Patent application title: PROBE LIBRARY CONSTRUCTION
Inventors:
IPC8 Class: AC12N1510FI
USPC Class:
1 1
Class name:
Publication date: 2019-08-01
Patent application number: 20190233812
Abstract:
The present invention generally relates to systems and methods for
producing nucleic acids. In some aspects, relatively large quantities of
oligonucleotides can be produced, and in some cases, the oligonucleotides
may have a variety of different sequences and/or lengths. For instance, a
relatively small quantity of oligonucleotides may be amplified to produce
a large amount of nucleotides. In one set of embodiments,
oligonucleotides may be amplified using PCR, then transcribed to produce
RNA. The RNA may then be reverse transcribed to produce DNA, and
optionally, the RNA may be selectively degraded or removed, relative to
the DNA. In one set of embodiments, the oligonucleotides may be
chemically modified. These modifications may include, but are not
limited, to the adding of fluorescent dyes or other signaling entities.Claims:
1-72. (canceled)
73. A method, comprising: simultaneously amplifying at least some of a plurality of oligonucleotides in a common solution using PCR to produce amplified oligonucleotides; transcribing in vitro at least some of the amplified oligonucleotides to produce RNA; reverse transcribing the RNA to produce transcribed DNA; and selectively degrading the RNA relative to the transcribed DNA.
74. The method of claim 73, wherein the plurality of oligonucleotides have an average length of between 10 and 200 nucleotides.
75. The method of claim 73, wherein the plurality of oligonucleotides includes at least 10 unique oligonucleotide sequences.
76-79. (canceled)
80. The method of claim 73, wherein amplifying at least some of the plurality of oligonucleotides comprises exposing at least some of the plurality of oligonucleotides to primer-containing sequences.
81. (canceled)
82. The method of claim 80, wherein at least some of the amplified oligonucleotides contain a promoter.
83-85. (canceled)
86. The method of claim 73, wherein at least some of the plurality of oligonucleotides comprise at least a first set of oligonucleotides having a first common index region, and a second set of oligonucleotides having a second common index region distinguishable from the first common index region.
87. The method of claim 86, comprising amplifying the first set of oligonucleotides but not the second set of oligonucleotides.
88. The method of claim 86, wherein the plurality of oligonucleotides comprises at least 2 sets of oligonucleotides having distinguishable common index regions.
89-95. (canceled)
96. The method of claim 73, wherein transcribing at least some of the amplified oligonucleotides comprises a mass of RNA that is at least 100-fold greater than the mass of amplified oligonucleotides.
97. The method of claim 73, wherein transcribing at least some of the amplified oligonucleotides comprises exposing the amplified oligonucleotides to an RNA polymerase.
98-102. (canceled)
103. The method of claim 73, wherein transcribing at least some of amplified oligonucleotides to produce RNA comprises producing, on average, at least 10 RNA copies of each of the amplified oligonucleotides.
104-106. (canceled)
107. The method of claim 73, wherein reverse transcribing the RNA comprises exposing the RNA to a reverse transcriptase.
108. (canceled)
109. The method of claim 73, wherein reverse transcribing the RNA to produce transcribed DNA occurs without first purifying the RNA from components used to produce the RNA.
110. The method of claim 73, further comprising purifying the RNA from components used to produce the RNA prior to reverse transcribing the RNA to produce transcribed DNA.
111. The method of claim 73, wherein reverse transcribing the RNA to produce transcribed DNA comprises reverse transcribing the RNA to produce transcribed DNA using a sequence containing a transcription primer.
112. The method of claim 111, wherein the sequence containing a transcription primer is incorporated into the transcribed DNA.
113-122. (canceled)
123. The method of claim 73, wherein selectively degrading the RNA relative to the transcribed DNA comprises chemically reducing the RNA.
124-126. (canceled)
127. The method of claim 73, wherein the transcribed DNA is substantially single-stranded.
128-140. (canceled)
141. The method of any one of claim 73, wherein each oligonucleotide of a subset of the oligonucleotides comprises an index portion that is identical.
142. (canceled)
143. The method of claim 73, wherein the plurality of oligonucleotides has a distribution of lengths such that no more than 10% of the oligonucleotides has a length that is less than 80% or greater than 120% of the overall average length of the plurality of nucleotides.
Description:
RELATED APPLICATIONS
[0001] This application is a continuation of U.S. patent application Ser. No. 15/329,651, filed Jan. 27, 2017, entitled "Probe Library Construction," by Zhuang, et al., which is a national stage filing of International Patent Application Serial No. PCT/US2015/042559, filed Jul. 29, 2015, entitled "Probe Library Construction," by Zhuang, et al., which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/050,636, filed Sep. 15, 2014, entitled "Probe Library Construction," by Zhuang, et al.; U.S. Provisional Patent Application Ser. No. 62/031,062, filed Jul. 30, 2014, entitled "Systems and Methods for Determining Nucleic Acids," by Zhuang, et al.; and U.S. Provisional Patent Application Ser. No. 62/142,653, filed Apr. 3, 2015, entitled "Systems and Methods for Determining Nucleic Acids," by Zhuang, et al. Each of the above is incorporated herein by reference.
FIELD
[0003] The present invention generally relates to systems and methods for producing nucleic acids.
BACKGROUND
[0004] Custom-synthesized, oligonucleotide probes have emerged as a powerful tool for the identification and isolation of specific nucleic acid targets via hybridization. Applications for such hybridization probe sets range from next generation sequencing--where such probes are used to enrich or deplete samples for specific nucleic acid targets--to imaging of fixed samples--where fluorescently labeled hybridization probes allow the direct measurement of the number and spatial organization of the targeted species.
[0005] There are now a wide range of commercial sources for such probes. Such probes are often made by synthesizing each oligonucleotide member using standard solid phase synthesis methods. Unfortunately, this limits both the number of probes within a single set and the number of unique sets, due to the requirement that each oligonucleotide member must be individually and separately synthesized.
[0006] Recent advances in array-based synthesis of oligonucleotides by several companies have reduced the cost of producing oligonucleotides. However, these approaches also result in 1000-fold less oligonucleotide probes than is required for a single hybridization reaction, thus limiting their usefulness. Accordingly, improvements in oligonucleotide production are needed.
SUMMARY
[0007] The present invention generally relates to systems and methods for producing nucleic acids. The subject matter of the present invention involves, in some cases, interrelated products, alternative solutions to a particular problem, and/or a plurality of different uses of one or more systems and/or articles.
[0008] In one aspect, the present invention is generally directed to a method. The method, in accordance with one set of embodiments, includes amplifying at least some of a plurality of oligonucleotides using real-time PCR to produce amplified oligonucleotides, transcribing in vitro at least some of the amplified oligonucleotides to produce RNA, reverse transcribing the RNA to produce transcribed DNA, and selectively degrading the RNA relative to the transcribed DNA.
[0009] In another set of embodiments, the method includes simultaneously amplifying at least some of a plurality of oligonucleotides in a common solution using PCR to produce amplified oligonucleotides, transcribing in vitro at least some of the amplified oligonucleotides to produce RNA, reverse transcribing the RNA to produce transcribed DNA, and selectively degrading the RNA relative to the transcribed DNA.
[0010] In yet another set of embodiments, the method includes acts of providing a plurality of oligonucleotides having an average length of between 10 and 200 nucleotides and including at least 100 unique oligonucleotide sequences, producing amplified oligonucleotides comprising one of the plurality of oligonucleotides and a promoter using real-time PCR, transcribing at least some of the amplified oligonucleotides to produce RNA using an RNA polymerase, reverse transcribing the RNA to produce DNA using a primer comprising a signaling entity, and chemically reducing the RNA.
[0011] The method, in still another set of embodiments, includes acts of providing a plurality of oligonucleotides having an average length of between 10 and 200 nucleotides and including at least 100 unique oligonucleotide sequences, producing amplified oligonucleotides in a common solution comprising one of the plurality of oligonucleotides and a promoter using PCR, transcribing at least some of the amplified oligonucleotides to produce RNA using an RNA polymerase, reverse transcribing the RNA to produce DNA using a primer comprising a signaling entity, and chemically reducing the RNA.
[0012] In another aspect, the present invention encompasses methods of making one or more of the embodiments described herein, such as oligonucleotides, including but not limited to modified oligonucleotides such as those described herein (e.g., labeled with a signaling entity). In still another aspect, the present invention encompasses methods of using one or more of the embodiments described herein, for example, such as oligonucleotides, including but not limited to modified oligonucleotides such as those described herein (e.g., labeled with a signaling entity).
[0013] Other advantages and novel features of the present invention will become apparent from the following detailed description of various non-limiting embodiments of the invention when considered in conjunction with the accompanying figures. In cases where the present specification and a document incorporated by reference include conflicting and/or inconsistent disclosure, the present specification shall control. If two or more documents incorporated by reference include conflicting and/or inconsistent disclosure with respect to each other, then the document having the later effective date shall control.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] Non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying figures, which are schematic and are not intended to be drawn to scale. In the figures, each identical or nearly identical component illustrated is typically represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. In the figures:
[0015] FIG. 1 illustrates the production of DNA probes, in accordance with one set of embodiments; and
[0016] FIG. 2 illustrates a template molecule (SEQ ID NO: 3) produced in accordance with one embodiment of the invention;
[0017] FIGS. 3A-3D list optimized primers from the E. coli transcriptome, in another embodiment of the invention (the sequences, from top to bottom and left to right, by page, correspond to SEQ ID NOs: 4-57, 58-111, 112-165, and 166-201); and
[0018] FIGS. 4A-4BV show various probes in accordance with yet another embodiment of the invention. The sequences in FIGS. 4A-4BV, from top to bottom and left to right, by page, correspond to SEQ ID NOs: 202-221, 222-243, 244-265, 266-287, 288-309, 310-331, 332-353, 354-375, 376-397, 398-419, 420-441, 442-463, 464-485, 486-507, 508-529, 530-551, 552-573, 574-595, 596-617, 618-639, 640-661, 662-683, 684-705, 706-727, 728-749, 750-771, 772-793, 794-815, 816-837, 838-859, 860-881, 882-903, 904-925, and 926-937.
DETAILED DESCRIPTION
[0019] The present invention generally relates to systems and methods for producing nucleic acids. In some aspects, relatively large quantities of oligonucleotides can be produced, and in some cases, the oligonucleotides may have a variety of different sequences and/or lengths. For instance, a relatively small quantity of oligonucleotides may be amplified to produce a large amount of nucleotides. In one set of embodiments, oligonucleotides may be amplified using PCR, then transcribed to produce RNA. The RNA may then be reverse transcribed to produce DNA, and optionally, the RNA may be selectively degraded or removed, relative to the DNA. In one set of embodiments, the oligonucleotides may be chemically modified. These modifications may include, but are not limited, to the adding of fluorescent dyes or other signaling entities.
[0020] U.S. Provisional Patent Application Ser. No. 62/031,062, filed Jul. 30, 2014, entitled "Systems and Methods for Determining Nucleic Acids," by Zhuang, et al. is incorporated herein by reference in its entirety.
[0021] In one aspect, the present invention is generally directed to in vitro methods of amplifying a plurality of oligonucleotides. In some cases, relatively large numbers of unique oligonucelotides within a plurality of oligonucleotides may be amplified. For instance, a plurality of oligonucleotides to be amplified may include 10, 100, 1,000, or more unique sequences.
[0022] In addition, in some embodiments, the oligonucleotides may be amplified without selective amplification of some oligonucleotides over others, e.g., due to competitive effects.
[0023] Although some drift may occur, it is desired that the relative ratios of the oligonucleotides within a plurality of oligonucleotides stay substantially the same after amplification, at least for some applications. However, in many amplification techniques, due to differences in binding or affinity of different oligonucleotides, some oligonucleotides may be amplified to a greater degree than others, and thus, specific techniques need to be utilized to reduce or eliminate this problem, for example, by separately amplifying each of the oligonucleotides before combining them together to form the plurality of oligonucleotides. In contrast, as is discussed herein, in certain embodiments, a plurality of oligonucleotides can be amplified without causing substantial alterations or changes in the ratios of the oligonucleotides, without requiring separation of the oligonucleotides, separate growth of the oligonucleotides, or other cumbersome techniques.
[0024] Referring now to FIG. 1, one example of an embodiment of the invention is now illustrated. In this figure, a plurality of oligonucleotides 10 is provided. This may include 1, 10, 100, 1,000, 10,000, 100,000, or any other suitable number of unique oligonucleotide sequences. Of course, more than one copy of any particular unique oligonucleotide may also be present as well within the plurality of oligonucleotides. The unique oligonucleotides may have the same or different lengths. In some cases, the plurality of oligonucleotides have an overall average length (number average or arithmetic mean) of less than 200 nt (nucleotides), although longer average lengths are also possible in some embodiments.
[0025] The plurality of oligonucleotides 10 may initially be amplified, using PCR (polymerase chain reaction) or another suitable oligonucleotide amplification method, to produce a plurality of amplified oligonucleotides 20. In some cases, PCR may be used to generate thousands to millions of copies per oligonucleotide within the plurality of oligonucleotides. In some embodiments, the plurality of oligonucleotides may be amplified while still contained in a common solution, for instance, without requiring separation of the oligonucleotides prior to amplification, e.g., as is required in certain techniques such as emulsion PCR.
[0026] Within a common solution, while it is possible that different oligonucleotides of the plurality of oligonucleotides may be amplified at different rates (e.g., leading to non-uniform amplification of the plurality of oligonucleotides, and the potential loss of complexity or species within the plurality of oligonucleotides during amplification), in certain embodiments, this can be reduced or minimized through the use of various oligonucleotide structures and/or through the use of certain types of PCR techniques, as is discussed herein.
[0027] As an example, in one set of embodiments, the plurality of oligonucleotides may all be chosen to minimize competitive effects, e.g., as caused by differences in binding or affinity of the oligonucleotides to reagents within the common solution or the preferential enzymatic amplification of some sequence features. For example, in one set of embodiments, the plurality of oligonucleotides may be chosen to have similar lengths and/or sequences.
[0028] As is shown in FIG. 1, the plurality of oligonucleotides may each contain one or more index regions 15, 16 on one or both ends of the oligonucleotides that can be recognized by certain reagents. In some cases, the oligonucleotides of the plurality of oligonucleotides may have one or more index regions to which suitable primers can interact with in order to allow PCR or other amplification to occur. In some embodiments, these index regions can be used to selectively produce DNA probes only from subset of the plurality of oligonucleotides 10.
[0029] These index regions can also be used in some instances to add additional sequences to that of the plurality of oligonucleotides, e.g., as is shown in FIG. 1, oligonucleotide 11 may include an index region 15, to which a sequence 17 containing a T7 promoter can bind and be introduced into the amplified oligonucleotides (e.g., as region 23). Various sequences may thus be applied to the plurality of oligonucleotides that include a portion able to bind an index region. In some cases, if substantially all of the plurality of oligonucleotides contain similar or identical index regions, the relative affinities or binding to the index regions of the oligonucleotides by enzymes such as polymerases may be substantially similar or identical, which may allow for relatively uniform amplification to occur. The plurality of oligonucleotides may also contain other different regions that can be varied to produce a plurality of unique oligonucleotides, e.g., region 12. These regions can vary in terms of length and/or sequence, etc.
[0030] In some embodiments, the amount of amplification that occurs may be carefully controlled by monitoring the PCR amplification reaction, e.g., using techniques such as real-time PCR. This may occur, for example, using oligonucleotides having common index regions, substantially similar lengths and/or sequences, etc., including those previously discussed, or with other suitable pluralities of oligonucleotides. For instance, in some embodiments, the PCR reaction may be monitored by illuminating the solution containing the oligonucleotides with suitable light and determining the amount of fluorescence that is present, which can be related to the DNA present within the sample. Techniques for monitoring PCR reactions, such as real-time PCR methodologies, are known to those of ordinary skill in the art. The PCR reaction can also be controlled, in some embodiments, by controlling the amount and/or concentration of nucleotides and/or cofactors that are present.
[0031] After amplification, the plurality of amplified oligonucleotides 20 may be transcribed to produce a plurality of RNAs 30, as is shown in the example of FIG. 1. This may be performed, for example, by exposing the amplified oligonucleotides to a suitable RNA polymerase, such as T7 RNA polymerase, that can transcribe the oligonucleotides to produce corresponding RNA. The amount of RNA production can be controlled in some embodiments by controlling the amount and/or concentration of nucleotides and/or cofactors that are present as well as the duration of the in vitro transcription reaction.
[0032] The plurality of RNAs 30, may then be used to produce additional amounts of DNA 40, e.g., by using reverse transcription. For example a suitable enzyme, such as reverse transcriptase, may be used to perform the reverse transcription. In some cases, primers may be used to facilitate transcription, and in some embodiments, the primers may also be used to attach additional entities to the DNA. For example, signaling entities may be attached, as is shown with signaling entity 48 in FIG. 1. Alternatively, additional nucleic acid sequences can also be attached, which can serve to recruit additional oligonucleotides via Watson-Crick base-pairing. The amount of DNA that is produced can be controlled, for example, by controlling the amount and/or concentration of nucleotides and/or cofactors that are present as well as the duration and temperature of the reverse transcription reaction.
[0033] In some embodiments, multiple copies of DNA may be produced from each RNA molecule. In addition, optionally, the RNA may then be removed or selectively degraded, relative to the DNA, for example, through alkaline hydrolysis, enzymatic digestion, or other techniques.
[0034] Accordingly, in certain aspects, the present invention is generally directed to systems and methods of amplifying a plurality of oligonucleotides. In one set of embodiments, relatively large quantities or masses of oligonucleotides can be produced as is discussed herein, e.g., at least about 10.sup.-3 pmol, at least about 10.sup.-2 pmol, at least about 10.sup.-1 pmol, at least about 10.sup.0 pmol, at least about 10.sup.1 pmol, at least about 10.sup.2 pmol, at least about 10.sup.3 pmol, etc. In addition, in some embodiments, the plurality of oligonucleotides may be substantially diverse. For example, the plurality of oligonucleotides may include at least about 10.sup.1, at least about 10.sup.2, at least about 10.sup.3, at least about 10.sup.4, at least about 10.sup.5, or at least about 10.sup.6 unique sequences of oligonucleotides, even after amplification to the amounts discussed above. (It should also be noted that a plurality or population of oligonucleotides may include more than one copy of a given unique oligonucleotide sequence.) In contrast, certain prior art techniques are able to amplify large numbers of unique oligonucleotides, but to only small quantities or masses (e.g., to amounts of around 10.sup.-3 pmol or less), or are able to produce large quantities or masses of oligonucleotides, but only for 1 or a few unique sequences (e.g., less than 10 sequences).
[0035] As discussed, in certain embodiments, a plurality of oligonucleotides, which may include a plurality of unique sequences of oligonucleotides such as those described above, may be amplified without substantial selective amplification of some oligonucleotide sequences over others, e.g., due to competitive effects, unlike in many prior art techniques. Although some drift may occur during the amplification process, the drift may be relatively small. For example, in certain embodiments, the ratios or percentages of a representative unique oligonucleotide sequence, relative to the starting overall population, on the average, may change upon amplification by no more than about 10%, no more than about 8%, no more than about 6%, no more than about 5%, no more than about 4%, no more than about 3%, no more than about 2%, no more than about 1%, etc., relative to the starting ratio or percentage of the oligonucleotide sequence, prior to amplification. However, it should be noted that the oligonucleotide sequence itself, prior to any amplification, may also exhibit some variability, which is not included in the above numbers.
[0036] The unique oligonucleotides within a plurality of oligonucleotides may have the same or different lengths. If more than one unique oligonucleotide is present, then the unique oligonucleotides may independently have the same or different lengths. For example, in some cases, a plurality of oligonucleotides may have an average length (number average) of at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 50, at least 60, at least 65, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, at least 250, at least 300, at least 350, at least 400, or at least 450 nucleotides. In some cases, the average length may be no more than 500, no more than 450, no more than 400, no more than 350, no more than 300, no more than 250, no more than 200, no more than 175, no more than 150, no more than 125, no more than 100, be no more than 75, no more than 60, no more than 65, no more than 60, no more than 55, no more than 50, no more than 45, no more than 40, no more than 35, no more than 30, no more than 20, or no more than 10 nucleotides. Combinations of any of these are also possible, e.g., the average length may be between 10 and 30 nucleotides, between 20 and 40 nucleotides, between 5 and 50 nucleotides, between 10 and 200 nucleotides, or between 25 and 35 nucleotides, between 10 and 300 nucleotides, etc.
[0037] In one set of embodiments, any suitable technique may be used to amplify the plurality of oligonucleotides. In some cases, for each oligonucleotide to be amplified, at least about 100, at least about 300, at least about 500, at least about 1,000, at least about 3,000, at least about 5,000, at least about 10,000, at least about 30,000, at least about 50,000 at least about 100,000, at least about 300,000, at least about 500,000, at least about 1,000,000 copies, at least about 3,000,000 copies, at least about 5,000,000 copies, at least about 10,000,000 copies, at least about 30,000,000 copies, at least about 50,000,000 copies, or at least about 100,000,000 copies of the oligonucleotide may be produced using any of the amplification techniques discussed herein (e.g., including PCR amplification, in vitro transcription etc.). As discussed, in some cases, the amplification may occur without substantial selective amplification of some oligonucleotide sequences over others.
[0038] Any suitable technique may be used to generate the plurality of oligonucleotides. For example, the plurality of oligonucleotides may be synthetically produced, grown within a cell, grown on a substrate (e.g., in an array), or the like. Techniques for producing oligonucleotides are known to those of ordinary skill in the art. The plurality of oligonucleotides may also be computationally designed in some embodiments.
[0039] In one embodiment, the oligonucleotides may be amplified using PCR (polymerase chain reaction). In some cases, the oligonucleotides may be amplified while contained in a common liquid or solution. This is to be contrasted with certain PCR techniques, such as emulsion PCR or digital PCR, which requires separation of the oligonucleotides, e.g., into separate compartments or droplets, prior to amplification so as to prevent relatively selective amplification of certain oligonucleotides from occurring. However, surprisingly, it has been found that such separation is not required, and other techniques (such as is described herein) may be used to prevent or reduce selective amplification while keeping the oligonucleotides together within a common solution.
[0040] As mentioned, in some cases, by using certain oligonucleotide structures and/or certain types of PCR techniques, the amount of selective amplification that may occur may be reduced or eliminated. For instance, in one set of embodiments, oligonucleotides are chosen to minimize competitive effects. For instance, the oligonucleotides may have substantially the same lengths, and/or share identical or similar portions or regions.
[0041] For example, in one set of embodiments, the oligonucleotides may have a distribution of lengths such that no more than about 10%, no more than about 5%, no more than about 3%, or no more than about 1% of the oligonucleotides has a length that is less than about 80% or greater than about 120%, less than about 90% or greater than about 110%, or less than about 95% or greater than about 105% of the overall average length of the plurality of nucleotides.
[0042] In another set of embodiments the oligonucleotides may share one or more regions, such as index regions, that are identical or substantially similar. The oligonucleotides sharing index or other regions may have substantially the same lengths, as discussed above, or different lengths. In some embodiments, the oligonucleotides may comprise at least two index regions that each are identical or substantially similar, surrounding a variable region having different nucleotide sequences, and optionally, different lengths. For example, the oligonucleotides may include, in sequence, a first region that is identical or substantially similar to the other oligonucleotides, a second region that is not identical, and optionally, a third region that is identical or substantially similar to the other oligonucleotides. In some embodiments, competition of oligonucleotides may be controlled by using oligonucleotides selected to reduce amplification bias. For instance, in some cases, groups of oligonucleotides that have similar compositions may be amplified together.
[0043] In some cases, the index regions may have a length of greater than 5, 7, 10, 12, 14, 16, 18, or 20 nucleotides, and/or have a length of less than 30, 28, 25, 22, 20, 18, 16, 14, 12, or 10 nucleotides. For instance, the regions that are identical or substantially similar may have a length of between 18 and 22 nucleotides. The regions may be identical, or differ by no more than 1, 2, 3, 4, or 5 nucleotides (consecutively or non-consecutively) within the region.
[0044] In certain embodiments, primer sequences may be added to facilitate the PCR reaction. For example, the primer sequence may include sequences substantially complementary to a region within the oligonucleotides, e.g., an index region. A variety of such sequences suitable for PCR or in vitro transcription may be readily obtained commercially.
[0045] In some embodiments, the primer sequence may also include other sequences, e.g., promoter sequences or other sequences that may be added to the oligonucleotide during PCR amplification, such as is shown in FIG. 1 with a T7 promoter. Accordingly, oligonucleotides comprising the original sequence and one or more promoter sequences may be produced in certain cases. Besides the T7 promoter, other suitable promoters that may be used include, but are not limited to, T3 promoters or SP6 promoters. Such promoters may be useful, for example, to facilitate transcription to produce RNA, as is discussed in more detail below. In addition, in some embodiments, more than one promoter may be added.
[0046] In one set of embodiments, more than one sequence containing a PCR primer may be used, e.g., to amplify different subsets of the plurality of oligonucleotides. If more than one primer-containing sequence is used, the PCR primers contained on each of them may be the same or different. Examples of suitable PCR primers include those described herein. Thus, for example, in one set of embodiments, for example, the plurality of oligonucleotides may include different subpools having different index regions or other regions as discussed above, which may be selectively amplified through the use of an appropriate sequence including a PCR primer. Any suitable number of subpools may be created for a plurality of oligonucleotides. For example, at least 1, 2, 4, 10, 20, 96, 100, or 192 subpools of the plurality oligonucleotides may be selective amplified, through the use of specific PCR primers.
[0047] Thus, in some cases, the oligonucleotides may be formed into "pools" or groups or sets of oligonucleotides within the plurality of oligonucleotides that share one or more common features, such as an index region or other identical sequence. For instance, the common feature in a group or set of oligonucleotides may have an identical sequence of nucleotides of at least 5, 7, 10, 12, 14, 16, 18, or 20 nucleotides, and/or less than 30, 28, 25, 22, 20, 18, 16, 14, 12, or 10 nucleotides. For instance, the common region that is identical or substantially similar in a group of oligonucleotides may have a length of between 18 and 22 nucleotides. The common regions may be identical, or differ by no more than 1, 2, 3, 4, or 5 nucleotides (consecutively or non-consecutively) within the region. In some embodiments, each group or pool may contain two (or more) unique index regions that are not used in any other pool, e.g., to reduce the contamination of off-target amplified products from the amplification products of another.
[0048] In certain embodiments, PCR amplification may be monitored, and controlled to reduce or minimize selective amplification. For example, in one set of embodiments, real-time PCR techniques may be used. In some embodiments, the extent of the PCR reaction may be monitored or controlled, for example, by illuminating the solution containing the oligonucleotides with suitable light and determining the amount of fluorescence that is present to monitor the PCR reaction. Accordingly, for example, the reaction conditions may be controlled such that the oligonucleotides react in conditions that minimize the amount of selective amplification, for example, by providing an excess of nucleotides, ions (e.g., Mg.sup.2+), enzyme, etc. Once the oligonucleotide concentrations have reached the point where competitive effects may start to occur, the reaction may be stopped before significant selective amplification begins.
[0049] After amplification as discussed above, the amplified oligonucleotides may then be transcribed to produce RNA. Further amplification may also occur in this step. For instance, in some cases, each oligonucleotide can be used to produce, on the average, at least about 50, at least about 100, at least about 300, at least about 500, at least about 1,000, at least about 3,000, at least about 5,000, at least about 10,000, at least about 30,000, at least about 50,000 at least about 100,000, at least about 300,000, at least about 500,000 or at least about 1,000,000 transcribed RNA molecules. In some cases, the mass of RNA that is produced may be at least about 10, at least about 20, at least about 30, at least about 50, at least about 100, at least about 200, at least about 300, or at least about 500 times the mass of the oligonucleotides. Thus, for example, one microgram of oligonucleotides may be converted into at least 10 micrograms, at least 30 micrograms, or at least 100 micrograms of RNA.
[0050] In one set of embodiments, transcription may occur in vitro by exposing the amplified oligonucleotides to a suitable RNA polymerase. A variety of RNA polymerases are available commercially, including T7, T3, or SP6 RNA polymerases. Other non-limiting examples of RNA polymerases include RNA polymerase I, RNA polymerase II, RNA polymerase III, RNA polymerase IV, or RNA polymerase V. The RNA polymerase may arise from any suitable source, e.g., bacteria, viruses, or eukaryotes. In some embodiments, more than one RNA polymerase may be used. In addition, as previously discussed, in some embodiments, the amplified oligonucleotides may include promoter sequences, such as one or more of T7, T3, or SP6 promoter sequences, that can be used to facilitate the transcription process. Those of ordinary skill in the art will be aware of suitable conditions for causing transcription in vitro using RNA polymerases.
[0051] In some embodiments, the total amplification bias may be reduced by changing the relative amount of amplification produced by the PCR and the in vitro transcription. For example, the PCR can be used to produce smaller amounts of DNA than are typically produced in a PCR, to reduce the amplification bias of this process. However, this reduced yield can be compensated in some cases by increasing the duration of the in vitro transcription reaction.
[0052] The RNA may, in turn, be reverse transcribed to produce DNA. In one set of embodiments, reverse transcription may occur by exposing the RNA to a suitable reverse transcriptase enzyme. In some cases, the reverse transcriptase may be a viral reverse transcriptase, e.g., M-MLV reverse transcriptase, AMV reverse transcriptase, or the like. A variety of reverse transcriptase enzymes are commercially available. Those of ordinary skill in the art will be aware of suitable conditions for causing reverse transcription to occur.
[0053] In certain embodiments, reverse transcription may be facilitated through the use of primer-containing sequences, e.g., containing primers for reverse transcription. In some cases, the primer-containing sequences may contain other sequences or entities as well, although this is not necessarily a requirement. The primer-containing sequences may be added at any suitable point, e.g., just before starting transcription reaction. Suitable transcription primers for conducting reverse transcription may be obtained commercially.
[0054] In one set of embodiments, the primer-containing sequence may be incorporated into the DNA during production of the DNA by the reverse transcriptase. In some cases, the primer-containing sequence may contain other entities, and/or sequences suitable for attaching other entities (e.g., on the 5' or 3' ends, internally, etc.). For instance, the primer-containing sequence may contain a non-nucleic acid moiety, such as a digoxigenin moiety, a biotin moiety, etc. located on the 5' end, the 3' end, internally, or the like. In some cases, the signaling entity that can be subsequently detected or determined may be introduced to the DNA. For instance, the signaling entity may be fluorescent, or a specific nucleotide sequence that can be determined, e.g., enzymatically. Examples of signaling entities are discussed in more detail below.
[0055] In some cases, the RNA may be purified prior to reverse transcription. However, it should be noted that purification is not required, and in other embodiments, the RNA may be reverse transcribed to form DNA without any intermediate purification steps. If the RNA is purified, it may be purified using any suitable technique, e.g., by passing the RNA over a suitable column to remove oligonucleotides.
[0056] Optionally, in some embodiments, the RNA may be separated from the DNA or the DNA may be purified in some fashion. For example, the RNA may be selectively degraded, relative to the DNA. In one set of embodiments, the RNA may be degraded relative to the DNA by alkaline hydrolysis. For instance, the pH of the solution may be raised to at least about 8, at least about 9, at least about 10, etc. Any suitable alkaline may be used to raise the pH. In some cases, after degradation of the RNA, the pH may also be lowered, e.g., to about 7, to about 7.4, to physiological conditions, or the like. In some cases, techniques such as enzymatic degradation can be used to selectively degrade RNA, relative to DNA. The DNA may also be purified using techniques such as column purification, ethanol precipitation, and/or solid-phase reversible immobilization techniques. In addition, in some cases, the DNA may be concentrated, e.g., through evaporation techniques.
[0057] In addition, techniques such as those described above may be scaled-up or "numbered-up" to produce larger quantities of material. For example, a process may be repeated using multi-well techniques or by simultaneously running multiple reactions in parallel, etc. to produce larger quantities or masses of oligonucleotides. As a non-limiting example, in one embodiment, processes such as those discussed herein may be performed using multiple wells of a microtiter plate (e.g., having 96, 384, 1536, wells, etc.) to increase output.
[0058] The DNA may be used for a variety of purposes, in different embodiments of the invention. For example, in certain embodiments, the DNA may be hybridized to nucleic acid species in liquid samples, e.g., extracted from a variety of biological sources, including human. In some cases, the DNA may be used to physically separate one set of nucleic acids from another, or as primers for PCR or reverse transcription.
[0059] In addition, as previously discussed, in certain aspects, signaling entities are incorporated into DNA in some embodiments. The signaling entities may be determined for a variety of purposes. For example, the DNA that is produced may be used as a biological probe, and the signaling entities may be determined in some fashion, e.g., quantitatively or qualitatively, to determine a characteristic or feature of the probe. Examples include, but are not limited to, the position of the probe, the activity of the probe, the concentration of the probe, or the like.
[0060] In some cases, signaling entities within a sample may be determined, e.g., spatially, using a variety of techniques. In some embodiments, the signaling entities may be fluorescent, and techniques for determining fluorescence within a sample, such as fluorescence microscopy or confocal microscopy, may be used to spatially identify the positions of signaling entities within a cell. In some cases, the positions of the entities within the sample may be determined in two or even three dimensions.
[0061] In some embodiments, the spatial positions of the signaling entities may be determined at relatively high resolutions. For instance, the positions may be determined at spatial resolutions of better than about 100 micrometers, better than about 30 micrometers, better than about 10 micrometers, better than about 3 micrometers, better than about 1 micrometer, better than about 800 nm, better than about 600 nm, better than about 500 nm, better than about 400 nm, better than about 300 nm, better than about 200 nm, better than about 100 nm, better than about 90 nm, better than about 80 nm, better than about 70 nm, better than about 60 nm, better than about 50 nm, better than about 40 nm, better than about 30 nm, better than about 20 nm, or better than about 10 nm, etc.
[0062] There are a variety of techniques able to determine or image the spatial positions of entities optically, e.g., using fluorescence microscopy. In some cases, the spatial positions may be determined at super resolutions, or at resolutions better than the wavelength of light. Non-limiting examples include STORM (stochastic optical reconstruction microscopy), STED (stimulated emission depletion microscopy), NSOM (Near-field Scanning Optical Microscopy), 4Pi microscopy, SIM (Structured Illumination Microscopy), SMI (Spatially Modulated Illumination) microscopy, RESOLFT (Reversible Saturable Optically Linear Fluorescence Transition Microscopy), GSD (Ground State Depletion Microscopy), SSIM (Saturated Structured-Illumination Microscopy), SPDM (Spectral Precision Distance Microscopy), Photo-Activated Localization Microscopy (PALM), Fluorescence Photoactivation Localization Microscopy (FPALM), LIMON (3D Light Microscopical Nanosizing Microscopy), Super-resolution optical fluctuation imaging (SOFI), or the like. See, e.g., U.S. Pat. No. 7,838,302, issued Nov. 23, 2010, entitled "Sub-Diffraction Limit Image Resolution and Other Imaging Techniques," by Zhuang, et al.; U.S. Pat. No. 8,564,792, issued Oct. 22, 2013, entitled "Sub-diffraction Limit Image Resolution in Three Dimensions," by Zhuang, et al.; or Int. Pat. Apl. Pub. No. WO 2013/090360, published Jun. 20, 2013, entitled "High Resolution Dual-Objective Microscopy," by Zhuang, et al., each incorporated herein by reference in their entireties.
[0063] In addition, the signaling entity may be inactivated in some cases. For example, in some embodiments, a first secondary nucleic acid probe containing a signaling entity may be applied to a sample that can recognize a first read sequence, then the first secondary nucleic acid probe can be inactivated before a second secondary nucleic acid probe is applied to the sample. If multiple signaling entities are used, the same or different techniques may be used to inactivate the signaling entities, and some or all of the multiple signaling entities may be inactivated, e.g., sequentially or simultaneously.
[0064] Inactivation may be caused by removal of the signaling entity (e.g., from the sample, or from the nucleic acid probe, etc.), and/or by chemically altering the signaling entity in some fashion, e.g., by photobleaching the signaling entity, bleaching or chemically altering the structure of the signaling entity, etc.). For instance, in one set of embodiments, a fluorescent signaling entity may be inactivated by chemical or optical techniques such as oxidation, photobleaching, chemically bleaching, stringent washing or enzymatic digestion or reaction by exposure to an enzyme, dissociating the signaling entity from other components (e.g., a probe), chemical reaction of the signaling entity (e.g., to a reactant able to alter the structure of the signaling entity) or the like.
[0065] In some embodiments, various nucleic acid probes (including primary and/or secondary nucleic acid probes) may include one or more signaling entities. If more than one nucleic acid probe is used, the signaling entities may each by the same or different. In certain embodiments, a signaling entity is any entity able to emit light. For instance, in one embodiment, the signaling entity is fluorescent. In other embodiments, the signaling entity may be phosphorescent, radioactive, absorptive, etc. In some cases, the signaling entity is any entity that can be determined within a sample at relatively high resolutions, e.g., at resolutions better than the wavelength of visible light. The signaling entity may be, for example, a dye, a small molecule, a peptide or protein, or the like. The signaling entity may be a single molecule in some cases. If multiple secondary nucleic acid probes are used, the nucleic acid probes may comprise the same or different signaling entities.
[0066] Non-limiting examples of signaling entities include fluorescent entities (fluorophores) or phosphorescent entities, for example, cyanine dyes (e.g., Cy2, Cy3, Cy3B, Cy5, Cy5.5, Cy7, etc.), Alexa Fluor dyes, Atto dyes, photoswtichable dyes, photoactivatable dyes, fluorescent dyes, metal nanoparticles, semiconductor nanoparticles or "quantum dots", fluorescent proteins such as GFP (Green Fluorescent Protein), or photoactivabale fluorescent proteins, such as PAGFP, PSCFP, PSCFP2, Dendra, Dendra2, EosFP, tdEos, mEos2, mEos3, PAmCherry, PAtagRFP, mMaple, mMaple2, and mMaple3. Other suitable signaling entities are known to those of ordinary skill in the art. See, e.g., U.S. Pat. No. 7,838,302 or U.S. Pat. Apl. Ser. No. 61/979,436, each incorporated herein by reference in its entirety.
[0067] As used herein, the term "light" generally refers to electromagnetic radiation, having any suitable wavelength (or equivalently, frequency). For instance, in some embodiments, the light may include wavelengths in the optical or visual range (for example, having a wavelength of between about 400 nm and about 700 nm, i.e., "visible light"), infrared wavelengths (for example, having a wavelength of between about 300 micrometers and 700 nm), ultraviolet wavelengths (for example, having a wavelength of between about 400 nm and about 10 nm), or the like. In certain cases, as discussed in detail below, more than one entity may be used, i.e., entities that are chemically different or distinct, for example, structurally. However, in other cases, the entities may be chemically identical or at least substantially chemically identical.
[0068] In one set of embodiments, the signaling entity is "switchable," i.e., the entity can be switched between two or more states, at least one of which emits light having a desired wavelength. In the other state(s), the entity may emit no light, or emit light at a different wavelength. For instance, an entity may be "activated" to a first state able to produce light having a desired wavelength, and "deactivated" to a second state not able to emit light of the same wavelength. An entity is "photoactivatable" if it can be activated by incident light of a suitable wavelength. As a non-limiting example, Cy5, can be switched between a fluorescent and a dark state in a controlled and reversible manner by light of different wavelengths, i.e., 633 nm (or 642 nm, 647 nm, 656 nm) red light can switch or deactivate Cy5 to a stable dark state, while 405 nm green light can switch or activate the Cy5 back to the fluorescent state. In some cases, the entity can be reversibly switched between the two or more states, e.g., upon exposure to the proper stimuli. For example, a first stimuli (e.g., a first wavelength of light) may be used to activate the switchable entity, while a second stimuli (e.g., a second wavelength of light) may be used to deactivate the switchable entity, for instance, to a non-emitting state. Any suitable method may be used to activate the entity. For example, in one embodiment, incident light of a suitable wavelength may be used to activate the entity to emit light, i.e., the entity is "photoswitchable." Thus, the photoswitchable entity can be switched between different light-emitting or non-emitting states by incident light, e.g., of different wavelengths. The light may be monochromatic (e.g., produced using a laser) or polychromatic. In another embodiment, the entity may be activated upon stimulation by electric field and/or magnetic field. In other embodiments, the entity may be activated upon exposure to a suitable chemical environment, e.g., by adjusting the pH, or inducing a reversible chemical reaction involving the entity, etc. Similarly, any suitable method may be used to deactivate the entity, and the methods of activating and deactivating the entity need not be the same. For instance, the entity may be deactivated upon exposure to incident light of a suitable wavelength, or the entity may be deactivated by waiting a sufficient time.
[0069] Typically, a "switchable" entity can be identified by one of ordinary skill in the art by determining conditions under which an entity in a first state can emit light when exposed to an excitation wavelength, switching the entity from the first state to the second state, e.g., upon exposure to light of a switching wavelength, then showing that the entity, while in the second state can no longer emit light (or emits light at a much reduced intensity) when exposed to the excitation wavelength.
[0070] In one set of embodiments, as discussed, a switchable entity may be switched upon exposure to light. In some cases, the light used to activate the switchable entity may come from an external source, e.g., a light source such as a laser light source, another light-emitting entity proximate the switchable entity, etc. The second, light emitting entity, in some cases, may be a fluorescent entity, and in certain embodiments, the second, light-emitting entity may itself also be a switchable entity.
[0071] In some embodiments, the switchable entity includes a first, light-emitting portion (e.g., a fluorophore), and a second portion that activates or "switches" the first portion. For example, upon exposure to light, the second portion of the switchable entity may activate the first portion, causing the first portion to emit light. Examples of activator portions include, but are not limited to, Alexa Fluor 405 (Invitrogen), Alexa Fluor 488 (Invitrogen), Cy2 (GE Healthcare), Cy3 (GE Healthcare), Cy3B (GE Healthcare), Cy3.5 (GE Healthcare), or other suitable dyes. Examples of light-emitting portions include, but are not limited to, Cy5, Cy5.5 (GE Healthcare), Cy7 (GE Healthcare), Alexa Fluor 647 (Invitrogen), Alexa Fluor 680 (Invitrogen), Alexa Fluor 700 (Invitrogen), Alexa Fluor 750 (Invitrogen), Alexa Fluor 790 (Invitrogen), DiD, DiR, YOYO-3 (Invitrogen), YO-PRO-3 (Invitrogen), TOT-3 (Invitrogen), TO-PRO-3 (Invitrogen) or other suitable dyes. These may linked together, e.g., covalently, for example, directly, or through a linker, e.g., forming compounds such as, but not limited to, Cy5-Alexa Fluor 405, Cy5-Alexa Fluor 488, Cy5-Cy2, Cy5-Cy3, Cy5-Cy3.5, Cy5.5-Alexa Fluor 405, Cy5.5-Alexa Fluor 488, Cy5.5-Cy2, Cy5.5-Cy3, Cy5.5-Cy3.5, Cy7-Alexa Fluor 405, Cy7-Alexa Fluor 488, Cy7-Cy2, Cy7-Cy3, Cy7-Cy3.5, Alexa Fluor 647-Alexa Fluor 405, Alexa Fluor 647-Alexa Fluor 488, Alexa Fluor 647-Cy2, Alexa Fluor 647-Cy3, Alexa Fluor 647-Cy3.5, Alexa Fluor 750-Alexa Fluor 405, Alexa Fluor 750-Alexa Fluor 488, Alexa Fluor 750-Cy2, Alexa Fluor 750-Cy3, or Alexa Fluor 750-Cy3.5. Those of ordinary skill in the art will be aware of the structures of these and other compounds, many of which are available commercially. The portions may be linked via a covalent bond, or by a linker, such as those described in detail below. Other light-emitting or activator portions may include portions having two quaternized nitrogen atoms joined by a polymethine chain, where each nitrogen is independently part of a heteroaromatic moiety, such as pyrrole, imidazole, thiazole, pyridine, quinoine, indole, benzothiazole, etc., or part of a nonaromatic amine. In some cases, there may be 5, 6, 7, 8, 9, or more carbon atoms between the two nitrogen atoms.
[0072] In certain cases, the light-emitting portion and the activator portions, when isolated from each other, may each be fluorophores, i.e., entities that can emit light of a certain, emission wavelength when exposed to a stimulus, for example, an excitation wavelength. However, when a switchable entity is formed that comprises the first fluorophore and the second fluorophore, the first fluorophore forms a first, light-emitting portion and the second fluorophore forms an activator portion that switches that activates or "switches" the first portion in response to a stimulus. For example, the switchable entity may comprise a first fluorophore directly bonded to the second fluorophore, or the first and second entity may be connected via a linker or a common entity. Whether a pair of light-emitting portion and activator portion produces a suitable switchable entity can be tested by methods known to those of ordinary skills in the art. For example, light of various wavelength can be used to stimulate the pair and emission light from the light-emitting portion can be measured to determined wither the pair makes a suitable switch.
[0073] As a non-limiting example, Cy3 and Cy5 may be linked together to form such an entity. In this example, Cy3 is an activator portion that is able to activate Cy5, the light-emission portion. Thus, light at or near the absorption maximum (e.g., near 532 nm light for Cy3) of the activation or second portion of the entity may cause that portion to activate the first, light-emitting portion, thereby causing the first portion to emit light (e.g., near 647 nm for Cy5). See, e.g., U.S. Pat. No. 7,838,302, incorporated herein by reference in its entirety. In some cases, the first, light-emitting portion can subsequently be deactivated by any suitable technique (e.g., by directing 647 nm red light to the Cy5 portion of the molecule).
[0074] Other non-limiting examples of potentially suitable activator portions include 1,5 IAEDANS, 1,8-ANS, 4-Methylumbelliferone, 5-carboxy-2,7-dichlorofluorescein, 5-Carboxyfluorescein (5-FAM), 5-Carboxynapthofluorescein, 5-Carboxytetramethylrhodamine (5-TAMRA), 5-FAM (5-Carboxyfluorescein), 5-HAT (Hydroxy Tryptamine), 5-Hydroxy Tryptamine (HAT), 5-ROX (carboxy-X-rhodamine), 5-TAMRA (5-Carboxytetramethylrhodamine), 6-Carboxyrhodamine 6G, 6-CR 6G, 6-JOE, 7-Amino-4-methylcoumarin, 7-Aminoactinomycin D (7-AAD), 7-Hydroxy-4-methylcoumarin, 9-Amino-6-chloro-2-methoxyacridine, AB Q, Acid Fuchsin, ACMA (9-Amino-6-chloro-2-methoxyacridine), Acridine Orange, Acridine Red, Acridine Yellow, Acriflavin, Acriflavin Feulgen SITSA, Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 500, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alizarin Complexon, Alizarin Red, AMC, AMCA-S, AMCA (Aminomethylcoumarin), AMCA-X, Aminoactinomycin D, Aminocoumarin, Aminomethylcoumarin (AMCA), Anilin Blue, Anthrocyl stearate, APTRA-BTC, APTS, Astrazon Brilliant Red 4G, Astrazon Orange R, Astrazon Red 6B, Astrazon Yellow 7 GLL, Atabrine, ATTO 390, ATTO 425, ATTO 465, ATTO 488, ATTO 495, ATTO 520, ATTO 532, ATTO 550, ATTO 565, ATTO 590, ATTO 594, ATTO 610, ATTO 611X, ATTO 620, ATTO 633, ATTO 635, ATTO 647, ATTO 647N, ATTO 655, ATTO 680, ATTO 700, ATTO 725, ATTO 740, ATTO-TAG CBQCA, ATTO-TAG FQ, Auramine, Aurophosphine G, Aurophosphine, BAO 9 (Bisaminophenyloxadiazole), BCECF (high pH), BCECF (low pH), Berberine Sulphate, Bimane, Bisbenzamide, Bisbenzimide (Hoechst), bis-BTC, Blancophor FFG, Blancophor SV, BOBO-1, BOBO-3, Bodipy 492/515, Bodipy 493/503, Bodipy 500/510, Bodipy 505/515, Bodipy 530/550, Bodipy 542/563, Bodipy 558/568, Bodipy 564/570, Bodipy 576/589, Bodipy 581/591, Bodipy 630/650-X, Bodipy 650/665-X, Bodipy 665/676, Bodipy Fl, Bodipy FL ATP, Bodipy Fl-Ceramide, Bodipy R6G, Bodipy TMR, Bodipy TMR-X conjugate, Bodipy TMR-X, SE, Bodipy TR, Bodipy TR ATP, Bodipy TR-X SE, BO-PRO-1, BO-PRO-3, Brilliant Sulphoflavin FF, BTC, BTC-5N, Calcein, Calcein Blue, Calcium Crimson, Calcium Green, Calcium Green-1 Ca.sup.2+ Dye, Calcium Green-2 Ca.sup.2+, Calcium Green-5N Ca.sup.2+, Calcium Green-C18 Ca.sup.2', Calcium Orange, Calcofluor White, Carboxy-X-rhodamine (5-ROX), Cascade Blue, Cascade Yellow, Catecholamine, CCF2 (GeneBlazer), CFDA, Chromomycin A, Chromomycin A, CL-NERF, CMFDA, Coumarin Phalloidin, CPM Methylcoumarin, CTC, CTC Formazan, Cy2, Cy3.1 8, Cy3.5, Cy3, Cy5.1 8, cyclic AMP Fluorosensor (FiCRhR), Dabcyl, Dansyl, Dansyl Amine, Dansyl Cadaverine, Dansyl Chloride, Dansyl DHPE, Dansyl fluoride, DAPI, Dapoxyl, Dapoxyl 2, Dapoxyl 3' DCFDA, DCFH (Dichlorodihydrofluorescein Diacetate), DDAO, DHR (Dihydorhodamine 123), Di-4-ANEPPS, Di-8-ANEPPS (non-ratio), DiA (4-Di-16-ASP), Dichlorodihydrofluorescein Diacetate (DCFH), DiD--Lipophilic Tracer, DiD (DiIC18(5)), DIDS, Dihydorhodamine 123 (DHR), DiI (DiIC18(3)), Dinitrophenol, DiO (DiOC18(3)), DiR, DiR (DiIC18(7)), DM-NERF (high pH), DNP, Dopamine, DTAF, DY-630-NHS, DY-635-NHS, DyLight 405, DyLight 488, DyLight 549, DyLight 633, DyLight 649, DyLight 680, DyLight 800, ELF 97, Eosin, Erythrosin, Erythrosin ITC, Ethidium Bromide, Ethidium homodimer-1 (EthD-1), Euchrysin, EukoLight, Europium (III) chloride, Fast Blue, FDA, Feulgen (Pararosaniline), FIF (Formaldehyd Induced Fluorescence), FITC, Flazo Orange, Fluo-3, Fluo-4, Fluorescein (FITC), Fluorescein Diacetate, Fluoro-Emerald, Fluoro-Gold (Hydroxystilbamidine), Fluor-Ruby, FluorX, FM 1-43, FM 4-46, Fura Red (high pH), Fura Red/Fluo-3, Fura-2, Fura-2/BCECF, Genacryl Brilliant Red B, Genacryl Brilliant Yellow 10GF, Genacryl Pink 3G, Genacryl Yellow SGF, GeneBlazer (CCF2), Gloxalic Acid, Granular blue, Haematoporphyrin, Hoechst 33258, Hoechst 33342, Hoechst 34580, HPTS, Hydroxycoumarin, Hydroxystilbamidine (FluoroGold), Hydroxytryptamine, Indo-1, high calcium, Indo-1, low calcium, Indodicarbocyanine (DiD), Indotricarbocyanine (DiR), Intrawhite Cf, JC-1, JO-JO-1, JO-PRO-1, LaserPro, Laurodan, LDS 751 (DNA), LDS 751 (RNA), Leucophor PAF, Leucophor SF, Leucophor WS, Lissamine Rhodamine, Lissamine Rhodamine B, Calcein/Ethidium homodimer, LOLO-1, LO-PRO-1, Lucifer Yellow, Lyso Tracker Blue, Lyso Tracker Blue-White, Lyso Tracker Green, Lyso Tracker Red, Lyso Tracker Yellow, LysoSensor Blue, LysoSensor Green, LysoSensor Yellow/Blue, Mag Green, Magdala Red (Phloxin B), Mag-Fura Red, Mag-Fura-2, Mag-Fura-5, Mag-Indo-1, Magnesium Green, Magnesium Orange, Malachite Green, Marina Blue, Maxilon Brilliant Flavin 10 GFF, Maxilon Brilliant Flavin 8 GFF, Merocyanin, Methoxycoumarin, Mitotracker Green FM, Mitotracker Orange, Mitotracker Red, Mitramycin, Monobromobimane, Monobromobimane (mBBr-GSH), Monochlorobimane, MPS (Methyl Green Pyronine Stilbene), NBD, NBD Amine, Nile Red, Nitrobenzoxadidole, Noradrenaline, Nuclear Fast Red, Nuclear Yellow, Nylosan Brilliant lavin EBG, Oregon Green, Oregon Green 488-X, Oregon Green, Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, Pararosaniline (Feulgen), PBFI, Phloxin B (Magdala Red), Phorwite AR, Phorwite BKL, Phorwite Rev, Phorwite RPA, Phosphine 3R, PKH26 (Sigma), PKH67, PMIA, Pontochrome Blue Black, POPO-1, POPO-3, PO-PRO-1, PO-PRO-3, Primuline, Procion Yellow, Propidium lodid (PI), PyMPO, Pyrene, Pyronine, Pyronine B, Pyrozal Brilliant Flavin 7GF, QSY 7, Quinacrine Mustard, Resorufin, RH 414, Rhod-2, Rhodamine, Rhodamine 110, Rhodamine 123, Rhodamine 5 GLD, Rhodamine 6G, Rhodamine B, Rhodamine B 200, Rhodamine B extra, Rhodamine BB, Rhodamine BG, Rhodamine Green, Rhodamine Phallicidine, Rhodamine Phalloidine, Rhodamine Red, Rhodamine WT, Rose Bengal, S65A, S65C, S65L, S65T, SBFI, Serotonin, Sevron Brilliant Red 2B, Sevron Brilliant Red 4G, Sevron Brilliant Red B, Sevron Orange, Sevron Yellow L, SITS, SITS (Primuline), SITS (Stilbene Isothiosulphonic Acid), SNAFL calcein, SNAFL-1, SNAFL-2, SNARF calcein, SNARF1, Sodium Green, SpectrumAqua, SpectrumGreen, SpectrumOrange, Spectrum Red, SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium), Stilbene, Sulphorhodamine B can C, Sulphorhodamine Extra, SYTO 11, SYTO 12, SYTO 13, SYTO 14, SYTO 15, SYTO 16, SYTO 17, SYTO 18, SYTO 20, SYTO 21, SYTO 22, SYTO 23, SYTO 24, SYTO 25, SYTO 40, SYTO 41, SYTO 42, SYTO 43, SYTO 44, SYTO 45, SYTO 59, SYTO 60, SYTO 61, SYTO 62, SYTO 63, SYTO 64, SYTO 80, SYTO 81, SYTO 82, SYTO 83, SYTO 84, SYTO 85, SYTOX Blue, SYTOX Green, SYTOX Orange, Tetracycline, Tetramethylrhodamine (TAMRA), Texas Red, Texas Red-X conjugate, Thiadicarbocyanine (DiSC3), Thiazine Red R, Thiazole Orange, Thioflavin 5, Thioflavin S, Thioflavin TCN, Thiolyte, Thiozole Orange, Tinopol CBS (Calcofluor White), TMR, TO-PRO-1, TO-PRO-3, TO-PRO-5, TOTO-1, TOTO-3, TRITC (tetramethylrodamine isothiocyanate), True Blue, TruRed, Ultralite, Uranine B, Uvitex SFC, WW 781, X-Rhodamine, XRITC, Xylene Orange, Y66F, Y66H, Y66W, YO-PRO-1, YO-PRO-3, YOYO-1, YOYO-3, SYBR Green, Thiazole orange (interchelating dyes), or combinations thereof.
[0075] In some aspects, the nucleotides can be used to study a sample, such as a biological sample. For instance, the nucleotides may be used to determine nucleic acids within a cell or other sample. The sample may include a cell culture, a suspension of cells, a biological tissue, a biopsy, an organism, or the like. The sample may also be cell-free but nevertheless contain nucleic acids. If the sample contains a cell, the cell may be a human cell, or any other suitable cell, e.g., a mammalian cell, a fish cell, an insect cell, a plant cell, or the like. More than one cell may be present in some cases.
[0076] The nucleic acids to be determined may be, for example, DNA, RNA, or other nucleic acids that are present within a cell (or other sample). The nucleic acids may be endogenous to the cell, or added to the cell. For instance, the nucleic acid may be viral, or artificially created. In some cases, the nucleic acid to be determined may be expressed by the cell. The nucleic acid is RNA in some embodiments. The RNA may be coding and/or non-coding RNA. Non-limiting examples of RNA that may be studied within the cell include mRNA, siRNA, rRNA, miRNA, tRNA, lncRNA, snoRNAs, snRNAs, exRNAs, piRNAs, or the like. In some embodiments, for example, at least some of the plurality of oligonucleotides are complementary to a portion of a specific chromosome sequence, e.g., of a human chromosome.
[0077] In some cases, a significant portion of the nucleic acid within the cell may be studied. For instance, in some cases, enough of the RNA present within a cell may be determined so as to produce a partial or complete transcriptome of the cell. In some cases, at least 4 types of mRNAs are determined within a cell, and in some cases, at least 3, at least 4, at least 7, at least 8, at least 12, at least 14, at least 15, at least 16, at least 22, at least 30, at least 31, at least 32, at least 50, at least 63, at least 64, at least 72, at least 75, at least 100, at least 127, at least 128, at least 140, at least 255, at least 256, at least 500, at least 1,000, at least 1,500, at least 2,000, at least 2,500, at least 3,000, at least 4,000, at least 5,000, at least 7,500, at least 10,000, at least 12,000, at least 15,000, at least 20,000, at least 25,000, at least 30,000, at least 40,000, at least 50,000, at least 75,000, or at least 100,000 types of mRNAs may be determined within a cell.
[0078] In some cases, the transcriptome of a cell may be determined. It should be understood that the transriptome generally encompasses all RNA molecules produced within a cell, not just mRNA. Thus, for instance, the transcriptome may also include rRNA, tRNA, etc. In some embodiments, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% of the transcriptome of a cell may be determined.
[0079] The determination of one or more nucleic acids within the cell or other sample may be qualitative and/or quantitative. In addition, the determination may also be spatial, e.g., the position of the nucleic acid within the cell or other sample may be determined in two or three dimensions. In some embodiments, the positions, number, and/or concentrations of nucleic acids within the cell (or other sample) may be determined.
[0080] One non-limiting example of such as system may be found in U.S. Provisional Patent Application Ser. No. 62/031,062, filed Jul. 30, 2014, entitled "Systems and Methods for Determining Nucleic Acids," by Zhuang, et al. incorporated herein by reference in its entirety.
[0081] The following documents are each incorporated herein by reference in their entireties: U.S. Pat. No. 7,838,302, issued Nov. 23, 2010, entitled "Sub-Diffraction Limit Image Resolution and Other Imaging Techniques," by Zhuang, et al.; U.S. Pat. No. 8,564,792, issued Oct. 22, 2013, entitled "Sub-diffraction Limit Image Resolution in Three Dimensions," by Zhuang, et al.; and Int. Pat. Apl. Pub. No. WO 2013/090360, published Jun. 20, 2013, entitled "High Resolution Dual-Objective Microscopy," by Zhuang, et al. In addition, incorporated herein by reference in their entireties are U.S. Provisional Patent Application Ser. No. 62/031,062, filed Jul. 30, 2014, entitled "Systems and Methods for Determining Nucleic Acids," by Zhuang, et al.; U.S. Provisional Patent Application Ser. No. 62/050,636, filed Sep. 15, 2014, entitled "Probe Library Construction," by Zhuang, et al.; U.S. Provisional Patent Application Ser. No. 62/142,653, filed Apr. 3, 2015, entitled "Systems and Methods for Determining Nucleic Acids," by Zhuang, et al.; and a PCT application filed on even date herewith, entitled "Systems and Methods for Determining Nucleic Acids," by Zhuang, et al.
[0082] The following examples are intended to illustrate certain embodiments of the present invention, but do not exemplify the full scope of the invention.
EXAMPLE 1
[0083] This example illustrates high-throughput hybridization construction of DNA probes, according to certain embodiments of the invention.
[0084] Overview. This protocol uses complex libraries of oligonucleotides as templates for the enzymatic construction of large quantities of single-stranded DNA molecules that can be chemically labeled and which are designed to be hybridized to specific sets of nucleic acid targets that can vary significantly in complexity, i.e. the number of unique target sequences. The use of this protocol involves several basic steps: 1) computational design and optimization of a set of oligonucleotide sequences that will serve as the hybridization regions on the sample of interest; 2) computational design and optimization of a large set of short oligonucleotide sequences to serve as highly specific PCR primers; 3) computational construction of the template molecules; 4) synthesis of the template molecules to create the template library; 5) selection of a sub-set of in vitro template molecules from a template library via PCR; 6) in-vitro-transcription-based amplification of the in vitro template molecules into RNA, which serves as the final template for the hybridization probes; 7) reverse transcription of the RNA back into DNA using chemically-modified primers; 8) removal of the RNA via alkaline hydrolysis; and 9) purification of the chemically-modified ssDNA molecules, called probes in this example. These steps are discussed in detail below.
[0085] Construction of Probes. Selection of Hybridization Regions. The software OligoArray 2.0 was used to design a large set of potential hybridization regions in the E. coli transcriptome in this example. Briefly, this software selects hybridization regions that lie within user-specified ranges for length and melting temperature. This software also screens for off-target hybridization as well as potential secondary structure. This software was used to generate hybridization regions of 30-nt length, a melting-temperature range of 80-85.degree. C., a GC content of between 50-60%, and a secondary structure melting threshold and cross-hybridization-melting temperature of 75.degree. C. using all annotated, transcribed mRNAs in E. coli (K-12 mg1655; NC90013.2).
[0086] Design of Hundreds of Orthogonal Primers. The general hybridization probe set may require far fewer unique sequences than is provided in the complex sets of oligonucleotides typically generated by array-based synthesis--the oligopool. To exploit this disparity in complexity and significantly lower the cost per experiment, this example uses a method to embed a large number of unique template sets within a single oligopool. Briefly, each template molecule was flanked by a unique pair of PCR primers common only to the template molecules for all probes within a given set. To facilitate the embedding of hundreds of unique probe template sets within a single oligopool, a protocol was created for constructing hundreds of orthogonal PCR primers.
[0087] Specifically, the protocol starts by truncating the members of an existing library of 240,000, semi-orthogonal, 25-mer oligonucleotides to 20-nt length and selecting oligos on parameters optimal for PCR: a narrow range of predicted melting-temperature (65-70.degree. C.) and GC content (50-60%); the absence of contiguous runs of the same base longer than 4, i.e. AAAA; and the presence of a 3' GC-clamp, i.e. 2-3 G/C within the final 5 nt. BLAST was then run with these optimized primers against all annotated RNAs in the E. coli transcriptome as well as the T7 promoter (TAATACGACTCACTATAGGG) (SEQ ID NO. 1) and a common priming region (P9: CAGGCATCCGAGAGGTCTGG) (SEQ ID NO. 2) and potential primers with hits to the transcriptome with 12-nt or longer of homology, or with a hit of any length within 3-nt of the 3' end of the potential primer, were removed. Finally, the remaining primers were screened for homology to each other, again using BLAST. Any primer with longer than 11-nt of homology or with any homology within 3-nt of the 3' end of another primer was removed. These cuts reduced the original 240,000 oligos to 198 highly optimized primers for the E. coli transcriptome. The final set of 198 primers are listed in FIGS. 3A-3D.
[0088] If required, more primers could be generated using established techniques to create a larger set of initial oligonucleotides, or by relaxing the stringency of the cuts described above. Finally, by changing the transcriptome used to screen the primers, this approach can also be generalized to the generation of optimal index primers for any organism.
[0089] Template Construction. To design the template libraries used to create our probe sets, the desired RNA targets were first selected to be stained simultaneously. Individual template molecules were designed by concatenating the following sequences: i) the first of two unique primers for the appropriate mRNA group, ii) the common primer P9, iii) the site for the nicking enzyme Nb.BsmI, iv) the reverse complement of the hybridization region to the target, v) the reverse complement of the nicking enzyme Nb.BsrDI, and vi) the reverse complement of the second unique primer for the given mRNA group. FIG. 2 demonstrates this organization. Multiple probe template sets were combined into large oligopools and these pools were synthesized via CustomArray.
[0090] FIG. 2 shows an example template sequence containing a probe the mRNA, acnB. Underlined at the beginning is the sequence of the first primer, not underlined is the common P9 priming site, then underlined is the Nb.Bsml site, not underlined is the reverse complement to the hybridization region for acnB, next underlined is the reverse complement of the Nb.BsrDI site, and the final not underlined portion is the second unique primer. This template is one of 736 used to create probes to stain all mRNAs expressed in the copy number range of 1-10 per cell transcribed from the E. coli genomic locus corresponding to base pairs 1-100 kb. See FIGS. 4A-4BV for the sequences of the 736 probes.
[0091] Index PCR. The template for specific probe sets were selected from the complex oligopool via limited-cycle PCR. 0.5 to 1 ng of the complex oligopool was combined with 0.5 micromolar of each primer. The forward primer matched the priming sequence for the desired sub set while the reverse primer was a 5'concatenation of this sequence with the T7 promoter. To avoid the generation of G-quadruplets, which can be difficult to synthesize, the terminal Gs required in the T7 promoter were generated from Gs located at the 5' of the priming region where appropriate. All primers were synthesized by IDT. A 50 microliter reaction volume was amplified either using the KAPA real-time library amplification kit (KAPA Biosystems; KK2701) or via a homemade qPCR mix which included 0.8.times. EvaGreen (Biotum; 31000-T) and the hot-start Phusion polymerase (New England Biolabs; M0535S). Amplification was followed in real time using Agilent's MX300P or Biorad's CFX Connect. Individual samples were removed before the plateau in amplification, often at concentrations about 10-fold lower than would correspond to this plateau, to minimize distortion of template abundance due to over-amplification. Individual templates were purified with columns according to the manufacturer's instructions (Zymo DNA Clean and Concentrator; D4003) and eluted in RNase-free deionized water.
[0092] Amplification via in vitro transcription. The template was then amplified via in vitro transcription. Briefly, 0.5 to 1 micrograms of template DNA was amplified into 100 to 200 micrograms of RNA in a single 20-30 microliter reaction with a high yield RNA polymerase (New England Biolabs; E2040S). Reactions were supplemented with 1.times. RNase inhibitor (Promega RNasin; N2611). Amplification was typically run for 2 to 4 hours at 37.degree. C. to maximize the yield. The RNA was not purified after the reaction and was either stored at -80.degree. C. or immediately converted into DNA as described below.
[0093] Reverse Transcription. 1-2 nmol of fluorescently-labeled ssDNA probe was created from the above in vitro transcription reactions using the reverse transcriptase Maxima H-(Thermo Scientific; EP0751). This enzyme was used because of its higher processivity and temperature resistance, which allowed the conversion of large quantities of RNA into DNA within small volumes at temperatures that disfavor secondary structure formation. The unpurified RNA created above was supplemented with 1.6 mM of each dNPT, 1-2 nmol of fluorescently labeled P9 primer, 300 units of Maxima H-, 60 units of RNasin, and a final 1.times. concentration of the Maxima RT buffer. The final 75 microliter volume was incubated at 50.degree. C. for 60 minutes.
[0094] Strand Selection and Purification. The template RNA in the reaction above was then removed from the DNA via alkaline hydrolysis. 75 microliters of a solution of 0.25 M EDTA and 0.5 N NaOH was added to each reverse transcription reaction, and the sample was incubated at 95.degree. C. for 10 minutes. The reaction was immediately neutralized by purifying the ssDNA probe with a modified version of the Zymo Oligo Clean and Concentrator protocol. Specifically, the 5-microgram capacity column was replaced with a 100-microgram capacity DNA column as appropriate. The remainder of the protocol was run according to the manufacturer's instructions. Probe was eluted in 100 microliter RNase-free deionized water and evaporated in a vacuum concentrator. The final pellet was resuspend in 10 microliter RNase-free water and stored at -20.degree. C. Denaturing poly-acrylimid gel electrophoresis and absorption spectroscopy revealed that this protocol typically produces 90-100% incorporate of the fluorescent primer into full length probe and 60-75% recovery of the total fluorescent probe. Thus, without exceeding a 150-microliter reaction volume, this protocol can be used to create .about.2 nmol of fluorescent probe. The small reaction volumes were conducive to the use of high-throughput fluid handling techniques and significantly lower the cost of this reaction as compared to alternative approaches. Thus, 24-96 probes could be constructed in parallel, with minimal hands-on time, across two days, for a final cost of .about.$14 per 2 nmol of each probe set.
[0095] While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present invention.
[0096] All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
[0097] The indefinite articles "a" and "an," as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean "at least one."
[0098] The phrase "and/or," as used herein in the specification and in the claims, should be understood to mean "either or both" of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with "and/or" should be construed in the same fashion, i.e., "one or more" of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the "and/or" clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to "A and/or B", when used in conjunction with open-ended language such as "comprising" can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
[0099] As used herein in the specification and in the claims, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when separating items in a list, "or" or "and/or" shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as "only one of" or "exactly one of," or, when used in the claims, "consisting of," will refer to the inclusion of exactly one element of a number or list of elements. In general, the term "or" as used herein shall only be interpreted as indicating exclusive alternatives (i.e. "one or the other but not both") when preceded by terms of exclusivity, such as "either," "one of," "only one of," or "exactly one of." "Consisting essentially of," when used in the claims, shall have its ordinary meaning as used in the field of patent law.
[0100] As used herein in the specification and in the claims, the phrase "at least one," in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, "at least one of A and B" (or, equivalently, "at least one of A or B," or, equivalently "at least one of A and/or B") can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
[0101] It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
[0102] In the claims, as well as in the specification above, all transitional phrases such as "comprising," "including," "carrying," "having," "containing," "involving," "holding," "composed of," and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases "consisting of" and "consisting essentially of" shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
Sequence CWU
1
1
937120DNAArtificial SequenceSynthetic Polynucleotide 1taatacgact
cactataggg
20220DNAArtificial SequenceSynthetic Polynucleotide 2caggcatccg
agaggtctgg
203102DNAArtificial SequenceSynthetic Polynucleotide 3acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc agctctacaa 60gtgcggccat
ttggttcatt gcgcttctcc ggaaacatta gc
102420DNAArtificial SequenceSynthetic Polynucleotide 4cggtaggacc
ctacacatcc
20520DNAArtificial SequenceSynthetic Polynucleotide 5tgtggcgcct
aaccatacac
20620DNAArtificial SequenceSynthetic Polynucleotide 6gacaccgagc
tagaattcgg
20720DNAArtificial SequenceSynthetic Polynucleotide 7tgtcttgggt
cctcttacgg
20820DNAArtificial SequenceSynthetic Polynucleotide 8tatcacgtga
ggctccgtgt
20920DNAArtificial SequenceSynthetic Polynucleotide 9gtctacggat
ccttgcgtgt
201020DNAArtificial SequenceSynthetic Polynucleotide 10acgggtacat
tggatccact
201120DNAArtificial SequenceSynthetic Polynucleotide 11aagacgtggt
ccaccctgat
201220DNAArtificial SequenceSynthetic Polynucleotide 12tgccaggtcc
actacttggg
201320DNAArtificial SequenceSynthetic Polynucleotide 13gacccgaagg
agaatgcaaa
201420DNAArtificial SequenceSynthetic Polynucleotide 14atgtcgtctc
tcagggcttt
201520DNAArtificial SequenceSynthetic Polynucleotide 15aagggcggaa
gcactctctt
201620DNAArtificial SequenceSynthetic Polynucleotide 16tggtcccgca
tttgtacctt
201720DNAArtificial SequenceSynthetic Polynucleotide 17aagtccgtct
gctaagccat
201820DNAArtificial SequenceSynthetic Polynucleotide 18cttccagagt
cctggcatga
201920DNAArtificial SequenceSynthetic Polynucleotide 19tctaacgagc
tccgtggttg
202020DNAArtificial SequenceSynthetic Polynucleotide 20cctgggcagg
aaacaacact
202120DNAArtificial SequenceSynthetic Polynucleotide 21gcgcacacct
tagtcatagc
202220DNAArtificial SequenceSynthetic Polynucleotide 22gtgcgattgt
cacatgtgct
202320DNAArtificial SequenceSynthetic Polynucleotide 23ggcttgtcct
caattatccg
202420DNAArtificial SequenceSynthetic Polynucleotide 24cccacgtgac
ttgacttctc
202520DNAArtificial SequenceSynthetic Polynucleotide 25cctctacatg
ctccggatcc
202620DNAArtificial SequenceSynthetic Polynucleotide 26gaatagtaac
ccggtcgcaa
202720DNAArtificial SequenceSynthetic Polynucleotide 27tgggccacta
gtcttcgcta
202820DNAArtificial SequenceSynthetic Polynucleotide 28cggcacgtac
cctttacagg
202920DNAArtificial SequenceSynthetic Polynucleotide 29gatcagtgag
cctcaccaag
203020DNAArtificial SequenceSynthetic Polynucleotide 30tggtatgtga
gctctttggg
203120DNAArtificial SequenceSynthetic Polynucleotide 31agagtcacgc
atacttggga
203220DNAArtificial SequenceSynthetic Polynucleotide 32gggtcaggcg
tcatagattg
203320DNAArtificial SequenceSynthetic Polynucleotide 33agaatgtgga
ggacatgtgg
203420DNAArtificial SequenceSynthetic Polynucleotide 34tcggactgtg
agacatttcc
203520DNAArtificial SequenceSynthetic Polynucleotide 35atcaaatgcc
tcggtcgttg
203620DNAArtificial SequenceSynthetic Polynucleotide 36gcaatgctat
gctgggacaa
203720DNAArtificial SequenceSynthetic Polynucleotide 37atggaggccg
ttctctgaca
203820DNAArtificial SequenceSynthetic Polynucleotide 38gcagatgggt
gcattcattc
203920DNAArtificial SequenceSynthetic Polynucleotide 39tatgcactct
gcggatgacc
204020DNAArtificial SequenceSynthetic Polynucleotide 40gacccgggag
ttatgatacg
204120DNAArtificial SequenceSynthetic Polynucleotide 41ctcgggtagg
ctatctccaa
204220DNAArtificial SequenceSynthetic Polynucleotide 42ctgcaggtgc
tctagatgga
204320DNAArtificial SequenceSynthetic Polynucleotide 43gtccaggctc
gtcttctcga
204420DNAArtificial SequenceSynthetic Polynucleotide 44cttacctgag
cgcagttcga
204520DNAArtificial SequenceSynthetic Polynucleotide 45gttgttcgat
ccctccacca
204620DNAArtificial SequenceSynthetic Polynucleotide 46cggcagagga
taatcctagc
204720DNAArtificial SequenceSynthetic Polynucleotide 47gggagtccgg
atgttagtgc
204820DNAArtificial SequenceSynthetic Polynucleotide 48cgcatctatg
ctccgcttac
204920DNAArtificial SequenceSynthetic Polynucleotide 49aacgcgctac
ccaattctag
205020DNAArtificial SequenceSynthetic Polynucleotide 50tactggacga
ttcccgactg
205120DNAArtificial SequenceSynthetic Polynucleotide 51agcgtcgtac
ccagttaagc
205220DNAArtificial SequenceSynthetic Polynucleotide 52gagattcacg
ccctcatgag
205320DNAArtificial SequenceSynthetic Polynucleotide 53ccgctagcgt
tacctctacc
205420DNAArtificial SequenceSynthetic Polynucleotide 54ccacaccgta
tgcatttctg
205520DNAArtificial SequenceSynthetic Polynucleotide 55ccttagcgca
caaagagacg
205620DNAArtificial SequenceSynthetic Polynucleotide 56gtcctgatgg
ctttctcacg
205720DNAArtificial SequenceSynthetic Polynucleotide 57ggtcgtcggt
agatcattgc
205820DNAArtificial SequenceSynthetic Polynucleotide 58agagccggta
tgatccatcg
205920DNAArtificial SequenceSynthetic Polynucleotide 59ccggacgaag
gttgatatcc
206020DNAArtificial SequenceSynthetic Polynucleotide 60acccggtacc
tgttatcacg
206120DNAArtificial SequenceSynthetic Polynucleotide 61atcccgtctc
gttctatggg
206220DNAArtificial SequenceSynthetic Polynucleotide 62caggtgaggg
tctctccttc
206320DNAArtificial SequenceSynthetic Polynucleotide 63ccttatggaa
acgtgatgcc
206420DNAArtificial SequenceSynthetic Polynucleotide 64ggctgggcat
acatagacct
206520DNAArtificial SequenceSynthetic Polynucleotide 65agtggcggct
attaccggat
206620DNAArtificial SequenceSynthetic Polynucleotide 66tgataacgtc
cgctcgttga
206720DNAArtificial SequenceSynthetic Polynucleotide 67tacatcgttg
aggcccgttt
206820DNAArtificial SequenceSynthetic Polynucleotide 68cgttgtggca
tcagctagag
206920DNAArtificial SequenceSynthetic Polynucleotide 69actggcccac
acacttacct
207020DNAArtificial SequenceSynthetic Polynucleotide 70atcgggtcac
ggaatatgac
207120DNAArtificial SequenceSynthetic Polynucleotide 71cgtaggttca
cagatttgcg
207220DNAArtificial SequenceSynthetic Polynucleotide 72tagggcacga
gaaggtatcc
207320DNAArtificial SequenceSynthetic Polynucleotide 73actagcttgt
atcgccggat
207420DNAArtificial SequenceSynthetic Polynucleotide 74cggcggtttg
atattcgaag
207520DNAArtificial SequenceSynthetic Polynucleotide 75gccgagtgtt
tatgagcaag
207620DNAArtificial SequenceSynthetic Polynucleotide 76tctccgaaga
tccgatatcg
207720DNAArtificial SequenceSynthetic Polynucleotide 77gatgcagggc
ctaattaacg
207820DNAArtificial SequenceSynthetic Polynucleotide 78tgacgcggct
aaatactgac
207920DNAArtificial SequenceSynthetic Polynucleotide 79gcaatgcacg
ctctcctagt
208020DNAArtificial SequenceSynthetic Polynucleotide 80tggcgtcaga
tggattagga
208120DNAArtificial SequenceSynthetic Polynucleotide 81gttggcggga
gactaagaag
208220DNAArtificial SequenceSynthetic Polynucleotide 82tcgcgtctcg
tccttctacc
208320DNAArtificial SequenceSynthetic Polynucleotide 83cggtcacgtc
ggaaataacc
208420DNAArtificial SequenceSynthetic Polynucleotide 84attaacgggc
caggttactg
208520DNAArtificial SequenceSynthetic Polynucleotide 85attgtatgga
ggcgccctat
208620DNAArtificial SequenceSynthetic Polynucleotide 86gccagctttc
caagattcag
208720DNAArtificial SequenceSynthetic Polynucleotide 87acaaccgcgt
gttacaaggc
208820DNAArtificial SequenceSynthetic Polynucleotide 88gctaatgttt
ccggagaagc
208920DNAArtificial SequenceSynthetic Polynucleotide 89gaagtatccg
gcatcacagc
209020DNAArtificial SequenceSynthetic Polynucleotide 90tcgttacgga
ctttcacgac
209120DNAArtificial SequenceSynthetic Polynucleotide 91gccattctga
catacccaga
209220DNAArtificial SequenceSynthetic Polynucleotide 92gtatttgaac
cggccagctg
209320DNAArtificial SequenceSynthetic Polynucleotide 93ggttgtgggc
catatccaat
209420DNAArtificial SequenceSynthetic Polynucleotide 94ggcgttccat
cgaaactcta
209520DNAArtificial SequenceSynthetic Polynucleotide 95ggccatcgac
ttagattcca
209620DNAArtificial SequenceSynthetic Polynucleotide 96ggtgctcctg
ccattatagg
209720DNAArtificial SequenceSynthetic Polynucleotide 97tgtcgacgtg
cggaaagtag
209820DNAArtificial SequenceSynthetic Polynucleotide 98gccgcacgag
tatgctactg
209920DNAArtificial SequenceSynthetic Polynucleotide 99tgctgccgct
tactactgct
2010020DNAArtificial SequenceSynthetic Polynucleotide 100tagcactctt
ctggccatcg
2010120DNAArtificial SequenceSynthetic Polynucleotide 101cggtaatcgg
ttcaccagtg
2010220DNAArtificial SequenceSynthetic Polynucleotide 102tttagtgcct
ggctccgttg
2010320DNAArtificial SequenceSynthetic Polynucleotide 103ggagttacag
ccactttcgg
2010420DNAArtificial SequenceSynthetic Polynucleotide 104gtgtggacgg
aacctgacaa
2010520DNAArtificial SequenceSynthetic Polynucleotide 105cacacgtgga
attgttctgc
2010620DNAArtificial SequenceSynthetic Polynucleotide 106cttgtacatg
gagggcgact
2010720DNAArtificial SequenceSynthetic Polynucleotide 107aatccggtgt
acaggttccc
2010820DNAArtificial SequenceSynthetic Polynucleotide 108aggtgcgacg
atatacacca
2010920DNAArtificial SequenceSynthetic Polynucleotide 109actgcatatg
accgctgcaa
2011020DNAArtificial SequenceSynthetic Polynucleotide 110ccttccatta
gccgagatca
2011120DNAArtificial SequenceSynthetic Polynucleotide 111gacgcgagga
gtgatcgact
2011220DNAArtificial SequenceSynthetic Polynucleotide 112cgaccctcac
acatttgggt
2011320DNAArtificial SequenceSynthetic Polynucleotide 113cgctcccgta
ttcttctgtg
2011420DNAArtificial SequenceSynthetic Polynucleotide 114cagggatagt
caggccagtg
2011520DNAArtificial SequenceSynthetic Polynucleotide 115cgtaatgagt
gcttcgccat
2011620DNAArtificial SequenceSynthetic Polynucleotide 116ctcgtctcgt
ggaacacatg
2011720DNAArtificial SequenceSynthetic Polynucleotide 117tatgctgggc
agtaatcagg
2011820DNAArtificial SequenceSynthetic Polynucleotide 118gcatctcgta
gcatcctgct
2011920DNAArtificial SequenceSynthetic Polynucleotide 119agtatggtac
cgggaacagc
2012020DNAArtificial SequenceSynthetic Polynucleotide 120accattctcg
caactcgcta
2012120DNAArtificial SequenceSynthetic Polynucleotide 121cgtgggcgaa
gtacttggtc
2012220DNAArtificial SequenceSynthetic Polynucleotide 122ccggacgtct
tcgataatgc
2012320DNAArtificial SequenceSynthetic Polynucleotide 123tgatgctctt
tgcagttcgg
2012420DNAArtificial SequenceSynthetic Polynucleotide 124atgccggtca
taacagtgtc
2012520DNAArtificial SequenceSynthetic Polynucleotide 125tggtggctcg
ttatcacaag
2012620DNAArtificial SequenceSynthetic Polynucleotide 126tctgaagcgt
ggccattacc
2012720DNAArtificial SequenceSynthetic Polynucleotide 127catatgccgg
acattcagct
2012820DNAArtificial SequenceSynthetic Polynucleotide 128actaatggtc
ctgcggcata
2012920DNAArtificial SequenceSynthetic Polynucleotide 129ggtgccgtgt
tgcatgtaag
2013020DNAArtificial SequenceSynthetic Polynucleotide 130aagcggtcgt
ggtttatacc
2013120DNAArtificial SequenceSynthetic Polynucleotide 131gccaccttgt
atggtatcga
2013220DNAArtificial SequenceSynthetic Polynucleotide 132taatgcttag
gcccgtcggt
2013320DNAArtificial SequenceSynthetic Polynucleotide 133gacgcgacgg
attatttagg
2013420DNAArtificial SequenceSynthetic Polynucleotide 134ggtcgcgccc
atatataagg
2013520DNAArtificial SequenceSynthetic Polynucleotide 135tgactacggt
tgggtgcatc
2013620DNAArtificial SequenceSynthetic Polynucleotide 136tcaggcgctc
attgtatgtc
2013720DNAArtificial SequenceSynthetic Polynucleotide 137gtagatactc
ccggcccgaa
2013820DNAArtificial SequenceSynthetic Polynucleotide 138gcagcactta
gggcagcatc
2013920DNAArtificial SequenceSynthetic Polynucleotide 139cgcgggaacc
atattaggaa
2014020DNAArtificial SequenceSynthetic Polynucleotide 140gatccatggc
cagttcgtat
2014120DNAArtificial SequenceSynthetic Polynucleotide 141gtgcgccaaa
ggacttagtg
2014220DNAArtificial SequenceSynthetic Polynucleotide 142gatcccgcta
ttcaccgatt
2014320DNAArtificial SequenceSynthetic Polynucleotide 143gcatagatgg
ttcacccgta
2014420DNAArtificial SequenceSynthetic Polynucleotide 144gtctataagc
cgcgctgcaa
2014520DNAArtificial SequenceSynthetic Polynucleotide 145gcggagtatg
ccatcatgag
2014620DNAArtificial SequenceSynthetic Polynucleotide 146tgccgcgatc
atctactatg
2014720DNAArtificial SequenceSynthetic Polynucleotide 147gaccgggtat
tcgacgtcat
2014820DNAArtificial SequenceSynthetic Polynucleotide 148gcagtgcggg
tagatacgct
2014920DNAArtificial SequenceSynthetic Polynucleotide 149aggcgtgggt
agcaacgtat
2015020DNAArtificial SequenceSynthetic Polynucleotide 150gctcattgga
ctttctccca
2015120DNAArtificial SequenceSynthetic Polynucleotide 151aaggaccacg
tatctgcatg
2015220DNAArtificial SequenceSynthetic Polynucleotide 152atctgatagt
gccgcgacgt
2015320DNAArtificial SequenceSynthetic Polynucleotide 153tgacctgcac
ggatagtagg
2015420DNAArtificial SequenceSynthetic Polynucleotide 154gttattcgca
gtccttgggt
2015520DNAArtificial SequenceSynthetic Polynucleotide 155gtgcagtgtg
cttaaatccg
2015620DNAArtificial SequenceSynthetic Polynucleotide 156cgcgggtgtt
aaataaggac
2015720DNAArtificial SequenceSynthetic Polynucleotide 157gcgaggcgtg
gtaatagtca
2015820DNAArtificial SequenceSynthetic Polynucleotide 158caaggcgcaa
acatagacag
2015920DNAArtificial SequenceSynthetic Polynucleotide 159ggaacaaggg
cgtctatgtc
2016020DNAArtificial SequenceSynthetic Polynucleotide 160gcagtgcgga
taagctacac
2016120DNAArtificial SequenceSynthetic Polynucleotide 161agagatgcgt
gtaggcgatt
2016220DNAArtificial SequenceSynthetic Polynucleotide 162ccctttcgag
ctaagtttgg
2016320DNAArtificial SequenceSynthetic Polynucleotide 163ccttaagcaa
cccgtcgatg
2016420DNAArtificial SequenceSynthetic Polynucleotide 164ttgctcgtga
ctgaacaacg
2016520DNAArtificial SequenceSynthetic Polynucleotide 165ggtcgtgcgt
ataagcctca
2016620DNAArtificial SequenceSynthetic Polynucleotide 166cggatggtct
tcgtttaacc
2016720DNAArtificial SequenceSynthetic Polynucleotide 167ggcacggtgg
ctagtaacga
2016820DNAArtificial SequenceSynthetic Polynucleotide 168gccggcccaa
ctgatagtag
2016920DNAArtificial SequenceSynthetic Polynucleotide 169tcgacttcgg
tcacctttcc
2017020DNAArtificial SequenceSynthetic Polynucleotide 170cgggtcgata
ctttcctcgt
2017120DNAArtificial SequenceSynthetic Polynucleotide 171gtgccgtgtg
taatatccga
2017220DNAArtificial SequenceSynthetic Polynucleotide 172cgcgcctgga
ataactccta
2017320DNAArtificial SequenceSynthetic Polynucleotide 173gtcagggaac
cgtttcttca
2017420DNAArtificial SequenceSynthetic Polynucleotide 174cttgtcatgt
acccgaatgg
2017520DNAArtificial SequenceSynthetic Polynucleotide 175cgacctggct
acgtagaacc
2017620DNAArtificial SequenceSynthetic Polynucleotide 176ctagctaaag
ggccgtgcgt
2017720DNAArtificial SequenceSynthetic Polynucleotide 177aagtattagc
gcggcaacgt
2017820DNAArtificial SequenceSynthetic Polynucleotide 178ggttgcgtgc
cacttaaagc
2017920DNAArtificial SequenceSynthetic Polynucleotide 179ggaggttcgg
ttgtactgca
2018020DNAArtificial SequenceSynthetic Polynucleotide 180gttgtcgtcc
tccatcggtt
2018120DNAArtificial SequenceSynthetic Polynucleotide 181gggacggaac
tacacatgtg
2018220DNAArtificial SequenceSynthetic Polynucleotide 182gatccatcct
gattgagggt
2018320DNAArtificial SequenceSynthetic Polynucleotide 183cttcatggta
ccggttgaga
2018420DNAArtificial SequenceSynthetic Polynucleotide 184tcggtcggct
gtaaggatac
2018520DNAArtificial SequenceSynthetic Polynucleotide 185attgcacgag
gtcagagtcg
2018620DNAArtificial SequenceSynthetic Polynucleotide 186gcttagatcc
gctcgctacg
2018720DNAArtificial SequenceSynthetic Polynucleotide 187cggctggcct
actgtagaga
2018820DNAArtificial SequenceSynthetic Polynucleotide 188gcaacatgac
ctgtcatcgc
2018920DNAArtificial SequenceSynthetic Polynucleotide 189ggccgcacga
tatatttgac
2019020DNAArtificial SequenceSynthetic Polynucleotide 190cagccgggcc
ataatagttg
2019120DNAArtificial SequenceSynthetic Polynucleotide 191tgcggtggac
ctattatcct
2019220DNAArtificial SequenceSynthetic Polynucleotide 192cctgcgttag
gcaatccatc
2019320DNAArtificial SequenceSynthetic Polynucleotide 193gtgggctctt
cgaagtaacc
2019420DNAArtificial SequenceSynthetic Polynucleotide 194gccgtggacc
actaaagttc
2019520DNAArtificial SequenceSynthetic Polynucleotide 195gcttaagtca
tgggcgcatc
2019620DNAArtificial SequenceSynthetic Polynucleotide 196acaggttagt
tccgcgcact
2019720DNAArtificial SequenceSynthetic Polynucleotide 197ggcgtggcat
ttagactacc
2019820DNAArtificial SequenceSynthetic Polynucleotide 198actacggcca
acaaccaaca
2019920DNAArtificial SequenceSynthetic Polynucleotide 199gttgacaagg
ctctgtacgg
2020020DNAArtificial SequenceSynthetic Polynucleotide 200ttgttctctt
gccggtcgat
2020120DNAArtificial SequenceSynthetic Polynucleotide 201gttgatcgta
gccaattcgg
20202102DNAArtificial SequenceSynthetic Polynucleotide 202acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc agctctacaa 60gtgcggccat
ttggttcatt gcgcttctcc ggaaacatta gc
102203102DNAArtificial SequenceSynthetic Polynucleotide 203acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttt cgcgatagca 60gccaggaagc
ctgcttcatt gcgcttctcc ggaaacatta gc
102204102DNAArtificial SequenceSynthetic Polynucleotide 204acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag cgggaaacct 60ttctgttgca
gagcttcatt gcgcttctcc ggaaacatta gc
102205102DNAArtificial SequenceSynthetic Polynucleotide 205acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc agttccgcag 60aagccaggaa
gacattcatt gcgcttctcc ggaaacatta gc
102206102DNAArtificial SequenceSynthetic Polynucleotide 206acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt gtggcagaaa 60gactgcatca
ccaggtcatt gcgcttctcc ggaaacatta gc
102207102DNAArtificial SequenceSynthetic Polynucleotide 207acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc gcgtttgttc 60ggcacatgtg
gaatatcatt gcgcttctcc ggaaacatta gc
102208102DNAArtificial SequenceSynthetic Polynucleotide 208acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtg cgtgttcacg 60tcaactggct
tcggatcatt gcgcttctcc ggaaacatta gc
102209102DNAArtificial SequenceSynthetic Polynucleotide 209acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc tgcatcggct 60tccagcagct
caggatcatt gcgcttctcc ggaaacatta gc
102210102DNAArtificial SequenceSynthetic Polynucleotide 210acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca gcacggaagt 60gaccgatgtt
ggtcatcatt gcgcttctcc ggaaacatta gc
102211102DNAArtificial SequenceSynthetic Polynucleotide 211acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc cgggtcgttc 60ggagcacaca
ggattgcatt gcgcttctcc ggaaacatta gc
102212102DNAArtificial SequenceSynthetic Polynucleotide 212acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatac gcgcaccact 60cttaccgaag
acgctgcatt gcgcttctcc ggaaacatta gc
102213102DNAArtificial SequenceSynthetic Polynucleotide 213acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcg gctttctcgg 60tgtactgaga
aagctgcatt gcgcttctcc ggaaacatta gc
102214102DNAArtificial SequenceSynthetic Polynucleotide 214acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagt acccagacgg 60ttcgggaagt
tacgggcatt gcgcttctcc ggaaacatta gc
102215102DNAArtificial SequenceSynthetic Polynucleotide 215acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttt gttcagcttg 60atggtacaac
cagcggcatt gcgcttctcc ggaaacatta gc
102216102DNAArtificial SequenceSynthetic Polynucleotide 216acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc cgcccaggac 60tgcataacct
gcttcgcatt gcgcttctcc ggaaacatta gc
102217102DNAArtificial SequenceSynthetic Polynucleotide 217acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccca taaaccacag 60aacggagtta
gtggcgcatt gcgcttctcc ggaaacatta gc
102218102DNAArtificial SequenceSynthetic Polynucleotide 218acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgt tgcctgcttt 60cgctttctct
tctacgcatt gcgcttctcc ggaaacatta gc
102219102DNAArtificial SequenceSynthetic Polynucleotide 219acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg tgccggagaa 60aggtcatcgg
tgttagcatt gcgcttctcc ggaaacatta gc
102220102DNAArtificial SequenceSynthetic Polynucleotide 220acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaccg ccacggttca 60taatgaagtc
cggcagcatt gcgcttctcc ggaaacatta gc
102221102DNAArtificial SequenceSynthetic Polynucleotide 221acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtc ggcaactgac 60ctttatgcgc
atccagcatt gcgcttctcc ggaaacatta gc
102222102DNAArtificial SequenceSynthetic Polynucleotide 222acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagt tcgccggttt 60cgtggttacg
cacttccatt gcgcttctcc ggaaacatta gc
102223102DNAArtificial SequenceSynthetic Polynucleotide 223acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgc cgtaaccttc 60cgcgatcatc
cacttccatt gcgcttctcc ggaaacatta gc
102224102DNAArtificial SequenceSynthetic Polynucleotide 224acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttg atcggaccaa 60caacaccagg
ctggtccatt gcgcttctcc ggaaacatta gc
102225102DNAArtificial SequenceSynthetic Polynucleotide 225acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg tggtgtcctg 60ggaacctaca
gaagtccatt gcgcttctcc ggaaacatta gc
102226102DNAArtificial SequenceSynthetic Polynucleotide 226acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggac gcatcggtta 60gctcaaaggc
ctgctccatt gcgcttctcc ggaaacatta gc
102227102DNAArtificial SequenceSynthetic Polynucleotide 227acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatct acctgcgcca 60cgtaggtctg
gtactccatt gcgcttctcc ggaaacatta gc
102228102DNAArtificial SequenceSynthetic Polynucleotide 228acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatac ggccaccagc 60acgcacttca
tcaatccatt gcgcttctcc ggaaacatta gc
102229102DNAArtificial SequenceSynthetic Polynucleotide 229acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcg aacatcagca 60gcgtgtgaga
aagtgccatt gcgcttctcc ggaaacatta gc
102230102DNAArtificial SequenceSynthetic Polynucleotide 230acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaata tccgccagat 60cgatgtcgat
cactgccatt gcgcttctcc ggaaacatta gc
102231102DNAArtificial SequenceSynthetic Polynucleotide 231acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaaca cttcgtcgat 60cttctcaccc
tgtacccatt gcgcttctcc ggaaacatta gc
102232102DNAArtificial SequenceSynthetic Polynucleotide 232acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttg cctttcttct 60caacggtcag
cagacccatt gcgcttctcc ggaaacatta gc
102233102DNAArtificial SequenceSynthetic Polynucleotide 233acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat gccctgaata 60cgacgttcca
gggtaccatt gcgcttctcc ggaaacatta gc
102234102DNAArtificial SequenceSynthetic Polynucleotide 234acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggaa acgggtatgg 60gagtcaccac
cggtaccatt gcgcttctcc ggaaacatta gc
102235102DNAArtificial SequenceSynthetic Polynucleotide 235acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgaa gaacccgtac 60ccacaacgtc
accgaccatt gcgcttctcc ggaaacatta gc
102236102DNAArtificial SequenceSynthetic Polynucleotide 236acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt caatcacgtc 60gcccatgttc
aggttacatt gcgcttctcc ggaaacatta gc
102237102DNAArtificial SequenceSynthetic Polynucleotide 237acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacca gaccagaacc 60cgccgggaaa
gagatacatt gcgcttctcc ggaaacatta gc
102238102DNAArtificial SequenceSynthetic Polynucleotide 238acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttga agcgcaccag 60aacggattcc
ggcatacatt gcgcttctcc ggaaacatta gc
102239102DNAArtificial SequenceSynthetic Polynucleotide 239acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctt cttcggtcaa 60ctgtgcggcg
tccatacatt gcgcttctcc ggaaacatta gc
102240102DNAArtificial SequenceSynthetic Polynucleotide 240acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtt acccatacac 60agggaacagc
cagggacatt gcgcttctcc ggaaacatta gc
102241102DNAArtificial SequenceSynthetic Polynucleotide 241acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcag atccggcaga 60ccttcaattt
ccaggacatt gcgcttctcc ggaaacatta gc
102242102DNAArtificial SequenceSynthetic Polynucleotide 242acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag tttggcatca 60tccagcgcgt
cgatcacatt gcgcttctcc ggaaacatta gc
102243102DNAArtificial SequenceSynthetic Polynucleotide 243acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccca ggcacgccag 60gtctttcagt
tcatcacatt gcgcttctcc ggaaacatta gc
102244102DNAArtificial SequenceSynthetic Polynucleotide 244acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttt ggtggtcagg 60ccacgcccga
taatcacatt gcgcttctcc ggaaacatta gc
102245102DNAArtificial SequenceSynthetic Polynucleotide 245acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgat cgcatacagc 60ggaatagcgt
gtaccacatt gcgcttctcc ggaaacatta gc
102246102DNAArtificial SequenceSynthetic Polynucleotide 246acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag tgcacccgcg 60tcttccatcg
tgttaacatt gcgcttctcc ggaaacatta gc
102247102DNAArtificial SequenceSynthetic Polynucleotide 247acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag cagcatacgg 60ttcagccagg
agtgaacatt gcgcttctcc ggaaacatta gc
102248102DNAArtificial SequenceSynthetic Polynucleotide 248acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctc tcagcgacat 60ctttcgcctg
acggaacatt gcgcttctcc ggaaacatta gc
102249102DNAArtificial SequenceSynthetic Polynucleotide 249acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtt tcaaggtcgc 60ccgccagttt
ctgtttcatt gcgcttctcc ggaaacatta gc
102250102DNAArtificial SequenceSynthetic Polynucleotide 250acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg gtgctggaac 60caccggcata
gaagttcatt gcgcttctcc ggaaacatta gc
102251102DNAArtificial SequenceSynthetic Polynucleotide 251acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtc ccgttgatac 60caacagcata
acctgtcatt gcgcttctcc ggaaacatta gc
102252102DNAArtificial SequenceSynthetic Polynucleotide 252acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgaa acgggcataa 60ccgcgatcca
gatagtcatt gcgcttctcc ggaaacatta gc
102253102DNAArtificial SequenceSynthetic Polynucleotide 253acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgga acacgttggg 60tatcggtatc
gacagtcatt gcgcttctcc ggaaacatta gc
102254102DNAArtificial SequenceSynthetic Polynucleotide 254acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgg tgaagtacgg 60gttggttacc
gacagtcatt gcgcttctcc ggaaacatta gc
102255102DNAArtificial SequenceSynthetic Polynucleotide 255acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacag ctcacccggc 60tcgatcttag
tcagctcatt gcgcttctcc ggaaacatta gc
102256102DNAArtificial SequenceSynthetic Polynucleotide 256acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgtt ggtatagtcg 60gacaggtcgg
cgtcatcatt gcgcttctcc ggaaacatta gc
102257102DNAArtificial SequenceSynthetic Polynucleotide 257acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggcg acacgctgaa 60ggccttcgaa
atgaatcatt gcgcttctcc ggaaacatta gc
102258102DNAArtificial SequenceSynthetic Polynucleotide 258acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgga aatgagagat 60cagttcgtcg
gtggtgcatt gcgcttctcc ggaaacatta gc
102259102DNAArtificial SequenceSynthetic Polynucleotide 259acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttgc tggatttcag 60ctgacacacc
ttcctgcatt gcgcttctcc ggaaacatta gc
102260102DNAArtificial SequenceSynthetic Polynucleotide 260acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtcg gcatcgttaa 60tttcgggcat
cgactgcatt gcgcttctcc ggaaacatta gc
102261102DNAArtificial SequenceSynthetic Polynucleotide 261acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcactg ctttcggacc 60aatggtattg
gactggcatt gcgcttctcc ggaaacatta gc
102262102DNAArtificial SequenceSynthetic Polynucleotide 262acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacct tgtagacgac 60atcaacctgg
tccgggcatt gcgcttctcc ggaaacatta gc
102263102DNAArtificial SequenceSynthetic Polynucleotide 263acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctatc cgatccagga 60atggtcactt
taccggcatt gcgcttctcc ggaaacatta gc
102264102DNAArtificial SequenceSynthetic Polynucleotide 264acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcac tacgaaccct 60tcagcaccgt
atacggcatt gcgcttctcc ggaaacatta gc
102265102DNAArtificial SequenceSynthetic Polynucleotide 265acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagcc atgcaccttc 60catctgacgc
atttcgcatt gcgcttctcc ggaaacatta gc
102266102DNAArtificial SequenceSynthetic Polynucleotide 266acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccca gacctgcacg 60cagcgagtta
tattcgcatt gcgcttctcc ggaaacatta gc
102267102DNAArtificial SequenceSynthetic Polynucleotide 267acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaact ggaactgttc 60tgccttgtct
ccatcgcatt gcgcttctcc ggaaacatta gc
102268102DNAArtificial SequenceSynthetic Polynucleotide 268acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatct tcatcattaa 60ccgtgtcgcc
tgtgcgcatt gcgcttctcc ggaaacatta gc
102269102DNAArtificial SequenceSynthetic Polynucleotide 269acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcca accatagttg 60aacgtgaagt
cgtccgcatt gcgcttctcc ggaaacatta gc
102270102DNAArtificial SequenceSynthetic Polynucleotide 270acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat tgtaatgcga 60tacccgcaga
catacgcatt gcgcttctcc ggaaacatta gc
102271102DNAArtificial SequenceSynthetic Polynucleotide 271acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcattt acgatcgcct 60accacgttcc
accacgcatt gcgcttctcc ggaaacatta gc
102272102DNAArtificial SequenceSynthetic Polynucleotide 272acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctggc tggaatccca 60gtttgtatcc
caaacgcatt gcgcttctcc ggaaacatta gc
102273102DNAArtificial SequenceSynthetic Polynucleotide 273acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgc tggcgctata 60tttaccgacg
ctgtagcatt gcgcttctcc ggaaacatta gc
102274102DNAArtificial SequenceSynthetic Polynucleotide 274acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaccg cctacagcat 60catccgattt
acacagcatt gcgcttctcc ggaaacatta gc
102275102DNAArtificial SequenceSynthetic Polynucleotide 275acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatct ggcgtcagac 60tgacctgggt
agagtccatt gcgcttctcc ggaaacatta gc
102276102DNAArtificial SequenceSynthetic Polynucleotide 276acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg ccgtcctgag 60tcgcacattc
gtaatccatt gcgcttctcc ggaaacatta gc
102277102DNAArtificial SequenceSynthetic Polynucleotide 277acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacaa cccatttgtg 60atcgtcatcg
atcggccatt gcgcttctcc ggaaacatta gc
102278102DNAArtificial SequenceSynthetic Polynucleotide 278acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaccc atagagtaca 60gataacgcca
catcgccatt gcgcttctcc ggaaacatta gc
102279102DNAArtificial SequenceSynthetic Polynucleotide 279acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatac caaagttgaa 60gctaccggtg
ttgcgccatt gcgcttctcc ggaaacatta gc
102280102DNAArtificial SequenceSynthetic Polynucleotide 280acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctata gaagagacga 60ccaccgaggc
ttacgccatt gcgcttctcc ggaaacatta gc
102281102DNAArtificial SequenceSynthetic Polynucleotide 281acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtca tcttccatct 60tggtcacttt
ggtgcccatt gcgcttctcc ggaaacatta gc
102282102DNAArtificial SequenceSynthetic Polynucleotide 282acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgga tcttacgcac 60gtagaaacgg
ttaccccatt gcgcttctcc ggaaacatta gc
102283102DNAArtificial SequenceSynthetic Polynucleotide 283acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagg acggcatctt 60tcgaggtatc
gttacccatt gcgcttctcc ggaaacatta gc
102284102DNAArtificial SequenceSynthetic Polynucleotide 284acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagaa gcccagacga 60ttcagacgct
ccttaccatt gcgcttctcc ggaaacatta gc
102285102DNAArtificial SequenceSynthetic Polynucleotide 285acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgac acgtgaacca 60tctgtcggga
agtaaccatt gcgcttctcc ggaaacatta gc
102286102DNAArtificial SequenceSynthetic Polynucleotide 286acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc taaacagcag 60cgacgctatg
agcaaccatt gcgcttctcc ggaaacatta gc
102287102DNAArtificial SequenceSynthetic Polynucleotide 287acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgagg ctgcatgttg 60gacagggagt
tatgtacatt gcgcttctcc ggaaacatta gc
102288102DNAArtificial SequenceSynthetic Polynucleotide 288acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggg aagcccaacg 60tcacgtctgt
accatacatt gcgcttctcc ggaaacatta gc
102289102DNAArtificial SequenceSynthetic Polynucleotide 289acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg atcataatta 60ctggcctgat
gcgggacatt gcgcttctcc ggaaacatta gc
102290102DNAArtificial SequenceSynthetic Polynucleotide 290acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaagc tgttatcctg 60atcagaggtg
ctcggacatt gcgcttctcc ggaaacatta gc
102291102DNAArtificial SequenceSynthetic Polynucleotide 291acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacct gaaccagaag 60ggtatcacca
tcacgacatt gcgcttctcc ggaaacatta gc
102292102DNAArtificial SequenceSynthetic Polynucleotide 292acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggca tctctttgcc 60gcctaaacca
tcaccacatt gcgcttctcc ggaaacatta gc
102293102DNAArtificial SequenceSynthetic Polynucleotide 293acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag ttatcctgct 60gcacaccagc
ctggaacatt gcgcttctcc ggaaacatta gc
102294102DNAArtificial SequenceSynthetic Polynucleotide 294acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgg ataggcataa 60ccatagcgac
cgagaacatt gcgcttctcc ggaaacatta gc
102295102DNAArtificial SequenceSynthetic Polynucleotide 295acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaag gttgccgctc 60acttcaacgc
cagaaacatt gcgcttctcc ggaaacatta gc
102296102DNAArtificial SequenceSynthetic Polynucleotide 296acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcga acatcctcaa 60agttgccggt
agcaaacatt gcgcttctcc ggaaacatta gc
102297102DNAArtificial SequenceSynthetic Polynucleotide 297acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt gggcttgcac 60gttcaaacca
gtcactcatt gcgcttctcc ggaaacatta gc
102298102DNAArtificial SequenceSynthetic Polynucleotide 298acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctg tgaaagcgca 60ttacagagct
gttgtgcatt gcgcttctcc ggaaacatta gc
102299102DNAArtificial SequenceSynthetic Polynucleotide 299acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttgc gctttcaatt 60gcgcgtactg
atccagcatt gcgcttctcc ggaaacatta gc
102300102DNAArtificial SequenceSynthetic Polynucleotide 300acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgc ttgtggagga 60tagtcggaat
agctgccatt gcgcttctcc ggaaacatta gc
102301102DNAArtificial SequenceSynthetic Polynucleotide 301acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagga atttggtccg 60gtccgcctgt
aatgaccatt gcgcttctcc ggaaacatta gc
102302102DNAArtificial SequenceSynthetic Polynucleotide 302acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgag cgtgctaaca 60cctgttcgcg
gctaaccatt gcgcttctcc ggaaacatta gc
102303102DNAArtificial SequenceSynthetic Polynucleotide 303acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat tacctccacg 60ccaggcaatc
accagacatt gcgcttctcc ggaaacatta gc
102304102DNAArtificial SequenceSynthetic Polynucleotide 304acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcaa aggcaagttc 60agtgttggcg
ggagaacatt gcgcttctcc ggaaacatta gc
102305102DNAArtificial SequenceSynthetic Polynucleotide 305acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgata tcgcggatat 60gcagcagcca
gttgttcatt gcgcttctcc ggaaacatta gc
102306102DNAArtificial SequenceSynthetic Polynucleotide 306acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag ttcaggtcag 60tgtgaatgac
caggttcatt gcgcttctcc ggaaacatta gc
102307102DNAArtificial SequenceSynthetic Polynucleotide 307acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatt acggtgaaca 60aagagttcgc
ccggctcatt gcgcttctcc ggaaacatta gc
102308102DNAArtificial SequenceSynthetic Polynucleotide 308acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttgt ggttggcgtg 60tttcagcttg
aggttgcatt gcgcttctcc ggaaacatta gc
102309102DNAArtificial SequenceSynthetic Polynucleotide 309acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg ttaaacgttc 60tgcaggaacg
cgactgcatt gcgcttctcc ggaaacatta gc
102310102DNAArtificial SequenceSynthetic Polynucleotide 310acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctg ttccatgacg 60ttcagttcac
acaaggcatt gcgcttctcc ggaaacatta gc
102311102DNAArtificial SequenceSynthetic Polynucleotide 311acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcga gtacatccac 60tgcatactga
accacgcatt gcgcttctcc ggaaacatta gc
102312102DNAArtificial SequenceSynthetic Polynucleotide 312acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt tccacgctga 60ttgcataatg
gtggagcatt gcgcttctcc ggaaacatta gc
102313102DNAArtificial SequenceSynthetic Polynucleotide 313acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccccg tgacggtaac 60gttgctcaag
ggtttccatt gcgcttctcc ggaaacatta gc
102314102DNAArtificial SequenceSynthetic Polynucleotide 314acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc cgcaaccgta 60gtggccacag
ataatacatt gcgcttctcc ggaaacatta gc
102315102DNAArtificial SequenceSynthetic Polynucleotide 315acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtg gcggtaacat 60ccagatcacg
cagcaacatt gcgcttctcc ggaaacatta gc
102316102DNAArtificial SequenceSynthetic Polynucleotide 316acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctaat gattctcgtc 60atagtgccag
gcccgtcatt gcgcttctcc ggaaacatta gc
102317102DNAArtificial SequenceSynthetic Polynucleotide 317acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaga aacaacgccg 60cgatgacgac
gggtatcatt gcgcttctcc ggaaacatta gc
102318102DNAArtificial SequenceSynthetic Polynucleotide 318acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca gcatgcagac 60caccagcgtt
acaatgcatt gcgcttctcc ggaaacatta gc
102319102DNAArtificial SequenceSynthetic Polynucleotide 319acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagag ttacgccaga 60ttgctgcgga
acctggcatt gcgcttctcc ggaaacatta gc
102320102DNAArtificial SequenceSynthetic Polynucleotide 320acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgaa gcccaaagtg 60agatttcaac
cagcggcatt gcgcttctcc ggaaacatta gc
102321102DNAArtificial SequenceSynthetic Polynucleotide 321acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtaa caacaagcaa 60gcaaagaccg
gtaccgcatt gcgcttctcc ggaaacatta gc
102322102DNAArtificial SequenceSynthetic Polynucleotide 322acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggat catgacatag 60agcagccata
ttgcgccatt gcgcttctcc ggaaacatta gc
102323102DNAArtificial SequenceSynthetic Polynucleotide 323acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacc accgtgtcct 60ggaattaaat
gaccgccatt gcgcttctcc ggaaacatta gc
102324102DNAArtificial SequenceSynthetic Polynucleotide 324acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctttg ccaaacatat 60atgcgccgga
gtcagccatt gcgcttctcc ggaaacatta gc
102325102DNAArtificial SequenceSynthetic Polynucleotide 325acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc tgcagtagcg 60agtccaccga
taaagccatt gcgcttctcc ggaaacatta gc
102326102DNAArtificial SequenceSynthetic Polynucleotide 326acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgc ttaaacatac 60tctcggtcag
atcgcccatt gcgcttctcc ggaaacatta gc
102327102DNAArtificial SequenceSynthetic Polynucleotide 327acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat cagcgccaac 60aataacccgc
ataacacatt gcgcttctcc ggaaacatta gc
102328102DNAArtificial SequenceSynthetic Polynucleotide 328acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcga cgtcgagatt 60cgcccacatg
ccataacatt gcgcttctcc ggaaacatta gc
102329102DNAArtificial SequenceSynthetic Polynucleotide 329acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagca ccagcaatag 60cgcgacaatc
caccaacatt gcgcttctcc ggaaacatta gc
102330102DNAArtificial SequenceSynthetic Polynucleotide 330acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctga ggctaacgct 60gcgacaatag
agcaaacatt gcgcttctcc ggaaacatta gc
102331102DNAArtificial SequenceSynthetic Polynucleotide 331acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgaac gcgaccgtag 60tggatttcgc
cggtttcatt gcgcttctcc ggaaacatta gc
102332102DNAArtificial SequenceSynthetic Polynucleotide 332acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg aatccagcag 60ggcgatcacc
tgatttcatt gcgcttctcc ggaaacatta gc
102333102DNAArtificial SequenceSynthetic Polynucleotide 333acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtgc cttcatcaac 60atatgcgccg
atgttgcatt gcgcttctcc ggaaacatta gc
102334102DNAArtificial SequenceSynthetic Polynucleotide 334acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaac cactgatgcg 60tcacccactg
accgtccatt gcgcttctcc ggaaacatta gc
102335102DNAArtificial SequenceSynthetic Polynucleotide 335acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtaa cggtgtctgc 60attggctggc
gtgatccatt gcgcttctcc ggaaacatta gc
102336102DNAArtificial SequenceSynthetic Polynucleotide 336acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaacc gcacagtaga 60ggctgtattt
gccatccatt gcgcttctcc ggaaacatta gc
102337102DNAArtificial SequenceSynthetic Polynucleotide 337acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagtc gatggtacgc 60agcagttcgt
taatgccatt gcgcttctcc ggaaacatta gc
102338102DNAArtificial SequenceSynthetic Polynucleotide 338acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaata cgggtgctct 60gaccaatgta
tacgcccatt gcgcttctcc ggaaacatta gc
102339102DNAArtificial SequenceSynthetic Polynucleotide 339acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcactt cagagcgcgc 60gccgatgaag
caattacatt gcgcttctcc ggaaacatta gc
102340102DNAArtificial SequenceSynthetic Polynucleotide 340acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacg gcatcagcac 60ggtgttacgg
gcaatacatt gcgcttctcc ggaaacatta gc
102341102DNAArtificial SequenceSynthetic Polynucleotide 341acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc gtcgtagtcg 60gcgaatttca
tcggcacatt gcgcttctcc ggaaacatta gc
102342102DNAArtificial SequenceSynthetic Polynucleotide 342acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctggc acaacgcgga 60agccttcttt
ctggaacatt gcgcttctcc ggaaacatta gc
102343102DNAArtificial SequenceSynthetic Polynucleotide 343acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaca agaaccgacg 60gtcgcccagg
tatcaacatt gcgcttctcc ggaaacatta gc
102344102DNAArtificial SequenceSynthetic Polynucleotide 344acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg taaaccggca 60ccttgccata
gaagttcatt gcgcttctcc ggaaacatta gc
102345102DNAArtificial SequenceSynthetic Polynucleotide 345acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtc gacaggatac 60gcgtcaatac
cgccttcatt gcgcttctcc ggaaacatta gc
102346102DNAArtificial SequenceSynthetic Polynucleotide 346acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctg tggctggtca 60tacccggtga
ggtattcatt gcgcttctcc ggaaacatta gc
102347102DNAArtificial SequenceSynthetic Polynucleotide 347acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgt ccatcgctgt 60ccagcataac
gtcaatcatt gcgcttctcc ggaaacatta gc
102348102DNAArtificial SequenceSynthetic Polynucleotide 348acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgc ctcataatca 60tagaaggttc
cggacgcatt gcgcttctcc ggaaacatta gc
102349102DNAArtificial SequenceSynthetic Polynucleotide 349acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctt tgcaacctaa 60cgtcgtccat
gctttccatt gcgcttctcc ggaaacatta gc
102350102DNAArtificial SequenceSynthetic Polynucleotide 350acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc gaccgtgtag 60cgcgataaac
actttccatt gcgcttctcc ggaaacatta gc
102351102DNAArtificial SequenceSynthetic Polynucleotide 351acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgaca ttcccacact 60ggaaccttcg
cggctccatt gcgcttctcc ggaaacatta gc
102352102DNAArtificial SequenceSynthetic Polynucleotide 352acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttct tcaccgagta 60tcgcaaccgt
gaactccatt gcgcttctcc ggaaacatta gc
102353102DNAArtificial SequenceSynthetic Polynucleotide 353acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaacc ggcaaaccca 60gagcagaaat
ttctgccatt gcgcttctcc ggaaacatta gc
102354102DNAArtificial SequenceSynthetic Polynucleotide 354acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctaat gcctgcaaat 60tggcctcttg
tgacgccatt gcgcttctcc ggaaacatta gc
102355102DNAArtificial SequenceSynthetic Polynucleotide 355acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcc attgaaagcg 60cagatgccat
cactcccatt gcgcttctcc ggaaacatta gc
102356102DNAArtificial SequenceSynthetic Polynucleotide 356acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctagt ccgccagttc 60cagaattcgt
actacccatt gcgcttctcc ggaaacatta gc
102357102DNAArtificial SequenceSynthetic Polynucleotide 357acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccc atcgacttca 60gttgcgtcac
gtcgaccatt gcgcttctcc ggaaacatta gc
102358102DNAArtificial SequenceSynthetic Polynucleotide 358acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggct aacaccgctg 60cgccagaatt
cagagacatt gcgcttctcc ggaaacatta gc
102359102DNAArtificial SequenceSynthetic Polynucleotide 359acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt ataaggcaag 60cccatcagct
cgagcacatt gcgcttctcc ggaaacatta gc
102360102DNAArtificial SequenceSynthetic Polynucleotide 360acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg ttgttcacta 60ccacgccctg
atctttcatt gcgcttctcc ggaaacatta gc
102361102DNAArtificial SequenceSynthetic Polynucleotide 361acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgttc aggttaacca 60gcgcaccacc
ggagttcatt gcgcttctcc ggaaacatta gc
102362102DNAArtificial SequenceSynthetic Polynucleotide 362acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc agttccaggt 60tcacgttaac
ctgcttcatt gcgcttctcc ggaaacatta gc
102363102DNAArtificial SequenceSynthetic Polynucleotide 363acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag cggaggaatt 60aggcagaacc
tggcttcatt gcgcttctcc ggaaacatta gc
102364102DNAArtificial SequenceSynthetic Polynucleotide 364acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcactc agagccagtg 60cactcagtgc
taatgtcatt gcgcttctcc ggaaacatta gc
102365102DNAArtificial SequenceSynthetic Polynucleotide 365acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgtt gctcatctca 60gcgccttcaa
tgccgtcatt gcgcttctcc ggaaacatta gc
102366102DNAArtificial SequenceSynthetic Polynucleotide 366acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgaa tgttgagtgc 60cagcacagac
ggtttgcatt gcgcttctcc ggaaacatta gc
102367102DNAArtificial SequenceSynthetic Polynucleotide 367acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg gaacccagcg 60ccatgaattt
ctgttgcatt gcgcttctcc ggaaacatta gc
102368102DNAArtificial SequenceSynthetic Polynucleotide 368acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatgg agctggaatc 60aacctgattc
tggctgcatt gcgcttctcc ggaaacatta gc
102369102DNAArtificial SequenceSynthetic Polynucleotide 369acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcataa tacccagctc 60accgcgtttc
acctggcatt gcgcttctcc ggaaacatta gc
102370102DNAArtificial SequenceSynthetic Polynucleotide 370acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggca aagctgctga 60tcggcttacc
gttcagcatt gcgcttctcc ggaaacatta gc
102371102DNAArtificial SequenceSynthetic Polynucleotide 371acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgg gcgtcaactt 60tcatcgcttt
cgccagcatt gcgcttctcc ggaaacatta gc
102372102DNAArtificial SequenceSynthetic Polynucleotide 372acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat ctgctgggct 60gtcgttgctg
aagaagcatt gcgcttctcc ggaaacatta gc
102373102DNAArtificial SequenceSynthetic Polynucleotide 373acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagcg cagagacaat 60cccggaagtt
accgtccatt gcgcttctcc ggaaacatta gc
102374102DNAArtificial SequenceSynthetic Polynucleotide 374acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggg ttctggattt 60ggatcagcgc
gatatccatt gcgcttctcc ggaaacatta gc
102375102DNAArtificial SequenceSynthetic Polynucleotide 375acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtg cgaggatcgc 60ggtgttgata
ccgatccatt gcgcttctcc ggaaacatta gc
102376102DNAArtificial SequenceSynthetic Polynucleotide 376acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcactg cattaacagg 60tagatggtgc
tgtcgccatt gcgcttctcc ggaaacatta gc
102377102DNAArtificial SequenceSynthetic Polynucleotide 377acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaac aacgtggttg 60ttggtgacga
catagccatt gcgcttctcc ggaaacatta gc
102378102DNAArtificial SequenceSynthetic Polynucleotide 378acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggc catcgctcag 60ttgaacttta
atgacccatt gcgcttctcc ggaaacatta gc
102379102DNAArtificial SequenceSynthetic Polynucleotide 379acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt taatgctgac 60cactgaaggc
atcacccatt gcgcttctcc ggaaacatta gc
102380102DNAArtificial SequenceSynthetic Polynucleotide 380acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccact gcctgctggt 60tcgcgccaat
aatcaccatt gcgcttctcc ggaaacatta gc
102381102DNAArtificial SequenceSynthetic Polynucleotide 381acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgc gcagtgcatc 60agaatccgcc
atcttacatt gcgcttctcc ggaaacatta gc
102382102DNAArtificial SequenceSynthetic Polynucleotide 382acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacca aacgggttac 60caatcgctac
ggtgtacatt gcgcttctcc ggaaacatta gc
102383102DNAArtificial SequenceSynthetic Polynucleotide 383acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggca tacgcggcgt 60attaacggtt
gtgctacatt gcgcttctcc ggaaacatta gc
102384102DNAArtificial SequenceSynthetic Polynucleotide 384acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag taagcccagg 60gtcagtttgc
tgcctacatt gcgcttctcc ggaaacatta gc
102385102DNAArtificial SequenceSynthetic Polynucleotide 385acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgg atctttgcca 60accatcttcg
cgtcgacatt gcgcttctcc ggaaacatta gc
102386102DNAArtificial SequenceSynthetic Polynucleotide 386acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctggc agaacggaga 60gctctggaac
ggagaacatt gcgcttctcc ggaaacatta gc
102387102DNAArtificial SequenceSynthetic Polynucleotide 387acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgg cagaacggag 60aatcatcacc
gaagaacatt gcgcttctcc ggaaacatta gc
102388102DNAArtificial SequenceSynthetic Polynucleotide 388acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg ttgcagagag 60cggagataac
gccaaacatt gcgcttctcc ggaaacatta gc
102389102DNAArtificial SequenceSynthetic Polynucleotide 389acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgat ggtcatatcg 60ccttcgttca
cctgatcatt gcgcttctcc ggaaacatta gc
102390102DNAArtificial SequenceSynthetic Polynucleotide 390acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagat tcgggttatc 60ttcgtcagcg
atcaggcatt gcgcttctcc ggaaacatta gc
102391102DNAArtificial SequenceSynthetic Polynucleotide 391acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagat actaaaggaa 60gaaccgcaac
cgcaggcatt gcgcttctcc ggaaacatta gc
102392102DNAArtificial SequenceSynthetic Polynucleotide 392acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaact ttgttggctg 60ctgcgtcggt
aaactccatt gcgcttctcc ggaaacatta gc
102393102DNAArtificial SequenceSynthetic Polynucleotide 393acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacct tcggtataat 60caacggaacc
gccgaccatt gcgcttctcc ggaaacatta gc
102394102DNAArtificial SequenceSynthetic Polynucleotide 394acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg ttcgggttgg 60tcacgatgaa
acgagacatt gcgcttctcc ggaaacatta gc
102395102DNAArtificial SequenceSynthetic Polynucleotide 395acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaagg tgaaaccata 60ctggaagccg
ctgcaacatt gcgcttctcc ggaaacatta gc
102396102DNAArtificial SequenceSynthetic Polynucleotide 396acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccc tgcaacttca 60ggccattcag
atagttcatt gcgcttctcc ggaaacatta gc
102397102DNAArtificial SequenceSynthetic Polynucleotide 397acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagt ctggaacagg 60ctgtcagtac
cggcttcatt gcgcttctcc ggaaacatta gc
102398102DNAArtificial SequenceSynthetic Polynucleotide 398acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctg accatattca 60acaggccgcc
aggactcatt gcgcttctcc ggaaacatta gc
102399102DNAArtificial SequenceSynthetic Polynucleotide 399acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacc accacgccag 60gtaaactgtt
tgtcatcatt gcgcttctcc ggaaacatta gc
102400102DNAArtificial SequenceSynthetic Polynucleotide 400acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtc gtaaccaaac 60caggcgttga
tgtcatcatt gcgcttctcc ggaaacatta gc
102401102DNAArtificial SequenceSynthetic Polynucleotide 401acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtaa agcacggaaa 60ccgggccacg
cataatcatt gcgcttctcc ggaaacatta gc
102402102DNAArtificial SequenceSynthetic Polynucleotide 402acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt agcagactgt 60cgcgccgcaa
tagttgcatt gcgcttctcc ggaaacatta gc
102403102DNAArtificial SequenceSynthetic Polynucleotide 403acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtc ccggcaacgc 60ggttaagaga
ttcttgcatt gcgcttctcc ggaaacatta gc
102404102DNAArtificial SequenceSynthetic Polynucleotide 404acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc tttcgcttcg 60atttctacgc
cacgtgcatt gcgcttctcc ggaaacatta gc
102405102DNAArtificial SequenceSynthetic Polynucleotide 405acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtcg atatcgccag 60tggcaaactt
gctctgcatt gcgcttctcc ggaaacatta gc
102406102DNAArtificial SequenceSynthetic Polynucleotide 406acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacg tgccagataa 60tggcctttat
ccgctgcatt gcgcttctcc ggaaacatta gc
102407102DNAArtificial SequenceSynthetic Polynucleotide 407acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgg agcagacgcc 60gtaaccataa
acgctgcatt gcgcttctcc ggaaacatta gc
102408102DNAArtificial SequenceSynthetic Polynucleotide 408acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaggt agtatcggtg 60gtgtattccg
catcggcatt gcgcttctcc ggaaacatta gc
102409102DNAArtificial SequenceSynthetic Polynucleotide 409acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatac gcataaagtc 60gacaccggtc
agcaggcatt gcgcttctcc ggaaacatta gc
102410102DNAArtificial SequenceSynthetic Polynucleotide 410acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgact tcggctgatg 60cagcgccatc
tcttcgcatt gcgcttctcc ggaaacatta gc
102411102DNAArtificial SequenceSynthetic Polynucleotide 411acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg gatctttggc 60attgaagtcg
aaatcgcatt gcgcttctcc ggaaacatta gc
102412102DNAArtificial SequenceSynthetic Polynucleotide 412acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg atcgaacagg 60ttgttaacat
gcagcgcatt gcgcttctcc ggaaacatta gc
102413102DNAArtificial SequenceSynthetic Polynucleotide 413acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcat taaagtctgt 60cggcagacgc
ttaccgcatt gcgcttctcc ggaaacatta gc
102414102DNAArtificial SequenceSynthetic Polynucleotide 414acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg ttccagcata 60tacgggtcaa
tgaccgcatt gcgcttctcc ggaaacatta gc
102415102DNAArtificial SequenceSynthetic Polynucleotide 415acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatac acggcaccag 60taactacaat
cggacgcatt gcgcttctcc ggaaacatta gc
102416102DNAArtificial SequenceSynthetic Polynucleotide 416acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag tcataacgac 60cgcctagggt
gaccagcatt gcgcttctcc ggaaacatta gc
102417102DNAArtificial SequenceSynthetic Polynucleotide 417acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacca tccttcccaa 60cttgcgaaga
aggttccatt gcgcttctcc ggaaacatta gc
102418102DNAArtificial SequenceSynthetic Polynucleotide 418acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca ggtgcagcgg 60taacggtgat
agtgtccatt gcgcttctcc ggaaacatta gc
102419102DNAArtificial SequenceSynthetic Polynucleotide 419acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaatt cgtgatcgaa 60gctgtagccg
accatccatt gcgcttctcc ggaaacatta gc
102420102DNAArtificial SequenceSynthetic Polynucleotide 420acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgaag cagccataag 60tgttaaagca
gctggccatt gcgcttctcc ggaaacatta gc
102421102DNAArtificial SequenceSynthetic Polynucleotide 421acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctccc actttaaagg 60agttagccgg
atcacccatt gcgcttctcc ggaaacatta gc
102422102DNAArtificial SequenceSynthetic Polynucleotide 422acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttag aaacggaagg 60ttgcggttgc
aacgaccatt gcgcttctcc ggaaacatta gc
102423102DNAArtificial SequenceSynthetic Polynucleotide 423acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacc ggattgtaca 60gattgagcag
tggcaccatt gcgcttctcc ggaaacatta gc
102424102DNAArtificial SequenceSynthetic Polynucleotide 424acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca ggtgaacgcc 60ggtgcaatag
cataaccatt gcgcttctcc ggaaacatta gc
102425102DNAArtificial SequenceSynthetic Polynucleotide 425acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca agaccggtca 60ggcgataaga
gtaaaccatt gcgcttctcc ggaaacatta gc
102426102DNAArtificial SequenceSynthetic Polynucleotide 426acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcc cactgcgcct 60gatcctgaac
ataaaccatt gcgcttctcc ggaaacatta gc
102427102DNAArtificial SequenceSynthetic Polynucleotide 427acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat gccgactcgc 60gccagatcat
aacgtacatt gcgcttctcc ggaaacatta gc
102428102DNAArtificial SequenceSynthetic Polynucleotide 428acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtac caacagagac 60acccggcgtg
tagctacatt gcgcttctcc ggaaacatta gc
102429102DNAArtificial SequenceSynthetic Polynucleotide 429acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca aagccgcgaa 60tgatcaggtg
gtcatacatt gcgcttctcc ggaaacatta gc
102430102DNAArtificial SequenceSynthetic Polynucleotide 430acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgaa cttctttcag 60cggttcggtg
gtcggacatt gcgcttctcc ggaaacatta gc
102431102DNAArtificial SequenceSynthetic Polynucleotide 431acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct aaccgctgtg 60gctactacaa
ctgcgacatt gcgcttctcc ggaaacatta gc
102432102DNAArtificial SequenceSynthetic Polynucleotide 432acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt tcaaccgctg 60cctgtgcata
aacagacatt gcgcttctcc ggaaacatta gc
102433102DNAArtificial SequenceSynthetic Polynucleotide 433acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaccg gtttccggct 60cgttctggaa
gtaagacatt gcgcttctcc ggaaacatta gc
102434102DNAArtificial SequenceSynthetic Polynucleotide 434acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctctt ctgacccttt 60ctgctgggca
ttggcacatt gcgcttctcc ggaaacatta gc
102435102DNAArtificial SequenceSynthetic Polynucleotide 435acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc aaagcgcagg 60ttctgacgca
cagtaacatt gcgcttctcc ggaaacatta gc
102436102DNAArtificial SequenceSynthetic Polynucleotide 436acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatct cgccaccttc 60aaccgagaag
aaggaacatt gcgcttctcc ggaaacatta gc
102437102DNAArtificial SequenceSynthetic Polynucleotide 437acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc gtcagacctg 60aaagcggacc
gtcaaacatt gcgcttctcc ggaaacatta gc
102438102DNAArtificial SequenceSynthetic Polynucleotide 438acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgagg aagctgctgc 60ggcaaataag
ccacttcatt gcgcttctcc ggaaacatta gc
102439102DNAArtificial SequenceSynthetic Polynucleotide 439acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcga cagcacatca 60acctggtggg
cgatatcatt gcgcttctcc ggaaacatta gc
102440102DNAArtificial SequenceSynthetic Polynucleotide 440acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgagc agagtggatt 60taccagaacc
gttgtgcatt gcgcttctcc ggaaacatta gc
102441102DNAArtificial SequenceSynthetic Polynucleotide 441acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccca tcgggatgcc 60ataaatcatt
tcgaggcatt gcgcttctcc ggaaacatta gc
102442102DNAArtificial SequenceSynthetic Polynucleotide 442acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaaa cgctttgctg 60ctccagcttt
ccagcgcatt gcgcttctcc ggaaacatta gc
102443102DNAArtificial SequenceSynthetic Polynucleotide 443acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc gcagggcgac 60cagataatca
cagtagcatt gcgcttctcc ggaaacatta gc
102444102DNAArtificial SequenceSynthetic Polynucleotide 444acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccac gggtaacgac 60caatcgccac
cagttccatt gcgcttctcc ggaaacatta gc
102445102DNAArtificial SequenceSynthetic Polynucleotide 445acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccga ggtcggttcg 60tcgagcaaca
gacaaccatt gcgcttctcc ggaaacatta gc
102446102DNAArtificial SequenceSynthetic Polynucleotide 446acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacc ggtcactttc 60ccggcaggaa
aggttacatt gcgcttctcc ggaaacatta gc
102447102DNAArtificial SequenceSynthetic Polynucleotide 447acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaat gaccgtcagg 60ccacgctcct
gacttacatt gcgcttctcc ggaaacatta gc
102448102DNAArtificial SequenceSynthetic Polynucleotide 448acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtgc gcccgggcac 60acgaaaggag
atattacatt gcgcttctcc ggaaacatta gc
102449102DNAArtificial SequenceSynthetic Polynucleotide 449acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacg ttcgccgcca 60gagagactat
cgaccacatt gcgcttctcc ggaaacatta gc
102450102DNAArtificial SequenceSynthetic Polynucleotide 450acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat aatttccgca 60ggcgttccct
gagcaacatt gcgcttctcc ggaaacatta gc
102451102DNAArtificial SequenceSynthetic Polynucleotide 451acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctagt gcggaacggt 60caggcgttca
gtatttcatt gcgcttctcc ggaaacatta gc
102452102DNAArtificial SequenceSynthetic Polynucleotide 452acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgga gaggccagat 60tgctgcctat
ggcaatcatt gcgcttctcc ggaaacatta gc
102453102DNAArtificial SequenceSynthetic Polynucleotide 453acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacc aaacagcatg 60atgtcgagat
ccagcgcatt gcgcttctcc ggaaacatta gc
102454102DNAArtificial SequenceSynthetic Polynucleotide 454acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatca ggaaacacca 60actccggcgc
gatttccatt gcgcttctcc ggaaacatta gc
102455102DNAArtificial SequenceSynthetic Polynucleotide 455acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg gctgcgttta 60agtaatcggg
ttgatccatt gcgcttctcc ggaaacatta gc
102456102DNAArtificial SequenceSynthetic Polynucleotide 456acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt aagaatgtgg 60ctttcaggga
tatcgccatt gcgcttctcc ggaaacatta gc
102457102DNAArtificial SequenceSynthetic Polynucleotide 457acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagta gctcttcagg 60tgcaagagag
gtttcccatt gcgcttctcc ggaaacatta gc
102458102DNAArtificial SequenceSynthetic Polynucleotide 458acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgg ccacagcata 60aatccacgat
tcttcacatt gcgcttctcc ggaaacatta gc
102459102DNAArtificial SequenceSynthetic Polynucleotide 459acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttt gcggacgcga 60ccttgctgca
attcaacatt gcgcttctcc ggaaacatta gc
102460102DNAArtificial SequenceSynthetic Polynucleotide 460acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctc gatcacctct 60gccagtgtct
gacgttcatt gcgcttctcc ggaaacatta gc
102461102DNAArtificial SequenceSynthetic Polynucleotide 461acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacc gatatcgacg 60acgcagacac
ccagttcatt gcgcttctcc ggaaacatta gc
102462102DNAArtificial SequenceSynthetic Polynucleotide 462acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggc gtgccaaagg 60cgtaagcgat
atcactcatt gcgcttctcc ggaaacatta gc
102463102DNAArtificial SequenceSynthetic Polynucleotide 463acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctact aaagcggcaa 60ccttcgcggt
accaatcatt gcgcttctcc ggaaacatta gc
102464102DNAArtificial SequenceSynthetic Polynucleotide 464acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca cgcccgaaag 60tcctaccgga
ttcttgcatt gcgcttctcc ggaaacatta gc
102465102DNAArtificial SequenceSynthetic Polynucleotide 465acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc atatcgttgt 60gacatgtgat
caggtgcatt gcgcttctcc ggaaacatta gc
102466102DNAArtificial SequenceSynthetic Polynucleotide 466acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggca ccataccaat 60ttcattctgg
cagctgcatt gcgcttctcc ggaaacatta gc
102467102DNAArtificial SequenceSynthetic Polynucleotide 467acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctt tatccatacc 60acgcgacggg
cagctgcatt gcgcttctcc ggaaacatta gc
102468102DNAArtificial SequenceSynthetic Polynucleotide 468acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcct gatagtcaat 60cgcatactct
tgcgggcatt gcgcttctcc ggaaacatta gc
102469102DNAArtificial SequenceSynthetic Polynucleotide 469acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca gcataaggaa 60ttaccttagt
gtggcgcatt gcgcttctcc ggaaacatta gc
102470102DNAArtificial SequenceSynthetic Polynucleotide 470acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcactc tttcccatag 60tgaagcaatc
ccaccgcatt gcgcttctcc ggaaacatta gc
102471102DNAArtificial SequenceSynthetic Polynucleotide 471acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacg gctcctgagc 60ataatccgtt
aaaccgcatt gcgcttctcc ggaaacatta gc
102472102DNAArtificial SequenceSynthetic Polynucleotide 472acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca atgatattga 60ccataccgtc
gggcagcatt gcgcttctcc ggaaacatta gc
102473102DNAArtificial SequenceSynthetic Polynucleotide 473acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagt tggtcaactt 60tcagcccaca
acgttccatt gcgcttctcc ggaaacatta gc
102474102DNAArtificial SequenceSynthetic Polynucleotide 474acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctga caatctgcca 60tcaattctgc
ctggtccatt gcgcttctcc ggaaacatta gc
102475102DNAArtificial SequenceSynthetic Polynucleotide 475acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctatc tcttcgttga 60ccaggttgag
cagctccatt gcgcttctcc ggaaacatta gc
102476102DNAArtificial SequenceSynthetic Polynucleotide 476acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccca gcgcacaacc 60gtggcgaact
ttaatccatt gcgcttctcc ggaaacatta gc
102477102DNAArtificial SequenceSynthetic Polynucleotide 477acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaat accgaataac 60ttgatgccag
tccggccatt gcgcttctcc ggaaacatta gc
102478102DNAArtificial SequenceSynthetic Polynucleotide 478acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcac ttgcgtatga 60aacacgcgct
gagcaccatt gcgcttctcc ggaaacatta gc
102479102DNAArtificial SequenceSynthetic Polynucleotide 479acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca gccaactatt 60gagtcgcttg
atccaccatt gcgcttctcc ggaaacatta gc
102480102DNAArtificial SequenceSynthetic Polynucleotide 480acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc gatctgcgct 60gcgccaccgg
ttaatacatt gcgcttctcc ggaaacatta gc
102481102DNAArtificial SequenceSynthetic Polynucleotide 481acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg ttgtacgcac 60ttgaccacgg
attcgacatt gcgcttctcc ggaaacatta gc
102482102DNAArtificial SequenceSynthetic Polynucleotide 482acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt ctggcggcac 60gctgaaggta
tttcctcatt gcgcttctcc ggaaacatta gc
102483102DNAArtificial SequenceSynthetic Polynucleotide 483acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc cgggccatac 60agcattggaa
gcacctcatt gcgcttctcc ggaaacatta gc
102484102DNAArtificial SequenceSynthetic Polynucleotide 484acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctttc gcgatagccc 60tgcaacactt
cattggcatt gcgcttctcc ggaaacatta gc
102485102DNAArtificial SequenceSynthetic Polynucleotide 485acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgttg ctgagtagat 60tcctctggcg
gcaaggcatt gcgcttctcc ggaaacatta gc
102486102DNAArtificial SequenceSynthetic Polynucleotide 486acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccca atgccaggat 60cgactgccgg
atatcgcatt gcgcttctcc ggaaacatta gc
102487102DNAArtificial SequenceSynthetic Polynucleotide 487acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctaat ccacggcagg 60cgttgttcta
tttgcgcatt gcgcttctcc ggaaacatta gc
102488102DNAArtificial SequenceSynthetic Polynucleotide 488acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgtt gacatcctgg 60gtcataaagg
tacccgcatt gcgcttctcc ggaaacatta gc
102489102DNAArtificial SequenceSynthetic Polynucleotide 489acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcg ttattcagcg 60tcaactgcca
ggaacgcatt gcgcttctcc ggaaacatta gc
102490102DNAArtificial SequenceSynthetic Polynucleotide 490acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag acgcgttcca 60ttattgcggc
gagaagcatt gcgcttctcc ggaaacatta gc
102491102DNAArtificial SequenceSynthetic Polynucleotide 491acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt catcgccgct 60tccttcagag
taaatccatt gcgcttctcc ggaaacatta gc
102492102DNAArtificial SequenceSynthetic Polynucleotide 492acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt agctaatccg 60tttgccatcg
gtttgccatt gcgcttctcc ggaaacatta gc
102493102DNAArtificial SequenceSynthetic Polynucleotide 493acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtct accatatgtt 60gatcattcca
ccgcgccatt gcgcttctcc ggaaacatta gc
102494102DNAArtificial SequenceSynthetic Polynucleotide 494acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcaa ttcatcaggc 60cactgctttc
tgacgccatt gcgcttctcc ggaaacatta gc
102495102DNAArtificial SequenceSynthetic Polynucleotide 495acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc ctactgccgc 60tccagagtca
taacgccatt gcgcttctcc ggaaacatta gc
102496102DNAArtificial SequenceSynthetic Polynucleotide 496acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt gtgtaatggc 60gttcaccggt
caacaccatt gcgcttctcc ggaaacatta gc
102497102DNAArtificial SequenceSynthetic Polynucleotide 497acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctctt cttcgctgtt 60tcgcgtgttc
agagcacatt gcgcttctcc ggaaacatta gc
102498102DNAArtificial SequenceSynthetic Polynucleotide 498acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagca aatgcacgga 60tggtgttacc
taccgtcatt gcgcttctcc ggaaacatta gc
102499102DNAArtificial SequenceSynthetic Polynucleotide 499acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgca cagcgccttt 60cagtacatcg
ttcgctcatt gcgcttctcc ggaaacatta gc
102500102DNAArtificial SequenceSynthetic Polynucleotide 500acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagag aagtaccgat 60aaccacagtc
gcgttgcatt gcgcttctcc ggaaacatta gc
102501102DNAArtificial SequenceSynthetic Polynucleotide 501acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgct gaacctgctt 60attggtcacc
agagtgcatt gcgcttctcc ggaaacatta gc
102502102DNAArtificial SequenceSynthetic Polynucleotide 502acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt tacgcgcagc 60tcgtcattca
tatccgcatt gcgcttctcc ggaaacatta gc
102503102DNAArtificial SequenceSynthetic Polynucleotide 503acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagg gagataccgc 60ggcccagaac
tttcagcatt gcgcttctcc ggaaacatta gc
102504102DNAArtificial SequenceSynthetic Polynucleotide 504acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg ccagacaggt 60cgatatcttc
cagcagcatt gcgcttctcc ggaaacatta gc
102505102DNAArtificial SequenceSynthetic Polynucleotide 505acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagg tcgaagcccg 60ccgtgatgtt
aaccagcatt gcgcttctcc ggaaacatta gc
102506102DNAArtificial SequenceSynthetic Polynucleotide 506acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagga cgtttgtcca 60tgccgatacc
tgtcgccatt gcgcttctcc ggaaacatta gc
102507102DNAArtificial SequenceSynthetic Polynucleotide 507acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagag atagccattt 60cagcagcttc
ttccgccatt gcgcttctcc ggaaacatta gc
102508102DNAArtificial SequenceSynthetic Polynucleotide 508acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccac cacccatacc 60cgcagcaata
aagacccatt gcgcttctcc ggaaacatta gc
102509102DNAArtificial SequenceSynthetic Polynucleotide 509acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc agcgacgact 60ggtgctgcac
ctgtaccatt gcgcttctcc ggaaacatta gc
102510102DNAArtificial SequenceSynthetic Polynucleotide 510acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc gcccagtcct 60ttggtgatac
cgctaccatt gcgcttctcc ggaaacatta gc
102511102DNAArtificial SequenceSynthetic Polynucleotide 511acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca gtttgcggcg 60cattgtcatt
cacgaccatt gcgcttctcc ggaaacatta gc
102512102DNAArtificial SequenceSynthetic Polynucleotide 512acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatt acggtgcgta 60cgtctgcaaa
gtccaccatt gcgcttctcc ggaaacatta gc
102513102DNAArtificial SequenceSynthetic Polynucleotide 513acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcaa acccggacga 60gtaatcagtt
cagcgacatt gcgcttctcc ggaaacatta gc
102514102DNAArtificial SequenceSynthetic Polynucleotide 514acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgaa aggcttagtg 60acgacagcaa
cggtcacatt gcgcttctcc ggaaacatta gc
102515102DNAArtificial SequenceSynthetic Polynucleotide 515acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccga cgccgatgac 60tttaatcacc
gcgtcacatt gcgcttctcc ggaaacatta gc
102516102DNAArtificial SequenceSynthetic Polynucleotide 516acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat cccatgctgc 60tggtagcgat
ccatcacatt gcgcttctcc ggaaacatta gc
102517102DNAArtificial SequenceSynthetic Polynucleotide 517acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgtc gttcgggata 60gtgatcagag
agtccacatt gcgcttctcc ggaaacatta gc
102518102DNAArtificial SequenceSynthetic Polynucleotide 518acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc gcttgtgcat 60cggtatttac
cgcgaacatt gcgcttctcc ggaaacatta gc
102519102DNAArtificial SequenceSynthetic Polynucleotide 519acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc aatgcgctcg 60cgcaccatgt
gttcaacatt gcgcttctcc ggaaacatta gc
102520102DNAArtificial SequenceSynthetic Polynucleotide 520acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacc cggtttggtg 60tctggcatat
tgctttcatt gcgcttctcc ggaaacatta gc
102521102DNAArtificial SequenceSynthetic Polynucleotide 521acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc acttccggcg 60aagcggtttc
tgctttcatt gcgcttctcc ggaaacatta gc
102522102DNAArtificial SequenceSynthetic Polynucleotide 522acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctggt gcccaggagt 60ttggcgagtt
aaaggtcatt gcgcttctcc ggaaacatta gc
102523102DNAArtificial SequenceSynthetic Polynucleotide 523acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatg ataagagaca 60ccacggcagg
ttacgtcatt gcgcttctcc ggaaacatta gc
102524102DNAArtificial SequenceSynthetic Polynucleotide 524acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgtg ttcgtcagac 60gggattgcgt
tcggatcatt gcgcttctcc ggaaacatta gc
102525102DNAArtificial SequenceSynthetic Polynucleotide 525acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg aaccaccagt 60tcgccattac
gacgatcatt gcgcttctcc ggaaacatta gc
102526102DNAArtificial SequenceSynthetic Polynucleotide 526acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacc gctaatcagc 60agtgcgacca
ccagtgcatt gcgcttctcc ggaaacatta gc
102527102DNAArtificial SequenceSynthetic Polynucleotide 527acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc ggagcgtaaa 60taactggcac
tttctgcatt gcgcttctcc ggaaacatta gc
102528102DNAArtificial SequenceSynthetic Polynucleotide 528acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc cactttaatc 60ggcgtcactt
cattggcatt gcgcttctcc ggaaacatta gc
102529102DNAArtificial SequenceSynthetic Polynucleotide 529acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgct ggctgtttac 60atggcagacc
aaatggcatt gcgcttctcc ggaaacatta gc
102530102DNAArtificial SequenceSynthetic Polynucleotide 530acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaatc gcaatcagtc 60gaccatcatt
gaccggcatt gcgcttctcc ggaaacatta gc
102531102DNAArtificial SequenceSynthetic Polynucleotide 531acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttga gcacgccttt 60attggcgaag
gtttcgcatt gcgcttctcc ggaaacatta gc
102532102DNAArtificial SequenceSynthetic Polynucleotide 532acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacat atccgcaccg 60ctcaaatctt
tcgtcgcatt gcgcttctcc ggaaacatta gc
102533102DNAArtificial SequenceSynthetic Polynucleotide 533acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt atcggcgtta 60atttgtttca
gcggcgcatt gcgcttctcc ggaaacatta gc
102534102DNAArtificial SequenceSynthetic Polynucleotide 534acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgggc tgttagcgtg 60acgagtaatc
gtcgcgcatt gcgcttctcc ggaaacatta gc
102535102DNAArtificial SequenceSynthetic Polynucleotide 535acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctagt cgcccatctt 60cgtaccaaat
gaaccgcatt gcgcttctcc ggaaacatta gc
102536102DNAArtificial SequenceSynthetic Polynucleotide 536acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccga gcatcacaag 60gccagcgata
gggtagcatt gcgcttctcc ggaaacatta gc
102537102DNAArtificial SequenceSynthetic Polynucleotide 537acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc ggatcgttaa 60atccggccca
ggtcagcatt gcgcttctcc ggaaacatta gc
102538102DNAArtificial SequenceSynthetic Polynucleotide 538acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagg cgctggtgag 60cggtacacag
gtaaagcatt gcgcttctcc ggaaacatta gc
102539102DNAArtificial SequenceSynthetic Polynucleotide 539acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtta cccgggaaga 60ccagcgtacc
ctgttccatt gcgcttctcc ggaaacatta gc
102540102DNAArtificial SequenceSynthetic Polynucleotide 540acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcg gtgataatcg 60gtggcgaagt
cggttccatt gcgcttctcc ggaaacatta gc
102541102DNAArtificial SequenceSynthetic Polynucleotide 541acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgt gccggaagat 60ccatgtccca
caggtccatt gcgcttctcc ggaaacatta gc
102542102DNAArtificial SequenceSynthetic Polynucleotide 542acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtc acgcccatcg 60gcagatagac
cagatccatt gcgcttctcc ggaaacatta gc
102543102DNAArtificial SequenceSynthetic Polynucleotide 543acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagg atcgtaatgc 60catttctctt
tgccgccatt gcgcttctcc ggaaacatta gc
102544102DNAArtificial SequenceSynthetic Polynucleotide 544acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttac ttcacatcat 60ccggcagcgc
ataagccatt gcgcttctcc ggaaacatta gc
102545102DNAArtificial SequenceSynthetic Polynucleotide 545acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgaac ggtctggtag 60ctccacgcca
gtttcccatt gcgcttctcc ggaaacatta gc
102546102DNAArtificial SequenceSynthetic Polynucleotide 546acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcct gcggagatca 60ccacatactg
cttacccatt gcgcttctcc ggaaacatta gc
102547102DNAArtificial SequenceSynthetic Polynucleotide 547acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc cgtagcggcg 60ataaacagca
cgttaccatt gcgcttctcc ggaaacatta gc
102548102DNAArtificial SequenceSynthetic Polynucleotide 548acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc ataggtcatt 60ggcgtagcct
gaccaccatt gcgcttctcc ggaaacatta gc
102549102DNAArtificial SequenceSynthetic Polynucleotide 549acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggca atcgccactt 60cacgatttgg
atcaaccatt gcgcttctcc ggaaacatta gc
102550102DNAArtificial SequenceSynthetic Polynucleotide 550acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgga gtcagcgccc 60agaagtcgaa
accaaccatt gcgcttctcc ggaaacatta gc
102551102DNAArtificial SequenceSynthetic Polynucleotide 551acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggaa cgggttgagc 60gtgacaccat
acggtacatt gcgcttctcc ggaaacatta gc
102552102DNAArtificial SequenceSynthetic Polynucleotide 552acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaccg ttgctcatgt 60tgtaagcgcg
caggtacatt gcgcttctcc ggaaacatta gc
102553102DNAArtificial SequenceSynthetic Polynucleotide 553acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggat cgttcggctg 60cttcacatcg
ccagtacatt gcgcttctcc ggaaacatta gc
102554102DNAArtificial SequenceSynthetic Polynucleotide 554acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacc agccagcctc 60cgccaatgag
tagatacatt gcgcttctcc ggaaacatta gc
102555102DNAArtificial SequenceSynthetic Polynucleotide 555acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgcc ttcatagcgc 60atctggtgga
acatcacatt gcgcttctcc ggaaacatta gc
102556102DNAArtificial SequenceSynthetic Polynucleotide 556acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt gaccttcctg 60attacgacca
taggcacatt gcgcttctcc ggaaacatta gc
102557102DNAArtificial SequenceSynthetic Polynucleotide 557acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctg cggcgtacca 60atacgtttct
tccacacatt gcgcttctcc ggaaacatta gc
102558102DNAArtificial SequenceSynthetic Polynucleotide 558acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag gaccacgcgg 60gatcagtttc
gaaacacatt gcgcttctcc ggaaacatta gc
102559102DNAArtificial SequenceSynthetic Polynucleotide 559acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccccg cccagcatcg 60gcatacccat
attgaacatt gcgcttctcc ggaaacatta gc
102560102DNAArtificial SequenceSynthetic Polynucleotide 560acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgaca aacggcagga 60tcagccagat
gccgaacatt gcgcttctcc ggaaacatta gc
102561102DNAArtificial SequenceSynthetic Polynucleotide 561acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgatc acgccagacg 60tttcgcgggt
tgagaacatt gcgcttctcc ggaaacatta gc
102562102DNAArtificial SequenceSynthetic Polynucleotide 562acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg ccggaccagc 60tctgacctga
atgtttcatt gcgcttctcc ggaaacatta gc
102563102DNAArtificial SequenceSynthetic Polynucleotide 563acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgc tttcgcaacg 60aactgcacga
agtgttcatt gcgcttctcc ggaaacatta gc
102564102DNAArtificial SequenceSynthetic Polynucleotide 564acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgtg cctacggtgt 60ccatatttgc
ggcgatcatt gcgcttctcc ggaaacatta gc
102565102DNAArtificial SequenceSynthetic Polynucleotide 565acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacc agtcactacg 60ttaccagcac
aaatggcatt gcgcttctcc ggaaacatta gc
102566102DNAArtificial SequenceSynthetic Polynucleotide 566acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaaa cgaagtttaa 60tgccgggttc
aggtcgcatt gcgcttctcc ggaaacatta gc
102567102DNAArtificial SequenceSynthetic Polynucleotide 567acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaaat ttctcgccgt 60tctcctcaac
gatgcgcatt gcgcttctcc ggaaacatta gc
102568102DNAArtificial SequenceSynthetic Polynucleotide 568acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagag tggagcgttt 60agggcggatg
agaacgcatt gcgcttctcc ggaaacatta gc
102569102DNAArtificial SequenceSynthetic Polynucleotide 569acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctggt gcagccacca 60tcgctgacga
tcattccatt gcgcttctcc ggaaacatta gc
102570102DNAArtificial SequenceSynthetic Polynucleotide 570acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaacg atatcggcac 60ctgagaggat
aagctccatt gcgcttctcc ggaaacatta gc
102571102DNAArtificial SequenceSynthetic Polynucleotide 571acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttg ttcctgcaca 60cgaataaacg
tggtgccatt gcgcttctcc ggaaacatta gc
102572102DNAArtificial SequenceSynthetic Polynucleotide 572acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcattg acgttccagt 60tcaacatcgg
aacggccatt gcgcttctcc ggaaacatta gc
102573102DNAArtificial SequenceSynthetic Polynucleotide 573acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacg cgagttgtac 60aaacagaacc
tgggcccatt gcgcttctcc ggaaacatta gc
102574102DNAArtificial SequenceSynthetic Polynucleotide 574acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca acgtgacgtt 60tcatcgcaga
ctcggacatt gcgcttctcc ggaaacatta gc
102575102DNAArtificial SequenceSynthetic Polynucleotide 575acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca gcatcggcac 60attcgattac
cgcagacatt gcgcttctcc ggaaacatta gc
102576102DNAArtificial SequenceSynthetic Polynucleotide 576acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgaa atccgcatca 60gacgtaccgg
tagaaacatt gcgcttctcc ggaaacatta gc
102577102DNAArtificial SequenceSynthetic Polynucleotide 577acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggca gtcagcgtga 60ccatggtaac
acccttcatt gcgcttctcc ggaaacatta gc
102578102DNAArtificial SequenceSynthetic Polynucleotide 578acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacc atatccatgg 60tcgggaccag
ttcggtcatt gcgcttctcc ggaaacatta gc
102579102DNAArtificial SequenceSynthetic Polynucleotide 579acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctt cttctgccgc 60ttccagcaga
ccttctcatt gcgcttctcc ggaaacatta gc
102580102DNAArtificial SequenceSynthetic Polynucleotide 580acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccact tccatttcgg 60ttggtgcacc
aaagctcatt gcgcttctcc ggaaacatta gc
102581102DNAArtificial SequenceSynthetic Polynucleotide 581acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgaac tctggcagcg 60gcggaacaca
gttcatcatt gcgcttctcc ggaaacatta gc
102582102DNAArtificial SequenceSynthetic Polynucleotide 582acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt gttgtcagct 60catccagcgt
ttcgtgcatt gcgcttctcc ggaaacatta gc
102583102DNAArtificial SequenceSynthetic Polynucleotide 583acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctatt gatatcttcc 60atgctgtgcg
ccacggcatt gcgcttctcc ggaaacatta gc
102584102DNAArtificial SequenceSynthetic Polynucleotide 584acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcta cgcggaaacc 60ggtcatcact
tcatcgcatt gcgcttctcc ggaaacatta gc
102585102DNAArtificial SequenceSynthetic Polynucleotide 585acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttgc catcaacatc 60gtacagataa
gcgccgcatt gcgcttctcc ggaaacatta gc
102586102DNAArtificial SequenceSynthetic Polynucleotide 586acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccga ggcaggttaa 60atctggcact
acgccgcatt gcgcttctcc ggaaacatta gc
102587102DNAArtificial SequenceSynthetic Polynucleotide 587acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctca aatgcggcgc 60gtacagaagc
cagatccatt gcgcttctcc ggaaacatta gc
102588102DNAArtificial SequenceSynthetic Polynucleotide 588acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaac ttcgcaaaca 60cccgacgtgc
agcatccatt gcgcttctcc ggaaacatta gc
102589102DNAArtificial SequenceSynthetic Polynucleotide 589acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct taaagcgttc 60cacgtcacag
gccatccatt gcgcttctcc ggaaacatta gc
102590102DNAArtificial SequenceSynthetic Polynucleotide 590acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaggt atatttggcg 60aaatctgccg
gaacgccatt gcgcttctcc ggaaacatta gc
102591102DNAArtificial SequenceSynthetic Polynucleotide 591acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctca tggtcgcttc 60agtgccggag
ttcacccatt gcgcttctcc ggaaacatta gc
102592102DNAArtificial SequenceSynthetic Polynucleotide 592acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag cgcatccatt 60acatcacgac
gaccaccatt gcgcttctcc ggaaacatta gc
102593102DNAArtificial SequenceSynthetic Polynucleotide 593acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct tcaaacgctg 60acggtgccag
gtaaaccatt gcgcttctcc ggaaacatta gc
102594102DNAArtificial SequenceSynthetic Polynucleotide 594acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctg cgcgacttca 60ttcagacagg
cgaaaccatt gcgcttctcc ggaaacatta gc
102595102DNAArtificial SequenceSynthetic Polynucleotide 595acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca tcgcaatcgg 60gttaccggaa
agcgtacatt gcgcttctcc ggaaacatta gc
102596102DNAArtificial SequenceSynthetic Polynucleotide 596acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacc gaacatgccg 60ccaacgtggt
taacgacatt gcgcttctcc ggaaacatta gc
102597102DNAArtificial SequenceSynthetic Polynucleotide 597acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctaa cgtgagtgcg 60ccagaaccgg
ctttcacatt gcgcttctcc ggaaacatta gc
102598102DNAArtificial SequenceSynthetic Polynucleotide 598acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc caccggctcg 60acgataatac
aggcaacatt gcgcttctcc ggaaacatta gc
102599102DNAArtificial SequenceSynthetic Polynucleotide 599acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccga tatacggcag 60atgacggtaa
cgctgtcatt gcgcttctcc ggaaacatta gc
102600102DNAArtificial SequenceSynthetic Polynucleotide 600acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat atcgctgccg 60ctgtctttgt
aacgctcatt gcgcttctcc ggaaacatta gc
102601102DNAArtificial SequenceSynthetic Polynucleotide 601acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtt cgcgcaggct 60taagatctca
cgcactcatt gcgcttctcc ggaaacatta gc
102602102DNAArtificial SequenceSynthetic Polynucleotide 602acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcat gagatacctg 60aacttcacgg
cacaggcatt gcgcttctcc ggaaacatta gc
102603102DNAArtificial SequenceSynthetic Polynucleotide 603acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgttt atccagcagc 60gtacaaatcg
ccagcgcatt gcgcttctcc ggaaacatta gc
102604102DNAArtificial SequenceSynthetic Polynucleotide 604acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaaat tctaccggga 60cgttcacttc
acgacgcatt gcgcttctcc ggaaacatta gc
102605102DNAArtificial SequenceSynthetic Polynucleotide 605acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatct tcaacaatca 60gcacgtcctt
gccacgcatt gcgcttctcc ggaaacatta gc
102606102DNAArtificial SequenceSynthetic Polynucleotide 606acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc taccgtagct 60ggaggcggtc
ataaagcatt gcgcttctcc ggaaacatta gc
102607102DNAArtificial SequenceSynthetic Polynucleotide 607acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcaa tgccgtaacc 60caccacaaac
tcatcccatt gcgcttctcc ggaaacatta gc
102608102DNAArtificial SequenceSynthetic Polynucleotide 608acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaaac ataaatgagc 60cacgcagcag
acccaccatt gcgcttctcc ggaaacatta gc
102609102DNAArtificial SequenceSynthetic Polynucleotide 609acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacg acccagttcg 60gcgatacgcg
ctttaacatt gcgcttctcc ggaaacatta gc
102610102DNAArtificial SequenceSynthetic Polynucleotide 610acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggta ttcccggctg 60ttagcgcttc
agatttcatt gcgcttctcc ggaaacatta gc
102611102DNAArtificial SequenceSynthetic Polynucleotide 611acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt cttgcaaacg 60cgagttaaag
cgactgcatt gcgcttctcc ggaaacatta gc
102612102DNAArtificial SequenceSynthetic Polynucleotide 612acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca ataatacgca 60gacgcacgtt
atgtcgcatt gcgcttctcc ggaaacatta gc
102613102DNAArtificial SequenceSynthetic Polynucleotide 613acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaagg catacagcgt 60taacgcctca
ataccgcatt gcgcttctcc ggaaacatta gc
102614102DNAArtificial SequenceSynthetic Polynucleotide 614acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccac cgtagttcgc 60cgcaatattc
agcgtccatt gcgcttctcc ggaaacatta gc
102615102DNAArtificial SequenceSynthetic Polynucleotide 615acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatct gatctggttg 60caggtttcct
tgctgccatt gcgcttctcc ggaaacatta gc
102616102DNAArtificial SequenceSynthetic Polynucleotide 616acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggct ttatgcccaa 60aggcacgaat
cttccccatt gcgcttctcc ggaaacatta gc
102617102DNAArtificial SequenceSynthetic Polynucleotide 617acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag ttgcctgact 60ccctggacta
tatccccatt gcgcttctcc ggaaacatta gc
102618102DNAArtificial SequenceSynthetic Polynucleotide 618acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtct tgttcatcga 60aatcgggcca
gagaaccatt gcgcttctcc ggaaacatta gc
102619102DNAArtificial SequenceSynthetic Polynucleotide 619acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct atcgagcgcc 60cacacaaaca
gttccacatt gcgcttctcc ggaaacatta gc
102620102DNAArtificial SequenceSynthetic Polynucleotide 620acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg ccgaaacgac 60gctctcgatt
agcaaacatt gcgcttctcc ggaaacatta gc
102621102DNAArtificial SequenceSynthetic Polynucleotide 621acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat gcgtagcgcc 60aggtacaggc
tttcttcatt gcgcttctcc ggaaacatta gc
102622102DNAArtificial SequenceSynthetic Polynucleotide 622acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgagg caggcagaaa 60ccgcgtgttg
ttcattcatt gcgcttctcc ggaaacatta gc
102623102DNAArtificial SequenceSynthetic Polynucleotide 623acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgag gtatcgccgt 60ggaaaccatc
tttgatcatt gcgcttctcc ggaaacatta gc
102624102DNAArtificial SequenceSynthetic Polynucleotide 624acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttat tcgtcgtgcg 60agattatcgc
cgggatcatt gcgcttctcc ggaaacatta gc
102625102DNAArtificial SequenceSynthetic Polynucleotide 625acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacg cccggtttaa 60catacggttc
gatcatcatt gcgcttctcc ggaaacatta gc
102626102DNAArtificial SequenceSynthetic Polynucleotide 626acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagag atgcaaacgg 60atttcggata
gccgtgcatt gcgcttctcc ggaaacatta gc
102627102DNAArtificial SequenceSynthetic Polynucleotide 627acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctaat cattacagat 60gcgatccagc
tcgccgcatt gcgcttctcc ggaaacatta gc
102628102DNAArtificial SequenceSynthetic Polynucleotide 628acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcg ccatctttca 60gcagcttagc
atcgtccatt gcgcttctcc ggaaacatta gc
102629102DNAArtificial SequenceSynthetic Polynucleotide 629acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgt tgaccattgg 60ctcgatggtg
aacgtccatt gcgcttctcc ggaaacatta gc
102630102DNAArtificial SequenceSynthetic Polynucleotide 630acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaccg tccagccatc 60tttcatggtg
cggatccatt gcgcttctcc ggaaacatta gc
102631102DNAArtificial SequenceSynthetic Polynucleotide 631acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc cttgcgtagc 60gtcagaattt
cgcagccatt gcgcttctcc ggaaacatta gc
102632102DNAArtificial SequenceSynthetic Polynucleotide 632acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctccg caatattcac 60gaacgacgga
gaagcccatt gcgcttctcc ggaaacatta gc
102633102DNAArtificial SequenceSynthetic Polynucleotide 633acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgcg gttcttcatg 60gaagccgcga
ccaatacatt gcgcttctcc ggaaacatta gc
102634102DNAArtificial SequenceSynthetic Polynucleotide 634acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaggt ttcagtacga 60cgttggtttc
acgggacatt gcgcttctcc ggaaacatta gc
102635102DNAArtificial SequenceSynthetic Polynucleotide 635acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc gacaaatttc 60tgaatcgccg
caccgacatt gcgcttctcc ggaaacatta gc
102636102DNAArtificial SequenceSynthetic Polynucleotide 636acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc catgatggtc 60ggcttaccga
cgataacatt gcgcttctcc ggaaacatta gc
102637102DNAArtificial SequenceSynthetic Polynucleotide 637acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc tgcgggaagc 60tctgatacag
cactttcatt gcgcttctcc ggaaacatta gc
102638102DNAArtificial SequenceSynthetic Polynucleotide 638acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctt acgccctttg 60cctttgccct
taccttcatt gcgcttctcc ggaaacatta gc
102639102DNAArtificial SequenceSynthetic Polynucleotide 639acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca attggcgcat 60ccgcaatcca
cgtattcatt gcgcttctcc ggaaacatta gc
102640102DNAArtificial SequenceSynthetic Polynucleotide 640acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagcg gacgggcact 60caacatgtca
tagagtcatt gcgcttctcc ggaaacatta gc
102641102DNAArtificial SequenceSynthetic Polynucleotide 641acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggct tagctcttct 60accgggcgac
caaagtcatt gcgcttctcc ggaaacatta gc
102642102DNAArtificial SequenceSynthetic Polynucleotide 642acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatga tcagcgccat 60gtaagcttcg
ttcgctcatt gcgcttctcc ggaaacatta gc
102643102DNAArtificial SequenceSynthetic Polynucleotide 643acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccac cagcatcact 60ctgccgcttt
cgctatcatt gcgcttctcc ggaaacatta gc
102644102DNAArtificial SequenceSynthetic Polynucleotide 644acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggat ttcgttgtcg 60ccgctctgac
cgagatcatt gcgcttctcc ggaaacatta gc
102645102DNAArtificial SequenceSynthetic Polynucleotide 645acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgg caccatacag 60tttggtcggc
tggttgcatt gcgcttctcc ggaaacatta gc
102646102DNAArtificial SequenceSynthetic Polynucleotide 646acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctttc accataccga 60ctaacagcgc
ctgctgcatt gcgcttctcc ggaaacatta gc
102647102DNAArtificial SequenceSynthetic Polynucleotide 647acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgg acggcgaatc 60atctcaatgc
tgttggcatt gcgcttctcc ggaaacatta gc
102648102DNAArtificial SequenceSynthetic Polynucleotide 648acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt catcattctg 60cggtgaccag
acctggcatt gcgcttctcc ggaaacatta gc
102649102DNAArtificial SequenceSynthetic Polynucleotide 649acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagat ttaccgtcgg 60cacgttcatc
gaacggcatt gcgcttctcc ggaaacatta gc
102650102DNAArtificial SequenceSynthetic Polynucleotide 650acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtc atgtctggct 60caagattgac
cattcgcatt gcgcttctcc ggaaacatta gc
102651102DNAArtificial SequenceSynthetic Polynucleotide 651acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaaa ctgcggctca 60gaacctccga
ccatcgcatt gcgcttctcc ggaaacatta gc
102652102DNAArtificial SequenceSynthetic Polynucleotide 652acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctc aagaatacgg 60tctttgctgt
aacgcgcatt gcgcttctcc ggaaacatta gc
102653102DNAArtificial SequenceSynthetic Polynucleotide 653acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaaca tatccttgat 60ccaaccggct
acaccgcatt gcgcttctcc ggaaacatta gc
102654102DNAArtificial SequenceSynthetic Polynucleotide 654acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag taagaacgct 60cgctggagag
gaacagcatt gcgcttctcc ggaaacatta gc
102655102DNAArtificial SequenceSynthetic Polynucleotide 655acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatgg tgatcagacg 60cggatcaaga
cggaagcatt gcgcttctcc ggaaacatta gc
102656102DNAArtificial SequenceSynthetic Polynucleotide 656acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaaa cagacgctgc 60tcaccgtttg
gcgaagcatt gcgcttctcc ggaaacatta gc
102657102DNAArtificial SequenceSynthetic Polynucleotide 657acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtcg cctccagcag 60cttcaccatc
tcgttccatt gcgcttctcc ggaaacatta gc
102658102DNAArtificial SequenceSynthetic Polynucleotide 658acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtc ggtttccctt 60tgcgtccaat
tggctccatt gcgcttctcc ggaaacatta gc
102659102DNAArtificial SequenceSynthetic Polynucleotide 659acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggc tgttgctgcg 60gctgagaaga
ctgatccatt gcgcttctcc ggaaacatta gc
102660102DNAArtificial SequenceSynthetic Polynucleotide 660acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgg ttgttctcca 60tattgacgat
cgtcgccatt gcgcttctcc ggaaacatta gc
102661102DNAArtificial SequenceSynthetic Polynucleotide 661acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggc tggcttaagg 60ccgtcagata
agtcgccatt gcgcttctcc ggaaacatta gc
102662102DNAArtificial SequenceSynthetic Polynucleotide 662acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcga gataaacgcc 60gtaaatggcg
atcagccatt gcgcttctcc ggaaacatta gc
102663102DNAArtificial SequenceSynthetic Polynucleotide 663acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcataa tctgttgctg 60ttgcagcaga
cgcagccatt gcgcttctcc ggaaacatta gc
102664102DNAArtificial SequenceSynthetic Polynucleotide 664acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgac ggtcttctgt 60cgccagcaaa
gtatcccatt gcgcttctcc ggaaacatta gc
102665102DNAArtificial SequenceSynthetic Polynucleotide 665acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgc tcaacttacg 60ctgtttcttc
agtgcccatt gcgcttctcc ggaaacatta gc
102666102DNAArtificial SequenceSynthetic Polynucleotide 666acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgt tgcgtcagcg 60tactcgcacc
ctgtaccatt gcgcttctcc ggaaacatta gc
102667102DNAArtificial SequenceSynthetic Polynucleotide 667acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacaa gattcagcgg 60cgttggcgtc
tggttacatt gcgcttctcc ggaaacatta gc
102668102DNAArtificial SequenceSynthetic Polynucleotide 668acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgttt gccagcaccg 60cacgtccgat
tgagtacatt gcgcttctcc ggaaacatta gc
102669102DNAArtificial SequenceSynthetic Polynucleotide 669acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgcc gtcaatgccc 60gcaaaccagg
tatctacatt gcgcttctcc ggaaacatta gc
102670102DNAArtificial SequenceSynthetic Polynucleotide 670acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg ttgtaccacc 60tgctgcatgg
tccatacatt gcgcttctcc ggaaacatta gc
102671102DNAArtificial SequenceSynthetic Polynucleotide 671acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag gcagttgcca 60gaccttgcca
tcaatacatt gcgcttctcc ggaaacatta gc
102672102DNAArtificial SequenceSynthetic Polynucleotide 672acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgt cgtagtccac 60gcccatatct
gcaatacatt gcgcttctcc ggaaacatta gc
102673102DNAArtificial SequenceSynthetic Polynucleotide 673acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcactt caccactaaa 60gcggtcgacg
accacacatt gcgcttctcc ggaaacatta gc
102674102DNAArtificial SequenceSynthetic Polynucleotide 674acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtac gcccagttta 60atccaggtct
ccgtaacatt gcgcttctcc ggaaacatta gc
102675102DNAArtificial SequenceSynthetic Polynucleotide 675acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctg cagctcctga 60cgcaccagtt
gcataacatt gcgcttctcc ggaaacatta gc
102676102DNAArtificial SequenceSynthetic Polynucleotide 676acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtcc tgggccaccg 60agtcaaaggt
agtgaacatt gcgcttctcc ggaaacatta gc
102677102DNAArtificial SequenceSynthetic Polynucleotide 677acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgc acctgtcctt 60ctttactgtc
cgggaacatt gcgcttctcc ggaaacatta gc
102678102DNAArtificial SequenceSynthetic Polynucleotide 678acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcaa gatacgcatg 60ccaccgctgc
aaacaacatt gcgcttctcc ggaaacatta gc
102679102DNAArtificial SequenceSynthetic Polynucleotide 679acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttcg tccgagacaa 60cgatatcgcc
cactttcatt gcgcttctcc ggaaacatta gc
102680102DNAArtificial SequenceSynthetic Polynucleotide 680acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc cggacagcct 60ggtaactgac
cgtattcatt gcgcttctcc ggaaacatta gc
102681102DNAArtificial SequenceSynthetic Polynucleotide 681acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagg cctcagcggc 60agcgatcagt
ttatcgcatt gcgcttctcc ggaaacatta gc
102682102DNAArtificial SequenceSynthetic Polynucleotide 682acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttcg caaccgccga 60gactgatagt
ttgacgcatt gcgcttctcc ggaaacatta gc
102683102DNAArtificial SequenceSynthetic Polynucleotide 683acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc aggctggact 60gtttagcggc
aacagccatt gcgcttctcc ggaaacatta gc
102684102DNAArtificial SequenceSynthetic Polynucleotide 684acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatca catctggctt 60gcagtgttcc
aacagccatt gcgcttctcc ggaaacatta gc
102685102DNAArtificial SequenceSynthetic Polynucleotide 685acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc agaccaacag 60aaccgttgat
gaaagccatt gcgcttctcc ggaaacatta gc
102686102DNAArtificial SequenceSynthetic Polynucleotide 686acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcga agctaagatg 60agactgttga
tcggcccatt gcgcttctcc ggaaacatta gc
102687102DNAArtificial SequenceSynthetic Polynucleotide 687acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctagc catgtgcaag 60tttctgcacc
agtgaccatt gcgcttctcc ggaaacatta gc
102688102DNAArtificial SequenceSynthetic Polynucleotide 688acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggag atggcgcgta 60cgacaacaaa
cgggaccatt gcgcttctcc ggaaacatta gc
102689102DNAArtificial SequenceSynthetic Polynucleotide 689acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcaa cctcggttcc 60attcagttgg
ccggtacatt gcgcttctcc ggaaacatta gc
102690102DNAArtificial SequenceSynthetic Polynucleotide 690acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatg ggcgattgcc 60gtcgcttcca
tctctacatt gcgcttctcc ggaaacatta gc
102691102DNAArtificial SequenceSynthetic Polynucleotide 691acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc agcgacttta 60ccgatgcccg
atttcacatt gcgcttctcc ggaaacatta gc
102692102DNAArtificial SequenceSynthetic Polynucleotide 692acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct aacaatcagg 60ccacgtacag
cgttaacatt gcgcttctcc ggaaacatta gc
102693102DNAArtificial SequenceSynthetic Polynucleotide 693acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccaa atgccgtgac 60atccgcgtcg
tgataacatt gcgcttctcc ggaaacatta gc
102694102DNAArtificial SequenceSynthetic Polynucleotide 694acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctc cggagtttgc 60ggcttcagtt
tgatttcatt gcgcttctcc ggaaacatta gc
102695102DNAArtificial SequenceSynthetic Polynucleotide 695acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggaa tacgcgcttc 60atgagcggcg
acaattcatt gcgcttctcc ggaaacatta gc
102696102DNAArtificial SequenceSynthetic Polynucleotide 696acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttt aatggtggcg 60tccacttccg
tcgggtcatt gcgcttctcc ggaaacatta gc
102697102DNAArtificial SequenceSynthetic Polynucleotide 697acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctcg cggtaacaat 60tcgcggatca
ccggatcatt gcgcttctcc ggaaacatta gc
102698102DNAArtificial SequenceSynthetic Polynucleotide 698acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgg catcttcgct 60gaagccgtaa
gtcgtgcatt gcgcttctcc ggaaacatta gc
102699102DNAArtificial SequenceSynthetic Polynucleotide 699acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtg acaatcgcca 60ccatcggttg
cagatgcatt gcgcttctcc ggaaacatta gc
102700102DNAArtificial SequenceSynthetic Polynucleotide 700acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttct caaagtcgcc 60ctggtaggta
tccatgcatt gcgcttctcc ggaaacatta gc
102701102DNAArtificial SequenceSynthetic Polynucleotide 701acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctt ctgcgtagat 60gctggaaacc
atcgcgcatt gcgcttctcc ggaaacatta gc
102702102DNAArtificial SequenceSynthetic Polynucleotide 702acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctagc ctcgtcgtca 60atgccctctt
ccgtagcatt gcgcttctcc ggaaacatta gc
102703102DNAArtificial SequenceSynthetic Polynucleotide 703acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttca ttaactgctg 60cgtgaccgga
tttggccatt gcgcttctcc ggaaacatta gc
102704102DNAArtificial SequenceSynthetic Polynucleotide 704acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctga taaccttcat 60tggccagaac
ttcggccatt gcgcttctcc ggaaacatta gc
102705102DNAArtificial SequenceSynthetic Polynucleotide 705acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacca ttcactggct 60ccagcgggaa
ttcacccatt gcgcttctcc ggaaacatta gc
102706102DNAArtificial SequenceSynthetic Polynucleotide 706acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg gcgatggttg 60aaataaatcg
tcgcaccatt gcgcttctcc ggaaacatta gc
102707102DNAArtificial SequenceSynthetic Polynucleotide 707acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgg gccaatctgc 60tgataatctt
ctacaccatt gcgcttctcc ggaaacatta gc
102708102DNAArtificial SequenceSynthetic Polynucleotide 708acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg tccacgaatt 60gtgcgacaca
gcgaaccatt gcgcttctcc ggaaacatta gc
102709102DNAArtificial SequenceSynthetic Polynucleotide 709acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtta tcggcagaaa 60tcgcgctgga
aacaaccatt gcgcttctcc ggaaacatta gc
102710102DNAArtificial SequenceSynthetic Polynucleotide 710acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt taataccggt 60gccagcatct
cggctacatt gcgcttctcc ggaaacatta gc
102711102DNAArtificial SequenceSynthetic Polynucleotide 711acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgca ttaactcagc 60cagcatttcg
gcacgacatt gcgcttctcc ggaaacatta gc
102712102DNAArtificial SequenceSynthetic Polynucleotide 712acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc gccagccgga 60tacacttcca
gcatcacatt gcgcttctcc ggaaacatta gc
102713102DNAArtificial SequenceSynthetic Polynucleotide 713acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacga tgcatcactc 60tcatctgctt
cggcaacatt gcgcttctcc ggaaacatta gc
102714102DNAArtificial SequenceSynthetic Polynucleotide 714acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtat caacctgcgt 60cagcacattg
gcgaaacatt gcgcttctcc ggaaacatta gc
102715102DNAArtificial SequenceSynthetic Polynucleotide 715acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc acgaggatct 60gcccgtcagt
gacgttcatt gcgcttctcc ggaaacatta gc
102716102DNAArtificial SequenceSynthetic Polynucleotide 716acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaat gccaataacc 60gggatcgcca
gtgcttcatt gcgcttctcc ggaaacatta gc
102717102DNAArtificial SequenceSynthetic Polynucleotide 717acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacc atgttagcac 60cggcacgcat
aaccgtcatt gcgcttctcc ggaaacatta gc
102718102DNAArtificial SequenceSynthetic Polynucleotide 718acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctggc gaagctatag 60tcataagcgg
tgatggcatt gcgcttctcc ggaaacatta gc
102719102DNAArtificial SequenceSynthetic Polynucleotide 719acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctagg aatgtgaccg 60ccggtaatac
caaaggcatt gcgcttctcc ggaaacatta gc
102720102DNAArtificial SequenceSynthetic Polynucleotide 720acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgta cttctgcagt 60aaggagatgg
tggtcgcatt gcgcttctcc ggaaacatta gc
102721102DNAArtificial SequenceSynthetic Polynucleotide 721acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgga aactgtgttc 60ttcgcccgga
taaacgcatt gcgcttctcc ggaaacatta gc
102722102DNAArtificial SequenceSynthetic Polynucleotide 722acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagca gcttctaagg 60ctaatgcatc
gctgagcatt gcgcttctcc ggaaacatta gc
102723102DNAArtificial SequenceSynthetic Polynucleotide 723acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctcc acttcagcca 60tatactgccg
cacagccatt gcgcttctcc ggaaacatta gc
102724102DNAArtificial SequenceSynthetic Polynucleotide 724acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaacc taagtgacca 60catacaggaa
cggcaccatt gcgcttctcc ggaaacatta gc
102725102DNAArtificial SequenceSynthetic Polynucleotide 725acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtca gcatttgtac 60ggtttctacc
agccaccatt gcgcttctcc ggaaacatta gc
102726102DNAArtificial SequenceSynthetic Polynucleotide 726acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag tgtggtaggc 60gatatcggca
acggtacatt gcgcttctcc ggaaacatta gc
102727102DNAArtificial SequenceSynthetic Polynucleotide 727acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccata cgccataaac 60ggcaggtcag
ccagcacatt gcgcttctcc ggaaacatta gc
102728102DNAArtificial SequenceSynthetic Polynucleotide 728acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag cgaatcgccc 60accagcatga
cgttaacatt gcgcttctcc ggaaacatta gc
102729102DNAArtificial SequenceSynthetic Polynucleotide 729acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag gcggctacca 60gaattactgc
ccgtttcatt gcgcttctcc ggaaacatta gc
102730102DNAArtificial SequenceSynthetic Polynucleotide 730acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgatg tccggctgga 60ccaggttgaa
cagcttcatt gcgcttctcc ggaaacatta gc
102731102DNAArtificial SequenceSynthetic Polynucleotide 731acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttg ccttccatac 60gcaggcggcg
aatttgcatt gcgcttctcc ggaaacatta gc
102732102DNAArtificial SequenceSynthetic Polynucleotide 732acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt ttgtttagct 60tctcgcagtc
ctcctgcatt gcgcttctcc ggaaacatta gc
102733102DNAArtificial SequenceSynthetic Polynucleotide 733acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt aagtgtgggt 60ttcagtaccg
ttcgggcatt gcgcttctcc ggaaacatta gc
102734102DNAArtificial SequenceSynthetic Polynucleotide 734acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgt tgttccgccg 60tcagataacc
gttacgcatt gcgcttctcc ggaaacatta gc
102735102DNAArtificial SequenceSynthetic Polynucleotide 735acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcg tgcaggttac 60ccatggtagg
caccagcatt gcgcttctcc ggaaacatta gc
102736102DNAArtificial SequenceSynthetic Polynucleotide 736acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaga ccgtctttgg 60cgcgcataat
tggcaccatt gcgcttctcc ggaaacatta gc
102737102DNAArtificial SequenceSynthetic Polynucleotide 737acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggg ctttggcttc 60gtcgaccagc
ttcatacatt gcgcttctcc ggaaacatta gc
102738102DNAArtificial SequenceSynthetic Polynucleotide 738acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag cagcggcagg 60gtttcgataa
ttaacacatt gcgcttctcc ggaaacatta gc
102739102DNAArtificial SequenceSynthetic Polynucleotide 739acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacc ttccagcatg 60gtcgaaaggc
caggaacatt gcgcttctcc ggaaacatta gc
102740102DNAArtificial SequenceSynthetic Polynucleotide 740acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc atgagtcact 60ttcacgcggt
ggagttcatt gcgcttctcc ggaaacatta gc
102741102DNAArtificial SequenceSynthetic Polynucleotide 741acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag gtgcgagctt 60cttcatctgg
catggtcatt gcgcttctcc ggaaacatta gc
102742102DNAArtificial SequenceSynthetic Polynucleotide 742acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg cgatggcata 60agtggagaaa
cgcttgcatt gcgcttctcc ggaaacatta gc
102743102DNAArtificial SequenceSynthetic Polynucleotide 743acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcct ggtcaatggc 60gcaagaacct
tcatagcatt gcgcttctcc ggaaacatta gc
102744102DNAArtificial SequenceSynthetic Polynucleotide 744acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcaa gcaacctgta 60ccggaatcgc
tttcgccatt gcgcttctcc ggaaacatta gc
102745102DNAArtificial SequenceSynthetic Polynucleotide 745acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagct ggcgatgatg 60acaatatcgc
cgacaccatt gcgcttctcc ggaaacatta gc
102746102DNAArtificial SequenceSynthetic Polynucleotide 746acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagt gggccgccgc 60accgttaaca
gaaatacatt gcgcttctcc ggaaacatta gc
102747102DNAArtificial SequenceSynthetic Polynucleotide 747acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgaa agcgtcgtga 60taggtcaggc
cgctttcatt gcgcttctcc ggaaacatta gc
102748102DNAArtificial SequenceSynthetic Polynucleotide 748acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtt tccgggctga 60tgcgcatacc
caatttcatt gcgcttctcc ggaaacatta gc
102749102DNAArtificial SequenceSynthetic Polynucleotide 749acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc aactgccaga 60tatcgcgggt
taatgtcatt gcgcttctcc ggaaacatta gc
102750102DNAArtificial SequenceSynthetic Polynucleotide 750acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggaa cgccgggttc 60acgcgcatat
cgttatcatt gcgcttctcc ggaaacatta gc
102751102DNAArtificial SequenceSynthetic Polynucleotide 751acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg gtgacggttc 60ttcatccagc
tcgttgcatt gcgcttctcc ggaaacatta gc
102752102DNAArtificial SequenceSynthetic Polynucleotide 752acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg tctccagcag 60tgggtaccag
aacatgcatt gcgcttctcc ggaaacatta gc
102753102DNAArtificial SequenceSynthetic Polynucleotide 753acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatac aggctgttga 60tagtgaaatc
gcggcgcatt gcgcttctcc ggaaacatta gc
102754102DNAArtificial SequenceSynthetic Polynucleotide 754acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgttt aagcgattct 60tcaaacaggc
gtgccgcatt gcgcttctcc ggaaacatta gc
102755102DNAArtificial SequenceSynthetic Polynucleotide 755acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacag cttataggtt 60tcgtaaccgt
agcccgcatt gcgcttctcc ggaaacatta gc
102756102DNAArtificial SequenceSynthetic Polynucleotide 756acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag ttacggaaca 60gtttgcgcac
ctgctccatt gcgcttctcc ggaaacatta gc
102757102DNAArtificial SequenceSynthetic Polynucleotide 757acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctttc cgggttacca 60atcagacgga
taacgccatt gcgcttctcc ggaaacatta gc
102758102DNAArtificial SequenceSynthetic Polynucleotide 758acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcat aagccgcacg 60gaacttagga
tgctcccatt gcgcttctcc ggaaacatta gc
102759102DNAArtificial SequenceSynthetic Polynucleotide 759acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcag atccttcatg 60ccgccaacgt
aatcaccatt gcgcttctcc ggaaacatta gc
102760102DNAArtificial SequenceSynthetic Polynucleotide 760acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggtc gctgacgtta 60ccttcgtggt
gtccaccatt gcgcttctcc ggaaacatta gc
102761102DNAArtificial SequenceSynthetic Polynucleotide 761acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtcg caacttcgat 60aatctccggg
ccaaaccatt gcgcttctcc ggaaacatta gc
102762102DNAArtificial SequenceSynthetic Polynucleotide 762acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccaa ccagccaggc 60ttcgtatccc
gctttacatt gcgcttctcc ggaaacatta gc
102763102DNAArtificial SequenceSynthetic Polynucleotide 763acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgc agcatacgta 60ccggatcttc
acggtacatt gcgcttctcc ggaaacatta gc
102764102DNAArtificial SequenceSynthetic Polynucleotide 764acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatg cgcgtttacc 60ctgacgacgg
gacatacatt gcgcttctcc ggaaacatta gc
102765102DNAArtificial SequenceSynthetic Polynucleotide 765acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg tatcggtatt 60cttcagcacc
tgttcacatt gcgcttctcc ggaaacatta gc
102766102DNAArtificial SequenceSynthetic Polynucleotide 766acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt acgctcaact 60tcagctcgca
aggccacatt gcgcttctcc ggaaacatta gc
102767102DNAArtificial SequenceSynthetic Polynucleotide 767acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgt gaagtagcgg 60gtaatggtcg
ggaacacatt gcgcttctcc ggaaacatta gc
102768102DNAArtificial SequenceSynthetic Polynucleotide 768acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg atcagcggta 60aacacgccgt
caacttcatt gcgcttctcc ggaaacatta gc
102769102DNAArtificial SequenceSynthetic Polynucleotide 769acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcaa caggctgata 60gcttctgccc
agctgtcatt gcgcttctcc ggaaacatta gc
102770102DNAArtificial SequenceSynthetic Polynucleotide 770acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag cacttcgctg 60taagtcagtt
gctcgtcatt gcgcttctcc ggaaacatta gc
102771102DNAArtificial SequenceSynthetic Polynucleotide 771acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctt tcagcaccac 60atcggcttca
atttcgcatt gcgcttctcc ggaaacatta gc
102772102DNAArtificial SequenceSynthetic Polynucleotide 772acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacca atcaccacac 60caacctgaat
acccagcatt gcgcttctcc ggaaacatta gc
102773102DNAArtificial SequenceSynthetic Polynucleotide 773acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttcc tgagccatac 60gatccagtat
gcttgccatt gcgcttctcc ggaaacatta gc
102774102DNAArtificial SequenceSynthetic Polynucleotide 774acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgaa tcggtaattt 60atggtcacga
gccagccatt gcgcttctcc ggaaacatta gc
102775102DNAArtificial SequenceSynthetic Polynucleotide 775acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgc acacgccatt 60caatggaata
gcggaccatt gcgcttctcc ggaaacatta gc
102776102DNAArtificial SequenceSynthetic Polynucleotide 776acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtgc cctgcagagc 60ttcgccactc
aacttacatt gcgcttctcc ggaaacatta gc
102777102DNAArtificial SequenceSynthetic Polynucleotide 777acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag gcaagctgct 60gagtcggtgg
taaagacatt gcgcttctcc ggaaacatta gc
102778102DNAArtificial SequenceSynthetic Polynucleotide 778acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttac ctgtaccggc 60ggagaggatc
accacacatt gcgcttctcc ggaaacatta gc
102779102DNAArtificial SequenceSynthetic Polynucleotide 779acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat cgactttaac 60gatcctgtcg
cctgctcatt gcgcttctcc ggaaacatta gc
102780102DNAArtificial SequenceSynthetic Polynucleotide 780acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc gacgatggcg 60ttgaacggcc
catactcatt gcgcttctcc ggaaacatta gc
102781102DNAArtificial SequenceSynthetic Polynucleotide 781acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttgg cgatagagat 60cggcccactg
aggttgcatt gcgcttctcc ggaaacatta gc
102782102DNAArtificial SequenceSynthetic Polynucleotide 782acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgt aaatcgagct 60ttacatcccg
ccgttgcatt gcgcttctcc ggaaacatta gc
102783102DNAArtificial SequenceSynthetic Polynucleotide 783acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgg gcaacccaga 60aatgaccaaa
ttcatgcatt gcgcttctcc ggaaacatta gc
102784102DNAArtificial SequenceSynthetic Polynucleotide 784acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat cacaaaggtc 60acccactgcg
ttaaggcatt gcgcttctcc ggaaacatta gc
102785102DNAArtificial SequenceSynthetic Polynucleotide 785acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctatt attgaaggca 60tggtggcgga
gttccgcatt gcgcttctcc ggaaacatta gc
102786102DNAArtificial SequenceSynthetic Polynucleotide 786acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcgc tttaccatta 60cccggtttac
tctccgcatt gcgcttctcc ggaaacatta gc
102787102DNAArtificial SequenceSynthetic Polynucleotide 787acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctaac gctaaggatt 60tacccgggtt
atcccgcatt gcgcttctcc ggaaacatta gc
102788102DNAArtificial SequenceSynthetic Polynucleotide 788acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag tacaggttca 60atttgcggcc
cacgagcatt gcgcttctcc ggaaacatta gc
102789102DNAArtificial SequenceSynthetic Polynucleotide 789acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgttc acgctaataa 60gcgcaagaaa
cggcagcatt gcgcttctcc ggaaacatta gc
102790102DNAArtificial SequenceSynthetic Polynucleotide 790acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccc aacgggatca 60gggcgataac
atattccatt gcgcttctcc ggaaacatta gc
102791102DNAArtificial SequenceSynthetic Polynucleotide 791acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctca tctggcaaag 60gaatgacttt
cggctccatt gcgcttctcc ggaaacatta gc
102792102DNAArtificial SequenceSynthetic Polynucleotide 792acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacc aactgcaaac 60gcacggcatc
ccaatccatt gcgcttctcc ggaaacatta gc
102793102DNAArtificial SequenceSynthetic Polynucleotide 793acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgcc aaatggcgct 60actgtaatgg
tggtgccatt gcgcttctcc ggaaacatta gc
102794102DNAArtificial SequenceSynthetic Polynucleotide 794acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttaa cagcaccagc 60agaatcgagc
caatgccatt gcgcttctcc ggaaacatta gc
102795102DNAArtificial SequenceSynthetic Polynucleotide 795acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccca gcatactgac 60cgtcagcttc
atcagccatt gcgcttctcc ggaaacatta gc
102796102DNAArtificial SequenceSynthetic Polynucleotide 796acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaagt acacccagtg 60caacgatgaa
cgaagccatt gcgcttctcc ggaaacatta gc
102797102DNAArtificial SequenceSynthetic Polynucleotide 797acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagtt ccgtacctgg 60tgcaatttgt
gcttcccatt gcgcttctcc ggaaacatta gc
102798102DNAArtificial SequenceSynthetic Polynucleotide 798acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaccg gatcttcttt 60atcaggctca
aacgcccatt gcgcttctcc ggaaacatta gc
102799102DNAArtificial SequenceSynthetic Polynucleotide 799acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcg aattggctgc 60tatttcgcca
accacccatt gcgcttctcc ggaaacatta gc
102800102DNAArtificial SequenceSynthetic Polynucleotide 800acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctt atcagttcgc 60cgccagagcg
ccttaccatt gcgcttctcc ggaaacatta gc
102801102DNAArtificial SequenceSynthetic Polynucleotide 801acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccta ttgagaaacg 60ctcaacgcga
acaccacatt gcgcttctcc ggaaacatta gc
102802102DNAArtificial SequenceSynthetic Polynucleotide 802acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgaa gtttgcaacc 60ggacctgcgg
caataacatt gcgcttctcc ggaaacatta gc
102803102DNAArtificial SequenceSynthetic Polynucleotide 803acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc gttacgtggt 60gcatcagcat
gatgttcatt gcgcttctcc ggaaacatta gc
102804102DNAArtificial SequenceSynthetic Polynucleotide 804acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt ctggatctgc 60acaccttctt
tcgcttcatt gcgcttctcc ggaaacatta gc
102805102DNAArtificial SequenceSynthetic Polynucleotide 805acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat ctccggttcc 60atggcattga
tgatgtcatt gcgcttctcc ggaaacatta gc
102806102DNAArtificial SequenceSynthetic Polynucleotide 806acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgtt ggcaatcgct 60ttagtcaccc
acgggtcatt gcgcttctcc ggaaacatta gc
102807102DNAArtificial SequenceSynthetic Polynucleotide 807acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacg catcagcgca 60tcttccatcg
acaggtcatt gcgcttctcc ggaaacatta gc
102808102DNAArtificial SequenceSynthetic Polynucleotide 808acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagg tgctctttcc 60acagggagtc
aagcgtcatt gcgcttctcc ggaaacatta gc
102809102DNAArtificial SequenceSynthetic Polynucleotide 809acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct cacgcagcgt 60ctcttcatgc
agttctcatt gcgcttctcc ggaaacatta gc
102810102DNAArtificial SequenceSynthetic Polynucleotide 810acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgacg accagaacga 60ccgcgcaact
ggttatcatt gcgcttctcc ggaaacatta gc
102811102DNAArtificial SequenceSynthetic Polynucleotide 811acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc ctgccagcta 60ccaccgagca
caatatcatt gcgcttctcc ggaaacatta gc
102812102DNAArtificial SequenceSynthetic Polynucleotide 812acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgg gattcgtgac 60gctcggtacc
gatgatcatt gcgcttctcc ggaaacatta gc
102813102DNAArtificial SequenceSynthetic Polynucleotide 813acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg ggcaaggatc 60gttacgtcct
actttgcatt gcgcttctcc ggaaacatta gc
102814102DNAArtificial SequenceSynthetic Polynucleotide 814acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctatc ccacatttct 60tccagcgact
gtggtgcatt gcgcttctcc ggaaacatta gc
102815102DNAArtificial SequenceSynthetic Polynucleotide 815acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggag tccacttcgt 60ccaccagcgc
atagtgcatt gcgcttctcc ggaaacatta gc
102816102DNAArtificial SequenceSynthetic Polynucleotide 816acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccata ccgccgagta 60actgaacgtc
gaagtgcatt gcgcttctcc ggaaacatta gc
102817102DNAArtificial SequenceSynthetic Polynucleotide 817acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgatg gagatagtac 60ccaccagcac
cggctgcatt gcgcttctcc ggaaacatta gc
102818102DNAArtificial SequenceSynthetic Polynucleotide 818acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttca acgactccag 60catcgctgca
aacatgcatt gcgcttctcc ggaaacatta gc
102819102DNAArtificial SequenceSynthetic Polynucleotide 819acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttat acatttccga 60gctgtcttct
gccgggcatt gcgcttctcc ggaaacatta gc
102820102DNAArtificial SequenceSynthetic Polynucleotide 820acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgca cgcctttacc 60ggttagtgcg
ttcaggcatt gcgcttctcc ggaaacatta gc
102821102DNAArtificial SequenceSynthetic Polynucleotide 821acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgt tgttccagct 60cctcaacctc
ttcaggcatt gcgcttctcc ggaaacatta gc
102822102DNAArtificial SequenceSynthetic Polynucleotide 822acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttgt cgcgcaggta 60gtcaaagccg
tattcgcatt gcgcttctcc ggaaacatta gc
102823102DNAArtificial SequenceSynthetic Polynucleotide 823acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacag acggaagtag 60ttctggaagg
tgatcgcatt gcgcttctcc ggaaacatta gc
102824102DNAArtificial SequenceSynthetic Polynucleotide 824acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttat ccagccactc 60ggcaattggc
aaatcgcatt gcgcttctcc ggaaacatta gc
102825102DNAArtificial SequenceSynthetic Polynucleotide 825acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacg ctgtacacgt 60tcttcagggc
tgaacgcatt gcgcttctcc ggaaacatta gc
102826102DNAArtificial SequenceSynthetic Polynucleotide 826acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct tcgttggcgt 60ggaatttggc
gttcagcatt gcgcttctcc ggaaacatta gc
102827102DNAArtificial SequenceSynthetic Polynucleotide 827acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatg cccggcaggt 60tgataccgac
agtcagcatt gcgcttctcc ggaaacatta gc
102828102DNAArtificial SequenceSynthetic Polynucleotide 828acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct tcagtcatgt 60agaccaggtc
cggcagcatt gcgcttctcc ggaaacatta gc
102829102DNAArtificial SequenceSynthetic Polynucleotide 829acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttca tccatgatgc 60cctctttcac
cagcagcatt gcgcttctcc ggaaacatta gc
102830102DNAArtificial SequenceSynthetic Polynucleotide 830acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaacg atgtagtcga 60cgtcacgggt
aaacagcatt gcgcttctcc ggaaacatta gc
102831102DNAArtificial SequenceSynthetic Polynucleotide 831acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgag aagtggcctt 60cgccctggaa
ggtttccatt gcgcttctcc ggaaacatta gc
102832102DNAArtificial SequenceSynthetic Polynucleotide 832acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccac gacccgccat 60attggtcgcg
atagtccatt gcgcttctcc ggaaacatta gc
102833102DNAArtificial SequenceSynthetic Polynucleotide 833acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaggt ggataccctg 60acgcagatag
tccatccatt gcgcttctcc ggaaacatta gc
102834102DNAArtificial SequenceSynthetic Polynucleotide 834acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag ttgcttacga 60atgtcgaagt
tacggccatt gcgcttctcc ggaaacatta gc
102835102DNAArtificial SequenceSynthetic Polynucleotide 835acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttta cgctgataca 60cttcgatgga
ctgcgccatt gcgcttctcc ggaaacatta gc
102836102DNAArtificial SequenceSynthetic Polynucleotide 836acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacag ttcgttacgc 60tgggagtaaa
tggcgccatt gcgcttctcc ggaaacatta gc
102837102DNAArtificial SequenceSynthetic Polynucleotide 837acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctt cgcctggctt 60catacccagt
ttacgccatt gcgcttctcc ggaaacatta gc
102838102DNAArtificial SequenceSynthetic Polynucleotide 838acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgta ccgtaagtga 60tgtcagctgc
gtaagccatt gcgcttctcc ggaaacatta gc
102839102DNAArtificial SequenceSynthetic Polynucleotide 839acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctg cttccagtac 60cgcatcgtga
cgtacccatt gcgcttctcc ggaaacatta gc
102840102DNAArtificial SequenceSynthetic Polynucleotide 840acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatac cggctttggt 60cagttcgttt
gacacccatt gcgcttctcc ggaaacatta gc
102841102DNAArtificial SequenceSynthetic Polynucleotide 841acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctg ttaatggttt 60cgctcacatc
gctgaccatt gcgcttctcc ggaaacatta gc
102842102DNAArtificial SequenceSynthetic Polynucleotide 842acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacga atcattggac 60ggttggtcgg
aacaaccatt gcgcttctcc ggaaacatta gc
102843102DNAArtificial SequenceSynthetic Polynucleotide 843acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtac gcatttcggc 60gatgcagcgt
tcgttacatt gcgcttctcc ggaaacatta gc
102844102DNAArtificial SequenceSynthetic Polynucleotide 844acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacc aaagacgcgc 60ttacttgcct
cacgtacatt gcgcttctcc ggaaacatta gc
102845102DNAArtificial SequenceSynthetic Polynucleotide 845acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgca tttgcgctaa 60acgctcggct
tccatacatt gcgcttctcc ggaaacatta gc
102846102DNAArtificial SequenceSynthetic Polynucleotide 846acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat gacgcctttc 60tcgaagtgac
gcatcacatt gcgcttctcc ggaaacatta gc
102847102DNAArtificial SequenceSynthetic Polynucleotide 847acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccacg ttgcgccagg 60tagtcgttga
cggtaacatt gcgcttctcc ggaaacatta gc
102848102DNAArtificial SequenceSynthetic Polynucleotide 848acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggc tgcagagtcg 60tcatcctgat
ggctaacatt gcgcttctcc ggaaacatta gc
102849102DNAArtificial SequenceSynthetic Polynucleotide 849acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctg catggtacga 60ccggtgtgtt
cgtcaacatt gcgcttctcc ggaaacatta gc
102850102DNAArtificial SequenceSynthetic Polynucleotide 850acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacca tccctaataa 60gagatgcggc
cagaagcatt gcgcttctcc ggaaacatta gc
102851102DNAArtificial SequenceSynthetic Polynucleotide 851acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccagc gcgctgagcg 60tatccagtaa
tgcaagcatt gcgcttctcc ggaaacatta gc
102852102DNAArtificial SequenceSynthetic Polynucleotide 852acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttcg cttccagcaa 60ggccaattga
ccaaagcatt gcgcttctcc ggaaacatta gc
102853102DNAArtificial SequenceSynthetic Polynucleotide 853acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgt tgctgagcgc 60aggcaaacct
aaactccatt gcgcttctcc ggaaacatta gc
102854102DNAArtificial SequenceSynthetic Polynucleotide 854acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaatc aacggaatag 60ttcgaattcg
ggcggccatt gcgcttctcc ggaaacatta gc
102855102DNAArtificial SequenceSynthetic Polynucleotide 855acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgc ctgaagaggc 60aaagattctt
cagcaacatt gcgcttctcc ggaaacatta gc
102856102DNAArtificial SequenceSynthetic Polynucleotide 856acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag aatagtgacg 60ctggcaccct
gtggttcatt gcgcttctcc ggaaacatta gc
102857102DNAArtificial SequenceSynthetic Polynucleotide 857acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgg agaaatcacg 60ccgcaggtag
agacttcatt gcgcttctcc ggaaacatta gc
102858102DNAArtificial SequenceSynthetic Polynucleotide 858acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgct gtcggttaag 60tcttccggtt
tggtgtcatt gcgcttctcc ggaaacatta gc
102859102DNAArtificial SequenceSynthetic Polynucleotide 859acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttct ttccacagcg 60cagcggtaat
ttcctgcatt gcgcttctcc ggaaacatta gc
102860102DNAArtificial SequenceSynthetic Polynucleotide 860acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctg gcatattgcg 60cccgtaataa
atctcgcatt gcgcttctcc ggaaacatta gc
102861102DNAArtificial SequenceSynthetic Polynucleotide 861acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagac gttcacatcc 60accatgtcat
acagcgcatt gcgcttctcc ggaaacatta gc
102862102DNAArtificial SequenceSynthetic Polynucleotide 862acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacag gtttctgaca 60ggatttcggt
cagacgcatt gcgcttctcc ggaaacatta gc
102863102DNAArtificial SequenceSynthetic Polynucleotide 863acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggc gcggaaggta 60cataaaccgc
cttcagcatt gcgcttctcc ggaaacatta gc
102864102DNAArtificial SequenceSynthetic Polynucleotide 864acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatca agatgggcaa 60cgaccgtttc
tggcagcatt gcgcttctcc ggaaacatta gc
102865102DNAArtificial SequenceSynthetic Polynucleotide 865acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtcg atgagtttcg 60ggtcaaccgg
ttcttccatt gcgcttctcc ggaaacatta gc
102866102DNAArtificial SequenceSynthetic Polynucleotide 866acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcataa gcaatataac 60cgtcgcgctc
ttcggccatt gcgcttctcc ggaaacatta gc
102867102DNAArtificial SequenceSynthetic Polynucleotide 867acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctca agctggtgga 60tcaggtaatt
cagcgccatt gcgcttctcc ggaaacatta gc
102868102DNAArtificial SequenceSynthetic Polynucleotide 868acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgc gcacgcgata 60atcaatggtt
acgatacatt gcgcttctcc ggaaacatta gc
102869102DNAArtificial SequenceSynthetic Polynucleotide 869acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcca acgtcgctga 60agtaatggct
gagtttcatt gcgcttctcc ggaaacatta gc
102870102DNAArtificial SequenceSynthetic Polynucleotide 870acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgga tcgtcgtagc 60taccggcgtt
atggttcatt gcgcttctcc ggaaacatta gc
102871102DNAArtificial SequenceSynthetic Polynucleotide 871acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctaga taaactcgtc 60gcgctcggtg
gtttgtcatt gcgcttctcc ggaaacatta gc
102872102DNAArtificial SequenceSynthetic Polynucleotide 872acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgggc cagtagcgga 60acatgggtca
tcatctcatt gcgcttctcc ggaaacatta gc
102873102DNAArtificial SequenceSynthetic Polynucleotide 873acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg ccgataatca 60gcacatgttt
cgcgtgcatt gcgcttctcc ggaaacatta gc
102874102DNAArtificial SequenceSynthetic Polynucleotide 874acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccga taggatcggt 60gcagtcggag
ataatgcatt gcgcttctcc ggaaacatta gc
102875102DNAArtificial SequenceSynthetic Polynucleotide 875acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcg cctgaataat 60ttcggttgag
agatggcatt gcgcttctcc ggaaacatta gc
102876102DNAArtificial SequenceSynthetic Polynucleotide 876acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgccg tatggattgc 60cggattgtaa
taacggcatt gcgcttctcc ggaaacatta gc
102877102DNAArtificial SequenceSynthetic Polynucleotide 877acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgata ctgacggcag 60aacgatacga
cacccgcatt gcgcttctcc ggaaacatta gc
102878102DNAArtificial SequenceSynthetic Polynucleotide 878acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccatc cagcgccatt 60acgcgaccaa
atgcagcatt gcgcttctcc ggaaacatta gc
102879102DNAArtificial SequenceSynthetic Polynucleotide 879acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaacg aaattgacgc 60catcgtcgat
caccagcatt gcgcttctcc ggaaacatta gc
102880102DNAArtificial SequenceSynthetic Polynucleotide 880acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatct accgcaaagt 60actgcccaaa
ctggtccatt gcgcttctcc ggaaacatta gc
102881102DNAArtificial SequenceSynthetic Polynucleotide 881acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtca tgataccgcc 60gtaataggtc
gggatccatt gcgcttctcc ggaaacatta gc
102882102DNAArtificial SequenceSynthetic Polynucleotide 882acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtgc gacgaagata 60ccgccaggat
tcaggccatt gcgcttctcc ggaaacatta gc
102883102DNAArtificial SequenceSynthetic Polynucleotide 883acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaagc cagtgcgtct 60tgcagatact
gaggtacatt gcgcttctcc ggaaacatta gc
102884102DNAArtificial SequenceSynthetic Polynucleotide 884acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaat gccgctgaga 60tcgcggtagc
tgtcttcatt gcgcttctcc ggaaacatta gc
102885102DNAArtificial SequenceSynthetic Polynucleotide 885acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc cgttaaatcg 60gccatatctt
cggcttcatt gcgcttctcc ggaaacatta gc
102886102DNAArtificial SequenceSynthetic Polynucleotide 886acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccaga cggccatcag 60gctgccgaat
aacactcatt gcgcttctcc ggaaacatta gc
102887102DNAArtificial SequenceSynthetic Polynucleotide 887acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttga cgtaggcaag 60caggcttaag
gaatcgcatt gcgcttctcc ggaaacatta gc
102888102DNAArtificial SequenceSynthetic Polynucleotide 888acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgtc gaaggtgtcg 60taattactga
ggtccccatt gcgcttctcc ggaaacatta gc
102889102DNAArtificial SequenceSynthetic Polynucleotide 889acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccag tgcgcgacga 60atttgcccgt
taggtacatt gcgcttctcc ggaaacatta gc
102890102DNAArtificial SequenceSynthetic Polynucleotide 890acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccga ctggcgaatt 60aaatccagca
ccatggcatt gcgcttctcc ggaaacatta gc
102891102DNAArtificial SequenceSynthetic Polynucleotide 891acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcac tgacattacg 60gaagaaatgc
agcgcgcatt gcgcttctcc ggaaacatta gc
102892102DNAArtificial SequenceSynthetic Polynucleotide 892acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttag caacaggcca 60gttcgaaatc
cagacgcatt gcgcttctcc ggaaacatta gc
102893102DNAArtificial SequenceSynthetic Polynucleotide 893acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttgc ggataaagct 60gtgaatcgag
cgacagcatt gcgcttctcc ggaaacatta gc
102894102DNAArtificial SequenceSynthetic Polynucleotide 894acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacgc caatccaggt 60ctggagttta
cgttgccatt gcgcttctcc ggaaacatta gc
102895102DNAArtificial SequenceSynthetic Polynucleotide 895acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttaa tgcttcaata 60cggctctggt
ccacgccatt gcgcttctcc ggaaacatta gc
102896102DNAArtificial SequenceSynthetic Polynucleotide 896acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgta ggtaaatcaa 60agctgcaaca
gccgcccatt gcgcttctcc ggaaacatta gc
102897102DNAArtificial SequenceSynthetic Polynucleotide 897acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgtca agttctttca 60acagctcagt
gcggaccatt gcgcttctcc ggaaacatta gc
102898102DNAArtificial SequenceSynthetic Polynucleotide 898acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgaaa ttgcccgata 60cgcggcgcgg
aaattacatt gcgcttctcc ggaaacatta gc
102899102DNAArtificial SequenceSynthetic Polynucleotide 899acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgg gttcaggctg 60gcaatccagg
tttctacatt gcgcttctcc ggaaacatta gc
102900102DNAArtificial SequenceSynthetic Polynucleotide 900acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgctc agtcgctgac 60gcaccagagc
aatcaacatt gcgcttctcc ggaaacatta gc
102901102DNAArtificial SequenceSynthetic Polynucleotide 901acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccccg caggttgggc 60aattcaccgt
aatagtcatt gcgcttctcc ggaaacatta gc
102902102DNAArtificial SequenceSynthetic Polynucleotide 902acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcac tgctttggtt 60cttcgctcca
gtcatccatt gcgcttctcc ggaaacatta gc
102903102DNAArtificial SequenceSynthetic Polynucleotide 903acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccttc agcagcccat 60tctccgaggt
cgatcacatt gcgcttctcc ggaaacatta gc
102904102DNAArtificial SequenceSynthetic Polynucleotide 904acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctc aacgccgcat 60agcgacaggc
tttcttcatt gcgcttctcc ggaaacatta gc
102905102DNAArtificial SequenceSynthetic Polynucleotide 905acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccat cacctcttca 60ccgtccatcc
acagggcatt gcgcttctcc ggaaacatta gc
102906102DNAArtificial SequenceSynthetic Polynucleotide 906acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgc tgcttgttcc 60acttcatcaa
gcaaggcatt gcgcttctcc ggaaacatta gc
102907102DNAArtificial SequenceSynthetic Polynucleotide 907acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgt tgccaggacc 60gttcgctacc
tttcagcatt gcgcttctcc ggaaacatta gc
102908102DNAArtificial SequenceSynthetic Polynucleotide 908acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttca tcgccagcga 60attccagttg
attggccatt gcgcttctcc ggaaacatta gc
102909102DNAArtificial SequenceSynthetic Polynucleotide 909acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctact tctgctgcac 60gaaattgcgg
taagcccatt gcgcttctcc ggaaacatta gc
102910102DNAArtificial SequenceSynthetic Polynucleotide 910acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttca cctcttcatt 60aaaccagtgc
ccgacccatt gcgcttctcc ggaaacatta gc
102911102DNAArtificial SequenceSynthetic Polynucleotide 911acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatgg acatacgcac 60ctttaccact
ccggtacatt gcgcttctcc ggaaacatta gc
102912102DNAArtificial SequenceSynthetic Polynucleotide 912acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcagtc gatactgata 60gccatcgagc
ttcggtcatt gcgcttctcc ggaaacatta gc
102913102DNAArtificial SequenceSynthetic Polynucleotide 913acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcag cacttcaact 60tccagcgtcg
cggtatcatt gcgcttctcc ggaaacatta gc
102914102DNAArtificial SequenceSynthetic Polynucleotide 914acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat ttctgcttct 60tccaggtagt
gtgtggcatt gcgcttctcc ggaaacatta gc
102915102DNAArtificial SequenceSynthetic Polynucleotide 915acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacca gtgaaacaaa 60cagctcttcc
agacggcatt gcgcttctcc ggaaacatta gc
102916102DNAArtificial SequenceSynthetic Polynucleotide 916acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc ctgattcacc 60acaatttgct
gcacggcatt gcgcttctcc ggaaacatta gc
102917102DNAArtificial SequenceSynthetic Polynucleotide 917acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcatcc cgccagataa 60catacgcgca
cgttcgcatt gcgcttctcc ggaaacatta gc
102918102DNAArtificial SequenceSynthetic Polynucleotide 918acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccctg cggcaccagt 60cccaactgac
gtttagcatt gcgcttctcc ggaaacatta gc
102919102DNAArtificial SequenceSynthetic Polynucleotide 919acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcat taacgcacgg 60gcaatcatta
aacggccatt gcgcttctcc ggaaacatta gc
102920102DNAArtificial SequenceSynthetic Polynucleotide 920acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcacat tgagcggcga 60agttcaatat
ccacgccatt gcgcttctcc ggaaacatta gc
102921102DNAArtificial SequenceSynthetic Polynucleotide 921acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctctc gagatcgtaa 60ccaaatacgc
tgaccccatt gcgcttctcc ggaaacatta gc
102922102DNAArtificial SequenceSynthetic Polynucleotide 922acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgatg tacgcttctt 60tgcgctccac
gccgtacatt gcgcttctcc ggaaacatta gc
102923102DNAArtificial SequenceSynthetic Polynucleotide 923acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccggt gcgagatcga 60gaataaaggt
ttccgacatt gcgcttctcc ggaaacatta gc
102924102DNAArtificial SequenceSynthetic Polynucleotide 924acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccac cagctcaccg 60tgttgaataa
tgccgacatt gcgcttctcc ggaaacatta gc
102925102DNAArtificial SequenceSynthetic Polynucleotide 925acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctcac ccgcttcgac 60ctgcaaatct
atcccacatt gcgcttctcc ggaaacatta gc
102926102DNAArtificial SequenceSynthetic Polynucleotide 926acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgat gacgcaacgt 60tggcgtaggc
attggtcatt gcgcttctcc ggaaacatta gc
102927102DNAArtificial SequenceSynthetic Polynucleotide 927acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcttag ctacgcaaac 60cacgtccacg
ttggatcatt gcgcttctcc ggaaacatta gc
102928102DNAArtificial SequenceSynthetic Polynucleotide 928acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcgcgt ctgcacccag 60atacgcataa
agcgatcatt gcgcttctcc ggaaacatta gc
102929102DNAArtificial SequenceSynthetic Polynucleotide 929acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcaaag taaagggtca 60tggtgatgac
tggcggcatt gcgcttctcc ggaaacatta gc
102930102DNAArtificial SequenceSynthetic Polynucleotide 930acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcggca aacacaccgt 60tcagcaaacc
cgcaagcatt gcgcttctcc ggaaacatta gc
102931102DNAArtificial SequenceSynthetic Polynucleotide 931acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctacg tgagtggcgt 60taacacaaag
gttggccatt gcgcttctcc ggaaacatta gc
102932102DNAArtificial SequenceSynthetic Polynucleotide 932acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcctgc atatagctga 60agccatgcat
atcgcccatt gcgcttctcc ggaaacatta gc
102933102DNAArtificial SequenceSynthetic Polynucleotide 933acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctata aacgattggg 60ttcaggtgcg
acagcccatt gcgcttctcc ggaaacatta gc
102934102DNAArtificial SequenceSynthetic Polynucleotide 934acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctatc cggcaataat 60gacgtgagtc
ggaacccatt gcgcttctcc ggaaacatta gc
102935102DNAArtificial SequenceSynthetic Polynucleotide 935acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgcccgt gagcaccagc 60gttaaggcaa
cgaatacatt gcgcttctcc ggaaacatta gc
102936102DNAArtificial SequenceSynthetic Polynucleotide 936acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgctgac cagcggaaca 60tcattgatac
cgaggacatt gcgcttctcc ggaaacatta gc
102937102DNAArtificial SequenceSynthetic Polynucleotide 937acaaccgcgt
gttacaaggc caggcatccg agaggtctgg gaatgccgcc acaataaaga 60ccaccagtac
gccaaacatt gcgcttctcc ggaaacatta gc 102
User Contributions:
Comment about this patent or add new information about this topic: