Patent application title: Disruption of ROCK1 gene leads to plants with improved traits
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
1 1
Class name:
Publication date: 2019-12-26
Patent application number: 20190390214
Abstract:
The present invention provides a method for improving traits in a plant,
like e.g. improving yield-related traits like number of flowers, number
of siliques, seed yield, stem growth in a plant, the method comprising
disruption of endogenous ROCK1 gene in a plant cell, wherein said
disruption inhibits expression and/or activity of a product of said
endogenous ROCK1 gene compared to a corresponding control plant cell
lacking such a disruption.Claims:
1. A method for producing a plant with an improved yield-related trait,
the method comprising: introducing into the genome of a plant cell a
disruption of endogenous ROCK1 gene, wherein said disruption inhibits
expression and/or activity of a product of said endogenous ROCK1 gene
compared to a corresponding plant cell lacking such a disruption, wherein
the endogenous ROCK1 gene comprises: (a) a nucleic acid encoding a ROCK1
protein comprising the amino acid sequence of SEQ ID NO: 1 or 2 or an
orthologue thereof; (b) a nucleic acid encoding a ROCK1 protein
comprising an amino acid sequence with a sequence identity of at least
55% over the entire amino acid sequence with SEQ ID NO: 1 or 2; (c) a
nucleic acid comprising one of the nucleic acid sequences with SEQ ID NO:
4, 5, 6, 7 and/or 8; (d) a nucleic acid comprising a nucleic acid with a
sequence identity of at least 60% over the entire nucleic acid sequence
with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or (e) a nucleic acid
hybridizing under stringent conditions to one of the nucleic acid
sequences defined under (a), (b), (c), and/or (d); regenerating a plant
having such an altered genome from said plant cell; measuring a
yield-related trait of said plant compared to a plant lacking such
disruption, wherein the yield-related trait is selected from the group
consisting of: number of flowers, number of siliques, shoot growth, and
seed yield; and crossing said plant having such an altered genome with
another plant to introduce the disruption into said another plant.
2. The method of claim 1, wherein the disruption is introduced by at least one of: structural disruption, T-DNA insertion, antisense polynucleotide gene suppression, double stranded RNA induced gene silencing, ribozyme techniques, genomic disruption, tilling, transcriptional activator-like effector nucleases, zink finger nucleases, homing meganucleases, CRISPR/Cas technology and homologous recombination.
3. The method of claim 1, wherein the disruption comprises more than one disruption and all disruptions are homozygous disruptions.
4. The method of claim 1, wherein the endogenous ROCK1 gene comprises: (a) a nucleic acid encoding a ROCK1 protein comprising one of the amino acid sequences of SEQ ID NO: 1, 2 and/or 9 to 39; (b) a nucleic acid encoding a ROCK1 protein comprising an amino acid sequence with a sequence identity of at least 55% over the entire amino acid sequence with SEQ ID NO: 1, 2 and/or 9 to 39; (c) a nucleic acid comprising one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8; (d) a nucleic acid comprising a nucleic acid with a sequence identity of at least 60% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d).
5. The method of claim 1, wherein the plant is a monocotyledonous plant, a dicotyledonous plant, a moss or an algae.
6. The method of claim 1, wherein the plant is selected from a family of the group consisting of: Brassicaceae, Rosaceae, Fabaceae, Poaceae, Vitaceae, Solanaceae, Salicaceae, Malvaceae, Pinaceae, Funariaceae Rutaceae, Rubiacea, Musaceae and Selaginellaceae.
7. The method of claim 6, wherein the family is Brassicaceae, Poaceae, Rosaceae, Solanaceae, Malvaceae, Salicaceae or Fabaceae.
8. The method of claim 1, wherein the yield-related trait is number of flowers.
9. The method of claim 1, wherein the yield-related trait is number of siliques.
10. A method for producing a plant with an improved yield-related trait, the method comprising: introducing into the genome of a plant cell a disruption of endogenous ROCK1 gene, wherein said disruption inhibits expression and/or activity of a product of said endogenous ROCK1 gene compared to a corresponding plant cell lacking such a disruption, wherein the endogenous ROCK1 gene comprises: (a) a nucleic acid encoding a ROCK1 protein comprising the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof; (b) a nucleic acid encoding a ROCK1 protein comprising an amino acid sequence with a sequence identity of at least 55% over the entire amino acid sequence with SEQ ID NO: 1 or 2; (c) a nucleic acid comprising one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8; (d) a nucleic acid comprising a nucleic acid with a sequence identity of at least 60% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d); regenerating a plant having such an altered genome from said plant cell; crossing the plant having such an altered genome with another plant to introduce the disruption into said another plant; and measuring a yield-related trait of said another plant compared to a plant lacking such disruption, wherein the yield-related trait is selected from the group consisting of: number of flowers, number of siliques, shoot growth, and seed yield.
11. A method for producing a plant with an improved yield-related trait, the method comprising: introducing into the genome of a plant cell a disruption of endogenous ROCK1 gene, wherein said disruption inhibits expression and/or activity of a product of said endogenous ROCK1 gene compared to a corresponding plant cell lacking such a disruption, wherein the endogenous ROCK1 gene comprises: (a) a nucleic acid encoding a ROCK1 protein comprising the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof; (b) a nucleic acid encoding a ROCK1 protein comprising an amino acid sequence with a sequence identity of at least 55% over the entire amino acid sequence with SEQ ID NO: 1 or 2; (c) a nucleic acid comprising one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8; (d) a nucleic acid comprising a nucleic acid with a sequence identity of at least 60% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d); regenerating a plant having such an altered genome from said plant cell; crossing the plant having such an altered genome with another plant to introduce the disruption into said another plant; and identifying and isolating said another plant comprising a plant cell carrying such disruption by measuring a yield-related trait of said another plant compared to a plant lacking such disruption, wherein the yield-related trait selected from the group consisting of: number of flowers, number of siliques, shoot growth, and seed yield.
12. A method for producing a plant with an improved yield-related trait, the method comprising: introducing into the genome of a plant a disruption of endogenous ROCK1 gene by crossing a disrupted plant with a non-disrupted plant, wherein said disruption inhibits expression and/or activity of a product of said endogenous ROCK1 gene compared to a corresponding plant cell lacking such a disruption, wherein the endogenous ROCK1 gene comprises: (a) a nucleic acid encoding a ROCK1 protein comprising the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof; (b) a nucleic acid encoding a ROCK1 protein comprising an amino acid sequence with a sequence identity of at least 55% over the entire amino acid sequence with SEQ ID NO: 1 or 2; (c) a nucleic acid comprising one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8; (d) a nucleic acid comprising a nucleic acid with a sequence identity of at least 60% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d); identifying and isolating a plant from the cross between the disrupted plant ant the non-disrupted plant, carrying such disruption by measuring a yield-related trait of said plant compared to a plant lacking such disruption, wherein the yield-related trait selected from the group consisting of: number of flowers, number of siliques, shoot growth, and seed yield.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This U.S. Application is a continuation application of U.S. application Ser. No. 15/522,467, filed Apr. 27, 2017, which is a National Stage Entry of PCT/EP2015/076008 which claims priority to European Application No.: 14192882.0 filed Nov. 12, 2014, entitled "DISRUPTION OF ROCK1 GENE LEADS TO PLANTS WITH IMPROVED TRAITS" the entireties of which are incorporated herein by reference.
REFERENCE TO A SEQUENCE LISTING SUBMITTED IN COMPUTER READABLE FORM
[0002] This application includes a "Sequence Listing" which is provided in computer readable form (CRF). The file "3975-159_ST25.txt" was created Aug. 10, 2018, and is 117,649 bytes, which is herein incorporated by reference in its entirety.
[0003] In order to be able to supply a continuously growing population with food and other plant-derived products, people have always been interested in improving the productivity in agriculture.
[0004] The productivity of a plant can be influenced in various different ways, e.g. by improving plant growth characteristics or by delaying leaf senescence. There are many mechanisms and pathways known which are involved in plant growth and development.
[0005] Cytokinin is a plant hormone that plays positive and negative regulatory roles in many aspects of plant growth and development. It stimulates the formation and activity of shoot meristems, is able to establish sink tissues, retard leaf senescence, inhibits root growth and branching, and plays a role in seed germination and stress responses. Analysis of cytokinin-deficient plants has shown that cytokinin plays opposite roles in shoot and root meristems and suggests that the hormone has an essential function in quantitative control of organ growth.
[0006] It has been shown that cytokinin oxidases/dehydrogenases (CKX) are an important factor to regulate the homeostasis of the plant hormone cytokinin. The genome of Arabidopsis encodes seven CKX genes, which have distinct expression domains. Recently it was shown that in a rice plant inhibition of the function of a particular CKX gene, the rice orthologue to CKX3 of Arabidopsis thaliana, has led to an increase in particle-bearing number of said rice plant (see US 2006/0123507 A1). Since modern crop plants are the result of recent genome-hybridization events it is beneficial to identify genes that are controlling the activity of a whole group of gene products at once.
[0007] The economic focus can lie on different parts of the plant thus defining the yield-related traits. In the case of ornamental plants, the number of flowers can be a central trait. The same is true in the case where flower organs are the economically used part. Furthermore, one of the parameters influencing the seed yield is the number of flowers. Additionally, the production of biomass is influenced by the growth rate of the stem.
[0008] It is an object of the present invention to provide means and methods suitable to provide plants with improved yield-related traits.
[0009] This object is achieved by the present invention as set out in detail below.
[0010] The present invention provides means and methods for improving a trait in a plant, e.g. improving yield-related traits in a plant, the method comprising disruption of endogenous ROCK1 gene in a plant cell, wherein said disruption inhibits expression and/or activity of a product of said endogenous ROCK1 gene compared to a corresponding control plant cell lacking such a disruption.
[0011] In a first aspect, the present invention is directed to a method for improving a trait in a plant, the method comprising disruption of endogenous ROCK1 gene in a plant cell, wherein said disruption inhibits expression and/or activity of a product of said endogenous ROCK1 gene compared to a corresponding control plant cell lacking such a disruption.
[0012] In a second aspect, the invention refers to a plant cell or a plant obtainable or obtained by the method of the present invention or to progeny thereof, wherein said progeny comprises or consists of plant cells with a disruption in endogenous ROCK1 gene.
[0013] In a third aspect, the present invention is directed to the use of the method of the present invention for production of a plant with improved yield-related traits compared to a plant which lacks a disruption in its endogenous ROCK1 gene.
[0014] In a forth aspect, the present invention provides an isolated ROCK1 protein and an isolated nucleic acid encoding such ROCK1 protein.
[0015] It has surprisingly been found that in a plant disruption of endogenous ROCK1 gene leads to plants with yield-related traits that are improved compared to a plant lacking such disruption. It has been shown that disruption of endogenous ROCK1 gene leads to plants with a significant increase in yield-related traits like e.g. total number of flowers, total number of siliques, and/or shoot growth compared to wild type plants or plants lacking such a disruption in its endogenous ROCK1 gene.
[0016] Thus, the present invention provides a method for improving a trait in a plant, wherein the method comprises the step of disrupting endogenous ROCK1 gene in a plant cell, wherein said disruption inhibits expression and/or activity of a product of said endogenous ROCK1 gene compared to a corresponding plant cell lacking such a disruption, wherein the endogenous ROCK1 gene comprises or consists of:
[0017] (a) a nucleic acid encoding a ROCK1 protein comprising or consisting of the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof;
[0018] (b) a nucleic acid encoding a ROCK1 protein comprising or consisting of an amino acid sequence with a sequence identity of at least 55%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire amino acid sequence with SEQ ID NO: 1 or 2;
[0019] (c) a nucleic acid comprising or consisting of one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8;
[0020] (d) a nucleic acid comprising or consisting of a nucleic acid with a sequence identity of at least 60%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or
[0021] (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d).
[0022] The method of the invention can comprise further steps. Preferably the method of the invention comprises the steps of introducing into the genome of a plant cell a disruption of endogenous ROCK1 gene, and regenerating a plant with such an altered genome from said plant cell.
[0023] The endogenous ROCK1 gene disrupted in the method of the invention encodes for a ROCK1 protein, wherein said ROCK1 protein is a member of the nucleotide sugar transporter (NST) family of proteins and exhibits essentially the same function as ROCK1 protein with SEQ ID NO: 1. The ROCK1 protein with SEQ ID NO: 1 is a member of NST family with UDP-GlcNAc and UDP-GalNAc being main substrates. Preferably, the endogenous ROCK1 gene disrupted in the method of the invention encodes for a ROCK1 protein comprising the amino acid motif GGILVGLVT with SEQ ID NO. 3. In the method of the invention, the ROCK1 protein with SEQ ID NO. 1 or an orthologue thereof preferably comprises the amino acid sequence GGILVGLVT with SEQ ID NO. 3.
[0024] In the method of the invention, one, more than one or all disruptions can be introduced by structural disruption, T-DNA insertion, antisense polynucleotide gene suppression, double stranded RNA induced gene silencing, ribozyme techniques, genomic disruption, tilling, transcription activator-like effector nucleases (TALENs), CRISPR/Cas, designer zinc finger nucleases (ZFNs), homing meganucleases and/or homologous recombination.
[0025] Preferably, one, more than one or all disruptions in endogenous ROCK1 gene are homozygous disruptions.
[0026] In the method of the invention, the endogenous ROCK1 gene preferably comprises or consists of:
[0027] (a) a nucleic acid encoding a ROCK1 protein comprising or consisting of one of the amino acid sequences with SEQ ID NO: 1, 2, and/or 9 to 39;
[0028] (b) a nucleic acid encoding a ROCK1 protein comprising or consisting of an amino acid sequence with a sequence identity of at least 55%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire amino acid sequence of one of SEQ ID NO: 1, 2, and/or 9 to 39;
[0029] (c) a nucleic acid comprising or consisting of one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8;
[0030] (d) a nucleic acid comprising or consisting of a nucleic acid with a sequence identity of at least 60%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire nucleic acid sequence of one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or
[0031] (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d).
[0032] The method of the invention allows for improvement of a trait in a plant. Preferably, the trait improved is a yield-related trait like e.g. number of flowers, number of siliques, and/or shoot growth.
[0033] The present invention also provides for a plant cell obtainable or obtained by the method of the invention or progeny thereof comprising a disruption in its endogenous ROCK1 gene, wherein the endogenous ROCK1 gene comprises or consists of:
[0034] (a) a nucleic acid encoding a ROCK1 protein comprising or consisting of the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof;
[0035] (b) a nucleic acid encoding a ROCK1 protein comprising or consisting of an amino acid sequence with a sequence identity of at least 55%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire amino acid sequence with SEQ ID NO: 1 or 2;
[0036] (c) a nucleic acid comprising or consisting of one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8;
[0037] (d) a nucleic acid comprising or consisting of a nucleic acid with a sequence identity of at least 60%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire nucleic acid sequence of one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or
[0038] (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d).
[0039] The present invention is also directed to a plant obtainable or obtained by the method of the invention or progeny thereof comprising a disruption in endogenous ROCK1 gene. The endogenous ROCK1 gene comprises or consists of:
[0040] (a) a nucleic acid encoding a ROCK1 protein comprising or consisting of the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof;
[0041] (b) a nucleic acid encoding a ROCK1 protein comprising or consisting of an amino acid sequence with a sequence identity of at least 55%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire amino acid sequence with SEQ ID NO: 1 or 2;
[0042] (c) a nucleic acid comprising or consisting of one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8;
[0043] (d) a nucleic acid comprising or consisting of a nucleic acid with a sequence identity of at least 60%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or
[0044] (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d).
[0045] The progeny of the plant of the present invention comprises mature plants, seeds, tubers, beets/swollen tap roots, fruits, shoots, seedlings and/or parts thereof.
[0046] The plant of the present invention can be a monocotyledonous, a dicotyledonous plant, a moss or an algae.
[0047] Preferably, the plant or the plant cell of the present invention is selected from the family of Brassicaceae, Rosaceae, Fabaceae, Poaceae, Vitaceae, Solanaceae, Salicaceae, Malvaceae, Pinaceae, Funariaceae, Rutaceae, Rubiacea, Musaceae and/or Selaginellaceae, more preferably of Brassicaceae, Poaceae, Rosaceae, Solanaceae, Malvaceae and/or Fabaceae.
[0048] The method of the present invention can be used for production of a plant with increased yield-related traits compared to a plant which lacks a disruption in its endogenous ROCK1 gene.
[0049] Furthermore, the present invention is directed to an isolated nucleic acid encoding a ROCK1 protein comprising or consisting of an amino acid sequence with one of SEQ ID NO: 1, 2, and/or 9 to 39 and to an isolated ROCK1 protein comprising or consisting of an amino acid sequence with one of SEQ ID NO: 1, 2, and/or 9 to 39.
[0050] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.
[0051] As used in this specification and appended claims, the singular forms "a", "an" and "the" include singular and plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "a cell" includes one cell and a combination of two or more cells, and the like.
[0052] In the method of the present invention a trait of a plant is improved. The trait improved may be one or more yield-related traits. Yield-related traits are known to the person skilled in the art; however, for the purpose of the present invention yield-related traits comprise number of flowers, number of siliques, seed yield, stem growth, shoot growth and/or other seed-related traits.
[0053] The term "plant" refers generically to any of: whole plants, plant parts or organs (e.g. leaves, stems, roots, etc.), shoot vegetative organs/structures (e.g. leaves, stems and tubers), roots, flowers and floral organs/structures (e.g. bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat), fruit (the mature ovary), plant tissue (e.g. vascular tissue, ground tissue, and the like), tissue culture callus, and plant cells (e.g. guard cells, egg cells, trichomes and the like), and progeny of same. The term "plant" generally means all those organisms which are capable of photosynthesis. Included as plant within the scope of the invention are all genera and species of the higher and lower plants of the plant kingdom. Mature plants means plants at any developmental stage beyond the seedling. Seedling means a young immature plant in an early developmental stage. The plants of the invention may be annual, perennial, monocotyledonous and/or dicotyledonous or algae or moss plants. In particular, the plants of the invention can be plants of the families Brassicaceae, Rosaceae, Fabaceae, Poaceae, Vitaceae, Solanaceae, Salicaceae, Malvaceae, Pinaceae, Funariaceae, Rutaceae, Rubiacea, Musaceae and/or Selaginellaceae, preferably plants of the families Brassicaceae, Fabaceae, Rosaceae, Solanaceae, Malvaceae, Salicaceae and/or Poaceae, most preferably Arabidopsis thaliana, Brassica napus, Brassica rapa, Brassica oleracea, Triticum aestivum, Hordeum vulgare, Zea mays, Oryza sativa, Nicotiana spec., Gossypium spec., Populus spec., Salix spec and/or Glycine max.
[0054] Plant cell, as used herein, further includes, without limitation, cells obtained from or found in a plant or a part thereof: seeds, cultures, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. Plant cells can also be understood to include modified cells, such as protoplasts, obtained from the aforementioned tissues.
[0055] The term "progeny" as used herein refers to a product or part of a plant or plant cell of the invention, wherein said product or part comprises a disruption of an endogenous ROCK1 gene and is suitable for or is capable of producing or regenerating a plant or plant cell of the invention. Progeny of a plant cell of the invention can be e.g. a plant cell derived by cell division from a plant cell of the invention or a plant regenerated from a plant cell of the invention. Progeny of a plant of the invention is e.g. mature plants, seeds, tubers, beets/swollen tap roots, fruits, shoots, seedlings and/or parts thereof.
[0056] The present invention refers to a plant obtainable or obtained by the method of the invention. The plant of the invention may be a transgenic plant. The term "transgenic" refers to a plant that has incorporated nucleic acid sequences, including but not limited to genes, polynucleotides, DNA, RNA, etc., and/or alterations thereto (e.g. mutations, point mutations or the like), which have been introduced into a plant compared to a non-introduced plant by processes which are not essentially biological processes for the production of plants. Thus, the term "transgenic plant" encompasses not only plants comprising non-endogenous nucleic acids, but explicitly refers also to plants that bear mutations in an endogenous gene, e.g. point mutations, which have been introduced into said transgenic plant compared to a control plant by processes which are not essentially biological processes for the production of plants.
[0057] In the method of the invention a trait is improved in a plant by disruption of endogenous ROCK1 gene.
[0058] The term "gene" or "gene sequence" is used broadly to refer to any nucleic acid associated with a biological function. Genes typically include coding sequences and/or the regulatory sequences required for expression of such coding sequences. The term "gene" applies to a specific genomic sequence, as well as to a cDNA or an mRNA encoded by that genomic sequence. Genes also include non-expressed nucleic acid segments that, for example, form recognition or target sequences for other molecules like e.g. nucleic acids and/or proteins. Non-expressed regulatory sequences include promoters and enhancers, to which regulatory proteins such as transcription factors bind, resulting in transcription of adjacent or nearby sequences.
[0059] The term "endogenous" relates to any gene or nucleic acid sequence that is already present in a given wild type cell or organism like e.g. a plant. The term "exogenous" relates to any gene or nucleic acid sequences that is not endogenous.
[0060] The ROCK1 gene is first described in Arabidopsis thaliana and encodes for a ROCK1 protein, also called Repressor of Cytokinin Deficiency 1 (ROCK1). ROCK1 protein is a member of the structural family of nucleotide sugar transporters (NST). ROCK1 is an ER (endoplasmatic reticulum)-resident protein with multiple transmembrane domains and with a C-terminal di-lysine motif which is thought to control exact localisation of the protein.
[0061] ROCK1 protein functions as a NST transporting UDP-GalNAc and UDP-GlcNAc as main substrates.
[0062] There are tests available to the skilled person which allow testing whether a given protein may function as NST and determining what are the main substrates. A test system commonly used is described in Gerardy-Schahn et al (2001) Nucleotide sugar transporters: biological and functional aspects; Biochimie 83(8): 775-782 and Ashikov et al (2005) The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J. Biol. Chem. 280(29): 27230-27235. It is a heterologous test system, wherein the protein of interest is introduced into a test organism, e.g. Saccharomyces cerevisiae, and transport activity is tested in vitro with radiolabeled nucleotide sugars.
[0063] Such a test system is suitable to determine whether a given nucleic acid encodes for a protein which represents an orthologue to ROCK1 with SEQ ID NO: 1 and exhibits essentially the same function as ROCK1 protein of Arabidopsis thaliana with SEQ ID NO: 1. A ROCK1 protein exhibits essentially the same function as the ROCK1 protein with SEQ ID NO: 1, if said protein is an NST transporting UDP-GalNAc and UDP-GlcNAc when measured in above mentioned biochemical in vitro test of Gerardy-Schahn et al or Ashikov et al.
[0064] The ROCK1 protein of Arabidopsis thaliana exists in two alternatively spliced forms, whereas the two splice forms differ in the length of their C-terminal part. As used herein and if not denoted otherwise, the term "ROCK1" refers to both spliced forms; however, the splice form of ROCK1 protein with SEQ ID NO.1 is preferred. The ROCK1 protein of Arabidopsis thaliana comprises an amino acid sequence of SEQ D NO: 1 for the spliced form denoted Atg65000.1 and of SEQ ID NO 2 for the spliced form denoted At5g65000.2. The genomic sequence of the ROCK1 gene of Arabidopsis thaliana comprises the nucleic acid sequence of SEQ ID NO: 4, the coding sequence of ROCK1 gene of Arabidopsis thaliana comprises the nucleic acid sequence of SEQ ID NO: 5 for ROCK1 protein with SEQ ID NO. 1 (At5g65000.1) and SEQ ID NO: 6 for ROCK1 protein with SEQ ID NO. 2 (At5g65000.2) and the cDNA of the ROCK1 gene of Arabidopsis thaliana comprises the nucleic acid sequence with SEQ ID NO: 7 for ROCK1 protein with SEQ ID NO. 1 (At5g65000.1) and SEQ ID NO: 8 for ROCK1 protein with SEQ ID NO. 2 (At5g65000.2).
[0065] The endogenous ROCK1 gene to be disrupted in the method of the invention may comprise or consist of:
[0066] (a) a nucleic acid encoding a ROCK1 protein comprising or consisting of the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof;
[0067] (b) a nucleic acid encoding a ROCK1 protein comprising or consisting of an amino acid sequence with a sequence identity of at least 55%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire amino acid sequence with SEQ ID NO: 1 or 2;
[0068] (c) a nucleic acid comprising or consisting of one of the nucleic acid sequences with SEQ ID NO: 4, 5, 6, 7 and/or 8;
[0069] (d) a nucleic acid comprising or consisting of a nucleic acid with a sequence identity of at least 60%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or
[0070] (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d).
[0071] The term "nucleic acid" or "polynucleotide" is generally used in its art-recognized meaning to refer to a ribose nucleic acid (RNA) or deoxyribose nucleic acid (DNA) polymer, or analogue thereof, e.g., a nucleotide polymer comprising modifications of the nucleotides, a peptide nucleic acid, or the like. In certain applications, the nucleic acid can be a polymer that includes multiple monomer types, e.g., both RNA and DNA subunits. A nucleic acid can be e.g. a chromosome or chromosomal segment, a vector (e.g., an expression vector), an expression cassette, a naked DNA or RNA polymer, the product of a polymerase chain reaction (PCR), an oligonucleotide, a probe, combinations thereof, etc. A nucleic acid can be e.g. single-stranded and/or double-stranded. Unless otherwise indicated, a particular nucleic acid sequence of the invention optionally comprises or encodes complementary sequences, in addition to any sequence explicitly indicated.
[0072] The term "polynucleotide sequence", "nucleic acid sequence", "nucleic acid" or "nucleotide sequence" refers to a contiguous sequence of nucleotides in a single nucleic acid or to a representation, e.g., a character string, thereof. That is, a "polynucleotide sequence" is a polymer of nucleotides (an oligonucleotide, a DNA, a nucleic acid, etc.) or a character string representing a nucleotide polymer, depending on context. From any specified polynucleotide sequence, either the given nucleic acid or the complementary polynucleotide sequence (e.g. the complementary nucleic acid) can be determined.
[0073] The term "subsequence" or "fragment" is any portion of an entire sequence.
[0074] The term "orthologue" as used herein refers to a gene from a second species which shows highest similarity, i.e. highest sequence identity, to the specified gene of a first species (e.g. of Arabidopsis thaliana) and which encodes for a protein exhibiting essentially the same function as the protein encoded by the specified gene of the first species because both genes originated from a common ancestor. Since during evolution of plants gene or whole genome duplication events occurred, the skilled person is well aware of the fact that a given plant species may comprise more than one orthologuous gene or protein. Thus, a given plant species may comprise multiple paralogous genes wherein said paralogous genes may encode for orthologous proteins which differ in sequence.
[0075] The term "orthologue" may denote an endogenous gene encoding for a protein having essentially the same function and comprising a sequence (polypeptide or nucleic acid) with at least 55%, at least 65%, at least 69%, at least 75%, or at least 90% sequence identity to a given sequence the respective orthologue refers to, e.g. over the whole sequence length.
[0076] In particular the term "orthologue" as used herein denotes an endogenous ROCK1 gene, which is derived from a species different from Arabidopsis thaliana, encoding for a protein with essentially the same function as ROCK1 protein of Arabidopsis thaliana with SEQ ID NO. 1 and comprising an amino acid sequence with at least 55%, at least 65%, at least 69%, at least 75%, or at least 90% sequence identity to the ROCK1 protein of Arabidopsis thaliana with SEQ ID NO. 1 over the whole sequence length. Preferably, the orthologuous ROCK1 gene encodes for a ROCK1 protein which has the amino acid motif GGILVGLVT with SEQ ID NO. 3 in common with ROCK1 protein of Arabidopsis thaliana with SEQ D NO. 1.
[0077] The skilled person can easily and rapidly identify the respective orthologous gene in a given species based on the information provided herewith for ROCK1 gene of Arabidopsis thaliana. There are numerous techniques available which are applied routinely by the person skilled in the art in order to successfully identify orthologous genes. This can be done as follows: Use the ROCK1 protein sequence as query and perform a global BLASTP search (Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J Mol Biol, 215, 403-410) against the database containing the predicted protein sequences of a given species. The obtained sequences with the highest scores are aligned to the ROCK1 protein sequence using Clustal Omega to determine the identity between the protein sequences (Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D. & Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 7, 539). The proteins showing a sequence identity of at least 55%, at least 65%, at least 69%, at least 75%, or at least 90% with the ROCK1 protein sequence are defined as proteins orthologous to ROCK1.
[0078] The orthologue as used herein can refer to an endogenous gene, which is derived from a species different from Arabidopsis thaliana, encoding for an orthologous ROCK1 protein with essentially the same function as ROCK1 protein of Arabidopsis thaliana with SEQ ID NO. 1. Preferably, the orthologous protein comprises an amino acid sequence with at least 55%, at least 65%, at least 69%, at least 75%, or at least 90% sequence identity over the whole sequence length to ROCK1 protein of Arabidopsis thaliana with SEQ ID NO: 1. Preferably, the ROCK1 protein of Arabidopsis thaliana with SEQ ID NO. 1 and orthologous ROCK1 proteins thereof share the amino acid sequence motif GGILVGLVT (SEQ ID NO. 3).
[0079] Some specific examples of orthologous ROCK1 proteins of different species are given below:
Brassicaceae:
[0080] ROCK1 protein of Arabidopsis thaliana with SEQ ID NO: 1 or 2;
[0081] ROCK1 protein of Brassica napus with SEQ ID NO: 9, 10, 11 or 12;
[0082] ROCK1 protein of Brassica oleracea with SEQ ID NO: 13 or 14;
[0083] ROCK1 protein of Brassica rapa with SEQ ID NO: 15 or 16;
Rosaceae:
[0084] ROCK1 protein of Fragaria vesca with SEQ ID NO: 17;
[0085] ROCK1 protein of Prunus persica with SEQ ID NO: 18;
[0086] ROCK1 protein of Malus domestica with SEQ ID NO: 19;
Poaceae:
[0087] ROCK1 protein of Sorghum bicolor with SEQ ID NO: 21;
[0088] ROCK1 protein of Hordeum vulgare with SEQ ID NO: 22;
[0089] ROCK1 protein of Oryza sativa with SEQ ID NO: 27;
[0090] ROCK1 protein of Brachypodium distachyon with SEQ ID NO: 20;
[0091] ROCK1 protein of Zea mays with SEQ ID NO: 24 or 25;
[0092] ROCK1 protein of Setaria italic with SEQ ID NO: 23;
[0093] ROCK1 protein of Triticum aestivum with SEQ ID NO: 26;
Fabaceae:
[0094] ROCK1 protein of Glycine max with SEQ ID NO: 28;
[0095] ROCK1 protein of Phaseolus vulgaris with SEQ ID NO: 29;
[0096] ROCK1 protein of Cicer arietinum with SEQ ID NO: 30;
Vitaceae:
[0097] ROCK1 protein of Vitis vinifera with SEQ ID NO: 31;
Solanaceae:
[0098] ROCK1 protein of Solanum lycopersicum with SEQ ID NO: 32;
Malvaceae:
[0099] ROCK1 protein of Theobroma cacao with SEQ ID NO: 33;
Rutaceae:
[0100] ROCK1 protein of Citrus sinensis with SEQ ID NO: 34;
[0101] ROCK1 protein of Citrus clementina with SEQ ID NO: 35;
Pinaceae:
[0102] ROCK1 protein of Picea sitchensis with SEQ ID NO: 36;
Rubiaceae:
[0103] ROCK1 protein of Coffea canephora with SEQ ID NO: 37;
Musaceae:
[0104] ROCK1 protein of Musa acuminate with SEQ ID NO: 38; and
Funariaceae:
[0105] ROCK1 protein of Physcomitrella patens with SEQ ID NO: 39.
[0106] In Table 1 sequence homology for above mentioned orthologous ROCK1 proteins is given relative to ROCK1 of Arabidopsis thaliana with SEQ ID NO: 1.
TABLE-US-00001 TABLE 1 Comparison of the identity of the protein sequences of ROCK1 At5g65000.1 homologous proteins in different plant species. % identity with ROCK1 Protein origin and paralogue number protein sequence Arabidopsis_thaliana (SEQ ID NO: 1) 100.00 Physcomitrella_patens (SEQ ID NO: 39) 58.02 Picea_sitchensis (SEQ ID NO: 36) 66.87 Brachypodium_distachyon (SEQ ID NO: 20) 70.50 Hordeum_vulgare (SEQ ID NO: 22) 69.25 Triticum_aestivum (SEQ ID NO: 26) 69.66 Oryza_sativa (SEQ ID NO: 27) 71.12 Setaria_italica (SEQ ID NO: 23) 71.34 Zea_mays2 (SEQ ID NO: 25) 69.66 Sorghum_bicolor (SEQ ID NO: 21) 70.28 Zea_mays1 (SEQ ID NO: 24) 70.59 Musa_acuminata (SEQ ID NO: 38) 76.16 Cicer_arietinum (SEQ ID NO: 30) 76.32 Glycine_max (SEQ ID NO: 28) 77.26 Phaseolus_vulgaris (SEQ ID NO: 29) 76.16 Fragaria_vesca (SEQ ID NO: 17) 77.09 Prunus_persica (SEQ ID NO: 18) 77.64 Malus_domestica (SEQ ID NO: 19) 77.09 Brassica_napus3 (SEQ ID NO: 11) 92.31 Brassica_oleracea1 (SEQ ID NO: 13) 92.92 Brassica_napus4 (SEQ ID NO: 12) 92.24 Brassica_rapa2 (SEQ ID NO: 16) 92.52 Brassica_napus1 (SEQ ID NO: 9) 92.62 Brassica_oleracea2 (SEQ ID NO: 14) 92.62 Brassica_napus2 (SEQ ID NO: 10) 92.31 Brassica_rapa1 (SEQ ID NO: 15) 91.98 Coffea_canephora (SEQ ID NO: 37) 75.23 Solanum_lycopersicum (SEQ ID NO: 32) 78.64 Vitis_vinifera (SEQ ID NO: 31) 75.54 Theobroma_cacao (SEQ ID NO: 33) 82.64 Citrus_sinensis (SEQ ID NO: 34) 75.23 Citrus_clementina (SEQ ID NO: 35) 75.23 Proteins were identified by BLASTP search and percent identity is derived from ClustalOmega alignment.
[0107] The orthologous ROCK1 protein exhibits essentially the same function as the ROCK1 protein of Arabidopsis thaliana comprising of the amino acid sequence with SEQ ID NO: 1.
[0108] An orthologue of ROCK1 protein exhibits preferably at least 50% of the activity of ROCK1 protein of Arabidopsis thaliana with SEQ ID NO: 1 when measured in above mentioned biochemical in vitro test of Gerardy-Schahn et al or Ashikov et al, more preferably at least 70%, even more preferred at least 90%.
[0109] For the purpose of the present invention, sequence "identity" is objectively determined by any of a number of methods. The skilled person is well aware of these methods and can choose a suitable method without undue burden. A variety of methods for determining relationships between two or more sequences (e.g. identity, similarity and/or homology) are available and well known in the art. The methods include manual alignment, computer assisted sequence alignment and combinations thereof, for example. A number of algorithms (which are generally computer implemented) for performing sequence alignment are widely available or can be produced by one of skill. The degree of identity of one amino acid sequence or nucleotide sequence to another can be determined by following the algorithm BLAST by Karlin and Altschul (Proc. Natl. Acad. Sci. USA 90: 5873-5877, 1993). Programs such as BLASTN and BLASTX developed based on this algorithm (Altschul et al. (1990) J. Mol. Biol. 215: 403-410) may be used. To analyze a nucleotide sequence according to BLASTN based on BLAST, the parameters are set, for example, as score=100 and word length=12. On the other hand, parameters used for the analysis of amino acid sequences by the BLASTX based on BLAST include, for example, score=50 and word length=3. Default parameters of each program are used when using BLAST and Gapped BLAST program. Specific techniques for such analysis are known in the art (see http://www.ncbi.nim.nih.gov.).
[0110] The endogenous ROCK1 gene may comprise or consist of a nucleic acid hybridizing under stringent conditions to one of the nucleic acids defined supra under (a), (b), (c), and/or (d).
[0111] Stringent hybridization conditions of the present invention include conditions such as: 6 M urea, 0.4% SDS, and 0.5.times.SSC; and those which yield a similar stringency to the conditions. Nucleic acid sequences with higher homology are expected when hybridization is performed under conditions with higher stringency, for example, 6 M urea, 0.4% SDS, and 0.1.times.SSC. Those nucleic acid sequences isolated under such conditions are expected to encode a protein having a high amino acid level homology with ROCK1 protein with SEQ ID NO: 1 or 2. Herein, high homology means an identity of at least 50% or more, 70% or more, or 90% or more (e.g. 95% or more), through the entire amino acid sequence.
[0112] The term "disruption" or "disrupted" as used herein means that a gene can be structurally disrupted so as to comprise at least one mutation or structural alteration such that the disrupted gene is incapable of directing the efficient expression of a full-length and/or fully functional gene product. An endogenous gene usually is disrupted in the sense of the present invention when the endogenous gene comprises one or more mutations, such as:
[0113] (i) a "missense mutation", which is a change in the nucleic acid sequence that results in the substitution of an amino acid for another amino acid;
[0114] (ii) a "nonsense mutation" or "STOP codon mutation", which is a change in the nucleic acid sequence that results in the introduction of a premature STOP codon and, thus, the termination of translation (resulting in a truncated protein); plant genes contain the translation stop codons "TGA" (UGA in RNA), "TAA" (UAA in RNA) and "TAG" (UAG in RNA); thus any nucleotide substitution, insertion, deletion which results in one of these codons to be in the mature mRNA being translated (in the reading frame) will terminate translation.
[0115] (iii) an "insertion mutation" of one or more amino acids, due to one or more codons having been added in the coding sequence of the nucleic acid;
[0116] (iv) a "deletion mutation" of one or more amino acids, due to one or more codons having been deleted in the coding sequence of the nucleic acid;
[0117] (v) a "frameshift mutation", resulting in the nucleic acid sequence being translated in a different frame downstream of the mutation. A frameshift mutation can have various causes, such as the insertion, deletion or duplication of one or more nucleotides.
[0118] As already mentioned, it is desired that the mutation(s) in the endogenous gene preferably result in a mutant protein comprising significantly reduced or no biological activity in vivo or in the production of no protein. Basically, any mutation which results in a protein comprising at least one amino acid insertion, deletion and/or substitution relative to the wild type protein can lead to significantly reduced or no biological activity. It is, however, understood that mutations in certain parts of the protein are more likely to result in a reduced function of the mutant ROCK1 protein, such as mutations leading to truncated proteins, whereby significant portions of the functional domains are lacking.
[0119] The term "disruption" or "disrupted" also encompasses that the disrupted gene or one of its products can be functionally inhibited or inactivated such that a gene is either not expressed or is incapable of efficiently expressing a full-length and/or fully functional gene product. Functional inhibition or inactivation can result from a structural disruption and/or interruption of expression at either level of transcription or translation. Functional inhibition or inactivation can also be achieved e.g. by methods such as antisense polynucleotide gene suppression, double stranded RNA induced gene silencing, ribozyme techniques, and the like as specified in detail further below. The inhibition of expression and/or activity can be the result of, e.g. antisense constructs, sense constructs, RNA silencing constructs, RNA interference, genomic disruptions (e.g. transposons, tilling, homologous recombination, etc.), transcriptional activator-like effectors and transcription activator-like effector nucleases, CRISPR/Cas, designer zinc finger nucleases (ZFNs), homing meganucleases and/or the like. The inhibition of expression and/or activity can be measured by determining the presence and/or amount of transcript (e.g. by Northern blotting or quantitative or semi-quantitative RT-PCR techniques) and/or by determining the presence and/or amount of full length or truncated polypeptide encoded by said gene (e.g. by ELISA or Western blotting) and/or by determining presence and/or amount of protein activity of the product of the disrupted gene.
[0120] The term "disruption" or "disrupted" as used herein is to be understood that a disruption also encompasses a disruption which is effective only in a part of a plant, in a particular cell type or tissue like e.g. the reproductive meristem or the shoot apex. A disruption may be achieved by interacting with or affecting within a coding region, within a non-coding region and/or within a regulatory region like e.g. a promoter region of a particular gene. A disruption in the sense of the present invention preferably results in complete or partial loss-of-function of the disrupted gene and/or its product.
[0121] At least one of the disruptions of the method of the invention can be produced by introducing at least one polynucleotide sequence comprising a nucleic acid sequence which has at least about 90%, at least about 95%, at least about 99%, about 99.5% or more sequence identity to one of SEQ ID NO: 4, 5, 6, 7 and/or 8 or a subsequence thereof, or a complement thereof, into the genome of a plant cell, such that the at least one polynucleotide sequence is linked to a promoter in a sense or antisense orientation. In another embodiment, the disruption is introduced into the genome of a plant cell by introducing at least one polynucleotide sequence configured for RNA silencing or interference.
[0122] One, more than one or all disruptions of at least one of the endogenous genes may comprise insertion of one or more transposons. A "transposable element" (TE) or "transposable genetic element" is a DNA sequence that can move from one location to another in a cell. Movement of a transposable element can occur from episome to episome, from episome to chromosome, from chromosome to chromosome, or from chromosome to episome. Transposable elements are characterized by the presence of inverted repeat sequences at their termini. Mobilization is mediated enzymatically by a "transposase". Structurally, a transposable element is categorized as a "transposon" (TN) or an "insertion sequence element" (IS element) based on the presence or absence, respectively, of genetic sequences in addition to those necessary for mobilization of the element. A mini-transposon or mini-IS element typically lacks sequences encoding a transposase.
[0123] A disruption in the sense of the present invention can comprise one or more point mutations in at least one of the endogenous genes.
[0124] One, more than one or all disruptions of the endogenous ROCK1 gene can be homozygous disruptions. Alternatively, one, more than one or all disruptions can be heterozygous disruptions. In certain embodiments, the disruptions of the endogenous ROCK1 gene can include homozygous disruptions, heterozygous disruptions or a combination of homozygous disruptions and heterozygous disruptions.
[0125] The disruption may be introduced by way of introduction of an expression cassette into the genome of the plant. An "expression cassette" is a nucleic acid construct, e.g. a vector, such as a plasmid, a viral vector, etc., capable of producing transcripts and, potentially, polypeptides encoded by a polynucleotide sequence. An expression vector is capable of producing transcripts in an exogenous cell, e.g. a bacterial cell, or a plant cell, in vivo or in vitro, e.g. a cultured plant protoplast. Expression of a product can be either constitutive or inducible depending, e.g. on the promoter selected. Antisense, sense or RNA interference or silencing configurations that are not or cannot be translated are expressly included by this definition. In the context of an expression vector, a promoter is said to be "operably linked" or "functionally linked" to a polynucleotide sequence if it is capable of regulating expression of the associated polynucleotide sequence. The term also applies to alternative exogenous gene constructs, such as expressed or integrated transgenes. Similarly, the term operably or functionally linked applies equally to alternative or additional transcriptional regulatory sequences such as enhancers, associated with a polynucleotide sequence.
[0126] The term "vector" refers to the means by which a nucleic acid can be propagated and/or transferred between organisms, cells, or cellular components. Vectors include plasmids, viruses, bacteriophage, pro-viruses, phagemids, transposons, and artificial chromosomes, and the like, that replicate autonomously or can integrate into a chromosome of a host cell. A vector can also be a naked RNA polynucleotide, a naked DNA polynucleotide, a polynucleotide composed of both DNA and RNA within the same strand, a poly-lysine-conjugated DNA or RNA, a peptide-conjugated DNA or RNA, a liposome-conjugated DNA, or the like, that are not autonomously replicating.
[0127] A polynucleotide sequence, nucleic acid sequence or gene is said to "encode" a sense or antisense RNA molecule, or RNA silencing or interference molecule or a polypeptide, if the polynucleotide sequence can be transcribed (in spliced or unspliced form) and/or translated into the RNA or polypeptide, or a subsequence thereof. The skilled person is well aware of the degeneracy of the genetic code, allowing for a number of different nucleic acid sequences encoding for the same amino acid sequence or polypeptide and has no difficulties in determining whether a given nucleic acid sequence encodes for a given amino acid sequence or polypeptide.
[0128] "Expression of a gene" or "expression of a nucleic acid" means transcription of DNA into RNA (optionally including modification of the RNA, e.g. splicing), translation of RNA into a polypeptide (possibly including subsequent modification of the polypeptide, e.g. posttranslational modification), or both transcription and translation, as indicated by the context.
[0129] The method of the invention can further comprise the steps of introducing into the plant genome or the genome of a plant cell a disruption of endogenous ROCK1 gene, and regenerating a plant having such an altered genome. Said disruption may be stably introduced into the genome of the plant or plant cell in order to generate a plant. A disruption is considered stably introduced into the genome of a plant or plant cell, if said disruption is copied and segregated during cell division and is passed on to the progeny of said plant or plant cell.
[0130] The method of the invention can be used to produce a plant with an increase in yield-related traits per plant and, thereby, an increase in yield in a plant and the progeny derived therefrom. Preferably, the method of the invention can be used to achieve an increase in number of siliques per plant and, thereby, an increase in seed yield in a plant and the progeny derived therefrom.
[0131] The present invention is also directed to a plant obtainable or obtained by the method of the invention or progeny thereof comprising a disruption of the endogenous ROCK1 gene. The endogenous ROCK1 gene may comprise or consist of:
[0132] (a) a nucleic acid encoding a ROCK1 protein comprising or consisting of the amino acid sequence of SEQ ID NO: 1 or 2 or an orthologue thereof;
[0133] (b) a nucleic acid encoding a ROCK1 protein comprising or consisting of an amino acid sequence with a sequence identity of at least 55%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire amino acid sequence with SEQ ID NO: 1 or 2;
[0134] (c) a nucleic acid comprising or consisting of one of the nucleic acid sequence with SEQ ID NO: 4, 5, 6, 7 and/or 8;
[0135] (d) a nucleic acid comprising or consisting of a nucleic acid with a sequence identity of at least 60%, preferably of at least 65%, more preferably of at least 69%, even more preferably of at least 75%, most preferably of at least 90% over the entire nucleic acid sequence with one of SEQ ID NO: 4, 5, 6, 7 and/or 8; or
[0136] (e) a nucleic acid hybridizing under stringent conditions to one of the nucleic acid sequences defined under (a), (b), (c), and/or (d).
[0137] The plant of the invention can be produced by conventional means like e.g. transformation. The transformation of plant cells and protoplasts can be carried out in essentially any of the various ways known to those skilled in the art of plant molecular biology, including, but not limited to, the methods described herein. See, in general, Methods in Enzymology, Vol. 153 (Recombinant DNA Part D) Wu and Grossman (eds.) 1987, Academic Press. As used herein, the term "transformation" means alteration of the genotype of a host plant or plant cell by the introduction of a nucleic acid sequence, e.g. a "heterologous", "exogenous" or "foreign" nucleic acid sequence. The heterologous nucleic acid sequence need not necessarily originate from a different source but it will, at some point, have been external to the cell into which is introduced.
[0138] In the method of the invention and in the plant of the invention, the disruption of the endogenous gene can be facilitated by a number of different known techniques.
[0139] One, more than one or all of the disruptions of the endogenous ROCK1 gene can be facilitated by introducing into the genome and expressing in a plant cell or a plant a transgenic polynucleotide sequence, e.g. in antisense or sense configurations, or RNA silencing or interference configurations, etc., wherein the transgenic polynucleotide sequence comprises a nucleic acid sequence being or being complementary to one of the endogenous genes to be disrupted. In addition, said polynucleotide sequence may comprise a promoter, thereby inhibiting expression and/or activity of at least the disrupted endogenous gene compared to a corresponding control plant cell or plant lacking such disruptions (e.g. its non-transgenic parent or a non-transgenic plant of the same species). The transgenic polynucleotide sequence can be introduced by techniques including, but not limited to, e.g. electroporation, micro-projectile bombardment, Agrobacterium-mediated transfer, or other available methods. In certain aspects of the invention, the polynucleotide is linked to the promoter in a sense orientation or in an antisense orientation or is configured for RNA silencing or interference.
[0140] The disruption of one or more of the endogenous genes can be facilitated by the application of homology-dependent gene silencing, a technique already well described in the literature.
[0141] Alternatively, another approach to gene silencing can be with the use of antisense technology. Use of antisense nucleic acids is well known in the art. An antisense nucleic acid has a region of complementarity to a target nucleic acid, e.g. a particular genomic gene sequence, an mRNA, or cDNA. The antisense nucleic acid can be RNA, DNA or any other appropriate molecule. A duplex can form between the antisense sequence and its complementary sense sequence, resulting in inactivation of the gene. The antisense nucleic acid can inhibit gene expression by forming a duplex with an RNA transcribed from the gene, by forming a triplex with duplex DNA, etc. An antisense nucleic acid can be produced and tested by a number of well-established techniques.
[0142] Catalytic RNA molecules or ribozymes can also be used to inhibit expression of particular selected genes. It is possible to design ribozymes that specifically pair with virtually any desired target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs. A number of classes of ribozymes have been identified. For example, one class of ribozymes is derived from a number of small circular RNAs that are capable of self- cleavage and replication in plants. The RNAs can replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples of RNAs include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes has been described. See, e.g., Haseloff et al. (1988) Nature, 334: 585-591.
[0143] Another method to inactivate a particular selected gene by inhibiting expression is by sense suppression. Introduction of expression cassettes in which a nucleic acid is configured in the sense orientation with respect to the promoter has been shown to be an effective means by which to block the transcription of a desired target gene. See, e.g., U.S. Pat. Nos. 5,034,323, 5,231,020 and 5,283,184.
[0144] A disruption of an endogenous ROCK1 gene can also be produced by using RNA silencing or interference (RNAi), which can also be termed post-transcriptional gene silencing (PIGS) or co-suppression. In the context of this invention, "RNA silencing" (also called RNAi or RNA-mediated interference) refers to any mechanism through which the presence of a single-stranded or, typically, a double-stranded RNA in a cell results in inhibition of expression of a target gene comprising a sequence identical or nearly identical to that of the RNA, including, but not limited to, RNA interference, repression of translation of a target mRNA transcribed from the target gene without alteration of the mRNA's stability, and transcriptional silencing (e.g. histone acetylation and heterochromatin formation leading to inhibition of transcription of the target mRNA). In "RNA interference" the presence of the single-stranded or double-stranded RNA in the cell leads to endonucleolytic cleavage and then degradation of the target mRNA.
[0145] A transgene (e.g. a sequence and/or subsequence of a gene or coding sequence of interest) can be introduced into a plant cell to disrupt one or more genes by RNA silencing or interference (RNAi). For example, a sequence or subsequence (the transgene) includes a small subsequence, e.g. about 21-25 bases in length, a larger subsequence, e.g. about 25-100 or about 100-2000 (or about 200-1500, about 250-1000, etc.) bases in length, and/or the entire coding sequence or gene selected from or being complementary to the endogenous gene to be disrupted. Such a transgene can include a region in the sequence or subsequence that is about 21-25 bases in length with at least 80%, at least 90%, or at least 99% identity to a subsequence of one of the nucleic acid sequences with the SEQ ID NO: 4, 5, 6, 7 and/or 8.
[0146] Use of RNAi for inhibiting gene expression in a number of cell types (including, e.g. plant cells) and organisms, e.g. by expression of a hairpin (stem-loop) RNA or of the two strands of an interfering RNA, for example, is well described in the literature, as are methods for determining appropriate interfering RNA (s) to target a desired gene, and for generating such interfering RNAs. For example, RNA interference is described e.g. in US patent application publications 2002/0173478, 2002/0162126, and 2002/0182223.
[0147] The polynucleotide sequence(s) or subsequence(s) to be expressed to induce RNAi can be expressed, e.g., under control of a constitutive promoter, an inducible promoter, or a tissue specific promoter. Expression from a tissue-specific promoter can be advantageous in certain embodiments. A "promoter", as used herein, includes reference to a region of DNA upstream from the start of transcription and involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. Exemplary plant promoters include, but are not limited to, those that are obtained from plants, plant viruses, and bacteria which comprise genes expressed in plant cells, such as Agrobacterium or Rhizobium. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, or seeds or spatially in regions such as endosperm, embryo, or meristematic regions. Such promoters are referred to as "tissue-preferred" or "tissue-specific". A temporally regulated promoter drives expression at particular times, such as between 0-25 days after pollination. A "cell-type-preferred" promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An "inducible" promoter is a promoter that is under environmental control and may be inducible or de-repressible. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions or the presence of light. Tissue-specific, cell-type-specific, and inducible promoters constitute the class of "non-constitutive" promoters. A "constitutive" promoter is a promoter that is active under most environmental conditions and in all or nearly all tissues, at all or nearly all stages of development.
[0148] One, more than one or all disruptions of the endogenous ROCK1 gene can be introduced by transposon-based gene inactivation like e.g. T-DNA insertion. The one or more mutations in the gene sequence can comprise one or more transposon insertions and the disruptions inhibit expression and/or activity of at least the disrupted endogenous gene compared to a corresponding control plant cell or plant lacking such disruptions. For example, the one or more mutations comprise a homozygous disruption of one or more genes mentioned above or the one or more mutations comprise a heterozygous disruption of one or more genes mentioned above or a combination of both homozygous disruptions and heterozygous disruptions.
[0149] Transposons were first identified in maize by Barbara McClintock in the late 1940s. The Mutator family of transposable elements, e.g. Robertson's Mutator (Mu) transposable elements, are typically used in plant gene mutagenesis, because they are present in high copy number (10-100) and insert preferentially within and around genes.
[0150] Transposable elements can be categorized into two broad classes based on their mode of transposition. These are designated Class I and Class II; both have applications as mutagens and as delivery vectors. Class I transposable elements transpose by an RNA intermediate and use reverse transcriptases, i.e. they are retroelements. There are at least three types of Class I transposable elements, e.g. retrotransposons, retroposons, SINE-like elements. Retrotransposons typically contain LTRs, and genes encoding viral coat proteins (gag) and reverse transcriptase, RnaseH, integrase and polymerase (pol) genes. Numerous retrotransposons have been described in plant species. Such retrotransposons mobilize and translocate via a RNA intermediate in a reaction catalysed by reverse transcriptase and RNase H encoded by the transposon. Examples fall into the Ty1-copia and Ty3-gypsy groups as well as into the SINE-like and LINE-like classifications. A more detailed discussion can be found in Kumar and Bennetzen (1999) Plant Retrotransposons in Annual Review of Genetics 33: 479.
[0151] In addition, DNA transposable elements such as Ac, TamI and En/Spm are also found in a wide variety of plant species, and can be utilized in the invention.
[0152] Transposons (and IS elements) are common tools for introducing mutations in plant cells. These mobile genetic elements are delivered to cells, e.g. through a sexual cross, transposition is selected for and the resulting insertion mutants are screened, e.g. for a phenotype of interest. The disrupted genes can then be introduced into other plants by crossing the disrupted plants with a non-disrupted plant, e.g. by a sexual cross. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. The location of a TN within a genome of a plant can be easily determined by known methods, e.g. sequencing of flanking regions. For example, a PCR reaction from the plant can be used to amplify the sequence, which can then be diagnostically sequenced to confirm its origin. Optionally, the insertion mutants are screened for a desired phenotype, such as the inhibition of expression or activity of a gene of interest compared to a control plant.
[0153] TILLING can also be used to introduce and identify a disruption of an endogenous ROCK1 gene. TILLING is Targeting Induced Local Lesions In Genomes. See, e.g., McCallum et al., (2000), "Targeting Induced Local Lesions In Genomes (TILLING) for Plant Functional Genomics" Plant Physiology 123: 439-442; McCallum et al., (2000), "Targeted screening for induced mutations" Nature Biotechnology 18: 455-457; and, Colbert et al., (2001), "High-Throughput Screening for Induced Point Mutations" Plant Physiology 126: 480-484.
[0154] TILLING combines high density point mutations with rapid sensitive detection of the mutations. Typically, ethyl methanesulfonate (EMS) is used to mutagenize plant seed. EMS alkylates guanine, which typically leads to mis-pairing. For example, seeds are soaked in an about 10-20 mM solution of EMS for about 10 to 20 hours; the seeds are washed and then sown. The plants of this generation are known as M1. M1 plants are then self-fertilized. Mutations that are present in cells that form the reproductive tissues are inherited by the next generation (M2). Typically, M2 plants are screened for mutation in the desired gene and/or for specific phenotypes. For example, DNA from M2 plants is pooled and mutations in a gene of interest are detected by detection of heteroduplex formation. Typically, DNA is prepared from each M2 plant and pooled. The desired gene is amplified by PCR. The pooled sample is then denatured and annealed to allow formation of heteroduplexes. If a mutation is present in one of the plants; the PCR products will be of two types: wild-type and mutant. Pools that include the heteroduplexes are identified by separating the PCR reaction, e.g. by Denaturing High Performance Liquid Chromatography (DPHPLC). DPHPLC detects mismatches in heteroduplexes created by melting and annealing of heteroallelic DNA. Chromatography is performed while heating the DNA. Heteroduplexes have lower thermal stability and form melting bubbles resulting in faster movement in the chromatography column. When heteroduplexes are present in addition to the expected homoduplexes, a double peak is seen. As a result, the pools that carry the mutation in a gene of interest are identified. Individual DNA from plants that make up the selected pooled population can then be identified and sequenced. Optionally, the plant possessing a desired mutation in a gene of interest can be crossed with other plants to remove background mutations.
[0155] Other mutagenic methods can also be employed to introduce a disruption of an endogenous ROCK1 gene. Methods for introducing genetic mutations into plant genes and selecting plants with desired traits are well known. For instance, seeds or other plant material can be treated with a mutagenic chemical substance, according to standard techniques. Such chemical substances include, but are not limited to, the following: diethyl sulfate, ethylene imine, and N-nitroso-N-ethylurea. Alternatively, ionizing radiation from sources such as X-rays or gamma rays can be used.
[0156] The plant containing the desired disruption(s) can be crossed with other plants to introduce the disruptions into another plant. This can be done using standard breeding techniques.
[0157] Homologous recombination can also be used to introduce a disruption of an endogenous ROCK1 gene. Homologous recombination has been demonstrated in plants. Homologous recombination can be used to induce targeted gene modifications by specifically targeting a gene of interest in vivo. Mutations in selected portions of a selected gene sequence (including 5' upstream, 3' downstream, and intragenic regions) are made in vitro and introduced into the desired plant using standard techniques. The mutated gene will interact with the target wild-type gene in such a way that homologous recombination and targeted replacement of the wild-type gene will occur in transgenic plants.
[0158] Furthermore, the endogeneous ROCK1 gene might be disrupted using different technologies based to the site-specific introduction of DNA double-strand breakages that might be followed by imperfect repair by non-homologous end-joining or homology-directed repair mechanisms that might lead to the disruption of the respective target gene.
[0159] Among them is the CRISPR/Cas technology. This is based on a Cas DNA nuclease that is guided to the DNA target sequence by a combination of two or one sequence-specific RNAs, which can be adapted to fit for the specific target sequence.
[0160] Another technology is based on designer zinc finger nucleases (ZFNs), which consist of a zink finger DNA binding domain and a DNA cleavage domain. The DNA binding domain can be modified to recognize the respective target DNA sequence within a given gene.
[0161] A third technology is based on transcription activator-like effector nucleases (TALENs). TALEN are consisting of DNA binding domain fused to a DNA cleavage domain. The DNA binding domain can be modified to recognize the respective target DNA sequence within a given gene.
[0162] A further technology is based on naturally occurring endonucleases having a large recognition site. The sequence specificity of the naturally occurring meganucleases might be adapted to the specific target gene by genetic engineering.
[0163] The plants of the invention, which can be consumed by humans and animals, may also be used, for example directly or after preparation known per se, as foodstuffs or feedstuffs.
[0164] The invention further relates to the use of the above-described plants of the invention and of the cells, cell cultures, parts, such as, for example, roots, leaves, and propagation material such as seeds, tubers, beets/swollen tap roots or fruits derived therefrom for the production of food- or feedstuffs, pharmaceuticals or fine chemicals.
[0165] In the following the present invention is further described by way of examples.
FIGURES
[0166] FIG. 1. rock1 suppresses the cytokinin deficiency phenotype by repressing CKX activity. (A) Suppression of the 35S:CKX1 shoot phenotype by rock1-1 mutation in 4-week-old plants. (B) Relative transcript abundance of A-type ARR genes in shoots of soil-grown seedlings 10 days after germination (dag) measured by quantitative real-time PCR. Data are means.+-.SD (n=4; *, P<0.05, t test). (C) Effect of rock1-1 on shoot development in plants expressing 35S:CKX2 or 35S:CKX3. The shoot fresh weight of soil-grown plants was determined 17 dag (means.+-.SD, n.gtoreq.15). Significant differences to wild type were determined by t test (*, P<0.05). (D) CKX activity measured in total protein extracts. Activity is expressed relative to wild type. Values are means.+-.SD (n.gtoreq.3). Significant differences to the respective CKX over-expression line were determined by t test (*, P<0.05).
[0167] FIG. 2. ROCK1 encodes an ER-localised nucleotide sugar transporter. (A) Subcellular localization of ROCK1. 35S:GFP-ROCK1 (upper) and 35S:GFP-ROCK1.sup.1-319 lacking the putative di-lysine signal (middle and lower row) were transiently expressed in N. benthamiana leaves and colocalization with marker proteins for ER and Golgi (red) analyzed. (B) Measurement of ROCK1-mediated uptake of radiolabeled nucleotide sugars into yeast microsomes expressing FLAG-ROCK1 or empty vector. Means.+-.SEM (n=3; *, P<0.05, t test). UDP, uridine diphospate; GDP, guanosine diphosphate; Glc, glucose; Gal, galactose; GlcNAc, N-acetylglucosamine; GalNAc, N-acetylgalactosamine; GlcA, glucuronic acid; Fuc, fucose; Xyl, xylose; Man, mannose.
[0168] FIG. 3. ROCK1 regulates the activity of the shoot apical meristem. (A) The main inflorescence of the wild-type and rock1-2 plants 5 weeks after germination. (B) Number of flowers and siliques (stage 13-18) and height of the main stem of 7-week-old rock1 mutants and wild type. Values are means.+-.SD (n.gtoreq.20; *, P<0.05, t test). (C) Scanning electron micrographs of inflorescence meristems (IM) of 4-week-old wild-type and rock1-2 plants. Scale bar=30 .mu.m. (D) Activity of the cytokinin reporter construct ARR5:GUS in the shoot meristems of Arabidopsis seedlings 2 dag. Staining performed for 1 h. (E) Histochemical detection of ROCK1:ROCK1-GUS activity in the IM and young flowers. (F) Analysis of cytokinin metabolic profiles in wild-type and rock1 seedlings after feeding with .sup.3H[iP] for 2 h. Values are means.+-.SD (n=3; *, P<0.05, t test). iP9G/iP7G, iP-N9/7-glucoside; iPR, iP riboside; iPRP, iPR 5'-phosphate.
[0169] FIG. 4. ROCK1 regulates ERQC and CKX protein stability. (A) N-glycosylation status of myc-CKX1 protein in wild-type and rock1 seedlings. Protein extracts were treated with PNGase F or EndoH and the size of myc-CKX1 was compared to mock-treated control by SDS-PAGE and immunoblot with anti-myc antibody. (B) The loss of GnT-I activity in cgl1 mutants has no influence on the shoot phenotype of 35S:CKX1 plants (21 dag). (C) The level of myc-CKX1 is decreased in rock1 compared to wild type. Total protein extracts were analyzed by immunoblot with anti-myc antibody. Coomassie blue staining of Rubisco large subunit (RbcL) was used as loading control. Relative densitometric analysis of the myc-CKX1 signal is shown. Values are means.+-.SEM (n=10; **, P<0.01, t test). (D) Analysis of myc-CKX1 stability. Protein extracts were prepared from 7-d-old seedlings treated with mock or 100 .mu.M CHX for indicated times and analyzed by immunoblotting. (E) myc-CKX1 is degraded in proteasome-dependent manner. Seedlings were treated with 100 .mu.M MG132 and myc-CKX1 analyzed by immunoblotting and densitometry. Means.+-.SEM (n=4; **, P<0.01, t test). (F) Quantitative real-time PCR analysis of UPR genes in shoots of soil-grown seedlings 9 dag measured by. Means.+-.SD are shown (n=4; *, P<0.05, t test). (G) The rock1 mutation suppresses the brassinosteroid deficiency shoot phenotype of bri1-9 mutant plants (26 dag).
EXAMPLES
Materials and Methods
Plant Material, Growth Conditions, Genotyping and Plant Transformation
[0170] If not otherwise denoted, Arabidopsis thaliana Columbia-0 was used as the wild type. The T-DNA insertion lines rock1-2 (SALK_001259) and rock1-3 (901C01) were used. The following lines were described previously: 35S:CKX1-11, 35S:CKX2-9, 35S:CKX3-9, 35S:CKX7-GFP-26, ahk2-5, ahk3-7, cre1-2, atipt1, atipt3-2, atipt5-2, atipt7-1, cgl1 C6 (cgl1-2) and ARR5:GUS. Mutant lines were genotyped by PCR and dCAPS analysis using primers listed in Table S6 and S7, respectively. Plants were grown in vitro on half-strength Murashige and Skoog (MS) medium containing 10 g/L sucrose, 0.5 g/L MES and 8 g/L phytagel. For analysis of root growth, 12 g/L phytagel and cytokinin or DMSO as solvent control were added to the medium. Plants were grown under long day conditions (16 h light/8 h dark; 21/18.degree. C.) in vitro or in the green house. Shoots of soil grown plants were sprayed with 10 .mu.M INCYDE and 0.01% Silwet L-77 every 3 days starting 3 days after germination. The binary vector constructs were transformed into Arabidopsis plants by Agrobacterium tumefaciens (strain GV3101:pMP90) mediated floral dip method.
EMS Mutagenesis and Mapping
[0171] 35S:CKX1 seeds were incubated with 0.2% ethyl methanesulfonate for 16 h and progeny of 1,100 M1 individuals were analyzed. By analyzing 1164 F2 recombinants from the cross between rock1-1 35S:CKX1 and Arabidopsis Landsberg erecta, rock1-1 was mapped to a 49-kb region (.about.0.13 cM) on the BAC clone MXK3. rock1-1 mutation was identified by sequencing candidate genes.
DNA Cloning
[0172] All primers used are listed in table S9. The ROCK1:ROCK1 construct used for complementation was prepared by amplifying a 4.3 kb large genomic fragment using primer 1 and 2. The fragment was cloned into the SacI site of pCB302. ROCK1:ROCK1-GUS was cloned by amplifying a genomic fragment including a 1.8 kb promoter region of ROCK1 and the whole coding region without the stop codon using primer 3 and 4. The amplicon was digested with NdeI and ligated into the XbaI site of the vector pCB308. For obtaining the construct CUP1:FLAG-ROCK1, the ROCK1 cDNA was amplified with the primer 5 and 6 using the SALK clone U87105 as template and cloned into the KpnI and EcoRI sites of pYEScupFLAGK. To generate the construct 35S:myc-CKX1, the CKX1 cDNA was PCR-amplified in two steps by using primer pairs 7/8 and 9/10. The final amplicon was cloned into the vector pDONR221 (Invitrogen) and subsequently pGWB18. To create 35S:GFP-ROCK1, the ROCK1 genomic coding sequence was PCR-amplified in two steps by using primer pairs 11/12 and 9/10 and cloned into pDONR222 (Invitrogen) and subsequently into pK7WGF2. The primer pair 11/13 was used for cloning the truncated ROCK1 version in the 35S:GFP-ROCK11-319 construct. To create 35S:ROCK1-GFP, the ROCK1 genomic coding sequence was PCR-amplified by using primer pairs 11/14 and 9/10 and cloned into pDONR222 and subsequently into pB7FWG2. To create ROCK1:ROCK1-GFPin, the sequence encoding eGFP was amplified with primer 15 and 16 using the vector pB7FWG2 as template and cloned into the VspI site of the vector pCB302-ROCK1:ROCK1 described above. To create ROCK1:ROCK11-319-GFPin, the GFP and the 0.4 kb EcoRI fragment were deleted from the vector pCB302-ROCK1:ROCK1-GFPin by partial digestion with VspI and EcoRI creating part 1. A fusion construct consisting of GFP and the ROCK1 3' part was PCR-amplified using the primer 15 and 17 and pCB302-ROCK1:ROCK1-GFPin as template, further digested by VspI and partially digested by EcoRI. The resulting 0.7 kb fragment was ligated with part 1 and GFP inserted into the VspI site. All cloned sequences were verified by sequencing.
RNA Extraction, cDNA Synthesis and qPCR
[0173] Whole RNA was extracted from tissues by TRIzol method. Samples were treated with DNase I (Thermo Scientific) and 2 .mu.g RNA were transcribed into cDNA by Superscript III reverse transcriptase (Invitrogen) using a 25-mer oligo-dT primer at 2.5 .mu.M and a 9-mer random primer at 4.5 .mu.M. 50 ng cDNA were used as template in a qPCR reaction consisting of 0.01 U/.mu.L Immolase DNA-Polymerase (BioLine), the corresponding 1.times. buffer, 2 mM MgCl2, 100 .mu.M each dNTP, 0.1.times. SYBR Green I (Fluka), 50 nM ROX (Sigma) and 300 nM each primer (Table S8) in a final volume of 20 .mu.L. qPCR analysis was done using a 7500 Fast Real-Time PCR system (Applied Biosystems). The qPCR temperature program consisted of the following steps: 95.degree. C. for 15 min; 40 cycles of 95.degree. C. 15 s, 55.degree. C. 15 s, 72.degree. C. 15 s; followed by melting curve analysis. Relative transcript abundance of each gene was calculated based on the .DELTA..DELTA.Ct method. .beta.-Tubulin or UBC10 were used for normalization.
CKX Activity Assay
[0174] CKX activity in seedling extracts was determined by a modified end-point method. Seedlings were frozen in liquid nitrogen and grinded in a tissue-mill (Retsch) to a fine powder. 1.5 to 2 mL extraction buffer (0.2 M Tris-HCl pH 7.5, 0.3% Triton X-100, complete protease inhibitor cocktail without EDTA (Roche)) was added per 1 g of plant material and incubated for 20 min on ice followed by centrifugation at 2,000 g for 5 min. The protein concentrations in the supernatants were measured using a bicinchoninic acid protein assay kit (Pierce). 200 .mu.L (35S:CKX1 and 35S:CKX3 plants) or 50 .mu.L (35S:CKX2 plants) of the extract were incubated with 500 .mu.L ferricyanide (CKX1 and CKX3) or 2,6-dichlorophenol indophenol (CKX2), 100 mM McIlvaine buffer (CKX1 and CKX3 pH 5, CKX2 pH 6.5) and 250 .mu.M iP9G (CKX1) or iP (CKX2 and CKX3) in a final volume of 600 .mu.L. The reaction was incubated for 1-2 h at 37.degree. C., stopped by 0.3 mL 40% trichloroacetic acid (TCA) and centrifuged at 16,000 g for 5 min. 850 .mu.L of the supernatant were mixed with 200 .mu.L 2% 4-aminophenol (dissolved in 6% TCA), incubated for 1 min and the concentration of the formed Schiff base determined by measuring the absorption at 352 nm.
Transient Expression in N. benthamiana and Confocal Laser Scanning Microscopy
[0175] Infiltration was performed as described previously using A. tumefaciens strain GV3101:pMP90 and 6-weeks-old N. benthamiana plants. For co-expression, the Agrobacterium cultures harbouring different expression constructs were mixed in infiltration medium to a final OD600 of 0.05 for each. 35S:p19 was included in all infiltrations. GFP-fusion proteins and mCherry-marker proteins were analyzed by confocal laser scanning microscope (TCS SP5, Leica) 3-5 days after infiltration. GFP and mCherry were excited at 488 nm and 561 nm and the fluorescence detected at 498-538 nm and 600-630 nm, respectively.
Deglycosylation Assays and Immunoblot Analysis
[0176] Proteins were extracted and the concentration determined as described for the CKX activity assay. Proteins were separated by 10% SDS-PAGE and blotted on PVDF membrane (Millipore). Membranes were blocked with 5% skim milk in PBS containing 0.1% Tween-20. A mouse monoclonal anti-myc antibody (clone 4A6, Millipore, dilution 1:2500) followed by a goat anti-mouse antibody coupled to horse radish peroxidase (sc-2005, Santa-Cruz, dilution 1:5000) was used to detect myc-CKX1. Bound antibodies were visualized with SuperSignal West Pico chemiluminescent substrate (Thermo Scientific). Densitometric analysis was performed using the ImageJ software v.1.47 (http://imagej.nih.gov/ij/). Intensities were normalized to the loading control and calculated relative to wild type samples. For analysis of the N-glycosylation total proteins were treated by Endoglycosidase Hf and PNGase F (New England Biolabs) according to the manufacturer prior to SDS-PAGE.
GUS Staining, Microscopy and Scanning Electron Microscopy
[0177] GUS staining was performed as described before. For microscopic analysis, tissues were cleared. The inflorescence meristem of the main stem from 4 weeks old soil grown plants was dissected and analyzed by scanning electron microscopy as described before.
Quantification of Endogeneous Cytokinins
[0178] Extraction, purification and quantification by ultraperformance liquid chromatography-electrospray tandem mass spectrometry was performed as described previously. At least three independent biological replicates were analyzed for each genotype and tissue.
Cytokinin-Feeding Experiments
[0179] Wild-type and rock1 seedlings were grown for 8 days in 1/2 MS liquid medium with 0.1% sucrose. 200 mg seedlings were transferred into medium containing 39 nM 3H[iP] (32 Ci/mmol, obtained from the Isotope Laboratory of the Institute of Experimental Botany AS CR, Prague, Czech Republic) and incubated for 2 h. Seedlings were washed twice in water and snap-frozen. Cytokinins were extracted and purified, vacuum evaporated at 40.degree. C. and resolved in 500 .mu.L 10% methanol. After dephosphorylation, HPLC analyses was performed on an Alliance 2690 Separations Module (Waters, Milford, Mass., USA) linked to PDA 996 (Waters, Milford, Mass., USA). Samples were separated on a Symmetry C18 column (150.times.2.1 mm, 5 .mu.m, Waters, Milford, Mass., USA) at 30.degree. C. The mobile phase consisted of the following sequence of linear gradients and isocratic flows of solvent A (water) and solvent B (methanol with 5 mM HCOOH) at a flow rate of 0.25 mL/min-1: 3-60% B over 3 min, 60% B for 5 min, 60-100% B over 2 min, and 100-3% B over 2 min and equilibrated to initial conditions for 4 min. The absorbance was monitored at 268 nm and effluent was collected at 30 sec intervals. The radioactivity was measured with a scintillation counter (Beckman, Ramsey, Minn., USA) and assigned to iP metabolites and degradation products by comparison to the retention time of unlabeled standards (adenosine, adenine, iP7G, iP9G, iP, iPR).
Nucleotide-Sugar Transport Assay
[0180] Nucleotide-sugar transport into Saccharomyces cerevisiae (BY4741) transformed with the construct pYEScupFLAGK-ROCK1 or the empty vector control was measured as described by Ashikov et al. (2005): "cultured cells were harvested by centrifugation (5 min at 1,500.times.g) and washed twice with ice-cold 10 mm NaN.sub.3. The weight of wet cells was measured, and cells were resuspended in zymolyase buffer (3 ml/g of cells; 50 mm potassium phosphate, pH 7.5; 1.4 m sorbitol; 10 mm NaN.sub.3 and 0.3% p-mercaptoethanol) containing 0.6 mg/ml of zymolyase-100T. The suspension was incubated for 20 min at 30.degree. C. Spheroplasts were collected by centrifugation (5 min at 1,000.times.g) and resuspended in lysis buffer (4 ml/g of cells; 10 mm Hepes-Tris, pH 7.4; 0.8 m sorbitol; 1 mm EDTA) containing complete EDTA-free protease inhibitor mixture (Roche Applied Science). After homogenization with 10 strokes in a Dounce homogenizer, the lysate was centrifuged (5 min, 1,500.times.g) to remove unlysed cells and debris. Endoplasmic reticulum- and Golgi-rich fractions were then obtained by centrifugation at 10,000.times.g for 10 min (endoplasmic reticulum) and 100,000.times.g for 1 h (Golgi). The 100,000.times.g pellet was carefully resuspended in lysis buffer (0.8 ml/g of cells), and aliquots of 100 .mu.l were snap-frozen and kept at -80.degree. C. Protein concentrations were determined using the BCA.TM. kit (Pierce). For transport assay reactions, equal volumes (50 .mu.l of each) of 2 mm radioactive nucleotide sugar (2,000-4,000 dpm/pmol) in assay buffer (10 mm Tris-HCl, pH 7.0; 0.8 m sorbitol; 2 mm MgCl.sub.2) and vesicle preparation (equivalent to 75-100 .mu.g of protein) were incubated for 30 s at 30.degree. C. Reactions were stopped by dilution with 1 ml of assay buffer containing 1 .mu.m respective cold nucleotide sugar. The separation of vesicles and nucleotide sugars was achieved by filtration trough nitrocellulose filter (MFTM membrane filters Millipore, Bedford, Mass.). Filters were washed three times with 2 ml of ice-cold assay buffer containing the corresponding cold nucleotide sugar at a concentration of 1 .mu.m, and radioactivity associated with the vesicular fraction was measured by liquid scintillation in a LS 5000CE counter (Beckman Coulter). Golgi vesicles from yeast cells transformed with an empty vector were used to measure endogenous transport."
Results
Repressor of Cytokinin Deficiency1 Decreases the CKX Activity
[0181] To identify new molecular components required for the proper activity of the CK system, we carried out a genetic screen for suppressor alleles of the CK deficiency syndrome displayed by 35S:CKX1 plants. The isolated mutant line repressor of cytokinin deficiency) (rock)) was characterized by restored rosette size, leaf and flower number, flowering time and, to lesser extent, root growth (FIG. 1A). Genetic analysis showed that rock1-1 is a recessive second-site allele (Table S1) not affecting 35S:CKX1 transgene expression.
[0182] To understand whether rock) directly influenced the CK status, the transcript levels of primary CK response genes, A-type Arabidopsis response regulators (ARRs), were analyzed in the suppressor line. The mRNA levels of all analyzed ARR genes were restored almost to those found in wild type (FIG. 1B). Next, we analyzed the impact of rock) mutation on the endogenous CK content. Because rock1-1 had stronger effects on shoot than on root development, we determined the CK content specifically in seedling shoots and inflorescences of the suppressor line. CK levels in the rock1-1 suppressor line were five- and two-fold increased in comparison to shoots and inflorescences of the parental 35S:CKX1 line, respectively (Table S2 and S3), however, the restoration of the CK content was not complete.
[0183] To gain information about the specificity of rock1 in suppressing CKX overexpression phenotypes, rock1-1 was introgressed into 35S:CKX2, 35S:CKX3 and 35S:CKX7 plants. Whereas rock1-1 fully suppressed phenotypes caused by overexpression of CKX2 and CKX3 proteins localizing to the secretory pathway (FIG. 10), it had no effect on the phenotypes caused by the overexpression of the cytosolic CKX7 isoform. Further genetic analysis revealed that rock1 had only weak or no effect in suppressing shoot phenotypes of mutant plants lacking two or all three CK receptors, respectively. Similarly, the phenotype of mutants lacking multiple CK biosynthetic isopentenyltransferase (IPT) genes was only partially suppressed by rock1-1. Interestingly, comparable restoration of ipt3,5,7 growth was induced by the application of a chemical inhibitor of CKX activity.
[0184] Together, the extensive genetic analysis indicated that the main molecular targets of rock1 in suppressing CK deficiency are CKX proteins associated with the secretory pathway. To test this hypothesis biochemically, the CKX activity in 35S:CKX1 parental line and rock1 suppressor was compared. Whereas the CKX activity in 35S:CKX1 seedlings was 22-fold higher in comparison to wild type, rock1 reduced the activity to a level only three-fold higher than that of wild type (FIG. 1 D). Likewise, the CKX activities in 35S:CKX2 and 35S:CKX3 plants were reduced through rock1 introgression by 64% and 100%, respectively (FIG. 1D), supporting the notion of rock1 affecting CKX proteins.
[0185] ROCK1 Encodes an NST Transporting UDP-GlcNAc and UDP-GalNAc
[0186] The rock1-1 mutation was mapped to a 49-kb interval on chromosome 5. Sequencing candidate genes revealed a G-to-A transition in the first exon of the At5g65000 gene leading to a Gly-to-Arg substitution at amino acid position 29. This substitution localizes into the first predicted transmembrane domain of the previously uncharacterized protein of the NST family. A mutation, thin-exine2 (tex2), in At5g65000 gene was previously linked to defective pollen exine production. Introduction of a genomic complementation construct into rock1-1 35S:CKX1 plants resulted in a full recapitulation of 35S:CKX1 phenotypes, confirming that the rock1-1 mutation was causative for the suppression phenotype. This was further corroborated by isolating two T-DNA insertion null alleles, rock1-2 and rock1-3, which displayed similar developmental changes as rock1-1 (see below).
[0187] To identify the subcellular compartment in which ROCK1 functions, we transiently expressed ROCK1 N- and C-terminally fused to GFP under control of the 35S promoter in Nicotiana benthamiana and studied the cellular distribution of the fluorescence signal. The expression of GFP-ROCK1 led to a reticulate GFP signal that co-localized with an ER, but not Golgi, marker (FIG. 2A). In contrast, the ROCK1-GFP fusion clearly colocalized with the Golgi marker, suggesting the possible presence of a C-terminal ER retention/retrieval signal. Indeed, after deleting six C-terminal amino acids in GFP-ROCK1 (GFP-ROCK1.sup.1-319) containing a cluster of five Lys-residues, the GFP signal localized mainly in motile dots colocalizing with a Golgi marker and only a very weak ER signal was observed (FIG. 2A). To rule out the possibility that the N-terminal GFP fusion masked an important localization signal, ROCK1 was internally fused with GFP (ROCK1-GFPin) and expressed stably under the ROCK1 promoter in rock1-1 plants. A characteristic net-like GFP signal was detected indicating that the fusion protein localized to the ER. Again, a C-terminal truncation (ROCK1:ROCK1.sup.1-319-GFPin) re-localized the GFP signal into the Golgi and only weak ER signal was detected. Interestingly, both constructs were able to fully complement rock1-1 35S:CKX1 plants. Together, these results revealed that ROCK1 is an ER-resident protein whose localisation is largely controlled by its C-terminal di-lysine motif.
[0188] The molecular function of ROCK1 has so far not been directly studied. The sequence analysis showed that the closest homologos in Arabidopsis are two proteins with unknown function, AT2G43240, AT4G35335, and CMP-sialic acid transporter AT5G41760 with only low, .about.15%, sequence identity to ROCK1 suggesting that the substrate cannot be inferred from the sequence comparison and, also, that no functional paralogs may exists in Arabidopsis. Consistently, usually a single orthologous sequence was identified in other sequenced plant species. To directly test the transport specificity of ROCK1, a FLAG-tagged ROCK1 protein was expressed in Saccharomyces cerevisiae, which has, with the exception of GDP-Man, a low background for most nucleotide sugar transport activities and is commonly used as a heterologous test system for NSTs. ER/Golgi microsomal vesicles isolated from ROCK1 and empty vector control transformed cells were in vitro tested for transport activity with a range of commercially available radiolabeled nucleotide sugars (FIG. 2B). In vesicles expressing ROCK1 the uptake of UDP-GalNAc and UDP-GlcNAc was 7- and 3-fold increased, respectively, in comparison to the control (FIG. 2B). A low but significant increase was also detected for UDP-Glc. Interestingly, the relative transport of GDP-Man and GDP-Fuc, which is also mediated by the intrinsic yeast GDP-Man transporter, was, for unknown reasons, lowered in the ROCK1 microsomes. Taken together, these data clearly show that ROCK1 functions as a NST transporting UDP-GalNAc and UDP-GlcNAc as main substrates.
ROCK1 Regulates the Activity of the Shoot Apical Meristem
[0189] To understand the function of ROCK1 under physiological conditions, we analyzed the rock1 mutations in the absence of the 35S:CKX1 transgene. The most prominent morphological changes were observed during generative growth, which was overall accelerated in rock1 plants. All three rock1 mutants developed enlarged inflorescences (FIG. 3A) and detailed analysis showed that the frequency of flower initiation was increased by 30% in comparison to wild type (FIG. 3B). Additionally, stem elongation was accelerated by up to 23% (FIG. 3B). Seven weeks after germination rock1 had generated .about.50% more flowers and siliques on the main stem than did the wild type (FIG. 3B). Continuous flower initiation results from the activity of the inflorescence meristem (IM). Scanning electron microscopy analysis revealed that the IM in rock1 was strongly enlarged and initiated supernumerary flower primordia (FIG. 3C) demonstrating that the enhanced flower formation in rock1 plants was due to increased IM activity and that ROCK1 plays a negative regulatory role in this process. These phenotypic changes were strongly reminiscent to those caused by the loss of the CKX3 and CKX5 genes.
[0190] Transcript levels of A-type ARR genes were elevated in rock1 shoots and the activity of the CK reporter ARR5:GUS was increased in the shoot meristem of rock1 plants (FIG. 3D) suggesting that ROCK1 regulates SAM activity through adjusting CK signaling in the meristem. The endogenous CK levels were increased up to 35% in rock1 inflorescences in comparison to the control (Tables S4 and S5). In accordance with the observed changes in meristem development, the ROCK1:ROCK1-GUS reporter construct revealed that ROCK1 is strongly expressed in the SAM and young flowers (FIG. 3E), supporting a direct role of ROCK1 in regulating shoot meristem development. The reporter construct further revealed expression of ROCK1 in numerous other tissues, however, we observed neither changes in root development nor altered responses to exogenous CK in rock1 roots supporting the notion that ROCK1 is more relevant for regulating CK responses in the shoot.
[0191] To analyze whether rock1 alters CK responses through regulating CKX activity also under physiological conditions, we performed feeding experiments in which we supplied plants with radiolabeled CK (isopentenyladenine, iP) and followed its metabolic conversion. The level of degradation products of CKX reaction was reduced in rock1 plants by 30% after 2 hours incubation, whereas the fraction containing iP with the corresponding riboside and nucleotide was significantly larger in comparison to wild type (FIG. 3F). This further substantiate a ROCK1 regulatory function in tuning CKX-mediated CK degradation.
ROCK1 Plays an Important Role in ERQC
[0192] As next we aimed to analyze the molecular mechanism underlying the regulation of CKX activity and to understand the function of ROCK1-transported substrates in this process. Whereas there is virtually no cellular activity requiring UDP-GalNAc known in plants, UDP-GlcNAc is a substrate of GnT-I in a step converting high-mannose to hybrid and complex N-glycans. We tested CKX1 glycosylation and the nature of linked N-glycans. Total proteins from Arabidopsis plants expressing N-terminally myc-tagged CKX1 (myc-CKX1) from the 35S promoter were extracted and subjected to treatment with peptide N-glycosidase F (PNGase F) removing all N-linked oligosaccharides except those carrying core .quadrature.1,3-fucose. Immunoblot analysis revealed an electrophoretic mobility shift of myc-CKX1 (FIG. 4A) showing that the protein contains N-linked oligosaccharides. Treatment with endoglycosidase H (EndoH), which is unable to cleave complex N-glycans, resulted in a similar mobility shift of myc-CKX1, suggesting that CKX1 contains mainly high-mannose N-glycans. Interestingly, ROCK1 is not substantially involved in CKX1 N-glycosylation as myc-CKX1 extracted from rock1-1 plants showed no obvious difference in mass when compared to myc-CKX1 from wild type and was comparably affected by PNGase F and EndoH treatment (FIG. 4A). Similarly, rock1 did not influence the overall protein modification with complex N-glycans as indicated by the immunoblot analysis with antibodies against complex N-glycans.
[0193] To test unequivocally whether CKX1 activity is dependent on hybrid or complex N-glycans the complex glycans less 1 (cgl1) mutation of GnT-I was introgressed into 35S:CKX1 plants. As FIG. 4B shows, cgl1-2 had no effect on the 35S:CKX1 phenotype, indicating that CKX1 function is independent of GnT-I activity and further supporting the idea that ROCK1 is not providing UDP-GlcNAc for this reaction.
[0194] The protein immunoblot analysis revealed that the level of myc-CKX1 was consistently lower in rock1-1 compared to wild type (FIG. 4C), suggesting that CKX1 protein abundance might be controlled by ROCK1. To test CKX1 turnover, we analyzed myc-CKX1 levels in the presence of the translation inhibitor cycloheximide (CHX). As shown in FIG. 4D, myc-CKX1 was relatively unstable, with a half-life of .about.4 h. The turnover of myc-CKX1 in rock1 was comparable to wild type (FIG. 4D). Interestingly, treatment with MG132, a widely used inhibitor of the proteasome, increased the level of myc-CKX1 in wild type (FIG. 4E), indicating that CKX1 protein, which has been shown to localize to the ER/secretory system, is degraded by a proteasome-dependent ERAD mechanism. Intriguingly, inhibition of the proteasome in the rock1 background strongly stabilized myc-CKX1 levels (FIG. 4E) suggesting that the lower myc-CKX1 steady-state levels in rock1 were caused by increased ERAD. Reduced levels of myc-CKX1 could thus indicate inefficient protein processing and folding. This was supported by the analysis of the UPR status through measuring the expression level of typical ER stress response genes, encoding components of the ER protein-folding machinery. FIG. 4F shows that the steady state transcript levels of the binding protein 1 (BiP1), calnexin 1 (CNX1) and calreticulin 2 (CRT2) genes were significantly increased by up to two-fold in rock1 plants in comparison to wild type, demonstrating that UPR was constitutively enhanced and further suggesting defects in ERQC caused by the rock1 mutation. To address this question experimentally, we utilized a mutant allele of the brassinosteroid receptor gene, brassinosteroid insensitive1-9 (bri1-9). The gene product is functionally competent as a hormone receptor but is retained by the ERQC system and degraded by ERAD, causing severe dwarfing of this receptor mutant (FIG. 4G). Introgression of rock1-2 into bri1-9 led to a strong suppression of the dwarf bri1-9 phenotype (FIG. 4G) indicating that bri1-9 leaked from its ER retention machinery, which became compromised in rock1 in a similar fashion as described for other suppressor genes of bri1-9. This was confirmed by the detection of EndoH-resistant, complex N-glycan-carrying, form of bri1-9 in rock1. Hence, our data indicate that ROCK1 is a very important component of the protein folding machinery and/or ERQC in plants.
Summary:
[0195] The formation of glycoconjugates depends on nucleotide sugars which serve as donor substrates for glycosyltransferases in the lumen of Golgi-vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters (NSTs). Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis showed that formation of complex and hybrid N-linked sugars on CKX1 was not affected by the lack of ROCK1-mediated supply of GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system eliminating improperly folded proteins from the secretory pathway.
Significance Statement:
[0196] Nucleotide sugars are donor substrates for the formation of glycan modifications, which are important for the function of many macromolecules such as proteins and lipids. Although most of the glycosylation reactions occur in the ER and Golgi of eukaryotic cells, nucleotide sugar activation occurs in the cytosol and specific transporters must carry these molecules across the membrane. We identified ROCK1 as an ER-localized transporter of UDP-GlcNAc and UDP-GalNAc in plants. In contrast to animals, nothing is known about the function of the two respective sugar residues in the plant ER. We demonstrate that ROCK1-mediated transport plays a role in the ER-associated protein quality control and loss of ROCK1 enhances cytokinin responses by suppressing the activity of cytokinin-degrading CKX proteins.
Tables:
TABLE-US-00002
[0197] TABLE S1 Genetic analysis of rock1-1 mutation. No. of No. of plants with No. of plants with analyzed suppressor 35S:CKX1 Phenotypic ratio plants phenotype phenotype (suppressor:35S:CKX1) rock1-1 60 30 30 1:1 35S:CKX1 .times. Col-0 rock1-1 87 23 64 1:2.8 35:CKX1 .times. 35S:CKX1 The isolated rock1-1 35S:CKX1 line was crossed to wild type (Col-0) and the phenotypic segregation ratio scored in the F2 generation. The observed ratio of plants showing the suppressor and the 35S:CKX1 phenotype fits to the expected ratio for a recessive mutation (1:1.3) (X.sup.2-test for goodness of fit, X.sup.2 = 0.952, P = 0.329). The isolated rock1-1 35S:CKX1 line was crossed to 35S:CKX1 and the phenotypic segregation scored in the F2 generation. The observed ratio of plants showing the suppressor and the 35S:CKX1 phenotype fits to the expected ratio for a recessive mutation (1:3) (X.sup.2-test for goodness of fit, X.sup.2 = 0.096, P = 0.757).
TABLE-US-00003 TABLE S2 rock1-1 increases cytokinin content in 35S:CKX1 plants. Experiment 1 Experiment 2 35S:CKX1 4 21 rock1-1 35S:CKX1 19 45 Values represent the sum of all measured trans-zeatin-, cis-zeatin- and isopentenyl-type cytokinins in the mutant relative to the wild type (in percent). Used material: experiment 1, shoots from seedlings 10 dag; experiment 2, inflorescences of 4-week-old plants including flowers till stage 15 (23).
TABLE-US-00004 TABLE S3 Cytokinin levels (pmol g.sup.-1 fresh weight) in different tissues of wild-type, 35S:CKX1 and rock1-1 35S:CKX1 plants. rock1-1 rock1-1 Wild type 35S:CKX1 35S:CKX1 Wild type 35S:CKX1 35S:CKX1 CKs shoot shoot shoot inflorescence inflorescence inflorescence tZ 0.17 .+-. 0.03 0.02 .+-. 0.00 0.03 .+-. 0.01 2.30 .+-. 0.10 <LOD 0.81 .+-. 0.02 tZR 0.14 .+-. 0.02 0.03 .+-. 0.01 0.06 .+-. 0.01 71.71 .+-. 6.87 3.52 14.62 .+-. 1.70 tZOG 7.96 .+-. 1.11 0.07 .+-. 0.01 1.78 .+-. 0.15 0.39 .+-. 0.06 <LOD 0.63 .+-. 0.09 tZROG 0.27 .+-. 0.05 <LOD 0.07 .+-. 0.01 1.69 .+-. 0.25 <LOD 0.76 .+-. 0.08 tZ7G 63.23 .+-. 2.67 0.62 .+-. 0.15 8.38 .+-. 0.82 17.28 .+-. 0.41 0.84 21.25 .+-. 0.41 tZ9G 5.24 .+-. 0.23 0.02 .+-. 0.01 0.66 .+-. 0.06 1.38 .+-. 0.12 <LOD 1.16 .+-. 0.11 tZR5MP 2.76 .+-. 0.44 0.02 .+-. 0.00 0.44 .+-. 0.06 2.74 .+-. 0.32 <LOD 1.22 .+-. 0.07 cZ 0.03 .+-. 0.01 0.01 .+-. 0.00 0.01 .+-. 0.00 0.24 .+-. 0.02 <LOD 0.10 .+-. 0.04 cZR 0.13 .+-. 0.01 0.05 .+-. 0.01 0.07 .+-. 0.01 24.69 .+-. 3.42 18.41 6.66 .+-. 1.05 cZOG 0.21 .+-. 0.05 0.09 .+-. 0.02 0.10 .+-. 0.01 0.16 .+-. 0.04 <LOD <LOD cZROG 0.41 .+-. 0.07 0.19 .+-. 0.04 0.24 .+-. 0.03 1.42 .+-. 0.09 <LOD 0.35 .+-. 0.04 cZ9G 0.12 .+-. 0.00 <LOD 0.01 .+-. 0.00 <LOD <LOD 0.03 .+-. 0.00 cZR5MP 2.99 .+-. 0.24 0.26 .+-. 0.06 0.79 .+-. 0.07 1.80 .+-. 0.14 1.19 1.04 .+-. 0.10 iP 0.47 .+-. 0.04 0.23 .+-. 0.05 0.17 .+-. 0.04 0.18 .+-. 0.03 <LOD 0.11 .+-. 0.02 iPR 0.55 .+-. 0.04 0.20 .+-. 0.04 0.34 .+-. 0.05 7.82 .+-. 0.86 1.47 2.56 .+-. 0.42 iP7G 79.62 .+-. 9.13 1.66 .+-. 0.29 15.00 .+-. 1.12 5.49 .+-. 0.14 3.38 10.28 .+-. 0.30 iP9G 1.57 .+-. 0.08 <LOD 0.12 .+-. 0.01 0.08 .+-. 0.01 <LOD 0.12 .+-. 0.01 iPR5MP 11.97 .+-. 1.86 3.46 .+-. 0.51 5.04 .+-. 0.33 2.09 .+-. 0.20 0.63 1.63 .+-. 0.15 Analyzed tissue: shoot, shoots of seedlings 10 dag; inflorescence, inflorescences of 4-week-old plants up to flowers at stage 15 according to Smyth et al. (23). Shown are mean values .+-. SD. (n = 3), except
TABLE-US-00005 TABLE S4 rock1 plants have an increased cytokinin content. rock1-1 113 rock1-2 135 Values represent the sum of all measured trans-zeatin-, cis-zeatin- and isopentenyl-type cytokinins in the mutant relative to the wild type (in percent). Used material: inflorescences of 4-week-old plants including flowers till stage 15 according to Smyth et al. (23).
TABLE-US-00006 TABLE S5 Cytokinin levels (pmol g.sup.-1 fresh weight) in wild-type, rock1-1 and rock1-2 inflorescence tissues. Wild type rock1-1 rock1-2 CKs inflorescence inflorescence inflorescence tZ 2.30 .+-. 0.10 2.12 .+-. 0.08 2.55 .+-. 0.08 tZR 71.71 .+-. 6.87 63.38 .+-. 1.83 76.39 .+-. 0.96 tZOG 0.39 .+-. 0.06 0.77 .+-. 0.11 0.67 .+-. 0.06 tZROG 1.69 .+-. 0.25 2.71 .+-. 0.39 3.10 .+-. 0.40 tZ7G 17.28 .+-. 0.41 37.97 .+-. 1.81 48.15 .+-. 4.56 tZ9G 1.38 .+-. 0.12 3.36 .+-. 0.17 3.85 .+-. 0.15 tZR5MP 2.74 .+-. 0.32 3.73 .+-. 0.01 4.29 .+-. 0.73 cZ 0.24 .+-. 0.02 0.19 .+-. 0.02 0.28 .+-. 0.04 cZR 24.69 .+-. 3.42 15.16 .+-. 2.00 21.59 .+-. 1.48 cZOG 0.16 .+-. 0.04 0.20 .+-. 0.05 0.27 .+-. 0.05 cZROG 1.42 .+-. 0.09 1.55 .+-. 0.20 1.78 .+-. 0.31 cZ9G <LOD 0.06 .+-. 0.01 0.07 .+-. 0.01 cZR5MP 1.80 .+-. 0.14 1.78 .+-. 0.18 1.93 .+-. 0.28 iP 0.18 .+-. 0.03 0.23 .+-. 0.21 0.24 .+-. 0.01 iPR 7.82 .+-. 0.86 9.26 .+-. 0.36 9.19 .+-. 0.40 iP7G 5.49 .+-. 0.14 12.58 .+-. 0.02 13.46 .+-. 0.91 iP9G 0.08 .+-. 0.01 0.14 .+-. 0.02 0.10 .+-. 0.01 iPR5MP 2.09 .+-. 0.20 4.45 .+-. 0.34 3.51 .+-. 0.43 Analyzed tissue: inflorescences of 4-week-old plants up to flowers at stage 15 according to Smyth et al. (23). Shown are mean values .+-.SD (n = 3). LOD, limit of detection. tZ, trans-zeatin; cZ, cis-zeatin; iP, isopentenyladenine; -R, -riboside; -OG, O-glucoside; -ROG, -riboside-O-glucoside; -7G/-9G, N7-/N9-glucoside; -R5MP, riboside 5'-monophosphate.
TABLE-US-00007 TABLE S6 Primers used for genotyping and molecular characterization of transgenic lines. SEQ ID Allele Sequence (5'-3') NO: ROCK1 TGAGAAAACGACGTCCAATG 40 TAAACCCGACAGGACAGAGG 41 rock1-2 TGGTTCACGTAGTGGGCCATCG 42 TAAACCCGACAGGACAGAGG 43 rock1-3 TGAGAAAACGACGTCCAATG 44 ATATTGACCATCATACTCATTGC 45 AHK2 GCAAGAGGCTTTAGCTCCAA 46 TTGCCCGTAAGATGTTTTCA 47 ahk2-5 GCAAGAGGCTTTAGCTCCAA 48 GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC 49 AHK3 CCTTGTTGCCTCTCGAACTC 50 CGCAAGCTATGGAGAAGAGG 51 ahk3-7 CCCATTTGGACGTGTAGACAC 52 CGCAAGCTATGGAGAAGAGG 53 AHK4 GGGCACTCAACAATCATCAA 54 TCCACTGATAAATCCCACTGC 55 cre1-2 ATAACGCTGCGGACATCTAC 56 TCCACTGATAAATCCCACTGC 57 IPT1 CCACGATTCGACCCAAAGTT 58 GCTCCAACACTTGCTCTTCC 59 ipt1 CCACGATTCGACCCAAAGTT 60 TGGTTCACGTAGTGGGCCATCG 61 IPT3 CCAACTTGTCGTATATCATTCGTACAGTG 62 TGGAGAGATTCGCCATGTGACAG 63 ipt3-2 CCAACTTGTCGTATATCATTCGTACAGTG 64 CAACACGTGGGTTAATTAAGAATTCAGTAC 65 IPT5 TGCATGACGGCTCTAAGACA 66 TCGAGCTCTGGAACTCCAAT 67 ipt5-2 TGGTTCACGTAGTGGGCCATCG 68 TCGAGCTCTGGAACTCCAAT 69 IPT7 CTACCGGATCGGGTAAGTCTC 70 GCTACAAGATTCTCCCAAGCC 71 ipt7-1 CTACCGGATCGGGTAAGTCTC 72 TGGTTCACGTAGTGGGCCATCG 73 rock1-2/ GTATGGGCCCTAAGGTTTTG 74 rockl-3 primer 1 rock1-2/ ATACGATGATGGCGGTTTTC 75 rockl-3 primer 2 rock1-3 GGCTAACGGAGCAAAGAGT 76 primer 3 rock1-3 CAGCGTTTGGAGATCAGAG 77 primer 4 rock1-3 GCTCTGATTCTCATGGCAAG 78 primer 5 rock1-3 TGCTGTGAAAAAGATTTTCGTCT 79 primer 6 Actin7 fw TACAACGAGCTTCGTGTTGC 80 Actin7 rev TCCACATCTGTTGGAAGGTG 81
TABLE-US-00008 TABLE S7 Primers used for genotyping of mutants by dCAPS analysis. SEQ ID Restriction Allele Sequence (5'-3') NO: enzyme rock1-1 TTCCATATTGCTCACACTTCAGTAC 82 Bsp14071 AAACAGATGCCCAGAAATCG 83 cgl1-2 CATAACCTTGTTATATTAATTTGCC 84 Eco1301 AAGGCCGGAGTTCTGTAAATG 85
TABLE-US-00009 TABLE S8 Primers used for quantitative real-time PCR. Transcript Sequence (5'-3') SEQ ID NO: .beta.-Tubulin GAGCCTTACAACGCTACTCTGTCTGTC 86 ACACCAGACATAGTAGCAGAAATCAAG 87 ARR5 CTACTCGCAGCTAAAACGC 88 GCCGAAAGAATCAGGACA 89 ARR6 GAGCTCTCCGATGCAAAT 90 GAAAAAGGCCATAGGGGT 91 ARR7 CTTGGAACCAATCTGCTCTC 92 ATCATCGACGGCAAGAAC 93 CKX1 ACGACCCTCTAGCGATTCT 94 CGGCAGTATTGATGCGTA 95 ROCK1 GGCTAACGGAGCAAAGAGT 96 CAGCGTTTGGAGATCAGAG 97 BiP1 ACGTACCAAGACCAGCAGACTACC 98 TGCAGTCCTTGGTGAGACTTCG 99 CRT2 TGGACTCGAATTGTGGCAGGTG 100 TGCCAACTTCTTGGCATAGTCTGG 101 CNX1 TCTGCAGATGGTCTCAAGAGCTAC 102 CTCGGCTTTCTCAATCAGTTCCG 103
TABLE-US-00010 TABLE S9 Primers used for cloning. SEQ ID Primer Sequence (5'-3') NO: 1 CGGAGCTCGGCAGGCTTCATGATTGATT 104 2 CGGAGCTCTCAATGGGTTGATTTGCGTA 105 3 CGCGGCTAGCCGGCCGTTGATTTTGACTAT 106 4 CGCGGCTAGCCACCTTCTTCTTCTTCTTGTC 107 5 CATAGGTACCTGCGACGGCTAACGGAGC 108 6 GTCTGAATTCTTACACCTTCTTCTTCTTCTTGTC 109 7 AAAAAGCAGGCTTTATGGGATTGACCTC 110 8 AGAAAGCTGGGTTCTAACTCGAGTTTATTTTTTG 111 9 GGGGACAAGTTTGTACAAAAAAGCAGGCT 112 10 GGGGACCACTTTGTACAAGAAAGCTGGGT 113 11 AAAAAGCAGGCTTCACCATGGCGACGGCTAACGGAGC 114 AAA 12 AGAAAGCTGGGTGTTACACCTTCTTCTTCTTCTTGTC 115 13 AGAAAGCTGGGTGTTAGTCAATGTATGGGTATTTCTG 116 14 AGAAAGCTGGGTGCACCTTCTTCTTCTTCTTGTC 117 15 ATTAATATGGTGAGCAAGGGCGAGGAGCTG 118 16 ATTAATCTTGTACAGCTCGTCCATGCCGA 119 17 CAGAATTCTTAGTCAATGTATGGGTATTTCTGGTA 120
Sequence CWU
1
1
1201325PRTArabidopsis thaliana 1Met Ala Thr Ala Asn Gly Ala Lys Ser Pro
Ser Ser Met Gly Pro Lys1 5 10
15Val Leu Phe Tyr Ser Ile Leu Leu Thr Leu Gln Tyr Gly Ala Gln Pro
20 25 30Leu Ile Ser Lys Arg Cys
Ile Arg Lys Asp Val Ile Val Thr Ser Ser 35 40
45Val Leu Thr Cys Glu Ile Val Lys Val Ile Cys Ala Leu Ile
Leu Met 50 55 60Ala Arg Asn Gly Ser
Leu Lys Gly Leu Ala Lys Glu Trp Thr Leu Met65 70
75 80Gly Ser Leu Thr Ala Ser Gly Leu Pro Ala
Ala Ile Tyr Ala Leu Gln 85 90
95Asn Ser Leu Leu Gln Ile Ser Tyr Arg Ser Leu Asp Ser Leu Thr Phe
100 105 110Ser Ile Leu Asn Gln
Thr Lys Ile Phe Phe Thr Ala Phe Phe Thr Phe 115
120 125Ile Ile Leu Arg Gln Lys Gln Ser Ile Leu Gln Ile
Gly Ala Leu Cys 130 135 140Leu Leu Ile
Met Ala Ala Val Leu Leu Ser Val Gly Glu Gly Ser Asn145
150 155 160Lys Asp Ser Ser Gly Ile Asn
Ala Asp Gln Lys Leu Phe Tyr Gly Ile 165
170 175Ile Pro Val Leu Ala Ala Ser Val Leu Ser Gly Leu
Ala Ser Ser Leu 180 185 190Cys
Gln Trp Ala Ser Gln Val Lys Lys His Ser Ser Tyr Leu Met Thr 195
200 205Val Glu Met Ser Ile Val Gly Ser Leu
Cys Leu Leu Val Ser Thr Leu 210 215
220Lys Ser Pro Asp Gly Glu Ala Ile Lys Lys Tyr Gly Phe Phe His Gly225
230 235 240Trp Thr Ala Leu
Thr Leu Val Pro Val Ile Ser Asn Ala Leu Gly Gly 245
250 255Ile Leu Val Gly Leu Val Thr Ser His Ala
Gly Gly Val Arg Lys Gly 260 265
270Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln Phe Ala
275 280 285Phe Glu Gly Lys Pro Pro Ser
Ser Tyr Cys Leu Val Ala Leu Pro Leu 290 295
300Val Met Ser Ser Ile Ser Met Tyr Gln Lys Tyr Pro Tyr Ile Asp
Lys305 310 315 320Lys Lys
Lys Lys Val 3252260PRTArabidopsis thaliana 2Met Ala Thr
Ala Asn Gly Ala Lys Ser Pro Ser Ser Met Gly Pro Lys1 5
10 15Val Leu Phe Tyr Ser Ile Leu Leu Thr
Leu Gln Tyr Gly Ala Gln Pro 20 25
30Leu Ile Ser Lys Arg Cys Ile Arg Lys Asp Val Ile Val Thr Ser Ser
35 40 45Val Leu Thr Cys Glu Ile Val
Lys Val Ile Cys Ala Leu Ile Leu Met 50 55
60Ala Arg Asn Gly Ser Leu Lys Gly Leu Ala Lys Glu Trp Thr Leu Met65
70 75 80Gly Ser Leu Thr
Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala Leu Gln 85
90 95Asn Ser Leu Leu Gln Ile Ser Tyr Arg Ser
Leu Asp Ser Leu Thr Phe 100 105
110Ser Ile Leu Asn Gln Thr Lys Ile Phe Phe Thr Ala Phe Phe Thr Phe
115 120 125Ile Ile Leu Arg Gln Lys Gln
Ser Ile Leu Gln Ile Gly Ala Leu Cys 130 135
140Leu Leu Ile Met Ala Ala Val Leu Leu Ser Val Gly Glu Gly Ser
Asn145 150 155 160Lys Asp
Ser Ser Gly Ile Asn Ala Asp Gln Lys Leu Phe Tyr Gly Ile
165 170 175Ile Pro Val Leu Ala Ala Ser
Val Leu Ser Gly Leu Ala Ser Ser Leu 180 185
190Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser Ser Tyr Leu
Met Thr 195 200 205Val Glu Met Ser
Ile Val Gly Ser Leu Cys Leu Leu Val Ser Thr Leu 210
215 220Lys Ser Pro Asp Gly Glu Ala Ile Lys Lys Tyr Gly
Phe Phe His Gly225 230 235
240Trp Thr Ala Leu Thr Leu Val Ile Asn Tyr Leu Phe Phe Leu Ser Thr
245 250 255Lys Gln Phe Phe
26039PRTartificialamino acid motif conserved in ROCK1 protein 3Gly
Gly Ile Leu Val Gly Leu Val Thr1 542434DNAArabidopsis
thaliana 4gttcttcaaa gcacaaacca attctcgacc aaaagatcag aacaaagcga
aggcggattt 60tctggattct cgacggccgg agattcatgg cgacggctaa cggagcaaag
agtccgtcga 120gtatgggccc taaggttttg ttttattcca tattgctcac acttcagtac
ggagcccagc 180ctctgatctc caaacgctgc atcaggtacg gtctcttgca acaacctatg
cctcttaaat 240ctctgatgtt agtgatagcc ttgttcatat tcgctgattt cgtgcgcttt
tatcgggaat 300tgcgagattt ggttgtaatt agtcttatgt agcgagtaga gatggagttc
gatttctggg 360catctgtttt gttggctttc tgcgaattgt ggttgagaat agtgttgtaa
acttacaatt 420tcgaagttat atgcgacgat tgtgatgtat tctcgttgtt cctgtggaaa
aagacatggt 480cactgttaaa ctaagccatt ttctaaagtg ttagagagat gaatttgaat
ctactagttt 540gctacattga tgccttgaat atagcttttc atcatagtgt tttagttgtt
catcttggtt 600ttgtagggta ccgtgtaacc tttcgcgtta tctagtactc gatatcgagt
cactttgcct 660aattttgcgg caaaatgcca tggatattta gaactagtag acttgtgttc
actagtccat 720ttgtttgttt cttcttaaac agttaataga ttgtctctat catggtttgg
tcactttacc 780gcattattgt ttttgcagaa aggatgttat tgtaacttca tctgttttga
cgtgcgagat 840tgttaaggta ctggatcttt ttttttcctt tctactttcg aaaattttgc
atttatgaaa 900tactgtttca tgcttctgct gtatgttctt ttttataggt catatgtgct
ctgattctca 960tggcaagaaa tggtagtttg aagggattag caaaagagtg gacgttgatg
ggatccttga 1020cagcatcagg acttcctgca gccatatatg cactgcagaa cagtttgctg
cagatctcat 1080acaggagtct tgattccttg acattttcaa ttctgaatca gacgaaaatc
tttttcacag 1140cattctttac tttcataata ctaaggtaac ctttattttt cttgttctta
tggtcttgtt 1200tttgatagga tgcttgaaat tttgagtttg ttggatttgt attttcctca
gcgagtgcct 1260acatcacatt tttgaattag agatttgtag tgtgattgcc tgaataactt
tatttgggct 1320gcttctctgc tccaacgtga tacctaccat gtcttaatag tgtgattgcc
tgaatatcta 1380ttgcttgaaa agtgtttaac acatcatctc gaatgacatc ttgtaggcag
aagcaatcaa 1440ttctacaaat aggagccttg tgtctattga tcatggcagc agtccttcta
agtgttggtg 1500aaggctctaa caaagattca agcggcatta atgcggatca aaagctgttt
tatggaatta 1560tcccggtctt ggcagcctct gtcctgtcgg gtttagcctc ttctctgtgt
caatgggctt 1620ctcaggtcat ccagagttta catatcatat tccaataaaa aatctgtact
tcaattcatt 1680cgtagcctaa actgtcttac cgtttacagg tcaagaagca ttcatcatac
ttaatgacgg 1740ttgaaatgtc tatcgttgga agcctctgtt tattagtaag tactcttaaa
tctccagatg 1800gtgaagcgat taaaaaatat ggcttctttc atggttggac tgctttaaca
ctggtaataa 1860actatctctt ttttttatcc acaaaacaat tcttttgata gcaaaacagt
gaattctgat 1920tgtttgtatg cactgtgact gttgttatag gtcccagtaa taagcaatgc
tcttggtggg 1980attcttgttg gcctagttac atcacatgcc ggtggtgtaa gaaaggtaaa
acaaaaaaaa 2040accctcccag actgatatta cacaatcaaa agctgaaata tgtaatgtcg
ttatatcact 2100ttgcagggat ttgtgattgt gtcggcatta cttgtgacgg cgctacttca
atttgcgttt 2160gaaggaaaac cgccatcatc gtattgccta gttgctcttc ctcttgtgat
gagtagtatc 2220tcaatgtacc agaaataccc atacattgac aagaagaaga agaaggtgta
agaaaaaggt 2280tccattcaga gaatagctgc tagttacaac aatgagatat cttaatgcca
ttattattaa 2340ctaagtagat gatagtgtga ttcttggagc attcaaaaga ctttgtagta
tatttacatt 2400caaagatgga atgagtccaa ttgagtttaa gtaa
24345978DNAArabidopsis thaliana 5atggcgacgg ctaacggagc
aaagagtccg tcgagtatgg gccctaaggt tttgttttat 60tccatattgc tcacacttca
gtacggagcc cagcctctga tctccaaacg ctgcatcaga 120aaggatgtta ttgtaacttc
atctgttttg acgtgcgaga ttgttaaggt catatgtgct 180ctgattctca tggcaagaaa
tggtagtttg aagggattag caaaagagtg gacgttgatg 240ggatccttga cagcatcagg
acttcctgca gccatatatg cactgcagaa cagtttgctg 300cagatctcat acaggagtct
tgattccttg acattttcaa ttctgaatca gacgaaaatc 360tttttcacag cattctttac
tttcataata ctaaggcaga agcaatcaat tctacaaata 420ggagccttgt gtctattgat
catggcagca gtccttctaa gtgttggtga aggctctaac 480aaagattcaa gcggcattaa
tgcggatcaa aagctgtttt atggaattat cccggtcttg 540gcagcctctg tcctgtcggg
tttagcctct tctctgtgtc aatgggcttc tcaggtcaag 600aagcattcat catacttaat
gacggttgaa atgtctatcg ttggaagcct ctgtttatta 660gtaagtactc ttaaatctcc
agatggtgaa gcgattaaaa aatatggctt ctttcatggt 720tggactgctt taacactggt
cccagtaata agcaatgctc ttggtgggat tcttgttggc 780ctagttacat cacatgccgg
tggtgtaaga aagggatttg tgattgtgtc ggcattactt 840gtgacggcgc tacttcaatt
tgcgtttgaa ggaaaaccgc catcatcgta ttgcctagtt 900gctcttcctc ttgtgatgag
tagtatctca atgtaccaga aatacccata cattgacaag 960aagaagaaga aggtgtaa
9786783DNAArabidopsis
thaliana 6atggcgacgg ctaacggagc aaagagtccg tcgagtatgg gccctaaggt
tttgttttat 60tccatattgc tcacacttca gtacggagcc cagcctctga tctccaaacg
ctgcatcaga 120aaggatgtta ttgtaacttc atctgttttg acgtgcgaga ttgttaaggt
catatgtgct 180ctgattctca tggcaagaaa tggtagtttg aagggattag caaaagagtg
gacgttgatg 240ggatccttga cagcatcagg acttcctgca gccatatatg cactgcagaa
cagtttgctg 300cagatctcat acaggagtct tgattccttg acattttcaa ttctgaatca
gacgaaaatc 360tttttcacag cattctttac tttcataata ctaaggcaga agcaatcaat
tctacaaata 420ggagccttgt gtctattgat catggcagca gtccttctaa gtgttggtga
aggctctaac 480aaagattcaa gcggcattaa tgcggatcaa aagctgtttt atggaattat
cccggtcttg 540gcagcctctg tcctgtcggg tttagcctct tctctgtgtc aatgggcttc
tcaggtcaag 600aagcattcat catacttaat gacggttgaa atgtctatcg ttggaagcct
ctgtttatta 660gtaagtactc ttaaatctcc agatggtgaa gcgattaaaa aatatggctt
ctttcatggt 720tggactgctt taacactggt aataaactat ctcttttttt tatccacaaa
acaattcttt 780tga
78371227DNAArabidopsis thaliana 7gttcttcaaa gcacaaacca
attctcgacc aaaagatcag aacaaagcga aggcggattt 60tctggattct cgacggccgg
agattcatgg cgacggctaa cggagcaaag agtccgtcga 120gtatgggccc taaggttttg
ttttattcca tattgctcac acttcagtac ggagcccagc 180ctctgatctc caaacgctgc
atcagaaagg atgttattgt aacttcatct gttttgacgt 240gcgagattgt taaggtcata
tgtgctctga ttctcatggc aagaaatggt agtttgaagg 300gattagcaaa agagtggacg
ttgatgggat ccttgacagc atcaggactt cctgcagcca 360tatatgcact gcagaacagt
ttgctgcaga tctcatacag gagtcttgat tccttgacat 420tttcaattct gaatcagacg
aaaatctttt tcacagcatt ctttactttc ataatactaa 480ggcagaagca atcaattcta
caaataggag ccttgtgtct attgatcatg gcagcagtcc 540ttctaagtgt tggtgaaggc
tctaacaaag attcaagcgg cattaatgcg gatcaaaagc 600tgttttatgg aattatcccg
gtcttggcag cctctgtcct gtcgggttta gcctcttctc 660tgtgtcaatg ggcttctcag
gtcaagaagc attcatcata cttaatgacg gttgaaatgt 720ctatcgttgg aagcctctgt
ttattagtaa gtactcttaa atctccagat ggtgaagcga 780ttaaaaaata tggcttcttt
catggttgga ctgctttaac actggtccca gtaataagca 840atgctcttgg tgggattctt
gttggcctag ttacatcaca tgccggtggt gtaagaaagg 900gatttgtgat tgtgtcggca
ttacttgtga cggcgctact tcaatttgcg tttgaaggaa 960aaccgccatc atcgtattgc
ctagttgctc ttcctcttgt gatgagtagt atctcaatgt 1020accagaaata cccatacatt
gacaagaaga agaagaaggt gtaagaaaaa ggttccattc 1080agagaatagc tgctagttac
aacaatgaga tatcttaatg ccattattat taactaagta 1140gatgatagtg tgattcttgg
agcattcaaa agactttgta gtatatttac attcaaagat 1200ggaatgagtc caattgagtt
taagtaa 122781324DNAArabidopsis
thaliana 8gttcttcaaa gcacaaacca attctcgacc aaaagatcag aacaaagcga
aggcggattt 60tctggattct cgacggccgg agattcatgg cgacggctaa cggagcaaag
agtccgtcga 120gtatgggccc taaggttttg ttttattcca tattgctcac acttcagtac
ggagcccagc 180ctctgatctc caaacgctgc atcagaaagg atgttattgt aacttcatct
gttttgacgt 240gcgagattgt taaggtcata tgtgctctga ttctcatggc aagaaatggt
agtttgaagg 300gattagcaaa agagtggacg ttgatgggat ccttgacagc atcaggactt
cctgcagcca 360tatatgcact gcagaacagt ttgctgcaga tctcatacag gagtcttgat
tccttgacat 420tttcaattct gaatcagacg aaaatctttt tcacagcatt ctttactttc
ataatactaa 480ggcagaagca atcaattcta caaataggag ccttgtgtct attgatcatg
gcagcagtcc 540ttctaagtgt tggtgaaggc tctaacaaag attcaagcgg cattaatgcg
gatcaaaagc 600tgttttatgg aattatcccg gtcttggcag cctctgtcct gtcgggttta
gcctcttctc 660tgtgtcaatg ggcttctcag gtcaagaagc attcatcata cttaatgacg
gttgaaatgt 720ctatcgttgg aagcctctgt ttattagtaa gtactcttaa atctccagat
ggtgaagcga 780ttaaaaaata tggcttcttt catggttgga ctgctttaac actggtaata
aactatctct 840tttttttatc cacaaaacaa ttcttttgat agcaaaacag tgaattctga
ttgtttgtat 900gcactgtgac tgttgttata ggtcccagta ataagcaatg ctcttggtgg
gattcttgtt 960ggcctagtta catcacatgc cggtggtgta agaaagggat ttgtgattgt
gtcggcatta 1020cttgtgacgg cgctacttca atttgcgttt gaaggaaaac cgccatcatc
gtattgccta 1080gttgctcttc ctcttgtgat gagtagtatc tcaatgtacc agaaataccc
atacattgac 1140aagaagaaga agaaggtgta agaaaaaggt tccattcaga gaatagctgc
tagttacaac 1200aatgagatat cttaatgcca ttattattaa ctaagtagat gatagtgtga
ttcttggagc 1260attcaaaaga ctttgtagta tatttacatt caaagatgga atgagtccaa
ttgagtttaa 1320gtaa
13249326PRTBrassica napus 9Met Ala Thr Ala Asn Gly Ala Lys Gly
Pro Ser Arg Met Gly Pro Lys1 5 10
15Val Leu Phe Tyr Ser Ile Leu Leu Thr Leu Gln Tyr Gly Ala Gln
Pro 20 25 30Leu Ile Ser Lys
Arg Cys Ile Gly Lys Glu Val Ile Val Thr Ser Ser 35
40 45Val Leu Thr Cys Glu Val Val Lys Val Ile Cys Ala
Leu Ile Leu Met 50 55 60Ala Arg Asp
Gly Ser Leu Lys Lys Leu Ala Lys Glu Trp Thr Leu Met65 70
75 80Gly Ser Leu Thr Ala Ser Gly Leu
Pro Ala Ala Ile Tyr Ala Leu Gln 85 90
95Asn Ser Leu Leu Gln Ile Ser Tyr Arg Ser Leu Asp Ser Leu
Thr Phe 100 105 110Ser Ile Leu
Asn Gln Thr Lys Ile Phe Phe Thr Ala Phe Phe Thr Phe 115
120 125Ile Ile Leu Arg Gln Lys Gln Ser Val Gln Gln
Ile Gly Ala Leu Cys 130 135 140Leu Leu
Ile Met Ala Ala Val Leu Leu Ser Val Gly Glu Gly Ser Asn145
150 155 160Lys Ser Ser Ser Gly Gly Val
Asn Pro Glu His Val Leu Phe Tyr Gly 165
170 175Ile Ile Pro Val Leu Leu Ala Ser Val Leu Ser Gly
Leu Ala Ser Ser 180 185 190Leu
Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser Ser Tyr Leu Met 195
200 205Thr Leu Glu Met Ser Ile Val Gly Ser
Leu Cys Leu Leu Val Ser Thr 210 215
220Leu Lys Ser Pro Asp Gly Glu Ala Ile Lys Arg His Gly Phe Phe His225
230 235 240Gly Trp Thr Ala
Leu Thr Met Val Pro Val Ile Ser Asn Ala Leu Gly 245
250 255Gly Ile Leu Val Gly Leu Val Thr Ser His
Ala Gly Gly Val Arg Lys 260 265
270Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln Phe
275 280 285Ala Phe Glu Gly Lys Pro Pro
Ser Ser Tyr Cys Leu Val Ala Leu Pro 290 295
300Leu Val Ile Ser Ser Ile Ser Leu Tyr Gln Lys Tyr Pro Tyr Met
Asp305 310 315 320Lys Lys
Lys Lys Lys Val 32510326PRTBrassica napus 10Met Ala Thr
Pro Asn Gly Val Lys Ser Gln Ser Arg Met Gly Pro Lys1 5
10 15Val Leu Phe Tyr Ser Ile Leu Leu Thr
Leu Gln Tyr Gly Ala Gln Pro 20 25
30Leu Ile Ser Lys Arg Cys Ile Gly Arg Glu Val Ile Val Thr Ser Ser
35 40 45Val Leu Thr Cys Glu Ile Val
Lys Val Ile Cys Ala Leu Ile Leu Met 50 55
60Ala Arg Asp Gly Ser Leu Lys Gly Leu Ser Lys Glu Trp Thr Leu Met65
70 75 80Gly Ser Leu Thr
Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala Leu Gln 85
90 95Asn Ser Leu Leu Gln Ile Ser Tyr Arg Ser
Leu Asp Ser Leu Thr Phe 100 105
110Ser Ile Leu Asn Gln Thr Lys Ile Phe Phe Thr Ala Phe Phe Thr Phe
115 120 125Ile Ile Leu Arg Gln Lys Gln
Ser Val Gln Gln Met Gly Ala Leu Cys 130 135
140Leu Leu Ile Met Ala Ala Val Leu Leu Ser Val Gly Glu Gly Ser
Asn145 150 155 160Lys Ser
Ser Ser Asp Gly Val Asn Pro Glu Gln Val Leu Phe Tyr Gly
165 170 175Ile Ile Pro Val Leu Val Ala
Ser Val Leu Ser Gly Leu Ala Ser Ser 180 185
190Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser Ser Tyr
Leu Met 195 200 205Thr Val Glu Met
Ser Ile Val Gly Ser Leu Cys Leu Leu Val Ser Thr 210
215 220Leu Lys Ser Pro Asp Gly Glu Ala Ile Lys Arg His
Gly Phe Phe His225 230 235
240Gly Trp Thr Ala Leu Thr Met Val Pro Val Ile Ser Asn Ala Leu Gly
245 250 255Gly Ile Leu Val Gly
Leu Val Thr Ser His Ala Gly Gly Val Arg Lys 260
265 270Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala
Leu Leu Gln Phe 275 280 285Ala Phe
Glu Gly Lys Pro Pro Ser Ser Tyr Cys Leu Val Ala Leu Pro 290
295 300Leu Val Ile Ser Ser Ile Ser Leu Tyr Gln Lys
Tyr Pro Tyr Leu Asp305 310 315
320Lys Lys Lys Lys Lys Val 32511326PRTBrassica napus
11Met Ala Ala Ser Asn Gly Ala Lys Ser Ala Ser Lys Met Gly Pro Lys1
5 10 15Val Leu Phe Tyr Ser Leu
Leu Leu Thr Leu Gln Tyr Gly Ala Gln Pro 20 25
30Leu Ile Ser Lys Arg Cys Ile Gly Lys Glu Val Ile Val
Thr Ser Ser 35 40 45Val Leu Thr
Cys Glu Ile Val Lys Val Val Cys Ala Leu Ile Leu Met 50
55 60Ala Arg Asp Gly Ser Leu Lys Gly Leu Ala Lys Glu
Trp Thr Leu Met65 70 75
80Gly Ser Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala Leu Gln
85 90 95Asn Ser Leu Leu Gln Ile
Ser Tyr Arg Ser Leu Asp Ser Leu Thr Phe 100
105 110Ser Ile Leu Asn Gln Thr Lys Ile Phe Phe Thr Ala
Phe Phe Thr Phe 115 120 125Ile Ile
Leu Arg Gln Lys Gln Ser Val Gln Gln Ile Gly Ala Leu Cys 130
135 140Leu Leu Ile Met Ala Ala Val Leu Leu Ser Val
Gly Glu Gly Ser Asn145 150 155
160Lys Thr Ser Ser Ser Gly Ile Asn Pro Glu Gln Val Leu Phe Ser Gly
165 170 175Ile Ile Pro Val
Leu Val Ala Ser Val Leu Ser Gly Leu Ala Ser Ser 180
185 190Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His
Ser Ser Tyr Leu Met 195 200 205Thr
Val Glu Met Ser Ile Val Gly Ser Leu Cys Met Leu Ala Ser Thr 210
215 220Leu Lys Ser Pro Asp Gly Glu Ala Ile Lys
Arg His Gly Phe Phe His225 230 235
240Gly Trp Thr Ala Leu Thr Leu Val Pro Val Ile Ser Asn Ala Leu
Gly 245 250 255Gly Ile Leu
Val Gly Leu Val Thr Ser His Ala Gly Gly Val Arg Lys 260
265 270Gly Phe Val Ile Val Ser Ala Leu Leu Val
Thr Ala Leu Leu Gln Phe 275 280
285Ala Phe Glu Gly Lys Pro Pro Ser Ser Tyr Cys Leu Val Ser Leu Pro 290
295 300Leu Val Ile Ser Ser Ile Ser Leu
Tyr Gln Lys Tyr Pro Tyr Leu Asp305 310
315 320Lys Lys Lys Lys Lys Val
32512323PRTBrassica napus 12Met Ala Ala Ser Asn Gly Ala Lys Ser Pro Ser
Lys Met Val Leu Phe1 5 10
15Tyr Ser Leu Leu Leu Thr Leu Gln Tyr Gly Ala Gln Pro Leu Ile Ser
20 25 30Lys Arg Cys Ile Gly Lys Glu
Val Ile Val Thr Ser Ser Val Leu Thr 35 40
45Cys Glu Ile Val Lys Val Ile Cys Ala Leu Val Leu Met Ala Arg
Asp 50 55 60Gly Ser Leu Lys Gly Leu
Ala Lys Glu Trp Thr Leu Met Gly Ser Leu65 70
75 80Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala
Leu Gln Asn Ser Leu 85 90
95Leu Gln Ile Ser Tyr Arg Ser Leu Asp Ser Leu Thr Phe Ser Ile Leu
100 105 110Asn Gln Thr Lys Ile Phe
Phe Thr Ala Phe Phe Thr Phe Ile Ile Leu 115 120
125Arg Gln Lys Gln Ser Val Gln Gln Ile Gly Ala Leu Cys Leu
Leu Ile 130 135 140Met Ala Ala Val Leu
Leu Ser Val Gly Glu Gly Ser Asn Lys Thr Ser145 150
155 160Ser Ser Gly Ile Asn Pro Glu Gln Val Leu
Phe Ser Gly Ile Ile Pro 165 170
175Val Leu Val Ala Ser Val Leu Ser Gly Leu Ala Ser Ser Leu Cys Gln
180 185 190Trp Ala Ser Gln Val
Lys Lys His Ser Ser Tyr Leu Met Thr Val Glu 195
200 205Met Ser Ile Val Gly Ser Leu Cys Met Leu Ala Ser
Thr Leu Lys Ser 210 215 220Pro Asp Gly
Glu Ala Ile Lys Arg His Gly Phe Phe His Gly Trp Thr225
230 235 240Ala Leu Thr Met Val Pro Val
Ile Ser Asn Ala Leu Gly Gly Ile Leu 245
250 255Val Gly Leu Val Thr Ser His Ala Gly Gly Val Arg
Lys Gly Phe Val 260 265 270Ile
Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln Phe Ala Phe Glu 275
280 285Gly Lys Pro Pro Ser Ser Tyr Cys Leu
Val Ala Leu Pro Leu Val Ile 290 295
300Ser Ser Ile Ser Leu Tyr Gln Lys Tyr Pro Tyr Leu Asp Lys Lys Lys305
310 315 320Lys Lys
Val13326PRTBrassica oleracea 13Met Ala Ala Ser Asn Gly Ala Lys Ser Pro
Ser Lys Met Gly Pro Lys1 5 10
15Val Leu Phe Tyr Ser Leu Leu Leu Thr Leu Gln Tyr Gly Ala Gln Pro
20 25 30Leu Ile Ser Lys Arg Cys
Ile Gly Lys Glu Val Ile Val Thr Ser Ser 35 40
45Val Leu Thr Cys Glu Ile Val Lys Val Val Cys Ala Leu Ile
Leu Met 50 55 60Ala Arg Asp Gly Ser
Leu Lys Gly Leu Ala Lys Glu Trp Thr Leu Met65 70
75 80Gly Ser Leu Thr Ala Ser Gly Leu Pro Ala
Ala Ile Tyr Ala Leu Gln 85 90
95Asn Ser Leu Leu Gln Ile Ser Tyr Arg Ser Leu Asp Ser Leu Thr Phe
100 105 110Ser Ile Leu Asn Gln
Thr Lys Ile Phe Phe Thr Ala Phe Phe Thr Phe 115
120 125Ile Ile Leu Arg Gln Lys Gln Ser Val Gln Gln Ile
Gly Ala Leu Cys 130 135 140Leu Leu Ile
Met Ala Ala Val Leu Leu Ser Val Gly Glu Gly Ser Asn145
150 155 160Lys Thr Ser Ser Ser Gly Ile
Asn Pro Glu Gln Val Leu Phe Ser Gly 165
170 175Ile Ile Pro Val Leu Val Ala Ser Val Leu Ser Gly
Leu Ala Ser Ser 180 185 190Leu
Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser Ser Tyr Leu Met 195
200 205Thr Val Glu Met Ser Ile Val Gly Ser
Leu Cys Met Leu Ala Ser Thr 210 215
220Leu Lys Ser Pro Asp Gly Glu Ala Ile Lys Arg His Gly Phe Phe His225
230 235 240Gly Trp Thr Ala
Leu Thr Leu Val Pro Val Ile Ser Asn Ala Leu Gly 245
250 255Gly Ile Leu Val Gly Leu Val Thr Ser His
Ala Gly Gly Val Arg Lys 260 265
270Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln Phe
275 280 285Ala Phe Glu Gly Lys Pro Pro
Ser Ser Tyr Cys Leu Val Ala Leu Pro 290 295
300Leu Val Ile Ser Ser Ile Ser Leu Tyr Gln Lys Tyr Pro Tyr Leu
Asp305 310 315 320Lys Lys
Lys Lys Lys Val 32514326PRTBrassica oleracea 14Met Ala Thr
Ala Asn Gly Ala Lys Gly Pro Ser Arg Met Gly Pro Lys1 5
10 15Val Leu Phe Tyr Ser Ile Leu Leu Thr
Leu Gln Tyr Gly Ala Gln Pro 20 25
30Leu Ile Ser Lys Arg Cys Ile Gly Lys Glu Val Ile Val Thr Ser Ser
35 40 45Val Leu Thr Cys Glu Val Val
Lys Val Ile Cys Ala Leu Ile Leu Met 50 55
60Ala Arg Asp Gly Ser Leu Lys Lys Leu Ala Lys Glu Trp Thr Leu Met65
70 75 80Gly Ser Leu Thr
Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala Leu Gln 85
90 95Asn Ser Leu Leu Gln Ile Ser Tyr Arg Ser
Leu Asp Ser Leu Thr Phe 100 105
110Ser Ile Leu Asn Gln Thr Lys Ile Phe Phe Thr Ala Phe Phe Thr Phe
115 120 125Ile Ile Leu Arg Gln Lys Gln
Ser Val Gln Gln Ile Gly Ala Leu Cys 130 135
140Leu Leu Ile Met Ala Ala Val Leu Leu Ser Val Gly Glu Gly Ser
Asn145 150 155 160Lys Ser
Ser Ser Gly Gly Val Asn Pro Glu His Val Leu Phe Tyr Gly
165 170 175Ile Ile Pro Val Leu Leu Ala
Ser Val Leu Ser Gly Leu Ala Ser Ser 180 185
190Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser Ser Tyr
Leu Met 195 200 205Thr Leu Glu Met
Ser Ile Val Gly Ser Leu Cys Leu Leu Val Ser Thr 210
215 220Leu Lys Ser Pro Asp Gly Glu Ala Ile Lys Arg His
Gly Phe Phe His225 230 235
240Gly Trp Thr Ala Leu Thr Met Val Pro Val Ile Ser Asn Ala Leu Gly
245 250 255Gly Ile Leu Val Gly
Leu Val Thr Ser His Ala Gly Gly Val Arg Lys 260
265 270Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala
Leu Leu Gln Phe 275 280 285Ala Phe
Glu Gly Lys Pro Pro Ser Ser Tyr Cys Leu Val Ala Leu Pro 290
295 300Leu Val Ile Ser Ser Ile Ser Leu Tyr Gln Lys
Tyr Pro Tyr Met Asp305 310 315
320Lys Lys Lys Lys Lys Val 32515325PRTBrassica rapa
15Met Ala Thr Pro Asn Gly Val Lys Ser Gln Ser Arg Met Gly Pro Thr1
5 10 15Val Leu Phe Tyr Ser Ile
Leu Leu Thr Leu Gln Tyr Gly Ala Gln Pro 20 25
30Leu Ile Ser Lys Arg Cys Ile Gly Lys Glu Val Ile Val
Thr Ser Ser 35 40 45Val Leu Thr
Cys Glu Ile Val Lys Val Ile Cys Ala Leu Ile Leu Met 50
55 60Ala Arg Asp Gly Ser Leu Lys Gly Leu Ser Lys Glu
Trp Thr Leu Met65 70 75
80Gly Ser Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala Leu Gln
85 90 95Asn Ser Leu Leu Gln Ile
Ser Tyr Arg Ser Leu Asp Ser Leu Thr Phe 100
105 110Ser Ile Leu Asn Gln Thr Lys Ile Phe Phe Thr Ala
Phe Phe Thr Phe 115 120 125Ile Ile
Leu Arg Gln Lys Gln Ser Val Gln Gln Met Gly Ala Leu Cys 130
135 140Leu Leu Ile Met Ala Ala Val Leu Leu Ser Val
Gly Glu Gly Ser Asn145 150 155
160Lys Ser Ser Ser Gly Gly Val Asn Pro Glu Gln Val Leu Phe Tyr Gly
165 170 175Ile Ile Pro Val
Leu Val Ala Ser Val Leu Ser Gly Leu Ala Ser Ser 180
185 190Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His
Ser Ser Tyr Leu Met 195 200 205Thr
Val Glu Met Ser Ile Val Gly Ser Leu Cys Leu Leu Val Ser Thr 210
215 220Leu Lys Ser Pro Asp Gly Glu Ala Ile Lys
Arg His Gly Phe Phe His225 230 235
240Gly Trp Thr Ala Leu Thr Met Val Pro Val Ile Ser Asn Ala Leu
Gly 245 250 255Gly Ile Leu
Val Gly Leu Val Thr Ser His Ala Gly Gly Val Arg Lys 260
265 270Gly Phe Val Ile Val Ser Ala Leu Leu Val
Thr Ala Leu Leu Gln Phe 275 280
285Ala Phe Glu Gly Lys Pro Pro Ser Ser Tyr Cys Leu Val Ala Leu Pro 290
295 300Leu Val Ile Ser Ser Ile Ser Gln
Tyr Gln Lys Tyr Pro Tyr Met Asp305 310
315 320Lys Lys Lys Lys Val
32516322PRTBrassica rapa 16Met Ala Ala Ser Asn Gly Ala Lys Ser Pro Ser
Lys Lys Val Leu Phe1 5 10
15Tyr Ser Leu Leu Leu Thr Leu Gln Tyr Gly Ala Gln Pro Leu Ile Ser
20 25 30Lys Arg Cys Ile Gly Lys Glu
Val Ile Val Thr Ser Ser Val Leu Thr 35 40
45Cys Glu Ile Val Lys Val Val Cys Ala Leu Ile Leu Met Ala Arg
Asp 50 55 60Gly Ser Leu Lys Gly Leu
Ala Lys Glu Trp Thr Leu Met Gly Ser Leu65 70
75 80Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala
Leu Gln Asn Ser Leu 85 90
95Leu Gln Ile Ser Tyr Arg Ser Leu Asp Ser Leu Thr Phe Ser Ile Leu
100 105 110Asn Gln Thr Lys Ile Phe
Phe Thr Ala Phe Phe Thr Phe Ile Ile Leu 115 120
125Arg Gln Lys Gln Ser Val Gln Gln Ile Gly Ala Leu Cys Leu
Leu Ile 130 135 140Met Ala Ala Val Leu
Leu Ser Val Gly Glu Gly Ser Asn Lys Thr Ser145 150
155 160Ser Ser Gly Ile Asn Pro Glu Gln Val Leu
Phe Ser Gly Ile Ile Pro 165 170
175Val Leu Val Ala Ser Val Leu Ser Gly Leu Ala Ser Ser Leu Cys Gln
180 185 190Trp Ala Ser Gln Val
Lys Lys His Ser Ser Tyr Leu Met Thr Val Glu 195
200 205Met Ser Ile Val Gly Ser Leu Cys Met Leu Ala Ser
Thr Leu Lys Ser 210 215 220Pro Asp Gly
Glu Ala Ile Lys Arg His Gly Phe Phe His Gly Trp Thr225
230 235 240Ala Leu Thr Met Val Pro Val
Ile Ser Asn Ala Leu Gly Gly Ile Leu 245
250 255Val Gly Leu Val Thr Ser His Ala Gly Gly Val Arg
Lys Gly Phe Val 260 265 270Ile
Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln Phe Ala Phe Glu 275
280 285Gly Lys Pro Pro Ser Ser Tyr Cys Leu
Val Ala Leu Pro Leu Val Ile 290 295
300Ser Ser Ile Ser Leu Tyr Gln Lys Tyr Pro Tyr Leu Asp Lys Lys Lys305
310 315 320Lys
Lys17332PRTFragaria vesca 17Met Ala Thr Ala Thr Ala Ala Ala Ala Lys Pro
Lys Arg Pro Pro Pro1 5 10
15Thr Ser Asp Gln Met Asn Ala Lys Val Phe Leu Tyr Ser Val Leu Leu
20 25 30Ala Leu Gln Tyr Gly Ala Gln
Pro Leu Ile Ser Lys Arg Phe Ile Arg 35 40
45Arg Glu Val Ile Val Thr Ser Ser Val Leu Thr Cys Glu Val Ala
Lys 50 55 60Val Ile Cys Ala Leu Val
Phe Met Ala Arg Asp Gly Ser Leu Lys Lys65 70
75 80Val Tyr Lys Glu Trp Thr Leu Leu Gly Ala Leu
Thr Ala Ser Gly Leu 85 90
95Pro Ala Ala Ile Tyr Ala Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr
100 105 110Lys Asn Leu Asp Ser Leu
Thr Phe Ser Met Leu Asn Gln Thr Lys Ile 115 120
125Ile Phe Thr Ala Met Cys Thr Tyr Leu Ile Leu Arg Gln Lys
Gln Ser 130 135 140Ile Gln Gln Val Gly
Ala Leu Phe Leu Leu Ile Ile Ala Ala Val Leu145 150
155 160Leu Ser Phe Gly Glu Gly Ser Ser Lys Arg
Ser Ser Gly Gly Asn Ser 165 170
175Asp Gln Ile Trp Phe Asn Gly Ile Ile Pro Val Leu Val Ala Ser Val
180 185 190Leu Ser Gly Leu Ala
Ser Ser Leu Cys Gln Trp Ala Ser Gln Val Lys 195
200 205Lys His Ser Ser Tyr Leu Met Thr Val Glu Met Ser
Ile Val Gly Ser 210 215 220Leu Cys Met
Leu Ala Ser Thr Ala Lys Ser Pro Asp Gly Glu Ala Ile225
230 235 240Arg Lys His Gly Leu Phe Tyr
Gly Trp Thr Ile Leu Thr Trp Ile Pro 245
250 255Val Met Ser Asn Ala Leu Gly Gly Ile Leu Val Gly
Leu Val Thr Thr 260 265 270His
Ala Gly Gly Val Arg Lys Gly Phe Val Ile Val Ser Ala Leu Leu 275
280 285Val Thr Ala Leu Leu Gln Phe Ile Phe
Glu Gly Lys Pro Pro Ser Leu 290 295
300Tyr Cys Leu Ala Ser Leu Pro Leu Val Val Ser Ser Ile Ser Ile Tyr305
310 315 320Gln Lys Tyr Pro
Tyr Arg Val Lys Lys Lys Glu Ser 325
33018327PRTPrunus persica 18Met Ala Ala Thr Lys His Lys Ala Pro Val Arg
Ser Ser Glu Lys Met1 5 10
15Asn Ser Arg Val Trp Leu Phe Ser Leu Leu Leu Thr Leu Gln Tyr Gly
20 25 30Ala Gln Pro Leu Ile Ser Lys
Arg Cys Thr Arg Arg Glu Val Ile Val 35 40
45Thr Ser Ser Val Leu Thr Cys Glu Ile Ala Lys Val Val Cys Ala
Leu 50 55 60Ile Phe Met Ala Arg Asp
Gly Ser Leu Lys Lys Val Tyr Lys Glu Trp65 70
75 80Thr Leu Val Gly Ala Leu Thr Ala Ser Gly Leu
Pro Ala Ala Ile Tyr 85 90
95Ala Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr Lys Asn Leu Asp Ser
100 105 110Leu Thr Phe Ser Met Leu
Asn Gln Thr Lys Ile Ile Phe Thr Ala Leu 115 120
125Phe Thr Tyr Leu Ile Leu Arg Gln Lys Gln Ser Ile Gln Gln
Ile Gly 130 135 140Ala Leu Phe Leu Leu
Ile Leu Ala Ala Ile Leu Leu Ser Phe Gly Glu145 150
155 160Gly Ser Lys Lys Gly Ser Ser Ala Ser Asn
Ser Asp Gln Ile Leu Phe 165 170
175Asn Gly Ile Ile Pro Val Met Val Ala Ser Val Leu Ser Gly Leu Ala
180 185 190Ser Thr Leu Cys Gln
Trp Ala Ser Gln Val Lys Lys His Ser Ser Tyr 195
200 205Leu Met Thr Val Glu Met Ser Ile Val Gly Ser Leu
Cys Leu Leu Ala 210 215 220Ser Thr Phe
Lys Ser Pro Asp Gly Glu Ala Ile Ala Lys His Gly Leu225
230 235 240Phe Tyr Gly Trp Thr Leu Met
Thr Trp Ile Pro Val Met Ser Asn Ala 245
250 255Leu Gly Gly Ile Leu Val Gly Leu Val Thr Ser Tyr
Ala Gly Gly Val 260 265 270Lys
Lys Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Leu Leu 275
280 285Gln Phe Ile Phe Glu Gly Lys Pro Pro
Ser Leu Tyr Cys Leu Val Ala 290 295
300Leu Pro Leu Val Val Ser Ser Ile Ser Ile Tyr Gln Lys Tyr Pro Tyr305
310 315 320Arg Val Lys Arg
Lys Glu Leu 32519328PRTMalus
domesticamisc_feature(247)..(247)Xaa can be any naturally occurring amino
acid 19Met Ala Ala Gly Lys Gln Lys Ala Pro Ala Pro Pro Ser Ala Glu Lys1
5 10 15Ile Asn Ser Arg Val
Trp Phe Tyr Ser Leu Leu Leu Thr Leu Gln Tyr 20
25 30Gly Ala Gln Pro Leu Ile Ser Lys Arg Phe Thr Ser
Arg Glu Val Ile 35 40 45Val Thr
Ser Ser Val Leu Thr Cys Glu Ile Ala Lys Ile Ile Cys Ala 50
55 60Leu Ile Phe Met Ala Arg Asp Gly Ser Leu Lys
Lys Val Tyr Arg Glu65 70 75
80Trp Thr Leu Val Gly Ala Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile
85 90 95Tyr Ala Leu Gln Asn
Ser Leu Leu Gln Ile Ser Tyr Lys Asn Leu Asp 100
105 110Ser Leu Thr Phe Ser Met Leu Asn Gln Thr Lys Ile
Ile Phe Thr Ala 115 120 125Leu Phe
Thr Tyr Leu Ile Leu Arg Gln Lys Gln Ser Ile Gln Gln Ile 130
135 140Gly Ala Leu Val Leu Leu Ile Met Ala Ala Val
Leu Leu Ser Phe Gly145 150 155
160Glu Gly Ser Lys Lys Gly Thr Ser Ser Gly Ser Ser Asp Gln Ile Leu
165 170 175Phe Arg Gly Ile
Ile Pro Val Leu Val Ala Ser Val Leu Ser Gly Leu 180
185 190Ala Ser Ser Leu Cys Gln Trp Ala Ser Gln Val
Lys Lys His Ser Ser 195 200 205Tyr
Leu Met Thr Val Glu Met Ser Val Val Gly Ser Leu Cys Leu Leu 210
215 220Ala Ser Thr Ser Lys Ser Pro Asp Gly Glu
Ala Ile Arg Ile His Gly225 230 235
240Phe Phe Tyr Gly Trp Thr Xaa Met Thr Trp Ile Pro Val Met Ser
Asn 245 250 255Ala Leu Gly
Gly Ile Leu Val Gly Leu Val Thr Ser Tyr Ala Gly Gly 260
265 270Val Lys Lys Gly Phe Val Ile Val Ser Ala
Leu Leu Val Thr Ala Met 275 280
285Leu Gln Phe Ile Phe Glu Gly Lys Pro Pro Ser Leu Tyr Cys Leu Leu 290
295 300Ala Leu Pro Leu Val Ala Ser Ser
Ile Ser Ile Tyr Gln Lys Tyr Pro305 310
315 320Tyr Arg Val Lys Lys Lys Glu Ala
32520326PRTBrachypodium distachyon 20Met Gly Ser Val Ser Lys Pro Ser Pro
Thr Ala Ala Ala Pro Ser Arg1 5 10
15Arg Arg Val Ala Leu Tyr Leu Ala Leu Leu Thr Leu Gln Tyr Gly
Ala 20 25 30Gln Pro Leu Ile
Ser Lys Arg Phe Val Arg Arg Glu Val Ile Val Thr 35
40 45Ser Leu Val Leu Ala Ile Glu Val Leu Lys Val Met
Cys Ala Val Ile 50 55 60Leu Leu Val
Ala Glu Gly Ser Leu Lys Lys Gln Phe Ser Asn Trp Asn65 70
75 80Leu Ala Gly Ser Leu Thr Ala Ser
Gly Leu Pro Ala Ala Ile Tyr Ala 85 90
95Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr Lys Asn Leu Asp
Ser Leu 100 105 110Thr Phe Ser
Ile Leu Asn Gln Thr Lys Leu Leu Phe Thr Ala Phe Phe 115
120 125Thr Tyr Leu Ile Leu Gly Gln Arg Gln Ser Pro
Lys Gln Ile Phe Ala 130 135 140Leu Thr
Leu Leu Ile Ser Ala Ala Val Leu Leu Ser Val Gly Glu Ser145
150 155 160Thr Thr Lys Gly Leu Asn Gly
Gly Ser Ser Glu Tyr Val Leu Leu Tyr 165
170 175Gly Ile Ile Pro Val Thr Val Ala Ser Val Leu Ser
Gly Leu Ala Ser 180 185 190Ser
Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Ala Ser Tyr Leu 195
200 205Met Thr Ile Glu Met Ser Phe Ile Gly
Ser Met Cys Leu Leu Ala Ser 210 215
220Thr Phe Gln Ser Pro Asp Gly Glu Ala Met Lys Lys Tyr Gly Phe Phe225
230 235 240His Glu Trp Thr
Ser Leu Thr Leu Ile Pro Val Leu Met Asn Ala Val 245
250 255Gly Gly Ile Leu Val Gly Leu Val Thr Thr
Tyr Ala Gly Gly Val Arg 260 265
270Lys Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln
275 280 285Phe Ile Phe Asp Gly Lys Pro
Pro Ser Val Tyr Cys Leu Met Ala Leu 290 295
300Pro Leu Val Met Ala Ser Ile Phe Ile Tyr Gln Lys Tyr Pro Tyr
Val305 310 315 320Asp Arg
Lys Lys Lys Asp 32521327PRTsorghum bicolor 21Met Gly Ser
Ser Ser Thr Pro Ala Ala Ala Ala Ala Ala Ala Pro Ser1 5
10 15Arg Arg Lys Val Ala Leu Tyr Leu Ala
Leu Leu Thr Leu Gln Tyr Gly 20 25
30Ala Gln Pro Leu Ile Ser Lys Arg Phe Val Arg Gln Asp Thr Ile Val
35 40 45Thr Ser Leu Val Leu Ala Thr
Glu Ala Ala Lys Val Ile Cys Ala Ile 50 55
60Ile Leu Leu Ile Ala Glu Gly Ser Leu Arg Lys Gln Phe Ser Asn Trp65
70 75 80Thr Leu Thr Gly
Ser Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr 85
90 95Ala Leu Gln Asn Ser Leu Leu Gln Val Ser
Tyr Lys Asn Leu Asp Ser 100 105
110Leu Thr Phe Ser Ile Leu Asn Gln Thr Lys Leu Leu Trp Thr Ala Phe
115 120 125Phe Thr Phe Leu Ile Leu Gly
Gln Lys Gln Ser Ser Arg Gln Ile Leu 130 135
140Ala Leu Ala Leu Leu Ile Gly Ala Ala Val Leu Leu Ser Val Gly
Glu145 150 155 160Ser Thr
Ser Lys Gly Ser Lys Ser Gly Gly Ser Asp Tyr Ile Leu Leu
165 170 175Tyr Gly Ile Ile Pro Val Thr
Val Ala Ser Met Leu Ser Gly Leu Ala 180 185
190Ser Ser Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Thr
Ser Tyr 195 200 205Met Met Thr Ile
Glu Met Ser Phe Ile Gly Ser Met Cys Leu Leu Ala 210
215 220Ser Thr Tyr Arg Ser Pro Asp Gly Glu Ala Ile Arg
Lys Tyr Gly Phe225 230 235
240Phe His Glu Trp Thr Phe Trp Thr Val Val Pro Val Leu Met Asn Ala
245 250 255Val Gly Gly Ile Leu
Val Gly Leu Val Thr Thr Tyr Ala Gly Gly Val 260
265 270Arg Lys Gly Phe Val Ile Val Ser Ala Leu Leu Val
Thr Ala Leu Leu 275 280 285Gln Phe
Val Phe Asp Gly Lys Pro Pro Ser Leu Tyr Cys Leu Met Ala 290
295 300Leu Pro Leu Val Ala Thr Ser Ile Phe Ile Tyr
Gln Lys Tyr Pro Tyr305 310 315
320Val Asp Arg Lys Lys Lys Asp 32522326PRTHordeum
vulgare 22Met Gly Ser Ala Ser Lys Pro Ser Pro Ser Ala Ala Ala Pro Ser
Arg1 5 10 15Arg Lys Val
Ala Leu Cys Leu Thr Leu Leu Thr Leu Gln Tyr Gly Ala 20
25 30Gln Pro Leu Ile Ser Lys Arg Cys Val Gly
Gln Gly Val Ile Val Thr 35 40
45Ser Leu Val Leu Ala Ile Glu Leu Leu Lys Val Ile Cys Ala Val Ile 50
55 60Leu Leu Val Ala Glu Gly Ser Leu Lys
Ala Gln Phe Ser Asn Trp Ser65 70 75
80Leu Val Gly Ser Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile
Tyr Ala 85 90 95Leu Gln
Asn Ser Leu Leu Gln Ile Ser Tyr Lys Asn Leu Asp Ser Leu 100
105 110Thr Phe Ser Ile Leu Asn Gln Thr Lys
Leu Leu Phe Thr Ala Phe Phe 115 120
125Thr Tyr Leu Ile Leu Gly Gln Lys Gln Ser Pro Lys Gln Ile Leu Ala
130 135 140Leu Ala Leu Leu Ile Thr Ala
Ser Val Leu Leu Ser Ile Gly Glu Ser145 150
155 160Ser Arg Lys Gly Val Ser Gly Gly Ser Ser Asp Tyr
Val Leu Leu Tyr 165 170
175Gly Ile Ile Pro Val Thr Val Ala Ser Val Leu Ser Gly Leu Ala Ser
180 185 190Ser Leu Cys Gln Trp Ala
Ser Gln Val Lys Lys His Thr Ser Tyr Met 195 200
205Met Thr Ile Glu Met Ser Phe Ile Gly Ser Met Cys Leu Leu
Ala Ser 210 215 220Thr Phe Gln Ser Pro
Asp Gly Glu Ala Leu Arg Ile Tyr Gly Phe Phe225 230
235 240His Glu Trp Thr Leu Trp Thr Val Ile Pro
Val Leu Met Asn Ala Val 245 250
255Gly Gly Ile Leu Val Gly Leu Val Thr Ser Tyr Ala Gly Gly Val Lys
260 265 270Lys Gly Phe Val Ile
Val Leu Ala Leu Leu Val Thr Ala Leu Leu Gln 275
280 285Phe Ile Phe Asp Gly Lys Leu Pro Ser Leu His Cys
Leu Val Ala Leu 290 295 300Pro Leu Val
Met Thr Ser Ile Phe Ile Tyr Gln Lys Tyr Pro Tyr Val305
310 315 320Asp Arg Lys Lys Lys Asp
32523325PRTSetaria italica 23Met Gly Ser Ser Ser Thr Pro Ala Ala
Ala Ala Val Pro Ser Arg Arg1 5 10
15Lys Val Ala Leu Tyr Leu Thr Leu Leu Thr Leu Gln Tyr Gly Ala
Gln 20 25 30Pro Leu Ile Ser
Lys Arg Phe Val Arg Gln Asp Thr Ile Val Thr Ser 35
40 45Leu Val Leu Ala Thr Glu Gly Ala Lys Val Ile Cys
Ala Ile Ile Leu 50 55 60Leu Ile Ala
Glu Gly Gly Leu Lys Lys Gln Phe Ser Asn Trp Ser Leu65 70
75 80Thr Gly Ser Leu Thr Ala Ser Gly
Leu Pro Ala Ala Ile Tyr Ala Leu 85 90
95Gln Asn Ser Leu Leu Gln Ile Ser Tyr Lys Asn Leu Asp Ser
Leu Thr 100 105 110Phe Ser Ile
Leu Asn Gln Thr Lys Leu Leu Trp Thr Ala Phe Phe Thr 115
120 125Tyr Leu Ile Leu Gly Gln Lys Gln Ser Ser Lys
Gln Ile Leu Ala Leu 130 135 140Thr Leu
Leu Ile Ser Ala Ala Val Leu Leu Ser Val Gly Glu Ser Ser145
150 155 160Ser Lys Gly Ser Lys Gly Gly
Ser Ser Asp Tyr Val Leu Leu Tyr Gly 165
170 175Ile Ile Pro Val Thr Val Ala Ser Met Leu Ser Gly
Leu Ala Ser Ser 180 185 190Leu
Cys Gln Trp Ala Ser Gln Val Lys Lys His Thr Ser Tyr Met Met 195
200 205Thr Ile Glu Met Ser Phe Ile Gly Ser
Leu Cys Leu Leu Ala Ser Thr 210 215
220Tyr Arg Ser Pro Asp Gly Glu Ala Ile Arg Lys Tyr Gly Phe Phe His225
230 235 240Glu Trp Thr Leu
Trp Thr Thr Val Pro Val Leu Met Asn Ala Val Gly 245
250 255Gly Ile Leu Val Gly Leu Val Thr Thr Tyr
Ala Gly Gly Val Arg Lys 260 265
270Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln Phe
275 280 285Ile Phe Asp Gly Lys Pro Pro
Ser His Tyr Cys Leu Met Ala Leu Pro 290 295
300Leu Val Met Thr Ser Ile Phe Ile Tyr Gln Lys Tyr Pro Tyr Ala
Asp305 310 315 320Arg Lys
Lys Lys Asp 32524327PRTZea mays 24Met Gly Ser Ser Ser Ala
Pro Ala Ala Ala Ala Ala Ala Ala Pro Ser1 5
10 15Arg Arg Lys Val Ala Leu Tyr Leu Ala Leu Leu Thr
Leu Gln Tyr Gly 20 25 30Ala
Gln Pro Leu Ile Ser Lys Arg Phe Val Arg Glu Asp Thr Ile Val 35
40 45Thr Ser Leu Val Leu Ala Thr Glu Ala
Ala Lys Val Ile Cys Ala Ile 50 55
60Ile Leu Leu Ile Ala Glu Gly Ser Leu Lys Lys Gln Phe Ser Asn Trp65
70 75 80Thr Leu Thr Gly Ser
Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr 85
90 95Ala Leu Gln Asn Ser Leu Leu Gln Val Ser Tyr
Lys His Leu Asp Ser 100 105
110Leu Thr Phe Ser Ile Leu Asn Gln Thr Lys Leu Leu Trp Thr Ala Phe
115 120 125Phe Thr Phe Leu Ile Leu Gly
Gln Lys Gln Ser Ser Arg Gln Ile Leu 130 135
140Ala Leu Ala Leu Leu Ile Gly Ala Ala Val Leu Leu Ser Val Gly
Glu145 150 155 160Ser Ser
Ser Lys Gly Ser Lys Gly Gly Gly Ser Asp Tyr Ile Leu Leu
165 170 175Tyr Gly Ile Ile Pro Val Thr
Val Ala Ser Val Leu Ser Gly Leu Ala 180 185
190Ser Ser Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Thr
Ser Tyr 195 200 205Met Met Thr Ile
Glu Met Ser Phe Ile Gly Ser Met Cys Leu Leu Ala 210
215 220Ser Thr Tyr Arg Ser Pro Asp Gly Glu Ala Ile Arg
Lys Tyr Gly Phe225 230 235
240Phe His Glu Trp Thr Phe Trp Thr Val Ile Pro Val Leu Met Asn Ala
245 250 255Val Gly Gly Ile Leu
Val Gly Leu Val Thr Thr Tyr Ala Gly Gly Val 260
265 270Arg Lys Gly Phe Val Ile Val Ser Ala Leu Leu Val
Thr Ala Leu Leu 275 280 285Gln Phe
Ile Phe Asp Gly Lys Leu Pro Ser Leu Tyr Cys Leu Ile Ala 290
295 300Leu Pro Leu Val Ala Ser Ser Ile Phe Ile Tyr
Gln Lys His Pro Tyr305 310 315
320Val Asp Arg Lys Lys Lys Asp 32525327PRTZea mays
25Met Gly Ala Ser Ser Thr Pro Ala Ala Ala Ala Ala Ala Ala Pro Ser1
5 10 15Arg Arg Lys Val Thr Leu
Tyr Leu Val Leu Leu Thr Leu Gln Tyr Gly 20 25
30Ala Gln Pro Leu Ile Ser Lys Arg Phe Val Arg Gln Asp
Thr Ile Val 35 40 45Thr Ser Leu
Val Leu Ala Thr Glu Ala Ala Lys Val Ile Cys Ala Ile 50
55 60Ile Leu Leu Ile Ala Asp Gly Ser Leu Lys Lys Gln
Phe Ser Asn Trp65 70 75
80Thr Leu Ile Gly Ser Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr
85 90 95Ala Leu Gln Asn Ser Leu
Leu Gln Val Ser Phe Lys Asn Leu Asp Ser 100
105 110Leu Thr Phe Ser Ile Leu Asn Gln Thr Lys Leu Leu
Trp Thr Ser Phe 115 120 125Phe Thr
Phe Leu Ile Leu Gly Gln Lys Gln Ser Ser Lys Gln Ile Leu 130
135 140Ala Leu Ala Leu Leu Ile Ser Ala Ala Val Leu
Leu Ser Val Gly Glu145 150 155
160Ser Thr Ser Lys Gly Ser Asn Gly Gly Gly Ser Asp Tyr Ile Leu Leu
165 170 175Tyr Gly Ile Ile
Pro Val Thr Val Ala Ser Met Leu Ser Gly Leu Ala 180
185 190Ser Ser Leu Cys Gln Trp Ala Ser Gln Val Lys
Lys His Thr Ser Tyr 195 200 205Met
Met Thr Ile Glu Met Ser Phe Ile Gly Ser Val Cys Leu Leu Ala 210
215 220Ser Thr Tyr Arg Ser Pro Asp Gly Glu Ala
Ile Arg Lys Tyr Gly Val225 230 235
240Phe His Glu Trp Thr Phe Trp Thr Met Val Pro Val Leu Met Asn
Ala 245 250 255Val Gly Gly
Ile Leu Val Gly Leu Val Thr Thr Tyr Ala Gly Gly Ile 260
265 270Arg Lys Gly Phe Val Ile Val Ser Ala Leu
Leu Val Thr Ala Leu Leu 275 280
285Gln Phe Val Tyr Asp Gly Lys Pro Pro Ser Leu Tyr Cys Leu Met Ala 290
295 300Leu Pro Leu Val Ala Thr Ser Ile
Phe Ile Tyr Gln Lys Tyr Pro Tyr305 310
315 320Val Asp Lys Lys Lys Lys Val
32526327PRTTriticum aestivum 26Met Gly Ser Ala Ser Lys Pro Ser Pro Thr
Ala Ala Ala Pro Ser Arg1 5 10
15Arg Lys Val Ala Leu Cys Leu Thr Leu Leu Thr Leu Gln Tyr Gly Ala
20 25 30Gln Pro Leu Ile Ser Lys
Arg Cys Val Gly Gln Gly Val Ile Val Thr 35 40
45Ser Leu Val Leu Ala Ile Glu Leu Leu Lys Val Ile Cys Ala
Val Ile 50 55 60Leu Leu Val Ala Glu
Gly Ser Leu Lys Glu Gln Phe Ser Asn Trp Ser65 70
75 80Leu Val Gly Ser Leu Thr Ala Ser Gly Leu
Pro Ala Ala Ile Tyr Ala 85 90
95Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr Lys Asn Leu Asp Ser Leu
100 105 110Thr Phe Ser Ile Leu
Asn Gln Thr Lys Leu Leu Phe Thr Ala Phe Phe 115
120 125Thr Tyr Leu Ile Leu Gly Gln Lys Gln Ser Pro Lys
Gln Ile Leu Ala 130 135 140Leu Ala Leu
Leu Ile Thr Ala Ala Val Leu Leu Ser Ile Gly Glu Ser145
150 155 160Ser Arg Lys Gly Ala Ser Gly
Gly Ser Ser Asp Tyr Val Leu Leu Tyr 165
170 175Gly Ile Ile Pro Val Thr Val Ala Ser Val Leu Ser
Gly Leu Ala Ser 180 185 190Ser
Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Thr Ser Tyr Met 195
200 205Met Thr Ile Glu Met Ser Phe Ile Gly
Ser Met Cys Leu Leu Ala Ser 210 215
220Thr Phe Gln Ser Pro Asp Gly Glu Ala Leu Arg Ile Tyr Gly Phe Phe225
230 235 240His Glu Trp Thr
Leu Trp Thr Val Ile Pro Val Leu Met Asn Ala Val 245
250 255Gly Gly Ile Leu Val Gly Leu Val Thr Ser
Tyr Ala Gly Gly Ile Lys 260 265
270Lys Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Leu Leu Gln
275 280 285Phe Ile Phe Asp Gly Lys Pro
Pro Ser Leu His Cys Leu Val Ala Leu 290 295
300Pro Leu Val Met Thr Ser Ile Phe Ile Tyr Gln Lys Tyr Pro Tyr
Val305 310 315 320Asp Ser
Lys Lys Lys Asp Arg 32527326PRTOryza sativa 27Met Gly Ser
Ser Ala Thr Pro Ser Thr Ala Ala Ser Ala Pro Gly Arg1 5
10 15Arg Lys Val Ala Leu Tyr Leu Ala Leu
Leu Thr Leu Gln Tyr Gly Ala 20 25
30Gln Pro Leu Ile Ser Lys Arg Phe Val Arg Gln Glu Val Ile Val Thr
35 40 45Thr Leu Val Leu Ser Ile Glu
Val Ala Lys Val Ile Cys Ala Val Ile 50 55
60Leu Leu Val Ala Glu Gly Ser Leu Lys Lys Gln Phe Asn Asn Trp Ser65
70 75 80Ile Thr Arg Ser
Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala 85
90 95Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr
Lys Asn Leu Asp Ser Leu 100 105
110Thr Phe Ser Ile Leu Asn Gln Thr Lys Leu Leu Phe Thr Ala Phe Phe
115 120 125Thr Tyr Leu Ile Leu Gly Gln
Lys Gln Ser Pro Lys Gln Ile Phe Ala 130 135
140Leu Thr Leu Leu Ile Ala Ala Ala Val Leu Leu Ser Ile Gly Glu
Ser145 150 155 160Ser Ser
Lys Gly Ser Gly Gly Gly Asn Ser Asp Tyr Ile Leu Leu Tyr
165 170 175Gly Ile Ile Pro Val Thr Val
Ala Ser Val Leu Ser Gly Leu Ala Ser 180 185
190Ser Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Thr Ser
Tyr Met 195 200 205Met Thr Ile Glu
Met Ser Phe Ile Gly Ser Met Cys Leu Leu Ala Ser 210
215 220Thr Ser Gln Ser Pro Asp Gly Glu Ala Ile Arg Lys
His Gly Phe Phe225 230 235
240His Glu Trp Thr Leu Leu Thr Val Val Pro Val Leu Met Asn Ala Val
245 250 255Gly Gly Ile Leu Val
Gly Leu Val Thr Thr Tyr Ala Gly Gly Val Arg 260
265 270Lys Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr
Ala Leu Leu Gln 275 280 285Phe Ile
Phe Asp Gly Lys Pro Pro Ser Leu Tyr Cys Leu Ile Ala Leu 290
295 300Pro Leu Val Met Thr Ser Ile Phe Ile Tyr Gln
Lys Tyr Pro Tyr Val305 310 315
320Asp Arg Lys Lys Lys Asp 32528327PRTGlycine max
28Met Ala Pro Pro Ala Pro Pro Lys Ser Ser Gln Gly Gln Val Met Asn1
5 10 15Asn Ala Arg Ile His Phe
Phe Ser Ile Leu Leu Ala Leu Gln Tyr Gly 20 25
30Ala Gln Pro Leu Ile Ser Lys Arg Phe Ile Arg Arg Glu
Val Ile Val 35 40 45Thr Ser Ser
Val Leu Thr Cys Glu Leu Ala Lys Val Ile Cys Ala Val 50
55 60Phe Phe Met Ala Lys Asp Gly Ser Leu Arg Lys Leu
Tyr Lys Glu Trp65 70 75
80Thr Leu Val Gly Ala Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr
85 90 95Ala Leu Gln Asn Ser Leu
Leu Gln Ile Ser Tyr Lys Asn Leu Asp Ser 100
105 110Leu Thr Phe Ser Met Leu Asn Gln Thr Lys Ile Phe
Phe Thr Ala Leu 115 120 125Phe Ala
Tyr Phe Ile Leu Arg Gln Lys Gln Ser Ile Glu Gln Ile Gly 130
135 140Ala Leu Phe Leu Leu Ile Val Ala Ala Val Leu
Leu Ser Val Gly Glu145 150 155
160Gly Ser Thr Lys Gly Ser Ala Ile Gly Asn Ala Asp Gln Ile Leu Phe
165 170 175Tyr Gly Ile Ile
Pro Val Leu Val Ala Ser Val Leu Ser Gly Leu Ala 180
185 190Ser Ser Leu Cys Gln Trp Ala Ser Gln Val Lys
Lys His Ser Ser Tyr 195 200 205Leu
Met Thr Ile Glu Met Ser Ile Val Gly Ser Leu Cys Leu Leu Ala 210
215 220Ser Thr Leu Lys Ser Pro Asp Gly Glu Ala
Met Arg Gln His Gly Phe225 230 235
240Phe Tyr Gly Trp Thr Pro Leu Thr Leu Ile Pro Val Ile Phe Asn
Ala 245 250 255Leu Gly Gly
Ile Leu Val Gly Leu Val Thr Ser His Ala Gly Gly Val 260
265 270Arg Lys Gly Phe Val Ile Val Ser Ala Leu
Leu Ile Thr Ala Leu Leu 275 280
285Gln Phe Ile Phe Asp Gly Lys Thr Pro Ser Leu Tyr Cys Leu Leu Ala 290
295 300Leu Pro Leu Val Val Thr Ser Ile
Ser Ile Tyr Gln Lys Tyr Pro Tyr305 310
315 320Gln Val Lys Lys Lys Glu Ser
32529329PRTPhaseolus vulgaris 29Met Ala Pro Pro Pro Pro Pro Lys Ser Arg
Gly Ala Thr Gln Gly Ile1 5 10
15Asn Asn Ala Ala Arg Ile Gln Phe Phe Ser Ile Leu Leu Ala Leu Gln
20 25 30Tyr Gly Ala Gln Pro Leu
Ile Ser Lys Arg Phe Val Arg Gln Glu Val 35 40
45Ile Val Thr Ser Ser Val Leu Val Cys Glu Leu Ala Lys Val
Leu Cys 50 55 60Ala Val Phe Ile Met
Ala Lys Asp Gly Thr Leu Arg Lys Val Tyr Lys65 70
75 80Glu Trp Thr Leu Val Gly Ala Leu Thr Ala
Ser Gly Leu Pro Ala Ala 85 90
95Ile Tyr Ala Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr Lys Asn Leu
100 105 110Asp Ser Leu Thr Phe
Ser Met Leu Asn Gln Thr Lys Ile Phe Phe Thr 115
120 125Ala Phe Phe Thr Tyr Phe Ile Leu Arg Gln Lys Gln
Ser Ile Glu Gln 130 135 140Ile Gly Ala
Leu Phe Leu Leu Ile Val Ala Ala Val Leu Leu Ser Val145
150 155 160Gly Glu Gly Ser Ser Lys Gly
Ser Ser Ser Val Asn Ala Asp Gln Ile 165
170 175Leu Phe Tyr Gly Ile Ile Pro Val Leu Val Ala Ser
Val Leu Ser Gly 180 185 190Leu
Ala Ser Ser Leu Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser 195
200 205Ser Tyr Leu Met Thr Ile Glu Met Ser
Ile Val Gly Ser Leu Cys Leu 210 215
220Leu Ala Ser Thr Phe Lys Ser Pro Asp Gly Glu Ala Met Arg Gln His225
230 235 240Gly Phe Phe Tyr
Gly Trp Thr Pro Leu Thr Leu Ile Pro Val Met Phe 245
250 255Asn Ala Phe Gly Gly Ile Leu Val Gly Leu
Val Thr Ser His Ala Gly 260 265
270Gly Val Arg Lys Gly Phe Val Ile Val Ser Ala Leu Leu Ile Thr Ala
275 280 285Leu Leu Gln Phe Ile Phe Asp
Gly Lys Pro Pro Ser Leu Tyr Cys Leu 290 295
300Val Ala Leu Pro Leu Val Val Thr Ser Ile Ser Ile Tyr Gln Lys
Tyr305 310 315 320Pro Asn
Gln Val Lys Lys Lys Glu Ser 32530324PRTCicer arietinum
30Met Ala Pro Pro Lys Ser Lys Ala Pro Thr Gln Ala Thr Asn Thr Arg1
5 10 15Ile Phe Phe Phe Ser Ile
Leu Leu Ala Leu Gln Tyr Gly Ala Gln Pro 20 25
30Leu Ile Ser Lys Arg Cys Ile Ser Arg Glu Val Ile Val
Thr Ser Ser 35 40 45Val Leu Ala
Cys Glu Ala Ala Lys Val Ile Phe Ala Val Tyr Phe Met 50
55 60Ala Lys Glu Gly Ser Leu Gly Arg Thr Phe Lys Glu
Trp Thr Leu Val65 70 75
80Gly Ala Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala Leu Gln
85 90 95Asn Ser Leu Leu Gln Ile
Ser Tyr Lys Asn Leu Asp Ser Leu Thr Phe 100
105 110Ser Met Leu Asn Gln Thr Lys Ile Ile Phe Thr Ala
Leu Phe Thr Tyr 115 120 125Phe Met
Leu Arg Gln Lys Gln Ser Ile Gln Gln Ile Gly Ala Leu Phe 130
135 140Leu Leu Ile Ala Ala Ala Val Leu Leu Ser Val
Gly Glu Gly Ser Asn145 150 155
160Lys Gly Ser Thr Ser Gly Asn Ala Asp Gln Ile Leu Phe Tyr Gly Ile
165 170 175Val Pro Val Leu
Ile Ala Ser Leu Leu Ser Gly Leu Ala Ser Ser Leu 180
185 190Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser
Ser Tyr Leu Met Thr 195 200 205Val
Glu Met Ser Ile Val Gly Ser Leu Cys Leu Leu Ala Ser Thr Phe 210
215 220Lys Ser Pro Asp Gly Glu Ala Met Arg Gln
His Gly Phe Phe His Ala225 230 235
240Trp Thr Pro Leu Thr Trp Ile Pro Val Ile Phe Asn Ala Leu Gly
Gly 245 250 255Ile Leu Val
Gly Leu Val Thr Ser Tyr Ala Gly Gly Val Arg Lys Gly 260
265 270Phe Val Ile Val Ser Ala Leu Leu Val Thr
Ala Leu Leu Gln Phe Ile 275 280
285Phe Glu Gly Lys Pro Pro Ser Leu Tyr Cys Leu Val Ala Leu Pro Leu 290
295 300Val Val Gly Ser Ile Ser Ile Tyr
Gln Lys Tyr Pro Tyr Gln Ile Lys305 310
315 320Lys Lys Glu Ser31327PRTVitis vinifera 31Met Ala
Thr Lys Lys Arg Gly Val Pro Thr Ala Ile Pro Glu Lys Ala1 5
10 15Ser Pro Arg Val Trp Leu Tyr Leu
Val Leu Leu Thr Leu Gln Tyr Gly 20 25
30Ala Gln Pro Leu Ile Ser Lys Arg Phe Ile Arg Arg Glu Val Ile
Val 35 40 45Thr Ser Ser Val Leu
Thr Cys Glu Val Ala Lys Val Ile Cys Ala Leu 50 55
60Phe Leu Ile Ala Arg Gly Gly Gly Leu Lys Lys Leu Tyr Asn
Glu Trp65 70 75 80Thr
Leu Val Gly Ser Leu Thr Ala Ser Gly Leu Pro Ala Ala Ile Tyr
85 90 95Ala Leu Gln Asn Ser Leu Leu
Gln Ile Ser Tyr Lys Asn Leu Asp Ser 100 105
110Leu Thr Phe Ser Met Leu Asn Gln Thr Lys Leu Phe Phe Thr
Ala Leu 115 120 125Phe Thr Tyr Ile
Ile Leu Arg Gln Lys Gln Ser Thr Gln Gln Ile Gly 130
135 140Ala Leu Phe Leu Leu Ile Ile Ala Ala Val Leu Leu
Ser Ile Gly Glu145 150 155
160Gly Ser Ser Lys Gly Ser Ser Gly Ser Asn Pro Asp Gln Ile Leu Phe
165 170 175His Gly Ile Val Pro
Val Leu Val Ala Ser Val Leu Ser Gly Leu Ala 180
185 190Ser Ala Leu Cys Gln Trp Ala Ser Gln Val Lys Lys
His Thr Ser Tyr 195 200 205Met Met
Thr Ile Glu Met Ser Val Val Gly Ser Leu Cys Leu Leu Ala 210
215 220Ser Thr Tyr Lys Ser Pro Asp Gly Lys Ala Ile
Arg Gln His Gly Phe225 230 235
240Phe Tyr Gly Trp Thr Pro Leu Thr Leu Ile Pro Val Ile Phe Asn Ala
245 250 255Val Gly Gly Ile
Leu Val Gly Leu Val Thr Ser Tyr Ala Gly Gly Val 260
265 270Arg Lys Gly Phe Val Ile Val Ser Ala Leu Leu
Val Thr Ala Leu Leu 275 280 285Gln
Phe Ile Phe Asp Gly Lys Pro Pro Ser Phe Tyr Cys Ile Leu Ala 290
295 300Leu Pro Leu Val Ile Thr Ser Ile Ser Ile
Tyr Gln Lys Tyr Pro Tyr305 310 315
320Arg Val Lys Lys Lys Glu Ser 32532330PRTSolanum
lycopersicum 32Met Ala Ala Thr Glu Ser Lys Lys Val Asn Ser Glu Asn Pro
Ala Ala1 5 10 15Ala Lys
Thr Gly Gly Lys Val Trp Phe Tyr Ser Leu Leu Leu Thr Leu 20
25 30Gln Tyr Gly Ala Gln Pro Leu Ile Ser
Lys Arg Phe Val Arg Arg Glu 35 40
45Val Ile Val Thr Ser Ser Val Leu Thr Cys Glu Ala Val Lys Val Ile 50
55 60Cys Ala Leu Val Leu Met Ala Lys Glu
Gly Thr Leu Lys Lys Ile Tyr65 70 75
80Arg Glu Trp Thr Leu Phe Gly Ser Leu Thr Ala Ser Gly Leu
Pro Ala 85 90 95Ala Ile
Tyr Ala Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr Lys Asn 100
105 110Leu Asp Ser Leu Thr Phe Ser Ile Leu
Asn Gln Thr Lys Leu Phe Phe 115 120
125Thr Ala Leu Phe Thr Tyr Ile Ile Leu Arg Gln Lys Gln Ser Ile Gln
130 135 140Gln Ile Gly Ala Leu Phe Leu
Leu Ile Met Ala Ala Val Leu Leu Ser145 150
155 160Val Gly Glu Gly Ser Ser Lys Ala Ser Ser Ser Ser
Asn Pro Asp Glu 165 170
175Ile Leu Phe Tyr Gly Ile Val Pro Val Leu Val Ala Ser Val Leu Ser
180 185 190Gly Leu Ala Ser Ala Leu
Cys Gln Trp Ala Ser Gln Val Lys Lys His 195 200
205Ser Ser Tyr Leu Met Thr Val Glu Met Ser Ile Ile Gly Ser
Leu Cys 210 215 220Leu Ile Ser Ser Thr
Ser Lys Ser Pro Asp Gly Glu Ala Ile Arg Gln225 230
235 240His Gly Phe Phe Tyr Gly Trp Thr Ala Leu
Thr Leu Ile Pro Val Ile 245 250
255Leu Asn Ala Val Gly Gly Ile Leu Val Gly Leu Val Thr Ser Tyr Ala
260 265 270Gly Gly Val Arg Lys
Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr 275
280 285Ala Leu Leu Gln Phe Ile Phe Asp Gly Lys Leu Pro
Ser Pro Tyr Cys 290 295 300Leu Val Ala
Leu Pro Leu Val Met Ile Ser Ile Ser Thr Tyr Gln Lys305
310 315 320Tyr Pro Tyr Arg Val Lys Lys
Lys Gln Met 325 33033312PRTTheobroma cacao
33Met Ser Pro Arg Val Trp Leu Tyr Ser Ile Leu Leu Thr Phe Gln Tyr1
5 10 15Gly Ala Gln Pro Leu Ile
Ser Lys Arg Phe Thr Arg Arg Glu Val Ile 20 25
30Val Thr Ser Ser Val Leu Thr Cys Glu Ile Ala Lys Val
Ile Cys Ala 35 40 45Leu Ile Leu
Met Ala Lys Asp Gly Thr Leu Lys Lys Met Ala Lys Glu 50
55 60Trp Thr Leu Val Gly Ser Leu Thr Ala Ser Gly Leu
Pro Ala Ala Ile65 70 75
80Tyr Ala Leu Gln Asn Ser Leu Leu Gln Ile Ser Tyr Arg Asn Leu Asp
85 90 95Ser Leu Thr Phe Ser Met
Leu Asn Gln Thr Lys Ile Phe Phe Thr Ala 100
105 110Leu Phe Thr Tyr Ile Ile Leu Arg Gln Lys Gln Ser
Ile Gln Gln Ile 115 120 125Gly Ala
Leu Phe Leu Leu Ile Met Ala Ala Val Leu Leu Ser Ile Gly 130
135 140Glu Gly Ser Ser Lys Gly Ser Asn Ser Arg Asp
Pro Asp Gln Ile Leu145 150 155
160Phe Tyr Gly Ile Val Pro Val Leu Val Ala Ser Val Leu Ser Gly Leu
165 170 175Ala Ser Ala Leu
Cys Gln Trp Ala Ser Gln Val Lys Lys His Ser Ser 180
185 190Tyr Leu Met Thr Val Glu Met Ser Ile Val Gly
Ser Leu Cys Leu Leu 195 200 205Ala
Ser Thr Ser Lys Ser Pro Asp Gly Glu Ala Ile Arg Arg His Gly 210
215 220Phe Phe Tyr Gly Trp Thr Pro Leu Thr Leu
Ile Pro Val Val Ala Asn225 230 235
240Ala Leu Gly Gly Ile Leu Val Gly Leu Val Thr Ser Leu Ala Gly
Gly 245 250 255Val Arg Lys
Gly Phe Val Ile Val Ser Ala Leu Leu Val Thr Ala Met 260
265 270Leu Gln Phe Leu Phe Glu Gly Lys Pro Pro
Ser Val Tyr Cys Leu Val 275 280
285Ala Leu Pro Leu Val Ile Ser Ser Ile Ser Ile Tyr Gln Lys Tyr Pro 290
295 300Tyr Arg Val Lys Lys Lys Glu Ala305
31034331PRTCitrus sinensis 34Met Ala Thr Val Lys Thr Lys
Val Lys Thr Gly Pro Thr Gln Thr Ser1 5 10
15Met Gln Lys Thr Ser Ala Arg Val Phe Leu Tyr Ser Leu
Leu Leu Thr 20 25 30Leu Gln
Tyr Gly Val Gln Pro Leu Ile Ser Lys Arg Cys Ile Arg Arg 35
40 45Glu Val Ile Val Thr Thr Ser Val Leu Thr
Cys Glu Leu Ala Lys Val 50 55 60Ile
Phe Ala Leu Ile Phe Met Ala Lys Glu Gly Thr Leu Lys Lys Leu65
70 75 80Ser Ser Gln Trp Thr Leu
Val Gly Ser Leu Thr Ala Ser Gly Leu Pro 85
90 95Ala Thr Ile Tyr Ala Leu Gln Asn Ser Leu Leu Gln
Ile Ser Tyr Arg 100 105 110Asn
Leu Asp Ser Leu Thr Phe Ser Met Leu Asn Gln Thr Lys Ile Ile 115
120 125Phe Thr Ala Leu Phe Thr Tyr Ile Ile
Leu Arg Gln Arg Gln Ser Met 130 135
140Gln Gln Ile Val Ala Val Phe Leu Leu Ile Leu Ala Ala Val Phe Leu145
150 155 160Ser Ile Gly Glu
Gly Ser Ser Lys Arg Ser Ser Ser Gly Asp Pro Asp 165
170 175Gln Ile Leu Phe Tyr Gly Ile Val Pro Val
Leu Val Ala Ser Val Leu 180 185
190Ser Gly Leu Ala Ser Ala Leu Cys Gln Trp Ala Ser Gln Val Lys Lys
195 200 205His Ser Ser Tyr Leu Met Thr
Ile Glu Met Ser Ile Val Gly Ser Leu 210 215
220Cys Leu Leu Ala Ser Ile Ser Lys Ser Pro Asp Gly Glu Ala Ile
Arg225 230 235 240Gln His
Gly Phe Phe Tyr Gly Trp Thr Pro Leu Thr Leu Ile Pro Val
245 250 255Ile Phe Asn Ser Leu Gly Gly
Ile Leu Val Gly Leu Val Thr Ser His 260 265
270Ala Gly Gly Val Arg Lys Gly Phe Val Ile Val Ser Ala Leu
Leu Val 275 280 285Thr Ala Met Leu
Gln Phe Ile Phe Glu Gly Lys Pro Pro Ser Leu Tyr 290
295 300Cys Leu Ile Ala Leu Pro Leu Val Val Ser Ser Ile
Ser Ile Tyr Gln305 310 315
320Lys Tyr Pro Tyr Gln Val Lys Lys Lys Glu Val 325
33035331PRTCitrus clementina 35Met Ala Thr Val Lys Thr Lys Val
Lys Thr Gly Pro Thr Gln Thr Ser1 5 10
15Met Gln Lys Thr Ser Ala Arg Val Phe Leu Tyr Ser Leu Leu
Leu Thr 20 25 30Leu Gln Tyr
Gly Val Gln Pro Leu Ile Ser Lys Arg Cys Ile Arg Arg 35
40 45Glu Val Ile Val Thr Thr Ser Val Leu Thr Cys
Glu Leu Ala Lys Val 50 55 60Ile Phe
Ala Leu Ile Phe Met Ala Lys Glu Gly Thr Leu Lys Lys Leu65
70 75 80Ser Ser Gln Trp Thr Leu Val
Gly Ser Leu Thr Ala Ser Gly Leu Pro 85 90
95Ala Thr Ile Tyr Ala Leu Gln Asn Ser Leu Leu Gln Ile
Ser Tyr Arg 100 105 110Asn Leu
Asp Ser Leu Thr Phe Ser Met Leu Asn Gln Thr Lys Ile Ile 115
120 125Phe Thr Ala Leu Phe Thr Tyr Ile Ile Leu
Arg Gln Arg Gln Ser Met 130 135 140Gln
Gln Ile Val Ala Val Phe Leu Leu Ile Leu Ala Ala Val Phe Leu145
150 155 160Ser Ile Gly Glu Gly Ser
Ser Lys Arg Ser Ser Ser Gly Asp Pro Asp 165
170 175Gln Ile Leu Phe Tyr Gly Ile Val Pro Val Leu Val
Ala Ser Val Leu 180 185 190Ser
Gly Leu Ala Ser Ala Leu Cys Gln Trp Ala Ser Gln Val Lys Lys 195
200 205His Ser Ser Tyr Leu Met Thr Ile Glu
Met Ser Ile Val Gly Ser Leu 210 215
220Cys Leu Leu Ala Ser Ile Ser Lys Ser Pro Asp Gly Glu Ala Ile Arg225
230 235 240Gln His Gly Phe
Phe Tyr Gly Trp Thr Pro Leu Thr Leu Ile Pro Val 245
250 255Ile Phe Asn Ser Leu Gly Gly Ile Leu Val
Gly Leu Val Thr Ser His 260 265
270Ala Gly Gly Val Arg Lys Gly Phe Val Ile Val Ser Ala Leu Leu Val
275 280 285Thr Ala Met Leu Gln Phe Ile
Phe Glu Gly Lys Pro Pro Ser Leu Tyr 290 295
300Cys Leu Ile Ala Leu Pro Leu Val Val Ser Ser Ile Ser Ile Tyr
Gln305 310 315 320Lys Tyr
Pro Tyr Gln Val Lys Lys Lys Glu Val 325
33036330PRTPicea sitchensis 36Met Ala Val Lys Ser Arg Ala Arg Gly Lys Gln
Asn Ser Glu Asp His1 5 10
15Gln Lys His Lys Ser Arg Ile Trp Leu Tyr Leu Thr Leu Leu Thr Leu
20 25 30Gln Tyr Gly Ala Gln Pro Leu
Leu Ser Lys Arg Phe Ser Gly Lys Gly 35 40
45Val Thr Val Thr Ser Ser Val Leu Ile Cys Glu Cys Ala Lys Val
Leu 50 55 60Cys Ala Leu Ile Leu Ile
Val Lys Glu Gly Ser Leu Gly Arg Leu Ser65 70
75 80Glu Glu Trp Thr Phe Ile Gly Ser Leu Thr Ala
Ser Gly Leu Pro Ala 85 90
95Ala Ile Tyr Ala Leu Gln Asn Ser Leu Leu Gln Leu Ser Tyr Arg Asn
100 105 110Leu Asp Ser Leu Thr Phe
Thr Met Leu Asn Gln Thr Lys Leu Phe Phe 115 120
125Thr Ala Leu Phe Met Tyr Phe Ile Leu Gly Gln Lys Gln Ser
Leu Gln 130 135 140Gln Ile Gly Ala Leu
Val Leu Leu Ile Ile Ala Ala Phe Leu Leu Ser145 150
155 160Ile Gly Glu Gly Ser Gly His Gly Ser Arg
Gly Val Asp Ser Glu Gln 165 170
175Ala Phe Leu Leu Gly Ile Ile Pro Val Ile Ala Ala Ser Val Leu Ser
180 185 190Gly Leu Ala Ser Ser
Leu Cys Gln Trp Ala Ser Gln Val Lys Lys Arg 195
200 205Ser Ser Tyr Leu Met Thr Ile Glu Met Ser Ala Ile
Gly Ser Leu Cys 210 215 220Met Leu Ala
Ser Thr Leu Lys Ser Pro Asp Gly Lys Ala Ile Arg Gln225
230 235 240Gln Gly Phe Phe Ser Gly Trp
Thr Ile Leu Thr Leu Ile Pro Ile Phe 245
250 255Thr Asn Ala Val Gly Gly Ile Leu Val Gly Leu Val
Thr Thr Gln Ala 260 265 270Gly
Gly Val Arg Lys Gly Phe Val Ile Val Ser Ala Leu Ile Val Thr 275
280 285Ala Leu Leu Gln Tyr Val Phe Asp Gly
Ile Pro Pro Ser Leu Tyr Val 290 295
300Leu Leu Ser Leu Pro Leu Val Val Thr Ser Ile Ile Ile Tyr Gln Arg305
310 315 320Tyr Pro Tyr Gln
Val Lys Glu Lys Lys Leu 325
33037336PRTCoffea canephora 37Met Thr Ala Val Ala Glu Ala Ala Ala Lys Ser
Lys Val Thr Lys Ser1 5 10
15Ser Ser Gly Asp Gln Ile Ser Asn Pro Asn Gly Lys Val Trp Phe Tyr
20 25 30Ser Leu Leu Leu Thr Leu Gln
Tyr Gly Ala Gln Pro Leu Ile Ser Lys 35 40
45Arg Cys Thr Gly Arg Glu Val Thr Val Thr Ser Leu Val Leu Thr
Cys 50 55 60Glu Val Val Lys Val Ile
Cys Ala Leu Leu Leu Met Ala Lys Asp Gly65 70
75 80Thr Leu Lys Lys Leu Phe Lys Glu Trp Thr Leu
Val Gly Ser Leu Thr 85 90
95Ala Ser Gly Leu Pro Ala Ala Ile Tyr Ala Leu Gln Asn Ser Leu Leu
100 105 110Gln Ile Ser Tyr Arg Asn
Leu Asp Ser Leu Thr Phe Ser Met Leu Asn 115 120
125Gln Thr Lys Leu Phe Phe Thr Ala Phe Phe Met Tyr Met Ile
Leu Arg 130 135 140Gln Lys Gln Ser Ile
Gln Gln Ile Gly Ala Leu Phe Leu Leu Ile Leu145 150
155 160Ala Ala Val Leu Leu Ser Val Gly Glu Gly
Ser Ser Lys Ala Ser Ser 165 170
175Ser Ser Asn Pro Glu Glu Ile Leu Phe Arg Gly Ile Ile Pro Val Leu
180 185 190Val Ala Ser Val Leu
Ser Gly Leu Ala Ser Ala Leu Cys Gln Trp Ala 195
200 205Ser Gln Val Lys Lys His Thr Ser Tyr Leu Met Thr
Val Glu Met Ser 210 215 220Ile Ile Gly
Ser Leu Cys Leu Met Ala Ser Phe Tyr Lys Ser Pro Asp225
230 235 240Gly Glu Thr Ile Arg Gln His
Gly Phe Phe Tyr Asp Trp Thr Pro Leu 245
250 255Thr Leu Ile Pro Val Ile Phe Asn Ala Val Gly Gly
Ile Leu Val Gly 260 265 270Leu
Val Thr Ser Tyr Ala Gly Gly Val Arg Lys Ala Phe Val Ile Val 275
280 285Ser Ala Leu Leu Val Thr Ala Leu Leu
Gln Phe Val Phe Asp Gly Lys 290 295
300Pro Pro Ser Leu Tyr Cys Leu Val Ala Leu Pro Leu Val Ile Thr Ser305
310 315 320Val Ser Val Tyr
Gln Lys Tyr Pro Tyr Arg Val Lys Ala Lys Glu Ala 325
330 33538330PRTMusa acuminata 38Met Ala Ser Ala
Ala Ala Thr Ala His Arg Lys Gly Pro Pro Arg Gln1 5
10 15Glu Ser Pro Arg Ala Lys Val Trp Leu Tyr
Leu Thr Leu Leu Thr Leu 20 25
30Gln Tyr Gly Ala Gln Pro Leu Ile Ser Lys Arg Phe Ile Arg Arg Asp
35 40 45Val Ile Val Thr Ser Ser Val Leu
Thr Cys Glu Met Ala Lys Val Ile 50 55
60Cys Ala Leu Phe Leu Leu Ala Lys Glu Gly Ser Phe Lys Arg Leu Trp65
70 75 80Lys Glu Trp Thr Leu
Val Gly Ala Leu Thr Ala Ser Gly Leu Pro Ala 85
90 95Ala Ile Tyr Ala Leu Gln Asn Ser Leu Leu Gln
Ile Ser Tyr Lys Asn 100 105
110Leu Asp Ser Leu Thr Phe Ser Ile Leu Asn Gln Thr Lys Leu Phe Phe
115 120 125Thr Ala Phe Phe Thr Tyr Leu
Ile Leu Gly Gln Lys Gln Ser Pro Lys 130 135
140Gln Ile Gly Ala Leu Thr Leu Leu Ile Val Ala Ala Ile Leu Leu
Ser145 150 155 160Val Gly
Glu Ser Ser Gly Lys Ala Ser Ala Ser Ser Asn Ser Asp Gln
165 170 175Val Leu Leu Tyr Gly Ile Ile
Pro Val Met Ile Ala Ser Val Leu Ser 180 185
190Gly Leu Ala Ser Ser Leu Cys Gln Trp Ala Ser Gln Val Lys
Lys His 195 200 205Thr Ser Tyr Ile
Met Thr Val Glu Met Ser Phe Val Gly Ser Leu Cys 210
215 220Leu Leu Ala Ser Thr Tyr Lys Ser Pro Asp Gly Glu
Ala Ile Gln Lys225 230 235
240Tyr Gly Phe Phe His Gly Trp Thr Val Trp Thr Leu Ile Pro Val Val
245 250 255Met Asn Ala Val Gly
Gly Ile Leu Val Gly Leu Val Thr Ala His Ala 260
265 270Gly Gly Val Arg Lys Gly Phe Val Ile Val Ser Ala
Leu Leu Val Thr 275 280 285Ala Met
Leu Gln Phe Leu Phe Asp Gly Lys Pro Pro Ser Val Tyr Cys 290
295 300Leu Ala Ala Leu Pro Leu Val Ile Ser Ser Ile
Val Ile Tyr Gln Lys305 310 315
320Tyr Pro Tyr Val Gly Arg Lys Lys Glu Asp 325
33039334PRTPhyscomitrella patens 39Met Gly Thr Glu Glu Val Glu
Lys Val Gln Gln His Ala Gln His Asp1 5 10
15Asp Asp Lys Lys Lys Gln Arg Thr Val Ala Ala Leu Cys
Met Ala Leu 20 25 30Leu Thr
Ile Gln Tyr Gly Met Gln Pro Leu Ile Ser Lys Arg Phe Thr 35
40 45Gly Lys Tyr Val Ile Met Thr Ser Ala Val
Leu Thr Cys Glu Met Val 50 55 60Lys
Cys Ala Ala Ala Leu Phe Phe Met Ala Arg Asp Gly Thr Leu Trp65
70 75 80Lys Leu Pro Lys Glu Trp
Ser Phe Val Asp Ser Leu Lys Ala Ser Ala 85
90 95Ser Pro Ala Ala Ile Tyr Ala Leu Gln Asn Thr Leu
Leu Gln Leu Ser 100 105 110Tyr
Arg Asn Leu Asp Ser Leu Thr Phe Ser Leu Leu Asn Gln Thr Lys 115
120 125Leu Val Phe Thr Ala Val Phe Met Phe
Leu Leu Leu Gly Ser Arg Gln 130 135
140Thr Lys Gln Gln Ile Gly Ala Leu Phe Leu Leu Leu Gly Ala Ala Thr145
150 155 160Leu Leu Ser Leu
Gly Lys Thr Ala Pro Lys Gln Gly Ile Lys Glu Val 165
170 175Glu Trp Glu Ser Thr Leu Trp Leu Gly Ile
Ile Pro Ile Ile Ser Ala 180 185
190Ser Val Leu Ser Gly Leu Ala Ser Thr Leu Cys Gln Trp Ala Ala Gln
195 200 205Val Lys Arg Arg Ser Thr Tyr
Leu Met Thr Leu Glu Met Ser Thr Tyr 210 215
220Gly Ser Leu Val Leu Leu Thr Ser Met Trp Trp Ser Pro Asp Gly
Val225 230 235 240Ser Ile
Gln Lys Leu Gly Phe Phe Tyr Gly Trp Ser Leu Leu Thr Phe
245 250 255Ile Pro Val Cys Leu Asn Ala
Phe Gly Gly Ile Leu Val Gly Leu Val 260 265
270Thr Gln Tyr Ser Gly Gly Ile Lys Lys Gly Phe Val Ile Val
Ser Ala 275 280 285Leu Leu Val Thr
Ala Leu Leu Glu Val Ile Val Glu Gly Lys Pro Pro 290
295 300Ser Ser Tyr Ala Ile Ala Ala Leu Pro Leu Val Val
Ser Ser Thr Ile305 310 315
320Ile His Gln Asn Tyr Pro Phe Lys Ala Lys Pro Lys Thr Ala
325 3304020DNAartificialprimer 40tgagaaaacg acgtccaatg
204120DNAartificialprimer
41taaacccgac aggacagagg
204222DNAartificialprimer 42tggttcacgt agtgggccat cg
224320DNAartificialprimer 43taaacccgac aggacagagg
204420DNAartificialprimer
44tgagaaaacg acgtccaatg
204523DNAartificialprimer 45atattgacca tcatactcat tgc
234620DNAartificialprimer 46gcaagaggct ttagctccaa
204720DNAartificialprimer
47ttgcccgtaa gatgttttca
204820DNAartificialprimer 48gcaagaggct ttagctccaa
204934DNAartificialprimer 49gccttttcag aaatggataa
atagccttgc ttcc 345020DNAartificialprimer
50ccttgttgcc tctcgaactc
205120DNAartificialprimer 51cgcaagctat ggagaagagg
205221DNAartificialprimer 52cccatttgga cgtgtagaca
c 215320DNAartificialprimer
53cgcaagctat ggagaagagg
205420DNAartificialprimer 54gggcactcaa caatcatcaa
205521DNAartificialprimer 55tccactgata aatcccactg
c 215620DNAartificialprimer
56ataacgctgc ggacatctac
205721DNAartificialprimer 57tccactgata aatcccactg c
215820DNAartificialprimer 58ccacgattcg acccaaagtt
205920DNAartificialprimer
59gctccaacac ttgctcttcc
206020DNAartificialprimer 60ccacgattcg acccaaagtt
206122DNAartificialprimer 61tggttcacgt agtgggccat
cg 226229DNAartificialprimer
62ccaacttgtc gtatatcatt cgtacagtg
296323DNAartificialprimer 63tggagagatt cgccatgtga cag
236429DNAartificialprimer 64ccaacttgtc gtatatcatt
cgtacagtg 296530DNAartificialprimer
65caacacgtgg gttaattaag aattcagtac
306620DNAartificialprimer 66tgcatgacgg ctctaagaca
206720DNAartificialprimer 67tcgagctctg gaactccaat
206822DNAartificialprimer
68tggttcacgt agtgggccat cg
226920DNAartificialprimer 69tcgagctctg gaactccaat
207021DNAartificialprimer 70ctaccggatc gggtaagtct
c 217121DNAartificialprimer
71gctacaagat tctcccaagc c
217221DNAartificialprimer 72ctaccggatc gggtaagtct c
217322DNAartificialprimer 73tggttcacgt agtgggccat
cg 227420DNAartificialprimer
74gtatgggccc taaggttttg
207520DNAartificialprimer 75atacgatgat ggcggttttc
207619DNAartificialprimer 76ggctaacgga gcaaagagt
197719DNAartificialprimer
77cagcgtttgg agatcagag
197820DNAartificialprimer 78gctctgattc tcatggcaag
207923DNAartificialprimer 79tgctgtgaaa aagattttcg
tct 238020DNAartificialprimer
80tacaacgagc ttcgtgttgc
208120DNAartificialprimer 81tccacatctg ttggaaggtg
208225DNAartificialprimer 82ttccatattg ctcacacttc
agtac 258320DNAartificialprimer
83aaacagatgc ccagaaatcg
208426DNAartificialprimer 84cataaccttg ttatattaat ttgcca
268520DNAartificialprimer 85aggccggagt tctgtaaatg
208627DNAartificialprimer
86gagccttaca acgctactct gtctgtc
278727DNAartificialprimer 87acaccagaca tagtagcaga aatcaag
278819DNAartificialprimer 88ctactcgcag ctaaaacgc
198918DNAartificialprimer
89gccgaaagaa tcaggaca
189018DNAartificialprimer 90gagctctccg atgcaaat
189118DNAartificialprimer 91gaaaaaggcc ataggggt
189220DNAartificialprimer
92cttggaacca atctgctctc
209318DNAartificialprimer 93atcatcgacg gcaagaac
189419DNAartificialprimer 94acgaccctct agcgattct
199518DNAartificialprimer
95cggcagtatt gatgcgta
189619DNAartificialprimer 96ggctaacgga gcaaagagt
199719DNAartificialprimer 97cagcgtttgg agatcagag
199824DNAartificialprimer
98acgtaccaag accagcagac tacc
249922DNAartificialprimer 99tgcagtcctt ggtgagactt cg
2210022DNAartificialprimer 100tggactcgaa
ttgtggcagg tg
2210124DNAartificialprimer 101tgccaacttc ttggcatagt ctgg
2410224DNAartificialprimer 102tctgcagatg
gtctcaagag ctac
2410323DNAartificialprimer 103ctcggctttc tcaatcagtt ccg
2310428DNAartificialprimer 104cggagctcgg
caggcttcat gattgatt
2810528DNAartificialprimer 105cggagctctc aatgggttga tttgcgta
2810630DNAartificialprimer 106cgcggctagc
cggccgttga ttttgactat
3010731DNAartificialprimer 107cgcggctagc caccttcttc ttcttcttgt c
3110828DNAartificialprimer 108cataggtacc
tgcgacggct aacggagc
2810934DNAartificialprimer 109gtctgaattc ttacaccttc ttcttcttct tgtc
3411028DNAartificialprimer 110aaaaagcagg
ctttatggga ttgacctc
2811134DNAartificialprimer 111agaaagctgg gttctaactc gagtttattt tttg
3411229DNAartificialprimer 112ggggacaagt
ttgtacaaaa aagcaggct
2911329DNAartificialprimer 113ggggaccact ttgtacaaga aagctgggt
2911440DNAartificialprimer 114aaaaagcagg
cttcaccatg gcgacggcta acggagcaaa
4011537DNAartificialprimer 115agaaagctgg gtgttacacc ttcttcttct tcttgtc
3711637DNAartificialprimer 116agaaagctgg
gtgttagtca atgtatgggt atttctg
3711734DNAartificialprimer 117agaaagctgg gtgcaccttc ttcttcttct tgtc
3411830DNAartificialprimer 118attaatatgg
tgagcaaggg cgaggagctg
3011929DNAartificialprimer 119attaatcttg tacagctcgt ccatgccga
2912035DNAartificialprimer 120cagaattctt
agtcaatgta tgggtatttc tggta 35
User Contributions:
Comment about this patent or add new information about this topic: