Patent application title: BIOMARKERS FOR DISEASE PROGRESSION IN MELANOMA
Inventors:
IPC8 Class: AG01N33574FI
USPC Class:
1 1
Class name:
Publication date: 2020-01-16
Patent application number: 20200018756
Abstract:
The present invention relates inter alia to therapeutic agents for use in
the treatment of melanoma, methods of diagnosing an increased risk of
metastasis in a subject suffering from melanoma, methods of treating such
subjects, diagnostic assays and kits. More particularly, in certain
embodiments the invention relates to identifying whether a subject
suffering from melanoma has an increased risk of metastasis by
determining the expression of Ambra-1 and Loricrin in a tissue sample
obtained from the subject.Claims:
1. A method comprising: a) obtaining tissue overlying a primary melanoma
from a subject suffering from melanoma; b) determining the expression of
Ambra-1 and Loricrin in the tissue overlying a primary melanoma; c)
comparing the expression obtained in (b) with a reference tissue or
levels obtained therefrom, and d) (i) following a normal recognized care
pathway if expression of Ambra-1 and Loricrin is normal or increased, or
(ii) treating the subject with a systemic anti-cancer treatment regime if
expression of Ambra-1 and Loricrin is decreased or lost.
2. The method of claim 1, wherein the method comprises detecting a co-occurrence of a decrease in the expression of Ambra-1 and a decrease in Loricrin in the tissue sample compared to the reference levels, or a loss of expression of Ambra-1 and a loss of expression of Loricrin in the tissue sample.
3. The method according to claim 1, wherein the systemic anti-cancer treatment regime is for preventing, inhibiting or delaying metastasis or decreasing the risk of metastasis in the subject.
4. The method according to claim 1, wherein the systemic anti-cancer treatment regime comprises administering a therapeutic agent to the subject.
5. A method of treating a subject suffering from melanoma, the method comprising administering a therapeutic agent to the subject, wherein the subject has been identified as having decreased or loss of expression of Ambra-1 and Loricrin in a tissue sample obtained from the subject.
6. The method according to claim 5, wherein the method is for preventing, inhibiting or delaying metastasis or decreasing the risk of metastasis in the subject.
7. The method according to claim 5, wherein the subject, prior to identification, was ineligible for therapeutic agent treatment.
8. The method according to claim 4, wherein: (i) the therapeutic agent is administered to the subject no more than 12 weeks after the subject has been identified as having decreased or loss of expression of Ambra-1 and Loricrin in the tissue sample; or (ii) the therapeutic agent is a chemotherapeutic agent such as Dacarbazine (DTIC), Temozolomide, Nab-paclitaxel, Paclitaxel, Carmustine (BCNU), Cisplatin, Carboplatin, Vinblastine, interleukin 2, interferon alpha, antibodies or B-Raf inhibitors.
9. A method of treating melanoma in a subject, the method comprising: (a) determining the expression of Ambra-1 and Loricrin in tissue overlying a primary melanoma from the subject; (b) comparing the expression obtained in (a) with a reference tissue or levels obtained therefrom, and if there is a decrease in the expression of Ambra-1 and Loricrin in the tissue sample compared to the reference tissue or levels, or a loss of expression of Ambra-1 and Loricrin, administering a therapeutic agent to the subject.
10. The method of claim 9, wherein the method comprises detecting a co-occurrence of a decrease in the expression of Ambra-1 and a decrease in Loricrin in the tissue sample compared to the reference levels, or a loss of expression of Ambra-1 and a loss of expression of Loricrin in the tissue sample.
11. The method according to claim 9, wherein: (i) the therapeutic agent is administered to the subject no more than 12 weeks after the step of determining a decrease or loss of expression of Ambra-1 and Loricrin in the tissue sample; or (ii) the therapeutic agent is a chemotherapeutic agent such as Dacarbazine (DTIC), Temozolomide, Nab-paclitaxel, Paclitaxel, Carmustine (BCNU), Cisplatin, Carboplatin, Vinblastine, interleukin 2, interferon alpha, antibodies and B-Raf inhibitors.
12. The method according to claim 1, wherein the reference levels are levels of Ambra-1 and Loricrin expression that are characteristic of normal tissue.
13. The method according to claim 1, wherein the reference tissue comprises normal tissue.
14. The method according to claim 13, wherein the normal tissue is epidermis from a site which does not include a primary melanoma.
15. The method according to claim 13, wherein the reference tissue is an internal reference.
16. The method according to claim 13, wherein the normal tissue is from a site adjacent to the primary melanoma.
17. The method according to claim 1, wherein the tissue sample comprises tissue overlying a primary melanoma and a portion of normal epidermis adjacent to the primary melanoma.
18. The method according to claim 1, wherein the expression of Ambra-1 and Loricrin in the tissue sample is from about 25% to about 75% of the respective reference level or less than about 25% of the respective reference level.
19. The method according to claim 1, wherein the expression of Ambra-1 and Loricrin in the tissue sample is determined by visual assessment or by an automatic slide scanner.
20. The method according to claim 1, wherein determining the expression of Ambra-1 and Loricrin in tissue overlying a primary melanoma comprises: contacting tissue overlying a primary melanoma with a first ligand specific for Ambra-1, wherein the presence of Ambra-1 creates an Ambra-1-ligand complex; contacting the tissue overlying a primary melanoma with a second ligand specific for Loricrin, wherein the presence of Loricrin creates a Loricrin-ligand complex; and detecting and/or quantifying the Ambra-1-ligand complex and the Loricrin-ligand complex.
21. The method according to claim 20, wherein the method comprises contacting a first section of the tissue sample with the first ligand and contacting a second section of the tissue sample with the second ligand.
22. The method of claim 20, wherein the first ligand comprises an anti-Ambra-1 antibody or aptamer and the second ligand comprises an anti-Loricrin antibody or aptamer.
23. The method according to claim 1, wherein the tissue sample comprises keratinocytes overlying the primary melanoma and the method comprises determining the expression of Ambra-1 and Loricrin in the keratinocytes.
24. The method according to claim 1, wherein the subject is suffering from American Joint Commission on Cancer (AJCC) stage 1a, stage 1b, stage 2a, stage 2b or stage 2c melanoma.
25. The method according to claim 1, wherein the subject is a human or animal.
Description:
PRIORITY CLAIM TO RELATED APPLICATIONS
[0001] This application is a divisional and claims the benefit of priority of U.S. application Ser. No. 15/525,655, filed 10 May 2017, which is a U.S. national stage application filed under 35 U.S.C. .sctn. 371 from International Application Serial No. PCT/GB2015/053347, which was filed 5 Nov. 2015, and published as WO2016/075440 on 19 May 2016, and which claims priority to United Kingdom Application No. 1419976.4, filed 10 Nov. 2014, which applications and publication are incorporated by reference as if reproduced herein and made a part hereof in their entirety, and the benefit of priority of each of which is claimed herein.
FIELD OF THE INVENTION
[0002] The present invention relates inter alis, to therapeutic agents for use in the treatment of melanoma, methods of diagnosing an increased risk of metastasis in a subject suffering from melanoma, methods of treating such subjects, diagnostic assays and kits. More particularly, in certain embodiments the invention relates to identifying whether a subject suffering from melanoma has an increased risk of metastasis by determining the expression of Ambra-1 and Loricrin in a tissue sample obtained from the subject.
BACKGROUND TO THE INVENTION
[0003] Melanoma is responsible for only 2.3% of all skin cancers, but it is the most life threatening form, being responsible for over 75% of skin cancer deaths. Cutaneous melanoma is currently a major public health concern due to rising incident rates worldwide, claiming the lives of more than 2000 individuals in the UK alone each year. The rate of increase is higher than for any other cancer and it has been likened to an epidemic. Some of the increase may be due to improvements in surveillance and early detection as well as changes in diagnostic criteria, however, it is considered that a substantial proportion of the increase is real. The increase has been linked to a rise in sun exposure and/or increased used of artificial sunbeds.
[0004] European age-standardized incident rates have increased 4-fold for woman and 7-fold for men over the last 30 years. Melanoma is now the fifth most common cancer in the UK, accounting for 4% of all new cancer cases. Mortality rates have also increased, but at a rate disproportionately less than incidence, such that the ratio of deaths to patient cases as fallen steadily over the last 50 years. Even so, melanoma accounts for nearly 50,000 deaths annually, worldwide.
[0005] Factors that affect prognosis include the thickness of the tumor in millimeters (Breslow's depth), the depth related to skin structures (Clark level), the type of melanoma, the presence of metastasis and the presence of ulceration. Primary melanomas which demonstrate epidermal ulceration at the time of diagnosis predicts increased rates of metastasis and poorer outcomes compared to non-ulcerated tumours. However, the underlying biology of ulceration remains enigmatic.
[0006] Treatment of early stage (AJCC stage 1a or 1b) melanoma involves the removal of the tissue surrounding the melanoma, known as a wide local excision. This is typically followed by regular examination of the patient for the recurrence of disease over a period of 1-5 years. Therapy, such as chemotherapy, is not given to patients with early stage melanoma.
[0007] For patients with thicker tumours (AJCC stage 2a, 2b or 2c) a wide local excision may be followed by a sentinel lymph node biopsy to determine whether the disease has spread to the lymph nodes. If it has, a lymph node dissection may be performed. Treatment after surgery to help prevent the melanoma from returning or spreading is known as adjuvant therapy. Adjuvant therapy may be chemotherapy or biological therapy (e.g. interferon treatment). However, adjuvant therapy is generally only offered to patients with stage 2 melanoma as part of a clinical trial.
[0008] Chemotherapy, radiotherapy and/or biological therapy may be used to treat recurring melanomas in patients who have had a stage 2 tumour removed, to help control further metastatic progression in patients with disease confined to lymph nodes (stage 3) or to shrink melanomas in patients with advanced metastatic disease (AJCC stage 4) in order to reduce symptoms.
[0009] There remains a need to improve treatment of patients suffering from melanoma and to decrease the likelihood of progression to metastasis.
[0010] It is an aim of some embodiments of the present invention to at least partially mitigate some of the problems identified in the prior art.
SUMMARY OF CERTAIN EMBODIMENTS OF THE INVENTION
[0011] According to a first aspect of the present invention, there is provided a therapeutic agent for use in the treatment of melanoma in a subject, wherein said subject has been identified as having decreased or a loss of expression of Ambra-1 and Loricrin in a tissue sample obtained from the subject.
[0012] Ambra-1 (activating molecule in Beclin-1 regulated autophagy protein 1) is a WD40-containing protein. Studies have implicated Ambra-1 in the control of autophagy, in which Ambra-1 is believed to function as a protein-protein interacting platform. The main role of Ambra-1 during autophagy is thought to be as a member of the Beclin-1/VPS34 complex which is involved in the formation of PI3K rich membranes during the nucleation phase of autophagy. Studies have suggested that Ambra-1 also acts directly as an upstream regulator of autophagic activity. The amino acid sequence of Ambra-1 is shown in the Figures.
[0013] Ambra-1 has additionally been shown to play a role in cellular differentiation. Functional inactivation of Ambra-1 in a mouse model led to lethality in utero with severe neural tube defects associated with autophagic impairment and unbalanced cellular proliferation. Conversely, over expression of Ambra-1 has been shown to decrease cellular proliferation rates in neural tissue, thus supporting its role as a key player in epithelial proliferation.
[0014] Loricrin is a glycine-serine-cysteine-rich protein which, in humans, is encoded by the LOR gene. The LOR gene is part of a cluster of genes on chromosome 1 called the epidermal differentiation complex. These genes are involved in the formation and maintenance of the outer layer of skin (the epidermis), particularly its tough outer surface (the stratum corneum). The stratum corneum, which is formed in a process known as cornification, provides a sturdy barrier between the body and its environment. Each cell of the stratum corneum, called a corneocyte, is surrounded by a protein shell called a cornified envelope (CE). Loricrin is the predominant protein of the cornified envelope. Links between Loricrin and other components of the envelopes hold the corneocytes together and help give the stratum corneum its strength. The amino acid sequence of Loricrin is shown in the Figures.
[0015] According to a second aspect of the present invention, there is provided a therapeutic agent for use in the treatment of melanoma in a subject, wherein said subject has been identified as having an increased risk of metastasis, wherein identification of the increased risk is determined by:
[0016] (i) determining the expression of Ambra-1 and Loricrin in a tissue sample obtained from the subject, wherein the tissue sample comprises tissue overlying a primary melanoma; and
[0017] (ii) comparing the expression obtained in (i) with a reference tissue or levels obtained therefrom; wherein a decrease in the expression of Ambra-1 and Loricrin in the tissue sample compared to the reference tissue or levels or a loss of expression of Ambra-1 and Loricrin in the tissue sample is indicative of an increased risk of metastasis in the subject.
[0018] It will be appreciated that, in some embodiments, comparison of the expression of Ambra-1 and Loricrin in the tissue sample with a reference may not be required, for example where a loss of expression is determined. Thus, in certain embodiments, a decrease or loss of expression of Ambra-1 and Loricrin is apparent without having to compare the expression to a reference tissue.
[0019] According to a third aspect of the present invention, there is provided a therapeutic agent for use to prevent or reduce the likelihood of progression to metastasis in a subject suffering from melanoma and who has been identified as being at increased risk of progressing to metastasis, wherein said identification comprises determining that the subject has decreased or a loss of expression of Ambra-1 and Loricrin in keratinocytes overlying a primary melanoma of the subject.
[0020] According to a fourth aspect of the present invention, there is provided an in vitro method for determining whether a subject with melanoma has an increased risk of metastasis, the method comprising:
[0021] (i) determining the expression of Ambra-1 and Loricrin in a tissue sample obtained from the subject, wherein the tissue sample comprises tissue overlying a primary melanoma; and
[0022] (ii) comparing the expression obtained in (i) with a reference tissue or levels obtained therefrom, wherein a decrease in the expression of Ambra-1 and Loricrin in the tissue sample compared to the reference tissue or levels or a loss of expression of Ambra-1 and Loricrin in the tissue sample is indicative of an increased risk of metastasis.
[0023] According to a fifth aspect of the present invention, there is provided a method of determining a treatment regime for a subject suffering from melanoma, the method comprising:
[0024] a) obtaining a tissue sample from the subject, wherein the tissue sample comprises tissue overlying a primary melanoma;
[0025] b) determining the expression of Ambra-1 and Loricrin in the tissue sample;
[0026] c) comparing the expression obtained in (b) with a reference tissue or levels obtained therefrom, and
[0027] d) (i) if expression of Ambra-1 and Loricrin is normal or increased, following a normal recognized care pathway, or
[0028] (ii) if expression of Ambra-1 and Loricrin is decreased or lost, treating the subject with a systemic anti-cancer treatment regime.
[0029] According to a sixth aspect of the present invention, there is provided a method of treating a subject suffering from melanoma, the method comprising administering a therapeutic agent to the subject, wherein the subject has been identified as having decreased or a loss of expression of Ambra-1 and Loricrin in a tissue sample obtained from the subject.
[0030] According to a seventh aspect of the present invention, there is provided a method of treating a subject suffering from melanoma, the method comprising:
[0031] (i) determining the expression of Ambra-1 and Loricrin in a tissue sample obtained from the subject, wherein the tissue sample comprises tissue overlying a primary melanoma;
[0032] (ii) comparing the expression obtained in (i) with a reference tissue or levels obtained therefrom, and if there is a decrease in the expression of Ambra-1 and Loricrin in the tissue sample compared to the reference tissue or levels, or a loss of expression of Ambra-1 and Loricrin in the tissue sample, administering a therapeutic agent to the subject.
[0033] According to an eighth aspect of the present invention, there is provided an in vitro assay for predicting an increased risk of metastasis of a subject suffering from melanoma, the assay comprising:
[0034] (i) contacting a tissue sample obtained from the subject with a first ligand specific for Ambra-1, wherein the presence of Ambra-1 creates an Ambra-1-ligand complex;
[0035] (ii) contacting the tissue sample with a second ligand specific for Loricrin, wherein the presence of Loricrin creates a Loricrin-ligand complex; and
[0036] (iii) detecting and/or quantifying the Ambra-1-ligand complex and the Loricrin-ligand complex.
[0037] The subject may be a human or an animal suffering from melanoma. In some embodiments, the subject is a human patient. In some embodiments, the subject has already been diagnosed as having melanoma.
[0038] In some embodiments the subject is suffering from AJCC stage 1, stage 2, stage 3 or stage 4 melanoma. In some embodiments, the subject is suffering from AJCC stage 1a, stage 1b, stage 2a, stage 2b or stage 2c melanoma. In some embodiments, the subject is suffering from AJCC stage 1a or stage 1b melanoma. In some embodiments, the methods described herein further comprise staging a primary tumour present in a tissue sample obtained from a subject in accordance with AJCC staging.
[0039] Treatment for early stage melanoma typically involves surgery to excise the tumour(s). Therapy is generally used to control the spread of metastases in the later stages of the disease, by which time the prognosis is typically poor. The identification of those subjects who are in the early stages of the disease but who are at a high or increased risk of metastasis would advantageously enable treatment to be tailored accordingly. For example, therapy could be administered to those subjects sooner than it might normally be administered, thereby inhibiting, preventing or delaying metastasis and improving the prognosis of those subject.
[0040] Thus, in some embodiments, the subject, prior to identification, is ineligible for therapeutic agent treatment. In certain embodiments, a subject can be put forward for a treatment regime at an earlier or less progressed stage as compared to the prior art methods of treating melanoma in which a patient is only treated with a therapeutic agent when they are suffering from AJCC stage 3 or 4 melanoma, or recurrence of disease after AJCC stage 2 or 3 melanoma.
[0041] In some embodiments, the subject has an ulcerated melanoma.
[0042] Unexpectedly, the present inventors have identified a correlation between the expression levels of both Ambra-1 and Loricrin and the likelihood of metastasis in a subject with melanoma. In particular, it is considered that a decrease in the level of expression, or a loss of expression, of both Ambra-1 and Loricrin indicates that the subject has an increased risk of metastasis.
[0043] As used herein, a decrease or loss in the expression of Ambra-1 and Loricrin will be understood as meaning that the level of expression of both Ambra-1 and Loricrin is less than about 75% of the respective reference level.
[0044] In some embodiments, a decrease in expression of Ambra-1 and Loricrin will be understood as meaning that the level of expression of both Ambra-1 and Loricrin is from about 25 to about 75% of the respective reference level. In some embodiments, a loss of expression of Ambra-1 and Loricrin will be understood as meaning that the level of expression of both Ambra-1 and Loricrin is less than about 25% of the reference level of the relevant protein. Normal expression is understood to mean that the expression of both Ambra-1 and Loricrin is greater than about 75% of the respective reference level.
[0045] Thus, in some embodiments, the expression level of Ambra-1 in the tissue sample is from about 25% to about 75% of the reference level. In some embodiments, the expression level of Ambra-1 is no greater than 75%, no greater than 70%, no greater than 60%, no greater than 50%, no greater than 40% or no greater than 30% of the reference level.
[0046] In some embodiments, the expression level of Loricrin in the tissue sample is from about 25% to about 75% of the reference level. In some embodiments, the expression level of Loricrin is no greater than 75%, no greater than 70%, no greater than 60%, no greater than 50%, no greater than 40% or no greater than 30% of the reference level.
[0047] In some embodiments, there is substantially no expression of Ambra-1 and/or Loricrin in the tissue sample. In certain embodiments, the expression of Ambra-1 and/or Loricrin is less than 25%.
[0048] In some embodiments, an increased risk of metastasis means a 7-year metastasis-free (also known as "disease-free") survival rate of less than 50%, for example less than 40%, for example less than 30%, for example less than 20%, for example less than 10% or less than 5% for example.
[0049] Accordingly, Ambra-1 and Loricrin can be considered to be biomarkers for disease progression of melanoma to metastasis. Thus, embodiments of the present invention may be considered as providing methods for predicting the progression of melanoma to metastasis in a subject. In some embodiments, the present invention further provides the use of Ambra-1 and Loricrin, in a tissue sample comprising tissue overlying a primary melanoma, as prognostic biomarkers for disease progression of melanoma to metastasis. Aptly, Ambra-1 and Loricrin can be considered to be biomarkers for stratifying subjects with melanoma into those more likely to develop metastasis and those less likely to develop metastasis. Advantageously, the methods of certain embodiments of the invention help to identify which subjects with melanoma are most likely to benefit from treatment with a therapeutic agent. Aptly, certain embodiments of the present invention may enable treatment with a therapeutic agent for a patient who would otherwise not have been eligible for treatment with a therapeutic agent.
[0050] Rather than determining the expression levels of biomarkers in the tumour itself, the methods of certain embodiments of the invention comprise determining the expression levels of Ambra-1 and Loricrin in tissue overlying a primary melanoma. Without being bound by theory, it is thought that reduced or loss of expression of these proteins may indicate a breakdown of the epidermis overlying, and the endothelial tissue lining blood vessel or lymphatics underlying, the tumour, suggesting that cancer cells may be able to, or may have already, migrated from the primary tumour. Such migration may lead to metastasis.
[0051] In some embodiments, the tissue sample comprises tissue overlying a primary melanoma. In some embodiments, the tissue sample comprises at least a portion of the peri-tumoural epidermis overlying the primary melanoma. In some embodiments, the tissue sample further comprises a portion of normal tissue adjacent to the primary melanoma. In some embodiments, the portion of normal tissue provides a reference. Aptly, the reference is a reference tissue and/or provides a reference level of Ambra-1 and Loricrin.
[0052] In some embodiments, the method comprises determining the expression levels of Ambra-1 and Loricrin in the epidermis. Keratinocytes are cells which constitute about 90% of the epidermis. Thus, in some embodiments, the tissue sample comprises keratinocytes overlying the primary melanoma. Aptly, the subject may be identified as being at increased risk of metastasis, wherein said identification comprises determining that the subject has a decrease or loss of expression of Ambra-1 and Loricrin in keratinocytes overlying the primary melanoma of the subject.
[0053] In some embodiments, the tissue sample has previously been obtained from the subject such that the sampling itself does not form a part of the methods of the invention. The sample may have been obtained immediately prior to the method, or a number of hours, days or weeks prior to the method. In other embodiments, a method of the invention may additionally comprise the step of obtaining the tissue sample from the subject.
[0054] Aptly, the expression of Ambra-1 and Loricrin in the tissue sample is compared to one or more references. Aptly, the reference is a tissue, or levels of expression obtained therefrom.
[0055] In some embodiments, the reference comprises levels of Ambra-1 and Loricrin expression that are characteristic of normal tissue. Aptly, reference levels of Loricrin and Ambra-1 may be obtained by determining the expression of Loricrin and Ambra-1 in a reference tissue. In some embodiments, the expression levels of Loricrin and Ambra-1 in a reference tissue are determined by visual or automated assessment.
[0056] In some embodiments, reference levels of Ambra-1 and Loricrin expression that are characteristic of normal tissue are obtained by determining expression levels in tissue samples obtained from one or more (e.g. a cohort) of healthy subjects.
[0057] In some embodiments, the reference tissue comprises normal tissue. In some embodiments, the normal tissue comprises epidermis from a site which does not include a primary melanoma. In some embodiments, the reference tissue (or levels obtained therefrom) is an internal reference (i.e. obtained from the subject). In some embodiments, the reference tissue is normal tissue obtained from a site adjacent to the primary melanoma. In other embodiments, the reference tissue is obtained from a site of the subject which is remote from the primary melanoma. Thus, in some embodiment, the reference level is the level of expression of Loricrin and/or Ambra-1 in normal tissue. The reference tissue is aptly taken from normal epidermis and the reference level is a level of expression in the keratinocytes of the normal epidermis. The expression of Ambra-1 and/or Loricrin in the reference tissue, for example to generate reference levels, can be determined using the methods described herein.
[0058] Aptly, the tissue sample may be a biopsy, or a section thereof, obtained from the subject. A tissue sample, such as a biopsy, can be obtained through a variety of sampling methods known to those skilled in the art, including a punch biopsy, shave biopsy, wide local excision and other means. Aptly, the tumour sample is taken from a surgical site from which the primary melanoma has been excised from a subject.
[0059] Aptly, the tissue sample may be frozen, fresh, fixed (e.g. formalin fixed), centrifuged, and/or embedded (e.g. paraffin embedded), etc. The tissue sample may be or have been subjected to a variety of well-known post-collection preparative and storage techniques (e.g., nucleic acid and/or protein extraction, fixation, storage, freezing, ultrafiltration, concentration, evaporation, centrifugation, etc.) prior to assessing the amount of the Ambra-1 and Loricrin in the sample. Likewise, biopsies may also be subjected to post-collection preparative and storage techniques, e.g., fixation. A tissue sample, or a section thereof, may be mounted on a solid support, such as a slide.
[0060] In some embodiments, determining the expression of Ambra-1 and Loricrin in the tissue sample comprises measuring the levels of each of the proteins present in the tissue sample. This may be achieved by methods known to those skilled in the art. Such methods include immunoassays, for example immunohistochemistry, ELISA, Western blots, immunoprecipitation followed by SDS-PAGE and immunocytochemistry, and the like.
[0061] Thus, in some embodiments, determining the expression levels of Ambra-1 and Loricrin comprises carrying out an assay. In some embodiments, the assay is an in vitro assay.
[0062] In some embodiments, the subject is identified as having an increased risk of metastasis by determining the expression of Ambra-1 and Loricrin in the tissue sample in a method comprising:
[0063] contacting the tissue sample with a first ligand specific for Ambra-1, wherein the presence of Ambra-1 creates an Ambra-1-ligand complex;
[0064] contacting the tissue sample with a second ligand specific for Loricrin, wherein the presence of Loricrin creates a Loricrin-ligand complex; and
[0065] detecting and/or quantifying the Ambra-1-ligand complex and the Loricrin-ligand complex.
[0066] In some embodiments, the first ligand comprises an anti-Ambra-1 antibody or aptamer. In some embodiments the anti-Ambra-1 antibody or aptamer binds specifically to a protein having the sequence shown in SEQ ID NO. 1.
[0067] In some embodiments, the second ligand comprises an anti-Loricrin antibody or aptamer. In some embodiments the anti-Loricrin antibody or aptamer binds specifically to a protein having the sequence shown in SEQ ID NO. 2.
[0068] The amino acid sequences of human Ambra-1 and Loricrin are provided herein as examples, however, it will be appreciated that variants of these sequences may be known or identified. In some embodiments, the subject is a non-human mammal. It should therefore also be appreciated that references herein to Ambra-1 (or SEQ ID NO. 1) and Loricrin (or SEQ ID NO. 2) include the sequences of non-human homologues thereof.
[0069] In some embodiments, the first and/or second ligand comprises a detection moiety (e.g. a fluorescent label). A detection moiety enables the direct or indirect detection and/or quantification of the complexes formed.
[0070] In some embodiments, the first ligand comprises a first detection moiety and the second ligand comprises a second detection moiety. The first detection moiety may be the same as the second detection moiety, or it may be different.
[0071] In some embodiments, the method comprises contacting a first portion or section of the tissue sample with the first ligand, and contacting a second portion or section of the tissue sample with the second ligand. This is particularly suitable for embodiments wherein the first detection moiety is the same as the second detection moiety. In some alternative embodiments, the method comprises contacting the tissue sample, or a portion or section thereof, with the first ligand and contacting the same tissue sample, or portion or section thereof, with the second ligand. It may be possible to detect and/or quantify both the Ambra-1-ligand complex and the Loricrin-ligand complex in the same sample, or portion or section thereof, particularly if the first and second detection moieties are different.
[0072] Aptly, the first and/or second ligands may be used in combination with one or more capture agents. Thus, in some embodiments, the step of detecting and/or quantifying the Ambra-1-ligand complex and the Loricrin-ligand complex comprises contacting the tissue sample(s) (or the section(s) or portion(s) thereof) with at least one capture agent. Aptly, a first capture agent which binds specifically to the first ligand may be used to detect and/or quantify the Ambra-1-ligand complex, while a second capture agent which binds specifically to the second ligand may be used to the detect and/or quantify the Loricrin-ligand complex. Alternatively, a single capture agent may be used which is capable of binding specifically to both the first and second ligands.
[0073] In some embodiments, the capture agent comprises a binding moiety and a detection moiety.
[0074] In some embodiments, the binding moiety is a secondary antibody which binds specifically to the first and/or second ligands. For example, the binding moiety may be a universal anti-lgG antibody that is capable of binding to primary antibodies used as the first and second ligands.
[0075] In some embodiments, the method further comprises one or more wash steps to remove unbound first and second ligands and, optionally, unbound capture agents.
[0076] In some particular embodiments, there is provided an in vitro assay for predicting an increased risk of metastasis in a subject suffering from melanoma, the assay comprising:
[0077] contacting a first portion of a tissue sample obtained from the subject with a first ligand specific for Ambra-1, wherein the presence of Ambra-1 creates an Ambra-1-ligand complex;
[0078] contacting a second portion of the tissue sample with a second ligand specific for Loricrin, wherein the presence of Loricrin creates a Loricrin-ligand complex;
[0079] washing the first and second portions of the tissue sample to remove unbound ligands;
[0080] contacting the first and second portions of the tissue sample with a capture agent, wherein the capture agent comprises a detection moiety and a binding moiety specific for the first and second ligands;
[0081] washing the first and second portions of the tissue sample to remove unbound capture agent; and
[0082] detecting and/or quantifying the capture agent present in the first and second portions of the tissue sample.
[0083] Aptly, a suitable detection moiety is selected from a fluorescent moiety, a luminescent moiety, a bioluminescent moiety, a radioactive material, a colorimetric moiety, a nanoparticle having suitable detectable properties, a chromogenic moiety, biotin or an enzyme.
[0084] Suitable fluorescent moieties include fluorescent proteins (such as phycoerythrin (PE), peridinin-chlorophyll-protein complex (PerCP) and allophycocyanin (APC)) fluorescent dyes (such as Fluorescein Isothiocyanate (FITC), rhodamines (Rs) and cyanines (Cys)), fluorescent tandem complexes (such as Allophycocyanin-Cyanine 7 (APC-Cy7), Peridinin-Chlorophyll-Protein complex-Cyanine 5 (PerCP-cy5) and Phycoerythrin-Texas Red (PE-TexasRed)), and nanocrystals (such as QDot 525, QDot 545 and QDot 625). The presence of Ambra-1-ligand and Loricrin-ligand complexes can be detected using fluorescence microscopy via the use of fluorescent ligands or a capture agent comprising a fluorescent detection moiety.
[0085] In embodiments wherein the detection moiety comprises an enzyme, the presence of the Ambra-1-ligand complex and the Loricrin-ligand complex can be detected and/or quantified by detecting and/or quantifying the reaction product of a reaction of a substrate catalyzed by the enzyme. In these embodiments, the method further comprises adding a substrate of the enzyme and detecting and/or quantifying the product of the reaction performed on the substrate by the enzyme. For example, the reaction may result in the production of a coloured precipitate, which would be detected using light microscopy. Suitable enzymes include, for example, alkaline phosphatase and horseradish peroxidase. A chromogenic substrate of alkaline phosphatase is PNPP (p-Nitrophenyi Phosphate, Disodium Salt). PNPP produces a yellow water-soluble reaction product that absorbs light at 405 nm. Chromogenic substrates of horseradish peroxidase include ABTS (2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt), which yields a green reaction product, OPD (o-phenylenediamine dihydrochloride) which yields a yellow-orange reaction product, and TMB (3,3',5,5'-tetramethylbenzidine) soluble substrates yield a blue colour when detecting HRP. Other suitable enzyme-substrate combinations, methods of detecting the Ambra-1-ligand and Loricrin-ligand complexes, and suitable detection moieties will be known to those skilled in the art.
[0086] In some embodiments, the first and/or second ligand or the capture agent is immobilized on a solid phase surface, for example a microarray, slide, well or bead.
[0087] In some embodiments, the expression of Ambra-1 and Loricrin is detected and/or quantified by visual assessment, for example, microscopy. In other embodiments, the expression of Ambra-1 and Loricrin is detected and/or quantified by an automated slide scanner.
[0088] According to a ninth aspect of the present invention, there is provided a kit for predicting an increased risk of developing metastasis of a subject suffering from melanoma, the kit comprising:
[0089] a first ligand specific for Ambra-1; and
[0090] a second ligand specific for Loricrin.
[0091] In some embodiments, the kit further comprises instructions for using the kit to predict the risk of metastasis in a subject suffering from melanoma.
[0092] In some embodiments, the kit further comprises at least one capture agent. Aptly, a capture agent may comprise a detection moiety and a binding moiety specific for the first and/or second ligand.
[0093] In some embodiments, the first and/or second ligand and/or the capture agent comprises an enzyme as a detection moiety, and the kit further comprises a substrate of the enzyme.
[0094] Aptly, the kit may further comprise one or more additional components such as reagents and/or apparatus necessary for carrying out an in vitro assay, e.g. buffers, fixatives, wash solutions, blocking reagents, diluents, chromogens, enzymes, substrates, test tubes, plates, pipettes etc.
[0095] The kit of certain embodiments of the invention may advantageously be used for carrying out a method of certain embodiments of the invention and could be employed in a variety of applications, for example in the diagnostic field or as a research tool. It will be appreciated that the parts of the kit may be packaged individually in vials or in combination in containers or multi-container units. Aptly, manufacture of the kit follows standard procedures which are known to the person skilled in the art.
[0096] In some embodiments, a therapeutic agent is administered to the subject no more than 12 weeks, no more than 10 weeks, no more than 6 weeks, no more than 4 weeks, no more than 2 weeks or no more than 1 week after the subject is identified as having a decrease or loss of expression of Ambra-1 and Loricrin in the tissue sample.
[0097] In some embodiments, the therapeutic agent is a chemotherapeutic agent. Any available, suitable chemotherapeutic agent may be administered to the subject. As used herein, a "chemotherapeutic agent" means any therapeutic agent useful for the treatment of cancer, and encompasses small molecules as well as biological agents, such as antibodies. In some embodiments, the chemotherapeutic agent is selected from Dacarbazine (DTIC), Temozolomide, Nab-paclitaxel, Paclitaxel, Carmustine (BCNU), Cisplatin, Carboplatin, Vinblastine, interleukin 2, interferon alpha, antibodies (e.g. ipilimumab, anti-PD1 antibody) and B-Raf inhibitors (e.g. vemurafenib, dabrafenib).
[0098] Non-limiting routes of administration of the therapeutic agent include by oral, intravenous, intraperitoneal, subcutaneous, intramuscular, topical, intradermal, intranasal or intrabronchial administration (for example as effected by inhalation). In some embodiments, the therapeutic agent is administered parenterally, e.g., intravenously. Common modes of administration by which the therapeutic agent may be administered include, for example, administration as a bolus dose or as an infusion over a set period of time.
[0099] A therapeutic agent may be administered in an amount effective to prevent, inhibit or delay the development of metastasis.
[0100] Suitable doses and dosage regimes for a given subject and therapeutic agent can be determined using a variety of different methods, such as body-surface area or body-weight, or in accordance with specialist literature and/or individual hospital protocols. Doses may be further adjusted following consideration of a subject's neutrophil count, renal and hepatic function, and history of any previous adverse effects to the therapeutic agent. Doses may also differ depending on whether a therapeutic agent is used alone or in combination.
[0101] The skilled person will recognize that further modes of administration, dosages of therapeutic agents and treatment regimens can be determined by the treating physician according to methods known in the art.
[0102] Certain embodiments of the present invention provide a method of determining a treatment regime for a subject suffering from melanoma, the method comprising:
[0103] a) obtaining a tissue sample from the subject, wherein the tissue sample comprises tissue overlying a primary melanoma;
[0104] b) determining the expression of Ambra-1 and Loricrin in the tissue sample;
[0105] c) comparing the expression obtained in (b) with a reference tissue or levels obtained therefrom, and
[0106] d) (i) if expression of Ambra-1 and Loricrin is normal or increased, following a normal recognized care pathway, or
[0107] (ii) if expression of Ambra-1 and Loricrin is decreased or lost, treating the subject with a systemic anti-cancer treatment regime.
[0108] A "normal recognized care pathway", as will be known to those skilled in the art, will be understood as meaning that a wider excision of the scar left by excision of the primary melanoma is carried out on the subject. The size of the wider excision will be determined by a clinician or surgeon, based on the Breslow depth of the primary melanoma. A normal recognized care pathway may further comprise regular (e.g. every 3-12 months) clinical assessment of the subject for up to 5 years. In some embodiments wherein the primary melanoma is stage 2b or 2c, the normal recognized care pathway may further comprise carrying out a staging CT scan on the subject, from the head to the pelvis, at the time of diagnosis. Some treatment centres offer staging sentinel lymph node biopsy of all stage 2a, 2b and 2c tumours. Thus, in some embodiments, the normal recognized care pathway may further comprise carrying out a sentinel lymph node biopsy.
[0109] In some embodiments, a systemic anti-cancer treatment regime comprises administering a therapeutic agent to the subject.
[0110] Certain embodiments of the present invention provide a method for the treatment of a subject suffering from melanoma.
[0111] Ideally, a subject identified as having an increased risk of metastasis is treated as soon as possible to minimize the chances of development of metastasis. Thus, in some embodiments the method or treatment regime is for preventing, inhibiting or delaying metastasis or decreasing the risk of metastasis in the subject.
[0112] In some embodiments, a subject is treated immediately or shortly after being identified as having an increased risk of metastasis.
[0113] In some embodiments, treatment with the therapeutic agent is carried out after surgery to excise the primary melanoma.
[0114] In some embodiments, a method of treatment or a treatment regime may further include one or more of: intensified imaging (e.g. CT scan, PET, MRI, X-ray) of the subject; discussion and/or offering of, or carrying out, a sentinel lymph node biopsy; partial or complete lymphadenectomy; inclusion of the subject in clinical trials; and radiation therapy.
BRIEF DESCRIPTION OF THE DRAWINGS
[0115] Embodiments of the invention will now be described by way of example only, and with reference to the accompanying Figures in which:
[0116] FIGS. 1A-1D are light microscopy images showing Ambra-1 expression in normal epidermis (FIG. 1A) and peri-tumoural epidermis (FIGS. 1B-1D) overlying AJCC stage I melanomas. Scale bars: 50 .mu.m.
[0117] FIGS. 2A-2C are immunofluorescent microscopy images showing Loricrin expression in normal epidermis (FIG. 2A), and peri-tumoural epidermis (FIGS. 2B-2C) overlying AJCC stage I melanomas. Scale bars: 50 .mu.m).
[0118] FIG. 3A shows univariate analysis of epidermal Ambra-1 expression in all AJCC stage melanomas. Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in primary melanoma epidermises with no alteration in Ambra-1 expression (top line), decreased or absent Ambra-1 expression (dashed line) or ulcerated tumours (bottom line). Log-Rand (Mantel-Cox) Test P<0.0001. DFS=100% no Ambra-1 loss, 72.1% decreased or absent Ambra-1, 35.7% ulcerated. Direct analysis of No loss Ambra-1 and decreased/absent Ambra-1 Log-Rank (Mantel-Cox) Test P=0.0270, HR 3.56 (95% CI 1.16-10.93); FIG. 3B shows multivariate analysis of Ambra-1 expression in pilot cohort of AJCC stage 1 melanomas. Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in AJCC stage 1 primary melanoma epidermises that revealed no alteration in Ambra-1 expression (top line) compared to stage 1 tumours with absent epidermal Ambra-1 (bottom line). DFS=100% no Ambra-1 loss, 83.3% decreased or absent Ambra-1. Log-Rank (Mantel-Cox) Test P=0.0575, HR 4.29 (95% CI 0.95-19.25);
[0119] FIG. 4A is a Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in epidermises in which Ambra-1 expression was maintained (top line) compared to those in which expression of Ambra-1 was lost (bottom line), across all tumour types. P=0.0007, HR 10.1 (95% CI 2.65-38.5);
[0120] FIG. 4B is a Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in epidermises in which Loricrin expression was maintained (top line) compared to those in which expression of Loricrin was lost (bottom line), across all tumour types. P=0.0006, HR 18.4 (95% CI 3.5-96.2);
[0121] FIG. 4C is a Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in epidermises in which both Ambra-1 and Loricrin expression was maintained (top line) compared to those in which expression of Ambra-1 and Loricrin was lost (bottom line), across all tumour types. P=<0.0001, HR 39.6 (95% CI 6.4-243.9);
[0122] FIG. 5A is a Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in AJCC stage 1 primary melanoma epidermises in which Ambra-1 expression was maintained (top line) compared to those in which Ambra-1 expression was lost (bottom line). P=0.001, HR 24.12 (95% CI 3.6-161);
[0123] FIG. 5B is a Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in AJCC stage 1 primary melanoma epidermises in which Loricrin expression was maintained (top line) compared to those in which Loricrin expression was lost (bottom line). P<0.0001, HR 210 (95% CI 16.86-2624);
[0124] FIG. 5C is a Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in AJCC stage 1 primary melanoma epidermises in which both Ambra-1 and Loricrin expression was maintained (top line) compared to those in which Ambra-1 and Loricrin expression was lost (bottom line). P=0.0002, HR 93.5 (95% CI 8.67-1008);
[0125] FIG. 6 shows the amino acid sequence of Homo sapiens Ambra-1 from UniProtKB (primary accession number Q9COC7-1, isoform 1) (SEQ ID NO. 1); and
[0126] FIG. 7 shows the amino acid sequence of Homo sapiens Loricrin from UniProtKB (primary accession number P23490) (SEQ ID NO. 2).
[0127] FIGS. 8A-8D show a range of microscopy images of Ambra-1 (anti-Ambra-1 antibody (Abcam Biochemicals, Cambridge, UK; 69501; 1:200)) expression in normal epidermis (a), or overlying stage 1 melanomas (b). Ambra-1 maintained, (c). Ambra-1 decreased and (d) Ambra-1 completely lost).
[0128] FIGS. 9A-9C show a range of microscopy images of loricrin (anti-Loricrin antibody (Abcam Biochemicals, Cambridge, UK; 24722; 1:500)) expression in normal epidermis (a), or overlying stage 1 melanomas (b) Loricrin maintained, (c) Loricrin completely lost.
[0129] FIG. 10 shows the association between the visual scoring given to the change of peri-tumoural Ambra-1 (no loss, some loss or complete loss) compared to the quantitative analysis results of the percentage decrease in staining positivity in normal epidermis compared to the peri-tumoural epidermis. Horizontal lines represent the mean scoring percentage .+-.standard error of the mean (0=12.05, 1=25.16, 3=46.92). One way ANOVA P<0.0001****
[0130] FIG. 11 shows the association between the visual scoring given to the change of peri-tumoural Ambra-1 with no or some loss of staining compared to complete loss of staining. Horizontal lines represent the mean scoring percentage .+-.standard deviation (No/some loss mean=18.12 SD 12.97, complete loss mean=46.92 SD 15.34). Mann-Whitney P<0.0001****
[0131] FIG. 12 shows univariate analysis of epidermal Ambra-1 expression in all AJCC stage 1 melanomas. Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in primary melanoma epidermises with no loss or reduced Ambra-1 expression (black line), versus absent Ambra-1 expression (red line). DFS=97.7% no loss/decreased Ambra-1 (n=44), 94.3% absent Ambra-1 (n=35). Log-Rank (Mantel-Cox) Test P=0.411, HR 2.59 (95% CI 0.26-25.05).
[0132] FIG. 13 shows univariate analysis of epidermal Ambra-1 and Loricrin combined expression in all AJCC stage 1 melanomas. Kaplan-Meier curve showing 7-year Disease Free Survival (months until first metastasis detected) in primary melanoma epidermises maintenance of some epidermal Ambra-1 or Loricrin 10 expression ("Low risk" black line), versus loss of both Ambra-1 and loricrin epidermal expression ("High risk" red line). DFS=98.46% Low risk (n=65), 86.67% High risk (n=15). Log-Rank (Mantel-Cox) Test P=0.025, HR 9.29 (95% CI 1.49-558.0).
[0133] Further details of certain embodiments of the invention are provided below.
Definitions
[0134] The term "antibody" as used herein is intended to include monodonal antibodies, polyclonal antibodies, chimeric antibodies, humanised antibodies, bi-specific antibodies, antibody-drug conjugates, and domains and fragments of antibodies including Fab, Fab', F(ab')2, scFv, dsFv, ds-scFv, dimers, minibodies, diabodies, and multimers thereof. Antibodies can be fragmented using conventional techniques. Antibodies may be from any animal origin, including birds and mammals (e.g., human, murine, donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken), transgenic animals, or from recombinant sources. Antibodies may be prepared using methods known to those skilled in the art.
[0135] As used herein, the term "primary melanoma" refers to a malignant tumour on the skin at the site of origin, regardless of thickness, in patients without clinical or histologic evidence of regional or distant metastatic disease.
[0136] As used herein, the wording "tissue overlying a primary melanoma", refers to epidermal tissue situated between a primary melanoma and the surface of the skin.
[0137] As used herein, the term "normal tissue" includes for example "normal epidermis", which is healthy (i.e. disease-free) epidermis. In some embodiments, the normal tissue is epidermis that lies adjacent to the primary melanoma, for example within a cuff of normal skin taken with the primary melanoma sample.
[0138] As used herein, "peri-tumoural epidermis" refers to epidermal tissue overlying or situated around a tumour.
[0139] As used here in, "metastasis" is defined as the recurrence or disease progression that may occur locally (such as local recurrence and in transit disease), regionally (such as nodal micrometastasis or macrometastasis), or distally (such as brain, lung and other tissues). In some embodiments, the term "metastasis" is used to refer to metastatic disease following a primary melanoma. Typically, metastasis originating from a primary melanoma may spread to the lungs and/or brain of the subject as well as other locations.
[0140] It is to be understood that the term "comparing" and "compare" as used herein usually refers to a comparison of corresponding parameters or levels, e.g., an absolute amount is compared to an absolute reference amount while a concentration is compared to a reference concentration or a signal intensity signal obtained from the tissue sample is compared to the same type of signal intensity obtained from the reference. The comparison may be carried out manually, for example by visual assessment, or it may be automated (e.g. using an automated scanner or computer-assisted). Thus, the comparison may be carried out by a computing device.
[0141] The stage of a melanoma is a description of how widespread it is. This includes its thickness in the skin, whether it has spread to nearby lymph nodes or any other organs, and certain other factors. The stage is based on the results of the physical exam, biopsies, and any imaging tests (CT or MRI scan, etc.) or other tests that have been done. Such tests will be known to those skilled in the art. The system most often used to stage melanoma is the American Joint Commission on Cancer (AJCC) TNM system. Table 1 describes the features identifying each stage.
TABLE-US-00001 TABLE 1 Stage 1 1a Tumour <1.00 mm without ulceration; no lymph node involvement, no distant metastases. 1b Tumour <1.00 mm with ulceration or Clark level IV or V tumour 1.01-2.0 mm without ulceration; no lymph node involvement; no distant metastases. Stage 2 2a Tumour 1.01-2.0 mm with ulceration; tumour 2.01-4.0 mm without ulceration; no lymph node involvement; no distant metastases. 2b Tumour 2.01-4 mm with ulceration. 2b Tumour >4.0 mm without ulceration; no lymph node involvement; no distant metastases. 2c Tumour >4.0 mm with ulceration; no nodal involvement; no distant metastases. Stage 3 3a Tumour of any thickness without ulceration with 1 positive lymph node and micrometastasis or macrometastasis. 3b Tumour of any thickness without ulceration with 2-3 positive lymph nodes and micrometastasis or macrometastasis. 3c Tumour of any thickness and macrometastasis OR in- transit met(s)/satellite(s) without metastatic lymph nodes, OR 4 or more metastatic lymph nodes, matted nodes or combinations of in-transit met(s)/satellite(s), OR ulcerated melanoma and metastatic lymph node(s). Stage 4 4 Tumour of any thickness with any nodes and any metastases
DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS
Examples
Materials and Methods
Example 1
Immunohistochemistry for Ambra-1 and Loricrin
[0142] Analysis of primary melanoma tissue from the patient cohort shown in Table 2 was performed by immunohistochemical staining of formalin-fixed paraffin-embedded sections. Tissue sections of 5-6 .mu.m thickness were baked onto X-tra microscope slides (Leica Microsystems, Milton Keynes, UK) at 56.degree. C. overnight. They were then incubated in Histoclear (AGTC Bioproducts, Hessle, UK) for 20 minutes before rehydration in 100%, 75%, 50% ethanol and then distilled water for 5 seconds each. Antigen retrieval was undertaken by microwave heating in pre-heated antigen retrieval buffers (Ambra-1 (10 mM Tris-HCl (pH 7.6)), Loricrin (10 mM Na-Citrate (pH 6.0)) for 12 minutes before being allowed to cool for 20 minutes. Each section was allowed to dry and the tissue isolated with an ImmEdge hydrophobic pen (Vector Laboratories Inc., Burlingame, USA). Sections were then incubated with PBS/0.05% Tween (PBS/T) for 3 minutes to allow rehydration before incubation with 0.2% Triton X-100 (Sigma, St. Louis, USA) in PBS/T for 10 minutes. After washing with PBS/T sections were incubated in 3% H.sub.2O in water for 10 minutes to block endogenous peroxidise. Endogenous Avidin was blocked with the Avidin solution of an Avidin/Biotin Blocking kit (Vector Laboratories Inc., Burlingame, USA) for 15 minutes, before further washing with PBS/T and incubation with the Biotin portion of the kit for 15 minutes, with a following PBS/T wash. Protein blocking was undertaken by incubating sections in 2% blocking serum from an animal specific Vectastain Elite kit (Vector Laboratories Inc., Burlingame, USA).
[0143] Following a further PBS/T wash, sections were incubated with primary antibody for 1 hour at room temperature with anti-Ambra-1 antibody (Abcam Biochemicals, Cambridge, UK; 69501; 1:200) or anti-Loricrin antibody (Abcam Biochemicals, Cambridge, UK; 24722; 1:500). After 3 washes with PBS/T primary antibody was detected with biotinylated animal specific secondary antibody for 30 minutes at room temperature before 3 further washes with PBS/T. Staining was performed through incubation for 30 minutes with the ABC reagents from the Vectastain Elite kit (pre-mixed 30 minutes prior to use), followed by 3 washes with PBS/T and then a 10 minute incubation with VIP solution (Vector Laboratories Inc., Burlingame, USA). Slides were rinsed in tap water for 5 minutes before counter staining with haematoxylin (Sigma Diagnostics, St. Louis, USA) for 2 minutes followed by a final 10 minute wash in tap water with frequent changes. After dehydration through 75% and 100% ethanol for 5 seconds sections were cleaned for 2 minutes in histoclear, allowed to dry, then coverslips mounted with DPX mountant (VWR International Ltd., Poole, UK).
Determination of Expression
[0144] The difference in expression levels of Ambra-1 and/or Loricrin between the normal epidermis and peri-tumoural epidermis was initially determined by consensus agreement of 3 Dermatologists and a Histopathologist. Expression was quantified by assessing the percentage of positively stained cells in the peri-tumoural as a percentage of the Ambra-1/Loricrin expression determined in the internal control reference of the adjacent normal epidermis using Leica QWin image analysis software (Leica Microsystems). These observations were categorized as either "maintained" (>75% of normal expression), "decreased" (25-75% of normal expression) or "lost" (<25% of normal expression). Assessment of each section was undertaken without prior knowledge of eventual disease outcome.
TABLE-US-00002 TABLE 2 Patient Cohort Number of Patients 129 Male:Female 66:62 Median age at diagnosis (range) 58 (17-87) AJCC stage at diagnosis 1a 40 1b 36 2a 22 2b 18 2c 12 Eventual AJCC stage (8 years follow-up) 1a 38 1b 27 2a 12 2b 7 2c 4 3 15 4 25 Median Breslow depth (range) 1.55 mm (0.3-15) Ulcerated primary tumours 28
Statistics
[0145] All statistical analysis and image generation was undertaken using GraphPad Prism 5 (GraphPad Software; San Diego, USA) statistical analysis software.
[0146] All univariate and multivariate analysis of study variables for Disease Free Survival were undertaken using Kaplan-Meier curve constructions against 8-year follow-up, as well as log-rank (Mantel-Cox) analysis of the comparative data.
Example 1
Results and Discussion
[0147] The present inventors identified that a decrease of Ambra-1 expression in the peri-tumoural epidermis overlying melanomas, in particular in AJCC stage I melanomas, significantly correlates with decreased Disease Free Survival over 7 years. As shown in FIG. 1A, Ambra-1 expression is increased from the basal layer towards the stratum corneum in the normal epidermis situated adjacent to an AJCC stage 1 melanoma consistent with maintained differentiation. However, Ambra-1 expression is maintained (FIG. 1B), decreased (FIG. 1C) or even lost (FIG. 1D) in the epidermis overlying a range of AJCC stage 1 tumours.
[0148] Referring to FIG. 3, the loss or decrease of epidermal Ambra-1 expression correlates with an increased risk of metastasis. Across all AJCC melanomas (FIG. 3A), 100% of patients displaying no loss of Ambra-1 expression were disease free after 7 years. This decreased to 72.1% in patients with decreased or absent expression of Ambra-1. Only 35.7% of patients with ulcerated melanomas were disease free after 7 years. This highlights a stepwise increase in disease risk with loss of Ambra-1 and eventual associated frank ulceration of the tumour.
[0149] Taking AJCC stage 1 melanomas only (FIG. 3B), the percentage of patients who were disease free after 7 years was 100% for those with no loss of Ambra-1 expression, reduced to 83.3% for those with decreased or absent Ambra-1 expression.
[0150] FIGS. 4A and 5A show the correlation between expression of Ambra-1 and disease free survival of subjects in a smaller cohort in which both Ambra-1 and Loricrin expression were assessed, over 7 years for all tumour types (FIG. 4A) or stage 1 only (FIG. 5A). Across all tumour types (FIG. 4A), all patients in which expression of Ambra-1 was maintained were disease free after 7 years. For those in which Ambra-1 expression was lost, only 18% were disease free after 7 years. For stage 1 tumours, again 100% of patients with maintained expression of Ambra-1 did not develop metastasis, while the disease-free survival rate was 17% for those with loss of Ambra-1 expression.
[0151] Contrary to the current publications in the art which implicate Ambra-1 in the control of autophagy, Ambra-1's role in this context is thought to be in the down-regulation of differentiation with the normal epidermis resulting in a loss of integrity. It has been demonstrated by the inventors that the down-regulation of other autophagy proteins, such as ATG1, do not affect the differentiation process, supporting the hypothesis that this process is not related to autophagy.
[0152] Unexpectedly, it was found that a loss of Loricrin expression also correlates with an increased risk of metastasis. FIGS. 2A-C show representative images of normal Loricrin expression in the stratum comeum (FIG. 2A) as well as in peri-tumoural epidermis in which Loricrin expression is lost (FIG. 2B or maintained (FIG. 2C).
[0153] Referring to FIGS. 4B and 5B, the loss or decrease of epidermal Loricrin expression correlates with decreased disease-free survival over 7 years. Across all AJCC melanomas (FIG. 48), 64% of patients for whom Loricrin expression was maintained were disease free after 7 years. However, no patients with loss of Loricrin expression were disease-free after 5 years. For AJCC stage 1 melanomas (FIG. 5B), 100% of patients in which Loricrin expression was maintained were disease free after 7 years. No patients with loss of Loricrin expression were disease-free after 5 years. This demonstrates a statistical significant correlation between Loricrin expression and disease-free survival rates in melanoma patients. However, as with Ambra-1, the loss of Loricrin alone is not predictive of disease progression with 100% accuracy, either for AJCC stage 1 melanoma or all tumour stages (see Table 3).
[0154] However, the inventors have determined that determination of expression of both Ambra-1 and Loricrin is strongly representative of disease progression to metastasis. The results of these experiments are shown in FIGS. 4C and 5C, and summarized in Table 3.
TABLE-US-00003 TABLE 3 Marker Sensitivity Specificity PPV.sup.1 NPV.sup.2 All tumour stages n = 15 Loss of Ambra-1 100% 80% 83.3% 100% Loss of Loricrin 63.6% 100% 100% 69.2% Loss of Ambra-1 + Loricrin 100% 100% 100% 100% Stage 1 melanoma n = 12 Loss of Ambra-1 100% 88.9% 83.3% 100% Loss of Loricrin 80% 100% 100% 90% Loss of Ambra-1 + Loricrin 100% 100% 100% 100% .sup.1Positive predictive value .sup.2Negative predictive value
[0155] Thus, it was found that the combination of loss of Ambra-1 and loss of Loricrin identifies with 100% accuracy patients which went on to develop metastasis.
Example 2
[0156] Further analysis was carried out on 80 retrospective AJCC stage 1 melanoma patients' samples recruited to an independent James Cook University Hospital melanoma cohort (Table 4). The analysis reveals data in keeping with the findings in the initial retrospective cohort detailed above.
TABLE-US-00004 TABLE 4 Number of Patients 80 Male:Female 27:53 AJCC stage at diagnosis 1a 54 1b 26 Eventual AJCC stage (7 years follow-up) 1a 53 1b 24 4 3 Mean Breslow depth (range) 0.83 mm (0.14-1.9)
[0157] Immunohistochemical staining was undertaken using DAB counterstain as the most widely used specialist stain in clinical use. All samples were digitally imaged using automated scanning of slides on a Leica SCN400 digital slide scanner (Leica Biosystems) within the Newcastle University Biobank (FIGS. 8 and 9).
[0158] Visual analysis of epidermal Ambra-1 loss was undertaken by two independent dermatologists and scores assigned for each slide based on the degree of loss of epidermal Ambra-1 in the peri-tumoural epidermis compared to normal epidermis within the same section. There was 95% concordance in scores given between dermatologists, and further review of these slides resulted in an agreed score for each.
[0159] Similarly, the same two dermatologists undertook visual analysis of epidermal Loricrin loss independently. Any break in the continuity of the loricrin stain in the peri-tumoural epidermis that was not due to direct tumour invasion of the upper epidermis was scored as Loricrin loss. Concordance was 97.5% with agreement reached for all samples.
[0160] Quantitative analysis of epidermal Ambra-1 was undertaken using the Leica Slidepath systems' previously validated analysis software. Five representative areas of normal epidermis were selected at 200.times. magnification and the mean percentage of DAB positive pixels obtained. This was compared to the mean percentage of DAB positive pixels in ten representative areas of pen-tumoural epidermis at .times.200 magnification. The overall percentage decrease in Ambra-1 expression between peri-tumoural expression and that of the normal epidermis was then calculated.
[0161] Comparison of visual and quantitative scores (FIG. 10) reveals a statistically significant (P<0.0001) stepwise increase in quantitative score with decreased peri-tumoural Ambra-1 as analyzed visually. This validates visual scoring as a robust and reliable method for analyzing Ambra-1 epidermal staining.
[0162] To determine a cut-point for survival analysis, visual and quantitative scores were re-analyzed with no or some loss of peri-tumoural Ambra-1 compared to complete loss (FIG. 11). This shows a statistically significant increase in qualitative score in samples scored visually as having a complete loss of Ambra-1 (P<0.0001). This further validates the appropriateness of visual scoring to identify samples with complete loss of peri-tumoural Ambra-1, and one standard deviation below the mean for complete Ambra-1 loss (46.92 mean SD 15.34) gives an appropriate cut off of 30% to determine further qualitative analysis of Ambra-1 loss.
[0163] Univariate analysis of peri-tumoural Ambra-1 loss in all patients revealed no overall difference in disease free survival between "High risk" (tumours with complete peri-tumoural Ambra-1 loss as determined by a qualitative decrease in expression of >30%) and "Low risk" tumours (qualitative expression decrease <30%) (FIG. 5). DFS=97.7% Low risk tumours (n=44), 94.3% High risk tumours (n=35). Log-Rank (Mantel-Cox) Test P=0.411, HR 2.59 (95% CI 0.26-25.05). These results do not support Ambra-1 as a prognostic biomarker in this subset of patients.
[0164] To assess the validity of the combination of epidermal Ambra-1 and Loricrin expression as a prognostic biomarker, univariate analysis was undertaken in all samples. "High risk" samples were determined as having complete peri-tumoural Ambra-1 loss (>30% decrease quantitatively) AND a loss of loricrin. All other tumours, with either loss of Ambra-1 OR Loricrin, were deemed "Low risk". These results showed a statistically significant increased risk of metastases in the High risk tumour group, even though the total number of metastatic events was low; further reinforcing the utility of the combination of Ambra-1 and Loricrin as a combined prognostic biomarker in AJCC stage 1 disease. DFS=98.46% Low risk (n=65), 86.67% High risk (n=15). Log-Rank (Mantel-Cox) Test P=0.025, HR 9.29 (95% CI 1.49-558.0).
TABLE-US-00005 TABLE 5 Marker (n = 80) Sensitivity Specificity PPV NPV Loss of Ambra 67% 57% 6% 97.7% Loss of Loricrin 67% 70% 8% 98.1% Combined loss 67% 83% 13% 98.4% of Ambra and Loricrin
[0165] The final analysis of the combined Ambra-1/Loricrin biomarker highlights increased specificity (83%), positive and negative predictive values (13% and 98.4% respectively) of Ambra-1/Loricrin combined over and above either Ambra-1 or loricrin alone (Table 5). This indicates that the combined biomarker would add prognostic value in identifying high-risk patients for increased surveillance, as well as identifying low-risk patients that could be reassured regarding their prognosis with more certainty.
[0166] This is an important finding as a decrease or loss of expression of these two proteins may indicate a breakdown of the epidermis overlying and the vasculature underlying the tumour, meaning that cancer cells may have already migrated from the primary tumour at the time of tumour excision.
[0167] Certain embodiments of the present invention thus provides a means for determining whether a subject suffering from melanoma is at increased risk of metastasis. This allows a treatment regime to be tailored accordingly, thereby reducing the risk of the subject developing metastasis and improving their prognosis.
[0168] Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of them mean "including but not limited to" and they are not intended to (and do not) exclude other moieties, additives, components, integers or steps. Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
[0169] Features, integers, characteristics or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of the features and/or steps are mutually exclusive. The invention is not restricted to any details of any foregoing embodiments. The invention extends to any novel one, or novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
[0170] The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
Sequence CWU
1
1
211298PRTHomo Sapiens 1Met Lys Val Val Pro Glu Lys Asn Ala Val Arg Ile Leu
Trp Gly Arg1 5 10 15Glu
Arg Gly Ala Arg Ala Met Gly Ala Gln Arg Leu Leu Gln Glu Leu 20
25 30Val Glu Asp Lys Thr Arg Trp Met
Lys Trp Glu Gly Lys Arg Val Glu 35 40
45Leu Pro Asp Ser Pro Arg Ser Thr Phe Leu Leu Ala Phe Ser Pro Asp
50 55 60Arg Thr Leu Leu Ala Ser Thr His
Val Asn His Asn Ile Tyr Ile Thr65 70 75
80Glu Val Lys Thr Gly Lys Cys Val His Ser Leu Ile Gly
His Arg Arg 85 90 95Thr
Pro Trp Cys Val Thr Phe His Pro Thr Ile Ser Gly Leu Ile Ala
100 105 110Ser Gly Cys Leu Asp Gly Glu
Val Arg Ile Trp Asp Leu His Gly Gly 115 120
125Ser Glu Ser Trp Phe Thr Asp Ser Asn Asn Ala Ile Ala Ser Leu
Ala 130 135 140Phe His Pro Thr Ala Gln
Leu Leu Leu Ile Ala Thr Ala Asn Glu Ile145 150
155 160His Phe Trp Asp Trp Ser Arg Arg Glu Pro Phe
Ala Val Val Lys Thr 165 170
175Ala Ser Glu Met Glu Arg Val Arg Leu Val Arg Phe Asp Pro Leu Gly
180 185 190His Tyr Leu Leu Thr Ala
Ile Val Asn Pro Ser Asn Gln Gln Gly Asp 195 200
205Asp Glu Pro Glu Ile Pro Ile Asp Gly Thr Glu Leu Ser His
Tyr Arg 210 215 220Gln Arg Ala Leu Leu
Gln Ser Gln Pro Val Arg Arg Thr Pro Leu Leu225 230
235 240His Asn Phe Leu His Met Leu Ser Ser Arg
Ser Ser Gly Ile Gln Val 245 250
255Gly Glu Gln Ser Thr Val Gln Asp Ser Ala Thr Pro Ser Pro Pro Pro
260 265 270Pro Pro Pro Gln Pro
Ser Thr Glu Arg Pro Arg Thr Ser Ala Tyr Ile 275
280 285Arg Leu Arg Gln Arg Val Ser Tyr Pro Thr Ala Glu
Cys Cys Gln His 290 295 300Leu Gly Ile
Leu Cys Leu Cys Ser Arg Cys Ser Gly Thr Arg Val Pro305
310 315 320Ser Leu Leu Pro His Gln Asp
Ser Val Pro Pro Ala Ser Ala Arg Ala 325
330 335Thr Thr Pro Ser Phe Ser Phe Val Gln Thr Glu Pro
Phe His Pro Pro 340 345 350Glu
Gln Ala Ser Ser Thr Gln Gln Asp Gln Gly Leu Leu Asn Arg Pro 355
360 365Ser Ala Phe Ser Thr Val Gln Ser Ser
Thr Ala Gly Asn Thr Leu Arg 370 375
380Asn Leu Ser Leu Gly Pro Thr Arg Arg Ser Leu Gly Gly Pro Leu Ser385
390 395 400Ser His Pro Ser
Arg Tyr His Arg Glu Ile Ala Pro Gly Leu Thr Gly 405
410 415Ser Glu Trp Thr Arg Thr Val Leu Ser Leu
Asn Ser Arg Ser Glu Ala 420 425
430Glu Ser Met Pro Pro Pro Arg Thr Ser Ala Ser Ser Val Ser Leu Leu
435 440 445Ser Val Leu Arg Gln Gln Glu
Gly Gly Ser Gln Ala Ser Val Tyr Thr 450 455
460Ser Ala Thr Glu Gly Arg Gly Phe Pro Ala Ser Gly Leu Ala Thr
Glu465 470 475 480Ser Asp
Gly Gly Asn Gly Ser Ser Gln Asn Asn Ser Gly Ser Ile Arg
485 490 495His Glu Leu Gln Cys Asp Leu
Arg Arg Phe Phe Leu Glu Tyr Asp Arg 500 505
510Leu Gln Glu Leu Asp Gln Ser Leu Ser Gly Glu Ala Pro Gln
Thr Gln 515 520 525Gln Ala Gln Glu
Met Leu Asn Asn Asn Ile Glu Ser Glu Arg Pro Gly 530
535 540Pro Ser His Gln Pro Thr Pro His Ser Ser Glu Asn
Asn Ser Asn Leu545 550 555
560Ser Arg Gly His Leu Asn Arg Cys Arg Ala Cys His Asn Leu Leu Thr
565 570 575Phe Asn Asn Asp Thr
Leu Arg Trp Glu Arg Thr Thr Pro Asn Tyr Ser 580
585 590Ser Gly Glu Ala Ser Ser Ser Trp Gln Val Pro Ser
Ser Phe Glu Ser 595 600 605Val Pro
Ser Ser Gly Ser Gln Leu Pro Pro Leu Glu Arg Thr Glu Gly 610
615 620Gln Thr Pro Ser Ser Ser Arg Leu Glu Leu Ser
Ser Ser Ala Ser Pro625 630 635
640Gln Glu Glu Arg Thr Val Gly Val Ala Phe Asn Gln Glu Thr Gly His
645 650 655Trp Glu Arg Ile
Tyr Thr Gln Ser Ser Arg Ser Gly Thr Val Ser Gln 660
665 670Glu Ala Leu His Gln Asp Met Pro Glu Glu Ser
Ser Glu Glu Asp Ser 675 680 685Leu
Arg Arg Arg Leu Leu Glu Ser Ser Leu Ile Ser Leu Ser Arg Tyr 690
695 700Asp Gly Ala Gly Ser Arg Glu His Pro Ile
Tyr Pro Asp Pro Ala Arg705 710 715
720Leu Ser Pro Ala Ala Tyr Tyr Ala Gln Arg Met Ile Gln Tyr Leu
Ser 725 730 735Arg Arg Asp
Ser Ile Arg Gln Arg Ser Met Arg Tyr Gln Gln Asn Arg 740
745 750Leu Arg Ser Ser Thr Ser Ser Ser Ser Ser
Asp Asn Gln Gly Pro Ser 755 760
765Val Glu Gly Thr Asp Leu Glu Phe Glu Asp Phe Glu Asp Asn Gly Asp 770
775 780Arg Ser Arg His Arg Ala Pro Arg
Asn Ala Arg Met Ser Ala Pro Ser785 790
795 800Leu Gly Arg Phe Val Pro Arg Arg Phe Leu Leu Pro
Glu Tyr Leu Pro 805 810
815Tyr Ala Gly Ile Phe His Glu Arg Gly Gln Pro Gly Leu Ala Thr His
820 825 830Ser Ser Val Asn Arg Val
Leu Ala Gly Ala Val Ile Gly Asp Gly Gln 835 840
845Ser Ala Val Ala Ser Asn Ile Ala Asn Thr Thr Tyr Arg Leu
Gln Trp 850 855 860Trp Asp Phe Thr Lys
Phe Asp Leu Pro Glu Ile Ser Asn Ala Ser Val865 870
875 880Asn Val Leu Val Gln Asn Cys Lys Ile Tyr
Asn Asp Ala Ser Cys Asp 885 890
895Ile Ser Ala Asp Gly Gln Leu Leu Ala Ala Phe Ile Pro Ser Ser Gln
900 905 910Arg Gly Phe Pro Asp
Glu Gly Ile Leu Ala Val Tyr Ser Leu Ala Pro 915
920 925His Asn Leu Gly Glu Met Leu Tyr Thr Lys Arg Phe
Gly Pro Asn Ala 930 935 940Ile Ser Val
Ser Leu Ser Pro Met Gly Arg Tyr Val Met Val Gly Leu945
950 955 960Ala Ser Arg Arg Ile Leu Leu
His Pro Ser Thr Glu His Met Val Ala 965
970 975Gln Val Phe Arg Leu Gln Gln Ala His Gly Gly Glu
Thr Ser Met Arg 980 985 990Arg
Val Phe Asn Val Leu Tyr Pro Met Pro Ala Asp Gln Arg Arg His 995
1000 1005Val Ser Ile Asn Ser Ala Arg Trp
Leu Pro Glu Pro Gly Leu Gly 1010 1015
1020Leu Ala Tyr Gly Thr Asn Lys Gly Asp Leu Val Ile Cys Arg Pro
1025 1030 1035Glu Ala Leu Asn Ser Gly
Val Glu Tyr Tyr Trp Asp Gln Leu Asn 1040 1045
1050Glu Thr Val Phe Thr Val His Ser Asn Ser Arg Ser Ser Glu
Arg 1055 1060 1065Pro Gly Thr Ser Arg
Ala Thr Trp Arg Thr Asp Arg Asp Met Gly 1070 1075
1080Leu Met Asn Ala Ile Gly Leu Gln Pro Arg Asn Pro Ala
Thr Ser 1085 1090 1095Val Thr Ser Gln
Gly Thr Gln Thr Leu Ala Leu Gln Leu Gln Asn 1100
1105 1110Ala Glu Thr Gln Thr Glu Arg Glu Val Pro Glu
Pro Gly Thr Ala 1115 1120 1125Ala Ser
Gly Pro Gly Glu Gly Glu Gly Ser Glu Tyr Gly Ala Ser 1130
1135 1140Gly Glu Asp Ala Leu Ser Arg Ile Gln Arg
Leu Met Ala Glu Gly 1145 1150 1155Gly
Met Thr Ala Val Val Gln Arg Glu Gln Ser Thr Thr Met Ala 1160
1165 1170Ser Met Gly Gly Phe Gly Asn Asn Ile
Ile Val Ser His Arg Ile 1175 1180
1185His Arg Ser Ser Gln Thr Gly Thr Glu Pro Gly Ala Ala His Thr
1190 1195 1200Ser Ser Pro Gln Pro Ser
Thr Ser Arg Gly Leu Leu Pro Glu Ala 1205 1210
1215Gly Gln Leu Ala Glu Arg Gly Leu Ser Pro Arg Thr Ala Ser
Trp 1220 1225 1230Asp Gln Pro Gly Thr
Pro Gly Arg Glu Pro Thr Gln Pro Thr Leu 1235 1240
1245Pro Ser Ser Ser Pro Val Pro Ile Pro Val Ser Leu Pro
Ser Ala 1250 1255 1260Glu Gly Pro Thr
Leu His Cys Glu Leu Thr Asn Asn Asn His Leu 1265
1270 1275Leu Asp Gly Gly Ser Ser Arg Gly Asp Ala Ala
Gly Pro Arg Gly 1280 1285 1290Glu Pro
Arg Asn Arg 12952312PRTHomo Sapiens 2Met Ser Tyr Gln Lys Lys Gln Pro
Thr Pro Gln Pro Pro Val Asp Cys1 5 10
15Val Lys Thr Ser Gly Gly Gly Gly Gly Gly Gly Gly Ser Gly
Gly Gly 20 25 30Gly Cys Gly
Phe Phe Gly Gly Gly Gly Ser Gly Gly Gly Ser Ser Gly 35
40 45Ser Gly Cys Gly Tyr Ser Gly Gly Gly Gly Tyr
Ser Gly Gly Gly Cys 50 55 60Gly Gly
Gly Ser Ser Gly Gly Gly Gly Gly Gly Gly Ile Gly Gly Cys65
70 75 80Gly Gly Gly Ser Gly Gly Ser
Val Lys Tyr Ser Gly Gly Gly Gly Ser 85 90
95Ser Gly Gly Gly Ser Gly Cys Phe Ser Ser Gly Gly Gly
Gly Ser Gly 100 105 110Cys Phe
Ser Ser Gly Gly Gly Gly Ser Ser Gly Gly Gly Ser Gly Cys 115
120 125Phe Ser Ser Gly Gly Gly Gly Ser Ser Gly
Gly Gly Ser Gly Cys Phe 130 135 140Ser
Ser Gly Gly Gly Gly Phe Ser Gly Gln Ala Val Gln Cys Gln Ser145
150 155 160Tyr Gly Gly Val Ser Ser
Gly Gly Ser Ser Gly Gly Gly Ser Gly Cys 165
170 175Phe Ser Ser Gly Gly Gly Gly Gly Ser Val Cys Gly
Tyr Ser Gly Gly 180 185 190Gly
Ser Gly Cys Gly Gly Gly Ser Ser Gly Gly Ser Gly Ser Gly Tyr 195
200 205Val Ser Ser Gln Gln Val Thr Gln Thr
Ser Cys Ala Pro Gln Pro Ser 210 215
220Tyr Gly Gly Gly Ser Ser Gly Gly Gly Gly Ser Gly Gly Ser Gly Cys225
230 235 240Phe Ser Ser Gly
Gly Gly Gly Gly Ser Ser Gly Cys Gly Gly Gly Ser 245
250 255Ser Gly Ile Gly Ser Gly Cys Ile Ile Ser
Gly Gly Gly Ser Val Cys 260 265
270Gly Gly Gly Ser Ser Gly Gly Gly Gly Gly Gly Ser Ser Val Gly Gly
275 280 285Ser Gly Ser Gly Lys Gly Val
Pro Ile Cys His Gln Thr Gln Gln Lys 290 295
300Gln Ala Pro Thr Trp Pro Ser Lys305 310
User Contributions:
Comment about this patent or add new information about this topic: