Patent application title: DITERPENOID SYNTHESIS
Inventors:
IPC8 Class: AC12N902FI
USPC Class:
1 1
Class name:
Publication date: 2019-07-18
Patent application number: 20190218529
Abstract:
The present disclosure relates to nucleic acids that encode polypeptides
with cytochrome P450 activity involved in the biosynthesis of plant
derived diterpenoids or diterpenes.Claims:
1. A transgenic cell comprising an expression vector adapted to express a
nucleic acid molecule comprising at least one nucleotide sequence which
is at least 70% identical to SEQ ID NO: 1 and encodes a polypeptide that
has casbene oxidase activity.
2. The transgenic cell of claim 1, wherein the vector comprises the nucleotide sequence shown in SEQ ID NO: 1, 2, 3, 4, 5, 7, or 8, wherein said nucleotide sequence encodes a casbene oxidase.
3. The transgenic cell of claim 1, wherein said transgenic cell further comprises another expression vector comprising one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenoids, or diterpenoid intermediates, wherein the one or more additional nucleotide sequences comprises: i) a nucleic acid molecule comprising a nucleotide sequence that is at least 71% identical over the full length sequence set forth in SEQ ID NO: 10 and encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity; and/or ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequence set forth in SEQ ID NO: 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.
4. The transgenic cell of claim 1, wherein said transgenic cell is a plant cell.
5. The transgenic cell of claim 1, wherein said transgenic cell is a microbial cell.
6. The microbial cell of claim 5, wherein said microbial cell is a bacterial or fungal cell.
7. The plant cell of claim 4, wherein said plant cell is adapted such that the nucleic acid molecule e is over-expressed when compared to a non-transgenic cell of the same species.
8. A plant comprising the plant cell of claim 4.
9. The plant of claim 8, wherein said plant is from the Euphorbiaceae family.
10. The plant of claim 8, wherein said plant is of the genus Nicotiana spp.
11. The fungal cell of claim 6, wherein said fungal cell is Saccharomyces cerevisiae.
12. A process for modifying of one or more diterpenoids or diterpenes, comprising: i) providing the transgenic plant cell according to claim 4; ii) cultivating said plant cell to produce a transgenic plant; and optionally iii) harvesting said transgenic plant, or part thereof.
13. A process for modifying one or more diterpenes or diterpenoids, comprising: i) providing the transgenic microbial cell according to claim 5 that expresses at least one diterpene and/or diterpenoid metabolite; ii) cultivating the microbial cell under conditions that modify one or more diterpenes or diterpenoids; and optionally iii) isolating said diterpenoid from the microbial cell or cell culture.
14. The transgenic cell of claim 1, wherein the expression vector further comprises one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenoids, or diterpenoid intermediates, wherein the one or more additional nucleotide sequences comprises: i) a nucleic acid molecule comprising a nucleotide sequence that is at least 71% identical over the full length sequence set forth in SEQ ID NO: 10 and encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity; and/or ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequence set forth in SEQ ID NO: 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This is a divisional of U.S. application Ser. No. 15/105,502, filed Jun. 16, 2016, now U.S. Pat. No. 10,246,688, which is the U.S. National Stage of International Application No. PCT/GB2015/050035, filed Jan. 9, 2015, which was published in English under PCT Article 21(2), which in turn claims the benefit of Great Britain Application No. 1400512.8, filed Jan. 13, 2014.
FIELD OF THE INVENTION
[0002] The present disclosure relates to nucleic acids that encode cytochrome P450 polypeptides involved in the biosynthesis of plant derived diterpenoids and including plants or microbes that express said cytochrome P450 polypeptides.
BACKGROUND TO THE INVENTION
[0003] Terpenes or terpenoids are a structurally diverse and a very large group of organic compounds commonly found in plants ranging from essential and universal primary metabolites such as sterols, carotenoids and hormones to more complex and unique secondary metabolites. Terpenes are hydrocarbons assembled of five carbon terpene or isoprene subunits providing the carbon skeleton. Terpenoids are modified terpenes which typically comprise also oxygen; however, terpenes and terpenoids are often used interchangeably. Terpenoids are classified accordingly to the length of the isoprene units as for example hemiterpenoids consisting of one, monoterpenoids consisting of two, sesquiterpenoids consisting of three and diterpenoids consisting of four isoprene units.
[0004] The early core steps in terpenoid biosynthesis are well characterised in both eukaryotes and prokaryotes. The primary building blocks are isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are used for the synthesis of the compounds geranyl diphosphate (GPP), farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP).
[0005] Geranylgeranyl diphosphate (GGPP) is the precursor for the synthesis of a variety of diterpenes, which first steps are catalysed by diterpene synthases. For the conversion of terpenes to terpenoids, a number of enzymes may be involved. Cytochrome P450s are typically required for the addition of oxygen, whereas BAHD acyltransferase are often involved in the addition of acyl groups. The enzymes involved in the biosynthesis of some diterpenes, for example paclitaxel, have been partially characterised, with sequences for a diterpene synthase (Wildung & Croteau, 1996. J. Biol. Chem. 271: 9201-9204) a number of cytochrome P450s (Schoendorf et al., 2001. PNAS 98: 1501-1506; Jennewein et al. 2001: PNAS 98: 13595-13600; Jennewein et al. 2003. Arch. Biochem. Biophys. 413: 262-270; Jennewein et al., 2004. Chem. Biol. 11: 379-387; Chau et al., 2004a: Chem. Biol. 11: 663-672; Chau et al. 2004b. Arch. Biochem. Biophys. 427: 48-57) and a number of acyltransferases (Walker & Croteau, 2000. PNAS 97: 583-587; Walker et al., 2000. Arch. Biochem. Biophys. 274: 371-380; Chau et al 2004c. Arch. Biochem. Biophys. 430: 237-246) being described. However, the enzymes involved in the synthesis of the vast majority of diterpenoids produced by other plant species remain unknown.
[0006] Diterpenes form the basis for many biologically important compounds such as retinol, retinal, and phytol and some compounds have shown antimicrobial and anti-inflammatory properties. A large number of diterpenes have been isolated from plants belonging to the family of Euphorbiaceae. The Euphorbiaceae or spurge family is a large family of flowering plants found all over the world, with some synthesising compounds of considerable biological activity such as ingenol mebutate (Euphorbia peplus), resiniferatoxin (E. resinifera), prostratin (E. cornigera), jatrophanes (Jatropha sp.) and jatrophone (Jatropha sp.).
[0007] Although the beneficial effects of some diterpenes are known such as ingenol mebutate which is licensed to treat actinic keratosis, or resiniferatoxin which is currently being tested in Phase II clinical trials for its analgesic effects, sufficient supply is still hampered by the lack of or inefficient chemical synthesis. Similarly, extraction of active compounds from the plant biomass is a complex process requiring several steps and various solvents, and moreover the yield is typically very low. Methods and processes enabling extraction of diterpenes from plants are disclosed in US patent U.S. Pat. Nos. 4,361,697 and 6,228,996.
[0008] Bacteria and yeast have been successfully used to engineer biosynthetic pathways for the production of some desired chemical compounds from inexpensive carbon sources. The terpenoid artemisinic acid, a precursor for the anti-malaria drug artemesinin, has been successfully synthesised in yeast using this approach. Bacterial or yeast expression systems are often advantageous over other expression systems as they are easily maintained and various methods are available allowing straightforward expression of transgenic genes. The biosynthesis of isoprenoids using a genetically modified bacterial host cell comprising one or more enzymes of the mevalonate pathway is disclosed in patent application WO2008/039499.
[0009] The applicants of the present application have identified a number of cytochrome P450 encoding genes involved in the biosynthesis of diterpenoids.
STATEMENTS OF INVENTION
[0010] According to an aspect of the invention there is provided a nucleic acid molecule that is isolated from a Euphorbiaceae plant wherein said isolated nucleic acid molecule encodes a cytochrome P450 polypeptide characterized in that said cytochrome P450 polypeptide is involved in the biosynthesis of diterpenoids or intermediates in the biosynthesis of diterpenoids.
[0011] In a preferred embodiment of the invention said isolated nucleic acid molecule that encodes a cytochrome P450 polypeptide is selected from the group consisting of:
[0012] i) a nucleotide sequence as represented by the sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26;
[0013] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0014] iii) a nucleic acid molecule the complementary strand of which hybridizes under stringent hybridization conditions to the sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26, wherein said nucleic acid molecule encodes polypeptides involved in the biosynthesis of diterpenoids or intermediates in the biosynthesis of diterpenoids;
[0015] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence as represented in SEQ ID NO: 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 or 52;
[0016] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and which has retained or enhanced diterpenoid biosynthetic activity.
[0017] Hybridization of a nucleic acid molecule occurs when two complementary nucleic acid molecules undergo an amount of hydrogen bonding to each other. The stringency of hybridization can vary according to the environmental conditions surrounding the nucleic acids, the nature of the hybridization method, and the composition and length of the nucleic acid molecules used. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are discussed in Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001); and Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes Part I, Chapter 2 (Elsevier, New York, 1993). The T.sub.m is the temperature at which 50% of a given strand of a nucleic acid molecule is hybridized to its complementary strand. The following is an exemplary set of hybridization conditions and is not limiting:
[0018] Very High Stringency (Allows Sequences that Share at Least 90% Identity to Hybridize)
[0019] Hybridization: 5.times.SSC at 65.degree. C. for 16 hours
[0020] Wash twice: 2.times.SSC at room temperature (RT) for 15 minutes each
[0021] Wash twice: 0.5.times.SSC at 65.degree. C. for 20 minutes each
[0022] High Stringency (Allows Sequences that Share at Least 80% Identity to Hybridize)
[0023] Hybridization: 5.times.-6.times.SSC at 65.degree. C.-70.degree. C. for 16-20 hours
[0024] Wash twice: 2.times.SSC at RT for 5-20 minutes each
[0025] Wash twice: 1.times.SSC at 55.degree. C.-70.degree. C. for 30 minutes each
[0026] Low Stringency (Allows Sequences that Share at Least 50% Identity to Hybridize)
[0027] Hybridization: 6.times.SSC at RT to 55.degree. C. for 16-20 hours
[0028] Wash at least twice: 2.times.-3.times.SSC at RT to 55.degree. C. for 20-30 minutes each.
[0029] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 1 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.
[0030] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 2 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.
[0031] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 3 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.
[0032] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 4 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.
[0033] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 5 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.
[0034] In a preferred embodiment or aspect of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 6 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.
[0035] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 7 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.
[0036] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 8 wherein said nucleic acid molecule encodes a polypeptide with casbene-5-oxidase activity.
[0037] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 9 wherein said nucleic acid molecule encodes a polypeptide with neocembrene-5-oxidase activity.
[0038] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 10 wherein said nucleic acid molecule encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity.
[0039] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 11 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0040] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 12 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0041] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 13 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0042] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 14 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0043] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 15 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0044] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 16 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0045] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 17 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0046] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 18 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0047] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 19 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0048] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 20 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0049] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 21 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0050] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 22 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0051] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 23 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0052] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 24 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0053] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 25 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0054] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 26 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.
[0055] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0056] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 27; or
[0057] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 27 and which has retained or enhanced casbene-5-oxidase activity.
[0058] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0059] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 28; or
[0060] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 28 and which has retained or enhanced casbene-oxidase activity.
[0061] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0062] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 29; or
[0063] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 29 and which has retained or enhanced casbene-oxidase activity.
[0064] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0065] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 30; or
[0066] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 30 and which has retained or enhanced casbene-oxidase activity.
[0067] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0068] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 31; or
[0069] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 31 and which has retained or enhanced casbene-oxidase activity.
[0070] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0071] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 32; or
[0072] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 32 and which has retained or enhanced casbene-oxidase activity.
[0073] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0074] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 33; or
[0075] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 33 and which has retained or enhanced casbene-oxidase activity.
[0076] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0077] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 34; or
[0078] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 34 and which has retained or enhanced casbene-5-oxidase activity.
[0079] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0080] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 35; or
[0081] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 35 and which has retained or enhanced neocembrene-5-oxidase activity.
[0082] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0083] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 36; or
[0084] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 36 and which has retained or enhanced 5-keto-casbene 7,8-epoxidase activity.
[0085] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0086] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 37; or
[0087] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 37 and which has retained or enhanced cytochrome P450 activity.
[0088] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0089] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 38; or
[0090] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 38 and which has retained or enhanced cytochrome P450 activity.
[0091] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0092] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 39; or
[0093] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 39 and which has retained or enhanced cytochrome P450 activity.
[0094] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0095] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 40; or
[0096] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 40 and which has retained or enhanced cytochrome P450 activity.
[0097] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0098] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 41; or
[0099] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 41 and which has retained or enhanced cytochrome P450 activity.
[0100] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0101] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 42; or
[0102] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 42 and which has retained or enhanced cytochrome P450 activity.
[0103] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0104] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 43; or
[0105] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 43 and which has retained or enhanced cytochrome P450 activity.
[0106] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0107] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 44; or
[0108] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 44 and which has retained or enhanced cytochrome P450 activity.
[0109] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0110] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 45; or
[0111] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 45 and which has retained or enhanced cytochrome P450 activity.
[0112] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0113] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 46; or
[0114] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 46 and which has retained or enhanced cytochrome P450 activity.
[0115] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0116] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 47; or
[0117] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 47 and which has retained or enhanced cytochrome P450 activity.
[0118] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0119] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 48; or
[0120] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 48 and which has retained or enhanced cytochrome P450 activity.
[0121] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0122] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 49; or
[0123] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 49 and which has retained or enhanced cytochrome P450 activity.
[0124] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0125] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 50; or
[0126] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 50 and which has retained or enhanced cytochrome P450 activity.
[0127] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0128] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 51; or
[0129] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 51 and which has retained or enhanced cytochrome P450 activity.
[0130] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0131] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 52; or
[0132] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 52 and which has retained or enhanced cytochrome P450 activity.
[0133] A modified polypeptide as herein disclosed may differ in amino acid sequence by one or more substitutions, additions, deletions, truncations that may be present in any combination. Among preferred variants are those that vary from a reference polypeptide by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid by another amino acid of like characteristics. The following non-limiting list of amino acids are considered conservative replacements (similar): a) alanine, serine, and threonine; b) glutamic acid and aspartic acid; c) asparagine and glutamine d) arginine and lysine; e) isoleucine, leucine, methionine and valine and f) phenylalanine, tyrosine and tryptophan. Most highly preferred are variants that retain or enhance the same biological function and activity as the reference polypeptide from which it varies.
[0134] In a preferred embodiment of the invention the variant polypeptides have at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% identity, and at least 99% identity with the full length amino acid sequence illustrated herein.
[0135] According to a further aspect of the invention there is provided a vector comprising a nucleic acid molecule according to the invention.
[0136] Preferably the nucleic acid molecule in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell such as a microbial, (e.g. bacterial, yeast), or plant cell. The vector may be a bi-functional expression vector which functions in multiple hosts. In the case of genomic DNA this may contain its own promoter or other regulatory elements and in the case of cDNA this may be under the control of an appropriate promoter or other regulatory elements for expression in the host cell.
[0137] By "promoter" is meant a nucleotide sequence upstream from the transcriptional initiation site and which contains all the regulatory regions required for transcription. Suitable promoters include constitutive, tissue-specific, inducible, developmental or other promoters for expression in plant cells comprised in plants depending on design. Such promoters include viral, fungal, bacterial, animal and plant-derived promoters capable of functioning in plant cells.
[0138] Constitutive promoters include, for example CaMV 35S promoter (Odell et al. (1985) Nature 313, 9810-812); rice actin (McElroy et al. (1990) Plant Cell 2: 163-171); ubiquitin (Christian et al. (1989) Plant Mol. Biol. 18 (675-689); pEMU (Last et al. (1991) Theor. Appl. Genet. 81: 581-588); MAS (Velten et al. (1984) EMBO J. 3. 2723-2730); ALS promoter (U.S. application Ser. No. 08/409,297), and the like. Other constitutive promoters include those in U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680, 5,268,463; and 5,608,142, each of which is incorporated by reference.
[0139] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induced gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88: 10421-10425 and McNellis et al. (1998) Plant J. 14(2): 247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227: 229-237, and U.S. Pat. Nos. 5,814,618 and 5,789,156, herein incorporated by reference.
[0140] Where enhanced expression in particular tissues is desired, tissue-specific promoters can be utilised. Tissue-specific promoters include those described by Yamamoto et al. (1997) Plant J. 12(2): 255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7): 792-803; Hansen et al. (1997) Mol. Gen. Genet. 254(3): 337-343; Russell et al. (1997) Transgenic Res. 6(2): 157-168; Rinehart et al. (1996) Plant Physiol. 112(3): 1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2): 525-535; Canevascni et al. (1996) Plant Physiol. 112(2): 513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5): 773-778; Lam (1994) Results Probl. Cell Differ. 20: 181-196; Orozco et al. (1993) Plant Mol. Biol. 23(6): 1129-1138; Mutsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90 (20): 9586-9590; and Guevara-Garcia et al (1993) Plant J. 4(3): 495-50.
[0141] "Operably linked" means joined as part of the same nucleic acid molecule, suitably positioned and oriented for transcription to be initiated from the promoter. DNA operably linked to a promoter is "under transcriptional initiation regulation" of the promoter. In a preferred aspect, the promoter is a tissue specific promoter, an inducible promoter or a developmentally regulated promoter
[0142] Particular of interest in the present context are nucleic acid constructs which operate as plant vectors. Specific procedures and vectors previously used with wide success in plants are described by Guerineau and Mullineaux (1993) (Plant transformation and expression vectors. In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148. Suitable vectors may include plant viral-derived vectors (see e.g. EP194809). If desired, selectable genetic markers may be included in the construct, such as those that confer selectable phenotypes such as resistance to herbicides (e.g. kanamycin, hygromycin, phosphinothricin, chlorsulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones and glyphosate).
[0143] According to a further aspect of the invention there is provided a transgenic cell transformed or transfected with a nucleic acid molecule or vector according to the invention.
[0144] According to an aspect of the invention there is provided a transgenic cell transformed or transfected with an expression vector adapted to express a nucleic acid molecule comprising at least one nucleotide sequence which is at least 70% identical to SEQ ID NO: 1 and encodes a polypeptide that has casbene oxidase activity.
[0145] In a preferred embodiment of the invention said transgenic cell is transformed or transfected with an expression vector comprising a nucleotide sequence that is at least 69%, 70%, 71%, 72%, 73%, 74%, 76%, 78%, 80%, 85%, 90%, 95%, 98% or 99% identical to SEQ ID NO 1.
[0146] In a further preferred embodiment of the invention said transgenic cell is transformed or transfected with a vector comprising a nucleotide sequence selected form the group consisting of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7 or 8.
[0147] In a further preferred embodiment of the invention said transgenic cell is transformed or transfected with an expression vector comprising one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenes and diterpenoids or intermediates selected from the group consisting of:
[0148] i) a nucleic acid molecule comprising a nucleotide sequence that is at least 71% identical over the full length sequence set forth in SEQ ID NO: 10 and encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity; and/or
[0149] ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequences set forth in SEQ ID NO 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.
[0150] According to a further aspect of the invention there is provided a transgenic cell is transformed or transfected with a vector comprising
[0151] i) a nucleic acid molecule comprising a nucleotide sequence set forth in SEQ ID NO 9; or
[0152] ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 81% identical over the full length sequence set forth in SEQ ID NO: 9 and encodes a polypeptide with neocembrene-5-oxidase activity.
[0153] In a preferred embodiment of the invention said transgenic cell is transformed or transfected with an expression vector comprising one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenes and diterpenoids or intermediates selected from the group consisting of a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequences set forth in SEQ ID NO 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.
[0154] In a preferred embodiment of the invention said cell is a plant cell.
[0155] According to a further aspect of the invention there is provided a plant comprising a plant cell according to the invention.
[0156] In a preferred embodiment of the invention said plant is from the Euphorbiaceae family.
[0157] In a preferred embodiment of the invention said plant is of the genus Nicotiana spp, for example Nicotiana benthamiana or Nicotiana tabacum.
[0158] In an alternative preferred embodiment of the invention said cell is a microbial cell; preferably a bacterial or fungal cell (e.g. yeast, Saccharomyces cerevisiae).
[0159] In a preferred embodiment of the invention said cell is adapted such that the nucleic acid molecule encoding one or more polypeptides according to the invention is over-expressed when compared to a non-transgenic cell of the same species.
[0160] According to a further aspect of the invention there is provided a nucleic acid molecule comprising a transcription cassette wherein said cassette includes one or more nucleotide sequences designed with reference to one or more nucleotide sequences selected from the group: SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16. 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and is adapted for expression by provision of at least one promoter operably linked to said nucleotide sequence such that both sense and antisense molecules are transcribed from said cassette.
[0161] In a preferred embodiment of the invention said cassette is adapted such that both sense and antisense ribonucleic acid molecules are transcribed from said cassette wherein said sense and antisense nucleic acid molecules are adapted to anneal over at least part or all of their length to form a inhibitory RNA or short hairpin RNA.
[0162] In a preferred embodiment of the invention said cassette is provided with at least two promoters adapted to transcribe both sense and antisense strands of said ribonucleic acid molecule.
[0163] In an alternative preferred embodiment of the invention said cassette comprises a nucleic acid molecule wherein said molecule comprises a first part linked to a second part wherein said first and second parts are complementary over at least part of their sequence and further wherein transcription of said nucleic acid molecule produces an ribonucleic acid molecule which forms a double stranded region by complementary base pairing of said first and second parts thereby forming an short hairpin RNA.
[0164] A technique to specifically ablate gene function is through the introduction of double stranded RNA, also referred to as small inhibitory/interfering RNA (siRNA) or short hairpin RNA [shRNA], into a cell which results in the destruction of mRNA complementary to the sequence included in the siRNA/shRNA molecule. The siRNA molecule comprises two complementary strands of RNA (a sense strand and an antisense strand) annealed to each other to form a double stranded RNA molecule. The siRNA molecule is typically derived from exons of the gene which is to be ablated. The mechanism of RNA interference is being elucidated. Many organisms respond to the presence of double stranded RNA by activating a cascade that leads to the formation of siRNA. The presence of double stranded RNA activates a protein complex comprising RNase III which processes the double stranded RNA into smaller fragments (siRNAs, approximately 21-29 nucleotides in length) which become part of a ribonucleoprotein complex. The siRNA acts as a guide for the RNase complex to cleave mRNA complementary to the antisense strand of the siRNA thereby resulting in destruction of the mRNA.
[0165] In a preferred embodiment of the invention said nucleic acid molecule is part of a vector adapted for expression in a plant cell.
[0166] According to a further aspect of the invention there is provided a plant cell transfected with a nucleic acid molecule or vector according to the invention wherein said cell has reduced expression of a polypeptide according to the invention.
[0167] According to an aspect of the invention there is provided a process for the modification of one or more diterpenes and diterpenoids comprising:
[0168] i) providing a transgenic plant cell according to the invention;
[0169] ii) cultivating said plant cell to produce a transgenic plant; and optionally
[0170] i) harvesting said transgenic plant, or part thereof.
[0171] According to an alternative aspect of the invention there is provided a process for the modification of one or more diterpenes or diterpenoids comprising:
[0172] i) providing a transgenic microbial cell according to the invention that expresses one or more nucleic acid molecules according to the invention in culture with at least one diterpene and/or diterpenoid metabolite;
[0173] ii) cultivating the microbial cell under conditions that modify one or more diterpenes or diterpenoids; and optionally
[0174] iii) isolating said diterpenoid from the microbial cell or cell culture.
[0175] In a preferred method of the invention said microbial cell is a bacterial cell or fungal/yeast cell.
[0176] If microbial cells are used as organisms in the process according to the invention they are grown or cultured in the manner with which the skilled worker is familiar, depending on the host organism. As a rule, microorganisms are grown in a liquid medium comprising a carbon source, usually in the form of sugars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as salts of iron, manganese and magnesium and, if appropriate, vitamins, at temperatures of between 0.degree. C. and 100.degree. C., preferably between 10.degree. C. and 60.degree. C., while gassing in oxygen.
[0177] The pH of the liquid medium can either be kept constant, that is to say regulated during the culturing period, or not. The cultures can be grown batchwise, semi-batchwise or continuously. Nutrients can be provided at the beginning of the fermentation or fed in semi-continuously or continuously. The diterpenoids produced can be isolated from the organisms as described above by processes known to the skilled worker, for example by extraction, distillation, crystallization, if appropriate precipitation with salt, and/or chromatography. To this end, the organisms can advantageously be disrupted beforehand. In this process, the pH value is advantageously kept between pH 4 and 12, preferably between pH 6 and 9, especially preferably between pH 7 and 8.
[0178] The culture medium to be used must suitably meet the requirements of the strains in question. Descriptions of culture media for various microorganisms can be found in the textbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).
[0179] As described above, these media which can be employed in accordance with the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and/or trace elements.
[0180] Preferred carbon sources are sugars, such as mono-, di- or polysaccharides. Examples of carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugars can also be added to the media via complex compounds such as molasses or other by-products from sugar refining. The addition of mixtures of a variety of carbon sources may also be advantageous. Other possible carbon sources are oils and fats such as, for example, soya oil, sunflower oil, peanut oil and/or coconut fat, fatty acids such as, for example, palmitic acid, stearic acid and/or linoleic acid, alcohols and/or polyalcohols such as, for example, glycerol, methanol and/or ethanol, and/or organic acids such as, for example, acetic acid and/or lactic acid.
[0181] Nitrogen sources are usually organic or inorganic nitrogen compounds or materials comprising these compounds. Examples of nitrogen sources comprise ammonia in liquid or gaseous form or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as corn steep liquor, soya meal, soya protein, yeast extract, meat extract and others. The nitrogen sources can be used individually or as a mixture.
[0182] Inorganic salt compounds which may be present in the media comprise the chloride, phosphorus and sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.
[0183] Inorganic sulfur-containing compounds such as, for example, sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides, or else organic sulfur compounds such as mercaptans and thiols may be used as sources of sulfur for the production of sulfur-containing fine chemicals, in particular of methionine.
[0184] Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts may be used as sources of phosphorus.
[0185] Chelating agents may be added to the medium in order to keep the metal ions in solution. Particularly suitable chelating agents comprise dihydroxyphenols such as catechol or protocatechuate and organic acids such as citric acid.
[0186] The fermentation media used according to the invention for culturing microorganisms usually also comprise other growth factors such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate and pyridoxine. Growth factors and salts are frequently derived from complex media components such as yeast extract, molasses, corn steep liquor and the like. It is moreover possible to add suitable precursors to the culture medium. The exact composition of the media compounds heavily depends on the particular experiment and is decided upon individually for each specific case. Information on the optimization of media can be found in the textbook "Applied Microbiol. Physiology, A Practical Approach" (Editors P. M. Rhodes, P. F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). Growth media can also be obtained from commercial suppliers, for example Standard 1 (Merck) or BHI (brain heart infusion, DIFCO) and the like.
[0187] All media components are sterilized, either by heat (20 min at 1.5 bar and 121.degree. C.) or by filter sterilization. The components may be sterilized either together or, if required, separately. All media components may be present at the start of the cultivation or added continuously or batchwise, as desired.
[0188] The culture temperature is normally between 15.degree. C. and 45.degree. C., preferably at from 25.degree. C. to 40.degree. C., and may be kept constant or may be altered during the experiment. The pH of the medium should be in the range from 5 to 8.5, preferably around 7.0. The pH for cultivation can be controlled during cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia and aqueous ammonia or acidic compounds such as phosphoric acid or sulfuric acid. Foaming can be controlled by employing antifoams such as, for example, fatty acid polyglycol esters. To maintain the stability of plasmids it is possible to add to the medium suitable substances having a selective effect, for example antibiotics. Aerobic conditions are maintained by introducing oxygen or oxygen-containing gas mixtures such as, for example, ambient air into the culture. The temperature of the culture is normally 20.degree. C. to 45.degree. C. and preferably 25.degree. C. to 40.degree. C. The culture is continued until formation of the desired product is at a maximum. This aim is normally achieved within 10 to 160 hours.
[0189] The fermentation broth can then be processed further. The biomass may, according to requirement, be removed completely or partially from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods or be left completely in said broth. It is advantageous to process the biomass after its separation. However, the fermentation broth can also be thickened or concentrated without separating the cells, using known methods such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling-film evaporator, by reverse osmosis or by nanofiltration. Finally, this concentrated fermentation broth can be processed to obtain the diterpenoids present therein.
[0190] According to a further aspect of the invention there is provided the use of a gene encoded by a nucleic acid molecule as represented by the nucleic acid sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 or a nucleic acid molecule the complementary strand of which hybridizes under stringent hybridization conditions to the nucleotide sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity as a means to identify a locus wherein said locus is associated with altered expression or activity of diterpenoid and diterpene biosynthetic activity.
[0191] Mutagenesis as a means to induce phenotypic changes in organisms is well known in the art and includes but is not limited to the use of mutagenic agents such as chemical mutagens [e.g. base analogues, deaminating agents, DNA intercalating agents, alkylating agents, transposons, bromine, sodium azide] and physical mutagens [e.g. ionizing radiation, UV irradiation].
[0192] According to a further aspect of the invention there is provided a method to produce a plant of the Euphorbiaceae family that has altered expression of a polypeptide according to the invention comprising the steps of:
[0193] i) mutagenesis of wild-type seed from a plant of the Euphorbiaceae family that does express said polypeptide;
[0194] ii) cultivation of the seed in i) to produce first and subsequent generations of plants;
[0195] iii) obtaining seed from the first generation plant and subsequent generations of plants;
[0196] iv) determining if the seed from said first and subsequent generations of plants has altered nucleotide sequence and/or altered expression of said polypeptide;
[0197] v) obtaining a sample and analysing the nucleic acid sequence of a nucleic acid molecule selected from the group consisting of:
[0198] a) a nucleic acid molecule comprising a nucleotide sequence as represented in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 27;
[0199] b) a nucleic acid molecule that hybridises to the nucleic acid molecule in a) under stringent hybridisation conditions and that encodes a polypeptide with casbene oxidase or cytochrome P450 activity; and optionally
[0200] vi) comparing the nucleotide sequence of the nucleic acid molecule in said sample to a nucleotide sequence of a nucleic acid molecule of the original wild-type plant.
[0201] In a preferred method of the invention said nucleic acid molecule is analysed by a method comprising the steps of:
[0202] i) extracting nucleic acid from said mutated plants;
[0203] ii) amplification of a part of said nucleic acid molecule by a polymerase chain reaction;
[0204] iii) forming a preparation comprising the amplified nucleic acid and nucleic acid extracted from wild-type seed to form heteroduplex nucleic acid;
[0205] iv) incubating said preparation with a single stranded nuclease that cuts at a region of heteroduplex nucleic acid to identify the mismatch in said heteroduplex; and
[0206] v) determining the site of the mismatch in said nucleic acid heteroduplex.
[0207] In a preferred method of the invention said plant of the Euphorbiaceae has enhanced diterpenoid and diterpene biosynthetic activity.
[0208] In an alternative preferred method of the invention said plant of the Euphorbiaceae has reduced or abrogated diterpenoid and diterpene biosynthetic activity.
[0209] According to a further aspect of the invention there is provided a plant of the Euphorbiaceae family obtained by the method according to the invention.
[0210] According to an aspect of the invention there is provided a plant of the Euphorbiaceae family wherein said plant comprises a viral vector that includes all or part of a gene comprising a nucleic acid molecule according to the invention.
[0211] In a preferred embodiment of the invention said gene or part is encoded by a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of:
[0212] i) a nucleic acid molecule comprising a nucleotide sequence as represented in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26;
[0213] ii) a nucleic acid molecule comprising a nucleotide sequence that hybridises under stringent hybridisation conditions to a nucleic acid molecule in (i) and which encodes a polypeptide with cytochrome P450 activity.
[0214] According to a further aspect of the invention there is provided a viral vector comprising all or part of a nucleic acid molecule according to the invention.
[0215] According to an aspect of the invention there is provided the use of a viral vector according to the invention in viral induced gene silencing in a plant of the Euphorbiaceae.
[0216] Virus induced gene silencing [VIGS] is known in the art and exploits a RNA mediated antiviral defence mechanism. Plants that are infected with an unmodified virus induce a mechanism that specifically targets the viral genome. However, viral vectors which are engineered to include nucleic acid molecules derived from host plant genes also induce specific inhibition of viral vector expression and additionally target host mRNA. This allows gene specific gene silencing without genetic modification of the plant genome and is essentially a non-transgenic modification.
[0217] Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means "including but not limited to", and is not intended to (and does not) exclude other moieties, additives, components, integers or steps. "Consisting essentially" means having the essential integers but including integers which do not materially affect the function of the essential integers.
[0218] Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
[0219] Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.
BRIEF DESCRIPTION OF THE DRAWINGS
[0220] An embodiment of the invention will now be described by example only and with reference to the following figures:
[0221] FIGS. 1A-1E: GC-MS analysis of N. benthamiana leaf extracts transiently expressing casbene synthase and cytochrome P450 enzymes. A-GC chromatograph obtained with expression of casbene synthase only (lower, black), casbene synthase and CYP726A14 (SEQ ID NO 2) (middle, red) and casbene synthase plus CYP726A14 (SEQ ID NO 2) and CYP726A16 (SEQ ID NO 10) (upper, blue). The two insets display rescaled chromatographs containing the retention times at which the casbene synthase oxidation products eluted from the column. B-E--Election impact mass spectra for casbene (B), casbene oxidation products produced by CYP726A14 (SEQ ID NO 2) (C & D) and the product obtained from co-expression of proteins encoded CYP726A14 (SEQ ID NO 2) and CYP726A16 (SEQ ID NO 10).
[0222] FIG. 2: GC analysis of a chloroform extract of N. benthamiana leaves infiltrated with a p19 vector, a pFGC vector containing a casbene synthase ORF for J. curcas and pFGC vectors contain the ORF for a cytochrome P450 gene as indicated in the top right of each graph.
[0223] FIG. 3: GC analysis of a chloroform extract of N. benthamiana leaves infiltrated with a p19 vector, a pFGC vector containing the neocembrene synthase ORF for J. curcas and pFGC vectors contain the ORF for a cytochrome P450 gene as indicated in the top right of each graph.
[0224] FIG. 4: Structures of casbene (left), 5-hydroxycasbene (centre) and 5-ketocasbene (right) as established by 1D- and 2D-NMR. .sup.1H and .sup.13C assignments at each position are shown in black and red, respectively.
[0225] FIG. 5 provides cDNA sequences that encode polypeptides with casbene-oxidase activity from Ricinus communis (SEQ ID NOS: 1 and 2).
[0226] FIG. 6 provides cDNA sequences that encode polypeptides with casbene-oxidase activity from Ricinus communis (SEQ ID NOS: 3 and 4).
[0227] FIG. 7 provides cDNA sequences that encode polypeptides with casbene-oxidase activity from Euphorbia fischeriana (SEQ ID NO: 5) and Jatropha curcas (SEQ ID NO: 6).
[0228] FIG. 8 provides a cDNA sequence that encodes a polypeptide with casbene-oxidase activity from Jatropha gossypifolia (SEQ ID NO: 7) and a cDNA sequence that encodes a polypeptide with casbene-5-oxidase activity from Euphorbia peplus (SEQ ID NO: 8).
[0229] FIG. 9 provides a cDNA sequence that encodes a polypeptide with neocembrene-5-oxidase activity from Ricinus communis (SEQ ID NO: 9) and a cDNA sequence that encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity from Ricinus communis (SEQ ID NO: 10).
[0230] FIG. 10 provides a cDNA sequence that encodes a polypeptide with cytochrome P450 activity from Ricinus communis (SEQ ID NO: 11) and a cDNA sequence that encodes a polypeptide with cytochrome P450 activity from Ricinus communis (SEQ ID NO: 12).
[0231] FIG. 11 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Ricinus communis (SEQ ID NOS: 13 and 14).
[0232] FIG. 12 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Euphorbia peplus (SEQ ID NOS: 15, 16 and 17).
[0233] FIG. 13 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 18 and 19).
[0234] FIG. 14 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 20, 21 and 22).
[0235] FIG. 15 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 23 and 24).
[0236] FIG. 16 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 25 and 26).
[0237] FIG. 17 provides protein sequences with casbene-5-oxidase activity from Ricinus communis (SEQ ID NO: 27), casbene-oxidase activity from Ricinus communis (SEQ ID NOS: 28 and 29), casbene-oxidase activity from Euphorbia peplus (SEQ ID NO: 30), or casbene-oxidase activity from Euphorbia fischeriana (SEQ ID NO: 31).
[0238] FIG. 18 provides protein sequences with casbene-5-oxidase activity from Jatropha curcas (SEQ ID NO: 32), casbene-oxidase activity from Jatropha gossypifolia (SEQ ID NO: 33), casbene-5-oxidase activity from Euphorbia peplus (SEQ ID NO: 34), neocembrene-5-oxidase activity from Ricinus communis (SEQ ID NO: 35), or 5-keto-casbene 7,8-epoxidase activity from Ricinus communis (SEQ ID NO: 36).
[0239] FIG. 19 provides protein sequences with cytochrome P450 activity from Ricinus communis (SEQ ID NOS: 37, 38, 39, and 40) and from Euphorbia peplus (SEQ ID NO: 41).
[0240] FIG. 20 provides protein sequences with cytochrome P450 activity from Euphorbia peplus (SEQ ID NOS: 42 and 43), and from Jatropha curcas (SEQ ID NOS: 44, 45 and 46).
[0241] FIG. 21 provides protein sequences with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 47, 48, 49, and 50).
[0242] FIG. 22 provides a protein sequence with cytochrome P450 activity from Jatropha curcas (SEQ ID NO: 52).
TABLE-US-00001
[0243] TABLE 1 Primers used for cloning genes Gene ID & annotation Primer name Species Sequence (SEQ ID NO:) Rc30169.m006273 Rc6273F (ID 53) R. communis 5'-ATGGACAAGCAAATCCTATCATATCC-3' (53) (CYP726A13) Rc6275R (ID 54) R. communis 5'-TCAGTCCGTTGTTGGTGAAGGG-3' (54) (SEQ ID NO 11) Rc30169.m006275 Rc6275F (ID 55) R. communis 5'-ATGGAGCAGCAATTGCTATCG-3' (55) (CYP726A14) Rc6275R (ID 56) R. communis 5'-CTATGGCAAAGTAGTGAATGGAATGG (56) (SEQ ID NO 2) Rc30169.m006276 Rc6276F (ID 57) R. communis 5'-ATGGCACTGCAATCACTACTATTC-3' (57) (Neocembrene synthase) Rc6276R (ID 58) R. communis 5'-TTACACATGTTTTGTTTTGGTTTCTCC-3' (58) (SEQ ID NO 85) Rc30169.m006277 Rc6277F (ID 59) R. communis 5'-ATGTCATTGCAACCTGCACCTG-3' (59) (CYP726A15) Rc6277R (ID60) R. communis 5'-TTAAGGATGAAATAGAACAGGAATC-3' (60) (SEQ ID NO 9) Rc30169.m006279 Rc6279F (ID 61) R. communis 5'-ATGGAAAGTGCTGCTCACCAATC-3' (61) (CYP726A16) Rc6279R (ID 62) R. communis 5'-TTATGGTAAAGGACTGACGGGAATGG-3 (62) (SEQ ID NO 10) Rc30169.m006282 Rc6282F (ID 63) R. communis 5'-ATGGAGAAACAAATCCTATCATTTCCAG-3' (63) (CYP726A17) Rc6282R (ID 64) R. communis 5'-CTAAGGAGTAAATGGAATGGGAATC-3' (64) (SEQ ID NO 3) Rc30169.m006285 Rc6285F (ID 65) R. communis 5'-ATGTCATCACAACCAGCAGTTTTAC-3' (65) (CYP726A18) Rc6285R (ID 66) R. communis 5'-TCAATGTGTAGGATATAGAACAGG-3' (66) (SEQ ID NO 1) JcCAS1 JcCAS1_F (ID 67) J. curcas 5'-TTCATATTTGTTGCTAATCCTC-3' (67) (Casbene synthase) JcCAS1_R (ID 68) J. curcas 5'-CAAGGTACAGGATTTATGCAAATCC-3' (68) (SEQ ID NO 86)
TABLE-US-00002 TABLE 2 Primers used for insertion of genes into pFGC5941 Gene ID & annotation Primer name Species Sequence Rc30169.m006273 Rc6273F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGACAAGCAAATCCTATC-3' (69) (CYP726A13) (ID 69) (SEQ ID NO 11) Rc6273R_PacI R. communis 5'-AAAATTAATTAATCAGTCCGTTGTTGGTGAAG-3' (70) (ID 70) Rc30169.m006275 Rc6275F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGAGCAGCAATTGCTATCG-3' (71) (CYP726A14) (ID 71) (SEQ ID NO 2) Rc6275R_PacI R. communis 5'-AAAATTAATTAACTATGGCAAAGTAGTGAATG-3' (72) (ID 72) Rc30169.m006276 Rc6276F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGCACTGCAATCACTACTATTC-3' (Neocembrene (ID 73) (73) synthase) Rc6276R_PacI R. communis 5'-AAAATTAATTAATTACACATGTTTTGTTTTGGTTTCTC-'3 (74) (SEQ ID NO 85) (ID 74) Rc30169.m006277 Rc6277F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGTCATTGCAACCTGCACCTG-3' (75) (CYP726A15) (ID 75) (SEQ ID NO 9) Rc6277R_PacI R. communis 5'-AAAATTAATTAATTAAGGATGAAATAGAACAG-3' (76) (ID 76) Rc30169.m006279 Rc6279F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGAAAGTGCTGCTCACCAATC-3' (CYP726A16) (ID 77) (77) (SEQ ID NO 10) Rc6279R_PacI R. communis 5'-AAAATTAATTAATTATGGTAAAGGACTGACG-3' (78) (ID 78) Rc30169.m006282 Rc6282F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGAGAAACAAATCCTATCATTTC-3' (CYP726A17) (ID 79) (79) (SEQ ID NO 3) Rc6282R_PacI R. communis 5'-AAAATTAATTAACTAAGGAGTAAATGGAATG-3' (80) (ID 80) Rc30169.m006285 Rc6285F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGTCATCACAACCAGCAGTTTTAC-3' (CYP726A18) (ID 81) (81) (SEQ ID NO 1) Rc6285R_PacI R. communis 5'-AAAATTAATTAATCAATGTGTAGGATATAGAAC-3' (82) (ID 82) JcCAS1 JcCAS1_AscI_F J. curcas 5'-AAAAGGCGCGCCAAAAATGGCAATGCAACCTGCAATTG-3' (83) (Casbene (ID 83) synthase) JcCA51_PacI_R J. curcas 5'-AAAATTAATTAATCAAGTGGCAATAGGTTCAATGAAC-3' (84) (SEQ ID NO 86) (ID 84)
[0244] Materials and Methods
[0245] Plant Materials, Nucleic Acid Extraction and Cloning of cDNA Sequences.
[0246] Ricinus communis (var. Carmencita) seeds were obtained from Thompson & Morgan (Ipswich, UK). Jatropha curcas seeds were obtained from Diligent (Tanzania). Euphorbia peplus seeds were obtained from All Rare Herbs (Mapleton, Old, Australia). Total RNA was extracted from plants using the CTAB-lithium chloride method (Gasic et al., 2004. Plant. Mol. Bio. Rep. 22:437a-437g). RNA samples were DNase treated and further purified using the on-column digestion protocol for the QIAgen RNeasy miniprep kit. cDNA was then synthesised from 5 .mu.g of total RNA using Superscript II reverse transcriptase (Life Technologies, Carlsbad, Calif., USA) and a 5'-T(.sub.18)VN-3' oligonucleotides in a 20 .mu.l volume according to the manufacturer's protocol. The cDNA product was then diluted to 50 .mu.l with 10 mM Tris-HCl (pH 8.0). cDNA sequences were amplified with primers detailed in Table 1 using Phusion High-Fidelity Pfu DNA polymerase (Thermo Scientific, Waltham, Mass.) according to the manufacturer's recommended protocol and the subcloned in vector pJET 1.2 (Thermo Scientific). The cDNA sequences were the verified by dye-terminator sequencing.
[0247] Expression of Diterpenoid Biosynthetic Genes in Nicotiana benthamiana
[0248] AscI and PacI sites were added at the 5' and 3' end of the ORF by PCR using Phusion High Fidelity Pfu polymerase using the primers detailed a Table 2. For each ORF, a 5-AAAA-3' Kozak sequence was included immediately before each start codon. After restriction digestion, the ORF was then inserted into the 10 kb fragment obtained from digestion of pFGC5941 (Kerschen et al., 2004. FEBS Lett. 566: 223-228) with restriction enzymes AscI and PacI. The expression vectors were then transformed into Agrobacterium tumefaciens GV3101::pMP90 using the freeze-thaw method (Hofgen & Willmitzer 1988. Nucleic Acids. Res. 16: 9877). Infiltration of N. benthamiana plants was performed as described previously using an enhanced system which utilizes the p19 protein of tomato bushy stunt virus to reduce the effects of post-transcriptional gene silencing (Voinnet et al., 2003. Plant J. 33: 949-956).
[0249] Extraction of Terpenoids from N. benthamiana Leaves and GC-MS Analysis
[0250] Five days after Agrobacterium infiltration, three leaves were collected from each plant, ground in liquid nitrogen and then extracted with 10 ml of chloroform. The extracts were concentrated to <500 .mu.l under a stream of nitrogen, and then 5 .mu.l of the extract was analysed GC-MS. GC-MS analysis was performed using Thermofinnigan GCQ coupled to a Polaris MS and AS2000 autosampler. The GC was fitted with a Restek (Bellafonte, Pa., USA) RTX-551L MS capillary column (30 m, 0.25 mm ID, 0.25 .mu.M df). The oven temperature was set at 100.degree. C. for 2 minutes and then increased to 300.degree. C. at a rate of 5.degree. C. min-1. Mass spectral data was acquired for the m/z ranges of 50-450.
[0251] Purification of the Casbene and Two Oxidation Products Produced by CYP726A14 (SEQ ID NO 2)
[0252] 100 g of Agrobacterium infiltrated N. benthamiana leaves were dried by lyophilisation and then extracted twice with 200 ml of 60/40 hexane/isopropanol. The extract was dried over anhydrous sodium sulphate and the solvent was then removed by rotary evaporation to yield 520 mg of a green oily residue. This extract was dissolved in 10 ml of hexane fractionated by flash chromatography using 25 grams of silica gel 60 (particle size 35-70 .mu.M, 220-440 mesh) as a stationary phase. The mobile phases were (a) 250 ml of hexane, (b) 250 ml of 2% ethyl acetate in hexane, (c) 250 ml 10% ethyl acetate in hexane and (d) 50% ethyl acetate in hexane. Fractions of 25 ml were collected and an aliquot from each was analysed for the presence of casbene or casbene oxidation products by GC-MS (as above). Fractions containing the desired compounds were pooled then concentrated via rotary evaporation. The casbene fraction did not require further purification, but the two casbene oxidation products were further purified using reverse phased HPLC. The fractions were evaporated to dryness and then dissolved in 250 .mu.l of methanol. 10 .mu.l aliquots were separated on a Develosil C30-UG-S column (3 mm ID, 5 .mu.M particle size, Nomura Chemical Co. Ltd, Seto, Japan) using a three solvent gradient. Solvent A was 20 mM ammonium formate, 0.2% formic acid and 20% water in methanol. Solvent B was 0.2% formic acid in methanol. Solvent C was 0.2% formic acid in tetrahydrofuran. The gradient was ran as follows; at injection, 80% Solvent A and 20% solvent B ramping via a linear gradient to 40% solvent A and 60% solvent B over 16 minutes. After holding at this ratio for a further 1 minute, the solvents were switched to 40% solvent B and 60% solvent C for a further 8 minutes. The flow rate was 1 ml minute-1. Detection was performed using atmospheric pressure chemical ionization (+ve). The fractions were then pooled, evaporated to dryness in a GeneVac EZ-2 plus (Ipswich, UK) and dissolved in 500 .mu.l of CDCl.sub.3.
[0253] NMR Analysis of Casbene and Casbene Oxidation Products
[0254] All NMR data were recorded with a Bruker AVIII 700 MHz instrument, equipped with a TCI probe. 2D-NMR datasets were typically acquired with 2,048 points in F2 and 256 increments in F1 then Fourier transformed to give a spectral resolution of 4,096.times.1,024 data points.
EXAMPLE 1: MODIFICATION OF CASBENE BY CYP726A14 (SEQ ID NO 2), CYP726A17(SEQ ID NO 3) AND CYP726A18 (SEQ ID NO 1) FROM R. COMMUNIS
[0255] To determine whether any of the R. communis P450 genes were capable of modifying casbene, we used a transient expression system in Nicotiana benthamiana. A casbene synthase gene from J. curcas and each of the P450 genes were co-expressed via infiltration of young N. benthamiana plants by multiple combinations of Agrobacterium tumefaciens strains harbouring different expression vectors. Five days after infection, chloroform extracts of the leaves were analysed by GC-MS. Three of the P450 genes (CYP726A14 (SEQ ID NO 2), CYP726A17 (SEQ ID NO 3) and CYP726A18 (SEQ ID NO 1)) were able to use casbene as a substrate (FIG. 1 and FIG. 2).
EXAMPLE 2: MODIFICATION OF NEOCEMBRENE BY CYP726A15 (SEQ ID NO 9) FROM R. COMMUNIS
[0256] To determine whether any of the R. communis P450 genes were capable of modifying casbene, we used a transient expression system in Nicotiana benthamiana. A neocembrene synthase gene from R. communis and each of the P450 genes were co-expressed via infiltration of young N. benthamiana plants by multiple combinations of Agrobacterium tumefaciens strains harbouring different expression vectors. Five days after infection, chloroform extracts of the leaves were analysed by GC-MS. CYP726A15 (SEQ ID NO 9), was able to use neocembrene as a substrate (FIG. 3).
EXAMPLE 3: NMR ANALYSIS OF THE PRODUCTS OF CYP726A14 (SEQ ID NO 2) REVEALS IT IS A CASBENE 5-OXIDASE
[0257] To obtain structures of the two products of CYP726A14 (SEQ ID NO 2) (and therefore CYP726A17 (SEQ ID NO 3) and CYP726A18 (SEQ ID NO 1)), lyophilized material from 100 g of infiltrated leaf material was extracted. The two casbene oxidation products were purified using a combination of normal-phase flash chromatography and preparative reversed-phase HPLC to yield approximately 300 .mu.g of casbene, 30 .mu.g of 5-hydroxycasbene and 15 .mu.g of 5-ketocasbene. All three samples were dissolved separately in CDCl3 (500 .mu.l) and NMR data was recorded at 700 MHz. Following acquisition of both 1D-.sup.1H and .sup.13C NMR spectra, the 2D-experiment, edited-HSQC, was used to determine which protons and carbons were directly attached to one another via a single bond. Both HMBC and .sup.1H-.sup.1H COSY experiments were then used to connect these fragments of the molecule together through the observation, respectively, of 2- and 3-bond couplings between proton and carbon; and (predominantly) 3-bond couplings between protons. The .sup.1H and .sup.13O assignments resulting from these experiments are shown at each position on the structures appearing in FIG. 4. The perturbations to both 1H and 13C chemical shifts at and around the 5-position of the two oxygenated derivatives of casbene support the two functionalizations which are proposed.
EXAMPLE 4: MODIFICATION OF 5-KETOCASBENE BY CYP726A16 FROM R. COMMUNIS
[0258] To determine whether any of the R. communis P450 genes were capable of modifying 5-hydroxy- or 5-ketocasbene, we used a transient expression system in Nicotiana benthamiana. A casbene synthase gene from J. curcas, CYP726A16 (SEQ ID NO 10) from R. communis and each of the other R. communis P450 genes were co-expressed via infiltration of young N. benthamiana plants by multiple combinations of Agrobacterium tumefaciens strains harbouring different expression vectors. Five days after infection, chloroform extracts of the leaves were analysed by GC-MS. An additional product was observed when CYP726A16 was co-expressed, and the relative levels of 5-ketocasbene were decreased (retention time 27.08 minutes in FIG. 1). CYP726A16 (SEQ ID NO 10) was therefore identified as a 5-ketocasbene oxidase.
Sequence CWU
1
1
8611602DNARicinus communis 1atgtcatcac aaccagcagt tttacaatcc aacttcctta
acagaaacgt ccagccattt 60ctaaccattc cctctgcttc taccaagtat agtggcaccg
cttgtttctc ttcctttccc 120tcagttaaat taaatgctag accaccgcaa gcatgcttct
ccttgaataa aaacaacgat 180cactctaccc ccacctccat ccttcctcca ggaccttggc
agttacctct gataggtaac 240atacaccagc tcgtcggcca tttaccccat agccgcctga
gagacttggg aaaaatttat 300ggacctgtga tgagtgttca actcggagaa gtttctgctg
tggtggtatc atcagtagaa 360gcagccaaag aagtgctgag gatccaggat gtcatcttcg
ctgaaagacc tcctgtcctc 420atggcagaaa ttgtgctcta caatcgtcat gatattgttt
ttgggtctta tggagatcac 480tggagacaac ttagaaagat ttgcacattg gagttgctta
gtcttaagcg cgtgcaatct 540ttcaaatcag tcagggaaga cgagttttca aattttatca
aatacctttc ttccaaagcc 600ggaactccag tcaatcttac tcacgacttg ttttctttaa
caaattctgt tatgttaaga 660acctccatag gcaagaaatg caaaaaccaa gaagcaattt
taagaatcat cgacagtgtt 720gttgcggcag gaggaggttt cagtgttgct gatgtgtttc
cttccttcaa attgctccat 780atgattagcg gagacaggtc aagtcttgag gccttacgtc
gagacacaga cgagatactt 840gacgaaatca ttaatgaaca caaagccggc aggaaggctg
gtgatgatca cgacgaagct 900gaaaatcttc tggatgttct tttggatctt caggaaaatg
gagacctgga agtcccttta 960accaacgaca gcatcaaagc aacaattctg gatatgtttg
gggctggtag cgacacgtcc 1020tcaaaaacag cagaatgggc gttgtcggag ttgatgagac
acccagaaat aatgaaaaag 1080gcacaggagg aagtgagggg agtctttggt gatagcggag
aagtcgatga aacacgcctt 1140catgaattaa aatacttgaa gttagtgatc aaagaaacat
tgagattaca tcctgccatt 1200ccattaattc caagagaatg cagggaaagg actaagatta
atggatatga cgtatatccc 1260aaaaccaagg tccttgtcaa tatttgggca atctcaagag
atccaaatat atggagcgaa 1320gcagataaat tcaaaccaga aagattcttg aacagttcac
ttgattacaa gggtaattat 1380ctggaattcg ctccgtttgg ttctgggaaa agggtatgtc
ctggtatgac attaggtata 1440actaatctag agctcatcct tgcaaaatta ctatatcatt
ttgactggaa acttcctgat 1500ggaataacgc ctgagacgct tgacatgact gaatctgttg
gtggcgcaat taaaagaaga 1560acagacctta acttgattcc tgttctatat cctacacatt
ga 160221506DNARicinus communis 2atggagcagc
aattgctatc gtttccagcc cttttgagct ttctcctttt aatcttcgtg 60gtactaagga
tctggaagca atacacatac aaaggaaaat ccaccccacc ccctggacca 120tggagattac
ctctcctagg caactttcac cagctagttg gtgctctacc ccaccaccgc 180ctaaccgaat
tggccaaaat ttatggacca gttatgggta ttcaacttgg tcagatttct 240gttgtcatca
tttcctcagt agaaacagcc aaagaagtgc ttaaaaccca gggtgagcag 300ttcgctgata
gaacccttgt cctcgcagca aaaatggtac tttataatcg caacgacatt 360gtgtttggat
tatacggaga ccactggaga caactgagaa aattatgcac attggagctg 420cttagtgcaa
aacgtgtcca atcattcaag tccgtcagag aagaagagct ctcaaatttt 480gtaaagttcc
ttcattccaa agcaggaatg cccgtcaatc ttactcacac gttgtttgct 540ttgacaaaca
atattatggc aagaacatct gtaggtaaaa aatgcaagaa ccaggaagcc 600ctcttaagta
ttatagatgg catcattgat gcatcaggag gttttactat tgcggatgtg 660tttccttccg
ttcccttcct ccacaacata tctaatatga aatcgagatt ggagaagttg 720catcaacaag
cggacgatat tcttgaagac atcataaatg aacacagagc caccaggaat 780cgtgatgatc
tggaagaagc tgaaaatctc cttgatgttc ttttggatct tcaggaaaat 840ggaaaccttg
aagtcccttt gaccaatgac agcatcaagg gagccattct ggatatgttt 900ggagctggta
gcgacacatc ctcaaaaaca gccgaatggg cattgtcgga gttgatgagg 960cacccagaag
aaatgaaaaa ggcacaagaa gaggtgaggc gaatttttgg tgaagatgga 1020agaattgatg
aagctcgatt tcaagaattg aagttcttga atttagttat caaagaaact 1080ctgagattac
atcctccagt agcactgatt ccaagagaat gtagggaaaa aactaaggtt 1140aatggatacg
atatctatcc taaaactaga acactcatta atgtttggtc tatgggaagg 1200gatcccagtg
tttggactga agctgagaag ttctacccgg aaaggtttct ggatggcaca 1260attgattata
gaggtactaa ttttgaacta attccatttg gtgcaggaaa aaggatatgt 1320cctggtatga
cattagggat agttaacctt gagcttttcc ttgcgcacct attgtatcat 1380tttgactgga
agcttgttga tggagtggct cctgacactc ttgacatgag tgaaggtttt 1440ggcggtgcac
ttaaaaggaa aatggacctt aacttggttc ccattccatt cactactttg 1500ccatag
150631494DNARicinus communis 3atggagaaac aaatcctatc atttccagtc ttattaagct
ttgtcctttt tatcttaatg 60atcttaagga tatggaagaa aagcaaccca cctccaggac
catggaaatt acctctgtta 120ggcaacattc accagctggc tggtggtgct ctgccccatc
accgcctaag ggacttggca 180aaaacttatg gaccagttat gagtattcaa ctcggccaga
tttctgctgt cgtaatttct 240tcagtacaag gagccaaaga agtgctgaag actcagggtg
aggtgttcgc tgaaagaccc 300ctcatcatcg cagctaaaat tgtgctttat aatcgtaagg
atattgtatt tggttcctac 360ggagatcact ggagacaaat gagaaagatc tgcaccttag
agctactgag tgccaaacgc 420gtccagtcct ttagatccgt cagggaagaa gaggtctcag
aatttgtgag atttcttcaa 480tccaaagcag gaacgccagt caatcttacc aagaccctgt
ttgctttaac aaattctatc 540atggcaagaa catccatagg taaaaaatgt gaaaaacaag
aaacgttttc aagtgttata 600gacggtgtca ctgaggtatc aggaggtttt actgttgctg
atgtgtttcc ttctttggga 660ttccttcacg tcatcactgg tatgaagtct agactagaga
ggttgcaccg agtagcagat 720cagatatttg aagatataat agctgaacac aaagccacca
gggcactctc caagaacgat 780gatccgaaag aagcagctaa tcttctagat gttcttttgg
atcttcagga acacggaaat 840cttcaggtcc ctttaaccaa cgacagcatc aaagcagcca
ttctggaaat gtttggtgct 900gggagcgaca catcctcaaa aaccacagaa tgggccatgt
cagagttgat gaggaaccca 960acagaaatga gaaaagcaca agaagaagtg aggcgagtgt
ttggtgaaac agggaaggtt 1020gatgaaacac gccttcatga attaaagttt ttgaagttgg
ttgtcaaaga aactytgaga 1080ttacatcctg ccatagcatt aattccaaga gaatgcaggg
agaggactaa ggttgacggg 1140tatgacataa aacccacagc tagagtcctc gtcaatgtat
gggcgattgg aagggatcct 1200aatgtttgga gtgaacctga aaggtttcac ccagaaaggt
ttgtcaatag ttcagttgat 1260ttcaagggta ctgatttcga actacttcca tttggtgcag
gaaagagaat atgccctggt 1320attttagtgg gtataactaa tttagagctt gttttagctc
acctattata tcattttgat 1380tggaaatttg ttgatggagt gacgagtgat agttttgata
tgagagaagg ttttggtggg 1440gcacttcata gaaaatcaga ccttatcttg attcccattc
catttactcc ttag 149441683DNAEuphorbia peplus 4atggcaacac
ttcaacattc aatgcaagca aatttacaga aacaaaatct tcatccattg 60ttaaacaaat
cctttggtac tccgaatcgt ccttccttcg tctattcctc gaaatctgca 120tcccgaagaa
caatccaagc atgtttatct tcaaattcac agcctggagg agtttgcccc 180atggctaatc
gctttgcttc ctcaactact aatcaatctg ttactgagtc cagttcaaaa 240ccagatgaag
aggatgaaaa ttctccggtt aaacttcctc cgggaccgtg gaaattacct 300ttgctcggta
atattctcca gctcgttgga gacctaccgc atagtcgcct acgagattta 360gcgacagaat
acggacctgt tatgagtgtt caactcggtg aagtttacgc tgtggtaatt 420tcatctgttg
aagcagctag agaaattctc agaaatcagg atgtaaattt tgctgataga 480ccgccggtct
tagtatccga aattgttctt tacaatcgtc aggatatcgt tttcggtgcc 540tacggagttc
attggcgaca aatgagaaga ctatgcacga cggaattgct tagtataaaa 600cgtgttcagt
cattcaaatt agtccgtgaa gaagaggttt cgaatttcat caaatcgctt 660tactcgaaag
caggaaagcc cgttaatctt accgagggtt tgttcacgtt gacgaattcg 720ataatgttga
ggacgtcgat cggtaagaaa tgcagggatc aagatacact tttgagagta 780attgaaggag
ttgtggcggc cggaggaggt tttagcatcg cggatgtgtt tccttctgcc 840gtgttccttc
acgatatcaa tggagacaag tcgggcctcc agagtttgcg gcgagatgct 900gatttgatac
tcgacgagat cattggtgaa catagagcta ttagaggtac tggtggggat 960caaggtgaag
ctgataatct tttagatgtt cttctggatc ttcaggaaaa tggaaatctt 1020gaagtccctt
tgaatgatga tagcatcaaa ggggcaattc tggacatgtt tggggcagga 1080agtgacacct
catcaaaatc aacagaatgg gcgttatcag aattactacg acacccagaa 1140gaaatgaaaa
aagcacaaga cgaagtaaga cgagtttttg caaagaaagg aaatgtagaa 1200gaatcacaac
ttgaccaatt aaaatacctg aaattagtca tcaaagaaac tctgagacta 1260cacccagcag
tccctttaat cccaagagaa tgcagagaaa aaaccaaggt caatggatat 1320gatattctcc
caaaaactaa ggcacttgtg aatatttggg caatctctag ggaccccaaa 1380atttggcctg
aagcagataa atttatacct gaaagattcg aaaatagttc aattgatttt 1440aagggaaata
acttggaatt cgctccgttt ggttcaggaa aaagaatatg tccaggcatg 1500gccttgggga
taactaattt ggagcttttt ctggcacaac ttttgtatca tttcgattgg 1560aaacttgccg
acgggaaaga cggtagggat cttgacatgg gtgaagttgt tggtggtgct 1620attaaaagaa
aagtagacct caatttgatt cctattccat tccatacttc acctgcaaac 1680tga
168351677DNAEuphorbia fischeriana 5atgtcaacac ttcaaccttt tctgcaagca
aattttcaga agcaaaattc tcatccattg 60ttaagcaaac ctttaggtac taccaatcat
ccttccttca tttcttcgtc taaatcaaca 120aaaagatcaa ctattcaagc atgtttatct
tcaaattcgc agcctggtgg agtttgcccc 180atggctaatc gctttgcttc ttcttcaact
actaatcaat ctgttactca gtccagttca 240aacccagatg aaaaggacgg aaattcacag
gttcagcttc ctccggggcc gtggaaatta 300cctttcatcg gtaatattct ccagctcgtc
ggagatctac cccatcgtcg cctaagagat 360ttggcgacag tgtacggacc tgttatgagt
gttcaacttg gggaagttta cgctgtgata 420atttcatcag ttgaagcagc taaagaagtt
ctcagaacac aggatgtgaa tttcgctgat 480agaccgcccg tcctagtatc cgaaatcgtt
ctctacaatc gtcaggatat cgtatttggt 540tcctacggag atcattggcg acagatgaga
agaatctgca caatggaatt gcttagtata 600aaacgtgttc aatcattcaa atctgtccgg
gaagaagagg tttcgaattt tatcaaattg 660ctttattcgg aagcaggaca gccggtcaat
cttacggaga agttgtttgc tttgacgaat 720tcgattatgt tgaggacttc aattggtaag
aaatgcaaag atcaagagac ccttttgaga 780gtaattgaag gagttgtggc ggccggagga
ggtttcagtg ttgctgatgt gtttccttcc 840gccgtgttcc ttcatgatat caccggagac
aagtctggcc ttgagagttt gcgccgagat 900gcagatttgg tacttgatga gatcatcgga
gaacatagag ctaatagatc aggtaatggt 960ggtgatgaag gcgaagctga aaatcttttg
gatgttcttt tggatcttca ggaaaatgga 1020aatcttgaag tccctttaaa cgatgacagc
atcaaagcta caattctgga tatgtttggg 1080gcaggaagtg acacatcctc caaatctaca
gaatgggcat tatcagagtt actaagacac 1140ccagtagcaa tgaagaaagc acaagatgaa
gtaaggaaag ttttcagtga aaatggaaat 1200gtagaagaag aaggacttaa ccaattaaaa
tacttgaaat tagtcatcaa ggaaactctc 1260agattacacc cagcaatccc tttaattcca
agagaatgca gagaaaagac taaagtcaat 1320ggatatgaca ttcttccaaa aactaaggca
cttgtgaata tttgggcaat ttccagagat 1380ccaacaatat ggccagaagc agacaaattc
atcccagaaa gatttgaaaa tagttcaatg 1440gatttcaaag gaaatcactg tgaatttgct
ccatttggtt caggaaaaag gatatgccca 1500ggcatggctt tggggataac taatcttgaa
cttttccttg cacaactgtt atatcatttt 1560gactggaaac ttaccgacgg aaaagaccct
cgaaatcttg acatgagtga agtagtaggt 1620ggtgcaatta aaagaaaaat agatctcaat
ttgattccta ttccattcca tccttaa 167761890DNAJatropha curcas
6atgtcgctgc aaccagcaat tttacaggga aatacctgta aacagtattt tcatccatta
60tcaagcatat cctctaccag atgggttggc aattgcaacc gtttcgcttt tctttctccg
120gctaagccaa ctgcaaacag agcaccgcaa gcgtctttat catcaaaact gcagccagta
180gttcgtctgc tgactaaatt ccctgcttct ggtttcttgg ccatgaatca atctgttgat
240caatttgctt caactaccac aagtcttacc aaaatattca acaaaatagg aaaacctatc
300caatcatctc catttcttgt aagcgttctt cttttgatgt ttatggcatc aaaaatacag
360aaccaacaag aagaagatga taactccata aatcttcctc caggaccatg gagattacct
420ttcataggta acattcacca acttgctggc cccggtctac cccatcaccg tctaacagac
480ttagccaaaa cttacggacc tgtaatgggt gttcaccttg gcgaagttta cgctgttgtt
540gtttcctccg cagaaacatc caaagaagta ttaagaacgc aggatacaaa tttcgctgaa
600agacctttag ttaatgcagc gaaaatggtc ctatataaca gaaacgacat tgtttttggg
660tcgtttggag atcaatggcg acaaatgaga aaaatctgca cattagaatt acttagtgta
720aaacgtgtgc agtcattcaa atcagtaaga gaagaagaga tgtcaagttt tattaaattt
780ctttcttcga aatctggttc gccggtaaat cttacccatc atctgtttgt tttgacaaac
840tatattattg caagaacttc cattggtaag aaatgtaaga atcaagaagc gcttcttaga
900attatagacg acgtcgttga ggcgggagct ggatttagtg ttactgatgt ctttccatcg
960tttgaagcgc ttcatgtgat tagtggagat aagcataaat ttgataaatt gcatagagaa
1020actgataaga tacttgaaga tatcataagt gaacataaag ccgacagggc agtatcttcc
1080aagaaaagtg atggtgaagt tgagaatctt cttgatgttc ttttggatct tcaagaaaat
1140ggaaaccttc aatttccctt aacaaatgat gccatcaaag gagccattct ggatacattt
1200ggcgcaggca gcgacacatc ctcaaaaaca gcagaatgga cattatcgga gctgatcagg
1260aacccagaag caatgagaaa agcacaagca gaaataagga gagttttcga tgaaacagga
1320tatgttgatg aagacaaatt tgaggaatta aaatacctga aactagttgt gaaggaaact
1380ttgagattac atcctgctgt gccattaatt ccaagagaat gcagaggaaa aactaagatt
1440aatgggtatg acattttccc caagaccaag gtattggtga acgtctgggc aatttcaaga
1500gatcctgcaa tttggccaga gcctgaaaag ttcaatccag aaagattcat cgataatccg
1560attgattata agagtattaa ctgcgagcta acaccttttg gtgcgggaaa gagaatttgc
1620cctggaatga cattagggat aacaaatctt gaacttttcc tggcaaattt gctatatcat
1680tttgattgga aacttcctga cgggaagatg ccagaggatc ttgatatgag tgaatcattt
1740ggtggagcaa ttaaaagaaa aacagatctg aagttgattc ctgttctggc gcgccctttg
1800actccaagaa acgccaacag tggcaacact ttcactacaa cagacgccga ctctcctgca
1860tcaatgtgcc cacacttaaa agcattatga
189071890DNAJatropha gossypifolia 7atgtcactgc aaccagcagt tttacaggca
aatacctgta aacagtattt tcatccatta 60tcaagcatat cctctaccag atgggttggc
aattgcaacc gtttcgcttt cctttctccg 120gctaagccaa ctgctaacag agcaccgcaa
gcttctttat catcaaaact gcagccagta 180gttcgtctgc tgactagatt ccctgcttct
ggtttcttgg ctatgaatca atctgtcaat 240caatttgctt caactacaac aagtcttgcc
aaaatattcg acaaaatagg aaaacctatc 300caatcatctc catttcttct aagtgttctt
cttttgatgt ttatggcatc aaaaatacag 360aaccaacaag aagaagataa taactccata
aatcttcctc caggaccatg gagattacct 420ttcataggta acattcacca acttgctggc
cccggtctac cccatcaccg tctaacagac 480ttggccaaaa cttatggacc tgtaatgggt
gttcaccttg gcgaagttta cgctgttgtt 540gtttcctccg cagaaacatc taaagaagta
ttaagaacac aggatacaaa tttcgctgaa 600agacctttgg ttaatgcagc gaaaatggtc
ctatataaca gaaacgacat tgtttttggg 660tcgtatggag atcaatggcg acaaatgaga
aaaatctgca cattggaatt acttagttta 720aaacgtgtgc agtcattcaa atcagtaaga
gaagaagaga tgtcaagttt tattaaattt 780ctttgttcga aatctggttc gccggtaaat
cttacccatc atctgtttgt tttgacaaac 840tatattattg caagaacttc cattggtaag
aaatgtaaga atcaagaagc gcttcttaga 900gttatagacg acgtcgttga ggcaggagct
ggatttagtg ttactgatgt ctttccatcg 960tttgaagccc ttcatgtgat tagtggagat
aagcataaat ttgataaatt gcatagagaa 1020actgataaga tacttgaaga tatcataagt
gaacataagg ccgacagggc agtatcttcc 1080aagaaaagtg atggtgaagc tgagaatctt
cttgatgttc ttttggatct tcaagaaaat 1140ggaaatcttc aatttccctt aacaaatgat
gccatcaaag gagccattct ggatacgttt 1200ggcgcaggca gcgacacatc ctcaaaaaca
gcagaatgga cgttatcaga gttgatcagg 1260aacccaggag caatgagaaa agcacaagaa
gaaataagga gagttttcga tgaaacagga 1320tatgttgatg aagacaaatt tgaggaatta
aaatacctga aactagttgt gaaggaaact 1380ttgagattac atcctgctgt gccattaatt
ccaagagaat gcagaggaaa aactaagatt 1440aatgggtatg acattttccc caagactaag
gtcttggtga acgtctgggc aatttcaaga 1500gatcctgcaa tttggccaga gcctgaaaag
ttcaatccag aaagattcat cgataatccg 1560attgattata agagtattaa ttgcgagcta
acaccttttg gtgcaggaaa gagagtttgc 1620cctggaatga cattagggat aacaaatctt
gaacttttcc tggcaaattt gctatatcat 1680tttgattgga aacttcctga cggaaagatg
ccagaagatc ttgatatgag tgaatcattt 1740ggtggagcaa ttaaaagaaa aacagatctg
aagttgattc ctgttctggc tcgtcctttc 1800aatccaacta acgccaacaa tggcaacact
ttcactacaa cagacgccaa ctctccttca 1860tcaatgtgcc cacacttaaa agcattatga
189081503DNAEuphorbia peplus 8atggagcttc
aatttcaaat cccctcttat ccagtccttt tctccttctt catcttcatc 60tttatactaa
tcaaaatagt aaaaaaacaa actcaaaact ctatctcccc tccgggacca 120tggaaatatc
ctattttggg aaacattcca caattagctg ccggcggaaa gcttcctcat 180caccggttaa
gagatttagc aaaaatccat ggtccggtga tgaacattca actcgggcaa 240gtcaagtcca
ttgtcatttc ctccccggaa actgccaaag aggtgttgaa aactcaggat 300atccagttcg
ccaataggcc tcttcttctc gctggagaaa tggttcttta caaccggaaa 360gatatcttgt
acggtcttta cggggatcaa tggcgacaaa tgaggaaaat atgcactttg 420gagttactaa
gtgctaagcg aattcaatca ttcaagtcag tgagagaaca agaagtcgag 480agcttcattc
ggttgctccg atcaaaggcg gggtccccag tgaatctcac gacagcggtg 540tttgagttga
cgaatactat tatgatgatc acgacgattg gtgagaaatg caagaatcaa 600gaggcggtga
tgagtgtgat tgatcgagtg agtgaggctg cagcggggtt tagtgttgcc 660gacgtatttc
catcgctaaa atttcttcat tatctgagtg gagaaaaggg gaagttgcag 720aagttgcata
aggagactga tgagatactt gaagagatta taagtgaaca taaagctaat 780gctaagattg
gaagccaagc tgataatctt ttggatgttt tgttggatct tcagaaaaat 840gggaatcttc
aagttccatt gactaatgat aatatcaaag ctgccactct ggaaatgttc 900ggagctggta
gcgacacatc ctccaaaact acagactggg caatggcgca actaatgagg 960aagccatcag
caatgaaaaa ggcacaagaa gaggtcaggc gcgtctttag cgacacggga 1020aaggtagagg
aatcaagaat ccaagaacta aaatacttga aattaatcgt taaagaaaca 1080ttgagattac
atcctgccgt ggcattgatt cctagagaat gccgagagaa aactaaaatc 1140gagggatttg
atgtttatcc taaaacaaaa attcttgtga atccttgggc gattggaaga 1200gatccgaaag
tttggagtga ccccgaaagt ttcaacccag aaagatttga agatagttca 1260atagactata
agggtacaaa tttcgaacta attccgtttg gtgcaggaaa aagaatatgt 1320ccaggaatga
ctttgggcat agtgaattta gagcttttcc ttgcaaattt gttatatcat 1380tttgattgga
aattcccaaa tggagtcaca gctgagaatc ttgatatgac tgaagccatt 1440ggtggtgcta
tcaagagaaa actagacctt gagttgattc ctattccata cacattaagt 1500taa
150391605DNARicinus communis 9atgtcattgc aacctgcacc tgtttcacaa tccaactttc
tttacaaaaa agttccacca 60atattacgtg cacccactac caagtctagt ggtagcagtc
gttcctcttt cttttcctca 120tcagttaagt tagctgctag accaccgcaa ccgcaagctt
gcttatcgtt gaacaaaaac 180gatgactcca atacctccgc ctccagtctt cctccaggac
catggaagtt gcctctgcta 240ggtaacattc accagctagt cggagctctt ccccatcacc
gcctaagaga cttggctaaa 300gcttacgggc ctgtcatgtc tgttaaactc ggagaagttt
ctgctgtcgt aatttcatca 360gtagatgctg ccaaagaggt actcaggact caggatgtca
acttcgcaga tagacccctt 420gtcctggcag cagaaattgt gctatataat cgtcaggaca
ttgtatttgg gtcatatgga 480gagcaatgga gacaaatgag aaagatttgc acactggagt
tgcttagtat taagcgcgtt 540caatctttca aatcggtcag ggaagaagag ctttctaatt
ttatcagata ccttcactca 600aaagctggaa ctcctgttaa ccttactcat cacttgtttt
ctttaacaaa ttccattatg 660tttagaattt ccattggtaa gaaatacaaa aatcaagatg
cacttttgag agtcatcgat 720ggcgtcattg aagctggagg aggtttcagt actgctgatg
tgtttccttc ctttaaattc 780cttcaccaca ttagcggaga gaagtctagc cttgaggact
tgcaccgaga agcagactat 840atactagaag atatcataaa tgaacgcaga gcctccaaga
ttaatggtga tgatcgaaac 900caagctgata atctcttaga tgttctttta gatcttcagg
aaaacggaaa tctcgaaatc 960gctctaacca atgacagcat caaagcagcc attctggaaa
tgtttggtgc tggcagcgac 1020acatcctcaa aaaccgctga atgggcactg tcagagttga
tgaggcaccc agaagaaatg 1080gaaaaggcac aaacagaagt aaggcaagtc tttggtaaag
atggaaattt ggatgaaact 1140cgacttcatg aattaaaatt cttgaagtta gttatcaaag
aaaccttaag attgcatcct 1200ccagtagcat tgattccaag agaatgcagg caaaggacta
aggttaatgg atatgacata 1260gatcccaaaa ctaaggttct cgtcaatgtt tgggcaattt
caagggatcc aaatatatgg 1320actgaagcag agaaattcta cccggaaaga tttcttcaca
gttccattga ttacaagggc 1380aatcattgtg aatttgctcc atttggatct ggaaaaagaa
tatgccctgg tatgaactta 1440ggtttaacta atcttgaact cttccttgcc caattactgt
atcactttaa ctgggaattt 1500cctgatggaa taacacctaa gactcttgat atgacagaat
ctgttggtgc tgcaattaaa 1560agaaagatag atcttaaatt gattcctgtt ctatttcatc
cttaa 1605101572DNARicinus communis 10atggaaagtg
ctgctcacca atcctacttc catatgttcc tggctatgga gcagcaaatc 60ctttcatttc
cagtcctttt aagctttctt cttttcattt tcatggtatt aaaggtgtgg 120aagaaaaaca
aggacaatcc aaactcgcct ccggggccaa ggaagttgcc tatcataggc 180aacatgcacc
agctagctgg tagtgatctg ccccatcacc ctgtaacaga attgtcaaaa 240acttacggac
caataatgag cattcaactt ggccaaatat cggccatcgt tatttcttca 300gtagaaggag
ccaaagaagt gctgaagacc caaggtgagc tgttcgctga aagacctctt 360ctcttggcag
cagaggcagt gctttataat cgtatggaca ttatattcgg tgcatacggt 420gatcattgga
ggcaattgag aaaattgtgc accttagagg tgcttagtgc aaaacgaatc 480caatcattca
gttcactcag acaagaagaa ctttcacatt ttgtccgctt cgttcattcc 540aaagcaggaa
gcccaatcaa tctttccaag gtgctgtttg ctttaacaaa ttctatcatt 600gcaagaatcg
ccacaggtaa gaaatgcaaa aaccaagatg ccctcttaga tcttatcgaa 660gacgttattg
aggtatctgg aggtttcagc attgccgatt tatttccttc gttgaaattc 720attcacgtca
tcactggtat gaagtctaga ctggaaaaat tgcatcggat aacagatcag 780gtacttgaag
acatcgtcaa tgaacataaa gccaccaggg cagcctccaa gaatggtggt 840ggtgacgatg
ataaaaaaga agccaaaaat cttctagatg ttcttttgga tcttcaagaa 900gatggaagcc
ttcttcaagt tcctttaacc gacgatagca tcaaagcagc cattctggaa 960atgcttggcg
gtggaagtga cacatctgca aaaaccacag aatgggcaat gtccgagatg 1020atgaggtacc
cagaaacaat gaaaaaagca caagaagaag tgaggcaagc gttcggtaac 1080gcgggaaaga
ttgatgaagc acgcatccat gagttgaaat acttgagggc agttttcaaa 1140gagactttga
gattacatcc cccgctagcg atgataccga gagaatgcag gcaaaagact 1200aagattaatg
gatatgatat ctatcccaaa actaaaacgt tgatcaatgt atatgcaatc 1260ggaagggatc
ccaatgtttg gagtgaacct gagaagttct atccggaaag acatcttgat 1320agtccaatcg
acttcagagg cagtaacttt gaactaattc cattcggtgc agggaaaaga 1380atatgtcctg
gcatgacatt agctataact actgtggagc tgtttctcgc tcatcttcta 1440tactattttg
actggaagtt tgttgatgga atgacggctg atactcttga tatgactgaa 1500tccttcggag
cttcaattaa aagaaaaata gatctcgccc tggttcccat tcccgtcagt 1560cctttaccat
aa
1572111521DNARicinus communis 11atggacaagc aaatcctatc atatccagtg
ctcctgctga gcttcctcct ttttatctta 60atggtgttaa ggatatggaa gaaaagcaag
ggcagcttca actcacctcc gggaccatgg 120aagttacctc tcataggcaa catgcaccaa
ctcattactc ctctgcccca tcaccgcctg 180agagaattgg ccaaaactca tgggccagtt
atgagtattc aacttggcca agtttcggcc 240gtcgtcattt cctcagtaga agcagctaag
caagtgctca aaacccaagg tgaattgttc 300gctgaaagac ccagcatcct ggcatcaaaa
atagtgcttt ataatggtat ggacataata 360tttgggtcat acggtgacca ctggagacaa
atgaggaaaa tttgcacctt cgagctgctc 420agtccaaaac gcgtccagtc cttcagttcg
gtcaggcaag aagaactttc caattatgtc 480aggttcctcc attccaatgc cggaagccca
gtcaatctgt ccaagacctt gtttgcttta 540acaaattctg ttatcgcaaa aatcgcagta
ggtaaggaat gcaaaaacca ggaagccctc 600ttaaatctta tcgaagaagt ccttgtggca
gcaggaggtt tcactgttgc tgattcattt 660ccatcctata atttccttca cgtcatcact
ggtatgaagt ctaacctgga gagattgcac 720cggataacag ataagatcct tgaagacatc
ataactgaac ataaagcccc cagggcactc 780ttcaagcgtg gtggcgatga ggataaaaaa
gaagccgaaa atcttttaga tgttcttttg 840ggtcttcagg aacatggaaa ccttaaagtc
cctttaacca atgagagtgt caagtcagcc 900attctggaaa tgctttccgg cgggagcgac
acatctgcaa aaacaataga atgggcaatg 960tcagagttga tgaggagtcc agaagcaatg
gaaaaggcac aagaagaagt gagaagagtg 1020tttggtgaat tgggaaagat cgaggaatca
cgcctccatg aattaaagta cttgaaatta 1080gttatcaaag agacgttgag attacatccc
gcactagcct tgattccaag agaatgcatg 1140aaaagaacta agattgatgg atatgatatt
tctcccaaaa ctaaagcctt ggtcaatgta 1200tgggcaatcg gaagagatcc cagcgtttgg
aatgaacctg aaaagttttt cccggaaagg 1260tttgtcgaca gttcgattga tttcagaggt
aataattttg aactacttcc atttggttca 1320ggaaagagga tatgtcctgg tatgacattg
ggtttagcca ctgtagagct tttcctctcc 1380tacctgctgt attattttga ttggaagctt
gtcggtggag tgcctcttga catgaccgaa 1440gcttttgctg cttcacttaa aagaaaaata
gacctcgttt taattcccat ttcagtcggc 1500ccttcaccaa caacggactg a
1521121503DNARicinus communis
12atggagctgc aaatcttttc ttttccagtt cttctgagct tcttcctttt tattttcatg
60gtcttgagga tatggaagaa ttccaacaaa aaattgaacc cccctccagg accctggaag
120ctacctcttc taggaaatat tcatcaacta gccaccccat taccccatca acgcctcaga
180gatttggcca aaagttttgg cccagtgatg agcatcaaac ttggggaaat ttcagctgtg
240ataatttcat cagcagaagc agctcaagaa gtactaaaat ctcaggatgt cacctttgct
300gaaaggcctg catctcttgc ttcgaaatta gtactttaca atcgcaacga tattgtcttt
360ggggcttatg gaccacaatg gagacaaacg agaaaactgt gcgtgctgga gctgctaagt
420gccaaacgca ttcaatcatt caaatctgta agggaagaag aggtagacga gtttgccaag
480ttcgtttatt cgaaaggtgg gacgccagtc aaccttactg ataagctgtt tgctttaaca
540aatactatca tggcaaggac caccataggt aagaaatgca gaagtgaaaa agatctcttg
600agatgtattg atggcatctt tgaagaagca ggggttttca atcttgccga tgcgtttcct
660tcctttactt tgcttcctgt aatcactgga gccaagttta gacttgagaa attgcataga
720gagacagaca agatacttga agacatctta cgtgaacaca tagcttccaa ggctgcttca
780gacaaagata cccggaatct tttacatgtt cttttggatc ttcaggaaag tggaaacctt
840gaagtcccta ttaccaacga cagcatcaaa gctactattc tggatatatt tatcgcaggg
900agcgacacat ctgcaaaaac tgtagagtgg gcaatgtcag agttgatgcg aaacccaaaa
960ttaatgaaaa gagcacaaga agaagtgagg caagtctttg gtgagaaggg gtttgttgat
1020gaagcagggc ttcaggattt aaaattcatg aagttgattg ttaaagaaac tttgagattg
1080catcctgtct ttgcaatgtt tccaagagaa tgtagggaaa agacaaaagt caatggatat
1140gacatttctc ctaagactac aatgctcatc aatgtgtggg caattggaag ggatcctaat
1200gtctggcctg atgcagagaa gttcaaccca gaaagatttc ttgatagttc aattgattac
1260aaaggtaata atgctgaaat gattccattt ggtgcaggaa aaaggatatg tcttgggatg
1320acattaggta cacttattct agagcatttc cttgcaaaac tactctatca ttttgattgg
1380aaatttcctg atggagtaac ccctgagaat ttcgacatga cagaacatta tagtgcttcg
1440atgagaaggg aaaccgacct tatcttaatt cctattccag tccatccttt gcctacacac
1500taa
1503131503DNARicinus communis 13atggagcagc agatcctctc attttctgtc
ctttcatgtc tcattctttt tctcttaatg 60gtcattaata ttttgaaaaa ttacagtaaa
gattttaccc ctcctccagg accatggaag 120ctaccctttc ttggtaatat tcaccagcta
gctaccgcac tacctcatcg tcgcctacga 180gatttggcca aaacttatgg tcctgtaatg
agcattaagc ttggagaaat ttcttctatc 240gtaatctcat cagcagaagc agctcaagaa
gtactgaaaa ctcaggatgt catatttgca 300gaaagaccaa tagctcttgc agccaaaatg
gtgctttaca atcgtgatgg cattgtcttt 360ggttcctatg gcgagcaact caggcagtca
aggaaaattt gcatattgga gctgttaagt 420gcgaaacgca ttcagtcatt caaatcagta
agggaagaag aggtatctaa ctttatcagt 480ttccttaatt cgaaagcggg gacgcctgtc
aaccttactg acaagctgtt tgcattaact 540aattctatca tggcaagaac ctcaattggt
aagaaatgca agaatcaaga agatctctta 600agatgtattg ataacatttt tgaggaagca
acagttttca gccctgccga tgcgtttcct 660tcctttactt tgcttcatgt aatcaccgga
gtcaagtcta gacttgagag attgcatcaa 720caaacagaca agatacttga agacattgta
agtgaacaca aagctactat ggctgctacc 780gagaatggag accggaatct cttgcatgtt
cttttggatc ttcagaaaaa tggaaatctt 840caagttcctt taaccaacaa catcatcaaa
gcaattattc tgactatatt tatcggaggg 900agtgacacat cggcaaaaac tgtagaatgg
gtaatgtcag agttgatgca taaccctgaa 960ctgatgaaaa aagcacaaga agaagtgagg
caagtctttg gtgaaaaggg atttgttgat 1020gaaacagggc tgcatgaatt aaaatttctc
aagtcagttg ttaaggagac tctgaggttg 1080catcctgttt tcccattagt tcctagagag
tgtagggaag taactaaggt gaatggatac 1140gacatttatc ctaaaactaa ggtgctcatc
aacgtgtggg ctattggaag ggatcctgat 1200atctggtccg acgcagaaaa gttcaatcct
gaaagatttc ttgaaagttc gattgactac 1260aaagatactt cttctgaaat gatcccattt
ggtgcaggaa agagggtatg tcctggcatg 1320tcattaggcc tactaattct tgagcttttt
cttgcacagc tactctatca ttttgactgg 1380aaacttcctg atagagttac tccggagaat
tttgacatga gcgaatatta tagttcttca 1440ttgagaagaa aacatgacct tatcttgatt
cccattcctg tccttccttt gcctatagaa 1500taa
1503141515DNARicinus communis
14atggagcagc aaattctctc atttccagtc cttctaagct tcttcctttt tatcttcatg
60gtcttgaaaa tacggaagaa atacaacaag aatatcagcc ctcctccagg accatggaag
120ctacctatcc taggtaacat tcaccagcta attagcccac taccccatca tcgcctaaga
180gacttggcca aaatttatgg gcctgtgatg agtattaaac ttggcgaggt ttctgctgtg
240gtaatttctt ccgcggaagc agcaaaagaa gtactaagaa cccaggatgt cagtttcgct
300gatagacccc ttggcctctc agcgaaaatg gtgctttata atggtaacga tgttgttttt
360ggttcttatg gagaacaatg gagacaactg agaaaaattt gcatattgga gctgcttagt
420gcaaaacgtg ttcagtcttt caaatcgtta agggaagcag aggtatcaaa ttttattcgt
480tttctttatt cgaaagcagg gaagcctgtc aaccttactc gcaagctgtt tgctttaaca
540aatactatta tggcgagaac ctccgtaggt aaacaatgtg aaaatcaaga agttctctta
600acagttatag ataggatttt tgaagtatca ggaggtttca ctgttgctga tgtttttcct
660tcatttactt tgcttcattt aattactggg atcaagtctc gacttgagag gttgcatcaa
720gacacagatc agattcttga agacatcata aatgagcata gagcttgtaa ggccgtatcc
780aagaatggtg atcagaatga agctgacaat cttttagatg ttcttttgga tcttcaggaa
840gatggaaacc ttcgagtccc tttaaccaat gacagcatca aaggaacaat tctggatatg
900ttcgctggtg ggagtgatac aacttcaaaa actgcagaat gggcagtgtc agaattgatg
960ttcaacccaa aagcaatgaa aaaagcacaa gaagaagtga ggcgagtctt tggccaaaaa
1020gggattgttg atgaatcagg atttcatgaa ttgaaattct tgaagctggt tattaaagaa
1080actctgagat tgcatccagc attgccctta attccaagag agtgtatgaa caagtctaag
1140atcaatggat acaacattga tccaaaaacc aaggttctga tcaatgtgtg ggcaattgga
1200agagattcta atatctggcc tgaagcagag aaattctatc cagaaagatt tctggatagt
1260tcaatagatt ataagggcac tagttatgag ttcattccat ttggtgcagg aaagaggata
1320tgtcctggca tgatgttggg tacaactaat cttgagcttt ttcttgccca actactatat
1380cattttgact ggcaattccc tgatggagtg acacctgaga cttttgacat gacagaggct
1440tttagcggtt caattaacag aaaatatgat cttaatttaa ttcccattcc gttccatccc
1500ttgcgtgtag aatag
1515151485DNAEuphorbia peplus 15atggatcttg aaatgccctc ttttctcatc
ctctttagct ttctcatttt aacatggatc 60atatggaaga agatgaattc caactcagtt
cctcctccgg ggccttggaa gttgcctctt 120ctaggcaaca ttcttcaatt acgcggcggt
ccagccaatc accgcctctg cgatttggct 180aaagtgtacg gtccggtgat gagcattcaa
ctaggccaga atcctgcggt tgtgctttct 240tcacctgaag cagccgaaca agtcttcaaa
attcagggcg acctatttaa caaccgtcca 300ccagccctct caggtaaaat tttgttttac
aataacagcg acatgacatt cacgccatac 360ggagatcatt ggcgacaaat tagaaaaatt
accgtgatgg aattccttag tccgaaacga 420gttttatcgt ttcgatcaat acgtgaagaa
caagtatcaa atttcatcaa attccttcgt 480acgaaaggcg gatctgcgat caatttcccg
aaagccctct ccgagttgac aagtaggatt 540atgctaataa ccttacttgg taacaaagat
gaaaatgagg aaattgtatt accagcgata 600gaaagagtga tagagactgc aaataaaggt
gctgcttcgg atacctttcc gacgttaaaa 660ttcttcctcg actttctcac cggagacaag
tcaagaatgg aaaaagtgtt acaagagacg 720gatatcatac ttgaagccat cataaatgaa
cacaaaaaaa aaggtacctc agaacacaat 780tatttagatt ttctgctgga taaacagaaa
aagggagacc tccaattgcc attaacaaac 840gaagccatca aagcaaatct tatggctatg
tatgcgggcg ggagtgagac atcatctaaa 900ctcatagaat ggacattcgc ggagatgatg
aagaaccctg aaacgatgcg aaaagcgcaa 960gaggaggtga gaagagtttt tggtgacaaa
ggaaaagttg aggaatcaag aattcaagaa 1020ttgaaatact tgaaattagt tcttaaagaa
tctttcagaa tacatcctcc gtcgaccttg 1080attacaagag tatgccaaga aagaacaaaa
atcaacggtt acgacattca tcccaaaact 1140acaattctta tcaatgtgtg gacgatggga
agagatccga atctttggaa agaacccgaa 1200aagttccatc cagaaagatt tgaagatagt
aaaattgatt tcagaggagc aaatatggaa 1260ttaacaccat ttggtgtagg aaaaagaatg
tgtcctggaa ttactctatc tacaacttat 1320gtggagtttc tgctggcaaa tttattgtat
cattttgatt ggaaacttcc tgacggagtc 1380acaccggcca ctctcgatat gactgaaact
ctgcgtggca cgctcaaaaa agtacaagat 1440cttattttga ttcccattcc attctccccc
catcaaattg cttga 1485161512DNAEuphorbia peplus
16atggagttca ctttatcact taaaaaaatg gagcttcaaa tcctatcttt tccaatcctc
60ttcccctttc tccttttcat ccttaccttc ctcacaatta tacgccggaa aaagcagaat
120caagactgca attttcctcc gggaccatgg cagtttccga tcatcggaaa cattccacag
180ttgctcggag gtctcttcca ccaccgtctt tccgatctag ccaaaattca cggcccgata
240atgagcattc aacaaggaca aatcccagct gttgtaatca cttcagttga actagccaaa
300gaagttctca aaacccaagg tgaaatattc gccggaaggc ctcaagcccc ggccggagat
360gttttgtatt acgattgcaa ggatatcgtg ttcgccccgt acggggatca ctggagacag
420atgagaaaga tctgcacact ggagtttctc agtctgaaaa gagttcagtc tttcagatcc
480ttgagggaag aaaacgtttc aggttttatt aaattcctca gtactaaagc aaattcgtcg
540gtaaatctga cgaaatccgt cggtaatttg acaagttcaa ttatgcttat taaaacttat
600ggaaaatgtg atgaaaaatt gttggctatg ttggagaaag tgaaacaagc agttttagag
660acgagtagtg gtacggatct gtttccgtcg ctgaaattta ttcaatatat taatggtgag
720aagtcaagaa tggcaagggt gcaaaaggaa atggataaaa tgcttgaaca gattattaaa
780gaacataaag ttcaatataa gtttggagat aataatcttt tgcaggtttt gttggatcaa
840cagcaaaatg gagatcttga acttccattg acaaatgaaa tcatcaaagc caacattatg
900gaaatatttt ttggtggaag ccatacttct tctaaaactg tggagtgggc aatgtcggag
960ctaatgaaga acccagaatc aatgacaaaa gcacaagcag aggtgagaca agtcttcggt
1020gagacgggaa atgttgagga atcaagaatg caagaagtga aatacctcaa gtcagttatc
1080aaagaaactc taagattgca ccctccggcg acctttgtca caagagaatg cagacaaaaa
1140acaaaagtca atggttatga tatttacccg aagacagttg ttcatgtcaa tacatatgca
1200atctgtagag atcctgatgt ttgggttgaa cctgaaaagt tttatcctga aaggtttgaa
1260gaaaatcaaa tagattataa gggtgcacat atggaactaa taccgtttgg tgcagggaaa
1320agaatatgtc caggaatctc attagccaca acatacgttg aggttctcct tgcaaacttg
1380ttatatcatt ttgactggaa acttccatat ggaatgactc ctgccaatct tgacatgacg
1440gaaatgcatt gcggtgccct ggctagaaaa catgaccttt gcttgattcc aattccgttt
1500tctaaaattt ga
1512171494DNAEuphorbia peplus 17atgaaaatgc ttgagcaaat tccctctctt
ccaatcatct ttcccttgat cctcttcatt 60ttcatgctca taaagttatg gcagaaaaaa
aatcacaact caatccgtcc acccggtcca 120agaaaatatc cattcatagg caatcttcct
caattacttg gtgctccagt tcatcaaaga 180ctagcagatt tagccaaaac ctacggcccg
gtaatgagca ttcaacaagg ccagatcccg 240tccgtcgtgc tttcatcagt cgaaacggcc
aaagaagtcc tcaaaatcca gggcgaagag 300tttgctggaa gaccctccac tatggctctt
gatataactt tttacgacgc ccaagatatt 360gcctatactg aatacggtga ttattggaga
caaatgaaga aaatttcgac gctagagttt 420ctaagcgcga aacgagttca ttctttcaaa
ccagtccggg aagaacgaat ttcgatattc 480ctcgattccc ttcgttcaaa aggcagatct
ccggtgaacc tgacgaggac aatttacggg 540ttaacgaatt cgatcattca aataacggcg
tttgggaaga actgtaaaac gagagagaaa 600ttgaatcttg ataagattcg agaggcagtt
gtggatggaa ctattgctga tttgtttccg 660agatttaaat ttattgcgag tttgagtgga
gctaaatcaa gaatgatgag ggctcataag 720gagattgatg tggttcttga tgaaatcttg
gaagaacata aggctaataa aagcaccatt 780ggaaataatc ttatgcaagt tcttttggat
tttcagaaaa atggtggcct tcaagttcca 840ttgacaactg atcagattaa agctaacatg
ctggaaatgt ttctttcagg gagccatacg 900tcgtcaaaaa ttacagagtg gacaatggcg
gagctaatgc gagcaccaga aacaatgaga 960aaagcacaag aagaggtgag gcgagtcttc
agcgaaattg gaagagtcga cgaatcaaga 1020atccatgaat gtaaatacgt gaaaaatgtc
cttaaggaag cttttagatt acatcctccg 1080gggccaatgg ttgtaaggca atgcagagaa
ataactaaag tcaatggtta cgagattctt 1140cctggcacta cagttttcat caatgtctgg
gcaataggaa gagatccgga ggtttggact 1200gaacccgaaa agttcaaccc tgacagattc
gaagacagtg aaattgatta cagaggcgca 1260catatggaac taataccatt tggtgcaggg
aaaaggatat gccctggctt gacgttagcc 1320gtagtttacg ttgagctttt gcttgccaac
ttattatatc atttcgattg ggaatttcca 1380gatggagtca cacaaaagac tcttgatatg
accgaatttt tccgtggtac actcaaccga 1440aaagaagacc tttacttgat tcccgttcca
tcttcttcat tgccaaagaa ttaa 1494181512DNAJatropha curcas
18atggaacacc aaatcctctc atttccagtt cttttcagtt tgcttctttt tattctcgtc
60ttactaaaag tatccaagaa attatacaaa catgactcta aacctccgcc tggaccatgg
120aaattacctt tcataggtaa ccttatccag ctcgtcggtg acacacctca tcgccggtta
180acagccttgg ccaaaactta cggacctgta atgggtgttc aacttgggca agttcctttc
240cttgtcgtgt cctcgccgga aacagctaaa gaagtaatga aaatacaaga tcccgttttt
300gcagaacgac cgcttgtcct tgcaggagaa atagtgcttt ataaccgaaa tgacatcgtt
360tttgggtcgt acggagatca gtggaggcaa atgagaaaat tttgcacgtt ggaattactt
420agcacaaaac gagtacagtc gttccgaccc gtgagagaag aagaagttgc atcttttgta
480aaacttatgc gtacaaagaa aggaactcct gttaatctta ctcatgcttt atttgcttta
540acaaattcta tagttgcaag aaatgctgtt ggtcataaaa gcaaaaacca agaggcgttg
600ttagaagtta ttgatgacat agttgtatca ggaggaggtg ttagtatagt tgatatcttt
660ccttccctac aatggcttcc tactgccaag agggaaagat caagaatttg gaaattgcac
720caaaatacag atgagattct cgaagatatc ttacaagagc atagagctaa aagacaggcg
780acagcttcca agaattggga taggagcgaa gctgataatc ttcttgatgt tcttttggat
840cttcaacaga gcggaaatct tgatgttcct ttaactgatg tcgccatcaa agcagcaatt
900attgatatgt ttggtgctgg aagcgacaca tcctcaaaaa ctgcagaatg ggcaatggct
960gagttgatga ggaatccaga agtaatgaag aaagcacaag aagaattgcg gaatttcttt
1020ggtgaaaatg gaaaggttga ggaagcaaaa cttcacgaat taaaatggat aaagttaatt
1080attaaagaaa cattgagatt acatcctgca gtggctgtaa ttccaagggt ttgtagggaa
1140aagactaaag tttatggata tgacgttgag cctggcactc gggttttcat taacgtgtgg
1200tcaatcggaa gagatcctaa agtttggagt gaagctgaga gattcaagcc ggagagattt
1260attgatagcg caattgatta caggggtctt aattttgaac tgattccatt tggagcagga
1320aaaagaatat gccctggaat gaccttagga atggctaatc tggagatttt ccttgcaaac
1380ttgctatatc attttgactg gaaatttcct aaaggagtaa ctgcagaaaa tcttgacatg
1440aatgaagctt ttggaggagc tgtcaaaaga aaagtagacc ttgaattgat ccccattcca
1500ttccgtccct aa
1512191512DNAJatropha curcas 19atggaacaac aaatcctctc ttttccagtt
cttttcagtt tccttctttt tcttctggtc 60ctattaaaag tatctaagaa attatccaaa
catgattcca actctcctcc aggaccatgg 120aaattacctt tcttaggtaa tattctccag
ctcgctggtg atctccctca ccgccgaata 180acggagttgg ccaaaaaata cggaccggta
atgagtatta aacttggtca gcatccttat 240cttgttgttt cttcgccgga aacagccaaa
gaagtaatga gaacccaaga tcccattttc 300gctgatcgac cgcttgtcct tgcgggagaa
ttagtgcttt acaaccgaaa tgacataggt 360tttgggctgt acggagatca atggagacaa
atgagaaaat tttgcgcatt ggaattactt 420agcacaaaac gagtacagtc gtttcgatcc
gtaagagaag aagaaattgc agagtttgta 480aaatctctgc gatcaaaaga aggaagttct
gttaatctga gtcatacttt atttgcttta 540acaaactcta taattgcaag aaatactgtc
ggccataaaa gcaaaaatca agaagcgttg 600ctgaaaatta ttgatgatat agttgagtca
ctgggaggtc tcagtacagt tgatatcttt 660ccttccttaa aatggctacc ttcagtcaaa
agggaaaggt caagaatttg gaaattgcat 720tgtgaaacag atgagattct tgaaggtatc
ttagaagagc ataaagcgaa caggcaggcc 780gcagctttca agaacgacga tgggagccaa
gctgataatc ttcttgatgt tcttttggat 840cttcagcaaa atggaaatct tgaagttcct
ttaactgacg tcaacatcaa agcagtaatc 900cttggtatgt ttggcgctgg aagcgacaca
tcctccaaaa caacagaatg ggcaatggcg 960gagttgatga aaaatccgga aataatgaaa
aaggcacaag aagaattgcg gagtttgttt 1020ggtgaaagtg gatacgttga tgaagcaaaa
cttcacgaaa taaaatggtt gaagttaatt 1080attaatgaaa cattgagatt acatcctgca
gttacattaa ttccaaggct ttgcagggaa 1140aagaccaaag ttagtggata tgacgtttat
cctaatacta gggttttcat aaatacatgg 1200gcaatcggaa gagatcctac aatttggagt
gaacctgaga aattcgttcc ggagagattt 1260attgatagtt caattgatta taggggcaac
cattttgaat atactccatt tggtgcagga 1320agaagaatat gccctggaat ggcattcggt
atggttaatc tagagatttt ccttgcaaat 1380ttgctatatc attttgactg gaaacttcct
aaaggaataa cttcggagaa tcttgacatg 1440actgagaatt ttggaggagt tatcaaaaga
aaacaagacc ttgaattgat tcccgcacca 1500ttccgtcctt aa
1512201509DNAJatropha curcas
20atggaacagc aaatcctctc agtttcagtt ctttccagtt tcgttctttt tcttttcgtc
60ttattaaaag tatccaagaa attatacaaa catgattcta accctccgcc aggaccatgg
120aaattacctt tcttaggtaa tatcctccag ctcgccggcg acgcacctca tcaccggttt
180gcggagttgg ccagaactta tggaccggta atgggtatta aactcggtga aattcccttt
240cttgttgttt cctcgccgga agcagccaaa gaagtgatga aaatacaaga tcccatcttt
300gcagaacgag cgcttgtctt tgcaaatgat gtgttgaact ataaccgtaa cgttatggtt
360tttgggtcat acggatatca atggaggcaa ttgagaaaat tttgtacgtt ggcattactg
420agcgcaaaac gagtacagtc gtttcaatca gtaagaaaag aagaaatggc tgattttgta
480aactttctgc gttccaaaga aggaagttct gttaatctta ctcatactat atttgctttt
540acaaattcta taattgcaag aaatgctgtt ggtcataaaa ccaaaaatca agaaacgttg
600ttaacatgta ttgatggtat tatttatact ggaggagtaa atatagctga cgtgtttcct
660tccttaaaat ggcttccttc agtcaagagg gaaaaatcta gagttatgaa attgcattat
720gaaacagata agatcctgga agatatctta caagagcata aagcaaacaa gcaggcgtgg
780gtttccgagg atggcgatgg gaggaaagct ggcaatttcg ttgatgttct tctggacctt
840caacaaagtg gaaatcttga ttttccctta actgatgtca ccattaaagc atcaaccatc
900gatgcttttg tgggtggaag tgacacatcc tcaaaaacta cagaatgggc aatggcagag
960ttgatgagga aaccggaaat aatgaaaaaa gcgcaagaag aattgcggag tgtctttggt
1020gaaaaagggt acattgagga agcaaaactc caggaattaa aatggttgaa gttaattatt
1080aaagaaacaa tgagattaca tcctgtactt tcactacttc caagggtttg taagcaaaag
1140actaaagtta gtggatatga tgtttatcct ggtactcaag ttctggttaa tgtatgggca
1200ctcggaagag atcctaaaca ttggagtgaa cctgaaaaat tcaatcccga gagatttatt
1260gatagttcaa tcgattatct gggaaatcat tttgaatatc ttccatttgg tgcaggaaaa
1320agagtatgcc ctggaattgc attaggtatg gttcatatgg aaaatttcct cgcaaatttg
1380ctctttcatt ttgactggaa atttcctaaa ggaattactg cagagaatct tgacatgacc
1440gatgcttttg gaggagttat gaagagaaaa gtagaccttg aactgattcc cattccatac
1500catccttaa
1509211512DNAJatropha curcas 21atggaacatc aaatcctctc atttccagct
cttttcagtt tccttctttt tcttctggtc 60ttattaaaag tatccaagaa attatacaaa
catgattcta accctccacc cggaccatgg 120aaattacctt tcttaggtaa cattctccag
cttgccggcg acacatttca tagacggtta 180acagagttgg ctaaaactca tggcccggta
atgagtatta atgtcggtca gattccttat 240gttgtcgttt cttccccgga aacagccaaa
gaagtaatga aaattcaaga tccagttttc 300gccgaccatc cggttgtcct tgcagcagaa
gtaattcttt atagcccata cgacatcttt 360tttgcgccct acggagatca cttgaaacaa
atgagaaaat tttgcacggt cgaattactt 420agcacaaaac gagtacagtc gtttcgatct
gtgagagaag aagaagttgc agattttgta 480aaatttctgc gttcaaaaga gggaagttct
gttaatctta ctcatacttt atttgctttg 540acaaattcta tagttgcaag aactgctgtt
ggtcatagaa gcaaaaatca agaaggattg 600ttaaaagtta ttgatgaagc agttttagct
tcatcaggtg ttaatatagc tgatatcttt 660ccttccttac aatggcttcc ttcagtcaaa
agggaaaggt ctagaatttg gaaaacgcat 720cgtgaaacag ataagattct cgaagatgtt
ttgcaagagc atagagctaa caggaaggcg 780gcagttccca agaatggaga tcagagccaa
gctgataatc ttcttgatgt tcttttggat 840cttcaagaaa gtggaaatct tgatgttccc
ttacctgatg ccgccatcaa aggaacaatc 900atggaaatgt ttggggctgg cagcgacacg
tcctcaaaaa cagtagaatg ggcaatggca 960gagttgatga ggaatccaga agtaatgaga
aaagcacaag aagaattgcg gagtttcttt 1020ggtgaaaatg gagaggttga ggatgcaaaa
attcaggaat taaaatgttt aaagttaatt 1080attaaagaaa cattgagatt acatcctcca
ggtgcagtaa ttccaaggct ttgtagggaa 1140agaactaaag tcgctggata cgacatttat
cctaatacta agattttcgt taatacatgg 1200gcaattggaa gagatcctga aatttggagt
gaagctgaga aattcaatcc cgacagattt 1260attgacagtt caattgatta taagggtaac
aattttgaac tgattccatt tggtgcagga 1320agaagaatat gccccggaat tacattagct
tcagctaata tggaactttt ccttgcaaac 1380ttgctatatc attttgactg gaaatttcct
caaggaataa cagcagagaa tctcgacatg 1440aatgaatgtt ttggaggagc tgtcaaaaga
aaagtagacc ttgaactcat tcctattcca 1500ttccgtactt aa
1512221500DNAJatropha curcas
22atgctctcat ttccagttat tttcagtttc cttcttttcc ttctcgtctt attaaaagta
60tccaaaaaat tatgcaaaga taattctatc cctccgccgg gaccatggca attacctttc
120ttgggtaaca ttttccagct cgcaggctac caatttcata tccggttaag cgagttgggc
180caaacttatg gaccagtaat gggtattaaa gtcggtcaag ttccttttct tatcgtttct
240tcgccggaaa tggccaaaga agtgttgaaa gtccaagatc ccactttcgt cgaccgaccg
300gttgtccttg cagcagaatt ggtgatgtat gggggccacg acatcgttta tgcgccatac
360ggagatcaat ggagacaaat gagaaaattt tgcacgttag agttacttag cacaaaacga
420gtgcaatcct ttcgatccgt aagagaagaa gaagctggag agtttgtaaa atttctactt
480tcaaaagagg gaagttctgt taaccttact catgctttat atgctttatc aaattctatg
540gttgcaagaa gtactgttgg tcataaaacc aaaaatcaag aagcgttatt aaacgttatt
600gatgatacag tttcaacagc ggcaggtact aatatagccg atatctttcc gtccttaaaa
660tggcttccta cagtcaaacg gcagatgtct agaatttgga aatctcattg tcaaacagat
720gagattcttg aaggtatctt aagagagcat agagctaaaa ggcagacggc agcttccaag
780aacggtgatc gggctgaagc cgataatctt cttgatgttc ttttggatct tcaacagaga
840ggagatcttg atgttccctt aactgatatc aacatcaaag gagcaatcct ggaaatgttt
900ggcgctggaa gcgacacatc tacaaaaact ttagaatggg caatgtcaga attgatgagg
960aacccaaaaa tgatgaaaaa agtacaacaa gaattgcgga gtttctttgg tgaaaatgga
1020aaagttgagg aagcaaaact tcaggaatta aaatggttaa agttaattat taaagaaaca
1080ttgagattac atcctccaat tgcagtaatt ccaaggcttt gtagggagag gactaaagtt
1140tgtggatatg acgtttatcc taataccagg gttttcgtta atgtctgggc aatgggaaga
1200gatcctaaaa tttggaatga agctgaaaaa ttcaatcctg agagatttat tgatagttca
1260attgattata ggggtaataa ttttgaactg attccatttg gtgcaggaaa aagaatatgc
1320cctggaatta cattagctat tgttcatgta gaaactgtcc ttgcaaactt gctatatcac
1380tttgactgga aatttcctga aggagtaact gcagagaatt ttgatatgaa tgaaactttt
1440gcaggaatta tccgaagaaa agtagacctt gaactgatcc ctgttgcatt ccgtccttaa
1500231488DNAJatropha curcas 23atggaccacc gaattctctc attcccattc
ctaatgctaa gcttgcttct tcctttcgtt 60ttcgagttgt taaagatatg gaagaagagt
aataataatc ctcctccagg accttggaga 120ttacctctga tcggtaacat tcaccagttg
ggtgggcgtc atcaacccca tctccgcctt 180acagacttgg ccagaactta tggacccgtt
atgcgcctgc agcttggcca aattgaagca 240gtagtcattt cctcagctga aacagccaaa
caagttatga aaacccaaga aagccaattc 300cttggaagac cttctctttt agctgccgat
atcatgcttt ataaccgtac agacatctct 360ttcgcccctt atggagatta ctggagacaa
atgaaaaaaa ttgctgtcgt tgagctcctt 420agcgccaagc gtgtccaagc ctacaaatca
gtcatggatg aggaagtttc caatttcatc 480aattttcttt attcaaaagc ggggtcgcct
gtgaatctta ctaagacatt ctattcctta 540ggaaatggaa tcatcgcaaa aacatccatc
ggcaaaaaat ttaagaaaca agaaaccttc 600ttaaaagtcg tagacaaagc cattagagta
gcaggaggtt tcagtgtggg ggatgcgttt 660ccttccttta aattgattca cttgatcact
ggaatcagct ccacactcca tacagctcat 720caagaggcag acgagattct tgaagaaatt
ataagcgaac acagagccag taagactgct 780gatggtgatg actatgaagc cgataatatt
cttggcgttc ttttggatat tcaagaacgt 840gggaaccttc aagtcccctt gaccacggac
aatatcaaag ctatcattct ggacatgttt 900gccggtgcaa gtgacacatc gttaacaact
gcagaatggg caatggcaga aatggtaaag 960catccaagaa taatgaagaa agcacaagac
gaagttaggc ggactttgaa ccaagaagga 1020aacgtagcta atcttcttcc tgaactgaaa
tatttgaaat tagttatcaa agaaaccttg 1080agattacatc ctccagtagc cttaattcct
agagaatgtg atgggcgatg tgagcttaat 1140gggtacgatg ttaatcctaa aactaagatt
cttgttaacg catgggcaat cggaagagat 1200cataatttat ggaatgatcc tgaaagattt
gatccggaga gatttcttga caattcaagt 1260gatttcaggg gaaccgactt caaattcatt
ccatttggcg ccggaaagag gatttgtcct 1320ggcataacca tggctataac tattattgag
gtcctgcttg cacaattgct ctaccatttt 1380gattggaaac ttcctgatgg agctaaacca
gaaagtcttg acatgtctga tacatttggt 1440ctcgtagtta agagaaggat agatctcaat
ttgattccaa tcccatag 1488241497DNAJatropha curcas
24atggagtatc aaatcctctc atctccaacc cttatagcct tgttggtttt tgtggcgaca
60gtggtgataa aattatggaa gagacccaca atagctaaca acaatcctcc accaggacct
120tggaagttgc ctctgatagg caaccttcat aatttgtttg gccgtgatca gccacaccac
180cgcctccgag atttggccgg aaagtatgga gccgtaatgg gttttcagct tggacaggtt
240cccactgttg taatatcctc ggcagaaata gccaaacaag tcttaaaaac ccatgagttc
300caattcatcg acagaccctc tctcttggct gccgatatcg tgctttataa tcgttctgac
360attatatttg ccccttacgg agactactgg agacaaatca agaaaattgc catactcgag
420ctgcttagtt caaagcgcgt gcagtcattc aaatcagtga gagaagagga ggtctccagt
480ttcttcaagt tcttatattc aaaagctgga tcgcctgtca atcttagtcg gactctcttg
540tctttaacta atgggatcat agccaaaact tccataggta agaaatgcaa aagacaggaa
600gaaatcattg cagttataac ggatgccatt aaagcaacag gaggtttcag cgtcgccgat
660gtttttccct cctttaaatt tcttcacatt attaccggca tcagctctac tatccgcagg
720attcatcgag aggcagatac gattcttgaa gaaattatgg acgaacacaa agccaacaac
780gaatcaaaga atgaacccga taacattctg gatgttcttt tggatattca acagcgagga
840aaccttgaat tccccctcac cgctgacaac atcaaagcta tcattctgga aatgtttgga
900gctgcgagtg acacatcttc cgtgaccatt gaatgggcaa tgtctgaaat gatgaagaac
960ccatggacga tgaaaaaagc tcaagaagaa gtaagggagg tatttaatgg aacaggtgac
1020gtcagcgaag caagccttca agaattacaa tatttgaagt tagttatcaa agaaactcta
1080agattgcatc ctccgctcac cttaatccct agagaatgca atcagaaatg tcagattaat
1140gaatatgata tttatccaaa aaccagagtc cttgtcaatg catgggccat cggaagagat
1200cctaactggt ggactgatcc tgaaagattt gatccagaga gatttcgttg cggttcagtt
1260gatttcaaag gcactgactt tgagttcatc ccttttggtg ctggtaaaag aatgtgtccc
1320ggcataacca tggctatggc taacattgaa cttatacttg cacaactact gtaccatttt
1380aactgggaac ttcctggaaa agctaaacca gaaactctcg acatgtctga gagtttcggt
1440cttgcagtta aaagaaaagt cgagcttaac ttgattccga ccgcgtttaa tccttag
1497251512DNAJatropha curcas 25atggaacaac aaatcctctc ttttccagtt
attttcaatt tccttctttt tcttctggtc 60ctattaaaag tatctaagaa attatccaaa
catgattcga actctcctcc aggaccatgg 120aaattacctt tcttaggtaa ttttctccag
ctcgctggtg atctccctca ccgccgaata 180acggagttgg ccaaaaaata cggaccggta
atgagtatta aacttggtca gcatccttat 240cttgttgttt cttcgccgga aacagccaaa
gaagtaatga gaacccaaga tcccattttc 300gctgatcgac cgcttgtcct tgctggagaa
ttagtgcttt acaaccgaaa tgacataggt 360tttgggctgt acggagatca atggagacaa
atgagaaaat tttgcgcatt ggaattactt 420agcacaaaac gaatacagtc gtttcgatcc
gtaagggaag aagaaattgc agtgtttgta 480aaatctctgc gatcaaaaga aggaagttct
gttaatctga gtcatacttt atttgcttta 540acaaactcta taattgcaag aaatactgtc
ggccataaaa gcaaaaatca agaagcgttg 600ctgaaaatta ttgatgatat agttgagtca
ctaggaggtc tcagcacagt tgatatcttt 660ccttccttaa aatggctacc ttcagtcaaa
agggaaaggt caagaatttg gaaattgcat 720tgtgaaacag atgagattct tgaaggtatc
ttagaagagc ataaagcgaa caggcaggcc 780gcagctttca agaacgacga tgggagccaa
gctgataatc ttcttgatgt tcttttggat 840cttcaacaaa atggaaatct tcaagttcct
ttaactgacg tcaacatcaa agcagtaatc 900cttggtatgt ttggcgctgg aagcgacaca
tcctccaaaa ctacagaatg ggcaatggcg 960gagttgatga aaaatccgga aataatgaaa
aacgcacaag aagaattgcg gagtttgttt 1020ggtgaaagtg gaaacgttga tgaagcaaaa
cttcacgaaa taaaatggtt gaagttaatt 1080attaatgaaa cattgagatt acatcctgca
gttacattaa ttccaaggct ttgcagggaa 1140aagactaaaa ttagtggata tgacgtctat
cctaatacta gggttttcat aaatacatgg 1200gcaatcggaa gagatcctat aatttggact
gaacctgaga aattcgttcc ggaaagattt 1260attgatagtt caattgatta caggggcaac
cattttgaat atactccatt tggtgcagga 1320agaagaatat gccctggaat gacatttggt
atggttaatc tagagatttt ccttgcaaat 1380ttgctatatc attttgactg gaaacttcct
aaaggaataa cttcggagaa ccttgacatg 1440actgagaatt ttggaggagt tatcaaaaga
aaacaagacc ttgaattgat tcccgtacca 1500ttccgtcctt aa
1512261512DNAJatropha curcas
26atggaagacc aaatcctctc atttcaagtt cttttcagtt tccttctttt tcttttcgtc
60ttattcaaag tatccaagaa attgtacaaa catggttcta accctccgcc cggaccactg
120aaattacctt tcttaggtaa tattctccag ctcgccggag atgtacctca ccgccggtta
180acagccttgg ccaaaactta cggacccgta atgggtatta aactcggtca gattcctttc
240cttgtcgtgt cctccccgga aacagctaaa gaagtaatga aaatacaaga tcccgttttc
300gcagaacgag cgcctctcct tgcaggagaa atagtgcttt ataaccgaaa cgacatcatt
360tttggattgt acggagatca gtggaggcaa atgagaaaaa tttgcacgtt ggaattactt
420agcgcgaaac gagtacagtc ctttcgatca gtgagagaag aagaagtcgc agatttagtc
480aaatttcttg gttcgaaaga gggaagtcct gttaatctta ctcatacttt attcgcttta
540gcaaattcta taattgcaag aaatacggtt ggtcagaaaa gcaaaaacca agaagcattg
600ctaagactta ttgatgatat aattgaatta acaggaagtg ttagtatagc tgatatattt
660ccttccttaa aatggcttcc ttcagtccaa agggataggt ctagaattag gaaattgcat
720tatgaaacag atgagatcct tgaagatatt ttacaagagc atagagctaa caggcaggct
780gcggcttcca ggaaaggcga tcggagggga gctgataatc ttcttgatgt tcttttgtat
840cttcaagaaa ctggaaatct tgatgttcct ttaactgatg tcgctatcaa agcagcaatc
900attgatatgt ttggagctgg aagcgacaca tcctcaaaaa ccgtagaatg ggcaatggct
960gagttgatga ggaatccaga aataatgaag aaagcacaag aagaattgcg gaatttcttt
1020ggtgaaaatg gaaaggttga cgaagcaaaa cttcaagaat taaaatggtt aaatttaatt
1080aataaagaaa cattgagatt acatcctgca gcagctgtag ttccaagggt ttgtagggaa
1140aggactaagg tgagtggata tgacgtttat cctggcactc gggttttcat taacgcatgg
1200gcaatcggaa gagatcctaa agtttggagt gaagctgaga aattcaaacc ggagagattt
1260attgatagtg caattgatta taggggtacc aattttgaac taattccatt tggagcagga
1320aaaagaatat gccctggaat gactctaggt atggctaatc tggagatttt cctggcaaac
1380ttgctatatc attttgactg gaaatttcct aaaggagtaa ctgcagaaaa tcttgacatg
1440aacgaagctt ttggagcagc tgtcaaaaga aaagtagacc ttgaattggt tcccattcca
1500ttccgtcctt aa
151227533PRTRicinus communis 27Met Ser Ser Gln Pro Ala Val Leu Gln Ser
Asn Phe Leu Asn Arg Asn1 5 10
15Val Gln Pro Phe Leu Thr Ile Pro Ser Ala Ser Thr Lys Tyr Ser Gly
20 25 30Thr Ala Cys Phe Ser Ser
Phe Pro Ser Val Lys Leu Asn Ala Arg Pro 35 40
45Pro Gln Ala Cys Phe Ser Leu Asn Lys Asn Asn Asp His Ser
Thr Pro 50 55 60Thr Ser Ile Leu Pro
Pro Gly Pro Trp Gln Leu Pro Leu Ile Gly Asn65 70
75 80Ile His Gln Leu Val Gly His Leu Pro His
Ser Arg Leu Arg Asp Leu 85 90
95Gly Lys Ile Tyr Gly Pro Val Met Ser Val Gln Leu Gly Glu Val Ser
100 105 110Ala Val Val Val Ser
Ser Val Glu Ala Ala Lys Glu Val Leu Arg Ile 115
120 125Gln Asp Val Ile Phe Ala Glu Arg Pro Pro Val Leu
Met Ala Glu Ile 130 135 140Val Leu Tyr
Asn Arg His Asp Ile Val Phe Gly Ser Tyr Gly Asp His145
150 155 160Trp Arg Gln Leu Arg Lys Ile
Cys Thr Leu Glu Leu Leu Ser Leu Lys 165
170 175Arg Val Gln Ser Phe Lys Ser Val Arg Glu Asp Glu
Phe Ser Asn Phe 180 185 190Ile
Lys Tyr Leu Ser Ser Lys Ala Gly Thr Pro Val Asn Leu Thr His 195
200 205Asp Leu Phe Ser Leu Thr Asn Ser Val
Met Leu Arg Thr Ser Ile Gly 210 215
220Lys Lys Cys Lys Asn Gln Glu Ala Ile Leu Arg Ile Ile Asp Ser Val225
230 235 240Val Ala Ala Gly
Gly Gly Phe Ser Val Ala Asp Val Phe Pro Ser Phe 245
250 255Lys Leu Leu His Met Ile Ser Gly Asp Arg
Ser Ser Leu Glu Ala Leu 260 265
270Arg Arg Asp Thr Asp Glu Ile Leu Asp Glu Ile Ile Asn Glu His Lys
275 280 285Ala Gly Arg Lys Ala Gly Asp
Asp His Asp Glu Ala Glu Asn Leu Leu 290 295
300Asp Val Leu Leu Asp Leu Gln Glu Asn Gly Asp Leu Glu Val Pro
Leu305 310 315 320Thr Asn
Asp Ser Ile Lys Ala Thr Ile Leu Asp Met Phe Gly Ala Gly
325 330 335Ser Asp Thr Ser Ser Lys Thr
Ala Glu Trp Ala Leu Ser Glu Leu Met 340 345
350Arg His Pro Glu Ile Met Lys Lys Ala Gln Glu Glu Val Arg
Gly Val 355 360 365Phe Gly Asp Ser
Gly Glu Val Asp Glu Thr Arg Leu His Glu Leu Lys 370
375 380Tyr Leu Lys Leu Val Ile Lys Glu Thr Leu Arg Leu
His Pro Ala Ile385 390 395
400Pro Leu Ile Pro Arg Glu Cys Arg Glu Arg Thr Lys Ile Asn Gly Tyr
405 410 415Asp Val Tyr Pro Lys
Thr Lys Val Leu Val Asn Ile Trp Ala Ile Ser 420
425 430Arg Asp Pro Asn Ile Trp Ser Glu Ala Asp Lys Phe
Lys Pro Glu Arg 435 440 445Phe Leu
Asn Ser Ser Leu Asp Tyr Lys Gly Asn Tyr Leu Glu Phe Ala 450
455 460Pro Phe Gly Ser Gly Lys Arg Val Cys Pro Gly
Met Thr Leu Gly Ile465 470 475
480Thr Asn Leu Glu Leu Ile Leu Ala Lys Leu Leu Tyr His Phe Asp Trp
485 490 495Lys Leu Pro Asp
Gly Ile Thr Pro Glu Thr Leu Asp Met Thr Glu Ser 500
505 510Val Gly Gly Ala Ile Lys Arg Arg Thr Asp Leu
Asn Leu Ile Pro Val 515 520 525Leu
Tyr Pro Thr His 53028501PRTRicinus communis 28Met Glu Gln Gln Leu Leu
Ser Phe Pro Ala Leu Leu Ser Phe Leu Leu1 5
10 15Leu Ile Phe Val Val Leu Arg Ile Trp Lys Gln Tyr
Thr Tyr Lys Gly 20 25 30Lys
Ser Thr Pro Pro Pro Gly Pro Trp Arg Leu Pro Leu Leu Gly Asn 35
40 45Phe His Gln Leu Val Gly Ala Leu Pro
His His Arg Leu Thr Glu Leu 50 55
60Ala Lys Ile Tyr Gly Pro Val Met Gly Ile Gln Leu Gly Gln Ile Ser65
70 75 80Val Val Ile Ile Ser
Ser Val Glu Thr Ala Lys Glu Val Leu Lys Thr 85
90 95Gln Gly Glu Gln Phe Ala Asp Arg Thr Leu Val
Leu Ala Ala Lys Met 100 105
110Val Leu Tyr Asn Arg Asn Asp Ile Val Phe Gly Leu Tyr Gly Asp His
115 120 125Trp Arg Gln Leu Arg Lys Leu
Cys Thr Leu Glu Leu Leu Ser Ala Lys 130 135
140Arg Val Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Leu Ser Asn
Phe145 150 155 160Val Lys
Phe Leu His Ser Lys Ala Gly Met Pro Val Asn Leu Thr His
165 170 175Thr Leu Phe Ala Leu Thr Asn
Asn Ile Met Ala Arg Thr Ser Val Gly 180 185
190Lys Lys Cys Lys Asn Gln Glu Ala Leu Leu Ser Ile Ile Asp
Gly Ile 195 200 205Ile Asp Ala Ser
Gly Gly Phe Thr Ile Ala Asp Val Phe Pro Ser Val 210
215 220Pro Phe Leu His Asn Ile Ser Asn Met Lys Ser Arg
Leu Glu Lys Leu225 230 235
240His Gln Gln Ala Asp Asp Ile Leu Glu Asp Ile Ile Asn Glu His Arg
245 250 255Ala Thr Arg Asn Arg
Asp Asp Leu Glu Glu Ala Glu Asn Leu Leu Asp 260
265 270Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Glu
Val Pro Leu Thr 275 280 285Asn Asp
Ser Ile Lys Gly Ala Ile Leu Asp Met Phe Gly Ala Gly Ser 290
295 300Asp Thr Ser Ser Lys Thr Ala Glu Trp Ala Leu
Ser Glu Leu Met Arg305 310 315
320His Pro Glu Glu Met Lys Lys Ala Gln Glu Glu Val Arg Arg Ile Phe
325 330 335Gly Glu Asp Gly
Arg Ile Asp Glu Ala Arg Phe Gln Glu Leu Lys Phe 340
345 350Leu Asn Leu Val Ile Lys Glu Thr Leu Arg Leu
His Pro Pro Val Ala 355 360 365Leu
Ile Pro Arg Glu Cys Arg Glu Lys Thr Lys Val Asn Gly Tyr Asp 370
375 380Ile Tyr Pro Lys Thr Arg Thr Leu Ile Asn
Val Trp Ser Met Gly Arg385 390 395
400Asp Pro Ser Val Trp Thr Glu Ala Glu Lys Phe Tyr Pro Glu Arg
Phe 405 410 415Leu Asp Gly
Thr Ile Asp Tyr Arg Gly Thr Asn Phe Glu Leu Ile Pro 420
425 430Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly
Met Thr Leu Gly Ile Val 435 440
445Asn Leu Glu Leu Phe Leu Ala His Leu Leu Tyr His Phe Asp Trp Lys 450
455 460Leu Val Asp Gly Val Ala Pro Asp
Thr Leu Asp Met Ser Glu Gly Phe465 470
475 480Gly Gly Ala Leu Lys Arg Lys Met Asp Leu Asn Leu
Val Pro Ile Pro 485 490
495Phe Thr Thr Leu Pro 50029497PRTRicinus
communismisc_feature(359)..(359)Xaa can be any naturally occurring amino
acid 29Met Glu Lys Gln Ile Leu Ser Phe Pro Val Leu Leu Ser Phe Val Leu1
5 10 15Phe Ile Leu Met Ile
Leu Arg Ile Trp Lys Lys Ser Asn Pro Pro Pro 20
25 30Gly Pro Trp Lys Leu Pro Leu Leu Gly Asn Ile His
Gln Leu Ala Gly 35 40 45Gly Ala
Leu Pro His His Arg Leu Arg Asp Leu Ala Lys Thr Tyr Gly 50
55 60Pro Val Met Ser Ile Gln Leu Gly Gln Ile Ser
Ala Val Val Ile Ser65 70 75
80Ser Val Gln Gly Ala Lys Glu Val Leu Lys Thr Gln Gly Glu Val Phe
85 90 95Ala Glu Arg Pro Leu
Ile Ile Ala Ala Lys Ile Val Leu Tyr Asn Arg 100
105 110Lys Asp Ile Val Phe Gly Ser Tyr Gly Asp His Trp
Arg Gln Met Arg 115 120 125Lys Ile
Cys Thr Leu Glu Leu Leu Ser Ala Lys Arg Val Gln Ser Phe 130
135 140Arg Ser Val Arg Glu Glu Glu Val Ser Glu Phe
Val Arg Phe Leu Gln145 150 155
160Ser Lys Ala Gly Thr Pro Val Asn Leu Thr Lys Thr Leu Phe Ala Leu
165 170 175Thr Asn Ser Ile
Met Ala Arg Thr Ser Ile Gly Lys Lys Cys Glu Lys 180
185 190Gln Glu Thr Phe Ser Ser Val Ile Asp Gly Val
Thr Glu Val Ser Gly 195 200 205Gly
Phe Thr Val Ala Asp Val Phe Pro Ser Leu Gly Phe Leu His Val 210
215 220Ile Thr Gly Met Lys Ser Arg Leu Glu Arg
Leu His Arg Val Ala Asp225 230 235
240Gln Ile Phe Glu Asp Ile Ile Ala Glu His Lys Ala Thr Arg Ala
Leu 245 250 255Ser Lys Asn
Asp Asp Pro Lys Glu Ala Ala Asn Leu Leu Asp Val Leu 260
265 270Leu Asp Leu Gln Glu His Gly Asn Leu Gln
Val Pro Leu Thr Asn Asp 275 280
285Ser Ile Lys Ala Ala Ile Leu Glu Met Phe Gly Ala Gly Ser Asp Thr 290
295 300Ser Ser Lys Thr Thr Glu Trp Ala
Met Ser Glu Leu Met Arg Asn Pro305 310
315 320Thr Glu Met Arg Lys Ala Gln Glu Glu Val Arg Arg
Val Phe Gly Glu 325 330
335Thr Gly Lys Val Asp Glu Thr Arg Leu His Glu Leu Lys Phe Leu Lys
340 345 350Leu Val Val Lys Glu Thr
Xaa Arg Leu His Pro Ala Ile Ala Leu Ile 355 360
365Pro Arg Glu Cys Arg Glu Arg Thr Lys Val Asp Gly Tyr Asp
Ile Lys 370 375 380Pro Thr Ala Arg Val
Leu Val Asn Val Trp Ala Ile Gly Arg Asp Pro385 390
395 400Asn Val Trp Ser Glu Pro Glu Arg Phe His
Pro Glu Arg Phe Val Asn 405 410
415Ser Ser Val Asp Phe Lys Gly Thr Asp Phe Glu Leu Leu Pro Phe Gly
420 425 430Ala Gly Lys Arg Ile
Cys Pro Gly Ile Leu Val Gly Ile Thr Asn Leu 435
440 445Glu Leu Val Leu Ala His Leu Leu Tyr His Phe Asp
Trp Lys Phe Val 450 455 460Asp Gly Val
Thr Ser Asp Ser Phe Asp Met Arg Glu Gly Phe Gly Gly465
470 475 480Ala Leu His Arg Lys Ser Asp
Leu Ile Leu Ile Pro Ile Pro Phe Thr 485
490 495Pro30560PRTEuphorbia peplus 30Met Ala Thr Leu Gln
His Ser Met Gln Ala Asn Leu Gln Lys Gln Asn1 5
10 15Leu His Pro Leu Leu Asn Lys Ser Phe Gly Thr
Pro Asn Arg Pro Ser 20 25
30Phe Val Tyr Ser Ser Lys Ser Ala Ser Arg Arg Thr Ile Gln Ala Cys
35 40 45Leu Ser Ser Asn Ser Gln Pro Gly
Gly Val Cys Pro Met Ala Asn Arg 50 55
60Phe Ala Ser Ser Thr Thr Asn Gln Ser Val Thr Glu Ser Ser Ser Lys65
70 75 80Pro Asp Glu Glu Asp
Glu Asn Ser Pro Val Lys Leu Pro Pro Gly Pro 85
90 95Trp Lys Leu Pro Leu Leu Gly Asn Ile Leu Gln
Leu Val Gly Asp Leu 100 105
110Pro His Ser Arg Leu Arg Asp Leu Ala Thr Glu Tyr Gly Pro Val Met
115 120 125Ser Val Gln Leu Gly Glu Val
Tyr Ala Val Val Ile Ser Ser Val Glu 130 135
140Ala Ala Arg Glu Ile Leu Arg Asn Gln Asp Val Asn Phe Ala Asp
Arg145 150 155 160Pro Pro
Val Leu Val Ser Glu Ile Val Leu Tyr Asn Arg Gln Asp Ile
165 170 175Val Phe Gly Ala Tyr Gly Val
His Trp Arg Gln Met Arg Arg Leu Cys 180 185
190Thr Thr Glu Leu Leu Ser Ile Lys Arg Val Gln Ser Phe Lys
Leu Val 195 200 205Arg Glu Glu Glu
Val Ser Asn Phe Ile Lys Ser Leu Tyr Ser Lys Ala 210
215 220Gly Lys Pro Val Asn Leu Thr Glu Gly Leu Phe Thr
Leu Thr Asn Ser225 230 235
240Ile Met Leu Arg Thr Ser Ile Gly Lys Lys Cys Arg Asp Gln Asp Thr
245 250 255Leu Leu Arg Val Ile
Glu Gly Val Val Ala Ala Gly Gly Gly Phe Ser 260
265 270Ile Ala Asp Val Phe Pro Ser Ala Val Phe Leu His
Asp Ile Asn Gly 275 280 285Asp Lys
Ser Gly Leu Gln Ser Leu Arg Arg Asp Ala Asp Leu Ile Leu 290
295 300Asp Glu Ile Ile Gly Glu His Arg Ala Ile Arg
Gly Thr Gly Gly Asp305 310 315
320Gln Gly Glu Ala Asp Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Glu
325 330 335Asn Gly Asn Leu
Glu Val Pro Leu Asn Asp Asp Ser Ile Lys Gly Ala 340
345 350Ile Leu Asp Met Phe Gly Ala Gly Ser Asp Thr
Ser Ser Lys Ser Thr 355 360 365Glu
Trp Ala Leu Ser Glu Leu Leu Arg His Pro Glu Glu Met Lys Lys 370
375 380Ala Gln Asp Glu Val Arg Arg Val Phe Ala
Lys Lys Gly Asn Val Glu385 390 395
400Glu Ser Gln Leu Asp Gln Leu Lys Tyr Leu Lys Leu Val Ile Lys
Glu 405 410 415Thr Leu Arg
Leu His Pro Ala Val Pro Leu Ile Pro Arg Glu Cys Arg 420
425 430Glu Lys Thr Lys Val Asn Gly Tyr Asp Ile
Leu Pro Lys Thr Lys Ala 435 440
445Leu Val Asn Ile Trp Ala Ile Ser Arg Asp Pro Lys Ile Trp Pro Glu 450
455 460Ala Asp Lys Phe Ile Pro Glu Arg
Phe Glu Asn Ser Ser Ile Asp Phe465 470
475 480Lys Gly Asn Asn Leu Glu Phe Ala Pro Phe Gly Ser
Gly Lys Arg Ile 485 490
495Cys Pro Gly Met Ala Leu Gly Ile Thr Asn Leu Glu Leu Phe Leu Ala
500 505 510Gln Leu Leu Tyr His Phe
Asp Trp Lys Leu Ala Asp Gly Lys Asp Gly 515 520
525Arg Asp Leu Asp Met Gly Glu Val Val Gly Gly Ala Ile Lys
Arg Lys 530 535 540Val Asp Leu Asn Leu
Ile Pro Ile Pro Phe His Thr Ser Pro Ala Asn545 550
555 56031558PRTeuphorbia fischeriana 31Met Ser
Thr Leu Gln Pro Phe Leu Gln Ala Asn Phe Gln Lys Gln Asn1 5
10 15Ser His Pro Leu Leu Ser Lys Pro
Leu Gly Thr Thr Asn His Pro Ser 20 25
30Phe Ile Ser Ser Ser Lys Ser Thr Lys Arg Ser Thr Ile Gln Ala
Cys 35 40 45Leu Ser Ser Asn Ser
Gln Pro Gly Gly Val Cys Pro Met Ala Asn Arg 50 55
60Phe Ala Ser Ser Ser Thr Thr Asn Gln Ser Val Thr Gln Ser
Ser Ser65 70 75 80Asn
Pro Asp Glu Lys Asp Gly Asn Ser Gln Val Gln Leu Pro Pro Gly
85 90 95Pro Trp Lys Leu Pro Phe Ile
Gly Asn Ile Leu Gln Leu Val Gly Asp 100 105
110Leu Pro His Arg Arg Leu Arg Asp Leu Ala Thr Val Tyr Gly
Pro Val 115 120 125Met Ser Val Gln
Leu Gly Glu Val Tyr Ala Val Ile Ile Ser Ser Val 130
135 140Glu Ala Ala Lys Glu Val Leu Arg Thr Gln Asp Val
Asn Phe Ala Asp145 150 155
160Arg Pro Pro Val Leu Val Ser Glu Ile Val Leu Tyr Asn Arg Gln Asp
165 170 175Ile Val Phe Gly Ser
Tyr Gly Asp His Trp Arg Gln Met Arg Arg Ile 180
185 190Cys Thr Met Glu Leu Leu Ser Ile Lys Arg Val Gln
Ser Phe Lys Ser 195 200 205Val Arg
Glu Glu Glu Val Ser Asn Phe Ile Lys Leu Leu Tyr Ser Glu 210
215 220Ala Gly Gln Pro Val Asn Leu Thr Glu Lys Leu
Phe Ala Leu Thr Asn225 230 235
240Ser Ile Met Leu Arg Thr Ser Ile Gly Lys Lys Cys Lys Asp Gln Glu
245 250 255Thr Leu Leu Arg
Val Ile Glu Gly Val Val Ala Ala Gly Gly Gly Phe 260
265 270Ser Val Ala Asp Val Phe Pro Ser Ala Val Phe
Leu His Asp Ile Thr 275 280 285Gly
Asp Lys Ser Gly Leu Glu Ser Leu Arg Arg Asp Ala Asp Leu Val 290
295 300Leu Asp Glu Ile Ile Gly Glu His Arg Ala
Asn Arg Ser Gly Asn Gly305 310 315
320Gly Asp Glu Gly Glu Ala Glu Asn Leu Leu Asp Val Leu Leu Asp
Leu 325 330 335Gln Glu Asn
Gly Asn Leu Glu Val Pro Leu Asn Asp Asp Ser Ile Lys 340
345 350Ala Thr Ile Leu Asp Met Phe Gly Ala Gly
Ser Asp Thr Ser Ser Lys 355 360
365Ser Thr Glu Trp Ala Leu Ser Glu Leu Leu Arg His Pro Val Ala Met 370
375 380Lys Lys Ala Gln Asp Glu Val Arg
Lys Val Phe Ser Glu Asn Gly Asn385 390
395 400Val Glu Glu Glu Gly Leu Asn Gln Leu Lys Tyr Leu
Lys Leu Val Ile 405 410
415Lys Glu Thr Leu Arg Leu His Pro Ala Ile Pro Leu Ile Pro Arg Glu
420 425 430Cys Arg Glu Lys Thr Lys
Val Asn Gly Tyr Asp Ile Leu Pro Lys Thr 435 440
445Lys Ala Leu Val Asn Ile Trp Ala Ile Ser Arg Asp Pro Thr
Ile Trp 450 455 460Pro Glu Ala Asp Lys
Phe Ile Pro Glu Arg Phe Glu Asn Ser Ser Met465 470
475 480Asp Phe Lys Gly Asn His Cys Glu Phe Ala
Pro Phe Gly Ser Gly Lys 485 490
495Arg Ile Cys Pro Gly Met Ala Leu Gly Ile Thr Asn Leu Glu Leu Phe
500 505 510Leu Ala Gln Leu Leu
Tyr His Phe Asp Trp Lys Leu Thr Asp Gly Lys 515
520 525Asp Pro Arg Asn Leu Asp Met Ser Glu Val Val Gly
Gly Ala Ile Lys 530 535 540Arg Lys Ile
Asp Leu Asn Leu Ile Pro Ile Pro Phe His Pro545 550
55532629PRTJatropha curcas 32Met Ser Leu Gln Pro Ala Ile Leu Gln
Gly Asn Thr Cys Lys Gln Tyr1 5 10
15Phe His Pro Leu Ser Ser Ile Ser Ser Thr Arg Trp Val Gly Asn
Cys 20 25 30Asn Arg Phe Ala
Phe Leu Ser Pro Ala Lys Pro Thr Ala Asn Arg Ala 35
40 45Pro Gln Ala Ser Leu Ser Ser Lys Leu Gln Pro Val
Val Arg Leu Leu 50 55 60Thr Lys Phe
Pro Ala Ser Gly Phe Leu Ala Met Asn Gln Ser Val Asp65 70
75 80Gln Phe Ala Ser Thr Thr Thr Ser
Leu Thr Lys Ile Phe Asn Lys Ile 85 90
95Gly Lys Pro Ile Gln Ser Ser Pro Phe Leu Val Ser Val Leu
Leu Leu 100 105 110Met Phe Met
Ala Ser Lys Ile Gln Asn Gln Gln Glu Glu Asp Asp Asn 115
120 125Ser Ile Asn Leu Pro Pro Gly Pro Trp Arg Leu
Pro Phe Ile Gly Asn 130 135 140Ile His
Gln Leu Ala Gly Pro Gly Leu Pro His His Arg Leu Thr Asp145
150 155 160Leu Ala Lys Thr Tyr Gly Pro
Val Met Gly Val His Leu Gly Glu Val 165
170 175Tyr Ala Val Val Val Ser Ser Ala Glu Thr Ser Lys
Glu Val Leu Arg 180 185 190Thr
Gln Asp Thr Asn Phe Ala Glu Arg Pro Leu Val Asn Ala Ala Lys 195
200 205Met Val Leu Tyr Asn Arg Asn Asp Ile
Val Phe Gly Ser Phe Gly Asp 210 215
220Gln Trp Arg Gln Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser Val225
230 235 240Lys Arg Val Gln
Ser Phe Lys Ser Val Arg Glu Glu Glu Met Ser Ser 245
250 255Phe Ile Lys Phe Leu Ser Ser Lys Ser Gly
Ser Pro Val Asn Leu Thr 260 265
270His His Leu Phe Val Leu Thr Asn Tyr Ile Ile Ala Arg Thr Ser Ile
275 280 285Gly Lys Lys Cys Lys Asn Gln
Glu Ala Leu Leu Arg Ile Ile Asp Asp 290 295
300Val Val Glu Ala Gly Ala Gly Phe Ser Val Thr Asp Val Phe Pro
Ser305 310 315 320Phe Glu
Ala Leu His Val Ile Ser Gly Asp Lys His Lys Phe Asp Lys
325 330 335Leu His Arg Glu Thr Asp Lys
Ile Leu Glu Asp Ile Ile Ser Glu His 340 345
350Lys Ala Asp Arg Ala Val Ser Ser Lys Lys Ser Asp Gly Glu
Val Glu 355 360 365Asn Leu Leu Asp
Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Gln 370
375 380Phe Pro Leu Thr Asn Asp Ala Ile Lys Gly Ala Ile
Leu Asp Thr Phe385 390 395
400Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Thr Leu Ser
405 410 415Glu Leu Ile Arg Asn
Pro Glu Ala Met Arg Lys Ala Gln Ala Glu Ile 420
425 430Arg Arg Val Phe Asp Glu Thr Gly Tyr Val Asp Glu
Asp Lys Phe Glu 435 440 445Glu Leu
Lys Tyr Leu Lys Leu Val Val Lys Glu Thr Leu Arg Leu His 450
455 460Pro Ala Val Pro Leu Ile Pro Arg Glu Cys Arg
Gly Lys Thr Lys Ile465 470 475
480Asn Gly Tyr Asp Ile Phe Pro Lys Thr Lys Val Leu Val Asn Val Trp
485 490 495Ala Ile Ser Arg
Asp Pro Ala Ile Trp Pro Glu Pro Glu Lys Phe Asn 500
505 510Pro Glu Arg Phe Ile Asp Asn Pro Ile Asp Tyr
Lys Ser Ile Asn Cys 515 520 525Glu
Leu Thr Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr 530
535 540Leu Gly Ile Thr Asn Leu Glu Leu Phe Leu
Ala Asn Leu Leu Tyr His545 550 555
560Phe Asp Trp Lys Leu Pro Asp Gly Lys Met Pro Glu Asp Leu Asp
Met 565 570 575Ser Glu Ser
Phe Gly Gly Ala Ile Lys Arg Lys Thr Asp Leu Lys Leu 580
585 590Ile Pro Val Leu Ala Arg Pro Leu Thr Pro
Arg Asn Ala Asn Ser Gly 595 600
605Asn Thr Phe Thr Thr Thr Asp Ala Asp Ser Pro Ala Ser Met Cys Pro 610
615 620His Leu Lys Ala
Leu62533629PRTJatropha gossypifolia 33Met Ser Leu Gln Pro Ala Val Leu Gln
Ala Asn Thr Cys Lys Gln Tyr1 5 10
15Phe His Pro Leu Ser Ser Ile Ser Ser Thr Arg Trp Val Gly Asn
Cys 20 25 30Asn Arg Phe Ala
Phe Leu Ser Pro Ala Lys Pro Thr Ala Asn Arg Ala 35
40 45Pro Gln Ala Ser Leu Ser Ser Lys Leu Gln Pro Val
Val Arg Leu Leu 50 55 60Thr Arg Phe
Pro Ala Ser Gly Phe Leu Ala Met Asn Gln Ser Val Asn65 70
75 80Gln Phe Ala Ser Thr Thr Thr Ser
Leu Ala Lys Ile Phe Asp Lys Ile 85 90
95Gly Lys Pro Ile Gln Ser Ser Pro Phe Leu Leu Ser Val Leu
Leu Leu 100 105 110Met Phe Met
Ala Ser Lys Ile Gln Asn Gln Gln Glu Glu Asp Asn Asn 115
120 125Ser Ile Asn Leu Pro Pro Gly Pro Trp Arg Leu
Pro Phe Ile Gly Asn 130 135 140Ile His
Gln Leu Ala Gly Pro Gly Leu Pro His His Arg Leu Thr Asp145
150 155 160Leu Ala Lys Thr Tyr Gly Pro
Val Met Gly Val His Leu Gly Glu Val 165
170 175Tyr Ala Val Val Val Ser Ser Ala Glu Thr Ser Lys
Glu Val Leu Arg 180 185 190Thr
Gln Asp Thr Asn Phe Ala Glu Arg Pro Leu Val Asn Ala Ala Lys 195
200 205Met Val Leu Tyr Asn Arg Asn Asp Ile
Val Phe Gly Ser Tyr Gly Asp 210 215
220Gln Trp Arg Gln Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser Leu225
230 235 240Lys Arg Val Gln
Ser Phe Lys Ser Val Arg Glu Glu Glu Met Ser Ser 245
250 255Phe Ile Lys Phe Leu Cys Ser Lys Ser Gly
Ser Pro Val Asn Leu Thr 260 265
270His His Leu Phe Val Leu Thr Asn Tyr Ile Ile Ala Arg Thr Ser Ile
275 280 285Gly Lys Lys Cys Lys Asn Gln
Glu Ala Leu Leu Arg Val Ile Asp Asp 290 295
300Val Val Glu Ala Gly Ala Gly Phe Ser Val Thr Asp Val Phe Pro
Ser305 310 315 320Phe Glu
Ala Leu His Val Ile Ser Gly Asp Lys His Lys Phe Asp Lys
325 330 335Leu His Arg Glu Thr Asp Lys
Ile Leu Glu Asp Ile Ile Ser Glu His 340 345
350Lys Ala Asp Arg Ala Val Ser Ser Lys Lys Ser Asp Gly Glu
Ala Glu 355 360 365Asn Leu Leu Asp
Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Gln 370
375 380Phe Pro Leu Thr Asn Asp Ala Ile Lys Gly Ala Ile
Leu Asp Thr Phe385 390 395
400Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Thr Leu Ser
405 410 415Glu Leu Ile Arg Asn
Pro Gly Ala Met Arg Lys Ala Gln Glu Glu Ile 420
425 430Arg Arg Val Phe Asp Glu Thr Gly Tyr Val Asp Glu
Asp Lys Phe Glu 435 440 445Glu Leu
Lys Tyr Leu Lys Leu Val Val Lys Glu Thr Leu Arg Leu His 450
455 460Pro Ala Val Pro Leu Ile Pro Arg Glu Cys Arg
Gly Lys Thr Lys Ile465 470 475
480Asn Gly Tyr Asp Ile Phe Pro Lys Thr Lys Val Leu Val Asn Val Trp
485 490 495Ala Ile Ser Arg
Asp Pro Ala Ile Trp Pro Glu Pro Glu Lys Phe Asn 500
505 510Pro Glu Arg Phe Ile Asp Asn Pro Ile Asp Tyr
Lys Ser Ile Asn Cys 515 520 525Glu
Leu Thr Pro Phe Gly Ala Gly Lys Arg Val Cys Pro Gly Met Thr 530
535 540Leu Gly Ile Thr Asn Leu Glu Leu Phe Leu
Ala Asn Leu Leu Tyr His545 550 555
560Phe Asp Trp Lys Leu Pro Asp Gly Lys Met Pro Glu Asp Leu Asp
Met 565 570 575Ser Glu Ser
Phe Gly Gly Ala Ile Lys Arg Lys Thr Asp Leu Lys Leu 580
585 590Ile Pro Val Leu Ala Arg Pro Phe Asn Pro
Thr Asn Ala Asn Asn Gly 595 600
605Asn Thr Phe Thr Thr Thr Asp Ala Asn Ser Pro Ser Ser Met Cys Pro 610
615 620His Leu Lys Ala
Leu62534500PRTEuphorbia peplus 34Met Glu Leu Gln Phe Gln Ile Pro Ser Tyr
Pro Val Leu Phe Ser Phe1 5 10
15Phe Ile Phe Ile Phe Ile Leu Ile Lys Ile Val Lys Lys Gln Thr Gln
20 25 30Asn Ser Ile Ser Pro Pro
Gly Pro Trp Lys Tyr Pro Ile Leu Gly Asn 35 40
45Ile Pro Gln Leu Ala Ala Gly Gly Lys Leu Pro His His Arg
Leu Arg 50 55 60Asp Leu Ala Lys Ile
His Gly Pro Val Met Asn Ile Gln Leu Gly Gln65 70
75 80Val Lys Ser Ile Val Ile Ser Ser Pro Glu
Thr Ala Lys Glu Val Leu 85 90
95Lys Thr Gln Asp Ile Gln Phe Ala Asn Arg Pro Leu Leu Leu Ala Gly
100 105 110Glu Met Val Leu Tyr
Asn Arg Lys Asp Ile Leu Tyr Gly Leu Tyr Gly 115
120 125Asp Gln Trp Arg Gln Met Arg Lys Ile Cys Thr Leu
Glu Leu Leu Ser 130 135 140Ala Lys Arg
Ile Gln Ser Phe Lys Ser Val Arg Glu Gln Glu Val Glu145
150 155 160Ser Phe Ile Arg Leu Leu Arg
Ser Lys Ala Gly Ser Pro Val Asn Leu 165
170 175Thr Thr Ala Val Phe Glu Leu Thr Asn Thr Ile Met
Met Ile Thr Thr 180 185 190Ile
Gly Glu Lys Cys Lys Asn Gln Glu Ala Val Met Ser Val Ile Asp 195
200 205Arg Val Ser Glu Ala Ala Ala Gly Phe
Ser Val Ala Asp Val Phe Pro 210 215
220Ser Leu Lys Phe Leu His Tyr Leu Ser Gly Glu Lys Gly Lys Leu Gln225
230 235 240Lys Leu His Lys
Glu Thr Asp Glu Ile Leu Glu Glu Ile Ile Ser Glu 245
250 255His Lys Ala Asn Ala Lys Ile Gly Ser Gln
Ala Asp Asn Leu Leu Asp 260 265
270Val Leu Leu Asp Leu Gln Lys Asn Gly Asn Leu Gln Val Pro Leu Thr
275 280 285Asn Asp Asn Ile Lys Ala Ala
Thr Leu Glu Met Phe Gly Ala Gly Ser 290 295
300Asp Thr Ser Ser Lys Thr Thr Asp Trp Ala Met Ala Gln Leu Met
Arg305 310 315 320Lys Pro
Ser Ala Met Lys Lys Ala Gln Glu Glu Val Arg Arg Val Phe
325 330 335Ser Asp Thr Gly Lys Val Glu
Glu Ser Arg Ile Gln Glu Leu Lys Tyr 340 345
350Leu Lys Leu Ile Val Lys Glu Thr Leu Arg Leu His Pro Ala
Val Ala 355 360 365Leu Ile Pro Arg
Glu Cys Arg Glu Lys Thr Lys Ile Glu Gly Phe Asp 370
375 380Val Tyr Pro Lys Thr Lys Ile Leu Val Asn Pro Trp
Ala Ile Gly Arg385 390 395
400Asp Pro Lys Val Trp Ser Asp Pro Glu Ser Phe Asn Pro Glu Arg Phe
405 410 415Glu Asp Ser Ser Ile
Asp Tyr Lys Gly Thr Asn Phe Glu Leu Ile Pro 420
425 430Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr
Leu Gly Ile Val 435 440 445Asn Leu
Glu Leu Phe Leu Ala Asn Leu Leu Tyr His Phe Asp Trp Lys 450
455 460Phe Pro Asn Gly Val Thr Ala Glu Asn Leu Asp
Met Thr Glu Ala Ile465 470 475
480Gly Gly Ala Ile Lys Arg Lys Leu Asp Leu Glu Leu Ile Pro Ile Pro
485 490 495Tyr Thr Leu Ser
50035534PRTRicinus communis 35Met Ser Leu Gln Pro Ala Pro Val
Ser Gln Ser Asn Phe Leu Tyr Lys1 5 10
15Lys Val Pro Pro Ile Leu Arg Ala Pro Thr Thr Lys Ser Ser
Gly Ser 20 25 30Ser Arg Ser
Ser Phe Phe Ser Ser Ser Val Lys Leu Ala Ala Arg Pro 35
40 45Pro Gln Pro Gln Ala Cys Leu Ser Leu Asn Lys
Asn Asp Asp Ser Asn 50 55 60Thr Ser
Ala Ser Ser Leu Pro Pro Gly Pro Trp Lys Leu Pro Leu Leu65
70 75 80Gly Asn Ile His Gln Leu Val
Gly Ala Leu Pro His His Arg Leu Arg 85 90
95Asp Leu Ala Lys Ala Tyr Gly Pro Val Met Ser Val Lys
Leu Gly Glu 100 105 110Val Ser
Ala Val Val Ile Ser Ser Val Asp Ala Ala Lys Glu Val Leu 115
120 125Arg Thr Gln Asp Val Asn Phe Ala Asp Arg
Pro Leu Val Leu Ala Ala 130 135 140Glu
Ile Val Leu Tyr Asn Arg Gln Asp Ile Val Phe Gly Ser Tyr Gly145
150 155 160Glu Gln Trp Arg Gln Met
Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser 165
170 175Ile Lys Arg Val Gln Ser Phe Lys Ser Val Arg Glu
Glu Glu Leu Ser 180 185 190Asn
Phe Ile Arg Tyr Leu His Ser Lys Ala Gly Thr Pro Val Asn Leu 195
200 205Thr His His Leu Phe Ser Leu Thr Asn
Ser Ile Met Phe Arg Ile Ser 210 215
220Ile Gly Lys Lys Tyr Lys Asn Gln Asp Ala Leu Leu Arg Val Ile Asp225
230 235 240Gly Val Ile Glu
Ala Gly Gly Gly Phe Ser Thr Ala Asp Val Phe Pro 245
250 255Ser Phe Lys Phe Leu His His Ile Ser Gly
Glu Lys Ser Ser Leu Glu 260 265
270Asp Leu His Arg Glu Ala Asp Tyr Ile Leu Glu Asp Ile Ile Asn Glu
275 280 285Arg Arg Ala Ser Lys Ile Asn
Gly Asp Asp Arg Asn Gln Ala Asp Asn 290 295
300Leu Leu Asp Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Glu
Ile305 310 315 320Ala Leu
Thr Asn Asp Ser Ile Lys Ala Ala Ile Leu Glu Met Phe Gly
325 330 335Ala Gly Ser Asp Thr Ser Ser
Lys Thr Ala Glu Trp Ala Leu Ser Glu 340 345
350Leu Met Arg His Pro Glu Glu Met Glu Lys Ala Gln Thr Glu
Val Arg 355 360 365Gln Val Phe Gly
Lys Asp Gly Asn Leu Asp Glu Thr Arg Leu His Glu 370
375 380Leu Lys Phe Leu Lys Leu Val Ile Lys Glu Thr Leu
Arg Leu His Pro385 390 395
400Pro Val Ala Leu Ile Pro Arg Glu Cys Arg Gln Arg Thr Lys Val Asn
405 410 415Gly Tyr Asp Ile Asp
Pro Lys Thr Lys Val Leu Val Asn Val Trp Ala 420
425 430Ile Ser Arg Asp Pro Asn Ile Trp Thr Glu Ala Glu
Lys Phe Tyr Pro 435 440 445Glu Arg
Phe Leu His Ser Ser Ile Asp Tyr Lys Gly Asn His Cys Glu 450
455 460Phe Ala Pro Phe Gly Ser Gly Lys Arg Ile Cys
Pro Gly Met Asn Leu465 470 475
480Gly Leu Thr Asn Leu Glu Leu Phe Leu Ala Gln Leu Leu Tyr His Phe
485 490 495Asn Trp Glu Phe
Pro Asp Gly Ile Thr Pro Lys Thr Leu Asp Met Thr 500
505 510Glu Ser Val Gly Ala Ala Ile Lys Arg Lys Ile
Asp Leu Lys Leu Ile 515 520 525Pro
Val Leu Phe His Pro 53036523PRTRicinus communis 36Met Glu Ser Ala Ala
His Gln Ser Tyr Phe His Met Phe Leu Ala Met1 5
10 15Glu Gln Gln Ile Leu Ser Phe Pro Val Leu Leu
Ser Phe Leu Leu Phe 20 25
30Ile Phe Met Val Leu Lys Val Trp Lys Lys Asn Lys Asp Asn Pro Asn
35 40 45Ser Pro Pro Gly Pro Arg Lys Leu
Pro Ile Ile Gly Asn Met His Gln 50 55
60Leu Ala Gly Ser Asp Leu Pro His His Pro Val Thr Glu Leu Ser Lys65
70 75 80Thr Tyr Gly Pro Ile
Met Ser Ile Gln Leu Gly Gln Ile Ser Ala Ile 85
90 95Val Ile Ser Ser Val Glu Gly Ala Lys Glu Val
Leu Lys Thr Gln Gly 100 105
110Glu Leu Phe Ala Glu Arg Pro Leu Leu Leu Ala Ala Glu Ala Val Leu
115 120 125Tyr Asn Arg Met Asp Ile Ile
Phe Gly Ala Tyr Gly Asp His Trp Arg 130 135
140Gln Leu Arg Lys Leu Cys Thr Leu Glu Val Leu Ser Ala Lys Arg
Ile145 150 155 160Gln Ser
Phe Ser Ser Leu Arg Gln Glu Glu Leu Ser His Phe Val Arg
165 170 175Phe Val His Ser Lys Ala Gly
Ser Pro Ile Asn Leu Ser Lys Val Leu 180 185
190Phe Ala Leu Thr Asn Ser Ile Ile Ala Arg Ile Ala Thr Gly
Lys Lys 195 200 205Cys Lys Asn Gln
Asp Ala Leu Leu Asp Leu Ile Glu Asp Val Ile Glu 210
215 220Val Ser Gly Gly Phe Ser Ile Ala Asp Leu Phe Pro
Ser Leu Lys Phe225 230 235
240Ile His Val Ile Thr Gly Met Lys Ser Arg Leu Glu Lys Leu His Arg
245 250 255Ile Thr Asp Gln Val
Leu Glu Asp Ile Val Asn Glu His Lys Ala Thr 260
265 270Arg Ala Ala Ser Lys Asn Gly Gly Gly Asp Asp Asp
Lys Lys Glu Ala 275 280 285Lys Asn
Leu Leu Asp Val Leu Leu Asp Leu Gln Glu Asp Gly Ser Leu 290
295 300Leu Gln Val Pro Leu Thr Asp Asp Ser Ile Lys
Ala Ala Ile Leu Glu305 310 315
320Met Leu Gly Gly Gly Ser Asp Thr Ser Ala Lys Thr Thr Glu Trp Ala
325 330 335Met Ser Glu Met
Met Arg Tyr Pro Glu Thr Met Lys Lys Ala Gln Glu 340
345 350Glu Val Arg Gln Ala Phe Gly Asn Ala Gly Lys
Ile Asp Glu Ala Arg 355 360 365Ile
His Glu Leu Lys Tyr Leu Arg Ala Val Phe Lys Glu Thr Leu Arg 370
375 380Leu His Pro Pro Leu Ala Met Ile Pro Arg
Glu Cys Arg Gln Lys Thr385 390 395
400Lys Ile Asn Gly Tyr Asp Ile Tyr Pro Lys Thr Lys Thr Leu Ile
Asn 405 410 415Val Tyr Ala
Ile Gly Arg Asp Pro Asn Val Trp Ser Glu Pro Glu Lys 420
425 430Phe Tyr Pro Glu Arg His Leu Asp Ser Pro
Ile Asp Phe Arg Gly Ser 435 440
445Asn Phe Glu Leu Ile Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly 450
455 460Met Thr Leu Ala Ile Thr Thr Val
Glu Leu Phe Leu Ala His Leu Leu465 470
475 480Tyr Tyr Phe Asp Trp Lys Phe Val Asp Gly Met Thr
Ala Asp Thr Leu 485 490
495Asp Met Thr Glu Ser Phe Gly Ala Ser Ile Lys Arg Lys Ile Asp Leu
500 505 510Ala Leu Val Pro Ile Pro
Val Ser Pro Leu Pro 515 52037506PRTRicinus
communis 37Met Asp Lys Gln Ile Leu Ser Tyr Pro Val Leu Leu Leu Ser Phe
Leu1 5 10 15Leu Phe Ile
Leu Met Val Leu Arg Ile Trp Lys Lys Ser Lys Gly Ser 20
25 30Phe Asn Ser Pro Pro Gly Pro Trp Lys Leu
Pro Leu Ile Gly Asn Met 35 40
45His Gln Leu Ile Thr Pro Leu Pro His His Arg Leu Arg Glu Leu Ala 50
55 60Lys Thr His Gly Pro Val Met Ser Ile
Gln Leu Gly Gln Val Ser Ala65 70 75
80Val Val Ile Ser Ser Val Glu Ala Ala Lys Gln Val Leu Lys
Thr Gln 85 90 95Gly Glu
Leu Phe Ala Glu Arg Pro Ser Ile Leu Ala Ser Lys Ile Val 100
105 110Leu Tyr Asn Gly Met Asp Ile Ile Phe
Gly Ser Tyr Gly Asp His Trp 115 120
125Arg Gln Met Arg Lys Ile Cys Thr Phe Glu Leu Leu Ser Pro Lys Arg
130 135 140Val Gln Ser Phe Ser Ser Val
Arg Gln Glu Glu Leu Ser Asn Tyr Val145 150
155 160Arg Phe Leu His Ser Asn Ala Gly Ser Pro Val Asn
Leu Ser Lys Thr 165 170
175Leu Phe Ala Leu Thr Asn Ser Val Ile Ala Lys Ile Ala Val Gly Lys
180 185 190Glu Cys Lys Asn Gln Glu
Ala Leu Leu Asn Leu Ile Glu Glu Val Leu 195 200
205Val Ala Ala Gly Gly Phe Thr Val Ala Asp Ser Phe Pro Ser
Tyr Asn 210 215 220Phe Leu His Val Ile
Thr Gly Met Lys Ser Asn Leu Glu Arg Leu His225 230
235 240Arg Ile Thr Asp Lys Ile Leu Glu Asp Ile
Ile Thr Glu His Lys Ala 245 250
255Pro Arg Ala Leu Phe Lys Arg Gly Gly Asp Glu Asp Lys Lys Glu Ala
260 265 270Glu Asn Leu Leu Asp
Val Leu Leu Gly Leu Gln Glu His Gly Asn Leu 275
280 285Lys Val Pro Leu Thr Asn Glu Ser Val Lys Ser Ala
Ile Leu Glu Met 290 295 300Leu Ser Gly
Gly Ser Asp Thr Ser Ala Lys Thr Ile Glu Trp Ala Met305
310 315 320Ser Glu Leu Met Arg Ser Pro
Glu Ala Met Glu Lys Ala Gln Glu Glu 325
330 335Val Arg Arg Val Phe Gly Glu Leu Gly Lys Ile Glu
Glu Ser Arg Leu 340 345 350His
Glu Leu Lys Tyr Leu Lys Leu Val Ile Lys Glu Thr Leu Arg Leu 355
360 365His Pro Ala Leu Ala Leu Ile Pro Arg
Glu Cys Met Lys Arg Thr Lys 370 375
380Ile Asp Gly Tyr Asp Ile Ser Pro Lys Thr Lys Ala Leu Val Asn Val385
390 395 400Trp Ala Ile Gly
Arg Asp Pro Ser Val Trp Asn Glu Pro Glu Lys Phe 405
410 415Phe Pro Glu Arg Phe Val Asp Ser Ser Ile
Asp Phe Arg Gly Asn Asn 420 425
430Phe Glu Leu Leu Pro Phe Gly Ser Gly Lys Arg Ile Cys Pro Gly Met
435 440 445Thr Leu Gly Leu Ala Thr Val
Glu Leu Phe Leu Ser Tyr Leu Leu Tyr 450 455
460Tyr Phe Asp Trp Lys Leu Val Gly Gly Val Pro Leu Asp Met Thr
Glu465 470 475 480Ala Phe
Ala Ala Ser Leu Lys Arg Lys Ile Asp Leu Val Leu Ile Pro
485 490 495Ile Ser Val Gly Pro Ser Pro
Thr Thr Asp 500 50538500PRTRicinus communis
38Met Glu Leu Gln Ile Phe Ser Phe Pro Val Leu Leu Ser Phe Phe Leu1
5 10 15Phe Ile Phe Met Val Leu
Arg Ile Trp Lys Asn Ser Asn Lys Lys Leu 20 25
30Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Leu Leu Gly
Asn Ile His 35 40 45Gln Leu Ala
Thr Pro Leu Pro His Gln Arg Leu Arg Asp Leu Ala Lys 50
55 60Ser Phe Gly Pro Val Met Ser Ile Lys Leu Gly Glu
Ile Ser Ala Val65 70 75
80Ile Ile Ser Ser Ala Glu Ala Ala Gln Glu Val Leu Lys Ser Gln Asp
85 90 95Val Thr Phe Ala Glu Arg
Pro Ala Ser Leu Ala Ser Lys Leu Val Leu 100
105 110Tyr Asn Arg Asn Asp Ile Val Phe Gly Ala Tyr Gly
Pro Gln Trp Arg 115 120 125Gln Thr
Arg Lys Leu Cys Val Leu Glu Leu Leu Ser Ala Lys Arg Ile 130
135 140Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Val
Asp Glu Phe Ala Lys145 150 155
160Phe Val Tyr Ser Lys Gly Gly Thr Pro Val Asn Leu Thr Asp Lys Leu
165 170 175Phe Ala Leu Thr
Asn Thr Ile Met Ala Arg Thr Thr Ile Gly Lys Lys 180
185 190Cys Arg Ser Glu Lys Asp Leu Leu Arg Cys Ile
Asp Gly Ile Phe Glu 195 200 205Glu
Ala Gly Val Phe Asn Leu Ala Asp Ala Phe Pro Ser Phe Thr Leu 210
215 220Leu Pro Val Ile Thr Gly Ala Lys Phe Arg
Leu Glu Lys Leu His Arg225 230 235
240Glu Thr Asp Lys Ile Leu Glu Asp Ile Leu Arg Glu His Ile Ala
Ser 245 250 255Lys Ala Ala
Ser Asp Lys Asp Thr Arg Asn Leu Leu His Val Leu Leu 260
265 270Asp Leu Gln Glu Ser Gly Asn Leu Glu Val
Pro Ile Thr Asn Asp Ser 275 280
285Ile Lys Ala Thr Ile Leu Asp Ile Phe Ile Ala Gly Ser Asp Thr Ser 290
295 300Ala Lys Thr Val Glu Trp Ala Met
Ser Glu Leu Met Arg Asn Pro Lys305 310
315 320Leu Met Lys Arg Ala Gln Glu Glu Val Arg Gln Val
Phe Gly Glu Lys 325 330
335Gly Phe Val Asp Glu Ala Gly Leu Gln Asp Leu Lys Phe Met Lys Leu
340 345 350Ile Val Lys Glu Thr Leu
Arg Leu His Pro Val Phe Ala Met Phe Pro 355 360
365Arg Glu Cys Arg Glu Lys Thr Lys Val Asn Gly Tyr Asp Ile
Ser Pro 370 375 380Lys Thr Thr Met Leu
Ile Asn Val Trp Ala Ile Gly Arg Asp Pro Asn385 390
395 400Val Trp Pro Asp Ala Glu Lys Phe Asn Pro
Glu Arg Phe Leu Asp Ser 405 410
415Ser Ile Asp Tyr Lys Gly Asn Asn Ala Glu Met Ile Pro Phe Gly Ala
420 425 430Gly Lys Arg Ile Cys
Leu Gly Met Thr Leu Gly Thr Leu Ile Leu Glu 435
440 445His Phe Leu Ala Lys Leu Leu Tyr His Phe Asp Trp
Lys Phe Pro Asp 450 455 460Gly Val Thr
Pro Glu Asn Phe Asp Met Thr Glu His Tyr Ser Ala Ser465
470 475 480Met Arg Arg Glu Thr Asp Leu
Ile Leu Ile Pro Ile Pro Val His Pro 485
490 495Leu Pro Thr His 50039500PRTRicinus
communis 39Met Glu Gln Gln Ile Leu Ser Phe Ser Val Leu Ser Cys Leu Ile
Leu1 5 10 15Phe Leu Leu
Met Val Ile Asn Ile Leu Lys Asn Tyr Ser Lys Asp Phe 20
25 30Thr Pro Pro Pro Gly Pro Trp Lys Leu Pro
Phe Leu Gly Asn Ile His 35 40
45Gln Leu Ala Thr Ala Leu Pro His Arg Arg Leu Arg Asp Leu Ala Lys 50
55 60Thr Tyr Gly Pro Val Met Ser Ile Lys
Leu Gly Glu Ile Ser Ser Ile65 70 75
80Val Ile Ser Ser Ala Glu Ala Ala Gln Glu Val Leu Lys Thr
Gln Asp 85 90 95Val Ile
Phe Ala Glu Arg Pro Ile Ala Leu Ala Ala Lys Met Val Leu 100
105 110Tyr Asn Arg Asp Gly Ile Val Phe Gly
Ser Tyr Gly Glu Gln Leu Arg 115 120
125Gln Ser Arg Lys Ile Cys Ile Leu Glu Leu Leu Ser Ala Lys Arg Ile
130 135 140Gln Ser Phe Lys Ser Val Arg
Glu Glu Glu Val Ser Asn Phe Ile Ser145 150
155 160Phe Leu Asn Ser Lys Ala Gly Thr Pro Val Asn Leu
Thr Asp Lys Leu 165 170
175Phe Ala Leu Thr Asn Ser Ile Met Ala Arg Thr Ser Ile Gly Lys Lys
180 185 190Cys Lys Asn Gln Glu Asp
Leu Leu Arg Cys Ile Asp Asn Ile Phe Glu 195 200
205Glu Ala Thr Val Phe Ser Pro Ala Asp Ala Phe Pro Ser Phe
Thr Leu 210 215 220Leu His Val Ile Thr
Gly Val Lys Ser Arg Leu Glu Arg Leu His Gln225 230
235 240Gln Thr Asp Lys Ile Leu Glu Asp Ile Val
Ser Glu His Lys Ala Thr 245 250
255Met Ala Ala Thr Glu Asn Gly Asp Arg Asn Leu Leu His Val Leu Leu
260 265 270Asp Leu Gln Lys Asn
Gly Asn Leu Gln Val Pro Leu Thr Asn Asn Ile 275
280 285Ile Lys Ala Ile Ile Leu Thr Ile Phe Ile Gly Gly
Ser Asp Thr Ser 290 295 300Ala Lys Thr
Val Glu Trp Val Met Ser Glu Leu Met His Asn Pro Glu305
310 315 320Leu Met Lys Lys Ala Gln Glu
Glu Val Arg Gln Val Phe Gly Glu Lys 325
330 335Gly Phe Val Asp Glu Thr Gly Leu His Glu Leu Lys
Phe Leu Lys Ser 340 345 350Val
Val Lys Glu Thr Leu Arg Leu His Pro Val Phe Pro Leu Val Pro 355
360 365Arg Glu Cys Arg Glu Val Thr Lys Val
Asn Gly Tyr Asp Ile Tyr Pro 370 375
380Lys Thr Lys Val Leu Ile Asn Val Trp Ala Ile Gly Arg Asp Pro Asp385
390 395 400Ile Trp Ser Asp
Ala Glu Lys Phe Asn Pro Glu Arg Phe Leu Glu Ser 405
410 415Ser Ile Asp Tyr Lys Asp Thr Ser Ser Glu
Met Ile Pro Phe Gly Ala 420 425
430Gly Lys Arg Val Cys Pro Gly Met Ser Leu Gly Leu Leu Ile Leu Glu
435 440 445Leu Phe Leu Ala Gln Leu Leu
Tyr His Phe Asp Trp Lys Leu Pro Asp 450 455
460Arg Val Thr Pro Glu Asn Phe Asp Met Ser Glu Tyr Tyr Ser Ser
Ser465 470 475 480Leu Arg
Arg Lys His Asp Leu Ile Leu Ile Pro Ile Pro Val Leu Pro
485 490 495Leu Pro Ile Glu
50040504PRTRicinus communis 40Met Glu Gln Gln Ile Leu Ser Phe Pro Val Leu
Leu Ser Phe Phe Leu1 5 10
15Phe Ile Phe Met Val Leu Lys Ile Arg Lys Lys Tyr Asn Lys Asn Ile
20 25 30Ser Pro Pro Pro Gly Pro Trp
Lys Leu Pro Ile Leu Gly Asn Ile His 35 40
45Gln Leu Ile Ser Pro Leu Pro His His Arg Leu Arg Asp Leu Ala
Lys 50 55 60Ile Tyr Gly Pro Val Met
Ser Ile Lys Leu Gly Glu Val Ser Ala Val65 70
75 80Val Ile Ser Ser Ala Glu Ala Ala Lys Glu Val
Leu Arg Thr Gln Asp 85 90
95Val Ser Phe Ala Asp Arg Pro Leu Gly Leu Ser Ala Lys Met Val Leu
100 105 110Tyr Asn Gly Asn Asp Val
Val Phe Gly Ser Tyr Gly Glu Gln Trp Arg 115 120
125Gln Leu Arg Lys Ile Cys Ile Leu Glu Leu Leu Ser Ala Lys
Arg Val 130 135 140Gln Ser Phe Lys Ser
Leu Arg Glu Ala Glu Val Ser Asn Phe Ile Arg145 150
155 160Phe Leu Tyr Ser Lys Ala Gly Lys Pro Val
Asn Leu Thr Arg Lys Leu 165 170
175Phe Ala Leu Thr Asn Thr Ile Met Ala Arg Thr Ser Val Gly Lys Gln
180 185 190Cys Glu Asn Gln Glu
Val Leu Leu Thr Val Ile Asp Arg Ile Phe Glu 195
200 205Val Ser Gly Gly Phe Thr Val Ala Asp Val Phe Pro
Ser Phe Thr Leu 210 215 220Leu His Leu
Ile Thr Gly Ile Lys Ser Arg Leu Glu Arg Leu His Gln225
230 235 240Asp Thr Asp Gln Ile Leu Glu
Asp Ile Ile Asn Glu His Arg Ala Cys 245
250 255Lys Ala Val Ser Lys Asn Gly Asp Gln Asn Glu Ala
Asp Asn Leu Leu 260 265 270Asp
Val Leu Leu Asp Leu Gln Glu Asp Gly Asn Leu Arg Val Pro Leu 275
280 285Thr Asn Asp Ser Ile Lys Gly Thr Ile
Leu Asp Met Phe Ala Gly Gly 290 295
300Ser Asp Thr Thr Ser Lys Thr Ala Glu Trp Ala Val Ser Glu Leu Met305
310 315 320Phe Asn Pro Lys
Ala Met Lys Lys Ala Gln Glu Glu Val Arg Arg Val 325
330 335Phe Gly Gln Lys Gly Ile Val Asp Glu Ser
Gly Phe His Glu Leu Lys 340 345
350Phe Leu Lys Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro Ala Leu
355 360 365Pro Leu Ile Pro Arg Glu Cys
Met Asn Lys Ser Lys Ile Asn Gly Tyr 370 375
380Asn Ile Asp Pro Lys Thr Lys Val Leu Ile Asn Val Trp Ala Ile
Gly385 390 395 400Arg Asp
Ser Asn Ile Trp Pro Glu Ala Glu Lys Phe Tyr Pro Glu Arg
405 410 415Phe Leu Asp Ser Ser Ile Asp
Tyr Lys Gly Thr Ser Tyr Glu Phe Ile 420 425
430Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Met Leu
Gly Thr 435 440 445Thr Asn Leu Glu
Leu Phe Leu Ala Gln Leu Leu Tyr His Phe Asp Trp 450
455 460Gln Phe Pro Asp Gly Val Thr Pro Glu Thr Phe Asp
Met Thr Glu Ala465 470 475
480Phe Ser Gly Ser Ile Asn Arg Lys Tyr Asp Leu Asn Leu Ile Pro Ile
485 490 495Pro Phe His Pro Leu
Arg Val Glu 50041494PRTEuphorbia peplus 41Met Asp Leu Glu Met
Pro Ser Phe Leu Ile Leu Phe Ser Phe Leu Ile1 5
10 15Leu Thr Trp Ile Ile Trp Lys Lys Met Asn Ser
Asn Ser Val Pro Pro 20 25
30Pro Gly Pro Trp Lys Leu Pro Leu Leu Gly Asn Ile Leu Gln Leu Arg
35 40 45Gly Gly Pro Ala Asn His Arg Leu
Cys Asp Leu Ala Lys Val Tyr Gly 50 55
60Pro Val Met Ser Ile Gln Leu Gly Gln Asn Pro Ala Val Val Leu Ser65
70 75 80Ser Pro Glu Ala Ala
Glu Gln Val Phe Lys Ile Gln Gly Asp Leu Phe 85
90 95Asn Asn Arg Pro Pro Ala Leu Ser Gly Lys Ile
Leu Phe Tyr Asn Asn 100 105
110Ser Asp Met Thr Phe Thr Pro Tyr Gly Asp His Trp Arg Gln Ile Arg
115 120 125Lys Ile Thr Val Met Glu Phe
Leu Ser Pro Lys Arg Val Leu Ser Phe 130 135
140Arg Ser Ile Arg Glu Glu Gln Val Ser Asn Phe Ile Lys Phe Leu
Arg145 150 155 160Thr Lys
Gly Gly Ser Ala Ile Asn Phe Pro Lys Ala Leu Ser Glu Leu
165 170 175Thr Ser Arg Ile Met Leu Ile
Thr Leu Leu Gly Asn Lys Asp Glu Asn 180 185
190Glu Glu Ile Val Leu Pro Ala Ile Glu Arg Val Ile Glu Thr
Ala Asn 195 200 205Lys Gly Ala Ala
Ser Asp Thr Phe Pro Thr Leu Lys Phe Phe Leu Asp 210
215 220Phe Leu Thr Gly Asp Lys Ser Arg Met Glu Lys Val
Leu Gln Glu Thr225 230 235
240Asp Ile Ile Leu Glu Ala Ile Ile Asn Glu His Lys Lys Lys Gly Thr
245 250 255Ser Glu His Asn Tyr
Leu Asp Phe Leu Leu Asp Lys Gln Lys Lys Gly 260
265 270Asp Leu Gln Leu Pro Leu Thr Asn Glu Ala Ile Lys
Ala Asn Leu Met 275 280 285Ala Met
Tyr Ala Gly Gly Ser Glu Thr Ser Ser Lys Leu Ile Glu Trp 290
295 300Thr Phe Ala Glu Met Met Lys Asn Pro Glu Thr
Met Arg Lys Ala Gln305 310 315
320Glu Glu Val Arg Arg Val Phe Gly Asp Lys Gly Lys Val Glu Glu Ser
325 330 335Arg Ile Gln Glu
Leu Lys Tyr Leu Lys Leu Val Leu Lys Glu Ser Phe 340
345 350Arg Ile His Pro Pro Ser Thr Leu Ile Thr Arg
Val Cys Gln Glu Arg 355 360 365Thr
Lys Ile Asn Gly Tyr Asp Ile His Pro Lys Thr Thr Ile Leu Ile 370
375 380Asn Val Trp Thr Met Gly Arg Asp Pro Asn
Leu Trp Lys Glu Pro Glu385 390 395
400Lys Phe His Pro Glu Arg Phe Glu Asp Ser Lys Ile Asp Phe Arg
Gly 405 410 415Ala Asn Met
Glu Leu Thr Pro Phe Gly Val Gly Lys Arg Met Cys Pro 420
425 430Gly Ile Thr Leu Ser Thr Thr Tyr Val Glu
Phe Leu Leu Ala Asn Leu 435 440
445Leu Tyr His Phe Asp Trp Lys Leu Pro Asp Gly Val Thr Pro Ala Thr 450
455 460Leu Asp Met Thr Glu Thr Leu Arg
Gly Thr Leu Lys Lys Val Gln Asp465 470
475 480Leu Ile Leu Ile Pro Ile Pro Phe Ser Pro His Gln
Ile Ala 485 49042503PRTEuphorbia peplus
42Met Glu Phe Thr Leu Ser Leu Lys Lys Met Glu Leu Gln Ile Leu Ser1
5 10 15Phe Pro Ile Leu Phe Pro
Phe Leu Leu Phe Ile Leu Thr Phe Leu Thr 20 25
30Ile Ile Arg Arg Lys Lys Gln Asn Gln Asp Cys Asn Phe
Pro Pro Gly 35 40 45Pro Trp Gln
Phe Pro Ile Ile Gly Asn Ile Pro Gln Leu Leu Gly Gly 50
55 60Leu Phe His His Arg Leu Ser Asp Leu Ala Lys Ile
His Gly Pro Ile65 70 75
80Met Ser Ile Gln Gln Gly Gln Ile Pro Ala Val Val Ile Thr Ser Val
85 90 95Glu Leu Ala Lys Glu Val
Leu Lys Thr Gln Gly Glu Ile Phe Ala Gly 100
105 110Arg Pro Gln Ala Pro Ala Gly Asp Val Leu Tyr Tyr
Asp Cys Lys Asp 115 120 125Ile Val
Phe Ala Pro Tyr Gly Asp His Trp Arg Gln Met Arg Lys Ile 130
135 140Cys Thr Leu Glu Phe Leu Ser Leu Lys Arg Val
Gln Ser Phe Arg Ser145 150 155
160Leu Arg Glu Glu Asn Val Ser Gly Phe Ile Lys Phe Leu Ser Thr Lys
165 170 175Ala Asn Ser Ser
Val Asn Leu Thr Lys Ser Val Gly Asn Leu Thr Ser 180
185 190Ser Ile Met Leu Ile Lys Thr Tyr Gly Lys Cys
Asp Glu Lys Leu Leu 195 200 205Ala
Met Leu Glu Lys Val Lys Gln Ala Val Leu Glu Thr Ser Ser Gly 210
215 220Thr Asp Leu Phe Pro Ser Leu Lys Phe Ile
Gln Tyr Ile Asn Gly Glu225 230 235
240Lys Ser Arg Met Ala Arg Val Gln Lys Glu Met Asp Lys Met Leu
Glu 245 250 255Gln Ile Ile
Lys Glu His Lys Val Gln Tyr Lys Phe Gly Asp Asn Asn 260
265 270Leu Leu Gln Val Leu Leu Asp Gln Gln Gln
Asn Gly Asp Leu Glu Leu 275 280
285Pro Leu Thr Asn Glu Ile Ile Lys Ala Asn Ile Met Glu Ile Phe Phe 290
295 300Gly Gly Ser His Thr Ser Ser Lys
Thr Val Glu Trp Ala Met Ser Glu305 310
315 320Leu Met Lys Asn Pro Glu Ser Met Thr Lys Ala Gln
Ala Glu Val Arg 325 330
335Gln Val Phe Gly Glu Thr Gly Asn Val Glu Glu Ser Arg Met Gln Glu
340 345 350Val Lys Tyr Leu Lys Ser
Val Ile Lys Glu Thr Leu Arg Leu His Pro 355 360
365Pro Ala Thr Phe Val Thr Arg Glu Cys Arg Gln Lys Thr Lys
Val Asn 370 375 380Gly Tyr Asp Ile Tyr
Pro Lys Thr Val Val His Val Asn Thr Tyr Ala385 390
395 400Ile Cys Arg Asp Pro Asp Val Trp Val Glu
Pro Glu Lys Phe Tyr Pro 405 410
415Glu Arg Phe Glu Glu Asn Gln Ile Asp Tyr Lys Gly Ala His Met Glu
420 425 430Leu Ile Pro Phe Gly
Ala Gly Lys Arg Ile Cys Pro Gly Ile Ser Leu 435
440 445Ala Thr Thr Tyr Val Glu Val Leu Leu Ala Asn Leu
Leu Tyr His Phe 450 455 460Asp Trp Lys
Leu Pro Tyr Gly Met Thr Pro Ala Asn Leu Asp Met Thr465
470 475 480Glu Met His Cys Gly Ala Leu
Ala Arg Lys His Asp Leu Cys Leu Ile 485
490 495Pro Ile Pro Phe Ser Lys Ile
50043497PRTEuphorbia peplus 43Met Lys Met Leu Glu Gln Ile Pro Ser Leu Pro
Ile Ile Phe Pro Leu1 5 10
15Ile Leu Phe Ile Phe Met Leu Ile Lys Leu Trp Gln Lys Lys Asn His
20 25 30Asn Ser Ile Arg Pro Pro Gly
Pro Arg Lys Tyr Pro Phe Ile Gly Asn 35 40
45Leu Pro Gln Leu Leu Gly Ala Pro Val His Gln Arg Leu Ala Asp
Leu 50 55 60Ala Lys Thr Tyr Gly Pro
Val Met Ser Ile Gln Gln Gly Gln Ile Pro65 70
75 80Ser Val Val Leu Ser Ser Val Glu Thr Ala Lys
Glu Val Leu Lys Ile 85 90
95Gln Gly Glu Glu Phe Ala Gly Arg Pro Ser Thr Met Ala Leu Asp Ile
100 105 110Thr Phe Tyr Asp Ala Gln
Asp Ile Ala Tyr Thr Glu Tyr Gly Asp Tyr 115 120
125Trp Arg Gln Met Lys Lys Ile Ser Thr Leu Glu Phe Leu Ser
Ala Lys 130 135 140Arg Val His Ser Phe
Lys Pro Val Arg Glu Glu Arg Ile Ser Ile Phe145 150
155 160Leu Asp Ser Leu Arg Ser Lys Gly Arg Ser
Pro Val Asn Leu Thr Arg 165 170
175Thr Ile Tyr Gly Leu Thr Asn Ser Ile Ile Gln Ile Thr Ala Phe Gly
180 185 190Lys Asn Cys Lys Thr
Arg Glu Lys Leu Asn Leu Asp Lys Ile Arg Glu 195
200 205Ala Val Val Asp Gly Thr Ile Ala Asp Leu Phe Pro
Arg Phe Lys Phe 210 215 220Ile Ala Ser
Leu Ser Gly Ala Lys Ser Arg Met Met Arg Ala His Lys225
230 235 240Glu Ile Asp Val Val Leu Asp
Glu Ile Leu Glu Glu His Lys Ala Asn 245
250 255Lys Ser Thr Ile Gly Asn Asn Leu Met Gln Val Leu
Leu Asp Phe Gln 260 265 270Lys
Asn Gly Gly Leu Gln Val Pro Leu Thr Thr Asp Gln Ile Lys Ala 275
280 285Asn Met Leu Glu Met Phe Leu Ser Gly
Ser His Thr Ser Ser Lys Ile 290 295
300Thr Glu Trp Thr Met Ala Glu Leu Met Arg Ala Pro Glu Thr Met Arg305
310 315 320Lys Ala Gln Glu
Glu Val Arg Arg Val Phe Ser Glu Ile Gly Arg Val 325
330 335Asp Glu Ser Arg Ile His Glu Cys Lys Tyr
Val Lys Asn Val Leu Lys 340 345
350Glu Ala Phe Arg Leu His Pro Pro Gly Pro Met Val Val Arg Gln Cys
355 360 365Arg Glu Ile Thr Lys Val Asn
Gly Tyr Glu Ile Leu Pro Gly Thr Thr 370 375
380Val Phe Ile Asn Val Trp Ala Ile Gly Arg Asp Pro Glu Val Trp
Thr385 390 395 400Glu Pro
Glu Lys Phe Asn Pro Asp Arg Phe Glu Asp Ser Glu Ile Asp
405 410 415Tyr Arg Gly Ala His Met Glu
Leu Ile Pro Phe Gly Ala Gly Lys Arg 420 425
430Ile Cys Pro Gly Leu Thr Leu Ala Val Val Tyr Val Glu Leu
Leu Leu 435 440 445Ala Asn Leu Leu
Tyr His Phe Asp Trp Glu Phe Pro Asp Gly Val Thr 450
455 460Gln Lys Thr Leu Asp Met Thr Glu Phe Phe Arg Gly
Thr Leu Asn Arg465 470 475
480Lys Glu Asp Leu Tyr Leu Ile Pro Val Pro Ser Ser Ser Leu Pro Lys
485 490 495Asn44503PRTJatropha
curcas 44Met Glu His Gln Ile Leu Ser Phe Pro Val Leu Phe Ser Leu Leu Leu1
5 10 15Phe Ile Leu Val
Leu Leu Lys Val Ser Lys Lys Leu Tyr Lys His Asp 20
25 30Ser Lys Pro Pro Pro Gly Pro Trp Lys Leu Pro
Phe Ile Gly Asn Leu 35 40 45Ile
Gln Leu Val Gly Asp Thr Pro His Arg Arg Leu Thr Ala Leu Ala 50
55 60Lys Thr Tyr Gly Pro Val Met Gly Val Gln
Leu Gly Gln Val Pro Phe65 70 75
80Leu Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Lys Ile
Gln 85 90 95Asp Pro Val
Phe Ala Glu Arg Pro Leu Val Leu Ala Gly Glu Ile Val 100
105 110Leu Tyr Asn Arg Asn Asp Ile Val Phe Gly
Ser Tyr Gly Asp Gln Trp 115 120
125Arg Gln Met Arg Lys Phe Cys Thr Leu Glu Leu Leu Ser Thr Lys Arg 130
135 140Val Gln Ser Phe Arg Pro Val Arg
Glu Glu Glu Val Ala Ser Phe Val145 150
155 160Lys Leu Met Arg Thr Lys Lys Gly Thr Pro Val Asn
Leu Thr His Ala 165 170
175Leu Phe Ala Leu Thr Asn Ser Ile Val Ala Arg Asn Ala Val Gly His
180 185 190Lys Ser Lys Asn Gln Glu
Ala Leu Leu Glu Val Ile Asp Asp Ile Val 195 200
205Val Ser Gly Gly Gly Val Ser Ile Val Asp Ile Phe Pro Ser
Leu Gln 210 215 220Trp Leu Pro Thr Ala
Lys Arg Glu Arg Ser Arg Ile Trp Lys Leu His225 230
235 240Gln Asn Thr Asp Glu Ile Leu Glu Asp Ile
Leu Gln Glu His Arg Ala 245 250
255Lys Arg Gln Ala Thr Ala Ser Lys Asn Trp Asp Arg Ser Glu Ala Asp
260 265 270Asn Leu Leu Asp Val
Leu Leu Asp Leu Gln Gln Ser Gly Asn Leu Asp 275
280 285Val Pro Leu Thr Asp Val Ala Ile Lys Ala Ala Ile
Ile Asp Met Phe 290 295 300Gly Ala Gly
Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Ala Met Ala305
310 315 320Glu Leu Met Arg Asn Pro Glu
Val Met Lys Lys Ala Gln Glu Glu Leu 325
330 335Arg Asn Phe Phe Gly Glu Asn Gly Lys Val Glu Glu
Ala Lys Leu His 340 345 350Glu
Leu Lys Trp Ile Lys Leu Ile Ile Lys Glu Thr Leu Arg Leu His 355
360 365Pro Ala Val Ala Val Ile Pro Arg Val
Cys Arg Glu Lys Thr Lys Val 370 375
380Tyr Gly Tyr Asp Val Glu Pro Gly Thr Arg Val Phe Ile Asn Val Trp385
390 395 400Ser Ile Gly Arg
Asp Pro Lys Val Trp Ser Glu Ala Glu Arg Phe Lys 405
410 415Pro Glu Arg Phe Ile Asp Ser Ala Ile Asp
Tyr Arg Gly Leu Asn Phe 420 425
430Glu Leu Ile Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr
435 440 445Leu Gly Met Ala Asn Leu Glu
Ile Phe Leu Ala Asn Leu Leu Tyr His 450 455
460Phe Asp Trp Lys Phe Pro Lys Gly Val Thr Ala Glu Asn Leu Asp
Met465 470 475 480Asn Glu
Ala Phe Gly Gly Ala Val Lys Arg Lys Val Asp Leu Glu Leu
485 490 495Ile Pro Ile Pro Phe Arg Pro
50045503PRTJatropha curcas 45Met Glu Gln Gln Ile Leu Ser Phe Pro
Val Leu Phe Ser Phe Leu Leu1 5 10
15Phe Leu Leu Val Leu Leu Lys Val Ser Lys Lys Leu Ser Lys His
Asp 20 25 30Ser Asn Ser Pro
Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Ile 35
40 45Leu Gln Leu Ala Gly Asp Leu Pro His Arg Arg Ile
Thr Glu Leu Ala 50 55 60Lys Lys Tyr
Gly Pro Val Met Ser Ile Lys Leu Gly Gln His Pro Tyr65 70
75 80Leu Val Val Ser Ser Pro Glu Thr
Ala Lys Glu Val Met Arg Thr Gln 85 90
95Asp Pro Ile Phe Ala Asp Arg Pro Leu Val Leu Ala Gly Glu
Leu Val 100 105 110Leu Tyr Asn
Arg Asn Asp Ile Gly Phe Gly Leu Tyr Gly Asp Gln Trp 115
120 125Arg Gln Met Arg Lys Phe Cys Ala Leu Glu Leu
Leu Ser Thr Lys Arg 130 135 140Val Gln
Ser Phe Arg Ser Val Arg Glu Glu Glu Ile Ala Glu Phe Val145
150 155 160Lys Ser Leu Arg Ser Lys Glu
Gly Ser Ser Val Asn Leu Ser His Thr 165
170 175Leu Phe Ala Leu Thr Asn Ser Ile Ile Ala Arg Asn
Thr Val Gly His 180 185 190Lys
Ser Lys Asn Gln Glu Ala Leu Leu Lys Ile Ile Asp Asp Ile Val 195
200 205Glu Ser Leu Gly Gly Leu Ser Thr Val
Asp Ile Phe Pro Ser Leu Lys 210 215
220Trp Leu Pro Ser Val Lys Arg Glu Arg Ser Arg Ile Trp Lys Leu His225
230 235 240Cys Glu Thr Asp
Glu Ile Leu Glu Gly Ile Leu Glu Glu His Lys Ala 245
250 255Asn Arg Gln Ala Ala Ala Phe Lys Asn Asp
Asp Gly Ser Gln Ala Asp 260 265
270Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Gln Asn Gly Asn Leu Glu
275 280 285Val Pro Leu Thr Asp Val Asn
Ile Lys Ala Val Ile Leu Gly Met Phe 290 295
300Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Thr Glu Trp Ala Met
Ala305 310 315 320Glu Leu
Met Lys Asn Pro Glu Ile Met Lys Lys Ala Gln Glu Glu Leu
325 330 335Arg Ser Leu Phe Gly Glu Ser
Gly Tyr Val Asp Glu Ala Lys Leu His 340 345
350Glu Ile Lys Trp Leu Lys Leu Ile Ile Asn Glu Thr Leu Arg
Leu His 355 360 365Pro Ala Val Thr
Leu Ile Pro Arg Leu Cys Arg Glu Lys Thr Lys Val 370
375 380Ser Gly Tyr Asp Val Tyr Pro Asn Thr Arg Val Phe
Ile Asn Thr Trp385 390 395
400Ala Ile Gly Arg Asp Pro Thr Ile Trp Ser Glu Pro Glu Lys Phe Val
405 410 415Pro Glu Arg Phe Ile
Asp Ser Ser Ile Asp Tyr Arg Gly Asn His Phe 420
425 430Glu Tyr Thr Pro Phe Gly Ala Gly Arg Arg Ile Cys
Pro Gly Met Ala 435 440 445Phe Gly
Met Val Asn Leu Glu Ile Phe Leu Ala Asn Leu Leu Tyr His 450
455 460Phe Asp Trp Lys Leu Pro Lys Gly Ile Thr Ser
Glu Asn Leu Asp Met465 470 475
480Thr Glu Asn Phe Gly Gly Val Ile Lys Arg Lys Gln Asp Leu Glu Leu
485 490 495Ile Pro Ala Pro
Phe Arg Pro 50046502PRTJatropha curcas 46Met Glu Gln Gln Ile
Leu Ser Val Ser Val Leu Ser Ser Phe Val Leu1 5
10 15Phe Leu Phe Val Leu Leu Lys Val Ser Lys Lys
Leu Tyr Lys His Asp 20 25
30Ser Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Ile
35 40 45Leu Gln Leu Ala Gly Asp Ala Pro
His His Arg Phe Ala Glu Leu Ala 50 55
60Arg Thr Tyr Gly Pro Val Met Gly Ile Lys Leu Gly Glu Ile Pro Phe65
70 75 80Leu Val Val Ser Ser
Pro Glu Ala Ala Lys Glu Val Met Lys Ile Gln 85
90 95Asp Pro Ile Phe Ala Glu Arg Ala Leu Val Phe
Ala Asn Asp Val Leu 100 105
110Asn Tyr Asn Arg Asn Val Met Val Phe Gly Ser Tyr Gly Tyr Gln Trp
115 120 125Arg Gln Leu Arg Lys Phe Cys
Thr Leu Ala Leu Leu Ser Ala Lys Arg 130 135
140Val Gln Ser Phe Gln Ser Val Arg Lys Glu Glu Met Ala Asp Phe
Val145 150 155 160Asn Phe
Leu Arg Ser Lys Glu Gly Ser Ser Val Asn Leu Thr His Thr
165 170 175Ile Phe Ala Phe Thr Asn Ser
Ile Ile Ala Arg Asn Ala Val Gly His 180 185
190Lys Thr Lys Asn Gln Glu Thr Leu Leu Thr Cys Ile Asp Gly
Ile Ile 195 200 205Tyr Thr Gly Gly
Val Asn Ile Ala Asp Val Phe Pro Ser Leu Lys Trp 210
215 220Leu Pro Ser Val Lys Arg Glu Lys Ser Arg Val Met
Lys Leu His Tyr225 230 235
240Glu Thr Asp Lys Ile Leu Glu Asp Ile Leu Gln Glu His Lys Ala Asn
245 250 255Lys Gln Ala Trp Val
Ser Glu Asp Gly Asp Gly Arg Lys Ala Gly Asn 260
265 270Phe Val Asp Val Leu Leu Asp Leu Gln Gln Ser Gly
Asn Leu Asp Phe 275 280 285Pro Leu
Thr Asp Val Thr Ile Lys Ala Ser Thr Ile Asp Ala Phe Val 290
295 300Gly Gly Ser Asp Thr Ser Ser Lys Thr Thr Glu
Trp Ala Met Ala Glu305 310 315
320Leu Met Arg Lys Pro Glu Ile Met Lys Lys Ala Gln Glu Glu Leu Arg
325 330 335Ser Val Phe Gly
Glu Lys Gly Tyr Ile Glu Glu Ala Lys Leu Gln Glu 340
345 350Leu Lys Trp Leu Lys Leu Ile Ile Lys Glu Thr
Met Arg Leu His Pro 355 360 365Val
Leu Ser Leu Leu Pro Arg Val Cys Lys Gln Lys Thr Lys Val Ser 370
375 380Gly Tyr Asp Val Tyr Pro Gly Thr Gln Val
Leu Val Asn Val Trp Ala385 390 395
400Leu Gly Arg Asp Pro Lys His Trp Ser Glu Pro Glu Lys Phe Asn
Pro 405 410 415Glu Arg Phe
Ile Asp Ser Ser Ile Asp Tyr Leu Gly Asn His Phe Glu 420
425 430Tyr Leu Pro Phe Gly Ala Gly Lys Arg Val
Cys Pro Gly Ile Ala Leu 435 440
445Gly Met Val His Met Glu Asn Phe Leu Ala Asn Leu Leu Phe His Phe 450
455 460Asp Trp Lys Phe Pro Lys Gly Ile
Thr Ala Glu Asn Leu Asp Met Thr465 470
475 480Asp Ala Phe Gly Gly Val Met Lys Arg Lys Val Asp
Leu Glu Leu Ile 485 490
495Pro Ile Pro Tyr His Pro 50047503PRTJatropha curcas 47Met
Glu His Gln Ile Leu Ser Phe Pro Ala Leu Phe Ser Phe Leu Leu1
5 10 15Phe Leu Leu Val Leu Leu Lys
Val Ser Lys Lys Leu Tyr Lys His Asp 20 25
30Ser Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly
Asn Ile 35 40 45Leu Gln Leu Ala
Gly Asp Thr Phe His Arg Arg Leu Thr Glu Leu Ala 50 55
60Lys Thr His Gly Pro Val Met Ser Ile Asn Val Gly Gln
Ile Pro Tyr65 70 75
80Val Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Lys Ile Gln
85 90 95Asp Pro Val Phe Ala Asp
His Pro Val Val Leu Ala Ala Glu Val Ile 100
105 110Leu Tyr Ser Pro Tyr Asp Ile Phe Phe Ala Pro Tyr
Gly Asp His Leu 115 120 125Lys Gln
Met Arg Lys Phe Cys Thr Val Glu Leu Leu Ser Thr Lys Arg 130
135 140Val Gln Ser Phe Arg Ser Val Arg Glu Glu Glu
Val Ala Asp Phe Val145 150 155
160Lys Phe Leu Arg Ser Lys Glu Gly Ser Ser Val Asn Leu Thr His Thr
165 170 175Leu Phe Ala Leu
Thr Asn Ser Ile Val Ala Arg Thr Ala Val Gly His 180
185 190Arg Ser Lys Asn Gln Glu Gly Leu Leu Lys Val
Ile Asp Glu Ala Val 195 200 205Leu
Ala Ser Ser Gly Val Asn Ile Ala Asp Ile Phe Pro Ser Leu Gln 210
215 220Trp Leu Pro Ser Val Lys Arg Glu Arg Ser
Arg Ile Trp Lys Thr His225 230 235
240Arg Glu Thr Asp Lys Ile Leu Glu Asp Val Leu Gln Glu His Arg
Ala 245 250 255Asn Arg Lys
Ala Ala Val Pro Lys Asn Gly Asp Gln Ser Gln Ala Asp 260
265 270Asn Leu Leu Asp Val Leu Leu Asp Leu Gln
Glu Ser Gly Asn Leu Asp 275 280
285Val Pro Leu Pro Asp Ala Ala Ile Lys Gly Thr Ile Met Glu Met Phe 290
295 300Gly Ala Gly Ser Asp Thr Ser Ser
Lys Thr Val Glu Trp Ala Met Ala305 310
315 320Glu Leu Met Arg Asn Pro Glu Val Met Arg Lys Ala
Gln Glu Glu Leu 325 330
335Arg Ser Phe Phe Gly Glu Asn Gly Glu Val Glu Asp Ala Lys Ile Gln
340 345 350Glu Leu Lys Cys Leu Lys
Leu Ile Ile Lys Glu Thr Leu Arg Leu His 355 360
365Pro Pro Gly Ala Val Ile Pro Arg Leu Cys Arg Glu Arg Thr
Lys Val 370 375 380Ala Gly Tyr Asp Ile
Tyr Pro Asn Thr Lys Ile Phe Val Asn Thr Trp385 390
395 400Ala Ile Gly Arg Asp Pro Glu Ile Trp Ser
Glu Ala Glu Lys Phe Asn 405 410
415Pro Asp Arg Phe Ile Asp Ser Ser Ile Asp Tyr Lys Gly Asn Asn Phe
420 425 430Glu Leu Ile Pro Phe
Gly Ala Gly Arg Arg Ile Cys Pro Gly Ile Thr 435
440 445Leu Ala Ser Ala Asn Met Glu Leu Phe Leu Ala Asn
Leu Leu Tyr His 450 455 460Phe Asp Trp
Lys Phe Pro Gln Gly Ile Thr Ala Glu Asn Leu Asp Met465
470 475 480Asn Glu Cys Phe Gly Gly Ala
Val Lys Arg Lys Val Asp Leu Glu Leu 485
490 495Ile Pro Ile Pro Phe Arg Thr
50048499PRTJatropha curcas 48Met Leu Ser Phe Pro Val Ile Phe Ser Phe Leu
Leu Phe Leu Leu Val1 5 10
15Leu Leu Lys Val Ser Lys Lys Leu Cys Lys Asp Asn Ser Ile Pro Pro
20 25 30Pro Gly Pro Trp Gln Leu Pro
Phe Leu Gly Asn Ile Phe Gln Leu Ala 35 40
45Gly Tyr Gln Phe His Ile Arg Leu Ser Glu Leu Gly Gln Thr Tyr
Gly 50 55 60Pro Val Met Gly Ile Lys
Val Gly Gln Val Pro Phe Leu Ile Val Ser65 70
75 80Ser Pro Glu Met Ala Lys Glu Val Leu Lys Val
Gln Asp Pro Thr Phe 85 90
95Val Asp Arg Pro Val Val Leu Ala Ala Glu Leu Val Met Tyr Gly Gly
100 105 110His Asp Ile Val Tyr Ala
Pro Tyr Gly Asp Gln Trp Arg Gln Met Arg 115 120
125Lys Phe Cys Thr Leu Glu Leu Leu Ser Thr Lys Arg Val Gln
Ser Phe 130 135 140Arg Ser Val Arg Glu
Glu Glu Ala Gly Glu Phe Val Lys Phe Leu Leu145 150
155 160Ser Lys Glu Gly Ser Ser Val Asn Leu Thr
His Ala Leu Tyr Ala Leu 165 170
175Ser Asn Ser Met Val Ala Arg Ser Thr Val Gly His Lys Thr Lys Asn
180 185 190Gln Glu Ala Leu Leu
Asn Val Ile Asp Asp Thr Val Ser Thr Ala Ala 195
200 205Gly Thr Asn Ile Ala Asp Ile Phe Pro Ser Leu Lys
Trp Leu Pro Thr 210 215 220Val Lys Arg
Gln Met Ser Arg Ile Trp Lys Ser His Cys Gln Thr Asp225
230 235 240Glu Ile Leu Glu Gly Ile Leu
Arg Glu His Arg Ala Lys Arg Gln Thr 245
250 255Ala Ala Ser Lys Asn Gly Asp Arg Ala Glu Ala Asp
Asn Leu Leu Asp 260 265 270Val
Leu Leu Asp Leu Gln Gln Arg Gly Asp Leu Asp Val Pro Leu Thr 275
280 285Asp Ile Asn Ile Lys Gly Ala Ile Leu
Glu Met Phe Gly Ala Gly Ser 290 295
300Asp Thr Ser Thr Lys Thr Leu Glu Trp Ala Met Ser Glu Leu Met Arg305
310 315 320Asn Pro Lys Met
Met Lys Lys Val Gln Gln Glu Leu Arg Ser Phe Phe 325
330 335Gly Glu Asn Gly Lys Val Glu Glu Ala Lys
Leu Gln Glu Leu Lys Trp 340 345
350Leu Lys Leu Ile Ile Lys Glu Thr Leu Arg Leu His Pro Pro Ile Ala
355 360 365Val Ile Pro Arg Leu Cys Arg
Glu Arg Thr Lys Val Cys Gly Tyr Asp 370 375
380Val Tyr Pro Asn Thr Arg Val Phe Val Asn Val Trp Ala Met Gly
Arg385 390 395 400Asp Pro
Lys Ile Trp Asn Glu Ala Glu Lys Phe Asn Pro Glu Arg Phe
405 410 415Ile Asp Ser Ser Ile Asp Tyr
Arg Gly Asn Asn Phe Glu Leu Ile Pro 420 425
430Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Ile Thr Leu Ala
Ile Val 435 440 445His Val Glu Thr
Val Leu Ala Asn Leu Leu Tyr His Phe Asp Trp Lys 450
455 460Phe Pro Glu Gly Val Thr Ala Glu Asn Phe Asp Met
Asn Glu Thr Phe465 470 475
480Ala Gly Ile Ile Arg Arg Lys Val Asp Leu Glu Leu Ile Pro Val Ala
485 490 495Phe Arg
Pro49495PRTJatropha curcas 49Met Asp His Arg Ile Leu Ser Phe Pro Phe Leu
Met Leu Ser Leu Leu1 5 10
15Leu Pro Phe Val Phe Glu Leu Leu Lys Ile Trp Lys Lys Ser Asn Asn
20 25 30Asn Pro Pro Pro Gly Pro Trp
Arg Leu Pro Leu Ile Gly Asn Ile His 35 40
45Gln Leu Gly Gly Arg His Gln Pro His Leu Arg Leu Thr Asp Leu
Ala 50 55 60Arg Thr Tyr Gly Pro Val
Met Arg Leu Gln Leu Gly Gln Ile Glu Ala65 70
75 80Val Val Ile Ser Ser Ala Glu Thr Ala Lys Gln
Val Met Lys Thr Gln 85 90
95Glu Ser Gln Phe Leu Gly Arg Pro Ser Leu Leu Ala Ala Asp Ile Met
100 105 110Leu Tyr Asn Arg Thr Asp
Ile Ser Phe Ala Pro Tyr Gly Asp Tyr Trp 115 120
125Arg Gln Met Lys Lys Ile Ala Val Val Glu Leu Leu Ser Ala
Lys Arg 130 135 140Val Gln Ala Tyr Lys
Ser Val Met Asp Glu Glu Val Ser Asn Phe Ile145 150
155 160Asn Phe Leu Tyr Ser Lys Ala Gly Ser Pro
Val Asn Leu Thr Lys Thr 165 170
175Phe Tyr Ser Leu Gly Asn Gly Ile Ile Ala Lys Thr Ser Ile Gly Lys
180 185 190Lys Phe Lys Lys Gln
Glu Thr Phe Leu Lys Val Val Asp Lys Ala Ile 195
200 205Arg Val Ala Gly Gly Phe Ser Val Gly Asp Ala Phe
Pro Ser Phe Lys 210 215 220Leu Ile His
Leu Ile Thr Gly Ile Ser Ser Thr Leu His Thr Ala His225
230 235 240Gln Glu Ala Asp Glu Ile Leu
Glu Glu Ile Ile Ser Glu His Arg Ala 245
250 255Ser Lys Thr Ala Asp Gly Asp Asp Tyr Glu Ala Asp
Asn Ile Leu Gly 260 265 270Val
Leu Leu Asp Ile Gln Glu Arg Gly Asn Leu Gln Val Pro Leu Thr 275
280 285Thr Asp Asn Ile Lys Ala Ile Ile Leu
Asp Met Phe Ala Gly Ala Ser 290 295
300Asp Thr Ser Leu Thr Thr Ala Glu Trp Ala Met Ala Glu Met Val Lys305
310 315 320His Pro Arg Ile
Met Lys Lys Ala Gln Asp Glu Val Arg Arg Thr Leu 325
330 335Asn Gln Glu Gly Asn Val Ala Asn Leu Leu
Pro Glu Leu Lys Tyr Leu 340 345
350Lys Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro Pro Val Ala Leu
355 360 365Ile Pro Arg Glu Cys Asp Gly
Arg Cys Glu Leu Asn Gly Tyr Asp Val 370 375
380Asn Pro Lys Thr Lys Ile Leu Val Asn Ala Trp Ala Ile Gly Arg
Asp385 390 395 400His Asn
Leu Trp Asn Asp Pro Glu Arg Phe Asp Pro Glu Arg Phe Leu
405 410 415Asp Asn Ser Ser Asp Phe Arg
Gly Thr Asp Phe Lys Phe Ile Pro Phe 420 425
430Gly Ala Gly Lys Arg Ile Cys Pro Gly Ile Thr Met Ala Ile
Thr Ile 435 440 445Ile Glu Val Leu
Leu Ala Gln Leu Leu Tyr His Phe Asp Trp Lys Leu 450
455 460Pro Asp Gly Ala Lys Pro Glu Ser Leu Asp Met Ser
Asp Thr Phe Gly465 470 475
480Leu Val Val Lys Arg Arg Ile Asp Leu Asn Leu Ile Pro Ile Pro
485 490 49550498PRTJatropha curcas
50Met Glu Tyr Gln Ile Leu Ser Ser Pro Thr Leu Ile Ala Leu Leu Val1
5 10 15Phe Val Ala Thr Val Val
Ile Lys Leu Trp Lys Arg Pro Thr Ile Ala 20 25
30Asn Asn Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Leu
Ile Gly Asn 35 40 45Leu His Asn
Leu Phe Gly Arg Asp Gln Pro His His Arg Leu Arg Asp 50
55 60Leu Ala Gly Lys Tyr Gly Ala Val Met Gly Phe Gln
Leu Gly Gln Val65 70 75
80Pro Thr Val Val Ile Ser Ser Ala Glu Ile Ala Lys Gln Val Leu Lys
85 90 95Thr His Glu Phe Gln Phe
Ile Asp Arg Pro Ser Leu Leu Ala Ala Asp 100
105 110Ile Val Leu Tyr Asn Arg Ser Asp Ile Ile Phe Ala
Pro Tyr Gly Asp 115 120 125Tyr Trp
Arg Gln Ile Lys Lys Ile Ala Ile Leu Glu Leu Leu Ser Ser 130
135 140Lys Arg Val Gln Ser Phe Lys Ser Val Arg Glu
Glu Glu Val Ser Ser145 150 155
160Phe Phe Lys Phe Leu Tyr Ser Lys Ala Gly Ser Pro Val Asn Leu Ser
165 170 175Arg Thr Leu Leu
Ser Leu Thr Asn Gly Ile Ile Ala Lys Thr Ser Ile 180
185 190Gly Lys Lys Cys Lys Arg Gln Glu Glu Ile Ile
Ala Val Ile Thr Asp 195 200 205Ala
Ile Lys Ala Thr Gly Gly Phe Ser Val Ala Asp Val Phe Pro Ser 210
215 220Phe Lys Phe Leu His Ile Ile Thr Gly Ile
Ser Ser Thr Ile Arg Arg225 230 235
240Ile His Arg Glu Ala Asp Thr Ile Leu Glu Glu Ile Met Asp Glu
His 245 250 255Lys Ala Asn
Asn Glu Ser Lys Asn Glu Pro Asp Asn Ile Leu Asp Val 260
265 270Leu Leu Asp Ile Gln Gln Arg Gly Asn Leu
Glu Phe Pro Leu Thr Ala 275 280
285Asp Asn Ile Lys Ala Ile Ile Leu Glu Met Phe Gly Ala Ala Ser Asp 290
295 300Thr Ser Ser Val Thr Ile Glu Trp
Ala Met Ser Glu Met Met Lys Asn305 310
315 320Pro Trp Thr Met Lys Lys Ala Gln Glu Glu Val Arg
Glu Val Phe Asn 325 330
335Gly Thr Gly Asp Val Ser Glu Ala Ser Leu Gln Glu Leu Gln Tyr Leu
340 345 350Lys Leu Val Ile Lys Glu
Thr Leu Arg Leu His Pro Pro Leu Thr Leu 355 360
365Ile Pro Arg Glu Cys Asn Gln Lys Cys Gln Ile Asn Glu Tyr
Asp Ile 370 375 380Tyr Pro Lys Thr Arg
Val Leu Val Asn Ala Trp Ala Ile Gly Arg Asp385 390
395 400Pro Asn Trp Trp Thr Asp Pro Glu Arg Phe
Asp Pro Glu Arg Phe Arg 405 410
415Cys Gly Ser Val Asp Phe Lys Gly Thr Asp Phe Glu Phe Ile Pro Phe
420 425 430Gly Ala Gly Lys Arg
Met Cys Pro Gly Ile Thr Met Ala Met Ala Asn 435
440 445Ile Glu Leu Ile Leu Ala Gln Leu Leu Tyr His Phe
Asn Trp Glu Leu 450 455 460Pro Gly Lys
Ala Lys Pro Glu Thr Leu Asp Met Ser Glu Ser Phe Gly465
470 475 480Leu Ala Val Lys Arg Lys Val
Glu Leu Asn Leu Ile Pro Thr Ala Phe 485
490 495Asn Pro51503PRTJathropha curcas 51Met Glu Gln Gln
Ile Leu Ser Phe Pro Val Ile Phe Asn Phe Leu Leu1 5
10 15Phe Leu Leu Val Leu Leu Lys Val Ser Lys
Lys Leu Ser Lys His Asp 20 25
30Ser Asn Ser Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Phe
35 40 45Leu Gln Leu Ala Gly Asp Leu Pro
His Arg Arg Ile Thr Glu Leu Ala 50 55
60Lys Lys Tyr Gly Pro Val Met Ser Ile Lys Leu Gly Gln His Pro Tyr65
70 75 80Leu Val Val Ser Ser
Pro Glu Thr Ala Lys Glu Val Met Arg Thr Gln 85
90 95Asp Pro Ile Phe Ala Asp Arg Pro Leu Val Leu
Ala Gly Glu Leu Val 100 105
110Leu Tyr Asn Arg Asn Asp Ile Gly Phe Gly Leu Tyr Gly Asp Gln Trp
115 120 125Arg Gln Met Arg Lys Phe Cys
Ala Leu Glu Leu Leu Ser Thr Lys Arg 130 135
140Ile Gln Ser Phe Arg Ser Val Arg Glu Glu Glu Ile Ala Val Phe
Val145 150 155 160Lys Ser
Leu Arg Ser Lys Glu Gly Ser Ser Val Asn Leu Ser His Thr
165 170 175Leu Phe Ala Leu Thr Asn Ser
Ile Ile Ala Arg Asn Thr Val Gly His 180 185
190Lys Ser Lys Asn Gln Glu Ala Leu Leu Lys Ile Ile Asp Asp
Ile Val 195 200 205Glu Ser Leu Gly
Gly Leu Ser Thr Val Asp Ile Phe Pro Ser Leu Lys 210
215 220Trp Leu Pro Ser Val Lys Arg Glu Arg Ser Arg Ile
Trp Lys Leu His225 230 235
240Cys Glu Thr Asp Glu Ile Leu Glu Gly Ile Leu Glu Glu His Lys Ala
245 250 255Asn Arg Gln Ala Ala
Ala Phe Lys Asn Asp Asp Gly Ser Gln Ala Asp 260
265 270Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Gln Asn
Gly Asn Leu Gln 275 280 285Val Pro
Leu Thr Asp Val Asn Ile Lys Ala Val Ile Leu Gly Met Phe 290
295 300Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Thr
Glu Trp Ala Met Ala305 310 315
320Glu Leu Met Lys Asn Pro Glu Ile Met Lys Asn Ala Gln Glu Glu Leu
325 330 335Arg Ser Leu Phe
Gly Glu Ser Gly Asn Val Asp Glu Ala Lys Leu His 340
345 350Glu Ile Lys Trp Leu Lys Leu Ile Ile Asn Glu
Thr Leu Arg Leu His 355 360 365Pro
Ala Val Thr Leu Ile Pro Arg Leu Cys Arg Glu Lys Thr Lys Ile 370
375 380Ser Gly Tyr Asp Val Tyr Pro Asn Thr Arg
Val Phe Ile Asn Thr Trp385 390 395
400Ala Ile Gly Arg Asp Pro Ile Ile Trp Thr Glu Pro Glu Lys Phe
Val 405 410 415Pro Glu Arg
Phe Ile Asp Ser Ser Ile Asp Tyr Arg Gly Asn His Phe 420
425 430Glu Tyr Thr Pro Phe Gly Ala Gly Arg Arg
Ile Cys Pro Gly Met Thr 435 440
445Phe Gly Met Val Asn Leu Glu Ile Phe Leu Ala Asn Leu Leu Tyr His 450
455 460Phe Asp Trp Lys Leu Pro Lys Gly
Ile Thr Ser Glu Asn Leu Asp Met465 470
475 480Thr Glu Asn Phe Gly Gly Val Ile Lys Arg Lys Gln
Asp Leu Glu Leu 485 490
495Ile Pro Val Pro Phe Arg Pro 50052503PRTJatropha curcas
52Met Glu Asp Gln Ile Leu Ser Phe Gln Val Leu Phe Ser Phe Leu Leu1
5 10 15Phe Leu Phe Val Leu Phe
Lys Val Ser Lys Lys Leu Tyr Lys His Gly 20 25
30Ser Asn Pro Pro Pro Gly Pro Leu Lys Leu Pro Phe Leu
Gly Asn Ile 35 40 45Leu Gln Leu
Ala Gly Asp Val Pro His Arg Arg Leu Thr Ala Leu Ala 50
55 60Lys Thr Tyr Gly Pro Val Met Gly Ile Lys Leu Gly
Gln Ile Pro Phe65 70 75
80Leu Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Lys Ile Gln
85 90 95Asp Pro Val Phe Ala Glu
Arg Ala Pro Leu Leu Ala Gly Glu Ile Val 100
105 110Leu Tyr Asn Arg Asn Asp Ile Ile Phe Gly Leu Tyr
Gly Asp Gln Trp 115 120 125Arg Gln
Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser Ala Lys Arg 130
135 140Val Gln Ser Phe Arg Ser Val Arg Glu Glu Glu
Val Ala Asp Leu Val145 150 155
160Lys Phe Leu Gly Ser Lys Glu Gly Ser Pro Val Asn Leu Thr His Thr
165 170 175Leu Phe Ala Leu
Ala Asn Ser Ile Ile Ala Arg Asn Thr Val Gly Gln 180
185 190Lys Ser Lys Asn Gln Glu Ala Leu Leu Arg Leu
Ile Asp Asp Ile Ile 195 200 205Glu
Leu Thr Gly Ser Val Ser Ile Ala Asp Ile Phe Pro Ser Leu Lys 210
215 220Trp Leu Pro Ser Val Gln Arg Asp Arg Ser
Arg Ile Arg Lys Leu His225 230 235
240Tyr Glu Thr Asp Glu Ile Leu Glu Asp Ile Leu Gln Glu His Arg
Ala 245 250 255Asn Arg Gln
Ala Ala Ala Ser Arg Lys Gly Asp Arg Arg Gly Ala Asp 260
265 270Asn Leu Leu Asp Val Leu Leu Tyr Leu Gln
Glu Thr Gly Asn Leu Asp 275 280
285Val Pro Leu Thr Asp Val Ala Ile Lys Ala Ala Ile Ile Asp Met Phe 290
295 300Gly Ala Gly Ser Asp Thr Ser Ser
Lys Thr Val Glu Trp Ala Met Ala305 310
315 320Glu Leu Met Arg Asn Pro Glu Ile Met Lys Lys Ala
Gln Glu Glu Leu 325 330
335Arg Asn Phe Phe Gly Glu Asn Gly Lys Val Asp Glu Ala Lys Leu Gln
340 345 350Glu Leu Lys Trp Leu Asn
Leu Ile Asn Lys Glu Thr Leu Arg Leu His 355 360
365Pro Ala Ala Ala Val Val Pro Arg Val Cys Arg Glu Arg Thr
Lys Val 370 375 380Ser Gly Tyr Asp Val
Tyr Pro Gly Thr Arg Val Phe Ile Asn Ala Trp385 390
395 400Ala Ile Gly Arg Asp Pro Lys Val Trp Ser
Glu Ala Glu Lys Phe Lys 405 410
415Pro Glu Arg Phe Ile Asp Ser Ala Ile Asp Tyr Arg Gly Thr Asn Phe
420 425 430Glu Leu Ile Pro Phe
Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr 435
440 445Leu Gly Met Ala Asn Leu Glu Ile Phe Leu Ala Asn
Leu Leu Tyr His 450 455 460Phe Asp Trp
Lys Phe Pro Lys Gly Val Thr Ala Glu Asn Leu Asp Met465
470 475 480Asn Glu Ala Phe Gly Ala Ala
Val Lys Arg Lys Val Asp Leu Glu Leu 485
490 495Val Pro Ile Pro Phe Arg Pro
5005326DNAartificial sequenceprimer 53atggacaagc aaatcctatc atatcc
265422DNAartificial sequenceprimer
54tcagtccgtt gttggtgaag gg
225521DNAartificial sequenceprimer 55atggagcagc aattgctatc g
215626DNAartificial sequenceprimer
56ctatggcaaa gtagtgaatg gaatgg
265724DNAartificial sequenceprimer 57atggcactgc aatcactact attc
245827DNAartificial sequenceprimer
58ttacacatgt tttgttttgg tttctcc
275922DNAartificial sequenceprimer 59atgtcattgc aacctgcacc tg
226025DNAartificial sequenceprimer
60ttaaggatga aatagaacag gaatc
256123DNAartificial sequenceprimer 61atggaaagtg ctgctcacca atc
236226DNAartificial sequenceprimer
62ttatggtaaa ggactgacgg gaatgg
266328DNAartificial sequenceprimer 63atggagaaac aaatcctatc atttccag
286425DNAartificial sequenceprimer
64ctaaggagta aatggaatgg gaatc
256525DNAartificial sequenceprimer 65atgtcatcac aaccagcagt tttac
256624DNAartificial sequenceprimer
66tcaatgtgta ggatatagaa cagg
246722DNAartificial sequenceprimer 67ttcatatttg ttgctaatcc tc
226825DNAartificial sequenceprimer
68caaggtacag gatttatgca aatcc
256936DNAartificial sequenceprimer 69aaaaggcgcg ccaaaaatgg acaagcaaat
cctatc 367032DNAartificial sequenceprimer
70aaaattaatt aatcagtccg ttgttggtga ag
327137DNAartificial sequenceprimer 71aaaaggcgcg ccaaaaatgg agcagcaatt
gctatcg 377232DNAartificial sequenceprimer
72aaaattaatt aactatggca aagtagtgaa tg
327340DNAartificial sequenceprimer 73aaaaggcgcg ccaaaaatgg cactgcaatc
actactattc 407438DNAartificial sequenceprimer
74aaaattaatt aattacacat gttttgtttt ggtttctc
387538DNAartificial sequenceprimer 75aaaaggcgcg ccaaaaatgt cattgcaacc
tgcacctg 387632DNAartificial sequenceprimer
76aaaattaatt aattaaggat gaaatagaac ag
327739DNAartificial sequenceprimer 77aaaaggcgcg ccaaaaatgg aaagtgctgc
tcaccaatc 397831DNAartificial sequenceprimer
78aaaattaatt aattatggta aaggactgac g
317941DNAartificial sequenceprimer 79aaaaggcgcg ccaaaaatgg agaaacaaat
cctatcattt c 418031DNAartificial sequenceprimer
80aaaattaatt aactaaggag taaatggaat g
318141DNAartificial sequenceprimer 81aaaaggcgcg ccaaaaatgt catcacaacc
agcagtttta c 418233DNAartificial sequenceprimer
82aaaattaatt aatcaatgtg taggatatag aac
338338DNAartificial sequenceprimer 83aaaaggcgcg ccaaaaatgg caatgcaacc
tgcaattg 388437DNAartificial sequenceprimer
84aaaattaatt aatcaagtgg caataggttc aatgaac
37851845DNARicinus communis 85atggcactgc aatcactact attcttacag gcaaactctc
aaaatcgaaa tttttgtcaa 60ttcttaagca tgccctcaat caggtgctgt agctgtcgag
tccctttttc ttcatggtct 120gctaaatcag tgactaataa gtcacctcaa gcctgtttat
caacaaaatc ccagcaagaa 180ttccgtccac tggcaaactt tcctcccact gtatggggca
gtcactttgc ttctccaacc 240tttagtgaat cggaatttgg gacttatgat agacaagcaa
acgtcctgca gaaaaagatc 300cgagaactct taacgtcgtc cagaagtgat tcggtggaga
aaattgcttt tatcgactta 360ctgtgtcgtc ttggtgtctc gtatcatttt gagaatgaca
ttgaagagca actgagtcaa 420attttcagtt gccaacctgg tctccttgat gaaaaacaat
acgatctcta tactgttgca 480cttgtatttc gagttttcag acagcatggt ttcaaaatgt
cttctaatgt gttccacaaa 540ttcacggaca gccatggtaa attcaaggct tccctgctaa
gcgatgccaa aggtatgctc 600agcctttttg aagctagcca tttaagcatg catggagaag
acattcttga tgaagccttt 660gctttcacca aggattactt ggagtcctct gcagttgacc
agtacttatg ccctaatctt 720caaaagcata taactaacgc cctggagcag cctttccaca
aaggcatacc aagactagag 780gccaggaaat acattgacct atacgaaggc gacgaatgcc
gaaatgaaac agtactcgag 840tttgcaaagt tggactataa tagagtacaa ttattacacc
aacaagagct aagccagttc 900tcaacgtggt ggaaagacct caatcttgct tcggagattc
cttatgcaag agacagaatg 960gcagaaattt tcttttgggc tgttgcaatg tattttgagc
ctaagtatgc acaagctcga 1020atgattattg ctaaagttgt attgctcata tcacttgtag
atgatacatt tgatgcatat 1080gccactattg aagaaaccca tcttcttgca gaagcattcg
aaaggtggga taagagctgc 1140ctggatcagc tgccagatta catgaaagtt atctataaac
tattgctaaa caccttttct 1200gaatttgaga atgatttggc aaaggaggga aagtcctata
gtgtcagata tgggagggaa 1260gcgtttcaag aactagttag aggctactac ctggaggcta
tgtggcgtga tgagggaaaa 1320ataccatcat tcgatgagta catacgcaat ggatcattgt
caagcggatt acctcttgtc 1380gtgacagcat ctttcatggg agtcaaagaa attacaggga
tcagagaatt tcagtggcta 1440aggactaaac ccaaattaaa tcatttttct ggtgcagtag
gaaggattat gaatgacata 1500atgtctcatg tgagcgagca aaatagagga catgttgcat
cttgcataga ttgctacatg 1560aaacaatatg aagtttccaa ggaggaagca attaaagaga
tgcagaaaat ggctagcgat 1620gcttggaagg atataaacga aggatatatg aggccagcac
aagtatcagt tagtgaacta 1680atgagagtgg tcaaccttgc acgactaaca gatgtgagct
ataaatatgg cgatggttat 1740actgatccac aacacttgaa acagtttgtt aaaggattgt
tcatagatcc ggttcctctt 1800ccaaatcaaa ttcgtaaagg agaaaccaaa acaaaacatg
tgtaa 184586211DNAJatropha curcas 86atggcaatgc
aacctgcaat tgttcaagca aactcccaaa aacaaatcct tactactccg 60ttcttattaa
gcacacctag tactaagctt aacgacagtc gttttgcttc cttttccttg 120gctaagccaa
caacttttag aaaacttaaa gcatgtgcat caacaaaatc tgagacagaa 180gctcgtccct
tagcctactt tcctcctact g 211
User Contributions:
Comment about this patent or add new information about this topic: