Patent application title: ACYL-ACP THIOESTERASES AND MUTANTS THEREOF
Inventors:
IPC8 Class: AC12P764FI
USPC Class:
1 1
Class name:
Publication date: 2019-06-27
Patent application number: 20190194703
Abstract:
Novel plant acyl-ACP thioesterase genes of the FatB and FatA classes and
proteins encoded by these genes are disclosed. The genes are useful for
constructing recombinant host cells having altered fatty acid profiles.
Expression of the novel and/or mutated FATB and FATA genes is
demonstrated in oleaginous microalga host cells. Furthermore, a method
for producing an oil elevated in one or more of C12:0, C14:0, C16:0,
C18:0 and/or C18:1 fatty acids includes transforming a cell with novel
and/or mutated FATB and/or FATA genes, e.g., having an N-terminal
deletion. The cells produce triglycerides with altered and useful fatty
acid profiles.Claims:
1. A cDNA or nucleic acid construct comprising a polynucleotide sequence
encoding a heterologous regulatory element and a FatB acyl-ACP
thioesterase gene operable to produce an altered fatty acid profile in an
oil produced by a cell expressing the nucleic acid construct, wherein the
FatB gene expresses a protein having an amino acid sequence having at
least 65% identity to SEQ ID NO: 40 or SEQ ID NO: 42.
2. The cDNA or nucleic acid construct of claim 1, wherein the acyl-ACP thioesterase coding sequence comprises at least 65% identity to SEQ ID NO: 44 or any equivalent sequences by virtue of the degeneracy of the genetic code.
3. (canceled)
4. The nucleic acid construct of claim 1, further comprising a polynucleotide encoding a plastid targeting peptide with at least 65% identity to SEQ ID NO: 37.
5. (canceled)
6. A host cell capable of expressing the cDNA or nucleic acid construct of claim 1 so as to produce a triglyceride oil having an altered composition relative to a control cell without the construct, the oil optionally having an increase in C8-C12 fatty acids.
7. A host cell capable of expressing the cDNA or nucleic acid construct of claim 1 so as to produce a triglyceride oil having an altered composition relative to a control cell without the construct, the oil optionally having an increase in C10 and C12 fatty acids.
8. The host cell of claim 6, wherein the host cell is selected from the group consisting of a plant cell, a microbial cell, and a microalgal cell.
9. A method of producing a recombinant cell that produces an altered fatty acid profile, the method comprising transforming a cell with a cDNA or nucleic acid construct of claim 1.
10. A host cell produced by the method of claim 9.
11. The host cell of claim 10, wherein the host cell is selected from the group consisting of a plant cell, a microbial cell, and a microalgal cell.
12. A method for producing an oil or oil-derived product, the method comprising cultivating a host cell of claim 6 and extracting oil produced thereby, optionally wherein the cultivation is by heterotrophic growth on sugar.
13. The method of claim 12, further comprising producing a fatty acid, fuel, chemical, food, or other oil-derived product from the oil.
14. (canceled)
15. An oil produced by the method of claim 12, optionally having a fatty acid profile comprising at least 20% C8, C10, C12, C14, C16 or C18 fatty acids.
16. The oil of claim 15, wherein the oil is produced by a microalgae, has a microalgal sterol profile, and optionally, lacks C24-alpha sterols.
17. (canceled)
18. A method for producing an oil, the method comprising: (a) providing a plastidic, oleaginous cell, optionally a microbial cell, the cell expressing a functional, acyl-ACP thioesterase gene encoded by a FATB gene having a deletion mutation in a region corresponding to the region coding for amino acids 66-98 of SEQ ID NO: 8; (b) cultivating the cell to produce a cell-oil; and (c) isolating the cell-oil from the cell.
19. The method of claim 17, wherein the cell-oil is enriched in C12 due to the deletion.
20. The method of claim 18 wherein the FATB gene encodes a protein with at least 65% sequence identity to SEQ ID NO: 42.
21. (canceled)
22.-38. (canceled)
39. The oil produced by the method of claim 19, wherein the fatty acid profile of the cell-oil comprises at least 5% C12 fatty acids.
40. The oil produced by the method of claim 39, wherein the fatty acid profile of the cell-oil comprises at least 10% C12 fatty acids.
41. The oil produced by the method of claim 40, wherein the fatty acid profile of the cell-oil comprises at least 15% C12 fatty acids.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of U.S. application Ser. No. 14/858,527, filed on Sep. 18, 2015, which claims the benefit under 35 U.S.C. .sctn. 119(e) of U.S. Provisional Application No. 62/052,440, filed on Sep. 18, 2014, and U.S. Provisional Application No. 62/075,168, filed on Nov. 4, 2014, all of which are hereby incorporated herein in their entireties.
SEQUENCE LISTING
[0002] This instant application contains a Sequence Listing which has been submitted electronically in ASCCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 20, 2015, is named SOLAP0281412A01_SL.txt and is 163,325 bytes in size.
Background
[0003] Certain organisms including plants and some microalgae use a type II fatty acid biosynthetic pathway, characterized by the use of discrete, monofunctional enzymes for fatty acid synthesis. In contrast, mammals and fungi use a single, large, multifunctional protein.
[0004] Type II fatty acid biosynthesis typically involves extension of a growing acyl-ACP (acyl-carrier protein) chain by two carbon units followed by cleavage by an acyl-ACP thioesterase. In plants, two main classes of acyl-ACP thioesterases have been identified: (i) those encoded by genes of the FatA class, which tend to hydrolyze oleoyl-ACP into oleate (an 18:1 fatty acid) and ACP, and (ii) those encoded by genes of the FatB class, which liberate C8-C16 fatty acids from corresponding acyl-ACP molecules.
[0005] Different FatB genes from various plants have specificities for different acyl chain lengths. As a result, different gene products will produce different fatty acid profiles in plant seeds. See, U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482;5,298,421;5,667,997; and 5,344,771; 5,304,481. Recently, FatB genes have been cloned into oleaginous microalgae to produce triglycerides with altered fatty acid profiles. See, WO2010/063032, WO2011/150411, WO2012/106560, and WO2013/158938.
SUMMARY
[0006] According to an embodiment, there is a nucleic acid construct comprising a polynucleotide sequence encoding a heterologous regulatory element and a FatB acyl-ACP thioesterase gene operable to produce an altered fatty acid profile in an oil produced by a cell expressing the nucleic acid construct. The FatB gene expresses a protein having an amino acid sequence having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identity to any of SEQ ID NOS: 1-18 or an amino acid sequence encoding a plastid targeting peptide fused upstream of any of SEQ ID NOS: 10-18.
[0007] Optionally, the acyl-ACP thioesterase coding sequence of the nucleic acid construct comprises at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identity to any of SEQ ID NOS: 19-36 or any equivalent sequences by virtue of the degeneracy of the genetic code. In varying embodiments, the protein further comprises an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A).
[0008] In varying embodiments, the construct can have a plastid targeting peptide with at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identity to SEQ ID NO: 37. In varying embodiments, the construct can have a plastid targeting peptide with at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identity to SEQ ID NO: 40.
[0009] The FatB gene can express an active acyl-ACP-thioesterase protein having an amino acid sequence having:
[0010] (a) greater than 94.5, 94.6, 94.7, 94.8, 94.9, 95, or 95.1% identity to SEQ ID NO: 5;
[0011] (b) greater than 95.7, 95.8, 95.9, 96, 96.1 or 96.2% identity to SEQ ID NO: 14;
[0012] (c) greater than 95.4, 95.5, 95.6, 95.7, 95.8, 95.9, or 96% identity to SEQ ID NO: 3;
[0013] (d) greater than 94.5, 94.6, 94.7, 94.8, 94.9, 95, or 95.1% identity to SEQ ID NO: 12;
[0014] (e) greater than 94.8, 94.9, 95, 95.1, 95.2, 95.3, or 95.4% identity to SEQ ID NO: 1;
[0015] (f) greater than 95.9, 96.0, 96.1, 96.2, 96.3 or 96.4% identity to SEQ ID NO: 10;
[0016] (g) greater than 94.5, 94.6, 94.7, 94.8, 94.9, 95, or 95.1% identity to SEQ ID NO: 6;
[0017] (h) greater than 95.7, 95.8, 95.9, 96, 96.1 or 96.2% identity to SEQ ID NO: 15;
[0018] (i) greater than 94.5, 94.6, 94.7, 94.8, 94.9, 95, or 95.1% identity to SEQ ID NO: 4;
[0019] (j) greater than 95.7, 95.8, 95.9, 96, 96.1 or 96.2% identity to SEQ ID NO: 13;
[0020] (k) greater than 94.3, 94.4, 94.5, 94.6, 94.7, 94.8, or 94.9% identity to SEQ ID NO: 2;
[0021] (l) greater than 94.9, 95, 95.1, 95.2, 95.3, 95.4, or 95.5% identity to SEQ ID NO: 11;
[0022] (m) greater than 93.5, 93.6, 93.7, 93.8, 93.9, 94.0, or 94.1% identity to SEQ ID NO: 7;
[0023] (n) greater than 92.8, 92.9, 93.0, 93.1, 93.2, 93.3, or 93.4% identity to SEQ ID NO: 16;
[0024] (o) greater than 86.5, 86.6, 86.7, 86.8, 86.9, 87, or 87.1% identity to SEQ ID NO: 8;
[0025] (p) greater than 85.1, 85.2, 85.3, 85.4, 85.5, 85.6 or 85.7% identity to SEQ ID NO: 17;
[0026] (q) greater than 88, 88.1, 88.2, 88.3, 88.4, 88.5, or 88.6% identity to SEQ ID NO: 9; or
[0027] (r) greater than 87.6, 87.7, 87.8, 87.9, 88, 88.1, or 88.2% identity to SEQ ID NO: 18.
[0028] In another embodiment, a host cell is capable of expressing the nucleic acid construct so as to produce a triglyceride oil having an altered composition relative to a control cell without the construct. Optionally the oil has an increase in C8-C12 fatty acids.
[0029] The host cell can be selected, without limitation, from a plant cell, a microbial cell, and a microalgal cell.
[0030] In a third embodiment, a recombinant host cell produces an altered fatty acid profile, using a method comprising transforming the host cell with the nucleic acid construct. The host cell can, without limitation, be a microbial cell, a plant cell, or a microalgal cell. In varying embodiments, the host cell expresses a nucleic acid encoding a protein having an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A), and produces at least 2-fold the amount of C18:0 and/or C18:1 fatty acids compared to a host cell that expresses the wild-type protein.
[0031] In a fourth embodiment, a method produces an oil or oil-derived product, by cultivating a host cell as mentioned above and extracting the oil produced. Optionally, the cultivation is by heterotrophic growth on sugar. Optionally, the method also includes producing a fatty acid, fuel, chemical, food, or other oil-derived product from the oil. Optionally, an oil is produced having a fatty acid profile comprising at least 20% C8, C10, C12, C14, C16 or C18 (e.g., C18:0 and/or C18:1) fatty acids. Where the oil is produced by a microalgae, the oil can have a microalgal sterol profile and optionally lack C24-alpha sterols. The oil can be used to produce an oil-derived product, optionally a fatty acid, fuel, chemical, food, or other oil-derived product from the oil produced by the above method.
[0032] In a fifth embodiment, there is a method for producing an oil. The method includes providing a plastidic, oleaginous cell, optionally a microbial cell expressing a functional, acyl-ACP thioesterase gene encoded by a FATB gene having a deletion mutation in a region corresponding to the region coding for amino acids 66-98 of SEQ ID NO: 8. cultivating the cell to produce a cell-oil, and isolating the cell-oil from the cell. The cell-oil can be enriched in C12 due to the deletion. The FATB gene can encode a protein with at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 40 to 43. The FATB gene can have least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 44 or 45 or equivalent sequence by virtue of the degeneracy of the genetic code.
[0033] In a sixth embodiment, a cDNA, gene, expression cassette or host cell comprising a polynucleotide encoding a FATB protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to any of SEQ ID NOS: 40 to 43.
[0034] In a seventh embodiment, a cDNA, gene, expression cassette or host cell comprises a polynucleotide having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS 44 or 45, or equivalent sequence by virtue of the degeneracy of the genetic code.
[0035] In an eight embodiment, a method of genetically engineering a cell includes expressing in the cell, a polynucleotide that encodes a protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to any of SEQ ID NOS: 40 to 43; or has at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 47 or 48, or equivalent sequence by virtue of the degeneracy of the genetic code.
[0036] In a further aspect, provided is a cDNA, gene, expression cassette or host cell comprising a polynucleotide encoding a FATA protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61 and wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A). In a further aspect, provided is a cDNA, gene, expression cassette or host cell comprising a polynucleotide encoding a FATA protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61, or equivalent sequence by virtue of the degeneracy of the genetic code and wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A). In a further aspect, provided is a method of genetically engineering a cell comprising expressing in the cell, a polynucleotide that (a) encodes a protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61, wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A).
[0037] In a further aspect, provided is a host cell capable of expressing the nucleic acid construct encoding a FATA protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61 and wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A) so as to produce a triglyceride oil having an altered composition relative to a control cell without the construct, the oil optionally having an increase in C18 fatty acids, including C18:0 and C18:1 fatty acids. In varying embodiments, the host cell is selected from a plant cell, a microbial cell, and a microalgal cell. In a further aspect, provided is a method of producing a recombinant cell that produces an altered fatty acid profile, the method comprising transforming the cell with a nucleic acid encoding a FATA protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61 and wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A). In a further aspect, provided is a host cell produced according to such a method. In some embodiments, the host cell is selected from a plant cell, a microbial cell, and a microalgal cell. In a further aspect, provided is a method for producing an oil or oil-derived product, the method comprising cultivating a host cell encoding a FATA protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61 and wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A) and extracting oil produced thereby, optionally wherein the cultivation is by heterotrophic growth on sugar. In varying embodiments, the methods further comprise producing a fatty acid, fuel, chemical, food, or other oil-derived product from the oil. In varying embodiments, the host cell produces at least 2-fold the amount of C18:0 and/or C18:1 fatty acids compared to a host cell that expresses the wild-type protein. In a further aspect, further provided is an oil produced by the method of expressing in a host cell a polynucleotide encoding a FATA protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61 and wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A), optionally having a fatty acid profile comprising at least 20% C8, C10, C12, C14, C16 or C18 (e.g., C18:0 and/or C18:1) fatty acids. In varying embodiments, the oil is produced by a microalgae, has a microalgal sterol profile, and/or optionally, lacks C24-alpha sterols. Further provided is an oil-derived product, optionally a fatty acid, fuel, chemical, food, or other oil-derived product from the oil produced by the method of expressing in a host cell a polynucleotide encoding a FATA protein having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO:61 and wherein the protein has an alanine (A) at one or both positions corresponding to position 126 of SEQ ID NO: 61 (D124A) and 211 of SEQ ID NO: 61 (D209A).
Description of Illustrative Embodiments
Definitions
[0038] As used with respect to nucleic acids, the term "isolated" refers to a nucleic acid that is free of at least one other component that is typically present with the naturally occurring nucleic acid. Thus, a naturally occurring nucleic acid is isolated if it has been purified away from at least one other component that occurs naturally with the nucleic acid.
[0039] A "cell oil" or "natural fat" shall mean a predominantly triglyceride oil obtained from an organism, where the oil has not undergone blending with another natural or synthetic oil, or fractionation so as to substantially alter the fatty acid profile of the triglyceride. In connection with an oil comprising triglycerides of a particular regiospecificity, the cell oil or natural fat has not been subjected to interesterification or other synthetic process to obtain that regiospecific triglyceride profile, rather the regiospecificity is produced naturally, by a cell or population of cells. In connection with a cell oil or natural fat, and as used generally throughout the present disclosure, the terms oil and fat are used interchangeably, except where otherwise noted. Thus, an "oil" or a "fat" can be liquid, solid, or partially solid at room temperature, depending on the makeup of the substance and other conditions. Here, the term "fractionation" means removing material from the oil in a way that changes its fatty acid profile relative to the profile produced by the organism, however accomplished. The terms "cell oil" and "natural fat" encompass such oils obtained from an organism, where the oil has undergone minimal processing, including refining, bleaching and/or degumming, which does not substantially change its triglyceride profile. A cell oil can also be a "noninteresterified cell oil", which means that the cell oil has not undergone a process in which fatty acids have been redistributed in their acyl linkages to glycerol and remain essentially in the same configuration as when recovered from the organism.
[0040] "Exogenous gene" shall mean a nucleic acid that codes for the expression of an RNA and/or protein that has been introduced into a cell (e.g. by transformation/transfection), and is also referred to as a "transgene". A cell comprising an exogenous gene may be referred to as a recombinant cell, into which additional exogenous gene(s) may be introduced. The exogenous gene may be from a different species (and so heterologous), or from the same species (and so homologous), relative to the cell being transformed. Thus, an exogenous gene can include a homologous gene that occupies a different location in the genome of the cell or is under different control, relative to the endogenous copy of the gene. An exogenous gene may be present in more than one copy in the cell. An exogenous gene may be maintained in a cell, for example, as an insertion into the genome (nuclear or plastid) or as an episomal molecule.
[0041] "Fatty acids" shall mean free fatty acids, fatty acid salts, or fatty acyl moieties in a glycerolipid. It will be understood that fatty acyl groups of glycerolipids can be described in terms of the carboxylic acid or anion of a carboxylic acid that is produced when the triglyceride is hydrolyzed or saponified.
[0042] "Microalgae" are microbial organisms that contain a chloroplast or other plastid, and optionally that are capable of performing photosynthesis, or a prokaryotic microbial organism capable of performing photosynthesis. Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source. Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas, as well as microbes such as, for example, Volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types. Microalgae include cells such as Chlorella, Dunaliella, and Prototheca. Microalgae also include other microbial photosynthetic organisms that exhibit cell-cell adhesion, such as Agmenellum, Anabaena, and Pyrobotrys. Microalgae also include obligate heterotrophic microorganisms that have lost the ability to perform photosynthesis, such as certain dinoflagellate algae species and species of the genus Prototheca.
[0043] An "oleaginous" cell is a cell capable of producing at least 20% lipid by dry cell weight, naturally or through recombinant or classical strain improvement. An "oleaginous microbe" or "oleaginous microorganism" is a microbe, including a microalga that is oleaginous.
[0044] The term "percent sequence identity," in the context of two or more amino acid or nucleic acid sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. For sequence comparison to determine percent nucleotide or amino acid identity, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted using the NCBI BLAST software (ncbi.nlm.nih.gov/BLAST/) set to default parameters. For example, to compare two nucleic acid sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (Apr. 21, 2000) set at the following default parameters: Matrix: BLOSUM62; Reward for match: 1; Penalty for mismatch: -2; Open Gap: 5 and Extension Gap: 2 penalties; Gap x drop-off: 50; Expect: 10; Word Size: 11; Filter: on. For a pairwise comparison of two amino acid sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (Apr. 21, 2000) with blastp set, for example, at the following default parameters: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap x drop-off 50; Expect: 10; Word Size: 3; Filter: on.
[0045] Numbering of a given amino acid polymer or nucleic acid polymer "corresponds to" or is "relative to" the numbering of a selected amino acid polymer or nucleic acid polymer when the position of any given polymer component (e.g., amino acid, nucleotide, also referred to generically as a "residue") is designated by reference to the same or to an equivalent position (e.g., based on an optimal alignment or a consensus sequence) in the selected amino acid or nucleic acid polymer, rather than by the actual numerical position of the component in the given polymer.
[0046] A "variant" is a polypeptide comprising a sequence which differs in one or more amino acid position(s) from that of a parent polypeptide sequence (e.g., by substitution, deletion, or insertion). A variant may comprise a sequence which differs from the parent polypeptides sequence in up to 40% of the total number of residues of the parent polypeptide sequence, such as in up to 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3% 2% or 1% of the total number of residues of the parent polypeptide sequence. For example, a variant of a 400 amino acid polypeptide sequence comprises a sequence which differs in up to 40% of the total number of residues of the parent polypeptide sequence, that is, in up to 160 amino acid positions within the 400 amino acid polypeptide sequence (such as in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, or 160 amino acid positions within the reference sequence.
[0047] "Naturally occurring" as applied to a composition that can be found in nature as distinct from being artificially produced by man. For example, a polypeptide or polynucleotide that is present in an organism (including viruses, bacteria, protozoa, insects, plants or mammalian tissue) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally occurring. "Non-naturally occurring" (also termed "synthetic" or "artificial") as applied to an object means that the object is not naturally-occurring--i.e., the object cannot be found in nature as distinct from being artificially produced by man.
[0048] In connection with a cell oil, a "profile" is the distribution of particular species or triglycerides or fatty acyl groups within the oil. A "fatty acid profile" is the distribution of fatty acyl groups in the triglycerides of the oil without reference to attachment to a glycerol backbone. Fatty acid profiles are typically determined by conversion to a fatty acid methyl ester (FAME), followed by gas chromatography (GC) analysis with flame ionization detection (FID). The fatty acid profile can be expressed as one or more percent of a fatty acid in the total fatty acid signal determined from the area under the curve for that fatty acid. FAME-GC-FID measurement approximate weight percentages of the fatty acids.
[0049] As used herein, an oil is said to be "enriched" in one or more particular fatty acids if there is at least a 10% increase in the mass of that fatty acid in the oil relative to the non-enriched oil. For example, in the case of a cell expressing a heterologous FatB gene described herein, the oil produced by the cell is said to be enriched in, e.g., C8 and C16 fatty acids if the mass of these fatty acids in the oil is at least 10% greater than in oil produced by a cell of the same type that does not express the heterologous FatB gene (e.g., wild type oil).
[0050] "Recombinant" is a cell, nucleic acid, protein or vector that has been modified due to the introduction of an exogenous nucleic acid or the alteration of a native nucleic acid. Thus, e.g., recombinant (host) cells can express genes that are not found within the native (non-recombinant) form of the cell or express native genes differently than those genes are expressed by a non-recombinant cell. Recombinant cells can, without limitation, include recombinant nucleic acids that encode a gene product or suppression elements such as mutations, knockouts, antisense, interfering RNA (RNAi) or dsRNA that reduce the levels of active gene product in a cell. A "recombinant nucleic acid" is a nucleic acid originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases, ligases, exonucleases, and endonucleases, using chemical synthesis, or otherwise is in a form not normally found in nature. Recombinant nucleic acids may be produced, for example, to place two or more nucleic acids in operable linkage. Thus, an isolated nucleic acid or an expression vector formed in vitro by nucleic by ligating DNA molecules that are not normally joined in nature, are both considered recombinant herein. Recombinant nucleic acids can also be produced in other ways; e.g., using chemical DNA synthesis. Once a recombinant nucleic acid is made and introduced into a host cell or organism, it may replicate using the in vivo cellular machinery of the host cell; however, such nucleic acids, once produced recombinantly, although subsequently replicated intracellularly, are still considered recombinant herein. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid.
[0051] Embodiments relate to the use of novel FatB acyl-ACP thioesterase genes (e.g. in the form of cDNA, vectors, and constructs in vitro or in host cells) gene-variants, and peptides isolated from plants which can be expressed in a host cell in order to alter the fatty acid profile of an oil produced by the cell. The genes were discovered by obtaining cDNA from various plant species and transforming a model organism --the obligate heterotrophic microalga, Prototheca moriformis. Although P. moriformis was used to screen the FatB genes for ability to the alter fatty acid profile, the genes and corresponding gene-products are useful in a wide variety of host cells. For example, the genes can be expressed in bacteria, other microalgae, or higher plants. The genes can be expressed in higher plants according to the methods of U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; 5,344,771; and 5,304,481. The fatty acids can be further converted to triglycerides, fatty aldehydes, fatty alcohols and other oleochemicals either synthetically or biosynthetically.
[0052] Additionally, in the course of obtaining the novel FatB sequences, we discovered that certain N-terminal deletions in the FatB cDNAs led to desirably altered fatty acid profiles in the microalgal model.
[0053] In an embodiment, there is a polynucleotide comprising a nucleic acid sequence operably linked to a heterologous expression control sequence, wherein said nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 19-36, a sequence encoding the amino acid sequence of the group consisting of SEQ ID NOs: 1-18, or a variant thereof with acyl-ACP thioesterase activity when expressed in a plastidic oleaginous cell.
[0054] In an embodiment, triglycerides are produced by a host cell expressing a novel FatB gene of Table 1. A triglyceride-containing cell oil can be recovered from the host cell. The cell oil can be refined, degummed, bleached and/or deodorized. The oil, in its natural or processed form, can be used for foods, chemicals, fuels, cosmetics, plastics, and other uses.
[0055] The genes can be used in a variety of genetic constructs including plasmids or other vectors for expression or recombination in a host cell. The genes can be codon optimized for expression in a target host cell (e.g., using the codon usage tables of Tables 2-5.) For example, at least 60, 65, 70, 75, 80, 85, 90, 95 or 100% of the codons used can be the most preferred codon according to Table 2, 3, 4 or 5. Alternately, at least 60, 65, 70, 75, 80, 85, 90, 95 or 100% of the codons used can be the first or second most preferred codon according to Table 2, 3, or 5. The proteins produced by the genes can be used in vivo or in purified form.
[0056] For example, the gene can be prepared in an expression vector comprising an operably linked promoter and 5'UTR. Where a plastidic cell is used as the host, a suitably active plastid targeting peptide (also "transit peptide") can be fused to the FATB gene, as in the examples below. Transit peptides are denoted by underlined or outlined text in some of the FATB peptide sequences that appear below. Generally, for the newly identified FATB genes, there are roughly 50 amino acids at the N-terminal that constitute a plastid transit peptide, which are responsible for transporting the enzyme to the chloroplast. In the examples below, this transit peptide is replaced with a 38 amino acid sequence (SEQ ID NO: 37) that is effective in Prototheca moriformis host cells for transporting the enzyme to the plastids of those cells. Thus, we contemplate deletions and fusion proteins in order to optimize enzyme activity in a given host cell. For example, a transit peptide from the host or related species may be used instead of that of the newly discovered plant genes described here. In general, plastid targeting peptides are less conserved than the enzymatic domains of FATB genes. Plastid targeting peptides can be substituted with other sequences such as those found in plant-derived sequences of plastid targeting genes (e.g., those for FATA, FATB, SAD or KAS genes) in the ThYme database of thioesters-active enzymes hosted by Iowa State University/NSF Engineering Research Center for Biorenewable Chemicals. Accordingly, certain embodiments describe percent identity to gene or protein sequences to FATB genes lacking the plastid targeting peptide.
[0057] A selectable marker gene may be included in the vector to assist in isolating a transformed cell. Examples of selectable markers useful in microalgae include sucrose invertase, antibiotic resistance, and thiamine synthesis genes.
[0058] The gene sequences disclosed can also be used to prepare antisense, or inhibitory RNA (e.g., RNAi or hairpin RNA) to inhibit complementary genes in a plant or other organism.
[0059] FatB genes found to be useful in producing desired fatty acid profiles in a cell are summarized below in Table 1. Nucleic acids or proteins having the sequence of SEQ ID NOS: 19-36 can be used to alter the fatty acid profile of a recombinant cell. Variant nucleic acids can also be used; e.g., variants having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 19-36. Codon optimization of the genes for a variety of host organisms is contemplated, as is the use of gene fragments. Preferred codons for Prototheca strains and for Chlorella protothecoides are shown below in Tables 2 and 3, respectively. Codon usage for Cuphea wrightii is shown in Table 4. Codon usage for Arabidopsis is shown in Table 5; for example, the most preferred of codon for each amino acid can be selected. Codon tables for other organisms including microalgae and higher plants are known in the art. In some embodiments, the first and/or second most preferred Prototheca codons are employed for codon optimization. In specific embodiments, the novel amino acid sequences contained in the sequence listings below are converted into nucleic acid sequences according to the preferred codon usage in Prototheca, Chlorella, Cuphea wrightii, or Arabidopsis as set forth in tables 2 through 5 or nucleic acid sequences having at least 65, 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to these derived nucleic acid sequences.
[0060] In embodiments, there is protein or a nucleic acid encoding a protein having any of SEQ ID NOS: 1-18. In an embodiment, there is protein or a nucleic acid encoding a protein having at least 80, 85, 85.1, 85.2, 85.3,85.4, 85.5, 86, 86.5, 86.6, 86.7, 87, 87.5, 87.6, 87.7, 87.8, 87.9, 88, 89, 90, 91, 92, 92.5, 92.6, 92.7, 92.8, 92.9, 93, 93.5, 93.6, 93.7, 93.8, 94, 94.1, 94.2, 94.3, 94.4, 94.5, 94.6, 94.7, 94.8, 94.9, 95, 95.1, 95.2, 95.3, 95.4, 95.6, 95.7, 95.8, 95.9, 96, 96.1, 96.2, 96.3, 96.4, 96.5, 97, 98, 99, or 100% sequence identity with any of SEQ ID NOS: 1-18. An embodiment comprises a fragment of any of the above-described proteins or nucleic acids (including fragments of protein or nucleic acid variants), wherein the protein fragment has acyl-ACP thioesterase activity or the nucleic acid fragment encodes such a protein fragment. In other embodiments, the fragment includes a domain of an acyl-ACP thioesterase that mediates a particular function, e.g., a specificity-determining domain. Illustrative fragments can be produced by C-terminal and/or N-terminal truncations and include at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the full-length sequences disclosed herein.
[0061] In certain embodiments, percent sequence identity for variants of the nucleic acids or proteins discussed above can be calculated by using the full-length nucleic acid sequence (e.g., one of SEQ ID NOS: 19-36) or full-length amino acid sequence (e.g., one of SEQ ID NOS: 1-18) as the reference sequence and comparing the full-length test sequence to this reference sequence. In some embodiments relating to fragments, percent sequence identity for variants of nucleic acid or protein fragments can be calculated over the entire length of the fragment.
[0062] The nucleic acids can be in isolated form, or part of a vector or other construct, chromosome or host cell. It has been found that is many cases the full length gene (and protein) is not needed; for example, deletion of some or all of the N-terminal hydrophobic domain (typically an 18 amino acid domain starting with LPDW) (SEQ ID NO:62) yields a still-functional gene. In addition, fusions of the specificity determining regions of the genes in Table 1 with catalytic domains of other acyl-ACP thioesterases can yield functional genes. Certain embodiments encompass functional fragments (e.g., specificity determining regions) of the disclosed nucleic acid or amino acids fused to heterologous acyl-ACP thioesterase nucleic acid or amino acid sequences, respectively.
TABLE-US-00001 TABLE 1 FatB genes and proteins according to embodiments Plant nucleic Amino acid Amino acid Native sequence acid sequence plant codon- sequence (without nucleic optimized for GENE SEQ ID targeting acid Prototheca (species, abbreviation) NO: peptide) sequence moriformis Cuphea crassiflora 1 10 19 28 (CcrasFATB1) Cuphea koehneana 2 11 20 29 (CkoeFATB3) Cuphea leptopoda 3 12 21 30 (CleptFATB1) Cuphea angustifolia 4 13 22 31 (CangFATB1) Cuphea llavea 5 14 23 32 (CllaFATB1) Cuphea lophostoma 6 15 24 33 (ClopFATB1) Sassafras albidum 7 16 25 34 FATB1 (SalFATB1) Sassafras albidum 8 17 26 35 FATB2 (SalFATB2) Lindera benzoin 9 18 27 36 FATB1 (LbeFATB1)
TABLE-US-00002 TABLE 2 Preferred codon usage in Prototheca strains Ala GCG 345 (0.36) Asn AAT 8 (0.04) GCA 66 (0.07) AAC 201 (0.96) GCT 101 (0.11) Pro CCG 161 (0.29) GCC 442 (0.46) CCA 49 (0.09) Cys TGT 12 (0.10) CCT 71 (0.13) TGC 105 (0.90) CCC 267 (0.49) Asp GAT 43 (0.12) Gln CAG 226 (0.82) GAC 316 (0.88) CAA 48 (0.18) Glu GAG 377 (0.96) Arg AGG 33 (0.06) GAA 14 (0.04) AGA 14 (0.02) Phe TTT 89 (0.29) CGG 102 (0.18) TTC 216 (0.71) CGA 49 (0.08) Gly GGG 92 (0.12) CGT 51 (0.09) GGA 56 (0.07) CGC 331 (0.57) GGT 76 (0.10) Ser AGT 16 (0.03) GGC 559 (0.71) AGC 123 (0.22) His CAT 42 (0.21) TCG 152 (0.28) CAC 154 (0.79) TCA 31 (0.06) Ile ATA 4 (0.01) TCT 55 (0.10) ATT 30 (0.08) TCC 173 (0.31) ATC 338 (0.91) Thr ACG 184 (0.38) Lys AAG 284 (0.98) ACA 24 (0.05) AAA 7 (0.02) ACT 21 (0.05) Leu TTG 26 (0.04) ACC 249 (0.52) TTA 3 (0.00) Val GTG 308 (0.50) CTG 447 (0.61) GTA 9 (0.01) CTA 20 (0.03) GTT 35 (0.06) CTT 45 (0.06) GTC 262 (0.43) CTC 190 (0.26) Trp TGG 107 (1.00) Met ATG 191 (1.00) Tyr TAT 10 (0.05) TAC 180 (0.95) Stop TGA/TAG/TAA
TABLE-US-00003 TABLE 3 Preferred codon usage in Chlorella protothecoides TTC (Phe) TAC (Tyr) TGC (Cys) TGA (Stop) TGG (Trp) CCC (Pro) CAC (His) CGC (Arg) CTG (Leu) CAG (Gin) ATC (Ile) ACC (Thr) GAC (Asp) TCC (Ser) ATG (Met) AAG (Lys) GCC (Ala) AAC (Asn) GGC (Gly) GTG (Val) GAG (Glu)
TABLE-US-00004 TABLE 4 Codon usage for Cuphea wrightii (codon, amino acid, frequency, per thousand, number) UUU F 0.48 19.5 (52) UCU S 0.21 19.5 (52) UAU Y 0.45 6.4 (17) UGU C 0.41 10.5 (28) UUC F 0.52 21.3 (57) UCC S 0.26 23.6 (63) UAC Y 0.55 7.9 (21) UGC C 0.59 15.0 (40) UUA L 0.07 5.2 (14) UCA S 0.18 16.8 (45) UAA * 0.33 0.7 (2) UGA * 0.33 0.7 (2) UUG L 0.19 14.6 (39) UCG S 0.11 9.7 (26) UAG * 0.33 0.7 (2) UGG W 1.00 15.4 (41) CUU L 0.27 21.0 (56) CCU P 0.48 21.7 (58) CAU H 0.60 11.2 (30) CGU R 0.09 5.6 (15) CUC L 0.22 17.2 (46) CCC P 0.16 7.1 (19) CAC H 0.40 7.5 (20) CGC R 0.13 7.9 (21) CUA L 0.13 10.1 (27) CCA P 0.21 9.7 (26) CAA Q 0.31 8.6 (23) CGA R 0.11 6.7 (18) CUG L 0.12 9.7 (26) CCG P 0.16 7.1 (19) CAG Q 0.69 19.5 (52) CGG R 0.16 9.4 (25) AUU I 0.44 22.8 (61) ACU T 0.33 16.8 (45) AAU N 0.66 31.4 (84) AGU S 0.18 16.1 (43) AUC I 0.29 15.4 (41) ACC T 0.27 13.9 (37) AAC N 0.34 16.5 (44) AGC S 0.07 6.0 (16) AUA I 10.27 13.9 (37) ACA T 0.26 13.5 (36) AAA K 0.42 21.0 (56) AGA R 0.24 14.2 (38) AUG M 1.00 28.1 (75) ACG T 0.14 7.1 (19) AAG K 0.58 29.2 (78) AGG R 0.27 16.1 (43) GUU V 0.28 19.8 (53) GCU A 0.35 31.4 (84) GAU D 0.63 35.9 (96) GGU G 0.29 26.6 (71) GUC V 0.21 15.0 (40) GCC A 0.20 18.0 (48) GAC D 0.37 21.0 (56) GGC G 0.20 18.0 (48) GUA V 0.14 10.1 (27) GCA A 0.33 29.6 (79) GAA E 0.41 18.3 (49) GGA G 0.35 31.4 (84) GUG V 0.36 25.1 (67) GCG A 0.11 9.7 (26) GAG E 0.59 26.2 (70) GGG G 0.16 14.2 (38)
TABLE-US-00005 TABLE 5 Codon usage for Arabidopsis (codon, amino acid, frequency, per thousand) UUU F 0.51 21.8 UCU S 0.28 25.2 UAU Y 0.52 14.6 UGU C 0.60 10.5 UUC F 0.49 20.7 UCC S 0.13 11.2 UAC Y 0.48 13.7 UGC C 0.40 7.2 UUA L 0.14 12.7 UCA S 0.20 18.3 UAA * 0.36 0.9 UGA * 0.44 1.2 UUG L 0.22 20.9 UCG S 0.10 9.3 UAG * 0.20 0.5 UGG W 1.00 12.5 CUU L 0.26 24.1 CCU P 0.38 18.7 CAU H 0.61 13.8 CGU R 0.17 9.0 CUC L 0.17 16.1 CCC P 0.11 5.3 CAC H 0.39 8.7 CGC R 0.07 3.8 CUA L 0.11 9.9 CCA P 0.33 16.1 CAA Q 0.56 19.4 CGA R 0.12 6.3 CUG L 0.11 9.8 CCG P 0.18 8.6 CAG Q 0.44 15.2 CGG R 0.09 4.9 AUU I 0.41 21.5 ACU T 0.34 17.5 AAU N 0.52 22.3 AGU S 0.16 14.0 AUC I 0.35 18.5 ACC T 0.20 10.3 AAC N 0.48 20.9 AGC S 0.13 11.3 AUA I 0.24 12.6 ACA T 0.31 15.7 AAA K 0.49 30.8 AGA R 0.35 19.0 AUG M 1.00 24.5 ACG T 0.15 7.7 AAG K 0.51 32.7 AGG R 0.20 11.0 GUU V 0.40 27.2 GCU A 0.43 28.3 GAU D 0.68 36.6 GGU G 0.34 22.2 GUC V 0.19 12.8 GCC A 0.16 10.3 GAC D 0.32 17.2 GGC G 0.14 9.2 GUA V 0.15 9.9 GCA A 0.27 17.5 GAA E 0.52 34.3 GGA G 0.37 24.2 GUG V 0.26 17.4 GCG A 0.14 9.0 GAG E 0.48 32.2 GGG G 0.16 10.2
Host Cells
[0063] The host cell can be a single cell (e.g., microalga, bacteria, yeast) or part of a multicellular organism such as a plant or fungus. Methods for expressing Fatb genes in a plant are described, e.g., in U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; 5,344,771; and 5,304,481, or can be obtained using other techniques generally known in plant biotechnology. Engineering of oleaginous microbes including those of Chlorophyta is disclosed in WO2010/063032, WO2011/150411, and WO2012/106560 and in the examples below.
[0064] Examples of oleaginous host cells include plant cells and microbial cells having a type II fatty acid biosynthetic pathway, including plastidic oleaginous cells such as those of oleaginous algae. Specific examples of microalgal cells include heterotrophic or obligate heterotrophic microalgae of the phylum Chlorophtya, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Examples of oleaginous microalgae are provided in Published PCT Patent Applications WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/150411, including species of Chlorella and Prototheca, a genus comprising obligate heterotrophs. The oleaginous cells can be, for example, capable of producing 20, 25, 30, 40, 50, 60, 70, 80, 85, or about 90% oil by cell weight, .+-.5%. Optionally, the oils produced can be low in DHA or EPA fatty acids. For example, the oils can comprise less than 5%, 2%, or 1% DHA and/or EPA. The above-mentioned publications also disclose methods for cultivating such cells and extracting oil, especially from microalgal cells; such methods are applicable to the cells disclosed herein and incorporated by reference for these teachings. When microalgal cells are used they can be cultivated autotrophically (unless an obligate heterotroph) or in the dark using a sugar (e.g., glucose, fructose and/or sucrose). In any of the embodiments described herein, the cells can be heterotrophic cells comprising an exogenous invertase gene so as to allow the cells to produce oil from a sucrose feedstock. Alternately, or in addition, the cells can metabolize xylose from cellulosic feedstocks. For example, the cells can be genetically engineered to express one or more xylose metabolism genes such as those encoding an active xylose transporter, a xylulose-5-phosphate transporter, a xylose isomerase, a xylulokinase, a xylitol dehydrogenase and a xylose reductase. See WO2012/154626, "GENETICALLY ENGINEERED MICROORGANISMS THAT METABOLIZE XYLOSE", published Nov. 15, 2012. The cells can be cultivated on a depolymerized cellulosic feedstock such as acid or enzyme hydrolyzed bagasse, sugar beet pulp, corn stover, wood chips, sawdust or switchgrass. Optionally, the cells can be cultivated on a depolymerized cellulosic feedstock comprising glucose and at least 5, 10, 20, 30 or 40% xylose, while producing at least 20% lipid by dry weight. Optionally, the lipid comprises triglycerides having a fatty acid profile characterized by at least 10, 15 or 20% C12:0
Oils and Related Products
[0065] The oleaginous cells express one or more exogenous genes encoding fatty acid biosynthesis enzymes. As a result, some embodiments feature cell oils that were not obtainable from a non-plant or non-seed oil, or not obtainable at all.
[0066] The oleaginous cells produce a storage oil, which is primarily triacylglyceride and may be stored in storage bodies of the cell. A raw oil may be obtained from the cells by disrupting the cells and isolating the oil. WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/1504 disclose heterotrophic cultivation and oil isolation techniques. For example, oil may be obtained by cultivating, drying and pressing the cells. Methods for pressing cells are given in WO2010/120939. The oils produced may be refined, bleached and deodorized (RBD) as known in the art or as described in WO2010/120939. The raw or RBD oils may be used in a variety of food, chemical, and industrial products or processes. After recovery of the oil, a valuable residual biomass remains. Uses for the residual biomass include the production of paper, plastics, absorbents, adsorbents, as animal feed, for human nutrition, or for fertilizer.
[0067] Where a fatty acid profile of a triglyceride (also referred to as a "triacylglyceride" or "TAG") cell oil is given here, it will be understood that this refers to a nonfractionated sample of the storage oil extracted from the cell analyzed under conditions in which phospholipids have been removed or with an analysis method that is substantially insensitive to the fatty acids of the phospholipids (e.g. using chromatography and mass spectrometry). The oil may be subjected to an RBD process to remove phospholipids, free fatty acids and odors yet have only minor or negligible changes to the fatty acid profile of the triglycerides in the oil. Because the cells are oleaginous, in some cases the storage oil will constitute the bulk of all the TAGs in the cell.
[0068] The stable carbon isotope value .delta.13C is an expression of the ratio of 13C/12C relative to a standard (e.g. PDB, carbonite of fossil skeleton of Belemnite americana from Peedee formation of South Carolina). The stable carbon isotope value .delta.13C (0/00) of the oils can be related to the .delta.13C value of the feedstock used. In some embodiments, the oils are derived from oleaginous organisms heterotrophically grown on sugar derived from a C4 plant such as corn or sugarcane. In some embodiments the .delta.13C (0/00) of the oil is from -10 to -17 0/00 or from -13 to -16 0/00.
[0069] The oils produced according to the above methods in some cases are made using a microalgal host cell. As described above, the microalga can be, without limitation, fall in the classification of Chlorophyta, Trebouxiophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae. It has been found that microalgae of Trebouxiophyceae can be distinguished from vegetable oils based on their sterol profiles. Oil produced by Chlorella protothecoides was found to produce sterols that appeared to be brassicasterol, ergosterol, campesterol, stigmasterol, and .beta.-sitosterol, when detected by GC-MS. However, it is believed that all sterols produced by Chlorella have C24.beta. stereochemistry. Thus, it is believed that the molecules detected as campesterol, stigmasterol, and .beta.-sitosterol, are actually 22,23-dihydrobrassicasterol, proferasterol and clionasterol, respectively. Thus, the oils produced by the microalgae described above can be distinguished from plant oils by the presence of sterols with C24.beta. stereochemistry and the absence of C24.alpha. stereochemistry in the sterols present. For example, the oils produced may contain 22, 23-dihydrobrassicasterol while lacking campesterol; contain clionasterol, while lacking in .beta.-sitosterol, and/or contain poriferasterol while lacking stigmasterol. Alternately, or in addition, the oils may contain significant amounts of .DELTA..sup.7-poriferasterol.
[0070] In one embodiment, the oils provided herein are not vegetable oils. Vegetable oils are oils extracted from plants and plant seeds. Vegetable oils can be distinguished from the non-plant oils provided herein on the basis of their oil content. A variety of methods for analyzing the oil content can be employed to determine the source of the oil or whether adulteration of an oil provided herein with an oil of a different (e.g. plant) origin has occurred. The determination can be made on the basis of one or a combination of the analytical methods. These tests include but are not limited to analysis of one or more of free fatty acids, fatty acid profile, total triacylglycerol content, diacylglycerol content, peroxide values, spectroscopic properties (e.g. UV absorption), sterol profile, sterol degradation products, antioxidants (e.g. tocopherols), pigments (e.g. chlorophyll), d13C values and sensory analysis (e.g. taste, odor, and mouth feel). Many such tests have been standardized for commercial oils such as the Codex Alimentarius standards for edible fats and oils.
[0071] Sterol profile analysis is a particularly well-known method for determining the biological source of organic matter. Campesterol, b-sitosterol, and stigmasterol are common plant sterols, with b-sitosterol being a principle plant sterol. For example, b-sitosterol was found to be in greatest abundance in an analysis of certain seed oils, approximately 64% in corn, 29% in rapeseed, 64% in sunflower, 74% in cottonseed, 26% in soybean, and 79% in olive oil (Gul et al. J. Cell and Molecular Biology 5:71-79, 2006).
[0072] Oil isolated from Prototheca moriformis strain UTEX1435 were separately clarified (CL), refined and bleached (RB), or refined, bleached and deodorized (RBD) and were tested for sterol content according to the procedure described in JAOCS vol. 60, no. 8, August 1983. Results of the analysis are shown below (units in mg/100 g):
TABLE-US-00006 TABLE 6 Refined, Refined & bleached, & Sterol Crude Clarified bleached deodorized 1 Ergosterol 384 398 293 302 (56%) (55%) (50%) (50%) 2 5,22-cholestadien- 14.6 18.8 14 15.2 24-methyl-3-ol (2.1%) (2.6%) (2.4%) (2.5%) (Brassicasterol) 3 24-methylcholest-5- 10.7 11.9 10.9 10.8 en-3-ol (Campesterol (1.6%) (1.6%) (1.8%) (1.8%) or 22,23- dihydrobrassicasterol) 4 5,22-cholestadien- 57.7 59.2 46.8 49.9 24-ethy1-3-ol (8.4%) (8.2%) (7.9%) (8.3%) (Stigmasterol or poriferasterol) 5 24-ethylcholest-5- 9.64 9.92 9.26 10.2 en-3-ol (.beta.-Sitosterol (1.4%) (1.4%) (1.6%) (1.7%) or clionasterol) 6 Other sterols 209 221 216 213 Total sterols 685.64 718.82 589.96 601.1
[0073] These results show three striking features. First, ergosterol was found to be the most abundant of all the sterols, accounting for about 50% or more of the total sterols. The amount of ergosterol is greater than that of campesterol, .beta.-sitosterol, and stigmasterol combined. Ergosterol is steroid commonly found in fungus and not commonly found in plants, and its presence particularly in significant amounts serves as a useful marker for non-plant oils. Secondly, the oil was found to contain brassicasterol. With the exception of rapeseed oil, brassicasterol is not commonly found in plant based oils. Thirdly, less than 2% .beta.-sitosterol was found to be present. .beta.-sitosterol is a prominent plant sterol not commonly found in microalgae, and its presence particularly in significant amounts serves as a useful marker for oils of plant origin. In summary, Prototheca moriformis strain UTEX1435 has been found to contain both significant amounts of ergosterol and only trace amounts of .beta.-sitosterol as a percentage of total sterol content. Accordingly, the ratio of ergosterol: .beta.-sitosterol or in combination with the presence of brassicasterol can be used to distinguish this oil from plant oils.
[0074] In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% .beta.-sitosterol. In other embodiments the oil is free from .beta.-sitosterol.
[0075] In some embodiments, the oil is free from one or more of .beta.-sitosterol, campesterol, or stigmasterol. In some embodiments the oil is free from .beta.-sitosterol, campesterol, and stigmasterol. In some embodiments the oil is free from campesterol. In some embodiments the oil is free from stigmasterol.
[0076] In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-ethylcholest-5-en-3-ol. In some embodiments, the 24-ethylcholest-5-en-3-ol is clionasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% clionasterol.
[0077] In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-methylcholest-5-en-3-ol. In some embodiments, the 24-methylcholest-5-en-3-ol is 22, 23-dihydrobrassicasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% 22,23-dihydrobrassicasterol.
[0078] In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 5,22-cholestadien-24-ethyl-3-ol. In some embodiments, the 5, 22-cholestadien-24-ethyl-3-ol is poriferasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% poriferasterol.
[0079] In some embodiments, the oil content of an oil provided herein contains ergosterol or brassicasterol or a combination of the two. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 40% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% of a combination of ergosterol and brassicasterol.
[0080] In some embodiments, the oil content contains, as a percentage of total sterols, at least 1%, 2%, 3%, 4% or 5% brassicasterol. In some embodiments, the oil content contains, as a percentage of total sterols less than 10%, 9%, 8%, 7%, 6%, or 5% brassicasterol.
[0081] In some embodiments the ratio of ergosterol to brassicasterol is at least 5:1, 10:1, 15:1, or 20:1.
[0082] In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol and less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% .beta.-sitosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol and less than 5% .beta.-sitosterol. In some embodiments, the oil content further comprises brassicasterol.
[0083] Sterols contain from 27 to 29 carbon atoms (C27 to C29) and are found in all eukaryotes. Animals exclusively make C27 sterols as they lack the ability to further modify the C27 sterols to produce C28 and C29 sterols. Plants however are able to synthesize C28 and C29 sterols, and C28/C29 plant sterols are often referred to as phytosterols. The sterol profile of a given plant is high in C29 sterols, and the primary sterols in plants are typically the C29 sterols b-sitosterol and stigmasterol. In contrast, the sterol profile of non-plant organisms contain greater percentages of C27 and C28 sterols. For example the sterols in fungi and in many microalgae are principally C28 sterols. The sterol profile and particularly the striking predominance of C29 sterols over C28 sterols in plants has been exploited for determining the proportion of plant and marine matter in soil samples (Huang, Wen-Yen, Meinschein W. G., "Sterols as ecological indicators"; Geochimica et Cosmochimia Acta. Vol 43. pp 739-745).
[0084] In some embodiments the primary sterols in the microalgal oils provided herein are sterols other than b-sitosterol and stigmasterol. In some embodiments of the microalgal oils, C29 sterols make up less than 50%, 40%, 30%, 20%, 10%, or 5% by weight of the total sterol content.
[0085] In some embodiments the microalgal oils provided herein contain C28 sterols in excess of C29 sterols. In some embodiments of the microalgal oils, C28 sterols make up greater than 50%, 60%, 70%, 80%, 90%, or 95% by weight of the total sterol content. In some embodiments the C28 sterol is ergosterol. In some embodiments the C28 sterol is brassicasterol.
[0086] In embodiments, oleaginous cells expressing one or more of the genes of Table 1 can produce an oil with at least 20, 40, 60 or 70% of C8, C10, C12, C14 or C16 fatty acids. In a specific embodiment, the level of myristate (C14:0) in the oil is greater than 30%.
[0087] Thus, in embodiments, there is a process for producing an oil, triglyceride, fatty acid, or derivative of any of these, comprising transforming a cell with any of the nucleic acids discussed herein. In another embodiment, the transformed cell is cultivated to produce an oil and, optionally, the oil is extracted. Oil extracted in this way can be used to produce food, oleochemicals or other products.
[0088] The oils discussed above alone or in combination are useful in the production of foods, fuels and chemicals (including plastics, foams, films, etc). The oils, triglycerides, fatty acids from the oils may be subjected to C--H activation, hydroamino methylation, methoxy-carbonation, ozonolysis, enzymatic transformations, epoxidation, methylation, dimerization, thiolation, metathesis, hydro-alkylation, lactonization, or other chemical processes.
[0089] After extracting the oil, a residual biomass may be left, which may have use as a fuel, as an animal feed, or as an ingredient in paper, plastic, or other product. For example, residual biomass from heterotrophic algae can be used in such products.
Deletion Mutants of FATB Genes that Enhance Production of Mid-Chain Fatty Acids in Host Cells
[0090] In another embodiment, there is a method for increasing the production of C12 or C10 fatty acids. The method comprises producing a polynucleotide having a sequence encoding a FATB acyl-ACP thioesterase but encoding a deletion mutation in the region corresponding to amino acids 66-98 of the SalFATB2 gene (SEQ ID NO: 8); i.e., a deletion in the FATB region corresponding to that characterized by SEQ ID NO: 42. In some cases, the region of the deletion mutant for the starting FATB already contains gaps; in this case, further residues in the region can be removed. For example, UcFATB2 has a 2-residue gap at positions 95-96 relative to SalFatB2, UcFatB1 has a 6-residue gap at positions 92-97 relative to SalFatB2, and LbeFatB1 has a 4-residue gap at positions 94-97 relative to SalFatB2. The full 32 amino acid deletion or shorter deletions (i.e., of 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or 31 amino acid residues) may also be effective in increasing C12 fatty acids in the FATB enzymes disclosed here or others known in the art (e.g., those with at least 80, 85, 90 or 95% identity to one of SEQ ID NOs: 1-18); this can readily be determined using the techniques disclosed here including the Examples.
[0091] Vectors containing genes that encode the deletion mutants can be expressed in an oleaginous host cell (single or multicellular) and compared to an untransformed cell to select mutants that increase the production of mid-chain fatty acids by the cell. This can be determined by extracting the oil and using has chromatography techniques.
[0092] Accordingly, in an embodiment, there is a method for increasing the production of C10-C14 fatty acids in a cell. The method comprises producing or providing an exogenous polynucleotide, the exogenous polynucleotide comprising an, optionally heterologous, control sequence fused to a coding region that encodes a plastid targeting sequence and a mutant FATB acyl-ACP thioesterase enzyme domain. The FATB acyl-ACP thioesterase enzyme domain has a deletion in the region corresponding to amino acids 66-98 of SEQ ID NO: 8. The exogenous polynucleotide is expressed in an oleaginous host cell. As a result of the expression, the host cell produces an oil that is enriched in C12 fatty acids, relative to a control cell lacking the exogenous polynucleotide. In specific embodiments, the sum of C10 and C12 fatty acids in the fatty acid profile of the oil is increased by at least 10, 20, 30, 50, 100, 150, or 200%. For example, the amount of C12 fatty acids in the oil is increased by at least 2-fold relative to the control cell. The starting FATB gene is not the CcFATB4 gene (SEQ ID NO: 46), because this gene already has a gap spanning the domain in which the deletion is made. In a related embodiment, the deletion leads to an increase in C8 and/or C10 fatty acids.
[0093] In an embodiment, there is a polynucleotide encoding a protein sequence having at least 75, 80, 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89, 89.5, 90, 90.5, 91, 91.5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5 or 99% amino acid identity to any of SEQ ID NOs: 43-46, 50, 51, 54 or 55. The polynucleotide can comprise at least 60,65,70, 75, 80, 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89, 89.5, 90, 90.5, 91, 91.5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5 or 99% sequence identity to any of SEQ ID NOs 47, 48, 52, or 56, or equivalent sequence by virtue of the degeneracy of the genetic code. The sequence has a deletion in the region corresponding to amino acids 66-98, and is not that of CcFatB4 (SEQ ID NO: 46). In related embodiments, there is a protein encoded by one of the above sequences, a vector for transforming a host cell, or a host cell expressing one of the sequences. There is also a method of producing an oil comprising expressing one of these sequences in an oleaginous host cell, cultivating the cell, and isolating an oil from the cell. The oil recovered can be elevated in C12 fatty acids 10, 20, 50, 100, 150, 200% or more relative to a control cell lacking the polynucleotide. Example 3 demonstrates the increase in C12:0 fatty acids resulting from expression of the deletion mutants in a Eukaryotic microalga, relative to controls lacking the deletion.
[0094] The polynucleotide sequence can be codon optimized for a variety of organisms including according to Tables 2-5.
TABLE-US-00007 TABLE 7 FatB Deletion mutant sequences Mature Amino amino acid Plant nucleic acid sequence acid sequence sequence (without codon-optimized GENE SEQ ID targeting for Prototheca (species, abbreviation) NO: peptide) moriformis Sassafras albidum 40 42 44 FATB1a (SalFATB1a) Lindera benzoin FATB1a 41 43 45 (LbeFATB1a) CpauFATB1.DELTA.28 (deletion 50 51 52 mutant of Cuphea paucipetala FATB1) ChFATB2.DELTA.27 (deletion 54 55 56 mutant of Cuphea hookeriana FATB1)
[0095] In accordance with an embodiment, a method of genetically engineering a cell includes expressing in the cell, a polynucleotide that encodes a protein having at least 65, 70, 80, 85, 86, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to any of SEQ ID NOS: 40 to 43, 50, 51, 54 or 55; or has at least 65, 70, 80, 85, 86, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NO: 44, 45, 52 or 56, or equivalent sequence by virtue of the degeneracy of the genetic code. In a specific embodiment, a method of genetically engineering a cell includes expressing in the cell, a polynucleotide that encodes a protein having at least 86.7% sequence identity to 42, at least 80.7% sequence identity to 43, at least 88.2% sequence identity SEQ ID NOS: 51.
EXAMPLE 1
Discovery of Novel FATB Sequences
[0096] RNA was extracted from dried plant seeds and submitted for paired-end sequencing using the Illumina Hiseq 2000 platform. RNA sequence reads were assembled into corresponding seed transcriptomes using the Trinity software package and putative thioesterase-containing cDNA contigs were identified by mining transcriptomes for sequences with homology to known thioesterases. In some cases, these in silico identified putative thioesterase cDNAs were verified by direct reverse transcription PCR analysis using seed RNA and primer pairs targeting full-length thioesterase cDNAs. The resulting amplified products were cloned and sequenced de novo to confirm authenticity of identified thioesterase genes and to identify sequence variants arising from expression of different gene alleles or diversity of sequences within a population of seeds. For some sequences, a high-confidence, full-length transcript was assembled using Trinity and reverse transcription was not deemed to be necessary. The resulting amino acid sequences of all new putative FATB thioesterases were subjected to phylogenetic analyses using published full-length (Mayer and Shanklin, 2007) and truncated (THYME database) sequences as well as an extensive in-house phylogeny developed at Solazyme from FATB sequences identified in numerous oilseed transcriptomes. The in-house phylogeny comprising the acyl-ACP FATB thioesterases allows for prediction, in many cases, of the midchain specificity for each thioesterase; the FATBs predicted to be involved in biosynthesis of C8-C12 fatty acids were pursued.
[0097] The amino acid sequence and nucleic acid CDSs (native to the plant and codon optimized for Prototheca moriformis) of the novel FatB genes with and without their N-terminal plastid targeting peptides are shown in Table 1, above.
EXAMPLE 2
Expression of Transforming Vectors Expressing Acyl-ACP FATB Thioesterases
[0098] The nine acyl-ACP FATB thioesterase genes of Example 1 were synthesized in a codon-optimized form to reflect Prototheca moriformis (UTEX 1435) codon usage. A representative transforming construct and the sequence of the FATB enzymes is provided in SEQ ID NO: 38, using CcrasFATB1 as an example. The new thioesterases were synthesized with a modified transit peptide from Chlorella protothecoides (Cp) (SEQ ID NO: 40) in place of the native transit peptide. The modified transit peptide derived from the CpSAD1 gene, "CpSAD1tp_trimmed", was synthesized as an in-frame, N-terminal fusion to the FATB thioesterases in place of the native transit peptide.
[0099] Transgenic strains were generated via transformation of the base strain S7485 with a construct encoding 1 of the 12 FatB thioesterases. The construct pSZ5342/D4219 encoding CcrasFATB1 is shown as an example, but identical methods were used to generate each of the remaining 11 constructs encoding the different respective thioesterases. Construct pSZ5342 can be written as THI4A_5'::CrTUB2-ScSUC2-PmPGH:PmSAD2-2ver3-CpSAD1tp_trmd:CcrasFATB1-CvNR-- THI4A_3'. The relevant restriction sites in the construct from 5'-3', BspQ1, KpnI, BamHI, EcoRV, SpeI, XhoI, SacI, BspQ1, respectively, are indicated in lowercase, bold, and underlined. BspQ1 sites delimit the 5' and 3' ends of the transforming DNA. Bold, lowercase sequences at the 5' and 3' end of the construct represent genomic DNA from UTEX 1435 that target integration to the THI4A locus via homologous recombination. Proceeding in the 5' to 3' direction, the selection cassette has the C. reinhardtii .beta.-tubulin promoter driving expression of the S. cerevisiae gene SUC2 (conferring the ability to grow on sucrose) and the P.moriformis PGH gene 3' UTR. The promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for ScSUC2 are indicated by bold, uppercase italics, while the coding region is indicated with lowercase italics. The 3' UTR is indicated by lowercase underlined text. The spacer region between the two cassettes is indicated by upper case text. The second cassette containing the codon optimized CcrasFATB1 gene from Cuphea crassiflora fused to the heterologous C. protothecoides SAD1 plastid-targeting transit peptide, CpSAD1tp_trimmed, is driven by the P.moriformis SAD2-2ver3 pH5-responsive promoter and has the Chlorella vulgaris Nitrate Reductase (NR) gene 3' UTR. In this cassette, the PmSAD2-2ver3 promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for the CcrasFATB1 gene are indicated in bold, uppercase italics, while the coding region is indicated by lowercase italics. The 3' UTR is indicated by lowercase underlined text.
[0100] The sequence for all of the thioesterase constructs is identical with the exception of the encoded thioesterase. The full sequence for pSZ5342/D4219 integrating construct (SEQ ID NO: 38) is provided.
[0101] Constructs encoding heterologous FATB genes were transformed into a high-lipid-producing Prototheca strain and selected for the ability to grow on sucrose. Transformations, cell culture, lipid production and fatty acid analysis were all carried out as in WO2013/158938. Multiple transformations were performed. The fatty acid profiles of the strain with the highest C10 (for the first 6 genes listed), or C12 production (for the remaining genes) is reported in Table 8.
TABLE-US-00008 TABLE 8 Fatty acid profiles of top performing strain from each transformation (%; primary lipid) Species Gene Name C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3.alpha. Cuphea crassiflora CcrasFATB1 0 4 1 3 35 3 47 5 0 Cuphea koehneana CkoeFATB3 0 9 2 3 32 3 45 5 0 Cuphea leptopoda CleptFATB1 0 6 1 3 34 4 46 5 0 Cuphea angustifolia CangFATB1 0 4 1 3 34 3 48 5 1 Cuphea llavea CllaFATB1 0 9 1 4 33 3 43 5 1 Cuphea lophostoma ClopFATB1 0 7 1 4 33 3 45 5 1 Sassafras albidum SalFATB1 0 0 7 3 32 4 47 5 1 Sassafras albidum SalFATB2 0 0 0 2 36 3 52 5 1 Lindera benzoin LbeFATB1 0 1 11 3 23 2 53 6 1 None (Parent strain) None 0 0 0 2 38 4 48 5 1
[0102] The six thioesterases from the Lythraceae cluster all display specificity towards C10:0 fatty acids: CcrasFATB1, which exhibits 4% C10:0 and 1% C12:0 fatty acid levels; CkoeFATB3, which exhibits 9% C10:0 and 2% C12:0 fatty acid levels; CleptFATB1, which exhibits 6% C10:0 and 1% C12:0 fatty acid levels; CangFATB1, which exhibits 4% C10:0 and 1% C12:0 fatty acid levels; CllaFATB1, which exhibits 9% C10:0 and 1% C12:0 fatty acid levels; and, ClopFATB1, which exhibits 7% C10:0 and 1% C12:0 fatty acid levels.
[0103] SalFATB1 and LbeFATB1, both of the Lauraceae family, exhibit substantial activity towards C12:0 fatty acids.
EXAMPLE 3
FATB Deletion Mutants of Lauraceae FATB Genes
[0104] Transforming vectors for deletion variants, of SalFATB1, and LbeFATB1, known respectively as SalFATB 1 a and LbeFATB1a, were synthesized, using the expression cassette and transit-peptide described in Example 2. The deletion variants had deletions in the region corresponding to amino acids 66-98 of the SalFATB2 gene (SEQ ID NO: 8). The constructs were codon-optimized to reflect UTEX 1435 codon usage. Transformations, cell culture, lipid production and fatty acid analysis were carried out as in Example 2. Constructs encoding heterologous FATB genes were transformed into a Prototheca moriformis strain and selected for the ability to grow on sucrose. The results for the two novel FATB thioesterases are displayed in Table 9.
TABLE-US-00009 TABLE 9 Fatty acid profiles of strains expressing deletion mutants of fatty acyl-ACP FATB genes (FATB1a) compared to wildtype genes lacking the deletion (FATB1). Gene C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3 SalFATB1 0 0 7 3 32 4 47 5 1 SalFATB1a 0 0 15 3 27 3 45 5 1 LbeFATB1 0 1 11 3 23 2 53 6 1 LbeFATB1a 0 3 28 5 18 2 37 4 0
[0105] SalFATB1 and LbeFATB1, both of the Lauraceae family, exhibit substantial activity towards C12:0 fatty acids. SalFATB1a, which has a deletion of the 32 amino acids LFAVITTIFSVAEKQWTNLEWKPKPKPRLPQL (SEQ ID NO: 47), produced up to 15% C12:0 compared to 7% produced by the wild-type SalFATB1. The mean C12:0 level in SalFATB1a was 8.3% compared to 3.7% in SalFATB1, demonstrating a greater than 2-fold increase in activity upon deletion of the 32 amino acids. LbeFATB1a, which had a deletion of the 28 amino acids LLTVITTIFSAAEKQWTNLERKPKPPHL (SEQ ID NO: 48), produced up to 28% C12:0 compared to 11% produced by the wild-type LbeFATB1. The mean C12:0 level in LbeFATB1a is 17.2% compared to just 5.7% in LbeFATB1, demonstrating a greater than 3.0-fold increase in activity upon deletion of the 28 amino acids. The data suggest that deletion of those amino acids significantly improves (e.g., by 2-3 fold) the C12 activity of two other Lauraceae family thioesterases, SalFATB1 and LbeFATB1.
EXAMPLE 4
Additional Deletion Mutants from FATB Genes from Lythraceae
[0106] P. moriformis was transformed with additional deletion mutants of Lythraceae FATB genes above for Lauraceae FATB genes. Two deletion mutants were identified that showed elevated midchain (C8-14) fatty acid levels in cell-oil extracted from the microalga relative an equivalent transformation lacking the deletion. These are listed in Table 9, above in which they appear as CpauFATB1.DELTA.28 and ChFATB2.DELTA.27. Fatty acid profiles obtained in the P. moriformis model system are reported below in Table 10. ChFATB2.DELTA.27 demonstrated an increase in C8 and C10 fatty acids when compared to the wild-type, elaborating an average of 3.8% C8:0 and 11.5% C10:0 compared to 2.7% C8:0 and 8.0% C10:0, respectively. CpauFATB1.DELTA.28 demonstrates an increase in C10, C12 and C14 fatty acids when compared to the wild-type, elaborating an average of 7.6% C10:0 compared to 4.1% C10:0, respectively.
TABLE-US-00010 TABLE 10 Fatty acid profiles of cell-oil from P. moriformis transformed with Lythraceae FATB deletion mutants for top performing transformants (mean given in parenthesis). Mutant C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3 CpauFATB1 0 (0.0) 9 (4.1) 1 3 31 2 45 6 1 (0.6) (2.7) CpauFATB1.DELTA.28 0 (0.0) 14 (7.6) 2 4 30 3 42 5 1 (1.1) (3.0) ChFATB2 7 (2.7) 16 (8.0) 0 2 21 3 44 5 1 (0.2) (2.0) ChFATB2.DELTA.27 9 (3.8) 20 (11.5) 0 1 17 2 45 5 0 (0.2) (1.8)
EXAMPLE 5
Modify Brassica napus Thioesterase (BnOTE) Enzyme Specificity by Site Directed Mutagenesis
[0107] In the example below, we demonstrate the ability of modifying the enzyme specificity of a FATA thioesterase originally isolated from Brassica napus (BnOTE, accession CAA52070), by site directed mutagenesis targeting two amino acids positions (D124 and D209).
[0108] To determine the impact of each amino acid substitution on the enzyme specificity of the BnOTE, the wild-type and the mutant BnOTE genes were cloned into a vector enabling expression within the lower palmitate P. moriformis strain S8588. The Saccharomyces carlsbergensis MEL1 gene (Accession no: AAA34770) was utilized as the selectable marker to introduce the wild-type and mutant BnOTE genes into FAD2-2 locus of P. moriformis strain S8588 by homologous recombination using previously described transformation methods (biolistics). The constructs that have been expressed in S8588 are listed in Table 11. S8588 is a recombinant P. moriformis strain having a FATA knockout and expressing an exogenous SUC2 gene and an exogenous P. moriformis KASII gene in the FATA locus. FATA knockouts that express sucrose invertase and/or KASII are described in co-owned applications WO2012/106560, WO2013/158938, WO2015/051319 and their respective priority applications thereof, all of which are herein incorporated by reference.
TABLE-US-00011 TABLE 11 DNA lot# and plasmid ID of DNA constructs that expressing wild-type and mutant BnOTE genes SEQ DNA Solazyme ID Lot# Plasmid NO: Construct D5309 pSZ6315 57 FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE-PmSAD2-1 utr::FAD2-2 D5310 pSZ6316 58 FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE(D124A)-PmSAD2-1 utr::FAD2-2 D5311 pSZ6317 59 FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE(D209A)-PmSAD2-1 utr::FAD2-2 D5312 pSZ6318 60 FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE(D124A, D209A)-PmSAD2-1 utr::FAD2-2
Construct pSZ6315: FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE-PmSAD2-1 utr::FAD2-2
[0109] The sequence of the pSZ6315 transforming DNA is provided in SEQ ID NO: 57. Relevant restriction sites in pSZ6315 are indicated in lowercase, bold and underlining and are 5'-3' SgrAI, Kpn I, SnaBI, AvrII, SpeI, AscI, ClaI, Sac I, SbfI, respectively. SgrAI and SbfI sites delimit the 5' and 3' ends of the transforming DNA. Bold, lowercase sequences represent FAD2-2 genomic DNA that permit targeted integration at FAD2-2 locus via homologous recombination. Proceeding in the 5' to 3' direction, the P. moriformis HXT1 promoter driving the expression of the Saccharomyces carlsbergensis MEL1 gene is indicated by boxed text. The initiator ATG and terminator TGA for MEL1 gene are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis PGK 3' UTR is indicated by lowercase underlined text followed by the P. moriformis SAD2-2 V3 promoter, indicated by boxed italics text. The Initiator ATG and terminator TGA codons of the wild-type BnOTE are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics. The three-nucleotide codon corresponding to the target two amino acids, D124 and D209, are double underlined. The P. moriformis SAD2-1 3'UTR is again indicated by lowercase underlined text followed by the FAD2-2 genomic region indicated by bold, lowercase text.
Construct pSZ6316: FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE (D124A)-PmSAD2-1 utr::FAD2-2
[0110] The sequence of the pSZ6316 transforming DNA is same as pSZ6315 except the D124A point mutation, the BnOTE D124A DNA sequence is provided in SEQ ID NO: 58.
Construct pSZ6317: FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE (D209A)-PmSAD2-1 utr::FAD2-2
[0111] The sequence of the pSZ6317 transforming DNA is same as pSZ6315 except the D209A point mutation, the BnOTE D209A DNA sequence is provided in SEQ ID NO: 59.
Construct pSZ6318: FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE (D124A, D209A)-PmSAD2-1 utr::FAD2-2
[0112] The sequence of the pSZ6318 transforming DNA is same as pSZ6315 except two point mutations, D124A and D209A, the BnOTE (D124A, D209A) DNA sequence is provided in SEQ ID NO:60.
Results
[0113] The DNA constructs containing the wild-type and mutant BnOTE genes were transformed into the low palmitate parental strain S8588, primary transformants were clonally purified and grown under standard lipid production conditions at pH5.0. The resulting profiles from representative clones arising from transformations with pSZ6315, pSZ6316, pSZ6317, and pSZ6318 into S8588 are shown in Table 12. The parental strain S8588 produces 5.4% C18:0, when transformed with the DNA cassette expressing wild-type BnOTE, the transgenic lines produce approximately 11% C18:0. The BnOTE mutant (D124A) increased the amount of C18:0 by at least 2 fold compared to the wild-type protein. In contrast, the BnOTE D209A mutation appears to have no impact on the enzyme activity/specificity of the BnOTE thioesterase. Finally, expression of the BnOTE (D124A, D209A) resulted in very similar fatty acid profile to what we observed in the transformants from S8588 expressing BnOTE (S124A), again indicating that D209A has no significant impact on the enzyme activity.
TABLE-US-00012 TABLE 12 Fatty acid profiles in S8588 and derivative transgenic lines transformed with wild-type and mutant BnOTE genes Fatty Acid Area % Transforming DNA Sample ID C16:0 C18:0 C18:1 C18:2 pH5; S8588 (parental strain) 3.00 5.43 81.75 6.47 D5309, pSZ6315, pH5; S8588, D5309-6; 3.86 11.68 76.51 5.06 wild-type BnOTE pH5; S8588, D5309-2; 3.50 11.00 77.80 4.95 pH5; S8588, D5309-9; 3.51 10.72 78.03 5.00 pH5; S8588, D5309-10; 3.55 10.69 78.06 4.96 pH5; S8588, D5309-11; 3.61 10.69 78.05 4.95 D5310, pSZ6316, pH5; S8588, D5310-6; 4.27 31.55 55.31 5.30 BnOTE (D124A) pH5; S8588, D5310-1; 4.53 30.85 54.71 6.03 pH5; S8588, D5310-5; 5.21 20.75 65.43 5.02 pH5; S8588, D5310-10; 4.99 19.18 67.75 5.00 pH5; S8588, D5310-2; 4.90 18.92 68.17 4.98 D5311, pSZ6317, pH5; S8588, D5311-3; 3.50 11.90 76.95 4.98 BnOTE (D209A) pH5; S8588, D5311-4; 3.63 11.35 77.44 4.94 pH5; S8588, D5311-14; 3.47 11.23 77.68 4.98 pH5; S8588, D5311-10; 3.60 11.20 77.53 5.00 pH5; S8588, D5311-12; 3.53 11.12 77.59 5.09 D5312, pSZ6318, pH5; S8588, D5312-20; 4.79 37.97 47.74 6.01 BnOTE (D127A, pH5; S8588, D5312-40; 5.97 22.94 62.20 5.11 D212A) pH5; S8588, D5312-39; 6.07 22.75 62.24 5.17 pH5; S8588, D5312-16; 5.25 18.81 67.36 5.09 pH5; S8588, D5312-26; 4.93 18.70 68.37 4.96
[0114] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
Informal Sequence Listing
TABLE-US-00013
[0115] Informal Sequence Listing Cuphea crassiflora FATB amino acid sequence (CcrasFATB1) SEQ ID NO: 1 MVAAAASSAFFPVPAPGTSTKPRKSGNWPSRLSPSSKPKSIPNGGFQVK ANASAHPKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTA ITIVFVAAEKQWTMLDRKSKRPDMLVDSVGLKSIVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMGSDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSKLESVTAMDPSEEDGVRSQYNHLLRLEDGTDVVKGR TEWRPKNAGTNGAISTGKTSNGNSVS Cuphea koehneana FATB amino acid sequence (CkoeFATB3) SEQ ID NO: 2 MVTAAASSAFFPVPAPGTSPKPGKSWPSSLSPSFKPKSIPNAGFQVKAN ASAHPKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAIT TVFVAAEKQWTMRDRKSKRPDMLVDSVGSKSIVLDGLVSRQIFSIRSYE IGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIWVL TKMQIMVNRYPTWGDTVEINTWFSHSGKIGMASDWLITDCNTGEILIRA TSVWAMMNQKTRRFSRLPYEVRQELTPHYVDSPHVIEDNDRKLHKFDVK TGDSIRKGLTPKWNDLDVNQHVNNVKYIGWILESMPIEVLETQELCSLT VEYRRECGMDSVLESVTAMDPSEDGGLSQYKHLLRLEDGTDIVKGRTEW RPKNAGTNGAISTAKPSNGNSVS Cuphea leptopoda FATB amino acid sequence (C1eptFATB1) SEQ ID NO: 3 MVGAAASSAFFPAPAPGTSPKPGKSGNWPSSLSPSLKPKSIPNGGFQVK ANASAHPKANGAAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTA ITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKNIVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQILVNRYPAWGDTVEINTWFSQSGKIGMGSDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTARDPSEDGGRSQYNHLLRLEDGTDVVKGRT EWRSKNAGTNGATSTAKTSNGNSVS Cuphea angustifolia FATB amino acid sequence (CangFATB1) SEQ ID NO: 4 MVAAAASSAFFPVPAPGTSLKPGKSGNWPSSLSPSFKPKTIPSGGLQVK ANASAHPKANGSAVNLKSGSLDTQEDTSSSPPPRAFLNQLPDWSMLLTA ITTVFVAAEKQWTMLDRKSKRPEMLVDSVGLKSSVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPTWGDTVEVNTWFSQSGKIGMASDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHYVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTAMDPSEDGGVSQYKHLLRLEDGTDIVKGRT EWRPKNAGTNGATSKAKTSNGNSVS Cuphea llavea FATB1 amino acid sequence (CllaFATB1) SEQ ID NO: 5 MVAAAASSAFFPAPAPGSSPKPGKPGNWPSSLSPSFKPKSIPNGRFQVK ANASAHPKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLSA ITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKNIVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPAWGDTVEINTWFSQSGKIGMGSDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTAIDPSEDGGRSQYNHLLRLDDGTDVVKGRT EWRPKNAGTNGAISTGKTSNGNSVS Cuphea lophostoma FATB1 amino acid sequence (ClopFATB1) SEQ ID NO: 6 MVAAAASSAFFPVPAPGTSLKPWKSGNWPSSLSPSFKPKTIPSGGFQVK ANASAQPKANGSAVNLKSGSLNTQEDTTSSPPPRAFLNQLPDWSMLLTA ITTVFVAAEKQWTMLDRKSKRPEKLVDSVGLKSSVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMASDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHYVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTAMDPSEDEGRSQYKHLLRLEDGTDIVKGRT EWRPKNAGTNGAISTAKNSNGNSVS Sassafras albidum FATB1 amino acid sequence (SalFATB1) SEQ ID NO: 7 MATTSLASAFCSMKAVMLARDGRGMKPRSSDLQLRAGNAQTPLKMINGT KFSYTESLKRLPDWSMLFAVITTIFSVAEKQWTNLEWKPKPKPRLPQLL DDHFGLHGLVERRTFAIRSYEVGPDRSTSIVAVMNHLQEATLNHAKSVG ILGDGFGTTLEMSKRDLAWVVRRTHVAVERYPAWGDTVEVECWIGASGN NGMRRDFLVRDCKTGEILTRCTSLSVMMNTRTRRLSKIPEEVRGEIGPL FIDNVAVKDEEIKKLQKLNDSSADYIQGGLTPRWNDLDVNQHVNNIKYV GWILETVPDSIFESHHISSITLEYRRECTRDSVLQSLTTVSGGSLEAGL VCDHLLQLEGGSEVLRARTEWRPKLTDSFRGIIVIPAEPSV Sassafras albidum FATB2 amino acid sequence (SalFATB2) SEQ ID NO: 8 MATTSLASAFCSMKAVMLARDGRGMKPRSSDLQLRAGNAQTPLKMINGT KESYTESLKRLPDWSMLFAVITTIFSVAEKQWTNLEWKPKPKPRLPQLL DDHFGLHGLVFRRTFAIRSYEVGPDRSTSIVAVMNHLQEATLNHAKSVG ILGDGFGTTLEMSKRDLAWVVRRTHVAVERYPAWGDTVEVEAWVGASGN IGMRRDFLVRDCKTGHILARCTSVSVMMNARTRRLSKIPQEVRAEIDPL FIEKVAVKEGEIKKLQKFNDSTADYIQGGWTPRWNDLDVNQHVNNIKYI GWIFKSVPDSISENHYLSSITLEYRRECTRGSALQSLTTVCGDSSEAGI ICEHLLQLEDGPEVLRARTEWRPKLTDSFRGIIVIPAEPSV Lindera benzoin FATB1 amino acid sequence (LbeFATB1) SEQ ID NO: 9 MVATSLASAFCSMKAVMLADDGRGMKPRSSDLQLRAGNAQTSLKMIDGT KFSYTESLKRLPDWSKLLTVITTIFSAAEKQWTNLERKPKPPHLLDDRF GLHGLVFRRTFAIRSYEVGPDRSASILAVLNHLQEATLNHAESVGILGD RFGETLEMSKRDLMWVVRRTYVAVERYPAWGDTVEIESWIGASGNNGMR REFLVRDFKTGEILTRCTSLSVMMNTRTRRLSKIPEEVRGEIGPVFIDN VAVKDEEIKKLQKLNDSTADYIQGGLIPRWNDLDLNQHVNNIKYVSWIL ETVPDSILESYHMSSITLEYRRECTRDSVLQSLTTVSGGSSEAGLVCEH SLLLEGGSEVLRARTEWRPKLTDSFRGISVIPAEQSV Cuphea crassiflora FATB amino acid sequence (CcrasFATB1), without targeting peptide SEQ ID NO: 10 MVAAAASSAFFPVPAPGTSTKPRKSGNWPSRLSPSSKPKSIPNGGFQVK ANASAHPKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTA ITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKSIVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMGSDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSKLESVTAMDPSEEDGVRSQYNHLLRLEDGTDVVKGR TEWRPKNAGTNGAISTGKTSNGNSVS Cuphea koehneana FATB amino acid sequence (CkoeFATB3), without targeting peptide SEQ ID NO: 11 MVTAAASSAFFPVPAPGTSPKPGKSWPSSLSPSFKPKSIPNAGFQVKAN ASAHPKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAIT TVFVAAEKQWTMRDRKSKRPDMLVDSVGSKSIVLDGLVSRQIFSIRSYE IGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIWVL TKMQIMVNRYPTWGDTVEINTWFSHSGKIGMASDWLITDCNTGEILIRA TSVWAMMNQKTRRFSRLPYEVRQELTPHYVDSPHVIEDNDRKLHKFDVK TGDSIRKGLTPKWNDLDVNQHVNNVKYIGWILESMPIEVLETQELCSLT VEYRRECGMDSVLESVTAMDPSEDGGLSQYKHLLRLEDGTDIVKGRTEW RPKNAGTNGAISTAKPSNGNSVS Cuphea leptopoda FATB amino acid sequence (CleptFATB1), without targeting peptide SEQ ID NO: 12 MVGAAASSAFFPAPAPGTSPKPGKSGNWPSSLSPSLKPKSIPNGGFQVK ANASAHPKANGAAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTA ITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKNIVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQILVNRYPAWGDTVEINTWFSQSGKIGMGSDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTARDPSEDGGRSQYNHLLRLEDGTDVVKGRT EWRSKNAGTNGATSTAKTSNGNSVS Cuphea angustifolia FATB amino acid sequence (CangFATB1), without targeting peptide SEQ ID NO: 13
MVAAAASSAFFPVPAPGTSLKPGKSGNWPSSLSPSFKPKTIPSGGLQVK ANASAHPKANGSAVNLKSGSLDTQEDTSSSPPPRAFLNQLPDWSMLLTA ITTVFVAAEKQWTMLDRKSKRPEMLVDSVGLKSSVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPTWGDTVEVNTWFSQSGKIGMASDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHYVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTAMDPSEDGGVSQYKHLLRLEDGTDIVKGRT EWRPKNAGTNGATSKAKTSNGNSVS Cuphea llavea FATB1 amino acid sequence (CllaFATB1), without targeting peptide SEQ ID NO: 14 MVAAAASSAFFPAPAPGSSPKPGKPGNWPSSLSPSFKPKSIPNGRFQVK ANASAHPKANGSAVNLKSGSLNIQEDTSSSPPPRAFLNQLPDWSMLLSA ITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKNIVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPAWGDTVEINTWFSQSGKIGMGSDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTAIDPSEDGGRSQYNHLLRLDDGTDVVKGRT EWRPKNAGTNGAISTGKTSNGNSVS Cuphea lophostoma FATB1 amino acid sequence (ClopFATB1), without targeting peptide SEQ ID NO: 15 MVAAAASSAFFPVPAPGTSLKPWKSGNWPSSLSPSFKPKTIPSGGFQVK ANASAQPKANGSAVNLKSGSLNTQEDTTSSPPPRAFLNQLPDWSMLLTA ITTVFVAAEKQWTMLDRKSKRPEKLVDSVGLKSSVRDGLVSRQSFSIRS YEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIW VLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMASDWLISDCNTGEILI RATSVWAMMNQKTRRFSRLPYEVRQELTPHYVDSPHVIEDNDRKLHKFD VKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCS LTVEYRRECGMDSVLESVTAMDPSEDEGRSQYKHLLRLEDGTDIVKGRT EWRPKNAGTNGAISTAKNSNGNSVS Sassafras albidum FATB1 amino acid sequence (SalFATB1), without targeting peptide SEQ ID NO: 16 MATTSLASAFCSMKAVMLARDGRGMKPRSSDLQLRAGNAQTPLKMINGT KFSYTESLKRLPDWSMLFAVITTIFSVAEKQWTNLEWKPKPKPRLPQLL DDHFGLHGLVERRTFAIRSYEVGPDRSTSIVAVMNHLQEATLNHAKSVG ILGDGFGTTLEMSKRDLAWVVRRTHVAVERYPAWGDTVEVECWIGASGN NGMRRDFLVRDCKTGEILTRCTSLSVMMNTRTRRLSKIPEEVRGEIGPL FIDNVAVKDEEIKKLQKLNDSSADYIQGGLTPRWNDLDVNQHVNNIKYV GWILETVPDSIFESHHISSITLEYRRECTRDSVLQSLTTVSGGSLEAGL VCDHLLQLEGGSEVLRARTEWRPKLTDSFRGIIVIPAEPSV Sassafras albidum FATB2 amino acid sequence (SalFATB2), without targeting peptide SEQ ID NO: 17 MATTSLASAFCSMKAVMLARDGRGMKPRSSDLQLRAGNAQTPLKMINGT KFSYTESLKRLPDWSMLFAVITTIFSVAEKQWTNLEWKPKPKPRLPQLL DDHFGLHGLVFRRTFAIRSYEVGPDRSTSIVAVMNHLQEATLNHAKSVG ILGDGFGTTLEMSKRDLAWVVRRTHVAVERYPAWGDTVEVEAWVGASGN IGMRRDFLVRDCKTGHILARCTSVSVMMNARTRRLSKIPQEVRAEIDPL FIEKVAVKEGEIKKLQKFNDSTADYIQGGWTPRWNDLDVNQHVNNIKYI GWIFKSVPDSISENHYLSSITLEYRRECTRGSALQSLTTVCGDSSEAGI ICEHLLQLEDGPEVLRARTEWRPKLTDSFRGIIVIPAEPSV Lindera benzoin FATB1 amino acid sequence (LbeFATB1), without targeting peptide SEQ ID NO: 18 MVATSLASAFCSMKAVMLADDGRGMKPRSSDLQLRAGNAQTSLKMIDGI KESYTESLKRLPDWSKLLTVITTIFSAAEKQWTNLERKPKPPHLLDDRF GLHGLVFRRTFAIRSYEVGPDRSASILAVLNHLQEATLNHAESVGILGD RFGETLEMSKRDLMWVVRRTYVAVERYPAWGDTVEIESWIGASGNNGMR REFLVRDFKTGEILTRCTSLSVMMNTRTRRLSKIPEEVRGEIGPVFIDN VAVKDEEIKKLQKLNDSTADYIQGGLIPRWNDLDLNQHVNNIKYVSWIL ETVPDSILESYHMSSITLEYRRECTRDSVLQSLTTVSGGSSEAGLVCEH SLLLEGGSEVLRARTEWRPKLTDSFRGISVIPAEQSV Cuphea crassiflora FATB native CDS nucleic acid sequence (CcrasFATB1) SEQ ID NO: 19 ATGGTGGCTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCTGCCCCAG GAACCTCCACTAAACCCAGGAAGTCCGGCAATTGGCCATCGAGATTGAG CCCTTCCTCCAAGCCCAAGTCAATCCCCAATGGCGGATTTCAGGTTAAG GCAAATGCCAGTGCCCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAA AGTCTGGCAGCCTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCC TCGGGCTTTCCTTAACCAGTTGCCTGATTGGAGTATGCTTCTGACTGCA ATCACGACCGTTTTCGTGGCGGCAGAGAAGCAGTGGACAATGCTTGATC GGAAATCTAAGAGGCCTGACATGCTCGTGGACTCGGTTGGGTTGAAGAG TATTGTTCGGGATGGGCTCGTGTCCAGACAAAGTTTTTCGATCAGGTCT TATGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGAACC ACTTGCAGGAAACATCTATTAATCATTGTAAGAGTTTGGGCCTTCTCAA TGACGGCTTTGGTCGGACTCCTGGGATGTGTAAAAACGACCTCATTTGG GTGCTTACAAAAATGCAGATCATGGTGAATCGCTACCCAACTTGGGGCG ATACTGTTGAGATCAATACCTGGTTCTCCCAGTCGGGGAAAATCGGTAT GGGTAGCGATTGGCTAATAAGTGATTGCAATACAGGAGAAATTCTTATA AGGGCAACGAGCGTGTGGGCCATGATGAATCAAAAGACGAGAAGATTCT CAAGACTTCCATACGAGGTTCGCCAGGAGTTAACGCCTCATTTTGTGGA CTCTCCTCATGTCATTGAAGACAATGATCGGAAATTGCATAAGTTTGAT GTGAAGACTGGCGATTCTATTCGCAAGGGTCTAACTCCGAGGTGGAATG ATTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTGGAT TCTCGAGAGTATGCCAATAGAAGTTCTGGAGACCCAGGAGCTATGCTCT CTGACAGTTGAATATAGGCGGGAATGCGGAATGGACAGTAAGCTGGAGT CCGTGACTGCTATGGATCCCTCAGAAGAAGATGGAGTCCGGTCTCAGTA CAATCACCTTCTGCGGCTTGAGGATGGGACTGATGTCGTGAAGGGCAGA ACTGAGTGGCGACCGAAGAATGCAGGAACTAACGGGGCGATATCAACAG GAAAGACTTCAAATGGAAACTCGGTTTCTTAG Cuphea koehneana FATB FATB native CDS nucleic acid sequence (CkoeFATB3) SEQ ID NO: 20 ATGGTCACTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCAGCCCCGG GAACCTCCCCTAAACCCGGGAAGTCCTGGCCATCGAGCTTGAGCCCTTC CTTCAAGCCCAAGTCAATCCCCAATGCCGGATTTCAGGTTAAGGCAAAT GCCAGTGCCCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAAAGTCTG GCAGCCTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCCTCGGGC TTTCCTTAACCAGTTGCCTGATTGGAGTATGCTTCTGACTGCAATCACG ACCGTCTTCGTGGCGGCAGAGAAGCAGTGGACTATGCGTGATCGGAAAT CTAAGAGGCCTGACATGCTCGTGGACTCGGTTGGATCGAAGAGTATTGT TCTGGATGGGCTCGTGTCCAGACAGATTTTTTCGATTAGATCTTATGAA ATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGAACCACTTGC AGGAAACATCTATCAATCATTGTAAGAGTTTGGGTCTTCTCAATGACGG CTTTGGTCGTACTCCTGGGATGTGTAAAAACGACCTCATTTGGGTGCTT ACAAAAATGCAGATCATGGTGAATCGCTACCCAACTTGGGGCGATACTG TTGAGATCAATACCTGGTTCTCCCATTCGGGGAAAATCGGTATGGCTAG CGATTGGCTAATAACTGATTGCAACACAGGAGAAATTCTTATAAGAGCA ACGAGCGTGTGGGCCATGATGAATCAAAAGACGAGAAGATTCTCAAGAC TTCCATACGAGGTTCGCCAGGAGTTAACGCCTCATTATGTGGACTCTCC TCATGTCATTGAAGATAATGATCGGAAATTGCATAAGTTTGATGTGAAG ACTGGTGATTCCATTCGTAAGGGTCTAACTCCGAAGTGGAATGACTTGG ATGTCAATCAGCACGTCAACAACGTGAAGTACATCGGGTGGATTCTCGA GAGTATGCCAATAGAAGTTTTGGAGACTCAGGAGCTATGCTCTCTCACC GTTGAATATAGGCGGGAATGCGGAATGGACAGTGTGCTGGAGTCCGTGA CTGCTATGGATCCCTCAGAAGATGGAGGCCTATCTCAGTACAAGCACCT TCTGCGGCTTGAGGATGGGACTGACATCGTGAAGGGCAGAACTGAGTGG CGACCGAAGAATGCAGGAACTAACGGGGCGATATCAACAGCAAAGCCTT CAAATGGAAACTCGGTCTCTTAG Cuphea leptopoda FATB native CDS nucleic acid sequence (CleptFATB1) SEQ ID NO: 21 ATGGTGGGTGCTGCAGCAAGTTCTGCATTCTTCCCTGCTCCAGCCCCGG GAACCTCCCCTAAACCCGGGAAGTCCGGCAATTGGCCATCAAGCTTGAG CCCTTCCTTAAAGCCCAAGTCAATCCCCAATGGCGGATTTCAGGTTAAG GCAAATGCCAGTGCCCATCCTAAGGCTAACGGTGCTGCAGTAAATCTAA AGTCTGGCAGCCTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCC TCGGGCTTTCCTTAACCAGTTGCCTGATTGGAGTATGCTTCTGACTGCA ATCACGACCGTCTTCGTGGCGGCAGAGAAGCAGTGGACTATGCTTGATC GGAAATCTAAGAGGCCTGACATGCTCGTGGACTCGGTTGGGTTGAAGAA TATTGTTCGGGATGGGCTCGTGTCCAGACAGAGTTTTTCGATCAGGTCT TATGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGAACC ACTTGCAGGAAACATCTATCAATCATTGTAAGAGTTTGGGTCTTCTCAA
TGACGGCTTTGGTCGTACTCCTGGGATGTGTAAAAACGACCTCATTTGG GTGCTTACAAAAATGCAGATCCTGGTGAATCGCTACCCAGCTTGGGGAG ATACTGTTGAGATCAATACCTGGTTCTCTCAGTCGGGGAAAATCGGCAT GGGTAGTGATTGGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATA AGAGCAACGAGCGTGTGGGCAATGATGAATCAAAAGACGAGAAGATTCT CAAGACTTCCATACGAGGTTCGCCAGGAGTTAACGCCTCATTTTGTAGA CTCACCTCATGTCATTGAAGACAATGATCGGAAATTGCATAAGTTTGAT GTGAAGACTGGTGATTCTATTCGCAAGGGTCTAACTCCGAGGTGGAATG ACTTGGATGTCAATCAACACGTAAGCAACGTGAAGTACATTGGGTGGAT TCTCGAGAGTATGCCAATAGAAGTTTTGGAGACTCAGGAGCTATGCTCT CTCACCGTTGAATATAGGCGGGAATGCGGAATGGACAGTGTGCTGGAGT CCGTGACTGCTAGGGATCCCTCAGAAGATGGAGGCCGGTCTCAGTACAA TCACCTTCTGCGGCTTGAGGATGGGACTGATGTCGTGAAGGGCAGAACT GAGTGGCGATCGAAGAATGCAGGAACTAACGGGGCGACATCAACAGCAA AGACTTCAAATGGAAACTCGGTCTCTTAG Cuphea angustifolia FATB native CDS nucleic acid sequence (CangFATB1) SEQ ID NO: 22 ATGGTGGCTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCAGCCCCGG GAACATCCCTTAAACCCGGGAAGTCCGGCAATTGGCCATCGAGCTTGAG CCCTTCCTTCAAGCCCAAGACAATCCCCAGTGGCGGACTTCAGGTTAAG GCAAATGCCAGTGCCCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAA AGTCTGGCAGCCTCGACACTCAGGAGGACACTTCGTCGTCCCCTCCTCC TCGGGCTTTCCTTAACCAGTTGCCTGATTGGAGTATGCTTCTGACTGCA ATCACGACCGTCTTCGTGGCGGCAGAGAAGCAGTGGACTATGCTTGATA GGAAATCTAAGAGGCCTGAAATGCTCGTGGACTCGGTTGGGTTGAAGAG TAGTGTTCGGGATGGGCTCGTGTCCAGACAGAGTTTTTCGATTAGGTCT TATGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGAACC ACTTGCAGGAAACATCTATCAATCATTGTAAGAGTTTGGGTCTTCTCAA CGATGGCTTTGGTCGTACTCCTGGGATGTGTAAAAACGACCTCATTTGG GTGCTTACAAAAATGCAGATCATGGTGAATCGCTACCCAACTTGGGGCG ATACTGTTGAGGTCAATACCTGGTTCTCCCAGTCGGGGAAAATCGGTAT GGCTAGCGATTGGCTAATCAGTGATTGCAACACAGGAGAAATTCTTATA AGAGCAACAAGCGTGTGGGCCATGATGAATCAAAAGACGAGAAGATTCT CAAGACTTCCATACGAGGTTCGCCAGGAGCTAACACCTCATTATGTGGA CTCTCCTCATGTCATTGAAGATAATGATCGGAAATTGCATAAGTTTGAT GTGAAGACTGGTGATTCCATTCGCAAGGGTCTAACTCCGAGGTGGAATG ACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTGGAT TCTTGAGAGTATGCCAATAGAAGTTTTGGAGACCCAGGAGCTATGCTCT CTCACCGTTGAATATAGGCGGGAATGCGGAATGGACAGTGTGCTGGAGT CCGTGACTGCTATGGATCCCTCAGAAGATGGAGGCGTGTCTCAGTACAA GCACCTTCTGCGGCTTGAGGATGGGACTGATATCGTGAAGGGCAGAACT GAATGGCGACCGAAGAATGCAGGAACTAATGGGGCGACATCAAAAGCAA AGACTTCAAATGGAAACTCGGTCTCTTAG Cuphea llavea FATB1 native CDS nucleic acid sequence (CllaFATB1) SEQ ID NO: 23 ATGGTGGCTGCTGCAGCAAGTTCTGCATTCTTCCCTGCTCCAGCCCCGG GATCCTCACCTAAACCCGGGAAGCCCGGTAATTGGCCATCGAGCTTGAG CCCTTCCTTCAAGCCCAAGTCAATCCCCAATGGCCGATTTCAGGTTAAG GCAAATGCGAGTGCCCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAA AGTCTGGCAGCCTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCC TCGGGCTTTCCTTAACCAGTTGCCTGATTGGAGTATGCTTCTGTCTGCA ATCACGACTGTATTCGTGGCGGCAGAGAAGCAGTGGACTATGCTTGATC GGAAATCTAAGAGGCCTGACATGCTTGTGGACTCGGTTGGGTTGAAGAA TATTGTTCGGGATGGGCTCGTGTCCAGACAGAGTTTTTCGATTAGATCT TATGAAATAGGCGCTGATCGAACAGCTTCTATAGAGACACTGATGAACC ACTTGCAGGAAACATCTATCAATCATTGTAAGAGTTTGGGTCTTCTCAA TGACGGCTTTGGTCGTACTCCTGGGATGTGTAAAAACGACCTCATTTGG GTGCTTACAAAAATGCAGATCATGGTGAATCGCTACCCAGCTTGGGGCG ATACTGTTGAGATCAATACATGGTTCTCCCAGTCGGGGAAAATCGGTAT GGGTAGCGATTGGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATA AGAGCAACGAGCGTGTGGGCCATGATGAATCAAAAGACGAGAAGATTCT CAAGACTTCCATATGAGGTTCGCCAGGAGTTAACGCCTCATTTTGTGGA CTCTCCTCATGTCATTGAAGACAATGATCGGAAATTGCATAAGTTCGAT GTGAAGACTGGTGATTCTATTCGCAAGGGTCTAACTCCGAGGTGGAATG ACTTGGATGTCAATCAACACGTAAGCAACGTGAAGTACATTGGGTGGAT TCTCGAGAGTATGCCAATAGAAGTTTTGGAGACCCAGGAACTATGCTCT CTCACAGTTGAATATAGGCGGGAATGCGGAATGGACAGTGTGCTGGAGT CCGTGACTGCTATAGATCCCTCAGAAGATGGAGGGCGGTCTCAGTACAA TCACCTTCTGCGGCTTGATGATGGGACTGATGTCGTGAAGGGCAGAACA GAGTGGCGACCGAAGAATGCAGGAACTAACGGGGCGATATCAACAGGAA AGACTTCAAATGGGAACTCGGTCTCCTAG Cuphea lophostoma FATB1 native CDS nucleic acid sequence (ClopFATB1) SEQ ID NO: 24 ATGGTGGCTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCAGCCCCGG GAACCTCCCTTAAACCCTGGAAGTCCGGAAATTGGCCATCGAGCTTGAG CCCTTCCTTCAAGCCCAAGACAATCCCCAGTGGCGGATTTCAGGTTAAG GCAAATGCCAGTGCCCAGCCTAAGGCTAACGGTTCTGCAGTAAATCTAA AGTCTGGCAGCCTCAACACTCAGGAGGACACAACGTCGTCGCCTCCTCC TCGGGCTTTCCTTAACCAGTTGCCTGATTGGAGTATGCTTCTGACTGCA ATCACGACCGTCTTCGTGGCGGCGGAGAAGCAGTGGACAATGCTTGATA GGAAATCTAAGAGGCCTGAAAAGCTCGTGGACTCGGTTGGGTTGAAGAG TAGTGTTCGGGATGGGCTCGTGTCCAGACAGAGTTTTTCGATTAGGTCT TATGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGTTGATGAACC ACTTGCAGGAAACATCTATCAATCATTGTAAGAGTTTGGGTCTTCTCAA CGACGGCTTTGGTCGTACTCCTGGGATGTGTAAAAACGACCTCATTTGG GTGCTTACGAAAATGCAGATCATGGTGAATCGCTACCCAACTTGGGGCG ATACTGTTGAGATCAATACCTGGTTCTCCCAGTCGGGGAAAATCGGTAT GGCTAGCGATTGGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATA AGAGCAACGAGCGTGTGGGCCATGATGAATCAAAAGACGAGAAGGTTCT CAAGACTTCCATACGAGGTTCGCCAGGAGTTAACGCCTCATTATGTGGA CTCTCCTCATGTCATTGAAGACAATGATCGGAAATTGCATAAGTTTGAT GTGAAGACTGGTGATTCCATTCGCAAGGGTCTGACTCCGAGGTGGAATG ACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTGGAT TCTGGAGAGTATGCCAATAGAAGTTTTGGAGACCCAGGAGCTATGCTCT CTCACCGTTGAATATAGGCGGGAATGCGGGATGGACAGTGTGCTGGAGT CCGTGACTGCTATGGATCCCTCAGAAGATGAAGGCCGGTCTCAGTACAA GCACCTTCTGCGGCTTGAGGATGGGACTGATATCGTGAAGGGCAGAACT GAGTGGCGACCGAAGAATGCAGGAACTAACGGGGCGATATCAACAGCAA AGAATTCAAATGGAAACTCGGTCTCTTAG Sassafras albidum FATB1 native CDS nucleic acid sequence (SalFATB1) SEQ ID NO: 25 ATGGCCACCACCTCTTTAGCTTCTGCTTTCTGCTCGATGAAAGCTGTAA TGTTGGCTCGTGATGGCAGGGGCATGAAACCCAGGAGCAGTGATTTGCA GCTGAGGGCGGGAAATGCACAAACCCCTTTGAAGATGATCAATGGGACC AAGTTCAGTTACACGGAGAGCTTGAAAAGGTTGCCTGACTGGAGCATGC TCTTTGCAGTGATCACAACCATCTTTTCGGTTGCTGAGAAGCAGTGGAC CAATCTAGAGTGGAAGCCGAAGCCGAAGCCGAGGCTACCCCAGTTGCTT GATGACCATTTTGGACTGCATGGGTTAGTTTTCAGGCGCACCTTTGCCA TCAGATCTTATGAGGTCGGACCTGACCGCTCCACATCTATAGTGGCTGT TATGAATCACTTGCAGGAGGCTACACTTAATCATGCGAAGAGTGTGGGA ATTCTAGGAGATGGATTCGGTACGACGCTAGAGATGAGTAAGAGAGATC TGGCGTGGGTTGTGAGACGCACGCATGTTGCTGTGGAACGGTACCCTGC TTGGGGTGATACTGTTGAAGTAGAGTGCTGGATTGGTGCATCTGGAAAT AATGGCATGCGCCGTGATTTCCTTGTCCGGGACTGCAAAACAGGCGAAA TTCTTACAAGATGTACCAGTCTTTCGGTGATGATGAATACAAGGACAAG GAGGTTGTCCAAAATCCCTGAAGAAGTTAGAGGGGAGATAGGGCCTCTA TTCATTGATAATGTGGCTGTCAAGGACGAGGAAATTAAGAAACTACAGA AGCTCAATGACAGCTCTGCAGATTACATCCAAGGAGGTTTGACTCCTCG ATGGAATGATTTGGATGTCAATCAGCATGTTAACAACATCAAATACGTT GGCTGGATTCTTGAGACTGTCCCAGACTCCATCTTTGAGAGTCATCATA TTTCCAGCATCACTCTTGAATACAGGAGAGAGTGCACCAGGGATAGCGT GCTGCAGTCCCTGACCACTGTCTCCGGTGGCTCGTTGGAGGCTGGGTTA GTGTGCGATCACTTGCTCCAGCTTGAAGGTGGGTCTGAGGTATTGAGGG CAAGAACAGAGTGGAGGCCTAAGCTTACCGATAGTTTCAGAGGGATTAT TGTGATACCCGCAGAACCGAGTGTGTAA Sassafras albidum FATB2 native CDS nucleic acid sequence (SalFATB2) SEQ ID NO: 26 ATGGCCACCACCTCTTTAGCTTCTGCTTTCTGCTCGATGAAAGCTGTAA
TGTTGGCTCGTGATGGCAGGGGCATGAAACCCAGGAGCAGTGATTTGCA GCTGAGGGCGGGAAATGCACAAACCCCTTTGAAGATGATCAATGGGACC AAGTTCAGTTACACGGAGAGCTTGAAAAGGTTGCCTGACTGGAGCATGC TCTTTGCAGTGATCACAACCATCTTTTCGGTTGCTGAGAAGCAGTGGAC CAATCTAGAGTGGAAGCCGAAGCCGAAGCCGAGGCTACCCCAGTTGCTT GATGACCATTTTGGACTGCATGGGTTAGTTTTCAGGCGCACCTTTGCCA TCAGATCTTATGAGGTCGGACCTGACCGCTCCACATCTATAGTGGCTGT TATGAATCACTTGCAGGAGGCTACACTTAATCATGCGAAGAGTGTGGGA ATTCTAGGAGATGGATTCGGTACGACGCTAGAGATGAGTAAGAGAGATC TGGCGTGGGTTGTGAGACGCACGCATGTTGCTGTGGAACGGTACCCCGC TTGGGGCGATACTGTTGAAGTCGAGGCCTGGGTCGGTGCATCTGGAAAC ATTGGCATGCGCCGCGATTTTCTTGTCCGCGACTGCAAAACTGGCCACA TTCTTGCAAGATGTACCAGTGTTTCAGTGATGATGAATGCGAGGACACG GAGATTGTCCAAAATTCCCCAAGAAGTTAGAGCCGAGATTGACCCTCTT TTCATTGAAAAGGTTGCGGTCAAGGAAGGGGAAATTAAGAAATTACAGA AGTTCAATGATAGCACTGCAGATTACATTCAAGGGGGTTGGACTCCTCG ATGGAATGATTTGGATGTCAATCAGCACGTGAACAATATCAAATACATT GGCTGGATTTTTAAGAGCGTCCCAGACTCTATCTCTGAGAATCATTATC TTTCTAGCATCACTCTCGAATACAGGAGAGAGTGCACAAGGGGCAGCGC GCTGCAGTCCCTGACCACTGTTTGTGGTGACTCGTCGGAAGCTGGGATC ATATGTGAGCACCTACTCCAGCTTGAGGATGGGCCTGAGGTTTTGAGGG CAAGAACAGAGTGGAGGCCTAAGCTTACCGATAGTTTCAGAGGGATTAT TGTGATACCCGCAGAACCGAGTGTGTAA Lindera benzoin FATB1 native CDS nucleic acid sequence (LbeFATB1) SEQ ID NO: 27 ATGGTCACTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCAGCCCCGG GAACCTCCCCTAAACCCGGGAAGTCCTGGCCATCGAGCTTGAGCCCTTC CTTCAAGCCCAAGTCAATCCCCAATGCCGGATTTCAGGTTAAGGCAAAT GCCAGTGCCCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAAAGTCTG GCAGCCTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCCTCGGGC TTTCCTTAACCAGTTGCCTGATTGGAGTATGCTTCTGACTGCAATCACG ACCGTCTTCGTGGCGGCAGAGAAGCAGTGGACTATGCGTGATCGGAAAT CTAAGAGGCCTGACATGCTCGTGGACTCGGTTGGATCGAAGAGTATTGT TCTGGATGGGCTCGTGTCCAGACAGATTTTTTCGATTAGATCTTATGAA ATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGAACCACTTGC AGGAAACATCTATCAATCATTGTAAGAGTTTGGGTCTTCTCAATGACGG CTTTGGTCGTACTCCTGGGATGTGTAAAAACGACCTCATTTGGGTGCTT ACAAAAATGCAGATCATGGTGAATCGCTACCCAACTTGGGGCGATACTG TTGAGATCAATACCTGGTTCTCCCATTCGGGGAAAATCGGTATGGCTAG CGATTGGCTAATAACTGATTGCAACACAGGAGAAATTCTTATAAGAGCA ACGAGCGTGTGGGCCATGATGAATCAAAAGACGAGAAGATTCTCAAGAC TTCCATACGAGGTTCGCCAGGAGTTAACGCCTCATTATGTGGACTCTCC TCATGTCATTGAAGATAATGATCGGAAATTGCATAAGTTTGATGTGAAG ACTGGTGATTCCATTCGTAAGGGTCTAACTCCGAAGTGGAATGACTTGG ATGTCAATCAGCACGTCAACAACGTGAAGTACATCGGGTGGATTCTCGA GAGTATGCCAATAGAAGTTTTGGAGACTCAGGAGCTATGCTCTCTCACC GTTGAATATAGGCGGGAATGCGGAATGGACAGTGTGCTGGAGTCCGTGA CTGCTATGGATCCCTCAGAAGATGGAGGCCTATCTCAGTACAAGCACCT TCTGCGGCTTGAGGATGGGACTGACATCGTGAAGGGCAGAACTGAGTGG CGACCGAAGAATGCAGGAACTAACGGGGCGATATCAACAGCAAAGCCTT CAAATGGAAACTCGGTCTCTTAG Cuphea crassiflora FATB native CDS codon optimized acid sequence (CcrasFATB1) SEQ ID NO: 28 ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCG GCACCTCCACCAAGCCCCGCAAGTCCGGCAACTGGCCCTCCCGCCTGTC CCCCTCCTCCAAGCCCAAGTCCATCCCCAACGGCGGCTTCCAGGTGAAG GCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGA AGTCCGGCTCCCTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCC CCGCGCCTTCCTGAACCAGCTGCCCGACTGGTCCATGCTGCTGACCGCC ATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACC GCAAGTCCAAGCGCCCCGACATGCTGGTGGACTCCGTGGGCCTGAAGTC CATCGTGCGCGACGGCCTGGTGTCCCGCCAGTCCTTCTCCATCCGCTCC TACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC ACCTGCAGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAA CGACGGCTTCGGCCGCACCCCCGGCATGTGCAAGAACGACCTGATCTGG GTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCCACCTGGGGCG ACACCGTGGAGATCAACACCTGGTTCTCCCAGTCCGGCAAGATCGGCAT GGGCTCCGACTGGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATC CGCGCCACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCTTCT CCCGCCTGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTTCGTGGA CTCCCCCCACGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGAC GTGAAGACCGGCGACTCCATCCGCAAGGGCCTGACCCCCCGCTGGAACG ACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTGGAT CCTGGAGTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCC CTGACCGTGGAGTACCGCCGCGAGTGCGGCATGGACTCCAAGCTGGAGT CCGTGACCGCCATGGACCCCTCCGAGGAGGACGGCGTGCGCTCCCAGTA CAACCACCTGCTGCGCCTGGAGGACGGCACCGACGTGGTGAAGGGCCGC ACCGAGTGGCGCCCCAAGAACGCCGGCACCAACGGCGCCATCTCCACCG GCAAGACCTCCAACGGCAACTCCGTGTCCTGA Cuphea koehneana FATB FATB codon optimized CDS nucleic acid sequence (CkoeFATB3) SEQ ID NO: 29 ATGGTGACCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCG GCACCTCCCCCAAGCCCGGCAAGTCCTGGCCCTCCTCCCTGTCCCCCTC CTTCAAGCCCAAGTCCATCCCCAACGCCGGCTTCCAGGTGAAGGCCAAC GCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGAAGTCCG GCTCCCTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCCCCGCGC CTTCCTGAACCAGCTGCCCGACTGGTCCATGCTGCTGACCGCCATCACC ACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCGCGACCGCAAGT CCAAGCGCCCCGACATGCTGGTGGACTCCGTGGGCTCCAAGTCCATCGT GCTGGACGGCCTGGTGTCCCGCCAGATCTTCTCCATCCGCTCCTACGAG ATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACCACCTGC AGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAACGACGG CTTCGGCCGCACCCCCGGCATGTGCAAGAACGACCTGATCTGGGTGCTG ACCAAGATGCAGATCATGGTGAACCGCTACCCCACCTGGGGCGACACCG TGGAGATCAACACCTGGTTCTCCCACTCCGGCAAGATCGGCATGGCCTC CGACTGGCTGATCACCGACTGCAACACCGGCGAGATCCTGATCCGCGCC ACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCTTCTCCCGCC TGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTACGTGGACTCCCC CCACGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAG ACCGGCGACTCCATCCGCAAGGGCCTGACCCCCAAGTGGAACGACCTGG ACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGATCCTGGA GTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACC GTGGAGTACCGCCGCGAGTGCGGCATGGACTCCGTGCTGGAGTCCGTGA CCGCCATGGACCCCTCCGAGGACGGCGGCCTGTCCCAGTACAAGCACCT GCTGCGCCTGGAGGACGGCACCGACATCGTGAAGGGCCGCACCGAGTGG CGCCCCAAGAACGCCGGCACCAACGGCGCCATCTCCACCGCCAAGCCCT CCAACGGCAACTCCGTGTCCTGA Cuphea leptopoda FATB codon optimized CDS nucleic acid sequence (CleptFATB1) SEQ ID NO: 30 ATGGTGGGCGCCGCCGCCTCCTCCGCCTTCTTCCCCGCCCCCGCCCCCG GCACCTCCCCCAAGCCCGGCAAGTCCGGCAACTGGCCCTCCTCCCTGTC CCCCTCCCTGAAGCCCAAGTCCATCCCCAACGGCGGCTTCCAGGTGAAG GCCAACGCCTCCGCCCACCCCAAGGCCAACGGCGCCGCCGTGAACCTGA AGTCCGGCTCCCTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCC CCGCGCCTTCCTGAACCAGCTGCCCGACTGGTCCATGCTGCTGACCGCC ATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACC GCAAGTCCAAGCGCCCCGACATGCTGGTGGACTCCGTGGGCCTGAAGAA CATCGTGCGCGACGGCCTGGTGTCCCGCCAGTCCTTCTCCATCCGCTCC TACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC ACCTGCAGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAA CGACGGCTTCGGCCGCACCCCCGGCATGTGCAAGAACGACCTGATCTGG GTGCTGACCAAGATGCAGATCCTGGTGAACCGCTACCCCGCCTGGGGCG ACACCGTGGAGATCAACACCTGGTTCTCCCAGTCCGGCAAGATCGGCAT GGGCTCCGACTGGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATC CGCGCCACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCTTCT CCCGCCTGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTTCGTGGA CTCCCCCCACGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGAC
GTGAAGACCGGCGACTCCATCCGCAAGGGCCTGACCCCCCGCTGGAACG ACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTGGAT CCTGGAGTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCC CTGACCGTGGAGTACCGCCGCGAGTGCGGCATGGACTCCGTGCTGGAGT CCGTGACCGCCCGCGACCCCTCCGAGGACGGCGGCCGCTCCCAGTACAA CCACCTGCTGCGCCTGGAGGACGGCACCGACGTGGTGAAGGGCCGCACC GAGTGGCGCTCCAAGAACGCCGGCACCAACGGCGCCACCTCCACCGCCA AGACCTCCAACGGCAACTCCGTGTCCTGA Cuphea angustifolia FATB codon optimized CDS nucleic acid sequence (CangFATB1) SEQ ID NO: 31 ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCG GCACCTCCCTGAAGCCCGGCAAGTCCGGCAACTGGCCCTCCTCCCTGTC CCCCTCCTTCAAGCCCAAGACCATCCCCTCCGGCGGCCTGCAGGTGAAG GCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGA AGTCCGGCTCCCTGGACACCCAGGAGGACACCTCCTCCTCCCCCCCCCC CCGCGCCTTCCTGAACCAGCTGCCCGACTGGTCCATGCTGCTGACCGCC ATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACC GCAAGTCCAAGCGCCCCGAGATGCTGGTGGACTCCGTGGGCCTGAAGTC CTCCGTGCGCGACGGCCTGGTGTCCCGCCAGTCCTTCTCCATCCGCTCC TACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC ACCTGCAGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAA CGACGGCTTCGGCCGCACCCCCGGCATGTGCAAGAACGACCTGATCTGG GTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCCACCTGGGGCG ACACCGTGGAGGTGAACACCTGGTTCTCCCAGTCCGGCAAGATCGGCAT GGCCTCCGACTGGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATC CGCGCCACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCTTCT CCCGCCTGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTACGTGGA CTCCCCCCACGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGAC GTGAAGACCGGCGACTCCATCCGCAAGGGCCTGACCCCCCGCTGGAACG ACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTGGAT CCTGGAGTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCC CTGACCGTGGAGTACCGCCGCGAGTGCGGCATGGACTCCGTGCTGGAGT CCGTGACCGCCATGGACCCCTCCGAGGACGGCGGCGTGTCCCAGTACAA GCACCTGCTGCGCCTGGAGGACGGCACCGACATCGTGAAGGGCCGCACC GAGTGGCGCCCCAAGAACGCCGGCACCAACGGCGCCACCTCCAAGGCCA AGACCTCCAACGGCAACTCCGTGTCCTGA Cuphea llavea FATB1 codon optimized CDS nucleic acid sequence (CllaFATB1) SEQ ID NO: 32 ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGCCCCCGCCCCCG GCTCCTCCCCCAAGCCCGGCAAGCCCGGCAACTGGCCCTCCTCCCTGTC CCCCTCCTTCAAGCCCAAGTCCATCCCCAACGGCCGCTTCCAGGTGAAG GCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGA AGTCCGGCTCCCTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCC CCGCGCCTTCCTGAACCAGCTGCCCGACTGGTCCATGCTGCTGTCCGCC ATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACC GCAAGTCCAAGCGCCCCGACATGCTGGTGGACTCCGTGGGCCTGAAGAA CATCGTGCGCGACGGCCTGGTGTCCCGCCAGTCCTTCTCCATCCGCTCC TACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC ACCTGCAGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAA CGACGGCTTCGGCCGCACCCCCGGCATGTGCAAGAACGACCTGATCTGG GTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCCGCCTGGGGCG ACACCGTGGAGATCAACACCTGGTTCTCCCAGTCCGGCAAGATCGGCAT GGGCTCCGACTGGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATC CGCGCCACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCTTCT CCCGCCTGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTTCGTGGA CTCCCCCCACGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGAC GTGAAGACCGGCGACTCCATCCGCAAGGGCCTGACCCCCCGCTGGAACG ACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTGGAT CCTGGAGTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCC CTGACCGTGGAGTACCGCCGCGAGTGCGGCATGGACTCCGTGCTGGAGT CCGTGACCGCCATCGACCCCTCCGAGGACGGCGGCCGCTCCCAGTACAA CCACCTGCTGCGCCTGGACGACGGCACCGACGTGGTGAAGGGCCGCACC GAGTGGCGCCCCAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCA AGACCTCCAACGGCAACTCCGTGTCCTGA Cuphea lophostoma FATB1 codon optimized CDS nucleic acid sequence (ClopFATB1) SEQ ID NO: 33 ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCG GCACCTCCCTGAAGCCCTGGAAGTCCGGCAACTGGCCCTCCTCCCTGTC CCCCTCCTTCAAGCCCAAGACCATCCCCTCCGGCGGCTTCCAGGTGAAG GCCAACGCCTCCGCCCAGCCCAAGGCCAACGGCTCCGCCGTGAACCTGA AGTCCGGCTCCCTGAACACCCAGGAGGACACCACCTCCTCCCCCCCCCC CCGCGCCTTCCTGAACCAGCTGCCCGACTGGTCCATGCTGCTGACCGCC ATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACC GCAAGTCCAAGCGCCCCGAGAAGCTGGTGGACTCCGTGGGCCTGAAGTC CTCCGTGCGCGACGGCCTGGTGTCCCGCCAGTCCTTCTCCATCCGCTCC TACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC ACCTGCAGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAA CGACGGCTTCGGCCGCACCCCCGGCATGTGCAAGAACGACCTGATCTGG GTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCCACCTGGGGCG ACACCGTGGAGATCAACACCTGGTTCTCCCAGTCCGGCAAGATCGGCAT GGCCTCCGACTGGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATC CGCGCCACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCTTCT CCCGCCTGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTACGTGGA CTCCCCCCACGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGAC GTGAAGACCGGCGACTCCATCCGCAAGGGCCTGACCCCCCGCTGGAACG ACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTGGAT CCTGGAGTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCC CTGACCGTGGAGTACCGCCGCGAGTGCGGCATGGACTCCGTGCTGGAGT CCGTGACCGCCATGGACCCCTCCGAGGACGAGGGCCGCTCCCAGTACAA GCACCTGCTGCGCCTGGAGGACGGCACCGACATCGTGAAGGGCCGCACC GAGTGGCGCCCCAAGAACGCCGGCACCAACGGCGCCATCTCCACCGCCA AGAACTCCAACGGCAACTCCGTGTCCTGA Sassafras albidum FATB1 codon optimized CDS nucleic acid sequence (SalFATB1) SEQ ID NO: 34 ATGGCCACCACCTCCCTGGCCTCCGCCTTCTGCTCCATGAAGGCCGTGA TGCTGGCCCGCGACGGCCGCGGCATGAAGCCCCGCTCCTCCGACCTGCA GCTGCGCGCCGGCAACGCCCAGACCCCCCTGAAGATGATCAACGGCACC AAGTTCTCCTACACCGAGTCCCTGAAGCGCCTGCCCGACTGGTCCATGC TGTTCGCCGTGATCACCACCATCTTCTCCGTGGCCGAGAAGCAGTGGAC CAACCTGGAGTGGAAGCCCAAGCCCAAGCCCCGCCTGCCCCAGCTGCTG GACGACCACTTCGGCCTGCACGGCCTGGTGTTCCGCCGCACCTTCGCCA TCCGCTCCTACGAGGTGGGCCCCGACCGCTCCACCTCCATCGTGGCCGT GATGAACCACCTGCAGGAGGCCACCCTGAACCACGCCAAGTCCGTGGGC ATCCTGGGCGACGGCTTCGGCACCACCCTGGAGATGTCCAAGCGCGACC TGGCCTGGGTGGTGCGCCGCACCCACGTGGCCGTGGAGCGCTACCCCGC CTGGGGCGACACCGTGGAGGTGGAGTGCTGGATCGGCGCCTCCGGCAAC AACGGCATGCGCCGCGACTTCCTGGTGCGCGACTGCAAGACCGGCGAGA TCCTGACCCGCTGCACCTCCCTGTCCGTGATGATGAACACCCGCACCCG CCGCCTGTCCAAGATCCCCGAGGAGGTGCGCGGCGAGATCGGCCCCCTG TTCATCGACAACGTGGCCGTGAAGGACGAGGAGATCAAGAAGCTGCAGA AGCTGAACGACTCCTCCGCCGACTACATCCAGGGCGGCCTGACCCCCCG CTGGAACGACCTGGACGTGAACCAGCACGTGAACAACATCAAGTACGTG GGCTGGATCCTGGAGACCGTGCCCGACTCCATCTTCGAGTCCCACCACA TCTCCTCCATCACCCTGGAGTACCGCCGCGAGTGCACCCGCGACTCCGT GCTGCAGTCCCTGACCACCGTGTCCGGCGGCTCCCTGGAGGCCGGCCTG GTGTGCGACCACCTGCTGCAGCTGGAGGGCGGCTCCGAGGTGCTGCGCG CCCGCACCGAGTGGCGCCCCAAGCTGACCGACTCCTTCCGCGGCATCAT CGTGATCCCCGCCGAGCCCTCCGTGTGA Sassafras albidum FATB2 codon optimized CDS nucleic acid sequence (SalFATB2) SEQ ID NO: 35 ATGGCCACCACCTCCCTGGCCTCCGCCTTCTGCTCCATGAAGGCCGTGA TGCTGGCCCGCGACGGCCGCGGCATGAAGCCCCGCTCCTCCGACCTGCA GCTGCGCGCCGGCAACGCCCAGACCCCCCTGAAGATGATCAACGGCACC AAGTTCTCCTACACCGAGTCCCTGAAGCGCCTGCCCGACTGGTCCATGC TGTTCGCCGTGATCACCACCATCTTCTCCGTGGCCGAGAAGCAGTGGAC CAACCTGGAGTGGAAGCCCAAGCCCAAGCCCCGCCTGCCCCAGCTGCTG GACGACCACTTCGGCCTGCACGGCCTGGTGTTCCGCCGCACCTTCGCCA TCCGCTCCTACGAGGTGGGCCCCGACCGCTCCACCTCCATCGTGGCCGT
GATGAACCACCTGCAGGAGGCCACCCTGAACCACGCCAAGTCCGTGGGC ATCCTGGGCGACGGCTTCGGCACCACCCTGGAGATGTCCAAGCGCGACC TGGCCTGGGTGGTGCGCCGCACCCACGTGGCCGTGGAGCGCTACCCCGC CTGGGGCGACACCGTGGAGGTGGAGGCCTGGGTGGGCGCCTCCGGCAAC ATCGGCATGCGCCGCGACTTCCTGGTGCGCGACTGCAAGACCGGCCACA TCCTGGCCCGCTGCACCTCCGTGTCCGTGATGATGAACGCCCGCACCCG CCGCCTGTCCAAGATCCCCCAGGAGGTGCGCGCCGAGATCGACCCCCTG TTCATCGAGAAGGTGGCCGTGAAGGAGGGCGAGATCAAGAAGCTGCAGA AGTTCAACGACTCCACCGCCGACTACATCCAGGGCGGCTGGACCCCCCG CTGGAACGACCTGGACGTGAACCAGCACGTGAACAACATCAAGTACATC GGCTGGATCTTCAAGTCCGTGCCCGACTCCATCTCCGAGAACCACTACC TGTCCTCCATCACCCTGGAGTACCGCCGCGAGTGCACCCGCGGCTCCGC CCTGCAGTCCCTGACCACCGTGTGCGGCGACTCCTCCGAGGCCGGCATC ATCTGCGAGCACCTGCTGCAGCTGGAGGACGGCCCCGAGGTGCTGCGCG CCCGCACCGAGTGGCGCCCCAAGCTGACCGACTCCTTCCGCGGCATCAT CGTGATCCCCGCCGAGCCCTCCGTGTGA Lindera benzoin FATB1 codon optimized CDS nucleic acid sequence (LbeFATB1) SEQ ID NO: 36 ATGGTGACCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCG GCACCTCCCCCAAGCCCGGCAAGTCCTGGCCCTCCTCCCTGTCCCCCTC CTTCAAGCCCAAGTCCATCCCCAACGCCGGCTTCCAGGTGAAGGCCAAC GCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGAAGTCCG GCTCCCTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCCCCGCGC CTTCCTGAACCAGCTGCCCGACTGGTCCATGCTGCTGACCGCCATCACC ACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCGCGACCGCAAGT CCAAGCGCCCCGACATGCTGGTGGACTCCGTGGGCTCCAAGTCCATCGT GCTGGACGGCCTGGTGTCCCGCCAGATCTTCTCCATCCGCTCCTACGAG ATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACCACCTGC AGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAACGACGG CTTCGGCCGCACCCCCGGCATGTGCAAGAACGACCTGATCTGGGTGCTG ACCAAGATGCAGATCATGGTGAACCGCTACCCCACCTGGGGCGACACCG TGGAGATCAACACCTGGTTCTCCCACTCCGGCAAGATCGGCATGGCCTC CGACTGGCTGATCACCGACTGCAACACCGGCGAGATCCTGATCCGCGCC ACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCTTCTCCCGCC TGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTACGTGGACTCCCC CCACGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAG ACCGGCGACTCCATCCGCAAGGGCCTGACCCCCAAGTGGAACGACCTGG ACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGATCCTGGA GTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACC GTGGAGTACCGCCGCGAGTGCGGCATGGACTCCGTGCTGGAGTCCGTGA CCGCCATGGACCCCTCCGAGGACGGCGGCCTGTCCCAGTACAAGCACCT GCTGCGCCTGGAGGACGGCACCGACATCGTGAAGGGCCGCACCGAGTGG CGCCCCAAGAACGCCGGCACCAACGGCGCCATCTCCACCGCCAAGCCCT CCAACGGCAACTCCGTGTCCTGA CpSADtp_trimmed transit (plastid targeting) peptide amino acid sequence SEQ ID NO: 37 MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRAAI Thioesterase transforming construct SEQ ID NO: 38 gaagagcgcccaatgtttaaacccctcaactgcgacgctgggaaccttc tccgggcaggcgatgtgcgtgggtttgcctccttggcacggctctacac cgtcgagtacgccatgaggcggtgatggctgtgtcggttgccacttcgt ccagagacggcaagtcgtccatcctctgcgtgtgtggcgcgacgctgca gcagtccctctgcagcagatgagcgtgactttggccatttcacgcactc gagtgtacacaatccatttttcttaaagcaaatgactgctgattgacca gatactgtaacgctgatttcgctccagatcgcacagatagcgaccatgt tgctgcgtctgaaaatctggattccgaattcgaccctggcgctccatcc atgcaacagatggcgacacttgttacaattcctgtcacccatcggcatg gagcaggtccacttagattcccgatcacccacgcacatctcgctaatag tcattcgttcgtgtcttcgatcaatctcaagtgagtgtgcatggatctt ggttgacgatgcggtatgggtttgcgccgctggctgcagggtctgccca aggcaagctaacccagctcctctccccgacaatactctcgcaggcaaag ccggtcacttgccttccagattgccaataaactcaattatggcctctgt catgccatccatgggtctgatgaatggtcacgctcgtgtcctgaccgtt ccccagcctctggcgtcccctgccccgcccaccagcccacgccgcgcgg ##STR00001## ##STR00002## tcgccgccaagatcagcgcctccatgacgaacgagacgtccgaccgccc cctggtgcacttcacccccaacaagggctggatgaacgaccccaacggc ctgtggtacgacgagaaggacgccaagtggcacctgtacttccagtaca acccgaacgacaccgtctgggggacgcccttgttctggggccacgccac gtccgacgacctgaccaactgggaggaccagcccatcgccatcgccccg aagcgcaacgactccggcgccttctccggctccatggtggtggactaca acaacacctccggcttcttcaacgacaccatcgacccgcgccagcgctg cgtggccatctggacctacaacaccccggagtccgaggagcagtacatc tcctacagcctggacggcggctacaccttcaccgagtaccagaagaacc ccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctg gtacgagccctcccagaagtggatcatgaccgcggccaagtcccaggac tacaagatcgagatctactcctccgacgacctgaagtcctggaagctgg agtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccc cggcctgatcgaggtccccaccgagcaggaccccagcaagtcctactgg gtgatgttcatctccatcaaccccggcgccccggccggcggctccttca accagtacttcgtcggcagcttcaacggcacccacttcgaggccttcga caaccagtcccgcgtggtggacttcggcaaggactactacgccctgcag accttcttcaacaccgacccgacctacgggagcgccctgggcatcgcgt gggcctccaactgggagtactccgccttcgtgcccaccaacccctggcg ctcctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccag gccaacccggagacggagctgatcaacctgaaggccgagccgatcctga acatcagcaacgccggcccctggagccggttcgccaccaacaccacgtt gacgaaggccaacagctacaacgtcgacctgtccaacagcaccggcacc ctggagttcgagctggtgtacgccgtcaacaccacccagacgatctcca agtccgtgttcgcggacctctccctctggttcaagggcctggaggaccc cgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttc ctggaccgcgggaacagcaaggtgaagttcgtgaaggagaacccctact tcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacga cctgtcctactacaaggtgtacggcttgctggaccagaacatcctggag ctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatga ccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaa ##STR00003## acgcccgcgcggcgcacctgacctgttctctcgagggcgcctgttctgc cttgcgaaacaagcccctggagcatgcgtgcatgatcgtctctggcgcc ccgccgcgcggtttgtcgccctcgcgggcgccgcggccgcgggggcgca ttgaaattgttgcaaaccccacctgacagattgagggcccaggcaggaa ggcgttgagatggaggtacaggagtcaagtaactgaaagtttttatgat aactaacaacaaagggtcgtttctggccagcgaatgacaagaacaagat tccacatttccgtgtagaggcttgccatcgaatgtgagcgggcgggccg cggacccgacaaaacccttacgacgtggtaagaaaaacgtggcgggcac tgtccctgtagcctgaagaccagcaggagacgatcggaagcatcacagc acaggatccCGCGTCTCGAACAGAGCGCGCAGAGGAACGCTGAAGGTCT CGCCTCTGTCGCACCTCAGCGCGGCATACACCACAATAACCACCTGACG AATGCGCTTGGTTCTTCGTCCATTAGCGAAGCGTCCGGTTCACACACGT GCCACGTTGGCGAGGTGGCAGGTGACAATGATCGGTGGAGCTGATGGTC ##STR00004## gcggcgacctgcgccgctccgccggctccggcccccgccgccccgcccg ccccctgcccgtgcgcgccgccatcaacgcctccgcccaccccaaggcc aacggctccgccgtgaacctgaagtccggctccctgaacacccaggagg acacctcctcctccccccccccccgcgccttcctgaaccagctgcccga ctggtccatgctgctgaccgccatcaccaccgtgttcgtggccgccgag aagcagtggaccatgctggaccgcaagtccaagcgccccgacatgctgg tggactccgtgggcctgaagtccatcgtgcgcgacggcctggtgtcccg ccagtccttctccatccgctcctacgagatcggcgccgaccgcaccgcc tccatcgagaccctgatgaaccacctgcaggagacctccatcaaccact gcaagtccctgggcctgctgaacgacggcttcggccgcacccccggcat gtgcaagaacgacctgatctgggtgctgaccaagatgcagatcatggtg aaccgctaccccacctggggcgacaccgtggagatcaacacctggttct cccagtccggcaagatcggcatgggctccgactggctgatctccgactg caacaccggcgagatcctgatccgcgccacctccgtgtgggccatgatg aaccagaagacccgccgcttctcccgcctgccctacgaggtgcgccagg agctgaccccccacttcgtggactccccccacgtgatcgaggacaacga ccgcaagctgcacaagttcgacgtgaagaccggcgactccatccgcaag
ggcctgaccccccgctggaacgacctggacgtgaaccagcacgtgtcca acgtgaagtacatcggctggatcctggagtccatgcccatcgaggtgct ggagacccaggagctgtgctccctgaccgtggagtaccgccgcgagtgc ggcatggactccaagctggagtccgtgaccgccatggacccctccgagg aggacggcgtgcgctcccagtacaaccacctgctgcgcctggaggacgg caccgacgtggtgaagggccgcaccgagtggcgccccaagaacgccggc accaacggcgccatctccaccggcaagacctccaacggcaactccgtgt ccatggactacaaggaccacgacggcgactacaaggaccacgacatcga ##STR00005## gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccac acttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcc tcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgc ttgtgctatttgcgaataccacccccagcatccccttccctcgtttcat atcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctc agcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgg gctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaa tgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttga gctccagcgccatgccacgccctttgatggcttcaagtacgattacggt gttggattgtgtgtttgttgcgtagtgtgcatggtttagaataatacac ttgatttcttgctcacggcaatctcggcttgtccgcaggttcaacccca tttcggagtctcaggtcagccgcgcaatgaccagccgctacttcaagga cttgcacgacaacgccgaggtgagctatgtttaggacttgattggaaat tgtcgtcgacgcatattcgcgctccgcgacagcacccaagcaaaatgtc aagtgcgttccgatttgcgtccgcaggtcgatgttgtgatcgtcggcgc cggatccgccggtctgtcctgcgcttacgagctgaccaagcaccctgac gtccgggtacgcgagctgagattcgattagacataaattgaagattaaa cccgtagaaaaatttgatggtcgcgaaactgtgctcgattgcaagaaat tgatcgtcctccactccgcaggtcgccatcatcgagcagggcgttgctc ccggcggcggcgcctggctggggggacagctgttctcggccatgtgtgt acgtagaaggatgaatttcagctggttttcgttgcacagctgtttgtgc atgatttgtttcagactattgttgaatgtttttagatttcttaggatgc atgatttgtctgcatgcgactgaagagc Amino acid sequence of region of deletion mutant based on SalFATB2 SEQ ID NO: 39 LFAVITTIFSVAEKQWTNLEWKPKPKPRLPQL Amino acid sequence of SalFATB1a (a deletion mutant of Sassafras albidum SalFATB1) SEQ ID NO: 40 MATTSLASAFCSMKAVMLARDGRGMKPRSSDLQLRAGNAQTPLKMINGT KESYTESLKRLPDWSMLDDHFGLHGLVERRTFAIRSYEVGPDRSTSIVA VMNHLQEATLNHAKSVGILGDGFGTTLEMSKRDLAWVVRRTHVAVERYP AWGDTVEVECWIGASGNNGMRRDFLVRDCKTGEILTRCTSLSVMMNTRT RRLSKIPEEVRGEIGPLFIDNVAVKDEEIKKLQKLNDSSADYIQGGLTP RWNDLDVNQHVNNIKYVGWILETVPDSIFESHHISSITLEYRRECTRDS VLQSLTTVSGGSLEAGLVCDHLLQLEGGSEVLRARTEWRPKLTDSFRGI IVIPAEPSV Amino acid sequence of LbeFATB1a(a deletion mutant of LbeFATB1) SEQ ID NO: 41 MVATSLASAFCSMKAVMLADDGRGMKPRSSDLQLRAGNAQTSLKMIDGT KFSYTESLKRLPDWSKLDDRFGLHGLVFRRTFAIRSYEVGPDRSASILA VLNHLQEATLNHAESVGILGDRFGETLEMSKRDLMWVVRRTYVAVERYP AWGDTVEIESWIGASGNNGMRREFLVRDFKTGEILTRCTSLSVMMNTRT RRLSKIPEEVRGEIGPVFIDNVAVKDEEIKKLQKLNDSTADYIQGGLIP RWNDLDLNQHVNNIKYVSWILETVPDSILESYHMSSITLEYRRECTRDS VLQSLTTVSGGSSEAGLVCEHSLLLEGGSEVLRARTEWRPKLTDSFRGI SVIPAEQSV Amino acid sequence of mature SalFATB1a (a deletion mutant of Sassafras albidum SalFATB1) SEQ ID NO: 42 GNAQTPLKMINGTKFSYTESLKRLPDWSMLDDHFGLHGLVFRRTFAIRS YEVGPDRSTSIVAVMNHLQEATLNHAKSVGILGDGFGTTLEMSKRDLAW VVRRTHVAVERYPAWGDTVEVECWIGASGNNGMRRDFLVRDCKTGEILT RCTSLSVMMNTRTRRLSKIPEEVRGEIGPLFIDNVAVKDEEIKKLQKLN DSSADYIQGGLTPRWNDLDVNQHVNNIKYVGWILETVPDSIFESHHISS ITLEYRRECTRDSVLQSLTTVSGGSLEAGLVCDHLLQLEGGSEVLRART EWRPKLTDSFRGIIVIPAEPSV Amino acid sequence of mature LbeFATB1a(a deletion mutant of LbeFATB1) SEQ ID NO: 43 GNAQTSLKMIDGTKFSYTESLKRLPDWSKLDDRFGLHGLVFRRTFAIRS YEVGPDRSASILAVLNHLQEATLNHAESVGILGDRFGETLEMSKRDLMW VVRRTYVAVERYPAWGDTVEIESWIGASGNNGMRREFLVRDFKTGEILT RCTSLSVMMNTRTRRLSKIPEEVRGEIGPVFIDNVAVKDEEIKKLQKLN DSTADYIQGGLIPRWNDLDLNQHVNNIKYVSWILETVPDSILESYHMSS ITLEYRRECTRDSVLQSLTTVSGGSSEAGLVCEHSLLLEGGSEVLRART EWRPKLTDSFRGISVIPAEQSV pSZ5176/D4053 (SalFATB1a) SEQ ID NO: 44 ##STR00006## tgcgccgctccgccggctccggcccccgccgccccgcccgccccctgcc cgtgcgcgccgccatcggcaacgcccagacccccctgaagatgatcaac ggcaccaagttctcctacaccgagtccctgaagcgcctgcccgactggt ccatgctggacgaccacttcggcctgcacggcctggtgttccgccgcac cttcgccatccgctcctacgaggtgggccccgaccgctccacctccatc gtggccgtgatgaaccacctgcaggaggccaccctgaaccacgccaagt ccgtgggcatcctgggcgacggcttcggcaccaccctggagatgtccaa gcgcgacctggcctgggtggtgcgccgcacccacgtggccgtggagcgc taccccgcctggggcgacaccgtggaggtggagtgctggatcggcgcct ccggcaacaacggcatgcgccgcgacttcctggtgcgcgactgcaagac cggcgagatcctgacccgctgcacctccctgtccgtgatgatgaacacc cgcacccgccgcctgtccaagatccccgaggaggtgcgcggcgagatcg gccccctgttcatcgacaacgtggccgtgaaggacgaggagatcaagaa gctgcagaagctgaacgactcctccgccgactacatccagggcggcctg accccccgctggaacgacctggacgtgaaccagcacgtgaacaacatca agtacgtgggctggatcctggagaccgtgcccgactccatcttcgagtc ccaccacatctcctccatcaccctggagtaccgccgcgagtgcacccgc gactccgtgctgcagtccctgaccaccgtgtccggcggctccctggagg ccggcctggtgtgcgaccacctgctgcagctggagggcggctccgaggt gctgcgcgcccgcaccgagtggcgccccaagctgaccgactccttccgc ggcatcatcgtgatccccgccgagccctccgtgatggactacaaggacc acgacggcgactacaaggaccacgacatcgactacaaggacgacgacga ##STR00007## pSZ5179/D4056 (LbeFATB1a) SEQ ID NO: 45 ##STR00008## tgcgccgctccgccggctccggcccccgccgccccgcccgccccctgcc cgtgcgcgccgccatcggcaacgcccagacctccctgaagatgatcgac ggcaccaagttctcctacaccgagtccctgaagcgcctgcccgactggt ccaagctggacgaccgcttcggcctgcacggcctggtgttccgccgcac cttcgccatccgctcctacgaggtgggccccgaccgctccgcctccatc ctggccgtgctgaaccacctgcaggaggccaccctgaaccacgccgagt ccgtgggcatcctgggcgaccgcttcggcgagaccctggagatgtccaa gcgcgacctgatgtgggtggtgcgccgcacctacgtggccgtggagcgc taccccgcctggggcgacaccgtggagatcgagtcctggatcggcgcct ccggcaacaacggcatgcgccgcgagttcctggtgcgcgacttcaagac cggcgagatcctgacccgctgcacctccctgtccgtgatgatgaacacc cgcacccgccgcctgtccaagatccccgaggaggtgcgcggcgagatcg gccccgtgttcatcgacaacgtggccgtgaaggacgaggagatcaagaa gctgcagaagctgaacgactccaccgccgactacatccagggcggcctg atcccccgctggaacgacctggacctgaaccagcacgtgaacaacatca agtacgtgtcctggatcctggagaccgtgcccgactccatcctggagtc ctaccacatgtcctccatcaccctggagtaccgccgcgagtgcacccgc gactccgtgctgcagtccctgaccaccgtgtccggcggctcctccgagg ccggcctggtgtgcgagcactccctgctgctggagggcggctccgaggt gctgcgcgcccgcaccgagtggcgccccaagctgaccgactccttccgc ggcatctccgtgatccccgccgagcagtccgtgatggactacaaggacc acgacggcgactacaaggaccacgacatcgactacaaggacgacgacga ##STR00009## CcFATB4 Cinnamomum camphora acyl-ACP thioesterase CDS. SEQ ID NO: 46 MVTTSLASAYFSMKAVMLAPDGRGIKPRSSGLQVRAGNERNSCKVINGT KVKDTEGLKGCSTLQGQSMLDDHFGLHGLVFRRTFAIRCYEVGPDRSTS IMAVMNHLQEAARNHAESLGLLGDGFGETLEMSKRDLIWVVRRTHVAVE RYPAWGDTVEVEAWVGASGNTGMRRDFLVRDCKTGHILTRCTSVSVMMN MRTRRLSKIPQEVRAEIDPLFIEKVAVKEGEIKKLQKLNDSTADYIQGG WTPRWNDLDVNQHVNNIIYVGWIFKSVPDSISENHHLSSITLEYRRECT
RGNKLQSLTTVCGGSSEAGIICEHLLQLEDGSEVLRARTEWRPKHTDSF QGISERFPQQEPHK Deleted portion of SalFatB1 absent from SalFatB1a SEQ ID NO: 47 LFAVITTIFSVAEKQWTNLEWKPKPKPRLPQL Deleted portion of LbeFATB1 absent from LbeFATB1a SEQ ID NO: 48 LLTVITTIFSAAEKQWTNLERKPKPPHL CpauFATB1 (transit peptide appears in boxed text) SEQ ID NO: 49 ##STR00010## AVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQW TMRDRKSKRPDMLVDSVGLKSVVLDGLVSRQIFSIRSYEIGADRTASIE TLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIWVLTKMQIMVNRY PTWGDTVEINTWFSHSGKIGMASDWLITDCNTGEILIRATSVWAMMNQK TRRFSRLPYEVRQELTPHYVDSPHVIEDNDRKLHKFDVKTGDSIRKGLT PRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCSLTVEYRRECGMD SVLESVTAMDPSEDEGRSQYKHLLRLEDGTDIVKGRTEWRPKNAGTNGA ISTAKPSNGNSVS CpauFATB1.DELTA.28 deletion mutant of Cuphea paucipetala FATB1 acyl-ACP thioesterase SEQ ID NO: 50 ##STR00011## AVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLVDSVGLKSVVLDGLV SRQIFSIRSYEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTP GMCKNDLIWVLTKMQIMVNRYPTWGDTVEINTWFSHSGKIGMASDWLIT DCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHYVDSPHVIED NDRKLHKFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIE VLETQELCSLTVEYRRECGMDSVLESVTAMDPSEDEGRSQYKHLLRLED GTDIVKGRTEWRPKNAGTNGAISTAKPSNGNSVS Mature CpauFATB1.DELTA.28 deletion mutant of Cuphea paucipetala FATB1 acyl-ACP thioesterase SEQ ID NO: 51 NASAHPKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLVDSV GLKSVVLDGLVSRQIFSIRSYEIGADRTASIETLMNHLQETSINHCKSL GLLNDGFGRTPGMCKNDLIWVLTKMQIMVNRYPTWGDTVEINTWFSHSG KIGMASDWLITDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTP HYVDSPHVIEDNDRKLHKFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKY IGWILESMPIEVLETQELCSLTVEYRRECGMDSVLESVTAMDPSEDEGR SQYKHLLRLEDGTDIVKGRTEWRPKNAGTNGAISTAKPSNGNSVS CpauFATB1.DELTA.28 CDS SEQ ID NO: 52 ##STR00012## tgcgccgctccgccggctccggcccccgccgccccgcccgccccctgcc cgtgcgcgccgccatcaacgcctccgcccaccccaaggccaacggctcc gccgtgaacctgaagtccggctccctgaacacccaggaggacacctcct cctccccccccccccgcgccttcctgaaccagctgcccgactggtccat gctggtggactccgtgggcctgaagtccgtggtgctggacggcctggtg tcccgccagatcttctccatccgctcctacgagatcggcgccgaccgca ccgcctccatcgagaccctgatgaaccacctgcaggagacctccatcaa ccactgcaagtccctgggcctgctgaacgacggcttcggccgcaccccc ggcatgtgcaagaacgacctgatctgggtgctgaccaagatgcagatca tggtgaaccgctaccccacctggggcgacaccgtggagatcaacacctg gttctcccactccggcaagatcggcatggcctccgactggctgatcacc gactgcaacaccggcgagatcctgatccgcgccacctccgtgtgggcca tgatgaaccagaagacccgccgcttctcccgcctgccctacgaggtgcg ccaggagctgaccccccactacgtggactccccccacgtgatcgaggac aacgaccgcaagctgcacaagttcgacgtgaagaccggcgactccatcc gcaagggcctgaccccccgctggaacgacctggacgtgaaccagcacgt gtccaacgtgaagtacatcggctggatcctggagtccatgcccatcgag gtgctggagacccaggagctgtgctccctgaccgtggagtaccgccgcg agtgcggcatggactccgtgctggagtccgtgaccgccatggacccctc cgaggacgagggccgctcccagtacaagcacctgctgcgcctggaggac ggcaccgacatcgtgaagggccgcaccgagtggcgccccaagaacgccg gcaccaacggcgccatctccaccgccaagccctccaacggcaactccgt gtccatggactacaaggaccacgacggcgactacaaggaccacgacatc ##STR00013## ChFATB2 (Uniprot Q39514) SEQ ID NO: 53 MVAAAASSAFFPVPAPGASPKPGKFGNWPSSLSPSFKPKSIPNGGFQVK ANDSAHPKANGSAVSLKSGSLNTQEDTSSSPPPRTFLHQLPDWSRLLTA ITTVFVKSKRPDMHDRKSKRPDMLVDSFGLESTVQDGLVFRQSFSIRSY EIGTDRTASIETLMNHLQETSLNHCKSTGILLDGFGRTLEMCKRDLIWV VIKMQIKVNRYPAWGDTVEINTRFSRLGKIGMGRDWLISDCNTGEILVR ATSAYAMMNQKTRRLSKLPYEVHQEIVPLFVDSPVIEDSDLKVHKFKVK TGDSIQKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLA LEYRRECGRDSVLESVTAMDPSKVGVRSQYQHLLRLEDGTAIVNGATEW RPKNAGANGAISTGKTSNGNSVS ChFATB2.DELTA.27 Deletion mutant of Cuphea hookeriana FATB2 SEQ ID NO: 54 ##STR00014## AVSLKSGSLNTQEDTSSSPPPRTFLHQLPDWSRLVDSFGLESTVQDGLV FRQSFSIRSYEIGTDRTASIETLMNHLQETSLNHCKSTGILLDGFGRTL EMCKRDLIWVVIKMQIKVNRYPAWGDTVEINTRFSRLGKIGMGRDWLIS DCNTGEILVRATSAYAMMNQKTRRLSKLPYEVHQEIVPLFVDSPVIEDS DLKVHKFKVKTGDSIQKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEV LETQELCSLALEYRRECGRDSVLESVTAMDPSKVGVRSQYQHLLRLEDG TAIVNGATEWRPKNAGANGAISTGKTSNGNSVS ChFATB2.DELTA.27 Mature deletion mutant of Cuphea hookeriana FATB2 SEQ ID NO: 55 NDSAHPKANGSAVSLKSGSLNTQEDTSSSPPPRTFLHQLPDWSRLVDSF GLESTVQDGLVFRQSFSIRSYEIGTDRTASIETLMNHLQETSLNHCKST GILLDGFGRTLEMCKRDLIWVVIKMQIKVNRYPAWGDTVEINTRFSRLG KIGMGRDWLISDCNTGEILVRATSAYAMMNQKTRRLSKLPYEVHQEIVP LFVDSPVIEDSDLKVHKFKVKTGDSIQKGLTPGWNDLDVNQHVSNVKYI GWILESMPTEVLETQELCSLALEYRRECGRDSVLESVTAMDPSKVGVRS QYQHLLRLEDGTAIVNGATEWRPKNAGANGAISTGKTSNGNSVS ChFATB2.DELTA.27 CDS SEQ ID NO: 56 ##STR00015## tgcgccgctccgccggctccggcccccgccgccccgcccgccccctgcc cgtgcgcgccgccatcaacgactccgcccaccccaaggccaacggctcc gccgtgagcctgaagtccggcagcctgaacacccaggaggacacctcct ccagcccccccccccgcaccttcctgcaccagctgcccgactggagccg cctggtggacagcttcggcctggagtccaccgtgcaggacggcctggtg ttccgccagtccttctccatccgctcctacgagatcggcaccgaccgca ccgccagcatcgagaccctgatgaaccacctgcaggagacctccctgaa ccactgcaagagcaccggcatcctgctggacggcttcggccgcaccctg gagatgtgcaagcgcgacctgatctgggtggtgatcaagatgcagatca aggtgaaccgctaccccgcctggggcgacaccgtggagatcaacacccg cttcagccgcctgggcaagatcggcatgggccgcgactggctgatctcc gactgcaacaccggcgagatcctggtgcgcgccaccagcgcctacgcca tgatgaaccagaagacccgccgcctgtccaagctgccctacgaggtgca ccaggagatcgtgcccctgttcgtggacagccccgtgatcgaggactcc gacctgaaggtgcacaagttcaaggtgaagaccggcgacagcatccaga agggcctgacccccggctggaacgacctggacgtgaaccagcacgtgtc caacgtgaagtacatcggctggatcctggagagcatgcccaccgaggtg ctggagacccaggagctgtgctccctggccctggagtaccgccgcgagt gcggccgcgactccgtgctggagagcgtgaccgccatggaccccagcaa ggtgggcgtgcgctcccagtaccagcacctgctgcgcctggaggacggc accgccatcgtgaacggcgccaccgagtggcgccccaagaacgccggcg ccaacggcgccatctccaccggcaagaccagcaacggcaactccgtgtc catggactacaaggaccacgacggcgactacaaggaccacgacatcgac ##STR00016## Nucleotide sequence of transforming DNA contained in pSZ6315 SEQ ID NO: 57 caccggcgcgctgcttcgcgtgccgggtgcagcaatcagatccaagtct gacgacttgcgcgcacgcgccggatccttcaattccaaagtgtcgtccg cgtgcgcttcttcgccttcgtcctcttgaacatccagcgacgcaagcgc agggcgctgggcggctggcgtcccgaaccggcctcggcgcacgcggctg aaattgccgatgtcggcaatgtagtgccgctccgcccacctctcaatta agtttttcagcgcgtggttgggaatgatctgcgctcatggggcgaaaga aggggttcagaggtgctttattgttactcgactgggcgtaccagcattc gtgcatgactgattatacatacaaaagtacagctcgcttcaatgccctg cgattcctactcccgagcgagcactcctctcaccgtcgggttgcttccc acgaccacgccggtaagagggtctgtggcctcgcgcccctcgcgagcgc atctttccagccacgtctgtatgattttgcgctcatacgtctggcccgt cgaccccaaaatgacgggatcctgcataatatcgcccgaaatgggatcc aggcattcgtcaggaggcgtcagccccgcgggagatgccggtcccgccg
##STR00017## ggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaac ggcctgggcctgacgccccagatgggctgggacaactggaacacgttcg cctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctc cgacctgggcctgaaggacatgggctacaagtacatcatcctggacgac tgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagc agaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaa ctccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgcc ggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcg cgaacaaccgcgtggactacctgaagtacgacaactgctacaacaaggg ccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtcc gacgccctgaacaagacgggccgccccatcttctactccctgtgcaact ggggccaggacctgaccttctactggggctccggcatcgcgaactcctg gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgc tgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccact gctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgc gggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggc aacctgacggacgacgaggagaaggcgcacttctccatgtgggccatgg tgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctc ctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggac tccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgaca cggacgagtacggccagggcgagatccagatgtggtccggccccctgga caacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgc cccatgaacacgaccctggaggagatcttcttcgactccaacctgggct ccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccg cgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgcc accggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgt ccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccc caacgcgatcctgaacacgaccgtccccgcccacggcatcgcgttctac ##STR00018## ctgatgtggcgcggacgccgtcgtactctttcagactttactcttgagg aattgaacctttctcgcttgctggcatgtaaacattggcgcaattaatt gtgtgatgaagaaagggtggcacaagatggatcgcgaatgtacgagatc gacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtc gcatgtccggcgcaatgtgatccagcggcgtgactctcgcaacctggta gtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcc cgtcaactcacaagcctactctagctcccattgcgcactcgggcgcccg gctcgatcaatgttctgagcggagggcgaagcgtcaggaaatcgtctcg gcagctggaagcgcatggaatgcggagcggagatcgaatcaggatcccg cgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcg cacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttgg ttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggc gaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgttcac ##STR00019## ##STR00020## gcgtgcggggctggcgggagtgggacgccctcctcgctcctctctgttc tgaacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaac gaagaaaaccccccgatgataggttgcggtggctgccgggatatagatc cggccgcacatcaaagggcccctccgccagagaagaagctcctttccca gcagactccttctgctgccaaaacacttctctgtccacagcaacaccaa aggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgt gcttgcaacaggtccctgcactattatcttcctgctttcctctgaatta tgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgccctc gctgatcgagtgtacagtcaatgaatggtgagctccgcgcctgcgcgag gacgcagaacaacgctgccgccgtgtcttttgcacgcgcgactccggcg cttcgctggtggcacccccataaagaaaccctcaattctgtttgtggaa gacacggtgtacccccacccacccacctgcacctctattattggtatta ttgacgcgggagtgggcgttgtaccctacaacgtagcttctctagtttt cagctggctcccaccattgtaaattcatgctagaatagtgcgtggttat gtgagaggtatagtgtgtctgagcagacggggcgggatgcatgtcgtgg tggtgatctttggctcaaggcgtcgtcgacgtgacgtgcccgatcatga gagcaataccgcgctcaaagccgacgcatagcctttactccgcaatcca aacgactgtcgctcgtattttttggatatctattttaaagagcgagcac agcgccgggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggg gccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggagg aacgcatggtgcgtgcgcaatataagatacatgtattgttgtcctgcag g Nucleotide sequence of BnOTE (D124A) in pSZ6316 SEQ ID NO: 58 ##STR00021## Nucleotide sequence of BnOTE (D209A) in pSZ6317 SEQ ID NO: 59 ##STR00022## Nucleotide sequence of BnOTE (D124A, D209A) in pSZ6318 SEQ ID NO: 60 ##STR00023## Amino acid sequence of wild-type BnOTE; positions D124 and D209 underlined SEQ ID NO: 61 MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRASQLRKPALDPL RAVISADQGSISPVNSCTPADRLRAGRLMEDGYSYKEKFIVRSYEVGIN KTATVETIANLLQEVACNHVQKCGFSTDGFATTLTMRKLHLIWVTARMH IEIYKYPAWSDVVEIETWCQSEGRIGIRRDWILRDSATNEVIGRATSKW VMMNQDTRRLQRVIDEVRDEYLVFCPREPRLAFPEENNSSLKKIPKLED PAQYSMLELKPRRADLDMNQHVNNVTYIGWVLESIPQEIIDTHELQVIT LDYRRECQQDDIVDSLTTSEIPDDPISKFTGTNGSAMSSIQGHNESQFL HMLRLSENGQEINRGRTQWRKKSSR*
Sequence CWU
1
1
621418PRTCuphea crassiflora 1Met Val Ala Ala Ala Ala Ser Ser Ala Phe Phe
Pro Val Pro Ala Pro1 5 10
15Gly Thr Ser Thr Lys Pro Arg Lys Ser Gly Asn Trp Pro Ser Arg Leu
20 25 30Ser Pro Ser Ser Lys Pro Lys
Ser Ile Pro Asn Gly Gly Phe Gln Val 35 40
45Lys Ala Asn Ala Ser Ala His Pro Lys Ala Asn Gly Ser Ala Val
Asn 50 55 60Leu Lys Ser Gly Ser Leu
Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro65 70
75 80Pro Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp
Trp Ser Met Leu Leu 85 90
95Thr Ala Ile Thr Thr Val Phe Val Ala Ala Glu Lys Gln Trp Thr Met
100 105 110Leu Asp Arg Lys Ser Lys
Arg Pro Asp Met Leu Val Asp Ser Val Gly 115 120
125Leu Lys Ser Ile Val Arg Asp Gly Leu Val Ser Arg Gln Ser
Phe Ser 130 135 140Ile Arg Ser Tyr Glu
Ile Gly Ala Asp Arg Thr Ala Ser Ile Glu Thr145 150
155 160Leu Met Asn His Leu Gln Glu Thr Ser Ile
Asn His Cys Lys Ser Leu 165 170
175Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn
180 185 190Asp Leu Ile Trp Val
Leu Thr Lys Met Gln Ile Met Val Asn Arg Tyr 195
200 205Pro Thr Trp Gly Asp Thr Val Glu Ile Asn Thr Trp
Phe Ser Gln Ser 210 215 220Gly Lys Ile
Gly Met Gly Ser Asp Trp Leu Ile Ser Asp Cys Asn Thr225
230 235 240Gly Glu Ile Leu Ile Arg Ala
Thr Ser Val Trp Ala Met Met Asn Gln 245
250 255Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr Glu Val
Arg Gln Glu Leu 260 265 270Thr
Pro His Phe Val Asp Ser Pro His Val Ile Glu Asp Asn Asp Arg 275
280 285Lys Leu His Lys Phe Asp Val Lys Thr
Gly Asp Ser Ile Arg Lys Gly 290 295
300Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val Ser Asn305
310 315 320Val Lys Tyr Ile
Gly Trp Ile Leu Glu Ser Met Pro Ile Glu Val Leu 325
330 335Glu Thr Gln Glu Leu Cys Ser Leu Thr Val
Glu Tyr Arg Arg Glu Cys 340 345
350Gly Met Asp Ser Lys Leu Glu Ser Val Thr Ala Met Asp Pro Ser Glu
355 360 365Glu Asp Gly Val Arg Ser Gln
Tyr Asn His Leu Leu Arg Leu Glu Asp 370 375
380Gly Thr Asp Val Val Lys Gly Arg Thr Glu Trp Arg Pro Lys Asn
Ala385 390 395 400Gly Thr
Asn Gly Ala Ile Ser Thr Gly Lys Thr Ser Asn Gly Asn Ser
405 410 415Val Ser2415PRTCuphea koehneana
2Met Val Thr Ala Ala Ala Ser Ser Ala Phe Phe Pro Val Pro Ala Pro1
5 10 15Gly Thr Ser Pro Lys Pro
Gly Lys Ser Trp Pro Ser Ser Leu Ser Pro 20 25
30Ser Phe Lys Pro Lys Ser Ile Pro Asn Ala Gly Phe Gln
Val Lys Ala 35 40 45Asn Ala Ser
Ala His Pro Lys Ala Asn Gly Ser Ala Val Asn Leu Lys 50
55 60Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr Ser Ser
Ser Pro Pro Pro65 70 75
80Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp Ser Met Leu Leu Thr Ala
85 90 95Ile Thr Thr Val Phe Val
Ala Ala Glu Lys Gln Trp Thr Met Arg Asp 100
105 110Arg Lys Ser Lys Arg Pro Asp Met Leu Val Asp Ser
Val Gly Ser Lys 115 120 125Ser Ile
Val Leu Asp Gly Leu Val Ser Arg Gln Ile Phe Ser Ile Arg 130
135 140Ser Tyr Glu Ile Gly Ala Asp Arg Thr Ala Ser
Ile Glu Thr Leu Met145 150 155
160Asn His Leu Gln Glu Thr Ser Ile Asn His Cys Lys Ser Leu Gly Leu
165 170 175Leu Asn Asp Gly
Phe Gly Arg Thr Pro Gly Met Cys Lys Asn Asp Leu 180
185 190Ile Trp Val Leu Thr Lys Met Gln Ile Met Val
Asn Arg Tyr Pro Thr 195 200 205Trp
Gly Asp Thr Val Glu Ile Asn Thr Trp Phe Ser His Ser Gly Lys 210
215 220Ile Gly Met Ala Ser Asp Trp Leu Ile Thr
Asp Cys Asn Thr Gly Glu225 230 235
240Ile Leu Ile Arg Ala Thr Ser Val Trp Ala Met Met Asn Gln Lys
Thr 245 250 255Arg Arg Phe
Ser Arg Leu Pro Tyr Glu Val Arg Gln Glu Leu Thr Pro 260
265 270His Tyr Val Asp Ser Pro His Val Ile Glu
Asp Asn Asp Arg Lys Leu 275 280
285His Lys Phe Asp Val Lys Thr Gly Asp Ser Ile Arg Lys Gly Leu Thr 290
295 300Pro Lys Trp Asn Asp Leu Asp Val
Asn Gln His Val Asn Asn Val Lys305 310
315 320Tyr Ile Gly Trp Ile Leu Glu Ser Met Pro Ile Glu
Val Leu Glu Thr 325 330
335Gln Glu Leu Cys Ser Leu Thr Val Glu Tyr Arg Arg Glu Cys Gly Met
340 345 350Asp Ser Val Leu Glu Ser
Val Thr Ala Met Asp Pro Ser Glu Asp Gly 355 360
365Gly Leu Ser Gln Tyr Lys His Leu Leu Arg Leu Glu Asp Gly
Thr Asp 370 375 380Ile Val Lys Gly Arg
Thr Glu Trp Arg Pro Lys Asn Ala Gly Thr Asn385 390
395 400Gly Ala Ile Ser Thr Ala Lys Pro Ser Asn
Gly Asn Ser Val Ser 405 410
4153417PRTCuphea leptopoda 3Met Val Gly Ala Ala Ala Ser Ser Ala Phe Phe
Pro Ala Pro Ala Pro1 5 10
15Gly Thr Ser Pro Lys Pro Gly Lys Ser Gly Asn Trp Pro Ser Ser Leu
20 25 30Ser Pro Ser Leu Lys Pro Lys
Ser Ile Pro Asn Gly Gly Phe Gln Val 35 40
45Lys Ala Asn Ala Ser Ala His Pro Lys Ala Asn Gly Ala Ala Val
Asn 50 55 60Leu Lys Ser Gly Ser Leu
Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro65 70
75 80Pro Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp
Trp Ser Met Leu Leu 85 90
95Thr Ala Ile Thr Thr Val Phe Val Ala Ala Glu Lys Gln Trp Thr Met
100 105 110Leu Asp Arg Lys Ser Lys
Arg Pro Asp Met Leu Val Asp Ser Val Gly 115 120
125Leu Lys Asn Ile Val Arg Asp Gly Leu Val Ser Arg Gln Ser
Phe Ser 130 135 140Ile Arg Ser Tyr Glu
Ile Gly Ala Asp Arg Thr Ala Ser Ile Glu Thr145 150
155 160Leu Met Asn His Leu Gln Glu Thr Ser Ile
Asn His Cys Lys Ser Leu 165 170
175Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn
180 185 190Asp Leu Ile Trp Val
Leu Thr Lys Met Gln Ile Leu Val Asn Arg Tyr 195
200 205Pro Ala Trp Gly Asp Thr Val Glu Ile Asn Thr Trp
Phe Ser Gln Ser 210 215 220Gly Lys Ile
Gly Met Gly Ser Asp Trp Leu Ile Ser Asp Cys Asn Thr225
230 235 240Gly Glu Ile Leu Ile Arg Ala
Thr Ser Val Trp Ala Met Met Asn Gln 245
250 255Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr Glu Val
Arg Gln Glu Leu 260 265 270Thr
Pro His Phe Val Asp Ser Pro His Val Ile Glu Asp Asn Asp Arg 275
280 285Lys Leu His Lys Phe Asp Val Lys Thr
Gly Asp Ser Ile Arg Lys Gly 290 295
300Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val Ser Asn305
310 315 320Val Lys Tyr Ile
Gly Trp Ile Leu Glu Ser Met Pro Ile Glu Val Leu 325
330 335Glu Thr Gln Glu Leu Cys Ser Leu Thr Val
Glu Tyr Arg Arg Glu Cys 340 345
350Gly Met Asp Ser Val Leu Glu Ser Val Thr Ala Arg Asp Pro Ser Glu
355 360 365Asp Gly Gly Arg Ser Gln Tyr
Asn His Leu Leu Arg Leu Glu Asp Gly 370 375
380Thr Asp Val Val Lys Gly Arg Thr Glu Trp Arg Ser Lys Asn Ala
Gly385 390 395 400Thr Asn
Gly Ala Thr Ser Thr Ala Lys Thr Ser Asn Gly Asn Ser Val
405 410 415Ser4417PRTCuphea angustifolia
4Met Val Ala Ala Ala Ala Ser Ser Ala Phe Phe Pro Val Pro Ala Pro1
5 10 15Gly Thr Ser Leu Lys Pro
Gly Lys Ser Gly Asn Trp Pro Ser Ser Leu 20 25
30Ser Pro Ser Phe Lys Pro Lys Thr Ile Pro Ser Gly Gly
Leu Gln Val 35 40 45Lys Ala Asn
Ala Ser Ala His Pro Lys Ala Asn Gly Ser Ala Val Asn 50
55 60Leu Lys Ser Gly Ser Leu Asp Thr Gln Glu Asp Thr
Ser Ser Ser Pro65 70 75
80Pro Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp Ser Met Leu Leu
85 90 95Thr Ala Ile Thr Thr Val
Phe Val Ala Ala Glu Lys Gln Trp Thr Met 100
105 110Leu Asp Arg Lys Ser Lys Arg Pro Glu Met Leu Val
Asp Ser Val Gly 115 120 125Leu Lys
Ser Ser Val Arg Asp Gly Leu Val Ser Arg Gln Ser Phe Ser 130
135 140Ile Arg Ser Tyr Glu Ile Gly Ala Asp Arg Thr
Ala Ser Ile Glu Thr145 150 155
160Leu Met Asn His Leu Gln Glu Thr Ser Ile Asn His Cys Lys Ser Leu
165 170 175Gly Leu Leu Asn
Asp Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn 180
185 190Asp Leu Ile Trp Val Leu Thr Lys Met Gln Ile
Met Val Asn Arg Tyr 195 200 205Pro
Thr Trp Gly Asp Thr Val Glu Val Asn Thr Trp Phe Ser Gln Ser 210
215 220Gly Lys Ile Gly Met Ala Ser Asp Trp Leu
Ile Ser Asp Cys Asn Thr225 230 235
240Gly Glu Ile Leu Ile Arg Ala Thr Ser Val Trp Ala Met Met Asn
Gln 245 250 255Lys Thr Arg
Arg Phe Ser Arg Leu Pro Tyr Glu Val Arg Gln Glu Leu 260
265 270Thr Pro His Tyr Val Asp Ser Pro His Val
Ile Glu Asp Asn Asp Arg 275 280
285Lys Leu His Lys Phe Asp Val Lys Thr Gly Asp Ser Ile Arg Lys Gly 290
295 300Leu Thr Pro Arg Trp Asn Asp Leu
Asp Val Asn Gln His Val Ser Asn305 310
315 320Val Lys Tyr Ile Gly Trp Ile Leu Glu Ser Met Pro
Ile Glu Val Leu 325 330
335Glu Thr Gln Glu Leu Cys Ser Leu Thr Val Glu Tyr Arg Arg Glu Cys
340 345 350Gly Met Asp Ser Val Leu
Glu Ser Val Thr Ala Met Asp Pro Ser Glu 355 360
365Asp Gly Gly Val Ser Gln Tyr Lys His Leu Leu Arg Leu Glu
Asp Gly 370 375 380Thr Asp Ile Val Lys
Gly Arg Thr Glu Trp Arg Pro Lys Asn Ala Gly385 390
395 400Thr Asn Gly Ala Thr Ser Lys Ala Lys Thr
Ser Asn Gly Asn Ser Val 405 410
415Ser5417PRTCuphea llavea 5Met Val Ala Ala Ala Ala Ser Ser Ala Phe
Phe Pro Ala Pro Ala Pro1 5 10
15Gly Ser Ser Pro Lys Pro Gly Lys Pro Gly Asn Trp Pro Ser Ser Leu
20 25 30Ser Pro Ser Phe Lys Pro
Lys Ser Ile Pro Asn Gly Arg Phe Gln Val 35 40
45Lys Ala Asn Ala Ser Ala His Pro Lys Ala Asn Gly Ser Ala
Val Asn 50 55 60Leu Lys Ser Gly Ser
Leu Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro65 70
75 80Pro Pro Arg Ala Phe Leu Asn Gln Leu Pro
Asp Trp Ser Met Leu Leu 85 90
95Ser Ala Ile Thr Thr Val Phe Val Ala Ala Glu Lys Gln Trp Thr Met
100 105 110Leu Asp Arg Lys Ser
Lys Arg Pro Asp Met Leu Val Asp Ser Val Gly 115
120 125Leu Lys Asn Ile Val Arg Asp Gly Leu Val Ser Arg
Gln Ser Phe Ser 130 135 140Ile Arg Ser
Tyr Glu Ile Gly Ala Asp Arg Thr Ala Ser Ile Glu Thr145
150 155 160Leu Met Asn His Leu Gln Glu
Thr Ser Ile Asn His Cys Lys Ser Leu 165
170 175Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly
Met Cys Lys Asn 180 185 190Asp
Leu Ile Trp Val Leu Thr Lys Met Gln Ile Met Val Asn Arg Tyr 195
200 205Pro Ala Trp Gly Asp Thr Val Glu Ile
Asn Thr Trp Phe Ser Gln Ser 210 215
220Gly Lys Ile Gly Met Gly Ser Asp Trp Leu Ile Ser Asp Cys Asn Thr225
230 235 240Gly Glu Ile Leu
Ile Arg Ala Thr Ser Val Trp Ala Met Met Asn Gln 245
250 255Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr
Glu Val Arg Gln Glu Leu 260 265
270Thr Pro His Phe Val Asp Ser Pro His Val Ile Glu Asp Asn Asp Arg
275 280 285Lys Leu His Lys Phe Asp Val
Lys Thr Gly Asp Ser Ile Arg Lys Gly 290 295
300Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val Ser
Asn305 310 315 320Val Lys
Tyr Ile Gly Trp Ile Leu Glu Ser Met Pro Ile Glu Val Leu
325 330 335Glu Thr Gln Glu Leu Cys Ser
Leu Thr Val Glu Tyr Arg Arg Glu Cys 340 345
350Gly Met Asp Ser Val Leu Glu Ser Val Thr Ala Ile Asp Pro
Ser Glu 355 360 365Asp Gly Gly Arg
Ser Gln Tyr Asn His Leu Leu Arg Leu Asp Asp Gly 370
375 380Thr Asp Val Val Lys Gly Arg Thr Glu Trp Arg Pro
Lys Asn Ala Gly385 390 395
400Thr Asn Gly Ala Ile Ser Thr Gly Lys Thr Ser Asn Gly Asn Ser Val
405 410 415Ser6417PRTCuphea
lophostoma 6Met Val Ala Ala Ala Ala Ser Ser Ala Phe Phe Pro Val Pro Ala
Pro1 5 10 15Gly Thr Ser
Leu Lys Pro Trp Lys Ser Gly Asn Trp Pro Ser Ser Leu 20
25 30Ser Pro Ser Phe Lys Pro Lys Thr Ile Pro
Ser Gly Gly Phe Gln Val 35 40
45Lys Ala Asn Ala Ser Ala Gln Pro Lys Ala Asn Gly Ser Ala Val Asn 50
55 60Leu Lys Ser Gly Ser Leu Asn Thr Gln
Glu Asp Thr Thr Ser Ser Pro65 70 75
80Pro Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp Ser Met
Leu Leu 85 90 95Thr Ala
Ile Thr Thr Val Phe Val Ala Ala Glu Lys Gln Trp Thr Met 100
105 110Leu Asp Arg Lys Ser Lys Arg Pro Glu
Lys Leu Val Asp Ser Val Gly 115 120
125Leu Lys Ser Ser Val Arg Asp Gly Leu Val Ser Arg Gln Ser Phe Ser
130 135 140Ile Arg Ser Tyr Glu Ile Gly
Ala Asp Arg Thr Ala Ser Ile Glu Thr145 150
155 160Leu Met Asn His Leu Gln Glu Thr Ser Ile Asn His
Cys Lys Ser Leu 165 170
175Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn
180 185 190Asp Leu Ile Trp Val Leu
Thr Lys Met Gln Ile Met Val Asn Arg Tyr 195 200
205Pro Thr Trp Gly Asp Thr Val Glu Ile Asn Thr Trp Phe Ser
Gln Ser 210 215 220Gly Lys Ile Gly Met
Ala Ser Asp Trp Leu Ile Ser Asp Cys Asn Thr225 230
235 240Gly Glu Ile Leu Ile Arg Ala Thr Ser Val
Trp Ala Met Met Asn Gln 245 250
255Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr Glu Val Arg Gln Glu Leu
260 265 270Thr Pro His Tyr Val
Asp Ser Pro His Val Ile Glu Asp Asn Asp Arg 275
280 285Lys Leu His Lys Phe Asp Val Lys Thr Gly Asp Ser
Ile Arg Lys Gly 290 295 300Leu Thr Pro
Arg Trp Asn Asp Leu Asp Val Asn Gln His Val Ser Asn305
310 315 320Val Lys Tyr Ile Gly Trp Ile
Leu Glu Ser Met Pro Ile Glu Val Leu 325
330 335Glu Thr Gln Glu Leu Cys Ser Leu Thr Val Glu Tyr
Arg Arg Glu Cys 340 345 350Gly
Met Asp Ser Val Leu Glu Ser Val Thr Ala Met Asp Pro Ser Glu 355
360 365Asp Glu Gly Arg Ser Gln Tyr Lys His
Leu Leu Arg Leu Glu Asp Gly 370 375
380Thr Asp Ile Val Lys Gly Arg Thr Glu Trp Arg Pro Lys Asn Ala Gly385
390 395 400Thr Asn Gly Ala
Ile Ser Thr Ala Lys Asn Ser Asn Gly Asn Ser Val 405
410 415Ser7384PRTSassafras albidum 7Met Ala Thr
Thr Ser Leu Ala Ser Ala Phe Cys Ser Met Lys Ala Val1 5
10 15Met Leu Ala Arg Asp Gly Arg Gly Met
Lys Pro Arg Ser Ser Asp Leu 20 25
30Gln Leu Arg Ala Gly Asn Ala Gln Thr Pro Leu Lys Met Ile Asn Gly
35 40 45Thr Lys Phe Ser Tyr Thr Glu
Ser Leu Lys Arg Leu Pro Asp Trp Ser 50 55
60Met Leu Phe Ala Val Ile Thr Thr Ile Phe Ser Val Ala Glu Lys Gln65
70 75 80Trp Thr Asn Leu
Glu Trp Lys Pro Lys Pro Lys Pro Arg Leu Pro Gln 85
90 95Leu Leu Asp Asp His Phe Gly Leu His Gly
Leu Val Phe Arg Arg Thr 100 105
110Phe Ala Ile Arg Ser Tyr Glu Val Gly Pro Asp Arg Ser Thr Ser Ile
115 120 125Val Ala Val Met Asn His Leu
Gln Glu Ala Thr Leu Asn His Ala Lys 130 135
140Ser Val Gly Ile Leu Gly Asp Gly Phe Gly Thr Thr Leu Glu Met
Ser145 150 155 160Lys Arg
Asp Leu Ala Trp Val Val Arg Arg Thr His Val Ala Val Glu
165 170 175Arg Tyr Pro Ala Trp Gly Asp
Thr Val Glu Val Glu Cys Trp Ile Gly 180 185
190Ala Ser Gly Asn Asn Gly Met Arg Arg Asp Phe Leu Val Arg
Asp Cys 195 200 205Lys Thr Gly Glu
Ile Leu Thr Arg Cys Thr Ser Leu Ser Val Met Met 210
215 220Asn Thr Arg Thr Arg Arg Leu Ser Lys Ile Pro Glu
Glu Val Arg Gly225 230 235
240Glu Ile Gly Pro Leu Phe Ile Asp Asn Val Ala Val Lys Asp Glu Glu
245 250 255Ile Lys Lys Leu Gln
Lys Leu Asn Asp Ser Ser Ala Asp Tyr Ile Gln 260
265 270Gly Gly Leu Thr Pro Arg Trp Asn Asp Leu Asp Val
Asn Gln His Val 275 280 285Asn Asn
Ile Lys Tyr Val Gly Trp Ile Leu Glu Thr Val Pro Asp Ser 290
295 300Ile Phe Glu Ser His His Ile Ser Ser Ile Thr
Leu Glu Tyr Arg Arg305 310 315
320Glu Cys Thr Arg Asp Ser Val Leu Gln Ser Leu Thr Thr Val Ser Gly
325 330 335Gly Ser Leu Glu
Ala Gly Leu Val Cys Asp His Leu Leu Gln Leu Glu 340
345 350Gly Gly Ser Glu Val Leu Arg Ala Arg Thr Glu
Trp Arg Pro Lys Leu 355 360 365Thr
Asp Ser Phe Arg Gly Ile Ile Val Ile Pro Ala Glu Pro Ser Val 370
375 3808384PRTSassafras albidum 8Met Ala Thr Thr
Ser Leu Ala Ser Ala Phe Cys Ser Met Lys Ala Val1 5
10 15Met Leu Ala Arg Asp Gly Arg Gly Met Lys
Pro Arg Ser Ser Asp Leu 20 25
30Gln Leu Arg Ala Gly Asn Ala Gln Thr Pro Leu Lys Met Ile Asn Gly
35 40 45Thr Lys Phe Ser Tyr Thr Glu Ser
Leu Lys Arg Leu Pro Asp Trp Ser 50 55
60Met Leu Phe Ala Val Ile Thr Thr Ile Phe Ser Val Ala Glu Lys Gln65
70 75 80Trp Thr Asn Leu Glu
Trp Lys Pro Lys Pro Lys Pro Arg Leu Pro Gln 85
90 95Leu Leu Asp Asp His Phe Gly Leu His Gly Leu
Val Phe Arg Arg Thr 100 105
110Phe Ala Ile Arg Ser Tyr Glu Val Gly Pro Asp Arg Ser Thr Ser Ile
115 120 125Val Ala Val Met Asn His Leu
Gln Glu Ala Thr Leu Asn His Ala Lys 130 135
140Ser Val Gly Ile Leu Gly Asp Gly Phe Gly Thr Thr Leu Glu Met
Ser145 150 155 160Lys Arg
Asp Leu Ala Trp Val Val Arg Arg Thr His Val Ala Val Glu
165 170 175Arg Tyr Pro Ala Trp Gly Asp
Thr Val Glu Val Glu Ala Trp Val Gly 180 185
190Ala Ser Gly Asn Ile Gly Met Arg Arg Asp Phe Leu Val Arg
Asp Cys 195 200 205Lys Thr Gly His
Ile Leu Ala Arg Cys Thr Ser Val Ser Val Met Met 210
215 220Asn Ala Arg Thr Arg Arg Leu Ser Lys Ile Pro Gln
Glu Val Arg Ala225 230 235
240Glu Ile Asp Pro Leu Phe Ile Glu Lys Val Ala Val Lys Glu Gly Glu
245 250 255Ile Lys Lys Leu Gln
Lys Phe Asn Asp Ser Thr Ala Asp Tyr Ile Gln 260
265 270Gly Gly Trp Thr Pro Arg Trp Asn Asp Leu Asp Val
Asn Gln His Val 275 280 285Asn Asn
Ile Lys Tyr Ile Gly Trp Ile Phe Lys Ser Val Pro Asp Ser 290
295 300Ile Ser Glu Asn His Tyr Leu Ser Ser Ile Thr
Leu Glu Tyr Arg Arg305 310 315
320Glu Cys Thr Arg Gly Ser Ala Leu Gln Ser Leu Thr Thr Val Cys Gly
325 330 335Asp Ser Ser Glu
Ala Gly Ile Ile Cys Glu His Leu Leu Gln Leu Glu 340
345 350Asp Gly Pro Glu Val Leu Arg Ala Arg Thr Glu
Trp Arg Pro Lys Leu 355 360 365Thr
Asp Ser Phe Arg Gly Ile Ile Val Ile Pro Ala Glu Pro Ser Val 370
375 3809380PRTLindera benzoin 9Met Val Ala Thr
Ser Leu Ala Ser Ala Phe Cys Ser Met Lys Ala Val1 5
10 15Met Leu Ala Asp Asp Gly Arg Gly Met Lys
Pro Arg Ser Ser Asp Leu 20 25
30Gln Leu Arg Ala Gly Asn Ala Gln Thr Ser Leu Lys Met Ile Asp Gly
35 40 45Thr Lys Phe Ser Tyr Thr Glu Ser
Leu Lys Arg Leu Pro Asp Trp Ser 50 55
60Lys Leu Leu Thr Val Ile Thr Thr Ile Phe Ser Ala Ala Glu Lys Gln65
70 75 80Trp Thr Asn Leu Glu
Arg Lys Pro Lys Pro Pro His Leu Leu Asp Asp 85
90 95Arg Phe Gly Leu His Gly Leu Val Phe Arg Arg
Thr Phe Ala Ile Arg 100 105
110Ser Tyr Glu Val Gly Pro Asp Arg Ser Ala Ser Ile Leu Ala Val Leu
115 120 125Asn His Leu Gln Glu Ala Thr
Leu Asn His Ala Glu Ser Val Gly Ile 130 135
140Leu Gly Asp Arg Phe Gly Glu Thr Leu Glu Met Ser Lys Arg Asp
Leu145 150 155 160Met Trp
Val Val Arg Arg Thr Tyr Val Ala Val Glu Arg Tyr Pro Ala
165 170 175Trp Gly Asp Thr Val Glu Ile
Glu Ser Trp Ile Gly Ala Ser Gly Asn 180 185
190Asn Gly Met Arg Arg Glu Phe Leu Val Arg Asp Phe Lys Thr
Gly Glu 195 200 205Ile Leu Thr Arg
Cys Thr Ser Leu Ser Val Met Met Asn Thr Arg Thr 210
215 220Arg Arg Leu Ser Lys Ile Pro Glu Glu Val Arg Gly
Glu Ile Gly Pro225 230 235
240Val Phe Ile Asp Asn Val Ala Val Lys Asp Glu Glu Ile Lys Lys Leu
245 250 255Gln Lys Leu Asn Asp
Ser Thr Ala Asp Tyr Ile Gln Gly Gly Leu Ile 260
265 270Pro Arg Trp Asn Asp Leu Asp Leu Asn Gln His Val
Asn Asn Ile Lys 275 280 285Tyr Val
Ser Trp Ile Leu Glu Thr Val Pro Asp Ser Ile Leu Glu Ser 290
295 300Tyr His Met Ser Ser Ile Thr Leu Glu Tyr Arg
Arg Glu Cys Thr Arg305 310 315
320Asp Ser Val Leu Gln Ser Leu Thr Thr Val Ser Gly Gly Ser Ser Glu
325 330 335Ala Gly Leu Val
Cys Glu His Ser Leu Leu Leu Glu Gly Gly Ser Glu 340
345 350Val Leu Arg Ala Arg Thr Glu Trp Arg Pro Lys
Leu Thr Asp Ser Phe 355 360 365Arg
Gly Ile Ser Val Ile Pro Ala Glu Gln Ser Val 370 375
38010418PRTCuphea crassiflora 10Met Val Ala Ala Ala Ala Ser
Ser Ala Phe Phe Pro Val Pro Ala Pro1 5 10
15Gly Thr Ser Thr Lys Pro Arg Lys Ser Gly Asn Trp Pro
Ser Arg Leu 20 25 30Ser Pro
Ser Ser Lys Pro Lys Ser Ile Pro Asn Gly Gly Phe Gln Val 35
40 45Lys Ala Asn Ala Ser Ala His Pro Lys Ala
Asn Gly Ser Ala Val Asn 50 55 60Leu
Lys Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro65
70 75 80Pro Pro Arg Ala Phe Leu
Asn Gln Leu Pro Asp Trp Ser Met Leu Leu 85
90 95Thr Ala Ile Thr Thr Val Phe Val Ala Ala Glu Lys
Gln Trp Thr Met 100 105 110Leu
Asp Arg Lys Ser Lys Arg Pro Asp Met Leu Val Asp Ser Val Gly 115
120 125Leu Lys Ser Ile Val Arg Asp Gly Leu
Val Ser Arg Gln Ser Phe Ser 130 135
140Ile Arg Ser Tyr Glu Ile Gly Ala Asp Arg Thr Ala Ser Ile Glu Thr145
150 155 160Leu Met Asn His
Leu Gln Glu Thr Ser Ile Asn His Cys Lys Ser Leu 165
170 175Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr
Pro Gly Met Cys Lys Asn 180 185
190Asp Leu Ile Trp Val Leu Thr Lys Met Gln Ile Met Val Asn Arg Tyr
195 200 205Pro Thr Trp Gly Asp Thr Val
Glu Ile Asn Thr Trp Phe Ser Gln Ser 210 215
220Gly Lys Ile Gly Met Gly Ser Asp Trp Leu Ile Ser Asp Cys Asn
Thr225 230 235 240Gly Glu
Ile Leu Ile Arg Ala Thr Ser Val Trp Ala Met Met Asn Gln
245 250 255Lys Thr Arg Arg Phe Ser Arg
Leu Pro Tyr Glu Val Arg Gln Glu Leu 260 265
270Thr Pro His Phe Val Asp Ser Pro His Val Ile Glu Asp Asn
Asp Arg 275 280 285Lys Leu His Lys
Phe Asp Val Lys Thr Gly Asp Ser Ile Arg Lys Gly 290
295 300Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln
His Val Ser Asn305 310 315
320Val Lys Tyr Ile Gly Trp Ile Leu Glu Ser Met Pro Ile Glu Val Leu
325 330 335Glu Thr Gln Glu Leu
Cys Ser Leu Thr Val Glu Tyr Arg Arg Glu Cys 340
345 350Gly Met Asp Ser Lys Leu Glu Ser Val Thr Ala Met
Asp Pro Ser Glu 355 360 365Glu Asp
Gly Val Arg Ser Gln Tyr Asn His Leu Leu Arg Leu Glu Asp 370
375 380Gly Thr Asp Val Val Lys Gly Arg Thr Glu Trp
Arg Pro Lys Asn Ala385 390 395
400Gly Thr Asn Gly Ala Ile Ser Thr Gly Lys Thr Ser Asn Gly Asn Ser
405 410 415Val
Ser11415PRTCuphea koehneana 11Met Val Thr Ala Ala Ala Ser Ser Ala Phe Phe
Pro Val Pro Ala Pro1 5 10
15Gly Thr Ser Pro Lys Pro Gly Lys Ser Trp Pro Ser Ser Leu Ser Pro
20 25 30Ser Phe Lys Pro Lys Ser Ile
Pro Asn Ala Gly Phe Gln Val Lys Ala 35 40
45Asn Ala Ser Ala His Pro Lys Ala Asn Gly Ser Ala Val Asn Leu
Lys 50 55 60Ser Gly Ser Leu Asn Thr
Gln Glu Asp Thr Ser Ser Ser Pro Pro Pro65 70
75 80Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp Ser
Met Leu Leu Thr Ala 85 90
95Ile Thr Thr Val Phe Val Ala Ala Glu Lys Gln Trp Thr Met Arg Asp
100 105 110Arg Lys Ser Lys Arg Pro
Asp Met Leu Val Asp Ser Val Gly Ser Lys 115 120
125Ser Ile Val Leu Asp Gly Leu Val Ser Arg Gln Ile Phe Ser
Ile Arg 130 135 140Ser Tyr Glu Ile Gly
Ala Asp Arg Thr Ala Ser Ile Glu Thr Leu Met145 150
155 160Asn His Leu Gln Glu Thr Ser Ile Asn His
Cys Lys Ser Leu Gly Leu 165 170
175Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn Asp Leu
180 185 190Ile Trp Val Leu Thr
Lys Met Gln Ile Met Val Asn Arg Tyr Pro Thr 195
200 205Trp Gly Asp Thr Val Glu Ile Asn Thr Trp Phe Ser
His Ser Gly Lys 210 215 220Ile Gly Met
Ala Ser Asp Trp Leu Ile Thr Asp Cys Asn Thr Gly Glu225
230 235 240Ile Leu Ile Arg Ala Thr Ser
Val Trp Ala Met Met Asn Gln Lys Thr 245
250 255Arg Arg Phe Ser Arg Leu Pro Tyr Glu Val Arg Gln
Glu Leu Thr Pro 260 265 270His
Tyr Val Asp Ser Pro His Val Ile Glu Asp Asn Asp Arg Lys Leu 275
280 285His Lys Phe Asp Val Lys Thr Gly Asp
Ser Ile Arg Lys Gly Leu Thr 290 295
300Pro Lys Trp Asn Asp Leu Asp Val Asn Gln His Val Asn Asn Val Lys305
310 315 320Tyr Ile Gly Trp
Ile Leu Glu Ser Met Pro Ile Glu Val Leu Glu Thr 325
330 335Gln Glu Leu Cys Ser Leu Thr Val Glu Tyr
Arg Arg Glu Cys Gly Met 340 345
350Asp Ser Val Leu Glu Ser Val Thr Ala Met Asp Pro Ser Glu Asp Gly
355 360 365Gly Leu Ser Gln Tyr Lys His
Leu Leu Arg Leu Glu Asp Gly Thr Asp 370 375
380Ile Val Lys Gly Arg Thr Glu Trp Arg Pro Lys Asn Ala Gly Thr
Asn385 390 395 400Gly Ala
Ile Ser Thr Ala Lys Pro Ser Asn Gly Asn Ser Val Ser 405
410 41512417PRTCuphea leptopoda 12Met Val
Gly Ala Ala Ala Ser Ser Ala Phe Phe Pro Ala Pro Ala Pro1 5
10 15Gly Thr Ser Pro Lys Pro Gly Lys
Ser Gly Asn Trp Pro Ser Ser Leu 20 25
30Ser Pro Ser Leu Lys Pro Lys Ser Ile Pro Asn Gly Gly Phe Gln
Val 35 40 45Lys Ala Asn Ala Ser
Ala His Pro Lys Ala Asn Gly Ala Ala Val Asn 50 55
60Leu Lys Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr Ser Ser
Ser Pro65 70 75 80Pro
Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp Ser Met Leu Leu
85 90 95Thr Ala Ile Thr Thr Val Phe
Val Ala Ala Glu Lys Gln Trp Thr Met 100 105
110Leu Asp Arg Lys Ser Lys Arg Pro Asp Met Leu Val Asp Ser
Val Gly 115 120 125Leu Lys Asn Ile
Val Arg Asp Gly Leu Val Ser Arg Gln Ser Phe Ser 130
135 140Ile Arg Ser Tyr Glu Ile Gly Ala Asp Arg Thr Ala
Ser Ile Glu Thr145 150 155
160Leu Met Asn His Leu Gln Glu Thr Ser Ile Asn His Cys Lys Ser Leu
165 170 175Gly Leu Leu Asn Asp
Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn 180
185 190Asp Leu Ile Trp Val Leu Thr Lys Met Gln Ile Leu
Val Asn Arg Tyr 195 200 205Pro Ala
Trp Gly Asp Thr Val Glu Ile Asn Thr Trp Phe Ser Gln Ser 210
215 220Gly Lys Ile Gly Met Gly Ser Asp Trp Leu Ile
Ser Asp Cys Asn Thr225 230 235
240Gly Glu Ile Leu Ile Arg Ala Thr Ser Val Trp Ala Met Met Asn Gln
245 250 255Lys Thr Arg Arg
Phe Ser Arg Leu Pro Tyr Glu Val Arg Gln Glu Leu 260
265 270Thr Pro His Phe Val Asp Ser Pro His Val Ile
Glu Asp Asn Asp Arg 275 280 285Lys
Leu His Lys Phe Asp Val Lys Thr Gly Asp Ser Ile Arg Lys Gly 290
295 300Leu Thr Pro Arg Trp Asn Asp Leu Asp Val
Asn Gln His Val Ser Asn305 310 315
320Val Lys Tyr Ile Gly Trp Ile Leu Glu Ser Met Pro Ile Glu Val
Leu 325 330 335Glu Thr Gln
Glu Leu Cys Ser Leu Thr Val Glu Tyr Arg Arg Glu Cys 340
345 350Gly Met Asp Ser Val Leu Glu Ser Val Thr
Ala Arg Asp Pro Ser Glu 355 360
365Asp Gly Gly Arg Ser Gln Tyr Asn His Leu Leu Arg Leu Glu Asp Gly 370
375 380Thr Asp Val Val Lys Gly Arg Thr
Glu Trp Arg Ser Lys Asn Ala Gly385 390
395 400Thr Asn Gly Ala Thr Ser Thr Ala Lys Thr Ser Asn
Gly Asn Ser Val 405 410
415Ser13417PRTCuphea angustifolia 13Met Val Ala Ala Ala Ala Ser Ser Ala
Phe Phe Pro Val Pro Ala Pro1 5 10
15Gly Thr Ser Leu Lys Pro Gly Lys Ser Gly Asn Trp Pro Ser Ser
Leu 20 25 30Ser Pro Ser Phe
Lys Pro Lys Thr Ile Pro Ser Gly Gly Leu Gln Val 35
40 45Lys Ala Asn Ala Ser Ala His Pro Lys Ala Asn Gly
Ser Ala Val Asn 50 55 60Leu Lys Ser
Gly Ser Leu Asp Thr Gln Glu Asp Thr Ser Ser Ser Pro65 70
75 80Pro Pro Arg Ala Phe Leu Asn Gln
Leu Pro Asp Trp Ser Met Leu Leu 85 90
95Thr Ala Ile Thr Thr Val Phe Val Ala Ala Glu Lys Gln Trp
Thr Met 100 105 110Leu Asp Arg
Lys Ser Lys Arg Pro Glu Met Leu Val Asp Ser Val Gly 115
120 125Leu Lys Ser Ser Val Arg Asp Gly Leu Val Ser
Arg Gln Ser Phe Ser 130 135 140Ile Arg
Ser Tyr Glu Ile Gly Ala Asp Arg Thr Ala Ser Ile Glu Thr145
150 155 160Leu Met Asn His Leu Gln Glu
Thr Ser Ile Asn His Cys Lys Ser Leu 165
170 175Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly
Met Cys Lys Asn 180 185 190Asp
Leu Ile Trp Val Leu Thr Lys Met Gln Ile Met Val Asn Arg Tyr 195
200 205Pro Thr Trp Gly Asp Thr Val Glu Val
Asn Thr Trp Phe Ser Gln Ser 210 215
220Gly Lys Ile Gly Met Ala Ser Asp Trp Leu Ile Ser Asp Cys Asn Thr225
230 235 240Gly Glu Ile Leu
Ile Arg Ala Thr Ser Val Trp Ala Met Met Asn Gln 245
250 255Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr
Glu Val Arg Gln Glu Leu 260 265
270Thr Pro His Tyr Val Asp Ser Pro His Val Ile Glu Asp Asn Asp Arg
275 280 285Lys Leu His Lys Phe Asp Val
Lys Thr Gly Asp Ser Ile Arg Lys Gly 290 295
300Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val Ser
Asn305 310 315 320Val Lys
Tyr Ile Gly Trp Ile Leu Glu Ser Met Pro Ile Glu Val Leu
325 330 335Glu Thr Gln Glu Leu Cys Ser
Leu Thr Val Glu Tyr Arg Arg Glu Cys 340 345
350Gly Met Asp Ser Val Leu Glu Ser Val Thr Ala Met Asp Pro
Ser Glu 355 360 365Asp Gly Gly Val
Ser Gln Tyr Lys His Leu Leu Arg Leu Glu Asp Gly 370
375 380Thr Asp Ile Val Lys Gly Arg Thr Glu Trp Arg Pro
Lys Asn Ala Gly385 390 395
400Thr Asn Gly Ala Thr Ser Lys Ala Lys Thr Ser Asn Gly Asn Ser Val
405 410 415Ser14417PRTCuphea
llavea 14Met Val Ala Ala Ala Ala Ser Ser Ala Phe Phe Pro Ala Pro Ala Pro1
5 10 15Gly Ser Ser Pro
Lys Pro Gly Lys Pro Gly Asn Trp Pro Ser Ser Leu 20
25 30Ser Pro Ser Phe Lys Pro Lys Ser Ile Pro Asn
Gly Arg Phe Gln Val 35 40 45Lys
Ala Asn Ala Ser Ala His Pro Lys Ala Asn Gly Ser Ala Val Asn 50
55 60Leu Lys Ser Gly Ser Leu Asn Thr Gln Glu
Asp Thr Ser Ser Ser Pro65 70 75
80Pro Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp Ser Met Leu
Leu 85 90 95Ser Ala Ile
Thr Thr Val Phe Val Ala Ala Glu Lys Gln Trp Thr Met 100
105 110Leu Asp Arg Lys Ser Lys Arg Pro Asp Met
Leu Val Asp Ser Val Gly 115 120
125Leu Lys Asn Ile Val Arg Asp Gly Leu Val Ser Arg Gln Ser Phe Ser 130
135 140Ile Arg Ser Tyr Glu Ile Gly Ala
Asp Arg Thr Ala Ser Ile Glu Thr145 150
155 160Leu Met Asn His Leu Gln Glu Thr Ser Ile Asn His
Cys Lys Ser Leu 165 170
175Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn
180 185 190Asp Leu Ile Trp Val Leu
Thr Lys Met Gln Ile Met Val Asn Arg Tyr 195 200
205Pro Ala Trp Gly Asp Thr Val Glu Ile Asn Thr Trp Phe Ser
Gln Ser 210 215 220Gly Lys Ile Gly Met
Gly Ser Asp Trp Leu Ile Ser Asp Cys Asn Thr225 230
235 240Gly Glu Ile Leu Ile Arg Ala Thr Ser Val
Trp Ala Met Met Asn Gln 245 250
255Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr Glu Val Arg Gln Glu Leu
260 265 270Thr Pro His Phe Val
Asp Ser Pro His Val Ile Glu Asp Asn Asp Arg 275
280 285Lys Leu His Lys Phe Asp Val Lys Thr Gly Asp Ser
Ile Arg Lys Gly 290 295 300Leu Thr Pro
Arg Trp Asn Asp Leu Asp Val Asn Gln His Val Ser Asn305
310 315 320Val Lys Tyr Ile Gly Trp Ile
Leu Glu Ser Met Pro Ile Glu Val Leu 325
330 335Glu Thr Gln Glu Leu Cys Ser Leu Thr Val Glu Tyr
Arg Arg Glu Cys 340 345 350Gly
Met Asp Ser Val Leu Glu Ser Val Thr Ala Ile Asp Pro Ser Glu 355
360 365Asp Gly Gly Arg Ser Gln Tyr Asn His
Leu Leu Arg Leu Asp Asp Gly 370 375
380Thr Asp Val Val Lys Gly Arg Thr Glu Trp Arg Pro Lys Asn Ala Gly385
390 395 400Thr Asn Gly Ala
Ile Ser Thr Gly Lys Thr Ser Asn Gly Asn Ser Val 405
410 415Ser15417PRTCuphea lophostoma 15Met Val
Ala Ala Ala Ala Ser Ser Ala Phe Phe Pro Val Pro Ala Pro1 5
10 15Gly Thr Ser Leu Lys Pro Trp Lys
Ser Gly Asn Trp Pro Ser Ser Leu 20 25
30Ser Pro Ser Phe Lys Pro Lys Thr Ile Pro Ser Gly Gly Phe Gln
Val 35 40 45Lys Ala Asn Ala Ser
Ala Gln Pro Lys Ala Asn Gly Ser Ala Val Asn 50 55
60Leu Lys Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr Thr Ser
Ser Pro65 70 75 80Pro
Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp Ser Met Leu Leu
85 90 95Thr Ala Ile Thr Thr Val Phe
Val Ala Ala Glu Lys Gln Trp Thr Met 100 105
110Leu Asp Arg Lys Ser Lys Arg Pro Glu Lys Leu Val Asp Ser
Val Gly 115 120 125Leu Lys Ser Ser
Val Arg Asp Gly Leu Val Ser Arg Gln Ser Phe Ser 130
135 140Ile Arg Ser Tyr Glu Ile Gly Ala Asp Arg Thr Ala
Ser Ile Glu Thr145 150 155
160Leu Met Asn His Leu Gln Glu Thr Ser Ile Asn His Cys Lys Ser Leu
165 170 175Gly Leu Leu Asn Asp
Gly Phe Gly Arg Thr Pro Gly Met Cys Lys Asn 180
185 190Asp Leu Ile Trp Val Leu Thr Lys Met Gln Ile Met
Val Asn Arg Tyr 195 200 205Pro Thr
Trp Gly Asp Thr Val Glu Ile Asn Thr Trp Phe Ser Gln Ser 210
215 220Gly Lys Ile Gly Met Ala Ser Asp Trp Leu Ile
Ser Asp Cys Asn Thr225 230 235
240Gly Glu Ile Leu Ile Arg Ala Thr Ser Val Trp Ala Met Met Asn Gln
245 250 255Lys Thr Arg Arg
Phe Ser Arg Leu Pro Tyr Glu Val Arg Gln Glu Leu 260
265 270Thr Pro His Tyr Val Asp Ser Pro His Val Ile
Glu Asp Asn Asp Arg 275 280 285Lys
Leu His Lys Phe Asp Val Lys Thr Gly Asp Ser Ile Arg Lys Gly 290
295 300Leu Thr Pro Arg Trp Asn Asp Leu Asp Val
Asn Gln His Val Ser Asn305 310 315
320Val Lys Tyr Ile Gly Trp Ile Leu Glu Ser Met Pro Ile Glu Val
Leu 325 330 335Glu Thr Gln
Glu Leu Cys Ser Leu Thr Val Glu Tyr Arg Arg Glu Cys 340
345 350Gly Met Asp Ser Val Leu Glu Ser Val Thr
Ala Met Asp Pro Ser Glu 355 360
365Asp Glu Gly Arg Ser Gln Tyr Lys His Leu Leu Arg Leu Glu Asp Gly 370
375 380Thr Asp Ile Val Lys Gly Arg Thr
Glu Trp Arg Pro Lys Asn Ala Gly385 390
395 400Thr Asn Gly Ala Ile Ser Thr Ala Lys Asn Ser Asn
Gly Asn Ser Val 405 410
415Ser16384PRTSassafras albidum 16Met Ala Thr Thr Ser Leu Ala Ser Ala Phe
Cys Ser Met Lys Ala Val1 5 10
15Met Leu Ala Arg Asp Gly Arg Gly Met Lys Pro Arg Ser Ser Asp Leu
20 25 30Gln Leu Arg Ala Gly Asn
Ala Gln Thr Pro Leu Lys Met Ile Asn Gly 35 40
45Thr Lys Phe Ser Tyr Thr Glu Ser Leu Lys Arg Leu Pro Asp
Trp Ser 50 55 60Met Leu Phe Ala Val
Ile Thr Thr Ile Phe Ser Val Ala Glu Lys Gln65 70
75 80Trp Thr Asn Leu Glu Trp Lys Pro Lys Pro
Lys Pro Arg Leu Pro Gln 85 90
95Leu Leu Asp Asp His Phe Gly Leu His Gly Leu Val Phe Arg Arg Thr
100 105 110Phe Ala Ile Arg Ser
Tyr Glu Val Gly Pro Asp Arg Ser Thr Ser Ile 115
120 125Val Ala Val Met Asn His Leu Gln Glu Ala Thr Leu
Asn His Ala Lys 130 135 140Ser Val Gly
Ile Leu Gly Asp Gly Phe Gly Thr Thr Leu Glu Met Ser145
150 155 160Lys Arg Asp Leu Ala Trp Val
Val Arg Arg Thr His Val Ala Val Glu 165
170 175Arg Tyr Pro Ala Trp Gly Asp Thr Val Glu Val Glu
Cys Trp Ile Gly 180 185 190Ala
Ser Gly Asn Asn Gly Met Arg Arg Asp Phe Leu Val Arg Asp Cys 195
200 205Lys Thr Gly Glu Ile Leu Thr Arg Cys
Thr Ser Leu Ser Val Met Met 210 215
220Asn Thr Arg Thr Arg Arg Leu Ser Lys Ile Pro Glu Glu Val Arg Gly225
230 235 240Glu Ile Gly Pro
Leu Phe Ile Asp Asn Val Ala Val Lys Asp Glu Glu 245
250 255Ile Lys Lys Leu Gln Lys Leu Asn Asp Ser
Ser Ala Asp Tyr Ile Gln 260 265
270Gly Gly Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val
275 280 285Asn Asn Ile Lys Tyr Val Gly
Trp Ile Leu Glu Thr Val Pro Asp Ser 290 295
300Ile Phe Glu Ser His His Ile Ser Ser Ile Thr Leu Glu Tyr Arg
Arg305 310 315 320Glu Cys
Thr Arg Asp Ser Val Leu Gln Ser Leu Thr Thr Val Ser Gly
325 330 335Gly Ser Leu Glu Ala Gly Leu
Val Cys Asp His Leu Leu Gln Leu Glu 340 345
350Gly Gly Ser Glu Val Leu Arg Ala Arg Thr Glu Trp Arg Pro
Lys Leu 355 360 365Thr Asp Ser Phe
Arg Gly Ile Ile Val Ile Pro Ala Glu Pro Ser Val 370
375 38017384PRTSassafras albidum 17Met Ala Thr Thr Ser
Leu Ala Ser Ala Phe Cys Ser Met Lys Ala Val1 5
10 15Met Leu Ala Arg Asp Gly Arg Gly Met Lys Pro
Arg Ser Ser Asp Leu 20 25
30Gln Leu Arg Ala Gly Asn Ala Gln Thr Pro Leu Lys Met Ile Asn Gly
35 40 45Thr Lys Phe Ser Tyr Thr Glu Ser
Leu Lys Arg Leu Pro Asp Trp Ser 50 55
60Met Leu Phe Ala Val Ile Thr Thr Ile Phe Ser Val Ala Glu Lys Gln65
70 75 80Trp Thr Asn Leu Glu
Trp Lys Pro Lys Pro Lys Pro Arg Leu Pro Gln 85
90 95Leu Leu Asp Asp His Phe Gly Leu His Gly Leu
Val Phe Arg Arg Thr 100 105
110Phe Ala Ile Arg Ser Tyr Glu Val Gly Pro Asp Arg Ser Thr Ser Ile
115 120 125Val Ala Val Met Asn His Leu
Gln Glu Ala Thr Leu Asn His Ala Lys 130 135
140Ser Val Gly Ile Leu Gly Asp Gly Phe Gly Thr Thr Leu Glu Met
Ser145 150 155 160Lys Arg
Asp Leu Ala Trp Val Val Arg Arg Thr His Val Ala Val Glu
165 170 175Arg Tyr Pro Ala Trp Gly Asp
Thr Val Glu Val Glu Ala Trp Val Gly 180 185
190Ala Ser Gly Asn Ile Gly Met Arg Arg Asp Phe Leu Val Arg
Asp Cys 195 200 205Lys Thr Gly His
Ile Leu Ala Arg Cys Thr Ser Val Ser Val Met Met 210
215 220Asn Ala Arg Thr Arg Arg Leu Ser Lys Ile Pro Gln
Glu Val Arg Ala225 230 235
240Glu Ile Asp Pro Leu Phe Ile Glu Lys Val Ala Val Lys Glu Gly Glu
245 250 255Ile Lys Lys Leu Gln
Lys Phe Asn Asp Ser Thr Ala Asp Tyr Ile Gln 260
265 270Gly Gly Trp Thr Pro Arg Trp Asn Asp Leu Asp Val
Asn Gln His Val 275 280 285Asn Asn
Ile Lys Tyr Ile Gly Trp Ile Phe Lys Ser Val Pro Asp Ser 290
295 300Ile Ser Glu Asn His Tyr Leu Ser Ser Ile Thr
Leu Glu Tyr Arg Arg305 310 315
320Glu Cys Thr Arg Gly Ser Ala Leu Gln Ser Leu Thr Thr Val Cys Gly
325 330 335Asp Ser Ser Glu
Ala Gly Ile Ile Cys Glu His Leu Leu Gln Leu Glu 340
345 350Asp Gly Pro Glu Val Leu Arg Ala Arg Thr Glu
Trp Arg Pro Lys Leu 355 360 365Thr
Asp Ser Phe Arg Gly Ile Ile Val Ile Pro Ala Glu Pro Ser Val 370
375 38018380PRTLindera benzoin 18Met Val Ala Thr
Ser Leu Ala Ser Ala Phe Cys Ser Met Lys Ala Val1 5
10 15Met Leu Ala Asp Asp Gly Arg Gly Met Lys
Pro Arg Ser Ser Asp Leu 20 25
30Gln Leu Arg Ala Gly Asn Ala Gln Thr Ser Leu Lys Met Ile Asp Gly
35 40 45Thr Lys Phe Ser Tyr Thr Glu Ser
Leu Lys Arg Leu Pro Asp Trp Ser 50 55
60Lys Leu Leu Thr Val Ile Thr Thr Ile Phe Ser Ala Ala Glu Lys Gln65
70 75 80Trp Thr Asn Leu Glu
Arg Lys Pro Lys Pro Pro His Leu Leu Asp Asp 85
90 95Arg Phe Gly Leu His Gly Leu Val Phe Arg Arg
Thr Phe Ala Ile Arg 100 105
110Ser Tyr Glu Val Gly Pro Asp Arg Ser Ala Ser Ile Leu Ala Val Leu
115 120 125Asn His Leu Gln Glu Ala Thr
Leu Asn His Ala Glu Ser Val Gly Ile 130 135
140Leu Gly Asp Arg Phe Gly Glu Thr Leu Glu Met Ser Lys Arg Asp
Leu145 150 155 160Met Trp
Val Val Arg Arg Thr Tyr Val Ala Val Glu Arg Tyr Pro Ala
165 170 175Trp Gly Asp Thr Val Glu Ile
Glu Ser Trp Ile Gly Ala Ser Gly Asn 180 185
190Asn Gly Met Arg Arg Glu Phe Leu Val Arg Asp Phe Lys Thr
Gly Glu 195 200 205Ile Leu Thr Arg
Cys Thr Ser Leu Ser Val Met Met Asn Thr Arg Thr 210
215 220Arg Arg Leu Ser Lys Ile Pro Glu Glu Val Arg Gly
Glu Ile Gly Pro225 230 235
240Val Phe Ile Asp Asn Val Ala Val Lys Asp Glu Glu Ile Lys Lys Leu
245 250 255Gln Lys Leu Asn Asp
Ser Thr Ala Asp Tyr Ile Gln Gly Gly Leu Ile 260
265 270Pro Arg Trp Asn Asp Leu Asp Leu Asn Gln His Val
Asn Asn Ile Lys 275 280 285Tyr Val
Ser Trp Ile Leu Glu Thr Val Pro Asp Ser Ile Leu Glu Ser 290
295 300Tyr His Met Ser Ser Ile Thr Leu Glu Tyr Arg
Arg Glu Cys Thr Arg305 310 315
320Asp Ser Val Leu Gln Ser Leu Thr Thr Val Ser Gly Gly Ser Ser Glu
325 330 335Ala Gly Leu Val
Cys Glu His Ser Leu Leu Leu Glu Gly Gly Ser Glu 340
345 350Val Leu Arg Ala Arg Thr Glu Trp Arg Pro Lys
Leu Thr Asp Ser Phe 355 360 365Arg
Gly Ile Ser Val Ile Pro Ala Glu Gln Ser Val 370 375
380191257DNACuphea crassiflora 19atggtggctg ctgcagcaag
ttctgcattc ttccctgttc ctgccccagg aacctccact 60aaacccagga agtccggcaa
ttggccatcg agattgagcc cttcctccaa gcccaagtca 120atccccaatg gcggatttca
ggttaaggca aatgccagtg cccatcctaa ggctaacggt 180tctgcagtaa atctaaagtc
tggcagcctc aacactcagg aggacacttc gtcgtcccct 240cctcctcggg ctttccttaa
ccagttgcct gattggagta tgcttctgac tgcaatcacg 300accgttttcg tggcggcaga
gaagcagtgg acaatgcttg atcggaaatc taagaggcct 360gacatgctcg tggactcggt
tgggttgaag agtattgttc gggatgggct cgtgtccaga 420caaagttttt cgatcaggtc
ttatgaaata ggcgctgatc gaacagcctc tatagagacg 480ctgatgaacc acttgcagga
aacatctatt aatcattgta agagtttggg ccttctcaat 540gacggctttg gtcggactcc
tgggatgtgt aaaaacgacc tcatttgggt gcttacaaaa 600atgcagatca tggtgaatcg
ctacccaact tggggcgata ctgttgagat caatacctgg 660ttctcccagt cggggaaaat
cggtatgggt agcgattggc taataagtga ttgcaataca 720ggagaaattc ttataagggc
aacgagcgtg tgggccatga tgaatcaaaa gacgagaaga 780ttctcaagac ttccatacga
ggttcgccag gagttaacgc ctcattttgt ggactctcct 840catgtcattg aagacaatga
tcggaaattg cataagtttg atgtgaagac tggcgattct 900attcgcaagg gtctaactcc
gaggtggaat gatttggatg tcaatcagca cgtaagcaac 960gtgaagtaca ttgggtggat
tctcgagagt atgccaatag aagttctgga gacccaggag 1020ctatgctctc tgacagttga
atataggcgg gaatgcggaa tggacagtaa gctggagtcc 1080gtgactgcta tggatccctc
agaagaagat ggagtccggt ctcagtacaa tcaccttctg 1140cggcttgagg atgggactga
tgtcgtgaag ggcagaactg agtggcgacc gaagaatgca 1200ggaactaacg gggcgatatc
aacaggaaag acttcaaatg gaaactcggt ttcttag 1257201248DNACuphea
koehneana 20atggtcactg ctgcagcaag ttctgcattc ttccctgttc cagccccggg
aacctcccct 60aaacccggga agtcctggcc atcgagcttg agcccttcct tcaagcccaa
gtcaatcccc 120aatgccggat ttcaggttaa ggcaaatgcc agtgcccatc ctaaggctaa
cggttctgca 180gtaaatctaa agtctggcag cctcaacact caggaggaca cttcgtcgtc
ccctcctcct 240cgggctttcc ttaaccagtt gcctgattgg agtatgcttc tgactgcaat
cacgaccgtc 300ttcgtggcgg cagagaagca gtggactatg cgtgatcgga aatctaagag
gcctgacatg 360ctcgtggact cggttggatc gaagagtatt gttctggatg ggctcgtgtc
cagacagatt 420ttttcgatta gatcttatga aataggcgct gatcgaacag cctctataga
gacgctgatg 480aaccacttgc aggaaacatc tatcaatcat tgtaagagtt tgggtcttct
caatgacggc 540tttggtcgta ctcctgggat gtgtaaaaac gacctcattt gggtgcttac
aaaaatgcag 600atcatggtga atcgctaccc aacttggggc gatactgttg agatcaatac
ctggttctcc 660cattcgggga aaatcggtat ggctagcgat tggctaataa ctgattgcaa
cacaggagaa 720attcttataa gagcaacgag cgtgtgggcc atgatgaatc aaaagacgag
aagattctca 780agacttccat acgaggttcg ccaggagtta acgcctcatt atgtggactc
tcctcatgtc 840attgaagata atgatcggaa attgcataag tttgatgtga agactggtga
ttccattcgt 900aagggtctaa ctccgaagtg gaatgacttg gatgtcaatc agcacgtcaa
caacgtgaag 960tacatcgggt ggattctcga gagtatgcca atagaagttt tggagactca
ggagctatgc 1020tctctcaccg ttgaatatag gcgggaatgc ggaatggaca gtgtgctgga
gtccgtgact 1080gctatggatc cctcagaaga tggaggccta tctcagtaca agcaccttct
gcggcttgag 1140gatgggactg acatcgtgaa gggcagaact gagtggcgac cgaagaatgc
aggaactaac 1200ggggcgatat caacagcaaa gccttcaaat ggaaactcgg tctcttag
1248211254DNACuphea leptopoda 21atggtgggtg ctgcagcaag
ttctgcattc ttccctgctc cagccccggg aacctcccct 60aaacccggga agtccggcaa
ttggccatca agcttgagcc cttccttaaa gcccaagtca 120atccccaatg gcggatttca
ggttaaggca aatgccagtg cccatcctaa ggctaacggt 180gctgcagtaa atctaaagtc
tggcagcctc aacactcagg aggacacttc gtcgtcccct 240cctcctcggg ctttccttaa
ccagttgcct gattggagta tgcttctgac tgcaatcacg 300accgtcttcg tggcggcaga
gaagcagtgg actatgcttg atcggaaatc taagaggcct 360gacatgctcg tggactcggt
tgggttgaag aatattgttc gggatgggct cgtgtccaga 420cagagttttt cgatcaggtc
ttatgaaata ggcgctgatc gaacagcctc tatagagacg 480ctgatgaacc acttgcagga
aacatctatc aatcattgta agagtttggg tcttctcaat 540gacggctttg gtcgtactcc
tgggatgtgt aaaaacgacc tcatttgggt gcttacaaaa 600atgcagatcc tggtgaatcg
ctacccagct tggggagata ctgttgagat caatacctgg 660ttctctcagt cggggaaaat
cggcatgggt agtgattggc taataagtga ttgcaacaca 720ggagaaattc ttataagagc
aacgagcgtg tgggcaatga tgaatcaaaa gacgagaaga 780ttctcaagac ttccatacga
ggttcgccag gagttaacgc ctcattttgt agactcacct 840catgtcattg aagacaatga
tcggaaattg cataagtttg atgtgaagac tggtgattct 900attcgcaagg gtctaactcc
gaggtggaat gacttggatg tcaatcaaca cgtaagcaac 960gtgaagtaca ttgggtggat
tctcgagagt atgccaatag aagttttgga gactcaggag 1020ctatgctctc tcaccgttga
atataggcgg gaatgcggaa tggacagtgt gctggagtcc 1080gtgactgcta gggatccctc
agaagatgga ggccggtctc agtacaatca ccttctgcgg 1140cttgaggatg ggactgatgt
cgtgaagggc agaactgagt ggcgatcgaa gaatgcagga 1200actaacgggg cgacatcaac
agcaaagact tcaaatggaa actcggtctc ttag 1254221254DNACuphea
angustifolia 22atggtggctg ctgcagcaag ttctgcattc ttccctgttc cagccccggg
aacatccctt 60aaacccggga agtccggcaa ttggccatcg agcttgagcc cttccttcaa
gcccaagaca 120atccccagtg gcggacttca ggttaaggca aatgccagtg cccatcctaa
ggctaacggt 180tctgcagtaa atctaaagtc tggcagcctc gacactcagg aggacacttc
gtcgtcccct 240cctcctcggg ctttccttaa ccagttgcct gattggagta tgcttctgac
tgcaatcacg 300accgtcttcg tggcggcaga gaagcagtgg actatgcttg ataggaaatc
taagaggcct 360gaaatgctcg tggactcggt tgggttgaag agtagtgttc gggatgggct
cgtgtccaga 420cagagttttt cgattaggtc ttatgaaata ggcgctgatc gaacagcctc
tatagagacg 480ctgatgaacc acttgcagga aacatctatc aatcattgta agagtttggg
tcttctcaac 540gatggctttg gtcgtactcc tgggatgtgt aaaaacgacc tcatttgggt
gcttacaaaa 600atgcagatca tggtgaatcg ctacccaact tggggcgata ctgttgaggt
caatacctgg 660ttctcccagt cggggaaaat cggtatggct agcgattggc taatcagtga
ttgcaacaca 720ggagaaattc ttataagagc aacaagcgtg tgggccatga tgaatcaaaa
gacgagaaga 780ttctcaagac ttccatacga ggttcgccag gagctaacac ctcattatgt
ggactctcct 840catgtcattg aagataatga tcggaaattg cataagtttg atgtgaagac
tggtgattcc 900attcgcaagg gtctaactcc gaggtggaat gacttggatg tcaatcagca
cgtaagcaac 960gtgaagtaca ttgggtggat tcttgagagt atgccaatag aagttttgga
gacccaggag 1020ctatgctctc tcaccgttga atataggcgg gaatgcggaa tggacagtgt
gctggagtcc 1080gtgactgcta tggatccctc agaagatgga ggcgtgtctc agtacaagca
ccttctgcgg 1140cttgaggatg ggactgatat cgtgaagggc agaactgaat ggcgaccgaa
gaatgcagga 1200actaatgggg cgacatcaaa agcaaagact tcaaatggaa actcggtctc
ttag 1254231254DNACuphea llavea 23atggtggctg ctgcagcaag
ttctgcattc ttccctgctc cagccccggg atcctcacct 60aaacccggga agcccggtaa
ttggccatcg agcttgagcc cttccttcaa gcccaagtca 120atccccaatg gccgatttca
ggttaaggca aatgcgagtg cccatcctaa ggctaacggt 180tctgcagtaa atctaaagtc
tggcagcctc aacactcagg aggacacttc gtcgtcccct 240cctcctcggg ctttccttaa
ccagttgcct gattggagta tgcttctgtc tgcaatcacg 300actgtattcg tggcggcaga
gaagcagtgg actatgcttg atcggaaatc taagaggcct 360gacatgcttg tggactcggt
tgggttgaag aatattgttc gggatgggct cgtgtccaga 420cagagttttt cgattagatc
ttatgaaata ggcgctgatc gaacagcttc tatagagaca 480ctgatgaacc acttgcagga
aacatctatc aatcattgta agagtttggg tcttctcaat 540gacggctttg gtcgtactcc
tgggatgtgt aaaaacgacc tcatttgggt gcttacaaaa 600atgcagatca tggtgaatcg
ctacccagct tggggcgata ctgttgagat caatacatgg 660ttctcccagt cggggaaaat
cggtatgggt agcgattggc taataagtga ttgcaacaca 720ggagaaattc ttataagagc
aacgagcgtg tgggccatga tgaatcaaaa gacgagaaga 780ttctcaagac ttccatatga
ggttcgccag gagttaacgc ctcattttgt ggactctcct 840catgtcattg aagacaatga
tcggaaattg cataagttcg atgtgaagac tggtgattct 900attcgcaagg gtctaactcc
gaggtggaat gacttggatg tcaatcaaca cgtaagcaac 960gtgaagtaca ttgggtggat
tctcgagagt atgccaatag aagttttgga gacccaggaa 1020ctatgctctc tcacagttga
atataggcgg gaatgcggaa tggacagtgt gctggagtcc 1080gtgactgcta tagatccctc
agaagatgga gggcggtctc agtacaatca ccttctgcgg 1140cttgatgatg ggactgatgt
cgtgaagggc agaacagagt ggcgaccgaa gaatgcagga 1200actaacgggg cgatatcaac
aggaaagact tcaaatggga actcggtctc ctag 1254241254DNACuphea
lophostoma 24atggtggctg ctgcagcaag ttctgcattc ttccctgttc cagccccggg
aacctccctt 60aaaccctgga agtccggaaa ttggccatcg agcttgagcc cttccttcaa
gcccaagaca 120atccccagtg gcggatttca ggttaaggca aatgccagtg cccagcctaa
ggctaacggt 180tctgcagtaa atctaaagtc tggcagcctc aacactcagg aggacacaac
gtcgtcgcct 240cctcctcggg ctttccttaa ccagttgcct gattggagta tgcttctgac
tgcaatcacg 300accgtcttcg tggcggcgga gaagcagtgg acaatgcttg ataggaaatc
taagaggcct 360gaaaagctcg tggactcggt tgggttgaag agtagtgttc gggatgggct
cgtgtccaga 420cagagttttt cgattaggtc ttatgaaata ggcgctgatc gaacagcctc
tatagagacg 480ttgatgaacc acttgcagga aacatctatc aatcattgta agagtttggg
tcttctcaac 540gacggctttg gtcgtactcc tgggatgtgt aaaaacgacc tcatttgggt
gcttacgaaa 600atgcagatca tggtgaatcg ctacccaact tggggcgata ctgttgagat
caatacctgg 660ttctcccagt cggggaaaat cggtatggct agcgattggc taataagtga
ttgcaacaca 720ggagaaattc ttataagagc aacgagcgtg tgggccatga tgaatcaaaa
gacgagaagg 780ttctcaagac ttccatacga ggttcgccag gagttaacgc ctcattatgt
ggactctcct 840catgtcattg aagacaatga tcggaaattg cataagtttg atgtgaagac
tggtgattcc 900attcgcaagg gtctgactcc gaggtggaat gacttggatg tcaatcagca
cgtaagcaac 960gtgaagtaca ttgggtggat tctggagagt atgccaatag aagttttgga
gacccaggag 1020ctatgctctc tcaccgttga atataggcgg gaatgcggga tggacagtgt
gctggagtcc 1080gtgactgcta tggatccctc agaagatgaa ggccggtctc agtacaagca
ccttctgcgg 1140cttgaggatg ggactgatat cgtgaagggc agaactgagt ggcgaccgaa
gaatgcagga 1200actaacgggg cgatatcaac agcaaagaat tcaaatggaa actcggtctc
ttag 1254251155DNASassafras albidum 25atggccacca cctctttagc
ttctgctttc tgctcgatga aagctgtaat gttggctcgt 60gatggcaggg gcatgaaacc
caggagcagt gatttgcagc tgagggcggg aaatgcacaa 120acccctttga agatgatcaa
tgggaccaag ttcagttaca cggagagctt gaaaaggttg 180cctgactgga gcatgctctt
tgcagtgatc acaaccatct tttcggttgc tgagaagcag 240tggaccaatc tagagtggaa
gccgaagccg aagccgaggc taccccagtt gcttgatgac 300cattttggac tgcatgggtt
agttttcagg cgcacctttg ccatcagatc ttatgaggtc 360ggacctgacc gctccacatc
tatagtggct gttatgaatc acttgcagga ggctacactt 420aatcatgcga agagtgtggg
aattctagga gatggattcg gtacgacgct agagatgagt 480aagagagatc tggcgtgggt
tgtgagacgc acgcatgttg ctgtggaacg gtaccctgct 540tggggtgata ctgttgaagt
agagtgctgg attggtgcat ctggaaataa tggcatgcgc 600cgtgatttcc ttgtccggga
ctgcaaaaca ggcgaaattc ttacaagatg taccagtctt 660tcggtgatga tgaatacaag
gacaaggagg ttgtccaaaa tccctgaaga agttagaggg 720gagatagggc ctctattcat
tgataatgtg gctgtcaagg acgaggaaat taagaaacta 780cagaagctca atgacagctc
tgcagattac atccaaggag gtttgactcc tcgatggaat 840gatttggatg tcaatcagca
tgttaacaac atcaaatacg ttggctggat tcttgagact 900gtcccagact ccatctttga
gagtcatcat atttccagca tcactcttga atacaggaga 960gagtgcacca gggatagcgt
gctgcagtcc ctgaccactg tctccggtgg ctcgttggag 1020gctgggttag tgtgcgatca
cttgctccag cttgaaggtg ggtctgaggt attgagggca 1080agaacagagt ggaggcctaa
gcttaccgat agtttcagag ggattattgt gatacccgca 1140gaaccgagtg tgtaa
1155261155DNASassafras
albidum 26atggccacca cctctttagc ttctgctttc tgctcgatga aagctgtaat
gttggctcgt 60gatggcaggg gcatgaaacc caggagcagt gatttgcagc tgagggcggg
aaatgcacaa 120acccctttga agatgatcaa tgggaccaag ttcagttaca cggagagctt
gaaaaggttg 180cctgactgga gcatgctctt tgcagtgatc acaaccatct tttcggttgc
tgagaagcag 240tggaccaatc tagagtggaa gccgaagccg aagccgaggc taccccagtt
gcttgatgac 300cattttggac tgcatgggtt agttttcagg cgcacctttg ccatcagatc
ttatgaggtc 360ggacctgacc gctccacatc tatagtggct gttatgaatc acttgcagga
ggctacactt 420aatcatgcga agagtgtggg aattctagga gatggattcg gtacgacgct
agagatgagt 480aagagagatc tggcgtgggt tgtgagacgc acgcatgttg ctgtggaacg
gtaccccgct 540tggggcgata ctgttgaagt cgaggcctgg gtcggtgcat ctggaaacat
tggcatgcgc 600cgcgattttc ttgtccgcga ctgcaaaact ggccacattc ttgcaagatg
taccagtgtt 660tcagtgatga tgaatgcgag gacacggaga ttgtccaaaa ttccccaaga
agttagagcc 720gagattgacc ctcttttcat tgaaaaggtt gcggtcaagg aaggggaaat
taagaaatta 780cagaagttca atgatagcac tgcagattac attcaagggg gttggactcc
tcgatggaat 840gatttggatg tcaatcagca cgtgaacaat atcaaataca ttggctggat
ttttaagagc 900gtcccagact ctatctctga gaatcattat ctttctagca tcactctcga
atacaggaga 960gagtgcacaa ggggcagcgc gctgcagtcc ctgaccactg tttgtggtga
ctcgtcggaa 1020gctgggatca tatgtgagca cctactccag cttgaggatg ggcctgaggt
tttgagggca 1080agaacagagt ggaggcctaa gcttaccgat agtttcagag ggattattgt
gatacccgca 1140gaaccgagtg tgtaa
1155271248DNALindera benzoin 27atggtcactg ctgcagcaag
ttctgcattc ttccctgttc cagccccggg aacctcccct 60aaacccggga agtcctggcc
atcgagcttg agcccttcct tcaagcccaa gtcaatcccc 120aatgccggat ttcaggttaa
ggcaaatgcc agtgcccatc ctaaggctaa cggttctgca 180gtaaatctaa agtctggcag
cctcaacact caggaggaca cttcgtcgtc ccctcctcct 240cgggctttcc ttaaccagtt
gcctgattgg agtatgcttc tgactgcaat cacgaccgtc 300ttcgtggcgg cagagaagca
gtggactatg cgtgatcgga aatctaagag gcctgacatg 360ctcgtggact cggttggatc
gaagagtatt gttctggatg ggctcgtgtc cagacagatt 420ttttcgatta gatcttatga
aataggcgct gatcgaacag cctctataga gacgctgatg 480aaccacttgc aggaaacatc
tatcaatcat tgtaagagtt tgggtcttct caatgacggc 540tttggtcgta ctcctgggat
gtgtaaaaac gacctcattt gggtgcttac aaaaatgcag 600atcatggtga atcgctaccc
aacttggggc gatactgttg agatcaatac ctggttctcc 660cattcgggga aaatcggtat
ggctagcgat tggctaataa ctgattgcaa cacaggagaa 720attcttataa gagcaacgag
cgtgtgggcc atgatgaatc aaaagacgag aagattctca 780agacttccat acgaggttcg
ccaggagtta acgcctcatt atgtggactc tcctcatgtc 840attgaagata atgatcggaa
attgcataag tttgatgtga agactggtga ttccattcgt 900aagggtctaa ctccgaagtg
gaatgacttg gatgtcaatc agcacgtcaa caacgtgaag 960tacatcgggt ggattctcga
gagtatgcca atagaagttt tggagactca ggagctatgc 1020tctctcaccg ttgaatatag
gcgggaatgc ggaatggaca gtgtgctgga gtccgtgact 1080gctatggatc cctcagaaga
tggaggccta tctcagtaca agcaccttct gcggcttgag 1140gatgggactg acatcgtgaa
gggcagaact gagtggcgac cgaagaatgc aggaactaac 1200ggggcgatat caacagcaaa
gccttcaaat ggaaactcgg tctcttag 1248281257DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
28atggtggccg ccgccgcctc ctccgccttc ttccccgtgc ccgcccccgg cacctccacc
60aagccccgca agtccggcaa ctggccctcc cgcctgtccc cctcctccaa gcccaagtcc
120atccccaacg gcggcttcca ggtgaaggcc aacgcctccg cccaccccaa ggccaacggc
180tccgccgtga acctgaagtc cggctccctg aacacccagg aggacacctc ctcctccccc
240cccccccgcg ccttcctgaa ccagctgccc gactggtcca tgctgctgac cgccatcacc
300accgtgttcg tggccgccga gaagcagtgg accatgctgg accgcaagtc caagcgcccc
360gacatgctgg tggactccgt gggcctgaag tccatcgtgc gcgacggcct ggtgtcccgc
420cagtccttct ccatccgctc ctacgagatc ggcgccgacc gcaccgcctc catcgagacc
480ctgatgaacc acctgcagga gacctccatc aaccactgca agtccctggg cctgctgaac
540gacggcttcg gccgcacccc cggcatgtgc aagaacgacc tgatctgggt gctgaccaag
600atgcagatca tggtgaaccg ctaccccacc tggggcgaca ccgtggagat caacacctgg
660ttctcccagt ccggcaagat cggcatgggc tccgactggc tgatctccga ctgcaacacc
720ggcgagatcc tgatccgcgc cacctccgtg tgggccatga tgaaccagaa gacccgccgc
780ttctcccgcc tgccctacga ggtgcgccag gagctgaccc cccacttcgt ggactccccc
840cacgtgatcg aggacaacga ccgcaagctg cacaagttcg acgtgaagac cggcgactcc
900atccgcaagg gcctgacccc ccgctggaac gacctggacg tgaaccagca cgtgtccaac
960gtgaagtaca tcggctggat cctggagtcc atgcccatcg aggtgctgga gacccaggag
1020ctgtgctccc tgaccgtgga gtaccgccgc gagtgcggca tggactccaa gctggagtcc
1080gtgaccgcca tggacccctc cgaggaggac ggcgtgcgct cccagtacaa ccacctgctg
1140cgcctggagg acggcaccga cgtggtgaag ggccgcaccg agtggcgccc caagaacgcc
1200ggcaccaacg gcgccatctc caccggcaag acctccaacg gcaactccgt gtcctga
1257291248DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 29atggtgaccg ccgccgcctc ctccgccttc
ttccccgtgc ccgcccccgg cacctccccc 60aagcccggca agtcctggcc ctcctccctg
tccccctcct tcaagcccaa gtccatcccc 120aacgccggct tccaggtgaa ggccaacgcc
tccgcccacc ccaaggccaa cggctccgcc 180gtgaacctga agtccggctc cctgaacacc
caggaggaca cctcctcctc cccccccccc 240cgcgccttcc tgaaccagct gcccgactgg
tccatgctgc tgaccgccat caccaccgtg 300ttcgtggccg ccgagaagca gtggaccatg
cgcgaccgca agtccaagcg ccccgacatg 360ctggtggact ccgtgggctc caagtccatc
gtgctggacg gcctggtgtc ccgccagatc 420ttctccatcc gctcctacga gatcggcgcc
gaccgcaccg cctccatcga gaccctgatg 480aaccacctgc aggagacctc catcaaccac
tgcaagtccc tgggcctgct gaacgacggc 540ttcggccgca cccccggcat gtgcaagaac
gacctgatct gggtgctgac caagatgcag 600atcatggtga accgctaccc cacctggggc
gacaccgtgg agatcaacac ctggttctcc 660cactccggca agatcggcat ggcctccgac
tggctgatca ccgactgcaa caccggcgag 720atcctgatcc gcgccacctc cgtgtgggcc
atgatgaacc agaagacccg ccgcttctcc 780cgcctgccct acgaggtgcg ccaggagctg
accccccact acgtggactc cccccacgtg 840atcgaggaca acgaccgcaa gctgcacaag
ttcgacgtga agaccggcga ctccatccgc 900aagggcctga cccccaagtg gaacgacctg
gacgtgaacc agcacgtgaa caacgtgaag 960tacatcggct ggatcctgga gtccatgccc
atcgaggtgc tggagaccca ggagctgtgc 1020tccctgaccg tggagtaccg ccgcgagtgc
ggcatggact ccgtgctgga gtccgtgacc 1080gccatggacc cctccgagga cggcggcctg
tcccagtaca agcacctgct gcgcctggag 1140gacggcaccg acatcgtgaa gggccgcacc
gagtggcgcc ccaagaacgc cggcaccaac 1200ggcgccatct ccaccgccaa gccctccaac
ggcaactccg tgtcctga 1248301254DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
30atggtgggcg ccgccgcctc ctccgccttc ttccccgccc ccgcccccgg cacctccccc
60aagcccggca agtccggcaa ctggccctcc tccctgtccc cctccctgaa gcccaagtcc
120atccccaacg gcggcttcca ggtgaaggcc aacgcctccg cccaccccaa ggccaacggc
180gccgccgtga acctgaagtc cggctccctg aacacccagg aggacacctc ctcctccccc
240cccccccgcg ccttcctgaa ccagctgccc gactggtcca tgctgctgac cgccatcacc
300accgtgttcg tggccgccga gaagcagtgg accatgctgg accgcaagtc caagcgcccc
360gacatgctgg tggactccgt gggcctgaag aacatcgtgc gcgacggcct ggtgtcccgc
420cagtccttct ccatccgctc ctacgagatc ggcgccgacc gcaccgcctc catcgagacc
480ctgatgaacc acctgcagga gacctccatc aaccactgca agtccctggg cctgctgaac
540gacggcttcg gccgcacccc cggcatgtgc aagaacgacc tgatctgggt gctgaccaag
600atgcagatcc tggtgaaccg ctaccccgcc tggggcgaca ccgtggagat caacacctgg
660ttctcccagt ccggcaagat cggcatgggc tccgactggc tgatctccga ctgcaacacc
720ggcgagatcc tgatccgcgc cacctccgtg tgggccatga tgaaccagaa gacccgccgc
780ttctcccgcc tgccctacga ggtgcgccag gagctgaccc cccacttcgt ggactccccc
840cacgtgatcg aggacaacga ccgcaagctg cacaagttcg acgtgaagac cggcgactcc
900atccgcaagg gcctgacccc ccgctggaac gacctggacg tgaaccagca cgtgtccaac
960gtgaagtaca tcggctggat cctggagtcc atgcccatcg aggtgctgga gacccaggag
1020ctgtgctccc tgaccgtgga gtaccgccgc gagtgcggca tggactccgt gctggagtcc
1080gtgaccgccc gcgacccctc cgaggacggc ggccgctccc agtacaacca cctgctgcgc
1140ctggaggacg gcaccgacgt ggtgaagggc cgcaccgagt ggcgctccaa gaacgccggc
1200accaacggcg ccacctccac cgccaagacc tccaacggca actccgtgtc ctga
1254311254DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 31atggtggccg ccgccgcctc ctccgccttc
ttccccgtgc ccgcccccgg cacctccctg 60aagcccggca agtccggcaa ctggccctcc
tccctgtccc cctccttcaa gcccaagacc 120atcccctccg gcggcctgca ggtgaaggcc
aacgcctccg cccaccccaa ggccaacggc 180tccgccgtga acctgaagtc cggctccctg
gacacccagg aggacacctc ctcctccccc 240cccccccgcg ccttcctgaa ccagctgccc
gactggtcca tgctgctgac cgccatcacc 300accgtgttcg tggccgccga gaagcagtgg
accatgctgg accgcaagtc caagcgcccc 360gagatgctgg tggactccgt gggcctgaag
tcctccgtgc gcgacggcct ggtgtcccgc 420cagtccttct ccatccgctc ctacgagatc
ggcgccgacc gcaccgcctc catcgagacc 480ctgatgaacc acctgcagga gacctccatc
aaccactgca agtccctggg cctgctgaac 540gacggcttcg gccgcacccc cggcatgtgc
aagaacgacc tgatctgggt gctgaccaag 600atgcagatca tggtgaaccg ctaccccacc
tggggcgaca ccgtggaggt gaacacctgg 660ttctcccagt ccggcaagat cggcatggcc
tccgactggc tgatctccga ctgcaacacc 720ggcgagatcc tgatccgcgc cacctccgtg
tgggccatga tgaaccagaa gacccgccgc 780ttctcccgcc tgccctacga ggtgcgccag
gagctgaccc cccactacgt ggactccccc 840cacgtgatcg aggacaacga ccgcaagctg
cacaagttcg acgtgaagac cggcgactcc 900atccgcaagg gcctgacccc ccgctggaac
gacctggacg tgaaccagca cgtgtccaac 960gtgaagtaca tcggctggat cctggagtcc
atgcccatcg aggtgctgga gacccaggag 1020ctgtgctccc tgaccgtgga gtaccgccgc
gagtgcggca tggactccgt gctggagtcc 1080gtgaccgcca tggacccctc cgaggacggc
ggcgtgtccc agtacaagca cctgctgcgc 1140ctggaggacg gcaccgacat cgtgaagggc
cgcaccgagt ggcgccccaa gaacgccggc 1200accaacggcg ccacctccaa ggccaagacc
tccaacggca actccgtgtc ctga 1254321254DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
32atggtggccg ccgccgcctc ctccgccttc ttccccgccc ccgcccccgg ctcctccccc
60aagcccggca agcccggcaa ctggccctcc tccctgtccc cctccttcaa gcccaagtcc
120atccccaacg gccgcttcca ggtgaaggcc aacgcctccg cccaccccaa ggccaacggc
180tccgccgtga acctgaagtc cggctccctg aacacccagg aggacacctc ctcctccccc
240cccccccgcg ccttcctgaa ccagctgccc gactggtcca tgctgctgtc cgccatcacc
300accgtgttcg tggccgccga gaagcagtgg accatgctgg accgcaagtc caagcgcccc
360gacatgctgg tggactccgt gggcctgaag aacatcgtgc gcgacggcct ggtgtcccgc
420cagtccttct ccatccgctc ctacgagatc ggcgccgacc gcaccgcctc catcgagacc
480ctgatgaacc acctgcagga gacctccatc aaccactgca agtccctggg cctgctgaac
540gacggcttcg gccgcacccc cggcatgtgc aagaacgacc tgatctgggt gctgaccaag
600atgcagatca tggtgaaccg ctaccccgcc tggggcgaca ccgtggagat caacacctgg
660ttctcccagt ccggcaagat cggcatgggc tccgactggc tgatctccga ctgcaacacc
720ggcgagatcc tgatccgcgc cacctccgtg tgggccatga tgaaccagaa gacccgccgc
780ttctcccgcc tgccctacga ggtgcgccag gagctgaccc cccacttcgt ggactccccc
840cacgtgatcg aggacaacga ccgcaagctg cacaagttcg acgtgaagac cggcgactcc
900atccgcaagg gcctgacccc ccgctggaac gacctggacg tgaaccagca cgtgtccaac
960gtgaagtaca tcggctggat cctggagtcc atgcccatcg aggtgctgga gacccaggag
1020ctgtgctccc tgaccgtgga gtaccgccgc gagtgcggca tggactccgt gctggagtcc
1080gtgaccgcca tcgacccctc cgaggacggc ggccgctccc agtacaacca cctgctgcgc
1140ctggacgacg gcaccgacgt ggtgaagggc cgcaccgagt ggcgccccaa gaacgccggc
1200accaacggcg ccatctccac cggcaagacc tccaacggca actccgtgtc ctga
1254331254DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 33atggtggccg ccgccgcctc ctccgccttc
ttccccgtgc ccgcccccgg cacctccctg 60aagccctgga agtccggcaa ctggccctcc
tccctgtccc cctccttcaa gcccaagacc 120atcccctccg gcggcttcca ggtgaaggcc
aacgcctccg cccagcccaa ggccaacggc 180tccgccgtga acctgaagtc cggctccctg
aacacccagg aggacaccac ctcctccccc 240cccccccgcg ccttcctgaa ccagctgccc
gactggtcca tgctgctgac cgccatcacc 300accgtgttcg tggccgccga gaagcagtgg
accatgctgg accgcaagtc caagcgcccc 360gagaagctgg tggactccgt gggcctgaag
tcctccgtgc gcgacggcct ggtgtcccgc 420cagtccttct ccatccgctc ctacgagatc
ggcgccgacc gcaccgcctc catcgagacc 480ctgatgaacc acctgcagga gacctccatc
aaccactgca agtccctggg cctgctgaac 540gacggcttcg gccgcacccc cggcatgtgc
aagaacgacc tgatctgggt gctgaccaag 600atgcagatca tggtgaaccg ctaccccacc
tggggcgaca ccgtggagat caacacctgg 660ttctcccagt ccggcaagat cggcatggcc
tccgactggc tgatctccga ctgcaacacc 720ggcgagatcc tgatccgcgc cacctccgtg
tgggccatga tgaaccagaa gacccgccgc 780ttctcccgcc tgccctacga ggtgcgccag
gagctgaccc cccactacgt ggactccccc 840cacgtgatcg aggacaacga ccgcaagctg
cacaagttcg acgtgaagac cggcgactcc 900atccgcaagg gcctgacccc ccgctggaac
gacctggacg tgaaccagca cgtgtccaac 960gtgaagtaca tcggctggat cctggagtcc
atgcccatcg aggtgctgga gacccaggag 1020ctgtgctccc tgaccgtgga gtaccgccgc
gagtgcggca tggactccgt gctggagtcc 1080gtgaccgcca tggacccctc cgaggacgag
ggccgctccc agtacaagca cctgctgcgc 1140ctggaggacg gcaccgacat cgtgaagggc
cgcaccgagt ggcgccccaa gaacgccggc 1200accaacggcg ccatctccac cgccaagaac
tccaacggca actccgtgtc ctga 1254341155DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
34atggccacca cctccctggc ctccgccttc tgctccatga aggccgtgat gctggcccgc
60gacggccgcg gcatgaagcc ccgctcctcc gacctgcagc tgcgcgccgg caacgcccag
120acccccctga agatgatcaa cggcaccaag ttctcctaca ccgagtccct gaagcgcctg
180cccgactggt ccatgctgtt cgccgtgatc accaccatct tctccgtggc cgagaagcag
240tggaccaacc tggagtggaa gcccaagccc aagccccgcc tgccccagct gctggacgac
300cacttcggcc tgcacggcct ggtgttccgc cgcaccttcg ccatccgctc ctacgaggtg
360ggccccgacc gctccacctc catcgtggcc gtgatgaacc acctgcagga ggccaccctg
420aaccacgcca agtccgtggg catcctgggc gacggcttcg gcaccaccct ggagatgtcc
480aagcgcgacc tggcctgggt ggtgcgccgc acccacgtgg ccgtggagcg ctaccccgcc
540tggggcgaca ccgtggaggt ggagtgctgg atcggcgcct ccggcaacaa cggcatgcgc
600cgcgacttcc tggtgcgcga ctgcaagacc ggcgagatcc tgacccgctg cacctccctg
660tccgtgatga tgaacacccg cacccgccgc ctgtccaaga tccccgagga ggtgcgcggc
720gagatcggcc ccctgttcat cgacaacgtg gccgtgaagg acgaggagat caagaagctg
780cagaagctga acgactcctc cgccgactac atccagggcg gcctgacccc ccgctggaac
840gacctggacg tgaaccagca cgtgaacaac atcaagtacg tgggctggat cctggagacc
900gtgcccgact ccatcttcga gtcccaccac atctcctcca tcaccctgga gtaccgccgc
960gagtgcaccc gcgactccgt gctgcagtcc ctgaccaccg tgtccggcgg ctccctggag
1020gccggcctgg tgtgcgacca cctgctgcag ctggagggcg gctccgaggt gctgcgcgcc
1080cgcaccgagt ggcgccccaa gctgaccgac tccttccgcg gcatcatcgt gatccccgcc
1140gagccctccg tgtga
1155351155DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 35atggccacca cctccctggc ctccgccttc
tgctccatga aggccgtgat gctggcccgc 60gacggccgcg gcatgaagcc ccgctcctcc
gacctgcagc tgcgcgccgg caacgcccag 120acccccctga agatgatcaa cggcaccaag
ttctcctaca ccgagtccct gaagcgcctg 180cccgactggt ccatgctgtt cgccgtgatc
accaccatct tctccgtggc cgagaagcag 240tggaccaacc tggagtggaa gcccaagccc
aagccccgcc tgccccagct gctggacgac 300cacttcggcc tgcacggcct ggtgttccgc
cgcaccttcg ccatccgctc ctacgaggtg 360ggccccgacc gctccacctc catcgtggcc
gtgatgaacc acctgcagga ggccaccctg 420aaccacgcca agtccgtggg catcctgggc
gacggcttcg gcaccaccct ggagatgtcc 480aagcgcgacc tggcctgggt ggtgcgccgc
acccacgtgg ccgtggagcg ctaccccgcc 540tggggcgaca ccgtggaggt ggaggcctgg
gtgggcgcct ccggcaacat cggcatgcgc 600cgcgacttcc tggtgcgcga ctgcaagacc
ggccacatcc tggcccgctg cacctccgtg 660tccgtgatga tgaacgcccg cacccgccgc
ctgtccaaga tcccccagga ggtgcgcgcc 720gagatcgacc ccctgttcat cgagaaggtg
gccgtgaagg agggcgagat caagaagctg 780cagaagttca acgactccac cgccgactac
atccagggcg gctggacccc ccgctggaac 840gacctggacg tgaaccagca cgtgaacaac
atcaagtaca tcggctggat cttcaagtcc 900gtgcccgact ccatctccga gaaccactac
ctgtcctcca tcaccctgga gtaccgccgc 960gagtgcaccc gcggctccgc cctgcagtcc
ctgaccaccg tgtgcggcga ctcctccgag 1020gccggcatca tctgcgagca cctgctgcag
ctggaggacg gccccgaggt gctgcgcgcc 1080cgcaccgagt ggcgccccaa gctgaccgac
tccttccgcg gcatcatcgt gatccccgcc 1140gagccctccg tgtga
1155361248DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
36atggtgaccg ccgccgcctc ctccgccttc ttccccgtgc ccgcccccgg cacctccccc
60aagcccggca agtcctggcc ctcctccctg tccccctcct tcaagcccaa gtccatcccc
120aacgccggct tccaggtgaa ggccaacgcc tccgcccacc ccaaggccaa cggctccgcc
180gtgaacctga agtccggctc cctgaacacc caggaggaca cctcctcctc cccccccccc
240cgcgccttcc tgaaccagct gcccgactgg tccatgctgc tgaccgccat caccaccgtg
300ttcgtggccg ccgagaagca gtggaccatg cgcgaccgca agtccaagcg ccccgacatg
360ctggtggact ccgtgggctc caagtccatc gtgctggacg gcctggtgtc ccgccagatc
420ttctccatcc gctcctacga gatcggcgcc gaccgcaccg cctccatcga gaccctgatg
480aaccacctgc aggagacctc catcaaccac tgcaagtccc tgggcctgct gaacgacggc
540ttcggccgca cccccggcat gtgcaagaac gacctgatct gggtgctgac caagatgcag
600atcatggtga accgctaccc cacctggggc gacaccgtgg agatcaacac ctggttctcc
660cactccggca agatcggcat ggcctccgac tggctgatca ccgactgcaa caccggcgag
720atcctgatcc gcgccacctc cgtgtgggcc atgatgaacc agaagacccg ccgcttctcc
780cgcctgccct acgaggtgcg ccaggagctg accccccact acgtggactc cccccacgtg
840atcgaggaca acgaccgcaa gctgcacaag ttcgacgtga agaccggcga ctccatccgc
900aagggcctga cccccaagtg gaacgacctg gacgtgaacc agcacgtgaa caacgtgaag
960tacatcggct ggatcctgga gtccatgccc atcgaggtgc tggagaccca ggagctgtgc
1020tccctgaccg tggagtaccg ccgcgagtgc ggcatggact ccgtgctgga gtccgtgacc
1080gccatggacc cctccgagga cggcggcctg tcccagtaca agcacctgct gcgcctggag
1140gacggcaccg acatcgtgaa gggccgcacc gagtggcgcc ccaagaacgc cggcaccaac
1200ggcgccatct ccaccgccaa gccctccaac ggcaactccg tgtcctga
12483738PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 37Met Ala Thr Ala Ser Thr Phe Ser Ala Phe Asn
Ala Arg Cys Gly Asp1 5 10
15Leu Arg Arg Ser Ala Gly Ser Gly Pro Arg Arg Pro Ala Arg Pro Leu
20 25 30Pro Val Arg Ala Ala Ile
35386398DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 38gaagagcgcc caatgtttaa acccctcaac
tgcgacgctg ggaaccttct ccgggcaggc 60gatgtgcgtg ggtttgcctc cttggcacgg
ctctacaccg tcgagtacgc catgaggcgg 120tgatggctgt gtcggttgcc acttcgtcca
gagacggcaa gtcgtccatc ctctgcgtgt 180gtggcgcgac gctgcagcag tccctctgca
gcagatgagc gtgactttgg ccatttcacg 240cactcgagtg tacacaatcc atttttctta
aagcaaatga ctgctgattg accagatact 300gtaacgctga tttcgctcca gatcgcacag
atagcgacca tgttgctgcg tctgaaaatc 360tggattccga attcgaccct ggcgctccat
ccatgcaaca gatggcgaca cttgttacaa 420ttcctgtcac ccatcggcat ggagcaggtc
cacttagatt cccgatcacc cacgcacatc 480tcgctaatag tcattcgttc gtgtcttcga
tcaatctcaa gtgagtgtgc atggatcttg 540gttgacgatg cggtatgggt ttgcgccgct
ggctgcaggg tctgcccaag gcaagctaac 600ccagctcctc tccccgacaa tactctcgca
ggcaaagccg gtcacttgcc ttccagattg 660ccaataaact caattatggc ctctgtcatg
ccatccatgg gtctgatgaa tggtcacgct 720cgtgtcctga ccgttcccca gcctctggcg
tcccctgccc cgcccaccag cccacgccgc 780gcggcagtcg ctgccaaggc tgtctcggag
gtaccctttc ttgcgctatg acacttccag 840caaaaggtag ggcgggctgc gagacggctt
cccggcgctg catgcaacac cgatgatgct 900tcgacccccc gaagctcctt cggggctgca
tgggcgctcc gatgccgctc cagggcgagc 960gctgtttaaa tagccaggcc cccgattgca
aagacattat agcgagctac caaagccata 1020ttcaaacacc tagatcacta ccacttctac
acaggccact cgagcttgtg atcgcactcc 1080gctaaggggg cgcctcttcc tcttcgtttc
agtcacaacc cgcaaactct agaatatcaa 1140tgctgctgca ggccttcctg ttcctgctgg
ccggcttcgc cgccaagatc agcgcctcca 1200tgacgaacga gacgtccgac cgccccctgg
tgcacttcac ccccaacaag ggctggatga 1260acgaccccaa cggcctgtgg tacgacgaga
aggacgccaa gtggcacctg tacttccagt 1320acaacccgaa cgacaccgtc tgggggacgc
ccttgttctg gggccacgcc acgtccgacg 1380acctgaccaa ctgggaggac cagcccatcg
ccatcgcccc gaagcgcaac gactccggcg 1440ccttctccgg ctccatggtg gtggactaca
acaacacctc cggcttcttc aacgacacca 1500tcgacccgcg ccagcgctgc gtggccatct
ggacctacaa caccccggag tccgaggagc 1560agtacatctc ctacagcctg gacggcggct
acaccttcac cgagtaccag aagaaccccg 1620tgctggccgc caactccacc cagttccgcg
acccgaaggt cttctggtac gagccctccc 1680agaagtggat catgaccgcg gccaagtccc
aggactacaa gatcgagatc tactcctccg 1740acgacctgaa gtcctggaag ctggagtccg
cgttcgccaa cgagggcttc ctcggctacc 1800agtacgagtg ccccggcctg atcgaggtcc
ccaccgagca ggaccccagc aagtcctact 1860gggtgatgtt catctccatc aaccccggcg
ccccggccgg cggctccttc aaccagtact 1920tcgtcggcag cttcaacggc acccacttcg
aggccttcga caaccagtcc cgcgtggtgg 1980acttcggcaa ggactactac gccctgcaga
ccttcttcaa caccgacccg acctacggga 2040gcgccctggg catcgcgtgg gcctccaact
gggagtactc cgccttcgtg cccaccaacc 2100cctggcgctc ctccatgtcc ctcgtgcgca
agttctccct caacaccgag taccaggcca 2160acccggagac ggagctgatc aacctgaagg
ccgagccgat cctgaacatc agcaacgccg 2220gcccctggag ccggttcgcc accaacacca
cgttgacgaa ggccaacagc tacaacgtcg 2280acctgtccaa cagcaccggc accctggagt
tcgagctggt gtacgccgtc aacaccaccc 2340agacgatctc caagtccgtg ttcgcggacc
tctccctctg gttcaagggc ctggaggacc 2400ccgaggagta cctccgcatg ggcttcgagg
tgtccgcgtc ctccttcttc ctggaccgcg 2460ggaacagcaa ggtgaagttc gtgaaggaga
acccctactt caccaaccgc atgagcgtga 2520acaaccagcc cttcaagagc gagaacgacc
tgtcctacta caaggtgtac ggcttgctgg 2580accagaacat cctggagctg tacttcaacg
acggcgacgt cgtgtccacc aacacctact 2640tcatgaccac cgggaacgcc ctgggctccg
tgaacatgac gacgggggtg gacaacctgt 2700tctacatcga caagttccag gtgcgcgagg
tcaagtgaca attgacgccc gcgcggcgca 2760cctgacctgt tctctcgagg gcgcctgttc
tgccttgcga aacaagcccc tggagcatgc 2820gtgcatgatc gtctctggcg ccccgccgcg
cggtttgtcg ccctcgcggg cgccgcggcc 2880gcgggggcgc attgaaattg ttgcaaaccc
cacctgacag attgagggcc caggcaggaa 2940ggcgttgaga tggaggtaca ggagtcaagt
aactgaaagt ttttatgata actaacaaca 3000aagggtcgtt tctggccagc gaatgacaag
aacaagattc cacatttccg tgtagaggct 3060tgccatcgaa tgtgagcggg cgggccgcgg
acccgacaaa acccttacga cgtggtaaga 3120aaaacgtggc gggcactgtc cctgtagcct
gaagaccagc aggagacgat cggaagcatc 3180acagcacagg atcccgcgtc tcgaacagag
cgcgcagagg aacgctgaag gtctcgcctc 3240tgtcgcacct cagcgcggca tacaccacaa
taaccacctg acgaatgcgc ttggttcttc 3300gtccattagc gaagcgtccg gttcacacac
gtgccacgtt ggcgaggtgg caggtgacaa 3360tgatcggtgg agctgatggt cgaaacgttc
acagcctagg gatatcgtga aaactcgctc 3420gaccgcccgc gtcccgcagg cagcgatgac
gtgtgcgtga cctgggtgtt tcgtcgaaag 3480gccagcaacc ccaaatcgca ggcgatccgg
agattgggat ctgatccgag cttggaccag 3540atcccccacg atgcggcacg ggaactgcat
cgactcggcg cggaacccag ctttcgtaaa 3600tgccagattg gtgtccgata ccttgatttg
ccatcagcga aacaagactt cagcagcgag 3660cgtatttggc gggcgtgcta ccagggttgc
atacattgcc catttctgtc tggaccgctt 3720taccggcgca gagggtgagt tgatggggtt
ggcaggcatc gaaacgcgcg tgcatggtgt 3780gtgtgtctgt tttcggctgc acaatttcaa
tagtcggatg ggcgacggta gaattgggtg 3840ttgcgctcgc gtgcatgcct cgccccgtcg
ggtgtcatga ccgggactgg aatcccccct 3900cgcgaccctc ctgctaacgc tcccgactct
cccgcccgcg cgcaggatag actctagttc 3960aaccaatcga caactagtat ggccaccgcc
tccaccttct ccgccttcaa cgcccgctgc 4020ggcgacctgc gccgctccgc cggctccggc
ccccgccgcc ccgcccgccc cctgcccgtg 4080cgcgccgcca tcaacgcctc cgcccacccc
aaggccaacg gctccgccgt gaacctgaag 4140tccggctccc tgaacaccca ggaggacacc
tcctcctccc cccccccccg cgccttcctg 4200aaccagctgc ccgactggtc catgctgctg
accgccatca ccaccgtgtt cgtggccgcc 4260gagaagcagt ggaccatgct ggaccgcaag
tccaagcgcc ccgacatgct ggtggactcc 4320gtgggcctga agtccatcgt gcgcgacggc
ctggtgtccc gccagtcctt ctccatccgc 4380tcctacgaga tcggcgccga ccgcaccgcc
tccatcgaga ccctgatgaa ccacctgcag 4440gagacctcca tcaaccactg caagtccctg
ggcctgctga acgacggctt cggccgcacc 4500cccggcatgt gcaagaacga cctgatctgg
gtgctgacca agatgcagat catggtgaac 4560cgctacccca cctggggcga caccgtggag
atcaacacct ggttctccca gtccggcaag 4620atcggcatgg gctccgactg gctgatctcc
gactgcaaca ccggcgagat cctgatccgc 4680gccacctccg tgtgggccat gatgaaccag
aagacccgcc gcttctcccg cctgccctac 4740gaggtgcgcc aggagctgac cccccacttc
gtggactccc cccacgtgat cgaggacaac 4800gaccgcaagc tgcacaagtt cgacgtgaag
accggcgact ccatccgcaa gggcctgacc 4860ccccgctgga acgacctgga cgtgaaccag
cacgtgtcca acgtgaagta catcggctgg 4920atcctggagt ccatgcccat cgaggtgctg
gagacccagg agctgtgctc cctgaccgtg 4980gagtaccgcc gcgagtgcgg catggactcc
aagctggagt ccgtgaccgc catggacccc 5040tccgaggagg acggcgtgcg ctcccagtac
aaccacctgc tgcgcctgga ggacggcacc 5100gacgtggtga agggccgcac cgagtggcgc
cccaagaacg ccggcaccaa cggcgccatc 5160tccaccggca agacctccaa cggcaactcc
gtgtccatgg actacaagga ccacgacggc 5220gactacaagg accacgacat cgactacaag
gacgacgacg acaagtgact cgaggcagca 5280gcagctcaga tagtatcgac acactctgga
cgctggtcgt gtgatggact gttgccgcca 5340cacttgctgc cttgacctgt gaatatccct
gccgctttta tcaaacagcc tcagtgtgtt 5400tgatcttgtg tgtacgcgct tttgcgagtt
gctagctgct tgtgctattt gcgaatacca 5460cccccagcat ccccttccct cgtttcatat
cgcttgcatc ccaaccgcaa cttatctacg 5520ctgtcctgct atccctcagc gctgctcctg
ctcctgctca ctgcccctcg cacagccttg 5580gtttgggctc cgcctgtatt ctcctggtac
tgcaacctgt aaaccagcac tgcaatgctg 5640atgcacggga agtagtggga tgggaacaca
aatggaaagc ttgagctcca gcgccatgcc 5700acgccctttg atggcttcaa gtacgattac
ggtgttggat tgtgtgtttg ttgcgtagtg 5760tgcatggttt agaataatac acttgatttc
ttgctcacgg caatctcggc ttgtccgcag 5820gttcaacccc atttcggagt ctcaggtcag
ccgcgcaatg accagccgct acttcaagga 5880cttgcacgac aacgccgagg tgagctatgt
ttaggacttg attggaaatt gtcgtcgacg 5940catattcgcg ctccgcgaca gcacccaagc
aaaatgtcaa gtgcgttccg atttgcgtcc 6000gcaggtcgat gttgtgatcg tcggcgccgg
atccgccggt ctgtcctgcg cttacgagct 6060gaccaagcac cctgacgtcc gggtacgcga
gctgagattc gattagacat aaattgaaga 6120ttaaacccgt agaaaaattt gatggtcgcg
aaactgtgct cgattgcaag aaattgatcg 6180tcctccactc cgcaggtcgc catcatcgag
cagggcgttg ctcccggcgg cggcgcctgg 6240ctggggggac agctgttctc ggccatgtgt
gtacgtagaa ggatgaattt cagctggttt 6300tcgttgcaca gctgtttgtg catgatttgt
ttcagactat tgttgaatgt ttttagattt 6360cttaggatgc atgatttgtc tgcatgcgac
tgaagagc 63983932PRTSassafras albidum 39Leu Phe
Ala Val Ile Thr Thr Ile Phe Ser Val Ala Glu Lys Gln Trp1 5
10 15Thr Asn Leu Glu Trp Lys Pro Lys
Pro Lys Pro Arg Leu Pro Gln Leu 20 25
3040352PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 40Met Ala Thr Thr Ser Leu Ala Ser Ala Phe Cys
Ser Met Lys Ala Val1 5 10
15Met Leu Ala Arg Asp Gly Arg Gly Met Lys Pro Arg Ser Ser Asp Leu
20 25 30Gln Leu Arg Ala Gly Asn Ala
Gln Thr Pro Leu Lys Met Ile Asn Gly 35 40
45Thr Lys Phe Ser Tyr Thr Glu Ser Leu Lys Arg Leu Pro Asp Trp
Ser 50 55 60Met Leu Asp Asp His Phe
Gly Leu His Gly Leu Val Phe Arg Arg Thr65 70
75 80Phe Ala Ile Arg Ser Tyr Glu Val Gly Pro Asp
Arg Ser Thr Ser Ile 85 90
95Val Ala Val Met Asn His Leu Gln Glu Ala Thr Leu Asn His Ala Lys
100 105 110Ser Val Gly Ile Leu Gly
Asp Gly Phe Gly Thr Thr Leu Glu Met Ser 115 120
125Lys Arg Asp Leu Ala Trp Val Val Arg Arg Thr His Val Ala
Val Glu 130 135 140Arg Tyr Pro Ala Trp
Gly Asp Thr Val Glu Val Glu Cys Trp Ile Gly145 150
155 160Ala Ser Gly Asn Asn Gly Met Arg Arg Asp
Phe Leu Val Arg Asp Cys 165 170
175Lys Thr Gly Glu Ile Leu Thr Arg Cys Thr Ser Leu Ser Val Met Met
180 185 190Asn Thr Arg Thr Arg
Arg Leu Ser Lys Ile Pro Glu Glu Val Arg Gly 195
200 205Glu Ile Gly Pro Leu Phe Ile Asp Asn Val Ala Val
Lys Asp Glu Glu 210 215 220Ile Lys Lys
Leu Gln Lys Leu Asn Asp Ser Ser Ala Asp Tyr Ile Gln225
230 235 240Gly Gly Leu Thr Pro Arg Trp
Asn Asp Leu Asp Val Asn Gln His Val 245
250 255Asn Asn Ile Lys Tyr Val Gly Trp Ile Leu Glu Thr
Val Pro Asp Ser 260 265 270Ile
Phe Glu Ser His His Ile Ser Ser Ile Thr Leu Glu Tyr Arg Arg 275
280 285Glu Cys Thr Arg Asp Ser Val Leu Gln
Ser Leu Thr Thr Val Ser Gly 290 295
300Gly Ser Leu Glu Ala Gly Leu Val Cys Asp His Leu Leu Gln Leu Glu305
310 315 320Gly Gly Ser Glu
Val Leu Arg Ala Arg Thr Glu Trp Arg Pro Lys Leu 325
330 335Thr Asp Ser Phe Arg Gly Ile Ile Val Ile
Pro Ala Glu Pro Ser Val 340 345
35041352PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 41Met Val Ala Thr Ser Leu Ala Ser Ala Phe Cys
Ser Met Lys Ala Val1 5 10
15Met Leu Ala Asp Asp Gly Arg Gly Met Lys Pro Arg Ser Ser Asp Leu
20 25 30Gln Leu Arg Ala Gly Asn Ala
Gln Thr Ser Leu Lys Met Ile Asp Gly 35 40
45Thr Lys Phe Ser Tyr Thr Glu Ser Leu Lys Arg Leu Pro Asp Trp
Ser 50 55 60Lys Leu Asp Asp Arg Phe
Gly Leu His Gly Leu Val Phe Arg Arg Thr65 70
75 80Phe Ala Ile Arg Ser Tyr Glu Val Gly Pro Asp
Arg Ser Ala Ser Ile 85 90
95Leu Ala Val Leu Asn His Leu Gln Glu Ala Thr Leu Asn His Ala Glu
100 105 110Ser Val Gly Ile Leu Gly
Asp Arg Phe Gly Glu Thr Leu Glu Met Ser 115 120
125Lys Arg Asp Leu Met Trp Val Val Arg Arg Thr Tyr Val Ala
Val Glu 130 135 140Arg Tyr Pro Ala Trp
Gly Asp Thr Val Glu Ile Glu Ser Trp Ile Gly145 150
155 160Ala Ser Gly Asn Asn Gly Met Arg Arg Glu
Phe Leu Val Arg Asp Phe 165 170
175Lys Thr Gly Glu Ile Leu Thr Arg Cys Thr Ser Leu Ser Val Met Met
180 185 190Asn Thr Arg Thr Arg
Arg Leu Ser Lys Ile Pro Glu Glu Val Arg Gly 195
200 205Glu Ile Gly Pro Val Phe Ile Asp Asn Val Ala Val
Lys Asp Glu Glu 210 215 220Ile Lys Lys
Leu Gln Lys Leu Asn Asp Ser Thr Ala Asp Tyr Ile Gln225
230 235 240Gly Gly Leu Ile Pro Arg Trp
Asn Asp Leu Asp Leu Asn Gln His Val 245
250 255Asn Asn Ile Lys Tyr Val Ser Trp Ile Leu Glu Thr
Val Pro Asp Ser 260 265 270Ile
Leu Glu Ser Tyr His Met Ser Ser Ile Thr Leu Glu Tyr Arg Arg 275
280 285Glu Cys Thr Arg Asp Ser Val Leu Gln
Ser Leu Thr Thr Val Ser Gly 290 295
300Gly Ser Ser Glu Ala Gly Leu Val Cys Glu His Ser Leu Leu Leu Glu305
310 315 320Gly Gly Ser Glu
Val Leu Arg Ala Arg Thr Glu Trp Arg Pro Lys Leu 325
330 335Thr Asp Ser Phe Arg Gly Ile Ser Val Ile
Pro Ala Glu Gln Ser Val 340 345
35042316PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 42Gly Asn Ala Gln Thr Pro Leu Lys Met Ile Asn
Gly Thr Lys Phe Ser1 5 10
15Tyr Thr Glu Ser Leu Lys Arg Leu Pro Asp Trp Ser Met Leu Asp Asp
20 25 30His Phe Gly Leu His Gly Leu
Val Phe Arg Arg Thr Phe Ala Ile Arg 35 40
45Ser Tyr Glu Val Gly Pro Asp Arg Ser Thr Ser Ile Val Ala Val
Met 50 55 60Asn His Leu Gln Glu Ala
Thr Leu Asn His Ala Lys Ser Val Gly Ile65 70
75 80Leu Gly Asp Gly Phe Gly Thr Thr Leu Glu Met
Ser Lys Arg Asp Leu 85 90
95Ala Trp Val Val Arg Arg Thr His Val Ala Val Glu Arg Tyr Pro Ala
100 105 110Trp Gly Asp Thr Val Glu
Val Glu Cys Trp Ile Gly Ala Ser Gly Asn 115 120
125Asn Gly Met Arg Arg Asp Phe Leu Val Arg Asp Cys Lys Thr
Gly Glu 130 135 140Ile Leu Thr Arg Cys
Thr Ser Leu Ser Val Met Met Asn Thr Arg Thr145 150
155 160Arg Arg Leu Ser Lys Ile Pro Glu Glu Val
Arg Gly Glu Ile Gly Pro 165 170
175Leu Phe Ile Asp Asn Val Ala Val Lys Asp Glu Glu Ile Lys Lys Leu
180 185 190Gln Lys Leu Asn Asp
Ser Ser Ala Asp Tyr Ile Gln Gly Gly Leu Thr 195
200 205Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val
Asn Asn Ile Lys 210 215 220Tyr Val Gly
Trp Ile Leu Glu Thr Val Pro Asp Ser Ile Phe Glu Ser225
230 235 240His His Ile Ser Ser Ile Thr
Leu Glu Tyr Arg Arg Glu Cys Thr Arg 245
250 255Asp Ser Val Leu Gln Ser Leu Thr Thr Val Ser Gly
Gly Ser Leu Glu 260 265 270Ala
Gly Leu Val Cys Asp His Leu Leu Gln Leu Glu Gly Gly Ser Glu 275
280 285Val Leu Arg Ala Arg Thr Glu Trp Arg
Pro Lys Leu Thr Asp Ser Phe 290 295
300Arg Gly Ile Ile Val Ile Pro Ala Glu Pro Ser Val305 310
31543316PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 43Gly Asn Ala Gln Thr Ser Leu Lys Met
Ile Asp Gly Thr Lys Phe Ser1 5 10
15Tyr Thr Glu Ser Leu Lys Arg Leu Pro Asp Trp Ser Lys Leu Asp
Asp 20 25 30Arg Phe Gly Leu
His Gly Leu Val Phe Arg Arg Thr Phe Ala Ile Arg 35
40 45Ser Tyr Glu Val Gly Pro Asp Arg Ser Ala Ser Ile
Leu Ala Val Leu 50 55 60Asn His Leu
Gln Glu Ala Thr Leu Asn His Ala Glu Ser Val Gly Ile65 70
75 80Leu Gly Asp Arg Phe Gly Glu Thr
Leu Glu Met Ser Lys Arg Asp Leu 85 90
95Met Trp Val Val Arg Arg Thr Tyr Val Ala Val Glu Arg Tyr
Pro Ala 100 105 110Trp Gly Asp
Thr Val Glu Ile Glu Ser Trp Ile Gly Ala Ser Gly Asn 115
120 125Asn Gly Met Arg Arg Glu Phe Leu Val Arg Asp
Phe Lys Thr Gly Glu 130 135 140Ile Leu
Thr Arg Cys Thr Ser Leu Ser Val Met Met Asn Thr Arg Thr145
150 155 160Arg Arg Leu Ser Lys Ile Pro
Glu Glu Val Arg Gly Glu Ile Gly Pro 165
170 175Val Phe Ile Asp Asn Val Ala Val Lys Asp Glu Glu
Ile Lys Lys Leu 180 185 190Gln
Lys Leu Asn Asp Ser Thr Ala Asp Tyr Ile Gln Gly Gly Leu Ile 195
200 205Pro Arg Trp Asn Asp Leu Asp Leu Asn
Gln His Val Asn Asn Ile Lys 210 215
220Tyr Val Ser Trp Ile Leu Glu Thr Val Pro Asp Ser Ile Leu Glu Ser225
230 235 240Tyr His Met Ser
Ser Ile Thr Leu Glu Tyr Arg Arg Glu Cys Thr Arg 245
250 255Asp Ser Val Leu Gln Ser Leu Thr Thr Val
Ser Gly Gly Ser Ser Glu 260 265
270Ala Gly Leu Val Cys Glu His Ser Leu Leu Leu Glu Gly Gly Ser Glu
275 280 285Val Leu Arg Ala Arg Thr Glu
Trp Arg Pro Lys Leu Thr Asp Ser Phe 290 295
300Arg Gly Ile Ser Val Ile Pro Ala Glu Gln Ser Val305
310 315441134DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 44atggccaccg cctccacctt
ctccgccttc aacgcccgct gcggcgacct gcgccgctcc 60gccggctccg gcccccgccg
ccccgcccgc cccctgcccg tgcgcgccgc catcggcaac 120gcccagaccc ccctgaagat
gatcaacggc accaagttct cctacaccga gtccctgaag 180cgcctgcccg actggtccat
gctggacgac cacttcggcc tgcacggcct ggtgttccgc 240cgcaccttcg ccatccgctc
ctacgaggtg ggccccgacc gctccacctc catcgtggcc 300gtgatgaacc acctgcagga
ggccaccctg aaccacgcca agtccgtggg catcctgggc 360gacggcttcg gcaccaccct
ggagatgtcc aagcgcgacc tggcctgggt ggtgcgccgc 420acccacgtgg ccgtggagcg
ctaccccgcc tggggcgaca ccgtggaggt ggagtgctgg 480atcggcgcct ccggcaacaa
cggcatgcgc cgcgacttcc tggtgcgcga ctgcaagacc 540ggcgagatcc tgacccgctg
cacctccctg tccgtgatga tgaacacccg cacccgccgc 600ctgtccaaga tccccgagga
ggtgcgcggc gagatcggcc ccctgttcat cgacaacgtg 660gccgtgaagg acgaggagat
caagaagctg cagaagctga acgactcctc cgccgactac 720atccagggcg gcctgacccc
ccgctggaac gacctggacg tgaaccagca cgtgaacaac 780atcaagtacg tgggctggat
cctggagacc gtgcccgact ccatcttcga gtcccaccac 840atctcctcca tcaccctgga
gtaccgccgc gagtgcaccc gcgactccgt gctgcagtcc 900ctgaccaccg tgtccggcgg
ctccctggag gccggcctgg tgtgcgacca cctgctgcag 960ctggagggcg gctccgaggt
gctgcgcgcc cgcaccgagt ggcgccccaa gctgaccgac 1020tccttccgcg gcatcatcgt
gatccccgcc gagccctccg tgatggacta caaggaccac 1080gacggcgact acaaggacca
cgacatcgac tacaaggacg acgacgacaa gtga 1134451134DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
45atggccaccg cctccacctt ctccgccttc aacgcccgct gcggcgacct gcgccgctcc
60gccggctccg gcccccgccg ccccgcccgc cccctgcccg tgcgcgccgc catcggcaac
120gcccagacct ccctgaagat gatcgacggc accaagttct cctacaccga gtccctgaag
180cgcctgcccg actggtccaa gctggacgac cgcttcggcc tgcacggcct ggtgttccgc
240cgcaccttcg ccatccgctc ctacgaggtg ggccccgacc gctccgcctc catcctggcc
300gtgctgaacc acctgcagga ggccaccctg aaccacgccg agtccgtggg catcctgggc
360gaccgcttcg gcgagaccct ggagatgtcc aagcgcgacc tgatgtgggt ggtgcgccgc
420acctacgtgg ccgtggagcg ctaccccgcc tggggcgaca ccgtggagat cgagtcctgg
480atcggcgcct ccggcaacaa cggcatgcgc cgcgagttcc tggtgcgcga cttcaagacc
540ggcgagatcc tgacccgctg cacctccctg tccgtgatga tgaacacccg cacccgccgc
600ctgtccaaga tccccgagga ggtgcgcggc gagatcggcc ccgtgttcat cgacaacgtg
660gccgtgaagg acgaggagat caagaagctg cagaagctga acgactccac cgccgactac
720atccagggcg gcctgatccc ccgctggaac gacctggacc tgaaccagca cgtgaacaac
780atcaagtacg tgtcctggat cctggagacc gtgcccgact ccatcctgga gtcctaccac
840atgtcctcca tcaccctgga gtaccgccgc gagtgcaccc gcgactccgt gctgcagtcc
900ctgaccaccg tgtccggcgg ctcctccgag gccggcctgg tgtgcgagca ctccctgctg
960ctggagggcg gctccgaggt gctgcgcgcc cgcaccgagt ggcgccccaa gctgaccgac
1020tccttccgcg gcatctccgt gatccccgcc gagcagtccg tgatggacta caaggaccac
1080gacggcgact acaaggacca cgacatcgac tacaaggacg acgacgacaa gtga
113446357PRTCinnamomum camphora 46Met Val Thr Thr Ser Leu Ala Ser Ala Tyr
Phe Ser Met Lys Ala Val1 5 10
15Met Leu Ala Pro Asp Gly Arg Gly Ile Lys Pro Arg Ser Ser Gly Leu
20 25 30Gln Val Arg Ala Gly Asn
Glu Arg Asn Ser Cys Lys Val Ile Asn Gly 35 40
45Thr Lys Val Lys Asp Thr Glu Gly Leu Lys Gly Cys Ser Thr
Leu Gln 50 55 60Gly Gln Ser Met Leu
Asp Asp His Phe Gly Leu His Gly Leu Val Phe65 70
75 80Arg Arg Thr Phe Ala Ile Arg Cys Tyr Glu
Val Gly Pro Asp Arg Ser 85 90
95Thr Ser Ile Met Ala Val Met Asn His Leu Gln Glu Ala Ala Arg Asn
100 105 110His Ala Glu Ser Leu
Gly Leu Leu Gly Asp Gly Phe Gly Glu Thr Leu 115
120 125Glu Met Ser Lys Arg Asp Leu Ile Trp Val Val Arg
Arg Thr His Val 130 135 140Ala Val Glu
Arg Tyr Pro Ala Trp Gly Asp Thr Val Glu Val Glu Ala145
150 155 160Trp Val Gly Ala Ser Gly Asn
Thr Gly Met Arg Arg Asp Phe Leu Val 165
170 175Arg Asp Cys Lys Thr Gly His Ile Leu Thr Arg Cys
Thr Ser Val Ser 180 185 190Val
Met Met Asn Met Arg Thr Arg Arg Leu Ser Lys Ile Pro Gln Glu 195
200 205Val Arg Ala Glu Ile Asp Pro Leu Phe
Ile Glu Lys Val Ala Val Lys 210 215
220Glu Gly Glu Ile Lys Lys Leu Gln Lys Leu Asn Asp Ser Thr Ala Asp225
230 235 240Tyr Ile Gln Gly
Gly Trp Thr Pro Arg Trp Asn Asp Leu Asp Val Asn 245
250 255Gln His Val Asn Asn Ile Ile Tyr Val Gly
Trp Ile Phe Lys Ser Val 260 265
270Pro Asp Ser Ile Ser Glu Asn His His Leu Ser Ser Ile Thr Leu Glu
275 280 285Tyr Arg Arg Glu Cys Thr Arg
Gly Asn Lys Leu Gln Ser Leu Thr Thr 290 295
300Val Cys Gly Gly Ser Ser Glu Ala Gly Ile Ile Cys Glu His Leu
Leu305 310 315 320Gln Leu
Glu Asp Gly Ser Glu Val Leu Arg Ala Arg Thr Glu Trp Arg
325 330 335Pro Lys His Thr Asp Ser Phe
Gln Gly Ile Ser Glu Arg Phe Pro Gln 340 345
350Gln Glu Pro His Lys 3554732PRTSassafras albidum
47Leu Phe Ala Val Ile Thr Thr Ile Phe Ser Val Ala Glu Lys Gln Trp1
5 10 15Thr Asn Leu Glu Trp Lys
Pro Lys Pro Lys Pro Arg Leu Pro Gln Leu 20 25
304828PRTLindera benzoin 48Leu Leu Thr Val Ile Thr Thr
Ile Phe Ser Ala Ala Glu Lys Gln Trp1 5 10
15Thr Asn Leu Glu Arg Lys Pro Lys Pro Pro His Leu
20 2549405PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 49Met Ala Thr Ala Ser Thr
Phe Ser Ala Phe Asn Ala Arg Cys Gly Asp1 5
10 15Leu Arg Arg Ser Ala Gly Ser Gly Pro Arg Arg Pro
Ala Arg Pro Leu 20 25 30Pro
Val Arg Ala Ala Ile Asn Ala Ser Ala His Pro Lys Ala Asn Gly 35
40 45Ser Ala Val Asn Leu Lys Ser Gly Ser
Leu Asn Thr Gln Glu Asp Thr 50 55
60Ser Ser Ser Pro Pro Pro Arg Ala Phe Leu Asn Gln Leu Pro Asp Trp65
70 75 80Ser Met Leu Leu Thr
Ala Ile Thr Thr Val Phe Val Ala Ala Glu Lys 85
90 95Gln Trp Thr Met Arg Asp Arg Lys Ser Lys Arg
Pro Asp Met Leu Val 100 105
110Asp Ser Val Gly Leu Lys Ser Val Val Leu Asp Gly Leu Val Ser Arg
115 120 125Gln Ile Phe Ser Ile Arg Ser
Tyr Glu Ile Gly Ala Asp Arg Thr Ala 130 135
140Ser Ile Glu Thr Leu Met Asn His Leu Gln Glu Thr Ser Ile Asn
His145 150 155 160Cys Lys
Ser Leu Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly
165 170 175Met Cys Lys Asn Asp Leu Ile
Trp Val Leu Thr Lys Met Gln Ile Met 180 185
190Val Asn Arg Tyr Pro Thr Trp Gly Asp Thr Val Glu Ile Asn
Thr Trp 195 200 205Phe Ser His Ser
Gly Lys Ile Gly Met Ala Ser Asp Trp Leu Ile Thr 210
215 220Asp Cys Asn Thr Gly Glu Ile Leu Ile Arg Ala Thr
Ser Val Trp Ala225 230 235
240Met Met Asn Gln Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr Glu Val
245 250 255Arg Gln Glu Leu Thr
Pro His Tyr Val Asp Ser Pro His Val Ile Glu 260
265 270Asp Asn Asp Arg Lys Leu His Lys Phe Asp Val Lys
Thr Gly Asp Ser 275 280 285Ile Arg
Lys Gly Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln 290
295 300His Val Ser Asn Val Lys Tyr Ile Gly Trp Ile
Leu Glu Ser Met Pro305 310 315
320Ile Glu Val Leu Glu Thr Gln Glu Leu Cys Ser Leu Thr Val Glu Tyr
325 330 335Arg Arg Glu Cys
Gly Met Asp Ser Val Leu Glu Ser Val Thr Ala Met 340
345 350Asp Pro Ser Glu Asp Glu Gly Arg Ser Gln Tyr
Lys His Leu Leu Arg 355 360 365Leu
Glu Asp Gly Thr Asp Ile Val Lys Gly Arg Thr Glu Trp Arg Pro 370
375 380Lys Asn Ala Gly Thr Asn Gly Ala Ile Ser
Thr Ala Lys Pro Ser Asn385 390 395
400Gly Asn Ser Val Ser 40550377PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
50Met Ala Thr Ala Ser Thr Phe Ser Ala Phe Asn Ala Arg Cys Gly Asp1
5 10 15Leu Arg Arg Ser Ala Gly
Ser Gly Pro Arg Arg Pro Ala Arg Pro Leu 20 25
30Pro Val Arg Ala Ala Ile Asn Ala Ser Ala His Pro Lys
Ala Asn Gly 35 40 45Ser Ala Val
Asn Leu Lys Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr 50
55 60Ser Ser Ser Pro Pro Pro Arg Ala Phe Leu Asn Gln
Leu Pro Asp Trp65 70 75
80Ser Met Leu Val Asp Ser Val Gly Leu Lys Ser Val Val Leu Asp Gly
85 90 95Leu Val Ser Arg Gln Ile
Phe Ser Ile Arg Ser Tyr Glu Ile Gly Ala 100
105 110Asp Arg Thr Ala Ser Ile Glu Thr Leu Met Asn His
Leu Gln Glu Thr 115 120 125Ser Ile
Asn His Cys Lys Ser Leu Gly Leu Leu Asn Asp Gly Phe Gly 130
135 140Arg Thr Pro Gly Met Cys Lys Asn Asp Leu Ile
Trp Val Leu Thr Lys145 150 155
160Met Gln Ile Met Val Asn Arg Tyr Pro Thr Trp Gly Asp Thr Val Glu
165 170 175Ile Asn Thr Trp
Phe Ser His Ser Gly Lys Ile Gly Met Ala Ser Asp 180
185 190Trp Leu Ile Thr Asp Cys Asn Thr Gly Glu Ile
Leu Ile Arg Ala Thr 195 200 205Ser
Val Trp Ala Met Met Asn Gln Lys Thr Arg Arg Phe Ser Arg Leu 210
215 220Pro Tyr Glu Val Arg Gln Glu Leu Thr Pro
His Tyr Val Asp Ser Pro225 230 235
240His Val Ile Glu Asp Asn Asp Arg Lys Leu His Lys Phe Asp Val
Lys 245 250 255Thr Gly Asp
Ser Ile Arg Lys Gly Leu Thr Pro Arg Trp Asn Asp Leu 260
265 270Asp Val Asn Gln His Val Ser Asn Val Lys
Tyr Ile Gly Trp Ile Leu 275 280
285Glu Ser Met Pro Ile Glu Val Leu Glu Thr Gln Glu Leu Cys Ser Leu 290
295 300Thr Val Glu Tyr Arg Arg Glu Cys
Gly Met Asp Ser Val Leu Glu Ser305 310
315 320Val Thr Ala Met Asp Pro Ser Glu Asp Glu Gly Arg
Ser Gln Tyr Lys 325 330
335His Leu Leu Arg Leu Glu Asp Gly Thr Asp Ile Val Lys Gly Arg Thr
340 345 350Glu Trp Arg Pro Lys Asn
Ala Gly Thr Asn Gly Ala Ile Ser Thr Ala 355 360
365Lys Pro Ser Asn Gly Asn Ser Val Ser 370
37551339PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 51Asn Ala Ser Ala His Pro Lys Ala Asn Gly Ser
Ala Val Asn Leu Lys1 5 10
15Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro Pro Pro
20 25 30Arg Ala Phe Leu Asn Gln Leu
Pro Asp Trp Ser Met Leu Val Asp Ser 35 40
45Val Gly Leu Lys Ser Val Val Leu Asp Gly Leu Val Ser Arg Gln
Ile 50 55 60Phe Ser Ile Arg Ser Tyr
Glu Ile Gly Ala Asp Arg Thr Ala Ser Ile65 70
75 80Glu Thr Leu Met Asn His Leu Gln Glu Thr Ser
Ile Asn His Cys Lys 85 90
95Ser Leu Gly Leu Leu Asn Asp Gly Phe Gly Arg Thr Pro Gly Met Cys
100 105 110Lys Asn Asp Leu Ile Trp
Val Leu Thr Lys Met Gln Ile Met Val Asn 115 120
125Arg Tyr Pro Thr Trp Gly Asp Thr Val Glu Ile Asn Thr Trp
Phe Ser 130 135 140His Ser Gly Lys Ile
Gly Met Ala Ser Asp Trp Leu Ile Thr Asp Cys145 150
155 160Asn Thr Gly Glu Ile Leu Ile Arg Ala Thr
Ser Val Trp Ala Met Met 165 170
175Asn Gln Lys Thr Arg Arg Phe Ser Arg Leu Pro Tyr Glu Val Arg Gln
180 185 190Glu Leu Thr Pro His
Tyr Val Asp Ser Pro His Val Ile Glu Asp Asn 195
200 205Asp Arg Lys Leu His Lys Phe Asp Val Lys Thr Gly
Asp Ser Ile Arg 210 215 220Lys Gly Leu
Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val225
230 235 240Ser Asn Val Lys Tyr Ile Gly
Trp Ile Leu Glu Ser Met Pro Ile Glu 245
250 255Val Leu Glu Thr Gln Glu Leu Cys Ser Leu Thr Val
Glu Tyr Arg Arg 260 265 270Glu
Cys Gly Met Asp Ser Val Leu Glu Ser Val Thr Ala Met Asp Pro 275
280 285Ser Glu Asp Glu Gly Arg Ser Gln Tyr
Lys His Leu Leu Arg Leu Glu 290 295
300Asp Gly Thr Asp Ile Val Lys Gly Arg Thr Glu Trp Arg Pro Lys Asn305
310 315 320Ala Gly Thr Asn
Gly Ala Ile Ser Thr Ala Lys Pro Ser Asn Gly Asn 325
330 335Ser Val Ser521203DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
52atggccaccg cctccacctt ctccgccttc aacgcccgct gcggcgacct gcgccgctcc
60gccggctccg gcccccgccg ccccgcccgc cccctgcccg tgcgcgccgc catcaacgcc
120tccgcccacc ccaaggccaa cggctccgcc gtgaacctga agtccggctc cctgaacacc
180caggaggaca cctcctcctc cccccccccc cgcgccttcc tgaaccagct gcccgactgg
240tccatgctgg tggactccgt gggcctgaag tccgtggtgc tggacggcct ggtgtcccgc
300cagatcttct ccatccgctc ctacgagatc ggcgccgacc gcaccgcctc catcgagacc
360ctgatgaacc acctgcagga gacctccatc aaccactgca agtccctggg cctgctgaac
420gacggcttcg gccgcacccc cggcatgtgc aagaacgacc tgatctgggt gctgaccaag
480atgcagatca tggtgaaccg ctaccccacc tggggcgaca ccgtggagat caacacctgg
540ttctcccact ccggcaagat cggcatggcc tccgactggc tgatcaccga ctgcaacacc
600ggcgagatcc tgatccgcgc cacctccgtg tgggccatga tgaaccagaa gacccgccgc
660ttctcccgcc tgccctacga ggtgcgccag gagctgaccc cccactacgt ggactccccc
720cacgtgatcg aggacaacga ccgcaagctg cacaagttcg acgtgaagac cggcgactcc
780atccgcaagg gcctgacccc ccgctggaac gacctggacg tgaaccagca cgtgtccaac
840gtgaagtaca tcggctggat cctggagtcc atgcccatcg aggtgctgga gacccaggag
900ctgtgctccc tgaccgtgga gtaccgccgc gagtgcggca tggactccgt gctggagtcc
960gtgaccgcca tggacccctc cgaggacgag ggccgctccc agtacaagca cctgctgcgc
1020ctggaggacg gcaccgacat cgtgaagggc cgcaccgagt ggcgccccaa gaacgccggc
1080accaacggcg ccatctccac cgccaagccc tccaacggca actccgtgtc catggactac
1140aaggaccacg acggcgacta caaggaccac gacatcgact acaaggacga cgacgacaag
1200tga
120353415PRTCuphea hookeriana 53Met Val Ala Ala Ala Ala Ser Ser Ala Phe
Phe Pro Val Pro Ala Pro1 5 10
15Gly Ala Ser Pro Lys Pro Gly Lys Phe Gly Asn Trp Pro Ser Ser Leu
20 25 30Ser Pro Ser Phe Lys Pro
Lys Ser Ile Pro Asn Gly Gly Phe Gln Val 35 40
45Lys Ala Asn Asp Ser Ala His Pro Lys Ala Asn Gly Ser Ala
Val Ser 50 55 60Leu Lys Ser Gly Ser
Leu Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro65 70
75 80Pro Pro Arg Thr Phe Leu His Gln Leu Pro
Asp Trp Ser Arg Leu Leu 85 90
95Thr Ala Ile Thr Thr Val Phe Val Lys Ser Lys Arg Pro Asp Met His
100 105 110Asp Arg Lys Ser Lys
Arg Pro Asp Met Leu Val Asp Ser Phe Gly Leu 115
120 125Glu Ser Thr Val Gln Asp Gly Leu Val Phe Arg Gln
Ser Phe Ser Ile 130 135 140Arg Ser Tyr
Glu Ile Gly Thr Asp Arg Thr Ala Ser Ile Glu Thr Leu145
150 155 160Met Asn His Leu Gln Glu Thr
Ser Leu Asn His Cys Lys Ser Thr Gly 165
170 175Ile Leu Leu Asp Gly Phe Gly Arg Thr Leu Glu Met
Cys Lys Arg Asp 180 185 190Leu
Ile Trp Val Val Ile Lys Met Gln Ile Lys Val Asn Arg Tyr Pro 195
200 205Ala Trp Gly Asp Thr Val Glu Ile Asn
Thr Arg Phe Ser Arg Leu Gly 210 215
220Lys Ile Gly Met Gly Arg Asp Trp Leu Ile Ser Asp Cys Asn Thr Gly225
230 235 240Glu Ile Leu Val
Arg Ala Thr Ser Ala Tyr Ala Met Met Asn Gln Lys 245
250 255Thr Arg Arg Leu Ser Lys Leu Pro Tyr Glu
Val His Gln Glu Ile Val 260 265
270Pro Leu Phe Val Asp Ser Pro Val Ile Glu Asp Ser Asp Leu Lys Val
275 280 285His Lys Phe Lys Val Lys Thr
Gly Asp Ser Ile Gln Lys Gly Leu Thr 290 295
300Pro Gly Trp Asn Asp Leu Asp Val Asn Gln His Val Ser Asn Val
Lys305 310 315 320Tyr Ile
Gly Trp Ile Leu Glu Ser Met Pro Thr Glu Val Leu Glu Thr
325 330 335Gln Glu Leu Cys Ser Leu Ala
Leu Glu Tyr Arg Arg Glu Cys Gly Arg 340 345
350Asp Ser Val Leu Glu Ser Val Thr Ala Met Asp Pro Ser Lys
Val Gly 355 360 365Val Arg Ser Gln
Tyr Gln His Leu Leu Arg Leu Glu Asp Gly Thr Ala 370
375 380Ile Val Asn Gly Ala Thr Glu Trp Arg Pro Lys Asn
Ala Gly Ala Asn385 390 395
400Gly Ala Ile Ser Thr Gly Lys Thr Ser Asn Gly Asn Ser Val Ser
405 410 41554376PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
54Met Ala Thr Ala Ser Thr Phe Ser Ala Phe Asn Ala Arg Cys Gly Asp1
5 10 15Leu Arg Arg Ser Ala Gly
Ser Gly Pro Arg Arg Pro Ala Arg Pro Leu 20 25
30Pro Val Arg Ala Ala Ile Asn Asp Ser Ala His Pro Lys
Ala Asn Gly 35 40 45Ser Ala Val
Ser Leu Lys Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr 50
55 60Ser Ser Ser Pro Pro Pro Arg Thr Phe Leu His Gln
Leu Pro Asp Trp65 70 75
80Ser Arg Leu Val Asp Ser Phe Gly Leu Glu Ser Thr Val Gln Asp Gly
85 90 95Leu Val Phe Arg Gln Ser
Phe Ser Ile Arg Ser Tyr Glu Ile Gly Thr 100
105 110Asp Arg Thr Ala Ser Ile Glu Thr Leu Met Asn His
Leu Gln Glu Thr 115 120 125Ser Leu
Asn His Cys Lys Ser Thr Gly Ile Leu Leu Asp Gly Phe Gly 130
135 140Arg Thr Leu Glu Met Cys Lys Arg Asp Leu Ile
Trp Val Val Ile Lys145 150 155
160Met Gln Ile Lys Val Asn Arg Tyr Pro Ala Trp Gly Asp Thr Val Glu
165 170 175Ile Asn Thr Arg
Phe Ser Arg Leu Gly Lys Ile Gly Met Gly Arg Asp 180
185 190Trp Leu Ile Ser Asp Cys Asn Thr Gly Glu Ile
Leu Val Arg Ala Thr 195 200 205Ser
Ala Tyr Ala Met Met Asn Gln Lys Thr Arg Arg Leu Ser Lys Leu 210
215 220Pro Tyr Glu Val His Gln Glu Ile Val Pro
Leu Phe Val Asp Ser Pro225 230 235
240Val Ile Glu Asp Ser Asp Leu Lys Val His Lys Phe Lys Val Lys
Thr 245 250 255Gly Asp Ser
Ile Gln Lys Gly Leu Thr Pro Gly Trp Asn Asp Leu Asp 260
265 270Val Asn Gln His Val Ser Asn Val Lys Tyr
Ile Gly Trp Ile Leu Glu 275 280
285Ser Met Pro Thr Glu Val Leu Glu Thr Gln Glu Leu Cys Ser Leu Ala 290
295 300Leu Glu Tyr Arg Arg Glu Cys Gly
Arg Asp Ser Val Leu Glu Ser Val305 310
315 320Thr Ala Met Asp Pro Ser Lys Val Gly Val Arg Ser
Gln Tyr Gln His 325 330
335Leu Leu Arg Leu Glu Asp Gly Thr Ala Ile Val Asn Gly Ala Thr Glu
340 345 350Trp Arg Pro Lys Asn Ala
Gly Ala Asn Gly Ala Ile Ser Thr Gly Lys 355 360
365Thr Ser Asn Gly Asn Ser Val Ser 370
37555338PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 55Asn Asp Ser Ala His Pro Lys Ala Asn Gly Ser
Ala Val Ser Leu Lys1 5 10
15Ser Gly Ser Leu Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro Pro Pro
20 25 30Arg Thr Phe Leu His Gln Leu
Pro Asp Trp Ser Arg Leu Val Asp Ser 35 40
45Phe Gly Leu Glu Ser Thr Val Gln Asp Gly Leu Val Phe Arg Gln
Ser 50 55 60Phe Ser Ile Arg Ser Tyr
Glu Ile Gly Thr Asp Arg Thr Ala Ser Ile65 70
75 80Glu Thr Leu Met Asn His Leu Gln Glu Thr Ser
Leu Asn His Cys Lys 85 90
95Ser Thr Gly Ile Leu Leu Asp Gly Phe Gly Arg Thr Leu Glu Met Cys
100 105 110Lys Arg Asp Leu Ile Trp
Val Val Ile Lys Met Gln Ile Lys Val Asn 115 120
125Arg Tyr Pro Ala Trp Gly Asp Thr Val Glu Ile Asn Thr Arg
Phe Ser 130 135 140Arg Leu Gly Lys Ile
Gly Met Gly Arg Asp Trp Leu Ile Ser Asp Cys145 150
155 160Asn Thr Gly Glu Ile Leu Val Arg Ala Thr
Ser Ala Tyr Ala Met Met 165 170
175Asn Gln Lys Thr Arg Arg Leu Ser Lys Leu Pro Tyr Glu Val His Gln
180 185 190Glu Ile Val Pro Leu
Phe Val Asp Ser Pro Val Ile Glu Asp Ser Asp 195
200 205Leu Lys Val His Lys Phe Lys Val Lys Thr Gly Asp
Ser Ile Gln Lys 210 215 220Gly Leu Thr
Pro Gly Trp Asn Asp Leu Asp Val Asn Gln His Val Ser225
230 235 240Asn Val Lys Tyr Ile Gly Trp
Ile Leu Glu Ser Met Pro Thr Glu Val 245
250 255Leu Glu Thr Gln Glu Leu Cys Ser Leu Ala Leu Glu
Tyr Arg Arg Glu 260 265 270Cys
Gly Arg Asp Ser Val Leu Glu Ser Val Thr Ala Met Asp Pro Ser 275
280 285Lys Val Gly Val Arg Ser Gln Tyr Gln
His Leu Leu Arg Leu Glu Asp 290 295
300Gly Thr Ala Ile Val Asn Gly Ala Thr Glu Trp Arg Pro Lys Asn Ala305
310 315 320Gly Ala Asn Gly
Ala Ile Ser Thr Gly Lys Thr Ser Asn Gly Asn Ser 325
330 335Val Ser561200DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
56atggccaccg cctccacctt ctccgccttc aacgcccgct gcggcgacct gcgccgctcc
60gccggctccg gcccccgccg ccccgcccgc cccctgcccg tgcgcgccgc catcaacgac
120tccgcccacc ccaaggccaa cggctccgcc gtgagcctga agtccggcag cctgaacacc
180caggaggaca cctcctccag cccccccccc cgcaccttcc tgcaccagct gcccgactgg
240agccgcctgg tggacagctt cggcctggag tccaccgtgc aggacggcct ggtgttccgc
300cagtccttct ccatccgctc ctacgagatc ggcaccgacc gcaccgccag catcgagacc
360ctgatgaacc acctgcagga gacctccctg aaccactgca agagcaccgg catcctgctg
420gacggcttcg gccgcaccct ggagatgtgc aagcgcgacc tgatctgggt ggtgatcaag
480atgcagatca aggtgaaccg ctaccccgcc tggggcgaca ccgtggagat caacacccgc
540ttcagccgcc tgggcaagat cggcatgggc cgcgactggc tgatctccga ctgcaacacc
600ggcgagatcc tggtgcgcgc caccagcgcc tacgccatga tgaaccagaa gacccgccgc
660ctgtccaagc tgccctacga ggtgcaccag gagatcgtgc ccctgttcgt ggacagcccc
720gtgatcgagg actccgacct gaaggtgcac aagttcaagg tgaagaccgg cgacagcatc
780cagaagggcc tgacccccgg ctggaacgac ctggacgtga accagcacgt gtccaacgtg
840aagtacatcg gctggatcct ggagagcatg cccaccgagg tgctggagac ccaggagctg
900tgctccctgg ccctggagta ccgccgcgag tgcggccgcg actccgtgct ggagagcgtg
960accgccatgg accccagcaa ggtgggcgtg cgctcccagt accagcacct gctgcgcctg
1020gaggacggca ccgccatcgt gaacggcgcc accgagtggc gccccaagaa cgccggcgcc
1080aacggcgcca tctccaccgg caagaccagc aacggcaact ccgtgtccat ggactacaag
1140gaccacgacg gcgactacaa ggaccacgac atcgactaca aggacgacga cgacaagtga
1200576046DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 57caccggcgcg ctgcttcgcg tgccgggtgc
agcaatcaga tccaagtctg acgacttgcg 60cgcacgcgcc ggatccttca attccaaagt
gtcgtccgcg tgcgcttctt cgccttcgtc 120ctcttgaaca tccagcgacg caagcgcagg
gcgctgggcg gctggcgtcc cgaaccggcc 180tcggcgcacg cggctgaaat tgccgatgtc
ggcaatgtag tgccgctccg cccacctctc 240aattaagttt ttcagcgcgt ggttgggaat
gatctgcgct catggggcga aagaaggggt 300tcagaggtgc tttattgtta ctcgactggg
cgtaccagca ttcgtgcatg actgattata 360catacaaaag tacagctcgc ttcaatgccc
tgcgattcct actcccgagc gagcactcct 420ctcaccgtcg ggttgcttcc cacgaccacg
ccggtaagag ggtctgtggc ctcgcgcccc 480tcgcgagcgc atctttccag ccacgtctgt
atgattttgc gctcatacgt ctggcccgtc 540gaccccaaaa tgacgggatc ctgcataata
tcgcccgaaa tgggatccag gcattcgtca 600ggaggcgtca gccccgcggg agatgccggt
cccgccgcat tggaaaggtg tagagggggt 660gaatccccca tttcatgaaa tgggtacccc
gctcccgtct ggtcctcacg ttcgtgtacg 720gcctggatcc cggaaagggc ggatgcacgt
ggtgttgccc cgccattggc gcccacgttt 780caaagtcccc ggccagaaat gcacaggacc
ggcccggctc gcacaggcca tgacgaatgc 840ccagatttcg acagcaaaac aatctggaat
aatcgcaacc attcgcgttt tgaacgaaac 900gaaaagacgc tgtttagcac gtttccgata
tcgtgggggc cgaagcatga ttggggggag 960gaaagcgtgg ccccaaggta gcccattctg
tgccacacgc cgacgaggac caatccccgg 1020catcagcctt catcgacggc tgcgccgcac
atataaagcc ggacgccttc ccgacacgtt 1080caaacagttt tatttcctcc acttcctgaa
tcaaacaaat cttcaaggaa gatcctgctc 1140ttgagcaact cgtatgttcg cgttctactt
cctgacggcc tgcatctccc tgaagggcgt 1200gttcggcgtc tccccctcct acaacggcct
gggcctgacg ccccagatgg gctgggacaa 1260ctggaacacg ttcgcctgcg acgtctccga
gcagctgctg ctggacacgg ccgaccgcat 1320ctccgacctg ggcctgaagg acatgggcta
caagtacatc atcctggacg actgctggtc 1380ctccggccgc gactccgacg gcttcctggt
cgccgacgag cagaagttcc ccaacggcat 1440gggccacgtc gccgaccacc tgcacaacaa
ctccttcctg ttcggcatgt actcctccgc 1500gggcgagtac acgtgcgccg gctaccccgg
ctccctgggc cgcgaggagg aggacgccca 1560gttcttcgcg aacaaccgcg tggactacct
gaagtacgac aactgctaca acaagggcca 1620gttcggcacg cccgagatct cctaccaccg
ctacaaggcc atgtccgacg ccctgaacaa 1680gacgggccgc cccatcttct actccctgtg
caactggggc caggacctga ccttctactg 1740gggctccggc atcgcgaact cctggcgcat
gtccggcgac gtcacggcgg agttcacgcg 1800ccccgactcc cgctgcccct gcgacggcga
cgagtacgac tgcaagtacg ccggcttcca 1860ctgctccatc atgaacatcc tgaacaaggc
cgcccccatg ggccagaacg cgggcgtcgg 1920cggctggaac gacctggaca acctggaggt
cggcgtcggc aacctgacgg acgacgagga 1980gaaggcgcac ttctccatgt gggccatggt
gaagtccccc ctgatcatcg gcgcgaacgt 2040gaacaacctg aaggcctcct cctactccat
ctactcccag gcgtccgtca tcgccatcaa 2100ccaggactcc aacggcatcc ccgccacgcg
cgtctggcgc tactacgtgt ccgacacgga 2160cgagtacggc cagggcgaga tccagatgtg
gtccggcccc ctggacaacg gcgaccaggt 2220cgtggcgctg ctgaacggcg gctccgtgtc
ccgccccatg aacacgaccc tggaggagat 2280cttcttcgac tccaacctgg gctccaagaa
gctgacctcc acctgggaca tctacgacct 2340gtgggcgaac cgcgtcgaca actccacggc
gtccgccatc ctgggccgca acaagaccgc 2400caccggcatc ctgtacaacg ccaccgagca
gtcctacaag gacggcctgt ccaagaacga 2460cacccgcctg ttcggccaga agatcggctc
cctgtccccc aacgcgatcc tgaacacgac 2520cgtccccgcc cacggcatcg cgttctaccg
cctgcgcccc tcctcctgat acaacttatt 2580acgtattctg accggcgctg atgtggcgcg
gacgccgtcg tactctttca gactttactc 2640ttgaggaatt gaacctttct cgcttgctgg
catgtaaaca ttggcgcaat taattgtgtg 2700atgaagaaag ggtggcacaa gatggatcgc
gaatgtacga gatcgacaac gatggtgatt 2760gttatgaggg gccaaacctg gctcaatctt
gtcgcatgtc cggcgcaatg tgatccagcg 2820gcgtgactct cgcaacctgg tagtgtgtgc
gcaccgggtc gctttgatta aaactgatcg 2880cattgccatc ccgtcaactc acaagcctac
tctagctccc attgcgcact cgggcgcccg 2940gctcgatcaa tgttctgagc ggagggcgaa
gcgtcaggaa atcgtctcgg cagctggaag 3000cgcatggaat gcggagcgga gatcgaatca
ggatcccgcg tctcgaacag agcgcgcaga 3060ggaacgctga aggtctcgcc tctgtcgcac
ctcagcgcgg catacaccac aataaccacc 3120tgacgaatgc gcttggttct tcgtccatta
gcgaagcgtc cggttcacac acgtgccacg 3180ttggcgaggt ggcaggtgac aatgatcggt
ggagctgatg gtcgaaacgt tcacagccta 3240gggatatcgt gaaaactcgc tcgaccgccc
gcgtcccgca ggcagcgatg acgtgtgcgt 3300gacctgggtg tttcgtcgaa aggccagcaa
ccccaaatcg caggcgatcc ggagattggg 3360atctgatccg agcttggacc agatccccca
cgatgcggca cgggaactgc atcgactcgg 3420cgcggaaccc agctttcgta aatgccagat
tggtgtccga taccttgatt tgccatcagc 3480gaaacaagac ttcagcagcg agcgtatttg
gcgggcgtgc taccagggtt gcatacattg 3540cccatttctg tctggaccgc tttaccggcg
cagagggtga gttgatgggg ttggcaggca 3600tcgaaacgcg cgtgcatggt gtgtgtgtct
gttttcggct gcacaatttc aatagtcgga 3660tgggcgacgg tagaattggg tgttgcgctc
gcgtgcatgc ctcgccccgt cgggtgtcat 3720gaccgggact ggaatccccc ctcgcgaccc
tcctgctaac gctcccgact ctcccgcccg 3780cgcgcaggat agactctagt tcaaccaatc
gacaactagt atggccaccg catccacttt 3840ctcggcgttc aatgcccgct gcggcgacct
gcgtcgctcg gcgggctccg ggccccggcg 3900cccagcgagg cccctccccg tgcgcgggcg
cgcctcccag ctgcgcaagc ccgccctgga 3960ccccctgcgc gccgtgatct ccgccgacca
gggctccatc tcccccgtga actcctgcac 4020ccccgccgac cgcctgcgcg ccggccgcct
gatggaggac ggctactcct acaaggagaa 4080gttcatcgtg cgctcctacg aggtgggcat
caacaagacc gccaccgtgg agaccatcgc 4140caacctgctg caggaggtgg cctgcaacca
cgtgcagaag tgcggcttct ccaccgacgg 4200cttcgccacc accctgacca tgcgcaagct
gcacctgatc tgggtgaccg cccgcatgca 4260catcgagatc tacaagtacc ccgcctggtc
cgacgtggtg gagatcgaga cctggtgcca 4320gtccgagggc cgcatcggca cccgccgcga
ctggatcctg cgcgactccg ccaccaacga 4380ggtgatcggc cgcgccacct ccaagtgggt
gatgatgaac caggacaccc gccgcctgca 4440gcgcgtgacc gacgaggtgc gcgacgagta
cctggtgttc tgcccccgcg agccccgcct 4500ggccttcccc gaggagaaca actcctccct
gaagaagatc cccaagctgg aggaccccgc 4560ccagtactcc atgctggagc tgaagccccg
ccgcgccgac ctggacatga accagcacgt 4620gaacaacgtg acctacatcg gctgggtgct
ggagtccatc ccccaggaga tcatcgacac 4680ccacgagctg caggtgatca ccctggacta
ccgccgcgag tgccagcagg acgacatcgt 4740ggactccctg accacctccg agatccccga
cgaccccatc tccaagttca ccggcaccaa 4800cggctccgcc atgtcctcca tccagggcca
caacgagtcc cagttcctgc acatgctgcg 4860cctgtccgag aacggccagg agatcaaccg
cggccgcacc cagtggcgca agaagtcctc 4920ccgcatggac tacaaggacc acgacggcga
ctacaaggac cacgacatcg actacaagga 4980cgacgacgac aagtgaatcg atggagcgac
gagtgtgcgt gcggggctgg cgggagtggg 5040acgccctcct cgctcctctc tgttctgaac
ggaacaatcg gccaccccgc gctacgcgcc 5100acgcatcgag caacgaagaa aaccccccga
tgataggttg cggtggctgc cgggatatag 5160atccggccgc acatcaaagg gcccctccgc
cagagaagaa gctcctttcc cagcagactc 5220cttctgctgc caaaacactt ctctgtccac
agcaacacca aaggatgaac agatcaactt 5280gcgtctccgc gtagcttcct cggctagcgt
gcttgcaaca ggtccctgca ctattatctt 5340cctgctttcc tctgaattat gcggcaggcg
agcgctcgct ctggcgagcg ctccttcgcg 5400ccgccctcgc tgatcgagtg tacagtcaat
gaatggtgag ctccgcgcct gcgcgaggac 5460gcagaacaac gctgccgccg tgtcttttgc
acgcgcgact ccggcgcttc gctggtggca 5520cccccataaa gaaaccctca attctgtttg
tggaagacac ggtgtacccc cacccaccca 5580cctgcacctc tattattggt attattgacg
cgggagtggg cgttgtaccc tacaacgtag 5640cttctctagt tttcagctgg ctcccaccat
tgtaaattca tgctagaata gtgcgtggtt 5700atgtgagagg tatagtgtgt ctgagcagac
ggggcgggat gcatgtcgtg gtggtgatct 5760ttggctcaag gcgtcgtcga cgtgacgtgc
ccgatcatga gagcaatacc gcgctcaaag 5820ccgacgcata gcctttactc cgcaatccaa
acgactgtcg ctcgtatttt ttggatatct 5880attttaaaga gcgagcacag cgccgggcat
gggcctgaaa ggcctcgcgg ccgtgctcgt 5940ggtgggggcc gcgagcgcgt ggggcatcgc
ggcagtgcac caggcgcaga cggaggaacg 6000catggtgcgt gcgcaatata agatacatgt
attgttgtcc tgcagg 6046581176DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
58atggccaccg catccacttt ctcggcgttc aatgcccgct gcggcgacct gcgtcgctcg
60gcgggctccg ggccccggcg cccagcgagg cccctccccg tgcgcgggcg cgcctcccag
120ctgcgcaagc ccgccctgga ccccctgcgc gccgtgatct ccgccgacca gggctccatc
180tcccccgtga actcctgcac ccccgccgac cgcctgcgcg ccggccgcct gatggaggac
240ggctactcct acaaggagaa gttcatcgtg cgctcctacg aggtgggcat caacaagacc
300gccaccgtgg agaccatcgc caacctgctg caggaggtgg cctgcaacca cgtgcagaag
360tgcggcttct ccaccgccgg cttcgccacc accctgacca tgcgcaagct gcacctgatc
420tgggtgaccg cccgcatgca catcgagatc tacaagtacc ccgcctggtc cgacgtggtg
480gagatcgaga cctggtgcca gtccgagggc cgcatcggca cccgccgcga ctggatcctg
540cgcgactccg ccaccaacga ggtgatcggc cgcgccacct ccaagtgggt gatgatgaac
600caggacaccc gccgcctgca gcgcgtgacc gacgaggtgc gcgacgagta cctggtgttc
660tgcccccgcg agccccgcct ggccttcccc gaggagaaca actcctccct gaagaagatc
720cccaagctgg aggaccccgc ccagtactcc atgctggagc tgaagccccg ccgcgccgac
780ctggacatga accagcacgt gaacaacgtg acctacatcg gctgggtgct ggagtccatc
840ccccaggaga tcatcgacac ccacgagctg caggtgatca ccctggacta ccgccgcgag
900tgccagcagg acgacatcgt ggactccctg accacctccg agatccccga cgaccccatc
960tccaagttca ccggcaccaa cggctccgcc atgtcctcca tccagggcca caacgagtcc
1020cagttcctgc acatgctgcg cctgtccgag aacggccagg agatcaaccg cggccgcacc
1080cagtggcgca agaagtcctc ccgcatggac tacaaggacc acgacggcga ctacaaggac
1140cacgacatcg actacaagga cgacgacgac aagtga
1176591176DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 59atggccaccg catccacttt ctcggcgttc
aatgcccgct gcggcgacct gcgtcgctcg 60gcgggctccg ggccccggcg cccagcgagg
cccctccccg tgcgcgggcg cgcctcccag 120ctgcgcaagc ccgccctgga ccccctgcgc
gccgtgatct ccgccgacca gggctccatc 180tcccccgtga actcctgcac ccccgccgac
cgcctgcgcg ccggccgcct gatggaggac 240ggctactcct acaaggagaa gttcatcgtg
cgctcctacg aggtgggcat caacaagacc 300gccaccgtgg agaccatcgc caacctgctg
caggaggtgg cctgcaacca cgtgcagaag 360tgcggcttct ccaccgacgg cttcgccacc
accctgacca tgcgcaagct gcacctgatc 420tgggtgaccg cccgcatgca catcgagatc
tacaagtacc ccgcctggtc cgacgtggtg 480gagatcgaga cctggtgcca gtccgagggc
cgcatcggca cccgccgcga ctggatcctg 540cgcgactccg ccaccaacga ggtgatcggc
cgcgccacct ccaagtgggt gatgatgaac 600caggacaccc gccgcctgca gcgcgtgacc
gccgaggtgc gcgacgagta cctggtgttc 660tgcccccgcg agccccgcct ggccttcccc
gaggagaaca actcctccct gaagaagatc 720cccaagctgg aggaccccgc ccagtactcc
atgctggagc tgaagccccg ccgcgccgac 780ctggacatga accagcacgt gaacaacgtg
acctacatcg gctgggtgct ggagtccatc 840ccccaggaga tcatcgacac ccacgagctg
caggtgatca ccctggacta ccgccgcgag 900tgccagcagg acgacatcgt ggactccctg
accacctccg agatccccga cgaccccatc 960tccaagttca ccggcaccaa cggctccgcc
atgtcctcca tccagggcca caacgagtcc 1020cagttcctgc acatgctgcg cctgtccgag
aacggccagg agatcaaccg cggccgcacc 1080cagtggcgca agaagtcctc ccgcatggac
tacaaggacc acgacggcga ctacaaggac 1140cacgacatcg actacaagga cgacgacgac
aagtga 1176601176DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
60atggccaccg catccacttt ctcggcgttc aatgcccgct gcggcgacct gcgtcgctcg
60gcgggctccg ggccccggcg cccagcgagg cccctccccg tgcgcgggcg cgcctcccag
120ctgcgcaagc ccgccctgga ccccctgcgc gccgtgatct ccgccgacca gggctccatc
180tcccccgtga actcctgcac ccccgccgac cgcctgcgcg ccggccgcct gatggaggac
240ggctactcct acaaggagaa gttcatcgtg cgctcctacg aggtgggcat caacaagacc
300gccaccgtgg agaccatcgc caacctgctg caggaggtgg cctgcaacca cgtgcagaag
360tgcggcttct ccaccgccgg cttcgccacc accctgacca tgcgcaagct gcacctgatc
420tgggtgaccg cccgcatgca catcgagatc tacaagtacc ccgcctggtc cgacgtggtg
480gagatcgaga cctggtgcca gtccgagggc cgcatcggca cccgccgcga ctggatcctg
540cgcgactccg ccaccaacga ggtgatcggc cgcgccacct ccaagtgggt gatgatgaac
600caggacaccc gccgcctgca gcgcgtgacc gccgaggtgc gcgacgagta cctggtgttc
660tgcccccgcg agccccgcct ggccttcccc gaggagaaca actcctccct gaagaagatc
720cccaagctgg aggaccccgc ccagtactcc atgctggagc tgaagccccg ccgcgccgac
780ctggacatga accagcacgt gaacaacgtg acctacatcg gctgggtgct ggagtccatc
840ccccaggaga tcatcgacac ccacgagctg caggtgatca ccctggacta ccgccgcgag
900tgccagcagg acgacatcgt ggactccctg accacctccg agatccccga cgaccccatc
960tccaagttca ccggcaccaa cggctccgcc atgtcctcca tccagggcca caacgagtcc
1020cagttcctgc acatgctgcg cctgtccgag aacggccagg agatcaaccg cggccgcacc
1080cagtggcgca agaagtcctc ccgcatggac tacaaggacc acgacggcga ctacaaggac
1140cacgacatcg actacaagga cgacgacgac aagtga
117661368PRTBrassica napus 61Met Ala Thr Ala Ser Thr Phe Ser Ala Phe Asn
Ala Arg Cys Gly Asp1 5 10
15Leu Arg Arg Ser Ala Gly Ser Gly Pro Arg Arg Pro Ala Arg Pro Leu
20 25 30Pro Val Arg Gly Arg Ala Ser
Gln Leu Arg Lys Pro Ala Leu Asp Pro 35 40
45Leu Arg Ala Val Ile Ser Ala Asp Gln Gly Ser Ile Ser Pro Val
Asn 50 55 60Ser Cys Thr Pro Ala Asp
Arg Leu Arg Ala Gly Arg Leu Met Glu Asp65 70
75 80Gly Tyr Ser Tyr Lys Glu Lys Phe Ile Val Arg
Ser Tyr Glu Val Gly 85 90
95Ile Asn Lys Thr Ala Thr Val Glu Thr Ile Ala Asn Leu Leu Gln Glu
100 105 110Val Ala Cys Asn His Val
Gln Lys Cys Gly Phe Ser Thr Asp Gly Phe 115 120
125Ala Thr Thr Leu Thr Met Arg Lys Leu His Leu Ile Trp Val
Thr Ala 130 135 140Arg Met His Ile Glu
Ile Tyr Lys Tyr Pro Ala Trp Ser Asp Val Val145 150
155 160Glu Ile Glu Thr Trp Cys Gln Ser Glu Gly
Arg Ile Gly Thr Arg Arg 165 170
175Asp Trp Ile Leu Arg Asp Ser Ala Thr Asn Glu Val Ile Gly Arg Ala
180 185 190Thr Ser Lys Trp Val
Met Met Asn Gln Asp Thr Arg Arg Leu Gln Arg 195
200 205Val Thr Asp Glu Val Arg Asp Glu Tyr Leu Val Phe
Cys Pro Arg Glu 210 215 220Pro Arg Leu
Ala Phe Pro Glu Glu Asn Asn Ser Ser Leu Lys Lys Ile225
230 235 240Pro Lys Leu Glu Asp Pro Ala
Gln Tyr Ser Met Leu Glu Leu Lys Pro 245
250 255Arg Arg Ala Asp Leu Asp Met Asn Gln His Val Asn
Asn Val Thr Tyr 260 265 270Ile
Gly Trp Val Leu Glu Ser Ile Pro Gln Glu Ile Ile Asp Thr His 275
280 285Glu Leu Gln Val Ile Thr Leu Asp Tyr
Arg Arg Glu Cys Gln Gln Asp 290 295
300Asp Ile Val Asp Ser Leu Thr Thr Ser Glu Ile Pro Asp Asp Pro Ile305
310 315 320Ser Lys Phe Thr
Gly Thr Asn Gly Ser Ala Met Ser Ser Ile Gln Gly 325
330 335His Asn Glu Ser Gln Phe Leu His Met Leu
Arg Leu Ser Glu Asn Gly 340 345
350Gln Glu Ile Asn Arg Gly Arg Thr Gln Trp Arg Lys Lys Ser Ser Arg
355 360 365624PRTUnknownDescription of
Unknown hydrophobic domain motif 62Leu Pro Asp Trp1
User Contributions:
Comment about this patent or add new information about this topic: