Patent application title: PRODUCTION OF XYLITOL FROM A MIXTURE OF HEMICELLULOSIC SUGARS
Inventors:
IPC8 Class: AC12P718FI
USPC Class:
1 1
Class name:
Publication date: 2019-04-11
Patent application number: 20190106720
Abstract:
Materials and methods are described to produce xylitol from a mixture of
hemicellulosic sugars by several routes. Examples include either as a
direct co-product of a biorefinery or ethanol facility, or as a
stand-alone product produced from an agricultural or forestry biomass
feedstock including using, e.g. ethanol waste streams.Claims:
1. A method to produce xylitol from a mixture of hemicellulosic sugars.
2. The method to produce xylitol of claim 1, comprising converting xylose alone to xylitol by the action of a xylose reductase.
3. The method to produce xylitol of claim 1, comprising conversion of L-arabinose to xylitol and reducing xylose.
4. The method to produce xylitol of claim 1, comprising reducing D-xylose and metabolizing arabinose.
5. A microorganism capable of converting a mixture of sugars, wherein the sugars are selected from the group consisting of xylose, arabinose and combinations thereof, and wherein conversion is by fermentation to xylitol with little or no arabitol present in the final fermentation broth.
6. The microorganism of claim 5 is an E. coli strain that efficiently produces xylitol from D-xylose, using a mutant xylose reductase (XR) designated VMQCI and a genetically engineered E-coli that utilizes L-arabinose as a carbon source, thereby decreasing L-arabinotol production, and wherein xylitol is produced at a purity of approximately 100% from an equivalent mixture of D-xylose, L-arabinose, and D-glucose, and wherein there is a minimal production of L-arabinitol byproduct.
7. The microorganism of claim 6, wherein the E. coli strain is designated HZ 1434.
8. The microorganism of claim 5 wherein arabitol is less than 10% of the final mixture of polyol products produced.
9. The microorganism of claim 5 wherein arabitol is less than 5% of the final mixture of polyol products produced.
10. The microorganism of claim 5 wherein the initial ratio of xylose:arabinose is greater than 1:1.
11. The microorganism of claim 5 wherein the initial ration of xylose:arabinose is greater than 2:1.
12. (canceled)
13. (canceled)
14. A bioprocess for converting a mixture of sugars, wherein the sugars are selected from the group consisting of xylose, arabinose and combinations thereof wherein xylitol is produced with little or no arabmitol present in the final fermentation broth.
15. The bioprocess of claim 14 wherein arabinitol is less than 10% of the final mixture of polyol products produced.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims priority to U.S. application No. 61/295,551, filed Jan. 15, 2010, application No. 61/328,609, filed Apr. 27, 2010, and application No. 61/391,951, filed Oct. 11, 2010. The disclosures set forth in the referenced applications are incorporated herein by reference in their entireties, including all information as originally submitted to the United States Patent and Trademark Office.
BACKGROUND
[0002] Materials and methods are described to produce xylitol from a mixture of hemicellulosic sugars by several routes. Examples include either as a direct co-product of a biorefinery or ethanol facility, or as a stand-alone product produced from an agricultural or forestry biomass feedstock including using, e.g. ethanol waste streams.
[0003] Xylitol has several favorable properties as a sugar substitute, such as low caloric content, anticariogenicity, good gastrointestinal tolerance, and near insulin-independent metabolism in humans. The traditional production of xylitol involves direct chemical hydrogenation of hemicellulosic hydrolysates over a Raney-Nickel catalyst followed by extensive purification from non-specific reduction products. In the chemical process, D-xylose is converted to xylitol by catalytic reduction. This method utilizes specialized and expensive equipment for the high pressure and temperature requirements as well as the use of a Raney-Nickel catalyst that can introduce trace nickel into the final product, which is undesirable. Additionally, the overall yield is only 50-60%. The final product must also be purified. This multi-step process is expensive and inefficient.
[0004] Hydrolysate from birch trees has historically been the only economic source of xylose used to make xylitol by chemical hydrogenation. Birch tree hydrolysate is a byproduct of the paper and pulping industry and it has only minor amounts of arabinose and other sugars. However availability severely limits this source of xylitol. Hydrolysis of other xylan-rich materials, such as trees, straws, corncobs, oat hulls under alkaline conditions also yields hemicellulose hydrolysate, however these hydrolysates contain too many sugars other than xylose, especially L-arabinose. These competing sugars create a number of by-products during the hydrogenation process that are difficult and costly to remove.
[0005] Biocatalytic routes to xylitol production using fungal or yeast xylose reductase (XR) have also been explored. Unfortunately, the nonspecific nature of direct hydrogenation is only partially addressed in the biocatalytic route The natural promiscuity of XRs toward other sugars, particularly L-arabinose, another major component of hemicelluloses, necessitates the prior purification of D-xylose to minimize formation of L-arabinitol. Because D-xylose and L-arabinose are epimers, their separation is nontrivial, and is one of the leading obstacles to the more economical production of xylitol.
[0006] Because there is a significant amount of arabinose in the hydrolysates, a significant amount of arabinitol (arabitol) is produced because the xylose reductase enzyme that converts xylose to xylitol also converts arabinose to arabinitol. A significant challenge was to develop either a process that produces negligible amounts of arabinitol or alternatively converts the arabinose into additional xylitol.
[0007] While some basic research has been performed by others in the field, development of an effective bioprocess for the production of xylitol has been elusive. Many of these systems suffered from problems such as poor microbial strain performance, low volumetric productivity, and too broad of a substrate range. Moreover, kinetics and overall performance of the enzymes reported to date have not been engineered (via methods such as directed evolution) to maximize efficiency. More efficient enzyme activity would result in improved throughput and shorter reaction times, both of which are crucial to a commercially viable process.
[0008] Most of the research performed has also been carried out using a highly purified and concentrated D-xylose substrate. This substrate has no significant amounts of other pentoses such as arabinose or other hexoses such as D-glucose. While some reasonable yields with such a substrate have been reported, developing a bioprocess with pure D-xylose is impractical due to the cost of this substrate and the fact that it can be hydrogenated at similiar costs and better space-time yields.
[0009] None of the approaches described in this section have been commercially effective for a number of reasons, First, xylose uptake is often naturally inhibited by the presence of glucose that is used as a preferred carbon source for many organisms. Second, none of the enzymes involved have been optimized to the point of being cost effective. Finally, xylose in its pure form is expensive and any requirement for a bioprocess to use pure xylose results in direct competition with inexpensive chemical hydrogenation. Additionally, all of the systems developed would produce arabinitol as a significant contaminating byproduct since the xylitol dehydrogenase used has similar activity with both xylose and arabinose.
[0010] Xylitol could potentially be a byproduct of ethanol production. When products such as ethanol or other chemicals are produced from corn by current processes, only starch is generally utilized. Thus, during ethanol production, significant by-products rich in pentose and other sugars are made. For example, when ethanol is produced from a dry-mill operation (about 55% of the facilities today) distiller's dry grains (DDG) and other byproducts are produced. In the wet-mill operation (the remaining 45% of current facilities) corn fiber rich in hemicellulose is produced. These products are usually sold as inexpensive animal feed or otherwise disposed of, but both the corn fiber and distiller's dry grains could potentially be converted to other value-added products, such as xylitol which could help improve the economics of ethanol production.
SUMMARY OF THE DISCLOSURE
[0011] Methods and compositions are disclosed to produce xylitol--some that are useful on an industrial scale, and all having advantages. Methods include a new process that would allow xylitol to he produced from a variety of agricultural and forestry derived hemicellulose feedstocks such as hardwoods, softwoods, bagasse, wheat straw, corn and corn fiber, sources such as those that are leftover from U.S. ethanol production, bioenergy production, or other biochemical production. Fermentation organisms were designed to alleviate some of the previous problems, notably by minimizing arabinitol.
[0012] A variety of fermentation systems disclosed herein are able to convert a hemicellulose mixture (arabinose, xylose, and a variety of C6 sugars) to a low-arabinotol product.
[0013] Systems to Produce Xylitol Include:
[0014] (A) conversion of xylose to xylitol by a xylose reductase;
[0015] (B) conversion of L-arabinose to xylitol, reduce xylose;
[0016] (C) reduce D-xylose and metabolize arabinose.
[0017] Aspects of the Invention also Include:
[0018] (A) preparation and improvement of industrial hemicellulose samples;
[0019] (B) analysis of fermentation inhibition by different industrial hemicellulose samples; and
[0020] (C) novel xylose reductase genes.
[0021] Aspects of this disclosure include an E. coli strain that efficiently produces xylitol from D-xylose, wherein xylitol is produced at a purity of approximately 90-100% from an equivalent mixture of D-xylose, L-arabinose, and D-glucose. The method to reduce D-xylose to xylitol uses an engineered E. coli strain, wherein there is a minimal production of L-arabinitol byproduct.
[0022] The biocatalytic reduction of D-xylose to xylitol requires separation of the substrate from L-arabinose, another major component of hemicellulosic hydrolysate. This step is necessitated by the innate promiscuity of xylose reductases, which can efficiently reduce L-arabinose to L-arabinitol, an unwanted byproduct. Unfortunately, due to the epimeric nature of D-xylose and L-arabinose, separation can be difficult, leading to high production costs. To overcome this issue, an E. coli strain is disclosed that efficiently produces xylitol from D-xylose with minimal production of L-arabinitol byproduct. By combining this strain with a previously engineered xylose reductase mutant, (SEQ ID NO: 19 and 20) L-arabinitol formation is eliminated and xylitol is produced to near 100% purity from an equiweight mixture of D-xylose, L-arabinose, and D-glucose.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] FIG. 1. Potential pathways for converting xylose or arabinose to xylitol. (A) Pathways A--Conversion of xylose to xylitol via xylose reductase; (B) Pathway B--conversion of xylose to xylitol via a D-xylulose intermediate; (C) Pathway C; conversion of arabinose to xylitol via epimerase.
[0024] FIG. 2: Conversion of xylose to xylitol via xylose reductase: (A) C. globosum (SEQ ID NO: 2); (B) N. crassa. (SEQ ID NO: 19 and 20); (C) and (D) bioconversion with the XR from (A) and (B).
[0025] FIG. 3: Conversion of C-5 mixed sugars to xylitol; via a D-xylulose intermediate (XI/XDH): (A) pATX210, (B) L-arabinose to xylitol, (C) pATX215
[0026] FIG. 4: Conversion of L-arabinose in to xylitol by the epimerase of Pathway C.
[0027] FIG. 5: Two stage production of xylitol in biomass hydrolysate using first the L-arabinose to xylitol (epimerase) Pathway C followed by the xylose to xylitol (xylose reductase) Pathway A: (A) 2 stage, (B) 2 stage higher sugars.
[0028] FIG. 6: Conversion of a C-5 mixture to xylitol and arabinitol with ZUC138 (A) containing a plasmid with combined genes for Pathway A and Pathway C (pATX221); and (B) bioconversion to xylitol and arabitol.
[0029] FIG. 7: Conversion of a C-5 mixture to xylitol with ZUC142 (A) containing a plasmid with combined genes for Pathway B and Pathway C (pATX231); and (B) bioconversion to xylitol and arabitol.
[0030] FIG. 8: Production of xylitol from biomass hydrolyzate in a single stage bioconversion using art Ara+ Strain.
[0031] FIG. 9: Efficient conversion of biomass hydrolysate to xylitol with low production of arabitol: (A) corn fiber, (B) hardwood.
[0032] FIG. 10. Growth of various strains in D-glucose, D-xylose, and L-arabinose to test for catabolite repression at 30.degree. C. (A) Wild-type E. coli K-12 C600 shows strong diauxie, with quick utilization of D-glucose first. (B) Deletion of the regulatory domain of adenylate cyclase (HZ1651, .DELTA.cyaA.sup.regul) resulted in slightly less pronounced diauxie, although pentose assimilation is still slower than D-glucose. (C) D-Glucose permease knockout (HZ1743, .DELTA.ptsG) strain showed efficient L-arabinose and D-glucose utilization, although D-xylose was relatively slower. (D) The mutant CRP (HZ1302, crp*) showed the most efficient co-utilization of all three sugars. All experiments were also performed at 37.degree. C. to ascertain D-glucose de-repressed phenotype.
[0033] FIG. 11 Xylitol production in shake flasks comparing (A) HZ1757 (.DELTA.ptsG .DELTA.xylA pXXR) and (B) HZ1434 (crp* .DELTA.xylA pXXR SEQ ID NO: 6) diauxie relief strategies. Although both strains demonstrate simultaneous glucose and L-arabinose assimilation, stronger induction of the xylose pathway results in higher xylitol production using XR under XylA promoter in HZ1434. Neither of the two strains produces significant amounts of L-arabinitol. Data are an average of two independent experiments and error is less than 15% in all cases. Experiments were also performed with mutant VMQCI, (SEQ ID NO: 19 and 20) and similar results were obtained.
[0034] FIG. 12. Strategies implemented to improve xylitol productivity. (A) pH-stat bioreactor allows cells to completely and efficiently catabolize L-arabinose and glucose simultaneously. XR expression is under control of the XylA promoter (HZ1434). (B) Concurrent expression of xylose-proton symporter (XylE) using AraBAD promoter decreases lag phase, but also decreases L-arabinose assimilation rate relative to glucose (HZ2008). Xylitol productivity does not increase significantly, however. (C) Expression of XR using AraBAD promoter instead of XylA promoter promotes near-stoichiometric conversion of D-xylose to xylitol (HZ2061). (D) Expression of the mutant XR, VMQCI, eliminates L-arabinitol production, although initial xylitol productivity also drops slightly (HZ2062). Data are an average of two independent experiments and error is less than 15% in all cases.
[0035] FIG. 13. Acetate production by HZ1434 during growth in 4% and 0.4% usable sugars (glucose+L-arabinose). Cells grown in high concentrations of sugars succumb to Crabtree effect and produce large amounts of acetate (.about.25 mM), which inhibts cell growth, resulting in decreased final cell density. Data points are shown at 0, 6, 24, 48 h, and are an average of two independent experiments and error is less than 15% in all cases.
[0036] FIG. 14. ZUC220 with synthetic hydrolysate.
[0037] FIG. 15. Action of ZUC170 on corn fiber hydrolysate with fermenter to fermenter transfer.
[0038] FIG. 16. Gene sequence of xylose reductase from Chaetomium globosum (SEQ ID NOS 1-2, respectively, in order of appearance).
[0039] FIG. 17. Xylitol recovery.
[0040] FIG. 18. NcXRwt sequence (SEQ ID NOS 3-4, respectively, in order of appearance).
[0041] FIG. 19. pACYC-ncxr sequence (SEQ ID NO: 5).
[0042] FIG. 20. pXXR sequence (SEQ ID NO: 6).
[0043] FIG. 21. pTreXR sequence (SEQ ID NO: 7).
[0044] FIG. 22. pAraXR sequence (SEQ ID NO: 8).
[0045] FIG. 23. NcXR mutant S sequence (SEQ ID NOS 9-10, respectively, in order of appearance).
[0046] FIG. 24. NcXR mutant Q sequence (SEQ ID NOS 11-12, respectively, in order of appearance).
[0047] FIG. 25. NcXR mutant QC sequence (SEQ ID NOS 13-14, respectively, in order of appearance).
[0048] FIG. 26. NcXR mutant MQC sequence (SEQ ID NOS 15-16, respectively, in order of appearance).
[0049] FIG. 27. NcXR mutant MQCI sequence (SEQ ID NOS 17-i8, respectively, in order of appearance).
[0050] FIG. 28. NcXR mutant VMQCI sequence (SEQ ID NOS 19-20, respectively, in order of appearance).
[0051] FIG. 29. pACYCAra XylE sequence (SEQ ID NO: 21).
[0052] FIG. 30. Strain derivations.
[0053] FIG. 31. Diagram of development of HZ strains (see Table 1).
DETAILED DESCRIPTION
[0054] I. Materials and methods are described to produce xylitol by several routes for example either as a direct co-product of a biorefinery or ethanol facility, or produced as a stand-alone product using, e.g. ethanol waste streams.
A. Conversion of Xylose: to Xylitol via Xylose Reductase.
[0055] 1. Use D-Xylose Reductase on Arabinose-Depleted Feedstock; in an Arabinose Utilizing Organisms; Xylose Reductases will Reduce Arabinose:
##STR00001##
[0056] Two organisms designated ZUC140 and ZUC166 can accomplish this. Xylose can be converted to xylitol at a high efficiency, but also produces arabitol fron arabinose (tested at 50:50 ratio).
[0057] One way to convert xylose to xylitol is directly through the use of a xylose reductase as depicted in FIG. 1A (Pathway A). Several xylose reductase genes had previously been cloned into E. coli expression vectors, expressed, and tested for ability to convert xylose into xylitol. Most genes are expressed and very active in constitutive expression systems within strain ZUC134. E. coli strain Zuc134 was created from K12 prototroph AB707 through a combination of PCR based genetic deletion and selection for improved growth on glucose. First ptsG was removed, followed by xylB, then araBAD, and finally lyxK in successive order. The final strain was then selected on M9+glucose liquid medium several times for improved growth, a single colony wits isolated, cultured, and stored at -80.degree. C.
[0058] The best results achieved were with the xylose reductases from Neurospora crassa (McXR) and Chaetomium globosum (CgXR) [FIG. 2(D), (C)]. CgXR was synthetically constructed for E. coli expression [FIG. 2(A)], whereas NcXR was isolated from mRNA of N crassa [FIG. 2B]. Both genes were placed in the expression vector pTRP200 under the pTRP promoter allowing constitutive expression. The resulting strains ZUC140 (ZUC134 NcXR) and ZUC166 (ZUC134 CgXR) are very powerful reducing biocatalysts.
[0059] The ability to convert a "synthetic hemicellulose" mixture that contained both xylose and arabinose together as a starting material was investigated. Although hemicelluloses vary in concentration of these sugars, a 50:50 mixture was used in these experiments, unless otherwise indicated. This can be supplemented by an additional C6 sugar such as glucose for growth of the strains.
[0060] One liter bioconversions were performed to test these systems with a synthetic hemicellulose substrate containing a 50:50 mixture of xylose and arabinose (30 g/L each). In these experiments ZUC140 was capable of reducing 30 g D-xylose to xylitol in just 20 hrs. ZUC166 was capable of the same reduction in approximately 30 hrs. Both of these systems, however, concurrently reduce 30 g L-arabinose to L-arabitol over the same time period. A problem is that L-arabitol is an undesirable side product. Method: 2L BiostatB (Sartorius). Medium: 10 g/L tryptone, 5 g/L yeast extract, 5 g/L sodium chloride; 2.6 g/L dibasic potassium phosphate Sterilized in 800 mL. Sugars sterilized separately and added in 150 mL prior to inoculation to indicated starting concentrations. [glucose was also added, same concentration, not shown]. Inoculated with 50 mL seed, overnight shake flask in LB medium. pH autocontrolled at pH 7.0 with ammonium hydroxide, Temp 30.degree. C., agitation 800 rpm, 1 vvm air(1 Lpm). Products were tested by HPLC.
[0061] 2. Conversion of C-5 Mixed Sugars to Xylitol via a D-Xylulose Intermediate (XI/XDH).
[0062] Isomerize D-xylose to D-xylulose; reduce D-xylulose to xylitol (arabinose unaffected by either enzyme):
##STR00002##
[0063] Another method to convert xylose to xylitol has the advantage of not converting L-arabinose to arabitol, because both enzymes (XI and XDH) do not have any activity with L-arabinose as depicted in FIG. 1B (Pathway B). Plasmid pZUC036 (see U.S. 2006/0110809 incorporated herein by reference) contained a XI cloned from E. coli and a XDH cloned from Trichoderma reesei (Hypocrea jecorina) under the control of the pTRP constitutive promoter.
[0064] This plasmid was tested in E. coli ZUC134 (see U.S. 2006/0110809 incorporated herein by reference) for conversion of a synthetic hemicellulose mixture of D-xylose and L-arabinose to xylitol. Using this system, 27 g/L xylitol was produced from 50 g/L D-xylose without the production of any significant amount of arabitol. Higher concentrations of D-xylose did not result in more xylitol, and further study pinpointed the problem. Xylitol is inhibitory to XI activity, therefore a selection method was developed for creating xylitol resistant XI mutants. After several rounds of mutagenesis and selection, a more resistant XI was created and cloned into the expression vector to create pZUC052 (see U.S. 2006/110809 incorporated herein by reference). This mutant was capable of converting 150 g/L D-xylose to 74 g/L xylitol. However, with lower concentrations of D-xylose such as 30 g/L, conversion still was never more than 50% (FIG. 3). L-arabitol production from 30 g/L arabinose was insignificant.
B. Convert L-arabinose to Xylitol, Reduce Xylose
[0065] Isomerize L-arabanose to L-ribulose; isomerize ribulose to L-xylulose; reduce L-xylulose to xylitol:
##STR00003##
[0066] 1. Conversion of C-5 Mixed Sugars to Xylitol Via Epimerase Pathway.
[0067] FIG. 1C (Pathway C) depicts a pathway for converting L-arabinose to xylitol via an epimerase. Plasmid pATX210 (FIG. 3A) [U.S. patent application Ser. No. 11/827,506], Sakakibara et al. Methods for microbial production of xylitol from arabinose) contains an optimal combination of LAI from E. coli (araA) LXR from Ambrosiozyma monospora and DTE from Rhizobium radiobacter although alternative LAI, LXR and DTE genes could also be used. Plasmid pATX210 is a derivative of plasmid pBAD18kan which contains an arabinose inducible promoter and kanamycin resistance marker. This plasmid was modified to contain a three gene cassette containing tagatose epimerase, L-xylulose reductase, and L-arabinose isomerase in that order moving away from the promoter. To test for the ability to convert a mixed sugar stream containing D-xylose, L-arabinose and other sugars, pATX210 was used to transform ZUC134, resulting in strain ZUC136. As shown in FIG. 3B this strain has reproducibly been able to convert .about.90% of L-arabinose into xylitol (30 g,/, to 27 g/L), while not consuming or modifying D-xylose (FIG. 4) in 48 hours.
[0068] 2. Conversion of C-5 Sugar Mixtures to Xylitol--Two Stage Bioconversion (Path A and Path C Sequentially).
[0069] Another method of converting all of the xylose and arabinose to xylitol is to carry out a two-step sequential bioconversion using two different strains. For example, using strain ZUC136 (with the LAI/DTE/LXR pathway) to convert all of the L-arabinose to xylitol, optionally followed by a pasteurization or purification process to remove the original strain, followed by the use of ZUC140 (which contains the XR pathway) to convert the D-xylose in the resulting mixture to xylitol. If effective, the process will proceed without significant amounts of unwanted byproducts such as unreacted sugars or contaminating polyols being produced.
[0070] FIG. 5A shows the results of this strategy. The two-stage 1L bioconversion started with a 50:50 synthetic hemicellulose (containing 33 g L-arabinose and 34.5 g D-xylose). The first stage bioconversion with ZUC136 lasted 50 hrs, and the second stage bioconversion With ZUC140 lasted 30 hrs. At the end of the bioconversion there was less than 8 g of combined other detectable sugars and polyols and the reaction produced approximately 65 g xylitol.
[0071] The process can also be run at higher concentrations of xylose and arabinose. As shown in FIG. 5B, Stage 1 proceeds until there are only small amounts of arabinose remaining unreacted. Stage 2 proceeds to completion converting all the xylose to xylitol. In this case a 2:1 synthetic hemicellulose feedstock was used with approximately 60 g D-xylose and 26 g L-arabinose. This process successfully produced 63 g xylitol at a concentration of 75 g/L.
[0072] During the two-stage bioconversion experiments, surprisingly the second stage, conversion of the xylose to xylitol was not only very rapid but did not generate a significant amount of arabitol even though there was some unreacted arabinose remaining in the broth. This was counter to expectations because most xylose reductase enzymes are known to convert both xylose to xylitol, and arabinose to arabitol. This was significant because the presence of excess amounts of arabitol in the final mixture would make final purification of xylitol overly expensive. Because of both the speed of the reaction, and the nature of the xylose reductase being used, the enzyme is more specific to xylose than other xylose reductases. The reaction proceeds without production of much arabitol when the reaction is slowed down, as it is in the second stage of the 2-stage conversion.
[0073] 3. Conversion of C-5 Mixture to Xylitol using a Single Strain with the Xylose Reductase and Epimerase Pathways Combined.
[0074] A way to convert both arabinose and xylose to xylitol is to put two separate pathways into a single organism. One combination of pathways in a single strain is the combination of Pathway A (XR) for converting D-xylose to xylitol, and Path C (LAI, DTE, LXR) for converting L-arabinose to xylitol. The primary issue is the production of L-arabitol from the activity of XR in the presence of L-arabinose. Combination of these pathways was achieved with the creation of pATX221. (created by insertion of the pTRP promoted ncXR into pATX2210 as depicted in FIG. 6(A)) which was subsequently transformed into ZUC134 to create ZUC138. The resulting strain grew and produced xylitol although slowly. In a 70 hr bioconversion this strain produced 20 g/L xylitol and 7 g/L arabitol from 30 g/L D-xylose and 26 g/L L-arabinose (FIG. 6(B)). To reduce the production of L-arabitol, a more D-xylose specific XR can he utilized.
[0075] 4. Conversion of C-5 Mixture to Xylitol using a Single Strain with the XI/XDH and Epimerase Pathways Combined.
[0076] Another combination of pathways is to use Pathway B (XI,XDH) for D-xylose conversion and pathway C (LAI, DTE, LXR) for L-arabinose conversion. Plasmid pATX231 and pATX231b were constructed with these combined pathways. These vectors were created by insertion of XDH and mutant XI into pATX210 as shown below in either the same orientation as the arabinose operon or in the reverse orientation. As seen in FIG. 7(A) the resulting recombinant strains produced xylitol although grew slowly and produced L-arabitol during bioconversion despite neither of the individual pathways producing L-arabitol on their Own (FIG. 7(B)).
C. Reduce D-xylose, Metabolize Arabinose
[0077] 1. Conversion of C-5 Mixture to Xylitol using Xylose Reductase in a Host that Metabolizes Arabinose.
[0078] Results of 2-stage bioconversion suggested the possibility that a system that produced xylitol with very little arabitol production could be generated by using a feedstock with a higher ratio of xylose:arabinose, although one that is still typical of many agricultural biomass products, and optimizing certain conditions. In this approach, the arabinose is metabolized as primary carbon source for the bioconversion.
[0079] To assess this method, the XR gene was placed in a host with wild type arabinose metabolism. E. coli strain ZUC170 was created from E. coli B of the genotype F-ompT hsdSB(rB-mB-) gal dcm by transformation with the plasmid based vector pTRP-200 carrying NcXR and selection of the plasmid borne kanamycin resistance marker.
[0080] This strain was then tested with a synthetic hemicellulose containing a mixture of 6.8% xylose and 4% arabinose, a typical. ratio for corn fiber hydrolysates. In a 72-hour bioconversion the yield of xylitol from xylose was excellent, more than 90%, and yielded 66 g/L, while less than 17.5% of arabinose was converted to arabitol at <7 g/L. Thus the final ratio of xylitol to arablitol was more than 8:1. Only a small amount of glucose was added, about 53 hours, which appeared to stimulate conversion. (FIG. 8)
[0081] A similar result was obtained using a strain, created in the same way as ZUC170, but with a more xylose specific xylose reductase created (VMQCI). With this strain (ZUC172) in the same xylose: arabinose mixture, more than 90% of xylose was converted to xylitol while 19.5% of arabinose was converted to arabitol at 6.9 g/L and a final ratio of more than 8:1.
[0082] This approach is especially attractive for hydrolysates with lower arabinose concentrations, such as many agricultural biomass sources (corn fiber, corn cob, etc.), woody biomass and any biomass that contains a xylose:arabinose ratio of approximately 3:1 or better. Using this route high concentrations of xylose from many of substrates are expected.
[0083] 2. Production of Xylitol from a Hemicellulose Hydrolysate.
[0084] Production of xylitol in synthetic hemicellulose does not guarantee the process will work in a more complex and less pure biomass hydrolysate. To test utility of the system the ZUC170 strain fermented on different biomass hydrolysates. FIG. 9 shows results with a hydrolysate from corn fiber and woody fiber sources. Complete conversion was achieved in less than 80 hours to yield xylitol in concentrations between 60-80 g/L. In both cases the hydrolysates had been treated with overliming.
[0085] The corn fiber hydrolysate was fermented with a 1:1.5 dilution and grew and converted well. When arabinose was depleted, some glucose was added to maintain reducing power for xylose conversion. A final level of 80 g/L xylitol was achieved with near 100% conversion from xylose. (FIG. 9A)
[0086] Other hydrolysates are also suitable. For example, using the same volumes and organism, the hardwood hydrolysate that has a higher xylose to arabinose ratio (11.3% Xylose and 2.2% arabinose) can be used. In this ease arabinose was consumed much sooner as there was less of it and thus less arabitol was formed (0.8 g/L vs. 60 g/L xylitol). This bioconversion finished in about 75 hours, and had a shorter lag. In this particular experiment, there was an over-addition of glucose at 44 hours which may have led to a slower bioconversion. Under these conditions very little arabitol was produced in both cases--even in the corn fiber hydrolysate which had significantly more arabinose to start with. (FIG. 9B).
[0087] Other hemicellulose hydrolysates such as those from corn fiber, corn stover, corn cob, bagasse, stillage, wheat straw, hardwood, softwood and other biomass sources are suitable.
[0088] 3. Reduction of Lag Phase
[0089] One characteristic of these bioconversions is a lag phase of 12-15 hours at the beginning before xylitol production starts. Several approaches were tried to reduce this time. One approach was to use the broth from a well-grown fermenter at the peak of production, to inoculate a new fermenter.
[0090] Broth from fermenter 1 at 32 hours was used to inoculate fermenter 2 with the same medium composition. The second fermenter started producing xylitol without a lag and shows that with the proper inoculum, the bioconversion time can be reduced by about 12-15 hours. Another approach to increasing the rate, especially early in the bioconversion, would be to use a mutant that grows more rapidly in hydrolysate.
[0091] A nutrient solution consisting of 5 g tryptone 2.5 g yeast extract, and 1 g dipotassium phosphate was sterilized and added to a sterile fermenter. Corn fiber hydrolysate was detoxified by adding calcium hydroxide to pH 10.5, filtering over Whatman #4 paper, then neutralizing the filtrate with sulfuric acid and filtering again. A portion of this preparation, containing 13.2 g D-xylose, 4.8 g L-arabinose and 5.0 g D-glucose in 120 mL, was added without sterilization, before inoculation. The fermenter was inoculated with 25 ml of an overnight starter culture of ZUC170 grown in LB at 30.degree. C. and run under the following conditions:
TABLE-US-00001 Temperature 30.degree. C. pH 7.0 (NH.sub.4OH control) Air 0.5 LPM Agitation 800 RPM Volume after inoculation 315 ml
[0092] Additional detoxified hydrolysate containing 37.4 g D-xylose, 14.3 g L-arabinose and 13.6 g D-glucose in 340 mL was fed from 16-71 hours. Also, additional D-glucose, 124 g in 200 mL, was added from 24-98 hours. Growth and xylitol production initially lagged with no xylitol produced in the first 15 hours (FIG. 15, Fermenter 1). Then xylitol production began and continued until 46 g xylitol was produced in 98 hours in a final volume of 0.83 L. The volumetric productivity of xylitol was 0.56 g/L-h and the yield on glucose was 0.33 g/g.
[0093] To demonstrate that the productivity of the culture is not lost during the fermentation and to show the value of a larger inoculum adapted to growth in hydrolysate, a second fermentation (FIG. 15, Fermenter 2) was started using broth from this fermentation as inoculum. The inoculum for the second fermentation was 60 mL taken from the first fermenter 32 hours after inoculation. The second fermenter was run under the same conditions as the first. It produced the same amount of xylitol as first fermenter, but in 65 hours versus 98 hours. This was due to a reduced lag period and an increased rate.
[0094] 4. Converting Xylose to Xylitol and Metabolizing; Reduce D-Xylose by Novel Microorganisms to Produce Xylitol
[0095] A xylose reductase (XR) was previously isolated from the filamentous fungus Neurospora crasser. The enzyme has an innate 2.4-feld preference for D-xylose over L-arabinose. Resting cell studies in recombinant E. coli expressing this enzyme demonstrated that such a small difference in selectivity was sufficient to improve the ratio of xylitol-to-arabinitol produced. To increase the selectivity of the process toward xylitol, the XR for decreased L-arabinose reductase activity was engineered, and via several rounds of directed evolution, a mutant designated VMQCI was isolated that had a 50-fold lower catalytic efficiency toward L-arabinose. This mutant retained <2% of its original L-arabinose reductase activity. Resting cell studies with this mutant revealed that although the amount of L-arabinitol was significantly decreased, it was not completely eliminated. In order to further increase the selectivity of this biocatalytic process, an orthogonal strategy was implemented to reduce final L-arabinitol titer. For this purpose a metabolically engineered E. coli strain was created that is highly efficient at utilizing L-arabinose as a carbon source, and able to sequester it away from XR, decreasing L-arabinitol production.
[0096] By combining the engineered protein with a metabolic engineering strategy--a combination that is contemplated creates biocatalysts with novel properties and syngerism.
[0097] Xylitol can be made from a better than 1:1 ratio of xylose to arabinose. Fermenting microorganisms were sought to facilitate xylitol production. Of particular concern is the need to reduce arabinitol to a negligible amount, or to convert arabinose to xylitol. Some microorganisms have been reported to achieve these goals but have limitations. One of the major obstacles to creating a strain that is highly efficient at utilizing L-arabinose as a carbon source, is that the regulation of various catabolic pathways of E. coli in the presence of multiple sugars is not well understood. This is particularly important for selective production of xylitol from hemicellulosic hydrolysate since corn fiber consists of D-xylose, L-arabinose, and D-glucose. While diauxic growth patterns due to glucose repression in E. coli is well studied, little is known about the relative preference between pentoses, and even less in the presence of glucose. In addition, a system used to overexpress XR is IPTG (isopropyl-.beta.-D-thiogalotopyranoside)-dependent, which is reliant on the lactose system, introducing a fourth regulatory system. Considering that the transport of all three non-glucose sugars is dependent on CRP (cyclic adenosine monophosphate receptor protein), significant cross-talk between them is to be expected. Glucose de-repression for simultaneous uptake of two sugars has been documented previously, albeit primarily for ethanol production, which was carried out under oxygen-limited conditions. The pleiotropic effects on other regulatory systems of such de-repressed mutants are poorly characterized.
[0098] To engineer E. coli for efficient L-arabinose catabolism in the presence of glucose and D-xylose, three different de-repression strategies were used: a glucose phosphotransferase mutant, a regulation deficient adenylate cyclase mutant, and a CRP mutant (Goerke and Stulke, 2008). The crp* mutant can be superior among the three under certain conditions. This mutant was previously described to be helpful in co-utilization of D-xylose and glucose for the production of xylitol using an IPTG induction system. In this strain, the effects of overexpressing a xylose transporter (XylE) were tested as well as the relative productivity of placing XR under the control of D-xylose-, IPTG-, and L-arabinose-inducible systems. Under certain conditions, L-arabinose was preferred over glucose, whereas under other growth conditions glucose was the preferred carbon source. Finally, in a bioreactor setting, the engineered strain in conjunction with the mutant XR (VMQCI) was able to eliminate L-arabinitol production from an equiweight mixture of D-xylose, L-arabinose and glucose.
Under Some Conditions using the 1:1 Mixture of Arabinose:Xylose the crp* Mutant is the Most Efficient at Co-Utilizing Three Sugars for Xylitol Production.
[0099] Three different catabolite de-repression strategies HZ1743, HZ1651 and HZ1302 (.DELTA.ptsG, .DELTA.cyaAreg, and crp*, respectively were tested for co-utilization of glucose, D-xylose and L-arabinose. The phosphotransferase system (PTS) for simultaneous glucose uptake and phosphorylation has been shown to play a role in catabolite repression (Goerke and Stulke, 2008). Strains with inactivated permease, PtsG, were shown to relieve the repression and have been used for co-fermenting mixed sugars (Nichols et aL, 2001). Adenylate cyclase (CyaA) is responsible for forming cAMP in response to low glucose concentrations. Its activity is regulated by interaction with the PTS protein Enzyme IIAGlc. A strain with truncated CyaA was shown to be de-regulated and did not demonstrate diauxic behavior when grown in glucose and maltose mixtures (Crasnier et al., 1994). Several CRP (also known as CAP, catabolite activator protein) mutants have been isolated that show de-repressed behavior (Eppler and Boos, 1999; Karimova et al., 2004; Zhu and Lin, 1988). For the present disclosure, the CRP mutant that was shown to de-repress xylose metabolism under aerobic conditions for xylitol production, was used (Cirino et al., 2006; Eppler and Boos, 1999).
[0100] Deletions were created by replacing the undesired locus with PCR amplified cat (CmR) mediated by .lamda. red recombinase proteins (Datsenko and Wanner, 2000), either directly in the parent strain, or in MG1655 and then transduced into the appropriate recipient Miller, 1992). The CRP mutant was created by transduction of donor allele from ET23 into C600 (Eppler and Boos, 1999; Miller, 1992).
[0101] These three recombinant strains plus the wild type strain were grown in minimal medium with .about.2 g/L each of glucose, D-xylose and L-arabinose under oxygen-limited conditions. Supernatants were analyzed at various time points to ascertain their sugar utilization patterns (FIG. 10). The wild-type C600 (FIG. 10A) demonstrated strong diauxie, with almost no uptake of D-xylose or L-arabinose until complete depletion of glucose. The strain with truncated CyaA (HZ1651) (FIG. 10B) showed slightly decreased glucose assimilation, although pentose utilization was not significantly improved. The PtsG knockout (HZ1743) (FIG. 10C) demonstrated delayed response to glucose, but was able to uptake L-arabinose and glucose simultaneously, albeit with differing rates. Finally, the crp* mutant (HZ1302) (FIG. 10D) showed efficient simultaneous assimilation of all three sugars, although, as in all strains, xylose uptake was the slowest. Based on these data, HZ1651 was deemed unsuitable for xylitol production. After deletion of XylA in HZ1743 and HZ1302 to prevent xylose catabolism, pXXR (wtXR under XylA promoter) was transformed into both strains to give HZ1757 (FIG. 11A) and HZ1434 (FIG. 11B) respectively, and tested for xylitol productivity. Although both strains demonstrated efficient utilization of glucose and L-arabinose as carbon sources, the stronger induction from xylose promoters in HZ1434 is evident from higher xylose conversion to xylitol. Based on these experiments, the crp* mutant strain was used for further engineering work Crabtree effect is prevalent at high sugar concentrations in the crp* strain
[0102] Glyeolysis rate at high sugar concentrations often exceeds respiratory capacity, leading to build-up of intermediate metabolites. This "Crabtree effect" is well-known for many organisms including S. cerevisiae and E. coli, which are known to build up ethanol and acetate, respectively. In E. coli acetate build-up decreases growth rate as well as recombinant protein production. Previous work in a similar crp* strain showed that at 18 g/L glucose concentration, acetate production is significant, accumulating to 70 mM.
[0103] When HZ1434 was grown in 40 g/L, total usable sugar (glucose+L-arabinose) in minimal M9 medium, pH dropped to .about.5 within 24 hours, completely inhibiting growth due to high level acetate production (FIG. 12). Addition of 50 mM MOPS (4-morpholinopropanesulfonic acid) to the medium could not buffer the pH at 7.0, as had been done previously at 18 g/L glucose. Addition of a complex nitrogen source has been shown to reduce acetate production in batch cultures (Panda et al., 2000). However, addition of 10 g/L tryptone did not prevent acid accumulation. Although genetic methods exist to decrease acetate production pleiotropic effects could lead to additional complications. Therefore, a pH-stat bioreactor was used subsequently.
Expression from Arabinose Promoter Decreases Crabtree Effect and Lag Phase
[0104] In the pH-stat bioreactor with 60 g/L total sugars (equiweight D-xylose, L-arabinose, and glucose), there was a 24 h lag phase. In addition, xylitol production was minimal until near-complete depletion of L-arabinose in the medium (FIG. 12A). Poor induction of the xylose pathway compared to the arabinose operon (FIG. 10D) was likely the primary reason for low productivity. Since overexpression of xylose-proton symporter (XylE) was shown to transport D-xylose efficiently in glucose-xylose mixtures (Khankal et al., 2008), it may help increase xylitol productivity. Expression using a constitutive promoter, BLMAp (Kim et al., 2003) using pACYCBLMAXylE in HZ2009 (Table 1), did not improve xylitol conversion (data not shown). On the other hand, expression of XylE under the AraBAD promoter from a multicopy plasmid (pACYCAraXylE) (SEQ ID NO: 21) had the unexpected side-effect of simultaneously decreasing both the lag phase of HZ2008 and the total amount of alkali required to maintain pH at 7.0 (FIG. 12B). Unfortunately, the xylitol productivity was nearly unaltered. Another side-effect of this is the change of the relative rates of glucose and L-arabinose consumption. Prior to XylE overexpression (HZ1434), L-arabinose was assimilated faster than glucose (FIG. 11B, 12A), whereas after its overexpression (HZ2008), glucose was the preferred carbon source (FIG. 12B). It is a possible that promoter dilution may play a role in decreasing expression from the chromosomal araBAD operon, although previous reports indicate that this phenomenon is not significant in bacteria. Alternately, the presence of XylE in the cell membrane either replacing AraE and AraGFH transporters, or in addition to them, could be retarding the rate of L-arabinose uptake. This could also explain the lower requirement for alkali in the bioreactor, since the respiration rate would be more capable of keeping up with the slower glycolysis of L-arabinose.
[0105] Since overexpression of XylE did not improve the final xylitol titer, the poor productivity was likely due to low expression of XR under the control of XylA promoter, despite its extremely high activity. So, XR was placed under either the IPTG-inducible Tre promoter (pTrcXR) or the AraBAD promoter (pAraXR). Induction from a lac-based promoter in crp* strain in glucose-xylose mixtures was previously shown to produce high levels of recombinant protein, even at 100 .mu.M concentration (Cirino et al., 2006). However, expression of XR from the Trc promoter induced with 100 .mu.M IPTG led to even poorer conversion than that obtained using the XylA promoter (HZ2046, data not shown). Under the AraBAD promoter (HZ2061), xylitol production reached near stoichiometric levels, with low levels of L-arabinitol production as well (2-6 mM, FIG. 12C). The VMQCI mutant produced xylitol at a slightly slower rate than wtXR (HZ2062), as would be expected from the lower overall activity of the mutant (FIG. 12D), but it produced undetectable levels of L-arabinitol over the 4 day period (limit of detection <1 mM).
Catabolic Pathways: Activation and Competition
[0106] Catabolic pathways for sugars other than glucose are normally repressed in its presence. Four different strategies for de-repression were tested and the crp* mutant was the most efficient at simultaneously activating the D-xylose and L-arabinose metabolic pathways (FIG. 10). However, the arabinose pathway was more strongly activated, as evident from quicker uptake and assimilation compared to D-xylose. Using XR as a reporter under the control of arabinose (AraBAD), xylose (XylA), or lactose (Trc) promoter systems, AraBAD was the most strongly expressed among all three. Although the lac-based system was shown to be fully activatable with 100 .mu.M IPTG in crp* strains in the presence of glucose and D-xylose (Cirino et al., 2006), in the presence of three sugars, this promoter was weakly induced. This is true even in light of the fact that IPTG is the only non-transformable inducer tested. In a non-crp* strain, there is strong activation of D-xylose, L-arabinose, and lactose operons simultaneously in the absence of glucose. Lee and coworkers (2007) have shown that presence of IPTG represses AraBAD promoter activation.
[0107] In contrast to these observations, in the crp* strain created here, the exact opposite was found--AraBAD repressed activation from IPTG-dependent promoters. Investigations into the mechanism of competition and cross-talk between the regulation of three non-glucose operons in wild-type and crp* strains in the presence or absence of glucose would help explain the behavior seen here. The roles of sugar-specific transporters and transcription activators/repressors, in particular, would reveal the mechanism of these interactions. The combination of protein engineering and metabolic engineering led to synergistic increase in desired biocatalytic properties. In this particular case, the synergy was manifested as increased selectivity such that that L-arabinitol production was minimal.
[0108] To realize this goal, a metabolically engineered E. coli strain was created that is highly efficient at utilizing L-arabinose as a carbon source, and able to sequester it away from XR, decreasing L-arabinitol production. One of the major obstacles to create such a strain was that the regulation of various catabolic pathways of E. coli in the presence of multiple sugars is not well understood. This is particularly important for selective production of xylitol from hemicellulosic hydrolysate because corn fiber consists of D-xylose, L-arabinose, and D-glueose. Although diauxic growth pattern due to glucose repression in E. coli is well studied, little is known about the relative preference between pentoses, and even less in the presence of glucose. In addition, a system described herein to overexpress XR is IPTG (isopropyl-.beta.-Dthiogalctopyranoside)-dependent, which is reliant on the lactose system, thus introducing a fourth regulatory system. Considering that the metabolism of all three non-glucose sugars is dependent on activation by CRP (cyclic adenosine monophosphate receptor protein), significant cross-talk between them is to be expected. Glucose de-repression for simultaneous uptake of two sugars has been documented previously, albeit primarily for ethanol production, which was carried out under oxygen-limited conditions (Lindsay et al., 1995; Nichols et al., 2001). The pleiotropic effects on other regulatory systems of such de-repressed mutants are poorly characterized.
[0109] L-arabinitol production can be almost completely eliminated from an equiweight mixture of D-xylose, L-arabinose, and glucose--the three major sugars in hemicellulosic hydrolysate. Considering actual corn hemicellulose has D-xylose to L-arabinose in a .about.5:3 ratio, the tested equiweight mixture is a worst-case scenario. This strategy used an engineered E. coli strain with glucose depressed growth and xylose transporter overexpression to quickly assimilate L-arabinose as a carbon source, sequestering it away from the substrate selective XR mutant VMQCI. Not only is L-arabinose prevented from being converted to L-arabinitol, it also provides reducing equivalents in the form of NADPH for xylitol production, and acts as an inducer for protein expression.
[0110] 5. Improved Strain (ZU220) for Conversion of Hemicellulose to Xylitol
[0111] A new strain with significant improvement in yield of xylitol per gram of glucose and per gram of base was developed and named ZUC220. ZUC220 (xylB.DELTA., ptsG.DELTA.-glucose selected pTRP200-ncXR) was created by PCR-based genetic deletion of xylB and ptsG from starting strain AB707 (K12 prototroph), followed by selection on glucose containing minimal medium for several generations, and then the resulting strain was transformed with pTRP200-ncXR (constitutive expression vector containing ncXR).
[0112] The volumetric productivity of ZUC220 is higher than ZUC170.
[0113] Use of ZUC220 of Synthetic Mixture of Sugars
TABLE-US-00002 Tryptone 14 g Yeast extract 7 g Potassium phosphate, dibasic 4.2 g Sodium chloride 7 g Magnsesium sulfate 2 g Water 750 mL Antifoam Cognis Clerol FBA 3107 3 drops
[0114] The vessels were sterilized with the above media in situ. D-xylose (30 g) and D-glucose (30g) was sterilized in 100 ml water separately and added prior to inoculation of the vessel. The fermenters were inoculated with 50 ml of an overnight starter culture grown in LB at 30.degree. C. and run under the following conditions:
TABLE-US-00003 Temperature 30.degree. C. pH 7.0 (NH.sub.4OH control) Air 1 LPM (1 VVM) Agitation 800 RPM Volume after inoculation 900 ml
[0115] A feed of D-xylose (130 g) and D-glucose (40 g) was dissolved in 185 ml water, sterilized and used to feed the fermentation from 23-56 hours after inoculation. The result was 156 g xylitol produced in 71 hours in a final volume of 1.145 L(136 g/L concentration (FIG. 14A). The volumetric productivity was 1.92 g/L-h, nearly twice the rate previously obtained with ZUC170 (FIG. 8). The yields on glucose and base were 2.48 g xylitol per g glucose and 46 g xylitol per g NH.sub.4OH.
[0116] The medium was sterilized and added to a sterile fermenter. Corn fiber hydrolysate was detoxified by adding calcium hydroxide to pH 10.5, filtering over Whatman #1 paper, then neutralizing the filtrate with sulfuric acid and filtering again. A portion of this preparation, containing 13.2 g D-xylose, 4.8 g L-arabinose and 5.0 g D-glucose in 120 mL, was added without sterilization, before inoculation. The fermenter was inoculated with 25 ml of an overnight starter culture of ZUC170 grown in LB at 30.degree. C. and run under the following conditions:
TABLE-US-00004 Temperature 30.degree. C. pH 7.0 (NH.sub.4OH control) Air 0.5 LPM Agitation 800 RPM Volume after inoculation 315 ml
[0117] Additional detoxified hydrolysate containing 37.4 g D-xylose, 14.3 g L-arabinose and 13.6 g D-glucose in 340 mL was fed from 16-71 hours. Also, additional D-glucose, 124 g in 200 mL, was added from 24-98 hours. Growth and xylitol production initially lagged with no xylitol produced in the first 15 hours(FIG. 14B, Fermenter 1). Then xylitol production began and continued until 46 g xylitol was produced in 98 hours in a final volume of 0.83 L. The volumetric productivity of xylitol was 0.56 g/L-h and the yield on glucose was 0.33 g/g.
[0118] To demonstrate that the productivity of the culture is not lost during the fermentation and to show the value of a larger inoculum adapted to growth in hydrolysate, a second fermentation (FIG. 14B) was started using broth from this fermentation as inoculum. The inoculum for the second fermentation was 60 mL taken from the first fermenter 32 hours after inoculation. The second fermenter was run under the same conditions as the first. It produced the same amount of xylitol as first fermenter, but in 65 hours versus 98 hours. This was due to a reduced lag period and an increased rate.
[0119] II. Crystallization
[0120] A. Xylitol with Cosolvents. In order to test the effect of co-solvents on crystallization of xylitol, a 50% solution of xylitol was separated into 10 ml, aliquots and various quantities of cosolvents (methanol, ethanol, and isopropanol) were added. The mixtures were allowed to crystallize overnight at -20.degree. C. and inspected. Only a small (<10%) amount of crystallization was noted. A separate experiment was carried out using the same methodology, but with seeding using 1 mg of finely ground xylitol crystals. After overnight crystallization, significant xylitol crystallization was obtained. These crystals were removed by filtration, washed with a small amount of cosolvent, dried, and the mass was recorded. The various recoveries are displayed in FIG. 25. The best recovery was approximately 80% of the initial xylitol in solution in a single stage of crystallization using 3 volumes of methanol. A control containing no cosolvent did not result in any xylitol formation. These initial conditions are very promising and should afford the desired yield of recovery.
[0121] B. Methods. Crystallization from bioconversion broths can be achieved in a number of ways. One way is to subject the bioconversion broth to charcoal treatment, followed by concentration of the xylitol-containing broth to a xylitol concentration of around 700 g/L. Treatment of concentrated bioconversion broth with cation exchange calcium affinity chromatography helps speed the crystallization. To date a single simple chromatography step helps remove salts and other byproducts and improves crystallization. As high as 80% recovery was achieved with the final material meeting the desired purity specifications. Recovery can include some or all of the following steps:
[0122] Cell removal. Microfiltration, centrifugation, or vacuum filtration is required (rotary drum filter).
[0123] Charcoal treatment. The cell-free broth is mixed with 5 g/L activated charcoal. Mixing is continued for 1 hour at 37.degree. C., and then the charcoal is separated by filtration on a filter press. Alternatively, a charcoal column can be used.
[0124] Evaporation. The volume is reduced by removing 80% of the volume by evaporation under vacuum at 55-60.degree. C. Target, 500-700 g/L xylitol. An efficient multistage evaporator is required.
[0125] Cation exchange. To remove salts and other byproducts.
[0126] Crystallization. The concentrate is cooled to induce crystallization. A crystallizer is required. Crystallization may be induced by addition of seed crystals or alcohol cosolvent such as methanol, ethanol, or isopropanol.
[0127] Crystal collection and washing. A basket centrifuge or Nutsche filter is required. The crystals are collected and washed free of impurities.
[0128] Drying. A fluid bed dryer can be used.
[0129] Recrystallization. If needed, the xylitol can be further purified by undergoing a recrystallization process.
Supplemental Materials and Methods
Materials
[0130] All media were purchased from Becton-Dickinson (BD, Sparks, Md.), chemicals from Sigma-Aldrich (St. Louis, Mo.), enzymes from New England Biolabs (NEB, Beverly, Mass.), and oligonucleotide primers from Integrated DNA Technologies (IDT, Coralville, Iowa). All DNA purification kits were obtained from Qiagen (Valencia, Calif.), except that the Wizard.RTM. Genomic DNA. Purification Kit was procured from Promega (Madison, Wis.). Cells were maintained on Lysogeny Broth (LB) plates containing 1.5% agar and the appropriate antibiotic. Selection for plasmid maintenance was done with ampicillin (100 mg/L), chloramphenicol (25 mg/L), and kanamycin (50 mg/L). Chromosomal integrants were selected on chloramphenicol (6 mg/12) or tetracycline (10 mg/L) LB plates.
Plasmid Construction
[0131] All cloning work was performed in E. coli DH5.alpha. or WM1788 (pir.sup.| for propagating R6K plasmids), and a list of constructs can be found in Table 1. All XR expression plasmids were derivates of pTrc99A. XR and mutants were previously cloned into pACYCDuet (Novagen), and were used as the template for PCR (Nair and Zhao, 2008). The XylA promoter was amplified from E. coli MG1655 genomic DNA, and spliced with XR using overlap extension PCR. The cassette was digested with NsiI and BglII and ligated into pTrc99A that had been digested with NsiI and BamHI. Ligation of compatible BglII-BamHI ends abolished both restriction sites. The AraBAD promoter was digested out of pRW2-ptdh (Johannes et al., 2005) using PstI and NdeI; PCR amplified XR was digested with NdeI and BglII, and pTrc99A with NsiI and BamHI. All three were ligated together in a single reaction, which abolished the compatible PstI-NsiI and BglII-BamHI sites. For IPTG inducible constructs, XR (EcoRI-BglII) was directly ligated into EcoRI-BamHI digested pTrc99A. Xylose transporter xylE was amplified from MG1655 genomic DNA and ligated directly into pTKXb-xdh-araB' (Kim et al., 2003; Nair and Zhao, 2008) digested with NdeI and XboI. The promoter-gene cassette was then digested out with EcoRI and XhoI and ligated in pACYCDuet digested with the same endonueleases. This construct provided expression from the constitutive BLMA promoter. For expression under the AraBAD promoter, xylE was first cloned into pRW2-ptdh between the NdeI and PciI sites. The promoter-gene cassette was then digested out using PstI and PciI and ligated into pACYCDuet digested with PstI and NcoI. The ligation abolished the compatible NcoI-PciI sites.
Genetic Methods
[0132] All strains used for xylitol production were E. coli K-12 C600 and its derivates (Table 1), and all deletions were performed using the .gamma. red system (Datsenko and Wanner, 2000). Briefly, PCR product containing the cat gene flanked by FRT (Flp recognition target) and 45-50 nt of sequence identical to the target locus was transformed into cells expressing .gamma. red recombinase proteins (encoded on pKD46). Gene replacement was selected on chloramphenicol plates and verified by functional assay and PCR. The resistance marker was then removed by the expression of Flp recombinases from a thereto-inducible promoter on a temperature sensitive plasmid (pCP20). Flp recombinase plasmid loss and cat loss occurred simultaneously and were verified by sensitivity to ampicillin and chloramphenicol. Deletion ofptsG and cyaA.sup.regul was performed directly in C600, whereas inactivation of the xylA and xylAB genes was performed in MG1655 and then moved by P1 transduction to the recipient strains (Miller, 1992). The crp* mutation was also generated by P1 transduction from ET23 and selecting for Tet.sup.R integrants (Eppler and Boos, 1999). Deletions were verified by PCR using cell lysate as the template and appropriate flanking primers. Verification of glucose de-repression was first done by blue/white screening on LB plates containing 10 g/L glucose. Strong induction of lacZ in the presence of glucose indicated the depressed phenotype. The CyaA mutant strain did not demonstrate significant LacZ activity. Finally, direct monitoring of sugar co-utilization in shake flasks was used to verify de-repression.
HPLC Analysis
[0133] Sugar concentrations were quantified using Shimadzu high performance liquid chromatography (HPLC) equipped with a low temperature evaporative light scattering detector (ELSD-LT) (Columbia, Md.). A Bio-Rad Aminex 250.times.4 mm HPX-87C (Bio-Rad, Hercules, Calif.) carbohydrate column was used to separate the sugars, as per manufacturer's recommendations. The column was run at 0.2 ml/min at 85.degree. C. for 18 minutes with water as the mobile phase.
GC-MS Analysis
[0134] Acetate quantification was performed at the Roy J. Carver Metabolomies Center. n-Butanol (1 mL/L) was used as internal standard to quantify acetate in media. Samples (1 .mu.l) were injected in split mode (5:1) to the GC/MS system consisting of an Agilent 7890 gas chromatography, an Agilent 5975 mass selective detector, and HP 7683B autosampler (Agilent Technologies, Palo Alto, Calif.). Acetate samples were analyzed on a 30 m ZR-Wax-Plus column with 0.32 mm I.D. and 0.25 .mu.m film thickness Phenorn.enex, Torrance, Calif.) with an injection port temperature of 250.degree. C., the interface set to 250.degree. C., and the ion source adjusted to 230.degree. C. The helium carrier gas was set at a constant flow rate of 2.5 mL nin-.sup.|. The temperature program was 5 min isothermal heating at 90.degree. C., followed by an oven temperature increase of 10.degree. C. min-.sup.| to 210.degree. C. for 2 min. The mass spectrometer was operated in positive electron impact mode (EI) at 69.9 eV ionization energy in m/z 50-550 scan range.
[0135] The spectra of all chromatogram peak was evaluated using the HP Chemstation program (Agilent Technologies, Palo Alto, Calif.). Identification was performed using the mass spectra obtained from the authentic standards and additionally confirmed with NIST08 and W8N08 libraries.
Shake Flask and Bioreactor Cultures
[0136] For shake flask cultures, overnight cultures were grown at 37.degree. C. in M9 minimal medium supplemented with 2 mM MgSO.sub.4, 0.1 mM CaCl.sub.2, 20 mg/L leucine, 120 mg/L threonine, 10 mg/L thiamine-HCl, 2 g/L glucose and the appropriate antibiotic(s). 125 mL unbaffled bottles containing 25 mL of the same medium but containing 1-2 g/L of each sugar (glucose, D-xylose, and L-arabinose) were placed under vacuum, filled with nitrogen, and capped with airtight stoppers to maintain oxygen-limited conditions. 1 mL overnight cultures were inoculated into these bottles and maintained at 30.degree. C. or 37.degree. C. at 250 rpm. For bioreactor studies, 4 mL overnight cultures were grown at 37.degree. C. either in LB or M9 medium supplemented with 2 mM MgSo.sub.4, 0.1 mM CaCl.sub.2, 20 g/L glucose, 10 tryptone, and the appropriate antibiotic(s). Upon reaching saturation, these cultures were spun down and resuspended in 4 mL of the same medium and cultured for another 4 hours. These cultures were then inoculated into 400 mL bioreactors containing the same M9/tryptone medium with additional 20 g/L each of D-xylose and L-arabinose, as well as antifoam agents. Bioreactors were run at 30.degree. C. with 400 rpm agitation and 0.8 L/min sparging with air. pH was maintained at 7.0.+-.0.1 with 5 N NaOH and 2 N H.sub.2SO.sub.4.
[0137] Patrick C. Cirino (Pennsylvania State University, PA) provided the crp* parent strain ET23, William W. Metcalf (UIUC) provided the pir.sup.+ cloning strain:WM1788, and John E. Cronan (UIUC) provided P1 vir phage used for transduction.
[0138] (a) sequential fermentation of both arabinose and xylose to xylitol--using two microbial strains. In this process a high arabinose:xylose concentration (>1:1) may be used;
[0139] (b) parallel fermentation of both arabinose and xylose to xylitol using a single microbial strain. Two different systems were developed;
[0140] (c) conversion of xylose to xylitol with consumption of arabinose using a moderate arabinose:xylitol ratio (>1:3) without a mutation designated CRP. Productivity is about 10.times. the CRP system. Examples also support that this is an unexpected result. A fermentation system that converts a mixed C5 sugar stream low-arabitol product uses a CRP (cyclic adenosine monophosphate receptor protein) mutation useful with both the wild-type and mutant XR; and
[0141] (d) demonstration of a fermentation system using both synthetic hemicellulose and a variety of industrial hemicellulose samples.
TABLE-US-00005
[0141] ABBREV Enzyme Name Function XR (AR) Xylose (or Aldose) Converts xylose (and arabinose) to Reductase xylitol (and arabitol) XI Xylose isomerase Isomerizes xylose into d-xylulose XDH Xylitol Dehydrogenase Converts between d-xylulose and xylitol LXR l-xylulose reductase Converts l-xylulose to xylitol LAI l-arabinose isomerase Converts l-arabinose to l-ribulose DTE d-tagatose epimerase Converts l-ribulose to l-xylulose
TABLE-US-00006 TABLE 1 Strains and plasmids. Name Relevant characteristics Source/Comments SEQ Plasmids pTrc99A Amp, pBR322-derived plasmid Amersham Pharmacia pACYCDuet Cm, p15A-derived plasmid Novagen pACYC-nexr template for XR Nair and Zhao, 2008 (FIG. 18) pACYC-VMQCI template for XR mutant VMQCI Nair and Zhao, 2008 pTKXb-xdharaB' Km, Source of BLMA promoter Nair and Zhao, 2008 pRW2-ptdh Km, Source of AraBAD promoter Johannes et al., 2005 pXXR pTrc99A with XR under XylA promoter Present disclosure (FIG. 20) pXVMQCI pTrc99A with VMQCI under XylA promoter Present disclosure (FIG. 28) pAraXR pTrc99A with XR under AraBAD promoter Present disclosure (FIG. 22) pAraVMQCI pTrc99A with VMQCI under AraBAD Present disclosure promoter pTrcXR pTrc99A with XR under Trc promoter Present disclosure (FIG. 21) pTrcVMQCI pTrc99A with VMQCI under Trc promoter Present disclosure pACYCBLMAXylE pACYCDuet with xylE under BLMA Present disclosure promoter pACYCAraXylE pACYCDuet with xylE under AraBAD Present disclosure (FIG. 29) promoter pCP20 created by Paul Taylor pTRP338 pTRP200-pLG338 derivative pTRP200 NcXR Neurospora crassa xylose reductase. NcXR Present disclosure from 7381553. pTRP200 CgXR Chaetomium globosum xylose reductase Present disclosure pZUC035 T. resei (XDH) E. coli (XI) Taylor patent pZUC036 T. resei (XDH) E. coli (XI) Taylor patent pZUC052 T. resei (XDH) E. coli (XI-mutant) Present disclosure pATX210 RtdE (R. radiobacter)/alxR (A. monospora)/ Sakaibara patent araA (E. coli) pATX215 RtdE (R. radiobacter)/alxR (A. monospora)/ Present disclosure araA (E. coli). pATX210 derivative with additional arabinose BAD promote pATX221 RtdE (R. radiobacter)/alxR (A. monospora)/ Present disclosure araA (E. coli)/XR (N. crassa). combines XR with pATX210 ara pathway pATX231 RtdE (R. radiobacter)/alxR (A. monospora)/ Present disclosure araA (E. coli)/T. resei (XDH)/E. coli (XI). combines XI/XDH with pATX210 pathway (same orientation of genes) pATX231B RtdE (R. radiobacter)/alxR (A. monospora)/ Present disclosure araA (E. coli)/T. resei (XDH)/E. coli (XI). combines XI/XDH with pATX210 pathway (opposite orientation of XI XDH genes) Strains MG1655 gDNA template for XylA promoter and xylE ATCC 700926 C600 F tonA21 thi-1 thr-1 leuB6 lacY1 glnV44 CGSC, Yale rfbC1 fhuA1 .lamda..sup.- University ET23 source of crp*::Tn10 Eppler and Boos, 1999 HZ1302 C600 crp*::Tn10 Present disclosure HZ1743 C600 DptsG::FRT Present disclosure HZ1651 C600 DcyaA.sup.regul::cat Present disclosure HZ1450 HZ1302 DxylA::FRT Present disclosure HZ1967 HZ1302 DxylAB::FRT Present disclosure HZ1756 HZ1743 DxylA4::FRT Present disclosure HZ1434 HZ1450 with pXXR Present disclosure HZ1435 HZ1450 with pXVMQCI Present disclosure HZ1757 HZ1756 with pXXR Present disclosure HZ2008 HZ1450 with pXXR & pACYCAraXylE Present disclosure HZ2009 HZ1450 with pXXR & pACYCBLMAXylE Present disclosure HZ2046 HZ1967 with pTrcXR & pACYCAraXylE Present disclosure HZ2061 HZ1967 with pAraXR & pACYCAraXylE Present disclosure HZ2062 HZ1967 with pAraVMQCI & Present disclosure pACYCAraXylE DH5a AB707 ZUC036 ZUC134 ptsG, xylBD, araBADD, lyxKD, glucose Present disclosure selected (parent is AB707 K12 prototroph) ZUC136 ptsG, xylBD, araBADD, lyxKD, glucose Present disclosure selected contains pATX210 in ZUC134) ZUC138 ZUC142 ZUC140 ptsG, xylBD, araBADD, lyxKD, glucose Present disclosure selected contains pTRP200-ncXR in ZUC134 ZUC166 ptsG, xylBD, araBADD, lyxKD, glucose Present disclosure selected contains pTRP200-CgXR in ZUC134 ZUC170 F- ompT hsdSB(rB- mB-) gal dcm (DE3) Present disclosure contains pTRP200-NCXR (E. coli B-BL21 derivative) ZUC172 ZUC220 xylbD, ptsG-glucose selected (AB707 K12 Present disclosure prototroph derivative)
PUBLICATIONS
[0142] The following documents are incorporated by reference to the extent they relate to or describe materials or methods disclosed herein. Specific locations in publications cited appear in the specification.
[0143] Akinterinwa, O. Cirino, P. C., 2009. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 11, 48-55.
[0144] Cirino, P. C., et al., 2006. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotech. Bioeng. 95, 1167-1176.
[0145] Datsenko, K. A., Wanner, B. L., 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640-6645.
[0146] Eiteman, M. A., Altman, B., 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24, 530-536.
[0147] Eppler, T., Boos, W., 1999. Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIA(Glc) and is mediated by cAMP levels. Mol. Microbiol. 33, 1221-1231.
[0148] Johannes, T. W., et al., 2005. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration, Appl. Environ. Microb. 71, 5728-5734.
[0149] Karimova, G., et al., 2004. Relief of catabolite repression in a cAMP-independent catabolite gene activator mutant of Escherichia coli. Res. Microbiol. 155, 76-79.
[0150] Kim, Y. W., et al., 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Env iron. Microb. 69, 4866-4874.
[0151] Lindsay, S. E., et al., 1995. Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures. Appl. Environ. Microb. 43, 70-5.
[0152] Miller, J. H., 1992. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, N. Y.
[0153] Nair, N. U., Zhao, H., 2008. Evolution in reverse: engineering a D-xylose-specific xylose reductase. Chembiochem. 9, 1213-5.
[0154] Nichols, N. N., et al., 2001. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl. Microbiol. Biotechnol. 56, 120-5.
[0155] Zha, W. J., et al., 2008. Exploiting genetic diversity by directed evolution: molecular breeding of type III polyketide synthases improves productivity. Mol. Biosyst. 4, 246-248.
Sequence CWU
1
1
211322PRTChaetomium globosum 1Met Ala Pro Val Ile Lys Leu Asn Ser Gly Tyr
Asp Met Pro Gln Val1 5 10
15Gly Phe Gly Leu Trp Lys Val Asp Asn Ala Val Ala Ser Asp Val Val
20 25 30Tyr Asn Ala Ile Lys Ala Gly
Tyr Arg Leu Phe Asp Gly Ala Cys Asp 35 40
45Tyr Gly Asn Glu Val Glu Cys Gly Gln Gly Val Ala Arg Ala Ile
Ser 50 55 60Glu Gly Ile Val Lys Arg
Glu Asp Leu Phe Ile Val Ser Lys Leu Trp65 70
75 80Asn Thr Phe His Asp Ala Glu Arg Val Glu Pro
Ile Val Lys Lys Gln 85 90
95Leu Ala Asp Trp Gly Ile Glu Tyr Phe Asp Leu Tyr Leu Ile His Phe
100 105 110Pro Val Ala Leu Glu Trp
Val Asp Pro Ala Val Arg Tyr Pro Pro Gly 115 120
125Trp His Tyr Asp Gly Lys Glu Glu Ile Arg Pro Ser Lys Ala
Thr Ile 130 135 140Gln Glu Thr Trp Thr
Ala Leu Glu Ser Leu Val Ser Lys Gly Leu Ser145 150
155 160Lys Ser Ile Gly Ile Ser Asn Phe Gln Ala
Gln Leu Ile Tyr Asp Leu 165 170
175Leu Arg Tyr Ala Lys Ile Arg Pro Ala Thr Leu Gln Val Glu His His
180 185 190Pro Tyr Leu Val Gln
Gln Glu Leu Ile Asn Leu Ala Lys Arg Glu Gly 195
200 205Ile Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Ala
Ser Phe Lys Glu 210 215 220Phe Asn Met
Lys His Ala Asp Ala Leu Ala Pro Leu Ile Glu Asp Glu225
230 235 240Thr Ile Lys Lys Ile Ala Ala
Lys His Asn Arg Pro Ala Ser Gln Val 245
250 255Leu Leu Arg Trp Ala Thr Gln Arg Gly Leu Ala Ile
Ile Pro Lys Ser 260 265 270Thr
Arg Pro Gln Ile Met Ala Glu Asn Phe Gln Ser Ile Asp Phe Asp 275
280 285Leu Ser Glu Glu Asp Ile Ala Thr Ile
Ser Ala Phe Asp Arg Gly Ile 290 295
300Arg Phe Asn Gln Pro Ser Asn Tyr Phe Pro Thr Glu Leu Leu Trp Ile305
310 315 320Phe
Gly2969DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 2atggcgccgg tgattaaact
gaacagcggc tatgatatgc cgcaggtggg ctttggcctg 60tggaaagtgg ataacgcggt
ggcgagcgat gtggtgtata acgcgattaa agcgggctat 120cgtctgtttg atggcgcgtg
cgattatggc aacgaagtgg aatgcggcca gggtgtggcg 180cgtgccatca gcgaaggcat
tgtgaaacgt gaggacctgt tcattgtgag caaactgtgg 240aacacctttc atgatgcgga
acgtgtggaa ccgattgtga aaaaacagct ggccgattgg 300ggcattgaat atttcgatct
gtatctgatc cattttccgg tggcgctgga atgggttgat 360ccggcggtgc gttatccgcc
gggttggcat tatgatggca aagaagaaat tcgtccgagc 420aaagcgacca ttcaggaaac
ctggaccgcg ctggaaagcc tggtgagcaa aggcctgagc 480aaaagcattg gcattagcaa
ctttcaggcg cagctgattt atgatctgct gcgctatgcg 540aaaattcgtc cggcgaccct
gcaggtggaa catcatccgt atctggtgca gcaggaactg 600attaacctgg ccaaacgtga
aggcattgcg gtgaccgcgt atagcagctt tggtccggcc 660agctttaaag aatttaacat
gaaacatgcg gatgcgctgg ccccgctgat tgaagatgaa 720accatcaaaa aaatcgcggc
gaaacataac cgtccggcga gccaggttct gctgcgttgg 780gcgacccagc gtggcctggc
cattattccg aaaagcaccc gtccgcagat tatggcggaa 840aactttcaga gcatcgattt
tgatctgagc gaagaagata ttgcgaccat tagcgcgttt 900gatcgtggca ttcgttttaa
ccagccgagc aactattttc cgaccgaact gctgtggatt 960tttggctaa
9693969DNANeurospora crassa
3atggttcctg ctatcaagct caactccggc ttcgacatgc cccaggtcgg cttcggcctc
60tggaaggtcg acggctccat cgcttccgat gtcgtctaca acgctatcaa ggcaggctac
120cgcctcttcg atggtgcctg cgactacggc aacgaggttg agtgcggcca gggtgtagcc
180cgcgccatca aggagggcat cgtcaagcgc gaggagctct ttatcgtctc caagctctgg
240aacaccttcc acgacggcga ccgcgtcgag cccatcgtcc gcaagcagct tgccgactgg
300ggtctcgagt acttcgatct ctacctgatc cacttccccg tcgccctcga gtacgtcgac
360ccctcggtcc gttaccctcc cggctggcac tttgacggca agagcgagat ccgcccctcc
420aaggccacca tccaagagac ctggacggcc atggagtcgc tcgtcgagaa gggtctctcc
480aagagcattg gcgtctccaa cttccaggcc cagctcctgt acgacctcct ccgctacgcc
540aaggtccgcc ccgccactct ccagatcgag caccacccct acctcgtcca gcagaacctc
600ctcaaccttg ccaaggctga gggcatcgcc gtgaccgcct actcctcctt cggccctgct
660tctttccgcg agttcaacat ggagcacgcc cagaagctcc agcctctcct cgaggacccc
720accatcaagg ctattggtga caagtacaac aaggatcctg cccaggtcct cctccgttgg
780gccacccagc gcggcctggc catcatcccc aagtctagcc gcgaggccac catgaagtcc
840aacctcaact ctcttgattt cgatctctcc gaggaggaca tcaagaccat ctctggtttc
900gaccgcggca tccgcttcaa ccagcccacc aactacttct ccgctgagaa cctctggatt
960ttcggttag
9694322PRTNeurospora crassa 4Met Val Pro Ala Ile Lys Leu Asn Ser Gly Phe
Asp Met Pro Gln Val1 5 10
15Gly Phe Gly Leu Trp Lys Val Asp Gly Ser Ile Ala Ser Asp Val Val
20 25 30Tyr Asn Ala Ile Lys Ala Gly
Tyr Arg Leu Phe Asp Gly Ala Cys Asp 35 40
45Tyr Gly Asn Glu Val Glu Cys Gly Gln Gly Val Ala Arg Ala Ile
Lys 50 55 60Glu Gly Ile Val Lys Arg
Glu Glu Leu Phe Ile Val Ser Lys Leu Trp65 70
75 80Asn Thr Phe His Asp Gly Asp Arg Val Glu Pro
Ile Val Arg Lys Gln 85 90
95Leu Ala Asp Trp Gly Leu Glu Tyr Phe Asp Leu Tyr Leu Ile His Phe
100 105 110Pro Val Ala Leu Glu Tyr
Val Asp Pro Ser Val Arg Tyr Pro Pro Gly 115 120
125Trp His Phe Asp Gly Lys Ser Glu Ile Arg Pro Ser Lys Ala
Thr Ile 130 135 140Gln Glu Thr Trp Thr
Ala Met Glu Ser Leu Val Glu Lys Gly Leu Ser145 150
155 160Lys Ser Ile Gly Val Ser Asn Phe Gln Ala
Gln Leu Leu Tyr Asp Leu 165 170
175Leu Arg Tyr Ala Lys Val Arg Pro Ala Thr Leu Gln Ile Glu His His
180 185 190Pro Tyr Leu Val Gln
Gln Asn Leu Leu Asn Leu Ala Lys Ala Glu Gly 195
200 205Ile Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Ala
Ser Phe Arg Glu 210 215 220Phe Asn Met
Glu His Ala Gln Lys Leu Gln Pro Leu Leu Glu Asp Pro225
230 235 240Thr Ile Lys Ala Ile Gly Asp
Lys Tyr Asn Lys Asp Pro Ala Gln Val 245
250 255Leu Leu Arg Trp Ala Thr Gln Arg Gly Leu Ala Ile
Ile Pro Lys Ser 260 265 270Ser
Arg Glu Ala Thr Met Lys Ser Asn Leu Asn Ser Leu Asp Phe Asp 275
280 285Leu Ser Glu Glu Asp Ile Lys Thr Ile
Ser Gly Phe Asp Arg Gly Ile 290 295
300Arg Phe Asn Gln Pro Thr Asn Tyr Phe Ser Ala Glu Asn Leu Trp Ile305
310 315 320Phe
Gly54791DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 5ggggaattgt gagcggataa
caattcccct gtagaaataa ttttgtttaa ctttaataag 60gagatatacc atgggcagca
gccatcacca tcatcaccac agccaggatc cgaattcgat 120ggttcctgct atcaagctca
actccggctt cgacatgccc caggtcggct tcggcctctg 180gaaggtcgac ggctccatcg
cttccgatgt cgtctacaac gctatcaagg caggctaccg 240cctcttcgat ggtgcctgcg
actacggcaa cgaggttgag tgcggccagg gtgtagcccg 300cgccatcaag gagggcatcg
tcaagcgcga ggagctcttt atcgtctcca agctctggaa 360caccttccac gacggcgacc
gcgtcgagcc catcgtccgc aagcagcttg ccgactgggg 420tctcgagtac ttcgatctct
acctgatcca cttccccgtc gccctcgagt acgtcgaccc 480ctcggtccgt taccctcccg
gctggcactt tgacggcaag agcgagatcc gcccctccaa 540ggccaccatc caagagacct
ggacggccat ggagtcgctc gtcgagaagg gtctctccaa 600gagcattggc gtctccaact
tccaggccca gctcctgtac gacctcctcc gctacgccaa 660ggtccgcccc gccactctcc
agatcgagca ccacccctac ctcgtccagc agaacctcct 720caaccttgcc aaggctgagg
gcatcgccgt gaccgcctac tcctccttcg gccctgcttc 780tttccgcgag ttcaacatgg
agcacgccca gaagctccag cctctcctcg aggaccccac 840catcaaggct attggtgaca
agtacaacaa ggatcctgcc caggtcctcc tccgttgggc 900cacccagcgc ggcctggcca
tcatccccaa gtctagccgc gaggccacca tgaagtccaa 960cctcaactct cttgatttcg
atctctccga ggaggacatc aagaccatct ctggtttcga 1020ccgcggcatc cgcttcaacc
agcccaccaa ctacttctcc gctgagaacc tctggatttt 1080cggttagaga tctcaattgg
atatcggccg gccacgcgat cgctgacgtc ggtaccctcg 1140agtctggtaa agaaaccgct
gctgcgaaat ttgaacgcca gcacatggac tcgtctacta 1200gcgcagctta attaacctag
gctgctgcca ccgctgagca ataactagca taaccccttg 1260gggcctctaa acgggtcttg
aggggttttt tgctgaaacc tcaggcattt gagaagcaca 1320cggtcacact gcttccggta
gtcaataaac cggtaaacca gcaatagaca taagcggcta 1380tttaacgacc ctgccctgaa
ccgacgaccg ggtcgaattt gctttcgaat ttctgccatt 1440catccgctta ttatcactta
ttcaggcgta gcaccaggcg tttaagggca ccaataactg 1500ccttaaaaaa attacgcccc
gccctgccac tcatcgcagt actgttgtaa ttcattaagc 1560attctgccga catggaagcc
atcacagacg gcatgatgaa cctgaatcgc cagcggcatc 1620agcaccttgt cgccttgcgt
ataatatttg cccatagtga aaacgggggc gaagaagttg 1680tccatattgg ccacgtttaa
atcaaaactg gtgaaactca cccagggatt ggctgagacg 1740aaaaacatat tctcaataaa
ccctttaggg aaataggcca ggttttcacc gtaacacgcc 1800acatcttgcg aatatatgtg
tagaaactgc cggaaatcgt cgtggtattc actccagagc 1860gatgaaaacg tttcagtttg
ctcatggaaa acggtgtaac aagggtgaac actatcccat 1920atcaccagct caccgtcttt
cattgccata cggaactccg gatgagcatt catcaggcgg 1980gcaagaatgt gaataaaggc
cggataaaac ttgtgcttat ttttctttac ggtctttaaa 2040aaggccgtaa tatccagctg
aacggtctgg ttataggtac attgagcaac tgactgaaat 2100gcctcaaaat gttctttacg
atgccattgg gatatatcaa cggtggtata tccagtgatt 2160tttttctcca ttttagcttc
cttagctcct gaaaatctcg ataactcaaa aaatacgccc 2220ggtagtgatc ttatttcatt
atggtgaaag ttggaacctc ttacgtgccg atcaacgtct 2280cattttcgcc aaaagttggc
ccagggcttc ccggtatcaa cagggacacc aggatttatt 2340tattctgcga agtgatcttc
cgtcacaggt atttattcgg cgcaaagtgc gtcgggtgat 2400gctgccaact tactgattta
gtgtatgatg gtgtttttga ggtgctccag tggcttctgt 2460ttctatcagc tgtccctcct
gttcagctac tgacggggtg gtgcgtaacg gcaaaagcac 2520cgccggacat cagcgctagc
ggagtgtata ctggcttact atgttggcac tgatgagggt 2580gtcagtgaag tgcttcatgt
ggcaggagaa aaaaggctgc accggtgcgt cagcagaata 2640tgtgatacag gatatattcc
gcttcctcgc tcactgactc gctacgctcg gtcgttcgac 2700tgcggcgagc ggaaatggct
tacgaacggg gcggagattt cctggaagat gccaggaaga 2760tacttaacag ggaagtgaga
gggccgcggc aaagccgttt ttccataggc tccgcccccc 2820tgacaagcat cacgaaatct
gacgctcaaa tcagtggtgg cgaaacccga caggactata 2880aagataccag gcgtttcccc
tggcggctcc ctcgtgcgct ctcctgttcc tgcctttcgg 2940tttaccggtg tcattccgct
gttatggccg cgtttgtctc attccacgcc tgacactcag 3000ttccgggtag gcagttcgct
ccaagctgga ctgtatgcac gaaccccccg ttcagtccga 3060ccgctgcgcc ttatccggta
actatcgtct tgagtccaac ccggaaagac atgcaaaagc 3120accactggca gcagccactg
gtaattgatt tagaggagtt agtcttgaag tcatgcgccg 3180gttaaggcta aactgaaagg
acaagttttg gtgactgcgc tcctccaagc cagttacctc 3240ggttcaaaga gttggtagct
cagagaacct tcgaaaaacc gccctgcaag gcggtttttt 3300cgttttcaga gcaagagatt
acgcgcagac caaaacgatc tcaagaagat catcttatta 3360atcagataaa atatttctag
atttcagtgc aatttatctc ttcaaatgta gcacctgaag 3420tcagccccat acgatataag
ttgtaattct catgttagtc atgccccgcg cccaccggaa 3480ggagctgact gggttgaagg
ctctcaaggg catcggtcga gatcccggtg cctaatgagt 3540gagctaactt acattaattg
cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc 3600gtgccagctg cattaatgaa
tcggccaacg cgcggggaga ggcggtttgc gtattgggcg 3660ccagggtggt ttttcttttc
accagtgaga cgggcaacag ctgattgccc ttcaccgcct 3720ggccctgaga gagttgcagc
aagcggtcca cgctggtttg ccccagcagg cgaaaatcct 3780gtttgatggt ggttaacggc
gggatataac atgagctgtc ttcggtatcg tcgtatccca 3840ctaccgagat gtccgcacca
acgcgcagcc cggactcggt aatggcgcgc attgcgccca 3900gcgccatctg atcgttggca
accagcatcg cagtgggaac gatgccctca ttcagcattt 3960gcatggtttg ttgaaaaccg
gacatggcac tccagtcgcc ttcccgttcc gctatcggct 4020gaatttgatt gcgagtgaga
tatttatgcc agccagccag acgcagacgc gccgagacag 4080aacttaatgg gcccgctaac
agcgcgattt gctggtgacc caatgcgacc agatgctcca 4140cgcccagtcg cgtaccgtct
tcatgggaga aaataatact gttgatgggt gtctggtcag 4200agacatcaag aaataacgcc
ggaacattag tgcaggcagc ttccacagca atggcatcct 4260ggtcatccag cggatagtta
atgatcagcc cactgacgcg ttgcgcgaga agattgtgca 4320ccgccgcttt acaggcttcg
acgccgcttc gttctaccat cgacaccacc acgctggcac 4380ccagttgatc ggcgcgagat
ttaatcgccg cgacaatttg cgacggcgcg tgcagggcca 4440gactggaggt ggcaacgcca
atcagcaacg actgtttgcc cgccagttgt tgtgccacgc 4500ggttgggaat gtaattcagc
tccgccatcg ccgcttccac tttttcccgc gttttcgcag 4560aaacgtggct ggcctggttc
accacgcggg aaacggtctg ataagagaca ccggcatact 4620ctgcgacatc gtataacgtt
actggtttca cattcaccac cctgaattga ctctcttccg 4680ggcgctatca tgccataccg
cgaaaggttt tgcgccattc gatggtgtcc gggatctcga 4740cgctctccct tatgcgactc
ctgcattagg aaattaatac gactcactat a 479163780DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 6atgcatttcc attttatttt gcgagcgagc gcacacttgt gaattatctc
aatagcagtg 60tgaaataaca taattgagca actgaaaggg agtgcccaat attacgacat
catccatcac 120ccgcggcatt acctgattat ggttcctgct atcaagctca actccggctt
cgacatgccc 180caggtcggct tcggcctctg gaaggtcgac ggctccatcg cttccgatgt
cgtctacaac 240gctatcaagg caggctaccg cctcttcgat ggtgcctgcg actacggcaa
cgaggttgag 300tgcggccagg gtgtagcccg cgccatcaag gagggcatcg tcaagcgcga
ggagctcttt 360atcgtctcca agctctggaa caccttccac gacggcgacc gcgtcgagcc
catcgtccgc 420aagcagcttg ccgactgggg tctcgagtac ttcgatctct acctgatcca
cttccccgtc 480gccctcgagt acgtcgaccc ctcggtccgt taccctcccg gctggcactt
tgacggcaag 540agcgagatcc gcccctccaa ggccaccatc caagagacct ggacggccat
ggagtcgctc 600gtcgagaagg gtctctccaa gagcattggc gtctccaact tccaggccca
gctcctgtac 660gacctcctcc gctacgccaa ggtccgcccc gccactctcc agatcgagca
ccacccctac 720ctcgtccagc agaacctcct caaccttgcc aaggctgagg gcatcgccgt
gaccgcctac 780tcctccttcg gccctgcttc tttccgcgag ttcaacatgg agcacgccca
gaagctccag 840cctctcctcg aggaccccac catcaaggct attggtgaca agtacaacaa
ggatcctgcc 900caggtcctcc tccgttgggc cacccagcgc ggcctggcca tcatccccaa
gtctagccgc 960gaggccacca tgaagtccaa cctcaactct cttgatttcg atctctccga
ggaggacatc 1020aagaccatct ctggtttcga ccgcggcatc cgcttcaacc agcccaccaa
ctacttctcc 1080gctgagaacc tctggatttt cggttagaga tcctctagag tcgacctgca
ggcatgcaag 1140cttggctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa
atcagaacgc 1200agaagcggtc tgataaaaca gaatttgcct ggcggcagta gcgcggtggt
cccacctgac 1260cccatgccga actcagaagt gaaacgccgt agcgccgatg gtagtgtggg
gtctccccat 1320gcgagagtag ggaactgcca ggcatcaaat aaaacgaaag gctcagtcga
aagactgggc 1380ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa
atccgccggg 1440agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac
gcccgccata 1500aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt
ttgcgtttct 1560acaaactctt tttgtttatt tttctaaata cattcaaata tgtatccgct
catgagacaa 1620taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat
tcaacatttc 1680cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc
tcacccagaa 1740acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg
ttacatcgaa 1800ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg
ttttccaatg 1860atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtgttga
cgccgggcaa 1920gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta
ctcaccagtc 1980acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc
tgccataacc 2040atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc
gaaggagcta 2100accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg
ggaaccggag 2160ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctacagc
aatggcaaca 2220acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca
acaattaata 2280gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct
tccggctggc 2340tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat
cattgcagca 2400ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg
gagtcaggca 2460actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat
taagcattgg 2520taactgtcag accaagttta ctcatatata ctttagattg atttaaaact
tcatttttaa 2580tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat
cccttaacgt 2640gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc
ttcttgagat 2700cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct
accagcggtg 2760gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg
cttcagcaga 2820gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca
cttcaagaac 2880tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc
tgctgccagt 2940ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga
taaggcgcag 3000cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac
gacctacacc 3060gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga
agggagaaag 3120gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag
ggagcttcca 3180gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg
acttgagcgt 3240cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag
caacgcggcc 3300tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc
tgcgttatcc 3360cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc
tcgccgcagc 3420cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgcct
gatgcggtat 3480tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct
cagtacaatc 3540tgctctgatg ccgcatagtt aagccagtat acactccgct atcgctacgt
gactgggtca 3600tggctgcgcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct
tgtctgctcc 3660cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt
cagaggtttt 3720caccgtcatc accgaaacgc gcgaggcagc agatcaattc gcgcgcgaag
gcgaagcggc 378075142DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 7gtttgacagc
ttatcatcga ctgcacggtg caccaatgct tctggcgtca ggcagccatc 60ggaagctgtg
gtatggctgt gcaggtcgta aatcactgca taattcgtgt cgctcaaggc 120gcactcccgt
tctggataat gttttttgcg ccgacatcat aacggttctg gcaaatattc 180tgaaatgagc
tgttgacaat taatcatccg gctcgtataa tgtgtggaat tgtgagcgga 240taacaatttc
acacaggaaa cagaccatgg aattcgagct cggtaccatg gttcctgcta 300tcaagctcaa
ctccggcttc gacatgcccc aggtcggctt cggcctctgg aaggtcgacg 360gctccatcgc
ttccgatgtc gtctacaacg ctatcaaggc aggctaccgc ctcttcgatg 420gtgcctgcga
ctacggcaac gaggttgagt gcggccaggg tgtagcccgc gccatcaagg 480agggcatcgt
caagcgcgag gagctcttta tcgtctccaa gctctggaac accttccacg 540acggcgaccg
cgtcgagccc atcgtccgca agcagcttgc cgactggggt ctcgagtact 600tcgatctcta
cctgatccac ttccccgtcg ccctcgagta cgtcgacccc tcggtccgtt 660accctcccgg
ctggcacttt gacggcaaga gcgagatccg cccctccaag gccaccatcc 720aagagacctg
gacggccatg gagtcgctcg tcgagaaggg tctctccaag agcattggcg 780tctccaactt
ccaggcccag ctcctgtacg acctcctccg ctacgccaag gtccgccccg 840ccactctcca
gatcgagcac cacccctacc tcgtccagca gaacctcctc aaccttgcca 900aggctgaggg
catcgccgtg accgcctact cctccttcgg ccctgcttct ttccgcgagt 960tcaacatgga
gcacgcccag aagctccagc ctctcctcga ggaccccacc atcaaggcta 1020ttggtgacaa
gtacaacaag gatcctgccc aggtcctcct ccgttgggcc acccagcgcg 1080gcctggccat
catccccaag tctagccgcg aggccaccat gaagtccaac ctcaactctc 1140ttgatttcga
tctctccgag gaggacatca agaccatctc tggtttcgac cgcggcatcc 1200gcttcaacca
gcccaccaac tacttctccg ctgagaacct ctggattttc ggttagagat 1260cctctagagt
cgacctgcag gcatgcaagc ttggctgttt tggcggatga gagaagattt 1320tcagcctgat
acagattaaa tcagaacgca gaagcggtct gataaaacag aatttgcctg 1380gcggcagtag
cgcggtggtc ccacctgacc ccatgccgaa ctcagaagtg aaacgccgta 1440gcgccgatgg
tagtgtgggg tctccccatg cgagagtagg gaactgccag gcatcaaata 1500aaacgaaagg
ctcagtcgaa agactgggcc tttcgtttta tctgttgttt gtcggtgaac 1560gctctcctga
gtaggacaaa tccgccggga gcggatttga acgttgcgaa gcaacggccc 1620ggagggtggc
gggcaggacg cccgccataa actgccaggc atcaaattaa gcagaaggcc 1680atcctgacgg
atggcctttt tgcgtttcta caaactcttt ttgtttattt ttctaaatac 1740attcaaatat
gtatccgctc atgagacaat aaccctgata aatgcttcaa taatattgaa 1800aaaggaagag
tatgagtatt caacatttcc gtgtcgccct tattcccttt tttgcggcat 1860tttgccttcc
tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc 1920agttgggtgc
acgagtgggt tacatcgaac tggatctcaa cagcggtaag atccttgaga 1980gttttcgccc
cgaagaacgt tttccaatga tgagcacttt taaagttctg ctatgtggcg 2040cggtattatc
ccgtgttgac gccgggcaag agcaactcgg tcgccgcata cactattctc 2100agaatgactt
ggttgagtac tcaccagtca cagaaaagca tcttacggat ggcatgacag 2160taagagaatt
atgcagtgct gccataacca tgagtgataa cactgcggcc aacttacttc 2220tgacaacgat
cggaggaccg aaggagctaa ccgctttttt gcacaacatg ggggatcatg 2280taactcgcct
tgatcgttgg gaaccggagc tgaatgaagc cataccaaac gacgagcgtg 2340acaccacgat
gcctacagca atggcaacaa cgttgcgcaa actattaact ggcgaactac 2400ttactctagc
ttcccggcaa caattaatag actggatgga ggcggataaa gttgcaggac 2460cacttctgcg
ctcggccctt ccggctggct ggtttattgc tgataaatct ggagccggtg 2520agcgtgggtc
tcgcggtatc attgcagcac tggggccaga tggtaagccc tcccgtatcg 2580tagttatcta
cacgacgggg agtcaggcaa ctatggatga acgaaataga cagatcgctg 2640agataggtgc
ctcactgatt aagcattggt aactgtcaga ccaagtttac tcatatatac 2700tttagattga
tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg 2760ataatctcat
gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg 2820tagaaaagat
caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc 2880aaacaaaaaa
accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 2940tttttccgaa
ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt 3000agccgtagtt
aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc 3060taatcctgtt
accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact 3120caagacgata
gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac 3180agcccagctt
ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag 3240aaagcgccac
gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg 3300gaacaggaga
gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg 3360tcgggtttcg
ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga 3420gcctatggaa
aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt 3480ttgctcacat
gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct 3540ttgagtgagc
tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg 3600aggaagcgga
agagcgcctg atgcggtatt ttctccttac gcatctgtgc ggtatttcac 3660accgcatatg
gtgcactctc agtacaatct gctctgatgc cgcatagtta agccagtata 3720cactccgcta
tcgctacgtg actgggtcat ggctgcgccc cgacacccgc caacacccgc 3780tgacgcgccc
tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt 3840ctccgggagc
tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgaggcagca 3900gatcaattcg
cgcgcgaagg cgaagcggca tgcatttacg ttgacaccat cgaatggtgc 3960aaaacctttc
gcggtatggc atgatagcgc ccggaagaga gtcaattcag ggtggtgaat 4020gtgaaaccag
taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt 4080tcccgcgtgg
tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg 4140gcgatggcgg
agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag 4200tcgttgctga
ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc 4260gcggcgatta
aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa 4320cgaagcggcg
tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt 4380gggctgatca
ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc 4440actaatgttc
cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt 4500ttctcccatg
aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag 4560caaatcgcgc
tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc 4620tggcataaat
atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg 4680agtgccatgt
ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact 4740gcgatgctgg
ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc 4800gggctgcgcg
ttggtgcgga tatctcggta gtgggatacg acgataccga agacagctca 4860tgttatatcc
cgccgtcaac caccatcaaa caggattttc gcctgctggg gcaaaccagc 4920gtggaccgct
tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc 4980gtctcactgg
tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc 5040gcgttggccg
attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag 5100tgagcgcaac
gcaattaatg tgagttagcg cgaattgatc tg
514283962DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 8catatggttc ctgctatcaa
gctcaactcc ggcttcgaca tgccccaggt cggcttcggc 60ctctggaagg tcgacggctc
catcgcttcc gatgtcgtct acaacgctat caaggcaggc 120taccgcctct tcgatggtgc
ctgcgactac ggcaacgagg ttgagtgcgg ccagggtgta 180gcccgcgcca tcaaggaggg
catcgtcaag cgcgaggagc tctttatcgt ctccaagctc 240tggaacacct tccacgacgg
cgaccgcgtc gagcccatcg tccgcaagca gcttgccgac 300tggggtctcg agtacttcga
tctctacctg atccacttcc ccgtcgccct cgagtacgtc 360gacccctcgg tccgttaccc
tcccggctgg cactttgacg gcaagagcga gatccgcccc 420tccaaggcca ccatccaaga
gacctggacg gccatggagt cgctcgtcga gaagggtctc 480tccaagagca ttggcgtctc
caacttccag gcccagctcc tgtacgacct cctccgctac 540gccaaggtcc gccccgccac
tctccagatc gagcaccacc cctacctcgt ccagcagaac 600ctcctcaacc ttgccaaggc
tgagggcatc gccgtgaccg cctactcctc cttcggccct 660gcttctttcc gcgagttcaa
catggagcac gcccagaagc tccagcctct cctcgaggac 720cccaccatca aggctattgg
tgacaagtac aacaaggatc ctgcccaggt cctcctccgt 780tgggccaccc agcgcggcct
ggccatcatc cccaagtcta gccgcgaggc caccatgaag 840tccaacctca actctcttga
tttcgatctc tccgaggagg acatcaagac catctctggt 900ttcgaccgcg gcatccgctt
caaccagccc accaactact tctccgctga gaacctctgg 960attttcggtt agagatcctc
tagagtcgac ctgcaggcat gcaagcttgg ctgttttggc 1020ggatgagaga agattttcag
cctgatacag attaaatcag aacgcagaag cggtctgata 1080aaacagaatt tgcctggcgg
cagtagcgcg gtggtcccac ctgaccccat gccgaactca 1140gaagtgaaac gccgtagcgc
cgatggtagt gtggggtctc cccatgcgag agtagggaac 1200tgccaggcat caaataaaac
gaaaggctca gtcgaaagac tgggcctttc gttttatctg 1260ttgtttgtcg gtgaacgctc
tcctgagtag gacaaatccg ccgggagcgg atttgaacgt 1320tgcgaagcaa cggcccggag
ggtggcgggc aggacgcccg ccataaactg ccaggcatca 1380aattaagcag aaggccatcc
tgacggatgg cctttttgcg tttctacaaa ctctttttgt 1440ttatttttct aaatacattc
aaatatgtat ccgctcatga gacaataacc ctgataaatg 1500cttcaataat attgaaaaag
gaagagtatg agtattcaac atttccgtgt cgcccttatt 1560cccttttttg cggcattttg
ccttcctgtt tttgctcacc cagaaacgct ggtgaaagta 1620aaagatgctg aagatcagtt
gggtgcacga gtgggttaca tcgaactgga tctcaacagc 1680ggtaagatcc ttgagagttt
tcgccccgaa gaacgttttc caatgatgag cacttttaaa 1740gttctgctat gtggcgcggt
attatcccgt gttgacgccg ggcaagagca actcggtcgc 1800cgcatacact attctcagaa
tgacttggtt gagtactcac cagtcacaga aaagcatctt 1860acggatggca tgacagtaag
agaattatgc agtgctgcca taaccatgag tgataacact 1920gcggccaact tacttctgac
aacgatcgga ggaccgaagg agctaaccgc ttttttgcac 1980aacatggggg atcatgtaac
tcgccttgat cgttgggaac cggagctgaa tgaagccata 2040ccaaacgacg agcgtgacac
cacgatgcct acagcaatgg caacaacgtt gcgcaaacta 2100ttaactggcg aactacttac
tctagcttcc cggcaacaat taatagactg gatggaggcg 2160gataaagttg caggaccact
tctgcgctcg gcccttccgg ctggctggtt tattgctgat 2220aaatctggag ccggtgagcg
tgggtctcgc ggtatcattg cagcactggg gccagatggt 2280aagccctccc gtatcgtagt
tatctacacg acggggagtc aggcaactat ggatgaacga 2340aatagacaga tcgctgagat
aggtgcctca ctgattaagc attggtaact gtcagaccaa 2400gtttactcat atatacttta
gattgattta aaacttcatt tttaatttaa aaggatctag 2460gtgaagatcc tttttgataa
tctcatgacc aaaatccctt aacgtgagtt ttcgttccac 2520tgagcgtcag accccgtaga
aaagatcaaa ggatcttctt gagatccttt ttttctgcgc 2580gtaatctgct gcttgcaaac
aaaaaaacca ccgctaccag cggtggtttg tttgccggat 2640caagagctac caactctttt
tccgaaggta actggcttca gcagagcgca gataccaaat 2700actgtccttc tagtgtagcc
gtagttaggc caccacttca agaactctgt agcaccgcct 2760acatacctcg ctctgctaat
cctgttacca gtggctgctg ccagtggcga taagtcgtgt 2820cttaccgggt tggactcaag
acgatagtta ccggataagg cgcagcggtc gggctgaacg 2880gggggttcgt gcacacagcc
cagcttggag cgaacgacct acaccgaact gagataccta 2940cagcgtgagc tatgagaaag
cgccacgctt cccgaaggga gaaaggcgga caggtatccg 3000gtaagcggca gggtcggaac
aggagagcgc acgagggagc ttccaggggg aaacgcctgg 3060tatctttata gtcctgtcgg
gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc 3120tcgtcagggg ggcggagcct
atggaaaaac gccagcaacg cggccttttt acggttcctg 3180gccttttgct ggccttttgc
tcacatgttc tttcctgcgt tatcccctga ttctgtggat 3240aaccgtatta ccgcctttga
gtgagctgat accgctcgcc gcagccgaac gaccgagcgc 3300agcgagtcag tgagcgagga
agcggaagag cgcctgatgc ggtattttct ccttacgcat 3360ctgtgcggta tttcacaccg
catatggtgc actctcagta caatctgctc tgatgccgca 3420tagttaagcc agtatacact
ccgctatcgc tacgtgactg ggtcatggct gcgccccgac 3480acccgccaac acccgctgac
gcgccctgac gggcttgtct gctcccggca tccgcttaca 3540gacaagctgt gaccgtctcc
gggagctgca tgtgtcagag gttttcaccg tcatcaccga 3600aacgcgcgag gcagcagatc
aattcgcgcg cgaaggcgaa gcggcatgca gcgccattca 3660gagaagaaac caattgtcca
tattgcatca gacattgccg tcactgcgtc ttttactggc 3720tcttctcgct aaccaaaccg
gtaaccccgc ttattaaaag cattctgtaa caaagcggga 3780ccaaggccat gacaaaaacg
cgtagcaaaa gtgtctataa tcacggcaga aaagtccaca 3840ttgattattt gcacggcgtc
acactttgct atgccatagc atttttatcc ataagattag 3900cggatcctac ctgacgcttt
ttatcgcaac tctctactgt ttctccatac ccgttttttt 3960gg
39629969DNANeurospora crassa
9atggttcctg ctatcaagct caactccggc ttcgacatgc cccaggtcgg cttcggcctc
60tggaaggtcg acggctccat cgcttccgat gtcgtctaca acgctatcaa ggcaggctac
120cgcctcttcg atggtgcctg cgactacggc aacgaggttg agtgcggcca gggtgtagcc
180cgcgccatca aggagggcat cgtcaagcgc gaggagctct ttatcgtctc caagctctgg
240aacaccttcc acgacggcga ccgcgtcgag cccatcgtcc gcaagcagct tgccgactgg
300ggtctcgagt acttcgatct ctacctgatc cactcgcccg tcgccctcga gtacgtcgac
360ccctcggtcc gttaccctcc cggctggcac tttgacggca agagcgagat ccgcccctcc
420aaggccacca tccaagagac ctggacggcc atggagtcgc tcgtcgagaa gggtctctcc
480aagagcattg gcgtctccaa cttccaggcc cagctcctgt acgacctcct ccgctacgcc
540aaggtccgcc ccgccactct ccagatcgag caccacccct acctcgtcca gcagaacctc
600ctcaaccttg ccaaggctga gggcatcgcc gtgaccgcct actcctcctt cggccctgct
660tctttccgcg agttcaacat ggagcacgcc cagaagctcc agcctctcct cgaggacccc
720accatcaagg ctattggtga caagtacaac aaggatcctg cccaggtcct cctccgttgg
780gccacccagc gcggcctggc catcatcccc aagtctagcc gcgaggccac catgaagtcc
840aacctcaact ctcttgattt cgatctctcc gaggaggaca tcaagaccat ctctggtttc
900gaccgcggca tccgcttcaa ccagcccacc aactacttct ccgctgagaa cctctggatt
960ttcggttag
96910322PRTNeurospora crassa 10Met Val Pro Ala Ile Lys Leu Asn Ser Gly
Phe Asp Met Pro Gln Val1 5 10
15Gly Phe Gly Leu Trp Lys Val Asp Gly Ser Ile Ala Ser Asp Val Val
20 25 30Tyr Asn Ala Ile Lys Ala
Gly Tyr Arg Leu Phe Asp Gly Ala Cys Asp 35 40
45Tyr Gly Asn Glu Val Glu Cys Gly Gln Gly Val Ala Arg Ala
Ile Lys 50 55 60Glu Gly Ile Val Lys
Arg Glu Glu Leu Phe Ile Val Ser Lys Leu Trp65 70
75 80Asn Thr Phe His Asp Gly Asp Arg Val Glu
Pro Ile Val Arg Lys Gln 85 90
95Leu Ala Asp Trp Gly Leu Glu Tyr Phe Asp Leu Tyr Leu Ile His Ser
100 105 110Pro Val Ala Leu Glu
Tyr Val Asp Pro Ser Val Arg Tyr Pro Pro Gly 115
120 125Trp His Phe Asp Gly Lys Ser Glu Ile Arg Pro Ser
Lys Ala Thr Ile 130 135 140Gln Glu Thr
Trp Thr Ala Met Glu Ser Leu Val Glu Lys Gly Leu Ser145
150 155 160Lys Ser Ile Gly Val Ser Asn
Phe Gln Ala Gln Leu Leu Tyr Asp Leu 165
170 175Leu Arg Tyr Ala Lys Val Arg Pro Ala Thr Leu Gln
Ile Glu His His 180 185 190Pro
Tyr Leu Val Gln Gln Asn Leu Leu Asn Leu Ala Lys Ala Glu Gly 195
200 205Ile Ala Val Thr Ala Tyr Ser Ser Phe
Gly Pro Ala Ser Phe Arg Glu 210 215
220Phe Asn Met Glu His Ala Gln Lys Leu Gln Pro Leu Leu Glu Asp Pro225
230 235 240Thr Ile Lys Ala
Ile Gly Asp Lys Tyr Asn Lys Asp Pro Ala Gln Val 245
250 255Leu Leu Arg Trp Ala Thr Gln Arg Gly Leu
Ala Ile Ile Pro Lys Ser 260 265
270Ser Arg Glu Ala Thr Met Lys Ser Asn Leu Asn Ser Leu Asp Phe Asp
275 280 285Leu Ser Glu Glu Asp Ile Lys
Thr Ile Ser Gly Phe Asp Arg Gly Ile 290 295
300Arg Phe Asn Gln Pro Thr Asn Tyr Phe Ser Ala Glu Asn Leu Trp
Ile305 310 315 320Phe
Gly11969DNANeurospora crassa 11atggttcctg ctatcaagct caactccggc
ttcgacatgc cccaggtcgg cttcggcctc 60tggaaggtcg acggctccat cgcttccgat
gtcgtctaca acgctatcaa ggcaggctac 120cgcctcttcg atggtgcctg cgactacggc
aacgaggttg agtgcggcca gggtgtagcc 180cgcgccatca aggagggcat cgtcaagcgc
gaggagctct ttatcgtctc caagctctgg 240aacaccttcc acgacggcga ccgcgtcgag
cccatcgtcc gcaagcagct tgccgactgg 300ggtctcgagt acttcgatct ctaccagatc
cacttccccg tcgccctcga gtacgtcgac 360ccctcggtcc gttaccctcc cggctggcac
tttgacggca agagcgagat ccgcccctcc 420aaggccacca tccaagagac ctggacggcc
atggagtcgc tcgtcgagaa gggtctctcc 480aagagcattg gcgtctccaa cttccaggcc
cagctcctgt acgacctcct ccgctacgcc 540aaggtccgcc ccgccactct ccagatcgag
caccacccct acctcgtcca gcagaacctc 600ctcaaccttg ccaaggctga gggcatcgcc
gtgaccgcct actcctcctt cggccctgct 660tctttccgcg agttcaacat ggagcacgcc
cagaagctcc agcctctcct cgaggacccc 720accatcaagg ctattggtga caagtacaac
aaggatcctg cccaggtcct cctccgttgg 780gccacccagc gcggcctggc catcatcccc
aagtctagcc gcgaggccac catgaagtcc 840aacctcaact ctcttgattt cgatctctcc
gaggaggaca tcaagaccat ctctggtttc 900gaccgcggca tccgcttcaa ccagcccacc
aactacttct ccgctgagaa cctctggatt 960ttcggttag
96912322PRTNeurospora crassa 12Met Val
Pro Ala Ile Lys Leu Asn Ser Gly Phe Asp Met Pro Gln Val1 5
10 15Gly Phe Gly Leu Trp Lys Val Asp
Gly Ser Ile Ala Ser Asp Val Val 20 25
30Tyr Asn Ala Ile Lys Ala Gly Tyr Arg Leu Phe Asp Gly Ala Cys
Asp 35 40 45Tyr Gly Asn Glu Val
Glu Cys Gly Gln Gly Val Ala Arg Ala Ile Lys 50 55
60Glu Gly Ile Val Lys Arg Glu Glu Leu Phe Ile Val Ser Lys
Leu Trp65 70 75 80Asn
Thr Phe His Asp Gly Asp Arg Val Glu Pro Ile Val Arg Lys Gln
85 90 95Leu Ala Asp Trp Gly Leu Glu
Tyr Phe Asp Leu Tyr Gln Ile His Phe 100 105
110Pro Val Ala Leu Glu Tyr Val Asp Pro Ser Val Arg Tyr Pro
Pro Gly 115 120 125Trp His Phe Asp
Gly Lys Ser Glu Ile Arg Pro Ser Lys Ala Thr Ile 130
135 140Gln Glu Thr Trp Thr Ala Met Glu Ser Leu Val Glu
Lys Gly Leu Ser145 150 155
160Lys Ser Ile Gly Val Ser Asn Phe Gln Ala Gln Leu Leu Tyr Asp Leu
165 170 175Leu Arg Tyr Ala Lys
Val Arg Pro Ala Thr Leu Gln Ile Glu His His 180
185 190Pro Tyr Leu Val Gln Gln Asn Leu Leu Asn Leu Ala
Lys Ala Glu Gly 195 200 205Ile Ala
Val Thr Ala Tyr Ser Ser Phe Gly Pro Ala Ser Phe Arg Glu 210
215 220Phe Asn Met Glu His Ala Gln Lys Leu Gln Pro
Leu Leu Glu Asp Pro225 230 235
240Thr Ile Lys Ala Ile Gly Asp Lys Tyr Asn Lys Asp Pro Ala Gln Val
245 250 255Leu Leu Arg Trp
Ala Thr Gln Arg Gly Leu Ala Ile Ile Pro Lys Ser 260
265 270Ser Arg Glu Ala Thr Met Lys Ser Asn Leu Asn
Ser Leu Asp Phe Asp 275 280 285Leu
Ser Glu Glu Asp Ile Lys Thr Ile Ser Gly Phe Asp Arg Gly Ile 290
295 300Arg Phe Asn Gln Pro Thr Asn Tyr Phe Ser
Ala Glu Asn Leu Trp Ile305 310 315
320Phe Gly13969DNANeurospora crassa 13atggttcctg ctatcaagct
caactccggc ttcgacatgc cccaggtcgg cttcggcctc 60tggaaggtcg acggctccat
cgcttccgat gtcgtctaca acgctatcaa ggcaggctac 120cgcctcttcg atggtgcctg
cgactacggc aacgaggttg agtgcggcca gggtgtagcc 180cgcgccatca aggagggcat
cgtcaagcgc gaggagctct ttatcgtctc caagctctgg 240aacaccttcc acgacggcga
ccgcgtcgag cccatcgtcc gcaagcagct tgccgactgg 300ggtctcgagt acttcgatct
ctaccagtgc cacttccccg tcgccctcga gtacgtcgac 360ccctcggtcc gttaccctcc
cggctggcac tttgacggca agagcgagat ccgcccctcc 420aaggccacca tccaagagac
ctggacggcc atggagtcgc tcgtcgagaa gggtctctcc 480aagagcattg gcgtctccaa
cttccaggcc cagctcctgt acgacctcct ccgctacgcc 540aaggtccgcc ccgccactct
ccagatcgag caccacccct acctcgtcca gcagaacctc 600ctcaaccttg ccaaggctga
gggcatcgcc gtgaccgcct actcctcctt cggccctgct 660tctttccgcg agttcaacat
ggagcacgcc cagaagctcc agcctctcct cgaggacccc 720accatcaagg ctattggtga
caagtacaac aaggatcctg cccaggtcct cctccgttgg 780gccacccagc gcggcctggc
catcatcccc aagtctagcc gcgaggccac catgaagtcc 840aacctcaact ctcttgattt
cgatctctcc gaggaggaca tcaagaccat ctctggtttc 900gaccgcggca tccgcttcaa
ccagcccacc aactacttct ccgctgagaa cctctggatt 960ttcggttag
96914322PRTNeurospora crassa
14Met Val Pro Ala Ile Lys Leu Asn Ser Gly Phe Asp Met Pro Gln Val1
5 10 15Gly Phe Gly Leu Trp Lys
Val Asp Gly Ser Ile Ala Ser Asp Val Val 20 25
30Tyr Asn Ala Ile Lys Ala Gly Tyr Arg Leu Phe Asp Gly
Ala Cys Asp 35 40 45Tyr Gly Asn
Glu Val Glu Cys Gly Gln Gly Val Ala Arg Ala Ile Lys 50
55 60Glu Gly Ile Val Lys Arg Glu Glu Leu Phe Ile Val
Ser Lys Leu Trp65 70 75
80Asn Thr Phe His Asp Gly Asp Arg Val Glu Pro Ile Val Arg Lys Gln
85 90 95Leu Ala Asp Trp Gly Leu
Glu Tyr Phe Asp Leu Tyr Gln Cys His Phe 100
105 110Pro Val Ala Leu Glu Tyr Val Asp Pro Ser Val Arg
Tyr Pro Pro Gly 115 120 125Trp His
Phe Asp Gly Lys Ser Glu Ile Arg Pro Ser Lys Ala Thr Ile 130
135 140Gln Glu Thr Trp Thr Ala Met Glu Ser Leu Val
Glu Lys Gly Leu Ser145 150 155
160Lys Ser Ile Gly Val Ser Asn Phe Gln Ala Gln Leu Leu Tyr Asp Leu
165 170 175Leu Arg Tyr Ala
Lys Val Arg Pro Ala Thr Leu Gln Ile Glu His His 180
185 190Pro Tyr Leu Val Gln Gln Asn Leu Leu Asn Leu
Ala Lys Ala Glu Gly 195 200 205Ile
Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Ala Ser Phe Arg Glu 210
215 220Phe Asn Met Glu His Ala Gln Lys Leu Gln
Pro Leu Leu Glu Asp Pro225 230 235
240Thr Ile Lys Ala Ile Gly Asp Lys Tyr Asn Lys Asp Pro Ala Gln
Val 245 250 255Leu Leu Arg
Trp Ala Thr Gln Arg Gly Leu Ala Ile Ile Pro Lys Ser 260
265 270Ser Arg Glu Ala Thr Met Lys Ser Asn Leu
Asn Ser Leu Asp Phe Asp 275 280
285Leu Ser Glu Glu Asp Ile Lys Thr Ile Ser Gly Phe Asp Arg Gly Ile 290
295 300Arg Phe Asn Gln Pro Thr Asn Tyr
Phe Ser Ala Glu Asn Leu Trp Ile305 310
315 320Phe Gly15969DNANeurospora crassa 15atggttcctg
ctatcaagct caactccggc ttcgacatgc cccaggtcgg cttcggcctc 60tggaaggtcg
acggctccat cgcttccgat gtcgtctaca acgctatcaa ggcaggctac 120cgcctcttcg
atggtgcctg cgactacggc aacgaggttg agtgcggcca gggtgtagcc 180cgcgccatca
aggagggcat cgtcaagcgc gaggagctct ttatcgtctc caagctctgg 240aacaccttcc
acgacggcga ccgcgtcgag cccatcgtcc gcaagcagct tgccgactgg 300ggtctcgagt
acttcgatat gtaccagtgc cacttccccg tcgccctcga gtacgtcgac 360ccctcggtcc
gttaccctcc cggctggcac tttgacggca agagcgagat ccgcccctcc 420aaggccacca
tccaagagac ctggacggcc atggagtcgc tcgtcgagaa gggtctctcc 480aagagcattg
gcgtctccaa cttccaggcc cagctcctgt acgacctcct ccgctacgcc 540aaggtccgcc
ccgccactct ccagatcgag caccacccct acctcgtcca gcagaacctc 600ctcaaccttg
ccaaggctga gggcatcgcc gtgaccgcct actcctcctt cggccctgct 660tctttccgcg
agttcaacat ggagcacgcc cagaagctcc agcctctcct cgaggacccc 720accatcaagg
ctattggtga caagtacaac aaggatcctg cccaggtcct cctccgttgg 780gccacccagc
gcggcctggc catcatcccc aagtctagcc gcgaggccac catgaagtcc 840aacctcaact
ctcttgattt cgatctctcc gaggaggaca tcaagaccat ctctggtttc 900gaccgcggca
tccgcttcaa ccagcccacc aactacttct ccgctgagaa cctctggatt 960ttcggttag
96916322PRTNeurospora crassa 16Met Val Pro Ala Ile Lys Leu Asn Ser Gly
Phe Asp Met Pro Gln Val1 5 10
15Gly Phe Gly Leu Trp Lys Val Asp Gly Ser Ile Ala Ser Asp Val Val
20 25 30Tyr Asn Ala Ile Lys Ala
Gly Tyr Arg Leu Phe Asp Gly Ala Cys Asp 35 40
45Tyr Gly Asn Glu Val Glu Cys Gly Gln Gly Val Ala Arg Ala
Ile Lys 50 55 60Glu Gly Ile Val Lys
Arg Glu Glu Leu Phe Ile Val Ser Lys Leu Trp65 70
75 80Asn Thr Phe His Asp Gly Asp Arg Val Glu
Pro Ile Val Arg Lys Gln 85 90
95Leu Ala Asp Trp Gly Leu Glu Tyr Phe Asp Met Tyr Gln Cys His Phe
100 105 110Pro Val Ala Leu Glu
Tyr Val Asp Pro Ser Val Arg Tyr Pro Pro Gly 115
120 125Trp His Phe Asp Gly Lys Ser Glu Ile Arg Pro Ser
Lys Ala Thr Ile 130 135 140Gln Glu Thr
Trp Thr Ala Met Glu Ser Leu Val Glu Lys Gly Leu Ser145
150 155 160Lys Ser Ile Gly Val Ser Asn
Phe Gln Ala Gln Leu Leu Tyr Asp Leu 165
170 175Leu Arg Tyr Ala Lys Val Arg Pro Ala Thr Leu Gln
Ile Glu His His 180 185 190Pro
Tyr Leu Val Gln Gln Asn Leu Leu Asn Leu Ala Lys Ala Glu Gly 195
200 205Ile Ala Val Thr Ala Tyr Ser Ser Phe
Gly Pro Ala Ser Phe Arg Glu 210 215
220Phe Asn Met Glu His Ala Gln Lys Leu Gln Pro Leu Leu Glu Asp Pro225
230 235 240Thr Ile Lys Ala
Ile Gly Asp Lys Tyr Asn Lys Asp Pro Ala Gln Val 245
250 255Leu Leu Arg Trp Ala Thr Gln Arg Gly Leu
Ala Ile Ile Pro Lys Ser 260 265
270Ser Arg Glu Ala Thr Met Lys Ser Asn Leu Asn Ser Leu Asp Phe Asp
275 280 285Leu Ser Glu Glu Asp Ile Lys
Thr Ile Ser Gly Phe Asp Arg Gly Ile 290 295
300Arg Phe Asn Gln Pro Thr Asn Tyr Phe Ser Ala Glu Asn Leu Trp
Ile305 310 315 320Phe
Gly17969DNANeurospora crassa 17atggttcctg ctatcaagct caactccggc
ttcgacatgc cccaggtcgg cttcggcctc 60tggaaggtcg acggctccat cgcttccgat
gtcgtctaca acgctatcaa ggcaggctac 120cgcctcttcg atggtgcctg cgactacggc
aacgaggttg agtgcggcca gggtgtagcc 180cgcgccatca aggagggcat cgtcaagcgc
gaggagctct ttatcgtctc caagctctgg 240aacaccttcc acgacggcga ccgcgtcgag
cccatcgtcc gcaagcagct tgccgactgg 300ggtctcgagt acttcgatat gtaccagtgc
cacttcccca tcgccctcga gtacgtcgac 360ccctcggtcc gttaccctcc cggctggcac
tttgacggca agagcgagat ccgcccctcc 420aaggccacca tccaagagac ctggacggcc
atggagtcgc tcgtcgagaa gggtctctcc 480aagagcattg gcgtctccaa cttccaggcc
cagctcctgt acgacctcct ccgctacgcc 540aaggtccgcc ccgccactct ccagatcgag
caccacccct acctcgtcca gcagaacctc 600ctcaaccttg ccaaggctga gggcatcgcc
gtgaccgcct actcctcctt cggccctgct 660tctttccgcg agttcaacat ggagcacgcc
cagaagctcc agcctctcct cgaggacccc 720accatcaagg ctattggtga caagtacaac
aaggatcctg cccaggtcct cctccgttgg 780gccacccagc gcggcctggc catcatcccc
aagtctagcc gcgaggccac catgaagtcc 840aacctcaact ctcttgattt cgatctctcc
gaggaggaca tcaagaccat ctctggtttc 900gaccgcggca tccgcttcaa ccagcccacc
aactacttct ccgctgagaa cctctggatt 960ttcggttag
96918322PRTNeurospora crassa 18Met Val
Pro Ala Ile Lys Leu Asn Ser Gly Phe Asp Met Pro Gln Val1 5
10 15Gly Phe Gly Leu Trp Lys Val Asp
Gly Ser Ile Ala Ser Asp Val Val 20 25
30Tyr Asn Ala Ile Lys Ala Gly Tyr Arg Leu Phe Asp Gly Ala Cys
Asp 35 40 45Tyr Gly Asn Glu Val
Glu Cys Gly Gln Gly Val Ala Arg Ala Ile Lys 50 55
60Glu Gly Ile Val Lys Arg Glu Glu Leu Phe Ile Val Ser Lys
Leu Trp65 70 75 80Asn
Thr Phe His Asp Gly Asp Arg Val Glu Pro Ile Val Arg Lys Gln
85 90 95Leu Ala Asp Trp Gly Leu Glu
Tyr Phe Asp Met Tyr Gln Cys His Phe 100 105
110Pro Ile Ala Leu Glu Tyr Val Asp Pro Ser Val Arg Tyr Pro
Pro Gly 115 120 125Trp His Phe Asp
Gly Lys Ser Glu Ile Arg Pro Ser Lys Ala Thr Ile 130
135 140Gln Glu Thr Trp Thr Ala Met Glu Ser Leu Val Glu
Lys Gly Leu Ser145 150 155
160Lys Ser Ile Gly Val Ser Asn Phe Gln Ala Gln Leu Leu Tyr Asp Leu
165 170 175Leu Arg Tyr Ala Lys
Val Arg Pro Ala Thr Leu Gln Ile Glu His His 180
185 190Pro Tyr Leu Val Gln Gln Asn Leu Leu Asn Leu Ala
Lys Ala Glu Gly 195 200 205Ile Ala
Val Thr Ala Tyr Ser Ser Phe Gly Pro Ala Ser Phe Arg Glu 210
215 220Phe Asn Met Glu His Ala Gln Lys Leu Gln Pro
Leu Leu Glu Asp Pro225 230 235
240Thr Ile Lys Ala Ile Gly Asp Lys Tyr Asn Lys Asp Pro Ala Gln Val
245 250 255Leu Leu Arg Trp
Ala Thr Gln Arg Gly Leu Ala Ile Ile Pro Lys Ser 260
265 270Ser Arg Glu Ala Thr Met Lys Ser Asn Leu Asn
Ser Leu Asp Phe Asp 275 280 285Leu
Ser Glu Glu Asp Ile Lys Thr Ile Ser Gly Phe Asp Arg Gly Ile 290
295 300Arg Phe Asn Gln Pro Thr Asn Tyr Phe Ser
Ala Glu Asn Leu Trp Ile305 310 315
320Phe Gly19969DNANeurospora crassa 19atggttcctg ctatcaagct
caactccggc ttcgacatgc cccaggtcgg cttcggcctc 60tggaaggtcg acggctccat
cgcttccgat gtcgtctaca acgctatcaa ggcaggctac 120cgcctcttcg atggtgcctg
cgactacggc aacgaggttg agtgcggcca gggtgtagcc 180cgcgccatca aggagggcat
cgtcaagcgc gaggagctct ttatcgtctc caagctctgg 240aacaccttcc acgacggcga
ccgcgtcgag cccatcgtcc gcaagcagct tgccgactgg 300ggtgtggagt acttcgatat
gtaccagtgc cacttcccca tcgccctcga gtacgtcgac 360ccctcggtcc gttaccctcc
cggctggcac tttgacggca agagcgagat ccgcccctcc 420aaggccacca tccaagagac
ctggacggcc atggagtcgc tcgtcgagaa gggtctctcc 480aagagcattg gcgtctccaa
cttccaggcc cagctcctgt acgacctcct ccgctacgcc 540aaggtccgcc ccgccactct
ccagatcgag caccacccct acctcgtcca gcagaacctc 600ctcaaccttg ccaaggctga
gggcatcgcc gtgaccgcct actcctcctt cggccctgct 660tctttccgcg agttcaacat
ggagcacgcc cagaagctcc agcctctcct cgaggacccc 720accatcaagg ctattggtga
caagtacaac aaggatcctg cccaggtcct cctccgttgg 780gccacccagc gcggcctggc
catcatcccc aagtctagcc gcgaggccac catgaagtcc 840aacctcaact ctcttgattt
cgatctctcc gaggaggaca tcaagaccat ctctggtttc 900gaccgcggca tccgcttcaa
ccagcccacc aactacttct ccgccgagaa cctctggatt 960ttcggttag
96920322PRTNeurospora crassa
20Met Val Pro Ala Ile Lys Leu Asn Ser Gly Phe Asp Met Pro Gln Val1
5 10 15Gly Phe Gly Leu Trp Lys
Val Asp Gly Ser Ile Ala Ser Asp Val Val 20 25
30Tyr Asn Ala Ile Lys Ala Gly Tyr Arg Leu Phe Asp Gly
Ala Cys Asp 35 40 45Tyr Gly Asn
Glu Val Glu Cys Gly Gln Gly Val Ala Arg Ala Ile Lys 50
55 60Glu Gly Ile Val Lys Arg Glu Glu Leu Phe Ile Val
Ser Lys Leu Trp65 70 75
80Asn Thr Phe His Asp Gly Asp Arg Val Glu Pro Ile Val Arg Lys Gln
85 90 95Leu Ala Asp Trp Gly Val
Glu Tyr Phe Asp Met Tyr Gln Cys His Phe 100
105 110Pro Ile Ala Leu Glu Tyr Val Asp Pro Ser Val Arg
Tyr Pro Pro Gly 115 120 125Trp His
Phe Asp Gly Lys Ser Glu Ile Arg Pro Ser Lys Ala Thr Ile 130
135 140Gln Glu Thr Trp Thr Ala Met Glu Ser Leu Val
Glu Lys Gly Leu Ser145 150 155
160Lys Ser Ile Gly Val Ser Asn Phe Gln Ala Gln Leu Leu Tyr Asp Leu
165 170 175Leu Arg Tyr Ala
Lys Val Arg Pro Ala Thr Leu Gln Ile Glu His His 180
185 190Pro Tyr Leu Val Gln Gln Asn Leu Leu Asn Leu
Ala Lys Ala Glu Gly 195 200 205Ile
Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Ala Ser Phe Arg Glu 210
215 220Phe Asn Met Glu His Ala Gln Lys Leu Gln
Pro Leu Leu Glu Asp Pro225 230 235
240Thr Ile Lys Ala Ile Gly Asp Lys Tyr Asn Lys Asp Pro Ala Gln
Val 245 250 255Leu Leu Arg
Trp Ala Thr Gln Arg Gly Leu Ala Ile Ile Pro Lys Ser 260
265 270Ser Arg Glu Ala Thr Met Lys Ser Asn Leu
Asn Ser Leu Asp Phe Asp 275 280
285Leu Ser Glu Glu Asp Ile Lys Thr Ile Ser Gly Phe Asp Arg Gly Ile 290
295 300Arg Phe Asn Gln Pro Thr Asn Tyr
Phe Ser Ala Glu Asn Leu Trp Ile305 310
315 320Phe Gly215842DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 21ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa
ctttaataag 60gagatatacc atgtctgtta ctggtgatca ccctgtggct gtgtaattcg
aaacggctga 120agcgggagta aaaagtcagc acgccgaaat ggcgcggcgt gctggacagg
aagattacag 180cgtagcagtt tgttgtgttt tcttcgtttc cggttcccag agcgcttcca
gctcctcaag 240ggttttacct ttggtttccg ggacaaattt ccacataaac agtgctgcca
gaacgcccat 300acaaccgtaa atccagtagg agaaaccgtt gtggaaatgg gccaccagcc
aggagttttt 360gtccatcatc gggaaggtcc aggagacgaa gtagttcgcc agccactggg
ccgccaccgc 420gattgccagc gctttaccac gaatagcatt cgggaagatt tccgacagca
gtacccagca 480taccggaccc caggacatgg caaaggcggc aacatagaac agcatcgaca
gtagcgccac 540aatacccggt gcctgagtgt aaaacgcggt accgaggcta aacataccga
ttgccattcc 600gagtgcgccg ataatttgca gtggcttacg accaaattta tccaccgtca
taattgccag 660aacggtgaag gtgaggttga taactccgac aataatggtc tgcaacagcg
cgatatccgt 720gctggccccc agcgttttga acacttccgg cgcgtagtac agcaccacat
tgatgccgac 780aaattgctgg aagatggaga gcattacgcc gattacaatc acgcccacgc
caaacatcag 840cagacgacca ccggttttgc ggccatgatc cagggagtgt ttaatttcct
gtactgcctg 900agttgcaagc gtgttgccca taattttgcg caggatacct tccgcctgtt
cttgcttgcc 960gcgcgacatc agccagcgag gactttctgg cacggtatac agcagcatta
agaacagcag 1020tgcagggata cattccgagg caaacatata acgccagccg tcagtattca
gccagctggc 1080atcaccggaa cgggcaataa aatagtttac gcagtaaact aaaagttgcc
cgaaaataat 1140cgcaaactgg ttaaaagaga ccagtttccc gcgaatatga gctggagcca
gttccgcaat 1200atacattggc gagagcattg aggctaaacc aacgccaata ccgccaataa
tgcgataaat 1260aacaaattcc gggacataac ctgccagata aacaggcaca gtgttgtccg
ggtttataga 1320ggtaaaacca agttctggcc aggcagaacc tacaccagaa ataaaaaaca
ggacagcagc 1380aatcttaagt gaatcacgac gaccgaagcg gttactgcaa taaccaccga
gggcaccgcc 1440gatgatgcaa ccaatcagag cgctggccac gcaaaaccct aacagggagt
tggcagcgga 1500ttcacttaag ttttgtggag caacaaagac ggtattgagt gactcaacag
taccggaaat 1560aacggcggtg tcgtagccaa ataataaacc acctaatgta gcgactaagg
taatcgaaaa 1620tatataactg gaattatact gggtattcat atgccaaaaa aacgggtatg
gagaaacagt 1680agagagttgc gataaaaagc gtcaggtagg atccgctaat cttatggata
aaaatgctat 1740ggcatagcaa agtgtgacgc cgtgcaaata atcaatgtgg acttttctgc
cgtgattata 1800gacacttttg ctacgcgttt ttgtcatggc cttggtcccg ctttgttaca
gaatgctttt 1860aataagcggg gttaccggtt tggttagcga gaagagccag taaaagacgc
agtgacggca 1920atgtctgatg caatatggac aattggtttc ttctctgaat ggcgctgcag
gtcgacaagc 1980ttgcggccgc ataatgctta agtcgaacag aaagtaatcg tattgtacac
ggccgcataa 2040tcgaaattaa tacgactcac tataggggaa ttgtgagcgg ataacaattc
cccatcttag 2100tatattagtt aagtataaga aggagatata catatggcag atctcaattg
gatatcggcc 2160ggccacgcga tcgctgacgt cggtaccctc gagtctggta aagaaaccgc
tgctgcgaaa 2220tttgaacgcc agcacatgga ctcgtctact agcgcagctt aattaaccta
ggctgctgcc 2280accgctgagc aataactagc ataacccctt ggggcctcta aacgggtctt
gaggggtttt 2340ttgctgaaac ctcaggcatt tgagaagcac acggtcacac tgcttccggt
agtcaataaa 2400ccggtaaacc agcaatagac ataagcggct atttaacgac cctgccctga
accgacgacc 2460gggtcgaatt tgctttcgaa tttctgccat tcatccgctt attatcactt
attcaggcgt 2520agcaccaggc gtttaagggc accaataact gccttaaaaa aattacgccc
cgccctgcca 2580ctcatcgcag tactgttgta attcattaag cattctgccg acatggaagc
catcacagac 2640ggcatgatga acctgaatcg ccagcggcat cagcaccttg tcgccttgcg
tataatattt 2700gcccatagtg aaaacggggg cgaagaagtt gtccatattg gccacgttta
aatcaaaact 2760ggtgaaactc acccagggat tggctgagac gaaaaacata ttctcaataa
accctttagg 2820gaaataggcc aggttttcac cgtaacacgc cacatcttgc gaatatatgt
gtagaaactg 2880ccggaaatcg tcgtggtatt cactccagag cgatgaaaac gtttcagttt
gctcatggaa 2940aacggtgtaa caagggtgaa cactatccca tatcaccagc tcaccgtctt
tcattgccat 3000acggaactcc ggatgagcat tcatcaggcg ggcaagaatg tgaataaagg
ccggataaaa 3060cttgtgctta tttttcttta cggtctttaa aaaggccgta atatccagct
gaacggtctg 3120gttataggta cattgagcaa ctgactgaaa tgcctcaaaa tgttctttac
gatgccattg 3180ggatatatca acggtggtat atccagtgat ttttttctcc attttagctt
ccttagctcc 3240tgaaaatctc gataactcaa aaaatacgcc cggtagtgat cttatttcat
tatggtgaaa 3300gttggaacct cttacgtgcc gatcaacgtc tcattttcgc caaaagttgg
cccagggctt 3360cccggtatca acagggacac caggatttat ttattctgcg aagtgatctt
ccgtcacagg 3420tatttattcg gcgcaaagtg cgtcgggtga tgctgccaac ttactgattt
agtgtatgat 3480ggtgtttttg aggtgctcca gtggcttctg tttctatcag ctgtccctcc
tgttcagcta 3540ctgacggggt ggtgcgtaac ggcaaaagca ccgccggaca tcagcgctag
cggagtgtat 3600actggcttac tatgttggca ctgatgaggg tgtcagtgaa gtgcttcatg
tggcaggaga 3660aaaaaggctg caccggtgcg tcagcagaat atgtgataca ggatatattc
cgcttcctcg 3720ctcactgact cgctacgctc ggtcgttcga ctgcggcgag cggaaatggc
ttacgaacgg 3780ggcggagatt tcctggaaga tgccaggaag atacttaaca gggaagtgag
agggccgcgg 3840caaagccgtt tttccatagg ctccgccccc ctgacaagca tcacgaaatc
tgacgctcaa 3900atcagtggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc
ctggcggctc 3960cctcgtgcgc tctcctgttc ctgcctttcg gtttaccggt gtcattccgc
tgttatggcc 4020gcgtttgtct cattccacgc ctgacactca gttccgggta ggcagttcgc
tccaagctgg 4080actgtatgca cgaacccccc gttcagtccg accgctgcgc cttatccggt
aactatcgtc 4140ttgagtccaa cccggaaaga catgcaaaag caccactggc agcagccact
ggtaattgat 4200ttagaggagt tagtcttgaa gtcatgcgcc ggttaaggct aaactgaaag
gacaagtttt 4260ggtgactgcg ctcctccaag ccagttacct cggttcaaag agttggtagc
tcagagaacc 4320ttcgaaaaac cgccctgcaa ggcggttttt tcgttttcag agcaagagat
tacgcgcaga 4380ccaaaacgat ctcaagaaga tcatcttatt aatcagataa aatatttcta
gatttcagtg 4440caatttatct cttcaaatgt agcacctgaa gtcagcccca tacgatataa
gttgtaattc 4500tcatgttagt catgccccgc gcccaccgga aggagctgac tgggttgaag
gctctcaagg 4560gcatcggtcg agatcccggt gcctaatgag tgagctaact tacattaatt
gcgttgcgct 4620cactgcccgc tttccagtcg ggaaacctgt cgtgccagct gcattaatga
atcggccaac 4680gcgcggggag aggcggtttg cgtattgggc gccagggtgg tttttctttt
caccagtgag 4740acgggcaaca gctgattgcc cttcaccgcc tggccctgag agagttgcag
caagcggtcc 4800acgctggttt gccccagcag gcgaaaatcc tgtttgatgg tggttaacgg
cgggatataa 4860catgagctgt cttcggtatc gtcgtatccc actaccgaga tgtccgcacc
aacgcgcagc 4920ccggactcgg taatggcgcg cattgcgccc agcgccatct gatcgttggc
aaccagcatc 4980gcagtgggaa cgatgccctc attcagcatt tgcatggttt gttgaaaacc
ggacatggca 5040ctccagtcgc cttcccgttc cgctatcggc tgaatttgat tgcgagtgag
atatttatgc 5100cagccagcca gacgcagacg cgccgagaca gaacttaatg ggcccgctaa
cagcgcgatt 5160tgctggtgac ccaatgcgac cagatgctcc acgcccagtc gcgtaccgtc
ttcatgggag 5220aaaataatac tgttgatggg tgtctggtca gagacatcaa gaaataacgc
cggaacatta 5280gtgcaggcag cttccacagc aatggcatcc tggtcatcca gcggatagtt
aatgatcagc 5340ccactgacgc gttgcgcgag aagattgtgc accgccgctt tacaggcttc
gacgccgctt 5400cgttctacca tcgacaccac cacgctggca cccagttgat cggcgcgaga
tttaatcgcc 5460gcgacaattt gcgacggcgc gtgcagggcc agactggagg tggcaacgcc
aatcagcaac 5520gactgtttgc ccgccagttg ttgtgccacg cggttgggaa tgtaattcag
ctccgccatc 5580gccgcttcca ctttttcccg cgttttcgca gaaacgtggc tggcctggtt
caccacgcgg 5640gaaacggtct gataagagac accggcatac tctgcgacat cgtataacgt
tactggtttc 5700acattcacca ccctgaattg actctcttcc gggcgctatc atgccatacc
gcgaaaggtt 5760ttgcgccatt cgatggtgtc cgggatctcg acgctctccc ttatgcgact
cctgcattag 5820gaaattaata cgactcacta ta
5842
User Contributions:
Comment about this patent or add new information about this topic: