr
Gly Ser Leu Met 115 120 125Ile Gly
Gln Ile Gln Val Thr Lys Leu Leu Asn Pro Asn Ala Ala Lys 130
135 140Phe Glu Val Leu Arg Gln Lys Asp Glu Ile Ile
Glu Arg Ala Asn Glu145 150 155
160Cys Asp Pro Met Leu Val Asn Leu Gly Gly Gly Cys Lys Asp Ile Glu
165 170 175Ala Arg Val Ile
Asp Thr Ile Met Gly Lys Met Leu Ile Val His Leu 180
185 190Ile Val Asp Val Lys Asp Ala Met Gly Ala Asn
Ala Val Asn Thr Met 195 200 205Cys
Glu Lys Val Ala Pro Phe Ile Glu Arg Ile Thr Gly Gly Lys Val 210
215 220Tyr Leu Arg Ile Ile Ser Asn Leu Ala Ala
Tyr Arg Leu Ala Arg Ala225 230 235
240Lys Ala Val Phe Asp Lys Asp Val Ile Gly Gly Glu Glu Val Val
Glu 245 250 255Gly Ile Met
Leu Ala Tyr Ala Phe Ala Ala Ala Asp Pro Phe Arg Cys 260
265 270Ala Thr His Asn Lys Gly Ile Met Asn Gly
Ile Ser Ala Leu Met Ile 275 280
285Ala Thr Gly Asn Asp Phe Arg Ala Ile Glu Ala Gly Ala His Ser Tyr 290
295 300Ala Ala Ile Gly Gly Tyr Lys Pro
Leu Thr Thr Tyr Glu Val Asp Arg305 310
315 320Lys Gly Asn Leu Val Gly Thr Ile Glu Ile Pro Met
Ala Val Gly Val 325 330
335Ile Gly Gly Ala Thr Lys Val Asn Pro Leu Ala Lys Ile Ser Leu Lys
340 345 350Ile Leu Gly Val Asn Thr
Ala Glu Glu Leu Ala Arg Val Ala Ala Ala 355 360
365Leu Gly Leu Ala Gln Asn Phe Ala Ala Leu Arg Ala Leu Ala
Thr Glu 370 375 380Gly Ile Gln Arg Gly
His Met Glu Leu His Ala Arg Asn Leu Ala Ile385 390
395 400Met Ala Gly Ala Thr Gly Asp Glu Val Asp
Arg Val Val Glu Ile Met 405 410
415Val Arg Asp Gly Lys Ile Arg Leu Asp Tyr Ala Lys Glu Val Leu Glu
420 425 430Arg Leu Arg Ser
4351191287DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 119atgtccttag attcaagact gccagctttc
agaaatctgt ctccagctgc aagactagat 60cacattggcc aacttttggg actaagtcat
gacgacgttt cccttttagc aaacgccggt 120gctttaccaa tggatatcgc taatggtatg
attgaaaatg taatcgggac ctttgaactg 180ccatatgcag tggccagtaa ctttcagatc
aatggccgtg acgtcttagt accattagtt 240gtggaggaac ctagtatcgt tgctgcagcc
tcttacatgg caaagttagc tagagccaat 300ggtgggttca ctacatcttc atctgctcca
ctaatgcatg cacaagtaca aattgtcggc 360attcaggatc cactaaacgc aagattgtct
ttactgcgta gaaaggatga gatcatagaa 420ttagccaata ggaaggacca acttctgaat
tcattgggcg gtggttgcag agacatagag 480gtgcatacat ttgccgatac tccaagagga
ccaatgcttg tagcacacct tattgtcgat 540gtgcgtgatg ccatgggagc taatactgtt
aacactatgg ctgaagcagt agcacctctg 600atggaagcca taacaggtgg ccaggtaaga
ttgagaatcc tttccaattt ggctgatctt 660agattggcca gagcccaagt gagaatcact
cctcagcaat tggaaactgc cgaattctca 720ggtgaggcag taattgaggg tatcttggac
gcatatgctt ttgccgctgt ggacccttac 780agagccgcta cccacaacaa aggcataatg
aacggtatcg atcctttgat cgtcgctaca 840ggaaatgatt ggagagctgt tgaggcagga
gctcatgcat acgcttgtag atccggacat 900tacggttcat taacaacatg ggaaaaagat
aacaatggac acttggtcgg gacattggaa 960atgcctatgc cagttggttt agttgggggt
gctacaaaaa cccatcctct tgctcaattg 1020tctttgagga tacttggtgt caaaactgct
caagcactag ccgaaattgc cgttgctgtt 1080ggtttggcac aaaacttggg tgcaatgcgt
gctttagcta cagaaggcat ccaaagagga 1140catatggctc tacacgctag aaacattgca
gttgttgcag gagccagagg tgatgaggtt 1200gattgggtgg ctagacaact tgtcgaatat
catgatgtca gagcagacag ggctgtggca 1260ttactgaaac agaagagagg tcaataa
1287120428PRTPseudomonas mevalonii
120Met Ser Leu Asp Ser Arg Leu Pro Ala Phe Arg Asn Leu Ser Pro Ala1
5 10 15Ala Arg Leu Asp His Ile
Gly Gln Leu Leu Gly Leu Ser His Asp Asp 20 25
30Val Ser Leu Leu Ala Asn Ala Gly Ala Leu Pro Met Asp
Ile Ala Asn 35 40 45Gly Met Ile
Glu Asn Val Ile Gly Thr Phe Glu Leu Pro Tyr Ala Val 50
55 60Ala Ser Asn Phe Gln Ile Asn Gly Arg Asp Val Leu
Val Pro Leu Val65 70 75
80Val Glu Glu Pro Ser Ile Val Ala Ala Ala Ser Tyr Met Ala Lys Leu
85 90 95Ala Arg Ala Asn Gly Gly
Phe Thr Thr Ser Ser Ser Ala Pro Leu Met 100
105 110His Ala Gln Val Gln Ile Val Gly Ile Gln Asp Pro
Leu Asn Ala Arg 115 120 125Leu Ser
Leu Leu Arg Arg Lys Asp Glu Ile Ile Glu Leu Ala Asn Arg 130
135 140Lys Asp Gln Leu Leu Asn Ser Leu Gly Gly Gly
Cys Arg Asp Ile Glu145 150 155
160Val His Thr Phe Ala Asp Thr Pro Arg Gly Pro Met Leu Val Ala His
165 170 175Leu Ile Val Asp
Val Arg Asp Ala Met Gly Ala Asn Thr Val Asn Thr 180
185 190Met Ala Glu Ala Val Ala Pro Leu Met Glu Ala
Ile Thr Gly Gly Gln 195 200 205Val
Arg Leu Arg Ile Leu Ser Asn Leu Ala Asp Leu Arg Leu Ala Arg 210
215 220Ala Gln Val Arg Ile Thr Pro Gln Gln Leu
Glu Thr Ala Glu Phe Ser225 230 235
240Gly Glu Ala Val Ile Glu Gly Ile Leu Asp Ala Tyr Ala Phe Ala
Ala 245 250 255Val Asp Pro
Tyr Arg Ala Ala Thr His Asn Lys Gly Ile Met Asn Gly 260
265 270Ile Asp Pro Leu Ile Val Ala Thr Gly Asn
Asp Trp Arg Ala Val Glu 275 280
285Ala Gly Ala His Ala Tyr Ala Cys Arg Ser Gly His Tyr Gly Ser Leu 290
295 300Thr Thr Trp Glu Lys Asp Asn Asn
Gly His Leu Val Gly Thr Leu Glu305 310
315 320Met Pro Met Pro Val Gly Leu Val Gly Gly Ala Thr
Lys Thr His Pro 325 330
335Leu Ala Gln Leu Ser Leu Arg Ile Leu Gly Val Lys Thr Ala Gln Ala
340 345 350Leu Ala Glu Ile Ala Val
Ala Val Gly Leu Ala Gln Asn Leu Gly Ala 355 360
365Met Arg Ala Leu Ala Thr Glu Gly Ile Gln Arg Gly His Met
Ala Leu 370 375 380His Ala Arg Asn Ile
Ala Val Val Ala Gly Ala Arg Gly Asp Glu Val385 390
395 400Asp Trp Val Ala Arg Gln Leu Val Glu Tyr
His Asp Val Arg Ala Asp 405 410
415Arg Ala Val Ala Leu Leu Lys Gln Lys Arg Gly Gln 420
425121361PRTStevia rebaudiana 121Met Ala Leu Val Asn Pro Thr
Ala Leu Phe Tyr Gly Thr Ser Ile Arg1 5 10
15Thr Arg Pro Thr Asn Leu Leu Asn Pro Thr Gln Lys Leu
Arg Pro Val 20 25 30Ser Ser
Ser Ser Leu Pro Ser Phe Ser Ser Val Ser Ala Ile Leu Thr 35
40 45Glu Lys His Gln Ser Asn Pro Ser Glu Asn
Asn Asn Leu Gln Thr His 50 55 60Leu
Glu Thr Pro Phe Asn Phe Asp Ser Tyr Met Leu Glu Lys Val Asn65
70 75 80Met Val Asn Glu Ala Leu
Asp Ala Ser Val Pro Leu Lys Asp Pro Ile 85
90 95Lys Ile His Glu Ser Met Arg Tyr Ser Leu Leu Ala
Gly Gly Lys Arg 100 105 110Ile
Arg Pro Met Met Cys Ile Ala Ala Cys Glu Ile Val Gly Gly Asn 115
120 125Ile Leu Asn Ala Met Pro Ala Ala Cys
Ala Val Glu Met Ile His Thr 130 135
140Met Ser Leu Val His Asp Asp Leu Pro Cys Met Asp Asn Asp Asp Phe145
150 155 160Arg Arg Gly Lys
Pro Ile Ser His Lys Val Tyr Gly Glu Glu Met Ala 165
170 175Val Leu Thr Gly Asp Ala Leu Leu Ser Leu
Ser Phe Glu His Ile Ala 180 185
190Thr Ala Thr Lys Gly Val Ser Lys Asp Arg Ile Val Arg Ala Ile Gly
195 200 205Glu Leu Ala Arg Ser Val Gly
Ser Glu Gly Leu Val Ala Gly Gln Val 210 215
220Val Asp Ile Leu Ser Glu Gly Ala Asp Val Gly Leu Asp His Leu
Glu225 230 235 240Tyr Ile
His Ile His Lys Thr Ala Met Leu Leu Glu Ser Ser Val Val
245 250 255Ile Gly Ala Ile Met Gly Gly
Gly Ser Asp Gln Gln Ile Glu Lys Leu 260 265
270Arg Lys Phe Ala Arg Ser Ile Gly Leu Leu Phe Gln Val Val
Asp Asp 275 280 285Ile Leu Asp Val
Thr Lys Ser Thr Glu Glu Leu Gly Lys Thr Ala Gly 290
295 300Lys Asp Leu Leu Thr Asp Lys Thr Thr Tyr Pro Lys
Leu Leu Gly Ile305 310 315
320Glu Lys Ser Arg Glu Phe Ala Glu Lys Leu Asn Lys Glu Ala Gln Glu
325 330 335Gln Leu Ser Gly Phe
Asp Arg Arg Lys Ala Ala Pro Leu Ile Ala Leu 340
345 350Ala Asn Tyr Asn Ala Tyr Arg Gln Asn 355
360122342PRTGibberella fujikuroi 122Met Ala Glu Gln Gln Ile
Ser Asn Leu Leu Ser Met Phe Asp Ala Ser1 5
10 15His Ala Ser Gln Lys Leu Glu Ile Thr Val Gln Met
Met Asp Thr Tyr 20 25 30His
Tyr Arg Glu Thr Pro Pro Asp Ser Ser Ser Ser Glu Gly Gly Ser 35
40 45Leu Ser Arg Tyr Asp Glu Arg Arg Val
Ser Leu Pro Leu Ser His Asn 50 55
60Ala Ala Ser Pro Asp Ile Val Ser Gln Leu Cys Phe Ser Thr Ala Met65
70 75 80Ser Ser Glu Leu Asn
His Arg Trp Lys Ser Gln Arg Leu Lys Val Ala 85
90 95Asp Ser Pro Tyr Asn Tyr Ile Leu Thr Leu Pro
Ser Lys Gly Ile Arg 100 105
110Gly Ala Phe Ile Asp Ser Leu Asn Val Trp Leu Glu Val Pro Glu Asp
115 120 125Glu Thr Ser Val Ile Lys Glu
Val Ile Gly Met Leu His Asn Ser Ser 130 135
140Leu Ile Ile Asp Asp Phe Gln Asp Asn Ser Pro Leu Arg Arg Gly
Lys145 150 155 160Pro Ser
Thr His Thr Val Phe Gly Pro Ala Gln Ala Ile Asn Thr Ala
165 170 175Thr Tyr Val Ile Val Lys Ala
Ile Glu Lys Ile Gln Asp Ile Val Gly 180 185
190His Asp Ala Leu Ala Asp Val Thr Gly Thr Ile Thr Thr Ile
Phe Gln 195 200 205Gly Gln Ala Met
Asp Leu Trp Trp Thr Ala Asn Ala Ile Val Pro Ser 210
215 220Ile Gln Glu Tyr Leu Leu Met Val Asn Asp Lys Thr
Gly Ala Leu Phe225 230 235
240Arg Leu Ser Leu Glu Leu Leu Ala Leu Asn Ser Glu Ala Ser Ile Ser
245 250 255Asp Ser Ala Leu Glu
Ser Leu Ser Ser Ala Val Ser Leu Leu Gly Gln 260
265 270Tyr Phe Gln Ile Arg Asp Asp Tyr Met Asn Leu Ile
Asp Asn Lys Tyr 275 280 285Thr Asp
Gln Lys Gly Phe Cys Glu Asp Leu Asp Glu Gly Lys Tyr Ser 290
295 300Leu Thr Leu Ile His Ala Leu Gln Thr Asp Ser
Ser Asp Leu Leu Thr305 310 315
320Asn Ile Leu Ser Met Arg Arg Val Gln Gly Lys Leu Thr Ala Gln Lys
325 330 335Arg Cys Trp Phe
Trp Lys 340123300PRTMus musculus 123Met Glu Lys Thr Lys Glu
Lys Ala Glu Arg Ile Leu Leu Glu Pro Tyr1 5
10 15Arg Tyr Leu Leu Gln Leu Pro Gly Lys Gln Val Arg
Ser Lys Leu Ser 20 25 30Gln
Ala Phe Asn His Trp Leu Lys Val Pro Glu Asp Lys Leu Gln Ile 35
40 45Ile Ile Glu Val Thr Glu Met Leu His
Asn Ala Ser Leu Leu Ile Asp 50 55
60Asp Ile Glu Asp Ser Ser Lys Leu Arg Arg Gly Phe Pro Val Ala His65
70 75 80Ser Ile Tyr Gly Val
Pro Ser Val Ile Asn Ser Ala Asn Tyr Val Tyr 85
90 95Phe Leu Gly Leu Glu Lys Val Leu Thr Leu Asp
His Pro Asp Ala Val 100 105
110Lys Leu Phe Thr Arg Gln Leu Leu Glu Leu His Gln Gly Gln Gly Leu
115 120 125Asp Ile Tyr Trp Arg Asp Thr
Tyr Thr Cys Pro Thr Glu Glu Glu Tyr 130 135
140Lys Ala Met Val Leu Gln Lys Thr Gly Gly Leu Phe Gly Leu Ala
Val145 150 155 160Gly Leu
Met Gln Leu Phe Ser Asp Tyr Lys Glu Asp Leu Lys Pro Leu
165 170 175Leu Asp Thr Leu Gly Leu Phe
Phe Gln Ile Arg Asp Asp Tyr Ala Asn 180 185
190Leu His Ser Lys Glu Tyr Ser Glu Asn Lys Ser Phe Cys Glu
Asp Leu 195 200 205Thr Glu Gly Lys
Phe Ser Phe Pro Thr Ile His Ala Ile Trp Ser Arg 210
215 220Pro Glu Ser Thr Gln Val Gln Asn Ile Leu Arg Gln
Arg Thr Glu Asn225 230 235
240Ile Asp Ile Lys Lys Tyr Cys Val Gln Tyr Leu Glu Asp Val Gly Ser
245 250 255Phe Ala Tyr Thr Arg
His Thr Leu Arg Glu Leu Glu Ala Lys Ala Tyr 260
265 270Lys Gln Ile Glu Ala Cys Gly Gly Asn Pro Ser Leu
Val Ala Leu Val 275 280 285Lys His
Leu Ser Lys Met Phe Thr Glu Glu Asn Lys 290 295
300124339PRTThalassiosira pseudonana 124Met Ala Arg Phe Tyr Phe
Leu Asn Ala Leu Leu Met Val Ile Ser Leu1 5
10 15Gln Ser Thr Thr Ala Phe Thr Pro Ala Lys Leu Ala
Tyr Pro Thr Thr 20 25 30Thr
Thr Ala Leu Asn Val Ala Ser Ala Glu Thr Ser Phe Ser Leu Asp 35
40 45Glu Tyr Leu Ala Ser Lys Ile Gly Pro
Ile Glu Ser Ala Leu Glu Ala 50 55
60Ser Val Lys Ser Arg Ile Pro Gln Thr Asp Lys Ile Cys Glu Ser Met65
70 75 80Ala Tyr Ser Leu Met
Ala Gly Gly Lys Arg Ile Arg Pro Val Leu Cys 85
90 95Ile Ala Ala Cys Glu Met Phe Gly Gly Ser Gln
Asp Val Ala Met Pro 100 105
110Thr Ala Val Ala Leu Glu Met Ile His Thr Met Ser Leu Ile His Asp
115 120 125Asp Leu Pro Ser Met Asp Asn
Asp Asp Leu Arg Arg Gly Lys Pro Thr 130 135
140Asn His Val Val Phe Gly Glu Asp Val Ala Ile Leu Ala Gly Asp
Ser145 150 155 160Leu Leu
Ser Thr Ser Phe Glu His Val Ala Arg Glu Thr Lys Gly Val
165 170 175Ser Ala Glu Lys Ile Val Asp
Val Ile Ala Arg Leu Gly Lys Ser Val 180 185
190Gly Ala Glu Gly Leu Ala Gly Gly Gln Val Met Asp Leu Glu
Cys Glu 195 200 205Ala Lys Pro Gly
Thr Thr Leu Asp Asp Leu Lys Trp Ile His Ile His 210
215 220Lys Thr Ala Thr Leu Leu Gln Val Ala Val Ala Ser
Gly Ala Val Leu225 230 235
240Gly Gly Ala Thr Pro Glu Glu Val Ala Ala Cys Glu Leu Phe Ala Met
245 250 255Asn Ile Gly Leu Ala
Phe Gln Val Ala Asp Asp Ile Leu Asp Val Thr 260
265 270Ala Ser Ser Glu Asp Leu Gly Lys Thr Ala Gly Lys
Asp Glu Ala Thr 275 280 285Asp Lys
Thr Thr Tyr Pro Lys Leu Leu Gly Leu Glu Glu Ser Lys Ala 290
295 300Tyr Ala Arg Gln Leu Ile Asp Glu Ala Lys Glu
Ser Leu Ala Pro Phe305 310 315
320Gly Asp Arg Ala Ala Pro Leu Leu Ala Ile Ala Asp Phe Ile Ile Asp
325 330 335Arg Lys
Asn125355PRTStreptomyces clavuligerus 125Met His Leu Ala Pro Arg Arg Val
Pro Arg Gly Arg Arg Ser Pro Pro1 5 10
15Asp Arg Val Pro Glu Arg Gln Gly Ala Leu Gly Arg Arg Arg
Gly Ala 20 25 30Gly Ser Thr
Gly Cys Ala Arg Ala Ala Ala Gly Val His Arg Arg Arg 35
40 45Gly Gly Gly Glu Ala Asp Pro Ser Ala Ala Val
His Arg Gly Trp Gln 50 55 60Ala Gly
Gly Gly Thr Gly Leu Pro Asp Glu Val Val Ser Thr Ala Ala65
70 75 80Ala Leu Glu Met Phe His Ala
Phe Ala Leu Ile His Asp Asp Ile Met 85 90
95Asp Asp Ser Ala Thr Arg Arg Gly Ser Pro Thr Val His
Arg Ala Leu 100 105 110Ala Asp
Arg Leu Gly Ala Ala Leu Asp Pro Asp Gln Ala Gly Gln Leu 115
120 125Gly Val Ser Thr Ala Ile Leu Val Gly Asp
Leu Ala Leu Thr Trp Ser 130 135 140Asp
Glu Leu Leu Tyr Ala Pro Leu Thr Pro His Arg Leu Ala Ala Val145
150 155 160Leu Pro Leu Val Thr Ala
Met Arg Ala Glu Thr Val His Gly Gln Tyr 165
170 175Leu Asp Ile Thr Ser Ala Arg Arg Pro Gly Thr Asp
Thr Ser Leu Ala 180 185 190Leu
Arg Ile Ala Arg Tyr Lys Thr Ala Ala Tyr Thr Met Glu Arg Pro 195
200 205Leu His Ile Gly Ala Ala Leu Ala Gly
Ala Arg Pro Glu Leu Leu Ala 210 215
220Gly Leu Ser Ala Tyr Ala Leu Pro Ala Gly Glu Ala Phe Gln Leu Ala225
230 235 240Asp Asp Leu Leu
Gly Val Phe Gly Asp Pro Arg Arg Thr Gly Lys Pro 245
250 255Asp Leu Asp Asp Leu Arg Gly Gly Lys His
Thr Val Leu Val Ala Leu 260 265
270Ala Arg Glu His Ala Thr Pro Glu Gln Arg His Thr Leu Asp Thr Leu
275 280 285Leu Gly Thr Pro Gly Leu Asp
Arg Gln Gly Ala Ser Arg Leu Arg Cys 290 295
300Val Leu Val Ala Thr Gly Ala Arg Ala Glu Ala Glu Arg Leu Ile
Thr305 310 315 320Glu Arg
Arg Asp Gln Ala Leu Thr Ala Leu Asn Ala Leu Thr Leu Pro
325 330 335Pro Pro Leu Ala Glu Ala Leu
Ala Arg Leu Thr Leu Gly Ser Thr Ala 340 345
350His Pro Ala 355126330PRTSulfulobus acidicaldarius
126Met Ser Tyr Phe Asp Asn Tyr Phe Asn Glu Ile Val Asn Ser Val Asn1
5 10 15Asp Ile Ile Lys Ser Tyr
Ile Ser Gly Asp Val Pro Lys Leu Tyr Glu 20 25
30Ala Ser Tyr His Leu Phe Thr Ser Gly Gly Lys Arg Leu
Arg Pro Leu 35 40 45Ile Leu Thr
Ile Ser Ser Asp Leu Phe Gly Gly Gln Arg Glu Arg Ala 50
55 60Tyr Tyr Ala Gly Ala Ala Ile Glu Val Leu His Thr
Phe Thr Leu Val65 70 75
80His Asp Asp Ile Met Asp Gln Asp Asn Ile Arg Arg Gly Leu Pro Thr
85 90 95Val His Val Lys Tyr Gly
Leu Pro Leu Ala Ile Leu Ala Gly Asp Leu 100
105 110Leu His Ala Lys Ala Phe Gln Leu Leu Thr Gln Ala
Leu Arg Gly Leu 115 120 125Pro Ser
Glu Thr Ile Ile Lys Ala Phe Asp Ile Phe Thr Arg Ser Ile 130
135 140Ile Ile Ile Ser Glu Gly Gln Ala Val Asp Met
Glu Phe Glu Asp Arg145 150 155
160Ile Asp Ile Lys Glu Gln Glu Tyr Leu Asp Met Ile Ser Arg Lys Thr
165 170 175Ala Ala Leu Phe
Ser Ala Ser Ser Ser Ile Gly Ala Leu Ile Ala Gly 180
185 190Ala Asn Asp Asn Asp Val Arg Leu Met Ser Asp
Phe Gly Thr Asn Leu 195 200 205Gly
Ile Ala Phe Gln Ile Val Asp Asp Ile Leu Gly Leu Thr Ala Asp 210
215 220Glu Lys Glu Leu Gly Lys Pro Val Phe Ser
Asp Ile Arg Glu Gly Lys225 230 235
240Lys Thr Ile Leu Val Ile Lys Thr Leu Glu Leu Cys Lys Glu Asp
Glu 245 250 255Lys Lys Ile
Val Leu Lys Ala Leu Gly Asn Lys Ser Ala Ser Lys Glu 260
265 270Glu Leu Met Ser Ser Ala Asp Ile Ile Lys
Lys Tyr Ser Leu Asp Tyr 275 280
285Ala Tyr Asn Leu Ala Glu Lys Tyr Tyr Lys Asn Ala Ile Asp Ser Leu 290
295 300Asn Gln Val Ser Ser Lys Ser Asp
Ile Pro Gly Lys Ala Leu Lys Tyr305 310
315 320Leu Ala Glu Phe Thr Ile Arg Arg Arg Lys
325 330127297PRTSynechococcus sp. 127Met Val Ala Gln
Thr Phe Asn Leu Asp Thr Tyr Leu Ser Gln Arg Gln1 5
10 15Gln Gln Val Glu Glu Ala Leu Ser Ala Ala
Leu Val Pro Ala Tyr Pro 20 25
30Glu Arg Ile Tyr Glu Ala Met Arg Tyr Ser Leu Leu Ala Gly Gly Lys
35 40 45Arg Leu Arg Pro Ile Leu Cys Leu
Ala Ala Cys Glu Leu Ala Gly Gly 50 55
60Ser Val Glu Gln Ala Met Pro Thr Ala Cys Ala Leu Glu Met Ile His65
70 75 80Thr Met Ser Leu Ile
His Asp Asp Leu Pro Ala Met Asp Asn Asp Asp 85
90 95Phe Arg Arg Gly Lys Pro Thr Asn His Lys Val
Phe Gly Glu Asp Ile 100 105
110Ala Ile Leu Ala Gly Asp Ala Leu Leu Ala Tyr Ala Phe Glu His Ile
115 120 125Ala Ser Gln Thr Arg Gly Val
Pro Pro Gln Leu Val Leu Gln Val Ile 130 135
140Ala Arg Ile Gly His Ala Val Ala Ala Thr Gly Leu Val Gly Gly
Gln145 150 155 160Val Val
Asp Leu Glu Ser Glu Gly Lys Ala Ile Ser Leu Glu Thr Leu
165 170 175Glu Tyr Ile His Ser His Lys
Thr Gly Ala Leu Leu Glu Ala Ser Val 180 185
190Val Ser Gly Gly Ile Leu Ala Gly Ala Asp Glu Glu Leu Leu
Ala Arg 195 200 205Leu Ser His Tyr
Ala Arg Asp Ile Gly Leu Ala Phe Gln Ile Val Asp 210
215 220Asp Ile Leu Asp Val Thr Ala Thr Ser Glu Gln Leu
Gly Lys Thr Ala225 230 235
240Gly Lys Asp Gln Ala Ala Ala Lys Ala Thr Tyr Pro Ser Leu Leu Gly
245 250 255Leu Glu Ala Ser Arg
Gln Lys Ala Glu Glu Leu Ile Gln Ser Ala Lys 260
265 270Glu Ala Leu Arg Pro Tyr Gly Ser Gln Ala Glu Pro
Leu Leu Ala Leu 275 280 285Ala Asp
Phe Ile Thr Arg Arg Gln His 290
295128371PRTArabidopsis thaliana 128Met Ala Ser Val Thr Leu Gly Ser Trp
Ile Val Val His His His Asn1 5 10
15His His His Pro Ser Ser Ile Leu Thr Lys Ser Arg Ser Arg Ser
Cys 20 25 30Pro Ile Thr Leu
Thr Lys Pro Ile Ser Phe Arg Ser Lys Arg Thr Val 35
40 45Ser Ser Ser Ser Ser Ile Val Ser Ser Ser Val Val
Thr Lys Glu Asp 50 55 60Asn Leu Arg
Gln Ser Glu Pro Ser Ser Phe Asp Phe Met Ser Tyr Ile65 70
75 80Ile Thr Lys Ala Glu Leu Val Asn
Lys Ala Leu Asp Ser Ala Val Pro 85 90
95Leu Arg Glu Pro Leu Lys Ile His Glu Ala Met Arg Tyr Ser
Leu Leu 100 105 110Ala Gly Gly
Lys Arg Val Arg Pro Val Leu Cys Ile Ala Ala Cys Glu 115
120 125Leu Val Gly Gly Glu Glu Ser Thr Ala Met Pro
Ala Ala Cys Ala Val 130 135 140Glu Met
Ile His Thr Met Ser Leu Ile His Asp Asp Leu Pro Cys Met145
150 155 160Asp Asn Asp Asp Leu Arg Arg
Gly Lys Pro Thr Asn His Lys Val Phe 165
170 175Gly Glu Asp Val Ala Val Leu Ala Gly Asp Ala Leu
Leu Ser Phe Ala 180 185 190Phe
Glu His Leu Ala Ser Ala Thr Ser Ser Asp Val Val Ser Pro Val 195
200 205Arg Val Val Arg Ala Val Gly Glu Leu
Ala Lys Ala Ile Gly Thr Glu 210 215
220Gly Leu Val Ala Gly Gln Val Val Asp Ile Ser Ser Glu Gly Leu Asp225
230 235 240Leu Asn Asp Val
Gly Leu Glu His Leu Glu Phe Ile His Leu His Lys 245
250 255Thr Ala Ala Leu Leu Glu Ala Ser Ala Val
Leu Gly Ala Ile Val Gly 260 265
270Gly Gly Ser Asp Asp Glu Ile Glu Arg Leu Arg Lys Phe Ala Arg Cys
275 280 285Ile Gly Leu Leu Phe Gln Val
Val Asp Asp Ile Leu Asp Val Thr Lys 290 295
300Ser Ser Lys Glu Leu Gly Lys Thr Ala Gly Lys Asp Leu Ile Ala
Asp305 310 315 320Lys Leu
Thr Tyr Pro Lys Ile Met Gly Leu Glu Lys Ser Arg Glu Phe
325 330 335Ala Glu Lys Leu Asn Arg Glu
Ala Arg Asp Gln Leu Leu Gly Phe Asp 340 345
350Ser Asp Lys Val Ala Pro Leu Leu Ala Leu Ala Asn Tyr Ile
Ala Tyr 355 360 365Arg Gln Asn
370129787PRTStevia rebaudiana 129Met Lys Thr Gly Phe Ile Ser Pro Ala Thr
Val Phe His His Arg Ile1 5 10
15Ser Pro Ala Thr Thr Phe Arg His His Leu Ser Pro Ala Thr Thr Asn
20 25 30Ser Thr Gly Ile Val Ala
Leu Arg Asp Ile Asn Phe Arg Cys Lys Ala 35 40
45Val Ser Lys Glu Tyr Ser Asp Leu Leu Gln Lys Asp Glu Ala
Ser Phe 50 55 60Thr Lys Trp Asp Asp
Asp Lys Val Lys Asp His Leu Asp Thr Asn Lys65 70
75 80Asn Leu Tyr Pro Asn Asp Glu Ile Lys Glu
Phe Val Glu Ser Val Lys 85 90
95Ala Met Phe Gly Ser Met Asn Asp Gly Glu Ile Asn Val Ser Ala Tyr
100 105 110Asp Thr Ala Trp Val
Ala Leu Val Gln Asp Val Asp Gly Ser Gly Ser 115
120 125Pro Gln Phe Pro Ser Ser Leu Glu Trp Ile Ala Asn
Asn Gln Leu Ser 130 135 140Asp Gly Ser
Trp Gly Asp His Leu Leu Phe Ser Ala His Asp Arg Ile145
150 155 160Ile Asn Thr Leu Ala Cys Val
Ile Ala Leu Thr Ser Trp Asn Val His 165
170 175Pro Ser Lys Cys Glu Lys Gly Leu Asn Phe Leu Arg
Glu Asn Ile Cys 180 185 190Lys
Leu Glu Asp Glu Asn Ala Glu His Met Pro Ile Gly Phe Glu Val 195
200 205Thr Phe Pro Ser Leu Ile Asp Ile Ala
Lys Lys Leu Asn Ile Glu Val 210 215
220Pro Glu Asp Thr Pro Ala Leu Lys Glu Ile Tyr Ala Arg Arg Asp Ile225
230 235 240Lys Leu Thr Lys
Ile Pro Met Glu Val Leu His Lys Val Pro Thr Thr 245
250 255Leu Leu His Ser Leu Glu Gly Met Pro Asp
Leu Glu Trp Glu Lys Leu 260 265
270Leu Lys Leu Gln Cys Lys Asp Gly Ser Phe Leu Phe Ser Pro Ser Ser
275 280 285Thr Ala Phe Ala Leu Met Gln
Thr Lys Asp Glu Lys Cys Leu Gln Tyr 290 295
300Leu Thr Asn Ile Val Thr Lys Phe Asn Gly Gly Val Pro Asn Val
Tyr305 310 315 320Pro Val
Asp Leu Phe Glu His Ile Trp Val Val Asp Arg Leu Gln Arg
325 330 335Leu Gly Ile Ala Arg Tyr Phe
Lys Ser Glu Ile Lys Asp Cys Val Glu 340 345
350Tyr Ile Asn Lys Tyr Trp Thr Lys Asn Gly Ile Cys Trp Ala
Arg Asn 355 360 365Thr His Val Gln
Asp Ile Asp Asp Thr Ala Met Gly Phe Arg Val Leu 370
375 380Arg Ala His Gly Tyr Asp Val Thr Pro Asp Val Phe
Arg Gln Phe Glu385 390 395
400Lys Asp Gly Lys Phe Val Cys Phe Ala Gly Gln Ser Thr Gln Ala Val
405 410 415Thr Gly Met Phe Asn
Val Tyr Arg Ala Ser Gln Met Leu Phe Pro Gly 420
425 430Glu Arg Ile Leu Glu Asp Ala Lys Lys Phe Ser Tyr
Asn Tyr Leu Lys 435 440 445Glu Lys
Gln Ser Thr Asn Glu Leu Leu Asp Lys Trp Ile Ile Ala Lys 450
455 460Asp Leu Pro Gly Glu Val Gly Tyr Ala Leu Asp
Ile Pro Trp Tyr Ala465 470 475
480Ser Leu Pro Arg Leu Glu Thr Arg Tyr Tyr Leu Glu Gln Tyr Gly Gly
485 490 495Glu Asp Asp Val
Trp Ile Gly Lys Thr Leu Tyr Arg Met Gly Tyr Val 500
505 510Ser Asn Asn Thr Tyr Leu Glu Met Ala Lys Leu
Asp Tyr Asn Asn Tyr 515 520 525Val
Ala Val Leu Gln Leu Glu Trp Tyr Thr Ile Gln Gln Trp Tyr Val 530
535 540Asp Ile Gly Ile Glu Lys Phe Glu Ser Asp
Asn Ile Lys Ser Val Leu545 550 555
560Val Ser Tyr Tyr Leu Ala Ala Ala Ser Ile Phe Glu Pro Glu Arg
Ser 565 570 575Lys Glu Arg
Ile Ala Trp Ala Lys Thr Thr Ile Leu Val Asp Lys Ile 580
585 590Thr Ser Ile Phe Asp Ser Ser Gln Ser Ser
Lys Glu Asp Ile Thr Ala 595 600
605Phe Ile Asp Lys Phe Arg Asn Lys Ser Ser Ser Lys Lys His Ser Ile 610
615 620Asn Gly Glu Pro Trp His Glu Val
Met Val Ala Leu Lys Lys Thr Leu625 630
635 640His Gly Phe Ala Leu Asp Ala Leu Met Thr His Ser
Gln Asp Ile His 645 650
655Pro Gln Leu His Gln Ala Trp Glu Met Trp Leu Thr Lys Leu Gln Asp
660 665 670Gly Val Asp Val Thr Ala
Glu Leu Met Val Gln Met Ile Asn Met Thr 675 680
685Ala Gly Arg Trp Val Ser Lys Glu Leu Leu Thr His Pro Gln
Tyr Gln 690 695 700Arg Leu Ser Thr Val
Thr Asn Ser Val Cys His Asp Ile Thr Lys Leu705 710
715 720His Asn Phe Lys Glu Asn Ser Thr Thr Val
Asp Ser Lys Val Gln Glu 725 730
735Leu Val Gln Leu Val Phe Ser Asp Thr Pro Asp Asp Leu Asp Gln Asp
740 745 750Met Lys Gln Thr Phe
Leu Thr Val Met Lys Thr Phe Tyr Tyr Lys Ala 755
760 765Trp Cys Asp Pro Asn Thr Ile Asn Asp His Ile Ser
Lys Val Phe Glu 770 775 780Ile Val
Ile785130527PRTStreptomyces clavuligerus 130Met Pro Asp Ala His Asp Ala
Pro Pro Pro Gln Ile Arg Gln Arg Thr1 5 10
15Leu Val Asp Glu Ala Thr Gln Leu Leu Thr Glu Ser Ala
Glu Asp Ala 20 25 30Trp Gly
Glu Val Ser Val Ser Glu Tyr Glu Thr Ala Arg Leu Val Ala 35
40 45His Ala Thr Trp Leu Gly Gly His Ala Thr
Arg Val Ala Phe Leu Leu 50 55 60Glu
Arg Gln His Glu Asp Gly Ser Trp Gly Pro Pro Gly Gly Tyr Arg65
70 75 80Leu Val Pro Thr Leu Ser
Ala Val His Ala Leu Leu Thr Cys Leu Ala 85
90 95Ser Pro Ala Gln Asp His Gly Val Pro His Asp Arg
Leu Leu Arg Ala 100 105 110Val
Asp Ala Gly Leu Thr Ala Leu Arg Arg Leu Gly Thr Ser Asp Ser 115
120 125Pro Pro Asp Thr Ile Ala Val Glu Leu
Val Ile Pro Ser Leu Leu Glu 130 135
140Gly Ile Gln His Leu Leu Asp Pro Ala His Pro His Ser Arg Pro Ala145
150 155 160Phe Ser Gln His
Arg Gly Ser Leu Val Cys Pro Gly Gly Leu Asp Gly 165
170 175Arg Thr Leu Gly Ala Leu Arg Ser His Ala
Ala Ala Gly Thr Pro Val 180 185
190Pro Gly Lys Val Trp His Ala Ser Glu Thr Leu Gly Leu Ser Thr Glu
195 200 205Ala Ala Ser His Leu Gln Pro
Ala Gln Gly Ile Ile Gly Gly Ser Ala 210 215
220Ala Ala Thr Ala Thr Trp Leu Thr Arg Val Ala Pro Ser Gln Gln
Ser225 230 235 240Asp Ser
Ala Arg Arg Tyr Leu Glu Glu Leu Gln His Arg Tyr Ser Gly
245 250 255Pro Val Pro Ser Ile Thr Pro
Ile Thr Tyr Phe Glu Arg Ala Trp Leu 260 265
270Leu Asn Asn Phe Ala Ala Ala Gly Val Pro Cys Glu Ala Pro
Ala Ala 275 280 285Leu Leu Asp Ser
Leu Glu Ala Ala Leu Thr Pro Gln Gly Ala Pro Ala 290
295 300Gly Ala Gly Leu Pro Pro Asp Ala Asp Asp Thr Ala
Ala Val Leu Leu305 310 315
320Ala Leu Ala Thr His Gly Arg Gly Arg Arg Pro Glu Val Leu Met Asp
325 330 335Tyr Arg Thr Asp Gly
Tyr Phe Gln Cys Phe Ile Gly Glu Arg Thr Pro 340
345 350Ser Ile Ser Thr Asn Ala His Val Leu Glu Thr Leu
Gly His His Val 355 360 365Ala Gln
His Pro Gln Asp Arg Ala Arg Tyr Gly Ser Ala Met Asp Thr 370
375 380Ala Ser Ala Trp Leu Leu Ala Ala Gln Lys Gln
Asp Gly Ser Trp Leu385 390 395
400Asp Lys Trp His Ala Ser Pro Tyr Tyr Ala Thr Val Cys Cys Thr Gln
405 410 415Ala Leu Ala Ala
His Ala Ser Pro Ala Thr Ala Pro Ala Arg Gln Arg 420
425 430Ala Val Arg Trp Val Leu Ala Thr Gln Arg Ser
Asp Gly Gly Trp Gly 435 440 445Leu
Trp His Ser Thr Val Glu Glu Thr Ala Tyr Ala Leu Gln Ile Leu 450
455 460Ala Pro Pro Ser Gly Gly Gly Asn Ile Pro
Val Gln Gln Ala Leu Thr465 470 475
480Arg Gly Arg Ala Arg Leu Cys Gly Ala Leu Pro Leu Thr Pro Leu
Trp 485 490 495His Asp Lys
Asp Leu Tyr Thr Pro Val Arg Val Val Arg Ala Ala Arg 500
505 510Ala Ala Ala Leu Tyr Thr Thr Arg Asp Leu
Leu Leu Pro Pro Leu 515 520
525131516PRTBradyrhizobium japonicum 131Met Asn Ala Leu Ser Glu His Ile
Leu Ser Glu Leu Arg Arg Leu Leu1 5 10
15Ser Glu Met Ser Asp Gly Gly Ser Val Gly Pro Ser Val Tyr
Asp Thr 20 25 30Ala Gln Ala
Leu Arg Phe His Gly Asn Val Thr Gly Arg Gln Asp Ala 35
40 45Tyr Ala Trp Leu Ile Ala Gln Gln Gln Ala Asp
Gly Gly Trp Gly Ser 50 55 60Ala Asp
Phe Pro Leu Phe Arg His Ala Pro Thr Trp Ala Ala Leu Leu65
70 75 80Ala Leu Gln Arg Ala Asp Pro
Leu Pro Gly Ala Ala Asp Ala Val Gln 85 90
95Thr Ala Thr Arg Phe Leu Gln Arg Gln Pro Asp Pro Tyr
Ala His Ala 100 105 110Val Pro
Glu Asp Ala Pro Ile Gly Ala Glu Leu Ile Leu Pro Gln Phe 115
120 125Cys Gly Glu Ala Ala Trp Leu Leu Gly Gly
Val Ala Phe Pro Arg His 130 135 140Pro
Ala Leu Leu Pro Leu Arg Gln Ala Cys Leu Val Lys Leu Gly Ala145
150 155 160Val Ala Met Leu Pro Ser
Gly His Pro Leu Leu His Ser Trp Glu Ala 165
170 175Trp Gly Thr Ser Pro Thr Thr Ala Cys Pro Asp Asp
Asp Gly Ser Ile 180 185 190Gly
Ile Ser Pro Ala Ala Thr Ala Ala Trp Arg Ala Gln Ala Val Thr 195
200 205Arg Gly Ser Thr Pro Gln Val Gly Arg
Ala Asp Ala Tyr Leu Gln Met 210 215
220Ala Ser Arg Ala Thr Arg Ser Gly Ile Glu Gly Val Phe Pro Asn Val225
230 235 240Trp Pro Ile Asn
Val Phe Glu Pro Cys Trp Ser Leu Tyr Thr Leu His 245
250 255Leu Ala Gly Leu Phe Ala His Pro Ala Leu
Ala Glu Ala Val Arg Val 260 265
270Ile Val Ala Gln Leu Glu Ala Arg Leu Gly Val His Gly Leu Gly Pro
275 280 285Ala Leu His Phe Ala Ala Asp
Ala Asp Asp Thr Ala Val Ala Leu Cys 290 295
300Val Leu His Leu Ala Gly Arg Asp Pro Ala Val Asp Ala Leu Arg
His305 310 315 320Phe Glu
Ile Gly Glu Leu Phe Val Thr Phe Pro Gly Glu Arg Asn Ala
325 330 335Ser Val Ser Thr Asn Ile His
Ala Leu His Ala Leu Arg Leu Leu Gly 340 345
350Lys Pro Ala Ala Gly Ala Ser Ala Tyr Val Glu Ala Asn Arg
Asn Pro 355 360 365His Gly Leu Trp
Asp Asn Glu Lys Trp His Val Ser Trp Leu Tyr Pro 370
375 380Thr Ala His Ala Val Ala Ala Leu Ala Gln Gly Lys
Pro Gln Trp Arg385 390 395
400Asp Glu Arg Ala Leu Ala Ala Leu Leu Gln Ala Gln Arg Asp Asp Gly
405 410 415Gly Trp Gly Ala Gly
Arg Gly Ser Thr Phe Glu Glu Thr Ala Tyr Ala 420
425 430Leu Phe Ala Leu His Val Met Asp Gly Ser Glu Glu
Ala Thr Gly Arg 435 440 445Arg Arg
Ile Ala Gln Val Val Ala Arg Ala Leu Glu Trp Met Leu Ala 450
455 460Arg His Ala Ala His Gly Leu Pro Gln Thr Pro
Leu Trp Ile Gly Lys465 470 475
480Glu Leu Tyr Cys Pro Thr Arg Val Val Arg Val Ala Glu Leu Ala Gly
485 490 495Leu Trp Leu Ala
Leu Arg Trp Gly Arg Arg Val Leu Ala Glu Gly Ala 500
505 510Gly Ala Ala Pro 515132784PRTStevia
rebaudiana 132Met Asn Leu Ser Leu Cys Ile Ala Ser Pro Leu Leu Thr Lys Ser
Asn1 5 10 15Arg Pro Ala
Ala Leu Ser Ala Ile His Thr Ala Ser Thr Ser His Gly 20
25 30Gly Gln Thr Asn Pro Thr Asn Leu Ile Ile
Asp Thr Thr Lys Glu Arg 35 40
45Ile Gln Lys Gln Phe Lys Asn Val Glu Ile Ser Val Ser Ser Tyr Asp 50
55 60Thr Ala Trp Val Ala Met Val Pro Ser
Pro Asn Ser Pro Lys Ser Pro65 70 75
80Cys Phe Pro Glu Cys Leu Asn Trp Leu Ile Asn Asn Gln Leu
Asn Asp 85 90 95Gly Ser
Trp Gly Leu Val Asn His Thr His Asn His Asn His Pro Leu 100
105 110Leu Lys Asp Ser Leu Ser Ser Thr Leu
Ala Cys Ile Val Ala Leu Lys 115 120
125Arg Trp Asn Val Gly Glu Asp Gln Ile Asn Lys Gly Leu Ser Phe Ile
130 135 140Glu Ser Asn Leu Ala Ser Ala
Thr Glu Lys Ser Gln Pro Ser Pro Ile145 150
155 160Gly Phe Asp Ile Ile Phe Pro Gly Leu Leu Glu Tyr
Ala Lys Asn Leu 165 170
175Asp Ile Asn Leu Leu Ser Lys Gln Thr Asp Phe Ser Leu Met Leu His
180 185 190Lys Arg Glu Leu Glu Gln
Lys Arg Cys His Ser Asn Glu Met Asp Gly 195 200
205Tyr Leu Ala Tyr Ile Ser Glu Gly Leu Gly Asn Leu Tyr Asp
Trp Asn 210 215 220Met Val Lys Lys Tyr
Gln Met Lys Asn Gly Ser Val Phe Asn Ser Pro225 230
235 240Ser Ala Thr Ala Ala Ala Phe Ile Asn His
Gln Asn Pro Gly Cys Leu 245 250
255Asn Tyr Leu Asn Ser Leu Leu Asp Lys Phe Gly Asn Ala Val Pro Thr
260 265 270Val Tyr Pro His Asp
Leu Phe Ile Arg Leu Ser Met Val Asp Thr Ile 275
280 285Glu Arg Leu Gly Ile Ser His His Phe Arg Val Glu
Ile Lys Asn Val 290 295 300Leu Asp Glu
Thr Tyr Arg Cys Trp Val Glu Arg Asp Glu Gln Ile Phe305
310 315 320Met Asp Val Val Thr Cys Ala
Leu Ala Phe Arg Leu Leu Arg Ile Asn 325
330 335Gly Tyr Glu Val Ser Pro Asp Pro Leu Ala Glu Ile
Thr Asn Glu Leu 340 345 350Ala
Leu Lys Asp Glu Tyr Ala Ala Leu Glu Thr Tyr His Ala Ser His 355
360 365Ile Leu Tyr Gln Glu Asp Leu Ser Ser
Gly Lys Gln Ile Leu Lys Ser 370 375
380Ala Asp Phe Leu Lys Glu Ile Ile Ser Thr Asp Ser Asn Arg Leu Ser385
390 395 400Lys Leu Ile His
Lys Glu Val Glu Asn Ala Leu Lys Phe Pro Ile Asn 405
410 415Thr Gly Leu Glu Arg Ile Asn Thr Arg Arg
Asn Ile Gln Leu Tyr Asn 420 425
430Val Asp Asn Thr Arg Ile Leu Lys Thr Thr Tyr His Ser Ser Asn Ile
435 440 445Ser Asn Thr Asp Tyr Leu Arg
Leu Ala Val Glu Asp Phe Tyr Thr Cys 450 455
460Gln Ser Ile Tyr Arg Glu Glu Leu Lys Gly Leu Glu Arg Trp Val
Val465 470 475 480Glu Asn
Lys Leu Asp Gln Leu Lys Phe Ala Arg Gln Lys Thr Ala Tyr
485 490 495Cys Tyr Phe Ser Val Ala Ala
Thr Leu Ser Ser Pro Glu Leu Ser Asp 500 505
510Ala Arg Ile Ser Trp Ala Lys Asn Gly Ile Leu Thr Thr Val
Val Asp 515 520 525Asp Phe Phe Asp
Ile Gly Gly Thr Ile Asp Glu Leu Thr Asn Leu Ile 530
535 540Gln Cys Val Glu Lys Trp Asn Val Asp Val Asp Lys
Asp Cys Cys Ser545 550 555
560Glu His Val Arg Ile Leu Phe Leu Ala Leu Lys Asp Ala Ile Cys Trp
565 570 575Ile Gly Asp Glu Ala
Phe Lys Trp Gln Ala Arg Asp Val Thr Ser His 580
585 590Val Ile Gln Thr Trp Leu Glu Leu Met Asn Ser Met
Leu Arg Glu Ala 595 600 605Ile Trp
Thr Arg Asp Ala Tyr Val Pro Thr Leu Asn Glu Tyr Met Glu 610
615 620Asn Ala Tyr Val Ser Phe Ala Leu Gly Pro Ile
Val Lys Pro Ala Ile625 630 635
640Tyr Phe Val Gly Pro Lys Leu Ser Glu Glu Ile Val Glu Ser Ser Glu
645 650 655Tyr His Asn Leu
Phe Lys Leu Met Ser Thr Gln Gly Arg Leu Leu Asn 660
665 670Asp Ile His Ser Phe Lys Arg Glu Phe Lys Glu
Gly Lys Leu Asn Ala 675 680 685Val
Ala Leu His Leu Ser Asn Gly Glu Ser Gly Lys Val Glu Glu Glu 690
695 700Val Val Glu Glu Met Met Met Met Ile Lys
Asn Lys Arg Lys Glu Leu705 710 715
720Met Lys Leu Ile Phe Glu Glu Asn Gly Ser Ile Val Pro Arg Ala
Cys 725 730 735Lys Asp Ala
Phe Trp Asn Met Cys His Val Leu Asn Phe Phe Tyr Ala 740
745 750Asn Asp Asp Gly Phe Thr Gly Asn Thr Ile
Leu Asp Thr Val Lys Asp 755 760
765Ile Ile Tyr Asn Pro Leu Val Leu Val Asn Glu Asn Glu Glu Gln Arg 770
775 780133784PRTStevia rebaudiana 133Met
Asn Leu Ser Leu Cys Ile Ala Ser Pro Leu Leu Thr Lys Ser Ser1
5 10 15Arg Pro Thr Ala Leu Ser Ala
Ile His Thr Ala Ser Thr Ser His Gly 20 25
30Gly Gln Thr Asn Pro Thr Asn Leu Ile Ile Asp Thr Thr Lys
Glu Arg 35 40 45Ile Gln Lys Leu
Phe Lys Asn Val Glu Ile Ser Val Ser Ser Tyr Asp 50 55
60Thr Ala Trp Val Ala Met Val Pro Ser Pro Asn Ser Pro
Lys Ser Pro65 70 75
80Cys Phe Pro Glu Cys Leu Asn Trp Leu Ile Asn Asn Gln Leu Asn Asp
85 90 95Gly Ser Trp Gly Leu Val
Asn His Thr His Asn His Asn His Pro Leu 100
105 110Leu Lys Asp Ser Leu Ser Ser Thr Leu Ala Cys Ile
Val Ala Leu Lys 115 120 125Arg Trp
Asn Val Gly Glu Asp Gln Ile Asn Lys Gly Leu Ser Phe Ile 130
135 140Glu Ser Asn Leu Ala Ser Ala Thr Asp Lys Ser
Gln Pro Ser Pro Ile145 150 155
160Gly Phe Asp Ile Ile Phe Pro Gly Leu Leu Glu Tyr Ala Lys Asn Leu
165 170 175Asp Ile Asn Leu
Leu Ser Lys Gln Thr Asp Phe Ser Leu Met Leu His 180
185 190Lys Arg Glu Leu Glu Gln Lys Arg Cys His Ser
Asn Glu Ile Asp Gly 195 200 205Tyr
Leu Ala Tyr Ile Ser Glu Gly Leu Gly Asn Leu Tyr Asp Trp Asn 210
215 220Met Val Lys Lys Tyr Gln Met Lys Asn Gly
Ser Val Phe Asn Ser Pro225 230 235
240Ser Ala Thr Ala Ala Ala Phe Ile Asn His Gln Asn Pro Gly Cys
Leu 245 250 255Asn Tyr Leu
Asn Ser Leu Leu Asp Lys Phe Gly Asn Ala Val Pro Thr 260
265 270Val Tyr Pro Leu Asp Leu Tyr Ile Arg Leu
Ser Met Val Asp Thr Ile 275 280
285Glu Arg Leu Gly Ile Ser His His Phe Arg Val Glu Ile Lys Asn Val 290
295 300Leu Asp Glu Thr Tyr Arg Cys Trp
Val Glu Arg Asp Glu Gln Ile Phe305 310
315 320Met Asp Val Val Thr Cys Ala Leu Ala Phe Arg Leu
Leu Arg Ile His 325 330
335Gly Tyr Lys Val Ser Pro Asp Gln Leu Ala Glu Ile Thr Asn Glu Leu
340 345 350Ala Phe Lys Asp Glu Tyr
Ala Ala Leu Glu Thr Tyr His Ala Ser Gln 355 360
365Ile Leu Tyr Gln Glu Asp Leu Ser Ser Gly Lys Gln Ile Leu
Lys Ser 370 375 380Ala Asp Phe Leu Lys
Gly Ile Leu Ser Thr Asp Ser Asn Arg Leu Ser385 390
395 400Lys Leu Ile His Lys Glu Val Glu Asn Ala
Leu Lys Phe Pro Ile Asn 405 410
415Thr Gly Leu Glu Arg Ile Asn Thr Arg Arg Asn Ile Gln Leu Tyr Asn
420 425 430Val Asp Asn Thr Arg
Ile Leu Lys Thr Thr Tyr His Ser Ser Asn Ile 435
440 445Ser Asn Thr Tyr Tyr Leu Arg Leu Ala Val Glu Asp
Phe Tyr Thr Cys 450 455 460Gln Ser Ile
Tyr Arg Glu Glu Leu Lys Gly Leu Glu Arg Trp Val Val465
470 475 480Gln Asn Lys Leu Asp Gln Leu
Lys Phe Ala Arg Gln Lys Thr Ala Tyr 485
490 495Cys Tyr Phe Ser Val Ala Ala Thr Leu Ser Ser Pro
Glu Leu Ser Asp 500 505 510Ala
Arg Ile Ser Trp Ala Lys Asn Gly Ile Leu Thr Thr Val Val Asp 515
520 525Asp Phe Phe Asp Ile Gly Gly Thr Ile
Asp Glu Leu Thr Asn Leu Ile 530 535
540Gln Cys Val Glu Lys Trp Asn Val Asp Val Asp Lys Asp Cys Cys Ser545
550 555 560Glu His Val Arg
Ile Leu Phe Leu Ala Leu Lys Asp Ala Ile Cys Trp 565
570 575Ile Gly Asp Glu Ala Phe Lys Trp Gln Ala
Arg Asp Val Thr Ser His 580 585
590Val Ile Gln Thr Trp Leu Glu Leu Met Asn Ser Met Leu Arg Glu Ala
595 600 605Ile Trp Thr Arg Asp Ala Tyr
Val Pro Thr Leu Asn Glu Tyr Met Glu 610 615
620Asn Ala Tyr Val Ser Phe Ala Leu Gly Pro Ile Val Lys Pro Ala
Ile625 630 635 640Tyr Phe
Val Gly Pro Lys Leu Ser Glu Glu Ile Val Glu Ser Ser Glu
645 650 655Tyr His Asn Leu Phe Lys Leu
Met Ser Thr Gln Gly Arg Leu Leu Asn 660 665
670Asp Ile His Ser Phe Lys Arg Glu Phe Lys Glu Gly Lys Leu
Asn Ala 675 680 685Val Ala Leu His
Leu Ser Asn Gly Glu Ser Gly Lys Val Glu Glu Glu 690
695 700Val Val Glu Glu Met Met Met Met Ile Lys Asn Lys
Arg Lys Glu Leu705 710 715
720Met Lys Leu Ile Phe Glu Glu Asn Gly Ser Ile Val Pro Arg Ala Cys
725 730 735Lys Asp Ala Phe Trp
Asn Met Cys His Val Leu Asn Phe Phe Tyr Ala 740
745 750Asn Asp Asp Gly Phe Thr Gly Asn Thr Ile Leu Asp
Thr Val Lys Asp 755 760 765Ile Ile
Tyr Asn Pro Leu Val Leu Val Asn Glu Asn Glu Glu Gln Arg 770
775 780134590PRTZea mays 134Met Ala Met Pro Val Lys
Leu Thr Pro Ala Ser Leu Ser Leu Lys Ala1 5
10 15Val Cys Cys Arg Phe Ser Ser Gly Gly His Ala Leu
Arg Phe Gly Ser 20 25 30Ser
Leu Pro Cys Trp Arg Arg Thr Pro Thr Gln Arg Ser Thr Ser Ser 35
40 45Ser Thr Thr Arg Pro Ala Ala Glu Val
Ser Ser Gly Lys Ser Lys Gln 50 55
60His Asp Gln Glu Ala Ser Glu Ala Thr Ile Arg Gln Gln Leu Gln Leu65
70 75 80Val Asp Val Leu Glu
Asn Met Gly Ile Ser Arg His Phe Ala Ala Glu 85
90 95Ile Lys Cys Ile Leu Asp Arg Thr Tyr Arg Ser
Trp Leu Gln Arg His 100 105
110Glu Glu Ile Met Leu Asp Thr Met Thr Cys Ala Met Ala Phe Arg Ile
115 120 125Leu Arg Leu Asn Gly Tyr Asn
Val Ser Ser Asp Glu Leu Tyr His Val 130 135
140Val Glu Ala Ser Gly Leu His Asn Ser Leu Gly Gly Tyr Leu Asn
Asp145 150 155 160Thr Arg
Thr Leu Leu Glu Leu His Lys Ala Ser Thr Val Ser Ile Ser
165 170 175Glu Asp Glu Ser Ile Leu Asp
Ser Ile Gly Ser Arg Ser Arg Thr Leu 180 185
190Leu Arg Glu Gln Leu Glu Ser Gly Gly Ala Leu Arg Lys Pro
Ser Leu 195 200 205Phe Lys Glu Val
Glu His Ala Leu Asp Gly Pro Phe Tyr Thr Thr Leu 210
215 220Asp Arg Leu His His Arg Trp Asn Ile Glu Asn Phe
Asn Ile Ile Glu225 230 235
240Gln His Met Leu Glu Thr Pro Tyr Leu Ser Asn Gln His Thr Ser Arg
245 250 255Asp Ile Leu Ala Leu
Ser Ile Arg Asp Phe Ser Ser Ser Gln Phe Thr 260
265 270Tyr Gln Gln Glu Leu Gln His Leu Glu Ser Trp Val
Lys Glu Cys Arg 275 280 285Leu Asp
Gln Leu Gln Phe Ala Arg Gln Lys Leu Ala Tyr Phe Tyr Leu 290
295 300Ser Ala Ala Gly Thr Met Phe Ser Pro Glu Leu
Ser Asp Ala Arg Thr305 310 315
320Leu Trp Ala Lys Asn Gly Val Leu Thr Thr Ile Val Asp Asp Phe Phe
325 330 335Asp Val Ala Gly
Ser Lys Glu Glu Leu Glu Asn Leu Val Met Leu Val 340
345 350Glu Met Trp Asp Glu His His Lys Val Glu Phe
Tyr Ser Glu Gln Val 355 360 365Glu
Ile Ile Phe Ser Ser Ile Tyr Asp Ser Val Asn Gln Leu Gly Glu 370
375 380Lys Ala Ser Leu Val Gln Asp Arg Ser Ile
Thr Lys His Leu Val Glu385 390 395
400Ile Trp Leu Asp Leu Leu Lys Ser Met Met Thr Glu Val Glu Trp
Arg 405 410 415Leu Ser Lys
Tyr Val Pro Thr Glu Lys Glu Tyr Met Ile Asn Ala Ser 420
425 430Leu Ile Phe Gly Leu Gly Pro Ile Val Leu
Pro Ala Leu Tyr Phe Val 435 440
445Gly Pro Lys Ile Ser Glu Ser Ile Val Lys Asp Pro Glu Tyr Asp Glu 450
455 460Leu Phe Lys Leu Met Ser Thr Cys
Gly Arg Leu Leu Asn Asp Val Gln465 470
475 480Thr Phe Glu Arg Glu Tyr Asn Glu Gly Lys Leu Asn
Ser Val Ser Leu 485 490
495Leu Val Leu His Gly Gly Pro Met Ser Ile Ser Asp Ala Lys Arg Lys
500 505 510Leu Gln Lys Pro Ile Asp
Thr Cys Arg Arg Asp Leu Leu Ser Leu Val 515 520
525Leu Arg Glu Glu Ser Val Val Pro Arg Pro Cys Lys Glu Leu
Phe Trp 530 535 540Lys Met Cys Lys Val
Cys Tyr Phe Phe Tyr Ser Thr Thr Asp Gly Phe545 550
555 560Ser Ser Gln Val Glu Arg Ala Lys Glu Val
Asp Ala Val Ile Asn Glu 565 570
575Pro Leu Lys Leu Gln Gly Ser His Thr Leu Val Ser Asp Val
580 585 590135743PRTPopulus trichocarpa
135Met Gln Asn Phe His Gly Thr Lys Glu Arg Ile Lys Lys Met Phe Asp1
5 10 15Lys Ile Glu Leu Ser Val
Ser Ser Tyr Asp Thr Ala Trp Val Ala Met 20 25
30Val Pro Ser Pro Asp Cys Pro Glu Thr Pro Cys Phe Pro
Glu Cys Thr 35 40 45Lys Trp Ile
Leu Glu Asn Gln Leu Gly Asp Gly Ser Trp Ser Leu Pro 50
55 60His Gly Asn Pro Leu Leu Val Lys Asp Ala Leu Ser
Ser Thr Leu Ala65 70 75
80Cys Ile Leu Ala Leu Lys Arg Trp Gly Ile Gly Glu Glu Gln Ile Asn
85 90 95Lys Gly Leu Arg Phe Ile
Glu Leu Asn Ser Ala Ser Val Thr Asp Asn 100
105 110Glu Gln His Lys Pro Ile Gly Phe Asp Ile Ile Phe
Pro Gly Met Ile 115 120 125Glu Tyr
Ala Ile Asp Leu Asp Leu Asn Leu Pro Leu Lys Pro Thr Asp 130
135 140Ile Asn Ser Met Leu His Arg Arg Ala Leu Glu
Leu Thr Ser Gly Gly145 150 155
160Gly Lys Asn Leu Glu Gly Arg Arg Ala Tyr Leu Ala Tyr Val Ser Glu
165 170 175Gly Ile Gly Lys
Leu Gln Asp Trp Glu Met Ala Met Lys Tyr Gln Arg 180
185 190Lys Asn Gly Ser Leu Phe Asn Ser Pro Ser Thr
Thr Ala Ala Ala Phe 195 200 205Ile
His Ile Gln Asp Ala Glu Cys Leu His Tyr Ile Arg Ser Leu Leu 210
215 220Gln Lys Phe Gly Asn Ala Val Pro Thr Ile
Tyr Pro Leu Asp Ile Tyr225 230 235
240Ala Arg Leu Ser Met Val Asp Ala Leu Glu Arg Leu Gly Ile Asp
Arg 245 250 255His Phe Arg
Lys Glu Arg Lys Phe Val Leu Asp Glu Thr Tyr Arg Phe 260
265 270Trp Leu Gln Gly Glu Glu Glu Ile Phe Ser
Asp Asn Ala Thr Cys Ala 275 280
285Leu Ala Phe Arg Ile Leu Arg Leu Asn Gly Tyr Asp Val Ser Leu Glu 290
295 300Asp His Phe Ser Asn Ser Leu Gly
Gly Tyr Leu Lys Asp Ser Gly Ala305 310
315 320Ala Leu Glu Leu Tyr Arg Ala Leu Gln Leu Ser Tyr
Pro Asp Glu Ser 325 330
335Leu Leu Glu Lys Gln Asn Ser Arg Thr Ser Tyr Phe Leu Lys Gln Gly
340 345 350Leu Ser Asn Val Ser Leu
Cys Gly Asp Arg Leu Arg Lys Asn Ile Ile 355 360
365Gly Glu Val His Asp Ala Leu Asn Phe Ser Asp His Ala Asn
Leu Gln 370 375 380Arg Leu Ala Ile Arg
Arg Arg Ile Lys His Tyr Ala Thr Asp Asp Thr385 390
395 400Arg Ile Leu Lys Thr Ser Tyr Arg Cys Ser
Thr Ile Gly Asn Gln Asp 405 410
415Phe Leu Lys Leu Ala Val Glu Asp Phe Asn Ile Cys Gln Ser Ile Gln
420 425 430Arg Glu Glu Phe Lys
His Ile Glu Arg Trp Val Val Glu Arg Arg Leu 435
440 445Asp Lys Leu Lys Phe Ala Arg Gln Lys Glu Ala Tyr
Cys Tyr Phe Ser 450 455 460Ala Ala Ala
Thr Leu Phe Ala Pro Glu Leu Ser Asp Ala Arg Met Ser465
470 475 480Trp Ala Lys Asn Gly Val Leu
Thr Thr Val Val Asp Asp Phe Phe Asp 485
490 495Val Gly Gly Ser Glu Glu Glu Leu Val Asn Leu Ile
Glu Leu Ile Glu 500 505 510Arg
Trp Asp Val Asn Gly Ser Ala Asp Phe Cys Ser Glu Glu Val Glu 515
520 525Ile Ile Tyr Ser Ala Ile His Ser Thr
Ile Ser Glu Ile Gly Asp Lys 530 535
540Ser Phe Gly Trp Gln Gly Arg Asp Val Lys Ser Gln Val Ile Lys Ile545
550 555 560Trp Leu Asp Leu
Leu Lys Ser Met Leu Thr Glu Ala Gln Trp Ser Ser 565
570 575Asn Lys Ser Val Pro Thr Leu Asp Glu Tyr
Met Thr Thr Ala His Val 580 585
590Ser Phe Ala Leu Gly Pro Ile Val Leu Pro Ala Leu Tyr Phe Val Gly
595 600 605Pro Lys Leu Ser Glu Glu Val
Ala Gly His Pro Glu Leu Leu Asn Leu 610 615
620Tyr Lys Val Thr Ser Thr Cys Gly Arg Leu Leu Asn Asp Trp Arg
Ser625 630 635 640Phe Lys
Arg Glu Ser Glu Glu Gly Lys Leu Asn Ala Ile Ser Leu Tyr
645 650 655Met Ile His Ser Gly Gly Ala
Ser Thr Glu Glu Glu Thr Ile Glu His 660 665
670Phe Lys Gly Leu Ile Asp Ser Gln Arg Arg Gln Leu Leu Gln
Leu Val 675 680 685Leu Gln Glu Lys
Asp Ser Ile Ile Pro Arg Pro Cys Lys Asp Leu Phe 690
695 700Trp Asn Met Ile Lys Leu Leu His Thr Phe Tyr Met
Lys Asp Asp Gly705 710 715
720Phe Thr Ser Asn Glu Met Arg Asn Val Val Lys Ala Ile Ile Asn Glu
725 730 735Pro Ile Ser Leu Asp
Glu Leu 740136983PRTPhomopsis amygdali 136Met Glu Phe Asp Glu
Pro Leu Val Asp Glu Ala Arg Ser Leu Val Gln1 5
10 15Arg Thr Leu Gln Asp Tyr Asp Asp Arg Tyr Gly
Phe Gly Thr Met Ser 20 25
30Cys Ala Ala Tyr Asp Thr Ala Trp Val Ser Leu Val Thr Lys Thr Val
35 40 45Asp Gly Arg Lys Gln Trp Leu Phe
Pro Glu Cys Phe Glu Phe Leu Leu 50 55
60Glu Thr Gln Ser Asp Ala Gly Gly Trp Glu Ile Gly Asn Ser Ala Pro65
70 75 80Ile Asp Gly Ile Leu
Asn Thr Ala Ala Ser Leu Leu Ala Leu Lys Arg 85
90 95His Val Gln Thr Glu Gln Ile Ile Gln Pro Gln
His Asp His Lys Asp 100 105
110Leu Ala Gly Arg Ala Glu Arg Ala Ala Ala Ser Leu Arg Ala Gln Leu
115 120 125Ala Ala Leu Asp Val Ser Thr
Thr Glu His Val Gly Phe Glu Ile Ile 130 135
140Val Pro Ala Met Leu Asp Pro Leu Glu Ala Glu Asp Pro Ser Leu
Val145 150 155 160Phe Asp
Phe Pro Ala Arg Lys Pro Leu Met Lys Ile His Asp Ala Lys
165 170 175Met Ser Arg Phe Arg Pro Glu
Tyr Leu Tyr Gly Lys Gln Pro Met Thr 180 185
190Ala Leu His Ser Leu Glu Ala Phe Ile Gly Lys Ile Asp Phe
Asp Lys 195 200 205Val Arg His His
Arg Thr His Gly Ser Met Met Gly Ser Pro Ser Ser 210
215 220Thr Ala Ala Tyr Leu Met His Ala Ser Gln Trp Asp
Gly Asp Ser Glu225 230 235
240Ala Tyr Leu Arg His Val Ile Lys His Ala Ala Gly Gln Gly Thr Gly
245 250 255Ala Val Pro Ser Ala
Phe Pro Ser Thr His Phe Glu Ser Ser Trp Ile 260
265 270Leu Thr Thr Leu Phe Arg Ala Gly Phe Ser Ala Ser
His Leu Ala Cys 275 280 285Asp Glu
Leu Asn Lys Leu Val Glu Ile Leu Glu Gly Ser Phe Glu Lys 290
295 300Glu Gly Gly Ala Ile Gly Tyr Ala Pro Gly Phe
Gln Ala Asp Val Asp305 310 315
320Asp Thr Ala Lys Thr Ile Ser Thr Leu Ala Val Leu Gly Arg Asp Ala
325 330 335Thr Pro Arg Gln
Met Ile Lys Val Phe Glu Ala Asn Thr His Phe Arg 340
345 350Thr Tyr Pro Gly Glu Arg Asp Pro Ser Leu Thr
Ala Asn Cys Asn Ala 355 360 365Leu
Ser Ala Leu Leu His Gln Pro Asp Ala Ala Met Tyr Gly Ser Gln 370
375 380Ile Gln Lys Ile Thr Lys Phe Val Cys Asp
Tyr Trp Trp Lys Ser Asp385 390 395
400Gly Lys Ile Lys Asp Lys Trp Asn Thr Cys Tyr Leu Tyr Pro Ser
Val 405 410 415Leu Leu Val
Glu Val Leu Val Asp Leu Val Ser Leu Leu Glu Gln Gly 420
425 430Lys Leu Pro Asp Val Leu Asp Gln Glu Leu
Gln Tyr Arg Val Ala Ile 435 440
445Thr Leu Phe Gln Ala Cys Leu Arg Pro Leu Leu Asp Gln Asp Ala Glu 450
455 460Gly Ser Trp Asn Lys Ser Ile Glu
Ala Thr Ala Tyr Gly Ile Leu Ile465 470
475 480Leu Thr Glu Ala Arg Arg Val Cys Phe Phe Asp Arg
Leu Ser Glu Pro 485 490
495Leu Asn Glu Ala Ile Arg Arg Gly Ile Ala Phe Ala Asp Ser Met Ser
500 505 510Gly Thr Glu Ala Gln Leu
Asn Tyr Ile Trp Ile Glu Lys Val Ser Tyr 515 520
525Ala Pro Ala Leu Leu Thr Lys Ser Tyr Leu Leu Ala Ala Arg
Trp Ala 530 535 540Ala Lys Ser Pro Leu
Gly Ala Ser Val Gly Ser Ser Leu Trp Thr Pro545 550
555 560Pro Arg Glu Gly Leu Asp Lys His Val Arg
Leu Phe His Gln Ala Glu 565 570
575Leu Phe Arg Ser Leu Pro Glu Trp Glu Leu Arg Ala Ser Met Ile Glu
580 585 590Ala Ala Leu Phe Thr
Pro Leu Leu Arg Ala His Arg Leu Asp Val Phe 595
600 605Pro Arg Gln Asp Val Gly Glu Asp Lys Tyr Leu Asp
Val Val Pro Phe 610 615 620Phe Trp Thr
Ala Ala Asn Asn Arg Asp Arg Thr Tyr Ala Ser Thr Leu625
630 635 640Phe Leu Tyr Asp Met Cys Phe
Ile Ala Met Leu Asn Phe Gln Leu Asp 645
650 655Glu Phe Met Glu Ala Thr Ala Gly Ile Leu Phe Arg
Asp His Met Asp 660 665 670Asp
Leu Arg Gln Leu Ile His Asp Leu Leu Ala Glu Lys Thr Ser Pro 675
680 685Lys Ser Ser Gly Arg Ser Ser Gln Gly
Thr Lys Asp Ala Asp Ser Gly 690 695
700Ile Glu Glu Asp Val Ser Met Ser Asp Ser Ala Ser Asp Ser Gln Asp705
710 715 720Arg Ser Pro Glu
Tyr Asp Leu Val Phe Ser Ala Leu Ser Thr Phe Thr 725
730 735Lys His Val Leu Gln His Pro Ser Ile Gln
Ser Ala Ser Val Trp Asp 740 745
750Arg Lys Leu Leu Ala Arg Glu Met Lys Ala Tyr Leu Leu Ala His Ile
755 760 765Gln Gln Ala Glu Asp Ser Thr
Pro Leu Ser Glu Leu Lys Asp Val Pro 770 775
780Gln Lys Thr Asp Val Thr Arg Val Ser Thr Ser Thr Thr Thr Phe
Phe785 790 795 800Asn Trp
Val Arg Thr Thr Ser Ala Asp His Ile Ser Cys Pro Tyr Ser
805 810 815Phe His Phe Val Ala Cys His
Leu Gly Ala Ala Leu Ser Pro Lys Gly 820 825
830Ser Asn Gly Asp Cys Tyr Pro Ser Ala Gly Glu Lys Phe Leu
Ala Ala 835 840 845Ala Val Cys Arg
His Leu Ala Thr Met Cys Arg Met Tyr Asn Asp Leu 850
855 860Gly Ser Ala Glu Arg Asp Ser Asp Glu Gly Asn Leu
Asn Ser Leu Asp865 870 875
880Phe Pro Glu Phe Ala Asp Ser Ala Gly Asn Gly Gly Ile Glu Ile Gln
885 890 895Lys Ala Ala Leu Leu
Arg Leu Ala Glu Phe Glu Arg Asp Ser Tyr Leu 900
905 910Glu Ala Phe Arg Arg Leu Gln Asp Glu Ser Asn Arg
Val His Gly Pro 915 920 925Ala Gly
Gly Asp Glu Ala Arg Leu Ser Arg Arg Arg Met Ala Ile Leu 930
935 940Glu Phe Phe Ala Gln Gln Val Asp Leu Tyr Gly
Gln Val Tyr Val Ile945 950 955
960Arg Asp Ile Ser Ala Arg Ile Pro Lys Asn Glu Val Glu Lys Lys Arg
965 970 975Lys Leu Asp Asp
Ala Phe Asn 980137881PRTPhyscomitrella patens 137Met Ala Ser
Ser Thr Leu Ile Gln Asn Arg Ser Cys Gly Val Thr Ser1 5
10 15Ser Met Ser Ser Phe Gln Ile Phe Arg
Gly Gln Pro Leu Arg Phe Pro 20 25
30Gly Thr Arg Thr Pro Ala Ala Val Gln Cys Leu Lys Lys Arg Arg Cys
35 40 45Leu Arg Pro Thr Glu Ser Val
Leu Glu Ser Ser Pro Gly Ser Gly Ser 50 55
60Tyr Arg Ile Val Thr Gly Pro Ser Gly Ile Asn Pro Ser Ser Asn Gly65
70 75 80His Leu Gln Glu
Gly Ser Leu Thr His Arg Leu Pro Ile Pro Met Glu 85
90 95Lys Ser Ile Asp Asn Phe Gln Ser Thr Leu
Tyr Val Ser Asp Ile Trp 100 105
110Ser Glu Thr Leu Gln Arg Thr Glu Cys Leu Leu Gln Val Thr Glu Asn
115 120 125Val Gln Met Asn Glu Trp Ile
Glu Glu Ile Arg Met Tyr Phe Arg Asn 130 135
140Met Thr Leu Gly Glu Ile Ser Met Ser Pro Tyr Asp Thr Ala Trp
Val145 150 155 160Ala Arg
Val Pro Ala Leu Asp Gly Ser His Gly Pro Gln Phe His Arg
165 170 175Ser Leu Gln Trp Ile Ile Asp
Asn Gln Leu Pro Asp Gly Asp Trp Gly 180 185
190Glu Pro Ser Leu Phe Leu Gly Tyr Asp Arg Val Cys Asn Thr
Leu Ala 195 200 205Cys Val Ile Ala
Leu Lys Thr Trp Gly Val Gly Ala Gln Asn Val Glu 210
215 220Arg Gly Ile Gln Phe Leu Gln Ser Asn Ile Tyr Lys
Met Glu Glu Asp225 230 235
240Asp Ala Asn His Met Pro Ile Gly Phe Glu Ile Val Phe Pro Ala Met
245 250 255Met Glu Asp Ala Lys
Ala Leu Gly Leu Asp Leu Pro Tyr Asp Ala Thr 260
265 270Ile Leu Gln Gln Ile Ser Ala Glu Arg Glu Lys Lys
Met Lys Lys Ile 275 280 285Pro Met
Ala Met Val Tyr Lys Tyr Pro Thr Thr Leu Leu His Ser Leu 290
295 300Glu Gly Leu His Arg Glu Val Asp Trp Asn Lys
Leu Leu Gln Leu Gln305 310 315
320Ser Glu Asn Gly Ser Phe Leu Tyr Ser Pro Ala Ser Thr Ala Cys Ala
325 330 335Leu Met Tyr Thr
Lys Asp Val Lys Cys Phe Asp Tyr Leu Asn Gln Leu 340
345 350Leu Ile Lys Phe Asp His Ala Cys Pro Asn Val
Tyr Pro Val Asp Leu 355 360 365Phe
Glu Arg Leu Trp Met Val Asp Arg Leu Gln Arg Leu Gly Ile Ser 370
375 380Arg Tyr Phe Glu Arg Glu Ile Arg Asp Cys
Leu Gln Tyr Val Tyr Arg385 390 395
400Tyr Trp Lys Asp Cys Gly Ile Gly Trp Ala Ser Asn Ser Ser Val
Gln 405 410 415Asp Val Asp
Asp Thr Ala Met Ala Phe Arg Leu Leu Arg Thr His Gly 420
425 430Phe Asp Val Lys Glu Asp Cys Phe Arg Gln
Phe Phe Lys Asp Gly Glu 435 440
445Phe Phe Cys Phe Ala Gly Gln Ser Ser Gln Ala Val Thr Gly Met Phe 450
455 460Asn Leu Ser Arg Ala Ser Gln Thr
Leu Phe Pro Gly Glu Ser Leu Leu465 470
475 480Lys Lys Ala Arg Thr Phe Ser Arg Asn Phe Leu Arg
Thr Lys His Glu 485 490
495Asn Asn Glu Cys Phe Asp Lys Trp Ile Ile Thr Lys Asp Leu Ala Gly
500 505 510Glu Val Glu Tyr Asn Leu
Thr Phe Pro Trp Tyr Ala Ser Leu Pro Arg 515 520
525Leu Glu His Arg Thr Tyr Leu Asp Gln Tyr Gly Ile Asp Asp
Ile Trp 530 535 540Ile Gly Lys Ser Leu
Tyr Lys Met Pro Ala Val Thr Asn Glu Val Phe545 550
555 560Leu Lys Leu Ala Lys Ala Asp Phe Asn Met
Cys Gln Ala Leu His Lys 565 570
575Lys Glu Leu Glu Gln Val Ile Lys Trp Asn Ala Ser Cys Gln Phe Arg
580 585 590Asp Leu Glu Phe Ala
Arg Gln Lys Ser Val Glu Cys Tyr Phe Ala Gly 595
600 605Ala Ala Thr Met Phe Glu Pro Glu Met Val Gln Ala
Arg Leu Val Trp 610 615 620Ala Arg Cys
Cys Val Leu Thr Thr Val Leu Asp Asp Tyr Phe Asp His625
630 635 640Gly Thr Pro Val Glu Glu Leu
Arg Val Phe Val Gln Ala Val Arg Thr 645
650 655Trp Asn Pro Glu Leu Ile Asn Gly Leu Pro Glu Gln
Ala Lys Ile Leu 660 665 670Phe
Met Gly Leu Tyr Lys Thr Val Asn Thr Ile Ala Glu Glu Ala Phe 675
680 685Met Ala Gln Lys Arg Asp Val His His
His Leu Lys His Tyr Trp Asp 690 695
700Lys Leu Ile Thr Ser Ala Leu Lys Glu Ala Glu Trp Ala Glu Ser Gly705
710 715 720Tyr Val Pro Thr
Phe Asp Glu Tyr Met Glu Val Ala Glu Ile Ser Val 725
730 735Ala Leu Glu Pro Ile Val Cys Ser Thr Leu
Phe Phe Ala Gly His Arg 740 745
750Leu Asp Glu Asp Val Leu Asp Ser Tyr Asp Tyr His Leu Val Met His
755 760 765Leu Val Asn Arg Val Gly Arg
Ile Leu Asn Asp Ile Gln Gly Met Lys 770 775
780Arg Glu Ala Ser Gln Gly Lys Ile Ser Ser Val Gln Ile Tyr Met
Glu785 790 795 800Glu His
Pro Ser Val Pro Ser Glu Ala Met Ala Ile Ala His Leu Gln
805 810 815Glu Leu Val Asp Asn Ser Met
Gln Gln Leu Thr Tyr Glu Val Leu Arg 820 825
830Phe Thr Ala Val Pro Lys Ser Cys Lys Arg Ile His Leu Asn
Met Ala 835 840 845Lys Ile Met His
Ala Phe Tyr Lys Asp Thr Asp Gly Phe Ser Ser Leu 850
855 860Thr Ala Met Thr Gly Phe Val Lys Lys Val Leu Phe
Glu Pro Val Pro865 870 875
880Glu138513PRTStevia rebaudiana 138Met Asp Ala Val Thr Gly Leu Leu Thr
Val Pro Ala Thr Ala Ile Thr1 5 10
15Ile Gly Gly Thr Ala Val Ala Leu Ala Val Ala Leu Ile Phe Trp
Tyr 20 25 30Leu Lys Ser Tyr
Thr Ser Ala Arg Arg Ser Gln Ser Asn His Leu Pro 35
40 45Arg Val Pro Glu Val Pro Gly Val Pro Leu Leu Gly
Asn Leu Leu Gln 50 55 60Leu Lys Glu
Lys Lys Pro Tyr Met Thr Phe Thr Arg Trp Ala Ala Thr65 70
75 80Tyr Gly Pro Ile Tyr Ser Ile Lys
Thr Gly Ala Thr Ser Met Val Val 85 90
95Val Ser Ser Asn Glu Ile Ala Lys Glu Ala Leu Val Thr Arg
Phe Gln 100 105 110Ser Ile Ser
Thr Arg Asn Leu Ser Lys Ala Leu Lys Val Leu Thr Ala 115
120 125Asp Lys Thr Met Val Ala Met Ser Asp Tyr Asp
Asp Tyr His Lys Thr 130 135 140Val Lys
Arg His Ile Leu Thr Ala Val Leu Gly Pro Asn Ala Gln Lys145
150 155 160Lys His Arg Ile His Arg Asp
Ile Met Met Asp Asn Ile Ser Thr Gln 165
170 175Leu His Glu Phe Val Lys Asn Asn Pro Glu Gln Glu
Glu Val Asp Leu 180 185 190Arg
Lys Ile Phe Gln Ser Glu Leu Phe Gly Leu Ala Met Arg Gln Ala 195
200 205Leu Gly Lys Asp Val Glu Ser Leu Tyr
Val Glu Asp Leu Lys Ile Thr 210 215
220Met Asn Arg Asp Glu Ile Phe Gln Val Leu Val Val Asp Pro Met Met225
230 235 240Gly Ala Ile Asp
Val Asp Trp Arg Asp Phe Phe Pro Tyr Leu Lys Trp 245
250 255Val Pro Asn Lys Lys Phe Glu Asn Thr Ile
Gln Gln Met Tyr Ile Arg 260 265
270Arg Glu Ala Val Met Lys Ser Leu Ile Lys Glu His Lys Lys Arg Ile
275 280 285Ala Ser Gly Glu Lys Leu Asn
Ser Tyr Ile Asp Tyr Leu Leu Ser Glu 290 295
300Ala Gln Thr Leu Thr Asp Gln Gln Leu Leu Met Ser Leu Trp Glu
Pro305 310 315 320Ile Ile
Glu Ser Ser Asp Thr Thr Met Val Thr Thr Glu Trp Ala Met
325 330 335Tyr Glu Leu Ala Lys Asn Pro
Lys Leu Gln Asp Arg Leu Tyr Arg Asp 340 345
350Ile Lys Ser Val Cys Gly Ser Glu Lys Ile Thr Glu Glu His
Leu Ser 355 360 365Gln Leu Pro Tyr
Ile Thr Ala Ile Phe His Glu Thr Leu Arg Arg His 370
375 380Ser Pro Val Pro Ile Ile Pro Leu Arg His Val His
Glu Asp Thr Val385 390 395
400Leu Gly Gly Tyr His Val Pro Ala Gly Thr Glu Leu Ala Val Asn Ile
405 410 415Tyr Gly Cys Asn Met
Asp Lys Asn Val Trp Glu Asn Pro Glu Glu Trp 420
425 430Asn Pro Glu Arg Phe Met Lys Glu Asn Glu Thr Ile
Asp Phe Gln Lys 435 440 445Thr Met
Ala Phe Gly Gly Gly Lys Arg Val Cys Ala Gly Ser Leu Gln 450
455 460Ala Leu Leu Thr Ala Ser Ile Gly Ile Gly Arg
Met Val Gln Glu Phe465 470 475
480Glu Trp Lys Leu Lys Asp Met Thr Gln Glu Glu Val Asn Thr Ile Gly
485 490 495Leu Thr Thr Gln
Met Leu Arg Pro Leu Arg Ala Ile Ile Lys Pro Arg 500
505 510Ile139509PRTArabidopsis thaliana 139Met Ala
Phe Phe Ser Met Ile Ser Ile Leu Leu Gly Phe Val Ile Ser1 5
10 15Ser Phe Ile Phe Ile Phe Phe Phe
Lys Lys Leu Leu Ser Phe Ser Arg 20 25
30Lys Asn Met Ser Glu Val Ser Thr Leu Pro Ser Val Pro Val Val
Pro 35 40 45Gly Phe Pro Val Ile
Gly Asn Leu Leu Gln Leu Lys Glu Lys Lys Pro 50 55
60His Lys Thr Phe Thr Arg Trp Ser Glu Ile Tyr Gly Pro Ile
Tyr Ser65 70 75 80Ile
Lys Met Gly Ser Ser Ser Leu Ile Val Leu Asn Ser Thr Glu Thr
85 90 95Ala Lys Glu Ala Met Val Thr
Arg Phe Ser Ser Ile Ser Thr Arg Lys 100 105
110Leu Ser Asn Ala Leu Thr Val Leu Thr Cys Asp Lys Ser Met
Val Ala 115 120 125Thr Ser Asp Tyr
Asp Asp Phe His Lys Leu Val Lys Arg Cys Leu Leu 130
135 140Asn Gly Leu Leu Gly Ala Asn Ala Gln Lys Arg Lys
Arg His Tyr Arg145 150 155
160Asp Ala Leu Ile Glu Asn Val Ser Ser Lys Leu His Ala His Ala Arg
165 170 175Asp His Pro Gln Glu
Pro Val Asn Phe Arg Ala Ile Phe Glu His Glu 180
185 190Leu Phe Gly Val Ala Leu Lys Gln Ala Phe Gly Lys
Asp Val Glu Ser 195 200 205Ile Tyr
Val Lys Glu Leu Gly Val Thr Leu Ser Lys Asp Glu Ile Phe 210
215 220Lys Val Leu Val His Asp Met Met Glu Gly Ala
Ile Asp Val Asp Trp225 230 235
240Arg Asp Phe Phe Pro Tyr Leu Lys Trp Ile Pro Asn Lys Ser Phe Glu
245 250 255Ala Arg Ile Gln
Gln Lys His Lys Arg Arg Leu Ala Val Met Asn Ala 260
265 270Leu Ile Gln Asp Arg Leu Lys Gln Asn Gly Ser
Glu Ser Asp Asp Asp 275 280 285Cys
Tyr Leu Asn Phe Leu Met Ser Glu Ala Lys Thr Leu Thr Lys Glu 290
295 300Gln Ile Ala Ile Leu Val Trp Glu Thr Ile
Ile Glu Thr Ala Asp Thr305 310 315
320Thr Leu Val Thr Thr Glu Trp Ala Ile Tyr Glu Leu Ala Lys His
Pro 325 330 335Ser Val Gln
Asp Arg Leu Cys Lys Glu Ile Gln Asn Val Cys Gly Gly 340
345 350Glu Lys Phe Lys Glu Glu Gln Leu Ser Gln
Val Pro Tyr Leu Asn Gly 355 360
365Val Phe His Glu Thr Leu Arg Lys Tyr Ser Pro Ala Pro Leu Val Pro 370
375 380Ile Arg Tyr Ala His Glu Asp Thr
Gln Ile Gly Gly Tyr His Val Pro385 390
395 400Ala Gly Ser Glu Ile Ala Ile Asn Ile Tyr Gly Cys
Asn Met Asp Lys 405 410
415Lys Arg Trp Glu Arg Pro Glu Asp Trp Trp Pro Glu Arg Phe Leu Asp
420 425 430Asp Gly Lys Tyr Glu Thr
Ser Asp Leu His Lys Thr Met Ala Phe Gly 435 440
445Ala Gly Lys Arg Val Cys Ala Gly Ala Leu Gln Ala Ser Leu
Met Ala 450 455 460Gly Ile Ala Ile Gly
Arg Leu Val Gln Glu Phe Glu Trp Lys Leu Arg465 470
475 480Asp Gly Glu Glu Glu Asn Val Asp Thr Tyr
Gly Leu Thr Ser Gln Lys 485 490
495Leu Tyr Pro Leu Met Ala Ile Ile Asn Pro Arg Arg Ser
500 505140525PRTGibberella fujikoroi 140Met Ser Lys Ser
Asn Ser Met Asn Ser Thr Ser His Glu Thr Leu Phe1 5
10 15Gln Gln Leu Val Leu Gly Leu Asp Arg Met
Pro Leu Met Asp Val His 20 25
30Trp Leu Ile Tyr Val Ala Phe Gly Ala Trp Leu Cys Ser Tyr Val Ile
35 40 45His Val Leu Ser Ser Ser Ser Thr
Val Lys Val Pro Val Val Gly Tyr 50 55
60Arg Ser Val Phe Glu Pro Thr Trp Leu Leu Arg Leu Arg Phe Val Trp65
70 75 80Glu Gly Gly Ser Ile
Ile Gly Gln Gly Tyr Asn Lys Phe Lys Asp Ser 85
90 95Ile Phe Gln Val Arg Lys Leu Gly Thr Asp Ile
Val Ile Ile Pro Pro 100 105
110Asn Tyr Ile Asp Glu Val Arg Lys Leu Ser Gln Asp Lys Thr Arg Ser
115 120 125Val Glu Pro Phe Ile Asn Asp
Phe Ala Gly Gln Tyr Thr Arg Gly Met 130 135
140Val Phe Leu Gln Ser Asp Leu Gln Asn Arg Val Ile Gln Gln Arg
Leu145 150 155 160Thr Pro
Lys Leu Val Ser Leu Thr Lys Val Met Lys Glu Glu Leu Asp
165 170 175Tyr Ala Leu Thr Lys Glu Met
Pro Asp Met Lys Asn Asp Glu Trp Val 180 185
190Glu Val Asp Ile Ser Ser Ile Met Val Arg Leu Ile Ser Arg
Ile Ser 195 200 205Ala Arg Val Phe
Leu Gly Pro Glu His Cys Arg Asn Gln Glu Trp Leu 210
215 220Thr Thr Thr Ala Glu Tyr Ser Glu Ser Leu Phe Ile
Thr Gly Phe Ile225 230 235
240Leu Arg Val Val Pro His Ile Leu Arg Pro Phe Ile Ala Pro Leu Leu
245 250 255Pro Ser Tyr Arg Thr
Leu Leu Arg Asn Val Ser Ser Gly Arg Arg Val 260
265 270Ile Gly Asp Ile Ile Arg Ser Gln Gln Gly Asp Gly
Asn Glu Asp Ile 275 280 285Leu Ser
Trp Met Arg Asp Ala Ala Thr Gly Glu Glu Lys Gln Ile Asp 290
295 300Asn Ile Ala Gln Arg Met Leu Ile Leu Ser Leu
Ala Ser Ile His Thr305 310 315
320Thr Ala Met Thr Met Thr His Ala Met Tyr Asp Leu Cys Ala Cys Pro
325 330 335Glu Tyr Ile Glu
Pro Leu Arg Asp Glu Val Lys Ser Val Val Gly Ala 340
345 350Ser Gly Trp Asp Lys Thr Ala Leu Asn Arg Phe
His Lys Leu Asp Ser 355 360 365Phe
Leu Lys Glu Ser Gln Arg Phe Asn Pro Val Phe Leu Leu Thr Phe 370
375 380Asn Arg Ile Tyr His Gln Ser Met Thr Leu
Ser Asp Gly Thr Asn Ile385 390 395
400Pro Ser Gly Thr Arg Ile Ala Val Pro Ser His Ala Met Leu Gln
Asp 405 410 415Ser Ala His
Val Pro Gly Pro Thr Pro Pro Thr Glu Phe Asp Gly Phe 420
425 430Arg Tyr Ser Lys Ile Arg Ser Asp Ser Asn
Tyr Ala Gln Lys Tyr Leu 435 440
445Phe Ser Met Thr Asp Ser Ser Asn Met Ala Phe Gly Tyr Gly Lys Tyr 450
455 460Ala Cys Pro Gly Arg Phe Tyr Ala
Ser Asn Glu Met Lys Leu Thr Leu465 470
475 480Ala Ile Leu Leu Leu Gln Phe Glu Phe Lys Leu Pro
Asp Gly Lys Gly 485 490
495Arg Pro Arg Asn Ile Thr Ile Asp Ser Asp Met Ile Pro Asp Pro Arg
500 505 510Ala Arg Leu Cys Val Arg
Lys Arg Ser Leu Arg Asp Glu 515 520
525141499PRTTrametes versicolor 141Met Glu Asp Pro Thr Val Leu Tyr Ala
Cys Leu Ala Ile Ala Val Ala1 5 10
15Thr Phe Val Val Arg Trp Tyr Arg Asp Pro Leu Arg Ser Ile Pro
Thr 20 25 30Val Gly Gly Ser
Asp Leu Pro Ile Leu Ser Tyr Ile Gly Ala Leu Arg 35
40 45Trp Thr Arg Arg Gly Arg Glu Ile Leu Gln Glu Gly
Tyr Asp Gly Tyr 50 55 60Arg Gly Ser
Thr Phe Lys Ile Ala Met Leu Asp Arg Trp Ile Val Ile65 70
75 80Ala Asn Gly Pro Lys Leu Ala Asp
Glu Val Arg Arg Arg Pro Asp Glu 85 90
95Glu Leu Asn Phe Met Asp Gly Leu Gly Ala Phe Val Gln Thr
Lys Tyr 100 105 110Thr Leu Gly
Glu Ala Ile His Asn Asp Pro Tyr His Val Asp Ile Ile 115
120 125Arg Glu Lys Leu Thr Arg Gly Leu Pro Ala Val
Leu Pro Asp Val Ile 130 135 140Glu Glu
Leu Thr Leu Ala Val Arg Gln Tyr Ile Pro Thr Glu Gly Asp145
150 155 160Glu Trp Val Ser Val Asn Cys
Ser Lys Ala Ala Arg Asp Ile Val Ala 165
170 175Arg Ala Ser Asn Arg Val Phe Val Gly Leu Pro Ala
Cys Arg Asn Gln 180 185 190Gly
Tyr Leu Asp Leu Ala Ile Asp Phe Thr Leu Ser Val Val Lys Asp 195
200 205Arg Ala Ile Ile Asn Met Phe Pro Glu
Leu Leu Lys Pro Ile Val Gly 210 215
220Arg Val Val Gly Asn Ala Thr Arg Asn Val Arg Arg Ala Val Pro Phe225
230 235 240Val Ala Pro Leu
Val Glu Glu Arg Arg Arg Leu Met Glu Glu Tyr Gly 245
250 255Glu Asp Trp Ser Glu Lys Pro Asn Asp Met
Leu Gln Trp Ile Met Asp 260 265
270Glu Ala Ala Ser Arg Asp Ser Ser Val Lys Ala Ile Ala Glu Arg Leu
275 280 285Leu Met Val Asn Phe Ala Ala
Ile His Thr Ser Ser Asn Thr Ile Thr 290 295
300His Ala Leu Tyr His Leu Ala Glu Met Pro Glu Thr Leu Gln Pro
Leu305 310 315 320Arg Glu
Glu Ile Glu Pro Leu Val Lys Glu Glu Gly Trp Thr Lys Ala
325 330 335Ala Met Gly Lys Met Trp Trp
Leu Asp Ser Phe Leu Arg Glu Ser Gln 340 345
350Arg Tyr Asn Gly Ile Asn Ile Val Ser Leu Thr Arg Met Ala
Asp Lys 355 360 365Asp Ile Thr Leu
Ser Asp Gly Thr Phe Leu Pro Lys Gly Thr Leu Val 370
375 380Ala Val Pro Ala Tyr Ser Thr His Arg Asp Asp Ala
Val Tyr Ala Asp385 390 395
400Ala Leu Val Phe Asp Pro Phe Arg Phe Ser Arg Met Arg Ala Arg Glu
405 410 415Gly Glu Gly Thr Lys
His Gln Phe Val Asn Thr Ser Val Glu Tyr Val 420
425 430Pro Phe Gly His Gly Lys His Ala Cys Pro Gly Arg
Phe Phe Ala Ala 435 440 445Asn Glu
Leu Lys Ala Met Leu Ala Tyr Ile Val Leu Asn Tyr Asp Val 450
455 460Lys Leu Pro Gly Asp Gly Lys Arg Pro Leu Asn
Met Tyr Trp Gly Pro465 470 475
480Thr Val Leu Pro Ala Pro Ala Gly Gln Val Leu Phe Arg Lys Arg Gln
485 490 495Val Ser
Leu142525PRTStevia rebaudiana 142Met Gly Leu Phe Pro Leu Glu Asp Ser Tyr
Ala Leu Val Phe Glu Gly1 5 10
15Leu Ala Ile Thr Leu Ala Leu Tyr Tyr Leu Leu Ser Phe Ile Tyr Lys
20 25 30Thr Ser Lys Lys Thr Cys
Thr Pro Pro Lys Ala Ser Gly Glu Ile Ile 35 40
45Pro Ile Thr Gly Ile Ile Leu Asn Leu Leu Ser Gly Ser Ser
Gly Leu 50 55 60Pro Ile Ile Leu Ala
Leu Ala Ser Leu Ala Asp Arg Cys Gly Pro Ile65 70
75 80Phe Thr Ile Arg Leu Gly Ile Arg Arg Val
Leu Val Val Ser Asn Trp 85 90
95Glu Ile Ala Lys Glu Ile Phe Thr Thr His Asp Leu Ile Val Ser Asn
100 105 110Arg Pro Lys Tyr Leu
Ala Ala Lys Ile Leu Gly Phe Asn Tyr Val Ser 115
120 125Phe Ser Phe Ala Pro Tyr Gly Pro Tyr Trp Val Gly
Ile Arg Lys Ile 130 135 140Ile Ala Thr
Lys Leu Met Ser Ser Ser Arg Leu Gln Lys Leu Gln Phe145
150 155 160Val Arg Val Phe Glu Leu Glu
Asn Ser Met Lys Ser Ile Arg Glu Ser 165
170 175Trp Lys Glu Lys Lys Asp Glu Glu Gly Lys Val Leu
Val Glu Met Lys 180 185 190Lys
Trp Phe Trp Glu Leu Asn Met Asn Ile Val Leu Arg Thr Val Ala 195
200 205Gly Lys Gln Tyr Thr Gly Thr Val Asp
Asp Ala Asp Ala Lys Arg Ile 210 215
220Ser Glu Leu Phe Arg Glu Trp Phe His Tyr Thr Gly Arg Phe Val Val225
230 235 240Gly Asp Ala Phe
Pro Phe Leu Gly Trp Leu Asp Leu Gly Gly Tyr Lys 245
250 255Lys Thr Met Glu Leu Val Ala Ser Arg Leu
Asp Ser Met Val Ser Lys 260 265
270Trp Leu Asp Glu His Arg Lys Lys Gln Ala Asn Asp Asp Lys Lys Glu
275 280 285Asp Met Asp Phe Met Asp Ile
Met Ile Ser Met Thr Glu Ala Asn Ser 290 295
300Pro Leu Glu Gly Tyr Gly Thr Asp Thr Ile Ile Lys Thr Thr Cys
Met305 310 315 320Thr Leu
Ile Val Ser Gly Val Asp Thr Thr Ser Ile Val Leu Thr Trp
325 330 335Ala Leu Ser Leu Leu Leu Asn
Asn Arg Asp Thr Leu Lys Lys Ala Gln 340 345
350Glu Glu Leu Asp Met Cys Val Gly Lys Gly Arg Gln Val Asn
Glu Ser 355 360 365Asp Leu Val Asn
Leu Ile Tyr Leu Glu Ala Val Leu Lys Glu Ala Leu 370
375 380Arg Leu Tyr Pro Ala Ala Phe Leu Gly Gly Pro Arg
Ala Phe Leu Glu385 390 395
400Asp Cys Thr Val Ala Gly Tyr Arg Ile Pro Lys Gly Thr Cys Leu Leu
405 410 415Ile Asn Met Trp Lys
Leu His Arg Asp Pro Asn Ile Trp Ser Asp Pro 420
425 430Cys Glu Phe Lys Pro Glu Arg Phe Leu Thr Pro Asn
Gln Lys Asp Val 435 440 445Asp Val
Ile Gly Met Asp Phe Glu Leu Ile Pro Phe Gly Ala Gly Arg 450
455 460Arg Tyr Cys Pro Gly Thr Arg Leu Ala Leu Gln
Met Leu His Ile Val465 470 475
480Leu Ala Thr Leu Leu Gln Asn Phe Glu Met Ser Thr Pro Asn Asp Ala
485 490 495Pro Val Asp Met
Thr Ala Ser Val Gly Met Thr Asn Ala Lys Ala Ser 500
505 510Pro Leu Glu Val Leu Leu Ser Pro Arg Val Lys
Trp Ser 515 520 525143476PRTStevia
rebaudiana 143Met Ile Gln Val Leu Thr Pro Ile Leu Leu Phe Leu Ile Phe Phe
Val1 5 10 15Phe Trp Lys
Val Tyr Lys His Gln Lys Thr Lys Ile Asn Leu Pro Pro 20
25 30Gly Ser Phe Gly Trp Pro Phe Leu Gly Glu
Thr Leu Ala Leu Leu Arg 35 40
45Ala Gly Trp Asp Ser Glu Pro Glu Arg Phe Val Arg Glu Arg Ile Lys 50
55 60Lys His Gly Ser Pro Leu Val Phe Lys
Thr Ser Leu Phe Gly Asp Arg65 70 75
80Phe Ala Val Leu Cys Gly Pro Ala Gly Asn Lys Phe Leu Phe
Cys Asn 85 90 95Glu Asn
Lys Leu Val Ala Ser Trp Trp Pro Val Pro Val Arg Lys Leu 100
105 110Phe Gly Lys Ser Leu Leu Thr Ile Arg
Gly Asp Glu Ala Lys Trp Met 115 120
125Arg Lys Met Leu Leu Ser Tyr Leu Gly Pro Asp Ala Phe Ala Thr His
130 135 140Tyr Ala Val Thr Met Asp Val
Val Thr Arg Arg His Ile Asp Val His145 150
155 160Trp Arg Gly Lys Glu Glu Val Asn Val Phe Gln Thr
Val Lys Leu Tyr 165 170
175Ala Phe Glu Leu Ala Cys Arg Leu Phe Met Asn Leu Asp Asp Pro Asn
180 185 190His Ile Ala Lys Leu Gly
Ser Leu Phe Asn Ile Phe Leu Lys Gly Ile 195 200
205Ile Glu Leu Pro Ile Asp Val Pro Gly Thr Arg Phe Tyr Ser
Ser Lys 210 215 220Lys Ala Ala Ala Ala
Ile Arg Ile Glu Leu Lys Lys Leu Ile Lys Ala225 230
235 240Arg Lys Leu Glu Leu Lys Glu Gly Lys Ala
Ser Ser Ser Gln Asp Leu 245 250
255Leu Ser His Leu Leu Thr Ser Pro Asp Glu Asn Gly Met Phe Leu Thr
260 265 270Glu Glu Glu Ile Val
Asp Asn Ile Leu Leu Leu Leu Phe Ala Gly His 275
280 285Asp Thr Ser Ala Leu Ser Ile Thr Leu Leu Met Lys
Thr Leu Gly Glu 290 295 300His Ser Asp
Val Tyr Asp Lys Val Leu Lys Glu Gln Leu Glu Ile Ser305
310 315 320Lys Thr Lys Glu Ala Trp Glu
Ser Leu Lys Trp Glu Asp Ile Gln Lys 325
330 335Met Lys Tyr Ser Trp Ser Val Ile Cys Glu Val Met
Arg Leu Asn Pro 340 345 350Pro
Val Ile Gly Thr Tyr Arg Glu Ala Leu Val Asp Ile Asp Tyr Ala 355
360 365Gly Tyr Thr Ile Pro Lys Gly Trp Lys
Leu His Trp Ser Ala Val Ser 370 375
380Thr Gln Arg Asp Glu Ala Asn Phe Glu Asp Val Thr Arg Phe Asp Pro385
390 395 400Ser Arg Phe Glu
Gly Ala Gly Pro Thr Pro Phe Thr Phe Val Pro Phe 405
410 415Gly Gly Gly Pro Arg Met Cys Leu Gly Lys
Glu Phe Ala Arg Leu Glu 420 425
430Val Leu Ala Phe Leu His Asn Ile Val Thr Asn Phe Lys Trp Asp Leu
435 440 445Leu Ile Pro Asp Glu Lys Ile
Glu Tyr Asp Pro Met Ala Thr Pro Ala 450 455
460Lys Gly Leu Pro Ile Arg Leu His Pro His Gln Val465
470 475144525PRTArabidopsis thaliana 144Met Glu Ser Leu
Val Val His Thr Val Asn Ala Ile Trp Cys Ile Val1 5
10 15Ile Val Gly Ile Phe Ser Val Gly Tyr His
Val Tyr Gly Arg Ala Val 20 25
30Val Glu Gln Trp Arg Met Arg Arg Ser Leu Lys Leu Gln Gly Val Lys
35 40 45Gly Pro Pro Pro Ser Ile Phe Asn
Gly Asn Val Ser Glu Met Gln Arg 50 55
60Ile Gln Ser Glu Ala Lys His Cys Ser Gly Asp Asn Ile Ile Ser His65
70 75 80Asp Tyr Ser Ser Ser
Leu Phe Pro His Phe Asp His Trp Arg Lys Gln 85
90 95Tyr Gly Arg Ile Tyr Thr Tyr Ser Thr Gly Leu
Lys Gln His Leu Tyr 100 105
110Ile Asn His Pro Glu Met Val Lys Glu Leu Ser Gln Thr Asn Thr Leu
115 120 125Asn Leu Gly Arg Ile Thr His
Ile Thr Lys Arg Leu Asn Pro Ile Leu 130 135
140Gly Asn Gly Ile Ile Thr Ser Asn Gly Pro His Trp Ala His Gln
Arg145 150 155 160Arg Ile
Ile Ala Tyr Glu Phe Thr His Asp Lys Ile Lys Gly Met Val
165 170 175Gly Leu Met Val Glu Ser Ala
Met Pro Met Leu Asn Lys Trp Glu Glu 180 185
190Met Val Lys Arg Gly Gly Glu Met Gly Cys Asp Ile Arg Val
Asp Glu 195 200 205Asp Leu Lys Asp
Val Ser Ala Asp Val Ile Ala Lys Ala Cys Phe Gly 210
215 220Ser Ser Phe Ser Lys Gly Lys Ala Ile Phe Ser Met
Ile Arg Asp Leu225 230 235
240Leu Thr Ala Ile Thr Lys Arg Ser Val Leu Phe Arg Phe Asn Gly Phe
245 250 255Thr Asp Met Val Phe
Gly Ser Lys Lys His Gly Asp Val Asp Ile Asp 260
265 270Ala Leu Glu Met Glu Leu Glu Ser Ser Ile Trp Glu
Thr Val Lys Glu 275 280 285Arg Glu
Ile Glu Cys Lys Asp Thr His Lys Lys Asp Leu Met Gln Leu 290
295 300Ile Leu Glu Gly Ala Met Arg Ser Cys Asp Gly
Asn Leu Trp Asp Lys305 310 315
320Ser Ala Tyr Arg Arg Phe Val Val Asp Asn Cys Lys Ser Ile Tyr Phe
325 330 335Ala Gly His Asp
Ser Thr Ala Val Ser Val Ser Trp Cys Leu Met Leu 340
345 350Leu Ala Leu Asn Pro Ser Trp Gln Val Lys Ile
Arg Asp Glu Ile Leu 355 360 365Ser
Ser Cys Lys Asn Gly Ile Pro Asp Ala Glu Ser Ile Pro Asn Leu 370
375 380Lys Thr Val Thr Met Val Ile Gln Glu Thr
Met Arg Leu Tyr Pro Pro385 390 395
400Ala Pro Ile Val Gly Arg Glu Ala Ser Lys Asp Ile Arg Leu Gly
Asp 405 410 415Leu Val Val
Pro Lys Gly Val Cys Ile Trp Thr Leu Ile Pro Ala Leu 420
425 430His Arg Asp Pro Glu Ile Trp Gly Pro Asp
Ala Asn Asp Phe Lys Pro 435 440
445Glu Arg Phe Ser Glu Gly Ile Ser Lys Ala Cys Lys Tyr Pro Gln Ser 450
455 460Tyr Ile Pro Phe Gly Leu Gly Pro
Arg Thr Cys Val Gly Lys Asn Phe465 470
475 480Gly Met Met Glu Val Lys Val Leu Val Ser Leu Ile
Val Ser Lys Phe 485 490
495Ser Phe Thr Leu Ser Pro Thr Tyr Gln His Ser Pro Ser His Lys Leu
500 505 510Leu Val Glu Pro Gln His
Gly Val Val Ile Arg Val Val 515 520
525145529PRTVitis vinifera 145Met Tyr Phe Leu Leu Gln Tyr Leu Asn Ile
Thr Thr Val Gly Val Phe1 5 10
15Ala Thr Leu Phe Leu Ser Tyr Cys Leu Leu Leu Trp Arg Ser Arg Ala
20 25 30Gly Asn Lys Lys Ile Ala
Pro Glu Ala Ala Ala Ala Trp Pro Ile Ile 35 40
45Gly His Leu His Leu Leu Ala Gly Gly Ser His Gln Leu Pro
His Ile 50 55 60Thr Leu Gly Asn Met
Ala Asp Lys Tyr Gly Pro Val Phe Thr Ile Arg65 70
75 80Ile Gly Leu His Arg Ala Val Val Val Ser
Ser Trp Glu Met Ala Lys 85 90
95Glu Cys Ser Thr Ala Asn Asp Gln Val Ser Ser Ser Arg Pro Glu Leu
100 105 110Leu Ala Ser Lys Leu
Leu Gly Tyr Asn Tyr Ala Met Phe Gly Phe Ser 115
120 125Pro Tyr Gly Ser Tyr Trp Arg Glu Met Arg Lys Ile
Ile Ser Leu Glu 130 135 140Leu Leu Ser
Asn Ser Arg Leu Glu Leu Leu Lys Asp Val Arg Ala Ser145
150 155 160Glu Val Val Thr Ser Ile Lys
Glu Leu Tyr Lys Leu Trp Ala Glu Lys 165
170 175Lys Asn Glu Ser Gly Leu Val Ser Val Glu Met Lys
Gln Trp Phe Gly 180 185 190Asp
Leu Thr Leu Asn Val Ile Leu Arg Met Val Ala Gly Lys Arg Tyr 195
200 205Phe Ser Ala Ser Asp Ala Ser Glu Asn
Lys Gln Ala Gln Arg Cys Arg 210 215
220Arg Val Phe Arg Glu Phe Phe His Leu Ser Gly Leu Phe Val Val Ala225
230 235 240Asp Ala Ile Pro
Phe Leu Gly Trp Leu Asp Trp Gly Arg His Glu Lys 245
250 255Thr Leu Lys Lys Thr Ala Ile Glu Met Asp
Ser Ile Ala Gln Glu Trp 260 265
270Leu Glu Glu His Arg Arg Arg Lys Asp Ser Gly Asp Asp Asn Ser Thr
275 280 285Gln Asp Phe Met Asp Val Met
Gln Ser Val Leu Asp Gly Lys Asn Leu 290 295
300Gly Gly Tyr Asp Ala Asp Thr Ile Asn Lys Ala Thr Cys Leu Thr
Leu305 310 315 320Ile Ser
Gly Gly Ser Asp Thr Thr Val Val Ser Leu Thr Trp Ala Leu
325 330 335Ser Leu Val Leu Asn Asn Arg
Asp Thr Leu Lys Lys Ala Gln Glu Glu 340 345
350Leu Asp Ile Gln Val Gly Lys Glu Arg Leu Val Asn Glu Gln
Asp Ile 355 360 365Ser Lys Leu Val
Tyr Leu Gln Ala Ile Val Lys Glu Thr Leu Arg Leu 370
375 380Tyr Pro Pro Gly Pro Leu Gly Gly Leu Arg Gln Phe
Thr Glu Asp Cys385 390 395
400Thr Leu Gly Gly Tyr His Val Ser Lys Gly Thr Arg Leu Ile Met Asn
405 410 415Leu Ser Lys Ile Gln
Lys Asp Pro Arg Ile Trp Ser Asp Pro Thr Glu 420
425 430Phe Gln Pro Glu Arg Phe Leu Thr Thr His Lys Asp
Val Asp Pro Arg 435 440 445Gly Lys
His Phe Glu Phe Ile Pro Phe Gly Ala Gly Arg Arg Ala Cys 450
455 460Pro Gly Ile Thr Phe Gly Leu Gln Val Leu His
Leu Thr Leu Ala Ser465 470 475
480Phe Leu His Ala Phe Glu Phe Ser Thr Pro Ser Asn Glu Gln Val Asn
485 490 495Met Arg Glu Ser
Leu Gly Leu Thr Asn Met Lys Ser Thr Pro Leu Glu 500
505 510Val Leu Ile Ser Pro Arg Leu Ser Leu Asn Cys
Phe Asn Leu Met Lys 515 520
525Ile146479PRTMedicago trunculata 146Met Glu Pro Asn Phe Tyr Leu Ser Leu
Leu Leu Leu Phe Val Thr Phe1 5 10
15Ile Ser Leu Ser Leu Phe Phe Ile Phe Tyr Lys Gln Lys Ser Pro
Leu 20 25 30Asn Leu Pro Pro
Gly Lys Met Gly Tyr Pro Ile Ile Gly Glu Ser Leu 35
40 45Glu Phe Leu Ser Thr Gly Trp Lys Gly His Pro Glu
Lys Phe Ile Phe 50 55 60Asp Arg Met
Arg Lys Tyr Ser Ser Glu Leu Phe Lys Thr Ser Ile Val65 70
75 80Gly Glu Ser Thr Val Val Cys Cys
Gly Ala Ala Ser Asn Lys Phe Leu 85 90
95Phe Ser Asn Glu Asn Lys Leu Val Thr Ala Trp Trp Pro Asp
Ser Val 100 105 110Asn Lys Ile
Phe Pro Thr Thr Ser Leu Asp Ser Asn Leu Lys Glu Glu 115
120 125Ser Ile Lys Met Arg Lys Leu Leu Pro Gln Phe
Phe Lys Pro Glu Ala 130 135 140Leu Gln
Arg Tyr Val Gly Val Met Asp Val Ile Ala Gln Arg His Phe145
150 155 160Val Thr His Trp Asp Asn Lys
Asn Glu Ile Thr Val Tyr Pro Leu Ala 165
170 175Lys Arg Tyr Thr Phe Leu Leu Ala Cys Arg Leu Phe
Met Ser Val Glu 180 185 190Asp
Glu Asn His Val Ala Lys Phe Ser Asp Pro Phe Gln Leu Ile Ala 195
200 205Ala Gly Ile Ile Ser Leu Pro Ile Asp
Leu Pro Gly Thr Pro Phe Asn 210 215
220Lys Ala Ile Lys Ala Ser Asn Phe Ile Arg Lys Glu Leu Ile Lys Ile225
230 235 240Ile Lys Gln Arg
Arg Val Asp Leu Ala Glu Gly Thr Ala Ser Pro Thr 245
250 255Gln Asp Ile Leu Ser His Met Leu Leu Thr
Ser Asp Glu Asn Gly Lys 260 265
270Ser Met Asn Glu Leu Asn Ile Ala Asp Lys Ile Leu Gly Leu Leu Ile
275 280 285Gly Gly His Asp Thr Ala Ser
Val Ala Cys Thr Phe Leu Val Lys Tyr 290 295
300Leu Gly Glu Leu Pro His Ile Tyr Asp Lys Val Tyr Gln Glu Gln
Met305 310 315 320Glu Ile
Ala Lys Ser Lys Pro Ala Gly Glu Leu Leu Asn Trp Asp Asp
325 330 335Leu Lys Lys Met Lys Tyr Ser
Trp Asn Val Ala Cys Glu Val Met Arg 340 345
350Leu Ser Pro Pro Leu Gln Gly Gly Phe Arg Glu Ala Ile Thr
Asp Phe 355 360 365Met Phe Asn Gly
Phe Ser Ile Pro Lys Gly Trp Lys Leu Tyr Trp Ser 370
375 380Ala Asn Ser Thr His Lys Asn Ala Glu Cys Phe Pro
Met Pro Glu Lys385 390 395
400Phe Asp Pro Thr Arg Phe Glu Gly Asn Gly Pro Ala Pro Tyr Thr Phe
405 410 415Val Pro Phe Gly Gly
Gly Pro Arg Met Cys Pro Gly Lys Glu Tyr Ala 420
425 430Arg Leu Glu Ile Leu Val Phe Met His Asn Leu Val
Lys Arg Phe Lys 435 440 445Trp Glu
Lys Val Ile Pro Asp Glu Lys Ile Ile Val Asp Pro Phe Pro 450
455 460Ile Pro Ala Lys Asp Leu Pro Ile Arg Leu Tyr
Pro His Lys Ala465 470 475147710PRTStevia
rebaudiana 147Met Gln Ser Asp Ser Val Lys Val Ser Pro Phe Asp Leu Val Ser
Ala1 5 10 15Ala Met Asn
Gly Lys Ala Met Glu Lys Leu Asn Ala Ser Glu Ser Glu 20
25 30Asp Pro Thr Thr Leu Pro Ala Leu Lys Met
Leu Val Glu Asn Arg Glu 35 40
45Leu Leu Thr Leu Phe Thr Thr Ser Phe Ala Val Leu Ile Gly Cys Leu 50
55 60Val Phe Leu Met Trp Arg Arg Ser Ser
Ser Lys Lys Leu Val Gln Asp65 70 75
80Pro Val Pro Gln Val Ile Val Val Lys Lys Lys Glu Lys Glu
Ser Glu 85 90 95Val Asp
Asp Gly Lys Lys Lys Val Ser Ile Phe Tyr Gly Thr Gln Thr 100
105 110Gly Thr Ala Glu Gly Phe Ala Lys Ala
Leu Val Glu Glu Ala Lys Val 115 120
125Arg Tyr Glu Lys Thr Ser Phe Lys Val Ile Asp Leu Asp Asp Tyr Ala
130 135 140Ala Asp Asp Asp Glu Tyr Glu
Glu Lys Leu Lys Lys Glu Ser Leu Ala145 150
155 160Phe Phe Phe Leu Ala Thr Tyr Gly Asp Gly Glu Pro
Thr Asp Asn Ala 165 170
175Ala Asn Phe Tyr Lys Trp Phe Thr Glu Gly Asp Asp Lys Gly Glu Trp
180 185 190Leu Lys Lys Leu Gln Tyr
Gly Val Phe Gly Leu Gly Asn Arg Gln Tyr 195 200
205Glu His Phe Asn Lys Ile Ala Ile Val Val Asp Asp Lys Leu
Thr Glu 210 215 220Met Gly Ala Lys Arg
Leu Val Pro Val Gly Leu Gly Asp Asp Asp Gln225 230
235 240Cys Ile Glu Asp Asp Phe Thr Ala Trp Lys
Glu Leu Val Trp Pro Glu 245 250
255Leu Asp Gln Leu Leu Arg Asp Glu Asp Asp Thr Ser Val Thr Thr Pro
260 265 270Tyr Thr Ala Ala Val
Leu Glu Tyr Arg Val Val Tyr His Asp Lys Pro 275
280 285Ala Asp Ser Tyr Ala Glu Asp Gln Thr His Thr Asn
Gly His Val Val 290 295 300His Asp Ala
Gln His Pro Ser Arg Ser Asn Val Ala Phe Lys Lys Glu305
310 315 320Leu His Thr Ser Gln Ser Asp
Arg Ser Cys Thr His Leu Glu Phe Asp 325
330 335Ile Ser His Thr Gly Leu Ser Tyr Glu Thr Gly Asp
His Val Gly Val 340 345 350Tyr
Ser Glu Asn Leu Ser Glu Val Val Asp Glu Ala Leu Lys Leu Leu 355
360 365Gly Leu Ser Pro Asp Thr Tyr Phe Ser
Val His Ala Asp Lys Glu Asp 370 375
380Gly Thr Pro Ile Gly Gly Ala Ser Leu Pro Pro Pro Phe Pro Pro Cys385
390 395 400Thr Leu Arg Asp
Ala Leu Thr Arg Tyr Ala Asp Val Leu Ser Ser Pro 405
410 415Lys Lys Val Ala Leu Leu Ala Leu Ala Ala
His Ala Ser Asp Pro Ser 420 425
430Glu Ala Asp Arg Leu Lys Phe Leu Ala Ser Pro Ala Gly Lys Asp Glu
435 440 445Tyr Ala Gln Trp Ile Val Ala
Asn Gln Arg Ser Leu Leu Glu Val Met 450 455
460Gln Ser Phe Pro Ser Ala Lys Pro Pro Leu Gly Val Phe Phe Ala
Ala465 470 475 480Val Ala
Pro Arg Leu Gln Pro Arg Tyr Tyr Ser Ile Ser Ser Ser Pro
485 490 495Lys Met Ser Pro Asn Arg Ile
His Val Thr Cys Ala Leu Val Tyr Glu 500 505
510Thr Thr Pro Ala Gly Arg Ile His Arg Gly Leu Cys Ser Thr
Trp Met 515 520 525Lys Asn Ala Val
Pro Leu Thr Glu Ser Pro Asp Cys Ser Gln Ala Ser 530
535 540Ile Phe Val Arg Thr Ser Asn Phe Arg Leu Pro Val
Asp Pro Lys Val545 550 555
560Pro Val Ile Met Ile Gly Pro Gly Thr Gly Leu Ala Pro Phe Arg Gly
565 570 575Phe Leu Gln Glu Arg
Leu Ala Leu Lys Glu Ser Gly Thr Glu Leu Gly 580
585 590Ser Ser Ile Phe Phe Phe Gly Cys Arg Asn Arg Lys
Val Asp Phe Ile 595 600 605Tyr Glu
Asp Glu Leu Asn Asn Phe Val Glu Thr Gly Ala Leu Ser Glu 610
615 620Leu Ile Val Ala Phe Ser Arg Glu Gly Thr Ala
Lys Glu Tyr Val Gln625 630 635
640His Lys Met Ser Gln Lys Ala Ser Asp Ile Trp Lys Leu Leu Ser Glu
645 650 655Gly Ala Tyr Leu
Tyr Val Cys Gly Asp Ala Lys Gly Met Ala Lys Asp 660
665 670Val His Arg Thr Leu His Thr Ile Val Gln Glu
Gln Gly Ser Leu Asp 675 680 685Ser
Ser Lys Ala Glu Leu Tyr Val Lys Asn Leu Gln Met Ser Gly Arg 690
695 700Tyr Leu Arg Asp Val Trp705
710148692PRTArabidopsis thaliana 148Met Thr Ser Ala Leu Tyr Ala Ser Asp
Leu Phe Lys Gln Leu Lys Ser1 5 10
15Ile Met Gly Thr Asp Ser Leu Ser Asp Asp Val Val Leu Val Ile
Ala 20 25 30Thr Thr Ser Leu
Ala Leu Val Ala Gly Phe Val Val Leu Leu Trp Lys 35
40 45Lys Thr Thr Ala Asp Arg Ser Gly Glu Leu Lys Pro
Leu Met Ile Pro 50 55 60Lys Ser Leu
Met Ala Lys Asp Glu Asp Asp Asp Leu Asp Leu Gly Ser65 70
75 80Gly Lys Thr Arg Val Ser Ile Phe
Phe Gly Thr Gln Thr Gly Thr Ala 85 90
95Glu Gly Phe Ala Lys Ala Leu Ser Glu Glu Ile Lys Ala Arg
Tyr Glu 100 105 110Lys Ala Ala
Val Lys Val Ile Asp Leu Asp Asp Tyr Ala Ala Asp Asp 115
120 125Asp Gln Tyr Glu Glu Lys Leu Lys Lys Glu Thr
Leu Ala Phe Phe Cys 130 135 140Val Ala
Thr Tyr Gly Asp Gly Glu Pro Thr Asp Asn Ala Ala Arg Phe145
150 155 160Tyr Lys Trp Phe Thr Glu Glu
Asn Glu Arg Asp Ile Lys Leu Gln Gln 165
170 175Leu Ala Tyr Gly Val Phe Ala Leu Gly Asn Arg Gln
Tyr Glu His Phe 180 185 190Asn
Lys Ile Gly Ile Val Leu Asp Glu Glu Leu Cys Lys Lys Gly Ala 195
200 205Lys Arg Leu Ile Glu Val Gly Leu Gly
Asp Asp Asp Gln Ser Ile Glu 210 215
220Asp Asp Phe Asn Ala Trp Lys Glu Ser Leu Trp Ser Glu Leu Asp Lys225
230 235 240Leu Leu Lys Asp
Glu Asp Asp Lys Ser Val Ala Thr Pro Tyr Thr Ala 245
250 255Val Ile Pro Glu Tyr Arg Val Val Thr His
Asp Pro Arg Phe Thr Thr 260 265
270Gln Lys Ser Met Glu Ser Asn Val Ala Asn Gly Asn Thr Thr Ile Asp
275 280 285Ile His His Pro Cys Arg Val
Asp Val Ala Val Gln Lys Glu Leu His 290 295
300Thr His Glu Ser Asp Arg Ser Cys Ile His Leu Glu Phe Asp Ile
Ser305 310 315 320Arg Thr
Gly Ile Thr Tyr Glu Thr Gly Asp His Val Gly Val Tyr Ala
325 330 335Glu Asn His Val Glu Ile Val
Glu Glu Ala Gly Lys Leu Leu Gly His 340 345
350Ser Leu Asp Leu Val Phe Ser Ile His Ala Asp Lys Glu Asp
Gly Ser 355 360 365Pro Leu Glu Ser
Ala Val Pro Pro Pro Phe Pro Gly Pro Cys Thr Leu 370
375 380Gly Thr Gly Leu Ala Arg Tyr Ala Asp Leu Leu Asn
Pro Pro Arg Lys385 390 395
400Ser Ala Leu Val Ala Leu Ala Ala Tyr Ala Thr Glu Pro Ser Glu Ala
405 410 415Glu Lys Leu Lys His
Leu Thr Ser Pro Asp Gly Lys Asp Glu Tyr Ser 420
425 430Gln Trp Ile Val Ala Ser Gln Arg Ser Leu Leu Glu
Val Met Ala Ala 435 440 445Phe Pro
Ser Ala Lys Pro Pro Leu Gly Val Phe Phe Ala Ala Ile Ala 450
455 460Pro Arg Leu Gln Pro Arg Tyr Tyr Ser Ile Ser
Ser Ser Pro Arg Leu465 470 475
480Ala Pro Ser Arg Val His Val Thr Ser Ala Leu Val Tyr Gly Pro Thr
485 490 495Pro Thr Gly Arg
Ile His Lys Gly Val Cys Ser Thr Trp Met Lys Asn 500
505 510Ala Val Pro Ala Glu Lys Ser His Glu Cys Ser
Gly Ala Pro Ile Phe 515 520 525Ile
Arg Ala Ser Asn Phe Lys Leu Pro Ser Asn Pro Ser Thr Pro Ile 530
535 540Val Met Val Gly Pro Gly Thr Gly Leu Ala
Pro Phe Arg Gly Phe Leu545 550 555
560Gln Glu Arg Met Ala Leu Lys Glu Asp Gly Glu Glu Leu Gly Ser
Ser 565 570 575Leu Leu Phe
Phe Gly Cys Arg Asn Arg Gln Met Asp Phe Ile Tyr Glu 580
585 590Asp Glu Leu Asn Asn Phe Val Asp Gln Gly
Val Ile Ser Glu Leu Ile 595 600
605Met Ala Phe Ser Arg Glu Gly Ala Gln Lys Glu Tyr Val Gln His Lys 610
615 620Met Met Glu Lys Ala Ala Gln Val
Trp Asp Leu Ile Lys Glu Glu Gly625 630
635 640Tyr Leu Tyr Val Cys Gly Asp Ala Lys Gly Met Ala
Arg Asp Val His 645 650
655Arg Thr Leu His Thr Ile Val Gln Glu Gln Glu Gly Val Ser Ser Ser
660 665 670Glu Ala Glu Ala Ile Val
Lys Lys Leu Gln Thr Glu Gly Arg Tyr Leu 675 680
685Arg Asp Val Trp 690149713PRTGiberella fujikuroi 149Met
Ala Glu Leu Asp Thr Leu Asp Ile Val Val Leu Gly Val Ile Phe1
5 10 15Leu Gly Thr Val Ala Tyr Phe
Thr Lys Gly Lys Leu Trp Gly Val Thr 20 25
30Lys Asp Pro Tyr Ala Asn Gly Phe Ala Ala Gly Gly Ala Ser
Lys Pro 35 40 45Gly Arg Thr Arg
Asn Ile Val Glu Ala Met Glu Glu Ser Gly Lys Asn 50 55
60Cys Val Val Phe Tyr Gly Ser Gln Thr Gly Thr Ala Glu
Asp Tyr Ala65 70 75
80Ser Arg Leu Ala Lys Glu Gly Lys Ser Arg Phe Gly Leu Asn Thr Met
85 90 95Ile Ala Asp Leu Glu Asp
Tyr Asp Phe Asp Asn Leu Asp Thr Val Pro 100
105 110Ser Asp Asn Ile Val Met Phe Val Leu Ala Thr Tyr
Gly Glu Gly Glu 115 120 125Pro Thr
Asp Asn Ala Val Asp Phe Tyr Glu Phe Ile Thr Gly Glu Asp 130
135 140Ala Ser Phe Asn Glu Gly Asn Asp Pro Pro Leu
Gly Asn Leu Asn Tyr145 150 155
160Val Ala Phe Gly Leu Gly Asn Asn Thr Tyr Glu His Tyr Asn Ser Met
165 170 175Val Arg Asn Val
Asn Lys Ala Leu Glu Lys Leu Gly Ala His Arg Ile 180
185 190Gly Glu Ala Gly Glu Gly Asp Asp Gly Ala Gly
Thr Met Glu Glu Asp 195 200 205Phe
Leu Ala Trp Lys Asp Pro Met Trp Glu Ala Leu Ala Lys Lys Met 210
215 220Gly Leu Glu Glu Arg Glu Ala Val Tyr Glu
Pro Ile Phe Ala Ile Asn225 230 235
240Glu Arg Asp Asp Leu Thr Pro Glu Ala Asn Glu Val Tyr Leu Gly
Glu 245 250 255Pro Asn Lys
Leu His Leu Glu Gly Thr Ala Lys Gly Pro Phe Asn Ser 260
265 270His Asn Pro Tyr Ile Ala Pro Ile Ala Glu
Ser Tyr Glu Leu Phe Ser 275 280
285Ala Lys Asp Arg Asn Cys Leu His Met Glu Ile Asp Ile Ser Gly Ser 290
295 300Asn Leu Lys Tyr Glu Thr Gly Asp
His Ile Ala Ile Trp Pro Thr Asn305 310
315 320Pro Gly Glu Glu Val Asn Lys Phe Leu Asp Ile Leu
Asp Leu Ser Gly 325 330
335Lys Gln His Ser Val Val Thr Val Lys Ala Leu Glu Pro Thr Ala Lys
340 345 350Val Pro Phe Pro Asn Pro
Thr Thr Tyr Asp Ala Ile Leu Arg Tyr His 355 360
365Leu Glu Ile Cys Ala Pro Val Ser Arg Gln Phe Val Ser Thr
Leu Ala 370 375 380Ala Phe Ala Pro Asn
Asp Asp Ile Lys Ala Glu Met Asn Arg Leu Gly385 390
395 400Ser Asp Lys Asp Tyr Phe His Glu Lys Thr
Gly Pro His Tyr Tyr Asn 405 410
415Ile Ala Arg Phe Leu Ala Ser Val Ser Lys Gly Glu Lys Trp Thr Lys
420 425 430Ile Pro Phe Ser Ala
Phe Ile Glu Gly Leu Thr Lys Leu Gln Pro Arg 435
440 445Tyr Tyr Ser Ile Ser Ser Ser Ser Leu Val Gln Pro
Lys Lys Ile Ser 450 455 460Ile Thr Ala
Val Val Glu Ser Gln Gln Ile Pro Gly Arg Asp Asp Pro465
470 475 480Phe Arg Gly Val Ala Thr Asn
Tyr Leu Phe Ala Leu Lys Gln Lys Gln 485
490 495Asn Gly Asp Pro Asn Pro Ala Pro Phe Gly Gln Ser
Tyr Glu Leu Thr 500 505 510Gly
Pro Arg Asn Lys Tyr Asp Gly Ile His Val Pro Val His Val Arg 515
520 525His Ser Asn Phe Lys Leu Pro Ser Asp
Pro Gly Lys Pro Ile Ile Met 530 535
540Ile Gly Pro Gly Thr Gly Val Ala Pro Phe Arg Gly Phe Val Gln Glu545
550 555 560Arg Ala Lys Gln
Ala Arg Asp Gly Val Glu Val Gly Lys Thr Leu Leu 565
570 575Phe Phe Gly Cys Arg Lys Ser Thr Glu Asp
Phe Met Tyr Gln Lys Glu 580 585
590Trp Gln Glu Tyr Lys Glu Ala Leu Gly Asp Lys Phe Glu Met Ile Thr
595 600 605Ala Phe Ser Arg Glu Gly Ser
Lys Lys Val Tyr Val Gln His Arg Leu 610 615
620Lys Glu Arg Ser Lys Glu Val Ser Asp Leu Leu Ser Gln Lys Ala
Tyr625 630 635 640Phe Tyr
Val Cys Gly Asp Ala Ala His Met Ala Arg Glu Val Asn Thr
645 650 655Val Leu Ala Gln Ile Ile Ala
Glu Gly Arg Gly Val Ser Glu Ala Lys 660 665
670Gly Glu Glu Ile Val Lys Asn Met Arg Ser Ala Asn Gln Tyr
Gln Val 675 680 685Cys Ser Asp Phe
Val Thr Leu His Cys Lys Glu Thr Thr Tyr Ala Asn 690
695 700Ser Glu Leu Gln Glu Asp Val Trp Ser705
710150453PRTArabidopsis thaliana 150Met Gly Gly Leu Lys Phe His Val
Leu Met Tyr Pro Trp Phe Ala Thr1 5 10
15Gly His Met Thr Pro Phe Leu Phe Leu Ala Asn Lys Leu Ala
Glu Lys 20 25 30Gly His Thr
Val Thr Phe Leu Leu Pro Lys Lys Ser Leu Lys Gln Leu 35
40 45Glu His Phe Asn Leu Phe Pro His Asn Ile Val
Phe Arg Ser Val Thr 50 55 60Val Pro
His Val Asp Gly Leu Pro Val Gly Thr Glu Thr Ala Ser Glu65
70 75 80Ile Pro Val Thr Ser Thr Asp
Leu Leu Met Ser Ala Met Asp Leu Thr 85 90
95Arg Asp Gln Val Glu Ala Val Val Arg Ala Val Glu Pro
Asp Leu Ile 100 105 110Phe Phe
Asp Phe Ala His Trp Ile Pro Glu Val Ala Arg Asp Phe Gly 115
120 125Leu Lys Thr Val Lys Tyr Val Val Val Ser
Ala Ser Thr Ile Ala Ser 130 135 140Met
Leu Val Pro Gly Gly Glu Leu Gly Val Pro Pro Pro Gly Tyr Pro145
150 155 160Ser Ser Lys Val Leu Leu
Arg Lys Gln Asp Ala Tyr Thr Met Lys Lys 165
170 175Leu Glu Pro Thr Asn Thr Ile Asp Val Gly Pro Asn
Leu Leu Glu Arg 180 185 190Val
Thr Thr Ser Leu Met Asn Ser Asp Val Ile Ala Ile Arg Thr Ala 195
200 205Arg Glu Ile Glu Gly Asn Phe Cys Asp
Tyr Ile Glu Lys His Cys Arg 210 215
220Lys Lys Val Leu Leu Thr Gly Pro Val Phe Pro Glu Pro Asp Lys Thr225
230 235 240Arg Glu Leu Glu
Glu Arg Trp Val Lys Trp Leu Ser Gly Tyr Glu Pro 245
250 255Asp Ser Val Val Phe Cys Ala Leu Gly Ser
Gln Val Ile Leu Glu Lys 260 265
270Asp Gln Phe Gln Glu Leu Cys Leu Gly Met Glu Leu Thr Gly Ser Pro
275 280 285Phe Leu Val Ala Val Lys Pro
Pro Arg Gly Ser Ser Thr Ile Gln Glu 290 295
300Ala Leu Pro Glu Gly Phe Glu Glu Arg Val Lys Gly Arg Gly Leu
Val305 310 315 320Trp Gly
Gly Trp Val Gln Gln Pro Leu Ile Leu Ser His Pro Ser Val
325 330 335Gly Cys Phe Val Ser His Cys
Gly Phe Gly Ser Met Trp Glu Ser Leu 340 345
350Leu Ser Asp Cys Gln Ile Val Leu Val Pro Gln Leu Gly Asp
Gln Val 355 360 365Leu Asn Thr Arg
Leu Leu Ser Asp Glu Leu Lys Val Ser Val Glu Val 370
375 380Ala Arg Glu Glu Thr Gly Trp Phe Ser Lys Glu Ser
Leu Cys Asp Ala385 390 395
400Val Asn Ser Val Met Lys Arg Asp Ser Glu Leu Gly Asn Leu Val Arg
405 410 415Lys Asn His Thr Lys
Trp Arg Glu Thr Val Ala Ser Pro Gly Leu Met 420
425 430Thr Gly Tyr Val Asp Ala Phe Val Glu Ser Leu Gln
Asp Leu Val Ser 435 440 445Gly Thr
Thr His Asp 4501511362DNAArabidopsis thaliana 151atgggtggtt tgaagtttca
tgtacttatg tatccatggt tcgcaacagg ccatatgacc 60ccgttccttt ttcttgccaa
caaattggct gagaaaggtc atacggtcac tttcttgctt 120cccaagaaat ctctgaaaca
gttggaacat ttcaatctgt ttccacacaa cattgtcttt 180cgctctgtca ccgtccctca
tgtggatggt ctccccgttg gcacagagac agcctctgag 240atccctgtga catcaactga
tctcttgatg tctgctatgg atctcacacg tgatcaagtt 300gaagctgtgg tccgagccgt
tgaaccggac ctgatcttct ttgactttgc tcattggatt 360ccagaagtag ctagggactt
cggccttaag actgtaaagt acgtcgtggt gtctgcatcg 420actatagcta gtatgcttgt
cccaggtggt gagttaggtg ttcctccacc gggatatcca 480tcatcaaagg tgctgcttcg
taaacaagat gcttacacta tgaagaaact ggagcctaca 540aatacaatcg atgtcggacc
aaacctcttg gaacgagtca ctacaagtct tatgaactct 600gatgtcattg cgataaggac
agccagagaa atcgaaggaa acttttgcga ctatatagaa 660aaacattgca ggaaaaaggt
tctcttgaca ggtccggtgt tccctgagcc agacaagact 720agagagctag aggaacgatg
ggttaagtgg ctaagtgggt atgaaccaga ctcagtggtg 780ttttgtgcac tgggctcaca
agtcatttta gagaaagatc aattccaaga actctgctta 840ggaatggagc taacaggttc
accgtttctt gtagcggtta agccccctag aggctcatca 900acgattcaag aagcacttcc
tgaaggattc gaagagcggg ttaaaggaag aggccttgtt 960tggggaggat gggttcaaca
accattgata ttgtctcatc catcagtcgg gtgctttgtg 1020agccattgtg ggtttggatc
aatgtgggag tctttgctga gtgattgtca gatagtctta 1080gtaccacagt tgggtgatca
agtcctgaac acaagattgc tgagtgacga actcaaggtt 1140tcggttgaag tggcaagaga
ggaaacagga tggttctcga aagagagctt gtgcgatgct 1200gtcaatagtg tgatgaaaag
ggacagcgag ctcgggaacc tggtgaggaa gaatcacacc 1260aagtggaggg agacagtagc
tagtcctgga ctaatgactg gttatgtcga tgctttcgta 1320gagtcattgc aggatcttgt
ctctgggacc acccatgact ga 1362
User Contributions:
Comment about this patent or add new information about this topic: