Patent application title: METHOD FOR REDUCING VISCOSITY IN SACCHARIFICATION PROCESS
Inventors:
IPC8 Class: AC12N942FI
USPC Class:
1 1
Class name:
Publication date: 2019-08-15
Patent application number: 20190249160
Abstract:
The present invention relates to compositions that can be used in
hydrolyzing biomass such as compositions comprising a polypeptide having
glycosyl hydrolase family 61/endoglucanase activity, methods for
hydrolyzing biomass material, and methods for reducing viscosity of
biomass mixture using a composition comprising a polypeptide having
glycosyl hydrolase family 61/endoglucanase activity.Claims:
1. A biomass saccharification mixture comprising: a. a biomass material
b. an enzyme composition comprising a glycosyl hydrolase family 61 enzyme
having endoglucanase activity, which is: i. at least 65% in sequence
identity to any one of SEQ ID NO:1-29 and 148; ii. at least 65% in
sequence identity to residues 22-344 of SEQ ID NO:27 iii. comprises at
least one amino acid sequence motifs selected from the group consisting
of: SEQ ID NOs: 84-91; iv. comprises one or more sequence motifs selected
from the group consisting of: (1) SEQ ID NO:84 and 88; (2) SEQ ID NOs: 85
and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SE ID NO:84, 88 and 89;
(6) SEQ ID NOs: 84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ
ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ
ID NOs: 85, 88, 89 and 91; and (14) SEQ ID NOs: 85, 88, 90 and 91; v.
encoded by a polynucleotide sequence or a complement thereof that is at
least 65% sequence identity to SEQ ID NO:30; or vi. encoded by a
polynucleotide sequence that hybridizes under high stringency conditions
to SEQ ID NO:30 or to a complement thereof; wherein said biomass
saccharification mixture has a lower viscosity than a biomass
saccharification mixture without the glycosyl hydrolyase family 61 enzyme
and/or is capable of increasing the level of saccharification in the
mixture as compared to the level of saccharification in a mixture having
no or a lower level of glycosyl hydrolase family 61 enzyme.
2. The biomass saccharification mixture of claim 1, wherein the level of saccharification is measured by the yield of fermentable sugar after the mixture is incubated for a period of time sufficient to cause saccharification of the biomass.
3. The biomass saccharification mixture of claim 1 or 2, wherein the glycosyl hydrolase family 61 enzyme is derived from a filamentous fungus.
4. The biomass saccharification mixture of claim 3, wherein the filamentous fungus is one selected from the group: Trichoderma, Humicola, Fusarium, Aspergillus, Neurospora, Penicillium, Cephalosporium, Achlya, Podospora, Endothia, Mucor, Cochliobolus, Pyricularia, Chrysosporium, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Geosmithia emersonii, or G. stearothermophilus.
5. The biomass saccharification mixture of any one of claims 1-4, wherein the enzyme composition further comprises at least one polypeptide having cellobiohydrolase activity and at least one polypeptide having beta-glucosidase activity.
6. The biomass saccharification mixture of claim 5, wherein the at least one polypeptide having cellobiohydrolase activity is a polypeptide encoding a T. reesei CBH1, Af 7A (SEQ ID NO:150), Af7B (SEQ ID NO:151), Cg7A (SEQ ID NO:152), Cg7B (SEQ ID NO:153), Tt7A (SEQ ID NO:154), Tt7B (SEQ ID NO:155), T. reesei CBH2, Tt6A (SEQ ID NO:156), St6A (SEQ ID NO:157), St6B (SEQ ID NO:158), or a variant thereof having at least 90% sequence identity thereto.
7. The biomass saccharification mixture of claim 5 or 6, wherein the at least one polypeptide having beta-glucosidase activity is: a. a polypeptide encoding an Fv3C (SEQ ID NO:100), a Pa3D (SEQ ID NO:94), an Fv3G (SEQ ID NO:96), an Fv3D (SEQ ID NO:98), a Tr3A (SEQ ID NO:102), a Tr3B (SEQ ID NO:104), a Te3A (SEQ ID NO:106), an An3A (SEQ ID NO:108), an Fo3A (SEQ ID NO:110), a Gz3A (SEQ ID NO:112), an Nh3A (SEQ ID NO:114), a Vd3A (SEQ ID NO:116), a Pa3G (SEQ ID NO:118), a Tn3B (SEQ ID NO:119), or a variant thereof having at least 90% sequence identity thereto; or b. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:99, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, or 117; (2) hybridizes under high stringency conditions to SEQ ID NO: 99, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, or 117, or to a complement thereof.
8. The biomass saccharification mixture of any one of claims 7-9, wherein the enzyme composition further comprises one or more or all of: (1) a polypeptide having xylanase activity, (2) a polypeptide having beta-xylosidase activity; and (3) a polypeptide having L-alpha-arabinofuranosidase activity.
9. The biomass saccharification mixture of claim 8, wherein the poypeptide having xylanase activity is: a. a polypeptide encoding a T. reesei Xyn3 (SEQ ID NO:76), T. reesei Xyn2 (SEQ ID NO:77), an AfuXyn2 (SEQ ID NO:58), and AfuXyn5 (SEQ ID NO:60), or a variant thereof having at least 90% sequence identity thereto; or b. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:75, 57, or 59; or (2) hybridizes under high stringency conditions to SEQ ID NO: 75, 57, or 59, or to a complement thereof.
10. The biomass saccharification mixture of claim 8, wherein the at least one polypeptide having beta-xylosidase activity is: a. a polypeptide encoding an Fv3A (SEQ ID NO:36), an Fv43A (SEQ ID NO:44), a Pf43A (SEQ ID NO:38), an Fv43D (SEQ ID NO:62), an Fv39A (SEQ ID NO:42), an Fv43E (SEQ ID NO:40), an Fo43A (SEQ ID NO:52), an Fv43B (SEQ ID NO:46), a Pa51A (SEQ ID NO:48), a Gz43A (SEQ ID NO:50), a T. reesei Bxl1 (SEQ ID NO:78), or a variant thereof having at least 90% sequence identity thereto; or b. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:35, 43, 37, 61, 41, 39, 51, 45, 47, 49, or 159; (2) hybridizes under high stringency conditions to SEQ ID NO: 35, 43, 37, 61, 41, 39, 51, 45, 47, 49, 159, or to a complement thereof.
11. The biomass saccharification mixture of claim 8, wherein the at least one polypeptide having L-alpha-arabinofuranosidase activity is: a. a polypeptide encoding an Af43A (SEQ ID NO:54), an Fv43B (SEQ ID NO:46), a Pf51A (SEQ ID NO:56), a Pa51A (SEQ ID NO:48), an Fv51A (SEQ ID NO:66), or a variant thereof having at least 90% sequence identity thereto; or b. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:53, 45, 55, 47, or 65; (2) hybridizes under high stringency conditions to SEQ ID NO: 53, 45, 55, 47, or 65, or to a complement thereof.
12. The biomass saccharification mixture of any one of claims 1-11, wherein the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 20 wt. %, about 5 wt. % to about 15 wt. % of the polypeptide having GH61/endoglucanase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg of the polypeptide having GH61/endoglucanase activity per gram of cellulose, hemicelluloses or a mixture of cellulose and hemicelluloses contained in the biomass material.
13. The biomass saccharification mixture of any one of claims 5-12, wherein the enzyme composition comprises cellulobiohydrolase in an amount that is (1) about 0.1 wt. % to about 80 wt. %, about 5 wt. % to about 70 wt. %, about 10 wt. % to about 60 wt. %, about 20 wt. % to about 50 wt. %, or about 25 wt. % to about 50 wt. % of the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture; and comprises beta-glucosidase in an amount that is (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 30 wt. %, about 2 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. % of the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture.
14. The biomass saccharification mixture of any one of claims 8-13, wherein the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 40 wt. %, about 4 wt. % to about 30 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. % of the polypeptide having xylanase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg of the polypeptide having xylanase activity per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture.
15. The biomass saccharification mixture of any one of claims 8-14, wherein the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 40 wt. %, about 2 wt. % to about 30 wt. %, about 4 wt. % to about 20 wt. %, or about 5 wt. % to about 15 wt. % of the polypeptide having beta-xylosidase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg of the polypeptide having beta-xylosidase activity per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture.
16. The biomass saccharification mixture of any one of claims 8-15, wherein the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 40 wt. %, about 2 wt. % to about 30 wt. %, about 4 wt. % to about 20 wt. %, or about 5 wt. % to about 15 wt. % of the polypeptide having L-alpha-arabinofuranosidase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg of the polypeptide having L-alpha-arabinofuranosidase activity per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture.
17. The biomass saccharification mixture of any one of claims 1-16, wherein the enzyme composition is a whole cellulase composition.
18. The biomass saccharification mixture of claim 17, wherein the whole cellulase composition is derived from a host cell expressing a polynucleotide encoding a polypeptide having GH61/endoglucanase activity.
19. The biomass saccharification mixture of claim 18, wherein the polynucleotide encoding the polypeptide having GH61 family enzyme activity is heterologous to the host cell.
20. The biomass sacharification mixture of any one of claims 17-19, wherein the whole cellulase composition is derived from a host cell further expressing a polynucleotide encoding a polypeptide having cellobiohydrolase activity, and a polynucleotide encoding a polypeptide having beta-glucosidase activity.
21. The biomass saccharification mixture of claim 20, wherein the polynucleotide encoding the polypeptide having cellobiohydrolase activity and/or the polynucleotide encoding the polypeptide having beta-glucosidase are heterologous to the host cell.
22. The biomass saccharification mixture of any one of claims 17-21, wherein the whole cellulase composition is derived from a host cell expressing one or more or all of (1) a polynucleotide encoding a peptide having beta-xylosidase activity; (2) a polynucleotide encoding a polypeptide having xylanase activity; and (3) a polynucleotide peptide having L-alpha-arabinofuranosidase activity.
23. The biomass saccharification mixture of claim 22, wherein the polynucleotide encoding the polypeptide having beta-xylosidase activity, the polynucleotide encoding the polypeptide having xylanase activity, or the polynucleotide encoding the polypeptide having L-alpha-arabinofuranosidase activity is heterologous to the host cell.
24. The biomass saccharification mixture of any one of claims 17-23, wherein the enzyme composition is a whole broth formulation.
25. The biomass saccharification mixture of any one of claims 1-24, wherein one or more or all of: (1) the gene encoding the polypeptide having GH61/endoglucanase activity; (2) the gene encoding the polypeptide having cellobiohydrolase activity; (3) the gene encoding the polypeptide having beta-glucosidase activity; (4) the gene encoding the polypeptide having beta-xylosidase activity; (5) the gene encoding the polypeptide having xylanase activity; and (6) the gene encoding the polypeptide having L-alpha-arabinofuranosidase activity are integrated into the genetic material of the host cell.
26. The biomass saccharification mixture of any one of claims 18-25, wherein the host cell is a bacterial host cell, yeast host cell, or a fungal host cell.
27. The biomass saccharification mixture of claim 26, wherein the host cell is a filamentous fungal host cell.
28. The biomass saccharification mixture of claim 27, wherein the filamentous fungal host cell is one selected from a cell of Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Trichoderma reesei, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, or Trichoderma viride.
29. The biomass saccharification mixture of any one of claims 1-28, wherein the saccharification mixture is prepared by first blending the enzyme composition comprising the polypeptide having GH61/endoglucanase activity, followed by mixing the enzyme composition with the biomass.
30. The biomass saccharification mixture of any one of claims 1-29, wherein the biomass material comprises hemicellulose, cellulose, or a mixture of hemicelluloses and cellulose.
31. The biomass saccharification mixture of any one of claims 1-30, wherein the biomass material comprises glucan, xylan and/or lignin.
32. The biomass saccharification mixture of any one of claims 1-30, wherein the biomass material is selected from seeds, grains, tubers, plant waste, byproducts of food processing or industrial processing, corn cobs, corn stover, grasses, Sorghastrum nutans, switchgrass, perennial canes, wood, wood chips, wood processing waste, sawdust, paper, paper waste, pulp, and recycled paper, potatoes, soybean, barley, rye, oats, wheat, beets, sugar cane bagasse and straw.
33. The biomass saccharification mixture of any one of claims 1-32, wherein the biomass material is subjected to pretreatment with an acid or a base.
34. The biomass saccharification mixture of claim 33, wherein the pretreated biomass is adjusted to pH of about 4.0 to 6.5 before mixing with the enzyme composition.
35. The biomass saccharification mixture of any one of claims 1-34, wherein the biomass material is present in the mixture in an amount of about 5 wt. % to about 60 wt. %, about 10 wt. % to about 50 wt. %, about 15 wt. % to about 40 wt. %, about 15 wt. % to about 30 wt. %, or about 20 wt. % to about 30 wt. %, referring to the amount of biomass material in its solid state relative to the total weight of the mixture.
36. A method of hydrolyzing a biomass material comprising incubating the biomass saccharification mixture of any one of claims 1-35, under conditions suitable for hydrolyzing the biomass materials in the biomass saccharification mixture and for a sufficient period of time.
37. The method of claim 36, wherein the conditions suitable for hydrolyzing the biomass materials in the biomass saccharification mixture comprises: (1) a pH of about 3.5 to about 7.0; (2) for a duration of about 2 hours or longer; and/or (3) a temperature of about 20.degree. C. to about 75.degree. C.
38. The method of claim 36 or 37, wherein the sufficient period of time comprises a time period of about 8 hours to about 72 hours.
39. The method of any one of claims 36 to 38, wherein at any given time above 2 hours, the amount of fermentable sugars is produced by the biomass saccharifcation mixture is increased by at least about 5% as compared to the amount of fermentable sugars produced by a control biomass saccharification mixture comprising the same amount and type of biomass material, and the same composition of enzyme components but in the absence of the GH61/endoglucanase.
40. The method of claim 39, wherein amount of fermentable sugars produced by the biomass saccharification is increased by at least about 10%, as compared to the fermentable sugars produced by the control biomass saccharification mixture.
41. The method of any one of claims 36-40, wherein the biomass material is present in an amount of about 10 wt. % to about 50 wt. % in its solid state.
42. The method of claim 41, wherein the viscosity of the biomass saccharification mixture is reduced by at least about 5%, about 10%, about 15%, about 20%, about 25%, or more, as compared to the viscosity of the control biomass saccharification mixture comprising the same amount and type of biomass material, and the same composition of enzyme components but in the absence of the GH61/endoglucanase.
43. A method of using the composition of any one of claims 1-35 to convert a biomass material into fermentable sugars in a merchant enzyme supply model or an on-site bio-refinery model.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 61/453,923, filed Mar. 17, 2011, which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present invention relates to compositions useful for hydrolyzing biomass, methods of using such compositions to hydrolyze biomass materials, and methods for reducing viscosity of biomass saccharification mixtures.
BACKGROUND OF THE INVENTION
[0003] Bioconversion of renewable lignocellulosic biomass to a fermentable sugar that is subsequently fermented to produce alcohol (e.g., ethanol) as an alternative to liquid fuels has attracted the intensive attention of researchers since the 1970s, when the oil crisis occurred (Bungay, H. R., "Energy: the biomass options". NY: Wiley; 1981; Olsson L, Hahn-Hagerdal B. Enzyme Microb Technol 1996, 18:312-31; Zaldivar, J et al., Appl Microbiol Biotechnol 2001, 56: 17-34; Galbe, M et al., Appl Microbiol Biotechnol 2002, 59:618-28). The production of sugars from lignocellulosic biomass materials has been known for some time, as has the subsequent fermentation and distillation of the sugars into ethanol. Much of the prior development occurred around the time of World War II when fuels were at a premium in such countries as Germany, Japan and the Soviet Union. These early processes were primarily directed to acid hydrolysis, which were complex in engineering and design, and were typically sensitive to small variations in the processes, such as to temperature, pressure and/or acid concentrations. A comprehensive discussion of these early processes is found in "Production of Sugars from Wood Using High-pressure Hydrogen Chloride", Biotechnology and Bioengineering, Volume XXV, at 2757-2773 (1983).
[0004] The abundant supply of petroleum in the period from World War II through the early 1970s slowed ethanol conversion research. However, due to the oil crisis of 1973, researchers increased their efforts to develop processes for the utilization of wood and agricultural byproducts for the production of ethanol. This research was especially important for development of ethanol as a gasoline additive to reduce the dependency of the United States upon foreign oil production, to increase the octane rating of fuels, and to reduce exhaust pollutants as an environmental measure.
[0005] Concurrently with the "oil crisis," the U.S. Environmental Protection Agency promulgated regulations requiring reduced lead additives. Insofar as ethanol is virtually a replacement of lead, some refineries have selected ethanol as the substitute for its capability of easy introduction into a refinery's operation without costly capital equipment investment.
[0006] The high pressure and high temperature gas saccharification processes developed decades ago continue to be improved. New and current research focuses greatly on enzymatic conversion processes, which employ enzymes from a variety of organisms, such as mesophilic and thermophilic fungi, yeast and bacteria, degrading cellulose into fermentable sugars. Uncertainty remains with these processes, mainly on their ability to be scaled up for commercialization and on the efficiency of ethanol production.
[0007] Cellulose and hemicellulose are the most abundant plant materials produced by photosynthesis. They can be degraded for use as an energy source by numerous microorganisms, including bacteria, yeast and fungi, which produce enzymes capable of hydrolysis of the polymeric substrates to monomeric sugars (Aro et al., 2001). Organisms are often restrictive with regard to which sugars they use, and this dictates which sugars are best to produce during conversion. As we approach the limits of non-renewable resources, we recognize the enormous potential of cellulose to become a major renewable energy resource (Krishna et al., 2001). The effective utilization of cellulose through biological processes can potentially overcome the shortage of foods, feeds, and fuels (Ohmiya et al., 1997).
[0008] Cellulases are enzymes that hydrolyze cellulose (beta-1,4-glucan or beta D-glucosidic linkages) resulting in the formation of glucose, cellobiose, cellooligosaccharides, and the like. Cellulases have been traditionally divided into 3 major classes: endoglucanases (EC 3.2.1.4) ("EG"), exoglucanases or cellobiohydrolases (EC 3.2.1.91) ("CBH") and beta-glucosidases ([beta]-D-glucoside glucohydrolase; EC 3.2.1.21) ("BG") (Knowles et al., 1987 and Shulein, 1988). Endoglucanases act mainly on the amorphous parts of the cellulose fiber, whereas cellobiohydrolases are also able to degrade crystalline cellulose.
[0009] Cellulases have also been shown to be useful in degradation of cellulose biomass to ethanol (wherein the cellulases degrade cellulose to glucose, and yeast or other microbes further ferment the glucose into ethanol), in the treatment of mechanical pulp (Pere et al., 1996), for use as a feed additive (WO 91/04673) and in grain wet milling. Separate saccharification and fermentation is a process whereby cellulose present in biomass, e.g., corn stover, is converted to glucose and subsequently yeast strains convert glucose into ethanol. Simultaneous saccharification and fermentation is a process whereby cellulose present in biomass, e.g., corn stover, is converted to glucose and, at the same time and in the same reactor, yeast strains convert glucose into ethanol. Ethanol production from readily available sources of cellulose provides a stable, renewable fuel source.
[0010] Cellulases are produced by a number of bacteria, yeast and fungi. Certain fungi produce a complete cellulase system (i.e., a whole cellulase) capable of degrading crystalline forms of cellulose. A whole cellulase, especially one that is naturally occurring, is, however, not necessarily capable of achieving efficient degradation because it may not include all the components/activities required for this efficiency, for example, activities from each of the CBH, EG and BG classifications. (Filho et al., 1996). It is known that individual CBH, EG, and BG components alone do not bring about efficienct hydrolysis, but the combination of EG-type cellulases and CBH-type cellulases interact to more efficiently degrade cellulose than either enzyme used alone (Wood, 1985; Baker et al., 1994; and Nieves et al., 1995).
[0011] Cellulases are known in the art to be useful in the treatment of textiles, for enhancing the cleaning ability of detergent compositions, for use as a softening agent, for improving the feel and appearance of cotton fabrics, and the like (Kumar et al., 1997). Cellulase-containing detergent compositions with improved cleaning performance (U.S. Pat. No. 4,435,307; GB App. Nos. 2,095,275 and 2,094,826) and for use in the treatment of fabric to improve the feel and appearance of the textile (U.S. Pat. Nos. 5,648,263, 5,691,178, and 5,776,757, and GB App. No. 1,358,599), have been described.
[0012] Hence, cellulases produced in fungi and bacteria have received significant attention. In particular, fermentation of Trichoderma spp. (e.g., T. longibrachiatum or T. reesei) has been shown to produce a complete cellulase system capable of degrading crystalline forms of cellulose. Over the years, Trichoderma cellulase production has been improved by classical mutagenesis, screening, selection and development of highly refined, large scale inexpensive fermentation conditions. While the multi-component cellulase system of Trichoderma spp. is able to hydrolyze cellulose to glucose, there are cellulases from other microorganisms, particularly bacterial strains, with different properties for efficient cellulose hydrolysis, and it would be advantageous to express these proteins in a filamentous fungus for industrial scale cellulase production. However, the results of many studies demonstrate that the yield of expressing bacterial enzymes from filamentous fungi is low (Jeeves et al., 1991).
[0013] Soluble sugars such as glucose and cellobiose have many uses for the production of chemicals and biological products. The optimization of cellulose hydrolysis allows for the use of less enzymes and improved cost effectiveness for the production of soluble sugars.
[0014] An efficient conversion of lignocellulosic biomass into fermentable sugars is key to producing bioethanol in a cost-effective and environmentally-friendly way. To reduce energy and processing cost, particularly for distillation, the minimum ethanol concentration produced by a viable process should be at least 4% (w/v). Such an increased ethanol concentration can be achieved by processing substrates having high dry matter of solids. However a common problem associated with saccharifying a high dry matter biomass is the high viscosity of the slurry, resulting in a slurry that is not pumpable or requires large energy input during handling. When dealing with handling of high solids, problems such as 1) insufficient mixing with limited mass transfer, 2) increasing concentration of inhibitors, such as acetic acid, furfural, 5-hydroxymethyl furfural, phenolic lignin degradation, 3) production inhibition, such as glucose, cellobiose, ethanol, and 4) fermentation microorganism viability, will occur. High viscosity limits the dry substance level in the process, increasing energy and water consumption, reducing the separation efficiency, evaporation and heat exchange, and ultimately, the ethanol yield. Reduction of viscosity is therefore beneficial, and enzymes play a key role in breaking down the soluble/insoluble compounds causing high viscosity.
[0015] Studies to increase solid loading and/or reduce viscosity of saccharification processes have taken place. For example, a number of studies utilized fed-batch operations in order to increase the solids level in the biomass substrate loading. A gravimetric mixing reactor design was used, which allowed batch enzymatic liquefaction and hydrolysis of pretreated wheat straw at up to 40% solids concentration. This fed-batch strategy sequentially loads the biomass substrate or substrate plus enzymes during enzymatic hydrolysis in order to achieve hydrolysis of a large amount of substrate, a relatively low viscosity during hydrolysis, and a relatively high glucose concentration during the process. Alternatively, enzymatic pre-hydrolysis of a lignocellulosic biomass for a period of time at the enzymes' optimum temperature, e.g., 50.degree. C., can be carried out to reduce the viscosity of the slurry, enabling pumping and stirring. The decrease in viscosity during pre-hydrolysis makes the subsequent fermentation or SSF possible.
[0016] Despite the development of numerous approaches, there remains a need in the art for additional ways to reduce viscosity and improve yield of desirable fermentable sugars.
[0017] All references cited herein, including patents, patent applications, and publications, are incorporated by reference in their entirety.
SUMMARY OF INVENTION
[0018] The present disclosure is based, in part, on the surprising discovery that inclusion of a certain endoglucanase enzyme (e.g., a polypeptide having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity, such as the T. reesei endoglucanase ("Eg4")) in a biomass saccharification mixture substantially reduces the viscosity of the mixture. The disclosure also pertains to the inclusion of such enzyme(s) to substantially improve the saccharification and the yields of desirable fermentable sugars from a given biomass substrate.
[0019] Provided herein are polypeptides having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity. By "GH61/endoglucanase activity" it is meant that the polypeptide has a GH61 activity and/or an endoglucanase activity. In some aspects, the polypeptide is isolated. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., an isolated polypeptide) is a GH61 endoglucanase or an endoglucanase IV ("EG IV") from various species, or a polypeptide corresponding to (e.g., sharing homology with, sharing functional domains, sharing GH61 motif(s), and/or sharing conservative residues with) a GH61 endoglucanase (e.g., a T. reesei Eg4 polypeptide). Such species include Trichoderma, Humicola, Fusarium, Aspergillus, Neurospora, Penicillium, Cephalosporium, Achlya, Podospora, Endothia, Mucor, Cochliobolus, Pyricularia, Chrysosporium, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Geosmithia emersonii, or G. stearothermophilus.
[0020] In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., an isolated polypeptide) is a GH61 endoglucanase selected from the group consisting of the polypeptides with amino acid sequences shown in FIG. 1 of the present disclosure. For example, suitable GH61 endoglucanases include those that are are represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or those that are named St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S.thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A.fumigatus Afu3g03870 (NCBI Ref: XP_748707), an endoglucanase of NCBI Ref: XP_750843.1 from A. fumigatus Afu6g09540, an endoglucanase of A. fumigatus EDP47167, an endoglucanase of T.terrestris 16380, an endoglucanase of T. terrestris 155418, an endoglucanase of T.terrestris 68900, Cg61A (EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP_752040 from A. fumigatus Af293. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) comprises an amino acid sequence that is at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148. In certain aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) comprises an amino acid sequence that comprises one or more sequence motif(s) selected from the group consisting of: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. In some embodiments, the polypeptide is at least about 100 (e.g., at least about 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, or more) amino acid residues in length.
[0021] In some aspects, the polypeptide having GH61/endoglucanase activity is a variant of a GH61 endoglucanase such as, for example, one selected from those listed in FIG. 1. Sutiable polypeptide include, e.g, GenBank Accession Number CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, or EAA29347.1, or St61 of S. thermophilum 24630, St61A of S. thermophilum 23839c, St61B of S. thermophilum 46583, St61D of S. thermophilum 80312, Afu61a of A. fumigatus Afu3g03870 (NCBI Ref: XP_748707), an enzyme of A. fumigatus Afu6g09540 (NCBI Ref: XP_750843.1), an enzyme of A. fumigatus EDP47167, an enzyme of T. terrestris 16380, an enzyme of T. terrestris 155418, an enzyme of T. terrestris 68900, and C.globosum Cg61A (EAQ86340.1), T. reesei Eg7, T. reesei Eg4, and an enzyme of A.fumigatus Af293 (with GenBank Accession: XP_752040). In some aspects, the polypeptide having GH61/. endoglucanase activity is a variant of an enzyme comprising any one of SEQ ID NOs: 1-29 and 148. The poloypeptide having GH61/endoglucanase activity may be a variant of an enzyme having at least about 100 (e.g., at least about 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240 or more) amino acid residues in length, comprising one or more of the sequence motifs selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. The polypeptide having GH61/endoglucanase activity may be a variant of a GH61 endoglucanase, wherein the variant has an amino acid sequence having at least about 60% (e.g., at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%) identity to any one of SEQ ID NOs:1-18.
[0022] In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., an isolated polypeptide, including a variant of GH61 endoglucanase) has endoglucanase activity. The variant may comprise at least one motif (at least 1, 2, 3, 4, 5, 6, 7, or 8 motifs) selected from SEQ ID NOs:84-91. For the purpose of the present disclosure enzymes can be referred to by their functionalities. For example, an eodnglucanse polypeptide can also be referred as polypeptide having endoglucanase activity, or vise versa.
[0023] In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) comprises one or more sequence motif(s) selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91.
[0024] In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant) comprises a CBM domain (e.g., functional CBM domain). In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) comprises a catalytic domain (e.g., functional catalytic domain).
[0025] Also provided herein are variants of EG IV polypeptides. For example, such variants can have at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148, or to a mature polypeptide thereof. For example, provided herein are variants of T. reesei Eg4 polypeptide. Such variants may have at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) sequence identity to residues 22 to 344 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof is isolated. In some aspects, the polypeptide or a variant thereof has endoglucanase activity. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least about 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27, or any corresponding conserved residues in any of the other polypeptides. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise residues corresponding to at least 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise a CBM domain (e.g., a functional CBM domain). In some aspects, the polypeptide or a variant thereof comprises a catalytic domain (e.g., a functional catalytic domain).
[0026] Also provided herein are nucleic acids or polynucleotides encoding any one of the polypeptides herein. For example, the disclosure provides polynucleotide encoding a polypeptide having at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148. For example, the disclosure provides herein isolated nucleic acids having at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) identity to SEQ ID NO:30. Also provided are expression cassettes, vectors, and cells comprising the nucleic acids described above.
[0027] Also provided herein are enzyme compositions (e.g., non-naturally occurring compositions) comprising a polypeptide having GH61/endoglucanase activity. In some aspects, the composition comprises a whole cellulase comprising the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). The polypeptide having GH61/endoglucanase activity is, e.g., T. reesei endoglucanase IV ("T. reesei Eg4") or a variant thereof. A variant of T. reesei Eg4 can be any of the variants provided herein.
[0028] In some aspects, the enzyme composition is a cellulase composition. The enzyme composition may further comprise one or more hemicellulases, and thus can also be a hemicellulase composition. In some aspects, the enzyme composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s). In some aspects, the at least one cellulase polypeptide is a polypeptide having endoglucanase activity, a polypeptide having cellobiohydrolase activity, or a polypeptide having .beta.-glucosidase activity. In some aspects, the composition further comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s). In some aspects, the at least one hemicellulase polypeptide is a polypeptide having xylanase activity, a polypeptide having .beta.-xylosidase activity, or a polypeptide having L-.alpha.-arabinofuranosidase activity, or a polypeptide having combined xylanase/.beta.-xylosidase activity, combined .beta.-xylosidase/L-.alpha.-arabinofuranosidase activity, or combined xylanase/L-.alpha.-arabinofuranosidase activity activity. In some aspects, the composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s) and at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s).
[0029] In some aspects, the enzyme composition comprises a polypeptide having GH61/endoglucanase activity and further comprises at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having endoglucanase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having cellobiohydrolase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having .beta.-glucosidase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having xylanase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having .beta.-xylosidase activity, and/or at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having L-.alpha.-arabinofuranosidase activity.
[0030] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof). In some aspects, the composition further comprises at least one polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). In some aspects, the composition further comprises at least one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). In some aspects, the composition further comprises at least one polypeptide having endoglucanase activity other than the GH61 enzyme (e.g., T. reesei EG1, T. reesei EG2, or a variant thereof).
[0031] The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity, and at least 1 polypeptide having endoglucanase activity (e.g., T. reesei EG1, T. reesei EG2 or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1 or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A or a variant thereof).
[0032] Any one of the compositions described herein may comprise a whole cellulase. For example, a composition is provided comprising a whole cellulase comprising a polypeptide having GH61/endoglucanase activity. Alternatively, a composition is provided comprising a whole cellulase plus a polypeptide having GH61/endoglucanase activity. In some aspects, a composition comprising a polypeptide having GH61/endoglucanase activity, and a polypeptide having endoglucanase activity other than the polypeptide having GH61/endoglucanase activity, a polypeptide having cellobiohydrolase activity, and a polypeptide having .beta.-glucosidase activity is provided. The composition further comprises one or more hemicellulase polypeptides. For example, the composition may comprise one or more polypeptides having xylanase activity, one or more polypeptides having .beta.-xylosidase activity, and/or one or more polypeptides having L-.alpha.-arabinofuranosidase activity. A composition may comprise a polypeptide having GH61/endoglucanase activity, at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), and a whole cellulase. In some aspects, a composition comprising a polypeptide having GH61/endoglucanase activity, at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), and at least one other polypeptide having hemicellulase activity is provided.
[0033] In some aspects, the whole cellulase comprises at least one polypeptide having endoglucanase activity (e.g., T. reesei EG1, T. reesei EG2, or a variant thereof) that is not the polypeptide having GH61/endoglucanase activity. The whole cellulase can comprise at least one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). The whole cellulase can comprise at least one polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof).
[0034] In some aspects, in any one of the compositions described herein, the at least one polypeptide having endoglucanase activity but is not the one having GH61/endoglucanase activity is, e.g., T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof). In some aspects, the at least one polypeptide having cellobiohydrolase activity is, e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof. In some aspects, the at least one polypeptide having .beta.-glucosidase activity is, e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, and/or Tn3B, or variants thereof. In some aspects, the at least one polypeptide having xylanase activity is, e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, and/or AfuXyn5, or variants thereof. In some aspects, the at least one polypeptide having .beta.-xylosidase activity is, e.g., a Group 1 .beta.-xylosidase or a Group 2 .beta.-xylosidase, wherein the Group 1 .beta.-xylosidase may be Fv3A, Fv43A polypeptide, or a variant thereof, and the Group 2 .beta.-xylosidase may be Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1 polypeptide, or a variant thereof. In some aspects, the at least one polypeptide having .beta.-xylosidase activity is, e.g., Fv3A (or a variant thereof) and/or Fv43D (or a variant thereof). In some aspects, the at least one polypeptide having L-.alpha.-arabinofuranosidase activity may be Af43A, Fv43B, Pf51A, Pa51A, and/or Fv51A, or variants thereof.
[0035] In some aspects, a composition comprising an isolated polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is provided. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is expressed by a host cell, wherein the nucleic acid encoding the polypeptide having GH61/endoglucanase activity has been engineered into the host cell. For example, the polypeptide having GH61/endoglucanase activity is expressed by a host cell, and the nucleic acid encoding that polypeptide is heterologous to the host cell.
[0036] In some aspects, a composition is provided comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof), and further comprising one or more cellulase polypeptides and/or one or more hemicellulase polypeptides, wherein the cellulase polypeptide and/or the hemicellulase polypeptide is expressed by a host cell, and the cellulase polypeptide and/or hemicellulase polypeptide is heterologous to the host cell. In some aspects, a composition comprising a polypeptide having GH61/endoglucanase activity and further comprising at least one cellulase polypeptide and/or at least one hemicellulase polypeptide is provided, and the cellulase polypeptide and/or the hemicellulase polypeptide is expressed by a host cell, and the cellulase polypeptide and/or hemicellulase polypeptide is endogenous to the host cell. In some aspects, the cellulase polypeptide comprises a polypeptide having endoglucanase activity (e.g., T. reesei EG1, T. reesei EG2, or a variant thereof) that is different from the polypeptide having GH61/endoglucanase activity, a polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof), or a polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). In some aspects, the hemicellulase polypeptide comprises a polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), a polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof), or a polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof).
[0037] In some aspects, the composition is prepared from a fermentation broth. In some aspects, the composition is prepared from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27, as described herein in the Examples), wherein the GH61 endoglucanase gene is integrated into the genetic materials of the host strain. In some aspects, the composition is prepared from the fermentation broth of a strain, wherein a nucleic acid encoding a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is heterologous to the host cell, wherein the GH61 endoglucanase has been, e.g., integrated into the strain, or expressed by a vector introduced into the host strain.
[0038] Any one of the compositions or methods provided herein comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be a whole cellulase. The composition may be a fermentation broth subject to minimum post-production processing (e.g., purification, filtration, a cell kill step, and/or ultrafiltration, etc), and is used as a whole broth formulation.
[0039] In some aspects, a composition (e.g., a non-naturally occurring composition) is provided comprising T. reesei Eg4, T. reesei Bgl1, T. reesei xyn3, Fv3A, Fv43D, and Fv51A, or respective variants thereof. The composition may be a whole cellulase. The composition may be a fermentation broth subject to minimum post-production processing (e.g., filtration, purification, ultrafiltration, a cell-kill step, etc), and is thus used as a whole broth formulation. In some aspects, the composition comprises an isolated T. reesei Eg4 or a variant thereof. In some aspects, the composition comprises at least one of an isolated T. reesei Bgl1, an isolated T. reesei xyn3, an isolated Fv3A, an isolated Fv43D, and an isolated Fv51A. For example, any of the above-mentioned polypeptides can be introduced into the composition by simple addition or mixing of purified or isolated polypeptides. Alternatively, the polypeptides herein can be expressed by the host strain using suitable recombinant techniques, and certain of the above-mentioned polypeptides may be overexpressed or underexpressed, as compared to their naturally-occurring levels in the host cell. In some aspects, genes encoding any one of the above-mentioned polypeptides can be integrated into the host strain. In some aspects, the composition of the present disclosure is prepared from a fermentation broth of the host strain. In some aspects, the composition is from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27, as described herein in the Examples). In some embodiments, the fermentation broth is subject to minimum post-production processing, and is used as a whole broth formulation. In some aspects, the nucleic acid encoding the GH61 endoglucanase is heterologous to the host cell. In some aspects, at least one of the nucleic acids encoding T. reesei Bgl1, T. reesei xyn3, Fv3A, Fv43D, or Fv51A is heterologous to the host cell expressing the GH61 endoglucanase of the invention. In some aspects, at least one nucleic acid encoding T. reesei Bgl1, T. reesei xyn3, Fv3A, Fv43D, or Fv51A is endogenous to the host cell expressing the GH61 endoglucanase.
[0040] The polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be present in an enzyme composition or in a biomass saccharification mixture in an amount sufficient to increase the yield of fermentable sugar(s) from hydrolysis of a biomass material (e.g., by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the yield achieved by a control enzyme composition or a control biomass saccharification mixture that is comparable in terms of the types and concentrations of enzymatic or other components therein, but without the polypeptide(s) having GH61/endoglucanase activity. The polypeptide having GH61/endoglucanase activity may be present in the enzyme composition or in a biomass saccharification mixture in an amount sufficient to reduce the viscosity of the biomass saccharification mixture during hydrolysis of the biomass material therein (e.g., by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the viscosity of a control mixture that is comparable in terms of the types and concentrations of enzymatic or other components therein, but without the polypeptide having GH61/endoglucanase activity. In some aspects, the enzyme composition or the biomass saccharification mixture comprises at least 1 polypeptide having endoglucanase activity, at least 1 polypeptide having cellobiohydrolase activity, at least 1 polypeptide having (3-glucosidase activity, in total amounts that are sufficient to cause hydrolysis of the biomass material to which the polypeptides come into contact. The enzyme composition or the biomass saccharification mixture may further comprise at least 1 polypeptide having xylanase activity, at least 1 polypeptide having .beta.-xylosidase activity, at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity, and/or a whole cellulase, or a mixture thereof, in total amounts that are sufficient to cause hydrolysis of the biomass material to which the polypeptides come into contact.
[0041] In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is present in an amount that is about 0.1 wt. % to about 50 wt. % (e.g., about 0.5 wt. % to about 30 wt. %, about 1 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, about 7 wt. % to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the enzyme composition or in the biomass saccharification mixture. For example the polypeptide having GH61/endoglucanase activity is present in an amount that is about 8 wt. %, about 10 wt. %, or about 12 wt. % of the total weight of proteins in the enzyme composition or in the biomass saccharification mixture. The enzyme composition or the biomass saccharification mixture may comprise more than one polypeptides having GH61/endoglucanase activity. For example, the enzyme composition or biomass saccharification mixture can comprise a T. reesei Eg4 or a variant thereof, as well as a T. reesei Eg7 (or a variant thereof), wherein the total amount of polypeptides having GH61/endoglucanase (Eg4+Eg7) activity is about 0.1 wt. % to about 50 wt. % (e.g., about 0.5 wt. % to about 30 wt. %, about 2 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, about 7 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or in the biomass saccharification mixture. The polypeptide(s) having GH61/endoglucanase activity may be expressed from polynucleotides that are heterologous or endogenous to the host cell. Alternatively the polypeptide having GH61/endoglucanase activity can be introduced into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.
[0042] In some aspects, a polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof) is present in an amount that is about 0.1 wt. % to about 80 wt. % (e.g., about 5 wt. % to about 70 wt. %, about 10 wt. % to about 60 wt. %, about 20 wt. % to about 50 wt. %, or about 25 wt. % to about 50 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The enzyme composition or biomass saccharification mixture may comprise more than one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof), wherein the total amount of polypeptides having cellobiohydrolase activity is about 0.1 wt. % to about 80 wt. % (e.g., about 5 wt. % to about 70 wt. %, about 10 wt. % to about 60 wt. %, about 20 wt. % to about 50 wt. %, or about 25 wt. % to about 50 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having cellobiohydrolase activity is, in some aspects, expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having cellobiohydrolase activity can be introduced into the enzyme composition or biomass saccharification mixture in an isolated or purified form.
[0043] The enzyme composition or the biomass saccharification mixture may comprise one or more polypeptides having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B or a variant thereof), wherein the total amount of polypeptides having .beta.-glucosidase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 30 wt. %, about 2 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or biomass saccharification mixture. The polypeptide having (3-glucosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having .beta.-glucosidase activity may alternatively be introduced into the enzyme composition or biomass saccharification mixture in an isolated or purified form.
[0044] In some aspects, the enzyme composition or biomass saccharification mixture can comprise one or more the polypeptides having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), wherein the total amount of polypeptides having xylanase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 40 wt. %, about 4 wt. % to about 30 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having xylanase activity can be expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having xylanase activity can be introduced or mixed into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.
[0045] The enzyme composition or biomass saccharification mixture may comprise one or more polypeptides having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof), wherein the total amount of polypeptides having L-.alpha.-arabinofuranosidase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 40 wt. %, about 2 wt. % to about 30 wt. %, about 4 wt. % to about 20 wt. %, or about 5 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having L-.alpha.-arabinofuranosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having L-.alpha.-arabinofuranosidase activity can be introduced or mixed into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.
[0046] The enzyme composition or the biomass saccharification mixture may comprise one or more polypeptides having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1 or a variant thereof), wherein the total amount of the polypeptides having .beta.-xylosidase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 40 wt. %, about 4 wt. % to about 35 wt. %, about 5 wt. % to about 25 wt. %, or about 5 wt. % to about 20 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having .beta.-xylosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having .beta.-xylosidase activity may alternatively be introduced into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.
[0047] In some aspects, the enzyme composition provided herein may be a whole cellulase. The whole cellulase may comprise one or more polypeptides having endoglucanase activity (such as, e.g, T. reesei Eg4, Eg1, Eg2, Eg7, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may also comprise one or more polypeptides having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may further comprise one or more polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may be used in the form of a fermentation broth of the host cell. The broth can be subject to minimum post-production processing, including, e.g., filtration, purification, ultrafiltration, a cell-kill step, etc, and thus the broth may be used for biomass hydrolysis in a whole broth formulation.
[0048] In some aspects, the enzyme composition provided herein is capable of converting a biomass material into fermentable sugar(s) (e.g., glucose, xylose, arabinose, and/or cellobiose). In some aspects, the enzyme composition is capable of achieving at least about 0.1 (e.g., 0.1 to 0.4) fraction product as determined by the calcofluor assay described herein.
[0049] In some aspects, the enzyme composition can be a cellulase composition or a hemicellulase composition. The enzyme composition may comprise the polypeptide having GH61/endoglucanase activity and further may comprise one or more cellulase polypeptides and/or one or more hemicellulase polypeptides, wherein the one or more polypeptides having GH61/endoglucanase activity and the one or more cellulase polypeptides, and/or the one or more hemicellulase polypeptides are blended into a mixture before the mixture is used to contact and hydrolyze a biomass substrate in a biomass saccharification mixture.
[0050] In some aspects, the one or more polypeptides having GH61/endoglucanase activity, one or more cellulase polypeptides, and one or more hemicellulase polypeptide, are added to a biomass material, at different times. For example, a polypeptide having GH61/endoglucanase activity is added to a biomass material before, or after, a cellulase polypeptide and/or a hemicellulase polypeptide is added to the same biomass material.
[0051] In some aspects, a composition of the invention comprises at least one polypeptide having GH61/endoglucanase activity and a biomass material in, e.g., a mixture. For example, the composition may be a hydrolysis mixture, a fermentation broth/mixture, or a biomass saccharification mixture. The mixture may comprise one or more fermentable sugar(s).
[0052] Also provided herein are methods of hydrolyzing a biomass material comprising contacting the biomass material with an enzyme composition (e.g., a non-naturally occurring composition) comprising a polypeptide having GH61/endoglucanase activity, in an amount sufficient to hydrolyze the biomass material in the resulting biomass saccharification mixture.
[0053] Also provided herein are methods of reducing the viscosity of a biomass mixture, and/or a biomass saccharification mixture comprising contacting the mixture with an enzyme composition (e.g., a non-naturally occurring composition) comprising a polypeptide having GH61/endoglucanase activity, which is present in the composition in an amount sufficient to reduce the viscosity of the mixture. In some aspects, the biomass mixture or the biomass saccharification mixture comprises a biomass material, optionally also fermentable sugar(s), a whole cellulase and/or a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity. The viscosity of the mixture may be reduced by at least about 5%, (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the viscosity of a control mixture comprising the same components at the same concentrations except that the polypeptide having GH61/endoglucanase activity is absent from the mixture. The biomass material may comprise hemicellulose, cellulose, or a mixture thereof. The biomass material may comprises glucan, xylan and/or lignin, or a mixture thereof.
[0054] In some aspects, the biomass material can suitably be treated or pre-treated with an acid or a base. In some aspects, the base is ammonia. The method of the invention may further comprise adjusting the pH of the biomass mixture to a pH of about 4.0 to about 6.5 (e.g., pH of about 4.5 to about 5.5). In some aspects, the method is performed at a pH of about 4.0 to about 6.5 (e.g., pH of about 4.5 to about 5.5). In some aspects, the method is performed for about 2 h to about 7 d (e.g., about 4 h to about 6 d, about 8 h to about 5 d, or about 8 h to about 3 d). This pH adjustment can suitably be made before putting the biomass mixture in contact with the polypeptides or the enzyme compositions.
[0055] In some aspects, the biomass material is present in a saccharification mixture in a high solids level, e.g., the biomass material in its solid state constitutes at least about 5 wt. % to about 60 wt. % (e.g., about 10 wt. % to about 50 wt. %, about 15 wt. % to about 40 wt. %, about 15 wt. % to about 30 wt. %, or about 20 wt. % to about 30 wt. %) of the total weight of enzymes plus biomass materials in the saccharification mixture. By the weight of the biomass material in its solid state, it is meant the weight of the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state, or before the biomass is contacted with the polypeptides in the enzyme composition. Preferably the biomass material in its solid state constitutes at least about 15 wt. %, and even more preferably at least about 20 wt. % or 25 wt. % of the total weight of enzymes plus biomass materials in the saccharification mixture.
[0056] In some aspects, the method comprises producing fermentable sugar(s). The amount of fermentable sugar(s) may be produced at an increased level using the method of the invention. For example, the amount of the fermentable sugar(s) produced using the methods or the compositions herein is increased by at least about 5% (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the amount of the fermentable sugar(s) produced when the same biomass material is hydrolyzed by an enzyme composition comprising the same polypeptide components at the same concentrations, except that polypeptide having GH61/endoglucanase activity is absent.
[0057] In some aspects, the amount of the enzyme composition comprising a polypeptide having GH61/endoglucanase activity is sufficient to increase the yield of fermentable sugar(s) by at least about 5%, (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%), as compared to the yield of fermentable sugar(s) from the same biomass material by an enzyme composition having the same components at the same concentrations, except that the polypeptide having GH61/endoglucanase activity is absent. In some aspects, the amount of the polypeptide having GH61/endoglucanase activity in the biomass saccharification mixture is sufficient to reduce the viscosity of the mixture by at least about 5% (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the viscosity of a control biomass saccharification mixture comprising the same biomass and the same panel of polypeptides at the same concentrations, except that the polypeptide having GH61/endoglucanase activity is absent.
[0058] In some aspects, the amount of the composition comprising a polypeptide having GH61/endoglucanase activity used in a saccharification or hydrolysis process is about 0.1 mg to about 50 mg protein (e.g., about 0.2 mg to about 40 mg protein, about 0.5 mg to about 30 mg protein, about 1 mg to about 20 mg protein, or about 5 mg to about 15 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicelluloses in the biomass material. The protein amount described herein refers to the weight of total protein in the enzyme composition or the biomass saccharification mixture. The proteins include a polypeptide having GH61/endoglucanase activity and may include other enzymes such as cellulase polypeptide(s) and/or hemicellulase polypeptide(s). In some aspects, the amount of the polypeptide having GH61/endoglucanase activity used in the hydrolysis or saccharification process is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicelluloses contained in the biomass material.
[0059] The enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having endoglucanase activity (e.g., T. reesei Eg1, T. reesei Eg2, and/or a variant thereof) in the hybrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.
[0060] The enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof) in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.
[0061] In some aspects, the enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof) in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.
[0062] The enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5 or a variant thereof) in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.
[0063] The enzyme composition or the biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, and/or a variant thereof) used in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.
[0064] The enzyme composition or the biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, and/or a variant thereof) used in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.
[0065] In some aspects, the method of the invention is performed at a temperature of about 30.degree. C. to about 65.degree. C. (e.g., about 35.degree. C. to about 60.degree. C., about 40.degree. C. to about 60.degree. C., or about 45.degree. C. to about 55.degree. C.).
[0066] The method of the invention may further comprise the step of contacting the biomass material with an enzyme composition comprising a whole cellulase. In some aspects, the step of further contacting the biomass material with a composition comprising a whole cellulase is performed before, after, or concurrently with contacting the biomass material with an enzyme composition comprising a polypeptide having GH61/endoglucanase activity.
[0067] In some aspects, the method of the invention further comprises the step contacting the biomass material with an enzyme composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity. The step of contacting the biomass material with a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity may be performed before, after, or concurrently with contacting the biomass material with an enzyme composition comprising a polypeptide having GH61/endoglucanase activity.
[0068] In some aspect, the composition comprises the polypeptide having GH61/endoglucanase activity and further comprises at least 1 cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity and at least one cellulase polypeptide and/or at least 1 hemicellulase polypeptide are blended into a mixture before the mixture is used to contact the biomass material.
[0069] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity and further comprises 1 or more cellulase polypeptides and/or 1 or more hemicellulase polypeptides, wherein the polypeptide having GH61/endoglucanase activity and 1 or more cellulase polypeptides and/or 1 or more hemicellulase polypeptides are added to the biomass material at different times. For example, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is added before or after the 1 or more cellulase polypeptides and/or the 1 or more hemicellulase polypeptides are added.
[0070] In some aspects, methods of applying the invention in both an industrial setting and/or a commercial setting are contemplated. Accordingly a method or a method of manufacturing, marketing, or otherwise commercializing the instant compositions comprising suitable GH61 endoglucanases is within the purview of the disclosure. The method includes, for example, the application of the compositions or the GH61 endoglucanase polypeptides or variants thereof in a merchant enzyme supply model, wherein the enzymes and variants, as well as the compositions of the invention are supplied or sold to cellulosic sugar producers, certain ethanol (bioethanol) refineries or other bio-chemical or bio-material manufacturers. The method can also be, in some aspects, the application of the compositions or the GH61 endoglucanase polypeptides or variants thereof in an on-site bio-refinery model, wherein the polypeptides or variants, or the non-naturally occurring cellulase and hemicellulase compositions of the invention are produced in an enzyme production system that is built by the enzyme manufacturer at a site that is located at or in the vicinity of the cellulosic sugar plant, bioethanol refineries or the bio-chemical/biomaterial manufacturers. In some aspects, suitable biomass substrates, preferably subject to appropriate pretreatments as described herein, can be hydrolyzed using the saccharification methods and the enzymes and/or enzyme compositions herein at or near the bioethanol refineries or the bio-chemical/biomaterial manufacturing facilities. The resulting fermentable sugars can then be subject to fermentation at the same facilities or at facilities in the vicinity.
[0071] It is to be understood that one, some, or all of the properties of the embodiments described herein may be combined to form other embodiments of the present invention. These and other aspects of the invention will become apparent to one of skill in the art.
BRIEF DESCRIPTION OF THE FIGURES
[0072] The skilled artisan will understand that the drawings are for illustration purposes only and are not intended to limit the scope of the present teachings in anyway.
[0073] FIG. 1A-1E: depict certain amino acid sequences of various polypeptides having GH61/endoglucanase activity.
[0074] FIG. 2A-2D: depict percent identity and divergence using ClustalV (PAM250) comparing a number of amino acid sequences of various polypeptides having GH61/endoglucanase activity, such as those presented in FIG. 1A-1E (SEQ ID NOs: 1-28).
[0075] FIG. 3A-3L: depict the alignment of various polypeptides having GH61/endoglucanase activity such as those presented in FIG. 1A-1E (SEQ ID NOs: 1-28).
[0076] FIGS. 4A-4B: FIG. 4A depicts nucleotide sequence of T. reesei Eg4 (SEQ ID NO:30). FIG. 4B depicts amino acid sequence of T. reesei Eg4 (SEQ ID NO:27). The predicted signal sequence is underlined, the predicted conserved domains are in bold, and the predicted linker is in italic.
[0077] FIG. 5: depicts an amino acid sequence alignment of T. reesei Eg4 (TrEG4) (SEQ ID NO:27) with T. reesei Eg7 (TrEG7, or TrEGb) (SEQ ID NO:26) and TtEG (SEQ ID NO:29).
[0078] FIGS. 6A-6B: FIG. 6A provides conserved residues of T. reesei Eg4 (TrEg4), inferred from sequence alignment and the known structures of TrEG7 (crystal structure at Protein Data Bank Accession: pdb:2vtc) and TtEG (crystal structure at Protein Data Bank Accession: pdb:3EII). FIG. 6B provides conserved CBM domain residues inferred from sequence alignment with known sequences of Tr6A, and Tr7A.
[0079] FIG. 7 lists a number of amino acid sequence motifs of GH61 endoglucanases. Each of the "a"s in the sequence motifs represents an amino acid that may be any one of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.
[0080] FIGS. 8A-8I: FIG. 8A depicts pENTR-TOPO-Bgl1-943/942 plasmid. FIG. 8B depicts pTrex3g 943/942 expression vector. FIG. 8C depicts pENTR/T. reesei Xyn3 plasmid. FIG. 8D depicts pTrex3g/T. reesei Xyn3 expression vector. FIG. 8E depicts pENTR-Fv3A plasmid. FIG. 8F depicts the pTrex6g plasmid. FIG. 8G depicts pTrex6g/Fv3A expression vector. FIG. 8H depicts TOPO Blunt/Pegl1-Fv43D plasmid. FIG. 8I depicts TOPO Blunt/Pegl1-Fv51A plasmid.
[0081] FIG. 9: provides the enzyme composition of T. reesei integrated strain H3A.
[0082] FIG. 10: lists the enzymes (purified or unpurified) that were individually added to each of the samples in Example 2, and the stock protein concentrations of these enzymes.
[0083] FIG. 11A-11D: FIG. 11A depicts glucose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2. FIG. 11B depicts cellobiose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2; FIG. 11C depicts xylobiose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2; FIG. 11D depicts xylose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2.
[0084] FIGS. 12A-12B: FIG. 12A depicts the expression cassette Pegl1-eg4-sucA, as described in Example 3; FIG. 12B depicts the plasmid map of pCR Blunt II TOPO containing expression cassette pEG1-EG4-sucA, as described in Example 3.
[0085] FIG. 13: depicts the amount or percentage of glucan and xylan conversion to cellobiose, glucose, xylobiose and xylose by an enzyme composition comprising enzymes produced by the T. reesei integrated strain H3A transformants expressing T. reesei Eg4, in accordance with Example 3.
[0086] FIG. 14: depicts the increased percent glucan conversion observed using an increasing amount of an enzyme composition produced by H3A transformants expressing T. reesei Eg4. The experimental details are described in Example 3.
[0087] FIG. 15: provides a T. reesei Eg4 dosing chart for Example 4 (experiment 1). The sample "#27" is an H3A/Eg4 integrated strain as described in Example 4. The amounts of purified T. reesei Eg4 that were added were listed under "Sample Description" either by wt. % or by mass (in mg protein/g G+X).
[0088] FIGS. 16A-16B: FIG. 16A depicts the effect of T. reesei Eg4 on glucose release in saccharification of dilute ammonia pretreated corncob according to Example 4. FIG. 16B depicts the effect of T. reesei Eg4 on xylose release in saccharification of dilute ammonia pretreated corncob. The Y-axes of these figures refer to the concentrations of glucose or xylose released in the reaction mixtures. The X axes list the names/brief descriptions of the enzyme composition samples. This is according to Example 4 (experiment 1).
[0089] FIGS. 17A-17B: FIG. 17A provides another T. reesei Eg4 dosing chart for Example 4 (experiment 2). The samples are described similarly to those in FIG. 15. The amounts of purified T. reesei Eg4 that were added varied by smaller increments than those of Example 4, experiment 1 (above). FIG. 17B provides another T. reesei Eg4 dosing chart for Example 4 (experiment 3). The samples are described similarly to those in FIGS. 16 and 17A. The amounts of purified T. reesei Eg4 that were added varied by even finer increments than those of Example 4, experiments 1 and 2 (above)
[0090] FIGS. 18A-18B: FIG. 18A depicts the effect of T. reesei Eg4 in various amounts (0.05 mg/g to 1.0 mg/g) on glucose release from saccharification of dilute ammonia pretreated corncob, as described in Example 4. FIG. 18B depicts the effect of T. reesei Eg4 in various amounts (0.1 mg/g to 0.5 mg/g) on glucose release from saccharification of dilute ammonia pretreated corncob, as described in Example 4.
[0091] FIG. 19: depicts the effect of T. reesei Eg4 in an enzyme composition on glucose/xylose release from saccharification of different solid loadings of dilute ammonia pretreated corn stover, as described in Example 5. The solid loading is listed on the x-axis as #%.
[0092] FIG. 20: provides percentage yield of xylose monomers released from dilute ammonia pretreated corncob using an enzyme composition comprising T. reesei Eg4, in accordance with Example 6.
[0093] FIG. 21: provides percentage yield of glucose monomer released from dilute ammonia pretreated corncob using an enzyme composition comprising T. reesei Eg4, in accordance with Example 6.
[0094] FIG. 22: provides yield (mg/ml) of total fermentable monomers released from dilute ammonia pretreated corncob using an enzyme composition comprising T. reesei Eg4, in accordance with Example 6.
[0095] FIG. 23: compares the amounts of glucose released as a result of hydrolysis by an enzyme composition without T. reesei Eg4 vs. one comprising T. reesei Eg4 at 0.53 mg/g. The experiment is described in Example 7.
[0096] FIG. 24: depicts the glucose monomer release as a result of treating ammonia pretreated corncob using purified T. reesei Eg4 alone, according to Example 7.
[0097] FIG. 25: depicts and compares the saccharification performance of the enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27), at an enzyme dosage of 14 mg/g. This is according to the description of Example 8.
[0098] FIG. 26: depicts the saccharification performance of the enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27), at various enzyme dosages, on acid pretreated corn stover. This is according to the description of Example 9.
[0099] FIG. 27: depicts the saccharification performance of the enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27) on dilute ammonia pretreated corn leaves, stalks, or cobs, according to Example 10.
[0100] FIG. 28: compares saccharification performance, in terms the amounts of glucose or xylose released, of enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27). This is according to Example 11.
[0101] FIG. 29: depicts the change in percent glucan and xylan conversion at increasing amounts of an enzyme composition produced by the T. reesei integrated strain H3A/Eg4 (strain #27). This is in accordance with the description of Example 12.
[0102] FIG. 30: is a table listing the effect of T. reesei Eg4 addition on dilute ammonia pretreated corncob saccharification. Experimental conditions are described in Example 13.
[0103] FIG. 31: depicts CMC hydrolysis by T. reesei Eg4. Experimental conditions are described in Example 13.
[0104] FIG. 32: depicts cellobiose hydrolysis by T. reesei Eg4. Experimental conditions are described in Example 13.
[0105] FIG. 33A-33C: depicts amounts for various enzyme compositions for saccharification. Experimental conditions are described in Example 14.
[0106] FIG. 34A-34C: depict the amounts of glucose, glucose+cellobiose, or xylose produced with each enzyme composition corresponding to FIG. 33A-33C. Experimental conditions are described in Example 14.
[0107] FIG. 35: depicts various ratios of CBH1, CBH2 and T. reesei Eg2 mixtures, as described in Example 15.
[0108] FIG. 36A-36B: depicts glucan conversion (%) using various enzyme compositions. Experimental conditions are described in Example 15,
[0109] FIG. 37 depicts the effect of ascorbic acid when a composition comprising T. reesei Eg4 is used to treat Avicel in the presence or absence of CBH I, according to Example 22.
[0110] FIG. 38: depicts the effect of ascorbic acid on a composition comprising T. reesei Eg4 is used to treat Avicel in the presence/absence of CBH II, according to Example 22
[0111] FIGS. 39A-39B: FIG. 39A depicts the amount of substrate and various enzymes used in the experiment of Example 22, with the result depicted in FIG. 37. FIG. 39B depicts the amount of substrate and various enzymes used in the experiment of Example 22, with the result depicted in FIG. 38.
[0112] FIG. 40: depicts glucose production from corncob hydrolysis using various enzyme compositions, in accordance with the experiments described in Example 16.
[0113] FIG. 41: depicts xylose production from corncob hydrolysis using various enzyme compositions in accordance with the description of Example 16.
[0114] FIG. 42: depicts viscosity of saccharification mixture using H3A and H3A added with purified Eg4 over time in accordance with the description of Example 17.
[0115] FIG. 43: depicts viscosity of saccharification mixture using H3A and H3A/Eg4#27 over time in accordance with the description of Example 18.
[0116] FIG. 44: depicts viscosity of saccharification of dilute ammonia pretreated corncob at 25% and 30% solids, using fermentation broths of H3A or of H3A/Eg4#27 broth at 14 mg/g cellulose, in accordance with the description of Example 19.
[0117] FIG. 45: depicts glucose concentration in 6-h saccharification, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.
[0118] FIG. 46: depicts glucose concentration in 24-hour saccharification, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.
[0119] FIG. 47: depicts glucose concentration in saccharification over time, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.
[0120] FIG. 48: depicts glucan conversion in saccharification over time, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.
[0121] FIG. 49A-49E provide a summary of the sequences identified in the present disclosure.
[0122] FIGS. 50A-50B: FIG. 50A depicts nucleotide sequence encoding Fv3A (SEQ ID NO:35). FIG. 50B depicts Fv3A amino acid sequence (SEQ ID NO:36). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.
[0123] FIGS. 51A-51B: FIG. 51A depicts nucleotide sequence encoding Pf43A (SEQ ID NO:37). FIG. 51B depicts Pf43A amino acid sequence (SEQ ID NO:38). The predicted signal sequence is underlined, the predicted conserved domain is in bold, the predicted carbohydrate binding module ("CBM") is in uppercase, and the predicted linker separating the CD and CBM is in italics.
[0124] FIG. 52A-52B: FIG. 52A depicts nucleotide sequence encoding Fv43E (SEQ ID NO:39). FIG. 52B depicts Fv43E amino acid sequence (SEQ ID NO:40). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.
[0125] FIGS. 53A-53B: FIG. 53A depicts nucleotide sequence encoding Fv39A (SEQ ID NO:41). FIG. 53B depicts Fv39A amino acid sequence (SEQ ID NO:42). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.
[0126] FIGS. 54A-54B: FIG. 54A depicts nucleotide sequence encoding Fv43A (SEQ ID NO:43). FIG. 54B depicts Fv43A amino acid sequence (SEQ ID NO:44). The predicted signal sequence is underlined, the predicted conserved domain in bold, the predicted CBM in uppercase, and the predicted linker connecting the conserved domain and CBM in italics.
[0127] FIGS. 55A-55B: FIG. 55A depicts nucleotide sequence encoding Fv43B (SEQ ID NO:45). FIG. 55B depicts Fv43B amino acid sequence (SEQ ID NO:46). The predicted signal sequence is underlined. The predicted conserved domain is in boldface type.
[0128] FIGS. 56A-56B: FIG. 56A depicts nucleotide sequence encoding Pa51A (SEQ ID NO:47). FIG. 56B depicts Pa51A amino acid sequence (SEQ ID NO:48). The predicted signal sequence is underlined. The predicted L-.alpha.-arabinofuranosidase conserved domain is in bold. For expression in T. reesei, the genomic DNA was codon optimized (see FIG. 73C).
[0129] FIGS. 57A-57B: FIG. 57A depicts nucleotide sequence encoding Gz43A (SEQ ID NO:49). FIG. 57B depicts Gz43A amino acid sequence (SEQ ID NO:50). The predicted signal sequence is underlined, and the predicted conserved domain is in bold. For expression in T. reesei, the predicted signal sequence was replaced by T. reesei CBH1 signal sequence (myrklavisaflatara (SEQ ID NO: 120)).
[0130] FIGS. 58A-58B: FIG. 58A depicts nucleotide sequence encoding Fo43A (SEQ ID NO:51). FIG. 58B depicts Fo43A amino acid sequence (SEQ ID NO:52). The predicted signal sequence is underlined, and the predicted conserved domain is in bold. For expression in T. reesei, the predicted signal sequence was replaced by T. reesei CBH1 signal sequence (myrklavisaflatara (SEQ ID NO:120))
[0131] FIGS. 59A-59B: FIG. 59A depicts nucleotide sequence encoding Af43A (SEQ ID NO:53). FIG. 59B depicts Af43A amino acid sequence (SEQ ID NO:54). The predicted conserved domain is in bold.
[0132] FIGS. 60A-60B: FIG. 60A depicts nucleotide sequence encoding Pf51A (SEQ ID NO:55). FIG. 60B depicts Pf51A amino acid sequence (SEQ ID NO:56). The predicted signal sequence is underlined, and the predicted L-.alpha.-arabinofuranosidase conserved domain in bold. For expression in T. reesei, the predicted signal sequence was replaced by a codon optimized the T. reesei CBH1 signal sequence (myrklavisaflatara (SEQ ID NO:120)) (underlined) and the Pf51A nucleotide sequence was codon optimized for expression.
[0133] FIGS. 61A-61B: FIG. 61A depicts nucleotide sequence encoding AfuXyn2 (SEQ ID NO:57). FIG. 61B depicts AfuXyn2 amino acid sequence (SEQ ID NO:58). The predicted signal sequence is underlined, and the predicted GH11 conserved domain in bold.
[0134] FIGS. 62A-62B: FIG. 62A depicts nucleotide sequence encoding AfuXyn5 (SEQ ID NO:59). FIG. 62B depicts AfuXyn5 amino acid sequence (SEQ ID NO:60). The predicted signal sequence is underlined, and the predicted GH11 conserved domain in bold. FIGS. 63A-63B: FIG. 63A depicts nucleotide sequence encoding Fv43D (SEQ ID NO:61). FIG. 63B depicts Fv43D amino acid sequence (SEQ ID NO:62). The predicted signal sequence is underlined. The predicted conserved domain is in bold.
[0135] FIGS. 64A-64B: FIG. 64A depicts nucleotide sequence encoding Pf43B (SEQ ID NO:63). FIG. 64B depicts Pf43B amino acid sequence (SEQ ID NO:64). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.
[0136] FIGS. 65A-65B: FIG. 65A depicts nucleotide sequence encoding Fv51A (SEQ ID NO:65). FIG. 65B depicts Fv51A amino acid sequence (SEQ ID NO:66). The predicted signal sequence is underlined, and the predicted L-.alpha.-arabinofuranosidase conserved domain is in bold.
[0137] FIGS. 66A-66B: FIG. 66A depicts nucleotide sequence encoding Cg51B (SEQ ID NO:67). FIG. 66B depicts Cg51B amino acid sequence (SEQ ID NO:68). The predicted signal sequence corresponding is underlined, and the predicted conserved domain is in bold.
[0138] FIGS. 67A-67B: FIG. 67A depicts nucleotide sequence encoding Fv43C (SEQ ID NO:69). FIG. 67B depicts Fv43C amino acid sequence (SEQ ID NO:70). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.
[0139] FIGS. 68A-68B: FIG. 68A depicts nucleotide sequence encoding Fv30A (SEQ ID NO:71). FIG. 68B depicts Fv30A amino acid sequence (SEQ ID NO:72). The predicted signal sequence is underlined.
[0140] FIGS. 69A-69B: FIG. 69A depicts nucleotide sequence encoding Fv43F (SEQ ID NO:73). FIG. 69B depicts Fv43F amino acid sequence (SEQ ID NO:74). The predicted signal sequence is underlined.
[0141] FIGS. 70A-70B: FIG. 70A depicts nucleotide sequence encoding T. reesei Xyn3 (SEQ ID NO:75). FIG. 70B depicts Xyn3 amino acid sequence (SEQ ID NO:76). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.
[0142] FIGS. 71A-71B: FIG. 71A depicts amino acid sequence of T. reesei Xyn2 (SEQ ID NO:77). The signal sequence is underlined. The predicted conserved domain is in bold. The coding sequence can be found in Torronen et al. Biotechnology, 1992, 10:1461-65.
[0143] FIG. 71B depicts the nucleotide sequence encoding Xyn2 (SEQ ID NO:160).
[0144] FIGS. 72A-72B: FIG. 72A depicts amino acid sequence of T. reesei Bxl1 (SEQ ID NO:78). The signal sequence is underlined. The predicted conserved domain is in bold. The coding sequence can be found in Margolles-Clark et al. Appl. Environ. Microbiol. 1996, 62(10):3840-46. FIG. 72B depicts nucleotide sequence encoding Bxl1 (SEQ ID NO: 159)
[0145] FIGS. 73A-73F: FIG. 73A depicts amino acid sequence of T. reesei Bgl1 (SEQ ID NO:79). The signal sequence is underlined. The predicted conserved domain is in bold. The coding sequence can be found in Barnett et al. Bio-Technology, 1991, 9(6):562-567.
[0146] FIG. 73B depicts deduced cDNA for Pa51A (SEQ ID NO:80). FIG. 73C depicts codon optimized cDNA for Pa51A (SEQ ID NO:81). FIG. 73D: depicts coding sequence for a construct comprising a CBH1 signal sequence (underlined) upstream of genomic DNA encoding mature Gz43A (SEQ ID NO:82). FIG. 73E: depicts coding sequence for a construct comprising a CBH1 signal sequence (underlined) upstream of genomic DNA encoding mature Fo43A (SEQ ID NO:83). FIG. 73F: depicts codon optimized coding sequence for a construct comprising a CBH1 signal sequence (underlined) upstream of codon optimized DNA encoding mature Pf51A (SEQ ID NO:92).
[0147] FIGS. 74A-74B: FIG. 74A depicts nucleotide sequence encoding Pa3D (SEQ ID NO:93). FIG. 74B depicts amino acid sequence of Pa3D (SEQ ID NO:94). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0148] FIGS. 75A-75B: FIG. 75A depicts nucleotide sequence encoding Fv3G (SEQ ID NO:95). FIG. 75B depicts amino acid sequence of Fv3G (SEQ ID NO:96). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0149] FIGS. 76A-76B: FIG. 76A depicts nucleotide sequence encoding Fv3D (SEQ ID NO:97). FIG. 76B depicts amino acid sequence of Fv3D (SEQ ID NO:98). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0150] FIGS. 77A-77B: FIG. 77A depicts nucleotide sequence encoding Fv3C (SEQ ID NO:99). FIG. 77B depicts amino acid sequence of Fv3C (SEQ ID NO:100). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0151] FIGS. 78A-78B: FIG. 78A depicts nucleotide sequence encoding Tr3A (SEQ ID NO:101). FIG. 78B depicts amino acid sequence of Tr3A (SEQ ID NO:102). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0152] FIGS. 79A-79B: FIG. 79A depicts nucleotide sequence encoding Tr3B (SEQ ID NO:103). FIG. 79B depicts amino acid sequence of Tr3B (SEQ ID NO:104). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0153] FIGS. 80A-80B: FIG. 80A depicts nucleotide sequence encoding Te3A (SEQ ID NO:105). FIG. 80B depicts amino acid sequence of Te3A (SEQ ID NO:106). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0154] FIGS. 81A-81B: FIG. 81A depicts nucleotide sequence encoding An3A (SEQ ID NO:107). FIG. 81B depicts amino acid sequence of An3A (SEQ ID NO:108). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0155] FIGS. 82A-82B: FIG. 82A depicts nucleotide sequence encoding Fo3A (SEQ ID NO:109). FIG. 82B depicts amino acid sequence of Fo3A (SEQ ID NO:110). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0156] FIGS. 83A-83B: FIG. 83A depicts nucleotide sequence encoding Gz3A (SEQ ID NO:111). FIG. 83B depicts amino acid sequence of Gz3A (SEQ ID NO:112). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0157] FIGS. 84A-84B: FIG. 84A depicts nucleotide sequence encoding Nh3A (SEQ ID NO:113). FIG. 84B depicts amino acid sequence of Nh3A (SEQ ID NO:114). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0158] FIGS. 85A-85B: FIG. 85A depicts nucleotide sequence encoding Vd3A (SEQ ID NO:115). FIG. 85B depicts amino acid sequence of Vd3A (SEQ ID NO:116). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0159] FIGS. 86A-86B: FIG. 86A depicts nucleotide sequence encoding Pa3G (SEQ ID NO:117). FIG. 86B depicts amino acid sequence of Pa3G (SEQ ID NO:118). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.
[0160] FIG. 87: depicts amino acid sequence encoding Tn3B (SEQ ID NO:119). The standard signal prediction program, Signal P (www.cbs.dtu.dk/services/SignalP/) provided no predicted signal.
[0161] FIG. 88: depicts a partial amino acid sequence alignment of the CBM domains of T. reesei Eg4 (SEQ ID NO:27) with Tr6A (SEQ ID NO:31) and with Tr7A (SEQ ID NO:32).
[0162] FIGS. 89A-89C: FIG. 89A depicts amino acid sequence of Eg6 (SEQ ID NO:33) from T. reesei. The bolded amino acid sequence is the predicted signal peptide sequence. FIG. 89B depicts amino acid sequence of S. coccosporum endoglucanase SEQ ID NO:34; FIG. 89C depicts the nucleotide sequence encoding a GH61A from Thermoascus aurantiacus, SEQ ID NO:149.
[0163] FIGS. 90A-90I: FIG. 90A depicts amino acid sequence of Afu7A (SEQ ID NO:150), a homolog of CBH1 of T. reesei. FIG. 90B depicts amino acid sequence of Afu7B (SEQ ID NO:151), a homolog of CBH1 of T. reesei. FIG. 90C depicts amino acid sequence of Cg7A (SEQ ID NO:152), a homolog of CBH1 of T. reesei. FIG. 90D depicts amino acid sequence of Cg7B (SEQ ID NO:153), a homolog of CBH1 of T. reesei. FIG. 90E depicts amino acid sequence of Tt7A (SEQ ID NO:154), a homolog of CBH1 of T. reesei. FIG. 90F depicts amino acid sequence of Tt7B (SEQ ID NO:155), a homolog of CBH1 of T. reesei. FIG. 90G depicts amino acid sequence of St6A (SEQ ID NO:156), a homolog of CBH2 of T. reesei. FIG. 90H depicts amino acid sequence of St6B (SEQ ID NO:157), a homolog of CBH2 of T. reesei. FIG. 90I amino acid sequence of Tt6A (SEQ ID NO:158), a homolog of CBH2 of T. reesei.
DETAILED DESCRIPTION OF THE INVENTION
[0164] Unless defined otherwise, all technical and scientific terms used herein have the meaning as commonly understood by a skilled person in the art to which this invention belongs. Singleton, et al., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY, 2D ED., John Wiley and Sons, New York (1994), and Hale & Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY, Harper Perennial, N.Y. (1991) provide one of skill with a general dictionary of many of the terms used in this invention. Although any methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred methods and materials are described. Numeric ranges are inclusive of the numbers defining the range. The invention is not limited to the particular methodology, protocols, and reagents described, as these may vary.
[0165] The headings provided herein do not limit the various aspects or embodiments of the invention that can be had by reference to the specification as a whole. Accordingly the terms defined below are more fully defined by reference to the specification as a whole.
[0166] The present disclosure provides compositions comprising a polypeptide having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity, polypeptides having GH61/endoglucanase activity, nucleotides encoding a polypeptide provided herein, vectors containing nucleotide provided herein, and cells containing nucleotide and/or vector provided herein. The present disclosure further provides methods of hydrolyzing a biomass material and methods of reducing the viscosity of a biomass-containing mixture using a composition provided herein.
[0167] The term "isolated" as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs or RNAs, respectively, which are present in the natural source of the nucleic acid. Moreover, by an "isolated nucleic acid" is meant to include nucleic acid fragments, which are not naturally occurring as fragments and would not be found in the natural state. The term "isolated" is also used herein to refer to polypeptides, which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides. The term "isolated" as used herein also refers to a nucleic acid or polypeptide that may be substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques. The term "isolated" as used herein additionally refers to a nucleic acid or polypeptide that may be substantially free of chemical precursors or other chemicals when chemically synthesized.
[0168] As used herein, a "variant" of polypeptide X refers to a polypeptide having the amino acid sequence of polypeptide X with one or more altered amino acid residues. The variant may have conservative or nonconservative changes. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without affecting biological activity may be found using computer programs known in the art, e.g., LASERGENE software (DNASTAR). A variant of the invention includes polypeptides comprising altered amino acid sequences in comparison with a precursor enzyme amino acid sequence, wherein the variant enzyme retains the characteristic cellulolytic nature of the precursor enzyme but may have altered properties in some specific aspects, e.g., an increased or decreased pH optimum, an increased or decreased oxidative stability; an increased or decreased thermostability, and increased or decreased level of specific activity towards one or more substrates, as compared to the precursor enzyme.
[0169] As used herein, a polypeptide or nucleic acid that is "heterologous" to a host cell refers to a polypeptide or nucleic acid that does not naturally occur in a host cell.
[0170] Reference to "about" a value or parameter herein includes (and describes) variations that are directed to that value or parameter per se. For example, description referring to "about X" includes description of "X".
[0171] As used herein and in the appended claims, the singular forms "a," "or," and "the" include plural referents unless the context clearly dictates otherwise.
[0172] It is understood that aspects and variations of the methods and compositions described herein include "consisting" and/or "consisting essentially of" aspects and variations.
Polypeptides
[0173] The disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) having GH61/endoglucanase activity. For example, the present disclosure provides GH61 endoglucanases from various species or variants thereof, endoglucanase IV (or endoglucanase 4) polypeptides (also described herein as "Eg4" or "EG4", which are used interchangeably herein) from various species or variants thereof, and Trichoderma reesei Eg4 polypeptide or variants thereof. In some aspects, the polypeptide is isolated.
Glycoside Hydrolase Family 61 ("GH61") Enzymes
[0174] Glycoside hydrolase family 61 ("GH61") enzymes have been identified in Eukaryota. A weak endoglucanase activity has been observed for Ce161A from Hypocrea jecorina (Karlsson et al, Eur J Biochem, 2001, 268(24):6498-6507), which is thus said to have GH61/endoglucanase activity. GH61 polypeptides potentiate enzymatic hydrolysis of lignocellulosic substrates by cellulases (Harris et al, 2010, Biochemistry, 49(15) 3305-16). Studies on homologous polypeptides involved in chitin degradation predict that GH61 polypeptides may employ an oxidative hydrolysis mechanism that requires an electron donor substrate and in which divalent metal ions are involved (Vaaje-Kolstad, 2010, Science, 330(6001), 219-22). This agrees with the observation that the synergistic effect of GH61 polypeptides on lignocellulosic substrate degradation is dependent on divalent ions (Harris et al, 2010, Biochemistry, 49(15) 3305-16). A number of available structures of GH61 polypeptides have divalent atoms bound by a number of conserved amino acid residues (Karkehabadi, 2008, J. Mol. Biol., 383(1) 144-54; Harris et al, 2010, Biochemistry, 49(15) 3305-16). It has been reported that the GH61 polypeptides have a flat surface at the metal binding site that is formed by conserved residues and might be involved in substrate binding (Karkehabadi, 2008, J. Mol. Biol., 383(1), 144-54).
[0175] The present disclosure provides polypeptides having GH61/endoglucanase activity (e.g., isolated polypeptide) which can be a GH61 endoglucanase or endoglucanase IV ("EG IV") from various species, or can also be a polypeptide from various species corresponding to (sharing homology with, sharing functional domains, sharing GH61 motif(s), and/or sharing conservative residues with) a GH61 endoglucanase (e.g., a Trichoderma reesei Eg4 polypeptide). Such species include Trichoderma, Humicola, Fusarium, Aspergillus, Neurospora, Penicillium, Cephalosporium, Achlya, Podospora, Endothia, Mucor, Cochliobolus, Pyricularia, Chrysosporium, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Geosmithia emersonii, or G. stearothermophilus.
[0176] Polypeptides having GH61/endoglucanase activity include a number of GH61 endoglucanases listed in FIG. 1. For example, suitable GH61 endoglucanases include those comprising amino acid sequences that are at least about 60% identical to the various sequences listed in FIG. 1, including, for example, those represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP_748707), an endoglucanase having NCBI Ref: XP_750843.1 from A. fumigatus Afu6g09540, an endoglucanase from A. fumigatus EDP47167, an endoglucanase from T. terrestris 16380, an endoglucanase from T. terrestris 155418, an endoglucanase from T. terrestris 68900, Cg61A (Accession Number EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accesssion Number XP_752040 from A. fumigatus Af293. In some aspects, a suitable GH61 endoglucanase polypeptide of the invention comprises an amino acid sequence of at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148. In some aspects, a suitable GH61 endoglucanase polypeptide of the invention comprises one or more of the amino acid sequence motifs selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. The polypeptide may be at least 100 (e.g., 110, 120, 130, 140, 150, 160, 170, 180, 200, 220, 250 or more) residues in length.
[0177] Polypeptides having GH61/endoglucanase activity (e.g., isolated polypeptide) provided herein may also be a variant of a GH61 endoglucanase, e.g., any of the polypeptides with amino acid sequences shown FIG. 1 of the present disclosure. For example, suitable GH61 endoglucanases include those represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP_748707), an endoglucanase with NCBI Ref: XP_750843.1 from A. fumigatus Afu6g09540, an endoglucanase from A. fumigatus EDP47167, an endoglucanase from T. terrestris 16380, an endoglucanase from T. terrestris 155418, an endoglucanase from T. terrestris 68900, Cg61A (EAQ86340.1) from C. globosum, T reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP_752040 from A. fumigatus Af293. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) is a variant of EG IV. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) is a variant of a GH61 endoglucanase, wherein the variant has an amino acid sequence having at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%) identity as any one of the amino acid sequences SEQ ID NOs: 1-29 and 148.
[0178] An alignment using amino acid sequences SEQ ID NOs:1-29 and 148 was performed and the alignment result is shown in FIG. 3. FIG. 2 shows the percent identity and divergence results from comparison of the amino acid sequences of the polypeptides. The alignment indicated that the GH61 endoglucanase polypeptides share certain sequence motifs, and such motifs are shown in FIG. 7 of the present disclosure.
[0179] Accordingly, the present disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) having GH61/endoglucanase activity, which may be a GH61 endoglucanase or a variant thereof, and the variant may comprise at least one motif (at least any of 2, 3, 4, 5, 6, 7, or 8) selected from SEQ ID NOs:84-91. Each of the "a"s in sequence motifs with SEQ ID NOs:84-91 (described in FIG. 7) represents an amino acid that may be any one of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine. For example, in some aspects, the disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) comprising at least one sequence motif, such as at least one (e.g., 2, 3, 4, 5, 6, 7, or 8) of SEQ ID NOs: 84, 85, 86, 87, 88, 89, 90, and 91. In some aspects, the disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) comprising one or more of the sequence motifs selected from the group consisting of: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91, over a region of at least about 10, e.g., at least about any of 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, or 350 residues, or over the full length of the immature polypeptide, the full length mature polypeptide, the full length of the conserved domain, and/or the full length CBM. The conserved domain can be a predicted catalytic domain ("CD"). Exemplary polypeptides also include fragments of at least about 10, e.g., at least about any of 15, 20, 25, 30, 35, 40, 45, 50, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, or 600 residues in length. The fragments can comprise a conserved domain and/or a CBM. Where a fragment comprises a conserved domain and a CBM of an enzyme, the fragment optionally includes a linker separating the two. The linker can be a native linker or a heterologous linker. In some aspects, the polypeptide has GH61/endoglucanase activity.
[0180] In some aspects, the polypeptide having GH61/endoglucanase activity is a GH61 endoglucanase or a variant thereof, an enzyme comprising any one of SEQ ID NOs: 1-29 and 148, or a variant thereof, an EG IV or a variant thereof, or a T. reesei Eg4 or a variant thereof. A variant described here has endoglucanase activity. The polypeptide having GH61/endoglucanase activity (including a variant) may comprise a CBM domain (e.g., functional CBM domain). The polypeptide having GH61/endoglucanase activity (including a variant) may comprise a catalytic domain (e.g., function catalytic domain).
[0181] T. reesei Eg4 is a GH61 endoglucanase polypeptide. The amino acid sequence of T. reesei Eg4 (SEQ ID NO:27) is shown in FIGS. 1, 4B and 5. SEQ ID NO:27 is the sequence of the immature T. reesei Eg4. T. reesei Eg4 has a predicted signal sequence corresponding to residues 1 to 21 of SEQ ID NO:27 (underlined); cleavage of the signal sequence is predicted to yield a mature polypeptide having a sequence corresponding to residues 22 to 344 of SEQ ID NO:27. The predicted conserved domains correspond to residues 22-256 and 307-343 of SEQ ID NO:27, with the latter being the predicted carbohydrate-binding domain (CBM). T. reesei Eg4 was shown to have endoglucanse activity in, for example, an enzymatic assay using carboxy methyl cellulose as substrates. Methods of measuring endoglucanse activity are also known to one skilled in the art.
[0182] The disclosure further provides a variant of Trichoderma reesei Eg4 polypeptide, which may comprise a sequence having at least about 60% (e.g., at least about 65%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity to at least about 50 (e.g., at least about 55, 60, 65, 70, 75, 100, 125, 150, 175, 200, 250, or 300) contiguous amino acid residues among residues 22 to 344 of SEQ ID NO:27. For example, the disclosure provides variants of T. reesei Eg4 polypeptide. Such variants may have at least about 70% (e.g., at least about 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) identity to residues 22 to 344 of SEQ ID NO:27. The polypeptide or a variant thereof may be isolated. The polypeptide or a variant thereof may have endoglucanase activity.
[0183] T. reesei Eg4 residues H22, H107, H184, Q193, and Y195 were predicted to function as metal coordinator residues; residues D61 and G63 were predicted to be conserved surface residues; and residue Y232 were predicted to be involved in activity, based on an amino acid sequence alignment of a number of known endoglucanases, e.g., an endoglucanase from T. terrestris (Accession No. ACE10234, also termed "TtEG" herein) (SEQ ID NO:29), and another endoglucanse Eg7 (Accession No. ADA26043.1) from T. reesei (also termed "TrEGb" or "TrEG7" herein), with T. reesei Eg4 (see, FIG. 5). The predicted conserved residues in T. reesei Eg4 A are shown in FIGS. 6A and 6B. A variant of T. reesei Eg4 polypeptide may be unaltered, as compared to a native T. reesei Eg4, at residues H22, H107, H184, Q193, Y195, D61, G63, and Y232. A variant of T. reesei Eg4 polypeptide may be unaltered in at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% of the amino acid residues that are conserved among TrEGb, TtEG, and T. reesei Eg4, as shown in the alignment of FIG. 5. A variant of T. reesei Eg4 polypeptide may comprise the entire predicted conserved domains of native T.reesei Eg4. See FIGS. 5 and 6. An exemplary variant of T.reesei Eg4 polypeptide comprises a sequence having at least about any of 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to the mature T.reesei Eg4 sequence shown in FIG. 4B (e.g., residues 22 to 344 of SEQ ID NO:27). In some aspects, the variant of T.reesei Eg4 polypeptide has endoglucanse (e.g., endoglucanse IV (EGIV)) activity.
[0184] In some aspects, a variant of T. reesei Eg4 polypeptide has endoglucanase activity and comprises an amino acid sequence with at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the amino acid sequence of SEQ ID NO:27, or to residues (i) 22-255, (ii) 22-343, (iii) 307-343, (iv) 307-344, or (v) 22-344 of SEQ ID NO:27.
[0185] In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least about 3 residues (e.g., at least about any of 4, 5, 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least 3 residues (e.g., at least about any of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises a CBM domain (e.g., functional CBM domain). In some aspects, the polypeptide or a variant thereof comprises a catalytic domain (e.g., functional catalytic domain). The polypeptide suitably has endoglucanase activity.
[0186] A variant of GH61 endoglucanase, an endoglucanase comprising any one of SEQ ID NOs:1-29 and 148, an EG IV, or Trichoderma reesei Eg4 polypeptide may be made using amino acid substitution. Conservative substitutions are shown in the table below under the heading of "conservative substitutions". Substitutions may also be exemplary substitution shown in the table below.
TABLE-US-00001 TABLE 1 Amino Acid Substitutions. Conservative Original Residue Substitutions Exemplary Substitutions Ala (A) Val Val; Leu; Ile Arg (R) Lys Lys; Gln; Asn Asn (N) Gln Gln; His; Asp, Lys; Arg Asp (D) Glu Glu; Asn Cys (C) Ser Ser; Ala Gln (Q) Asn Asn; Glu Glu (E) Asp Asp; Gln Gly (G) Ala Ala His (H) Arg Asn; Gln; Lys; Arg Ile (I) Leu Leu; Val; Met; Ala; Phe; Norleucine Leu (L) Ile Norleucine; Ile; Val; Met; Ala; Phe Lys (K) Arg Arg; Gln; Asn Met (M) Leu Leu; Phe; Ile Phe (F) Tyr Leu; Val; Ile; Ala; Tyr Pro (P) Ala Ala Ser (S) Thr Thr Thr (T) Ser Ser Trp (W) Tyr Tyr; Phe Tyr (Y) Phe Trp; Phe; Thr; Ser Val (V) Leu Ile; Leu; Met; Phe; Ala; Norleucine
[0187] Substantial modifications in the enzymatic properties of the polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:
[0188] (1) Non-polar: Norleucine, Met, Ala, Val, Leu, Ile;
[0189] (2) Polar without charge: Cys, Ser, Thr, Asn, Gln;
[0190] (3) Acidic (negatively charged): Asp, Glu;
[0191] (4) Basic (positively charged): Lys, Arg;
[0192] (5) Residues that influence chain orientation: Gly, Pro; and
[0193] (6) Aromatic: Trp, Tyr, Phe, His.
[0194] Non-conservative substitutions are made by exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the polypeptide also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant cross-linking. Conversely, cysteine bond(s) may be added to the polypeptide to improve its stability.
[0195] In some aspects, a polypeptide (e.g., isolated, synthetic, or recombinant polypeptide) having GH61/endoglucanase activity is a fusion or chimeric polypeptide that includes a domain of a polypeptide of the present disclosure attached to one or more fusion segments, which are typically heterologous to the polypeptide (e.g., derived from a different source than the polypeptide of the disclosure). Suitable fusion or chimeric segments include, without limitation, segments that can enhance a polypeptide's stability, provide other desirable biological activity or enhanced levels of desirable biological activity, and/or facilitate purification of the polypeptide (e.g., by affinity chromatography). A suitable fusion segment can be a domain of any size that has the desired function (e.g., imparts increased stability, solubility, action or biological activity; and/or simplifies purification of a polypeptide). A fusion or hybrid polypeptide of the invention can be constructed from two or more fusion or chimeric segments, each of which or at least two of which are derived from a different source or microorganism. Fusion or hybrid segments can be joined to amino and/or carboxyl termini of the domain(s) of a polypeptide of the present disclosure. The fusion segments can be susceptible to cleavage. There may be some advantage in having this susceptibility, for example, it may enable straight-forward recovery of the polypeptide of interest. Fusion polypeptides may be produced by culturing a recombinant cell transfected with a fusion nucleic acid that encodes a polypeptide, which includes a fusion segment attached to either the carboxyl or amino terminal end, or fusion segments attached to both the carboxyl and amino terminal ends, of a polypeptide, or a domain thereof.
[0196] Accordingly, polypeptides of the present disclosure also include expression products of gene fusions (e.g., an overexpressed, soluble, and active form of expression product), of mutagenized genes (e.g., genes having codon modifications to enhance gene transcription and translation), and of truncated genes (e.g., genes having signal sequences removed or substituted with a heterologous signal sequence).
[0197] Glycosyl hydrolases that utilize insoluble substrates are often modular enzymes. They may comprise catalytic modules appended to one or more non-catalytic carbohydrate-binding domains (CBMs). In nature, CBMs are thought to promote the glycosyl hydrolase's interaction with its target substrate polysaccharide. Thus, the disclosure provides chimeric enzymes having altered substrate specificity; including, for example, chimeric enzymes having multiple substrates as a result of "spliced-in" heterologous CBMs. The heterologous CBMs of the chimeric enzymes of the disclosure can also be designed to be modular, such that they are appended to a catalytic module or catalytic domain (a "CD", e.g., at an active site), which can likewise be heterologous or homologous to the glycosyl hydrolase.
[0198] Thus, the disclosure provides peptides and polypeptides consisting of, or comprising, CBM/CD modules, which can be homologously paired or joined to form chimeric (heterologous) CBM/CD pairs. Thus, these chimeric polypeptides/peptides can be used to improve or alter the performance of an enzyme of interest.
[0199] In some aspects, there is provided a polypeptide having GH61/endoglucanase activity, which comprises at least one CD and/or CBM of any one of the polypeptides with sequences shown in FIG. 1 of the present disclosure. For example, suitable GH61 endoglucanase polypeptides of FIG. 1 includes those that are represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP_748707), an endoglucanase of NCBI Ref: XP_750843.1 from A. fumigatus Afu6g09540, an endoglucanase of A. fumigatus EDP47167, an endoglucanase of T. terrestris 16380, an endoglucanase of T. terrestris 155418, an endoglucanase of T. terrestris 68900, Cg61A (EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP_752040 from A. fumigatus Af293.
[0200] The polypeptide may suitably be a fusion polypeptide comprising functional domains from two or more different polypeptides (e.g., a CBM from one polypeptide linked to a CD from another polypeptide).
[0201] The polypeptides of the disclosure can suitably be obtained and/or used in "substantially pure" form. For example, a polypeptide of the disclosure constitutes at least about 80 wt. % (e.g., at least about any of 85 wt. %, 90 wt. %, 91 wt. %, 92 wt. %, 93 wt. %, 94 wt. %, 95 wt. %, 96 wt. %, 97 wt. %, 98 wt. %, or 99 wt. %) of the total protein in a given composition, which also includes other ingredients such as a buffer or solution.
[0202] Also the polypeptides of the disclosure may suitably be obtained and/or used in culture broths (e.g., a filamentous fungal culture broth). The culture broth may be an engineered enzyme composition, e.g., the culture broth may be produced by a recombinant host cell engineered to express a heterologous polypeptide of the disclosure, or by a recombinant host cell engineered to express an endogenous polypeptide of the disclosure in greater or lesser amounts than the endogenous expression levels (e.g., in an amount that is 1-, 2-, 3-, 4-, 5-, or more-fold greater or less than the endogenous expression levels). Furthermore, the culture broths may be produced by certain "integrated" host cell strains that are engineered to express a plurality of the polypeptides of the disclosure in desired ratios.
Nucleic Acids, Expression Cassettes, Vectors, and Host Cells
[0203] The disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding polypeptides provided above, e.g., polypeptides having GH61/endoglucanase activity, GH61 endoglucanase or a variant thereof, EG IV or a variant thereof, T. reesei Eg4 or a variant thereof. In certain aspects, the disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding a polypeptide comprising any one of SEQ ID NOs:1-29 and 148, or a polypeptide having at least about 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identity to any one of SEQ ID NOs: 1-29 and 148.
[0204] In certain aspects, the disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding any one of the polypeptides having GH61/endoglucanase activity (including a variant of a GH61 endoglucanase) comprising one or more sequence motif selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. The disclosure further provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding a polypeptide having GH61/endoglucanase activity (including a variant of a GH61 endoglucanase) that comprises a CBM domain (e.g., functional CBM domain) and/or catalytic domain (e.g., functional catalytic domain).
[0205] The disclosure further provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding variants of T. reesei Eg4 polypeptide. Such variants may have at least about 60% (e.g., at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) sequence identity to residues 22 to 344 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof has endoglucanase activity. The polypeptide or a variant thereof may comprise residues corresponding to at least about 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise residues corresponding to at least 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27.
[0206] The disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) comprising a nucleic acid sequence having at least about 70%, e.g., at least about any of 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%; 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or complete (100%) identity to nucleic acid sequence SEQ ID NO:30, over a region of at least about 10, e.g., at least about any of 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, or 1050 nucleotides. In some aspects, the disclosure provides nucleic acids encoding any one of the polypeptides provided herein. Also provided herein are isolated nucleic acids having at least about 80% (e.g., at least about any of 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) identity to SEQ ID NO:30.
[0207] In some aspects, there is provided a nucleic acid (e.g., isolated, synthetic or recombinant nucleic acid) encoding a polypeptide comprising an amino acid sequence with at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the amino acid sequence of SEQ ID NO:27, or to residues (i) 22-255, (ii) 22-343, (iii) 307-343, (iv) 307-344, or (v) 22-344 of SEQ ID NO:27. In some aspects, there is provided a nucleic acid (e.g., isolated, synthetic or recombinant nucleic acid) having at least 70% (e.g., at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) sequence identity to SEQ ID NO:30, or a nucleic acid that is capable of hybridizing under high stringency conditions to a complement of SEQ ID NO:30, or to a fragment thereof. As used herein, the term "hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions" describes conditions for hybridization and washing. Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either method can be used. Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6.times. sodium chloride/sodium citrate (SSC) at about 45.degree. C., followed by two washes in 0.2.times.SSC, 0.1% SDS at least at 50.degree. C. (the temperature of the washes can be increased to 55.degree. C. for low stringency conditions); 2) medium stringency hybridization conditions in 6.times.SSC at about 45.degree. C., followed by one or more washes in 0.2.times.SSC, 0.1% SDS at 60.degree. C.; 3) high stringency hybridization conditions in 6.times.SSC at about 45.degree. C., followed by one or more washes in 0.2.times.SSC, 0.1% SDS at 65.degree. C.; and preferably 4) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65.degree. C., followed by one or more washes at 0.2.times.SSC, 1% SDS at 65.degree. C. Very high stringency conditions (4) are the preferred conditions unless otherwise specified.
[0208] The disclosure also provides expression cassettes and/or vectors comprising any of the above-described nucleic acids. The nucleic acid encoding a polypeptide such as an enzyme of the disclosure may be operably linked to a promoter. Specifically where recombinant expression in a filamentous fungal host is desired, the promoter can be a filamentous fungal promoter. The nucleic acids can be, e.g., under the control of heterologous promoters. The nucleic acids can also be expressed under the control of constitutive or inducible promoters. Examples of promoters that can be used include, but are not limited to, a cellulase promoter, a xylanase promoter, the 1818 promoter (previously identified as a highly expressed protein by EST mapping Trichoderma). For example, the promoter can suitably be a cellobiohydrolase, endoglucanase, or .beta.-glucosidase promoter. A particularly suitable promoter can be, for example, a T. reesei cellobiohydrolase, endoglucanase, or .beta.-glucosidase promoter. For example, the promoter is a cellobiohydrolase I (cbh1) promoter. Non-limiting examples of promoters include a cbh1, cbh2, egl1, eg12, eg13, eg14, eg15, pki1, gpd1, xyn1, or xyn2 promoter. Additional non-limiting examples of promoters include a T. reesei cbh1, cbh2, egl1, eg12, eg13, eg14, eg15, pki1, gpd1, xyn1, or xyn2 promoter.
[0209] As used herein, the term "operably linked" means that selected nucleotide sequence (e.g., encoding a polypeptide described herein) is in proximity with a promoter to allow the promoter to regulate expression of the selected DNA. In addition, the promoter is located upstream of the selected nucleotide sequence in terms of the direction of transcription and translation. By "operably linked" is meant that a nucleotide sequence and a regulatory sequence(s) are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequence(s).
[0210] The present disclosure further provides host cells containing any of the polynucleotides vectors, or expression cassettes described herein. The present disclosure also provides host cells that can be used to express one or more polypeptides of the disclosure. Suitable host cells include cells of any microorganism (e.g., cells of a bacterium, a protist, an alga, a fungus (e.g., a yeast or filamentous fungus), or other microbe), and are preferably cells of a bacterium, a yeast, or a filamentous fungus.
[0211] Suitable host cells of the bacterial genera include, but are not limited to, cells of Escherichia, Bacillus, Lactobacillus, Pseudomonas, and Streptomyces. Suitable cells of bacterial species include, e.g., cells of Escherichia coli, Bacillus subtilis, Bacillus licheniformis, Lactobacillus brevis, Pseudomonas aeruginosa, or Streptomyces lividans.
[0212] Suitable host cells of the genera of yeast include, but are not limited to, cells of Saccharomyces, Schizosaccharomyces, Candida, Hansenula, Pichia, Kluyveromyces, and Phaffia. Suitable cells of yeast species include, but are not limited to, cells of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Hansenula polymorpha, Pichia pastoris, P. canadensis, Kluyveromyces marxianus, and Phaffia rhodozyma.
[0213] Suitable host cells of filamentous fungi include all filamentous forms of the subdivision Eumycotina. Suitable cells of filamentous fungal genera include, but are not limited to, cells of Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysoporium, Coprinus, Coriolus, Corynascus, Chaertomium, Cryptococcus, Filobasidium, Fusarium, Gibberella, Humicola, Magnaporthe, Mucor, Myceliophthora, Mucor, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus,Scytaldium, Schizophyllum, Sporotrichum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, and Trichoderma. Suitable cells of filamentous fungal species include, but are not limited to, cells of Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, and Trichoderma viride.
[0214] The disclosure provides a host cell, e.g., a recombinant fungal host cell or a recombinant filamentous fungus, engineered to recombinantly express a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).
[0215] The present disclosure also provides a recombinant host cell e.g., a recombinant fungal host cell or a recombinant microorganism, e.g., a filamentous fungus, such as a recombinant T. reesei, that is engineered to recombinantly express T. reesei Xyn3, T. reesei Bgl1 (also termed "Tr3A"), Fv3A, Fv43D, and Fv51A polypeptides. For example, the recombinant host cell is suitably a T. reesei host cell. The recombinant fungus is suitably a recombinant T. reesei. The disclosure provides, for example, a T. reesei host cell engineered to recombinantly express T. reesei Eg4, T. reesei Xyn3, T. reesei Bgl1, Fv3A, Fv43D, and Fv51A polypeptides. Alternatively the present disclosure also provides a recombinant host cell or a recombinant microorganism that is, e.g., an Aspergillus (such as an A. oryzae, A. niger) host cell or a recombinant Aspergillus engineered to recombinantly express the polypeptides described herein.
[0216] Additionally the disclosure provides a recombinant host cell or recombinant organism that is engineered to express an enzyme blend comprising suitable enzymes in ratios suitable for saccharification. The recombinant host cell is, for example, a fungal host cell or a bacterial host cell. The recombinant fungus is, e.g., a recombinant T. reesei, A. oryzae, A. niger, or yeast. The recombinant fungal host cell may be, e.g., a T. reesei, A. oryzae, A. niger, or yeast cell. The recombinant bacterial host cell may be, e.g., a Bascillus subtilis, or an E. coli cell. The recombinant bacterial organism may be, e.g., a Bascillus subtilis or an E. coli. Examples of enzyme ratios/amounts present in suitable enzyme blends are described herein such as below.
Compositions
[0217] The disclosure also provides compositions (e.g., non-naturally occurring compositions) such as enzyme compositions containing cellulase(s) and/or hemicellulase(s), which can be used to hydrolyze biomass material and/or reduce the viscosity of biomass mixture (e.g., biomass saccharification mixture containing enzyme and substrate).
[0218] Cellulases include enzymes capable of hydrolyzing cellulose (beta-1,4-glucan or beta D-glucosidic linkages) polymers to glucose, cellobiose, cellooligosaccharides, and the like. Cellulases have been traditionally divided into three major classes: endoglucanases (EC 3.2.1.4) ("EG"), exoglucanases or cellobiohydrolases (EC 3.2.1.91) ("CBH") and .beta.-glucosidases (.beta.-D-glucoside glucohydrolase; EC 3.2.1.21) ("BG") (Knowles et al., 1987, Trends in Biotechnology 5(9):255-261; Shulein, 1988, Methods in Enzymology, 160:234-242). Endoglucanases act mainly on the amorphous parts of the cellulose fiber, whereas cellobiohydrolases are also able to degrade crystalline cellulose. Hemicellulases include, for example, xylanases, .beta.-xylosidases, and L-.alpha.-arabinofuranosidases.
[0219] The composition of the invention may be a multi-enzyme blend, comprising more than one enzyme. The enzyme composition of the invention can suitably include one or more additional enzymes derived from other microorganisms, plants, or organisms. Synergistic enzyme combinations and related methods are contemplated. The disclosure includes methods for identifying the optimum ratios of the enzymes included in the enzyme compositions for degrading various types of biomass materials. These methods include, e.g., tests to identify the optimum proportion or relative weights of enzymes to be included in the enzyme composition of the invention in order to effectuate efficient conversion of various substrates (e.g., lignocellulosic substrates) to their constituent fermentable sugars.
[0220] The cell walls of higher plants are comprised of a variety of carbohydrate polymer (CP) components. These CP interact through covalent and non-covalent means, providing the structural integrity required to form rigid cell walls and resist turgor pressure in plants. The major CP found in plants is cellulose, which forms the structural backbone of the cell wall. During cellulose biosynthesis, chains of poly-.beta.-1,4-D-glucose self associate through hydrogen bonding and hydrophobic interactions to form cellulose microfibrils, which further self-associate to form larger fibrils. Cellulose microfibrils are often irregular structurally and contain regions of varying crystallinity. The degree of crystallinity of cellulose fibrils depends on how tightly ordered the hydrogen bonding is between and among its component cellulose chains. Areas with less-ordered bonding, and therefore more accessible glucose chains, are referred to as amorphous regions. The general model for cellulose depolymerization to glucose involves a minimum of three distinct enzymatic activities. Endoglucanases cleave cellulose chains internally to shorter chains in a process that increases the number of accessible ends, which are more susceptible to exoglucanase activity than the intact cellulose chains. These exoglucanases (e.g., cellobiohydrolases) are specific for either reducing ends or non-reducing ends, liberating, in most cases, cellobiose, the dimer of glucose. The accumulating cellobiose is then subject to cleavage by cellobiases (e.g., .beta.-1,4-glucosidases) to glucose. Cellulose contains only anhydro-glucose. In contrast, hemicellulose contains a number of different sugar monomers. For instance, aside from glucose, sugar monomers in hemicellulose can also include xylose, mannose, galactose, rhamnose, and arabinose. Hemicelluloses mostly contain D-pentose sugars and occasionally small amounts of L-sugars. Xylose is typically present in the largest amount, but mannuronic acid and galacturonic acid also tend to be present. Hemicelluloses include xylan, glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan.
[0221] The compositions (e.g., enzymes and multi-enzyme compositions) of the disclosure can be used for saccharification of cellulose materials (e.g., glucan) and/or hemicellulose materials (e.g., xylan, arabinoxylan, and xylan- or arabinoxylan-containing substrates). The enzyme blend/composition is suitably a non-naturally occurring composition.
[0222] The enzyme compositions provided herein may comprise a mixture of xylan-hydrolyzing, hemicellulose- and/or cellulose-hydrolyzing enzymes, which include at least one, several, or all of a cellulase, including a glucanase; a cellobiohydrolase; an L-.alpha.-arabinofuranosidase; a xylanase; a .beta.-glucosidase; and a .beta.-xylosidase. The present disclosure also provides enzyme compositions that may be non-naturally occurring compositions. As used herein, the term "enzyme compositions" refers to: (1) a composition made by combining component enzymes, whether in the form of a fermentation broth or partially or completely isolated or purified; (2) a composition produced by an organism modified to express one or more component enzymes; in certain embodiments, the organism used to express one or more component enzymes can be modified to delete one or more genes; in certain other embodiments, the organism used to express one or more component enzymes can further comprise proteins affecting xylan hydrolysis, hemicellulose hydrolysis, and/or cellulose hydrolysis; (3) a composition made by combining component enzymes simultaneously, separately, or sequentially during a saccharification or fermentation reaction; (4) an enzyme mixture produced in situ, e.g., during a saccharification or fermentation reaction; (5) a composition produced in accordance with any or all of the above (1)-(4).
[0223] The term "fermentation broth" as used herein refers to an enzyme preparation produced by fermentation that undergoes no or minimal recovery and/or purification subsequent to fermentation. For example, microbial cultures are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis (e.g., expression of enzymes). Then, once the enzyme(s) are secreted into the cell culture media, the fermentation broths can be used. The fermentation broths of the disclosure can contain unfractionated or fractionated contents of the fermentation materials derived at the end of the fermentation. For example, the fermentation broths of the invention are unfractionated and comprise the spent culture medium and cell debris present after the microbial cells (e.g., filamentous fungal cells) undergo a fermentation process. The fermentation broth can suitably contain the spent cell culture media, extracellular enzymes, and live or killed microbial cells. Alternatively, the fermentation broths can be fractionated to remove the microbial cells. In those cases, the fermentation broths can, for example, comprise the spent cell culture media and the extracellular enzymes.
[0224] The enzyme compositions such as cellulase compositions provided herein may be capable of achieving at least 0.1 (e.g. 0.1 to 0.4) fraction product as determined by the calcofluor assay. All chemicals used were of analytical grade. Avicel PH-101 was purchased from FMC BioPolymer (Philadelphia, Pa.). Cellobiose and calcofluor white were purchased from Sigma (St. Louise, Mo.). Phosphoric acid swollen cellulose (PASC) was prepared from Avicel PH-101 using an adapted protocol of Walseth, TAPPI 1971, 35:228 and Wood, Biochem. J. 1971, 121:353-362. In short, Avicel was solubilized in concentrated phosphoric acid then precipitated using cold deionized water. After the cellulose is collected and washed with more water to neutralize the pH, it was diluted to 1% solids in 50 mM sodium acetate pH5. All enzyme dilutions were made into 50 mM sodium acetate buffer, pH5.0. GC220 Cellulase (Danisco US Inc., Genencor) was diluted to 2.5, 5, 10, and 15 mg protein/G PASC, to produce a linear calibration curve. Samples to be tested were diluted to fall within the range of the calibration curve, i.e. to obtain a response of 0.1 to 0.4 fraction product. 150 .mu.L of cold 1% PASC was added to 20 .mu.L of enzyme solution in 96-well microtiter plates. The plate was covered and incubated for 2 h at 50.degree. C., 200 rpm in an Innova incubator/shaker. The reaction was quenched with 100 .mu.L of 50 .mu.g/mL Calcofluor in 100 mM Glycine, pH10. Fluorescence was read on a fluorescence microplate reader (SpectraMax M5 by Molecular Devices) at excitation wavelength Ex=365 nm and emission wavelength Em=435 nm. The result is expressed as the fraction product according to the equation:
FP=1-(Fl sample-Fl buffer w/ cellobiose)/(Fl zero enzyme-Fl buffer w/ cellobiose),
[0225] wherein FP is fraction product, and Fl=fluorescence units.
[0226] Any of the enzymes described specifically herein can be combined with any one or more of the enzymes described herein or with any other available and suitable enzymes, to produce a suitable multi-enzyme blend/composition. The disclosure is not restricted or limited to the specific exemplary combinations listed below.
Exemplary Compositions
[0227] There are provided non-naturally occurring compositions comprising a polypeptide having GH61/endoglucanase activity. The invention also provides a non-naturally occurring composition comprising whole cellulase comprising a polypeptide having GH61/endoglucanase activity (e.g., whole cellulase enriched with a polypeptide having GH61/endoglucanase activity such as endoglucanase IV (e.g., T. reesei Eg4 polypeptide-enriched whole cellulase)). The polypeptide having GH61/endoglucanase activity may be any polypeptide having GH61/endoglucanase activity provided herein. In some aspects, the polypeptide having GH61/endoglucanase activity is T. reesei Eg4 or a variant thereof. A variant of T. reesei Eg4 can be any of the variants provided above.
[0228] Endoglucanase is referred to herein as "Eg" or "Eg1," interchangeably, in the present disclosure including figures.
[0229] As used herein, the term "naturally occurring composition" refers to a composition produced by a naturally occurring source, comprising one or more enzymatic components or activities, wherein each of the components or activities is found at the ratio and level produced by the naturally-occurring source as it is found in nature, untouched, unmodified by the human hand. Accordingly, a naturally occurring composition is, e.g., one that is produced by an organism unmodified with respect to the cellulolytic or hemicelluloytic enzymes such that the ratio or levels of the component enzymes are unaltered from that produced by the native organism in its native environment. A "non-naturally occurring composition," on the other hand, refers to a composition produced by: (1) combining component cellulolytic or hemicelluloytic enzymes either in a naturally occurring ratio or a non-naturally occurring, i.e., altered, ratio; or (2) modifying an organism to express, overexpress or underexpress one or more endogeneous or exogenous enzymes; or (3) modifying an organism such that at least one endogenous enzyme is deleted. A "non-naturally occurring composition" also refers to a composition produced by a naturally-occurring, unmodified organism, but cultured in a man-made medium or environment that is different from the organism's native environment such that the amounts of enzymes in the composition differ from those existing in a composition made by a native organism grown in its native habitat.
[0230] Any one of GH61 endoglucanase polypeptides or a variant thereof may be used in any of the compositions described herein. A suitable GH61 endoglucanase may include one of the polypeptides shown in FIG. 1 of the present disclosure. Suitable GH61 endoglucanases include those that are represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S.thermophilum 24630, St61A from S.thermophilum 23839c, St61B from S.thermophilum 46583, St61D from S.thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP_748707), an endoglucanase of NCBI Ref: XP_750843.1 from A.fumigatus Afu6g09540, an endoglucanase of A. fumigatus EDP47167, an endoglucanase of T. terrestris 16380, an endoglucanase of T.terrestris 155418, an endoglucanase of T.terrestris 68900, Cg61A (EAQ86340.1) from C.globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP_752040 from A.fumigatus Af293. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) is a variant of GH61 endoglucanase or EG IV.
[0231] In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) is one comprising any one of SEQ ID NOs: 1-29 and 148, or one that comprises a polypeptide having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99% sequence identity to any one of SEQ ID NOs: 1-29 and 148. In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) may comprise at least one motif (at least any of 2, 3, 4, 5, 6, 7, or 8) selected from SEQ ID NOs:84-91. It may comprise one or more sequence motif(s) selected from the group consisting of: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91.
[0232] In some aspects of any one of the compositions or methods described herein, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) may have at least about 60% (e.g., at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) sequence identity to residues 22 to 344 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least about 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises a CBM domain (e.g., functional CBM domain). In some aspects, the polypeptide or a variant thereof comprises a catalytic domain (e.g., functional catalytic domain). In some aspects, the polypeptide or a variant thereof is isolated. In some aspects, the polypeptide or a variant thereof has endoglucanase activity.
[0233] In some aspects, the polypeptide having GH61/endoglucanase activity is endoglucanase IV, for example, a T. reesei Eg4 polypeptide or a variant thereof. For example, the disclosure provides non-naturally occurring compositions comprising a T. reesei Eg4 polypeptide or a variant thereof. A variant of T. reesei Eg4 polypeptide can be any one of the variants of T. reesei Eg4 polypeptide described herein. In some aspects, the polypeptide having GH61/endoglucanase activity includes amino acid sequence SEQ ID NO:27 or residues 22 to 344 of SEQ ID NO:27.
[0234] In some aspects, there is provided a composition comprising an isolated (or substantially purified) polypeptide having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). Methods of producing polypeptide, recovering the polypeptide, and isolating or purifying the polypeptide are known to one of skill in the art.
[0235] In some aspects of any of the compositions or methods described herein, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is expressed from a host cell, wherein the nucleic acid encoding the polypeptide having GH61/endoglucanase activity has been engineered into the host cell. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is heterologous to the host cell expressing the polypeptide having GH61/endoglucanase activity.
[0236] The present disclosure provides compositions comprising a polypeptide having GH61/endoglucanase activity and comprising at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, or a mixture thereof. In some aspects, the composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s). In some aspects, the cellulase polypeptide is a polypeptide having endoglucanase activity, a polypeptide having cellobiohydrolase activity, or a polypeptide having .beta.-glucosidase activity. In some aspects, the composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s). In some aspects, the hemicellulase polypeptide is a polypeptide having xylanase activity, a polypeptide having .beta.-xylosidase activity, or a polypeptide having L-.alpha.-arabinofuranosidase activity. In some aspects, the composition further comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s) and at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s). Varying amounts for polypeptide(s) included in the compositions provided herein are provided below in "Amount of component(s) in compositions" section.
[0237] Cellulases and hemicellulases for use in accordance with the methods and compositions of the disclosure can be obtained from, or produced recombinantly from, inter alia, one or more of the following organisms: Crimpellis scapella, Macrophomina phaseolina, Myceliophthora thermophila, Sordaria fimicola, Volutella colletotrichoides, Thielavia terrestris, Acremonium sp., Exidia glandulosa, Fomes fomentarius, Spongipellis sp., Rhizophlyctis rosea, Rhizomucor pusillus, Phycomyces niteus, Chaetostylum fresenii, Diplodia gossypina, Ulospora bilgramii, Saccobolus dilutellus, Penicillium verruculosum, Penicillium chrysogenum, Thermomyces verrucosus, Diaporthe syngenesia, Colletotrichum lagenarium, Nigrospora sp., Xylaria hypoxylon, Nectria pinea, Sordaria macrospora, Thielavia thermophila, Chaetomium mororum, Chaetomium virscens, Chaetomium brasiliensis, Chaetomium cunicolorum, Syspastospora boninensis, Cladorrhinum foecundissimum, Scytalidium thermophila, Gliocladium catenulatum, Fusarium oxysporum ssp. lycopersici, Fusarium oxysporum ssp. passiflora, Fusarium solani, Fusarium anguioides, Fusarium poae, Humicola nigrescens, Humicola grisea, Panaeolus retirugis, Trametes sanguinea, Schizophyllum commune, Trichothecium roseum, Microsphaeropsis sp., Acsobolus stictoideus spej., Poronia punctata, Nodulisporum sp., Trichoderma sp. (e.g., Trichoderma reesei) and Cylindrocarpon sp.
[0238] In the present disclosure, the cellulase or hemicellulase may be prepared from any known microorganism cultivation method(s), resulting in the expression of enzymes capable of hydrolyzing a cellulosic material. Fermentation may include shake flask cultivation, small- or large-scale fermentation, such as continuous, batch, fed-batch, or solid state fermentations in laboratory or industrial fermenters performed in a suitable medium and under conditions allowing the cellulase to be expressed or isolated. Generally, the microorganism is cultivated in a cell culture medium suitable for production of enzymes capable of hydrolyzing a cellulosic material. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable culture media, temperature ranges and other conditions suitable for growth and cellulase production are known in the art. As a non-limiting example, the normal temperature range for the production of cellulases by T. reesei is 24.degree. C. to 28.degree. C.
[0239] The present disclosure provides non-naturally occurring compositions comprising a polypeptide having GH61/endoglucanase activity (e.g., endoglucanase IV polypeptide such as T. reesei Eg4 polypeptide or a variant thereof), wherein the composition further comprises at least 1 polypeptide having endoglucanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having endoglucanase activity), at least 1 polypeptide having cellobiohydrolase activity (e.g., at least 2, 3, 4, or 5 polypeptides having cellobiohydrolase activity), at least 1 polypeptide having glucosidase activity (e.g., .beta.-glucosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-glucosidase activity), at least 1 polypeptide having xylanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having xylanase activity), at least 1 polypeptide having xylosidase activity (e.g., .beta.-xylosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-xylosidase activity), and/or at least 1 polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having L-.alpha.-arabinofuranosidase activity). Varying amounts for polypeptide(s) included in the compositions provided herein are provided below in "Amount of component(s) in compositions" section.
[0240] The present disclosure provides non-naturally occurring compositions comprising whole cellulase comprising a polypeptide having GH61/endoglucanase activity (e.g., whole cellulase enriched with endoglucanase IV polypeptide, such as, e.g., T. reesei Eg4 polypeptide or a variant thereof), wherein the composition further comprises at least 1 polypeptide having endoglucanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having endoglucanase activity), at least 1 polypeptide having cellobiohydrolase activity (e.g., at least 2, 3, 4, or 5 polypeptides having cellobiohydrolase activity), at least 1 polypeptide having glucosidase activity (e.g., .beta.-glucosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-glucosidase activity), at least 1 polypeptide having xylanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having xylanase activity), at least one polypeptide having xylosidase activity (e.g., .beta.-xylosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-xylosidase activity), and/or at least one polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having L-.alpha.-arabinofuranosidase activity). Varying amounts for polypeptide(s) included in the compositions provided herein are provided below in "Amount of component(s) in compositions" section.
[0241] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof). In some aspects, the polypeptide having xylanase activity is T. reesei Xyn3. The composition may further comprise at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, and/or Tn3B). The composition may further comprise at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, and/or a variant thereof). The composition may further comprise at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). The composition may further comprise at least 1 polypeptide having endoglucanase activity (e.g., T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof)).
[0242] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide (or at least 2 polypeptides) having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least 1 polypeptide (or at least 2 polypeptides) having endoglucanase activity (e.g., T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof)). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide (or at least two polypeptides) having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, and/or T. reesei Bxl1). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide (or at least 2 polypeptides) having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, and/or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide (at least 2 polypeptides) having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof).
[0243] In some aspects, any of the polypeptides described herein (e.g., polypeptide having endoglucanase activity, polypeptide having cellobiohydrolase activity, polypeptide having glucosidase activity (e.g., .beta.-glucosidase), polypeptide having xylanase activity, polypeptide having xylosidase activity (e.g., .beta.-xylosidase), or polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase)) may be a component of a whole cellulase such as a whole cellulase described herein. Any of the polypeptides described herein may be produced by expressing an endogenous or exogenous gene encoding the corresponding polypeptide(s). The polypeptide(s) can be, in some circumstances, overexpressed or underexpressed.
[0244] Regarding any of the compositions described above, varying amounts for polypeptide(s) included in the compositions are provided below in "Amount of component(s) in compositions" section.
Polypeptide Having Endoglucanase Activity
[0245] A polypeptide having endoglucanase activity includes a polypeptide that catalyzes the cleavage of internal .beta.-1,4 linkages. Endoglucanase ("EG") refers to a group of cellulase enzymes classified as EC 3.2.1.4. An EG enzyme hydrolyzes internal beta-1,4 glucosidic bonds of the cellulose. EG catalyzes endohydrolysis of 1,4-beta-D-glycosidic linkages in cellulose, cellulose derivatives (for example, carboxy methyl cellulose), lichenin, beta-1,4 bonds in mixed beta-1,3 glucans such as cereal beta-D-glucans or xyloglucans, and other plant material containing cellulosic components. EG activity can be determined using carboxymethyl cellulose (CMC) hydrolysis according to the procedure of Ghose, 1987, Pure and Appl. Chem. 59: 257-268. In some aspects, at least one polypeptide having endoglucanase activity includes T. reesei EG1 (GenBank Accession No. HM641862.1) and/or T. reesei EG2 polypeptide (GenBank Accession No. ABA64553.1).
[0246] A thermostable T. terrestris endoglucanase (Kvesitadaze et al., Applied Biochem. Biotech. 1995, 50:137-143) is, in another example, used in the methods and compositions of the present disclosure. Moreover, a T. reesei EG3 (GenBank Accession No. AAA34213.1) (Okada et al. Appl. Environ. Microbiol. 1988, 64:555-563), EG5 (GenBank Accession No. AAP57754) (Saloheimo et al. Molecular Microbiology 1994, 13:219-228), EG6 (FIG. 89A) (U.S. Patent Publication No. 20070213249), or EG7 (GenBank Accession No. AAP57753) (U.S. Patent Publication No. 20090170181), an A. cellulolyticus EI endoglucanase (Swiss-Prot entry P54583.1) (U.S. Pat. No. 5,536,655), a H. insolens endoglucanase V (EGV) (Protein Data Bank entry 4ENG), a S. coccosporum endoglucanase (FIG. 89B) (U.S. Patent Publication No. 20070111278), an A. aculeatus endoglucanase F, 1-CMC (Swiss-Prot entry P22669.1) (Ooi et al. Nucleic Acid Res. 1990, 18:5884), an A. kawachii IFO 4308 endoglucanase CMCase-1 (Swiss-Prot entry Q96WQ8.1) (Sakamoto et al. Curr. Genet. 1995, 27:435-439), an E. carotovara endoglucanase CelS (GenBank Accession No. AAA24817.1) (Saarilahti et al. Gene 1990, 90:9-14); or an A. thermophilum ALKO4245 endoglucanase (U.S. Patent Publication No. 20070148732) can also be used. Additional suitable endoglucanases are described in, e.g., WO 91/17243, WO 91/17244, WO 91/10732, U.S. Pat. No. 6,001,639. A polypeptide having endoglucanase activity may be a variant of any one of the endoglucases provided herein.
Polypeptide Having Cellobiohydrolase Activity
[0247] A polypeptide having cellobiohydrolase activity includes a polypeptide having 1,4-D-glucan cellobiohydrolase (E.C. 3.2.1.91) activity which catalyzes the hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose, cellotetriose, or any beta-1,4-linked glucose containing polymer, releasing cellobiose from the ends of the chain. For purposes of the present invention, cellobiohydrolase activity can be determined by release of water-soluble reducing sugar from cellulose as measured by the PHBAH method of Lever et al., 1972, Anal. Biochem. 47: 273-279. A distinction between the exoglucanase mode of attack of a cellobiohydrolase and the endoglucanase mode of attack can be made by a similar measurement of reducing sugar release from substituted cellulose such as carboxymethyl cellulose or hydroxyethyl cellulose (Ghose, 1987, Pure & Appl. Chem. 59: 257-268). A true cellobiohydrolase will have a very high ratio of activity on unsubstituted versus substituted cellulose (Bailey et al, 1993, Biotechnol. Appl. Biochem. 17: 65-76).
[0248] Suitable CBHs can be selected from A. bisporus CBH1 (Swiss Prot Accession No. Q92400), A. aculeatus CBH1 (Swiss Prot Accession No. 059843), A.nidulans CBHA (GenBank Accession No. AF420019) or CBHB (GenBank Accession No. AF420020), A.niger CBHA (GenBank Accession No. AF156268) or CBHB (GenBank Accession No. AF156269), C. purpurea CBH1 (Swiss Prot Accession No. 000082), C. carbonarum CBH1 (Swiss Prot Accession No. Q00328), C.parasitica CBH1 (Swiss Prot Accession No. Q00548), F.oxysporum CBH1 (Cel7A) (Swiss Prot Accession No. P46238), H.grisea CBH1.2 (GenBank Accession No. U50594), H.grisea var. thermoidea CBH1 (GenBank Accession No. D63515), CBHI.2 (GenBank Accession No. AF123441), or exo1 (GenBank Accession No. AB003105), M. albomyces Ce17B (GenBank Accession No. AJ515705), N. crassa CBHI (GenBank Accession No. X77778), P.funiculosum CBHI (Ce17A) (GenBank Accession No. AJ312295) (U.S. Patent Publication No. 20070148730), P.janthinellum CBHI (GenBank Accession No. S56178), P.chrysosporium CBH (GenBank Accession No. M22220), or CBHI-2 (Cel7D) (GenBank Accession No. L22656), T. emersonii CBH1A (GenBank Accession No. AF439935), T. viride CBH1 (GenBank Accession No. X53931), or V. volvacea V14 CBH1 (GenBank Accession No. AF156693). A polypeptide having cellobiohydrolase activity may be a variant of any one of CBHs provided herein.
[0249] In some aspects, at least one polypeptide having cellobiohydrolase activity includes T.reesei CBH 1 (Swiss-Prot entry P62694.1) (or a variant thereof) and/or T. reesei CBH2 (Swiss-Prot entry P07987.1) (or a variant thereof) polypeptide. See Shoemaker et al. Bio/Technology 1983, 1:691-696; see also Teeri et al. Bio/Technology 1983, 1:696-699, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, which are T. reesei CBH1 homologs; T. terrestris 6A, S. thermophile 6A, 6B, which are T. reesei CBH2 homologs, or a variant thereof.
Polypeptide Having Glucosidase Activity
[0250] A polypeptide having glucosidase activity includes a polypeptide having beta-D-glucoside glucohydrolase (E.C. 3.2.1.21) activity which catalyzes the hydrolysis of cellobiose with the release of beta-D-glucose. For purposes of the present invention, .beta.-glucosidase activity may be measured by methods known in the art, e.g., HPLC. A polypeptide having glucosidase activity includes members of certain GH families, including, without limitation, members of GH families 1, 3, 9 or 48, which catalyze the hydrolysis of cellobiose to release .beta.-D-glucose. A polypeptide having glucosidase activity includes .beta.-glucosidase such as .beta.-glucosidase obtained from a number of microorganisms, by recombinant means, or be purchased from commercial sources. Examples of .beta.-glucosidases from microorganisms include, without limitation, ones from bacteria and fungi. For example, a .beta.-glucosidase is suitably obtained from a filamentous fungus. In some aspects, at least one polypeptide having glucosidase activity (e.g., .beta.-glucosidase activity) is a T. reesei Bgl1 polypeptide.
[0251] The .beta.-glucosidases can be obtained, or produced recombinantly, from, inter alia, A. aculeatus (Kawaguchi et al. Gene 1996, 173: 287-288), A. kawachi (Iwashita et al. Appl. Environ. Microbiol. 1999, 65: 5546-5553), A. oryzae (WO 2002/095014), C. biazotea (Wong et al. Gene, 1998, 207:79-86), P. funiculosum (WO 2004/078919), S. fibuligera (Machida et al. Appl. Environ. Microbiol. 1988, 54: 3147-3155), S. pombe (Wood et al. Nature 2002, 415: 871-880), or T. reesei (e.g., .beta.-glucosidase 1 (U.S. Pat. No. 6,022,725), .beta.-glucosidase 3 (U.S. Pat. No. 6,982,159), .beta.-glucosidase 4 (U.S. Pat. No. 7,045,332), .beta.-glucosidase 5 (U.S. Pat. No. 7,005,289), .beta.-glucosidase 6 (U.S. Publication No. 20060258554), .beta.-glucosidase 7 (U.S. Publication No. 20060258554)). A polypeptide having .beta.-glucosidases activity may be a variant of any one of .beta.-glucosidases provided herein.
[0252] The .beta.-glucosidase can be produced by expressing an endogenous or exogenous gene encoding a .beta.-glucosidase. For example, .beta.-glucosidase can be secreted into the extracellular space e.g., by Gram-positive organisms (e.g., Bacillus or Actinomycetes), or a eukaryotic hosts (e.g., Trichoderma, Aspergillus, Saccharomyces, or Pichia). The .beta.-glucosidase can be, in some circumstances, overexpressed or underexpressed.
[0253] The .beta.-glucosidase can also be obtained from commercial sources. Examples of commercial .beta.-glucosidase preparation suitable for use include, e.g., T. reesei .beta.-glucosidase in Accellerase.RTM. BG (Danisco US Inc., Genencor); NOVOZYM.TM. 188 (a .beta.-glucosidase from A. niger); Agrobacterium sp. .beta.-glucosidase, and T. maritima .beta.-glucosidase from Megazyme (Megazyme International Ireland Ltd., Ireland.).
[0254] .beta.-glucosidase activity can be determined by a number of suitable means known in the art, such as the assay described by Chen et al., in Biochimica et Biophysica Acta 1992, 121:54-60, wherein 1 pNPG denotes 1 .mu.moL of Nitrophenol liberated from 4-nitrophenyl-.beta.-D-glucopyranoside in 10 min at 50.degree. C. (122.degree. F.) and pH 4.8.
Polypeptide Having Xylanase Activity
[0255] Xylanase activity may be measured by using colorimetric azo-birchwood xylan assay (S-AXBL, Megazyme International Ireland Ltd., Ireland).
[0256] A polypeptide having xylanase activity may include Group A xylanases, selected from, e.g., Xyn, Xyn2, AfuXyn2, and/or AfuXyn5 polypeptide, or a variant thereof.
[0257] Any of the compositions described herein may optionally comprise one or more xylanases in addition to or in place of the one or more Group A xylanases. Any xylanase (EC 3.2.1.8) can be used as the additional one or more xylanases. Suitable xylanases include, e.g., C. saccharolyticum xylanase (Luthi et al. 1990, Appl. Environ. Microbiol. 56(9):2677-2683), T.maritima xylanase (Winterhalter & Liebel, 1995, Appl. Environ. Microbiol. 61(5):1810-1815), Thermatoga Sp. Strain FJSS-B.1 xylanase (Simpson et al. 1991, Biochem. J. 277, 413-417), B.circulans xylanase (BcX) (U.S. Pat. No. 5,405,769), A. niger xylanase (Kinoshita et al. 1995, Journal of Fermentation and Bioengineering 79(5):422-428), S.lividans xylanase (Shareck et al. 1991, Gene 107:75-82; Morosoli et al. 1986 Biochem. J. 239:587-592; Kluepfel et al. 1990, Biochem. J. 287:45-50), B. subtilis xylanase (Bernier et al. 1983, Gene 26(1):59-65), C.fimi xylanase (Clarke et al., 1996, FEMS Microbiology Letters 139:27-35), P.fluorescens xylanase (Gilbert et al. 1988, Journal of General Microbiology 134:3239-3247), C.thermocellum xylanase (Dominguez et al., 1995, Nature Structural Biology 2:569-576), B.pumilus xylanase (Nuyens et al. Applied Microbiology and Biotechnology 2001, 56:431-434; Yang et al. 1998, Nucleic Acids Res. 16(14B):7187), C.acetobutylicum P262 xylanase (Zappe et al. 1990, Nucleic Acids Res. 18(8):2179), or T.harzianum xylanase (Rose et al. 1987, J. Mol. Biol. 194(4):755-756). A polypeptide having xylanase activity may be a variant of any one of the xylanases provided herein.
Polypeptide Having Xylosidase (e.g., .beta.-Xylosidase) Activity
[0258] Xylosidase (e.g., .beta.-xylosidase) activity may be measured by using chromogenic substrate 4-nitrophenyl beta-D-xylopyranoside (pNPX, Sigma-Aldrich N2132).
[0259] A polypeptide having xylosidase (e.g., .beta.-xylosidase) activity may be a Group 1 .beta.-xylosidase enzyme (e.g., Fv3A or Fv43A) or a Group 2 .beta.-xylosidase enzyme (e.g., Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof). In some aspects, any of the composition provided herein may suitably comprise one or more Group 1 .beta.-xylosidases and one or more Group 2 .beta.-xylosidases.
[0260] Any of the composition provided herein such as the enzyme blends/compositions of the disclosure can optionally comprise one or more .beta.-xylosidases, in addition to or in place of the Group 1 and/or Group 2 .beta.-xylosidases above. Any .beta.-xylosidase (EC 3.2.1.37) can be used as the additional .beta.-xylosidases. Suitable .beta.-xylosidases include, for example, T.emersonii Bxl1 (Reen et al. 2003, Biochem Biophys Res Commun. 305(3):579-85), G. stearothermophilus .beta.-xylosidases (Shallom et al. 2005, Biochemistry 44:387-397), S. thermophilum .beta.-xylosidases (Zanoelo et al. 2004, J. Ind. Microbiol. Biotechnol. 31:170-176), T.lignorum .beta.-xylosidases (Schmidt, 1998, Methods Enzymol. 160:662-671), A. awamori .beta.-xylosidases (Kurakake et al. 2005, Biochim. Biophys. Acta 1726:272-279), A. versicolor .beta.-xylosidases (Andrade et al. 2004, Process Biochem. 39:1931-1938), Streptomyces sp. .beta.-xylosidases (Pinphanichakarn et al. 2004, World J. Microbiol. Biotechnol. 20:727-733), T. maritima .beta.-xylosidases (Xue and Shao, 2004, Biotechnol. Lett. 26:1511-1515), Trichoderma sp. SY .beta.-xylosidases (Kim et al. 2004, J. Microbiol. Biotechnol. 14:643-645), A. niger .beta.-xylosidases (Oguntimein and Reilly, 1980, Biotechnol. Bioeng. 22:1143-1154), or P.wortmanni .beta.-xylosidases (Matsuo et al. 1987, Agric. Biol. Chem. 51:2367-2379). A polypeptide having xylosidase (e.g., .beta.-xylosidase) activity may be a variant of any one of the xylosidases provided herein.
[0261] Arabinofuranosidase activity may be measured by chromogenic substrate 4-nitrophenyl alpha-L-arabinofuranoside (pNPA, Sigma-Aldrich N3641).
[0262] Any one of the compositions provided herein such as the enzyme blends/compositions of the disclosure can, for example, suitably comprise at least one polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase activity) such as L-.alpha.-arabinofuranosidases. The L-.alpha.-arabinofuranosidase may be, for example, Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof.
[0263] The enzyme blends/compositions of the disclosure may optionally comprise one or more L-.alpha.-arabinofuranosidases in addition to or in place of the foregoing L-.alpha.-arabinofuranosidases. L-.alpha.-arabinofuranosidases (EC 3.2.1.55) from any suitable organism can be used as the additional L-.alpha.-arabinofuranosidases. Suitable L-.alpha.-arabinofuranosidases include, e.g., L-.alpha.-arabinofuranosidases of A.oryzae (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), A.sojae (Oshima et al. J. Appl. Glycosci. 2005, 52:261-265), B.brevis (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), B. stearothermophilus (Kim et al., J. Microbiol. Biotechnol. 2004, 14:474-482), B. breve (Shin et al., Appl. Environ. Microbiol. 2003, 69:7116-7123), B.longum (Margolies et al., Appl. Environ. Microbiol. 2003, 69:5096-5103), C.thermocellum (Taylor et al., Biochem. J. 2006, 395:31-37), F.oxysporum (Panagiotou et al., Can. J. Microbiol. 2003, 49:639-644), F. oxysporum f. sp. dianthi (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), G.stearothermophilus T-6 (Shallom et al., J. Biol. Chem. 2002, 277:43667-43673), H. vulgare (Lee et al., J. Biol. Chem. 2003, 278:5377-5387), P.chrysogenum (Sakamoto et al., Biophys. Acta 2003, 1621:204-210), Penicillium sp. (Rahman et al., Can. J. Microbiol. 2003, 49:58-64), P.cellulosa (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), R.pusillus (Rahman et al., Carbohydr. Res. 2003, 338:1469-1476), S.chartreusis, S.thermoviolacus, T.ethanolicus, T.xylanilyticus (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), T.fusca (Tuncer and Ball, Folia Microbiol. 2003, (Praha) 48:168-172), T.maritima (Miyazaki, Extremophiles 2005, 9:399-406), Trichoderma sp. SY (Jung et al. Agric. Chem. Biotechnol. 2005, 48:7-10), A.kawachii (Koseki et al., Biochim. Biophys. Acta 2006, 1760:1458-1464), F.oxysporum f. sp. dianthi (Chacon-Martinez et al., Physiol.Mol. Plant Pathol. 2004, 64:201-208), T.xylanilyticus (Debeche et al., Protein Eng. 2002, 15:21-28), H.insolens, M.giganteus (Sorensen et al., Biotechnol. Prog. 2007, 23:100-107), or R.sativus (Kotake et al. J. Exp. Bot. 2006, 57:2353-2362). A polypeptide having arabinofuranosidase activity may be a variant of any one of the arabinofuranosidases described herein.
[0264] In some aspects of any one of the compositions described herein, the at least one polypeptide having endoglucanase activity comprises T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof). In some aspects of any one of the compositions described herein, the at least one polypeptide having cellobiohydrolase ("CBH") activity comprises T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having .beta.-glucosidase activity comprises Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, and/or Tn3B. In some aspects of any one of the compositions described herein, the at least one polypeptide having .beta.-glucosidase activity comprises Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, and/or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having xylanase activity comprises T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, and/or AfuXyn5. In some aspects of any one of the compositions described herein, the at least one polypeptide having xylanase activity comprises T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, and/or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having .beta.-xylosidase activity is a Group 1 .beta.-xylosidase or a Group 2 .beta.-xylosidase, wherein the Group 1 .beta.-xylosidase comprises Fv3A, Fv43A, or a variant thereof, and the Group 2 .beta.-xylosidase comprises Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof. In some aspects, the at least one polypeptide having .beta.-xylosidase activity comprises F. verticillioides Fv3A, F. verticillioides Fv43D, or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having L-.alpha.-arabinofuranosidase activity comprises Af43A, Fv43B, Pf51A, Pa51A, and/or Fv51A. In some aspects of any one of the compositions described herein, the at least one polypeptide having L-.alpha.-arabinofuranosidase activity comprises Af43A, Fv43B, Pf51A, Pa51A, Fv51A, and/or a variant thereof.
Whole Cellulase
[0265] Any of the compositions provided here such as enzyme blends/compositions of the disclosure may comprise whole cellulase.
[0266] As used herein, a "whole cellulase" refers to either a naturally occurring or a non-naturally occurring cellulase-containing composition comprising at least 3 different enzyme types: (1) an endoglucanase, (2) a cellobiohydrolase, and (3) a .beta.-glucosidase, or comprising at least 3 different enzymatic activities: (1) an endoglucanase activity, which catalyzes the cleavage of internal .beta.-1,4 linkages, resulting in shorter glucooligosaccharides, (2) a cellobiohydrolase activity, which catalyzes an "exo"-type release of cellobiose units (.beta.-1,4 glucose-glucose disaccharide), and (3) a .beta.-glucosidase activity, which catalyzes the release of glucose monomer from short cellooligosaccharides (e.g., cellobiose). The whole cellulase may comprise at least one polypeptide having endoglucanase activity (e.g., EG2 (or a variant thereof) and/or EG4 (or a variant thereof)), at least one polypeptide having cellobiohydrolase activity (e.g., CBH1 (or a variant thereof) and/or CBH2 (or a variant thereof)), and at least one polypeptide having (3-glucosidase activity (e.g., Bgl1 or a variant thereof).
[0267] A "naturally occurring cellulase-containing" composition is one produced by a naturally occurring source, which comprises one or more cellobiohydrolase-type, one or more endoglucanase-type, and one or more .beta.-glucosidase-type components or activities, wherein each of these components or activities is found at the ratio and level produced in nature, untouched by the human hand. Accordingly, a naturally occurring cellulase-containing composition is, for example, one that is produced by an organism unmodified with respect to the cellulolytic enzymes such that the ratio or levels of the component enzymes are unaltered from that produced by the native organism in nature. A "non-naturally occurring cellulase-containing composition" refers to a composition produced by: (1) combining component cellulolytic enzymes either in a naturally occurring ratio or a non-naturally occurring, i.e., altered, ratio; or (2) modifying an organism to overexpress or underexpress one or more cellulolytic enzymes; or (3) modifying an organism such that at least one cellulolytic enzyme is deleted. A "non-naturally occurring cellulase containing" composition can also refer to a composition resulting from adjusting the culture conditions for a naturally-occurring organism, such that the naturally-occurring organism grows under a non-native condition, and produces an altered level or ratio of enzymes.
[0268] Accordingly, in some embodiments, the whole cellulase preparation of the present disclosure can have one or more EGs and/or CBHs and/or .beta.-glucosidases deleted and/or overexpressed.
[0269] In some aspects, there is provided a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., endoglucanase IV polypeptide such as T. reesei Eg4 polypeptide or a variant thereof) or a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., whole cellulase enriched with endoglucanase IV polypeptide such as T. reesei Eg4 polypeptide or a variant thereof), wherein the composition further comprises a whole cellulase, at least 1 polypeptide having endoglucanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having endoglucanase activity), at least 1 polypeptide having cellobiohydrolase activity (e.g., at least 2, 3, 4, or 5 polypeptides having cellobiohydrolase activity), at least 1 polypeptide having glucosidase activity (e.g., .beta.-glucosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-glucosidase activity), at least 1 polypeptide having xylanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having xylanase activity), at least 1 polypeptide having xylosidase activity (e.g., .beta.-xylosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-xylosidase activity), and/or at least 1 polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having L-.alpha.-arabino-furanosidase activity). The polypeptides having various enzyme activities are described above.
[0270] In some aspects, the whole cellulase comprises at least 1 polypeptide having endoglucanase activity such as T. reesei EG1, T. reesei EG2, or a variant thereof. In some aspects, the whole cellulase comprises at least one polypeptide having cellobiohydrolase activity such as T. reesei CBH1, T. reesei CBH2, or a variant thereof. In some aspects, the whole cellulase comprises at least 1 polypeptide having .beta.-glucosidase activity such as Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof.
[0271] In the present disclosure, a whole cellulase preparation can be from any microorganism that is capable of hydrolyzing a cellulosic material. In some embodiments, the whole cellulase preparation is a fungal or bacterial whole cellulase. For example, the whole cellulase preparation can be from an Acremonium, Aspergillus, Chrysosporium, Emericella, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Scytalidium, Thielavia, Tolypocladium, Trichoderma, or yeast species.
[0272] The whole cellulase preparation may be, e.g., an Aspergillus aculeatus, Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulays, Aspergillus niger, or Aspergillus oryzae whole cellulase. Moreover, the whole cellulase preparation may be a Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellenae, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, or Fusarium venenatum whole cellulase preparation. The whole cellulase preparation may also be a Chrysosporium lucknowence, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Penicillium funiculosum, Scytalidium thermophilum, or Thielavia terrestris whole cellulase preparation. The whole cellulase preparation may also be a Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei (e.g., RL-P37 (Sheir-Neiss G et al. Appl. Microbiol. Biotechnology, 1984, 20, pp. 46-53), QM9414 (ATCC No. 26921), NRRL 15709, ATCC 13631, 56764, 56466, 56767), or a Trichoderma viride (e.g., ATCC 32098 and 32086) whole cellulase preparation.
[0273] The whole cellulase preparation can be integrated strain T.reesei H3A or H3A/Eg4 #27 (as described in the Examples herein) preparation.
[0274] The whole cellulase preparation can suitably be a T.reesei RutC30 whole cellulase preparation, which is available from the American Type Culture Collection as T.reesei ATCC 56765. For example, the whole cellulase preparation can also suitably be a whole cellulase of P. funiculosum, which is available from the American Type Culture Collection as P. funiculosum ATCC Number: 10446.
[0275] The whole cellulase preparation can also be obtained from commercial sources. Examples of commercial cellulase preparations suitable for use in the methods and compositions of the present disclosure include, for example, CELLUCLAST.TM. and Cellic.TM. (Novozymes A/S) and LAMINEX.TM. BG, IndiAge.TM. 44L, Primafast.TM. 100, Primafast.TM. 200, Spezyme.TM. CP, Accellerase.RTM. 1000 and Accellerase.RTM. 1500 (Danisco US. Inc., Genencor).
[0276] Suitable whole cellulase preparations can be made using any known microorganism cultivation methods, especially fermentation, resulting in the expression of enzymes capable of hydrolyzing a cellulosic material. As used herein, "fermentation" refers to shake flask cultivation, small- or large-scale fermentation, such as continuous, batch, fed-batch, or solid state fermentations in laboratory or industrial fermenters performed in a suitable medium and under conditions that allow the cellulase and/or enzymes of interest to be expressed and/or isolated. Generally the microorganism is cultivated in a cell culture medium suitable for production of enzymes capable of hydrolyzing a cellulosic material. The cultivation takes place in a nutrient medium comprising carbon and nitrogen sources and inorganic salts, using known procedures and variations. Culture media, temperature ranges and other conditions for growth and cellulase production are known. As a non-limiting example, a typical temperature range for the production of cellulases by T. reesei is 24.degree. C. to 28.degree. C.
[0277] The whole cellulase preparation can be used as it is produced by fermentation with no or minimal recovery and/or purification. In that sense, the whole cellulase preparation can be used in a whole broth formulation. For example, once cellulases are secreted into the cell culture medium, the cell culture medium containing the cellulases can be used directly. The whole cellulase preparation can comprise the unfractionated contents of fermentation material, including the spent cell culture medium, extracellular enzymes and cells. On the other hand, the whole cellulase preparation can also be subject to further processing in a number of routine steps, e.g., precipitation, centrifugation, affinity chromatography, filtration, or the like. For example, the whole cellulase preparation can be concentrated, and then used without further purification. The whole cellulase preparation can, e.g., be formulated to comprise certain chemical agents that decrease cell viability or kill the cells after fermentation. The cells can for example be lysed or permeabilized using known methods.
[0278] The endoglucanase activity of the whole cellulase preparation can be determined using carboxymethyl cellulose (CMC) as a substrate. A suitable assay measures the production of reducing ends created by the enzyme mixture acting on CMC wherein 1 unit is the amount of enzyme that liberates 1 .mu.moL of product/min (Ghose, T. K., Pure & Appl. Chem. 1987, 59, pp. 257-268).
[0279] The whole cellulase may be enriched with a polypeptide having GH61/endoglucanase activity, e.g., an EG IV-enriched (such as, e.g., enriched with T. reesei Eg4 polypeptide or a variant thereof) cellulase. The EG IV-enriched whole cellulase generally comprises an EG IV polypeptide (such as, e.g., T. reesei Eg4 polypeptide or a variant thereof) and a whole cellulase preparation. The EG IV-enriched whole cellulase compositions can be produced by recombinant means. For example, such a whole cellulase preparation can be achieved by expressing an EG IV in a microorganism capable of producing a whole cellulase. The EG IV-enriched whole cellulase composition can also, e.g., comprise a whole cellulase preparation and an EG IV (such as, e.g., T. reesei Eg4 polypeptide or a variant thereof). For instance, the EG IV-enriched (e.g., enriched with T. reesei Eg4 polypeptide or a variant thereof) whole cellulase composition can suitably comprise at least 0.1 wt. %, 1 wt. %, 2 wt. %, 5 wt. %, 7 wt. %, 10 wt. %, 15 wt. % or 20 wt. %, and up to 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, or 50 wt. % EG IV based on the total weight of proteins in that blend/composition.
[0280] The whole cellulase can be a .beta.-glucosidase-enriched cellulase. The .beta.-glucosidase-enriched whole cellulase generally comprises a .beta.-glucosidase and a whole cellulase preparation. The .beta.-glucosidase-enriched whole cellulase compositions can be produced by recombinant means. For example, such a whole cellulase preparation can be achieved by expressing a .beta.-glucosidase in a microorganism capable of producing a whole cellulase The .beta.-glucosidase-enriched whole cellulase composition can also, e.g., comprise a whole cellulase preparation and a .beta.-glucosidase. For instance, the .beta.-glucosidase-enriched whole cellulase composition can suitably comprise at least 0.1 wt. %, 1 wt. %, 2 wt. %, 5 wt. %, 7 wt. %, 10 wt. %, 15 wt. % or 20 wt. %, and up to 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, or 50 wt. % .beta.-glucosidase based on the total weight of proteins in that blend/composition.
[0281] Certain fungi produce complete cellulase systems, including exo-cellobiohydrolases or CBH-type cellulases, endoglucanases or EG-type cellulases and .beta.-glucosidase or BG-type cellulases (Schulein, 1988). However, sometimes these systems lack CBH-type cellulases, e.g., bacterial cellulases also typically include little or no CBH-type cellulases. In addition, it has been shown that the EG components and CBH components synergistically interact to more efficiently degrade cellulose. See, e.g., Wood, 1985. The different components, i.e., the various endoglucanases and exocellobiohydrolases in a multi-component or complete cellulase system, generally have different properties, such as isoelectric point, molecular weight, degree of glycosylation, substrate specificity and enzymatic action patterns.
[0282] In some aspects, the cellulase is used as is produced by fermentation with no or minimal recovery and/or purification. For example, once cellulases are secreted by a cell into the cell culture medium, the cell culture medium containing the cellulases can be used. In some aspects, the whole cellulase preparation comprises the unfractionated contents of fermentation material, including cell culture medium, extracellular enzymes and cells. Alternatively, the whole cellulase preparation can be processed by any convenient method, e.g., by precipitation, centrifugation, affinity, filtration or any other method known in the art. In some aspects, the whole cellulase preparation can be concentrated, for example, and then used without further purification. In some aspects, the whole cellulase preparation comprises chemical agents that decrease cell viability or kills the cells. In some aspects, the cells are lysed or permeabilized using methods known in the art.
[0283] A composition is provided comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprising at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the cellulase polypeptide and/or the hemicellulase polypeptide is heterologous to the host cell expressing the cellulase polypeptide and/or the hemicellulase polypeptide. In some aspects, there is provided a composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprising at least 1 cellulase polypeptide and/or at least 1 hemicellulase polypeptide, wherein the cellulase polypeptide and/or the hemicellulase polypeptide is expressed from a host cell, and wherein cellulase polypeptide and/or a hemicellulase polypeptide is endogenous to the host cell. The cellulase polypeptide may comprise a polypeptide having endoglucanase activity (e.g., T. reesei EG1 or a variant thereof, T. reesei EG2 or a variant thereof), a polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof), or a polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). The hemicellulase polypeptide may comprise a polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), a having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof), or a polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof).
[0284] In some aspects, the composition is from fermentation broth. The composition may be from the fermentation broth of a strain, wherein a nucleic acid encoding a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is heterologous to the host cell expressing the polypeptide having GH61/endoglucanase activity (e.g., integrated into the strain or expressed from a vector in the host strain). The composition may be from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27 as in Examples).
[0285] The composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may comprise whole cellulase. Thus, a composition is provided (e.g., a non-naturally occurring composition) comprising T. reesei Eg4 (or a variant thereof), T. reesei Bgl1 (or a variant thereof), T. reesei xyn3 (or a variant thereof), Fv3A (or a variant thereof), Fv43D (or a variant thereof), and Fv51A (or a variant thereof).
[0286] In some aspects, the composition comprises isolated T. reesei Eg4. In some aspects, the composition comprises at least one (at least 2, 3, 4, or 5) of isolated T. reesei Bgl1, isolated T. reesei xyn3, isolated Fv3A, isolated Fv43D, and isolated Fv51A.
[0287] In some aspects, the composition is from fermentation broth. In some aspects, the composition is from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27 as described herein in the Examples). The T. reesei Eg4 or the nucleic acid encoding T. reesei Eg4 may be heterologous to the host cell expressing T. reesei Eg4. At least one nucleic acid encoding T. reesei Bgl1, T. reesei xyn3, Fv3A, Fv43D, Fv51A, or a variant thereof may be heterologous to the host cell such as the host cell expressing T. reesei Eg4. In some aspects, at least one nucleic acid encoding T. reesei Bgl1, T. reesei xyn3, Fv3A, Fv43D, Fv51A, or a variant thereof is endogenous to the host cell such as the host cell expressing T. reesei Eg4.
[0288] Regarding any of the compositions described above, varying amounts of the polypeptide(s) included in the compositions are described below in "Amount of component(s) in compositions" section.
Amount of Component(s) in Compositions
[0289] A non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (or a non-naturally occurring composition comprising whole cellulase comprising a polypeptide having GH61/endoglucanase activity) provided herein may comprise various components as described herein, wherein each component is present in the composition in various amount.
[0290] In some aspects of any one of the compositions or methods provided herein, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is present in the composition in an amount sufficient to increase the yield of fermentable sugar(s) from hydrolysis of biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the yield in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). Any one of the compositions or methods provided herein, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be present in the composition in an amount sufficient to reduce the viscosity of a biomass mixture during hydrolysis of a biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the viscosity of the biomass mixture during hydrolysis in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). The composition may further comprise at least 1 polypeptide having endoglucanase activity, at least 1 polypeptide having cellobiohydrolase activity, at least 1 polypeptide having .beta.-glucosidase activity, at least 1 polypeptide having xylanase activity, at least 1 polypeptide having .beta.-xylosidase activity, at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity, and/or whole cellulase, or a mixture thereof. The amount of polypeptide(s) having endoglucanase activity, the amount of polypeptide(s) having cellobiohydrolase activity, the amount of polypeptide(s) having .beta.-glucosidase activity, the amount of polypeptide(s) having xylanase activity, the amount of polypeptide(s) having .beta.-xylosidase activity, the amount of polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the amount of whole cellulase is sufficient to increase the yield of fermentable sugar(s) from hydrolysis of biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the yield in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof), the polypeptide(s) having endoglucanase activity, the polypeptide(s) having cellobiohydrolase activity, the polypeptide(s) having .beta.-glucosidase activity, the polypeptide(s) having xylanase activity, the polypeptide(s) having .beta.-xylosidase activity, the polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the whole cellulase. In some aspects, the amount of polypeptide(s) having endoglucanase activity, the amount of polypeptide(s) having cellobiohydrolase activity, the amount of polypeptide(s) having .beta.-glucosidase activity, the amount of polypeptide(s) having xylanase activity, the amount of polypeptide(s) having .beta.-xylosidase activity, the amount of polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the amount of whole cellulase is sufficient to reduce the viscosity of a biomass mixture during hydrolysis of a biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the viscosity of a biomass mixture in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof), the polypeptide(s) having endoglucanase activity, the polypeptide(s) having cellobiohydrolase activity, the polypeptide(s) having .beta.-glucosidase activity, the polypeptide(s) having xylanase activity, the polypeptide(s) having .beta.-xylosidase activity, the polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the whole cellulase.
[0291] A polypeptide having GH61/endoglucanase activity (such as EG IV including T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. A polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that has a range having upper limit and lower limit. For example, lower limit for a polypeptide having GH61/endoglucanase activity is about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. Upper limit for a polypeptide having GH61/endoglucanase activity may be about any of 10 wt,%, 15 wt,%, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of proteins in the composition. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. The polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be present in about 10 wt. % or 12 wt. % of the total weight of proteins in the composition. The composition may have at least two polypeptides having endoglucanase activity (e.g., T. reesei Eg4, T. reesei Eg1, and/or T. reesei Eg2, or a variant thereof), where the total amount of polypeptides having endoglucanase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 30 wt. %, about 2 to about 20 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having GH61/endoglucanase activity may be heterologous or endogenous to the host cell expressing the polypeptide having GH61/endoglucanase activity. The polypeptide having GH61/endoglucanase activity included in the composition may be isolated.
[0292] In some aspects, the enzyme composition (e.g., the enzyme composition) described herein is whole cellulase composition comprising a polypeptide having GH61/endoglucanase activity. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that is no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that has a lower limit of about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of the whole cellulase and a upper limit of about any of 10 wt,%, 15 wt,%, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 13 wt. %, 14 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) is present in an amount that is about 10 wt. % or 12 wt. % of the total weight of the whole cellulase.
[0293] In some aspects, any of the compostions provided herein may comprise at least one polypetide having endoglucanase activity (e.g., in addition to a polypeptide having GH61/endoglucanase activity) including T. reesei Eg1 or a variant thereof and/or T. reesei Eg2 or a variant thereof. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that has a range having upper limit and lower limit. For example, lower limit for the total amount of the polypeptide(s) having endoglucanase activity is about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. Upper limit for the total amount of the polypeptide(s) having endoglucanase activity may be about any of 10 wt,%, 15 wt,%, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of proteins in the composition. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition.
[0294] In some aspects, any of the compostions provided herein may comprise one or more polypeptide with various enzyme activity, such as polypeptide(s) having cellobiohydrolase activity, polypeptide(s) having glucosidase activity (e.g., .beta.-glucosidase), polypeptide(s) having xylanase activity, polypeptide(s) having xylosidase activity, and/or polypeptide(s) having arabinofuranosidase activity. In some aspects, there may be multiple polypeptides having the same enzyme activity. Each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. In some aspects, each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. Each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that has a range having upper and lower limits. For example, lower limit for the total amount of the polypeptide(s) having endoglucanase activity is about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. Upper limit may be about any of 10 wt,%, 15 wt,%, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of proteins in the composition. In some aspects, each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition.
[0295] In some aspects, any of the compostions provided herein may further comprise whole cellulase. The whole cellulase may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of the total weight of proteins in the composition. The whole cellulase may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is no more than about any of 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of the total weight of proteins in the composition. The whole cellulase may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of the total weight of proteins in the composition.
[0296] In some aspects of any one of the compositions or methods provided herein, the polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, T. reesei CBH2, or a variant thereof) is present in an amount that is about 0.1 to about 70 wt. % (e.g., about 0.5 to about 60 wt. %, about 5 to about 70 wt. %, about 10 to about 60 wt. %, about 20 to about 50 wt. %, or about 30 to about 50 wt. %) of the total weight of proteins in the composition.
[0297] In some aspects, the composition has at least two polypeptides having cellobiohydrolase activity (e.g., T. reesei CBH1 (or a variant thereof) and T. reesei CBH2 (or a variant thereof)), wherein the total amount of polypeptides having cellobiohydrolase activity is about 0.1 to about 70 wt. % (e.g., about 0.5 to about 60 wt. %, about 5 to about 70 wt. %, about 10 to about 60 wt. %, about 20 to about 50 wt. %, or about 30 to about 50 wt. %) of the total weight of proteins in the composition. The polypeptide having cellobiohydrolase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell.
[0298] In some aspects, the polypeptide having cellobiohydrolase activity included in the composition is isolated.
[0299] In some aspects of any one of the compositions or methods provided herein, the polypeptide having .beta.-glucosidase activity (e.g., an Fv3C, a Pa3D, an Fv3G, an Fv3D, a Tr3A, a Tr3B, a Te3A, an An3A, an Fo3A, a Gz3A, an Nh3A, a Vd3A, a Pa3G, a Tn3B, or a variant thereof) is present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. %, about 1 to about 30 wt. %, about 2 to about 20 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. In some aspects, the composition has at least two polypeptides having .beta.-glucosidase activity, wherein the total amount of polypeptides having .beta.-glucosidase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. % about 1 to about 30 wt. %, about 2 to about 20 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having .beta.-glucosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having .beta.-glucosidase activity included in the composition is isolated.
[0300] Any one of the compositions or methods provided herein, the polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, an AfuXyn2, an AfuXyn5, or a variant thereof) may be present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. %, about 1 to about 40 wt. %, about 4 to about 30 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The composition may have at least 2 polypeptides having xylanase activity, wherein the total amount of polypeptides having xylanase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. %, about 1 to about 40 wt. %, about 4 to about 30 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having xylanase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having xylanase activity included in the composition may be isolated.
[0301] Any one of the compositions or methods provided herein, the polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., an Af43A, an Fv43B, a Pf51A, a Pa51A, an Fv51A, or a variant thereof) may be present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 2 to about 30 wt. %, about 4 to about 20 wt. %, or about 5 to about 15 wt. %) of the total weight of enzymes in the composition. The composition may have at least 2 polypeptides having L-.alpha.-arabinofuranosidase activity, wherein the total amount of polypeptides having L-.alpha.-arabinofuranosidase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 2 to about 30 wt. %, about 4 to about 20 wt. %, or about 5 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having L-.alpha.-arabinofuranosidase activity may be expressed from a nucleic acid heterologous or heterologous to the host cell. The polypeptide having L-.alpha.-arabinofuranosidase activity included in the composition may be isolated.
[0302] Any one of the compositions or methods provided herein, the polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, a Pf43A, an Fv43D, an Fv39A, an Fv43E, an Fo43A, an Fv43B, a Pa51A, a Gz43A, a T. reesei Bxl1, or a variant thereof) may be present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 4 to about 35 wt. %, about 5 to about 25 wt. %, or about 5 to about 20 wt. %) of the total weight of enzymes in the composition. The composition may have at least 2 polypeptides having .beta.-xylosidase activity, wherein the total amount of polypeptides having .beta.-xylosidase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 4 to about 35 wt. %, about 5 to about 25 wt. %, or about 5 to about 20 wt. %) of the total weight of proteins in the composition. The polypeptide having .beta.-xylosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having .beta.-xylosidase activity included in the composition may be isolated.
[0303] Any one of the compositions or methods provided herein, the whole cellulase in the composition may be about 0.1 to about 100 wt. % (e.g., about 1 to about 95 wt. %, about 5 to about 90 wt. %, about 10 to about 85 wt. %, about 20 to about 80 wt. %, or about 30 to about 75 wt. %) of the total weight of proteins in the composition. The whole cellulase may comprise at least 1 polypeptide having endoglucanase activity (such as T. reesei Eg4 or a variant thereof, T. reesei Eg1 or a variant thereof, T. reesei Eg2 or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may comprise at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1 or a variant thereof, T. reesei CBH2 or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may comprise at least one polypeptide having .beta.-glucosidase activity (e.g., an Fv3C, a Pa3D, an Fv3G, an Fv3D, a Tr3A, a Tr3B, a Te3A, an An3A, an Fo3A, a Gz3A, an Nh3A, a Vd3A, a Pa3G, a Tn3B, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell.
[0304] In some aspects, the composition of the invention is capable of converting a biomass material into fermentable sugar(s) (e.g., glucose, xylose, arabinose, and/or cellobiose). In some aspects, the composition is capable of achieving at least 0.1 (e.g., 0.1 to 0.4) fraction product as determined by the calcofluor assay.
[0305] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are mixed together before contacting a biomass material.
[0306] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are added to a biomass material at different times (e.g., a polypeptide having GH61/endoglucanase activity is added to a biomass material before or after the at least one cellulase polypeptide and/or at least one hemicellulase polypeptide is added to the biomass material).
[0307] In some aspects, the composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is a mixture comprising a biomass material, e.g., the composition is a hydrolysis mixture, a fermentation mixture, or a saccharification mixture. Such mixture may further include fermentable sugar(s).
Other Components
[0308] The enzyme compositions of the disclosure may suitably further comprise 1 or more accessory proteins. Examples of accessory proteins include, without limitation, mannanases (e.g., endomannanases, exomannanases, and .beta.-mannosidases), galactanases (e.g., endo- and exo-galactanases), arabinases (e.g., endo-arabinases and exo-arabinases), ligninases, amylases, glucuronidases, proteases, esterases (e.g., ferulic acid esterases, acetyl xylan esterases, coumaric acid esterases or pectin methyl esterases), lipases, other glycoside hydrolases, xyloglucanases, CIP1, CIP2, swollenins, expansins, and cellulose disrupting proteins. For example, the cellulose disrupting proteins are cellulose binding modules.
Methods and Processes
[0309] The disclosure provides methods and processes for biomass saccharification, using enzymes, enzyme blends/compositions of the disclosure. In particular, the disclosure provides methods and processes for using any one of the polypeptides or compositions provided herein for hydrolyzing a biomass material. Further, the disclosure provides methods of using any one of the polypeptides or compositions provided herein for reducing the viscosity of a biomass mixture (e.g., a biomass mixture containing biomass substrate and enzyme during saccharification process). In some aspects, there are provided methods of hydrolyzing a biomass material comprising contacting the biomass material with a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity. In some aspects, the polypeptide is in an amount sufficient to hydrolyze the biomass material.
[0310] The term "biomass," as used herein, refers to any composition comprising cellulose and/or hemicellulose (including lignin in lignocellulosic biomass materials). As used herein, biomass includes, without limitation, seeds, grains, tubers, plant waste or byproducts of food processing or industrial processing (e.g., stalks), corn (including, e.g., cobs, stover, and the like), grasses (including, e.g., Indian grass, such as Sorghastrum nutans; or, switchgrass, e.g., Panicum species, such as Panicum virgatum), perennial canes (e.g., giant reeds), wood (including, e.g., wood chips, processing waste), paper (including paper waste), pulp, and recycled paper (including, e.g., newspaper, printer paper, and the like). Other biomass materials include, without limitation, potatoes, soybean (e.g., rapeseed), barley, rye, oats, wheat, beets, and sugar cane bagasse. Suitable lignocellulosic biomass materials include, without limitation, seeds, grains, tubers, plant waste or byproducts of food processing or industrial processing (e.g., stalks), corn (including, e.g., cobs, stover, and the like), grasses (e.g., Indian grass, such as Sorghastrum nutans; or, switchgrass, e.g., Panicum species, such as Panicum virgatum), perennial canes, e.g., giant reeds, wood (including, e.g., wood chips, processing waste), paper, pulp, recycled paper (e.g., newspaper), wood pulp, or sawdust. Examples of grasses include, without limitation, Indian grass or switchgrass. Examples of reeds include, without limitation, certain perennial canes such as giant reeds. Examples of paper waste include, without limitation, discarded or used photocopy paper, computer printer paper, notebook paper, notepad paper, typewriter paper, newspapers, magazines, cardboard and paper-based packaging materials.
[0311] The saccharified biomass can be made into a number of bio-based products, via processes such as, e.g., microbial fermentation and/or chemical synthesis. As used herein, "microbial fermentation" refers to a process of growing and harvesting fermenting microorganisms under suitable conditions. The fermenting microorganism can be any microorganism suitable for use in a desired fermentation process for the production of bio-based products. Suitable fermenting microorganisms include, without limitation, filamentous fungi, yeast, and bacteria. The saccharified biomass can, e.g., be made it into a fuel (e.g., a biofuel such as a bioethanol, biobutanol, biomethanol, a biopropanol, a biodiesel, a jet fuel, or the like) via fermentation and/or chemical synthesis. The saccharified biomass can, e.g., also be made into a commodity chemical (e.g., ascorbic acid, isoprene, 1,3-propanediol), lipids, amino acids, proteins, and enzymes, via fermentation and/or chemical synthesis.
[0312] Biomass material may include cellulose, hemicellulose, or a mixture thereof. For example, a biomass material may include glucan and/or xylan.
[0313] In some aspects, there are provided methods of reducing the viscosity of a biomass mixture comprising contacting the biomass mixture with non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity. The polypeptide is in an amount sufficient to reduce the viscosity. The biomass mixture may comprise biomass material (e.g., pretreated biomass material). The biomass mixture may comprise an enzyme composition such as any of the enzyme compositions provided herein or a mixture thereof.
[0314] In some aspects, any of the polypeptides, compositions provided herein may be used to hydrolyze substrate such as a biomass material or reduce the viscosity of a substrate-enzyme mixture during saccharification process. The substrate may be a biomass material. The substrate may be isolated cellulose or isolated hemicellulose. The substrate may be glucan and/or xylan. In some aspects, the biomass material is pretreated biomass material.
Pretreatment of Biomass Material
[0315] Prior to saccharification, a biomass material is preferably subject to one or more pretreatment step(s) in order to render xylan, hemicellulose, cellulose and/or lignin material more accessible or susceptable to enzymes and thus more amenable to hydrolysis by the enzyme(s) and/or enzyme blends/compositions of the disclosure.
[0316] Pretreatment may include chemical, physical, and biological pretreatment. For example, physical pretreatment techniques can include without limitation various types of milling, crushing, steaming/steam explosion, irradiation and hydrothermolysis. Chemical pretreatment techniques can include without limitation dilute acid, alkaline, organic solvent, ammonia, sulfur dioxide, carbon dioxide, and pH-controlled hydrothermolysis. Biological pretreatment techniques can include without limitation applying lignin-solubilizing microorganisms. The pretreatment can occur from several minutes to several hours, such as from about 1 hour to about 120.
[0317] In some aspects, any of the methods or processes provided herein may further comprise pretreating the biomass material, such as pretreating the biomass with acid or base. The acid or base may be ammonia, sodium hydroxide, or phosphoric acid. The method may further comprise pretreating the biomass material with ammonia. The pretreatment may be steam explosion, pulping, grinding, acid hydrolysis, or combinations thereof.
[0318] In one embodiment, the pretreatment may be by elevated temperature and the addition of either of dilute acid, concentrated acid or dilute alkali solution. The pretreatment solution can added for a time sufficient to at least partially hydrolyze the hemicellulose components and then neutralized
[0319] In an exemplary embodiment, the pretreatment entails subjecting biomass material to a catalyst comprising a dilute solution of a strong acid and a metal salt in a reactor. The biomass material can, e.g., be a raw material or a dried material. This pretreatment can lower the activation energy, or the temperature, of cellulose hydrolysis, ultimately allowing higher yields of fermentable sugars. See, e.g., U.S. Pat. Nos. 6,660,506; 6,423,145.
[0320] Another exemplary pretreatment method entails hydrolyzing biomass by subjecting the biomass material to a first hydrolysis step in an aqueous medium at a temperature and a pressure chosen to effectuate primarily depolymerization of hemicellulose without achieving significant depolymerization of cellulose into glucose. This step yields a slurry in which the liquid aqueous phase contains dissolved monosaccharides resulting from depolymerization of hemicellulose, and a solid phase containing cellulose and lignin. The slurry is then subject to a second hydrolysis step under conditions that allow a major portion of the cellulose to be depolymerized, yielding a liquid aqueous phase containing dissolved/soluble depolymerization products of cellulose. See, e.g., U.S. Pat. No. 5,536,325.
[0321] A further example of method involves processing a biomass material by one or more stages of dilute acid hydrolysis using about 0.4% to about 2% of a strong acid; followed by treating the unreacted solid lignocellulosic component of the acid hydrolyzed material with alkaline delignification. See, e.g., U.S. Pat. No. 6,409,841.
[0322] Another example of pretreatment method comprises prehydrolyzing biomass (e.g., lignocellulosic materials) in a prehydrolysis reactor; adding an acidic liquid to the solid lignocellulosic material to make a mixture; heating the mixture to reaction temperature; maintaining reaction temperature for a period of time sufficient to fractionate the lingo-cellulosic material into a solubilized portion containing at least about 20% of the lignin from the lignocellulosic material, and a solid fraction containing cellulose; separating the solubilized portion from the solid fraction, and removing the solubilized portion while at or near reaction temperature; and recovering the solubilized portion. The cellulose in the solid fraction is rendered more amenable to enzymatic digestion. See, e.g., U.S. Pat. No. 5,705,369.
[0323] Further pretreatment methods can involve the use of hydrogen peroxide H.sub.2O.sub.2. See Gould, 1984, Biotech, and Bioengr. 26:46-52.
[0324] Pretreatment can also comprise contacting a biomass material with stoichiometric amounts of sodium hydroxide and ammonium hydroxide at a very low concentration. See Teixeira et al., 1999, Appl. Biochem.and Biotech. 77-79:19-34. Pretreatment can also comprise contacting a lignocellulose with a chemical (e.g., a base, such as sodium carbonate or potassium hydroxide) at a pH of about 9 to about 14 at moderate temperature, pressure, and pH. See PCT Publication WO2004/081185.
[0325] Ammonia may be used in a pretreatment method. Such a pretreatment method comprises subjecting a biomass material to low ammonia concentration under conditions of high solids. See, e.g., U.S. Patent Publication 20070031918, PCT publication WO 06110901.
Saccharification Process and Viscosity Reduction
[0326] The present disclosure provides methods of reducing the viscosity of a biomass mixture comprising contacting the biomass mixture with a composition (e.g., a non-naturally occurring composition) comprising a polypeptide having glycosyl hydrolase family 61 ("GH61") endoglucanase activity in an amount sufficient to reduce the viscosity of the biomass mixture. In some aspects, the biomass mixture comprises a biomass material, fermentable sugar(s), whole cellulase, a composition comprising a polypeptide having cellulase activity, and/or a polypeptide having hemicellulase activity. In some aspects, the viscosity is reduced by at least about 5%, (e.g., at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the viscosity of a biomass mixture in the absence of a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). In some aspects of any of the methods described herein, the biomass material comprises hemicellulose, cellulose, or a mixture thereof. In some aspects, the biomass material comprises glucan, xylan and/or lignin.
[0327] The methods and processes provided herein may be performed under various conditions. For example, any of the methods provided herein may be performed at a pH in the range of pH of about 3.5 to about 7.0, for example, pH of about 4.0 to about 6.5, pH of about 4.4 to about 6.0, pH of about 4.8 to about 5.6, or about 4.5 to about 5.5. The saccharification mixture containing biomass material may be adjusted to the desired pH using base or acid (such as sulfuric acid) according to any of the methods known to one of ordinary skill in the art. For example, the pretreated biomass material may be added with base or acid (such as sulfuric acid) to achieve the desired pH for saccharification. Any of the methods for hydrolyzing a biomass material or reducing the viscosity of the biomass mixture may be conducted at a pH of about 4.8 to about 5.6 (e.g., pH of about any of 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, or 5.6). In some aspects, the method further comprises adjusting the pH of the biomass mixture to a pH of about 4.0 to about 6.5 (e.g., pH of about 4.5 to about 5.5).
[0328] The methods and processes provided herein may be performed for any length of time, e.g., 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 10 days, 14 days, 3 weeks, or 4 weeks. After any of the saccharification time described herein, the amount of fermentable sugar(s) is increased and/or the viscosity of the saccharification mixture is reduced. In some aspects, the method is performed for about 2 hours to about 7 days (e.g., about 4 hours to about 6 days, about 8 hours to about 5 days, or about 8 hours to about 3 days).
[0329] A composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added after the biomass material is pretreated. A composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added to the biomass material before or after another enzyme composition (such as an enzyme composition comprising hemicellulose, cellulase, or whole cellulase) is added to the biomass material. A composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added to the biomass mixture containing (a) biomass material and/or fermentable sugars and (b) enzyme (such as hemicellulase or cellulase including whole cellulase). In some aspects, a composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) is added to the biomass mixture, wherein the biomass material has been hydrolyzed for a period of time (such as about any of 5 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, or 5 days).
[0330] A composition (e.g., a non-naturally occurring composition) comprising isolated polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added to biomass material during saccharification. A composition (e.g., a non-naturally occurring composition) comprising whole cellulase may be added to biomass material during saccharification, where the whole cellulase comprises a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof).
[0331] A biomass material used in any one of the methods may be in liquid form, solid form, or a mixture thereof. A biomass material used in any one of the methods may be wet form, dry form, a material having various degree of moisture, or a mixture thereof. A biomass material used in any one of the methods may be in a dry solid form (such as a dry solid form as a starting material). The biomass material may be processed into any of the following forms: wet form, dry form, solid form, liquid form, or a mixture thereof according to any method known to one skilled in the art.
[0332] A biomass material used in any of the methods may be present in the saccharification mixture in an amount of at least about any of 0.5 wt. %, 1 wt. %, 5 wt. %, 10 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, or 60 wt. % of total weight of hydrolysis mixture or saccharification mixture, wherein the amount of the biomass material refers to the weight amount of the biomass material in its solid state (or the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state). The biomass material may also be in an amount of about 0.5 wt. % to about 55 wt. %, 1 wt. % to about 40 wt. %, 5 wt. % to about 60 wt. %, about 10 wt. % to about 55 wt. %, about 10 wt. % to about 50 wt. %, about 15 wt. % to about 50 wt. %, about 15 wt. % to about 40 wt. %, about 15 wt. % to about 35 wt. %, about 15 wt. % to about 30 wt. %, about 20 wt. % to about 35 wt. %, or about 20 wt. % to about 30 wt. % of a hydrolyzing mixture containing biomass material, wherein the amount of the biomass material refers to the weight amount of the biomass material in its solid state (or the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state). A biomass material used in any of the methods may be present in the saccharification mixture in an amount of about any of 0.5 wt. %, 1 wt. %. 5 wt. %, 10 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, or 60 wt. % of total weight of hydrolysis mixture or saccharification mixture, wherein the amount of the biomass material refers to the weight amount of the biomass material in its solid state (or the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state).
[0333] The hydrolysis mixture or saccharification mixture includes biomass material, enzyme(s) (e.g., any one of polypeptides provided herein), enzyme composition (e.g., any one of the compositions provided herein), and/or other components such as components necessary for saccharification.
[0334] Any of the compositions provided herein may be used in the methods described herein such as any one of the compositions provided above in the "Exemplary compositions" section. The amount of any of the compositions described herein used in any one of the methods provided herein may be in the range of about 0.05 mg to about 50 mg, about 0.1 mg to about 40 mg, about 0.2 mg to about 30 mg, about 0.5 mg to about 25 mg, about 1 mg to about 25 mg, about 2 mg to about 25 mg, about 5 mg to about 25 mg, or about 10 mg to about 25 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material. A non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any one of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture may be in an amount of about 0.05 mg to about 50 mg, about 0.1 mg to about 40 mg, about 0.2 mg to about 30 mg, about 0.5 mg to about 25 mg, about 1 mg to about 25 mg, about 2 mg to about 25 mg, about 5 mg to about 25 mg, or about 10 mg to about 25 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material.
[0335] In some aspects, a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture is in an amount of at least about any of 0.05 mg, 0.1 mg, 0.2 mg, 0.5 mg, 1 mg, 2 mg, 5 mg, 7.5 mg, 10 mg, 12 mg, 14 mg, 15 mg, 16 mg, 17.5 mg, 18 mg, 20 mg, 22.5 mg, 25 mg, 27.g mg, 30 mg, 35 mg, 40 mg, 45 mg, or 50 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material. In some aspects, a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture is in an amount of no more than about any of 0.1 mg, 0.2 mg, 0.5 mg, 1 mg, 2 mg, 5 mg, 7.5 mg, 10 mg, 12 mg, 14 mg, 15 mg, 16 mg, 17.5 mg, 18 mg, 20 mg, 22.5 mg, 25 mg, 27.5 g mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 75 mg, or 100 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material. In some aspects, a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture is in an amount of about any of 0.05 mg, 0.1 mg, 0.2 mg, 0.5 mg, 1 mg, 2 mg, 5 mg, 7.5 mg, 10 mg, 12 mg, 14 mg, 15 mg, 16 mg, 17.5 mg, 18 mg, 20 mg, 22.5 mg, 25 mg, 27.5 g mg, 30 mg, 35 mg, 40 mg, 45 mg, or 50 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material. The amount of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material may be calculated using any methods known to one skilled in the art. The biomass material may comprise glucan, xylan, and/or lignin.
[0336] In some aspects of any of the methods described herein, the amount of the composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is about 0.1 mg to about 50 mg protein (e.g., about 0.2 mg to about 40 mg protein, about 0.5 mg to about 30 mg protein, about 1 mg to about 20 mg protein, or about 5 mg to about 15 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material. The protein amount described herein refers to the weight of total protein in the composition. The proteins include a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and may also include other enzymes such as cellulase polypeptide(s) and/or hemicellulase polypeptide(s) in the composition.
[0337] In some aspects of any of the methods described herein, the amount of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 1 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.
[0338] In some aspects of any of the methods described herein, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having endoglucanase activity (e.g., T. reesei Eg1, T. reesei Eg2, and/or a variant thereof), wherein the total amount of the polypeptides having endoglucanase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 1 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.
[0339] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, T. reesei CBH2, and/or a variant thereof), wherein the amount of the polypeptide(s) having cellobiohydrolase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 1 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.
[0340] In some aspects of any of the methods described herein, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having .beta.-glucosidase activity (e.g., an Fv3C, a Pa3D, an Fv3G, an Fv3D, a Tr3A, a Tr3B, a Te3A, an An3A, an Fo3A, a Gz3A, an Nh3A, a Vd3A, a Pa3G, a Tn3B, or a variant thereof), wherein the amount of the polypeptide(s) having (3-glucosidase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.
[0341] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, an AfuXyn2, an AfuXyn5, or a variant thereof), wherein the amount of the polypeptide(s) having xylanase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.
[0342] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, a Pf43A, an Fv43D, an Fv39A, an Fv43E, an Fo43A, an Fv43B, a Pa51A, a Gz43A, a T. reesei Bxl1, or a variant thereof), wherein the amount of the polypeptide(s) having .beta.-xylosidase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.
[0343] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., an Af43A, an Fv43B, a Pf51A, a Pa51A, an Fv51A, or a variant thereof), wherein the amount of the polypeptide(s) having L-.alpha.-arabinofuranosidase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.
[0344] In any one of the methods provided herein, the viscosity of the biomass mixture may be reduced by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the viscosity of the biomass mixture in the absence of an enzyme composition provided herein. For example, there are provided methods of reducing the viscosity of a biomass mixture comprising contacting the biomass mixture with a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof), wherein the viscosity is reduced by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the viscosity of the biomass mixture in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). In some aspects, the viscosity is reduced by about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the viscosity of the biomass mixture in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). The reduction of viscosity described herein is seen after a certain period of saccharification. For example, the reduction of viscosity is seen after 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, or 5 days saccharification. Methods of measuring viscosity are known in the art. For example, viscosity may be measured by human eyes, or be measured by a viscometer such as Brookfield viscometer (Brookfield Engineering, Inc). For example, viscosity of saccharification reaction mixture can be measured using a viscosity meter with ammonia-pretreated corncob as substrates. A viscosity meter can measure the resistance (torque) it takes to turn a spindle at a constant rate in the slurry.
[0345] The methods provided herein may be conducted at a temperature that is suitable for saccharification. For example, any one of the methods described herein may be performed at about 20.degree. C. to about 75.degree. C., about 25.degree. C. to about 70.degree. C., about 30.degree. C. to about 65.degree. C., about 35.degree. C. to about 60.degree. C., about 37.degree. C. to about 60.degree. C., about 40.degree. C. to about 60.degree. C., about 40.degree. C. to about 55.degree. C., about 40.degree. C. to about 50.degree. C., or about 45.degree. C. to about 50.degree. C. In some aspects, any one of the methods described herein may be performed at about 20.degree. C., about 25.degree. C., about 30.degree. C., about 35.degree. C., about 37.degree. C., about 40.degree. C., about 45.degree. C., about 48.degree. C., about 50.degree. C., about 55.degree. C., about 60.degree. C., about 65.degree. C., about 70.degree. C., or about 75.degree. C.
[0346] In some aspects of any of the methods described herein, the method comprises producing fermentable sugar(s), wherein the amount of the fermentable sugar(s) is increased by at least about 5% (e.g., at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the amount of the fermentable sugar(s) produced in the absence of a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).
[0347] Also provided herein are methods of increasing the amount of fermentable sugar(s) (and/or increasing the conversion from a biomass material to fermentable sugar(s) such as glucan conversion) by using a composition (e.g., a non-naturally occurring composition) comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) during hydrolysis of biomass material. There are various fermentable sugars produced from hydrolysis of biomass material, including but are not limited to, glucose, xylose, and/or cellobiose. In some aspects, the amount of fermentable sugar(s) produced from hydrolysis of biomass material may be increased by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the amount of fermentable sugar(s) in the absence of an enzyme composition provided herein. For example, there are provided methods of increasing the amount of fermentable sugar(s) comprising contacting the biomass material with a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) (to start or further a saccharification process), wherein the amount of fermentable sugar(s) from saccharification is increased by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the amount of fermentable sugar(s) from saccharification in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). In some aspects, the amount of fermentable sugar(s) from saccharification is increased by about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the amount of fermentable sugar(s) from saccharification in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). The increase in amount of fermentable sugar(s) produced from hydrolysis of biomass material described herein is seen after a certain period of saccharification. For example, the increase in amount of fermentable sugar(s) is seen after 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, or 5 days saccharification. Methods of measuring amount of fermentable sugar(s) and/or glucan conversion are known to a person skilled in the art.
[0348] The reduction in viscosity of saccharification mixture may correlate with improved yield of desirable fermentable sugars.
[0349] In some aspects, the method further comprises the step of contacting the biomass material with a composition comprising whole cellulase. In some aspects, the step of further contacting the biomass material with a composition comprising whole cellulase is performed before, after, or concurrently with contacting the biomass material with composition comprising a polypeptide having glycosyl hydrolase family 61 ("GH61") endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).
[0350] In some aspects of any of the methods described herein, the method comprises the step of further contacting the biomass material with a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity. In some aspects, the step of further contacting the biomass material with a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity is performed before, after, or concurrently with contacting the biomass material with composition comprising a polypeptide having glycosyl hydrolase family 61 ("GH61") endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).
[0351] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are mixed together before contacting the biomass material with a composition comprising the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).
[0352] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are added to the biomass material at different times (e.g., the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is added before or after at least one cellulase polypeptide and/or at least one hemicellulase polypeptide is added to the biomass material).
[0353] Enhanced cellulose conversion may be achieved at higher temperatures using the CBH polypeptides described in, for example, any one of the following US Patent Publications US20050054039, US20050037459, US20060205042, US20050048619A1 and US20060218671. Methods of overexpressing .beta.-glucosidase are known in the art. See, e.g., U.S. Pat. No. 6,022,725. See also, e.g., US Patent Publication 20050214920.
[0354] The methods of the present disclosure can be used in the production of monosaccharides, disaccharides, and polysaccharides as chemical, fermentation feedstocks for microorganism, and inducers for the production of proteins, organic products, chemicals and fuels, plastics, and other products or intermediates. In particular, the value of processing residues (dried distillers grain, spent grains from brewing, sugarcane bagasse, etc.) can be increased by partial or complete solubilization of cellulose or hemicellulose. In addition to ethanol, chemicals that can be produced from cellulose and hemicellulose include, acetone, acetate, glycine, lysine, organic acids (e.g., lactic acid), 1,3-propanediol, butanediol, glycerol, ethylene glycol, furfural, polyhydroxyalkanoates, cis, cis-muconic acid, animal feed and xylose.
Business Methods
[0355] The cellulase and/or hemicellulase compositions of the disclosure can be further used in industrial and/or commercial settings. Accordingly a method or a method of manufacturing, marketing, or otherwise commercializing the instant non-naturally occurring cellulase and/or hemicellulase compositions is also contemplated.
[0356] In a specific embodiment, the non-naturally occurring cellulase and/or hemicellulase compositions of the invention, for example, comprising one or more of the GH61 endoglucanases or variants thereof as described herein, can be supplied or sold to certan ethanol (bioethanol) refineries or other bio-chemical or bio-material manufacturers. In a first example, the non-naturally occurring cellulase and/or hemicellulase compositions can be manufactured in an enzyme manufacturing facility that is specialized in manufacturing enzymes at an industrial scale. The non-naturally occurring cellulase and/or hemicellulase compositions can then be packaged or sold to customers of the enzyme manufacturer. This operational strategy is termed the "merchant enzyme supply model" herein.
[0357] In another operational strategy, the non-naturally occurring cellulase and hemicellulase compositions of the invention can be produced in a state of the art enzyme production system that is built by the enzyme manufacturer at a site that is located at or in the vicinity of the bioethanol refineries or the bio-chemical/biomaterial manufacturers ("on-site"). In some embodiments, an enzyme supply agreement is executed by the enzyme manufactuer and the bioethanol refinerie or the bio-chemical/biomaterial manufacturer. The enzyme manufacturer designs, controls and operates the enzyme production system on site, utilizing the host cell, expression, and production methods as described herein to produce the non-naturally-occurring cellulase and/or hemicellulase compositions. In certain embodiments, suitable biomass, preferably subject to appropriate pretreatments as described herein, can be hydrolyzed using the saccharification methods and the enzymes and/or enzyme compositions herein at or near the bioethanol refineries or the bio-chemical/biomaterial manufacturing facilities. The resulting fermentable sugars can then be subject to fermentation at the same facilities or at facilities in the vicinity. This operational strategy is termed the "on-site biorefinery model" herein.
[0358] The on-site biorefinery model provides certain advantages over the merchant enzyme supply model, incuding, e.g., the provision of a self-sufficient operation, allowing minimal reliance on enzyme supply from merchant enzyme suppliers. This in turn allows the bioethanol refineries or the bio-chemical/biomaterial manufacturers to better control enzyme supply based on real-time or nearly real-time demand. In certain embodiments, it is contemplated that an on-site enzyme production facility can be shared between two or among two or more bioethanol refineries and/or the bio-chemical/biomaterial manufacturers who are located near to each other, reducing the cost of transporting and storing enzymes. Moreover, this allows more immediate "drop-in" technology improvements at the enzyme production facility on-site, reducing the time lag between the improvements of enzyme compositions to a higher yield of fermentable sugars and ultimately, bioethanol or biochemicals.
[0359] The on-site biorefinery model has more general applicability in the industrial production and commercialization of bioethanols and biochemicals, in that it can be used to manufacture, supply, and produce not only the cellulase and non-naturally occurring hemicellulase compositions of the present disclosure but also those enzymes and enzyme compositions that process starch (e.g., corn) to allow for more efficient and effective direct conversion of starch to bioethanol or bio-chemicals. The starch-processing enzymes can, in certain embodiments, be produced in the on-site biorefinery, then quickly and easily integrated into the bioethanol refinery or the biochemical/biomaterial manufacturing facility in order to produce bioethanol.
[0360] Thus in certain aspects, the invention also pertains to certain business method of applying the enzymes (e.g., certain GH61 endoglucanases and variants thereof), cells, compositions (e.g., comprising a suitable GH61 endoglucanase or a variant thereof), and processes herein in the manufacturing and marketing of certain bioethanol, biofuel, biochemicals or other biomaterials. In some embodiments, the invention prertains to the application of such enzymes, cells, compositions and processes in an on-site biorefinery model. In other embodiments, the invention pertains to the application of such enzymes, cells, compositions and processes in a merchant enzyme supply model.
[0361] Relatedly, the disclosure provides the use of the enzymes and/or the enzyme compositions of the invention in a commercial setting. For example, the enzymes and/or enzyme compositions of the disclosure can be sold in a suitable market place together with instructions for typical or preferred methods of using the enzymes and/or compositions. Accordingly the enzymes and/or enzyme compositions of the disclosure can be used or commercialized within a merchant enzyme supplier model, where the enzymes and/or enzyme compositions of the disclosure are sold to a manufacturer of bioethanol, a fuel refinery, or a biochemical or biomaterials manufacturer in the business of producing fuels or bio-products. In some aspects, the enzyme and/or enzyme composition of the disclosure can be marketed or commercialized using an on-site bio-refinery model, wherein the enzyme and/or enzyme composition is produced or prepared in a facility at or near to a fuel refinery or biochemical/biomaterial manufacturer's facility, and the enzyme and/or enzyme composition of the invention is tailored to the specific needs of the fuel refinery or biochemical/biomaterial manufacturer on a real-time basis. Moreover, the disclosure relates to providing these manufacturers with technical support and/or instructions for using the enzymes and. or enzyme compositions such that the desired bio-product (e.g., biofuel, bio-chemcials, bio-materials, etc) can be manufactured and marketed.
[0362] The following are examples of the methods and compositions of the invention. It is understood that various other embodiments may be practiced, given the general description provided above.
EXAMPLES
Example 1: Assays/Methods
[0363] The following assays/methods were generally used in the Examples described below. Any deviations from the protocols provided below are indicated in specific Examples.
[0364] A. Pretreatment of Biomass Substrates
[0365] Corncob, corn stover and switch grass were pretreated prior to enzymatic hydrolysis according to the methods and processing ranges described in International Patent Publication WO06110901A (unless otherwise noted). These references for pretreatment are also included in the disclosures of US Patent Application Publications 20070031918-A1, 20070031919-A1, 20070031953-A1, and/or 20070037259-A1.
[0366] Ammonia fiber explosion treated (AFEX) corn stover was obtained from Michigan Biotechnology Institute International (MBI). The composition of the corn stover was determined by MBI (Teymouri, F et al. Applied Biochemistry and Biotechnology, 2004, 113:951-963) using the National Renewable Energy Laboratory (NREL) procedure, NREL LAP-002. NREL procedures are available at: http://www.nrel.gov/biomass/analytical_procedures.html.
[0367] The FPP pulp and paper substrates were obtained from SMURFIT KAPPA CELLULOSE DU PIN, France.
[0368] Steam Expanded Sugar-cane Bagasse (SEB) was obtained from SunOpta (Glasser, W G et al. Biomass and Bioenergy 1998, 14(3): 219-235; Jollez, P et al. Advances in thermochemical biomass conversion, 1994, 2:1659-1669).
[0369] B. Compositional Analysis of Biomass
[0370] The 2-step acid hydrolysis method described in Determination of structural carbohydrates and lignin in the biomass (National Renewable Energy Laboratory, Golden, Colo. 2008 http://www.nrel.gov/biomass/pdfs/42618.pdf) was used to measure the composition of biomass substrates. Using this method, enzymatic hydrolysis results were reported herein in terms of percent conversion with respect to the theoretical yield from the starting glucan and xylan content of the substrate.
[0371] C. Total Protein Assay
[0372] The BCA protein assay is a colorimetric assay that measures protein concentration with a spectrophotometer. The BCA Protein Assay Kit (Pierce Chemical, Product #23227) was used according to the manufacturer's suggestion. Enzyme dilutions were prepared in test tubes using 50 mM sodium acetate pH 5 buffer. Diluted enzyme solution (0.1 mL) was added to 2 mL Eppendorf centrifuge tubes containing 1 mL 15% tricholoroacetic acid (TCA). The tubes were vortexed and placed in an ice bath for 10 min. The samples were then centrifuged at 14,000 rpm for 6 min. The supernatant was poured out, the pellet was resuspended in 1 mL 0.1 N NaOH, and the tubes vortexed until the pellet dissolved. BSA standard solutions were prepared from a stock solution of 2 mg/mL. BCA working solution was prepared by mixing 0.5 mL Reagent B with 25 mL Reagent A. 0.1 mL of the enzyme resuspended sample was added to 3 Eppendorf centrifuge tubes. Two (2) mL Pierce BCA working solution was added to each sample and BSA standard Eppendorf tubes. All tubes were incubated in a 37.degree. C. waterbath for 30 min. The samples were then cooled to room temperature (15 min) and the absorbance measured at 562 nm in a spectrophotometer.
[0373] Average values for the protein absorbance for each standard were calculated. The average protein standard was plotted, absorbance on x-axis and concentration (mg/mL) on the y-axis. The points were fit to a linear equation:
y=mx+b
[0374] The raw concentration of the enzyme samples was calculated by substituting the absorbance for the x-value. The total protein concentration was calculated by multiplying with the dilution factor.
[0375] The total protein of purified samples was determined by A280 (Pace, C N, et al. Protein Science, 1995, 4:2411-2423).
[0376] The total protein content of fermentation products was sometimes measured as total nitrogen by combustion, capture and measurement of released nitrogen, either by Kjeldahl (rtech laboratories, www.rtechlabs.com) or in-house by the DUMAS method (TruSpec CN, www.leco.com) (Sader, A. P. O. et al., Archives of Veterinary Science, 2004, 9(2):73-79). For complex protein-containing samples, e.g. fermentation broths, an average 16% N content, and the conversion factor of 6.25 for nitrogen to protein was used. In some cases, total precipitable protein was measured to remove interfering non-protein nitrogen. A 12.5% final TCA concentration was used and the protein-containing TCA pellet was resuspended in 0.1 M NaOH.
[0377] In some cases, Coomassie Plus-the Better Bradford Assay (Thermo Scientific, Rockford, Ill. product #23238) was used according to manufacturer recommendation. In other cases, total protein was measured using the Biuret method as modified by Weichselbaum and Gornall using Bovine Serum Albumin as a calibrator (Weichselbaum, T. Amer. J. Clin. Path. 1960, 16:40; Gornall, A. et al. J. Biol. Chem. 1949, 177:752).
[0378] D. Glucose Determination Using ABTS
[0379] The ABTS (2,2'-azino-bis(3-ethylenethiazoline-6)-sulfonic acid) assay for glucose determination is based on the principle that in the presence of 02, glucose oxidase catalyzes the oxidation of glucose while producing stoichiometric amounts of hydrogen peroxide (H.sub.2O.sub.2). This reaction is followed by the horse radish peroxidase (HRP) catalyzed oxidation of ABTS which linearly correlates to the concentration of H.sub.2O.sub.2. The emergence of oxidized ABTS is indicated by the evolution of a green color, which is quantified at an OD of 405 nm. A mixture of ABTS powder (Sigma, #A1888-5g 2.74 mg/mL), 0.1 U/mL HRP (100 U/mL, Sigma, #P8375) and 1 U/mL Glucose Oxidase, (OxyGO.RTM. HP L5000, 5000 U/mL, Genencor Division, Danisco USA) was prepared in 50 mM Na Acetate Buffer, pH 5.0 and kept in the dark (substrate). Glucose standards (0, 2, 4, 6, 8, 10 nmol) were prepared in 50 mM Na Acetate Buffer, pH 5.0 and 10 .mu.L of each standard was added to a 96-well flat bottom MTP in triplicate. Ten (10) .mu.L of serially diluted samples were also added to the MTP. One hundred (100) .mu.L of ABTS substrate solution was added to each well and the plate was placed on a spectrophotometric plate reader to kinetically read oxidation of ABTS for 5 min at 405 nm.
[0380] Alternately absorbance at 405 nm was measured after 15-30 min of incubation followed by quenching of the reaction with 50 mM Na Acetate Buffer, pH 5.0 containing 2% SDS.
[0381] E. Sugar Analysis by HPLC
[0382] Samples from biomass saccharification were prepared by centrifugation to clear insoluble material, filtration through a 0.22 .mu.m nylon filter (Spin-X centrifuge tube filter, Corning Incorporated, Corning, N.Y.) and dilution to an appropriate concentration of soluble sugars with distilled water. Monomer sugars were determined on a Shodex Sugar SH-G SH1011, 8.times.300 mm with a 6.times.50 mm SH-1011P guard column (www.shodex.net). Solvent was 0.01 N H2504 run at 0.6 mL/min. Column temperature was 50.degree. C. and detection was by refractive index. Alternately, sugars were analyzed using a Biorad Aminex HPX-87H column with a Waters 2410 refractive index detector. The analysis time was 20 min, the injection volume was 20 .mu.L of diluted sample, the mobile phase was 0.01 N sulfuric acid, 0.2 .mu.m filtered and degassed, the flow rate was 0.6 mL/min and the column temperature was 60.degree. C. External standards of glucose, xylose and arabinose were run with each sample set.
[0383] Oligomeric sugars were separated by size exclusion chromatography in HPLC using a Tosoh Biosep G2000PW column 7.5 mmx60 cm (www.tosohbioscience.de). The solvent was distilled water at 0.6 mL/min and the column was run at room temperature. Six carbon sugar standards used for size calibration were: stachyose, raffinose, cellobiose and glucose; and 5 carbon sugars were: xylohexose, xylopentose, xylotetrose, xylotriose, xylobiose and xylose. Xylo-oligomers were obtained from Megazyme (www.megazyme.com). Detection was by refractive index and when reported quantitatively results are either as peak area units or relative peak areas by percent.
[0384] Total soluble sugars were determined by hydrolysis of the centrifuged and filter clarified samples described above. The clarified sample was diluted 1 to 1 with 0.8 N H2504 and the resulting solution was autoclaved in a capped vial for a total cycle time of 1 h at 121.degree. C. Results are reported without correction for loss of monomer sugar during the hydrolysis.
[0385] F. Oligomer Preparation from Cob and Enzyme Assays
[0386] Oligomers from T. reesei Xyn3 hydrolysis of corncobs were prepared by incubating 8 mg T. reesei Xyn3 per g Glucan+Xylan with 250 g dry weight of dilute ammonia pretreated corncob in 50 mM pH 5.0 Na Acetate buffer (pH adjusted with 1 N sulfuric acid). The reaction proceeded for 72 h at 48.degree. C., 180 rpm rotary shaking. The supernatant was centrifuged 9,000.times.G, then filtered through 0.22 .mu.m Nalgene filters to recover the soluble sugars. For subsequent enzyme assays, 100 .mu.L aliquots of the T. reesei Xyn3 oligomer-containing supernatant were incubated with 1 .mu.g/.mu.L of either T. reesei integrated strain H3A, 1 .mu.g/.mu.L of T. reesei integrated strain H3A/EG4#27 or water control in Eppendorf tubes at 48.degree. C. for 2.5 h. The supernatants were then diluted 4.times. with ice cold MilliQ water, filtered, and analyzed by HPLC for sugar release from the oligomers.
[0387] G. Corncob Saccharification Assay
[0388] For a typical example herein, unless otherwise specifically described with the particular examples, corncob saccharification was performed in a microtiter plate format in accordance with the following procedures. The biomass substrate, e.g., a dilute ammonia pretreated corncob, was diluted in water and pH-adjusted with sulfuric acid to create a pH 5, 7% cellulose slurry that was then used directly without further processing in the assays. Enzyme samples were loaded based on mg total protein per g of cellulose (as determined using conventional compositional analysis methods, such as, for example, using the method described in Example 1A above) in the substrate (e.g., the corncob). The enzymes were then diluted in 50 mM sodium acetate, pH 5.0, to obtain the desired loading concentration. Forty (40) .mu.L of enzyme solution were added to 70 mg of dilute-ammonia pretreated corncob at 7% cellulose per well (equivalent to 4.5% cellulose final per well). The assay plates were covered with aluminum plate sealers, mixed at room temperature and incubated at 50.degree. C., 200 rpm, for 3 days ("3d"). At the end of the incubation period, the saccharification reaction was quenched by adding to each well 100 .mu.L of a 100 mM glycine buffer, pH10.0. The plate was centrifuged for 5 min at 3,000 rpm. Ten (10) .mu.L of the supernatant was then added to 200 .mu.L of MilliQ water in a 96-well HPLC plate and the soluble sugars were measured using HPLC.
Example 2: Construction of an Integrated Expression Strain of Trichoderma reesei
[0389] An integrated expression strain of Trichoderma reesei was constructed that co-expressed five genes: T. reesei .beta.-glucosidase gene bgl1, T. reesei endoxylanase gene xyn3, F. verticillioides .beta.-xylosidase gene fv3A, F. verticillioides .beta.-xylosidase gene fv43D, and F. verticillioides a-arabinofuranosidase gene fv51A.
[0390] The construction of the expression cassettes for these different genes and the transformation of T. reesei are described below.
[0391] A. Construction of the .beta.-Glucosidase Expression Vector
[0392] The N-terminal portion of the native T. reesei .beta.-glucosidase gene bgl1 was codon optimized by DNA 2.0 (Menlo Park, USA). This synthesized portion comprised of the first 447 bases of the coding region. This fragment was PCR amplified using primers SK943 and SK941. The remaining region of the native bgl1 gene was PCR amplified from a genomic DNA sample extracted from T. reesei strain RL-P37 (Sheir-Neiss, G et al. Appl. Microbiol. Biotechnol. 1984, 20:46-53), using primer SK940 and SK942. These two PCR fragments of the bgl1 gene were fused together in a fusion PCR reaction, using primers SK943 and SK942:
TABLE-US-00002 Forward Primer SK943: (SEQ ID NO: 121) (5'-CACCATGAGATATAGAACAGCTGCCGCT-3') Reverse Primer SK941: (SEQ ID NO: 122) (5'-CGACCGCCCTGCGGAGTCTTGCCCAGTGGTCCCGCGACAG-3') Forward Primer (SK940): (SEQ ID NO: 123) (5'-CTGTCGCGGGACCACTGGGCAAGACTCCGCAGGGCGGTCG-3') Reverse Primer (SK942): (SEQ ID NO: 124) (5'-CCTACGCTACCGACAGAGTG-3')
[0393] The resulting fusion PCR fragments were cloned into the Gateway.RTM. Entry vector pENTR.TM./D-TOPO.RTM., and transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) resulting in the intermediate vector, pENTR-TOPO-Bgl1-(943/942) (FIG. 8A). The nucleotide sequence of the inserted DNA was determined. The pENTR-943/942 vector with the correct bgl1 sequence was recombined with pTrex3g using a LR Clonase.RTM. reaction protocol outlined by Invitrogen. The LR clonase reaction mixture was transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen), resulting in the final expression vector, pTrex3g 943/942 (FIG. 8B). The vector also contains the Aspergillus nidulans amdS gene, encoding acetamidase, as a selectable marker for transformation of T. reesei. The expression cassette was amplified by PCR with primers SK745 and SK771 to generate product for transformation of T. reesei.
TABLE-US-00003 Forward Primer SK771: (SEQ ID NO: 125) (5'-GTCTAGACTGGAAACGCAAC -3') Reverse Primer SK745: (SEQ ID NO: 126) (5'-GAGTTGTGAAGTCGGTAATCC -3')
[0394] B. Construction of the Endoxylanase Expression Cassette
[0395] The native T. reesei endoxylanase gene xyn3 was PCR amplified from a genomic DNA sample extracted from T. reesei, using primers xyn3F-2 and xyn3R-2.
TABLE-US-00004 Forward Primer xyn3F-2: (SEQ ID NO: 127) (5'-CACCATGAAAGCAAACGTCATCTTGTGCCTCCTGG-3') Reverse Primer (xyn3R-2): (SEQ ID NO: 128) (5'-CTATTGTAAGATGCCAACAATGCTGTTATATGCCGGCTTGGGG- 3')
[0396] The resulting PCR fragments were cloned into the Gateway.RTM. Entry vector pENTR.TM./D-TOPO.RTM., and transformed into E. coli One Shot.RTM. TOP10 Chemically FIG. 8C). The nucleotide sequence of the inserted DNA was determined. The pENTR/Xyn3 vector with the correct xyn3 sequence was recombined with pTrex3g using a LR Clonase.RTM. reaction protocol outlined by Invitrogen. The LR clonase reaction mixture was transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen), resulting in the final expression vector, pTrex3g/Xyn3 (FIG. 8D). The vector also contains the Aspergillus nidulans amdS gene, encoding acetamidase, as a selectable marker for transformation of T. reesei. The expression cassette was amplified by PCR with primers SK745 and SK822 to generate product for transformation of T. reesei.
TABLE-US-00005 Forward Primer SK745: (SEQ ID NO: 129) (5'-GAGTTGTGAAGTCGGTAATCC-3') Reverse Primer SK822: (SEQ ID NO: 130) (5'-CACGAAGAGCGGCGATTC-3')
[0397] C. Construction of the Fl-Xylosidase Fv3A Expression Vector
[0398] The F. verticillioides .beta.-xylosidase fv3A gene was amplified from a F. verticillioides genomic DNA sample using the primers MH124 and MH125.
TABLE-US-00006 Forward Primer MH124: (SEQ ID NO: 131) (5'-CAC CCA TGC TGC TCA ATC TTC AG -3') Reverse Primer MH125: (SEQ ID NO: 132) (5'-TTA CGC AGA CTT GGG GTC TTG AG -3')
[0399] The PCR fragments were cloned into the Gateway.RTM. Entry vector pENTR.TM./D-TOPO.RTM., and transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) resulting in the intermediate vector, pENTR-Fv3A (FIG. 8E). The nucleotide sequence of the inserted DNA was determined. The pENTR-Fv3A vector with the correct fv3A sequence was recombined with pTrex6g (FIG. 8F) using a LR Clonase.RTM. reaction protocol outlined by Invitrogen. The LR clonase reaction mixture was transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen), resulting in the final expression vector, pTrex6g/Fv3A (FIG. 8G). The vector also contains a chlorimuron ethyl resistant mutant of the native T.reesei acetolactate synthase (als) gene, designated alsR, which is used together with its native promoter and terminator as a selectable marker for transformation of T. reesei (WO2008/039370 A1). The expression cassette was PCR amplified with primers SK1334, SK1335 and SK1299 to generate product for transformation of T. reesei.
TABLE-US-00007 Forward Primer SK1334: (SEQ ID NO: 133) (5'-GCTTGAGTGTATCGTGTAAG -3') Forward Primer SK1335: (SEQ ID NO: 134) (5'-GCAACGGCAAAGCCCCACTTC -3') Reverse Primer SK1299: (SEQ ID NO: 135) (5'-GTAGCGGCCGCCTCATCTCATCTCATCCATCC -3')
[0400] D. Construction of the .beta.-Xylosidase Fv43D Expression Cassette
[0401] For the construction of the F. verticillioides .beta.-xylosidase Fv43D expression cassette, the fv43D gene product was amplified from a F.verticillioides genomic DNA sample using the primers SK1322 and SK1297. A region of the promoter of the endoglucanase gene egl1 was amplified by PCR from a T. reesei genomic DNA sample extracted from strain RL-P37, using the primers SK1236 and SK1321. These two PCR amplified DNA fragments were subsequently fused together in a fusion PCR reaction using the primers SK1236 and SK1297. The resulting fusion PCR fragment was cloned into pCR-Blunt II-TOPO vector (Invitrogen) to give the plasmid TOPO Blunt/Pegl1-Fv43D (FIG. 8H) and E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) were transformed using this plasmid. Plasmid DNA was extracted from several E. coli clones and confirmed by restriction digest.
TABLE-US-00008 Forward Primer SK1322: (SEQ ID NO: 136) (5'-CACCATGCAGCTCAAGTTTCTGTC-3') Reverse Primer SK1297: (SEQ ID NO: 137) (5'-GGTTACTAGTCAACTGCCCGTTCTGTAGCGAG-3') Forward Primer SK1236: (SEQ ID NO: 138) (5'-CATGCGATCGCGACGTTTTGGTCAGGTCG-3') Reverse Primer SK1321: (SEQ ID NO: 139) (5'-GACAGAAACTTGAGCTGCATGGTGTGGGACAACAAGAAGG-3')
[0402] The expression cassette was PCR amplified from TOPO Blunt/Pegl1-Fv43D with primers SK1236 and SK1297 to generate product for transformation of T. reesei.
[0403] E. Construction of the .alpha.-Arabinofuranosidase Expression Cassette
[0404] For the construction of the F. verticillioides a-arabinofuranosidase gene fv51A expression cassette, the fv51A gene product was amplified from F.verticillioides genomic DNA using the primers SK1159 and SK1289. A region of the promoter of the endoglucanase gene egl1 was amplified by PCR from a T. reesei genomic DNA sample extracted from strain RL-P37, using the primers SK1236 and SK1262. These two PCR amplified DNA fragments were subsequently fused together in a fusion PCR reaction using the primers SK1236 and SK1289. The resulting fusion PCR fragment was cloned into pCR-Blunt II-TOPO vector (Invitrogen) to give the plasmid TOPO Blunt/Pegl1-Fv51A (FIG. 8I) and E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) were transformed using this plasmid.
TABLE-US-00009 Forward Primer SK1159: (SEQ ID NO: 140) (5'-CACCATGGTTCGCTTCAGTTCAATCCTAG-3') Reverse Primer SK1289: (SEQ ID NO: 141) (5'-GTGGCTAGAAGATATCCAACAC-3') Forward Primer SK1236: (SEQ ID NO: 142) (5'-CATGCGATCGCGACGTTTTGGTCAGGTCG-3') Reverse Primer SK1262: (SEQ ID NO: 143) (5'-GAACTGAAGCGAACCATGGTGTGGGACAACAAGAAGGAC-3')
[0405] The expression cassette was PCR amplified with primers SK1298 and SK1289 to generate product for transformation of T. reesei.
TABLE-US-00010 Forward Primer SK1298: (SEQ ID NO: 144) (5'-GTAGTTATGCGCATGCTAGAC-3') Reverse Primer SK1289: (SEQ ID NO: 145) (5'-GTGGCTAGAAGATATCCAACAC-3')
[0406] F. Co-Transformation of T. reesei Expression Cassettes for .beta.-Glucosidase and Endoxylanase
[0407] A Trichoderma reesei mutant strain, derived from RL-P37 (Sheir-Neiss, G et al. Appl. Microbiol. Biotechnol. 1984, 20:46-53), and selected for high cellulase production was co-transformed with the .beta.-glucosidase expression cassette (cbh1 promoter, T.reesei .beta.-glucosidase1 gene, cbh1 terminator, and amdS marker), and the endoxylanase expression cassette (cbh1 promoter, T.reesei xyn3, and cbh1 terminator) using PEG-mediated transformation (Penttila, M et al. Gene 1987, 61(2):155-64). Numerous transformants were isolated and examined for .beta.-glucosidase and endoxylanase production. One transformant called T. reesei strain #229 was used for transformation with the other expression cassettes.
[0408] G. Co-Transformation of T. reesei Strain #229 with Expression Cassettes for Two Xylosidases and an .alpha.-Arabinofuranosidase
[0409] T. reesei strain #229 was co-transformed with the .beta.-xylosidase fv3A expression cassette (cbh1 promoter, fv3A gene, cbh1 terminator, and alsR marker), the .beta.-xylosidase fv43D expression cassette (egl1 promoter, fv43D gene, native fv43D terminator), and the fv51A a-arabinofuranosidase expression cassette (egl1 promoter, fv51A gene, fv51A native terminator) using electroporation (see e.g. WO 08153712). Transformants were selected on Vogels agar plates containing chlorimuron ethyl (80 ppm). Vogels agar was prepared as follows, per liter.
TABLE-US-00011 50 x Vogels Stock Solution (recipe below) 20 mL BBL Agar 20 g With deionized H.sub.2O bring to 980 mL post-sterile addition: 50% Glucose 20 mL 50 x Vogels Stock Solution, per liter: In 750 mL deionized H2O, dissolve successively: Na.sub.3Citrate*2H.sub.2O 125 g KH.sub.2PO.sub.4 (Anhydrous) 250 g NH.sub.4NO.sub.3 (Anhydrous) 100 g MgSO.sub.4*7H.sub.2O 10 g CaCl.sub.2*2H.sub.2O 5 g Vogels Trace Element Solution (recipe below) 5 mL d-Biotin 0.1 g With deionized H.sub.2O, bring to 1 L Vogels Trace Element Solutions: Citric Acid 50 g ZnSO.sub.4.cndot.*7H.sub.2O 50 g Fe(NH.sub.4)2SO.sub.4.cndot.*6H.sub.2O 10 g CuSO.sub.4.cndot.5H.sub.2O 2.5 g MnSO.sub.4.cndot.4H.sub.2O 0.5 g H.sub.3BO.sub.3 0.5 g Na.sub.2MoO.sub.4.cndot.2H.sub.2O 0.5 g
[0410] Numerous transformants were isolated and examined for .beta.-xylosidase and L-.alpha.-arabinofuranosidase production. Transformants were also screened for biomass conversion performance according to the cob saccharification assay described in Example 1 (supra). Examples of T. reesei integrated expression strains described herein are H3A, 39A, A10A, 11A, and G9A, which express all of the genes for T. reesei beta-glucosidase 1, T. reesei Xyn3, Fv3A, Fv51A, and Fv43D, at different ratios. Other integrated T. reesei strains include those wherein most of the genes for T. reesei beta-glucosidase 1, T. reesei Xyn3, Fv3A, Fv51A, and Fv43D, were expressed at different ratios. For example, one lacked overexpressed T. reesei Xyn3; another lacked Fv51A, as determined by Western Blot; two others lacked Fv3A, one lacked overexpressed Bgl1 (e.g. strain H3A-5).
[0411] H. Composition of T. reesei Integrated Strain H3A
[0412] Fermentation of the T.reesei integrated strain H3A yields the following proteins T. reesei Xyn3, T. reesei Bgl1, Fv3A, Fv51A, and Fv43D, at ratios determined as described herein and shown in FIG. 9.
[0413] I. Protein Analysis by HPLC
[0414] Liquid chromatography (LC) and mass spectroscopy (MS) were performed to separate, identify, and quantify the enzymes contained in fermentation broths. Enzyme samples were first treated with a recombinantly expressed endoH glycosidase from S. plicatus (e.g., NEB P0702L). EndoH was used at a ratio of 0.01-0.03 .mu.g endoH protein per .mu.g sample total protein and incubated for 3 h at 37.degree. C., pH 4.5-6.0 to enzymatically remove N-linked gycosylation prior to HPLC analysis. Approximately 50 .mu.g of protein was then injected for hydrophobic interaction chromatography using an Agilent 1100 HPLC system with an HIC-phenyl column and a high-to-low salt gradient over 35 min. The gradient was achieved using high salt buffer A: 4 M ammonium sulphate containing 20 mM potassium phosphate pH 6.75 and low salt buffer B: 20 mM potassium phosphate pH 6.75. Peaks were detected with UV light at 222 nm and fractions were collected and identified by mass spectroscopy. Protein concentrations are reported as the percent of each peak area relative to the total integrated area of the sample.
[0415] J. Effect of Addition of Purified Proteins to the Fermentation Broth of T. reesei Integrated Strain H3A on Saccharification of Dilute Ammonia Pretreated Corncob
[0416] Purified proteins (and one unpurified protein) were serially diluted from stock solution and added to a fermentation broth of T. reesei integrated strain H3A to determine their benefit to saccharification of pretreated biomass. Dilute ammonia pretreated corncob was loaded into microtiter plate (MTP) wells at 20% solids (w/w) (.about.5 mg of cellulose per well), pH 5. H3A protein (in the form of fermentation broth) was added to each well at 20 mg protein/g cellulose. Volumes of 10, 5, 2, and 1 .mu.L of each of the diluted proteins (FIG. 10) were added into individual wells, and water was added such that the liquid addition to each well was a total of 10 .mu.L. Reference wells included additions of either 10 .mu.L water or dilutions of additional H3A fermentation broth. The MTP were sealed with foil and incubated at 50.degree. C. with 200 RPM shaking in an Innova incubator shaker for three days. The samples were quenched with 100 .mu.L of 100 mM glycine pH 10. The quenched samples were covered with a plastic seal and centrifuged 3000 RPM for 5 min at 4.degree. C. An aliquot (5 .mu.L) of the quenched reactions was diluted with 100 .mu.L of water and the concentration of glucose produced in the reactions was determined using HPLC. The glucose data was plotted as a function of the protein concentration added to the 20 mg/g of H3A (the concentrations of the protein additions were variable due to different starting concentrations and additions by volume). Results are shown in FIGS. 11A-11D.
Example 3: Construction of T. reesei Strains
[0417] A. Construction of and Screening for T. reesei Strain H3A/EG4#27
[0418] An expression cassette containing the T. reesei egl1 (also termed "Cel 7B") promoter, T. reesei eg4 (also termed "TrEG4", or "Cel 61A") open reading frame, and cbh1 (Cel 7A) terminator sequence (FIG. 12A) from Trichoderma reesei, and sucA selectable marker (see, Boddy et al., Curr. Genet. 1993, 24:60-66) from Aspergillus niger was cloned into pCR Blunt II TOPO (Invitrogen) (FIG. 12B).
[0419] The expression cassette Pegl1-eg4-sucA was amplified by PCR with the primers:
TABLE-US-00012 (SEQ ID NO: 146) SK1298: 5'-GTAGTTATGCGCATGCTAGAC-3' (SEQ ID NO: 147) 214: 5'-CCGGCTCAGTATCAACCACTAAGCACAT-3'
[0420] Pfu Ultra II (Stratagene) was used as the polymerase for the PCR reaction. The products of the PCR reaction were purified with the QIAquick PCR purification kit (Qiagen) as per the manufacturer's protocol. The products of the PCR reaction were then concentrated using a speed vac to 1-3 .mu.g/.mu.L. The T. reesei host strain to be transformed (H3A) was grown to full sporulation on potato dextrose agar plates for 5 d at 28.degree. C. Spores from 2 plates were harvested with MilliQ water and filtered through a 40 .mu.M cell strainer (BD Falcon). Spores were transferred to a 50 mL conical tube and washed 3 times by repeated centrifugation with 50 mL water. A final wash with 1.1 M sorbitol solution was carried out. The spores were resuspended in a small volume (less than 2 times the pellet volume) using 1.1 M sorbitol solution. The spore suspension was then kept on ice. Spore suspension (60 .mu.L) was mixed with 10-20 .mu.g of DNA, and transferred into the electroporation cuvette (E-shot, 0.1 cm standard electroporation cuvette from Invitrogen). The spores were electroporated using the Biorad Gene Pulser Xcell with settings of 16 kV/cm, 25 g, 400.OMEGA.. After electroporation, 1 mL of 1.1.M sorbitol solution was added to the spore suspension. The spore suspension was plated on Vogel's agar (see example 2G), containing 2% sucrose as the carbon source.
[0421] The transformation plates were incubated at 30.degree. C. for 5-7 d. The initial transformants were restreaked onto secondary Vogel's agar plates with sucrose and grown at 30.degree. C. for an additional 5-7 d. Single colonies growing on secondary selection plates were then grown in wells of microtiter plates using the method described in WO/2009/114380. The supernatants were analyzed on SDS-PAGE to check for expression levels prior to saccharification performance screening.
[0422] A total of 94 transformants overexpressed EG4 in strain H3A. Two H3A control strains were grown in microtiter plates along with the H3A/EG4 strains. Performance screening of T. reesei strains expressing EG4 protein was performed using ammonia pretreated corncob. The dilute ammonia pretreated corncob was suspended in water and adjusted to pH 5.0 with sulfuric acid to achieve 7% cellulose. The slurry was dispensed into a flat bottom 96 well microtiter plate (Nunc, 269787) and centrifuged at 3,000 rpm for 5 min.
[0423] Corncob saccharification reactions were initiated by adding 20 .mu.L of H3A or H3A/EG4 strain culture broth per well of substrate. The corncob saccharification reactions were sealed with aluminum (E&K scientific) and mixed for 5 min at 650 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 72 h. At the end of 72-h saccharification, the reactions were quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then mixed thoroughly and centrifuged at 3,000 rpm for 5 min. Supernatant (10 .mu.L) was added to 200 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose, xylose, cellobiose and xylobiose concentrations were measured by HPLC using an Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column.
[0424] The screening on corncob identified the following H3A/EG4 strains as having improved glucan and xylan conversion compared to the H3A control strains: 1, 2, 3, 4, 5, 6, 14, 22, 27, 43, and 49 (FIG. 13).
[0425] Select H3A/EG4 strains were re-grown in shake flasks. A total of 30 mL of protein culture filtrate was collected per shake flask per strain. The culture filtrates were concentrated 10-fold using 10 kDa membrane centrifugal concentrators (Sartorious, VS2001) and the total protein concentration was determined by BCA as described in Example 1C. A corncob saccharification reaction was performed using 2.5, 5, 10, or 20 mg protein from H3A/EG4 strain samples per g of cellulose per well of corncob substrate. An H3A strain produced at 14 L fermentation scale and a previously identified low performance sample (H3A/EG4 strain #20) produced at shake flask scale were included as controls. The saccharification reactions were carried out as described in Example 4 (below). Increased glucan conversion with increased protein dose was observed with culture supernatant from all of the EG4 expressing strains (FIG. 14). T. reesei integrated strain H3A/EG4#27 was used in additional saccharification reactions, and the strain was purified by streaking a single colony onto a potato dextrose plate from which a single colony was isolated.
Example 4: Range of T. reesei EG4 Concentrations for Improved Saccharification of Dilute Ammonia Pretreated Corncob
[0426] To determine preferred dosing, hydrolysis of dilute ammonia pretreated corncob (25% solids, 8.7% cellulose, 7.3% xylan) was conducted at pH 5.3 using fermentation broth from either T. reesei integrated strain H3A/EG4 #27 or H3A with purified EG4 added to the reaction mix. The total loading of T. reesei integrated strain H3A/EG4 #27 or H3A was 14 mg protein per gram of glucan (G) and xylan (X).
[0427] The reaction mix (total mass 5 g) was loaded into 20 mL scintillation vials in a total reaction volume of 5 mL according to the dosing chart in FIGS. 15, 17A and 17B.
[0428] The set up for experiment 1 is shown in FIG. 15. MilliQ Water and 6 N Sulfuric acid were mixed in a conical tube and added to the respective vials and the vials were swirled to mix the contents. Enzymes samples were added to the vials and the vials incubated for 6 d at 50.degree. C. At various time points, 100 .mu.L of sample was removed from the vialss diluted with 900 .mu.L 5 mM sulfuric acid, vortexed, centrifuged and the supernatant was used to measure the concentrations of soluble sugars using HPLC. The results of glucan and xylan conversion are shown in FIGS. 16A and 16B, respectively.
[0429] The set up for experiment 2 is shown in FIG. 17A. To further determine the preferred EG4 concentration, saccharification of dilute ammonia corncob (25% solids, 8.7% cellulose, 7.3% xylan) was conducted at pH 5.3 using fermentation broth from either T. reesei integrated strain H3A/EG4 #27 or H3A with purified EG4 added (ranging from 0.05 to 1.0 mg protein/g G+X) to the reaction mix. The total loading of T. reesei integrated strain H3A/EG4 #27 or H3A was 14 mg protein/g glucan+xylan. The experimental results are shown in FIG. 18A.
[0430] The set up for experiment 3 is shown in FIG. 17B. To pinpoint the preferred concentration range of T. reesei Eg4 yet further, dilute ammonia corncob (25% solids, 8.7% cellulose, and 7.3% xylan) was hydrolyzed at pH 5.3 using T. reesei integrated strain H3A/EG4 #27 or H3A with purified EG4 added at concentrations ranging from 0.1-0.5 mg protein/g G+X. The total loading of T. reesei integrated strain H3A/EG4 #27 or H3A was 14 mg protein per g of glucan and xylan.
[0431] Results are shown in FIG. 18B.
Example 5: Effect of T. reesei Eg4 on Saccharification of Dilute Ammonia Pretreated Corn Stover at Different Solid Loadings
[0432] Dilute ammonia pre-treated corn stover was incubated with fermentation broth from T. reesei integrated strain H3A or H3A/EG4#27 (14 mg protein/g glucan and xylan) at 7, 10, 15, 20 and 25% solids (% S) for three days at 50.degree. C., pH 5.3 (5 g total wet biomass in 20 mL vials). The reactions were carried out as described in Example 4 above. Glucose and xylose were analyzed by HPLC. Results are shown in FIG. 19. All samples up to 20% solids were visibly liquefied on day 1.
Example 6: Effect of Overexpression of T. reesei EG4 on Hydrolysis of Dilute Ammonia Pretreated Corncob
[0433] The effect of overexpression of T. reesei Eg4 in strain H3A on saccharification of dilute ammonia pretreated corncob was tested using fermentation broths from strains H3A/EG4 #27 and H3A. Corncob saccharification at 3 g scale was performed in 20 mL glass vials as follows. Enzyme preparation, 1 N sulfuric acid and 50 mM pH 5.0 sodium acetate buffer (with 0.01% sodium azide and 5 mM MnCl.sub.2) were added to give a final slurry of 3 g total reaction, 22% dry solids, pH 5.0 with enzyme loadings varying between 1.7 and 21.0 mg total protein per gram Glucan+Xylan. All saccharification vials were incubated at 48.degree. C. with 180 rpm rotation. After 72 h, 12 mL of filtered MilliQ water was added to each vial to dilute the entire saccharification reaction 5-fold. The samples were centrifuged at 14,000.times.g for 5 min, then filtered through a 0.22 .mu.m nylon filter (Spin-X centrifuge tube filter, Corning Incorporated, Corning, N.Y.) and further diluted 4-fold with filtered MilliQ water to create a final 20.times. dilution. 20 .mu.L injections were analyzed by HPLC to measure the sugars released.
[0434] Overexpression or addition of T. reesei Eg4 led to enhanced xylose and glucose monomer release as compared to H3A alone (FIGS. 20 and 21). Addition of H3A/EG4#27 at different doses led to an increased yield of xylose as compared to strain H3A, or compared to Eg4+a constant 1.12 mg Xyn3 per g Glucan+Xylan (FIG. 20).
[0435] Addition of H3A/EG4#27 at different doses led to an increased yield of glucose compared to strain H3A or compared to Eg4+a constant 1.12 mg Xyn3 per g Glucan+Xylan (FIG. 21).
[0436] The effect of T. reesei Eg4 on total fermentable monomer (xylose, glucose and arabinose) release by integrated strains H3A/EG4#27 or H3A is illustrated in the FIG. 22. The H3A/EG4#27 integrated strain led to enhanced total fermentable monomer release compared to the integrated strain H3A, or compared to Eg4+1.12 mg Xyn3/g Glucan+Xylan.
Example 7: Purified T. reesei EG4 Leads to Glucose Release in Dilute Ammonia Pretreated Corncob
[0437] The effect of purified T. reesei Eg4 on the concentration of sugars released was tested using 1.05 g dilute ammonia pretreated corncob in the presence or absence of 0.53 mg Xyn3 per g Glucan+Xylan. The experiments were performed as described in Example 6. Results are shown in FIG. 23. The data indicate that purified T. reesei Eg4 leads to release of glucose monomer without the action of other cellulases such as endoglucanases, cellobiohydrolases and .beta.-glucosidases.
[0438] Saccharification experiments were also conducted using dilute ammonia pretreated corncob with purified Eg4 added alone (no Xyn3 added). 3.3 .mu.L of purified Eg4 (15.3 mg/mL) was added to 872 .mu.L 50 mM, pH 5.0 sodium acetate buffer (included 0.01% sodium azide and 5 mM MnCl.sub.2), 165 mg of dilute ammonia pretreated corncob (67.3% dry solids, 111 mg dry solids added) and 16.5 .mu.L of 1 N sulfuric acid in 5 mL vials. The vials were incubated at 48.degree. C. and rotated at 180 rpm. Periodically, 20 .mu.L aliquots were removed, diluted 10-fold with filter sterilized double distilled water and filtered through a nylon filter before analysis for glucose released on a Dionex Ion Chromatography system. Authentic glucose solutions were used as external standards Results are shown in FIG. 24, indicating that addition of purified Eg4 leads to release of glucose monomer from dilute ammonia pretreated corncobs over 72 h incubation at 48.degree. C. in the absence of other cellulases or endoxylanase.
Example 8: Saccharification Performance of T. reesei Integrated Strains H3A and H3A/EG4 #27 on Various Substrates
[0439] In this experiment, fermentation broth from T. reesei integrated strain H3A or H3A/EG4#27, dosed at 14 mg protein per g of glucan+xylan, was tested for saccharification performance on different substrates including: dilute ammonia pretreated corncob, washed dilute ammonia pretreated corncob, ammonia fiber expanded corn stover (AFEX CS), Steam Expanded Sugarcane Bagasse (SEB), and Kraft-pretreated paper pulps FPP27 (Softwood Industrial Unbleached Pulp delignified-Kappa 13.5, Glucan 81.9%, Xylan 8.0%, Klason Lignin 1.9%), FPP-31 (Hardwood Unbleached Pulp delignified-Kappa 10.1, Glucan 75.1%, Xylan 19.1%, Klason Lignin 2.2%), and FPP-37 (Softwood Unbleached Pulp air dried-Kappa 82, Glucan 71.4%, Xylan 8.7%, Klason Lignin 11.3%).
[0440] The saccharification reactions were set up in 25 mL glass vials with final mass of 10 g in 0.1 M Sodium Citrate Buffer, pH 5.0 and incubated at 50.degree. C., 200 rpm for 6 d. At the end of 6 d, 100 .mu.L aliquots were diluted 1:10 in 5 mM sulfuric acid and the samples analyzed by HPLC to determine glucose and xylose formation. Results are shown in FIG. 25.
Example 9: Effect of T. reesei EG4 on Saccharification of Acid Pretreated Corn Stover
[0441] The effect of Eg4 on saccharification of acid pretreated corn stover was tested. Corn stover pretreated with dilute sulfuric acid (Schell, D J, et al., Appl. Biochem. Biotechnol. 2003, 105(1-3):69-85) was obtained from NREL, adjusted to 20% solids and conditioned to a pH 5.0 with the addition of soda ash solution. Saccharification of the pretreated substrate was performed in a microtiter plate using 20% total solids. Total protein in the fermentation broths was measured by the Biuret assay (see Example 1 above). Increasing amounts of fermentation broth from T. reesei integrated strains H3A/EG4 #27 and H3A were added to the substrate and saccharification performance was measured following incubation at 50.degree. C., 5 d, 200 RPM shaking. Glucose formation (mg/g) was measured using HPLC. Results are shown in FIG. 26.
Example 10: Saccharification Performance of T. reesei Integrated Strains H3A and H3A/EG4#27 on Dilute Ammonia Pretreated Corn Leaves, Stalks, and Cobs
[0442] Saccharification performance of T. reesei integrated strains H3A and H3A/EG4#27 was compared on dilute ammonia pretreated corn stover leaves, stalks, or cobs. Pretreatment was performed as described in WO06110901A. Five (5) g total mass (7% solids) was hydrolyzed in 20 mL vials at pH 5.3 (pH adjusted with 6 N H2504) using 14 mg protein per g of glucan+xylan. Saccharification reactions were carried out at 50.degree. C. and samples analyzed by HPLC for glucose and xylose released on day 4. Results are shown in FIG. 27.
Example 11: Saccharification Performance on Dilute Ammonia Pretreated Corncob in Response to Overexpressed EG4 from T. reesei
[0443] Saccharification reactions at 3 g scale were performed using dilute ammonia pretreated corncob. Sufficient pretreated cob preparation was measured into 20 mL glass vials to give 0.75 g dry solid. Enzyme preparation, 1 N sulfuric acid and 50 mM pH 5.0 sodium acetate buffer (with 0.01% sodium azide) were added to give final slurry of 3 g total reaction, 25% dry solids, pH 5.0. Extra cellular protein (fermentation broth) from the T. reesei integrated strain H3A was added at 14 mg protein/g (glucan+xylan) either with or without an additional 5% of the 14 mg protein load as the unpurified culture supernatant from a T. reesei strain (.DELTA.cbh1 .DELTA.cbh2 .DELTA.eg1 .DELTA.eg2) (See International publication WO 05/001036) over expressing Eg4. The saccharification reactions were incubated for 72 h at 50.degree. C. Following incubation, the reaction contents were diluted 3-fold, filtered and analyzed by HPLC for glucose and xylose concentration. The results are shown in FIG. 28. Addition of Eg4 protein in the form of extracelluar protein from a T. reesei strain over expressing Eg4 to H3A substantially increased the release of monomer glucose and slightly increased the release of monomer xylose.
Example 12: Saccharification Performance of Strain H3A/EG4#27 on Ammonia Pretreated Switchgrass
[0444] The saccharification performance of strain H3A/EG4#27 on ammonia pretreated switchgrass (International Patent Publication WO06110901A) at increasing protein doses was compared to that of strain H3A (18.5% solids). Pretreated switchgrass preparations were measured into 20 mL glass vials to give 0.925 g of dry solid. 1 N sulfuric acid and 50 mM pH 5.3 sodium acetate buffer (with 0.01% sodium azide) were added to give final slurry of 5 grams total reaction. The enzyme dosages of H3A tested were 14, 20, and 30 mg/g (glucan+xylan); and the dosages of H3A-EG4 #27 were 5, 8, 11, 14, 20, and 30 mg/g (glucan+xylan). The reactions were incubated at 50.degree. C. for 3 d. Following incubation, the reaction contents were diluted 3-fold, filtered and analyzed by HPLC for glucose and xylose concentration. The conversion of glucan and xylan were calculated based on the composition of the switchgrass substrate. The results (FIG. 29) indicate that the performance of H3A-EG4 #27 is more effective for glucan conversion than H3A at the same enzyme dosages.
Example 13: Effect of T. reesei EG4 Additions on Corncob Saccharification and on CMC and Cellobiose Hydrolysis
[0445] A. Corncob Saccharification:
[0446] Dilute ammonia pretreated corncob was adjusted to 20% solids, 7% cellulose and 65 mg was dispensed per well in a microtiter plate. Saccharification reactions were initiated by adding 35 .mu.L of 50 mM sodium acetate (pH 5.0) buffer containing T. reesei CBH1 at 5 mg protein/g glucan (final) and the relevant enzymes (CBH1 or Eg4), at final concentrations of 0, 1, 2, 3, 4 and 5 mg/g glucan. An Eg4 control received only EG4 at the same doses and as such, the total added protein in these wells was less. The microtiter plates were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 72 h.
[0447] At the end of 72-h saccharification, the plate was quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then centrifuged at 3000 rpm for 5 min. Supernatant (20 .mu.L) was added to 100 .mu.L of water in HPLC 96 well microtiter plate (Agilent 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column. % glucan conversion was calculated by 100.times.(mg cellobiose+mg glucose)/total glucan in substrate (FIG. 30).
[0448] B. Cmc Hydrolysis:
[0449] Carboxymethylcellulose (CMC, Sigma C4888) was diluted to 1% with 50 mM Sodium Acetate, pH 5.0. Hydrolysis reactions were initiated by separately adding each of three T. reesei purified enzymes--EG4, EG1 and CBH1 at final concentrations of 20, 10, 5, 2.5, 1.25 and 0 mg/g to 100 .mu.L of 1% CMC in a 96-well microtiter plate (NUNC #269787). Sodium acetate, pH 5.0 50 mM was added to each well to a final volume of 150 .mu.L. The CMC hydrolysis reactions were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 30 min.
[0450] At the end of 30 min. incubation, the plate was put in ice water for 10 min. to stop the reaction, and samples were transferred to eppendorf tubes. To each tube was added 375 .mu.L of dinitrosalicylic acid (DNS) solution (see below). Samples were then boiled for 10 min and O.D was measured at 540 nm by SpectraMAX 250 (Molecular Devices). Results are shown in FIG. 31.
DNS Solution:
[0451] 40 g 3.5-Dinitrosalicylic acid (Sigma, D0550)
8 g Phenol
[0452] 2 g Sodium sulfite (Na.sub.2SO.sub.3) 800 g Na--K tartarate (Rochelle salt) Add all the above to 2 L of 2% NaOH Stir overnight, covered with aluminum foil Add distilled deionized water to a final volume of 4 L Mix well Store in a dark bottle, refrigerated
[0453] C. Cellobiose Hydrolysis
[0454] Cellobiose was diluted to 5 g/L with 50 mM Sodium Acetate, pH 5.0. Hydrolysis reactions were initiated by separately adding each of two enzymes--EG4 and BGL1 at final concentrations of 20, 10, 5, 2.5, and 0 mg/g to 100 .mu.L cellobiose solution at 5 g/L. Sodium acetate, pH 5.0 was added to each well to a final volume of 120 .mu.L. The reaction plates were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 2 h.
[0455] At the end of the 2 h hydrolysis step, the plate was quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then centrifuged at 3000 rpm for 5 min. Glucose concentration was measured by ABTS (2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid) assay (Example 1). Ten (10) .mu.L of supernatant was added to 90 .mu.L ABTS solution in a 96-well microtiter plate (Corning costar 9017 EIA/RIA plate, 96 well flat bottom, medium binding). OD 420 nm was measured by SpectraMAX 250, Molecular Devices. Results are shown in FIG. 32.
Example 14: Purified EG4 Improves Glucose Production from Dilute Ammonia Pretreated Corncob when Mixed with Various Cellulase Mixtures
[0456] The effect of purified Eg4 combined with purified cellulases (T. reesei EG1, EG2, CBH1, CBH2, and Bgl1) on the concentration of sugars released was tested using 1.05 g dilute ammonia pretreated corncob in the presence of 0.53 mg T. reesei Xyn3 per g of Glucan+Xylan. 1.06-g reactions were set up in 5 mL vials containing 0.111 g dry cob solids (10.5% solids). Enzyme preparation (FIG. 33), 1 N sulfuric acid and 50 mM pH 5.0 sodium acetate buffer (with 0.01% sodium azide and 5 mM MnCl.sub.2) were added to give the final reaction weight. The reaction vials were incubated at 48.degree. C. with 180 rpm rotation. After 72 h, filtered MilliQ water was added to dilute each saccharification reaction by 5-fold. The samples were centrifuged at 14,000.times.g for 5 min, then filtered through a 0.22 .mu.m nylon filter (Spin-X centrifuge tube filter, Corning Incorporated, Corning, N.Y.) and further diluted 4-fold with filtered Milli-Q water to create a final 20.times. dilution. Twenty (20) .mu.L injections were analyzed by HPLC to measure the sugars released (glucose, cellobiose, and xylose).
[0457] FIG. 34 shows glucose (A), glucose+cellobiose (B), or xylose (C) produced with each combination. Purified Eg4 improved the performance of individual cellulases and mixtures. When all of the purified cellulases were present, addition of 0.53 mg Eg4 per g Glucan+Xylan improved the conversion by almost 40%. Improvement was also seen when Eg4 was added to a combination of CBH1, Eg1l and Bgl1. When individual cellulases were present with the cob, the absolute amounts of total glucose release were substantially lower than resulted from the experiment wherein combinations of cellulases were present with the cob, but in each case, the percent improvement in the presence of Eg4 was significant. Addition of T. reesei Eg4 to purified cellulases resulted in the following percent improvements in total Glucose release-Bgl1 (121%), Eg12 (112%), CBH2 (239%) and CBH1 (71%). This shows that Eg4 had a significant and broad effect to improve cellulase performance on biomass.
Example 15: Effects Observed when EG4 was Mixed with CBH1, CBH2, and EG2--Substrate: Dilute Ammonia Pretreated Corncob
[0458] Dilute ammonia pretreated corncob saccharification reactions were prepared by adding enzyme mixtures as follows to corncob (65 mg per well of 20% solids, 7% cellulose) in 96-well MTPs (VWR). Eighty (80) .mu.L of 50 mM sodium acetate (pH 5.0), 1 mg Bgl1/g glucan, and 0.5 mg Xyn3/g glucan background were also added to all wells.
[0459] To test the effect of mixing Eg4 individually with CBH1, CBH2 and EG2, each of CBH1, CBH2, and EG2 was added at 0, 1.25, 2.5, 5, 10 and 20 mg/g glucan, and EG4 was added at concentrations of 20, 18.75, 17.5, 15, 10 and 0 mg/g glucan to the respective wells, making the total proteins in individual wells 20 mg/g glucan. The control wells received only CBH1 or CBH2 or EG2 or EG4 at the same doses, as such the total added proteins in these wells were less than 20 mg/g.
[0460] To test the effect of Eg4 on combinations of cellulases, mixtures of CBH1, CBH2 and EG2 at different ratios (see, FIG. 35) were added at 0, 1.25, 2.5, 5, 10 and 20 mg protein/g glucan, and EG4 was added to the mixtures at concentrations of 20, 18.75, 17.5, 15, 10 and 0 mg protein/g glucan, such that the total proteins in individual wells was 20 mg protein/g glucan. As above, control wells received only one added protein so the total protein addition was less than 20 mg protein/g.
[0461] The corncob saccharification reactions were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova 44 incubator shaker (New Brunswick Scientific) at 50.degree. C. and 200 rpm for 72 h. At the end of the 72-h saccharification step, the plate was quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then centrifuged at 3000 rpm for 5 min (Rotanta 460R Centrifuge, Hettich Zentrifugen). Twenty (20) .mu.L of supernatant was added to 100 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using an Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) and guard column (BioRad).
[0462] The results were indicated in the table of FIG. 36, wherein the glucan conversion (%) is defined as 100.times.(glucose+cellulobiose)/total glucan.
[0463] This experiment indicates that Eg4, when added to a CBH1, CBH2 and/or EG2, was beneficial in improving saccharification of dilute ammonia pretreated corncob. Moreover, the highest improvement was observed when Eg4 and the other enzyme (CBH1, CBH2, or EG2) were added to the saccharification mixture in an equal amount. It was also observed that the effect of Eg4 is substantial on the CBH1 and CBH2 mixture. The optimum improvement by Eg4 was observed when the amount of Eg4 to CBH1 and CBH2 was 1:1.
Example 16: EG4 Improves Saccharification Performance of Various Cellulase Compositions
[0464] The total protein concentration of commercial cellulase enzyme preparations Spezyme.RTM. CP, Accellerase.RTM.1500, and Accellerase.RTM.DUET (Genencor Division, Danisco US) were determined by the modified Biuret assay (described herein).
[0465] Purified T. reesei EG4 was added to each enzyme preparation, and the samples were then assayed for saccharification performance using a 25% solids loading of ammonia pretreated corncob, at a dose of 14 mg of total protein per g of substrate glucan and xylan (5 mg EG4 per g of glucan and xylan, plus 9 mg whole cellulase per g of glucan and xylan). The saccharification reaction was carried out using 5 g of total reaction mixture in a 20 mL vial at pH 5, with incubation at 50.degree. C. in a rotary shaker set to 200 rpm for 7 d. The saccharification samples were diluted 10.times. with 5 mM sulfuric acid, filtered through a 0.2 .mu.m filter before injection into the HPLC. HPLC analysis was performed using a BioRad Aminex HPX-87H ion exclusion column (300 mmx7.8 mm).
[0466] Substitution of purified EG4 into whole cellulases improved glucan conversion in all tested cellulase products as illustrated in FIG. 40. As illustrated in FIG. 41, xylan conversion did not appear to be affected by the Eg4 substitution.
Example 17: Reduction of Viscosity in Biomass Saccharification
[0467] Biomass used in this experiment was Inbicon acidified steam-expansion pretreated wheat straw, with the following composition (Table 2):
TABLE-US-00013 Inbicon wheat straw Component ID Mean Glucan 55.0% Xylan 5.0% Galactan Arabinan Mannan Klason Lignin 31.0% Acid soluble lignin Ash 4.0% Starch Mass Balance Closure 95.0%
[0468] The pre-treated wheat straw was diluted into water and pH-adjusted with sulfuric acid to pH5.0, and a solid level of 10.5% of that was mixed with, in a first sample, a fermentation broth of a T. reesei H3A strain (FIG. 9) at a total protein concentration of 20.5 mg protein/g cellulose in the biomass substrate at 50.degree. C., or in a second sample, the fermentation broth of T. reesei H3A (FIG. 9) at a total protein concentration of 18.5 mg protein/g cellulose in the biomass substrate, and 2 mg/g cellulose of purified T. reesei Eg4. Viscosity reduction was measured using a Brookfield viscometer (Brookfield Engineering, Inc), monitoring viscosity change up to about 6 h. Results are indicated in FIG. 42.
Example 18: Reduction of Viscosity in Biomass Saccharification
[0469] Biomass used in this experiment was dilute acid pretreated corn stover from NREL (unwashed PCS).
[0470] The unwashed pretreated corn stover was mixed, at a temperature of 50.degree. C., pH of 5.0, and a solid level of 20% dry solids with, in a first sample, a fermentation broth of a T. reesei H3A strain (FIG. 9) at a total protein concentration of 20 mg/g cellulose in the biomass substrate, and in a second sample, a fermentation broth of T. reesei H3A/Eg4 #27 integrated strain, also at 20 mg/g cellulose. Viscosity reduction was measured using a Brookfield viscometer (Brookfield Engineering, Inc.), monitoring viscosity change for up to over 160 h. The results are indicated in FIG. 43.
Example 19: Reduction of Viscosity in Biomass Saccharification
[0471] Biomass used in this experiment was dilute ammonia pretreated corncob.
[0472] The dilute ammonia pretreated corncob was mixed with enzyme compositions at two solid loading conditions: 25% dry solids and 30% dry solids. Specifically, the pretreated biomass was mixed at 50.degree. C. and pH 5.0 with 14 mg protein/g cellulose from a fermentation broth of either a T. reesei H3A (FIG. 9) or H3A/Eg4 #27 strain. Viscosity reduction was measured using a Brookfield Viscometer (Brookfield Engineering, Inc.). The results are indicated in FIG. 44.
Example 20: Determining the Effects of Various Cellulases on Viscosity Reduction and Glucose Production in Saccharification Process
[0473] This study used various viscosity reducing enzymes, such as OPTIMASH.TM. BG, OPTIMASH.TM. TBG, OPTIMASH.TM. VR; or beta-glucosidase such as Accellerase.RTM. BG, in the presence of Accellerase.RTM. DUETin the saccharification process and determined the effects of these viscosity reducing enzymes in glucose production and viscosity reduction. Enzyme composition produced from H3A/EG4 integrated strain #27 was also included. Accellerase.RTM. 1500, Accellerase.RTM. DUET, Accellerase.RTM. BG, OPTIMASH.TM. BG, OPTIMASH.TM. TBG, and OPTIMASH.TM. VR were products available from Danisco US Inc., Genencor.
[0474] Pretreated wheat straw as described above was used. The composition analysis was performed and is listed in Table 2 (see Example 17).
[0475] The saccharification process was performed by incubating the pretreated wheat straw (25% dry matter) with various enzymes in reaction chambers. See, Larsen et al., The IBUS Process-Lignocellulosic Bioethanol Close to A commercial Reality, (2008) Chem. Eng. Tech. 31(5):765-772. The experimental conditions are shown in Tables 3 and 4. In each chamber, the total mass was 10 kg. The initial pH of the wheat straw was about 3.50 and was adjusted by adding Na.sub.2CO.sub.3 to pH 5.0. Glucose concentration was measured over time and cellulose conversion was calculated.
TABLE-US-00014 TABLE 3 Cellulase Viscosity Experimental Loading Enzyme condition Enzymes mL/g cellulose g/kg dry matter 1 Accellerase .RTM. 1500 0.22 0 batch 1 2 Accellerase .RTM. DUET 0.15 0 3 Accellerase .RTM. DUET 0.25 0 4 Accellerase .RTM. DUET + 0.15 6 Optimash .TM. BG 5 Accellerase .RTM. DUET + 0.15 6 Optimash .TM. TBG 6 Accellerase .RTM. DUET + 0.15 6 Optimash .TM. VR
TABLE-US-00015 TABLE 4 Cellulase Viscosity Experimental Loading Enzyme condition Enzymes mL/g cellulose g/kg dry matter 7 Accellerase .RTM. 1500 0.22 0 (batch 1) 8 Accellerase .RTM. 1500 0.22 0 (batch 2) 9 Accellerase .RTM. DUET 0.15 0 10 Accellerase .RTM. DUET + 0.15 0.1 Accellerase .RTM. BG 11 Accellerase .RTM. DUET + 0.15 6 Accellerase .RTM. BG 12 H3A/Eg4#27 0.15 0
[0476] Experimental conditions 1-6 were conducted on the first day ("Day 1"), and experimental conditions 7-12 were conducted on the second day ("Day 2").
[0477] The glucose concentration was measured after 6 hour saccharification for each experimental condition. Accellerase.RTM. DUET at 0.25 mL/g cellulose resulted in 40.8 g glucose/kg after 6-h saccharification. See FIG. 45. The glucose concentration for Accellerase.RTM. DUET+OPTIMASH BG (or TBG) (0.15+6) (i.e., 0.15 mL Accellerase.RTM. DUET/g cellulose+6 g OPTIMASH BG (or TBG)/kg dry matter) was similar to the glucose concentration for Accellerase.RTM. 1500 at 0.22 mL/g cellulose. See FIG. 45. The glucose concentration for Accellerase.RTM. DUET+Accellerase BG at 0.15+6 (i.e., 0.15 mL Accellerase.RTM. DUET/g cellulose+6 g Accellerase BG/kg dry matter) was similar to the glucose concentration for Accellerase.RTM. 1500 at 0.22 mL/g cellulose and higher than the glucose concentration for Accellerase.RTM. DUET at 0.15 mL/g cellulose. See FIG. 45. High concentration of Accellerase.RTM. BG was able to reduce the viscosity of the saccharification reaction mixture. Using the enzyme composition produced from fermentingH3A/EG4 #27, at an amount of 0.15 mL/g cellulose yielded 37.5 g/kg glucose after 6-h saccharification, which was substantially higher than the glucose production for Accellerase.RTM. 1500 at 0.22 mL/g cellulose and Accellerase.RTM. DUET at 0.15 mL/g cellulose. See FIG. 45.
[0478] Glucose concentrations for various experimental conditions of Day 1's experiment were measured again after 24-h saccharification. See FIG. 46. The glucose concentration and cellulose conversion were measured over time for experimental conditions 7-12 on Day 2's experiment and results are shown in FIGS. 47 and 48.
[0479] Viscosity was observed by eye on Day 1's experiment after 6-h saccharification and is summarized in Table 6. More "+" indicates less viscous saccharification reaction mixture. In general, less viscous saccharification reaction mixture (e.g., thinner slurry) correlated with more glucose production.
TABLE-US-00016 TABLE 6 Viscosity observation for Day 1's experiment at 6-h Experimental Viscosity Glucose condition Enzymes Observation (g/kg) 1 Accellerase .RTM. 1500, 0.22 ++ 32.1 2 Accellerase .RTM. DUET, 0.15 + 27 3 Accellerase .RTM. DUET, 0.25 ++++ 40.8 4 Accellerase .RTM. DUET + Optimash ++ 31.4 BG 5 Accellerase .RTM. DUET + Optimash + 30.6 TBG 6 Accellerase .RTM. DUET + Optimash +++ 26.7 VR
[0480] Viscosity of the saccharification reaction mixtures in various chambers on Day 2's experiment was observed by eye with reference to the visibility of the metal parts in each chamber. After 6-day of saccharification at 50.degree. C., the saccharification mixture in chamber 3 (Experimental condition 9, Accellerase.RTM. DUET at 0.15 mL/g cellulose) was more viscous than the saccharification mixture in chamber 1 (Experimental condition 7) or 2 (Experimental condition 8, Accellerase.RTM. 1500 at 0.22 mL/g cellulose). Metal parts in chamber 3 could not be seen. The viscosity of the saccharification mixture in chamber 4 (Experimental condition 10, Accellerase DUET.RTM. at 0.15 mL/g cellulose+Accellerase.RTM. BG at 0.1 g/kg dry matter) was reduced compared to the viscosity of the saccharification mixture in chamber 3 (Accellerase.RTM. DUET at 0.15 mL/g cellulose). The viscosity of the saccharification mixture in chamber 5 (Experimental condition 11, Accellerase DUET.RTM. at 0.15 mL/g cellulose+Accellerase BG at 6 g/kg dry matter) was more reduced compared to the viscosity of the saccharification mixture in chamber 4 (Accellerase.RTM. DUET at 0.15 mL/g cellulose+Accellerase BG at 0.1 g/kg dry matter). Even with a high amount of Accellerase BG, the saccharification mixture (chamber 5, Accellerase DUET.RTM. at 0.15 mL/g cellulose+Accellerase BG at 6 g/kg dry matter) was still more viscous than Accellerase.RTM. 1500 at 0.22 mL/g cellulose (chambers 1 and 2). However, with the addition of the enzyme composition produced from fermenting H3A/EG4 #27, it was surprisingly found that the viscosity of the saccharification mixture (chamber 6) was substantially reduced compared to the viscosity of the saccharification mixture in chamber 4 or 5. Metal parts in chamber 6 could be seen.
Example 21: Determining the Effects of Various Cellulases on Viscosity Reduction and Glucose Production in Saccharification Process
[0481] Asaccharification process was performed by incubating Inbicon pretreated wheat straw (25% dry matter) with various enzymes in reaction chambers. The experimental conditions are shown in Table 7. In each chamber, the total mass is 10 kg. The initial pH of the wheat straw was about 3.50 and was adjusted by adding Na.sub.2CO.sub.3 to pH 5.0. Accellerase.RTM. 1500, Accellerase.RTM. DUET, Accellerase.RTM. BG, Optimash.TM. BG, and Primafast.RTM. LUNA are products available from Genecor.
TABLE-US-00017 TABLE 7 Experimental Cellulase Loading Viscosity Enzyme condition Enzymes mL/g cellulose g/kg dry matter 1 Accellerase .RTM. DUET 0.15 0 2 Accellerase .RTM. 1500 0.22 0 3 Accellerase .RTM. DUET + Optimash BG 0.15 1 4 Accellerase .RTM. DUET + Optimash BG 0.15 2 5 Accellerase .RTM. DUET + Primafast LUNA 0.15 1 6 Accellerase .RTM. DUET + Primafast LUNA 0.15 2 7 Accellerase .RTM. DUET + Accellerase .RTM. BG 0.15 1 8 Accellerase .RTM. DUET + Accellerase .RTM. BG 0.15 2 9 Accellerase .RTM. DUET + Optimash BG + 0.15 1 for Optimash Accellerase .RTM. BG BG; 1 for Accellerase .RTM. BG 10 Accellerase .RTM. DUET + Accellerase .RTM. 1500 0.15 for Accellerase .RTM. 0 DUET; 0.22 for Accellerase .RTM. 1500 11 H3A/Eg4#27 + Optimash BG 0.15 1 12 H3A/Eg4#27 + Optimash BG 0.15 2 13 H3A/Eg4#27 + Primafast Luna 0.15 1 14 H3A/Eg4#27 + Primafast Luna 0.15 2 15 H3A/Eg4#27 + Accellerase .RTM. BG 0.15 1 16 H3A/Eg4#27 + Accellerase .RTM. BG 0.15 2
[0482] Glucose concentration was measured after 6 h, 24 h, 50 h, and 6 d of saccharification. Viscosity of saccharification reaction mixture was observed by eye and measured by a viscosity meter using methods known to one skilled in the art after 6 h, 24 h, 50 h, and 6 d of saccharification.
[0483] It was found that the glucose production of each of the experimental conditions 3-16 was increased compared to the glucose production of experimental condition 1. It was further found that the viscosity of each of the experimental conditions 3-16 was reduced compared to the viscosity of experimental condition 1.
[0484] This study also examined the glucose production and viscosity reduction in a saccharification process with the same experimental conditions as above but after a prolonged pre-hydrolysis time (such as 6 h, 9 h, 12 h, 24 h).
Example 22: Ascorbic acid effect on Avicel hydrolysis by CBHI and EG4
[0485] Crystalline cellulose (50 .mu.L of 10% Avicel in 50 mM Sodium Acetate, pH 5.0) reactions were initiated by mixing together combinations of purified T. reesei CBHI (5 mg/g final concentration), purified T. reesei Eg4 (10 mg/g final concentration), ascorbic acid (50 mM stock, 8.8 g/L final concentration) and manganese solution (10 mM final concentration) as described listed in FIG. 39A. Fifty (50) mM sodium acetate buffer, pH 5.0, was added to each sample to a final volume of 300 .mu.L.
[0486] Reaction eppendorf tubes were vortexed and then placed in an Innova 44 incubator (New Brunswick Scientific) at 50.degree. C., 200 rpm. Fifty (50) .mu.L samples were taken from each tube at three time points (2.5, 4.5, 24 h) and quenched with 50 .mu.L of 100 mM glycine buffer, pH 10.0. Samples were centrifuged at 3000 rpm for 5 minutes (Rotanta 460R Centrifuge, Hettich Zentrifugen) and supernatant (20 .mu.L) was added to 100 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column. The results are shown in FIG. 37.
[0487] Next ascorbic acid effect on Avicel hydrolysis by CBH2 and EG4 was measured. Crystalline cellulose (80 .mu.L of 10% Avicel in 50 mM Sodium Acetate, pH 5.0) reactions were initiated by mixing together combinations of purified T. reesei CBH2 (5 mg/g final concentration), purified T. reesei Eg4 (10 mg/g final concentration), ascorbic acid (50 mM stock, 8.8 g/l final concentration) and manganese solution (10 mM final concentration) as listed in FIG. 39B. Fifty (50) mM sodium acetate buffer, pH 5.0, was added to each sample to a final volume of 500 .mu.L.
[0488] Reaction eppendorf tubes were vortexed and then placed in an Innova 44 incubator (New Brunswick Scientific) at 50.degree. C., 200 rpm. Fifty (50) .mu.L samples were taken from each tube at three time points (5, 24, 48 h) and quenched with 50 .mu.L of 100 mM glycine buffer, pH 10.0. Samples were centrifuged at 3000 rpm for 5 minutes (Rotanta 460R Centrifuge, Hettich Zentrifugen) and supernatant (20 .mu.L) was added to 100 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column. Results are shown in FIG. 38.
Sequence CWU
1
1
1621246PRTNeurospora crassa 1Met Arg Phe Asp Leu Leu Ala Leu Ser Ala Phe
Ala Pro Leu Val Ala1 5 10
15Ala His Gly Ala Val Thr Ser Tyr Ile Ile Asp Gly Thr Thr Tyr Pro
20 25 30Gly Tyr Glu Gly Phe Ser Pro
Ala Ser Ser Pro Lys Thr Ile Gln Phe 35 40
45Gln Trp Pro Asn Tyr Asp Pro Thr Met Thr Val Ser Asp Ala Lys
Met 50 55 60Arg Cys Asn Gly Gly Thr
Ser Ala Gln Leu Ser Ala Thr Val Gln Ala65 70
75 80Gly Ser Asn Val Thr Ala Val Trp Lys Gln Trp
Thr His Glu Gln Gly 85 90
95Pro Val Gln Val Trp Leu Phe Lys Cys Pro Gly Ala Phe Gly Ser Ser
100 105 110Cys Lys Gly Asp Gly Lys
Gly Trp Phe Lys Ile Asp Glu Met Gly Met 115 120
125Trp Gly Gly Lys Leu Asn Ser Ala Asn Trp Gly Thr Ala Leu
Ile Val 130 135 140Lys Asn His Gln Trp
Ser Ser Glu Ile Pro Lys Asn Met Ala Pro Gly145 150
155 160Asn Tyr Leu Ile Arg His Glu Leu Leu Ala
Leu His Gln Ala Asn Thr 165 170
175Pro Gln Phe Tyr Ala Glu Cys Ala Gln Ile Val Val Gln Gly Ser Gly
180 185 190Asn Ala Val Pro Pro
Ser Asp Tyr Leu Tyr Ser Ile Pro Thr Tyr Ala 195
200 205Pro Gln Asn Asp Pro Gly Val Thr Leu Thr Arg Asp
Phe Lys Ile Asp 210 215 220Ile Tyr Ser
Ser Lys Ala Thr Thr Tyr Thr Pro Pro Gly Gly Arg Val225
230 235 240Trp Ser Gly Phe Gln Phe
2452238PRTNeurospora crassa 2Met Lys Val Leu Ala Pro Leu Val Leu
Ala Ser Ala Ala Ser Ala His1 5 10
15Thr Ile Phe Ser Ser Leu Glu Val Asn Gly Val Asn Gln Gly Leu
Gly 20 25 30Glu Gly Val Arg
Val Pro Thr Tyr Asn Gly Pro Ile Glu Asp Val Thr 35
40 45Ser Ala Ser Ile Ala Cys Asn Gly Ser Pro Asn Thr
Val Ala Ser Thr 50 55 60Ser Lys Val
Ile Thr Val Gln Ala Gly Thr Asn Val Thr Ala Ile Trp65 70
75 80Arg Tyr Met Leu Ser Thr Thr Gly
Asp Ser Pro Ala Asp Val Met Asp 85 90
95Ser Ser His Lys Gly Pro Thr Ile Ala Tyr Leu Lys Lys Val
Asp Asn 100 105 110Ala Ala Thr
Ala Ser Gly Val Gly Asn Gly Trp Phe Lys Ile Gln Gln 115
120 125Asp Gly Met Asp Ser Ser Gly Val Trp Gly Thr
Glu Arg Val Ile Asn 130 135 140Gly Lys
Gly Arg His Ser Ile Lys Ile Pro Glu Cys Ile Ala Pro Gly145
150 155 160Gln Tyr Leu Leu Arg Ala Glu
Met Ile Ala Leu His Ala Ala Ser Asn 165
170 175Tyr Pro Gly Ala Gln Phe Tyr Met Glu Cys Ala Gln
Leu Asn Val Val 180 185 190Gly
Gly Thr Gly Ala Lys Thr Pro Ser Thr Val Ser Phe Pro Gly Ala 195
200 205Tyr Ser Gly Ser Asp Pro Gly Val Lys
Ile Ser Ile Tyr Trp Pro Pro 210 215
220Val Thr Ser Tyr Thr Val Pro Gly Pro Ser Val Phe Thr Cys225
230 2353231PRTNeurospora crassa 3Met Leu Pro Ser Ile
Ser Leu Leu Leu Ala Ala Ala Leu Gly Thr Ser1 5
10 15Ala His Tyr Thr Phe Pro Lys Val Trp Ala Asn
Ser Gly Thr Thr Ala 20 25
30Asp Trp Gln Tyr Val Arg Arg Ala Asp Asn Trp Gln Asn Asn Gly Phe
35 40 45Val Asp Asn Val Asn Ser Gln Gln
Ile Arg Cys Phe Gln Ser Thr His 50 55
60Ser Pro Ala Gln Ser Thr Leu Ser Val Ala Ala Gly Thr Thr Ile Thr65
70 75 80Tyr Gly Ala Ala Pro
Ser Val Tyr His Pro Gly Pro Met Gln Phe Tyr 85
90 95Leu Ala Arg Val Pro Asp Gly Gln Asp Ile Asn
Ser Trp Thr Gly Glu 100 105
110Gly Ala Val Trp Phe Lys Ile Tyr His Glu Gln Pro Thr Phe Gly Ser
115 120 125Gln Leu Thr Trp Ser Ser Asn
Gly Lys Ser Ser Phe Pro Val Lys Ile 130 135
140Pro Ser Cys Ile Lys Ser Gly Ser Tyr Leu Leu Arg Ala Glu His
Ile145 150 155 160Gly Leu
His Val Ala Gln Ser Ser Gly Ala Ala Gln Phe Tyr Ile Ser
165 170 175Cys Ala Gln Leu Ser Ile Thr
Gly Gly Gly Ser Thr Glu Pro Gly Ala 180 185
190Asn Tyr Lys Val Ser Phe Pro Gly Ala Tyr Lys Ala Ser Asp
Pro Gly 195 200 205Ile Leu Ile Asn
Ile Asn Tyr Pro Val Pro Thr Ser Tyr Lys Asn Pro 210
215 220Gly Pro Ser Val Phe Thr Cys225
2304344PRTNeurospora crassa 4Met Lys Ser Ser Leu Leu Val Val Leu Thr Ala
Gly Leu Ala Val Arg1 5 10
15Asp Ala Ile Ala His Ala Ile Phe Gln Gln Leu Trp Val Asp Gly Val
20 25 30Asp Tyr Gly Ser Thr Cys Asn
Arg Leu Pro Thr Ser Asn Ser Pro Val 35 40
45Thr Asn Val Gly Ser Arg Asp Val Val Cys Asn Ala Gly Thr Arg
Gly 50 55 60Val Ser Gly Lys Cys Pro
Val Lys Ala Gly Gly Thr Val Thr Val Glu65 70
75 80Met His Gln Gln Pro Gly Asp Arg Ser Cys Lys
Ser Glu Ala Ile Gly 85 90
95Gly Ala His Trp Gly Pro Val Gln Ile Tyr Leu Ser Lys Val Ser Asp
100 105 110Ala Ser Thr Ala Asp Gly
Ser Ser Gly Gly Trp Phe Lys Ile Phe Ser 115 120
125Asp Ala Trp Ser Lys Lys Ser Gly Gly Arg Val Gly Asp Asp
Asp Asn 130 135 140Trp Gly Thr Arg Asp
Leu Asn Ala Cys Cys Gly Arg Met Asp Val Leu145 150
155 160Ile Pro Lys Asp Leu Pro Ser Gly Asp Tyr
Leu Leu Arg Ala Glu Ala 165 170
175Leu Ala Leu His Thr Ala Gly Gln Ser Gly Gly Ala Gln Phe Tyr Ile
180 185 190Ser Cys Tyr Gln Ile
Thr Val Ser Gly Gly Gly Ser Ala Asn Tyr Ala 195
200 205Thr Val Lys Phe Pro Gly Ala Tyr Arg Ala Ser Asp
Pro Gly Ile Gln 210 215 220Ile Asn Ile
His Ala Val Val Ser Asn Tyr Val Ala Pro Gly Pro Ala225
230 235 240Val Val Ala Gly Gly Val Thr
Lys Gln Ala Gly Ser Gly Cys Ile Gly 245
250 255Cys Glu Ser Thr Cys Lys Val Gly Ser Ser Pro Ser
Ala Val Ala Pro 260 265 270Gly
Gly Lys Pro Ala Ser Gly Gly Ser Asp Gly Asn Ala Pro Glu Val 275
280 285Ala Glu Pro Ser Gly Gly Glu Gly Ser
Pro Ser Ala Pro Gly Ala Cys 290 295
300Glu Val Ala Ala Tyr Gly Gln Cys Gly Gly Asp Gln Tyr Ser Gly Cys305
310 315 320Thr Gln Cys Ala
Ser Gly Tyr Thr Cys Lys Ala Val Ser Pro Pro Tyr 325
330 335Tyr Ser Gln Cys Ala Pro Thr Ser
3405293PRTNeurospora crassa 5Met Lys Phe Ser Ser Ala Leu Ala Phe Leu Ala
Ala Ala Gly Ala Gln1 5 10
15Ala His Tyr Thr Phe Pro Lys Gly Tyr Ser Thr Gly Ala Val Ser Gly
20 25 30Glu Tyr Glu His Ile Arg Met
Thr Glu Asn His Tyr Asn Arg Gly Pro 35 40
45Val Ala Asp Val Thr Ser Glu Ser Met Thr Cys Tyr Glu Leu Asn
Pro 50 55 60Gly Lys Gly Ala Pro Lys
Thr Leu Ser Val Ala Ala Gly Ser Asn Tyr65 70
75 80Thr Phe Val Val Gly Asp Asn Ile Gly His Pro
Gly Pro Leu His Phe 85 90
95Tyr Met Ala Lys Val Pro Glu Gly Lys Thr Ala Ala Thr Phe Asp Gly
100 105 110Lys Gly Ala Val Trp Phe
Lys Ile Tyr Gln Asp Gly Pro Met Gly Leu 115 120
125Gly Thr Gly Gln Leu Thr Trp Pro Ser Ala Gly Ala Thr Glu
Val Ser 130 135 140Val Lys Leu Pro Ser
Cys Leu Glu Ser Gly Glu Tyr Leu Leu Arg Val145 150
155 160Glu His Ile Gly Leu His Ser Ala Gly Ser
Val Gly Gly Ala Gln Leu 165 170
175Tyr Ile Ala Cys Ala Gln Leu Asn Val Thr Gly Gly Thr Gly Thr Ile
180 185 190Asn Thr Ser Gly Lys
Leu Val Ser Phe Pro Gly Ala Tyr Lys Ala Thr 195
200 205Asp Pro Gly Leu Leu Phe Asn Leu Tyr Tyr Pro Ala
Pro Thr Ser Tyr 210 215 220Thr Asn Pro
Gly Pro Ala Val Ala Thr Cys Asp Gly Ala Ser Ala Pro225
230 235 240Ala Ala Pro Ala Pro Ala Pro
Ser Ser Ala Ala Pro Ser Ala Pro Ala 245
250 255Ala Ser Ala Pro Ser Ala Thr Val Pro Ala Val Ser
Ala Thr Ser Ala 260 265 270Ala
Ala Val Gly Lys Ala Ser Ser Thr Pro Lys Lys Gly Cys Lys Arg 275
280 285Ala Ala Arg Lys His
2906342PRTNeurospora crassa 6Met Arg Ser Thr Leu Val Thr Gly Leu Ile Ala
Gly Leu Leu Ser Gln1 5 10
15Gln Ala Ala Ala His Ala Thr Phe Gln Ala Leu Trp Val Asp Gly Ala
20 25 30Asp Tyr Gly Ser Gln Cys Ala
Arg Val Pro Pro Ser Asn Ser Pro Val 35 40
45Thr Asp Val Thr Ser Asn Ala Met Arg Cys Asn Thr Gly Thr Ser
Pro 50 55 60Val Ala Lys Lys Cys Pro
Val Lys Ala Gly Ser Thr Val Thr Val Glu65 70
75 80Met His Gln Ser His Pro Pro Val Pro Thr Leu
Thr Tyr Lys Gln Gln 85 90
95Ala Asn Asp Arg Ser Cys Ser Ser Glu Ala Ile Gly Gly Ala His Tyr
100 105 110Gly Pro Val Leu Val Tyr
Met Ser Lys Val Ser Asp Ala Ala Ser Ala 115 120
125Asp Gly Ser Ser Gly Trp Phe Lys Ile Phe Glu Asp Thr Trp
Ala Lys 130 135 140Lys Pro Ser Ser Ser
Ser Gly Asp Asp Asp Phe Trp Gly Val Lys Asp145 150
155 160Leu Asn Ser Cys Cys Gly Lys Met Gln Val
Lys Ile Pro Ser Asp Ile 165 170
175Pro Ala Gly Asp Tyr Leu Leu Arg Ala Glu Val Ile Ala Leu His Thr
180 185 190Ala Ala Ser Ala Gly
Gly Ala Gln Leu Tyr Met Thr Cys Tyr Gln Ile 195
200 205Ser Val Thr Gly Gly Gly Ser Ala Thr Pro Ala Thr
Val Ser Phe Pro 210 215 220Gly Ala Tyr
Lys Ser Ser Asp Pro Gly Ile Leu Val Asp Ile His Ser225
230 235 240Ala Met Ser Thr Tyr Val Ala
Pro Gly Pro Ala Val Tyr Ser Gly Gly 245
250 255Ser Ser Lys Lys Ala Gly Ser Gly Cys Val Gly Cys
Glu Ser Thr Cys 260 265 270Lys
Val Gly Ser Gly Pro Thr Gly Thr Ala Ser Ala Val Pro Val Ala 275
280 285Ser Thr Ser Ala Ala Ala Gly Gly Gly
Gly Gly Gly Gly Ser Gly Gly 290 295
300Cys Ser Val Ala Lys Tyr Gln Gln Cys Gly Gly Thr Gly Tyr Thr Gly305
310 315 320Cys Thr Ser Cys
Ala Ser Gly Ser Thr Cys Ser Ala Val Ser Pro Pro 325
330 335Tyr Tyr Ser Gln Cys Val
3407308PRTNeurospora crassa 7Met Val Arg Ala Leu Arg Leu Leu Ala Ser Cys
Ala Met Phe Ser Gln1 5 10
15Ala Leu Ala His Ser His Ile Leu Tyr Leu Ile Ile Asn Gly Gln Gln
20 25 30Tyr Arg Gly Phe Asn Pro His
Ala Pro Asp Ala Ile Thr Asn Ser Ile 35 40
45Gly Trp Ser Thr Ser Ala Val Asp Asp Gly Phe Val Thr Pro Ser
Asn 50 55 60Tyr Ser Asn Pro Asp Ile
Ile Cys His Arg Asp Gly Lys Pro Ala Lys65 70
75 80Ala His Ala Pro Val Lys Ala Gly Asp Lys Ile
Gln Ile Gln Trp Asn 85 90
95Gly Trp Pro Gln Ser His Lys Gly Pro Val Leu Ser Tyr Leu Ala Pro
100 105 110Cys Ala Asn Thr Thr Asp
Gly Cys Ala Ser Val Asp Lys Arg Lys Leu 115 120
125Ser Trp Thr Lys Ile Asp Asp Ser Ser Pro Val Leu Leu Asp
Glu Lys 130 135 140Gly Gly Pro Pro Gly
Arg Trp Ala Thr Asp Val Leu Ile Ala Gln Asn145 150
155 160Asn Thr Trp Leu Leu Gly Leu Pro Asn Asp
Leu Glu Pro Gly Pro Tyr 165 170
175Val Leu Arg His Glu Leu Ile Ala Leu His Tyr Ala Asn Leu Lys Asn
180 185 190Gly Ala Gln Asn Tyr
Pro Gln Cys Val Asn Leu Trp Val Glu Gly Pro 195
200 205Gly Pro Lys Ala Ile Thr Val Gly Lys Glu Glu Val
Val Val Ala Gly 210 215 220Gln Lys Glu
Gly Val Pro Ala Thr Ala Leu Tyr Lys Ala Thr Asp Pro225
230 235 240Gly Val Ala Ile Asp Ile Tyr
Thr Ala Val Leu Ser Thr Tyr Val Ile 245
250 255Pro Gly Pro Thr Leu Ala Pro Glu Ala Lys Pro Val
Pro Val Thr Glu 260 265 270Gln
Gly Leu Lys Ser Thr Ile Thr Ala Val Gly Thr Pro Val Ile Val 275
280 285Thr Arg Ala Thr Ser Thr Val Pro Met
Pro Asn Gly Glu Thr Ala Ala 290 295
300Ala Phe Lys Gly3058322PRTNeurospora crassa 8Met Lys Val Leu Ser Leu
Leu Ala Ala Ala Ser Ala Ala Ser Ala His1 5
10 15Thr Ile Phe Val Gln Leu Glu Ala Asp Gly Thr Thr
Tyr Pro Val Ser 20 25 30Tyr
Gly Ile Arg Thr Pro Ser Tyr Asp Gly Pro Ile Thr Asp Val Thr 35
40 45Ser Asn Asp Leu Ala Cys Asn Gly Gly
Pro Asn Pro Thr Thr Pro Ser 50 55
60Asp Lys Ile Ile Thr Val Asn Ala Gly Ser Thr Val Lys Ala Ile Trp65
70 75 80Arg His Thr Leu Thr
Ser Gly Ala Asp Asp Val Met Asp Ala Ser His 85
90 95Lys Gly Pro Thr Leu Ala Tyr Leu Lys Lys Val
Asp Asp Ala Leu Thr 100 105
110Asp Thr Gly Ile Gly Gly Gly Trp Phe Lys Ile Gln Glu Asp Gly Tyr
115 120 125Asn Asn Gly Gln Trp Gly Thr
Ser Thr Val Ile Thr Asn Gly Gly Phe 130 135
140Gln Tyr Ile Asp Ile Pro Ala Cys Ile Pro Ser Gly Gln Tyr Leu
Leu145 150 155 160Arg Ala
Glu Met Ile Ala Leu His Ala Ala Ser Ser Thr Ala Gly Ala
165 170 175Gln Leu Tyr Met Glu Cys Ala
Gln Ile Asn Ile Val Gly Gly Thr Gly 180 185
190Gly Thr Ala Leu Pro Ser Thr Thr Tyr Ser Ile Pro Gly Ile
Tyr Lys 195 200 205Ala Thr Asp Pro
Gly Leu Leu Val Asn Ile Tyr Ser Met Ser Pro Ser 210
215 220Ser Thr Tyr Thr Ile Pro Gly Pro Ala Lys Phe Thr
Cys Pro Ala Gly225 230 235
240Asn Gly Gly Gly Ala Gly Gly Gly Gly Ser Thr Thr Thr Ala Lys Pro
245 250 255Ala Ser Ser Thr Thr
Ser Lys Ala Ala Ile Thr Ser Ala Val Thr Thr 260
265 270Leu Lys Thr Ser Val Val Ala Pro Gln Pro Thr Gly
Gly Cys Thr Ala 275 280 285Ala Gln
Trp Ala Gln Cys Gly Gly Met Gly Phe Ser Gly Cys Thr Thr 290
295 300Cys Ala Ser Pro Tyr Thr Cys Lys Lys Met Asn
Asp Tyr Tyr Ser Gln305 310 315
320Cys Ser9241PRTNeurospora crassa 9Met Lys Thr Phe Ala Thr Leu Leu
Ala Ser Ile Gly Leu Val Ala Ala1 5 10
15His Gly Phe Val Asp Asn Ala Thr Ile Gly Gly Gln Phe Tyr
Gln Phe 20 25 30Tyr Gln Pro
Tyr Gln Asp Pro Tyr Met Gly Ser Pro Pro Asp Arg Ile 35
40 45Ser Arg Lys Ile Pro Gly Asn Gly Pro Val Glu
Asp Val Thr Ser Leu 50 55 60Ala Ile
Gln Cys Asn Ala Asp Ser Ala Pro Ala Lys Leu His Ala Ser65
70 75 80Ala Ala Ala Gly Ser Thr Val
Thr Leu Arg Trp Thr Ile Trp Pro Asp 85 90
95Ser His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys
Pro Asp Thr 100 105 110Gly Cys
Gln Asp Trp Thr Pro Ser Ala Ser Asp Lys Val Trp Phe Lys 115
120 125Ile Lys Glu Gly Gly Arg Glu Gly Thr Ser
Asn Val Trp Ala Ala Thr 130 135 140Pro
Leu Met Thr Ala Pro Ala Asn Tyr Glu Tyr Ala Ile Pro Ser Cys145
150 155 160Leu Lys Pro Gly Tyr Tyr
Leu Val Arg His Glu Ile Ile Ala Leu His 165
170 175Ser Ala Tyr Ser Tyr Pro Gly Ala Gln Phe Tyr Pro
Gly Cys His Gln 180 185 190Leu
Gln Val Thr Gly Ser Gly Thr Lys Thr Pro Ser Ser Gly Leu Val 195
200 205Ser Phe Pro Gly Ala Tyr Lys Ser Thr
Asp Pro Gly Val Thr Tyr Asp 210 215
220Ala Tyr Gln Ala Ala Thr Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr225
230 235
240Cys10472PRTNeurospora crassa 10Met Arg Ser Thr Thr Val Leu Ala Gly Leu
Ala Thr Val Leu Ala Pro1 5 10
15Leu Ala Ser Ala His Thr Val Leu Thr Thr Val Phe Val Asn Asp Lys
20 25 30Asn Gln Gly Asp Gly Thr
Gly Val Arg Met Pro Met Asp Gly Asn Ile 35 40
45Ala Asn Ala Pro Val Ile Asn Met Asn Ser Asp Asp Met Ile
Cys Gly 50 55 60Arg Asp Gly Leu Lys
Lys Val Asn Tyr Ala Ile Pro Ala Thr Ala Gly65 70
75 80Ser Lys Met Thr Phe Glu Phe Arg Thr Tyr
Val Asp Gly Ser Arg Pro 85 90
95Gln Phe Ile Asp Lys Ser His Gln Gly Pro Ile Ser Val Tyr Ala Lys
100 105 110Ala Val Ser Asp Phe
Asp Gln Ser Pro Gly Gly Ser Gly Trp Phe Lys 115
120 125Ile Trp His Asp Gly Tyr Asp Glu Ser Thr Gly Lys
Trp Ala Val Gln 130 135 140Lys Val Ile
Asp Thr Asn Gly Leu Leu Ser Ile Ser Leu Pro Thr Gly145
150 155 160Met Pro Thr Gly Ala Tyr Leu
Leu Arg Thr Glu Val Ile Ala Met Gln 165
170 175Asn Val Thr Thr Lys Ala Asp Gly Asn Trp Tyr Cys
Glu Pro Gln Phe 180 185 190Tyr
Val Asn Cys Ala Gln Val Tyr Val Gln Gly Ser Ser Ser Gly Pro 195
200 205Leu Ser Ile Pro Lys Asp Lys Glu Thr
Ser Ile Pro Gly His Val His 210 215
220Pro Ser Asp Lys Gly Leu Asn Phe Asn Met Tyr Asp Met Lys Gly Leu225
230 235 240Leu Pro Tyr Gln
Ile Pro Gly Pro Val Pro Phe Arg Pro Ala Ser Ser 245
250 255Ser Ser Gly Ser Asn Ala Lys Ala Ala Leu
Thr Thr Pro Thr Asn Phe 260 265
270Pro Gly Ala Val Pro Asp Asn Cys Leu Leu Lys Asn Ala Asn Trp Cys
275 280 285Gly Phe Glu Val Pro Asp Tyr
Thr Asn Glu Asp Gly Cys Trp Ala Ser 290 295
300Ala Asp Asn Cys Trp Ala Gln Ser Lys Lys Cys Phe Asp Ser Ala
Pro305 310 315 320Pro Ser
Gly Ile Lys Gly Cys Lys Ile Trp Glu Gln Glu Lys Cys Gln
325 330 335Ala Leu Ala Asn Ser Cys Asp
Ala Lys Gln Phe Thr Gly Pro Pro Asn 340 345
350Lys Gly Lys Arg Trp Gly Asp Val Thr Glu Gln Ser Ser Val
Gln Val 355 360 365Pro Gly Val Met
Lys Gly Ala Asp Leu Val Asp Thr Pro Val Val Asp 370
375 380Thr Thr Ser Asn Gln Lys Ala Ala Ala Asn Asn Asn
Val Val Ser Ile385 390 395
400Pro Ala Ala Thr Ala Thr Thr Phe Ile Thr Thr Ser Ser Ala Ala Pro
405 410 415Ser Lys Pro Val Thr
Thr Val Pro Ser Val Ala Ile Thr Thr Thr Thr 420
425 430Ser Ala Ala Val Ala Ile Pro Thr Glu Thr Ala Ala
Gln Asn Thr Leu 435 440 445Ile Arg
Cys Gly Arg Gly Asp Lys Asn Gln Arg Arg Ala Met His Ile 450
455 460Asn Arg His Lys Arg Ala Asp Phe465
47011326PRTNeurospora crassa 11Met Lys Leu Ser Val Ala Ala Ala Leu
Ser Leu Ala Ala Ser Glu Ala1 5 10
15Ser Ala His Tyr Ile Phe Gln Gln Val Gly Ala Gly Thr Ser Val
Asn 20 25 30Pro Val Trp Lys
Tyr Ile Arg Lys His Thr Asn Tyr Asn Ser Pro Val 35
40 45Thr Asp Leu Thr Ser Lys Asp Leu Val Cys Asn Val
Gly Ala Ser Ala 50 55 60Glu Gly Val
Glu Thr Leu Ser Val Ala Ala Gly Ser Gln Val Thr Phe65 70
75 80Lys Thr Asp Thr Ala Val Tyr His
Gln Gly Pro Thr Ser Val Tyr Leu 85 90
95Ser Lys Ala Asp Gly Ser Leu Ser Asp Tyr Asp Gly Ser Gly
Gly Trp 100 105 110Phe Lys Ile
Lys Asp Trp Gly Ala Thr Phe Pro Gly Gly Glu Trp Thr 115
120 125Leu Ser Asp Thr Tyr Thr Phe Thr Ile Pro Ser
Cys Ile Pro Ser Gly 130 135 140Asp Tyr
Leu Leu Arg Ile Gln Gln Ile Gly Ile His Asn Pro Trp Pro145
150 155 160Ala Gly Val Pro Gln Phe Tyr
Leu Ser Cys Ala His Ile Ser Val Thr 165
170 175Gly Gly Gly Ser Ala Ser Pro Ala Thr Val Ser Ile
Pro Gly Ala Phe 180 185 190Lys
Glu Thr Asp Pro Gly Tyr Thr Val Asn Ile Tyr Ser Asn Phe Asn 195
200 205Asn Tyr Thr Val Pro Gly Pro Glu Val
Phe Thr Cys Ser Gly Ser Gly 210 215
220Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Thr Pro Pro Ser Gln225
230 235 240Pro Thr Thr Ser
Thr Thr Leu Pro Thr Ser Ser Thr Val Val Ala Thr 245
250 255Thr Leu Lys Thr Ser Thr Val Val Ala Thr
Thr Lys Ser Ser Ser Ser 260 265
270Thr Thr Ser Ser Ala Ser Ser Ser Gly Ser Gln Pro Thr Ser Pro Ser
275 280 285Gly Cys Thr Val Ala Lys Tyr
Gly Gln Cys Gly Gly Ile Gly Tyr Ser 290 295
300Gly Cys Thr Ser Cys Ala Ser Gly Ser Thr Cys Lys Val Gly Asn
Asp305 310 315 320Tyr Tyr
Ser Gln Cys Leu 32512359PRTNeurospora crassa 12Met Lys Thr
Gly Ser Ile Leu Ala Ala Leu Val Ala Ser Ala Ser Ala1 5
10 15His Thr Ile Phe Gln Lys Val Ser Val
Asn Gly Ala Asp Gln Gly Gln 20 25
30Leu Lys Gly Ile Arg Ala Pro Ala Asn Asn Asn Pro Val Thr Asp Val
35 40 45Met Ser Ser Asp Ile Ile Cys
Asn Ala Val Thr Met Lys Asp Ser Asn 50 55
60Val Leu Thr Val Pro Ala Gly Ala Lys Val Gly His Phe Trp Gly His65
70 75 80Glu Ile Gly Gly
Ala Ala Gly Pro Asn Asp Ala Asp Asn Pro Ile Ala 85
90 95Ala Ser His Lys Gly Pro Ile Met Val Tyr
Leu Ala Lys Val Asp Asn 100 105
110Ala Ala Thr Thr Gly Thr Ser Gly Leu Lys Trp Phe Lys Val Ala Glu
115 120 125Ala Gly Leu Ser Asn Gly Lys
Trp Ala Val Asp Asp Leu Ile Ala Asn 130 135
140Asn Gly Trp Ser Tyr Phe Asp Met Pro Thr Cys Ile Ala Pro Gly
Gln145 150 155 160Tyr Leu
Met Arg Ala Glu Leu Ile Ala Leu His Asn Ala Gly Ser Gln
165 170 175Ala Gly Ala Gln Phe Tyr Ile
Gly Cys Ala Gln Ile Asn Val Thr Gly 180 185
190Gly Gly Ser Ala Ser Pro Ser Asn Thr Val Ser Phe Pro Gly
Ala Tyr 195 200 205Ser Ala Ser Asp
Pro Gly Ile Leu Ile Asn Ile Tyr Gly Gly Ser Gly 210
215 220Lys Thr Asp Asn Gly Gly Lys Pro Tyr Gln Ile Pro
Gly Pro Ala Leu225 230 235
240Phe Thr Cys Pro Ala Gly Gly Ser Gly Gly Ser Ser Pro Ala Pro Ala
245 250 255Thr Thr Ala Ser Thr
Pro Lys Pro Thr Ser Ala Ser Ala Pro Lys Pro 260
265 270Val Ser Thr Thr Ala Ser Thr Pro Lys Pro Thr Asn
Gly Ser Gly Ser 275 280 285Gly Thr
Gly Ala Ala His Ser Thr Lys Cys Gly Gly Ser Lys Pro Ala 290
295 300Ala Thr Thr Lys Ala Ser Asn Pro Gln Pro Thr
Asn Gly Gly Asn Ser305 310 315
320Ala Val Arg Ala Ala Ala Leu Tyr Gly Gln Cys Gly Gly Lys Gly Trp
325 330 335Thr Gly Pro Thr
Ser Cys Ala Ser Gly Thr Cys Lys Phe Ser Asn Asp 340
345 350Trp Tyr Ser Gln Cys Leu Pro
35513369PRTNeurospora crassa 13Met Ala Arg Met Ser Ile Leu Thr Ala Leu
Ala Gly Ala Ser Leu Val1 5 10
15Ala Ala His Gly His Val Ser Lys Val Ile Val Asn Gly Val Glu Tyr
20 25 30Gln Asn Tyr Asp Pro Thr
Ser Phe Pro Tyr Asn Ser Asn Pro Pro Thr 35 40
45Val Ile Gly Trp Thr Ile Asp Gln Lys Asp Asn Gly Phe Val
Ser Pro 50 55 60Asp Ala Phe Asp Ser
Gly Asp Ile Ile Cys His Lys Ser Ala Lys Pro65 70
75 80Ala Gly Gly His Ala Thr Val Lys Ala Gly
Asp Lys Ile Ser Leu Gln 85 90
95Trp Asp Gln Trp Pro Glu Ser His Lys Gly Pro Val Ile Asp Tyr Leu
100 105 110Ala Ala Cys Asp Gly
Asp Cys Glu Ser Val Asp Lys Thr Ala Leu Lys 115
120 125Phe Phe Lys Ile Asp Gly Ala Gly Tyr Asp Ala Thr
Asn Gly Trp Ala 130 135 140Ser Asp Thr
Leu Ile Lys Asp Gly Asn Ser Trp Val Val Glu Ile Pro145
150 155 160Glu Ser Ile Lys Pro Gly Asn
Tyr Val Leu Arg His Glu Ile Ile Ala 165
170 175Leu His Ser Ala Gly Gln Ala Asn Gly Ala Gln Asn
Tyr Pro Gln Cys 180 185 190Phe
Asn Leu Lys Val Glu Gly Ser Gly Ser Thr Val Pro Ala Gly Val 195
200 205Ala Gly Thr Glu Leu Tyr Lys Ala Thr
Asp Ala Gly Ile Leu Phe Asp 210 215
220Ile Tyr Lys Asn Asp Ile Ser Tyr Pro Val Pro Gly Pro Ser Leu Ile225
230 235 240Ala Gly Ala Ser
Ser Ser Ile Ala Gln Ser Lys Met Ala Ala Thr Ala 245
250 255Thr Ala Ser Ala Thr Leu Pro Gly Ala Thr
Gly Gly Ser Asn Ser Pro 260 265
270Ala Thr Ser Ala Ala Ala Ala Ala Pro Ala Thr Ser Ala Ala Ala Ala
275 280 285Thr Ser Gln Val Gln Ala Ala
Pro Ala Thr Thr Leu Val Thr Ser Thr 290 295
300Lys Ala Ala Ala Pro Ala Thr Ser Ala Ala Ala Pro Ala Ala Pro
Ala305 310 315 320Thr Ser
Ala Ala Ala Gly Gly Ala Gly Gln Val Gln Ala Lys Gln Thr
325 330 335Lys Trp Gly Gln Cys Gly Gly
Asn Gly Phe Thr Gly Pro Thr Glu Cys 340 345
350Glu Ser Gly Ser Thr Cys Thr Lys Tyr Asn Asp Trp Tyr Ser
Gln Cys 355 360
365Val14271PRTSporotrichum thermophilum 14Ala Leu Gly His Ser His Leu Gly
Tyr Ile Ile Ile Asn Gly Glu Val1 5 10
15Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser Pro
Leu Arg 20 25 30Val Gly Trp
Ser Thr Gly Ala Ile Asp Asp Gly Phe Val Ala Pro Ala 35
40 45Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile
Glu Gly Ala Ser Pro 50 55 60Pro Ala
His Ala Pro Val Arg Ala Gly Asp Arg Val His Val Gln Trp65
70 75 80Asn Gly Trp Pro Leu Gly His
Val Gly Pro Val Leu Ser Tyr Leu Ala 85 90
95Pro Cys Gly Gly Leu Glu Gly Ser Glu Ser Gly Cys Ala
Gly Val Asp 100 105 110Lys Arg
Gln Leu Arg Trp Thr Lys Val Asp Asp Ser Leu Pro Ala Met 115
120 125Glu Leu Arg Trp Ala Thr Asp Val Leu Ile
Ala Ala Asn Asn Ser Trp 130 135 140Gln
Val Glu Ile Pro Arg Gly Leu Arg Asp Gly Pro Tyr Val Leu Arg145
150 155 160His Glu Ile Val Ala Leu
His Tyr Ala Ala Glu Pro Gly Gly Ala Gln 165
170 175Asn Tyr Pro Leu Cys Val Asn Leu Trp Val Glu Gly
Gly Asp Gly Ser 180 185 190Met
Glu Leu Asp His Phe Asp Ala Thr Gln Phe Tyr Arg Pro Asp Asp 195
200 205Pro Gly Ile Leu Leu Asn Val Thr Ala
Gly Leu Arg Ser Tyr Ala Val 210 215
220Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala Gln225
230 235 240Gln Asn Ile Ser
Ser Ala Arg Ala Asp Gly Thr Pro Val Ile Val Thr 245
250 255Arg Ser Thr Glu Thr Val Pro Phe Thr Ala
Ala Pro Thr Pro Ala 260 265
27015330PRTSporotrichum thermophilum 15Met Ser Ser Phe Thr Ser Lys Gly
Leu Leu Ser Ala Leu Met Gly Ala1 5 10
15Ala Thr Val Ala Ala His Gly His Val Thr Asn Ile Val Ile
Asn Gly 20 25 30Val Ser Tyr
Gln Asn Phe Asp Pro Phe Thr His Pro Tyr Met Gln Asn 35
40 45Pro Pro Thr Val Val Gly Trp Thr Ala Ser Asn
Thr Asp Asn Gly Phe 50 55 60Val Gly
Pro Glu Ser Phe Ser Ser Pro Asp Ile Ile Cys His Lys Ser65
70 75 80Ala Thr Asn Ala Gly Gly His
Ala Val Val Ala Ala Gly Asp Lys Val 85 90
95Phe Ile Gln Trp Asp Thr Trp Pro Glu Ser His His Gly
Pro Val Ile 100 105 110Asp Tyr
Leu Ala Asp Cys Gly Asp Ala Gly Cys Glu Lys Val Asp Lys 115
120 125Thr Thr Leu Lys Phe Phe Lys Ile Ser Glu
Ser Gly Leu Leu Asp Gly 130 135 140Thr
Asn Ala Pro Gly Lys Trp Ala Ser Asp Thr Leu Ile Ala Asn Asn145
150 155 160Asn Ser Trp Leu Val Gln
Ile Pro Pro Asn Ile Ala Pro Gly Asn Tyr 165
170 175Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala
Gly Gln Gln Asn 180 185 190Gly
Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Gln Val Thr Gly Ser 195
200 205Gly Thr Gln Lys Pro Ser Gly Val Leu
Gly Thr Glu Leu Tyr Lys Ala 210 215
220Thr Asp Ala Gly Ile Leu Ala Asn Ile Tyr Thr Ser Pro Val Thr Tyr225
230 235 240Gln Ile Pro Gly
Pro Ala Ile Ile Ser Gly Ala Ser Ala Val Gln Gln 245
250 255Thr Thr Ser Ala Ile Thr Ala Ser Ala Ser
Ala Ile Thr Gly Ser Ala 260 265
270Thr Ala Ala Pro Thr Ala Ala Thr Thr Thr Ala Ala Ala Ala Ala Thr
275 280 285Thr Thr Thr Thr Ala Gly Ser
Gly Ala Thr Ala Thr Pro Ser Thr Gly 290 295
300Gly Ser Pro Ser Ser Ala Gln Pro Ala Pro Thr Thr Ala Ala Ala
Thr305 310 315 320Ser Ser
Pro Ala Arg Pro Thr Arg Cys Ala 325
33016342PRTSporotrichum thermophilum 16Met Ser Lys Ala Ser Ala Leu Leu
Ala Gly Leu Thr Gly Ala Ala Leu1 5 10
15Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly
Val Tyr 20 25 30Tyr Arg Asn
Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35
40 45Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp
Asn Gly Phe Val Glu 50 55 60Pro Asn
Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr65
70 75 80Pro Gly Gly Gly His Ala Thr
Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90
95Val Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro
Val Ile Asp 100 105 110Tyr Leu
Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115
120 125Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly
Tyr Asp Lys Ala Ala Gly 130 135 140Arg
Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val145
150 155 160Gln Ile Pro Ser Asp Leu
Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165
170 175Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly
Ala Gln Ala Tyr 180 185 190Pro
Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195
200 205Ser Gly Val Ala Gly Thr Ser Leu Tyr
Lys Ala Thr Asp Pro Gly Ile 210 215
220Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro225
230 235 240Ala Leu Ile Ala
Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245
250 255Ala Thr Ala Thr Gly Thr Ala Thr Val Pro
Gly Gly Gly Gly Ala Asn 260 265
270Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr
275 280 285Leu Arg Thr Thr Thr Thr Ser
Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295
300Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp
Thr305 310 315 320Gly Pro
Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu
325 330 335Trp Tyr Ser Gln Cys Leu
34017323PRTSporotrichum thermophilum 17Met Lys Ser Phe Thr Leu Thr
Thr Leu Ala Ala Leu Ala Gly Asn Ala1 5 10
15Ala Ala His Ala Thr Phe Gln Ala Leu Trp Val Asp Gly
Val Asp Tyr 20 25 30Gly Ala
Gln Cys Ala Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asp 35
40 45Val Thr Ser Asn Ala Ile Arg Cys Asn Ala
Asn Pro Ser Pro Ala Arg 50 55 60Gly
Lys Cys Pro Val Lys Ala Gly Ser Thr Val Thr Val Glu Met His65
70 75 80Gln Gln Pro Gly Asp Arg
Ser Cys Ser Ser Glu Ala Ile Gly Gly Ala 85
90 95His Tyr Gly Pro Val Met Val Tyr Met Ser Lys Val
Ser Asp Ala Ala 100 105 110Ser
Ala Asp Gly Ser Ser Gly Trp Phe Lys Val Phe Glu Asp Gly Trp 115
120 125Ala Lys Asn Pro Ser Gly Gly Ser Gly
Asp Asp Asp Tyr Trp Gly Thr 130 135
140Lys Asp Leu Asn Ser Cys Cys Gly Lys Met Asn Val Lys Ile Pro Ala145
150 155 160Asp Leu Pro Ser
Gly Asp Tyr Leu Leu Arg Ala Glu Ala Leu Ala Leu 165
170 175His Thr Ala Gly Ser Ala Gly Gly Ala Gln
Phe Tyr Met Thr Cys Tyr 180 185
190Gln Leu Thr Val Thr Gly Ser Gly Ser Ala Ser Pro Pro Thr Val Ser
195 200 205Phe Pro Gly Ala Tyr Lys Ala
Thr Asp Pro Gly Ile Leu Val Asn Ile 210 215
220His Ala Pro Leu Ser Gly Tyr Thr Val Pro Gly Pro Ala Val Tyr
Ser225 230 235 240Gly Gly
Ser Thr Lys Lys Ala Gly Ser Ala Cys Thr Gly Cys Glu Ser
245 250 255Thr Cys Ala Val Gly Ser Gly
Pro Thr Ala Thr Val Ser Gln Ser Pro 260 265
270Gly Ser Thr Ala Thr Ser Ala Pro Gly Gly Gly Gly Gly Cys
Thr Val 275 280 285Gln Lys Tyr Gln
Gln Cys Gly Gly Gln Gly Tyr Thr Gly Cys Thr Asn 290
295 300Cys Ala Ser Gly Ser Thr Cys Ser Ala Val Ser Pro
Pro Tyr Tyr Ser305 310 315
320Gln Cys Val18341PRTNeurospora crassa 18Met Pro Ser Phe Thr Ser Lys
Ser Leu Leu Ala Val Leu Ala Gly Ala1 5 10
15Ala Ser Val Ala Ala His Gly His Val Ser Asn Ile Val
Ile Asn Gly 20 25 30Glu Tyr
Tyr Arg Gly Phe Asp Ser Ser Leu Asn Tyr Met Ala Asn Pro 35
40 45Pro Ala Val Val Gly Trp Lys Ala Asn Asn
Gln Asp Asn Gly Phe Val 50 55 60Gly
Pro Asp Ala Phe Ser Ser Pro Asp Ile Ile Cys His Lys Asp Ala65
70 75 80Thr Asn Ala Lys Gly His
Ala Val Val Lys Ala Gly Asp Lys Ile Ser 85
90 95Ile Gln Trp Glu Thr Trp Pro Glu Ser His Lys Gly
Pro Val Ile Asp 100 105 110Tyr
Leu Ala Asn Cys Gly Ala Ser Gly Cys Glu Thr Val Asp Lys Thr 115
120 125Ser Leu Glu Phe Phe Lys Ile Asp Glu
Val Gly Leu Val Asp Gly Gln 130 135
140Lys Trp Gly Ser Asp Gln Leu Ile Ala Asn Asn Asn Ser Trp Leu Val145
150 155 160Glu Ile Pro Pro
Thr Ile Ala Pro Gly Phe Tyr Val Leu Arg His Glu 165
170 175Ile Ile Ala Leu His Ser Ala Gly Gln Pro
Asn Gly Ala Gln Asn Tyr 180 185
190Pro Gln Cys Phe Asn Ile Gln Val Thr Gly Ser Gly Thr Glu Lys Pro
195 200 205Ala Gly Val Lys Gly Thr Ala
Leu Tyr Lys Pro Asp Asp Ala Gly Ile 210 215
220Ser Val Asn Ile Tyr Gln Ser Leu Ser Ser Tyr Ser Ile Pro Gly
Pro225 230 235 240Ala Leu
Ile Lys Gly Ala Val Ser Val Ala Gln Ser His Ser Ala Val
245 250 255Thr Ala Thr Ala Thr Ala Ile
Thr Gly Leu Gly Asp Ala Pro Ala Ala 260 265
270Thr Ala Ala Pro Ala Ala Thr Thr Ala Pro Ala Ala Ala Pro
Ala Val 275 280 285Thr Thr Ala Pro
Ala Ala Ala Ala Pro Thr Lys Pro Ala Thr Thr Ala 290
295 300Ala Ala Pro Gln Pro Thr Lys Pro Ala Lys Ser Gly
Cys Gln Lys Arg305 310 315
320Arg Ala Ala Arg Arg Ala Ala Ala Leu Ala Arg Arg His Ala Arg Asp
325 330 335Val Ala Phe Leu Asp
34019342PRTAspergillus fumigatus 19Met Arg His Val Gln Ser Thr
Gln Leu Leu Ala Ala Leu Leu Leu Thr1 5 10
15Thr Arg Val Thr Ala His Gly His Val Thr Asn Ile Val
Ile Asn Gly 20 25 30Val Ser
Tyr Arg Gly Trp Asn Ile Asp Ser Asp Pro Tyr Asn Pro Asp 35
40 45Pro Pro Val Val Val Ala Trp Gln Thr Pro
Asn Thr Ala Asn Gly Phe 50 55 60Ile
Ser Pro Asp Ala Tyr Gly Thr Asn Asp Ile Ile Cys His Leu Asn65
70 75 80Ala Thr Asn Ala Arg Gly
His Ala Val Val Ala Ala Gly Asp Lys Ile 85
90 95Ser Ile Gln Trp Thr Ala Trp Pro Asp Ser His His
Gly Pro Val Ile 100 105 110Asp
Tyr Leu Ala Arg Cys Gly Ser Ser Cys Glu Thr Val Asp Lys Thr 115
120 125Thr Leu Glu Phe Phe Lys Ile Asp Gly
Val Gly Leu Val Asp Gly Ser 130 135
140Asn Pro Pro Gly Val Trp Gly Asp Asp Gln Leu Ile Ala Asp Asn Asn145
150 155 160Ser Trp Leu Val
Glu Ile Pro Pro Thr Ile Ala Pro Gly Tyr Tyr Val 165
170 175Leu Arg His Glu Leu Ile Ala Leu His Gly
Ala Gly Ser Gln Asn Gly 180 185
190Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Gln Ile Thr Gly Ser Gly
195 200 205Thr Ala Gln Pro Ser Gly Val
Lys Gly Thr Glu Leu Tyr Ser Pro Thr 210 215
220Asp Pro Gly Ile Leu Val Asn Ile Tyr Asn Ala Leu Ser Thr Tyr
Ile225 230 235 240Val Pro
Gly Pro Thr Leu Ile Pro Gly Ala Val Ser Val Val Gln Ser
245 250 255Ser Ser Thr Ile Thr Ala Ser
Gly Thr Pro Val Thr Gly Ser Gly Ser 260 265
270Ala Pro Thr Thr Ser Ala Thr Thr Thr Leu Ser Thr Thr Thr
Arg Ala 275 280 285Thr Thr Thr Thr
Thr Thr Thr Thr Ala Gly Ser Ser Thr Ser Val Gln 290
295 300Ser Val Tyr Gly Gln Cys Gly Gly Ser Gly Trp Ser
Gly Pro Thr Ala305 310 315
320Cys Val Thr Gly Ala Thr Cys Thr Ser Tyr Asn Ser Tyr Tyr Ser Gln
325 330 335Cys Ile Pro Thr Ala
Ser 34020330PRTAspergillus fumigatus 20Met Lys Leu Thr Ala Ser
Ile Leu Phe Ser Leu Ala Ser Val Thr Pro1 5
10 15Leu Val Ser Gly His Tyr Val Phe Ser Lys Leu Ile
Val Asp Gly Lys 20 25 30Pro
Thr Gln Asp Phe Glu Tyr Ile Arg Arg Asn Thr Asn Asn Tyr Met 35
40 45Pro Thr Leu Pro Ser Glu Ile Leu Ser
Asn Asp Phe Arg Cys Asn Lys 50 55
60Gly Ser Met Gln Ser Ala Ala Asn Thr Lys Val Tyr Lys Val Ala Pro65
70 75 80Gly Thr Glu Leu Gly
Phe Gln Leu Ala Tyr Gly Ala Glu Met Lys His 85
90 95Pro Gly Pro Leu Gln Ile Tyr Met Ser Lys Ala
Pro Gly Asp Val Arg 100 105
110Ser Tyr Asp Gly Ser Gly Asp Trp Phe Lys Val His Gln Glu Gly Leu
115 120 125Cys Ala Asp Thr Ser Lys Gly
Ile Lys Asp Glu Asp Trp Cys Thr Trp 130 135
140Gly Lys Asp Thr Ala Ser Phe Lys Ile Pro Gln Asp Thr Pro Ala
Gly145 150 155 160Gln Tyr
Leu Val Arg Val Glu His Ile Gly Leu His Arg Gly Phe Leu
165 170 175Gly Glu Ala Glu Phe Tyr Phe
Thr Cys Ala Gln Ile Glu Val Thr Gly 180 185
190Ser Gly Ser Gly Ser Pro Ser Pro Thr Val Lys Ile Pro Gly
Val Tyr 195 200 205Lys Pro Asp Asp
Pro Asn Val His Phe Asn Ile Trp Tyr Pro Thr Pro 210
215 220Thr Ala Tyr Ser Leu Pro Gly Pro Ser Val Trp Thr
Gly Gly Ser Ala225 230 235
240Gly Gly Ala Ser Pro Thr Ala Pro Ala Val Asn Asn Asn Ala Val Gln
245 250 255Ala Ala Pro Thr Thr
Met Thr Thr Val Ser Ser Pro Ala Asn Pro Thr 260
265 270Ala Gly Ala Glu Ala Glu Ala Asp Cys Gly Ser Ser
Glu Ser Ser Ser 275 280 285Ala Val
Ala Pro Glu Gly Thr Leu Lys Lys Trp Glu Gln Cys Gly Gly 290
295 300Leu Asn Trp Thr Gly Ser Gly Ser Cys Glu Ala
Arg Thr Thr Cys His305 310 315
320Gln Tyr Asn Pro Tyr Tyr Tyr Gln Cys Ile 325
33021364PRTAspergillus fumigatus 21Met Ser Gln Thr Lys Thr Leu
Ser Leu Leu Ala Ala Leu Leu Ser Ala1 5 10
15Thr Arg Val Ala Ala His Gly His Val Thr Asn Val Val
Val Asn Gly 20 25 30Val Ser
Tyr Ala Gly Phe Asp Ile Asn Ser Tyr Pro Tyr Met Ser Asp 35
40 45Pro Pro Lys Val Ala Ala Trp Thr Thr Pro
Asn Thr Gly Asn Gly Phe 50 55 60Ile
Ala Pro Ser Ala Tyr Asn Ser Pro Asp Ile Ile Cys His Gln Asn65
70 75 80Ala Thr Asn Ala Gln Ala
Tyr Ile Glu Ile Ala Ala Gly Asp Arg Ile 85
90 95Gln Leu Gln Trp Thr Ala Trp Pro Glu Ser His His
Gly Pro Val Ile 100 105 110Asp
Met Leu Ala Ser Cys Gly Glu Ser Cys Thr Thr Val Asp Lys Thr 115
120 125Ser Leu Lys Phe Phe Lys Ile Asp Gly
Val Gly Leu Val Asp Asn Ser 130 135
140Ala Val Pro Gly Thr Trp Gly Asp Asp Gln Leu Ile Ala Asn Ser Asn145
150 155 160Ser Trp Met Val
Glu Ile Pro Lys Ser Ile Ala Pro Gly Asn Tyr Val 165
170 175Leu Arg His Glu Leu Ile Ala Leu His Ser
Ala Phe Glu Thr Gly Gly 180 185
190Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Lys Val Thr Gly Ser Gly
195 200 205Thr Asp Ser Pro Ala Gly Thr
Leu Gly Thr Glu Leu Tyr Thr Glu Ser 210 215
220Asp Pro Gly Leu Leu Val Asp Ile Tyr Lys Ser Ile Ala Ser Tyr
Ala225 230 235 240Val Pro
Gly Pro Ala Met Tyr Thr Gly Ala Val Ser Ile Thr Gln Ser
245 250 255Thr Ser Ala Ile Thr Ala Thr
Gly Thr Ala Thr Val Gly Ser Gly Ala 260 265
270Asp Ser Thr Pro Val Pro Ser Ser Ala Ala Ser Ser Glu Tyr
Ser Thr 275 280 285Val Ala Val Gln
Val Pro Thr Thr Lys Ala Gln Tyr Thr Pro Val Pro 290
295 300Ser Ser Ser Pro Ser Thr Phe Val Thr Ser Pro Ala
Pro Thr Thr Ser305 310 315
320Val Pro Ser Gly Ser Ser Val Pro Val Thr Ser Asn Thr Ala Ala Pro
325 330 335Leu Pro Thr Ala Ala
Pro Gly Gly Thr Gln Thr Val Tyr Gly Gln Cys 340
345 350Gly Gly Gln Asn Trp Thr Gly Pro Thr Tyr Ile Val
355 36022270PRTThielavia terrestris 22Leu Leu Ser
Thr Leu Ala Gly Ala Ala Ser Val Ala Ala His Gly His1 5
10 15Val Ser Asn Ile Val Ile Asn Gly Val
Ser Tyr Gln Gly Tyr Asp Pro 20 25
30Thr Ser Phe Pro Tyr Met Gln Asn Pro Pro Ile Val Val Gly Trp Thr
35 40 45Ala Ala Asp Thr Asp Asn Gly
Phe Val Ala Pro Asp Ala Phe Ala Ser 50 55
60Gly Asp Ile Ile Cys His Lys Asn Ala Thr Asn Ala Lys Gly His Ala65
70 75 80Val Val Ala Ala
Gly Asp Lys Ile Phe Ile Gln Trp Asn Thr Trp Pro 85
90 95Glu Ser His His Gly Pro Val Ile Asp Tyr
Leu Ala Ser Cys Gly Ser 100 105
110Ala Ser Cys Glu Thr Val Asp Lys Thr Lys Leu Glu Phe Phe Lys Ile
115 120 125Asp Glu Val Gly Leu Val Asp
Gly Ser Ser Ala Pro Gly Val Trp Gly 130 135
140Ser Asp Gln Leu Ile Ala Asn Asn Asn Ser Trp Leu Val Glu Ile
Pro145 150 155 160Pro Thr
Ile Ala Pro Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala
165 170 175Leu His Ser Ala Glu Asn Ala
Asp Gly Ala Gln Asn Tyr Pro Gln Cys 180 185
190Phe Asn Leu Gln Ile Thr Gly Thr Gly Thr Ala Thr Pro Ser
Gly Val 195 200 205Pro Gly Thr Ser
Leu Tyr Thr Pro Thr Asp Pro Gly Ile Leu Val Asn 210
215 220Ile Tyr Ser Ala Pro Ile Thr Tyr Thr Val Pro Gly
Pro Ala Leu Ile225 230 235
240Ser Gly Ala Val Ser Ile Ala Gln Ser Ser Ser Ala Ile Thr Ala Ser
245 250 255Gly Thr Ala Leu Thr
Gly Ser Ala Thr Ala Pro Ala Ala Ala 260 265
27023330PRTThielavia terrestris 23Met Pro Pro Ala Leu Pro
Gln Leu Leu Thr Thr Val Leu Thr Ala Leu1 5
10 15Thr Leu Gly Ser Thr Ala Leu Ala His Ser His Leu
Ala Tyr Ile Ile 20 25 30Val
Asn Gly Lys Leu Tyr Gln Gly Phe Asp Pro Arg Pro His Gln Ala 35
40 45Asn Tyr Pro Ser Arg Val Gly Trp Ser
Thr Gly Ala Val Asp Asp Gly 50 55
60Phe Val Thr Pro Ala Asn Tyr Ser Thr Pro Asp Ile Ile Cys His Ile65
70 75 80Ala Gly Thr Ser Pro
Ala Gly His Ala Pro Val Arg Pro Gly Asp Arg 85
90 95Ile His Val Gln Trp Asn Gly Trp Pro Val Gly
His Ile Gly Pro Val 100 105
110Leu Ser Tyr Leu Ala Arg Cys Glu Ser Asp Thr Gly Cys Thr Gly Gln
115 120 125Asn Lys Thr Ala Leu Arg Trp
Thr Lys Ile Asp Asp Ser Ser Pro Thr 130 135
140Met Gln Asn Val Ala Gly Ala Gly Thr Gln Gly Glu Gly Thr Pro
Gly145 150 155 160Lys Arg
Trp Ala Thr Asp Val Leu Ile Ala Ala Asn Asn Ser Trp Gln
165 170 175Val Ala Val Pro Ala Gly Leu
Pro Thr Gly Ala Tyr Val Leu Arg Asn 180 185
190Glu Ile Ile Ala Leu His Tyr Ala Ala Arg Lys Asn Gly Ala
Gln Asn 195 200 205Tyr Pro Leu Cys
Met Asn Leu Trp Val Asp Ala Ser Gly Asp Asn Ser 210
215 220Ser Val Ala Ala Thr Thr Ala Ala Val Thr Ala Gly
Gly Leu Gln Met225 230 235
240Asp Ala Tyr Asp Ala Arg Gly Phe Tyr Lys Glu Asn Asp Pro Gly Val
245 250 255Leu Val Asn Val Thr
Ala Ala Leu Ser Ser Tyr Val Val Pro Gly Pro 260
265 270Thr Val Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala
Gln Gln Ser Pro 275 280 285Ser Val
Ser Thr Ala Ala Gly Thr Pro Val Val Val Thr Arg Thr Ser 290
295 300Glu Thr Ala Pro Tyr Thr Gly Ala Met Thr Pro
Thr Val Ala Ala Arg305 310 315
320Met Lys Gly Arg Gly Tyr Asp Arg Arg Gly 325
33024315PRTThielavia terrestris 24Met Arg Thr Thr Phe Ala Ala
Ala Leu Ala Ala Phe Ala Ala Gln Glu1 5 10
15Val Ala Gly His Ala Ile Phe Gln Gln Leu Trp Val Asp
Gly Thr Asp 20 25 30Tyr Ile
Arg Ala Pro Leu Phe Leu Phe Gly Lys Cys Pro Val Lys Ala 35
40 45Gly Gly Thr Val Thr Val Glu Met His Gln
Gln Pro Gly Asp Arg Ser 50 55 60Cys
Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro Val Gln Val65
70 75 80Tyr Leu Ser Lys Val Glu
Asp Ala Ser Thr Ala Asp Gly Ser Thr Gly 85
90 95Trp Phe Lys Ile Phe Ala Asp Thr Trp Ser Lys Lys
Ala Gly Ser Ser 100 105 110Val
Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys 115
120 125Gly Lys Met Gln Val Lys Ile Pro Ala
Asp Ile Pro Ser Gly Asp Tyr 130 135
140Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr Ala Gly Gln Val Gly145
150 155 160Gly Ala Gln Phe
Tyr Met Ser Cys Tyr Gln Ile Thr Val Ser Gly Gly 165
170 175Gly Ser Ala Ser Pro Ala Thr Val Lys Phe
Pro Gly Ala Tyr Ser Ala 180 185
190Asn Asp Pro Gly Ile His Ile Asn Ile His Ala Ala Val Ser Asn Tyr
195 200 205Val Ala Pro Gly Pro Ala Val
Tyr Ser Gly Gly Thr Thr Lys Val Ala 210 215
220Gly Ser Gly Cys Gln Gly Cys Glu Asn Thr Cys Lys Val Gly Ser
Ser225 230 235 240Pro Thr
Ala Thr Ala Pro Ser Gly Lys Ser Gly Ala Gly Ser Asp Gly
245 250 255Gly Ala Gly Thr Asp Gly Gly
Ser Ser Ser Ser Ser Pro Asp Thr Gly 260 265
270Ser Ala Cys Ser Val Gln Ala Tyr Gly Gln Cys Gly Gly Asn
Gly Tyr 275 280 285Ser Gly Cys Thr
Gln Cys Ala Pro Gly Tyr Thr Cys Lys Ala Val Ser 290
295 300Pro Pro Tyr Tyr Ser Gln Cys Ala Pro Ser Ser305
310 31525349PRTChaetomium globosum 25Met Ser
Lys Ala Ser Ala Leu Leu Ala Thr Leu Thr Gly Ala Ala Leu1 5
10 15Val Ala Ala His Gly His Val Ser
His Ile Ile Val Asn Gly Val Tyr 20 25
30Tyr Glu Asn Tyr Asp Pro Thr Thr His Trp Tyr Gln Pro Asn Pro
Pro 35 40 45Thr Val Ile Gly Trp
Lys Ala Ala Gln Gln Asp Asn Gly Phe Val Glu 50 55
60Pro Asn Asn Phe Gly Thr Ser Asp Ile Ile Cys His Lys Ser
Gly Ser65 70 75 80Pro
Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Ser Ile
85 90 95Val Trp Asp Pro Glu Trp Pro
Glu Ser His Ile Gly Pro Val Ile Asp 100 105
110Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys
Ala Ser 115 120 125Leu Arg Phe Phe
Lys Ile Asp Gly Ala Gly Tyr Asp Lys Thr Ala Gly 130
135 140Arg Trp Ala Ala Asp Thr Leu Arg Ala Asn Gly Asn
Ser Trp Leu Val145 150 155
160Gln Ile Pro Ala Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu
165 170 175Ile Ile Ala Leu His
Gly Ala Ser Ser Pro Asn Gly Ala Gln Ala Tyr 180
185 190Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Ser Gly
Thr Asn Ala Pro 195 200 205Ser Gly
Val Ala Gly Thr Ser Leu Tyr Arg Ala Ser Asp Ala Gly Ile 210
215 220Leu Phe Asn Pro Tyr Val Ala Ser Pro Asn Tyr
Pro Val Pro Gly Pro225 230 235
240Ala Leu Ile Ala Gly Ala Ala Ser Ser Val Ala Gln Ser Lys Ser Val
245 250 255Ala Thr Ala Thr
Ala Ser Ala Thr Leu Pro Gly Asn Asn Asn Gly Gly 260
265 270Gly Pro Asn Pro Gln Pro Thr Thr Ala Thr Thr
Thr Ala Asn Pro Gly 275 280 285Val
Ser Thr Thr Leu Arg Thr Ser Thr Ser Thr Ser Thr Ser Ala Gln 290
295 300Val Thr Pro Pro Pro Thr Gly Gly Asn Ala
Gln Thr Lys Tyr Gly Gln305 310 315
320Cys Gly Gly Ser Gly Trp Thr Gly Pro Thr Ala Cys Ala Ala Gly
Ser 325 330 335Ser Cys Ser
Val Leu Asn Asp Trp Tyr Ala Gln Cys Val 340
34526249PRTTrichoderma reesei 26Met Lys Ser Cys Ala Ile Leu Ala Ala Leu
Gly Cys Leu Ala Gly Ser1 5 10
15Val Leu Gly His Gly Gln Val Gln Asn Phe Thr Ile Asn Gly Gln Tyr
20 25 30Asn Gln Gly Phe Ile Leu
Asp Tyr Tyr Tyr Gln Lys Gln Asn Thr Gly 35 40
45His Phe Pro Asn Val Ala Gly Trp Tyr Ala Glu Asp Leu Asp
Leu Gly 50 55 60Phe Ile Ser Pro Asp
Gln Tyr Thr Thr Pro Asp Ile Val Cys His Lys65 70
75 80Asn Ala Ala Pro Gly Ala Ile Ser Ala Thr
Ala Ala Ala Gly Ser Asn 85 90
95Ile Val Phe Gln Trp Gly Pro Gly Val Trp Pro His Pro Tyr Gly Pro
100 105 110Ile Val Thr Tyr Val
Val Glu Cys Ser Gly Ser Cys Thr Thr Val Asn 115
120 125Lys Asn Asn Leu Arg Trp Val Lys Ile Gln Glu Ala
Gly Ile Asn Tyr 130 135 140Asn Thr Gln
Val Trp Ala Gln Gln Asp Leu Ile Asn Gln Gly Asn Lys145
150 155 160Trp Thr Val Lys Ile Pro Ser
Ser Leu Arg Pro Gly Asn Tyr Val Phe 165
170 175Arg His Glu Leu Leu Ala Ala His Gly Ala Ser Ser
Ala Asn Gly Met 180 185 190Gln
Asn Tyr Pro Gln Cys Val Asn Ile Ala Val Thr Gly Ser Gly Thr 195
200 205Lys Ala Leu Pro Ala Gly Thr Pro Ala
Thr Gln Leu Tyr Lys Pro Thr 210 215
220Asp Pro Gly Ile Leu Phe Asn Pro Tyr Thr Thr Ile Thr Ser Tyr Thr225
230 235 240Ile Pro Gly Pro
Ala Leu Trp Gln Gly 24527344PRTTrichoderma reesei 27Met
Ile Gln Lys Leu Ser Asn Leu Leu Val Thr Ala Leu Ala Val Ala1
5 10 15Thr Gly Val Val Gly His Gly
His Ile Asn Asp Ile Val Ile Asn Gly 20 25
30Val Trp Tyr Gln Ala Tyr Asp Pro Thr Thr Phe Pro Tyr Glu
Ser Asn 35 40 45Pro Pro Ile Val
Val Gly Trp Thr Ala Ala Asp Leu Asp Asn Gly Phe 50 55
60Val Ser Pro Asp Ala Tyr Gln Asn Pro Asp Ile Ile Cys
His Lys Asn65 70 75
80Ala Thr Asn Ala Lys Gly His Ala Ser Val Lys Ala Gly Asp Thr Ile
85 90 95Leu Phe Gln Trp Val Pro
Val Pro Trp Pro His Pro Gly Pro Ile Val 100
105 110Asp Tyr Leu Ala Asn Cys Asn Gly Asp Cys Glu Thr
Val Asp Lys Thr 115 120 125Thr Leu
Glu Phe Phe Lys Ile Asp Gly Val Gly Leu Leu Ser Gly Gly 130
135 140Asp Pro Gly Thr Trp Ala Ser Asp Val Leu Ile
Ser Asn Asn Asn Thr145 150 155
160Trp Val Val Lys Ile Pro Asp Asn Leu Ala Pro Gly Asn Tyr Val Leu
165 170 175Arg His Glu Ile
Ile Ala Leu His Ser Ala Gly Gln Ala Asn Gly Ala 180
185 190Gln Asn Tyr Pro Gln Cys Phe Asn Ile Ala Val
Ser Gly Ser Gly Ser 195 200 205Leu
Gln Pro Ser Gly Val Leu Gly Thr Asp Leu Tyr His Ala Thr Asp 210
215 220Pro Gly Val Leu Ile Asn Ile Tyr Thr Ser
Pro Leu Asn Tyr Ile Ile225 230 235
240Pro Gly Pro Thr Val Val Ser Gly Leu Pro Thr Ser Val Ala Gln
Gly 245 250 255Ser Ser Ala
Ala Thr Ala Thr Ala Ser Ala Thr Val Pro Gly Gly Gly 260
265 270Ser Gly Pro Thr Ser Arg Thr Thr Thr Thr
Ala Arg Thr Thr Gln Ala 275 280
285Ser Ser Arg Pro Ser Ser Thr Pro Pro Ala Thr Thr Ser Ala Pro Ala 290
295 300Gly Gly Pro Thr Gln Thr Leu Tyr
Gly Gln Cys Gly Gly Ser Gly Tyr305 310
315 320Ser Gly Pro Thr Arg Cys Ala Pro Pro Ala Thr Cys
Ser Thr Leu Asn 325 330
335Pro Tyr Tyr Ala Gln Cys Leu Asn 34028250PRTAspergillus
fumigatus 28Met Thr Leu Ser Lys Ile Thr Ser Ile Ala Gly Leu Leu Ala Ser
Ala1 5 10 15Ser Leu Val
Ala Gly His Gly Phe Val Ser Gly Ile Val Ala Asp Gly 20
25 30Lys Tyr Tyr Gly Gly Tyr Leu Val Asn Gln
Tyr Pro Tyr Met Ser Asn 35 40
45Pro Pro Asp Thr Ile Ala Trp Ser Thr Thr Ala Thr Asp Leu Gly Phe 50
55 60Val Asp Gly Thr Gly Tyr Gln Ser Pro
Asp Ile Ile Cys His Arg Asp65 70 75
80Ala Lys Asn Gly Lys Leu Thr Ala Thr Val Ala Ala Gly Ser
Gln Ile 85 90 95Glu Phe
Gln Trp Thr Thr Trp Pro Glu Ser His His Gly Pro Leu Ile 100
105 110Thr Tyr Leu Ala Pro Cys Asn Gly Asp
Cys Ala Thr Val Asp Lys Thr 115 120
125Thr Leu Lys Phe Val Lys Ile Ala Ala Gln Gly Leu Ile Asp Gly Ser
130 135 140Asn Pro Pro Gly Val Trp Ala
Asp Asp Glu Met Ile Ala Asn Asn Asn145 150
155 160Thr Ala Thr Val Thr Ile Pro Ala Ser Tyr Ala Pro
Gly Asn Tyr Val 165 170
175Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gly Asn Leu Asn Gly
180 185 190Ala Gln Asn Tyr Pro Gln
Cys Phe Asn Ile Gln Ile Thr Gly Gly Gly 195 200
205Ser Ala Gln Gly Ser Gly Thr Ala Gly Thr Ser Leu Tyr Lys
Asn Thr 210 215 220Asp Pro Gly Ile Lys
Phe Asp Ile Tyr Ser Asp Leu Ser Gly Gly Tyr225 230
235 240Pro Ile Pro Gly Pro Ala Leu Phe Asn Ala
245 25029226PRTThielavia terrestris 29Met
Leu Ala Asn Gly Ala Ile Val Phe Leu Ala Ala Ala Leu Gly Val1
5 10 15Ser Gly His Tyr Thr Trp Pro
Arg Val Asn Asp Gly Ala Asp Trp Gln 20 25
30Gln Val Arg Lys Ala Asp Asn Trp Gln Asp Asn Gly Tyr Val
Gly Asp 35 40 45Val Thr Ser Pro
Gln Ile Arg Cys Phe Gln Ala Thr Pro Ser Pro Ala 50 55
60Pro Ser Val Leu Asn Thr Thr Ala Gly Ser Thr Val Thr
Tyr Trp Ala65 70 75
80Asn Pro Asp Val Tyr His Pro Gly Pro Val Gln Phe Tyr Met Ala Arg
85 90 95Val Pro Asp Gly Glu Asp
Ile Asn Ser Trp Asn Gly Asp Gly Ala Val 100
105 110Trp Phe Lys Val Tyr Glu Asp His Pro Thr Phe Gly
Ala Gln Leu Thr 115 120 125Trp Pro
Ser Thr Gly Lys Ser Ser Phe Ala Val Pro Ile Pro Pro Cys 130
135 140Ile Lys Ser Gly Tyr Tyr Leu Leu Arg Ala Glu
Gln Ile Gly Leu His145 150 155
160Val Ala Gln Ser Val Gly Gly Ala Gln Phe Tyr Ile Ser Cys Ala Gln
165 170 175Leu Ser Val Thr
Gly Gly Gly Ser Thr Glu Pro Pro Asn Lys Val Ala 180
185 190Phe Pro Gly Ala Tyr Ser Ala Thr Asp Pro Gly
Ile Leu Ile Asn Ile 195 200 205Tyr
Tyr Pro Val Pro Thr Ser Tyr Gln Asn Pro Gly Pro Ala Val Phe 210
215 220Ser Cys225301044DNATrichoderma reesei
30atgatccaga agctttccaa ccttcttctc accgcactag cggtggcaac cggtgttgtt
60ggacacggac acatcaacaa cattgtcgtc aacggagtgt actaccaggg atatgatcct
120acatcgttcc catatgaatc tgacccgccc atagtggtgg gctggacggc tgccgatctt
180gacaacggct tcgtctcacc cgacgcatat cagagcccgg acatcatctg ccacaagaat
240gccaccaacg ccaaaggaca cgcgtccgtc aaggccggag acactattcc cctccagtgg
300gtgccagttc cttggccgca cccaggcccc atcgtcgact acctggccaa ctgcaacggc
360gactgcgaga ccgtggacaa gacgtccctt gagttcttca agattgacgg cgtcggtctc
420atcagcggcg gagatccggg caactgggcc tcggacgtgt tgattgccaa caacaacacc
480tgggttgtca agatccccga ggatctcgcc ccgggcaact acgtgcttcg ccacgagatc
540atcgccttgc acagcgccgg gcaggcggac ggcgctcaga actaccctca gtgcttcaac
600ctcgccgtcc caggctccgg atctctgcag ccgagcggcg tcaagggaac cgcgctctac
660cactccgatg accccggtgt cctcatcaac atctacacca gccctcttgc gtacaccatt
720cctggacctt ccgtggtatc aggcctcccc acgagtgtcg cccagggcag ctccgccgcg
780acggccactg ccagcgccac tgttcctggc ggtagcggac cgggaaaccc gaccagtaag
840actacgacga cggcgaggac gacacaggcc tcctctagca gggccagctc tactcctcct
900gctactacgt cggcacctgg tggaggccca acccagactt tgtacggcca gtgtggtggc
960agcggctaca gtggtcctac tcgatgcgcg ccgccggcca cttgctctac cttgaaccca
1020tactacgccc agtgccttaa ctag
104431471PRTTrichoderma reesei 31Met Ile Val Gly Ile Leu Thr Thr Leu Ala
Thr Leu Ala Thr Leu Ala1 5 10
15Ala Ser Val Pro Leu Glu Glu Arg Gln Ala Cys Ser Ser Val Trp Gly
20 25 30Gln Cys Gly Gly Gln Asn
Trp Ser Gly Pro Thr Cys Cys Ala Ser Gly 35 40
45Ser Thr Cys Val Tyr Ser Asn Asp Tyr Tyr Ser Gln Cys Leu
Pro Gly 50 55 60Ala Ala Ser Ser Ser
Ser Ser Thr Arg Ala Ala Ser Thr Thr Ser Arg65 70
75 80Val Ser Pro Thr Thr Ser Arg Ser Ser Ser
Ala Thr Pro Pro Pro Gly 85 90
95Ser Thr Thr Thr Arg Val Pro Pro Val Gly Ser Gly Thr Ala Thr Tyr
100 105 110Ser Gly Asn Pro Phe
Val Gly Val Thr Pro Trp Ala Asn Ala Tyr Tyr 115
120 125Ala Ser Glu Val Ser Ser Leu Ala Ile Pro Ser Leu
Thr Gly Ala Met 130 135 140Ala Thr Ala
Ala Ala Ala Val Ala Lys Val Pro Ser Phe Met Trp Leu145
150 155 160Asp Thr Leu Asp Lys Thr Pro
Leu Met Glu Gln Thr Leu Ala Asp Ile 165
170 175Arg Thr Ala Asn Lys Asn Gly Gly Asn Tyr Ala Gly
Gln Phe Val Val 180 185 190Tyr
Asp Leu Pro Asp Arg Asp Cys Ala Ala Leu Ala Ser Asn Gly Glu 195
200 205Tyr Ser Ile Ala Asp Gly Gly Val Ala
Lys Tyr Lys Asn Tyr Ile Asp 210 215
220Thr Ile Arg Gln Ile Val Val Glu Tyr Ser Asp Ile Arg Thr Leu Leu225
230 235 240Val Ile Glu Pro
Asp Ser Leu Ala Asn Leu Val Thr Asn Leu Gly Thr 245
250 255Pro Lys Cys Ala Asn Ala Gln Ser Ala Tyr
Leu Glu Cys Ile Asn Tyr 260 265
270Ala Val Thr Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala
275 280 285Gly His Ala Gly Trp Leu Gly
Trp Pro Ala Asn Gln Asp Pro Ala Ala 290 295
300Gln Leu Phe Ala Asn Val Tyr Lys Asn Ala Ser Ser Pro Arg Ala
Leu305 310 315 320Arg Gly
Leu Ala Thr Asn Val Ala Asn Tyr Asn Gly Trp Asn Ile Thr
325 330 335Ser Pro Pro Ser Tyr Thr Gln
Gly Asn Ala Val Tyr Asn Glu Lys Leu 340 345
350Tyr Ile His Ala Ile Gly Pro Leu Leu Ala Asn His Gly Trp
Ser Asn 355 360 365Ala Phe Phe Ile
Thr Asp Gln Gly Arg Ser Gly Lys Gln Pro Thr Gly 370
375 380Gln Gln Gln Trp Gly Asp Trp Cys Asn Val Ile Gly
Thr Gly Phe Gly385 390 395
400Ile Arg Pro Ser Ala Asn Thr Gly Asp Ser Leu Leu Asp Ser Phe Val
405 410 415Trp Val Lys Pro Gly
Gly Glu Cys Asp Gly Thr Ser Asp Ser Ser Ala 420
425 430Pro Arg Phe Asp Ser His Cys Ala Leu Pro Asp Ala
Leu Gln Pro Ala 435 440 445Pro Gln
Ala Gly Ala Trp Phe Gln Ala Tyr Phe Val Gln Leu Leu Thr 450
455 460Asn Ala Asn Pro Ser Phe Leu465
47032513PRTTrichoderma reesei 32Met Tyr Arg Lys Leu Ala Val Ile Ser Ala
Phe Leu Ala Thr Ala Arg1 5 10
15Ala Gln Ser Ala Cys Thr Leu Gln Ser Glu Thr His Pro Pro Leu Thr
20 25 30Trp Gln Lys Cys Ser Ser
Gly Gly Thr Cys Thr Gln Gln Thr Gly Ser 35 40
45Val Val Ile Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn
Ser Ser 50 55 60Thr Asn Cys Tyr Asp
Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp65 70
75 80Asn Glu Thr Cys Ala Lys Asn Cys Cys Leu
Asp Gly Ala Ala Tyr Ala 85 90
95Ser Thr Tyr Gly Val Thr Thr Ser Gly Asn Ser Leu Ser Ile Gly Phe
100 105 110Val Thr Gln Ser Ala
Gln Lys Asn Val Gly Ala Arg Leu Tyr Leu Met 115
120 125Ala Ser Asp Thr Thr Tyr Gln Glu Phe Thr Leu Leu
Gly Asn Glu Phe 130 135 140Ser Phe Asp
Val Asp Val Ser Gln Leu Pro Cys Gly Leu Asn Gly Ala145
150 155 160Leu Tyr Phe Val Ser Met Asp
Ala Asp Gly Gly Val Ser Lys Tyr Pro 165
170 175Thr Asn Thr Ala Gly Ala Lys Tyr Gly Thr Gly Tyr
Cys Asp Ser Gln 180 185 190Cys
Pro Arg Asp Leu Lys Phe Ile Asn Gly Gln Ala Asn Val Glu Gly 195
200 205Trp Glu Pro Ser Ser Asn Asn Ala Asn
Thr Gly Ile Gly Gly His Gly 210 215
220Ser Cys Cys Ser Glu Met Asp Ile Trp Glu Ala Asn Ser Ile Ser Glu225
230 235 240Ala Leu Thr Pro
His Pro Cys Thr Thr Val Gly Gln Glu Ile Cys Glu 245
250 255Gly Asp Gly Cys Gly Gly Thr Tyr Ser Asp
Asn Arg Tyr Gly Gly Thr 260 265
270Cys Asp Pro Asp Gly Cys Asp Trp Asn Pro Tyr Arg Leu Gly Asn Thr
275 280 285Ser Phe Tyr Gly Pro Gly Ser
Ser Phe Thr Leu Asp Thr Thr Lys Lys 290 295
300Leu Thr Val Val Thr Gln Phe Glu Thr Ser Gly Ala Ile Asn Arg
Tyr305 310 315 320Tyr Val
Gln Asn Gly Val Thr Phe Gln Gln Pro Asn Ala Glu Leu Gly
325 330 335Ser Tyr Ser Gly Asn Glu Leu
Asn Asp Asp Tyr Cys Thr Ala Glu Glu 340 345
350Ala Glu Phe Gly Gly Ser Ser Phe Ser Asp Lys Gly Gly Leu
Thr Gln 355 360 365Phe Lys Lys Ala
Thr Ser Gly Gly Met Val Leu Val Met Ser Leu Trp 370
375 380Asp Asp Tyr Tyr Ala Asn Met Leu Trp Leu Asp Ser
Thr Tyr Pro Thr385 390 395
400Asn Glu Thr Ser Ser Thr Pro Gly Ala Val Arg Gly Ser Cys Ser Thr
405 410 415Ser Ser Gly Val Pro
Ala Gln Val Glu Ser Gln Ser Pro Asn Ala Lys 420
425 430Val Thr Phe Ser Asn Ile Lys Phe Gly Pro Ile Gly
Ser Thr Gly Asn 435 440 445Pro Ser
Gly Gly Asn Pro Pro Gly Gly Asn Arg Gly Thr Thr Thr Thr 450
455 460Arg Arg Pro Ala Thr Thr Thr Gly Ser Ser Pro
Gly Pro Thr Gln Ser465 470 475
480His Tyr Gly Gln Cys Gly Gly Ile Gly Tyr Ser Gly Pro Thr Val Cys
485 490 495Ala Ser Gly Thr
Thr Cys Gln Val Leu Asn Pro Tyr Tyr Ser Gln Cys 500
505 510Leu33837PRTTrichoderma reesei 33Met Lys Val
Ser Arg Val Leu Ala Leu Val Leu Gly Ala Val Ile Pro1 5
10 15Ala His Ala Ala Phe Ser Trp Lys Asn
Val Lys Leu Gly Gly Gly Gly 20 25
30Gly Phe Val Pro Gly Ile Ile Phe His Pro Lys Thr Lys Gly Val Ala
35 40 45Tyr Ala Arg Thr Asp Ile Gly
Gly Leu Tyr Arg Leu Asn Ala Asp Asp 50 55
60Ser Trp Thr Ala Val Thr Asp Gly Ile Ala Asp Asn Ala Gly Trp His65
70 75 80Asn Trp Gly Ile
Asp Ala Val Ala Leu Asp Pro Gln Asp Asp Gln Lys 85
90 95Val Tyr Ala Ala Val Gly Met Tyr Thr Asn
Ser Trp Asp Pro Ser Asn 100 105
110Gly Ala Ile Ile Arg Ser Ser Asp Arg Gly Ala Thr Trp Ser Phe Thr
115 120 125Asn Leu Pro Phe Lys Val Gly
Gly Asn Met Pro Gly Arg Gly Ala Gly 130 135
140Glu Arg Leu Ala Val Asp Pro Ala Asn Ser Asn Ile Ile Tyr Phe
Gly145 150 155 160Ala Arg
Ser Gly Asn Gly Leu Trp Lys Ser Thr Asp Gly Gly Val Thr
165 170 175Phe Ser Lys Val Ser Ser Phe
Thr Ala Thr Gly Thr Tyr Ile Pro Asp 180 185
190Pro Ser Asp Ser Asn Gly Tyr Asn Ser Asp Lys Gln Gly Leu
Met Trp 195 200 205Val Thr Phe Asp
Ser Thr Ser Ser Thr Thr Gly Gly Ala Thr Ser Arg 210
215 220Ile Phe Val Gly Thr Ala Asp Asn Ile Thr Ala Ser
Val Tyr Val Ser225 230 235
240Thr Asn Ala Gly Ser Thr Trp Ser Ala Val Pro Gly Gln Pro Gly Lys
245 250 255Tyr Phe Pro His Lys
Ala Lys Leu Gln Pro Ala Glu Lys Ala Leu Tyr 260
265 270Leu Thr Tyr Ser Asp Gly Thr Gly Pro Tyr Asp Gly
Thr Leu Gly Ser 275 280 285Val Trp
Arg Tyr Asp Ile Ala Gly Gly Thr Trp Lys Asp Ile Thr Pro 290
295 300Val Ser Gly Ser Asp Leu Tyr Phe Gly Phe Gly
Gly Leu Gly Leu Asp305 310 315
320Leu Gln Lys Pro Gly Thr Leu Val Val Ala Ser Leu Asn Ser Trp Trp
325 330 335Pro Asp Ala Gln
Leu Phe Arg Ser Thr Asp Ser Gly Thr Thr Trp Ser 340
345 350Pro Ile Trp Ala Trp Ala Ser Tyr Pro Thr Glu
Thr Tyr Tyr Tyr Ser 355 360 365Ile
Ser Thr Pro Lys Ala Pro Trp Ile Lys Asn Asn Phe Ile Asp Val 370
375 380Thr Ser Glu Ser Pro Ser Asp Gly Leu Ile
Lys Arg Leu Gly Trp Met385 390 395
400Ile Glu Ser Leu Glu Ile Asp Pro Thr Asp Ser Asn His Trp Leu
Tyr 405 410 415Gly Thr Gly
Met Thr Ile Phe Gly Gly His Asp Leu Thr Asn Trp Asp 420
425 430Thr Arg His Asn Val Ser Ile Gln Ser Leu
Ala Asp Gly Ile Glu Glu 435 440
445Phe Ser Val Gln Asp Leu Ala Ser Ala Pro Gly Gly Ser Glu Leu Leu 450
455 460Ala Ala Val Gly Asp Asp Asn Gly
Phe Thr Phe Ala Ser Arg Asn Asp465 470
475 480Leu Gly Thr Ser Pro Gln Thr Val Trp Ala Thr Pro
Thr Trp Ala Thr 485 490
495Ser Thr Ser Val Asp Tyr Ala Gly Asn Ser Val Lys Ser Val Val Arg
500 505 510Val Gly Asn Thr Ala Gly
Thr Gln Val Ala Ile Ser Ser Asp Gly Gly 515 520
525Ala Thr Trp Ser Ile Asp Tyr Ala Ala Asp Thr Ser Met Asn
Gly Gly 530 535 540Thr Val Ala Tyr Ser
Ala Asp Gly Asp Thr Ile Leu Trp Ser Thr Ala545 550
555 560Ser Ser Gly Val Gln Arg Ser Gln Phe Gln
Gly Ser Phe Ala Ser Val 565 570
575Ser Ser Leu Pro Ala Gly Ala Val Ile Ala Ser Asp Lys Lys Thr Asn
580 585 590Ser Val Phe Tyr Ala
Gly Ser Gly Ser Thr Phe Tyr Val Ser Lys Asp 595
600 605Thr Gly Ser Ser Phe Thr Arg Gly Pro Lys Leu Gly
Ser Ala Gly Thr 610 615 620Ile Arg Asp
Ile Ala Ala His Pro Thr Thr Ala Gly Thr Leu Tyr Val625
630 635 640Ser Thr Asp Val Gly Ile Phe
Arg Ser Thr Asp Ser Gly Thr Thr Phe 645
650 655Gly Gln Val Ser Thr Ala Leu Thr Asn Thr Tyr Gln
Ile Ala Leu Gly 660 665 670Val
Gly Ser Gly Ser Asn Trp Asn Leu Tyr Ala Phe Gly Thr Gly Pro 675
680 685Ser Gly Ala Arg Leu Tyr Ala Ser Gly
Asp Ser Gly Ala Ser Trp Thr 690 695
700Asp Ile Gln Gly Ser Gln Gly Phe Gly Ser Ile Asp Ser Thr Lys Val705
710 715 720Ala Gly Ser Gly
Ser Thr Ala Gly Gln Val Tyr Val Gly Thr Asn Gly 725
730 735Arg Gly Val Phe Tyr Ala Gln Gly Thr Val
Gly Gly Gly Thr Gly Gly 740 745
750Thr Ser Ser Ser Thr Lys Gln Ser Ser Ser Ser Thr Ser Ser Ala Ser
755 760 765Ser Ser Thr Thr Leu Arg Ser
Ser Val Val Ser Thr Thr Arg Ala Ser 770 775
780Thr Val Thr Ser Ser Arg Thr Ser Ser Ala Ala Gly Pro Thr Gly
Ser785 790 795 800Gly Val
Ala Gly His Tyr Ala Gln Cys Gly Gly Ile Gly Trp Thr Gly
805 810 815Pro Thr Gln Cys Val Ala Pro
Tyr Val Cys Gln Lys Gln Asn Asp Tyr 820 825
830Tyr Tyr Gln Cys Val 83534297PRTStaphylotrichum
coccosporum 34Met Arg Ser Ser Pro Phe Leu Arg Ala Ala Leu Ala Ala Ala Leu
Pro1 5 10 15Leu Ser Ala
His Ala Leu Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys 20
25 30Cys Lys Pro Ser Cys Gly Trp Pro Gly Lys
Ala Ser Val Asn Gln Pro 35 40
45Val Phe Ser Cys Ser Ala Asp Trp Gln Arg Ile Ser Asp Phe Asn Ala 50
55 60Lys Ser Gly Cys Asp Gly Gly Ser Ala
Tyr Ser Cys Ala Asp Gln Thr65 70 75
80Pro Trp Ala Val Asn Asp Asn Phe Ser Tyr Gly Phe Ala Ala
Thr Ala 85 90 95Ile Ala
Gly Gly Ser Glu Ser Ser Trp Cys Cys Ala Cys Tyr Ala Leu 100
105 110Thr Phe Asn Ser Gly Pro Val Ala Gly
Lys Thr Met Val Val Gln Ser 115 120
125Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn Gln Phe Asp Leu Ala Ile
130 135 140Pro Gly Gly Gly Val Gly Ile
Phe Asn Gly Cys Ala Ser Gln Phe Gly145 150
155 160Gly Leu Pro Gly Ala Gln Tyr Gly Gly Ile Ser Asp
Arg Ser Gln Cys 165 170
175Ser Ser Phe Pro Ala Pro Leu Gln Pro Gly Cys Gln Trp Arg Phe Asp
180 185 190Trp Phe Gln Asn Ala Asp
Asn Pro Thr Phe Thr Phe Gln Arg Val Gln 195 200
205Cys Pro Ser Glu Leu Thr Ser Arg Thr Gly Cys Lys Arg Asp
Asp Asp 210 215 220Ala Ser Tyr Pro Val
Phe Asn Pro Pro Ser Gly Gly Ser Pro Ser Thr225 230
235 240Thr Ser Thr Thr Thr Ser Ser Pro Ser Gly
Pro Thr Gly Asn Pro Pro 245 250
255Gly Gly Gly Gly Cys Thr Ala Gln Lys Trp Ala Gln Cys Gly Gly Thr
260 265 270Gly Phe Thr Gly Cys
Thr Thr Cys Val Ser Gly Thr Thr Cys Gln Val 275
280 285Gln Asn Gln Trp Tyr Ser Gln Cys Leu 290
295352358DNAFusarium verticillioides 35atgctgctca atcttcaggt
cgctgccagc gctttgtcgc tttctctttt aggtggattg 60gctgaggctg ctacgccata
tacccttccg gactgtacca aaggaccttt gagcaagaat 120ggaatctgcg atacttcgtt
atctccagct aaaagagcgg ctgctctagt tgctgctctg 180acgcccgaag agaaggtggg
caatctggtc aggtaaaata tacccccccc cataatcact 240attcggagat tggagctgac
ttaacgcagc aatgcaactg gtgcaccaag aatcggactt 300ccaaggtaca actggtggaa
cgaagccctt catggcctcg ctggatctcc aggtggtcgc 360tttgccgaca ctcctcccta
cgacgcggcc acatcatttc ccatgcctct tctcatggcc 420gctgctttcg acgatgatct
gatccacgat atcggcaacg tcgtcggcac cgaagcgcgt 480gcgttcacta acggcggttg
gcgcggagtc gacttctgga cacccaacgt caaccctttt 540aaagatcctc gctggggtcg
tggctccgaa actccaggtg aagatgccct tcatgtcagc 600cggtatgctc gctatatcgt
caggggtctc gaaggcgata aggagcaacg acgtattgtt 660gctacctgca agcactatgc
tggaaacgac tttgaggact ggggaggctt cacgcgtcac 720gactttgatg ccaagattac
tcctcaggac ttggctgagt actacgtcag gcctttccag 780gagtgcaccc gtgatgcaaa
ggttggttcc atcatgtgcg cctacaatgc cgtgaacggc 840attcccgcat gcgcaaactc
gtatctgcag gagacgatcc tcagagggca ctggaactgg 900acgcgcgata acaactggat
cactagtgat tgtggcgcca tgcaggatat ctggcagaat 960cacaagtatg tcaagaccaa
cgctgaaggt gcccaggtag cttttgagaa cggcatggat 1020tctagctgcg agtatactac
taccagcgat gtctccgatt cgtacaagca aggcctcttg 1080actgagaagc tcatggatcg
ttcgttgaag cgccttttcg aagggcttgt tcatactggt 1140ttctttgacg gtgccaaagc
gcaatggaac tcgctcagtt ttgcggatgt caacaccaag 1200gaagctcagg atcttgcact
cagatctgct gtggagggtg ctgttcttct taagaatgac 1260ggcactttgc ctctgaagct
caagaagaag gatagtgttg caatgatcgg attctgggcc 1320aacgatactt ccaagctgca
gggtggttac agtggacgtg ctccgttcct ccacagcccg 1380ctttatgcag ctgagaagct
tggtcttgac accaacgtgg cttggggtcc gacactgcag 1440aacagctcat ctcatgataa
ctggaccacc aatgctgttg ctgcggcgaa gaagtctgat 1500tacattctct actttggtgg
tcttgacgcc tctgctgctg gcgaggacag agatcgtgag 1560aaccttgact ggcctgagag
ccagctgacc cttcttcaga agctctctag tctcggcaag 1620ccactggttg ttatccagct
tggtgatcaa gtcgatgaca ccgctctttt gaagaacaag 1680aagattaaca gtattctttg
ggtcaattac cctggtcagg atggcggcac tgcagtcatg 1740gacctgctca ctggacgaaa
gagtcctgct ggccgactac ccgtcacgca atatcccagt 1800aaatacactg agcagattgg
catgactgac atggacctca gacctaccaa gtcgttgcca 1860gggagaactt atcgctggta
ctcaactcca gttcttccct acggctttgg cctccactac 1920accaagttcc aagccaagtt
caagtccaac aagttgacgt ttgacatcca gaagcttctc 1980aagggctgca gtgctcaata
ctccgatact tgcgcgctgc cccccatcca agttagtgtc 2040aagaacaccg gccgcattac
ctccgacttt gtctctctgg tctttatcaa gagtgaagtt 2100ggacctaagc cttaccctct
caagaccctt gcggcttatg gtcgcttgca tgatgtcgcg 2160ccttcatcga cgaaggatat
ctcactggag tggacgttgg ataacattgc gcgacgggga 2220gagaatggtg atttggttgt
ttatcctggg acttacactc tgttgctgga tgagcctacg 2280caagccaaga tccaggttac
gctgactgga aagaaggcta ttttggataa gtggcctcaa 2340gaccccaagt ctgcgtaa
235836766PRTFusarium
verticillioides 36Met Leu Leu Asn Leu Gln Val Ala Ala Ser Ala Leu Ser Leu
Ser Leu1 5 10 15Leu Gly
Gly Leu Ala Glu Ala Ala Thr Pro Tyr Thr Leu Pro Asp Cys 20
25 30Thr Lys Gly Pro Leu Ser Lys Asn Gly
Ile Cys Asp Thr Ser Leu Ser 35 40
45Pro Ala Lys Arg Ala Ala Ala Leu Val Ala Ala Leu Thr Pro Glu Glu 50
55 60Lys Val Gly Asn Leu Val Ser Asn Ala
Thr Gly Ala Pro Arg Ile Gly65 70 75
80Leu Pro Arg Tyr Asn Trp Trp Asn Glu Ala Leu His Gly Leu
Ala Gly 85 90 95Ser Pro
Gly Gly Arg Phe Ala Asp Thr Pro Pro Tyr Asp Ala Ala Thr 100
105 110Ser Phe Pro Met Pro Leu Leu Met Ala
Ala Ala Phe Asp Asp Asp Leu 115 120
125Ile His Asp Ile Gly Asn Val Val Gly Thr Glu Ala Arg Ala Phe Thr
130 135 140Asn Gly Gly Trp Arg Gly Val
Asp Phe Trp Thr Pro Asn Val Asn Pro145 150
155 160Phe Lys Asp Pro Arg Trp Gly Arg Gly Ser Glu Thr
Pro Gly Glu Asp 165 170
175Ala Leu His Val Ser Arg Tyr Ala Arg Tyr Ile Val Arg Gly Leu Glu
180 185 190Gly Asp Lys Glu Gln Arg
Arg Ile Val Ala Thr Cys Lys His Tyr Ala 195 200
205Gly Asn Asp Phe Glu Asp Trp Gly Gly Phe Thr Arg His Asp
Phe Asp 210 215 220Ala Lys Ile Thr Pro
Gln Asp Leu Ala Glu Tyr Tyr Val Arg Pro Phe225 230
235 240Gln Glu Cys Thr Arg Asp Ala Lys Val Gly
Ser Ile Met Cys Ala Tyr 245 250
255Asn Ala Val Asn Gly Ile Pro Ala Cys Ala Asn Ser Tyr Leu Gln Glu
260 265 270Thr Ile Leu Arg Gly
His Trp Asn Trp Thr Arg Asp Asn Asn Trp Ile 275
280 285Thr Ser Asp Cys Gly Ala Met Gln Asp Ile Trp Gln
Asn His Lys Tyr 290 295 300Val Lys Thr
Asn Ala Glu Gly Ala Gln Val Ala Phe Glu Asn Gly Met305
310 315 320Asp Ser Ser Cys Glu Tyr Thr
Thr Thr Ser Asp Val Ser Asp Ser Tyr 325
330 335Lys Gln Gly Leu Leu Thr Glu Lys Leu Met Asp Arg
Ser Leu Lys Arg 340 345 350Leu
Phe Glu Gly Leu Val His Thr Gly Phe Phe Asp Gly Ala Lys Ala 355
360 365Gln Trp Asn Ser Leu Ser Phe Ala Asp
Val Asn Thr Lys Glu Ala Gln 370 375
380Asp Leu Ala Leu Arg Ser Ala Val Glu Gly Ala Val Leu Leu Lys Asn385
390 395 400Asp Gly Thr Leu
Pro Leu Lys Leu Lys Lys Lys Asp Ser Val Ala Met 405
410 415Ile Gly Phe Trp Ala Asn Asp Thr Ser Lys
Leu Gln Gly Gly Tyr Ser 420 425
430Gly Arg Ala Pro Phe Leu His Ser Pro Leu Tyr Ala Ala Glu Lys Leu
435 440 445Gly Leu Asp Thr Asn Val Ala
Trp Gly Pro Thr Leu Gln Asn Ser Ser 450 455
460Ser His Asp Asn Trp Thr Thr Asn Ala Val Ala Ala Ala Lys Lys
Ser465 470 475 480Asp Tyr
Ile Leu Tyr Phe Gly Gly Leu Asp Ala Ser Ala Ala Gly Glu
485 490 495Asp Arg Asp Arg Glu Asn Leu
Asp Trp Pro Glu Ser Gln Leu Thr Leu 500 505
510Leu Gln Lys Leu Ser Ser Leu Gly Lys Pro Leu Val Val Ile
Gln Leu 515 520 525Gly Asp Gln Val
Asp Asp Thr Ala Leu Leu Lys Asn Lys Lys Ile Asn 530
535 540Ser Ile Leu Trp Val Asn Tyr Pro Gly Gln Asp Gly
Gly Thr Ala Val545 550 555
560Met Asp Leu Leu Thr Gly Arg Lys Ser Pro Ala Gly Arg Leu Pro Val
565 570 575Thr Gln Tyr Pro Ser
Lys Tyr Thr Glu Gln Ile Gly Met Thr Asp Met 580
585 590Asp Leu Arg Pro Thr Lys Ser Leu Pro Gly Arg Thr
Tyr Arg Trp Tyr 595 600 605Ser Thr
Pro Val Leu Pro Tyr Gly Phe Gly Leu His Tyr Thr Lys Phe 610
615 620Gln Ala Lys Phe Lys Ser Asn Lys Leu Thr Phe
Asp Ile Gln Lys Leu625 630 635
640Leu Lys Gly Cys Ser Ala Gln Tyr Ser Asp Thr Cys Ala Leu Pro Pro
645 650 655Ile Gln Val Ser
Val Lys Asn Thr Gly Arg Ile Thr Ser Asp Phe Val 660
665 670Ser Leu Val Phe Ile Lys Ser Glu Val Gly Pro
Lys Pro Tyr Pro Leu 675 680 685Lys
Thr Leu Ala Ala Tyr Gly Arg Leu His Asp Val Ala Pro Ser Ser 690
695 700Thr Lys Asp Ile Ser Leu Glu Trp Thr Leu
Asp Asn Ile Ala Arg Arg705 710 715
720Gly Glu Asn Gly Asp Leu Val Val Tyr Pro Gly Thr Tyr Thr Leu
Leu 725 730 735Leu Asp Glu
Pro Thr Gln Ala Lys Ile Gln Val Thr Leu Thr Gly Lys 740
745 750Lys Ala Ile Leu Asp Lys Trp Pro Gln Asp
Pro Lys Ser Ala 755 760
765371338DNAPenicillium funiculosum 37atgcttcagc gatttgctta tattttacca
ctggctctat tgagtgttgg agtgaaagcc 60gacaacccct ttgtgcagag catctacacc
gctgatccgg caccgatggt atacaatgac 120cgcgtttatg tcttcatgga ccatgacaac
accggagcta cctactacaa catgacagac 180tggcatctgt tctcgtcagc agatatggcg
aattggcaag atcatggcat tccaatgagc 240ctggccaatt tcacctgggc caacgcgaat
gcgtgggccc cgcaagtcat ccctcgcaac 300ggccaattct acttttatgc tcctgtccga
cacaacgatg gttctatggc tatcggtgtg 360ggagtgagca gcaccatcac aggtccatac
catgatgcta tcggcaaacc gctagtagag 420aacaacgaga ttgatcccac cgtgttcatc
gacgatgacg gtcaggcata cctgtactgg 480ggaaatccag acctgtggta cgtcaaattg
aaccaagata tgatatcgta cagcgggagc 540cctactcaga ttccactcac cacggctgga
tttggtactc gaacgggcaa tgctcaacgg 600ccgaccactt ttgaagaagc tccatgggta
tacaaacgca acggcatcta ctatatcgcc 660tatgcagccg attgttgttc tgaggatatt
cgctactcca cgggaaccag tgccactggt 720ccgtggactt atcgaggcgt catcatgccg
acccaaggta gcagcttcac caatcacgag 780ggtattatcg acttccagaa caactcctac
tttttctatc acaacggcgc tcttcccggc 840ggaggcggct accaacgatc tgtatgtgtg
gagcaattca aatacaatgc agatggaacc 900attccgacga tcgaaatgac caccgccggt
ccagctcaaa ttgggactct caacccttac 960gtgcgacagg aagccgaaac ggcggcatgg
tcttcaggca tcactacgga ggtttgtagc 1020gaaggcggaa ttgacgtcgg gtttatcaac
aatggcgatt acatcaaagt taaaggcgta 1080gctttcggtt caggagccca ttctttctca
gcgcgggttg cttctgcaaa tagcggcggc 1140actattgcaa tacacctcgg aagcacaact
ggtacgctcg tgggcacttg tactgtcccc 1200agcactggcg gttggcagac ttggactacc
gttacctgtt ctgtcagtgg cgcatctggg 1260acccaggatg tgtattttgt tttcggtggt
agcggaacag gatacctgtt caactttgat 1320tattggcagt tcgcataa
133838445PRTPenicillium funiculosum
38Met Leu Gln Arg Phe Ala Tyr Ile Leu Pro Leu Ala Leu Leu Ser Val1
5 10 15Gly Val Lys Ala Asp Asn
Pro Phe Val Gln Ser Ile Tyr Thr Ala Asp 20 25
30Pro Ala Pro Met Val Tyr Asn Asp Arg Val Tyr Val Phe
Met Asp His 35 40 45Asp Asn Thr
Gly Ala Thr Tyr Tyr Asn Met Thr Asp Trp His Leu Phe 50
55 60Ser Ser Ala Asp Met Ala Asn Trp Gln Asp His Gly
Ile Pro Met Ser65 70 75
80Leu Ala Asn Phe Thr Trp Ala Asn Ala Asn Ala Trp Ala Pro Gln Val
85 90 95Ile Pro Arg Asn Gly Gln
Phe Tyr Phe Tyr Ala Pro Val Arg His Asn 100
105 110Asp Gly Ser Met Ala Ile Gly Val Gly Val Ser Ser
Thr Ile Thr Gly 115 120 125Pro Tyr
His Asp Ala Ile Gly Lys Pro Leu Val Glu Asn Asn Glu Ile 130
135 140Asp Pro Thr Val Phe Ile Asp Asp Asp Gly Gln
Ala Tyr Leu Tyr Trp145 150 155
160Gly Asn Pro Asp Leu Trp Tyr Val Lys Leu Asn Gln Asp Met Ile Ser
165 170 175Tyr Ser Gly Ser
Pro Thr Gln Ile Pro Leu Thr Thr Ala Gly Phe Gly 180
185 190Thr Arg Thr Gly Asn Ala Gln Arg Pro Thr Thr
Phe Glu Glu Ala Pro 195 200 205Trp
Val Tyr Lys Arg Asn Gly Ile Tyr Tyr Ile Ala Tyr Ala Ala Asp 210
215 220Cys Cys Ser Glu Asp Ile Arg Tyr Ser Thr
Gly Thr Ser Ala Thr Gly225 230 235
240Pro Trp Thr Tyr Arg Gly Val Ile Met Pro Thr Gln Gly Ser Ser
Phe 245 250 255Thr Asn His
Glu Gly Ile Ile Asp Phe Gln Asn Asn Ser Tyr Phe Phe 260
265 270Tyr His Asn Gly Ala Leu Pro Gly Gly Gly
Gly Tyr Gln Arg Ser Val 275 280
285Cys Val Glu Gln Phe Lys Tyr Asn Ala Asp Gly Thr Ile Pro Thr Ile 290
295 300Glu Met Thr Thr Ala Gly Pro Ala
Gln Ile Gly Thr Leu Asn Pro Tyr305 310
315 320Val Arg Gln Glu Ala Glu Thr Ala Ala Trp Ser Ser
Gly Ile Thr Thr 325 330
335Glu Val Cys Ser Glu Gly Gly Ile Asp Val Gly Phe Ile Asn Asn Gly
340 345 350Asp Tyr Ile Lys Val Lys
Gly Val Ala Phe Gly Ser Gly Ala His Ser 355 360
365Phe Ser Ala Arg Val Ala Ser Ala Asn Ser Gly Gly Thr Ile
Ala Ile 370 375 380His Leu Gly Ser Thr
Thr Gly Thr Leu Val Gly Thr Cys Thr Val Pro385 390
395 400Ser Thr Gly Gly Trp Gln Thr Trp Thr Thr
Val Thr Cys Ser Val Ser 405 410
415Gly Ala Ser Gly Thr Gln Asp Val Tyr Phe Val Phe Gly Gly Ser Gly
420 425 430Thr Gly Tyr Leu Phe
Asn Phe Asp Tyr Trp Gln Phe Ala 435 440
445391593DNAFusarium verticillioides 39atgaaggtat actggctcgt
ggcgtgggcc acttctttga cgccggcact ggctggcttg 60attggacacc gtcgcgccac
caccttcaac aatcctatca tctactcaga ctttccagat 120aacgatgtat tcctcggtcc
agataactac tactacttct ctgcttccaa cttccacttc 180agcccaggag cacccgtttt
gaagtctaaa gatctgctaa actgggatct catcggccat 240tcaattcccc gcctgaactt
tggcgacggc tatgatcttc ctcctggctc acgttattac 300cgtggaggta cttgggcatc
atccctcaga tacagaaaga gcaatggaca gtggtactgg 360atcggctgca tcaacttctg
gcagacctgg gtatacactg cctcatcgcc ggaaggtcca 420tggtacaaca agggaaactt
cggtgataac aattgctact acgacaatgg catactgatc 480gatgacgatg ataccatgta
tgtcgtatac ggttccggtg aggtcaaagt atctcaacta 540tctcaggacg gattcagcca
ggtcaaatct caggtagttt tcaagaacac tgatattggg 600gtccaagact tggagggtaa
ccgcatgtac aagatcaacg ggctctacta tatcctaaac 660gatagcccaa gtggcagtca
gacctggatt tggaagtcga aatcaccctg gggcccttat 720gagtctaagg tcctcgccga
caaagtcacc ccgcctatct ctggtggtaa ctcgccgcat 780cagggtagtc tcataaagac
tcccaatggt ggctggtact tcatgtcatt cacttgggcc 840tatcctgccg gccgtcttcc
ggttcttgca ccgattacgt ggggtagcga tggtttcccc 900attcttgtca agggtgctaa
tggcggatgg ggatcatctt acccaacact tcctggcacg 960gatggtgtga caaagaattg
gacaaggact gataccttcc gcggaacctc acttgctccg 1020tcctgggagt ggaaccataa
tccggacgtc aactccttca ctgtcaacaa cggcctgact 1080ctccgcactg ctagcattac
gaaggatatt taccaggcga ggaacacgct atctcaccga 1140actcatggtg atcatccaac
aggaatagtg aagattgatt tctctccgat gaaggacggc 1200gaccgggccg ggctttcagc
gtttcgagac caaagtgcat acatcggtat tcatcgagat 1260aacggaaagt tcacaatcgc
tacgaagcat gggatgaata tggatgagtg gaacggaaca 1320acaacagacc tgggacaaat
aaaagccaca gctaatgtgc cttctggaag gaccaagatc 1380tggctgagac ttcaacttga
taccaaccca gcaggaactg gcaacactat cttttcttac 1440agttgggatg gagtcaagta
tgaaacactg ggtcccaact tcaaactgta caatggttgg 1500gcattcttta ttgcttaccg
attcggcatc ttcaacttcg ccgagacggc tttaggaggc 1560tcgatcaagg ttgagtcttt
cacagctgca tag 159340530PRTFusarium
verticillioides 40Met Lys Val Tyr Trp Leu Val Ala Trp Ala Thr Ser Leu Thr
Pro Ala1 5 10 15Leu Ala
Gly Leu Ile Gly His Arg Arg Ala Thr Thr Phe Asn Asn Pro 20
25 30Ile Ile Tyr Ser Asp Phe Pro Asp Asn
Asp Val Phe Leu Gly Pro Asp 35 40
45Asn Tyr Tyr Tyr Phe Ser Ala Ser Asn Phe His Phe Ser Pro Gly Ala 50
55 60Pro Val Leu Lys Ser Lys Asp Leu Leu
Asn Trp Asp Leu Ile Gly His65 70 75
80Ser Ile Pro Arg Leu Asn Phe Gly Asp Gly Tyr Asp Leu Pro
Pro Gly 85 90 95Ser Arg
Tyr Tyr Arg Gly Gly Thr Trp Ala Ser Ser Leu Arg Tyr Arg 100
105 110Lys Ser Asn Gly Gln Trp Tyr Trp Ile
Gly Cys Ile Asn Phe Trp Gln 115 120
125Thr Trp Val Tyr Thr Ala Ser Ser Pro Glu Gly Pro Trp Tyr Asn Lys
130 135 140Gly Asn Phe Gly Asp Asn Asn
Cys Tyr Tyr Asp Asn Gly Ile Leu Ile145 150
155 160Asp Asp Asp Asp Thr Met Tyr Val Val Tyr Gly Ser
Gly Glu Val Lys 165 170
175Val Ser Gln Leu Ser Gln Asp Gly Phe Ser Gln Val Lys Ser Gln Val
180 185 190Val Phe Lys Asn Thr Asp
Ile Gly Val Gln Asp Leu Glu Gly Asn Arg 195 200
205Met Tyr Lys Ile Asn Gly Leu Tyr Tyr Ile Leu Asn Asp Ser
Pro Ser 210 215 220Gly Ser Gln Thr Trp
Ile Trp Lys Ser Lys Ser Pro Trp Gly Pro Tyr225 230
235 240Glu Ser Lys Val Leu Ala Asp Lys Val Thr
Pro Pro Ile Ser Gly Gly 245 250
255Asn Ser Pro His Gln Gly Ser Leu Ile Lys Thr Pro Asn Gly Gly Trp
260 265 270Tyr Phe Met Ser Phe
Thr Trp Ala Tyr Pro Ala Gly Arg Leu Pro Val 275
280 285Leu Ala Pro Ile Thr Trp Gly Ser Asp Gly Phe Pro
Ile Leu Val Lys 290 295 300Gly Ala Asn
Gly Gly Trp Gly Ser Ser Tyr Pro Thr Leu Pro Gly Thr305
310 315 320Asp Gly Val Thr Lys Asn Trp
Thr Arg Thr Asp Thr Phe Arg Gly Thr 325
330 335Ser Leu Ala Pro Ser Trp Glu Trp Asn His Asn Pro
Asp Val Asn Ser 340 345 350Phe
Thr Val Asn Asn Gly Leu Thr Leu Arg Thr Ala Ser Ile Thr Lys 355
360 365Asp Ile Tyr Gln Ala Arg Asn Thr Leu
Ser His Arg Thr His Gly Asp 370 375
380His Pro Thr Gly Ile Val Lys Ile Asp Phe Ser Pro Met Lys Asp Gly385
390 395 400Asp Arg Ala Gly
Leu Ser Ala Phe Arg Asp Gln Ser Ala Tyr Ile Gly 405
410 415Ile His Arg Asp Asn Gly Lys Phe Thr Ile
Ala Thr Lys His Gly Met 420 425
430Asn Met Asp Glu Trp Asn Gly Thr Thr Thr Asp Leu Gly Gln Ile Lys
435 440 445Ala Thr Ala Asn Val Pro Ser
Gly Arg Thr Lys Ile Trp Leu Arg Leu 450 455
460Gln Leu Asp Thr Asn Pro Ala Gly Thr Gly Asn Thr Ile Phe Ser
Tyr465 470 475 480Ser Trp
Asp Gly Val Lys Tyr Glu Thr Leu Gly Pro Asn Phe Lys Leu
485 490 495Tyr Asn Gly Trp Ala Phe Phe
Ile Ala Tyr Arg Phe Gly Ile Phe Asn 500 505
510Phe Ala Glu Thr Ala Leu Gly Gly Ser Ile Lys Val Glu Ser
Phe Thr 515 520 525Ala Ala
530411374DNAFusarium verticillioides 41atgcactacg ctaccctcac cactttggtg
ctggctctga ccaccaacgt cgctgcacag 60caaggcacag caactgtcga cctctccaaa
aatcatggac cggcgaaggc ccttggttca 120ggcttcatat acggctggcc tgacaacgga
acaagcgtcg acacctccat accagatttc 180ttggtaactg acatcaaatt caactcaaac
cgcggcggtg gcgcccaaat cccatcactg 240ggttgggcca gaggtggcta tgaaggatac
ctcggccgct tcaactcaac cttatccaac 300tatcgcacca cgcgcaagta taacgctgac
tttatcttgt tgcctcatga cctctggggt 360gcggatggcg ggcagggttc aaactccccg
tttcctggcg acaatggcaa ttggactgag 420atggagttat tctggaatca gcttgtgtct
gacttgaagg ctcataatat gctggaaggt 480cttgtgattg atgtttggaa tgagcctgat
attgatatct tttgggatcg cccgtggtcg 540cagtttcttg agtattacaa tcgcgcgacc
aaactacttc ggtgagtcta ctactgatcc 600atacgtattt acagtgagct gactggtcga
attagaaaaa cacttcccaa aactcttctc 660agtggcccag ccatggcaca ttctcccatt
ctgtccgatg ataaatggca tacctggctt 720caatcagtag cgggtaacaa gacagtccct
gatatttact cctggcatca gattggcgct 780tgggaacgtg agccggacag cactatcccc
gactttacca ccttgcgggc gcaatatggc 840gttcccgaga agccaattga cgtcaatgag
tacgctgcac gcgatgagca aaatccagcc 900aactccgtct actacctctc tcaactagag
cgtcataacc ttagaggtct tcgcgcaaac 960tggggtagcg gatctgacct ccacaactgg
atgggcaact tgatttacag cactaccggt 1020acctcggagg ggacttacta ccctaatggt
gaatggcagg cttacaagta ctatgcggcc 1080atggcagggc agagacttgt gaccaaagca
tcgtcggact tgaagtttga tgtctttgcc 1140actaagcaag gccgtaagat taagattata
gccggcacga ggaccgttca agcaaagtat 1200aacatcaaaa tcagcggttt ggaagtagca
ggacttccta agatgggtac ggtaaaggtc 1260cggacttatc ggttcgactg ggctgggccg
aatggaaagg ttgacgggcc tgttgatttg 1320ggggagaaga agtatactta ttcggccaat
acggtgagca gcccctctac ttga 137442439PRTFusarium verticillioides
42Met His Tyr Ala Thr Leu Thr Thr Leu Val Leu Ala Leu Thr Thr Asn1
5 10 15Val Ala Ala Gln Gln Gly
Thr Ala Thr Val Asp Leu Ser Lys Asn His 20 25
30Gly Pro Ala Lys Ala Leu Gly Ser Gly Phe Ile Tyr Gly
Trp Pro Asp 35 40 45Asn Gly Thr
Ser Val Asp Thr Ser Ile Pro Asp Phe Leu Val Thr Asp 50
55 60Ile Lys Phe Asn Ser Asn Arg Gly Gly Gly Ala Gln
Ile Pro Ser Leu65 70 75
80Gly Trp Ala Arg Gly Gly Tyr Glu Gly Tyr Leu Gly Arg Phe Asn Ser
85 90 95Thr Leu Ser Asn Tyr Arg
Thr Thr Arg Lys Tyr Asn Ala Asp Phe Ile 100
105 110Leu Leu Pro His Asp Leu Trp Gly Ala Asp Gly Gly
Gln Gly Ser Asn 115 120 125Ser Pro
Phe Pro Gly Asp Asn Gly Asn Trp Thr Glu Met Glu Leu Phe 130
135 140Trp Asn Gln Leu Val Ser Asp Leu Lys Ala His
Asn Met Leu Glu Gly145 150 155
160Leu Val Ile Asp Val Trp Asn Glu Pro Asp Ile Asp Ile Phe Trp Asp
165 170 175Arg Pro Trp Ser
Gln Phe Leu Glu Tyr Tyr Asn Arg Ala Thr Lys Leu 180
185 190Leu Arg Lys Thr Leu Pro Lys Thr Leu Leu Ser
Gly Pro Ala Met Ala 195 200 205His
Ser Pro Ile Leu Ser Asp Asp Lys Trp His Thr Trp Leu Gln Ser 210
215 220Val Ala Gly Asn Lys Thr Val Pro Asp Ile
Tyr Ser Trp His Gln Ile225 230 235
240Gly Ala Trp Glu Arg Glu Pro Asp Ser Thr Ile Pro Asp Phe Thr
Thr 245 250 255Leu Arg Ala
Gln Tyr Gly Val Pro Glu Lys Pro Ile Asp Val Asn Glu 260
265 270Tyr Ala Ala Arg Asp Glu Gln Asn Pro Ala
Asn Ser Val Tyr Tyr Leu 275 280
285Ser Gln Leu Glu Arg His Asn Leu Arg Gly Leu Arg Ala Asn Trp Gly 290
295 300Ser Gly Ser Asp Leu His Asn Trp
Met Gly Asn Leu Ile Tyr Ser Thr305 310
315 320Thr Gly Thr Ser Glu Gly Thr Tyr Tyr Pro Asn Gly
Glu Trp Gln Ala 325 330
335Tyr Lys Tyr Tyr Ala Ala Met Ala Gly Gln Arg Leu Val Thr Lys Ala
340 345 350Ser Ser Asp Leu Lys Phe
Asp Val Phe Ala Thr Lys Gln Gly Arg Lys 355 360
365Ile Lys Ile Ile Ala Gly Thr Arg Thr Val Gln Ala Lys Tyr
Asn Ile 370 375 380Lys Ile Ser Gly Leu
Glu Val Ala Gly Leu Pro Lys Met Gly Thr Val385 390
395 400Lys Val Arg Thr Tyr Arg Phe Asp Trp Ala
Gly Pro Asn Gly Lys Val 405 410
415Asp Gly Pro Val Asp Leu Gly Glu Lys Lys Tyr Thr Tyr Ser Ala Asn
420 425 430Thr Val Ser Ser Pro
Ser Thr 435431350DNAFusarium verticillioides 43atgtggctga
cctccccatt gctgttcgcc agcaccctcc tgggcctcac tggcgttgct 60ctagcagaca
accccatcgt ccaagacatc tacaccgcag acccagcacc aatggtctac 120aatggccgcg
tctacctctt cacaggccat gacaacgacg gctctaccga cttcaacatg 180acagactggc
gtctcttctc gtcagcagac atggtcaact ggcagcacca tggtgtcccc 240atgagcttaa
agaccttcag ctgggccaac agcagagcct gggctggtca agtcgttgcc 300cgaaacggaa
agttttactt ctatgttcct gtccgtaatg ccaagacggg tggaatggct 360attggtgtcg
gtgttagtac caacatcctt gggccctaca ctgatgccct tggaaagcca 420ttggtcgaga
acaatgagat cgacccaact gtctacatcg acactgatgg ccaggcctat 480ctctactggg
gcaaccctgg attgtactac gtcaagctca accaagacat gctctcctac 540agtggtagca
tcaacaaagt atcgctcaca acagctggat tcggcagccg cccgaacaac 600gcgcagcgtc
ctactacttt cgaggaagga ccgtggctgt acaagcgtgg aaatctctac 660tacatgatct
acgcagccaa ctgctgttcc gaggacattc gctactcaac tggacccagc 720gccactggac
cttggactta ccgcggtgtc gtgatgaaca aggcgggtcg aagcttcacc 780aaccatcctg
gcatcatcga ctttgagaac aactcgtact tcttttacca caatggcgct 840cttgatggag
gtagcggtta tactcggtct gtggctgtcg agagcttcaa gtatggttcg 900gacggtctga
tccccgagat caagatgact acgcaaggcc cagcgcagct caagtctctg 960aacccatatg
tcaagcagga ggccgagact atcgcctggt ctgagggtat cgagactgag 1020gtctgcagcg
aaggtggtct caacgttgct ttcatcgaca atggtgacta catcaaggtc 1080aagggagtcg
actttggcag caccggtgca aagacgttca gcgcccgtgt tgcttccaac 1140agcagcggag
gcaagattga gcttcgactt ggtagcaaga ccggtaagtt ggttggtacc 1200tgcacggtaa
cgactacggg aaactggcag acttataaga ctgtggattg ccccgtcagt 1260ggtgctactg
gtacgagcga tctattcttt gtcttcacgg gctctgggtc tggctctctg 1320ttcaacttca
actggtggca gtttagctaa
135044449PRTFusarium verticillioides 44Met Trp Leu Thr Ser Pro Leu Leu
Phe Ala Ser Thr Leu Leu Gly Leu1 5 10
15Thr Gly Val Ala Leu Ala Asp Asn Pro Ile Val Gln Asp Ile
Tyr Thr 20 25 30Ala Asp Pro
Ala Pro Met Val Tyr Asn Gly Arg Val Tyr Leu Phe Thr 35
40 45Gly His Asp Asn Asp Gly Ser Thr Asp Phe Asn
Met Thr Asp Trp Arg 50 55 60Leu Phe
Ser Ser Ala Asp Met Val Asn Trp Gln His His Gly Val Pro65
70 75 80Met Ser Leu Lys Thr Phe Ser
Trp Ala Asn Ser Arg Ala Trp Ala Gly 85 90
95Gln Val Val Ala Arg Asn Gly Lys Phe Tyr Phe Tyr Val
Pro Val Arg 100 105 110Asn Ala
Lys Thr Gly Gly Met Ala Ile Gly Val Gly Val Ser Thr Asn 115
120 125Ile Leu Gly Pro Tyr Thr Asp Ala Leu Gly
Lys Pro Leu Val Glu Asn 130 135 140Asn
Glu Ile Asp Pro Thr Val Tyr Ile Asp Thr Asp Gly Gln Ala Tyr145
150 155 160Leu Tyr Trp Gly Asn Pro
Gly Leu Tyr Tyr Val Lys Leu Asn Gln Asp 165
170 175Met Leu Ser Tyr Ser Gly Ser Ile Asn Lys Val Ser
Leu Thr Thr Ala 180 185 190Gly
Phe Gly Ser Arg Pro Asn Asn Ala Gln Arg Pro Thr Thr Phe Glu 195
200 205Glu Gly Pro Trp Leu Tyr Lys Arg Gly
Asn Leu Tyr Tyr Met Ile Tyr 210 215
220Ala Ala Asn Cys Cys Ser Glu Asp Ile Arg Tyr Ser Thr Gly Pro Ser225
230 235 240Ala Thr Gly Pro
Trp Thr Tyr Arg Gly Val Val Met Asn Lys Ala Gly 245
250 255Arg Ser Phe Thr Asn His Pro Gly Ile Ile
Asp Phe Glu Asn Asn Ser 260 265
270Tyr Phe Phe Tyr His Asn Gly Ala Leu Asp Gly Gly Ser Gly Tyr Thr
275 280 285Arg Ser Val Ala Val Glu Ser
Phe Lys Tyr Gly Ser Asp Gly Leu Ile 290 295
300Pro Glu Ile Lys Met Thr Thr Gln Gly Pro Ala Gln Leu Lys Ser
Leu305 310 315 320Asn Pro
Tyr Val Lys Gln Glu Ala Glu Thr Ile Ala Trp Ser Glu Gly
325 330 335Ile Glu Thr Glu Val Cys Ser
Glu Gly Gly Leu Asn Val Ala Phe Ile 340 345
350Asp Asn Gly Asp Tyr Ile Lys Val Lys Gly Val Asp Phe Gly
Ser Thr 355 360 365Gly Ala Lys Thr
Phe Ser Ala Arg Val Ala Ser Asn Ser Ser Gly Gly 370
375 380Lys Ile Glu Leu Arg Leu Gly Ser Lys Thr Gly Lys
Leu Val Gly Thr385 390 395
400Cys Thr Val Thr Thr Thr Gly Asn Trp Gln Thr Tyr Lys Thr Val Asp
405 410 415Cys Pro Val Ser Gly
Ala Thr Gly Thr Ser Asp Leu Phe Phe Val Phe 420
425 430Thr Gly Ser Gly Ser Gly Ser Leu Phe Asn Phe Asn
Trp Trp Gln Phe 435 440
445Ser451725DNAFusarium verticillioides 45atgcgcttct cttggctatt
gtgccccctt ctagcgatgg gaagtgctct tcctgaaacg 60aagacggatg tttcgacata
caccaaccct gtccttccag gatggcactc ggatccatcg 120tgtatccaga aagatggcct
ctttctctgc gtcacttcaa cattcatctc cttcccaggt 180cttcccgtct atgcctcaag
ggatctagtc aactggcgtc tcatcagcca tgtctggaac 240cgcgagaaac agttgcctgg
cattagctgg aagacggcag gacagcaaca gggaatgtat 300gcaccaacca ttcgatacca
caagggaaca tactacgtca tctgcgaata cctgggcgtt 360ggagatatta ttggtgtcat
cttcaagacc accaatccgt gggacgagag tagctggagt 420gaccctgtta ccttcaagcc
aaatcacatc gaccccgatc tgttctggga tgatgacgga 480aaggtttatt gtgctaccca
tggcatcact ctgcaggaga ttgatttgga aactggagag 540cttagcccgg agcttaatat
ctggaacggc acaggaggtg tatggcctga gggtccccat 600atctacaagc gcgacggtta
ctactatctc atgattgccg agggtggaac tgccgaagac 660cacgctatca caatcgctcg
ggcccgcaag atcaccggcc cctatgaagc ctacaataac 720aacccaatct tgaccaaccg
cgggacatct gagtacttcc agactgtcgg tcacggtgat 780ctgttccaag ataccaaggg
caactggtgg ggtctttgtc ttgctactcg catcacagca 840cagggagttt cacccatggg
ccgtgaagct gttttgttca atggcacatg gaacaagggc 900gaatggccca agttgcaacc
agtacgaggt cgcatgcctg gaaacctcct cccaaagccg 960acgcgaaacg ttcccggaga
tgggcccttc aacgctgacc cagacaacta caacttgaag 1020aagactaaga agatccctcc
tcactttgtg caccatagag tcccaagaga cggtgccttc 1080tctttgtctt ccaagggtct
gcacatcgtg cctagtcgaa acaacgttac cggtagtgtg 1140ttgccaggag atgagattga
gctatcagga cagcgaggtc tagctttcat cggacgccgc 1200caaactcaca ctctgttcaa
atatagtgtt gatatcgact tcaagcccaa gtccgatgat 1260caggaagctg gaatcaccgt
tttccgcacg cagttcgacc atatcgatct tggcattgtt 1320cgtcttccta caaaccaagg
cagcaacaag aaatctaagc ttgccttccg attccgggcc 1380acaggagctc agaatgttcc
tgcaccgaag gtagtaccgg tccccgatgg ctgggagaag 1440ggcgtaatca gtctacatat
cgaggcagcc aacgcgacgc actacaacct tggagcttcg 1500agccacagag gcaagactct
cgacatcgcg acagcatcag caagtcttgt gagtggaggc 1560acgggttcat ttgttggtag
tttgcttgga ccttatgcta cctgcaacgg caaaggatct 1620ggagtggaat gtcccaaggg
aggtgatgtc tatgtgaccc aatggactta taagcccgtg 1680gcacaagaga ttgatcatgg
tgtttttgtg aaatcagaat tgtag 172546574PRTFusarium
verticillioides 46Met Arg Phe Ser Trp Leu Leu Cys Pro Leu Leu Ala Met Gly
Ser Ala1 5 10 15Leu Pro
Glu Thr Lys Thr Asp Val Ser Thr Tyr Thr Asn Pro Val Leu 20
25 30Pro Gly Trp His Ser Asp Pro Ser Cys
Ile Gln Lys Asp Gly Leu Phe 35 40
45Leu Cys Val Thr Ser Thr Phe Ile Ser Phe Pro Gly Leu Pro Val Tyr 50
55 60Ala Ser Arg Asp Leu Val Asn Trp Arg
Leu Ile Ser His Val Trp Asn65 70 75
80Arg Glu Lys Gln Leu Pro Gly Ile Ser Trp Lys Thr Ala Gly
Gln Gln 85 90 95Gln Gly
Met Tyr Ala Pro Thr Ile Arg Tyr His Lys Gly Thr Tyr Tyr 100
105 110Val Ile Cys Glu Tyr Leu Gly Val Gly
Asp Ile Ile Gly Val Ile Phe 115 120
125Lys Thr Thr Asn Pro Trp Asp Glu Ser Ser Trp Ser Asp Pro Val Thr
130 135 140Phe Lys Pro Asn His Ile Asp
Pro Asp Leu Phe Trp Asp Asp Asp Gly145 150
155 160Lys Val Tyr Cys Ala Thr His Gly Ile Thr Leu Gln
Glu Ile Asp Leu 165 170
175Glu Thr Gly Glu Leu Ser Pro Glu Leu Asn Ile Trp Asn Gly Thr Gly
180 185 190Gly Val Trp Pro Glu Gly
Pro His Ile Tyr Lys Arg Asp Gly Tyr Tyr 195 200
205Tyr Leu Met Ile Ala Glu Gly Gly Thr Ala Glu Asp His Ala
Ile Thr 210 215 220Ile Ala Arg Ala Arg
Lys Ile Thr Gly Pro Tyr Glu Ala Tyr Asn Asn225 230
235 240Asn Pro Ile Leu Thr Asn Arg Gly Thr Ser
Glu Tyr Phe Gln Thr Val 245 250
255Gly His Gly Asp Leu Phe Gln Asp Thr Lys Gly Asn Trp Trp Gly Leu
260 265 270Cys Leu Ala Thr Arg
Ile Thr Ala Gln Gly Val Ser Pro Met Gly Arg 275
280 285Glu Ala Val Leu Phe Asn Gly Thr Trp Asn Lys Gly
Glu Trp Pro Lys 290 295 300Leu Gln Pro
Val Arg Gly Arg Met Pro Gly Asn Leu Leu Pro Lys Pro305
310 315 320Thr Arg Asn Val Pro Gly Asp
Gly Pro Phe Asn Ala Asp Pro Asp Asn 325
330 335Tyr Asn Leu Lys Lys Thr Lys Lys Ile Pro Pro His
Phe Val His His 340 345 350Arg
Val Pro Arg Asp Gly Ala Phe Ser Leu Ser Ser Lys Gly Leu His 355
360 365Ile Val Pro Ser Arg Asn Asn Val Thr
Gly Ser Val Leu Pro Gly Asp 370 375
380Glu Ile Glu Leu Ser Gly Gln Arg Gly Leu Ala Phe Ile Gly Arg Arg385
390 395 400Gln Thr His Thr
Leu Phe Lys Tyr Ser Val Asp Ile Asp Phe Lys Pro 405
410 415Lys Ser Asp Asp Gln Glu Ala Gly Ile Thr
Val Phe Arg Thr Gln Phe 420 425
430Asp His Ile Asp Leu Gly Ile Val Arg Leu Pro Thr Asn Gln Gly Ser
435 440 445Asn Lys Lys Ser Lys Leu Ala
Phe Arg Phe Arg Ala Thr Gly Ala Gln 450 455
460Asn Val Pro Ala Pro Lys Val Val Pro Val Pro Asp Gly Trp Glu
Lys465 470 475 480Gly Val
Ile Ser Leu His Ile Glu Ala Ala Asn Ala Thr His Tyr Asn
485 490 495Leu Gly Ala Ser Ser His Arg
Gly Lys Thr Leu Asp Ile Ala Thr Ala 500 505
510Ser Ala Ser Leu Val Ser Gly Gly Thr Gly Ser Phe Val Gly
Ser Leu 515 520 525Leu Gly Pro Tyr
Ala Thr Cys Asn Gly Lys Gly Ser Gly Val Glu Cys 530
535 540Pro Lys Gly Gly Asp Val Tyr Val Thr Gln Trp Thr
Tyr Lys Pro Val545 550 555
560Ala Gln Glu Ile Asp His Gly Val Phe Val Lys Ser Glu Leu
565 570472251DNAPodospora anserina 47atgatccacc
tcaagccagc cctcgcggcg ttgttggcgc tgtcgacgca atgtgtggct 60attgatttgt
ttgtcaagtc ttcggggggg aataagacga ctgatatcat gtatggtctt 120atgcacgagg
tatgtgtttt gcgagatctc ccttttgttt ttgcgcactg ctgacatgga 180gactgcaaac
aggatatcaa caactccggc gacggcggca tctacgccga gctaatctcc 240aaccgcgcgt
tccaagggag tgagaagttc ccctccaacc tcgacaactg gagccccgtc 300ggtggcgcta
cccttaccct tcagaagctt gccaagcccc tttcctctgc gttgccttac 360tccgtcaatg
ttgccaaccc caaggagggc aagggcaagg gcaaggacac caaggggaag 420aaggttggct
tggccaatgc tgggttttgg ggtatggatg tcaagaggca gaagtacact 480ggtagcttcc
acgttactgg tgagtacaag ggtgactttg aggttagctt gcgcagcgcg 540attaccgggg
agacctttgg caagaaggtg gtgaagggtg ggagtaagaa ggggaagtgg 600accgagaagg
agtttgagtt ggtgcctttc aaggatgcgc ccaacagcaa caacaccttt 660gttgtgcagt
gggatgccga ggtatgtgct tctttgatat tggctgagat agaagttggg 720ttgacatgat
gtggtgcagg gcgcaaagga cggatctttg gatctcaact tgatcagctt 780gttccctccg
acattcaagg gaaggaagaa tgggctgaga attgatcttg cgcagacgat 840ggttgagctc
aagccggtaa gtcctctcta gtcagaaaag tagagccttt gttaacgctt 900gacagacctt
cttgcgcttc cccggtggca acatgctcga gggtaacacc ttggacactt 960ggtggaagtg
gtacgagacc attggccctc tgaaggatcg cccgggcatg gctggtgtct 1020gggagtacca
gcaaaccctt ggcttgggtc tggtcgagta catggagtgg gccgatgaca 1080tgaacttgga
gcccagtatg tgatcccatt ttctggagtg acttctcttg ctaacgtatc 1140cacagttgtc
ggtgtcttcg ctggtcttgc cctcgatggc tcgttcgttc ccgaatccga 1200gatgggatgg
gtcatccaac aggctctcga cgaaatcgag ttcctcactg gcgatgctaa 1260gaccaccaaa
tggggtgccg tccgcgcgaa gcttggtcac cccaagcctt ggaaggtcaa 1320gtgggttgag
atcggtaacg aggattggct tgccggacgc cctgctggct tcgagtcgta 1380catcaactac
cgcttcccca tgatgatgaa ggccttcaac gaaaagtacc ccgacatcaa 1440gatcatcgcc
tcgccctcca tcttcgacaa catgacaatc cccgcgggtg ctgccggtga 1500tcaccacccg
tacctgactc ccgatgagtt cgttgagcga ttcgccaagt tcgataactt 1560gagcaaggat
aacgtgacgc tcatcggcga ggctgcgtcg acgcatccta acggtggtat 1620cgcttgggag
ggagatctca tgcccttgcc ttggtggggc ggcagtgttg ctgaggctat 1680cttcttgatc
agcactgaga gaaacggtga caagatcatc ggtgctactt acgcgcctgg 1740tcttcgcagc
ttggaccgct ggcaatggag catgacctgg gtgcagcatg ccgccgaccc 1800ggccctcacc
actcgctcga ccagttggta tgtctggaga atcctcgccc accacatcat 1860ccgtgagacg
ctcccggtcg atgccccggc cggcaagccc aactttgacc ctctgttcta 1920cgttgccgga
aagagcgaga gtggcaccgg tatcttcaag gctgccgtct acaactcgac 1980tgaatcgatc
ccggtgtcgt tgaagtttga tggtctcaac gagggagcgg ttgccaactt 2040gacggtgctt
actgggccgg aggatccgta tggatacaac gaccccttca ctggtatcaa 2100tgttgtcaag
gagaagacca ccttcatcaa ggccggaaag ggcggcaagt tcaccttcac 2160cctgccgggc
ttgagtgttg ctgtgttgga gacggccgac gcggtcaagg gtggcaaggg 2220aaagggcaag
ggcaagggaa agggtaactg a
225148676PRTPodospora anserina 48Met Ile His Leu Lys Pro Ala Leu Ala Ala
Leu Leu Ala Leu Ser Thr1 5 10
15Gln Cys Val Ala Ile Asp Leu Phe Val Lys Ser Ser Gly Gly Asn Lys
20 25 30Thr Thr Asp Ile Met Tyr
Gly Leu Met His Glu Asp Ile Asn Asn Ser 35 40
45Gly Asp Gly Gly Ile Tyr Ala Glu Leu Ile Ser Asn Arg Ala
Phe Gln 50 55 60Gly Ser Glu Lys Phe
Pro Ser Asn Leu Asp Asn Trp Ser Pro Val Gly65 70
75 80Gly Ala Thr Leu Thr Leu Gln Lys Leu Ala
Lys Pro Leu Ser Ser Ala 85 90
95Leu Pro Tyr Ser Val Asn Val Ala Asn Pro Lys Glu Gly Lys Gly Lys
100 105 110Gly Lys Asp Thr Lys
Gly Lys Lys Val Gly Leu Ala Asn Ala Gly Phe 115
120 125Trp Gly Met Asp Val Lys Arg Gln Lys Tyr Thr Gly
Ser Phe His Val 130 135 140Thr Gly Glu
Tyr Lys Gly Asp Phe Glu Val Ser Leu Arg Ser Ala Ile145
150 155 160Thr Gly Glu Thr Phe Gly Lys
Lys Val Val Lys Gly Gly Ser Lys Lys 165
170 175Gly Lys Trp Thr Glu Lys Glu Phe Glu Leu Val Pro
Phe Lys Asp Ala 180 185 190Pro
Asn Ser Asn Asn Thr Phe Val Val Gln Trp Asp Ala Glu Gly Ala 195
200 205Lys Asp Gly Ser Leu Asp Leu Asn Leu
Ile Ser Leu Phe Pro Pro Thr 210 215
220Phe Lys Gly Arg Lys Asn Gly Leu Arg Ile Asp Leu Ala Gln Thr Met225
230 235 240Val Glu Leu Lys
Pro Thr Phe Leu Arg Phe Pro Gly Gly Asn Met Leu 245
250 255Glu Gly Asn Thr Leu Asp Thr Trp Trp Lys
Trp Tyr Glu Thr Ile Gly 260 265
270Pro Leu Lys Asp Arg Pro Gly Met Ala Gly Val Trp Glu Tyr Gln Gln
275 280 285Thr Leu Gly Leu Gly Leu Val
Glu Tyr Met Glu Trp Ala Asp Asp Met 290 295
300Asn Leu Glu Pro Ile Val Gly Val Phe Ala Gly Leu Ala Leu Asp
Gly305 310 315 320Ser Phe
Val Pro Glu Ser Glu Met Gly Trp Val Ile Gln Gln Ala Leu
325 330 335Asp Glu Ile Glu Phe Leu Thr
Gly Asp Ala Lys Thr Thr Lys Trp Gly 340 345
350Ala Val Arg Ala Lys Leu Gly His Pro Lys Pro Trp Lys Val
Lys Trp 355 360 365Val Glu Ile Gly
Asn Glu Asp Trp Leu Ala Gly Arg Pro Ala Gly Phe 370
375 380Glu Ser Tyr Ile Asn Tyr Arg Phe Pro Met Met Met
Lys Ala Phe Asn385 390 395
400Glu Lys Tyr Pro Asp Ile Lys Ile Ile Ala Ser Pro Ser Ile Phe Asp
405 410 415Asn Met Thr Ile Pro
Ala Gly Ala Ala Gly Asp His His Pro Tyr Leu 420
425 430Thr Pro Asp Glu Phe Val Glu Arg Phe Ala Lys Phe
Asp Asn Leu Ser 435 440 445Lys Asp
Asn Val Thr Leu Ile Gly Glu Ala Ala Ser Thr His Pro Asn 450
455 460Gly Gly Ile Ala Trp Glu Gly Asp Leu Met Pro
Leu Pro Trp Trp Gly465 470 475
480Gly Ser Val Ala Glu Ala Ile Phe Leu Ile Ser Thr Glu Arg Asn Gly
485 490 495Asp Lys Ile Ile
Gly Ala Thr Tyr Ala Pro Gly Leu Arg Ser Leu Asp 500
505 510Arg Trp Gln Trp Ser Met Thr Trp Val Gln His
Ala Ala Asp Pro Ala 515 520 525Leu
Thr Thr Arg Ser Thr Ser Trp Tyr Val Trp Arg Ile Leu Ala His 530
535 540His Ile Ile Arg Glu Thr Leu Pro Val Asp
Ala Pro Ala Gly Lys Pro545 550 555
560Asn Phe Asp Pro Leu Phe Tyr Val Ala Gly Lys Ser Glu Ser Gly
Thr 565 570 575Gly Ile Phe
Lys Ala Ala Val Tyr Asn Ser Thr Glu Ser Ile Pro Val 580
585 590Ser Leu Lys Phe Asp Gly Leu Asn Glu Gly
Ala Val Ala Asn Leu Thr 595 600
605Val Leu Thr Gly Pro Glu Asp Pro Tyr Gly Tyr Asn Asp Pro Phe Thr 610
615 620Gly Ile Asn Val Val Lys Glu Lys
Thr Thr Phe Ile Lys Ala Gly Lys625 630
635 640Gly Gly Lys Phe Thr Phe Thr Leu Pro Gly Leu Ser
Val Ala Val Leu 645 650
655Glu Thr Ala Asp Ala Val Lys Gly Gly Lys Gly Lys Gly Lys Gly Lys
660 665 670Gly Lys Gly Asn
675491023DNAGibberella zeae 49atgaagtcca agttgttatt cccactcctc tctttcgttg
gtcaaagtct tgccaccaac 60gacgactgtc ctctcatcac tagtagatgg actgcggatc
cttcggctca tgtctttaac 120gacaccttgt ggctctaccc gtctcatgac atcgatgctg
gatttgagaa tgatcctgat 180ggaggccagt acgccatgag agattaccat gtctactcta
tcgacaagat ctacggttcc 240ctgccggtcg atcacggtac ggccctgtca gtggaggatg
tcccctgggc ctctcgacag 300atgtgggctc ctgacgctgc ccacaagaac ggcaaatact
acctatactt ccctgccaaa 360gacaaggatg atatcttcag aatcggcgtt gctgtctcac
caacccccgg cggaccattc 420gtccccgaca agagttggat ccctcacact ttcagcatcg
accccgccag tttcgtcgat 480gatgatgaca gagcctactt ggcatggggt ggtatcatgg
gtggccagct tcaacgatgg 540caggataaga acaagtacaa cgaatctggc actgagccag
gaaacggcac cgctgccttg 600agccctcaga ttgccaagct gagcaaggac atgcacactc
tggcagagaa gcctcgcgac 660atgctcattc ttgaccccaa gactggcaag ccgctccttt
ctgaggatga agaccgacgc 720ttcttcgaag gaccctggat tcacaagcgc aacaagattt
actacctcac ctactctact 780ggcacaaccc actatcttgt ctatgcgact tcaaagaccc
cctatggtcc ttacacctac 840cagggcagaa ttctggagcc agttgatggc tggactactc
actctagtat cgtcaagtac 900cagggtcagt ggtggctatt ttatcacgat gccaagacat
ctggcaagga ctatcttcgc 960caggtaaagg ctaagaagat ttggtacgat agcaaaggaa
agatcttgac aaagaagcct 1020tga
102350340PRTGibberella zeae 50Met Lys Ser Lys Leu
Leu Phe Pro Leu Leu Ser Phe Val Gly Gln Ser1 5
10 15Leu Ala Thr Asn Asp Asp Cys Pro Leu Ile Thr
Ser Arg Trp Thr Ala 20 25
30Asp Pro Ser Ala His Val Phe Asn Asp Thr Leu Trp Leu Tyr Pro Ser
35 40 45His Asp Ile Asp Ala Gly Phe Glu
Asn Asp Pro Asp Gly Gly Gln Tyr 50 55
60Ala Met Arg Asp Tyr His Val Tyr Ser Ile Asp Lys Ile Tyr Gly Ser65
70 75 80Leu Pro Val Asp His
Gly Thr Ala Leu Ser Val Glu Asp Val Pro Trp 85
90 95Ala Ser Arg Gln Met Trp Ala Pro Asp Ala Ala
His Lys Asn Gly Lys 100 105
110Tyr Tyr Leu Tyr Phe Pro Ala Lys Asp Lys Asp Asp Ile Phe Arg Ile
115 120 125Gly Val Ala Val Ser Pro Thr
Pro Gly Gly Pro Phe Val Pro Asp Lys 130 135
140Ser Trp Ile Pro His Thr Phe Ser Ile Asp Pro Ala Ser Phe Val
Asp145 150 155 160Asp Asp
Asp Arg Ala Tyr Leu Ala Trp Gly Gly Ile Met Gly Gly Gln
165 170 175Leu Gln Arg Trp Gln Asp Lys
Asn Lys Tyr Asn Glu Ser Gly Thr Glu 180 185
190Pro Gly Asn Gly Thr Ala Ala Leu Ser Pro Gln Ile Ala Lys
Leu Ser 195 200 205Lys Asp Met His
Thr Leu Ala Glu Lys Pro Arg Asp Met Leu Ile Leu 210
215 220Asp Pro Lys Thr Gly Lys Pro Leu Leu Ser Glu Asp
Glu Asp Arg Arg225 230 235
240Phe Phe Glu Gly Pro Trp Ile His Lys Arg Asn Lys Ile Tyr Tyr Leu
245 250 255Thr Tyr Ser Thr Gly
Thr Thr His Tyr Leu Val Tyr Ala Thr Ser Lys 260
265 270Thr Pro Tyr Gly Pro Tyr Thr Tyr Gln Gly Arg Ile
Leu Glu Pro Val 275 280 285Asp Gly
Trp Thr Thr His Ser Ser Ile Val Lys Tyr Gln Gly Gln Trp 290
295 300Trp Leu Phe Tyr His Asp Ala Lys Thr Ser Gly
Lys Asp Tyr Leu Arg305 310 315
320Gln Val Lys Ala Lys Lys Ile Trp Tyr Asp Ser Lys Gly Lys Ile Leu
325 330 335Thr Lys Lys Pro
340511047DNAFusarium oxysporum 51atgcagctca agtttctgtc
ttcagcattg ctgttctctc tgaccagcaa atgcgctgcg 60caagacacta atgacattcc
tcccctgatc accgacctct ggtccgcaga tccctcggct 120catgttttcg aaggcaagct
ctgggtttac ccatctcacg acatcgaagc caatgttgtc 180aacggcacag gaggcgctca
atacgccatg agggattacc atacctactc catgaagagc 240atctatggta aagatcccgt
tgtcgaccac ggcgtcgctc tctcagtcga tgacgttccc 300tgggcgaagc agcaaatgtg
ggctcctgac gcagctcata agaacggcaa atattatctg 360tacttccccg ccaaggacaa
ggatgagatc ttcagaattg gagttgctgt ctccaacaag 420cccagcggtc ctttcaaggc
cgacaagagc tggatccctg gcacgtacag tatcgatcct 480gctagctacg tcgacactga
taacgaggcc tacctcatct ggggcggtat ctggggcggc 540cagctccaag cctggcagga
taaaaagaac tttaacgagt cgtggattgg agacaaggct 600gctcctaacg gcaccaatgc
cctatctcct cagatcgcca agctaagcaa ggacatgcac 660aagatcaccg aaacaccccg
cgatctcgtc attctcgccc ccgagacagg caagcctctt 720caggctgagg acaacaagcg
acgattcttc gagggccctt ggatccacaa gcgcggcaag 780ctttactacc tcatgtactc
caccggtgat acccacttcc ttgtctacgc tacttccaag 840aacatctacg gtccttatac
ctaccggggc aagattcttg atcctgttga tgggtggact 900actcatggaa gtattgttga
gtataaggga cagtggtggc ttttctttgc tgatgcgcat 960acgtctggta aggattacct
tcgacaggtg aaggcgagga agatctggta tgacaagaac 1020ggcaagatct tgcttcaccg
tccttag 104752348PRTFusarium
oxysporum 52Met Gln Leu Lys Phe Leu Ser Ser Ala Leu Leu Phe Ser Leu Thr
Ser1 5 10 15Lys Cys Ala
Ala Gln Asp Thr Asn Asp Ile Pro Pro Leu Ile Thr Asp 20
25 30Leu Trp Ser Ala Asp Pro Ser Ala His Val
Phe Glu Gly Lys Leu Trp 35 40
45Val Tyr Pro Ser His Asp Ile Glu Ala Asn Val Val Asn Gly Thr Gly 50
55 60Gly Ala Gln Tyr Ala Met Arg Asp Tyr
His Thr Tyr Ser Met Lys Ser65 70 75
80Ile Tyr Gly Lys Asp Pro Val Val Asp His Gly Val Ala Leu
Ser Val 85 90 95Asp Asp
Val Pro Trp Ala Lys Gln Gln Met Trp Ala Pro Asp Ala Ala 100
105 110His Lys Asn Gly Lys Tyr Tyr Leu Tyr
Phe Pro Ala Lys Asp Lys Asp 115 120
125Glu Ile Phe Arg Ile Gly Val Ala Val Ser Asn Lys Pro Ser Gly Pro
130 135 140Phe Lys Ala Asp Lys Ser Trp
Ile Pro Gly Thr Tyr Ser Ile Asp Pro145 150
155 160Ala Ser Tyr Val Asp Thr Asp Asn Glu Ala Tyr Leu
Ile Trp Gly Gly 165 170
175Ile Trp Gly Gly Gln Leu Gln Ala Trp Gln Asp Lys Lys Asn Phe Asn
180 185 190Glu Ser Trp Ile Gly Asp
Lys Ala Ala Pro Asn Gly Thr Asn Ala Leu 195 200
205Ser Pro Gln Ile Ala Lys Leu Ser Lys Asp Met His Lys Ile
Thr Glu 210 215 220Thr Pro Arg Asp Leu
Val Ile Leu Ala Pro Glu Thr Gly Lys Pro Leu225 230
235 240Gln Ala Glu Asp Asn Lys Arg Arg Phe Phe
Glu Gly Pro Trp Ile His 245 250
255Lys Arg Gly Lys Leu Tyr Tyr Leu Met Tyr Ser Thr Gly Asp Thr His
260 265 270Phe Leu Val Tyr Ala
Thr Ser Lys Asn Ile Tyr Gly Pro Tyr Thr Tyr 275
280 285Arg Gly Lys Ile Leu Asp Pro Val Asp Gly Trp Thr
Thr His Gly Ser 290 295 300Ile Val Glu
Tyr Lys Gly Gln Trp Trp Leu Phe Phe Ala Asp Ala His305
310 315 320Thr Ser Gly Lys Asp Tyr Leu
Arg Gln Val Lys Ala Arg Lys Ile Trp 325
330 335Tyr Asp Lys Asn Gly Lys Ile Leu Leu His Arg Pro
340 345531677DNAAspergillus fumigatus
53atggcagctc caagtttatc ctaccccaca ggtatccaat cgtataccaa tcctctcttc
60cctggttggc actccgatcc cagctgtgcc tacgtagcgg agcaagacac ctttttctgc
120gtgacgtcca ctttcattgc cttccccggt cttcctcttt atgcaagccg agatctgcag
180aactggaaac tggcaagcaa tattttcaat cggcccagcc agatccctga tcttcgcgtc
240acggatggac agcagtcggg tatctatgcg cccactctgc gctatcatga gggccagttc
300tacttgatcg tttcgtacct gggcccgcag actaagggct tgctgttcac ctcgtctgat
360ccgtacgacg atgccgcgtg gagcgatccg ctcgaattcg cggtacatgg catcgacccg
420gatatcttct gggatcacga cgggacggtc tatgtcacgt ccgccgagga ccagatgatt
480aagcagtaca cactcgatct gaagacgggg gcgattggcc cggttgacta cctctggaac
540ggcaccggag gagtctggcc cgagggcccg cacatttaca agagagacgg atactactac
600ctcatgatcg cagagggagg taccgagctc ggccactcgg agaccatggc gcgatctaga
660acccggacag gtccctggga gccatacccg cacaatccgc tcttgtcgaa caagggcacc
720tcggagtact tccagactgt gggccatgcg gacttgttcc aggatgggaa cggcaactgg
780tgggccgtgg cgttgagcac ccgatcaggg cctgcatgga agaactatcc catgggtcgg
840gagacggtgc tcgcccccgc cgcttgggag aagggtgagt ggcctgtcat tcagcctgtg
900agaggccaaa tgcaggggcc gtttccacca ccaaataagc gagttcctcg cggcgagggc
960ggatggatca agcaacccga caaagtggat ttcaggcccg gatcgaagat accggcgcac
1020ttccagtact ggcgatatcc caagacagag gattttaccg tctcccctcg gggccacccg
1080aatactcttc ggctcacacc ctccttttac aacctcaccg gaactgcgga cttcaagccg
1140gatgatggcc tgtcgcttgt tatgcgcaaa cagaccgaca ccttgttcac gtacactgtg
1200gacgtgtctt ttgaccccaa ggttgccgat gaagaggcgg gtgtgactgt tttccttacc
1260cagcagcagc acatcgatct tggtattgtc cttctccaga caaccgaggg gctgtcgttg
1320tccttccggt tccgcgtgga aggccgcggt aactacgaag gtcctcttcc agaagccacc
1380gtgcctgttc ccaaggaatg gtgtggacag accatccggc ttgagattca ggccgtgagt
1440gacaccgagt atgtctttgc ggctgccccg gctcggcacc ctgcacagag gcaaatcatc
1500agccgcgcca actcgttgat tgtcagtggt gatacgggac ggtttactgg ctcgcttgtt
1560ggcgtgtatg ccacgtcgaa cgggggtgcc ggatccacgc ccgcatatat cagcagatgg
1620agatacgaag gacggggcca gatgattgat tttggtcgag tggtcccgag ctactga
167754558PRTAspergillus fumigatus 54Met Ala Ala Pro Ser Leu Ser Tyr Pro
Thr Gly Ile Gln Ser Tyr Thr1 5 10
15Asn Pro Leu Phe Pro Gly Trp His Ser Asp Pro Ser Cys Ala Tyr
Val 20 25 30Ala Glu Gln Asp
Thr Phe Phe Cys Val Thr Ser Thr Phe Ile Ala Phe 35
40 45Pro Gly Leu Pro Leu Tyr Ala Ser Arg Asp Leu Gln
Asn Trp Lys Leu 50 55 60Ala Ser Asn
Ile Phe Asn Arg Pro Ser Gln Ile Pro Asp Leu Arg Val65 70
75 80Thr Asp Gly Gln Gln Ser Gly Ile
Tyr Ala Pro Thr Leu Arg Tyr His 85 90
95Glu Gly Gln Phe Tyr Leu Ile Val Ser Tyr Leu Gly Pro Gln
Thr Lys 100 105 110Gly Leu Leu
Phe Thr Ser Ser Asp Pro Tyr Asp Asp Ala Ala Trp Ser 115
120 125Asp Pro Leu Glu Phe Ala Val His Gly Ile Asp
Pro Asp Ile Phe Trp 130 135 140Asp His
Asp Gly Thr Val Tyr Val Thr Ser Ala Glu Asp Gln Met Ile145
150 155 160Lys Gln Tyr Thr Leu Asp Leu
Lys Thr Gly Ala Ile Gly Pro Val Asp 165
170 175Tyr Leu Trp Asn Gly Thr Gly Gly Val Trp Pro Glu
Gly Pro His Ile 180 185 190Tyr
Lys Arg Asp Gly Tyr Tyr Tyr Leu Met Ile Ala Glu Gly Gly Thr 195
200 205Glu Leu Gly His Ser Glu Thr Met Ala
Arg Ser Arg Thr Arg Thr Gly 210 215
220Pro Trp Glu Pro Tyr Pro His Asn Pro Leu Leu Ser Asn Lys Gly Thr225
230 235 240Ser Glu Tyr Phe
Gln Thr Val Gly His Ala Asp Leu Phe Gln Asp Gly 245
250 255Asn Gly Asn Trp Trp Ala Val Ala Leu Ser
Thr Arg Ser Gly Pro Ala 260 265
270Trp Lys Asn Tyr Pro Met Gly Arg Glu Thr Val Leu Ala Pro Ala Ala
275 280 285Trp Glu Lys Gly Glu Trp Pro
Val Ile Gln Pro Val Arg Gly Gln Met 290 295
300Gln Gly Pro Phe Pro Pro Pro Asn Lys Arg Val Pro Arg Gly Glu
Gly305 310 315 320Gly Trp
Ile Lys Gln Pro Asp Lys Val Asp Phe Arg Pro Gly Ser Lys
325 330 335Ile Pro Ala His Phe Gln Tyr
Trp Arg Tyr Pro Lys Thr Glu Asp Phe 340 345
350Thr Val Ser Pro Arg Gly His Pro Asn Thr Leu Arg Leu Thr
Pro Ser 355 360 365Phe Tyr Asn Leu
Thr Gly Thr Ala Asp Phe Lys Pro Asp Asp Gly Leu 370
375 380Ser Leu Val Met Arg Lys Gln Thr Asp Thr Leu Phe
Thr Tyr Thr Val385 390 395
400Asp Val Ser Phe Asp Pro Lys Val Ala Asp Glu Glu Ala Gly Val Thr
405 410 415Val Phe Leu Thr Gln
Gln Gln His Ile Asp Leu Gly Ile Val Leu Leu 420
425 430Gln Thr Thr Glu Gly Leu Ser Leu Ser Phe Arg Phe
Arg Val Glu Gly 435 440 445Arg Gly
Asn Tyr Glu Gly Pro Leu Pro Glu Ala Thr Val Pro Val Pro 450
455 460Lys Glu Trp Cys Gly Gln Thr Ile Arg Leu Glu
Ile Gln Ala Val Ser465 470 475
480Asp Thr Glu Tyr Val Phe Ala Ala Ala Pro Ala Arg His Pro Ala Gln
485 490 495Arg Gln Ile Ile
Ser Arg Ala Asn Ser Leu Ile Val Ser Gly Asp Thr 500
505 510Gly Arg Phe Thr Gly Ser Leu Val Gly Val Tyr
Ala Thr Ser Asn Gly 515 520 525Gly
Ala Gly Ser Thr Pro Ala Tyr Ile Ser Arg Trp Arg Tyr Glu Gly 530
535 540Arg Gly Gln Met Ile Asp Phe Gly Arg Val
Val Pro Ser Tyr545 550
555552320DNAPenicillium funiculosum 55atgggaaaga tgtggcattc gatcttggtt
gtgttgggct tattgtctgt cgggcatgcc 60atcactatca acgtgtccca aagtggcggc
aataagacca gtcctttgca atatggtctg 120atgttcgagg taatccttct cttataccac
atataaaagt tgcgtcattt ctaagacaag 180tcaaggacat aaatcacggc ggtgatggcg
gtctgtatgc agagcttgtt cgaaaccgag 240cattccaagg tagcaccgtc tatccagcaa
acctcgatgg atacgactcg gtcaatggag 300caatcctagc gcttcagaat ttgacaaacc
ctctatcacc ctccatgcct agctctctca 360acgtcgccaa ggggtccaac aatggaagca
tcggtttcgc aaatgaaggc tggtggggga 420tagaagtcaa gccgcaaaga tacgcgggct
cattctacgt ccagggggac tatcaaggag 480atttcgacat ctctcttcag tcgaaattga
cacaagaagt cttcgcaacg gcaaaagtca 540ggtcctcggg caaacacgag gactgggttc
aatacaagta cgagttggtg cccaaaaagg 600cagcatcaaa caccaataac actctgacca
ttacttttga ctcaaaggta tgttaaattt 660tgggtttagt tcgatgtctg gcaattgtct
tacgagaaac gtagggattg aaagacggat 720ccttgaactt caacttgatc agcctatttc
ccccaactta caacaatcgg cccaatggcc 780taagaatcga cctggttgaa gctatggctg
aactagaggg ggtaagctct tacaaatcaa 840ctttatcttt acgaagacta atgtgaaaac
ttagaaattt ctgcggtttc caggcggtag 900cgatgtggaa ggtgtacaag ctccttactg
gtataagtgg aatgaaacgg taggagatct 960caaggaccgt tatagtaggc ccagtgcatg
gacgtacgaa gaaagcaatg gaattggctt 1020gattgagtac atgaattggt gtgatgacat
ggggcttgag ccgagtgagt gtattccatt 1080cagcgtcaaa tccagtgttc taatcataca
catcagttct tgccgtatgg gatggacatt 1140acctttcgaa cgaagtgata tcggaaaacg
atttgcagcc atatatcgac gacaccctca 1200accaactgga attcctgatg ggtgccccag
atacgccata tggtagttgg cgtgcgtctc 1260tgggctatcc gaagccgtgg acgattaact
acgtcgagat tggaaacgaa gacaatctat 1320acgggggact agaaacatac atcgcctacc
ggtttcaggc atattacgac gctataacag 1380ctaaatatcc ccatatgacg gtcatggaat
ctttgacgga gatgcctggt ccggcggccg 1440ctgcaagcga ttaccatcaa tattctactc
ctgatgggtt tgtttcccag ttcaactact 1500ttgatcagat gccagtcact aatagaacac
tgaacggtat gaaaaccccc ccttttttaa 1560atatgctttt aatggtatta accatctttc
ataggagaga ttgcaaccgt ttatccaaat 1620aatcctagta attcggtggc ctggggaagc
ccattcccct tgtatccttg gtggattggg 1680tccgttgcag aagctgtttt cctaattggt
gaagagagga attcgccaaa gataatcggt 1740gctagctacg tacggaattc tacttttcga
gattttaaca ttggataaga aggactaacc 1800tcaatacagg ctccaatgtt cagaaatatc
aacaattggc agtggtctcc aacactcatc 1860gcttttgacg ctgactcgtc gcgtacaagt
cgttcaacaa gctggcatgt gatcaaggta 1920tgctaatttt cctcctcatt caaacccgca
gatgtgagct aactttccga agcttctctc 1980gacaaacaaa atcacgcaaa atttacccac
gacttggagt ggcggtgaca taggtccatt 2040atactgggta gctggacgaa acgacaatac
aggatcgaac atattcaagg ccgctgttta 2100caacagcacc tcagacgtcc ctgtcaccgt
tcaatttgca ggatgcaacg caaagagcgc 2160aaatttgacc atcttgtcat ccgacgatcc
gaacgcatcg aactaccctg gggggcccga 2220agttgtgaag actgagatcc agtctgtcac
tgcaaatgct catggagcat ttgagttcag 2280tctcccgaac ctaagtgtgg ctgttctcaa
aacggagtaa 232056642PRTPenicillium funiculosum
56Met Gly Lys Met Trp His Ser Ile Leu Val Val Leu Gly Leu Leu Ser1
5 10 15Val Gly His Ala Ile Thr
Ile Asn Val Ser Gln Ser Gly Gly Asn Lys 20 25
30Thr Ser Pro Leu Gln Tyr Gly Leu Met Phe Glu Asp Ile
Asn His Gly 35 40 45Gly Asp Gly
Gly Leu Tyr Ala Glu Leu Val Arg Asn Arg Ala Phe Gln 50
55 60Gly Ser Thr Val Tyr Pro Ala Asn Leu Asp Gly Tyr
Asp Ser Val Asn65 70 75
80Gly Ala Ile Leu Ala Leu Gln Asn Leu Thr Asn Pro Leu Ser Pro Ser
85 90 95Met Pro Ser Ser Leu Asn
Val Ala Lys Gly Ser Asn Asn Gly Ser Ile 100
105 110Gly Phe Ala Asn Glu Gly Trp Trp Gly Ile Glu Val
Lys Pro Gln Arg 115 120 125Tyr Ala
Gly Ser Phe Tyr Val Gln Gly Asp Tyr Gln Gly Asp Phe Asp 130
135 140Ile Ser Leu Gln Ser Lys Leu Thr Gln Glu Val
Phe Ala Thr Ala Lys145 150 155
160Val Arg Ser Ser Gly Lys His Glu Asp Trp Val Gln Tyr Lys Tyr Glu
165 170 175Leu Val Pro Lys
Lys Ala Ala Ser Asn Thr Asn Asn Thr Leu Thr Ile 180
185 190Thr Phe Asp Ser Lys Gly Leu Lys Asp Gly Ser
Leu Asn Phe Asn Leu 195 200 205Ile
Ser Leu Phe Pro Pro Thr Tyr Asn Asn Arg Pro Asn Gly Leu Arg 210
215 220Ile Asp Leu Val Glu Ala Met Ala Glu Leu
Glu Gly Lys Phe Leu Arg225 230 235
240Phe Pro Gly Gly Ser Asp Val Glu Gly Val Gln Ala Pro Tyr Trp
Tyr 245 250 255Lys Trp Asn
Glu Thr Val Gly Asp Leu Lys Asp Arg Tyr Ser Arg Pro 260
265 270Ser Ala Trp Thr Tyr Glu Glu Ser Asn Gly
Ile Gly Leu Ile Glu Tyr 275 280
285Met Asn Trp Cys Asp Asp Met Gly Leu Glu Pro Ile Leu Ala Val Trp 290
295 300Asp Gly His Tyr Leu Ser Asn Glu
Val Ile Ser Glu Asn Asp Leu Gln305 310
315 320Pro Tyr Ile Asp Asp Thr Leu Asn Gln Leu Glu Phe
Leu Met Gly Ala 325 330
335Pro Asp Thr Pro Tyr Gly Ser Trp Arg Ala Ser Leu Gly Tyr Pro Lys
340 345 350Pro Trp Thr Ile Asn Tyr
Val Glu Ile Gly Asn Glu Asp Asn Leu Tyr 355 360
365Gly Gly Leu Glu Thr Tyr Ile Ala Tyr Arg Phe Gln Ala Tyr
Tyr Asp 370 375 380Ala Ile Thr Ala Lys
Tyr Pro His Met Thr Val Met Glu Ser Leu Thr385 390
395 400Glu Met Pro Gly Pro Ala Ala Ala Ala Ser
Asp Tyr His Gln Tyr Ser 405 410
415Thr Pro Asp Gly Phe Val Ser Gln Phe Asn Tyr Phe Asp Gln Met Pro
420 425 430Val Thr Asn Arg Thr
Leu Asn Gly Glu Ile Ala Thr Val Tyr Pro Asn 435
440 445Asn Pro Ser Asn Ser Val Ala Trp Gly Ser Pro Phe
Pro Leu Tyr Pro 450 455 460Trp Trp Ile
Gly Ser Val Ala Glu Ala Val Phe Leu Ile Gly Glu Glu465
470 475 480Arg Asn Ser Pro Lys Ile Ile
Gly Ala Ser Tyr Ala Pro Met Phe Arg 485
490 495Asn Ile Asn Asn Trp Gln Trp Ser Pro Thr Leu Ile
Ala Phe Asp Ala 500 505 510Asp
Ser Ser Arg Thr Ser Arg Ser Thr Ser Trp His Val Ile Lys Leu 515
520 525Leu Ser Thr Asn Lys Ile Thr Gln Asn
Leu Pro Thr Thr Trp Ser Gly 530 535
540Gly Asp Ile Gly Pro Leu Tyr Trp Val Ala Gly Arg Asn Asp Asn Thr545
550 555 560Gly Ser Asn Ile
Phe Lys Ala Ala Val Tyr Asn Ser Thr Ser Asp Val 565
570 575Pro Val Thr Val Gln Phe Ala Gly Cys Asn
Ala Lys Ser Ala Asn Leu 580 585
590Thr Ile Leu Ser Ser Asp Asp Pro Asn Ala Ser Asn Tyr Pro Gly Gly
595 600 605Pro Glu Val Val Lys Thr Glu
Ile Gln Ser Val Thr Ala Asn Ala His 610 615
620Gly Ala Phe Glu Phe Ser Leu Pro Asn Leu Ser Val Ala Val Leu
Lys625 630 635 640Thr
Glu57739DNAAspergillus fumigatus 57atggtttctt tctcctacct gctgctggcg
tgctccgcca ttggagctct ggctgccccc 60gtcgaacccg agaccacctc gttcaatgag
actgctcttc atgagttcgc tgagcgcgcc 120ggcaccccaa gctccaccgg ctggaacaac
ggctactact actccttctg gactgatggc 180ggcggcgacg tgacctacac caatggcgcc
ggtggctcgt actccgtcaa ctggaggaac 240gtgggcaact ttgtcggtgg aaagggctgg
aaccctggaa gcgctaggta ccgagctttg 300tcaacgtcgg atgtgcagac ctgtggctga
cagaagtaga accatcaact acggaggcag 360cttcaacccc agcggcaatg gctacctggc
tgtctacggc tggaccacca accccttgat 420tgagtactac gttgttgagt cgtatggtac
atacaacccc ggcagcggcg gtaccttcag 480gggcactgtc aacaccgacg gtggcactta
caacatctac acggccgttc gctacaatgc 540tccctccatc gaaggcacca agaccttcac
ccagtactgg tctgtgcgca cctccaagcg 600taccggcggc actgtcacca tggccaacca
cttcaacgcc tggagcagac tgggcatgaa 660cctgggaact cacaactacc agattgtcgc
cactgagggt taccagagca gcggatctgc 720ttccatcact gtctactag
73958228PRTAspergillus fumigatus 58Met
Val Ser Phe Ser Tyr Leu Leu Leu Ala Cys Ser Ala Ile Gly Ala1
5 10 15Leu Ala Ala Pro Val Glu Pro
Glu Thr Thr Ser Phe Asn Glu Thr Ala 20 25
30Leu His Glu Phe Ala Glu Arg Ala Gly Thr Pro Ser Ser Thr
Gly Trp 35 40 45Asn Asn Gly Tyr
Tyr Tyr Ser Phe Trp Thr Asp Gly Gly Gly Asp Val 50 55
60Thr Tyr Thr Asn Gly Ala Gly Gly Ser Tyr Ser Val Asn
Trp Arg Asn65 70 75
80Val Gly Asn Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Ser Ala Arg
85 90 95Thr Ile Asn Tyr Gly Gly
Ser Phe Asn Pro Ser Gly Asn Gly Tyr Leu 100
105 110Ala Val Tyr Gly Trp Thr Thr Asn Pro Leu Ile Glu
Tyr Tyr Val Val 115 120 125Glu Ser
Tyr Gly Thr Tyr Asn Pro Gly Ser Gly Gly Thr Phe Arg Gly 130
135 140Thr Val Asn Thr Asp Gly Gly Thr Tyr Asn Ile
Tyr Thr Ala Val Arg145 150 155
160Tyr Asn Ala Pro Ser Ile Glu Gly Thr Lys Thr Phe Thr Gln Tyr Trp
165 170 175Ser Val Arg Thr
Ser Lys Arg Thr Gly Gly Thr Val Thr Met Ala Asn 180
185 190His Phe Asn Ala Trp Ser Arg Leu Gly Met Asn
Leu Gly Thr His Asn 195 200 205Tyr
Gln Ile Val Ala Thr Glu Gly Tyr Gln Ser Ser Gly Ser Ala Ser 210
215 220Ile Thr Val Tyr225591002DNAAspergillus
fumigatus 59atgatctcca tttcctcgct cagctttgga ctcgccgcta tcgccggcgc
atatgctctt 60ccgagtgaca aatccgtcag cttagcggaa cgtcagacga tcacgaccag
ccagacaggc 120acaaacaatg gctactacta ttccttctgg accaacggtg ccggatcagt
gcaatataca 180aatggtgctg gtggcgaata tagtgtgacg tgggcgaacc agaacggtgg
tgactttacc 240tgtgggaagg gctggaatcc agggagtgac cagtaggcaa cgcccgagaa
ctatagaaga 300ggacgcaaag aaagcactaa actctctact agtgacatta ccttctctgg
cagcttcaat 360ccttccggaa atgcttacct gtccgtgtat ggatggacta ccaaccccct
agtcgaatac 420tacatcctcg agaactatgg cagttacaat cctggctcgg gcatgacgca
caagggcacc 480gtcaccagcg atggatccac ctacgacatc tatgagcacc aacaggtcaa
ccagccttcg 540atcgtcggca cggccacctt caaccaatac tggtccatcc gccaaaacaa
gcgatccagc 600ggcacagtca ccaccgcgaa tcacttcaag gcctgggcta gtctggggat
gaacctgggt 660acccataact atcagattgt ttccactgag ggatatgaga gcagcggtac
ctcgaccatc 720actgtctcgt ctggtggttc ttcttctggt ggaagtggtg gcagctcgtc
tactacttcc 780tcaggcagct cccctactgg tggctccggc agtgtaagtc ttcttccata
tggttgtggc 840tttatgtgta ttctgactgt gatagtgctc tgctttgtgg ggccagtgcg
gtggaattgg 900ctggtctggt cctacttgct gctcttcggg cacttgccag gtttcgaact
cgtactactc 960ccagtgcttg tagtaccttc ttgcagggtt atatccaagt ga
100260286PRTAspergillus fumigatus 60Met Ile Ser Ile Ser Ser
Leu Ser Phe Gly Leu Ala Ala Ile Ala Gly1 5
10 15Ala Tyr Ala Leu Pro Ser Asp Lys Ser Val Ser Leu
Ala Glu Arg Gln 20 25 30Thr
Ile Thr Thr Ser Gln Thr Gly Thr Asn Asn Gly Tyr Tyr Tyr Ser 35
40 45Phe Trp Thr Asn Gly Ala Gly Ser Val
Gln Tyr Thr Asn Gly Ala Gly 50 55
60Gly Glu Tyr Ser Val Thr Trp Ala Asn Gln Asn Gly Gly Asp Phe Thr65
70 75 80Cys Gly Lys Gly Trp
Asn Pro Gly Ser Asp His Asp Ile Thr Phe Ser 85
90 95Gly Ser Phe Asn Pro Ser Gly Asn Ala Tyr Leu
Ser Val Tyr Gly Trp 100 105
110Thr Thr Asn Pro Leu Val Glu Tyr Tyr Ile Leu Glu Asn Tyr Gly Ser
115 120 125Tyr Asn Pro Gly Ser Gly Met
Thr His Lys Gly Thr Val Thr Ser Asp 130 135
140Gly Ser Thr Tyr Asp Ile Tyr Glu His Gln Gln Val Asn Gln Pro
Ser145 150 155 160Ile Val
Gly Thr Ala Thr Phe Asn Gln Tyr Trp Ser Ile Arg Gln Asn
165 170 175Lys Arg Ser Ser Gly Thr Val
Thr Thr Ala Asn His Phe Lys Ala Trp 180 185
190Ala Ser Leu Gly Met Asn Leu Gly Thr His Asn Tyr Gln Ile
Val Ser 195 200 205Thr Glu Gly Tyr
Glu Ser Ser Gly Thr Ser Thr Ile Thr Val Ser Ser 210
215 220Gly Gly Ser Ser Ser Gly Gly Ser Gly Gly Ser Ser
Ser Thr Thr Ser225 230 235
240Ser Gly Ser Ser Pro Thr Gly Gly Ser Gly Ser Cys Ser Ala Leu Trp
245 250 255Gly Gln Cys Gly Gly
Ile Gly Trp Ser Gly Pro Thr Cys Cys Ser Ser 260
265 270Gly Thr Cys Gln Val Ser Asn Ser Tyr Tyr Ser Gln
Cys Leu 275 280
285611053DNAFusarium verticillioides 61atgcagctca agtttctgtc ttcagcattg
ttgctgtctt tgaccggcaa ttgcgctgcg 60caagacacta atgatatccc tcctctgatc
accgacctct ggtctgcgga tccctcggct 120catgttttcg agggcaaact ctgggtttac
ccatctcacg acatcgaagc caatgtcgtc 180aacggcaccg gaggcgctca gtacgccatg
agagattatc acacctattc catgaagacc 240atctatggaa aagatcccgt tatcgaccat
ggcgtcgctc tgtcagtcga tgatgtccca 300tgggccaagc agcaaatgtg ggctcctgac
gcagcttaca agaacggcaa atattatctc 360tacttccccg ccaaggataa agatgagatc
ttcagaattg gagttgctgt ctccaacaag 420cccagcggtc ctttcaaggc cgacaagagc
tggatccccg gtacttacag tatcgatcct 480gctagctatg tcgacactaa tggcgaggca
tacctcatct ggggcggtat ctggggcggc 540cagcttcagg cctggcagga tcacaagacc
tttaatgagt cgtggctcgg cgacaaagct 600gctcccaacg gcaccaacgc cctatctcct
cagatcgcca agctaagcaa ggacatgcac 660aagatcaccg agacaccccg cgatctcgtc
atcctggccc ccgagacagg caagcccctt 720caagcagagg acaataagcg acgatttttc
gaggggccct gggttcacaa gcgcggcaag 780ctgtactacc tcatgtactc taccggcgac
acgcacttcc tcgtctacgc gacttccaag 840aacatctacg gtccttatac ctatcagggc
aagattctcg accctgttga tgggtggact 900acgcatggaa gtattgttga gtacaaggga
cagtggtggt tgttctttgc ggatgcgcat 960acttctggaa aggattatct gagacaggtt
aaggcgagga agatctggta tgacaaggat 1020ggcaagattt tgcttactcg tcctaagatt
tag 105362350PRTFusarium verticillioides
62Met Gln Leu Lys Phe Leu Ser Ser Ala Leu Leu Leu Ser Leu Thr Gly1
5 10 15Asn Cys Ala Ala Gln Asp
Thr Asn Asp Ile Pro Pro Leu Ile Thr Asp 20 25
30Leu Trp Ser Ala Asp Pro Ser Ala His Val Phe Glu Gly
Lys Leu Trp 35 40 45Val Tyr Pro
Ser His Asp Ile Glu Ala Asn Val Val Asn Gly Thr Gly 50
55 60Gly Ala Gln Tyr Ala Met Arg Asp Tyr His Thr Tyr
Ser Met Lys Thr65 70 75
80Ile Tyr Gly Lys Asp Pro Val Ile Asp His Gly Val Ala Leu Ser Val
85 90 95Asp Asp Val Pro Trp Ala
Lys Gln Gln Met Trp Ala Pro Asp Ala Ala 100
105 110Tyr Lys Asn Gly Lys Tyr Tyr Leu Tyr Phe Pro Ala
Lys Asp Lys Asp 115 120 125Glu Ile
Phe Arg Ile Gly Val Ala Val Ser Asn Lys Pro Ser Gly Pro 130
135 140Phe Lys Ala Asp Lys Ser Trp Ile Pro Gly Thr
Tyr Ser Ile Asp Pro145 150 155
160Ala Ser Tyr Val Asp Thr Asn Gly Glu Ala Tyr Leu Ile Trp Gly Gly
165 170 175Ile Trp Gly Gly
Gln Leu Gln Ala Trp Gln Asp His Lys Thr Phe Asn 180
185 190Glu Ser Trp Leu Gly Asp Lys Ala Ala Pro Asn
Gly Thr Asn Ala Leu 195 200 205Ser
Pro Gln Ile Ala Lys Leu Ser Lys Asp Met His Lys Ile Thr Glu 210
215 220Thr Pro Arg Asp Leu Val Ile Leu Ala Pro
Glu Thr Gly Lys Pro Leu225 230 235
240Gln Ala Glu Asp Asn Lys Arg Arg Phe Phe Glu Gly Pro Trp Val
His 245 250 255Lys Arg Gly
Lys Leu Tyr Tyr Leu Met Tyr Ser Thr Gly Asp Thr His 260
265 270Phe Leu Val Tyr Ala Thr Ser Lys Asn Ile
Tyr Gly Pro Tyr Thr Tyr 275 280
285Gln Gly Lys Ile Leu Asp Pro Val Asp Gly Trp Thr Thr His Gly Ser 290
295 300Ile Val Glu Tyr Lys Gly Gln Trp
Trp Leu Phe Phe Ala Asp Ala His305 310
315 320Thr Ser Gly Lys Asp Tyr Leu Arg Gln Val Lys Ala
Arg Lys Ile Trp 325 330
335Tyr Asp Lys Asp Gly Lys Ile Leu Leu Thr Arg Pro Lys Ile 340
345 350631031DNAPenicillium funiculosum
63atgagtcgca gcatccttcc gtacgcctct gttttcgccc tcctgggcgg ggctatcgcc
60gaaccgtttt tggttctcaa tagcgatttt cccgatccca gtctcataga gacatccagc
120ggatactatg cattcggtac caccggaaac ggagtcaatg cgcaggttgc ttcttcacca
180gactttaata cctggacttt gctttccggc acagatgccc tcccgggacc atttccgtca
240tgggtagctt cgtctccaca aatctgggcg ccagatgttt tggttaaggt atgttcttat
300ggaataacag ttttaggagt aggtcagcca ggatattgac aaaattataa taggccgatg
360gtacctatgt catgtacttt tcggcatctg ctgcgagtga ctcgggcaaa cactgcgttg
420gtgccgcaac tgcgacctca ccggaaggac cttacacccc ggtcgatagc gctgttgcct
480gtccattaga ccagggagga gctattgatg ccaatggatt tattgacacc gacggcacta
540tatacgttgt atacaaaatt gatggaaaca gtctagacgg tgatggaacc acacatccta
600cccccatcat gcttcaacaa atggaggcag acggaacaac cccaaccggc agcccaatcc
660aactcattga ccgatccgac ctcgacggac ctttgatcga ggctcctagt ttgctcctct
720ccaatggaat ctactacctc agtttctctt ccaactacta caacactaat tactacgaca
780cttcatacgc ctatgcctcg tcgattactg gtccttggac caaacaatct gcgccttatg
840cacccttgtt ggttactgga accgagacta gcaatgacgg cgcattgagc gcccctggtg
900gtgccgattt ctccgtcgat ggcaccaaga tgttgttcca cgcaaacctc aatggacaag
960atatctcggg cggacgcgcc ttatttgctg cgtcaattac tgaggccagc gatgtggtta
1020cattgcagta g
103164321PRTPenicillium funiculosum 64Met Ser Arg Ser Ile Leu Pro Tyr Ala
Ser Val Phe Ala Leu Leu Gly1 5 10
15Gly Ala Ile Ala Glu Pro Phe Leu Val Leu Asn Ser Asp Phe Pro
Asp 20 25 30Pro Ser Leu Ile
Glu Thr Ser Ser Gly Tyr Tyr Ala Phe Gly Thr Thr 35
40 45Gly Asn Gly Val Asn Ala Gln Val Ala Ser Ser Pro
Asp Phe Asn Thr 50 55 60Trp Thr Leu
Leu Ser Gly Thr Asp Ala Leu Pro Gly Pro Phe Pro Ser65 70
75 80Trp Val Ala Ser Ser Pro Gln Ile
Trp Ala Pro Asp Val Leu Val Lys 85 90
95Ala Asp Gly Thr Tyr Val Met Tyr Phe Ser Ala Ser Ala Ala
Ser Asp 100 105 110Ser Gly Lys
His Cys Val Gly Ala Ala Thr Ala Thr Ser Pro Glu Gly 115
120 125Pro Tyr Thr Pro Val Asp Ser Ala Val Ala Cys
Pro Leu Asp Gln Gly 130 135 140Gly Ala
Ile Asp Ala Asn Gly Phe Ile Asp Thr Asp Gly Thr Ile Tyr145
150 155 160Val Val Tyr Lys Ile Asp Gly
Asn Ser Leu Asp Gly Asp Gly Thr Thr 165
170 175His Pro Thr Pro Ile Met Leu Gln Gln Met Glu Ala
Asp Gly Thr Thr 180 185 190Pro
Thr Gly Ser Pro Ile Gln Leu Ile Asp Arg Ser Asp Leu Asp Gly 195
200 205Pro Leu Ile Glu Ala Pro Ser Leu Leu
Leu Ser Asn Gly Ile Tyr Tyr 210 215
220Leu Ser Phe Ser Ser Asn Tyr Tyr Asn Thr Asn Tyr Tyr Asp Thr Ser225
230 235 240Tyr Ala Tyr Ala
Ser Ser Ile Thr Gly Pro Trp Thr Lys Gln Ser Ala 245
250 255Pro Tyr Ala Pro Leu Leu Val Thr Gly Thr
Glu Thr Ser Asn Asp Gly 260 265
270Ala Leu Ser Ala Pro Gly Gly Ala Asp Phe Ser Val Asp Gly Thr Lys
275 280 285Met Leu Phe His Ala Asn Leu
Asn Gly Gln Asp Ile Ser Gly Gly Arg 290 295
300Ala Leu Phe Ala Ala Ser Ile Thr Glu Ala Ser Asp Val Val Thr
Leu305 310 315
320Gln652186DNAFusarium verticillioides 65atggttcgct tcagttcaat
cctagcggct gcggcttgct tcgtggctgt tgagtcagtc 60aacatcaagg tcgacagcaa
gggcggaaac gctactagcg gtcaccaata tggcttcctt 120cacgaggttg gtattgacac
accactggcg atgattggga tgctaacttg gagctaggat 180atcaacaatt ccggtgatgg
tggcatctac gctgagctca tccgcaatcg tgctttccag 240tacagcaaga aataccctgt
ttctctatct ggctggagac ccatcaacga tgctaagctc 300tccctcaacc gtctcgacac
tcctctctcc gacgctctcc ccgtttccat gaacgtgaag 360cctggaaagg gcaaggccaa
ggagattggt ttcctcaacg agggttactg gggaatggat 420gtcaagaagc aaaagtacac
tggctctttc tgggttaagg gcgcttacaa gggccacttt 480acagcttctt tgcgatctaa
ccttaccgac gatgtctttg gcagcgtcaa ggtcaagtcc 540aaggccaaca agaagcagtg
ggttgagcat gagtttgtgc ttactcctaa caagaatgcc 600cctaacagca acaacacttt
tgctatcacc tacgatccca aggtgagtaa caatcaaaac 660tgggacgtga tgtatactga
caatttgtag ggcgctgatg gagctcttga cttcaacctc 720attagcttgt tccctcccac
ctacaagggc cgcaagaacg gtcttcgagt tgatcttgcc 780gaggctctcg aaggtctcca
ccccgtaagg tttaccgtct cacgtgtatc gtgaacagtc 840gctgacttgt agaaaagagc
ctgctgcgct tccccggtgg taacatgctc gagggcaaca 900ccaacaagac ctggtgggac
tggaaggata ccctcggacc tctccgcaac cgtcctggtt 960tcgagggtgt ctggaactac
cagcagaccc atggtcttgg aatcttggag tacctccagt 1020gggctgagga catgaacctt
gaaatcagta ggttctataa aattcagtga cggttatgtg 1080catgctaaca gatttcagtt
gtcggtgtct acgctggcct ctccctcgac ggctccgtca 1140cccccaagga ccaactccag
cccctcatcg acgacgcgct cgacgagatc gaattcatcc 1200gaggtcccgt cacttcaaag
tggggaaaga agcgcgctga gctcggccac cccaagcctt 1260tcagactctc ctacgttgaa
gtcggaaacg aggactggct cgctggttat cccactggct 1320ggaactctta caaggagtac
cgcttcccca tgttcctcga ggctatcaag aaagctcacc 1380ccgatctcac cgtcatctcc
tctggtgctt ctattgaccc cgttggtaag aaggatgctg 1440gtttcgatat tcctgctcct
ggaatcggtg actaccaccc ttaccgcgag cctgatgttc 1500ttgttgagga gttcaacctg
tttgataaca ataagtatgg tcacatcatt ggtgaggttg 1560cttctaccca ccccaacggt
ggaactggct ggagtggtaa ccttatgcct tacccctggt 1620ggatctctgg tgttggcgag
gccgtcgctc tctgcggtta tgagcgcaac gccgatcgta 1680ttcccggaac attctacgct
cctatcctca agaacgagaa ccgttggcag tgggctatca 1740ccatgatcca attcgccgcc
gactccgcca tgaccacccg ctccaccagc tggtatgtct 1800ggtcactctt cgcaggccac
cccatgaccc atactctccc caccaccgcc gacttcgacc 1860ccctctacta cgtcgctggt
aagaacgagg acaagggaac tcttatctgg aagggtgctg 1920cgtataacac caccaagggt
gctgacgttc ccgtgtctct gtccttcaag ggtgtcaagc 1980ccggtgctca agctgagctt
actcttctga ccaacaagga gaaggatcct tttgcgttca 2040atgatcctca caagggcaac
aatgttgttg atactaagaa gactgttctc aaggccgatg 2100gaaagggtgc tttcaacttc
aagcttccta acctgagcgt cgctgttctt gagaccctca 2160agaagggaaa gccttactct
agctag 218666660PRTFusarium
verticillioides 66Met Val Arg Phe Ser Ser Ile Leu Ala Ala Ala Ala Cys Phe
Val Ala1 5 10 15Val Glu
Ser Val Asn Ile Lys Val Asp Ser Lys Gly Gly Asn Ala Thr 20
25 30Ser Gly His Gln Tyr Gly Phe Leu His
Glu Asp Ile Asn Asn Ser Gly 35 40
45Asp Gly Gly Ile Tyr Ala Glu Leu Ile Arg Asn Arg Ala Phe Gln Tyr 50
55 60Ser Lys Lys Tyr Pro Val Ser Leu Ser
Gly Trp Arg Pro Ile Asn Asp65 70 75
80Ala Lys Leu Ser Leu Asn Arg Leu Asp Thr Pro Leu Ser Asp
Ala Leu 85 90 95Pro Val
Ser Met Asn Val Lys Pro Gly Lys Gly Lys Ala Lys Glu Ile 100
105 110Gly Phe Leu Asn Glu Gly Tyr Trp Gly
Met Asp Val Lys Lys Gln Lys 115 120
125Tyr Thr Gly Ser Phe Trp Val Lys Gly Ala Tyr Lys Gly His Phe Thr
130 135 140Ala Ser Leu Arg Ser Asn Leu
Thr Asp Asp Val Phe Gly Ser Val Lys145 150
155 160Val Lys Ser Lys Ala Asn Lys Lys Gln Trp Val Glu
His Glu Phe Val 165 170
175Leu Thr Pro Asn Lys Asn Ala Pro Asn Ser Asn Asn Thr Phe Ala Ile
180 185 190Thr Tyr Asp Pro Lys Gly
Ala Asp Gly Ala Leu Asp Phe Asn Leu Ile 195 200
205Ser Leu Phe Pro Pro Thr Tyr Lys Gly Arg Lys Asn Gly Leu
Arg Val 210 215 220Asp Leu Ala Glu Ala
Leu Glu Gly Leu His Pro Ser Leu Leu Arg Phe225 230
235 240Pro Gly Gly Asn Met Leu Glu Gly Asn Thr
Asn Lys Thr Trp Trp Asp 245 250
255Trp Lys Asp Thr Leu Gly Pro Leu Arg Asn Arg Pro Gly Phe Glu Gly
260 265 270Val Trp Asn Tyr Gln
Gln Thr His Gly Leu Gly Ile Leu Glu Tyr Leu 275
280 285Gln Trp Ala Glu Asp Met Asn Leu Glu Ile Ile Val
Gly Val Tyr Ala 290 295 300Gly Leu Ser
Leu Asp Gly Ser Val Thr Pro Lys Asp Gln Leu Gln Pro305
310 315 320Leu Ile Asp Asp Ala Leu Asp
Glu Ile Glu Phe Ile Arg Gly Pro Val 325
330 335Thr Ser Lys Trp Gly Lys Lys Arg Ala Glu Leu Gly
His Pro Lys Pro 340 345 350Phe
Arg Leu Ser Tyr Val Glu Val Gly Asn Glu Asp Trp Leu Ala Gly 355
360 365Tyr Pro Thr Gly Trp Asn Ser Tyr Lys
Glu Tyr Arg Phe Pro Met Phe 370 375
380Leu Glu Ala Ile Lys Lys Ala His Pro Asp Leu Thr Val Ile Ser Ser385
390 395 400Gly Ala Ser Ile
Asp Pro Val Gly Lys Lys Asp Ala Gly Phe Asp Ile 405
410 415Pro Ala Pro Gly Ile Gly Asp Tyr His Pro
Tyr Arg Glu Pro Asp Val 420 425
430Leu Val Glu Glu Phe Asn Leu Phe Asp Asn Asn Lys Tyr Gly His Ile
435 440 445Ile Gly Glu Val Ala Ser Thr
His Pro Asn Gly Gly Thr Gly Trp Ser 450 455
460Gly Asn Leu Met Pro Tyr Pro Trp Trp Ile Ser Gly Val Gly Glu
Ala465 470 475 480Val Ala
Leu Cys Gly Tyr Glu Arg Asn Ala Asp Arg Ile Pro Gly Thr
485 490 495Phe Tyr Ala Pro Ile Leu Lys
Asn Glu Asn Arg Trp Gln Trp Ala Ile 500 505
510Thr Met Ile Gln Phe Ala Ala Asp Ser Ala Met Thr Thr Arg
Ser Thr 515 520 525Ser Trp Tyr Val
Trp Ser Leu Phe Ala Gly His Pro Met Thr His Thr 530
535 540Leu Pro Thr Thr Ala Asp Phe Asp Pro Leu Tyr Tyr
Val Ala Gly Lys545 550 555
560Asn Glu Asp Lys Gly Thr Leu Ile Trp Lys Gly Ala Ala Tyr Asn Thr
565 570 575Thr Lys Gly Ala Asp
Val Pro Val Ser Leu Ser Phe Lys Gly Val Lys 580
585 590Pro Gly Ala Gln Ala Glu Leu Thr Leu Leu Thr Asn
Lys Glu Lys Asp 595 600 605Pro Phe
Ala Phe Asn Asp Pro His Lys Gly Asn Asn Val Val Asp Thr 610
615 620Lys Lys Thr Val Leu Lys Ala Asp Gly Lys Gly
Ala Phe Asn Phe Lys625 630 635
640Leu Pro Asn Leu Ser Val Ala Val Leu Glu Thr Leu Lys Lys Gly Lys
645 650 655Pro Tyr Ser Ser
660672312DNAChaetomium globosum 67atggcgcccc tttcgcttcg
ggccctctcg ctgctcgcgc tcacaggagc cgcagccgcg 60gtgaccctat cggtcgcgaa
ctctggcggt aatgatacgt ctccgtacat gtatggcatc 120atgttcgagg acatcaatca
gagcggtgac ggcgggctgt aagttctgtc gcggcttccc 180ctgacaagct tgcatgatgc
ttaactaaag tccttaggta cgccgagctg attcgcaacc 240gagccttcca taatagctcc
ctccaggcct ggaccgccgt gggggacagc actctcgagg 300tcgtaacctc tgcaccgtta
tcggatgccc tgcctcgctc ggtcaaggtc acgagtggaa 360agggcaaggc gggcttgaag
aatgccggct actggggaat ggacgtccag aagaccgaca 420agtatagcgg cagcttctac
tcgtacggcg cctacgacgg aaagtttacc ctctctctgg 480tgtcggacat cacaaatgag
accctggcca ccaccaagat caagtccagg tcggtggagc 540atgcctggac cgagcacaag
ttcgagcttc tcccgaccaa gagcgcggcg aacagcaaca 600acagcttcgt gctggagttc
cgcccctgcc accagacgga gctccagttc aacctcatca 660gcttgttccc gccgacgtat
aagaacaggc ccaacggcat gcgccgagag ctcatggaga 720agctcgcaga cctcaagccc
agtttccttc ggattccagg aggcaacaac ctgtaagtgc 780ttccggcgaa actagcagta
gttgcctgag agacactaat ctcagcgaac aacagcgagg 840gcaactatgc tggcaactac
tggaactggt caagcacact tggcccgctg accgaccggc 900ccggtcgtga cggcgtgtgg
acgtacgcca acacggacgg catcgggctg gtcgagtaca 960tgcactgggc cgaggacctc
gacgtggagg ttgtgctggc ggtcgccgca ggcctgtacc 1020tgaacggcga tgtggtcccg
gaggaggagc tgcacgtctt cgtggaggat gcgctgaacg 1080agctcgagtt cctcatgggc
gacgtctcga ccccttgggg cgcgcgccgc gctaagctcg 1140gctaccccaa gccgtggaac
atcaagttcg tcgaggtcgg caacgaggac aacctgtggg 1200gcggcctcga ctcgtacaag
agctaccggc tgaagacttt ctacgacgcc atcaaggcga 1260agtaccccga catctccatc
ttttcgtcga ccgacgagtt tgtgtacaag gagtcgggcc 1320aggactacca caagtacacc
cggccggact actccgtgtc ccagttcgac ctgtttgaca 1380actgggccga cggccacccc
atcatcatcg gagagtgagt gaacggcgac ccccacctcc 1440ccctaacgcg ggatcgcgag
ctgatagatc accccaggta tgcgaccatc cagaacaaca 1500cgggcaagct cgaggacacg
gactgggacg cgcccaagaa caagtggtcc aactggatcg 1560gctccgtcgc cgaggccgtc
ttcatcctcg gagccgagcg caacggcgac cgggtctggg 1620gcaccacctt tgcgccgatc
ctccagaacc tcaacagcta ccaatgggct gtaagtacat 1680acatacatac cgcaccccca
accccaaccc ccccaaagcg cacctccacc cacccaccca 1740aacacaccac aactacctag
ctaacccgcc acacaaacaa acagcccgac ctaatctcct 1800tcaccgccaa cccggccgac
accacgccca gcgtctcgta cccgatcatc cagctgctcg 1860cctcgcaccg catcacgcac
accctccccg tcagcagcgc cgacgccttc ggcccggcct 1920actgggtggc cggtcgcggc
gccgacgacg gctcgtacat cctcaaggcg gccgtgtaca 1980acagcacggg gggtgcggat
gtaccggtga gggtgcagtt tgaggcgggg ggtggtggtg 2040gtggtggtgg tggtggtggt
ggtggtggtg gtgatgggaa ggggaagggt aaagggaagg 2100gaggggaggg tggtgagggt
gtgaagaagg gtgaccgcgc gcagttgacc gtgttgacgg 2160cgccggaggg gccctgggcg
cataatacgc cggagaataa gggggcggtc aagacgacag 2220tgacgacgtt gaaggccggg
aggggtgggg tgtttgagtt tagtctgccg gatttgtcgg 2280tggcggtgtt ggtggtggag
ggggagaagt ga 231268670PRTChaetomium
globosum 68Met Ala Pro Leu Ser Leu Arg Ala Leu Ser Leu Leu Ala Leu Thr
Gly1 5 10 15Ala Ala Ala
Ala Val Thr Leu Ser Val Ala Asn Ser Gly Gly Asn Asp 20
25 30Thr Ser Pro Tyr Met Tyr Gly Ile Met Phe
Glu Asp Ile Asn Gln Ser 35 40
45Gly Asp Gly Gly Leu Tyr Ala Glu Leu Ile Arg Asn Arg Ala Phe His 50
55 60Asn Ser Ser Leu Gln Ala Trp Thr Ala
Val Gly Asp Ser Thr Leu Glu65 70 75
80Val Val Thr Ser Ala Pro Leu Ser Asp Ala Leu Pro Arg Ser
Val Lys 85 90 95Val Thr
Ser Gly Lys Gly Lys Ala Gly Leu Lys Asn Ala Gly Tyr Trp 100
105 110Gly Met Asp Val Gln Lys Thr Asp Lys
Tyr Ser Gly Ser Phe Tyr Ser 115 120
125Tyr Gly Ala Tyr Asp Gly Lys Phe Thr Leu Ser Leu Val Ser Asp Ile
130 135 140Thr Asn Glu Thr Leu Ala Thr
Thr Lys Ile Lys Ser Arg Ser Val Glu145 150
155 160His Ala Trp Thr Glu His Lys Phe Glu Leu Leu Pro
Thr Lys Ser Ala 165 170
175Ala Asn Ser Asn Asn Ser Phe Val Leu Glu Phe Arg Pro Cys His Gln
180 185 190Thr Glu Leu Gln Phe Asn
Leu Ile Ser Leu Phe Pro Pro Thr Tyr Lys 195 200
205Asn Arg Pro Asn Gly Met Arg Arg Glu Leu Met Glu Lys Leu
Ala Asp 210 215 220Leu Lys Pro Ser Phe
Leu Arg Ile Pro Gly Gly Asn Asn Leu Glu Gly225 230
235 240Asn Tyr Ala Gly Asn Tyr Trp Asn Trp Ser
Ser Thr Leu Gly Pro Leu 245 250
255Thr Asp Arg Pro Gly Arg Asp Gly Val Trp Thr Tyr Ala Asn Thr Asp
260 265 270Gly Ile Gly Leu Val
Glu Tyr Met His Trp Ala Glu Asp Leu Asp Val 275
280 285Glu Val Val Leu Ala Val Ala Ala Gly Leu Tyr Leu
Asn Gly Asp Val 290 295 300Val Pro Glu
Glu Glu Leu His Val Phe Val Glu Asp Ala Leu Asn Glu305
310 315 320Leu Glu Phe Leu Met Gly Asp
Val Ser Thr Pro Trp Gly Ala Arg Arg 325
330 335Ala Lys Leu Gly Tyr Pro Lys Pro Trp Asn Ile Lys
Phe Val Glu Val 340 345 350Gly
Asn Glu Asp Asn Leu Trp Gly Gly Leu Asp Ser Tyr Lys Ser Tyr 355
360 365Arg Leu Lys Thr Phe Tyr Asp Ala Ile
Lys Ala Lys Tyr Pro Asp Ile 370 375
380Ser Ile Phe Ser Ser Thr Asp Glu Phe Val Tyr Lys Glu Ser Gly Gln385
390 395 400Asp Tyr His Lys
Tyr Thr Arg Pro Asp Tyr Ser Val Ser Gln Phe Asp 405
410 415Leu Phe Asp Asn Trp Ala Asp Gly His Pro
Ile Ile Ile Gly Glu Tyr 420 425
430Ala Thr Ile Gln Asn Asn Thr Gly Lys Leu Glu Asp Thr Asp Trp Asp
435 440 445Ala Pro Lys Asn Lys Trp Ser
Asn Trp Ile Gly Ser Val Ala Glu Ala 450 455
460Val Phe Ile Leu Gly Ala Glu Arg Asn Gly Asp Arg Val Trp Gly
Thr465 470 475 480Thr Phe
Ala Pro Ile Leu Gln Asn Leu Asn Ser Tyr Gln Trp Ala Pro
485 490 495Asp Leu Ile Ser Phe Thr Ala
Asn Pro Ala Asp Thr Thr Pro Ser Val 500 505
510Ser Tyr Pro Ile Ile Gln Leu Leu Ala Ser His Arg Ile Thr
His Thr 515 520 525Leu Pro Val Ser
Ser Ala Asp Ala Phe Gly Pro Ala Tyr Trp Val Ala 530
535 540Gly Arg Gly Ala Asp Asp Gly Ser Tyr Ile Leu Lys
Ala Ala Val Tyr545 550 555
560Asn Ser Thr Gly Gly Ala Asp Val Pro Val Arg Val Gln Phe Glu Ala
565 570 575Gly Gly Gly Gly Gly
Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Asp 580
585 590Gly Lys Gly Lys Gly Lys Gly Lys Gly Gly Glu Gly
Gly Glu Gly Val 595 600 605Lys Lys
Gly Asp Arg Ala Gln Leu Thr Val Leu Thr Ala Pro Glu Gly 610
615 620Pro Trp Ala His Asn Thr Pro Glu Asn Lys Gly
Ala Val Lys Thr Thr625 630 635
640Val Thr Thr Leu Lys Ala Gly Arg Gly Gly Val Phe Glu Phe Ser Leu
645 650 655Pro Asp Leu Ser
Val Ala Val Leu Val Val Glu Gly Glu Lys 660
665 670691002DNAFusarium verticillioides 69atgcgtcttc
tatcgtttcc cagccatctc ctcgtggcct tcctaaccct caaagaggct 60tcatccctcg
ccctcagcaa acgggatagc cctgtcctcc ccggcctctg ggcggacccc 120aacatcgcca
tcgtcgacaa gacatactac atcttcccta ccaccgacgg tttcgaaggc 180tggggcggca
acgtcttcta ctggtggaaa tcaaaagatc tcgtatcatg gacaaagagc 240gacaagccat
tccttactct caatggtacg aatggcaacg ttccctgggc tacaggtaat 300gcctgggctc
ctgctttcgc tgctcgcgga ggcaagtatt acttctacca tagtgggaat 360aatccctctg
tgagtgatgg gcataagagt attggtgcgg cggtggctga tcatcctgag 420gggccgtgga
aggcacagga taagccgatg atcaagggaa cttctgatga ggagattgtc 480agcaaccagg
ctatcgatcc cgctgccttt gaagaccctg agactggaaa gtggtatatc 540tactggggaa
acggtgtccc cattgtcgca gagctcaacg acgacatggt ctctctcaaa 600gcaggctggc
acaaaatcac aggtcttcag aatttccgcg agggtctttt cgtcaactat 660cgcgatggaa
catatcatct gacatactct atcgacgata cgggctcaga gaactatcgc 720gttgggtacg
ctacggcgga taaccccatt ggaccttgga catatcgtgg tgttcttctg 780gagaaggacg
aatcgaaggg cattcttgct acgggacata actccatcat caacattcct 840ggaacggatg
agtggtatat cgcgtatcat cgcttccata ttcccgatgg aaatgggtat 900aatagggaga
ctacgattga tagggtaccc atcgacaagg atacgggttt gtttggaaag 960gttacgccga
ctttgcagag tgttgatcct aggcctttgt ag
100270333PRTFusarium verticillioides 70Met Arg Leu Leu Ser Phe Pro Ser
His Leu Leu Val Ala Phe Leu Thr1 5 10
15Leu Lys Glu Ala Ser Ser Leu Ala Leu Ser Lys Arg Asp Ser
Pro Val 20 25 30Leu Pro Gly
Leu Trp Ala Asp Pro Asn Ile Ala Ile Val Asp Lys Thr 35
40 45Tyr Tyr Ile Phe Pro Thr Thr Asp Gly Phe Glu
Gly Trp Gly Gly Asn 50 55 60Val Phe
Tyr Trp Trp Lys Ser Lys Asp Leu Val Ser Trp Thr Lys Ser65
70 75 80Asp Lys Pro Phe Leu Thr Leu
Asn Gly Thr Asn Gly Asn Val Pro Trp 85 90
95Ala Thr Gly Asn Ala Trp Ala Pro Ala Phe Ala Ala Arg
Gly Gly Lys 100 105 110Tyr Tyr
Phe Tyr His Ser Gly Asn Asn Pro Ser Val Ser Asp Gly His 115
120 125Lys Ser Ile Gly Ala Ala Val Ala Asp His
Pro Glu Gly Pro Trp Lys 130 135 140Ala
Gln Asp Lys Pro Met Ile Lys Gly Thr Ser Asp Glu Glu Ile Val145
150 155 160Ser Asn Gln Ala Ile Asp
Pro Ala Ala Phe Glu Asp Pro Glu Thr Gly 165
170 175Lys Trp Tyr Ile Tyr Trp Gly Asn Gly Val Pro Ile
Val Ala Glu Leu 180 185 190Asn
Asp Asp Met Val Ser Leu Lys Ala Gly Trp His Lys Ile Thr Gly 195
200 205Leu Gln Asn Phe Arg Glu Gly Leu Phe
Val Asn Tyr Arg Asp Gly Thr 210 215
220Tyr His Leu Thr Tyr Ser Ile Asp Asp Thr Gly Ser Glu Asn Tyr Arg225
230 235 240Val Gly Tyr Ala
Thr Ala Asp Asn Pro Ile Gly Pro Trp Thr Tyr Arg 245
250 255Gly Val Leu Leu Glu Lys Asp Glu Ser Lys
Gly Ile Leu Ala Thr Gly 260 265
270His Asn Ser Ile Ile Asn Ile Pro Gly Thr Asp Glu Trp Tyr Ile Ala
275 280 285Tyr His Arg Phe His Ile Pro
Asp Gly Asn Gly Tyr Asn Arg Glu Thr 290 295
300Thr Ile Asp Arg Val Pro Ile Asp Lys Asp Thr Gly Leu Phe Gly
Lys305 310 315 320Val Thr
Pro Thr Leu Gln Ser Val Asp Pro Arg Pro Leu 325
330711695DNAFusarium verticillioides 71atgctcttct cgctcgttct
tcctaccctt gcctttcaag ccagcctggc gctcggcgat 60acatccgtta ctgtcgacac
cagccagaaa ctccaggtca tcgatggctt tggtgtctca 120gaagcctacg gccacgccaa
acaattccaa aacctcggtc ctggaccaca gaaagagggc 180ctcgatcttc tcttcaacac
tacaaccggc gcaggcttat ccatcatccg aaacaagatc 240ggctgcgacg cctccaactc
catcaccagc accaacaccg acaacccaga taagcaggct 300gtttaccatt ttgacggcga
tgatgatggt caggtatggt ttagcaaaca ggccatgagc 360tatggtgtag atactatcta
cgctaatgct tggtctgcgc ctgtatacat gaagtcagcc 420cagagtatgg gccgtctctg
cggtacacct ggtgtgtcgt gctcctctgg agattggaga 480catcgttacg ttgagatgat
agctgagtac ctctcctact acaagcaggc tggcatccca 540gtgtcgcacg ttggattcct
caatgagggt gacggctcgg actttatgct ctcaactgcc 600gaacaggctg cagatgtcat
tcctcttcta cacagcgctt tgcagtccaa gggccttggc 660gatatcaaga tgacgtgctg
tgataacatc ggttggaagt cacagatgga ctataccgcc 720aagctggctg agcttgaggt
ggagaagtat ctatctgtca tcacatccca cgagtactcc 780agcagcccca accagcctat
gaacactaca ttgccaacct ggatgtccga gggagctgcc 840aatgaccagg catttgccac
agcgtggtac gtcaacggcg gttccaacga aggtttcaca 900tgggcagtca agatcgcaca
aggcatcgtc aatgccgacc tctcagcgta tatctactgg 960gagggcgttg agaccaacaa
caaggggtct ctatctcacg tcatcgacac ggacggtacc 1020aagtttacca tatcctcgat
tctctgggcc attgctcact ggtcgcgcca tattcgccct 1080ggtgcgcata gactttcgac
ttcaggtgtt gtgcaagata cgattgttgg tgcgtttgag 1140aacgttgatg gcagtgtcgt
catggtgctc accaactctg gcactgctgc tcagactgtg 1200gacctgggtg tttcgggaag
tagcttctca acagctcagg ctttcacttc ggatgctgag 1260gcgcagatgg tcgataccaa
ggtgactctg tccgacggtc gtgtcaaggt tacggtcccg 1320gtgcacggtg tcgtcactgt
gaagctcaca acagcaaaaa gctccaaacc ggtctcaact 1380gctgtttctg cgcaatctgc
ccccactcca actagtgtta agcacacctt gactcaccag 1440aagacttctt caacaacact
ctcgaccgcc aaggccccaa cctccactca gactacctct 1500gtagttgagt cagccaaggc
ggtgaaatac cctgtccccc ctgtagcatc caagggatcc 1560tcgaagagtg ctcccaagaa
gggtaccaag aagaccacta cgaagaaggg ctcccaccaa 1620tcgcacaagg cgcatagtgc
tactcatcgt cgatgccgcc atggaagtta ccgtcgtggc 1680cactgcacca actaa
169572537PRTFusarium
verticillioides 72Met Leu Phe Ser Leu Val Leu Pro Thr Leu Ala Phe Gln Ala
Ser Leu1 5 10 15Ala Leu
Gly Asp Thr Ser Val Thr Val Asp Thr Ser Gln Lys Leu Gln 20
25 30Val Ile Asp Gly Phe Gly Val Ser Glu
Ala Tyr Gly His Ala Lys Gln 35 40
45Phe Gln Asn Leu Gly Pro Gly Pro Gln Lys Glu Gly Leu Asp Leu Leu 50
55 60Phe Asn Thr Thr Thr Gly Ala Gly Leu
Ser Ile Ile Arg Asn Lys Ile65 70 75
80Gly Cys Asp Ala Ser Asn Ser Ile Thr Ser Thr Asn Thr Asp
Asn Pro 85 90 95Asp Lys
Gln Ala Val Tyr His Phe Asp Gly Asp Asp Asp Gly Gln Ser 100
105 110Ala Gln Ser Met Gly Arg Leu Cys Gly
Thr Pro Gly Val Ser Cys Ser 115 120
125Ser Gly Asp Trp Arg His Arg Tyr Val Glu Met Ile Ala Glu Tyr Leu
130 135 140Ser Tyr Tyr Lys Gln Ala Gly
Ile Pro Val Ser His Val Gly Phe Leu145 150
155 160Asn Glu Gly Asp Gly Ser Asp Phe Met Leu Ser Thr
Ala Glu Gln Ala 165 170
175Ala Asp Val Ile Pro Leu Leu His Ser Ala Leu Gln Ser Lys Gly Leu
180 185 190Gly Asp Ile Lys Met Thr
Cys Cys Asp Asn Ile Gly Trp Lys Ser Gln 195 200
205Met Asp Tyr Thr Ala Lys Leu Ala Glu Leu Glu Val Glu Lys
Tyr Leu 210 215 220Ser Val Ile Thr Ser
His Glu Tyr Ser Ser Ser Pro Asn Gln Pro Met225 230
235 240Asn Thr Thr Leu Pro Thr Trp Met Ser Glu
Gly Ala Ala Asn Asp Gln 245 250
255Ala Phe Ala Thr Ala Trp Tyr Val Asn Gly Gly Ser Asn Glu Gly Phe
260 265 270Thr Trp Ala Val Lys
Ile Ala Gln Gly Ile Val Asn Ala Asp Leu Ser 275
280 285Ala Tyr Ile Tyr Trp Glu Gly Val Glu Thr Asn Asn
Lys Gly Ser Leu 290 295 300Ser His Val
Ile Asp Thr Asp Gly Thr Lys Phe Thr Ile Ser Ser Ile305
310 315 320Leu Trp Ala Ile Ala His Trp
Ser Arg His Ile Arg Pro Gly Ala His 325
330 335Arg Leu Ser Thr Ser Gly Val Val Gln Asp Thr Ile
Val Gly Ala Phe 340 345 350Glu
Asn Val Asp Gly Ser Val Val Met Val Leu Thr Asn Ser Gly Thr 355
360 365Ala Ala Gln Thr Val Asp Leu Gly Val
Ser Gly Ser Ser Phe Ser Thr 370 375
380Ala Gln Ala Phe Thr Ser Asp Ala Glu Ala Gln Met Val Asp Thr Lys385
390 395 400Val Thr Leu Ser
Asp Gly Arg Val Lys Val Thr Val Pro Val His Gly 405
410 415Val Val Thr Val Lys Leu Thr Thr Ala Lys
Ser Ser Lys Pro Val Ser 420 425
430Thr Ala Val Ser Ala Gln Ser Ala Pro Thr Pro Thr Ser Val Lys His
435 440 445Thr Leu Thr His Gln Lys Thr
Ser Ser Thr Thr Leu Ser Thr Ala Lys 450 455
460Ala Pro Thr Ser Thr Gln Thr Thr Ser Val Val Glu Ser Ala Lys
Ala465 470 475 480Val Lys
Tyr Pro Val Pro Pro Val Ala Ser Lys Gly Ser Ser Lys Ser
485 490 495Ala Pro Lys Lys Gly Thr Lys
Lys Thr Thr Thr Lys Lys Gly Ser His 500 505
510Gln Ser His Lys Ala His Ser Ala Thr His Arg Arg Cys Arg
His Gly 515 520 525Ser Tyr Arg Arg
Gly His Cys Thr Asn 530 53573948DNAFusarium
verticillioides 73atgtggaaac tcctcgtcag cggtcttgtc gccgtcgcgt ccctcagcgg
cgtgaacgct 60gcttatccta accctggtcc cgtcaccggc gatactcgtg ttcacgaccc
tacggttgtc 120aagactccca gcggtggata cttgctggct catactggcg ataacgtttc
gctcaagact 180tcttctgatc gaactgcttg gaaggatgca ggtgctgttt tccccaacgg
tgcgccttgg 240actacgcagt acaccaaggg cgacaagaac ctctgggccc ctgatatctc
ctaccacaac 300ggccagtact atctgtacta ctccgcctct tccttcggtc agcgtacctc
tgccattttt 360ctcgctacca gcaagaccgg tgcatccggc tcgtggacca accaaggcgt
cgtcgtcgag 420tccaacaaca acaacgacta caatgccatt gacggaaatc tctttgtcga
ctctgatgga 480aaatggtggc tctccttcgg ctctttctgg tccggcatca agctcatcca
actcgacccc 540aagaccggca agcgcaccgg ctcaagcatg tactccctcg ccaaacgcga
cgcctccgtc 600gaaggcgccg tcgaggctcc gttcatcacc aaacgcggaa gcacctacta
cctctgggtg 660tcgttcgaca agtgttgcca gggcgctgct agcacgtacc gtgtcatggt
tggacggtcg 720agcagcatta ctggtcctta tgttgacaag gctggtaagc agatgatgtc
tggtggagga 780acggagatta tggctagtca cggatctatt catggaccgg gacataatgc
tgttttcact 840gataacgatg cggacgttct tgtctatcat tactacgata acgctggcac
agcgctgttg 900ggcatcaact tgctcagata tgacaatggc tggcctgttg cttattag
94874315PRTFusarium verticillioides 74Met Trp Lys Leu Leu Val
Ser Gly Leu Val Ala Val Ala Ser Leu Ser1 5
10 15Gly Val Asn Ala Ala Tyr Pro Asn Pro Gly Pro Val
Thr Gly Asp Thr 20 25 30Arg
Val His Asp Pro Thr Val Val Lys Thr Pro Ser Gly Gly Tyr Leu 35
40 45Leu Ala His Thr Gly Asp Asn Val Ser
Leu Lys Thr Ser Ser Asp Arg 50 55
60Thr Ala Trp Lys Asp Ala Gly Ala Val Phe Pro Asn Gly Ala Pro Trp65
70 75 80Thr Thr Gln Tyr Thr
Lys Gly Asp Lys Asn Leu Trp Ala Pro Asp Ile 85
90 95Ser Tyr His Asn Gly Gln Tyr Tyr Leu Tyr Tyr
Ser Ala Ser Ser Phe 100 105
110Gly Gln Arg Thr Ser Ala Ile Phe Leu Ala Thr Ser Lys Thr Gly Ala
115 120 125Ser Gly Ser Trp Thr Asn Gln
Gly Val Val Val Glu Ser Asn Asn Asn 130 135
140Asn Asp Tyr Asn Ala Ile Asp Gly Asn Leu Phe Val Asp Ser Asp
Gly145 150 155 160Lys Trp
Trp Leu Ser Phe Gly Ser Phe Trp Ser Gly Ile Lys Leu Ile
165 170 175Gln Leu Asp Pro Lys Thr Gly
Lys Arg Thr Gly Ser Ser Met Tyr Ser 180 185
190Leu Ala Lys Arg Asp Ala Ser Val Glu Gly Ala Val Glu Ala
Pro Phe 195 200 205Ile Thr Lys Arg
Gly Ser Thr Tyr Tyr Leu Trp Val Ser Phe Asp Lys 210
215 220Cys Cys Gln Gly Ala Ala Ser Thr Tyr Arg Val Met
Val Gly Arg Ser225 230 235
240Ser Ser Ile Thr Gly Pro Tyr Val Asp Lys Ala Gly Lys Gln Met Met
245 250 255Ser Gly Gly Gly Thr
Glu Ile Met Ala Ser His Gly Ser Ile His Gly 260
265 270Pro Gly His Asn Ala Val Phe Thr Asp Asn Asp Ala
Asp Val Leu Val 275 280 285Tyr His
Tyr Tyr Asp Asn Ala Gly Thr Ala Leu Leu Gly Ile Asn Leu 290
295 300Leu Arg Tyr Asp Asn Gly Trp Pro Val Ala
Tyr305 310 315751352DNATrichoderma reesei
75atgaaagcaa acgtcatctt gtgcctcctg gcccccctgg tcgccgctct ccccaccgaa
60accatccacc tcgaccccga gctcgccgct ctccgcgcca acctcaccga gcgaacagcc
120gacctctggg accgccaagc ctctcaaagc atcgaccagc tcatcaagag aaaaggcaag
180ctctactttg gcaccgccac cgaccgcggc ctcctccaac gggaaaagaa cgcggccatc
240atccaggcag acctcggcca ggtgacgccg gagaacagca tgaagtggca gtcgctcgag
300aacaaccaag gccagctgaa ctggggagac gccgactatc tcgtcaactt tgcccagcaa
360aacggcaagt cgatacgcgg ccacactctg atctggcact cgcagctgcc tgcgtgggtg
420aacaatatca acaacgcgga tactctgcgg caagtcatcc gcacccatgt ctctactgtg
480gttgggcggt acaagggcaa gattcgtgct tgggtgagtt ttgaacacca catgcccctt
540ttcttagtcc gctcctcctc ctcttggaac ttctcacagt tatagccgta tacaacattc
600gacaggaaat ttaggatgac aactactgac tgacttgtgt gtgtgatggc gataggacgt
660ggtcaatgaa atcttcaacg aggatggaac gctgcgctct tcagtctttt ccaggctcct
720cggcgaggag tttgtctcga ttgcctttcg tgctgctcga gatgctgacc cttctgcccg
780tctttacatc aacgactaca atctcgaccg cgccaactat ggcaaggtca acgggttgaa
840gacttacgtc tccaagtgga tctctcaagg agttcccatt gacggtattg gtgagccacg
900acccctaaat gtcccccatt agagtctctt tctagagcca aggcttgaag ccattcaggg
960actgacacga gagccttctc tacaggaagc cagtcccatc tcagcggcgg cggaggctct
1020ggtacgctgg gtgcgctcca gcagctggca acggtacccg tcaccgagct ggccattacc
1080gagctggaca ttcagggggc accgacgacg gattacaccc aagttgttca agcatgcctg
1140agcgtctcca agtgcgtcgg catcaccgtg tggggcatca gtgacaaggt aagttgcttc
1200ccctgtctgt gcttatcaac tgtaagcagc aacaactgat gctgtctgtc tttacctagg
1260actcgtggcg tgccagcacc aaccctcttc tgtttgacgc aaacttcaac cccaagccgg
1320catataacag cattgttggc atcttacaat ag
135276347PRTTrichoderma reesei 76Met Lys Ala Asn Val Ile Leu Cys Leu Leu
Ala Pro Leu Val Ala Ala1 5 10
15Leu Pro Thr Glu Thr Ile His Leu Asp Pro Glu Leu Ala Ala Leu Arg
20 25 30Ala Asn Leu Thr Glu Arg
Thr Ala Asp Leu Trp Asp Arg Gln Ala Ser 35 40
45Gln Ser Ile Asp Gln Leu Ile Lys Arg Lys Gly Lys Leu Tyr
Phe Gly 50 55 60Thr Ala Thr Asp Arg
Gly Leu Leu Gln Arg Glu Lys Asn Ala Ala Ile65 70
75 80Ile Gln Ala Asp Leu Gly Gln Val Thr Pro
Glu Asn Ser Met Lys Trp 85 90
95Gln Ser Leu Glu Asn Asn Gln Gly Gln Leu Asn Trp Gly Asp Ala Asp
100 105 110Tyr Leu Val Asn Phe
Ala Gln Gln Asn Gly Lys Ser Ile Arg Gly His 115
120 125Thr Leu Ile Trp His Ser Gln Leu Pro Ala Trp Val
Asn Asn Ile Asn 130 135 140Asn Ala Asp
Thr Leu Arg Gln Val Ile Arg Thr His Val Ser Thr Val145
150 155 160Val Gly Arg Tyr Lys Gly Lys
Ile Arg Ala Trp Asp Val Val Asn Glu 165
170 175Ile Phe Asn Glu Asp Gly Thr Leu Arg Ser Ser Val
Phe Ser Arg Leu 180 185 190Leu
Gly Glu Glu Phe Val Ser Ile Ala Phe Arg Ala Ala Arg Asp Ala 195
200 205Asp Pro Ser Ala Arg Leu Tyr Ile Asn
Asp Tyr Asn Leu Asp Arg Ala 210 215
220Asn Tyr Gly Lys Val Asn Gly Leu Lys Thr Tyr Val Ser Lys Trp Ile225
230 235 240Ser Gln Gly Val
Pro Ile Asp Gly Ile Gly Ser Gln Ser His Leu Ser 245
250 255Gly Gly Gly Gly Ser Gly Thr Leu Gly Ala
Leu Gln Gln Leu Ala Thr 260 265
270Val Pro Val Thr Glu Leu Ala Ile Thr Glu Leu Asp Ile Gln Gly Ala
275 280 285Pro Thr Thr Asp Tyr Thr Gln
Val Val Gln Ala Cys Leu Ser Val Ser 290 295
300Lys Cys Val Gly Ile Thr Val Trp Gly Ile Ser Asp Lys Asp Ser
Trp305 310 315 320Arg Ala
Ser Thr Asn Pro Leu Leu Phe Asp Ala Asn Phe Asn Pro Lys
325 330 335Pro Ala Tyr Asn Ser Ile Val
Gly Ile Leu Gln 340 34577222PRTTrichoderma
reesei 77Met Val Ser Phe Thr Ser Leu Leu Ala Ala Ser Pro Pro Ser Arg Ala1
5 10 15Ser Cys Arg Pro
Ala Ala Glu Val Glu Ser Val Ala Val Glu Lys Arg 20
25 30Gln Thr Ile Gln Pro Gly Thr Gly Tyr Asn Asn
Gly Tyr Phe Tyr Ser 35 40 45Tyr
Trp Asn Asp Gly His Gly Gly Val Thr Tyr Thr Asn Gly Pro Gly 50
55 60Gly Gln Phe Ser Val Asn Trp Ser Asn Ser
Gly Asn Phe Val Gly Gly65 70 75
80Lys Gly Trp Gln Pro Gly Thr Lys Asn Lys Val Ile Asn Phe Ser
Gly 85 90 95Ser Tyr Asn
Pro Asn Gly Asn Ser Tyr Leu Ser Val Tyr Gly Trp Ser 100
105 110Arg Asn Pro Leu Ile Glu Tyr Tyr Ile Val
Glu Asn Phe Gly Thr Tyr 115 120
125Asn Pro Ser Thr Gly Ala Thr Lys Leu Gly Glu Val Thr Ser Asp Gly 130
135 140Ser Val Tyr Asp Ile Tyr Arg Thr
Gln Arg Val Asn Gln Pro Ser Ile145 150
155 160Ile Gly Thr Ala Thr Phe Tyr Gln Tyr Trp Ser Val
Arg Arg Asn His 165 170
175Arg Ser Ser Gly Ser Val Asn Thr Ala Asn His Phe Asn Ala Trp Ala
180 185 190Gln Gln Gly Leu Thr Leu
Gly Thr Met Asp Tyr Gln Ile Val Ala Val 195 200
205Glu Gly Tyr Phe Ser Ser Gly Ser Ala Ser Ile Thr Val Ser
210 215 22078797PRTTrichoderma reesei
78Met Val Asn Asn Ala Ala Leu Leu Ala Ala Leu Ser Ala Leu Leu Pro1
5 10 15Thr Ala Leu Ala Gln Asn
Asn Gln Thr Tyr Ala Asn Tyr Ser Ala Gln 20 25
30Gly Gln Pro Asp Leu Tyr Pro Glu Thr Leu Ala Thr Leu
Thr Leu Ser 35 40 45Phe Pro Asp
Cys Glu His Gly Pro Leu Lys Asn Asn Leu Val Cys Asp 50
55 60Ser Ser Ala Gly Tyr Val Glu Arg Ala Gln Ala Leu
Ile Ser Leu Phe65 70 75
80Thr Leu Glu Glu Leu Ile Leu Asn Thr Gln Asn Ser Gly Pro Gly Val
85 90 95Pro Arg Leu Gly Leu Pro
Asn Tyr Gln Val Trp Asn Glu Ala Leu His 100
105 110Gly Leu Asp Arg Ala Asn Phe Ala Thr Lys Gly Gly
Gln Phe Glu Trp 115 120 125Ala Thr
Ser Phe Pro Met Pro Ile Leu Thr Thr Ala Ala Leu Asn Arg 130
135 140Thr Leu Ile His Gln Ile Ala Asp Ile Ile Ser
Thr Gln Ala Arg Ala145 150 155
160Phe Ser Asn Ser Gly Arg Tyr Gly Leu Asp Val Tyr Ala Pro Asn Val
165 170 175Asn Gly Phe Arg
Ser Pro Leu Trp Gly Arg Gly Gln Glu Thr Pro Gly 180
185 190Glu Asp Ala Phe Phe Leu Ser Ser Ala Tyr Thr
Tyr Glu Tyr Ile Thr 195 200 205Gly
Ile Gln Gly Gly Val Asp Pro Glu His Leu Lys Val Ala Ala Thr 210
215 220Val Lys His Phe Ala Gly Tyr Asp Leu Glu
Asn Trp Asn Asn Gln Ser225 230 235
240Arg Leu Gly Phe Asp Ala Ile Ile Thr Gln Gln Asp Leu Ser Glu
Tyr 245 250 255Tyr Thr Pro
Gln Phe Leu Ala Ala Ala Arg Tyr Ala Lys Ser Arg Ser 260
265 270Leu Met Cys Ala Tyr Asn Ser Val Asn Gly
Val Pro Ser Cys Ala Asn 275 280
285Ser Phe Phe Leu Gln Thr Leu Leu Arg Glu Ser Trp Gly Phe Pro Glu 290
295 300Trp Gly Tyr Val Ser Ser Asp Cys
Asp Ala Val Tyr Asn Val Phe Asn305 310
315 320Pro His Asp Tyr Ala Ser Asn Gln Ser Ser Ala Ala
Ala Ser Ser Leu 325 330
335Arg Ala Gly Thr Asp Ile Asp Cys Gly Gln Thr Tyr Pro Trp His Leu
340 345 350Asn Glu Ser Phe Val Ala
Gly Glu Val Ser Arg Gly Glu Ile Glu Arg 355 360
365Ser Val Thr Arg Leu Tyr Ala Asn Leu Val Arg Leu Gly Tyr
Phe Asp 370 375 380Lys Lys Asn Gln Tyr
Arg Ser Leu Gly Trp Lys Asp Val Val Lys Thr385 390
395 400Asp Ala Trp Asn Ile Ser Tyr Glu Ala Ala
Val Glu Gly Ile Val Leu 405 410
415Leu Lys Asn Asp Gly Thr Leu Pro Leu Ser Lys Lys Val Arg Ser Ile
420 425 430Ala Leu Ile Gly Pro
Trp Ala Asn Ala Thr Thr Gln Met Gln Gly Asn 435
440 445Tyr Tyr Gly Pro Ala Pro Tyr Leu Ile Ser Pro Leu
Glu Ala Ala Lys 450 455 460Lys Ala Gly
Tyr His Val Asn Phe Glu Leu Gly Thr Glu Ile Ala Gly465
470 475 480Asn Ser Thr Thr Gly Phe Ala
Lys Ala Ile Ala Ala Ala Lys Lys Ser 485
490 495Asp Ala Ile Ile Tyr Leu Gly Gly Ile Asp Asn Thr
Ile Glu Gln Glu 500 505 510Gly
Ala Asp Arg Thr Asp Ile Ala Trp Pro Gly Asn Gln Leu Asp Leu 515
520 525Ile Lys Gln Leu Ser Glu Val Gly Lys
Pro Leu Val Val Leu Gln Met 530 535
540Gly Gly Gly Gln Val Asp Ser Ser Ser Leu Lys Ser Asn Lys Lys Val545
550 555 560Asn Ser Leu Val
Trp Gly Gly Tyr Pro Gly Gln Ser Gly Gly Val Ala 565
570 575Leu Phe Asp Ile Leu Ser Gly Lys Arg Ala
Pro Ala Gly Arg Leu Val 580 585
590Thr Thr Gln Tyr Pro Ala Glu Tyr Val His Gln Phe Pro Gln Asn Asp
595 600 605Met Asn Leu Arg Pro Asp Gly
Lys Ser Asn Pro Gly Gln Thr Tyr Ile 610 615
620Trp Tyr Thr Gly Lys Pro Val Tyr Glu Phe Gly Ser Gly Leu Phe
Tyr625 630 635 640Thr Thr
Phe Lys Glu Thr Leu Ala Ser His Pro Lys Ser Leu Lys Phe
645 650 655Asn Thr Ser Ser Ile Leu Ser
Ala Pro His Pro Gly Tyr Thr Tyr Ser 660 665
670Glu Gln Ile Pro Val Phe Thr Phe Glu Ala Asn Ile Lys Asn
Ser Gly 675 680 685Lys Thr Glu Ser
Pro Tyr Thr Ala Met Leu Phe Val Arg Thr Ser Asn 690
695 700Ala Gly Pro Ala Pro Tyr Pro Asn Lys Trp Leu Val
Gly Phe Asp Arg705 710 715
720Leu Ala Asp Ile Lys Pro Gly His Ser Ser Lys Leu Ser Ile Pro Ile
725 730 735Pro Val Ser Ala Leu
Ala Arg Val Asp Ser His Gly Asn Arg Ile Val 740
745 750Tyr Pro Gly Lys Tyr Glu Leu Ala Leu Asn Thr Asp
Glu Ser Val Lys 755 760 765Leu Glu
Phe Glu Leu Val Gly Glu Glu Val Thr Ile Glu Asn Trp Pro 770
775 780Leu Glu Glu Gln Gln Ile Lys Asp Ala Thr Pro
Asp Ala785 790 79579744PRTTrichoderma
reesei 79Met Arg Tyr Arg Thr Ala Ala Ala Leu Ala Leu Ala Thr Gly Pro Phe1
5 10 15Ala Arg Ala Asp
Ser His Ser Thr Ser Gly Ala Ser Ala Glu Ala Val 20
25 30Val Pro Pro Ala Gly Thr Pro Trp Gly Thr Ala
Tyr Asp Lys Ala Lys 35 40 45Ala
Ala Leu Ala Lys Leu Asn Leu Gln Asp Lys Val Gly Ile Val Ser 50
55 60Gly Val Gly Trp Asn Gly Gly Pro Cys Val
Gly Asn Thr Ser Pro Ala65 70 75
80Ser Lys Ile Ser Tyr Pro Ser Leu Cys Leu Gln Asp Gly Pro Leu
Gly 85 90 95Val Arg Tyr
Ser Thr Gly Ser Thr Ala Phe Thr Pro Gly Val Gln Ala 100
105 110Ala Ser Thr Trp Asp Val Asn Leu Ile Arg
Glu Arg Gly Gln Phe Ile 115 120
125Gly Glu Glu Val Lys Ala Ser Gly Ile His Val Ile Leu Gly Pro Val 130
135 140Ala Gly Pro Leu Gly Lys Thr Pro
Gln Gly Gly Arg Asn Trp Glu Gly145 150
155 160Phe Gly Val Asp Pro Tyr Leu Thr Gly Ile Ala Met
Gly Gln Thr Ile 165 170
175Asn Gly Ile Gln Ser Val Gly Val Gln Ala Thr Ala Lys His Tyr Ile
180 185 190Leu Asn Glu Gln Glu Leu
Asn Arg Glu Thr Ile Ser Ser Asn Pro Asp 195 200
205Asp Arg Thr Leu His Glu Leu Tyr Thr Trp Pro Phe Ala Asp
Ala Val 210 215 220Gln Ala Asn Val Ala
Ser Val Met Cys Ser Tyr Asn Lys Val Asn Thr225 230
235 240Thr Trp Ala Cys Glu Asp Gln Tyr Thr Leu
Gln Thr Val Leu Lys Asp 245 250
255Gln Leu Gly Phe Pro Gly Tyr Val Met Thr Asp Trp Asn Ala Gln His
260 265 270Thr Thr Val Gln Ser
Ala Asn Ser Gly Leu Asp Met Ser Met Pro Gly 275
280 285Thr Asp Phe Asn Gly Asn Asn Arg Leu Trp Gly Pro
Ala Leu Thr Asn 290 295 300Ala Val Asn
Ser Asn Gln Val Pro Thr Ser Arg Val Asp Asp Met Val305
310 315 320Thr Arg Ile Leu Ala Ala Trp
Tyr Leu Thr Gly Gln Asp Gln Ala Gly 325
330 335Tyr Pro Ser Phe Asn Ile Ser Arg Asn Val Gln Gly
Asn His Lys Thr 340 345 350Asn
Val Arg Ala Ile Ala Arg Asp Gly Ile Val Leu Leu Lys Asn Asp 355
360 365Ala Asn Ile Leu Pro Leu Lys Lys Pro
Ala Ser Ile Ala Val Val Gly 370 375
380Ser Ala Ala Ile Ile Gly Asn His Ala Arg Asn Ser Pro Ser Cys Asn385
390 395 400Asp Lys Gly Cys
Asp Asp Gly Ala Leu Gly Met Gly Trp Gly Ser Gly 405
410 415Ala Val Asn Tyr Pro Tyr Phe Val Ala Pro
Tyr Asp Ala Ile Asn Thr 420 425
430Arg Ala Ser Ser Gln Gly Thr Gln Val Thr Leu Ser Asn Thr Asp Asn
435 440 445Thr Ser Ser Gly Ala Ser Ala
Ala Arg Gly Lys Asp Val Ala Ile Val 450 455
460Phe Ile Thr Ala Asp Ser Gly Glu Gly Tyr Ile Thr Val Glu Gly
Asn465 470 475 480Ala Gly
Asp Arg Asn Asn Leu Asp Pro Trp His Asn Gly Asn Ala Leu
485 490 495Val Gln Ala Val Ala Gly Ala
Asn Ser Asn Val Ile Val Val Val His 500 505
510Ser Val Gly Ala Ile Ile Leu Glu Gln Ile Leu Ala Leu Pro
Gln Val 515 520 525Lys Ala Val Val
Trp Ala Gly Leu Pro Ser Gln Glu Ser Gly Asn Ala 530
535 540Leu Val Asp Val Leu Trp Gly Asp Val Ser Pro Ser
Gly Lys Leu Val545 550 555
560Tyr Thr Ile Ala Lys Ser Pro Asn Asp Tyr Asn Thr Arg Ile Val Ser
565 570 575Gly Gly Ser Asp Ser
Phe Ser Glu Gly Leu Phe Ile Asp Tyr Lys His 580
585 590Phe Asp Asp Ala Asn Ile Thr Pro Arg Tyr Glu Phe
Gly Tyr Gly Leu 595 600 605Ser Tyr
Thr Lys Phe Asn Tyr Ser Arg Leu Ser Val Leu Ser Thr Ala 610
615 620Lys Ser Gly Pro Ala Thr Gly Ala Val Val Pro
Gly Gly Pro Ser Asp625 630 635
640Leu Phe Gln Asn Val Ala Thr Val Thr Val Asp Ile Ala Asn Ser Gly
645 650 655Gln Val Thr Gly
Ala Glu Val Ala Gln Leu Tyr Ile Thr Tyr Pro Ser 660
665 670Ser Ala Pro Arg Thr Pro Pro Lys Gln Leu Arg
Gly Phe Ala Lys Leu 675 680 685Asn
Leu Thr Pro Gly Gln Ser Gly Thr Ala Thr Phe Asn Ile Arg Arg 690
695 700Arg Asp Leu Ser Tyr Trp Asp Thr Ala Ser
Gln Lys Trp Val Val Pro705 710 715
720Ser Gly Ser Phe Gly Ile Ser Val Gly Ala Ser Ser Arg Asp Ile
Arg 725 730 735Leu Thr Ser
Thr Leu Ser Val Ala 740802031DNAPodospora anserina
80atgatccacc tcaagccagc cctcgcggcg ttgttggcgc tgtcgacgca atgtgtggct
60attgatttgt ttgtcaagtc ttcggggggg aataagacga ctgatatcat gtatggtctt
120atgcacgagg atatcaacaa ctccggcgac ggcggcatct acgccgagct aatctccaac
180cgcgcgttcc aagggagtga gaagttcccc tccaacctcg acaactggag ccccgtcggt
240ggcgctaccc ttacccttca gaagcttgcc aagccccttt cctctgcgtt gccttactcc
300gtcaatgttg ccaaccccaa ggagggcaag ggcaagggca aggacaccaa ggggaagaag
360gttggcttgg ccaatgctgg gttttggggt atggatgtca agaggcagaa gtacactggt
420agcttccacg ttactggtga gtacaagggt gactttgagg ttagcttgcg cagcgcgatt
480accggggaga cctttggcaa gaaggtggtg aagggtggga gtaagaaggg gaagtggacc
540gagaaggagt ttgagttggt gcctttcaag gatgcgccca acagcaacaa cacctttgtt
600gtgcagtggg atgccgaggg cgcaaaggac ggatctttgg atctcaactt gatcagcttg
660ttccctccga cattcaaggg aaggaagaat gggctgagaa ttgatcttgc gcagacgatg
720gttgagctca agccgacctt cttgcgcttc cccggtggca acatgctcga gggtaacacc
780ttggacactt ggtggaagtg gtacgagacc attggccctc tgaaggatcg cccgggcatg
840gctggtgtct gggagtacca gcaaaccctt ggcttgggtc tggtcgagta catggagtgg
900gccgatgaca tgaacttgga gcccattgtc ggtgtcttcg ctggtcttgc cctcgatggc
960tcgttcgttc ccgaatccga gatgggatgg gtcatccaac aggctctcga cgaaatcgag
1020ttcctcactg gcgatgctaa gaccaccaaa tggggtgccg tccgcgcgaa gcttggtcac
1080cccaagcctt ggaaggtcaa gtgggttgag atcggtaacg aggattggct tgccggacgc
1140cctgctggct tcgagtcgta catcaactac cgcttcccca tgatgatgaa ggccttcaac
1200gaaaagtacc ccgacatcaa gatcatcgcc tcgccctcca tcttcgacaa catgacaatc
1260cccgcgggtg ctgccggtga tcaccacccg tacctgactc ccgatgagtt cgttgagcga
1320ttcgccaagt tcgataactt gagcaaggat aacgtgacgc tcatcggcga ggctgcgtcg
1380acgcatccta acggtggtat cgcttgggag ggagatctca tgcccttgcc ttggtggggc
1440ggcagtgttg ctgaggctat cttcttgatc agcactgaga gaaacggtga caagatcatc
1500ggtgctactt acgcgcctgg tcttcgcagc ttggaccgct ggcaatggag catgacctgg
1560gtgcagcatg ccgccgaccc ggccctcacc actcgctcga ccagttggta tgtctggaga
1620atcctcgccc accacatcat ccgtgagacg ctcccggtcg atgccccggc cggcaagccc
1680aactttgacc ctctgttcta cgttgccgga aagagcgaga gtggcaccgg tatcttcaag
1740gctgccgtct acaactcgac tgaatcgatc ccggtgtcgt tgaagtttga tggtctcaac
1800gagggagcgg ttgccaactt gacggtgctt actgggccgg aggatccgta tggatacaac
1860gaccccttca ctggtatcaa tgttgtcaag gagaagacca ccttcatcaa ggccggaaag
1920ggcggcaagt tcaccttcac cctgccgggc ttgagtgttg ctgtgttgga gacggccgac
1980gcggtcaagg gtggcaaggg aaagggcaag ggcaagggaa agggtaactg a
2031812031DNAArtificial Sequencesynthetic codon optimized cDNA
81atgatccacc tcaagcccgc cctcgccgcc ctcctcgccc tcagcaccca atgcgtcgcc
60atcgacctct tcgtcaagag cagcggcggc aacaagacca ccgacatcat gtacggcctc
120atgcacgagg acatcaacaa cagcggcgac ggcggcatct acgccgagct gatcagcaac
180cgcgccttcc agggcagcga gaagttcccc agcaacctcg acaactggtc ccccgtcggc
240ggcgccaccc tcaccctcca gaagctcgcc aagcccctgt cctctgccct cccctactcc
300gtcaacgtcg ccaaccccaa ggagggtaag ggtaagggca aggacaccaa gggcaagaag
360gtcggcctcg ccaacgccgg cttttggggc atggacgtca agcgccagaa atacaccggc
420agcttccacg tcaccggcga gtacaagggc gacttcgagg tcagcctccg cagcgccatt
480accggcgaga ccttcggcaa gaaggtcgtc aagggcggca gcaagaaggg caagtggacc
540gagaaggagt tcgagctggt ccccttcaag gacgccccca acagcaacaa caccttcgtc
600gtccagtggg acgccgaggg cgccaaggac ggcagcctcg acctcaacct catcagcctc
660ttcccgccca ccttcaaggg ccgcaagaac ggcctccgca tcgacctcgc ccagaccatg
720gtcgagctga agcccacctt cctccgcttt cccggcggca acatgctcga gggcaacacc
780ctcgacacct ggtggaagtg gtacgagacc atcggccccc tgaaggaccg ccctggcatg
840gccggcgtct gggagtacca gcagacgctg ggcctcggcc tggtcgagta catggagtgg
900gccgacgaca tgaacctcga gcccatcgtc ggcgtctttg ctggcctggc cctggatggc
960agctttgtcc ccgagagcga gatgggctgg gtcatccagc aggctctcga tgagatcgag
1020ttcctcaccg gcgacgccaa gaccaccaag tggggcgccg tccgcgccaa gctcggccac
1080cctaagccct ggaaggtcaa atgggtcgag atcggcaacg aggactggct cgccggccga
1140cctgccggct tcgagagcta catcaactac cgcttcccca tgatgatgaa ggccttcaac
1200gagaaatacc ccgacatcaa gatcattgcc agcccctcca tcttcgacaa catgaccatt
1260ccagccggtg ctgccggtga ccaccacccc tacctcaccc ccgacgaatt tgtcgagcgc
1320ttcgccaagt tcgacaacct cagcaaggac aacgtcaccc tcattggcga ggccgccagc
1380acccacccca acggcggcat tgcctgggag ggcgacctca tgcccctgcc ctggtggggc
1440ggcagcgtcg ccgaggccat cttcctcatc agcaccgagc gcaacggcga caagatcatc
1500ggcgccacct acgcccctgg cctccgatct ctcgaccgct ggcagtggag catgacctgg
1560gtccagcacg ccgccgaccc tgccctcacc acccgcagca ccagctggta cgtctggcgc
1620atcctcgccc accacatcat tcgcgagacc ctccccgtcg acgcccccgc cggcaagccc
1680aacttcgacc ccctcttcta cgtcgctggc aagtcggaga gcggcaccgg catcttcaag
1740gccgccgtct acaacagcac cgagagcatc cccgtcagcc tcaagttcga cggcctcaac
1800gagggcgccg tcgccaacct caccgtcctc accggccccg aggaccccta cggctacaac
1860gaccccttca ccggcatcaa cgtcgtcaag gaaaagacca ccttcatcaa ggccggcaag
1920ggcggcaagt tcacctttac cctccccggc ctctctgtcg ccgtcctcga gaccgccgac
1980gccgtgaagg gtggcaaggg aaagggaaag ggcaagggta agggtaacta a
2031821020DNAGibberella zeae 82atgtatcgga agttggccgt catctcggcc
ttcttggcca cagctcgtgc taccaacgac 60gactgtcctc tcatcactag tagatggact
gcggatcctt cggctcatgt ctttaacgac 120accttgtggc tctacccgtc tcatgacatc
gatgctggat ttgagaatga tcctgatgga 180ggccagtacg ccatgagaga ttaccatgtc
tactctatcg acaagatcta cggttccctg 240ccggtcgatc acggtacggc cctgtcagtg
gaggatgtcc cctgggcctc tcgacagatg 300tgggctcctg acgctgccca caagaacggc
aaatactacc tatacttccc tgccaaagac 360aaggatgata tcttcagaat cggcgttgct
gtctcaccaa cccccggcgg accattcgtc 420cccgacaaga gttggatccc tcacactttc
agcatcgacc ccgccagttt cgtcgatgat 480gatgacagag cctacttggc atggggtggt
atcatgggtg gccagcttca acgatggcag 540gataagaaca agtacaacga atctggcact
gagccaggaa acggcaccgc tgccttgagc 600cctcagattg ccaagctgag caaggacatg
cacactctgg cagagaagcc tcgcgacatg 660ctcattcttg accccaagac tggcaagccg
ctcctttctg aggatgaaga ccgacgcttc 720ttcgaaggac cctggattca caagcgcaac
aagatttact acctcaccta ctctactggc 780acaacccact atcttgtcta tgcgacttca
aagaccccct atggtcctta cacctaccag 840ggcagaattc tggagccagt tgatggctgg
actactcact ctagtatcgt caagtaccag 900ggtcagtggt ggctatttta tcacgatgcc
aagacatctg gcaaggacta tcttcgccag 960gtaaaggcta agaagatttg gtacgatagc
aaaggaaaga tcttgacaaa gaagccttga 1020831038DNAFusarium oxysporum
83atgtatcgga agttggccgt catctcggcc ttcttggcca cagctcgtgc tcaagacact
60aatgacattc ctcccctgat caccgacctc tggtccgcag atccctcggc tcatgttttc
120gaaggcaagc tctgggttta cccatctcac gacatcgaag ccaatgttgt caacggcaca
180ggaggcgctc aatacgccat gagggattac catacctact ccatgaagag catctatggt
240aaagatcccg ttgtcgacca cggcgtcgct ctctcagtcg atgacgttcc ctgggcgaag
300cagcaaatgt gggctcctga cgcagctcat aagaacggca aatattatct gtacttcccc
360gccaaggaca aggatgagat cttcagaatt ggagttgctg tctccaacaa gcccagcggt
420cctttcaagg ccgacaagag ctggatccct ggcacgtaca gtatcgatcc tgctagctac
480gtcgacactg ataacgaggc ctacctcatc tggggcggta tctggggcgg ccagctccaa
540gcctggcagg ataaaaagaa ctttaacgag tcgtggattg gagacaaggc tgctcctaac
600ggcaccaatg ccctatctcc tcagatcgcc aagctaagca aggacatgca caagatcacc
660gaaacacccc gcgatctcgt cattctcgcc cccgagacag gcaagcctct tcaggctgag
720gacaacaagc gacgattctt cgagggccct tggatccaca agcgcggcaa gctttactac
780ctcatgtact ccaccggtga tacccacttc cttgtctacg ctacttccaa gaacatctac
840ggtccttata cctaccgggg caagattctt gatcctgttg atgggtggac tactcatgga
900agtattgttg agtataaggg acagtggtgg cttttctttg ctgatgcgca tacgtctggt
960aaggattacc ttcgacaggt gaaggcgagg aagatctggt atgacaagaa cggcaagatc
1020ttgcttcacc gtccttag
10388419PRTArtificial Sequencesynthetic motif for GH61 endoglucanase
familyMISC_FEATURE(1)..(1)Xaa can be Ile, Leu, Met, or
Valmisc_feature(3)..(6)Xaa can be any naturally occurring amino
acidmisc_feature(8)..(8)Xaa can be any naturally occurring amino
acidMISC_FEATURE(10)..(10)Xaa can be Ile, Leu, Met, or
Valmisc_feature(11)..(11)Xaa can be any naturally occurring amino
acidmisc_feature(13)..(13)Xaa can be any naturally occurring amino
acidMISC_FEATURE(14)..(14)Xaa can be Glu or Glnmisc_feature(15)..(18)Xaa
can be any naturally occurring amino acidMISC_FEATURE(19)..(19)Xaa can be
His, Asn, or Gln 84Xaa Pro Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa
Xaa Xaa Xaa1 5 10 15Xaa
Xaa Xaa8520PRTArtificial Sequencesynthetic motif for GH61 endoglucanase
familyMISC_FEATURE(1)..(1)Xaa can be Ile, Leu, Met, or
Valmisc_feature(3)..(7)Xaa can be any naturally occurring amino
acidmisc_feature(9)..(9)Xaa can be any naturally occurring amino
acidMISC_FEATURE(11)..(11)Xaa can be Ile, Leu, Met, or
Valmisc_feature(12)..(12)Xaa can be any naturally occurring amino
acidmisc_feature(14)..(14)Xaa can be any naturally occurring amino
acidMISC_FEATURE(15)..(15)Xaa can be Glu or Glnmisc_feature(16)..(19)Xaa
can be any naturally occurring amino acidMISC_FEATURE(20)..(20)Xaa can be
His, Asn or Gln 85Xaa Pro Xaa Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa
Xaa Xaa1 5 10 15Xaa Xaa
Xaa Xaa 208619PRTArtificial Sequencesynthetic motif for GH61
endoglucanase familyMISC_FEATURE(1)..(1)Xaa can be Ile, Leu, Met or
Valmisc_feature(3)..(6)Xaa can be any naturally occurring amino
acidmisc_feature(8)..(8)Xaa can be any naturally occurring amino
acidMISC_FEATURE(10)..(10)Xaa can be Ile, Leu, Met or
Valmisc_feature(11)..(11)Xaa can be any naturally occurring amino
acidmisc_feature(13)..(13)Xaa can be any naturally occurring amino
acidMISC_FEATURE(14)..(14)Xaa can be Glu or Glnmisc_feature(15)..(17)Xaa
can be any naturally occurring amino acidMISC_FEATURE(19)..(19)Xaa can be
His, Asn or Gln 86Xaa Pro Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa Xaa
Xaa Xaa1 5 10 15Xaa Ala
Xaa8720PRTArtificial Sequencesynthetic motif for GH61 endoglucanase
familyMISC_FEATURE(1)..(1)Xaa can be Ile, Leu, Met or
Valmisc_feature(3)..(7)Xaa can be any naturally occurring amino
acidmisc_feature(9)..(9)Xaa can be any naturally occurring amino
acidMISC_FEATURE(11)..(11)Xaa can be Ile, Leu, Met or
Valmisc_feature(12)..(12)Xaa can be any naturally occurring amino
acidmisc_feature(14)..(14)Xaa can be any naturally occurring amino
acidMISC_FEATURE(15)..(15)Xaa can be Glu or Glnmisc_feature(16)..(18)Xaa
can be any naturally occurring amino acidMISC_FEATURE(20)..(20)Xaa can be
His, Asn or Gln 87Xaa Pro Xaa Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa
Xaa Xaa1 5 10 15Xaa Xaa
Ala Xaa 20884PRTArtificial Sequencesynthetic motif for GH61
endoglucanase familyMISC_FEATURE(1)..(1)Xaa can be Phe or
TrpMISC_FEATURE(2)..(2)Xaa can be Thr or PheMISC_FEATURE(4)..(4)Xaa can
be Ala, Ile or Val 88Xaa Xaa Lys Xaa18910PRTArtificial Sequencesynthetic
motif for GH61 endoglucanase familymisc_feature(2)..(3)Xaa can be any
naturally occurring amino acidmisc_feature(6)..(8)Xaa can be any
naturally occurring amino acidMISC_FEATURE(9)..(9)Xaa can be Tyr or
TrpMISC_FEATURE(10)..(10)Xaa can be Ala, Ile, Leu, Met or Val 89His Xaa
Xaa Gly Pro Xaa Xaa Xaa Xaa Xaa1 5
10909PRTArtificial Sequencesynthetic motif for GH61 endoglucanase
familymisc_feature(2)..(2)Xaa can be any naturally occurring amino
acidmisc_feature(5)..(7)Xaa can be any naturally occurring amino
acidMISC_FEATURE(8)..(8)Xaa can be Tyr or TrpMISC_FEATURE(9)..(9)Xaa can
be Ala, Ile, Leu, Met or Val 90His Xaa Gly Pro Xaa Xaa Xaa Xaa Xaa1
59111PRTArtificial Sequencesynthetic motif for GH61 endoglucanase
familyMISC_FEATURE(1)..(1)Xaa can be Glu or Glnmisc_feature(2)..(2)Xaa
can be any naturally occurring amino acidmisc_feature(4)..(5)Xaa can be
any naturally occurring amino acidmisc_feature(7)..(7)Xaa can be any
naturally occurring amino acidMISC_FEATURE(8)..(8)Xaa can be Glu, His,
Gln or AsnMISC_FEATURE(9)..(9)Xaa can be Phe, Ile, Leu or
Valmisc_feature(10)..(10)Xaa can be any naturally occurring amino
acidMISC_FEATURE(11)..(11)Xaa can be Ile, Leu or Val 91Xaa Xaa Tyr Xaa
Xaa Cys Xaa Xaa Xaa Xaa Xaa1 5
10921920DNAPenicillium funiculosum 92atgtaccgga agctcgccgt gatcagcgcc
ttcctggcga ctgctcgcgc catcaccatc 60aacgtcagcc agagcggcgg caacaagacc
agcccgctcc agtacggcct catgttcgag 120gacatcaacc acggcggcga cggcggcctc
tacgccgagc tggtccggaa ccgggccttc 180cagggcagca ccgtctaccc ggccaacctc
gacggctacg actcggtgaa cggcgcgatt 240ctcgcgctcc agaacctcac caacccgctc
agcccgagca tgccctcgtc gctgaacgtc 300gccaagggct cgaacaacgg cagcatcggc
ttcgccaacg aggggtggtg gggcatcgag 360gtcaagccgc agcggtacgc cggcagcttc
tacgtccagg gcgactacca gggcgacttc 420gacatcagcc tccagagcaa gctcacccag
gaggtcttcg cgacggcgaa ggtccggtcg 480agcggcaagc acgaggactg ggtccagtac
aagtacgagc tggtcccgaa gaaggccgcc 540agcaacacca acaacaccct caccatcacc
ttcgacagca agggcctcaa ggacggcagc 600ctcaacttca acctcatcag cctcttcccg
ccgacctaca acaaccggcc gaacggcctc 660cggatcgacc tcgtcgaggc catggcggag
ctggagggca agttcctccg cttccccggc 720ggctcggacg tggagggcgt ccaggccccg
tactggtaca agtggaacga gaccgtcggc 780gacctcaagg accgctactc gcgcccgagc
gcctggacct acgaggagag caacggcatc 840ggcctcatcg agtacatgaa ctggtgcgac
gacatgggcc tcgagccgat cctcgccgtc 900tgggacggcc actacctcag caacgaggtc
atcagcgaga acgacctcca gccgtacatc 960gacgacaccc tcaaccagct cgagttcctc
atgggcgccc cggacactcc ctacgggtct 1020tggagggcta gcctcggcta cccgaagccg
tggaccatca actacgtcga gatcggcaac 1080gaggacaacc tctacggcgg cctcgagacc
tacatcgcct accggttcca ggcctactac 1140gacgccatca ccgccaagta cccgcacatg
accgtcatgg agagcctcac cgagatgccc 1200ggccccgctg ccgcggcgtc ggactaccac
cagtactcga cgcccgacgg cttcgtcagc 1260cagttcaact acttcgacca gatgccggtc
accaaccgca cgctgaacgg cgagatcgcc 1320accgtctacc ccaacaaccc gagcaactcg
gtggcgtggg gcagcccgtt cccgctctac 1380ccgtggtgga tcgggtccgt ggctgaggcc
gtcttcctca tcggcgagga gcggaacagc 1440ccgaagatca tcggcgccag ctacgccccc
atgttccgca acattaacaa ctggcagtgg 1500agcccgaccc tgatcgcctt cgacgccgac
agcagccgga cgtcgcgctc tacttcctgg 1560cacgtcatca agctcctcag caccaacaag
atcacccaga acctgcccac gacgtggtct 1620gggggggaca tcggcccgct ctactgggtc
gccggccgga acgacaacac cggcagcaac 1680atcttcaagg ccgccgtcta caacagcacc
agcgacgtcc cggtcaccgt ccagttcgcc 1740ggctgcaacg ccaagagcgc caacctcacc
atcctctcgt cggacgaccc caacgccagc 1800aactacccgg gcggccccga ggtcgtcaag
accgagatcc agagcgtcac cgccaacgcc 1860cacggcgcct tcgagttcag cctcccgaac
ctgtcggtgg ctgtgctgaa gacggagtag 1920932260DNAPodospora anserina
93atggctcttc aaaccttctt cctgctggcg gcagccatgc tggccaacgc agagacaaca
60ggcgaaaagg tctctcggca agcaccgtct ggcgctcaag catgggccgc cgcccactcc
120caggctgccg ccactctggc cagaatgtca cagcaagaca agatcaacat ggtcacgggc
180attggctggg acagagggcc ttgcgtggga aacacagctg ccatcagctc catcaactat
240cctcaaatct gtcttcagga tggaccattg ggcattcgct tcggcactgg taccaccgcc
300ttcacacctg gcgtccaagc tgcttcgaca tgggacgttg atctgatccg gcagcgcggt
360gcttacctgg gcgccgaagc caagggctgc ggcattcaca tccttttggg gcccgttgcc
420ggtgccctgg gcaagattcc ccacggcggt cgcaactggg agggatttgg cgccgacccc
480taccttgccg gtattgccat gaaggagacc atcgagggta ttcagtcagc aggcgtccag
540gccaacgcca agcactacat tgcaaacgaa caagagctca accgcgagac catgagcagc
600aatgtggatg accgcactca gcacgagctc tacctctggc cctttgccga cgccgtgcac
660gccaacgtcg ccagcgtcat gtgcagttac aacaagctca atggcacgtg ggcttgcgag
720aatgacaagg ctctgaatca gatcttgaag aaggagctcg gattccaggg ctacgttctc
780agcgactgga atgctcagca cagcactgct ctgtctgcta acagtggtct ggacatgact
840atgcccggta ccgatttcaa cggccgcaat gtctactggg gccctcaact gaacaacgct
900gtcaacgccg gccaggttca gagatccaga ctagacgaca tgtgcaagag aatcttggct
960ggctggtact tgctcggtca gaaccagggc tatcccgcca tcaacatcag ggccaacgtt
1020cagggcaacc ataaggagaa cgtacgtgct gttgccagag acggcatcgt cttgctgaag
1080aacgatggaa ttctgccgct ttccaagccg agaaagattg ctgtcgtggg ctcccactcc
1140gtcaacaatc cccagggaat caacgcctgt gttgacaagg gctgcaatgt tggcaccctt
1200ggcatgggct ggggttcagg cagcgtcaac tacccctatc tcgtgtcccc gtacgatgct
1260ctccggactc gtgctcaggc cgatggcaca caaatcagcc tccacaacac tgacagcacc
1320aacggtgtgt caaacgttgt gtctgacgct gatgctgttg ttgttgtcat cactgccgat
1380tctggtgaag ggtacatcac tgtcgagggc cacgctggcg accgcagcca ccttgacccg
1440tggcacaatg gcaaccaact tgttcaggct gccgcggctg ccaacaagaa cgtcatcgtt
1500gttgtgcaca gtgttggcca gatcaccctg gagactatcc tcaacaccaa tggagtccgc
1560gcgattgtgt gggctggtct tccgggccaa gagaatggca acgctcttgt tgatgttctc
1620tacggcttgg tttcgccatc tggaaagctt ccctacacca ttggcaagag ggagtcggac
1680tatggcacag ccgttgttcg tggggatgat aacttcaggg agggcctttt tgttgactac
1740cgtcactttg acaatgccag gatcgagccg cgctatgagt ttggctttgg tctttgtaag
1800ttccagcggc ggagttgggt ttgatttcaa gctttcctaa cctgataaaa cagcttacac
1860caatttcacc ttctccgaca tcaagattac ttccaatgtc aagccggggc ccgctactgg
1920ccagaccatt cccggcggac ctgccgacct gtgggaggac gttgcgacag tcactgcaac
1980catcaccaac tcgggtgctg tcgagggcgc tgaggttgcc cagctttaca tcggcctgcc
2040gtcctcggct cctgcctctc ccccgaagca gctgcgtgga ttttccaagc tgaagctggc
2100cccgggtgcc agcggcactg ccacattcaa cctcagacgc agagatctca gctattggga
2160tacccgcctc cagaactggg tcgtgcccag cggcaacttt gtcgtcagcg tcggcgccag
2220ctcgagagat atccgcttga cgggcaccat cacggcgtag
226094733PRTPodospora anserina 94Met Ala Leu Gln Thr Phe Phe Leu Leu Ala
Ala Ala Met Leu Ala Asn1 5 10
15Ala Glu Thr Thr Gly Glu Lys Val Ser Arg Gln Ala Pro Ser Gly Ala
20 25 30Gln Ala Trp Ala Ala Ala
His Ser Gln Ala Ala Ala Thr Leu Ala Arg 35 40
45Met Ser Gln Gln Asp Lys Ile Asn Met Val Thr Gly Ile Gly
Trp Asp 50 55 60Arg Gly Pro Cys Val
Gly Asn Thr Ala Ala Ile Ser Ser Ile Asn Tyr65 70
75 80Pro Gln Ile Cys Leu Gln Asp Gly Pro Leu
Gly Ile Arg Phe Gly Thr 85 90
95Gly Thr Thr Ala Phe Thr Pro Gly Val Gln Ala Ala Ser Thr Trp Asp
100 105 110Val Asp Leu Ile Arg
Gln Arg Gly Ala Tyr Leu Gly Ala Glu Ala Lys 115
120 125Gly Cys Gly Ile His Ile Leu Leu Gly Pro Val Ala
Gly Ala Leu Gly 130 135 140Lys Ile Pro
His Gly Gly Arg Asn Trp Glu Gly Phe Gly Ala Asp Pro145
150 155 160Tyr Leu Ala Gly Ile Ala Met
Lys Glu Thr Ile Glu Gly Ile Gln Ser 165
170 175Ala Gly Val Gln Ala Asn Ala Lys His Tyr Ile Ala
Asn Glu Gln Glu 180 185 190Leu
Asn Arg Glu Thr Met Ser Ser Asn Val Asp Asp Arg Thr Gln His 195
200 205Glu Leu Tyr Leu Trp Pro Phe Ala Asp
Ala Val His Ala Asn Val Ala 210 215
220Ser Val Met Cys Ser Tyr Asn Lys Leu Asn Gly Thr Trp Ala Cys Glu225
230 235 240Asn Asp Lys Ala
Leu Asn Gln Ile Leu Lys Lys Glu Leu Gly Phe Gln 245
250 255Gly Tyr Val Leu Ser Asp Trp Asn Ala Gln
His Ser Thr Ala Leu Ser 260 265
270Ala Asn Ser Gly Leu Asp Met Thr Met Pro Gly Thr Asp Phe Asn Gly
275 280 285Arg Asn Val Tyr Trp Gly Pro
Gln Leu Asn Asn Ala Val Asn Ala Gly 290 295
300Gln Val Gln Arg Ser Arg Leu Asp Asp Met Cys Lys Arg Ile Leu
Ala305 310 315 320Gly Trp
Tyr Leu Leu Gly Gln Asn Gln Gly Tyr Pro Ala Ile Asn Ile
325 330 335Arg Ala Asn Val Gln Gly Asn
His Lys Glu Asn Val Arg Ala Val Ala 340 345
350Arg Asp Gly Ile Val Leu Leu Lys Asn Asp Gly Ile Leu Pro
Leu Ser 355 360 365Lys Pro Arg Lys
Ile Ala Val Val Gly Ser His Ser Val Asn Asn Pro 370
375 380Gln Gly Ile Asn Ala Cys Val Asp Lys Gly Cys Asn
Val Gly Thr Leu385 390 395
400Gly Met Gly Trp Gly Ser Gly Ser Val Asn Tyr Pro Tyr Leu Val Ser
405 410 415Pro Tyr Asp Ala Leu
Arg Thr Arg Ala Gln Ala Asp Gly Thr Gln Ile 420
425 430Ser Leu His Asn Thr Asp Ser Thr Asn Gly Val Ser
Asn Val Val Ser 435 440 445Asp Ala
Asp Ala Val Val Val Val Ile Thr Ala Asp Ser Gly Glu Gly 450
455 460Tyr Ile Thr Val Glu Gly His Ala Gly Asp Arg
Ser His Leu Asp Pro465 470 475
480Trp His Asn Gly Asn Gln Leu Val Gln Ala Ala Ala Ala Ala Asn Lys
485 490 495Asn Val Ile Val
Val Val His Ser Val Gly Gln Ile Thr Leu Glu Thr 500
505 510Ile Leu Asn Thr Asn Gly Val Arg Ala Ile Val
Trp Ala Gly Leu Pro 515 520 525Gly
Gln Glu Asn Gly Asn Ala Leu Val Asp Val Leu Tyr Gly Leu Val 530
535 540Ser Pro Ser Gly Lys Leu Pro Tyr Thr Ile
Gly Lys Arg Glu Ser Asp545 550 555
560Tyr Gly Thr Ala Val Val Arg Gly Asp Asp Asn Phe Arg Glu Gly
Leu 565 570 575Phe Val Asp
Tyr Arg His Phe Asp Asn Ala Arg Ile Glu Pro Arg Tyr 580
585 590Glu Phe Gly Phe Gly Leu Ser Tyr Thr Asn
Phe Thr Phe Ser Asp Ile 595 600
605Lys Ile Thr Ser Asn Val Lys Pro Gly Pro Ala Thr Gly Gln Thr Ile 610
615 620Pro Gly Gly Pro Ala Asp Leu Trp
Glu Asp Val Ala Thr Val Thr Ala625 630
635 640Thr Ile Thr Asn Ser Gly Ala Val Glu Gly Ala Glu
Val Ala Gln Leu 645 650
655Tyr Ile Gly Leu Pro Ser Ser Ala Pro Ala Ser Pro Pro Lys Gln Leu
660 665 670Arg Gly Phe Ser Lys Leu
Lys Leu Ala Pro Gly Ala Ser Gly Thr Ala 675 680
685Thr Phe Asn Leu Arg Arg Arg Asp Leu Ser Tyr Trp Asp Thr
Arg Leu 690 695 700Gln Asn Trp Val Val
Pro Ser Gly Asn Phe Val Val Ser Val Gly Ala705 710
715 720Ser Ser Arg Asp Ile Arg Leu Thr Gly Thr
Ile Thr Ala 725 730952551DNAFusarium
verticillioides 95atgtttcctt cttccatatc ttgtttggcg gccctgagtc tgatgagcca
gggtctacta 60gctcagagcc aaccggaaaa tgtcatcacc gatgatacct acttctacgg
tcaatcgcca 120ccagtgtatc ctacacgtaa gcactctctc tgatttccca acgaaagcaa
tactgatctc 180ttgaccagcg gaacaggtag acaccggctc atgggctgcc gctgtagcca
aagccaagaa 240cttggtgtcc cagttgactc ttgaagagaa agtcaacttg actacaggag
gccagacgac 300caccggctgc tctggcttca tccctggcat tccccgtgta ggctttccag
gactgtgttt 360agcagacgct ggcaacggtg tccgcaacac agattatgtg agctcgtttc
cctccgggat 420tcatgtcggt gcaagctgga atccggagtt gacctacagc cggagctact
acatgggtgc 480tgaggccaaa gccaagggcg ttaacatcct tctcggtcca gtatttggac
ctttgggccg 540agtagttgaa ggtggacgca actgggaggg gttttccaat gatccctacc
tggcgggtaa 600attagggcat gaagctgtcg ccggtatcca agacgccgga gttgttgcat
gcggaaaaca 660tttccttgct caagagcagg agacccatag acttgcggcg tctgtcactg
gggctgatgc 720aatctcatca aatctcgatg acaagacact ccatgaatta tatctctggt
aagcacatca 780tatcttggct gagtagatga accttactaa cacccgaact gggcttttcg
ctgatgcagt 840ccacgccgga cttgccagtg tgatgtgcag ctacaacaga gcaaacaatt
cacacgcctg 900ccaaaactcg aagcttctca atggccttct caagggcgag ttaggattcc
agggttttgt 960cgtctcggac tggggcgcac agcaatctgg tatggcttca gcattggctg
gcctggatgt 1020tgtcatgccc agctcgatct tgtggggtgc caaccttacc cttggtgtga
acaacggaac 1080tattcccgag tcacaggttg acaatatggt tacacggtac gcgaagtctc
agccttactt 1140ctcaattctt ttgaactgac aatcgtgtag gctccttgca acttggtatc
agttgaacca 1200ggaccaagac accgaagccc caggtcacgg actcgctgcc aagctttggg
agcctcaccc 1260agtagtcgac gctcgcaacg caagctccaa gcctactatc tgggacggtg
cagtcgaggg 1320ccatgttctt gttaagaaca ccaacaacgc actgccattc aagcccaaca
tgaaactcgt 1380ttctttgttc ggatactctc acaaagctcc tgataagaac atcccagacc
ccgcccaagg 1440catgttctcc gcttggtcta tcggtgccca atccgccaac atcactgagc
tgaacctcgg 1500ctttctcgga aatttgagtc tcacatactc cgccatcgcg cccaacggaa
ccatcatctc 1560gggtggaggc tcgggtgcca gcgcttggac tctgttcagc tcacccttcg
atgcattcgt 1620ttctcgggcg aagaaagagg gtactgcgct tttctgggat tttgagagct
gggatcctta 1680tgtgaaccct acatctgaag cttgcatcgt tgctggtaat gcatgggcta
gcgaaggctg 1740ggatagacct gcaacctatg atgcctatac tgatgagctc atcaataacg
tcgctgacaa 1800gtgcgctaac actattgttg ttcttcacaa tgctggaaca cgacttgtgg
atggcttctt 1860tggtcacccc aacgtcaccg ctattatcta cgctcatctc ccaggtcagg
atagtggaga 1920tgctctggta tctttgctct atggcgatga gaacccatct ggtcgcctcc
cttacaccgt 1980tgcccgcaac gagacggatt atggtcacct gctgaagcca gacttgactc
tcgcccccaa 2040ccagtaccaa cactttcccc agtccgactt ctccgagggt attttcattg
actaccgaca 2100tttcgatgct aagaacatca cgcctcgctt cgagtttggt ttcggcttga
gctacacaac 2160ctttgagtac gctagtctcc agatctcaaa gtcccaggcc cagacaccgg
aatacccagc 2220tggtgctctt accgagggag gccgttcaga tttgtgggac gtcgttgcta
ctgtcacagc 2280aagcgtcagg aacactgggt ctgtcgacgg caaggaggtt gcacagctat
acgttggtgt 2340tccaggtggt cctatgagac agctacgtgg ctttacgaaa ccagctatta
aggctggaga 2400gacggctaca gtgacctttg agcttactcg ccgcgacttg agtgtctggg
atgttaatgc 2460gcaggagtgg caacttcagc aaggcaacta tgctatctac gttggccgaa
gtagtcgaga 2520tttgcctctg caaagtacct tgagcatcta g
255196780PRTFusarium verticillioides 96Met Phe Pro Ser Ser Ile
Ser Cys Leu Ala Ala Leu Ser Leu Met Ser1 5
10 15Gln Gly Leu Leu Ala Gln Ser Gln Pro Glu Asn Val
Ile Thr Asp Asp 20 25 30Thr
Tyr Phe Tyr Gly Gln Ser Pro Pro Val Tyr Pro Thr His Thr Gly 35
40 45Ser Trp Ala Ala Ala Val Ala Lys Ala
Lys Asn Leu Val Ser Gln Leu 50 55
60Thr Leu Glu Glu Lys Val Asn Leu Thr Thr Gly Gly Gln Thr Thr Thr65
70 75 80Gly Cys Ser Gly Phe
Ile Pro Gly Ile Pro Arg Val Gly Phe Pro Gly 85
90 95Leu Cys Leu Ala Asp Ala Gly Asn Gly Val Arg
Asn Thr Asp Tyr Val 100 105
110Ser Ser Phe Pro Ser Gly Ile His Val Gly Ala Ser Trp Asn Pro Glu
115 120 125Leu Thr Tyr Ser Arg Ser Tyr
Tyr Met Gly Ala Glu Ala Lys Ala Lys 130 135
140Gly Val Asn Ile Leu Leu Gly Pro Val Phe Gly Pro Leu Gly Arg
Val145 150 155 160Val Glu
Gly Gly Arg Asn Trp Glu Gly Phe Ser Asn Asp Pro Tyr Leu
165 170 175Ala Gly Lys Leu Gly His Glu
Ala Val Ala Gly Ile Gln Asp Ala Gly 180 185
190Val Val Ala Cys Gly Lys His Phe Leu Ala Gln Glu Gln Glu
Thr His 195 200 205Arg Leu Ala Ala
Ser Val Thr Gly Ala Asp Ala Ile Ser Ser Asn Leu 210
215 220Asp Asp Lys Thr Leu His Glu Leu Tyr Leu Cys Val
Met Cys Ser Tyr225 230 235
240Asn Arg Ala Asn Asn Ser His Ala Cys Gln Asn Ser Lys Leu Leu Asn
245 250 255Gly Leu Leu Lys Gly
Glu Leu Gly Phe Gln Gly Phe Val Val Ser Asp 260
265 270Trp Gly Ala Gln Gln Ser Gly Met Ala Ser Ala Leu
Ala Gly Leu Asp 275 280 285Val Val
Met Pro Ser Ser Ile Leu Trp Gly Ala Asn Leu Thr Leu Gly 290
295 300Val Asn Asn Gly Thr Ile Pro Glu Ser Gln Val
Asp Asn Met Val Thr305 310 315
320Arg Leu Leu Ala Thr Trp Tyr Gln Leu Asn Gln Asp Gln Asp Thr Glu
325 330 335Ala Pro Gly His
Gly Leu Ala Ala Lys Leu Trp Glu Pro His Pro Val 340
345 350Val Asp Ala Arg Asn Ala Ser Ser Lys Pro Thr
Ile Trp Asp Gly Ala 355 360 365Val
Glu Gly His Val Leu Val Lys Asn Thr Asn Asn Ala Leu Pro Phe 370
375 380Lys Pro Asn Met Lys Leu Val Ser Leu Phe
Gly Tyr Ser His Lys Ala385 390 395
400Pro Asp Lys Asn Ile Pro Asp Pro Ala Gln Gly Met Phe Ser Ala
Trp 405 410 415Ser Ile Gly
Ala Gln Ser Ala Asn Ile Thr Glu Leu Asn Leu Gly Phe 420
425 430Leu Gly Asn Leu Ser Leu Thr Tyr Ser Ala
Ile Ala Pro Asn Gly Thr 435 440
445Ile Ile Ser Gly Gly Gly Ser Gly Ala Ser Ala Trp Thr Leu Phe Ser 450
455 460Ser Pro Phe Asp Ala Phe Val Ser
Arg Ala Lys Lys Glu Gly Thr Ala465 470
475 480Leu Phe Trp Asp Phe Glu Ser Trp Asp Pro Tyr Val
Asn Pro Thr Ser 485 490
495Glu Ala Cys Ile Val Ala Gly Asn Ala Trp Ala Ser Glu Gly Trp Asp
500 505 510Arg Pro Ala Thr Tyr Asp
Ala Tyr Thr Asp Glu Leu Ile Asn Asn Val 515 520
525Ala Asp Lys Cys Ala Asn Thr Ile Val Val Leu His Asn Ala
Gly Thr 530 535 540Arg Leu Val Asp Gly
Phe Phe Gly His Pro Asn Val Thr Ala Ile Ile545 550
555 560Tyr Ala His Leu Pro Gly Gln Asp Ser Gly
Asp Ala Leu Val Ser Leu 565 570
575Leu Tyr Gly Asp Glu Asn Pro Ser Gly Arg Leu Pro Tyr Thr Val Ala
580 585 590Arg Asn Glu Thr Asp
Tyr Gly His Leu Leu Lys Pro Asp Leu Thr Leu 595
600 605Ala Pro Asn Gln Tyr Gln His Phe Pro Gln Ser Asp
Phe Ser Glu Gly 610 615 620Ile Phe Ile
Asp Tyr Arg His Phe Asp Ala Lys Asn Ile Thr Pro Arg625
630 635 640Phe Glu Phe Gly Phe Gly Leu
Ser Tyr Thr Thr Phe Glu Tyr Ala Ser 645
650 655Leu Gln Ile Ser Lys Ser Gln Ala Gln Thr Pro Glu
Tyr Pro Ala Gly 660 665 670Ala
Leu Thr Glu Gly Gly Arg Ser Asp Leu Trp Asp Val Val Ala Thr 675
680 685Val Thr Ala Ser Val Arg Asn Thr Gly
Ser Val Asp Gly Lys Glu Val 690 695
700Ala Gln Leu Tyr Val Gly Val Pro Gly Gly Pro Met Arg Gln Leu Arg705
710 715 720Gly Phe Thr Lys
Pro Ala Ile Lys Ala Gly Glu Thr Ala Thr Val Thr 725
730 735Phe Glu Leu Thr Arg Arg Asp Leu Ser Val
Trp Asp Val Asn Ala Gln 740 745
750Glu Trp Gln Leu Gln Gln Gly Asn Tyr Ala Ile Tyr Val Gly Arg Ser
755 760 765Ser Arg Asp Leu Pro Leu Gln
Ser Thr Leu Ser Ile 770 775
780972487DNAFusarium verticillioides 97atggctagca ttcgatctgt gttggtctcg
ggtcttttgg ccgcgggtgt caatgcccaa 60gcctacgatg cgagtgatcg cgctgaagat
gctttcagct gggtccagcc caagaacacc 120actattcttg gacagtacgg ccattcgcct
cattaccctg ccagtatgtt caccaactac 180accaagtgac actgaggctg tactgacatt
ctagacaatg ctactggcaa gggctgggaa 240gatgccttcg ccaaggctca aaactttgtc
tcccaactaa ccctcgagga aaaggccgac 300atggtcacag gaactccagg tccttgcgtc
ggcaacatcg tcgccattcc ccgtctcaac 360ttcaacggtc tctgtcttca cgacggcccc
ctcgccatcc gagtagcaga ctacgccagt 420gttttccccg ctggtgtatc agccgcttca
tcgtgggaca aggacctcct ctaccagcgc 480ggtctcgcca tgggtcaaga gttcaaggcc
aagggtgctc acatcctcct cggccccgtc 540gccggtcctc ttggccgctc ggcatactct
ggtcgtaact gggagggttt ctcgccggac 600ccttacctca ctggtattgc gatggaggag
actatcatgg gacatcaaga tgctggtgtt 660caggctactg cgaagcactt tatcggtaat
gagcaggagg tcatgcgaaa ccctactttt 720gtcaaggatg ggtatattgg tgaggttgac
aaggaggctc tttcgtctaa catggatgat 780cgaaccatgc acgagcttta cctctggccc
tttgccaatg ctgttcatgc caaggcttcc 840agcatgatgt gctcgtacca gcgtctcaac
ggctcctacg cctgccagaa ctcaaaggtc 900ctcaacggaa ttctgcgtga tgagcttggt
ttccagggct acgtcatgtc agattggggt 960gccacccacg ccggtgttgc tgccatcaac
agcggtctcg acatggacat gcccggtggt 1020atcggtgcct acggaacata ctttaccaag
tccttcttcg gcggcaacct cacccgcgcc 1080gtcaccaacg gcaccctcga cgagacccgc
gtcaacgaca tgatcacccg catcatgact 1140ccctacttct ggctcggcca ggacaaggac
tatccctccg tcgacccctc cagcggtgat 1200ctcaacacct tcagccccaa gagctcctgg
ttccgcgagt tcaacctcac cggcgagcgc 1260agccgtgacg tccgcggtaa ccacggcgac
ttgatccgca agcacggcgc cgagtctacc 1320gtccttctca agaacgagaa gaacgccctt
cccctcaaga agcccaagtc catcgctgtc 1380tttggcaacg atgctggtga tatcactgag
ggtttctaca accagaatga ctacgaattt 1440ggcactcttg ttgctggtgg tggctctgga
actggtcgtt tgacatacct tgtttcgcct 1500ctagccgcca tcaatgctcg tgctaagcag
gacggtactc ttgttcagca gtggatgaac 1560aacactctta ttgctaccac caacgtcact
gatctctgga tccctgctac tcccgatgtc 1620tgcctcgttt tcttgaagac ttgggctgag
gaggctgctg atcgtgagca cctctccgtt 1680gactgggacg gtaatgatgt tgttgagtct
gttgccaagt actgcaataa cactgtcgtc 1740gtcactcact cttctggtat caacactctt
ccttgggctg accaccccaa cgtcaccgct 1800attctcgctg cccacttccc cggtcaggag
tctggcaact ccctcgttga cctcctctac 1860ggcgatgtca acccctctgg tcgtcttccc
tacaccatcg ccttcaacgg caccgactac 1920aacgctcccc ccaccactgc cgtcaacacc
accggcaagg aggactggca gtcttggttc 1980gacgagaagc tcgagattga ctaccgctac
ttcgacgcgc acaacatctc cgtccgctac 2040gaattcggct tcggtctctc ctactccacc
ttcgaaatct ccgacatctc cgctgagcca 2100ctcgcatccg acattacctc ccagcccgag
gatctccccg tgcagcccgg cggcaacccc 2160gccctctggg agaccgtcta caacgtgacc
gtctccgtct ccaacacggg caaggtcgac 2220ggcgccactg tcccccagct atacgtgaca
ttccccgaca gcgcgcctgc cggtacacca 2280cccaagcagc tccgtgggtt cgacaaggtc
ttccttgagg ctggcgagag caagagtgtc 2340agctttgagc tgatgcgccg tgatctgagc
tactgggata tcatttctca gaagtggctc 2400atccctgagg gagagtttac tattcgtgtt
ggattcagca gtcgggactt gaaggaggag 2460acaaaggtta ctgttgttga ggcgtaa
248798811PRTFusarium verticillioides
98Met Ala Ser Ile Arg Ser Val Leu Val Ser Gly Leu Leu Ala Ala Gly1
5 10 15Val Asn Ala Gln Ala Tyr
Asp Ala Ser Asp Arg Ala Glu Asp Ala Phe 20 25
30Ser Trp Val Gln Pro Lys Asn Thr Thr Ile Leu Gly Gln
Tyr Gly His 35 40 45Ser Pro His
Tyr Pro Ala Asn Asn Ala Thr Gly Lys Gly Trp Glu Asp 50
55 60Ala Phe Ala Lys Ala Gln Asn Phe Val Ser Gln Leu
Thr Leu Glu Glu65 70 75
80Lys Ala Asp Met Val Thr Gly Thr Pro Gly Pro Cys Val Gly Asn Ile
85 90 95Val Ala Ile Pro Arg Leu
Asn Phe Asn Gly Leu Cys Leu His Asp Gly 100
105 110Pro Leu Ala Ile Arg Val Ala Asp Tyr Ala Ser Val
Phe Pro Ala Gly 115 120 125Val Ser
Ala Ala Ser Ser Trp Asp Lys Asp Leu Leu Tyr Gln Arg Gly 130
135 140Leu Ala Met Gly Gln Glu Phe Lys Ala Lys Gly
Ala His Ile Leu Leu145 150 155
160Gly Pro Val Ala Gly Pro Leu Gly Arg Ser Ala Tyr Ser Gly Arg Asn
165 170 175Trp Glu Gly Phe
Ser Pro Asp Pro Tyr Leu Thr Gly Ile Ala Met Glu 180
185 190Glu Thr Ile Met Gly His Gln Asp Ala Gly Val
Gln Ala Thr Ala Lys 195 200 205His
Phe Ile Gly Asn Glu Gln Glu Val Met Arg Asn Pro Thr Phe Val 210
215 220Lys Asp Gly Tyr Ile Gly Glu Val Asp Lys
Glu Ala Leu Ser Ser Asn225 230 235
240Met Asp Asp Arg Thr Met His Glu Leu Tyr Leu Trp Pro Phe Ala
Asn 245 250 255Ala Val His
Ala Lys Ala Ser Ser Met Met Cys Ser Tyr Gln Arg Leu 260
265 270Asn Gly Ser Tyr Ala Cys Gln Asn Ser Lys
Val Leu Asn Gly Ile Leu 275 280
285Arg Asp Glu Leu Gly Phe Gln Gly Tyr Val Met Ser Asp Trp Gly Ala 290
295 300Thr His Ala Gly Val Ala Ala Ile
Asn Ser Gly Leu Asp Met Asp Met305 310
315 320Pro Gly Gly Ile Gly Ala Tyr Gly Thr Tyr Phe Thr
Lys Ser Phe Phe 325 330
335Gly Gly Asn Leu Thr Arg Ala Val Thr Asn Gly Thr Leu Asp Glu Thr
340 345 350Arg Val Asn Asp Met Ile
Thr Arg Ile Met Thr Pro Tyr Phe Trp Leu 355 360
365Gly Gln Asp Lys Asp Tyr Pro Ser Val Asp Pro Ser Ser Gly
Asp Leu 370 375 380Asn Thr Phe Ser Pro
Lys Ser Ser Trp Phe Arg Glu Phe Asn Leu Thr385 390
395 400Gly Glu Arg Ser Arg Asp Val Arg Gly Asn
His Gly Asp Leu Ile Arg 405 410
415Lys His Gly Ala Glu Ser Thr Val Leu Leu Lys Asn Glu Lys Asn Ala
420 425 430Leu Pro Leu Lys Lys
Pro Lys Ser Ile Ala Val Phe Gly Asn Asp Ala 435
440 445Gly Asp Ile Thr Glu Gly Phe Tyr Asn Gln Asn Asp
Tyr Glu Phe Gly 450 455 460Thr Leu Val
Ala Gly Gly Gly Ser Gly Thr Gly Arg Leu Thr Tyr Leu465
470 475 480Val Ser Pro Leu Ala Ala Ile
Asn Ala Arg Ala Lys Gln Asp Gly Thr 485
490 495Leu Val Gln Gln Trp Met Asn Asn Thr Leu Ile Ala
Thr Thr Asn Val 500 505 510Thr
Asp Leu Trp Ile Pro Ala Thr Pro Asp Val Cys Leu Val Phe Leu 515
520 525Lys Thr Trp Ala Glu Glu Ala Ala Asp
Arg Glu His Leu Ser Val Asp 530 535
540Trp Asp Gly Asn Asp Val Val Glu Ser Val Ala Lys Tyr Cys Asn Asn545
550 555 560Thr Val Val Val
Thr His Ser Ser Gly Ile Asn Thr Leu Pro Trp Ala 565
570 575Asp His Pro Asn Val Thr Ala Ile Leu Ala
Ala His Phe Pro Gly Gln 580 585
590Glu Ser Gly Asn Ser Leu Val Asp Leu Leu Tyr Gly Asp Val Asn Pro
595 600 605Ser Gly Arg Leu Pro Tyr Thr
Ile Ala Phe Asn Gly Thr Asp Tyr Asn 610 615
620Ala Pro Pro Thr Thr Ala Val Asn Thr Thr Gly Lys Glu Asp Trp
Gln625 630 635 640Ser Trp
Phe Asp Glu Lys Leu Glu Ile Asp Tyr Arg Tyr Phe Asp Ala
645 650 655His Asn Ile Ser Val Arg Tyr
Glu Phe Gly Phe Gly Leu Ser Tyr Ser 660 665
670Thr Phe Glu Ile Ser Asp Ile Ser Ala Glu Pro Leu Ala Ser
Asp Ile 675 680 685Thr Ser Gln Pro
Glu Asp Leu Pro Val Gln Pro Gly Gly Asn Pro Ala 690
695 700Leu Trp Glu Thr Val Tyr Asn Val Thr Val Ser Val
Ser Asn Thr Gly705 710 715
720Lys Val Asp Gly Ala Thr Val Pro Gln Leu Tyr Val Thr Phe Pro Asp
725 730 735Ser Ala Pro Ala Gly
Thr Pro Pro Lys Gln Leu Arg Gly Phe Asp Lys 740
745 750Val Phe Leu Glu Ala Gly Glu Ser Lys Ser Val Ser
Phe Glu Leu Met 755 760 765Arg Arg
Asp Leu Ser Tyr Trp Asp Ile Ile Ser Gln Lys Trp Leu Ile 770
775 780Pro Glu Gly Glu Phe Thr Ile Arg Val Gly Phe
Ser Ser Arg Asp Leu785 790 795
800Lys Glu Glu Thr Lys Val Thr Val Val Glu Ala 805
810993269DNAFusarium verticillioides 99atgaagctga attgggtcgc
cgcagccctg tctataggtg ctgctggcac tgacagcgca 60gttgctcttg cttctgcagt
tccagacact ttggctggtg taaaggtcag ttttttttca 120ccatttcctc gtctaatctc
agccttgttg ccatatcgcc cttgttcgct cggacgccac 180gcaccagatc gcgatcattt
cctcccttgc agccttggtt cctcttacga tcttccctcc 240gcaattatca gcgcccttag
tctacacaaa aacccccgag acagtctttc attgagtttg 300tcgacatcaa gttgcttctc
aactgtgcat ttgcgtggct gtctacttct gcctctagac 360aaccaaatct gggcgcaatt
gaccgctcaa accttgttca aataaccttt tttattcgag 420acgcacattt ataaatatgc
gcctttcaat aataccgact ttatgcgcgg cggctgctgt 480ggcggttgat cagaaagctg
acgctcaaaa ggttgtcacg agagatacac tcgcatactc 540gccgcctcat tatccttcac
catggatgga ccctaatgct gttggctggg aggaagctta 600cgccaaagcc aagagctttg
tgtcccaact cactctcatg gaaaaggtca acttgaccac 660tggtgttggg taagcagctc
cttgcaaaca gggtatctca atcccctcag ctaacaactt 720ctcagatggc aaggcgaacg
ctgtgtagga aacgtgggat caattcctcg tctcggtatg 780cgaggtctct gtctccagga
tggtcctctt ggaattcgtc tgtccgacta caacagcgct 840tttcccgctg gcaccacagc
tggtgcttct tggagcaagt ctctctggta tgagagaggt 900ctcctgatgg gcactgagtt
caaggagaag ggtatcgata tcgctcttgg tcctgctact 960ggacctcttg gtcgcactgc
tgctggtgga cgaaactggg aaggcttcac cgttgatcct 1020tatatggctg gccacgccat
ggccgaggcc gtcaagggta ttcaagacgc aggtgtcatt 1080gcttgtgcta agcattacat
cgcaaacgag cagggtaagc cacttggacg atttgaggaa 1140ttgacagaga actgaccctc
ttgtagagca cttccgacag agtggcgagg tccagtcccg 1200caagtacaac atctccgagt
ctctctcctc caacctggat gacaagacta tgcacgagct 1260ctacgcctgg cccttcgctg
acgccgtccg cgccggcgtc ggttccgtca tgtgctcgta 1320caaccagatc aacaactcgt
acggttgcca gaactccaag ctcctcaacg gtatcctcaa 1380ggacgagatg ggcttccagg
gtttcgtcat gagcgattgg gcggcccagc ataccggtgc 1440cgcttctgcc gtcgctggtc
tcgatatgag catgcctggt gacactgcct tcgacagcgg 1500atacagcttc tggggcggaa
acttgactct ggctgtcatc aacggaactg ttcccgcctg 1560gcgagttgat gacatggctc
tgcgaatcat gtctgccttc ttcaaggttg gaaagacgat 1620agaggatctt cccgacatca
acttctcctc ctggacccgc gacaccttcg gcttcgtgca 1680tacatttgct caagagaacc
gcgagcaggt caactttgga gtcaacgtcc agcacgacca 1740caagagccac atccgtgagg
ccgctgccaa gggaagcgtc gtgctcaaga acaccgggtc 1800ccttcccctc aagaacccaa
agttcctcgc tgtcattggt gaggacgccg gtcccaaccc 1860tgctggaccc aatggttgtg
gtgaccgtgg ttgcgataat ggtaccctgg ctatggcttg 1920gggctcggga acttcccaat
tcccttactt gatcaccccc gatcaagggc tctctaatcg 1980agctactcaa gacggaactc
gatatgagag catcttgacc aacaacgaat gggcttcagt 2040acaagctctt gtcagccagc
ctaacgtgac cgctatcgtt ttcgccaatg ccgactctgg 2100tgagggatac attgaagtcg
acggaaactt tggtgatcgc aagaacctca ccctctggca 2160gcagggagac gagctcatca
agaacgtgtc gtccatatgc cccaacacca ttgtagttct 2220gcacaccgtc ggccctgtcc
tactcgccga ctacgagaag aaccccaaca tcactgccat 2280cgtctgggct ggtcttcccg
gccaagagtc aggcaatgcc atcgctgatc tcctctacgg 2340caaggtcagc cctggccgat
ctcccttcac ttggggccgc acccgcgaga gctacggtac 2400tgaggttctt tatgaggcga
acaacggccg tggcgctcct caggatgact tctctgaggg 2460tgtcttcatc gactaccgtc
acttcgaccg acgatctcca agcaccgatg gaaagagctc 2520tcccaacaac accgctgctc
ctctctacga gttcggtcac ggtctatctt ggtccacctt 2580tgagtactct gacctcaaca
tccagaagaa cgtcgagaac ccctactctc ctcccgctgg 2640ccagaccatc cccgccccaa
cctttggcaa cttcagcaag aacctcaacg actacgtgtt 2700ccccaagggc gtccgataca
tctacaagtt catctacccc ttcctcaaca cctcctcatc 2760cgccagcgag gcatccaacg
atggtggcca gtttggtaag actgccgaag agttcctccc 2820tcccaacgcc ctcaacggct
cagcccagcc tcgtcttccc gcctctggtg ccccaggtgg 2880taaccctcaa ttgtgggaca
tcttgtacac cgtcacagcc acaatcacca acacaggcaa 2940cgccacctcc gacgagattc
cccagctgta tgtcagcctc ggtggcgaga acgagcccat 3000ccgtgttctc cgcggtttcg
accgtatcga gaacattgct cccggccaga gcgccatctt 3060caacgctcaa ttgacccgtc
gcgatctgag taactgggat acaaatgccc agaactgggt 3120catcactgac catcccaaga
ctgtctgggt tggaagcagc tctcgcaagc tgcctctcag 3180cgccaagttg gagtaagaaa
gccaaacaag ggttgttttt tggactgcaa ttttttggga 3240ggacatagta gccgcgcgcc
agttacgtc 3269100899PRTFusarium
verticillioides 100Met Lys Leu Asn Trp Val Ala Ala Ala Leu Ser Ile Gly
Ala Ala Gly1 5 10 15Thr
Asp Ser Ala Val Ala Leu Ala Ser Ala Val Pro Asp Thr Leu Ala 20
25 30Gly Val Lys Lys Ala Asp Ala Gln
Lys Val Val Thr Arg Asp Thr Leu 35 40
45Ala Tyr Ser Pro Pro His Tyr Pro Ser Pro Trp Met Asp Pro Asn Ala
50 55 60Val Gly Trp Glu Glu Ala Tyr Ala
Lys Ala Lys Ser Phe Val Ser Gln65 70 75
80Leu Thr Leu Met Glu Lys Val Asn Leu Thr Thr Gly Val
Gly Trp Gln 85 90 95Gly
Glu Arg Cys Val Gly Asn Val Gly Ser Ile Pro Arg Leu Gly Met
100 105 110Arg Gly Leu Cys Leu Gln Asp
Gly Pro Leu Gly Ile Arg Leu Ser Asp 115 120
125Tyr Asn Ser Ala Phe Pro Ala Gly Thr Thr Ala Gly Ala Ser Trp
Ser 130 135 140Lys Ser Leu Trp Tyr Glu
Arg Gly Leu Leu Met Gly Thr Glu Phe Lys145 150
155 160Glu Lys Gly Ile Asp Ile Ala Leu Gly Pro Ala
Thr Gly Pro Leu Gly 165 170
175Arg Thr Ala Ala Gly Gly Arg Asn Trp Glu Gly Phe Thr Val Asp Pro
180 185 190Tyr Met Ala Gly His Ala
Met Ala Glu Ala Val Lys Gly Ile Gln Asp 195 200
205Ala Gly Val Ile Ala Cys Ala Lys His Tyr Ile Ala Asn Glu
Gln Glu 210 215 220His Phe Arg Gln Ser
Gly Glu Val Gln Ser Arg Lys Tyr Asn Ile Ser225 230
235 240Glu Ser Leu Ser Ser Asn Leu Asp Asp Lys
Thr Met His Glu Leu Tyr 245 250
255Ala Trp Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser Val Met
260 265 270Cys Ser Tyr Asn Gln
Ile Asn Asn Ser Tyr Gly Cys Gln Asn Ser Lys 275
280 285Leu Leu Asn Gly Ile Leu Lys Asp Glu Met Gly Phe
Gln Gly Phe Val 290 295 300Met Ser Asp
Trp Ala Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala305
310 315 320Gly Leu Asp Met Ser Met Pro
Gly Asp Thr Ala Phe Asp Ser Gly Tyr 325
330 335Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Ile
Asn Gly Thr Val 340 345 350Pro
Ala Trp Arg Val Asp Asp Met Ala Leu Arg Ile Met Ser Ala Phe 355
360 365Phe Lys Val Gly Lys Thr Ile Glu Asp
Leu Pro Asp Ile Asn Phe Ser 370 375
380Ser Trp Thr Arg Asp Thr Phe Gly Phe Val His Thr Phe Ala Gln Glu385
390 395 400Asn Arg Glu Gln
Val Asn Phe Gly Val Asn Val Gln His Asp His Lys 405
410 415Ser His Ile Arg Glu Ala Ala Ala Lys Gly
Ser Val Val Leu Lys Asn 420 425
430Thr Gly Ser Leu Pro Leu Lys Asn Pro Lys Phe Leu Ala Val Ile Gly
435 440 445Glu Asp Ala Gly Pro Asn Pro
Ala Gly Pro Asn Gly Cys Gly Asp Arg 450 455
460Gly Cys Asp Asn Gly Thr Leu Ala Met Ala Trp Gly Ser Gly Thr
Ser465 470 475 480Gln Phe
Pro Tyr Leu Ile Thr Pro Asp Gln Gly Leu Ser Asn Arg Ala
485 490 495Thr Gln Asp Gly Thr Arg Tyr
Glu Ser Ile Leu Thr Asn Asn Glu Trp 500 505
510Ala Ser Val Gln Ala Leu Val Ser Gln Pro Asn Val Thr Ala
Ile Val 515 520 525Phe Ala Asn Ala
Asp Ser Gly Glu Gly Tyr Ile Glu Val Asp Gly Asn 530
535 540Phe Gly Asp Arg Lys Asn Leu Thr Leu Trp Gln Gln
Gly Asp Glu Leu545 550 555
560Ile Lys Asn Val Ser Ser Ile Cys Pro Asn Thr Ile Val Val Leu His
565 570 575Thr Val Gly Pro Val
Leu Leu Ala Asp Tyr Glu Lys Asn Pro Asn Ile 580
585 590Thr Ala Ile Val Trp Ala Gly Leu Pro Gly Gln Glu
Ser Gly Asn Ala 595 600 605Ile Ala
Asp Leu Leu Tyr Gly Lys Val Ser Pro Gly Arg Ser Pro Phe 610
615 620Thr Trp Gly Arg Thr Arg Glu Ser Tyr Gly Thr
Glu Val Leu Tyr Glu625 630 635
640Ala Asn Asn Gly Arg Gly Ala Pro Gln Asp Asp Phe Ser Glu Gly Val
645 650 655Phe Ile Asp Tyr
Arg His Phe Asp Arg Arg Ser Pro Ser Thr Asp Gly 660
665 670Lys Ser Ser Pro Asn Asn Thr Ala Ala Pro Leu
Tyr Glu Phe Gly His 675 680 685Gly
Leu Ser Trp Ser Thr Phe Glu Tyr Ser Asp Leu Asn Ile Gln Lys 690
695 700Asn Val Glu Asn Pro Tyr Ser Pro Pro Ala
Gly Gln Thr Ile Pro Ala705 710 715
720Pro Thr Phe Gly Asn Phe Ser Lys Asn Leu Asn Asp Tyr Val Phe
Pro 725 730 735Lys Gly Val
Arg Tyr Ile Tyr Lys Phe Ile Tyr Pro Phe Leu Asn Thr 740
745 750Ser Ser Ser Ala Ser Glu Ala Ser Asn Asp
Gly Gly Gln Phe Gly Lys 755 760
765Thr Ala Glu Glu Phe Leu Pro Pro Asn Ala Leu Asn Gly Ser Ala Gln 770
775 780Pro Arg Leu Pro Ala Ser Gly Ala
Pro Gly Gly Asn Pro Gln Leu Trp785 790
795 800Asp Ile Leu Tyr Thr Val Thr Ala Thr Ile Thr Asn
Thr Gly Asn Ala 805 810
815Thr Ser Asp Glu Ile Pro Gln Leu Tyr Val Ser Leu Gly Gly Glu Asn
820 825 830Glu Pro Ile Arg Val Leu
Arg Gly Phe Asp Arg Ile Glu Asn Ile Ala 835 840
845Pro Gly Gln Ser Ala Ile Phe Asn Ala Gln Leu Thr Arg Arg
Asp Leu 850 855 860Ser Asn Trp Asp Thr
Asn Ala Gln Asn Trp Val Ile Thr Asp His Pro865 870
875 880Lys Thr Val Trp Val Gly Ser Ser Ser Arg
Lys Leu Pro Leu Ser Ala 885 890
895Lys Leu Glu1012370DNATrichoderma reesei 101atgcgttacc gaacagcagc
tgcgctggca cttgccactg ggccctttgc tagggcagac 60agtcagtata gctggtccca
tactgggatg tgatatgtat cctggagaca ccatgctgac 120tcttgaatca aggtagctca
acatcggggg cctcggctga ggcagttgta cctcctgcag 180ggactccatg gggaaccgcg
tacgacaagg cgaaggccgc attggcaaag ctcaatctcc 240aagataaggt cggcatcgtg
agcggtgtcg gctggaacgg cggtccttgc gttggaaaca 300catctccggc ctccaagatc
agctatccat cgctatgcct tcaagacgga cccctcggtg 360ttcgatactc gacaggcagc
acagccttta cgccgggcgt tcaagcggcc tcgacgtggg 420atgtcaattt gatccgcgaa
cgtggacagt tcatcggtga ggaggtgaag gcctcgggga 480ttcatgtcat acttggtcct
gtggctgggc cgctgggaaa gactccgcag ggcggtcgca 540actgggaggg cttcggtgtc
gatccatatc tcacgggcat tgccatgggt caaaccatca 600acggcatcca gtcggtaggc
gtgcaggcga cagcgaagca ctatatcctc aacgagcagg 660agctcaatcg agaaaccatt
tcgagcaacc cagatgaccg aactctccat gagctgtata 720cttggccatt tgccgacgcg
gttcaggcca atgtcgcttc tgtcatgtgc tcgtacaaca 780aggtcaatac cacctgggcc
tgcgaggatc agtacacgct gcagactgtg ctgaaagacc 840agctggggtt cccaggctat
gtcatgacgg actggaacgc acagcacacg actgtccaaa 900gcgcgaattc tgggcttgac
atgtcaatgc ctggcacaga cttcaacggt aacaatcggc 960tctggggtcc agctctcacc
aatgcggtaa atagcaatca ggtccccacg agcagagtcg 1020acgatatggt gactcgtatc
ctcgccgcat ggtacttgac aggccaggac caggcaggct 1080atccgtcgtt caacatcagc
agaaatgttc aaggaaacca caagaccaat gtcagggcaa 1140ttgccaggga cggcatcgtt
ctgctcaaga atgacgccaa catcctgccg ctcaagaagc 1200ccgctagcat tgccgtcgtt
ggatctgccg caatcattgg taaccacgcc agaaactcgc 1260cctcgtgcaa cgacaaaggc
tgcgacgacg gggccttggg catgggttgg ggttccggcg 1320ccgtcaacta tccgtacttc
gtcgcgccct acgatgccat caataccaga gcgtcttcgc 1380agggcaccca ggttaccttg
agcaacaccg acaacacgtc ctcaggcgca tctgcagcaa 1440gaggaaagga cgtcgccatc
gtcttcatca ccgccgactc gggtgaaggc tacatcaccg 1500tggagggcaa cgcgggcgat
cgcaacaacc tggatccgtg gcacaacggc aatgccctgg 1560tccaggcggt ggccggtgcc
aacagcaacg tcattgttgt tgtccactcc gttggcgcca 1620tcattctgga gcagattctt
gctcttccgc aggtcaaggc cgttgtctgg gcgggtcttc 1680cttctcagga gagcggcaat
gcgctcgtcg acgtgctgtg gggagatgtc agcccttctg 1740gcaagctggt gtacaccatt
gcgaagagcc ccaatgacta taacactcgc atcgtttccg 1800gcggcagtga cagcttcagc
gagggactgt tcatcgacta taagcacttc gacgacgcca 1860atatcacgcc gcggtacgag
ttcggctatg gactgtgtaa gtttgctaac ctgaacaatc 1920tattagacag gttgactgac
ggatgactgt ggaatgatag cttacaccaa gttcaactac 1980tcacgcctct ccgtcttgtc
gaccgccaag tctggtcctg cgactggggc cgttgtgccg 2040ggaggcccga gtgatctgtt
ccagaatgtc gcgacagtca ccgttgacat cgcaaactct 2100ggccaagtga ctggtgccga
ggtagcccag ctgtacatca cctacccatc ttcagcaccc 2160aggacccctc cgaagcagct
gcgaggcttt gccaagctga acctcacgcc tggtcagagc 2220ggaacagcaa cgttcaacat
ccgacgacga gatctcagct actgggacac ggcttcgcag 2280aaatgggtgg tgccgtcggg
gtcgtttggc atcagcgtgg gagcgagcag ccgggatatc 2340aggctgacga gcactctgtc
ggtagcgtag 2370102744PRTTrichoderma
reesei 102Met Arg Tyr Arg Thr Ala Ala Ala Leu Ala Leu Ala Thr Gly Pro
Phe1 5 10 15Ala Arg Ala
Asp Ser His Ser Thr Ser Gly Ala Ser Ala Glu Ala Val 20
25 30Val Pro Pro Ala Gly Thr Pro Trp Gly Thr
Ala Tyr Asp Lys Ala Lys 35 40
45Ala Ala Leu Ala Lys Leu Asn Leu Gln Asp Lys Val Gly Ile Val Ser 50
55 60Gly Val Gly Trp Asn Gly Gly Pro Cys
Val Gly Asn Thr Ser Pro Ala65 70 75
80Ser Lys Ile Ser Tyr Pro Ser Leu Cys Leu Gln Asp Gly Pro
Leu Gly 85 90 95Val Arg
Tyr Ser Thr Gly Ser Thr Ala Phe Thr Pro Gly Val Gln Ala 100
105 110Ala Ser Thr Trp Asp Val Asn Leu Ile
Arg Glu Arg Gly Gln Phe Ile 115 120
125Gly Glu Glu Val Lys Ala Ser Gly Ile His Val Ile Leu Gly Pro Val
130 135 140Ala Gly Pro Leu Gly Lys Thr
Pro Gln Gly Gly Arg Asn Trp Glu Gly145 150
155 160Phe Gly Val Asp Pro Tyr Leu Thr Gly Ile Ala Met
Gly Gln Thr Ile 165 170
175Asn Gly Ile Gln Ser Val Gly Val Gln Ala Thr Ala Lys His Tyr Ile
180 185 190Leu Asn Glu Gln Glu Leu
Asn Arg Glu Thr Ile Ser Ser Asn Pro Asp 195 200
205Asp Arg Thr Leu His Glu Leu Tyr Thr Trp Pro Phe Ala Asp
Ala Val 210 215 220Gln Ala Asn Val Ala
Ser Val Met Cys Ser Tyr Asn Lys Val Asn Thr225 230
235 240Thr Trp Ala Cys Glu Asp Gln Tyr Thr Leu
Gln Thr Val Leu Lys Asp 245 250
255Gln Leu Gly Phe Pro Gly Tyr Val Met Thr Asp Trp Asn Ala Gln His
260 265 270Thr Thr Val Gln Ser
Ala Asn Ser Gly Leu Asp Met Ser Met Pro Gly 275
280 285Thr Asp Phe Asn Gly Asn Asn Arg Leu Trp Gly Pro
Ala Leu Thr Asn 290 295 300Ala Val Asn
Ser Asn Gln Val Pro Thr Ser Arg Val Asp Asp Met Val305
310 315 320Thr Arg Ile Leu Ala Ala Trp
Tyr Leu Thr Gly Gln Asp Gln Ala Gly 325
330 335Tyr Pro Ser Phe Asn Ile Ser Arg Asn Val Gln Gly
Asn His Lys Thr 340 345 350Asn
Val Arg Ala Ile Ala Arg Asp Gly Ile Val Leu Leu Lys Asn Asp 355
360 365Ala Asn Ile Leu Pro Leu Lys Lys Pro
Ala Ser Ile Ala Val Val Gly 370 375
380Ser Ala Ala Ile Ile Gly Asn His Ala Arg Asn Ser Pro Ser Cys Asn385
390 395 400Asp Lys Gly Cys
Asp Asp Gly Ala Leu Gly Met Gly Trp Gly Ser Gly 405
410 415Ala Val Asn Tyr Pro Tyr Phe Val Ala Pro
Tyr Asp Ala Ile Asn Thr 420 425
430Arg Ala Ser Ser Gln Gly Thr Gln Val Thr Leu Ser Asn Thr Asp Asn
435 440 445Thr Ser Ser Gly Ala Ser Ala
Ala Arg Gly Lys Asp Val Ala Ile Val 450 455
460Phe Ile Thr Ala Asp Ser Gly Glu Gly Tyr Ile Thr Val Glu Gly
Asn465 470 475 480Ala Gly
Asp Arg Asn Asn Leu Asp Pro Trp His Asn Gly Asn Ala Leu
485 490 495Val Gln Ala Val Ala Gly Ala
Asn Ser Asn Val Ile Val Val Val His 500 505
510Ser Val Gly Ala Ile Ile Leu Glu Gln Ile Leu Ala Leu Pro
Gln Val 515 520 525Lys Ala Val Val
Trp Ala Gly Leu Pro Ser Gln Glu Ser Gly Asn Ala 530
535 540Leu Val Asp Val Leu Trp Gly Asp Val Ser Pro Ser
Gly Lys Leu Val545 550 555
560Tyr Thr Ile Ala Lys Ser Pro Asn Asp Tyr Asn Thr Arg Ile Val Ser
565 570 575Gly Gly Ser Asp Ser
Phe Ser Glu Gly Leu Phe Ile Asp Tyr Lys His 580
585 590Phe Asp Asp Ala Asn Ile Thr Pro Arg Tyr Glu Phe
Gly Tyr Gly Leu 595 600 605Ser Tyr
Thr Lys Phe Asn Tyr Ser Arg Leu Ser Val Leu Ser Thr Ala 610
615 620Lys Ser Gly Pro Ala Thr Gly Ala Val Val Pro
Gly Gly Pro Ser Asp625 630 635
640Leu Phe Gln Asn Val Ala Thr Val Thr Val Asp Ile Ala Asn Ser Gly
645 650 655Gln Val Thr Gly
Ala Glu Val Ala Gln Leu Tyr Ile Thr Tyr Pro Ser 660
665 670Ser Ala Pro Arg Thr Pro Pro Lys Gln Leu Arg
Gly Phe Ala Lys Leu 675 680 685Asn
Leu Thr Pro Gly Gln Ser Gly Thr Ala Thr Phe Asn Ile Arg Arg 690
695 700Arg Asp Leu Ser Tyr Trp Asp Thr Ala Ser
Gln Lys Trp Val Val Pro705 710 715
720Ser Gly Ser Phe Gly Ile Ser Val Gly Ala Ser Ser Arg Asp Ile
Arg 725 730 735Leu Thr Ser
Thr Leu Ser Val Ala 7401032625DNATrichoderma reesei
103atgaagacgt tgtcagtgtt tgctgccgcc cttttggcgg ccgtagctga ggccaatccc
60tacccgcctc ctcactccaa ccaggcgtac tcgcctcctt tctacccttc gccatggatg
120gaccccagtg ctccaggctg ggagcaagcc tatgcccaag ctaaggagtt cgtctcgggc
180ttgactctct tggagaaggt caacctcacc accggtgttg gctggatggg tgagaagtgc
240gttggaaacg ttggtaccgt gcctcgcttg ggcatgcgaa gtctttgcat gcaggacggc
300cccctgggtc tccgattcaa cacgtacaac agcgctttca gcgttggctt gacggccgcc
360gccagctgga gccgacacct ttgggttgac cgcggtaccg ctctgggctc cgaggcaaag
420ggcaagggtg tcgatgttct tctcggaccc gtggctggcc ctctcggtcg caaccccaac
480ggaggccgta acgtcgaggg tttcggctcg gatccctatc tggcgggttt ggctctggcc
540gataccgtga ccggaatcca gaacgcgggc accatcgcct gtgccaagca cttcctcctc
600aacgagcagg agcatttccg ccaggtcggc gaagctaacg gttacggata ccccatcacc
660gaggctctgt cttccaacgt tgatgacaag acgattcacg aggtgtacgg ctggcccttc
720caggatgctg tcaaggctgg tgtcgggtcc ttcatgtgct cgtacaacca ggtcaacaac
780tcgtacgctt gccaaaactc caagctcatc aacggcttgc tcaaggagga gtacggtttc
840caaggctttg tcatgagcga ctggcaggcc cagcacacgg gtgtcgcgtc tgctgttgcc
900ggtctcgata tgaccatgcc tggtgacacc gccttcaaca ccggcgcatc ctactttgga
960agcaacctga cgcttgctgt tctcaacggc accgtccccg agtggcgcat tgacgacatg
1020gtgatgcgta tcatggctcc cttcttcaag gtgggcaaga cggttgacag cctcattgac
1080accaactttg attcttggac caatggcgag tacggctacg ttcaggccgc cgtcaatgag
1140aactgggaga aggtcaacta cggcgtcgat gtccgcgcca accatgcgaa ccacatccgc
1200gaggttggcg ccaagggaac tgtcatcttc aagaacaacg gcatcctgcc ccttaagaag
1260cccaagttcc tgaccgtcat tggtgaggat gctggcggca accctgccgg ccccaacggc
1320tgcggtgacc gcggctgtga cgacggcact cttgccatgg agtggggatc tggtactacc
1380aacttcccct acctcgtcac ccccgacgcg gccctgcaga gccaggctct ccaggacggc
1440acccgctacg agagcatcct gtccaactac gccatctcgc agacccaggc gctcgtcagc
1500cagcccgatg ccattgccat tgtctttgcc aactcggata gcggcgaggg ctacatcaac
1560gtcgatggca acgagggcga ccgcaagaac ctgacgctgt ggaagaacgg cgacgatctg
1620atcaagactg ttgctgctgt caaccccaag acgattgtcg tcatccactc gaccggcccc
1680gtgattctca aggactacgc caaccacccc aacatctctg ccattctgtg ggccggtgct
1740cctggccagg agtctggcaa ctcgctggtc gacattctgt acggcaagca gagcccgggc
1800cgcactccct tcacctgggg cccgtcgctg gagagctacg gagttagtgt tatgaccacg
1860cccaacaacg gcaacggcgc tccccaggat aacttcaacg agggcgcctt catcgactac
1920cgctactttg acaaggtggc tcccggcaag cctcgcagct cggacaaggc tcccacgtac
1980gagtttggct tcggactgtc gtggtcgacg ttcaagttct ccaacctcca catccagaag
2040aacaatgtcg gccccatgag cccgcccaac ggcaagacga ttgcggctcc ctctctgggc
2100agcttcagca agaaccttaa ggactatggc ttccccaaga acgttcgccg catcaaggag
2160tttatctacc cctacctgag caccactacc tctggcaagg aggcgtcggg tgacgctcac
2220tacggccaga ctgcgaagga gttcctcccc gccggtgccc tggacggcag ccctcagcct
2280cgctctgcgg cctctggcga acccggcggc aaccgccagc tgtacgacat tctctacacc
2340gtgacggcca ccattaccaa cacgggctcg gtcatggacg acgccgttcc ccagctgtac
2400ctgagccacg gcggtcccaa cgagccgccc aaggtgctgc gtggcttcga ccgcatcgag
2460cgcattgctc ccggccagag cgtcacgttc aaggcagacc tgacgcgccg tgacctgtcc
2520aactgggaca cgaagaagca gcagtgggtc attaccgact accccaagac tgtgtacgtg
2580ggcagctcct cgcgcgacct gccgctgagc gcccgcctgc catga
2625104874PRTTrichoderma reesei 104Met Lys Thr Leu Ser Val Phe Ala Ala
Ala Leu Leu Ala Ala Val Ala1 5 10
15Glu Ala Asn Pro Tyr Pro Pro Pro His Ser Asn Gln Ala Tyr Ser
Pro 20 25 30Pro Phe Tyr Pro
Ser Pro Trp Met Asp Pro Ser Ala Pro Gly Trp Glu 35
40 45Gln Ala Tyr Ala Gln Ala Lys Glu Phe Val Ser Gly
Leu Thr Leu Leu 50 55 60Glu Lys Val
Asn Leu Thr Thr Gly Val Gly Trp Met Gly Glu Lys Cys65 70
75 80Val Gly Asn Val Gly Thr Val Pro
Arg Leu Gly Met Arg Ser Leu Cys 85 90
95Met Gln Asp Gly Pro Leu Gly Leu Arg Phe Asn Thr Tyr Asn
Ser Ala 100 105 110Phe Ser Val
Gly Leu Thr Ala Ala Ala Ser Trp Ser Arg His Leu Trp 115
120 125Val Asp Arg Gly Thr Ala Leu Gly Ser Glu Ala
Lys Gly Lys Gly Val 130 135 140Asp Val
Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Asn Pro Asn145
150 155 160Gly Gly Arg Asn Val Glu Gly
Phe Gly Ser Asp Pro Tyr Leu Ala Gly 165
170 175Leu Ala Leu Ala Asp Thr Val Thr Gly Ile Gln Asn
Ala Gly Thr Ile 180 185 190Ala
Cys Ala Lys His Phe Leu Leu Asn Glu Gln Glu His Phe Arg Gln 195
200 205Val Gly Glu Ala Asn Gly Tyr Gly Tyr
Pro Ile Thr Glu Ala Leu Ser 210 215
220Ser Asn Val Asp Asp Lys Thr Ile His Glu Val Tyr Gly Trp Pro Phe225
230 235 240Gln Asp Ala Val
Lys Ala Gly Val Gly Ser Phe Met Cys Ser Tyr Asn 245
250 255Gln Val Asn Asn Ser Tyr Ala Cys Gln Asn
Ser Lys Leu Ile Asn Gly 260 265
270Leu Leu Lys Glu Glu Tyr Gly Phe Gln Gly Phe Val Met Ser Asp Trp
275 280 285Gln Ala Gln His Thr Gly Val
Ala Ser Ala Val Ala Gly Leu Asp Met 290 295
300Thr Met Pro Gly Asp Thr Ala Phe Asn Thr Gly Ala Ser Tyr Phe
Gly305 310 315 320Ser Asn
Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Glu Trp Arg
325 330 335Ile Asp Asp Met Val Met Arg
Ile Met Ala Pro Phe Phe Lys Val Gly 340 345
350Lys Thr Val Asp Ser Leu Ile Asp Thr Asn Phe Asp Ser Trp
Thr Asn 355 360 365Gly Glu Tyr Gly
Tyr Val Gln Ala Ala Val Asn Glu Asn Trp Glu Lys 370
375 380Val Asn Tyr Gly Val Asp Val Arg Ala Asn His Ala
Asn His Ile Arg385 390 395
400Glu Val Gly Ala Lys Gly Thr Val Ile Phe Lys Asn Asn Gly Ile Leu
405 410 415Pro Leu Lys Lys Pro
Lys Phe Leu Thr Val Ile Gly Glu Asp Ala Gly 420
425 430Gly Asn Pro Ala Gly Pro Asn Gly Cys Gly Asp Arg
Gly Cys Asp Asp 435 440 445Gly Thr
Leu Ala Met Glu Trp Gly Ser Gly Thr Thr Asn Phe Pro Tyr 450
455 460Leu Val Thr Pro Asp Ala Ala Leu Gln Ser Gln
Ala Leu Gln Asp Gly465 470 475
480Thr Arg Tyr Glu Ser Ile Leu Ser Asn Tyr Ala Ile Ser Gln Thr Gln
485 490 495Ala Leu Val Ser
Gln Pro Asp Ala Ile Ala Ile Val Phe Ala Asn Ser 500
505 510Asp Ser Gly Glu Gly Tyr Ile Asn Val Asp Gly
Asn Glu Gly Asp Arg 515 520 525Lys
Asn Leu Thr Leu Trp Lys Asn Gly Asp Asp Leu Ile Lys Thr Val 530
535 540Ala Ala Val Asn Pro Lys Thr Ile Val Val
Ile His Ser Thr Gly Pro545 550 555
560Val Ile Leu Lys Asp Tyr Ala Asn His Pro Asn Ile Ser Ala Ile
Leu 565 570 575Trp Ala Gly
Ala Pro Gly Gln Glu Ser Gly Asn Ser Leu Val Asp Ile 580
585 590Leu Tyr Gly Lys Gln Ser Pro Gly Arg Thr
Pro Phe Thr Trp Gly Pro 595 600
605Ser Leu Glu Ser Tyr Gly Val Ser Val Met Thr Thr Pro Asn Asn Gly 610
615 620Asn Gly Ala Pro Gln Asp Asn Phe
Asn Glu Gly Ala Phe Ile Asp Tyr625 630
635 640Arg Tyr Phe Asp Lys Val Ala Pro Gly Lys Pro Arg
Ser Ser Asp Lys 645 650
655Ala Pro Thr Tyr Glu Phe Gly Phe Gly Leu Ser Trp Ser Thr Phe Lys
660 665 670Phe Ser Asn Leu His Ile
Gln Lys Asn Asn Val Gly Pro Met Ser Pro 675 680
685Pro Asn Gly Lys Thr Ile Ala Ala Pro Ser Leu Gly Ser Phe
Ser Lys 690 695 700Asn Leu Lys Asp Tyr
Gly Phe Pro Lys Asn Val Arg Arg Ile Lys Glu705 710
715 720Phe Ile Tyr Pro Tyr Leu Ser Thr Thr Thr
Ser Gly Lys Glu Ala Ser 725 730
735Gly Asp Ala His Tyr Gly Gln Thr Ala Lys Glu Phe Leu Pro Ala Gly
740 745 750Ala Leu Asp Gly Ser
Pro Gln Pro Arg Ser Ala Ala Ser Gly Glu Pro 755
760 765Gly Gly Asn Arg Gln Leu Tyr Asp Ile Leu Tyr Thr
Val Thr Ala Thr 770 775 780Ile Thr Asn
Thr Gly Ser Val Met Asp Asp Ala Val Pro Gln Leu Tyr785
790 795 800Leu Ser His Gly Gly Pro Asn
Glu Pro Pro Lys Val Leu Arg Gly Phe 805
810 815Asp Arg Ile Glu Arg Ile Ala Pro Gly Gln Ser Val
Thr Phe Lys Ala 820 825 830Asp
Leu Thr Arg Arg Asp Leu Ser Asn Trp Asp Thr Lys Lys Gln Gln 835
840 845Trp Val Ile Thr Asp Tyr Pro Lys Thr
Val Tyr Val Gly Ser Ser Ser 850 855
860Arg Asp Leu Pro Leu Ser Ala Arg Leu Pro865
8701052577DNAArtificial Sequencesynthetic codon optimized nucleotide
sequence 105atgcgcaacg gcctcctcaa ggtcgccgcc ttagccgctg ccagcgccgt
caacggcgag 60aacctcgcct acagcccccc cttctacccc agcccctggg ccaacggcca
gggcgactgg 120gccgaggcct accagaaggc cgtccagttc gtcagccagc tcaccctcgc
cgagaaggtc 180aacctcacca ccggcaccgg ctgggagcag gaccgctgcg tcggccaggt
cggcagcatc 240ccccgcttag gcttccccgg cctctgcatg caggacagcc ccctcggcgt
ccgcgacacc 300gactacaaca gcgccttccc tgccggcgtt aacgtcgccg ccacctggga
ccgcaactta 360gcctaccgca gaggcgtcgc catgggcgag gaacaccgcg gcaagggcgt
cgacgtccag 420ttaggccccg tcgccggccc cttaggccgc tctcctgatg ccggccgcaa
ctgggagggc 480ttcgcccccg accccgtcct caccggcaac atgatggcca gcaccatcca
gggcatccag 540gatgctggcg tcattgcctg cgccaagcac ttcatcctct acgagcagga
acacttccgc 600cagggcgccc aggacggcta cgacatcagc gacagcatca gcgccaacgc
cgacgacaag 660accatgcacg agttatacct ctggcccttc gccgatgccg tccgcgccgg
tgtcggcagc 720gtcatgtgca gctacaacca ggtcaacaac agctacgcct gcagcaacag
ctacaccatg 780aacaagctcc tcaagagcga gttaggcttc cagggcttcg tcatgaccga
ctggggcggc 840caccacagcg gcgtcggctc tgccctcgcc ggcctcgaca tgagcatgcc
cggcgacatt 900gccttcgaca gcggcacgtc tttctggggc accaacctca ccgttgccgt
cctcaacggc 960tccatccccg agtggcgcgt cgacgacatg gccgtccgca tcatgagcgc
ctactacaag 1020gtcggccgcg accgctacag cgtccccatc aacttcgaca gctggaccct
cgacacctac 1080ggccccgagc actacgccgt cggccagggc cagaccaaga tcaacgagca
cgtcgacgtc 1140cgcggcaacc acgccgagat catccacgag atcggcgccg cctccgccgt
cctcctcaag 1200aacaagggcg gcctccccct cactggcacc gagcgcttcg tcggtgtctt
tggcaaggat 1260gctggcagca acccctgggg cgtcaacggc tgcagcgacc gcggctgcga
caacggcacc 1320ctcgccatgg gctggggcag cggcaccgcc aactttccct acctcgtcac
ccccgagcag 1380gccatccagc gcgaggtcct cagccgcaac ggcaccttca ccggcatcac
cgacaacggc 1440gccttagccg agatggccgc tgccgcctct caggccgaca cctgcctcgt
ctttgccaac 1500gccgactccg gcgagggcta catcaccgtc gatggcaacg agggcgaccg
caagaacctc 1560accctctggc agggcgccga ccaggtcatc cacaacgtca gcgccaactg
caacaacacc 1620gtcgtcgtct tacacaccgt cggccccgtc ctcatcgacg actggtacga
ccaccccaac 1680gtcaccgcca tcctctgggc cggtttaccc ggtcaggaaa gcggcaacag
cctcgtcgac 1740gtcctctacg gccgcgtcaa ccccggcaag acccccttca cctggggcag
agcccgcgac 1800gactatggcg cccctctcat cgtcaagcct aacaacggca agggcgcccc
ccagcaggac 1860ttcaccgagg gcatcttcat cgactaccgc cgcttcgaca agtacaacat
cacccccatc 1920tacgagttcg gcttcggcct cagctacacc accttcgagt tcagccagtt
aaacgtccag 1980cccatcaacg cccctcccta cacccccgcc agcggcttta cgaaggccgc
ccagagcttc 2040ggccagccct ccaatgccag cgacaacctc taccctagcg acatcgagcg
cgtccccctc 2100tacatctacc cctggctcaa cagcaccgac ctcaaggcca gcgccaacga
ccccgactac 2160ggcctcccca ccgagaagta cgtccccccc aacgccacca acggcgaccc
ccagcccatt 2220gaccctgccg gcggtgcccc tggcggcaac cccagcctct acgagcccgt
cgcccgcgtc 2280accaccatca tcaccaacac cggcaaggtc accggcgacg aggtccccca
gctctatgtc 2340agcttaggcg gccctgacga cgcccccaag gtcctccgcg gcttcgaccg
catcaccctc 2400gcccctggcc agcagtacct ctggaccacc accctcactc gccgcgacat
cagcaactgg 2460gaccccgtca cccagaactg ggtcgtcacc aactacacca agaccatcta
cgtcggcaac 2520agcagccgca acctccccct ccaggccccc ctcaagccct accccggcat
ctgatga 2577106857PRTTalaromyces emersonii 106Met Arg Asn Gly Leu
Leu Lys Val Ala Ala Leu Ala Ala Ala Ser Ala1 5
10 15Val Asn Gly Glu Asn Leu Ala Tyr Ser Pro Pro
Phe Tyr Pro Ser Pro 20 25
30Trp Ala Asn Gly Gln Gly Asp Trp Ala Glu Ala Tyr Gln Lys Ala Val
35 40 45Gln Phe Val Ser Gln Leu Thr Leu
Ala Glu Lys Val Asn Leu Thr Thr 50 55
60Gly Thr Gly Trp Glu Gln Asp Arg Cys Val Gly Gln Val Gly Ser Ile65
70 75 80Pro Arg Leu Gly Phe
Pro Gly Leu Cys Met Gln Asp Ser Pro Leu Gly 85
90 95Val Arg Asp Thr Asp Tyr Asn Ser Ala Phe Pro
Ala Gly Val Asn Val 100 105
110Ala Ala Thr Trp Asp Arg Asn Leu Ala Tyr Arg Arg Gly Val Ala Met
115 120 125Gly Glu Glu His Arg Gly Lys
Gly Val Asp Val Gln Leu Gly Pro Val 130 135
140Ala Gly Pro Leu Gly Arg Ser Pro Asp Ala Gly Arg Asn Trp Glu
Gly145 150 155 160Phe Ala
Pro Asp Pro Val Leu Thr Gly Asn Met Met Ala Ser Thr Ile
165 170 175Gln Gly Ile Gln Asp Ala Gly
Val Ile Ala Cys Ala Lys His Phe Ile 180 185
190Leu Tyr Glu Gln Glu His Phe Arg Gln Gly Ala Gln Asp Gly
Tyr Asp 195 200 205Ile Ser Asp Ser
Ile Ser Ala Asn Ala Asp Asp Lys Thr Met His Glu 210
215 220Leu Tyr Leu Trp Pro Phe Ala Asp Ala Val Arg Ala
Gly Val Gly Ser225 230 235
240Val Met Cys Ser Tyr Asn Gln Val Asn Asn Ser Tyr Ala Cys Ser Asn
245 250 255Ser Tyr Thr Met Asn
Lys Leu Leu Lys Ser Glu Leu Gly Phe Gln Gly 260
265 270Phe Val Met Thr Asp Trp Gly Gly His His Ser Gly
Val Gly Ser Ala 275 280 285Leu Ala
Gly Leu Asp Met Ser Met Pro Gly Asp Ile Ala Phe Asp Ser 290
295 300Gly Thr Ser Phe Trp Gly Thr Asn Leu Thr Val
Ala Val Leu Asn Gly305 310 315
320Ser Ile Pro Glu Trp Arg Val Asp Asp Met Ala Val Arg Ile Met Ser
325 330 335Ala Tyr Tyr Lys
Val Gly Arg Asp Arg Tyr Ser Val Pro Ile Asn Phe 340
345 350Asp Ser Trp Thr Leu Asp Thr Tyr Gly Pro Glu
His Tyr Ala Val Gly 355 360 365Gln
Gly Gln Thr Lys Ile Asn Glu His Val Asp Val Arg Gly Asn His 370
375 380Ala Glu Ile Ile His Glu Ile Gly Ala Ala
Ser Ala Val Leu Leu Lys385 390 395
400Asn Lys Gly Gly Leu Pro Leu Thr Gly Thr Glu Arg Phe Val Gly
Val 405 410 415Phe Gly Lys
Asp Ala Gly Ser Asn Pro Trp Gly Val Asn Gly Cys Ser 420
425 430Asp Arg Gly Cys Asp Asn Gly Thr Leu Ala
Met Gly Trp Gly Ser Gly 435 440
445Thr Ala Asn Phe Pro Tyr Leu Val Thr Pro Glu Gln Ala Ile Gln Arg 450
455 460Glu Val Leu Ser Arg Asn Gly Thr
Phe Thr Gly Ile Thr Asp Asn Gly465 470
475 480Ala Leu Ala Glu Met Ala Ala Ala Ala Ser Gln Ala
Asp Thr Cys Leu 485 490
495Val Phe Ala Asn Ala Asp Ser Gly Glu Gly Tyr Ile Thr Val Asp Gly
500 505 510Asn Glu Gly Asp Arg Lys
Asn Leu Thr Leu Trp Gln Gly Ala Asp Gln 515 520
525Val Ile His Asn Val Ser Ala Asn Cys Asn Asn Thr Val Val
Val Leu 530 535 540His Thr Val Gly Pro
Val Leu Ile Asp Asp Trp Tyr Asp His Pro Asn545 550
555 560Val Thr Ala Ile Leu Trp Ala Gly Leu Pro
Gly Gln Glu Ser Gly Asn 565 570
575Ser Leu Val Asp Val Leu Tyr Gly Arg Val Asn Pro Gly Lys Thr Pro
580 585 590Phe Thr Trp Gly Arg
Ala Arg Asp Asp Tyr Gly Ala Pro Leu Ile Val 595
600 605Lys Pro Asn Asn Gly Lys Gly Ala Pro Gln Gln Asp
Phe Thr Glu Gly 610 615 620Ile Phe Ile
Asp Tyr Arg Arg Phe Asp Lys Tyr Asn Ile Thr Pro Ile625
630 635 640Tyr Glu Phe Gly Phe Gly Leu
Ser Tyr Thr Thr Phe Glu Phe Ser Gln 645
650 655Leu Asn Val Gln Pro Ile Asn Ala Pro Pro Tyr Thr
Pro Ala Ser Gly 660 665 670Phe
Thr Lys Ala Ala Gln Ser Phe Gly Gln Pro Ser Asn Ala Ser Asp 675
680 685Asn Leu Tyr Pro Ser Asp Ile Glu Arg
Val Pro Leu Tyr Ile Tyr Pro 690 695
700Trp Leu Asn Ser Thr Asp Leu Lys Ala Ser Ala Asn Asp Pro Asp Tyr705
710 715 720Gly Leu Pro Thr
Glu Lys Tyr Val Pro Pro Asn Ala Thr Asn Gly Asp 725
730 735Pro Gln Pro Ile Asp Pro Ala Gly Gly Ala
Pro Gly Gly Asn Pro Ser 740 745
750Leu Tyr Glu Pro Val Ala Arg Val Thr Thr Ile Ile Thr Asn Thr Gly
755 760 765Lys Val Thr Gly Asp Glu Val
Pro Gln Leu Tyr Val Ser Leu Gly Gly 770 775
780Pro Asp Asp Ala Pro Lys Val Leu Arg Gly Phe Asp Arg Ile Thr
Leu785 790 795 800Ala Pro
Gly Gln Gln Tyr Leu Trp Thr Thr Thr Leu Thr Arg Arg Asp
805 810 815Ile Ser Asn Trp Asp Pro Val
Thr Gln Asn Trp Val Val Thr Asn Tyr 820 825
830Thr Lys Thr Ile Tyr Val Gly Asn Ser Ser Arg Asn Leu Pro
Leu Gln 835 840 845Ala Pro Leu Lys
Pro Tyr Pro Gly Ile 850 8551072586DNAAspergillus niger
107atgcgcttca ccagcatcga ggccgtcgcc ctcaccgccg tcagcctcgc cagcgccgac
60gagttagcct acagcccccc ctactacccc agcccctggg ccaacggcca gggcgactgg
120gccgaggcct accagcgcgc cgtcgacatc gtcagccaga tgaccctcgc cgagaaggtc
180aacctcacca ccggcaccgg ctgggagtta gagttatgcg tcggccagac tggtggcgtc
240ccccgcctcg gcatccccgg catgtgcgcc caggacagcc ccctcggcgt ccgcgacagc
300gactacaaca gcgccttccc tgccggcgtc aacgtcgccg ccacctggga caagaacctc
360gcctacctcc gcggccaggc catgggccag gaattcagcg acaagggcgc cgacatccag
420ttaggccccg ctgccggccc tttaggccgc tctcccgacg gcggcagaaa ctgggagggc
480ttcagccccg accccgctct cagcggcgtc ctcttcgccg agactatcaa gggcatccag
540gatgctggcg tcgtcgccac cgccaagcac tacattgcct acgagcagga acacttccgc
600caggcccccg aggcccaggg ctacggcttc aacatcaccg agagcggcag cgccaacctc
660gacgacaaga ccatgcacga gttatacctc tggcccttcg ccgacgccat tagagctggc
720gctggtgctg tcatgtgcag ctacaaccag atcaacaaca gctacggctg ccagaacagc
780tacaccctca acaagctcct caaggccgag ttaggcttcc agggcttcgt catgtccgac
840tgggccgccc accacgccgg cgtcagcggc gccttagccg gcctcgacat gagcatgccc
900ggcgacgtcg actacgacag cggcaccagc tactggggca ccaacctcac catcagcgtc
960ctcaacggca ccgtccccca gtggcgcgtc gacgacatgg ccgtccgcat catggccgcc
1020tactacaagg tcggccgcga ccgcctctgg acccccccca acttcagcag ctggacccgc
1080gacgagtacg gcttcaagta ctactacgtc agcgagggcc cctatgagaa ggtcaaccag
1140ttcgtcaacg tccagcgcaa ccacagcgag ttaatccgcc gcatcggcgc cgacagcacc
1200gtcctcctca agaacgacgg cgccctcccc ctcaccggca aggaacgcct cgtcgccctc
1260atcggcgagg acgccggcag caacccctac ggcgccaacg gctgcagcga ccgcggctgc
1320gacaacggca ccctcgccat gggctggggc agcggcaccg ccaacttccc ttacctcgtc
1380acccccgagc aggccatcag caacgaggtc ctcaagaaca agaacggcgt ctttaccgcc
1440accgacaact gggccatcga ccagatcgag gccttagcca agaccgcctc tgtcagcctc
1500gtctttgtca acgccgacag cggcgagggc tacatcaacg tcgacggcaa cctcggcgac
1560cgccgcaacc tcaccctctg gcgcaacggc gacaacgtca tcaaggccgc cgccagcaac
1620tgcaacaaca ccatcgtcat catccacagc gtcggccccg tcctcgtcaa cgagtggtac
1680gacaacccca acgtcaccgc catcctctgg ggcggcttac ccggccagga aagcggcaac
1740agcctcgccg acgtcctcta cggccgcgtc aaccctggcg ccaagagccc cttcacctgg
1800ggcaagaccc gcgaggccta tcaggactac ctctacaccg agcccaacaa cggcaacggc
1860gccccccagg aagatttcgt cgagggcgtc tttatcgact accgcggctt tgacaagcgc
1920aacgagactc ccatctacga gttcggctac ggcctcagct acaccacctt caactacagc
1980aacctccagg tcgaggtcct cagcgcccct gcctacgagc ccgccagcgg cgagactgag
2040gccgccccca ccttcggcga ggtcggcaac gccagcgact acttataccc cgacggcctc
2100cagcgcatca ccaagttcat ctacccctgg ctcaacagca ccgacctcga ggccagcagc
2160ggcgacgcct cttacggcca ggacgcctcc gactacctcc ccgagggtgc caccgacggc
2220agcgctcagc ccatcttacc tgccggtggc ggtgctggcg gcaaccccag actctacgac
2280gagctgatcc gcgtcagcgt caccatcaag aacaccggca aggtcgctgg tgacgaggtc
2340ccccagctct acgtcagctt aggcggccct aacgagccca agatcgtcct ccgccagttc
2400gagcgcatca ccctccagcc cagcaaggaa actcagtgga gcaccaccct cactcgccgc
2460gacctcgcca actggaacgt cgagactcag gactgggaga tcaccagcta ccccaagatg
2520gtctttgccg gcagcagcag ccgcaagctc cccctccgcg ccagcctccc caccgtccac
2580tgatga
2586108860PRTAspergillus niger 108Met Arg Phe Thr Ser Ile Glu Ala Val Ala
Leu Thr Ala Val Ser Leu1 5 10
15Ala Ser Ala Asp Glu Leu Ala Tyr Ser Pro Pro Tyr Tyr Pro Ser Pro
20 25 30Trp Ala Asn Gly Gln Gly
Asp Trp Ala Glu Ala Tyr Gln Arg Ala Val 35 40
45Asp Ile Val Ser Gln Met Thr Leu Ala Glu Lys Val Asn Leu
Thr Thr 50 55 60Gly Thr Gly Trp Glu
Leu Glu Leu Cys Val Gly Gln Thr Gly Gly Val65 70
75 80Pro Arg Leu Gly Ile Pro Gly Met Cys Ala
Gln Asp Ser Pro Leu Gly 85 90
95Val Arg Asp Ser Asp Tyr Asn Ser Ala Phe Pro Ala Gly Val Asn Val
100 105 110Ala Ala Thr Trp Asp
Lys Asn Leu Ala Tyr Leu Arg Gly Gln Ala Met 115
120 125Gly Gln Glu Phe Ser Asp Lys Gly Ala Asp Ile Gln
Leu Gly Pro Ala 130 135 140Ala Gly Pro
Leu Gly Arg Ser Pro Asp Gly Gly Arg Asn Trp Glu Gly145
150 155 160Phe Ser Pro Asp Pro Ala Leu
Ser Gly Val Leu Phe Ala Glu Thr Ile 165
170 175Lys Gly Ile Gln Asp Ala Gly Val Val Ala Thr Ala
Lys His Tyr Ile 180 185 190Ala
Tyr Glu Gln Glu His Phe Arg Gln Ala Pro Glu Ala Gln Gly Tyr 195
200 205Gly Phe Asn Ile Thr Glu Ser Gly Ser
Ala Asn Leu Asp Asp Lys Thr 210 215
220Met His Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Ile Arg Ala Gly225
230 235 240Ala Gly Ala Val
Met Cys Ser Tyr Asn Gln Ile Asn Asn Ser Tyr Gly 245
250 255Cys Gln Asn Ser Tyr Thr Leu Asn Lys Leu
Leu Lys Ala Glu Leu Gly 260 265
270Phe Gln Gly Phe Val Met Ser Asp Trp Ala Ala His His Ala Gly Val
275 280 285Ser Gly Ala Leu Ala Gly Leu
Asp Met Ser Met Pro Gly Asp Val Asp 290 295
300Tyr Asp Ser Gly Thr Ser Tyr Trp Gly Thr Asn Leu Thr Ile Ser
Val305 310 315 320Leu Asn
Gly Thr Val Pro Gln Trp Arg Val Asp Asp Met Ala Val Arg
325 330 335Ile Met Ala Ala Tyr Tyr Lys
Val Gly Arg Asp Arg Leu Trp Thr Pro 340 345
350Pro Asn Phe Ser Ser Trp Thr Arg Asp Glu Tyr Gly Phe Lys
Tyr Tyr 355 360 365Tyr Val Ser Glu
Gly Pro Tyr Glu Lys Val Asn Gln Phe Val Asn Val 370
375 380Gln Arg Asn His Ser Glu Leu Ile Arg Arg Ile Gly
Ala Asp Ser Thr385 390 395
400Val Leu Leu Lys Asn Asp Gly Ala Leu Pro Leu Thr Gly Lys Glu Arg
405 410 415Leu Val Ala Leu Ile
Gly Glu Asp Ala Gly Ser Asn Pro Tyr Gly Ala 420
425 430Asn Gly Cys Ser Asp Arg Gly Cys Asp Asn Gly Thr
Leu Ala Met Gly 435 440 445Trp Gly
Ser Gly Thr Ala Asn Phe Pro Tyr Leu Val Thr Pro Glu Gln 450
455 460Ala Ile Ser Asn Glu Val Leu Lys Asn Lys Asn
Gly Val Phe Thr Ala465 470 475
480Thr Asp Asn Trp Ala Ile Asp Gln Ile Glu Ala Leu Ala Lys Thr Ala
485 490 495Ser Val Ser Leu
Val Phe Val Asn Ala Asp Ser Gly Glu Gly Tyr Ile 500
505 510Asn Val Asp Gly Asn Leu Gly Asp Arg Arg Asn
Leu Thr Leu Trp Arg 515 520 525Asn
Gly Asp Asn Val Ile Lys Ala Ala Ala Ser Asn Cys Asn Asn Thr 530
535 540Ile Val Ile Ile His Ser Val Gly Pro Val
Leu Val Asn Glu Trp Tyr545 550 555
560Asp Asn Pro Asn Val Thr Ala Ile Leu Trp Gly Gly Leu Pro Gly
Gln 565 570 575Glu Ser Gly
Asn Ser Leu Ala Asp Val Leu Tyr Gly Arg Val Asn Pro 580
585 590Gly Ala Lys Ser Pro Phe Thr Trp Gly Lys
Thr Arg Glu Ala Tyr Gln 595 600
605Asp Tyr Leu Tyr Thr Glu Pro Asn Asn Gly Asn Gly Ala Pro Gln Glu 610
615 620Asp Phe Val Glu Gly Val Phe Ile
Asp Tyr Arg Gly Phe Asp Lys Arg625 630
635 640Asn Glu Thr Pro Ile Tyr Glu Phe Gly Tyr Gly Leu
Ser Tyr Thr Thr 645 650
655Phe Asn Tyr Ser Asn Leu Gln Val Glu Val Leu Ser Ala Pro Ala Tyr
660 665 670Glu Pro Ala Ser Gly Glu
Thr Glu Ala Ala Pro Thr Phe Gly Glu Val 675 680
685Gly Asn Ala Ser Asp Tyr Leu Tyr Pro Asp Gly Leu Gln Arg
Ile Thr 690 695 700Lys Phe Ile Tyr Pro
Trp Leu Asn Ser Thr Asp Leu Glu Ala Ser Ser705 710
715 720Gly Asp Ala Ser Tyr Gly Gln Asp Ala Ser
Asp Tyr Leu Pro Glu Gly 725 730
735Ala Thr Asp Gly Ser Ala Gln Pro Ile Leu Pro Ala Gly Gly Gly Ala
740 745 750Gly Gly Asn Pro Arg
Leu Tyr Asp Glu Leu Ile Arg Val Ser Val Thr 755
760 765Ile Lys Asn Thr Gly Lys Val Ala Gly Asp Glu Val
Pro Gln Leu Tyr 770 775 780Val Ser Leu
Gly Gly Pro Asn Glu Pro Lys Ile Val Leu Arg Gln Phe785
790 795 800Glu Arg Ile Thr Leu Gln Pro
Ser Lys Glu Thr Gln Trp Ser Thr Thr 805
810 815Leu Thr Arg Arg Asp Leu Ala Asn Trp Asn Val Glu
Thr Gln Asp Trp 820 825 830Glu
Ile Thr Ser Tyr Pro Lys Met Val Phe Ala Gly Ser Ser Ser Arg 835
840 845Lys Leu Pro Leu Arg Ala Ser Leu Pro
Thr Val His 850 855
8601093203DNAFusarium oxysporum 109atgaagctga actgggtcgc cgcagccctc
tctataggtg ctgctggcac tgatggtgca 60gttgctcttg cttctgaagt tccaggcact
ttggctggtg taaaggtcgg tttttttacc 120atttcctcac ctaatctcag ccttgttgcc
atatcgccct tattcgctcg gacgctacgc 180accaaatcgc gatcatttcc tcccttgcag
ccttgttttc ttttttcgat cttccctccg 240caatcgccag cacccttagc ctacacaaaa
acccccgaga cagtctcatt gagtttgtcg 300acatcaagtt gcttctcaag tgtgcatttg
cgtggctgtc tacttctgcc tctagaccac 360caaatctggg cgcaattgat cgctcaaacc
ttgttcgaat aagcctttta ttcgagacgt 420ccaattttta cagagaatgt acctttcaat
aataccgacg ttatgcgcgg cggtggctgc 480tgtgatggtt gttgatcaga atactgacgc
tcaaaaggtt gtcacgagag atacactcgc 540acactcacct cctcactatc cttcaccatg
gatggatcct aatgccattg gctgggagga 600agcttacgcc aaagcaaaga actttgtgtc
ccagctcact ctcctcgaaa aggtcaactt 660gaccactggt gttgggtaag tagctccttg
cgaacagtgc atctcggtct ccttgactaa 720cgactctctc aggtggcaag gcgaacgctg
tgtaggaaac gtgggatcaa ttcctcgtct 780tggtatgcga ggtctttgtc ttcaggatgg
tcctcttgga attcgtctgt ccgattacaa 840cagtgctttt cccgctggca ccacagctgg
tgcttcttgg agcaagtctc tctggtatga 900gaggggtctt ctgatgggaa ctgagttcaa
ggggaagggt atcgatatcg ctcttggccc 960tgctactggt cctcttggcc gcactgctgc
tggtggacga aactgggagg gctttaccgt 1020tgatccttat atggctggcc atgccatggc
cgaggccgtc aagggcatcc aagacgcagg 1080tgtcattgct tgtgctaagc attacatcgc
aaacgagcaa ggtaagccaa ttggacggtt 1140tgggaaatcg acagagaact gacccccttg
tagagcactt ccgacagagt ggcgaggtcc 1200agtcccgcaa gtacaacatc tccgagtctc
tctcctccaa cctggacgac aagactttgc 1260acgagctcta cgcctggccc tttgctgatg
ccgtccgcgc tggcgtcggt tcagtcatgt 1320gctcttacaa tcagatcaac aactcgtacg
gttgccagaa ctccaagctc ctcaacggta 1380tcctcaagga cgagatgggt ttccagggct
tcgtcatgag cgattgggcg gcccagcaca 1440ccggtgctgc ttctgccgtc gctggtcttg
atatgagcat gcctggtgac accgcgttcg 1500acagtggata tagcttctgg ggtggaaacc
tgactcttgc tgtcatcaac ggaactgttc 1560ccgcctggcg agttgatgac atggctctgc
gaatcatgtc ggccttcttc aaggttggaa 1620agacggtaga ggacctcccc gacatcaact
tctcctcctg gacccgcgac accttcggct 1680tcgtccaaac atttgctcaa gagaaccgcg
aacaagtcaa ctttggagtt aacgtccagc 1740acgaccacaa gaaccacatc cgtgagtctg
ccgccaaggg aagcgtcatc ctcaagaaca 1800ccggctccct tcccctcaac aatcccaagt
tcctcgctgt cattggtgag gacgccggtc 1860ccaaccctgc tggacccaat ggttgcggcg
accgtggttg cgacaatggt accctggcta 1920tggcttgggg ctcgggaact tctcaattcc
cttacttgat cacacccgac caaggtctcc 1980agaaccgagc tgcccaagac ggaactcgat
atgagagcat cttgaccaac aacgaatggg 2040cccagacaca ggctcttgtc agccaaccca
acgtgaccgc tatcgttttt gccaacgccg 2100actctggtga gggttacatt gaagtcgacg
gaaacttcgg tgatcgcaag aacctcaccc 2160tctggcaaca gggagacgag ctcatcaaga
acgtctcgtc catctgcccc aacaccattg 2220tcgttctgca taccgtcggc cctgtcctgc
tcgccgacta cgagaagaac cccaacatca 2280ccgccatcgt ctgggctggt cttcccggcc
aagagtctgg caatgccatc gctgatctcc 2340tctacggcaa ggtaagccct ggccgatctc
ccttcacttg gggccgcacc cgtgagagct 2400acggtaccga ggttctttat gaggcgaaca
acggccgtgg cgctcctcag gatgacttct 2460cggagggtgt cttcattgac taccgtcact
ttgatcgacg atctcccagc accgatggca 2520agagcgctcc caacaacacc gctgctcctc
tctacgagtt cggtcatggt ctgtcttgga 2580ctacctttga gtattcagac ctcaacatcc
agaagaacgt taactccacc tactctcctc 2640ctgctggtca gaccattcct gccccaacct
ttggcaactt cagcaagaac ctcaacgact 2700acgtgttccc taagggtgtc cgatacatct
acaagttcat ctaccccttc ctgaacactt 2760cctcatccgc cagcgaggca tctaacgacg
gcggccagtt tggtaagact gccgaagagt 2820tcctacctcc aaacgccctc aacggctcag
cccagcctcg tcttccctct tctggtgccc 2880caggcggtaa ccctcaattg tgggatatcc
tgtacaccgt cacagccaca atcaccaaca 2940caggcaacgc cacctccgac gagattcccc
agctgtatgt cagcctcggt ggcgagaacg 3000aacccgttcg tgtcctccgc ggtttcgacc
gtatcgagaa cattgctccc ggccagagcg 3060ccatcttcaa cgctcaattg acccgtcgcg
atctgagcaa ctgggatgtg gatgcccaga 3120actgggttat caccgaccat ccaaagacgg
tgtgggttgg aagtagttct cgcaagctgc 3180ctctcagcgc caagttggaa taa
3203110899PRTFusarium oxysporum 110Met
Lys Leu Asn Trp Val Ala Ala Ala Leu Ser Ile Gly Ala Ala Gly1
5 10 15Thr Asp Gly Ala Val Ala Leu
Ala Ser Glu Val Pro Gly Thr Leu Ala 20 25
30Gly Val Lys Asn Thr Asp Ala Gln Lys Val Val Thr Arg Asp
Thr Leu 35 40 45Ala His Ser Pro
Pro His Tyr Pro Ser Pro Trp Met Asp Pro Asn Ala 50 55
60Ile Gly Trp Glu Glu Ala Tyr Ala Lys Ala Lys Asn Phe
Val Ser Gln65 70 75
80Leu Thr Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gln
85 90 95Gly Glu Arg Cys Val Gly
Asn Val Gly Ser Ile Pro Arg Leu Gly Met 100
105 110Arg Gly Leu Cys Leu Gln Asp Gly Pro Leu Gly Ile
Arg Leu Ser Asp 115 120 125Tyr Asn
Ser Ala Phe Pro Ala Gly Thr Thr Ala Gly Ala Ser Trp Ser 130
135 140Lys Ser Leu Trp Tyr Glu Arg Gly Leu Leu Met
Gly Thr Glu Phe Lys145 150 155
160Gly Lys Gly Ile Asp Ile Ala Leu Gly Pro Ala Thr Gly Pro Leu Gly
165 170 175Arg Thr Ala Ala
Gly Gly Arg Asn Trp Glu Gly Phe Thr Val Asp Pro 180
185 190Tyr Met Ala Gly His Ala Met Ala Glu Ala Val
Lys Gly Ile Gln Asp 195 200 205Ala
Gly Val Ile Ala Cys Ala Lys His Tyr Ile Ala Asn Glu Gln Glu 210
215 220His Phe Arg Gln Ser Gly Glu Val Gln Ser
Arg Lys Tyr Asn Ile Ser225 230 235
240Glu Ser Leu Ser Ser Asn Leu Asp Asp Lys Thr Leu His Glu Leu
Tyr 245 250 255Ala Trp Pro
Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser Val Met 260
265 270Cys Ser Tyr Asn Gln Ile Asn Asn Ser Tyr
Gly Cys Gln Asn Ser Lys 275 280
285Leu Leu Asn Gly Ile Leu Lys Asp Glu Met Gly Phe Gln Gly Phe Val 290
295 300Met Ser Asp Trp Ala Ala Gln His
Thr Gly Ala Ala Ser Ala Val Ala305 310
315 320Gly Leu Asp Met Ser Met Pro Gly Asp Thr Ala Phe
Asp Ser Gly Tyr 325 330
335Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Ile Asn Gly Thr Val
340 345 350Pro Ala Trp Arg Val Asp
Asp Met Ala Leu Arg Ile Met Ser Ala Phe 355 360
365Phe Lys Val Gly Lys Thr Val Glu Asp Leu Pro Asp Ile Asn
Phe Ser 370 375 380Ser Trp Thr Arg Asp
Thr Phe Gly Phe Val Gln Thr Phe Ala Gln Glu385 390
395 400Asn Arg Glu Gln Val Asn Phe Gly Val Asn
Val Gln His Asp His Lys 405 410
415Asn His Ile Arg Glu Ser Ala Ala Lys Gly Ser Val Ile Leu Lys Asn
420 425 430Thr Gly Ser Leu Pro
Leu Asn Asn Pro Lys Phe Leu Ala Val Ile Gly 435
440 445Glu Asp Ala Gly Pro Asn Pro Ala Gly Pro Asn Gly
Cys Gly Asp Arg 450 455 460Gly Cys Asp
Asn Gly Thr Leu Ala Met Ala Trp Gly Ser Gly Thr Ser465
470 475 480Gln Phe Pro Tyr Leu Ile Thr
Pro Asp Gln Gly Leu Gln Asn Arg Ala 485
490 495Ala Gln Asp Gly Thr Arg Tyr Glu Ser Ile Leu Thr
Asn Asn Glu Trp 500 505 510Ala
Gln Thr Gln Ala Leu Val Ser Gln Pro Asn Val Thr Ala Ile Val 515
520 525Phe Ala Asn Ala Asp Ser Gly Glu Gly
Tyr Ile Glu Val Asp Gly Asn 530 535
540Phe Gly Asp Arg Lys Asn Leu Thr Leu Trp Gln Gln Gly Asp Glu Leu545
550 555 560Ile Lys Asn Val
Ser Ser Ile Cys Pro Asn Thr Ile Val Val Leu His 565
570 575Thr Val Gly Pro Val Leu Leu Ala Asp Tyr
Glu Lys Asn Pro Asn Ile 580 585
590Thr Ala Ile Val Trp Ala Gly Leu Pro Gly Gln Glu Ser Gly Asn Ala
595 600 605Ile Ala Asp Leu Leu Tyr Gly
Lys Val Ser Pro Gly Arg Ser Pro Phe 610 615
620Thr Trp Gly Arg Thr Arg Glu Ser Tyr Gly Thr Glu Val Leu Tyr
Glu625 630 635 640Ala Asn
Asn Gly Arg Gly Ala Pro Gln Asp Asp Phe Ser Glu Gly Val
645 650 655Phe Ile Asp Tyr Arg His Phe
Asp Arg Arg Ser Pro Ser Thr Asp Gly 660 665
670Lys Ser Ala Pro Asn Asn Thr Ala Ala Pro Leu Tyr Glu Phe
Gly His 675 680 685Gly Leu Ser Trp
Thr Thr Phe Glu Tyr Ser Asp Leu Asn Ile Gln Lys 690
695 700Asn Val Asn Ser Thr Tyr Ser Pro Pro Ala Gly Gln
Thr Ile Pro Ala705 710 715
720Pro Thr Phe Gly Asn Phe Ser Lys Asn Leu Asn Asp Tyr Val Phe Pro
725 730 735Lys Gly Val Arg Tyr
Ile Tyr Lys Phe Ile Tyr Pro Phe Leu Asn Thr 740
745 750Ser Ser Ser Ala Ser Glu Ala Ser Asn Asp Gly Gly
Gln Phe Gly Lys 755 760 765Thr Ala
Glu Glu Phe Leu Pro Pro Asn Ala Leu Asn Gly Ser Ala Gln 770
775 780Pro Arg Leu Pro Ser Ser Gly Ala Pro Gly Gly
Asn Pro Gln Leu Trp785 790 795
800Asp Ile Leu Tyr Thr Val Thr Ala Thr Ile Thr Asn Thr Gly Asn Ala
805 810 815Thr Ser Asp Glu
Ile Pro Gln Leu Tyr Val Ser Leu Gly Gly Glu Asn 820
825 830Glu Pro Val Arg Val Leu Arg Gly Phe Asp Arg
Ile Glu Asn Ile Ala 835 840 845Pro
Gly Gln Ser Ala Ile Phe Asn Ala Gln Leu Thr Arg Arg Asp Leu 850
855 860Ser Asn Trp Asp Val Asp Ala Gln Asn Trp
Val Ile Thr Asp His Pro865 870 875
880Lys Thr Val Trp Val Gly Ser Ser Ser Arg Lys Leu Pro Leu Ser
Ala 885 890 895Lys Leu
Glu1113134DNAGibberella zeae 111atgaaggcca attggcttgc cgcggccgtt
tatttggctg ctggcaccga tgctgcagtc 60cctgacactt tggcaggagt caatgtaagc
tactcttcaa tttcatctca tctcaacttt 120gccaggccac aacaactttt cttcactcac
gatcttttca ccataaacgc aacagtttca 180caaaaaataa agcccaaatc atgtctctga
tcgttgaact cgccatcttc gtttacatcg 240cggttgtctt tttcttcttg tacttctcat
tcgttgttgt tctctacatt ttcgactggc 300tgtttagcct tgagattctt ctcactcccc
gtgatgccta gatcactctc tgaggcgttt 360aatctacttg tagagatgcg cctctcattt
gttgtgtcgc tagtcgcgat agttgctgga 420attgcagtcc ttgatcttcc tactgacact
caaaagctcg ttgcgcggga cacactcgct 480cactctcctc ctcactatcc ctcgccatgg
atggacccta acgctgtcgg ctgggaggac 540gcctacgcca aggccaagga ctttgtctcc
cagatgactc tcctagaaaa ggtcaacttg 600accactggtg ttgggtaagt aacgagcgac
aagacgtcta caatccacta acacgatctc 660tagatggcag ggcgaacgtt gtgttggaaa
cgtgggatct atccctcgtc tcggtatgcg 720aggcctctgt ctccaggatg gtcctctcgg
aattcgcttc tccgactaca acagcgcttt 780ccctactggt gtcaccgctg gtgcttcttg
gagtaaggcc ctttggtacg agcgaggacg 840attgatgggt accgagttta aggagaaggg
tatcgatatt gctctcggcc ctgcaactgg 900tcctctcggt cgccacgctg ctggtggacg
aaactgggaa ggcttcactg tcgaccccta 960cgccgctggc catgctatgg ctgagactgt
caagggtatc caagattctg gagtcattgc 1020ttgtgctaag cattacatcg caaacgagca
aggtatgtac aggcccattc aatggcttca 1080ggaacgaaaa ctaactctta atagaacact
tccgtcaacg aggcgatgtc atgtctcaaa 1140agttcaacat ttccgagtct ctgtcttcca
accttgacga taagactatg cacgagctct 1200acaactggcc tttcgccgac gccgtccgcg
ccggtgttgg ctccattatg tgctcttaca 1260accaggtcaa caactcatat gcttgccaga
actccaagct cctcaacggc atcctcaagg 1320acgagatggg tttccagggt ttcgtcatga
gcgattggca ggctcagcac accggtgccg 1380cctccgctgt tgccggtctt gacatgacca
tgcctggtga caccgagttc aacactggct 1440tcagcttctg gggtggaaac ctgaccctcg
ctgttatcaa cggtactgtt cccgcctgga 1500gaatcgacga catggctacc cgaattatgg
ctgctttctt caaggttggc cgatctgttg 1560aggaggaacc cgacatcaac ttctcagctt
ggactcgtga tgagtatggc ttcgtccaga 1620cctacgccca agagaaccga gaaaaggtca
actttgctgt taatgtccag cacgaccaca 1680agcgccacat tcgcgaggct ggcgcaaagg
gatccgtcgt cctcaagaac actggctcac 1740ttcctcttaa gaagccccag ttcctcgctg
tcattggaga ggacgctggt tccaaccctg 1800ccggacccaa cggttgcgct gaccgtggat
gcgacaacgg tactcttgcc atggcatggg 1860gttccggaac ctctcaattc ccctaccttg
tcacccccga ccaaggcatc tcgctccagg 1920ctattcagga cggtactcgt tatgagagca
tcctcaacaa caaccagtgg ccccagacac 1980aagctcttgt cagccagccc aacgtcaccg
ccattgtctt tgccaatgcc gattctggtg 2040agggctacat cgaggttgac ggcaactacg
gcgaccgcaa gaacctcact ctgtggaagc 2100aaggcgatga gctcatcaag aacgtctctg
ctatctgccc caacaccatt gtggtccttc 2160acaccgttgg ccccgtcctt ctaaccgagt
ggcacaacaa ccccaacatc accgccattg 2220tttgggctgg tgtgcctgga caggagtccg
gtaacgccat cgccgacatc ctctacggca 2280agaccagccc tggacgttct cccttcacct
ggggtcgcac ttatgacagc tatggcacca 2340aggttctcta caaggccaac aatggagagg
gtgcccctca agaggacttt gtcgagggca 2400acttcatcga ctaccgccac tttgaccgac
aatcccccag caccaacgga aagagtgcca 2460ccaacgactc ttctgctcct ctctacgagt
tcggtttcgg tctgtcctgg actacctttg 2520agtactctga tctcaaagtc gagtctgtca
gcaacgcctc ttacagcccc tctgtcggaa 2580acaccattcc tgcccctacc tacggcaact
tcagcaagaa cctggacgat tacacattcc 2640cctcaggtgt ccgatacctc tacaagttca
tctaccccta cctcaacacc tcttcctccg 2700ctgagaaggc ttccggcgat gtcaagggca
gatttggtga gaccggcgac gagttcctcc 2760ctcccaacgc tctcaacggt tcatcgcagc
ctcgtcttcc ttccagtggt gctcccggcg 2820gtaaccctca gctctgggac attatgtaca
ccgtcactgc caccatcacc aacactggtg 2880acgctacctc ggatgaggtt ccccagctgt
acgtcagcct cggtggtgag ggcgagcctg 2940tccgtgtcct ccgtggcttc gagcgtcttg
aaaacattgc tcctggtgag agtgccacat 3000tcaccgctca gcttactcgc cgtgacctga
gcaactggga cgtcaacgtc cagaactggg 3060tcatcaccga tcacgccaag aagatctggg
tcggcagcag ctctcgcaat ctgcccctca 3120gcgccgacct gtag
3134112886PRTGibberella zeae 112Met Lys
Ala Asn Trp Leu Ala Ala Ala Val Tyr Leu Ala Ala Gly Thr1 5
10 15Asp Ala Ala Val Pro Asp Thr Leu
Ala Gly Val Asn Leu Val Ala Arg 20 25
30Asp Thr Leu Ala His Ser Pro Pro His Tyr Pro Ser Pro Trp Met
Asp 35 40 45Pro Asn Ala Val Gly
Trp Glu Asp Ala Tyr Ala Lys Ala Lys Asp Phe 50 55
60Val Ser Gln Met Thr Leu Leu Glu Lys Val Asn Leu Thr Thr
Gly Val65 70 75 80Gly
Trp Gln Gly Glu Arg Cys Val Gly Asn Val Gly Ser Ile Pro Arg
85 90 95Leu Gly Met Arg Gly Leu Cys
Leu Gln Asp Gly Pro Leu Gly Ile Arg 100 105
110Phe Ser Asp Tyr Asn Ser Ala Phe Pro Thr Gly Val Thr Ala
Gly Ala 115 120 125Ser Trp Ser Lys
Ala Leu Trp Tyr Glu Arg Gly Arg Leu Met Gly Thr 130
135 140Glu Phe Lys Glu Lys Gly Ile Asp Ile Ala Leu Gly
Pro Ala Thr Gly145 150 155
160Pro Leu Gly Arg His Ala Ala Gly Gly Arg Asn Trp Glu Gly Phe Thr
165 170 175Val Asp Pro Tyr Ala
Ala Gly His Ala Met Ala Glu Thr Val Lys Gly 180
185 190Ile Gln Asp Ser Gly Val Ile Ala Cys Ala Lys His
Tyr Ile Ala Asn 195 200 205Glu Gln
Glu His Phe Arg Gln Arg Gly Asp Val Met Ser Gln Lys Phe 210
215 220Asn Ile Ser Glu Ser Leu Ser Ser Asn Leu Asp
Asp Lys Thr Met His225 230 235
240Glu Leu Tyr Asn Trp Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly
245 250 255Ser Ile Met Cys
Ser Tyr Asn Gln Val Asn Asn Ser Tyr Ala Cys Gln 260
265 270Asn Ser Lys Leu Leu Asn Gly Ile Leu Lys Asp
Glu Met Gly Phe Gln 275 280 285Gly
Phe Val Met Ser Asp Trp Gln Ala Gln His Thr Gly Ala Ala Ser 290
295 300Ala Val Ala Gly Leu Asp Met Thr Met Pro
Gly Asp Thr Glu Phe Asn305 310 315
320Thr Gly Phe Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Ile
Asn 325 330 335Gly Thr Val
Pro Ala Trp Arg Ile Asp Asp Met Ala Thr Arg Ile Met 340
345 350Ala Ala Phe Phe Lys Val Gly Arg Ser Val
Glu Glu Glu Pro Asp Ile 355 360
365Asn Phe Ser Ala Trp Thr Arg Asp Glu Tyr Gly Phe Val Gln Thr Tyr 370
375 380Ala Gln Glu Asn Arg Glu Lys Val
Asn Phe Ala Val Asn Val Gln His385 390
395 400Asp His Lys Arg His Ile Arg Glu Ala Gly Ala Lys
Gly Ser Val Val 405 410
415Leu Lys Asn Thr Gly Ser Leu Pro Leu Lys Lys Pro Gln Phe Leu Ala
420 425 430Val Ile Gly Glu Asp Ala
Gly Ser Asn Pro Ala Gly Pro Asn Gly Cys 435 440
445Ala Asp Arg Gly Cys Asp Asn Gly Thr Leu Ala Met Ala Trp
Gly Ser 450 455 460Gly Thr Ser Gln Phe
Pro Tyr Leu Val Thr Pro Asp Gln Gly Ile Ser465 470
475 480Leu Gln Ala Ile Gln Asp Gly Thr Arg Tyr
Glu Ser Ile Leu Asn Asn 485 490
495Asn Gln Trp Pro Gln Thr Gln Ala Leu Val Ser Gln Pro Asn Val Thr
500 505 510Ala Ile Val Phe Ala
Asn Ala Asp Ser Gly Glu Gly Tyr Ile Glu Val 515
520 525Asp Gly Asn Tyr Gly Asp Arg Lys Asn Leu Thr Leu
Trp Lys Gln Gly 530 535 540Asp Glu Leu
Ile Lys Asn Val Ser Ala Ile Cys Pro Asn Thr Ile Val545
550 555 560Val Leu His Thr Val Gly Pro
Val Leu Leu Thr Glu Trp His Asn Asn 565
570 575Pro Asn Ile Thr Ala Ile Val Trp Ala Gly Val Pro
Gly Gln Glu Ser 580 585 590Gly
Asn Ala Ile Ala Asp Ile Leu Tyr Gly Lys Thr Ser Pro Gly Arg 595
600 605Ser Pro Phe Thr Trp Gly Arg Thr Tyr
Asp Ser Tyr Gly Thr Lys Val 610 615
620Leu Tyr Lys Ala Asn Asn Gly Glu Gly Ala Pro Gln Glu Asp Phe Val625
630 635 640Glu Gly Asn Phe
Ile Asp Tyr Arg His Phe Asp Arg Gln Ser Pro Ser 645
650 655Thr Asn Gly Lys Ser Ala Thr Asn Asp Ser
Ser Ala Pro Leu Tyr Glu 660 665
670Phe Gly Phe Gly Leu Ser Trp Thr Thr Phe Glu Tyr Ser Asp Leu Lys
675 680 685Val Glu Ser Val Ser Asn Ala
Ser Tyr Ser Pro Ser Val Gly Asn Thr 690 695
700Ile Pro Ala Pro Thr Tyr Gly Asn Phe Ser Lys Asn Leu Asp Asp
Tyr705 710 715 720Thr Phe
Pro Ser Gly Val Arg Tyr Leu Tyr Lys Phe Ile Tyr Pro Tyr
725 730 735Leu Asn Thr Ser Ser Ser Ala
Glu Lys Ala Ser Gly Asp Val Lys Gly 740 745
750Arg Phe Gly Glu Thr Gly Asp Glu Phe Leu Pro Pro Asn Ala
Leu Asn 755 760 765Gly Ser Ser Gln
Pro Arg Leu Pro Ser Ser Gly Ala Pro Gly Gly Asn 770
775 780Pro Gln Leu Trp Asp Ile Met Tyr Thr Val Thr Ala
Thr Ile Thr Asn785 790 795
800Thr Gly Asp Ala Thr Ser Asp Glu Val Pro Gln Leu Tyr Val Ser Leu
805 810 815Gly Gly Glu Gly Glu
Pro Val Arg Val Leu Arg Gly Phe Glu Arg Leu 820
825 830Glu Asn Ile Ala Pro Gly Glu Ser Ala Thr Phe Thr
Ala Gln Leu Thr 835 840 845Arg Arg
Asp Leu Ser Asn Trp Asp Val Asn Val Gln Asn Trp Val Ile 850
855 860Thr Asp His Ala Lys Lys Ile Trp Val Gly Ser
Ser Ser Arg Asn Leu865 870 875
880Pro Leu Ser Ala Asp Leu 8851132796DNANectria
haematococca 113atgcggttca ccgtccttct cgcggcattt tcggggcttg tccccatggt
tggttcgcaa 60gctgaccaga aaccactaca gctcggtgtg aacaataaca ctctggcgca
ttcacctcct 120cactatcctt cgccatggat ggatcctgct gctcctggct gggaggaagc
ctatctcaag 180gcgaaagatt ttgtttcaca gcttaccctt cttgaaaagg tcaacttgac
cactggtgtt 240gggtgagtca cttgttttcc tctctcctga cgtgacactt tgctttggcc
tgcttcctat 300atcgtctact agcattgcta acactcgagg cagatggatg ggcgaacgtt
gcgtcggcaa 360cgtgggttca ctccctcgtt ttggaatgcg tggtctctgc atgcaggatg
gccccctcgg 420catccgcttg tctgactata actctgcctt tcctactggt attacagctg
gtgcctcttg 480gagccgtgcc ctttggtacc aacgtggcct cctgatgggc accgagcatc
gtgaaaaagg 540catcgacgtt gcacttgggc ctgctactgg tcctcttggt cgtactccta
ctggcggccg 600caactgggag ggtttctcgg ttgatcccta cgttgctggc gttgccatgg
ccgagactgt 660tagcggcatt caagatggtg gtactatcgc ctgtgctaag cactacatcg
gcaacgaaca 720aggtatgcct cttcacttct cctcgctgat aaatctgctc acaacaacct
agagcaccat 780cgccaagccc ccgaatccat tggccgcggc tacaacatca ccgagtccct
gtcgtcgaac 840gttgatgaca agaccctcca cgagctctat ctctggccgt tcgcagatgc
cgtcaaggct 900ggtgttggtg ctatcatgtg ttcctaccag cagctgaaca actcttacgg
ttgccaaaac 960tctaagcttc tcaacggaat tctcaaggac gagctaggat tccagggctt
cgtcatgagt 1020gactggcaag cccaacatgc tggagctgct accgctgttg caggccttga
catgaccatg 1080cccggtgaca ctttgttcaa caccggatac agcttctggg gtggtaacct
gaccctcgct 1140gtagtcaatg gcactgttcc cgactggcgt attgacgaca tggctatgag
aatcatggca 1200gctttcttca aggttggcaa gactgttgag gaccttcctg acatcaactt
ttcttcttgg 1260tctcgagaca cttttggcta cgttcaagcc gctgcccaag agaactggga
acagatcaac 1320ttcggagttg atgttcgtca cgaccacagc gaacacattc gactctcggc
cgccaagggc 1380accgtcctcc ttaagaactc tggctcattg cctctgaaga agcccaagtt
ccttgccgtc 1440gttggcgagg acgccggccc gaaccctgct ggccccaacg gctgtaacga
ccgcggatgt 1500aacaacggca ctctggccat gtcctggggc tcaggaacag cccagttccc
ttacctcgtt 1560actcccgact cagcgctaca gaaccaggct gtcctcgacg gcactcgcta
cgagagtgtc 1620ttgcggaaca accagtggga acagacacgc agtctcatta gccaacctaa
cgtgacggct 1680attgtgtttg ccaatgccaa ttccggagag ggatatatcg atgttgacgg
caacgaaggc 1740gatcggaaga atttgacctt gtggaacgag ggtgatgacc taattaagaa
cgtctcctca 1800atctgcccca acaccattgt tgttctgcac actgttggcc ctgtcatcct
gacggaatgg 1860tatgacaacc cgaacattac cgccatagtg tgggctggtg tacctggaca
ggagtccggc 1920aatgctcttg tggacatcct ttatggcaaa acaagccctg gtcgctctcc
cttcacatgg 1980ggtcgcaccc gaaagagtta cggcactgat gtcctatacg agcccaacaa
tggtcagggt 2040gctcctcaag atgatttcac ggagggagtc tttatcgact atcgtcattt
tgaccaggtt 2100tctcctagca ccgacggcag caagtctaat gatgagtcca gtcccatcta
cgagtttggc 2160catggtctgt cctggaccac gtttgagtac tctgaactca acattcaagc
tcacaacaag 2220attcccttcg atcctcctat tggcgagacg attgccgctc cggtccttgg
caactacagt 2280accgaccttg ccgattacac gttccccgat ggaattcgct acatctacca
gttcatctat 2340ccctggttga atacttcttc ttccggaaga gaggcttctg gcgatcccga
ctacggaaag 2400acggccgaag agttcctgcc ccccggagct ctcgacgggt cagctcagcc
gcgacctcca 2460tcctctggtg ctccaggtgg aaaccctcat ctttgggatg tgttgtacac
tgttagtgct 2520atcatcacca acactggcaa cgccacctcg gacgagatcc cgcagctcta
cgttagtctc 2580ggtggcgaga acgagcccgt ccgcgtcctt cgcgggttcg accgaattga
gaacattgcg 2640cctggccaga gtgtcagatt cacaactgac atcactcgcc gcgacctgag
caactgggac 2700gtcgtctctc agaactgggt cattacagac tacgagaaga ccgtatatgt
cgggagcagc 2760tcccgcaacc tgcctctcaa ggcaaccctg aagtaa
2796114880PRTNectria haematococca 114Met Arg Phe Thr Val Leu
Leu Ala Ala Phe Ser Gly Leu Val Pro Met1 5
10 15Val Gly Ser Gln Ala Asp Gln Lys Pro Leu Gln Leu
Gly Val Asn Asn 20 25 30Asn
Thr Leu Ala His Ser Pro Pro His Tyr Pro Ser Pro Trp Met Asp 35
40 45Pro Ala Ala Pro Gly Trp Glu Glu Ala
Tyr Leu Lys Ala Lys Asp Phe 50 55
60Val Ser Gln Leu Thr Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val65
70 75 80Gly Trp Met Gly Glu
Arg Cys Val Gly Asn Val Gly Ser Leu Pro Arg 85
90 95Phe Gly Met Arg Gly Leu Cys Met Gln Asp Gly
Pro Leu Gly Ile Arg 100 105
110Leu Ser Asp Tyr Asn Ser Ala Phe Pro Thr Gly Ile Thr Ala Gly Ala
115 120 125Ser Trp Ser Arg Ala Leu Trp
Tyr Gln Arg Gly Leu Leu Met Gly Thr 130 135
140Glu His Arg Glu Lys Gly Ile Asp Val Ala Leu Gly Pro Ala Thr
Gly145 150 155 160Pro Leu
Gly Arg Thr Pro Thr Gly Gly Arg Asn Trp Glu Gly Phe Ser
165 170 175Val Asp Pro Tyr Val Ala Gly
Val Ala Met Ala Glu Thr Val Ser Gly 180 185
190Ile Gln Asp Gly Gly Thr Ile Ala Cys Ala Lys His Tyr Ile
Gly Asn 195 200 205Glu Gln Glu His
His Arg Gln Ala Pro Glu Ser Ile Gly Arg Gly Tyr 210
215 220Asn Ile Thr Glu Ser Leu Ser Ser Asn Val Asp Asp
Lys Thr Leu His225 230 235
240Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Val Lys Ala Gly Val Gly
245 250 255Ala Ile Met Cys Ser
Tyr Gln Gln Leu Asn Asn Ser Tyr Gly Cys Gln 260
265 270Asn Ser Lys Leu Leu Asn Gly Ile Leu Lys Asp Glu
Leu Gly Phe Gln 275 280 285Gly Phe
Val Met Ser Asp Trp Gln Ala Gln His Ala Gly Ala Ala Thr 290
295 300Ala Val Ala Gly Leu Asp Met Thr Met Pro Gly
Asp Thr Leu Phe Asn305 310 315
320Thr Gly Tyr Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Val Asn
325 330 335Gly Thr Val Pro
Asp Trp Arg Ile Asp Asp Met Ala Met Arg Ile Met 340
345 350Ala Ala Phe Phe Lys Val Gly Lys Thr Val Glu
Asp Leu Pro Asp Ile 355 360 365Asn
Phe Ser Ser Trp Ser Arg Asp Thr Phe Gly Tyr Val Gln Ala Ala 370
375 380Ala Gln Glu Asn Trp Glu Gln Ile Asn Phe
Gly Val Asp Val Arg His385 390 395
400Asp His Ser Glu His Ile Arg Leu Ser Ala Ala Lys Gly Thr Val
Leu 405 410 415Leu Lys Asn
Ser Gly Ser Leu Pro Leu Lys Lys Pro Lys Phe Leu Ala 420
425 430Val Val Gly Glu Asp Ala Gly Pro Asn Pro
Ala Gly Pro Asn Gly Cys 435 440
445Asn Asp Arg Gly Cys Asn Asn Gly Thr Leu Ala Met Ser Trp Gly Ser 450
455 460Gly Thr Ala Gln Phe Pro Tyr Leu
Val Thr Pro Asp Ser Ala Leu Gln465 470
475 480Asn Gln Ala Val Leu Asp Gly Thr Arg Tyr Glu Ser
Val Leu Arg Asn 485 490
495Asn Gln Trp Glu Gln Thr Arg Ser Leu Ile Ser Gln Pro Asn Val Thr
500 505 510Ala Ile Val Phe Ala Asn
Ala Asn Ser Gly Glu Gly Tyr Ile Asp Val 515 520
525Asp Gly Asn Glu Gly Asp Arg Lys Asn Leu Thr Leu Trp Asn
Glu Gly 530 535 540Asp Asp Leu Ile Lys
Asn Val Ser Ser Ile Cys Pro Asn Thr Ile Val545 550
555 560Val Leu His Thr Val Gly Pro Val Ile Leu
Thr Glu Trp Tyr Asp Asn 565 570
575Pro Asn Ile Thr Ala Ile Val Trp Ala Gly Val Pro Gly Gln Glu Ser
580 585 590Gly Asn Ala Leu Val
Asp Ile Leu Tyr Gly Lys Thr Ser Pro Gly Arg 595
600 605Ser Pro Phe Thr Trp Gly Arg Thr Arg Lys Ser Tyr
Gly Thr Asp Val 610 615 620Leu Tyr Glu
Pro Asn Asn Gly Gln Gly Ala Pro Gln Asp Asp Phe Thr625
630 635 640Glu Gly Val Phe Ile Asp Tyr
Arg His Phe Asp Gln Val Ser Pro Ser 645
650 655Thr Asp Gly Ser Lys Ser Asn Asp Glu Ser Ser Pro
Ile Tyr Glu Phe 660 665 670Gly
His Gly Leu Ser Trp Thr Thr Phe Glu Tyr Ser Glu Leu Asn Ile 675
680 685Gln Ala His Asn Lys Ile Pro Phe Asp
Pro Pro Ile Gly Glu Thr Ile 690 695
700Ala Ala Pro Val Leu Gly Asn Tyr Ser Thr Asp Leu Ala Asp Tyr Thr705
710 715 720Phe Pro Asp Gly
Ile Arg Tyr Ile Tyr Gln Phe Ile Tyr Pro Trp Leu 725
730 735Asn Thr Ser Ser Ser Gly Arg Glu Ala Ser
Gly Asp Pro Asp Tyr Gly 740 745
750Lys Thr Ala Glu Glu Phe Leu Pro Pro Gly Ala Leu Asp Gly Ser Ala
755 760 765Gln Pro Arg Pro Pro Ser Ser
Gly Ala Pro Gly Gly Asn Pro His Leu 770 775
780Trp Asp Val Leu Tyr Thr Val Ser Ala Ile Ile Thr Asn Thr Gly
Asn785 790 795 800Ala Thr
Ser Asp Glu Ile Pro Gln Leu Tyr Val Ser Leu Gly Gly Glu
805 810 815Asn Glu Pro Val Arg Val Leu
Arg Gly Phe Asp Arg Ile Glu Asn Ile 820 825
830Ala Pro Gly Gln Ser Val Arg Phe Thr Thr Asp Ile Thr Arg
Arg Asp 835 840 845Leu Ser Asn Trp
Asp Val Val Ser Gln Asn Trp Val Ile Thr Asp Tyr 850
855 860Glu Lys Thr Val Tyr Val Gly Ser Ser Ser Arg Asn
Leu Pro Leu Lys865 870 875
8801153169DNAVerticillium dahliae 115atgaagctga ccctcgctac tgccttactg
gcagccagcg ggtgtgtctc tgcgggacaa 60cccaagctca aggtacgtac ttgcctcttt
ttcacaagga aaccaaaccc gcaccataat 120ggtgattgag cagtcgtgct ttcctcaacc
cgaatcaaac ccatgccgtg ttcgcgcatg 180ccctttcgat cgtctgttgt gtgtgaaccc
acgctcttca agcatcgcac atagcaccac 240tccatcttca ttttcgagca atttcgggcc
gcagagagcg gtctttcact tcaccacaat 300cgttcatgcc tcgtgcccca ctgccatgtt
tcttcccagt attctacttc tgagagcctt 360gaccaccgtt gtcgacatct cgtcgccaag
gctcgttgac acggactctg tttcccttgg 420aattaatatt cgaaacaatg ctgaccagca
tcctcagcgc cagactaaca gctctagcga 480gctcgccttt tcccctccgc actacccttc
tccatggatg aacccccaag cgactgggtg 540ggaggacgcc tacgcccgtg ccagagaggt
ggtagagcag atgactctgc tcgaaaaggt 600caacctgacg acaggtgtcg ggtaagcttc
acagaccccg tcttgccatc caaagtcatc 660tgacagaatc ctagctggag cggtgatctc
tgcgtcggaa acgtcggctc gatcccccga 720atcggctgga gggggctttg tttgcaggat
ggcccacagg gtatccgttt cgcggactac 780gtctcgtact tcacttcgag ccagacagcc
ggcgctacct gggaccgagg gcttctgtac 840cagcgcgctc acgccattgg cgccgaagga
gtagccaagg gcgtcgacgt cgtcctcggg 900cccgccattg gccctctagg tcgccttccc
gccggaggtc gtaactggga gggtttcgcc 960gtggaccctt acctcagtgg cgttgctgtc
gccgaatccg tcaggggcat ccaggatgct 1020ggtgctattg ccaacgtcaa gcactacatc
gtcaatgagc aggaacattt ccgccaggct 1080ggcgaggctc aaggttacgg ctacgatgtc
gacgaggcat tatcgtcgaa cgttgacgac 1140aagaccatgc atgagcttta cctttggcca
tttgcagacg ctgtccgtgc tggagccggc 1200agtgtcatgt gttcttatca acaggtgggg
gcaataccat tctctcctct ttccttgcag 1260acagtgcact gaccgacctt ttttgcccaa
gatcaacaac agttacggct gtcaaaactc 1320acatcttctg aatgggctcc tcaaggacga
actcggcttt caggggttcg tcctcagcga 1380ttggcaagcg cagcatgctg gtgctgccac
tgccgttgct ggacttgaca tggccatgcc 1440cggtgacact cgcttcaaca ccggagtcgc
cttctggggc gctaacctta ccaatgccat 1500tttgaacggc accgttcccg aatatcggct
cgatgacatg gccatgcgta ttatggcggc 1560ctttttcaaa gttggaaaga ccctggacga
tgttcctgac atcaacttct cgtcttggac 1620aaaagacacc atcggcccgc tgcactgggc
ggcccaggac aatgtgcagg tcatcaacca 1680acacgttgat gtccgtcaag accacggcgc
cctcattcgc accatcgctg cccgcggtac 1740tgtcttacta aaaaatgagg gatcactgcc
tctgaacaag ccgaaatttg ttgctgtcat 1800tggtgaagat gctggccctc gtcctgttgg
tcccaatggc tgccctgatc agggttgcaa 1860taacggcact ctggctgctg gatggggatc
tggcaccgcc agtttccctt atctcatcac 1920tcctgatagt gctcttcagt ttcaagccgt
ttcggatggc tcgcgatacg aaagcatcct 1980cagcaactgg gattatgagc gcacagaggc
cttggtttcc caggcggatg ctactgctct 2040ggttttcgtc aatgcaaact ctggcgaagg
atatatcagc gttgatggaa acgaaggtga 2100tcgcaagaac ctcactctct ggaatggagg
agacgagctt attcaacgag tcgctgcggc 2160caacaacaac accatcgtca tcatccattc
ggttggtccc gttctagtca ctgactggta 2220cgagaatccc aatatcacgg ctatcatctg
ggccggctta cccggacagg agtctggcaa 2280ctctatcgcc gatattcttt acggccgcgt
gaaccctggt ggcaagacac ctttcacctg 2340gggtccaact gttgagagct acggcgttga
cgtcctgaga gagcccaaca atggcaatgg 2400tgctccccag agcgatttcg acgagggagt
cttcatcgat taccgttggt ttgaccggca 2460gtcgggtgtt gataacaatg catcagcgcc
gaggaacagc agcagcagcc acgccccaat 2520cttcgagttt ggctatggcc tttcgtacac
aacctttgaa ttctccaatc ttcagattga 2580gaggcatgac gttcacgatt acgtccctac
cactgggcag acgagccctg cgccgagatt 2640tggtgctaac tacagtacga actacgacga
ctacgtcttt cccgagggcg aaatccgtta 2700catctatcaa cacatctacc catacctcaa
ttcctcagac ccaaaggagg cattggctga 2760tcctaaatac ggccaaactg cagaagagtt
cctcccagag ggcgctcttg atgcctcacc 2820gcagcctagg ctcccagctt ctggagggcc
cggaggcaac ccaatgcttt gggacgtcat 2880attcacggtc accgcgaccg tgaccaacac
gggtaaggtt gctggggacg aagtggcaca 2940gctttacgtt tctcttggtg gacctgacga
tccgattcga gtcctccgtg ggttcgaccg 3000cattcacatc gcgcctggag cctcgcaaac
cttccgtgcg gaactcacgc gccgggacct 3060cagcaactgg gatgttgtca cgcaaaattg
gttcatcagc cagtacgaaa agacggtctt 3120tgtcgggagc tcatcccgaa acctccctct
cagcactcgc ctcgaatag 3169116890PRTVerticillium dahliae
116Met Lys Leu Thr Leu Ala Thr Ala Leu Leu Ala Ala Ser Gly Cys Val1
5 10 15Ser Ala Gly Gln Pro Lys
Leu Lys His Pro Gln Arg Gln Thr Asn Ser 20 25
30Ser Ser Glu Leu Ala Phe Ser Pro Pro His Tyr Pro Ser
Pro Trp Met 35 40 45Asn Pro Gln
Ala Thr Gly Trp Glu Asp Ala Tyr Ala Arg Ala Arg Glu 50
55 60Val Val Glu Gln Met Thr Leu Leu Glu Lys Val Asn
Leu Thr Thr Gly65 70 75
80Val Gly Trp Ser Gly Asp Leu Cys Val Gly Asn Val Gly Ser Ile Pro
85 90 95Arg Ile Gly Trp Arg Gly
Leu Cys Leu Gln Asp Gly Pro Gln Gly Ile 100
105 110Arg Phe Ala Asp Tyr Val Ser Tyr Phe Thr Ser Ser
Gln Thr Ala Gly 115 120 125Ala Thr
Trp Asp Arg Gly Leu Leu Tyr Gln Arg Ala His Ala Ile Gly 130
135 140Ala Glu Gly Val Ala Lys Gly Val Asp Val Val
Leu Gly Pro Ala Ile145 150 155
160Gly Pro Leu Gly Arg Leu Pro Ala Gly Gly Arg Asn Trp Glu Gly Phe
165 170 175Ala Val Asp Pro
Tyr Leu Ser Gly Val Ala Val Ala Glu Ser Val Arg 180
185 190Gly Ile Gln Asp Ala Gly Ala Ile Ala Asn Val
Lys His Tyr Ile Val 195 200 205Asn
Glu Gln Glu His Phe Arg Gln Ala Gly Glu Ala Gln Gly Tyr Gly 210
215 220Tyr Asp Val Asp Glu Ala Leu Ser Ser Asn
Val Asp Asp Lys Thr Met225 230 235
240His Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Val Arg Ala Gly
Ala 245 250 255Gly Ser Val
Met Cys Ser Tyr Gln Gln Ile Asn Asn Ser Tyr Gly Cys 260
265 270Gln Asn Ser His Leu Leu Asn Gly Leu Leu
Lys Asp Glu Leu Gly Phe 275 280
285Gln Gly Phe Val Leu Ser Asp Trp Gln Ala Gln His Ala Gly Ala Ala 290
295 300Thr Ala Val Ala Gly Leu Asp Met
Ala Met Pro Gly Asp Thr Arg Phe305 310
315 320Asn Thr Gly Val Ala Phe Trp Gly Ala Asn Leu Thr
Asn Ala Ile Leu 325 330
335Asn Gly Thr Val Pro Glu Tyr Arg Leu Asp Asp Met Ala Met Arg Ile
340 345 350Met Ala Ala Phe Phe Lys
Val Gly Lys Thr Leu Asp Asp Val Pro Asp 355 360
365Ile Asn Phe Ser Ser Trp Thr Lys Asp Thr Ile Gly Pro Leu
His Trp 370 375 380Ala Ala Gln Asp Asn
Val Gln Val Ile Asn Gln His Val Asp Val Arg385 390
395 400Gln Asp His Gly Ala Leu Ile Arg Thr Ile
Ala Ala Arg Gly Thr Val 405 410
415Leu Leu Lys Asn Glu Gly Ser Leu Pro Leu Asn Lys Pro Lys Phe Val
420 425 430Ala Val Ile Gly Glu
Asp Ala Gly Pro Arg Pro Val Gly Pro Asn Gly 435
440 445Cys Pro Asp Gln Gly Cys Asn Asn Gly Thr Leu Ala
Ala Gly Trp Gly 450 455 460Ser Gly Thr
Ala Ser Phe Pro Tyr Leu Ile Thr Pro Asp Ser Ala Leu465
470 475 480Gln Phe Gln Ala Val Ser Asp
Gly Ser Arg Tyr Glu Ser Ile Leu Ser 485
490 495Asn Trp Asp Tyr Glu Arg Thr Glu Ala Leu Val Ser
Gln Ala Asp Ala 500 505 510Thr
Ala Leu Val Phe Val Asn Ala Asn Ser Gly Glu Gly Tyr Ile Ser 515
520 525Val Asp Gly Asn Glu Gly Asp Arg Lys
Asn Leu Thr Leu Trp Asn Gly 530 535
540Gly Asp Glu Leu Ile Gln Arg Val Ala Ala Ala Asn Asn Asn Thr Ile545
550 555 560Val Ile Ile His
Ser Val Gly Pro Val Leu Val Thr Asp Trp Tyr Glu 565
570 575Asn Pro Asn Ile Thr Ala Ile Ile Trp Ala
Gly Leu Pro Gly Gln Glu 580 585
590Ser Gly Asn Ser Ile Ala Asp Ile Leu Tyr Gly Arg Val Asn Pro Gly
595 600 605Gly Lys Thr Pro Phe Thr Trp
Gly Pro Thr Val Glu Ser Tyr Gly Val 610 615
620Asp Val Leu Arg Glu Pro Asn Asn Gly Asn Gly Ala Pro Gln Ser
Asp625 630 635 640Phe Asp
Glu Gly Val Phe Ile Asp Tyr Arg Trp Phe Asp Arg Gln Ser
645 650 655Gly Val Asp Asn Asn Ala Ser
Ala Pro Arg Asn Ser Ser Ser Ser His 660 665
670Ala Pro Ile Phe Glu Phe Gly Tyr Gly Leu Ser Tyr Thr Thr
Phe Glu 675 680 685Phe Ser Asn Leu
Gln Ile Glu Arg His Asp Val His Asp Tyr Val Pro 690
695 700Thr Thr Gly Gln Thr Ser Pro Ala Pro Arg Phe Gly
Ala Asn Tyr Ser705 710 715
720Thr Asn Tyr Asp Asp Tyr Val Phe Pro Glu Gly Glu Ile Arg Tyr Ile
725 730 735Tyr Gln His Ile Tyr
Pro Tyr Leu Asn Ser Ser Asp Pro Lys Glu Ala 740
745 750Leu Ala Asp Pro Lys Tyr Gly Gln Thr Ala Glu Glu
Phe Leu Pro Glu 755 760 765Gly Ala
Leu Asp Ala Ser Pro Gln Pro Arg Leu Pro Ala Ser Gly Gly 770
775 780Pro Gly Gly Asn Pro Met Leu Trp Asp Val Ile
Phe Thr Val Thr Ala785 790 795
800Thr Val Thr Asn Thr Gly Lys Val Ala Gly Asp Glu Val Ala Gln Leu
805 810 815Tyr Val Ser Leu
Gly Gly Pro Asp Asp Pro Ile Arg Val Leu Arg Gly 820
825 830Phe Asp Arg Ile His Ile Ala Pro Gly Ala Ser
Gln Thr Phe Arg Ala 835 840 845Glu
Leu Thr Arg Arg Asp Leu Ser Asn Trp Asp Val Val Thr Gln Asn 850
855 860Trp Phe Ile Ser Gln Tyr Glu Lys Thr Val
Phe Val Gly Ser Ser Ser865 870 875
880Arg Asn Leu Pro Leu Ser Thr Arg Leu Glu 885
8901172418DNAPodospora anserina 117atgaaactca ataagccatt
cctggccatt tatttggctt tcaacttggc cgaggcttcg 60aaaactccgg attgcatcag
tggtccgctg gcaaagacct tggcatgtga tacaacggcg 120tcacctcctg cgcgagcagc
tgctcttgtg caggctttaa atatcacgga aaagcttgtg 180aatctagtgg agtatgtcaa
gtcaagagaa gctcctttag ggatttcaat tcagctaatc 240actcctcata gcatgagcct
cggtgcagaa aggatcggcc ttccagctta tgcttggtgg 300aacgaagctc ttcatggtgt
tgccgcgtcg cctggggtct ccttcaatca ggccggacaa 360gaattctcac acgctacttc
atttgcgaat actattacgc tagcagccgc ctttgacaat 420gacctggttt acgaggtggc
ggataccatc agcactgaag cgcgagcgtt cagcaatgcc 480gagctcgctg gactggatta
ctggacgcct aacatcaacc cgtacaaaga tccgagatgg 540gggaggggcc atgaggtttg
ttaccttagc cttcttttcc gtgccgtgca gttgctgaga 600actcaaaaga cacccggaga
agatccggta cacatcaaag gctacgtcca agcacttctc 660gagggtctag aagggagaga
caagatcaga aaggtgattg ccacttgtaa acactttgca 720gcctatgatt tggagagatg
gcaaggggct cttagataca ggttcaatgc tgttgtgacc 780tcgcaggatc tttcggagta
ctacctccaa ccgtttcaac aatgcgctcg agacagcaag 840gtcgggtctt tcatgtgctc
atataatgcg ctcaacggaa caccggcatg tgcaagcacg 900tatttgatgg acgacatcct
tcgaaaacac tggaattgga ccgagcacaa caactatata 960acgagcgact gtaatgctat
tcaggacttc ctccccaact ttcacaactt cagccaaact 1020ccagctcaag ccgccgctga
tgcttataac gccggtacag acaccgtctg tgaggtgcct 1080ggataccccc cactcacaga
tgtaatcgga gcatacaatc agtctctgct gtcagaggaa 1140attatcgacc gagcacttcg
cagattatac gaaggcctca tccgagctgg ctatctcgac 1200tcagcctccc cacatccata
caccaaaatc tcatggtccc aagtaaacac ccccaaagcc 1260caagccctgg ctctccagtc
cgccaccgac gggatagtcc ttctcaaaaa caacggcctc 1320cttcccctag acctcaccaa
caaaaccata gccctcatag gccactgggc caatgcaacc 1380cgccaaatgc taggcggcta
cagcggtatc cccccttact acgccaaccc aatctatgca 1440gccacccagc tcaacgtcac
ttttcatcac gccccaggac cggtgaacca gtcatctccc 1500tccacaaatg acacctggac
ctcccccgcc ctctccgcgg cttccaaatc ggatatcatc 1560ctctacctcg gcggcaccga
cctctccatc gcagccgaag accgagacag agactccatc 1620gcctggccat ccgctcaact
ttccttgtta acctccctcg cccagatggg aaaacccaca 1680atcgtagcaa gactaggcga
ccaagtagac gacacccccc tgctctccaa cccaaacatc 1740tcctccatcc tatgggtagg
ctacccaggc caatcaggcg gaacagccct cttgaacatc 1800atcaccggag tcagctcccc
cgccgctcga ctgcccgtca cagtctaccc agaaacttac 1860acctccctca tccccctgac
agccatgtcc ctccgcccaa cctccgcccg cccaggccgg 1920acttacaggt ggtacccctc
ccccgtgctc cccttcggcc acggcctcca ctacacaacc 1980tttaccgcca aattcggcgt
ctttgagtcc ctcaccatca acattgccga actcgtttcc 2040aactgtaacg aacgatacct
cgacctctgc cggttcccgc aggtgtccgt ctgggtgtcg 2100aatacgggag aactcaaatc
tgactatgtc gcccttgttt ttgtcagggg tgagtacgga 2160ccggagccgt acccgatcaa
gacgctggtg gggtacaagc ggataaggga tatcgagccg 2220gggactacgg gggcggcgcc
ggtgggggtg gtggtggggg atttggctag ggtggatttg 2280ggggggaata gggttttgtt
tccggggaag tatgagtttc tgctggatgt ggaggggggg 2340agggataggg ttgtgatcga
gttggttggg gaggaggtgg tgttggagaa gttccctcag 2400ccgcctgcgg cgggttga
2418118805PRTPodospora
anserina 118Met Lys Leu Asn Lys Pro Phe Leu Ala Ile Tyr Leu Ala Phe Asn
Leu1 5 10 15Ala Glu Ala
Ser Lys Thr Pro Asp Cys Ile Ser Gly Pro Leu Ala Lys 20
25 30Thr Leu Ala Cys Asp Thr Thr Ala Ser Pro
Pro Ala Arg Ala Ala Ala 35 40
45Leu Val Gln Ala Leu Asn Ile Thr Glu Lys Leu Val Asn Leu Val Glu 50
55 60Tyr Val Lys Ser Arg Glu Ala Pro Leu
Gly Ile Ser Ile Gln Leu Ile65 70 75
80Thr Pro His Ser Met Ser Leu Gly Ala Glu Arg Ile Gly Leu
Pro Ala 85 90 95Tyr Ala
Trp Trp Asn Glu Ala Leu His Gly Val Ala Ala Ser Pro Gly 100
105 110Val Ser Phe Asn Gln Ala Gly Gln Glu
Phe Ser His Ala Thr Ser Phe 115 120
125Ala Asn Thr Ile Thr Leu Ala Ala Ala Phe Asp Asn Asp Leu Val Tyr
130 135 140Glu Val Ala Asp Thr Ile Ser
Thr Glu Ala Arg Ala Phe Ser Asn Ala145 150
155 160Glu Leu Ala Gly Leu Asp Tyr Trp Thr Pro Asn Ile
Asn Pro Tyr Lys 165 170
175Asp Pro Arg Trp Gly Arg Gly His Glu Val Cys Tyr Leu Ser Leu Leu
180 185 190Phe Arg Ala Val Gln Leu
Leu Arg Thr Gln Lys Thr Pro Gly Glu Asp 195 200
205Pro Val His Ile Lys Gly Tyr Val Gln Ala Leu Leu Glu Gly
Leu Glu 210 215 220Gly Arg Asp Lys Ile
Arg Lys Val Ile Ala Thr Cys Lys His Phe Ala225 230
235 240Ala Tyr Asp Leu Glu Arg Trp Gln Gly Ala
Leu Arg Tyr Arg Phe Asn 245 250
255Ala Val Val Thr Ser Gln Asp Leu Ser Glu Tyr Tyr Leu Gln Pro Phe
260 265 270Gln Gln Cys Ala Arg
Asp Ser Lys Val Gly Ser Phe Met Cys Ser Tyr 275
280 285Asn Ala Leu Asn Gly Thr Pro Ala Cys Ala Ser Thr
Tyr Leu Met Asp 290 295 300Asp Ile Leu
Arg Lys His Trp Asn Trp Thr Glu His Asn Asn Tyr Ile305
310 315 320Thr Ser Asp Cys Asn Ala Ile
Gln Asp Phe Leu Pro Asn Phe His Asn 325
330 335Phe Ser Gln Thr Pro Ala Gln Ala Ala Ala Asp Ala
Tyr Asn Ala Gly 340 345 350Thr
Asp Thr Val Cys Glu Val Pro Gly Tyr Pro Pro Leu Thr Asp Val 355
360 365Ile Gly Ala Tyr Asn Gln Ser Leu Leu
Ser Glu Glu Ile Ile Asp Arg 370 375
380Ala Leu Arg Arg Leu Tyr Glu Gly Leu Ile Arg Ala Gly Tyr Leu Asp385
390 395 400Ser Ala Ser Pro
His Pro Tyr Thr Lys Ile Ser Trp Ser Gln Val Asn 405
410 415Thr Pro Lys Ala Gln Ala Leu Ala Leu Gln
Ser Ala Thr Asp Gly Ile 420 425
430Val Leu Leu Lys Asn Asn Gly Leu Leu Pro Leu Asp Leu Thr Asn Lys
435 440 445Thr Ile Ala Leu Ile Gly His
Trp Ala Asn Ala Thr Arg Gln Met Leu 450 455
460Gly Gly Tyr Ser Gly Ile Pro Pro Tyr Tyr Ala Asn Pro Ile Tyr
Ala465 470 475 480Ala Thr
Gln Leu Asn Val Thr Phe His His Ala Pro Gly Pro Val Asn
485 490 495Gln Ser Ser Pro Ser Thr Asn
Asp Thr Trp Thr Ser Pro Ala Leu Ser 500 505
510Ala Ala Ser Lys Ser Asp Ile Ile Leu Tyr Leu Gly Gly Thr
Asp Leu 515 520 525Ser Ile Ala Ala
Glu Asp Arg Asp Arg Asp Ser Ile Ala Trp Pro Ser 530
535 540Ala Gln Leu Ser Leu Leu Thr Ser Leu Ala Gln Met
Gly Lys Pro Thr545 550 555
560Ile Val Ala Arg Leu Gly Asp Gln Val Asp Asp Thr Pro Leu Leu Ser
565 570 575Asn Pro Asn Ile Ser
Ser Ile Leu Trp Val Gly Tyr Pro Gly Gln Ser 580
585 590Gly Gly Thr Ala Leu Leu Asn Ile Ile Thr Gly Val
Ser Ser Pro Ala 595 600 605Ala Arg
Leu Pro Val Thr Val Tyr Pro Glu Thr Tyr Thr Ser Leu Ile 610
615 620Pro Leu Thr Ala Met Ser Leu Arg Pro Thr Ser
Ala Arg Pro Gly Arg625 630 635
640Thr Tyr Arg Trp Tyr Pro Ser Pro Val Leu Pro Phe Gly His Gly Leu
645 650 655His Tyr Thr Thr
Phe Thr Ala Lys Phe Gly Val Phe Glu Ser Leu Thr 660
665 670Ile Asn Ile Ala Glu Leu Val Ser Asn Cys Asn
Glu Arg Tyr Leu Asp 675 680 685Leu
Cys Arg Phe Pro Gln Val Ser Val Trp Val Ser Asn Thr Gly Glu 690
695 700Leu Lys Ser Asp Tyr Val Ala Leu Val Phe
Val Arg Gly Glu Tyr Gly705 710 715
720Pro Glu Pro Tyr Pro Ile Lys Thr Leu Val Gly Tyr Lys Arg Ile
Arg 725 730 735Asp Ile Glu
Pro Gly Thr Thr Gly Ala Ala Pro Val Gly Val Val Val 740
745 750Gly Asp Leu Ala Arg Val Asp Leu Gly Gly
Asn Arg Val Leu Phe Pro 755 760
765Gly Lys Tyr Glu Phe Leu Leu Asp Val Glu Gly Gly Arg Asp Arg Val 770
775 780Val Ile Glu Leu Val Gly Glu Glu
Val Val Leu Glu Lys Phe Pro Gln785 790
795 800Pro Pro Ala Ala Gly
805119721PRTThermotoga neapolitana 119Met Glu Lys Val Asn Glu Ile Leu Ser
Gln Leu Thr Leu Glu Glu Lys1 5 10
15Val Lys Leu Val Val Gly Val Gly Leu Pro Gly Leu Phe Gly Asn
Pro 20 25 30His Ser Arg Val
Ala Gly Ala Ala Gly Glu Thr His Pro Val Pro Arg 35
40 45Val Gly Leu Pro Ala Phe Val Leu Ala Asp Gly Pro
Ala Gly Leu Arg 50 55 60Ile Asn Pro
Thr Arg Glu Asn Asp Glu Asn Thr Tyr Tyr Thr Thr Ala65 70
75 80Phe Pro Val Glu Ile Met Leu Ala
Ser Thr Trp Asn Arg Glu Leu Leu 85 90
95Glu Glu Val Gly Lys Ala Met Gly Glu Glu Val Arg Glu Tyr
Gly Val 100 105 110Asp Val Leu
Leu Ala Pro Ala Met Asn Ile His Arg Asn Pro Leu Cys 115
120 125Gly Arg Asn Phe Glu Tyr Tyr Ser Glu Asp Pro
Val Leu Ser Gly Glu 130 135 140Met Ala
Ser Ser Phe Val Lys Gly Val Gln Ser Gln Gly Val Gly Ala145
150 155 160Cys Ile Lys His Phe Val Ala
Asn Asn Gln Glu Thr Asn Arg Met Val 165
170 175Val Asp Thr Ile Val Ser Glu Arg Ala Leu Arg Glu
Ile Tyr Leu Arg 180 185 190Gly
Phe Glu Ile Ala Val Lys Lys Ser Lys Pro Trp Ser Val Met Ser 195
200 205Ala Tyr Asn Lys Leu Asn Gly Lys Tyr
Cys Ser Gln Asn Glu Trp Leu 210 215
220Leu Lys Lys Val Leu Arg Glu Glu Trp Gly Phe Glu Gly Phe Val Met225
230 235 240Ser Asp Trp Tyr
Ala Gly Asp Asn Pro Val Glu Gln Leu Lys Ala Gly 245
250 255Asn Asp Leu Ile Met Pro Gly Lys Ala Tyr
Gln Val Asn Thr Glu Arg 260 265
270Arg Asp Glu Ile Glu Glu Ile Met Glu Ala Leu Lys Glu Gly Lys Leu
275 280 285Ser Glu Glu Val Leu Asp Glu
Cys Val Arg Asn Ile Leu Lys Val Leu 290 295
300Val Asn Ala Pro Ser Phe Lys Asn Tyr Arg Tyr Ser Asn Lys Pro
Asp305 310 315 320Leu Glu
Lys His Ala Lys Val Ala Tyr Glu Ala Gly Ala Glu Gly Val
325 330 335Val Leu Leu Arg Asn Glu Glu
Ala Leu Pro Leu Ser Glu Asn Ser Lys 340 345
350Ile Ala Leu Phe Gly Thr Gly Gln Ile Glu Thr Ile Lys Gly
Gly Thr 355 360 365Gly Ser Gly Asp
Thr His Pro Arg Tyr Ala Ile Ser Ile Leu Glu Gly 370
375 380Ile Lys Glu Arg Gly Leu Asn Phe Asp Glu Glu Leu
Ala Lys Thr Tyr385 390 395
400Glu Asp Tyr Ile Lys Lys Met Arg Glu Thr Glu Glu Tyr Lys Pro Arg
405 410 415Arg Asp Ser Trp Gly
Thr Ile Ile Lys Pro Lys Leu Pro Glu Asn Phe 420
425 430Leu Ser Glu Lys Glu Ile His Lys Leu Ala Lys Lys
Asn Asp Val Ala 435 440 445Val Ile
Val Ile Ser Arg Ile Ser Gly Glu Gly Tyr Asp Arg Lys Pro 450
455 460Val Lys Gly Asp Phe Tyr Leu Ser Asp Asp Glu
Thr Asp Leu Ile Lys465 470 475
480Thr Val Ser Arg Glu Phe His Glu Gln Gly Lys Lys Val Ile Val Leu
485 490 495Leu Asn Ile Gly
Ser Pro Val Glu Val Val Ser Trp Arg Asp Leu Val 500
505 510Asp Gly Ile Leu Leu Val Trp Gln Ala Gly Gln
Glu Thr Gly Arg Ile 515 520 525Val
Ala Asp Val Leu Thr Gly Arg Ile Asn Pro Ser Gly Lys Leu Pro 530
535 540Thr Thr Phe Pro Arg Asp Tyr Ser Asp Val
Pro Ser Trp Thr Phe Pro545 550 555
560Gly Glu Pro Lys Asp Asn Pro Gln Lys Val Val Tyr Glu Glu Asp
Ile 565 570 575Tyr Val Gly
Tyr Arg Tyr Tyr Asp Thr Phe Gly Val Glu Pro Ala Tyr 580
585 590Glu Phe Gly Tyr Gly Leu Ser Tyr Thr Thr
Phe Glu Tyr Ser Asp Leu 595 600
605Asn Val Ser Phe Asp Gly Glu Thr Leu Arg Val Gln Tyr Arg Ile Glu 610
615 620Asn Thr Gly Gly Arg Ala Gly Lys
Glu Val Ser Gln Val Tyr Ile Lys625 630
635 640Ala Pro Lys Gly Lys Ile Asp Lys Pro Phe Gln Glu
Leu Lys Ala Phe 645 650
655His Lys Thr Arg Leu Leu Asn Pro Gly Glu Ser Glu Glu Val Val Leu
660 665 670Glu Ile Pro Val Arg Asp
Leu Ala Ser Phe Asn Gly Glu Glu Trp Val 675 680
685Val Glu Ala Gly Glu Tyr Glu Val Arg Val Gly Ala Ser Ser
Arg Asn 690 695 700Ile Lys Leu Lys Gly
Thr Phe Ser Val Gly Glu Glu Arg Arg Phe Lys705 710
715 720Pro12017PRTTrichoderma reesei 120Met Tyr
Arg Lys Leu Ala Val Ile Ser Ala Phe Leu Ala Thr Ala Arg1 5
10 15Ala12128DNAArtificial
Sequencesynthetic primer 121caccatgaga tatagaacag ctgccgct
2812240DNAArtificial Sequencesynthetic primer
122cgaccgccct gcggagtctt gcccagtggt cccgcgacag
4012340DNAArtificial Sequencesynthetic primer 123ctgtcgcggg accactgggc
aagactccgc agggcggtcg 4012420DNAArtificial
Sequencesynthetic primer 124cctacgctac cgacagagtg
2012520DNAArtificial Sequencesynthetic primer
125gtctagactg gaaacgcaac
2012621DNAArtificial Sequencesynthetic primer 126gagttgtgaa gtcggtaatc c
2112735DNAArtificial
Sequencesynthetic primer 127caccatgaaa gcaaacgtca tcttgtgcct cctgg
3512843DNAArtificial Sequencesynthetic primer
128ctattgtaag atgccaacaa tgctgttata tgccggcttg ggg
4312921DNAArtificial Sequencesynthetic primer 129gagttgtgaa gtcggtaatc c
2113018DNAArtificial
Sequencesynthetic primer 130cacgaagagc ggcgattc
1813123DNAArtificial Sequencesynthetic primer
131cacccatgct gctcaatctt cag
2313223DNAArtificial Sequencesynthetic primer 132ttacgcagac ttggggtctt
gag 2313320DNAArtificial
Sequencesynthetic primer 133gcttgagtgt atcgtgtaag
2013421DNAArtificial Sequencesynthetic primer
134gcaacggcaa agccccactt c
2113532DNAArtificial Sequencesynthetic primer 135gtagcggccg cctcatctca
tctcatccat cc 3213624DNAArtificial
Sequencesynthetic primer 136caccatgcag ctcaagtttc tgtc
2413732DNAArtificial Sequencesynthetic primer
137ggttactagt caactgcccg ttctgtagcg ag
3213829DNAArtificial Sequencesynthetic primer 138catgcgatcg cgacgttttg
gtcaggtcg 2913940DNAArtificial
Sequencesynthetic primer 139gacagaaact tgagctgcat ggtgtgggac aacaagaagg
4014029DNAArtificial Sequencesynthetic primer
140caccatggtt cgcttcagtt caatcctag
2914122DNAArtificial Sequencesynthetic primer 141gtggctagaa gatatccaac ac
2214229DNAArtificial
Sequencesynthetic primer 142catgcgatcg cgacgttttg gtcaggtcg
2914339DNAArtificial Sequencesynthetic primer
143gaactgaagc gaaccatggt gtgggacaac aagaaggac
3914421DNAArtificial Sequencesynthetic primer 144gtagttatgc gcatgctaga c
2114522DNAArtificial
Sequencesynthetic primer 145gtggctagaa gatatccaac ac
2214621DNAArtificial Sequencesynthetic primer
146gtagttatgc gcatgctaga c
2114728DNAArtificial Sequencesynthetic primer 147ccggctcagt atcaaccact
aagcacat 28148250PRTThermoascus
aurantiacus 148Met Ser Phe Ser Lys Ile Ile Ala Thr Ala Gly Val Leu Ala
Ser Ala1 5 10 15Ser Leu
Val Ala Gly His Gly Phe Val Gln Asn Ile Val Ile Asp Gly 20
25 30Lys Lys Tyr Tyr Gly Gly Tyr Leu Val
Asn Gln Tyr Pro Tyr Met Ser 35 40
45Asn Pro Pro Glu Val Ile Ala Trp Ser Thr Thr Ala Thr Asp Leu Gly 50
55 60Phe Val Asp Gly Thr Gly Tyr Gln Thr
Pro Asp Ile Ile Cys His Arg65 70 75
80Gly Ala Lys Pro Gly Ala Leu Thr Ala Pro Val Ser Pro Gly
Gly Thr 85 90 95Val Glu
Leu Gln Trp Thr Pro Trp Pro Asp Ser His His Gly Pro Val 100
105 110Ile Asn Tyr Leu Ala Pro Cys Asn Gly
Asp Cys Ser Thr Val Asp Lys 115 120
125Thr Gln Leu Glu Phe Phe Lys Ile Ala Glu Ser Gly Leu Ile Asn Asp
130 135 140Asp Asn Pro Pro Gly Ile Trp
Ala Ser Asp Asn Leu Ile Ala Ala Asn145 150
155 160Asn Ser Trp Thr Val Thr Ile Pro Thr Thr Ile Ala
Pro Gly Asn Tyr 165 170
175Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gln Asn Gln Asp
180 185 190Gly Ala Gln Asn Tyr Pro
Gln Cys Ile Asn Leu Gln Val Thr Gly Gly 195 200
205Gly Ser Asp Asn Pro Ala Gly Thr Leu Gly Thr Ala Leu Tyr
His Asp 210 215 220Thr Asp Pro Gly Ile
Leu Ile Asn Ile Tyr Gln Lys Leu Ser Ser Tyr225 230
235 240Ile Ile Pro Gly Pro Pro Leu Tyr Thr Gly
245 250149799DNAThermoascus aurantiacus
149atgtcctttt ccaagataat tgctactgcc ggcgttcttg cctctgcttc tctagtggct
60ggccatggct tcgttcagaa catcgtgatt gatggtaaaa agtatgtcat tgcaagacgc
120acataagcgg caacagctga caatcgacag ttatggcggg tatctagtga accagtatcc
180atacatgtcc aatcctccag aggtcatcgc ctggtctact acggcaactg atcttggatt
240tgtggacggt actggatacc aaaccccaga tatcatctgc cataggggcg ccaagcctgg
300agccctgact gctccagtct ctccaggagg aactgttgag cttcaatgga ctccatggcc
360tgattctcac catggcccag ttatcaacta ccttgctccg tgcaatggtg attgttccac
420tgtggataag acccaattag aattcttcaa aattgccgag agcggtctca tcaatgatga
480caatcctcct gggatctggg cttcagacaa tctgatagca gccaacaaca gctggactgt
540caccattcca accacaattg cacctggaaa ctatgttctg aggcatgaga ttattgctct
600tcactcagct cagaaccagg atggtgccca gaactatccc cagtgcatca atctgcaggt
660cactggaggt ggttctgata accctgctgg aactcttgga acggcactct accacgatac
720cgatcctgga attctgatca acatctatca gaaactttcc agctatatca tccctggtcc
780tcctctgtat actggttaa
799150532PRTAspergillus fumigatus 150Met Leu Ala Ser Thr Phe Ser Tyr Arg
Met Tyr Lys Thr Ala Leu Ile1 5 10
15Leu Ala Ala Leu Leu Gly Ser Gly Gln Ala Gln Gln Val Gly Thr
Ser 20 25 30Gln Ala Glu Val
His Pro Ser Met Thr Trp Gln Ser Cys Thr Ala Gly 35
40 45Gly Ser Cys Thr Thr Asn Asn Gly Lys Val Val Ile
Asp Ala Asn Trp 50 55 60Arg Trp Val
His Lys Val Gly Asp Tyr Thr Asn Cys Tyr Thr Gly Asn65 70
75 80Thr Trp Asp Thr Thr Ile Cys Pro
Asp Asp Ala Thr Cys Ala Ser Asn 85 90
95Cys Ala Leu Glu Gly Ala Asn Tyr Glu Ser Thr Tyr Gly Val
Thr Ala 100 105 110Ser Gly Asn
Ser Leu Arg Leu Asn Phe Val Thr Thr Ser Gln Gln Lys 115
120 125Asn Ile Gly Ser Arg Leu Tyr Met Met Lys Asp
Asp Ser Thr Tyr Glu 130 135 140Met Phe
Lys Leu Leu Asn Gln Glu Phe Thr Phe Asp Val Asp Val Ser145
150 155 160Asn Leu Pro Cys Gly Leu Asn
Gly Ala Leu Tyr Phe Val Ala Met Asp 165
170 175Ala Asp Gly Gly Met Ser Lys Tyr Pro Thr Asn Lys
Ala Gly Ala Lys 180 185 190Tyr
Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro Arg Asp Leu Lys Phe 195
200 205Ile Asn Gly Gln Ala Asn Val Glu Gly
Trp Gln Pro Ser Ser Asn Asp 210 215
220Ala Asn Ala Gly Thr Gly Asn His Gly Ser Cys Cys Ala Glu Met Asp225
230 235 240Ile Trp Glu Ala
Asn Ser Ile Ser Thr Ala Phe Thr Pro His Pro Cys 245
250 255Asp Thr Pro Gly Gln Val Met Cys Thr Gly
Asp Ala Cys Gly Gly Thr 260 265
270Tyr Ser Ser Asp Arg Tyr Gly Gly Thr Cys Asp Pro Asp Gly Cys Asp
275 280 285Phe Asn Ser Phe Arg Gln Gly
Asn Lys Thr Phe Tyr Gly Pro Gly Met 290 295
300Thr Val Asp Thr Lys Ser Lys Phe Thr Val Val Thr Gln Phe Ile
Thr305 310 315 320Asp Asp
Gly Thr Ser Ser Gly Thr Leu Lys Glu Ile Lys Arg Phe Tyr
325 330 335Val Gln Asn Gly Lys Val Ile
Pro Asn Ser Glu Ser Thr Trp Thr Gly 340 345
350Val Ser Gly Asn Ser Ile Thr Thr Glu Tyr Cys Thr Ala Gln
Lys Ser 355 360 365Leu Phe Gln Asp
Gln Asn Val Phe Glu Lys His Gly Gly Leu Glu Gly 370
375 380Met Gly Ala Ala Leu Ala Gln Gly Met Val Leu Val
Met Ser Leu Trp385 390 395
400Asp Asp His Ser Ala Asn Met Leu Trp Leu Asp Ser Asn Tyr Pro Thr
405 410 415Thr Ala Ser Ser Thr
Thr Pro Gly Val Ala Arg Gly Thr Cys Asp Ile 420
425 430Ser Ser Gly Val Pro Ala Asp Val Glu Ala Asn His
Pro Asp Ala Tyr 435 440 445Val Val
Tyr Ser Asn Ile Lys Val Gly Pro Ile Gly Ser Thr Phe Asn 450
455 460Ser Gly Gly Ser Asn Pro Gly Gly Gly Thr Thr
Thr Thr Thr Thr Thr465 470 475
480Gln Pro Thr Thr Thr Thr Thr Thr Ala Gly Asn Pro Gly Gly Thr Gly
485 490 495Val Ala Gln His
Tyr Gly Gln Cys Gly Gly Ile Gly Trp Thr Gly Pro 500
505 510Thr Thr Cys Ala Ser Pro Tyr Thr Cys Gln Lys
Leu Asn Asp Tyr Tyr 515 520 525Ser
Gln Cys Leu 530151452PRTAspergillus fumigatus 151Met His Gln Arg Ala
Leu Leu Phe Ser Ala Leu Ala Val Ala Ala Asn1 5
10 15Ala Gln Gln Val Gly Thr Gln Thr Pro Glu Thr
His Pro Pro Leu Thr 20 25
30Trp Gln Lys Cys Thr Ala Ala Gly Ser Cys Ser Gln Gln Ser Gly Ser
35 40 45Val Val Ile Asp Ala Asn Trp Arg
Trp Leu His Ser Thr Lys Asp Thr 50 55
60Thr Asn Cys Tyr Thr Gly Asn Thr Trp Asn Thr Glu Leu Cys Pro Asp65
70 75 80Asn Glu Ser Cys Ala
Gln Asn Cys Ala Leu Asp Gly Ala Asp Tyr Ala 85
90 95Gly Thr Tyr Gly Val Thr Thr Ser Gly Ser Glu
Leu Lys Leu Ser Phe 100 105
110Val Thr Gly Ala Asn Val Gly Ser Arg Leu Tyr Leu Met Gln Asp Asp
115 120 125Glu Thr Tyr Gln His Phe Asn
Leu Leu Asn His Glu Phe Thr Phe Asp 130 135
140Val Asp Val Ser Asn Leu Pro Cys Gly Leu Asn Gly Ala Leu Tyr
Phe145 150 155 160Val Ala
Met Asp Ala Asp Gly Gly Met Ser Lys Tyr Pro Ser Asn Lys
165 170 175Ala Gly Ala Lys Tyr Gly Thr
Gly Tyr Cys Asp Ser Gln Cys Pro Arg 180 185
190Asp Leu Lys Phe Ile Asn Gly Met Ala Asn Val Glu Gly Trp
Glu Pro 195 200 205Ser Ser Ser Asp
Lys Asn Ala Gly Val Gly Gly His Gly Ser Cys Cys 210
215 220Pro Glu Met Asp Ile Trp Glu Ala Asn Ser Ile Ser
Thr Ala Val Thr225 230 235
240Pro His Pro Cys Asp Asp Val Ser Gln Thr Met Cys Ser Gly Asp Ala
245 250 255Cys Gly Gly Thr Tyr
Ser Glu Ser Arg Tyr Ala Gly Thr Cys Asp Pro 260
265 270Asp Gly Cys Asp Phe Asn Pro Phe Arg Met Gly Asn
Glu Ser Phe Tyr 275 280 285Gly Pro
Gly Lys Ile Val Asp Thr Lys Ser Lys Met Thr Val Val Thr 290
295 300Gln Phe Ile Thr Ala Asp Gly Thr Asp Ser Gly
Ala Leu Ser Glu Ile305 310 315
320Lys Arg Leu Tyr Val Gln Asn Gly Lys Val Ile Ala Asn Ser Val Ser
325 330 335Asn Val Ala Gly
Val Ser Gly Asn Ser Ile Thr Ser Asp Phe Cys Thr 340
345 350Ala Gln Lys Lys Ala Phe Gly Asp Glu Asp Ile
Phe Ala Lys His Gly 355 360 365Gly
Leu Ser Gly Met Gly Lys Ala Leu Ser Glu Met Val Leu Ile Met 370
375 380Ser Ile Trp Asp Asp His His Ser Ser Met
Met Trp Leu Asp Ser Thr385 390 395
400Tyr Pro Thr Asp Ala Asp Pro Ser Lys Pro Gly Val Ala Arg Gly
Thr 405 410 415Cys Glu His
Gly Ala Gly Asp Pro Glu Asn Val Glu Ser Gln His Pro 420
425 430Asp Ala Ser Val Thr Phe Ser Asn Ile Lys
Phe Gly Pro Ile Gly Ser 435 440
445Thr Tyr Glu Gly 450152450PRTChaetosphaeridium globosum 152Met Lys
Gln Tyr Leu Gln Tyr Leu Ala Ala Ala Leu Pro Leu Met Ser1 5
10 15Leu Val Ser Ala Gln Gly Val Gly
Thr Ser Thr Ser Glu Thr His Pro 20 25
30Lys Ile Thr Trp Lys Lys Cys Ser Ser Gly Gly Ser Cys Ser Thr
Val 35 40 45Asn Ala Glu Val Val
Ile Asp Ala Asn Trp Arg Trp Leu His Asn Ala 50 55
60Asp Ser Lys Asn Cys Tyr Asp Gly Asn Glu Trp Thr Asp Ala
Cys Thr65 70 75 80Ser
Ser Asp Asp Cys Thr Ser Lys Cys Val Leu Glu Gly Ala Glu Tyr
85 90 95Gly Lys Thr Tyr Gly Ala Ser
Thr Ser Gly Asp Ser Leu Ser Leu Lys 100 105
110Phe Leu Thr Lys His Glu Tyr Gly Thr Asn Ile Gly Ser Arg
Phe Tyr 115 120 125Leu Met Asn Gly
Ala Ser Lys Tyr Gln Met Phe Thr Leu Met Asn Asn 130
135 140Glu Phe Ala Phe Asp Val Asp Leu Ser Thr Val Glu
Cys Gly Leu Asn145 150 155
160Ser Ala Leu Tyr Phe Val Ala Met Glu Glu Asp Gly Gly Met Ala Ser
165 170 175Tyr Ser Thr Asn Lys
Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp 180
185 190Ala Gln Cys Ala Arg Asp Leu Lys Phe Val Gly Gly
Lys Ala Asn Tyr 195 200 205Asp Gly
Trp Thr Pro Ser Ser Asn Asp Ala Asn Ala Gly Val Gly Ala 210
215 220Leu Gly Gly Cys Cys Ala Glu Ile Asp Val Trp
Glu Ser Asn Ala His225 230 235
240Ala Phe Ala Phe Thr Pro His Ala Cys Glu Asn Asn Asn Tyr His Val
245 250 255Cys Glu Asp Thr
Thr Cys Gly Gly Thr Tyr Ser Glu Asp Arg Phe Ala 260
265 270Gly Asp Cys Asp Ala Asn Gly Cys Asp Tyr Asn
Pro Tyr Arg Val Gly 275 280 285Asn
Thr Asp Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Ser Lys Lys 290
295 300Phe Thr Val Val Ser Gln Phe Gln Glu Asn
Lys Leu Thr Gln Phe Phe305 310 315
320Val Gln Asn Gly Lys Lys Ile Glu Ile Pro Gly Pro Lys His Glu
Gly 325 330 335Leu Pro Thr
Glu Ser Ser Asp Ile Thr Pro Glu Leu Cys Ser Ala Met 340
345 350Pro Glu Val Phe Gly Asp Arg Asp Arg Phe
Ala Glu Val Gly Gly Phe 355 360
365Asp Ala Leu Asn Lys Ala Leu Ala Val Pro Met Val Leu Val Met Ser 370
375 380Ile Trp Asp Asp His Tyr Ala Asn
Met Leu Trp Leu Asp Ser Ser Tyr385 390
395 400Pro Pro Glu Lys Ala Gly Thr Pro Gly Gly Asp Arg
Gly Pro Cys Ala 405 410
415Gln Asp Ser Gly Val Pro Ser Glu Val Glu Ser Gln Tyr Pro Asp Ala
420 425 430Thr Val Val Trp Ser Asn
Ile Arg Phe Gly Pro Ile Gly Ser Thr Val 435 440
445Gln Val 450153452PRTChaetosphaeridium globosum 153Met
Tyr Arg Gln Val Ala Thr Ala Leu Ser Phe Ala Ser Leu Val Leu1
5 10 15Gly Gln Gln Val Gly Thr Leu
Thr Ala Glu Thr His Pro Ser Leu Pro 20 25
30Ile Glu Val Cys Thr Ala Pro Gly Ser Cys Thr Lys Glu Asp
Thr Thr 35 40 45Val Val Leu Asp
Ala Asn Trp Arg Trp Thr His Val Thr Asp Gly Tyr 50 55
60Thr Asn Cys Tyr Thr Gly Asn Ala Trp Asn Glu Thr Ala
Cys Pro Asp65 70 75
80Gly Lys Thr Cys Ala Ala Asn Cys Ala Ile Asp Gly Ala Glu Tyr Glu
85 90 95Lys Thr Tyr Gly Ile Thr
Thr Pro Glu Glu Gly Ala Leu Arg Leu Asn 100
105 110Phe Val Thr Glu Ser Asn Val Gly Ser Arg Val Tyr
Leu Met Ala Gly 115 120 125Glu Asp
Lys Tyr Arg Leu Phe Asn Leu Leu Asn Lys Glu Phe Thr Met 130
135 140Asp Val Asp Val Ser Asn Leu Pro Cys Gly Leu
Asn Gly Ala Val Tyr145 150 155
160Phe Ser Glu Met Asp Glu Asp Gly Gly Met Ser Arg Phe Glu Gly Asn
165 170 175Lys Ala Gly Ala
Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro 180
185 190Arg Asp Ile Lys Phe Ile Asn Gly Glu Ala Asn
Ser Glu Gly Trp Gly 195 200 205Gly
Glu Asp Gly Asn Ser Gly Thr Gly Lys Tyr Gly Thr Cys Cys Ala 210
215 220Glu Met Asp Ile Trp Glu Ala Asn Leu Asp
Ala Thr Ala Tyr Thr Pro225 230 235
240His Pro Cys Lys Val Thr Glu Gln Thr Arg Cys Glu Asp Asp Thr
Glu 245 250 255Cys Gly Ala
Gly Asp Ala Arg Tyr Glu Gly Leu Cys Asp Arg Asp Gly 260
265 270Cys Asp Phe Asn Ser Phe Arg Leu Gly Asn
Lys Glu Phe Tyr Gly Pro 275 280
285Glu Lys Thr Val Asp Thr Ser Lys Pro Phe Thr Leu Val Thr Gln Phe 290
295 300Val Thr Ala Asp Gly Thr Asp Thr
Gly Ala Leu Gln Ser Ile Arg Arg305 310
315 320Phe Tyr Val Gln Asp Gly Thr Val Ile Pro Asn Ser
Glu Thr Val Val 325 330
335Glu Gly Val Asp Pro Thr Asn Glu Ile Thr Asp Asp Phe Cys Ala Gln
340 345 350Gln Lys Thr Ala Phe Gly
Asp Asn Asn His Phe Lys Thr Ile Gly Gly 355 360
365Leu Pro Ala Met Gly Lys Ser Leu Glu Lys Met Val Leu Val
Leu Ser 370 375 380Ile Trp Asp Asp His
Ala Val Tyr Met Asn Trp Leu Asp Ser Asn Tyr385 390
395 400Pro Thr Asp Ala Asp Pro Thr Lys Pro Gly
Val Ala Arg Gly Arg Cys 405 410
415Asp Pro Glu Ala Gly Val Pro Glu Thr Val Glu Ala Ala His Pro Asp
420 425 430Ala Tyr Val Ile Tyr
Ser Asn Ile Lys Ile Gly Ala Leu Asn Ser Thr 435
440 445Phe Ala Ala Ala 450154526PRTThielavia
terrestris 154Met His Ala Lys Phe Ala Thr Leu Ala Ala Leu Val Ala Ser Ala
Ala1 5 10 15Ala Gln Gln
Ala Cys Thr Leu Thr Ala Glu Asn His Pro Thr Leu Ser 20
25 30Trp Ser Lys Cys Thr Ser Gly Gly Ser Cys
Thr Ser Val Ser Gly Ser 35 40
45Val Thr Ile Asp Ala Asn Trp Arg Trp Thr His Gln Val Ser Ser Ser 50
55 60Thr Asn Cys Tyr Thr Gly Asn Glu Trp
Asp Thr Ser Ile Cys Thr Asp65 70 75
80Gly Ala Ser Cys Ala Ala Ala Cys Cys Leu Asp Gly Ala Asp
Tyr Ser 85 90 95Gly Thr
Tyr Gly Ile Thr Thr Ser Gly Asn Ala Leu Ser Leu Gln Phe 100
105 110Val Thr Gln Gly Pro Tyr Ser Thr Asn
Ile Gly Ser Arg Thr Tyr Leu 115 120
125Met Ala Ser Asp Thr Lys Tyr Gln Met Phe Thr Leu Leu Gly Asn Glu
130 135 140Phe Thr Phe Asp Val Asp Val
Ser Gly Leu Gly Cys Gly Leu Asn Gly145 150
155 160Ala Leu Tyr Phe Val Ser Met Asp Glu Asp Gly Gly
Leu Ser Lys Tyr 165 170
175Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser
180 185 190Gln Cys Pro Arg Asp Leu
Lys Phe Ile Asn Gly Glu Ala Asn Asn Val 195 200
205Gly Trp Thr Pro Ser Ser Asn Asp Lys Asn Ala Gly Leu Gly
Asn Tyr 210 215 220Gly Ser Cys Cys Ser
Glu Met Asp Val Trp Glu Ala Asn Ser Ile Ser225 230
235 240Ala Ala Tyr Thr Pro His Pro Cys Thr Thr
Ile Gly Gln Thr Arg Cys 245 250
255Glu Gly Asp Asp Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly
260 265 270Glu Cys Asp Pro Asp
Gly Cys Asp Phe Asn Ser Tyr Arg Met Gly Asn 275
280 285Thr Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr
Ser Lys Lys Phe 290 295 300Thr Val Val
Thr Gln Phe Leu Thr Asp Ser Ser Gly Asn Leu Ser Glu305
310 315 320Ile Lys Arg Phe Tyr Val Gln
Asn Gly Val Val Ile Pro Asn Ser Asn 325
330 335Ser Asn Ile Ala Gly Val Ser Gly Asn Ser Ile Thr
Gln Ala Phe Cys 340 345 350Asp
Ala Gln Lys Thr Ala Phe Gly Asp Thr Asn Val Phe Asp Gln Lys 355
360 365Gly Gly Leu Ala Gln Met Gly Lys Ala
Leu Ala Gln Pro Met Val Leu 370 375
380Val Met Ser Leu Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp385
390 395 400Ser Thr Tyr Pro
Thr Asp Ala Ala Gly Lys Pro Gly Ala Ala Arg Gly 405
410 415Thr Cys Pro Thr Thr Ser Gly Val Pro Ala
Asp Val Glu Ser Gln Ala 420 425
430Pro Asn Ser Lys Val Ile Tyr Ser Asn Ile Arg Phe Gly Pro Ile Gly
435 440 445Ser Thr Val Ser Gly Leu Pro
Gly Gly Gly Ser Asn Pro Gly Gly Gly 450 455
460Ser Ser Ser Thr Thr Thr Thr Thr Arg Pro Ala Thr Ser Thr Thr
Ser465 470 475 480Ser Ala
Ser Ser Gly Pro Thr Gly Gly Gly Thr Ala Ala His Trp Gly
485 490 495Gln Cys Gly Gly Ile Gly Trp
Thr Gly Pro Thr Val Cys Ala Ser Pro 500 505
510Tyr Thr Cys Gln Lys Leu Asn Asp Trp Tyr Tyr Gln Cys Leu
515 520 525155455PRTThielavia
terrestris 155Met Leu Ser Lys Ile Leu Ala Leu Gly Ala Leu Ala Gly Ala Ala
Val1 5 10 15Ala Gln Gln
Ala Gly Thr Gln Thr Ala Glu Asn His Pro Lys Met Ser 20
25 30Trp Gln Lys Cys Ser Ser Gly Gly Ser Cys
Thr Thr Val Gln Gly Glu 35 40
45Val Val Ile Asp Ser Asn Trp Arg Trp Val His Asp Lys Asn Gly Tyr 50
55 60Thr Asn Cys Tyr Thr Gly Asn Glu Trp
Asn Thr Thr Ile Cys Ser Asp65 70 75
80Ala Lys Ser Cys Ala Ala Asn Cys Ala Leu Asp Gly Ala Asp
Tyr Ser 85 90 95Gly Thr
Tyr Gly Val Thr Thr Ser Gly Asn Ala Leu Thr Leu Lys Phe 100
105 110Val Thr Lys Gly Ser Tyr Ser Thr Asn
Ile Gly Ser Arg Leu Tyr Met 115 120
125Met Ala Ser Ser Thr Lys Tyr Gln Met Phe Thr Leu Leu Gly Asn Glu
130 135 140Phe Thr Phe Asp Val Asp Val
Ser Lys Leu Gly Cys Gly Leu Asn Gly145 150
155 160Ala Leu Tyr Phe Val Ala Met Asp Glu Asp Gly Gly
Met Ser Lys Tyr 165 170
175Ser Ala Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ala
180 185 190Gln Cys Pro Arg Asp Leu
Lys Phe Ile Asn Gly Gln Ala Asn Ser Ala 195 200
205Gln Trp Thr Pro Ser Ser Asn Asp Gln Asn Ala Gly Val Gly
Gln Tyr 210 215 220Gly Ser Cys Cys Ala
Glu Met Asp Ile Trp Tyr Ala Asn Ser Ile Ser225 230
235 240Ala Ala Val Thr Pro His Pro Cys Glu Thr
Val Glu Gln His Gln Cys 245 250
255Glu Gly Asp Ser Cys Gly Gly Thr Tyr Ser Gly Asp Arg Tyr Gly Gly
260 265 270Asp Cys Asp Pro Asp
Gly Cys Asp Phe Asn Ala Tyr Arg Gln Gly Val 275
280 285Lys Asp Phe Tyr Gly Pro Ser Met Thr Val Asp Thr
Thr Lys Lys Phe 290 295 300Thr Val Val
Thr Gln Phe Ile Lys Gly Ser Asp Gly Glu Leu Ser Glu305
310 315 320Ile Lys Arg Phe Tyr Val Gln
Asp Gly Lys Val Ile Glu Asn Ala Asn 325
330 335Ser Thr Ile Pro Asn Asn Pro Gly Asn Ser Ile Thr
Pro Asp Phe Cys 340 345 350Lys
Ala Gln Lys Val Ala Phe Gly Asp Arg Asp Val Phe Asn Glu Lys 355
360 365Gly Gly Phe Pro Gln Phe Ser Lys Ala
Val Gln Thr Pro Met Val Leu 370 375
380Val Met Ser Leu Trp Asp Asp His Tyr Ala Asn Met Leu Trp Leu Asp385
390 395 400Ser Thr Tyr Pro
Val Asp Ala Asp Pro Ser Glu Pro Gly Lys Ala Arg 405
410 415Gly Thr Cys Asp Thr Ser Ser Gly Val Pro
Lys Asp Val Glu Ala Asn 420 425
430Gln Ala Ser Asn Gln Val Ile Tyr Ser Asn Ile Lys Phe Gly Pro Ile
435 440 445Gly Ser Thr Phe Lys Gln Ser
450 455156482PRTSporotrichum thermophile 156Met Ala Lys
Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu1 5
10 15Ala Ala Pro Val Ile Glu Glu Arg Gln
Asn Cys Gly Ala Val Trp Thr 20 25
30Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly
35 40 45Ser Thr Cys Val Ala Gln Asn
Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55
60Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln65
70 75 80Arg Ser Thr Ser
Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser 85
90 95Ser Ser Ser Thr Thr Pro Pro Pro Val Ser
Ser Pro Val Thr Ser Ile 100 105
110Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser
115 120 125Gly Val Arg Leu Phe Ala Asn
Asp Tyr Tyr Arg Ser Glu Val His Asn 130 135
140Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser
Ala145 150 155 160Val Ala
Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile
165 170 175Asp Thr Leu Met Val Gln Thr
Leu Ser Gln Val Arg Ala Leu Asn Lys 180 185
190Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr
Asp Leu 195 200 205Pro Asp Arg Asp
Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile 210
215 220Ala Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile
Asp Ala Ile Arg225 230 235
240Lys His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu
245 250 255Pro Asp Ser Met Ala
Asn Met Val Thr Asn Met Asn Val Ala Lys Cys 260
265 270Ser Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val
Tyr Ala Leu Lys 275 280 285Gln Leu
Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala 290
295 300Gly Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro
Ala Ala Glu Leu Phe305 310 315
320Ala Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu
325 330 335Ala Thr Asn Val
Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro 340
345 350Ser Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu
Lys His Tyr Ile Glu 355 360 365Ala
Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile 370
375 380Val Asp Thr Gly Arg Asn Gly Lys Gln Pro
Thr Gly Gln Gln Gln Trp385 390 395
400Gly Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro
Thr 405 410 415Ala Asn Thr
Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro 420
425 430Gly Gly Glu Ser Asp Gly Thr Ser Asp Thr
Ser Ala Ala Arg Tyr Asp 435 440
445Tyr His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly 450
455 460Gln Trp Phe Gln Ala Tyr Phe Glu
Gln Leu Leu Thr Asn Ala Asn Pro465 470
475 480Pro Phe157395PRTSporotrichum thermophile 157Met
Lys Phe Val Gln Ser Ala Thr Leu Ala Phe Ala Ala Thr Ala Leu1
5 10 15Ala Ala Pro Ser Arg Thr Thr
Pro Gln Lys Pro Arg Gln Ala Ser Ala 20 25
30Gly Cys Ala Ser Ala Val Thr Leu Asp Ala Ser Thr Asn Val
Phe Gln 35 40 45Gln Tyr Thr Leu
His Pro Asn Asn Phe Tyr Arg Ala Glu Val Glu Ala 50 55
60Ala Ala Glu Ala Ile Ser Asp Ser Ala Leu Ala Glu Lys
Ala Arg Lys65 70 75
80Val Ala Asp Val Gly Thr Phe Leu Trp Leu Asp Thr Ile Glu Asn Ile
85 90 95Gly Arg Leu Glu Pro Ala
Leu Glu Asp Val Pro Cys Glu Asn Ile Val 100
105 110Gly Leu Val Ile Tyr Asp Leu Pro Gly Arg Asp Cys
Ala Ala Lys Ala 115 120 125Ser Asn
Gly Glu Leu Lys Val Gly Glu Leu Asp Arg Tyr Lys Thr Glu 130
135 140Tyr Ile Asp Lys Ile Ala Glu Ile Leu Lys Ala
His Ser Asn Thr Ala145 150 155
160Phe Ala Leu Val Ile Glu Pro Asp Ser Leu Pro Asn Leu Val Thr Asn
165 170 175Ser Asp Leu Gln
Thr Cys Gln Gln Ser Ala Ser Gly Tyr Arg Glu Gly 180
185 190Val Ala Tyr Ala Leu Lys Gln Leu Asn Leu Pro
Asn Val Val Met Tyr 195 200 205Ile
Asp Ala Gly His Gly Gly Trp Leu Gly Trp Asp Ala Asn Leu Lys 210
215 220Pro Gly Ala Gln Glu Leu Ala Ser Val Tyr
Lys Ser Ala Gly Ser Pro225 230 235
240Ser Gln Val Arg Gly Ile Ser Thr Asn Val Ala Gly Trp Asn Ala
Trp 245 250 255Asp Gln Glu
Pro Gly Glu Phe Ser Asp Ala Ser Asp Ala Gln Tyr Asn 260
265 270Lys Cys Gln Asn Glu Lys Ile Tyr Ile Asn
Thr Phe Gly Ala Glu Leu 275 280
285Lys Ser Ala Gly Met Pro Asn His Ala Ile Ile Asp Thr Gly Arg Asn 290
295 300Gly Val Thr Gly Leu Arg Asp Glu
Trp Gly Asp Trp Cys Asn Val Asn305 310
315 320Gly Ala Gly Phe Gly Val Arg Pro Thr Ala Asn Thr
Gly Asp Glu Leu 325 330
335Ala Asp Ala Phe Val Trp Val Lys Pro Gly Gly Glu Ser Asp Gly Thr
340 345 350Ser Asp Ser Ser Ala Ala
Arg Tyr Asp Ser Phe Cys Gly Lys Pro Asp 355 360
365Ala Phe Lys Pro Ser Pro Glu Ala Gly Thr Trp Asn Gln Ala
Tyr Phe 370 375 380Glu Met Leu Leu Lys
Asn Ala Asn Pro Ser Phe385 390
395158481PRTThielavia terrestris 158Met Ala Gln Lys Leu Leu Leu Ala Ala
Ala Leu Ala Ala Ser Ala Leu1 5 10
15Ala Ala Pro Val Val Glu Glu Arg Gln Asn Cys Gly Ser Val Trp
Ser 20 25 30Gln Cys Gly Gly
Ile Gly Trp Ser Gly Ala Thr Cys Cys Ala Ser Gly 35
40 45Asn Thr Cys Val Glu Leu Asn Pro Tyr Tyr Ser Gln
Cys Leu Pro Asn 50 55 60Ser Gln Val
Thr Thr Ser Thr Ser Lys Thr Thr Ser Thr Thr Thr Arg65 70
75 80Ser Ser Thr Thr Ser His Ser Ser
Gly Pro Thr Ser Thr Ser Thr Thr 85 90
95Thr Thr Ser Ser Pro Val Val Thr Thr Pro Pro Ser Thr Ser
Ile Pro 100 105 110Gly Gly Ala
Ser Ser Thr Ala Ser Trp Ser Gly Asn Pro Phe Ser Gly 115
120 125Val Gln Met Trp Ala Asn Asp Tyr Tyr Ala Ser
Glu Val Ser Ser Leu 130 135 140Ala Ile
Pro Ser Met Thr Gly Ala Met Ala Thr Lys Ala Ala Glu Val145
150 155 160Ala Lys Val Pro Ser Phe Gln
Trp Leu Asp Arg Asn Val Thr Ile Asp 165
170 175Thr Leu Phe Ala His Thr Leu Ser Gln Ile Arg Ala
Ala Asn Gln Lys 180 185 190Gly
Ala Asn Pro Pro Tyr Ala Gly Ile Phe Val Val Tyr Asp Leu Pro 195
200 205Asp Arg Asp Cys Ala Ala Ala Ala Ser
Asn Gly Glu Phe Ser Ile Ala 210 215
220Asn Asn Gly Ala Ala Asn Tyr Lys Thr Tyr Ile Asp Ala Ile Arg Ser225
230 235 240Leu Val Ile Gln
Tyr Ser Asp Ile Arg Ile Ile Phe Val Ile Glu Pro 245
250 255Asp Ser Leu Ala Asn Met Val Thr Asn Leu
Asn Val Ala Lys Cys Ala 260 265
270Asn Ala Glu Ser Thr Tyr Lys Glu Leu Thr Val Tyr Ala Leu Gln Gln
275 280 285Leu Asn Leu Pro Asn Val Ala
Met Tyr Leu Asp Ala Gly His Ala Gly 290 295
300Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Asn Leu Phe
Ala305 310 315 320Glu Ile
Tyr Thr Ser Ala Gly Lys Pro Ala Ala Val Arg Gly Leu Ala
325 330 335Thr Asn Val Ala Asn Tyr Asn
Gly Trp Ser Leu Ala Thr Pro Pro Ser 340 345
350Tyr Thr Gln Gly Asp Pro Asn Tyr Asp Glu Ser His Tyr Val
Gln Ala 355 360 365Leu Ala Pro Leu
Leu Thr Ala Asn Gly Phe Pro Ala His Phe Ile Thr 370
375 380Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln
Arg Gln Trp Gly385 390 395
400Asp Trp Cys Asn Val Ile Gly Thr Gly Phe Gly Val Arg Pro Thr Thr
405 410 415Asn Thr Gly Leu Asp
Ile Glu Asp Ala Phe Val Trp Val Lys Pro Gly 420
425 430Gly Glu Cys Asp Gly Thr Ser Asn Thr Thr Ser Pro
Arg Tyr Asp Tyr 435 440 445His Cys
Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly Thr 450
455 460Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr
Asn Ala Asn Pro Pro465 470 475
480Phe1592394DNATrichoderma reesei 159atggtgaata acgcagctct
tctcgccgcc ctgtcggctc tcctgcccac ggccctggcg 60cagaacaatc aaacatacgc
caactactct gctcagggcc agcctgatct ctaccccgag 120acacttgcca cgctcacact
ctcgttcccc gactgcgaac atggccccct caagaacaat 180ctcgtctgtg actcatcggc
cggctatgta gagcgagccc aggccctcat ctcgctcttc 240accctcgagg agctcattct
caacacgcaa aactcgggcc ccggcgtgcc tcgcctgggt 300cttccgaact accaagtctg
gaatgaggct ctgcacggct tggaccgcgc caacttcgcc 360accaagggcg gccagttcga
atgggcgacc tcgttcccca tgcccatcct cactacggcg 420gccctcaacc gcacattgat
ccaccagatt gccgacatca tctcgaccca agctcgagca 480ttcagcaaca gcggccgtta
cggtctcgac gtctatgcgc caaacgtcaa tggcttccga 540agccccctct ggggccgtgg
ccaggagacg cccggcgaag acgccttttt cctcagctcc 600gcctatactt acgagtacat
cacgggcatc cagggtggcg tcgaccctga gcacctcaag 660gttgccgcca cggtgaagca
ctttgccgga tacgacctcg agaactggaa caaccagtcc 720cgtctcggtt tcgacgccat
cataactcag caggacctct ccgaatacta cactccccag 780ttcctcgctg cggcccgtta
tgcaaagtca cgcagcttga tgtgcgcata caactccgtc 840aacggcgtgc ccagctgtgc
caacagcttc ttcctgcaga cgcttttgcg cgagagctgg 900ggcttccccg aatggggata
cgtctcgtcc gattgcgatg ccgtctacaa cgttttcaac 960cctcatgact acgccagcaa
ccagtcgtca gccgccgcca gctcactgcg agccggcacc 1020gatatcgact gcggtcagac
ttacccgtgg cacctcaacg agtcctttgt ggccggcgaa 1080gtctcccgcg gcgagatcga
gcggtccgtc acccgtctgt acgccaacct cgtccgtctc 1140ggatacttcg acaagaagaa
ccagtaccgc tcgctcggtt ggaaggatgt cgtcaagact 1200gatgcctgga acatctcgta
cgaggctgct gttgagggca tcgtcctgct caagaacgat 1260ggcactctcc ctctgtccaa
gaaggtgcgc agcattgctc tgatcggacc atgggccaat 1320gccacaaccc aaatgcaagg
caactactat ggccctgccc catacctcat cagccctctg 1380gaagctgcta agaaggccgg
ctatcacgtc aactttgaac tcggcacaga gatcgccggc 1440aacagcacca ctggctttgc
caaggccatt gctgccgcca agaagtcgga tgccatcatc 1500tacctcggtg gaattgacaa
caccattgaa caggagggcg ctgaccgcac ggacattgct 1560tggcccggta atcagctgga
tctcatcaag cagctcagcg aggtcggcaa accccttgtc 1620gtcctgcaaa tgggcggtgg
tcaggtagac tcatcctcgc tcaagagcaa caagaaggtc 1680aactccctcg tctggggcgg
atatcccggc cagtcgggag gcgttgccct cttcgacatt 1740ctctctggca agcgtgctcc
tgccggccga ctggtcacca ctcagtaccc ggctgagtat 1800gttcaccaat tcccccagaa
tgacatgaac ctccgacccg atggaaagtc aaaccctgga 1860cagacttaca tctggtacac
cggcaaaccc gtctacgagt ttggcagtgg tctcttctac 1920accaccttca aggagactct
cgccagccac cccaagagcc tcaagttcaa cacctcatcg 1980atcctctctg ctcctcaccc
cggatacact tacagcgagc agattcccgt cttcaccttc 2040gaggccaaca tcaagaactc
gggcaagacg gagtccccat atacggccat gctgtttgtt 2100cgcacaagca acgctggccc
agccccgtac ccgaacaagt ggctcgtcgg attcgaccga 2160cttgccgaca tcaagcctgg
tcactcttcc aagctcagca tccccatccc tgtcagtgct 2220ctcgcccgtg ttgattctca
cggaaaccgg attgtatacc ccggcaagta tgagctagcc 2280ttgaacaccg acgagtctgt
gaagcttgag tttgagttgg tgggagaaga ggtaacgatt 2340gagaactggc cgttggagga
gcaacagatc aaggatgcta cacctgacgc ataa 2394160780DNATrichoderma
reesei 160atggtctcct tcacctccct cctcgccggc gtcgccgcca tctcgggcgt
cttggccgct 60cccgccgccg aggtcgaatc cgtggctgtg gagaagcgcc agacgattca
gcccggcacg 120ggctacaaca acggctactt ctactcgtac tggaacgatg gccacggcgg
cgtgacgtac 180accaatggtc ccggcgggca gttctccgtc aactggtcca actcgggcaa
ctttgtcggc 240ggcaagggat ggcagcccgg gaccaagaac aagtaagact acctactctt
accccctttg 300accaacacag cacaacacaa tacaacacat gtgactacca atcatggaat
cggatctaac 360agctgtgttt taaaaaaaag ggtcatcaac ttctcgggaa gctacaaccc
caacggcaac 420agctacctct ccgtgtacgg ctggtcccgc aaccccctga tcgagtacta
catcgtcgag 480aactttggca cctacaaccc gtccacgggc gccaccaagc tgggcgaggt
cacctccgac 540ggcagcgtct acgacattta ccgcacgcag cgcgtcaacc agccgtccat
catcggcacc 600gccacctttt accagtactg gtccgtccgc cgcaaccacc gctcgagcgg
ctccgtcaac 660acggcgaacc acttcaacgc gtgggctcag caaggcctga cgctcgggac
gatggattac 720cagattgttg ccgtggaggg ttactttagc tctggctctg cttccatcac
cgtcagctaa 780161368PRTThielavia terrestris 161Met Pro Ser Phe Ala Ser
Lys Thr Leu Leu Ser Thr Leu Ala Gly Ala1 5
10 15Ala Ser Val Ala Ala His Gly His Val Ser Asn Ile
Val Ile Asn Gly 20 25 30Val
Ser Tyr Gln Gly Tyr Asp Pro Thr Ser Phe Pro Tyr Met Gln Asn 35
40 45Pro Pro Ile Val Val Gly Trp Thr Ala
Ala Asp Thr Asp Asn Gly Phe 50 55
60Val Ala Pro Asp Ala Phe Ala Ser Gly Asp Ile Ile Cys His Lys Asn65
70 75 80Ala Thr Asn Ala Lys
Gly His Ala Val Val Ala Ala Gly Asp Lys Ile 85
90 95Phe Ile Gln Trp Asn Thr Trp Pro Glu Ser His
His Gly Pro Val Ile 100 105
110Asp Tyr Leu Ala Ser Cys Gly Ser Ala Ser Cys Glu Thr Val Asp Lys
115 120 125Thr Lys Leu Glu Phe Phe Lys
Ile Asp Glu Val Gly Leu Val Asp Gly 130 135
140Ser Ser Ala Pro Gly Val Trp Gly Ser Asp Gln Leu Ile Ala Asn
Asn145 150 155 160Asn Ser
Trp Leu Val Glu Ile Pro Pro Thr Ile Ala Pro Gly Asn Tyr
165 170 175Val Leu Arg His Glu Ile Ile
Ala Leu His Ser Ala Glu Asn Ala Asp 180 185
190Gly Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Gln Ile Thr
Gly Thr 195 200 205Gly Thr Ala Thr
Pro Ser Gly Val Pro Gly Thr Ser Leu Tyr Thr Pro 210
215 220Thr Asp Pro Gly Ile Leu Val Asn Ile Tyr Ser Ala
Pro Ile Thr Tyr225 230 235
240Thr Val Pro Gly Pro Ala Leu Ile Ser Gly Ala Val Ser Ile Ala Gln
245 250 255Ser Ser Ser Ala Ile
Thr Ala Ser Gly Thr Ala Leu Thr Gly Ser Ala 260
265 270Thr Ala Pro Ala Ala Ala Ala Ala Thr Thr Thr Ser
Thr Thr Asn Ala 275 280 285Ala Ala
Ala Ala Thr Ser Ala Ala Ala Ala Ala Gly Thr Ser Thr Thr 290
295 300Thr Thr Ser Ala Ala Ala Val Val Gln Thr Ser
Ser Ser Ser Ser Ser305 310 315
320Ala Pro Ser Ser Ala Ala Ala Ala Ala Thr Thr Thr Ala Ala Ala Ser
325 330 335Ala Arg Pro Thr
Gly Cys Ser Ser Gly Arg Ser Arg Lys Gln Pro Arg 340
345 350Arg His Ala Arg Asp Met Val Val Ala Arg Gly
Ala Glu Glu Ala Asn 355 360
365162520PRTArtificial Sequencesynthetic consensus
sequencemisc_feature(19)..(21)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(37)..(37)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(46)..(46)Xaa can be any
naturally occurring amino acid or skippedmisc_feature(49)..(49)Xaa
can be any naturally occurring amino acid or
skippedmisc_feature(53)..(56)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(73)..(73)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(109)..(111)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(128)..(134)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(139)..(140)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(154)..(163)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(167)..(172)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(220)..(225)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(244)..(245)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(247)..(247)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(253)..(255)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(257)..(272)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(275)..(275)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(290)..(296)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(298)..(299)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(301)..(301)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(313)..(313)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(321)..(321)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(324)..(334)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(338)..(339)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(342)..(342)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(351)..(351)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(353)..(353)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(355)..(355)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(359)..(364)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(366)..(368)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(370)..(383)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(385)..(386)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(388)..(388)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(392)..(396)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(398)..(399)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(401)..(446)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(453)..(453)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(455)..(457)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(460)..(460)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(462)..(463)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(466)..(466)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(468)..(468)Xaa can be any naturally
occurring amino acid or skippedmisc_feature(470)..(497)Xaa can be
any naturally occurring amino acid or
skippedmisc_feature(499)..(510)Xaa can be any naturally occurring amino
acid or skippedmisc_feature(515)..(520)Xaa can be any naturally
occurring amino acid or skipped 162Met Lys Ser Ser Ala Ser Leu Leu
Leu Leu Ala Ala Leu Ala Gly Ala1 5 10
15Ala Ala Xaa Xaa Xaa Val Ala Ala His Gly His Val Val Asn
Gly Val 20 25 30Ile Asn Gly
Val Xaa Tyr Gln Gly Tyr Asp Pro Thr Thr Xaa Pro Tyr 35
40 45Xaa Asn Asn Pro Xaa Xaa Xaa Xaa Pro Ser Val
Val Gly Trp Cys Asn 50 55 60Ala Gly
Thr Asp Asn Gly Phe Val Xaa Pro Asp Ala Tyr Ala Ser Pro65
70 75 80Asp Ile Ile Cys His Lys Gly
Ala Thr Asn Ala Lys Gly His Ala Thr 85 90
95Val Ala Ala Gly Asp Lys Ile Ser Ile Gln Trp Thr Xaa
Xaa Xaa Trp 100 105 110Pro Glu
Ser His Lys Gly Pro Val Ile Asp Tyr Leu Ala Lys Cys Xaa 115
120 125Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly Cys Thr
Xaa Xaa Thr Val Asp Lys 130 135 140Thr
Ser Leu Gly Trp Phe Lys Ile Asp Xaa Xaa Xaa Xaa Xaa Xaa Xaa145
150 155 160Xaa Xaa Xaa Gly Val Gly
Xaa Xaa Xaa Xaa Xaa Xaa Asp Pro Gly Val 165
170 175Trp Ala Thr Asp Asp Leu Ile Ala Asn Asn Asn Ser
Trp Leu Val Lys 180 185 190Ile
Pro Ser Asp Ile Ala Pro Gly Asn Tyr Val Leu Arg His Glu Ile 195
200 205Ile Ala Leu His Ser Ala Gly Ser Ala
Asn Gly Xaa Xaa Xaa Xaa Xaa 210 215
220Xaa Ala Gln Asn Tyr Pro Gln Cys Ala Asn Leu Gln Val Thr Gly Ser225
230 235 240Gly Ser Ala Xaa
Xaa Ser Xaa Pro Ser Gly Val Lys Xaa Xaa Xaa Pro 245
250 255Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa 260 265
270Gly Thr Xaa Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Val Asn Ile
275 280 285Tyr Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Ala Xaa Xaa Ser Xaa Tyr Thr Val 290 295
300Pro Gly Pro Ala Val Ile Thr Gly Xaa Ala Ser Ser Val Ala Gln
Ser305 310 315 320Xaa Ser
Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Thr Ala
325 330 335Thr Xaa Xaa Ala Val Xaa Pro
Gly Gly Thr Ala Pro Ala Pro Xaa Ala 340 345
350Xaa Thr Xaa Ala Ser Thr Xaa Xaa Xaa Xaa Xaa Xaa Thr Xaa
Xaa Xaa 355 360 365Thr Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala 370
375 380Xaa Xaa Gly Xaa Ser Ala Pro Xaa Xaa Xaa Xaa Xaa
Cys Xaa Xaa Ala385 390 395
400Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
405 410 415Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 420
425 430Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Tyr Gly 435 440 445Gln Cys
Gly Gly Xaa Gly Xaa Xaa Xaa Thr Gly Xaa Thr Xaa Xaa Cys 450
455 460Ala Xaa Gly Xaa Thr Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa465 470 475
480Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
485 490 495Xaa Cys Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Tyr Tyr 500
505 510Ser Gln Xaa Xaa Xaa Xaa Xaa Xaa 515
520
User Contributions:
Comment about this patent or add new information about this topic: