Patent application title: INCREASING PLANT GROWTH AND YIELD BY USING AN ERF TRANSCRIPTION FACTOR SEQUENCE
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
1 1
Class name:
Publication date: 2020-05-07
Patent application number: 20200140880
Abstract:
Compositions and methods for improving plant growth are provided herein.
Polynucleotides encoding ERF transcription factor proteins, polypeptides
encompassing ERF transcription factor proteins, and expression constructs
for expressing genes of interest whose expression may improve agronomic
properties including but not limited to crop yield, biotic and abiotic
stress tolerance, and early vigor, plants comprising the polynucleotides,
polypeptides, and expression constructs, and methods of producing
transgenic plants are also provided.Claims:
1. A construct comprising a promoter that drives expression in a plant
cell operably linked to an ethylene response factor (ERF) transcription
factor protein-encoding sequence, wherein said promoter is heterologous
to said ERF transcription factor protein-encoding sequence and wherein
said ERF transcription factor protein-encoding sequence has at least 95%
identity to the sequence as set forth in SEQ ID NO:1 or encodes a protein
having 95% amino acid sequence identity to the amino acid sequence as set
forth in SEQ ID NO: 2.
2. The construct of claim 1 wherein said ERF transcription factor protein-encoding sequence comprises the sequence set forth in SEQ ID NO:1 or encodes a protein that comprises the amino acid sequence as set forth in SEQ ID NO: 2.
3. The construct of claim 1, wherein said promoter that drives expression in a plant cell is selected from the group consisting of SEQ ID NO:5 and SEQ ID NO:8.
4. The construct of claim 1, wherein said construct is present in a plasmid.
5. The plasmid of claim 4, further comprising an origin of replication.
Description:
FIELD OF THE INVENTION
[0001] The invention is drawn to compositions and methods for increasing plant growth and yield through expression of an ERF transcription factor gene in a plant.
BACKGROUND OF THE INVENTION
[0002] The ever-increasing world population and the dwindling supply of arable land available for agriculture fuels research towards developing plants with increased biomass and yield. Conventional means for crop and horticultural improvements utilize selective breeding techniques to identify plants having desirable characteristics. However, such selective breeding techniques have several drawbacks, namely that these techniques are typically labor intensive and result in plants that often contain heterogeneous genetic components that may not always result in the desirable trait being passed on from parent plants. Advances in molecular biology provide means to precisely modify the germplasm of plants. Genetic engineering of plants entails the isolation and manipulation of genetic material (typically in the form of DNA or RNA) and the subsequent introduction of that genetic material into a plant. Such technology has the capacity to deliver crops or plants having various improved economic, agronomic or horticultural traits.
[0003] Traits of interest include plant biomass and yield. Yield is normally defined as the measurable produce of economic value from a crop. This may be defined in terms of quantity and/or quality. Yield is directly dependent on several factors, for example, the number and size of the organs, plant architecture (for example, the number of branches), seed production, leaf senescence and more. Root development, nutrient uptake, stress tolerance, photosynthetic carbon assimilation rates, and early vigor may also be important factors in determining yield. Optimizing the abovementioned factors may therefore contribute to increasing crop yield.
[0004] An increase in seed yield is a particularly important trait since the seeds of many plants are important for human and animal consumption. Crops such as corn, rice, wheat, canola and soybean account for over half the total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds. They are also a source of sugars, oils and many kinds of metabolites used in industrial processes. Seeds contain an embryo (the source of new shoots and roots) and an endosperm (the source of nutrients for embryo growth during germination and during early growth of seedlings). The development of a seed involves many genes, and requires the transfer of metabolites from the roots, leaves and stems into the growing seed. The endosperm, in particular, assimilates the metabolic precursors of carbohydrates, oils and proteins and synthesizes them into storage macromolecules to fill out the grain. An increase in plant biomass is important for forage crops like alfalfa, silage corn and hay. Many genes are involved in the metabolic pathways that contribute to plant growth and development. Modulating the expression of one or more such genes in a plant can produce a plant with improved growth and development relative to a control plant, but often can produce a plant with impaired growth and development relative to a control plant. Therefore, methods to improve plant growth and development are needed.
[0005] Transcription factors are genes whose expression modulates the expression of other genes. This is often accomplished by the transcription factor protein binding to genomic DNA at a particular location or locations. This binding may recruit additional proteins that up- or downregulate the expression of gene(s) nearby the transcription factor binding site. Alternatively, the binding of the transcription factor to DNA may physically slow or prevent transcription of nearby gene(s) by interfering with proteins such as RNA polymerase that are involved with transcription. Because individual transcription factors may affect the expression of multiple genes of interest, modulating transcription factor expression has the potential to simultaneously modulate the expression of multiple genes in the organism of interest, such as genes that are involved in the metabolic pathways that contribute to plant growth and development. Modulating the expression of one or more transcription factors that participates in regulating the expression of genes whose expression affects plant growth and development may improve plant growth and development, but often can produce a plant with impaired growth and development relative to a control plant. Therefore, methods to modulate transcription factor expression that can result in improved plant growth and development are needed.
SUMMARY OF THE INVENTION
[0006] Compositions and methods for modifying the expression of at least one ERF transcription factor gene in a plant are provided. The methods increase plant growth resulting in higher crop yield. Such methods include increasing the expression of at least one ERF transcription factor gene in a plant of interest. The invention also encompasses constructs comprising a promoter that drives expression in a plant cell operably linked to an ERF transcription factor coding sequence. Compositions further comprise plants, plant seeds, plant organs, plant cells, and other plant parts that have increased expression of an ERF transcription factor sequence. The invention includes methods that can be utilized to increase expression of an ERF transcription factor gene in a plant. Such ERF transcription factor gene may be a native sequence or alternatively, may be a sequence that is heterologous to the plant of interest.
Embodiments of the invention include:
[0007] 1. A method for increasing crop yield comprising transforming a plant with at least one ERF transcription factor protein-encoding sequence.
[0008] 2. The method of embodiment 1, wherein said ERF transcription factor protein-encoding sequence comprises a sequence selected from the group of SEQ ID NOs:1, 56, 58, 60, 62, and 64, or encodes a protein selected from the group consisting of SEQ ID NOs:2, 22-53, 57, 59, 61, 63, and 65.
[0009] 3. The method of embodiment 1, wherein said ERF transcription factor protein-encoding sequence encodes a protein with at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65, and that has transcription factor function.
[0010] 4. The method of embodiment 1, wherein said ERF transcription factor protein-encoding sequence encodes a protein with at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence positives relative to a sequence selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65, and that has transcription factor function.
[0011] 5. A plant having stably incorporated into its genome a promoter that drives expression in a plant cell operably linked to a ERF transcription factor protein-encoding sequence, wherein said promoter is heterologous to said ERF transcription factor protein-encoding sequence.
[0012] 6. The plant of embodiment 5, wherein said ERF transcription factor protein-encoding sequence comprises a sequence selected from the group of SEQ ID NOs:1, 56, 58, 60, 62, and 64, or encodes a protein selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65.
[0013] 7. The plant of embodiment 5, wherein said ERF transcription factor protein-encoding sequence encodes a protein with at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65, and that has transcription factor function.
[0014] 8. The plant of embodiment 5, wherein said ERF transcription factor protein-encoding sequence encodes a protein with at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence positives relative to a sequence selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65, and that has transcription factor function.
[0015] 9. The plant of any one of embodiments 5-8, wherein said plant also has stably incorporated into its genome at least one additional coding sequence, and wherein said at least one additional coding sequence is selected from the group of SEQ ID NOs:14, 16, 18, 20, and 54 or encodes a protein selected from the group of SEQ ID NOs:15, 17, 19, 21, and 55.
[0016] 10. Transformed seed of any one of the plants of embodiments 5-9.
[0017] 11. The plant of any one of embodiments 5-9 wherein said plant is a monocot.
[0018] 12. The plant of embodiment 11 wherein said plant is from the genus Zea, Oryza, Triticum, Sorghum, Secale, Eleusine, Setaria, Saccharum, Miscanthus, Panicum, Pennisetum, Megathyrsus, Cocos, Ananas, Musa, Elaeis, Avena, or Hordeum.
[0019] 13. The plant of any one of embodiments 5-9 wherein said plant is a dicot.
[0020] 14. The plant of embodiment 13 wherein said plant is from the genus Glycine, Brassica, Medicago, Helianthus, Carthamus, Nicotiana, Solanum, Gossypium, Ipomoea, Manihot, Coffea, Citrus, Theobroma, Camellia, Persea, Ficus, Psidium, Mangifera, Olea, Carica, Anacardium, Macadamia, Prunus, Beta, Populus, or Eucalyptus.
[0021] 15. The plant of any one of embodiments 5-9 wherein said plant exhibits increased growth relative to a control plant.
[0022] 16. The plant of any one of embodiments 5-9 wherein said plant exhibits increased biomass yield relative to a control plant.
[0023] 17. The plant of any one of embodiments 5-9 wherein said plant exhibits increased seed yield relative to a control plant.
[0024] 18. The method of any one of embodiments 1-4, wherein said ERF transcription factor protein-encoding sequence is expressed from a constitutive promoter.
[0025] 19. The method of embodiment 18, wherein said constitutive promoter comprises SEQ ID NO:8.
[0026] 20. The method of any one of embodiments 1-4, wherein said ERF transcription factor protein-encoding sequence is expressed from a stress-responsive promoter.
[0027] 21. The method of embodiment 20, wherein said stress-responsive promoter comprises SEQ ID NO:5.
[0028] 22. The method of any one of embodiments 1-4 further comprising transforming a plant with at least one additional coding sequence.
[0029] 23. The method of embodiment 22 wherein said at least one additional coding sequence is selected from the group of SEQ ID NOs:14, 16, 18, 20, and 54 or encodes a protein selected from the group of SEQ ID NOs:15, 17, 19, 21, and 55.
[0030] 24. The plant of any one of embodiments 5-9, wherein said promoter that drives expression in a plant cell is a constitutive promoter.
[0031] 25. The plant of embodiment 24, wherein said constitutive promoter comprises SEQ ID NO:8.
[0032] 26. The plant of any one of embodiments 5-9, wherein said promoter that drives expression in a plant cell is a stress-responsive promoter.
[0033] 27. The plant of embodiment 26, wherein said stress-responsive promoter comprises SEQ ID NO:5.
[0034] 28. A DNA construct comprising, in operable linkage,
[0035] a. A promoter that is functional in a plant cell and,
[0036] b. A nucleic acid sequence encoding an ERF transcription factor protein.
[0037] 29. The DNA construct of embodiment 28, wherein said nucleic acid sequence encoding a ERF transcription factor protein comprises a sequence selected from the group of SEQ ID NOs:1, 56, 58, 60, 62, and 64, or encodes a protein selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65.
[0038] 30. The DNA construct of embodiment 28, wherein said nucleic acid sequence encoding an ERF transcription factor protein encodes a protein with at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65, and that has transcription factor function.
[0039] 31. The DNA construct of embodiment 28, wherein said nucleic acid sequence encoding an ERF transcription factor protein encodes a protein with at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence positives relative to a sequence selected from the group consisting of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65, and that has transcription factor function.
[0040] 32. The DNA construct of any one of embodiments 28-31, wherein said promoter that is functional in a plant cell is selected from the group of SEQ ID NOs:3, 5, 7, and 8.
[0041] 33. The DNA construct of any one of embodiments 28-31, wherein said promoter that is functional in a plant cell is heterologous to said nucleic acid sequence encoding an ERF transcription factor protein.
[0042] 34. A method for increasing crop yield comprising modulating the expression of at least one ERF transcription factor protein-encoding sequence in a plant.
[0043] 35. The method of embodiment 34 wherein said modulating the expression comprises increasing the expression of at least one ERF transcription factor protein-encoding sequence in a plant.
[0044] 36. The method of embodiment 35, wherein said increasing the expression comprises increasing the activity of a native ERF transcription factor sequence in said plant or increasing activity of a native ERF transcription factor protein-encoding sequence in said plant.
[0045] 37. The DNA construct of any one of embodiments 28-33, further comprising at least one additional promoter that is functional in a plant cell, operably linked to at least one additional protein-encoding nucleic acid sequence.
[0046] 38. The DNA construct of embodiment 37 wherein said additional protein-encoding nucleic acid sequence is selected from the group of SEQ ID NOs:14, 16, 18, 20, and 54, or encodes a protein selected from the group of SEQ ID NOs:15, 17, 19, 21, and 55.
[0047] 39. The DNA construct of embodiment 37 wherein said additional protein-encoding nucleic acid sequence has at least 70% identity to a nucleic acid sequence selected from the group of SEQ ID NOs:14, 16, 18, 20, and 54, or encodes a protein with at least 80% identity to a protein selected from the group of SEQ ID NOs:15, 17, 19, 21, and 55.
DETAILED DESCRIPTION OF THE INVENTION
[0048] Compositions and methods for increasing crop biomass and yield are provided. The methods include increasing the expression of at least one ERF transcription factor gene in a plant of interest. Crop yield is an extremely complex trait that results from the growth of a crop plant through all stages of its development and allocation of plant resources to the harvestable portions of the plant. In some crops including but not limited to maize and soybean, the primary harvestable portions may include seeds, with secondary applications from the remainder of the biomass (e.g., leaves and stems). In other crops including but not limited to sugarcane and alfalfa, the primary harvestable portions of the plant consist of the stems or entire above-ground portion of the plant. In other crops including but not limited to potato and carrot, the primary harvestable portions of the plant are found below-ground. Regardless of the harvested portion(s) of the crop plant, the accumulation of harvestable biomass results from plant growth and allocation of photosynthetically fixed carbon to the harvested portion(s) of the plant. Plant growth may be manipulated by modulating the expression of one or more plant genes. This modulation can alter the function of one or more metabolic pathways that contributes to plant growth and accumulation of harvestable biomass.
[0049] Methods of the invention include the manipulation of plant growth for increased yield through modulation of the expression of one or more genes encoding an ERF transcription factor protein. In a preferred embodiment, the expression of an ERF transcription factor-encoding gene is upregulated relative to ERF transcription factor expression levels in a control plant, resulting in increased harvestable biomass in plants with increased ERF transcription factor expression relative to control plants. Any methods for increasing the activity or expression of an ERF transcription factor protein-encoding sequence in a plant are encompassed by the present invention.
[0050] The compositions of the invention include constructs comprising the coding sequences set forth in SEQ ID NOs: 1, 56, 58, 60, 62, and 64, or encoding a protein selected from the group of SEQ ID NOs: 2, 22-53, 57, 59, 61, 63, and 65 or variants thereof, operably linked to a promoter that is functional in a plant cell. By "promoter" is intended to mean a regulatory region of DNA that is capable of driving expression of a sequence in a plant or plant cell. It is recognized that having identified the ERF transcription factor protein sequences disclosed herein, it is within the state of the art to isolate and identify additional ERF transcription factor protein sequences and nucleotide sequences encoding ERF transcription factor protein sequences, for instance through BLAST searches, PCR assays, and the like.
[0051] The coding sequences of the present invention, when assembled within a DNA construct such that a promoter is operably linked to the coding sequence of interest, enable expression and accumulation of ERF transcription factor protein in the cells of a plant stably transformed with this DNA construct. "Operably linked" is intended to mean a functional linkage between two or more elements. For example, an operable linkage between a promoter of the present invention and a heterologous nucleotide of interest is a functional link that allows for expression of the heterologous nucleotide sequence of interest. Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, by operably linked is intended that the coding regions are in the same reading frame. The cassette may additionally contain at least one additional gene to be co-transformed into the plant. Alternatively, the additional gene(s) can be provided on multiple expression cassettes or DNA constructs. The expression cassette may additionally contain selectable marker genes.
[0052] In this manner, the nucleotide sequences encoding the ERF transcription factor proteins of the invention are provided in expression cassettes or expression constructs along with a promoter sequence of interest, typically a heterologous promoter sequence, for expression in the plant of interest. By "heterologous promoter sequence" is intended to mean a sequence that is not naturally operably linked with the ERF transcription factor protein-encoding nucleotide sequence. While the ERF transcription factor protein-encoding nucleotide sequence and the promoter sequence are heterologous to each other, either the ERF transcription factor protein-encoding nucleotide sequence or the heterologous promoter sequence may be homologous, or native, or heterologous, or foreign, to the plant host. It is recognized that the promoter may also drive expression of its homologous or native nucleotide sequence. In this case, the transformed plant will have a change in phenotype.
[0053] Fragments and variants of the polynucleotides and amino acid sequences of the present invention may also be expressed by promoters that are operable in plant cells. By "fragment" is intended a portion of the polynucleotide or a portion of the amino acid sequence. "Variants" is intended to mean substantially similar sequences. For polynucleotides, a variant comprises a polynucleotide having deletions (i.e., truncations) at the 5' and/or 3' end; deletion and/or addition of one or more nucleotides at one or more internal sites in the native polynucleotide; and/or substitution of one or more nucleotides at one or more sites in the native polynucleotide. As used herein, a "native" polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respectively. Generally, variants of a particular polynucleotide of the invention will have at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters as described elsewhere herein. Fragments and variants of the polynucleotides disclosed herein can encode proteins that retain transcription factor function.
[0054] "Variant" amino acid or protein is intended to mean an amino acid or protein derived from the native amino acid or protein by deletion (so-called truncation) of one or more amino acids at the N-terminal and/or C-terminal end of the native protein; deletion and/or addition of one or more amino acids at one or more internal sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, such as the ability to bind to genomic DNA and to modulate the expression of gene(s) near the DNA binding site. Biologically active variants of a native polypeptide will have at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence for the native sequence as determined by sequence alignment programs and parameters described herein. In some embodiments, the variant polypeptide sequences will comprise conservative amino acid substitutions. The number of such conservative amino acid substitutions, summed with the number of amino acid identities, can be used to calculate the sequence positives when this sum is divided by the total number of amino acids in the sequence of interest. Sequence positive calculations are performed on the NCBI BLAST server that can be accessed on the world wide web at blast.ncbi.nlm.nih.gov/Blast.cgi. A biologically active variant of a protein of the invention may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.
[0055] Amino acids can be generally categorized as aliphatic, hydroxyl or sulfur/selenium-containing, cyclic, aromatic, basic, or acidic and their amide. Without being limited by theory, conservative amino acid substitutions may be preferable in some cases to non-conservative amino acid substitutions for the generation of variant protein sequences, as conservative substitutions may be more likely than non-conservative substitutions to allow the variant protein to retain its biological activity. Polynucleotides encoding a polypeptide having one or more amino acid substitutions in the sequence are contemplated within the scope of the present invention. Table 1 below provides a listing of examples of amino acids belong to each class.
TABLE-US-00001 TABLE 1 Classes of Amino Acids Amino Acid Class Example Amino Acids Aliphatic Gly, Ala, Val, Leu, Ile Hydroxyl or Ser, Cys, Thr, Met, Sec sulfur/selenium- containing Cyclic Pro Aromatic Phe, Tyr, Trp Basic His, Lys, Arg Acidic and their Asp, Glu, Asn, Gln Amide
[0056] Variant sequences may also be identified by analysis of existing databases of sequenced genomes. In this manner, corresponding sequences can be identified and used in the methods of the invention.
[0057] Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4:11-17; the local alignment algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the global alignment algorithm of Needleman and Wunsch (1970) J Mol. Biol. 48:443-453; the search-for-local alignment method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.
[0058] Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, Calif., USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988); Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) CABIOS 8:155-65; and Pearson et al. (1994) Meth. Mol. Biol. 24:307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) supra. A PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) J Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN program, score=100, wordlength=12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score=50, wordlength=3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See www.ncbi.nlm.nih.gov. Alignment may also be performed manually by inspection.
[0059] Such genes and coding regions can be codon optimized for expression in a plant of interest. A "codon-optimized gene" is a gene having its frequency of codon usage designed to mimic the frequency of preferred codon usage of the host cell. Nucleic acid molecules can be codon optimized, either wholly or in part. Because any one amino acid (except for methionine and tryptophan) is encoded by a number of codons, the sequence of the nucleic acid molecule may be changed without changing the encoded amino acid. Codon optimization is when one or more codons are altered at the nucleic acid level such that the amino acids are not changed but expression in a particular host organism is increased. Those having ordinary skill in the art will recognize that codon tables and other references providing preference information for a wide range of organisms are available in the art (see, e.g., Zhang et al. (1991) Gene 105:61-72; Murray et al. (1989) Nucl. Acids Res. 17:477-508). Methodology for optimizing a nucleotide sequence for expression in a plant is provided, for example, in U.S. Pat. No. 6,015,891, and the references cited therein, as well as in WO 2012/142,371, and the references cited therein.
[0060] The nucleotide sequences of the invention may be used in recombinant polynucleotides. A "recombinant polynucleotide" comprises a combination of two or more chemically linked nucleic acid segments which are not found directly joined in nature. By "directly joined" is intended the two nucleic acid segments are immediately adjacent and joined to one another by a chemical linkage. In specific embodiments, the recombinant polynucleotide comprises a polynucleotide of interest or active variant or fragment thereof such that an additional chemically linked nucleic acid segment is located either 5', 3' or internal to the polynucleotide of interest. Alternatively, the chemically-linked nucleic acid segment of the recombinant polynucleotide can be formed by deletion of a sequence. The additional chemically linked nucleic acid segment or the sequence deleted to join the linked nucleic acid segments can be of any length, including for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or greater nucleotides. Various methods for making such recombinant polynucleotides are disclosed herein, including, for example, by chemical synthesis or by the manipulation of isolated segments of polynucleotides by genetic engineering techniques. In specific embodiments, the recombinant polynucleotide can comprise a recombinant DNA sequence or a recombinant RNA sequence. A "fragment of a recombinant polynucleotide" comprises at least one of a combination of two or more chemically linked amino acid segments which are not found directly joined in nature.
[0061] By "altering" or "modulating" the expression level of a gene is intended that the expression of the gene is upregulated or downregulated. It is recognized that in some instances, plant growth and yield are increased by increasing the expression levels of one or more genes encoding ERF transcription factor proteins, i.e. upregulating expression. Likewise, in some instances, plant growth and yield may be increased by decreasing the expression levels of one or more genes encoding ERF transcription factor proteins, i.e. downregulating expression. Thus, the invention encompasses the upregulation or downregulation of one or more genes encoding ERF transcription factor proteins. Further, the methods include the upregulation of at least one gene encoding a ERF transcription factor protein and the downregulation of at least one gene encoding a second ERF transcription factor protein in a plant of interest. By modulating the concentration and/or activity of at least one of the genes encoding an ERF transcription factor protein in a transgenic plant is intended that the concentration and/or activity is increased or decreased by at least about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90% or greater relative to a native control plant, plant part, or cell which did not have the sequence of the invention introduced.
[0062] It is recognized that the expression levels of the genes encoding ERF transcription factor proteins of the present invention can be controlled by the use of one or more promoters that are functional in a plant cell. The expression level of the ERF transcription factor protein-encoding gene of interest may be measured directly, for example, by assaying for the level of the ERF transcription factor gene transcript or of the encoded protein in the plant. Methods for such assays are well-known in the art. For example, Northern blotting or quantitative reverse transcriptase-PCR (qRT-PCR) may be used to assess transcript levels, while western blotting, ELISA assays, or enzyme assays may be used to assess protein levels. ERF transcription factor function can be assessed by measuring the expression levels of gene(s) regulated by said ERF transcription factor.
[0063] A "subject plant or plant cell" is one in which genetic alteration, such as transformation, has been effected as to an ERF transcription factor protein-encoding gene of interest, or is a plant or plant cell which is descended from a plant or cell so altered and which comprises the alteration. A "control" or "control plant" or "control plant cell" provides a reference point for measuring changes in phenotype of the subject plant or plant cell. Thus, the expression levels of an ERF transcription factor protein-encoding gene of interest are higher or lower than those in the control plant depending on the methods of the invention.
[0064] A control plant or plant cell may comprise, for example: (a) a wild-type plant or cell, i.e., of the same genotype as the starting material for the genetic alteration which resulted in the subject plant or cell; (b) a plant or plant cell of the same genotype as the starting material but which has been transformed with a null construct (i.e. with a construct which has no known effect on the trait of interest, such as a construct comprising a marker gene); (c) a plant or plant cell which is a non-transformed segregant among progeny of a subject plant or plant cell; (d) a plant or plant cell genetically identical to the subject plant or plant cell but which is not exposed to conditions or stimuli that would induce expression of the gene of interest; or (e) the subject plant or plant cell itself, under conditions in which the gene of interest is not expressed.
[0065] While the invention is described in terms of transformed plants, it is recognized that transformed organisms of the invention also include plant cells, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced polynucleotides.
[0066] To downregulate expression of an ERF transcription factor protein-encoding gene of interest, antisense constructions, complementary to at least a portion of the messenger RNA (mRNA) for the sequences of a gene of interest, particularly a gene encoding an ERF transcription factor protein of interest can be constructed. Antisense nucleotides are designed to hybridize with the corresponding mRNA. Modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having 70%, optimally 80%, more optimally 85%, 90%, 95% or greater sequence identity to the corresponding sequences to be silenced may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene.
[0067] The polynucleotides of the invention can be used to isolate corresponding sequences from other plants. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology or identity to the sequences set forth herein. Sequences isolated based on their sequence identity to the entire sequences set forth herein or to variants and fragments thereof are encompassed by the present invention. Such sequences include sequences that are orthologs of the disclosed sequences. "Orthologs" is intended to mean genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity. Functions of orthologs are often highly conserved among species. Thus, isolated polynucleotides that have transcription factor activities and which share at least 75% sequence identity to the sequences disclosed herein, or to variants or fragments thereof, are encompassed by the present invention.
[0068] Variant sequences can be isolated by PCR. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York).
[0069] Variant sequences may also be identified by analysis of existing databases of sequenced genomes. In this manner, corresponding sequences encoding ERF transcription factor proteins can be identified and used in the methods of the invention. The variant sequences will retain the biological activity of an ERF transcription factor protein (i.e., an ability to bind to DNA and thereby to modulate the expression of gene(s) near the DNA binding site). The present invention shows that, unexpectedly, certain novel expression strategies for ERF transcription factor overexpression can lead to increased biomass and seed yield.
[0070] The expression cassette will include in the 5'-3' direction of transcription, a transcriptional and translational initiation region, a polynucleotide encoding an ERF transcription factor protein of the present invention, and a transcriptional and translational termination region (i.e., termination region) functional in plants.
[0071] A number of promoters may be used in the practice of the invention. The polynucleotides encoding an ERF transcription factor protein of the invention may be expressed from a promoter with a constitutive expression profile. Constitutive promoters include the CaMV 35S promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al. (1991) Theor. Appl. Genet. 81:581-588); MAS (Velten et al. (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Pat. No. 5,659,026), and the like.
[0072] Polynucleotides of the invention encoding ERF transcription factor proteins of the invention may be expressed from tissue-preferred promoters. Tissue-preferred promoters include Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505. Leaf-preferred promoters are also known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590.
[0073] Developmentally-regulated promoters may be desirable for the expression of a polynucleotide encoding an ERF transcription factor protein. Such promoters may show a peak in expression at a particular developmental stage. Such promoters have been described in the art, e.g., U.S. 62/029,068; Gan and Amasino (1995) Science 270: 1986-1988; Rinehart et al. (1996) Plant Physiol 112: 1331-1341; Gray-Mitsumune et al. (1999) Plant Mol Biol 39: 657-669; Beaudoin and Rothstein (1997) Plant Mol Biol 33: 835-846; Genschik et al. (1994) Gene 148: 195-202, and the like.
[0074] Promoters that are induced following the application of a particular biotic and/or abiotic stress may be desirable for the expression of a polynucleotide encoding an ERF transcription factor protein. Such promoters have been described in the art, e.g., Yi et al. (2010) Planta 232: 743-754; Yamaguchi-Shinozaki and Shinozaki (1993) Mol Gen Genet 236: 331-340; U.S. Pat. No. 7,674,952; Rerksiri et al. (2013) Sci World J 2013: Article ID 397401; Khurana et al. (2013) PLoS One 8: e54418; Tao et al. (2015) Plant Mol Biol Rep 33: 200-208, and the like.
[0075] Cell-preferred promoters may be desirable for the expression of a polynucleotide encoding an ERF transcription factor protein. Such promoters may preferentially drive the expression of a downstream gene in a particular cell type such as a mesophyll or a bundle sheath cell. Such cell-preferred promoters have been described in the art, e.g., Viret et al. (1994) Proc Natl Acad USA 91: 8577-8581; U.S. Pat. Nos. 8,455,718; 7,642,347; Sattarzadeh et al. (2010) Plant Biotechnol J 8: 112-125; Engelmann et al. (2008) Plant Physiol 146: 1773-1785; Matsuoka et al. (1994) Plant J 6: 311-319, and the like.
[0076] It is recognized that a specific, non-constitutive expression profile may provide an improved plant phenotype relative to constitutive expression of a gene or genes of interest. For instance, many plant genes are regulated by light conditions, the application of particular stresses, the circadian cycle, or the stage of a plant's development. These expression profiles may be important for the function of the gene or gene product in planta. One strategy that may be used to provide a desired expression profile is the use of synthetic promoters containing cis-regulatory elements that drive the desired expression levels at the desired time and place in the plant. Cis-regulatory elements that can be used to alter gene expression in planta have been described in the scientific literature (Vandepoele et al. (2009) Plant Physiol 150: 535-546; Rushton et al. (2002) Plant Cell 14: 749-762). Cis-regulatory elements may also be used to alter promoter expression profiles, as described in Venter (2007) Trends Plant Sci 12: 118-124.
[0077] It is recognized that novel promoters may be identified through the analysis of large-scale biological data (Wang et al. (2016) Front Plant Sci 7:766; Alexandrov et al. (2009) Plant Mol Biol 69:179-194; Rai et al. (2013) Plant Biotechnol J 11:953-963; Batut and Gingeras (2013) Curr Protoc Mol Biol 104: Unit-25B.11; Yin et al. (2014) Gene 546:177-186). Large-scale biological data suitable for promoter identification may include microarray data, RNA-Seq data, or other large-scale datasets including transcriptomic data. Promoters with a desired expression profile (e.g., promoters that drive cell-specific, stress-responsive, tissue-specific, or other desired expression profile) may be derived by identifying genes or gene sets whose expression matches the desired expression profile; promoters are located upstream of these transcripts and may be isolated using standard molecular biology approaches.
[0078] Plant terminators are known in the art and include those available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272; Munroe et al. (1990) Gene 91:151-158; Ballas et al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acids Res. 15:9627-9639.
[0079] As indicated, the nucleotides encoding ERF transcription factor proteins of the present invention can be used in expression cassettes to transform plants of interest. Transformation protocols as well as protocols for introducing polypeptides or polynucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. The term "transform" or "transformation" refers to any method used to introduce polypeptides or polynucleotides into plant cells. Suitable methods of introducing polypeptides and polynucleotides into plant cells include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606, Agrobacterium-mediated transformation (U.S. Pat. Nos. 5,563,055 and 5,981,840), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, U.S. Pat. Nos. 4,945,050; 5,879,918; 5,886,244; and, 5,932,782; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al. (1988) Biotechnology 6:923-926); and Lec1 transformation (WO 00/28058). Also see Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); U.S. Pat. Nos. 5,240,855; 5,322,783; and, 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al. (1984) Nature (London) 311:763-764; U.S. Pat. No. 5,736,369 (cereals); Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, N.Y.), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens); all of which are herein incorporated by reference. "Stable transformation" is intended to mean that the nucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof.
[0080] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84. In this manner, the present invention provides transformed seed (also referred to as "transgenic seed") having a polynucleotide of the invention, for example, an expression cassette of the invention, stably incorporated into their genome.
[0081] The present invention may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oil palm (Elaeis guineensis), poplar (Populus spp.), eucalyptus (Eucalyptus spp.), oats (Avena sativa), barley (Hordeum vulgare), vegetables, ornamentals, and conifers.
[0082] In one embodiment, a construct comprising a promoter that is operable in a plant cell, operably linked to a coding sequence encoding an ERF transcription factor protein of the present invention is used to transform a plant cell or cells. The transformed plant cell or cells are regenerated to produce transformed plants. These plants transformed with a construct comprising a functional promoter driving expression of an ERF transcription factor protein-encoding polynucleotide of the invention demonstrated increased plant yield, i.e., increased above-ground biomass and/or increased seed yield relative to control plants.
[0083] In one embodiment, a construct comprising a promoter that is operable in a plant cell, operably linked to a coding sequence encoding an ERF transcription factor protein of the present invention and further comprising at least one additional promoter that is operable in a plant cell, operably linked to at least one additional coding sequence, is used to transform a plant cell or cells. The additional coding sequence may encode, for instance, proteins involved in photosynthesis, cell wall biosynthesis, regulation of hydraulic conductivity, starch biosynthesis, starch degradation, sucrose biosynthesis, sucrose transport, nitrogen fixation, or other metabolic pathways of interest. The coding sequence encoding an ERF transcription factor and the additional coding sequence or additional coding sequences are both present in the genome of the transformed plant cell or cells. The transformed plant cell or cells are regenerated to produce transformed plants. These plants transformed with a construct comprising a functional promoter driving expression of an ERF transcription factor protein-encoding polynucleotide of the invention and further comprising at least one additional promoter that is operable in a plant cell, operably linked to at least one additional coding sequence demonstrated increased plant yield, i.e., increased above-ground biomass and/or increased seed yield relative to control plants.
[0084] Now that it has been demonstrated that upregulation of an ERF transcription factor gene increases plant yield, other methods for increasing expression of an endogenous ERF transcription factor sequence in a plant of interest can be used. The expression of an ERF transcription factor gene present in a plant's genome can be altered by inserting a transcriptional enhancer upstream of the ERF transcription factor gene present in the plant's genome. This strategy will allow the ERF transcription factor gene's expression to retain its normal developmental profile, while showing elevated transcript levels. This strategy will occur through the insertion of an enhancer element upstream of an ERF transcription factor gene of interest using a meganuclease designed against the genomic sequence of interest. Alternatively, a Cas9 endonuclease coupled with a guide RNA (gRNA) designed against the genomic sequence of interest, or a Cpf1 endonuclease coupled with a gRNA designed against the genomic sequence of interest, is used to effect the insertion of an enhancer element upstream of an ERF transcription factor gene of interest. Alternatively, a deactivated Cas9 endonuclease, or a deactivated Cpf1 endonuclease, C2c1 endonuclease, C2c2 endonuclease, or C2c3 endonuclease, fused to a transcriptional enhancer element is targeted to a genomic location near the transcription start site for an ERF transcription factor gene of interest, thereby modulating the expression of said ERF transcription factor gene of interest (Piatek et al. (2015) Plant Biotechnol J 13:578-589).
[0085] Modulation of the expression of an ERF transcription factor protein-encoding gene may be achieved through the use of precise genome-editing technologies to modulate the expression of the endogenous sequence. In this manner, a nucleic acid sequence will be inserted proximal to a native plant sequence encoding the ERF transcription factor through the use of methods available in the art. Such methods include, but are not limited to, meganucleases designed against the plant genomic sequence of interest (D'Halluin et al (2013) Plant Biotechnol J 11: 933-941); CRISPR-Cas9, CRISPR-Cpf1, TALENs, and other technologies for precise editing of genomes (Feng et al. (2013) Cell Research 23:1229-1232, Podevin et al. (2013) Trends Biotechnology 31: 375-383, Wei et al. (2013) J Gen Genomics 40: 281-289, Zhang et al (2013) WO 2013/026740, Zetsche et al. (2015) Cell 163:759-771, U.S. Provisional Patent Application 62/295,325); N. gregoryi Argonaute-mediated DNA insertion (Gao et al. (2016) Nat Biotechnol doi:10.1038/nbt.3547); Cre-lox site-specific recombination (Dale et al. (1995) Plant J 7:649-659; Lyznik, et al. (2007) Transgenic Plant J 1:1-9; FLP-FRT recombination (Li et al. (2009) Plant Physiol 151:1087-1095); Bxb1-mediated integration (Yau et al. (2011) Plant J 701:147-166); zinc-finger mediated integration (Wright et al. (2005) Plant J 44:693-705); Cai et al. (2009) Plant Mol Biol 69:699-709); and homologous recombination (Lieberman-Lazarovich and Levy (2011) Methods Mol Biol 701: 51-65; Puchta (2002) Plant Mol Biol 48:173-182). The insertion of said nucleic acid sequences will be used to achieve the desired result of overexpression, decreased expression, and/or altered expression profile of an ERF transcription factor gene.
[0086] Enhancers include any molecule capable of enhancing gene expression when inserted into the genome of a plant. Thus, an enhancer can be inserted in a region of the genome upstream or downstream of an ERF transcription factor sequence of interest to enhance expression. Enhancers may be cis-acting, and can be located anywhere within the genome relative to a gene for which expression will be enhanced. For example, an enhancer may be positioned within about 1 Mbp, within about 100 kbp, within about 50 kbp, about 30 kbp, about 20 kbp, about 10 kbp, about 5 kbp, about 3 kbp, or about 1 kbp of a coding sequence for which it enhances expression. An enhancer may also be located within about 1500 bp of a gene for which it enhances expression, or may be directly proximal to or located within an intron of a gene for which it enhances expression. Enhancers for use in modulating the expression of an endogenous gene encoding an ERF transcription factor protein or homolog according to the present invention include classical enhancer elements such as the CaMV 35S enhancer element, cytomegalovirus (CMV) early promoter enhancer element, and the SV40 enhancer element, and also intron-mediated enhancer elements that enhance gene expression such as the maize shrunken-1 enhancer element (Clancy and Hannah (2002) Plant Physiol. 130(2):918-29). Further examples of enhancers which may be introduced into a plant genome to modulate expression include a PetE enhancer (Chua et al. (2003) Plant Cell 15:11468-1479), or a rice .alpha.-amylase enhancer (Chen et al. (2002) J. Biol. Chem. 277:13641-13649), or any enhancer known in the art (Chudalayandi (2011) Methods Mol. Biol. 701:285-300). In some embodiments, the present invention comprises a subdomain, fragment, or duplicated enhancer element (Benfrey et al. (1990) EMBO J 9:1677-1684).
[0087] Alteration of ERF transcription factor gene expression may also be achieved through the modification of DNA in a way that does not alter the sequence of the DNA. Such changes could include modifying the chromatin content or structure of the ERF transcription factor gene of interest and/or of the DNA surrounding the ERF transcription factor gene. It is well known that such changes in chromatin content or structure can affect gene transcription (Hirschhorn et al. (1992) Genes and Dev 6:2288-2298; Narlikar et al. (2002) Cell 108: 475-487). Such changes could also include altering the methylation status of the ERF transcription factor gene of interest and/or of the DNA surrounding the ERF transcription factor gene of interest. It is well known that such changes in DNA methylation can alter transcription (Hsieh (1994) Mol Cell Biol 14: 5487-5494). Targeted epigenome editing has been shown to affect the transcription of a gene in a predictable manner (Hilton et al. (2015) 33: 510-517). It will be obvious to those skilled in the art that other similar alterations (collectively termed "epigenetic alterations") to the DNA that regulates transcription of the ERF transcription factor gene of interest may be applied in order to achieve the desired result of an altered ERF transcription factor gene expression profile.
[0088] Alteration of ERF transcription factor gene expression may also be achieved through the use of transposable element technologies to alter gene expression. It is well understood that transposable elements can alter the expression of nearby DNA (McGinnis et al. (1983) Cell 34:75-84). Alteration of the expression of a gene encoding an ERF transcription factor may be achieved by inserting a transposable element upstream of the ERF transcription factor gene of interest, causing the expression of said gene to be altered.
[0089] Alteration of ERF transcription factor gene expression may also be achieved through the insertion of a promoter upstream of the open reading frame encoding a native ERF transcription factor in the plant species of interest. This will occur through the insertion of a promoter of interest upstream of an ERF transcription factor protein-encoding open reading frame using a meganuclease designed against the genomic sequence of interest. This strategy is well-understood and has been demonstrated previously to insert a transgene at a predefined location in the cotton genome (D'Halluin et al. (2013) Plant Biotechnol J 11: 933-941). It will be obvious to those skilled in the art that other technologies can be used to achieve a similar result of insertion of genetic elements at a predefined genomic locus by causing a double-strand break at said predefined genomic locus and providing an appropriate DNA template for insertion (e.g., CRISPR-Cas9, CRISPR-Cpf1, TALENs, and other technologies for precise editing of genomes).
[0090] The following examples are offered by way of illustration and not by way of limitation. All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
[0091] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
EXPERIMENTAL
Example 1--Construction of ERF Transcription Factor Plant Transformation Vectors
[0092] Open reading frames encoding ERF transcription factors BRADI3G31600.1 (SEQ ID NO:1, encoding the protein sequence of SEQ ID NO:2), BRADI5G18850.1 (SEQ ID NO:56, encoding the protein sequence of SEQ ID NO:57), BRADI3G51610.1 (SEQ ID NO:58, encoding the protein sequence of SEQ ID NO:59), BRADI3G08790.1 (SEQ ID NO:60, encoding the protein sequence of SEQ ID NO:61), BRADI4G21265.1 (SEQ ID NO:62, encoding the protein sequence of SEQ ID NO:63), and BRADI3G45997.1 (SEQ ID NO:64, encoding the protein sequence of SEQ ID NO:65) were synthesized. Appropriate restriction sites were included at the 5' and 3' ends of the coding sequences to allow this DNA to be cloned into plant transformation vectors that contained genetic elements suitable for controlling gene expression. In each plant transformation construct, the ERF transcription factor open reading frame was located downstream of a plant promoter and 5' untranslated region (5'UTR) and upstream of a 3'UTR. Table 2 summarizes the plant transformation constructs that were built containing an ERF transcription factor open reading frame.
TABLE-US-00002 TABLE 2 ERF transcription factor plant transformation constructs Construct Promoter + 5'UTR ORF (DNA/Protein) 3'UTR 130297 ZmUbi (SEQ ID NO:3) BRADI3G31600.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:1 / SEQ ID NO:2) 130299 BRADI1G37410 (SEQ ID BRADI3G31600.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:1/SEQ ID NO:2) NO:6) 130794 ZmUbi (SEQ ID NO:3) BRADI3G31600.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:1 / SEQ ID NO:2) 130795 BRADI1G37410 (SEQ ID BRADI3G31600.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:1/SEQ ID NO:2) NO:6) 130806 ZmUbi (SEQ ID NO:7) BRADI3G31600.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:1/SEQ ID NO:2) 130900 BRADI1G37410 (SEQ ID BRADI3G31600.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:1/SEQ ID NO:2) NO:6) 130920 2 .times. 35S (SEQ ID NO:8) BRADI3G31600.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:1/SEQ ID NO:2) 130929 2 .times. 35S (SEQ ID NO:8) BRADI3G31600.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:1/SEQ ID NO:2) 130977 BRADI1G37410 (SEQ ID BRADI3G31600.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:1/SEQ ID NO:2) NO:6) 130119 ZmUbi (SEQ ID NO:3) BRADI5G18850.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:56/SEQ ID NO:57) 130130 BRADI1G37410 (SEQ ID BRADI5G18850.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:56/SEQ ID NO:57) NO:6) 130930 2 .times. 35S (SEQ ID NO:8) BRADI5G18850.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:56/SEQ ID NO:57) 131048 BRADI1G37410 (SEQ ID BRADI5G18850.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:56/SEQ ID NO:57) NO:6) 130123 ZmUbi (SEQ ID NO:3) BRADI3G08790.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:60/SEQ ID NO:61) 130132 BRADI1G37410 (SEQ ID BRADI3G08790.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:60/SEQ ID NO:61) NO:6) 130932 2 .times. 35S (SEQ ID NO:8) BRADI3G08790.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:60/SEQ ID NO:61) 131050 BRADI1G37410 (SEQ ID BRADI3G08790.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:60/SEQ ID NO:61) NO:6) 130125 ZmUbi (SEQ ID NO:3) BRADI4G21265.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:62 / SEQ ID NO:63) 130133 BRADI1G37410 (SEQ ID BRADI4G21265.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:62/SEQ ID NO:63) NO:6) 130933 2 .times. 355 (SEQ ID NO:8) BRADI4G21265.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:62/SEQ ID NO:63) 131051 BRADI1G37410 (SEQ ID BRADI4G21265.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:62/SEQ ID NO:63) NO:6) 130127 ZmUbi (SEQ ID NO:3) BRADI3G45997.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:64 / SEQ ID NO:65) 130134 BRADI1G37410 (SEQ ID BRADI3G45997.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:64/SEQ ID NO:65) NO:6) 130934 2 .times. 35S (SEQ ID NO:8) BRADI3G45997.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:64/SEQ ID NO:65) 131052 BRADI1G37410 (SEQ ID BRADI3G45997.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:64/SEQ ID NO:65) NO:6) 130121 ZmUbi (SEQ ID NO:3) BRADI3G51610.1 (SEQ ID ZmUbi (SEQ ID NO:4) NO:58/SEQ ID NO:59) 130131 BRADI1G37410 (SEQ ID BRADI3G51610.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:58/SEQ ID NO:59) NO:6) 130931 2 .times. 35S (SEQ ID NO:8) BRADI3G51610.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:58 / SEQ ID NO:59) 131049 BRADI1G37410 (SEQ ID BRADI3G51610.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:58/SEQ ID NO:59) NO:6) 132138 BRADI1G37410 (SEQ ID BRADI3G51610.1 (SEQ ID BRADI1G37410 (SEQ ID NO:5) NO:58/SEQ ID NO:59) NO:6) 132142 2 .times. 35S (SEQ ID NO:8) BRADI3G51610.1 (SEQ ID 35S polyA (SEQ ID NO:9) NO:58/SEQ ID NO:59)
[0093] In addition to the single-genic ERF transcription factor plant transformation constructs listed in Table 2, multigenic plant transformation constructs containing a ERF transcription factor gene cassette and a second linked cassette were also built. Table 3 summarizes the multigenic ERF transcription factor plant transformation constructs.
TABLE-US-00003 TABLE 3 ERF transcription factor multigenic plant transformation constructs Promoter + ORF Promoter + ORF2 Construct 5'UTR (DNA/Protein) 3'UTR 5'UTR2 (DNA/Protein) 3'UTR2 130234 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmRbcS RbcS-ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 10) (SEQ ID NO: 14/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 15) 130622 ZmUbi BRADI3G31600.1 ZmUbi ZmRbcS RbcS-ictB ZmRbcS (SEQ ID NO: 7) (SEQ ID NO: 1/ (SEQ ID NO: 4) (SEQ ID NO: 10) (SEQ ID NO: 14/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 15) 130623 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmRbcS RbcS-ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 10) (SEQ ID NO: 14/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 15) 130797 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmRbcS RbcS-ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 10) (SEQ ID NO: 14/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 15) 130855 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 GluB-2 ism-2 ZmUbi (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 12) (SEQ ID NO: 16/ (SEQ ID NO: 4) SEQ ID NO: 2) SEQ ID NO: 17) 130863 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 2x35S Poplar HC1 35S polyA (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 8) (SEQ ID NO: 18/ (SEQ ID NO: 9) SEQ ID NO: 2) SEQ ID NO: 19) 130864 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 2x35S Sorghum HC1 35S polyA (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 8) (SEQ ID NO: 20/ (SEQ ID NO: 9) SEQ ID NO: 2) SEQ ID NO: 21) 130871 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 2x35S Poplar HC1 35S polyA (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 8) (SEQ ID NO: 18/ (SEQ ID NO: 9) SEQ ID NO: 2) SEQ ID NO: 19) 130872 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 2x35S Sorghum HC1 35S polyA (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 8) (SEQ ID NO: 20/ (SEQ ID NO: 9) SEQ ID NO: 2) SEQ ID NO: 21) 130887 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmUbi RbcS-ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 7) (SEQ ID NO: 14/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 15) 130888 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmRbcS ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 13) (SEQ ID NO: 54/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 55) 130889 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmUbi RbcS-ictB ZmUbi (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 7) (SEQ ID NO: 14/ (SEQ ID NO: 4) SEQ ID NO: 2) SEQ ID NO: 15) 130891 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmRbcS ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 13) (SEQ ID NO: 54/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 55) 130892 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmRbcS RbcS-ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 13) (SEQ ID NO: 14/ (SEQ ID NO: 11) SEQ ID NO: 2) SEQ ID NO: 15) 130893 BRADI1G37410 BRADI3G31600.1 BRADI1G37410 ZmUbi RbcS-ictB ZmUbi (SEQ ID NO: 5) (SEQ ID NO: 1/ (SEQ ID NO: 6) (SEQ ID NO: 7) (SEQ ID NO: 14/ (SEQ ID NO: 4) SEQ ID NO: 2) SEQ ID NO: 15) 132189 BRADI1G37410 BRADI3G51610.1 BRADI1G37410 ZmRbcS ictB ZmRbcS (SEQ ID NO: 5) (SEQ ID NO: 58/ (SEQ ID NO: 6) (SEQ ID NO: 10) (SEQ ID NO: 54/ (SEQ ID NO: 11) SEQ ID NO: 59) SEQ ID NO: 55)
[0094] Three different promoters were used to drive expression of the ERF transcription factor gene in the constructs listed in Tables 2 and 3. While the ZmUbi promoter (SEQ ID NOs:3 and 7) and 2X355 promoter (SEQ ID NO:8) are well-characterized constitutive promoters, the BRADI1G37410 promoter (SEQ ID NO:5) is a novel promoter derived from analysis of B. distachyon gene expression following the application of various stresses (Priest et al. (2014) PLoS One 9:e87499). The BRADI1G37410 gene was found to be upregulated under drought and salt stress.
[0095] In addition to the gene cassettes described in Tables 2 and 3, each plant transformation construct listed in Tables 2 and 3 also contained a selectable marker cassette suitable for the selection of transformed plant cells and regeneration of plants following the introduction of the plant transformation vector, as described below. Each transformation vector was built in a plasmid that contained sequences suitable for plasmid maintenance in E. coli and in Agrobacterium tumefaciens. Following verification that the plant transformation constructs listed in Tables 2 and 3 contained the desired sequences, they were transformed into A. tumefaciens cells for plant transformation.
Example 2--Transformation of Setaria viridis
[0096] A. tumefaciens cells harboring ERF transcription factor plant transformation vectors were used to transform S. viridis cells according to a previously described method (PCT/US2015/43989, herein incorporated by reference). Following transformation of the S. viridis cells with the relevant plant transformation vectors and regeneration of S. viridis plants, PCR analyses were performed to confirm the presence of the gene(s) of interest in the S. viridis genome. Table 4 summarizes the transformation constructs used to transform S. viridis, along with the number of PCR-verified transgenic plants that resulted from transformation with each construct.
TABLE-US-00004 TABLE 4 Summary of S. viridis transformationwith ERF transcription factor plant transformation vectors # Plants selectable Construct to Soil marker PCR (#) 130299 11 7 130794 20 18 130871 21 19 130872 3 3 130929 19 18 130931 3 3 131049 18 18 130930 2 0 131048 17 17 130932 2 1 131050 29 27 131051 6 6 131052 9 9
Example 3--Transformation of Maize (Zea mays)
[0097] A. tumefaciens cells harboring ERF transcription factor plant transformation vectors were used to transform maize (Zea mays cv. B104) cells suitable for regeneration on tissue culture medium. Following transformation of the maize cells with the relevant plant transformation vectors and regeneration of maize plants, PCR analyses were performed to confirm the presence of the gene(s) of interest in the maize genome. Table 5 summarizes the transformation constructs used to transform maize, along with the number of PCR-verified transgenic plants that resulted from transformation with each construct.
TABLE-US-00005 TABLE 5 Summary of maize transformation with ERF transcription factor plant transformation vectors # Transferred Selectable Construct to Soil Marker PCR + 130234 68 26 130299 51 42 130889 2 1
Example 4--Transformation of Rice (Oryza sativa)
[0098] A. tumefaciens cells harboring ERF transcription factor plant transformation vectors are used to transform rice (Oryza sativa cv. Kitaake) cells suitable for regeneration on tissue culture medium. Following transformation of the rice cells with the relevant plant transformation vectors and regeneration of rice plants, PCR analyses are performed to confirm the presence of the gene(s) of interest in the rice genome.
Example 5--Characterization of Transgenic S. viridis
[0099] Following the transformation and regeneration of S. viridis plants transformed with an ERF transcription factor plant transformation vector, the T0-generation plants were cultivated to maturity to produce T1-generation seeds. T1-generation S. viridis plants harboring the ERF transcription factor gene cassette of interest were grown in a greenhouse setting to assess the effects of ERF transcription factor gene expression on plant growth and terminal above-ground biomass and seed yield. A randomized block design was used with a wild-type S. viridis border row to eliminate edge effects from the analysis. Null segregant plants were grown alongside the transgenic S. viridis plants in identical environmental conditions. Table 6 summarizes the results of the biomass and seed yield determinations made from experiments with T1-generation S. viridis plants harboring a ERF transcription factor gene cassette as a result of transformation. This table indicates the construct used for transformation, as described in Tables 2 and 3, followed by the T0 event number from which the T1 seed was harvested.
TABLE-US-00006 TABLE 6 Summary of S. viridis greenhouse observations with T1-generation plants Event DW Seed Yield 131048-5A -13.4% -16.1% 131048-6A -12.9% -19.3% 131048-8A -3.6% -7.6% 131048-9A 9.0% 9.4% 131048-null 0.0% 0.0% 131049-2B -8.1% -14.8% 131049-3A -0.5% -5.5% 131049-5A 10.9% 6.9% 131049-6 12.0% -3.8% 131049-null 0.0% 0.0% 130929-10 40.7% 75.0% 130929-12B 11.7% 17.2% 130929-2 39.1% 54.8% 130929-9 44.9% 58.5% 130929-null 0.0% 0.0% 130871-10A 14.5% 9.6% 130871-4 22.9% -2.6% 130871-5A 9.9% 13.9% 130871-5C 25.1% 21.7% 130871-7 6.7% 3.5% 130871-null 0.0% 0.0%
[0100] In Table 6, the dry weight (DW) and seed yield (measured by dry weight) are shown as percent change relative to null segregant plants derived from the same transformation construct used to generate the transgenic S. viridis plants harboring the ERF transcription factor gene cassette and other gene-of-interest cassettes. As this table shows, one out of four 131048 events showed increased dry weight accumulation and increased seed yield relative to null controls in the T1 generation. Two out of four 131049 events showed increased dry weight accumulation and one out of four 131049 events showed increased seed yield relative to null controls in the T1 generation. All four of the 130929 events showed increased biomass accumulation and seed yield relative to null controls in the T1 generation, and five out of five 130871 events showed increased biomass accumulation and seed yield relative to null controls.
Example 6--Characterization of Transgenic Maize
[0101] T0-generation maize plants transformed with the ERF transcription factor plant transformation vector of interest and confirmed to contain the gene(s) of interest are grown to maturity in a greenhouse. When the T0 plants reach reproductive stages, they are pollinated by an appropriate inbred maize line to produce hybrid maize seeds. Alternatively, or in addition to pollination of the T0 transgenic maize plant, the pollen from the T0 is used to pollinate one or more inbred maize lines to produce hybrid maize seeds. The F1-generation hybrid seed resulting from these pollinations are planted in a field setting in two- or four-row plots and cultivated using standard agronomic practices. Plants are genotyped to determine which plants do and which do not contain the ERF transcription factor gene cassette and any other relevant gene cassettes (e.g., a selectable marker gene cassette or expression cassettes for one or more additional genes of interest) that were included in the ERF transcription factor plant transformation vector. Following the maturation of the maize plants, the seed is harvested. Seeds from the plants containing the ERF transcription factor gene cassette are pooled, as are seeds from the null segregant plants lacking the ERF transcription factor gene cassette. The seeds are weighed, and seed yields are calculated for the plants containing the ERF transcription factor gene cassette as well as for the null segregant plants lacking the ERF transcription factor gene cassette. Appropriate statistical analyses are performed to determine whether plants containing a ERF transcription factor gene cassette produce higher yields than those plants that lack a ERF transcription factor gene cassette.
[0102] Alternatively, T0-generation maize plants transformed with the ERF transcription factor plant transformation vector of interest and confirmed to contain the gene(s) of interest are grown to maturity in a greenhouse, then self-pollinated. The resulting T1 seeds are planted in a greenhouse and the T1 plants are cultivated. T1 plants are genotyped to identify homozygous, heterozygous, and null segregant plants. Pollen from homozygous T1 plants is used to pollinate one or more inbred maize lines to produce hybrid maize seeds. Pollen from null segregant plants is also used to pollinate one or more inbred maize lines to produce hybrid maize seeds. The resulting hybrid seeds are planted in a field setting in two- or four-row plots and cultivated using standard agronomic practices. Following the maturation of the maize plants, the seed is harvested. Seeds from the plants containing the ERF transcription factor gene cassette are pooled, as are seeds from the null segregant plants lacking the ERF transcription factor gene cassette. The seeds are weighed, and seed yields are calculated for the plants containing the ERF transcription factor gene cassette as well as for the null segregant plants lacking the ERF transcription factor gene cassette. Appropriate statistical analyses are performed to determine whether plants containing a ERF transcription factor gene cassette produce higher yields than those plants that lack a ERF transcription factor gene cassette.
Example 7--Characterization of Transgenic Rice
[0103] T0-generation rice plants transformed with the ERF transcription factor plant transformation vector of interest and confirmed to contain the gene(s) of interest are grown to maturity in a greenhouse, then self-pollinated. The resulting T1 seeds are planted in a greenhouse and the T1 plants are cultivated. T1 plants are genotyped to identify homozygous, heterozygous, and null segregant plants. The plants from each group are grown to maturity and allowed to self-pollinate to produce T2 seed. The T2 seed resulting from this self-pollination is harvested and weighed, and seed yields from homozygous, heterozygous, and null segregant plants are calculated. Appropriate statistical analyses are performed to determine whether plants containing an ERF transcription factor gene cassette produce higher yields than those plants that lack an ERF transcription factor gene cassette.
[0104] T1-generation plants grown from seed that resulted from self-pollination of T0-generation plants, or T2-generation plants grown from seed that resulted from self-pollination of homozygous T1-generation plants, are grown in a field setting. In the case of T2-generation plants, null-segregant T1-generation plants are also self-pollinated to produce T2-generation null plants as negative controls. The plants are cultivated using standard agronomic practices and allowed to reach maturity. Upon reaching maturity, the plants are allowed to self-pollinate. The seed resulting from these self-pollinations is harvested and weighed, and seed yields from homozygous, heterozygous, and null segregant plants are calculated. Appropriate statistical analyses are performed to determine whether plants containing an ERF transcription factor gene cassette produce higher yields than those plants that lack an ERF transcription factor gene cassette.
Sequence CWU
1
1
651609DNABrachypodium distachyonERF_Transcription_Factor(1)..(609)
1atggagcagc agggcaggga gatttctggc atgatgtctc tctgcggcag gagggctagg
60gctgagacaa ggcatcctgt gtacaggggc gtgaggctca gggctggcaa gtgggtgtct
120gagattaggg agctcaggaa gcctaatagg atttggctcg gcacataccc tacacctgag
180atggctgctg ctgcttacga tgctgctgct ctcgctctca ggggcgctgg cacagctctc
240aatttccctg atgctgctag gtctaggcct gctcctaggt ctgtgtctgc tgatgatgtg
300agggctgctg ctgctgaggc tgctgcttct ttcgctgctg tggctacatc tgcttggaca
360acaacaacag agaggtcttc tgatgatcag taccataggc ctcattgcaa tcagctcagg
420ggcggcggcg atgtgatggg cgtggtggat gaggatgatg tgttcgagat gcctaggctc
480atggcttcta tggctgaggg cctcatgatt tctcctcctg atggcggcgc tgtggctcct
540tactacgatg tgctccaggt ggaggatgag ggcgatgctg ctgctgtgtc tctctgggat
600catgcttga
6092202PRTBrachypodium distachyonERF_Transcription_Factor(1)..(202) 2Met
Glu Gln Gln Gly Arg Glu Ile Ser Gly Met Met Ser Leu Cys Gly1
5 10 15Arg Arg Ala Arg Ala Glu Thr
Arg His Pro Val Tyr Arg Gly Val Arg 20 25
30Leu Arg Ala Gly Lys Trp Val Ser Glu Ile Arg Glu Leu Arg
Lys Pro 35 40 45Asn Arg Ile Trp
Leu Gly Thr Tyr Pro Thr Pro Glu Met Ala Ala Ala 50 55
60Ala Tyr Asp Ala Ala Ala Leu Ala Leu Arg Gly Ala Gly
Thr Ala Leu65 70 75
80Asn Phe Pro Asp Ala Ala Arg Ser Arg Pro Ala Pro Arg Ser Val Ser
85 90 95Ala Asp Asp Val Arg Ala
Ala Ala Ala Glu Ala Ala Ala Ser Phe Ala 100
105 110Ala Val Ala Thr Ser Ala Trp Thr Thr Thr Thr Glu
Arg Ser Ser Asp 115 120 125Asp Gln
Tyr His Arg Pro His Cys Asn Gln Leu Arg Gly Gly Gly Asp 130
135 140Val Met Gly Val Val Asp Glu Asp Asp Val Phe
Glu Met Pro Arg Leu145 150 155
160Met Ala Ser Met Ala Glu Gly Leu Met Ile Ser Pro Pro Asp Gly Gly
165 170 175Ala Val Ala Pro
Tyr Tyr Asp Val Leu Gln Val Glu Asp Glu Gly Asp 180
185 190Ala Ala Ala Val Ser Leu Trp Asp His Ala
195 20032161DNAZea maysZmUbi_promoter1(1)..(2161)
3actatgaaga agcacaaaga atacgaggga tggtgcagag ccgaagctat gcgcaaaaga
60gcttcggcgt gataacagaa aaggaaaccg acttaaaggg gaaaagacta tttagacccc
120gatgggttac tatagagtta ttagcaaatg taaagggcat aggtgtaatt ttacatgggc
180tgcgtctcgt gcctataaat agatgaacag tgctcccgta ctgttcacac ggactggaca
240tttgcttttg cgtcacgctt gtacttttgg cttttttcaa gccgaaggta catttgtaat
300ttgttatcat ttctattttt ccataataat aaaatagaaa tgagttaacg ataatatttg
360aggatttatg ttattcatac tttgcatgaa tcctttttca ttatttgtgg tattgatgaa
420ggtatgccct tcataacctt tgtccaagac tcattatatc ccgagggaga taatgtttca
480aaggacgaaa gactttaacg tttaacaatt tctgtgttgc cttgttctta attcatagca
540tttaaggaca agttcccaac acatataaca tggtgaatag acgcatgcca caactctggt
600tttgcaagaa cattaaaaca atggttttag agaggatggt ataccatagt actcaatgat
660aaaggttttt tagttagttg agctccagaa ttcatagtta acagttaaca cttaacaata
720atactacgcc tgtaccactt gttcatcatc agaattcaga aggaaaggtg agcggggaac
780ccttttgtga cttctttttg tgatcagcta gccggtgatg gtggtaccat cagtggccag
840cttttgttct agttcaacgg tcccggcctt ccggccacct aatgcaccaa ctattagtat
900tgcagctagc cttcaaaaga aatgcatttg cagccgcctg tccctgtccc cgaccaatct
960gctagcagac tcgcattatc gatggaggac actaataaat tcagccttcg atgtggatgc
1020aacagcttca caggattcca ttaaatcgta gccgttgtgt caaagtttgc tttgccaacg
1080ttatttattt atttatttag aaaaccagct ttgaccagcc gccctcttta cgtttggcac
1140aatttagctg aatccggcgg catggcaagg tagactgcag tgcagcgtga cccggtcgtg
1200cccctctcta gagataatga gcattgcatg tctaagttat aaaaaattac cacatatttt
1260ttttgtcaca cttgtttgaa gtgcagttta tctatcttta tacatatatt taaactttac
1320tctacgaata atataatcta tagtactaca ataatatcag tgttttagag aatcatataa
1380atgaacagtt agacatggtc taaaggacaa ttgagtattt tgacaacagg actctacagt
1440tttatctttt tagtgtgcat gtgttctcct ttttttttgc aaatagcttc acctatataa
1500tacttcatcc attttattag tacatccatt tagggtttag ggttaatggt ttttatagac
1560taattttttt agtacatcta ttttattcta ttttagcctc taaattaaga aaactaaaac
1620tctattttag tttttttatt taataattta gatataaaat agaataaaat aaagtgacta
1680aaaattaaac aaataccctt taagaaatta aaaaaactaa ggaaacattt ttcttgtttc
1740gagtagataa tgccagcctg ttaaacgccg tcgacgagtc taacggacac caaccagcga
1800accagcagcg tcgcgtcggg ccaagcgaag cagacggcac ggcatctctg tcgctgcctc
1860tggacccctc tcgagagttc cgctccaccg ttggacttgc tccgctgtcg gcatccagaa
1920attgcgtggc ggagcggcag acgtgagccg gcacggcagg cggcctcctc ctcctctcac
1980ggcaccggca gctacggggg gacaattcct ttcccaccgc tccttcgctt tcccttcctc
2040gcccgccgta ataaatagac accccctcca caccctcttt ccccaacctc gtgttgttcg
2100gagcgcacac acacacaacc agatctcccc caaatccacc cgtcggcacc tccgcttcaa
2160g
21614623DNAZea maysZmUbi_3_UTR(1)..(623) 4gtcatgggtc gtttaagctg
ccgatgtgcc tgcgtcgtct ggtgccctct ctccatatgg 60aggttgtcaa agtatctgct
gttcgtgtca tgagtcgtgt cagtgttggt ttaataatgg 120accggttgtg ttgtgtgtgc
gtactaccca gaactatgac aaatcatgaa taagtttgat 180gtttgaaatt aaagcctgtg
ctcattatgt tctgtctttc agttgtctcc taatatttgc 240ctgcaggtac tggctatcta
ccgtttctta cttaggaggt gtttgaatgc actaaaacta 300atagttagtg gctaaaatta
gttaaaacat ccaaacacca tagctaatag ttgaactatt 360agctattttt ggaaaattag
ttaatagtga ggtagttatt tgttagctag ctaattcaac 420taacaatttt tagccaacta
acaattagtt tcagtgcatt caaacacccc cttaatgtta 480acgtggttct atctaccgtc
tcctaatata tggttgattg ttcggtttgt tgctatgcta 540ttgggttctg attgctgcta
gttcttgctg aatccagaag ttctcgtagt atagctcaga 600ttcatattat ttatttgagt
gat 62351054DNABrachypodium
distachyonBRADI1G37410_promoter(1)..(1054) 5gcgacctgcc aatctgggat
tgacagatgt tccttttttt taggggaggg ccttttcctt 60cttcgagaaa cgagggttgg
gggtaggatg gatagttacc tgctttaggt cgcagacgaa 120ttgcacaggg ccacaggccc
gcccggccca cgtgatccgg tggaacaagc cgatttgcac 180gcgcggtgcc ggagtcccga
tttgccgccc aagcggaccc gatttgcccc agtgactcaa 240tttctgggct gtggcccgtc
agaactgctt tctgggctgg tctagtaggc tttactccgt 300tcaacggggt gatatttctt
atgatttact ctcccgtacc atgttcgaaa tattacatgt 360acctagagat attttaatat
ataaatacgt ctatatttaa tcatgagtca cttaatacga 420gatggatgga gtatgatttt
tgagtaaata gtttttcaaa aaaataaaat aaagttttta 480gcgcaaacga agtacctcat
ggccgatcta accccatttc ctttgttcac ccaccttcat 540gtcgtatcgt accatggaac
ttgacaactc ttatgcgatc tattgaacaa actcaatttt 600aatttctttt tttcttttcc
tgtttcaaat gggaattcag atgtcgtggg ccattttcca 660ttttgcgagc gaacgatagt
tgtcatcctc cccaaatgtg tcatcgagca tgtttccaga 720ataagctgag acgtggcgac
tccgacgcgt ctagtgcctg cacacgtctg gctagtcacc 780agttcctgcc tgccggccca
ctcctgtgac cacacgtagc tgcctaccgt ggcgctcgaa 840tccctatccc ctccgcctcg
aactgcttat aaatcggggc cccggcttca cttccctcca 900ccagtccaca gacacagcca
cgaatttgca gtgtacgcag ttctagtaaa caagaaccac 960atttcctgag ggtgtacgat
cagtgaagcg tttgtgcaag gacacaagaa ccacatttcc 1020tgagggtgta cgatcagtga
agcgtttgtg caag 10546258DNABrachypodium
distachyonBRADI1G37410_3_UTR(1)..(258) 6gcgcctcgca gtcgcaggtt gcctagctcg
acttgtgaga gttgagctac gtatagtacc 60agctggccac cctctgagaa taatatactg
taataagatg aagaagaata aaattcccac 120gatcacatgt actgttatac tgagagtaga
gtctgtaccg tgggatttat accggacgtc 180gttgtgtaaa tttcctttta atttgtttga
atcgtgaatc gtatatgtat gttcacatgt 240acactgtgtt cttctgtt
25871992DNAZea
maysZmUbi_promoter2(1)..(1992) 7ctgcagtgca gcgtgacccg gtcgtgcccc
tctctagaga taatgagcat tgcatgtcta 60agttataaaa aattaccaca tatttttttt
gtcacacttg tttgaagtgc agtttatcta 120tctttataca tatatttaaa ctttactcta
cgaataatat aatctatact actacaataa 180tatcagtgtt ttagagaatc atataaatga
acagttagac atggtctaaa ggacaattga 240gtattttgac aacaggactc tacagtttta
tctttttagt gtgcatgtgt tctccttttt 300ttttgcaaat agcttcacct atataatact
tcatccattt tattagtaca tccatttagg 360gtttagggtt aatggttttt atagactaat
ttttttagta catctatttt attctatttt 420agcctctaaa ttaagaaaac taaaactcta
ttttagtttt tttatttaat aatttagata 480taaaatagaa taaaataaag tgactaaaaa
ttaaacaaat accctttaag aaattaaaaa 540aactaaggaa acatttttct tgtttcgagt
agataatgcc agcctgttaa acgccgtcga 600cgagtctaac ggacaccaac cagcgaacca
gcagcgtcgc gtcgggccaa gcgaagcaga 660cggcacggca tctctgtcgc tgcctctgga
cccctctcga gagttccgct ccaccgttgg 720acttgctccg ctgtcggcat ccagaaattg
cgtggcggag cggcagacgt gagccggcac 780ggcaggcggc ctcctcctcc tctcacggca
cggcagctac gggggattcc tttcccaccg 840ctccttcgct ttcccttcct cgcccgccgt
aataaataga caccccctcc acaccctctt 900tccccaacct cgtgttgttc ggagcgcaca
cacacacaac cagatctccc ccaaatccac 960ccgtcggcac ctccgcttca aggtacgccg
ctcgtcctcc cccccccccc ctctctacct 1020tctctagatc ggcgttccgg tccatggtta
gggcccggta gttctacttc tgttcatgtt 1080tgtgttagat ccgtgtttgt gttagatccg
tgctgctagc gttcgtacac ggatgcgacc 1140tgtacgtcag acacgttctg attgctaact
tgccagtgtt tctctttggg gaatcctggg 1200atggctctag ccgttccgca gacgggatcg
atttcatgat tttttttgtt tcgttgcata 1260gggtttggtt tgcccttttc ctttatttca
atatatgccg tgcacttgtt tgtcgggtca 1320tcttttcatg cttttttttg tcttggttgt
gatgatgtgg tctggttggg cggtcgttct 1380agatcggagt agaattctgt ttcaaactac
ctggtggatt tattaatttt ggatctgtat 1440gtgtgtgcca tacatattca tagttacgaa
ttgaagatga tggatggaaa tatcgatcta 1500ggataggtat acatgttgat gcgggtttta
ctgatgcata tacagagatg ctttttgttc 1560gcttggttgt gatgatgtgg tgtggttggg
cggtcgttca ttcgttctag atcggagtag 1620aatactgttt caaactacct ggtgtattta
ttaattttgg aactgtatgt gtgtgtcata 1680catcttcata gttacgagtt taagatggat
ggaaatatcg atctaggata ggtatacatg 1740ttgatgtggg ttttactgat gcatatacat
gatggcatat gcagcatcta ttcatatgct 1800ctaaccttga gtacctatct attataataa
acaagtatgt tttataatta ttttgatctt 1860gatatacttg gatgatggca tatgcagcag
ctatatgtgg atttttttag ccctgccttc 1920atacgctatt tatttgcttg gtactgtttc
ttttgtcgat gctcaccctg ttgtttggtg 1980ttacttctgc ag
19928807DNACauliflower mosaic
virus2X35S_promoter(1)..(807) 8gcgtattggc tagagcagct tgccaacatg
gtggagcacg acactctcgt ctactccaag 60aatatcaaag atacagtctc agaagaccaa
agggctattg agacttttca acaaagggta 120atatcgggaa acctcctcgg attccattgc
ccagctatct gtcacttcat caaaaggaca 180gtagaaaagg aaggtggcac ctacaaatgc
catcattgcg ataaaggaaa ggctatcgtt 240caagatgcct ctgccgacag tggtcccaaa
gatggacccc cacccacgag gagcatcgtg 300gaaaaagaag acgttccaac cacgtcttca
aagcaagtgg attgatgtga acatggtgga 360gcacgacact ctcgtctact ccaagaatat
caaagataca gtctcagaag accaaagggc 420tattgagact tttcaacaaa gggtaatatc
gggaaacctc ctcggattcc attgcccagc 480tatctgtcac ttcatcaaaa ggacagtaga
aaaggaaggt ggcacctaca aatgccatca 540ttgcgataaa ggaaaggcta tcgttcaaga
tgcctctgcc gacagtggtc ccaaagatgg 600acccccaccc acgaggagca tcgtggaaaa
agaagacgtt ccaaccacgt cttcaaagca 660agtggattga tgtgatatct ccactgacgt
aagggatgac gcacaatccc actatccttc 720gcaagaccct tcctctatat aaggaagttc
atttcatttg gagaggacac gctgaaatca 780ccagtctctc tctacaaatc tatctct
8079209DNACauliflower mosaic
virus35S_polyA(1)..(209) 9gatctgtcga tcgacaagct cgagtttctc cataataatg
tgtgagtagt tcccagataa 60gggaattagg gttcctatag ggtttcgctc atgtgttgag
catataagaa acccttagta 120tgtatttgta tttgtaaaat acttctatca ataaaatttc
taattcctaa aaccaaaatc 180cagtactaaa atccagatcc cccgaatta
20910912DNAZea maysZmRbcS_promoter1(1)..(912)
10gagctccctt taatctggcg ctagatctgc atccgcggct tgcaaagata aatggcacat
60ttagtgtgtt attttgcaat acctttcata gtagatatcc ttaaatgcag ttttaggcat
120gtttgggtaa ttaaataaca tttttaggag gagttttaga tttacctttc tttcgtgatg
180actgatgaca gacgtgggga attcaaatgc aactctagcg aaagttcata tatttttcat
240aaatagctga ggctggggta attatttttt ttgtagaaaa atagaatagg tggaatggtt
300ggggaaggcg taggcgctcg tggacgacgc ccgataaaag acaagaggcg gaattgccat
360gaattcgagg tagctaagta aggcgcatat atatgccaaa aaattctact gtcactttcc
420aatttcaatg cgctgccaaa caagccatcc tggaaactga cttgaattca gcccaattct
480gtagatccaa acagggccgg cgtcagtgcc tcaggtgaga gagcagcaga cgatgcaaag
540agccaaaact gcaagcagac gcagccgaag ccgaagccga agcccaagcc caaaactgtt
600ttgtctttgc ccagaaccgc gacgagccta aactgcgctt cctcctatct acaagtccct
660ggcacatcac gcatagtcca accatggcgc gcaggcgata aggcgcgcca cggggacgcg
720acatgtggtg gcggacgcga tcaggatagg gccaggctgg ccgggcgcgg ccacgggaga
780acggtggcca ctcgtcccac atccgcttcg tcctgtcctg tactgcgtcc tgcccccaac
840gagagccgga gccggccatc ccgtcgcaca ctctccccct ctatatatgc cgtcggtgtg
900ggggagccta ct
91211435DNAZea maysZmRbcS_3_UTR(1)..(435) 11cgcccgccgg ccgccccccg
ccggctagct agctagctag ctcctgcgtg agctagtagc 60tagtgccatg cgtcgtctct
gtcgttcggt tttgcttcgg gtcaccgtgt accctttgct 120tgcttggttt cttctttcct
tttttccttt ttttttcttc ttttccccgg ccatggttcc 180tttgctttcc agcagttctc
tgctggatgt gatgtatcca ttgttgcaat catggccttg 240cattggctac ctctatacct
gctacaaaac tactgcaacg cctatatata cttggggtga 300ggaacatgtg aatgcaagct
ccggctatca tatacatgta atatggatac aaactatata 360tataaatccg ccgaggcgcc
gacaatacta tacgacaccg tgttaagtta atatataact 420ggtgcttttt attta
435122300DNAOryza
sativaOsGluB-2_promoter(1)..(2300) 12agaaggagag gaataaataa ggagaggaat
agagataagg ttgaggagag gagttaaagg 60agagaggaga taaggttgag gagaggagga
gatggcctcg atccgatcgc gcacgcctct 120ccgatctccg cgtcgatctt ttttcccggt
tggtaacacc aaccggtact aaagattgaa 180aagtaccctg gagcttttaa accgggacaa
gatgttaata caactgggac tattgtgaaa 240tctggtcgac cgatcaaaga tggtttctcc
accagtgtat gtattttact cattggatta 300acattttaca agagaccaat acttttagga
tgggataaga caaagtattt catgataatc 360tagccggtca tattttagaa tgatggacat
ataccatagt ttcaggtctt ttgctctatc 420attcgatgac aatgctgcta gttattaata
ctaaacattt atattactac atatatgtta 480tttttttact caaaagaaaa actattaatc
attcatggaa gcagcagcaa aaaccacaag 540ggtagtattg tccatctctc tctctctccc
cccccccctc tcccctctat cctctctttc 600aggatttcgg cagccggcaa aactagccaa
acacttttag ggccactttc aactcctact 660agagttagag tttagagcta ggattcgaga
gttagagctc tacctaatag gcctgaaata 720tggatatcca atttcacatg tagtatctat
ttcaaaattg gattggatta tgttatacca 780aaaaagggat atggatattt agtggacagg
agaagacatg tatggcccca caagttgtat 840aaagtttccc ttctatataa taaatcatct
caagccaaat ttggtaactt tttataaagc 900gaatgtgaat ttataaatat tagatatgga
ttttgcttat atcgaatggg tatggatgaa 960aagaatatta ccatccccat accagaaact
caaataacta ttttatgagt gaaatgcata 1020ggtacttgtg cggatgtgtc atgtaggtta
ctaaactctt aaaatgcatt ttttacatcc 1080caaactctca aaatataggc tccaactcac
tccatgcgct gatatgacat gccatggtgg 1140cgccttcatg tgagtgggac ctacgtgtta
gtcactagaa aaaaaataaa attaatacac 1200attttttctc ctctctacat taatactatt
ttttttattt ttttatcttt tctcctctct 1260tcctaagagg ggaaaagacg ttttattttt
tttctatgtg gctaacatgt gggttacatt 1320gaaaatacat tttaagaatt tagggatcta
gatgacacac ccgcataagt tgtgagtgtg 1380tacttcactc ataatctatc tttaccatat
cctaccacaa tagtctaagt atgtataata 1440gtccgagtat gagtaatgga tacctagtag
caagctagct taaacaaatc taaattttta 1500atatacccaa tgtcatgata attgacttat
gacaatgtga ttatttcatc aagtctttaa 1560atcattaatt ctagttgaag gtttatgttt
tcttatgcta aagggttatg tttatataag 1620aatattaaag agcaaattgc aatagatcaa
cacaacaaat ttgaatgttt ccagatgtgt 1680aaaatatcca aattaattgt tttaaaatag
ttttaagaag gatctgatat gcaagtttga 1740tagttagtaa actgcaaaag ggcttattac
atggaaaatt ccttattgaa tatgtttcat 1800tgactggttt attttacatg acaacaaagt
tactagtatg tcaataaaaa aatacaaggt 1860tacttgtcaa ttgtattgtg ccaagtaaag
atgacaacaa acatacaaat ttatttgttc 1920ttttatagaa acacctaact tatcaaggat
agttggccac gcaaaaatga caacatactt 1980tacaattgta tcatcataaa gatcttatca
agtataagaa ctttatggtg acataaaaaa 2040taatcacaag ggcaagacac atactaaaag
tatggacaga aatttcttaa caaactccat 2100ttgttttgta tccaaaagca taagaaatga
gtcatggctg agtcatgata tgtagttcaa 2160tcttgcaaaa ttgccttttt gttaagtatt
gttttaacac tacaagtcac atattgtcta 2220tacttgcaac aaacactatt accgtgtatc
ccaagtggcc ttttcattgc tatataaact 2280agcttgatcg gtctttcaac
230013974DNAZea
maysZmRbcS_promoter2(1)..(974) 13gagctccctt taatctggcg ctagatctgc
atccgcggct tgcaaagata aatggcacat 60ttagtgtgtt attttgcaat acctttcata
gtagatatcc ttaaatgcag ttttaggcat 120gtttgggtaa ttaaataaca tttttaggag
gagttttaga tttacctttc tttcgtgatg 180actgatgaca gacgtgggga attcaaatgc
aactctagcg aaagttcata tatttttcat 240aaatagctga ggctggggta attatttttt
ttgtagaaaa atagaatagg tggaatggtt 300ggggaaggcg taggcgctcg tggacgacgc
ccgataaaag acaagaggcg gaattgccat 360gaattcgagg tagctaagta aggcgcatat
atatgccaaa aaattctact gtcactttcc 420aatttcaatg cgctgccaaa caagccatcc
tggaaactga cttgaattca gcccaattct 480gtagatccaa acagggccgg cgtcagtgcc
tcaggtgaga gagcagcaga cgatgcaaag 540agccaaaact gcaagcagac gcagccgaag
ccgaagccga agcccaagcc caaaactgtt 600ttgtctttgc ccagaaccgc gacgagccta
aactgcgctt cctcctatct acaagtccct 660ggcacatcac gcatagtcca accatggcgc
gcaggcgata aggcgcgcca cggggacgcg 720acatgtggtg gcggacgcga tcaggatagg
gccaggctgg ccgggcgcgg ccacgggaga 780acggtggcca ctcgtcccac atccgcttcg
tcctgtcctg tactgcgtcc tgcccccaac 840gagagccgga gccggccatc ccgtcgcaca
ctctccccct ctatatatgc cgtcggtgtg 900ggggagccta ctacaggacg acccaagcaa
gcaagcaagc agcgagtaca tacatactag 960gcagccaggc agcc
974141692DNASynechococcus
elongatusRbcS-ictB(1)..(1692)RbcS_signal_peptide(1)..(288)ictB(289)..(169-
2) 14atgccgtcgg tgtgggggag cctactgttt aaacatgagc agctgatggc ttctatgatt
60tcttcttctg ctgtgacaac agtgtctagg gcttctaggg gccagtctgc tgctgtggct
120cctttcggcg gcctcaagtc tatgacaggc ttccctgtga agaaggtgaa tacagatatt
180acatctatta catctaatgg cggcagggtg aagtgcatgc aggtgtggcc tcctattggc
240aagaagaagt tcgagacact ctcttacctc cctcctctca caagggatat gacagtgtgg
300cagacactca cattcgctca ttaccagcct cagcagtggg gccattcttc tttcctccat
360aggctcttcg gctctctcag ggcttggagg gcttcttctc agctcctcgt gtggtctgag
420gctctcggcg gcttcctcct cgctgtggtg tacggctctg ctcctttcgt gccttcttct
480gctctcggcc tcggcctcgc tgctattgct gcttactggg ctctcctctc tctcacagat
540attgatctca ggcaggctac acctattcat tggctcgtgc tcctctactg gggcgtggat
600gctctcgcta caggcctctc tcctgtgagg gctgctgctc tcgtgggcct cgctaagctc
660acactctacc tcctcgtgtt cgctctcgct gctagggtgc tcaggaatcc taggctcagg
720tctctcctct tctctgtggt ggtgattaca tctctcttcg tgtctgtgta cggcctcaat
780cagtggattt acggcgtgga ggagctcgct acatgggtgg ataggaattc tgtggctgat
840ttcacatcta gggtgtactc ttacctcggc aatcctaatc tcctcgctgc ttacctcgtg
900cctacaacag ctttctctgc tgctgctatt ggcgtgtgga ggggctggct ccctaagctc
960ctcgctattg ctgctacagg cgcttcttct ctctgcctca ttctcacata ctctaggggc
1020ggctggctcg gcttcgtggc tatgattttc gtgtgggctc tcctcggcct ctactggttc
1080cagcctaggc tccctgctcc ttggaggagg tggctcttcc ctgtggtgct cggcggcctc
1140gtggctgtgc tcctcgtggc tgtgctcggc ctcgagcctc tcagggtgag ggtgctctct
1200attttcgtgg gcagggagga ttcttctaat aatttcagga ttaatgtgtg gctcgctgtg
1260ctccagatga ttcaggatag gccttggctc ggcattggcc ctggcaatac agctttcaat
1320ctcgtgtacc ctctctacca gcaggctagg ttcacagctc tctctgctta ctctgtgcct
1380ctcgaggtgg ctgtggaggg cggcctcctc ggcctcacag ctttcgcttg gctcctcctc
1440gtgacagctg tgacagctgt gcgccaggtg tctaggctca ggagggatag gaatcctcag
1500gctttctggc tcatggcttc tctcgctggc ctcgctggca tgctcggcca tggcctcttc
1560gatacagtgc tctacaggcc tgaggcttct acactctggt ggctctgcat tggcgctatt
1620gcttctttct ggcagcctca gccttctaag cagctccctc ctgaggctga gcattctgat
1680gagaagatgt ga
169215563PRTSynechococcus
elongatusRbcS-ictB(1)..(563)RbcS_sig_peptide(1)..(96)ictB(97)..(563)
15Met Pro Ser Val Trp Gly Ser Leu Leu Phe Lys His Glu Gln Leu Met1
5 10 15Ala Ser Met Ile Ser Ser
Ser Ala Val Thr Thr Val Ser Arg Ala Ser 20 25
30Arg Gly Gln Ser Ala Ala Val Ala Pro Phe Gly Gly Leu
Lys Ser Met 35 40 45Thr Gly Phe
Pro Val Lys Lys Val Asn Thr Asp Ile Thr Ser Ile Thr 50
55 60Ser Asn Gly Gly Arg Val Lys Cys Met Gln Val Trp
Pro Pro Ile Gly65 70 75
80Lys Lys Lys Phe Glu Thr Leu Ser Tyr Leu Pro Pro Leu Thr Arg Asp
85 90 95Met Thr Val Trp Gln Thr
Leu Thr Phe Ala His Tyr Gln Pro Gln Gln 100
105 110Trp Gly His Ser Ser Phe Leu His Arg Leu Phe Gly
Ser Leu Arg Ala 115 120 125Trp Arg
Ala Ser Ser Gln Leu Leu Val Trp Ser Glu Ala Leu Gly Gly 130
135 140Phe Leu Leu Ala Val Val Tyr Gly Ser Ala Pro
Phe Val Pro Ser Ser145 150 155
160Ala Leu Gly Leu Gly Leu Ala Ala Ile Ala Ala Tyr Trp Ala Leu Leu
165 170 175Ser Leu Thr Asp
Ile Asp Leu Arg Gln Ala Thr Pro Ile His Trp Leu 180
185 190Val Leu Leu Tyr Trp Gly Val Asp Ala Leu Ala
Thr Gly Leu Ser Pro 195 200 205Val
Arg Ala Ala Ala Leu Val Gly Leu Ala Lys Leu Thr Leu Tyr Leu 210
215 220Leu Val Phe Ala Leu Ala Ala Arg Val Leu
Arg Asn Pro Arg Leu Arg225 230 235
240Ser Leu Leu Phe Ser Val Val Val Ile Thr Ser Leu Phe Val Ser
Val 245 250 255Tyr Gly Leu
Asn Gln Trp Ile Tyr Gly Val Glu Glu Leu Ala Thr Trp 260
265 270Val Asp Arg Asn Ser Val Ala Asp Phe Thr
Ser Arg Val Tyr Ser Tyr 275 280
285Leu Gly Asn Pro Asn Leu Leu Ala Ala Tyr Leu Val Pro Thr Thr Ala 290
295 300Phe Ser Ala Ala Ala Ile Gly Val
Trp Arg Gly Trp Leu Pro Lys Leu305 310
315 320Leu Ala Ile Ala Ala Thr Gly Ala Ser Ser Leu Cys
Leu Ile Leu Thr 325 330
335Tyr Ser Arg Gly Gly Trp Leu Gly Phe Val Ala Met Ile Phe Val Trp
340 345 350Ala Leu Leu Gly Leu Tyr
Trp Phe Gln Pro Arg Leu Pro Ala Pro Trp 355 360
365Arg Arg Trp Leu Phe Pro Val Val Leu Gly Gly Leu Val Ala
Val Leu 370 375 380Leu Val Ala Val Leu
Gly Leu Glu Pro Leu Arg Val Arg Val Leu Ser385 390
395 400Ile Phe Val Gly Arg Glu Asp Ser Ser Asn
Asn Phe Arg Ile Asn Val 405 410
415Trp Leu Ala Val Leu Gln Met Ile Gln Asp Arg Pro Trp Leu Gly Ile
420 425 430Gly Pro Gly Asn Thr
Ala Phe Asn Leu Val Tyr Pro Leu Tyr Gln Gln 435
440 445Ala Arg Phe Thr Ala Leu Ser Ala Tyr Ser Val Pro
Leu Glu Val Ala 450 455 460Val Glu Gly
Gly Leu Leu Gly Leu Thr Ala Phe Ala Trp Leu Leu Leu465
470 475 480Val Thr Ala Val Thr Ala Val
Arg Gln Val Ser Arg Leu Arg Arg Asp 485
490 495Arg Asn Pro Gln Ala Phe Trp Leu Met Ala Ser Leu
Ala Gly Leu Ala 500 505 510Gly
Met Leu Gly His Gly Leu Phe Asp Thr Val Leu Tyr Arg Pro Glu 515
520 525Ala Ser Thr Leu Trp Trp Leu Cys Ile
Gly Ala Ile Ala Ser Phe Trp 530 535
540Gln Pro Gln Pro Ser Lys Gln Leu Pro Pro Glu Ala Glu His Ser Asp545
550 555 560Glu Lys
Met161551DNAZea maysism2(1)..(1551) 16atgcagttcg ctctcgctct cgatacaaat
tctggccctc atcagattag gtcttgcgag 60ggcgatggca ttgataggct cgagaagctc
tctattggcg gcaggaagca ggagaaggct 120ctcaggaata ggtgcttcgg cggcagggtg
gctgctacaa cacagtgcat tctcacatct 180gatgcttgcc ctgagacact ccattctcag
acacagtctt ctaggaagaa ttacgctgat 240gctaataggg tgtctgctat tattctcggc
ggcggcacag gctctggcct cttccctctc 300acatctacaa gggctacacc tgctgtgcct
gtgggcggct gctacaggct cattgatatt 360cctatgtcta attgcttcaa ttctggcatt
aataagattt tcgtgatgtc tcagttcaat 420tctacatctc tcaataggca tattcatagg
acatacctcg agggcggcat taatttcgct 480ggcggctctg tgcaggtgct cgctgctaca
cagatgcctg aggagcctgc tggctggttc 540cagggcacag ctgattctat taggaagttc
atttgggtgc tcgaggatta ctactctcat 600aagtctattg ataatattgt gattctctct
ggcgatcagc tctacaggat gaattacatg 660gagctcgtgc agaagcatgt ggaggatgat
gctgatatta caatttcttg cgctcctgtg 720gatgagtcta gggcttctaa gaatggcctc
gtgaagattg atcatacagg cagggtgctc 780cagttcttcg agaagcctaa gggcgctgat
ctcaattcta tgagggtgga gacaaatttc 840ctctcttacg ctattgatga tgctcagaag
tacccttacc tcgcttctat gggcatttac 900gtgttcaaga aggatgctct cctcgatctc
ctcaagtcta agtacacaca gctccatgat 960ttcggctctg agattctccc tagggctgtg
ctcgatcatt ctgtgcaggc ttgcattttc 1020acaggctact gggaggatgt gggcacaatt
aagtctttct tcgatgctaa tctcgctctc 1080acagagcagc cttctaagtt cgatttctac
gatcctaaga cacctttctt cacagctcct 1140aggtgcctcc ctcctacaca gctcgataag
tgcaagatga agtacgcttt catttctgat 1200ggctgcctcc tcagggagtg caatattgag
cattctgtga ttggcgtgtg ctctagggtg 1260tcttctggct gcgagctcaa ggattctgtg
atgatgggcg ctgatacata cgagacagag 1320gaggagaggt ctaagctcct cctcgctggc
aaggtgcctg tgggcattgg caggaataca 1380aagattagga attgcattat tgatatgaat
gctaggattg gcaagaatgt ggtgattaca 1440aattctaagg gcattcagga ggctgatcat
cctgaggagg gctactacat taggtctggc 1500attgtggtga ttctcaagaa tgctacaatt
aatgatggct ctgtgatttg a 155117516PRTZea maysism2(1)..(516)
17Met Gln Phe Ala Leu Ala Leu Asp Thr Asn Ser Gly Pro His Gln Ile1
5 10 15Arg Ser Cys Glu Gly Asp
Gly Ile Asp Arg Leu Glu Lys Leu Ser Ile 20 25
30Gly Gly Arg Lys Gln Glu Lys Ala Leu Arg Asn Arg Cys
Phe Gly Gly 35 40 45Arg Val Ala
Ala Thr Thr Gln Cys Ile Leu Thr Ser Asp Ala Cys Pro 50
55 60Glu Thr Leu His Ser Gln Thr Gln Ser Ser Arg Lys
Asn Tyr Ala Asp65 70 75
80Ala Asn Arg Val Ser Ala Ile Ile Leu Gly Gly Gly Thr Gly Ser Gly
85 90 95Leu Phe Pro Leu Thr Ser
Thr Arg Ala Thr Pro Ala Val Pro Val Gly 100
105 110Gly Cys Tyr Arg Leu Ile Asp Ile Pro Met Ser Asn
Cys Phe Asn Ser 115 120 125Gly Ile
Asn Lys Ile Phe Val Met Ser Gln Phe Asn Ser Thr Ser Leu 130
135 140Asn Arg His Ile His Arg Thr Tyr Leu Glu Gly
Gly Ile Asn Phe Ala145 150 155
160Gly Gly Ser Val Gln Val Leu Ala Ala Thr Gln Met Pro Glu Glu Pro
165 170 175Ala Gly Trp Phe
Gln Gly Thr Ala Asp Ser Ile Arg Lys Phe Ile Trp 180
185 190Val Leu Glu Asp Tyr Tyr Ser His Lys Ser Ile
Asp Asn Ile Val Ile 195 200 205Leu
Ser Gly Asp Gln Leu Tyr Arg Met Asn Tyr Met Glu Leu Val Gln 210
215 220Lys His Val Glu Asp Asp Ala Asp Ile Thr
Ile Ser Cys Ala Pro Val225 230 235
240Asp Glu Ser Arg Ala Ser Lys Asn Gly Leu Val Lys Ile Asp His
Thr 245 250 255Gly Arg Val
Leu Gln Phe Phe Glu Lys Pro Lys Gly Ala Asp Leu Asn 260
265 270Ser Met Arg Val Glu Thr Asn Phe Leu Ser
Tyr Ala Ile Asp Asp Ala 275 280
285Gln Lys Tyr Pro Tyr Leu Ala Ser Met Gly Ile Tyr Val Phe Lys Lys 290
295 300Asp Ala Leu Leu Asp Leu Leu Lys
Ser Lys Tyr Thr Gln Leu His Asp305 310
315 320Phe Gly Ser Glu Ile Leu Pro Arg Ala Val Leu Asp
His Ser Val Gln 325 330
335Ala Cys Ile Phe Thr Gly Tyr Trp Glu Asp Val Gly Thr Ile Lys Ser
340 345 350Phe Phe Asp Ala Asn Leu
Ala Leu Thr Glu Gln Pro Ser Lys Phe Asp 355 360
365Phe Tyr Asp Pro Lys Thr Pro Phe Phe Thr Ala Pro Arg Cys
Leu Pro 370 375 380Pro Thr Gln Leu Asp
Lys Cys Lys Met Lys Tyr Ala Phe Ile Ser Asp385 390
395 400Gly Cys Leu Leu Arg Glu Cys Asn Ile Glu
His Ser Val Ile Gly Val 405 410
415Cys Ser Arg Val Ser Ser Gly Cys Glu Leu Lys Asp Ser Val Met Met
420 425 430Gly Ala Asp Thr Tyr
Glu Thr Glu Glu Glu Arg Ser Lys Leu Leu Leu 435
440 445Ala Gly Lys Val Pro Val Gly Ile Gly Arg Asn Thr
Lys Ile Arg Asn 450 455 460Cys Ile Ile
Asp Met Asn Ala Arg Ile Gly Lys Asn Val Val Ile Thr465
470 475 480Asn Ser Lys Gly Ile Gln Glu
Ala Asp His Pro Glu Glu Gly Tyr Tyr 485
490 495Ile Arg Ser Gly Ile Val Val Ile Leu Lys Asn Ala
Thr Ile Asn Asp 500 505 510Gly
Ser Val Ile 51518231DNAPopulus tremuloideshc1(1)..(231)
18atgtctgatt ggggccctgt gttcgtggct gtggtgctct tcattctcct cacacctggc
60ctcctcattc agattcctgg caggcagagg ctcgtggagt tcggcaattt ccagacatct
120ggcgtgtcta ttctcgtgca ttctattctc tacttcgctc tcatttgcat tttcctcctc
180gctgtgggcg tgcatgtgtg ctctctctgc acaccttcta tgctcgattg a
2311976PRTPopulus tremuloideshc1(1)..(76) 19Met Ser Asp Trp Gly Pro Val
Phe Val Ala Val Val Leu Phe Ile Leu1 5 10
15Leu Thr Pro Gly Leu Leu Ile Gln Ile Pro Gly Arg Gln
Arg Leu Val 20 25 30Glu Phe
Gly Asn Phe Gln Thr Ser Gly Val Ser Ile Leu Val His Ser 35
40 45Ile Leu Tyr Phe Ala Leu Ile Cys Ile Phe
Leu Leu Ala Val Gly Val 50 55 60His
Val Cys Ser Leu Cys Thr Pro Ser Met Leu Asp65 70
7520210DNASorghum bicolorhc1(1)..(210) 20atggctgatt ggggccctgt
gctcattggc ctcgtgctct tcattctcct ctctcctggc 60ctcctcttcc agattcctgg
caagggcagg attattgagt tcggcaattt ccagacatct 120ggcctctcta ttctcattca
tgctgtgatt tacttcgctc tcctcgctat tttcctcctc 180gctgtgggcg tgcatattta
cctcggctga 2102169PRTSorghum
bicolorhc1(1)..(69) 21Met Ala Asp Trp Gly Pro Val Leu Ile Gly Leu Val Leu
Phe Ile Leu1 5 10 15Leu
Ser Pro Gly Leu Leu Phe Gln Ile Pro Gly Lys Gly Arg Ile Ile 20
25 30Glu Phe Gly Asn Phe Gln Thr Ser
Gly Leu Ser Ile Leu Ile His Ala 35 40
45Val Ile Tyr Phe Ala Leu Leu Ala Ile Phe Leu Leu Ala Val Gly Val
50 55 60His Ile Tyr Leu
Gly6522179PRTSetaria italicaERF_transcription_factor(1)..(179) 22Met Glu
Gln Arg Arg Leu Glu Glu Gln Arg Ala Cys Gly Arg Arg Ala1 5
10 15Arg Ala Glu Thr Arg His Pro Val
Tyr Arg Gly Val Arg Leu Arg Ala 20 25
30Gly Lys Trp Val Ser Glu Ile Arg Glu Leu Arg Lys Pro Ser Arg
Ile 35 40 45Trp Leu Gly Thr Tyr
Pro Thr Pro Glu Met Ala Ala Ala Ala Tyr Asp 50 55
60Ala Ala Ala Leu Ala Leu Arg Gly Ala Gly Thr Ala Leu Asn
Phe Pro65 70 75 80Asp
Ala Ala Arg Ser Arg Pro Ala Pro Ala Ser Ala Ser Ala Glu Asp
85 90 95Val Arg Ala Ala Ala Ala Ala
Ala Ala Ala Ala Met Asp Gly Arg Arg 100 105
110His His His His Glu Leu Arg Gly Asp Ser Gly Asp Ala Met
Ala Ala 115 120 125Gly Gly Val Val
Asp Glu Asp Asp Leu Phe Glu Met Pro Arg Leu Met 130
135 140Met Ser Met Ala Glu Gly Leu Met Met Ser Pro Pro
Ala Leu Gly Pro145 150 155
160Ala Ala Ala Pro Met Met Glu Ala Asp Glu Glu Gly Val Ser Leu Trp
165 170 175Asp His
Ser23184PRTDichanthelium oligosanthesERF_transcription_factor(1)..(184)
23Met Glu Arg Arg Arg Gln Glu Glu Gln Arg Thr Gly Pro Cys Gly Arg1
5 10 15Arg Ala Arg Ala Glu Thr
Arg His Pro Val Tyr Arg Gly Val Arg Leu 20 25
30Arg Ala Gly Lys Trp Val Ser Glu Ile Arg Glu Leu Arg
Lys Pro Ser 35 40 45Arg Ile Trp
Leu Gly Thr Tyr Pro Thr Pro Glu Met Ala Ala Ala Ala 50
55 60Tyr Asp Ala Ala Ala Leu Ala Leu Arg Gly Ala Gly
Thr Ala Leu Asn65 70 75
80Phe Pro Asp Ala Ala Arg Ser His Pro Ala Pro Ala Ser Ala Cys Pro
85 90 95Glu Asp Val Arg Ala Ala
Ala Ala Ala Ala Ala Ala Ala Met Met Asp 100
105 110Ser Cys Arg Gly Ile Gly Arg His His Glu Leu Arg
Gly Asp Asp Gly 115 120 125Gly Gly
Ala Asp Ala Met Ala Gly Val Val Asp Glu Asp Asp Leu Phe 130
135 140Glu Met Pro Arg Leu Met Met Ser Met Ala Glu
Gly Leu Met Met Ser145 150 155
160Pro Pro Val Leu Gly Pro Ala Ala Ala Ser Leu Glu Ala Glu Glu Glu
165 170 175Gly Val Ser Leu
Trp Asp His Ser 18024199PRTOryza
sativaERF_transcription_factor(1)..(199) 24Met Asp Arg Asp Glu Ser Leu
Gly Thr Gln Pro Leu Thr Gly Arg Arg1 5 10
15Val Arg Ala Asp Thr Arg His Pro Val Tyr Arg Gly Ile
Arg Leu Arg 20 25 30Ser Gly
Lys Trp Val Ser Glu Ile Arg Glu Pro Gly Lys Ser Ser Arg 35
40 45Ile Trp Leu Gly Thr Tyr Pro Thr Pro Glu
Met Ala Ala Ala Ala Tyr 50 55 60Asp
Ala Ala Ala Leu Ala Leu Arg Gly Ala Asp Ala Ala Leu Asn Phe65
70 75 80Pro Gly Thr Ala Thr Ser
Arg Pro Ala Pro Ala Ser Gly Ser Pro Asp 85
90 95Asp Ile Arg Ala Ala Ala Ala Ala Ala Ala Ala Met
Ile Gly Ser Gly 100 105 110His
Arg Gly Asn Gln Arg Ala Ala Asp Ala Ser Thr Ser Arg Ala Ala 115
120 125Pro Ala Pro Glu Val Ala Val Ala Ala
Gly Ala Gly Asp Gln Lys Arg 130 135
140Val Val Asp Glu Asp Asp Val Phe Glu Met Pro Arg Leu Leu Val Ser145
150 155 160Met Ala Glu Gly
Leu Met Met Asn Pro Pro Arg Leu Ser Pro Ser Thr 165
170 175Asp Gly Val Gly Gly Val Ser Pro Glu Asp
Asp Glu Asp Glu Asp Gly 180 185
190Met Ser Leu Trp Asn His Ser 19525200PRTOryza
sativaERF_transcription_factor(1)..(200) 25Met Asp Arg Asp Glu Ser Leu
Gly Thr Gln Pro Leu Thr Gly Arg Arg1 5 10
15Val Arg Ala Asp Thr Arg His Pro Val Tyr Arg Gly Ile
Arg Leu Arg 20 25 30Ser Gly
Lys Trp Val Ser Glu Ile Arg Glu Pro Gly Lys Ser Ser Arg 35
40 45Ile Trp Leu Gly Thr Tyr Pro Thr Pro Glu
Met Ala Ala Ala Ala Tyr 50 55 60Asp
Ala Ala Ala Leu Ala Leu Arg Gly Ala Asp Ala Ala Leu Asn Phe65
70 75 80Pro Gly Thr Ala Thr Ser
Arg Pro Ala Pro Ala Ser Gly Ser Pro Asp 85
90 95Asp Ile Arg Ala Ala Ala Ala Ala Ala Ala Ala Met
Ile Gly Ser Gly 100 105 110His
Arg Gly Asn Gln Arg Ala Ala Asp Ala Ser Thr Ser Arg Ala Ala 115
120 125Thr Ala Ala Pro Glu Ala Ala Val Ala
Ala Gly Ala Gly Asp Gln Lys 130 135
140Arg Val Val Asp Glu Asp Asp Val Phe Glu Met Pro Arg Leu Leu Val145
150 155 160Ser Met Ala Glu
Gly Leu Met Met Ser Pro Pro Arg Leu Ser Pro Ser 165
170 175Thr Asp Gly Val Gly Gly Val Ser Pro Glu
Asp Asp Glu Asp Glu Asp 180 185
190Gly Met Ser Leu Trp Asn His Ser 195
20026209PRTZea maysERF_transcription_factor(1)..(209) 26Met Glu Gln Arg
Gln Gln Glu Arg Arg Thr Val Pro Thr Thr Thr Thr1 5
10 15Cys Gly Gly Arg Arg Ala Arg Ala Glu Thr
Arg His Pro Val Tyr Arg 20 25
30Gly Val Arg Leu Arg Ala Gly Lys Trp Val Ser Glu Ile Arg Glu Leu
35 40 45Arg Lys Pro Ser Arg Ile Trp Leu
Gly Thr Tyr Pro Thr Pro Glu Met 50 55
60Ala Ala Ala Ala Tyr Asp Ala Ala Ala Leu Ala Leu Arg Gly Ala Gly65
70 75 80Ala Ala Leu Asn Phe
Pro Asp Ala Ala Thr Ala Arg Pro Pro Pro Ala 85
90 95Ser Ala Ser Ala Glu His Val Arg Ala Ala Ala
Ala Ala Ala Ala Ala 100 105
110Ala Ala Ala Val Gly Leu Gly Asp Ser Arg His Phe His Gly Arg Ser
115 120 125Asp Arg Arg Glu Val Arg Gly
His Ser His Ser Ser Gly Ala Asp Glu 130 135
140Tyr Glu Arg Cys His Gly Gly Gly Gly Ala Gly Ser Met Glu Gly
Val145 150 155 160Val Asp
Glu Asp Asp Leu Phe Glu Met Pro Arg Leu Met Leu Ser Met
165 170 175Ala Glu Gly Leu Met Met Thr
Pro Pro Val Leu Gly Pro Ala Pro Ala 180 185
190Ala Ala Ala Leu Asp Gly Asp Glu Glu Gly Val Ser Leu Trp
Asp His 195 200
205Ser27210PRTSorghum bicolorERF_transcription_factor(1)..(210) 27Met Glu
Arg Glu Gln Glu Gln Glu Ala Gly Thr Ala Gln Gln Leu Leu1 5
10 15Gly Arg Arg Val Arg Ala Asp Thr
Arg His Pro Val Tyr Arg Gly Ile 20 25
30Arg Tyr Arg Gly Gly Lys Trp Val Ser Glu Ile Arg Glu Pro Arg
Lys 35 40 45Ser Asn Arg Ile Trp
Leu Gly Thr Tyr Pro Ala Pro Glu Met Ala Ala 50 55
60Ala Ala Tyr Asp Ala Ala Ala Leu Ala Leu Arg Gly Ala Glu
Ala Ala65 70 75 80Leu
Asn Phe Pro Gly Ala Ala Met Ser Arg Pro Ala Pro Ala Ser Cys
85 90 95Ser Pro Asp Asp Ile Arg Ala
Ala Ala Ala Ala Ala Ala Ala Ala Val 100 105
110Ile Gly Arg Ser His Ser Pro Gln Val Gly Gly Glu Ala Ala
Ala Gly 115 120 125Gly Gly Cys Gly
Ala Ser Thr Trp Ser Ser Gly Ala Gly Ala Gln Gly 130
135 140Gln Val Pro Glu His Arg Ala Gly Asp Arg Arg Ile
Val Asp Glu Asp145 150 155
160Asp Val Phe Gln Val Pro Arg Leu Leu Ala Gly Met Ala Glu Gly Leu
165 170 175Met Met Ser Pro Pro
Arg Leu Val Gly Pro Ala Thr Asp Gly Ala Val 180
185 190Leu Leu Glu Glu Asp Gly Ser Glu Asp Gly Val Val
Ser Leu Trp Asp 195 200 205His Ser
21028257PRTSorghum bicolorERF_transcription_factor(1)..(257) 28Met Ala
Val Ala Val Ala Val Val Ser Gly Thr Gly Ile Ala His Leu1 5
10 15His Phe Leu His Val Leu Leu Pro
Glu Ile Pro Gly Phe Ser Gly Glu 20 25
30Glu Gln Arg Gly Ser Val Pro Val Cys Pro Glu Cys Pro Gly Gln
Met 35 40 45Glu Arg Glu Gln Glu
Gln Glu Ala Gly Thr Ala Gln Gln Leu Leu Gly 50 55
60Arg Arg Val Arg Ala Asp Thr Arg His Pro Val Tyr Arg Gly
Ile Arg65 70 75 80Tyr
Arg Gly Gly Lys Trp Val Ser Glu Ile Arg Glu Pro Arg Lys Ser
85 90 95Asn Arg Ile Trp Leu Gly Thr
Tyr Pro Ala Pro Glu Met Ala Ala Ala 100 105
110Ala Tyr Asp Ala Ala Ala Leu Ala Leu Arg Gly Ala Glu Ala
Ala Leu 115 120 125Asn Phe Pro Gly
Ala Ala Met Ser Arg Pro Ala Pro Ala Ser Cys Ser 130
135 140Pro Asp Asp Ile Arg Ala Ala Ala Ala Ala Ala Ala
Ala Ala Val Ile145 150 155
160Gly Arg Ser His Ser Pro Gln Val Gly Gly Glu Ala Ala Ala Gly Gly
165 170 175Gly Cys Gly Ala Ser
Thr Trp Ser Ser Gly Ala Gly Ala Gln Gly Gln 180
185 190Val Pro Glu His Arg Ala Gly Asp Arg Arg Ile Val
Asp Glu Asp Asp 195 200 205Val Phe
Gln Val Pro Arg Leu Leu Ala Gly Met Ala Glu Gly Leu Met 210
215 220Met Ser Pro Pro Arg Leu Val Gly Pro Ala Thr
Asp Gly Ala Val Leu225 230 235
240Leu Glu Glu Asp Gly Ser Glu Asp Gly Val Val Ser Leu Trp Asp His
245 250
255Ser29204PRTGossypium hirsutumERF_transcription_factor(1)..(204) 29Met
Val Gln Ser Ser Lys Ser His Glu Ile Ser Ser Ser Ser Ser Gln1
5 10 15Ser Glu Ala Gly Ser Thr Ser
Leu Gly Gln Ser Gln Lys Arg Arg Ala 20 25
30Gly Arg Lys Lys Phe Lys Glu Thr Arg His Pro Ile Phe Lys
Gly Val 35 40 45Arg Thr Arg Lys
Gly Lys Trp Val Ser Glu Val Arg Glu Pro Asn Lys 50 55
60Lys Ser Arg Ile Trp Leu Gly Thr Phe Ser Tyr Pro Gly
Met Ala Ala65 70 75
80Lys Ala Tyr Asp Val Ala Ala Leu Ala Leu Arg Gly Asp Ala Ala Ser
85 90 95Leu Asn Phe Pro Glu Ser
Ala Arg Thr Leu Pro Arg Pro Lys Ser Leu 100
105 110Ser Val Lys Asp Ile Gln Ile Ala Ala Met Glu Ala
Ala Glu Thr Phe 115 120 125Ile Glu
Asp Lys Thr Ser Pro Asp Ser Val Ser Ser Ala Val Pro Ala 130
135 140Phe Pro Glu Asn Met Val Phe Glu Val Glu Asp
Glu Asp Glu Val Phe145 150 155
160Asn Met Pro Gly Ile Leu Glu Ser Met Ala Glu Gly Leu Met Ile Thr
165 170 175Pro Pro Ser Met
Gln Lys Gly Tyr Tyr Pro Asp Asp Asp Asp Asp Asp 180
185 190Gly Asn Asp Tyr Val Glu Val Asn Leu Trp Gly
Asp 195 20030181PRTZea
maysERF_transcription_factor(1)..(181) 30Met Glu Arg Glu Glu Glu Gln Glu
Ala Gly Thr Gly Thr Gly Thr Ala1 5 10
15Gln Ala Leu Leu Gly Arg Arg Val Arg Ala Asp Thr Arg His
Pro Val 20 25 30Tyr Arg Gly
Ile Arg Tyr Arg Gly Gly Lys Trp Val Ser Glu Ile Arg 35
40 45Glu Pro Arg Lys Ser Ser Arg Ile Trp Leu Gly
Thr Tyr Pro Ala Pro 50 55 60Glu Met
Ala Ala Ala Ala Tyr Asp Thr Ala Ala Leu Ala Leu Arg Gly65
70 75 80Ala Glu Ala Ala Leu Asn Phe
Pro Gly Ala Ala Leu Ser Arg Pro Val 85 90
95Pro Ala Ser Arg Ser Pro Asp Asp Ile Arg Ala Ala Ala
Ala Ser Ala 100 105 110Ala Arg
Ser Gln Ser Pro Gln Val Gly Gly Glu Gly Pro Ala Pro Glu 115
120 125Arg Arg Ala Gly Asp Arg Ser Ile Val Asp
Glu Asp Asp Val Phe Gln 130 135 140Val
Pro Arg Leu Leu Ala Gly Met Ala Glu Gly Leu Met Met Ser Pro145
150 155 160Pro Arg Leu Ala Gly Ala
Ala Leu Leu Glu Glu Asp Val Val Val Ser 165
170 175Leu Trp Asp His Ser
18031202PRTGossypium raimondiiERF_transcription_factor(1)..(202) 31Met
Val Gln Ser Ser Lys Ser His Glu Ile Ser Ser Ser Ser Ser Gln1
5 10 15Ser Glu Ala Gly Ser Thr Ser
Leu Gly Gln Ser Gln Lys Arg Lys Ala 20 25
30Gly Arg Lys Lys Phe Lys Glu Thr Arg His Pro Ile Phe Lys
Gly Val 35 40 45Arg Thr Arg Lys
Gly Lys Trp Val Ser Glu Val Arg Glu Pro Asn Lys 50 55
60Lys Ser Arg Ile Trp Leu Gly Thr Phe Ser Cys Pro Gly
Met Ala Ala65 70 75
80Lys Ala Tyr Asp Val Ala Ala Leu Ala Leu Arg Gly Asp Ala Ala Ser
85 90 95Leu Asn Phe Pro Glu Ser
Ala His Thr Leu Pro His Pro Lys Ser Leu 100
105 110Ser Val Lys Asp Ile Gln Ile Ala Ala Met Glu Ala
Ala Ala Thr Leu 115 120 125Ile Asp
Asp Lys Thr Leu Pro Asp Ser Val Ser Ser Ala Val Pro Ala 130
135 140Phe Pro Glu Asn Met Val Phe Glu Asp Glu Asp
Glu Val Phe Asn Met145 150 155
160Pro Gly Ile Leu Glu Ser Met Ala Glu Gly Leu Met Ile Thr Pro Pro
165 170 175Ser Met Gln Lys
Gly Tyr Tyr Pro Asp Asp Asp Asp Asp Asp Gly Asn 180
185 190Asp Tyr Val Glu Val Asn Leu Trp Asp Asp
195 20032206PRTGossypium
arboreumERF_transcription_factor(1)..(206) 32Met Val Gln Ser Ser Lys Ser
His Glu Ile Ser Ser Ser Ser Ser Gln1 5 10
15Ser Glu Ala Gly Ser Thr Ser Leu Gly Gln Ser Gln Lys
Arg Arg Ala 20 25 30Gly Arg
Lys Lys Phe Lys Glu Thr Arg His Pro Ile Phe Lys Gly Val 35
40 45Arg Thr Arg Lys Gly Lys Trp Val Ser Glu
Val Arg Glu Pro Asn Lys 50 55 60Lys
Ser Arg Ile Trp Leu Gly Thr Phe Ser Cys Pro Gly Met Ala Ala65
70 75 80Lys Ala Tyr Asp Val Ala
Ala Leu Ala Leu Arg Gly Asp Ala Ala Ser 85
90 95Leu Asn Phe Pro Glu Ser Ala Arg Thr Leu Pro Arg
Pro Lys Ser Leu 100 105 110Ser
Val Lys Asp Ile Gln Ile Ala Ala Met Glu Ala Ala Glu Thr Phe 115
120 125Ile Asp Asp Lys Thr Ser Pro Asp Ser
Val Ser Ser Ala Val Pro Ala 130 135
140Phe Pro Glu Asn Met Val Phe Glu Asp Glu Asp Glu Val Phe Asn Met145
150 155 160Pro Gly Ile Leu
Glu Ser Met Ala Glu Gly Leu Met Ile Thr Pro Pro 165
170 175Ser Met Gln Lys Gly Tyr Tyr Pro Asp Asp
Asp Asp Asp Asp Asp Asp 180 185
190Asp Asp Gly Asn Asp Tyr Val Glu Val Asn Leu Trp Gly Asp 195
200 20533197PRTSolanum
tuberosumERF_transcription_factor(1)..(197) 33Met Asp Gln Leu Asn Lys Asn
Ser Ser Leu Ile Leu Ala Ser Asn Asn1 5 10
15Pro Lys Lys Pro Ala Gly Arg Lys Lys Phe Arg Glu Thr
Arg His Pro 20 25 30Val Tyr
Arg Gly Val Arg Met Arg Asn Ser Gly Lys Trp Val Cys Glu 35
40 45Val Arg Glu Pro Asn Lys Lys Ser Arg Ile
Trp Leu Gly Thr Phe Pro 50 55 60Thr
Ala Glu Met Ala Ala Arg Ala His Asp Val Ala Ala Leu Ala Leu65
70 75 80Arg Gly Arg Ser Ala Cys
Leu Asn Phe Ala Asp Ser Ala Trp Arg Leu 85
90 95Pro Ile Pro Ala Ser Ser Asn Ser Lys Asp Ile Gln
Lys Ala Ala Ala 100 105 110Glu
Ala Ala Glu Ile Phe Arg Pro Ser Glu Glu Ser Glu Arg Val Ala 115
120 125Ser Ser Glu Met His Glu Ser Ile Phe
Phe Met Asn Asp Glu Gly Arg 130 135
140Glu Ser Ser Phe Phe Met Asp Glu Glu Ala Leu Phe Asp Met Pro Gly145
150 155 160Leu Ile Ala Asn
Met Ala Glu Gly Leu Met Leu Pro Pro Pro Gln Cys 165
170 175Ala Glu Val Glu Asp His Tyr Tyr Met Glu
Ala Asp Asp Ala Tyr Met 180 185
190Pro Leu Trp Asn Tyr 19534171PRTCicer
arietinumERF_transcription_factor(1)..(171) 34Met Ser Ser Ser Ser Ser Ser
Lys Arg His Pro Thr Tyr His Gly Ile1 5 10
15Arg Ser Arg Gly Gly Lys Trp Val Thr Glu Ile Arg Glu
Pro Arg Lys 20 25 30Thr Asn
Arg Ile Trp Leu Gly Thr Phe Ser Thr Pro Glu Met Ala Ala 35
40 45Ala Ala Tyr Asp Val Ala Thr Leu Ala Leu
Lys Gly Gly Glu Ala Ile 50 55 60Leu
Asn Phe Pro Asp Leu Ala Arg Arg Tyr Pro Val Pro Ala Ser Asn65
70 75 80Ser Ala Glu Asp Ile Arg
Ser Ala Ala Thr Ser Ala Ala Glu Leu Met 85
90 95Thr Gly Gly Ser Thr Phe Asn Glu Pro Tyr Asn Asn
Ala Phe Tyr Asp 100 105 110Ala
Pro His Ser Tyr Asn Tyr Glu Ser Glu Phe Ile Asp Glu Glu Ala 115
120 125Ile Phe Ser Met Pro Arg Leu Leu Val
Asp Met Ala Glu Gly Met Leu 130 135
140Leu Ser Pro Pro Arg Met Asn Leu Pro Pro Ser Asp Tyr Ser Thr Glu145
150 155 160Tyr Gln Thr Phe
Gly Glu Ser Leu Trp Asn Phe 165
17035220PRTSolanum pennelliiERF_transcription_factor(1)..(220) 35Met Asn
Ile Phe Glu Thr Tyr Asn Ser Asp Ser Leu Ile Ser Thr Glu1 5
10 15Ser Ser Ser Ser Ser Ser Ser Ser
Ser Ser Phe Ser Glu Glu Glu Ile 20 25
30Ile Leu Ala Ser Asn Asn Pro Lys Arg Pro Ala Gly Arg Lys Lys
Phe 35 40 45Arg Glu Thr Arg His
Pro Ile Tyr Arg Gly Ile Arg Lys Arg Asn Ser 50 55
60Gly Lys Trp Val Cys Glu Val Arg Glu Pro Asn Lys Lys Thr
Arg Ile65 70 75 80Trp
Leu Gly Thr Phe Pro Thr Ala Glu Met Ala Ala Arg Ala His Asp
85 90 95Val Ala Ala Leu Ala Leu Arg
Gly Arg Ser Ala Cys Leu Asn Phe Ser 100 105
110Asp Ser Ala Trp Arg Leu Pro Ile Pro Ala Ser Ser Asn Ser
Lys Asp 115 120 125Ile Gln Lys Ala
Ala Ala Glu Ala Ala Glu Ile Phe Arg Pro Leu Lys 130
135 140Glu Ser Glu Glu Val Ser Arg Glu Ser Asp Asn Ser
Thr Ser Pro Glu145 150 155
160Thr Ser Glu Asn Val Gln Glu Ser Ser Asp Phe Val Asp Glu Glu Ala
165 170 175Leu Phe Phe Met Pro
Gly Leu Leu Ala Asn Met Ala Glu Gly Leu Met 180
185 190Leu Pro Pro Pro Gln Cys Ala Glu Met Ala Asp His
Tyr Val Glu Thr 195 200 205Asp Ala
Tyr Met Leu Thr Leu Trp Asn Tyr Ser Ile 210 215
22036204PRTTrifolium
subterraneumERF_transcription_factor(1)..(204) 36Met Ser Glu Asn Thr Thr
Thr Thr Tyr Ala Ser Ser Ser Ser Ser Gly1 5
10 15Lys Val Leu Ser Gly Arg His Pro Val Tyr Arg Gly
Val Arg Arg Arg 20 25 30Asn
Asn Gly Lys Trp Val Ser Glu Ile Arg Glu Pro Lys Lys Pro Asn 35
40 45Arg Ile Trp Leu Gly Thr Tyr Pro Thr
Pro Glu Met Ala Ala Ile Ala 50 55
60Tyr Asp Val Ala Ala Leu Ala Leu Lys Gly Lys Asn Ala Ile Leu Asn65
70 75 80Phe Pro Asn Ser Ser
Ser Ser Leu Pro Val Pro Glu Ser Ser Ser Ala 85
90 95Arg Asp Ile Gln Thr Ala Ala Ala Ser Ala Ala
Ala Ala Val Gly Ala 100 105
110Ala Glu Asp Ala Leu Ala Ser Asn Ile Asn Val Gly Asn Asn Asn His
115 120 125Ala Ala Met Ser Pro His Glu
Phe Leu Ala Ser Ala Asn Glu Asn Asn 130 135
140Asn Val Asn His Glu Phe Val Asp Glu Asp Leu Ile Phe Asp Met
Pro145 150 155 160Asn Val
Leu Ala Asn Met Ala Glu Gly Met Leu Leu Ser Pro Pro Arg
165 170 175Phe Asp Phe Ala Ser Asn Glu
Tyr Asp Ala Gln Glu Asn Asp Met Cys 180 185
190Asp Asp Ser Asn Leu Trp Ser Tyr Pro Tyr Phe Pro
195 20037199PRTManihot
esculentaERF_transcription_factor(1)..(199) 37Met His Tyr Ser Gln Ser Ser
Asn Ser Gly Asn Ser Ala Ala Ala Asn1 5 10
15Gln Leu Arg Ala Thr Ala Pro Ser Ala Val Ser Gly Arg
His Pro Val 20 25 30Tyr Arg
Gly Val Arg Arg Arg Ser Ser Gly Lys Trp Val Ser Glu Ile 35
40 45Arg Glu Pro Arg Lys Pro Asn Arg Ile Trp
Leu Gly Thr Phe Pro Thr 50 55 60Pro
Glu Met Ala Ala Val Ala Tyr Asp Val Ala Ala Leu Ala Leu Lys65
70 75 80Gly Arg Asp Ala Glu Leu
Asn Phe Pro Asn Ser Ala Ser Ser Leu Pro 85
90 95Val Pro Val Ser Thr Ser Pro Arg Asp Ile Gln Ala
Ala Ala Ala Ser 100 105 110Ala
Ala Ala Ala Val Gly Ala Ala Arg Asp Ala Leu Gly Ile Gly Ser 115
120 125Tyr Arg Gln Glu Ser Thr Asn Gln Thr
Val Val Gln Glu Arg Pro Met 130 135
140Phe Asn Glu Phe Val Asp Glu Asp Leu Ile Phe Asp Met Pro Asn Val145
150 155 160Leu Met Asn Met
Ala Glu Gly Met Leu Leu Ser Pro Pro Arg Leu Asp 165
170 175Ile Ala Gly Asp Glu Tyr Ala Asp Asp Pro
Tyr Ser Gly Leu Met Asp 180 185
190Gln Asn Leu Trp Arg Phe Pro 19538179PRTElaeis
guineensisERF_transcription_factor(1)..(179) 38Met Ala Ala Asn Pro Pro
Ala Thr Gly Lys His Gln Ser Tyr Arg Gly1 5
10 15Val Arg Ser Arg Tyr Gly Lys Trp Val Ser Glu Ile
Arg Glu Pro Gly 20 25 30Lys
Asp Ser Arg Ile Trp Leu Gly Thr Tyr Pro Thr Pro Glu Met Ala 35
40 45Ala Met Ala Tyr Asp Val Ala Ala Leu
Ala Leu Arg Gly Ser Gly Ala 50 55
60Val Leu Asn Phe Pro Asp Ala Val Gly Arg His Pro Ala Leu Ala Ser65
70 75 80Thr Ser Arg Thr Asp
Ile Arg Ala Ala Ala Ser Ala Ala Ala Ala Ala 85
90 95Met Thr Val Pro Ala Thr Gln Arg Pro Gly Thr
Ser Ser Asp Ala Thr 100 105
110Asp Arg Gln Cys Trp Phe Asp Gly Thr Ser Ser Gly Gly Asp Gly Ala
115 120 125Lys Phe Leu Asp Glu Asp Glu
Ile Phe Asp Met Pro Gln Leu Leu Arg 130 135
140Ser Met Ala Glu Gly Met Leu Met Thr Pro Pro Ser Trp Leu Ser
Pro145 150 155 160Ser Gln
Ser Glu Asp Thr Pro Glu Thr Ser Gly Glu Glu Ser Leu Trp
165 170 175Ser Tyr Pro39187PRTBrassica
napusERF_transcription_factor(1)..(187) 39Met Pro Gly Thr Ser Lys Glu Asn
Gly Gly Arg His Pro Leu Tyr Lys1 5 10
15Gly Val Arg Gln Arg Lys Asn Ser Asp Lys Trp Val Ser Glu
Ile Arg 20 25 30Glu Pro Arg
Thr Pro Asn Arg Ile Trp Leu Gly Thr Phe Ser Thr Pro 35
40 45Glu Met Ala Ala Ile Ala Tyr Asp Val Ala Ala
Leu Ala Leu Lys Gly 50 55 60Thr Gln
Thr Glu Leu Asn Phe Pro Asn Ser Ala Ser Ser Phe Pro Val65
70 75 80Pro Ala Ser Met Ser Pro Gly
Asp Ile Gln Ala Ala Ala Ala Ser Ala 85 90
95Ala Ala Ala Phe Gly Ala Ala Arg Asp Ala Ile Val Met
Thr Asn Asn 100 105 110Asn Ser
Ala Thr Ser Ser Val Glu Arg Ser Asn Val Met Met Met Asn 115
120 125Gly Ser Tyr Glu Asp Thr Tyr Gly Phe Met
Asp Glu Asp Phe Ile Phe 130 135 140Asp
Met Pro Asn Met Leu Met Asn Met Ala Glu Gly Met Leu Leu Ser145
150 155 160Pro Pro Arg Gln Pro Thr
Phe Asp Ala Ala Ser Asp Gly Tyr Gly Tyr 165
170 175Thr Gly Ala Asp Asp Tyr Leu Trp Ser Phe Pro
180 18540186PRTRicinus
communisERF_transcription_factor(1)..(186) 40Met His Cys Ser Gln Pro Ser
Asn Thr Ser Thr Asn Ser Ser Val Ser1 5 10
15Gly Arg His Pro Val Tyr Arg Gly Val Arg Arg Arg Ser
Ser Gly Lys 20 25 30Trp Val
Ser Glu Ile Arg Glu Pro Lys Lys Pro Asn Arg Ile Trp Leu 35
40 45Gly Thr Phe Pro Thr Pro Glu Met Ala Ala
Val Ala Tyr Asp Val Ala 50 55 60Ala
Leu Ala Leu Lys Gly Arg Asp Ala Glu Leu Asn Phe Pro Asn Ser65
70 75 80Ala Ala Ser Leu Pro Val
Pro Ala Ser Ala Ser Pro Arg Asp Ile Gln 85
90 95Ala Ala Ala Ala Ser Ala Ala Ala Ala Ile Gly Ala
Ala Arg Asp Ala 100 105 110Leu
Gly Ile Gly Ser Ser Ser His Gln Thr Val Ile Met Gln Glu Ser 115
120 125Asn Tyr Arg Pro Met Val His Glu Phe
Val Asp Glu Asp Leu Ile Phe 130 135
140Asp Met Pro Asn Leu Leu Val Asn Met Ala Glu Gly Met Leu Leu Ser145
150 155 160Pro Pro Arg Leu
Asp Ile Ala Pro Asp Ala Ala Phe Asp Asp Glu Asn 165
170 175Pro Gly Asp Gln Asn Leu Trp Lys Phe Thr
180 18541190PRTEutrema
salsugineumERF_transcription_factor(1)..(190) 41Met Pro Gly Thr Ser Lys
Asp Asn Gly Gly Arg His Pro Leu Tyr Arg1 5
10 15Gly Val Arg Gln Arg Arg Asn Ser Asn Lys Trp Val
Ser Glu Ile Arg 20 25 30Glu
Pro Arg Lys Pro Asn Arg Ile Trp Leu Gly Thr Phe Ser Thr Pro 35
40 45Glu Met Ala Ala Ile Ala Tyr Asp Val
Ala Ala Leu Ala Leu Lys Gly 50 55
60Thr Gln Thr Glu Leu Asn Phe Pro Asn Ser Ala Ser Ser Leu Pro Val65
70 75 80Pro Ala Ser Met Ser
Pro Gly Asp Ile Gln Ala Ala Ala Ala Ser Ala 85
90 95Ala Ala Ala Phe Gly Ala Ala Arg Asp Ala Ile
Val Leu Ala Asn Asn 100 105
110Asn Ser Glu Thr Ser Gly Ala Ser His Ser Asn Met Met Met Met Asn
115 120 125Gly Ser Tyr Asn Glu Asn Thr
Asn Met Asn Gly Phe Ile Asp Glu Asp 130 135
140Leu Ile Phe Asp Met Pro Asn Val Leu Met Asn Met Ala Glu Gly
Met145 150 155 160Leu Leu
Ser Pro Pro Arg Ala Pro Ala Phe Asp Ala Ala Ser Asp Ala
165 170 175Asp Cys Tyr Thr Gly Ala Asp
Asp Tyr Leu Trp Asn Phe Pro 180 185
19042193PRTVigna radiataERF_transcription_factor(1)..(193) 42Met Arg
Ser Thr Asn Ser Thr Thr Cys Ala Ala Ser Ser Thr Gly Ala1 5
10 15Ser Asn Gly Asn Thr Gly Arg His
Pro Val Tyr Arg Gly Val Arg Arg 20 25
30Arg Ser Ser Gly Lys Trp Val Ser Glu Ile Arg Glu Pro Arg Lys
Pro 35 40 45Asn Arg Ile Trp Leu
Gly Thr Phe Ala Thr Pro Glu Met Ala Ala Ile 50 55
60Ala Tyr Asp Val Ala Ala Leu Ala Leu Lys Gly Lys Asp Ala
Glu Leu65 70 75 80Asn
Phe Pro Asp Ser Ala Ser Ser Leu Pro Val Pro Ala Ser Ser Ala
85 90 95Ala Arg Asp Ile Gln Met Ala
Ala Ala Ser Ala Ala Ala Ala Val Gly 100 105
110Ala Ala Asn Asp Ala Leu Ser Glu Gly Ser Arg Gly Gly Asn
Val Ser 115 120 125Val Ser Met Ala
Gln Glu Glu Phe Ser Gly Gly Ser Leu Asn His Phe 130
135 140Val Asp Glu Asp Leu Ile Phe Asp Met Pro Asn Ile
Leu Val Asn Met145 150 155
160Ala Glu Gly Met Leu Leu Ser Pro Pro Arg Phe Asp Asn Phe Ser Ala
165 170 175Thr Asp Tyr Asp Tyr
Met Asp Glu Asn Pro Asn Leu Trp Gly Phe Pro 180
185 190Tyr43184PRTBrassica
oleraceaERF_transcription_factor(1)..(184) 43Met Asn Ile Pro Gly Thr Ser
Lys Glu Asn Ser Gly Arg His Pro Leu1 5 10
15Tyr Lys Gly Val Arg Gln Arg Lys Asn Ser Asp Lys Trp
Val Ser Glu 20 25 30Ile Arg
Glu Pro Arg Lys Pro Asn Arg Ile Trp Leu Gly Thr Phe Ser 35
40 45Thr Pro Glu Met Ala Ala Ile Ala Tyr Asp
Val Ala Ala Leu Ala Leu 50 55 60Lys
Gly Thr Gln Thr Gly Leu Asn Phe Pro Asn Ser Ala Ser Ser Leu65
70 75 80Pro Val Pro Ala Ser Met
Ser Pro Gly Asp Ile Gln Ala Ala Ala Ala 85
90 95Ser Ala Ala Ala Ala Phe Gly Ala Ala Arg Asp Ala
Ile Val Val Ala 100 105 110Asn
Asn Ser Ser Val Glu Arg Ser Asn Val Met Met Asn Gly Ser Tyr 115
120 125Glu Asn Thr Asn Gly Phe Met Asp Glu
Asp Leu Ile Phe Asp Met Pro 130 135
140Asn Val Leu Met Asn Met Ala Glu Gly Met Leu Leu Ser Pro Pro Cys145
150 155 160Gln Phe Thr Phe
Asp Ala Ala Ser Glu Ala Asp Asp Tyr Ala Gly Glu 165
170 175Asp Asp Tyr Leu Trp Asn Phe Thr
18044237PRTVitis viniferaERF_transcription_factor(1)..(237) 44Met Glu
Glu Pro Arg Ala Asn Val Arg Pro Ser Asp Gln Pro Pro Pro1 5
10 15Thr Pro Lys Ile Glu Val Pro Asp
Ser Ser Leu Ser Ile Val Pro Pro 20 25
30Gln Asp Leu Ser Ser Pro Pro Ser His Ser Ser Ser Thr Pro Thr
Ser 35 40 45Ala His Pro Ser Pro
Lys Asn Leu Pro Ser Pro Thr Pro Phe Ser Gly 50 55
60Gln Thr Ala Gly Arg His Pro Phe Tyr Arg Gly Ile Arg Cys
Arg Gly65 70 75 80Asn
Lys Trp Val Ser Glu Ile Arg Glu Pro Arg Lys Thr Thr Arg Ile
85 90 95Trp Leu Gly Thr Tyr Pro Thr
Pro Glu Met Ala Ala Thr Ala Tyr Asp 100 105
110Val Ala Ala Leu Ala Leu Lys Gly Thr Asp Ala Thr Leu Asn
Phe Pro 115 120 125Asn Ser Val Leu
Ser Tyr Pro Ile Pro Lys Ser Thr Ser Ala Ser Asp 130
135 140Ile Arg Ala Ala Ala Ala Arg Ala Ala Glu Ala Gln
Gln Ala Lys Pro145 150 155
160Glu Ser Ser Glu Ser Pro Asn Thr Thr Gln Pro Lys Lys Glu Glu Thr
165 170 175Thr Glu Ser Ser Ser
Leu Ala Ala Gly Glu Asp Gln Phe Ile Asp Glu 180
185 190Glu Glu Leu Leu Asn Met Pro Asn Leu Leu Val Asp
Met Ala Glu Gly 195 200 205Met Leu
Val Ser Pro Pro Arg Leu Lys Ser Gln Pro Ser Asp Asp Ser 210
215 220Pro Glu Asn Ser Asp Ser Asp Ser Leu Trp Ser
Tyr Thr225 230 23545220PRTEucalyptus
gunniiERF_transcription_factor(1)..(220) 45Met Asn Pro Phe Ser Ser His
Ser His Pro Asn Ser Cys Arg Phe Asn1 5 10
15Phe Ala Glu Pro Pro Ser Asp Ser Arg Ser Ala Thr Ala
Leu Gly Asn 20 25 30Phe Ser
His Lys Glu Val Leu Leu Ala Ser His His Pro Lys Lys Arg 35
40 45Ala Gly Arg Lys Lys Phe Arg Glu Thr Arg
His Pro Val Tyr Arg Gly 50 55 60Val
Arg Leu Arg Asp Ser Gly Lys Trp Val Cys Glu Val Arg Glu Pro65
70 75 80Ile Lys Lys Ser Arg Ile
Trp Leu Gly Thr Phe Pro Thr Val Glu Met 85
90 95Ala Ala Arg Ala His Asp Val Ala Ala Leu Ala Leu
Arg Gly Arg Ser 100 105 110Ala
Cys Leu Asn Phe Ala Asp Ser Ala Trp Arg Leu Pro Val Pro Ala 115
120 125Ser Ala Asp Thr Lys Glu Ile Gln Lys
Ala Ala Ala Arg Ala Ala Glu 130 135
140Ala Phe Gln Ser Val Glu Ser Glu Asp Val Met Ser Gly Asp Glu Lys145
150 155 160Lys Leu Arg Ser
Glu Glu Gly Val Phe Tyr Asp Glu Glu Asp Ile Phe 165
170 175Gly Met Pro Gly Leu Leu Ala Asp Met Ala
Glu Gly Met Leu Leu Ser 180 185
190Pro Pro Lys Trp Gly Gly Asp Ile Tyr Gly Gly Glu Asp Glu Gly Asn
195 200 205Leu Gly Ala His Thr Ser Leu
Trp Ser Tyr Ser Ile 210 215
22046187PRTBrassica rapaERF_transcription_factor(1)..(187) 46Met Pro Gly
Thr Ser Lys Glu Asn Gly Gly Arg His Pro Leu Tyr Lys1 5
10 15Gly Val Arg Gln Arg Lys Asn Ser Asp
Lys Trp Val Ser Glu Ile Arg 20 25
30Glu Pro Arg Thr Pro Asn Arg Ile Trp Leu Gly Thr Phe Ser Thr Pro
35 40 45Glu Met Ala Ala Ile Ala Tyr
Asp Val Ala Ala Leu Ala Leu Lys Gly 50 55
60Thr Gln Thr Glu Leu Asn Phe Pro Asn Ser Ala Ser Ser Phe Pro Val65
70 75 80Pro Ala Thr Met
Ser Pro Arg Asp Ile Gln Ala Ala Ala Ala Ser Ala 85
90 95Ala Ala Ala Phe Gly Ala Ala Arg Asp Ala
Ile Val Met Thr Asn Asn 100 105
110Asn Ser Ala Thr Ser Ser Val Glu Arg Ser Asn Val Met Met Met Asn
115 120 125Gly Ser Tyr Glu Asp Thr Tyr
Gly Phe Met Asp Glu Asp Phe Ile Phe 130 135
140Asp Met Pro Asn Met Leu Met Asn Met Ala Glu Gly Met Leu Leu
Ser145 150 155 160Pro Pro
Arg Gln Pro Thr Phe Asp Ala Ala Ser Asp Gly Tyr Gly Tyr
165 170 175Thr Gly Ala Asp Asp Tyr Leu
Trp Ser Phe Pro 180 18547293PRTRicinus
communisERF_transcription_factor(1)..(293) 47Met Ala Ser Glu Val Glu Ser
Leu Lys Val Ser Lys Leu Lys Arg Tyr1 5 10
15Pro Arg Tyr Arg Ile Leu Gly Pro Phe Met Ser Leu Ser
Lys Ser Asn 20 25 30Pro Asp
Val Gln Gln Arg Ala Val Leu His Pro Lys Ser Leu Lys Asp 35
40 45Arg Gln Cys Ser Ser Ser Thr Thr Gly Leu
His Phe His Asp Leu Leu 50 55 60Leu
Leu Ile Ser Asp Ser Ser Val Phe Asp Leu His Ile Asn Gly Phe65
70 75 80Ser His Leu Ser Ala Ser
Leu Gln Thr His His Leu Pro Ala Ile Ser 85
90 95Leu Asn Ser Leu Ser Tyr His Tyr Gln Asn Thr Met
His Cys Ser Gln 100 105 110Pro
Ser Asn Thr Ser Thr Asn Ser Ser Val Ser Gly Arg His Pro Val 115
120 125Tyr Arg Gly Val Arg Arg Arg Ser Ser
Gly Lys Trp Val Ser Glu Ile 130 135
140Arg Glu Pro Lys Lys Pro Asn Arg Ile Trp Leu Gly Thr Phe Pro Thr145
150 155 160Pro Glu Met Ala
Ala Val Ala Tyr Asp Val Ala Ala Leu Ala Leu Lys 165
170 175Gly Arg Asp Ala Glu Leu Asn Phe Pro Asn
Ser Ala Ala Ser Leu Pro 180 185
190Val Pro Ala Ser Ala Ser Pro Arg Asp Ile Gln Ala Ala Ala Ala Ser
195 200 205Ala Ala Ala Ala Ile Gly Ala
Ala Arg Asp Ala Leu Gly Ile Gly Ser 210 215
220Ser Ser His Gln Thr Val Ile Met Gln Glu Ser Asn Tyr Arg Pro
Met225 230 235 240Val His
Glu Phe Val Asp Glu Asp Leu Ile Phe Asp Met Pro Asn Leu
245 250 255Leu Val Asn Met Ala Glu Gly
Met Leu Leu Ser Pro Pro Arg Leu Asp 260 265
270Ile Ala Pro Asp Ala Ala Phe Asp Asp Glu Asn Pro Gly Asp
Gln Asn 275 280 285Leu Trp Lys Phe
Thr 29048224PRTEucalyptus grandisERF_transcription_factor(1)..(224)
48Met Asn Ser Ser Ser Tyr Ile Ser His Pro Asn Ser Phe Ser Phe Asp1
5 10 15Phe Ala Glu Pro Pro Phe
Ser Leu Leu Leu Ser His Asp Arg Ser Ala 20 25
30Ala Pro Gly Asn Phe Ser Gly Glu Glu Val Arg Leu Ala
Ser Asp His 35 40 45Pro Lys Lys
Pro Ala Gly Arg Lys Lys Phe Arg Glu Thr Arg His Pro 50
55 60Val Tyr Arg Gly Val Arg Leu Arg Asp Ser Gly Lys
Trp Val Cys Glu65 70 75
80Val Arg Glu Pro Arg Lys Lys Ser Arg Ile Trp Leu Gly Thr Phe Pro
85 90 95Thr Ala Asp Met Ala Ala
Arg Ala His Asp Val Ala Ala Leu Ala Leu 100
105 110Arg Gly Gln Ser Ala Cys Leu Asn Phe Ala Asp Ser
Ala Trp Arg Leu 115 120 125Pro Val
Pro Ala Ser Pro Asn Thr Lys Asp Ile Gln Lys Ala Ala Ala 130
135 140Lys Ala Ala Glu Ala Phe Gln Leu Val Glu Ser
Glu Asp Val Met Ser145 150 155
160Gly Asn Glu Lys Lys Leu His Ser Glu Glu Gly Val Leu Tyr Asp Glu
165 170 175Glu Asp Ile Phe
Gly Met Pro Gly Leu Leu Ala Asn Met Ala Glu Gly 180
185 190Met Leu Leu Ser Pro Pro Glu Cys Ser Gly Asp
Ile Tyr Ala Gly Glu 195 200 205Asp
Asn Gly Asn Leu Asp Ala Tyr Ala Ser Leu Trp Ser Tyr Ser Met 210
215 22049199PRTMalus
domesticaERF_transcription_factor(1)..(199)MISC_FEATURE(197)..(197)Xaa =
any amino acid 49Met His Ala Thr Asn Thr Thr Thr Thr Ser Ser Ser Ser Thr
Thr Ser1 5 10 15Ile Val
Pro Gly Arg His Pro Thr Tyr Arg Gly Val Arg Arg Arg Ser 20
25 30Ser Gly Lys Trp Val Ser Glu Ile Arg
Glu Pro Lys Lys Pro Asn Arg 35 40
45Ile Trp Leu Gly Thr Phe Pro Thr Pro Glu Met Ala Ala Val Ala Tyr 50
55 60Asp Val Ala Ala Ile Ala Leu Lys Gly
Gln Asp Ala Glu Leu Asn Phe65 70 75
80Pro Asn Ser Ala Ser Ser Leu Pro Val Pro Ala Ser Thr Ser
Ser Arg 85 90 95Asp Ile
Gln Ala Ala Ala Ser Ser Ala Ala Ala Ala Met Gly Val Ala 100
105 110Ile Asp Arg Cys Ser Tyr Ser Arg Asp
Glu Val Gln Gly Gly His His 115 120
125Asn Val His Gln Ala His Lys Thr Val Asp Glu Asp Asp Arg Phe Val
130 135 140Leu Asn His Glu Phe Val Asp
Glu Asp Leu Ile Phe Asn Met Pro Asn145 150
155 160Val Leu Val Asn Met Ala Glu Gly Met Leu Leu Ser
Pro Pro Arg Leu 165 170
175Asp Ile Ala Gly Asp Asp Ala Ile Asp Ala Asp Gln Glu Gln Gly Asp
180 185 190Gln Asn Leu Trp Lys Xaa
Tyr 19550211PRTGenlisea aureaERF_transcription_factor(1)..(211)
50Met Glu Pro His His Val Ala Lys Asp Lys Thr Asp Ser Pro Arg Val1
5 10 15Glu Ile Pro Asp Ala Asn
Arg Leu Ser Pro Pro Ala Val Ala Ser Pro 20 25
30Pro Ser Gly Arg His Pro Leu Tyr Arg Gly Ile Arg Thr
Arg Ser Gly 35 40 45Lys Trp Val
Ser Glu Ile Arg Glu Pro Arg Lys Thr Thr Arg Ile Trp 50
55 60Leu Gly Thr Tyr Thr Thr Ala Glu Met Ala Ala Ala
Ala Tyr Asp Val65 70 75
80Ala Thr Leu Ala Leu Lys Gly Pro Asp Ala Pro Leu Asn Phe Pro His
85 90 95Leu Ala Ser Ser Tyr Pro
Val Pro Ala Thr Leu Ser Ala Gly Asp Ile 100
105 110Arg Ala Ala Ala Ala Ala Ile Ala Thr Ser Gln Gln
Pro Lys Asn Pro 115 120 125Ser Asp
Gly Glu Thr Ser Asp Pro Ala Ala Ala Val Pro Leu Thr Asn 130
135 140Pro Ala Arg Ser Pro Ala Ile Ala Glu Glu Glu
Ile Phe Met Asp Glu145 150 155
160Glu Asp Ile Phe Glu Met Pro Lys Leu Met Ala Glu Met Ala Glu Gly
165 170 175Met Leu Leu Ser
Pro Pro Arg Ile Asn Leu Pro Ala Asp Glu Asp Glu 180
185 190Ser Thr Asp Ala Phe Ala Gly Asn Thr Ile Leu
Trp Thr Tyr Asn Ser 195 200 205Asp
Cys Lys 21051178PRTSolanum
lycopersicumERF_transcription_factor(1)..(178) 51Met Ala Ala Tyr His Phe
Asn Asp Asn Ser Pro Ser Leu Glu Asn Leu1 5
10 15Ser Pro Thr Gly Gly Gly Ser Ser Thr Arg His Pro
Asn Phe Arg Gly 20 25 30Ile
Arg Gln Arg Asn Gly Lys Trp Val Ser Glu Ile Arg Glu Pro Arg 35
40 45Lys Thr Thr Arg Ile Trp Leu Gly Thr
Phe Pro Ile Pro Glu Met Ala 50 55
60Ala Val Ala Tyr Asp Val Ala Ala Leu Ala Leu Lys Gly Pro Asp Ala65
70 75 80Gln Leu Asn Phe Pro
Asp Arg Ala Tyr Ser Tyr Pro Val Pro Ala Ser 85
90 95Leu Ser Ala Ala Asp Ile Arg Thr Ala Ala Ala
Asn Ala Ala Ala Ala 100 105
110Arg Ala Pro Pro Leu Ser Glu Ile Asn Thr Ala Ala Gly Gly Gly Gln
115 120 125Gly Gln Glu Phe Val Asp Glu
Glu Glu Ile Phe Gly Met Pro Lys Leu 130 135
140Leu Asp Asp Met Ala Glu Ala Met Leu Val Ser Pro Pro Arg Met
His145 150 155 160Gln Tyr
Asp Glu Ser Pro Glu Asn Ser Asp Ala Asp Ser Leu Trp Gly
165 170 175Tyr Pro52185PRTCamelina
sativaERF_transcription_factor(1)..(185) 52Met Gln Gly Thr Ser Lys Asp
Asn Gly Gly Arg His Pro Met Tyr Arg1 5 10
15Gly Val Arg Gln Arg Arg Asn Ser Asp Lys Trp Val Ser
Glu Ile Arg 20 25 30Glu Pro
Arg Lys Pro Asn Arg Ile Trp Leu Gly Thr Phe Ser Thr Pro 35
40 45Glu Met Ala Ala Ile Ala Tyr Asp Val Ala
Ala Leu Ala Leu Lys Gly 50 55 60Thr
Gln Ala Glu Leu Asn Phe Pro Asn Ser Val Ser Ser Leu Pro Val65
70 75 80Pro Ala Ser Met Ser Pro
Gly Asp Ile Gln Ala Ala Ala Ala Ser Ala 85
90 95Ala Ala Ala Phe Gly Ala Ala Arg Asp Ala Ile Val
Met Ala Asn Asn 100 105 110Asn
Ser Glu Thr Ser Gly Val Val Ser Met Asn Asp Ser Tyr Glu Asn 115
120 125Thr Asn Met Asn Glu Phe Met Asp Asp
Asp Leu Val Phe Asp Met Pro 130 135
140Asn Val Leu Met Asn Met Ala Glu Gly Met Leu Leu Ser Pro Pro Arg145
150 155 160Pro Ser Ala Phe
Asp Ala Ala Tyr Tyr Asp Ala Asp Gly Phe Thr Gly 165
170 175Gly Asp Asp Tyr Leu Trp Asn Phe Pro
180 18553188PRTGlycine
maxERF_transcription_factor(1)..(188) 53Met Arg Ser Ser Asn Gly Ala Ser
Ser Ser Arg Ala Ser Asn Ala Asn1 5 10
15Thr Gly Arg His Pro Val Tyr Arg Gly Val Arg Arg Arg Ser
Ser Gly 20 25 30Lys Trp Val
Ser Glu Ile Arg Glu Pro Lys Lys Pro Asn Arg Ile Trp 35
40 45Leu Gly Thr Phe Ala Thr Pro Glu Met Ala Ala
Ile Ala Tyr Asp Val 50 55 60Ala Ala
Leu Ala Leu Lys Gly Lys Asp Ala Glu Leu Asn Phe Pro Asn65
70 75 80Ser Ala Ser Ser Leu Pro Val
Pro Thr Ser Ser Ala Ala Arg Asp Ile 85 90
95Gln Met Ala Ala Ala Ser Ala Ala Ala Ala Val Gly Ala
Ala Asn Asp 100 105 110Ala Leu
Glu Gly Ser Arg Gly Gly Asn Ala Ser Val Ser Leu Thr Glu 115
120 125Glu Phe Ser Gly Gly Asn Leu Asn His Phe
Val Asp Glu Asp Leu Ile 130 135 140Phe
Asp Met Pro Asn Ile Leu Val Asn Met Ala Glu Gly Met Leu Leu145
150 155 160Ser Pro Pro Arg Phe Asp
Asn Phe Ala Ala Thr Asp Tyr Glu Tyr Met 165
170 175Asp Glu Asp Pro Asn Leu Trp Gly Phe Pro Asn Tyr
180 185541404DNASynechococcus
elongatusictB(1)..(1404) 54atgacagtgt ggcagacact cacattcgct cattaccagc
ctcagcagtg gggccattct 60tctttcctcc ataggctctt cggctctctc agggcttgga
gggcttcttc tcagctcctc 120gtgtggtctg aggctctcgg cggcttcctc ctcgctgtgg
tgtacggctc tgctcctttc 180gtgccttctt ctgctctcgg cctcggcctc gctgctattg
ctgcttactg ggctctcctc 240tctctcacag atattgatct caggcaggct acacctattc
attggctcgt gctcctctac 300tggggcgtgg atgctctcgc tacaggcctc tctcctgtga
gggctgctgc tctcgtgggc 360ctcgctaagc tcacactcta cctcctcgtg ttcgctctcg
ctgctagggt gctcaggaat 420cctaggctca ggtctctcct cttctctgtg gtggtgatta
catctctctt cgtgtctgtg 480tacggcctca accaatggat ttacggcgtg gaggagctcg
ctacatgggt ggataggaat 540tctgtggctg atttcacatc tagggtgtac tcttacctcg
gcaatcctaa tctcctcgct 600gcttacctcg tgcctacaac agctttctct gctgctgcta
ttggcgtgtg gaggggctgg 660ctccctaagc tcctcgctat tgctgctaca ggcgcttctt
ctctctgcct cattctcaca 720tactctaggg gcggctggct cggcttcgtg gctatgattt
tcgtgtgggc tctcctcggc 780ctctactggt tccagcctag gctccctgct ccttggagga
ggtggctctt ccctgtggtg 840ctcggcggcc tcgtggctgt gctcctcgtg gctgtgctcg
gcctcgagcc tctcagggtg 900agggtgctct ctattttcgt gggcagggag gattcttcta
ataatttcag gattaatgtg 960tggctcgctg tgctccagat gattcaggat aggccttggc
tcggcattgg ccctggcaat 1020acagctttca atctcgtgta ccctctctac cagcaggcta
ggttcacagc tctctctgct 1080tactctgtgc ctctcgaggt ggctgtggag ggcggcctcc
tcggcctcac agctttcgct 1140tggctcctcc tcgtgacagc tgtgacagct gtgcgccagg
tgtctaggct caggagggat 1200aggaatcctc aggctttctg gctcatggct tctctcgctg
gcctcgctgg catgctcggc 1260catggcctct tcgatacagt gctctacagg cctgaggctt
ctacactctg gtggctctgc 1320attggcgcta ttgcttcttt ctggcagcct cagccttcta
agcagctccc tcctgaggct 1380gagcattctg atgagaagat gtga
140455467PRTSynechococcus elongatusictB(1)..(467)
55Met Thr Val Trp Gln Thr Leu Thr Phe Ala His Tyr Gln Pro Gln Gln1
5 10 15Trp Gly His Ser Ser Phe
Leu His Arg Leu Phe Gly Ser Leu Arg Ala 20 25
30Trp Arg Ala Ser Ser Gln Leu Leu Val Trp Ser Glu Ala
Leu Gly Gly 35 40 45Phe Leu Leu
Ala Val Val Tyr Gly Ser Ala Pro Phe Val Pro Ser Ser 50
55 60Ala Leu Gly Leu Gly Leu Ala Ala Ile Ala Ala Tyr
Trp Ala Leu Leu65 70 75
80Ser Leu Thr Asp Ile Asp Leu Arg Gln Ala Thr Pro Ile His Trp Leu
85 90 95Val Leu Leu Tyr Trp Gly
Val Asp Ala Leu Ala Thr Gly Leu Ser Pro 100
105 110Val Arg Ala Ala Ala Leu Val Gly Leu Ala Lys Leu
Thr Leu Tyr Leu 115 120 125Leu Val
Phe Ala Leu Ala Ala Arg Val Leu Arg Asn Pro Arg Leu Arg 130
135 140Ser Leu Leu Phe Ser Val Val Val Ile Thr Ser
Leu Phe Val Ser Val145 150 155
160Tyr Gly Leu Asn Gln Trp Ile Tyr Gly Val Glu Glu Leu Ala Thr Trp
165 170 175Val Asp Arg Asn
Ser Val Ala Asp Phe Thr Ser Arg Val Tyr Ser Tyr 180
185 190Leu Gly Asn Pro Asn Leu Leu Ala Ala Tyr Leu
Val Pro Thr Thr Ala 195 200 205Phe
Ser Ala Ala Ala Ile Gly Val Trp Arg Gly Trp Leu Pro Lys Leu 210
215 220Leu Ala Ile Ala Ala Thr Gly Ala Ser Ser
Leu Cys Leu Ile Leu Thr225 230 235
240Tyr Ser Arg Gly Gly Trp Leu Gly Phe Val Ala Met Ile Phe Val
Trp 245 250 255Ala Leu Leu
Gly Leu Tyr Trp Phe Gln Pro Arg Leu Pro Ala Pro Trp 260
265 270Arg Arg Trp Leu Phe Pro Val Val Leu Gly
Gly Leu Val Ala Val Leu 275 280
285Leu Val Ala Val Leu Gly Leu Glu Pro Leu Arg Val Arg Val Leu Ser 290
295 300Ile Phe Val Gly Arg Glu Asp Ser
Ser Asn Asn Phe Arg Ile Asn Val305 310
315 320Trp Leu Ala Val Leu Gln Met Ile Gln Asp Arg Pro
Trp Leu Gly Ile 325 330
335Gly Pro Gly Asn Thr Ala Phe Asn Leu Val Tyr Pro Leu Tyr Gln Gln
340 345 350Ala Arg Phe Thr Ala Leu
Ser Ala Tyr Ser Val Pro Leu Glu Val Ala 355 360
365Val Glu Gly Gly Leu Leu Gly Leu Thr Ala Phe Ala Trp Leu
Leu Leu 370 375 380Val Thr Ala Val Thr
Ala Val Arg Gln Val Ser Arg Leu Arg Arg Asp385 390
395 400Arg Asn Pro Gln Ala Phe Trp Leu Met Ala
Ser Leu Ala Gly Leu Ala 405 410
415Gly Met Leu Gly His Gly Leu Phe Asp Thr Val Leu Tyr Arg Pro Glu
420 425 430Ala Ser Thr Leu Trp
Trp Leu Cys Ile Gly Ala Ile Ala Ser Phe Trp 435
440 445Gln Pro Gln Pro Ser Lys Gln Leu Pro Pro Glu Ala
Glu His Ser Asp 450 455 460Glu Lys
Met46556606DNABrachypodium distachyonERF_Transcription_Factor(1)..(606)
56atgtctgagc atggcggctc ttctggcaag catcctttct acaggggcat taggtctagg
60tgcggcaagt gggtgtctga gattagggag cctaggaagg ctaggaggat ttggctcggc
120acattcccta cacctgagat ggctgctgtg gcttacgatg tggctgctag ggctctcagg
180ggccctgatg ctgctctcaa tttccctgct attgctgctt ctaggcctgc tcctgcttct
240acatctgctg atgatattag ggctgctgct gctgctgctg ctgcttctct cgctggcggc
300ggcggcattg ctcctcctgg cggcgctgct ggctctgctg tgcagcagca gcagcagttc
360ggcggcggct ctggcacagc tgctggctct gaggaggctg cttctattgg cgctaattac
420tacaatgtga atcagcagca gcagtacttc ctcgatgagg aggctctctt cgagacacct
480cagttcctca ggtctatggc tgctggcatg atgatgtctc ctcctaggct ctctcctgat
540tcttctgatg agtctcctga tccttctgag gctggcgagt ctctctggtc ttacagggat
600ccttga
60657201PRTBrachypodium distachyonERF_Transcription_Factor(1)..(201)
57Met Ser Glu His Gly Gly Ser Ser Gly Lys His Pro Phe Tyr Arg Gly1
5 10 15Ile Arg Ser Arg Cys Gly
Lys Trp Val Ser Glu Ile Arg Glu Pro Arg 20 25
30Lys Ala Arg Arg Ile Trp Leu Gly Thr Phe Pro Thr Pro
Glu Met Ala 35 40 45Ala Val Ala
Tyr Asp Val Ala Ala Arg Ala Leu Arg Gly Pro Asp Ala 50
55 60Ala Leu Asn Phe Pro Ala Ile Ala Ala Ser Arg Pro
Ala Pro Ala Ser65 70 75
80Thr Ser Ala Asp Asp Ile Arg Ala Ala Ala Ala Ala Ala Ala Ala Ser
85 90 95Leu Ala Gly Gly Gly Gly
Ile Ala Pro Pro Gly Gly Ala Ala Gly Ser 100
105 110Ala Val Gln Gln Gln Gln Gln Phe Gly Gly Gly Ser
Gly Thr Ala Ala 115 120 125Gly Ser
Glu Glu Ala Ala Ser Ile Gly Ala Asn Tyr Tyr Asn Val Asn 130
135 140Gln Gln Gln Gln Tyr Phe Leu Asp Glu Glu Ala
Leu Phe Glu Thr Pro145 150 155
160Gln Phe Leu Arg Ser Met Ala Ala Gly Met Met Met Ser Pro Pro Arg
165 170 175Leu Ser Pro Asp
Ser Ser Asp Glu Ser Pro Asp Pro Ser Glu Ala Gly 180
185 190Glu Ser Leu Trp Ser Tyr Arg Asp Pro
195 20058858DNABrachypodium
distachyonERF_Transcription_Factor(1)..(858) 58atggctgagc ctgagcagcc
ttctgctcct tcttcttctg ctcctgctcc tcctcagctc 60caggtggctg ctgataataa
tcctacaaca gtggatgagt gctctgatcc tggcggcaat 120tctgctgctt cttctgctca
ttctcctgct cctgctcctc agcagctcgc tagggatgat 180acagtgggca ttattacaac
agctatgggc gctgctgctg ctgctacatc ttcttctggc 240gagccttctc ctaggtctac
aggcaggcat cctttctaca ggggcattag gtgcaggaat 300ggcaagtggg tgtctgagat
tagggagcct aggaaggcta ggaggatttg gctcggcaca 360taccctacag ctgagatggc
tgctgctgct tacgatgtgg ctgctagggc tctcaggggc 420cctgatgctg tgctcaattt
ccctggcgct acagctacaa ggcctgctcc tgcttctgct 480tctcctgagg atattagggc
tgctgctgct gctgctgctg ctgctctcca gcctattatt 540gataagcctg gcgctagggc
tcctgaggct gatgctgctg ctgctgatcc tgctgctgct 600gctgagcagg tgcagaggca
tcatgatcag acaggctctg ctgctgctgg cggcgatgag 660cctaggcaga aggagattgg
caatgagggc gaggagttca tggatgagga ggctattttc 720gagatgcctc agatgctcag
gaatatggct gctggcatga tgatgtctcc tcctaggctc 780tctcctacag cttctgatga
gtggcctgct gatccttctg gcgctggcga gtctctctgg 840tcttaccatg atccttga
85859285PRTBrachypodium
distachyonERF_Transcription_Factor(1)..(285) 59Met Ala Glu Pro Glu Gln
Pro Ser Ala Pro Ser Ser Ser Ala Pro Ala1 5
10 15Pro Pro Gln Leu Gln Val Ala Ala Asp Asn Asn Pro
Thr Thr Val Asp 20 25 30Glu
Cys Ser Asp Pro Gly Gly Asn Ser Ala Ala Ser Ser Ala His Ser 35
40 45Pro Ala Pro Ala Pro Gln Gln Leu Ala
Arg Asp Asp Thr Val Gly Ile 50 55
60Ile Thr Thr Ala Met Gly Ala Ala Ala Ala Ala Thr Ser Ser Ser Gly65
70 75 80Glu Pro Ser Pro Arg
Ser Thr Gly Arg His Pro Phe Tyr Arg Gly Ile 85
90 95Arg Cys Arg Asn Gly Lys Trp Val Ser Glu Ile
Arg Glu Pro Arg Lys 100 105
110Ala Arg Arg Ile Trp Leu Gly Thr Tyr Pro Thr Ala Glu Met Ala Ala
115 120 125Ala Ala Tyr Asp Val Ala Ala
Arg Ala Leu Arg Gly Pro Asp Ala Val 130 135
140Leu Asn Phe Pro Gly Ala Thr Ala Thr Arg Pro Ala Pro Ala Ser
Ala145 150 155 160Ser Pro
Glu Asp Ile Arg Ala Ala Ala Ala Ala Ala Ala Ala Ala Leu
165 170 175Gln Pro Ile Ile Asp Lys Pro
Gly Ala Arg Ala Pro Glu Ala Asp Ala 180 185
190Ala Ala Ala Asp Pro Ala Ala Ala Ala Glu Gln Val Gln Arg
His His 195 200 205Asp Gln Thr Gly
Ser Ala Ala Ala Gly Gly Asp Glu Pro Arg Gln Lys 210
215 220Glu Ile Gly Asn Glu Gly Glu Glu Phe Met Asp Glu
Glu Ala Ile Phe225 230 235
240Glu Met Pro Gln Met Leu Arg Asn Met Ala Ala Gly Met Met Met Ser
245 250 255Pro Pro Arg Leu Ser
Pro Thr Ala Ser Asp Glu Trp Pro Ala Asp Pro 260
265 270Ser Gly Ala Gly Glu Ser Leu Trp Ser Tyr His Asp
Pro 275 280
28560750DNABrachypodium distachyonERF_Transcription_Factor(1)..(750)
60atgcctgagc aggatgtgtg ctctcctgct tcttctggcg gctctggcac aacatcttct
60tctcctcctg cttctcctgg cttcggctct aataggaggg ctagggatga tggcgtgggc
120ggcggcaggc atccttctta caggggcgtg aggatgaggg cttggggcaa gtgggtgtct
180gagattaggg agcctaggaa gaagtctagg atttggctcg gcacattccc tacacctgag
240atggctgcta gggctcatga tgctgctgct ctcgtggtga agggccctgc tgctgtgctc
300aatttccctg atctcgcttc taggctccct aggcctgctt cttcttctcc tagggatgtg
360caggctgctg ctgtgagggc tgctgctatg gatatgggcc atctccatca tcagcagcag
420cctgctgctg ctgctctctc tccttcttct cctgctcctg ctatgatgct ccagcagcct
480gtgatttctg ctgctgctga tgtggtggat gatctcgatg ctattttcga gctccctagg
540ctcgatgatg atgctacagg ccatgtgttc ggcggcctca caatggctga tcatcatcag
600cagtcttggt gcgatcctgt gtggatggat gatgatggct gctcttacgc tcaggaggat
660atgttcggct tcggcctcga tgctgctgtg gatcagtacc atggctgggg cgctccttct
720tctgtgtctg ctctcctctg gaatctctga
75061249PRTBrachypodium distachyonERF_Transcription_Factor(1)..(249)
61Met Pro Glu Gln Asp Val Cys Ser Pro Ala Ser Ser Gly Gly Ser Gly1
5 10 15Thr Thr Ser Ser Ser Pro
Pro Ala Ser Pro Gly Phe Gly Ser Asn Arg 20 25
30Arg Ala Arg Asp Asp Gly Val Gly Gly Gly Arg His Pro
Ser Tyr Arg 35 40 45Gly Val Arg
Met Arg Ala Trp Gly Lys Trp Val Ser Glu Ile Arg Glu 50
55 60Pro Arg Lys Lys Ser Arg Ile Trp Leu Gly Thr Phe
Pro Thr Pro Glu65 70 75
80Met Ala Ala Arg Ala His Asp Ala Ala Ala Leu Val Val Lys Gly Pro
85 90 95Ala Ala Val Leu Asn Phe
Pro Asp Leu Ala Ser Arg Leu Pro Arg Pro 100
105 110Ala Ser Ser Ser Pro Arg Asp Val Gln Ala Ala Ala
Val Arg Ala Ala 115 120 125Ala Met
Asp Met Gly His Leu His His Gln Gln Gln Pro Ala Ala Ala 130
135 140Ala Leu Ser Pro Ser Ser Pro Ala Pro Ala Met
Met Leu Gln Gln Pro145 150 155
160Val Ile Ser Ala Ala Ala Asp Val Val Asp Asp Leu Asp Ala Ile Phe
165 170 175Glu Leu Pro Arg
Leu Asp Asp Asp Ala Thr Gly His Val Phe Gly Gly 180
185 190Leu Thr Met Ala Asp His His Gln Gln Ser Trp
Cys Asp Pro Val Trp 195 200 205Met
Asp Asp Asp Gly Cys Ser Tyr Ala Gln Glu Asp Met Phe Gly Phe 210
215 220Gly Leu Asp Ala Ala Val Asp Gln Tyr His
Gly Trp Gly Ala Pro Ser225 230 235
240Ser Val Ser Ala Leu Leu Trp Asn Leu
24562579DNABrachypodium distachyonERF_Transcription_Factor(1)..(579)
62atggagatgc atgataatgc tgctggcatt gctgctgctg ctgctgctgc tgctgagcag
60tacaggggcg tgaggaagag gaagtggggc aagtgggtgt ctgagattag ggagcctggc
120aagaagacaa ggatttggct cggctctttc gagtctcctg agatggctgc tgtggctcat
180gatgtggctg ctctcaggct caggggcagg gatgctaggc tcaatttccc tggcctcgct
240catctcttca ggaggcctgc tacagctgag cctgatgatg tgagggctgc tgctctcgag
300gctgctgctc aggtgaggtt caggcctgat ctcgtgatgc agctccctgg ctctcatggc
360aatggcggcg gcgatggcgg ctctcctgag tacaggctcg atgatgtggc ttgggatgtg
420gtgctcggcg ctgatgatct cgaggctcag tctcctaata tgtgggctga gctcgctgag
480gctatgctcc tcgctcctcc tgtgtggggc ggcggcgctg tggataatga tgattgggct
540cagggctctc tctgggagcc ttcttgctgg tcttactga
57963192PRTBrachypodium distachyonERF_Transcription_Factor(1)..(192)
63Met Glu Met His Asp Asn Ala Ala Gly Ile Ala Ala Ala Ala Ala Ala1
5 10 15Ala Ala Glu Gln Tyr Arg
Gly Val Arg Lys Arg Lys Trp Gly Lys Trp 20 25
30Val Ser Glu Ile Arg Glu Pro Gly Lys Lys Thr Arg Ile
Trp Leu Gly 35 40 45Ser Phe Glu
Ser Pro Glu Met Ala Ala Val Ala His Asp Val Ala Ala 50
55 60Leu Arg Leu Arg Gly Arg Asp Ala Arg Leu Asn Phe
Pro Gly Leu Ala65 70 75
80His Leu Phe Arg Arg Pro Ala Thr Ala Glu Pro Asp Asp Val Arg Ala
85 90 95Ala Ala Leu Glu Ala Ala
Ala Gln Val Arg Phe Arg Pro Asp Leu Val 100
105 110Met Gln Leu Pro Gly Ser His Gly Asn Gly Gly Gly
Asp Gly Gly Ser 115 120 125Pro Glu
Tyr Arg Leu Asp Asp Val Ala Trp Asp Val Val Leu Gly Ala 130
135 140Asp Asp Leu Glu Ala Gln Ser Pro Asn Met Trp
Ala Glu Leu Ala Glu145 150 155
160Ala Met Leu Leu Ala Pro Pro Val Trp Gly Gly Gly Ala Val Asp Asn
165 170 175Asp Asp Trp Ala
Gln Gly Ser Leu Trp Glu Pro Ser Cys Trp Ser Tyr 180
185 19064516DNABrachypodium
distachyonERF_Transcription_Factor(1)..(516) 64atggataata atttcagggc
tgctccttct gctcctcagt acaggggcgt gaggaggagg 60aagtggggca ggtgggtgtc
tgagattagg cagcctggca caaagctcag ggtgtggctc 120ggctctttcg atacagctga
gatggctgct gtggctcatg atgtggctgc tctcaggctc 180aggggcgcta gggatgctca
gctcaatttc cctggctctg tgggctggct ccctcagcct 240cctacaacag atcctacaga
tattagggct gctgctgctg aggctgctga gagggtgagg 300agggagcctg ctctcgtgtc
tgctgctgct aatacaacaa ttacaattaa tcctggcgag 360ttcgatgatg atcagctcga
gtctcctaag ctctgggatc agatggctga ggctatgctc 420ctcgatcctc ctaggtgggg
ccaggatggc tctggcggcg atgctgctga gtcttctcat 480tcttggcctc agggctctct
ctgggatggc tgctga 51665171PRTBrachypodium
distachyonERF_Transcription_Factor(1)..(171) 65Met Asp Asn Asn Phe Arg
Ala Ala Pro Ser Ala Pro Gln Tyr Arg Gly1 5
10 15Val Arg Arg Arg Lys Trp Gly Arg Trp Val Ser Glu
Ile Arg Gln Pro 20 25 30Gly
Thr Lys Leu Arg Val Trp Leu Gly Ser Phe Asp Thr Ala Glu Met 35
40 45Ala Ala Val Ala His Asp Val Ala Ala
Leu Arg Leu Arg Gly Ala Arg 50 55
60Asp Ala Gln Leu Asn Phe Pro Gly Ser Val Gly Trp Leu Pro Gln Pro65
70 75 80Pro Thr Thr Asp Pro
Thr Asp Ile Arg Ala Ala Ala Ala Glu Ala Ala 85
90 95Glu Arg Val Arg Arg Glu Pro Ala Leu Val Ser
Ala Ala Ala Asn Thr 100 105
110Thr Ile Thr Ile Asn Pro Gly Glu Phe Asp Asp Asp Gln Leu Glu Ser
115 120 125Pro Lys Leu Trp Asp Gln Met
Ala Glu Ala Met Leu Leu Asp Pro Pro 130 135
140Arg Trp Gly Gln Asp Gly Ser Gly Gly Asp Ala Ala Glu Ser Ser
His145 150 155 160Ser Trp
Pro Gln Gly Ser Leu Trp Asp Gly Cys 165
170
User Contributions:
Comment about this patent or add new information about this topic: