Patent application title: Camera Optical Lens
Inventors:
IPC8 Class: AG02B1300FI
USPC Class:
1 1
Class name:
Publication date: 2019-04-25
Patent application number: 20190121074
Abstract:
The present disclosure discloses a camera optical lens. The camera
optical lens including, in an order from an object side to an image side,
a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a
sixth lens and a seventh lens. The camera optical lens further satisfies
specific conditions.Claims:
1. A camera optical lens comprising, from an object side to an image side
in sequence: a first lens, a second lens, a third lens, a fourth lens, a
fifth lens, a sixth lens and a seventh lens; the camera optical lens
further satisfies the following conditions: -3.ltoreq.f1/f.ltoreq.-1;
1.7.ltoreq.n4.ltoreq.2.2; 1.ltoreq.f6/f7.ltoreq.10;
1.2.ltoreq.(R1+R2)/(R1-R2).ltoreq.10; 0.01.ltoreq.d7/TTL.ltoreq.0.2;
where f: the focal length of the camera optical lens; f1: the focal
length of the first lens; f6: the focal length of the sixth lens; f7: the
focal length of the seventh lens; n4: the refractive power of the fourth
lens; R1: curvature radius of object side surface of the first lens; R2:
the curvature radius of image side surface of the first lens; d7: the
thickness on-axis of the fourth lens; TTL: the total optical length of
the camera optical lens.
2. The camera optical lens as described in claim 1, wherein the first lens is made of plastic material, the second lens is made of plastic material, the third lens is made of plastic material, the fourth lens is made of glass material, the fifth lens is made of plastic material, the sixth lens is made of plastic material, the seventh lens is made of plastic material.
3. The camera optical lens as described in claim 1, wherein first lens has a negative refractive power with a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: 0.09.ltoreq.d1.ltoreq.0.27; where d1: the thickness on-axis of the first lens.
4. The camera optical lens as described in claim 1, wherein the second lens has a positive refractive power with a convex object side surface and a convex image side surface; the camera optical lens further satisfies the following conditions: 0.51.ltoreq.f2/f.ltoreq.2.35; -2.18.ltoreq.(R3+R4)/(R3-R4).ltoreq.-0.40; 0.27.ltoreq.d3.ltoreq.0.95; where f: the focal length of the camera optical lens; f2: the focal length of the second lens; R3: the curvature radius of the object side surface of the second lens; R4: the curvature radius of the image side surface of the second lens; d3: the thickness on-axis of the second lens.
5. The camera optical lens as described in claim 1, wherein the third lens has a concave image side surface; wherein the camera optical lens further satisfies the following conditions: -12.37.ltoreq.f3/f.ltoreq.30.72; -126.42.ltoreq.(R5+R6)/(R5-R6).ltoreq.1.48; 0.15.ltoreq.d5.ltoreq.0.46; where f: the focal length of the camera optical lens; f3: the focal length of the third lens; R5: the curvature radius of the object side surface of the third lens; R6: the curvature radius of the image side surface of the third lens; d5: the thickness on-axis of the third lens.
6. The camera optical lens as described in claim 1, wherein the fourth lens has a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: -10.68.ltoreq.f4/f.ltoreq.35.71; -276.57.ltoreq.(R7+R8)/(R7-R8).ltoreq.8.2; 0.14.ltoreq.d7.ltoreq.0.77; where f: the focal length of the camera optical lens; f4: the focal length of the fourth lens; R7: the curvature radius of the object side surface of the fourth lens; R8: the curvature radius of the image side surface of the fourth lens; d7: the thickness on-axis of the fourth lens.
7. The camera optical lens as described in claim 1, wherein the fifth lens has a positive refractive power with a concave object side surface and a convex image side surface; the camera optical lens further satisfies the following conditions: 0.25.ltoreq.f5/f.ltoreq.0.87; 0.55.ltoreq.(R9+R10)/(R9-R10).ltoreq.2.08; 0.52.ltoreq.d9.ltoreq.1.57; where f: the focal length of the camera optical lens; f5: the focal length of the fifth lens; R9: the curvature radius of the object side surface of the fifth lens; R10: the curvature radius of the image side surface of the fifth lens; d9: the thickness on-axis of the fifth lens.
8. The camera optical lens as described in claim 1, wherein the sixth lens has a negative refractive power with a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: -13.76.ltoreq.f6/f.ltoreq.2.37; 1.38.ltoreq.(R11+R12)/(R11-R12).ltoreq.7.31; 0.11.ltoreq.d11.ltoreq.0.77; where f: the focal length of the camera optical lens; f6: the focal length of the sixth lens; R11: the curvature radius of the object side surface of the sixth lens; R12: the curvature radius of the image side surface of the sixth lens; d11: the thickness on-axis of the sixth lens.
9. The camera optical lens as described in claim 1, wherein the seventh lens has a negative refractive power with a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: 0.79.ltoreq.(R13+R14)/(R13-R14).ltoreq.2.72; -1.78.ltoreq.f7/f.ltoreq.-0.46; 0.19.ltoreq.d13.ltoreq.0.85; where f: the focal length of the camera optical lens; f7: the focal length of the seventh lens; d13: the thickness on-axis of the seventh lens; R13: the curvature radius of the object side surface of the seventh lens; R14: the curvature radius of the image side surface of the seventh lens.
10. The camera optical lens as described in claim 1, wherein the total optical length TTL of the camera optical lens is less than or equal to 6.32 mm.
11. The camera optical lens as described in claim 1, wherein the aperture F number of the camera optical lens is less than or equal to 2.14.
Description:
FIELD OF THE PRESENT DISCLOSURE
[0001] The present disclosure relates to optical lens, in particular to a camera optical lens suitable for handheld devices such as smart phones and digital cameras and imaging devices.
DESCRIPTION OF RELATED ART
[0002] With the emergence of smart phones in recent years, the demand for miniature camera lens is increasing day by day, but the photosensitive devices of general camera lens are no other than Charge Coupled Device (CCD) or Complementary metal-Oxide Semiconductor Sensor (CMOS sensor), and as the progress of the semiconductor manufacturing technology makes the pixel size of the photosensitive devices shrink, coupled with the current development trend of electronic products being that their functions should be better and their shape should be thin and small, miniature camera lens with good imaging quality therefor has become a mainstream in the market. In order to obtain better imaging quality, the lens that is traditionally equipped in mobile phone cameras adopts a three-piece or four-piece lens structure. And, with the development of technology and the increase of the diverse demands of users, and under this circumstances that the pixel area of photosensitive devices is shrinking steadily and the requirement of the system for the imaging quality is improving constantly, the five-piece, six-piece and seven-piece lens structure gradually appear in lens design. There is an urgent need for ultra-thin wide-angle camera lenses which have good optical characteristics and the chromatic aberration of which is fully corrected.
BRIEF DESCRIPTION OF THE DRAWINGS
[0003] Many aspects of the exemplary embodiments can be better understood with reference to the following drawings. The components in the drawing are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure.
[0004] FIG. 1 is a schematic diagram of a camera optical lens in accordance with a first embodiment of the present invention;
[0005] FIG. 2 shows the longitudinal aberration of the camera optical lens shown in FIG. 1;
[0006] FIG. 3 shows the lateral color of the camera optical lens shown in FIG. 1;
[0007] FIG. 4 presents a schematic diagram of the field curvature and distortion of the camera optical lens shown in FIG. 1;
[0008] FIG. 5 is a schematic diagram of a camera optical lens in accordance with a second embodiment of the present invention;
[0009] FIG. 6 presents the longitudinal aberration of the camera optical lens shown in FIG. 5;
[0010] FIG. 7 presents the lateral color of the camera optical lens shown in FIG. 5;
[0011] FIG. 8 presents the field curvature and distortion of the camera optical lens shown in FIG. 5;
[0012] FIG. 9 is a schematic diagram of the camera optical lens in the third embodiment of the present invention;
[0013] FIG. 10 is a schematic diagram of the longitudinal aberration of the camera optical lens shown in FIG. 9;
[0014] FIG. 11 is a schematic diagram of the lateral color of the camera optical lens shown in FIG. 9;
[0015] FIG. 12 is a schematic diagram of the field curvature and distortion of the camera optical lens shown in FIG. 9
DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
[0016] The present disclosure will hereinafter be described in detail with reference to several exemplary embodiments. To make the technical problems to be solved, technical solutions and beneficial effects of the present disclosure more apparent, the present disclosure is described in further detail together with the figure and the embodiments. It should be understood the specific embodiments described hereby is only to explain the disclosure, not intended to limit the disclosure.
Embodiment 1
[0017] As referring to FIG. 1, the present invention provides a camera optical lens 10. FIG. 1 shows the camera optical lens 10 of embodiment 1 of the present invention, the camera optical lens 10 comprises 7 lenses. Specifically, from the object side to the image side, the camera optical lens 10 comprises in sequence: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6 and a seventh lens L7. Optical element like optical filter GF can be arranged between the seventh lens L7 and the image surface Si. The first lens L1 is made of plastic material, the second lens L2 is made of plastic material, the third lens L3 is made of plastic material, the fourth lens L4 is made of glass material, the fifth lens L5 is made of plastic material, the sixth lens L6 is made of plastic material, the seventh lens L7 is made of plastic material;
[0018] Here, the focal length of the whole camera optical lens 10 is defined as f, the focal length of the first lens L1 is defined as f1, the curvature radius of the object side surface of the first lens L1 is defined as R1, the curvature radius of the image side surface of the first lens L1 is defined as R2, the refractive power of the fourth lens L4 is defined as n4, the thickness on axis of the fourth lens L4 is defined as d7, the focal length of the sixth lens is L6 defined as f6, the focal length of the seventh lens L7 is defined as f7, the total optical length of the camera optical lens 10 is defined as TLL. The camera optical lens 10 satisfies the following conditions: -3.ltoreq.f1/f.ltoreq.-1, 1.7.ltoreq.n4.ltoreq.2.2, 1.ltoreq.f6/f7.ltoreq.10; 1.2.ltoreq.(R1+R2)/(R1-R2).ltoreq.10; 0.01.ltoreq.d7/TTL.ltoreq.0.2.
[0019] Condition -3.ltoreq.f1/f.ltoreq.2.2 fixes the negative refractive power of the first lens L1. If the upper limit of the set value is exceeded, although it benefits the ultra-thin development of lenses, but the negative refractive power of the first lens L1 will be too strong, problem like aberration is difficult to be corrected, and it is also unfavorable for wide-angle development of lens. On the contrary, if the lower limit of the set value is exceeded, the negative refractive power of the first lens L1 becomes too weak, it is then difficult to develop ultra-thin lenses. Preferably, the following condition shall be satisfied, -3.ltoreq.f1/f.ltoreq.-1.5.
[0020] Condition 1.7.ltoreq.n4.ltoreq.2.2 fixes the refractive power of the fourth lens L4, refractive power within this range benefits the ultra-thin development of lenses, and it also benefits the correction of aberration. Preferably, the following condition shall be satisfied, 1.7.ltoreq.n4.ltoreq.2.0.
[0021] Condition 1.ltoreq.f6/f7.ltoreq.10 fixes the ratio between the focal length f6 of the sixth lens L6 and the focal length f7 of the seventh lens L7, a ratio within this range can effectively reduce the sensitivity of lens group used in camera and further enhance the imaging quality. Preferably, the following condition shall be satisfied, 2.ltoreq.f6/f7.ltoreq.10.
[0022] Condition 1.2.ltoreq.(R1+R2)/(R1-R2).ltoreq.10 fixes the shape of the first lens L1, when the value is beyond this range, with the development into the direction of ultra-thin and wide-angle lenses, problem like aberration of the off-axis picture angle is difficult to be corrected. Preferably, the condition 1.2.ltoreq.(R1+R2)/(R1-R2).ltoreq.8 shall be satisfied.
[0023] Condition 0.01.ltoreq.d7/TTL.ltoreq.0.2 fixes the ratio between the thickness on-axis of the fourth lens L4 and the total optical length TTL of the camera optical lens 10, a ratio within this range benefits ultra-thin development of lenses. Preferably, the following condition shall be satisfied, 0.01.ltoreq.d7/TTL.ltoreq.0.15.
[0024] When the focal length of the camera optical lens 10 of the present invention, the focal length of each lens, the refractive power of the related lens, and the total optical length, the thickness on-axis and the curvature radius of the camera optical lens satisfy the above conditions, the camera optical lens 10 has the advantage of high performance and satisfies the design requirement of low TTL.
[0025] In this embodiment, the object side surface of the first lens L1 is a convex surface relative to the proximal axis, its image side surface is a concave surface relative to the proximal axis, and it has negative refractive power; the thickness on axis of the first lens L1 is d1, they satisfy the following condition: 0.09.ltoreq.d1.ltoreq.0.27, it is beneficial for ultra-thin development. Preferably, the condition 0.14.ltoreq.d1.ltoreq.0.22 shall be satisfied.
[0026] In this embodiment, the object side surface of the second lens L2 is a convex surface relative to the proximal axis, its image side surface is a convex surface relative to the proximal axis, and it has positive refractive power; the focal length of the whole camera optical lens 10 is f, the focal length of the second lens L2 is f2, the curvature radius of the object side surface of the second lens L2 is R3, the curvature radius of image side surface of the second lens L2 is R4 and the thickness on-axis of the second lens L2 is d3, they satisfy the following condition: 0.51.ltoreq.f2/f.ltoreq.2.35, when the condition is met, the positive refractive power of the second lens L2 is controlled within reasonable scope, the spherical aberration caused by the first lens L1 which has negative refractive power and the field curvature of the system then can be reasonably and effectively balanced; the condition -2.18.ltoreq.(R3+R4)/(R3-R4).ltoreq.-0.40 fixes the shape of the second lens L2, when value is beyond this range, with the development into the direction of ultra-thin and wide-angle lenses, problem like on-axis chromatic aberration is difficult to be corrected; if the condition 0.27.ltoreq.d3.ltoreq.0.95 is met, it is beneficial for the realization of ultra-thin lenses. Preferably, the following conditions shall be satisfied, 0.81.ltoreq.f2/f.ltoreq.1.88; -1.36.ltoreq.(R3+R4)/(R3-R4).ltoreq.-0.50; 0.43.ltoreq.d3.ltoreq.0.76.
[0027] In this embodiment, the image side surface of the third lens L3 is a concave surface relative to the proximal axis, and it has refractive power; the focal length of the whole camera optical lens 10 is f, the focal length of the third lens L3 is f3, the curvature radius of the object side surface of the third lens L3 is R5, the curvature radius of the image side surface of the third lens L3 is R6 and the thickness on-axis of the third lens L3 is d5, they satisfy the condition: -12.37.ltoreq.f3/f.ltoreq.30.72, by meeting this condition, it is helpful for the system to obtain good ability in balancing the field curvature, so that the image quality can be effectively improved; by meeting the condition -126.42.ltoreq.(R5+R6)/(R5-R6).ltoreq.1.48 the shape of the third lens L3 can be effectively controlled, it is beneficial for the shaping of the third lens L3 and bad shaping and stress generation due to extra large curvature of surface of the third lens L3 can be avoided; when the condition 0.15.ltoreq.d5.ltoreq.0.46 is met, it is beneficial for the realization of ultra-thin lenses. Preferably, the following conditions shall be satisfied, -7.73.ltoreq.f3/f.ltoreq.24.51; -79.01.ltoreq.(R5+R6)/(R5-R6) 1.18; 0.24.ltoreq.d5.ltoreq.0.37.
[0028] In this embodiment, the object side surface of the fourth lens L4 is a convex surface relative to the proximal axis, its image side surface is a concave surface relative to the proximal axis, and it has refractive power; the focal length of the whole camera optical lens 10 is f, the focal length of the fourth lens L4 is f4, the curvature radius of the object side surface of the fourth lens L4 is R7, the curvature radius of the image side surface of the fourth lens L4 is R8 and the thickness on-axis of the fourth lens L4 is d7, they satisfy the condition: -10.68.ltoreq.f4/f.ltoreq.35.71, the appropriate distribution of refractive power makes it possible that the system has better imaging quality and lower sensitivity; the condition -276.57.ltoreq.(R7+R8)/(R7-R8).ltoreq.8.2 fixes the shape of the fourth lens L4, when beyond this range, with the development into the direction of ultra-thin and wide-angle lens, the problem like chromatic aberration is difficult to be corrected; when the condition 0.14.ltoreq.d7.ltoreq.0.77 is met, it is beneficial for realization of ultra-thin lenses. Preferably, the following conditions shall be satisfied, -6.68.ltoreq.f4/f.ltoreq.28.57; -172.86.ltoreq.(R7+R8)/(R7-R8).ltoreq.6.56; 0.23.ltoreq.d7.ltoreq.0.62.
[0029] In this embodiment, the object side surface of the fifth lens L5 is a concave surface relative to the proximal axis, its image side surface is a convex surface relative to the proximal axis, and it has positive refractive power; the focal length of the whole camera optical lens 10 is f, the focal length of the fifth lens L5 is f5, the curvature radius of the object side surface of the fifth lens L5 is R9, the curvature radius of the image side surface of the fifth lens L5 is R10 and the thickness on-axis of the fifth lens L5 is d9, they satisfy the condition: 0.25.ltoreq.f5/f.ltoreq.0.87, the limitation on the fifth lens L5 can effectively make the light angle of the camera lens flat and the tolerance sensitivity reduces; the condition 0.55.ltoreq.(R9+R10)/(R9-R10).ltoreq.2.08 fixes the shape of the fifth lens L5, when beyond this range, with the development into the direction of ultra-thin and wide-angle lens, the problem like off-axis chromatic aberration is difficult to be corrected; when the condition 0.52.ltoreq.d9.ltoreq.1.57 is met, it is beneficial for the realization of ultra-thin lens. Preferably, the following conditions shall be satisfied, 0.40.ltoreq.f5/f.ltoreq.0.69; 0.88.ltoreq.(R9+R10)/(R9-R10).ltoreq.1.66; 0.84.ltoreq.d9.ltoreq.1.26.
[0030] In this embodiment, the object side surface of the sixth lens L6 is a convex surface relative to the proximal axis, its image side surface is a concave surface relative to the proximal axis, and it has negative refractive power; the focal length of the whole camera optical lens 10 is f, the focal length of the sixth lens L6 is f6, the curvature radius of the object side surface of the sixth lens L6 is R11, the curvature radius of the image side surface of the sixth lens L6 is R12 and the thickness on-axis of the sixth lens L6 is d11, they satisfy the condition: -13.76.ltoreq.f6/f.ltoreq.-2.37, the appropriate distribution of refractive power makes it possible that the system has better imaging quality and lower sensitivity; the condition 1.38.ltoreq.(R11+R12)/(R11-R12).ltoreq.7.31 fixes the shape of the sixth lens L6, when beyond this range, with the development into the direction of ultra-thin and wide-angle lenses, the problem like off-axis chromatic aberration is difficult to be corrected; when the condition 0.11.ltoreq.d11.ltoreq.0.77, is met, it is beneficial for the realization of ultra-thin lens. Preferably, the following conditions shall be satisfied, -8.60.ltoreq.f6/f.ltoreq.-2.97; 2.20.ltoreq.(R11+R12)/(R11-R12).ltoreq.5.85; 0.16.ltoreq.d11.ltoreq.0.62.
[0031] In this embodiment, the object side surface of the seventh lens L7 is a convex surface relative to the proximal axis, its image side surface is a concave surface relative to the proximal axis, and it has negative refractive power; the focal length of the whole camera optical lens 10 is f, the curvature radius of the object side surface of the seventh lens L7 is R13, the curvature radius of the image side surface of the seventh lens L7 is R14, the focal length of the seventh lens L7 is f7, and the thickness on-axis of the seventh lens L7 is d13, they satisfy the condition: 0.79.ltoreq.(R13+R14)/(R13-R14).ltoreq.2.72, which fixes the shape of the seventh lens L7, when beyond this range, with the development into the direction of ultra-thin and wide-angle lenses, the problem like off-axis chromatic aberration is difficult to be corrected; -1.78.ltoreq.f7/f.ltoreq.-0.46, the appropriate distribution of refractive power makes it possible that the system has better imaging quality and lower sensitivity; when the condition 0.19.ltoreq.d11.ltoreq.0.85 is met, it is beneficial for the realization of ultra-thin lens. Preferably, the following conditions shall be satisfied, -1.11.ltoreq.f7/f.ltoreq.-0.57; 0.30.ltoreq.d13.ltoreq.0.68; 1.26.ltoreq.(R13+R14)/(R13-R14).ltoreq.2.17.
[0032] In this embodiment, the total optical length TTL of the camera optical lens 10 is less than or equal to 6.32 mm, it is beneficial for the realization of ultra-thin lenses. Preferably, the total optical length TTL of the camera optical lens 10 is less than or equal to 6.03.
[0033] In this embodiment, the aperture F number of the camera optical lens 10 is less than or equal to 2.14. A large aperture has better imaging performance. Preferably, the aperture F number of the camera optical lens 10 is less than or equal to 2.09.
[0034] With such design, the total optical length TTL of the whole camera optical lens 10 can be made as short as possible, thus the miniaturization characteristics can be maintained.
[0035] In the following, an example will be used to describe the camera optical lens 10 of the present invention. The symbols recorded in each example are as follows. The unit of distance, radius and center thickness is mm.
[0036] TTL: Optical length (the distance on-axis from the object side surface to the image surface of the first lens L1).
[0037] Preferably, inflexion points and/or arrest points can also be arranged on the object side surface and/or image side surface of the lens, so that the demand for high quality imaging can be satisfied, the description below can be referred for specific implementable scheme.
[0038] The design information of the camera optical lens 10 in the first embodiment of the present invention is shown in the following, the unit of the focal length, distance, radius and center thickness is mm.
[0039] The design information of the camera optical lens 10 in the first embodiment of the present invention is shown in the tables 1 and 2.
TABLE-US-00001 TABLE 1 R d nd .nu. d S1 .infin. d0= -0.076 R1 1.517 d1= 0.180 nd1 1.6713 .nu. 1 19.24 R2 1.158 d2= 0.350 R3 4.055 d3= 0.636 nd2 1.5445 .nu. 2 55.99 R4 -25.640 d4= 0.030 R5 -2710.177 d5= 0.304 nd3 1.6713 .nu. 3 19.24 R6 17.380 d6= 0.219 R7 4.454 d7= 0.516 nd4 1.7225 .nu. 4 29.23 R8 4.519 d8= 0.351 R9 -21.305 d9= 1.049 nd5 1.5352 .nu. 5 56.12 R10 -1.062 d10= 0.020 R11 7.382 d11= 0.444 nd6 1.5352 .nu. 6 56.12 R12 4.867 d12= 0.100 R13 4.031 d13= 0.393 nd7 1.5352 .nu. 7 56.12 R14 1.068 d14= 1.154 R15 .infin. d15= 0.210 ndg 1.5168 .nu. g 64.17 R16 .infin. d16= 1.094
[0040] In which, the meaning of the various symbols is as follows.
[0041] S1: Aperture;
[0042] R: The curvature radius of the optical surface, the central curvature radius in case of lens;
[0043] R1: The curvature radius of the object side surface of the first lens L1;
[0044] R2: The curvature radius of the image side surface of the first lens L1;
[0045] R3: The curvature radius of the object side surface of the second lens L2;
[0046] R4: The curvature radius of the image side surface of the second lens L2;
[0047] R5: The curvature radius of the object side surface of the third lens L3;
[0048] R6: The curvature radius of the image side surface of the third lens L3;
[0049] R7: The curvature radius of the object side surface of the fourth lens L4;
[0050] R8: The curvature radius of the image side surface of the fourth lens L4;
[0051] R9: The curvature radius of the object side surface of the fifth lens L5;
[0052] R10: The curvature radius of the image side surface of the fifth lens L5;
[0053] R11: The curvature radius of the object side surface of the sixth lens L6;
[0054] R12: The curvature radius of the image side surface of the sixth lens L6;
[0055] R13: The curvature radius of the object side surface of the seventh lens L7;
[0056] R14: The curvature radius of the image side surface of the seventh lens L7;
[0057] R15: The curvature radius of the object side surface of the optical filter GF;
[0058] R16: The curvature radius of the image side surface of the optical filter GF;
[0059] d: The thickness on-axis of the lens and the distance on-axis between the lens;
[0060] d0: The distance on-axis from aperture S1 to the object side surface of the first lens L1;
[0061] d1: The thickness on-axis of the first lens 11;
[0062] d2: The distance on-axis from the image side surface of the first lens L1 to the object side surface of the second lens L2;
[0063] d3: The thickness on-axis of the second lens L2;
[0064] d4: The distance on-axis from the image side surface of the second lens L2 to the object side surface of the third lens L3;
[0065] d5: The thickness on-axis of the third lens L3;
[0066] d6: The distance on-axis from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
[0067] d7: The thickness on-axis of the fourth lens L4;
[0068] d8: The distance on-axis from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5;
[0069] d9: The thickness on-axis of the fifth lens L5;
[0070] d10: The distance on-axis from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
[0071] d11: The thickness on-axis of the sixth lens L6;
[0072] d12: The distance on-axis from the image side surface of the sixth lens L6 to the object side surface of the seventh lens L7;
[0073] d13: The thickness on-axis of the seventh lens L7;
[0074] d14: The distance on-axis from the image side surface of the seventh lens L7 to the object side surface of the optical filter GF;
[0075] d15: The thickness on-axis of the optical filter GF;
[0076] d16: The distance on-axis from the image side surface to the image surface of the optical filter GF;
[0077] nd: The refractive power of the d line;
[0078] nd1: The refractive power of the d line of the first lens L1;
[0079] nd2: The refractive power of the d line of the second lens L2;
[0080] nd3: The refractive power of the d line of the third lens L3;
[0081] nd4: The refractive power of the d line of the fourth lens L4;
[0082] nd5: The refractive power of the d line of the fifth lens L5;
[0083] nd6: The refractive power of the d line of the sixth lens L6;
[0084] nd7: The refractive power of the d line of the seventh lens L7;
[0085] ndg: The refractive power of the d line of the optical filter GF;
[0086] vd: The abbe number;
[0087] v1: The abbe number of the first lens L1;
[0088] v2: The abbe number of the second lens L2;
[0089] v3: The abbe number of the third lens L3;
[0090] v4: The abbe number of the fourth lens L4;
[0091] v5: The abbe number of the fifth lens L5;
[0092] v6: The abbe number of the sixth lens L6;
[0093] v7: The abbe number of the seventh lens L7;
[0094] vg: The abbe number of the optical filter GF;
[0095] Table 2 shows the aspherical surface data of the camera optical lens 10 in the embodiment 1 of the present invention.
TABLE-US-00002 TABLE 2 Conic Index Aspherical Surface Index k A4 A6 A8 A10 A12 A14 A16 R1 -3.0115E+00 -3.6662E-02 -1.2144E-02 1.8859E-02 7.9201E-03 -1.0995E-02 6.0507E-03 R2 -2.4525E+00 -2.1603E-02 -1.7132E-03 2.3790E-03 3.9128E-03 -4.0477E-03 6.9205E-03 R3 -2.3123E+01 -3.0310E-02 -2.9729E-02 -3.5745E-02 -7.4248E-03 9.4980E-03 -2.1026E-02 R4 3.7931E+02 -1.0309E-01 -3.3532E-02 -8.7527E-03 2.6046E-03 2.9984E-03 -3.2301E-03 -1.5950E-04 R5 0.0000E+00 -1.8712E-03 -2.8701E-03 -4.2720E-03 -5.6109E-03 3.2986E-03 1.9965E-03 -2.4381E-03 R6 0.0000E+00 -1.6512E-02 1.0057E-02 4.1843E-03 -8.2499E-04 -4.0696E-03 1.6427E-04 -2.0726E-04 R7 -2.7655E+00 -1.0962E-01 -1.3875E-02 -3.5138E-03 7.1845E-03 3.8842E-03 -1.3310E-04 -1.6879E-03 R8 5.3482E+00 -6.2397E-02 -8.8464E-03 -2.9626E-04 -4.7198E-04 -9.1074E-05 R9 6.3733E+01 -3.0525E-03 1.6544E-02 -7.7245E-03 -2.3096E-04 3.7475E-04 R10 -3.0812E+00 -6.2927E-02 1.7469E-02 -2.1724E-03 8.0568E-04 R11 7.8478E+00 -1.6933E-02 2.1172E-03 3.1284E-04 -8.9858E-05 R12 -5.1357E-01 -1.2144E-03 -1.0034E-04 -1.2978E-04 1.0245E-05 R13 -2.6744E+00 -2.3557E-03 -4.8836E-04 1.6054E-06 -2.6250E-05 R14 -4.4070E+00 -5.7214E-03 2.1492E-03 -2.5986E-04 3.6474E-09
[0096] Among them, K is a conic index, A4, A6, A8, A10, A12, A14, A16 are aspheric surface indexes.
[0097] IH: Image height
y=(x.sup.2/R)/[1+{1-(k+1)(x.sup.2/R.sup.2)}.sup.1/2]+A4x.sup.4+A6x.sup.6- +A8x.sup.8+A10x.sup.12+A12x.sup.12+A14x.sup.14+A16x.sup.16 (1)
[0098] For convenience, the aspheric surface of each lens surface uses the aspheric surfaces shown in the above condition (1). However, the present invention is not limited to the aspherical polynomials form shown in the condition (1).
[0099] Table 3 and table 4 show the inflexion points and the arrest point design data of the camera optical lens 10 lens in embodiment 1 of the present invention. In which, R1 and R2 represent respectively the object side surface and image side surface of the first lens L1, R3 and R4 represent respectively the object side surface and image side surface of the second lens L2, R5 and R6 represent respectively the object side surface and image side surface of the third lens L3, R7 and R8 represent respectively the object side surface and image side surface of the fourth lens L4, R9 and R10 represent respectively the object side surface and image side surface of the fifth lens L5, R11 and R12 represent respectively the object side surface and image side surface of the sixth lens L6, R13 and R14 represent respectively the object side surface and image side surface of the seventh lens L7. The data in the column named "inflexion point position" are the vertical distances from the inflexion points arranged on each lens surface to the optic axis of the camera optical lens 10. The data in the column named "arrest point position" are the vertical distances from the arrest points arranged on each lens surface to the optic axis of the camera optical lens 10.
TABLE-US-00003 TABLE 3 Inflexion point number Inflexion point position 1 R1 0 R2 0 R3 1 0.495 R4 0 R5 0 R6 1 0.905 R7 1 0.405 R8 1 0.565 R9 1 1.275 R10 0 R11 1 1.815 R12 1 1.485 R13 1 1.775 R14 0
TABLE-US-00004 TABLE 4 Arrest point number Arrest point position 1 R1 R2 R3 1 0.755 R4 R5 R6 1 1.065 R7 1 0.685 R8 1 0.925 R9 R10 R11 R12 R13 R14
[0100] FIG. 2 and FIG. 3 show the longitudinal aberration and lateral color schematic diagrams after light with a wavelength of 470 nm, 555 nm and 650 nm passes the camera optical lens 10 in the first embodiment. FIG. 4 shows the field curvature and distortion schematic diagrams after light with a wavelength of 555 nm passes the camera optical lens 10 in the first embodiment, the field curvature S in FIG. 4 is a field curvature in the sagittal direction, T is a field curvature in the meridian direction.
[0101] Table 13 shows the various values of the examples 1, 2, 3 and the values corresponding with the parameters which are already specified in the conditions.
[0102] As shown in Table 13, the first embodiment satisfies the various conditions.
[0103] In this embodiment, the pupil entering diameter of the camera optical lens is 1.988 m, the full vision field image height is 2.9935 mm, the vision field angle in the diagonal direction is 74.99.degree., it has wide-angle and is ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
Embodiment 2
[0104] Embodiment 2 is basically the same as embodiment 1, the meaning of its symbols is the same as that of embodiment 1, in the following, only the differences are described.
[0105] Table 5 and table 6 show the design data of the camera optical lens 20 in embodiment 2 of the present invention.
TABLE-US-00005 TABLE 5 R d nd .nu.d S1 .infin. d0= -0.076 R1 3.814 d1= 0.180 nd1 1.6713 .nu.1 19.24 R2 2.548 d2= 0.102 R3 3.231 d3= 0.575 nd2 1.5445 .nu.2 55.99 R4 -13.125 d4= 0.030 R5 3.547 d5= 0.304 nd3 1.6713 .nu.3 19.24 R6 3.661 d6= 0.492 R7 10.141 d7= 0.480 nd4 1.8211 .nu.4 24.06 R8 4.782 d8= 0.351 R9 -9.873 d9= 1.049 nd5 1.5352 .nu.5 56.12 R10 -1.039 d10= 0.020 R11 7.670 d11= 0.516 nd6 1.5352 .nu.6 56.12 R12 4.852 d12= 0.100 R13 4.967 d13= 0.374 nd7 1.5352 .nu.7 56.12 R14 1.113 d14= 1.154 R15 .infin. d15= 0.210 ndg 1.5168 .nu.g 64.17 R16 .infin. d16= 0.366
[0106] Table 6 shows the aspherical surface data of each lens of the camera optical lens 20 in embodiment 2 of the present invention.
TABLE-US-00006 TABLE 6 Conic Index Aspherical Surface Index k A4 A6 A8 A10 A12 A14 A16 R1 -1.3838E-01 -2.4334E-02 -1.0112E-02 6.5882E-03 5.1170E-03 -7.1469E-03 3.1132E-03 R2 -1.4308E+00 -1.1193E-02 -2.6884E-03 3.2625E-03 1.1245E-03 -2.7368E-03 6.5571E-03 R3 -4.5519E+00 -1.2242E-02 -1.6413E-02 -1.9836E-02 -4.9202E-03 6.3946E-03 -6.7241E-03 R4 1.3436E+02 -6.1214E-02 -1.8112E-02 -5.6247E-03 -1.2121E-03 8.8777E-04 -2.5403E-03 -6.9736E-05 R5 0.0000E+00 -6.7295E-04 7.7707E-03 3.2124E-03 -4.8276E-03 1.7701E-05 1.7295E-04 -3.6178E-04 R6 0.0000E+00 -2.5531E-04 1.3829E-02 3.8320E-03 -1.9903E-03 -3.9229E-03 3.0958E-04 -7.4762E-04 R7 1.8510E+01 -1.0623E-01 -9.8341E-03 -1.0104E-02 5.7514E-03 5.7401E-03 8.0081E-04 -2.4575E-03 R8 8.3725E+00 -7.1548E-02 -6.3801E-03 2.3486E-04 -6.5661E-04 -1.0261E-04 R9 -9.7497E+00 2.5138E-03 1.5547E-02 -8.0683E-03 -2.7868E-04 4.1459E-04 R10 -2.9260E+00 -6.8875E-02 1.9016E-02 -1.6612E-03 6.1005E-04 R11 8.4763E+00 -2.2947E-02 1.4749E-03 7.4614E-05 -1.5525E-05 R12 -7.4109E-01 -1.4252E-03 -4.5696E-05 -1.0021E-05 -1.4600E-06 R13 -6.5181E-01 2.7737E-04 -2.0086E-04 -1.2266E-05 8.8248E-07 R14 -4.7637E+00 -9.8315E-03 1.9717E-03 -2.1111E-04 7.7554E-06
[0107] Table 7 and table 8 show the inflexion points and the arrest point design data of the camera optical lens 20 lens in embodiment 2 of the present invention.
TABLE-US-00007 TABLE 7 Inflexion point Inflexion point Inflexion point number position 1 position 2 R1 0 R2 0 R3 1 0.665 R4 0 R5 1 1.075 R6 1 1.025 R7 1 0.285 R8 2 0.525 1.455 R9 3 0.805 0.955 R10 1 1.275 R11 2 0.795 1.875 R12 1 2.155 R13 1 2.415 R14 1 1.165
TABLE-US-00008 TABLE 8 Arrest point number Arrest point position 1 R1 R2 R3 1 0.945 R4 R5 R6 1 1.215 R7 1 0.475 R8 1 0.895 R9 R10 1 1.745 R11 2 1.555 R12 R13 R14
[0108] FIG. 6 and FIG. 7 show the longitudinal aberration and lateral color schematic diagrams after light with a wavelength of 470 nm, 555 nm and 650 nm passes the camera optical lens 20 in the second embodiment. FIG. 8 shows the field curvature and distortion schematic diagrams after light with a wavelength of 555 nm passes the camera optical lens 20 in the second embodiment.
[0109] As shown in Table 13, the second embodiment satisfies the various conditions.
[0110] In this embodiment, the pupil entering diameter of the camera optical lens is 1.927 mm, the full vision field image height is 2.9935 mm, the vision field angle in the diagonal direction is 74.99.degree., it has wide-angle and is ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
Embodiment 3
[0111] Embodiment 3 is basically the same as embodiment 1, the meaning of its symbols is the same as that of embodiment 1, in the following, only the differences are described.
[0112] The design information of the camera optical lens 30 in the third embodiment of the present invention is shown in the tables 9 and 10.
TABLE-US-00009 TABLE 9 R d nd .nu. d S1 .infin. d0= 0.010 R1 40.038 d1= 0.180 nd1 1.6713 .nu. 1 19.24 R2 3.640 d2= 0.130 R3 2.131 d3= 0.532 nd2 1.5445 .nu. 2 55.99 R4 50.391 d4= 0.080 R5 1.820 d5= 0.304 nd3 1.6713 .nu. 3 19.24 R6 2.081 d6= 0.763 R7 6.535 d7= 0.289 nd4 1.7225 .nu. 4 29.23 R8 4.514 d8= 0.128 R9 -6.821 d9= 1.049 nd5 1.5352 .nu. 5 56.12 R10 -1.105 d10= 0.020 R11 8.589 d11= 0.220 nd6 1.5352 .nu. 6 56.12 R12 4.009 d12= 0.100 R13 4.42E+00 d13= 0.567 nd7 1.5352 .nu. 7 56.12 R14 1.27E+00 d14= 1.000 R15 .infin. d15= 0.210 ndg 1.5168 .nu. g 64.17 R16 .infin. d16= 0.516
[0113] Table 10 shows the aspherical surface data of each lens of the camera optical lens 30 in embodiment 3 of the present invention.
TABLE-US-00010 TABLE 10 Conic Index Aspherical Surface Index k A4 A6 A8 A10 A12 A14 A16 R1 0.0000E+00 -1.3281E-02 3.4807E-03 6.1650E-03 5.9690E-03 -7.6902E-03 1.2037E-03 R2 -7.8639E+00 -1.8161E-02 1.9201E-02 1.3742E-02 1.9499E-03 -8.6581E-03 1.6845E-03 R3 -1.8561E+00 -1.8692E-03 -6.8987E-03 -6.4127E-03 2.5137E-03 8.4057E-03 -8.4857E-03 R4 0.0000E+00 -4.1300E-02 -1.3342E-02 -4.8715E-03 -2.2059E-03 7.5707E-03 -1.1926E-03 -2.6979E-03 R5 0.0000E+00 -1.7438E-02 5.3765E-03 -5.4502E-03 -2.3269E-03 6.4797E-03 2.6975E-03 -1.6643E-03 R6 0.0000E+00 2.8590E-02 -2.0293E-03 -2.2436E-04 3.1307E-03 -9.9425E-05 4.5890E-03 1.5677E-03 R7 1.2847E+01 -1.0794E-01 -8.0017E-04 -2.2412E-02 1.2554E-02 6.3529E-03 -2.3332E-03 3.1032E-05 R8 6.6934E+00 -7.3472E-02 -4.5483E-03 3.1123E-03 6.0188E-04 -1.0933E-04 R9 -1.1229E+01 1.1009E-02 1.6927E-02 -9.2068E-03 -4.5921E-04 6.6563E-04 R10 -3.3717E+00 -6.4659E-02 1.6487E-02 -2.2915E-03 5.1930E-04 R11 8.3651E+00 -2.4249E-02 1.6927E-03 1.2439E-04 -3.4710E-06 R12 -1.3905E+00 -2.5302E-03 -2.4332E-04 -2.7257E-05 -3.1891E-06 R13 -7.7661E-01 -8.6474E-04 -1.8554E-04 -1.3259E-05 -3.4809E-07 R14 -6.1580E+00 -1.0126E-02 1.9233E-03 -2.0221E-04 9.2814E-06
[0114] Table 11 and table 12 show the inflexion points and the arrest point design data of the camera optical lens 30 lens in embodiment 3 of the present invention.
TABLE-US-00011 TABLE 11 Inflexion point Inflexion point Inflexion point number position 1 position 2 R1 2 0.465 0.595 R2 0 R3 1 0.935 R4 1 0.205 R5 0 R6 0 R7 2 0.355 1.125 R8 2 0.545 1.255 R9 3 0.705 1.155 R10 1 1.395 R11 0.705 1.755 R12 1 1.745 R13 1 2.135 R14 2 1.075 2.475
TABLE-US-00012 TABLE 12 Arrest point number Arrest point position 1 R1 R2 R3 R4 1 0.335 R5 R6 R7 1 0.605 R8 2 0.965 R9 R10 R11 1.305 R12 R13 R14
[0115] FIG. 10 and FIG. 11 show the longitudinal aberration and lateral color schematic diagrams after light with a wavelength of 470 nm, 555 nm and 650 nm passes the camera optical lens 30 in the third embodiment. FIG. 12 shows the field curvature and distortion schematic diagrams after light with a wavelength of 555 nm passes the camera optical lens 30 in the third embodiment.
[0116] The following table 13, in accordance with the above conditions, lists the values in this embodiment corresponding with each condition expression. Apparently, the camera optical system of this embodiment satisfies the above conditions.
[0117] In this embodiment, the pupil entering diameter of the camera optical lens is 1.9511 mm, the full vision field image height is 2.9935 mm, the vision field angle in the diagonal direction is 75.00.degree., it has wide-angle and is ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
TABLE-US-00013 TABLE 13 Embodiment 1 Embodiment 2 Embodiment 3 f 4.121 3.950 4.000 f1 -9.066 -12.014 -5.921 f2 6.458 4.806 4.058 f3 -25.486 80.900 14.562 f4 98.099 -11.402 -21.364 f5 2.044 2.076 2.308 f6 -28.358 -26.278 -14.237 f7 -2.836 -2.766 -3.562 f6/f7 10.000 9.500 3.997 (R1 + R2)/(R1 - R2) 7.458 5.024 1.200 (R3 + R4)/(R3 - R4) -0.727 -0.605 -1.088 (R5 + R6)/(R5 - R6) 0.987 -63.208 -14.944 (R7 + R8)/(R7 - R8) -138.285 2.785 5.466 (R9 + R10)/(R9 - R10) 1.105 1.235 1.387 (R11 + R12)/(R11 - R12) 4.871 4.444 2.750 (R13 + R14)/(R13 - R14) 1.721 1.578 1.812 f1/f -2.200 -3.041 -1.480 f2/f 1.567 1.217 1.015 f3/f -6.184 20.479 3.641 f4/f 23.804 -2.886 -5.342 f5/f 0.496 0.525 0.577 f6/f -6.881 -6.652 -3.560 f7/f -0.688 -0.700 -0.891 d1 0.180 0.180 0.180 d3 0.636 0.575 0.532 d5 0.304 0.304 0.304 d7 0.516 0.480 0.289 d9 1.049 1.049 1.049 d11 0.444 0.516 0.220 d13 0.393 0.374 0.567 Fno 2.073 2.050 2.050 TTL 5.747 5.727 5.363 d7/TTL 0.090 0.084 0.054 n1 1.6713 1.6713 1.6713 n2 1.5445 1.5445 1.5445 n3 1.6713 1.6713 1.6713 n4 1.7225 1.8211 1.7225 n5 1.5352 1.5352 1.5352 n6 1.5352 1.5352 1.5352 n7 1.5352 1.5352 1.5352
[0118] It is to be understood, however, that even though numerous characteristics and advantages of the present exemplary embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms where the appended claims are expressed.
User Contributions:
Comment about this patent or add new information about this topic: