Patent application title: COMPLEXES OF CYTOMEGALOVIRUS PROTEINS
Inventors:
IPC8 Class: AC07K14005FI
USPC Class:
1 1
Class name:
Publication date: 2019-07-11
Patent application number: 20190211064
Abstract:
An isolated human cytomegalovirus (HCMV) membrane protein complex that
comprises gH, gL and at least one more HCMV glycoprotein is provided. In
some embodiments the complex consists of gH, gL and gO. In other
embodiments the complex consists of gH, gL, pUL128, pUL130 and pUL131A.
Processes for expressing and purifying such complexes, and subsequent
uses of such complexes in immunogenic compositions and vaccines, are also
provided.Claims:
1-27. (canceled)
28. A method of treating HCMV infection, comprising administering to a subject in need thereof an immunologically effective amount of a composition comprising a human Cytomegalovirus (HCMV) pentameric complex, wherein the HCMV pentameric complex comprises a pentamer-forming fragment of HCMV gH having a truncated transmembrane (TM) domain and a truncated ectodomain as compared to wild-type HCMV gH; HCMV gL or pentamer-forming fragment thereof; HCMV pUL128 or pentamer-forming fragment thereof; HCMV pUL130 or pentamer-forming fragment thereof; and HCMV pUL131A or pentamer-forming fragment thereof, wherein the truncated TM domain consists of an amino acid sequence having a deletion of the amino acids corresponding to residues 718 to 736 of wild-type sequence SEQ ID NO: 1, and wherein the truncated ectodomain consists of an amino acid sequence having a deletion of the amino acids corresponding to residues 716 and 717 of wild-type sequence SEQ ID NO: 1.
29. The method of claim 28, wherein said gL, or pentamer-forming fragment thereof, comprises a sequence that is at least 80% identical to any one of SEQ ID NOs: 7-9 and 31.
30. The method of claim 28, wherein said gL, or pentamer-forming fragment thereof, comprises a sequence that is at least 85% identical to any one of SEQ ID NOs: 7-9 and 31.
31. The method of claim 28, wherein said gL, or pentamer-forming fragment thereof, comprises a sequence that is at least 90% identical to any one of SEQ ID NOs: 7-9 and 31.
32. The method of claim 28, wherein said gL, or pentamer-forming fragment thereof, comprises a sequence that is at least 95% identical to any one of SEQ ID NOs: 7-9 and 31.
33. The method of claim 28, wherein said gL, or pentamer-forming fragment thereof, comprises a sequence selected from the group consisting of SEQ ID NOs: 7-9 and 31.
34. The method of claim 28, wherein said pUL128, or pentamer-forming fragment thereof, comprises a sequence that is at least 80% identical to any one of SEQ ID NOs: 13-15 and 33.
35. The method of claim 28, wherein said pUL128, or pentamer-forming fragment thereof, comprises a sequence that is at least 85% identical to any one of SEQ ID NOs: 13-15 and 33.
36. The method of claim 28, wherein said pUL128, or pentamer-forming fragment thereof, comprises a sequence that is at least 90% identical to any one of SEQ ID NOs: 13-15 and 33.
37. The method of claim 28, wherein said pUL128, or pentamer-forming fragment thereof, comprises a sequence that is at least 95% identical to any one of SEQ ID NOs: 13-15 and 33.
38. The method of claim 28, wherein said pUL128, or pentamer-forming fragment thereof, comprises a sequence selected from the group consisting of SEQ ID NOs: 13-15 and 33.
39. The method of claim 28, wherein said pUL130, or pentamer-forming fragment thereof, comprises a sequence that is at least 80% identical to any one of SEQ ID NOs: 16, 17, and 34.
40. The method of claim 28, wherein said pUL130, or pentamer-forming fragment thereof, comprises a sequence that is at least 85% identical to any one of SEQ ID NOs: 16, 17, and 34.
41. The method of claim 28, wherein said pUL130, or pentamer-forming fragment thereof, comprises a sequence that is at least 90% identical to any one of SEQ ID NOs: 16, 17, and 34.
42. The method of claim 28, wherein said pUL130, or pentamer-forming fragment thereof, comprises a sequence that is at least 95% identical to any one of SEQ ID NOs: 16, 17, and 34.
43. The method of claim 28, wherein said pUL130, or pentamer-forming fragment thereof, comprises a sequence selected from the group consisting of SEQ ID NOs: 16, 17, and 34.
44. The method of claim 28, wherein said pUL131A, or pentamer-forming fragment thereof, comprises a sequence that is at least 80% identical to any one of SEQ ID NOs: 18-20, and 35.
45. The method of claim 28, wherein said pUL131A, or pentamer-forming fragment thereof, comprises a sequence that is at least 85% identical to any one of SEQ ID NOs: 18-20, and 35.
46. The method of claim 28, wherein said pUL131A, or pentamer-forming fragment thereof, comprises a sequence that is at least 90% identical to any one of SEQ ID NOs: 18-20, and 35.
47. The method of claim 28, wherein said pUL131A, or pentamer-forming fragment thereof, comprises a sequence that is at least 95% identical to any one of SEQ ID NOs: 18-20, and 35.
48. The method of claim 28, wherein said pUL131A, or pentamer-forming fragment thereof, comprises a sequence selected from the group consisting of SEQ ID NOs: 18-20, and 35.
49. The method of claim 28, wherein the composition is a pharmaceutical composition comprising the purified HCMV pentameric complex and an adjuvant.
50. The method of claim 49, wherein the adjuvant comprises an aluminum salt, an oil-in-water emulsion, or a combination thereof.
51. The method of claim 50, wherein the adjuvant comprising an aluminum salt comprises aluminum hydroxide, aluminum oxyhydroxide, aluminum hydroxide adsorbed to a TLR7 agonist, or a combination thereof.
52. The method of claim 50, wherein the oil-in-water emulsion comprises MF59, AS03, or a combination thereof.
53. The method of claim 28, wherein said pentamer-forming fragment of HCMV gH comprises a sequence that is at least 80% identical to any one of SEQ ID NOs: 4, 6, 29, and 30.
54. The method of claim 28, wherein said pentamer-forming fragment of HCMV gH comprises a sequence that is at least 85% identical to any one of SEQ ID NOs: 4, 6, 29, and 30.
55. The method of claim 28, wherein said pentamer-forming fragment of HCMV gH comprises a sequence that is at least 90% identical to any one of SEQ ID NOs: 4, 6, 29, and 30.
56. The method of claim 28, wherein said pentamer-forming fragment of HCMV gH comprises a sequence that is at least 95% identical to any one of SEQ ID NOs: 4, 6, 29, and 30.
57. The method of claim 28, wherein said pentamer-forming fragment of HCMV gH comprises a sequence selected from the group consisting of SEQ ID NOs: 4, 6, 29, and 30.
58. The method of claim 57, wherein said pentamer-forming fragment of HCMV gH comprises the sequence SEQ ID NO: 6.
Description:
SEQUENCE LISTING
[0001] The instant application contains a Sequence Listing which was submitted in ASCII format in PCT application PCT/EP2013/063750 and in U.S. application Ser. No. 14/410,461 and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 15, 2017, is named SEQUENCE_LISTING_PAT054805US.txt and is 152,467 bytes in size.
TECHNICAL FIELD
[0002] This invention is in the field of vaccination against human cytomegalovirus (HCMV), and in particular the isolation of purified complexes comprising gH, gL and at least one more HCMV glycoprotein, preferably the trimeric gH/gL/gO complex or the pentameric gH/gL/pUL128/pUL130/pUL131A complex, and their subsequent use in vaccines.
BACKGROUND ART
[0003] Cytomegalovirus (CMV) is a genus of virus that, belongs to the viral family known as Herpesviridae or herpesviruses. The species that infects humans is commonly known as HCMV or human herpesvirus-5 (1414V-5). Within Herpesviridae, HCMV belongs to the Betaherpesvirinae subfamily, which also includes cytomegaloviruses from other mammals.
[0004] Although they may be found throughout the body, HCMV infections are frequently associated with the salivary glands. HCMV infects between 50% and 80% of adults in the United States (40% worldwide), as indicated by the presence of antibodies in much of the general population. HCMV infection is typically unnoticed in healthy people, but can he life-threatening for the immunocompromised, such as HIV-infected persons, organ transplant recipients, or new born infants (Mocarski, Shenk and Pass 2006). HCMV is the virus most frequently transmitted to a developing fetus. After infection, HCMV has an ability to remain latent within the body for the lifetime of the host, with occasional reactivations from latency.
[0005] HCMV seems to have a large impact on immune parameters in later life and may contribute to increased morbidity and eventual mortality (Simanek, et al. (2011)).
[0006] To date, the genomes of over 20 different HOPI strains have been sequenced, including those of both laboratory strains and clinical isolates. For example, the following strains of HCMV have been sequenced: Towne (GI:239909366)AD169 (GI:219879600), Toledo (GI:290564358) and Merlin (GI:155573956). HCMV strains AD169, Towne and Merlin can be obtained from the American Type Culture Collection (ATCC VR538, ATCC VR977 and ATCC VR1590, respectively).
[0007] HCMV contains an unknown number of membrane protein complexes. Of the approximately 30 known glycoproteins in the viral envelope, gH and gL have emerged as particularly interesting due to their presence in several different complexes: dimeric gfilgL, trimeric gH/gL/gO (also known as the gCIII complex) and the pentameric gH/gL/pUL128/pUL130/pUL131A (the latter protein is also referred to as pUL131). HCMV is thought to use the pentameric complexes to enter epithelial and endothelial cells by endocytosis and low-pH-dependent fusion but it is thought to enter fibroblasts by direct fusion at the plasma membrane in a process involving gH/gL or possibly gH/gL/gO. The gH/gL and/or gH/gL/gO complex(es) is/are sufficient for fibroblast infection, whereas the pentameric complex is required to infect endothelial and epithelial cells (Ryckman, Rainish, et al. 2008).
[0008] Genini et al. (2011) discloses a serum antibody response to the pentameric complex of HCMV in primary and reactivated HCMV infections. The response was determined by both indirect immunofluorescence (TEA) and ELISA, using fixed or lysed epithelial (ARPE-19) cells infected with one or more adenoviral vectors, each carrying one HCMV gene and, in parallel, with a control adenovirus vector. The specificity of results was determined by the reactivity of human neutralizing monoclonal antibodies recognizing two, three, or four proteins of the complex. In 14 cases of primary infection, an IgG antibody seroconversion to the UL128-131 gene products was consistently detected within 2-4 weeks after onset of infection, while antibodies persisted for at least 12 months. The IgG antibody response to UL128-131 gene products was generally superior to the response to gH and appeared to follow the .neutralizing antibody response (as determined in epithelial cells). In reactivated infections, the antibody response showed a trend reminiscent of a booster response. IgG antibodies were detected in HCMV-seropositive healthy adult controls, but not in HCMV-seronegative individuals.
[0009] Kinzler et al. (2002) co-expressed gH, gL, and gO in insect cells using a recombinant baculovirus, but were unable to produce the gH/gL/gO tripartite complex. Instead, only gH/gL heterodimers, heteromultimers, and gO homomultimers were detected. In contrast, co-expression of gH, gL, and gO in mammalian cells produced high molecular weight complexes that closely resemble gH/gL/gO complexes formed in HCMV infected cells. Cell surface immunofluorescence showed that these complexes are expressed and displayed on the surface of transfected cells/
[0010] U.S. Pat. No. 7,704,510 discloses that pUL131A is required for epithelial cell tropism. U.S. Pat. No. 7,704,510 also discloses that pUL128 and pUL130 form a complex with gH/gL, which is incorporated into virions. This complex is required to infect endothelial and epithelial cells but not fibroblasts. Anti-CD46 antibodies were found to inhibit HCMV inction of epithelial cells. However, U.S. Pat. No. 7,704,510 does not disclose isolation of HCMV complexes.
[0011] To date, researchers have been unable to purify complexes comprising HCMV gH, gL and at least one more HCMV glycoprotein, such as the trimeric gH/gL/gO complex or the pentameric gH/gL/pUL128/pUL130/pUL131A complex. Such purified complexes would be useful as antigens for diagnostic application and as immunogens for vaccines against HCMV.
DISCLOSURE OF THE INVENTION
[0012] The invention is based on the recombinant expression and purification of HCMV membrane protein complexes, wherein said complexes comprise gH, gL and at least one more HCMV glycoprotein.
[0013] The invention provides a process for producing an HCMV membrane protein complex comprising gH, gL and at least one more HCMV glycoprotein, wherein said process comprises the recombinant co-expression of an HCMV gH protein, an HCMV gL protein, and at least one more HCMV glycoprotein, under conditions in which said gH, gL and at least one more HCMV glycoprotein assemble to form a protein complex. This process may optionally involve isolation of the protein complex, so that it can be prepared in purified form. In some embodiments, the process does not involve co-expression of any non-envelope HCMV proteins, such as the tegument or capsid proteins.
[0014] The invention also provides a protein complex produced by this process. For instance, the complex can comprise (i) gH, gL and gO or (ii) gH, gL, pUL128, pUL130 and pUL131A.
[0015] In some embodiments, the complexes of the invention can be produced at high yields. For example, in processes involving growing cells of the invention in growth medium, the membrane protein complex of the invention may accumulate to a level of more than 0.4 mg per litre of growth medium (e.g 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5, 4, 4.5 or 5 mg per litre of growth medium or more).
[0016] The invention also provides an isolated protein complex comprising an HCMV gH, an HCMV gL and at least one more HCMV glycoprotein. One example of a protein complex that comprises gH and is the trimeric complex consisting of gH, gL and gO. Another example of a protein complex that comprises gH and gL is the pentameric complex consisting of gH, gL, pUL128, pUL130 and pUL131A.
[0017] The invention also provides a composition comprising a protein complex of the invention. In some embodiments, the composition does not contain polyacrylamide. In some embodiments, the composition is a liquid e.g. an aqueous liquid, not a gel. In some embodiments, the protein complex is not immobilised within the composition. For example, said HCMV membrane protein complex may not be present in a gel, or on a film, membrane, paper or slide.
[0018] The invention also provides a composition comprising a protein complex of the invention, wherein said composition does not contain any non-envelope HCMV proteins, such as the HCMV tegument or HCMV capsid proteins.
[0019] The invention also provides a modified HCMV gH polypeptide, wherein said polypeptide lacks a transmembrane (TM) domain. The absence of a TM domain means that this modified polypeptide cannot reside within a lipid bilayer. In some embodiments, the gH polypeptide lacks the full-length natural TM domain; in other embodiments, it can retain a portion of the natural TM domain, but not enough to let the protein reside in a lipid bilayer. Thus the polypeptide can contain up to 10 amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids) of the natural gH TM domain. In addition to lacking some or all of the TM domain, the polypeptide may also lack the natural C-terminal domain of HCMV gH or may lack a portion of the C-terminal domain. The invention also provides nucleic acid molecules encoding said modified gH polypeptide, and processes for producing said modified gH polypeptide e.g. by recombinant expression, or by chemical synthesis (at least in part).
[0020] The invention provides a method of transfection involving the introduction of one or more nucleic acid molecules which encode the protein components of said HCMV membrane protein complex into cells. Said one or more nucleic acid molecules may he stably introduced into the cells (e.g. by chromosomal integration) or may be transiently introduced into the cells. The invention also provides a cell which is derived from said transfection. Preferably, a cell which is derived from said transfection is a cell in which said one or more nucleic acid molecules have been stably introduced.
[0021] The invention also provides progeny of said cell, a clone of said cell or a cell which has been passaged from said cell. These cells can be cultured to express complexes of the invention, which may then be purified.
[0022] The invention also provides a cell that produces an HCMV membrane protein complex, wherein the cell does not (i) contain an HCMV genome, and/or (ii) produce HCMV virions, and/or (iii) express any non-envelope HCMV proteins, ideally the cell lacks one of (i), (ii) or (iii); preferably, it lacks two; more preferably, it lacks all three of (i), (ii) and (iii).
[0023] The invention provides antibodies which recognise an isolated HCMV membrane protein complex of the invention, but do not bind to any of isolated gH, gL, gO, pUL128, pUL130 or pUL131A polypeptides and/or do not bind to isolated gH-gL heterodimers. The antibodies of the invention may have been raised using an isolated HCMV membrane protein complex of the invention as an antigen. Preferably, the antibodies of the invention are neutralizing antibodies. The antibodies of the invention may have been identified using in vitro selection methods, such as phage display using diverse antibody libraries. As described below, antibodies of the invention may be human or humanised antibodies andlor they may be monoclonal or polyclonal antibodies.
[0024] The invention also provides a method for raising antibodies using an isolated FICMV rnernbrane protein complex of the invention. Alternatively, isolated HCMV membrane protein complex of the invention may be used to identify antibodies using in vitro selection methods, such as phage display using diverse antibody libraries.
[0025] The antibodies of the invention may he used in a diagnostic assay and may he labelled directly or indirectly. In some embodiments, the antibodies of the invention may be used in therapy, for example in the treatment of fICMV infection.
[0026] Proteins of the invention
[0027] HCMV glycoprotein H (gH), which is encoded by the UL75 gene, is a virion glycoprotein that is essential for infectivity and which is conserved among members of the alpha-, beta- and gammaherpesviruses. It forms a stable complex with gL, and the formation of this complex facilitates the cell surface expression of gH. Based on the crystal structures of HSV-2 and EBV gH/gL complexes, the gL subunit and N-terminal residues of gH form a globular domain at one end of the structure (the `head`), which is implicated in interactions with gB and activation of membrane fusion. The C-terminal domain of gH, proximal to the viral membrane (the `tail`), is also implicated in membrane fusion, gH displays determinants that are recognized by the host factor TRL2, and it directly interacts with a heterodimer formed between the host factors TLR2 and TLR1. TLR2 mediates NE-KB activation and inflammatory cytokine responses from cells (Boehmc, Guerrero and Compton 2006).
[0028] The gH from HCMV strain Merlin has been reported (GI:52139248, SEQ ID NO: 1) to consist of 742 amino acids. The gH from HCMV strain Towne (GI:138314, SEQ ID NO: 2) also consists of 742 amino acids, and has been reported to have six N-glycosylation sites (at residues 55, 62, 67, 192, 641 and 700), and consist of a hydrophobic signal sequence at its N-tertninus (amino acid residues 1-23), an ectodomain (residues 24-717) that projects out of the cell into the extracellular space, a hydrophobic TM domain (residues 718-736) and a C-terminal cytoplasmic domain (residues 737-742). SEQ ID NO: 2 shares 99% and 96% amino acid similarity to SEQ ID NO: 1 and the gH from HCMV strain AD169 (GI:138313, SEQ ID NO: 3), respectively.
[0029] Typically, the N-terminal signal sequence of .sub.gH proteins is cleaved by a host cell signal peptidase to produce mature gH proteins. The gH proteins in HCMV membrane complexes of the invention may lack an N-terminal signal sequences. Preferably, mature forms of gH (as found in isolated HCMV membrane complexes of the invention) lack the N-terminal signal sequence, the TM domain and the C-terminal domain.
[0030] Expression of the full-length UL75 gene sequence hinders purification of soluble complexes comprising gH. Rather, complexes comprising gH can be purified at high yield and purity by omitting at least a portion of the TM domain of gH. For example, constructs encoding just the N-terminal signal sequence and the ectodomain of gH (but not the TM domain) can be used to express a form of gH which is easily purified. Said constructs may encode the majority (e.g. 70%, 80%, 85%, 90%, 95%. 96%, 97%, 98%, 99%, 99.5% or more) of the ectodomain of gH, but none or only a small portion of the TM domain. gH proteins of the invention may include the whole of the gH ectodomain or a truncated form of the gH ectodomain. Said truncated forms of the ectodomain may lack between 1 and 20 amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acid residues) at their N-termini and/or C-termini relative to a full-length HCMV gH protein. An example of a gH protein of the invention is SEQ ID NO: 4, which consists of amino acid residues 1-715 of SEQ ID NO: 1. An example of a preferred girl protein of the invention is SEQ ID NO: 29, which lacks the N-terminal signal sequence, TM domain and C-terminal domain of gH and consists of amino acid residues 24-715 of SEQ ID NO: 1.
[0031] gH proteins of the invention may contain additional amino acid residues, such as N-terminal or C-terminal extensions. Such extensions may include one or more tags, which can facilitate detection (e.g. an epitope tag for detection by monoclonal antibodies) and/or purification (e.g. a polyhistidine-tag to allow purification on a nickel-chelating resin) of the gH protein. An example of a C-terminal extension which includes a myc-tag and a polyhistidine-tag is given as SEQ ID NO: 5. Thus, gH proteins of the invention (e.g. SEQ ID NOs: 6 and 30) may include at their C-termini an amino acid sequence which is at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 5. gH proteins of the invention may comprise a truncated gH ectodomain fused to a C-terminal extension.
[0032] The ectodomain of gH corresponds to the portion of gH which lacks the hydrophobic TM. The location and length of the ectodomain can be predicted based on pairwise alignment of a given sequence to SEQ ID NO: 1, for example by aligning the amino acid sequence of a gH polypeptide of interest to SEQ ID NO: 1 and identifying the sequence that aligns to residues 24-717 of SEQ ID NO: 1. Similarly, the locations of the TM and C-terminal domains can be predicted by aligning the amino acid sequence of a gH polypeptide of interest to SEQ ID NO: 1 and identifying the sequences that align to residues 718-736 and 737-742 of SEQ ID NO: 1, respectively. Alternatively, the location and length of the ectodomain, the signal sequence and the TM domain can be predicted based on computational analysis of the hydrophobicity along the length of a given gH protein sequence. The signal sequence and the TM domain have the highest levels of hydrophobicity and these two regions flank the ectodomain, which is less hydrophobic.
[0033] gH proteins of the invention can have various degrees of identity to SEQ ID NO: 4 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 4. gH proteins of the invention can have various degrees of identity to SEQ ID NO: 6 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 6. gH proteins of the invention can have various degrees of identity to SEQ ID NO: 29 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the sequence recited in SEQ ID NO: 29. gH proteins of the invention can have various degrees of identity to SEQ ID NO: 30 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93,%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the sequence recited in SEQ ID NO: 30. Preferred gH proteins: (i) can dimerise with HCMV gL; (ii) form part of the trimeric gH/gL/gO complex; (iii) form part of the pentameric gH/gL/pUL128/pUL130/pUL131A complex; (iv) comprise at least one epitope from SEQ ID NO: 4 or SEQ ID NO: 29; and/or (v) can elicit antibodies in vivo which immunologically cross-react with an HCMV virion.
[0034] HCMV glycoprotein L (gL) is encoded by the UL115 gene. gL is thought. to be essential for viral replication and all known functional properties of gL are directly associated with its dimerization with gH. The gL/gH complex is required for the fusion of viral and plasma membranes leading to virus entry into the host cell. gL from HCMV strain Merlin (GI:39842115, SEQ ID NO: 7) and HCMV strain Towne (GI:239909463, SEQ ID NO: 8) have been reported to be 278 amino acids in length. gL from HCMV strain AD169 (GI:2506510, SEQ ID NO: 9) has been reported to be 278 amino acids in length, include a signal sequence at its N-terminus (amino acid residues 1-35), have two N-glycosylation sites (at residues 74 and 114) and lack a TM domain (Rigoutsos, et al. 2003). The N-terminal signal sequence in SEQ ID NO: 7 is predicted to comprise amino acid residues 1-30. SEQ ID NO: 8 shares 98% amino acid identity with SEQ ID NO: 7. Sequencing of the full-length gL gene from 22 to 39 clinical isolates, as well as laboratory strains AD169, Towne and Toledo revealed less than 2% variation in the amino acid sequences among the isolates (Rasmussen, et al. 2002).
[0035] Typically, the N-terminal signal sequence of gL proteins is cleaved by a host cell signal peptidase to produce mature gL proteins. The gL proteins in HCMV membrane complexes of the invention may lack an N -terminal signal sequences. An example of a preferred gL protein of the invention is SEQ ID NO: 31, which lacks an N-terminal signal sequence and consists of amino acid residues 31-278 of SEQ IL) NO: 7.
[0036] gL proteins of the invention can have various degrees of identity to SEQ ID NO: 7 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 7. gL proteins of the invention can have various degrees of identity to SEQ ID NO: 31 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 31. Preferred gL proteins: (i) can dimerise with HCMV gH; (ii) form part of the trimeric gH/gL/gO complex; (iii) form part of the pentameric gH/gL/pUL1.28/pUL130/pUL131A complex; (iv) comprise at least one epitope from SEQ ID NO: 7 or SEQ ID NO: 31; and/or (v) can elicit antibodies in vivo which immunologically cross-react with an HCMV virion.
[0037] HCMV glycoprotein O (gO), which is encoded by the UL74 gene, has been reported to act as a molecular chaperone, increasing gH/gL ER export and incorporation into virions. It has been proposed that. gO competes with pUL128-131A for binding onto gfilgi, but is released from gH/gL, so that gH/gL (lacking pUL128-131A) is incorporated into virions (Ryckman, Chase and Johnson 2010). Compared with other viral genes, HCMV gO is unusually variable among different HCMV strains: the variability of the gO amino acid sequence among 22 to 39 clinical isolates, as well as laboratory strains AD169, Towne and Toledo approached 45% (i.e. there was only 55% identity between the gO amino acid sequences between different isolates) (Rasmussen, et al. 2002). The gO from HCMV strains Merlin (GI:39842082, SEQ ID NO: 10), AD169 (GI:136968, SEQ ID NO: 11) and Towne have been reported (GI:239909431, SEQ ID NO: 12) to consist of 472, 466 and 457 amino acids, respectively. The gO of HCMV strain AD169, which shares a 7300 amino acid similarity to SEQ ID NO: 10, has 18 N-glycosylation sites (at residues 75, 83, 87, 103, 130, 157, 162, 171, 219. 242, 288, 292, 350. 385, 392, 399, 433 and 454), and may include a cleavable signal sequence at its N-terminus (predicted to consist of amino acid residues 1-30), which is absent from the mature polypeptide. Rigoutsos (2003) predicted the presence of TM domains (in regions 10-28 and 190-212) and a coiled coil region (residues 240-272).
[0038] Typically, the N-terminal signal sequence of gO proteins is cleaved by a host cell signal peptidase to produce mature gO proteins. The gO proteins in HCMV membrane complexes of the invention may lack an N-terminal signal sequences. An example of a preferred gO protein of the invention is SEQ ID NO: 32, which lacks an N-terminal signal sequence and consists of amino acid residues 31-472 of SEQ ID NO. 10.
[0039] gO proteins of the invention can have various degrees of identity to SEQ ID NO: 10 such as at least 55%, 60%, 65%, 70%, 75%, 80%, 85% 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 10. gO proteins of the invention can have various degrees of identity to SEQ ID NO: 32 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 32. Preferred gO proteins: (i) can form part of the trimeric gH/gL/gO complex; (ii) cannot form part of the pentameric gH/gL/pUL128/pUL130/pUL113A complex, (iii) comprise at least one epitope of SEQ ID NO: 10 or SEQ ID NO: 32; and/or (iv) can elicit antibodies in vivo which immunologically cross-react with an HCMV virion.
[0040] The pUL128 from HCMV strain Merlin has been reported (G1:39842124, SEQ ID NO: 13) to consist of 130 amino acids and to contain a 1 nucleotide substitution causing premature termination. The pUL128 from HCMV strains Towne (GI:39841882, SEQ ID NO: 14) and AD169 (GI:59803078, SEQ ID NO: 15) have been reported to consist of 171 amino acids. Due to the premature termination of SEQ ID NO: 13, SEQ ID NOs: 13 and 15 only share 75% identity over the full-length of SEQ ID NO: 15. pUL128 is predicted to have an N-terminal signal sequence, which is located at residues 1-27 of SEQ ID NO: 13, but it is predicted to lack a TM domain. An example of a preferred pUL128 protein of the invention is SEQ ID NO: 33, which lacks an N-terminal signal sequence and consists of amino acid residues 28-171 of SEQ ID NO: 14. SEQ ID NO: 33 also consists of amino acid residues 28-171 of SEQ ID NO: 15.
[0041] pUL128 proteins of the invention can have various degrees of identity to SEQ ID NO: 15 such as at least 60%, 70%, 75%, 76%, 77%, 78%, 7%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95% , 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 15. pUL,128 proteins of the invention can have various degrees of identity to SEQ ID NO: 33 such as at least 60%, 70%, 75%, 76%, 77%, 78%, 79%, 80%, 81%. 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 33. Preferred pUL,128 proteins: (i) can form part of the pentameric gH/gL/pUL128/pUL130/pUL131A complex, (ii) comprise at least one epitope of SEQ ID NO: 15 or SEQ ID NO: 33, and/or (iii) can elicit antibodies in vivo which immunologically cross-react with an HCMV virion.
[0042] UL130 is the central and the largest (214 codons) gene of the UL131A-128 locus. Conceptual translation of the gene predicts a long (25 amino acids) N-terminal signal sequence that precedes a hydrophilic protein containing two potential N-linked glycosylation sites (Asn85 and Asn118) within a putative chemokine domain (amino acids 46 to 120) and an additional N-glycosylation site (Asn201) close to the end of a unique C-terminal region. pUL130 is predicted to lack a TM domain. It has been reported to be a luminal glycoprotein that is inefficiently secreted from infected cells but is incorporated into the virion envelope as a Golgi-matured form (Patrone, et al. 2005). The sequences of pUL130 from HCMV strain Merlin and Towne are publicly available (GI:39842125, SEQ ID NO: 16 and GI:239909473, SEQ ID NO: 17, respectively) and they consist of 214 and 229 amino acids, respectively SEQ ID NO: 17 has been reported to contain a frameshift mutation in the C-terminal region of pUL130, and it shares 94% identity to the HCMV SEQ ID NO: 16 over the full-length of SEQ ID NO: 16.
[0043] Typically, the inal signal sequence of pUL130 proteins is cleaved by a host cell signal peptidase to produce mature pUL130 proteins. The pUL130 proteins in HCMV membrane complexes of the invention may lack an N-terminal signal sequences. An example of a preferred pUL130 protein of the invention is SEQ ID NO: 34, which lacks an N-terminal signal sequence and consists of amino acid residues 26-214 of SEQ ID NO: 16.
[0044] pUL130 proteins of the invention can have various degrees of identity to SEQ ID NO: 16 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 16. pUL130 proteins of the invention can have various degrees of identity to SEQ ID NO: 34 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 34. As an alternative, pUL130 proteins of the invention can have various degrees of identity to SEQ NO: 17 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 17. Preferred pUL130 proteins: (i) can form a pentameric gH/gL/pUL128/pUL130/pUL131A complex; (ii) comprise at least one epitope of SEQ ID NO: 16, SEQ ID NO: 34 or SEQ ID NO: 17, respectively; and/or (iii) can elicit antibodies in vivo which immunologically cross-react with an HCMV virion.
[0045] pUL131A function is required for HCMV replication not only in endothelial cells but also in epithelial cells. The pUL131A from HCMV strains Merlin (GI:39842126, SEQ ID NO: 18) and Towne (GI:239909474, SEQ ID NO: 19) and AD169 (GI:219879712, SEQ ID NO: 20) have been reported to consist of 129, 129 and 76 amino acids, respectively. pUL131A is predicted to contain an N-terminal signal sequence, which is located at residues 1-18 of SEQ ID NO: 18, and to lack a TM domain. The UL131A from strain AD169 has been reported to contain a 1-base-pair insertion, which causes a frame-shift (Wang and Shenk 2005), SEQ ID NO: 18 is 96% identical to SEQ ID NO: 20 over the N-terminal 28 amino acids, but it is only 36% identical to SEQ NO: 20 over the full-length of SEQ ID NO: 18 due to the frame-shift in the AD169 UL131A gene.
[0046] Typically, the N-terminal signal sequence of pUL131A proteins is cleaved by a host cell signal peptidase to produce mature pUL131A proteins. The pUL131A proteins in HCMV membrane complexes of the invention may lack an N-terminal signal sequences. An example of a preferred pUL131A protein of the invention is SEQ ID NO: 35, which lacks an N-terminal signal sequence and consists of amino acid residues 19-129 of SEQ ID NO: 18, SEQ ID NO: 35 also consists of amino acid residues 19-129 of SEQ ID NO: 19.
[0047] pUL131A proteins of the invention can have various degrees of identity to SEQ ID NO: 17 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 18. pUL131A proteins of the invention can have various degrees of identity to SEQ ID NO: 35 such as at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 35. Preferred pUL131A proteins: (i) can form pentameric gH/gL/pUL128/pUL130/pUL131A complexes, (ii) comprise at least one epitope of SEQ ID NO: 18 or SEQ ID NO: 35; and/or (iii) elicit antibodies in vivo which immunologically cross-react with an HCMV virion.
[0048] If a clinical isolate is passaged in fibroblasts, it can very rapidly accumulate a mutation in the UL131A-128 locus, precluding its ability to infect other cell types. Indeed, as few as three passages in fibroblasts can be sufficient for such mutations to appear in virus stocks. For example, compared to clinical isolates which have not been passaged in fibroblasts, Merlin and Toledo carry mutations in UL128, Towne carries a mutation in the UL130 ORF and AD169 contains a mutated UL131A ORF. Since clinical isolates, but not laboratory strains, efficiently infect and generate infectious progeny in epithelial cells, this cell type, like endothelial cells, holds promise as a laboratory host for the production of clinical HCMV stocks that are not selected for mutations in the UL131A-UL128 locus (Wang and Shenk 2005).
[0049] The invention provides an immunogenic composition comprising HCMV complexes, wherein said complexes comprise gH, gL and at least one more HCMV glycoprotein, gH/gL/gO or gH/gL/pUL1.28/pUL130/pUL131A: Such immunogenic compositions may additionally comprise other HCMV proteins (but preferably not non-envelope HCMV proteins), such as glycoprotein B (gB).
[0050] gB is encoded by UL55 and mediates fusion between the vrrris and the cell membrane. It therefore has a key role to play in entry and infection of the virus. Like many other viral fusion proteins, gB contains hydrophobic loops that insert into the cell membrane and it undergoes a large structural change (pre- and post- fusion conformation) during entry. Like gH, gB displays determinants that are recognized by the host factor TLR2, and it directly interacts with a heterodimer formed between the host factors TLR2 and TLR1. TLR2 mediates NF-.kappa.B activation and inflammatory cytokine responses from cells (Boehme, Guerrero and Compton 2006).
[0051] Glycoprotein B (gB) is the most highly conserved of the envelope glycoproteins of human herpesviruses. Although the structure of HCMV gB is currently unknown, it is assumed that the structure of HCMV gB is similar to that of the gBs of HSV and EBV based on sequence homology. The postfusion conformations of HSV-1 and EBV gBs also show a surprising degree of structural homology to the postfusion conformation of fusion protein (G) of vesicular stomatitis virus (VSV) protein, despite the lack of sequence similarity between the gBs of HSV-1 and EBV and VSV-G.
[0052] The gB from HCMV strains Merlin (GI:39842076, SEQ ID NO: 21) and Towne (GI:138193, SEQ ID NO: 22) have been reported to consist of 907 amino acids. The gB from HCMV strain AD169 (GI:138192, SEQ ID NO: 23) has been reported to consist of 906 amino acids, have 19 N-glycosylation sites (at residues 37, 68, 73, 85. 208, 281, 286, 302, 341, 383, 405, 409, 417, 447, 452, 464, 465, 554, and 585) and consists of a signal sequence at its N-terminus (at amino acid residues 1-25), an extracellular region (residues 26-751), a TM domain (residues 752-772) and a cytoplasmic domain (residues 773-907) (Rigoutsos, et. al, 2003). In a study of 53 women, five subtypes of gB were found among with nucleotide polymorphisms between them ranging from 28 to 124 bp (Murthy, et al. 2011). The gBs of HCMV strain Merlin and AD169 share 95% amino acid similarity. The N-terminal signal sequence is predicted to consist of amino acid residues 1-22 of SEQ ID NO: 21 in the HCMV strain Merlin gB.
[0053] Typically, the N-terminal signal sequence of gB proteins is cleaved by a host cell signal peptidase to produce mature gB proteins. The gB proteins in HCMV membrane complexes of the invention may lack an N-terminal signal sequences. An example of a preferred gB protein of the invention is SEQ ID NO: 36, which lacks an N-terminal signal sequence and consists of amino acid residues 23-907 of SEQ ID NO: 21.
[0054] gB proteins of the invention can have various degrees of identity to SEQ ID NO: 21 such as at least 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 21. gB proteins of the invention can have various degrees of identity to SEQ ID NO: 36 such as at least 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 36. Preferred gB proteins: (i) comprise at least one epitope of SEQ ID NO: 18 or SEQ ID NO: 36; and/or (ii) can elicit antibodies in vivo which immunologically cross-react with an HCMV virion.
[0055] Glycosylation
[0056] Although gH, gL, gO, gB and pUL130 may be referred to as glycoproteins, this nomenclature should not be taken to mean that these proteins must be glycosylated when used with the invention. On the contrary, in some embodiments of the invention, one or more of polypeptides are not glycosylated. Usually, however, one or more (or all) polypeptides in a complex of the invention are glycosylated. In some embodiments, one or more (or all) polypeptides in a complex of the invention are glycosylated by glycosylation mutants of cultured cells, such as mutated mammalian cells. Such glycosylation mutants produce a pattern of polypeptide glycosylation which differs from a wild-type pattern of glycosylation, i.e. the resulting polypeptide glycofomis differs from wild-type glycollirms.
[0057] The level and type of glycosylation is dependent on the species of the host cell. In general, the species most distant to humans in evolutionary terms, such as bacteria, yeasts, fungi, insects and plants, have glycosylation repertoires that are least similar to that of humans. Proteins are usually not glycosylated in bacterial cells, although the transfer of N-linked glycosylation systems into Escherichia coli has been reported (Langdon, Cuccui and Wren 2009). Proteins can be glycosylated in insect cells. However, unlike vertebrate cells, insect cells are unable to produce complex N-linked side chains with penultimate galactose and terminal sialic acid. Hence, the type of glycosylation in insect cells can be sub-optimal for therapeutic proteins. Yeast cells can perform N-linked (to asparagine) and O-linked (to serine/threonine) glycosylation using mannose. Hyperglycosylation (outer chain extension) in the Golgi is a characteristic feature of yeast cells which is not typical of mammalian cells, and this can lead to problems with antibody reactivity. Also, unlike mammalian cells, yeast cells are unable to incorporate sugars other than mannose. In contrast to yeast and insect cells, mammalian glycoproteins expressed in mammalian cells are authentically glycosylated resulting in a recombinant product most similar to that formed in vivo.
[0058] Hence, preferably glycosylated polypeptides in complexes of the invention: (i) have a mammalian glycosylation pattern; and/or (ii) do not contain an insect cell pattern of glycosylation. In some embodiments, one or more of the proteins of the invention contain complex N-linked side chains with penultimate galactose and terminal sialic acid.
[0059] Membrane Protein Complexes of the Invention
[0060] HCMV membrane protein complexes of the invention are hetero-oligomeric associations between gH, gL and at least one additional HCMV protein. The proteins in these complexes may be associated by non-covalent and/or covalent interactions. In the gH/gL/gO trimeric complex, disulfide bonds link gH to gO and gL. In the pentameric complex of the invention, gH, gL and pUL128 are typically linked through disulfide bonds, but pUL130 and pUL131A are typically incorporated into the pentameric complex by non-covalent interactions (as shown in Example 7). In some embodiments, the pUL130 protein of the invention and/or pUL131 A protein of the invention is incorporated into the pentameric complex by non-covalent interactions. Furthermore, the pUL130 protein of the invention and/or pUL131A may be inter-linked by non-covalent interactions.
[0061] The stoichiometries of the trimeric and pentameric complexes are assumed to be 1:1:1 (Huber and Compton 1999) and 1:1:1:1:1 (Ryckman, Chase and Johnson 2010), respectively, but this has yet to be definitively confirmed.
[0062] The inventors have discovered that the membrane protein complexes of the invention are able to induce an immunogenic response. Membrane protein complexes of the invention may thus be able to induce immunity against HCMV infection. These two functions are dependent on the retention of epitopes on the membrane protein complexes of the invention that can elicit the production of antibodies, including neutralizing antibodies. A range of conformational epitopes for the pentameric complex are known. For example, Macagno (2010) isolated a panel of human monoclonal antibodies that neutralized HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Preferably, the pentameric complexes of the invention possess one or more of the conformational epitopes identified by Macagno (2010).
[0063] Each protein of the invention may contain mutations, such as insertions, deletions and substitutions relative to the Merlin strain and/or the AD169 strain of HCMV, so long as these mutations are not detrimental to the use of the proteins as antigens, in particular so long as they retain one or more epitopes that can elicit the production of antibodies that can bind to at least a membrane protein complex of the Merlin and/or AD169 strain of HCMV and/or antibodies that can neutralize the biological effects of said HCMV membrane protein complex. In addition, such mutations should not prevent the capacity of the proteins to form a membrane protein complex of the invention. The ability to form a membrane protein complex of the invention can be tested by performing protein purification, and analyzing the proteins by non-reducing PAGE, Western blot and/or size exclusion chromatography. If the proteins form part of a complex, they may all be present in a single band on a native PAGE gel and/or be present in a single peak in a size exclusion chromatogram.
[0064] The HCMV membrane protein complex of the invention can be prepared at various levels of purity e.g. at least 80%, 85%, 90%, 95%, or 99% of total protein by mass, i.e. the complex makes up at least 80% of the total proteinaceous mass in a composition. The composition may be free from polyacrylamide.
[0065] Expression Systems
[0066] In one aspect, the invention provides a process for expressing the membrane protein complex of the invention. Suitable expression systems for use in the present invention are well known to those of skill in the art and many are described in detail in Doyle (2008). Generally, any system or vector that is suitable to maintain, propagate and express nucleic acid molecules to produce a polypeptide in the required host may be used. The appropriate nucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those described in Sambrook (2000). Generally, the encoding gene can be placed under the control of a control element such as a promoter, and, optionally, an operator, so that the DNA sequence encoding the desired peptide is transcribed into RNA in the transformed host cell.
[0067] Examples of suitable expression systems include, for example, chromosomal, episomal and virus-derived systems, including, for example, vectors derived from: bacterial plasmids, bacteriophage, transposons, yeast episomes, insertion elements, yeast chromosomal elements, viruses such as baculoviruses, papova viruses such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, or combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, including cosmids and phagemids. Human artificial chromosomes (HACs) may also he employed to deliver larger fragments of DNA than can he contained and expressed in a plasmid.
[0068] Suitable expression systems include microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected or transfected with virus expression vectors (for example, baculovirus); plant cell systems transformed with virus expression vectors (for example, cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (for example, Ti or pBR322 plasmids); or animal cell systems. Cell-free translation systems can also be employed to produce the proteins of the invention. Preferably, the proteins of the invention are produced in eukaryotic cells, such as mammalian cells.
[0069] Recombinant polypeptides may he expressed transiently or stably. Preferably, the recombinant proteins are expressed stably. For example, cell lines that stably express the peptide of interest may be transfected using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may he allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells that successfully express the introduced sequences. Resistant clones of stably transfomied cells may be proliferated using tissue culture techniques appropriate to the cell type.
[0070] Mammalian cell lines available as hosts for expression are known in the art and include many immortalised cell lines available from the American Type Culture Collection (ATCC) including, but not limited to, Chinese hamster ovary (CHO), HeLa, baby hamster kidney (BHK), monkey kidney (COS), C127, 3T3, BHK, human embryonic kidney (HEK) 293, Bowes melanoma and human hepatocellular carcinoma (for example Hep G2) cells and a number of other cell lines. Expression in mammalian cells is preferable because the proteins that are produced will have authentic mammalian glycosylation patterns, and thus possess epitopes that are present on infectious HCMV particles. Accordingly, production of membrane protein complexes of the invention in mammalian cells will lead to the production of antibodies that are able to bind to naturally occurring HCMV particles during infection.
[0071] In the baculovirus system, the materials for baculoviruslinsect cell expression systems are commercially available in kit form from, inter alia, Invitroeen, San Diego, Calif. (the "MaxBac" kit). These techniques are generally known to those skilled in the art and are described fully in Summers et at. (Summers and Smith 1987). Particularly suitable host cells for use in this system include insect cells such as Drosophila S2 (i.e. by recombinant baculovirus infection of stably transfected Drosophila S2 cells) and Spodoptera Sf9 cells. In some embodiments, the proteins of the invention are not produced in insect cells.
[0072] There are many plant cell culture and whole plant genetic expression systems known in the art. Examples of suitable plant cellular genetic expression systems include those described in U.S. Pat. No. 5;693,506; U.S. Pat. No. 5,659,122; U.S. Pat. No. 5,608,143 and Zenk (1991).sup.23. In particular, all plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be utilised, so that whole plants are recovered which contain the transferred gene. Practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugar cane, sugar beet, cotton, fruit and other trees, legumes and vegetables.
[0073] Examples of prokaryotic expression systems include those that use streptococci, staphylococci, E. coli, Streptomyces and Bacillus subtilis as host cells.
[0074] Examples of fungal expression systems include those that use yeast (for example, S. cerevisiae) and Aspergillus as host cells.
[0075] HEK293 cells are suitable for transient expression of the HCMV proteins of the invention due to their high transfectability by various techniques, including the calcium phosphate and polyethylenimine (PEI) methods. A useful cell line of HEK293 is one that expresses the EBNA1 protein of EBV, such as 293-6E (Loignon, et al. 2008). Transformed HEK293 cells have been shown to secrete high levels of the protein complexes of the invention into the growth medium, thus allowing the purification of such protein complexes directly from the growth medium.
[0076] CHO cells are particularly suitable mammalian hosts for industrial production of the HCMV proteins of the invention for use as immunogens or antigens because they allow long-term, stable gene expression and high yields of proteins.
[0077] In some embodiments, the membrane protein complexes of the invention are secreted from the cells in which they are expressed. In other embodiments of the invention, the proteins of the invention are not secreted. In E. coil, for example, non-secreted proteins may accumulate in inclusion bodies. Methods for purifying recombinant proteins from inclusion bodies are well known in the art.
[0078] Transfection can be carried out by a range of methods including using calcium phosphate, electroporation, or by mixing a cationic lipid with the material to produce liposomes which fuse with the cell membrane and deposit their cargo inside.
[0079] Nucleic Acid Constructs
[0080] The invention provides a recombinant nucleic acid which encodes gL, gH that lacks a TM domain, and at least one additional HCMV glycoprotein. Preferably, said recombinant nucleic acid: (a) is not a self-replicating RNA molecule; (b) is not an alphavirus replicon (c) does not contain: any alphavirus nonstructural proteins, such as NSP1, NSP2, NSP3 and NSP4; (d) dos not contain: an Internal Ribosomal Entry Site (IRES), such as or EMCV or EV71; and/or (e) does not contain a viral 2A site, such as FMDV. An example of said recombinant nucleic acid may be a single construct which encodes a gL protein of the invention, a gH protein of the invention, a pUL128 protein of the invention, a pUL130 protein of the invention and a pUL131 protein of the invention.
[0081] The invention also provides a plurality of recombinant nucleic acids which encode one or more proteins of the invention. For example, in one embodiment the invention provides two nucleic acid constricts: the first construct encoding a gH protein of the invention and a gL protein of the invention, and the second construct encoding a pUL128 protein of the invention, a pUL130 protein of the invention and a pUL131A protein of the invention.
[0082] The invention also provides a plurality of recombinant nucleic acids comprising: a first recombinant nucleic acid molecule which encodes a gL. protein of the invention: a second recombinant nucleic acid molecule which encodes a gH protein of the invention; and one or more third recombinant nucleic acid molecules which encode one or more additional HCMV proteins. Preferably, said first, second andlor third recombinant nucleic acid molecule(s): (a) is/are not a self-replicating RNA molecule; (b) is/are not (an) alphavirus replicon(s); (c) do(es) not encode any alphavirus nonstructural proteins, such as NSP1, NSP2, NSP3 and NSP4; (d) do(es) not contain: an Internal Ribosomal Entry Site (IRES), such as EMCV or EV71; and/or (c) doe(es) not contain a viral 2A site, such as FMDV.
[0083] In one embodiment, the third recombinant nucleic acid molecule encodes a gO protein of the invention and in another embodiment the third recombinant nucleic acid molecule(s) encode(s) pUL128, pUL130 and pUL131A proteins of the invention. Thus the sequences encoding each individual polypeptide in a complex can be present in a single nucleic acid molecule, or distributed among two or more nucleic acid molecules.
[0084] In one embodiment, the invention provides a plurality of recombinant nucleic acids comprising: (i) a first recombinant nucleic acid molecule which encodes a gL protein of the invention, (ii) a second recombinant nucleic acid molecule which encodes a gH protein of the invention, (iii) a third recombinant nucleic acid molecule which encodes a pUL128 protein of the invention, (iv) a fourth recombinant nucleic acid molecule which encodes a pUL130 protein of the invention, and (v) a fifth recombinant nucleic acid molecule which encodes a pUL 131A protein of the invention. Preferably, said first, second, third, fourth and/or fifth recombinant nucleic acid molecule(s): (a) is/are not a self-replicating RNA molecule; (b) is/are not (an) alphavirus replicon(s); (b) do(es) not encode any alphavirus nonstructural proteins, such as NSPI, NSP2, NSP3 and NSP4; (c) do(es) not contain: an Internal Ribosomal Entry Site (IRES), such as EMCV or EV71; and/or (d) do(es) not contain a viral 2A site, such as FMDV.
[0085] Nucleic acid molecules which encode a gH protein of the invention can have various degrees of identity to SEQ ID NO: 24 such as at least 89% 90%, 91%, 92%, 93%, 94%, 95%, 96%. 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 24. .sup.-Nucleic acid molecules which encode a gL protein of the invention can have various degrees of identity to SEQ ID NO: 25 such as at least 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 25. Nucleic acid molecules which encode a pUL128 protein of the invention can have various degrees of identity to SEQ ID NO: 26 such as at least 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 26, Nucleic acid molecules which encode a pUL130 protein of the invention can have various degrees of identity to SEQ ID NO: 27 such as at least 74%.sub.; 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 27. Nucleic acid molecules which encode a pUL131 A protein of the invention can have various degrees of identity to SEQ ID NO: 28 such as at least 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 28.
[0086] The nucleic acids of the invention may comprise genomic DNA and/or cDNAs. Unlike cDNA, genomic DNA may contain introns. Some genes are expressed more efficiently when introns are present. Genomic UL128 and UL131A genes each consist of two e;xons, whereas UL130 does not contain any introns. If genomic sequences are used, the proteins that are produced will depend on splicing, which can vary according to which expression system is used.
[0087] The invention provides vectors that comprise said nucleic acids, wherein said vectors include suitable promoters and terminators. Said recombinant nucleic acids may be plasmids, or may be incorporated into the genome of a cell. The promoters in these vectors can be HCMV promoters or non-HCMV promoters.
[0088] The invention also provides a process for expressing an HCMV membrane protein complex comprising gH, gL and at least one more HCIVIV glycoprotein by introducing one or more recombinant nucleic acid molecules which encode gH, gL and at least one more HCMV glycoprotein into an expression system; expressing said one or more nucleic acids in said expression system; and purifying said HCMV membrane protein complex. In sonic embodiments, this process comprises transfecting cells with a first nucleic acid construct which encodes: either gH, gL, pUL128, pUL130 and pUL131A proteins of the invention or gift gL and gO proteins of the invention. In some embodiments, this process may comprise transfecting cells with a first nucleic acid construct which encodes a di protein of the invention, a second nucleic acid construct which encodes a gL protein of the invention; and one or more third nucleic acid construct(s) which encode(s) one or more additional HCMV glycoprotein(s) of the invention. In sonic embodiments, this process may comprise transfecting cells with a first nucleic acid construct which encodes a gH protein of the invention and a gL protein of the invention; and a second nucleic acid construct(s) which encode(s) one or more additional HCMV glycoprotein(s) of the invention, such as gO or pUL128, pUL130 and pUL131A.
[0089] Said HCMV membrane protein complex may be expressed in a mammalian cell. Said isolated HCMV membrane protein complex may optionally be purified.
[0090] Cells of the invention
[0091] The invention also provides a cell that expresses a nucleic acid molecule or plurality of nucleic acid molecules of the invention, wherein said cell does not comprise the full HCMV genome. Said cell may be stably transformed with said nucleic acid molecule or plurality of nucleic acid molecules of the invention. Preferably, said cell is a mammalian cell, for example a CHO cell.
[0092] The invention provides a cell comprising gH, gL and at least one additional HCMV glycoprotein, wherein said cell does not contain the HCMV genome and/or does not produce HCMV virions and/or does not express any non-envelope HCMV proteins.
[0093] Isolation and Purification of Membrane Protein Complexes
[0094] Complexes of the invention are preferably prepared and used in isolated form. The term "isolated" as used herein means removed from its natural environment. Hence, an "isolated HCMV membrane protein complex" does not encompass the HCMV membrane protein complex on the surface of HCMV infected cells or within an infectious HCMV virion.
[0095] Using the expression methods described in the examples, the complexes of the invention can be produced at high yields. [See above].
[0096] The invention provides processes for purifying HCMV membrane complexes of the invention. Such processes of the invention allow for production of the HCMV membrane protein complex at a purity of >85%, >86%, >87%, >88%, >89%, >90%, >91%, >92%, >93%, >94% or >95% of total protein by mass, as determined by gel electrophoresis. These high levels of purity make the complexes suitable for use as an immunogen in diagnostic applications or as an antigen in vaccine formulations.
[0097] The invention provides a process for purifying an HCMV membrane protein complex of the invention, wherein said purification comprises one or more chromatographic steps. Said chromatographic steps may comprise affinity chromatography, such as Ni.sup.2+ affinity chromatography and/or size exclusion chromatography.
[0098] Compositions
[0099] The invention also provides compositions comprising the isolated HCMV membrane protein complexes of the invention. The invention also provides compositions comprising the purified HCMV membrane protein complexes of the invention.
[0100] The HCMV membrane protein complex can he incorporated into an immunogenic composition, or a vaccine composition. Such compositions can be used to raise antibodies in a mammal (e.g. a human).
[0101] The invention provides pharmaceutical compositions comprising an HCMV membrane protein complex of the invention. Similarly, the invention provides processes for making a pharmaceutical composition involving combining an HCMV membrane protein complex of the invention with a pharaceutically acceptable carrier.
[0102] In addition to their antigens, immunogenic and pharmaceutical compositions of the invention typically include a pharmaceutically acceptable carrier, and a thorough discussion of such carriers is available in Remington: The Science and Practice of Pharmacy.
[0103] The pH of the composition is usually between 6 and 8, and more preferably between 6.5 and 7.5 (e.g. about 7). Stable pH may be maintained by the use of a buffer e.g. a Tris buffer, a citrate buffer, phosphate buffer, or a histidine buffer. Thus a composition will generally include a buffer.
[0104] A composition may be sterile and/or pyrogen-free. Compositions may be isotonic with respect to humans.
[0105] A composition comprises an immunologically effective amount of its antigen(s). An `immunologically effective amount` is an amount which, when administered to a subject, is effective for eliciting an antibody response against the antigen. This amount can vary depending upon the health and physical condition of the individual to be treated, their age, the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials. The antigen content of compositions of the invention will generally be expressed in terms of the mass of protein per dose. A dose of 10-500 .mu.g (e.g. 50 .mu.g) per antigen can be useful.
[0106] Immunogenic compositions may include an immunological adjuvant. Thus, for example, they may include an aluminium salt adjuvant or an oil-in-water emulsion (e.g an oil-in-water emulsion comprising squalene, such as MF59 or AS03). Suitable aluminium salts include hydroxides (e.g. oxyhydroxides), phosphates (e.g. hydroxyphosphates, orthophosphates), (e.g see chapters 8 & 9 of Vaccine Design . . . (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum), or mixtures thereof The salts can take any suitable form (e.g. gel, crystalline, amorphous, etc.), with adsorption of antigen to the salt being preferred. The concentration of Al.sup.+++ in a composition for administration to a patient is preferably less than 5 mg/ml e.g. <4 mg/ml, <3 mg/ml, <2 mg/ml, <1 mg/ml, etc. A preferred range is between 0.3 and 1 mg/ml. A maximum of 0.85mg/dose is preferred. Aluminium hydroxide and aluminium phosphate adjuvants are particularly suitable for use with the invention.
[0107] One suitable immunological adjuvant comprises a compound of Formula (I) as defined in WO2011/027222, or a pharmaceutically acceptable salt thereof, adsorbed to an aluminum salt. Many further adjuvants can be used, including any of those disclosed in Powell & Newman (1995).
[0108] Compositions may include an antimicrobial, particularly when packaged in multiple dose format. Antimicrobials such as thiomersal and 2-phenoxyethanol are commonly found in vaccines, but it is preferred to use either a mercury-free preservative or no preservative at all.
[0109] Compositions may comprise detergent e.g a polysorbate, such as polysorbate 80. Detergents are generally present at low levels e.g. <0.01%.
[0110] Compositions may include sodium salts (e.g. sodium chloride) to give tonicity. A concentration of 10+2 mg/ml NaCl is typical e.g. about 9 mg/ml.
[0111] Compositions of the invention will generally be administered directly to a subject. Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or by any other suitable route. Intramuscular administration is preferred e.g. to the thigh or the upper arm. Injection may be via a needle (e.g. a hypodermic needle), but needle-free injection may alternatively be used. A typical intramuscular dosage volume is 0.5 ml.
[0112] Administration can involve a single dose schedule or a multiple dose schedule.
[0113] The subject who is immunised is a human being, who may be any age e.g. 0-12 months old, 1-5 years old, 5-18 years old, 18-55 years old, or more than 55 years old.
[0114] Vaccines of the invention may be prophylactic (i.e. to prevent disease) or therapeutic (i.e. to reduce or eliminate the symptoms of a disease).
[0115] Isolated and/or purified HCMV membrane protein complexes of the invention can be administered alone or as either prime or boost in mixed-modality regimes, such as a RNA prime followed by a protein boost. Benefits of the RNA prime protein boost strategy, as compared to a protein prime protein boost strategy, include, for example, increased antibody titers, a more balanced IgG1:IgG2a subtype profile, induction of TH1-type CD4+ T cell-mediated immune response that was similar to that of viral particles, and reduced production of non-neutralizing antibodies. The RNA prime can increase the immunogenicity of compositions regardless of whether they contain or do not contain an adjuvant.
[0116] In the RNA prime-protein boost strategy, the RNA and the protein are directed to the same target antigen. Examples of suitable modes of delivering RNAs include virus-like replicon particles (VRPs), alphavirus RNA, replicons encapsulated in lipid nanoparticles (LNPs) or formulated RNAs, such as replicons formulated with cationic nanoemulsions (CNEs). Suitable cationic oil-in-water nanoemulsions are disclosed in WO2012/006380 e.g. comprising an oil core (e.g. comprising squalene) and a cationic lipid (e.g. DOTAP. DMTAP, DSTAP, DC-cholesterol, etc.).
[0117] WO2012/051211 discloses that antibodies to the pentameric complex are produced in mice that have been immunized with VRPs and formulated RNAs (CNEs and LNPs) that encode the protein constituents of the pentameric complex. These antibodies have been found to be capable of neutralizing HCMV infection in epithelial cells. The RNA prime-protein boost regimen may involve first (e.g. at weeks 0-8) performing one or more priming immunization(s) with RNA (which could be delivered as VRPs, LNPs, CNEs, etc.) that encodes one or more of the protein components of an HCMV membrane protein complex of the invention and then perform one or more boosting immunization(s) later (e.g. at weeks 24-58) with: an isolated WNW membrane protein complex of the invention, optionally formulated with an adjuvant or a purified HCMV membrane protein complex of the invention, optionally formulated with an adjuvant.
[0118] The invention thus provides an immunogenic composition comprising: a self-replicating RNA molecule that encodes a first polypeptide HCMV antigen comprising a first epitope; and a second polypeptide HCMV antigen comprising a second epitope. The invention also relates to kits comprising: (i) a priming composition comprising a self-replicating RNA molecule that encodes a first polypeptide antigen that comprises a first epitope from a pathogen; and (ii) a boosting composition comprising a second polypeptide antigen that comprises a second epitope from the pathogen.
[0119] Antigens may be independently selected from the group consisting of gB, gH, gL, gO pUL128, pUL130 and pUL131A. Said first polypeptide HCMV antigen is preferably an HCMV membrane protein complex of the invention, such as the trimeric gH/gL/gO complex or the pentameric complex. Said second polypeptide HCMV antigen is preferably: an isolated HCMV membrane protein complex of the invention, such as the trimeric gH/gL/gO complex or the pentameric complex or a purified HCMV membrane protein complex of the invention, such as the trimeric gH/gL/gO complex or the pentameric complex. The first and second polypeptide antigens can be substantially the same. The first polypeptide antigen can be a soluble or membrane anchored polypeptide, and the second polypeptide antigen can be a soluble polypeptide. The first polypeptide antigen can be a fusion polypeptide. The second polypeptide antigen can be a fusion polypeptide. The self-replicating RNA can be an alphavirus-derived RNA replicon.
[0120] The self-replicating RNA molecule can comprise one or more modified nucleotides. In some embodiments, the self-replicating RNA molecule encodes an HCMV membrane protein complex of the invention, such as the trimeric gH/gL/gO complex or the pentameric complex of the invention. In some embodiments, the second polypeptide antigen is a purified HCMV membrane protein complex of the invention, such as a purified tritneric gH/gL/gO complex or purified pentameric complex of the invention.
[0121] In some embodiments, the RNA molecule is encapsulated in, bound to or adsorbed on a cationic lipid, a liposome, a cochleate, a virosome, an immune-stimulating complex, a microparticle, a microsphere, a nanosphere, a unilamellar vesicle, a multilamellar vesicle, an oil-in-water emulsion, a water-in-oil emulsion, an emulsome, a polycationic peptide, a cationic nanoemulsion or combinations thereof.
[0122] In some embodiments, the priming composition of the kit or the immunogenic composition further comprises a cationic lipid, a liposome, a cochleate, a virosome, an immune-stimulating complex, a microparticle, a microsphere, a nanosphere, a unilamellar vesicle, a multilamellar vesicle, an oil-in-water emulsion, a water-in-oil emulsion, an emulsome, a polycationic peptide, or a cationic nanoemulsion.
[0123] Antibodies of the Invention
[0124] The invention provides antibodies which recognise an isolated and/or purified HCMV membrane protein complex of the invention, but which do not bind to any of isolated gH, gL, gO, pUL128, pUL130 or pUL131A polypeptides and/or do not bind to isolated gH-gL heterodimers.
[0125] As described below, antibodies of the invention may be human or humanised antibodies and/or they may be monoclonal or polyclonal antibodies.
[0126] Antibodies of the invention may be polyclonal or monoclonal. Monoclonal antibodies (mAbs) are preferred for many situations. The term "monoclonal" as originally used in relation to antibodies referred to antibodies produced by a single clonal line of immune cells, as opposed to "polyclonal" antibodies that, while all recognizing the same target protein, were produced by different B cells and would be directed to different epitopes on that protein. As used herein, the word "monoclonal" does not imply any particular cellular origin, but refers to any population of antibodies that display a single binding specificity and affinity for a particular epitope in the same target protein. This usage is normal in the art.
[0127] Thus a mAb may he produced using any suitable protein synthesis system, including immune cells, non-immune cells, acellular systems, etc. A mAb can thus be produced by a variety of techniques, including conventional monoclonal antibody methodology (e.g. the standard somatic cell hybridization technique of Kohler & Milstein), by viral or oncogenic transformation of B lymphocytes, by combinatorial synthesis, by phage display, etc. Thus antibodies of the invention may be raised in vivo using: an isolated HCMV membrane protein complex of the invention as an antigen or a purified HCMV membrane protein complex of the invention as an antigen. The animal which raises the antibodies can be a mouse, a rat, a rabbit, a goat, etc. As an alternative approach, antibodies may he identified using in vitro selection methods, such as phage display of antibodies.
[0128] Antibodies of the invention can take various forms. For instance, they may be native antibodies, as naturally found in mammals. Native antibodies are made up of heavy chains and light chains. The heavy and light chains are both divided into variable domains and constant domains. The ability of different antibodies to recognize different antigens arises from differences in their variable domains, in both the light and heavy chains. Light chains of native antibodies in vertebrate species are either kappa (.kappa.) or lambda (.lamda.), based on the amino acid sequences of their constant domains. The constant domain of a native antibody's heavy chains will be .alpha., .delta., .epsilon., .gamma. or .mu. giving rise respectively to antibodies of IgA, IgD, IgE, IgG, or IgM class. Classes may be further divided into subclasses or isotypes e.g. IgG1, IgG2, IgG3, IgG4, IgA, IgA2, etc. Antibodies may also be classified by allotype e.g. a .gamma. heavy chain may have G1m allotype a, f, x or z, G2m allotype n, or G3m allotype b0, b1, b3, b4, b5, c3, c5, g1, g5, s, t, u, or v; a .kappa. light chain may have a Km(1) Km(2) or Km(3) allotype. A native IgG antibody has two identical light chains (one constant domain CL and one variable domain VL) and two identical heavy chains (three constant domains CH1 CH2 & CH3 and one variable domain VH), held together by disulfide bridges. The domain and three-dimensional structures of the different classes of native antibodies are well known.
[0129] Where an antibody of the invention has a light chain with a constant domain, it may be a .kappa. or .lamda. light chain. Where an antibody of the invention has a heavy chain with a constant domain, it may he an .alpha., .delta., .epsilon., .gamma. or .mu. heavy chain. Heavy chains in the .gamma. class (i.e. IgG antibodies) are preferred.
[0130] Antibodies of the invention may be fragments of native antibodies that retain antigen binding activity. For instance, papain digestion of native antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fe" fragment without antigen-binding activity. Pepsin treatment yields a "F(ab')2" fragment that has two antigen-binding sites. "Fv" is the minimum fragment of a native antibody that contains a complete antigen-binding site, consisting of a dimer of one heavy chain and one light chain variable domain. Thus an antibody of the invention may be Fab, Fab', F(ab').sub.2, Fv, or any other type, of fragment of a native antibody.
[0131] An antibody of the invention may be a "single-chain Fv" ("scFv" or "sFv"), comprising a VH and VL domain as a single polypeptide chain. Typically the VH and VL domains are joined by a short polypeptide linker (e.g. >12 amino acids) between the VH and VL domains that enables the scFv to form the desired structure for antigen binding. A typical way of expressing scFv proteins, at least for initial selection, is in the context of a phage display library or other combinatorial library. Multiple scFvs can he linked in a single polypeptide chain.
[0132] An antibody of the invention may he a "diabody" or "triabody" etc., comprising multiple linked Fv (scFv) fragments. By using a linker between the VH and VL domains that is too short to allow them to pair with each other (e.g. <12 amino acids), they are forced instead to pair with the complementary domains of another Fv fragment and thus create two antigen-binding sites. These antibodies may include CH and/or CL domains.
[0133] An antibody of the invention may be a single variable domain or VHM antibody. Antibodies naturally found in camelids camels and llamas) and in sharks contain a heavy chain but no light chain. Thus antigen recognition is determined by a single variable domain, unlike a mammalian native antibody. The constant domain of such antibodies can be omitted while retaining antigen binding activity. One way of expressing single variable domain antibodies, at least for initial selection, is in the context of a phage display library or other combinatorial library.
[0134] An antibody of the invention may be a "domain antibody" (dAb). Such dAbs are based on the variable domains of either a heavy or light chain of a human antibody and have a molecular weight of approximately 13 kDa (less than one-tenth the size of a full antibody). By pairing heavy and light chain dAbs that recognize different targets, antibodies with dual specificity can be made. dAbs are cleared from the body quickly and so benefit from a sustained release system, but can additionally be sustained in circulation by fusion to a second dAb that binds to a blood protein (e.g. to serum albumin), by conjugation to polymers (e.g. to a polyethylene glycol), or by other techniques.
[0135] The antibody may have a scaffold which is based on the fibronectin type III domain e.g. an adnectin or trinectin. The fibronectin-based scaffold is not an immunoglobulin, although the overall fold is closely related to that of the smallest functional antibody fragment. Because of this structure the non-immunoglobulin antibody mimics antigen binding properties that are similar in nature and affinity to those of natural antibodies. The FnIII domain has 7 or 8 beta strands which are distributed between two beta sheets, which themselves pack against each other to form the core of the protein, and further containing loops (analogous to antibody CDRs) which connect the beta strands to each other and are solvent exposed. There are at least three such loops at each edge of the beta sheet sandwich, where the edge is the boundary of the protein perpendicular to the direction of the beta strands. The FnIII loops can he replaced with immunoglobulin CDRs using standard cloning techniques, and can be used in a loop randomization and shuffling strategy in vitro that, is similar to the process of affinity maturation of antibodies in vivo. The FnIII scaffold may be based on the tenth module of fibronectin type III (i.e. .sup.10Fn3).
[0136] Thus the term "antibody" as used herein encompasses a range of proteins having diverse structural features, but usually including at least one immunoglobulin domain, having an all-.beta. protein fold with a 2 layer sandwich of anti-parallel .beta.-strands arranged in two .beta.-sheets.
[0137] Antibodies used with the invention may include a single antigen binding site e.g as in a Fab fragment or a scFv) or multiple antigen binding sites (e.g. as in a F(ab')2 fragment or a diabody or a native antibody). Where an antibody has more than one antigen binding site then advantageously it can result in cross-linking of antigens.
[0138] Where an antibody has more than one antigen-binding site, the antibody may be mono specific (i.e. all antigen-binding sites recognize the same antigen) or it may be multi specific (i.e. the antigen-binding sites recognise more than one antigen).
[0139] An antibody of the invention may include a non-protein substance e.g. via covalent conjugation. For example, an antibody may include a radio isotope e.g. the ZEVALIN.TM. and BEXXAR.TM. products include .sup.90Y and .sup.311I isotopes, respectively. As a further example, an antibody may include a cytotoxic molecule e.g. MYLOTARG.TM. is linked to N-acetyl-.gamma. calicheamicin, a bacterial toxin. As a further example, an antibody may include a covalently-attached polymer e.g. attachment of polyoxyethylated polyols or polyethylene glycol (PEG) has been reported to increase the circulating of antibodies.
[0140] In some embodiments, an antibody can include one or more constant domains (e.g. including CH or CL domains). As mentioned above, the constant domains may form a .kappa. or .lamda. light chain or an .alpha., .delta., .epsilon., .gamma. or .mu. heavy chain, Where an antibody includes a constant domain, it may he a native constant domain or a modified constant domain. A heavy chain may include either three (as in .alpha., .gamma., .delta. classes) or four (as in .mu., .epsilon. classes) constant domains. Constant domains are not involved directly in the binding interaction between an antibody and an antigen, but they can provide various effector functions, including but not limited to: participation of the antibody in antibody dependent cellular cytotoxicity (ADCC); Clq binding; complement dependent cytotoxicity; Fe receptor binding; phagocytosis; and down regulation of cell surface receptors.
[0141] The constant domains can form a "Fe region", which is the C-terminal region of a native antibody's heavy chain. Where an antibody of the invention includes a Fc region, it may be a native Fc region or a modified Fe region. A Fc region is important for some antibodies' functions e.g. the activity of HERCEPTIN.TM. is Fc dependent. Although the boundaries of the Fe region of a native antibody may vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226 or Pro230 to the heavy chain's C-terminus. The Fc region will typically be able to bind one or more Fc receptors, such as a Fc.gamma.RI (CD64), a Fvc.gamma.RII (e.g. Fc.gamma.RIIA, Fc.gamma.RIIB1, Fc.gamma.RIIB2, Fc.gamma.RIIC), a Fc.gamma.RIII (e.g. Fc.gamma.RIIIA, Fc.gamma.RIIIB), a FcRn, Fc.alpha.R (CD89), Fc.delta.R, Fc.mu.R, a Fc.epsilon.RI (e.g. Fc.epsilon.RI.alpha..beta..gamma.2 or Fc.epsilon.RI.alpha..gamma.2), Fc.epsilon.RII (e.g. Fc.epsilon.RIIA or Fc.epsilon.RIIB), etc. The Fc region may also or alternatively be able to bind to a complement protein, such as Clq. Modifications to an antibody's Fc region can be used to change its effector function(s) e.g. to increase or decrease receptor binding affinity.
[0142] Antibodies will typically be glycosylated. N-linked glycans attached to the CH2 domain of a heavy chain, for instance, can influence Clq and FcR binding, with aglycosylated antibodies having lower affinity for these receptors. The glycan structure can also affect activity e.g. differences in complement-mediated cell death may be seen depending on the number of galactose sugars (0, 1 or 2) at the terminus of a glycan's biantennary chain. An antibody's glycans preferably do not lead to a human immunogenic response after administration.
[0143] Antibodies can be prepared in a form free from products with which they would naturally be associated. Contaminant, components of an antibody's natural environment, include materials such as enzymes, hormones, or other host cell proteins.
[0144] Useful antibodies have nanomolar or picomolar affinity constants for their target antigens e.g. 10.sup.-9 M, 10.sup.-10 M, 10.sup.-11 M, 10.sup.-12 M, 10.sup.-13 M or tighter). Such affinities can be determined using conventional analytical techniques e.g. using surface plasmon resonance techniques as embodied in BIAcore.TM. instrumentation and operated according to the manufacturer's instructions.
[0145] The monoclonal antibody used with the invention may be a human antibody, a humanized antibody, a chimeric antibody or (e.g. for veterinary purposes) a non-human antibody.
[0146] In some embodiments the antibodies are human mAbs. These can be prepared by various means. For example, human B cells producing an antigen of interest can be immortalized e.g. by infection with Epstein Barr Virus (EBV), optionally in the presence of a polyclonal B cell activator. Human monoclonal antibodies can also be produced in non-human hosts by replacing the host's own immune system with a functioning human immune system e.g. into Scid mice or Trimera mice. Transgenic and transchromosomic mice have been successfully used for generating human monoclonal antibodies, including the "humab mouse" from Medarex and the "xeno-mouse" from Abgenix, collectively referred to herein as "human Ig mice". Phage display has also been successful for this purpose. Unlike non-human antibodies, human antibodies will not elicit an immune response directed against their constant, domains when administered to humans. Furthermore, the variable domains of these human antibodies are fully human (in particular the framework regions of the variable domains are fully human, in addition to the complementarity determining regions [CDRs]) and so will not elicit an immune response directed against the variable domain framework regions when administered to humans (except, potentially, for any anti-idiotypic response). Human antibodies do not include any sequences that do not have a human origin.
[0147] In some embodiments the antibodies are humanised mAbs, CDR-grafted mAbs or chimeric mAbs. These can be prepared by various means. For example, they may be prepared based on the sequence of a non-human (e.g. murine) monoclonal antibody. DNA encoding the non-human heavy and light chain immunoglobulins can be obtained and engineered to contain human immunoglobulin sequences using standard molecular biology techniques. For example, to create a chimeric antibody, the murine variable regions can be linked to human constant regions using methods known in the art. To create a CDR-grafted antibody, the murine CDR regions can be inserted into a human framework. To create a humanized antibody, one or more non-CDR variable framework residue(s) is also altered. The H1, H2 and H3 CDRs may be transferred together into an acceptor VH domain, but it may also be adequate to transfer only one or two of them. Similarly, one two or all three of the L1, L2 and L3 CDRs may be transferred into an acceptor VL domain. Preferred antibodies will have 1, 2, 3, 4, 5 or all 6 of the donor CDRs. Where only one CDR is transferred, it will typically not be the L2 CDR, which is usually the shortest of the six. Typically the donor CDRs will all be from the same human antibody, but it is also possible to mix them e.g. to transfer the light chain CDRs from a first antibody and the heavy chain CDRs from a second antibody.
[0148] In some embodiments the antibodies are non-human mAbs. These can be prepared by various means e.g. the original Kohler & Milstein technique for preparing murine mAbs.
[0149] Methods for Raising Antibodies of the Invention
[0150] The invention also provides a method for raising antibodies using: isolated HCMV membrane protein complexes of the invention or purified HCMV membrane protein complexes of the invention. These antibodies may be human or humanised. Preferably, these antibodies are specific to the isolated HCMV membrane protein complexes of the invention, and do not bind to isolated gH, gL, gO, pUL128, pUL130 or pUL131A. Such antibodies may be used for diagnostic assays, and may be labelled directly or indirectly. A wide range of antibody labels are known in the art. In other embodiments of the invention, antibodies of the invention can be used for therapy, e.g. in the treatment of HCMV infection, and may be in the form of neutralizing antibodies, which can inhibit or neutralize the antigen's biological activity.
[0151] Definitions
[0152] "Recombinant" as used herein to describe a polynucleotide means a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of the polynucleotide with which it is associated in nature; and/or (2) is linked to a polynucleotide other than that to which it is linked in nature. The term "recombinant" as used with respect to a protein or polypeptide means a polypeptide produced by expression of a recombinant polynucleotide.
[0153] The term "comprising" encompasses "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X+Y.
[0154] The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.
[0155] The term "about" in relation to a numerical value x is optional and means, for example, x.+-.10%.
[0156] Unless specifically stated, a process comprising a step of mixing two or more components does not require any specific order of mixing. Thus components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.
[0157] Where animal (and particularly bovine) materials are used in the culture of cells, they should be obtained from sources that are free from transmissible spongiform encaphalopathies (TSEs), and in particular free from bovine spongiform encephalopathy (BSE). Overall, it is preferred to culture cells in the total absence of animal-derived materials.
[0158] Where a compound is administered to the body as part of a composition then that compound may alternatively be replaced by a suitable prodrug.
[0159] Sequence identity between polypeptide sequences is prerably determined by pairwise alignment algorithm using the Needleman-Wunsch global alignment algorithm (Needleman and Wunsch 1970), using default parameters (e.g. with Gap opening penalty=10.0, and with Gap extension penalty=0.5, using the EBLOSUM62 scoring matrix). This algorithm is conveniently implemented in the needle tool in the EMBOSS package (Rice, Longden and Bleasby 2000). Sequence identity should be calculated over the entire length of the polypeptide sequence of the invention.
[0160] Particular Embodiments of the Invention
[0161] Particular embodiments of the invention include:
[0162] 1. A process for producing an isolated HCMV membrane protein complex comprising gH, gL and at least one additional HCMNI glycoprotein, wherein said process comprises recombinant expression of said gH, gL and at least one more HCMV glycoprotein.
[0163] 2. The process of claim 1, wherein said process comprises the purification of the HCMV membrane protein complex.
[0164] 3. A process for expressing an HCMV membrane protein complex comprising gH, and at least one more HCMV glycoprotein by:
[0165] introducing one or more recombinant nucleic acid molecules which encode gH, gL and at least one more HCMV glycoprotein into an expression system;
[0166] expressing said one or more nucleic acids in said expression system; and
[0167] purifying said membrane protein complex.
[0168] 4. The process of claim 3, which comprises the step of transfecting cells with a first nucleic acid construct which encodes a fragment of gH that lacks the transmembrane domain, a second nucleic acid construct which encodes the gL protein; and a third nucleic acid construct which encodes at least one more HCMV glycoprotein.
[0169] 5. The process of claim 3 or claim 4, wherein said HCMV membrane protein complex is expressed in a mammalian cell.
[0170] 6. A process for producing a purified HCMV membrane protein complex comprising gH, gL and at least one more HCMV glycoprotein, wherein said process comprises expressing said HCMV membrane protein complex according to the process of claim 3 and purifying the isolated HCMV membrane protein complex.
[0171] 7. The process of any preceding claim, wherein the HCMV membrane protein complex consists of gH, gL, and gO.
[0172] 8. The process of any preceding claim, wherein the HCN4V membrane protein complex consists of gH, gL, pUL128, pUL130 and pUL131A.
[0173] The process of any preceding claim, wherein said gH comprises or consists of any one of the sequences recited in SEQ ID NOs: 1, 2, 3, 4, 6, 29 or 30; and/or said gL, comprises or consists of any one of the sequences recited in SEQ ID NOs: 7, 8, 9 or 31.
[0174] 9. The process of claim 7, wherein said gO comprises or consists of any one of the sequences recited in SEQ ID NOs: 10, 11, 12 or 32.
[0175] 10. The process of claim 8 or claim 9, wherein said:
[0176] pUL128 comprises or consists of any one of the sequences recited in SEQ ID NOs: 13, 14, 15 or 33:
[0177] pUL130 comprises or consists of any one of the sequences recited in SEQ ID NOs: 16, 17 or 34; and/or
[0178] pUL131A comprises or consists of any one of the sequences recited in SEQ ID NOs: 18, 19, 20 or 35.
[0179] 11. The process of any preceding claim, wherein said:
[0180] gH comprises or consists of sequences which is at least 70% identical to any one of the sequences recited in SEQ ID NOs: 1, 2, 3, 4, 6, 29 or 30; and/or
[0181] gL comprises or consists of sequences which is at least 70% identical to any one of the sequences recited in SEQ ID NOs: SEQ ID NOs: 7, 8, 9 or 31.
[0182] 12. The process of claim 11, wherein said gO comprises or consists of sequences which is at least 70% identical to any one of the sequences recited in SEQ ID NOs: SEQ ID NOs: 10, 11, 12 or 32.
[0183] 13. The process of claim 12, wherein said:
[0184] pUL128 comprises or consists of sequences which is at least 70% identical to any one of the sequences recited in SEQ ID NOs: 13, 14, 15 or 33;
[0185] PUL130 comprises or consists of sequences which is at least 70% identical to any one of the sequences recited in SEQ ID NOs: 16, 17 or 34; and/or
[0186] pUL131A comprises or consists of sequences which is at least 70% identical to any one of the sequences recited in SEQ ID NOs: 18, 19, 20 or 35.
[0187] 14. A process for purifying an HCMV membrane protein complex as defined in any one of the preceding claims, wherein said purification comprises one or more chromatographic steps.
[0188] 15. The process of claim 14, wherein said chromatographic steps comprise affinity chromatography, preferably Ni.sup.2+ affinity chromatography and/or size exclusion chromatography.
[0189] 16. The process of any preceding claim, wherein the WNW membrane protein complex has a purity of >85%. >86%, >87%, >88%. >89%, >90%, >91%, >92%, >93%, >94% or >95% by mass.
[0190] 17. The process of any preceding claim, wherein one or more of gH, gL gO, puL128, pUL130 and pUL131A in said HCMV membrane protein complex:
[0191] have a mammalian glycosylation pattern and/or
[0192] do not contain an insect cell pattern of glycosylation.
[0193] 18. A purified. HCMV membrane protein complex comprising gH, gL, and at least one more HMV glycoprotein.
[0194] 19. An HCMV membrane protein complex comprising gH, gL, and at least one more HCMV glycoprotein, wherein said complex is produced by the process of any preceding claim.
[0195] 20. A composition comprising the isolated MCMV membrane protein complex of claim 18 or claim 19.
[0196] 21. The composition of claim 20, wherein said composition does not contain polyacrylamide.
[0197] 22. The composition of claim 20 or claim 21, wherein said composition does not contain HCMV tegument or capsid proteins.
[0198] 23. The composition of any one of claims 20-22, wherein said composition is a liquid.
[0199] 24. The composition of any one of claims 20-23, wherein said composition is an immunogenic composition.
[0200] 25. The immunogenic composition of claim 24, which comprises
[0201] 26. The immunogenic composition of claim 25, wherein said comprises or consists of any one of the sequences recited in SEQ ID NOs: 21, 22, 23 or 36.
[0202] 27. The immunogenic composition of claim 26, wherein said gB comprises or consists of a sequence which is at least 70% identical to any one of the sequences recited in SEQ ID NOs: 21, 22, 23 or 36.
[0203] 28. The immunogenic composition of any one of claims 25-27, wherein said gB:
[0204] has a mammalian glycosylation pattern; and/or
[0205] does not contain an insect cell pattern of glycosylation.
[0206] 29. The immunogenic composition of any one of claim 24-28, wherein said composition is a vaccine.
[0207] 30. The immunogenic composition of any one of claims 24-29, which comprises an adjuvant.
[0208] 31. The immunogenic composition of claim 30, wherein said adjuvant is an oil-in-water emulsion or an aluminium salt.
[0209] 32. An immunogenic composition comprising:
[0210] a self-replicating RNA molecule that encodes an HCMV membrane protein complex; and
[0211] the HCMV membrane protein complex of claim 18 or claim 19.
[0212] 33. A kit comprising:
[0213] a priming composition comprising a self-replicating RNA molecule that encodes an HCMV membrane protein complex; and
[0214] a boosting composition comprising the FICIVIV membrane protein complex of claim 18 or claim 19.
[0215] 34. A recombinant nucleic acid molecule which encodes gL, gH that lacks a transmembrane domain, and at least one additional HCMV glycoprotein, wherein said recombinant nucleic acid:
[0216] (a) is not a self-replicating RNA molecule;
[0217] (b) is not an alphavirus replicon;
[0218] (c) does not encode any alphavirus nonstructural proteins, such as NSP1, NSP2, NSP3 and NSP4;
[0219] (d) does not contain: an internal Ribosomal Entry Site (IRES), such as EMCV or EV71; and/or
[0220] (e) does not contain a viral 2A site, such as FMDV.
[0221] 35. The recombinant nucleic acid molecule of claim 34, wherein said recombinant nucleic acid molecule encodes:
[0222] gL, gH that lacks a transmembrane domain, pUL128, pUL130 and pUt 131A; or
[0223] gL, gH that lacks a transmembrane domain and gO.
[0224] 36. A plurality of recombinant nucleic acids, wherein said plurality of recombinant nucleic acids encode gL, gH that lacks a transmembrane domain, and at least one additional HCMV glycoprotein, wherein one or more or all of said plurality of recombinant nucleic acids:
[0225] (a) is not a self-replicating RNA molecule;
[0226] (b) is not an alphavirus replicon;
[0227] (c) does not encode any alphavirus nonstructural proteins, such as NSP1, NSP2, NSP3 and NSP4;
[0228] (d) does not contain: an Internal Ribosomal a Entry Site (IRES), such as EMCV or EV71; and/or
[0229] (e) does not contain a viral 2A site, such as FMDV.
[0230] 37. The plurality of recombinant nucleic acids of claim 36 comprising:
[0231] a first construct encoding gH that lacks a transmembrane domain and gL; and
[0232] a second construct encoding one additional HCMV glycoprotein.
[0233] 38. The plurality of recombinant nucleic acids of claim 37, wherein said second construct encodes:
[0234] pUL128, pUL130 and pUL131A; or
[0235] gO.
[0236] 39. The plurality of recombinant nucleic acids of claim 36 comprising:
[0237] a first recombinant nucleic acid molecule which encodes gL;
[0238] a second recombinant nucleic acid molecule which encodes a fragment of gH that lacks a transmembrane domain; and
[0239] one or more third recombinant nucleic acid molecules which encode one or more additional HCMV proteins.
[0240] 40. The recombinant nucleic acid molecule of claim 34 or claim 35, or the plurality of recombinant nucleic acids molecules of any one of claims 36-39, wherein:
[0241] (a) said nucleic acid molecule which encodes gH is 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 24;
[0242] (b) said nucleic acid molecule which encodes gL is 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 25;
[0243] (c) said nucleic acid molecule which encodes pUL128 is 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%. 98% or 99% identical to the sequence recited in SEQ ID NO: 26;
[0244] (d) said nucleic acid molecule which encodes pUL130 is 74%. 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 27; and/or
[0245] (e) said nucleic acid molecule which encodes pUL131A is 74%, 76%, 78, 80%, 82%, 84%, 86%, 88%, 90%, 91% , 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence recited in SEQ ID NO: 28.
[0246] 41. A cell that expresses the recombinant nucleic acid or plurality of recombinant nucleic acids of any one of claims 34-40, wherein said cell does not comprise the full HCMV genome.
[0247] 42. The cell of claim 41, wherein said cell is stably transformed with said recombinant nucleic acid or plurality of recombinant nucleic acids.
[0248] 43. The cell of claim 41 or claim 42, wherein said cell is a mammalian cell.
[0249] 44. A cell comprising gH, gL and at least one additional HCMV glycoprotein, wherein said cell does not:
[0250] (a) contain the HCMV genome;
[0251] (b) produce HCMV virions.sup..
[0252] (c) contain self-replicating RNA molecules encoding said gH, gL and at least one additional HCMV glycoprotein; and/or
[0253] (d) contain alphavirus replicons.
[0254] 45. A process for producing an isolated or a purified HCMVHCMMV membrane protein complex comprising gH, gL and at least one additional HCMV glycoprotein. wherein said process involves growing the cell of any one of claims 41-44 in growth medium.
[0255] 46. The process of claim 45, wherein said HCMV membrane protein complex is secreted into said growth medium.
[0256] 47. The process of claim 46, wherein said HCMV membrane protein complex accumulates to a concentration of >0.8 mg, >0.85 mg, >0.88mg, >0.9 mg, >0.95 mg, >1.5mg, >2mg, >2.5 mg, >3 mg, >3.5 mg, >4 mg, >4.5 mg, >5 mg of complex per litre of growth medium.
[0257] 48. The process of any one of claims 45-47, wherein said process comprises purifying said HCMV membrane protein complex from said growth medium.
[0258] 49. A method for rai. antibodies using the HCMV membrane protein complex of claim 18 or claim 19.
[0259] 50. The method of claim 49, wherein said antibodies are human or humanised,
[0260] 51. The method of claim 49 or 50, wherein said antibodies are neutralizing antibodies.
[0261] 52. An antibody produced by the method of any one of claims 49-51.
[0262] 53. An antibody produced by the method of any one of claims 49-52, wherein said antibody binds to the isolated HCMV membrane protein complexes of any preceding claim, but not isolated gH, gL, gO, pUL128, pUL130 or pUL131A.
[0263] 54. The antibody of claim 52 or claim 53, wherein said antibody is for use in a diagnostic assay.
[0264] 55. The antibody of any one of claims 52-54, wherein said antibody is labelled directly or indirectly.
[0265] 56. The antibody of any one of claims 52-53, wherein said antibody is for use in therapy.
[0266] 58. An RNA prime-protein boost regimen comprising:
[0267] performing one or more priming immunization(s) with RNA that encodes one or more of the protein components of an HCMV membrane protein complex, wherein said HCMV membrane protein complex comprises gH, gL and at least one additional HCMV glycoprotein;
[0268] performing one or more boosting immunization(s) later with a purified HCMV membrane protein complex, wherein said purified HCMV membrane protein complex comprises gH, gL: and at least one additional HCMV glycoprotein,
BRIEF DESCRIPTION OF THE DRAWINGS
[0269] FIG. 1 shows the plasmid map of the 7591 bp construct used for the expression of His-tagged, soluble gH in mammalian cells. The nucleotide sequence of this construct is given as SEQ ID NO: 23. The construct comprises a CMV promoter, a gene which encodes SEQ ID NO: 4 (the gH soluble protein, which consists of amino acid residues 1-715 of the full-length gH protein) fused to a myc-polyhistidine tag, bovine growth hormone (BGH) polyadenylation (bgh-Poly A) signal termination sequence, F1 phage origin of replication, SV40 origin of replication, Neomycin resistance gene, pUC subgenomic promoter and an ampicillin resistance gene.
[0270] FIG. 2 shows the plasmid map of the 5156 bp construct used for the expression of gL in mammalian cells. The nucleotide sequence of this construct is given as SEQ ID NO: 24. The construct comprises a CMV promoter/enhancer which contains intronA, a gene which encodes SEQ ID NO: 7 (gL), bovine growth hormone (BGH) polyadenylation (bgh-PolyA) signal termination sequence, a kanamycin resistance gene and the ColE1 origin of replication.
[0271] FIG. 3 shows the plasmid map of the 4835 bp construct. used for the expression of UL128 in mammalian cells. The nucleotide sequence of this construct is given as SEQ ID NO: 25. The construct comprises a CMV promoter/enhancer which contains intronA, the UL128 gene, bovine growth hormone (BGH) polyadenylation (bgh-PolyA) signal termination sequence, a kanamycin resistance gene and the ColE1 origin of replication.
[0272] FIG. 4 shows the plasmid map of the 4964 bp construct used for the expression of UL130 in mammalian cells. The nucleotide sequence of this construct is given as SEQ ID NO: 26. The construct comprises a CMV promoter/enhancer which contains intronA, the UL130 gene, bovine growth hormone (BGH) polyadenylation (bgh-PolyA) signal termination sequence, a kanamycin resistance gene and the ColE1 origin of replication.
[0273] FIG. 5 shows the plasmid map of the 4709 bp construct used for the expression of UL131A in mammalian cells. The nucleotide sequence of this construct is given as SEQ ID NO: 27. The constrict comprises a CMV promoter/enhancer which contains intronA, the UL131A. gene, bovine growth hormone (BGH) polyadenylation (bgh-PolyA) signal termination sequence, a kanatnycin resistance gene and the ColE1 origin of replication.
[0274] FIG. 6 lanes A-C correspond to a silver-stained SDS-PAGE, whereas lanes E-K correspond to Western blot analysis. In lanes E-G, green=Anti-APPtag (gH) and red -=Anti-gL, whereas in lanes H-K, red=anti-6His (gO). The ladder is shown in lanes A, E and H. Lanes B, F and I correspond to samples that have been briefly heated to near boiling in the presence of dithiothreitol (DTT), whereas lanes C, G and K correspond to samples that have not been subjected to heat or DTT.
[0275] FIG. 7 shows a size exclusion chromatogram. All five proteins were eluted as a single peak, thus demonstrating the presence of an intact pentameric complex.
[0276] FIG. 8 shows SDS-PAGE and Western blot analysis.
[0277] FIG. 9 shows a comparison between the neutralization titers elicited by gH/gL either alone or formulated with MF59 versus those elicited by the pentameric complex either alone or formulated with MF59. Purified pentameric complex formulated with MF59 elicited higher neutralizing titers than the unformulated protein.
[0278] FIG. 10 shows the neutralization titers elicited by pentameric complex alone (A) and pentameric complex formulated with MF59 (B), aluminium oxyhydroxide (C) and aluminium hydroxide to which a TLR7 agonist is adsorbed (D).
[0279] FIG. 11 is a graph showing that self ampliyfying RNA and subunit, alone or in combination, elicit, high neutralizing antibody titers. In particular, the neutralization titers elicited by: the self amplifying RNA (self replicating RNA, encapsulated in LNPs) encoding the HMV pentameric complex; purified pentameric subunit adjuvanted with MF59; different sequences of self amplifying RNA followed by subunit in MF59; or a combination of self amplifying RNA and subunit are shown. Self amplifying :RNA and subunit dose were 1 .mu.g, mixed dose was 1+1 .mu.g. Neutralizing assay: VR1814 infection of ARPE-19 cells in presence of complement.
[0280] FIG. 12 are graphs showing the CD4+ T cell responses (in terms of the net % of CD4+ T cells, and the % of Th0, Th1 and Th2 CD4) to the vaccinations using purified gH/gL and pentameric subunits at (A) 3wp3 (day 64) and (B) 4wp3 (day 71).
[0281] FIG. 13 are graphs showing the CD4+ T cell responses (in terms of the net % of CD4+ T cells) to the vaccinations using purified pentameric complex at (A) 3wp3 (day 64) and (B) 4wp3 (day 71).
[0282] FIG. 14 are graphs showing the CD8+ T cell responses (in terms of the net % of CD8+ T cells) to the vaccinations using purified pentameric complex at (A) 3wp3 (day 64) and (B) 4wp3 (day 71).
[0283] FIG. 15 are graphs showing the CD8+ T cell responses (in terms of the net % of CD8+ T cells) to the vaccinations using gH peptide pool 2 at (A) 3wp3 (day 64) and (B) iwp3 (day 71).
EXAMPLES
[0284] Example 1--Immunogenicity of Replicons Expressing Pentameric Complex
[0285] In WO 2012/051211, an alphavirus replicon vector expressing all five proteins of the pentameric complex (gH, gL, pUL128, pUL130 and pUL131A) from a single construct was produced. The RNAs expressed by this vector were either packaged into VRPs or formulated for RNA vaccination either by complexing replicons with CNEs or by encapsulating replicons in LNPs. The VRPs and formulated RNAs were used to immunize BALB/c mice at three-week intervals. Sera from immunized mice were used in microneutralization assays to block infection of epithelial cells with HCMV TB40 (in the absence of complement). The HCMV TB40 strain is similar to clinical strains and infects endothelial and epithelial cells, natural tamet cells of HCMV in vivo (17). Microneutralization assay data demonstrated that replicons expressing the pentameric complex elicited more potently neutralizing antibodies than replicons expressing gH/gL. Microneutralisation data also showed that antibodies elicited by RNA expressing pentameric complex are able to neutralize HCMV infection in epithelial cells (because they target the pentameric complex), but not in fibroblasts (in which infection does not require the pentameric complex), thus demonstrating that RNA expressing the pentameric complex elicits antibodies that specifically target the intact pentameric complex rather than a gfilgi, dimer. This work demonstrates that antibodies can be raised against the pentameric complex, and these antibodies are capable of neutralizing HCMV infection.
[0286] Example 2--Constructs for Stable Expression of the Pentameric Complex in Mammalian Cells
[0287] Five nucleic acid constructs were produced to enable to expression and purification of the pentameric complex in mammalian cells. Previous attempts to purify the pentameric complex when constructs including the gene encoding the full-length gH protein were unsuccessful. In an attempt to overcome this problem, the inventors produced constructs that encode only the ectodomain of gH (gHecto) with a C-terminal myc-(His)6 tag (SEQ ID NO: 6) rather than the full-length sequence. The following five constructs were used to produce the pentameric complex: a construct encoding SEQ ID NO: 6 (FIG. 1 and SEQ ID NO: 23), a construct encoding full-length gL (FIG. 2 and SEQ ID NO: 24), a construct encoding full-length pUL128 (FIG. 3 and SEQ ID NO: 25), a construct encoding full-length pUL131 (FIG. 4 and SEQ ID NO: 26) and a construct encoding full-length pUL131A (FIG. 5 and SEQ ID NO: 27).
[0288] Example 3-Protocol for Transfection and Expression of Protein Complexes in 293-6E cells Materials:
[0289] Mammlian 293-6E cells (Gibco FreeStyle 293 Expression Medium; Opti-MEM and Polyethylenimine Linear (PEI), MW 25,000.
[0290] Preparation of Cells
[0291] 293-6E cells were maintained in serum-free 293 Expression Medium. Once the cells are doubling every 24 hours and. at more than 90% viability, the cells were diluted to a density of 1.times.10.sup.6/1 mL media.
[0292] Transfection
[0293] DNA corresponding to each construct was diluted in Opti-MEM using a volume of Opti-MEM that is 2.5% of the volume of cell culture to be transfected. DNA constructs were combined in an appropriate ratio such that total DNA was equal to 1 .mu.g /1 mL culture volume. For example, for the stable expression of the pentameric complex using 1 L cell culture. 200 .mu.g of each of SEQ ID NOs: 23-27 were added to 25 mL Opti-MEM.
[0294] PEI was diluted in Opti-MEM using a volume of Opti-MEM that is 2.5% the volume of cell culture to be transfected. The diluted PEI was incubated for 5 min at room temperature with occasional swirling to mix. 3 .mu.g PEI was used per 1 mL culture (e.g., for IL cell culture 3mg PEI was diluted in 25 mL Opti-MEM).
[0295] The DNA mix was added to the PEI mix (so that 1 .mu.g total DNA+3 .mu.g PEI were used per 1 mL culture), swirled and incubated at room temperature for 30 min. The DNA-PEI mix was added to cells by gradually adding mixture and swirling cells occasionally such that mixture was added evenly to culture. The cells were then immediately returned to the original growth conditions.
[0296] Expression and Harvest
[0297] Three days post-transfection, the media was harvested by spinning the cells down at 2,000 rpm. The media was then concentrated approximately 10.times. and diafiltered into buffer containing 300 mM NaCl, 25 mM Tris pH 7.5. Finally, the dialyzed media was frozen at -80.degree. C. Fresh media were added to the culture and three more days later the media was harvested and concentrated/diafiltered as above.
[0298] Example 4--Protocol for Purification of the HCMV complexes
[0299] Materials:
[0300] GE AKTAxpress; Qiagen Ni-NTA Superflow Cartridges, 5 ml; 96 Well Clear V-Bottom 2 mL Polypropylene Block; Buffer A (=binding buffer) 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 5 mM Imidazole; Buffer B (=elution buffer) 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 1 M Imidazole; SEC buffer (=for buffer exchange and size exclusion chromatography); 2.times.500 ml 0.5 M NaOH solution for system cleaning; Invitrogen NuPAGE.RTM. Novex 4-12% Bis-Tris Gel 1.0 mm, 12 well; NuPAGE.RTM. LDS Sample Buffer (4X) and NuPAGE.RTM. Sample Reducing Agent (10X).
[0301] Procedures
[0302] Buffers were prepared with endotoxin-free stock solutions and filtered Milli-Q water.
[0303] The medium to be purified was thawed in a warm water bath. Meanwhile AKTAxpress was cleaned with 0.5 M NaOH, to get rid of possible endotoxin contamination as well as residual protein/media, and then rinsed with filtered endotoxin-free Milli-Q water.
[0304] The Ni-NTA superflow cartridge was connected to the AKTAxpress system, and the water and buffers A and B were set in place. The program "Ni-NTA prep" was then started in order to flush the system with buffers, wash away ethanol in the column, and run buffer A through the column to equilibrate it.
[0305] The fraction collecting 96-well was prepared by putting 3.5 .mu.l 500 mM EDTA solution in each well. The loading sample was also prepared immediately before loading. When the medium had thawed, 1/500 volume of 2.5M Imidazole stock was added, and mixed gently. The loading sample was then set in place.
[0306] The purification program was then started. This program performed the following steps: sample loaded onto the column; washed away the unbound compounds with buffer A until the baseline settles; washed away non-specifically binding compounds with 15 column volumes of 2.5% buffer B (=30 mM Imidazole), elute the HCMV protein complex with 10 column volumes of 25% buffer B (=254 mM Imidazole); and finally washed the column with 5 column volumes of 100% buffer B (=1 M imidazole). The sample loading rate was 2.5 ml/min, whereas the wash and elution rate was 5 mL/min. The flow through in whole and 1.75 ml each of fractions from wash and elution were collected).
[0307] Six or seven fractions from the 250 mM Imidazole elution peak were selected to be analysed by SDS-PAGE. The four or five fractions which had the highest amount of protein according to the SDS-PAGE gel were pooled together, and dialyzed against 2 L SEC buffer for 1 h at RT, twice. The dialysate was recovered and the concentration measured using the BCA method. The presence of all components of the complex in the purified protein pool was verified by Western blot.
[0308] In order to increase the purity of some samples, size exclusion chromatography (SEC) was performed. On a Superdex 200 10/300 GL (GE Healthcare, 17-5175-01) equilibrated with SEC buffer for more than two column volumes. The dialyzed pool was loaded one column volume of buffer was run through the column, and 1 mL fractions were collected. SDS-PAGE was performed to determine which fractions to pool and keep.
[0309] Example 5--Expression, Purification and Characterization of the Trimeric gH/gL/gO Complex
[0310] The following three constructs were produced: gH ectodomain with C-terminal APP tag, full-length gL and full-length gO with a C-terminal (His) 6 tag. These three constructs were co-expressed in HEK 293 cells according to the method described in Example 3. The purification method of Example 4, involving Ni.sup.2+ affinity chromatography, was performed.
[0311] The purified samples were then subjected to SDS-PAGE, followed by Western blot analysis using anti-APPtag (gH), anti-gL and anti-6His (gO) antibodies. These three antibodies bound to different proteins under reducing conditions (+heat, +DTT), but all bound to a single complex in non-reducing conditions (-heat, -DIT), These results demonstrate the successful purification of gH/gL/gO as a trimeric complex. Approximately 0.5 mg/L media of the complex was purified from HEK 293 cells. SEC increased the purity of the gH/gL/gO complex.
[0312] Example 6--Expression and Purification of the Pentameric Complex
[0313] HEK293 cells were co-transfected with the five constructs described in Example 2 according to the method described in Example 3, the media were harvested 3 and 6 days post transfection, and the expressed protein was purified by Ni-NTA chromatography according to the method of Example 4.
[0314] A single peak in the size exclusion chromatogram for the purified pentameric complex (FIG. 7) indicated that an intact, monomeric complex was successfully purified. To assess whether all five members of the pentameric complex: gHecto-His, gL, pULI28, pUL130 and pUL131A were present within the purified complex, SDS-PAGE and Western blot analysis was performed.
[0315] Example 7--Western Blotting of HCMV Pentameric Complex
[0316] Materials:
[0317] BioRad Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell; Invitrogen Nitrocellulose membranes, 0.2 .mu.m pore; NuPAGE.RTM. Transfer Buffer (20X); Methanol; Odyssey.RTM. Blocking Buffer; DPBS; 10.times.PBS; Primary antibodies: Mouse anti-His tag, rabbit anti-gL 27-46, mouse anti-pUL128 4B10, mouse anti-UL 130 3E3, and rabbit anti-UL131A 90-136; secondary antibodies: IRDye 800CW Goat anti-Rabbit IgG (H+L), IRDye 680LT Goat anti-Mouse IgG (H+L).
[0318] Procedures
[0319] Three sets of antibodies were used, one for the detection of g ecto-His/gL, one for the detection of pUL128/pUL131A, and one for the detection of pUL130.
[0320] 9 .mu.l of the protein was mixed with 3.mu.l of LDS sample buffer/reducing agent mixture (9:1) and boiled at 100.degree. C. for 3 minutes. The boiled samples were loaded on the wells and am at 200 V for 35 minutes. The protein was then transferred to a 0.2 .mu.m nitrocellulose membrane using the Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell at 20 V for 35 minutes. The membrane was blocked with blocking buffer at room temperature for 30 minutes. The membranes were incubated with primary antibody solutions at RT for 1 hr. Primary antibody solutions consisted of: (A) 1:10000 dilution of anti-His tag and 1:5000 dilution of anti-gL, (B) 1:500 dilution of anti-pUL128 and 1:1000 dilution of anti-UL131A, and (C) 1:500 dilution of anti-UL 130, all diluted in 1:1 mixture of the blocking buffer and DPBS. The membranes were rinsed three times with PBS+0.1% Tween at RT, and then incubated with secondary antibody solutions at RT for 1 hr. For membranes (A) and (B), 1:25000 dilution each of anti-mouse and anti-rabbit. antibodies in a 1:1 mixture with the blocking buffer and DPBS was used. For membrane (C), 1:25000 dilution of anti-mouse antibodies were used only. The membranes were rinsed three times with PBS+0.1% Tween at RT, and then rinsed with DPBS once at RT. The membrane was scanned with Odyssey Infrared Imaging System (Li-Cor 9201) and analyzed using Odyssey software version 2.1.12.
[0321] All five members of the pentameric complex: gHecto-His, gL, pUt128, pUL130 and PUL131A were present within the purified complex, were identified by SDS-PAGE and Western blot analysis (FIG. 8), thus confirming the successful purification of the pentameric complex. gHecto-His, gL and pUL128 co-migrate in an SDS Bis-tris gel without heat nor DTT, but the association of pUL128 and gH/gL completely disappears in the presence of DTT (data not shown), thus demonstrating that pUL128 associates with gH/gL, through a disulfide bond. pUL130/pUL131A does not co-migrate with gH/gL/pUL128, indicating that it is incorporated into the pentameric complex by non-covalent bonds.
[0322] The most dominant band on the gels was near the gH/gL complex position with non-reducing, non-boiling conditions, and was thus thought to correspond to the WNW pentameric complex. The purity Was estimated to be 90%, by mass. With SEC purification the purity increased to nearly 100%. Approximately 0.6 mg of pentameric complex per litre of media could be purified by Ni-NTA purification.
[0323] Example 8--Recombinant Pentameric Complex Binds to Conformation Dependent Neutralizing Antibodies
[0324] A panel of human neutralizing antibodies (HumAb) were isolated from memory B cells of seropositve individuals, Direct ELISA was performed in which pentameric complex protein was immobilized on a plate and neutralizing antibodies were added in a 10-fold series dilution. The results of this ELISA are shown in Table 1, The HumAb bound to several UL proteins and gH/gL/pUL128/pUL130, which confirmed the correct conformation of the pentameric complex forms. Binding of HumAb against gH suggests that these epitopes are exposed on the recombinant complex.
TABLE-US-00001 TABLE 1 HuMab 10P3 5A2 4I22 8J16 7I13 15D8 8I21 3G16 11B12 cytotect Chick. Lyso. epitope pUL130/ pUL130/ pUL130/ pUL128/ pUL128/ pUL128 gH/gL/ gH/gL gH/gL pUL131A pUL131A pUL131A pUL130/ pUL130/ pUL128/ site A site B site 3 site 2 site 1 pUL131A pUL131A pUL130 site 1 site 2 KD 0.17 0.1 0.1 0.13 0.11 0.33 0.57 0.06 0.21 9.8 -- (nM)
[0325] Example 9--The Pentameric Complex Elicits Higher Neutralizing Titers than gH/gL
[0326] 0.1/1 .mu.g purified gH/gL and 0.16 .mu.g/1.6 .mu.g pentameric complex protein were formulated with or without MF59 and used for immunization of mice. The neutralizing titer of 3wp3 showed approximately a 4-fold increase for pentameric complex compared with gH/gL (which in turn elicits higher neutralizing titers compared with (FIG. 9). Purified pentameric complex formulated with MF59 elicited higher neutralizing titers than the unformulated protein (FIG. 9). Formulation of the pentameric complex with aluminium hydroxide to which a TLR7 agonist is adsorbed elicits even higher neutralizing titers than formulations with aluminium oxyhydroxide and/or MF59 (FIG. 10).
[0327] Example 10--Production of Monoclonal Antibodies using Purified gH/gL/gO as an Antigen
[0328] The purified gH/gL/gO complex is diluted to 0.4 mg/mL in 150 mM NaCl, 25 mM Tris (pH 7.5), 1 EDTA and frozen. The gH/gL/gO complex is thawed on the day of vaccination and 438 .mu.l of adjuvant is added to the thawed gH/gL/gO complex and mixed well by inverting the tubes at least 10 times. The resulting composition is used within 1 hour of mixing.
[0329] Two groups of three 6-8 week-old female BALB/c mice are immunized with a composition comprising 50 .mu.g purified gH/gL/gO, and MF59 adjuvant. Each mouse is immunized with 125 .mu.L in each quadriceps muscle (i.e. each mouse received 250 .mu.L) and bled from their orbital sinuses.
[0330] For each group of three mice, the immunization schedule is summarised in Table 2 below:
TABLE-US-00002 TABLE 2 Weeks 0 0 3 5 6 8 Procedure Bleed 0 Immunization 1 Immunization 2 Bleed 2 Immunization 3 Bleed 3
[0331] In order to purify monoclonal antibodies against gH/gL/gO, the gH/gL/gO antigen is used for primary ELISA screening and then the positive clones from the primary screening are then further screened using the gH/gL antigen.
[0332] A similar method can he employed to produce monoclonal antibodies using the purified pentameric complex as an antigen.
[0333] Example 11: A SAM.TM. Vaccine Prime, Protein Boost and Coadministration of RNA and Subunit Using the HCMV Pentameric Antigen
[0334] Mice were immunized three times, three weeks apart with a SAM vaccine, which is a self-replicating RNA as described herein, encoding the HCMV pentameric complex, purified pentameric subunit adjuvanted with MF59, different sequences of SAM vaccine Wowed by subunit in MF59, or a combination of the two (Table 3). The SAM vaccine was encapsulated in synthetic LNPs for non-viral delivery. A group of control mice did not receive any vaccine.
TABLE-US-00003 TABLE 3 No. No. Formu- Group Mice Doses Antigen lation Dose 1 4 -- 3 -- 1 2 8 3 SAM vaccine encoding Lipid 1 microgram pentameric complex nano- (Penta SAM vaccine) particle (LNP) 3 8 3 Purified pentameric MF59 1 microgram complex (Penta subunit) 4 8 3 1st Penta SAM vaccine LNP 1 microgram 2nd and 3rd Penta subunit MF59 5 8 3 1st and 2nd Penta LNP 1 microgram SAM vaccine MF59 3rd Penta subunit 6 8 3 Penta SAM + Penta LNP 1 microgram + subunit (mixed) 1 microgram
[0335] Sera were harvested three weeks after each immunization and used for ELISA to determine binding antibody titers, using the same purified antigen in the assay as in the subunit vaccine. The sera were also used for HCMV microneutralization assay using TB40 or VR1814 infection of ARPE-19 epithelial cells. Three or four weeks after the third immunization, spleens were extracted from sacrificed mice. Spleen cells were stimulated in vitro with purified protein or a pool of 15-mer peptides (overlapping by 11 amino acids) corresponding to the c-terminal half of the gH protein, stained for cytokine expression, and analyzed using flow cytometry.
[0336] SAM vaccine and subunit/MF59 alone elicited potently neutralizing antibody responses after three doses (FIG. 11). The pentameric subunit in MF59 did not respond as well as pentameric SAM vaccine to the first and second dose of vaccine, but titers elicited by subunit/M1:59 surpassed titers elicited by SAM vaccine after the third dose. One SAM vaccine prime followed by a single dose of subunit/MF59 elicited stronger neutralizing responses than two doses of subunit/MF59, but was equal to SAM alone. A second subunit/MF59 boost administered to these animals raised neutralizing responses to a level that exceeded those seen after three doses of subunit/MF59 or SAM vaccine. Two doses of SAM vaccine followed by a single dose of subunit/MF59 did not appear to benefit neutralizing responses compared to either subunit/MF or SAM vaccine alone. Mixing SAM vaccine with subunit, without MF59, elicited a strong response after the first dose, similar to RNA alone, and elicited strong neutralizing titers after two and three doses.
[0337] CD4+ T cell responses to the vaccinations using purified gH/gL and pentameric subunits were analyzed. SAM vaccine prime protein boost and mixed SAM vaccine+subunit elicited more CD4+ T cells responding to gH/gL re-stimulation than SAM vaccine or subunialF59 alone (FIG. 12). CD4+ responses to RNA alone were insignificant, whereas responses to subunit/MF59 alone were Th2/Th0 phenotype. The phenotype of the responding cells from mice immunized combinations of SAM vaccine and subunit was primarily Th1/Th0. Similar trends were seen when re-stimulating cells with purified pentameric complex, although the responses were generally stronger (FIG. 13).
[0338] CD8+ T cell responses to the vaccinations using purified pentameric subunit or a pool of peptides to gH were also analyzed. The only significant CD8 responses seen when re-stimulating with pentameric subunit was in the mice immunized with two doses of SAM vaccine followed by one dose of subunit/MF59 (FIG. 14). Cells from these animals also showed the strongest responses when re-stimulated with gH peptides (FIG. 15). Mice immunized with the SAM vaccine+subunit, with one dose of SAM vaccine followed by two doses of subunit/MF59, or with SAM vaccine alone, also showed significant responses to re-stimulation (FIG. 15).
[0339] Conclusions: One dose of SAM vaccine followed by two doses of subunit/MF59, as well as SAM vaccine+subunit, elicited higher neutralizing titers than subunit/MF59 alone. The response to SAM vaccine+subunit did not require addition of MF59 adjuvant. The largest impact of SAM vaccine prime subunit/MF59 boost was on cellular immune responses. Any combination including the SAM vaccine produced primarily a Th1/Th0 CD4+ response. Moreover, two immunizations with SAM vaccine followed by one immunization with subunit/MF59 produced the strongest CD8+ responses. This study shows that a SAM vaccine prime protein boost regimen can be optimized to produce a desired immune response, i.e. cellular or humoral.
REFERENCES:
[0340] Akter, P, et al. "Two novel spliced genes in human cytomegalovirus." Journal of General Virology 84 (2003): 1117-1122.
[0341] Boehme, K W, M Guerrero, and T Compton. "Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells." Journal of Immunology 177 (2006):7094-7102.
[0342] Doyle, Sharon A, ed. High Throughput Protein Expression and Purification: Methods and Protocols (Methods in Molecular Biology). Humana Press, 2008.
[0343] Genini, E, E Percivalle, A Sarasini, M G Revello, F Baldanti, and G Gerna. "Serum antibody response to the gH/gL/pUL128-131 five-protein complex of human cytomegalovirus (HCMV) in primary and reactivated HCMV infections." Journal of Clinical Virology 52 (2011): 113-118.
[0344] Huber, M T, and T Compton. "Intracellular Formation and Processing of the Heterotrimeric gH-gL-gO (gCIII) Glycoprotein Envelope Complex of Human Cytomegalovirus." Journal of Virology 73 (1999): 3886-3892.
[0345] Kinzler, Eric R, Regan N Theiler, and Teresa Compton, "Expression and reconstitution of the gH/gL/gO complex of human cytomenlovirus."Journal of Clinical Virology, 2002. 87-95.
[0346] Langdon, R H, J Cuccui, and B W. Wren. "N-linked glycosylation in bacteria: an unexpected application." Future Microbiology 4 (2009): 401-412.
[0347] Loignon, M, et al. "Stable high volumetric production of glycosylated human recombinant IFNalpha2b in HEK293 cells." BMC Biotechnology 8 (2008): 65.
[0348] Macagno, A, et al. "Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex." Journal of Virology 84 (2010): 1005-13.
[0349] Melnicka, M, P P Sedghizadehb, C M Allenc, and T Jaskolla. "Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: Cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship." Experimental and Molecular Pathology 92 (2012): 118-125.
[0350] Mocarski, E S, T Shenk, and R F Pass, "Cytomegalovirus," In Fields Virology, edited by David M Knipe and Peter M Howley. Philadelphia, Pa., USA: Lippincott Williams and Wilkins, 2006.
[0351] Murthy, S, et al. "Detection of a Single Identical Cytomegalovirus (CMV) Strain in Recently Seroconverted Young Women." PLoS One 6 (2011): e15949.
[0352] Needleman, S B, and C D Wunsch. "A general method applicable to the search for similarities in the amino acid sequences of two proteins." Journal of Molecniar Biology 18 (1970): 443-453.
[0353] Patrone, M, M Secehi, L Fiorina, M Ierardi, G Milanesi, and A Gallina. "Human Gytomegalovirus UL130 Protein Promotes Endothelial Cell Infection through a Producer Cell Modification of the Virion." Journal of Virology 79 (2005): 8361-8373.
[0354] Rasmussen, L, A Geissler, C Cowan, A Chase, and M Winters. "The Genes Encoding the gCIII Complex of Human Cytomegalovirus Exist in Highly Diverse Combinations in Clinical Isolates." Journal of Virology 76 (2002): 10841-10888.
[0355] Rice, P, I Longden, and A Bleasby. "EMBOSS: The European Molecular Biology Open Software Suite." Trends Genetics 16 (2000): 276-277.
[0356] Rigoutsos, I, et al. "In silico pattern-based analysis of the human cytomegalovirus genome." Journal of Virology 77 (2003): 4326-44.
[0357] Rvckman, B J, et al. "Characterization of the Human Cytomegalovirus gH/gL/UL128-131 Complex That Mediates Entry into Epithelial and Endothelial Cells." Journal of Virology 82 (2008): 60-70.
[0358] Ryckman, B J, M C Chase, and D C Johnson. "Human Cytomegalovirus TR Strain Glycoprotein O Acts as a Chaperone Promoting gH/gL Incorporation into Virions but Is Not Present in Virions." Journal of Virology 84 (2010): 2597-2609.
[0359] Sambrook, J. Molecular Cloning: A Laboratory Manual. 3rd. Cold Spring Harbor Laboratory Press, 2000,
[0360] Simanek, Amanda M., Jennifer Beam Dowd, Graham Pawelec, David Melzer, Arnbarish Dutta, and Allison E. Aiello, "Seropositivity to Cytomegalovirus, Inflammation, All-Cause and Cardiovascular Disease-Related Mortality in the United States." PLoS ONE 6 ((2011)): c16103.
[0361] Summers, M D, and G E Smith. A manual of methods for baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station Bulletin No. 1555, 1987.
[0362] Wang, D, and T Shenk. "Human Cytomegalovirus UL131 Open Reading Frame Is Required for Epithelial Cell Tropism. Human Cytomegalovirus UL 131 Open Reading Frame Is Required for Epithelial Cell Tropism." Journal of Virology 79 (2005): 10330-10338.
TABLE-US-00004 SEQUENCE LISTING (gH from HCMV strain Merlin = GI:52139248) SEQ ID NO: 1 MRPGLPSYLIILAVCLFSHLLSSRYGAEAVSEPLDKAFHLLLNTYGRPIRFLRENTTQCTYNSSLRNSTVVREN- AIS FNFFQSYNQYYVFHMPRCLFAGPLAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQDSLGEQ- PTT VPPPIDLSIPHVWMPPQTTPHGWTESHTTSGLHRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKIT- LTE DFFVVTVSIDDDTPMLLIFGHLPRVLFKAPYQRDNFILRQTEKHELLVLVKKDQLNRHSYLKDPDFLDAALDFN- YLD LSALLRNSFHRYAVDVLKSGRCQMLDRRTVEMAFAYALALFAAARQEEAGAQVSVPRALDRQAALLQIQEFMIT- CLS QTPPRTTLLLYPTAVDLAKRALWTPNQITDITSLVRLVYILSKQNQQHLIPQWALRQIADFALKLHKTHLASFL- SAF ARQELYLMGSLVHSMLVHTTERREIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDHSLERLT- RLF PDATVPATVPAALSILSTMQPSTLETFPDLFCLPLGESFSALTVSEHVSYINTNQYLIKGISYPVSTTVVGQSL- IIT QTDSQTKCELTRNMHTTHSITVALNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSSP- RTH YLMLLKNGTVLEVTDVVVDATDSRLLMMSVYALSAIIGIYLLYRMLKTC (gH from HCMV strain Towne = GI:138314) SEQ ID NO: 2 MRPGLPSYLIVLAVCLLSHLLSSRYGAEAISEPLDKAFHLLLNTYGRPIRFLRENTTQCTYNSSLRNSTVVREN- AIS FNFFQSYNQYYVFHMPRCLFAGPLAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQDSLGEQ- PTT VPPPIDLSIPHVWMPPQTTPHGWTESHTTSGLHRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKIT- LTE DFFVVTVSIDDDTPMLLIFGHLPRVLFKAPYQRDNFILRQTEKHELLVLVKKDQLNRHSYLKDPDFLDAALDFN- YLD LSALLRNSFHRYAVDVLKSGRCQMLDRRTVEMAFAYALALFAAARQEEAGAQVSVPRALDRQAALLQIQEFMIT- CLS QTPPRTTLLLYPTAVDLAKRALWTPNQITDITSLVRLVYILSKQNQQHLIPQWALRQIADFALKLHKTHLASFL- SAF ARQELYLMGSLVHSMLVHTTERREIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDHSLERLT- RLF PDATVPTTVPAALSILSTMQPSTLETFPDLFCLPLGESFSALTVSEHVSYVVTNQYLIKGISYPVSTTVVGQSL- IIT QTDSQTKCELTRNMHTTHSITAALNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSSP- RTH YLMLLKNGTVLEVTDVVVDATDSRLLMMSVYALSAIIGIYLLYRMLKTC (gH from HCMV strain AD169 = GI:138313) SEQ ID NO: 3 MRPGLPPYLTVFTVYLLSHLPSQRYGADAASEALDPHAFHLLLNTYGRPIRFLRENTTQCTYNSSLRNSTVVRE- NAI SFNFFQSYNQYYVFHMPRCLFAGPLAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQDSLGQ- QPT TVPPPIDLSIPHVWMPPQTTPHDWKGSHTTSGLHRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLMDELRYVKI- TLT EDFFVVTVSIDDDTPMLLIFGHLPRVLFKAPYQRDNFILRQTEKHELLVLVKKAQLNRHSYLKDSDFLDAALDF- NYL DLSALLRNSFHRYAVDVLKSGRCQMLDRRTVEMAFAYALALFAAARQEEAGTEISIPRALDRQAALLQIQEFMI- TCL SQTPPRTTLLLYPTAVDLAKRALWTPDQITDITSLVRLVYILSKQNQQHLIPQWALRQIADFALQLHKTHLASF- LSA FARQELYLMGSLVHSMLVHTTERREIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDHSLERL- TRL FPDATVPATVPAALSILSTMQPSTLETFPDLFCLPLGESFSALTVSEHVSYVVTNQYLIKGISYPVSTTVVGQS- LII TQTDSQTKCELTRNMHTTHSITAALNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSS- PRT HYLMILKNGTVLEVTDVVVDATDSRLLMMSVYALSAIIGIYLLYRMLKTC (gH protein consisting of amino acid residues 1-715 of SEQ ID NO: 1) SEQ ID NO: 4 MRPGLPSYLIILAVCLFSHLLSSRYGAEAVSEPLDKAFHLLLNTYGRPIRFLRENTTQCTYNSSLRNSTVVREN- AIS FNFFQSYNQYYVFHMPRCLFAGPLAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQDSLGEQ- PTT VPPPIDLSIPHVWMPPQTTPHGWTESHTTSGLHRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKIT- LTE DFFVVTVSIDDDTPMLLIFGHLPRVLFKAPYQRDNFILRQTEKHELLVLVKKDQLNRHSYLKDPDFLDAALDFN- YLD LSALLRNSFHRYAVDVLKSGRCQMLDRRTVEMAFAYALALFAAARQEEAGAQVSVPRALDRQAALLQIQEFMIT- CLS QTPPRTTLLLYPTAVDLAKRALWTPNQITDITSLVRLVYILSKQNQQHLIPQWALRQIADFALKLHKTHLASFL- SAF ARQELYLMGSLVHSMLVHTTERREIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDHSLERLT- RLF PDATVPATVPAALSILSTMQPSTLETFPDLFCLPLGESFSALTVSEHVSYIVTNQYLIKGISYPVSTTVVGQSL- IIT QTDSQTKCELTRNMHTTHSITVALNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSSP- RTH YLMLLKNGTVLEVTDVVVDATD (C-terminal extension which includes a myc-tag and a polyhistidine-tag) SEQ ID NO: 5 GTKLGPEQKLISEEDLNSAVDHHHHHH (gH protein comprising SEQ ID NOs: 4 and 5) SEQ ID NO: 6 MRPGLPSYLIILAVCLFSHLLSSRYGAEAVSEPLDKAFHLLLNTYGRPIRFLRENTTQCTYNSSLRNSTVVREN- AIS FNFFQSYNQYYVFHMPRCLFAGPLAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQDSLGEQ- PTT VPPPIDLSIPHVWMPPQTTPHGWTESHTTSGLHRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKIT- LTE DFFVVTVSIDDDTPMLLIFGHLPRVLFKAPYQRDNFILRQTEKHELLVLVKKDQLNRHSYLKDPDFLDAALDFN- YLD LSALLRNSFHRYAVDVLKSGRCQMLDRRTVEMAFAYALALFAAARQEEAGAQVSVPRALDRQAALLQIQEFMIT- CLS QTPPRTTLLLYPTAVDLAKRALWTPNQITDITSLVRLVYILSKQNQQHLIPQWALRQIADFALKLHKTHLASFL- SAF ARQELYLMGSLVHSMLVHTTERREIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDHSLERLT- RLF PDATVPATVPAALSILSTMQPSTLETFPDLFCLPLGESFSALTVSEHVSYIVTNQYLIKGISYPVSTTVVGQSL- IIT QTDSQTKCELTRNMHTTHSITVALNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSSP- RTH YLMLLKNGTVLEVTDVVVDATDGTKLGPEQKLISEEDLNSAVDHHHHHH (gL from HCMV strain Merlin = GI:39842115) SEQ ID NO: 7 MCRRPDCGFSFSPGPVILLWCCLLLPIVSSAAVSVAPTAAEKVPAECPELTRRCLLGEVFEGDKYESWLRPLVN- VTG RDGPLSQLIRYRPVTPEAANSVLLDEAFLDTLALLYNNPDQLRALLTLLSSDTAPRWMTVMRGYSECGDGSPAV- YTC VDDLCRGYDLTRLSYGRSIFTEHVLGFELVPPSLFNVVVAIRNEATRTNRAVRLPVSTAAAPEGITLFYGLYNA- VKE FCLRHQLDPPLLRHLDKYYAGLPPELKQTRVNLPAHSRYGPQAVDAR (gL from HCMV strain Towne = GI:239909463) SEQ ID NO: 8 MCRRPDCGFSFSPGPVALLWCCLLLPIVSSATVSVAPTVAEKVPAECPELTRRCLLGEVFQGDKYESWLRPLVN- VTR RDGPLSQLIRYRPVTPEAANSVLLDDAFLDTLALLYNNPDQLRALLTLLSSDTAPRWMTVMRGYSECGDGSPAV- YTC VDDLCRGYDLTRLSYGRSIFTEHVLGFELVPPSLFNVVVAIRNEATRTNRAVRLPVSTAAAPEGITLFYGLYNA- VKE FCLRHQLDPPLLRHLDKYYAGLPPELKQTRVNLPAHSRYGPQAVDAR (gL from HCMV strain AD169 = GI:2506510) SEQ ID NO: 9 MCRRPDCGFSFSPGPVVLLWCCLLLPIVSSVAVSVAPTAAEKVPAECPELTRRCLLGEVFQGDKYESWLRPLVN- VTR RDGPLSQLIRYRPVTPEAANSVLLDDAFLDTLALLYNNPDQLRALLTLLSSDTAPRWMTVMRGYSECGDGSPAV- YTC VDDLCRGYDLTRLSYGRSIFTEHVLGFELVPPSLFNVVVAIRNEATRTNRAVRLPVSTAAAPEGITLFYGLYNA- VKE FCLRHQLDPPLLRHLDKYYAGLPPELKQTRVNLPAHSRYGPQAVDAR (gO from HCMV strain Merlin = GI:39842082) SEQ ID NO: 10 MGKKEMIMVKGIPKIMLLISITFLLLSLINCNVLVNSRGTRRSWPYTVLSYRGKEILKKQKEDILKRLMSTSSD- GYR FLMYPSQQKFHAIVISMDKFPQDYILAGPIRNDSITHMWFDFYSTQLRKPAKYVYSEYNHTAHKITLRPPPCGT- VPS MNCLSEMLNVSKRNDTGEKGCGNFTTFNPMFFNVPRWNTKLYIGSNKVNVDSQTIYFLGLTALLLRYAQRNCTR- SFY LVNAMSRNLFRVPKYINGTKLKNTMRKLKRKQALVKEQPQKKNKKSQSTTTPYLSYTTSTAFNVTTNVTYSATA- AVT RVATSTTGYRPDSNFMKSIMATQLRDLATWVYTTLRYRNEPFCKPDRNRTAVSEFMKNTHVLIRNETPYTIYGT- LDM SSLYYNETMSVENETASDNNETTPTSPSTRFQRTFIDPLWDYLDSLLFLDKIRNFSLQLPAYGNLTPPEHRRAA- NLS TLNSLWWWSQ (gO from HCMV strain AD169 = GI:136968) SEQ ID NO: 11 MGRKEMMVRDVPKMVFLISISFLLVSFINCKVMSKALYNRPWRGLVLSKIGKYKLDQLKLEILRQLETTISTKY- NVS KQPVKNLTMNMTEFPQYYILAGPIQNYSITYLWFDFYSTQLRKPAKYVYSQYNHTAKTITFRPPPCGTVPSMTC- LSE MLNVSKRNDTGEQGCGNFTTFNPMFFNVPRWNTKLYVGPTKVNVDSQTIYFLGITALLLRYAQRNCTHSFYLVN- AMS RNLFRVPKYINGTKLKNTMRKLKRKQAPVKEQFEKKAKKTQSTTTPYFSYTTSAALNVTTNVTYSITTAARRVS- TST IAYRPDSSFMKSIMATQLRDLATWVYTTLRYRQNPFCEPSRNRTAVSEFMKNTHVLIRNETPYTIYGTLDMSSL- YYN ETMFVENKTASDSNKTTPTSPSMGFQRTFIDPLWDYLDSLLFLDEIRNFSLRSPTYVNLTPPEHRRAVNLSTLN- SLW WWLQ (gO from HCMV strain Towne = GI:239909431) SEQ ID NO: 12 MGRKGEMRGVFNLFFLMSLTFLLFSFINCKIAVARFRVKSQKAKEEERQLKLRILQELASKTGDYYKFFTFPSQ- QKL YNITVEMKQFPPNSILAGPIRNHSITHLWFDFHTTQLRKPAKYVYSEYNHTGQKITFRPPSCGTIPSMTCLSEM- LNV
SRRNNTGEENCGNFTTFNPMFFNVPRWNTKLYVGPSKVNVDSQTIYFLGLAALLLRYAQRNCTRSFYLVNAMSR- NIF RVPKYINSTKLKNTMRKLKRKQAPVKSISKKSRVSTTTPYSSYTSTIFNVSTNVTYSPIVPTRIPTSTIGYRPD- ENF MKSILTTQLKDLATWVYTTLRYRDEPFCKPNRNRTAVSEFMKNTHVLIRNETPYTIYGTLDMSSLYYNDTMPVE- NET ASDNNKTTPTSPSTRFQRTFIDPMWDYLDSLLFLSEIRNFSLQSSTYGNLTPPEHRRAVNLSTLNSLWWWLQ (pUL128 from HCMV strain Merlin = GI:39842124) SEQ ID NO: 13 MSPKDLTPFLTALWLLLGHSRVPRVRAEECCEFINVNHPPERCYDFKMCNRFTVALRCPDGEVCYSPEKTAEIR- GIV TTMTHSLTRQVVHNKLTSCNYNPLYLEADGRIRCGKVNDKAQYLLGAAGSVPY (pUL128 from HCMV strain Towne = GI:39841882) SEQ ID NO: 14 MSPKNLTPFLTALWLLLGHSRVPRVRAEECCEFINVNHPPERCYDFKMCNRFTVALRCPDGEVCYSPEKTAEIR- GIV TTMTHSLTRQVVHNKLTSCNYNPLYLEADGRIRCGKVNDKAQYLLGAAGSVPYRWINLEYDKITRIVGLDQYLE- SVK KHKRLDVCRAKMGYMLQ (pUL128 from HCMV strain AD169 = GI:59803078) SEQ ID NO: 15 MSPKDLTPFLTTLWLLLGHSRVPRVRAEECCEFINVNHPPERCYDFKMCNRFTVALRCPDGEVCYSPEKTAEIR- GIV TTMTHSLTRQVVHNKLTSCNYNPLYLEADGRIRCGKVNDKAQYLLGAAGSVPYRWINLEYDKITRIVGLDQYLE- SVK KHKRLDVCRAKMGYMLQ (pUL130 from HCMV strain Merlin = GI:39842125) SEQ ID NO: 16 MLRLLLRHHFHCLLLCAVWATPCLASPWSTLTANQNPSPPWSKLTYSKPHDAATFYCPFLYPSPPRSPLQFSGF- QRV STGPECRNETLYLLYNREGQTLVERSSTWVKKVIWYLSGRNQTILQRMPRTASKPSDGNVQISVEDAKIFGAHM- VPK QTKLLRFVVNDGTRYQMCVMKLESWAHVFRDYSVSFQVRLTFTEANNQTYTFCTHPNLIV (pUL130 from HCMV strain Towne = GI:239909473) SEQ ID NO: 17 MLRLLLRHHFHCLLLCAVWATPCLASPWSTLTANQNPSPPWSKLTYSKPHDAATFYCPFLYPSPPRSPLQFSGF- QRV LTGPECRNETLYLLYNREGQTLVERSSTWVKKVIWYLSGRNQTILQRMPRTASKPSDGNVQISVEDAKIFGAHM- VPK QTKLLRFVVNDGTRYQMCVMKLESWAHVFRDYSVSFQVRLTFTEANNQTFTPSAPIPISSFEPVARAGNFENRA- S (pUL131A from HCMV strain Merlin = GI:39842126) SEQ ID NO: 18 MRLCRVWLSVCLCAVVLGQCQRETAEKNDYYRVPHYWDACSRALPDQTRYKYVEQLVDLTLNYHYDASHGLDNF- DVL KRINVTEVSLLISDFRRQNRRGGTNKRTTFNAAGSLAPHARSLEFSVRLFAN (pUL131A from HCMV strain Towne = GI:239909474) SEQ ID NO: 19 MRLCRVWLSVCLCAVVLGQCQRETAEKNDYYRVPHYWDACSRALPDQTRYKYVEQLVDLTLNYHYDASHGLDNF- DVL KRINVTEVSLLISDFRRQNRRGGTNKPTTFNAAGSLAPHARSLEFSVRLFAN (pUL131A from HCMV strain AD169 = GI:219879712) SEQ ID NO: 20 MRLCRVWLSVCLCAVVLGQCQRETAEKKRLLPSTALLGRVLSRAARPNPLQVCGTARGPHVELPLRCEPRLGQL (gB from HCMV strain Merlin = GI:39842076) SEQ ID NO: 21 MESRIWCLVVCVNLCIVCLGAAVSSSSTRGTSATHSHHSSHTTSAAHSRSGSVSQRVTSSQTVSHGVNETIYNT- TLK YGDVVGVNTTKYPYRVCSMAQGTDLIRFERNIVCTSMKPINEDLDEGIMVVYKRNIVAHTFKVRVYQKVLTFRR- SYA YIHTTYLLGSNTEYVAPPMWEIHHINSHSQCYSSYSPVIAGTVFVAYHRDSYENKTMQLMPDDYSNTHSTRYVT- VKD QWHSRGSTWLYRETCNLNCMVTITTARSKYPYHFFATSTGDVVDISPFYNGTNRNASYFGENADKFFIFPNYTI- VSD FGRPNSALETHRLVAFLERADSVISWDIQDEKNVTCQLTFWEASERTIRSEAEDSYHFSSAKMTATFLSKKQEV- NMS DSALDCVRDEAINKLQQIFNTSYNQTYEKYGNVSVFETTGGLVVFWQGIKQKSLVELERLANRSSLNLTHNRTK- RST DGNNATHLSNMESVHNLVYAQLQFTYDTLRGYINRALAQIAEAWCVDQRRTLEVFKELSKINPSAILSAIYNKP- IAA RFMGDVLGLASCVTINQTSVKVIRDMNVKESPGRCYSRPVVIFNFANSSYVQYGQLGEDNEILLGNHRTEECQL- PSL KIFIAGNSAYEYVDYLFKRMIDLSSISTVDSMIALDIDPLENTDFRVLELYSQKELRSSNVFDLEEIMREFNSY- KQR VKYVEDKVVDPLPPYLKGLDDLMSGLGAAGKAVGVAIGAVGGAVASVVEGVATFLKNPFGAFTIILVAIAVVII- TYL IYTRQRRLCTQPLQNLFPYLVSADGTTVTSGSTKDTSLQAPPSYEESVYNSGRKGPGPPSSDASTAAPPYTNEQ- AYQ MLLALARLDAEQRAQQNGTDSLDGRTGTQDKGQKPNLLDRLRHRKNGYRHLKDSDEEENV (gB from HCMV strain Towne = GI:138193) SEQ ID NO: 22 MESRIWCLVVCVNLCIVCLGAAVSSSSTRGTSATHSHHSSHTTSAAHSRSGSVSQRVTSSQTVSHGVNETIYNT- TLK YGDVVGVNTTKYPYRVCSMAQGTDLIRFERNIVCTSMKPINEDLDEGIMVVYKRNIVAHTFKVRVYQKVLTFRR- SYA YIHTTYLLGSNTEYVAPPMWEIHHINSHSQCYSSYSRVIAGTVFVAYHRDSYENKTMQLMPDDYSNTHSTRYVT- VKD QWHSRGSTWLYRETCNLNCMVTITTARSKYPYHFFATSTGDVVDISPFYNGTNRNASYFGENADKFFIFPNYTI- VSD FGRPNSALETHRLVAFLERADSVISWDIQDEKNVTCQLTFWEASERTIRSEAEDSYHFSSAKMTATFLSKKQEV- NMS DSALDCVRDEAINKLQQIFNTSYNQTYEKYGNVSVFETTGGLVVFWQGIKQKSLVELERLANRSSLNLTHNRTK- RST DGNNATHLSNMESVHNLVYAQLQFTYDTLRGYINRALAQIAEAWCVDQRRTLEVFKELSKINPSAILSAIYNKP- IAA RFMGDVLGLASCVTINQTSVKVLRDMNVKESPGRCYSRPVVIFNFANSSYVQYGQLGEDNEILLGNHRTEECQL- PSL KIFIAGNSAYEYVDYLFKRMIDLSSISTVDSMIALDIDPLENTDFRVLELYSQKELRSSNVFDLEEIMREFNSY- KQR VKYVEDKVVDPLPPYLKGLDDLMSGLGAAGKAVGVAIGAVGGAVAAVVEGVATFLKNPFGAFTIILVAIAVVII- IYL IYTRQRRLCMQPLQNLFPYLVSADGTTVTSGNTKDTSLQAPPSYEESVYNSGRKGPGPPSSDASTAAPPYTNEQ- AYQ MLLALVRLDAEQRAQQNGTDSLDGQTGTQDKGQKPNLLDRLRHRKNGYRHLKDSDEEENV (gB from HCMV strain AD169 = GI:138192) SEQ ID NO: 23 MESRIWCLVVCVNLCIVCLGAAVSSSSTSHATSSTHNGSHTSRTTSAQTRSVYSQHVTSSEAVSHRANETIYNT- TLK YGDVVGVNTTKYPYRVCSMAQGTDLIRFERNIICTSMKPINEDLDEGIMVVYKRNIVAHTFKVRVYQKVLTFRR- SYA YIYTTYLLGSNTEYVAPPMWEIHHINKFAQCYSSYSRVIGGTVFVAIHRDSYENKTMQLIPDDYSNTHSTRYVT- VKD QWHSRGSTWLYRETCNLNCMLTITTARSKYPYHFFATSTGDVVYISPFYNGTNRNASYFGENADKFFIFPNYTI- VSD FGRPNAAPETHRLVAFLERADSVISWDIQDEKNVTCQLTFWEASERTIRSEAEDSYHFSSAKMTATFLSKKQEV- NMS DSALDCVRDEAINKLQQIFNTSYNQTYEKYGNVSVFETSGGLVVFWQGIKQKSLVELERLANRSSLNITHRTRR- STS DNNTTHLSSMESVHNLVYAQLQFTYDTLRGYINRALAQIAEAWCVDQRRTLEVFKELSKINPSAILSAIYNKPI- AAR FMGDVLGLASCVTINQTSVKVLRDMNVKESPGRCYSRPVVIFNFANSSYVQYGQLGEDNEILLGNHRTEECQLP- SLK IFIAGNSAYEYVDYLFKRMIDLSSISTVDSMIALDIDPLENTDFRVLELYSQKELRSSNVFDLEEIMREFNSYK- QRV KYVEDKVVDPLPPYLKGLDDLMSGLGAAGKAVGVAIGAVGGAVASVVEGVATFLKNPFGAFTIILVAIAVVIIT- YLI YTRQRRLCTQPLQNLFPYLVSADGTTVTSGSTKDTSLQAPPSYEESVYNSGRKGPGPPSSDASTAAPPYTNEQA- YQM LLALARLDAEQRAQQNGTDSLDGQTGTQDKGQKPNLLDRLRHRKNGYRHLKDSDEEENV (a construct encoding gH(ecto) fused to a C-terminal myc-(His)6 tag) SEQ ID NO: 24 gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagc- cag tatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaagg- ctt gaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatata- cgc gttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggag- ttc cgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataat- gac gtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc- act tggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctgg- cat tatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccat- ggt gatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccacccca- ttg acgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattg- acg caaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactagagaacccactgc- tta ctggcttatcgaaattaatacgactcactatagggagacccaagctggctagcgccaccatgaggcctggcctg- ccc tcctacctgatcatcctggccgtgtgcctgttcagccacctgctgtccagcagatacggcgccgaggccgtgag- cga gcccctggacaaggctttccacctgctgctgaacacctacggcagacccatccggtttctgcgggagaacacca- ccc agtgcacctacaacagcagcctgcggaacagcaccgtcgtgagagagaacgccatcagcttcaactttttccag- agc tacaaccagtactacgtgttccacatgcccagatgcctgtttgccggccctctggccgagcagttcctgaacca- ggt ggacctgaccgagacactggaaagataccagcagcggctgaatacctacgccctggtgtccaaggacctggcca- gct accggtcctttagccagcagctcaaggctcaggatagcctcggcgagcagcctaccaccgtgccccctcccatc- gac ctgagcatcccccacgtgtggatgcctccccagaccacccctcacggctggaccgagagccacaccacctccgg- cct gcacagaccccacttcaaccagacctgcatcctgttcgacggccacgacctgctgtttagcaccgtgaccccct- gcc
tgcaccagggcttctacctgatcgacgagctgagatacgtgaagatcaccctgaccgaggatttcttcgtggtc- acc gtgtccatcgacgacgacacccccatgctgctgatcttcggccacctgcccagagtgctgttcaaggcccccta- cca gcgggacaacttcatcctgcggcagaccgagaagcacgagctgctggtgctggtcaagaaggaccagctgaacc- ggc actcctacctgaaggaccccgacttcctggacgccgccctggacttcaactacctggacctgagcgccctgctg- aga aacagcttccacagatacgccgtggacgtgctgaagtccggacggtgccagatgctcgatcggcggaccgtgga- gat ggccttcgcctatgccctcgccctgttcgccgctgccagacaggaagaggctggcgcccaggtgtcagtgccca- gag ccctggatagacaggccgccctgctgcagatccaggaattcatgatcacctgcctgagccagaccccccctaga- acc accctgctgctgtaccccacagccgtggatctggccaagagggccctgtggacccccaaccagatcaccgacat- cac aagcctcgtgcggctcgtgtacatcctgagcaagcagaaccagcagcacctgatcccccagtgggccctgagac- aga tcgccgacttcgccctgaagctgcacaagacccatctggccagctttctgagcgccttcgccaggcaggaactg- tac ctgatgggcagcctggtccacagcatgctggtgcataccaccgagcggcgggagatcttcatcgtggagacagg- cct gtgtagcctggccgagctgtcccactttacccagctgctggcccaccctcaccacgagtacctgagcgacctgt- aca ccccctgcagcagcagcggcagacgggaccacagcctggaacggctgaccagactgttccccgatgccaccgtg- cct gctacagtgcctgccgccctgtccatcctgtccaccatgcagcccagcaccctggaaaccttccccgacctgtt- ctg cctgcccctgggcgagagctttagcgccctgaccgtgtccgagcacgtgtcctacatcgtgaccaatcagtacc- tga tcaagggcatcagctaccccgtgtccaccacagtcgtgggccagagcctgatcatcacccagaccgacagccag- acc aagtgcgagctgacccggaacatgcacaccacacacagcatcaccgtggccctgaacatcagcctggaaaactg- cgc tttctgtcagtctgccctgctggaatacgacgatacccagggcgtgatcaacatcatgtacatgcacgacagcg- acg acgtgctgttcgccctggacccctacaacgaggtggtggtgtccagcccccggacccactacctgatgctgctg- aag aacggcaccgtgctggaagtgaccgacgtggtggtggacgccaccgacggtaccaagcttgggcccgaacaaaa- act catctcagaagaggatctgaatagcgccgtcgaccatcatcatcatcatcattgagtttaaacggtctccagct- taa gtttaaaccgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgcct- tcc ttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtag- gtg tcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctg- ggg atgcggtgggctctatggcttctgaggcggaaagaaccagctggggctctagggggtatccccacgcgccctgt- agc ggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgc- tcc tttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctt- tag ggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggcca- tcg ccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactgg- aac aacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaa- atg agctgatttaacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtggaaagtccccag- gct ccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctcc- cca gcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgcccctaactccgcccatccc- gcc cctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgagg- ccg cctctgcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctcccg- gga gcttgtatatccattttcggatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaagatggatt- gca cgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctg- atg ccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaat- gaa ctgcaggacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgt- cac tgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctg- ccg agaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccac- caa gcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaaga- gca tcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtga- ccc atggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctg- ggt gtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctga- ccg cttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttct- tct gagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacctgccatcacgagatttcgattccaccg- ccg ccttctatgaaaggttgggcttcggaatcgttttccgggacgccggctggatgatcctccagcgcggggatctc- atg ctggagttcttcgcccaccccaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaa- ttt cacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtct- gta taccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctc- aca attccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacatt- aat tgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcg- cgg ggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctg- cgg cgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacat- gtg agcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccccc- ctg acgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgttt- ccc cctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttc- ggg aagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggct- gtg tgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaaga- cac gacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagtt- ctt gaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttacct- tcg gaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcag- cag attacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacga- aaa ctcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaa- gtt ttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatc- tca gcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggctt- acc atctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagc- cag ccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaa- gct agagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctc- gtc gtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaa- aag cggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggca- gca ctgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcatt- ctg agaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaa- ctt taaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagt- tcg atgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaac- agg aaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaat- att attgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaata- ggg gttccgcgcacatttccccgaaaagtgccacctgacgtc (a construct encoding full-length gL) SEQ ID NO: 25 gccgcggaatttcgactctaggccattgcatacgttgtatctatatcataatatgtacatttatattggctcat- gtc caatatgaccgccatgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcat- agc ccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc- att gacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatt- tac
ggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtccgccccctattgacgtcaatgacggt- aaa tggcccgcctggcattatgcccagtacatgaccttacgggactttcctacttggcagtacatctacgtattagt- cat cgctattaccatggtgatgcggttttggcagtacaccaatgggcgtggatagcggtttgactcacggggatttc- caa gtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaat- aac cccgccccgttgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaa- ccg tcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccgcg- gcc gggaacggtgcattggaacgcggattccccgtgccaagagtgacgtaagtaccgcctatagactctataggcac- acc cctttggctcttatgcatgctatactgtttttggcttggggcctatacacccccgcttccttatgctataggtg- atg gtatagcttagcctataggtgtgggttattgaccattattgaccactcccctattggtgacgatactttccatt- act aatccataacatggctctttgccacaactatctctattggctatatgccaatactctgtccttcagagactgac- acg gactctgtatttttacaggatggggtcccatttattatttacaaattcacatatacaacaacgccgtcccccgt- gcc cgcagtttttattaaacatagcgtgggatctccacgcgaatctcgggtacgtgttccggacatgggctcttctc- cgg tagcggcggagcttccacatccgagccctggtcccatgcctccagcggctcatggtcgctcggcagctccttgc- tcc taacagtggaggccagacttaggcacagcacaatgcccaccaccaccagtgtgccgcacaaggccgtggcggta- ggg tatgtgtctgaaaatgagctcggagattgggctcgcaccgctgacgcagatggaagacttaaggcagcggcaga- aga agatgcaggcagctgagttgttgtattctgataagagtcagaggtaactcccgttgcggtgctgttaacggtgg- agg gcagtgtagtctgagcagtactcgttgctgccgcgcgcgccaccagacataatagctgacagactaacagactg- ttc ctttccatgggtcttttctgcagtcaccgtcgtcgacgccaccatgtgcagaaggcccgactgcggcttcagct- tca gccctggacccgtgatcctgctgtggtgctgcctgctgctgcctatcgtgtcctctgccgccgtgtctgtggcc- cct acagccgccgagaaggtgccagccgagtgccccgagctgaccagaagatgcctgctgggcgaggtgttcgaggg- cga caagtacgagagctggctgcggcccctggtcaacgtgaccggcagagatggccccctgagccagctgatccggt- aca gacccgtgacccccgaggccgccaatagcgtgctgctggacgaggccttcctggataccctggccctgctgtac- aac aaccccgaccagctgagagccctgctgaccctgctgtccagcgacaccgcccccagatggatgaccgtgatgcg- ggg ctacagcgagtgtggagatggcagccctgccgtgtacacctgcgtggacgacctgtgcagaggctacgacctga- cca gactgagctacggccggtccatcttcacagagcacgtgctgggcttcgagctggtgccccccagcctgttcaac- gtg gtggtggccatccggaacgaggccaccagaaccaacagagccgtgcggctgcctgtgtctacagccgctgcacc- tga gggcatcacactgttctacggcctgtacaacgccgtgaaagagttctgcctccggcaccagctggatccccccc- tgc tgagacacctggacaagtactacgccggcctgcccccagagctgaagcagaccagagtgaacctgcccgcccac- agc agatatggccctcaggccgtggacgccagatgataatctagaaagccatggatatcggatccactacgcgttag- agc tcgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttga- ccc tggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcat- tct attctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggggggtgggcgaaga- act ccagcatgagatccccgcgctggaggatcatccagccggcgtcccggaaaacgattccgaagcccaacctttca- tag aaggcggcggtggaatcgaaatctcgtgatggcaggttgggcgtcgcttggtcggtcatttcgaaccccagagt- ccc gctcagaagaactcgtcaagaaggcgatagaaggcgatgcgctgcgaatcgggagcggcgataccgtaaagcac- gag gaagcggtcagcccattcgccgccaagctcttcagcaatatcacgggtagccaacgctatgtcctgatagcggt- ccg ccacacccagccggccacagtcgatgaatccagaaaagcggccattttccaccatgatattcggcaagcaggca- tcg ccatgggtcacgacgagatcctcgccgtcgggcatgcgcgccttgagcctggcgaacagttcggctggcgcgag- ccc ctgatgctcttcgtccagatcatcctgatcgacaagaccggcttccatccgagtacgtgctcgctcgatgcgat- gtt tcgcttggtggtcgaatgggcaggtagccggatcaagcgtatgcagccgccgcattgcatcagccatgatggat- act ttctcggcaggagcaaggtgagatgacaggagatcctgccccggcacttcgcccaatagcagccagtcccttcc- cgc ttcagtgacaacgtcgagcacagctgcgcaaggaacgcccgtcgtggccagccacgatagccgcgctgcctcgt- cct gcagttcattcagggcaccggacaggtcggtcttgacaaaaagaaccgggcgcccctgcgctgacagccggaac- acg gcggcatcagagcagccgattgtctgttgtgcccagtcatagccgaatagcctctccacccaagcggccggaga- acc tgcgtgcaatccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcttgatcccctgc- gcc atcagatccttggcggcaagaaagccatccagtttactttgcagggcttcccaaccttaccagagggcgcccca- gct ggcaattccggttcgcttgctgtccataaaaccgcccagtctagctatcgccatgtaagcccactgcaagctac- ctg ctttctctttgcgcttgcgttttcccttgtccagatagcccagtagctgacattcatccggggtcagcaccgtt- tct gcggactggctttctacgtgttccgcttcctttagcagcccttgcgccctgagtgcttgcggcagcgtgaagct- aat tcatggttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggcaaaatcccttataaatc- aaa agaatagcccgagatagggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactcca- acg tcaaagggcgaaaaaccgtctatcagggcgatggccggatcagcttatgcggtgtgaaataccgcacagatgcg- taa ggagaaaataccgcatcaggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcgg- cga gcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtg- agc aaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctg- acg agcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccc- cct ggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcggg- aag cgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtg- tgc acgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacac- gac ttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttctt- gaa gtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcg- gaa aaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcag- att acgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctactgaacggtgatccccaccggaattgcg (a construct encoding full-length pUL128) SEQ ID NO: 26 gccgcggaatttcgactctaggccattgcatacgttgtatctatatcataatatgtacatttatattggctcat- gtc caatatgaccgccatgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcat- agc ccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc- att gacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatt- tac ggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtccgccccctattgacgtcaatgacggt- aaa tggcccgcctggcattatgcccagtacatgaccttacgggactttcctacttggcagtacatctacgtattagt- cat cgctattaccatggtgatgcggttttggcagtacaccaatgggcgtggatagcggtttgactcacggggatttc- caa gtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaat- aac cccgccccgttgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaa- ccg tcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccgcg- gcc gggaacggtgcattggaacgcggattccccgtgccaagagtgacgtaagtaccgcctatagactctataggcac- acc cctttggctcttatgcatgctatactgtttttggcttggggcctatacacccccgcttccttatgctataggtg- atg gtatagcttagcctataggtgtgggttattgaccattattgaccactcccctattggtgacgatactttccatt- act aatccataacatggctctttgccacaactatctctattggctatatgccaatactctgtccttcagagactgac- acg gactctgtatttttacaggatggggtcccatttattatttacaaattcacatatacaacaacgccgtcccccgt- gcc cgcagtttttattaaacatagcgtgggatctccacgcgaatctcgggtacgtgttccggacatgggctcttctc- cgg tagcggcggagcttccacatccgagccctggtcccatgcctccagcggctcatggtcgctcggcagctccttgc- tcc taacagtggaggccagacttaggcacagcacaatgcccaccaccaccagtgtgccgcacaaggccgtggcggta- ggg tatgtgtctgaaaatgagctcggagattgggctcgcaccgctgacgcagatggaagacttaaggcagcggcaga- aga agatgcaggcagctgagttgttgtattctgataagagtcagaggtaactcccgttgcggtgctgttaacggtgg- agg
gcagtgtagtctgagcagtactcgttgctgccgcgcgcgccaccagacataatagctgacagactaacagactg- ttc ctttccatgggtcttttctgcagtcaccgtcgtcgacgccaccatgagccccaaggacctgacccccttcctga- caa ccctgtggctgctcctgggccatagcagagtgcctagagtgcgggccgaggaatgctgcgagttcatcaacgtg- aac cacccccccgagcggtgctacgacttcaagatgtgcaaccggttcaccgtggccctgagatgccccgacggcga- agt gtgctacagccccgagaaaaccgccgagatccggggcatcgtgaccaccatgacccacagcctgacccggcagg- tgg tgcacaacaagctgaccagctgcaactacaaccccctgtacctggaagccgacggccggatcagatgcggcaaa- gtg aacgacaaggcccagtacctgctgggagccgccggaagcgtgccctaccggtggatcaacctggaatacgacaa- gat cacccggatcgtgggcctggaccagtacctggaaagcgtgaagaagcacaagcggctggacgtgtgcagagcca- aga tgggctacatgctgcagtgataatctagaaagccatggatatcggatccactacgcgttagagctcgctgatca- gcc tcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgc- cac tcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggg- gtg gggtggggcaggacagcaagggggaggattgggaagacaatagcaggggggtgggcgaagaactccagcatgag- atc cccgcgctggaggatcatccagccggcgtcccggaaaacgattccgaagcccaacctttcatagaaggcggcgg- tgg aatcgaaatctcgtgatggcaggttgggcgtcgcttggtcggtcatttcgaaccccagagtcccgctcagaaga- act cgtcaagaaggcgatagaaggcgatgcgctgcgaatcgggagcggcgataccgtaaagcacgaggaagcggtca- gcc cattcgccgccaagctcttcagcaatatcacgggtagccaacgctatgtcctgatagcggtccgccacacccag- ccg gccacagtcgatgaatccagaaaagcggccattttccaccatgatattcggcaagcaggcatcgccatgggtca- cga cgagatcctcgccgtcgggcatgcgcgccttgagcctggcgaacagttcggctggcgcgagcccctgatgctct- tcg tccagatcatcctgatcgacaagaccggcttccatccgagtacgtgctcgctcgatgcgatgtttcgcttggtg- gtc gaatgggcaggtagccggatcaagcgtatgcagccgccgcattgcatcagccatgatggatactttctcggcag- gag caaggtgagatgacaggagatcctgccccggcacttcgcccaatagcagccagtcccttcccgcttcagtgaca- acg tcgagcacagctgcgcaaggaacgcccgtcgtggccagccacgatagccgcgctgcctcgtcctgcagttcatt- cag ggcaccggacaggtcggtcttgacaaaaagaaccgggcgcccctgcgctgacagccggaacacggcggcatcag- agc agccgattgtctgttgtgcccagtcatagccgaatagcctctccacccaagcggccggagaacctgcgtgcaat- cca tcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcttgatcccctgcgccatcagatcct- tgg cggcaagaaagccatccagtttactttgcagggcttcccaaccttaccagagggcgccccagctggcaattccg- gtt cgcttgctgtccataaaaccgcccagtctagctatcgccatgtaagcccactgcaagctacctgctttctcttt- gcg cttgcgttttcccttgtccagatagcccagtagctgacattcatccggggtcagcaccgtttctgcggactggc- ttt ctacgtgttccgcttcctttagcagcccttgcgccctgagtgcttgcggcagcgtgaagctaattcatggttaa- att tttgttaaatcagctcattttttaaccaataggccgaaatcggcaaaatcccttataaatcaaaagaatagccc- gag atagggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcg- aaa aaccgtctatcagggcgatggccggatcagcttatgcggtgtgaaataccgcacagatgcgtaaggagaaaata- ccg catcaggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcag- ctc actcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccag- caa aaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaa- aaa tcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccc- tcg tgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctt- tct catagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccc- cgt tcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccac- tgg cagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcct- aac tacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttgg- tag ctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaa- aaa aaggatctcaagaagatcctttgatcttttctactgaacggtgatccccaccggaattgcg (a construct encoding full-length pUL130) SEQ ID NO: 27 gccgcggaatttcgactctaggccattgcatacgttgtatctatatcataatatgtacatttatattggctcat- gtc caatatgaccgccatgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcat- agc ccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc- att gacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatt- tac ggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtccgccccctattgacgtcaatgacggt- aaa tggcccgcctggcattatgcccagtacatgaccttacgggactttcctacttggcagtacatctacgtattagt- cat cgctattaccatggtgatgcggttttggcagtacaccaatgggcgtggatagcggtttgactcacggggatttc- caa gtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaat- aac cccgccccgttgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaa- ccg tcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccgcg- gcc gggaacggtgcattggaacgcggattccccgtgccaagagtgacgtaagtaccgcctatagactctataggcac- acc cctttggctcttatgcatgctatactgtttttggcttggggcctatacacccccgcttccttatgctataggtg- atg gtatagcttagcctataggtgtgggttattgaccattattgaccactcccctattggtgacgatactttccatt- act aatccataacatggctctttgccacaactatctctattggctatatgccaatactctgtccttcagagactgac- acg gactctgtatttttacaggatggggtcccatttattatttacaaattcacatatacaacaacgccgtcccccgt- gcc cgcagtttttattaaacatagcgtgggatctccacgcgaatctcgggtacgtgttccggacatgggctcttctc- cgg tagcggcggagcttccacatccgagccctggtcccatgcctccagcggctcatggtcgctcggcagctccttgc- tcc taacagtggaggccagacttaggcacagcacaatgcccaccaccaccagtgtgccgcacaaggccgtggcggta- ggg tatgtgtctgaaaatgagctcggagattgggctcgcaccgctgacgcagatggaagacttaaggcagcggcaga- aga agatgcaggcagctgagttgttgtattctgataagagtcagaggtaactcccgttgcggtgctgttaacggtgg- agg gcagtgtagtctgagcagtactcgttgctgccgcgcgcgccaccagacataatagctgacagactaacagactg- ttc ctttccatgggtcttttctgcagtcaccgtcgtcgacgccaccatgctgcggctgctgctgagacaccacttcc- act gcctgctgctgtgtgccgtgtgggccaccccttgtctggccagcccttggagcaccctgaccgccaaccagaac- cct agccccccttggtccaagctgacctacagcaagccccacgacgccgccaccttctactgcccctttctgtaccc- cag ccctcccagaagccccctgcagttcagcggcttccagagagtgtccaccggccctgagtgccggaacgagacac- tgt acctgctgtacaaccgggagggccagacactggtggagcggagcagcacctgggtgaaaaaagtgatctggtat- ctg agcggccggaaccagaccatcctgcagcggatgcccagaaccgccagcaagcccagcgacggcaacgtgcagat- cag cgtggaggacgccaaaatcttcggcgcccacatggtgcccaagcagaccaagctgctgagattcgtggtcaacg- acg gcaccagatatcagatgtgcgtgatgaagctggaaagctgggcccacgtgttccgggactactccgtgagcttc- cag gtccggctgaccttcaccgaggccaacaaccagacctacaccttctgcacccaccccaacctgatcgtgtgata- atc tagaaagccatggatatcggatccactacgcgttagagctcgctgatcagcctcgactgtgccttctagttgcc- agc catctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataa- aat gaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaaggg- gga ggattgggaagacaatagcaggggggtgggcgaagaactccagcatgagatccccgcgctggaggatcatccag- ccg gcgtcccggaaaacgattccgaagcccaacctttcatagaaggcggcggtggaatcgaaatctcgtgatggcag- gtt gggcgtcgcttggtcggtcatttcgaaccccagagtcccgctcagaagaactcgtcaagaaggcgatagaaggc- gat gcgctgcgaatcgggagcggcgataccgtaaagcacgaggaagcggtcagcccattcgccgccaagctcttcag- caa tatcacgggtagccaacgctatgtcctgatagcggtccgccacacccagccggccacagtcgatgaatccagaa- aag cggccattttccaccatgatattcggcaagcaggcatcgccatgggtcacgacgagatcctcgccgtcgggcat- gcg cgccttgagcctggcgaacagttcggctggcgcgagcccctgatgctcttcgtccagatcatcctgatcgacaa- gac cggcttccatccgagtacgtgctcgctcgatgcgatgtttcgcttggtggtcgaatgggcaggtagccggatca-
agc gtatgcagccgccgcattgcatcagccatgatggatactttctcggcaggagcaaggtgagatgacaggagatc- ctg ccccggcacttcgcccaatagcagccagtcccttcccgcttcagtgacaacgtcgagcacagctgcgcaaggaa- cgc ccgtcgtggccagccacgatagccgcgctgcctcgtcctgcagttcattcagggcaccggacaggtcggtcttg- aca aaaagaaccgggcgcccctgcgctgacagccggaacacggcggcatcagagcagccgattgtctgttgtgccca- gtc atagccgaatagcctctccacccaagcggccggagaacctgcgtgcaatccatcttgttcaatcatgcgaaacg- atc ctcatcctgtctcttgatcagatcttgatcccctgcgccatcagatccttggcggcaagaaagccatccagttt- act ttgcagggcttcccaaccttaccagagggcgccccagctggcaattccggttcgcttgctgtccataaaaccgc- cca gtctagctatcgccatgtaagcccactgcaagctacctgctttctctttgcgcttgcgttttcccttgtccaga- tag cccagtagctgacattcatccggggtcagcaccgtttctgcggactggctttctacgtgttccgcttcctttag- cag cccttgcgccctgagtgcttgcggcagcgtgaagctaattcatggttaaatttttgttaaatcagctcattttt- taa ccaataggccgaaatcggcaaaatcccttataaatcaaaagaatagcccgagatagggttgagtgttgttccag- ttt ggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcgaaaaaccgtctatcagggcgatggc- cgg atcagcttatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcc- tcg ctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggtt- atc cacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaagg- ccg cgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtgg- cga aacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccct- gcc gcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatc- tca gttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgcctta- tcc ggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggat- tag cagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacag- tat ttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaacc- acc gctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatccttt- gat cttttctactgaacggtgatccccaccggaattgcg (a construct encoding full-length pUL131A) SEQ ID NO: 28 gccgcggaatttcgactctaggccattgcatacgttgtatctatatcataatatgtacatttatattggctcat- gtc caatatgaccgccatgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcat- agc ccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc- att gacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatt- tac ggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtccgccccctattgacgtcaatgacggt- aaa tggcccgcctggcattatgcccagtacatgaccttacgggactttcctacttggcagtacatctacgtattagt- cat cgctattaccatggtgatgcggttttggcagtacaccaatgggcgtggatagcggtttgactcacggggatttc- caa gtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaat- aac cccgccccgttgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaa- ccg tcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccgcg- gcc gggaacggtgcattggaacgcggattccccgtgccaagagtgacgtaagtaccgcctatagactctataggcac- acc cctttggctcttatgcatgctatactgtttttggcttggggcctatacacccccgcttccttatgctataggtg- atg gtatagcttagcctataggtgtgggttattgaccattattgaccactcccctattggtgacgatactttccatt- act aatccataacatggctctttgccacaactatctctattggctatatgccaatactctgtccttcagagactgac- acg gactctgtatttttacaggatggggtcccatttattatttacaaattcacatatacaacaacgccgtcccccgt- gcc cgcagtttttattaaacatagcgtgggatctccacgcgaatctcgggtacgtgttccggacatgggctcttctc- cgg tagcggcggagcttccacatccgagccctggtcccatgcctccagcggctcatggtcgctcggcagctccttgc- tcc taacagtggaggccagacttaggcacagcacaatgcccaccaccaccagtgtgccgcacaaggccgtggcggta- ggg tatgtgtctgaaaatgagctcggagattgggctcgcaccgctgacgcagatggaagacttaaggcagcggcaga- aga agatgcaggcagctgagttgttgtattctgataagagtcagaggtaactcccgttgcggtgctgttaacggtgg- agg gcagtgtagtctgagcagtactcgttgctgccgcgcgcgccaccagacataatagctgacagactaacagactg- ttc ctttccatgggtcttttctgcagtcaccgtcgtcgacgccaccatgcggctgtgcagagtgtggctgtccgtgt- gcc tgtgtgccgtggtgctgggccagtgccagagagagacagccgagaagaacgactactaccgggtgccccactac- tgg gatgcctgcagcagagccctgcccgaccagacccggtacaaatacgtggagcagctcgtggacctgaccctgaa- cta ccactacgacgccagccacggcctggacaacttcgacgtgctgaagcggatcaacgtgaccgaggtgtccctgc- tga tcagcgacttccggcggcagaacagaagaggcggcaccaacaagcggaccaccttcaacgccgctggctctctg- gcc cctcacgccagatccctggaattcagcgtgcggctgttcgccaactgataatctagaaagccatggatatcgga- tcc actacgcgttagagctcgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctccc- ccg tgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgt- ctg agtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcag- ggg ggtgggcgaagaactccagcatgagatccccgcgctggaggatcatccagccggcgtcccggaaaacgattccg- aag cccaacctttcatagaaggcggcggtggaatcgaaatctcgtgatggcaggttgggcgtcgcttggtcggtcat- ttc gaaccccagagtcccgctcagaagaactcgtcaagaaggcgatagaaggcgatgcgctgcgaatcgggagcggc- gat accgtaaagcacgaggaagcggtcagcccattcgccgccaagctcttcagcaatatcacgggtagccaacgcta- tgt cctgatagcggtccgccacacccagccggccacagtcgatgaatccagaaaagcggccattttccaccatgata- ttc ggcaagcaggcatcgccatgggtcacgacgagatcctcgccgtcgggcatgcgcgccttgagcctggcgaacag- ttc ggctggcgcgagcccctgatgctcttcgtccagatcatcctgatcgacaagaccggcttccatccgagtacgtg- ctc gctcgatgcgatgtttcgcttggtggtcgaatgggcaggtagccggatcaagcgtatgcagccgccgcattgca- tca gccatgatggatactttctcggcaggagcaaggtgagatgacaggagatcctgccccggcacttcgcccaatag- cag ccagtcccttcccgcttcagtgacaacgtcgagcacagctgcgcaaggaacgcccgtcgtggccagccacgata- gcc gcgctgcctcgtcctgcagttcattcagggcaccggacaggtcggtcttgacaaaaagaaccgggcgcccctgc- gct gacagccggaacacggcggcatcagagcagccgattgtctgttgtgcccagtcatagccgaatagcctctccac- cca agcggccggagaacctgcgtgcaatccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcag- atc ttgatcccctgcgccatcagatccttggcggcaagaaagccatccagtttactttgcagggcttcccaacctta- cca gagggcgccccagctggcaattccggttcgcttgctgtccataaaaccgcccagtctagctatcgccatgtaag- ccc actgcaagctacctgctttctctttgcgcttgcgttttcccttgtccagatagcccagtagctgacattcatcc- ggg gtcagcaccgtttctgcggactggctttctacgtgttccgcttcctttagcagcccttgcgccctgagtgcttg- cgg cagcgtgaagctaattcatggttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggcaa- aat cccttataaatcaaaagaatagcccgagatagggttgagtgttgttccagtttggaacaagagtccactattaa- aga acgtggactccaacgtcaaagggcgaaaaaccgtctatcagggcgatggccggatcagcttatgcggtgtgaaa- tac cgcacagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctcgctcactgactcgctgcgctcg- gtc gttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgc- agg aaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccata- ggc tccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaaga- tac caggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgc- ctt tctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgct- cca agctgggctgtgtgcagaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccc- aac ccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcgg- tgc tacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctga- agc
cagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggttttttt- gtt tgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctactgaacggtgatc- ccc accggaattgcg (gH mature protein consisting of amino acid residues 24-715 of SEQ ID NO: 1) SEQ ID NO: 29 RYGAEAVSEPLDKAFHLLLNTYGRPIRFLRENTTQCTYNSSLRNSTVVRENAISFNFFQSYNQYYVFHMPRCLF- AGP LAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQDSLGEQPTTVPPPIDLSIPHVWMPPQTTP- HGW TESHTTSGLHRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKITLTEDFFVVTVSIDDDTPMLLIFG- HLP RVLFKAPYQRDNFILRQTEKHELLVLVKKDQLNRHSYLKDPDFLDAALDFNYLDLSALLRNSFHRYAVDVLKSG- RCQ MLDRRTVEMAFAYALALFAAARQEEAGAQVSVPRALDRQAALLQIQEFMITCLSQTPPRTTLLLYPTAVDLAKR- ALW TPNQITDITSLVRLVYILSKQNQQHLIPQWALRQIADFALKLHKTHLASFLSAFARQELYLMGSLVHSMLVHTT- ERR EIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDHSLERLTRLFPDATVPATVPAALSILSTMQ- PST LETFPDLFCLPLGESFSALTVSEHVSYIVTNQYLIKGISYPVSTTVVGQSLIITQTDSQTKCELTRNMHTTHSI- TVA LNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSSPRTHYLMLLKNGTVLEVTDVVVDA- TD (gH mature protein comprising SEQ ID NOs: 29 and 5) SEQ ID NO: 30 RYGAEAVSEPLDKAFHLLLNTYGRPIRFLRENTTQCTYNSSLRNSTVVRENAISFNFFQSYNQYYVFHMPRCLF- AGP LAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQDSLGEQPTTVPPPIDLSIPHVWMPPQTTP- HGW TESHTTSGLHRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKITLTEDFFVVTVSIDDDTPMLLIFG- HLP RVLFKAPYQRDNFILRQTEKHELLVLVKKDQLNRHSYLKDPDFLDAALDFNYLDLSALLRNSFHRYAVDVLKSG- RCQ MLDRRTVEMAFAYALALFAAARQEEAGAQVSVPRALDRQAALLQIQEFMITCLSQTPPRTTLLLYPTAVDLAKR- ALW TPNQITDITSLVRLVYILSKQNQQHLIPQWALRQIADFALKLHKTHLASFLSAFARQELYLMGSLVHSMLVHTT- ERR EIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDHSLERLTRLFPDATVPATVPAALSILSTMQ- PST LETFPDLFCLPLGESFSALTVSEHVSYIVTNQYLIKGISYPVSTTVVGQSLIITQTDSQTKCELTRNMHTTHSI- TVA LNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSSPRTHYLMLLKNGTVLEVTDVVVDA- TDG TKLGPEQKLISEEDLNSAVDHHHHHH (gL mature protein consisting of amino acid residues 31-278 of SEQ ID NO: 7) SEQ ID NO: 31 AAVSVAPTAAEKVPAECPELTRRCLLGEVFEGDKYESWLRPLVNVTGRDGPLSQLIRYRPVTPEAANSVLLDEA- FLD TLALLYNNPDQLRALLTLLSSDTAPRWMTVMRGYSECGDGSPAVYTCVDDLCRGYDLTRLSYGRSIFTEHVLGF- ELV PPSLFNVVVAIRNEATRTNRAVRLPVSTAAAPEGITLFYGLYNAVKEFCLRHQLDPPLLRHLDKYYAGLPPELK- QTR VNLPAHSRYGPQAVDAR (gO mature protein consisting of amino acid residues 31-472 of SEQ ID NO: 10) SEQ ID NO: 32 CNVLVNSRGTRRSWPYTVLSYRGKEILKKQKEDILKRLMSTSSDGYRFLMYPSQQKFHAIVISMDKFPQDYILA- GPI RNDSITHMWFDFYSTQLRKPAKYVYSEYNHTAHKITLRPPPCGTVPSMNCLSEMLNVSKRNDTGEKGCGNFTTF- NPM FFNVPRWNTKLYIGSNKVNVDSQTIYFLGLTALLLRYAQPNCTRSFYLVNAMSRMLFRVPKYINGTKLKNTMRK- LKR KQALVKEQPQKKNKKSQSTTTPYLSYTTSTAFNVTTNVTYSATAAVTRVATSTTGYRPDSNFMKSIMATQLRDL- ATW VYTTLRYRNEPFCKPDRNRTAVSEFMKNTHVLIRNETPYTIYGTLDMSSLYYNETMSVENETASDNNETTPTSP- STR FQRTFIDPLWDYLDSLLFLDKIRNFSLQLPAYGNLTPPEHRRAANLSTLNSLWWWSQ (pUL128 mature protein consisting of amino acid residues 28-171 of SEQ ID NO: 14 and 15) SEQ ID NO: 33 EECCEFINVNHPPERCYDFKMCNRFTVALRCPDGEVCYSPEKTAEIRGIVTTMTHSLTRQVVHNKLTSCNYNPL- YLE ADGRIRCGKVNDKAQYLLGAAGSVPYRWINLEYDKITRIVGLDQYLESVKKHKRLDVCRAKMGYMLQ (pUL130 mature protein consisting of amino acid residues 26-214 of SEQ ID NO: 16) SEQ ID NO: 34 SPWSTLTANQNPSPPWSKLTYSKPHDAATFYCPFLYPSPPRSPLQFSGFQRVSTGPECRNETLYLLYNREGQTL- VER SSTWVKKVIWYLSGRNQTILQRMPRTASKPSDGNVQISVEDAKIFGAHMVPKQTKLLRFVVNDGTRYQMCVMKL- ESW AHVFRDYSVSFQVRLTFTEANNQTYTFCTHPNLIV (pUL131A mature protein consisting of amino acid residues 19-129 of SEQ ID NO: 18 and SEQ ID NO: 19) SEQ ID NO: 35 QCQRETAEKNDYYRVPHYWDACSRALPDQTRYKYVEQLVDLTLNYHYDASHGLDNFDVLKRINVTEVSLLISDF- RRQ NRRGGTNKRTTFNAAGSLAPHARSLEFSVRLFAN (gB mature protein consisting of amino acid residues 23-907 of SEQ ID NO: 21) SEQ ID NO: 36 VSSSSTRGTSATHSHHSSHTTSAAHSRSGSVSQRVTSSQTVSHGVNETIYNTTLKYGDVVGVNTTKYPYRVCSM- AQG TDLIRFERNIVCTSMKPINEDLDEGIMVVYKRNIVAHTFKVRVYQKVLTFRRSYAYIHTTYLLGSNTEYVAPPM- WEI HHINSHSQCYSSYSRVIAGTVFVAYHRDSYENKTMQLMPDDYSNTHSTRYVTVKDQWHSRGSTWLYRETCNLNC- MVT ITTARSKYPYHFFATSTGDVVDISPFYNGTNRNASYFGENADKFFIFPNYTIVSDFGRPNSALETHRLVAFLER- ADS VISWDIQDEKNVTCQLTFWEASERTIRSEAEDSYHFSSAKMTATFLSKKQEVNMSDSALDCVRDEAINKLQQIF- NTS YNQTYEKYGNVSVFETTGGLVVFWQGIKQKSLVELERLANRSSLNLTHNRTKRSTDGNNATHLSNMESVHNLVY- AQL QFTYDTLRGYINRALAQIAEAWCVDQRRTLEVFKELSKINPSAILSAIYNKPIAARFMGDVLGLASCVTINQTS- VKV LRDMNVKESPGRCYSRPVVIFNFANSSYVQYGQLGEDNEILLGNHRTEECQLPSLKIFIAGNSAYEYVDYLFKR- MID LSSISTVDSMIALDIDPLENTDFRVLELYSQKELRSSNVFDLEEIMREFNSYKQRVKYVEDKVVDPLPPYLKGL- DDL MSGLGAAGKAVGVAIGAVGGAVASVVEGVATFLKNPFGAFTIILVAIAVVIITYLIYTRQRRLCTQPLQNLFPY- LVS ADGTTVTSGSTKDTSLQAPPSYEESVYNSGRKGPGPPSSDASTAAPPYTNEQAYQMLLALARLDAEQRAQQNGT- DSL DGRTGTQDKGQKPNLLDRLRHRKNGYRHLKDSDEEENV
Sequence CWU
1
1
361742PRTHuman cytomegalovirus 1Met Arg Pro Gly Leu Pro Ser Tyr Leu Ile
Ile Leu Ala Val Cys Leu1 5 10
15Phe Ser His Leu Leu Ser Ser Arg Tyr Gly Ala Glu Ala Val Ser Glu
20 25 30Pro Leu Asp Lys Ala Phe
His Leu Leu Leu Asn Thr Tyr Gly Arg Pro 35 40
45Ile Arg Phe Leu Arg Glu Asn Thr Thr Gln Cys Thr Tyr Asn
Ser Ser 50 55 60Leu Arg Asn Ser Thr
Val Val Arg Glu Asn Ala Ile Ser Phe Asn Phe65 70
75 80Phe Gln Ser Tyr Asn Gln Tyr Tyr Val Phe
His Met Pro Arg Cys Leu 85 90
95Phe Ala Gly Pro Leu Ala Glu Gln Phe Leu Asn Gln Val Asp Leu Thr
100 105 110Glu Thr Leu Glu Arg
Tyr Gln Gln Arg Leu Asn Thr Tyr Ala Leu Val 115
120 125Ser Lys Asp Leu Ala Ser Tyr Arg Ser Phe Ser Gln
Gln Leu Lys Ala 130 135 140Gln Asp Ser
Leu Gly Glu Gln Pro Thr Thr Val Pro Pro Pro Ile Asp145
150 155 160Leu Ser Ile Pro His Val Trp
Met Pro Pro Gln Thr Thr Pro His Gly 165
170 175Trp Thr Glu Ser His Thr Thr Ser Gly Leu His Arg
Pro His Phe Asn 180 185 190Gln
Thr Cys Ile Leu Phe Asp Gly His Asp Leu Leu Phe Ser Thr Val 195
200 205Thr Pro Cys Leu His Gln Gly Phe Tyr
Leu Ile Asp Glu Leu Arg Tyr 210 215
220Val Lys Ile Thr Leu Thr Glu Asp Phe Phe Val Val Thr Val Ser Ile225
230 235 240Asp Asp Asp Thr
Pro Met Leu Leu Ile Phe Gly His Leu Pro Arg Val 245
250 255Leu Phe Lys Ala Pro Tyr Gln Arg Asp Asn
Phe Ile Leu Arg Gln Thr 260 265
270Glu Lys His Glu Leu Leu Val Leu Val Lys Lys Asp Gln Leu Asn Arg
275 280 285His Ser Tyr Leu Lys Asp Pro
Asp Phe Leu Asp Ala Ala Leu Asp Phe 290 295
300Asn Tyr Leu Asp Leu Ser Ala Leu Leu Arg Asn Ser Phe His Arg
Tyr305 310 315 320Ala Val
Asp Val Leu Lys Ser Gly Arg Cys Gln Met Leu Asp Arg Arg
325 330 335Thr Val Glu Met Ala Phe Ala
Tyr Ala Leu Ala Leu Phe Ala Ala Ala 340 345
350Arg Gln Glu Glu Ala Gly Ala Gln Val Ser Val Pro Arg Ala
Leu Asp 355 360 365Arg Gln Ala Ala
Leu Leu Gln Ile Gln Glu Phe Met Ile Thr Cys Leu 370
375 380Ser Gln Thr Pro Pro Arg Thr Thr Leu Leu Leu Tyr
Pro Thr Ala Val385 390 395
400Asp Leu Ala Lys Arg Ala Leu Trp Thr Pro Asn Gln Ile Thr Asp Ile
405 410 415Thr Ser Leu Val Arg
Leu Val Tyr Ile Leu Ser Lys Gln Asn Gln Gln 420
425 430His Leu Ile Pro Gln Trp Ala Leu Arg Gln Ile Ala
Asp Phe Ala Leu 435 440 445Lys Leu
His Lys Thr His Leu Ala Ser Phe Leu Ser Ala Phe Ala Arg 450
455 460Gln Glu Leu Tyr Leu Met Gly Ser Leu Val His
Ser Met Leu Val His465 470 475
480Thr Thr Glu Arg Arg Glu Ile Phe Ile Val Glu Thr Gly Leu Cys Ser
485 490 495Leu Ala Glu Leu
Ser His Phe Thr Gln Leu Leu Ala His Pro His His 500
505 510Glu Tyr Leu Ser Asp Leu Tyr Thr Pro Cys Ser
Ser Ser Gly Arg Arg 515 520 525Asp
His Ser Leu Glu Arg Leu Thr Arg Leu Phe Pro Asp Ala Thr Val 530
535 540Pro Ala Thr Val Pro Ala Ala Leu Ser Ile
Leu Ser Thr Met Gln Pro545 550 555
560Ser Thr Leu Glu Thr Phe Pro Asp Leu Phe Cys Leu Pro Leu Gly
Glu 565 570 575Ser Phe Ser
Ala Leu Thr Val Ser Glu His Val Ser Tyr Ile Val Thr 580
585 590Asn Gln Tyr Leu Ile Lys Gly Ile Ser Tyr
Pro Val Ser Thr Thr Val 595 600
605Val Gly Gln Ser Leu Ile Ile Thr Gln Thr Asp Ser Gln Thr Lys Cys 610
615 620Glu Leu Thr Arg Asn Met His Thr
Thr His Ser Ile Thr Val Ala Leu625 630
635 640Asn Ile Ser Leu Glu Asn Cys Ala Phe Cys Gln Ser
Ala Leu Leu Glu 645 650
655Tyr Asp Asp Thr Gln Gly Val Ile Asn Ile Met Tyr Met His Asp Ser
660 665 670Asp Asp Val Leu Phe Ala
Leu Asp Pro Tyr Asn Glu Val Val Val Ser 675 680
685Ser Pro Arg Thr His Tyr Leu Met Leu Leu Lys Asn Gly Thr
Val Leu 690 695 700Glu Val Thr Asp Val
Val Val Asp Ala Thr Asp Ser Arg Leu Leu Met705 710
715 720Met Ser Val Tyr Ala Leu Ser Ala Ile Ile
Gly Ile Tyr Leu Leu Tyr 725 730
735Arg Met Leu Lys Thr Cys 7402742PRTHuman
cytomegalovirus 2Met Arg Pro Gly Leu Pro Ser Tyr Leu Ile Val Leu Ala Val
Cys Leu1 5 10 15Leu Ser
His Leu Leu Ser Ser Arg Tyr Gly Ala Glu Ala Ile Ser Glu 20
25 30Pro Leu Asp Lys Ala Phe His Leu Leu
Leu Asn Thr Tyr Gly Arg Pro 35 40
45Ile Arg Phe Leu Arg Glu Asn Thr Thr Gln Cys Thr Tyr Asn Ser Ser 50
55 60Leu Arg Asn Ser Thr Val Val Arg Glu
Asn Ala Ile Ser Phe Asn Phe65 70 75
80Phe Gln Ser Tyr Asn Gln Tyr Tyr Val Phe His Met Pro Arg
Cys Leu 85 90 95Phe Ala
Gly Pro Leu Ala Glu Gln Phe Leu Asn Gln Val Asp Leu Thr 100
105 110Glu Thr Leu Glu Arg Tyr Gln Gln Arg
Leu Asn Thr Tyr Ala Leu Val 115 120
125Ser Lys Asp Leu Ala Ser Tyr Arg Ser Phe Ser Gln Gln Leu Lys Ala
130 135 140Gln Asp Ser Leu Gly Glu Gln
Pro Thr Thr Val Pro Pro Pro Ile Asp145 150
155 160Leu Ser Ile Pro His Val Trp Met Pro Pro Gln Thr
Thr Pro His Gly 165 170
175Trp Thr Glu Ser His Thr Thr Ser Gly Leu His Arg Pro His Phe Asn
180 185 190Gln Thr Cys Ile Leu Phe
Asp Gly His Asp Leu Leu Phe Ser Thr Val 195 200
205Thr Pro Cys Leu His Gln Gly Phe Tyr Leu Ile Asp Glu Leu
Arg Tyr 210 215 220Val Lys Ile Thr Leu
Thr Glu Asp Phe Phe Val Val Thr Val Ser Ile225 230
235 240Asp Asp Asp Thr Pro Met Leu Leu Ile Phe
Gly His Leu Pro Arg Val 245 250
255Leu Phe Lys Ala Pro Tyr Gln Arg Asp Asn Phe Ile Leu Arg Gln Thr
260 265 270Glu Lys His Glu Leu
Leu Val Leu Val Lys Lys Asp Gln Leu Asn Arg 275
280 285His Ser Tyr Leu Lys Asp Pro Asp Phe Leu Asp Ala
Ala Leu Asp Phe 290 295 300Asn Tyr Leu
Asp Leu Ser Ala Leu Leu Arg Asn Ser Phe His Arg Tyr305
310 315 320Ala Val Asp Val Leu Lys Ser
Gly Arg Cys Gln Met Leu Asp Arg Arg 325
330 335Thr Val Glu Met Ala Phe Ala Tyr Ala Leu Ala Leu
Phe Ala Ala Ala 340 345 350Arg
Gln Glu Glu Ala Gly Ala Gln Val Ser Val Pro Arg Ala Leu Asp 355
360 365Arg Gln Ala Ala Leu Leu Gln Ile Gln
Glu Phe Met Ile Thr Cys Leu 370 375
380Ser Gln Thr Pro Pro Arg Thr Thr Leu Leu Leu Tyr Pro Thr Ala Val385
390 395 400Asp Leu Ala Lys
Arg Ala Leu Trp Thr Pro Asn Gln Ile Thr Asp Ile 405
410 415Thr Ser Leu Val Arg Leu Val Tyr Ile Leu
Ser Lys Gln Asn Gln Gln 420 425
430His Leu Ile Pro Gln Trp Ala Leu Arg Gln Ile Ala Asp Phe Ala Leu
435 440 445Lys Leu His Lys Thr His Leu
Ala Ser Phe Leu Ser Ala Phe Ala Arg 450 455
460Gln Glu Leu Tyr Leu Met Gly Ser Leu Val His Ser Met Leu Val
His465 470 475 480Thr Thr
Glu Arg Arg Glu Ile Phe Ile Val Glu Thr Gly Leu Cys Ser
485 490 495Leu Ala Glu Leu Ser His Phe
Thr Gln Leu Leu Ala His Pro His His 500 505
510Glu Tyr Leu Ser Asp Leu Tyr Thr Pro Cys Ser Ser Ser Gly
Arg Arg 515 520 525Asp His Ser Leu
Glu Arg Leu Thr Arg Leu Phe Pro Asp Ala Thr Val 530
535 540Pro Thr Thr Val Pro Ala Ala Leu Ser Ile Leu Ser
Thr Met Gln Pro545 550 555
560Ser Thr Leu Glu Thr Phe Pro Asp Leu Phe Cys Leu Pro Leu Gly Glu
565 570 575Ser Phe Ser Ala Leu
Thr Val Ser Glu His Val Ser Tyr Val Val Thr 580
585 590Asn Gln Tyr Leu Ile Lys Gly Ile Ser Tyr Pro Val
Ser Thr Thr Val 595 600 605Val Gly
Gln Ser Leu Ile Ile Thr Gln Thr Asp Ser Gln Thr Lys Cys 610
615 620Glu Leu Thr Arg Asn Met His Thr Thr His Ser
Ile Thr Ala Ala Leu625 630 635
640Asn Ile Ser Leu Glu Asn Cys Ala Phe Cys Gln Ser Ala Leu Leu Glu
645 650 655Tyr Asp Asp Thr
Gln Gly Val Ile Asn Ile Met Tyr Met His Asp Ser 660
665 670Asp Asp Val Leu Phe Ala Leu Asp Pro Tyr Asn
Glu Val Val Val Ser 675 680 685Ser
Pro Arg Thr His Tyr Leu Met Leu Leu Lys Asn Gly Thr Val Leu 690
695 700Glu Val Thr Asp Val Val Val Asp Ala Thr
Asp Ser Arg Leu Leu Met705 710 715
720Met Ser Val Tyr Ala Leu Ser Ala Ile Ile Gly Ile Tyr Leu Leu
Tyr 725 730 735Arg Met Leu
Lys Thr Cys 7403743PRTHuman cytomegalovirus 3Met Arg Pro Gly
Leu Pro Pro Tyr Leu Thr Val Phe Thr Val Tyr Leu1 5
10 15Leu Ser His Leu Pro Ser Gln Arg Tyr Gly
Ala Asp Ala Ala Ser Glu 20 25
30Ala Leu Asp Pro His Ala Phe His Leu Leu Leu Asn Thr Tyr Gly Arg
35 40 45Pro Ile Arg Phe Leu Arg Glu Asn
Thr Thr Gln Cys Thr Tyr Asn Ser 50 55
60Ser Leu Arg Asn Ser Thr Val Val Arg Glu Asn Ala Ile Ser Phe Asn65
70 75 80Phe Phe Gln Ser Tyr
Asn Gln Tyr Tyr Val Phe His Met Pro Arg Cys 85
90 95Leu Phe Ala Gly Pro Leu Ala Glu Gln Phe Leu
Asn Gln Val Asp Leu 100 105
110Thr Glu Thr Leu Glu Arg Tyr Gln Gln Arg Leu Asn Thr Tyr Ala Leu
115 120 125Val Ser Lys Asp Leu Ala Ser
Tyr Arg Ser Phe Ser Gln Gln Leu Lys 130 135
140Ala Gln Asp Ser Leu Gly Gln Gln Pro Thr Thr Val Pro Pro Pro
Ile145 150 155 160Asp Leu
Ser Ile Pro His Val Trp Met Pro Pro Gln Thr Thr Pro His
165 170 175Asp Trp Lys Gly Ser His Thr
Thr Ser Gly Leu His Arg Pro His Phe 180 185
190Asn Gln Thr Cys Ile Leu Phe Asp Gly His Asp Leu Leu Phe
Ser Thr 195 200 205Val Thr Pro Cys
Leu His Gln Gly Phe Tyr Leu Met Asp Glu Leu Arg 210
215 220Tyr Val Lys Ile Thr Leu Thr Glu Asp Phe Phe Val
Val Thr Val Ser225 230 235
240Ile Asp Asp Asp Thr Pro Met Leu Leu Ile Phe Gly His Leu Pro Arg
245 250 255Val Leu Phe Lys Ala
Pro Tyr Gln Arg Asp Asn Phe Ile Leu Arg Gln 260
265 270Thr Glu Lys His Glu Leu Leu Val Leu Val Lys Lys
Ala Gln Leu Asn 275 280 285Arg His
Ser Tyr Leu Lys Asp Ser Asp Phe Leu Asp Ala Ala Leu Asp 290
295 300Phe Asn Tyr Leu Asp Leu Ser Ala Leu Leu Arg
Asn Ser Phe His Arg305 310 315
320Tyr Ala Val Asp Val Leu Lys Ser Gly Arg Cys Gln Met Leu Asp Arg
325 330 335Arg Thr Val Glu
Met Ala Phe Ala Tyr Ala Leu Ala Leu Phe Ala Ala 340
345 350Ala Arg Gln Glu Glu Ala Gly Thr Glu Ile Ser
Ile Pro Arg Ala Leu 355 360 365Asp
Arg Gln Ala Ala Leu Leu Gln Ile Gln Glu Phe Met Ile Thr Cys 370
375 380Leu Ser Gln Thr Pro Pro Arg Thr Thr Leu
Leu Leu Tyr Pro Thr Ala385 390 395
400Val Asp Leu Ala Lys Arg Ala Leu Trp Thr Pro Asp Gln Ile Thr
Asp 405 410 415Ile Thr Ser
Leu Val Arg Leu Val Tyr Ile Leu Ser Lys Gln Asn Gln 420
425 430Gln His Leu Ile Pro Gln Trp Ala Leu Arg
Gln Ile Ala Asp Phe Ala 435 440
445Leu Gln Leu His Lys Thr His Leu Ala Ser Phe Leu Ser Ala Phe Ala 450
455 460Arg Gln Glu Leu Tyr Leu Met Gly
Ser Leu Val His Ser Met Leu Val465 470
475 480His Thr Thr Glu Arg Arg Glu Ile Phe Ile Val Glu
Thr Gly Leu Cys 485 490
495Ser Leu Ala Glu Leu Ser His Phe Thr Gln Leu Leu Ala His Pro His
500 505 510His Glu Tyr Leu Ser Asp
Leu Tyr Thr Pro Cys Ser Ser Ser Gly Arg 515 520
525Arg Asp His Ser Leu Glu Arg Leu Thr Arg Leu Phe Pro Asp
Ala Thr 530 535 540Val Pro Ala Thr Val
Pro Ala Ala Leu Ser Ile Leu Ser Thr Met Gln545 550
555 560Pro Ser Thr Leu Glu Thr Phe Pro Asp Leu
Phe Cys Leu Pro Leu Gly 565 570
575Glu Ser Phe Ser Ala Leu Thr Val Ser Glu His Val Ser Tyr Val Val
580 585 590Thr Asn Gln Tyr Leu
Ile Lys Gly Ile Ser Tyr Pro Val Ser Thr Thr 595
600 605Val Val Gly Gln Ser Leu Ile Ile Thr Gln Thr Asp
Ser Gln Thr Lys 610 615 620Cys Glu Leu
Thr Arg Asn Met His Thr Thr His Ser Ile Thr Ala Ala625
630 635 640Leu Asn Ile Ser Leu Glu Asn
Cys Ala Phe Cys Gln Ser Ala Leu Leu 645
650 655Glu Tyr Asp Asp Thr Gln Gly Val Ile Asn Ile Met
Tyr Met His Asp 660 665 670Ser
Asp Asp Val Leu Phe Ala Leu Asp Pro Tyr Asn Glu Val Val Val 675
680 685Ser Ser Pro Arg Thr His Tyr Leu Met
Leu Leu Lys Asn Gly Thr Val 690 695
700Leu Glu Val Thr Asp Val Val Val Asp Ala Thr Asp Ser Arg Leu Leu705
710 715 720Met Met Ser Val
Tyr Ala Leu Ser Ala Ile Ile Gly Ile Tyr Leu Leu 725
730 735Tyr Arg Met Leu Lys Thr Cys
7404715PRTHuman cytomegalovirus 4Met Arg Pro Gly Leu Pro Ser Tyr Leu Ile
Ile Leu Ala Val Cys Leu1 5 10
15Phe Ser His Leu Leu Ser Ser Arg Tyr Gly Ala Glu Ala Val Ser Glu
20 25 30Pro Leu Asp Lys Ala Phe
His Leu Leu Leu Asn Thr Tyr Gly Arg Pro 35 40
45Ile Arg Phe Leu Arg Glu Asn Thr Thr Gln Cys Thr Tyr Asn
Ser Ser 50 55 60Leu Arg Asn Ser Thr
Val Val Arg Glu Asn Ala Ile Ser Phe Asn Phe65 70
75 80Phe Gln Ser Tyr Asn Gln Tyr Tyr Val Phe
His Met Pro Arg Cys Leu 85 90
95Phe Ala Gly Pro Leu Ala Glu Gln Phe Leu Asn Gln Val Asp Leu Thr
100 105 110Glu Thr Leu Glu Arg
Tyr Gln Gln Arg Leu Asn Thr Tyr Ala Leu Val 115
120 125Ser Lys Asp Leu Ala Ser Tyr Arg Ser Phe Ser Gln
Gln Leu Lys Ala 130 135 140Gln Asp Ser
Leu Gly Glu Gln Pro Thr Thr Val Pro Pro Pro Ile Asp145
150 155 160Leu Ser Ile Pro His Val Trp
Met Pro Pro Gln Thr Thr Pro His Gly 165
170 175Trp Thr Glu Ser His Thr Thr Ser Gly Leu His Arg
Pro His Phe Asn 180 185 190Gln
Thr Cys Ile Leu Phe Asp Gly His Asp Leu Leu Phe Ser Thr Val 195
200 205Thr Pro Cys Leu His Gln Gly Phe Tyr
Leu Ile Asp Glu Leu Arg Tyr 210 215
220Val Lys Ile Thr Leu Thr Glu Asp Phe Phe Val Val Thr Val Ser Ile225
230 235 240Asp Asp Asp Thr
Pro Met Leu Leu Ile Phe Gly His Leu Pro Arg Val 245
250 255Leu Phe Lys Ala Pro Tyr Gln Arg Asp Asn
Phe Ile Leu Arg Gln Thr 260 265
270Glu Lys His Glu Leu Leu Val Leu Val Lys Lys Asp Gln Leu Asn Arg
275 280 285His Ser Tyr Leu Lys Asp Pro
Asp Phe Leu Asp Ala Ala Leu Asp Phe 290 295
300Asn Tyr Leu Asp Leu Ser Ala Leu Leu Arg Asn Ser Phe His Arg
Tyr305 310 315 320Ala Val
Asp Val Leu Lys Ser Gly Arg Cys Gln Met Leu Asp Arg Arg
325 330 335Thr Val Glu Met Ala Phe Ala
Tyr Ala Leu Ala Leu Phe Ala Ala Ala 340 345
350Arg Gln Glu Glu Ala Gly Ala Gln Val Ser Val Pro Arg Ala
Leu Asp 355 360 365Arg Gln Ala Ala
Leu Leu Gln Ile Gln Glu Phe Met Ile Thr Cys Leu 370
375 380Ser Gln Thr Pro Pro Arg Thr Thr Leu Leu Leu Tyr
Pro Thr Ala Val385 390 395
400Asp Leu Ala Lys Arg Ala Leu Trp Thr Pro Asn Gln Ile Thr Asp Ile
405 410 415Thr Ser Leu Val Arg
Leu Val Tyr Ile Leu Ser Lys Gln Asn Gln Gln 420
425 430His Leu Ile Pro Gln Trp Ala Leu Arg Gln Ile Ala
Asp Phe Ala Leu 435 440 445Lys Leu
His Lys Thr His Leu Ala Ser Phe Leu Ser Ala Phe Ala Arg 450
455 460Gln Glu Leu Tyr Leu Met Gly Ser Leu Val His
Ser Met Leu Val His465 470 475
480Thr Thr Glu Arg Arg Glu Ile Phe Ile Val Glu Thr Gly Leu Cys Ser
485 490 495Leu Ala Glu Leu
Ser His Phe Thr Gln Leu Leu Ala His Pro His His 500
505 510Glu Tyr Leu Ser Asp Leu Tyr Thr Pro Cys Ser
Ser Ser Gly Arg Arg 515 520 525Asp
His Ser Leu Glu Arg Leu Thr Arg Leu Phe Pro Asp Ala Thr Val 530
535 540Pro Ala Thr Val Pro Ala Ala Leu Ser Ile
Leu Ser Thr Met Gln Pro545 550 555
560Ser Thr Leu Glu Thr Phe Pro Asp Leu Phe Cys Leu Pro Leu Gly
Glu 565 570 575Ser Phe Ser
Ala Leu Thr Val Ser Glu His Val Ser Tyr Ile Val Thr 580
585 590Asn Gln Tyr Leu Ile Lys Gly Ile Ser Tyr
Pro Val Ser Thr Thr Val 595 600
605Val Gly Gln Ser Leu Ile Ile Thr Gln Thr Asp Ser Gln Thr Lys Cys 610
615 620Glu Leu Thr Arg Asn Met His Thr
Thr His Ser Ile Thr Val Ala Leu625 630
635 640Asn Ile Ser Leu Glu Asn Cys Ala Phe Cys Gln Ser
Ala Leu Leu Glu 645 650
655Tyr Asp Asp Thr Gln Gly Val Ile Asn Ile Met Tyr Met His Asp Ser
660 665 670Asp Asp Val Leu Phe Ala
Leu Asp Pro Tyr Asn Glu Val Val Val Ser 675 680
685Ser Pro Arg Thr His Tyr Leu Met Leu Leu Lys Asn Gly Thr
Val Leu 690 695 700Glu Val Thr Asp Val
Val Val Asp Ala Thr Asp705 710
715527PRTArtificial SequenceC-terminal extension including myc-tag and
his- tag 5Gly Thr Lys Leu Gly Pro Glu Gln Lys Leu Ile Ser Glu Glu
Asp Leu1 5 10 15Asn Ser
Ala Val Asp His His His His His His 20
256742PRTHuman cytomegalovirus 6Met Arg Pro Gly Leu Pro Ser Tyr Leu Ile
Ile Leu Ala Val Cys Leu1 5 10
15Phe Ser His Leu Leu Ser Ser Arg Tyr Gly Ala Glu Ala Val Ser Glu
20 25 30Pro Leu Asp Lys Ala Phe
His Leu Leu Leu Asn Thr Tyr Gly Arg Pro 35 40
45Ile Arg Phe Leu Arg Glu Asn Thr Thr Gln Cys Thr Tyr Asn
Ser Ser 50 55 60Leu Arg Asn Ser Thr
Val Val Arg Glu Asn Ala Ile Ser Phe Asn Phe65 70
75 80Phe Gln Ser Tyr Asn Gln Tyr Tyr Val Phe
His Met Pro Arg Cys Leu 85 90
95Phe Ala Gly Pro Leu Ala Glu Gln Phe Leu Asn Gln Val Asp Leu Thr
100 105 110Glu Thr Leu Glu Arg
Tyr Gln Gln Arg Leu Asn Thr Tyr Ala Leu Val 115
120 125Ser Lys Asp Leu Ala Ser Tyr Arg Ser Phe Ser Gln
Gln Leu Lys Ala 130 135 140Gln Asp Ser
Leu Gly Glu Gln Pro Thr Thr Val Pro Pro Pro Ile Asp145
150 155 160Leu Ser Ile Pro His Val Trp
Met Pro Pro Gln Thr Thr Pro His Gly 165
170 175Trp Thr Glu Ser His Thr Thr Ser Gly Leu His Arg
Pro His Phe Asn 180 185 190Gln
Thr Cys Ile Leu Phe Asp Gly His Asp Leu Leu Phe Ser Thr Val 195
200 205Thr Pro Cys Leu His Gln Gly Phe Tyr
Leu Ile Asp Glu Leu Arg Tyr 210 215
220Val Lys Ile Thr Leu Thr Glu Asp Phe Phe Val Val Thr Val Ser Ile225
230 235 240Asp Asp Asp Thr
Pro Met Leu Leu Ile Phe Gly His Leu Pro Arg Val 245
250 255Leu Phe Lys Ala Pro Tyr Gln Arg Asp Asn
Phe Ile Leu Arg Gln Thr 260 265
270Glu Lys His Glu Leu Leu Val Leu Val Lys Lys Asp Gln Leu Asn Arg
275 280 285His Ser Tyr Leu Lys Asp Pro
Asp Phe Leu Asp Ala Ala Leu Asp Phe 290 295
300Asn Tyr Leu Asp Leu Ser Ala Leu Leu Arg Asn Ser Phe His Arg
Tyr305 310 315 320Ala Val
Asp Val Leu Lys Ser Gly Arg Cys Gln Met Leu Asp Arg Arg
325 330 335Thr Val Glu Met Ala Phe Ala
Tyr Ala Leu Ala Leu Phe Ala Ala Ala 340 345
350Arg Gln Glu Glu Ala Gly Ala Gln Val Ser Val Pro Arg Ala
Leu Asp 355 360 365Arg Gln Ala Ala
Leu Leu Gln Ile Gln Glu Phe Met Ile Thr Cys Leu 370
375 380Ser Gln Thr Pro Pro Arg Thr Thr Leu Leu Leu Tyr
Pro Thr Ala Val385 390 395
400Asp Leu Ala Lys Arg Ala Leu Trp Thr Pro Asn Gln Ile Thr Asp Ile
405 410 415Thr Ser Leu Val Arg
Leu Val Tyr Ile Leu Ser Lys Gln Asn Gln Gln 420
425 430His Leu Ile Pro Gln Trp Ala Leu Arg Gln Ile Ala
Asp Phe Ala Leu 435 440 445Lys Leu
His Lys Thr His Leu Ala Ser Phe Leu Ser Ala Phe Ala Arg 450
455 460Gln Glu Leu Tyr Leu Met Gly Ser Leu Val His
Ser Met Leu Val His465 470 475
480Thr Thr Glu Arg Arg Glu Ile Phe Ile Val Glu Thr Gly Leu Cys Ser
485 490 495Leu Ala Glu Leu
Ser His Phe Thr Gln Leu Leu Ala His Pro His His 500
505 510Glu Tyr Leu Ser Asp Leu Tyr Thr Pro Cys Ser
Ser Ser Gly Arg Arg 515 520 525Asp
His Ser Leu Glu Arg Leu Thr Arg Leu Phe Pro Asp Ala Thr Val 530
535 540Pro Ala Thr Val Pro Ala Ala Leu Ser Ile
Leu Ser Thr Met Gln Pro545 550 555
560Ser Thr Leu Glu Thr Phe Pro Asp Leu Phe Cys Leu Pro Leu Gly
Glu 565 570 575Ser Phe Ser
Ala Leu Thr Val Ser Glu His Val Ser Tyr Ile Val Thr 580
585 590Asn Gln Tyr Leu Ile Lys Gly Ile Ser Tyr
Pro Val Ser Thr Thr Val 595 600
605Val Gly Gln Ser Leu Ile Ile Thr Gln Thr Asp Ser Gln Thr Lys Cys 610
615 620Glu Leu Thr Arg Asn Met His Thr
Thr His Ser Ile Thr Val Ala Leu625 630
635 640Asn Ile Ser Leu Glu Asn Cys Ala Phe Cys Gln Ser
Ala Leu Leu Glu 645 650
655Tyr Asp Asp Thr Gln Gly Val Ile Asn Ile Met Tyr Met His Asp Ser
660 665 670Asp Asp Val Leu Phe Ala
Leu Asp Pro Tyr Asn Glu Val Val Val Ser 675 680
685Ser Pro Arg Thr His Tyr Leu Met Leu Leu Lys Asn Gly Thr
Val Leu 690 695 700Glu Val Thr Asp Val
Val Val Asp Ala Thr Asp Gly Thr Lys Leu Gly705 710
715 720Pro Glu Gln Lys Leu Ile Ser Glu Glu Asp
Leu Asn Ser Ala Val Asp 725 730
735His His His His His His 7407278PRTHuman
cytomegalovirus 7Met Cys Arg Arg Pro Asp Cys Gly Phe Ser Phe Ser Pro Gly
Pro Val1 5 10 15Ile Leu
Leu Trp Cys Cys Leu Leu Leu Pro Ile Val Ser Ser Ala Ala 20
25 30Val Ser Val Ala Pro Thr Ala Ala Glu
Lys Val Pro Ala Glu Cys Pro 35 40
45Glu Leu Thr Arg Arg Cys Leu Leu Gly Glu Val Phe Glu Gly Asp Lys 50
55 60Tyr Glu Ser Trp Leu Arg Pro Leu Val
Asn Val Thr Gly Arg Asp Gly65 70 75
80Pro Leu Ser Gln Leu Ile Arg Tyr Arg Pro Val Thr Pro Glu
Ala Ala 85 90 95Asn Ser
Val Leu Leu Asp Glu Ala Phe Leu Asp Thr Leu Ala Leu Leu 100
105 110Tyr Asn Asn Pro Asp Gln Leu Arg Ala
Leu Leu Thr Leu Leu Ser Ser 115 120
125Asp Thr Ala Pro Arg Trp Met Thr Val Met Arg Gly Tyr Ser Glu Cys
130 135 140Gly Asp Gly Ser Pro Ala Val
Tyr Thr Cys Val Asp Asp Leu Cys Arg145 150
155 160Gly Tyr Asp Leu Thr Arg Leu Ser Tyr Gly Arg Ser
Ile Phe Thr Glu 165 170
175His Val Leu Gly Phe Glu Leu Val Pro Pro Ser Leu Phe Asn Val Val
180 185 190Val Ala Ile Arg Asn Glu
Ala Thr Arg Thr Asn Arg Ala Val Arg Leu 195 200
205Pro Val Ser Thr Ala Ala Ala Pro Glu Gly Ile Thr Leu Phe
Tyr Gly 210 215 220Leu Tyr Asn Ala Val
Lys Glu Phe Cys Leu Arg His Gln Leu Asp Pro225 230
235 240Pro Leu Leu Arg His Leu Asp Lys Tyr Tyr
Ala Gly Leu Pro Pro Glu 245 250
255Leu Lys Gln Thr Arg Val Asn Leu Pro Ala His Ser Arg Tyr Gly Pro
260 265 270Gln Ala Val Asp Ala
Arg 2758278PRTHuman cytomegalovirus 8Met Cys Arg Arg Pro Asp Cys
Gly Phe Ser Phe Ser Pro Gly Pro Val1 5 10
15Ala Leu Leu Trp Cys Cys Leu Leu Leu Pro Ile Val Ser
Ser Ala Thr 20 25 30Val Ser
Val Ala Pro Thr Val Ala Glu Lys Val Pro Ala Glu Cys Pro 35
40 45Glu Leu Thr Arg Arg Cys Leu Leu Gly Glu
Val Phe Gln Gly Asp Lys 50 55 60Tyr
Glu Ser Trp Leu Arg Pro Leu Val Asn Val Thr Arg Arg Asp Gly65
70 75 80Pro Leu Ser Gln Leu Ile
Arg Tyr Arg Pro Val Thr Pro Glu Ala Ala 85
90 95Asn Ser Val Leu Leu Asp Asp Ala Phe Leu Asp Thr
Leu Ala Leu Leu 100 105 110Tyr
Asn Asn Pro Asp Gln Leu Arg Ala Leu Leu Thr Leu Leu Ser Ser 115
120 125Asp Thr Ala Pro Arg Trp Met Thr Val
Met Arg Gly Tyr Ser Glu Cys 130 135
140Gly Asp Gly Ser Pro Ala Val Tyr Thr Cys Val Asp Asp Leu Cys Arg145
150 155 160Gly Tyr Asp Leu
Thr Arg Leu Ser Tyr Gly Arg Ser Ile Phe Thr Glu 165
170 175His Val Leu Gly Phe Glu Leu Val Pro Pro
Ser Leu Phe Asn Val Val 180 185
190Val Ala Ile Arg Asn Glu Ala Thr Arg Thr Asn Arg Ala Val Arg Leu
195 200 205Pro Val Ser Thr Ala Ala Ala
Pro Glu Gly Ile Thr Leu Phe Tyr Gly 210 215
220Leu Tyr Asn Ala Val Lys Glu Phe Cys Leu Arg His Gln Leu Asp
Pro225 230 235 240Pro Leu
Leu Arg His Leu Asp Lys Tyr Tyr Ala Gly Leu Pro Pro Glu
245 250 255Leu Lys Gln Thr Arg Val Asn
Leu Pro Ala His Ser Arg Tyr Gly Pro 260 265
270Gln Ala Val Asp Ala Arg 2759278PRTHuman
cytomegalovirus 9Met Cys Arg Arg Pro Asp Cys Gly Phe Ser Phe Ser Pro Gly
Pro Val1 5 10 15Val Leu
Leu Trp Cys Cys Leu Leu Leu Pro Ile Val Ser Ser Val Ala 20
25 30Val Ser Val Ala Pro Thr Ala Ala Glu
Lys Val Pro Ala Glu Cys Pro 35 40
45Glu Leu Thr Arg Arg Cys Leu Leu Gly Glu Val Phe Gln Gly Asp Lys 50
55 60Tyr Glu Ser Trp Leu Arg Pro Leu Val
Asn Val Thr Arg Arg Asp Gly65 70 75
80Pro Leu Ser Gln Leu Ile Arg Tyr Arg Pro Val Thr Pro Glu
Ala Ala 85 90 95Asn Ser
Val Leu Leu Asp Asp Ala Phe Leu Asp Thr Leu Ala Leu Leu 100
105 110Tyr Asn Asn Pro Asp Gln Leu Arg Ala
Leu Leu Thr Leu Leu Ser Ser 115 120
125Asp Thr Ala Pro Arg Trp Met Thr Val Met Arg Gly Tyr Ser Glu Cys
130 135 140Gly Asp Gly Ser Pro Ala Val
Tyr Thr Cys Val Asp Asp Leu Cys Arg145 150
155 160Gly Tyr Asp Leu Thr Arg Leu Ser Tyr Gly Arg Ser
Ile Phe Thr Glu 165 170
175His Val Leu Gly Phe Glu Leu Val Pro Pro Ser Leu Phe Asn Val Val
180 185 190Val Ala Ile Arg Asn Glu
Ala Thr Arg Thr Asn Arg Ala Val Arg Leu 195 200
205Pro Val Ser Thr Ala Ala Ala Pro Glu Gly Ile Thr Leu Phe
Tyr Gly 210 215 220Leu Tyr Asn Ala Val
Lys Glu Phe Cys Leu Arg His Gln Leu Asp Pro225 230
235 240Pro Leu Leu Arg His Leu Asp Lys Tyr Tyr
Ala Gly Leu Pro Pro Glu 245 250
255Leu Lys Gln Thr Arg Val Asn Leu Pro Ala His Ser Arg Tyr Gly Pro
260 265 270Gln Ala Val Asp Ala
Arg 27510472PRTHuman cytomegalovirus 10Met Gly Lys Lys Glu Met Ile
Met Val Lys Gly Ile Pro Lys Ile Met1 5 10
15Leu Leu Ile Ser Ile Thr Phe Leu Leu Leu Ser Leu Ile
Asn Cys Asn 20 25 30Val Leu
Val Asn Ser Arg Gly Thr Arg Arg Ser Trp Pro Tyr Thr Val 35
40 45Leu Ser Tyr Arg Gly Lys Glu Ile Leu Lys
Lys Gln Lys Glu Asp Ile 50 55 60Leu
Lys Arg Leu Met Ser Thr Ser Ser Asp Gly Tyr Arg Phe Leu Met65
70 75 80Tyr Pro Ser Gln Gln Lys
Phe His Ala Ile Val Ile Ser Met Asp Lys 85
90 95Phe Pro Gln Asp Tyr Ile Leu Ala Gly Pro Ile Arg
Asn Asp Ser Ile 100 105 110Thr
His Met Trp Phe Asp Phe Tyr Ser Thr Gln Leu Arg Lys Pro Ala 115
120 125Lys Tyr Val Tyr Ser Glu Tyr Asn His
Thr Ala His Lys Ile Thr Leu 130 135
140Arg Pro Pro Pro Cys Gly Thr Val Pro Ser Met Asn Cys Leu Ser Glu145
150 155 160Met Leu Asn Val
Ser Lys Arg Asn Asp Thr Gly Glu Lys Gly Cys Gly 165
170 175Asn Phe Thr Thr Phe Asn Pro Met Phe Phe
Asn Val Pro Arg Trp Asn 180 185
190Thr Lys Leu Tyr Ile Gly Ser Asn Lys Val Asn Val Asp Ser Gln Thr
195 200 205Ile Tyr Phe Leu Gly Leu Thr
Ala Leu Leu Leu Arg Tyr Ala Gln Arg 210 215
220Asn Cys Thr Arg Ser Phe Tyr Leu Val Asn Ala Met Ser Arg Asn
Leu225 230 235 240Phe Arg
Val Pro Lys Tyr Ile Asn Gly Thr Lys Leu Lys Asn Thr Met
245 250 255Arg Lys Leu Lys Arg Lys Gln
Ala Leu Val Lys Glu Gln Pro Gln Lys 260 265
270Lys Asn Lys Lys Ser Gln Ser Thr Thr Thr Pro Tyr Leu Ser
Tyr Thr 275 280 285Thr Ser Thr Ala
Phe Asn Val Thr Thr Asn Val Thr Tyr Ser Ala Thr 290
295 300Ala Ala Val Thr Arg Val Ala Thr Ser Thr Thr Gly
Tyr Arg Pro Asp305 310 315
320Ser Asn Phe Met Lys Ser Ile Met Ala Thr Gln Leu Arg Asp Leu Ala
325 330 335Thr Trp Val Tyr Thr
Thr Leu Arg Tyr Arg Asn Glu Pro Phe Cys Lys 340
345 350Pro Asp Arg Asn Arg Thr Ala Val Ser Glu Phe Met
Lys Asn Thr His 355 360 365Val Leu
Ile Arg Asn Glu Thr Pro Tyr Thr Ile Tyr Gly Thr Leu Asp 370
375 380Met Ser Ser Leu Tyr Tyr Asn Glu Thr Met Ser
Val Glu Asn Glu Thr385 390 395
400Ala Ser Asp Asn Asn Glu Thr Thr Pro Thr Ser Pro Ser Thr Arg Phe
405 410 415Gln Arg Thr Phe
Ile Asp Pro Leu Trp Asp Tyr Leu Asp Ser Leu Leu 420
425 430Phe Leu Asp Lys Ile Arg Asn Phe Ser Leu Gln
Leu Pro Ala Tyr Gly 435 440 445Asn
Leu Thr Pro Pro Glu His Arg Arg Ala Ala Asn Leu Ser Thr Leu 450
455 460Asn Ser Leu Trp Trp Trp Ser Gln465
47011466PRTHuman cytomegalovirus 11Met Gly Arg Lys Glu Met Met
Val Arg Asp Val Pro Lys Met Val Phe1 5 10
15Leu Ile Ser Ile Ser Phe Leu Leu Val Ser Phe Ile Asn
Cys Lys Val 20 25 30Met Ser
Lys Ala Leu Tyr Asn Arg Pro Trp Arg Gly Leu Val Leu Ser 35
40 45Lys Ile Gly Lys Tyr Lys Leu Asp Gln Leu
Lys Leu Glu Ile Leu Arg 50 55 60Gln
Leu Glu Thr Thr Ile Ser Thr Lys Tyr Asn Val Ser Lys Gln Pro65
70 75 80Val Lys Asn Leu Thr Met
Asn Met Thr Glu Phe Pro Gln Tyr Tyr Ile 85
90 95Leu Ala Gly Pro Ile Gln Asn Tyr Ser Ile Thr Tyr
Leu Trp Phe Asp 100 105 110Phe
Tyr Ser Thr Gln Leu Arg Lys Pro Ala Lys Tyr Val Tyr Ser Gln 115
120 125Tyr Asn His Thr Ala Lys Thr Ile Thr
Phe Arg Pro Pro Pro Cys Gly 130 135
140Thr Val Pro Ser Met Thr Cys Leu Ser Glu Met Leu Asn Val Ser Lys145
150 155 160Arg Asn Asp Thr
Gly Glu Gln Gly Cys Gly Asn Phe Thr Thr Phe Asn 165
170 175Pro Met Phe Phe Asn Val Pro Arg Trp Asn
Thr Lys Leu Tyr Val Gly 180 185
190Pro Thr Lys Val Asn Val Asp Ser Gln Thr Ile Tyr Phe Leu Gly Leu
195 200 205Thr Ala Leu Leu Leu Arg Tyr
Ala Gln Arg Asn Cys Thr His Ser Phe 210 215
220Tyr Leu Val Asn Ala Met Ser Arg Asn Leu Phe Arg Val Pro Lys
Tyr225 230 235 240Ile Asn
Gly Thr Lys Leu Lys Asn Thr Met Arg Lys Leu Lys Arg Lys
245 250 255Gln Ala Pro Val Lys Glu Gln
Phe Glu Lys Lys Ala Lys Lys Thr Gln 260 265
270Ser Thr Thr Thr Pro Tyr Phe Ser Tyr Thr Thr Ser Ala Ala
Leu Asn 275 280 285Val Thr Thr Asn
Val Thr Tyr Ser Ile Thr Thr Ala Ala Arg Arg Val 290
295 300Ser Thr Ser Thr Ile Ala Tyr Arg Pro Asp Ser Ser
Phe Met Lys Ser305 310 315
320Ile Met Ala Thr Gln Leu Arg Asp Leu Ala Thr Trp Val Tyr Thr Thr
325 330 335Leu Arg Tyr Arg Gln
Asn Pro Phe Cys Glu Pro Ser Arg Asn Arg Thr 340
345 350Ala Val Ser Glu Phe Met Lys Asn Thr His Val Leu
Ile Arg Asn Glu 355 360 365Thr Pro
Tyr Thr Ile Tyr Gly Thr Leu Asp Met Ser Ser Leu Tyr Tyr 370
375 380Asn Glu Thr Met Phe Val Glu Asn Lys Thr Ala
Ser Asp Ser Asn Lys385 390 395
400Thr Thr Pro Thr Ser Pro Ser Met Gly Phe Gln Arg Thr Phe Ile Asp
405 410 415Pro Leu Trp Asp
Tyr Leu Asp Ser Leu Leu Phe Leu Asp Glu Ile Arg 420
425 430Asn Phe Ser Leu Arg Ser Pro Thr Tyr Val Asn
Leu Thr Pro Pro Glu 435 440 445His
Arg Arg Ala Val Asn Leu Ser Thr Leu Asn Ser Leu Trp Trp Trp 450
455 460Leu Gln46512457PRTHuman cytomegalovirus
12Met Gly Arg Lys Gly Glu Met Arg Gly Val Phe Asn Leu Phe Phe Leu1
5 10 15Met Ser Leu Thr Phe Leu
Leu Phe Ser Phe Ile Asn Cys Lys Ile Ala 20 25
30Val Ala Arg Phe Arg Val Lys Ser Gln Lys Ala Lys Glu
Glu Glu Arg 35 40 45Gln Leu Lys
Leu Arg Ile Leu Gln Glu Leu Ala Ser Lys Thr Gly Asp 50
55 60Tyr Tyr Lys Phe Phe Thr Phe Pro Ser Gln Gln Lys
Leu Tyr Asn Ile65 70 75
80Thr Val Glu Met Lys Gln Phe Pro Pro Asn Ser Ile Leu Ala Gly Pro
85 90 95Ile Arg Asn His Ser Ile
Thr His Leu Trp Phe Asp Phe His Thr Thr 100
105 110Gln Leu Arg Lys Pro Ala Lys Tyr Val Tyr Ser Glu
Tyr Asn His Thr 115 120 125Gly Gln
Lys Ile Thr Phe Arg Pro Pro Ser Cys Gly Thr Ile Pro Ser 130
135 140Met Thr Cys Leu Ser Glu Met Leu Asn Val Ser
Arg Arg Asn Asn Thr145 150 155
160Gly Glu Glu Asn Cys Gly Asn Phe Thr Thr Phe Asn Pro Met Phe Phe
165 170 175Asn Val Pro Arg
Trp Asn Thr Lys Leu Tyr Val Gly Pro Ser Lys Val 180
185 190Asn Val Asp Ser Gln Thr Ile Tyr Phe Leu Gly
Leu Ala Ala Leu Leu 195 200 205Leu
Arg Tyr Ala Gln Arg Asn Cys Thr Arg Ser Phe Tyr Leu Val Asn 210
215 220Ala Met Ser Arg Asn Ile Phe Arg Val Pro
Lys Tyr Ile Asn Ser Thr225 230 235
240Lys Leu Lys Asn Thr Met Arg Lys Leu Lys Arg Lys Gln Ala Pro
Val 245 250 255Lys Ser Ile
Ser Lys Lys Ser Arg Val Ser Thr Thr Thr Pro Tyr Ser 260
265 270Ser Tyr Thr Ser Thr Ile Phe Asn Val Ser
Thr Asn Val Thr Tyr Ser 275 280
285Pro Ile Val Pro Thr Arg Ile Pro Thr Ser Thr Ile Gly Tyr Arg Pro 290
295 300Asp Glu Asn Phe Met Lys Ser Ile
Leu Thr Thr Gln Leu Lys Asp Leu305 310
315 320Ala Thr Trp Val Tyr Thr Thr Leu Arg Tyr Arg Asp
Glu Pro Phe Cys 325 330
335Lys Pro Asn Arg Asn Arg Thr Ala Val Ser Glu Phe Met Lys Asn Thr
340 345 350His Val Leu Ile Arg Asn
Glu Thr Pro Tyr Thr Ile Tyr Gly Thr Leu 355 360
365Asp Met Ser Ser Leu Tyr Tyr Asn Asp Thr Met Pro Val Glu
Asn Glu 370 375 380Thr Ala Ser Asp Asn
Asn Lys Thr Thr Pro Thr Ser Pro Ser Thr Arg385 390
395 400Phe Gln Arg Thr Phe Ile Asp Pro Met Trp
Asp Tyr Leu Asp Ser Leu 405 410
415Leu Phe Leu Ser Glu Ile Arg Asn Phe Ser Leu Gln Ser Ser Thr Tyr
420 425 430Gly Asn Leu Thr Pro
Pro Glu His Arg Arg Ala Val Asn Leu Ser Thr 435
440 445Leu Asn Ser Leu Trp Trp Trp Leu Gln 450
45513130PRTHuman cytomegalovirus 13Met Ser Pro Lys Asp Leu Thr
Pro Phe Leu Thr Ala Leu Trp Leu Leu1 5 10
15Leu Gly His Ser Arg Val Pro Arg Val Arg Ala Glu Glu
Cys Cys Glu 20 25 30Phe Ile
Asn Val Asn His Pro Pro Glu Arg Cys Tyr Asp Phe Lys Met 35
40 45Cys Asn Arg Phe Thr Val Ala Leu Arg Cys
Pro Asp Gly Glu Val Cys 50 55 60Tyr
Ser Pro Glu Lys Thr Ala Glu Ile Arg Gly Ile Val Thr Thr Met65
70 75 80Thr His Ser Leu Thr Arg
Gln Val Val His Asn Lys Leu Thr Ser Cys 85
90 95Asn Tyr Asn Pro Leu Tyr Leu Glu Ala Asp Gly Arg
Ile Arg Cys Gly 100 105 110Lys
Val Asn Asp Lys Ala Gln Tyr Leu Leu Gly Ala Ala Gly Ser Val 115
120 125Pro Tyr 13014171PRTHuman
cytomegalovirus, strain Towne 14Met Ser Pro Lys Asn Leu Thr Pro Phe Leu
Thr Ala Leu Trp Leu Leu1 5 10
15Leu Gly His Ser Arg Val Pro Arg Val Arg Ala Glu Glu Cys Cys Glu
20 25 30Phe Ile Asn Val Asn His
Pro Pro Glu Arg Cys Tyr Asp Phe Lys Met 35 40
45Cys Asn Arg Phe Thr Val Ala Leu Arg Cys Pro Asp Gly Glu
Val Cys 50 55 60Tyr Ser Pro Glu Lys
Thr Ala Glu Ile Arg Gly Ile Val Thr Thr Met65 70
75 80Thr His Ser Leu Thr Arg Gln Val Val His
Asn Lys Leu Thr Ser Cys 85 90
95Asn Tyr Asn Pro Leu Tyr Leu Glu Ala Asp Gly Arg Ile Arg Cys Gly
100 105 110Lys Val Asn Asp Lys
Ala Gln Tyr Leu Leu Gly Ala Ala Gly Ser Val 115
120 125Pro Tyr Arg Trp Ile Asn Leu Glu Tyr Asp Lys Ile
Thr Arg Ile Val 130 135 140Gly Leu Asp
Gln Tyr Leu Glu Ser Val Lys Lys His Lys Arg Leu Asp145
150 155 160Val Cys Arg Ala Lys Met Gly
Tyr Met Leu Gln 165 17015171PRTHuman
cytomegalovirus 15Met Ser Pro Lys Asp Leu Thr Pro Phe Leu Thr Thr Leu Trp
Leu Leu1 5 10 15Leu Gly
His Ser Arg Val Pro Arg Val Arg Ala Glu Glu Cys Cys Glu 20
25 30Phe Ile Asn Val Asn His Pro Pro Glu
Arg Cys Tyr Asp Phe Lys Met 35 40
45Cys Asn Arg Phe Thr Val Ala Leu Arg Cys Pro Asp Gly Glu Val Cys 50
55 60Tyr Ser Pro Glu Lys Thr Ala Glu Ile
Arg Gly Ile Val Thr Thr Met65 70 75
80Thr His Ser Leu Thr Arg Gln Val Val His Asn Lys Leu Thr
Ser Cys 85 90 95Asn Tyr
Asn Pro Leu Tyr Leu Glu Ala Asp Gly Arg Ile Arg Cys Gly 100
105 110Lys Val Asn Asp Lys Ala Gln Tyr Leu
Leu Gly Ala Ala Gly Ser Val 115 120
125Pro Tyr Arg Trp Ile Asn Leu Glu Tyr Asp Lys Ile Thr Arg Ile Val
130 135 140Gly Leu Asp Gln Tyr Leu Glu
Ser Val Lys Lys His Lys Arg Leu Asp145 150
155 160Val Cys Arg Ala Lys Met Gly Tyr Met Leu Gln
165 17016214PRTHuman cytomegalovirus 16Met Leu
Arg Leu Leu Leu Arg His His Phe His Cys Leu Leu Leu Cys1 5
10 15Ala Val Trp Ala Thr Pro Cys Leu
Ala Ser Pro Trp Ser Thr Leu Thr 20 25
30Ala Asn Gln Asn Pro Ser Pro Pro Trp Ser Lys Leu Thr Tyr Ser
Lys 35 40 45Pro His Asp Ala Ala
Thr Phe Tyr Cys Pro Phe Leu Tyr Pro Ser Pro 50 55
60Pro Arg Ser Pro Leu Gln Phe Ser Gly Phe Gln Arg Val Ser
Thr Gly65 70 75 80Pro
Glu Cys Arg Asn Glu Thr Leu Tyr Leu Leu Tyr Asn Arg Glu Gly
85 90 95Gln Thr Leu Val Glu Arg Ser
Ser Thr Trp Val Lys Lys Val Ile Trp 100 105
110Tyr Leu Ser Gly Arg Asn Gln Thr Ile Leu Gln Arg Met Pro
Arg Thr 115 120 125Ala Ser Lys Pro
Ser Asp Gly Asn Val Gln Ile Ser Val Glu Asp Ala 130
135 140Lys Ile Phe Gly Ala His Met Val Pro Lys Gln Thr
Lys Leu Leu Arg145 150 155
160Phe Val Val Asn Asp Gly Thr Arg Tyr Gln Met Cys Val Met Lys Leu
165 170 175Glu Ser Trp Ala His
Val Phe Arg Asp Tyr Ser Val Ser Phe Gln Val 180
185 190Arg Leu Thr Phe Thr Glu Ala Asn Asn Gln Thr Tyr
Thr Phe Cys Thr 195 200 205His Pro
Asn Leu Ile Val 21017229PRTHuman cytomegalovirus 17Met Leu Arg Leu Leu
Leu Arg His His Phe His Cys Leu Leu Leu Cys1 5
10 15Ala Val Trp Ala Thr Pro Cys Leu Ala Ser Pro
Trp Ser Thr Leu Thr 20 25
30Ala Asn Gln Asn Pro Ser Pro Pro Trp Ser Lys Leu Thr Tyr Ser Lys
35 40 45Pro His Asp Ala Ala Thr Phe Tyr
Cys Pro Phe Leu Tyr Pro Ser Pro 50 55
60Pro Arg Ser Pro Leu Gln Phe Ser Gly Phe Gln Arg Val Leu Thr Gly65
70 75 80Pro Glu Cys Arg Asn
Glu Thr Leu Tyr Leu Leu Tyr Asn Arg Glu Gly 85
90 95Gln Thr Leu Val Glu Arg Ser Ser Thr Trp Val
Lys Lys Val Ile Trp 100 105
110Tyr Leu Ser Gly Arg Asn Gln Thr Ile Leu Gln Arg Met Pro Arg Thr
115 120 125Ala Ser Lys Pro Ser Asp Gly
Asn Val Gln Ile Ser Val Glu Asp Ala 130 135
140Lys Ile Phe Gly Ala His Met Val Pro Lys Gln Thr Lys Leu Leu
Arg145 150 155 160Phe Val
Val Asn Asp Gly Thr Arg Tyr Gln Met Cys Val Met Lys Leu
165 170 175Glu Ser Trp Ala His Val Phe
Arg Asp Tyr Ser Val Ser Phe Gln Val 180 185
190Arg Leu Thr Phe Thr Glu Ala Asn Asn Gln Thr Phe Thr Pro
Ser Ala 195 200 205Pro Ile Pro Ile
Ser Ser Phe Glu Pro Val Ala Arg Ala Gly Asn Phe 210
215 220Glu Asn Arg Ala Ser22518129PRTHuman
cytomegalovirus 18Met Arg Leu Cys Arg Val Trp Leu Ser Val Cys Leu Cys Ala
Val Val1 5 10 15Leu Gly
Gln Cys Gln Arg Glu Thr Ala Glu Lys Asn Asp Tyr Tyr Arg 20
25 30Val Pro His Tyr Trp Asp Ala Cys Ser
Arg Ala Leu Pro Asp Gln Thr 35 40
45Arg Tyr Lys Tyr Val Glu Gln Leu Val Asp Leu Thr Leu Asn Tyr His 50
55 60Tyr Asp Ala Ser His Gly Leu Asp Asn
Phe Asp Val Leu Lys Arg Ile65 70 75
80Asn Val Thr Glu Val Ser Leu Leu Ile Ser Asp Phe Arg Arg
Gln Asn 85 90 95Arg Arg
Gly Gly Thr Asn Lys Arg Thr Thr Phe Asn Ala Ala Gly Ser 100
105 110Leu Ala Pro His Ala Arg Ser Leu Glu
Phe Ser Val Arg Leu Phe Ala 115 120
125Asn19129PRTHuman cytomegalovirus 19Met Arg Leu Cys Arg Val Trp Leu
Ser Val Cys Leu Cys Ala Val Val1 5 10
15Leu Gly Gln Cys Gln Arg Glu Thr Ala Glu Lys Asn Asp Tyr
Tyr Arg 20 25 30Val Pro His
Tyr Trp Asp Ala Cys Ser Arg Ala Leu Pro Asp Gln Thr 35
40 45Arg Tyr Lys Tyr Val Glu Gln Leu Val Asp Leu
Thr Leu Asn Tyr His 50 55 60Tyr Asp
Ala Ser His Gly Leu Asp Asn Phe Asp Val Leu Lys Arg Ile65
70 75 80Asn Val Thr Glu Val Ser Leu
Leu Ile Ser Asp Phe Arg Arg Gln Asn 85 90
95Arg Arg Gly Gly Thr Asn Lys Arg Thr Thr Phe Asn Ala
Ala Gly Ser 100 105 110Leu Ala
Pro His Ala Arg Ser Leu Glu Phe Ser Val Arg Leu Phe Ala 115
120 125Asn2074PRTHuman cytomegalovirus 20Met Arg
Leu Cys Arg Val Trp Leu Ser Val Cys Leu Cys Ala Val Val1 5
10 15Leu Gly Gln Cys Gln Arg Glu Thr
Ala Glu Lys Lys Arg Leu Leu Pro 20 25
30Ser Thr Ala Leu Leu Gly Arg Val Leu Ser Arg Ala Ala Arg Pro
Asn 35 40 45Pro Leu Gln Val Cys
Gly Thr Ala Arg Gly Pro His Val Glu Leu Pro 50 55
60Leu Arg Cys Glu Pro Arg Leu Gly Gln Leu65
7021907PRTHuman cytomegalovirus 21Met Glu Ser Arg Ile Trp Cys Leu Val Val
Cys Val Asn Leu Cys Ile1 5 10
15Val Cys Leu Gly Ala Ala Val Ser Ser Ser Ser Thr Arg Gly Thr Ser
20 25 30Ala Thr His Ser His His
Ser Ser His Thr Thr Ser Ala Ala His Ser 35 40
45Arg Ser Gly Ser Val Ser Gln Arg Val Thr Ser Ser Gln Thr
Val Ser 50 55 60His Gly Val Asn Glu
Thr Ile Tyr Asn Thr Thr Leu Lys Tyr Gly Asp65 70
75 80Val Val Gly Val Asn Thr Thr Lys Tyr Pro
Tyr Arg Val Cys Ser Met 85 90
95Ala Gln Gly Thr Asp Leu Ile Arg Phe Glu Arg Asn Ile Val Cys Thr
100 105 110Ser Met Lys Pro Ile
Asn Glu Asp Leu Asp Glu Gly Ile Met Val Val 115
120 125Tyr Lys Arg Asn Ile Val Ala His Thr Phe Lys Val
Arg Val Tyr Gln 130 135 140Lys Val Leu
Thr Phe Arg Arg Ser Tyr Ala Tyr Ile His Thr Thr Tyr145
150 155 160Leu Leu Gly Ser Asn Thr Glu
Tyr Val Ala Pro Pro Met Trp Glu Ile 165
170 175His His Ile Asn Ser His Ser Gln Cys Tyr Ser Ser
Tyr Ser Arg Val 180 185 190Ile
Ala Gly Thr Val Phe Val Ala Tyr His Arg Asp Ser Tyr Glu Asn 195
200 205Lys Thr Met Gln Leu Met Pro Asp Asp
Tyr Ser Asn Thr His Ser Thr 210 215
220Arg Tyr Val Thr Val Lys Asp Gln Trp His Ser Arg Gly Ser Thr Trp225
230 235 240Leu Tyr Arg Glu
Thr Cys Asn Leu Asn Cys Met Val Thr Ile Thr Thr 245
250 255Ala Arg Ser Lys Tyr Pro Tyr His Phe Phe
Ala Thr Ser Thr Gly Asp 260 265
270Val Val Asp Ile Ser Pro Phe Tyr Asn Gly Thr Asn Arg Asn Ala Ser
275 280 285Tyr Phe Gly Glu Asn Ala Asp
Lys Phe Phe Ile Phe Pro Asn Tyr Thr 290 295
300Ile Val Ser Asp Phe Gly Arg Pro Asn Ser Ala Leu Glu Thr His
Arg305 310 315 320Leu Val
Ala Phe Leu Glu Arg Ala Asp Ser Val Ile Ser Trp Asp Ile
325 330 335Gln Asp Glu Lys Asn Val Thr
Cys Gln Leu Thr Phe Trp Glu Ala Ser 340 345
350Glu Arg Thr Ile Arg Ser Glu Ala Glu Asp Ser Tyr His Phe
Ser Ser 355 360 365Ala Lys Met Thr
Ala Thr Phe Leu Ser Lys Lys Gln Glu Val Asn Met 370
375 380Ser Asp Ser Ala Leu Asp Cys Val Arg Asp Glu Ala
Ile Asn Lys Leu385 390 395
400Gln Gln Ile Phe Asn Thr Ser Tyr Asn Gln Thr Tyr Glu Lys Tyr Gly
405 410 415Asn Val Ser Val Phe
Glu Thr Thr Gly Gly Leu Val Val Phe Trp Gln 420
425 430Gly Ile Lys Gln Lys Ser Leu Val Glu Leu Glu Arg
Leu Ala Asn Arg 435 440 445Ser Ser
Leu Asn Leu Thr His Asn Arg Thr Lys Arg Ser Thr Asp Gly 450
455 460Asn Asn Ala Thr His Leu Ser Asn Met Glu Ser
Val His Asn Leu Val465 470 475
480Tyr Ala Gln Leu Gln Phe Thr Tyr Asp Thr Leu Arg Gly Tyr Ile Asn
485 490 495Arg Ala Leu Ala
Gln Ile Ala Glu Ala Trp Cys Val Asp Gln Arg Arg 500
505 510Thr Leu Glu Val Phe Lys Glu Leu Ser Lys Ile
Asn Pro Ser Ala Ile 515 520 525Leu
Ser Ala Ile Tyr Asn Lys Pro Ile Ala Ala Arg Phe Met Gly Asp 530
535 540Val Leu Gly Leu Ala Ser Cys Val Thr Ile
Asn Gln Thr Ser Val Lys545 550 555
560Val Leu Arg Asp Met Asn Val Lys Glu Ser Pro Gly Arg Cys Tyr
Ser 565 570 575Arg Pro Val
Val Ile Phe Asn Phe Ala Asn Ser Ser Tyr Val Gln Tyr 580
585 590Gly Gln Leu Gly Glu Asp Asn Glu Ile Leu
Leu Gly Asn His Arg Thr 595 600
605Glu Glu Cys Gln Leu Pro Ser Leu Lys Ile Phe Ile Ala Gly Asn Ser 610
615 620Ala Tyr Glu Tyr Val Asp Tyr Leu
Phe Lys Arg Met Ile Asp Leu Ser625 630
635 640Ser Ile Ser Thr Val Asp Ser Met Ile Ala Leu Asp
Ile Asp Pro Leu 645 650
655Glu Asn Thr Asp Phe Arg Val Leu Glu Leu Tyr Ser Gln Lys Glu Leu
660 665 670Arg Ser Ser Asn Val Phe
Asp Leu Glu Glu Ile Met Arg Glu Phe Asn 675 680
685Ser Tyr Lys Gln Arg Val Lys Tyr Val Glu Asp Lys Val Val
Asp Pro 690 695 700Leu Pro Pro Tyr Leu
Lys Gly Leu Asp Asp Leu Met Ser Gly Leu Gly705 710
715 720Ala Ala Gly Lys Ala Val Gly Val Ala Ile
Gly Ala Val Gly Gly Ala 725 730
735Val Ala Ser Val Val Glu Gly Val Ala Thr Phe Leu Lys Asn Pro Phe
740 745 750Gly Ala Phe Thr Ile
Ile Leu Val Ala Ile Ala Val Val Ile Ile Thr 755
760 765Tyr Leu Ile Tyr Thr Arg Gln Arg Arg Leu Cys Thr
Gln Pro Leu Gln 770 775 780Asn Leu Phe
Pro Tyr Leu Val Ser Ala Asp Gly Thr Thr Val Thr Ser785
790 795 800Gly Ser Thr Lys Asp Thr Ser
Leu Gln Ala Pro Pro Ser Tyr Glu Glu 805
810 815Ser Val Tyr Asn Ser Gly Arg Lys Gly Pro Gly Pro
Pro Ser Ser Asp 820 825 830Ala
Ser Thr Ala Ala Pro Pro Tyr Thr Asn Glu Gln Ala Tyr Gln Met 835
840 845Leu Leu Ala Leu Ala Arg Leu Asp Ala
Glu Gln Arg Ala Gln Gln Asn 850 855
860Gly Thr Asp Ser Leu Asp Gly Arg Thr Gly Thr Gln Asp Lys Gly Gln865
870 875 880Lys Pro Asn Leu
Leu Asp Arg Leu Arg His Arg Lys Asn Gly Tyr Arg 885
890 895His Leu Lys Asp Ser Asp Glu Glu Glu Asn
Val 900 90522907PRTHuman cytomegalovirus 22Met
Glu Ser Arg Ile Trp Cys Leu Val Val Cys Val Asn Leu Cys Ile1
5 10 15Val Cys Leu Gly Ala Ala Val
Ser Ser Ser Ser Thr Arg Gly Thr Ser 20 25
30Ala Thr His Ser His His Ser Ser His Thr Thr Ser Ala Ala
His Ser 35 40 45Arg Ser Gly Ser
Val Ser Gln Arg Val Thr Ser Ser Gln Thr Val Ser 50 55
60His Gly Val Asn Glu Thr Ile Tyr Asn Thr Thr Leu Lys
Tyr Gly Asp65 70 75
80Val Val Gly Val Asn Thr Thr Lys Tyr Pro Tyr Arg Val Cys Ser Met
85 90 95Ala Gln Gly Thr Asp Leu
Ile Arg Phe Glu Arg Asn Ile Val Cys Thr 100
105 110Ser Met Lys Pro Ile Asn Glu Asp Leu Asp Glu Gly
Ile Met Val Val 115 120 125Tyr Lys
Arg Asn Ile Val Ala His Thr Phe Lys Val Arg Val Tyr Gln 130
135 140Lys Val Leu Thr Phe Arg Arg Ser Tyr Ala Tyr
Ile His Thr Thr Tyr145 150 155
160Leu Leu Gly Ser Asn Thr Glu Tyr Val Ala Pro Pro Met Trp Glu Ile
165 170 175His His Ile Asn
Ser His Ser Gln Cys Tyr Ser Ser Tyr Ser Arg Val 180
185 190Ile Ala Gly Thr Val Phe Val Ala Tyr His Arg
Asp Ser Tyr Glu Asn 195 200 205Lys
Thr Met Gln Leu Met Pro Asp Asp Tyr Ser Asn Thr His Ser Thr 210
215 220Arg Tyr Val Thr Val Lys Asp Gln Trp His
Ser Arg Gly Ser Thr Trp225 230 235
240Leu Tyr Arg Glu Thr Cys Asn Leu Asn Cys Met Val Thr Ile Thr
Thr 245 250 255Ala Arg Ser
Lys Tyr Pro Tyr His Phe Phe Ala Thr Ser Thr Gly Asp 260
265 270Val Val Asp Ile Ser Pro Phe Tyr Asn Gly
Thr Asn Arg Asn Ala Ser 275 280
285Tyr Phe Gly Glu Asn Ala Asp Lys Phe Phe Ile Phe Pro Asn Tyr Thr 290
295 300Ile Val Ser Asp Phe Gly Arg Pro
Asn Ser Ala Leu Glu Thr His Arg305 310
315 320Leu Val Ala Phe Leu Glu Arg Ala Asp Ser Val Ile
Ser Trp Asp Ile 325 330
335Gln Asp Glu Lys Asn Val Thr Cys Gln Leu Thr Phe Trp Glu Ala Ser
340 345 350Glu Arg Thr Ile Arg Ser
Glu Ala Glu Asp Ser Tyr His Phe Ser Ser 355 360
365Ala Lys Met Thr Ala Thr Phe Leu Ser Lys Lys Gln Glu Val
Asn Met 370 375 380Ser Asp Ser Ala Leu
Asp Cys Val Arg Asp Glu Ala Ile Asn Lys Leu385 390
395 400Gln Gln Ile Phe Asn Thr Ser Tyr Asn Gln
Thr Tyr Glu Lys Tyr Gly 405 410
415Asn Val Ser Val Phe Glu Thr Thr Gly Gly Leu Val Val Phe Trp Gln
420 425 430Gly Ile Lys Gln Lys
Ser Leu Val Glu Leu Glu Arg Leu Ala Asn Arg 435
440 445Ser Ser Leu Asn Leu Thr His Asn Arg Thr Lys Arg
Ser Thr Asp Gly 450 455 460Asn Asn Ala
Thr His Leu Ser Asn Met Glu Ser Val His Asn Leu Val465
470 475 480Tyr Ala Gln Leu Gln Phe Thr
Tyr Asp Thr Leu Arg Gly Tyr Ile Asn 485
490 495Arg Ala Leu Ala Gln Ile Ala Glu Ala Trp Cys Val
Asp Gln Arg Arg 500 505 510Thr
Leu Glu Val Phe Lys Glu Leu Ser Lys Ile Asn Pro Ser Ala Ile 515
520 525Leu Ser Ala Ile Tyr Asn Lys Pro Ile
Ala Ala Arg Phe Met Gly Asp 530 535
540Val Leu Gly Leu Ala Ser Cys Val Thr Ile Asn Gln Thr Ser Val Lys545
550 555 560Val Leu Arg Asp
Met Asn Val Lys Glu Ser Pro Gly Arg Cys Tyr Ser 565
570 575Arg Pro Val Val Ile Phe Asn Phe Ala Asn
Ser Ser Tyr Val Gln Tyr 580 585
590Gly Gln Leu Gly Glu Asp Asn Glu Ile Leu Leu Gly Asn His Arg Thr
595 600 605Glu Glu Cys Gln Leu Pro Ser
Leu Lys Ile Phe Ile Ala Gly Asn Ser 610 615
620Ala Tyr Glu Tyr Val Asp Tyr Leu Phe Lys Arg Met Ile Asp Leu
Ser625 630 635 640Ser Ile
Ser Thr Val Asp Ser Met Ile Ala Leu Asp Ile Asp Pro Leu
645 650 655Glu Asn Thr Asp Phe Arg Val
Leu Glu Leu Tyr Ser Gln Lys Glu Leu 660 665
670Arg Ser Ser Asn Val Phe Asp Leu Glu Glu Ile Met Arg Glu
Phe Asn 675 680 685Ser Tyr Lys Gln
Arg Val Lys Tyr Val Glu Asp Lys Val Val Asp Pro 690
695 700Leu Pro Pro Tyr Leu Lys Gly Leu Asp Asp Leu Met
Ser Gly Leu Gly705 710 715
720Ala Ala Gly Lys Ala Val Gly Val Ala Ile Gly Ala Val Gly Gly Ala
725 730 735Val Ala Ser Val Val
Glu Gly Val Ala Thr Phe Leu Lys Asn Pro Phe 740
745 750Gly Ala Phe Thr Ile Ile Leu Val Ala Ile Ala Val
Val Ile Ile Ile 755 760 765Tyr Leu
Ile Tyr Thr Arg Gln Arg Arg Leu Cys Met Gln Pro Leu Gln 770
775 780Asn Leu Phe Pro Tyr Leu Val Ser Ala Asp Gly
Thr Thr Val Thr Ser785 790 795
800Gly Asn Thr Lys Asp Thr Ser Leu Gln Ala Pro Pro Ser Tyr Glu Glu
805 810 815Ser Val Tyr Asn
Ser Gly Arg Lys Gly Pro Gly Pro Pro Ser Ser Asp 820
825 830Ala Ser Thr Ala Ala Pro Pro Tyr Thr Asn Glu
Gln Ala Tyr Gln Met 835 840 845Leu
Leu Ala Leu Val Arg Leu Asp Ala Glu Gln Arg Ala Gln Gln Asn 850
855 860Gly Thr Asp Ser Leu Asp Gly Gln Thr Gly
Thr Gln Asp Lys Gly Gln865 870 875
880Lys Pro Asn Leu Leu Asp Arg Leu Arg His Arg Lys Asn Gly Tyr
Arg 885 890 895His Leu Lys
Asp Ser Asp Glu Glu Glu Asn Val 900
90523906PRTHuman cytomegalovirus 23Met Glu Ser Arg Ile Trp Cys Leu Val
Val Cys Val Asn Leu Cys Ile1 5 10
15Val Cys Leu Gly Ala Ala Val Ser Ser Ser Ser Thr Ser His Ala
Thr 20 25 30Ser Ser Thr His
Asn Gly Ser His Thr Ser Arg Thr Thr Ser Ala Gln 35
40 45Thr Arg Ser Val Tyr Ser Gln His Val Thr Ser Ser
Glu Ala Val Ser 50 55 60His Arg Ala
Asn Glu Thr Ile Tyr Asn Thr Thr Leu Lys Tyr Gly Asp65 70
75 80Val Val Gly Val Asn Thr Thr Lys
Tyr Pro Tyr Arg Val Cys Ser Met 85 90
95Ala Gln Gly Thr Asp Leu Ile Arg Phe Glu Arg Asn Ile Ile
Cys Thr 100 105 110Ser Met Lys
Pro Ile Asn Glu Asp Leu Asp Glu Gly Ile Met Val Val 115
120 125Tyr Lys Arg Asn Ile Val Ala His Thr Phe Lys
Val Arg Val Tyr Gln 130 135 140Lys Val
Leu Thr Phe Arg Arg Ser Tyr Ala Tyr Ile Tyr Thr Thr Tyr145
150 155 160Leu Leu Gly Ser Asn Thr Glu
Tyr Val Ala Pro Pro Met Trp Glu Ile 165
170 175His His Ile Asn Lys Phe Ala Gln Cys Tyr Ser Ser
Tyr Ser Arg Val 180 185 190Ile
Gly Gly Thr Val Phe Val Ala Tyr His Arg Asp Ser Tyr Glu Asn 195
200 205Lys Thr Met Gln Leu Ile Pro Asp Asp
Tyr Ser Asn Thr His Ser Thr 210 215
220Arg Tyr Val Thr Val Lys Asp Gln Trp His Ser Arg Gly Ser Thr Trp225
230 235 240Leu Tyr Arg Glu
Thr Cys Asn Leu Asn Cys Met Leu Thr Ile Thr Thr 245
250 255Ala Arg Ser Lys Tyr Pro Tyr His Phe Phe
Ala Thr Ser Thr Gly Asp 260 265
270Val Val Tyr Ile Ser Pro Phe Tyr Asn Gly Thr Asn Arg Asn Ala Ser
275 280 285Tyr Phe Gly Glu Asn Ala Asp
Lys Phe Phe Ile Phe Pro Asn Tyr Thr 290 295
300Ile Val Ser Asp Phe Gly Arg Pro Asn Ala Ala Pro Glu Thr His
Arg305 310 315 320Leu Val
Ala Phe Leu Glu Arg Ala Asp Ser Val Ile Ser Trp Asp Ile
325 330 335Gln Asp Glu Lys Asn Val Thr
Cys Gln Leu Thr Phe Trp Glu Ala Ser 340 345
350Glu Arg Thr Ile Arg Ser Glu Ala Glu Asp Ser Tyr His Phe
Ser Ser 355 360 365Ala Lys Met Thr
Ala Thr Phe Leu Ser Lys Lys Gln Glu Val Asn Met 370
375 380Ser Asp Ser Ala Leu Asp Cys Val Arg Asp Glu Ala
Ile Asn Lys Leu385 390 395
400Gln Gln Ile Phe Asn Thr Ser Tyr Asn Gln Thr Tyr Glu Lys Tyr Gly
405 410 415Asn Val Ser Val Phe
Glu Thr Ser Gly Gly Leu Val Val Phe Trp Gln 420
425 430Gly Ile Lys Gln Lys Ser Leu Val Glu Leu Glu Arg
Leu Ala Asn Arg 435 440 445Ser Ser
Leu Asn Ile Thr His Arg Thr Arg Arg Ser Thr Ser Asp Asn 450
455 460Asn Thr Thr His Leu Ser Ser Met Glu Ser Val
His Asn Leu Val Tyr465 470 475
480Ala Gln Leu Gln Phe Thr Tyr Asp Thr Leu Arg Gly Tyr Ile Asn Arg
485 490 495Ala Leu Ala Gln
Ile Ala Glu Ala Trp Cys Val Asp Gln Arg Arg Thr 500
505 510Leu Glu Val Phe Lys Glu Leu Ser Lys Ile Asn
Pro Ser Ala Ile Leu 515 520 525Ser
Ala Ile Tyr Asn Lys Pro Ile Ala Ala Arg Phe Met Gly Asp Val 530
535 540Leu Gly Leu Ala Ser Cys Val Thr Ile Asn
Gln Thr Ser Val Lys Val545 550 555
560Leu Arg Asp Met Asn Val Lys Glu Ser Pro Gly Arg Cys Tyr Ser
Arg 565 570 575Pro Val Val
Ile Phe Asn Phe Ala Asn Ser Ser Tyr Val Gln Tyr Gly 580
585 590Gln Leu Gly Glu Asp Asn Glu Ile Leu Leu
Gly Asn His Arg Thr Glu 595 600
605Glu Cys Gln Leu Pro Ser Leu Lys Ile Phe Ile Ala Gly Asn Ser Ala 610
615 620Tyr Glu Tyr Val Asp Tyr Leu Phe
Lys Arg Met Ile Asp Leu Ser Ser625 630
635 640Ile Ser Thr Val Asp Ser Met Ile Ala Leu Asp Ile
Asp Pro Leu Glu 645 650
655Asn Thr Asp Phe Arg Val Leu Glu Leu Tyr Ser Gln Lys Glu Leu Arg
660 665 670Ser Ser Asn Val Phe Asp
Leu Glu Glu Ile Met Arg Glu Phe Asn Ser 675 680
685Tyr Lys Gln Arg Val Lys Tyr Val Glu Asp Lys Val Val Asp
Pro Leu 690 695 700Pro Pro Tyr Leu Lys
Gly Leu Asp Asp Leu Met Ser Gly Leu Gly Ala705 710
715 720Ala Gly Lys Ala Val Gly Val Ala Ile Gly
Ala Val Gly Gly Ala Val 725 730
735Ala Ser Val Val Glu Gly Val Ala Thr Phe Leu Lys Asn Pro Phe Gly
740 745 750Ala Phe Thr Ile Ile
Leu Val Ala Ile Ala Val Val Ile Ile Thr Tyr 755
760 765Leu Ile Tyr Thr Arg Gln Arg Arg Leu Cys Thr Gln
Pro Leu Gln Asn 770 775 780Leu Phe Pro
Tyr Leu Val Ser Ala Asp Gly Thr Thr Val Thr Ser Gly785
790 795 800Ser Thr Lys Asp Thr Ser Leu
Gln Ala Pro Pro Ser Tyr Glu Glu Ser 805
810 815Val Tyr Asn Ser Gly Arg Lys Gly Pro Gly Pro Pro
Ser Ser Asp Ala 820 825 830Ser
Thr Ala Ala Pro Pro Tyr Thr Asn Glu Gln Ala Tyr Gln Met Leu 835
840 845Leu Ala Leu Ala Arg Leu Asp Ala Glu
Gln Arg Ala Gln Gln Asn Gly 850 855
860Thr Asp Ser Leu Asp Gly Gln Thr Gly Thr Gln Asp Lys Gly Gln Lys865
870 875 880Pro Asn Leu Leu
Asp Arg Leu Arg His Arg Lys Asn Gly Tyr Arg His 885
890 895Leu Lys Asp Ser Asp Glu Glu Glu Asn Val
900 905247585DNAArtificial SequenceHCMV gH ecto
domain fused to C-terminal myc- his)6 tag 24gacggatcgg gagatctccc
gatcccctat ggtgcactct cagtacaatc tgctctgatg 60ccgcatagtt aagccagtat
ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120cgagcaaaat ttaagctaca
acaaggcaag gcttgaccga caattgcatg aagaatctgc 180ttagggttag gcgttttgcg
ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240gattattgac tagttattaa
tagtaatcaa ttacggggtc attagttcat agcccatata 300tggagttccg cgttacataa
cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360cccgcccatt gacgtcaata
atgacgtatg ttcccatagt aacgccaata gggactttcc 420attgacgtca atgggtggag
tatttacggt aaactgccca cttggcagta catcaagtgt 480atcatatgcc aagtacgccc
cctattgacg tcaatgacgg taaatggccc gcctggcatt 540atgcccagta catgacctta
tgggactttc ctacttggca gtacatctac gtattagtca 600tcgctattac catggtgatg
cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660actcacgggg atttccaagt
ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720aaaatcaacg ggactttcca
aaatgtcgta acaactccgc cccattgacg caaatgggcg 780gtaggcgtgt acggtgggag
gtctatataa gcagagctct ctggctaact agagaaccca 840ctgcttactg gcttatcgaa
attaatacga ctcactatag ggagacccaa gctggctagc 900gccaccatga ggcctggcct
gccctcctac ctgatcatcc tggccgtgtg cctgttcagc 960cacctgctgt ccagcagata
cggcgccgag gccgtgagcg agcccctgga caaggctttc 1020cacctgctgc tgaacaccta
cggcagaccc atccggtttc tgcgggagaa caccacccag 1080tgcacctaca acagcagcct
gcggaacagc accgtcgtga gagagaacgc catcagcttc 1140aactttttcc agagctacaa
ccagtactac gtgttccaca tgcccagatg cctgtttgcc 1200ggccctctgg ccgagcagtt
cctgaaccag gtggacctga ccgagacact ggaaagatac 1260cagcagcggc tgaataccta
cgccctggtg tccaaggacc tggccagcta ccggtccttt 1320agccagcagc tcaaggctca
ggatagcctc ggcgagcagc ctaccaccgt gccccctccc 1380atcgacctga gcatccccca
cgtgtggatg cctccccaga ccacccctca cggctggacc 1440gagagccaca ccacctccgg
cctgcacaga ccccacttca accagacctg catcctgttc 1500gacggccacg acctgctgtt
tagcaccgtg accccctgcc tgcaccaggg cttctacctg 1560atcgacgagc tgagatacgt
gaagatcacc ctgaccgagg atttcttcgt ggtcaccgtg 1620tccatcgacg acgacacccc
catgctgctg atcttcggcc acctgcccag agtgctgttc 1680aaggccccct accagcggga
caacttcatc ctgcggcaga ccgagaagca cgagctgctg 1740gtgctggtca agaaggacca
gctgaaccgg cactcctacc tgaaggaccc cgacttcctg 1800gacgccgccc tggacttcaa
ctacctggac ctgagcgccc tgctgagaaa cagcttccac 1860agatacgccg tggacgtgct
gaagtccgga cggtgccaga tgctcgatcg gcggaccgtg 1920gagatggcct tcgcctatgc
cctcgccctg ttcgccgctg ccagacagga agaggctggc 1980gcccaggtgt cagtgcccag
agccctggat agacaggccg ccctgctgca gatccaggaa 2040ttcatgatca cctgcctgag
ccagaccccc cctagaacca ccctgctgct gtaccccaca 2100gccgtggatc tggccaagag
ggccctgtgg acccccaacc agatcaccga catcacaagc 2160ctcgtgcggc tcgtgtacat
cctgagcaag cagaaccagc agcacctgat cccccagtgg 2220gccctgagac agatcgccga
cttcgccctg aagctgcaca agacccatct ggccagcttt 2280ctgagcgcct tcgccaggca
ggaactgtac ctgatgggca gcctggtcca cagcatgctg 2340gtgcatacca ccgagcggcg
ggagatcttc atcgtggaga caggcctgtg tagcctggcc 2400gagctgtccc actttaccca
gctgctggcc caccctcacc acgagtacct gagcgacctg 2460tacaccccct gcagcagcag
cggcagacgg gaccacagcc tggaacggct gaccagactg 2520ttccccgatg ccaccgtgcc
tgctacagtg cctgccgccc tgtccatcct gtccaccatg 2580cagcccagca ccctggaaac
cttccccgac ctgttctgcc tgcccctggg cgagagcttt 2640agcgccctga ccgtgtccga
gcacgtgtcc tacatcgtga ccaatcagta cctgatcaag 2700ggcatcagct accccgtgtc
caccacagtc gtgggccaga gcctgatcat cacccagacc 2760gacagccaga ccaagtgcga
gctgacccgg aacatgcaca ccacacacag catcaccgtg 2820gccctgaaca tcagcctgga
aaactgcgct ttctgtcagt ctgccctgct ggaatacgac 2880gatacccagg gcgtgatcaa
catcatgtac atgcacgaca gcgacgacgt gctgttcgcc 2940ctggacccct acaacgaggt
ggtggtgtcc agcccccgga cccactacct gatgctgctg 3000aagaacggca ccgtgctgga
agtgaccgac gtggtggtgg acgccaccga cggtaccaag 3060cttgggcccg aacaaaaact
catctcagaa gaggatctga atagcgccgt cgaccatcat 3120catcatcatc attgagttta
aacggtctcc agcttaagtt taaaccgctg atcagcctcg 3180actgtgcctt ctagttgcca
gccatctgtt gtttgcccct cccccgtgcc ttccttgacc 3240ctggaaggtg ccactcccac
tgtcctttcc taataaaatg aggaaattgc atcgcattgt 3300ctgagtaggt gtcattctat
tctggggggt ggggtggggc aggacagcaa gggggaggat 3360tgggaagaca atagcaggca
tgctggggat gcggtgggct ctatggcttc tgaggcggaa 3420agaaccagct ggggctctag
ggggtatccc cacgcgccct gtagcggcgc attaagcgcg 3480gcgggtgtgg tggttacgcg
cagcgtgacc gctacacttg ccagcgccct agcgcccgct 3540cctttcgctt tcttcccttc
ctttctcgcc acgttcgccg gctttccccg tcaagctcta 3600aatcgggggc tccctttagg
gttccgattt agtgctttac ggcacctcga ccccaaaaaa 3660cttgattagg gtgatggttc
acgtagtggg ccatcgccct gatagacggt ttttcgccct 3720ttgacgttgg agtccacgtt
ctttaatagt ggactcttgt tccaaactgg aacaacactc 3780aaccctatct cggtctattc
ttttgattta taagggattt tgccgatttc ggcctattgg 3840ttaaaaaatg agctgattta
acaaaaattt aacgcgaatt aattctgtgg aatgtgtgtc 3900agttagggtg tggaaagtcc
ccaggctccc cagcaggcag aagtatgcaa agcatgcatc 3960tcaattagtc agcaaccagg
tgtggaaagt ccccaggctc cccagcaggc agaagtatgc 4020aaagcatgca tctcaattag
tcagcaacca tagtcccgcc cctaactccg cccatcccgc 4080ccctaactcc gcccagttcc
gcccattctc cgccccatgg ctgactaatt ttttttattt 4140atgcagaggc cgaggccgcc
tctgcctctg agctattcca gaagtagtga ggaggctttt 4200ttggaggcct aggcttttgc
aaaaagctcc cgggagcttg tatatccatt ttcggatctg 4260atcaagagac aggatgagga
tcgtttcgca tgattgaaca agatggattg cacgcaggtt 4320ctccggccgc ttgggtggag
aggctattcg gctatgactg ggcacaacag acaatcggct 4380gctctgatgc cgccgtgttc
cggctgtcag cgcaggggcg cccggttctt tttgtcaaga 4440ccgacctgtc cggtgccctg
aatgaactgc aggacgaggc agcgcggcta tcgtggctgg 4500ccacgacggg cgttccttgc
gcagctgtgc tcgacgttgt cactgaagcg ggaagggact 4560ggctgctatt gggcgaagtg
ccggggcagg atctcctgtc atctcacctt gctcctgccg 4620agaaagtatc catcatggct
gatgcaatgc ggcggctgca tacgcttgat ccggctacct 4680gcccattcga ccaccaagcg
aaacatcgca tcgagcgagc acgtactcgg atggaagccg 4740gtcttgtcga tcaggatgat
ctggacgaag agcatcaggg gctcgcgcca gccgaactgt 4800tcgccaggct caaggcgcgc
atgcccgacg gcgaggatct cgtcgtgacc catggcgatg 4860cctgcttgcc gaatatcatg
gtggaaaatg gccgcttttc tggattcatc gactgtggcc 4920ggctgggtgt ggcggaccgc
tatcaggaca tagcgttggc tacccgtgat attgctgaag 4980agcttggcgg cgaatgggct
gaccgcttcc tcgtgcttta cggtatcgcc gctcccgatt 5040cgcagcgcat cgccttctat
cgccttcttg acgagttctt ctgagcggga ctctggggtt 5100cgaaatgacc gaccaagcga
cgcccaacct gccatcacga gatttcgatt ccaccgccgc 5160cttctatgaa aggttgggct
tcggaatcgt tttccgggac gccggctgga tgatcctcca 5220gcgcggggat ctcatgctgg
agttcttcgc ccaccccaac ttgtttattg cagcttataa 5280tggttacaaa taaagcaata
gcatcacaaa tttcacaaat aaagcatttt tttcactgca 5340ttctagttgt ggtttgtcca
aactcatcaa tgtatcttat catgtctgta taccgtcgac 5400ctctagctag agcttggcgt
aatcatggtc atagctgttt cctgtgtgaa attgttatcc 5460gctcacaatt ccacacaaca
tacgagccgg aagcataaag tgtaaagcct ggggtgccta 5520atgagtgagc taactcacat
taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 5580cctgtcgtgc cagctgcatt
aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 5640tgggcgctct tccgcttcct
cgctcactga ctcgctgcgc tcggtcgttc ggctgcggcg 5700agcggtatca gctcactcaa
aggcggtaat acggttatcc acagaatcag gggataacgc 5760aggaaagaac atgtgagcaa
aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt 5820gctggcgttt ttccataggc
tccgcccccc tgacgagcat cacaaaaatc gacgctcaag 5880tcagaggtgg cgaaacccga
caggactata aagataccag gcgtttcccc ctggaagctc 5940cctcgtgcgc tctcctgttc
cgaccctgcc gcttaccgga tacctgtccg cctttctccc 6000ttcgggaagc gtggcgcttt
ctcatagctc acgctgtagg tatctcagtt cggtgtaggt 6060cgttcgctcc aagctgggct
gtgtgcacga accccccgtt cagcccgacc gctgcgcctt 6120atccggtaac tatcgtcttg
agtccaaccc ggtaagacac gacttatcgc cactggcagc 6180agccactggt aacaggatta
gcagagcgag gtatgtaggc ggtgctacag agttcttgaa 6240gtggtggcct aactacggct
acactagaag aacagtattt ggtatctgcg ctctgctgaa 6300gccagttacc ttcggaaaaa
gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg 6360tagcggtggt ttttttgttt
gcaagcagca gattacgcgc agaaaaaaag gatctcaaga 6420agatcctttg atcttttcta
cggggtctga cgctcagtgg aacgaaaact cacgttaagg 6480gattttggtc atgagattat
caaaaaggat cttcacctag atccttttaa attaaaaatg 6540aagttttaaa tcaatctaaa
gtatatatga gtaaacttgg tctgacagtt accaatgctt 6600aatcagtgag gcacctatct
cagcgatctg tctatttcgt tcatccatag ttgcctgact 6660ccccgtcgtg tagataacta
cgatacggga gggcttacca tctggcccca gtgctgcaat 6720gataccgcga gacccacgct
caccggctcc agatttatca gcaataaacc agccagccgg 6780aagggccgag cgcagaagtg
gtcctgcaac tttatccgcc tccatccagt ctattaattg 6840ttgccgggaa gctagagtaa
gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat 6900tgctacaggc atcgtggtgt
cacgctcgtc gtttggtatg gcttcattca gctccggttc 6960ccaacgatca aggcgagtta
catgatcccc catgttgtgc aaaaaagcgg ttagctcctt 7020cggtcctccg atcgttgtca
gaagtaagtt ggccgcagtg ttatcactca tggttatggc 7080agcactgcat aattctctta
ctgtcatgcc atccgtaaga tgcttttctg tgactggtga 7140gtactcaacc aagtcattct
gagaatagtg tatgcggcga ccgagttgct cttgcccggc 7200gtcaatacgg gataataccg
cgccacatag cagaacttta aaagtgctca tcattggaaa 7260acgttcttcg gggcgaaaac
tctcaaggat cttaccgctg ttgagatcca gttcgatgta 7320acccactcgt gcacccaact
gatcttcagc atcttttact ttcaccagcg tttctgggtg 7380agcaaaaaca ggaaggcaaa
atgccgcaaa aaagggaata agggcgacac ggaaatgttg 7440aatactcata ctcttccttt
ttcaatatta ttgaagcatt tatcagggtt attgtctcat 7500gagcggatac atatttgaat
gtatttagaa aaataaacaa ataggggttc cgcgcacatt 7560tccccgaaaa gtgccacctg
acgtc 7585255156DNAHuman
cytomegalovirus 25gccgcggaat ttcgactcta ggccattgca tacgttgtat ctatatcata
atatgtacat 60ttatattggc tcatgtccaa tatgaccgcc atgttgacat tgattattga
ctagttatta 120atagtaatca attacggggt cattagttca tagcccatat atggagttcc
gcgttacata 180acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat
tgacgtcaat 240aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc
aatgggtgga 300gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc
caagtccgcc 360ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt
acatgacctt 420acgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta
ccatggtgat 480gcggttttgg cagtacacca atgggcgtgg atagcggttt gactcacggg
gatttccaag 540tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac
gggactttcc 600aaaatgtcgt aataaccccg ccccgttgac gcaaatgggc ggtaggcgtg
tacggtggga 660ggtctatata agcagagctc gtttagtgaa ccgtcagatc gcctggagac
gccatccacg 720ctgttttgac ctccatagaa gacaccggga ccgatccagc ctccgcggcc
gggaacggtg 780cattggaacg cggattcccc gtgccaagag tgacgtaagt accgcctata
gactctatag 840gcacacccct ttggctctta tgcatgctat actgtttttg gcttggggcc
tatacacccc 900cgcttcctta tgctataggt gatggtatag cttagcctat aggtgtgggt
tattgaccat 960tattgaccac tcccctattg gtgacgatac tttccattac taatccataa
catggctctt 1020tgccacaact atctctattg gctatatgcc aatactctgt ccttcagaga
ctgacacgga 1080ctctgtattt ttacaggatg gggtcccatt tattatttac aaattcacat
atacaacaac 1140gccgtccccc gtgcccgcag tttttattaa acatagcgtg ggatctccac
gcgaatctcg 1200ggtacgtgtt ccggacatgg gctcttctcc ggtagcggcg gagcttccac
atccgagccc 1260tggtcccatg cctccagcgg ctcatggtcg ctcggcagct ccttgctcct
aacagtggag 1320gccagactta ggcacagcac aatgcccacc accaccagtg tgccgcacaa
ggccgtggcg 1380gtagggtatg tgtctgaaaa tgagctcgga gattgggctc gcaccgctga
cgcagatgga 1440agacttaagg cagcggcaga agaagatgca ggcagctgag ttgttgtatt
ctgataagag 1500tcagaggtaa ctcccgttgc ggtgctgtta acggtggagg gcagtgtagt
ctgagcagta 1560ctcgttgctg ccgcgcgcgc caccagacat aatagctgac agactaacag
actgttcctt 1620tccatgggtc ttttctgcag tcaccgtcgt cgacgccacc atgtgcagaa
ggcccgactg 1680cggcttcagc ttcagccctg gacccgtgat cctgctgtgg tgctgcctgc
tgctgcctat 1740cgtgtcctct gccgccgtgt ctgtggcccc tacagccgcc gagaaggtgc
cagccgagtg 1800ccccgagctg accagaagat gcctgctggg cgaggtgttc gagggcgaca
agtacgagag 1860ctggctgcgg cccctggtca acgtgaccgg cagagatggc cccctgagcc
agctgatccg 1920gtacagaccc gtgacccccg aggccgccaa tagcgtgctg ctggacgagg
ccttcctgga 1980taccctggcc ctgctgtaca acaaccccga ccagctgaga gccctgctga
ccctgctgtc 2040cagcgacacc gcccccagat ggatgaccgt gatgcggggc tacagcgagt
gtggagatgg 2100cagccctgcc gtgtacacct gcgtggacga cctgtgcaga ggctacgacc
tgaccagact 2160gagctacggc cggtccatct tcacagagca cgtgctgggc ttcgagctgg
tgccccccag 2220cctgttcaac gtggtggtgg ccatccggaa cgaggccacc agaaccaaca
gagccgtgcg 2280gctgcctgtg tctacagccg ctgcacctga gggcatcaca ctgttctacg
gcctgtacaa 2340cgccgtgaaa gagttctgcc tccggcacca gctggatccc cccctgctga
gacacctgga 2400caagtactac gccggcctgc ccccagagct gaagcagacc agagtgaacc
tgcccgccca 2460cagcagatat ggccctcagg ccgtggacgc cagatgataa tctagaaagc
catggatatc 2520ggatccacta cgcgttagag ctcgctgatc agcctcgact gtgccttcta
gttgccagcc 2580atctgttgtt tgcccctccc ccgtgccttc cttgaccctg gaaggtgcca
ctcccactgt 2640cctttcctaa taaaatgagg aaattgcatc gcattgtctg agtaggtgtc
attctattct 2700ggggggtggg gtggggcagg acagcaaggg ggaggattgg gaagacaata
gcaggggggt 2760gggcgaagaa ctccagcatg agatccccgc gctggaggat catccagccg
gcgtcccgga 2820aaacgattcc gaagcccaac ctttcataga aggcggcggt ggaatcgaaa
tctcgtgatg 2880gcaggttggg cgtcgcttgg tcggtcattt cgaaccccag agtcccgctc
agaagaactc 2940gtcaagaagg cgatagaagg cgatgcgctg cgaatcggga gcggcgatac
cgtaaagcac 3000gaggaagcgg tcagcccatt cgccgccaag ctcttcagca atatcacggg
tagccaacgc 3060tatgtcctga tagcggtccg ccacacccag ccggccacag tcgatgaatc
cagaaaagcg 3120gccattttcc accatgatat tcggcaagca ggcatcgcca tgggtcacga
cgagatcctc 3180gccgtcgggc atgcgcgcct tgagcctggc gaacagttcg gctggcgcga
gcccctgatg 3240ctcttcgtcc agatcatcct gatcgacaag accggcttcc atccgagtac
gtgctcgctc 3300gatgcgatgt ttcgcttggt ggtcgaatgg gcaggtagcc ggatcaagcg
tatgcagccg 3360ccgcattgca tcagccatga tggatacttt ctcggcagga gcaaggtgag
atgacaggag 3420atcctgcccc ggcacttcgc ccaatagcag ccagtccctt cccgcttcag
tgacaacgtc 3480gagcacagct gcgcaaggaa cgcccgtcgt ggccagccac gatagccgcg
ctgcctcgtc 3540ctgcagttca ttcagggcac cggacaggtc ggtcttgaca aaaagaaccg
ggcgcccctg 3600cgctgacagc cggaacacgg cggcatcaga gcagccgatt gtctgttgtg
cccagtcata 3660gccgaatagc ctctccaccc aagcggccgg agaacctgcg tgcaatccat
cttgttcaat 3720catgcgaaac gatcctcatc ctgtctcttg atcagatctt gatcccctgc
gccatcagat 3780ccttggcggc aagaaagcca tccagtttac tttgcagggc ttcccaacct
taccagaggg 3840cgccccagct ggcaattccg gttcgcttgc tgtccataaa accgcccagt
ctagctatcg 3900ccatgtaagc ccactgcaag ctacctgctt tctctttgcg cttgcgtttt
cccttgtcca 3960gatagcccag tagctgacat tcatccgggg tcagcaccgt ttctgcggac
tggctttcta 4020cgtgttccgc ttcctttagc agcccttgcg ccctgagtgc ttgcggcagc
gtgaagctaa 4080ttcatggtta aatttttgtt aaatcagctc attttttaac caataggccg
aaatcggcaa 4140aatcccttat aaatcaaaag aatagcccga gatagggttg agtgttgttc
cagtttggaa 4200caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa
ccgtctatca 4260gggcgatggc cggatcagct tatgcggtgt gaaataccgc acagatgcgt
aaggagaaaa 4320taccgcatca ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc
ggtcgttcgg 4380ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac
agaatcaggg 4440gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa
ccgtaaaaag 4500gccgcgttgc tggcgttttt ccataggctc cgcccccctg acgagcatca
caaaaatcga 4560cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc
gtttccccct 4620ggaagctccc tcgtgcgctc tcctgttccg accctgccgc ttaccggata
cctgtccgcc 4680tttctccctt cgggaagcgt ggcgctttct catagctcac gctgtaggta
tctcagttcg 4740gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca
gcccgaccgc 4800tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga
cttatcgcca 4860ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg
tgctacagag 4920ttcttgaagt ggtggcctaa ctacggctac actagaagga cagtatttgg
tatctgcgct 4980ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg
caaacaaacc 5040accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag
aaaaaaagga 5100tctcaagaag atcctttgat cttttctact gaacggtgat ccccaccgga
attgcg 5156264835DNAHuman cytomegalovirus 26gccgcggaat ttcgactcta
ggccattgca tacgttgtat ctatatcata atatgtacat 60ttatattggc tcatgtccaa
tatgaccgcc atgttgacat tgattattga ctagttatta 120atagtaatca attacggggt
cattagttca tagcccatat atggagttcc gcgttacata 180acttacggta aatggcccgc
ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 240aatgacgtat gttcccatag
taacgccaat agggactttc cattgacgtc aatgggtgga 300gtatttacgg taaactgccc
acttggcagt acatcaagtg tatcatatgc caagtccgcc 360ccctattgac gtcaatgacg
gtaaatggcc cgcctggcat tatgcccagt acatgacctt 420acgggacttt cctacttggc
agtacatcta cgtattagtc atcgctatta ccatggtgat 480gcggttttgg cagtacacca
atgggcgtgg atagcggttt gactcacggg gatttccaag 540tctccacccc attgacgtca
atgggagttt gttttggcac caaaatcaac gggactttcc 600aaaatgtcgt aataaccccg
ccccgttgac gcaaatgggc ggtaggcgtg tacggtggga 660ggtctatata agcagagctc
gtttagtgaa ccgtcagatc gcctggagac gccatccacg 720ctgttttgac ctccatagaa
gacaccggga ccgatccagc ctccgcggcc gggaacggtg 780cattggaacg cggattcccc
gtgccaagag tgacgtaagt accgcctata gactctatag 840gcacacccct ttggctctta
tgcatgctat actgtttttg gcttggggcc tatacacccc 900cgcttcctta tgctataggt
gatggtatag cttagcctat aggtgtgggt tattgaccat 960tattgaccac tcccctattg
gtgacgatac tttccattac taatccataa catggctctt 1020tgccacaact atctctattg
gctatatgcc aatactctgt ccttcagaga ctgacacgga 1080ctctgtattt ttacaggatg
gggtcccatt tattatttac aaattcacat atacaacaac 1140gccgtccccc gtgcccgcag
tttttattaa acatagcgtg ggatctccac gcgaatctcg 1200ggtacgtgtt ccggacatgg
gctcttctcc ggtagcggcg gagcttccac atccgagccc 1260tggtcccatg cctccagcgg
ctcatggtcg ctcggcagct ccttgctcct aacagtggag 1320gccagactta ggcacagcac
aatgcccacc accaccagtg tgccgcacaa ggccgtggcg 1380gtagggtatg tgtctgaaaa
tgagctcgga gattgggctc gcaccgctga cgcagatgga 1440agacttaagg cagcggcaga
agaagatgca ggcagctgag ttgttgtatt ctgataagag 1500tcagaggtaa ctcccgttgc
ggtgctgtta acggtggagg gcagtgtagt ctgagcagta 1560ctcgttgctg ccgcgcgcgc
caccagacat aatagctgac agactaacag actgttcctt 1620tccatgggtc ttttctgcag
tcaccgtcgt cgacgccacc atgagcccca aggacctgac 1680ccccttcctg acaaccctgt
ggctgctcct gggccatagc agagtgccta gagtgcgggc 1740cgaggaatgc tgcgagttca
tcaacgtgaa ccaccccccc gagcggtgct acgacttcaa 1800gatgtgcaac cggttcaccg
tggccctgag atgccccgac ggcgaagtgt gctacagccc 1860cgagaaaacc gccgagatcc
ggggcatcgt gaccaccatg acccacagcc tgacccggca 1920ggtggtgcac aacaagctga
ccagctgcaa ctacaacccc ctgtacctgg aagccgacgg 1980ccggatcaga tgcggcaaag
tgaacgacaa ggcccagtac ctgctgggag ccgccggaag 2040cgtgccctac cggtggatca
acctggaata cgacaagatc acccggatcg tgggcctgga 2100ccagtacctg gaaagcgtga
agaagcacaa gcggctggac gtgtgcagag ccaagatggg 2160ctacatgctg cagtgataat
ctagaaagcc atggatatcg gatccactac gcgttagagc 2220tcgctgatca gcctcgactg
tgccttctag ttgccagcca tctgttgttt gcccctcccc 2280cgtgccttcc ttgaccctgg
aaggtgccac tcccactgtc ctttcctaat aaaatgagga 2340aattgcatcg cattgtctga
gtaggtgtca ttctattctg gggggtgggg tggggcagga 2400cagcaagggg gaggattggg
aagacaatag caggggggtg ggcgaagaac tccagcatga 2460gatccccgcg ctggaggatc
atccagccgg cgtcccggaa aacgattccg aagcccaacc 2520tttcatagaa ggcggcggtg
gaatcgaaat ctcgtgatgg caggttgggc gtcgcttggt 2580cggtcatttc gaaccccaga
gtcccgctca gaagaactcg tcaagaaggc gatagaaggc 2640gatgcgctgc gaatcgggag
cggcgatacc gtaaagcacg aggaagcggt cagcccattc 2700gccgccaagc tcttcagcaa
tatcacgggt agccaacgct atgtcctgat agcggtccgc 2760cacacccagc cggccacagt
cgatgaatcc agaaaagcgg ccattttcca ccatgatatt 2820cggcaagcag gcatcgccat
gggtcacgac gagatcctcg ccgtcgggca tgcgcgcctt 2880gagcctggcg aacagttcgg
ctggcgcgag cccctgatgc tcttcgtcca gatcatcctg 2940atcgacaaga ccggcttcca
tccgagtacg tgctcgctcg atgcgatgtt tcgcttggtg 3000gtcgaatggg caggtagccg
gatcaagcgt atgcagccgc cgcattgcat cagccatgat 3060ggatactttc tcggcaggag
caaggtgaga tgacaggaga tcctgccccg gcacttcgcc 3120caatagcagc cagtcccttc
ccgcttcagt gacaacgtcg agcacagctg cgcaaggaac 3180gcccgtcgtg gccagccacg
atagccgcgc tgcctcgtcc tgcagttcat tcagggcacc 3240ggacaggtcg gtcttgacaa
aaagaaccgg gcgcccctgc gctgacagcc ggaacacggc 3300ggcatcagag cagccgattg
tctgttgtgc ccagtcatag ccgaatagcc tctccaccca 3360agcggccgga gaacctgcgt
gcaatccatc ttgttcaatc atgcgaaacg atcctcatcc 3420tgtctcttga tcagatcttg
atcccctgcg ccatcagatc cttggcggca agaaagccat 3480ccagtttact ttgcagggct
tcccaacctt accagagggc gccccagctg gcaattccgg 3540ttcgcttgct gtccataaaa
ccgcccagtc tagctatcgc catgtaagcc cactgcaagc 3600tacctgcttt ctctttgcgc
ttgcgttttc ccttgtccag atagcccagt agctgacatt 3660catccggggt cagcaccgtt
tctgcggact ggctttctac gtgttccgct tcctttagca 3720gcccttgcgc cctgagtgct
tgcggcagcg tgaagctaat tcatggttaa atttttgtta 3780aatcagctca ttttttaacc
aataggccga aatcggcaaa atcccttata aatcaaaaga 3840atagcccgag atagggttga
gtgttgttcc agtttggaac aagagtccac tattaaagaa 3900cgtggactcc aacgtcaaag
ggcgaaaaac cgtctatcag ggcgatggcc ggatcagctt 3960atgcggtgtg aaataccgca
cagatgcgta aggagaaaat accgcatcag gcgctcttcc 4020gcttcctcgc tcactgactc
gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 4080cactcaaagg cggtaatacg
gttatccaca gaatcagggg ataacgcagg aaagaacatg 4140tgagcaaaag gccagcaaaa
ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 4200cataggctcc gcccccctga
cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 4260aacccgacag gactataaag
ataccaggcg tttccccctg gaagctccct cgtgcgctct 4320cctgttccga ccctgccgct
taccggatac ctgtccgcct ttctcccttc gggaagcgtg 4380gcgctttctc atagctcacg
ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 4440ctgggctgtg tgcacgaacc
ccccgttcag cccgaccgct gcgccttatc cggtaactat 4500cgtcttgagt ccaacccggt
aagacacgac ttatcgccac tggcagcagc cactggtaac 4560aggattagca gagcgaggta
tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 4620tacggctaca ctagaaggac
agtatttggt atctgcgctc tgctgaagcc agttaccttc 4680ggaaaaagag ttggtagctc
ttgatccggc aaacaaacca ccgctggtag cggtggtttt 4740tttgtttgca agcagcagat
tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 4800ttttctactg aacggtgatc
cccaccggaa ttgcg 4835274964DNAHuman
cytomegalovirus 27gccgcggaat ttcgactcta ggccattgca tacgttgtat ctatatcata
atatgtacat 60ttatattggc tcatgtccaa tatgaccgcc atgttgacat tgattattga
ctagttatta 120atagtaatca attacggggt cattagttca tagcccatat atggagttcc
gcgttacata 180acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat
tgacgtcaat 240aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc
aatgggtgga 300gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc
caagtccgcc 360ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt
acatgacctt 420acgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta
ccatggtgat 480gcggttttgg cagtacacca atgggcgtgg atagcggttt gactcacggg
gatttccaag 540tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac
gggactttcc 600aaaatgtcgt aataaccccg ccccgttgac gcaaatgggc ggtaggcgtg
tacggtggga 660ggtctatata agcagagctc gtttagtgaa ccgtcagatc gcctggagac
gccatccacg 720ctgttttgac ctccatagaa gacaccggga ccgatccagc ctccgcggcc
gggaacggtg 780cattggaacg cggattcccc gtgccaagag tgacgtaagt accgcctata
gactctatag 840gcacacccct ttggctctta tgcatgctat actgtttttg gcttggggcc
tatacacccc 900cgcttcctta tgctataggt gatggtatag cttagcctat aggtgtgggt
tattgaccat 960tattgaccac tcccctattg gtgacgatac tttccattac taatccataa
catggctctt 1020tgccacaact atctctattg gctatatgcc aatactctgt ccttcagaga
ctgacacgga 1080ctctgtattt ttacaggatg gggtcccatt tattatttac aaattcacat
atacaacaac 1140gccgtccccc gtgcccgcag tttttattaa acatagcgtg ggatctccac
gcgaatctcg 1200ggtacgtgtt ccggacatgg gctcttctcc ggtagcggcg gagcttccac
atccgagccc 1260tggtcccatg cctccagcgg ctcatggtcg ctcggcagct ccttgctcct
aacagtggag 1320gccagactta ggcacagcac aatgcccacc accaccagtg tgccgcacaa
ggccgtggcg 1380gtagggtatg tgtctgaaaa tgagctcgga gattgggctc gcaccgctga
cgcagatgga 1440agacttaagg cagcggcaga agaagatgca ggcagctgag ttgttgtatt
ctgataagag 1500tcagaggtaa ctcccgttgc ggtgctgtta acggtggagg gcagtgtagt
ctgagcagta 1560ctcgttgctg ccgcgcgcgc caccagacat aatagctgac agactaacag
actgttcctt 1620tccatgggtc ttttctgcag tcaccgtcgt cgacgccacc atgctgcggc
tgctgctgag 1680acaccacttc cactgcctgc tgctgtgtgc cgtgtgggcc accccttgtc
tggccagccc 1740ttggagcacc ctgaccgcca accagaaccc tagcccccct tggtccaagc
tgacctacag 1800caagccccac gacgccgcca ccttctactg cccctttctg taccccagcc
ctcccagaag 1860ccccctgcag ttcagcggct tccagagagt gtccaccggc cctgagtgcc
ggaacgagac 1920actgtacctg ctgtacaacc gggagggcca gacactggtg gagcggagca
gcacctgggt 1980gaaaaaagtg atctggtatc tgagcggccg gaaccagacc atcctgcagc
ggatgcccag 2040aaccgccagc aagcccagcg acggcaacgt gcagatcagc gtggaggacg
ccaaaatctt 2100cggcgcccac atggtgccca agcagaccaa gctgctgaga ttcgtggtca
acgacggcac 2160cagatatcag atgtgcgtga tgaagctgga aagctgggcc cacgtgttcc
gggactactc 2220cgtgagcttc caggtccggc tgaccttcac cgaggccaac aaccagacct
acaccttctg 2280cacccacccc aacctgatcg tgtgataatc tagaaagcca tggatatcgg
atccactacg 2340cgttagagct cgctgatcag cctcgactgt gccttctagt tgccagccat
ctgttgtttg 2400cccctccccc gtgccttcct tgaccctgga aggtgccact cccactgtcc
tttcctaata 2460aaatgaggaa attgcatcgc attgtctgag taggtgtcat tctattctgg
ggggtggggt 2520ggggcaggac agcaaggggg aggattggga agacaatagc aggggggtgg
gcgaagaact 2580ccagcatgag atccccgcgc tggaggatca tccagccggc gtcccggaaa
acgattccga 2640agcccaacct ttcatagaag gcggcggtgg aatcgaaatc tcgtgatggc
aggttgggcg 2700tcgcttggtc ggtcatttcg aaccccagag tcccgctcag aagaactcgt
caagaaggcg 2760atagaaggcg atgcgctgcg aatcgggagc ggcgataccg taaagcacga
ggaagcggtc 2820agcccattcg ccgccaagct cttcagcaat atcacgggta gccaacgcta
tgtcctgata 2880gcggtccgcc acacccagcc ggccacagtc gatgaatcca gaaaagcggc
cattttccac 2940catgatattc ggcaagcagg catcgccatg ggtcacgacg agatcctcgc
cgtcgggcat 3000gcgcgccttg agcctggcga acagttcggc tggcgcgagc ccctgatgct
cttcgtccag 3060atcatcctga tcgacaagac cggcttccat ccgagtacgt gctcgctcga
tgcgatgttt 3120cgcttggtgg tcgaatgggc aggtagccgg atcaagcgta tgcagccgcc
gcattgcatc 3180agccatgatg gatactttct cggcaggagc aaggtgagat gacaggagat
cctgccccgg 3240cacttcgccc aatagcagcc agtcccttcc cgcttcagtg acaacgtcga
gcacagctgc 3300gcaaggaacg cccgtcgtgg ccagccacga tagccgcgct gcctcgtcct
gcagttcatt 3360cagggcaccg gacaggtcgg tcttgacaaa aagaaccggg cgcccctgcg
ctgacagccg 3420gaacacggcg gcatcagagc agccgattgt ctgttgtgcc cagtcatagc
cgaatagcct 3480ctccacccaa gcggccggag aacctgcgtg caatccatct tgttcaatca
tgcgaaacga 3540tcctcatcct gtctcttgat cagatcttga tcccctgcgc catcagatcc
ttggcggcaa 3600gaaagccatc cagtttactt tgcagggctt cccaacctta ccagagggcg
ccccagctgg 3660caattccggt tcgcttgctg tccataaaac cgcccagtct agctatcgcc
atgtaagccc 3720actgcaagct acctgctttc tctttgcgct tgcgttttcc cttgtccaga
tagcccagta 3780gctgacattc atccggggtc agcaccgttt ctgcggactg gctttctacg
tgttccgctt 3840cctttagcag cccttgcgcc ctgagtgctt gcggcagcgt gaagctaatt
catggttaaa 3900tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa
tcccttataa 3960atcaaaagaa tagcccgaga tagggttgag tgttgttcca gtttggaaca
agagtccact 4020attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg
gcgatggccg 4080gatcagctta tgcggtgtga aataccgcac agatgcgtaa ggagaaaata
ccgcatcagg 4140cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct
gcggcgagcg 4200gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga
taacgcagga 4260aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc
cgcgttgctg 4320gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg
ctcaagtcag 4380aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg
aagctccctc 4440gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt
tctcccttcg 4500ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt
gtaggtcgtt 4560cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg
cgccttatcc 4620ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact
ggcagcagcc 4680actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt
cttgaagtgg 4740tggcctaact acggctacac tagaaggaca gtatttggta tctgcgctct
gctgaagcca 4800gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac
cgctggtagc 4860ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc
tcaagaagat 4920cctttgatct tttctactga acggtgatcc ccaccggaat tgcg
4964284709DNAHuman cytomegalovirus 28gccgcggaat ttcgactcta
ggccattgca tacgttgtat ctatatcata atatgtacat 60ttatattggc tcatgtccaa
tatgaccgcc atgttgacat tgattattga ctagttatta 120atagtaatca attacggggt
cattagttca tagcccatat atggagttcc gcgttacata 180acttacggta aatggcccgc
ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 240aatgacgtat gttcccatag
taacgccaat agggactttc cattgacgtc aatgggtgga 300gtatttacgg taaactgccc
acttggcagt acatcaagtg tatcatatgc caagtccgcc 360ccctattgac gtcaatgacg
gtaaatggcc cgcctggcat tatgcccagt acatgacctt 420acgggacttt cctacttggc
agtacatcta cgtattagtc atcgctatta ccatggtgat 480gcggttttgg cagtacacca
atgggcgtgg atagcggttt gactcacggg gatttccaag 540tctccacccc attgacgtca
atgggagttt gttttggcac caaaatcaac gggactttcc 600aaaatgtcgt aataaccccg
ccccgttgac gcaaatgggc ggtaggcgtg tacggtggga 660ggtctatata agcagagctc
gtttagtgaa ccgtcagatc gcctggagac gccatccacg 720ctgttttgac ctccatagaa
gacaccggga ccgatccagc ctccgcggcc gggaacggtg 780cattggaacg cggattcccc
gtgccaagag tgacgtaagt accgcctata gactctatag 840gcacacccct ttggctctta
tgcatgctat actgtttttg gcttggggcc tatacacccc 900cgcttcctta tgctataggt
gatggtatag cttagcctat aggtgtgggt tattgaccat 960tattgaccac tcccctattg
gtgacgatac tttccattac taatccataa catggctctt 1020tgccacaact atctctattg
gctatatgcc aatactctgt ccttcagaga ctgacacgga 1080ctctgtattt ttacaggatg
gggtcccatt tattatttac aaattcacat atacaacaac 1140gccgtccccc gtgcccgcag
tttttattaa acatagcgtg ggatctccac gcgaatctcg 1200ggtacgtgtt ccggacatgg
gctcttctcc ggtagcggcg gagcttccac atccgagccc 1260tggtcccatg cctccagcgg
ctcatggtcg ctcggcagct ccttgctcct aacagtggag 1320gccagactta ggcacagcac
aatgcccacc accaccagtg tgccgcacaa ggccgtggcg 1380gtagggtatg tgtctgaaaa
tgagctcgga gattgggctc gcaccgctga cgcagatgga 1440agacttaagg cagcggcaga
agaagatgca ggcagctgag ttgttgtatt ctgataagag 1500tcagaggtaa ctcccgttgc
ggtgctgtta acggtggagg gcagtgtagt ctgagcagta 1560ctcgttgctg ccgcgcgcgc
caccagacat aatagctgac agactaacag actgttcctt 1620tccatgggtc ttttctgcag
tcaccgtcgt cgacgccacc atgcggctgt gcagagtgtg 1680gctgtccgtg tgcctgtgtg
ccgtggtgct gggccagtgc cagagagaga cagccgagaa 1740gaacgactac taccgggtgc
cccactactg ggatgcctgc agcagagccc tgcccgacca 1800gacccggtac aaatacgtgg
agcagctcgt ggacctgacc ctgaactacc actacgacgc 1860cagccacggc ctggacaact
tcgacgtgct gaagcggatc aacgtgaccg aggtgtccct 1920gctgatcagc gacttccggc
ggcagaacag aagaggcggc accaacaagc ggaccacctt 1980caacgccgct ggctctctgg
cccctcacgc cagatccctg gaattcagcg tgcggctgtt 2040cgccaactga taatctagaa
agccatggat atcggatcca ctacgcgtta gagctcgctg 2100atcagcctcg actgtgcctt
ctagttgcca gccatctgtt gtttgcccct cccccgtgcc 2160ttccttgacc ctggaaggtg
ccactcccac tgtcctttcc taataaaatg aggaaattgc 2220atcgcattgt ctgagtaggt
gtcattctat tctggggggt ggggtggggc aggacagcaa 2280gggggaggat tgggaagaca
atagcagggg ggtgggcgaa gaactccagc atgagatccc 2340cgcgctggag gatcatccag
ccggcgtccc ggaaaacgat tccgaagccc aacctttcat 2400agaaggcggc ggtggaatcg
aaatctcgtg atggcaggtt gggcgtcgct tggtcggtca 2460tttcgaaccc cagagtcccg
ctcagaagaa ctcgtcaaga aggcgataga aggcgatgcg 2520ctgcgaatcg ggagcggcga
taccgtaaag cacgaggaag cggtcagccc attcgccgcc 2580aagctcttca gcaatatcac
gggtagccaa cgctatgtcc tgatagcggt ccgccacacc 2640cagccggcca cagtcgatga
atccagaaaa gcggccattt tccaccatga tattcggcaa 2700gcaggcatcg ccatgggtca
cgacgagatc ctcgccgtcg ggcatgcgcg ccttgagcct 2760ggcgaacagt tcggctggcg
cgagcccctg atgctcttcg tccagatcat cctgatcgac 2820aagaccggct tccatccgag
tacgtgctcg ctcgatgcga tgtttcgctt ggtggtcgaa 2880tgggcaggta gccggatcaa
gcgtatgcag ccgccgcatt gcatcagcca tgatggatac 2940tttctcggca ggagcaaggt
gagatgacag gagatcctgc cccggcactt cgcccaatag 3000cagccagtcc cttcccgctt
cagtgacaac gtcgagcaca gctgcgcaag gaacgcccgt 3060cgtggccagc cacgatagcc
gcgctgcctc gtcctgcagt tcattcaggg caccggacag 3120gtcggtcttg acaaaaagaa
ccgggcgccc ctgcgctgac agccggaaca cggcggcatc 3180agagcagccg attgtctgtt
gtgcccagtc atagccgaat agcctctcca cccaagcggc 3240cggagaacct gcgtgcaatc
catcttgttc aatcatgcga aacgatcctc atcctgtctc 3300ttgatcagat cttgatcccc
tgcgccatca gatccttggc ggcaagaaag ccatccagtt 3360tactttgcag ggcttcccaa
ccttaccaga gggcgcccca gctggcaatt ccggttcgct 3420tgctgtccat aaaaccgccc
agtctagcta tcgccatgta agcccactgc aagctacctg 3480ctttctcttt gcgcttgcgt
tttcccttgt ccagatagcc cagtagctga cattcatccg 3540gggtcagcac cgtttctgcg
gactggcttt ctacgtgttc cgcttccttt agcagccctt 3600gcgccctgag tgcttgcggc
agcgtgaagc taattcatgg ttaaattttt gttaaatcag 3660ctcatttttt aaccaatagg
ccgaaatcgg caaaatccct tataaatcaa aagaatagcc 3720cgagataggg ttgagtgttg
ttccagtttg gaacaagagt ccactattaa agaacgtgga 3780ctccaacgtc aaagggcgaa
aaaccgtcta tcagggcgat ggccggatca gcttatgcgg 3840tgtgaaatac cgcacagatg
cgtaaggaga aaataccgca tcaggcgctc ttccgcttcc 3900tcgctcactg actcgctgcg
ctcggtcgtt cggctgcggc gagcggtatc agctcactca 3960aaggcggtaa tacggttatc
cacagaatca ggggataacg caggaaagaa catgtgagca 4020aaaggccagc aaaaggccag
gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg 4080ctccgccccc ctgacgagca
tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg 4140acaggactat aaagatacca
ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt 4200ccgaccctgc cgcttaccgg
atacctgtcc gcctttctcc cttcgggaag cgtggcgctt 4260tctcatagct cacgctgtag
gtatctcagt tcggtgtagg tcgttcgctc caagctgggc 4320tgtgtgcacg aaccccccgt
tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt 4380gagtccaacc cggtaagaca
cgacttatcg ccactggcag cagccactgg taacaggatt 4440agcagagcga ggtatgtagg
cggtgctaca gagttcttga agtggtggcc taactacggc 4500tacactagaa ggacagtatt
tggtatctgc gctctgctga agccagttac cttcggaaaa 4560agagttggta gctcttgatc
cggcaaacaa accaccgctg gtagcggtgg tttttttgtt 4620tgcaagcagc agattacgcg
cagaaaaaaa ggatctcaag aagatccttt gatcttttct 4680actgaacggt gatccccacc
ggaattgcg 470929692PRTHuman
cytomegalovirus 29Arg Tyr Gly Ala Glu Ala Val Ser Glu Pro Leu Asp Lys Ala
Phe His1 5 10 15Leu Leu
Leu Asn Thr Tyr Gly Arg Pro Ile Arg Phe Leu Arg Glu Asn 20
25 30Thr Thr Gln Cys Thr Tyr Asn Ser Ser
Leu Arg Asn Ser Thr Val Val 35 40
45Arg Glu Asn Ala Ile Ser Phe Asn Phe Phe Gln Ser Tyr Asn Gln Tyr 50
55 60Tyr Val Phe His Met Pro Arg Cys Leu
Phe Ala Gly Pro Leu Ala Glu65 70 75
80Gln Phe Leu Asn Gln Val Asp Leu Thr Glu Thr Leu Glu Arg
Tyr Gln 85 90 95Gln Arg
Leu Asn Thr Tyr Ala Leu Val Ser Lys Asp Leu Ala Ser Tyr 100
105 110Arg Ser Phe Ser Gln Gln Leu Lys Ala
Gln Asp Ser Leu Gly Glu Gln 115 120
125Pro Thr Thr Val Pro Pro Pro Ile Asp Leu Ser Ile Pro His Val Trp
130 135 140Met Pro Pro Gln Thr Thr Pro
His Gly Trp Thr Glu Ser His Thr Thr145 150
155 160Ser Gly Leu His Arg Pro His Phe Asn Gln Thr Cys
Ile Leu Phe Asp 165 170
175Gly His Asp Leu Leu Phe Ser Thr Val Thr Pro Cys Leu His Gln Gly
180 185 190Phe Tyr Leu Ile Asp Glu
Leu Arg Tyr Val Lys Ile Thr Leu Thr Glu 195 200
205Asp Phe Phe Val Val Thr Val Ser Ile Asp Asp Asp Thr Pro
Met Leu 210 215 220Leu Ile Phe Gly His
Leu Pro Arg Val Leu Phe Lys Ala Pro Tyr Gln225 230
235 240Arg Asp Asn Phe Ile Leu Arg Gln Thr Glu
Lys His Glu Leu Leu Val 245 250
255Leu Val Lys Lys Asp Gln Leu Asn Arg His Ser Tyr Leu Lys Asp Pro
260 265 270Asp Phe Leu Asp Ala
Ala Leu Asp Phe Asn Tyr Leu Asp Leu Ser Ala 275
280 285Leu Leu Arg Asn Ser Phe His Arg Tyr Ala Val Asp
Val Leu Lys Ser 290 295 300Gly Arg Cys
Gln Met Leu Asp Arg Arg Thr Val Glu Met Ala Phe Ala305
310 315 320Tyr Ala Leu Ala Leu Phe Ala
Ala Ala Arg Gln Glu Glu Ala Gly Ala 325
330 335Gln Val Ser Val Pro Arg Ala Leu Asp Arg Gln Ala
Ala Leu Leu Gln 340 345 350Ile
Gln Glu Phe Met Ile Thr Cys Leu Ser Gln Thr Pro Pro Arg Thr 355
360 365Thr Leu Leu Leu Tyr Pro Thr Ala Val
Asp Leu Ala Lys Arg Ala Leu 370 375
380Trp Thr Pro Asn Gln Ile Thr Asp Ile Thr Ser Leu Val Arg Leu Val385
390 395 400Tyr Ile Leu Ser
Lys Gln Asn Gln Gln His Leu Ile Pro Gln Trp Ala 405
410 415Leu Arg Gln Ile Ala Asp Phe Ala Leu Lys
Leu His Lys Thr His Leu 420 425
430Ala Ser Phe Leu Ser Ala Phe Ala Arg Gln Glu Leu Tyr Leu Met Gly
435 440 445Ser Leu Val His Ser Met Leu
Val His Thr Thr Glu Arg Arg Glu Ile 450 455
460Phe Ile Val Glu Thr Gly Leu Cys Ser Leu Ala Glu Leu Ser His
Phe465 470 475 480Thr Gln
Leu Leu Ala His Pro His His Glu Tyr Leu Ser Asp Leu Tyr
485 490 495Thr Pro Cys Ser Ser Ser Gly
Arg Arg Asp His Ser Leu Glu Arg Leu 500 505
510Thr Arg Leu Phe Pro Asp Ala Thr Val Pro Ala Thr Val Pro
Ala Ala 515 520 525Leu Ser Ile Leu
Ser Thr Met Gln Pro Ser Thr Leu Glu Thr Phe Pro 530
535 540Asp Leu Phe Cys Leu Pro Leu Gly Glu Ser Phe Ser
Ala Leu Thr Val545 550 555
560Ser Glu His Val Ser Tyr Ile Val Thr Asn Gln Tyr Leu Ile Lys Gly
565 570 575Ile Ser Tyr Pro Val
Ser Thr Thr Val Val Gly Gln Ser Leu Ile Ile 580
585 590Thr Gln Thr Asp Ser Gln Thr Lys Cys Glu Leu Thr
Arg Asn Met His 595 600 605Thr Thr
His Ser Ile Thr Val Ala Leu Asn Ile Ser Leu Glu Asn Cys 610
615 620Ala Phe Cys Gln Ser Ala Leu Leu Glu Tyr Asp
Asp Thr Gln Gly Val625 630 635
640Ile Asn Ile Met Tyr Met His Asp Ser Asp Asp Val Leu Phe Ala Leu
645 650 655Asp Pro Tyr Asn
Glu Val Val Val Ser Ser Pro Arg Thr His Tyr Leu 660
665 670Met Leu Leu Lys Asn Gly Thr Val Leu Glu Val
Thr Asp Val Val Val 675 680 685Asp
Ala Thr Asp 69030719PRTHuman cytomegalovirus 30Arg Tyr Gly Ala Glu Ala
Val Ser Glu Pro Leu Asp Lys Ala Phe His1 5
10 15Leu Leu Leu Asn Thr Tyr Gly Arg Pro Ile Arg Phe
Leu Arg Glu Asn 20 25 30Thr
Thr Gln Cys Thr Tyr Asn Ser Ser Leu Arg Asn Ser Thr Val Val 35
40 45Arg Glu Asn Ala Ile Ser Phe Asn Phe
Phe Gln Ser Tyr Asn Gln Tyr 50 55
60Tyr Val Phe His Met Pro Arg Cys Leu Phe Ala Gly Pro Leu Ala Glu65
70 75 80Gln Phe Leu Asn Gln
Val Asp Leu Thr Glu Thr Leu Glu Arg Tyr Gln 85
90 95Gln Arg Leu Asn Thr Tyr Ala Leu Val Ser Lys
Asp Leu Ala Ser Tyr 100 105
110Arg Ser Phe Ser Gln Gln Leu Lys Ala Gln Asp Ser Leu Gly Glu Gln
115 120 125Pro Thr Thr Val Pro Pro Pro
Ile Asp Leu Ser Ile Pro His Val Trp 130 135
140Met Pro Pro Gln Thr Thr Pro His Gly Trp Thr Glu Ser His Thr
Thr145 150 155 160Ser Gly
Leu His Arg Pro His Phe Asn Gln Thr Cys Ile Leu Phe Asp
165 170 175Gly His Asp Leu Leu Phe Ser
Thr Val Thr Pro Cys Leu His Gln Gly 180 185
190Phe Tyr Leu Ile Asp Glu Leu Arg Tyr Val Lys Ile Thr Leu
Thr Glu 195 200 205Asp Phe Phe Val
Val Thr Val Ser Ile Asp Asp Asp Thr Pro Met Leu 210
215 220Leu Ile Phe Gly His Leu Pro Arg Val Leu Phe Lys
Ala Pro Tyr Gln225 230 235
240Arg Asp Asn Phe Ile Leu Arg Gln Thr Glu Lys His Glu Leu Leu Val
245 250 255Leu Val Lys Lys Asp
Gln Leu Asn Arg His Ser Tyr Leu Lys Asp Pro 260
265 270Asp Phe Leu Asp Ala Ala Leu Asp Phe Asn Tyr Leu
Asp Leu Ser Ala 275 280 285Leu Leu
Arg Asn Ser Phe His Arg Tyr Ala Val Asp Val Leu Lys Ser 290
295 300Gly Arg Cys Gln Met Leu Asp Arg Arg Thr Val
Glu Met Ala Phe Ala305 310 315
320Tyr Ala Leu Ala Leu Phe Ala Ala Ala Arg Gln Glu Glu Ala Gly Ala
325 330 335Gln Val Ser Val
Pro Arg Ala Leu Asp Arg Gln Ala Ala Leu Leu Gln 340
345 350Ile Gln Glu Phe Met Ile Thr Cys Leu Ser Gln
Thr Pro Pro Arg Thr 355 360 365Thr
Leu Leu Leu Tyr Pro Thr Ala Val Asp Leu Ala Lys Arg Ala Leu 370
375 380Trp Thr Pro Asn Gln Ile Thr Asp Ile Thr
Ser Leu Val Arg Leu Val385 390 395
400Tyr Ile Leu Ser Lys Gln Asn Gln Gln His Leu Ile Pro Gln Trp
Ala 405 410 415Leu Arg Gln
Ile Ala Asp Phe Ala Leu Lys Leu His Lys Thr His Leu 420
425 430Ala Ser Phe Leu Ser Ala Phe Ala Arg Gln
Glu Leu Tyr Leu Met Gly 435 440
445Ser Leu Val His Ser Met Leu Val His Thr Thr Glu Arg Arg Glu Ile 450
455 460Phe Ile Val Glu Thr Gly Leu Cys
Ser Leu Ala Glu Leu Ser His Phe465 470
475 480Thr Gln Leu Leu Ala His Pro His His Glu Tyr Leu
Ser Asp Leu Tyr 485 490
495Thr Pro Cys Ser Ser Ser Gly Arg Arg Asp His Ser Leu Glu Arg Leu
500 505 510Thr Arg Leu Phe Pro Asp
Ala Thr Val Pro Ala Thr Val Pro Ala Ala 515 520
525Leu Ser Ile Leu Ser Thr Met Gln Pro Ser Thr Leu Glu Thr
Phe Pro 530 535 540Asp Leu Phe Cys Leu
Pro Leu Gly Glu Ser Phe Ser Ala Leu Thr Val545 550
555 560Ser Glu His Val Ser Tyr Ile Val Thr Asn
Gln Tyr Leu Ile Lys Gly 565 570
575Ile Ser Tyr Pro Val Ser Thr Thr Val Val Gly Gln Ser Leu Ile Ile
580 585 590Thr Gln Thr Asp Ser
Gln Thr Lys Cys Glu Leu Thr Arg Asn Met His 595
600 605Thr Thr His Ser Ile Thr Val Ala Leu Asn Ile Ser
Leu Glu Asn Cys 610 615 620Ala Phe Cys
Gln Ser Ala Leu Leu Glu Tyr Asp Asp Thr Gln Gly Val625
630 635 640Ile Asn Ile Met Tyr Met His
Asp Ser Asp Asp Val Leu Phe Ala Leu 645
650 655Asp Pro Tyr Asn Glu Val Val Val Ser Ser Pro Arg
Thr His Tyr Leu 660 665 670Met
Leu Leu Lys Asn Gly Thr Val Leu Glu Val Thr Asp Val Val Val 675
680 685Asp Ala Thr Asp Gly Thr Lys Leu Gly
Pro Glu Gln Lys Leu Ile Ser 690 695
700Glu Glu Asp Leu Asn Ser Ala Val Asp His His His His His His705
710 71531248PRTHuman cytomegalovirus 31Ala Ala
Val Ser Val Ala Pro Thr Ala Ala Glu Lys Val Pro Ala Glu1 5
10 15Cys Pro Glu Leu Thr Arg Arg Cys
Leu Leu Gly Glu Val Phe Glu Gly 20 25
30Asp Lys Tyr Glu Ser Trp Leu Arg Pro Leu Val Asn Val Thr Gly
Arg 35 40 45Asp Gly Pro Leu Ser
Gln Leu Ile Arg Tyr Arg Pro Val Thr Pro Glu 50 55
60Ala Ala Asn Ser Val Leu Leu Asp Glu Ala Phe Leu Asp Thr
Leu Ala65 70 75 80Leu
Leu Tyr Asn Asn Pro Asp Gln Leu Arg Ala Leu Leu Thr Leu Leu
85 90 95Ser Ser Asp Thr Ala Pro Arg
Trp Met Thr Val Met Arg Gly Tyr Ser 100 105
110Glu Cys Gly Asp Gly Ser Pro Ala Val Tyr Thr Cys Val Asp
Asp Leu 115 120 125Cys Arg Gly Tyr
Asp Leu Thr Arg Leu Ser Tyr Gly Arg Ser Ile Phe 130
135 140Thr Glu His Val Leu Gly Phe Glu Leu Val Pro Pro
Ser Leu Phe Asn145 150 155
160Val Val Val Ala Ile Arg Asn Glu Ala Thr Arg Thr Asn Arg Ala Val
165 170 175Arg Leu Pro Val Ser
Thr Ala Ala Ala Pro Glu Gly Ile Thr Leu Phe 180
185 190Tyr Gly Leu Tyr Asn Ala Val Lys Glu Phe Cys Leu
Arg His Gln Leu 195 200 205Asp Pro
Pro Leu Leu Arg His Leu Asp Lys Tyr Tyr Ala Gly Leu Pro 210
215 220Pro Glu Leu Lys Gln Thr Arg Val Asn Leu Pro
Ala His Ser Arg Tyr225 230 235
240Gly Pro Gln Ala Val Asp Ala Arg 24532442PRTHuman
cytomegalovirus 32Cys Asn Val Leu Val Asn Ser Arg Gly Thr Arg Arg Ser Trp
Pro Tyr1 5 10 15Thr Val
Leu Ser Tyr Arg Gly Lys Glu Ile Leu Lys Lys Gln Lys Glu 20
25 30Asp Ile Leu Lys Arg Leu Met Ser Thr
Ser Ser Asp Gly Tyr Arg Phe 35 40
45Leu Met Tyr Pro Ser Gln Gln Lys Phe His Ala Ile Val Ile Ser Met 50
55 60Asp Lys Phe Pro Gln Asp Tyr Ile Leu
Ala Gly Pro Ile Arg Asn Asp65 70 75
80Ser Ile Thr His Met Trp Phe Asp Phe Tyr Ser Thr Gln Leu
Arg Lys 85 90 95Pro Ala
Lys Tyr Val Tyr Ser Glu Tyr Asn His Thr Ala His Lys Ile 100
105 110Thr Leu Arg Pro Pro Pro Cys Gly Thr
Val Pro Ser Met Asn Cys Leu 115 120
125Ser Glu Met Leu Asn Val Ser Lys Arg Asn Asp Thr Gly Glu Lys Gly
130 135 140Cys Gly Asn Phe Thr Thr Phe
Asn Pro Met Phe Phe Asn Val Pro Arg145 150
155 160Trp Asn Thr Lys Leu Tyr Ile Gly Ser Asn Lys Val
Asn Val Asp Ser 165 170
175Gln Thr Ile Tyr Phe Leu Gly Leu Thr Ala Leu Leu Leu Arg Tyr Ala
180 185 190Gln Arg Asn Cys Thr Arg
Ser Phe Tyr Leu Val Asn Ala Met Ser Arg 195 200
205Asn Leu Phe Arg Val Pro Lys Tyr Ile Asn Gly Thr Lys Leu
Lys Asn 210 215 220Thr Met Arg Lys Leu
Lys Arg Lys Gln Ala Leu Val Lys Glu Gln Pro225 230
235 240Gln Lys Lys Asn Lys Lys Ser Gln Ser Thr
Thr Thr Pro Tyr Leu Ser 245 250
255Tyr Thr Thr Ser Thr Ala Phe Asn Val Thr Thr Asn Val Thr Tyr Ser
260 265 270Ala Thr Ala Ala Val
Thr Arg Val Ala Thr Ser Thr Thr Gly Tyr Arg 275
280 285Pro Asp Ser Asn Phe Met Lys Ser Ile Met Ala Thr
Gln Leu Arg Asp 290 295 300Leu Ala Thr
Trp Val Tyr Thr Thr Leu Arg Tyr Arg Asn Glu Pro Phe305
310 315 320Cys Lys Pro Asp Arg Asn Arg
Thr Ala Val Ser Glu Phe Met Lys Asn 325
330 335Thr His Val Leu Ile Arg Asn Glu Thr Pro Tyr Thr
Ile Tyr Gly Thr 340 345 350Leu
Asp Met Ser Ser Leu Tyr Tyr Asn Glu Thr Met Ser Val Glu Asn 355
360 365Glu Thr Ala Ser Asp Asn Asn Glu Thr
Thr Pro Thr Ser Pro Ser Thr 370 375
380Arg Phe Gln Arg Thr Phe Ile Asp Pro Leu Trp Asp Tyr Leu Asp Ser385
390 395 400Leu Leu Phe Leu
Asp Lys Ile Arg Asn Phe Ser Leu Gln Leu Pro Ala 405
410 415Tyr Gly Asn Leu Thr Pro Pro Glu His Arg
Arg Ala Ala Asn Leu Ser 420 425
430Thr Leu Asn Ser Leu Trp Trp Trp Ser Gln 435
44033144PRTHuman cytomegalovirus 33Glu Glu Cys Cys Glu Phe Ile Asn Val
Asn His Pro Pro Glu Arg Cys1 5 10
15Tyr Asp Phe Lys Met Cys Asn Arg Phe Thr Val Ala Leu Arg Cys
Pro 20 25 30Asp Gly Glu Val
Cys Tyr Ser Pro Glu Lys Thr Ala Glu Ile Arg Gly 35
40 45Ile Val Thr Thr Met Thr His Ser Leu Thr Arg Gln
Val Val His Asn 50 55 60Lys Leu Thr
Ser Cys Asn Tyr Asn Pro Leu Tyr Leu Glu Ala Asp Gly65 70
75 80Arg Ile Arg Cys Gly Lys Val Asn
Asp Lys Ala Gln Tyr Leu Leu Gly 85 90
95Ala Ala Gly Ser Val Pro Tyr Arg Trp Ile Asn Leu Glu Tyr
Asp Lys 100 105 110Ile Thr Arg
Ile Val Gly Leu Asp Gln Tyr Leu Glu Ser Val Lys Lys 115
120 125His Lys Arg Leu Asp Val Cys Arg Ala Lys Met
Gly Tyr Met Leu Gln 130 135
14034189PRTHuman cytomegalovirus 34Ser Pro Trp Ser Thr Leu Thr Ala Asn
Gln Asn Pro Ser Pro Pro Trp1 5 10
15Ser Lys Leu Thr Tyr Ser Lys Pro His Asp Ala Ala Thr Phe Tyr
Cys 20 25 30Pro Phe Leu Tyr
Pro Ser Pro Pro Arg Ser Pro Leu Gln Phe Ser Gly 35
40 45Phe Gln Arg Val Ser Thr Gly Pro Glu Cys Arg Asn
Glu Thr Leu Tyr 50 55 60Leu Leu Tyr
Asn Arg Glu Gly Gln Thr Leu Val Glu Arg Ser Ser Thr65 70
75 80Trp Val Lys Lys Val Ile Trp Tyr
Leu Ser Gly Arg Asn Gln Thr Ile 85 90
95Leu Gln Arg Met Pro Arg Thr Ala Ser Lys Pro Ser Asp Gly
Asn Val 100 105 110Gln Ile Ser
Val Glu Asp Ala Lys Ile Phe Gly Ala His Met Val Pro 115
120 125Lys Gln Thr Lys Leu Leu Arg Phe Val Val Asn
Asp Gly Thr Arg Tyr 130 135 140Gln Met
Cys Val Met Lys Leu Glu Ser Trp Ala His Val Phe Arg Asp145
150 155 160Tyr Ser Val Ser Phe Gln Val
Arg Leu Thr Phe Thr Glu Ala Asn Asn 165
170 175Gln Thr Tyr Thr Phe Cys Thr His Pro Asn Leu Ile
Val 180 18535111PRTHuman cytomegalovirus 35Gln
Cys Gln Arg Glu Thr Ala Glu Lys Asn Asp Tyr Tyr Arg Val Pro1
5 10 15His Tyr Trp Asp Ala Cys Ser
Arg Ala Leu Pro Asp Gln Thr Arg Tyr 20 25
30Lys Tyr Val Glu Gln Leu Val Asp Leu Thr Leu Asn Tyr His
Tyr Asp 35 40 45Ala Ser His Gly
Leu Asp Asn Phe Asp Val Leu Lys Arg Ile Asn Val 50 55
60Thr Glu Val Ser Leu Leu Ile Ser Asp Phe Arg Arg Gln
Asn Arg Arg65 70 75
80Gly Gly Thr Asn Lys Arg Thr Thr Phe Asn Ala Ala Gly Ser Leu Ala
85 90 95Pro His Ala Arg Ser Leu
Glu Phe Ser Val Arg Leu Phe Ala Asn 100 105
11036884PRTHuman cytomegalovirus 36Val Ser Ser Ser Ser Thr
Arg Gly Thr Ser Ala Thr His Ser His His1 5
10 15Ser Ser His Thr Thr Ser Ala Ala His Ser Arg Ser
Gly Ser Val Ser 20 25 30Gln
Arg Val Thr Ser Ser Gln Thr Val Ser His Gly Val Asn Glu Thr 35
40 45Ile Tyr Asn Thr Thr Leu Lys Tyr Gly
Asp Val Val Gly Val Asn Thr 50 55
60Thr Lys Tyr Pro Tyr Arg Val Cys Ser Met Ala Gln Gly Thr Asp Leu65
70 75 80Ile Arg Phe Glu Arg
Asn Ile Val Cys Thr Ser Met Lys Pro Ile Asn 85
90 95Glu Asp Leu Asp Glu Gly Ile Met Val Val Tyr
Lys Arg Asn Ile Val 100 105
110Ala His Thr Phe Lys Val Arg Val Tyr Gln Lys Val Leu Thr Phe Arg
115 120 125Arg Ser Tyr Ala Tyr Ile His
Thr Thr Tyr Leu Leu Gly Ser Asn Thr 130 135
140Glu Tyr Val Ala Pro Pro Met Trp Glu Ile His His Ile Asn Ser
His145 150 155 160Ser Gln
Cys Tyr Ser Ser Tyr Ser Arg Val Ile Ala Gly Thr Val Phe
165 170 175Val Ala Tyr His Arg Asp Ser
Tyr Glu Asn Lys Thr Met Gln Leu Met 180 185
190Pro Asp Asp Tyr Ser Asn Thr His Ser Thr Arg Tyr Val Thr
Val Lys 195 200 205Asp Gln Trp His
Ser Arg Gly Ser Thr Trp Leu Tyr Arg Glu Thr Cys 210
215 220Asn Leu Asn Cys Met Val Thr Ile Thr Thr Ala Arg
Ser Lys Tyr Pro225 230 235
240Tyr His Phe Phe Ala Thr Ser Thr Gly Asp Val Val Asp Ile Ser Pro
245 250 255Phe Tyr Asn Gly Thr
Asn Arg Asn Ala Ser Tyr Phe Gly Glu Asn Ala 260
265 270Asp Lys Phe Phe Ile Phe Pro Asn Tyr Thr Ile Val
Ser Asp Phe Gly 275 280 285Arg Pro
Asn Ser Ala Leu Glu Thr His Arg Leu Val Ala Phe Leu Glu 290
295 300Arg Ala Asp Ser Val Ile Ser Trp Asp Ile Gln
Asp Glu Lys Asn Val305 310 315
320Thr Cys Gln Leu Thr Phe Trp Glu Ala Ser Glu Arg Thr Ile Arg Ser
325 330 335Glu Ala Glu Asp
Ser Tyr His Phe Ser Ser Ala Lys Met Thr Ala Thr 340
345 350Phe Leu Ser Lys Lys Gln Glu Val Asn Met Ser
Asp Ser Ala Leu Asp 355 360 365Cys
Val Arg Asp Glu Ala Ile Asn Lys Leu Gln Gln Ile Phe Asn Thr 370
375 380Ser Tyr Asn Gln Thr Tyr Glu Lys Tyr Gly
Asn Val Ser Val Phe Glu385 390 395
400Thr Thr Gly Gly Leu Val Val Phe Trp Gln Gly Ile Lys Gln Lys
Ser 405 410 415Leu Val Glu
Leu Glu Arg Leu Ala Asn Arg Ser Ser Leu Asn Leu Thr 420
425 430His Asn Arg Thr Lys Arg Ser Thr Asp Gly
Asn Asn Ala Thr His Leu 435 440
445Ser Asn Met Glu Ser Val His Asn Leu Val Tyr Ala Gln Leu Gln Phe 450
455 460Thr Tyr Asp Thr Leu Arg Gly Tyr
Ile Asn Arg Ala Leu Ala Gln Ile465 470
475 480Ala Glu Ala Trp Cys Val Asp Gln Arg Arg Thr Leu
Glu Val Phe Lys 485 490
495Glu Leu Ser Lys Ile Asn Pro Ser Ala Ile Leu Ser Ala Ile Tyr Asn
500 505 510Lys Pro Ile Ala Ala Arg
Phe Met Gly Asp Val Leu Gly Leu Ala Ser 515 520
525Cys Val Thr Ile Asn Gln Thr Ser Val Lys Val Leu Arg Asp
Met Asn 530 535 540Val Lys Glu Ser Pro
Gly Arg Cys Tyr Ser Arg Pro Val Val Ile Phe545 550
555 560Asn Phe Ala Asn Ser Ser Tyr Val Gln Tyr
Gly Gln Leu Gly Glu Asp 565 570
575Asn Glu Ile Leu Leu Gly Asn His Arg Thr Glu Glu Cys Gln Leu Pro
580 585 590Ser Leu Lys Ile Phe
Ile Ala Gly Asn Ser Ala Tyr Glu Tyr Val Asp 595
600 605Tyr Leu Phe Lys Arg Met Ile Asp Leu Ser Ser Ile
Ser Thr Val Asp 610 615 620Ser Met Ile
Ala Leu Asp Ile Asp Pro Leu Glu Asn Thr Asp Phe Arg625
630 635 640Val Leu Glu Leu Tyr Ser Gln
Lys Glu Leu Arg Ser Ser Asn Val Phe 645
650 655Asp Leu Glu Glu Ile Met Arg Glu Phe Asn Ser Tyr
Lys Gln Arg Val 660 665 670Lys
Tyr Val Glu Asp Lys Val Val Asp Pro Leu Pro Pro Tyr Leu Lys 675
680 685Gly Leu Asp Asp Leu Met Ser Gly Leu
Gly Ala Ala Gly Lys Ala Val 690 695
700Gly Val Ala Ile Gly Ala Val Gly Gly Ala Val Ala Ser Val Val Glu705
710 715 720Gly Val Ala Thr
Phe Leu Lys Asn Pro Phe Gly Ala Phe Thr Ile Ile 725
730 735Leu Val Ala Ile Ala Val Val Ile Ile Thr
Tyr Leu Ile Tyr Thr Arg 740 745
750Gln Arg Arg Leu Cys Thr Gln Pro Leu Gln Asn Leu Phe Pro Tyr Leu
755 760 765Val Ser Ala Asp Gly Thr Thr
Val Thr Ser Gly Ser Thr Lys Asp Thr 770 775
780Ser Leu Gln Ala Pro Pro Ser Tyr Glu Glu Ser Val Tyr Asn Ser
Gly785 790 795 800Arg Lys
Gly Pro Gly Pro Pro Ser Ser Asp Ala Ser Thr Ala Ala Pro
805 810 815Pro Tyr Thr Asn Glu Gln Ala
Tyr Gln Met Leu Leu Ala Leu Ala Arg 820 825
830Leu Asp Ala Glu Gln Arg Ala Gln Gln Asn Gly Thr Asp Ser
Leu Asp 835 840 845Gly Arg Thr Gly
Thr Gln Asp Lys Gly Gln Lys Pro Asn Leu Leu Asp 850
855 860Arg Leu Arg His Arg Lys Asn Gly Tyr Arg His Leu
Lys Asp Ser Asp865 870 875
880Glu Glu Glu Asn
User Contributions:
Comment about this patent or add new information about this topic: