Patent application title: THERAPEUTIC EPITOPES AND USES THEREOF
Inventors:
IPC8 Class: AC07K14415FI
USPC Class:
1 1
Class name:
Publication date: 2018-11-22
Patent application number: 20180334484
Abstract:
The invention herein disclosed is related to epitopes useful in methods
of diagnosing, treating, and preventing coeliac disease. Therapeutic
compositions which comprise at least one epitope are provided.Claims:
1.-84. (canceled)
85. A method of treating coeliac disease in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptide comprising an amino acid sequence of transglutaminase-deamidated FPQPQQPFP (SEQ ID NO: 19), wherein the peptide is 15 to 30 amino acids in length.
86. The method according to claim 85 wherein the peptide is 15 amino acids in length.
87. The method according to claim 85 wherein the peptide comprises an amino acid sequence of transglutaminase-deamidated QQPFPQPQQPFP (SEQ ID NO: 39).
88. The method according to claim 87 wherein the peptide is 15 amino acids in length.
89. The method according to claim 85 wherein the peptide is 15 amino acids in length and comprises a bioactive fragment of transglutaminase-deamidated TABLE-US-00045 (SEQ ID NO: 50) PQQPQQPQQPFPQPQQPFPWQP.
90. The method according to claim 89 wherein the peptide comprises a bioactive fragment of transglutaminase-deamidated PQQPQQPFPQPQQPFPWQP.
91. The method of claim 85, wherein the peptide comprises a modification on the N and/or C terminus.
92. The method of claim 91, wherein the modification is a natural post-translation modification.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a division of U.S. application Ser. No. 10/516,837, which is a National Stage Entry of PCT/GB03/02450 filed Jun. 5, 2003, which claims benefit of priority of UK Application No. 0212885.8, filed Jun. 5, 2002, the contents of all of which are incorporated herein by reference.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Aug. 12, 2016, is named 07588_0148-00_SL.txt and is 270,169 bytes in size.
[0003] The invention relates to epitopes useful in the diagnosis and therapy of coeliac disease, including diagnostics, therapeutics, kits, and methods of using the foregoing.
[0004] An immune reaction to gliadin (a component of gluten) in the diet causes coeliac disease. It is known that immune responses in the intestinal tissue preferentially respond to gliadin which has been modified by an intestinal transglutaminase. Cocliac disease is diagnosed by detection ofanti-endomysial antibodies, but this requires confirmation by the finding of a lymphocytic inflammation in intestinal biopsies. The taking of such a biopsy is inconvenient for the patient.
[0005] Investigators have previously assumed that only intestinal T cell responses provide an accurate indication of the immune response against gliadins. Therefore they have concentrated on the investigation of T cell responses in intestinal tissue.sup.1. Gliadin epitopes which require transglutaminase modification (before they are recognised by the immune system) are known.sup.2. The inventors have found the immunodominant T cell A-gliadin epitope recognised by the immune system in coeliac disease and have shown that this is recognised by T cells in the peripheral blood of individuals with coeliac disease (see WO 01/25793). Such T cells were found to be present at high enough frequencies to be detectable without restimulation (i.e. a `fresh response` detection system could be used). The epitope was identified using a non-T cell cloning based method which provided a more accurate reflection of the epitopes being recognised. The immunodominant epitope requires transglutaminase modification (causing substitution of a particular glutamine to glutamate) before immune system recognition.
[0006] Based on this work the inventors have developed a test which can be used to diagnose coeliac disease at an early stage. The test may be carried out on a sample from peripheral blood and therefore an intestinal biopsy is not required. The test is more sensitive than the antibody tests which are currently being used.
[0007] The invention thus provides a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising:
[0008] (a) contacting a sample from the host with an agent selected from (i) the epitope comprising sequence which is: SEQ ID NO: 1 (PQPELPY) or SEQ ID NO:2 (QLQPFPQPELPYPQPQS), or an equivalent sequence from a naturally occurring homologue of the gliadin represented by SEQ ID NO:3, (ii) an epitope comprising sequence comprising: SEQ ID NO:1, or an equivalent sequence from a naturally occurring homologue of the gliadin represented by SEQ ID NO:3 (shown in Table 1), which epitope is an isolated oligopeptide derived from a gliadin protein, (iii) an analogue of (i) or (ii) which is capable of being recognised by a T cell receptor that recognises (i) or (ii), which in the case of a peptide analogue is not more than 50 amino acids in length, or (iv) a product comprising two or more agents as defined in (i), (ii) or (iii), and (b) determining in vitro whether T cells in the sample recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease. Through comprehensive mapping of wheat gliadin T cell epitopes (see Example 13), the inventors have also found epitopes bioactive in coeliac disease in HLA-DQ2+ patients in other wheat gliadins, having similar core sequences (e.g., SEQ ID NOS: 18-22) and similar full length sequences (e.g., SEQ ID NOS:31-36), as well as in rye secalins and barley hordeins (e.g., SEQ ID NOS:39-41); see also Tables 20 and 21. Additionally, several epitopes bioactive in coeliac disease in HLA-DQ8+ patients have been identified (e.g., SEQ ID NOS:42-44, 46). This comprehensive mapping thus provides the dominant epitopes recognized by T cells in coeliac patients. Thus, the above-described method and other methods of the invention described herein may be performed using any of these additional identified epitopes, and analogues and equivalents thereof, (i) and (ii) herein include these additional epitopes. That is, the agents of the invention also include these novel epitopes.
[0009] The invention also provides use of the agent for the preparation of a diagnostic means for use in a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual, said method comprising determining whether T cells of the individual recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.
[0010] The finding of an immunodominant epitope which is modified by transglutaminase (as well as the additional other epitopes defined herein) also allows diagnosis of coeliac disease based on determining whether other types of immune response to this epitope are present. Thus the invention also provides a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising determining the presence of an antibody that binds to the epitope in a sample from the individual, the presence of the antibody indicating that the individual has, or is susceptible to, coeliac disease.
[0011] The invention additionally provides the agent, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by tolerising T cells which recognise the agent. Also provided is an antagonist of a T cell which has a T cell receptor that recognises (i) or (ii), optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by antagonising such T cells. Additionally provided is the agent or an analogue that binds an antibody (that binds the agent) for use in a method of treating or preventing coeliac disease in an individual by tolerising the individual to prevent the production of such an antibody.
[0012] The invention provides a method of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable of being modified by a transglutaminase to an oligopeptide sequence as defined above is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease. The invention also provides a mutant gliadin protein whose wild-type sequence can be modified by a transglutaminase to a sequence that comprises an epitope comprising sequence as defined above, but which mutant gliadin protein has been modified in such a way that it does not contain sequence which can be modified by a transglutaminase to a sequence that comprises such an epitope comprising sequence; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises sequence which has been modified in said way.
[0013] The invention also provides a protein that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises the agent, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.
[0014] Additionally the invention provides a food that comprises the proteins defined above.
SUMMARY OF THE INVENTION
[0015] The present invention provides methods of preventing or treating coeliac disease comprising administering to an individual at least one agent selected from: a) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of SEQ ID NOs: 18-22, 31-36, 39-44, and 46, and equivalents thereof; and b) an analogue of a) which is capable of being recognised by a T cell receptor that recognises the peptide of a) and which is not more than 50 amino acids in length; and c) optionally, in addition to the agent selected from a) and b), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2. In some embodiments, the agent is HLA-DQ2-restricted, HLA-DQ8-restricted or one agent is HLA-DQ2-restricted and a second agent is HLA-DQ8-restricted. In some embodiments, the agent comprises a wheat epitope, a rye epitope, a barley epitope or any combination thereof either as a single agent or as multiple agents.
[0016] The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an agent above and pharmaceutically acceptable carrier or diluent.
[0017] The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an antagonist of a T cell which has a T cell receptor as defined above, and a pharmaceutically acceptable carrier or diluent.
[0018] The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined above, which composition comprises an agent as defined above.
[0019] The present invention also provides methods of preventing or treating coeliac disease by 1) diagnosing coeliac disease in an individual by either: a) contacting a sample from the host with at least one agent selected from: i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NOS: 18-22, 31-36, 39-44, and 46, and equivalents thereof; and ii) an analogue of i) which is capable of being recognised by a T cell receptor that recognises i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2; and determining in vitro whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease; or b) administering an agent as defined above and determining in vivo whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease: and 2) administering to an individual diagnosed as having, or being susceptible to, coeliac disease a therapeutic agent for preventing or treating coeliac disease.
[0020] The present invention also provides agents as defined above, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by tolerising T cells which recognise the agent.
[0021] The present invention also provides antagonists of a T cell which has a T cell receptor as defined above, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by antagonising such T cells.
[0022] The present invention also provides proteins that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises an agent as defined above, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.
[0023] The present invention also provides pharmaceutical compositions comprising an agent or antagonist as defined and a pharmaceutically acceptable carrier or diluent.
[0024] The present invention also provides compositions for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined above, which composition comprises an agent as defined above.
[0025] The present invention also provides compositions for antagonising a T cell response to an agent as defined above, which composition comprises an antagonist as defined above.
[0026] The present invention also provides mutant gliadin proteins whose wild-type sequence can be modified by a transglutaminase to a sequence which is an agent as defined in claim 1, which mutant gliadin protein comprises a mutation which prevents its modification by a transglutaminase to a sequence which is an agent as defined above; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises the mutation.
[0027] The present invention also provides polynucleotides that comprises a coding sequence that encodes a protein or fragment as defined above.
[0028] The present invention also provides cells comprising a polynucleotide as defined above or which has been transformed with such a polynucleotide.
[0029] The present invention also provides mammals that expresses a T cell receptor as defined above.
[0030] The present invention also provides methods of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising: a) contacting a sample from the host with at least one agent selected from i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NOS: 18-22, 31-36, 39-44, and 46, and equivalents thereof: and ii) an analogue of i) which is capable of being recognised by a T cell receptor that recognises i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2; and b) determining in vitro whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.
[0031] The present invention also provides methods of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable of being modified by a transglutaminase to an oligopeptide sequence is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease.
[0032] The present invention also provides methods of identifying an antagonist of a T cell, which T cell recognises an agent as defined above, comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response, the detecting of any such decrease in said ability indicating that the substance is an antagonist.
[0033] The present invention also provides kits for carrying out any of the method described above comprising an agent as defined above and a means to detect the recognition of the peptide by the T cell.
[0034] The present invention also provides methods of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a mammal as defined above which has, or which is susceptible to, coeliac disease and determining whether substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a therapeutic product.
[0035] The present invention also provides processes for the production of a protein encoded by a coding sequence as defined above which process comprises: a) cultivating a cell described above under conditions that allow the expression of the protein; and optionally b) recovering the expressed protein.
[0036] The present invention also provides methods of obtaining a transgenic plant cell comprising transforming a plant cell with a vector as described above to give a transgenic plant cell.
[0037] The present invention also provides methods of obtaining a first-generation transgenic plant comprising regenerating a transgenic plant cell transformed with a vector as described above to give a transgenic plant.
[0038] The present invention also provides methods of obtaining a transgenic plant seed comprising obtaining a transgenic seed from a transgenic plant obtainable as described above.
[0039] The present invention also provides methods of obtaining a transgenic progeny plant comprising obtaining a second-generation transgenic progeny plant from a first-generation transgenic plant obtainable by a method as described above, and optionally obtaining transgenic plants of one or more further generations from the second-generation progeny plant thus obtained.
[0040] The present invention also provides transgenic plant cells, plants, plant seeds or progeny plants obtainable by any of the methods described above.
[0041] The present invention also provides transgenic plants or plant seeds comprising plant cells as described above.
[0042] The present invention also provides transgenic plant cell calluses comprising plant cells as described above obtainable from a transgenic plant cell, first-generation plant, plant seed or progeny as defined above.
[0043] The present invention also provides methods of obtaining a crop product comprising harvesting a crop product from a plant according to any method described above and optionally further processing the harvested product.
[0044] The present invention also provides food that comprises a protein as defined above.
BRIEF DESCRIPTION OF THE DRAWINGS
[0045] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
[0046] The invention is illustrated by the accompanying drawings in which:
[0047] FIGS. 1a and 1b shows freshly isolated PBMC (peripheral blood mononuclear cell) IFN.gamma. ELISPOT responses (vertical axis shows spot forming cells per 10' PBMC) to transglutaminase (tTG)-treated and untreated peptide pool 3 (each peptide 10 .mu.g/ml) including five overlapping 15mers spanning A-gliadin 51-85 (see Table 1) and a-chymotrypsin-digested gliadin (40 .mu.g/ml) in coeliac disease Subject 1, initially in remission following a gluten free diet then challenged with 200 g bread daily for three days from day 1 (FIG. 1a). PBMC IFN.gamma. ELISPOT responses by Subject 2 to tTG-treated A-gliadin peptide pools 1-10 spanning the complete A-gliadin protein during ten day bread challenge (FIG. 1b). The horizontal axis shows days after commencing bread.
[0048] FIGS. 2a and 2b shows PBMC IFN.gamma. ELISPOT responses to tTG-treated peptide pool 3 (spanning A-gliadin 51-85) in 7 individual coeliac disease subjects (vertical axis shows spot forming cells per 10.sup.6 PBMC), initially in remission on gluten free diet, challenged with bread for three days (days 1 to 3). The horizontal axis shows days after commencing bread, (FIG. 2a). PBMC IFN.gamma. Elispot responses to tTG-treated overlapping 15mer peptides included in pool 3; bars represent the mean (.+-.SEM) response to individual peptides (10 .mu.g/ml) in 6 Coeliac disease subjects on day 6 or 7 (FIG. 2b). (In individual subjects, ELISPOT responses to peptides were calculated as a % of response elicited by peptide 12--as shown by the vertical axis.) FIG. 3 shows PBMC IFN.gamma. ELISPOT responses to tTG-treated truncations of A-gliadin 56-75 (SEQ ID NO:5) (0.1 .mu.M). Bars represent the mean (.+-.SEM) in 5 Coeliac disease subjects. (In individual subjects, responses were calculated as the % of the maximal response elicited by any of the peptides tested.)
[0049] FIGS. 4a and 4b shows how the minimal structure of the dominant A-gliadin epitope was mapped using tTG-treated 7-17mer A-gliadin peptides (0.1 .mu.M) including the sequence, PQPQLPY (SEQ ID NO:4) (A-gliadin 62-68) (FIG. 4a), and the same peptides without tTG treatment but with the substitution Q.fwdarw.E65 (FIG. 4b). Each line represents PBMC IFN.gamma. ELISPOT responses in each of three Coeliac disease subjects on day 6 or 7 after bread was ingested on days 1-3. (In individual subjects, ELISPOT responses were calculated as a % of the response elicited by the 17mer, A-gliadin 57-73 (SEQ ID NO:10).)
[0050] FIG. 5 shows the amino acids that were deamidated by tTG. A-gliadin 56-75 LQLQPFPQPQLPYPQPQSFP (SEQ ID NO:5) (0.1 .mu.M) was incubated with tTG (50 .mu.g/ml) at 37.degree. C. for 2 hours. A single product was identified and purified by reverse phase HPLC. Amino acid analysis allowed % deamidation (Q.fwdarw.E) of each Gin residue in A-gliadin 56-75 (SEQ ID NO:5) attributable to tTG to be calculated (vertical axis).
[0051] FIG. 6 shows the effect of substituting Q.fwdarw.E in A-gliadin 57-73 (SEQ ID NO: 10) at other positions in addition to Q65 using the 17mers: ELQPFPQPELPYPQPOS (SEQ ID NO:6) (E57,65), QLQPFPQPELPYPQPES (SEQ ID NO:7) (E65,72), ELQPFPQPELPYPQPES (SEQ ID NO:8) (E57, 65, 72), and QLQPFPQPELPYPQPQS (SEQ ID NO:2) (E65) in three Coeliac disease subjects on day 6 or 7 after bread was ingested on days 1-3. Vertical axis shows % of the E65 response.
[0052] FIGS. 7a and b shows that tTG treated A-gliadin 56-75 (SEQ ID NO:5) (0.1 .mu.M) elicited IFN-g ELISPOT responses in (FIG. 7a) CD4 and CD8 magnetic bead depleted PBMC. (Bars represent CD4 depleted PBMC responses as a % of CD8 depleted PBMC responses; spot forming cells per million CD8 depleted PBMC were: Subject 4: 29, and Subject 6: 535). (FIG. 7b) PBMC IFN.gamma. ELISPOT responses (spot forming cells/million PBMC) after incubation with monoclonal antibodies to HLA-DR (L243), -DQ (L2) and -DP (B7.21) (10 .mu.g/ml) 1 h prior to tTG-treated 56-75 (0.1 .mu.M) in two coeliac disease subjects homozygous for HLA-DQ al*0501, bl*0201.
[0053] FIG. 8 shows the effect of substituting Glu at position 65 for other amino acids in the immunodominant epitope. The vertical axis shows the % response in the 3 subjects in relation to the immunodominant epitope.
[0054] FIG. 9 shows the immunoreactivity of naturally occurring gliadin peptides (measuring responses from 3 subjects) which contain the sequence PQLPY (SEQ ID NO: 12) with (shaded) and without (clear) transglutaminase treatment.
[0055] FIG. 10 shows CD8, CD4, .beta..sub.7, and .alpha..sup.E-specific immunomagnetic bead depletion of peripheral blood mononuclear cells from two coeliac subjects 6 days after commencing gluten challenge followed by interferon gamma ELISpot. A-gliadin 57-73 QE65 (SEQ ID NO:2) (25 mcg/ml), tTG-treated chymotrypsin-digested gliadin (100 mcg/ml) or PPD (10 mcg/ml) were used as antigen.
[0056] FIG. 11 shows the optimal T cell epitope length.
[0057] FIG. 12a-h shows a comparison of A-gliadin 57-73 QE65 (SEQ ID NO:2) with other peptides in a dose response study. On Sheet 12 of 47, FIG. 12(a) discloses the amino acid sequence A-gliadin 57-73 QE65 (SEQ ID NO:2). On Sheet 12 of 47. FIG. 12(b) discloses the amino acid sequence GDA4_WHEAT P04724 84-100 QE92 (SEQ ID NO: 101). On Sheet 13 of 47, FIG. 12(c) discloses the amino acid sequence A-gliadin 57-73 (SEQ ID NO: 10). On Sheet 13 of 47, FIG. 12(d) discloses the amino acid sequence GDA4_WHEAT P04724 84-100 QE92 (SEQ ID NO:72). On Sheet 14 of 47, FIG. 12(e) discloses the amino acid sequence A-gliadin 57-68 (labelled E65) (SEQ ID NO: 13) and amino acid sequence A-gliadin 57-68 (labelled Q65) (SEQ ID NO:53). On Sheet 15 of 47, FIG. 12(f) discloses the amino acid sequence a-2 62-75 QE65 & QE72 (SEQ ID NO:47) (labelled E65) and amino acid sequence a-2 62-75 Q65 (SEQ ID NO: 102) (labelled Q65). On Sheet 16 of 47, FIG. 12(g) discloses the amino acid sequence GDA9 202-219 (SEQ ID NO:99) (labelled E) and amino acid sequence GDA9 202-219 (SEQ ID NO:44) (labelled Q). On Sheet 17 of 47, FIG. 12(h) discloses the amino acid sequence GDB2 134-153 OE140, 148, 150 (SEQ ID NO:48) (labelled E) and amino acid sequence GDB2 134-153 (SEQ ID NO: 103) (labelled Q).
[0058] FIG. 13a-c shows a comparison of gliadin and A-gliadin 57-73 QE65 (SEQ ID NO:2) specific responses.
[0059] FIG. 14a-e shows the bioactivity of gliadin polymorphisms in coeliac subjects. On Sheets 20 through 23 of 47 (FIG. 14a-d), sixteen amino acids are identified (A-P) in the legend of each Fig. The amino acid sequences A through P correspond to the following sequence identifiers: A--SEQ ID NO: 10: B--SEQ ID NO:26; C--SEQ ID NO:51; D--SEQ ID NO: 104: E--SEQ ID NO:68: F--SEQ ID NO:28; G--SEQ ID NO:69; H--SEQ ID NO:70; I--SEQ ID NO:71; J--SEQ ID NO: 105; K--SEQ ID NO:72; L--SEQ ID NO:73, M--SEQ ID NO:74: N--SEQ ID NO:75; O--SEQ ID NO:97; P--SEQ ID NO:77.
[0060] FIGS. 15 and 16 show the defining of the core epitope sequence.
[0061] FIGS. 17 to 27 show the agonist activity of A-gliadin 57-73 QE65 (SEQ ID NO:2) variants. On Sheets 25 (FIG. 17) through 35 (FIG. 27) of 47, FIGS. 17 through 27 disclose the amino acid sequence SEQ ID NO:2.
[0062] FIGS. 28a-g shows responses in different patient groups.
[0063] FIG. 29 shows bioactivity of prolamin homologues of A-gliadin 57-73 (SEQ ID NO:2).
[0064] FIG. 30 shows, for healthy HLA-DQ2 subjects, the change in IFN-gamma ELISpot responses to tTG-deamidated gliadin peptide pools.
[0065] FIG. 31 shows, for coeliac HLA-DQ2 subjects, the change in IFN-gamma ELISpot responses to tTG-deamidated gliadin peptide pools.
[0066] FIG. 32 shows individual peptide contributions to "summed" gliadin peptide response.
[0067] FIG. 33 shows, for coeliac HLA-DQ2/8 subject C08, gluten challenge induced IFN.gamma. ELISpot responses to tTG-deamidated gliadin peptide pools.
[0068] FIG. 34 shows, for coeliac HLA-DQ2/8 subject C07, gluten challenge induced IFN.gamma. ELISpot responses to tTG-deamidated gliadin peptide pools.
[0069] FIG. 35 shows, for coeliac HLA-DQ8/7 subject C12, gluten challenge induced IFN.gamma. ELISpot responses to tTG-deamidated gliadin peptide pools.
[0070] FIG. 36 shows, for coeliac HLA-DQ6/8 subject C11, gluten challenge induced IFN.gamma. ELISpot responses to tTG-deamidated gliadin peptide pools.
[0071] FIG. 37 shows Table 24, which represents 652 synthetic peptides and ELISpot analysis with patients and gluten challenge (SEQ ID NO: 107 through SEQ ID NO:758 correspond to Peptide Numbers 1-652, respectively).
DETAILED DESCRIPTION OF THE INVENTION
[0072] The term "coeliac disease" encompasses a spectrum of conditions caused by varying degrees of gluten sensitivity, including a severe form characterised by a flat small intestinal mucosa (hyperplastic villous atrophy) and other forms characterised by milder symptoms.
[0073] The individual mentioned above (in the context of diagnosis or therapy) is human. They may have coeliac disease (symptomatic or asymptomatic) or be suspected of having it. They may be on a gluten free diet. They may be in an acute phase response (for example they may have coeliac disease, but have only ingested gluten in the last 24 hours before which they had been on a gluten free diet for 14 to 28 days).
[0074] The individual may be susceptible to coeliac disease, such as a genetic susceptibility (determined for example by the individual having relatives with coeliac disease or possessing genes which cause predisposition to coeliac disease).
The Agent
[0075] The agent is typically a peptide, for example of length 7 to 50 amino acids, such as 10 to 40, or 15 to 30 amino acids in length.
[0076] SEQ ID NO:1 is PQPELPY. SEQ ID NO:2 is QLQPFPQPELPYPQPQS. SEQ ID NO:3 is shown in Table 1 and is the sequence of a whole A-gliadin. The glutamate at position 4 of SEQ ID NO:1 (equivalent to position 9 of SEQ ID NO:2) is generated by transglutaminase treatment of A-gliadin.
[0077] The agent may be the peptide represented by SEQ ID NO: 1 or 2 or an epitope comprising sequence that comprises SEQ ID NO: 1 which is an isolated oligopeptide derived from a gliadin protein; or an equivalent of these sequences from a naturally occurring gliadin protein which is a homologue of SEQ ID NO:3. Thus the epitope may be a derivative of the protein represented by SEQ ID NO:3. Such a derivative is typically a fragment of the gliadin, or a mutated derivative of the whole protein or fragment. Therefore the epitope of the invention does not include this naturally occurring whole gliadin protein, and does not include other whole naturally occurring gliadins.
[0078] The epitope may thus be a fragment of A-gliadin (e.g. SEQ ID NO:3), which comprises the sequence of SEQ ID NO: 1, obtainable by treating (fully or partially) with transglutaminase, i.e. with 1, 2, 3 or more glutamines substituted to glutamates (including the substitution within SEQ ID NO: 1).
[0079] Such fragments may be or may include the sequences represented by positions 55 to 70, 58 to 73, 61 to 77 of SEQ ID NO:3 shown in Table 1. Typically such fragments will be recognised by T cells to at least the same extent that the peptides represented by SEQ ID NO: 1 or 2 are recognised in any of the assays described herein using samples from coeliac disease patients.
[0080] Additionally, the agent may be the peptide represented by any of SEQ ID NOS:18-22, 31-36, 39-44, and 46 or a protein comprising a sequence corresponding to any of SEQ ID NOS: 18-22, 31-36, 39-44, and 46 (such as fragments of a gliadin comprising any of SEQ ID NOS: 18-22, 31-36, 39-44, and 46, for example after the gliadin has been treated with transglutaminase). Bioactive fragments of such sequences are also agents of the invention. Sequences equivalent to any of SEQ ID NOS: 18-22, 31-36, 39-44, and 46 or analogues of these sequences are also agents of the invention.
[0081] In the case where the epitope comprises a sequence equivalent to the above epitopes (including fragments) from another gliadin protein (e.g. any of the gliadin proteins mentioned herein or any gliadins which cause coeliac disease), such equivalent sequences will correspond to a fragment of a gliadin protein typically treated (partially or fully) with transglutaminase. Such equivalent peptides can be determined by aligning the sequences of other gliadin proteins with the gliadin from which the original epitope derives, such as with SEQ ID NO:3 (for example using any of the programs mentioned herein). Transglutaminase is commercially available (e.g. Sigma T-5398). Table 4 provides a few examples of suitable equivalent sequences.
[0082] The agent which is an analogue is capable of being recognised by a TCR which recognises (i) or (ii). Therefore generally when the analogue is added to T cells in the presence of (i) or (ii), typically also in the presence of an antigen presenting cell (APC) (such as any of the APCs mentioned herein), the analogue inhibits the recognition of (i) or (ii), i.e. the analogue is able to compete with (i) or (ii) in such a system.
[0083] The analogue may be one which is capable of binding the TCR which recognises (i) or (ii). Such binding can be tested by standard techniques. Such TCRs can be isolated from T cells which have been shown to recognise (i) or (ii) (e.g. using the method of the invention). Demonstration of the binding of the analogue to the TCRs can then shown by determining whether the TCRs inhibit the binding of the analogue to a substance that binds the analogue, e.g. an antibody to the analogue. Typically the analogue is bound to a class II MHC molecule (e.g. HLA-DQ2) in such an inhibition of binding assay.
[0084] Typically the analogue inhibits the binding of (i) or (ii) to a TCR. In this case the amount of (i) or (ii) which can bind the TCR in the presence of the analogue is decreased. This is because the analogue is able to bind the TCR and therefore competes with (i) or (ii) for binding to the TCR.
[0085] T cells for use in the above binding experiments can be isolated from patients with coeliac disease, for example with the aid of the method of the invention. Other binding characteristics of the analogue may also be the same as (i) or (ii), and thus typically the analogue binds to the same MHC class II molecule to which the peptide binds (HLA-DQ2 or -DQ8). The analogue typically binds to antibodies specific for (i) or (ii), and thus inhibits binding of (i) or (ii) to such antibodies.
[0086] The analogue is typically a peptide. It may have homology with (i) or (ii), typically at least 70% homology, preferably at least 80, 90%, 95%, 97% or 99% homology with (i) or (ii), for example over a region of at least 15 more (such as the entire length of the analogue and/or (i) or (ii), or across the region which contacts the TCR or binds the MHC molecule) contiguous amino acids. Methods of measuring protein homology are well known in the art and it will be understood by those of skill in the art that in the present context, homology is calculated on the basis of amino acid identity (sometimes referred to as "hard homology").
[0087] For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux et al (1984) Nucleic Acids Research 12, p 387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul S. F. (1993) J Mol Evol 36:290-300; Altschul, S, F et al (1990) J Mol Biol 215:403-10. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information on the world wide web through the internet at, for example, "www.ncbi.nlm.nih.gov/". This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold (Altschul et al, supra). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W. T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.
[0088] The BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.
[0089] The homologous peptide analogues typically differ from (i) or (ii) by 1, 2, 3, 4, 5, 6, 7, 8 or more mutations (which may be substitutions, deletions or insertions). These mutations may be measured across any of the regions mentioned above in relation to calculating homology. The substitutions are preferably `conservative`. These are defined according to the following Table. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:
TABLE-US-00001 ALIPHATIC Non-polar G A P I L V Polar - uncharged C S T M N Q Polar - charged D E K R AROMATIC H F W Y
[0090] Typically the amino acids in the analogue at the equivalent positions to amino acids in (i) or (ii) that contribute to binding the MHC molecule or are responsible for the recognition by the TCR are the same or are conserved.
[0091] Typically the analogue peptide comprises one or more modifications, which may be natural post-translation modifications or artificial modifications. The modification may provide a chemical moiety (typically by substitution of a hydrogen, e.g. of a C--H bond), such as an amino, acetyl, hydroxy or halogen (e.g. fluorine) group or carbohydrate group. Typically the modification is present on the N or C terminus.
[0092] The analogue may comprise one or more non-natural amino acids, for example amino acids with a side chain different from natural amino acids. Generally, the non-natural amino acid will have an N terminus and/or a C terminus. The non-natural amino acid may be an L- or a D-amino acid.
[0093] The analogue typically has a shape, size, flexibility or electronic configuration that is substantially similar to (i) or (ii). It is typically a derivative of (i) or (ii). In one embodiment the analogue is a fusion protein comprising the sequence of SEQ ID NO:1 or 2, or any of the other peptides mentioned herein; and non-gliadin sequence.
[0094] In one embodiment the analogue is or mimics (i) or (ii) bound to a MHC class II molecule. 2, 3, 4 or more of such complexes may be associated or bound to each other, for example using a biotin/streptavidin based system, in which typically 2, 3 or 4 biotin labelled MHC molecules bind to a streptavidin moiety. This analogue typically inhibits the binding of the (i) or (ii)/MHC Class II complex to a TCR or antibody which is specific for the complex.
[0095] The analogue is typically an antibody or a fragment of an antibody, such as a Fab or (Fab).sub.2 fragment. The analogue may be immobilised on a solid support, particularly an analogue that mimics peptide bound to a MHC molecule.
[0096] The analogue is typically designed by computational means and then synthesised using methods known in the art. Alternatively the analogue can be selected from a library of compounds. The library may be a combinatorial library or a display library, such as a phage display library. The library of compounds may be expressed in the display library in the form of being bound to a MHC class II molecule, such as HLA-DQ2 or -DQ8. Analogues are generally selected from the library based on their ability to mimic the binding characteristics (i) or (ii). Thus they may be selected based on ability to bind a TCR or antibody which recognises (i) or (ii).
[0097] Typically analogues will be recognised by T cells to at least the same extent as any of the agents (i) or (ii), for example at least to the same extent as the equivalent epitope and preferably to the same extent as the peptide represented by SEQ ID NO:2, is recognised in any of the assays described herein, typically using T cells from coeliac disease patients. Analogues may be recognised to these extents in vivo and thus may be able to induce coeliac disease symptoms to at least the same extent as any of the agents mentioned herein (e.g. in a human patient or animal model).
[0098] Analogues may be identified in a method comprising determining whether a candidate substance is recognised by a T cell receptor that recognises an epitope of the invention, recognition of the substance indicating that the substance is an analogue. Such TCRs may be any of the TCRs mentioned herein, and may be present on T cells. Any suitable assay mentioned herein can be used to identify the analogue. In one embodiment this method is carried out in vivo. As mentioned above preferred analogues are recognised to at least the same extent as the peptide SEQ ID NO:2, and so the method may be used to identify analogues which are recognised to this extent.
[0099] In one embodiment the method comprises determining whether a candidate substance is able to inhibit the recognition of an epitope of the invention, inhibition of recognition indicating that the substance is an analogue.
[0100] The agent may be a product comprising at least 2, 5, 10 or 20 agents as defined by (i), (ii) or (iii). Typically the composition comprises epitopes of the invention (or equivalent analogues) from different gliadins, such as any of the species or variety of or types of gliadin mentioned herein. Preferred compositions comprise at least one epitope of the invention, or equivalent analogue, from all of the gliadins present in any of the species or variety mentioned herein, or from 2, 3, 4 or more of the species mentioned herein (such as from the panel of species consisting of wheat, rye, barley, oats and triticale). Thus, the agent may be monovalent or multivalent.
Diagnosis
[0101] As mentioned above the method of diagnosis of the invention may be based on the detection of T cells that bind the agent or on the detection of antibodies that recognise the agent. The T cells that recognise the agent in the method (which includes the use mentioned above) are generally T cells that have been pre-sensitised in vivo to gliadin. As mentioned above such antigen-experienced T cells have been found to be present in the peripheral blood.
[0102] In the method the T cells can be contacted with the agent in vitro or in vivo, and determining whether the T cells recognise the agent can be performed in vitro or m vivo. Thus the invention provides the agent for use in a method of diagnosis practiced on the human body. Different agents are provided for simultaneous, separate or sequential use in such a method. The in vitro method is typically carried out in aqueous solution into which the agent is added. The solution will also comprise the T cells (and in certain embodiments the APCs discussed below). The term `contacting` as used herein includes adding the particular substance to the solution.
[0103] Determination of whether the T cells recognise the agent is generally accomplished by detecting a change in the state of the T cells in the presence of the agent or determining whether the T cells bind the agent. The change in state is generally caused by antigen specific functional activity of the T cell after the TCR binds the agent. The change of state may be measured inside (e.g. change in intracellular expression of proteins) or outside (e.g. detection of secreted substances) the T cells.
[0104] The change in state of the T cell may be the start of or increase in secretion of a substance from the T cell, such as a cytokine, especially IFN-.gamma., IL-2 or TNF-.alpha.. Determination of IFN-.gamma. secretion is particularly preferred. The substance can typically be detected by allowing it to bind to a specific binding agent and then measuring the presence of the specific binding agent/substance complex. The specific binding agent is typically an antibody, such as polyclonal or monoclonal antibodies. Antibodies to cytokines are commercially available, or can be made using standard techniques.
[0105] Typically the specific binding agent is immobilised on a solid support. After the substance is allowed to bind the solid support can optionally be washed to remove material which is not specifically bound to the agent. The agent/substance complex may be detected by using a second binding agent that will bind the complex. Typically the second agent binds the substance at a site which is different from the site which binds the first agent. The second agent is preferably an antibody and is labelled directly or indirectly by a detectable label.
[0106] Thus the second agent may be detected by a third agent that is typically labelled directly or indirectly by a detectable label. For example the second agent may comprise a biotin moiety, allowing detection by a third agent which comprises a streptavidin moiety and typically alkaline phosphatase as a detectable label.
[0107] In one embodiment the detection system which is used is the ex-vivo ELISPOT assay described in WO 98/23960. In that assay IFN-.gamma. secreted from the T cell is bound by a first IFN-.gamma. specific antibody that is immobilised on a solid support. The bound IFN-.gamma. is then detected using a second IFN-.gamma. specific antibody which is labelled with a detectable label. Such a labelled antibody can be obtained from MABTECH (Stockholm, Sweden). Other detectable labels which can be used are discussed below.
[0108] The change in state of the T cell that can be measured may be the increase in the uptake of substances by the T cell, such as the uptake of thymidine. The change in state may be an increase in the size of the T cells, or proliferation of the T cells, or a change in cell surface markers on the T cell.
[0109] In one embodiment the change of state is detected by measuring the change in the intracellular expression of proteins, for example the increase in intracellular expression of any of the cytokines mentioned above. Such intracellular changes may be detected by contacting the inside of the T cell with a moiety that binds the expressed proteins in a specific manner and which allows sorting of the T cells by flow cytometry.
[0110] In one embodiment when binding the TCR the agent is bound to an MHC class II molecule (typically HLA-DQ2 or -DQ8), which is typically present on the surface of an antigen presenting cell (APC). However as mentioned herein other agents can bind a TCR without the need to also bind an MHC molecule.
[0111] Generally the T cells which are contacted in the method are taken from the individual in a blood sample, although other types of samples which contain T cells can be used. The sample may be added directly to the assay or may be processed first. Typically the processing may comprise diluting of the sample, for example with water or buffer. Typically the sample is diluted from 1.5 to 100 fold, for example 2 to 50 or 5 to 10 fold.
[0112] The processing may comprise separation of components of the sample. Typically mononuclear cells (MCs) are separated from the samples. The MCs will comprise the T cells and APCs. Thus in the method the APCs present in the separated MCs can present the peptide to the T cells. In another embodiment only T cells, such as only CD4 T cells, can be purified from the sample. PBMCs, MCs and T cells can be separated from the sample using techniques known in the art, such as those described in Lalvani et al (1997) J. Exp. Med. 186, p 859-865.
[0113] In one embodiment, the T cells used in the assay are in the form of unprocessed or diluted samples, or are freshly isolated T cells (such as in the form of freshly isolated MCs or PBMCs) which are used directly ex vivo. i.e. they are not cultured before being used in the method. Thus the T cells have not been restimulated in an antigen specific manner in vitro. However the T cells can be cultured before use, for example in the presence of one or more of the agents, and generally also exogenous growth promoting cytokines. During culturing the agent(s) are typically present on the surface of APCs, such as the APC used in the method. Pre-culturing of the T cells may lead to an increase in the sensitivity of the method. Thus the T cells can be converted into cell lines, such as short term cell lines (for example as described in Ota et al (1990) Nature 346, p 183-187).
[0114] The APC that is typically present in the method may be from the same individual as the T cell or from a different host. The APC may be a naturally occurring APC or an artificial APC. The APC is a cell that is capable of presenting the peptide to a T cell. It is typically a B cell, dendritic cell or macrophage. It is typically separated from the same sample as the T cell and is typically co-purified with the T cell. Thus the APC may be present in MCs or PBMCs. The APC is typically a freshly isolated ex vivo cell or a cultured cell. It may be in the form of a cell line, such as a short term or immortalised cell line. The APC may express empty MHC class II molecules on its surface.
[0115] In the method one or more (different) agents may be used. Typically the T cells derived from the sample can be placed into an assay with all the agents which it is intended to test or the T cells can be divided and placed into separate assays each of which contain one or more of the agents.
[0116] The invention also provides the agents such as two or more of any of the agents mentioned herein (e.g. the combinations of agents which are present in the composition agent discussed above) for simultaneous separate or sequential use (eg. for in vivo use).
[0117] In one embodiment agent per se is added directly to an assay comprising T cells and APCs. As discussed above the T cells and APCs in such an assay could be in the form of MCs. When agents that can be recognised by the T cell without the need for presentation by APCs are used then APCs are not required. Analogues which mimic the original (i) or (ii) bound to a MHC molecule are an example of such an agent.
[0118] In one embodiment the agent is provided to the APC in the absence of the T cell. The APC is then provided to the T cell, typically after being allowed to present the agent on its surface. The peptide may have been taken up inside the APC and presented, or simply be taken up onto the surface without entering inside the APC.
[0119] The duration for which the agent is contacted with the T cells will vary depending on the method used for determining recognition of the peptide. Typically 10.sup.5 to 10.sup.7, preferably 5.times.10 to 10.sup.6 PBMCs are added to each assay. In the case where agent is added directly to the assay its concentration is from 10.sup.-1 to 10.sup.3 .mu.g/ml, preferably 0.5 to 50 .mu.g/ml or 1 to 10 .mu.g/ml.
[0120] Typically the length of time for which the T cells are incubated with the agent is from 4 to 24 hours, preferably 6 to 16 hours. When using ex vivo PBMCs it has been found that 0.3.times.10.sup.6 PBMCs can be incubated in 10 .mu.g/ml of peptide for 12 hours at 37.degree. C.
[0121] The determination of the recognition of the agent by the T cells may be done by measuring the binding of the agent to the T cells (this can be carried out using any suitable binding assay format discussed herein). Typically T cells which bind the agent can be sorted based on this binding, for example using a FACS machine. The presence of T cells that recognise the agent will be deemed to occur if the frequency of cells sorted using the agent is above a "control" value. The frequency of antigen-experienced T cells is generally 1 in 10.sup.6 to 1 in 10', and therefore whether or not the sorted cells are antigen-experienced T cells can be determined.
[0122] The determination of the recognition of the agent by the T cells may be measured in vivo. Typically the agent is administered to the host and then a response which indicates recognition of the agent may be measured. The agent is typically administered intradermally or epidermally. The agent is typically administered by contacting with the outside of the skin, and may be retained at the site with the aid of a plaster or dressing. Alternatively the agent may be administered by needle, such as by injection, but can also be administered by other methods such as ballistics (e.g. the ballistics techniques which have been used to deliver nucleic acids). EP-A-0693119 describes techniques that can typically be used to administer the agent. Typically from 0.001 to 1000 .mu.g, for example from 0.01 to 100 .mu.g or 0.1 to 10 .mu.g of agent is administered.
[0123] In one embodiment a product can be administered which is capable of providing the agent in vivo. Thus a polynucleotide capable of expressing the agent can be administered, typically in any of the ways described above for the administration of the agent. The polynucleotide typically has any of the characteristics of the polynucleotide provided by the invention which is discussed below. The agent is expressed from the polynucleotide in vivo. Typically from 0.001 to 1000 .mu.g, for example from 0.01 to 100 .mu.g or 0.1 to 10 .mu.g of polynucleotide is administered.
[0124] Recognition of the agent administered to the skin is typically indicated by the occurrence of inflammation (e.g. induration, erythema or oedema) at the site of administration. This is generally measured by visual examination of the site.
[0125] The method of diagnosis based on the detection of an antibody that binds the agent is typically carried out by contacting a sample from the individual (such as any of the samples mentioned here, optionally processed in any manner mentioned herein) with the agent and determining whether an antibody in the sample binds the agent, such a binding indicating that the individual has, or is susceptible to coeliac disease. Any suitable format of binding assay may be used, such as any such format mentioned herein.
Therapy
[0126] The identification of the immunodominant epitope and other epitopes described herein allows therapeutic products to be made which target the T cells which recognise this epitope (such T cells being ones which participate in the immune response against gliadin). These findings also allow the prevention or treatment of coeliac disease by suppressing (by tolerisation) an antibody or T cell response to the epitope(s).
[0127] Certain agents of the invention bind the TCR that recognises the epitope of the invention (as measured using any of the binding assays discussed above) and cause tolerisation of the T cell that carries the TCR. Such agents, optionally in association with a carrier, can therefore be used to prevent or treat coeliac disease.
[0128] Generally tolerisation can be caused by the same peptides which can (after being recognised by the TCR) cause antigen specific functional activity of the T cell (such as any such activity mentioned herein, e.g. secretion of cytokines). Such agents cause tolerisation when they are presented to the immune system in a `tolerising` context.
[0129] Tolerisation leads to a decrease in the recognition of a T cell or antibody epitope by the immune system. In the case of a T cell epitope this can be caused by the deletion or anergising of T cells that recognise the epitope. Thus T cell activity (for example as measured in suitable assays mentioned herein) in response to the epitope is decreased. Tolerisation of an antibody response means that a decreased amount of specific antibody to the epitope is produced when the epitope is administered.
[0130] Methods of presenting antigens to the immune system in such a context are known and are described for example in Yoshida et al. Clin. Immunol. Immunopathol. 82, 207-215 (1997), Thurau et al. Clin. Exp. Immunol. 109, 370-6 (1997), and Weiner et al. Res. Immunol. 148, 528-33 (1997). In particular certain routes of administration can cause tolerisation, such as oral, nasal or intraperitoneal. Particular products which cause tolerisation may be administered (e.g. in a composition that also comprises the agent) to the individual. Such products include cytokines, such as cytokines that favour a Th2 response (e.g. IL-4, TGF-.beta. or IL-10). Products or agent may be administered at a dose that causes tolerisation.
[0131] The invention provides a protein that comprises a sequence able to act as an antagonist of the T cell (which T cell recognises the agent). Such proteins and such antagonists can also be used to prevent or treat coeliac disease. The antagonist will cause a decrease in the T cell response. In one embodiment, the antagonist binds the TCR of the T cell (generally in the form of a complex with HLA-DQ2 or -DQ8) but instead of causing normal functional activation causing an abnormal signal to be passed through the TCR intracellular signalling cascade, which causes the T cell to have decreased function activity (e.g. in response to recognition of an epitope, typically as measured by any suitable assay mentioned herein).
[0132] In one embodiment the antagonist competes with epitope to bind a component of MHC processing and presentation pathway, such as an MHC molecule (typically HLA-DQ2 or -DQ8). Thus the antagonist may bind HLA-DQ2 or -DQ8 (and thus be a peptide presented by this MHC molecule), such as peptide TP (Table 10) or a homologue thereof.
[0133] Methods of causing antagonism are known in the art. In one embodiment the antagonist is a homologue of the epitopes mentioned above and may have any of the sequence, binding or other properties of the agent (particularly analogues). The antagonists typically differ from any of the above epitopes (which are capable of causing a normal antigen specific function in the T cell) by 1, 2, 3, 4 or more mutations (each of which may be a substitution, insertion or deletion). Such antagonists are termed "altered peptide ligands" or "APL" in the art. The mutations are typically at the amino acid positions that contact the TCR.
[0134] The antagonist may differ from the epitope by a substitution within the sequence that is equivalent to the sequence represented by amino acids 65 to 67 of A-gliadin (such antagonists are shown in Table 9). Thus preferably the antagonist has a substitution at the equivalent of position 64, 65 or 67. Preferably the substitution is 64W, 67W. 67M or 65T.
[0135] Since the T cell immune response to the epitope of the invention in an individual is polyclonal, more than one antagonist may need to be administered to cause antagonism of T cells of the response which have different TCRs. Therefore the antagonists may be administered in a composition which comprises at least 2, 4, 6 or more different antagonists, which each antagonise different T cells.
[0136] The invention also provides a method of identifying an antagonist of a T cell (which recognises the agent), comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response (e.g. using any suitable assay mentioned herein), the detecting of any such decrease in said ability indicating that the substance is an antagonist.
[0137] In one embodiment, the antagonists (including combinations of antagonists to a particular epitope) or tolerising (T cell and antibody tolerising) agents are present in a composition comprising at least 2, 4, 6 or more antagonists or agents which antagonise or tolerise to different epitopes of the invention, for example to the combinations of epitopes discussed above in relation to the agents which are a product comprising more than one substance.
[0138] Testing Whether a Composition is Capable of Causing Coeliac Disease
[0139] As mentioned above the invention provides a method of determining whether a composition is capable of causing coeliac disease comprising detecting the presence of a protein sequence which is capable of being modified by a transglutaminase to as sequence comprising the agent or epitope of the invention (such transglutaminase activity may be a human intestinal transglutaminase activity). Typically this is performed by using a binding assay in which a moiety which binds to the sequence in a specific manner is contacted with the composition and the formation of sequence/moiety complex is detected and used to ascertain the presence of the agent. Such a moiety may be any suitable substance (or type of substance) mentioned herein, and is typically a specific antibody. Any suitable format of binding assay can be used (such as those mentioned herein).
[0140] In one embodiment, the composition is contacted with at least 2, 5, 10 or more antibodies which are specific for epitopes of the invention from different gliadins, for example a panel of antibodies capable of recognising the combinations of epitopes discussed above in relation to agents of the invention which are a product comprising more than one substance.
[0141] The composition typically comprises material from a plant that expresses a gliadin which is capable of causing coeliac disease (for example any of the gliadins or plants mentioned herein). Such material may be a plant part, such as a harvested product (e.g. seed). The material may be processed products of the plant material (e.g. any such product mentioned herein), such as a flour or food that comprises the gliadin. The processing of food material and testing in suitable binding assays is routine, for example as mentioned in Kricka L J, J. Biolumin. Chemilumin. 13, 189-93 (1998).
Binding Assays
[0142] The determination of binding between any two substances mentioned herein may be done by measuring a characteristic of either or both substances that changes upon binding, such as a spectroscopic change.
[0143] The binding assay format may be a `band shift` system. This involves determining whether the presence of one substance (such as a candidate substance) advances or retards the progress of the other substance during gel electrophoresis.
[0144] The format may be a competitive binding method which determines whether the one substance is able to inhibit the binding of the other substance to an agent which is known to bind the other substance, such as a specific antibody.
Mutant Gliadin Proteins
[0145] The invention provides a gliadin protein in which an epitope sequence of the invention, or sequence which can be modified by a transglutaminase to provide such a sequence has been mutated so that it no longer causes, or is recognised by, a T cell response that recognises the epitope. In this context the term recognition refers to the TCR binding the epitope in such a way that normal (not antagonistic) antigen-specific functional activity of the T cell occurs.
[0146] Methods of identifying equivalent epitopes in other gliadins are discussed above. The wild type of the mutated gliadin is one which causes coeliac disease. Such a gliadin may have homology with SEQ ID NO:3, for example to the degree mentioned above (in relation to the analogue) across all of SEQ ID NO:3 or across 15, 30, 60, 100 or 200 contiguous amino acids of SEQ ID NO:3. Likewise, for other non-A-gliadins, homology will be present between the mutant and the native form of that gliadin. The sequences of other natural gliadin proteins are known in the art.
[0147] The mutated gliadin will not cause coeliac disease or will cause decreased symptoms of coeliac disease. Typically the mutation decreases the ability of the epitope to induce a T cell response. The mutated epitope may have a decreased binding to HLA-DQ2 or -DQ8, a decreased ability to be presented by an APC or a decreased ability to bind to or to be recognised (i.e. cause antigen-specific functional activity) by T cells that recognise the agent. The mutated gliadin or epitope will therefore show no or reduced recognition in any of the assays mentioned herein in relation to the diagnostic aspects of the invention.
[0148] The mutation may be one or more deletions, additions or substitutions of length 1 to 3, 4 to 6, 6 to 10, 11 to 15 or more in the epitope, for example across sequence SEQ ID NO:2 or across any of SEQ ID NOS: 18-22, 31-36, 39-44, and 46; or across equivalents thereof. Preferably the mutant gliadin has at least one mutation in the sequence SEQ ID NO: 1. A preferred mutation is at position 65 in A-gliadin (or in an equivalent position in other gliadins). Typically the naturally occurring glutamine at this position is substituted to any of the amino acids shown in Table 3, preferably to histidine, tyrosine, tryptophan, lysine, proline, or arginine.
[0149] The invention thus also provides use of a mutation (such any of the mutations in any of the sequences discussed herein) in an epitope of a gliadin protein, which epitope is an epitope of the invention, to decrease the ability of the gliadin protein to cause coeliac disease.
[0150] In one embodiment the mutated sequence is able to act as an antagonist. Thus the invention provides a protein that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises an agent of the invention, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.
[0151] The invention also provides proteins which are fragments of the above mutant gliadin proteins, which are at least 15 amino acids long (e.g. at least 30, 60, 100, 150, 200, or 250 amino acids long) and which comprise the mutations discussed above which decrease the ability of the gliadin to be recognised. Any of the mutant proteins (including fragments) mentioned herein may also be present in the form of fusion proteins, for example with other gliadins or with non-gliadin proteins.
[0152] The equivalent wild type protein to the mutated gliadin protein is typically from a graminaceous monocotyledon, such as a plant of genus Triticum, e.g. wheat, rye, barley, oats or triticale. The protein is typically an .alpha., .alpha..beta., .beta., .gamma. or .omega. gliadin. The gliadin may be an A-gliadin.
Kits
[0153] The invention also provides a kit for carrying out the method comprising one or more agents and optionally a means to detect the recognition of the agent by the T cell. Typically the different agents are provided for simultaneous, separate or sequential use. Typically the means to detect recognition allows or aids detection based on the techniques discussed above.
[0154] Thus the means may allow detection of a substance secreted by the T cells after recognition. The kit may thus additionally include a specific binding moiety for the substance, such as an antibody. The moiety is typically specific for IFN-.gamma.. The moiety is typically immobilised on a solid support. This means that after binding the moiety the substance will remain in the vicinity of the T cell which secreted it. Thus "spots" of substance/moiety complex are formed on the support, each spot representing a T cell which is secreting the substance. Quantifying the spots, and typically comparing against a control, allows determination of recognition of the agent.
[0155] The kit may also comprise a means to detect the substance/moiety complex. A detectable change may occur in the moiety itself after binding the substance, such as a colour change. Alternatively a second moiety directly or indirectly labelled for detection may be allowed to bind the substance/moiety complex to allow the determination of the spots. As discussed above the second moiety may be specific for the substance, but binds a different site on the substance than the first moiety.
[0156] The immobilised support may be a plate with wells, such as a microtitre plate. Each assay can therefore be carried out in a separate well in the plate.
[0157] The kit may additionally comprise medium for the T cells, detection moieties or washing buffers to be used in the detection steps. The kit may additionally comprise reagents suitable for the separation from the sample, such as the separation of PBMCs or T cells from the sample. The kit may be designed to allow detection of the T cells directly in the sample without requiring any separation of the components of the sample.
[0158] The kit may comprise an instrument which allows administration of the agent, such as intradermal or epidermal administration. Typically such an instrument comprises plaster, dressing or one or more needles. The instrument may allow ballistic delivery of the agent. The agent in the kit may be in the form of a pharmaceutical composition.
[0159] The kit may also comprise controls, such as positive or negative controls. The positive control may allow the detection system to be tested. Thus the positive control typically mimics recognition of the agent in any of the above methods. Typically in the kits designed to determine recognition in vitro the positive control is a cytokine. In the kit designed to detect in vivo recognition of the agent the positive control may be antigen to which most individuals should response.
[0160] The kit may also comprise a means to take a sample containing T cells from the host, such as a blood sample. The kit may comprise a means to separate mononuclear cells or T cells from a sample from the host.
Polynucleotides, Cells, Transgenic Mammals and Antibodies
[0161] The invention also provides a polynucleotide which is capable of expression to provide the agent or mutant gliadin proteins. Typically the polynucleotide is DNA or RNA, and is single or double stranded. The polynucleotide will preferably comprise at least 50 bases or base pairs, for example 50 to 100, 100 to 500, 500 to 1000 or 1000 to 2000 or more bases or base pairs. The polynucleotide therefore comprises a sequence which encodes the sequence of SEQ ID NO: 1 or 2 or any of the other agents mentioned herein. To the 5' and 3' of this coding sequence the polynucleotide of the invention has sequence or codons which are different from the sequence or codons 5' and 3' to these sequences in the corresponding gliadin gene.
[0162] 5' and/or 3' to the sequence encoding the peptide the polynucleotide has coding or non-coding sequence. Sequence 5' and/or 3' to the coding sequence may comprise sequences which aid expression, such as transcription and/or translation, of the sequence encoding the agent. The polynucleotide may be capable of expressing the agent prokaryotic or eukaryotic cell. In one embodiment the polynucleotide is capable of expressing the agent in a mammalian cell, such as a human, primate or rodent (e.g. mouse or rat) cell.
[0163] A polynucleotide of the invention may hybridise selectively to a polynucleotide that encodes SEQ ID NO:3 at a level significantly above background. Selective hybridisation is typically achieved using conditions of medium to high stringency (for example 0.03M sodium chloride and 0.03M sodium citrate at from about 50.degree. C. to about 60.degree. C.). However, such hybridisation may be carried out under any suitable conditions known in the art (see Sambrook et al (1989), Molecular Cloning: A Laboratory Manual). For example, if high stringency is required, suitable conditions include 0.2.times.SSC at 60.degree. C. If lower stringency is required, suitable conditions include 2.times.SSC at 60.degree. C.
[0164] Agents or proteins of the invention may be encoded by the polynucleotides described herein.
[0165] The polynucleotide may form or be incorporated into a replicable vector. Such a vector is able to replicate in a suitable cell. The vector may be an expression vector. In such a vector the polynucleotide of the invention is operably linked to a control sequence which is capable of providing for the expression of the polynucleotide. The vector may contain a selectable marker, such as the ampicillin resistance gene.
[0166] The polynucleotide or vector may be present in a cell. Such a cell may have been transformed by the polynucleotide or vector. The cell may express the agent. The cell will be chosen to be compatible with the said vector and may for example be a prokaryotic (bacterial), yeast, insect or mammalian cell. The polynucleotide or vector may be introduced into host cells using conventional techniques including calcium phosphate precipitation, DEAE-dextran transfection, or electroporation.
[0167] The invention provides processes for the production of the proteins of the invention by recombinant means. This may comprise (a) cultivating a transformed cell as defined above under conditions that allow the expression of the protein; and preferably (b) recovering the expressed polypeptide. Optionally, the polypeptide may be isolated and/or purified, by techniques known in the art.
[0168] The invention also provides TCRs which recognise (or bind) the agent, or fragments thereof which are capable of such recognition (or binding). These can be present in the any form mentioned herein (e.g. purity) discussed herein in relation to the protein of the invention. The invention also provides T cells which express such TCRs which can be present in any form (e.g. purity) discussed herein for the cells of the invention.
[0169] The invention also provides monoclonal or polyclonal antibodies which specifically recognise the agents (such as any of the epitopes of the invention) and which recognise the mutant gliadin proteins (and typically which do not recognise the equivalent wild-type gliadins) of the invention, and methods of making such antibodies. Antibodies of the invention bind specifically to these substances of the invention.
[0170] For the purposes of this invention, the term "antibody" includes antibody fragments such as Fv, F(ab) and F(ab).sub.2 fragments, as well as single-chain antibodies.
[0171] A method for producing a polyclonal antibody comprises immunising a suitable host animal, for example an experimental animal, with the immunogen and isolating immunoglobulins from the serum. The animal may therefore be inoculated with the immunogen, blood subsequently removed from the animal and the IgG fraction purified. A method for producing a monoclonal antibody comprises immortalising cells which produce the desired antibody. Hybridoma cells may be produced by fusing spleen cells from an inoculated experimental animal with tumour cells (Kohler and Milstein (1975) Nature 256, 495-497).
[0172] An immortalized cell producing the desired antibody may be selected by a conventional procedure. The hybridomas may be grown in culture or injected intraperitoneally for formation of ascites fluid or into the blood stream of an allogenic host or immunocompromised host. Human antibody may be prepared by in vitro immunisation of human lymphocytes, followed by transformation of the lymphocytes with Epstein-Barr virus.
[0173] For the production of both monoclonal and polyclonal antibodies, the experimental animal is suitably a goat, rabbit, rat or mouse. If desired, the immunogen may be administered as a conjugate in which the immunogen is coupled, for example via a side chain of one of the amino acid residues, to a suitable carrier. The carrier molecule is typically a physiologically acceptable carrier. The antibody obtained may be isolated and, if desired, purified.
[0174] The polynucleotide, agent, protein or antibody of the invention, may carry a detectable label. Detectable labels which allow detection of the secreted substance by visual inspection, optionally with the aid of an optical magnifying means, are preferred. Such a system is typically based on an enzyme label which causes colour change in a substrate, for example alkaline phosphatase causing a colour change in a substrate. Such substrates are commercially available, e.g. from BioRad. Other suitable labels include other enzymes such as peroxidase, or protein labels, such as biotin, or radioisotopes, such as .sup.32P or .sup.35S. The above labels may be detected using known techniques.
[0175] Polynucleotides, agents, proteins, antibodies or cells of the invention may be in substantially purified form. They may be in substantially isolated form, in which case they will generally comprise at least 80% e.g. at least 90, 95, 97 or 99% of the polynucleotide, peptide, antibody, cells or dry mass in the preparation. The polynucleotide, agent, protein or antibody is typically substantially free of other cellular components. The polynucleotide, agent, protein or antibody may be used in such a substantially isolated, purified or free form in the method or be present in such forms in the kit.
[0176] The invention also provides a transgenic non-human mammal which expresses a TCR of the invention. This may be any of the mammals discussed herein (e.g. in relation to the production of the antibody). Preferably the mammal has, or is susceptible, to coeliac disease. The mammal may also express HLA-DQ2 or -DQ8 or HLA-DR3-DQ2 and/or may be given a diet comprising a gliadin which cause coeliac disease (e.g. any of the gliadin proteins mentioned herein). Thus the mammal may act as an animal model for coeliac disease.
[0177] The invention also provides a method of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a mammal of the invention which has, or which is susceptible to, coeliac disease and determining whether substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a therapeutic product. Such a product may be used to treat or prevent coeliac disease.
[0178] The invention provides therapeutic (including prophylactic) agents or diagnostic substances (the agents, proteins and polynucleotides of the invention). These substances are formulated for clinical administration by mixing them with a pharmaceutically acceptable carrier or diluent. For example they can be formulated for topical, parenteral, intravenous, intramuscular, subcutaneous, intraocular, intradermal, epidermal or transdermal administration.
[0179] The substances may be mixed with any vehicle which is pharmaceutically acceptable and appropriate for the desired route of administration. The pharmaceutically carrier or diluent for injection may be, for example, a sterile or isotonic solution such as Water for Injection or physiological saline, or a carrier particle for ballistic delivery.
[0180] The dose of the substances may be adjusted according to various parameters, especially according to the agent used; the age, weight and condition of the patient to be treated; the mode of administration used, the severity of the condition to be treated, and the required clinical regimen. As a guide, the amount of substance administered by injection is suitably from 0.01 mg/kg to 30 mg/kg, preferably from 0.1 mg/kg to 10 mg/kg.
[0181] The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage for any particular patient and condition.
[0182] The substances of the invention may thus be used in a method of treatment of the human or animal body, or in a diagnostic method practised on the human body. In particular they may be used in a method of treating or preventing coeliac disease. The invention also provide the agents for use in a method of manufacture of a medicament for treating or preventing coeliac disease. Thus the invention provides a method of preventing or treating coeliac disease comprising administering to a human in need thereof a substance of the invention (typically a non-toxic effective amount thereof).
[0183] The agent of the invention can be made using standard synthetic chemistry techniques, such as by use of an automated synthesizer. The agent may be made from a longer polypeptide e.g. a fusion protein, which polypeptide typically comprises the sequence of the peptide. The peptide may be derived from the polypeptide by for example hydrolysing the polypeptide, such as using a protease; or by physically breaking the polypeptide. The polynucleotide of the invention can be made using standard techniques, such as by using a synthesiser.
Plant Cells and Plants that Express Mutant Gliadin Proteins or Express Proteins Comprising Sequences which can Act as Antagonists
[0184] The cell of the invention may be a plant cell, such as a cell of a graminaceous monocotyledonous species. The species may be one whose wild-type form expresses gliadins, such as any of the gliadin proteins mentioned herein (including gliadins with any degree of homology to SEQ ID NO:3 mentioned herein). Such a gliadin may cause coeliac disease in humans. The cell may be of wheat, maize, oats, rye, rice, barley, triticale, sorghum, or sugar cane. Typically the cell is of the Triticum genus, such as aestivum, spelta, polonicum or monococcum.
[0185] The plant cell of the invention is typically one which does not express a wild-type gliadin (such as any of the gliadins mentioned herein which may cause coeliac disease), or one which does not express a gliadin comprising a sequence that can be recognised by a T cell that recognises the agent. Thus if the wild-type plant cell did express such a gliadin then it may be engineered to prevent or reduce the expression of such a gliadin or to change the amino acid sequence of the gliadin so that it no longer causes coeliac disease (typically by no longer expressing the epitope of the invention).
[0186] This can be done for example by introducing mutations into 1, 2, 3 or more or all of such gliadin genes in the cell, for example into coding or non-coding (e.g. promoter regions). Such mutations can be any of the type or length of mutations discussed herein (e.g., in relation to homologous proteins). The mutations can be introduced in a directed manner (e.g., using site directed mutagenesis or homologous recombination techniques) or in a random manner (e.g. using a mutagen, and then typically selecting for mutagenised cells which no longer express the gliadin (or a gliadin sequence which causes coeliac disease)).
[0187] In the case of plants or plant cells that express a protein that comprises a sequence able to act as an antagonist such a plant or plant cell may express a wild-type gliadin protein (e.g. one which causes coeliac disease). Preferably though the presence of the antagonist sequence will cause reduced coeliac disease symptoms (such as no symptoms) in an individual who ingests a food comprising protein from the plant or plant cell.
[0188] The polynucleotide which is present in (or which was transformed into) the plant cell will generally comprise promoter capable of expressing the mutant gliadin protein the plant cell. Depending on the pattern of expression desired, the promoter may be constitutive, tissue- or stage-specific: and/or inducible. For example, strong constitutive expression in plants can be obtained with the CAMV 35S, Rubisco ssu, or histone promoters. Also, tissue-specific or stage-specific promoters may be used to target expression of protein of the invention to particular tissues in a transgenic plant or to particular stages in its development. Thus, for example seed-specific, root-specific, leaf-specific, flower-specific etc promoters may be used. Seed-specific promoters include those described by Dalta et al (Biotechnology Ann. Rev. (1997), 3, pp. 269-296). Particular examples ofseed-specific promoters are napin promoters (EP-A-0 255, 378), phaseolin promoters, glutenine promoters, helianthenine promoters (WO92/17580), albumin promoters (WO98/45460), oleosin promoters (WO98/45461) and ATS1 and ATS3 promoters (PCT/US98/06798).
[0189] The cell may be in any form. For example, it may be an isolated cell, e.g. a protoplast, or it may be part of a plant tissue, e.g. a callus, or a tissue excised from a plant, or it may be part of a whole plant. The cell may be of any type (e.g. of any type of plant part). For example, an undifferentiated cell, such as a callus cell; or a differentiated cell, such as a cell of a type found in embryos, pollen, roots, shoots or leaves. Plant parts include roots; shoots: leaves; and parts involved in reproduction, such as pollen, ova, stamens, anthers, petals, sepals and other flower parts.
[0190] The invention provides a method of obtaining a transgenic plant cell comprising transforming a plant cell with a polynucleotide or vector of the invention to give a transgenic plant cell. Any suitable transformation method may be used (in the case of wheat the techniques disclosed in Vasil V et al, Biotechnology 10, 667-674 (1992) may be used). Preferred transformation techniques include electroporation of plant protoplasts and particle bombardment. Transformation may thus give rise to a chimeric tissue or plant in which some cells are transgenic and some are not.
[0191] The cell of the invention or thus obtained cell may be regenerated into a transgenic plant by techniques known in the art. These may involve the use of plant growth substances such as auxins, giberellins and/or cytokinins to stimulate the growth and/or division of the transgenic cell. Similarly, techniques such as somatic embryogenesis and meristem culture may be used. Regeneration techniques are well known in the art and examples can be found in. e.g. U.S. Pat. No. 4,459,355. U.S. Pat. No. 4,536,475, U.S. Pat. No. 5,464,763, U.S. Pat. No. 5,177,010, U.S. Pat. No. 5,187,073. EP 267,159, EP 604, 662, EP 672, 752, U.S. Pat. No. 4,945,050, U.S. Pat. No. 5,036,006. U.S. Pat. No. 5,100,792, U.S. Pat. No. 5,371,014. U.S. Pat. No. 5,478,744, U.S. Pat. No. 5,179,022, U.S. Pat. No. 5,565,346, U.S. Pat. No. 5,484,956, U.S. Pat. No. 5,508,468, U.S. Pat. No. 5,538,877, U.S. Pat. No. 5,554,798, U.S. Pat. No. 5,489,520, U.S. Pat. No. 5,510,318, U.S. Pat. No. 5,204,253, U.S. Pat. No. 5,405,765, EP 442,174, EP 486,233, EP 486.234. EP 539,563, EP 674.725. WO91/02071 and WO 95/06128.
[0192] In many such techniques, one step is the formation of a callus, i.e. a plant tissue comprising expanding and/or dividing cells. Such calli are a further aspect of the invention as are other types of plant cell cultures and plant parts. Thus, for example, the invention provides transgenic plant tissues and parts, including embryos, meristems, seeds, shoots, roots, stems, leaves and flower parts. These may be chimeric in the sense that some of their cells are cells of the invention and some are not. Transgenic plant parts and tissues, plants and seeds of the invention may be of any of the plant species mentioned herein.
[0193] Regeneration procedures will typically involve the selection of transformed cells by means of marker genes.
[0194] The regeneration step gives rise to a first generation transgenic plant. The invention also provides methods of obtaining transgenic plants of further generations from this first generation plant. These are known as progeny transgenic plants. Progeny plants of second, third, fourth, fifth, sixth and further generations may be obtained from the first generation transgenic plant by any means known in the art.
[0195] Thus, the invention provides a method of obtaining a transgenic progeny plant comprising obtaining a second-generation transgenic progeny plant from a first-generation transgenic plant of the invention, and optionally obtaining transgenic plants of one or more further generations from the second-generation progeny plant thus obtained.
[0196] Progeny plants may be produced from their predecessors of earlier generations by any known technique. In particular, progeny plants may be produced by:
[0197] obtaining a transgenic seed from a transgenic plant of the invention belonging to a previous generation, then obtaining a transgenic progeny plant of the invention belonging to a new generation by growing up the transgenic seed; and/or
[0198] propagating clonally a transgenic plant of the invention belonging to a previous generation to give a transgenic progeny plant of the invention belonging to a new generation: and/or
[0199] crossing a first-generation transgenic plant of the invention belonging to a previous generation with another compatible plant to give a transgenic progeny plant of the invention belonging to a new generation: and optionally
[0200] obtaining transgenic progeny plants of one or more further generations from the progeny plant thus obtained.
[0201] These techniques may be used in any combination. For example, clonal propagation and sexual propagation may be used at different points in a process that gives rise to a transgenic plant suitable for cultivation. In particular, repetitive back-crossing with a plant taxon with agronomically desirable characteristics may be undertaken. Further steps of removing cells from a plant and regenerating new plants therefrom may also be carried out.
[0202] Also, further desirable characteristics may be introduced by transforming the cells, plant tissues, plants or seeds, at any suitable stage in the above process, to introduce desirable coding sequences other than the polynucleotides of the invention. This may be carried out by the techniques described herein for the introduction of polynucleotides of the invention.
[0203] For example, further transgenes may be selected from those coding for other herbicide resistance traits, e.g. tolerance to: Glyphosate (e.g. using an EPSP synthase gene (e.g. EP-A-0 293,358) or a glyphosate oxidoreductase (WO 92/000377) gene); or tolerance to fosametin: a dihalobenzonitrile; glufosinate, e.g. using a phosphinothrycin acetyl transferase (PAT) or glutamine synthase gene (cf. EP-A-0 242,236); asulam, e.g. using a dihydropteroate synthase gene (EP-A-0 369,367); or a sulphonylurea, e.g. using an ALS gene): diphenyl ethers such as acifluorfen or oxyfluorfen, e.g. using a protoporphyrogen oxidase gene); an oxadiazole such as oxadiazon: a cyclic imide such as chlorophthalim; a phenyl pyrazole such as TNP, or a phenopylate or carbamate analogue thereof.
[0204] Similarly, genes for beneficial properties other than herbicide tolerance may be introduced. For example, genes for insect resistance may be introduced, notably genes encoding Bacillus thuringiensis (Bt) toxins. Likewise, genes for disease resistance may be introduced, e.g. as in WO91/02701 or WO95/06128.
[0205] Typically, a protein of the invention is expressed in a plant of the invention. Depending on the promoter used, this expression may be constitutive or inducible. Similarly, it may be tissue- or stage-specific, i.e. directed towards a particular plant tissue (such as any of the tissues mentioned herein) or stage in plant development.
[0206] The invention also provides methods of obtaining crop products by harvesting, and optionally processing further, transgenic plants of the invention. By crop product is meant any useful product obtainable from a crop plant.
Products that Contain Mutant Gliadin Proteins or Proteins that Comprise Sequence Capable of Acting as an Antagonist
[0207] The invention provides a product that comprises the mutant gliadin proteins or protein that comprises sequence capable of acting as an antagonist. This is typically derived from or comprise plant parts from plants mentioned herein which express such proteins. Such a product may be obtainable directly by harvesting or indirectly, by harvesting and further processing the plant of the invention. Directly obtainable products include grains. Alternatively, such a product may be obtainable indirectly, by harvesting and further processing. Examples of products obtainable by further processing are flour or distilled alcoholic beverages; food products made from directly obtained or further processed material, e.g. baked products (e.g. bread) made from flour. Typically such food products, which are ingestible and digestible (i.e. non-toxic and of nutrient value) by human individuals.
[0208] In the case of food products that comprise the protein which comprises an antagonist sequence the food product may also comprise wild-type gliadin, but preferably the antagonist is able to cause a reduction (e.g. completely) in the coeliac disease symptoms after such food is ingested.
[0209] The invention is illustrated by the following nonlimiting Examples:
Example 1
[0210] We carried out epitope mapping in Coeliac disease by using a set of 51 synthetic 15-mer peptides that span the complete sequence of a fully characterized a-gliadin, "A-gliadin" (see Table 1). A-Gliadin peptides were also individually treated with tTG to generate products that might mimic those produced in vivo.sup.3. We also sought to study Coeliac disease patients at the point of initiation of disease relapse to avoid the possibility that epitope "spreading" or "exhaustion" may have occurred, as described in experimental infectious and autoimmune diseases.
Clinical and A-Gliadin Specific T Cell Responses with 3 and 10 Day Bread Challenge
[0211] In a pilot study, two subjects with Cocliac disease in remission, defined by absence of serum anti-endomysial antibody (EMA), on a gluten free diet were fed four slices of standard gluten-containing white bread daily in addition to their usual gluten free diet. Subject 1 ceased bread because of abdominal pain, mouth ulcers and mild diarrhoea after three days, but Subject 2 continued for 10 days with only mild nausea at one week. The EMA became positive in Subject 2 one week after the bread challenge, indicating the bread used had caused a relapse of Coeliac disease. But in Subject 1, EMA remained negative up to two months after bread challenge. In both subjects, symptoms that appeared with bread challenge resolved within two days after returning to gluten free diet.
[0212] PBMC responses in IFN.gamma. ELISPOT assays to A-gliadin peptides were not found before or during bread challenge. But from the day after bread withdrawal (Day 4) in Subject 1 a single pool of 5 overlapping peptides spanning A-gliadin 51-85 (Pool 3) treated with tTG showed potent IFN.gamma. responses (see FIG. 1a). In Subject 1, the PBMC IFN.gamma. response to A-gliadin peptide remained targeted to Pool 3 alone and was maximal on Day 8. The dynamics and magnitude of the response to Pool 3 was similar to that elicited by a-chymotrypsin digested gliadin. PBMC IFN.gamma. responses to tTG-treated Pool 3 were consistently 5 to 12-fold greater than Pool 3 not treated with tTG, and responses to a-chymotrypsin digested gliadin were 3 to 10-fold greater if treated with tTG. In Subject 2, Pool 3 treated with tTG was also the only immunogenic set of A-gliadin peptides on Day 8, but this response was weaker than Subject 1, was not seen on Day 4 and by Day 11 the response to Pool 3 had diminished and other tTG-treated pools of A-gliadin peptides elicited stronger IFN.alpha. responses (see FIG. 1b).
[0213] The pilot study indicated that the initial T cell response in these Coeliac disease subjects was against a single tTG-treated A-gliadin pool of five peptides and was readily measured in peripheral blood. But if antigen exposure is continued for ten days instead of three, T cell responses to other A-gliadin peptides appear, consistent with epitope spreading.
Coeliac Disease-Specific IFN-g Induction by tTG-Treated A-Gliadin Peptides
[0214] In five out of six further Coeliac disease subjects on gluten free diet (see Table 1), bread challenge for three days identified tTG-treated peptides in Pool 3, and in particular, peptides corresponding to 56-70 (12) and 60-75 (13) as the sole A-gliadin components eliciting IFN.gamma. from PBMC (see FIG. 2). IL-10 ELISPOT assays run in parallel to IFN.gamma. ELISPOT showed no IL-10 response to tTG-treated peptides 12 or 13. In one subject, there were no IFN.gamma. responses to any A-gliadin peptide or .alpha.-chymotrypsin digested gliadin before, during or up to four days after bread challenge. In none of these Coeliac disease subjects did EMA status change from baseline when measured for up to two months after bread challenge.
[0215] PBMC from four healthy, EMA-negative subjects with the HLA-DQ alleles .alpha.1*0501, .beta.1*0201 (ages 28-52, 2 females) who had been challenged for three days with bread after following a gluten free diet for one month, showed no IFN.gamma. responses above the negative control to any of the A-gliadin peptides with or without tTG treatment. Thus, induction of IFN.gamma. in PBMC to tTG-treated Pool 3 and A-gliadin peptides 56-70 (12) and 60-75 (13) were Coeliac disease specific (7/8 vs. 0/4, p<0.01 by Chi-squared analysis).
Fine Mapping of the Minimal A-Gliadin T Cell Epitope
[0216] tTG-treated peptides representing truncations of A-gliadin 56-75 (SEQ ID NO:5) revealed that the same core peptide sequence QPQLP (SEQ ID NO:9) was essential for antigenicity in all of the five Coeliac disease subjects assessed (see FIG. 3). PBMC IFN.gamma. responses to tTG-treated peptides spanning this core sequence beginning with the 7-mer PQPQLPY (SEQ ID NO:4) and increasing in length, indicated that the tTG-treated 17-mer QLQPFPQPQLPYPQPQS (SEQ ID NO: 10) (A-gliadin 57-73) possessed optimal activity in the IFN.gamma. ELISPOT (see FIG. 4).
Deamidation of Q65 by tTG Generates the Immunodominant T Cell Epitope in A-Gliadin
[0217] HPLC analysis demonstrated that tTG treatment of A-gliadin 56-75 (SEQ ID NO:5) generated a single product that eluted marginally later than the parent peptide. Amino acid sequencing indicated that out of the six glutamine (Q) residues contained in A-gliadin 56-75, Q65 (SEQ ID NO:5) was preferentially deamidated by tTG (see FIG. 5). Bioactivity of peptides corresponding to serial expansions from the core A-gliadin 62-68 sequence in which glutamate (E) replaced Q65, was equivalent to the same peptides with Q65 after tTG-treatment (see FIG. 4a). Replacement of Q57 and Q72 by E together or alone, with E65 did not enhance antigenicity of the 17-mer in the three Coeliac disease subjects studied (see FIG. 6). Q57 and Q72 were investigated because glutamine residues followed by proline in gliadin peptides are not deamidated by tTG in vitro (W. Vader et al, Proceedings 8th International Symposium Coeliac Disease). Therefore, the immunodominant T cell epitope was defined as QLQPFPQPELPYPQPQS (SEQ ID NO:2).
Immunodominant T Cell Epitope Response is DQ2-Restricted and CD4 Dependent
[0218] In two Coeliac disease subjects homozygous for HLA-DQ .alpha.1*0501, .beta.1*0201, anti-DQ monoclonal antibody blocked the ELISPOT IFN.gamma. response to tTG-treated A-gliadin 56-75 (SEQ ID NO:5), but anti-DP and -DR antibody did not (see FIG. 7). Anti-CD4 and anti-CD8 magnetic bead depletion of PBMC from two Coeliac disease subjects indicated the IFN.gamma. response to tTG-treated A-gliadin 56-75 (SEQ ID NO:5) is CD4 T cell-mediated.
Discussion
[0219] In this study we describe a rather simple dietary antigen challenge using standard white bread to elicit a transient population of CD4 T cells in peripheral blood of Coeliac disease subjects responsive to a tTG-treated A-gliadin 17-mer with the sequence: QLQPFPQPELPYPQPQS (SEQ ID NO:2) (residues 57-73). The immune response to A-gliadin 56-75 (Q.fwdarw.E65) (SEQ ID NO: 11) is restricted to the Coeliac disease-associated HLA allele, DQ .alpha.1*0501, .beta.1*0201. Tissue transglutaminase action in vitro selectively deamidates Q65. Elicited peripheral blood IFNg responses to synthetic A-gliadin peptides with the substitution Q.fwdarw.E65 is equivalent to tTG-treated Q65 A-gliadin peptides; both stimulate up to 10-fold more T cells in the IFNg ELISPOT than unmodified Q65 A-gliadin peptides.
[0220] We have deliberately defined this Coeliac disease-specific T cell epitope using in vivo antigen challenge and short-term ex vivo immune assays to avoid the possibility of methodological artifacts that may occur with the use of T cell clones in epitope mapping. Our findings indicate that peripheral blood T cell responses to ingestion of gluten are rapid but short-lived and can be utilized for epitope mapping. In vivo antigen challenge has also shown there is a temporal hierarchy of immune responses to A-gliadin peptides; A-gliadin 57-73 (SEQ ID NO: 10) modified by tTG not only elicits the strongest IFNg response in PBMC but it is also the first IFNg response to appear.
[0221] Because we have assessed only peptides spanning A-gliadin, there may be other epitopes in other gliadins of equal or greater importance in the pathogenesis of Coeliac disease. Indeed, the peptide sequence at the core of the epitope in A-gliadin that we have identified PQPQLPY (SEQ ID NO:4) is shared by several other gliadins (SwissProt and Trembl accession numbers: P02863. Q41528, Q41531, Q41533. Q9ZP09, P04722, P04724. P18573). However, A-gliadin peptides that have previously been shown to possess bioactivity in biopsy challenge and in vivo studies (for example: 31-43, 44-55, and 206-217).sup.4,5 did not elicit IFNg responses in PBMC following three day bread challenge in Coeliac disease subjects. These peptides may be "secondary" T cell epitopes that arise with spreading of the immune response.
Example 2
The Effect on T Cell Recognition of Substitutions in the Immunodominant Epitope
[0222] The effect of substituting the glutamate at position 65 in the 57-73 A-gliadin epitope was determined by measuring peripheral blood responses against the substituted epitopes in an IFN.gamma. ELISPOT assay using synthetic peptides (at 50 .mu.g/ml). The responses were measured in 3 Coeliac disease subjects 6 days after commencing gluten challenge (4 slices bread daily for 3 days). Results are shown in table 3 and FIG. 8. As can be seen substitution of the glutamate to histidine, tyrosine, tryptophan, lysine, proline or arginine stimulated a response whose magnitude was less than 10% of the magnitude of the response to the immunodominant epitope. Thus mutation of A-gliadin at this position could be used to produce a mutant gliadin with reduce or absent immunoreactivity.
Example 3
[0223] Testing the Immunoreactivity of Equivalent Peptides from Other Naturally Occurring Gliadins
[0224] The immunoreactivity of equivalent peptides form other naturally occurring wheat gliadins was assessed using synthetic peptides corresponding to the naturally occurring sequences which were then treated with transglutaminase. These peptides were tested in an ELISPOT in the same manner and with PBMCs from the same subjects as described in Example 2. At least five of the peptides show immunoreactivity comparable to the A-gliadin 57-73 E65 (SEQ ID NO:2) peptide (after transglutaminase treatment) indicating that other gliadin proteins in wheat are also likely to induce this Coeliac disease-specific immune response (Table 4 and FIG. 9).
Methods
Subjects:
[0225] Patients used in the study attended a Coeliac Clinic in Oxford, United Kingdom. Coeliac disease was diagnosed on the basis of typical small intestinal histology, and normalization of symptoms and small intestinal histology with gluten free diet.
[0226] Tissue Typing:
[0227] Tissue typing was performed using DNA extracted from EDTA-anticoagulated peripheral blood. HLA-DQA and DQB genotyping was performed by PCR using sequence-specific primer mixes.sup.6-8.
[0228] Anti-Endomysial Antibody Assay:
[0229] EMA were detected by indirect immunofluorescence using patient serum diluted 1:5 with monkey oesophagus, followed by FITC-conjugated goat anti-human IgA. IgA was quantitated prior to EMA, none of the subjects were IgA deficient.
[0230] Antigen Challenge:
[0231] Coeliac disease subjects following a gluten free diet, consumed 4 slices of gluten-containing bread (50 g/slice, Sainsbury's "standard white sandwich bread") daily for 3 or 10 days. EMA was assessed the week before and up to two months after commencing the bread challenge. Healthy subjects who had followed a gluten free diet for four weeks, consumed their usual diet including four slices of gluten-containing bread for three days, then returned to gluten free diet for a further six days.
[0232] IFN.gamma. and IL-O ELISPOT:
[0233] PBMC were prepared from 50-100 ml of venous blood by Ficoll-Hypaque density centrifugation. After three washes, PBMC were resuspended in complete RPMI containing 10% heat inactivated human AB serum. ELISPOT assays for single cell secretion of IFN.gamma. and IL-10 were performed using commercial kits (Mabtech; Stockholm, Sweden) with 96-well plates (MAIP-S-45; Millipore, Bedford, Mass.) according to the manufacturers instructions (as described elsewhere.sup.9) with 2-5.times.10.sup.5 (IFN.gamma.) or 0.4-1.times.10.sup.5 (IL-10) PBMC in each well. Peptides were assessed in duplicate wells, and Mycobacterium tuberculosis purified protein derivative (PPD RT49) (Serum Institute; Copenhagen, Denmark) (20 .mu.g/ml) was included as a positive control in all assays.
[0234] Peptides:
[0235] Synthetic peptides were purchased from Research Genetics (Huntsville, Ala.) Mass-spectroscopy and HPLC verified peptides' authenticity and >70% purity. Digestion of gliadin (Sigma; G-3375) (100 mg/ml) with .alpha.-chymotrypsin (Sigma; C-3142) 200:1 (w/w) was performed at room temperature in 0.1 M NH.sub.4HCO.sub.3 with 2M urea and was halted after 24 h by heating to 98.degree. C. for 10 minutes. After centrifugation (13,000 g, 10 minutes), the gliadin digest supernatant was filter-sterilized (0.2 mm). Digestion of gliadin was verified by SDS-PAGE and protein concentration assessed. .alpha.-Chymotrypsin-digested gliadin (640 .mu.g/ml) and synthetic gliadin peptides (15-mers: 160 .mu.g/ml, other peptides: 0.1 mM) were individually treated with tTG (Sigma; T-5398) (50 .mu.g/ml) in PBS+CaCl.sub.2) 1 mM for 2 h at 37.degree. C. Peptides and peptide pools were aliquotted into sterile 96-well plates and stored frozen at -20.degree. C. until use.
[0236] Amino Acid Sequencing of Peptides:
[0237] Reverse phase HPLC was used to purify the peptide resulting from tTG treatment of A-gliadin 56-75 (SEQ ID NO:5). A single product was identified and subjected to amino acid sequencing (automated sequencer Model 494A, Applied Biosystems, Foster City, Calif.). The sequence of unmodified G56-75 was confirmed as: LQLQPFPQPQLPYPQPQSFP (SEQ ID NO:5), and tTG treated G56-75 was identified as: LQLQPFPQPELPYPQPQSFP (SEQ ID NO: 11). Deamidation of glutamyl residues was defined as the amount (pmol) of glutamate recovered expressed as a percent of the combined amount of glutamine and glutamate recovered in cycles 2, 4, 8, 10, 15 and 17 of the amino acid sequencing. Deamidation attributable to tTG was defined as (% deamidation of glutamine in the tTG treated peptide-% deamidation in the untreated peptide)/(100-% deamidation in the untreated peptide).
CD4/CD8 and HLA Class II Restriction:
[0238] Anti-CD4 or anti-CD8 coated magnetic beads (Dynal, Oslo, Norway) were washed four times with RPMI then incubated with PBMC in complete RPMI containing 10% heat inactivated human AB serum (5.times.10.sup.6 cells/ml) for 30 minutes on ice. Beads were removed using a magnet and cells remaining counted. In vivo HLA-class II restriction of the immune response to tTG-treated A-gliadin 56-75 (SEQ ID NO:5) was established by incubating PBMC (5.times.10.sup.6 cells/ml) with anti-HLA-DR (L243). -DQ (L2), and -DP (B7.21) monoclonal antibodies (10 .mu.g/ml) at room temperature for one hour prior to the addition of peptide.
Example 4
Mucosal Integrin Expression by Gliadin-Specific Peripheral Blood Lymphocytes
[0239] Interaction between endothelial and lymphocyte adressins facilitates homing of organ-specific lymphocytes. Many adressins are known. The heterodimer .alpha..sub.4.beta..sub.7 is specific for lamina propria gut and other mucosal lymphocytes, and .alpha..sup.E.beta..sub.7 is specific and intra-epithelial lymphocytes in the gut and skin. Approximately 30% of peripheral blood CD4 T cells express .alpha..sub.4.beta..sub.7 and are presumed to be in transit to a mucosal site, while 5% of peripheral blood T cells express .alpha..sup.E.beta..sub.7. Immunomagnetic beads coated with antibody specific for .alpha..sup.E or .beta..sub.7 deplete PBMC of cells expressing .alpha..sup.E.beta..sub.7 or .alpha..sup.E.beta..sub.7 and .alpha..sub.4.beta..sub.7, respectively. In combination with ELISpot assay, immunomagnetic bead depletion allows determination of gliadin-specific T cell addressin expression that may identify these cells as homing to a mucosal surface. Interestingly, gluten challenge in vivo is associated with rapid influx of CD4 T cells to the small intestinal lamina propria (not intra-epithelial sites), where over 90% lymphocytes express .alpha..sub.4.beta..sub.7.
[0240] Immunomagnetic beads were prepared and used to deplete PBMC from coeliac subjects on day 6 or 7 after commencing 3 day gluten challenge. FACS analysis demonstrated .alpha..sup.E beads depleted approximately 50% of positive CD4 T cells, while .beta.7 beads depleted all .beta.7 positive CD4 T cells. Depletion of PBMC using CD4- or .beta.7-beads, but not CD8- or .alpha..sup.E-beads, abolished responses in the interferon gamma ELISpot. tTG gliadin and PPD responses were abolished by CD4 depletion, but consistently affected by integrin-specific bead depletion.
[0241] Thus A-gliadin 57-73 QE65-(SEQ ID NO:2)-specific T cells induced after gluten challenge in coeliac disease express the integrin, .alpha..sub.4.beta..sub.7, present on lamina propria CD4 T cells in the small intestine.
Example 5
Optimal T Cell Epitope Length
[0242] Previous data testing peptides from 7 to 17 amino acids in length spanning the core of the dominant T cell epitope in A-gliadin indicated that the 17mer, A-gliadin 57-73 QE65 (SEQ ID NO:2) induced maximal responses in the interferon gamma Elispot using peripheral blood mononuclear cells (PBMC) from coeliac volunteers 6 days after commencing a 3-day gluten challenge.
[0243] Peptides representing expansions form the core sequence of the dominant T cell epitope in A-gliadin were assessed in the IFN gamma ELISPOT using peripheral blood mononuclear cells (PBMC) from coeliac volunteers in 6 days after commencing a 3-day gluten challenge (n=4). Peptide 13: A-gliadin 59-71 QE65 (13mer), peptide 15: 58-72 QE65 (15mer), . . . , peptide 27: 52-78 SE65 (27mer).
[0244] As shown in FIG. 11 expansion of the A-gliadin 57-73 QE65 (SEQ ID NO:2) sequence does not substantially enhance response in the IFNgamma Elispot. Subsequent Examples characterise the agonist and antagonist activity of A-gliadin 57-73 QE65 (SEQ ID NO:2) using 17mer peptides.
Example 6
[0245] Comparison of A-gliadin 57-73 QE65 (SEQ ID NO:2) with Other DQ2-Restricted T Cell Epitopes in Coeliac Disease
[0246] Dose response studies were performed using peptides corresponding to unmodified and transglutaminase-treated peptides corresponding to T cell epitopes of gluten-specific T cell clones and lines from intestinal biopsies of coeliac subjects. Responses to peptides were expressed as percent of response to A-gliadin 57-73 QE65 (SEQ ID NO:2). All subjects were HLA-DQ2+ (none were DQ8+).
[0247] The studies indicate that A-gliadin 57-73 QE65 (SEQ ID NO:2) is the most potent gliadin peptide for induction of interferon gamma in the ELISpot assay using coeliac PBMC after gluten challenge (see FIG. 12a-h, and Tables 5 and 6). The second and third epitopes are suboptimal fragments of larger peptides i.e. A-gliadin 57-73 QE65 (SEQ ID NO:2) and GDA4_WHEAT P04724-84-100 QE92. The epitope is only modestly bioactive (approximately 1/20.sup.th as active as A-gliadin 57-73 QE65 (SEQ ID NO:2) after blank is subtracted).
[0248] A-gliadin 57-73 QE65 (SEQ ID NO:2) is more potent than other known T cell epitopes in coeliac disease. There are 16 polymorphisms of A-gliadin 57-73 (SEQ ID NO: 10) (including the sequence PQLPY (SEQ ID NO: 12)) amongst sequenced gliadin genes, their bioactivity is assessed next.
Example 7
Comparison of Gliadin- and A-Gliadin 57-73 QE65-(SEQ ID NO:2)-Specific Responses in Peripheral Blood
[0249] The relative contribution of the dominant epitope. A-gliadin 57-73 QE65 (SEQ ID NO:2), to the total T cell response to gliadin in coeliac disease is a critical issue. Pepsin-trypsin and chymotrypsin-digested gliadin have been traditionally used as antigen for development of T cell lines and clones in coeliac disease. However, it is possible that these proteases may cleave through certain peptide epitopes. Indeed, chymotrypsin digestion of recombinant ac9-gliadin generates the peptide QLQPFPQPELPY (SEQ ID NO:13), that is a truncation of the optimal epitope sequence QLQPFPQPELPYPQPQS (SEQ ID NO:2) (see above). Transglutaminase-treatment substantially increases the potency of chymotrypsin-digested gliadin in proliferation assays of gliadin-specific T cell clones and lines. Hence, transglutaminase-treated chymotrypsin-digested gliadin (tTG gliadin) may not be an ideal antigen, but responses against this mixture may approximate the "total" number of peripheral blood lymphocyte specific for gliadin. Comparison of responses against A-gliadin 57-73 QE65 (SEQ ID NO:2) and tTG gliadin in the ELISpot assay gives an indication of the contribution of this dominant epitope to the overall immune response to gliadin in coeliac disease, and also be a measure of epitope spreading.
[0250] PBMC collected on day 6 or 7 after commencing gluten challenge in 4 coeliac subjects were assessed in dose response studies using chymotrypsin-digested gliadin +/-tTG treatment and compared with ELISpot responses to an optimal concentration of A-gliadin 57-73 QE65 (SEQ ID NO:2) (25 mcg/ml). TTG treatment of gliadin enhanced PBMC responses in the ELISpot approximately 10-fold (tTG was comparable to blank when assessed alone) (see FIG. 13a-c). In the four coeliac subjects studied, A-gliadin 57-73 QE65 (SEQ ID NO:2) (25 mcg/ml) elicited responses between 14 and 115% those of tTG gliadin (500 mcg/ml), and the greater the response to A-gliadin 57-73 QE65 (SEQ ID NO:2) the greater proportion it represented of the tTG gliadin response.
[0251] Relatively limited data suggest that A-gliadin 57-73 QE65 (SEQ ID NO:2) responses are comparable to tTG gliadin in some subjects. Epitope spreading associated with more evolved anti-gliadin T cell responses may account for the smaller contribution of A-gliadin 57-73 QE65 (SEQ ID NO:2) to "total" gliadin responses in peripheral blood in some individuals. Epitope spreading may be maintained in individuals with less strictly gluten free diets.
Example 8
Definition of Gliadin Peptides Bioactive in Coeliac Disease: Polymorphisms of A-Gliadin 57-73 (SEQ ID NO: 10)
[0252] Overlapping 15mer peptides spanning the complete sequence of A-gliadin were assessed in order to identify the immunodominant sequence in coeliac disease. A-gliadin was the first fully sequenced alpha gliadin protein and gene, but is one of approximately 30-50 related alpha gliadin proteins in wheat. Twenty five distinct alpha-gliadin genes have been identified by searching protein data bases, Swiss-Prot and TREMBL describing a further 8 alpha-gliadins. Contained within these 25 alpha-gliadins, there are 16 distinct polymorphisms of the sequence corresponding to A-gliadin 57-73 (SEQ ID NO: 10) (see Table 7).
[0253] Synthetic peptides corresponding to these 16 polymorphisms, in an unmodified form, after treatment with transglutaminase in vitro, as well as with glutamate substituted at position 10 (equivalent to QE65 in A-gliadin 57-73 (SEQ ID NO: 10)) were assessed using PBMC from coeliac subjects, normally following a gluten free diet, day 6 or 7 after gluten challenge in interferon gamma ELISpot assays. Glutamate-substituted peptides were compared at three concentrations (2.5, 25 and 250 mcg/ml), unmodified peptide and transglutaminase-treated peptides were assessed at 25 mcg/ml only. Bioactivity was expressed as % of response associated with A-gliadin 57-73 QE65 (SEQ ID NO:2) 25 mcg/ml in individual subjects (n=4). (See FIG. 14).
[0254] Bioactivity of "wild-type" peptides was substantially increased (>5-fold) by treatment with transglutaminase. Transglutaminase treatment of wild-type peptides resulted in bioactivity similar to that of the same peptides substituted with glutamate at position 10. Bioactivities of five glutamate-substituted peptides (B, C, K, L, M), were >70% that of A-gliadin 57-73 QE65 (SEQ ID NO:2) (A), but none was significantly more bioactive than A-gliadin 57-73 QE65 (SEQ ID NO:2). PBMC responses to glutamate-substituted peptides at concentrations of 2.5 and 250 mcg/ml were comparable to those at 25 mcg/ml. Six glutamate-substituted gliadin peptides (H, I, J, N, O, P) were <15% as bioactive as A-gliadin 57-73 QE65 (SEQ ID NO:2). Other peptides were intermediate in bioactivity.
[0255] At least six gliadin-derived peptides are equivalent in potency to A-gliadin 57-73 QE65 (SEQ ID NO:2) after modification by transglutaminase. Relatively non-bioactive polymorphisms of A-gliadin 57-73 (SEQ ID NO: 10) also exist. These data indicate that transglutaminase modification of peptides from several gliadins of Triuicum aestivum, T. uartu and T. spelta may be capable of generating the immunodominant T cell epitope in coeliac disease.
[0256] Genetic modification of wheat to generate non-coeliac-toxic wheat may likely require removal or modification of multiple gliadin genes. Generation of wheat containing gliadins or other proteins or peptides incorporating sequences defining altered peptide ligand antagonists of A-gliadin 57-73 (SEQ ID NO: 10) is an alternative strategy to generate genetically modified wheat that is therapeutic rather than "non-toxic" in coeliac disease.
Example 9
Definition of Core Epitope Sequence:
[0257] Comparison of peptides corresponding to truncations of A-gliadin 56-75 (SEQ ID NO:5) from the N- and C-terminal indicated that the core sequence of the T cell epitope is PELPY (A-gliadin 64-68 (SEQ ID NO:759)). Attempts to define non-agonists and antagonists will focus on variants of A-gliadin that are substituted at residues that substantially contribute to its bioactivity.
[0258] Peptides corresponding to A-gliadin 57-73 QE65 (SEQ ID NO:2) with alanine (FIG. 15) or lysine (FIG. 16) substituted for residues 57 to 73 were compared in the IFN gamma ELISPOT using peripheral blood mononuclear cells (PBMC) from coeliac volunteers 6 days after commencing a 3-day gluten challenge (n=8). (BL is blank, E is A-gliadin 57-73 QE65: QLQPFPQPELPYPQPQS (SEQ ID NO:2)).
[0259] It was found that residues corresponding to A-gliadin 60-70 QE65 (PFPQPELPYPQ (SEQ ID NO: 14)) contribute substantially to the bioactivity in A-gliadin 57-73 QE65 (SEQ ID NO:2). Variants of A-gliadin 57-73 QE65 (SEQ ID NO:2) substituted at positions 60-70 are assessed in a 2-step procedure. Initially, A-gliadin 57-73 QE65 (SEQ ID NO:2) substituted at positions 60-70 using 10 different amino acids with contrasting properties are assessed. A second group of A-gliadin 57-73 QE65 (SEQ ID NO:2) variants (substituted with all other naturally occurring amino acids except cysteine at positions that prove are sensitive to modification) are assessed in a second round.
Example 10
Agonist Activity of Substituted Variants of A-Gliadin 57-73 QE65 (SEQ ID NO:2)
[0260] A-gliadin 60-70 QE65 is the core sequence of the dominant T cell epitope in A-gliadin. Antagonist and non-agonist peptide variants of this epitope are most likely generated by modification of this core sequence. Initially, A-gliadin 57-73 QE65 (SEQ ID NO:2) substituted at positions 60-70 using 10 different amino acids with contrasting properties will be assessed in the IFNgamma ELISPOT using PBMC from coeliac subjects 6 days after starting 3 day gluten challenge. A second group of A-gliadin 57-73 QE65 (SEQ ID NO:2) variants (substituted with all other naturally occurring amino acids except cysteine) at positions 61-70 were also assessed. Both groups of peptides (all at 50 mcg/ml, in duplicate) were assessed using PBMC from 8 subjects and compared to the unmodified peptide (20 replicates per assay). Previous studies indicate that the optimal concentration for A-gliadin 57-73 QE65 (SEQ ID NO:2) in this assay is between 10 and 100 mcg/ml.
[0261] Results are expressed as mean response in spot forming cells (95% confidence interval) as % A-G 57-73 QE65 mean response in each individual. Unpaired t-tests will be used to compare ELISPOT responses of modified peptides with A-G 57-73 QE65. Super-agonists were defined as having a greater response than A-G 57-73 QE65 at a level of significance of p<0.01; partial agonists as having a response less than A-G 57-73 QE65 at a level of significance of p<0.01, and non-agonists as being not significantly different (p>0.01) from blank (buffer without peptide). Peptides with agonist activity 30% or less that of A-gliadin 57-73 QE65 (SEQ ID NO:2) were considered "suitable" partial or non-agonists to assess for antagonistic activity (see Table 8 and FIGS. 17-27).
[0262] The IFNgamma ELISPOT response of PBMC to A-gliadin 57-73 QE65 (SEQ ID NO:2) is highly specific at a molecular level. Proline at position 64 (P64), glutamate at 65 (E65) and leucine at position 66 (L66), and to a lesser extent Q63, P67, Y68 and P69 are particularly sensitive to modification. The substitutions Y61 and Y70 both generate super-agonists with 30%0/greater bioactivity than the parent peptide, probably by enhancing binding to HLA-DQ2 since the motif for this HLA molecule indicates a preference for bulky hydrophobic resides at positions 1 and 9. Eighteen non-agonist peptides were identified. Bioactivities of the variants (50 meg/ml): P65, K64, K65 and Y65 (bioactivity 7-8%/o) were comparable to blank (7%). In total, 57 mutated variants of A-gliadin 57-73 QE65 (SEQ ID NO:2) were 30% or less bioactive than A-gliadin 57-73 QE65 (SEQ ID NO:2).
[0263] The molecular specificity of the peripheral blood lymphocyte (PBL) T cell response to the dominant epitope, A-gliadin 57-73 QE65 (SEQ ID NO:2), is consistently reproducible amongst HLA-DQ2+ coeliac subjects, and is highly specific to a restricted number of amino acids in the core 7 amino acids. Certain single-amino acid variants of A-gliadin 57-73 QE65 (SEQ ID NO:2) are consistently non-agonists in all HLA-DQ2+ coeliac subjects.
Example 11
Antagonist Activity of Substituted Variants
[0264] The homogeneity of the PBL T cell response to A-gliadin 57-73 QE65 (SEQ ID NO:2) in HLA-DQ2+ coeliac disease suggests that altered peptide ligands (APL) capable of antagonism in PBMC ex vivo may exist, even though the PBL T cell response is likely to be poly- or oligo-clonal. APL antagonists are generally weak agonists. Fifty-seven single amino acid-substituted variants of A-gliadin 57-73 QE65 (SEQ ID NO:2) with agonist activity 30% or less have been identified and are suitable candidates as APL antagonists. In addition, certain weakly bioactive naturally occurring polymorphisms of A-gliadin 57-73 QE65 (SEQ ID NO:2) have also been identified (see below) and may be "naturally occurring" APL antagonists. It has also been suggested that competition for binding MHC may also antagonise antigen-specific T cell immune. Hence, non-gliadin peptides that do not induce IFNgamma responses in coeliac PBMC after gluten challenge but are known to bind to HLA-DQ2 may be capable of reducing T cell responses elicited by A-gliadin 57-73 QE65 (SEQ ID NO:2). Two peptides that bind avidly to HLA-DQ2 are HLA class 1 a 46-60 (HLA 1a) (PRAPWIEQEGPEYW (SEQ ID NO: 15)) and thyroid peroxidase (tp) 632-645Y (IDVWLGGLLAENFLPY (SEQ ID NO: 16)).
[0265] Simultaneous addition of peptide (50 .mu.g/ml) or buffer and A-gliadin 57-73 QE65 (SEQ ID NO:2) (10 .mu.g/ml) in IFNgamma ELISPOT using PBMC from coeliac volunteers 6 days after commencing 3 day gluten challenge (n=5). Results were expressed as response with peptide plus A-G 57-73 QE65 (mean of duplicates) as % response with buffer plus A-G 57-73 QE65 (mean of 20 replicates). (See Table 9).
[0266] Four single amino acid-substituted variants of A-gliadin 57-73 QE65 (SEQ ID NO:2) reduce the interferon gamma PBMC ELISPOT response to A-gliadin 57-73 QE65 (SEQ ID NO:2) (p<0.01) by between 25% and 28%, 13 other peptide variants reduce the ELISPOT response by between 18% and 24% (p<0.06). The HLA-DQ2 binder, thyroid peroxidase (tp) 632-645Y reduces PBMC interferon gamma responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) by 31% (p<0.0001) but the other HLA-DQ2 binder, HLA class 1 .alpha. 46-60, does not alter responses (see Tables 9 and 10). The peptide corresponding to a transglutaminase-modified polymorphism of A-gliadin 57-73 (SEQ ID NO:2), SwissProt accession no.: P04725 82-98 QE90 (PQPQPFPPELPYPQPQS (SEQ ID NO: 17)) reduces responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) by 19% (p<0.009) (see Table 11).
[0267] Interferon gamma responses of PBMC to A-gliadin 57-73 QE65 (SEQ ID NO:2) in ELISPOT assays are reduced by co-administration of certain single-amino acid A-gliadin 57-73 QE65 (SEQ ID NO:2) variants, a polymorphism of A-gliadin 57-73 QE65 (SEQ ID NO:2), and an unrelated peptide known to bind HLA-DQ2 in five-fold excess. These finding suggest that altered peptide ligand antagonists of A-gliadin 57-73 QE65 (SEQ ID NO:2) exist. Not only putative APL antagonists but also certain peptides that bind HLA-DQ2 effectively reduce PBL T cell responses to A-gliadin 57-73 QE65 (SEQ ID NO:2).
[0268] These findings support two strategies to interrupt the T cell response to the dominant A-gliadin epitope in HLA-DQ2+ coeliac disease.
[0269] 1. Optimisation of APL antagonists by substituting amino acids at more than one position (64-67) for use as "traditional" peptide pharmaceuticals or for specific genetic modification of gliadin genes in wheat.
[0270] 2. Use of high affinity HLA-DQ2 binding peptides to competitively inhibit presentation of A-gliadin 57-73 QE65 (SEQ ID NO:2) in association with HLA-DQ2.
[0271] These two approaches may be mutually compatible. Super-agonists were generated by replacing F61 and Q70 with tyrosine residues. It is likely these super-agonists resulted from improved binding to HLA-DQ2 rather than enhanced contact with the T cell receptor. By combining these modifications with other substitutions that generate modestly effective APL antagonists might substantially enhance the inhibitory effect of substituted A-gliadin 57-73 QE65 (SEQ ID NO:2) variants.
Example 12
Development of Interferon Gamma ELISpot Using PBMC and A-Gliadin 5 7-73 QE65 (SEQ ID NO:2) and P04724 84-100 QE92 (SEQ ID NO:101) as a Diagnostic for Coeliac Disease: Definition of Immune-Responsiveness in Newly Diagnosed Coeliac Disease
[0272] Induction of responsiveness to the dominant A-gliadin T cell epitope in PBMC measured in the interferon gamma ELISpot follows gluten challenge in almost all DQ2+ coeliac subjects following a long term strict gluten free diet (GFD) but not in healthy DQ2+ subjects after 4 weeks following a strict GFD. A-gliadin 57-73 QE65 (SEQ ID NO:2) responses are not measurable in PBMC of coeliac subjects before gluten challenge and pilot data have suggested these responses could not be measured in PBMC of untreated coeliacs. These data suggest that in coeliac disease immune-responsiveness to A-gliadin 57-73 QE65 (SEQ ID NO:2) is restored following antigen exclusion (GFD). If a diagnostic test is to be developed using the ELISpot assay and PBMC, it is desirable to define the duration of GFD required before gluten challenge is capable of inducing responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) and other immunoreactive gliadin peptides in blood.
[0273] Newly diagnosed DQ2+ coeliac subjects were recruited from the gastroenterology outpatient service. PBMC were prepared and tested in interferon gamma ELISpot assays before subjects commenced GFD, and at one or two weeks after commencing GFD. In addition, gluten challenge (3 days consuming 4 slices standard white bread, 200 g/day) was performed at one or two weeks after starting GFD. PBMC were prepared and assayed on day six are after commencing gluten challenge. A-gliadin 57-73 QE65 (SEQ ID NO:2) (A), P04724 84-100 QE92 (SEQ ID NO: 101) (B) (alone and combined) and A-gliadin 57-73 QP65 (SEQ ID NO:780) (P65) (non-bioactive variant, see above) (all 25 mcg/ml) were assessed.
[0274] All but one newly diagnosed coeliac patient was DQ2+(one was DQ8+) (n=1). PBMC from newly diagnosed coeliacs that were untreated, or after 1 or 2 weeks following GFD did not show responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) and P04724 84-100 QE92 (SEQ ID NO: 101) (alone or combined) that were not significantly different from blank or A-gliadin 57-73 QP65 (SEQ ID NO:780) (n=9) (see FIG. 28). Gluten challenge in coeliacs who had followed GFD for only one week did not substantially enhance responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) or P04724 84-100 QE92 (SEQ ID NO: 101) (alone or combined). But gluten challenge 2 weeks after commencing GFD did induce responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) and P04724 84-100 QE92 (SEQ ID NO: 101) (alone or combined) that were significantly greater than the non-bioactive variant A-gliadin 57-73 QP65 (SEQ ID NO:780) and blank. Although these responses after gluten challenge at 2 weeks were substantial they appear to be less than in subjects >2 months after commencing GFD. Responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) alone were equivalent or greater than responses to P04724 84-100 QE92 (SEQ ID NO: 101) alone or when mixed with A-gliadin 57-73 QE65 (SEQ ID NO:2). None of the subjects experienced troubling symptoms with gluten challenge.
[0275] Immune responsiveness (as measured in PBMC after gluten challenge) to A-gliadin is partially restored 2 weeks after commencing GFD, implying that "immune unresponsiveness" to this dominant T cell epitope prevails in untreated coeliac disease and for at least one week after starting GFD. The optimal timing of a diagnostic test for coeliac disease using gluten challenge and measurement of responses to A-gliadin 57-73 QE65 (SEQ ID NO:2) in the ELISpot assay is at least 2 weeks after commencing a GFD.
[0276] Interferon gamma-secreting T cells specific to A-gliadin 57-73 QE65 (SEQ ID NO:2) cannot be measured in the peripheral blood in untreated coeliacs, and can only be induced by gluten challenge after at least 2 weeks GFD (antigen exclusion). Therefore, timing of a diagnostic test using this methodology is crucial and further studies are needed for its optimization. These finding are consistent with functional anergy of T cells specific for the dominant epitope, A-gliadin 57-73 QE65 (SEQ ID NO:2), reversed by antigen exclusion (GFD).
[0277] This phenomenon has not been previously demonstrated in a human disease, and supports the possibility that T cell anergy may be inducible with peptide therapy in coeliac disease.
Example 13
Comprehensive Mapping of Wheat Gliadin T Cell Epitopes
[0278] Antigen challenge induces antigen-specific T cells in peripheral blood. In coeliac disease, gluten is the antigen that maintains this immune-mediated disease. Gluten challenge in coeliac disease being treated with a gluten free diet leads to the appearance of gluten-specific T cells in peripheral blood, so enabling determination of the molecular specificity of gluten T cell epitopes. As described above, we have identified a single dominant T cell epitope in a model gluten protein, A-gliadin (57-73 deamidated at Q65) (SEQ ID NO:2). In this Example, gluten challenge in coeliac patients was used to test all potential 12 amino acid sequences in every known wheat gliadin protein derived from 111 entries in Genbank. In total, 652 20mer peptides were tested in HLA-DQ2 and HLA-DQ8 associated coeliac disease. Seven of the 9 coeliac subjects with the classical HLA-DQ2 complex (HLA-DQA1*05, HLA-DQB1*02) present in over 90% of coeliacs had an inducible A-gliadin 57-73 QE65-(SEQ ID NO:2)- and gliadin-specific T cell response in peripheral blood. A-gliadin 57-73 (SEQ ID NO: 10) was the only significant .alpha.-gliadin T cell epitope, as well as the most potent gliadin T cell epitope, in HLA-DQ2-associated coeliac disease. In addition, there were as many as 5 families of structurally related peptides that were between 10 and 70% as potent as A-gliadin 57-73 (SEQ ID NO: 10) in the interferon-.gamma. ELISpot assay. These new T cell epitopes were derived from .gamma.- and .omega.-gliadins and included common sequences that were structurally very similar, but not identical to the core sequence of A-gliadin 57-73 (SEQ ID NO: 10) (core sequence: FPQPQLPYP (SEQ ID NO: 18)), for example: FPQPQQPFP (SEQ ID NO: 19) and PQQPQQPFP (SEQ ID NO:20). Although no homologues of A-gliadin 57-73 (SEQ ID NO: 10) have been found in rye or barley, the other two cereals toxic in coeliac disease, the newly defined T cell epitopes in .gamma.- and .omega.-gliadins have exact matches in rye and barley storage proteins (secalins and hordeins, respectively).
[0279] Coeliac disease not associated with HLA-DQ2 is almost always associated with HLA-DQ8. None of the seven HLA-DQ8+ coeliac subjects had inducible A-gliadin 57-73-specific T cell responses following gluten challenge, unless they also possessed the complete HLA-DQ2 complex. Two of 4 HLA-DQ8+ coeliac subjects who did not possess the complete HLA-DQ2 complex, had inducible gliadin peptide-specific T cell responses following gluten challenge. In one HLA-DQ8 subject, a novel dominant T cell epitope was identified with the core sequence LQPQNPSQQQPQ (SEQ ID NO:21). The transglutaminase-deamidated version of this peptide was more potent than the non-deamidated peptide. Previous studies suggest that the transglutaminase-deamidated peptide would have the sequence LQPENPSQEQPE (SEQ ID NO:22): but further studies are required to confirm this sequence. Amongst the healthy HLA-DQ2 (10) and HLA-DQ8 (1) subjects who followed a gluten free diet for a month, gliadin peptide-specific T cell responses were uncommon, seldom changed with gluten challenge, and were never potent T cell epitopes revealed with gluten challenge in coeliac subjects. In conclusion, there are unlikely to be more than six important T cell epitopes in HLA-DQ2-associated coeliac disease, of which A-gliadin 57-73 (SEQ ID NO: 10) is the most potent. HLA-DQ2- and HLA-DQ8-associated coeliac disease do not share the same T cell specificity.
[0280] We have shown that short-term gluten challenge of individuals with coeliac disease following a gluten free diet induces gliadin-specific T cells in peripheral blood. The frequency of these T cells is maximal in peripheral blood on day 6 and then rapidly wanes over the following week. Peripheral blood gliadin-specific T cells express the integrin .alpha.4.beta.7 that is associated with homing to the gut lamina propria. We exploited this human antigen-challenge design to map T cell epitopes relevant to coeliac disease in the archetypal gluten a-gliadin protein, A-gliadin. Using 15mer peptides overlapping by 10 amino acids with and without deamidation by transglutaminase (tTG), we demonstrated that T cells induced in peripheral blood initially target only one A-gliadin peptide, residues 57-73 (SEQ ID NO: 10) in which glutamine at position 65 is deamidated (SEQ ID NO:2). The epitope is HLA-DQ2-restricted, consistent with the intimate association of coeliac disease with HLA-DQ2.
[0281] Coeliac disease is reactivated by wheat, rye and barley exposure. The .alpha./.beta.-gliadin fraction of wheat gluten is consistently toxic in coeliac disease, and most studies have focused on these proteins. The gene cluster coding for .alpha./.beta.-gliadins is located on wheat chromosome 6C. There are no homologues of .alpha./.beta.-gliadins in rye or barley. However, all three of the wheat gliadin subtypes (.alpha./.beta., .gamma., and .omega.) are toxic in coeliac disease. The .gamma.- and .omega.-gliadin genes are located on chromosome 1A in wheat, and are homologous to the secalins and hordeins in rye and barley. There are now genes identified for 61 .alpha.-gliadins in wheat (Triticum aestivum). The .alpha.-gliadin sequences are closely homologous, but the dominant epitope in A-gliadin derives from the most polymorphic region in the .alpha.-gliadin sequence. Anderson et al (1997) have estimated that there are a total of about 150 distinct .alpha.-gliadin genes in T. aestivum, but many are psuedogenes. Hence, it is unlikely that T-cell epitopes relevant to coeliac disease are not included within known .alpha.-gliadin sequences.
[0282] Our work has identified a group of deamidated .alpha.-gliadin peptides almost identical to A-gliadin 57-73 (SEQ ID NO: 10) as potent T cell epitopes specific to coeliac disease. Over 90% of coeliac patients are HLA-DQ2+, and so far, we have only assessed HLA-DQ2+ coeliac subjects after gluten challenge. However, coeliac patients who do not express HLA-DQ2 nearly all carry HLA-DQ8. Hence, it is critical to know whether A-gliadin 57-73 (SEQ ID NO: 10) and its homologues in other wheat, rye and barley gluten proteins are the only T-cell epitopes recognized by T cells induced by gluten challenge in both HLA-DQ2+ and HLA-DQ8+ coeliac disease. If this were the case, design of peptide therapeutics for coeliac disease might only require one peptide.
Homologues of A-Gliadin 57-73 (SEQ ID NO: 10) as T-Cell Epitopes
[0283] Initial searches of SwissProt and Trembl gene databases for cereal genes coding for the core sequence of A-gliadin 57-73 (PQLPY <SEQ ID NO: 12>) only revealed .alpha./.beta.-gliadins. However, our fine-mapping studies of the A-gliadin 57-73 QE65 (SEQ ID NO:2) epitope revealed a limited number of permissive point substitutions in the core region (PQLP (SEQ ID NO: 760)) (note Q65 is actually deamidated in the epitope). Hence, we extended our search to genes in SwissProt or Trembl databases encoding for peptides with the sequence XXXXXXXPQ[ILMP][PST]XXXXXX (SEQ ID NO:23). Homologues were identified amongst .gamma.-gliadins, glutenins, hordeins and secalins (see Table 12). A further homologue was identified in .omega.-gliadin by visual search of the three .omega.-gliadin entries in Genbank.
[0284] These homologues of A-gliadin 57-73 (SEQ ID NO: 10) were assessed after deamidation by tTG (or synthesis of the glutamate (QE)-substituted variant in four close homologues) using the IFN.gamma. ELISpot assay with peripheral blood mononuclear cells after gluten challenge in coeliac subjects. The w-gliadin sequence (AAG17702 141-157 (SEQ ID NO:761)) was the only bioactive peptide, approximately half as potent as A-gliadin 57-73 (SEQ ID NO: 10) (see Table 12, and FIG. 29). Hence, searches for homologues of the dominant A-gliadin epitope failed to account for the toxicity of .gamma.-gliadin, secalins, and hordeins.
Methods
Design of a Set of Peptides Spanning all Possible Wheat Gliadin T-Cell Epitopes
[0285] In order to identify all possible T cell epitopes coded by the known wheat (Triticum aestivum) gliadin genes or gene fragments (61 .alpha./.beta.-, 47 .gamma.-, and 3 .omega.-gliadin entries in Genbank), gene-derived protein sequences were aligned using the CustalW software (MegAlign) and arranged into phylogenetic groupings (see Table 22). Many entries represented truncations of longer sequences, and many gene segments were identical except for the length of polyglutamine repeats or rare substitutions. Hence, it was possible to rationalize all potential unique 12 amino acid sequences encoded by known wheat genes to be included in a set of 652 20mer peptides. (Signal peptide sequences were not included). Peptide sequences are listed in Table 23.
Comprehensive Epitope Mapping
[0286] Healthy controls (HLA-DQ2+n=10, and HLA-DQ8+n=1) who had followed a gluten free diet for 4 weeks, and coeliac subjects (six HLA-DQ2, four complex heterozygotes HLA-DQ2/8, and three HLA-DQ8/X) (see Table 13) following long-term gluten free diet were studied before and on day 6 and 7 after 3-day gluten challenge (four 50 g slices of standard white bread--Sainsbury's sandwich bread, each day). Peripheral blood (a total of 300 ml over seven days) was collected and peripheral blood mononuclear cells (PBMC) were separated by Lymphoprep density gradient. PBMC were incubated with pools of 6 or 8 20mer peptides, or single peptides with or without deamidation by tTG in overnight interferon gamma (IFN.gamma.) ELISpot assays. Peptides were synthesized in batches of 96 as Pepsets (Mimotopes Inc., Melbourne Australia). Approximately 0.6 micromole of each of 652 20mers was provided. Two marker 20mer peptides were included in each set of 96 (VLQQHNIAHGSSQVLQESTY--peptide 161 (SEQ ID NO:24), and IKDFHVYFRESRDALWKGPG (SEQ ID NO:25)) and were characterized by reverse phase-HPLC and amino acid sequence analysis. Average purities of these marker peptides were 50% and 19%, respectively. Peptides were initially dissolved in acetonitrile (10%) and Hepes 100 mM to 10 mg/ml.
[0287] The final concentration of individual peptides in pools (or alone) incubated with PBMC for the IFN.gamma. ELISpot assays was 20 .mu.g/ml. Five-times concentrated solutions of peptides and pools in PBS with calcium chloride 1 mM were aliquotted and stored in 96-well plates according to the template later used in ELISpot assays. Deamidated peptides and pools of peptides were prepared by incubation with guinea pig tissue tTG (Sigma T5398) in the ratio 100:32 .mu.g/ml for two hours at 37.degree. C. Peptides solutions were stored at -20.degree. C. and freshly thawed prior to use.
[0288] Gliadin (Sigma G3375) (100 mg/ml) in endotoxin-free water and 2M urea was boiled for 10 minutes, cooled to room temperature and incubated with filter (0.2 .mu.m)-sterilised pepsin (Sigma P6887) (2 mg/ml) in HCl 0.02M or chymotrypsin (C3142) (4 mg/ml) in ammonium bicarbonate (0.2M). After incubation for 4 hours, pepsin-digested gliadin was neutralized with sodium hydroxide, and then both pepsin- and chymotrypsin-digested gliadin were boiled for 15 minutes. Identical incubations with protease in which gliadin was omitted were also performed. Samples were centrifuged at 15 000 g, then protein concentrations were estimated in supernatants by the BCA method (Pierce, USA). Before final use in IFN.gamma. ELISpot assays, aliquots of gliadin-protease were incubated with tTG in the ratio 2500:64 .mu.g/ml.
[0289] IFN.gamma. ELISpot assays (Mabtech, Sweden) were performed in 96-well plates (MAIP S-45, Millipore) in which each well contained 25 .mu.l of peptide solution and 100 .mu.l of PBMC (2-8.times.10.sup.5/well) in RPMI containing 10%0/heat inactivated human AB serum. Deamidated peptide pools were assessed in one 96-well ELISpot plate, and peptides pools without deamidation in a second plate (with an identical layout) on both day 0 and day 6. All wells in the plate containing deamidated peptides included tTG (64 .mu.g/ml). In each ELISpot plate there were 83 wells with peptide pools (one unique pool in each well), and a series of wells for "control" peptides (peptides all >90% purity, characterized by MS and HPLC, Research Genetics): P04722 77-93 (QLQPFPQPQLPYPQPQP (SEQ ID NO:26)), P04722 77-93 QE85 (in duplicate) (QLQPFPQPELPYPQPQP (SEQ ID NO:27)), P02863 77-93 (QLQPFPQPQLPYSQPQP (SEQ ID NO:28)). P02863 77-93 QE85 (QLQPFPQPELPYSQPQP (SEQ ID NO:29)), and chymotrypsin-digested gliadin (500 .mu.g/ml), pepsin-digested gliadin (500 .mu.g/ml), chymotrypsin (20 .mu.g/ml) alone, pepsin (10 .mu.g/ml) alone, and blank (PBS+/-tTG) (in triplicate).
[0290] After development and drying, IFN.gamma. ELISpot plates were assessed using the MAIP automated ELISpot plate counter. In HLA-DQ2 healthy and coeliac subjects, induction of spot forming cells (sfc) by peptide pools in the IFN.gamma. ELISpot assay was tested using a one-tailed Wilcoxon Matched-Pairs Signed-Ranks test (using SPSS software) applied to spot forming cells (sfc) per million PBMC minus blank on day 6 versus day 0 ("net response"). Significant induction of an IFN.gamma. response to peptide pools in PBMC by in vivo gluten challenge was defined as a median "net response" of at least 10 sfc/million PBMC and p<0.05 level of significance. Significant response to a particular pool of peptides on day 6 was followed by assessment of individual peptides within each pool using PBMC drawn the same day or on day 7.
[0291] For IFN.gamma. ELISpot assays of individual peptides, bioactivity was expressed as a percent of response to P04722 77-93 QE85 (SEQ ID NO:27) assessed in the same ELISpot plate. Median response to blank (PBS alone) was 0.2 (range 0-5) sfc per well, and the positive control (P04722 77-93 QE85 (SEQ ID NO:27)) 76.5 (range: 25-282) sfc per well using a median of 0.36 million (range: 0.3-0.72) PBMC. Hence, median response to blank expressed as a percentage of P04722 77-93 QE65 (SEQ ID NO:27) was 0.2% (range: 0-6.7). Individual peptides with mean bioactivity greater than 10% that of P04722 QE85 (SEQ ID NO:27) were analyzed for common structural motifs.
Results
Healthy HLA-DQ2 Subjects
[0292] None of the healthy HLA-DQ2+ subjects following a gluten free diet for a month had IFN.gamma. ELISpot responses to homologues of A-gliadin 57-73 before or after gluten challenge. However, in 9/10 healthy subjects, gluten challenge was associated with a significant increase in IFN.gamma. responses to both peptic- and chymotryptic-digests of gliadin, from a median of 0-4 sfc/million on day 0 to a median of 16-29 sfc/million (see Table 14). Gliadin responses in healthy subjects were unaffected by deamidation (see Table 15). Amongst healthy subjects, there was no consistent induction of IFN.gamma. responses to specific gliadin peptide pools with gluten challenge (see FIG. 30, and Table 16). IFN.gamma. ELISpot responses were occasionally found, but these were weak, and not altered by deamidation. Many of the strongest responses to pools were also present on day 0 (see Table 17, subjects H2, H8 and H9). Four healthy subjects did show definite responses to pool 50, and the two with strongest responses on day 6 also had responses on day 0. In both subjects, the post-challenge responses to pool 50 responses were due to peptide 390 (QQTYPQRPQQPFPQTQQPQQ (SEQ ID NO:30)).
HLA-DQ2 Coeliac Subjects
[0293] Following gluten challenge in HLA-DQ2+ coeliac subjects, median IFN.gamma. ELISpot responses to P04722 77-93 E85 (SEQ ID NO:29) rose from a median of 0 to 133 sfc/million (see Table 4). One of the six coeliac subjects (C06) did not respond to P04722 77-93 QE85 (SEQ ID NO:27) (2 sfc/million) and had only weak responses to gliadin peptide pools (maximum: Pool 50+tTG 27 sfc/million). Consistent with earlier work, bioactivity of wild-type P04722 increased 6.5 times with deamidation by tTG (see Table 15). Interferon-gamma responses to gliadin-digests were present at baseline, but were substantially increased by gluten challenge from a median of 20 up to 92 sfc/million for chymotryptic-gliadin, and from 44 up to 176 sfc/million for peptide-gliadin. Deamidation of gliadin increased bioactivity by a median of 3.2 times for chymotryptic-gliadin and 1.9 times for peptic-gliadin (see Table 15). (Note that the acidity required for digestion by pepsin is likely to result in partial deamidation of gliadin.)
[0294] In contrast to healthy subjects, gluten challenge induced IFN.gamma. ELISpot responses to 22 of the 83 tTG-treated pools including peptides from .alpha.-, .gamma.- and .omega.-gliadins (see FIG. 31, and Table 17). Bioactivity of pools was highly consistent between subjects (see Table 18). IFN.gamma. ELISpot responses elicited by peptide pools were almost always increased by deamidation (see Table 17). But enhancement of bioactivity of pools by deamidation was not as marked as for P04722 77-93 Q85 (SEQ ID NO:29), even for pools including homologues of A-gliadin 57-73. This suggests that Pepset peptides were partially deamidated during synthesis or in preparation, for example the Pepset peptides are delivered as salts of trifluoracetic acid (TFA) after lyophilisation from a TFA solution.
[0295] One hundred and seventy individual tTG-deamidated peptides from 21 of the most bioactive pools were separately assessed. Seventy-two deamidated peptides were greater than 10% as bioactive as P04722 77-93 QE85 (SEQ ID NO:27) at an equivalent concentration (20 .mu.g/ml) (see Table 19). The five most potent peptides (85-94% bioactivity of P04722 QE85 (SEQ ID NO:27)) were previously identified .alpha.-gliadin homologues A-gliadin 57-73 (SEQ ID NO: 10). Fifty of the bioactive peptides were not homologues of A-gliadin 57-73 (SEQ ID NO: 10), but could be divided into six families of structurally related sequences (see Table 20). The most bioactive sequence of each of the peptide families were:
TABLE-US-00002 (SEQ ID NO: 31) PQQPQQPQQPFPQPQQPFPW
(peptide 626, median 72% bioactivity of P04722 QE85 (SEQ ID NO:27)),
TABLE-US-00003 (SEQ ID NO: 32) QQPQQPFPQPQQPQLPFPQQ
(343, 34%).
TABLE-US-00004 (SEQ ID NQ: 33) QAFPQPQQTFPHQPQQQFPQ
(355, 27%),
TABLE-US-00005 (SEQ ID NO: 34) TQQPQQPFPOQPQOPFPQTQ
(396, 23%),
TABLE-US-00006 (SEQ ID NO: 35) PIQPQQPFPQQPQQPQQPFP
(625, 22%),
TABLE-US-00007 (SEQ ID NO: 36) PQQSFSYQQQPFPQQPYPQQ
(618, 18%) (core sequences are underlined). All of these sequences include glutamine residues predicted to be susceptible to deamidation by transglutaminase (e.g. QXP, QXPF (SEQ ID NO:37), QXX[FY] (SEQ ID NO:38)) (see Vader et al 2002). Some bioactive peptides contain two core sequences from different families.
[0296] Consistent with the possibility that different T-cell populations respond to peptides with distinct core sequences, bioactivity of peptides from different families appear to be additive. For example, median bioactivity of tTG-treated Pool 81 was 141% of P04722 QE85 (SEQ ID NO:27), while bioactivity of individual peptides was in rank order: Peptide 631 (homologue of A-gliadin 57-73 (SEQ ID NO: 10)) 61%, 636 (homologue of 626) 51%, and 635 19%, 629 16%, and 634 13% (all homologues of 396).
[0297] Although likely to be an oversimplification, the contribution of each "peptide family" to the summed IFN.gamma. ELISpot response to gliadin peptides was compared in the HLA-DQ2+ coeliac subjects (see FIG. 32). Accordingly, the contribution of P04722 77-73 E85 (SEQ ID NO:27) to the summed response to gliadin peptides is between 1/5 and 2/3.
[0298] Using the peptide homology search programme, WWW PepPepSearch, which can be accessed through the world wide web of the internet at, for example, "cbrg.inf.ethz.ch/subsection3_1_5.html.", and by direct comparison with Genbank sequences for rye secalins, exact matches were found for the core sequences QQPFPQPQQPFP (SEQ ID NO:39) in barley hordeins (HOR8) and rye secalins (A23277, CAA26449, AAG35598). QQPFPQQPQQPFP (SEQ ID NO:40) in barley hordeins (HOGI and HOR8), and for PIQPQQPFPQQP (SEQ ID NO:41) also in barley hordeins (HOR8).
HILA-DQ8-Associated Coeliac Disease
[0299] Seven HLA-DQ8+ coeliac subjects were studied before and after gluten challenge. Five of these HLA-DQ8+ (HLA-DQA0*0301-3, HLA-DQB0*0302) subjects also carried one or both of the coeliac disease-associated HLA-DQ2 complex (DQA0*05. DQB0*02). Two of the three subjects with both coeliac-associated HLA-DQ complexes had potent responses to gliadin peptide pools (and individual peptides including P04722 77-93 E85 (SEQ ID NO:27)) that were qualitatively and quantitatively identical to HLA-DQ2 coeliac subjects (see FIGS. 33 and 34, and Table 18). Deamidated peptide pool 74 was bioactive in both HLA-DQ2/8 subjects, but only in one of the 6 HLA-DQ2/X subjects. Pretreatment of pool 74 with tTG enhances bioactivity between 3.8 and 22-times, and bioactivity of tTG-treated pool 74 in the three responders is equivalent to between 78% and 350% the bioactivity of P04722 77-93 E85 (SEQ ID NO:27). Currently, it is not known which peptides are bioactive in Pool 74 in subject C02. C07, and C08.
[0300] Two of the four HLA-DQ8 coeliac subjects that lacked both or one of the HLA-DQ2 alleles associated with coeliac disease showed very weak IFN.gamma. ELISpot responses to gliadin peptide pools, but the other two did respond to both protease-digested gliadin and specific peptide pools. Subject C12 (HLA-DQ7/8) responded vigorously to deamidated Pools 1-3 (see FIG. 35). Assessment of individual peptides in these pools identified a series of closely related bioactive peptides including the core sequence LQPQNPSQQQPQ (SEQ ID NO:42) (see Table 20). Previous work (by us) has demonstrated that three glutamine residues in this sequence are susceptible to tTG-mediated deamidation (underlined). Homology searches using WWW PepPepSearch have identified close matches to LQPQNPSQQQPQ (SEQ ID NO:43) only in wheat .alpha.-gliadins.
[0301] The fourth HLA-DQ8 subject (C11) had inducible IFN.gamma. ELISpot responses to tTG-treated Pool 33 (see FIG. 36). Pools 32 and 33 include polymorphisms of a previously defined HLA-DQ8 restricted gliadin epitope (QQYPSGQGSFQPSQQNPQ (SEQ ID NO:44)) active after deamidation by tTG (underlined Gln are deamidated and convey bioactivity) (van der Wal et al 1998). Currently, it is not known which peptides are bioactive in Pool 33 in subject C11.
[0302] Comprehensive T cell epitope mapping in HLA-DQ2-associated coeliac disease using in vivo gluten challenge and a set of 652 peptides spanning all known 12 amino acid sequences in wheat gliadin has thus identified at least 72 peptides at 10% as bioactive as the known .alpha.-gliadin epitope, A-gliadin 57-73 E65. However, these bioactive peptides can be reduced to a set of perhaps as few as 5 distinct but closely related families of peptides. Almost all these peptides are rich in proline, glutamine, phenylalanine, and/or tyrosine and include the sequence PQ(QL)P(FY)P (SEQ ID NO:45). This sequence facilitates deamidation of Q in position 2 by tTG. By analogy with deamidation of A-gliadin 57-68 (Arentz-Hansen 2000), the enhanced bioactivity of these peptides generally found with deamidation by tTG may be due to increased affinity of binding for HLA-DQ2.
[0303] Cross-reactivity amongst T cells in vivo recognizing more than one of these bioactive gliadin peptides is possible. However, if each set of related peptides does activate a distinct T cell population in vivo, the epitope corresponding to A-gliadin 57-73 E65 (SEQ ID NO:2) is the most potent and is generally recognized by at least 40% of the peripheral blood T cells that secrete IFN.gamma. in response to gliadin after gluten challenge.
[0304] No gliadin-peptide specific responses were found in HLA-DQ2/8 coeliac disease that differed qualitatively from those in HLA-DQ2/X-associated coeliac disease. However, peripheral blood T cells in HLA-DQ8+ coeliac subjects without both HLA-DQ2 alleles did not recognize A-gliadin 57-73 E65 (SEQ ID NO:2) homologues. Two different epitopes were dominant in two HLA-DQ8+ coeliacs. The dominant epitope in one of these HLA-DQ8+ individuals has not been identified previously (LQPQNPSQQQPQ (SEQ ID NO:46)).
[0305] Given the teaching herein, design of an immunotherapy for coeliac disease utilizing all the commonly recognised T cell epitopes is practical and may include fewer than six distinct peptides. Epitopes in wheat .gamma.- and .omega.-gliadins are also present in barley hordeins and rye secalins.
Example 14
[0306] Several ELISpot assays were performed as previously described and yielded the following results and/or conclusions:
Examination of Multiple a-Gliadin Polymorphisms with PQLPY (SEQ ID NO. 12) Potent agonists of A-gliadin 57-73QE (G01) (SEQ ID NO:2) include
TABLE-US-00008 (G01) (SEQ ID NO: 2) QLQPFPQPELPYPQS, (G10) (SEQ ID NO: 101 PQL-Y---------------------P, and (G12) (SEQ ID NO: 781) PQPQPFL------------------ Less potent include (G04) (SEQ ID NO: 782) ----------------------L------P, (G05) (SEQ ID NO: 783) ----------R------------------P, and (G06) (SEQ ID NO: 784) ----------------------S------P. Less potent yet include (G07) (SEQ ID NO: 785) --------L------------S------P, (G08) (SEQ ID NO: 786) --------S------------S------P, (G09) (SEQ ID NO: 787) ------------------S--S------P, and (G13) (SEQ ID NO: 788) PQPQPFP------------------.
[0307] Dashes indicate identity with the G01 sequence in the particular position.
Gluten Challenge Induces A-Gliadin 57-73 QE65 (SEQ ID NO:2) T Cells Only after Two Weeks of Gluten-Free Diet in Newly Diagnosed Coeliac Disease
[0308] Additional analyses indicated that tTG-deamidated gliadin responses change after two weeks of gluten-free diet in newly diagnosed coeliac disease. Other analyses indicated that deamidated gliadin-specific T cells are CD4.sup.+.alpha..sub.4.beta..sub.7.sup.+ HLA-DQ2 restricted.
Optimal Epitope (Clones Versus Gluten Challenge)
[0309] A "dominant" epitope is defined by .gamma.IFN ELISpot after gluten challenge. QLQPFPQPELPYPQPQS (SEQ ID NO:2) (100% ELISpot response). Epitopes defined by intestinal T cell clones: QLQPFPQPELPY (SEQ ID NO: 13) (27%), PQPELPYPQPELPY (SEQ ID NO:47) (52%), and QQLPQPEQPQQSFPEQERPF (SEQ ID NO:48)(9%).
Dominance Among Individual Peptide Responses
[0310] Dominance depends on wheat or rye. For wheat, dominant peptides include peptide numbers 89, 90 and 91 (referring to sequence numbers in Table 23) (SEQ ID NO:195, SEQ ID NO: 196, and SEQ ID NO: 197, respectively). For rye, dominant peptides include peptide numbers 368, 369, 370, 371, and 372 (referring to sequence numbers in Table 23) (SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, and SEQ ID NO:478, respectively). Some peptides, including 635 (SEQ ID NO:741) and 636 (SEQ ID NO:742) (referring to sequence numbers in Table 23) showed activity in both rye and wheat.
In Vivo Gluten Challenge Allows T Cell Epitope Hierarchy to be Defined for Coeliac Disease
[0311] The epitope hierarchy is consistent among HLA-DQ2.sup.+ coeliacs but different for HLA-DQ8+ coeliacs. The hierarchy depends on what cereal is consumed. Deamidation generates almost all gliadin epitopes. HLA-DQ2, DQ8, and DR4 present deamidated peptides. HLA-DQ2/8-associated coeliac disease preferentially present DQ2-associated gliadin epitopes. Gliadin epitopes are sufficiently restricted to justify development of epitope-based therapeutics.
[0312] Other analyses indicated the following: HLA-DR3-DQ2 (85-95%) and HLA-DR4-DQ8 (5-15%/o).
[0313] Other analyses indicated the following:
TABLE-US-00009 HLA-DQA1 HLA-DQB1 Duodenal EMA on gluten HLA-DQ allele allele histology Gluten free (on GFD) C01 2, 6 102/6, 501 201, 602 SVA 1 yr + (-) C02 2, 2 501 201 SVA 1 yr + (-) C03 2, 5 101/4/5, 501.sup. 201, 501 PVA 1 yr + (-) C04 2, 5 101/4/5, 501.sup. 201, 501 SVA 7 yr + (-) C05 2, 2 .sup. 201, 501 201, 202 SVA 4 mo + (ND) C06 2, 2 .sup. 201, 501 201, 202 SVA 2 yr + (-) C07 2, 8 301-3, 501 201, 302, SVA 1 yr + (-) C08 2, 8 301-3, 501 .sup. 201, 302/8 SVA 11 yr ND (-) C09 2, 8 301-3, 501 201, 302 SVA 29 yr + (-) C10 2, 8 .sup. 201, 301-3 202, 302 IEL 1 yr + (-) C11 6, 8 .sup. 102/6, 301-3 602/15, 302/8 IEL 9 mo - (ND) C12 8, 7 301-3, 505 .sup. 302, 301/9-10 SVA 2 yr - (-) C13 8, 8 301 302 SVA 1 yr + (+)
[0314] Another analysis was carried out to determine the bioactivity of individual tTG-deamidated peptides in pools 1-3 in subject C12. The results are as follows (sequence numbers refer to the peptides listed in Table 23): Sequence 8 (SEQ ID NO: 114) (100%), Sequence 5 (SEQ ID NO: 111) (85%), Sequence 6 (SEQ ID NO: 112) (82%), Sequence 3 (SEQ ID NO: 109) (77%), Sequence 1 (SEQ ID NO: 107) (67%), Sequence 2 (SEQ ID NO: 108) (59%), Sequence 9 (SEQ ID NO: 115) (49%), Sequence 7 (SEQ ID NO: 113) (49%), Sequence 10 (SEQ ID NO: 116) (33%), Sequence 4 (SEQ ID NO: 110) (15%), Sequence 12 (SEQ ID NO: 118) (8%), Sequence 11 (SEQ ID NO: 117) (0%), Sequence 23 (SEQ ID NO: 129) (26%), Sequence 14 (SEQ ID NO: 120) (18%), Sequence 15 (SEQ ID NO: 121) (18%), Sequence 17 (SEQ ID NO: 123) (18%), Sequence 16 (SEQ ID NO: 122) (13%), Sequence 14 (SEQ ID NO: 120) (8%), Sequence 22 (SEQ ID NO: 128) (5%), Sequence 18 (SEQ ID NO: 124) (3%), Sequence 19 (SEQ ID NO:125) (3%), Sequence 20 (SEQ ID NO: 126) (0%), Sequence 21 (SEQ ID NO: 127) (0%). The predicted deamidated sequence is LQPENPSQEQPE(SEQ ID NO:22).
Individual ELISpot Responses by PBMC (Spot Forming Cells Determined by ELISpot Reader)
TABLE-US-00010
[0315] Peptide (see Table 23) C01 C02 C03 C04 C05 65 (SEQ ID NO: 171) 16 2 1 2 3 66 (SEQ ID NO: 172) 32 6 13 0 6 67 (SEQ ID NO: 173) 16 3 4 0 4 68 (SEQ ID NO: 174) 25 8 4 2 2 69 (SEQ ID NO: 175) 4 0 0 0 0 70 (SEQ ID NO: 176) 2 1 0 0 0 71 (SEQ ID NO: 177) 1 1 0 0 1 72 (SEQ ID NO: 178) 0 0 0 0 0 73 (SEQ ID NO: 179) 95 21 42 31 31 74 (SEQ ID NO: 180) 122 15 29 21 28 75 (SEQ ID NO: 181) 5 1 2 2 5 76 (SEQ ID NO: 182) 108 13 28 16 22 77 (SEQ ID NO: 183) 3 0 1 0 1 78 (SEQ ID NO: 184) 21 2 3 5 3 79 (SEQ ID NO: 185) 20 0 2 0 2 80 (SEQ ID NO: 186) 5 2 0 0 3 81 (SEQ ID NO: 187) 4 1 2 3 1 82 (SEQ ID NO: 188) 3 3 5 2 2 83 (SEQ ID NO: 189) 14 2 0 0 1 84 (SEQ ID NO: 190) 3 0 0 0 0 85 (SEQ ID NO: 191) 14 1 2 1 2 86 (SEQ ID NO: 192) 11 0 2 0 2
Cross-Reactivity
[0316] To deal with data from 652 peptides in 29 subjects, or to determine when a particular response is a true positive peptide-specific T-cell response, or to determine when a response to a peptide is due to cross-reactivity with another structurally related peptide, expression of a particular peptide response can be as a percentage of a "dominant" peptide response. Alternately, the expression can be a "relatedness" as correlation coefficients between peptide responses, or via bioinformatics.
Additional Epitopes
[0317] A representative result is as follows:
TABLE-US-00011 Combination of peptides with P04722E (all 20 mcg/ml) (n = 4) Alone P04722E+ Pep 626 (SEQ ID NO: 732) 60 135 P04722E ((SEQ ID NO: 49) 100 110 HLAa 0 85 (expressed as percent P04722E) 626 + tT: PQQPQQPQQPFPQPQQPFPW (SEQ ID NO: 31) P04724E: QLQPFPQPELPYPQPQL (SEQ ID NO: 49) TTG-deamidation of peptide 626 (n = 12) No tTG = 100% TTG = 170%
Substitution at Particular Positions
TABLE-US-00012
[0318] Substitution of Peptide 626 POOP[Q1]QP[Q2] QPFPQP[Q3]QPFPW (SEQ ID NO: 31) (n = 12) Glu Arg Q1 95 (SEQ ID NO: 789) 90 (SEQ ID NO: 792) Q2 145 (SEQ ID NO: 790) 80 (SEQ ID NO: 793) Q3 155 (SEQ ID NO: 791) 10 (SEQ ID NO: 794) (expressed as percent wild-type peptide) Bioactivity of tTG-treated 15mers spanning Peptide 626/627 (PQQPQQPQQPFPQPQQPFPWQP(SEQ ID NO: 50)) (n = 8) P1-15 5 (SEQ ID NO: 773) P2-16 4 (SEQ ID NO: 774) P3-17 3 (SEQ ID NO: 775) P4-18 38 (SEQ ID NO: 776) P5-19 65 (SEQ ID NO: 777) P6-20 95 (SEQ ID NO: 52) P7-21 65 (SEQ ID NO: 778) P8-22 90 (SEQ ID NO: 779) (expressed as percent of maximal 15mer response)
Multiple Epitopes:
TABLE-US-00013
[0319] P04724E: (SEQ ID NO: 51) QURFPQPQITYPQPQL 626 + tTG: (SEQ ID NO: 31) PQQPQQPQQPFPQPQQPFPW Minimal epitope: (SEQ ID NO: 52) QPQQPFPQPQQPFPW
[0320] Immunomagnetic depletion of PBMC by beads coated with anti-CD4 and by anti-integrin 3.sub.7 depleted IFN.gamma. ELISpot responses, while immunomagnetic depletion of PBMC by beads coated with anti-CD8 or anti-alpha.sup.E integrin. Thus, the PBMC secreting IFN.gamma. are CD4+ and .alpha..sub.4.beta..sub.7+, associated with homing to the lamina propria in the gut.
[0321] Blocked by anti-DQ antibody but not by anti-DR antibody in heterozygotes and homozygotes for HLA-DQ2. This may imply multiple epitopes within one sequence.
T Cell Epitopes in Coeliac Disease
[0322] Other investigators have characterized certain intestinal T cell clone epitopes. See. e.g., Vader et al., Gastroenterology 2002, 122:1729-37; Arentz-Hansen et al., Gastroenterology 2002, 123:803-809. These are examples of epitopes whose relevance is at best unclear because of the in vitro techniques used to clone T cells.
Intestinal Versus Peripheral Blood Clones
[0323] Intestinal: 1) intestinal biopsies, 2) T cell clones raised against peptic-tryptic digest of gluten, 3) all HLA-DQ2 restricted, 4) clones respond to gliadin deamidated by transglutaminase. Peripheral blood: 1) T cell clones raised against gluten are HLA-DR, DQ and DP restricted. Result: Intestinal T cell clones can be exclusively used to map coeliac disease associated epitopes
GDA 9Wheat 307 aa Definition Alpha/Beta-Gliadin MM1 Precursor (Prolamin) Accession P18573--Genbank (which is incorporated herein by reference in its entirety)
Intestinal T Cell Clone Epitopes
[0324] A definition of intestinal T cell clone epitopes can be found in, for example, Arentz-Hansen et al., J Exp Med. 2000, 191:603-12. Also disclosed therein are gliadin epitopes for intestinal T cell clones. Deamidated QLQPFPQPQLPY(SEQ ID NO:53) is an epitope, with a deamidated sequence of QLQPFPQPELPY(SEQ ID NO: 13). There is an HLA-DQ2 restriction. A homology search shows other bioactive rAlpha-gliadins include PQPQLPY(SEQ ID NO:4) singly or duplicated. A majority of T cell clones respond to either/or DQ2-.alpha.I:
TABLE-US-00014 (SEQ ID NO: 13) QLQPFPQPELPY (SEQ ID NO: 47) DQ2-.alpha.II: PQPELPYPQPELPY
Dominant Gliadin T Cell Epitopes
[0325] All deamidated by transglutaminase.
[0326] Peripheral blood day 6 after gluten challenge: A-gliadin 57-73: QLQPFPQPELPYPQPQS(SEQ ID NO:2)
[0327] Intestinal T cell clones: DQ2-.alpha.I: QLQPFPQPELPY(SEQ ID NO: 13) DQ2-.alpha.II: PQPELPYPQPELPY(SEQ ID NO:47)
Intestinal T-Cell Clone Epitope Mapping
TABLE-US-00015
[0328] .alpha.-Gliadins A1 (SEQ ID NO: 54) PFPQPQLPY A2 (SEQ ID NO: 55) PQPQLPYPQ A3 (SEQ ID NO: 56) PYPQPQLPY Glia-20 (SEQ ID NO: 57) PQQPYPQPQPQ T-Gliadins G1 (SEQ ID NO: 58) PQQSFPQQQ G2 (SEQ ID NO: 59) IIPQQPAQ G3 (SEQ ID NO: 60) FPQQPQQPYPQQP G4 (SEQ ID NO: 61) FSQPQQQFPQPQ G5 (SEQ ID NO: 62) LQPQQPFPQQPQQPYPQQPQ Glu-21 (SEQ ID NO: 63) QSEQSQQPFPQQF Glu-5 (SEQ ID NO: 64) Q(IL)PQQPQQF Glutenin Glt-156 (SEQ ID NO: 65) PFSQQQQSPF Glt-17 (SEQ ID NO: 66) PFSQQQQQ
Gluten Exposure and Induction of IFN.gamma.-Secreting A-Gliadin 57-73QE65-(SEQ ID NO: 2)-Specific T Cells in Peripheral Blood
[0329] Untreated coeliac disease, followed by gluten free diet for 1, 2, or 8 weeks, followed by gluten exposure (3 days bread 200 g/day), followed by gluten free diet
[0330] Result 1: Duration of gluten free diet and IFN.gamma. ELISpot responses on day 0 and day 6 of gluten challenge: A-gliadin 57-73 QE65 (SEQ ID NO:2) (results expressed as IFN.gamma. specific spots/million PPBMC)
[0331] Day 0: none (5), 1 week (1), 2 weeks (2), 8 weeks (1)
[0332] Day 6: none (0), 1 week (4), 2 weeks (28), 8 weeks (48)
[0333] Result 2: Duration of gluten free diet and IFN.gamma. ELISpot responses on day 0 and day 6 of gluten challenge: tTG-gliadin (results expressed as IFN.gamma. specific spots/million PPBMC)
[0334] Day 0: none (45), 1 week (62), 2 weeks (5), 8 weeks (5)
[0335] Day 6: none (0), 1 week (67), 2 weeks (40), 8 weeks (60)
[0336] Result 3: Duration of gluten free diet and IFN.gamma. ELISpot responses on day 0 and day 6 of gluten challenge: A-gliadin 57-73 P65 (results expressed as IFN.gamma. specific spots/million PPBMC)
[0337] Day 0: none (1), 1 week (2), 2 weeks (1), 8 weeks (1)
[0338] Day 6: none (0), 1 week (0), 2 weeks (0), 8 weeks (0)
[0339] Result 4: Duration of gluten free diet and IFN.gamma. ELISpot responses on day 0 and day 6 of gluten challenge: PPD (results expressed as IFN.gamma. specific spots/million PPBMC)
[0340] Day 0: none (90), 1 week (88), 2 weeks (210), 8 weeks (150)
[0341] Day 6: none (0), 1 week (100), 2 weeks (210), 8 weeks (100)
[0342] Result 5: Duration of gluten free diet and IFN.gamma. ELISpot responses on day 0 and day 6 of gluten challenge: tTG (results expressed as IFN.gamma. specific spots/million PPBMC)
[0343] Day 0: none (5), 1 week (4), 2 weeks (3), 8 weeks (2)
[0344] Day 6: none (0), 1 week (4), 2 weeks (1), 8 weeks (2)
Gluten Challenge in HLA-DQ2 Coeliac Disease on Long Term Gluten
[0345] Characterization of anti-gliadin T cell response was carried out in peripheral blood on day 6-8 after 3-day gluten challenge.
Result 1: PBMC Day 6 Long-term gluten free diet (preincubation with anti-HLA-DR and -DQ antibody) (expressed as % inhibition)
[0346] DR-: tTG-gliadin 100 mcg/ml (105), A-gliadin 57-73 QE65 (SEQ ID NO:2) 50 mcg/ml (90), PPD 5 mcg/ml (30)
[0347] DQ-: tTG-gliadin 100 mcg/ml (5), A-gliadin 57-73 QE65 (SEQ ID NO:2) 50 mcg/ml (22), PPD 5 meg/ml (78).
[0348] Result 2: PBMC Day 6 Long-term gluten free diet (expressed as % CD8-depleted PBMC response)
[0349] B7 depletion: tTG-gliadin n=6 (7), A-gliadin 57-73 n=-9 (6), PPD n=8 (62)
[0350] AE depletion: tTG-gliadin n=6 (120), A-gliadin 57-73 n=9 (80), PPD n=8 (110).
[0351] CD4 depletion: tTG-gliadin n=6 (10), A-gliadin 57-73 n-9 (9), PPD n=8 (10).
Therapeutic Peptides Include, but are not Limited to
TABLE-US-00016
[0352] (AG01) (SEQ ID NO: 10) QLQPFPQPQLPYPQPQS (AG02) (SEQ ID NO: 26) QLQPFPQPQLPYPQPQP (AG03) (SEQ ID NO: 51) QLQPFPQPQLPYPQPQL (AG04) (SEQ ID NO: 67) QLQPFPQPQLPYLQPQP (AG05) (SEQ ID NO: 68) QLQPFPRPQLPYPQPQP (AG06) (SEQ ID NO: 28) QLQPFPQPQLPYSQPQP (AG07) (SEQ ID NO: 69) QLQPFLQPQLPYSQPQP (AG08) (SEQ ID NO: 70) QLQPFSQPQLPYSQPQP (AG09) (SEQ ID NO: 71) QLQPFPQPQLSYSQPQP (AG10) (SEQ ID NO: 72) PQLPYPQPQLPYPQPQP (AG11) (SEQ ID NO: 73) PQLPYPQPQLPYPQPQL (AG12) (SEQ ID NO: 74) PQPQPFLPQLPYPQPQS (AG13) (SEQ ID NO: 75) PQPQPFPPQLPYPQPQS (AG14) (SEQ ID NO: 76) PQPQPFPPQLPYPQYQP (AG015) (SEQ ID NO: 77) PQPQPFPPQLPYPQPPP
Briefly after oral antigen challenge, specificities of peripheral blood T cells reflect those of intestinal T cell clones. In peripheral blood, epitopes of intestinal T cell clones are sub-optimal compared to A-gliadin 57-73 QE65 (SEQ ID NO:2), which is an optimal a-gliadin epitope.
Example 15
[0353] ELISpot assays were also carried out for mapping purposes as follows.
Fine-Mapping the Dominant DQ-8 Associated Epitope
TABLE-US-00017
[0354] Sequence/sfc tTG-treated sequence/sfc VPQLQPQNPSQQQPQEQV/76(A) RWPVPQLQPQNPSQQ/60(L) WPVPQLQPQNPSQQQ/90(M) VPQLQPENPSQQQPQEQV/3(B) PVPQLQPQNPSQQQP/130(N) VPQLQPRNPSQQQPQEQV/76(C) VPQLQPQNPSQQQPQ/140(O) PQLQPQNPSQQQPQE/59(P) VPQLQPQNPSQEQPQEQV/100(D) QLQPQNPSQQQPQEQ/95(Q) VPQLQPQNPSQRQPQEQV/1(E) LQPQNPSQQQPQEQV/30(R) QPQNPSQQQPQEQVP/4(S) VPQLQPQNPSQQQPEEQV/71(F) VPQLQPQNPSQQQPREQV/27(G) DQ8 Gliadin Epitope GDA09 202Q/6 VPQLQPQNPSQEQPEEQV/81(H) GDA09 202E/83 VPQLQPENPSQQQPEEQV/2(I) GDA09 202Q + tTG/17 VPQLQPENPSQEQPQEQV/6(J) BI + tTG/0 VPQLQPENPSQEQPEEQV/5(K) BI/0 (A)= SEQ ID NO: 78, (B)= SEQ ID NO: 79, (C)= SEQ ID NO: 80, (D)= SEQ ID NO: 81, (E)= SEQ ID NO: 82, (F)= SEQ ID NO: 83, (G)= SEQ ID NO: 84, (H)= SEQ ID NO: 85, (I)= SEQ ID NO: 86, (J)= SEQ ID NO: 87, (K)= SEQ ID NO: 88, (L)= SEQ ID NO: 89, (M)= SEQ ID NO: 90, (N)= SEQ ID NO: 91, (O)= SEQ ID NO: 92, (P)= SEQ ID NO: 93, (Q)= SEQ ID NO: 94, (R)= SEQ ID NO: 95, (S)= SEQ ID NO: 96
Fine-Mapping Dominant Epitope (2)
TABLE-US-00018
[0355] Pool 33 (deamidated)/sfc A2b3 301 QQYPSGQGFFQPSQQNPQAQ (SEQ ID NO: 359)/2 A2b5 301 QQYPSGQGFFQPFQQNPQAQ (SEQ ID NO: 360)/1 A3a1 301 QQYPSGQGFFQPSQQNPQAQ (SEQ ID NO: 361)/0 A3b1 301 QQYPSSQVSFQPSQLNPQAQ (SEQ ID NO: 362)/0 A3b2 301 QQYPSSQGSFQPSQQNPQAQ (SEQ ID NO: 363)/2 A4a 301 EQYPSGQVSFQSSQQNPQAQ (SEQ ID NO: 364)/28 A1b1 309 STRPSQQNPLAQGSVQPQQL (SEQ ID NO: 365)/2 A1a1 309 SFRPSQQNPQAQGSVQPQQL (SEQ ID NO: 366)/2
Example 16
[0356] Bioactivity of Gliadin Epitopes in IFN.gamma.-ELISpot (25 Meg/Ml, n=6) (Expressed as % A-Gliadin 57-73 QE65 (SEQ ID NO:2) response)
[0357] DQ2-AII: wild type (WT) (4), WT+tTG (52), Glu-substituted (52)
[0358] DQ2-AI: wild type (WT) (2), WT+tTG (22), Glu-substituted (28)
[0359] GDA09: wild type (WT) (1), WT+tTG (7), Glu-substituted (8)
[0360] A-G31-49: wild type (WT) (2). WT+tTG (3), Glu-substituted (0) Dose Response of A-Gliadin 57-73 QE65 (SEQ ID NO:2) (G01E) (n=8) (Expressed as % G01E Maximal Response)
[0361] 0.025 mcg/ml (1), 0.05 mcg/ml (8), 0.1 mcg/ml (10), 0.25 mcg/ml (22), 0.5 meg/ml (38), 1 mcg/ml (43), 2.5 mcg/ml (52), 5 mcg/ml (70), 10 mcg/ml (81), 25 mcg/ml (95), 50 mcg/ml (90), 100 mcg/ml (85).
[0362] IFN.gamma. ELISpot response to gliadin epitopes alone or mixed with A-gliadin 57-75 (G01E) (all 50 mcg/ml, tTG-gliadin 100 mcg/ml, PPD 5 mcg/ml, n=9) (expressed as % GO E response)
[0363] Alone: DQ2-A1 (20). DQ2-A2 (55). Omega G1 (50), tTG Gliadin (80), PPD (220), DQ2 binder (0)
[0364] G01E+: DQ2-A1 (90), DQ2-A2 (95), Omega G1 (100), tTG Gliadin (120), PPD (280), DQ2 binder (80)
Effect of Alanine and Lysine Substitution of A-Gliadin 57-73 QE65 (SEQ ID NO:2) on IFN.gamma. ELISpot Responses in Individual Coeliac Subjects (n 8)
TABLE-US-00019
[0365] Epitope sequence: (SEQ ID NO: 2) QLOPFPQPELPYPQPQS
[0366] Alanine substitution at positions 57-59 and 72-73 showed little to no decrease in % A-gliadin 57-73 QE65 (SEQ ID NO:2) response. Alanine substitution at positions 60-62 and 68-71 showed moderate decrease in % A-gliadin 57-73 QE65 (SEQ ID NO:2) response. Alanine substitution at positions 63-67 showed most decrease in % A-gliadin 57-73 QE65 (SEQ ID NO:2) response.
[0367] Effect of lysine substitution of A-gliadin 57-73 QE65 (SEQ ID NO:2) on IFN.gamma. ELISpot responses in individual coeliac subjects (n=8);
TABLE-US-00020 Epitope sequence: (SEQ ID NO: 2) QLQPFNPELPYPQPQS
[0368] Lysine substitution at positions 57-59 and 71-73 showed little to no decrease in % A-gliadin 57-73 QE65 (SEQ ID NO:2) response. Lysine substitution at positions 60-61 and 69-70 showed moderate decrease in % A-gliadin 57-73 QE65 (SEQ ID NO:2) response. Lysine substitution at positions 62-68 showed most decrease in % A-gliadin 57-73 QE65 (SEQ ID NO:2) response.
Example 17
[0369] Table 24 (FIG. 37) shows the results of analyses examining the 652 peptides with several patients challenged with wheat or rye.
REFERENCES
[0370] 1. Molberg O, et al. Nature Med. 4,713-717 (1998).
[0371] 2. Quarsten H, et al. Eur. J. Immunol. 29, 2506-2514 (1999).
[0372] 3. Greenberg C S et al. FASEB 5, 3071-3077 (1991).
[0373] 4. Mantzaris G. Jewell D. Scand. J. Gastroenterol. 26, 392-398 (1991).
[0374] 5. Mauri L, et al. Scand. J. Gastroenterol. 31, 247-253 (1996).
[0375] 6. Bunce M, et al. Tissue Antigens 46, 355-367 (1995).
[0376] 7. Olerup O, et al. Tissue antigens 41.119-134 (1993).
[0377] 8. Mullighan C G, et al. Tissue-Antigens. 50, 688-92 (1997).
[0378] 9. Plebanski M et al. Eur. J. Immunol. 28, 4345-4355 (1998).
[0379] 10. Anderson D O, Greene F C. The alpha-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet (1997) 95:59-65.
[0380] 11. Arentz-Hansen H, Korner R, Molberg O, Quarsten H, Van der Wal Y, Kooy YMC, Lundin KEA, Koning F, Roepstorff P, Sollid L M, McAdam S N. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med. 2000; 191:603-12.
[0381] 12. Vader L W, de Ru A, van der Wal, Kooy YMC, Benckhuijsen W, Mearin M L, Drijfhout J W. van Veelen P, Koning F. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 2002; 195:643-649.
[0382] 13. van der Wal Y, Kooy Y, van Veelan P. Pena S, Mearin L. Papadopoulos G, Koning F. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol. 1998; 161:1585-8.
[0383] 14. van der Wal Y. Kooy Y, van Veelan P, Pena S, Mearin L, Molberg O, Lundin KEA, Sollid L, Mutis T, Benckhuijsen W E, Drijfhout J W, Koning F. Proc Natl Acad Sci USA 1998; 95:10050-10054.
[0384] 15. Vader W. Kooy Y, Van Veelen P et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 2002, 122:1729-37
[0385] 16. Arentz-Hansen H, McAdam S N, Molberg O, et al. Celiac lesion T cells recognize epitopes that cluster in regions of gliadin rich in proline residues. Gastroenterology 2002, 123:803-809.
[0386] Each of the PCT publications, U.S. patents, other patents, journal references, and any other publications cited or referred to herein is incorporated herein by reference in their entirety.
TABLE-US-00021 TABLE 1 A-Gliadin protein sequence (based on amino acid sequencing) (SEQ ID NO: 3) VRVPVPQLQP QNPSQQQPQE QVPLVQQQQF PGQQQQFPPQ QPYPQPQPFP SQQPYLQLQP FPQPQLPYPQ 1 11 21 31 41 51 61 PQSFPPQQPY PQPQPQYSQP QQPISQQQAQ QQQQQQQQQQ QQQILQQILQ QQLIPCMDVV LQQHNIAHAR 71 81 91 101 111 121 131 SQVLQQSTYQ LLQELCCQHL WQIPEQSQCQ AIHNVVHAII LHQQQKQQQQ PSSQVSFQQP LQQYPLGQGS 141 151 161 171 181 191 201 FRPSQQNPQA QGSVQPQQLP QFEEIRNLAL QTLPAMCNVY IAPYCTIAPF GIFGTN 211 221 231 241 251 261
TABLE-US-00022 TABLE 2 Coeliac disease subjects studied Age Gluten Bread Symptoms Sex free diet HLA-DQ2 challenge with bread 1 64 f 14 yr Homozygote 3 days Abdominal pain, lethargy, mouth ulcers, diarrhoea 2 57 m 1 yr Heterozygote 10 days Lethargy, nausea 3 35 f 7 yr Heterozygote 3 days Nausea 4 36 m 6 wk Homozygote 3 days Abdominal pain, mouth ulcers, diarrhoea 5 26 m 19 yr Heterozygote 3 days None 6 58 m 35 yr Heterozygote 3 days None 7 55 m 1 yr Heterozygote 3 days Diarrhoea 8 48 f 15 yr Homozygote 3 days Abdominal pain, diarrhoea
TABLE-US-00023 TABLE 3 Aminoacid at position Range Mean Glutamate (100) 100% Asparagine (50-84) 70% Aspartate (50-94) 65% Alanine (44-76) 64% Cysteine (45-83) 62% Serine (45-75) 62% Valine (24-79) 56% Threonine (46-66) 55% Glycine (34-47) 40% Leucine (8-46) 33% Glutamine (16-21) 19% Isoleucine (3-25) 14% Methionine (3-32) 14% Phenylalanine (0-33) 12% Histidine (0-13) 8% Tyrosine .sup. (0-17). 8% Tryptophan (0-17) 8% Lysine (o-11) 4% Proline (0-4) 2% Arginine (0-2) 1%
TABLE-US-00024 TABLE 4 Corresponding residues in gliadin protein sequences pt response Peptice sequence (Accession no) 13) QLQPSPQPQLPYPQPQ 57-73 .alpha.-Gliadin (T. aestivum) Q41545 (SEQ ID NO: 796) 100 (100) QLQPFPQPELPVPQPQS 57-73 .alpha.-Gliadin (T. aestivum) Q41545 (SEQ ID NO: 797) 7) 53 (44-67) QLQPFPQPQLPYSQPQP 77-93 .alpha./.beta.-Gliadin precursor (Tricetum.aestivum) P02863 (SEQ ID NO: 28) 76-92 .alpha.-Gliadin (T. aestivum) Q41528 77-93 .alpha.-Gliadin storage protein (T. aestivum) Q41531 57-73 .alpha.-Gliadin mature peptide (T. aestivum) Q41533 77-93 .alpha.-Gliadin precursor (T. spelta) Q9ZP09 -20) 83 (61-113) QLQPFPQPQLPYPQPQP 77-93 .alpha./.beta.-Gliadin A-II precursor (T. aestivum) P0472 (SEQ ID NO: 26) -337) 83 (74-97) QLQPFPQPQLFVFQPQL 77-93 .alpha./.beta.-Gliadin A-IV precursor (T. aestivum) P04724 (SEQ ID NO: 798) 77-93 .alpha./.beta.-Gliadin MM1 precursor (T. aestivum) P18573 1O9 (41-152)) PQLPYPQPQLPYPQPQP 84-100 .alpha./.beta.-Gliadin A-IV precursor (T. aestivum) P04724 (SEQ ID NO: 72) PQLPYPQPQLPYPQPQL 84-100 .alpha./.beta.-Gliadin MM1 precursor (T. aestivum)P18573 (SEQ ID NO: 73) 3 (0-7) QLQPFLQPQLPYSQPQP 77-93 .alpha./.beta.-Gliadin A-1 precursor (T. aestivum) P04721 (SEQ ID NO: 69) 77-93 .alpha.-Gliadin (T. aestivum) Q41509 2 (0-7) QLQPFSQPQLPYSQPQP 77-93 .alpha.-Gliadin storage protein (T. aestivum) Q41530 (SEQ ID NO: 70) PQPQPFPPQLPYPQTQP 77-93 .alpha./.beta.-Gliadin A-III precursor (T. aestivum) P04723 (SEQ ID NO: 97) -40) 24 (11-43) PQPQPFPPQLPYPQPQS 82-98 .alpha./.beta.-Gliadin A-V precursor (T. aestivum) P04725 (SEQ ID NO: 75) -30) 19 (11-33) PQPQPFPPQLPYPQPPP 82-98 .alpha./.beta.-Gliadin clone PW1215 precursor (T. aestivum) P04726 (SEQ ID NO: 77 82-98 .alpha./.beta.-Gliadin (T. urartu) Q41632 -30) 21 (11-33) PQPQPFLPQLPYPQPQS 79-95 .alpha./.beta.-Gliadin clone PW8142 precursor (T. aestivum) P04726 (SEQ ID NO: 74) 79-95 .alpha.-Gliadin (T. aestivum) Q41529 79-95 .alpha./.beta.-Gliadin precursor (T. aestivum) Q41546
TABLE-US-00025 TABLE 5 Table 5 T cell epitopes described in coeliac disease Source Restriction Frequency Sequence* Gamma-gliadin DQ2 3/NS (iTCC) QQLPQPEQPQQSFPEQERPF (SEQ ID NO: 48) Alpha-gliadin DQ2 12/17 (iTCL) QLQPFPQPELPY (SEQ ID NO: 13) Alpha-gliadin DQ2 11/17 (iTCL) PQPELPYPQPELPY (SEQ ID NO: 47) Alpha-gliadin DQ2 1/23 (bTCC) LGQQQPFPPQQPYPQPQPF (SEQ ID NO: 98) Alpha-gliadin DQ8 3/NS (iTCC) QQYPSGEGSFQPSQENPQ (SEQ ID NO: 99) Glutenin DQ8 1/1 (iTCC) GQQGYYPTSPQQSGQ (SEQ ID NO: 100) Alpha-gliadin DQ2 11/12 in vivo QLQPFPQFELPYPQPQS (SEQ ID NO: 2) NS not stilted in original publication, iTCC intestinal T cell clone, iTCL intestinal polyclonal T cell line, bTCC peripheral bl T cell clone. All peptides are the products of transglutaminase modifying wild type gluten peptides except the fourth and sixth peptides
TABLE-US-00026 TABLE 6 Relative bioactivity of gliadin T cell epitopes in coeliac PBMC after gluten challenge ELISpot response as % A-gliadin 57-73 QE65 (SEQ ID NO: 2) (all 2 Smcg/ml) Wild Wildtype + E- Sequence type tTG substituted QQLPQPEQPQQSFPEQERPF 9 (3) 18 (7) 10 (5) (SEQ ID NO: 48) QLQPFPQPELPY 6 (2) 19 (1) 8 (3) (SEQ ID NO: 13) PQPELPYPQPELPY 13 (6) 53 (8) 48 (9) (SEQ ID NO: 47) QQYPSGEGSFQPSQENPQ 10 (3) 9 (3) 14 (8) (SEQ ID NO: 99) QLQPFPQPELPYPQPQS 18 (7) 87 (7) 100 (SEQ ID NO: 2) PQLPYPQPELPYPQPQP 14 (4) 80 (17) 69 (20) (SEQ ID NO: 101) Sequence refers that of transglutaminase (tTG) modified peptide and the t cell epitope. Wild type is the unmodified gliadin peptide. Data from 4 subjects. Blank was 5 (1)%.
TABLE-US-00027 TABLE 7 Polymorphisms of A-gliadin 57-73 A. Sequences derived from Nordic autumn wheat strain Mjoelner Alpha-gliadin protein (single letter code refers to FIG. 14 peptides) Polymorphism Q41545 A-gliadin (from QLQPFPQPQLPYPQPQS sequenced protein) 57-73 (A) (SEQ ID NO: 10) Gli alpha 1, 6: (EMBL: AJ133605 QPQPFPPPQLPYPQTQP & AJ133602 58-74) (J) (SEQ ID NO: 105) Gli alpha 3, 4, 5: (EMBL: QLQPFPQPQLSYSQPQP AJ133606, AJ133607, (SEQ ID NO: 71) AJ133608 57-73) (I) Gli alpha 7: (EMBL: AJ133604 QLQPFPRPQLPYPQPQP 57-73) (E) (SEQ ID NO: 68) Gli alpha 8, 9, 11: (EMBL:) (F) QLQPFPQPQLPYSQPQP (SEQ ID NO: 28) Gli alpha 10: (EMBL: AJ133610 QLQPFPQPQLPYLQPQS 57-73) (D) (SEQ ID NO: 104)
B. SWISSPROT and TREMBL scan (10.12.99) for gliadins containing the sequence: XXXXXXXPQLPYXXXXX (SEQ ID NO: 799)
TABLE-US-00028 Wheat (Triticum aestivum unless stated) gliadin accession number Polymorphism Q41545 A-gliadin (from sequenced protein) 57-73 (A) QLQPFPQPQLPYPQPQS (SEQ ID NO: 10) SWISSPROT: GDA0_WHEAT P02863 77-93 (F) QLQPFPQPQLPYSQPQP (SEQ ID NO: 28) GDA1_WHEAT P04721 77-93 (G) QLQPFLQPQLPYSQPQP (SEQ ID NO: 69) GDA2_WHEAT P04722 77-93 (B) QLQPFPQPQLPYPQPQP (SEQ ID NO: 26) GDA3_WHEAT P04723 77-93 (O) PQPQPFPPQLPYPQTQP (SEQ ID NO: 97) GDA4_WHEAT P04724 77-93 (C) QLQPFPQPQLPYPQPQL (SEQ ID NO: 51) GDA4_WHEAT P04724 84-100 (K) PQLPYPQPQLPYPQPQP (SEQ ID NO: 72) GDA5_WHEAT P04725 82-98 (N) PQPQPFPPQLPYPQPQS (SEQ ID NO: 75) GDA6_WHEAT P04726 82-98 (P) PQPQPFPPQLPYPQPPP (SEO ID NO: 77) GDA7_WHEAT P04727 79-95 (M) PQPQPFLPQLPYPQPQS (SEQ ID NO: 74) GDA9_WHEAT P18573 77-93 (C) QLQPFPQPQLPYPQPQL (SEQ ID NO: 51) GDA9_WHEAT P18573 84-100 (L) PQLPYPQPQLPYPQPQL (SEQ ID NO: 73) GDA9_WHEAT P18573 91-107 (K) PQLPYPQPQLPYPQPQP (SEQ ID NO: 72) TREMBL Q41509 ALPHA-GLIADIN 77-93 (G) QLQPFLQPQLPYSQPQP (SEQ ID NO: 69) Q41528 ALPHA-GLIADIN 76-92 (F) QLQPFPQPQLPYSQPQP (SEQ ID NO: 28) Q41529 ALPHA-GLIADIN 79-95 (M) PQPQPFLPQLPYPQPQS (SEQ ID NO: 74) Q41530 ALPHA-GLIADIN 77-93 (H) QLQPFSQPQLPYSQPQP (SEQ ID NO: 70) Q41531 ALPHA-GLIADIN 77-93 (F) QLQPFPQPQLPYSQPQP (SEQ ID NO: 28) Q41533 ALPHA-GLIADIN 57-73 (F) QLQPFPQPQLPYSQPQP (SEQ ID NO: 28) Q41546 ALPHA/BETA-GLIADIN 79-95 (M) PQPQPFLPQLPYPQPQS (SEQ ID NO: 74) Q41632 ALPHA/BETA-TYPE GLIADIN. Triticum urartu 82-98 (P) PQPQPFPPQLPYPQPPP (SEQ ID NO: 77) Q9ZP09 ALPHA-GLIADIN Triticum spelta 77-93 (F) QLQPFPQPQLPYSQPQP (SEQ ID NO: 28)
TABLE-US-00029 TABLE 8 Bioactivity of substituted variants of A-gliadin 57-73 QE65 (SEQ ID NO:2) (Subst) compared to unmodified A-gliadin 57-73 QE65 (SEQ ID NO:2) (G) (mean 100%, 95% CI 97-104) and blank (no peptide, bl) (mean 7.1%, 95% CI: 5.7-8.5) Subst % P vs G Subst % P vs G Subst % P vs G Subst % P vs G P vs bl Super-agonists F62 71 0.001 H62 47 <0.0001 N66 24 <0.0001 Y61 129 <0.0001 V63 70 <0.0001 G69 47 <0.0001 R64 24 <0.0001 Y70 129 0.0006 S69 70 <0.0001 N63 47 <0.0001 K63 23 <0.0001 Agonists H63 70 <0.0001 H68 47 <0.0001 V65 23 <0.0001 W70 119 0.017 F63 70 0.008 M68 46 <0.0001 H66 23 <0.0001 K57 118 0.02 P79 69 <0.0001 D68 46 <0.0001 H67 22 <0.0001 Y59 117 0.04 T62 69 <0.0001 V69 46 <0.0001 L64 22 <0.0001 A57 116 0.046 L61 69 <0.0001 G63 45 <0.0001 S66 22 <0.0001 S70 116 0.045 S61 69 <0.0001 V64 45 <0.0001 F67 21 <0.0001 K58 114 0.08 T61 69 <0.0001 E61 45 <0.0001 W66 21 <0.0001 W59 110 0.21 T63 69 <0.0001 A69 43 <0.0001 G64 21 <0.0001 A73 109 0.24 M66 68 <0.0001 R62 42 <0.0001 G65 21 <0.0001 I59 108 0.37 T69 67 <0.0001 G68 42 <0.0001 D64 21 <0.0001 G59 108 0.34 K60 66 <0.0001 A64 42 <0.0001 I65 21 <0.0001 A58 108 0.35 S62 66 <0.0001 C65 42 <0.0001 M64 20 <0.0001 <0.0001 W60 105 0.62 M61 66 <0.0001 N67 41 <0.0001 G67 19 <0.0001 <0.0001 A59 104 0.61 P61 65 <0.0001 W63 41 <0.0001 T65 19 <0.0001 0.003 K72 104 0.65 M62 64 <0.0001 F69 41 <0.0001 A66 19 <0.0001 <0.0001 S59 103 0.76 Q61 64 <0.0001 N68 40 <0.0001 I64 19 <0.0001 0.0003 K73 102 0.8 G61 64 <0.0001 V66 40 <0.0001 R63 19 <0.0001 <0.0001 A70 102 0.81 A63 64 <0.0001 H69 40 <0.0001 W67 19 <0.0001 <0.0001 Y60 101 0.96 L62 60 <0.0001 M69 40 <0.0001 K68 18 <0.0001 <0.0001 A72 100 0.94 I68 60 <0.0001 R69 40 <0.0001 H64 18 <0.0001 <0.0001 S63 98 0.67 S67 59 <0.0001 W69 40 <0.0001 W64 18 <0.0001 0.0001 K59 96 0.46 N61 59 <0.0001 Q69 39 <0.0001 Q65 18 <0.0001 0.0002 I60 96 0.5 I69 59 <0.0001 L67 38 <0.0001 F64 16 <0.0001 0.0008 G70 95 0.41 V61 58 <0.0001 K69 38 <0.0001 L65 16 <0.0001 0.0022 D65 95 0.44 D61 58 <0.0001 K62 38 <0.0001 N64 16 <0.0001 <0.0001 E70 93 0.27 E60 57 <0.0001 E67 37 <0.0001 F65 16 <0.0001 0.12 I63 92 0.19 A61 57 <0.0001 L69 37 <0.0001 Q67 15 <0.0001 0.0012 S60 92 0.23 Q62 56 <0.0001 S64 36 <0.0001 M65 14 <0.0001 0.015 P59 88 0.08 F68 56 <0.0001 G62 36 <0.0001 D66 14 <0.0001 0.013 M63 87 0.03 N65 56 <0.0001 E69 36 <0.0001 R67 14 <0.0001 0.002 K71 85 0.047 A62 56 <0.0001 E68 36 <0.0001 Non-agonists V62 84 0.04 A68 53 <0.0001 V67 35 <0.0001 P63 13 <0.0001 0.012 I70 84 0.04 P66 53 <0.0001 D62 35 <0.0001 E64 12 <0.0001 0.053 I61 83 0.01 R61 53 <0.0001 R68 34 <0.0001 W65 11 <0.0001 0.24 V68 82 0.0045 S68 53 <0.0001 Q66 34 <0.0001 Q64 11 <0.0001 0.15 E59 81 0.01 Y63 52 <0.0001 A67 33 <0.0001 G66 11 <0.0001 0.07 Partial agonists N69 51 <0.0001 N62 32 <0.0001 R65 11 <0.0001 0.26 W61 79 0.002 E63 51 <0.0001 F66 31 <0.0001 Y67 10 <0.0001 0.13 A60 78 0.002 T64 51 <0.0001 E62 31 <0.0001 E66 10 <0.0001 0.17 Y62 78 0.006 T67 51 <0.0001 D69 31 <0.0001 K66 10 <0.0001 0.21 G60 77 0.003 Y69 50 <0.0001 D67 30 <0.0001 R66 10 <0.0001 0.23 A71 77 0.003 D63 50 <0.0001 M67 29 <0.0001 K67 10 <0.0001 0.11 W62 76 0.0009 A65 49 <0.0001 Y66 28 <0.0001 P65 8 <0.0001 0.57 Q60 76 0.001 K61 49 <0.0001 I67 28 <0.0001 K64 8 <0.0001 0.82 L63 74 0.0002 I66 49 <0.0001 H65 26 <0.0001 K65 8 <0.0001 0.63 I62 74 0.0005 T68 48 <0.0001 P68 26 <0.0001 Y65 7 <0.0001 0.9 K70 74 0.001 S65 48 <0.0001 Y64 25 <0.0001 H61 72 <0.0001 L68 48 <0.0001 EK65 25 <0.0001 W68 72 <0.0001 Q68 48 <0.0001 T66 25 <0.0001
TABLE-US-00030 TABLE 9 Antagonism of A-gliadin 57-73 QE65 (SEQ ID NO: 2) interferon gamma ELISPOT response by substituted variants of A-gliadin 57-73 QE65 (SEQ ID NO: 2) (Subst) (P is significance level in unpaired t-test). Agonist activity (% agonist) of peptides compared to A-gliadin 57-73 QE65 (SEQ ID NO: 2) is also shown. Subst % Inhibit. P % agonist. Antagonists 65T 28 0.004 19 67M 27 0.0052 29 64W 26 0.007 18 67W 25 0.0088 19 Potential antagonists 67I 24 0.013 10 67Y 24 0.013 21 64G 21 0.03 21 64D 21 0.029 16 65L 20 0.046 26 66N 20 0.037 24 65H 20 0.038 16 64N 19 0.05 16 64Y 19 0.06 25 66Y 19 0.048 28 64E 19 0.049 12 67A 18 0.058 30 67H 18 0.052 22 Non-antagonists 65V 17 0.07 23 65I 17 0.086 21 66T 17 0.069 25 65W 15 0.11 11 67R 15 0.13 14 65P 15 0.13 8 65K 15 0.11 8 66W 15 0.12 21 67G 14 0.14 19 66A 14 0.14 19 65R 13 0.18 11 65M 13 0.16 14 68P 13 0.16 26 63R 13 0.19 19 66G 12 0.19 11 65Q 12 0.2 18 65Y 12 0.22 7 66S 12 0.22 22 67F 11 0.25 21 66R 10 0.29 10 67K 10 0.29 10 64F 10 0.29 16 65F 9 0.41 16 63P 8 0.42 13 65EK 8 0.39 25 64Q 7 0.49 11 64I 5 0.6 21 68K 5 0.56 19 67Q 5 0.61 18 65G 5 0.62 15 64M 4 0.7 20 66H 4 0.66 23 66 E 3 0.76 10 66D 1 0.9 14 63K 1 0.88 23 64H 1 0.93 18 66K 0 0.98 10 64K -2 0.88 8 64L -11 0.26 22
TABLE-US-00031 TABLE 10 Inhibition of A-gliadin 57-73 QE65 (SEQ ID NO: 2) interferon gamma ELISPOT response by peptides known to bind HLA- DQ2 (P is significance level in unpaired t-test). Peptide % Inhibit. P TP 31 <0.0001 HLA1a 0 0.95
TABLE-US-00032 TABLE 11 Antagonism of A-gliadin 57-73 QE65 (SEQ ID NO: 2) interferon gamma ELISpot response by naturally occurring polymorphisms of A-gliadin 57-73 QE65 (SEQ ID NO: 2) (P is significance level in unpaired t-test). A-gliadin 57-73 QE65 % (SEQ ID NO: 2) polymorphism Inhibit. P P04725 82-98 QE90 PQPQPFPPELPYPQPQS 19 0.009 (SEQ ID NO: 17) Q41509 77-93 QE85 QLQPFLQPELPYSQPQP 11 0.15 (SEQ ID NO: 803) Gli .alpha. 1, 6 QPQPFPPPELPYPQTQP 11 0.11 58-74 QE66 (SEQ ID NO: 804) P04723 77-93 QE85 PQPQPFPPELPYPQTQP 10 0.14 (SEQ ID NO: 805) Gli .alpha. 3-5 QLQPFPQPELSYSQPQP 7 0.34 57-73 QE65 (SEQ ID NO: 806) P02863 77-93 QE85 QLQPFPQPELPYSQPQP 6 0.35 (SEQ ID NO: 29) Q41509 77-93 QE85 QLQPFLQPELPYSQPQP 6 0.41 (SEQ ID NO: 803) P04727 79-95 QE65 PQPQPFLPELPYPQPQS 6 0.39 (SEQ ID NO: 807) P04726 82-98 QE90 PQPQPFPPELPYPQPPP 5 0.43 (SEQ ID NO: 808)
TABLE-US-00033 TABLE 12 Prolamin homologues of A-gliadin 57-73 (excluding alpha/beta-gliadins) % Prolamin Accession number Sequence Bioactivity* Wheat: .alpha.-gliadin A-gliadin (57-73) QLQPFPQPQLPYPQPQS 100 (0) (SEQ ID NO: 10) Wheat: .omega.-gliadin AAG17702 (141-157) PQ...........................F......QSE 32 (6.4) (SEQ ID NO: 761) Barley: C-hordein Q40055 (166-182) ...QPFPL...............F............Q 2.3 (2.0) (SEQ ID NO: 762) Wheat .gamma.-gliadin P21292 (96-112) ...QTFPQ...............F......QPQ 2.1 (4.2) (SEQ ID NO: 763) Rye: secalin Q43639 (335-351) ...QPSPQ...............F............Q 1.6 (1.4) (SEQ ID NO: 764) Barley: .gamma.-hordein P80198 (52-68) ...QPFPQ...............HQHQFP -1.0 (1.8) (SEQ ID NO: 765) Wheat: LMW P16315 (67-83) LQ...OPILFS............FS...Q...Q -0.9 (1.0) glutenin (SEQ ID NO: 766) Wheat: HMW P08489 (718-734) HGYYPTS.........SGOGQRP 6.4 (4.0) glutenin (SEQ ID NO: 767) Wheat .gamma.-gliadin P04730 (120-136) ...QCCQQL......I...QQSRYQ 0.7 (0.9) (SEQ ID NO: 768) Wheat: LMW P10386 (183-199) ...QCCQQL......I...QQSRYE -0.7 (0.5) glutenin (SEQ ID NO: 769) Wheat: LMW O49958 (214-230) ...QCCRQL......I...EQSRYD -1.1 (0.3) glutenin (SEQ ID NO: 770) Barley: B1-hordein P06470 (176-192) ...QCCQQL......I...EQFRHE 1.8 (1.4) (SEQ ID NO: 771) Barley: B-hordein Q40026 (176-192) ...QCCQQL......ISEQFRHE 0.5 (0.9) (SEQ ID NO: 772) *Bioactivity is expressed as 100 .times. (spot forming cell is with peptide 25 mcg/ml plus tTG 8 mcg/ml minus blank)/(spot forming cells with A-gliadin 57-73 25 mcg/ml plus tTG 8 mcg/ml minus blank) (mean (SEM), n = 5). Peptides were preincubated with tTG for 2 h 37.degree. C. Note, Q is deamidated in A-gliadin 57-73 by tTG.
TABLE-US-00034 TABLE 13 Clinical details of coeliac subjects. HLA-DQA1 HLA-DQB1 Duodenal EMA on gluten HLA-DQ alleles alleles histology Gluten free (on GFD) C01 2, 6 102/6, 501 201, 602 SVA 1 yr + (-) C02 2, 2 501 201 SVA 1 yr + (-) C03 2, 5 101/4/5, 501.sup. 201, 501 PVA 1 yr + (-) C04 2, 5 101/4-5, 501.sup. 201, 501 SVA 7 yr + (-) C05 2, 2 .sup. 201, 501 201, 202 SVA 4 mo + (ND) C06 2, 2 .sup. 201, 501 201, 202 SVA 2 yr + (-) C07 2, 8 301-3, 501 201, 302 SVA 1 yr + (-) C08 2, 8 301-3, 501 .sup. 201, 302/8 SVA 11 yr ND (-) C09 2, 8 301-3, 501 201, 302 SVA 29 yr + (-) C10 2, 8 .sup. 201, 301-3 202, 302 IEL 1 yr + (-) C11 6, 8 .sup. 102/6, 301-3 602/15, 302/8 IEL 9 mo - (ND) C12 8, 7 301-3, 505 .sup. 302, 301/9-10 SVA 2 yr - (-) C13 8, 8 301 302 SVA 1 yr + (+) SVA subtotal villous atrophy, PVA partial villous atrophy, IEL increased intra-epithelial atrophy, GFD gluten-free diet, ND not done.
TABLE-US-00035 TABLE 14 HLA-DQ2+ Coeliac (C01-6) and healthy control (H01-10) IFN.gamma. ELISpot responses to control peptides (20 .mu.g/ml) and gliadin (500 .mu.g/ml) before and after gluten challenge (sfc/million PBMC minus response to PBS alone) Peptide Healthy Day 0 Healthy Day 6 Coeliac Day 0 Coeliac Day 6 P04722 77-93 0 (-4 to 17) 0 (-5 to 9) -2 (-3 to 0) 27 (0-100)* (SEQ ID 26) P04722 77-93 0 (-5 to 4) 0 (-9 to 3) 0 (-4 to 11) 141 (8 to 290)** (SEQ ID 26) + tTG P04722 77-93 QE85 0 (-5 to 5) 0 (-3 to 4) 0 (-6 to 14) 133 (10 to 297)* (SEQ ID NO: 27) P02863 77-93 0 (-4 to 13) 2 (-3 to 5) -2 (-3 to 2) 8 (-2 to 42)** (SEQ ID NO: 28) P02863 77-93 -1 (-5 to 4) -1 (-4 to 11) 1 (-4 to 6) 65 (8-164)** (SEQ ID NO: 28) + tTG P02863 77-93 QE85 0 (-4 to 13) 0 (-4 to 14) -1 (-4 to 6) 42 (-2 to 176)* (SEQ ID NO: 29) Gliadin chymotrypsin 2 (-5 to 20) 18 (0 to 185)* 20 (11 to 145) 92 (50 to 154) Gliadin chymotrypsin + tTG 0 (-1 to 28) 16 (-9 to 171)* 55 (29 to 248) 269 (206 to 384)** Chymotrypsin 0 (-4 to 5) 1 (-4 to 11) -2 (-5 to 5) 1 (-4 to 8) Chymotrypsin + tTG 0 (-5 to 8) 6 (0 to 29) -2 (-3 to 11) 2 (-3 to 18)* Gliadin pepsin 4 (-4 to 28) 29 (0 to 189)*** 44 (10 to 221) 176 (54 to 265)** Gliadin pepsin + tTG 2 (-3 to 80) 27 (-4 to 241)*** 61 (8 to 172) 280 (207 to 406)** Pepsin 0 (-4 to 10) 0 (-3 to 12) 0 (-2 to 3) 2 (-2 to 8) Pepsin + tTG 0 (-3 to 8) 0 (-5 to 9) 1 (-6 to 3) 0 (-3 to 14) PBS alone 4 (0 to 6) 2 (0 to 6) 4 (1 to 12) 4 (0 to 4) PBS + tTG 3 (0 to 8) 3 (0 to 11) 4 (2 to 10) 4 (2 to 11) Day 6 vs. Day 0: *P < 0.05 **P, 0.02, ***P < 0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test
TABLE-US-00036 TABLE 15 Effect of deamidation by tTG to gliadin (0.5 mg/ml) and A-gliadin 57-73 (SEQ ID NO: 10) homologues on IFN.gamma. ELISpot responses in HLA-DQ2+ coeliac (C01-6) and healthy control subjects (H01-10) (median ratio tTG:no tTG pretreatment, range) Peptide Healthy Day 6 Coeliac Day 0 Coeliac Day 6 Gliadin 0.94 (0.4-9.0) 2.1 (0.8-6.8)* 3.2 (1.8-4.2)** chymotrypsin Gliadin pepsin 1.4 (0.5-1.4) 1.4 (0.8-4.0)* 1.9 (1.1-4.4)** P04722 77-93 Q85 6.5 (2.3-12)** (SEQ ID NO: 26) P04722 77-93 E85 0.7 (0.6-1.1) (SEQ ID NO: 27) P02863 77-93 Q85 7.5 (3.9-19.9)** (SEQ ID NO: 28) P02863 77-93 E85 1.0 (0.8-1.2) (SEQ ID NO: 29) TTG > no tTG: *P < 0.05 **P, 0.02, ***P < 0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test
TABLE-US-00037 TABLE 16 Healthy subjects: IFN.gamma. ELISpot Responses (>10 sfc/million PBMC and >4 x buffer only) to tTG-treated gliadin peptide Pools on Day 6 of gluten challenge (sfc/million PBMC) (italic: response also present on Day 0): Group 1 - HLA-DQ2 (DQAl*0501-5, DQB1*0201) Group 2 - HLA-DQ8 (DQA1*0301, DQR1*0302) and absent or "incomplete" DQ2 (only DQA1*0501-5 or DQB1*0201) Group 1 Group 2 Subject H01 H02 H03 H04 H05 H06 H07 H08 H09 H10 H11 HLA-DQ 2, 6 2, 7 2, 8 2, 5 2, 6 2, 6 2, 6 2, 7 2, 5 2, 5 8, 8 Pool 1 . . . . . . . . . . . 2 . . . . . . . . . . . 3 . . . . . . . . . . . 4 . . . . . . . . 13 . . 5 . 17 . . . . . . 24 . . 6 . . . . . . . . 31 . . 7 . . . . . . . . . . . 8 . . . . . . . . . . . 9 . . . . . . . . . . . 10 . . . . . . . . . . . 11 . . . . . . . . . . . 12 . . . . . . . . . . . 13 . . . . . . . . . . . 14 . . . . . . . . . . . 15 . . . . . . . . . . . 16 . . . . . . . . . . . 17 . . . . . . . . . . . 18 . . . . . . 20 . . . . 19 . . . . . . . . . . . 20 . 11 . . . . . . . . . 21 . 11 . . . . . . 27 . . 22 . . . . . . . . . . . 23 . 43 . . . . . . . . . 24 . . . . . . . . . . . 25 . 11 . . . . . . . . . 26 . . . . . . . . . . . 27 . . . . . . . . . . . 28 . . . . . . . . . . . 29 . . . . . . . . . . . 30 . . . . . . . 23 . . . 31 . . . . . . . . . . . 32 . . . . . . . . . . . 33 . 20 . . . . . . . . . 34 . . . . . . . . . . . 35 . 11 . . . . . . . . . 36 . . . . . . . . . . . 37 . . . . . . . 18 . . . 38 14 . . . . . . 12 . . . 39 . . . . . . . 11 . . . 40 . 14 . . . . . 17 . . . 41 . . . . . . . . . . . 42 . . . . . . . . . . . 43 . . . . . . . . 11 . . 44 . 14 . . . . . . . . . 45 . 11 . . . . . . . . . 46 . . . . . . . . . . . 47 . . . . . . . . . . . 48 . . . . . . . . . . . 49 . . . . . . . . . . . 50 . 14 . . 12 . . 22 . 14 . 51 . . . . . . . . . . . 52 . 14 . . . . . . . . . 53 . 26 . . . . . . . . . 54 . . . . . . . 12 . . . 55 . . . . . . . . . . . 56 . . . . . . . . . . . 57 . 23 . . . . 12 . . . . 58 . 14 . . . . . . . . . 59 . . . . . . . . . . . 60 . . . . . . . . . . . 61 . 23 . . . . . 11 11 . . 62 . . . . . . . . . . . 63 . . . . . . . . . . . 64 . 20 . . . . . . . . . 65 . . . . . . . . . . . 66 . 14 . . . . . . . . . 67 . 11 . . . . . . . . . 68 . 20 . . . . . 20 . . . 69 . 20 . . . . . . . . . 70 . . . . . . . . . . . 71 . . . . . . . . . . 16 72 . 11 . . . . . . . . . 73 . 14 . . . . . . . . . 74 . . . . . . . . . . . 75 . . . . . . . . . . . 76 . 14 . . . . . . . . . 77 . . . . . . . . . . . 78 . 11 . . . . . . . . . 79 . 11 . . 19 . . . . . . 80 . . . . . . . . . . . 81 . . . . . . . . . . . 82 . . . . . . . . . . . 83 . . . . . . . . . . . P04722 77-93 . . . . . . . . . . . P04722 77-93 E . . . . . . . . . . . P04722 77-93 E . . . . . . . . . . . P02863 77-93 . . . . . . . 11 . . . P02863 77-93 E . . . . . . . . . . . Gliadin + C 171 40 25 16 10 18 14 . 17 90 Chymotrypsin 29 26 18 . . . . . 22 . . Gliadin + Pepsin 241 151 29 24 48 . 16 45 . 19 35 Pepsin
TABLE-US-00038 TABLE 17 tTG-deamidated gliadin peptide pools showing significant increase in IFN gamma responses between Day 0 and Day 6 of gluten challenge in HLA-DQ2 coeliac subjects C01-6 (Day 6-Day 0 response, and ratio of responses to tTG-deamidated pool and same pool without tTG treatment) IFNg ELISpot tTG:no tTG Pool (Median sfc/million) (Median) 9 59*** 1.0 10 116** 1.7 11 24*** 2.5 12 133*** 1.1 13 26** 2.1 42 30** 1.2 43 32*** 1.3 44 24*** 1.5 45 10*** 1.1 46 12*** 2.1 48 17*** 1.4 49 46*** 1.4 50 50*** 4.6 51 40*** 1.7 52 30*** 3.1 53 27** 1.4 76 17*** 1.1 79 20*** 0.9 80 83*** 1 81 141*** 1.1 82 22*** 1.5 83 16** 1.8 Day 6 vs. Day 0 **P < 0.02, ***P < 0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test
TABLE-US-00039 TABLE 18 Coeliac subjects: IFN.gamma. ELISpot Responses >10 sfc/million PBMC and >4 x buffer only to tTG-treated Pepset Pools on Day 6 of gluten challenge (sfc/million PBMC) (italic: response also present on Day 0): Group 1 - HLA-DQ2 (DQA1*0501-5, DQB1*0201/2), Group 2 - HLA-DQ2/8 (DQAl*0501-5, *0301, and DQB1*0201/2, *0302), and Group 3 - HLA-DQ8 (DQA1*0301, DQB1*0302) and absent or "incomplete" DQ2 (only DQA1*0501-5 or DQB1*0201/2) Group 1: Group 2: Group 3 Subject C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 HLA-DQ 2, 6 2, 2 2, 5 2, 5 2, 2 2, 2 2, 8 2, 8 2, 8 2, 8 6, 8 7, 8 8, 8 Pool 1 . 23 223 2 . 155 3 . 41 4 11 22 . 5 . . . 6 18 21 20 17 . . 7 . 353 . . 8 11 64 14 20 480 . . 13 9 93 127 92 25 32 460 . . 18 10 175 491 58 200 48 84 787 . . 11 32 118 33 14 26 27 12 . 12 204 379 54 225 61 129 587 12 . 13 93 142 29 18 60 . . 11 14 . 45 21 17 . . 15 18 30 38 43 . . 16 . 37 . . 17 . . . 18 . . . 19 11 . . 20 11 215 51 167 . . 21 . 11 . . 22 . 21 . . 23 . 18 21 12 . 24 . 15 10 . . 25 . 15 12 . 26 . 18 13 12 . 27 . 15 . . 28 . . . 11 29 . 11 . . 30 11 11 . . 31 . 70 . . 32 . 18 20 . . 33 11 10 14 11 . 40 11 34 . 11 . . 35 . . . 36 . . . 37 . 23 14 . . 38 . 24 19 20 . . 39 . 49 15 11 . . 40 . 14 . . 41 . 21 . . 42 39 42 44 21 11 63 12 . 43 50 91 13 75 14 190 113 . . 21 44 32 97 17 96 13 87 107 . . 45 . 21 10 100 11 38 110 . . 46 14 55 102 18 63 163 . . 47 14 58 38 223 97 . . 31 48 21 106 60 14 144 353 . . 57 49 75 170 17 142 30 202 293 . . 39 50 57 245 23 140 61 27 248 143 . . 11 51 68 106 10 127 220 267 . . 29 52 43 121 79 13 16 175 180 . . 53 36 94 92 29 69 53 . . 54 36 35 11 166 . . 19 13 55 . . . 56 29 11 . . 57 . 36 20 13 . . 58 . . . 59 . 10 53 . . 60 . 18 15 11 53 . . 61 . 20 . . 62 14 18 13 60 . . 63 . 10 14 28 . 64 . 15 18 . 65 36 25 23 35 27 . 11 66 31 11 10 17 . . 67 . 17 17 . . 68 . 19 127 14 . . 69 . 15 10 20 20 . . 70 . 12 31 13 10 . . 71 11 21 13 14 . 18 72 . 16 . . 73 . 13 14 11 . . 74 . 239 254 447 . . 75 . . . 76 18 21 19 15 . . 12 77 . 88 10 13 . . 78 . 18 17 69 . . 79 11 85 44 29 12 44 43 . . 80 132 133 33 240 39 12 208 467 12 . 70 81 171 318 113 367 104 12 211 530 . . 74 82 18 300 17 125 32 16 241 723 . . 83 14 164 31 21 163 277 15 . P04722 77-93 211 291 75 281 66 78 740 . . P04722 77-93 E 164 297 108 221 64 10 84 653 . . P04722 77-93 E 161 182 98 256 73 16 63 500 . . P02863 77-93 139 164 35 94 36 29 603 . . P02863 77-93 E 46 176 19 88 41 23 520 . . Gliadin + C 214 273 265 360 384 206 278 543 17 25 527 71 Chymotrypsin 18 . . Gliadin + Pepsin 239 315 269 406 207 292 357 557 42 89 335 87 Pepsin 14
TABLE-US-00040 TABLE 19 Deamidated peptides with mean bioactivity >10% of P04722 E85 (20 ug/ml) in HLA-DQ2 coeliac subjects C01-5 SEQ ID Mean Rank No. NO: Sequence (SEM) 89 195 PQLPYPQPQLPYP 94 (18) QPQLRYP *2 91 197 PQPFPPQLPYPQP 89 (12) QLPYPQP *3 74 180 MQLQPFPQPQLP 88 (14) YPQPQLPY *4 90 196 PQLPYPQPQLPYP 87 (16) QPQPFRP *5 76 182 LQLQPFPQPQLPY 85 (15) PQPQPFR 6 626 732 PQQPQQPQQPFPQ 72 (23) PQQPFPW 7 627 733 QPFPQPQQPFPW 66 (30) QPQQPFPQ *8 631 737 FPQQPQQPFPQPQ 61 (12) LPFPQQS 9 636 742 PQQPQQPFPQPQQ 51 (10) PIPVQPQ *10 73 179 LQLQPFPQPQLPY 49 (11) PQPQLPY 11 412 518 SQQPQQPFPQPQQ 34 (19) QFPQPQQ 12 343 449 QQPQQPFPQPQQP 34 (11) QLPFPQQ *13 68 174 LQLQPFPQPQLPY 33 (10) LQPQPFR *14 66 172 LQLQPFPQPQLPY 32 (7) SQPQPFR *15 96 202 PQPFPPQLPYPQP 28 (6) QSFPPQQ 16 393 499 QLPFPQQPQQPFP 27 (8) QPQQPQQ 17 355 461 QAFPQPQQTFPH 27(15) QPQQQFPQ *18 67 173 LQLQPFPQPQLPY 26 (6) SQPQQFR 19 335 441 QQQQPFPQPQQP 25 (11) QQPFPQPQ *20 95 201 PQPFLPQLPYPQP 24 (6) QSFPPQQ 21 396 502 TQQPQQPFPQQP 23 (9) QQPFPQTQ 22 609 715 SCISGLERPWQQQ 23 (18) PLPPQQS 23 385 491 QQPFPQPQQPQLP 23 (7) FPQQPQQ 24 375 481 PQQPFPQPQQPQQ 23 (10) PFPQPQQ 25 406 512 QPQQPFPQLQQP 22 (8) QQPFPQPQ 26 625 731 PIQPQQPFPQQPQ 22 (9) QPQQPFP 27 378 484 QQPQQPFPQQPQ 22 (10) QQFPQPQQ 28 371 477 PQQQFIQPQQPFP 22 (10) QQPQQTY 29 642 748 PQQPQQPFPLQPQ 20 (8) QPFPQQP 30 635 741 PLQPQQPFPQQPQ 19 (5) QPFPQPQ *31 93 199 PQPFPPQLPYPQP 19 (5) QPFRPQQ 32 377 483 PQQQFPQPQQPQ 19 (9) QPFPQQPQ 33 411 517 LQQPQQPFPQPQ 19 (4) QQLPQPQQ 34 415 521 SQQPQQPFPQPQQ 18 (5) PQQSFPQ *35 94 200 PQPFPPQLPYPQP 18 (3) PPFSPQQ 36 329 435 PSGQVQWPQQQP 18 (4) FPQPQQPF 37 413 519 SKQPQQPFPQPQQP 18 (4) QQSFPQ 38 380 486 QPQQPQQPFPQPQQ 18 (6) PQLPFP 39 618 724 PQQSFSYQQQPFFQ 18 (7) QPYPQQ *40 78 184 LQLQPFPRPQLPYP 17 (8) QPQPFR 41 390 496 QQTYPQRPQQPFPQ 17 (9) TQQPQQ 42 348 454 QQTFPQPQQTFPHQ 16 (10) PQQQFP 43 409 515 QPQQPFPQLQQPQQ 16 (2) PLPQPQ 44 382 488 QQPFPQQPQQPFPQ 16 (6) TQQPQQ 45 629 735 PFPQTQQSFPLQPQ 16 (5) QPFPQQ 46 643 749 PLQPQQPFPQQPQQ 16 (6) PFPQQP 47 389 495 QQPFPQTQQPQQPF 16 (6) PQQPQQ 48 350 456 QQIFPQPQQTFPHQ 15 (8) PQQAFP 49 65 171 PFPSQQPYPQPQPFP 15 (5) QPQPF 50 349 455 QQIFPQPQQTFPHQ 15 (9) PQQQFP 51 610 716 PWQQQPLPPQQSFS 15 (11) QQPPFS *52 81 187 PQPQPFPPQLPYFQ 15 (5) TQPFPP *53 75 181 MQLQPFPQPQPFPP 14 (5) QLPYPQ 54 368 474 QQFPQPQQPQQPFP 14 (7) QQPQQQ *55 82 188 PQPQPFPQPQPFPPQ 14 (3) LPYPQ *56 80 186 LQLQPFPQPQPFPP 14 (4) QLPYPQ 57 624 730 FTQPQQPTPIQPQQP 14 (6) FPQQP 58 407 513 QPQQPFPQSQQPQQ 14 (5) PFPQPQ 59 337 443 QQQPFPQPQQPFCQ 13 (4) QPQRTI 60 634 740 PQQLQQPFPLQPQQ 13 (3) PFPQQP 61 388 494 QQPYPQQPQQPFPQ 13 (3) TQQPQQ 62 641 747 FPELQQPIPQQPQQP 13 (7) FPLQP 63 399 505 QQPFPQTQQPQQPF 13 (5) PQLQQP 64 387 493 QQTFPQQPQLPFPQ 13 (4) QPQQPF 65 628 734 PFPWQPQQPFPQTQ 12 (4) QSFPLQ *66 88 194 PQPFPPQLPYSQPQP 12 (3) FRPQQ 67 408 514 QPQQPFPQSKQPQQ 12 (5) PFPQPQ *68 77 183 LQLQPFPQPQPFPP 11 (4) QLPYPQ 69 370 476 PQQQFLQPQQPFPQ 11 (5) QPQQPY *70 79 185 LQLQPFPQPQPFLP 11 (5) QLPYPQ 71 379 485 QQPQQQFPQPQQPQ 11 (5) QPFPQP 72 397 503 PQQPQQPFPQTQQP 11 (3) QQPFPQ *Indicates homologue of A-gliadin 57-73 with the core sequence PQLP(Y/F) (SEQ ID NO: 800)
TABLE-US-00041 TABLE 20 Peptides >10% as bioactive as P04722 QE65 grouped by structure. IFNg ELISpot response compared to Peptide no. P04722 77-93 [SEQ ID NO:] QE85 (SEQ ID (Pool) NO: 27): mean Rank Gliadin-subtype Sequence (SEM) Group 1: Homologies of A-gliadin 57-73 P04722 77-93 QLQPFPQPQLPYPQPQP (SEQ ID NO: 26) 1 89 [195] (12) .alpha. PQL-Y-----------LPYP 94 (18) 2 91 [197] (12) .alpha. PQPFPPQL-Y-------- 89 (12) 3 74 [180] (10) .alpha. M----------------LPY 88 (14) 4 90 [196] (12) .alpha. PQL-Y-----------FRP 87 (16) 5 76 [182] (10) .alpha. L-----------------FR 85 (15) 8 531 [737] (81) .omega. FPQQPQ---------F-QS 61 (12) 10 73 [179] (10) .alpha. L................................................LPY 49 (11) 13 68 [174] (9) .alpha. L------------L--QPFR 33 (10) 14 66 [172] (9) .alpha. L------------S----FR 32 (7) 18 67 [173] (9) .alpha. L....................................S.........QFR 26 (6) 20 95 [201] (13) .alpha. --------PQPFL---------SFPPQQ 24 (6) 31 93 [199] (12) .alpha. PQPFP----------FRPQQ 19 (5) 35 94 [200] (12) .alpha. PQPFP--------P-FSPQQ 18 (3) 40 78 184] (10) .alpha. L------R----------FR 17 (8) 52 81 [187] (11) .alpha. PQPQPFP-------T--FPP 15 (5) 53 75 [181] (10) .alpha. MQLQPFPQPQPFP------- 14 (5) 55 82 [188] (11) .alpha. PQPQPFPQPQPFP------- 14 (3) 56 80 [186] (10) .alpha. LQLQPFPQPQPFP------- 14 (4) 66 88 [194] (11) .alpha. PQPFP------S---FRPQQ 12 (3) 68 77 [183] (10) .alpha. LQLQPFPQPQPFP------- 11 (4) 70 79 [185] (10) .alpha. LQLQPFPQPQPFL..................... 11 (5) Group 2: Homologues of peptide 626 QQPFPQPQQPFP (SEQ ID NO: 39) 6 626 [732] (80) .omega. PQQPQQP------------W 72 (23) 7 627[733] (80) .omega. -----------WQPQQPFPQ 66 (30) 9 636 [742] (81) .omega. PQQP----------I-VQPQ 51 (10) 11 412 [518] (53) .gamma. SQQP---------Q--QPQQ 34 (19) 33 411 [517] (53) .gamma. LQQP---------QL-QPQQ 19 (4) 36 329 [435] (42) .gamma. PSGQVQWPQ----------- 18 (4) 41 390 [496] (50) .gamma. QQTYPQRP-------T---QQ 17 (9) 59 337 [443] (43) .gamma. Q-----------CQQPQRTI 13 (4) 61 388 [494] (50) .gamma. QQPYPQQP------T---QQ 13 (3) Group 3: Homologues of peptide 355 FPQPQQTFPHQPQQQFP (SEQ ID NO: 801) 17 355 [461] (46) .gamma. QA-----------------Q 27 (15) 42 348 [454] (45) .gamma. QQT----------------- 16 (10) 48 350 [456] (45) .gamma. QQI--------------A-- 15 (8) 50 349 [455] (45) .gamma. QQI......................................... 15 (9) Group 4: Homologues of Peptide 396 QQPFPQQPQQPFP (SEQ ID NO: 40) 21 396 [502] (51) .gamma. TQQP-------------QTQ 23 (9) 27 378 [484] (49) .gamma. QQP----------Q--QPQQ 22 (10) 28 371 [477] (48) .gamma. PQQQFIQP-----------TY 22 (10) 29 642 [748] (82) .omega. PQQP-----L-------QQP 20 (8) 30 635 [741] (81) .omega. PLQP-------------QPQ 19 (5) 44 382 [488] (49) .gamma. -------------QTQQPQQ 16 (6) 45 629 [735] (81) .omega. PFPQT--S L-------QQ 16 (5) 46 643 [749] (82) .omega. PLQP-------------QQP 16 (6) 60 634 [740] (81) .omega. PQQL-----L-------QQP 13 (3) 64 387 [493] (50) .gamma. --T------L---QQPQQPF 13 (4) 62 641 [747] (82) .omega. FPEL---I---------QLP 13 (7) Group 5 Homologues of Peptide 343 (overlap Groups 2 and 4) QQPFPQPQQPQLPFPQ (SEQ ID NO: 802) 12 343 [449] (44) .gamma. QQP----------------Q 34 (11) 16 393 [499] (51) .gamma. QLPFPQQP-----------Q 27 (8) 19 335 [441] (43) .gamma. QQ-----------Q----PQ 25 (11) 23 385 [491] (50) .gamma. -------------------QPQQ 23 (7) 24 375 [481] (48) .gamma. P-----------Q----PQQ 23 (10) 25 406 [512] (52) .gamma. QP------L----Q----PQ 22 (8) 32 377 [483] (49) .gamma. P-Q---------Q----QPQ 19 (9) 34 415 [521] (53) .gamma. SQQP-----------QS--- 18 (5) 37 413 [519] (53) .gamma. SKQP-----------QS--- 18 (4) 38 380 [486] (49) .gamma. QPQQP--------------- 18 (6) 43 409 [515] (53) .gamma. QP------L----Q-L--PQ 16 (2) 47 389 [495] (50) .gamma. ------T----Q----QPQQ 16 (6) 58 407 [513] (52) .gamma. QP------S----Q----PQ 14 (5) 63 399 [505] (51) .gamma. ------T----Q----LQQP 13 (5) 67 408 [514] (52) .gamma. QP------SK---Q----PQ 12 (5) 71 379 [485] (49) .gamma. QQP--Q--------Q----P 11 (5) 72 397 [503] (51) .gamma. PQQP------T----Q--- 11 (3) Group 6: Peptide 625 PIQPQQPFPQQP (SEQ ID NO: 41) 26 625 [731] (80) .omega. ------------QQPQQPFP 22 (9) 57 624 [730] (80) .omega. FTQPQQPT------------ 14 (6) 65 628 [734] (80) .omega. PF-W----------TQQSFPLQ 12 (4) Group 7: Peptide 618 39 618 [724] (79) .omega. PQQSFSYQQQPFPQQPYPQQ 18 (7)
TABLE-US-00042 TABLE 21 Bioactivity of individual tTG-deamidated Pools 1-3 peptides in Subject C12: SEQ SEQ Pep ID Pep ID No. NO: Sequence % No. NO: Sequence % 8 114 AVRWPVPQLQPQNPSQQQPQ 100 23 129 LQPQNPSQQQPQEQVPLMQQ 26 5 111 MVRVTVPQ.................................... 85 14 120 ....................................EQV 18 PLVQQ 6 112 AVRVSVPQ.................................... 82 15 121 ...........................H......EQVPL 18 QQ 3 109 MVRVPVPQ...........................H...... 77 17 123 ....................................KQV 18 PLVQQ 1 107 AVRFPVPQ...........................L...... 67 16 122 ............D.....................EQV 13 PLVQQ 2 108 MVRVPVPQ.................................... 59 13 119 ...........................L......EQV 8 PLVQQ 9 115 AVRVPVPQ......L........................... 49 22 128 .........K........................EQV 5 PLVQQ 7 113 AVRVPVPQ.................................... 49 18 124 ......L..........................EQV 3 PLVQE 10 116 MVRVPVPQ......L........................... 33 19 125 ......L...........................EQV 3 PLVQE 4 110 MVRVPMPQ............D..................... 15 20 126 P.....................P.........GQV 0 PLVQQ 12 118 AVRVPVPQ.........K........................ 8 21 127 P.....................P.........RQV 0 PLVQQ 11 117 AVRVPVPQP.....................P......... 0 Core sequence of epitope is underlined. Predicted deamidated sequence is: LQPENPSQEQPE (SEQ ID NO: 22)
TABLE-US-00043 TABLE 22 Phylogenetic groupings of wheat (Triticum aestivum) gliadins Alpha/beta-gliadins (n = 61) A1a1 AAA96525, EEWTA, P02863 A1a2 CAB76963 A1a3 AAA96276 A1a4 CAA26384, S07923 A1a5 AAA34280 A1a6 P04728 A1b1 CAB76962 A1b2 CAB76961 A1b3 BAA12318 A1b4 CAB76960 A1b5 CAB76958 A1b6 CAB76959 A1b7 CAB76955 A1b8 AAA96524 A1b9 CAA10257 A1b10 AAA96523, T06282 A1b11 AAA17741, S52124 A1b12 AAA34281 A1b13 B22364, P04271 A2a1 AAB23109, CAA35238, P18573, S10015 A2a2 CAB76964 A2b1 P04724, T06500, AAA348282 A2b2 D22364 A2b3 P04722, T06498, AAA34276 A2b4 C22364 A2b5 CAB76956 A3a1 AAA34277, CAA26383, P04726, S07361 A3a2 1307187B, A27319, S13333 A3b1 AAA96522 A3b2i AAA34279, P04727, A3b2ii CAA26385, S07924 A3b3 A223641, AAA34278, AAB23108, C61218, P04725 A4a P04723, AAA34283, T06504 A4b E22364 A4c CAB76957 A4d CAB76954 Gamma-gliadins (n = 47) GI1a P08079, AAA34288, PS0094, CAC11079, AAD30556, CAC11057, CAC11065, CAC11056 GI1b CAC11089, CAC11064, CAC11080, CAC11078, AAD30440 GI1c CAC11087 GI1d CAC11088 GI1e CAC11055 GI2a JS0402, P08453, AAA34289 GI2b AAF42989, AAK84779, AAK84779 GI3a AAK84778 GI3b CAB75404 GI3c BAA11251 GI4 EEWTG, P06659, AAA34274 Gamma-gliadins GI5a AAK84774, AAK84772 GI5b AAK84773 GI5c AAK84776 GI6a JA0153, P21292, AAA34272, 1507333A GI6b AAK84777 GI6c 1802407A, AAK84775, AAK84780 GI7 AAB31090 GIIa AAA34287, P04730, S07398 GIIb 1209306A GIII1a P04729 GIII1b AAA34286 Omega-gliadins (n = 3) O1a AAG17702 O1b P02865 O1c A59156
TABLE-US-00044 TABLE 23 Synthetic peptides spanning all known wheat gliadin 12mers Protein Position* Sequence SEQ ID NO: Peptide No. POOL 1 A1A1 20 AVRF PVPQ LQPQ NPSQ QLPQ 107 1 A1A2 20 MVRV PVPQ LQPQ NPSQ QQPQ 108 2 A1B1 20 MVRV PVPQ LQPQ NPSQ QHPQ 109 3 A1B2 20 MVRV PMPQ LQPQ DPSQ QQPQ 110 4 A1B7 20 MVRV TVPQ LQPQ NPSQ QQPQ 111 5 A1B8 20 AVRV SVPQ LQPQ NPSQ QQPQ 112 6 A1B8 20 AVRV PVPQ LQPQ NPSQ QQPQ 113 7 A1B10 20 AVRW PVPQ LQPQ NPSQ QQPQ 114 8 POOL 2 A2B3 20 AVRV PVPQ LQLQ NPSQ QQPQ 115 9 A2B5 20 MVRV PVPQ LQLQ NPSQ QQPQ 116 10 A3A1 20 AVRV PVPQ PQPQ NPSQ PQPQ 117 11 A3B1 20 AVRV PVPQ LQPK NPSQ QQPQ 118 12 A1A1 28 LQPQ NPSQ QLPQ EQVP LVQQ 119 13 A1A2 28 LQPQ NPSQ QQPQ EQVP LVQQ 120 14 A1B1 28 LQPQ NPSQ QHPQ EQVP LVQQ 121 15 A1B2 28 LQPQ DPSQ QQPQ EQVP LVQQ 122 16 POOL 3 A2B1 28 LQPQ NPSQ QQPQ KQVP LVQQ 123 17 A2B3 28 LQLQ NPSQ QQPQ EQVP LVQE 124 18 A2B5 28 LQLQ NPSQ QQPQ EQVP LVQE 125 19 A3A1 28 PQPQ NPSQ PQPQ GQVP LVQQ 126 20 A3A2 28 PQPQ NPSQ PQPQ RQVP LVQQ 127 21 A3B1 28 LQPK NPSQ QQPQ EQVP LVQQ 128 22 A4A 28 LQPQ NPSQ QQPQ EQVP LMQQ 129 23 A1A1 36 QLPQ EQVP LVQQ QQFL GQQQ 130 24 POOL 4 A1B1 36 QHPQ EQVP LVQQ QQFL GQQQ 131 25 A1B2 36 QQPQ EQVP LVQQ QQFL GQQQ 132 26 A1B12 36 QQPQ EQVP LVQQ QQFL GQQQ 133 27 A2A1 36 QQPQ EQVP LVQQ QQFP GQQQ 134 28 A2B1 36 QQPQ KQVP LVQQ QQFP GQQQ 135 29 A2B3 36 QQPQ EQVP LVQE QQFQ GQQQ 136 30 A3A1 36 PQPQ GQVP LVQQ QQFP GQQQ 137 31 A3A2 36 PQPQ RQVP LVQQ QQFP GQQQ 138 32 POOL 5 A4A 36 QQPQ EQVP LMQQ QQQF PGQQ 139 33 A1A1 44 LVQQ QQFL GQQQ PFPP QQPY 140 34 A1B1 44 LVQQ QQFL GQQQ SFPP QQPY 141 35 A1B12 44 LVQQ QQFL GQQQ PFPP QQPY 142 36 A2A1 44 LVQQ QQFP GQQQ PFPP QQPY 143 37 A2B3 44 LVQE QQFQ GQQQ PFPP QQPY 144 38 A3A1 44 LVQQ QQFP GQQQ QFPP QQPY 145 39 A4A 44 LMQQ QQQF PGQQ EQFP PQQP 146 40 POOL 6 A4D 44 LMQQ QQQF PGQQ ERFP PQQP 147 41 A1A1 53 GQQQ PFPP QQPY PQPQ PFPS 148 42 A1A3 53 GQQQ PFPP QQPY PQPQ FPSQ 149 43 A1B1 53 GQQQ SFPP QQPY PQPQ PFPS 150 44 A2B1 53 GQQQ PFPP QQPY PQQQ PFPS 151 45 A3A1 53 GQQQ QFPP QQPY PQPQ PFPS 152 46 A4A 53 GQQE QFPP QQPY PHQQ PFPS 153 47 A4D 53 GQQE RFPP QQPY PHQQ PFPS 154 48 POOL 7 A1A1 61 QQPY PQPQ PFPS QLPY LQLQ 155 49 A1A3 61 QQPY PQPQ FPSQ LPYL QLQP 156 50 A1B1 61 QQPY PQPQ PFPS QQPY LQLQ 157 51 A2B1 61 QQPY PQQQ PFPS QQPY MQLQ 158 52 A4A 61 QQPY PHQQ PFPS QQPY PQPQ 159 53 A1A1 69 PFPS QLPY LQLQ PFPQ PQLP 160 54 A1B1 69 PFPS QQPY LQLQ PFPQ PQLP 161 55 A1B10 69 PFPS QQPY LQLQ PFSQ PQLP 162 56 POOL 8 A1B11 69 PFPS QQPY LQLQ PFLQ PQLP 163 57 A1B12 69 PFPS QQPY LQLQ PFLQ PQPF 164 58 A2A1 69 PFPS QQPY LQLQ PFPQ PQLP 165 59 A2B1 69 PFPS QQPY MQLQ PFPQ PQLP 166 60 A2B2 69 PFPS QQPY MQLQ PFPQ PQPF 167 61 A2B4 69 PFPS QQPY LQLQ PFPQ PQPF 168 62 A2B5 69 PFPS QQPY LQLQ PFPR PQLP 169 63 A4A 69 PFPS QQPY PQPQ PFPP QLPY 170 64 POOL 9 A4B 69 PFPS QQPY PQPQ PFPQ PQPF 171 65 A1A1 77 LQLQ PFPQ PQLP YSQP QPFR 172 66 A1A4 77 LQLQ PFPQ PQLP YSQP QQFR 173 67 A1B1 77 LQLQ PFPQ PQLP YLQP QPFR 174 68 A1B4 77 LQLQ PFPQ PQLS YSQP QPFR 175 69 A1B10 77 LQLQ PFSQ PQLP YSQP QPFR 176 70 A1B11 77 LQLQ PFLQ PQLP YSQP QPFR 177 71 A1B12 77 LQLQ PFLQ PQPF PPQL PYSQ 178 72 POOL 10 A2A1 77 LQLQ PFPQ PQLP YPQP QLPY 179 73 A2B1 77 MQLQ PFPQ PQLP YPQP QLPY 180 74 A2B2 77 MQLQ PFPQ PQPF PPQL PYPQ 181 75 A2B3 77 LQLQ PFPQ PQLP YPQP QPFR 182 76 A2B4 77 LQLQ PFPQ PQPF PPQL PYPQ 183 77 A2B5 77 LQLQ PFPR PQLP YPQP QPFR 184 78 A3B1 77 LQLQ PFPQ PQPF LPQL PYPQ 185 79 A3B3 77 LQLQ PFPQ PQPF PPQL PYPQ 186 80 POOL 11 A4A 77 PQPQ PFPP QLPY PQTQ PFPP 187 81 A4B 77 PQPQ PFPQ PQPF PPQL PYPQ 188 82 A1A1 85 PQLP YSQP QPFR PQQP YPQP 189 83 A1A6 85 PQLP YSQP QQFR PQQP YPQP 190 84 A1B1 85 PQLP YLQP QPFR PQQP YPQP 191 85 A1B4 85 PQLS YSQP QPFR PQQP YPQP 192 86 A1B6 85 PQLS YSQP QPFR PQQL YPQP 193 87 A1B12 85 PQPF PPQL PYSQ PQPF RPQQ 194 88 POOL 12 A2A1 85 PQLP YPQP QLPY PQPQ LPYP 195 89 A2B1 85 PQLP YPQP QLPY PQPQ PFRP 196 90 A2B2 85 PQPF PPQL PYPQ PQLP YPQP 197 91 A2B3 85 PQLP YPQP QPFR PQQP YPQP 198 92 A2B4 85 PQPF PPQL PYPQ PQPF RPQQ 199 93 A3A1 85 PQPF PPQL PYPQ PPPF SPQQ 200 94 POOL 13 A3B1 85 PQPF LPQL PYPQ PQSF PPQQ 201 95 A3B3 85 PQPF PPQL PYPQ PQSF PPQQ 202 96 A4A 85 QLPY PQTQ PFPP QQPY PQPQ 203 97 A4B 85 PQPF PPQL PYPQ TQPF PPQQ 204 98 A2A1 106 LPYP QPQP FRPQ QPYP QSQP 205 99 A2B1 106 LPYP QPQP FRPQ QSYP QPQP 206 100 A3A1 106 LPYP QPPP FSPQ QPYP QPQP 207 101 A3B1 106 LPQL PYPQ PQSF PPQQ PYPQ 208 102 POOL 14 A4A 106 PPQL PYPQ TQPF PPQQ PYPQ 209 103 A1A1 112 QPFR PQQP YPQP QPQY SQPQ 210 104 A1B6 112 QPFR PQQL YPQP QPQY SQPQ 211 105 A2A1 112 QPFR PQQP YPQS QPQY SQPQ 212 106 A2B1 112 QPFR PQQS YPQP QPQY SQPQ 213 107 A3A1 112 PPFS PQQP YPQP QPQY PQPQ 214 108 A3B1 112 QSFP PQQP YPQQ RPKY LQPQ 215 109 A3B2 112 QSFP PQQP YPQQ RPMY LQPQ 216 110 POOL 15 A3B3 112 QSFP PQQP YPQQ QPQY LQPQ 217 111 A4A 112 QPFP PQQP YPQP QPQY PQPQ 218 112 A1A1 120 YPQP QPQY SQPQ QPIS QQQQ 219 113 A1B3 120 YPQP QPQY SQPQ EPIS QQQQ 220 114 A2A1 120 YPQS QPQY SQPQ QPIS QQQQ 221 115
A3A1 120 YPQP QPQY PQPQ QPIS QQQA 222 116 A3B1 120 YPQQ RPKY LQPQ QPIS QQQA 223 117 A3B2 120 YPQQ RPMY LQPQ QPIS QQQA 224 118 POOL 16 A3B3 120 YPQQ QPQY LQPQ QPIS QQQA 225 119 A1A1 128 SQPQ QPIS QQQQ QQQQ QQQQ 226 120 A1B3 128 SQPQ EPIS QQQQ QQQQ QQQI 227 121 A3A1 128 PQPQ QPIS QQQA QQQQ QQQQ 228 122 A1A1 138 QQQQ QQQQ QQQQ QQQQ ILQQ 229 123 A1A6 138 QQQQ QQQQ QQQQ QEQQ ILQQ 230 124 A1B11 138 QQQQ QQQQ QQQQ QQQQ IIQQ 231 125 A2A1 138 QQQQ QQQQ QQKQ QQQQ QQQI 232 126 POOL 17 A4B 139 AQQQ QQQQ QQQQ QQQQ TLQQ 233 127 A1A1 146 QQQQ QQQQ ILQQ ILQQ QLIP 234 128 A1A6 146 QQQQ QEQQ ILQQ ILQQ QLIP 235 129 A1B6 146 QQQQ QEQQ ILQQ MLQQ QLIP 236 130 A1B10 146 QQQQ QEQQ ILQQ ILQQ QLTP 237 131 A1B11 146 QQQQ QQQQ IIQQ ILQQ QLIP 238 132 A2A1 146 QQKQ QQQQ QQQI LQQI LQQQ 239 133 A3A2 146 QQQQ QQQQ ILPQ ILQQ QLIP 240 134 POOL 18 A4A 146 QQQQ QQQQ TLQQ ILQQ QLIP 241 135 A1A1 163 ILQQ ILQQ QLIP CMDV VLQQ 242 136 A1B6 163 ILQQ MLQQ QLIP CMDV VLQQ 243 137 A1B10 163 ILQQ ILQQ QLTP CMDV VLQQ 244 138 A2B1 163 ILQQ ILQQ QLIP CRDV VLQQ 245 139 A3A2 163 ILPQ ILQQ QLIP CRDV VLQQ 246 140 A4A 163 TLQQ ILQQ QLIP CRDV VLQQ 247 141 A1A1 171 QLIP CMDV VLQQ HNIA HGRS 248 142 POOL 19 A1A3 171 QLIP CMDV VLQQ HNKA HGRS 249 143 A1B2 171 QLIP CMDV VLQQ HNLA HGRS 250 144 A1B7 171 QLIP CMDV VLQQ HNIV HGRS 251 145 A1B10 171 QLTP CMDV VLQQ HNIA RGRS 252 146 A1B11 171 QLIP CMDV VLQQ HNIV HGKS 253 147 A2A1 171 QLIP CRDV VLQQ HSIA YGSS 254 148 A2B1 171 QLIP CRDV VLQQ HSIA HGSS 255 149 A2B3 171 QLIP CRDV VLQQ HNIA HGSS 256 150 POOL 20 A3A1 171 QLIP CRDV VLQQ HNIA HARS 257 151 A3B1 171 QLIP CRDV VLQQ HNIA HASS 258 152 A1A1 179 VLQQ HNIA HGRS QVLQ QSTY 259 153 A1A3 179 VLQQ HNKA HGRS QVLQ QSTY 260 154 A1B2 179 VLQQ HNLA HGRS QVLQ QSTY 261 155 A1B7 179 VLQQ HNIV HGRS QVLQ QSTY 262 156 A1B10 179 VLQQ HNIA RGRS QVLQ QSTY 263 157 A1B11 179 VLQQ HNIV HGKS QVLQ QSTY 264 158 POOL 21 A2A1 179 VLQQ HSIA YGSS QVLQ QSTY 265 159 A2B1 179 VLQQ HSIA HGSS QVLQ QSTY 266 160 A2B3 179 VLQQ HNIA HGSS QVLQ ESTY 267 161 A3A1 179 VLQQ HNIA HARS QVLQ QSTY 268 162 A3B1 179 VLQQ HNIA HASS QVLQ QSTY 269 163 A4A 179 VLQQ HNIA HASS QVLQ QSSY 270 164 A1A1 187 HGRS QVLQ QSTY QLLQ ELCC 271 165 A1A3 187 HGRS QVLQ QSTY QLLR ELCC 272 166 POOL 22 A1B8 187 HGRS QVLQ QSTY QLLR ELCC 273 167 A1B11 187 HGKS QVLQ QSTY QLLQ ELCC 274 168 A2A1 187 YGSS QVLQ QSTY QLVQ QLCC 275 169 A2B1 187 HGSS QVLQ QSTY QLVQ QFCC 276 170 A2B3 187 HGSS QVLQ ESTY QLVQ QLCC 277 171 A3A1 187 HARS QVLQ QSTY QPLQ QLCC 278 172 A3B1 187 HASS QVLQ QSTY QLLQ QLCC 279 173 A4A 187 HASS QVLQ QSSY QQLQ QLCC 280 174 POOL 23 A1A1 195 QSTY QLLQ ELCC QHLW QIPE 281 175 A1A3 195 QSTY QLLR ELCC QHLW QIPE 282 176 A1B8 195 QSTY QLLR ELCC QHLW QIPE 283 177 A2A1 195 QSTY QLVQ QLCC QQLW QIPE 284 178 A2B1 195 QSTY QLVQ QFCC QQLW QIPE 285 179 A3A1 195 QSTY QPLQ QLCC QQLW QIPE 286 180 A3B1 195 QSTY QLLQ QLCC QQLL QIPE 287 181 A4A 195 QSSY QQLQ QLCC QQLF QIPE 288 182 POOL 24 A1A1 203 ELCC QHLW QIPE QSQC QAIH 289 183 A1B6 203 ELCC QHLW QILE QSQC QAIH 290 184 A1B10 203 ELCC QHLW QIPE KLQC QAIH 291 185 A2A1 203 QLCC QQLW QIPE QSRC QAIH 292 186 A2B1 203 QFCC QQLW QIPE QSRC QAIH 293 187 A3B1 203 QLCC QQLL QIPE QSRC QAIH 294 188 POOL 25 A3B3 203 GLCC QQLL QIPE QSQC QAIH 295 189 A4A 203 QLCC QQLF QIPE QSRC QAIH 296 190 A1A1 211 QIPE QSQC QAIH NVVH AIIL 297 191 A1B3 211 QIPE QSQC QAIQ NVVH AIIL 298 192 A1B6 211 QILE QSQC QAIH NVVH AIIL 299 193 A1B9 211 QIPE QSQC QAIH KVVH AIIL 300 194 A1B10 211 QIPE KLQC QAIH NVVH AIIL 301 195 A2A1 211 QIPE QSRC QAIH NVVH AIIL 302 196 POOL 26 A3B3 211 QIPE QSQC QAIH NVAH AIIM 303 197 A4A 211 QIPE QSRC QAIH NVVH AIIL 304 198 A1A1 219 QAIH NVVH AIIL HQQQ KQQQ 305 199 A1A6 219 QAIH NVVH AIIL HQQQ QKQQ 306 200 A1B3 219 QAIQ NVVH AIIL HQQQ KQQQ 307 201 A1B9 219 QAIH KVVH AIIL HQQQ KQQQ 308 202 A1B13 219 QAIH NVVH AIIL HQQQ QQQQ 309 203 A2B3 219 QAIH NVVH AIIL HQQH HHHQ 310 204 POOL 27 A3A1 219 QAIH NVVH AIIL HQQQ RQQQ 311 205 A3B1 219 QAIH NVVH AIIM HQQE QQQQ 312 206 A3B3 219 QAIH NVAH AIIM HQQQ QQQQ 313 207 A4A 219 QAIH NVVH AIIL HHHQ QQQQ 314 208 A1A1 227 AIIL HQQQ KQQQ QPSS QVSF 315 209 A1A6 227 AIIL HQQQ QKQQ QQPS SQFS 316 210 A1B2 227 AIIL HQQQ KQQQ QLSS QVSF 317 211 A1B10 227 AIIL HQQQ KQQQ PSSQ VSFQ 318 212 POOL 28 A1B13 227 AIIL HQQQ QQQQ EQKQ QLQQ 319 213 A2A1 227 AIIL HQQQ QQQQ QQQQ QPLS 320 214 A2B3 227 AIIL HQQH HHHQ QQQQ QQQQ 321 215 A2B4 227 AIIL HQQH HHHQ EQKQ QLQQ 322 216 A3A1 227 AIIL HQQQ RQQQ PSSQ VSLQ 323 217 A3B1 227 AIIM HQQE QQQQ LQQQ QQQQ 324 218 A3B3 227 AIIM HQQQ QQQQ EQKQ QLQQ 325 219 A4A 227 AIIL HHHQ QQQQ QPSS QVSY 326 220 POOL 29 A1A1 235 KQQQ QPSS QVSF QQPL QQYP 327 221 A1A6 235 KQQQ QPSS QFSF QQPL QQYP 328 222 A1B2 235 KQQQ QLSS QVSF QQPQ QQYP 329 223 A1B10 235 KQQQ PSSQ VSFQ QPQQ QYPL 330 224 A1B13 235 QQQQ EQKQ QLQQ QQQQ QQQL 331 225 A2B4 235 HHHQ EQKQ QLQQ QQQQ QQQL 332 226 A3A1 235 RQQQ PSSQ VSLQ QPQQ QYPS 333 227 A3B1 235 QQQQ LQQQ QQQQ LQQQ QQQQ 334 228 POOL 30 A4A 235 QQQQ QPSS QVSY QQPQ EQYP 335 229 A1B13 243 QLQQ QQQQ QQQL QQQQ QKQQ 336 230 A1B13 251 QQQL QQQQ QKQQ QQPS SQVS 337 231 A2A1 260 QQQQ QQQQ QPLS QVSF QQPQ 338 232 A2B1 260 QQQQ QQQQ QPLS QVCF QQSQ 339 233
A2B3 260 HHHQ QQQQ QQQQ QPLS QVSF 340 234 A3B1 260 QQQQ QQQQ QPSS QVSF QQPQ 341 235 A2A1 289 QPLS QVSF QQPQ QQYP SGQG 342 236 POOL 31 A2B1 289 QPLS QVCF QQSQ QQYP SGQG 343 237 A3B1 289 QPSS QVSF QQPQ QQYP SSQV 344 238 A1A1 293 QVSF QQPL QQYP LGQG SFRP 345 239 A1A6 293 QFSF QQPL QQYP LGQG SFRP 346 240 A1B2 293 QVSF QQPQ QQYP LGQG SFRP 347 241 A2A1 293 QVSF QQPQ QQYP SGQG SFQP 348 242 A2B1 293 QVCF QQSQ QQYP SGQG SFQP 349 243 A2B3 293 QVSF QQPQ QQYP SGQG FFQP 350 244 POOL 32 A2B5 293 QVSF QQPQ QQYP SGQG FFQP 351 245 A3A1 293 QVSL QQPQ QQYP SGQG FFQP 352 246 A3B1 293 QVSF QQPQ QQYP SSQV SFQP 353 247 A3B2 293 QVSF QQPQ QQYP SSQG SFQP 354 248 A4A 293 QVSY QQPQ EQYP SGQV SFQS 355 249 A1A1 301 QQYP LGQG SFRP SQQN PQAQ 356 250 A1B2 301 QQYP LGQG SFRP SQQN SQAQ 357 251 A2A1 301 QQYP SGQG SFQP SQQN PQAQ 358 252 POOL 33 A2B3 301 QQYP SGQG FFQP SQQN PQAQ 359 253 A2B5 301 QQYP SGQG FFQP FQQN PQAQ 360 254 A3A1 301 QQYP SGQG FFQP SQQN PQAQ 361 255 A3B1 301 QQYP SSQV SFQP SQLN PQAQ 362 256 A3B2 301 QQYP SSQG SFQP SQQN PQAQ 363 257 A4A 301 EQYP SGQV SFQS SQQN PQAQ 364 258 A1B1 309 SFRP SQQN PLAQ GSVQ PQQL 365 259 A1A1 309 SFRP SQQN PQAQ GSVQ PQQL 366 260 POOL 34 A1A3 309 SFRP SQQN PQTQ GSVQ PQQL 367 261 A1B2 309 SFRP SQQN SQAQ GSVQ PQQL 368 262 A1B3 309 SFRP SQQN PQDQ GSVQ PQQL 369 263 A1B4 309 SFRP SQQN PRAQ GSVQ PQQL 370 264 A2A1 309 SFQP SQQN PQAQ GSVQ PQQL 371 265 A2B3 309 FFQP SQQN PQAQ GSFQ PQQL 372 266 A2B5 309 FFQP FQQN PQAQ GSFQ PQQL 373 267 A3A1 309 FFQP SQQN PQAQ GSVQ PQQL 374 268 Pool 35 A3B1 309 SFQP SQLN PQAQ GSVQ PQQL 375 269 A3B1 309 SFQP SQLN PQAQ GSVQ PQQL 376 270 A3B2 309 SFQP SQQN PQAQ GSVQ PQQL 377 271 A4A 309 SFQS SQQN PQAQ GSVQ PQQL 378 272 A1A1 317 PQAQ GSVQ PQQL PQFE EIRN 379 273 A1A3 317 PQTQ GSVQ PQQL PQFE EIRN 380 274 A1A6 317 PQAQ GSVQ PQQL PQFE IRNL 381 275 A1B1 317 PLAQ GSVQ PQQL PQFE EIRN 382 276 POOL 36 A1B3 317 PQDQ GSVQ PQQL PQFE EIRN 383 277 A1B4 317 PRAQ GSVQ PQQL PQFE EIRN 384 278 A2B3 317 PQAQ GSFQ PQQL PQFE EIRN 385 279 A2B5 317 PQAQ GSFQ PQQL PQFE AIRN 386 280 A3B1 317 PQAQ GSVQ PQQL PQFA EIRN 387 281 A4A 317 PQAQ GSVQ PQQL PQFQ EIRN 388 282 Pool 37 A1A1 325 PQQL PQFE EIRN LALQ TLPA 389 283 A1A6 325 PQQL PQFE IRNL ALQT LPAM 390 284 A1B12 325 PQQL PQFE EIRN LARK 391 285 A2A1 325 PQQL PQFE EIRN LALE TLPA 392 286 A2B5 325 PQQL PQFE AIRN LALQ TLPA 393 287 A3B1 325 PQQL PQFA EIRN LALQ TLPA 394 288 A4A 325 PQQL PQFQ EIRN LALQ TLPA 395 289 A1A1 333 EIRN LALQ TLPA MCNV YIPP 396 290 POOL 38 A1A3 333 EIRN LALQ TLPS MCNV YIPP 397 291 A2A1 333 EIRN LALE TLPA MCNV YIPP 398 292 A3A1 333 EIRN LALQ TLPR MCNV YIPP 399 293 A1A1 341 TLPA MCNV YIPP YCTI APFG 400 294 A1A3 341 TLPS MCNV YIPP YCTI APFG 401 295 A1B1 341 TLPA MCNV YIPP YCTI VPFG 402 296 A1B4 341 TLPA MCNV YIPP YCAM APFG 403 297 A1B9 341 TLPA MCNV YIPP YCTI TPFG 404 298 Pool 39 A2A1 341 TLPA MCNV YIPP YCTI APVG 405 299 A2B2 341 TLPA MCNV YIPP YCST TIAP 406 300 A3A1 341 TLPR MCNV YIPP YCST TIAP 407 301 A3A2 341 TLPR MCNV YIPP YCST TTAP 408 302 A3B1 341 TLPA MCNV YIPP HCST TIAP 409 303 A1A1 349 YIPP YCTI APFG IFGT NYR 410 304 A1B1 349 YIPP YCTI VPFG IFGT NYR 411 305 A1B4 349 YIPP YCAM APFG IFGT NYR 412 306 Pool 40 A1B5 349 YIPP YCTM APFG IFGT NYR 413 307 A1B9 349 YIPP YCTI TPFG IFGT N 414 308 A2A1 349 YIPP YCTI APVG IFGT NYR 415 309 A2B2 349 YIPP YCST TIAP VGIF GTN 416 310 A3A2 349 YIPP YCST TTAP FGIF GTN 417 311 A3B1 349 YIPP HCST TIAP FGIF GTN 418 312 A3B3 349 YIPP HCST TIAP FGIS GTN 419 313 A4D 350 IPPY CSTT IAPF GIFG TNYR 420 314 Pool 41 GI1A 17 GTAN MQVD PSSQ VQWP QQQP 421 315 GI2A 17 GTAN IQVD PSGQ VQWL QQQL 422 316 GI3A 17 ATAN MQVD PSGQ VPWP QQQP 423 317 GI3B 19 MN IQVD PSGQ VPWP QQQP FP 424 318 GI4 17 ATAN MQAD PSGQ VQWP QQQP 425 319 GI5A 17 TTAN IQVD PSGQ VQWP QQQQ 426 320 GI5C 17 ATAN MQVD PSGQ VQWP QQQP 427 321 GI7 20 QIVF PSGQ VQWP QQQQ PFP 428 322 Pool 42 GIIA 25 PSSQ VQWP QQQP VPQP HQPF 429 323 GI2A 25 PSGQ VQWL QQQL VPQL QQPL 430 324 GI3A 25 PSGQ VPWP QQQP FPQP HQPF 431 325 GI4 25 PSGQ VQWP QQQP FLQP HQPF 432 326 GI5A 25 PSGQ VQWP QQQQ PFPQ PQQP 433 327 GI5C 25 PSGQ VQWP QQQP FRQP QQPF 434 328 GI6A 25 PSGQ VQWP QQQP FPQP QQPF 435 329 GI1A 33 QQQP VPQP HQPF SQQP QQTF 436 330 POOL 43 GI2A 33 QQQL VPQL QQPL SQQP QQTF 437 331 GI3A 33 QQQP FPQP HQPF SQQP QQTF 438 332 GI4 33 QQQP FLQP HQPF SQQP QQIF 439 333 GI5A 33 QQQQ PFPQ PQQP FSQQ PQQI 440 334 GI5B 33 QQQQ PFPQ PQQP QQPF PQPQ 441 335 GI5C 33 QQQP FRQP QQPF YQQP QHTF 442 336 GI6A 33 QQQP FPQP QQPF CQQP QRTI 443 337 GI6C 42 QQQP FPQP QQPF CEQP QRTI 444 338 POOL 44 GI1A 42 HQPF SQQP QQTF PQPQ QTFP 445 339 GI2A 42 QQPL SQQP QQTF PQPQ QTFP 446 340 GI4 42 HQPF SQQP QQIF PQPQ QTFP 447 341 GI5A 42 QQPF SQQP QQIF PQPQ QTFP 448 342 GI5B 42 QQPQ QPFP QPQQ PQLP FPQQ 449 343 GI5C 42 QQPF YQQP QHTF PQPQ QTCP 450 344 GI6A 42 QQPF CQQP QRTI PQPH QTFH 451 345 GI6B 42 QQPF CQQP QQTI PQPH QTFH 452 346 POOL 45 GI6C 42 QQPF CEQP QRTI PQPH QTFH 453 347 GI1A 50 QQTF PQPQ QTFP HQPQ QQFP 454 348 GI4 50 QQIF PQPQ QTFP HQPQ QQFP 455 349 GI5A 50 QQIF PQPQ QTFP HQPQ QAFP 456 350 GI6A 50 QRTI PQPH QTFH HQPQ QTFP 457 351
GI5A 58 QTFP HQPQ QAFP QPQQ TFPH 458 352 GI6A 58 QTFH HQPQ QTFP QPQQ TYPH 459 353 GI6C 58 QTFH HQPQ QTFP QPEQ TYPH 460 354 POOL 46 GI5A 66 QAFP QPQQ TFPH QPQQ QFPQ 461 355 GI5C 66 QHTF PQPQ QTCP HQPQ QQFP 462 356 GI6A 66 QTFP QPQQ TYPH QPQQ QFPQ 463 357 GI6C 66 QTFP QPEQ TYPH QPQQ QFPQ 464 358 GI1A 73 QTFP HQPQ QQFP QPQQ PQQQ 465 359 GI2A 73 QTFP HQPQ QQVP QPQQ PQQP 466 360 GI3A 73 QTFP HQPQ QQFS QPQQ PQQQ 467 361 GI5C 73 QTCP HQPQ QQFP QPQQ PQQP 468 362 POOL 47 GI6A 73 QTYP HQPQ QQFP QTQQ PQQP 469 363 GI1A 81 QQFP QPQQ PQQQ FLQP QQPF 470 364 GI2A 81 QQVP QPQQ PQQP FLQP QQPF 471 365 GI3A 81 QQFS QPQQ PQQQ FIQP QQPF 472 366 GI4 81 QQFP QPQQ PQQQ FLQP RQPF 473 367 GI5A 81 QQFP QPQQ PQQP FPQQ PQQQ 474 368 GI6A 81 QQFP QTQQ PQQP FPQP QQTF 475 369 GI1A 89 PQQQ FLQP QQPF PQQP QQPY 476 370 POOL 48 GI3A 89 PQQQ FIQP QQPF PQQP QQTY 477 371 GI3B 89 PQQQ FIQP QQPQ QTYP QRPQ 478 372 GI4 89 PQQQ FLQP RQPF PQQP QQPY 479 373 GI5A 89 PQQP FPQQ PQQQ FPQP QQPQ 480 374 GI5C 89 PQQP FPQP QQPQ QPFP QPQQ 481 375 GI6A 89 PQQP FPQP QQTF PQQP QLPF 482 376 POOL 49 GI5A 97 PQQQ FPQP QQPQ QPFP QQPQ 483 377 GI5A 105 QQPQ QPFP QQPQ QQFP QPQQ 484 378 GI5A 113 QQPQ QQFP QPQQ PQQP FPQP 485 379 GI5A 121 QPQQ PQQP FPQP QQPQ LPFP 486 380 GI1A 126 QQPF PQQP QQPY PQQP QQPF 487 381 GI2A 126 QQPF PQQP QQPF PQTQ QPQQ 488 382 GI3A 126 QQPF PQQP QQTY PQRP QQPF 489 383 GI4 126 RQPF PQQP QQPY PQQP QQPF 490 384 POOL 50 GI5A 126 QQPF PQPQ QPQL PFPQ QPQQ 491 385 GI5C 126 QQPF PQPQ QAQL PFPQ QPQQ 492 386 GI6A 126 QQTF PQQP QLPF PQQP QQPF 493 387 GI1A 134 QQPY PQQP QQPF PQTQ QPQQ 494 388 GI2A 134 QQPF PQTQ QPQQ PFPQ QPQQ 495 389 GI3A 134 QQTY PQRP QQPF PQTQ QPQQ 496 390 GI5A 134 QPQL PFPQ QPQQ QPQQ PFPQ 497 391 GI5C 134 QAQL PFPQ QPQQ PLPQ PQQP 498 392 POOL 51 GI6A 134 QLPF PQQP QQPF PQPQ QPQQ 499 393 GI2A 142 QPQQ PFPQ QPQQ PFPQ TQQP 500 394 GI2A 150 QPQQ PFPQ TQQP QQPF PQQP 501 395 GI2A 158 TQQP QQPF PQQP QQPF PQTQ 502 396 GI2A 166 PQQP QQPF PQTQ QPQQ PFPQ 503 397 GI1A 170 QQPF PQTQ QPQQ LFPQ SQQP 504 398 GI2A 170 QQPF PQTQ QPQQ PFPQ LQQP 505 399 GI3A 170 QQPF PQTQ QPQQ PFPQ SQQP 506 400 POOL 52 GI4 170 QQPF PQTQ QPQQ PFPQ SKQP 507 401 GI5A 170 QQPF PQPQ QPQQ PFPQ LQQP 508 402 GI5C 170 QQPL PQPQ QPQQ PFPQ SQQP 509 403 GI6A 170 QQPF PQPQ QPQQ PFPQ SQQP 510 404 GI1A 178 QPQQ LFPQ SQQP QQQF SQPQ 511 405 GI2A 178 QPQQ PFPQ LQQP QQPF PQPQ 512 406 GI3A 178 QPQQ PFPQ SQQP QQPF PQPQ 513 407 GI4 178 QPQQ PFPQ SKQP QQPF PQPQ 514 408 POOL 53 GI5A 178 QPQQ PFPQ LQQP QQPL PQPQ 515 409 GI1A 186 SQQP QQQF SQPQ QQFP QPQQ 516 410 G12A 186 LQQP QQPF PQPQ QQLP QPQQ 517 411 GI3A 186 SQQP QQPF PQPQ QQFP QPQQ 518 412 GI4 186 SKQP QQPF PQPQ QPQQ SFPQ 519 413 GI5A 186 LQQP QQPL PQPQ QPQQ PFPQ 520 414 GI5C 186 SQQP QQPF PQPQ QPQQ SFPQ 521 415 GI1A 194 SQPQ QQFP QPQQ PQQS FPQQ 522 416 POOL 54 GI2A 194 PQPQ QQLP QPQQ PQQS FPQQ 523 417 GI3A 194 PQPQ QQFP QPQQ PQQS FPQQ 524 418 GI4 194 PQPQ QPQQ SFPQ QQPS LIQQ 525 419 GI5A 194 PQPQ QPQQ PFPQ QQQP LIQP 526 420 GI5C 194 PQPQ QPQQ SFPQ QQQP LIQP 527 421 GI1A 202 QPQQ PQQS FPQQ QPPF IQPS 528 422 GI2A 202 QPQQ PQQS FPQQ QRPF IQPS 529 423 GI3A 202 QPQQ PQQS FPQQ QPSL IQQS 530 424 POOL 55 GI1A 210 FPQQ QPPF IQPS LQQQ VNPC 531 425 GI2A 210 FPQQ QRPF IQPS LQQQ LNPC 532 426 GI3A 210 FPQQ QPSL IQQS LQQQ LNPC 533 427 GI5A 210 FPQQ QQPL IQPY LQQQ MNPC 534 428 GI6A 210 FPQQ QQPA IQSF LQQQ MNPC 535 429 GI1A 218 IQPS LQQQ VNPC KNFL LQQC 536 430 GI2A 218 IQPS LQQQ LNPC KNIL LQQS 537 431 GI3A 218 IQQS LQQQ LNPC KNFL LQQC 538 432 POOL 56 GI5A 218 IQPY LQQQ MNPC KNYL LQQC 539 433 GI6A 218 IQSF LQQQ MNPC KNFL LQQC 540 434 GI1A 226 VNPC KNFL LQQC KPVS LVSS 541 435 GI2A 226 LNPC KNIL LQQS KPAS LVSS 542 436 GI3A 226 LNPC KNFL LQQC KPVS LVSS 543 437 GI5A 226 MNPC KNYL LQQC NPVS LVSS 544 438 GI6A 226 MNPC KNFL LQQC NHVS LVSS 545 439 GI1A 234 LQQC KPVS LVSS LWSM IWPQ 546 440 POOL 57 GI2A 234 LQQS KPAS LVSS LWSI IWPQ 547 441 GI3A 234 LQQC KPVS LVSS LWSM ILPR 548 442 GI5A 234 LQQC NPVS LVSS LVSM ILPR 549 443 GI6A 234 LQQC NHVS LVSS LVSI ILPR 550 444 GI1A 242 LVSS LWSM IWPQ SDCQ VMRQ 551 445 GI2A 242 LVSS LWSI IWPQ SDCQ VMRQ 552 446 GI3A 242 LVSS LWSM ILPR SDCQ VMRQ 553 447 GI4 242 LVSS LWSI ILPP SDCQ VMRQ 554 448 POOL 58 GI5A 242 LVSS LVSM ILPR SDCK VMRQ 555 449 GI5C 242 LVSS LVSM ILPR SDCQ VMQQ 556 450 GI6A 242 LVSS LVSI ILPR SDCQ VMQQ 557 451 GI1A 250 IWPQ SDCQ VMRQ QCCQ QLAQ 558 452 GI3A 250 ILPR SDCQ VMRQ QCCQ QLAQ 559 453 GI4 250 ILPP SDCQ VMRQ QCCQ QLAQ 560 454 GI5A 250 ILPR SDCK VMRQ QCCQ QLAR 561 455 GI5C 250 ILPR SDCQ VMQQ QCCQ QLAQ 562 456 POOL 59 GI1A 258 VMRQ QCCQ QLAQ IPQQ LQCA 563 457 GI5A 258 VMRQ QCCQ QLAR IPQQ LQCA 564 458 GI5C 258 VMQQ QCCQ QLAQ IPRQ LQCA 565 459 GI6A 258 VMQQ QCCQ QLAQ IPQQ LQCA 566 460 GI1A 266 QLAQ IPQQ LQCA AIHT IIHS 567 461 GI1B 266 QLAQ IPQQ LQCA AIHT VIHS 568 462 GI2A 266 QLAQ IPQQ LQCA AIHS VVHS 569 463 GI3A 266 QLAQ IPQQ LQCA AIHS IVHS 570 464 POOL 60 GI5A 266 QLAR IPQQ LQCA AIHG IVHS 571 465 GI5C 266 QLAQ IPRQ LQCA AIHS VVHS 572 466 GI6A 266 QLAQ IPQQ LQCA AIHS VAHS 573 467 GIIA 274 LQCA AIHT IIHS IIMQ QEQQ 574 468 GI1B 274 LQCA AIHT VIHS IIMQ QEQQ 575 469
GI2A 274 LQCA AIHS VVHS IIMQ QQQQ 576 470 POOL 61 GI3A 274 LQCA AIHS IVHS IIMQ QEQQ 577 471 GI4 274 LQCA AIHS VVHS IIMQ QEQQ 578 472 GI5A 274 LQCA AIHG IVHS IIMQ QEQQ 579 473 GI6A 274 LQCA AIHS VAHS IIMQ QEQQ 580 474 GI1A 282 IIHS IIMQ QEQQ EQQQ GMHI 581 475 GI1B 282 VIHS IIMQ QEQQ QGMH ILLP 582 476 GI2A 282 VVHS IIMQ QQQQ QQQQ QGID 583 477 GI3A 282 IVHS IIMQ QEQQ EQRQ GVQI 584 478 POOL 62 GI4 282 VVHS IIMQ QEQQ EQLQ GVQI 585 479 GI5A 282 LVHS IIMQ QEQQ QQQQ QQQQ 586 480 GI5C 282 VVHS IVMQ QEQQ QGIQ ILRP 587 481 GI6A 282 VAHS IIMQ QEQQ QGVP ILRP 588 482 GI1A 290 QEQQ EQQQ GMHI LLPL YQQQ 589 483 GI2A 290 QQQQ QQQQ QGID IFLP LSQH 590 484 GI2B 290 QQQQ QQQQ QGMH IFLP LSQQ 591 485 GI3A 290 QEQQ EQRQ GVQI LVPL SQQQ 592 486 POOL 63 GI4 290 QEQQ EQLQ GVQI LVPL SQQQ 593 487 GI5A 290 QEQQ QQQQ QQQQ QQQG IQIM 594 488 GI5C 290 QEQQ QGIQ ILRP LFQL VQGQ 595 489 GI6A 290 QEQQ QGVP ILRP LFQL AQGL 596 490 GI5A 298 QQQQ QQQG IQIM RPLF QLVQ 597 491 GI1A 305 GMHI LLPL YQQQ QVGQ GTLV 598 492 GI2A 305 GIDI FLPL SQHE QVGQ GSLV 599 493 GI2B 305 GMHI FLPL SQQQ QVGQ GSLV 600 494 POOL 64 GI3A 305 GVQI LVPL SQQQ QVGQ GTLV 601 495 GI4 305 GVQI LVPL SQQQ QVGQ GILV 602 496 GI5A 305 GIQI MRPL FQLV QGQG IIQP 603 497 GI5C 305 GIQI LRPL FQLV QGQG IIQP 604 498 GI6A 305 GVPI LRPL FQLA QGLG IIQP 605 499 GI1A 313 YQQQ QVGQ GTLV QGQG IIQP 606 500 GI2A 313 SQHE QVGQ GSLV QGQG IIQP 607 501 GI2B 313 SQQQ QVGQ GSLV QGQG IIQP 608 502 POOL 65 GI3A 313 SQQQ QVGQ GTLV QGQG IIQP 609 503 GI4 313 SQQQ QVGQ GILV QGQG IIQP 610 504 GI1A 321 GTLV QGQG IIQP QQPA QLEA 611 505 GI2A 321 GSLV QGQG IIQP QQPA QLEA 612 506 GI5A 321 FQLV QGQG IIQP QQPA QLEV 613 507 GI6A 321 FQLA QGLG IIQP QQPA QLEG 614 508 GI1A 329 IIQP QQPA QLEA IRSL VLQT 615 509 GI3A 329 IIQP QQPA QLEV IRSL VLQT 616 510 POOL 66 GI3C 329 IIQP QQPA QLEV IRSS VLQT 617 511 GI5C 329 IIQP QQPA QYEV IRSL VLRT 618 512 GI6A 329 IIQP QQPA QLEG IRSL VLKT 619 513 GI1A 337 QLEA IRSL VLQT LPTM CNVY 620 514 GI2A 337 QLEA IRSL VLQT LPSM CNVY 621 515 GI3A 337 QLEV IRSL VLQT LATM CNVY 622 516 GI3C 337 QLEV IRSS VLQT LATM CNVY 623 517 GI5A 337 QLEV IRSL VLGT LPTM CNVF 624 518 POOL 67 GI5C 337 QYEV IRSL VLRT LPNM CNVY 625 519 GI6A 337 QLEG IRSL VLKT LPTM CNVY 626 520 GI1A 345 VLQT LPTM CNVY VPPE CSII 627 521 GI2A 345 VLQT LPSM CNVY VPPE CSIM 628 522 GI3A 345 VLQT LATM CNVY VPPY CSTI 629 523 GI5A 345 VLGT LPTM CNVF VPPE CSTT 630 524 GI5C 345 VLRT LPNM CNVY VRPD CSTI 631 525 GI6A 345 VLKT LPTM CNVY VPPD CSTI 632 526 POOL 68 GI1A 353 CNVY VPPE CSII KAPF SSVV 633 527 GI2A 353 CNVY VPPE CSIM RAPF ASIV 634 528 GI3A 353 CNVY VPPY CSTI RAPF ASIV 635 529 GI5A 353 CNVF VPPE CSTT KAPF ASIV 636 530 GI5C 353 CNVY VRPD CSTI NAPF ASIV 637 531 GI6A 353 CNVY VPPD CSTI NVPY ANID 638 532 GI1A 361 CSII KAPF SSVV AGIG GQ 639 533 GI2A 361 CSIM RAPF ASIV AGIG GQ 640 534 POOL 69 GI3A 361 CSTI RAPF ASIV AGIG GQYR 641 535 GI4 361 CSTI RAPF ASIV ASIG GQ 642 536 GI5A 361 CSTT KAPF ASIV ADIG GQ 643 537 GI5C 361 CSTI NAPF ASIV AGIS GQ 644 538 GI6A 361 CSTI NVPY ANID AGIG GQ 645 539 GII 1 PQQP FPLQ PQQS FLWQ SQQP 646 540 GII 9 PQQS FLWQ SQQP FLQQ PQQP 647 541 GII 17 SQQP FLQQ PQQP SPQP QQVV 648 542 POOL 70 GII 25 PQQP SPQP QQVV QIIS PATP 649 543 GII 33 QQVV QIIS PATP TTIP SAGK 650 544 GII 41 PATP TTIP SAGK PTSA PFPQ 651 545 GII 49 SAGK PTSA PFPQ QQQQ HQQL 652 546 GII 57 PFPQ QQQQ HQQL AQQQ IPVV 653 547 GII 65 HQQL AQQQ IPVV QPSI LQQL 654 548 GII 73 IPVV QPSI LQQL NPCK VFLQ 655 549 GII 81 LQQL NPCK VFLQ QQCS PVAM 656 550 POOL 71 GII 89 VFLQ QQCS PVAM PQRL ARSQ 657 551 GII 97 PVAM PQRL ARSQ MLQQ SSCH 658 552 GII 105 ARSQ MLQQ SSCH VMQQ QCCQ 659 553 GII 113 SSCH VMQQ QCCQ QLPQ IPQQ 660 554 GII 121 QCCQ QLPQ IPQQ SRYQ AIRA 661 555 GII 127B PQLP QQSR YEAI RAII YSII 662 556 GII 129 IPQQ SRYQ AIRA IIYS IILQ 663 557 GII 137 AIRA IIYS IILQ EQQQ VQGS 664 558 POOL 72 GII 145 IILQ EQQQ VQGS IQSQ QQQP 665 559 GII 153 VQGS IQSQ QQQP QQLG QCVS 666 560 GII 161 QQQP QQLG QCVS QPQQ QSQQ 667 561 GII 169 QCVS QPQQ QSQQ QLGQ QPQQ 668 562 GII 177 QSQQ QLGQ QPQQ QQLA QGTF 669 563 GII 185 QPQQ QQLA QGTF LQPH QIAQ 670 564 POOL 73 GII 193 QGTF LQPH QIAQ LEVM TSIA 671 565 GII 201 QIAQ LEVM TSIA LRIL PTMC 672 566 GII 209 TSIA LRIL PTMC SVNV PLYR 673 567 GII 217 PTMC SVNV PLYR TTTS VPFG 674 568 GII 225 PLYR TTTS VPFG VGTG VGAY 675 569 GIII 1A 1 TTTR TFPI PTIS SNNN HHFR 676 570 GIII 1A 9 PTIS SNNN HHFR SNSN HHFH 677 571 GIII 1A 17 HHFR SNSN HHFH SNNN QFYR 678 572 POOL 74 GIII 1A 25 HHFH SNNN QFYR NNNS PGHN 679 573 GIII 1A 33 QFYR NNNS PGHN NPLN NNNS 680 574 GIII 1A 41 PGHN NPLN NNNS PNNN SPSN 681 575 GIII 1A 49 NNNS PNNN SPSN HHNN SPNN 682 576 GIII 1A 57 SPSN HHNN SPNN NFQY HTHP 683 577 GIII 1A 65 SPNN NFQY HTHP SNHK NLPH 684 578 GIII 1A 73 HTHP SNHK NLPH TNNI QQQQ 685 579 GIII 1A 81 NLPH TNNI QQQQ PPFS QQQQ 686 580 POOL 75 GIII 1A 89 QQQQ PPFS QQQQ PPFS QQQQ 687 581 GIII 1A 97 QQQQ PPFS QQQQ PVLP QQSP 688 582 GIII 1A 105 QQQQ PVLP QQSP FSQ QQLVQ 689 583 GIII 1A 113 QQSP FSQQ QQLV LPP QQQQQ 690 584 GIII 1A 121 QQLV LPPQ QQQQ QLV QQIPQ 691 585 GIII 1A 129 QQQQ QLVQ QQIP IVQ SVLQP 692 586 GIII 1A 137 QQIP IVQP SVLQ QLNP CKVF 693 587
GIII 1A 145 SVLQ QLNP CKVF LQQ CSPVQ 694 588 POOL 76 GIII 1A 153 CKVF LQQQ CSPV AMP RLARQ 695 589 GIII 1A 161 CSPV AMPQ RLAR SQM QQSSW 696 590 GIII 1A 169 RLAR SQMW QQSS CHV QQQCM 697 591 GIII 1A 177 QQSS CHVM QQQC CQQ QQIPL 698 592 GIII 1A 185 QQQC CQQL QQIP EQS YEAIR 699 593 GIII 1A 193 QQIP EQSR YEAI RAII YSII 700 594 GIII 1A 201 YEAI RAII YSII LQEQ QQGF 701 595 GIII 1A 209 YSII LQEQ QQGF VQP QQQPQ 702 596 POOL 77 GIII 1A 217 QQGF VQPQ QQQP QQS QGVSG 703 597 GIII 1A 225 QQQP QQSG QGVS QSQ QSQQQ 704 598 GIII 1A 233 QGVS QSQQ QSQQ QLG CSFQQ 705 599 GIII 1A 241 QSQQ QLGQ CSFQ QPQ QLGQQ 706 600 GIII 1A 249 CSFQ QPQQ QLGQ QPQ QQQQQ 707 601 GIII 1A 257 QLGQ QPQQ QQQQ QVL GTFLQ 708 602 GIII 1A 263 QQQQ QVLQ GTFL QPH IAHLQ 709 603 GIII 1A 271 GTFL QPHQ IAHL EAVT SIAL 710 604 POOL 78 GIII 1A 279 IAHL EAVT SIAL RTLP TMCS 711 605 GIII 1A 287 SIAL RTLP TMCS VNV LYSAP 712 606 GIII 1A 295 TMCS VNVP LYSA TTSV PFGV 713 607 GIII 1A 303 LYSA TTSV PFGV GTGV GAY 714 608 GIII 1B 26 SCIS GLER PWQQ QPLP PQQS 715 609 GIII 1B 34 PWQQ QPLP PQQS FSQQ PPFS 716 610 GIII 1B 42 PQQS FSQQ PPFS QQQQ QPLP 717 611 GIII 1B 50 PPFS QQQQ QPLP QQPS FSQQ 718 612 Pool 79 GIII 1B 58 QPLP QQPS FSQQ QPPF SQQQ 719 613 GIII 1B 66 FSQQ QPPF SQQQ PILS QQPP 720 614 GIII 1B 74 SQQQ PILS QQPP FSQQ QQPV 721 615 O 1A 17 ATAA RELN PSNK ELQS PQQS 722 616 O 1A 25 PSNK ELQS PQQS FSYQ QQPF 723 617 O 1A 33 PQQS FSYQ QQPF PQQP YPQQ 724 618 O 1A 41 QQPF PQQP YPQQ PYPS QQPY 725 619 O 1A 49 YPQQ PYPS QQPY PSQQ PFPT 726 620 POOL 80 O 1A 57 QQPY PSQQ PFPT PQQQ FPEQ 727 621 O 1A 65 PFPT PQQQ FPEQ SQQP FTQP 728 622 O 1A 73 FPEQ SQQP FTQP QQPT PIQP 729 623 O 1A 81 FTQP QQPT PIQP QQPF PQQP 730 624 O 1A 89 PIQP QQPF PQQP QQPQ QPFP 731 625 O 1A 97 PQQP QQPQ QPFP QPQQ PFPW 732 626 O 1A 105 QPFP QPQQ PFPW QPQQ PFPQ 733 627 O 1A 113 PFPW QPQQ PFPQ TQQS FPLQ 734 628 POOL 81 O 1A 121 PFPQ TQQS FPLQ PQQP FPQQ 735 629 O 1A 129 FPLQ PQQP FPQQ PQQP FPQP 736 630 O 1A 137 FPQQ PQQP FPQP QLPF PQQS 737 631 O 1A 145 FPQP QLPF PQQS EQII PQQL 738 632 O 1A 153 PQQS EQII PQQL QQPF PLQP 739 633 O 1A 161 PQQL QQPF PLQP QQPF PQQP 740 634 O 1A 169 PLQP QQPF PQQP QQPF PQPQ 741 635 O 1A 177 PQQP QQPF PQPQ QPIP VQPQ 742 636 Pool 82 O 1A 185 PQPQ QPIP VQPQ QSFP QQSQ 743 637 O 1A 193 VQPQ QSFP QQSQ QSQQ PFAQ 744 638 O 1A 201 QQSQ QSQQ PFAQ PQQL FPEL 745 639 O 1A 209 PFAQ PQQL FPEL QQPI PQQP 746 640 O 1A 217 FPEL QQPI PQQP QQPF PLQP 747 641 O 1A 225 PQQP QQPF PLQP QQPF PQQP 748 642 O 1A 233 PLQP QQPF PQQP QQPF PQQP 749 643 O 1A 241 PQQP QQPF PQQP QQSF PQQP 750 644 POOL 83 O 1A 249 PQQP QQSF PQQP QQPY PQQQ 751 645 O 1A 257 PQQP QQPY PQQQ PYGS SLTS 752 646 O 1A 265 PQQQ PYGS SLTS IGGQ 753 647 O 1B 1 ARQL NPSD QELQ SPQQ LYPQ 754 648 O 1B 9 QELQ SPQQ LYPQ QPYP QQPY 755 649 O 1C 1 SELL SPRG KELH TPQE QFPQ 756 650 O 1C 9 KELH TPQE QFPQ QQQF PQPQ 757 651 O 1C 17 QFPQ QQQF PQPQ QFPQ 758 652 *Position of N-terminal residue in .alpha.-, .gamma.1-, .gamma.2-, .gamma.3-, or .omega. consensus sequence
Sequence CWU
1
1
80817PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 1Pro Gln Pro Glu Leu Pro Tyr 1 5
217PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 2Gln Leu Gln Pro Phe Pro Gln Pro Glu
Leu Pro Tyr Pro Gln Pro Gln 1 5 10
15 Ser 3266PRTHomo sapiens 3Val Arg Val Pro Val Pro Gln
Leu Gln Pro Gln Asn Pro Ser Gln Gln 1 5
10 15 Gln Pro Gln Glu Gln Val Pro Leu Val Gln Gln
Gln Gln Phe Pro Gly 20 25
30 Gln Gln Gln Gln Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln
Pro 35 40 45 Phe
Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln Pro 50
55 60 Gln Leu Pro Tyr Pro Gln
Pro Gln Ser Phe Pro Pro Gln Gln Pro Tyr 65 70
75 80 Pro Gln Pro Gln Pro Gln Tyr Ser Gln Pro Gln
Gln Pro Ile Ser Gln 85 90
95 Gln Gln Ala Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln
100 105 110 Gln Ile
Leu Gln Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Met Asp 115
120 125 Val Val Leu Gln Gln His Asn
Ile Ala His Ala Arg Ser Gln Val Leu 130 135
140 Gln Gln Ser Thr Tyr Gln Leu Leu Gln Glu Leu Cys
Cys Gln His Leu 145 150 155
160 Trp Gln Ile Pro Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Val
165 170 175 His Ala Ile
Ile Leu His Gln Gln Gln Lys Gln Gln Gln Gln Pro Ser 180
185 190 Ser Gln Val Ser Phe Gln Gln Pro
Leu Gln Gln Tyr Pro Leu Gly Gln 195 200
205 Gly Ser Phe Arg Pro Ser Gln Gln Asn Pro Gln Ala Gln
Gly Ser Val 210 215 220
Gln Pro Gln Gln Leu Pro Gln Phe Glu Glu Ile Arg Asn Leu Ala Leu 225
230 235 240 Gln Thr Leu Pro
Ala Met Cys Asn Val Tyr Ile Ala Pro Tyr Cys Thr 245
250 255 Ile Ala Pro Phe Gly Ile Phe Gly Thr
Asn 260 265 47PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 4Pro Gln Pro Gln Leu Pro Tyr 1 5
520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 5Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro
Tyr Pro Gln Pro 1 5 10
15 Gln Ser Phe Pro 20 617PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 6Glu Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Gln
1 5 10 15 Ser
717PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 7Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr
Pro Gln Pro Glu 1 5 10
15 Ser 817PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 8Glu Leu Gln Pro Phe Pro Gln Pro Glu
Leu Pro Tyr Pro Gln Pro Glu 1 5 10
15 Ser 95PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 9Gln Pro Gln Leu Pro 1
5 1017PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 10Gln Leu Gln Pro Phe Pro Gln Pro
Gln Leu Pro Tyr Pro Gln Pro Gln 1 5 10
15 Ser 1120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 11Leu Gln Leu
Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro 1 5
10 15 Gln Ser Phe Pro 20
125PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 12Pro Gln Leu Pro Tyr 1 5
1312PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 13Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr
1 5 10 1411PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 14Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln 1 5
10 1514PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 15Pro Arg Ala
Pro Trp Ile Glu Gln Glu Gly Pro Glu Tyr Trp 1 5
10 1616PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 16Ile Asp Val
Trp Leu Gly Gly Leu Leu Ala Glu Asn Phe Leu Pro Tyr 1 5
10 15 1717PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 17Pro Gln Pro Gln Pro Phe Pro Pro Glu Leu Pro Tyr Pro Gln Pro Gln
1 5 10 15 Ser
189PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 18Phe Pro Gln Pro Gln Leu Pro Tyr Pro 1
5 199PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 19Phe Pro Gln Pro Gln Gln
Pro Phe Pro 1 5 209PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 20Pro Gln Gln Pro Gln Gln Pro Phe Pro 1 5
2112PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 21Leu Gln Pro Gln Asn Pro Ser Gln
Gln Gln Pro Gln 1 5 10
2212PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 22Leu Gln Pro Glu Asn Pro Ser Gln Glu Gln Pro Glu
1 5 10 2317PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptideMOD_RES(1)..(7)Any amino acidMOD_RES(10)..(10)Ile, Leu, Met or
ProMOD_RES(11)..(11)Pro, Ser or ThrMOD_RES(12)..(17)Any amino acid 23Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Pro Gln Xaa Xaa Xaa Xaa Xaa Xaa Xaa 1
5 10 15 Xaa 2420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 24Val Leu Gln Gln His Asn Ile Ala His Gly Ser Ser Gln Val Leu Gln
1 5 10 15 Glu Ser
Thr Tyr 20 2520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 25Ile Lys Asp
Phe His Val Tyr Phe Arg Glu Ser Arg Asp Ala Leu Trp 1 5
10 15 Lys Gly Pro Gly 20
2617PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 26Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr
Pro Gln Pro Gln 1 5 10
15 Pro 2717PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 27Gln Leu Gln Pro Phe Pro Gln Pro
Glu Leu Pro Tyr Pro Gln Pro Gln 1 5 10
15 Pro 2817PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 28Gln Leu Gln
Pro Phe Pro Gln Pro Gln Leu Pro Tyr Ser Gln Pro Gln 1 5
10 15 Pro 2917PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 29Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Ser Gln Pro Gln
1 5 10 15 Pro
3020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 30Gln Gln Thr Tyr Pro Gln Arg Pro Gln Gln Pro Phe
Pro Gln Thr Gln 1 5 10
15 Gln Pro Gln Gln 20 3120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 31Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln
1 5 10 15 Pro Phe
Pro Trp 20 3220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 32Gln Gln Pro
Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Leu Pro 1 5
10 15 Phe Pro Gln Gln 20
3320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 33Gln Ala Phe Pro Gln Pro Gln Gln Thr Phe Pro His
Gln Pro Gln Gln 1 5 10
15 Gln Phe Pro Gln 20 3420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 34Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe
1 5 10 15 Pro Gln
Thr Gln 20 3520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 35Pro Ile Gln
Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Gln 1 5
10 15 Gln Pro Phe Pro 20
3620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 36Pro Gln Gln Ser Phe Ser Tyr Gln Gln Gln Pro Phe
Pro Gln Gln Pro 1 5 10
15 Tyr Pro Gln Gln 20 374PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptideMOD_RES(2)..(2)Any amino acid 37Gln Xaa Pro Phe 1
384PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptideMOD_RES(2)..(3)Any amino acidMOD_RES(4)..(4)Phe or
Tyr 38Gln Xaa Xaa Xaa 1 3912PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 39Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Pro 1
5 10 4013PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 40Gln Gln Pro
Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro 1 5
10 4112PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 41Pro Ile Gln Pro Gln Gln
Pro Phe Pro Gln Gln Pro 1 5 10
4212PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 42Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln
1 5 10 4312PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 43Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln 1
5 10 4418PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 44Gln Gln Tyr
Pro Ser Gly Gln Gly Ser Phe Gln Pro Ser Gln Gln Asn 1 5
10 15 Pro Gln 456PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptideMOD_RES(3)..(3)Gln or LeuMOD_RES(5)..(5)Phe or Tyr 45Pro Gln Xaa
Pro Xaa Pro 1 5 4612PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 46Leu Gln Pro
Gln Asn Pro Ser Gln Gln Gln Pro Gln 1 5
10 4714PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 47Pro Gln Pro Glu Leu Pro Tyr Pro
Gln Pro Glu Leu Pro Tyr 1 5 10
4820PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 48Gln Gln Leu Pro Gln Pro Glu Gln
Pro Gln Gln Ser Phe Pro Glu Gln 1 5 10
15 Glu Arg Pro Phe 20 4917PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 49Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Gln
1 5 10 15 Leu
5022PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 50Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro
Gln Pro Gln Gln 1 5 10
15 Pro Phe Pro Trp Gln Pro 20 5117PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 51Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln
1 5 10 15 Leu
5215PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 52Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro
Phe Pro Trp 1 5 10 15
5312PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 53Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr
1 5 10 549PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 54Pro Phe Pro Gln Pro Gln Leu Pro Tyr 1 5
559PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 55Pro Gln Pro Gln Leu Pro Tyr Pro
Gln 1 5 569PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 56Pro Tyr Pro Gln Pro Gln Leu Pro Tyr 1 5
5711PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 57Pro Gln Gln Pro Tyr Pro Gln Pro
Gln Pro Gln 1 5 10 589PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 58Pro Gln Gln Ser Phe Pro Gln Gln Gln 1 5
598PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 59Ile Ile Pro Gln Gln Pro Ala Gln 1
5 6013PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 60Phe Pro Gln
Gln Pro Gln Gln Pro Tyr Pro Gln Gln Pro 1 5
10 6112PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 61Phe Ser Gln Pro Gln Gln
Gln Phe Pro Gln Pro Gln 1 5 10
6220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 62Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln
Gln Pro Tyr Pro 1 5 10
15 Gln Gln Pro Gln 20 6313PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 63Gln Ser Glu Gln Ser Gln Gln Pro Phe Pro Gln Gln Phe 1
5 10 649PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptideMOD_RES(2)..(2)Ile or Leu 64Gln Xaa Pro Gln Gln Pro Gln Gln Phe 1
5 6510PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 65Pro Phe Ser
Gln Gln Gln Gln Ser Pro Phe 1 5 10
668PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 66Pro Phe Ser Gln Gln Gln Gln Gln 1
5 6717PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 67Gln Leu Gln Pro Phe Pro
Gln Pro Gln Leu Pro Tyr Leu Gln Pro Gln 1 5
10 15 Pro 6817PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 68Gln Leu Gln
Pro Phe Pro Arg Pro Gln Leu Pro Tyr Pro Gln Pro Gln 1 5
10 15 Pro 6917PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 69Gln Leu Gln Pro Phe Leu Gln Pro Gln Leu Pro Tyr Ser Gln Pro Gln
1 5 10 15 Pro
7017PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 70Gln Leu Gln Pro Phe Ser Gln Pro Gln Leu Pro Tyr
Ser Gln Pro Gln 1 5 10
15 Pro 7117PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 71Gln Leu Gln Pro Phe Pro Gln Pro
Gln Leu Ser Tyr Ser Gln Pro Gln 1 5 10
15 Pro 7217PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 72Pro Gln Leu
Pro Tyr Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln 1 5
10 15 Pro 7317PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 73Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln
1 5 10 15 Leu
7417PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 74Pro Gln Pro Gln Pro Phe Leu Pro Gln Leu Pro Tyr
Pro Gln Pro Gln 1 5 10
15 Ser 7517PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 75Pro Gln Pro Gln Pro Phe Pro Pro
Gln Leu Pro Tyr Pro Gln Pro Gln 1 5 10
15 Ser 7617PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 76Pro Gln Pro
Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Tyr Gln 1 5
10 15 Pro 7717PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 77Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Pro
1 5 10 15 Pro
7818PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 78Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln
Gln Pro Gln Glu 1 5 10
15 Gln Val 7918PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 79Val Pro Gln Leu Gln Pro
Glu Asn Pro Ser Gln Gln Gln Pro Gln Glu 1 5
10 15 Gln Val 8018PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 80Val Pro Gln Leu Gln Pro Arg Asn Pro Ser Gln Gln Gln Pro Gln Glu
1 5 10 15 Gln Val
8118PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 81Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Glu
Gln Pro Gln Glu 1 5 10
15 Gln Val 8218PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 82Val Pro Gln Leu Gln Pro
Gln Asn Pro Ser Gln Arg Gln Pro Gln Glu 1 5
10 15 Gln Val 8318PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 83Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Glu Glu
1 5 10 15 Gln Val
8418PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 84Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln
Gln Pro Arg Glu 1 5 10
15 Gln Val 8518PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 85Val Pro Gln Leu Gln Pro
Gln Asn Pro Ser Gln Glu Gln Pro Glu Glu 1 5
10 15 Gln Val 8618PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 86Val Pro Gln Leu Gln Pro Glu Asn Pro Ser Gln Gln Gln Pro Glu Glu
1 5 10 15 Gln Val
8718PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 87Val Pro Gln Leu Gln Pro Glu Asn Pro Ser Gln Glu
Gln Pro Gln Glu 1 5 10
15 Gln Val 8818PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 88Val Pro Gln Leu Gln Pro
Glu Asn Pro Ser Gln Glu Gln Pro Glu Glu 1 5
10 15 Gln Val 8915PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 89Arg Trp Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln 1
5 10 15 9015PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 90Trp Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln 1
5 10 15 9115PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 91Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro 1
5 10 15 9215PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 92Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln 1
5 10 15 9315PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 93Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu 1
5 10 15 9415PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 94Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln 1
5 10 15 9515PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 95Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val 1
5 10 15 9615PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 96Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro 1
5 10 15 9717PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 97Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln
1 5 10 15 Pro
9819PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 98Leu Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro
Tyr Pro Gln Pro 1 5 10
15 Gln Pro Phe 9918PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 99Gln Gln Tyr Pro Ser Gly
Glu Gly Ser Phe Gln Pro Ser Gln Glu Asn 1 5
10 15 Pro Gln 10015PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 100Gly Gln Gln Gly Tyr Tyr Pro Thr Ser Pro Gln Gln Ser Gly Gln 1
5 10 15
10117PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 101Pro Gln Leu Pro Tyr Pro Gln Pro Glu Leu Pro
Tyr Pro Gln Pro Gln 1 5 10
15 Pro 10214PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 102Pro Gln Pro Gln Leu Pro
Tyr Pro Gln Pro Gln Leu Pro Tyr 1 5 10
10320PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 103Gln Gln Leu Pro Gln Pro
Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln 1 5
10 15 Gln Arg Pro Phe 20
10417PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 104Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro
Tyr Leu Gln Pro Gln 1 5 10
15 Ser 10517PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 105Gln Pro Gln Pro Phe Pro
Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln 1 5
10 15 Pro 10617PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 106Pro Gln
Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln 1 5
10 15 Ser 10720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 107Ala Val Arg Phe Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser
Gln 1 5 10 15 Gln
Leu Pro Gln 20 10820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 108Met Val Arg
Val Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln 1 5
10 15 Gln Gln Pro Gln 20
10920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 109Met Val Arg Val Pro Val Pro Gln Leu Gln Pro
Gln Asn Pro Ser Gln 1 5 10
15 Gln His Pro Gln 20 11020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 110Met Val Arg Val Pro Met Pro Gln Leu Gln Pro Gln Asp Pro Ser
Gln 1 5 10 15 Gln
Gln Pro Gln 20 11120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 111Met Val Arg
Val Thr Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln 1 5
10 15 Gln Gln Pro Gln 20
11220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 112Ala Val Arg Val Ser Val Pro Gln Leu Gln Pro
Gln Asn Pro Ser Gln 1 5 10
15 Gln Gln Pro Gln 20 11320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 113Ala Val Arg Val Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser
Gln 1 5 10 15 Gln
Gln Pro Gln 20 11420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 114Ala Val Arg
Trp Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln 1 5
10 15 Gln Gln Pro Gln 20
11520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 115Ala Val Arg Val Pro Val Pro Gln Leu Gln Leu
Gln Asn Pro Ser Gln 1 5 10
15 Gln Gln Pro Gln 20 11620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 116Met Val Arg Val Pro Val Pro Gln Leu Gln Leu Gln Asn Pro Ser
Gln 1 5 10 15 Gln
Gln Pro Gln 20 11720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 117Ala Val Arg
Val Pro Val Pro Gln Pro Gln Pro Gln Asn Pro Ser Gln 1 5
10 15 Pro Gln Pro Gln 20
11820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 118Ala Val Arg Val Pro Val Pro Gln Leu Gln Pro
Lys Asn Pro Ser Gln 1 5 10
15 Gln Gln Pro Gln 20 11920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 119Leu Gln Pro Gln Asn Pro Ser Gln Gln Leu Pro Gln Glu Gln Val
Pro 1 5 10 15 Leu
Val Gln Gln 20 12020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 120Leu Gln Pro
Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro 1 5
10 15 Leu Val Gln Gln 20
12120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 121Leu Gln Pro Gln Asn Pro Ser Gln Gln His Pro
Gln Glu Gln Val Pro 1 5 10
15 Leu Val Gln Gln 20 12220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 122Leu Gln Pro Gln Asp Pro Ser Gln Gln Gln Pro Gln Glu Gln Val
Pro 1 5 10 15 Leu
Val Gln Gln 20 12320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 123Leu Gln Pro
Gln Asn Pro Ser Gln Gln Gln Pro Gln Lys Gln Val Pro 1 5
10 15 Leu Val Gln Gln 20
12420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 124Leu Gln Leu Gln Asn Pro Ser Gln Gln Gln Pro
Gln Glu Gln Val Pro 1 5 10
15 Leu Val Gln Glu 20 12520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 125Leu Gln Leu Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val
Pro 1 5 10 15 Leu
Val Gln Glu 20 12620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 126Pro Gln Pro
Gln Asn Pro Ser Gln Pro Gln Pro Gln Gly Gln Val Pro 1 5
10 15 Leu Val Gln Gln 20
12720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 127Pro Gln Pro Gln Asn Pro Ser Gln Pro Gln Pro
Gln Arg Gln Val Pro 1 5 10
15 Leu Val Gln Gln 20 12820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 128Leu Gln Pro Lys Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val
Pro 1 5 10 15 Leu
Val Gln Gln 20 12920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 129Leu Gln Pro
Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro 1 5
10 15 Leu Met Gln Gln 20
13020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 130Gln Leu Pro Gln Glu Gln Val Pro Leu Val Gln
Gln Gln Gln Phe Leu 1 5 10
15 Gly Gln Gln Gln 20 13120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 131Gln His Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe
Leu 1 5 10 15 Gly
Gln Gln Gln 20 13220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 132Gln Gln Pro
Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe Leu 1 5
10 15 Gly Gln Gln Gln 20
13320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 133Gln Gln Pro Gln Glu Gln Val Pro Leu Val Gln
Gln Gln Gln Phe Leu 1 5 10
15 Gly Gln Gln Gln 20 13420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 134Gln Gln Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe
Pro 1 5 10 15 Gly
Gln Gln Gln 20 13520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 135Gln Gln Pro
Gln Lys Gln Val Pro Leu Val Gln Gln Gln Gln Phe Pro 1 5
10 15 Gly Gln Gln Gln 20
13620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 136Gln Gln Pro Gln Glu Gln Val Pro Leu Val Gln
Glu Gln Gln Phe Gln 1 5 10
15 Gly Gln Gln Gln 20 13720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 137Pro Gln Pro Gln Gly Gln Val Pro Leu Val Gln Gln Gln Gln Phe
Pro 1 5 10 15 Gly
Gln Gln Gln 20 13820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 138Pro Gln Pro
Gln Arg Gln Val Pro Leu Val Gln Gln Gln Gln Phe Pro 1 5
10 15 Gly Gln Gln Gln 20
13920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 139Gln Gln Pro Gln Glu Gln Val Pro Leu Met Gln
Gln Gln Gln Gln Phe 1 5 10
15 Pro Gly Gln Gln 20 14020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 140Leu Val Gln Gln Gln Gln Phe Leu Gly Gln Gln Gln Pro Phe Pro
Pro 1 5 10 15 Gln
Gln Pro Tyr 20 14120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 141Leu Val Gln
Gln Gln Gln Phe Leu Gly Gln Gln Gln Ser Phe Pro Pro 1 5
10 15 Gln Gln Pro Tyr 20
14220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 142Leu Val Gln Gln Gln Gln Phe Leu Gly Gln Gln
Gln Pro Phe Pro Pro 1 5 10
15 Gln Gln Pro Tyr 20 14320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 143Leu Val Gln Gln Gln Gln Phe Pro Gly Gln Gln Gln Pro Phe Pro
Pro 1 5 10 15 Gln
Gln Pro Tyr 20 14420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 144Leu Val Gln
Glu Gln Gln Phe Gln Gly Gln Gln Gln Pro Phe Pro Pro 1 5
10 15 Gln Gln Pro Tyr 20
14520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 145Leu Val Gln Gln Gln Gln Phe Pro Gly Gln Gln
Gln Gln Phe Pro Pro 1 5 10
15 Gln Gln Pro Tyr 20 14620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 146Leu Met Gln Gln Gln Gln Gln Phe Pro Gly Gln Gln Glu Gln Phe
Pro 1 5 10 15 Pro
Gln Gln Pro 20 14720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 147Leu Met Gln
Gln Gln Gln Gln Phe Pro Gly Gln Gln Glu Arg Phe Pro 1 5
10 15 Pro Gln Gln Pro 20
14820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 148Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro
Tyr Pro Gln Pro Gln 1 5 10
15 Pro Phe Pro Ser 20 14920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 149Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro
Gln 1 5 10 15 Phe
Pro Ser Gln 20 15020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 150Gly Gln Gln
Gln Ser Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln 1 5
10 15 Pro Phe Pro Ser 20
15120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 151Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro
Tyr Pro Gln Gln Gln 1 5 10
15 Pro Phe Pro Ser 20 15220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 152Gly Gln Gln Gln Gln Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro
Gln 1 5 10 15 Pro
Phe Pro Ser 20 15320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 153Gly Gln Gln
Glu Gln Phe Pro Pro Gln Gln Pro Tyr Pro His Gln Gln 1 5
10 15 Pro Phe Pro Ser 20
15420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 154Gly Gln Gln Glu Arg Phe Pro Pro Gln Gln Pro
Tyr Pro His Gln Gln 1 5 10
15 Pro Phe Pro Ser 20 15520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 155Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro Ser Gln Leu Pro
Tyr 1 5 10 15 Leu
Gln Leu Gln 20 15620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 156Gln Gln Pro
Tyr Pro Gln Pro Gln Phe Pro Ser Gln Leu Pro Tyr Leu 1 5
10 15 Gln Leu Gln Pro 20
15720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 157Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro
Ser Gln Gln Pro Tyr 1 5 10
15 Leu Gln Leu Gln 20 15820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 158Gln Gln Pro Tyr Pro Gln Gln Gln Pro Phe Pro Ser Gln Gln Pro
Tyr 1 5 10 15 Met
Gln Leu Gln 20 15920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 159Gln Gln Pro
Tyr Pro His Gln Gln Pro Phe Pro Ser Gln Gln Pro Tyr 1 5
10 15 Pro Gln Pro Gln 20
16020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 160Pro Phe Pro Ser Gln Leu Pro Tyr Leu Gln Leu
Gln Pro Phe Pro Gln 1 5 10
15 Pro Gln Leu Pro 20 16120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 161Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro
Gln 1 5 10 15 Pro
Gln Leu Pro 20 16220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 162Pro Phe Pro
Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Ser Gln 1 5
10 15 Pro Gln Leu Pro 20
16320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 163Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu
Gln Pro Phe Leu Gln 1 5 10
15 Pro Gln Leu Pro 20 16420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 164Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Leu
Gln 1 5 10 15 Pro
Gln Pro Phe 20 16520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 165Pro Phe Pro
Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln 1 5
10 15 Pro Gln Leu Pro 20
16620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 166Pro Phe Pro Ser Gln Gln Pro Tyr Met Gln Leu
Gln Pro Phe Pro Gln 1 5 10
15 Pro Gln Leu Pro 20 16720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 167Pro Phe Pro Ser Gln Gln Pro Tyr Met Gln Leu Gln Pro Phe Pro
Gln 1 5 10 15 Pro
Gln Pro Phe 20 16820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 168Pro Phe Pro
Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln 1 5
10 15 Pro Gln Pro Phe 20
16920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 169Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu
Gln Pro Phe Pro Arg 1 5 10
15 Pro Gln Leu Pro 20 17020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 170Pro Phe Pro Ser Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro
Pro 1 5 10 15 Gln
Leu Pro Tyr 20 17120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 171Pro Phe Pro
Ser Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro Gln 1 5
10 15 Pro Gln Pro Phe 20
17220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 172Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu
Pro Tyr Ser Gln Pro 1 5 10
15 Gln Pro Phe Arg 20 17320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 173Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Ser Gln
Pro 1 5 10 15 Gln
Gln Phe Arg 20 17420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 174Leu Gln Leu
Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Leu Gln Pro 1 5
10 15 Gln Pro Phe Arg 20
17520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 175Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu
Ser Tyr Ser Gln Pro 1 5 10
15 Gln Pro Phe Arg 20 17620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 176Leu Gln Leu Gln Pro Phe Ser Gln Pro Gln Leu Pro Tyr Ser Gln
Pro 1 5 10 15 Gln
Pro Phe Arg 20 17720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 177Leu Gln Leu
Gln Pro Phe Leu Gln Pro Gln Leu Pro Tyr Ser Gln Pro 1 5
10 15 Gln Pro Phe Arg 20
17820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 178Leu Gln Leu Gln Pro Phe Leu Gln Pro Gln Pro
Phe Pro Pro Gln Leu 1 5 10
15 Pro Tyr Ser Gln 20 17920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 179Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln
Pro 1 5 10 15 Gln
Leu Pro Tyr 20 18020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 180Met Gln Leu
Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro 1 5
10 15 Gln Leu Pro Tyr 20
18120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 181Met Gln Leu Gln Pro Phe Pro Gln Pro Gln Pro
Phe Pro Pro Gln Leu 1 5 10
15 Pro Tyr Pro Gln 20 18220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 182Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln
Pro 1 5 10 15 Gln
Pro Phe Arg 20 18320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 183Leu Gln Leu
Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu 1 5
10 15 Pro Tyr Pro Gln 20
18420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 184Leu Gln Leu Gln Pro Phe Pro Arg Pro Gln Leu
Pro Tyr Pro Gln Pro 1 5 10
15 Gln Pro Phe Arg 20 18520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 185Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Pro Phe Leu Pro Gln
Leu 1 5 10 15 Pro
Tyr Pro Gln 20 18620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 186Leu Gln Leu
Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu 1 5
10 15 Pro Tyr Pro Gln 20
18720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 187Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro
Tyr Pro Gln Thr Gln 1 5 10
15 Pro Phe Pro Pro 20 18820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 188Pro Gln Pro Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Pro Gln
Leu 1 5 10 15 Pro
Tyr Pro Gln 20 18920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 189Pro Gln Leu
Pro Tyr Ser Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro 1 5
10 15 Tyr Pro Gln Pro 20
19020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 190Pro Gln Leu Pro Tyr Ser Gln Pro Gln Gln Phe
Arg Pro Gln Gln Pro 1 5 10
15 Tyr Pro Gln Pro 20 19120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 191Pro Gln Leu Pro Tyr Leu Gln Pro Gln Pro Phe Arg Pro Gln Gln
Pro 1 5 10 15 Tyr
Pro Gln Pro 20 19220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 192Pro Gln Leu
Ser Tyr Ser Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro 1 5
10 15 Tyr Pro Gln Pro 20
19320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 193Pro Gln Leu Ser Tyr Ser Gln Pro Gln Pro Phe
Arg Pro Gln Gln Leu 1 5 10
15 Tyr Pro Gln Pro 20 19420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 194Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Ser Gln Pro Gln Pro
Phe 1 5 10 15 Arg
Pro Gln Gln 20 19520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 195Pro Gln Leu
Pro Tyr Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln 1 5
10 15 Leu Pro Tyr Pro 20
19620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 196Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro
Tyr Pro Gln Pro Gln 1 5 10
15 Pro Phe Arg Pro 20 19720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 197Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu
Pro 1 5 10 15 Tyr
Pro Gln Pro 20 19820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 198Pro Gln Leu
Pro Tyr Pro Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro 1 5
10 15 Tyr Pro Gln Pro 20
19920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 199Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro
Gln Pro Gln Pro Phe 1 5 10
15 Arg Pro Gln Gln 20 20020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 200Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Pro Pro
Phe 1 5 10 15 Ser
Pro Gln Gln 20 20120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 201Pro Gln Pro
Phe Leu Pro Gln Leu Pro Tyr Pro Gln Pro Gln Ser Phe 1 5
10 15 Pro Pro Gln Gln 20
20220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 202Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro
Gln Pro Gln Ser Phe 1 5 10
15 Pro Pro Gln Gln 20 20320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 203Gln Leu Pro Tyr Pro Gln Thr Gln Pro Phe Pro Pro Gln Gln Pro
Tyr 1 5 10 15 Pro
Gln Pro Gln 20 20420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 204Pro Gln Pro
Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln Pro Phe 1 5
10 15 Pro Pro Gln Gln 20
20520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 205Leu Pro Tyr Pro Gln Pro Gln Pro Phe Arg Pro
Gln Gln Pro Tyr Pro 1 5 10
15 Gln Ser Gln Pro 20 20620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 206Leu Pro Tyr Pro Gln Pro Gln Pro Phe Arg Pro Gln Gln Ser Tyr
Pro 1 5 10 15 Gln
Pro Gln Pro 20 20720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 207Leu Pro Tyr
Pro Gln Pro Pro Pro Phe Ser Pro Gln Gln Pro Tyr Pro 1 5
10 15 Gln Pro Gln Pro 20
20820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 208Leu Pro Gln Leu Pro Tyr Pro Gln Pro Gln Ser
Phe Pro Pro Gln Gln 1 5 10
15 Pro Tyr Pro Gln 20 20920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 209Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln Pro Phe Pro Pro Gln
Gln 1 5 10 15 Pro
Tyr Pro Gln 20 21020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 210Gln Pro Phe
Arg Pro Gln Gln Pro Tyr Pro Gln Pro Gln Pro Gln Tyr 1 5
10 15 Ser Gln Pro Gln 20
21120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 211Gln Pro Phe Arg Pro Gln Gln Leu Tyr Pro Gln
Pro Gln Pro Gln Tyr 1 5 10
15 Ser Gln Pro Gln 20 21220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 212Gln Pro Phe Arg Pro Gln Gln Pro Tyr Pro Gln Ser Gln Pro Gln
Tyr 1 5 10 15 Ser
Gln Pro Gln 20 21320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 213Gln Pro Phe
Arg Pro Gln Gln Ser Tyr Pro Gln Pro Gln Pro Gln Tyr 1 5
10 15 Ser Gln Pro Gln 20
21420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 214Pro Pro Phe Ser Pro Gln Gln Pro Tyr Pro Gln
Pro Gln Pro Gln Tyr 1 5 10
15 Pro Gln Pro Gln 20 21520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 215Gln Ser Phe Pro Pro Gln Gln Pro Tyr Pro Gln Gln Arg Pro Lys
Tyr 1 5 10 15 Leu
Gln Pro Gln 20 21620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 216Gln Ser Phe
Pro Pro Gln Gln Pro Tyr Pro Gln Gln Arg Pro Met Tyr 1 5
10 15 Leu Gln Pro Gln 20
21720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 217Gln Ser Phe Pro Pro Gln Gln Pro Tyr Pro Gln
Gln Gln Pro Gln Tyr 1 5 10
15 Leu Gln Pro Gln 20 21820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 218Gln Pro Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln Pro Gln
Tyr 1 5 10 15 Pro
Gln Pro Gln 20 21920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 219Tyr Pro Gln
Pro Gln Pro Gln Tyr Ser Gln Pro Gln Gln Pro Ile Ser 1 5
10 15 Gln Gln Gln Gln 20
22020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 220Tyr Pro Gln Pro Gln Pro Gln Tyr Ser Gln Pro
Gln Glu Pro Ile Ser 1 5 10
15 Gln Gln Gln Gln 20 22120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 221Tyr Pro Gln Ser Gln Pro Gln Tyr Ser Gln Pro Gln Gln Pro Ile
Ser 1 5 10 15 Gln
Gln Gln Gln 20 22220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 222Tyr Pro Gln
Pro Gln Pro Gln Tyr Pro Gln Pro Gln Gln Pro Ile Ser 1 5
10 15 Gln Gln Gln Ala 20
22320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 223Tyr Pro Gln Gln Arg Pro Lys Tyr Leu Gln Pro
Gln Gln Pro Ile Ser 1 5 10
15 Gln Gln Gln Ala 20 22420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 224Tyr Pro Gln Gln Arg Pro Met Tyr Leu Gln Pro Gln Gln Pro Ile
Ser 1 5 10 15 Gln
Gln Gln Ala 20 22520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 225Tyr Pro Gln
Gln Gln Pro Gln Tyr Leu Gln Pro Gln Gln Pro Ile Ser 1 5
10 15 Gln Gln Gln Ala 20
22620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 226Ser Gln Pro Gln Gln Pro Ile Ser Gln Gln Gln
Gln Gln Gln Gln Gln 1 5 10
15 Gln Gln Gln Gln 20 22720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 227Ser Gln Pro Gln Glu Pro Ile Ser Gln Gln Gln Gln Gln Gln Gln
Gln 1 5 10 15 Gln
Gln Gln Ile 20 22820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 228Pro Gln Pro
Gln Gln Pro Ile Ser Gln Gln Gln Ala Gln Gln Gln Gln 1 5
10 15 Gln Gln Gln Gln 20
22920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 229Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln
Gln Gln Gln Gln Gln 1 5 10
15 Ile Leu Gln Gln 20 23020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 230Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Glu Gln
Gln 1 5 10 15 Ile
Leu Gln Gln 20 23120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 231Gln Gln Gln
Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln 1 5
10 15 Ile Ile Gln Gln 20
23220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 232Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Lys
Gln Gln Gln Gln Gln 1 5 10
15 Gln Gln Gln Ile 20 23320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 233Ala Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln
Gln 1 5 10 15 Thr
Leu Gln Gln 20 23420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 234Gln Gln Gln
Gln Gln Gln Gln Gln Ile Leu Gln Gln Ile Leu Gln Gln 1 5
10 15 Gln Leu Ile Pro 20
23520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 235Gln Gln Gln Gln Gln Glu Gln Gln Ile Leu Gln
Gln Ile Leu Gln Gln 1 5 10
15 Gln Leu Ile Pro 20 23620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 236Gln Gln Gln Gln Gln Glu Gln Gln Ile Leu Gln Gln Met Leu Gln
Gln 1 5 10 15 Gln
Leu Ile Pro 20 23720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 237Gln Gln Gln
Gln Gln Glu Gln Gln Ile Leu Gln Gln Ile Leu Gln Gln 1 5
10 15 Gln Leu Thr Pro 20
23820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 238Gln Gln Gln Gln Gln Gln Gln Gln Ile Ile Gln
Gln Ile Leu Gln Gln 1 5 10
15 Gln Leu Ile Pro 20 23920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 239Gln Gln Lys Gln Gln Gln Gln Gln Gln Gln Gln Ile Leu Gln Gln
Ile 1 5 10 15 Leu
Gln Gln Gln 20 24020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 240Gln Gln Gln
Gln Gln Gln Gln Gln Ile Leu Pro Gln Ile Leu Gln Gln 1 5
10 15 Gln Leu Ile Pro 20
24120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 241Gln Gln Gln Gln Gln Gln Gln Gln Thr Leu Gln
Gln Ile Leu Gln Gln 1 5 10
15 Gln Leu Ile Pro 20 24220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 242Ile Leu Gln Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Met Asp
Val 1 5 10 15 Val
Leu Gln Gln 20 24320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 243Ile Leu Gln
Gln Met Leu Gln Gln Gln Leu Ile Pro Cys Met Asp Val 1 5
10 15 Val Leu Gln Gln 20
24420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 244Ile Leu Gln Gln Ile Leu Gln Gln Gln Leu Thr
Pro Cys Met Asp Val 1 5 10
15 Val Leu Gln Gln 20 24520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 245Ile Leu Gln Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Arg Asp
Val 1 5 10 15 Val
Leu Gln Gln 20 24620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 246Ile Leu Pro
Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Arg Asp Val 1 5
10 15 Val Leu Gln Gln 20
24720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 247Thr Leu Gln Gln Ile Leu Gln Gln Gln Leu Ile
Pro Cys Arg Asp Val 1 5 10
15 Val Leu Gln Gln 20 24820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 248Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln Gln His Asn Ile
Ala 1 5 10 15 His
Gly Arg Ser 20 24920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 249Gln Leu Ile
Pro Cys Met Asp Val Val Leu Gln Gln His Asn Lys Ala 1 5
10 15 His Gly Arg Ser 20
25020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 250Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln
Gln His Asn Leu Ala 1 5 10
15 His Gly Arg Ser 20 25120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 251Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln Gln His Asn Ile
Val 1 5 10 15 His
Gly Arg Ser 20 25220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 252Gln Leu Thr
Pro Cys Met Asp Val Val Leu Gln Gln His Asn Ile Ala 1 5
10 15 Arg Gly Arg Ser 20
25320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 253Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln
Gln His Asn Ile Val 1 5 10
15 His Gly Lys Ser 20 25420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 254Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln Gln His Ser Ile
Ala 1 5 10 15 Tyr
Gly Ser Ser 20 25520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 255Gln Leu Ile
Pro Cys Arg Asp Val Val Leu Gln Gln His Ser Ile Ala 1 5
10 15 His Gly Ser Ser 20
25620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 256Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln
Gln His Asn Ile Ala 1 5 10
15 His Gly Ser Ser 20 25720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 257Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln Gln His Asn Ile
Ala 1 5 10 15 His
Ala Arg Ser 20 25820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 258Gln Leu Ile
Pro Cys Arg Asp Val Val Leu Gln Gln His Asn Ile Ala 1 5
10 15 His Ala Ser Ser 20
25920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 259Val Leu Gln Gln His Asn Ile Ala His Gly Arg
Ser Gln Val Leu Gln 1 5 10
15 Gln Ser Thr Tyr 20 26020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 260Val Leu Gln Gln His Asn Lys Ala His Gly Arg Ser Gln Val Leu
Gln 1 5 10 15 Gln
Ser Thr Tyr 20 26120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 261Val Leu Gln
Gln His Asn Leu Ala His Gly Arg Ser Gln Val Leu Gln 1 5
10 15 Gln Ser Thr Tyr 20
26220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 262Val Leu Gln Gln His Asn Ile Val His Gly Arg
Ser Gln Val Leu Gln 1 5 10
15 Gln Ser Thr Tyr 20 26320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 263Val Leu Gln Gln His Asn Ile Ala Arg Gly Arg Ser Gln Val Leu
Gln 1 5 10 15 Gln
Ser Thr Tyr 20 26420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 264Val Leu Gln
Gln His Asn Ile Val His Gly Lys Ser Gln Val Leu Gln 1 5
10 15 Gln Ser Thr Tyr 20
26520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 265Val Leu Gln Gln His Ser Ile Ala Tyr Gly Ser
Ser Gln Val Leu Gln 1 5 10
15 Gln Ser Thr Tyr 20 26620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 266Val Leu Gln Gln His Ser Ile Ala His Gly Ser Ser Gln Val Leu
Gln 1 5 10 15 Gln
Ser Thr Tyr 20 26720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 267Val Leu Gln
Gln His Asn Ile Ala His Gly Ser Ser Gln Val Leu Gln 1 5
10 15 Glu Ser Thr Tyr 20
26820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 268Val Leu Gln Gln His Asn Ile Ala His Ala Arg
Ser Gln Val Leu Gln 1 5 10
15 Gln Ser Thr Tyr 20 26920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 269Val Leu Gln Gln His Asn Ile Ala His Ala Ser Ser Gln Val Leu
Gln 1 5 10 15 Gln
Ser Thr Tyr 20 27020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 270Val Leu Gln
Gln His Asn Ile Ala His Ala Ser Ser Gln Val Leu Gln 1 5
10 15 Gln Ser Ser Tyr 20
27120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 271His Gly Arg Ser Gln Val Leu Gln Gln Ser Thr
Tyr Gln Leu Leu Gln 1 5 10
15 Glu Leu Cys Cys 20 27220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 272His Gly Arg Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu
Arg 1 5 10 15 Glu
Leu Cys Cys 20 27320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 273His Gly Arg
Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu Arg 1 5
10 15 Glu Leu Cys Cys 20
27420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 274His Gly Lys Ser Gln Val Leu Gln Gln Ser Thr
Tyr Gln Leu Leu Gln 1 5 10
15 Glu Leu Cys Cys 20 27520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 275Tyr Gly Ser Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Val
Gln 1 5 10 15 Gln
Leu Cys Cys 20 27620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 276His Gly Ser
Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Val Gln 1 5
10 15 Gln Phe Cys Cys 20
27720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 277His Gly Ser Ser Gln Val Leu Gln Glu Ser Thr
Tyr Gln Leu Val Gln 1 5 10
15 Gln Leu Cys Cys 20 27820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 278His Ala Arg Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Pro Leu
Gln 1 5 10 15 Gln
Leu Cys Cys 20 27920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 279His Ala Ser
Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu Gln 1 5
10 15 Gln Leu Cys Cys 20
28020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 280His Ala Ser Ser Gln Val Leu Gln Gln Ser Ser
Tyr Gln Gln Leu Gln 1 5 10
15 Gln Leu Cys Cys 20 28120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 281Gln Ser Thr Tyr Gln Leu Leu Gln Glu Leu Cys Cys Gln His Leu
Trp 1 5 10 15 Gln
Ile Pro Glu 20 28220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 282Gln Ser Thr
Tyr Gln Leu Leu Arg Glu Leu Cys Cys Gln His Leu Trp 1 5
10 15 Gln Ile Pro Glu 20
28320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 283Gln Ser Thr Tyr Gln Leu Leu Arg Glu Leu Cys
Cys Gln His Leu Trp 1 5 10
15 Gln Ile Pro Glu 20 28420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 284Gln Ser Thr Tyr Gln Leu Val Gln Gln Leu Cys Cys Gln Gln Leu
Trp 1 5 10 15 Gln
Ile Pro Glu 20 28520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 285Gln Ser Thr
Tyr Gln Leu Val Gln Gln Phe Cys Cys Gln Gln Leu Trp 1 5
10 15 Gln Ile Pro Glu 20
28620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 286Gln Ser Thr Tyr Gln Pro Leu Gln Gln Leu Cys
Cys Gln Gln Leu Trp 1 5 10
15 Gln Ile Pro Glu 20 28720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 287Gln Ser Thr Tyr Gln Leu Leu Gln Gln Leu Cys Cys Gln Gln Leu
Leu 1 5 10 15 Gln
Ile Pro Glu 20 28820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 288Gln Ser Ser
Tyr Gln Gln Leu Gln Gln Leu Cys Cys Gln Gln Leu Phe 1 5
10 15 Gln Ile Pro Glu 20
28920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 289Glu Leu Cys Cys Gln His Leu Trp Gln Ile Pro
Glu Gln Ser Gln Cys 1 5 10
15 Gln Ala Ile His 20 29020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 290Glu Leu Cys Cys Gln His Leu Trp Gln Ile Leu Glu Gln Ser Gln
Cys 1 5 10 15 Gln
Ala Ile His 20 29120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 291Glu Leu Cys
Cys Gln His Leu Trp Gln Ile Pro Glu Lys Leu Gln Cys 1 5
10 15 Gln Ala Ile His 20
29220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 292Gln Leu Cys Cys Gln Gln Leu Trp Gln Ile Pro
Glu Gln Ser Arg Cys 1 5 10
15 Gln Ala Ile His 20 29320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 293Gln Phe Cys Cys Gln Gln Leu Trp Gln Ile Pro Glu Gln Ser Arg
Cys 1 5 10 15 Gln
Ala Ile His 20 29420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 294Gln Leu Cys
Cys Gln Gln Leu Leu Gln Ile Pro Glu Gln Ser Arg Cys 1 5
10 15 Gln Ala Ile His 20
29520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 295Gly Leu Cys Cys Gln Gln Leu Leu Gln Ile Pro
Glu Gln Ser Gln Cys 1 5 10
15 Gln Ala Ile His 20 29620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 296Gln Leu Cys Cys Gln Gln Leu Phe Gln Ile Pro Glu Gln Ser Arg
Cys 1 5 10 15 Gln
Ala Ile His 20 29720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 297Gln Ile Pro
Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Val His 1 5
10 15 Ala Ile Ile Leu 20
29820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 298Gln Ile Pro Glu Gln Ser Gln Cys Gln Ala Ile
Gln Asn Val Val His 1 5 10
15 Ala Ile Ile Leu 20 29920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 299Gln Ile Leu Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Val
His 1 5 10 15 Ala
Ile Ile Leu 20 30020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 300Gln Ile Pro
Glu Gln Ser Gln Cys Gln Ala Ile His Lys Val Val His 1 5
10 15 Ala Ile Ile Leu 20
30120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 301Gln Ile Pro Glu Lys Leu Gln Cys Gln Ala Ile
His Asn Val Val His 1 5 10
15 Ala Ile Ile Leu 20 30220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 302Gln Ile Pro Glu Gln Ser Arg Cys Gln Ala Ile His Asn Val Val
His 1 5 10 15 Ala
Ile Ile Leu 20 30320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 303Gln Ile Pro
Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Ala His 1 5
10 15 Ala Ile Ile Met 20
30420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 304Gln Ile Pro Glu Gln Ser Arg Cys Gln Ala Ile
His Asn Val Val His 1 5 10
15 Ala Ile Ile Leu 20 30520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 305Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His Gln Gln
Gln 1 5 10 15 Lys
Gln Gln Gln 20 30620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 306Gln Ala Ile
His Asn Val Val His Ala Ile Ile Leu His Gln Gln Gln 1 5
10 15 Gln Lys Gln Gln 20
30720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 307Gln Ala Ile Gln Asn Val Val His Ala Ile Ile
Leu His Gln Gln Gln 1 5 10
15 Lys Gln Gln Gln 20 30820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 308Gln Ala Ile His Lys Val Val His Ala Ile Ile Leu His Gln Gln
Gln 1 5 10 15 Lys
Gln Gln Gln 20 30920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 309Gln Ala Ile
His Asn Val Val His Ala Ile Ile Leu His Gln Gln Gln 1 5
10 15 Gln Gln Gln Gln 20
31020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 310Gln Ala Ile His Asn Val Val His Ala Ile Ile
Leu His Gln Gln His 1 5 10
15 His His His Gln 20 31120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 311Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His Gln Gln
Gln 1 5 10 15 Arg
Gln Gln Gln 20 31220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 312Gln Ala Ile
His Asn Val Val His Ala Ile Ile Met His Gln Gln Glu 1 5
10 15 Gln Gln Gln Gln 20
31320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 313Gln Ala Ile His Asn Val Ala His Ala Ile Ile
Met His Gln Gln Gln 1 5 10
15 Gln Gln Gln Gln 20 31420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 314Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His His His
Gln 1 5 10 15 Gln
Gln Gln Gln 20 31520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 315Ala Ile Ile
Leu His Gln Gln Gln Lys Gln Gln Gln Gln Pro Ser Ser 1 5
10 15 Gln Val Ser Phe 20
31620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 316Ala Ile Ile Leu His Gln Gln Gln Gln Lys Gln
Gln Gln Gln Pro Ser 1 5 10
15 Ser Gln Phe Ser 20 31720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 317Ala Ile Ile Leu His Gln Gln Gln Lys Gln Gln Gln Gln Leu Ser
Ser 1 5 10 15 Gln
Val Ser Phe 20 31820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 318Ala Ile Ile
Leu His Gln Gln Gln Lys Gln Gln Gln Pro Ser Ser Gln 1 5
10 15 Val Ser Phe Gln 20
31920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 319Ala Ile Ile Leu His Gln Gln Gln Gln Gln Gln
Gln Glu Gln Lys Gln 1 5 10
15 Gln Leu Gln Gln 20 32020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 320Ala Ile Ile Leu His Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln
Gln 1 5 10 15 Gln
Pro Leu Ser 20 32120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 321Ala Ile Ile
Leu His Gln Gln His His His His Gln Gln Gln Gln Gln 1 5
10 15 Gln Gln Gln Gln 20
32220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 322Ala Ile Ile Leu His Gln Gln His His His His
Gln Glu Gln Lys Gln 1 5 10
15 Gln Leu Gln Gln 20 32320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 323Ala Ile Ile Leu His Gln Gln Gln Arg Gln Gln Gln Pro Ser Ser
Gln 1 5 10 15 Val
Ser Leu Gln 20 32420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 324Ala Ile Ile
Met His Gln Gln Glu Gln Gln Gln Gln Leu Gln Gln Gln 1 5
10 15 Gln Gln Gln Gln 20
32520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 325Ala Ile Ile Met His Gln Gln Gln Gln Gln Gln
Gln Glu Gln Lys Gln 1 5 10
15 Gln Leu Gln Gln 20 32620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 326Ala Ile Ile Leu His His His Gln Gln Gln Gln Gln Gln Pro Ser
Ser 1 5 10 15 Gln
Val Ser Tyr 20 32720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 327Lys Gln Gln
Gln Gln Pro Ser Ser Gln Val Ser Phe Gln Gln Pro Leu 1 5
10 15 Gln Gln Tyr Pro 20
32820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 328Lys Gln Gln Gln Gln Pro Ser Ser Gln Phe Ser
Phe Gln Gln Pro Leu 1 5 10
15 Gln Gln Tyr Pro 20 32920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 329Lys Gln Gln Gln Gln Leu Ser Ser Gln Val Ser Phe Gln Gln Pro
Gln 1 5 10 15 Gln
Gln Tyr Pro 20 33020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 330Lys Gln Gln
Gln Pro Ser Ser Gln Val Ser Phe Gln Gln Pro Gln Gln 1 5
10 15 Gln Tyr Pro Leu 20
33120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 331Gln Gln Gln Gln Glu Gln Lys Gln Gln Leu Gln
Gln Gln Gln Gln Gln 1 5 10
15 Gln Gln Gln Leu 20 33220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 332His His His Gln Glu Gln Lys Gln Gln Leu Gln Gln Gln Gln Gln
Gln 1 5 10 15 Gln
Gln Gln Leu 20 33320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 333Arg Gln Gln
Gln Pro Ser Ser Gln Val Ser Leu Gln Gln Pro Gln Gln 1 5
10 15 Gln Tyr Pro Ser 20
33420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 334Gln Gln Gln Gln Leu Gln Gln Gln Gln Gln Gln
Gln Leu Gln Gln Gln 1 5 10
15 Gln Gln Gln Gln 20 33520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 335Gln Gln Gln Gln Gln Pro Ser Ser Gln Val Ser Tyr Gln Gln Pro
Gln 1 5 10 15 Glu
Gln Tyr Pro 20 33620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 336Gln Leu Gln
Gln Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln Gln 1 5
10 15 Gln Lys Gln Gln 20
33720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 337Gln Gln Gln Leu Gln Gln Gln Gln Gln Lys Gln
Gln Gln Gln Pro Ser 1 5 10
15 Ser Gln Val Ser 20 33820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 338Gln Gln Gln Gln Gln Gln Gln Gln Gln Pro Leu Ser Gln Val Ser
Phe 1 5 10 15 Gln
Gln Pro Gln 20 33920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 339Gln Gln Gln
Gln Gln Gln Gln Gln Gln Pro Leu Ser Gln Val Cys Phe 1 5
10 15 Gln Gln Ser Gln 20
34020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 340His His His Gln Gln Gln Gln Gln Gln Gln Gln
Gln Gln Pro Leu Ser 1 5 10
15 Gln Val Ser Phe 20 34120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 341Gln Gln Gln Gln Gln Gln Gln Gln Gln Pro Ser Ser Gln Val Ser
Phe 1 5 10 15 Gln
Gln Pro Gln 20 34220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 342Gln Pro Leu
Ser Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro 1 5
10 15 Ser Gly Gln Gly 20
34320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 343Gln Pro Leu Ser Gln Val Cys Phe Gln Gln Ser
Gln Gln Gln Tyr Pro 1 5 10
15 Ser Gly Gln Gly 20 34420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 344Gln Pro Ser Ser Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr
Pro 1 5 10 15 Ser
Ser Gln Val 20 34520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 345Gln Val Ser
Phe Gln Gln Pro Leu Gln Gln Tyr Pro Leu Gly Gln Gly 1 5
10 15 Ser Phe Arg Pro 20
34620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 346Gln Phe Ser Phe Gln Gln Pro Leu Gln Gln Tyr
Pro Leu Gly Gln Gly 1 5 10
15 Ser Phe Arg Pro 20 34720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 347Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Leu Gly Gln
Gly 1 5 10 15 Ser
Phe Arg Pro 20 34820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 348Gln Val Ser
Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Gly Gln Gly 1 5
10 15 Ser Phe Gln Pro 20
34920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 349Gln Val Cys Phe Gln Gln Ser Gln Gln Gln Tyr
Pro Ser Gly Gln Gly 1 5 10
15 Ser Phe Gln Pro 20 35020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 350Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Gly Gln
Gly 1 5 10 15 Phe
Phe Gln Pro 20 35120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 351Gln Val Ser
Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Gly Gln Gly 1 5
10 15 Phe Phe Gln Pro 20
35220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 352Gln Val Ser Leu Gln Gln Pro Gln Gln Gln Tyr
Pro Ser Gly Gln Gly 1 5 10
15 Phe Phe Gln Pro 20 35320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 353Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Ser Gln
Val 1 5 10 15 Ser
Phe Gln Pro 20 35420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 354Gln Val Ser
Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Ser Gln Gly 1 5
10 15 Ser Phe Gln Pro 20
35520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 355Gln Val Ser Tyr Gln Gln Pro Gln Glu Gln Tyr
Pro Ser Gly Gln Val 1 5 10
15 Ser Phe Gln Ser 20 35620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 356Gln Gln Tyr Pro Leu Gly Gln Gly Ser Phe Arg Pro Ser Gln Gln
Asn 1 5 10 15 Pro
Gln Ala Gln 20 35720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 357Gln Gln Tyr
Pro Leu Gly Gln Gly Ser Phe Arg Pro Ser Gln Gln Asn 1 5
10 15 Ser Gln Ala Gln 20
35820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 358Gln Gln Tyr Pro Ser Gly Gln Gly Ser Phe Gln
Pro Ser Gln Gln Asn 1 5 10
15 Pro Gln Ala Gln 20 35920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 359Gln Gln Tyr Pro Ser Gly Gln Gly Phe Phe Gln Pro Ser Gln Gln
Asn 1 5 10 15 Pro
Gln Ala Gln 20 36020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 360Gln Gln Tyr
Pro Ser Gly Gln Gly Phe Phe Gln Pro Phe Gln Gln Asn 1 5
10 15 Pro Gln Ala Gln 20
36120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 361Gln Gln Tyr Pro Ser Gly Gln Gly Phe Phe Gln
Pro Ser Gln Gln Asn 1 5 10
15 Pro Gln Ala Gln 20 36220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 362Gln Gln Tyr Pro Ser Ser Gln Val Ser Phe Gln Pro Ser Gln Leu
Asn 1 5 10 15 Pro
Gln Ala Gln 20 36320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 363Gln Gln Tyr
Pro Ser Ser Gln Gly Ser Phe Gln Pro Ser Gln Gln Asn 1 5
10 15 Pro Gln Ala Gln 20
36420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 364Glu Gln Tyr Pro Ser Gly Gln Val Ser Phe Gln
Ser Ser Gln Gln Asn 1 5 10
15 Pro Gln Ala Gln 20 36520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 365Ser Phe Arg Pro Ser Gln Gln Asn Pro Leu Ala Gln Gly Ser Val
Gln 1 5 10 15 Pro
Gln Gln Leu 20 36620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 366Ser Phe Arg
Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val Gln 1 5
10 15 Pro Gln Gln Leu 20
36720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 367Ser Phe Arg Pro Ser Gln Gln Asn Pro Gln Thr
Gln Gly Ser Val Gln 1 5 10
15 Pro Gln Gln Leu 20 36820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 368Ser Phe Arg Pro Ser Gln Gln Asn Ser Gln Ala Gln Gly Ser Val
Gln 1 5 10 15 Pro
Gln Gln Leu 20 36920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 369Ser Phe Arg
Pro Ser Gln Gln Asn Pro Gln Asp Gln Gly Ser Val Gln 1 5
10 15 Pro Gln Gln Leu 20
37020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 370Ser Phe Arg Pro Ser Gln Gln Asn Pro Arg Ala
Gln Gly Ser Val Gln 1 5 10
15 Pro Gln Gln Leu 20 37120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 371Ser Phe Gln Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val
Gln 1 5 10 15 Pro
Gln Gln Leu 20 37220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 372Phe Phe Gln
Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Phe Gln 1 5
10 15 Pro Gln Gln Leu 20
37320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 373Phe Phe Gln Pro Phe Gln Gln Asn Pro Gln Ala
Gln Gly Ser Phe Gln 1 5 10
15 Pro Gln Gln Leu 20 37420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 374Phe Phe Gln Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val
Gln 1 5 10 15 Pro
Gln Gln Leu 20 37520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 375Ser Phe Gln
Pro Ser Gln Leu Asn Pro Gln Ala Gln Gly Ser Val Gln 1 5
10 15 Pro Gln Gln Leu 20
37620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 376Ser Phe Gln Pro Ser Gln Leu Asn Pro Gln Ala
Gln Gly Ser Val Gln 1 5 10
15 Pro Gln Gln Leu 20 37720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 377Ser Phe Gln Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val
Gln 1 5 10 15 Pro
Gln Gln Leu 20 37820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 378Ser Phe Gln
Ser Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val Gln 1 5
10 15 Pro Gln Gln Leu 20
37920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 379Pro Gln Ala Gln Gly Ser Val Gln Pro Gln Gln
Leu Pro Gln Phe Glu 1 5 10
15 Glu Ile Arg Asn 20 38020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 380Pro Gln Thr Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe
Glu 1 5 10 15 Glu
Ile Arg Asn 20 38120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 381Pro Gln Ala
Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu 1 5
10 15 Ile Arg Asn Leu 20
38220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 382Pro Leu Ala Gln Gly Ser Val Gln Pro Gln Gln
Leu Pro Gln Phe Glu 1 5 10
15 Glu Ile Arg Asn 20 38320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 383Pro Gln Asp Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe
Glu 1 5 10 15 Glu
Ile Arg Asn 20 38420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 384Pro Arg Ala
Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu 1 5
10 15 Glu Ile Arg Asn 20
38520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 385Pro Gln Ala Gln Gly Ser Phe Gln Pro Gln Gln
Leu Pro Gln Phe Glu 1 5 10
15 Glu Ile Arg Asn 20 38620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 386Pro Gln Ala Gln Gly Ser Phe Gln Pro Gln Gln Leu Pro Gln Phe
Glu 1 5 10 15 Ala
Ile Arg Asn 20 38720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 387Pro Gln Ala
Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Ala 1 5
10 15 Glu Ile Arg Asn 20
38820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 388Pro Gln Ala Gln Gly Ser Val Gln Pro Gln Gln
Leu Pro Gln Phe Gln 1 5 10
15 Glu Ile Arg Asn 20 38920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 389Pro Gln Gln Leu Pro Gln Phe Glu Glu Ile Arg Asn Leu Ala Leu
Gln 1 5 10 15 Thr
Leu Pro Ala 20 39020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 390Pro Gln Gln
Leu Pro Gln Phe Glu Ile Arg Asn Leu Ala Leu Gln Thr 1 5
10 15 Leu Pro Ala Met 20
39116PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 391Pro Gln Gln Leu Pro Gln Phe Glu Glu Ile Arg
Asn Leu Ala Arg Lys 1 5 10
15 39220PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 392Pro Gln Gln Leu Pro Gln Phe Glu
Glu Ile Arg Asn Leu Ala Leu Glu 1 5 10
15 Thr Leu Pro Ala 20 39320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 393Pro Gln Gln Leu Pro Gln Phe Glu Ala Ile Arg Asn Leu Ala Leu
Gln 1 5 10 15 Thr
Leu Pro Ala 20 39420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 394Pro Gln Gln
Leu Pro Gln Phe Ala Glu Ile Arg Asn Leu Ala Leu Gln 1 5
10 15 Thr Leu Pro Ala 20
39520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 395Pro Gln Gln Leu Pro Gln Phe Gln Glu Ile Arg
Asn Leu Ala Leu Gln 1 5 10
15 Thr Leu Pro Ala 20 39620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 396Glu Ile Arg Asn Leu Ala Leu Gln Thr Leu Pro Ala Met Cys Asn
Val 1 5 10 15 Tyr
Ile Pro Pro 20 39720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 397Glu Ile Arg
Asn Leu Ala Leu Gln Thr Leu Pro Ser Met Cys Asn Val 1 5
10 15 Tyr Ile Pro Pro 20
39820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 398Glu Ile Arg Asn Leu Ala Leu Glu Thr Leu Pro
Ala Met Cys Asn Val 1 5 10
15 Tyr Ile Pro Pro 20 39920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 399Glu Ile Arg Asn Leu Ala Leu Gln Thr Leu Pro Arg Met Cys Asn
Val 1 5 10 15 Tyr
Ile Pro Pro 20 40020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 400Thr Leu Pro
Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr Ile 1 5
10 15 Ala Pro Phe Gly 20
40120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 401Thr Leu Pro Ser Met Cys Asn Val Tyr Ile Pro
Pro Tyr Cys Thr Ile 1 5 10
15 Ala Pro Phe Gly 20 40220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 402Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr
Ile 1 5 10 15 Val
Pro Phe Gly 20 40320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 403Thr Leu Pro
Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Ala Met 1 5
10 15 Ala Pro Phe Gly 20
40420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 404Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro
Pro Tyr Cys Thr Ile 1 5 10
15 Thr Pro Phe Gly 20 40520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 405Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr
Ile 1 5 10 15 Ala
Pro Val Gly 20 40620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 406Thr Leu Pro
Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Ser Thr 1 5
10 15 Thr Ile Ala Pro 20
40720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 407Thr Leu Pro Arg Met Cys Asn Val Tyr Ile Pro
Pro Tyr Cys Ser Thr 1 5 10
15 Thr Ile Ala Pro 20 40820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 408Thr Leu Pro Arg Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Ser
Thr 1 5 10 15 Thr
Thr Ala Pro 20 40920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 409Thr Leu Pro
Ala Met Cys Asn Val Tyr Ile Pro Pro His Cys Ser Thr 1 5
10 15 Thr Ile Ala Pro 20
41019PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 410Tyr Ile Pro Pro Tyr Cys Thr Ile Ala Pro Phe
Gly Ile Phe Gly Thr 1 5 10
15 Asn Tyr Arg 41119PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 411Tyr Ile Pro
Pro Tyr Cys Thr Ile Val Pro Phe Gly Ile Phe Gly Thr 1 5
10 15 Asn Tyr Arg 41219PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 412Tyr Ile Pro Pro Tyr Cys Ala Met Ala Pro Phe Gly Ile Phe Gly
Thr 1 5 10 15 Asn
Tyr Arg 41319PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 413Tyr Ile Pro Pro Tyr Cys Thr Met
Ala Pro Phe Gly Ile Phe Gly Thr 1 5 10
15 Asn Tyr Arg 41417PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 414Tyr Ile
Pro Pro Tyr Cys Thr Ile Thr Pro Phe Gly Ile Phe Gly Thr 1 5
10 15 Asn 41519PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 415Tyr Ile Pro Pro Tyr Cys Thr Ile Ala Pro Val Gly Ile Phe Gly
Thr 1 5 10 15 Asn
Tyr Arg 41619PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 416Tyr Ile Pro Pro Tyr Cys Ser Thr
Thr Ile Ala Pro Val Gly Ile Phe 1 5 10
15 Gly Thr Asn 41719PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 417Tyr Ile
Pro Pro Tyr Cys Ser Thr Thr Thr Ala Pro Phe Gly Ile Phe 1 5
10 15 Gly Thr Asn
41819PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 418Tyr Ile Pro Pro His Cys Ser Thr Thr Ile Ala
Pro Phe Gly Ile Phe 1 5 10
15 Gly Thr Asn 41919PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 419Tyr Ile Pro
Pro His Cys Ser Thr Thr Ile Ala Pro Phe Gly Ile Ser 1 5
10 15 Gly Thr Asn 42020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 420Ile Pro Pro Tyr Cys Ser Thr Thr Ile Ala Pro Phe Gly Ile Phe
Gly 1 5 10 15 Thr
Asn Tyr Arg 20 42120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 421Gly Thr Ala
Asn Met Gln Val Asp Pro Ser Ser Gln Val Gln Trp Pro 1 5
10 15 Gln Gln Gln Pro 20
42220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 422Gly Thr Ala Asn Ile Gln Val Asp Pro Ser Gly
Gln Val Gln Trp Leu 1 5 10
15 Gln Gln Gln Leu 20 42320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 423Ala Thr Ala Asn Met Gln Val Asp Pro Ser Gly Gln Val Pro Trp
Pro 1 5 10 15 Gln
Gln Gln Pro 20 42420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 424Met Asn Ile
Gln Val Asp Pro Ser Gly Gln Val Pro Trp Pro Gln Gln 1 5
10 15 Gln Pro Phe Pro 20
42520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 425Ala Thr Ala Asn Met Gln Ala Asp Pro Ser Gly
Gln Val Gln Trp Pro 1 5 10
15 Gln Gln Gln Pro 20 42620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 426Thr Thr Ala Asn Ile Gln Val Asp Pro Ser Gly Gln Val Gln Trp
Pro 1 5 10 15 Gln
Gln Gln Gln 20 42720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 427Ala Thr Ala
Asn Met Gln Val Asp Pro Ser Gly Gln Val Gln Trp Pro 1 5
10 15 Gln Gln Gln Pro 20
42819PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 428Gln Ile Val Phe Pro Ser Gly Gln Val Gln Trp
Pro Gln Gln Gln Gln 1 5 10
15 Pro Phe Pro 42920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 429Pro Ser Ser
Gln Val Gln Trp Pro Gln Gln Gln Pro Val Pro Gln Pro 1 5
10 15 His Gln Pro Phe 20
43020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 430Pro Ser Gly Gln Val Gln Trp Leu Gln Gln Gln
Leu Val Pro Gln Leu 1 5 10
15 Gln Gln Pro Leu 20 43120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 431Pro Ser Gly Gln Val Pro Trp Pro Gln Gln Gln Pro Phe Pro Gln
Pro 1 5 10 15 His
Gln Pro Phe 20 43220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 432Pro Ser Gly
Gln Val Gln Trp Pro Gln Gln Gln Pro Phe Leu Gln Pro 1 5
10 15 His Gln Pro Phe 20
43320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 433Pro Ser Gly Gln Val Gln Trp Pro Gln Gln Gln
Gln Pro Phe Pro Gln 1 5 10
15 Pro Gln Gln Pro 20 43420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 434Pro Ser Gly Gln Val Gln Trp Pro Gln Gln Gln Pro Phe Arg Gln
Pro 1 5 10 15 Gln
Gln Pro Phe 20 43520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 435Pro Ser Gly
Gln Val Gln Trp Pro Gln Gln Gln Pro Phe Pro Gln Pro 1 5
10 15 Gln Gln Pro Phe 20
43620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 436Gln Gln Gln Pro Val Pro Gln Pro His Gln Pro
Phe Ser Gln Gln Pro 1 5 10
15 Gln Gln Thr Phe 20 43720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 437Gln Gln Gln Leu Val Pro Gln Leu Gln Gln Pro Leu Ser Gln Gln
Pro 1 5 10 15 Gln
Gln Thr Phe 20 43820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 438Gln Gln Gln
Pro Phe Pro Gln Pro His Gln Pro Phe Ser Gln Gln Pro 1 5
10 15 Gln Gln Thr Phe 20
43920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 439Gln Gln Gln Pro Phe Leu Gln Pro His Gln Pro
Phe Ser Gln Gln Pro 1 5 10
15 Gln Gln Ile Phe 20 44020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 440Gln Gln Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Ser Gln
Gln 1 5 10 15 Pro
Gln Gln Ile 20 44120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 441Gln Gln Gln
Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe 1 5
10 15 Pro Gln Pro Gln 20
44220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 442Gln Gln Gln Pro Phe Arg Gln Pro Gln Gln Pro
Phe Tyr Gln Gln Pro 1 5 10
15 Gln His Thr Phe 20 44320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 443Gln Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Cys Gln Gln
Pro 1 5 10 15 Gln
Arg Thr Ile 20 44420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 444Gln Gln Gln
Pro Phe Pro Gln Pro Gln Gln Pro Phe Cys Glu Gln Pro 1 5
10 15 Gln Arg Thr Ile 20
44520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 445His Gln Pro Phe Ser Gln Gln Pro Gln Gln Thr
Phe Pro Gln Pro Gln 1 5 10
15 Gln Thr Phe Pro 20 44620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 446Gln Gln Pro Leu Ser Gln Gln Pro Gln Gln Thr Phe Pro Gln Pro
Gln 1 5 10 15 Gln
Thr Phe Pro 20 44720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 447His Gln Pro
Phe Ser Gln Gln Pro Gln Gln Ile Phe Pro Gln Pro Gln 1 5
10 15 Gln Thr Phe Pro 20
44820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 448Gln Gln Pro Phe Ser Gln Gln Pro Gln Gln Ile
Phe Pro Gln Pro Gln 1 5 10
15 Gln Thr Phe Pro 20 44920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 449Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Leu
Pro 1 5 10 15 Phe
Pro Gln Gln 20 45020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 450Gln Gln Pro
Phe Tyr Gln Gln Pro Gln His Thr Phe Pro Gln Pro Gln 1 5
10 15 Gln Thr Cys Pro 20
45120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 451Gln Gln Pro Phe Cys Gln Gln Pro Gln Arg Thr
Ile Pro Gln Pro His 1 5 10
15 Gln Thr Phe His 20 45220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 452Gln Gln Pro Phe Cys Gln Gln Pro Gln Gln Thr Ile Pro Gln Pro
His 1 5 10 15 Gln
Thr Phe His 20 45320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 453Gln Gln Pro
Phe Cys Glu Gln Pro Gln Arg Thr Ile Pro Gln Pro His 1 5
10 15 Gln Thr Phe His 20
45420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 454Gln Gln Thr Phe Pro Gln Pro Gln Gln Thr Phe
Pro His Gln Pro Gln 1 5 10
15 Gln Gln Phe Pro 20 45520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 455Gln Gln Ile Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro
Gln 1 5 10 15 Gln
Gln Phe Pro 20 45620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 456Gln Gln Ile
Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln 1 5
10 15 Gln Ala Phe Pro 20
45720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 457Gln Arg Thr Ile Pro Gln Pro His Gln Thr Phe
His His Gln Pro Gln 1 5 10
15 Gln Thr Phe Pro 20 45820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 458Gln Thr Phe Pro His Gln Pro Gln Gln Ala Phe Pro Gln Pro Gln
Gln 1 5 10 15 Thr
Phe Pro His 20 45920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 459Gln Thr Phe
His His Gln Pro Gln Gln Thr Phe Pro Gln Pro Gln Gln 1 5
10 15 Thr Tyr Pro His 20
46020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 460Gln Thr Phe His His Gln Pro Gln Gln Thr Phe
Pro Gln Pro Glu Gln 1 5 10
15 Thr Tyr Pro His 20 46120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 461Gln Ala Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln
Gln 1 5 10 15 Gln
Phe Pro Gln 20 46220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 462Gln His Thr
Phe Pro Gln Pro Gln Gln Thr Cys Pro His Gln Pro Gln 1 5
10 15 Gln Gln Phe Pro 20
46320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 463Gln Thr Phe Pro Gln Pro Gln Gln Thr Tyr Pro
His Gln Pro Gln Gln 1 5 10
15 Gln Phe Pro Gln 20 46420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 464Gln Thr Phe Pro Gln Pro Glu Gln Thr Tyr Pro His Gln Pro Gln
Gln 1 5 10 15 Gln
Phe Pro Gln 20 46520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 465Gln Thr Phe
Pro His Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln 1 5
10 15 Pro Gln Gln Gln 20
46620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 466Gln Thr Phe Pro His Gln Pro Gln Gln Gln Val
Pro Gln Pro Gln Gln 1 5 10
15 Pro Gln Gln Pro 20 46720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 467Gln Thr Phe Pro His Gln Pro Gln Gln Gln Phe Ser Gln Pro Gln
Gln 1 5 10 15 Pro
Gln Gln Gln 20 46820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 468Gln Thr Cys
Pro His Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln 1 5
10 15 Pro Gln Gln Pro 20
46920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 469Gln Thr Tyr Pro His Gln Pro Gln Gln Gln Phe
Pro Gln Thr Gln Gln 1 5 10
15 Pro Gln Gln Pro 20 47020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 470Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Gln Phe Leu Gln
Pro 1 5 10 15 Gln
Gln Pro Phe 20 47120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 471Gln Gln Val
Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Leu Gln Pro 1 5
10 15 Gln Gln Pro Phe 20
47220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 472Gln Gln Phe Ser Gln Pro Gln Gln Pro Gln Gln
Gln Phe Ile Gln Pro 1 5 10
15 Gln Gln Pro Phe 20 47320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 473Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Gln Phe Leu Gln
Pro 1 5 10 15 Arg
Gln Pro Phe 20 47420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 474Gln Gln Phe
Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln 1 5
10 15 Pro Gln Gln Gln 20
47520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 475Gln Gln Phe Pro Gln Thr Gln Gln Pro Gln Gln
Pro Phe Pro Gln Pro 1 5 10
15 Gln Gln Thr Phe 20 47620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 476Pro Gln Gln Gln Phe Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln
Pro 1 5 10 15 Gln
Gln Pro Tyr 20 47720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 477Pro Gln Gln
Gln Phe Ile Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro 1 5
10 15 Gln Gln Thr Tyr 20
47820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 478Pro Gln Gln Gln Phe Ile Gln Pro Gln Gln Pro
Gln Gln Thr Tyr Pro 1 5 10
15 Gln Arg Pro Gln 20 47920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 479Pro Gln Gln Gln Phe Leu Gln Pro Arg Gln Pro Phe Pro Gln Gln
Pro 1 5 10 15 Gln
Gln Pro Tyr 20 48020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 480Pro Gln Gln
Pro Phe Pro Gln Gln Pro Gln Gln Gln Phe Pro Gln Pro 1 5
10 15 Gln Gln Pro Gln 20
48120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 481Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro
Gln Gln Pro Phe Pro 1 5 10
15 Gln Pro Gln Gln 20 48220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 482Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Thr Phe Pro Gln Gln
Pro 1 5 10 15 Gln
Leu Pro Phe 20 48320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 483Pro Gln Gln
Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro 1 5
10 15 Gln Gln Pro Gln 20
48420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 484Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro
Gln Gln Gln Phe Pro 1 5 10
15 Gln Pro Gln Gln 20 48520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 485Gln Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln
Pro 1 5 10 15 Phe
Pro Gln Pro 20 48620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 486Gln Pro Gln
Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln 1 5
10 15 Leu Pro Phe Pro 20
48720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 487Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro
Tyr Pro Gln Gln Pro 1 5 10
15 Gln Gln Pro Phe 20 48820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 488Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Thr
Gln 1 5 10 15 Gln
Pro Gln Gln 20 48920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 489Gln Gln Pro
Phe Pro Gln Gln Pro Gln Gln Thr Tyr Pro Gln Arg Pro 1 5
10 15 Gln Gln Pro Phe 20
49020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 490Arg Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro
Tyr Pro Gln Gln Pro 1 5 10
15 Gln Gln Pro Phe 20 49120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 491Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Leu Pro Phe Pro
Gln 1 5 10 15 Gln
Pro Gln Gln 20 49220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 492Gln Gln Pro
Phe Pro Gln Pro Gln Gln Ala Gln Leu Pro Phe Pro Gln 1 5
10 15 Gln Pro Gln Gln 20
49320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 493Gln Gln Thr Phe Pro Gln Gln Pro Gln Leu Pro
Phe Pro Gln Gln Pro 1 5 10
15 Gln Gln Pro Phe 20 49420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 494Gln Gln Pro Tyr Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Thr
Gln 1 5 10 15 Gln
Pro Gln Gln 20 49520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 495Gln Gln Pro
Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln 1 5
10 15 Gln Pro Gln Gln 20
49620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 496Gln Gln Thr Tyr Pro Gln Arg Pro Gln Gln Pro
Phe Pro Gln Thr Gln 1 5 10
15 Gln Pro Gln Gln 20 49720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 497Gln Pro Gln Leu Pro Phe Pro Gln Gln Pro Gln Gln Gln Pro Gln
Gln 1 5 10 15 Pro
Phe Pro Gln 20 49820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 498Gln Ala Gln
Leu Pro Phe Pro Gln Gln Pro Gln Gln Pro Leu Pro Gln 1 5
10 15 Pro Gln Gln Pro 20
49920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 499Gln Leu Pro Phe Pro Gln Gln Pro Gln Gln Pro
Phe Pro Gln Pro Gln 1 5 10
15 Gln Pro Gln Gln 20 50020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 500Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro
Gln 1 5 10 15 Thr
Gln Gln Pro 20 50120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 501Gln Pro Gln
Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe 1 5
10 15 Pro Gln Gln Pro 20
50220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 502Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln
Pro Gln Gln Pro Phe 1 5 10
15 Pro Gln Thr Gln 20 50320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 503Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln
Gln 1 5 10 15 Pro
Phe Pro Gln 20 50420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 504Gln Gln Pro
Phe Pro Gln Thr Gln Gln Pro Gln Gln Leu Phe Pro Gln 1 5
10 15 Ser Gln Gln Pro 20
50520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 505Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln
Gln Pro Phe Pro Gln 1 5 10
15 Leu Gln Gln Pro 20 50620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 506Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro
Gln 1 5 10 15 Ser
Gln Gln Pro 20 50720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 507Gln Gln Pro
Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln 1 5
10 15 Ser Lys Gln Pro 20
50820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 508Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln
Gln Pro Phe Pro Gln 1 5 10
15 Leu Gln Gln Pro 20 50920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 509Gln Gln Pro Leu Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro
Gln 1 5 10 15 Ser
Gln Gln Pro 20 51020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 510Gln Gln Pro
Phe Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln 1 5
10 15 Ser Gln Gln Pro 20
51120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 511Gln Pro Gln Gln Leu Phe Pro Gln Ser Gln Gln
Pro Gln Gln Gln Phe 1 5 10
15 Ser Gln Pro Gln 20 51220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 512Gln Pro Gln Gln Pro Phe Pro Gln Leu Gln Gln Pro Gln Gln Pro
Phe 1 5 10 15 Pro
Gln Pro Gln 20 51320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 513Gln Pro Gln
Gln Pro Phe Pro Gln Ser Gln Gln Pro Gln Gln Pro Phe 1 5
10 15 Pro Gln Pro Gln 20
51420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 514Gln Pro Gln Gln Pro Phe Pro Gln Ser Lys Gln
Pro Gln Gln Pro Phe 1 5 10
15 Pro Gln Pro Gln 20 51520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 515Gln Pro Gln Gln Pro Phe Pro Gln Leu Gln Gln Pro Gln Gln Pro
Leu 1 5 10 15 Pro
Gln Pro Gln 20 51620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 516Ser Gln Gln
Pro Gln Gln Gln Phe Ser Gln Pro Gln Gln Gln Phe Pro 1 5
10 15 Gln Pro Gln Gln 20
51720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 517Leu Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro
Gln Gln Gln Leu Pro 1 5 10
15 Gln Pro Gln Gln 20 51820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 518Ser Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Gln Phe
Pro 1 5 10 15 Gln
Pro Gln Gln 20 51920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 519Ser Lys Gln
Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Gln 1 5
10 15 Ser Phe Pro Gln 20
52020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 520Leu Gln Gln Pro Gln Gln Pro Leu Pro Gln Pro
Gln Gln Pro Gln Gln 1 5 10
15 Pro Phe Pro Gln 20 52120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 521Ser Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln
Gln 1 5 10 15 Ser
Phe Pro Gln 20 52220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 522Ser Gln Pro
Gln Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Ser 1 5
10 15 Phe Pro Gln Gln 20
52320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 523Pro Gln Pro Gln Gln Gln Leu Pro Gln Pro Gln
Gln Pro Gln Gln Ser 1 5 10
15 Phe Pro Gln Gln 20 52420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 524Pro Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln
Ser 1 5 10 15 Phe
Pro Gln Gln 20 52520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 525Pro Gln Pro
Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Pro Ser 1 5
10 15 Leu Ile Gln Gln 20
52620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 526Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro
Gln Gln Gln Gln Pro 1 5 10
15 Leu Ile Gln Pro 20 52720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 527Pro Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Gln
Pro 1 5 10 15 Leu
Ile Gln Pro 20 52820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 528Gln Pro Gln
Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Pro Pro Phe 1 5
10 15 Ile Gln Pro Ser 20
52920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 529Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln
Gln Gln Arg Pro Phe 1 5 10
15 Ile Gln Pro Ser 20 53020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 530Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Pro Ser
Leu 1 5 10 15 Ile
Gln Gln Ser 20 53120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 531Phe Pro Gln
Gln Gln Pro Pro Phe Ile Gln Pro Ser Leu Gln Gln Gln 1 5
10 15 Val Asn Pro Cys 20
53220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 532Phe Pro Gln Gln Gln Arg Pro Phe Ile Gln Pro
Ser Leu Gln Gln Gln 1 5 10
15 Leu Asn Pro Cys 20 53320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 533Phe Pro Gln Gln Gln Pro Ser Leu Ile Gln Gln Ser Leu Gln Gln
Gln 1 5 10 15 Leu
Asn Pro Cys 20 53420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 534Phe Pro Gln
Gln Gln Gln Pro Leu Ile Gln Pro Tyr Leu Gln Gln Gln 1 5
10 15 Met Asn Pro Cys 20
53520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 535Phe Pro Gln Gln Gln Gln Pro Ala Ile Gln Ser
Phe Leu Gln Gln Gln 1 5 10
15 Met Asn Pro Cys 20 53620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 536Ile Gln Pro Ser Leu Gln Gln Gln Val Asn Pro Cys Lys Asn Phe
Leu 1 5 10 15 Leu
Gln Gln Cys 20 53720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 537Ile Gln Pro
Ser Leu Gln Gln Gln Leu Asn Pro Cys Lys Asn Ile Leu 1 5
10 15 Leu Gln Gln Ser 20
53820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 538Ile Gln Gln Ser Leu Gln Gln Gln Leu Asn Pro
Cys Lys Asn Phe Leu 1 5 10
15 Leu Gln Gln Cys 20 53920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 539Ile Gln Pro Tyr Leu Gln Gln Gln Met Asn Pro Cys Lys Asn Tyr
Leu 1 5 10 15 Leu
Gln Gln Cys 20 54020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 540Ile Gln Ser
Phe Leu Gln Gln Gln Met Asn Pro Cys Lys Asn Phe Leu 1 5
10 15 Leu Gln Gln Cys 20
54120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 541Val Asn Pro Cys Lys Asn Phe Leu Leu Gln Gln
Cys Lys Pro Val Ser 1 5 10
15 Leu Val Ser Ser 20 54220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 542Leu Asn Pro Cys Lys Asn Ile Leu Leu Gln Gln Ser Lys Pro Ala
Ser 1 5 10 15 Leu
Val Ser Ser 20 54320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 543Leu Asn Pro
Cys Lys Asn Phe Leu Leu Gln Gln Cys Lys Pro Val Ser 1 5
10 15 Leu Val Ser Ser 20
54420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 544Met Asn Pro Cys Lys Asn Tyr Leu Leu Gln Gln
Cys Asn Pro Val Ser 1 5 10
15 Leu Val Ser Ser 20 54520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 545Met Asn Pro Cys Lys Asn Phe Leu Leu Gln Gln Cys Asn His Val
Ser 1 5 10 15 Leu
Val Ser Ser 20 54620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 546Leu Gln Gln
Cys Lys Pro Val Ser Leu Val Ser Ser Leu Trp Ser Met 1 5
10 15 Ile Trp Pro Gln 20
54720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 547Leu Gln Gln Ser Lys Pro Ala Ser Leu Val Ser
Ser Leu Trp Ser Ile 1 5 10
15 Ile Trp Pro Gln 20 54820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 548Leu Gln Gln Cys Lys Pro Val Ser Leu Val Ser Ser Leu Trp Ser
Met 1 5 10 15 Ile
Leu Pro Arg 20 54920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 549Leu Gln Gln
Cys Asn Pro Val Ser Leu Val Ser Ser Leu Val Ser Met 1 5
10 15 Ile Leu Pro Arg 20
55020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 550Leu Gln Gln Cys Asn His Val Ser Leu Val Ser
Ser Leu Val Ser Ile 1 5 10
15 Ile Leu Pro Arg 20 55120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 551Leu Val Ser Ser Leu Trp Ser Met Ile Trp Pro Gln Ser Asp Cys
Gln 1 5 10 15 Val
Met Arg Gln 20 55220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 552Leu Val Ser
Ser Leu Trp Ser Ile Ile Trp Pro Gln Ser Asp Cys Gln 1 5
10 15 Val Met Arg Gln 20
55320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 553Leu Val Ser Ser Leu Trp Ser Met Ile Leu Pro
Arg Ser Asp Cys Gln 1 5 10
15 Val Met Arg Gln 20 55420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 554Leu Val Ser Ser Leu Trp Ser Ile Ile Leu Pro Pro Ser Asp Cys
Gln 1 5 10 15 Val
Met Arg Gln 20 55520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 555Leu Val Ser
Ser Leu Val Ser Met Ile Leu Pro Arg Ser Asp Cys Lys 1 5
10 15 Val Met Arg Gln 20
55620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 556Leu Val Ser Ser Leu Val Ser Met Ile Leu Pro
Arg Ser Asp Cys Gln 1 5 10
15 Val Met Gln Gln 20 55720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 557Leu Val Ser Ser Leu Val Ser Ile Ile Leu Pro Arg Ser Asp Cys
Gln 1 5 10 15 Val
Met Gln Gln 20 55820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 558Ile Trp Pro
Gln Ser Asp Cys Gln Val Met Arg Gln Gln Cys Cys Gln 1 5
10 15 Gln Leu Ala Gln 20
55920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 559Ile Leu Pro Arg Ser Asp Cys Gln Val Met Arg
Gln Gln Cys Cys Gln 1 5 10
15 Gln Leu Ala Gln 20 56020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 560Ile Leu Pro Pro Ser Asp Cys Gln Val Met Arg Gln Gln Cys Cys
Gln 1 5 10 15 Gln
Leu Ala Gln 20 56120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 561Ile Leu Pro
Arg Ser Asp Cys Lys Val Met Arg Gln Gln Cys Cys Gln 1 5
10 15 Gln Leu Ala Arg 20
56220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 562Ile Leu Pro Arg Ser Asp Cys Gln Val Met Gln
Gln Gln Cys Cys Gln 1 5 10
15 Gln Leu Ala Gln 20 56320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 563Val Met Arg Gln Gln Cys Cys Gln Gln Leu Ala Gln Ile Pro Gln
Gln 1 5 10 15 Leu
Gln Cys Ala 20 56420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 564Val Met Arg
Gln Gln Cys Cys Gln Gln Leu Ala Arg Ile Pro Gln Gln 1 5
10 15 Leu Gln Cys Ala 20
56520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 565Val Met Gln Gln Gln Cys Cys Gln Gln Leu Ala
Gln Ile Pro Arg Gln 1 5 10
15 Leu Gln Cys Ala 20 56620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 566Val Met Gln Gln Gln Cys Cys Gln Gln Leu Ala Gln Ile Pro Gln
Gln 1 5 10 15 Leu
Gln Cys Ala 20 56720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 567Gln Leu Ala
Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Thr 1 5
10 15 Ile Ile His Ser 20
56820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 568Gln Leu Ala Gln Ile Pro Gln Gln Leu Gln Cys
Ala Ala Ile His Thr 1 5 10
15 Val Ile His Ser 20 56920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 569Gln Leu Ala Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His
Ser 1 5 10 15 Val
Val His Ser 20 57020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 570Gln Leu Ala
Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Ser 1 5
10 15 Ile Val His Ser 20
57120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 571Gln Leu Ala Arg Ile Pro Gln Gln Leu Gln Cys
Ala Ala Ile His Gly 1 5 10
15 Ile Val His Ser 20 57220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 572Gln Leu Ala Gln Ile Pro Arg Gln Leu Gln Cys Ala Ala Ile His
Ser 1 5 10 15 Val
Val His Ser 20 57320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 573Gln Leu Ala
Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Ser 1 5
10 15 Val Ala His Ser 20
57420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 574Leu Gln Cys Ala Ala Ile His Thr Ile Ile His
Ser Ile Ile Met Gln 1 5 10
15 Gln Glu Gln Gln 20 57520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 575Leu Gln Cys Ala Ala Ile His Thr Val Ile His Ser Ile Ile Met
Gln 1 5 10 15 Gln
Glu Gln Gln 20 57620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 576Leu Gln Cys
Ala Ala Ile His Ser Val Val His Ser Ile Ile Met Gln 1 5
10 15 Gln Gln Gln Gln 20
57720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 577Leu Gln Cys Ala Ala Ile His Ser Ile Val His
Ser Ile Ile Met Gln 1 5 10
15 Gln Glu Gln Gln 20 57820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 578Leu Gln Cys Ala Ala Ile His Ser Val Val His Ser Ile Ile Met
Gln 1 5 10 15 Gln
Glu Gln Gln 20 57920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 579Leu Gln Cys
Ala Ala Ile His Gly Ile Val His Ser Ile Ile Met Gln 1 5
10 15 Gln Glu Gln Gln 20
58020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 580Leu Gln Cys Ala Ala Ile His Ser Val Ala His
Ser Ile Ile Met Gln 1 5 10
15 Gln Glu Gln Gln 20 58120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 581Ile Ile His Ser Ile Ile Met Gln Gln Glu Gln Gln Glu Gln Gln
Gln 1 5 10 15 Gly
Met His Ile 20 58220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 582Val Ile His
Ser Ile Ile Met Gln Gln Glu Gln Gln Gln Gly Met His 1 5
10 15 Ile Leu Leu Pro 20
58320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 583Val Val His Ser Ile Ile Met Gln Gln Gln Gln
Gln Gln Gln Gln Gln 1 5 10
15 Gln Gly Ile Asp 20 58420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 584Ile Val His Ser Ile Ile Met Gln Gln Glu Gln Gln Glu Gln Arg
Gln 1 5 10 15 Gly
Val Gln Ile 20 58520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 585Val Val His
Ser Ile Ile Met Gln Gln Glu Gln Gln Glu Gln Leu Gln 1 5
10 15 Gly Val Gln Ile 20
58620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 586Ile Val His Ser Ile Ile Met Gln Gln Glu Gln
Gln Gln Gln Gln Gln 1 5 10
15 Gln Gln Gln Gln 20 58720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 587Val Val His Ser Ile Val Met Gln Gln Glu Gln Gln Gln Gly Ile
Gln 1 5 10 15 Ile
Leu Arg Pro 20 58820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 588Val Ala His
Ser Ile Ile Met Gln Gln Glu Gln Gln Gln Gly Val Pro 1 5
10 15 Ile Leu Arg Pro 20
58920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 589Gln Glu Gln Gln Glu Gln Gln Gln Gly Met His
Ile Leu Leu Pro Leu 1 5 10
15 Tyr Gln Gln Gln 20 59020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 590Gln Gln Gln Gln Gln Gln Gln Gln Gln Gly Ile Asp Ile Phe Leu
Pro 1 5 10 15 Leu
Ser Gln His 20 59120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 591Gln Gln Gln
Gln Gln Gln Gln Gln Gln Gly Met His Ile Phe Leu Pro 1 5
10 15 Leu Ser Gln Gln 20
59220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 592Gln Glu Gln Gln Glu Gln Arg Gln Gly Val Gln
Ile Leu Val Pro Leu 1 5 10
15 Ser Gln Gln Gln 20 59320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 593Gln Glu Gln Gln Glu Gln Leu Gln Gly Val Gln Ile Leu Val Pro
Leu 1 5 10 15 Ser
Gln Gln Gln 20 59420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 594Gln Glu Gln
Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gly 1 5
10 15 Ile Gln Ile Met 20
59520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 595Gln Glu Gln Gln Gln Gly Ile Gln Ile Leu Arg
Pro Leu Phe Gln Leu 1 5 10
15 Val Gln Gly Gln 20 59620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 596Gln Glu Gln Gln Gln Gly Val Pro Ile Leu Arg Pro Leu Phe Gln
Leu 1 5 10 15 Ala
Gln Gly Leu 20 59720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 597Gln Gln Gln
Gln Gln Gln Gln Gly Ile Gln Ile Met Arg Pro Leu Phe 1 5
10 15 Gln Leu Val Gln 20
59820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 598Gly Met His Ile Leu Leu Pro Leu Tyr Gln Gln
Gln Gln Val Gly Gln 1 5 10
15 Gly Thr Leu Val 20 59920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 599Gly Ile Asp Ile Phe Leu Pro Leu Ser Gln His Glu Gln Val Gly
Gln 1 5 10 15 Gly
Ser Leu Val 20 60020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 600Gly Met His
Ile Phe Leu Pro Leu Ser Gln Gln Gln Gln Val Gly Gln 1 5
10 15 Gly Ser Leu Val 20
60120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 601Gly Val Gln Ile Leu Val Pro Leu Ser Gln Gln
Gln Gln Val Gly Gln 1 5 10
15 Gly Thr Leu Val 20 60220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 602Gly Val Gln Ile Leu Val Pro Leu Ser Gln Gln Gln Gln Val Gly
Gln 1 5 10 15 Gly
Ile Leu Val 20 60320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 603Gly Ile Gln
Ile Met Arg Pro Leu Phe Gln Leu Val Gln Gly Gln Gly 1 5
10 15 Ile Ile Gln Pro 20
60420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 604Gly Ile Gln Ile Leu Arg Pro Leu Phe Gln Leu
Val Gln Gly Gln Gly 1 5 10
15 Ile Ile Gln Pro 20 60520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 605Gly Val Pro Ile Leu Arg Pro Leu Phe Gln Leu Ala Gln Gly Leu
Gly 1 5 10 15 Ile
Ile Gln Pro 20 60620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 606Tyr Gln Gln
Gln Gln Val Gly Gln Gly Thr Leu Val Gln Gly Gln Gly 1 5
10 15 Ile Ile Gln Pro 20
60720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 607Ser Gln His Glu Gln Val Gly Gln Gly Ser Leu
Val Gln Gly Gln Gly 1 5 10
15 Ile Ile Gln Pro 20 60820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 608Ser Gln Gln Gln Gln Val Gly Gln Gly Ser Leu Val Gln Gly Gln
Gly 1 5 10 15 Ile
Ile Gln Pro 20 60920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 609Ser Gln Gln
Gln Gln Val Gly Gln Gly Thr Leu Val Gln Gly Gln Gly 1 5
10 15 Ile Ile Gln Pro 20
61020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 610Ser Gln Gln Gln Gln Val Gly Gln Gly Ile Leu
Val Gln Gly Gln Gly 1 5 10
15 Ile Ile Gln Pro 20 61120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 611Gly Thr Leu Val Gln Gly Gln Gly Ile Ile Gln Pro Gln Gln Pro
Ala 1 5 10 15 Gln
Leu Glu Ala 20 61220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 612Gly Ser Leu
Val Gln Gly Gln Gly Ile Ile Gln Pro Gln Gln Pro Ala 1 5
10 15 Gln Leu Glu Ala 20
61320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 613Phe Gln Leu Val Gln Gly Gln Gly Ile Ile Gln
Pro Gln Gln Pro Ala 1 5 10
15 Gln Leu Glu Val 20 61420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 614Phe Gln Leu Ala Gln Gly Leu Gly Ile Ile Gln Pro Gln Gln Pro
Ala 1 5 10 15 Gln
Leu Glu Gly 20 61520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 615Ile Ile Gln
Pro Gln Gln Pro Ala Gln Leu Glu Ala Ile Arg Ser Leu 1 5
10 15 Val Leu Gln Thr 20
61620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 616Ile Ile Gln Pro Gln Gln Pro Ala Gln Leu Glu
Val Ile Arg Ser Leu 1 5 10
15 Val Leu Gln Thr 20 61720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 617Ile Ile Gln Pro Gln Gln Pro Ala Gln Leu Glu Val Ile Arg Ser
Ser 1 5 10 15 Val
Leu Gln Thr 20 61820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 618Ile Ile Gln
Pro Gln Gln Pro Ala Gln Tyr Glu Val Ile Arg Ser Leu 1 5
10 15 Val Leu Arg Thr 20
61920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 619Ile Ile Gln Pro Gln Gln Pro Ala Gln Leu Glu
Gly Ile Arg Ser Leu 1 5 10
15 Val Leu Lys Thr 20 62020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 620Gln Leu Glu Ala Ile Arg Ser Leu Val Leu Gln Thr Leu Pro Thr
Met 1 5 10 15 Cys
Asn Val Tyr 20 62120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 621Gln Leu Glu
Ala Ile Arg Ser Leu Val Leu Gln Thr Leu Pro Ser Met 1 5
10 15 Cys Asn Val Tyr 20
62220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 622Gln Leu Glu Val Ile Arg Ser Leu Val Leu Gln
Thr Leu Ala Thr Met 1 5 10
15 Cys Asn Val Tyr 20 62320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 623Gln Leu Glu Val Ile Arg Ser Ser Val Leu Gln Thr Leu Ala Thr
Met 1 5 10 15 Cys
Asn Val Tyr 20 62420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 624Gln Leu Glu
Val Ile Arg Ser Leu Val Leu Gly Thr Leu Pro Thr Met 1 5
10 15 Cys Asn Val Phe 20
62520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 625Gln Tyr Glu Val Ile Arg Ser Leu Val Leu Arg
Thr Leu Pro Asn Met 1 5 10
15 Cys Asn Val Tyr 20 62620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 626Gln Leu Glu Gly Ile Arg Ser Leu Val Leu Lys Thr Leu Pro Thr
Met 1 5 10 15 Cys
Asn Val Tyr 20 62720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 627Val Leu Gln
Thr Leu Pro Thr Met Cys Asn Val Tyr Val Pro Pro Glu 1 5
10 15 Cys Ser Ile Ile 20
62820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 628Val Leu Gln Thr Leu Pro Ser Met Cys Asn Val
Tyr Val Pro Pro Glu 1 5 10
15 Cys Ser Ile Met 20 62920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 629Val Leu Gln Thr Leu Ala Thr Met Cys Asn Val Tyr Val Pro Pro
Tyr 1 5 10 15 Cys
Ser Thr Ile 20 63020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 630Val Leu Gly
Thr Leu Pro Thr Met Cys Asn Val Phe Val Pro Pro Glu 1 5
10 15 Cys Ser Thr Thr 20
63120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 631Val Leu Arg Thr Leu Pro Asn Met Cys Asn Val
Tyr Val Arg Pro Asp 1 5 10
15 Cys Ser Thr Ile 20 63220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 632Val Leu Lys Thr Leu Pro Thr Met Cys Asn Val Tyr Val Pro Pro
Asp 1 5 10 15 Cys
Ser Thr Ile 20 63320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 633Cys Asn Val
Tyr Val Pro Pro Glu Cys Ser Ile Ile Lys Ala Pro Phe 1 5
10 15 Ser Ser Val Val 20
63420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 634Cys Asn Val Tyr Val Pro Pro Glu Cys Ser Ile
Met Arg Ala Pro Phe 1 5 10
15 Ala Ser Ile Val 20 63520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 635Cys Asn Val Tyr Val Pro Pro Tyr Cys Ser Thr Ile Arg Ala Pro
Phe 1 5 10 15 Ala
Ser Ile Val 20 63620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 636Cys Asn Val
Phe Val Pro Pro Glu Cys Ser Thr Thr Lys Ala Pro Phe 1 5
10 15 Ala Ser Ile Val 20
63720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 637Cys Asn Val Tyr Val Arg Pro Asp Cys Ser Thr
Ile Asn Ala Pro Phe 1 5 10
15 Ala Ser Ile Val 20 63820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 638Cys Asn Val Tyr Val Pro Pro Asp Cys Ser Thr Ile Asn Val Pro
Tyr 1 5 10 15 Ala
Asn Ile Asp 20 63918PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 639Cys Ser Ile
Ile Lys Ala Pro Phe Ser Ser Val Val Ala Gly Ile Gly 1 5
10 15 Gly Gln 64018PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 640Cys Ser Ile Met Arg Ala Pro Phe Ala Ser Ile Val Ala Gly Ile
Gly 1 5 10 15 Gly
Gln 64120PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 641Cys Ser Thr Ile Arg Ala Pro Phe
Ala Ser Ile Val Ala Gly Ile Gly 1 5 10
15 Gly Gln Tyr Arg 20 64218PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 642Cys Ser Thr Ile Arg Ala Pro Phe Ala Ser Ile Val Ala Ser Ile
Gly 1 5 10 15 Gly
Gln 64318PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 643Cys Ser Thr Thr Lys Ala Pro Phe
Ala Ser Ile Val Ala Asp Ile Gly 1 5 10
15 Gly Gln 64418PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 644Cys Ser Thr
Ile Asn Ala Pro Phe Ala Ser Ile Val Ala Gly Ile Ser 1 5
10 15 Gly Gln 64518PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 645Cys Ser Thr Ile Asn Val Pro Tyr Ala Asn Ile Asp Ala Gly Ile
Gly 1 5 10 15 Gly
Gln 64620PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 646Pro Gln Gln Pro Phe Pro Leu Gln
Pro Gln Gln Ser Phe Leu Trp Gln 1 5 10
15 Ser Gln Gln Pro 20 64720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 647Pro Gln Gln Ser Phe Leu Trp Gln Ser Gln Gln Pro Phe Leu Gln
Gln 1 5 10 15 Pro
Gln Gln Pro 20 64820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 648Ser Gln Gln
Pro Phe Leu Gln Gln Pro Gln Gln Pro Ser Pro Gln Pro 1 5
10 15 Gln Gln Val Val 20
64920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 649Pro Gln Gln Pro Ser Pro Gln Pro Gln Gln Val
Val Gln Ile Ile Ser 1 5 10
15 Pro Ala Thr Pro 20 65020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 650Gln Gln Val Val Gln Ile Ile Ser Pro Ala Thr Pro Thr Thr Ile
Pro 1 5 10 15 Ser
Ala Gly Lys 20 65120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 651Pro Ala Thr
Pro Thr Thr Ile Pro Ser Ala Gly Lys Pro Thr Ser Ala 1 5
10 15 Pro Phe Pro Gln 20
65220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 652Ser Ala Gly Lys Pro Thr Ser Ala Pro Phe Pro
Gln Gln Gln Gln Gln 1 5 10
15 His Gln Gln Leu 20 65320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 653Pro Phe Pro Gln Gln Gln Gln Gln His Gln Gln Leu Ala Gln Gln
Gln 1 5 10 15 Ile
Pro Val Val 20 65420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 654His Gln Gln
Leu Ala Gln Gln Gln Ile Pro Val Val Gln Pro Ser Ile 1 5
10 15 Leu Gln Gln Leu 20
65520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 655Ile Pro Val Val Gln Pro Ser Ile Leu Gln Gln
Leu Asn Pro Cys Lys 1 5 10
15 Val Phe Leu Gln 20 65620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 656Leu Gln Gln Leu Asn Pro Cys Lys Val Phe Leu Gln Gln Gln Cys
Ser 1 5 10 15 Pro
Val Ala Met 20 65720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 657Val Phe Leu
Gln Gln Gln Cys Ser Pro Val Ala Met Pro Gln Arg Leu 1 5
10 15 Ala Arg Ser Gln 20
65820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 658Pro Val Ala Met Pro Gln Arg Leu Ala Arg Ser
Gln Met Leu Gln Gln 1 5 10
15 Ser Ser Cys His 20 65920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 659Ala Arg Ser Gln Met Leu Gln Gln Ser Ser Cys His Val Met Gln
Gln 1 5 10 15 Gln
Cys Cys Gln 20 66020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 660Ser Ser Cys
His Val Met Gln Gln Gln Cys Cys Gln Gln Leu Pro Gln 1 5
10 15 Ile Pro Gln Gln 20
66120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 661Gln Cys Cys Gln Gln Leu Pro Gln Ile Pro Gln
Gln Ser Arg Tyr Gln 1 5 10
15 Ala Ile Arg Ala 20 66220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 662Pro Gln Ile Pro Gln Gln Ser Arg Tyr Glu Ala Ile Arg Ala Ile
Ile 1 5 10 15 Tyr
Ser Ile Ile 20 66320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 663Ile Pro Gln
Gln Ser Arg Tyr Gln Ala Ile Arg Ala Ile Ile Tyr Ser 1 5
10 15 Ile Ile Leu Gln 20
66420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 664Ala Ile Arg Ala Ile Ile Tyr Ser Ile Ile Leu
Gln Glu Gln Gln Gln 1 5 10
15 Val Gln Gly Ser 20 66520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 665Ile Ile Leu Gln Glu Gln Gln Gln Val Gln Gly Ser Ile Gln Ser
Gln 1 5 10 15 Gln
Gln Gln Pro 20 66620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 666Val Gln Gly
Ser Ile Gln Ser Gln Gln Gln Gln Pro Gln Gln Leu Gly 1 5
10 15 Gln Cys Val Ser 20
66720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 667Gln Gln Gln Pro Gln Gln Leu Gly Gln Cys Val
Ser Gln Pro Gln Gln 1 5 10
15 Gln Ser Gln Gln 20 66820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 668Gln Cys Val Ser Gln Pro Gln Gln Gln Ser Gln Gln Gln Leu Gly
Gln 1 5 10 15 Gln
Pro Gln Gln 20 66920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 669Gln Ser Gln
Gln Gln Leu Gly Gln Gln Pro Gln Gln Gln Gln Leu Ala 1 5
10 15 Gln Gly Thr Phe 20
67020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 670Gln Pro Gln Gln Gln Gln Leu Ala Gln Gly Thr
Phe Leu Gln Pro His 1 5 10
15 Gln Ile Ala Gln 20 67120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 671Gln Gly Thr Phe Leu Gln Pro His Gln Ile Ala Gln Leu Glu Val
Met 1 5 10 15 Thr
Ser Ile Ala 20 67220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 672Gln Ile Ala
Gln Leu Glu Val Met Thr Ser Ile Ala Leu Arg Ile Leu 1 5
10 15 Pro Thr Met Cys 20
67320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 673Thr Ser Ile Ala Leu Arg Ile Leu Pro Thr Met
Cys Ser Val Asn Val 1 5 10
15 Pro Leu Tyr Arg 20 67420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 674Pro Thr Met Cys Ser Val Asn Val Pro Leu Tyr Arg Thr Thr Thr
Ser 1 5 10 15 Val
Pro Phe Gly 20 67520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 675Pro Leu Tyr
Arg Thr Thr Thr Ser Val Pro Phe Gly Val Gly Thr Gly 1 5
10 15 Val Gly Ala Tyr 20
67620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 676Thr Ile Thr Arg Thr Phe Pro Ile Pro Thr Ile
Ser Ser Asn Asn Asn 1 5 10
15 His His Phe Arg 20 67720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 677Pro Thr Ile Ser Ser Asn Asn Asn His His Phe Arg Ser Asn Ser
Asn 1 5 10 15 His
His Phe His 20 67820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 678His His Phe
Arg Ser Asn Ser Asn His His Phe His Ser Asn Asn Asn 1 5
10 15 Gln Phe Tyr Arg 20
67920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 679His His Phe His Ser Asn Asn Asn Gln Phe Tyr
Arg Asn Asn Asn Ser 1 5 10
15 Pro Gly His Asn 20 68020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 680Gln Phe Tyr Arg Asn Asn Asn Ser Pro Gly His Asn Asn Pro Leu
Asn 1 5 10 15 Asn
Asn Asn Ser 20 68120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 681Pro Gly His
Asn Asn Pro Leu Asn Asn Asn Asn Ser Pro Asn Asn Asn 1 5
10 15 Ser Pro Ser Asn 20
68220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 682Asn Asn Asn Ser Pro Asn Asn Asn Ser Pro Ser
Asn His His Asn Asn 1 5 10
15 Ser Pro Asn Asn 20 68320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 683Ser Pro Ser Asn His His Asn Asn Ser Pro Asn Asn Asn Phe Gln
Tyr 1 5 10 15 His
Thr His Pro 20 68420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 684Ser Pro Asn
Asn Asn Phe Gln Tyr His Thr His Pro Ser Asn His Lys 1 5
10 15 Asn Leu Pro His 20
68520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 685His Thr His Pro Ser Asn His Lys Asn Leu Pro
His Thr Asn Asn Ile 1 5 10
15 Gln Gln Gln Gln 20 68620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 686Asn Leu Pro His Thr Asn Asn Ile Gln Gln Gln Gln Pro Pro Phe
Ser 1 5 10 15 Gln
Gln Gln Gln 20 68720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 687Gln Gln Gln
Gln Pro Pro Phe Ser Gln Gln Gln Gln Pro Pro Phe Ser 1 5
10 15 Gln Gln Gln Gln 20
68820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 688Gln Gln Gln Gln Pro Pro Phe Ser Gln Gln Gln
Gln Pro Val Leu Pro 1 5 10
15 Gln Gln Ser Pro 20 68920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 689Gln Gln Gln Gln Pro Val Leu Pro Gln Gln Ser Pro Phe Ser Gln
Gln 1 5 10 15 Gln
Gln Leu Val 20 69020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 690Gln Gln Ser
Pro Phe Ser Gln Gln Gln Gln Leu Val Leu Pro Pro Gln 1 5
10 15 Gln Gln Gln Gln 20
69120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 691Gln Gln Leu Val Leu Pro Pro Gln Gln Gln Gln
Gln Gln Leu Val Gln 1 5 10
15 Gln Gln Ile Pro 20 69220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 692Gln Gln Gln Gln Gln Leu Val Gln Gln Gln Ile Pro Ile Val Gln
Pro 1 5 10 15 Ser
Val Leu Gln 20 69320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 693Gln Gln Ile
Pro Ile Val Gln Pro Ser Val Leu Gln Gln Leu Asn Pro 1 5
10 15 Cys Lys Val Phe 20
69420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 694Ser Val Leu Gln Gln Leu Asn Pro Cys Lys Val
Phe Leu Gln Gln Gln 1 5 10
15 Cys Ser Pro Val 20 69520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 695Cys Lys Val Phe Leu Gln Gln Gln Cys Ser Pro Val Ala Met Pro
Gln 1 5 10 15 Arg
Leu Ala Arg 20 69620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 696Cys Ser Pro
Val Ala Met Pro Gln Arg Leu Ala Arg Ser Gln Met Trp 1 5
10 15 Gln Gln Ser Ser 20
69720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 697Arg Leu Ala Arg Ser Gln Met Trp Gln Gln Ser
Ser Cys His Val Met 1 5 10
15 Gln Gln Gln Cys 20 69820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 698Gln Gln Ser Ser Cys His Val Met Gln Gln Gln Cys Cys Gln Gln
Leu 1 5 10 15 Gln
Gln Ile Pro 20 69920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 699Gln Gln Gln
Cys Cys Gln Gln Leu Gln Gln Ile Pro Glu Gln Ser Arg 1 5
10 15 Tyr Glu Ala Ile 20
70020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 700Gln Gln Ile Pro Glu Gln Ser Arg Tyr Glu Ala
Ile Arg Ala Ile Ile 1 5 10
15 Tyr Ser Ile Ile 20 70120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 701Tyr Glu Ala Ile Arg Ala Ile Ile Tyr Ser Ile Ile Leu Gln Glu
Gln 1 5 10 15 Gln
Gln Gly Phe 20 70220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 702Tyr Ser Ile
Ile Leu Gln Glu Gln Gln Gln Gly Phe Val Gln Pro Gln 1 5
10 15 Gln Gln Gln Pro 20
70320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 703Gln Gln Gly Phe Val Gln Pro Gln Gln Gln Gln
Pro Gln Gln Ser Gly 1 5 10
15 Gln Gly Val Ser 20 70420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 704Gln Gln Gln Pro Gln Gln Ser Gly Gln Gly Val Ser Gln Ser Gln
Gln 1 5 10 15 Gln
Ser Gln Gln 20 70520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 705Gln Gly Val
Ser Gln Ser Gln Gln Gln Ser Gln Gln Gln Leu Gly Gln 1 5
10 15 Cys Ser Phe Gln 20
70620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 706Gln Ser Gln Gln Gln Leu Gly Gln Cys Ser Phe
Gln Gln Pro Gln Gln 1 5 10
15 Gln Leu Gly Gln 20 70720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 707Cys Ser Phe Gln Gln Pro Gln Gln Gln Leu Gly Gln Gln Pro Gln
Gln 1 5 10 15 Gln
Gln Gln Gln 20 70820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 708Gln Leu Gly
Gln Gln Pro Gln Gln Gln Gln Gln Gln Gln Val Leu Gln 1 5
10 15 Gly Thr Phe Leu 20
70920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 709Gln Gln Gln Gln Gln Val Leu Gln Gly Thr Phe
Leu Gln Pro His Gln 1 5 10
15 Ile Ala His Leu 20 71020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 710Gly Thr Phe Leu Gln Pro His Gln Ile Ala His Leu Glu Ala Val
Thr 1 5 10 15 Ser
Ile Ala Leu 20 71120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 711Ile Ala His
Leu Glu Ala Val Thr Ser Ile Ala Leu Arg Thr Leu Pro 1 5
10 15 Thr Met Cys Ser 20
71220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 712Ser Ile Ala Leu Arg Thr Leu Pro Thr Met Cys
Ser Val Asn Val Pro 1 5 10
15 Leu Tyr Ser Ala 20 71320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 713Thr Met Cys Ser Val Asn Val Pro Leu Tyr Ser Ala Thr Thr Ser
Val 1 5 10 15 Pro
Phe Gly Val 20 71419PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 714Leu Tyr Ser
Ala Thr Thr Ser Val Pro Phe Gly Val Gly Thr Gly Val 1 5
10 15 Gly Ala Tyr 71520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 715Ser Cys Ile Ser Gly Leu Glu Arg Pro Trp Gln Gln Gln Pro Leu
Pro 1 5 10 15 Pro
Gln Gln Ser 20 71620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 716Pro Trp Gln
Gln Gln Pro Leu Pro Pro Gln Gln Ser Phe Ser Gln Gln 1 5
10 15 Pro Pro Phe Ser 20
71720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 717Pro Gln Gln Ser Phe Ser Gln Gln Pro Pro Phe
Ser Gln Gln Gln Gln 1 5 10
15 Gln Pro Leu Pro 20 71820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 718Pro Pro Phe Ser Gln Gln Gln Gln Gln Pro Leu Pro Gln Gln Pro
Ser 1 5 10 15 Phe
Ser Gln Gln 20 71920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 719Gln Pro Leu
Pro Gln Gln Pro Ser Phe Ser Gln Gln Gln Pro Pro Phe 1 5
10 15 Ser Gln Gln Gln 20
72020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 720Phe Ser Gln Gln Gln Pro Pro Phe Ser Gln Gln
Gln Pro Ile Leu Ser 1 5 10
15 Gln Gln Pro Pro 20 72120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 721Ser Gln Gln Gln Pro Ile Leu Ser Gln Gln Pro Pro Phe Ser Gln
Gln 1 5 10 15 Gln
Gln Pro Val 20 72220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 722Ala Thr Ala
Ala Arg Glu Leu Asn Pro Ser Asn Lys Glu Leu Gln Ser 1 5
10 15 Pro Gln Gln Ser 20
72320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 723Pro Ser Asn Lys Glu Leu Gln Ser Pro Gln Gln
Ser Phe Ser Tyr Gln 1 5 10
15 Gln Gln Pro Phe 20 72420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 724Pro Gln Gln Ser Phe Ser Tyr Gln Gln Gln Pro Phe Pro Gln Gln
Pro 1 5 10 15 Tyr
Pro Gln Gln 20 72520PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 725Gln Gln Pro
Phe Pro Gln Gln Pro Tyr Pro Gln Gln Pro Tyr Pro Ser 1 5
10 15 Gln Gln Pro Tyr 20
72620PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 726Tyr Pro Gln Gln Pro Tyr Pro Ser Gln Gln Pro
Tyr Pro Ser Gln Gln 1 5 10
15 Pro Phe Pro Thr 20 72720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 727Gln Gln Pro Tyr Pro Ser Gln Gln Pro Phe Pro Thr Pro Gln Gln
Gln 1 5 10 15 Phe
Pro Glu Gln 20 72820PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 728Pro Phe Pro
Thr Pro Gln Gln Gln Phe Pro Glu Gln Ser Gln Gln Pro 1 5
10 15 Phe Thr Gln Pro 20
72920PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 729Phe Pro Glu Gln Ser Gln Gln Pro Phe Thr Gln
Pro Gln Gln Pro Thr 1 5 10
15 Pro Ile Gln Pro 20 73020PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 730Phe Thr Gln Pro Gln Gln Pro Thr Pro Ile Gln Pro Gln Gln Pro
Phe 1 5 10 15 Pro
Gln Gln Pro 20 73120PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 731Pro Ile Gln
Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Gln 1 5
10 15 Gln Pro Phe Pro 20
73220PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 732Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe
Pro Gln Pro Gln Gln 1 5 10
15 Pro Phe Pro Trp 20 73320PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 733Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Pro Trp Gln Pro Gln
Gln 1 5 10 15 Pro
Phe Pro Gln 20 73420PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 734Pro Phe Pro
Trp Gln Pro Gln Gln Pro Phe Pro Gln Thr Gln Gln Ser 1 5
10 15 Phe Pro Leu Gln 20
73520PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 735Pro Phe Pro Gln Thr Gln Gln Ser Phe Pro Leu
Gln Pro Gln Gln Pro 1 5 10
15 Phe Pro Gln Gln 20 73620PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 736Phe Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln
Pro 1 5 10 15 Phe
Pro Gln Pro 20 73720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 737Phe Pro Gln
Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Leu Pro Phe 1 5
10 15 Pro Gln Gln Ser 20
73820PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 738Phe Pro Gln Pro Gln Leu Pro Phe Pro Gln Gln
Ser Glu Gln Ile Ile 1 5 10
15 Pro Gln Gln Leu 20 73920PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 739Pro Gln Gln Ser Glu Gln Ile Ile Pro Gln Gln Leu Gln Gln Pro
Phe 1 5 10 15 Pro
Leu Gln Pro 20 74020PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 740Pro Gln Gln
Leu Gln Gln Pro Phe Pro Leu Gln Pro Gln Gln Pro Phe 1 5
10 15 Pro Gln Gln Pro 20
74120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 741Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln
Pro Gln Gln Pro Phe 1 5 10
15 Pro Gln Pro Gln 20 74220PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 742Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Ile
Pro 1 5 10 15 Val
Gln Pro Gln 20 74320PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 743Pro Gln Pro
Gln Gln Pro Ile Pro Val Gln Pro Gln Gln Ser Phe Pro 1 5
10 15 Gln Gln Ser Gln 20
74420PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 744Val Gln Pro Gln Gln Ser Phe Pro Gln Gln Ser
Gln Gln Ser Gln Gln 1 5 10
15 Pro Phe Ala Gln 20 74520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 745Gln Gln Ser Gln Gln Ser Gln Gln Pro Phe Ala Gln Pro Gln Gln
Leu 1 5 10 15 Phe
Pro Glu Leu 20 74620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 746Pro Phe Ala
Gln Pro Gln Gln Leu Phe Pro Glu Leu Gln Gln Pro Ile 1 5
10 15 Pro Gln Gln Pro 20
74720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 747Phe Pro Glu Leu Gln Gln Pro Ile Pro Gln Gln
Pro Gln Gln Pro Phe 1 5 10
15 Pro Leu Gln Pro 20 74820PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 748Pro Gln Gln Pro Gln Gln Pro Phe Pro Leu Gln Pro Gln Gln Pro
Phe 1 5 10 15 Pro
Gln Gln Pro 20 74920PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 749Pro Leu Gln
Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe 1 5
10 15 Pro Gln Gln Pro 20
75020PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 750Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln
Pro Gln Gln Ser Phe 1 5 10
15 Pro Gln Gln Pro 20 75120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 751Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Pro Gln Gln Pro
Tyr 1 5 10 15 Pro
Gln Gln Gln 20 75220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 752Pro Gln Gln
Pro Gln Gln Pro Tyr Pro Gln Gln Gln Pro Tyr Gly Ser 1 5
10 15 Ser Leu Thr Ser 20
75316PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 753Pro Gln Gln Gln Pro Tyr Gly Ser Ser Leu Thr
Ser Ile Gly Gly Gln 1 5 10
15 75420PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 754Ala Arg Gln Leu Asn Pro Ser Asp
Gln Glu Leu Gln Ser Pro Gln Gln 1 5 10
15 Leu Tyr Pro Gln 20 75520PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 755Gln Glu Leu Gln Ser Pro Gln Gln Leu Tyr Pro Gln Gln Pro Tyr
Pro 1 5 10 15 Gln
Gln Pro Tyr 20 75620PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 756Ser Arg Leu
Leu Ser Pro Arg Gly Lys Glu Leu His Thr Pro Gln Glu 1 5
10 15 Gln Phe Pro Gln 20
75720PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 757Lys Glu Leu His Thr Pro Gln Glu Gln Phe Pro
Gln Gln Gln Gln Phe 1 5 10
15 Pro Gln Pro Gln 20 75816PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 758Gln Phe Pro Gln Gln Gln Gln Phe Pro Gln Pro Gln Gln Phe Pro
Gln 1 5 10 15
7595PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 759Pro Glu Leu Pro Tyr 1 5
7604PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 760Pro Gln Leu Pro 1
76117PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 761Pro Gln Gln Pro Phe Pro Gln Pro Gln Leu Pro
Phe Pro Gln Gln Ser 1 5 10
15 Glu 76217PRTArtificial SequenceDescription of Artificial
Sequence Synthetic Barley Hordein peptide 762Gln Gln Pro Phe Pro Leu
Gln Pro Gln Leu Pro Phe Pro Gln Pro Gln 1 5
10 15 Gln 76317PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 763Gln Gln
Thr Phe Pro Gln Gln Pro Gln Leu Pro Phe Pro Gln Gln Pro 1 5
10 15 Gln 76417PRTArtificial
SequenceDescription of Artificial Sequence Synthetic Rye secalin
peptide 764Gln Gln Pro Ser Pro Gln Gln Pro Gln Leu Pro Phe Pro Gln Pro
Gln 1 5 10 15 Gln
76517PRTArtificial SequenceDescription of Artificial Sequence Synthetic
Barley Hordein peptide 765Gln Gln Pro Phe Pro Gln Gln Pro Gln Leu Pro
His Gln His Gln Phe 1 5 10
15 Pro 76617PRTArtificial SequenceDescription of Artificial
Sequence Synthetic Wheat glutenin peptide 766Leu Gln Gln Gln Pro Ile
Leu Pro Gln Leu Pro Phe Ser Gln Gln Gln 1 5
10 15 Gln 76717PRTArtificial SequenceDescription
of Artificial Sequence Synthetic Wheat glutenin peptide 767His Gly
Tyr Tyr Pro Thr Ser Pro Gln Leu Ser Gly Gln Gly Gln Arg 1 5
10 15 Pro 76817PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 768Gln Gln Cys Cys Gln Gln Leu Pro Gln Ile Pro Gln Gln Ser Arg
Tyr 1 5 10 15 Gln
76917PRTArtificial SequenceDescription of Artificial Sequence Synthetic
Wheat glutenin peptide 769Gln Gln Cys Cys Gln Gln Leu Pro Gln Ile Pro
Gln Gln Ser Arg Tyr 1 5 10
15 Glu 77017PRTArtificial SequenceDescription of Artificial
Sequence Synthetic Wheat glutenin peptide 770Gln Gln Cys Cys Arg Gln
Leu Pro Gln Ile Pro Glu Gln Ser Arg Tyr 1 5
10 15 Asp 77117PRTArtificial SequenceDescription
of Artificial Sequence Synthetic Barley Hordein peptide 771Gln Gln
Cys Cys Gln Gln Leu Pro Gln Ile Pro Glu Gln Phe Arg His 1 5
10 15 Glu 77217PRTArtificial
SequenceDescription of Artificial Sequence Synthetic Barley Hordein
peptide 772Gln Gln Cys Cys Gln Gln Leu Pro Gln Ile Ser Glu Gln Phe Arg
His 1 5 10 15 Glu
77315PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 773Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe
Pro Gln Pro Gln 1 5 10
15 77415PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 774Gln Gln Pro Gln Gln Pro Gln Gln
Pro Phe Pro Gln Pro Gln Gln 1 5 10
15 77515PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 775Gln Pro Gln Gln Pro Gln
Gln Pro Phe Pro Gln Pro Gln Gln Pro 1 5
10 15 77615PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 776Pro Gln Gln
Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe 1 5
10 15 77715PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 777Gln Gln
Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Pro 1 5
10 15 77815PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 778Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Pro Trp Gln 1
5 10 15
77915PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 779Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe
Pro Trp Gln Pro 1 5 10
15 78017PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 780Gln Leu Gln Pro Phe Pro Gln Pro
Pro Leu Pro Tyr Pro Gln Pro Gln 1 5 10
15 Ser 78117PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 781Pro Gln Pro
Gln Pro Phe Leu Pro Glu Leu Pro Tyr Pro Gln Pro Gln 1 5
10 15 Ser 78217PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 782Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Leu Gln Pro
Gln 1 5 10 15 Pro
78317PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 783Gln Leu Gln Pro Phe Pro Arg Pro Glu Leu Pro
Tyr Leu Gln Pro Gln 1 5 10
15 Pro 78417PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 784Gln Leu Gln Pro Phe Pro
Gln Pro Glu Leu Pro Tyr Ser Gln Pro Gln 1 5
10 15 Pro 78517PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 785Gln Leu
Gln Pro Leu Pro Gln Pro Glu Leu Pro Tyr Ser Gln Pro Gln 1 5
10 15 Pro 78617PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 786Gln Leu Gln Pro Ser Pro Gln Pro Glu Leu Pro Tyr Ser Gln Pro
Gln 1 5 10 15 Pro
78717PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 787Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Ser
Tyr Ser Gln Pro Gln 1 5 10
15 Pro 78817PRTArtificial SequenceDescription of Artificial
Sequence Synthetic wheat gliadin peptide 788Pro Gln Pro Gln Pro Phe
Pro Pro Glu Leu Pro Tyr Pro Gln Pro Gln 1 5
10 15 Ser 78920PRTArtificial SequenceDescription
of Artificial Sequence Synthetic wheat gliadin peptide 789Pro Gln
Gln Pro Glu Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln 1 5
10 15 Pro Phe Pro Trp
20 79020PRTArtificial SequenceDescription of Artificial Sequence
Synthetic wheat gliadin peptide 790Pro Gln Gln Pro Gln Gln Pro Glu
Gln Pro Phe Pro Gln Pro Gln Gln 1 5 10
15 Pro Phe Pro Trp 20 79120PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 791Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Glu
Gln 1 5 10 15 Pro
Phe Pro Trp 20 79220PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 792Pro Gln Gln
Pro Arg Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln 1 5
10 15 Pro Phe Pro Trp 20
79320PRTArtificial SequenceDescription of Artificial Sequence Synthetic
wheat gliadin peptide 793Pro Gln Gln Pro Gln Gln Pro Arg Gln Pro Phe
Pro Gln Pro Gln Gln 1 5 10
15 Pro Phe Pro Trp 20 79420PRTArtificial
SequenceDescription of Artificial Sequence Synthetic wheat gliadin
peptide 794Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Arg
Gln 1 5 10 15 Pro
Phe Pro Trp 20 79515PRTArtificial SequenceDescription of
Artificial Sequence Synthetic wheat gliadin peptide 795Glu Gln Pro
Phe Pro Gln Pro Glu Gln Pro Phe Pro Trp Gln Pro 1 5
10 15 79616PRTArtificial SequenceDescription
of Artificial Sequence Synthetic peptide 796Gln Leu Gln Pro Ser Pro
Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln 1 5
10 15 79717PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptide 797Gln Leu Gln Pro Phe Pro Gln
Pro Glu Leu Pro Val Pro Gln Pro Gln 1 5
10 15 Ser 79817PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptide 798Gln Leu Gln Pro Phe Pro Gln
Pro Gln Leu Phe Val Phe Gln Pro Gln 1 5
10 15 Leu 79917PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptideMOD_RES(1)..(7)Any amino
acidMOD_RES(13)..(17)Any amino acid 799Xaa Xaa Xaa Xaa Xaa Xaa Xaa Pro
Gln Leu Pro Tyr Xaa Xaa Xaa Xaa 1 5 10
15 Xaa 8005PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptideMOD_RES(5)..(5)Tyr or Phe
800Pro Gln Leu Pro Xaa 1 5 80117PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 801Phe
Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln Gln Gln Phe 1
5 10 15 Pro 80216PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 802Gln
Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Leu Pro Phe Pro Gln 1
5 10 15 80317PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 803Gln
Leu Gln Pro Phe Leu Gln Pro Glu Leu Pro Tyr Ser Gln Pro Gln 1
5 10 15 Pro 80417PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 804Gln
Pro Gln Pro Phe Pro Pro Pro Glu Leu Pro Tyr Pro Gln Thr Gln 1
5 10 15 Pro 80517PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 805Pro
Gln Pro Gln Pro Phe Pro Pro Glu Leu Pro Tyr Pro Gln Thr Gln 1
5 10 15 Pro 80617PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 806Gln
Leu Gln Pro Phe Pro Gln Pro Glu Leu Ser Tyr Ser Gln Pro Gln 1
5 10 15 Pro 80717PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 807Pro
Gln Pro Gln Pro Phe Leu Pro Glu Leu Pro Tyr Pro Gln Pro Gln 1
5 10 15 Ser 80817PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 808Pro
Gln Pro Gln Pro Phe Pro Pro Glu Leu Pro Tyr Pro Gln Pro Pro 1
5 10 15 Pro
User Contributions:
Comment about this patent or add new information about this topic: