Patent application title: CpG REDUCED FACTOR VIII VARIANTS, COMPOSITIONS AND METHODS AND USES FOR TREATMENT OF HEMOSTASIS DISORDERS
Inventors:
IPC8 Class: AC07K14755FI
USPC Class:
1 1
Class name:
Publication date: 2018-11-01
Patent application number: 20180312571
Abstract:
CpG reduced nucleic acid variants encoding FVIII protein and methods of
use thereof are disclosed. In particular embodiments, CpG reduced nucleic
acid variants encoding FVIII are expressed more efficiently by cells, are
secreted at increased levels by cells over wild-type Factor VIII
proteins, exhibit enhanced expression and/or activity over wild-type
Factor VIII proteins or are packaged more efficiently into viral vectors.Claims:
1. A nucleic acid variant encoding Factor VIII (FVIII) having a B domain
deletion, wherein the nucleic acid variant has 92% or greater identity to
SEQ ID NO:7.
2. The nucleic acid variant of claim 1, wherein the nucleic acid variant has 93% or greater sequence identity to SEQ ID NO:7.
3. The nucleic acid variant of claim 1, wherein the nucleic acid variant has 94% or greater sequence identity to SEQ ID NO:7.
4. The nucleic acid variant of claim 1, wherein the nucleic acid variant has 95% or greater sequence identity to SEQ ID NO:7.
5. The nucleic acid variant of claim 1, wherein the nucleic acid variant has 95%-100% sequence identity to SEQ ID NO:7.
6. The nucleic acid variant of claim 1, wherein the nucleic acid variant has 20 or fewer, 15 or fewer, or 10 or fewer cytosine-guanine dinucleotides (CpGs).
7. The nucleic acid variant of claim 1, wherein the nucleic acid variant has no more than 5 cytosine-guanine dinucleotides (CpGs).
9. The nucleic acid variant of claim 1, wherein the nucleic acid variant has 4, 3, 2, 1 or 0 cytosine-guanine dinucleotides (CpGs).
10. The nucleic acid variant of claim 1, wherein the nucleic acid variant encodes SEQ ID NO:25 having a deletion of one or more amino acids of the sequence SFSQNPPVLKRHQR (SEQ ID NO:29), or a deletion of the entire sequence SFSQNPPVLKRHQR.
11. The nucleic acid variant of claim 1, wherein the nucleic acid variant encodes SEQ ID NO:25.
12. A nucleic acid variant encoding Factor VIII (FVIII) having a B domain deletion (FVIII-BDD), wherein the nucleic acid variant has fewer cytosine-guanine dinucleotides (CpG) than SEQ ID NO: 19.
13. The nucleic acid variant of claim 12, wherein said FVIII-BDD is mammalian.
14. A nucleic acid variant encoding human Factor VIII having a B domain deletion (hFVIII-BDD), wherein the nucleic acid variant has no more than 2 cytosine-guanine dinucleotides (CpGs).
15. The nucleic acid variant of claim 14, wherein the nucleic acid variant has 1 cytosine-guanine dinucleotide (CpG).
16. The nucleic acid variant of claim 14, wherein the nucleic acid variant has no cytosine-guanine dinucleotides (CpGs).
17. The nucleic acid variant of any of claims 1-16, wherein the encoded FVIII-BDD or hFVIII-BDD is identical to hFVIII-BDD encoded by SEQ ID NO: 19.
18. The nucleic acid variant of any of claims 1-17, wherein the nucleic acid variant is distinct from FVIII-V3 (SEQ ID NO:20) and CO3 (SEQ ID NO:21).
19. The nucleic acid variant of any of claims 1-18, wherein the nucleic acid variant encodes SEQ ID NO:25 having a deletion of one or more amino acids of the sequence SFSQNPPVLKRHQR (SEQ ID NO:29), or a deletion of the entire sequence SFSQNPPVLKRHQR.
20. The nucleic acid variant of any of claims 1-18, wherein the nucleic acid variant encodes SEQ ID NO:25.
21. A vector comprising the nucleic acid variant of any of claims 1-20.
22. An expression vector comprising the nucleic acid variant of any of claims 1-20.
23. The expression vector of claim 22, selected from the group consisting of an adenovirus-associated virus (AAV) vector, a retroviral vector, an adenoviral vector, a plasmid, or a lentiviral vector.
24. The expression vector of claim 23, wherein said AAV vector comprises an AAV serotype or an AAV pseudotype, wherein said AAV pseudotype comprise an AAV capsid serotype different from an ITR serotype.
25. The expression vector of 23 or 24, further comprising an intron, an expression control element, one or more adeno-associated virus (AAV) inverted terminal repeats (ITRs) and/or a filler polynucleotide sequence.
26. The expression vector of claim 25, wherein the intron is within or flanks the nucleic acid variant.
27. The expression vector of claim 25, wherein the expression control element is operably linked to the nucleic acid variant.
28. The expression vector of claim 25, wherein the AAV ITR(s) flanks the 5' or 3' terminus of the nucleic acid variant.
29. The expression vector of claim 25, wherein the filler polynucleotide sequence flanks the 5' or 3'terminus of the nucleic acid variant.
30. The expression vector of any of claims claim 25-29, wherein the intron, expression control element, one or more adeno-associated virus (AAV) inverted terminal repeats (ITRs) and/or a filler polynucleotide sequence has been modified to have reduced cytosine-guanine dinucleotides (CpGs).
31. The expression vector of any of claims claim 25-29, wherein the intron, expression control element, one or more adeno-associated virus (AAV) inverted terminal repeats (ITRs) and/or a filler polynucleotide sequence has been modified to have 20 or fewer, 15 or fewer, 10 or fewer, 5 or fewer or 0 cytosine-guanine dinucleotides (CpGs).
32. The expression vector of any of claims 25, 27, 30 and 31, wherein the expression control element comprises a constitutive or regulatable control element, or a tissue-specific expression control element or promoter.
33. The expression vector of any of claims 25, 27, 30 and 31, wherein the expression control element comprises an element that confers expression in liver.
34. The expression vector of any of claims 25, 27, 30 and 31, wherein the expression control element comprises a TTR promoter or mutant TTR promoter.
35. The expression vector of claim 34, wherein the mutant TTR promoter comprises SEQ ID NO:22.
36. The expression vector of any of claims claim 25-35, wherein the ITR comprises one or more ITRs of any of: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, Rh10, Rh74 or AAV-2i8 AAV serotypes, or a combination thereof.
37. The expression vector of any of claims claim 24-30, wherein the vector comprises an ITR, a promoter, a polyA signal and/or intron sequence set forth in SEQ ID NO:23.
38. An AAV vector comprising the nucleic acid variant of any of claims 1-20 or the expression vector of any of claims 25-37.
39. The AAV vector of claim 38, wherein the AAV vector comprises a modified or variant AAV VP1, VP2 and/or VP3 capsid sequence, or wild-type AAV VP1, VP2 and/or VP3 capsid sequence.
40. The AAV vector of claim 38, wherein the AAV vector comprises a modified or variant AAV VP1, VP2 and/or VP3 capsid sequence having 90% or more identity to AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, Rh10, Rh74 or AAV-2i8 VP1, VP2 and/or VP3 sequences.
41. The AAV vector of claim 38, wherein the AAV vector comprises a VP1, VP2 or VP3 capsid sequence selected from any of: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, Rh10, Rh74 or AAV-2i8 AAV serotypes.
42. The AAV vector of claim 38, wherein the AAV vector comprises a capsid having 90% or more sequence identity to LK03 capsid (SEQ ID NO:27).
43. The AAV vector of claim 38, wherein the AAV vector comprises a capsid having 90% or more sequence identity to SPK capsid (SEQ ID NO:28).
44. The AAV vector of claim 38, wherein the AAV vector comprises LK03 capsid (SEQ ID NO:27).
45. The AAV vector of claim 38, wherein the AAV vector comprises SPK capsid (SEQ ID NO:28).
46. The AAV vector of claim 38, wherein the AAV vector comprises the nucleic acid variant SEQ ID NO:7 and LK03 capsid sequence (SEQ ID NO:27).
47. The AAV vector of claim 38, wherein the AAV vector comprises the nucleic acid variant SEQ ID NO:7 and SPK capsid (SEQ ID NO:28).
48. The AAV vector of claim 38, wherein the AAV vector comprises the nucleic acid variant and one or more of a mutated TTR promoter (TTRmut), synthetic intron, poly A and ITR in SEQ ID NO:23.
49. The AAV vector of claim 38, wherein the AAV vector comprises the nucleic acid variant and one or more of a mutated TTR promoter (TTRmut), synthetic intron, poly A and ITR in SEQ ID NO:23 and LK03 capsid sequence (SEQ ID NO:27) or SPK capsid (SEQ ID NO:28).
50. A host cell comprising the nucleic acid variant of any of claims 1-20, or the vector or expression vector of any of claims 21-37.
51. The host cell of claim 50, said host cells expressing the FVIII encoded by said nucleic acid variant.
52. A host cell comprising the AAV vector of any of claims 38-49.
53. The host cell of claim 52, said host cells producing the AAV vector of any of claims 38-49.
54. A pharmaceutical composition comprising the nucleic acid variant of any of claims 1-20, the vector or expression vector of any of claims 21-37, or the AAV vector of any of claims 38-49 in a biologically compatible carrier or excipient.
55. The nucleic acid variant of any claims 1-20, the vector or expression vector of any of claims 21-37, or the AAV vector of any of claims 38-49 encapsulated in a liposome or mixed with phospholipids or micelles.
56. The pharmaceutical composition of claim 54 or 55, further comprising empty capsid AAV.
57. The pharmaceutical composition of claim 54 or 55, further comprising empty capsid of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11 and/or AAV-Rh74 serotype.
58. The pharmaceutical composition of claim 54 or 55, further comprising empty capsid AAV of the same serotype as the AAV vector administered.
59. The pharmaceutical composition of claim 54 or 55, wherein the empty capsid is LK03 capsid (SEQ ID NO:27) or SPK capsid (SEQ ID NO:28).
60. The pharmaceutical composition of any of claims 56-59, wherein the ratio of said empty capsids to said AAV vector is about 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
61. A method for delivering or transferring a nucleic acid sequence into a mammal or a mammalian cell, comprising administering or contacting the nucleic acid variant of any of claims 1-20, vector or expression vector of any of claims 21-37, or the AAV vector of any of claims 38-49 to said mammal or mammalian cell, thereby delivering or transferring the nucleic acid sequence into the mammal or mammalian cell.
62. A method of treating a mammal in need of Factor VIII, comprising: (a) providing the nucleic acid variant of any of claims 1-20, vector or expression vector of any of claims 21-37, or the AAV vector of any of claims 38-49; and (b) administering an amount of the nucleic acid variant of any of claims 1-20, vector or expression vector of any of claims 21-37, or the AAV vector of any of claims 38-49 to the mammal wherein said Factor VIII is expressed in the mammal.
63. The method of claim 61 or 62, wherein said Factor VIII encoded by the nucleic acid variant is expressed in a cell, tissue or organ of said mammal.
64. The method of claim 63, wherein, the cell comprises a secretory cell.
65. The method of claim 63, wherein the cell comprises an endocrine cell or an endothelial cell.
66. The method of claim 63, wherein the cell comprises a hepatocyte, a sinusoidal endothelial cell, a megakaryocyte, a platelet or hematopoetic stem cell.
67. The method of claim 63, wherein the tissue or organ of said mammal comprises liver.
68. The method of any of claims 61-67, wherein the mammal produces an insufficient amount of Factor VIII protein, or a defective or aberrant Factor VIII protein.
69. The method of any of claims 61-67, wherein the mammal has hemophilia A.
70. The method of any of claims 61-67, wherein the Factor VIII encoded by the nucleic acid variant is expressed at levels having a beneficial or therapeutic effect on the mammal.
71. A method for treatment of a hemostasis related disorder in a patient in need thereof comprising administration of a therapeutically effective amount of the nucleic acid variant of any of claims 1-20, vector or expression vector of any of claims 21-37, or the AAV vector of any of claims 38-49 in a biologically acceptable carrier to the patient.
72. The method of claims 61, 62 or 71, wherein said mammal or said patient has a disorder selected from the group consisting of hemophilia A, von Willebrand diseases and bleeding associated with trauma, injury, thrombosis, thrombocytopenia, stroke, coagulopathy, disseminated intravascular coagulation (DIC) and over-anticoagulation treatment disorders.
73. The method of any of claims 61-72, wherein the nucleic acid variant of any of claims 1-20, vector or expression vector of any of claims 21-37, or the AAV vector of any of claims 38-49 is delivered to said mammal or said patient intravenously, intraarterially, intramuscularly, subcutaneously, intra-cavity, or by intubation, or via catheter.
74. The method of any of claims 61-72, wherein FVIII is expressed at levels without substantially increasing risk of thrombosis.
75. The method of claim 74, wherein said thrombosis risk is determined by measuring fibrin degradation products.
76. The method of any of claims 61-72, wherein FVIII is expressed at levels greater than 1% of the levels of FVIII found in a subject that does not have hemophilia A.
77. The method of any of claims 61-72, wherein FVIII is expressed at levels greater than 3% of the levels of FVIII found in a subject that does not have hemophilia A.
78. The method of any of claims 61-72, wherein activity of FVIII is detectable for at least 1, 2, 3 or 4 weeks, or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 months, or at least 1 year.
79. The method of any of claims 61-72, wherein FVIII is expressed at levels greater than 1% or 3% of the levels of FVIII found in a subject that does not have hemophilia A for at least 1, 2, 3 or 4 weeks, or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 months, or at least 1 year.
80. The method of any of claims 61-72, wherein FVIII is expressed at levels having a therapeutic effect for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 days, weeks or months.
81. The method of any of claims 61-72, wherein said FVIII is present in the mammal or patient at levels of about 20% FVIII activity or greater than 20% activity for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 continuous days, weeks or months.
82. The method of any of claims 61-72, wherein said FVIII is expressed at levels at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36.sup.%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, or 50% of normal FVIII levels.
83. The method of any of claims 61-72, wherein the AAV vector is administered at a dose of less than 1.times.10.sup.12 vector genomes per kilogram (vg/kg) of the mammal or patient, and said FVIII is produced in the mammal or patient at levels of about 20% activity or greater than 20% activity for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 continuous days, weeks or months
84. The method of any of claims 61-72, wherein the AAV vector is administered at a dose of about 5.times.10.sup.11 vector genomes per kilogram (vg/kg) of the mammal or patient, and said FVIII is produced in the mammal or patient at levels of about 20% activity or greater than 20% activity for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 continuous days, weeks or months.
85. The method of any of claims 61-84, wherein said mammal or said patient is human.
86. The method of any of claims 61-85, wherein said mammal, said patient or said human is sero-positive or sero-negative for AAV.
87. The method of any of claims 61-86, further comprising administering AAV empty capsid to said mammal or said patient.
88. The method of any of claims 61-86, further comprising administering empty capsid of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11 and/or AAV-Rh74 serotype.
89. The method of any of claims 61-86, further comprising administering empty capsid AAV of the same serotype as the AAV vector administered.
90. The method of claim 89, wherein the empty capsid is LK03 capsid (SEQ ID NO:27) or SPK capsid (SEQ ID NO:28).
91. The method of any of claims 87-90, wherein the ratio of said empty capsids to said AAV vector is about 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
92. The method of any of claims 61-91, further comprising administering an immunosuppressive agent.
93. The method of any of claims 61-91, further comprising administering an immunosuppressive agent after the AAV vector is administered.
94. The method of any of claims 61-91, further comprising administering an immunosuppressive agent from a time period within 1 hour to up to 45 days after the AAV vector is administered.
95. The method of any of claims 92-94, wherein the immunosuppressive agent comprises a steroid, cyclosporine (e.g., cyclosporine A), mycophenolate, Rituximab or a derivative thereof.
96. The method of any of claims 61-95, wherein the AAV vector is administered in a range from about 1.times.10.sup.8 to about 1.times.10.sup.14 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
97. The method of any of claims 61-95, wherein the AAV vector is administered in a range from about 1.times.10.sup.9 to about 1.times.10.sup.13 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
98. The method of any of claims 61-95, wherein the AAV vector is administered in a range from about 1.times.10.sup.10 to about 1.times.10.sup.12 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
99. The method of any of claims 61-95, wherein the AAV vector is administered in a range from about 1.times.10.sup.11 to about 1.times.10.sup.12 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
100. The method of any of claims 61-95, wherein the AAV vector is administered in a range from about 1.times.10.sup.12 to about 1.times.10.sup.13 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
101. The method of any of claims 61-95, wherein the AAV vector is administered in a range from about 1.times.10.sup.13 to about 1.times.10.sup.14 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
102. The method of any of claims 61-95, wherein the AAV vector is administered in a range from about 5.times.10.sup.11 to about 1.times.10.sup.12 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
103. The method of any of claims 61-95, wherein the AAV vector is administered at a dose of about 5.times.10.sup.11 vector genomes per kilogram (vg/kg) of the weight of the mammal or patient.
104. The method of any of claims 61-103, further comprising analyzing or monitoring the mammal for the presence or amount of AAV antibodies, an immune response against AAV, FVIII antibodies, an immune response against FVIII, FVIII amounts, FVIII activity level, amounts or levels of one or more liver enzymes or frequency, and/or severity or duration of bleeding episodes.
105. A method of producing FVIII protein comprising expressing in a cell the nucleic acid variant as claimed in any of claims 1-20, or the vector or expression vector of any of claims 21-37, and recovering said FVIII protein produced by the cells.
106. The method of claim 105, further comprising purifying or isolating said FVIII protein produced by the cells.
Description:
RELATED APPLICATIONS
[0001] This patent application claims the benefit of U.S. patent application No. 62/249,001, filed Oct. 30, 2015, application No. 62/331,872, filed May 4, 2016, application No. 62/349,532, filed Jun. 13, 2016, and application No. 62/357,874, filed Jul. 1, 2016, all of which applications are expressly incorporated herein by reference in their entirety.
FIELD OF THE INVENTION
[0002] This invention relates to the fields of recombinant coagulation factor production and the treatment of medical disorders associated with aberrant hemostasis. More particularly, the invention provides nucleic acid variants (sequences) encoding Factor VIII (FVIII) protein, the variants optionally provide increased transcription and/or expression, and/or activity over wild-type FVIII proteins.
INTRODUCTION
[0003] Several publications and patent documents are cited throughout the specification in order to describe the state of the art to which this invention pertains. Each of these citations is incorporated herein by reference as though set forth in full.
[0004] Hemophilia is an X-linked bleeding disorder present in 1 in 5,000 males worldwide. Therapies aimed at increasing clotting factor levels just above 1% of normal are associated with substantial improvement of the severe disease phenotype. Recent clinical trials for AAV-mediated gene transfer for hemophilia B (HB) have demonstrated sustained long-term expression of therapeutic levels of factor IX (FIX) but established that the AAV vector dose may be limiting due to anti-AAV immune responses to the AAV capsid. While these data relate the hemophilia B, 80% of all hemophilia is due to FVIII deficiency, hemophilia A (HA).
[0005] Current treatment for this disease is protein replacement therapy that requires frequent infusion of the Factor VIII protein. There is an immediate need to achieve sustained therapeutic levels of Factor VIII expression so that patients no longer require such frequent protein treatments. Indeed, continuous Factor VIII expression would prevent bleeding episodes and may ensure that immune tolerance to the protein is established.
[0006] In summary, gene therapy for HA presents 3 distinct challenges: (1) intrinsic properties of human FVIII (hFVIII) make it difficult to express compared to other proteins of similar size (2) the large size of the FVIII cDNA and sequence specific effects are correlated with rearrangements which hamper AAV production and (3) high rates of anti-FVIII antibody (inhibitors) formation in response to protein therapy that occurs in 25-30% of severe (<1% FVIII) HA patients.
SUMMARY
[0007] In accordance with the invention, cytosine-guanine dinucleotide (CpG) reduced nucleic acid variants encoding Factor VIII (FVIII) protein are provided. Such CpG reduced nucleic acid variants are distinct from wild-type nucleic acid encoding FVIII and may encode, for example, human FVIII protein, optionally lacking, in whole or in part, the FVIII B domain. Such CpG reduced nucleic acid variants include variants that exhibit increased expression (e.g., 1-5 fold increased expression) compared to codon-optimized FVIII nucleic acids such as FVIII-CO3 (SEQ ID NO:21), when transferred into cells, leading to increased FVIII protein secretion and therefore increased activity.
[0008] In certain embodiments, CpG reduced nucleic acid variants that encode FVIII, with or without deletion of, in whole or in part, the FVIII B domain, can provide for increased expression of FVIII, increased production of FVIII protein in a mammal, as well as provide increased efficacy in the context of gene transfer by increased circulating levels of FVIII protein, and achieving hemostasis for beneficial therapeutic outcomes.
[0009] In certain embodiments, a nucleic acid variant encoding FVIII has a reduced CpG content compared to wild-type nucleic acid encoding FVIII. In certain embodiments, a nucleic acid variant has at least 10 fewer CpGs than wild-type nucleic acid encoding FVIII (SEQ ID NO: 19). In certain embodiments, a nucleic acid variant has no more than 4 CpGs; has no more than 3 CpGs; has no more than 2 CpGs; or has no more than 1 CpG. In certain embodiments, a nucleic acid variant has at most 4 CpGs; 3 CpGs; 2 CpGs; or 1 CpG. In certain embodiments, a nucleic acid variant has no CpGs.
[0010] In certain embodiments, a nucleic acid variant encoding FVIII has a reduced CpG content compared to wild-type nucleic acid encoding FVIII, and such CpG reduced nucleic acid variants have 90% or greater sequence identity to any of SEQ ID NOs: 1-18. In certain embodiments, CpG reduced nucleic acid variants have 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or greater sequence identity to any of SEQ ID NOs:1-18. In certain embodiments, CpG reduced nucleic acid variants have 90-95% sequence identity to any of SEQ ID NOs: 1-18. In certain embodiments, CpG reduced nucleic acid variants have 95%-100% sequence identity to any of SEQ ID NOs: 1-18. In certain embodiments, FVIII encoding CpG reduced nucleic acid variants are set forth in any of SEQ ID NOs: 1-18.
[0011] In certain embodiments, CpG reduced nucleic acid variants are distinct from FVIIIvariant V3 (SEQ ID NO:20) and/or are distinct from FVIII variant CO3 (SEQ ID NO:21).
[0012] In certain embodiments, a CpG reduced nucleic acid variants encoding FVIII protein provides for greater expression and/or exhibits superior biological activity as compared to wild type FVIII or as compared to wild type FVIII comprising a B domain deletion (e.g., as determined by a plasma levels or a clotting assay or reduced bleeding in a FVIII assay or FVIII deficiency model).
[0013] In certain embodiments, CpG reduced nucleic acid variants encoding FVIII protein are at least 75% identical to wild type human FVIII nucleic acid or wild type human FVIII nucleic acid comprising a B domain deletion. In certain embodiments, CpG reduced nucleic acid variants encoding FVIII protein are about 75-95% identical (e.g., about 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95% identical) to wild type human FVIII nucleic acid or wild type human FVIII nucleic acid comprising a B domain deletion.
[0014] In certain embodiments, CpG reduced nucleic acid variants encoding FVIII protein are mammalian, such as human. Such mammalian CpG reduced nucleic acid variants encoding FVIII protein include human forms, which may be based upon human wild type FVIII or human wild type FVIII comprising a B domain deletion.
[0015] In accordance with the invention, also provided are vectors and expression vectors that include CpG reduced nucleic acid variants encoding FVIII protein as set forth herein. In particular embodiments, a vector or expression vector comprises an adenovirus-associated virus (AAV) vector, a retroviral vector, an adenoviral vector, a plasmid, or a lentiviral vector. In certain embodiments, an AAV vector comprises an AAV serotype or an AAV pseudotype, such as AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, Rh10, Rh74 or AAV-2i8 AAV. In certain embodiments, an expression vector includes any of SEQ ID Nos: 1-18, or comprises SEQ ID NO: 23 or 24.
[0016] In certain embodiments, an expression control element comprises a constitutive or regulatable control element, or a tissue-specific expression control element or promoter. In certain embodiments, an expression control element comprises an element that confers expression in liver. In certain embodiments, an expression control element comprises a TTR promoter or mutant TTR promoter, such as SEQ ID NO:22. In further particular aspects, an expression control element comprises a promoter set forth in PCT publication WO 2016/168728 (U.S. Ser. No. 62/148,696; 62/202,133; and 62/212,634), which are incorporated herein by reference in their entirety.
[0017] In accordance with the invention, further provided are virus vectors that include a CpG reduced nucleic acid variant encoding FVIII protein, or vectors or expression vectors comprising CpG reduced nucleic acid variant encoding FVIII protein. In particular embodiments, a virus vector comprises an AAV vector, a retroviral vector, an adenoviral vector, a plasmid, or a lentiviral vector.
[0018] In certain embodiments, an AAV vector comprises an AAV serotype or an AAV pseudotype comprising an AAV capsid serotype different from an ITR serotype. In additional particular aspects, an AAV vector comprises a VP1, VP2 and/or VP3 capsid sequence having 75% or more sequence identity (e.g., 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, etc.) to any of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, Rh10, Rh74 or AAV-2i8 AAV serotypes.
[0019] Expression vectors can include additional components or elements. In particular embodiments, an expression vector such as AAV vector further includes an intron, an expression control element, one or more AAV inverted terminal repeats (ITRs) (e.g., any of: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, Rh10, Rh74 or AAV-2i8 AAV serotypes, or a combination thereof), a filler polynucleotide sequence and/or poly A signal. In certain embodiments, an intron is within or flanks a CpG reduced nucleic acid variant encoding FVIII, and/or an expression control element is operably linked to the CpG reduced nucleic acid variant encoding FVIII, and/or an AAV ITR(s) flanks the 5' or 3' terminus of the CpG reduced nucleic acid variant encoding FVIII, and/or a filler polynucleotide sequence flanks the 5' or 3'terminus of the CpG reduced nucleic acid variant encoding FVIII.
[0020] In particular embodiments, an expression control element comprises a constitutive or regulatable control element, or a tissue-specific expression control element or promoter. In certain embodiments, an expression control element comprises an element that confers expression in liver (e.g., a TTR promoter or mutant TTR promoter).
[0021] In accordance with the invention, additionally provided are host cells that include CpG reduced nucleic acid variants encoding FVIII protein as set forth herein. In particular embodiments, a host cell includes a CpG reduced nucleic acid variant encoding FVIII protein or an expression vector comprising a CpG reduced nucleic acid variant encoding FVIII protein. In certain embodiments, such host cells produce FVIII protein encoded by the nucleic acid variants and FVIII protein produced is recovered. Such FVIII protein produced by the cells, optionally isolated and/or purified, can be administered to a subject.
[0022] In accordance with the invention, yet additionally provided are compositions comprising CpG reduced nucleic acid variant encoding FVIII, vectors and expression vectors set forth herein. In particular embodiments, pharmaceutical compositions include a vector, an expression vector, or a virus or AAV vector, in a biologically compatible carrier or excipient. Such pharmaceutical compositions optionally include empty capsid AAV (e.g., lack vector genome comprising FVIII encoding nucleic acid variant). In additional particular embodiments, CpG reduced nucleic acid variant encoding FVIII protein, vectors, expression vectors, or virus or AAV vectors are encapsulated in a liposome or mixed with phospholipids or micelles.
[0023] In accordance with the invention, still further provided are methods for delivering or transferring CpG reduced nucleic acid variant encoding FVIII protein into a mammal or a mammalian cell. In one embodiment, a method includes administering or contacting a CpG reduced nucleic acid variant encoding FVIII, a vector comprising a CpG reduced nucleic acid variant encoding FVIII protein, an expression vector comprising a CpG reduced nucleic acid variant encoding FVIII protein, or a virus or AAV vector comprising a CpG reduced nucleic acid variant encoding FVIII protein to a mammal or mammalian cell, thereby delivering or transferring the nucleic acid sequence into the mammal or mammalian cell. Such methods introduce a CpG reduced nucleic acid variant encoding FVIII protein into a mammalian cell in culture or in a subject (e.g., a patient).
[0024] Methods of the invention also include treating mammalian subjects (e.g., patients) such as humans in need of FVIII (the human produces an insufficient amount of FVIII protein, or a defective or aberrant FVIII protein). In one embodiment, a method of treating a mammal in need of FVIII, includes: providing a CpG reduced nucleic acid variant encoding FVIII, or a vector comprising a CpG reduced nucleic acid variant encoding FVIII; or an expression vector comprising CpG reduced nucleic acid variant encoding FVIII, or a virus or AAV vector comprising a CpG reduced nucleic acid variant encoding FVIII; and administering an amount of the CpG reduced nucleic acid variant encoding FVIII, or a vector comprising a CpG reduced nucleic acid variant encoding FVIII, or an expression vector comprising a CpG reduced nucleic acid variant encoding FVIII, or a virus or AAV vector comprising a CpG reduced nucleic acid variant encoding FVIII to the mammalian subject such that FVIII encoded by the nucleic acid variant is expressed in the mammalian subject.
[0025] In another embodiment, a method for treatment of a hemostasis related disorder in a patient in need thereof (e.g., the patient produces an insufficient amount of FVIII protein, or a defective or aberrant FVIII protein) includes administration of a therapeutically effective amount of a CpG reduced nucleic acid variant encoding FVIII, or a vector comprising a CpG reduced nucleic acid variant encoding FVIII, or an expression vector comprising a CpG reduced nucleic acid variant encoding FVIII, or a virus or AAV vector comprising a CpG reduced nucleic acid variant encoding FVIII in a biologically acceptable carrier to the patient.
[0026] In certain embodiments of the inventive methods, FVIII is expressed at levels having a beneficial or therapeutic effect on the mammal; and/or FVIII is expressed in a cell, tissue or organ of the mammal. Such embodiments include introduction of a CpG reduced nucleic acid variant encoding FVIII into a tissue or organ such as liver. Such embodiments also include introduction of a CpG reduced nucleic acid variant encoding FVIII into a secretory cell. Such embodiments further include introduction of a CpG reduced nucleic acid variant encoding FVIII into an endocrine cell or an endothelial cell. Such embodiments additionally include introduction of a CpG reduced nucleic acid variant encoding FVIII into an hepatocyte, a sinusoidal endothelial cell, a megakaryocyte, a platelet or hematopoetic stem cell.
[0027] Candidate subjects (e.g., a patient) and mammals (e.g., humans) for administration (e.g., delivery) of a CpG reduced nucleic acid variant encoding FVIII, or a vector comprising a CpG reduced nucleic acid variant encoding FVIII, or an expression vector comprising a CpG reduced nucleic acid variant encoding FVIII, or a virus or AAV vector comprising a CpG reduced nucleic acid variant encoding FVIII include those having or those at risk of having a disorder such as: hemophilia A, von Willebrand diseases and bleeding associated with trauma, injury, thrombosis, thrombocytopenia, stroke, coagulopathy, disseminated intravascular coagulation (DIC) or over-anticoagulation treatment disorder.
[0028] Candidate subjects (e.g., a patient) and mammals (e.g., humans) for administration (e.g., delivery) of a CpG reduced nucleic acid variant encoding FVIII, or a vector comprising a CpG reduced nucleic acid variant encoding FVIII, or an expression vector comprising CpG reduced nucleic acid variant encoding FVIII, or a virus or AAV vector comprising a CpG reduced nucleic acid variant encoding FVIII include those or sero-negative for AAV antibodies, as well as those having or those at risk of developing AAV antibodies. Such subjects (e.g., a patient) and mammals (e.g., humans) may be sero-negative or sero-positive for an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV-Rh10 or AAV-Rh74 serotype.
[0029] Compositions and methods of the invention therefore further include administering empty capsid AAV to said mammal or said patient. In particular embodiments, empty capsid of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV-12, AAV-Rh10 and/or AAV-Rh74 serotype is further administered to the mammal or patient.
[0030] Methods of administration (e.g., delivery) in accordance with the invention include any mode of contact or delivery, ex vivo or in vivo. In particular embodiments administration (e.g., delivery) is: intravenously, intraarterially, intramuscularly, subcutaneously, intra-cavity, intubation, or via catheter.
[0031] The invention also provide methods for testing CpG reduced nucleic acid variants encoding FVIII in small and large animal models that are tolerant to human FVIII in order to assess dosing and monitor immunogenicity of the variants. Use of animal models provide a setting that allows assessment of humans currently receiving protein replacement therapy with hFVIII-BDD without evidence of an anti-hFVIII antibody response who are likely to develop an immune response to such variants.
DESCRIPTION OF DRAWINGS
[0032] FIG. 1 shows human FVIII (hFVIII) levels 24 hour following hydrodynamic tail vein (HTV) injection of 50 .mu.g of plasmid, for 18 different clones (X01-X18 corresponding to SEQ ID Nos: 1-18, respectively) and FVIII-CO3 (SEQ ID NO:21).
[0033] FIGS. 2A-2C show FVIII levels in hemophilia A/CD4.sup.-/- mice after AAV vector administration of FVIII (A) CO3 (SEQ ID NO:21), X09 (SEQ ID NO:9), X12 (SEQ ID NO: 12) and X16 (SEQ ID NO: 16); (B) CO3 (SEQ ID NO:21), X01 (SEQ ID NO: 1) and X11 (SEQ ID NO: 11); or (C) CO3 (SEQ ID NO:21), X07 (SEQ ID NO:7) and X10 (SEQ ID NO: 10).
[0034] FIGS. 3A-3B show levels of hFVIII antigen in ng/ml (B) or % total antigen (C) in plasma of NOD/SCID mice following intravenous administration of either vehicle (circle), 4.times.10.sup.10 (square), 8.times.10.sup.10 (triangle), or 1.6.times.10.sup.11 vg/mouse (inverted triangle) of AAV-SPK-8005-hFVIII over the course of 87 days. Lines represent hFVIII averages.+-.SD in each cohort. Human FVIII plasma levels were assayed by ELISA and ng/ml FVIII was converted to % normal FVIII levels by assuming 150 ng/ml is equivalent to 100% activity.
[0035] FIG. 3C shows levels of D-dimers in plasma of NOD/SCID mice following intravenous administration of either vehicle, 4.times.10.sup.10, 8.times.10.sup.10 or 1.6.times.10.sup.11 vg/mouse of AAV-SPK-8005-hFVIII as illustrated, left to right at each timepoint, x-axis. Bars represent averages.+-.SD of mice in each cohort. D-dimer levels were assayed by ELISA.
[0036] FIG. 4 shows NHP Study design.
[0037] FIGS. 5A-5D show hFVIII antigen levels in NHPs following intravenous administration of either 2.times.10.sup.12 (A), 5.times.10.sup.12 (B) or 1.times.10.sup.13 vg/kg (C) of AAV-SPK-8005. Lines represent individual animals. Human FVIII plasma levels were assayed by ELISA and represent repeated measurements, obtained by serial bleeding, on the same group of animals during the course of the study (n=2-3 animals per cohort). Human FVIII levels measured in vehicle-treated animals are shown in open squares in all three graphs. .epsilon.=Development of inhibitors against FVIII.
[0038] FIGS. 6A-6C show ALT levels in NHPs, at 2.times.10.sup.12 (A), 5.times.10.sup.12 (B) or 1.times.10.sup.13 vg/kg (C) of AAV-SPK-8005.
[0039] FIGS. 7A-7C show D-Dimer levels in NHPs. D-dimer antigen concentration in plasma of NHPs following intravenous administration of either 2.times.10.sup.12 (A), 5.times.10.sup.12 (B) or 1.times.10.sup.13 vg/kg (C) of AAV-SPK-8005. The dotted line indicates 500 ng/ml, the upper limit of normal for D-dimers in humans.
[0040] FIG. 8 shows a data summary of FVIII levels in the three doses of AAV-SPK-8005.
[0041] FIGS. 9A-9D show levels of hFVIII in plasma of cynomolgus macaques following intravenous administration of either 2.times.10.sup.12 (A), 6.times.10.sup.12 (B) or 2.times.10.sup.13 (vg/kg) (C) of AAV-SPK-8011 (LK03 capsid)-hFVIII. Lines represent individual animals. hFVIII plasma levels were assayed by ELISA and represent repeated measurements, obtained by serial bleeding, on the same group of animals during the course of the study (n=3 animals per cohort). Human FVIII levels measured in vehicle-treated animals are shown in open squares (n=2). .epsilon.=Time when development of inhibitors against FVIII was detected in each individual animal.
[0042] FIG. 10 shows a comparison of FVIII levels achieved with AAV-SPK-8011 (LK03 capsid)-hFVIII to the reported levels of FVIII delivered by way of AAV vectors with AAV5 and AAV8 capsids. AAV5: http://www.biomarin.com/pdf/BioMarin_R&D_Day_4_20_2016.pdf, slide 16. AAV8: McIntosh J et al. Blood 2013; 121(17):3335-44.
[0043] FIG. 11 shows AAV-SPK (SEQ ID NO:28) and AAV-LK03 (SEQ ID NO:27) tissue biodistribution in non-human primates, predominanyl in kidney, spleen and liver (3.sup.rd bar for each tissue).
[0044] FIG. 12 shows hepatic and splenic FVIII expression after systemic administration of AAV-SPK-8005 into mice.
[0045] FIG. 13 shows transduction efficiency of the AAV-LK03 capsid analyzed in vitro. X-axis, cynomolgus (left vertical bar), human (right vertical bar).
[0046] FIGS. 14A-14B show plasma concentration of hFIX in rabbits after AAV administration. Rabbits received intravenous injection of hFIX vectors AAV-SPK or AAV-LK03 at doses of (A) 1.times.10.sup.12 vg/kg (low dose, n=4) or (B) 1.times.10.sup.13 vg/kg (high dose, n=3-5). Human FIX levels between groups were compared using a 2-tailed Mann-Whitney test. No significant differences were observed. Animals 5 and 15 in the low dose cohorts were excluded from the analysis due to misinjection. Animals 9 and 10 were also excluded from the graph as they developed neutralizing antibodies against human FIX.
[0047] FIGS. 15A-15B show a time course of antibody formation to human FIX (anti-FIX). Rabbits received intravenous injection of of hFIX vectors AAV-SPK or AAV-LK03 at doses of (A) 1.times.10.sup.12 vg/kg (low dose, n=4) or (B) 1.times.10.sup.13 vg/kg (high dose, n=3-5). The data are shown for each individual animal.
DETAILED DESCRIPTION
[0048] Disclosed herein are CpG reduced nucleic acid variants encoding FVIII, distinct from wild-type nucleic acid that encode FVIII. Such CpG reduced nucleic acid variants encoding FVIII can be expressed at increased levels in cells and/or animals, which in turn can provide increased FVIII protein levels in vivo. Also disclosed are CpG reduced nucleic acid variant encoding FVIII that can provide for greater biological activity in vitro and/or in vivo. Exemplary CpG reduced nucleic acid variant encoding FVIII can exhibit one or more of the following: 1) increased expression in cells and/or animals; 2) increased activity; and 3) a therapeutic effect at lower AAV doses than wild-type hFVIII.
[0049] The terms "polynucleotide" and "nucleic acid" are used interchangeably herein to refer to all forms of nucleic acid, oligonucleotides, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Polynucleotides include genomic DNA, cDNA and antisense DNA, and spliced or unspliced mRNA, rRNA tRNA and inhibitory DNA or RNA (RNAi, e.g., small or short hairpin (sh)RNA, microRNA (miRNA), small or short interfering (si)RNA, trans-splicing RNA, or antisense RNA). Polynucleotides include naturally occurring, synthetic, and intentionally modified or altered polynucleotides (e.g., variant nucleic acid). Polynucleotides can be single, double, or triplex, linear or circular, and can be of any length. In discussing polynucleotides, a sequence or structure of a particular polynucleotide may be described herein according to the convention of providing the sequence in the 5' to 3' direction.
[0050] As used herein, the terms "modify" or "variant" and grammatical variations thereof, mean that a nucleic acid, polypeptide or subsequence thereof deviates from a reference sequence. Modified and variant sequences may therefore have substantially the same, greater or less expression, activity or function than a reference sequence, but at least retain partial activity or function of the reference sequence. A particular example of a modification or variant is a CpG reduced nucleic acid variant encoding FVIII.
[0051] A "nucleic acid" or "polynucleotide" variant refers to a modified sequence which has been genetically altered compared to wild-type. The sequence may be genetically modified without altering the encoded protein sequence. Alternatively, the sequence may be genetically modified to encode a variant protein. A nucleic acid or polynucleotide variant can also refer to a combination sequence which has been codon modified to encode a protein that still retains at least partial sequence identity to a reference sequence, such as wild-type protein sequence, and also has been codon-modified to encode a variant protein. For example, some codons of such a nucleic acid variant will be changed without altering the amino acids of the protein (FVIII) encoded thereby, and some codons of the nucleic acid variant will be changed which in turn changes the amino acids of the protein (FVIII) encoded thereby.
[0052] The term "variant Factor VIII (FVIII)" refers to a modified FVIII which has been genetically altered as compared to unmodified wild-type FVIII (e.g., SEQ ID NO: 19) or FVIII-BDD. Such a variant can be referred to as a "nucleic acid variant encoding Factor VIII (FVIII)." A particular example of a variant is a CpG reduced nucleic acid encoding FVIII or FVIII-BDD protein. The term "variant" need not appear in each instance of a reference made to CpG reduced nucleic acid encoding FVIII. Likewise, the term "CpG reduced nucleic acid" or the like may omit the term "variant" but it is intended that reference to "CpG reduced nucleic acid" includes variants at the genetic level.
[0053] FVIII constructs having reduced CpG content can exhibit improvements compared to wild-type FVIII or FVIII-BDD in which CpG content has not been reduced, and do so without modifications to the nucleic acid that result in amino acid changes to the encoded FVIII or FVIII-BDD protein. When comparing expression, if the CpG reduced nucleic acid encodes a FVIII protein that retains the B-domain, it is appropriate to compare it to wild-type FVIII expression; and if the CpG reduced nucleic acid encodes a FVIII protein without a B-domain, it is compared to expression of wild-type FVIII that also has a B-domain deletion.
[0054] A "variant Factor VIII (FVIII)" can also mean a modified FVIII protein such that the modified protein has an amino acid alteration compared to wild-type FVIII. Again, when comparing activity and/or stability, if the encoded variant FVIII protein retains the B-domain, it is appropriate to compare it to wild-type FVIII; and if the encoded variant FVIII protein has a B-domain deletion, it is compared to wild-type FVIII that also has a B-domain deletion.
[0055] A variant FVIII can include a portion of the B-domain. Thus, FVIII-BDD includes a portion of the B-domain. Typically, in FVIII-BDD most of the B-domain is deleted.
[0056] A variant FVIII can include an "SQ" sequence set forth as SFSQNPPVLKRHQR (SEQ ID NO:29). Typically, such a variant FVIII with an SQ (FVIII/SQ) has a BDD, e.g., at least all or a part of BD is deleted. Variant FVIII, such as FVIII-BDD can have all or a part of the "SQ" sequence, i.e. all or a part of SEQ ID NO:29. Thus, for example, a variant FVIII-BDD with an SQ sequence (SFSQNPPVLKRHQR, SEQ ID NO:29) can have all or just a portion of the amino acid sequence SFSQNPPVLKRHQR. For example, FVIII-BDD can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 amino acid residues of SFSQNPPVLKRHQR included. Thus, SFSQNPPVLKRHQR with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 internal deletions as well as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 amino- or carboxy terminal deletions are included in the variant FVIII proteins set forth herein.
[0057] The "polypeptides," "proteins" and "peptides" encoded by the "nucleic acid" or "polynucleotide" sequences," include full-length native (FVIII) sequences, as with naturally occurring wild-type proteins, as well as functional subsequences, modified forms or sequence variants so long as the subsequence, modified form or variant retain some degree of functionality of the native full-length protein. For example, a CpG reduced nucleic acid encoding FVIII protein can have a B-domain deletion as set forth herein and retain clotting function. In methods and uses of the invention, such polypeptides, proteins and peptides encoded by the nucleic acid sequences can be but are not required to be identical to the endogenous protein that is defective, or whose expression is insufficient, or deficient in the treated mammal.
[0058] Non-limiting examples of modifications include one or more nucleotide or amino acid substitutions (e.g., 1-3, 3-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-40, 40-50, 50-100, 100-150, 150-200, 200-250, 250-500, 500-750, 750-850 or more nucleotides or residues). An example of a nucleic acid modification is CpG reduction. In certain embodiments, a CpG reduced nucleic acid encoding FVIII, such as human FVIII protein, has 10 or fewer CpGs compared to wild-type sequence encoding human Factor FVIII; or has 5 or fewer CpGs compared to wild-type sequence encoding human Factor FVIII; or has no more than 5 CpGs in the CpG reduced nucleic acid encoding FVIII.
[0059] An example of an amino acid modification is a conservative amino acid substitution or a deletion (e.g., subsequences or fragments) of a reference sequence, e.g. FVIII, such as FVIII with a B-domain deletion. In particular embodiments, a modified or variant sequence retains at least part of a function or activity of unmodified sequence.
[0060] All mammalian and non-mammalian forms of nucleic acid encoding proteins, including other mammalian forms of the CpG reduced nucleic acid encoding FVIII and FVIII proteins disclosed herein are expressly included, either known or unknown. Thus, the invention includes genes and proteins from non-mammals, mammals other than humans, and humans, which genes and proteins function in a substantially similar manner to the FVIII (e.g., human) genes and proteins described herein.
[0061] The term "vector" refers to small carrier nucleic acid molecule, a plasmid, virus (e.g., AAV vector), or other vehicle that can be manipulated by insertion or incorporation of a nucleic acid. Such vectors can be used for genetic manipulation (i.e., "cloning vectors"), to introduce/transfer polynucleotides into cells, and to transcribe or translate the inserted polynucleotide in cells. An "expression vector" is a specialized vector that contains a gene or nucleic acid sequence with the necessary regulatory regions needed for expression in a host cell. A vector nucleic acid sequence generally contains at least an origin of replication for propagation in a cell and optionally additional elements, such as a heterologous polynucleotide sequence, expression control element (e.g., a promoter, enhancer), intron, ITR(s), selectable marker (e.g., antibiotic resistance), polyadenylation signal.
[0062] A viral vector is derived from or based upon one or more nucleic acid elements that comprise a viral genome. Particular viral vectors include lentivirus, pseudo-typed lentivirus and parvo-virus vectors, such as adeno-associated virus (AAV) vectors. Also provided are vectors comprising a CpG reduced nucleic acid encoding FVIII.
[0063] The term "recombinant," as a modifier of vector, such as recombinant viral, e.g., lenti- or parvo-virus (e.g., AAV) vectors, as well as a modifier of sequences such as recombinant polynucleotides and polypeptides, means that the compositions have been manipulated (i.e., engineered) in a fashion that generally does not occur in nature. A particular example of a recombinant vector, such as an AAV vector would be where a polynucleotide that is not normally present in the wild-type viral (e.g., AAV) genome is inserted within the viral genome. An example of a recombinant polynucleotide would be where a CpG reduced nucleic acid encoding a FVIII protein is cloned into a vector, with or without 5', 3' and/or intron regions that the gene is normally associated within the viral (e.g., AAV) genome. Although the term "recombinant" is not always used herein in reference to vectors, such as viral and AAV vectors, as well as sequences such as polynucleotides, recombinant forms including polynucleotides, are expressly included in spite of any such omission.
[0064] A recombinant viral "vector" or "AAV vector" is derived from the wild type genome of a virus, such as AAV by using molecular methods to remove the wild type genome from the virus (e.g., AAV), and replacing with a non-native nucleic acid, such as a CpG reduced nucleic acid encoding FVIII. Typically, for AAV one or both inverted terminal repeat (ITR) sequences of AAV genome are retained in the AAV vector. A "recombinant" viral vector (e.g., AAV) is distinguished from a viral (e.g., AAV) genome, since all or a part of the viral genome has been replaced with a non-native sequence with respect to the viral (e.g., AAV) genomic nucleic acid such as a CpG reduced nucleic acid encoding FVIII. Incorporation of a non-native sequence therefore defines the viral vector (e.g., AAV) as a "recombinant" vector, which in the case of AAV can be referred to as a "rAAV vector."
[0065] A recombinant vector (e.g., lenti-, parvo-, AAV) sequence can be packaged-referred to herein as a "particle" for subsequent infection (transduction) of a cell, ex vivo, in vitro or in vivo. Where a recombinant vector sequence is encapsidated or packaged into an AAV particle, the particle can also be referred to as a "rAAV." Such particles include proteins that encapsidate or package the vector genome. Particular examples include viral envelope proteins, and in the case of AAV, capsid proteins.
[0066] A vector "genome" refers to the portion of the recombinant plasmid sequence that is ultimately packaged or encapsidated to form a viral (e.g., AAV) particle. In cases where recombinant plasmids are used to construct or manufacture recombinant vectors, the vector genome does not include the portion of the "plasmid" that does not correspond to the vector genome sequence of the recombinant plasmid. This non vector genome portion of the recombinant plasmid is referred to as the "plasmid backbone," which is important for cloning and amplification of the plasmid, a process that is needed for propagation and recombinant virus production, but is not itself packaged or encapsidated into virus (e.g., AAV) particles. Thus, a vector "genome" refers to the nucleic acid that is packaged or encapsidated by virus (e.g., AAV).
[0067] A "transgene" is used herein to conveniently refer to a nucleic acid that is intended or has been introduced into a cell or organism. Transgenes include any nucleic acid, such as a gene that encodes a polypeptide or protein (e.g., a CpG reduced nucleic acid encoding Factor VIII).
[0068] In a cell having a transgene, the transgene has been introduced/transferred by way of vector, such as AAV, "transduction" or "transfection" of the cell. The terms "transduce" and "transfect" refer to introduction of a molecule such as a nucleic acid into a cell or host organism. The transgene may or may not be integrated into genomic nucleic acid of the recipient cell. If an introduced nucleic acid becomes integrated into the nucleic acid (genomic DNA) of the recipient cell or organism it can be stably maintained in that cell or organism and further passed on to or inherited by progeny cells or organisms of the recipient cell or organism. Finally, the introduced nucleic acid may exist in the recipient cell or host organism extrachromosomally, or only transiently.
[0069] A "transduced cell" is a cell into which the transgene has been introduced. Accordingly, a "transduced" cell (e.g., in a mammal, such as a cell or tissue or organ cell), means a genetic change in a cell following incorporation of an exogenous molecule, for example, a nucleic acid (e.g., a transgene) into the cell. Thus, a "transduced" cell is a cell into which, or a progeny thereof in which an exogenous nucleic acid has been introduced. The cell(s) can be propagated and the introduced protein expressed, or nucleic acid transcribed. For gene therapy uses and methods, a transduced cell can be in a subject.
[0070] An "expression control element" refers to nucleic acid sequence(s) that influence expression of an operably linked nucleic acid. Control elements, including expression control elements as set forth herein such as promoters and enhancers, Vector sequences including AAV vectors can include one or more "expression control elements." Typically, such elements are included to facilitate proper heterologous polynucleotide transcription and if appropriate translation (e.g., a promoter, enhancer, splicing signal for introns, maintenance of the correct reading frame of the gene to permit in-frame translation of mRNA and, stop codons etc.). Such elements typically act in cis, referred to as a "cis acting" element, but may also act in trans.
[0071] Expression control can be at the level of transcription, translation, splicing, message stability, etc. Typically, an expression control element that modulates transcription is juxtaposed near the 5' end (i.e., "upstream") of a transcribed nucleic acid. Expression control elements can also be located at the 3' end (i.e., "downstream") of the transcribed sequence or within the transcript (e.g., in an intron). Expression control elements can be located adjacent to or at a distance away from the transcribed sequence (e.g., 1-10, 10-25, 25-50, 50-100, 100 to 500, or more nucleotides from the polynucleotide), even at considerable distances. Nevertheless, owing to the length limitations of certain vectors, such as AAV vectors, expression control elements will typically be within 1 to 1000 nucleotides from the transcribed nucleic acid.
[0072] Functionally, expression of operably linked nucleic acid is at least in part controllable by the element (e.g., promoter) such that the element modulates transcription of the nucleic acid and, as appropriate, translation of the transcript. A specific example of an expression control element is a promoter, which is usually located 5' of the transcribed sequence e.g., a CpG reduced nucleic acid encoding FVIII. A promoter typically increases an amount expressed from operably linked nucleic acid as compared to an amount expressed when no promoter exists.
[0073] An "enhancer" as used herein can refer to a sequence that is located adjacent to the heterologous polynucleotide. Enhancer elements are typically located upstream of a promoter element but also function and can be located downstream of or within a sequence (e.g., a CpG reduced nucleic acid encoding FVIII). Hence, an enhancer element can be located 100 base pairs, 200 base pairs, or 300 or more base pairs upstream or downstream of a CpG reduced nucleic acid encoding FVIII. Enhancer elements typically increase expressed of an operably linked nucleic acid above expression afforded by a promoter element.
[0074] An expression construct may comprise regulatory elements which serve to drive expression in a particular cell or tissue type. Expression control elements (e.g., promoters) include those active in a particular tissue or cell type, referred to herein as a "tissue-specific expression control elements/promoters." Tissue-specific expression control elements are typically active in specific cell or tissue (e.g., liver). Expression control elements are typically active in particular cells, tissues or organs because they are recognized by transcriptional activator proteins, or other regulators of transcription, that are unique to a specific cell, tissue or organ type. Such regulatory elements are known to those of skill in the art (see, e.g., Sambrook et al. (1989) and Ausubel et al. (1992)).
[0075] The incorporation of tissue specific regulatory elements in the expression constructs of the invention provides for at least partial tissue tropism for the expression of a CpG reduced nucleic acid encoding FVIII. Examples of promoters that are active in liver are the TTR promoter, human alpha 1-antitrypsin (hAAT) promoter; albumin, Miyatake, et al. J. Virol., 71:5124-32 (1997); hepatitis B virus core promoter, Sandig, et al., Gene Ther. 3:1002-9 (1996); alpha-fetoprotein (AFP), Arbuthnot, et al., Hum. Gene. Ther., 7:1503-14 (1996)], among others. An example of an enhancer active in liver is apolipoprotein E (apoE) HCR-1 and HCR-2 (Allan et al., J. Biol. Chem., 272:29113-19 (1997)).
[0076] Expression control elements also include ubiquitous or promiscuous promoters/enhancers which are capable of driving expression of a polynucleotide in many different cell types. Such elements include, but are not limited to the cytomegalovirus (CMV) immediate early promoter/enhancer sequences, the Rous sarcoma virus (RSV) promoter/enhancer sequences and the other viral promoters/enhancers active in a variety of mammalian cell types, or synthetic elements that are not present in nature (see, e.g., Boshart et al, Cell, 41:521-530 (1985)), the SV40 promoter, the dihydrofolate reductase promoter, the cytoplasmic 0-actin promoter and the phosphoglycerol kinase (PGK) promoter.
[0077] Expression control elements also can confer expression in a manner that is regulatable, that is, a signal or stimuli increases or decreases expression of the operably linked heterologous polynucleotide. A regulatable element that increases expression of the operably linked polynucleotide in response to a signal or stimuli is also referred to as an "inducible element" (i.e., is induced by a signal). Particular examples include, but are not limited to, a hormone (e.g., steroid) inducible promoter. Typically, the amount of increase or decrease conferred by such elements is proportional to the amount of signal or stimuli present; the greater the amount of signal or stimuli, the greater the increase or decrease in expression. Particular non-limiting examples include zinc-inducible sheep metallothionine (MT) promoter; the steroid hormone-inducible mouse mammary tumor virus (MMTV) promoter; the T7 polymerase promoter system (WO 98/10088); the tetracycline-repressible system (Gossen, et al., Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)); the tetracycline-inducible system (Gossen, et al., Science. 268:1766-1769 (1995); see also Harvey, et al., Curr. Opin. Chem. Biol. 2:512-518 (1998)); the RU486-inducible system (Wang, et al., Nat. Biotech. 15:239-243 (1997) and Wang, et al., Gene Ther. 4:432-441 (1997)]; and the rapamycin-inducible system (Magari, et al., J. Clin. Invest. 100:2865-2872 (1997); Rivera, et al., Nat. Medicine. 2:1028-1032 (1996)). Other regulatable control elements which may be useful in this context are those which are regulated by a specific physiological state, e.g., temperature, acute phase, development.
[0078] Expression control elements also include the native elements(s) for the heterologous polynucleotide. A native control element (e.g., promoter) may be used when it is desired that expression of the heterologous polynucleotide should mimic the native expression. The native element may be used when expression of the heterologous polynucleotide is to be regulated temporally or developmentally, or in a tissue-specific manner, or in response to specific transcriptional stimuli. Other native expression control elements, such as introns, polyadenylation sites or Kozak consensus sequences may also be used.
[0079] The term "operably linked" means that the regulatory sequences necessary for expression of a coding sequence are placed in the appropriate positions relative to the coding sequence so as to effect expression of the coding sequence. This same definition is sometimes applied to the arrangement of coding sequences and transcription control elements (e.g. promoters, enhancers, and termination elements) in an expression vector. This definition is also sometimes applied to the arrangement of nucleic acid sequences of a first and a second nucleic acid molecule wherein a hybrid nucleic acid molecule is generated.
[0080] In the example of an expression control element in operable linkage with a nucleic acid, the relationship is such that the control element modulates expression of the nucleic acid. More specifically, for example, two DNA sequences operably linked means that the two DNAs are arranged (cis or trans) in such a relationship that at least one of the DNA sequences is able to exert a physiological effect upon the other sequence.
[0081] Accordingly, additional elements for vectors include, without limitation, an expression control (e.g., promoter/enhancer) element, a transcription termination signal or stop codon, 5' or 3' untranslated regions (e.g., polyadenylation (polyA) sequences) which flank a sequence, such as one or more copies of an AAV ITR sequence, or an intron.
[0082] Further elements include, for example, filler or stuffer polynucleotide sequences, for example to improve packaging and reduce the presence of contaminating nucleic acid. AAV vectors typically accept inserts of DNA having a size range which is generally about 4 kb to about 5.2 kb, or slightly more. Thus, for shorter sequences, inclusion of a stuffer or filler in order to adjust the length to near or at the normal size of the virus genomic sequence acceptable for AAV vector packaging into virus particle. In various embodiments, a filler/stuffer nucleic acid sequence is an untranslated (non-protein encoding) segment of nucleic acid. For a nucleic acid sequence less than 4.7 Kb, the filler or stuffer polynucleotide sequence has a length that when combined (e.g., inserted into a vector) with the sequence has a total length between about 3.0-5.5 Kb, or between about 4.0-5.0 Kb, or between about 4.3-4.8 Kb.
[0083] An intron can also function as a filler or stuffer polynucleotide sequence in order to achieve a length for AAV vector packaging into a virus particle. Introns and intron fragments that function as a filler or stuffer polynucleotide sequence also can enhance expression.
[0084] The phrase "hemostasis related disorder" refers to bleeding disorders such as hemophilia A, hemophilia A patients with inhibitory antibodies, deficiencies in coagulation Factors, VII, VIII, IX and X, XI, V, XII, II, von Willebrand factor, combined FV/FVIII deficiency, vitamin K epoxide reductase C1 deficiency, gamma-carboxylase deficiency; bleeding associated with trauma, injury, thrombosis, thrombocytopenia, stroke, coagulopathy, disseminated intravascular coagulation (DIC); over-anticoagulation associated with heparin, low molecular weight heparin, pentasaccharide, warfarin, small molecule antithrombotics (i.e. FXa inhibitors); and platelet disorders such as, Bernard Soulier syndrome, Glanzman thromblastemia, and storage pool deficiency.
[0085] The term "isolated," when used as a modifier of a composition, means that the compositions are made by the hand of man or are separated, completely or at least in part, from their naturally occurring in vivo environment. Generally, isolated compositions are substantially free of one or more materials with which they normally associate with in nature, for example, one or more protein, nucleic acid, lipid, carbohydrate, cell membrane.
[0086] With reference to nucleic acids of the invention, the term "isolated" refers to a nucleic acid molecule that is separated from one or more sequences with which it is immediately contiguous (in the 5' and 3' directions) in the naturally occurring genome (genomic DNA) of the organism from which it originates. For example, the "isolated nucleic acid" may comprise a DNA or cDNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the DNA of a prokaryote or eukaryote.
[0087] With respect to RNA molecules of the invention, the term "isolated" primarily refers to an RNA molecule encoded by an isolated DNA molecule as defined above. Alternatively, the term may refer to an RNA molecule that has been sufficiently separated from RNA molecules with which it would be associated in its natural state (i.e., in cells or tissues), such that it exists in a "substantially pure" form (the term "substantially pure" is defined below).
[0088] With respect to protein, the term "isolated protein" or "isolated and purified protein" is sometimes used herein. This term refers primarily to a protein produced by expression of an isolated nucleic acid molecule. Alternatively, this term may refer to a protein which has been sufficiently separated from other proteins with which it would naturally be associated, so as to exist in "substantially pure" form.
[0089] The term "isolated" does not exclude combinations produced by the hand of man, for example, a recombinant vector (e.g., rAAV) sequence, or virus particle that packages or encapsidates a vector genome and a pharmaceutical formulation. The term "isolated" also does not exclude alternative physical forms of the composition, such as hybrids/chimeras, multimers/oligomers, modifications (e.g., phosphorylation, glycosylation, lipidation) or derivatized forms, or forms expressed in host cells produced by the hand of man.
[0090] The term "substantially pure" refers to a preparation comprising at least 50-60% by weight the compound of interest (e.g., nucleic acid, oligonucleotide, protein, etc.). The preparation can comprise at least 75% by weight, or about 90-99% by weight, of the compound of interest. Purity is measured by methods appropriate for the compound of interest (e.g. chromatographic methods, agarose or polyacrylamide gel electrophoresis, HPLC analysis, and the like).
[0091] The phrase "consisting essentially of" when referring to a particular nucleotide sequence or amino acid sequence means a sequence having the properties of a given SEQ ID NO. For example, when used in reference to an amino acid sequence, the phrase includes the sequence per se and molecular modifications that would not affect the basic and novel characteristics of the sequence.
[0092] The term "oligonucleotide," as used herein refers to primers and probes, and is defined as a nucleic acid molecule comprised of two or more ribo- or deoxyribonucleotides, such as more than three. The exact size of the oligonucleotide will depend on various factors and on the particular application for which the oligonucleotide is used.
[0093] The term "probe" as used herein refers to an oligonucleotide, polynucleotide or nucleic acid, either RNA or DNA, whether occurring naturally as in a purified restriction enzyme digest or produced synthetically, which is capable of annealing with or specifically hybridizing to a nucleic acid with sequences complementary to the probe. A probe may be either single-stranded or double-stranded. The exact length of the probe will depend upon many factors, including temperature, source of probe and method of use. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide probe typically contains 15-25 or more nucleotides, although it may contain fewer nucleotides.
[0094] The probes herein are selected to be "substantially" complementary to different strands of a particular target nucleic acid sequence. This means that the probes must be sufficiently complementary so as to be able to "specifically hybridize" or anneal with their respective target strands under a set of pre-determined conditions. Therefore, the probe sequence need not reflect the exact complementary sequence of the target. For example, a non-complementary nucleotide fragment may be attached to the 5' or 3' end of the probe, with the remainder of the probe sequence being complementary to the target strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the sequence of the target nucleic acid to anneal therewith specifically.
[0095] The term "specifically hybridize" refers to the association between two single-stranded nucleic acid molecules of sufficiently complementary sequence to permit such hybridization under pre-determined conditions generally used in the art (sometimes termed "substantially complementary"). In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence.
[0096] The term "primer" as used herein refers to an oligonucleotide, either RNA or DNA, either single-stranded or double-stranded, either derived from a biological system, generated by restriction enzyme digestion, or produced synthetically which, when placed in the proper environment, is able to act functionally as an initiator of template-dependent nucleic acid synthesis. When presented with an appropriate nucleic acid template, suitable nucleoside triphosphate precursors of nucleic acids, a polymerase enzyme, suitable cofactors and conditions such as a suitable temperature and pH, the primer may be extended at its 3' terminus by the addition of nucleotides by the action of a polymerase or similar activity to yield a primer extension product.
[0097] The primer may vary in length depending on the particular conditions and requirements of the application. For example, in diagnostic applications, the oligonucleotide primer is typically 15-25 or more nucleotides in length. The primer must be of sufficient complementarity to the desired template to prime the synthesis of the desired extension product, that is, to be able to anneal with the desired template strand in a manner sufficient to provide the 3' hydroxyl moiety of the primer in appropriate juxtaposition for use in the initiation of synthesis by a polymerase or similar enzyme. It is not required that the primer sequence represent an exact complement of the desired template. For example, a non-complementary nucleotide sequence may be attached to the 5' end of an otherwise complementary primer. Alternatively, non-complementary bases may be interspersed within the oligonucleotide primer sequence, provided that the primer sequence has sufficient complementarity with the sequence of the desired template strand to functionally provide a template-primer complex for the synthesis of the extension product.
[0098] The term "identity," "homology" and grammatical variations thereof, mean that two or more referenced entities are the same, when they are "aligned" sequences. Thus, by way of example, when two polypeptide sequences are identical, they have the same amino acid sequence, at least within the referenced region or portion. Where two polynucleotide sequences are identical, they have the same polynucleotide sequence, at least within the referenced region or portion. The identity can be over a defined area (region or domain) of the sequence. An "area" or "region" of identity refers to a portion of two or more referenced entities that are the same. Thus, where two protein or nucleic acid sequences are identical over one or more sequence areas or regions they share identity within that region. An "aligned" sequence refers to multiple polynucleotide or protein (amino acid) sequences, often containing corrections for missing or additional bases or amino acids (gaps) as compared to a reference sequence.
[0099] The identity can extend over the entire length or a portion of the sequence. In certain embodiments, the length of the sequence sharing the percent identity is 2, 3, 4, 5 or more contiguous nucleic acids or amino acids, e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, etc. contiguous nucleic acids or amino acids. In additional embodiments, the length of the sequence sharing identity is 21 or more contiguous nucleic acids or amino acids, e.g., 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, etc. contiguous nucleic acids or amino acids. In further embodiments, the length of the sequence sharing identity is 41 or more contiguous nucleic acids or amino acids, e.g. 42, 43, 44, 45, 45, 47, 48, 49, 50, etc., contiguous nucleic acids or amino acids. In yet further embodiments, the length of the sequence sharing identity is 50 or more contiguous nucleic acids or amino acids, e.g., 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95, 95-100, 100-150, 150-200, 200-250, 250-300, 300-500, 500-1,000, etc. contiguous nucleic acids or amino acids.
[0100] As set forth herein, CpG reduced nucleic acid variants encoding FVIII will be distinct from wild-type but may exhibit sequence identity with wild-type FVIII protein with, or without B-domain. In CpG reduced nucleic acid variants encoding FVIII, at the nucleotide sequence level, a CpG reduced nucleic acid encoding FVIII will typically be at least about 70% identical, more typically about 75% identical, even more typically about 80%-85% identical to wild-type FVIII encoding nucleic acid. Thus, for example, a CpG reduced nucleic acid encoding FVIII may have 75%-85% identity to wild-type FVIII encoding gene, or to each other, i.e., X01 vs. X02, X03 vs. X04, etc. as set forth herein.
[0101] At the amino acid sequence level, a variant such as a variant FVIII protein will be at least about 70% identical, more typically about 75% identical, or 80% identical, even more typically about 85 identity, or 90% or more identity. In other embodiments, a variant such as a variant FVIII protein has at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity to a reference sequence, e.g. wild-type FVIII protein with or without B-domain.
[0102] To determine identity, if the FVIII (CpG reduced nucleic acid encoding FVIII) retains the B-domain, it is appropriate to compare identity to wild-type FVIII. If the FVIII (CpG reduced nucleic acid encoding FVIII) has a B-domain deletion, it is appropriate to compare identity to wild-type FVIII that also has a B-domain deletion.
[0103] The terms "homologous" or "homology" mean that two or more referenced entities share at least partial identity over a given region or portion. "Areas, regions or domains" of homology or identity mean that a portion of two or more referenced entities share homology or are the same. Thus, where two sequences are identical over one or more sequence regions they share identity in these regions. "Substantial homology" means that a molecule is structurally or functionally conserved such that it has or is predicted to have at least partial structure or function of one or more of the structures or functions (e.g., a biological function or activity) of the reference molecule, or relevant/corresponding region or portion of the reference molecule to which it shares homology.
[0104] The extent of identity (homology) or "percent identity" between two sequences can be ascertained using a computer program and/or mathematical algorithm. For purposes of this invention comparisons of nucleic acid sequences are performed using the GCG Wisconsin Package version 9.1, available from the Genetics Computer Group in Madison, Wis. For convenience, the default parameters (gap creation penalty=12, gap extension penalty=4) specified by that program are intended for use herein to compare sequence identity. Alternately, the Blastn 2.0 program provided by the National Center for Biotechnology Information (found on the world wide web at ncbi.nlm.nih.gov/blast/; Altschul et al., 1990, J Mol Biol 215:403-410) using a gapped alignment with default parameters, may be used to determine the level of identity and similarity between nucleic acid sequences and amino acid sequences. For polypeptide sequence comparisons, a BLASTP algorithm is typically used in combination with a scoring matrix, such as PAM100, PAM 250, BLOSUM 62 or BLOSUM 50. FASTA (e.g., FASTA2 and FASTA3) and SSEARCH sequence comparison programs are also used to quantitate extent of identity (Pearson et al., Proc. Natl. Acad. Sci. USA 85:2444 (1988); Pearson, Methods Mol Biol. 132:185 (2000); and Smith et al., J. Mol. Biol. 147:195 (1981)). Programs for quantitating protein structural similarity using Delaunay-based topological mapping have also been developed (Bostick et al., Biochem Biophys Res Commun. 304:320 (2003)).
[0105] Nucleic acid molecules, expression vectors (e.g., vector genomes), plasmids, including CpG reduced nucleic acid variants encoding FVIII of the invention may be prepared by using recombinant DNA technology methods. The availability of nucleotide sequence information enables preparation of isolated nucleic acid molecules of the invention by a variety of means. For example, CpG reduced nucleic acid variants encoding FVIII can be made using various standard cloning, recombinant DNA technology, via cell expression or in vitro translation and chemical synthesis techniques. Purity of polynucleotides can be determined through sequencing, gel electrophoresis and the like. For example, nucleic acids can be isolated using hybridization or computer-based database screening techniques. Such techniques include, but are not limited to: (1) hybridization of genomic DNA or cDNA libraries with probes to detect homologous nucleotide sequences; (2) antibody screening to detect polypeptides having shared structural features, for example, using an expression library; (3) polymerase chain reaction (PCR) on genomic DNA or cDNA using primers capable of annealing to a nucleic acid sequence of interest; (4) computer searches of sequence databases for related sequences; and (5) differential screening of a subtracted nucleic acid library.
[0106] Nucleic acids of the invention may be maintained as DNA in any convenient cloning vector. In a one embodiment, clones are maintained in a plasmid cloning/expression vector, such as pBluescript (Stratagene, La Jolla, Calif.), which is propagated in a suitable E. coli host cell. Alternatively, nucleic acids may be maintained in vector suitable for expression in mammalian cells. In cases where post-translational modification affects coagulation function, nucleic acid molecule can be expressed in mammalian cells.
[0107] CpG reduced nucleic acid variants encoding FVIII of the invention include cDNA, genomic DNA, RNA, and fragments thereof which may be single- or double-stranded. Thus, this invention provides oligonucleotides (sense or antisense strands of DNA or RNA) having sequences capable of hybridizing with at least one sequence of a nucleic acid of the invention. Such oligonucleotides are useful as probes for detecting FVIII expression.
[0108] A B-domain deleted, CpG reduced nucleic acid variant encoding FVIII of the invention, optionally having amino acid substitutions, deletions or additions, may be prepared in a variety of ways, according to known methods. The protein may be purified from appropriate sources, e.g., transformed bacterial or animal cultured cells or tissues which express engineered FVIII by immune-affinity purification.
[0109] The availability of CpG reduced nucleic acid variants encoding FVIII enables production of FVIII using in vitro expression methods known in the art. For example, a cDNA or gene may be cloned into an appropriate in vitro transcription vector, such as pSP64 or pSP65 for in vitro transcription, followed by cell-free translation in a suitable cell-free translation system, such as wheat germ or rabbit reticulocyte lysates. In vitro transcription and translation systems are commercially available, e.g., from Promega Biotech, Madison, Wis. or BRL, Rockville, Md.
[0110] Alternatively, larger quantities of FVIII may be produced by expression in a suitable prokaryotic or eukaryotic expression system. For example, a CpG reduced nucleic acid variant encoding FVIII, for example, may be inserted into a plasmid vector adapted for expression in a bacterial cell, such as E. coli or a mammalian cell line such as baby hamster kidney (BHK), CHO or Hela cells. Alternatively, tagged fusion proteins comprising FVIII can be generated. Such FVIII-tagged fusion proteins are encoded by part or all of a DNA molecule, ligated in the correct codon reading frame to a nucleotide sequence encoding a portion or all of a desired polypeptide tag which is inserted into a plasmid vector adapted for expression in a bacterial cell, such as E. coli or a eukaryotic cell, such as, but not limited to, yeast and mammalian cells.
[0111] Vectors such as those described herein optionally comprise regulatory elements necessary for expression of the DNA in the host cell positioned in such a manner as to permit expression of the encoded protein in the host cell. Such regulatory elements required for expression include, but are not limited to, promoter sequences, enhancer sequences and transcription initiation sequences as set forth herein and known to the skilled artisan.
[0112] A FVIII encoded by a CpG reduced nucleic acid variant, produced by gene expression in a recombinant prokaryotic or eukaryotic system, may be purified according to methods known in the art. In an embodiment, a commercially available expression/secretion system can be used, whereby the recombinant protein is expressed and thereafter secreted from the host cell, to be easily purified from the surrounding medium. If expression/secretion vectors are not used, an alternative approach involves purifying the recombinant protein by affinity separation, such as by immunological interaction with antibodies that bind specifically to the recombinant protein or nickel columns for isolation of recombinant proteins tagged with 6-8 histidine residues at their N-terminus or C-terminus. Alternative tags may comprise the FLAG epitope, GST or the hemagglutinin epitope. Such methods are commonly used by skilled practitioners.
[0113] FVIII proteins, prepared by the aforementioned methods, may be analyzed according to standard procedures. For example, such proteins may be assessed for altered coagulation properties according to known methods.
[0114] Accordingly, the invention also provides methods of making a polypeptide (as disclosed), the method including expression from nucleic acid encoding the polypeptide (generally nucleic acid). This may conveniently be achieved by culturing a host cell, containing such a vector, under appropriate conditions which cause or allow production of the polypeptide. Polypeptides may also be produced in in vitro systems.
[0115] Methods and uses of the invention of the invention include delivering (transducing) nucleic acid (transgene) into host cells, including dividing and/or non-dividing cells. The nucleic acids, recombinant vector (e.g., rAAV), methods, uses and pharmaceutical formulations of the invention are additionally useful in a method of delivering, administering or providing a protein to a subject in need thereof, as a method of treatment. In this manner, the nucleic acid is transcribed and the protein may be produced in vivo in a subject. The subject may benefit from or be in need of the protein because the subject has a deficiency of the protein, or because production of the protein in the subject may impart some therapeutic effect, as a method of treatment or otherwise.
[0116] Vectors including lenti- or parvo-virus vector (e.g., AAV) sequences, recombinant virus particles, methods and uses may be used to deliver a CpG reduced nucleic acid variant encoding FVIII with a biological effect to treat or ameliorate one or more symptoms associated with a FVIII deficiency or abnormality. Recombinant lenti- or parvo-virus vector (e.g., AAV) sequences, plasmids, recombinant virus particles, methods and uses may be used to provide therapy for various disease states involving or due to a FVIII deficiency or abnormality.
[0117] Invention nucleic acids, vectors, expression vectors (e.g., rAAV), and recombinant virus particles, methods and uses permit the treatment of genetic diseases, e.g., a FVIII deficiency. For deficiency state diseases, gene transfer can be used to bring a normal gene into affected tissues for replacement therapy, as well as to create animal models for the disease using antisense mutations. For unbalanced disease states, gene transfer could be used to create a disease state in a model system, which could then be used in efforts to counteract the disease state. The use of site-specific integration of nucleic acid sequences to correct defects is also possible.
[0118] In particular embodiments, CpG reduced nucleic acid variants encoding FVIII may be used, for example, as therapeutic and/or prophylactic agents (protein or nucleic acid) which modulate the blood coagulation cascade or as a transgene in gene. For example, CpG reduced nucleic acid variants encoding FVIII may have similar coagulation activity as wild-type FVIII, or altered coagulation activity compared to wild-type FVII. Cell-based strategies allow continuous expression of CpG reduced nucleic acid variants encoding FVIII in hemophilia A patients. As disclosed herein, certain modifications of FVIII molecules (nucleic acid and protein) result in increased expression at the nucleic acid level, increased coagulation activity thereby effectively improving hemostasis.
[0119] CpG reduced nucleic acid variants encoding FVIII may be used for a variety of purposes in accordance with the invention. In one embodiment, a nucleic acid delivery vehicle (i.e., an expression vector) for modulating blood coagulation is provided wherein the expression vector comprises a CpG reduced nucleic acid variants encoding FVIII as described herein. Administration of FVIII-encoding expression vectors to a patient results in the expression of FVIII protein which serves to alter the coagulation cascade. In accordance with the invention, expression of CpG reduced nucleic acid variants encoding FVIII protein as described herein, or a functional fragment, increases hemostasis.
[0120] In additional embodiments of the invention, compositions and methods are provided for administration of a viral vector comprising a CpG reduced nucleic acid variant encoding FVIII. In one embodiment, the expression vector comprising CpG reduced nucleic acid variant encoding FVIII is a viral vector.
[0121] Expression vectors comprising CpG reduced nucleic acid variants encoding FVIII may be administered alone, or in combination with other molecules useful for modulating hemostasis. According to the invention, vectors, expression vectors or combination of therapeutic agents may be administered to the patient alone or in a pharmaceutically acceptable or biologically compatible compositions.
[0122] Viral vectors such as lenti- and parvo-virus vectors, including AAV serotypes and variants thereof provide a means for delivery of nucleic acid into cells ex vivo, in vitro and in vivo, which encode proteins such that the cells express the encoded protein. AAV are viruses useful as gene therapy vectors as they can penetrate cells and introduce nucleic acid/genetic material so that the nucleic acid/genetic material may be stably maintained in cells. In addition, these viruses can introduce nucleic acid/genetic material into specific sites, for example. Because AAV are not associated with pathogenic disease in humans, AAV vectors are able to deliver heterologous polynucleotide sequences (e.g., therapeutic proteins and agents) to human patients without causing substantial AAV pathogenesis or disease.
[0123] Viral vectors which may be used in the invention include, but are not limited to, adeno-associated virus (AAV) vectors of multiple serotypes (e.g., AAV-1 to AAV-12, and others) and hybrid/chimeric AAV vectors, lentivirus vectors and pseudo-typed lentivirus vectors (e.g., Ebola virus, vesicular stomatitis virus (VSV), and feline immunodeficiency virus (FIV)), herpes simplex virus vectors, adenoviral vectors (with or without tissue specific promoters/enhancers), vaccinia virus vectors, retroviral vectors, lentiviral vectors, non-viral vectors and others.
[0124] AAV and lentiviral particles may be used to advantage as vehicles for effective gene delivery. Such virions possess a number of desirable features for such applications, including tropism for dividing and non-dividing cells. Early clinical experience with these vectors also demonstrated no sustained toxicity and immune responses were minimal or undetectable. AAV are known to infect a wide variety of cell types in vivo and in vitro by receptor-mediated endocytosis or by transcytosis. These vector systems have been tested in humans targeting retinal epithelium, liver, skeletal muscle, airways, brain, joints and hematopoietic stem cells. Non-viral vectors, for example, based on plasmid DNA or minicircles, are also suitable gene transfer vectors for a large gene as that encoding FVIII.
[0125] It may be desirable to introduce a vector that can provide, for example, multiple copies of a desired gene and hence greater amounts of the product of that gene. Improved AAV and lentiviral vectors and methods for producing these vectors have been described in detail in a number of references, patents, and patent applications, including: Wright J. F. (Hum Gene Ther 20:698-706, 2009) a technology used for the production of clinical grade vector at Children's Hospital of Philadelphia. Lentiviral vector can also be produced at CHOP and the other vectors are available through the Lentivirus vector production core laboratory by NHLBI Gene Therapy Resource Program (GTRP)--Lentivirus Vector Production Core Laboratory.
[0126] Accordingly, in various embodiments of the invention a vector includes a lenti- or parvo-viral vector, such as an adeno-viral vector. In particular embodiments, a recombinant vector is a parvovirus vector. Parvoviruses are small viruses with a single-stranded DNA genome. "Adeno-associated viruses" (AAV) are in the parvovirus family.
[0127] Accordingly, the invention provides viral vectors that include CpG reduced nucleic acid variants encoding FVIII. For example, a recombinant AAV vector can include CpG reduced nucleic acid variants encoding FVIII, where the encoded FVIII protein optionally has B-domain deletion. Vector delivery or administration to a subject (e.g., mammal) therefore provides FVIII to a subject such as a mammal (e.g., human).
[0128] Direct delivery of vectors or ex-vivo transduction of human cells followed by infusion into the body will result in FVIII expression thereby exerting a beneficial therapeutic effect on hemostasis. In the context of invention Factor VIII described herein, such administration enhances pro-coagulation activity.
[0129] AAV vectors and lentiviral vectors do not typically include viral genes associated with pathogenesis. Such vectors typically have one or more of the wild type AAV genes deleted in whole or in part, for example, rep and/or cap genes, but retain at least one functional flanking ITR sequence, as necessary for the rescue, replication, and packaging of the recombinant vector into an AAV vector particle. For example, only the essential parts of vector e.g., the ITR and LTR elements, respectively are included. An AAV vector genome would therefore include sequences required in cis for replication and packaging (e.g., functional ITR sequences)
[0130] Recombinant AAV vector, as well as methods and uses thereof, include any viral strain or serotype. As a non-limiting example, a recombinant AAV vector can be based upon any AAV genome, such as AAV-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -rh74, -rh10 or AAV-2i8, for example. Such vectors can be based on the same strain or serotype (or subgroup or variant), or be different from each other. As a non-limiting example, a recombinant AAV vector based upon one serotype genome can be identical to one or more of the capsid proteins that package the vector. In addition, a recombinant AAV vector genome can be based upon an AAV (e.g., AAV2) serotype genome distinct from one or more of the AAV capsid proteins that package the vector. For example, the AAV vector genome can be based upon AAV2, whereas at least one of the three capsid proteins could be a AAV1, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8 or variant thereof, for example.
[0131] In particular embodiments, adeno-associated virus (AAV) vectors include AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 and AAV-2i8, as well as variants (e.g., capsid variants, such as amino acid insertions, additions, substitutions and deletions) thereof, for example, as set forth in WO 2013/158879 (International Application PCT/US2013/037170), WO 2015/013313 (International Application PCT/US2014/047670) and US 2013/0059732 (U.S. Pat. No. 9,169,299, discloses LK01, LK02, LK03, etc.).
[0132] AAV variants include variants and chimeras of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 and AAV-2i8 capsid. Accordingly, AAV vectors and AAV variants (e.g., capsid variants) that include (encapsidate or package) CpG reduced nucleic acid variants encoding FVIII, are provided.
[0133] AAV and AAV variants (e.g., capsid variants) serotypes (e.g., VP1, VP2, and/or VP3 sequences) may or may not be distinct from other AAV serotypes, including, for example, AAV1-AAV12, Rh74 or Rh10 (e.g., distinct from VP1, VP2, and/or VP3 sequences of any of AAV1-AAV12, Rh74 or Rh100 serotypes).
[0134] As used herein, the term "serotype" is a distinction used to refer to an AAV having a capsid that is serologically distinct from other AAV serotypes. Serologic distinctiveness is determined on the basis of the lack of cross-reactivity between antibodies to one AAV as compared to another AAV. Such cross-reactivity differences are usually due to differences in capsid protein sequences/antigenic determinants (e.g., due to VP1, VP2, and/or VP3 sequence differences of AAV serotypes). Despite the possibility that AAV variants including capsid variants may not be serologically distinct from a reference AAV or other AAV serotype, they differ by at least one nucleotide or amino acid residue compared to the reference or other AAV serotype.
[0135] Under the traditional definition, a serotype means that the virus of interest has been tested against serum specific for all existing and characterized serotypes for neutralizing activity and no antibodies have been found that neutralize the virus of interest. As more naturally occurring virus isolates of are discovered and/or capsid mutants generated, there may or may not be serological differences with any of the currently existing serotypes. Thus, in cases where the new virus (e.g., AAV) has no serological difference, this new virus (e.g., AAV) would be a subgroup or variant of the corresponding serotype. In many cases, serology testing for neutralizing activity has yet to be performed on mutant viruses with capsid sequence modifications to determine if they are of another serotype according to the traditional definition of serotype. Accordingly, for the sake of convenience and to avoid repetition, the term "serotype" broadly refers to both serologically distinct viruses (e.g., AAV) as well as viruses (e.g., AAV) that are not serologically distinct that may be within a subgroup or a variant of a given serotype.
[0136] AAV vectors therefore include gene/protein sequences identical to gene/protein sequences characteristic for a particular serotype. As used herein, an "AAV vector related to AAV1" refers to one or more AAV proteins (e.g., VP1, VP2, and/or VP3 sequences) that has substantial sequence identity to one or more polynucleotides or polypeptide sequences that comprise AAV1. Analogously, an "AAV vector related to AAV8" refers to one or more AAV proteins (e.g., VP1, VP2, and/or VP3 sequences) that has substantial sequence identity to one or more polynucleotides or polypeptide sequences that comprise AAV8. An "AAV vector related to AAV-Rh74" refers to one or more AAV proteins (e.g., VP1, VP2, and/or VP3 sequences) that has substantial sequence identity to one or more polynucleotides or polypeptide sequences that comprise AAV-Rh74. Such AAV vectors related to another serotype, e.g., AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8, can therefore have one or more distinct sequences from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 and AAV-2i8, but can exhibit substantial sequence identity to one or more genes and/or proteins, and/or have one or more functional characteristics of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8 (e.g., such as cell/tissue tropism). Exemplary non-limiting AAV variants include capsid variants of any of VP1, VP2, and/or VP3.
[0137] In various exemplary embodiments, an AAV vector related to a reference serotype has a polynucleotide, polypeptide or subsequence thereof that includes or consists of a sequence at least 80% or more (e.g., 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, etc.) identical to one or more AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8 (e.g., such as an ITR, or a VP1, VP2, and/or VP3 sequences).
[0138] Compositions, methods and uses of the invention include AAV sequences (polypeptides and nucleotides), and subsequences thereof that exhibit less than 100% sequence identity to a reference AAV serotype such as AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, or AAV-2i8, but are distinct from and not identical to known AAV genes or proteins, such as AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8, genes or proteins, etc. In one embodiment, an AAV polypeptide or subsequence thereof includes or consists of a sequence at least 75% or more identical, e.g., 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, etc., up to 100% identical to any reference AAV sequence or subsequence thereof, such as AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8 (e.g., VP1, VP2 and/or VP3 capsid or ITR). In certain embodiments, an AAV variant has 1, 2, 3, 4, 5, 5-10, 10-15, 15-20 or more amino acid substitutions.
[0139] Recombinant AAV vectors, including AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8 and variant, related, hybrid and chimeric sequences, can be constructed using recombinant techniques that are known to the skilled artisan, to include one or more nucleic acid sequences (transgenes) flanked with one or more functional AAV ITR sequences.
[0140] In one embodiment of the invention, CpG reduced nucleic acid variants encoding FVIII, vector or expression vector, may be administered to a patient via infusion in a biologically compatible carrier, for example, via intravenous injection. The CpG reduced nucleic acid variants encoding FVIII, vectors and expression vectors of the invention may optionally be encapsulated into liposomes or mixed with other phospholipids or micelles to increase stability of the molecule. CpG reduced nucleic acid variants encoding FVIII, vectors and expression vectors of the invention, may be administered alone or in combination with other agents known to modulate hemostasis (e.g., Factor V, Factor Va or derivatives thereof).
[0141] An appropriate composition in which to deliver FVIII may be determined by a medical practitioner upon consideration of a variety of physiological variables, including, but not limited to, the patient's condition and hemodynamic state. A variety of compositions well suited for different applications and routes of administration are well known in the art and are described hereinbelow.
[0142] A preparation containing purified FVIII protein, produced by expression of CpG reduced nucleic acid variants encoding FVIII, vectors and expression vectors of the invention, contains a physiologically acceptable matrix and may be formulated as a pharmaceutical preparation. The preparation can be formulated using substantially known prior art methods, it can be mixed with a buffer containing salts, such as NaCl, CaCl.sub.2, and amino acids, such as glycine and/or lysine, and in a pH range from 6 to 8. Until needed, the purified preparation containing FVIII can be stored in the form of a finished solution or in lyophilized or deep-frozen form.
[0143] A preparation can be stored in lyophilized form and is dissolved into a visually clear solution using an appropriate reconstitution solution. Alternatively, the preparation according to the invention can also be made available as a liquid preparation or as a liquid that is deep-frozen. The preparation according to the invention may optionally be especially stable, i.e., it can be allowed to stand in dissolved form for a prolonged time prior to administration or delivery.
[0144] The preparation according to the invention can be made available as a pharmaceutical preparation with FVIII activity in the form of a one-component preparation or in combination with other factors in the form of a multi-component preparation. Prior to processing the purified protein into a pharmaceutical preparation, the purified protein is subjected to the conventional quality controls and fashioned into a therapeutic form of presentation. In particular, during the recombinant manufacture, the purified preparation is tested for the absence of cellular nucleic acids as well as nucleic acids that are derived from the expression vector, such as is described in EP 0 714 987.
[0145] The pharmaceutical protein preparation may be used at dosages of between 30-100 IU/kg (One I.U is 100 ng/ml) at as single daily injection or up to 3 times/day for several days. Patients may be treated immediately upon presentation at the clinic with a bleed. Alternatively, patients may receive a bolus infusion every eight to twelve hours, or if sufficient improvement is observed, a once daily infusion of the FVIII.
[0146] Accordingly, invention nucleic acids, vectors, recombinant vectors (e.g., rAAV), and recombinant virus particles and other compositions, agents, drugs, biologics (proteins) can be incorporated into pharmaceutical compositions. Such pharmaceutical compositions are useful for, among other things, administration and delivery to a subject in vivo or ex vivo.
[0147] In particular embodiments, pharmaceutical compositions also contain a pharmaceutically acceptable carrier or excipient. Such excipients include any pharmaceutical agent that does not itself induce an immune response harmful to the individual receiving the composition, and which may be administered without undue toxicity.
[0148] As used herein the term "pharmaceutically acceptable" and "physiologically acceptable" mean a biologically acceptable formulation, gaseous, liquid or solid, or mixture thereof, which is suitable for one or more routes of administration, in vivo delivery or contact. A "pharmaceutically acceptable" or "physiologically acceptable" composition is a material that is not biologically or otherwise undesirable, e.g., the material may be administered to a subject without causing substantial undesirable biological effects. Thus, such a pharmaceutical composition may be used, for example in administering a nucleic acid, vector, viral particle or protein to a subject.
[0149] Pharmaceutically acceptable excipients include, but are not limited to, liquids such as water, saline, glycerol, sugars and ethanol. Pharmaceutically acceptable salts can also be included therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.
[0150] The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding, free base forms. In other cases, a preparation may be a lyophilized powder which may contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
[0151] Pharmaceutical compositions include solvents (aqueous or non-aqueous), solutions (aqueous or non-aqueous), emulsions (e.g., oil-in-water or water-in-oil), suspensions, syrups, elixirs, dispersion and suspension media, coatings, isotonic and absorption promoting or delaying agents, compatible with pharmaceutical administration or in vivo contact or delivery. Aqueous and non-aqueous solvents, solutions and suspensions may include suspending agents and thickening agents. Such pharmaceutically acceptable carriers include tablets (coated or uncoated), capsules (hard or soft), microbeads, powder, granules and crystals. Supplementary active compounds (e.g., preservatives, antibacterial, antiviral and antifungal agents) can also be incorporated into the compositions.
[0152] Pharmaceutical compositions can be formulated to be compatible with a particular route of administration or delivery, as set forth herein or known to one of skill in the art. Thus, pharmaceutical compositions include carriers, diluents, or excipients suitable for administration by various routes.
[0153] Compositions suitable for parenteral administration comprise aqueous and non-aqueous solutions, suspensions or emulsions of the active compound, which preparations are typically sterile and can be isotonic with the blood of the intended recipient. Non-limiting illustrative examples include water, buffered saline, Hanks' solution, Ringer's solution, dextrose, fructose, ethanol, animal, vegetable or synthetic oils. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
[0154] Additionally, suspensions of the active compounds may be prepared as appropriate oil injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
[0155] Cosolvents and adjuvants may be added to the formulation. Non-limiting examples of cosolvents contain hydroxyl groups or other polar groups, for example, alcohols, such as isopropyl alcohol; glycols, such as propylene glycol, polyethyleneglycol, polypropylene glycol, glycol ether; glycerol; polyoxyethylene alcohols and polyoxyethylene fatty acid esters. Adjuvants include, for example, surfactants such as, soya lecithin and oleic acid; sorbitan esters such as sorbitan trioleate; and polyvinylpyrrolidone.
[0156] After pharmaceutical compositions have been prepared, they may be placed in an appropriate container and labeled for treatment. For administration of FVIII-containing vectors or polypeptides, such labeling would include amount, frequency, and method of administration.
[0157] Pharmaceutical compositions and delivery systems appropriate for the compositions, methods and uses of the invention are known in the art (see, e.g., Remington: The Science and Practice of Pharmacy (2003) 20.sup.th ed., Mack Publishing Co., Easton, Pa.; Remington's Pharmaceutical Sciences (1990) 18.sup.th ed., Mack Publishing Co., Easton, Pa.; The Merck Index (1996) 12.sup.th ed., Merck Publishing Group, Whitehouse, N.J.; Pharmaceutical Principles of Solid Dosage Forms (1993), Technonic Publishing Co., Inc., Lancaster, Pa.; Ansel and Stoklosa, Pharmaceutical Calculations (2001) 11.sup.th ed., Lippincott Williams & Wilkins, Baltimore, Md.; and Poznansky et al., Drug Delivery Systems (1980), R. L. Juliano, ed., Oxford, N.Y., pp. 253-315).
[0158] The invention also provides methods for introducing CpG reduced nucleic acid variants encoding FVIII into a cell or an animal. In a particular embodiment, the invention provides methods for modulating hemostasis. In one embodiment, a method includes contact or administration of an individual (patient or subject such as a mammal) with a nucleic acid delivery vehicle (e.g., an AAV vector) comprising CpG reduced nucleic acid variant encoding FVIII under conditions wherein the FVIII polypeptide is expressed in the individual. In another embodiment, a method includes providing cells of an individual (patient or subject such as a mammal) with a nucleic acid delivery vehicle (e.g., an AAV vector) comprising a CpG reduced nucleic acid variant encoding FVIII under conditions wherein the FVIII polypeptide is expressed in the individual.
[0159] From the foregoing, it can be seen that CpG reduced nucleic acid variants encoding FVIII may be used in the treatment of disorders associated with deficient, insufficient or aberrant blood coagulation.
[0160] Compositions of CpG reduced nucleic acid variants encoding FVIII, including vectors, recombinant vectors (e.g., rAAV), and recombinant virus particles can be administered, and methods and uses of the invention can be provided, in a sufficient or effective amount to a subject in need thereof. An "effective amount" or "sufficient amount" refers to an amount that provides, in single or multiple doses, alone or in combination, with one or more other compositions (therapeutic or immunosupprosive agents such as a drug), treatments, protocols, or therapeutic regimens agents, a detectable response of any duration of time (long or short term), an expected or desired outcome in or a benefit to a subject of any measurable or detectable degree or for any duration of time (e.g., for minutes, hours, days, months, years, or cured).
[0161] Doses can vary and depend upon the type, onset, progression, severity, frequency, duration, or probability of the disease to which treatment is directed, the clinical endpoint desired, previous or simultaneous treatments, the general health, age, gender, race or immunological competency of the subject and other factors that will be appreciated by the skilled artisan. The dose amount, number, frequency or duration may be proportionally increased or reduced, as indicated by any adverse side effects, complications or other risk factors of the treatment or therapy and the status of the subject. The skilled artisan will appreciate the factors that may influence the dosage and timing required to provide an amount sufficient for providing a therapeutic or prophylactic benefit.
[0162] The dose to achieve a therapeutic effect, e.g., the dose in vector genomes/per kilogram of body weight (vg/kg), will vary based on several factors including, but not limited to: route of administration, the level of heterologous polynucleotide expression required to achieve a therapeutic effect, the specific disease treated, any host immune response to the viral vector, a host immune response to the heterologous polynucleotide or expression product (protein), and the stability of the protein expressed. One skilled in the art can determine a rAAV/vector genome dose range to treat a patient having a particular disease or disorder based on the aforementioned factors, as well as other factors. Generally, doses will range from at least 1.times.10.sup.8, or more, for example, 1.times.10.sup.9, 1.times.10.sup.10, 1.times.10.sup.11, 1.times.10.sup.12, 1.times.10.sup.13 or 1.times.10.sup.14, or more, vector genomes per kilogram (vg/kg) of the weight of the subject, to achieve a therapeutic effect. AAV dose in the range of 1.times.10.sup.10-1.times.10.sup.11 in mice, and 1.times.10.sup.12-1.times.10.sup.13 in dogs have been effective.
[0163] Using hemophilia B as an example, generally speaking, it is believed that, in order to achieve a therapeutic effect, a blood coagulation factor concentration that is greater than 1% of factor concentration found in a normal individual is needed to change a severe disease phenotype to a moderate one. A severe phenotype is characterized by joint damage and life-threatening bleeds. To convert a moderate disease phenotype into a mild one, it is believed that a blood coagulation factor concentration greater than 5% of normal is needed. FVIII levels in normal humans are about 150-200 ng/ml plasma, but may be less (e.g., range of about 100-150 ng/ml) or greater (e.g., range of about 200-300 ng/ml) and still considered normal due to functioning clotting as determined, for example, by an activated partial thromboplastin time (aPTT) one-stage clotting assay. Thus, a therapeutic effect can be achieved by expression of FVIII such that the total amount of FVIII in the subject/human is greater than 1% of the FVIII present in normal subjects/humans, e.g., 1% of 100-300 ng/ml.
[0164] With respect to treating such a hemophilic subject, a typical dose is at least 1.times.10.sup.10 vector genomes (vg) per kilogram (vg/kg) of the weight of the subject, or between about 1.times.10.sup.10 to 1.times.10.sup.11 vg/kg of the weight of the subject, or between about 1.times.10.sup.11 to 1.times.10.sup.12 vg/kg of the weight of the subject, or between about 1.times.10.sup.12 to 1.times.10.sup.13 vg/kg of the weight of the subject, to achieve a desired therapeutic effect. AAV vector doses can be at a level, typically at the lower end of the dose spectrum, such that there is not a substantial immune response against the FVIII or AAV vector.
[0165] The doses of an "effective amount" or "sufficient amount" for treatment (e.g., to ameliorate or to provide a therapeutic benefit or improvement) typically are effective to provide a response to one, multiple or all adverse symptoms, consequences or complications of the disease, one or more adverse symptoms, disorders, illnesses, pathologies, or complications, for example, caused by or associated with the disease, to a measurable extent, although decreasing, reducing, inhibiting, suppressing, limiting or controlling progression or worsening of the disease is a satisfactory outcome.
[0166] An effective amount or a sufficient amount can but need not be provided in a single administration, may require multiple administrations, and, can but need not be, administered alone or in combination with another composition (e.g., agent), treatment, protocol or therapeutic regimen. For example, the amount may be proportionally increased as indicated by the need of the subject, type, status and severity of the disease treated or side effects (if any) of treatment. In addition, an effective amount or a sufficient amount need not be effective or sufficient if given in single or multiple doses without a second composition (e.g., another drug or agent), treatment, protocol or therapeutic regimen, since additional doses, amounts or duration above and beyond such doses, or additional compositions (e.g., drugs or agents), treatments, protocols or therapeutic regimens may be included in order to be considered effective or sufficient in a given subject. Amounts considered effective also include amounts that result in a reduction of the use of another treatment, therapeutic regimen or protocol, such as administration of recombinant clotting factor protein (e.g., FVIII) for treatment of a clotting disorder (e.g., hemophilia A).
[0167] Accordingly, methods and uses of the invention also include, among other things, methods and uses that result in a reduced need or use of another compound, agent, drug, therapeutic regimen, treatment protocol, process, or remedy. For example, for a blood clotting disease, a method or use of the invention has a therapeutic benefit if in a given subject a less frequent or reduced dose or elimination of administration of a recombinant clotting factor protein to supplement for the deficient or defective (abnormal or mutant) endogenous clotting factor in the subject. Thus, in accordance with the invention, methods and uses of reducing need or use of another treatment or therapy are provided.
[0168] An effective amount or a sufficient amount need not be effective in each and every subject treated, nor a majority of treated subjects in a given group or population. An effective amount or a sufficient amount means effectiveness or sufficiency in a particular subject, not a group or the general population. As is typical for such methods, some subjects will exhibit a greater response, or less or no response to a given treatment method or use.
[0169] The term "ameliorate" means a detectable or measurable improvement in a subject's disease or symptom thereof, or an underlying cellular response. A detectable or measurable improvement includes a subjective or objective decrease, reduction, inhibition, suppression, limit or control in the occurrence, frequency, severity, progression, or duration of the disease, or complication caused by or associated with the disease, or an improvement in a symptom or an underlying cause or a consequence of the disease, or a reversal of the disease. For HemA, an effective amount would be an amount that reduces frequency or severity of acute bleeding episodes in a subject, for example, or an amount that reduces clotting time as measured by a clotting assay, for example.
[0170] Accordingly, pharmaceutical compositions of the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended therapeutic purpose. Determining a therapeutically effective dose is well within the capability of a skilled medical practitioner using the techniques and guidance provided in the invention.
[0171] Therapeutic doses will depend on, among other factors, the age and general condition of the subject, the severity of the aberrant blood coagulation phenotype, and the strength of the control sequences regulating the expression levels of CpG reduced nucleic acid variants encoding FVIII. Thus, a therapeutically effective amount in humans will fall in a relatively broad range that may be determined by a medical practitioner based on the response of an individual patient to vector-based FVIII treatment. Such doses may be alone or in combination with an immunosuppressive agent or drug.
[0172] Compositions such as pharmaceutical compositions may be delivered to a subject, so as to allow production of a biologically active protein (e.g., Factor VIII (FVIII) encoded by CpG reduced nucleic acid variant) or by inducing continuous expression of the FVIII transgene in vivo by gene- and or cell-based therapies or by ex-vivo modification of the patient's or donor's cells. In a particular embodiment, pharmaceutical compositions comprising sufficient genetic material to enable a recipient to produce a therapeutically effective amount of a FVIII polypeptide can influence hemostasis in the subject.
[0173] The compositions may be administered alone. In certain embodiments, CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle provides a therapeutic effect without an immunosuppressive agent. The therapeutic effect of FVIII optionally is sustained for a period of time, e.g., 2-4, 4-6, 6-8, 8-10, 10-14, 14-20, 20-25, 25-30, or 30-50 days or more, for example, 50-75, 75-100, 100-150, 150-200 days or more without administering an immunosuppressive agent. Accordingly, in certain embodiments CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle provide a therapeutic effect without administering an immunosuppressive agent for a period of time.
[0174] The compositions may be administered in combination with at least one other agent. In certain embodiments, CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle are administered in conjunction with one or more immunosuppressive agents prior to, substantially at the same time or after administering a CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle. In certain embodiments, CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle are administered in conjunction with one or more immunosuppressive agents after a period of time following administering a CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle, e.g., 1-12, 12-24 or 24-48 hours, or 2-4, 4-6, 6-8, 8-10, 10-14, 14-20, 20-25, 25-30, 30-50, or more than 50 days following administering a CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle. Such administration of immunosuppressive agents after a period of time following administering a CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle if there is a decrease in FVIII after the initial expression levels for a period of time, e.g., 20-25, 25-30, 30-50, 50-75, 75-100, 100-150, 150-200 or more than 200 days following administering a CpG reduced nucleic acid variant encoding FVIII, vector, expression vector/recombinant vector (e.g., rAAV), or recombinant virus particle.
[0175] In certain embodiments, an immunosuppressive agent is an anti-inflammatory agent. In certain embodiments, an immunosuppressive agent is a steroid. In certain embodiments, an immunosuppressive agent is cyclosporine (e.g., cyclosporine A), mycophenolate, Rituximab or a derivative thereof. Additional particular agents include a stabilizing compound.
[0176] Compositions may be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents (e.g., co-factors) which influence hemostasis.
[0177] Factor VIII, alone or in combination with other agents may be administered or contacted or directly infused into a patient in an appropriate biological carrier as described herein. Vectors and expression vectors of the invention comprising a CpG reduced nucleic acid variant encoding FVIII, may be administered to a patient by a variety of means to achieve and optionally maintain for a period of time a prophylactically and/or therapeutically effective level of FVIII polypeptide. One of skill in the art could readily determine specific protocols for using the FVIII encoding expression vectors of the invention for the therapeutic treatment of a particular patient.
[0178] Protocols for the generation of adenoviral vectors and administration to patients have been described in U.S. Pat. Nos. 5,998,205; 6,228,646; 6,093,699; 6,100,242; and International Patent Application Nos. WO 94/17810 and WO 94/23744, which are incorporated herein by reference in their entirety. In particular, for example, AAV vectors are employed to deliver Factor VIII (FVIII) encoded by CpG reduced nucleic acid variants to a patient in need thereof.
[0179] Factor VIII (FVIII) encoded by CpG reduced nucleic acid variants delivered by way of AAVvectors of the invention may be administered to a patient by any means known.
[0180] Methods and uses of the invention include delivery and administration systemically, regionally or locally, or by any route, for example, by injection or infusion. Delivery of the pharmaceutical compositions in vivo may generally be accomplished via injection using a conventional syringe, although other delivery methods such as convection-enhanced delivery are envisioned (See e.g., U.S. Pat. No. 5,720,720). For example, compositions may be delivered subcutaneously, epidermally, intradermally, intrathecally, intraorbitally, intramucosally, intraperitoneally, intravenously, intra-pleurally, intraarterially, orally, intrahepatically, via the portal vein, or intramuscularly. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications. A clinician specializing in the treatment of patients with blood coagulation disorders may determine the optimal route for administration of the adenoviral-associated vectors comprising CpG reduced nucleic acid variants encoding FVIII based on a number of criteria, including, but not limited to: the condition of the patient and the purpose of the treatment (e.g., enhanced or reduced blood coagulation).
[0181] Invention methods and uses can be combined with any compound, agent, drug, treatment or other therapeutic regimen or protocol having a desired therapeutic, beneficial, additive, synergistic or complementary activity or effect. Exemplary combination compositions and treatments include second actives, such as, biologics (proteins), agents (e.g., immunosuppressive agents) and drugs. Such biologics (proteins), agents, drugs, treatments and therapies can be administered or performed prior to, substantially contemporaneously with or following any other method or use of the invention, for example, a therapeutic method of treating a subject for a blood clotting disease such as HemA.
[0182] The compound, agent, drug, treatment or other therapeutic regimen or protocol can be administered as a combination composition, or administered separately, such as concurrently or in series or sequentially (prior to or following) delivery or administration of a nucleic acid, vector, recombinant vector (e.g., rAAV), or recombinant virus particle. The invention therefore provides combinations in which a method or use of the invention is in a combination with any compound, agent, drug, therapeutic regimen, treatment protocol, process, remedy or composition, set forth herein or known to one of skill in the art. The compound, agent, drug, therapeutic regimen, treatment protocol, process, remedy or composition can be administered or performed prior to, substantially contemporaneously with or following administration of a nucleic acid, vector, recombinant vector (e.g., rAAV), or recombinant virus particle of the invention, to a subject.
[0183] The invention is useful in animals including human and veterinary medical applications. Suitable subjects therefore include mammals, such as humans, as well as non-human mammals. The term "subject" refers to an animal, typically a mammal, such as humans, non-human primates (apes, gibbons, gorillas, chimpanzees, orangutans, macaques), a domestic animal (dogs and cats), a farm animal (poultry such as chickens and ducks, horses, cows, goats, sheep, pigs), and experimental animals (mouse, rat, rabbit, guinea pig). Human subjects include fetal, neonatal, infant, juvenile and adult subjects. Subjects include animal disease models, for example, mouse and other animal models of blood clotting diseases such as HemA and others known to those of skill in the art.
[0184] Subjects appropriate for treatment in accordance with the invention include those having or at risk of producing an insufficient amount or having a deficiency in a functional gene product (e.g., FVIII protein), or produce an aberrant, partially functional or non-functional gene product (e.g., FVIII protein), which can lead to disease. Subjects appropriate for treatment in accordance with the invention also include those having or at risk of producing an aberrant, or defective (mutant) gene product (protein) that leads to a disease such that reducing amounts, expression or function of the aberrant, or defective (mutant) gene product (protein) would lead to treatment of the disease, or reduce one or more symptoms or ameliorate the disease. Target subjects therefore include subjects having aberrant, insufficient or absent blood clotting factor production, such as hemophiliacs (e.g., hemophilia A).
[0185] Subjects can be tested for an immune response, e.g., antibodies against AAV. Candidate hemophilia subjects can therefore be screened prior to treatment according to a method of the invention. Subjects also can be tested for antibodies against AAV after treatment, and optionally monitored for a period of time after treatment. Subjects developing antibodies can be treated with an immunosuppressive agent, or can be administered one or more additional amounts of AAV vector.
[0186] Subjects appropriate for treatment in accordance with the invention also include those having or at risk of producing antibodies against AAV. AAV vectors can be administered or delivered to such subjects using several techniques. For example, empty capsid AAV (i.e., AAV lacking a FVIII nucleic acid) can be delivered to bind to the AAV antibodies in the subject thereby allowing the AAV vector bearing CpG reduced nucleic acid variant encoding FVIII to transform cells of the subject. Amounts of empty capsid AAV to administer can be calibrated based upon the amount of AAV antibodies produced in a particular subject. Empty capsid can be of any AAV serotype, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, Rh10, Rh74 or AAV-2i8.
[0187] Alternatively or in addition to, AAV vector can be delivered by direct intramuscular injection (e.g., one or more slow-twitch fibers of a muscle). In another alternative, a catheter introduced into the femoral artery can be used to delivery AAV vectors to liver via the hepatic artery. Non-surgical means can also be employed, such as endoscopic retrograde cholangiopancreatography (ERCP), to deliver AAV vectors directly to the liver, thereby bypassing the bloodstream and AAV antibodies. Other ductal systems, such as the ducts of the submandibular gland, can also be used as portals for delivering AAV vectors into a subject that develops or has preexisting anti-AAV antibodies.
[0188] Administration or in vivo delivery to a subject can be performed prior to development of an adverse symptom, condition, complication, etc. caused by or associated with the disease. For example, a screen (e.g., genetic) can be used to identify such subjects as candidates for invention compositions, methods and uses. Such subjects therefore include those screened positive for an insufficient amount or a deficiency in a functional gene product (e.g., FVIII protein), or that produce an aberrant, partially functional or non-functional gene product (e.g., FVIII protein).
[0189] Administration or in vivo delivery to a subject in accordance with the methods and uses of the invention as disclosed herein can be practiced within 1-2, 2-4, 4-12, 12-24 or 24-72 hours after a subject has been identified as having the disease targeted for treatment, has one or more symptoms of the disease, or has been screened and is identified as positive as set forth herein even though the subject does not have one or more symptoms of the disease. Of course, methods and uses of the invention can be practiced 1-7, 7-14, 14-21, 21-48 or more days, months or years after a subject has been identified as having the disease targeted for treatment, has one or more symptoms of the disease, or has been screened and is identified as positive as set forth herein.
[0190] A "unit dosage form" as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity optionally in association with a pharmaceutical carrier (excipient, diluent, vehicle or filling agent) which, when administered in one or more doses, is calculated to produce a desired effect (e.g., prophylactic or therapeutic effect). Unit dosage forms may be within, for example, ampules and vials, which may include a liquid composition, or a composition in a freeze-dried or lyophilized state; a sterile liquid carrier, for example, can be added prior to administration or delivery in vivo. Individual unit dosage forms can be included in multi-dose kits or containers. Recombinant vector (e.g., rAAV) sequences, recombinant virus particles, and pharmaceutical compositions thereof can be packaged in single or multiple unit dosage form for ease of administration and uniformity of dosage.
[0191] Subjects can be tested for FVIII amounts or FVIII activity to determine if such subjects are appropriate for treatment according to a method of the invention. Candidate hemophilia subjects can be tested for FVIII amounts or activity prior to treatment according to a method of the invention. Subjects also can be tested for amounts of FVIII or FVIII activity after treatment according to a method of the invention. Such treated subjects can be monitored after treatment for FVIII amounts or FVIII activity, periodically, e.g., every 1-4 weeks or 1-6 months.
[0192] Subjects can be tested for one or more liver enzymes for an adverse response or to determine if such subjects are appropriate for treatment according to a method of the invention. Candidate hemophilia subjects can therefore be screened for amounts of one or more liver enzymes prior to treatment according to a method of the invention. Subjects also can be tested for amounts of one or more liver enzymes after treatment according to a method of the invention. Such treated subjects can be monitored after treatment for elevated liver enzymes, periodically, e.g., every 1-4 weeks or 1-6 months.
[0193] Exemplary liver enzymes include alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), but other enzymes indicative of liver damage can also be monitored. A normal level of these enzymes in the circulation is typically defined as a range that has an upper level, above which the enzyme level is considered elevated, and therefore indicative of liver damage. A normal range depends in part on the standards used by the clinical laboratory conducting the assay.
[0194] Subjects can be monitored for bleeding episodes to determine if such subjects are eligible for or responding to treatment, and/or the amount or duration of responsiveness. Subjects can be monitored for bleeding episodes to determine if such subjects are in need of an additional treatment, e.g., a subsequent AAV vector administration or administration of an immunosuppressive agent, or more frequent monitoring. Hemophilia subjects can therefore be monitored for bleeding episodes prior to and after treatment according to a method of the invention. Subjects also can be tested for frequency and severity of bleeding episodes during or after treatment according to a method of the invention.
[0195] The invention provides kits with packaging material and one or more components therein. A kit typically includes a label or packaging insert including a description of the components or instructions for use in vitro, in vivo, or ex vivo, of the components therein. A kit can contain a collection of such components, e.g., a nucleic acid, recombinant vector, virus (e.g., AAV) vector, or virus particle and optionally a second active, such as another compound, agent, drug or composition.
[0196] A kit refers to a physical structure housing one or more components of the kit. Packaging material can maintain the components sterilely, and can be made of material commonly used for such purposes (e.g., paper, corrugated fiber, glass, plastic, foil, ampules, vials, tubes, etc.).
[0197] Labels or inserts can include identifying information of one or more components therein, dose amounts, clinical pharmacology of the active ingredient(s) including mechanism of action, pharmacokinetics and pharmacodynamics. Labels or inserts can include information identifying manufacturer, lot numbers, manufacture location and date, expiration dates. Labels or inserts can include information identifying manufacturer information, lot numbers, manufacturer location and date. Labels or inserts can include information on a disease for which a kit component may be used. Labels or inserts can include instructions for the clinician or subject for using one or more of the kit components in a method, use, or treatment protocol or therapeutic regimen. Instructions can include dosage amounts, frequency or duration, and instructions for practicing any of the methods, uses, treatment protocols or prophylactic or therapeutic regimes described herein.
[0198] Labels or inserts can include information on any benefit that a component may provide, such as a prophylactic or therapeutic benefit. Labels or inserts can include information on potential adverse side effects, complications or reactions, such as warnings to the subject or clinician regarding situations where it would not be appropriate to use a particular composition. Adverse side effects or complications could also occur when the subject has, will be or is currently taking one or more other medications that may be incompatible with the composition, or the subject has, will be or is currently undergoing another treatment protocol or therapeutic regimen which would be incompatible with the composition and, therefore, instructions could include information regarding such incompatibilities.
[0199] Labels or inserts include "printed matter," e.g., paper or cardboard, or separate or affixed to a component, a kit or packing material (e.g., a box), or attached to an ampule, tube or vial containing a kit component. Labels or inserts can additionally include a computer readable medium, such as a bar-coded printed label, a disk, optical disk such as CD- or DVD-ROM/RAM, DVD, MP3, magnetic tape, or an electrical storage media such as RAM and ROM or hybrids of these such as magnetic/optical storage media, FLASH media or memory type cards.
[0200] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein.
[0201] All patents, patent applications, publications, and other references, GenBank citations and ATCC citations cited herein are incorporated by reference in their entirety. In case of conflict, the specification, including definitions, will control.
[0202] Various terms relating to the biological molecules of the invention are used hereinabove and also throughout the specification and claims.
[0203] All of the features disclosed herein may be combined in any combination. Each feature disclosed in the specification may be replaced by an alternative feature serving a same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, disclosed features (e.g., CpG reduced nucleic acid variants encoding FVIII, vector, plasmid, expression/recombinant vector (e.g., rAAV) sequence, or recombinant virus particle) are an example of a genus of equivalent or similar features.
[0204] As used herein, the singular forms "a", "and," and "the" include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to "a nucleic acid" includes a plurality of such nucleic acids, reference to "a vector" includes a plurality of such vectors, and reference to "a virus" or "particle" includes a plurality of such viruses/particles.
[0205] As used herein, all numerical values or numerical ranges include integers within such ranges and fractions of the values or the integers within ranges unless the context clearly indicates otherwise. Thus, to illustrate, reference to 80% or more identity, includes 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% etc., as well as 81.1%, 81.2%, 81.3%, 81.4%, 81.5%, etc., 82.1%, 82.2%, 82.3%, 82.4%, 82.5%, etc., and so forth.
[0206] Reference to an integer with more (greater) or less than includes any number greater or less than the reference number, respectively. Thus, for example, a reference to less than 100, includes 99, 98, 97, etc. all the way down to the number one (1); and less than 10, includes 9, 8, 7, etc. all the way down to the number one (1).
[0207] As used herein, all numerical values or ranges include fractions of the values and integers within such ranges and fractions of the integers within such ranges unless the context clearly indicates otherwise. Thus, to illustrate, reference to a numerical range, such as 1-10 includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, as well as 1.1, 1.2, 1.3, 1.4, 1.5, etc., and so forth. Reference to a range of 1-50 therefore includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, etc., up to and including 50, as well as 1.1, 1.2, 1.3, 1.4, 1.5, etc., 2.1, 2.2, 2.3, 2.4, 2.5, etc., and so forth.
[0208] Reference to a series of ranges includes ranges which combine the values of the boundaries of different ranges within the series. Thus, to illustrate reference to a series of ranges, for example, of 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-75, 75-100, 100-150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-750, 750-850, includes ranges of 1-20, 1-30, 1-40, 1-50, 1-60, 10-30, 10-40, 10-50, 10-60, 10-70, 10-80, 20-40, 20-50, 20-60, 20-70, 20-80, 20-90, 50-75, 50-100, 50-150, 50-200, 50-250, 100-200, 100-250, 100-300, 100-350, 100-400, 100-500, 150-250, 150-300, 150-350, 150-400, 150-450, 150-500, etc.
[0209] The invention is generally disclosed herein using affirmative language to describe the numerous embodiments and aspects. The invention also specifically includes embodiments in which particular subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, or procedures. For example, in certain embodiments or aspects of the invention, materials and/or method steps are excluded. Thus, even though the invention is generally not expressed herein in terms of what the invention does not include aspects that are not expressly excluded in the invention are nevertheless disclosed herein.
[0210] A number of embodiments of the invention have been described. Nevertheless, one skilled in the art, without departing from the spirit and scope of the invention, can make various changes and modifications of the invention to adapt it to various usages and conditions. Accordingly, the following examples are intended to illustrate but not limit the scope of the invention claimed in any way.
Example 1
[0211] Disclosed herein are gene constructs for use in gene therapy methods to treat hemophilia. In addition, these factor VIII (FVIII) encoding gene constructs may be useful in vitro in the setting of protein expression systems, to produce recombinant FVIII protein for administration. Each gene construct can optionally include one or more of an expression control (e.g., promoter) element, factor VIII gene and other regulatory features required for expression of the gene, such as introns, ITRs, stop codons, poly A signals, etc.
Example 2
CpG Reduced Factor VIII DNA Sequences and Certain Vector Constructs, Plasmid Constructs and AAV Vector Producing Cell Lines.
[0212] 18 different CpG reduced nucleic acid variants encoding FVIII (SEQ ID NOs: 1-18) were produced and assessed in expression assays. CpG reduced human FVIII cDNA constructs were generated with a mutant transthyretin (TTRmut) promoter (SEQ ID NO:22).
[0213] AAV-SPK-8011 expression cassette has the CpG reduced FVIII-X07 nucleic acid sequence and the LK03 capsid for packaging. LK03 capsid has substantial homology to AAV3, a non-pathogenic, naturally replication deficient single-stranded DNA virus.
[0214] Packaging plasmid pLK03 is a 7,484 bp plasmid construct that carries the AAV2 Rep and AAV-LK03 Cap genes under the control of AAV2 p5 promoter, bacterial origin of replication and gene conferring resistance to Kanamycin in bacterial cells. In this construct, the p5 rep promoter has been moved 3' of the cap gene to reduce the potential for formation of wild-type or pseudo wild type AAV species, and to increase yield of the vector.
[0215] The cloned DNA for gene transfer is a gene expression cassette, packaged into the AAV-LK03 capsid as a single-stranded genome, encoding human coagulation factor VIII (hFVIII) under control of a liver-specific promoter. The expression plasmid is referred to as pAAV-TTRmut-hFVIII-X07. It was modified by the introduction of 4 point mutations in the TTR promoter, and the coding region optimized to increase expression of human FVIII. The AAV expression cassette contains the following elements:
[0216] AAV2 ITR
[0217] Transthyretin (TTR) promoter: A liver-specific transthyretin (TTR) promoter with 4 point mutations that increase gene expression compared with the wild type promoter (Costa et al. 1991)
[0218] Synthetic intron: Derived from human elongation factor EF-1 alpha gene
[0219] FVIII coding sequence: B-domain deleted, codon-optimized human FVIII coding sequence.
[0220] Rabbit beta globin poly A signal sequence (Levitt et al. 1989).
[0221] AAV2 ITR
[0222] Three DNA plasmid constructs are used to transfect human embryo kidney 293 cells to produce the SPK-8011 vector by a helper virus-free process (Matsushita et al. 1998):
[0223] The gene cassette (hFVIII coding sequence and associated regulatory elements) is cloned into a plasmid to give the vector plasmid, pAAV-TTRmut-hFVIII-X07.
[0224] The AAV viral genome (rep and cap) lacking the viral ITRs is cloned into a plasmid to give the AAV packaging plasmid, pLK03, providing the required AAV2 rep and AAV-LK03 cap genes in trans for AAV vector packaging. The viral promoter (p5) for the rep gene was relocated in the plasmid in order to prevent formation of replication competent AAV by non-homologous recombination.
[0225] Three genes from adenovirus-2 are cloned into a third plasmid (pCCVC-AD2HP) providing the necessary helper virus genes for vector production. Plasmid pCCVC-AD2HPv2 is an 11,832 bp plasmid construct that carries three adenovirus genes, E2A, E4 and the VA RNAs to provide `helper` functions necessary for replication and encapsidation of AAV vector. Plasmid pCCVC-AD2HPv2 is a derivative of pCCVC-AD2HP in which the DrdI-DrdI 1882 bp restriction fragment containing the Amp.sup.R gene and part of the pUC ori sequence has been removed and replaced with the DrdI-DrdI fragment from plasmid pAAV2-hRPE65v2 containing the entire Kan.sup.R gene and part of the pUC ori sequence.
[0226] The cell substrate used for AAV vector production is a derivative of primary human embryonic kidney cells (HEK) 293. The HEK293 cell line is a permanent line transformed by sheared human adenovirus type 5 (Ad5) DNA (Graham et al. 1977). The Working Cell Bank is derived from a characterized HEK293 Master Cell Bank from the Center for Cellular and Molecular Therapeutics (CCMT) at The Children's Hospital of Philadelphia (CHOP).
Example 3
Evaluation of AAV-hFVIII Vectors in Mice.
[0227] FVIII transgene constructs (hFVIII) were packaged into adeno-associated viral (AAV) vectors and delivered to mice. In brief, groups of 4 hemophilia A/CD4.sup.-/- mice were injected at 8-10 weeks of age with 4.times.10.sup.12 vg/kg of AAV-hFVIII vectors. Immunodeficient mice were used to enable quantification of FVIII plasma levels, as the inhibitory antibodies to FVIII that are generated in normal mice prevent long-term analysis of FVIII expression.
[0228] Levels of FVIII expression were determined and in several instances were higher than expression provided by the CO3 sequence (SEQ ID NO:21) encoding hFVIII. As shown in FIG. 2, vectors including AAV-SPK-8005 expressed higher hFVIII levels compared to reference AAV-CO3vector. The data surprisingly reveal that several of the DNA sequences expressed higher levels of FVIII than a codon-optimized sequence (CO3, SEQ ID NO:21) encoding FVIII.
[0229] AAV-Spark8005 (also designated SPK-8005), rather than AAV-LK03-hFVIII (also designated AAV-LK03-hFVIII and SPK-8011), was used in this study to ensure efficient transduction (i.e.; hFVIII transgene expression) of mouse hepatocytes. Thus, this study was designed to evaluate the safety of sustained hFVIII expression, and not the safety of the AAV-LK03 capsid.
[0230] The three doses of AAV-SPK-8005-hFVIII used (4.times.10.sup.10, 8.times.10.sup.10, 1.6.times.10.sup.11 vg/mouse; approximately 1.6.times.10.sup.12, 3.2.times.10.sup.12, 6.4.times.10.sup.12 vg/kg, based on mouse weight of 25 g) were chosen to generate approximately 5-25, 25-75, and 50-150% hFVIII antigen levels, respectively. The study involved 350 male NOD/SCID mice (Table 1) and was divided into two sub-studies: Main study (n=270) and Bioanalysis study (n=80). In the Main study, 60 mice were treated with either vehicle or one of the three doses of vector (4.times.10.sup.10, 8.times.10.sup.10, 1.6.times.10.sup.11 vg/mouse). Ten mice were used for day 29/30 assessments of clinical chemistries, 10 were used for hematology, and coagulation assessments were made on the remaining 10 animals. These 30 mice were sacrificed on day 29 or 30. The other group of 30 mice that were treated with either vehicle or one of the three vector doses was handled similarly at the day 87 timepoint, and they were sacrificed on day 87. Upon termination, gross pathology observations were performed on all animals in the Main study and comprehensive histopathology was performed on 10 animals/cohort per timepoint (hematology subset). Another cohort of 30 naive mice was used for background control clinical pathology measurements.
[0231] In the Bioanalysis study, 20 mice were injected with vehicle or one of the three vector doses. These animals were bled prior to test article injection and serially on days 15, 30, 60, and 87. The intended volume of plasma collected for each sample should have been sufficient for determination of both hFVIII antigen and D-dimer levels. However, due to insufficient plasma volume collections, only a single assay was performed on individual mouse plasma at all timepoints, with the exception of the terminal timepoint. Thus, some mice were evaluated for circulating levels of hFVIII antigen and others for D-dimer levels. Since more plasma is required to perform the hFVIII ELISA (minimum of 50 uL) than the D-dimer ELISA (minimum of 20 uL), the choice of assay was dictated by the volume of plasma collected.
TABLE-US-00001 TABLE 1 Mouse study design No. of Mice Dose Dose Dose Main Study Group Level Volume Concentration Day 29/30 Day 87 Bioanalysis No. Test Material (vg/mouse) (.mu.L/mouse) (vg/mL) Subset Subset Study.sup.a Naive.sup.b None Na na na na na na 1 Control Article 0 200 0 30 30 20 2 AAV-SPK-8005.sup.c 4 .times. 10.sup.10 200 2 .times. 10.sup.11 30 30 20 3 AAV-SPK-8005.sup.c 8 .times. 10.sup.10 200 4 .times. 10.sup.11 30 30 20 4 AAV-SPK-8005.sup.c 1.6 .times. 10.sup.11 200 8 .times. 10.sup.11 30 30 20 .sup.aBlood was collected from all mice at predose and on Days 15, 30, 60, and 87 of study. .sup.bBlood was collected from 30 total mice (10 naive mice per clinical pathology evaluation) Clinical Pathology-Main Study for background control levels. .sup.cAAV-SPK-8005-hFVIII is also designated SPK-8005 na = Not applicable
[0232] Plasma FVIII Antigen Levels:
[0233] As shown in FIGS. 3A-3B, a dose-response was observed in the circulating levels of hFVIII antigen over the course of 87 days. At the low dose of vector (4.times.10.sup.10 vg/mouse), average hFVIII levels of 64+/-49 ng/ml were seen at day 60 post-injection, and 115+/-60 ng/ml and 273+/58 ng/ml were seen at the mid and high doses, respectively. These antigen levels represent 43, 77, and 182% of normal hFVIII antigen (150 ng/mL is equivalent to 100%). Therefore, in hemostatically normal NOD/SCID mice, total (mouse+human) FVIII levels of 143%, 177% and 282% would be expected at the three dose levels, respectively. Thus, using AAV-SPK-8005-hFVIII, sustained and supraphysiological levels of hFVIII were observed in the plasma of immunodeficient mice, making this study appropriate for assessing safety of long-term expression of hFVIII.
[0234] D-Dimer Levels:
[0235] In order to assess the potential for thrombogenesis due to sustained expression of hFVIII in hemostatically normal, but immunodeficient mice, D-dimer antigen levels were measured. The average predose level of D-dimers among 50 naive mice was 8.8+/-2.9 ng/ml. The data in FIG. 3C represent average D-dimer levels in the four dose cohorts. There was no statistical difference in D-dimer levels between cohorts at all five timepoints (1 way ANOVA p=0.46). It was concluded that sustained expression of hFVIII at levels has high as 194% of normal (day 30), and for at least 87 days, is not associated with an elevated level of D-dimers in this strain of mice.
[0236] Clinical and Anatomical Pathology:
[0237] There were nine animals (6 Main study and 3 Bioanalysis study) either euthanized early or found dead during the course of this study.
[0238] The six Main study animals were evaluated histopathologically, and malignant lymphomas were observed in four of these six mice, including one vehicle control-injected mouse. (Group 1 animal 7729, Group 3 animal 7871, Group 3 animal 7880, and Group 3 animal 7874). The biological significance of the neoplastic findings was considered to be equivocal. Statistical significance of individual group comparisons to the control group was considered unlikely. A high spontaneous frequency of thymic lymphomas, as well as neoplastic enlargements of spleens and lymph nodes are known to occur in this strain (Prochazka, Gaskins, Shultz, & Leiter, 1992).
[0239] Non-neoplastic findings related to the test article were not present in these six mice. The microscopic findings observed were considered incidental and of the nature commonly observed in this strain and age of mice, and/or were of similar incidence and severity in control and treated animals and, therefore, were considered unrelated to administration of AAV-SPK-8005-hFVIII.
[0240] The remaining 234 mice included in the Main study survived to the scheduled timepoints. No adverse or AAV-SPK-8005-hFVIII-related clinical observations occurred in the mice throughout the study. All clinical observations of scab formation, fur loss or thin cover and bent tail were considered unrelated to administration of AAV-SPK-8005-hFVIII, because these observations are common in this mouse species and/or occurred across groups. Body weights and body weight gains were comparable among dose groups and unaffected by administration of AAV-SPK-8005-hFVIII. An apparent significant (p<0.05 or p<0.01) reduction in Group 4 mean body weights from Day 32 to study completion was attributed to redistribution of the group weights (some heavier animals euthanized in Group 4 as compared to Group 1) after the Day 29/30 euthanasia, and was not related to AAV-SPK-8005-hFVIII administration. Group 4 mice gained weight in a comparable manner to the other groups throughout the study. All other significant (p<0.05 or p<0.01) differences in mean body weights or body weight gains were not considered related to AAV-SPK-8005-hFVIII, because the increases and decreases were sporadic with no dose-dependence and were considered related to normal fluctuations in mouse body weights.
[0241] Clinical pathology was performed on the Main study animals. Clinical chemistry parameters were analyzed on 10 mice/cohort per time point (day 29/30 and day 87). Coagulation assessments were performed on another group of 10 mice/cohort, and hematology measurements were made on the other group of 10 mice/cohort. Gross pathology was performed on all animals and histopathology was performed on the group of 10 mice utilized for hematology assessments. There were no AAV-SPK-8005-hFVIII-related changes in hematology or clinical chemistry parameters in mice from either the Day 29/30 and Day 87 euthanasia timepoints. In general, where significant (p<0.05 or p<0.01) differences in hematology and clinical chemistry parameters as compared to the control values existed, the differences were not related to AAV-SPK-8005-hFVIII, because corresponding parameters were unaffected and the observations were not dose-dependent. All changes in clinical chemistry and hematology parameters were sporadic, attributed to a single animal, of a magnitude of change commonly observed in laboratory animals and/or within the clinical pathology parameters assessed for the naive animals.
[0242] Changes in coagulation parameters were observed in mice administered AAV-SPK-8005-hFVIII. A dose-dependent reduction in mean aPTT was observed at the Day 29/30 timepoint, with Group 3 and 4 values significantly (p<0.05 or p<0.01) different from control values. A significant (p<0.01) reduction in mean aPTT values was also observed in all AAV-SPK-8005-hFVIII groups as compared to the control group at the Day 87 timepoint. Reduced mean prothrombin time was also observed in the AAV-SPK-8005-hFVIII groups as compared to the control group at Days 29/30 and 87, however the reduction was only statistically significant (p<0.05 or p<0.01) for Groups 2 and 3 on day 29/30 and Group 4 on Day 87. Mean fibrinogen values were comparable among dose groups throughout the study. These effects are considered related to the pharmacologic effect of AAV-SPK-8005-hFVIII, and not considered adverse. As shown in FIGS. 3A-3C and discussed above, all mice injected with AAV-SPK-8005-hFVIII expressed hFVIII antigen and thus, supraphysiological levels of total FVIII are predicted to circulate in the plasma of these hemostatically normal mice. These levels would be expected to have an effect on coagulation parameters, such as reduced aPTT and prothrombin times.
[0243] A group of 120 Main study mice (30/cohort) were sacrificed on day 29 or 30 of the study. No gross pathology observations related to AAV-SPK-8005-hFVIII were made on these mice. Analysis of organ weights revealed that the absolute weights of heart and kidney differed between the 10 control and vector-injected animals sacrificed on day 29; however, this was not observed between the 10 control and vector-injected animals sacrificed on day 30, so the significance of this finding is unclear. There was no microscopic correlate to the statistically significant increase in heart and kidney absolute weights (and these weights as a percent of brain weight) observed on day 29. Furthermore, heart and kidney weight as a percent of body weight were not significantly different from controls. There was a significant increase in mean absolute lung weight in Group 2 animals, but this was considered incidental and unrelated AAV-SPK-8005-hFVIII because there was no dose dependence. No other organ weight changes were noted at Day 29/30.
[0244] Upon histopathological analyses on Day 29/30, there were five animals with neoplastic findings. A bronchioloalveolar adenoma was observed in one Group 2 animal (7824). Malignant lymphoma was observed in one Group 2 animal (7838), one Group 3 animal (7885), and one group 4 animal (7941). Adenoma was observed in stomach in one Group 4 animal (7942). No neoplastic findings were observed in Group 1. The biological significance of the neoplastic findings is considered to be equivocal. Statistical significance of individual group comparisons to the control group is unlikely. However, it is noteworthy that neoplastic findings were only observed in treated animals at Day 29/30. In the absence of historical control data for NOD SCID mice at a comparable age, these neoplastic findings are inconclusive.
[0245] No test article-related non-neoplastic microscopic findings were noted. The microscopic findings observed were considered incidental, of the nature commonly observed in this strain and age of mice, and/or were of similar incidence and severity in control and treated animals and, therefore, were considered unrelated to administration of AAV-SPK-8005-hFVIII.
[0246] Another group of 120 Main study mice (30/cohort) were sacrificed 87 days post-injection and analyzed in a similar manner. Although no gross pathology observations considered related to AAV-SPK-8005-hFVIII were seen, lesions were observed in four mice (one enlarged thymus not analyzed histologically, one enlarged thymus correlated to malignant lymphoma, one enlarged spleen not analyzed histologically, one discolored testis). In contrast to what was observed at day 29/30, decreased heart weights, not increased weights were observed. In addition, decreases in liver weights were seen. The statistically significant changes in heart weight were small and not clearly related to dose. The statistical significant change in absolute liver weight was small and the liver weights to body and brain weight were comparable among groups. Therefore the slight changes were interpreted as incidental and unrelated to administration of AAV-SPK-8005-hFVIII. No other organ weight changes were noted at Day 87.
[0247] Histopathology performed on mice on day 87 post-injection identified four animals with neoplastic findings. Malignant lymphoma was observed in one Group 2 animal (7808) and three Group 3 animals (7868, 7869 and 7870). No neoplastic findings were observed in Group 1. The biological significance of the neoplastic findings is considered to be equivocal. Statistical significance of individual group comparisons to the control group is unlikely. However, it is noteworthy that neoplastic findings were only observed in treated animals at Day 87. In the absence of historical control data for NOD SCID mice at a comparable age these neoplastic findings are inconclusive.
[0248] With regards to non-neoplastic changes, no test article-related microscopic findings were noted. The microscopic findings observed were considered incidental, of the nature commonly observed in this strain and age of mice, and/or were of similar incidence in control and treated animals and, therefore, were considered unrelated to administration of AAV-SPK-8005-hFVIII.
[0249] Conclusions:
[0250] A single administration of AAV-SPK-8005-hFVIII at doses of 4.times.10.sup.10, 8.times.10.sup.10, or 1.6.times.10.sup.11 vg/mouse, or control article, by intravenous injection to male NOD/SCID mice was well tolerated. AAV-SPK-8005-hFVIII did not result in any test article-related mortality, adverse clinical observations or changes in body weight. There were no toxicologically important differences in organ weights, hematology or coagulation parameters and no treatment-related gross pathology or histopathology findings in the male mice at Days 29/30 or Day 87. The reductions in mean aPTT and prothrombin time that were observed at both euthanasia timepoints were considered related to the supraphysiologic levels of FVIII that were expressed in these hemostatically normal mice, and were not adverse. Within the Main study (terminal evaluations), malignancies were observed in nine out of 60 vector-injected mice, or 15% of the animals. Seven of these nine mice had lymphomas, which were most commonly seen in lymph nodes. This immunodeficient mouse strain is known to have a high spontaneous frequency of lymphomas (Prochazka et al., 1992), and a life span of just 8.5 months. Thus, the frequency of tumors seen in this study is unlikely related to AAV-SPK-8005-hFVIII administration. The purpose of this study was to evaluate the safety of sustained expression of hFVIII over the course of approximately three months. It was not designed to evaluate the AAV-SPK capsid. AAV-SPK and an immunodeficient mouse strain were used to ensure high level expression of hFVIII. Administration of AAV-SPK-8005-hFVIII to NOD/SCID mice resulted in sustained and high levels of hFVIII. Thus, this study was appropriate for assessing the safety of long-term expression of hFVIII.
Example 4
Evaluation of AAV-SPK-8005 and AAV-SPK-8011 (LK03 Capsid, FVIII-X07 (SEQ ID NO: 7)) Vectors in Non-Human Primates (NHPs).
[0251] Based on the results in mice, FVIII transgene constructs packaged into adeno-associated viral (AAV) vectors were delivered to non-human primates (NHPs).
[0252] In brief, a dose-ranging study in male cynomolgus macaques administered a single intravenous infusion of AAV-SPK-8005 or AAV-SPK-8011 (LK03 capsid). Expression of hFVIII was evaluated over 8 weeks. The animal groups and dose levels of each are shown in FIG. 4.
[0253] NHPs received an intravenous infusion via the saphenous vein using a calibrated infusion pump over approximately 30 minutes. Macaques were prescreened for neutralizing antibodies against the AAV capsid. All treated animals were initially determined to have a <1:3 titer before vector administration. This was done to ensure successful hepatic transduction, as even low titers inhibit vector uptake by liver cells after systemic delivery (Jiang et al. 2006). All animals were also negative for the presence of neutralizing antibodies against FVIII before gene transfer.
[0254] Plasma levels of hFVIII were measured by a human-specific ELISA that does not detect the cynomolgus endogenous FVIII. All the animals in the study, with the exception of one macaque in the mid dose cohort, express hFVIII following vector delivery. Human factor VIII antigen levels peaked at around 1-2 weeks following vector administration. At one week after gene transfer, NHPs transduced with 2.times.10.sup.12 vg/kg of AAV-SPK-8005 expressed hFVIII antigen levels of 13.2.+-.3% (average.+-.standard error of the mean). At one week after gene transfer, average hFVIII levels in two of the three animals in the next treatment cohort (5.times.10.sup.12 vg/kg) were 27.+-.0.2%. Human FVIII could not be detected in the third macaque in that cohort at any time point. Upon re-testing of baseline plasma samples it was determined that this animal was in fact positive for the presence of anti-AAV antibodies and that the initially determined titer of <1:3 was incorrect. Finally, at the highest tested dose of 1.times.10.sup.13 vg/kg, peak hFVIII antigen levels of 54.1.+-.15.6% were observed after AAV infusion.
[0255] As anticipated by studies in NHPs expressing human FIX, human FVIII expression declined in approximately one third of the animals around week 4, concomitant with the appearance of inhibitor antibodies to hFVIII in these 3 macaques (labeled with a c symbol in FIG. 5). Development of species-specific antibodies to hFVIII has been previously documented in non-human primates, and is likely due to differences in several amino acid residues between the human transgene product and the endogenous cynomolgus FVIII (McIntosh, J. et al., Blood 121:3335-44 (2013)).
[0256] To assess potential thrombogenesis due to continuous expression of human FVIII, D-dimer antigen levels were measured in this study. It should be noted that reports on the clinical relevance or even the normal values of D-dimer antigen levels in cynomolgus macaques are scarce; as a reference, the normal range for D-dimers in humans is below 500 ng/ml. Since the animals express endogenous cynomolgus FVIII, production of hFVIII as a result of hepatic gene transfer will result in supraphysiological levels of FVIII activity.
[0257] The animal that was dosed at 5.times.10.sup.12 vg/kg but did not express human FVIII had a peak of 863 ng/ml two weeks after AAV infusion. The rest of the animals did not show any significant increase in D-dimer antigen levels compared to baseline values. Taken together, these results suggest that expression of human FVIII, at the levels targeted in this study, is not associated with an increased risk of thrombosis.
[0258] Four weeks after vector administration, no vector-related changes were apparent. Liver function tests showed normal values, with minor fluctuations that appeared to be unrelated to vector dose, as they were present prior to dosing in most cases (FIG. 6).
[0259] D-dimer levels up to week 5 are shown in FIG. 7. One animal in the high dose cohort had a slight (577 ng/ml), transient elevation in D-dimer levels one week after vector administration, when circulating human FVIII peaked at around 100%; the D-dimer levels rapidly returned to normal after this single elevate measurement. Notably, there was no correlation between D-dimer levels and hFVIII antigen levels (FIG. 7, bottom panels).
[0260] For AAV-SPK-8011 (LK03 capsid) vector, three cohorts of cynomolgus macaques (n=3) were treated with increasing doses of AAV-SPK-8011 (LK03 capsid) (2.times.10.sup.12, 6.times.10.sup.12 and 2.times.10.sup.13 (vg/kg); FIG. 4). Animals were monitored for clinical observations, body weights clinical pathology (clinical chemistry, hematology, coagulation, urinalysis). In addition, hFVIII antigen levels, FVIII inhibitory antibodies and D-dimer levels were assessed throughout the study.
[0261] The hFVIII antigen data is shown in FIG. 9. Average hFVIII antigen levels peaked around week 2-3 with 22.3.+-.6.2% hFVIII seen in the low dose cohort and 61.6.+-.15.7% and 153.+-.58.1% observed in the mid and high dose cohorts, respectively, using 150 ng/ml as the 100% normal hFVIII antigen level (FIGS. 9A-9D). Thus, the LK03 AAV capsid serotype efficiently transduces NHP hepatocytes in vivo unlike mouse liver.
[0262] FVIII expression levels attained with AAV-SPK-8011 (LK03 capsid) were compared to reported levels of FVIII attained with AAV5 and AAV8 capsid based AAV vectors for delivery of FVIII. A comparison revealed levels of FVIII achieved with AAV-SPK-8011 (LK03 capsid) were greater than the reported levels of FVIII delivered by way of AAV vectors with AAV5 and AAV8 capsids (FIG. 10).
[0263] Humoral response to hFVIII in plasma of cynomolgus macaques was measured following administration of either 2.times.10.sup.12, 6.times.10.sup.12 or 2.times.10.sup.13 vg/kg of AAV-SPK-8011 (LK03 capsid). The animals were assessed for anti-hFVIII IgG antibodies by ELISA at baseline and at the indicated time points.
[0264] Despite the therapeutic hFVIII levels observed soon after gene transfer, in most animals the levels began to decline around week 4. This was consistent with previous studies using another AAV-hFVIII vector, and correlated with an increase in anti-hFVIII antibodies. Generation of anti-FVIII antibodies has also been observed by others following hepatic AAV-hFVIII gene transfer in NHPs (McIntosh, J. et al., Blood 121:3335-44 (2013)).
Example 5
Biodistribution of AAV-LK03 Capsid in Non-Human Primates (NHPs).
[0265] Biodistribution of the AAV-LK03 capsid in non-human primates was evaluated in a non-GLP study. Intravenous administration of an AAV-LK03-encapsidated vector encoding human coagulation factor IX (AAV-LK03-hFIX) showed that the two main target tissues are the liver and the spleen (FIG. 11). The splenic tropism is not a unique characteristic of AAV-LK03. For example, the AAV5 capsid, which has been used in several liver-directed gene therapy trials (e.g. NCT02396342, NCT02082860, NCT02576795) with a strong safety record, targets the spleen with the same if not higher efficacy than it targets the liver of non-human primates (Paneda et al. 2013). The SPK-8011 expression cassette uses the mouse transthyretin or TTR promoter, which is considered liver-specific (Costa, 1991). To further support the liver-specific nature of the promoter, a PCR-based expression analysis measured vector-derived FVIII expression in the livers and spleens of mice after administration of a different AAV vector packaging the same expression cassette as SPK-8011 (i.e. AAV-SPK-8005). As shown in FIG. 12, human FVIII expression in the spleen is several orders of magnitude lower compared with that derived from hepatocytes.
[0266] This is the first clinical study to use AAV-LK03, although studies have been conducted using other AAV vectors including several for hemophilia B (NCT02396342, NCT01620801 NCT00076557, NCT02484092, NCT02618915, NCT00979238, NCT01687608) and one for hemophilia A (NCT02576795). A study conducted by St. Jude Children's Research Hospital in collaboration with University College London utilized an AAV8 vector carrying a self-complementary genome encoding a codon-optimized human factor IX cDNA, scAAV2/8-LP1-hFIXco. Ten subjects who received the vector have had stable factor IX levels of 1-6% through a median of 3.2 years and all participants have either discontinued or reduced the use of prophylactic factor replacement (Nathwani et al. 2014). A clinical study for hemophilia A used an AAV5 encapsidated vector encoding human FVIII (NCT02576795). Preliminary data presented in 2016 demonstrate increases in FVIII activity after gene transfer in several subjects ranging from from 2-60% with follow-up of up to 16 weeks (BioMarin, April 2016).
Example 6
Transduction Efficiency of AAV-LK03 Capsid Analyzed in an In Vitro Setting.
[0267] Primary hepatocytes from cynomolgus macaque and human origin were transduced with an AAV-LK03 vector expressing luciferase at four different multiplicities of infection (MOI) ranging from 500 to 62,500 vector genomes per cell. Seventy-two hours after transduction, luciferase expression was analyzed.
[0268] The AAV-LK03 capsid uniquely demonstrated significantly higher efficiency in transducing human hepatocytes in culture. In the representative example shown in FIG. 13, LK03 demonstrated approximately 5-fold higher efficiency in transducing human hepatocytes as compared to non-human primate hepatocytes in vitro. Importantly, these results are consistent across multiple MOIs and replicate studies.
Example 7
Assessment of Germline Transmission of Vector-Encoded Sequences.
[0269] Assessment of the potential for germline transmission of vector-encoded sequences is critical for clinical translation of gene transfer strategies. This study was designed with the following goals: (1) to evaluate dissemination of AAV-SPK and AAV-LK03 to semen and to determine the kinetics of vector clearance; and (2) to ensure that AAV administration to rabbits was successful, which was confirmed by analysis of human factor IX antigen and anti-FIX antibodies in plasma.
[0270] In this study, a rabbit model was used to analyze vector dissemination to the semen of two vector capsids, namely AAV-SPK and AAV-LK03 (Table 2). Dissemination of AAV-SPK to semen showed both dose-dependent and time-dependent kinetics, with the higher dose showing elevated levels of vector sequences in semen for a longer time. The kinetics were very similar to what has been seen previously with AAV8 vectors (Favaro P, et al., Molecular Therapy 17:1022-1030 (2009)). In contrast, limited dissemination to semen occurred with the AAV-LK03 vector. This is unlikely due to lower over-all vector exposure in AAV-LK03 injected mice, since the levels of hFIX expressed from AAV-LK03 were similar or higher than those seen with the AAV-SPK vector, and the ability to mediate liver-derived hFIX expression can be used as a surrogate for gene transfer.
TABLE-US-00002 TABLE 2 Study design Group Dose Level No. of No. Test Material (vg/kg) Animals 1 AAV-SPK-hFIX.C16 1 .times. 10.sup.12 5 2A AAV-SPK-hFIX.C16 1 .times. 10.sup.13 3 2B* AAV-SPK-hFIX.C19-PD 1 .times. 10.sup.13 2 3 AAV-LK03-hFIX.C16 1 .times. 10.sup.12 5 4 AAV-LK03-hFIX.C16 1 .times. 10.sup.13 5 5 Vehicle N/A 2 *Two different hFIX coding sequences were used in the AAV-SPK cohorts, i.e. three animals received AAV-SPK-hFIX.C16 and two animals were treated with AAV-SPK-hFIX.C19-Padua (PD). Since the main goal of this study was to assess germline transmission of the two novel AAV capsids, this was considered acceptable.
The main differences between the hFIX.C16 and hFIX.C19-Padua transgenes are that the latter is codon-optimized and encodes a high specific activity hFIX variant.
Methods
[0271] Animals and Vectors:
[0272] New Zealand white rabbits were obtained from Covance Research Products (Denver, Pa.) and treated at 6 months of age with AAV vectors produced at the Children's Hospital of Philadelphia Vector Core. The test and control articles were administered via the marginal ear vein.
[0273] Semen Collection:
[0274] An artificial vagina (AV), developed by researchers at Argus Research Lab, Inc. (Horsham, Pa.) was used for semen collection. The AV is lined with a condom from which the tip is removed and a collection tube is added, and the AV is filled with warm water (55.degree. C.). Semen samples were obtained from a practiced buck stimulated by a teaser doe. Samples were collected prior to injection and at 1, 2, 4, 6, 8, and 10 weeks and 3-8 months post-injection. Semen samples were shipped to Charles River Laboratories (Reno, Nev.) for analysis of vector copy number using a validated real-time quantitative PCR assay.
[0275] Blood Sample Collection:
[0276] Blood was collected by medial auricular artery or marginal ear vein puncture prior to AAV administration and at multiple time points (pre, 1 week and 1-6 months post-injection). Each sample was placed on ice following collection, processed to plasma and. stored in an -80.degree. C. freezer until shipment to the Sponsor, where it was also kept in an -80.degree. C. freezer until the assay was performed.
[0277] Human Factor IX Levels:
[0278] Levels of human FIX (hFIX) protein in rabbit plasma were quantified using a sandwich-style FIX ELISA kit (Affinity Biologicals, FIX:EIA) as follows: first, the wells of a microtiter plate were coated with a capture antibody that recognizes hFIX and that does not cross-react with endogenous rabbit FIX (1:1000 dilution). Reference plasma with a known human hFIX concentration was diluted to generate a standard curve (the highest standard [500 ng/ml] was serially diluted down to 7.8 ng/ml). Sample plasmas were diluted depending on the expected concentration so that the absorbance values fell within the range of the standard curve. After addition of the samples to the wells, the plate was incubated at room temperature for 90 minutes and then washed three times. A horseradish peroxidase (HRP)-conjugated secondary antibody to hFIX was added to the plate to bind to the captured FIX (1:100 dilution). After washing the plate to remove unbound conjugated antibody, the peroxidase activity was measured following incubation with 1-Step Ultra TMB Substrate (Thermo Scientific, catalog number 34028). The reaction was stopped with 1M sulfuric acid and read on a SpectraMax M2e microplate reader at an absorbance setting of 450 nm. The absorbance value obtained is proportional to the concentration of hFIX present in the sample.
[0279] Anti-hFIX Antibody Levels:
[0280] The anti-hFIX assay is conceptually and methodologically similar to the hFIX ELISA described above. In short, plates were coated with 1 .mu.g/ml of recombinant hFIX (Benefix, Wyeth). After incubation of plasma samples, a goat anti-rabbit IgG HRP-conjugated antibody (SIGMA, A4914) is used for detection. Samples with an IgG level two-fold higher than baseline readings were considered positive.
Results
Vector Dissemination to Semen
[0281] New Zealand rabbits were injected with AAV-SPK or AAV-LK03 (n=5 per group) vectors expressing hFIX under the control of the ApoE/hAAT liver-specific promoter at two doses: 1.times.10.sup.12 vg/kg (low dose) or 1.times.10.sup.13 vg/kg (high dose). Semen samples from all rabbits were obtained prior to injection and at 1, 2, 4, 6, 8, and 10 weeks and 3-8 months post-injection. Genomic DNA was purified from semen samples and analyzed for the presence of hFIX sequences using a quantitative polymerase chain reaction (Q-PCR) assay. The validated assay was developed by Charles River Laboratories (Reno, Nev.). Semen samples were considered to be positive if they had detectable hFIX levels above the lower limit of quantitation (LLOQ) (10 copies/reaction or 50 copies/.mu.g at approximately 200 ng/reaction). Semen samples from rabbits that were negative for hFIX vector sequences on at least three consecutive timepoints were not analyzed further.
[0282] Pretreatment semen DNA from all vector and vehicle-injected animals was negative for hFIX sequences. The semen from rabbits injected with the low dose of AAV-SPK-hFIX (1.times.10.sup.12 vg/kg) was in general negative for hFIX sequences, except for three animals that had low levels at weeks 1-4 (maximum 3151 copies/.mu.g DNA or .about.1.times.10.sup.-2 copies/haploid genome). None of the samples collected beyond week 4 were positive for vector sequences (Table 3). At the high dose of AAV-SPK-hFIX (1.times.10.sup.13 vg/kg), higher levels of vector were present (maximum 178,352 copies/.mu.g DNA or 0.59 copies/haploid genome), and it took longer to clear, up to 5 month between the five animals (Table 3). With the exception of one animal (week 1), rabbits treated with the low dose of AAV-LK03-hFIX showed no dissemination of hFIX sequences to semen (Table 3). In addition, very little vector dissemination to semen was observed at a ten-fold higher dose, with three animals lacking any hFIX sequences at all timepoints and two animals showing low levels at week 2 (maximum: 392 copies/ug DNA or 1.3.times.10.sup.-3 copies/haploid genome), but not at later timepoints (Table 3). Among the two vehicle-injected animals, one had a spurious finding at week 1 (56 copies/ug DNA) and at month 5 (96 copies/.mu.g DNA). These values are near the LLOQ, and most likely represent contamination at the semen collection or DNA preparation step.
TABLE-US-00003 TABLE 3 Detection of hFIX DNA sequences in rabbit semen following AAV-SPK and AAV-LK03 administration as a function of time. Vector Dose Pre W 1 W 2 W 4 W 6 W 8 W 10 M 3 M 4 M 5 M 6 M 7 M 8 SPK low 0/5 3/5 3/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5 Ndt Ndt Ndt SPK high 0/5 5/5 4/5 4/5 3/5 1/5 2/5 0/5 1/5 0/5 0/5 0/5 0/5 LK03 low 0/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 Ndt Ndt Ndt LK03 high 0/5 2/5 2/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 Ndt Ndt Ndt Number of animals out of 5 with positive semen samples. W = week; M = month; Ndt = not determined
Plasma Human FIX Antigen Levels
[0283] Circulating hFIX levels were measured in plasma samples from the animals described above at the indicated timepoints (FIGS. 14A-14B and Table 4).
TABLE-US-00004 TABLE 4 Human FIX expression levels (ng/ml) following vector administration Day after injection Animal Capsid Transgene vg/kg 0 7 28 56 94 112 147 175 1 SPK FIX.C16 1E+12 ND ND 49.0 39.7 70.6 126.1 147.9 102.4 2 SPK FIX.C16 1E+12 ND ND 50.0 104.9 139.5 147.0 171.8 198.4 3 SPK FIX.C16 1E+12 ND ND 36.4 76.5 95.0 114.8 114.7 78.9 4 SPK FIX.C16 1E+12 ND ND 148.2 254.4 214.5 291.5 236.7 274.9 5 SPK FIX.C16 1E+12 ND ND ND ND 31.3 10.5 13.4 ND 6 SPK FIX.C16 1E+13 ND 347.9 2341.0 1224.5 1102.2 1031.6 959.0 830.7 7 SPK FIX.C16 1E+13 ND 1564.1 14174.2 5311.2 3281.9 3300.9 2405.9 2640.8 8 SPK FIX.C16 1E+13 ND 2344.8 756.5 1515.0 8305.2 10907.0 5838.9 4352.8 9 SPK FIX.C19-PD 1E+13 ND 103.3 234.4 ND 40.4 83.4 316.6 381.9 10 SPK FIX.C19-PD 1E+13 ND 642.2 2873.5 ND 31.6 14.1 14.1 ND 11 LK03 FIX.C16 1E+12 ND 333.1 604.9 1659.2 2151.8 1914.7 1358.4 1120.9 12 LK03 FIX.C16 1E+12 ND 2138.4 532.4 3199.8 1306.6 985.3 732.0 593.4 13 LK03 FIX.C16 1E+12 ND 2465.9 45.3 84.9 134.4 168.6 127.0 84.9 14 LK03 FIX.C16 1E+12 ND 886.1 289.0 636.4 551.7 547.4 582.3 410.4 15 LK03 FIX.C16 1E+12 ND ND ND 35.0 109.0 30.2 24.8 ND 16 LK03 FIX.C16 1E+13 ND 90.7 404.6 2228.9 1265.4 899.5 715.6 693.2 17 LK03 FIX.C16 1E+13 ND 424.7 546.6 490.2 695.9 437.0 964.4 821.4 18 LK03 FIX.C16 1E+13 ND 1255.6 1787.2 6079.2 4628.5 1874.0 1576.0 2226.4 19 LK03 FIX.C16 1E+13 ND 518.4 8917.2 2772.7 2905.7 1195.0 1877.0 1899.3 20 LK03 FIX.C16 1E+13 ND 2615.0 10782.8 8075.5 6908.0 6630.8 6226.0 5489.2 21 Vehicle FIX.C16 N/A ND ND ND 28.9 31.1 16.1 ND ND 22 Vehicle FIX.C16 N/A ND ND ND 29.2 30.6 11.9 ND ND ND = Not detected
[0284] In the low dose cohorts, the AAV-LK03 vector appeared to be a more potent vector compared with AAV-SPK, as measured by circulating hFIX levels. Six months after treatment with AAV-LK03 or AAV-SPK, average hFIX levels were 552.+-.217 ng/ml vs. 164.+-.45 ng/ml, respectively (FIG. 14A). However, this difference did not reach statistical significance, likely due to the limited number of animals. Interestingly, no hFIX expression was detected seven days after administration of the AAV-SPK vector, whereas robust expression derived from the AAV-LK03 was observed at the same time point. The low hFIX levels in two of the animals (rabbits #5 and #15), barely detectable above background, might be attributed to failed injections. Eliminating these animals from the analysis did not change the lack of statistical significance.
[0285] The two capsids appeared to be equally potent when tested at the high dose. Specifically, six months after treatment with 1.times.10.sup.13 vg/kg of AAV-LK03 or AAV-SPK, average hFIX levels were 2226.+-.868 ng/ml vs. 2052.+-.909 ng/ml, respectively (FIG. 14B). Of note, two different hFIX coding sequences were used in the AAV-SPK group, i.e. three animals received AAV-SPK-hFIX.C16 and two animals were treated with AAV-SPK-hFIX.C19-Padua (PD). The main differences between the hFIX.C16 and hFIX.C19-PD transgenes are that the latter is codon-optimized and encodes a high specific activity hFIX variant, which affects the biological activity of the protein, but not antigen levels, as measured by ELISA.
Anti-FIX Antibodies
[0286] Based on a report by others, it was anticipated that approximately 20-40% of the animals would develop antibodies against human FIX vectors (Favaro P, et al., Molecular Therapy 17:1022-1030 (2009)). FIGS. 15A-15B and Tables 5A and 5B summarize anti-AAV IgG levels in this study. Interestingly, three out of five animals treated with the low dose of AAV-LK03 were positive for human FIX antibodies one month after vector administration, but the IgG levels declined with time and only one animal was barely twice the baseline levels at the end of the study (Table 5B). The kinetics of anti-FIX IgG appearance and ulterior clearance in this group of rabbits correlates well with the sharp decrease in hFIX levels observed at day 28, which was followed by a "rebound" in circulating hFIX (FIG. 14A). Also, the high antibody titers against hFIX in the two animals treated with AAV-SPK-hFIX.C19-Padua may explain the low expression levels in these two rabbits.
TABLE-US-00005 TABLE 5A Summary of antibody formation (IgG, ng/ml) to human FIX in individual AAV-injected rabbits Day after injection Animal Capsid Transgene vg/kg 0 7 28 56 94 112 147 175 1 SPK FIX.C16 1.00E+12 1390 1134 2864 8627 1631 1261 1210 1088 2 SPK FIX.C16 1.00E+12 1706 1143 4670 7132 2834 2733 3294 3180 3 SPK FIX.C16 1.00E+12 1904 1128 2919 2394 1964 1792 1753 1688 4 SPK FIX.C16 1.00E+12 1256 1084 789 1692 1463 1034 1367 1457 5 SPK FIX.C16 1.00E+12 1086 1004 701 664 834 956 774 785 6 SPK FIX.C16 1.00E+13 565 836 940 814 1246 721 1326 1592 7 SPK FIX.C16 1.00E+13 792 721 666 709 960 829 909 1084 8 SPK FIX.C16 1.00E+13 1016 863 1729 1705 2539 1619 1406 2143 9 SPK FIX.C19-PD 1.00E+13 768 783 1330 1076 11241 893 37141 12634 10 SPK FIX.C19-PD 1.00E+13 566 541 4556 1398 9356 1270 20050 9167 11 LK03 FIX.C16 1.00E+12 1606 1821 2150 2283 1973 1788 1561 1580 12 LK03 FIX.C16 1.00E+12 813 1391 7993 1603 1087 -- 1505 1702 13 LK03 FIX.C16 1.00E+12 699 N/A 8153 610 680 903 871 1040 14 LK03 FIX.C16 1.00E+12 776 756 534 760 699 709 636 769 15 LK03 FIX.C16 1.00E+12 890 891 2320 693 561 843 972 1102 16 LK03 FIX.C16 1.00E+13 1479 2050 2579 1501 1487 1622 1526 1768 17 LK03 FIX.C16 1.00E+13 1979 1801 1506 1087 1196 837 1025 876 18 LK03 FIX.C16 1.00E+13 2074 1968 1368 1236 1284 1247 1107 1067 19 LK03 FIX.C16 1.00E+13 1131 1270 792 1237 2415 2463 1529 1597 20 LK03 FIX.C16 1.00E+13 967 2065 1250 2537 1927 1459 1343 1603 21 Vehicle FIX.C16 N/A 899 1074 1124 844 853 916 1017 961 22 Vehicle FIX.C16 N/A 477 702 891 471 460 541 536 597 N/A, not available
TABLE-US-00006 TABLE 5B Number of rabbits per group positive for anti-hFIX antibodies over time 1 .times. 10.sup.12 vg/kg 1 .times. 10.sup.13 vg/kg AAV-SPK AAV-LK03 AAV-SPK AAV-LK03 Day 28 2/5 3/5 1/5 0/5 Day 175 0/5 1/5 4/5 0/5
Conclusion
[0287] Dissemination of AAV-SPK and AAV-LK03 vectors to semen was quantified using a validated assay over the course of up to eight months. AAV-SPK vector sequences were detected in semen of all five rabbits one week after administration of the high vector dose. The majority of the animals cleared the sequences by week 10 and the last detected positive sample occurred at month 5. This is similar to the time course of an AAV8 vector administered to rabbits at the same dose vectors (Favaro P, et al., Molecular Therapy 17:1022-1030 (2009)). In contrast, very limited distribution of AAV-LK03 was observed following a high dose of this vector, with three of five animals showing no vector sequences in semen at any timepoint. The lower dissemination of vector to semen was unlikely due to a lower overall exposure of AAV-LK03 in rabbits. Confirmation that rabbits were successfully injected with each AAV vector was demonstrated by measuring hFIX plasma levels, a surrogate for gene transfer. At the high dose in this study (1.times.10.sup.13 vg/kg), similar circulating levels of hFIX were observed in animals injected with AAV-LK03 and AAV-SPK, demonstrating that the vectors are equally potent in mediating liver gene transfer.
[0288] Consistent with studies evaluating germline transmission of AAV2 and AAV8 vectors expressing a hFIX transgene, some of the animals develop anti-hFIX antibodies, likely due to the amino acid differences between rabbit and human factor IX.
[0289] These results add to the current body of data on the potential for germline transmission of AAV vectors. AAV-SPK has a similar pattern as the previously investigated serotypes, AAV2 and AAV8 vectors (Favaro P, et al., Molecular Therapy 17:1022-1030 (2009)). That is, there is a dose-dependent dissemination of AAV vector sequences to semen, with complete clearance over time. AAV-LK03, however, differs from AAV2, AAV8, and AAV-SPK, in that very little vector distributes to the semen, potentially making this vector capsid safer than the others in terms of genotoxicity.
Example 8
[0290] A clinical study will be conducted to determine safety and kinetics of a single IV infusion of AAV-FVIII. The AAV capsid that will be used for the AAV vector will have shown in preclinical studies to have had good safety and efficacy, the ability to achieve clinically relevant FVIII activity levels at dose of about 1.times.10.sup.12 vg/kg or greater, optionally after 1-3 months of vector infusion; and cross reacting neutralizing antibodies (Ab) to the AAV capsid approximately 10% less prevalent than AAV8. The design of a representative clinical study can be as shown in Table 6.
TABLE-US-00007 TABLE 6 AAV-FVIII Clinical Study Design Safety and Tolerability of AAV-FVIII Clinically significant in vital signs, lab values and clinical assessments (including number of bleeds and QoL) from baseline Kinetics of AAV-FVIII Transgene FVIII activity levels and antigen levels at peak and steady-state Dosing Starting, Middle and Highest Dose Cohorts will each include 2-5 subjects Design Open-label, non-randomized, dose escalation Participating countries USA and potentially Europe, Japan and Canada Sample size Up to 15 subjects Eligibility Ages Eligible for Study: 18 Years and older Genders Eligible for Study: Male Accepts Healthy Volunteers: No Inclusion Criteria Able to provide informed consent and comply with requirements of the study Males .gtoreq.18 y.o. with confirmed diagnosis of hemophilia A (.ltoreq.2 IU/dL or .ltoreq.2% endogenous factor VIII) Received .gtoreq.50 exposure days to factor VIII products A minimum of an average of 4 bleeding events per year requiring episodic treatment of factor VIII infusions or prophylactic factor VIII infusions No measurable factor VIII inhibitor as assessed by the central laboratory and have no prior history of inhibitors to factor VIII protein Agree to use reliable barrier contraception until 3 consecutive samples are negative for vector sequences Exclusion Criteria Evidence of active hepatitis B or C Currently on antiviral therapy for hepatitis B or C Have significant underlying liver disease Have serological evidence* of HIV-1 or HIV-2 with CD4 counts .ltoreq.200/mm3 (* subjects who are HIV+ and stable with CD4 count >200/mm3 and undetectable viral load are eligible to enroll) Have detectable antibodies reactive with variant AAV capsid Participated in a gene transfer trial within the last 52 weeks or an investigational drug within the last 12 weeks Unable or unwilling to comply with study assessments Screening Visit Eligibility evaluation AAV NAb titer is the major screen failure Day 0 Visit FVIII product incremental recovery then vector infusion Follow-up Visits (~17 visits) Safety and kinetic evaluations End-of Study Visit (at about week 52) Final safety evaluation
Example 9
TTR Promoter
[0291] The characterization of the transthyretin (TTR) promoter was originally described in Costa and Grayson 1991, Nucleic Acids Research 19(15):4139-4145. The TTR promoter sequence was a modified sequence, from TATTTGTGTAG to TATTGACTTAG.
TABLE-US-00008 TTR promoter with 4 nucleotide mutation (TTRmut), SEQ ID NO: 22 GTCTGTCTGCACATTTCGTAGAGCGAGTGTTCCGATACTCTAATCTCCCT AGGCAAGGTTCATATTGACTTAGGTTACTTATTCTCCTTTTGTTGACTAA GTCAATAATCAGAATCAGCAGGTTTGGAGTCAGCTTGGCAGGGATCAGCA GCCTGGGTTGGAAGGAGGGGGTATAAAAGCCCCTTCACCAGGAGAAGCCG TCACACAGATCCACAAGCTCCT
Example 10
CpG Reduced FVIII Encoding Transgene Constructs and Exemplary AAV Capsids
TABLE-US-00009
[0292] FVIII encoding CpG reduced nucleic acid variant X01 (SEQ ID NO: 1) atgcagattg agctgtctac ctgcttcttc ctgtgcctgc tgaggttctg cttctctgct accaggaggt actacctggg ggctgtggag ctgagctggg attacatgca gtctgacctg ggggagctgc ctgtggatgc caggtttccc cccagggtgc ccaagagctt ccccttcaat acctctgtgg tgtataagaa gaccctgttt gtggagttca ctgatcatct gttcaacatt gctaaaccca ggcccccctg gatggggctg ctgggcccta ccatccaggc tgaggtgtat gacactgtgg tgatcactct gaagaacatg gctagccatc ctgtgtctct gcatgctgtg ggggtgagct actggaaggc ttctgagggg gctgagtatg atgatcagac tagccagagg gagaaggagg atgacaaggt gttccctggg ggctctcaca cctatgtctg gcaggtgctg aaggagaatg gccccatggc ctctgatcct ctgtgtctga cctatagcta cctgagccat gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgtagggag gggagcctgg ccaaggagaa gacccagacc ctgcacaagt tcattctgct gtttgctgtg tttgatgagg gcaagagctg gcattctgaa accaagaaca gcctgatgca ggacagggat gctgcctctg ctagggcctg gcccaagatg cacactgtga atgggtatgt caataggtct ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tgggatgggc accacccctg aggtgcacag catctttctg gagggccaca ccttcctggt gaggaatcac agacaggcca gcctggagat cagccccatc accttcctga ctgcccagac cctgctgatg gacctgggcc agtttctgct gttctgccac atctctagcc accagcatga tggcatggag gcctatgtga aggtggactc ctgccctgag gagccccagc tgaggatgaa gaataatgag gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt gagatttgat gatgacaatt ctcccagctt cattcagatc aggtctgtgg ccaagaagca tcccaagacc tgggtgcact acattgctgc tgaggaggag gactgggact atgcccccct ggtgctggcc cctgatgaca ggagctataa gagccagtac ctgaataatg gcccccagag gattgggagg aagtataaga aggtgaggtt catggcctat actgatgaaa ccttcaagac cagagaggcc atccagcatg agtctgggat cctggggccc ctgctgtatg gggaggtggg ggacaccctg ctgatcatct tcaagaacca ggccagcagg ccctacaaca tctaccctca tggcatcact gatgtgaggc ctctgtacag cagaaggctg cccaaggggg tgaagcatct gaaggacttc cccattctgc ctggggagat tttcaagtac aagtggactg tgactgtgga ggatggccca accaagtctg accctaggtg cctgactagg tactacagca gctttgtgaa tatggagagg gacctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggatcag aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aacaggagct ggtacctgac tgagaacatt cagaggtttc tgcccaaccc tgctggggtg cagctggagg accctgaatt ccaggcctct aacatcatgc acagcattaa tggctatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta cattctgagc attggggccc agactgactt cctgtctgtg ttcttctctg gctacacctt taagcacaag atggtgtatg aggataccct gaccctgttt cctttctctg gggagactgt gttcatgagc atggagaacc ctggcctgtg gatcctgggc tgccacaact ctgacttcag gaacaggggg atgactgctc tgctgaaggt gagcagctgt gataagaaca ctggggacta ctatgaggac agctatgagg acatctctgc ctatctgctg agcaagaata atgctattga gcccaggagc ttctctcaga acccccctgt gctgaagagg caccagaggg agatcaccag aactactctg cagtctgacc aggaggagat tgactatgat gacaccatct ctgtggagat gaagaaggag gattttgata tttatgatga ggatgaaaac cagagcccca ggagctttca gaagaagact aggcactatt tcattgctgc tgtggagagg ctgtgggact atggcatgtc ttctagcccc catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa ggtggtgttc caggagttca ctgatggcag cttcactcag cccctgtaca ggggggagct gaatgagcac ctggggctgc tgggccctta tatcagggct gaggtggagg ataacatcat ggtgaccttc aggaaccagg ccagcaggcc ctacagcttc tactctagcc tgatcagcta tgaggaggac cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac caagacttat ttctggaagg tgcagcacca tatggccccc accaaggatg agtttgattg caaagcctgg gcctacttct ctgatgtgga cctggagaag gatgtgcact ctgggctgat tggccccctg ctggtgtgcc acaccaacac tctgaaccct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tcttcaccat ctttgatgag actaagagct ggtacttcac tgagaacatg gagaggaact gcagggcccc ctgcaatatc cagatggagg accccacctt taaggaaaat tataggtttc atgccattaa tggctacatc atggacaccc tgcctggcct ggtgatggcc caggaccaga ggatcaggtg gtacctgctg agcatgggca gcaatgagaa cattcacagc atccacttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggccctg tataatctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctggcatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac cctgttcctg gtgtattcta acaagtgtca gacccccctg ggcatggcct ctggccatat cagggacttc cagatcactg cctctggcca gtatgggcag tgggccccca agctggccag gctgcattac tctggcagca tcaatgcctg gagcaccaag gagccattca gctggattaa ggtggacctg ctggctccaa tgattatcca tggcatcaag acccaggggg ccaggcagaa gtttagcagc ctgtacatct ctcagtttat catcatgtac tctctggatg gcaaaaagtg gcagacctac aggggcaatt ctactggcac tctgatggtg ttctttggca atgtggacag ctctgggatc aagcacaaca tctttaaccc ccctatcatt gccaggtaca ttaggctgca ccccacccat tacagcatca ggagcaccct gaggatggag ctgatgggct gtgatctgaa cagctgcagc atgcccctgg gcatggagag caaggctatc tctgatgccc agattactgc cagcagctac ttcaccaata tgtttgccac ctggagcccc agcaaggcca ggctgcacct gcagggcagg tctaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag aagaccatga aggtgactgg ggtgaccacc cagggggtga agagcctgct gactagcatg tatgtgaagg agttcctgat cagcagcagc caggatggcc atcagtggac cctgttcttc cagaatggca aggtgaaggt gttccagggc aatcaggaca gcttcacccc tgtggtgaac agcctggacc cccccctgct gaccagatac ctgaggatcc acccccagag ctgggtgcat cagattgccc tgaggatgga ggtgctgggg tgtgaggccc aggacctgta ctga FVIII encoding CpG reduced nucleic acid variant X02 (SEQ ID NO: 2) atgcagattg agctgtctac ctgctttttc ctgtgtctgc tgaggttctg cttctctgcc actaggaggt actacctggg ggctgtggag ctgtcttggg attacatgca gtctgatctg ggggagctgc ctgtggatgc caggtttcct cccagggtgc ccaagtcttt ccccttcaat acctctgtgg tgtataagaa gaccctgttt gtggagttta ctgatcacct gttcaacatt gccaagccca ggcccccttg gatgggcctg ctggggccca ccatccaggc tgaggtgtat gacactgtgg tgatcaccct gaagaacatg gcctctcacc ctgtgagcct gcatgctgtg ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac cagccagagg gagaaggagg atgataaggt gttccctggg gggagccaca cttatgtgtg gcaggtgctg aaggagaatg gcccaatggc ctctgatccc ctgtgcctga cctattctta cctgagccat gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag ggctctctgg ctaaggagaa gacccagacc ctgcacaagt tcatcctgct gtttgctgtg tttgatgagg ggaagagctg gcactctgag accaagaaca gcctgatgca ggacagggat gctgcctctg ccagggcctg gcccaaaatg cacactgtga atggctatgt gaataggagc ctgcctggcc tgattggctg ccacaggaag tctgtgtatt ggcatgtgat tggcatgggc accacccctg aggtgcactc tatcttcctg gagggccata ctttcctggt gaggaatcat aggcaggcca gcctggagat tagccccatt acctttctga ctgcccagac cctgctgatg gacctgggcc agttcctgct gttttgccac atcagctctc accagcatga tggcatggag gcctatgtga aggtggatag ctgccctgag gagccccagc tgaggatgaa gaacaatgag gaggctgagg attatgatga tgatctgact gattctgaaa tggatgtggt gaggtttgat gatgacaata gcccctcttt catccagatc aggtctgtgg ccaagaagca tcctaagacc tgggtgcact acattgctgc tgaggaggag gactgggact atgctcccct ggtgctggcc cctgatgaca ggtcttacaa gagccagtac ctgaacaatg gcccccagag aattgggagg aagtataaga aggtgagatt catggcttac actgatgaga ccttcaagac tagggaggcc atccagcatg agtctggcat tctgggcccc ctgctgtatg gggaggtggg ggacaccctg ctgatcatct tcaagaacca ggcctctagg ccctacaata tttaccccca tgggatcact gatgtgaggc ccctgtacag caggaggctg cctaaggggg tgaagcatct gaaggacttc cccatcctgc ctggggagat cttcaagtat aagtggactg tgactgtgga agatggcccc accaagtctg accctaggtg cctgaccagg tactactctt cttttgtgaa catggagagg gacctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggaccag agggggaacc agattatgtc tgacaagagg aatgtgattc tgttctctgt gtttgatgag aacaggagct ggtatctgac tgagaacatc cagaggttcc tgcccaatcc tgctggggtg cagctggagg accctgagtt ccaggccagc aacatcatgc acagcatcaa tgggtatgtg tttgattctc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc attggggctc agactgattt cctgtctgtg ttcttttctg gctacacctt taagcataag atggtgtatg aggacactct gaccctgttt cccttctctg gggagactgt gtttatgagc atggagaacc ctggcctgtg gatcctgggc tgccacaact ctgatttcag gaacaggggc atgactgctc tgctgaaggt gtcttcttgt gacaagaaca ctggggacta ttatgaggac agctatgagg acatctctgc ctacctgctg agcaagaaca atgctattga gcccagatct ttcagccaga acccccctgt gctgaagagg caccagaggg agatcactag gaccaccctg cagtctgacc aggaggagat tgactatgat gacactatct ctgtggagat gaagaaggag gactttgata tctatgatga ggatgagaac cagtctccca ggagcttcca gaaaaagacc aggcactact tcattgctgc tgtggagagg ctgtgggact atggcatgtc ttctagcccc catgtgctga ggaacagggc ccagtctggg tctgtgcccc agttcaagaa ggtggtgttc caggagttca ctgatgggag cttcacccag cctctgtaca ggggggagct gaatgagcac ctggggctgc tgggccctta tattagggct gaggtggagg acaacatcat ggtgactttc aggaatcagg cctctaggcc ctatagcttc tacagctctc tgatcagcta tgaggaggat cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac caagacctac ttctggaagg tgcagcacca catggctcct accaaggatg agtttgactg caaggcctgg gcctactttt ctgatgtgga cctggagaag gatgtgcact ctggcctgat tggccccctg ctggtgtgtc ataccaacac cctgaaccct gcccatggca ggcaggtgac tgtgcaggag
tttgccctgt tcttcaccat ctttgatgag accaagagct ggtactttac tgagaacatg gagaggaatt gcagagcccc ttgcaacatc cagatggagg acccaacctt caaagagaac tacaggttcc atgccatcaa tgggtacatc atggacaccc tgcctggcct ggtgatggct caggaccaga ggatcaggtg gtatctgctg agcatgggca gcaatgagaa tatccatagc attcacttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggccctg tataacctgt accctggggt gtttgagact gtggagatgc tgccaagcaa ggctgggatt tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgtctac cctgttcctg gtgtactcca ataagtgcca gacccccctg ggcatggcct ctggccacat cagggacttc cagatcactg cctctggcca gtatgggcag tgggccccaa agctggccag gctgcactat tctgggagca tcaatgcttg gagcaccaag gagcctttca gctggattaa ggtggatctg ctggccccca tgatcattca tggcatcaaa acccaggggg ctagacagaa gttttctagc ctgtacatca gccagttcat catcatgtac agcctggatg gcaagaagtg gcagacttac aggggcaata gcactggcac cctgatggtg ttttttggca atgtggacag ctctggcatc aagcacaaca tctttaaccc ccccattatt gccaggtata tcaggctgca tcccacccac tattctatta ggtctactct gagaatggag ctgatgggct gtgacctgaa cagctgtagc atgcccctgg ggatggagag caaggctatc tctgatgccc agatcactgc cagctcttat ttcaccaata tgtttgccac ctggtctccc tctaaggcca ggctgcacct gcagggcagg agcaatgctt ggaggcccca ggtgaataac cccaaggagt ggctgcaggt ggacttccag aagaccatga aggtgactgg ggtgactacc cagggggtga agtctctgct gactagcatg tatgtgaagg agttcctgat cagcagcagc caggatgggc atcagtggac tctgttcttc cagaatggca aggtgaaggt cttccagggg aaccaggata gcttcactcc tgtggtgaac tctctggacc cccccctgct gactaggtat ctgaggatcc acccccagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta ttga FVIII encoding CpG reduced nucleic acid variant X03 (SEQ ID NO: 3) atgcagattg aactgtctac ttgtttcttc ctgtgcctgc tgaggttttg cttctctgct actaggaggt actatctggg ggctgtggag ctgtcttggg actatatgca gtctgacctg ggggagctgc ctgtggatgc taggtttccc cccagggtgc ccaagagctt cccctttaac acctctgtgg tgtataagaa gactctgttt gtggagttca ctgaccatct gttcaacatt gccaagccaa ggcccccctg gatgggcctg ctgggcccca ccatccaggc tgaggtgtat gacactgtgg tgattactct gaagaacatg gccagccatc ctgtgagcct gcatgctgtg ggggtgtctt actggaaggc ctctgagggg gctgagtatg atgaccagac ctctcagagg gagaaggagg atgacaaggt gttccctggg ggctctcata cctatgtgtg gcaggtcctg aaggagaatg ggcccatggc ctctgacccc ctgtgcctga cctactctta tctgtctcat gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ctaaggagaa gacccagact ctgcacaagt tcatcctgct gtttgctgtg tttgatgagg gcaagagctg gcactctgag accaagaaca gcctgatgca ggacagggat gctgcctctg ctagggcctg gcccaagatg cacactgtga atgggtatgt gaacaggagc ctgccaggcc tgattggctg ccataggaag tctgtgtatt ggcatgtgat tgggatgggg actacccctg aggtccacag cattttcctg gaggggcata cctttctggt gaggaaccac aggcaggcct ctctggagat ctctcccatt actttcctga ctgcccagac cctgctgatg gacctgggcc agttcctgct gttctgccac atcagcagcc accagcatga tggcatggag gcctatgtga aggtggatag ctgccctgag gagccccagc tgaggatgaa aaacaatgag gaggctgagg attatgatga tgacctgact gattctgaga tggatgtggt gaggtttgat gatgataaca gccccagctt catccagatt aggtctgtgg ccaagaagca tcccaagacc tgggtgcact acattgctgc tgaggaggag gattgggact atgctcctct ggtgctggcc cctgatgaca ggagctacaa gagccagtac ctgaataatg gcccccagag gattggcagg aagtataaga aggtgaggtt catggcctac actgatgaga cctttaagac cagggaggcc atccagcatg aatctgggat cctgggcccc ctgctgtatg gggaggtggg ggacaccctg ctgattatct ttaagaacca ggctagcagg ccctacaaca tttaccccca tggcattact gatgtgaggc ccctgtacag caggaggctg cccaaggggg tgaagcacct gaaggatttc cccattctgc ctggggagat ctttaagtac aaatggactg tgactgtgga ggatggccct actaagtctg atcccaggtg tctgaccaga tactacagca gctttgtgaa tatggagagg gacctggctt ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggaccag aggggcaatc agattatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aacagaagct ggtacctgac tgagaacatc cagaggttcc tgcccaaccc tgctggggtg cagctggagg accctgagtt ccaggctagc aatatcatgc acagcattaa tggctatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctattggta cattctgagc attggggccc agactgattt cctgtctgtg ttcttttctg gctacacctt caagcacaag atggtgtatg aggatactct gaccctgttt cccttctctg gggagactgt gttcatgagc atggagaacc ctggcctgtg gatcctgggc tgtcacaact ctgacttcag gaacaggggc atgactgccc tgctgaaggt gagctcttgt gataagaaca ctggggacta ctatgaggac tcttatgagg acatctctgc ctacctgctg agcaagaaca atgctattga gcccaggagc ttctctcaga atccccctgt gctgaagagg catcagaggg agatcactag gactaccctg cagtctgacc aggaagagat tgactatgat gacaccatct ctgtggaaat gaagaaggag gactttgata tctatgatga ggatgaaaac cagagcccca ggagcttcca gaagaagacc aggcattact tcattgctgc tgtggagagg ctgtgggact atgggatgag ctcttctccc catgtgctga ggaatagggc tcagtctggc tctgtcccac agttcaagaa ggtggtgttt caggagttca ctgatggcag cttcactcag cccctgtaca ggggggagct gaatgagcat ctgggcctgc tggggcccta catcagggct gaggtggagg ataacattat ggtgactttc aggaaccagg cctctaggcc ctacagcttc tacagcagcc tgatcagcta tgaggaggac cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac taagacctat ttctggaagg tgcagcatca catggctccc actaaagatg agtttgactg caaggcctgg gcctacttct ctgatgtgga tctggagaag gatgtgcatt ctgggctgat tggccctctg ctggtctgcc atactaacac cctgaatcct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tctttaccat ctttgatgag accaagtctt ggtacttcac tgagaacatg gagaggaact gcagggcccc ctgtaacatc cagatggagg accccacctt taaggagaac tacaggttcc atgccatcaa tggctacatc atggacactc tgcctggcct ggtgatggcc caggaccaga ggatcaggtg gtacctgctg tctatgggct ctaatgagaa cattcattct atccacttct ctggccatgt gtttactgtg aggaagaagg aggagtacaa gatggccctg tacaatctgt accctggggt gtttgaaact gtggagatgc tgccctctaa ggctggcatc tggagggtgg agtgcctgat tggggaacac ctgcatgctg gcatgagcac cctgttcctg gtctatagca ataagtgcca gacccccctg gggatggcct ctgggcatat cagagacttc cagatcactg cctctggcca gtatggccag tgggccccca agctggccag gctgcactac tctggcagca ttaatgcctg gagcaccaag gagcccttct cttggatcaa ggtggacctg ctggctccca tgatcatcca tgggatcaag acccaggggg ccaggcagaa gttcagcagc ctgtacatct ctcagttcat catcatgtac tctctggatg gcaagaagtg gcagacctac aggggcaata gcactgggac cctgatggtg ttctttggga atgtggacag ctctggcatc aagcacaata tcttcaaccc ccccatcatt gccaggtaca tcagactgca ccccactcat tacagcatca ggagcactct gaggatggag ctgatgggct gtgacctgaa tagctgctct atgcccctgg gcatggagag caaggccatt tctgatgccc agattactgc ctcttcttac ttcactaata tgtttgccac ctggagcccc agcaaggcca ggctgcatct gcaggggagg agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag aagactatga aggtgactgg ggtgaccact cagggggtga agagcctgct gaccagcatg tatgtgaagg agttcctgat ctcttctagc caggatgggc accagtggac cctgtttttc cagaatggga aggtgaaggt gtttcagggc aatcaggaca gctttactcc tgtggtgaac agcctggacc cccccctgct gactaggtac ctgaggattc acccccagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga FVIII encoding CpG reduced nucleic acid variant X04 (SEQ ID NO: 4) atgcagattg agctgtctac ctgcttcttt ctgtgcctgc tgaggttctg tttctctgcc actaggaggt attatctggg ggctgtggag ctgtcctggg actacatgca gtctgatctg ggggagctgc ctgtggatgc caggttccct cccagggtgc ccaagtcttt ccctttcaat acctctgtgg tgtacaagaa gactctgttt gtggagttta ctgatcacct gtttaacatt gccaagccca ggcccccctg gatggggctg ctgggcccca ccatccaggc tgaggtgtat gacactgtgg tgattactct gaagaatatg gcttctcacc ctgtgagcct gcatgctgtg ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac cagccagagg gagaaggagg atgacaaggt gttccctggg ggcagccaca cttatgtgtg gcaggtgctg aaggagaatg gcccaatggc ctctgacccc ctgtgcctga cctacagcta tctgagccat gtggatctgg tgaaggatct gaactctggc ctgattgggg ccctgctggt gtgcagggag ggctctctgg ccaaggagaa gactcagact ctgcacaagt tcatcctgct gtttgctgtg tttgatgagg gcaagagctg gcactctgag accaagaact ctctgatgca ggatagggat gctgcttctg ccagggcctg gcccaagatg cacactgtga atgggtatgt gaataggagc ctgcctgggc tgattgggtg tcacaggaag tctgtgtact ggcatgtgat tggcatgggc accactcctg aggtgcacag catctttctg gagggccaca cttttctggt gaggaatcac aggcaggcca gcctggagat cagccccatc accttcctga ctgcccagac cctgctgatg gatctgggcc agttcctgct gttttgccat atcagcagcc atcagcatga tgggatggag gcttatgtga aggtggactc ttgccctgag gagcctcagc tgaggatgaa gaataatgaa gaggctgagg actatgatga tgatctgact gactctgaga tggatgtggt gaggtttgat gatgacaaca gccccagctt tatccagatt aggtctgtgg ccaagaagca ccccaagacc tgggtgcatt acattgctgc tgaggaagag gattgggact atgcccccct ggtgctggcc cctgatgaca ggagctacaa gtctcagtac ctgaacaatg gccctcagag gattggcagg aagtacaaga aggtgaggtt catggcttac actgatgaga ccttcaagac cagggaggcc attcagcatg aatctgggat cctgggcccc ctgctgtatg gggaggtggg ggacaccctg ctgattattt tcaagaacca ggccagcagg ccctacaaca tttatcctca tggcattact gatgtgagac ccctgtacag caggaggctg cctaaggggg tgaagcacct gaaggacttc cccatcctgc ctggggagat cttcaagtac aagtggactg tgactgtgga ggatggcccc actaagtctg accccaggtg cctgactagg tactactcca gctttgtgaa catggagagg
gacctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggatcag aggggcaacc agatcatgtc tgacaagaga aatgtgatcc tgttctctgt gtttgatgag aataggtctt ggtacctgac tgagaacatc cagaggtttc tgcctaatcc tgctggggtg cagctggagg atcctgagtt ccaggcctct aacattatgc acagcatcaa tgggtatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc attggggccc agactgactt tctgtctgtg ttcttctctg gctacacctt taagcataag atggtgtatg aggacaccct gactctgttc cccttctctg gggagactgt gttcatgagc atggagaacc caggcctgtg gatcctgggc tgccacaact ctgatttcag gaataggggc atgactgccc tgctgaaggt gagcagctgt gataagaaca ctggggacta ttatgaggat agctatgagg acatctctgc ctacctgctg agcaagaaca atgccattga gcccaggagc ttcagccaga atcctcctgt gctgaagagg caccagaggg agatcaccag gaccaccctg cagtctgatc aggaggagat tgactatgat gacactatct ctgtggagat gaagaaggag gactttgaca tctatgatga ggatgagaat cagagcccca ggagcttcca gaagaagact agacactact ttattgctgc tgtggagagg ctgtgggact atggcatgag ctcttctccc catgtgctga gaaacagggc ccagtctggc tctgtgcccc agttcaagaa ggtggtcttc caggagttca ctgatggctc tttcacccag cctctgtata gaggggagct gaatgagcac ctgggcctgc tgggccctta catcagggct gaggtggagg acaatatcat ggtgaccttc aggaaccagg ctagcaggcc ctactctttc tacagcagcc tgatcagcta tgaggaggac cagaggcagg gggctgagcc taggaagaat tttgtgaagc ccaatgagac caagacctac ttctggaagg tgcagcacca catggctccc actaaggatg agtttgactg caaggcctgg gcctactttt ctgatgtgga cctggagaag gatgtgcatt ctggcctgat tggccccctg ctggtctgcc acaccaatac tctgaaccct gctcatggga gacaggtgac tgtgcaggag tttgccctgt tcttcaccat ctttgatgag accaagtcct ggtactttac tgagaacatg gagaggaatt gcagggcccc ttgcaacatc cagatggagg accccacctt caaggaaaat tataggttcc atgccatcaa tggctacatc atggacaccc tgcctggcct ggtgatggcc caggaccaga ggatcaggtg gtatctgctg tctatgggct ctaatgagaa catccacagc atccatttct ctggccatgt gttcactgtg aggaagaagg aggagtataa gatggctctg tacaacctgt accctggggt ctttgagact gtggagatgc tgcccagcaa ggctggcatt tggagggtgg agtgcctgat tggggaacac ctgcatgctg ggatgagcac cctgttcctg gtgtactcta acaagtgcca gaccccactg ggcatggctt ctggccacat cagggatttc cagattactg cctctggcca gtatggccag tgggctccca agctggctag gctgcactac tctgggagca tcaatgcctg gtctactaag gagcctttct cttggatcaa agtggacctg ctggccccta tgatcatcca tgggatcaag actcaggggg ccaggcagaa gttcagcagc ctgtacatct ctcagttcat cattatgtac agcctggatg gcaagaagtg gcagacctac aggggcaaca gcactggcac cctgatggtg ttctttggga atgtggacag ctctgggatt aagcacaaca tctttaaccc ccccatcatt gccaggtata tcaggctgca ccctacccac tacagcatta ggagcaccct gaggatggag ctgatgggct gtgacctgaa cagctgcagc atgcccctgg ggatggagag caaggccatt tctgatgctc agatcactgc ttctagctac ttcactaaca tgtttgccac ctggtctccc agcaaggcta gactgcacct gcaggggagg agcaatgcct ggaggcccca ggtgaataat cccaaggagt ggctgcaggt ggatttccag aaaaccatga aggtgactgg ggtgactacc cagggggtga agtctctgct gaccagcatg tatgtgaagg agttcctgat cagcagcagc caggatgggc atcagtggac cctgttcttt cagaatggga aggtgaaggt gtttcagggc aatcaggaca gcttcacccc tgtggtgaac agcctggacc cccccctgct gaccaggtac ctgaggatcc acccccagag ctgggtgcat cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta ctga FVIII encoding CpG reduced nucleic acid variant X05 (SEQ ID NO: 5) atgcagattg agctgtctac ttgcttcttc ctgtgcctgc tgaggttctg cttctctgcc actaggaggt attacctggg ggctgtggag ctgagctggg actatatgca gtctgacctg ggggagctgc ctgtggatgc caggtttcct cccagggtgc ctaagagctt ccccttcaac acctctgtgg tgtacaagaa gactctgttt gtggagttta ctgatcatct gttcaacatt gccaagccca ggcctccttg gatggggctg ctgggcccca ccatccaggc tgaggtgtat gacactgtgg tgattaccct gaagaatatg gccagccatc ctgtgagcct gcatgctgtg ggggtgagct attggaaggc ctctgagggg gctgagtatg atgatcagac tagccagagg gagaaggagg atgacaaggt gttccctggg gggagccata cctatgtgtg gcaggtgctg aaggagaatg gccccatggc ctctgaccct ctgtgcctga cttatagcta cctgagccat gtggatctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ccaaggagaa gactcagacc ctgcacaagt tcatcctgct gtttgctgtg tttgatgagg ggaagtcctg gcactctgag actaagaaca gcctgatgca ggatagggat gctgcttctg ccagggcctg gcctaagatg cacactgtga atggctatgt gaataggagc ctgcctggcc tgattggctg ccataggaag tctgtgtact ggcatgtgat tgggatgggc accacccctg aggtgcactc tattttcctg gagggccata ctttcctggt gaggaaccat aggcaggcca gcctggagat cagccccatc actttcctga ctgcccagac tctgctgatg gacctgggcc agttcctgct gttctgccac atcagcagcc atcagcatga tggcatggag gcttatgtga aggtggacag ctgccctgag gagcctcagc tgaggatgaa gaataatgag gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat gatgacaact ctccctcttt catccagatc aggtctgtgg ccaagaagca ccctaagacc tgggtgcact acattgctgc tgaggaggag gattgggact atgcccccct ggtgctggcc ccagatgaca ggagctacaa gtcccagtac ctgaacaatg gcccccagag gattggcagg aagtacaaga aggtgaggtt catggcttat actgatgaga ctttcaagac cagggaggcc atccagcatg agtctggcat cctgggccct ctgctgtatg gggaggtggg ggacaccctg ctgattatct tcaagaacca ggcttctagg ccctacaata tctaccctca tggcatcact gatgtgaggc ccctgtacag caggaggctg cccaaggggg tgaagcatct gaaggatttc cccatcctgc ctggggagat ctttaagtat aagtggactg tgactgtgga ggatggcccc actaagtctg accccaggtg cctgaccagg tattacagca gctttgtgaa catggagagg gatctggctt ctgggctgat tggccccctg ctgatctgct acaaggagtc tgtggaccag aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aataggagct ggtacctgac tgagaacatc cagaggtttc tgcccaatcc tgctggggtg cagctggagg atcctgagtt tcaggcctct aatatcatgc acagcatcaa tggctatgtg tttgactctc tgcagctgtc tgtgtgcctg catgaggtgg cctattggta catcctgagc attggggccc agactgactt tctgtctgtg tttttttctg gctacacctt caagcacaag atggtgtatg aggatactct gactctgttc cctttttctg gggagactgt gttcatgtct atggagaacc ctgggctgtg gattctgggc tgccacaatt ctgacttcag gaacagaggc atgactgctc tgctgaaggt gagcagctgt gacaagaaca ctggggacta ctatgaggac tcttatgagg acatttctgc ctacctgctg agcaagaaca atgccattga gcccagaagc ttttctcaga acccccctgt gctgaagagg caccagaggg agatcaccag gaccaccctg cagtctgacc aggaggagat tgactatgat gatactattt ctgtggagat gaagaaggag gactttgaca tctatgatga ggatgagaac cagagcccca ggtctttcca gaagaagact aggcactact ttattgctgc tgtggagagg ctgtgggact atgggatgtc tagctctcct catgtgctga ggaacagggc ccagtctggc tctgtgcccc agtttaaaaa ggtggtgttc caggaattca ctgatggcag ctttacccag cctctgtaca ggggggagct gaatgagcac ctggggctgc tggggcctta cattagggct gaggtggagg acaacatcat ggtgaccttc aggaatcagg ccagcaggcc ctactctttc tacagcagcc tgatctctta tgaggaggac cagaggcagg gggctgaacc caggaagaac tttgtgaagc ccaatgagac caagacctac ttctggaagg tgcagcacca catggctccc accaaggatg agtttgattg caaggcctgg gcttacttct ctgatgtgga tctggagaag gatgtgcact ctgggctgat tggccccctg ctggtgtgcc acaccaacac tctgaaccct gcccatggca gacaggtgac tgtgcaggag tttgccctgt tcttcactat ctttgatgag actaagagct ggtacttcac tgagaacatg gagaggaatt gcagggcccc ttgcaacatc cagatggagg accccacctt taaggagaac tacaggtttc atgccattaa tggctacatc atggacaccc tgcctggcct ggtgatggcc caggaccaga ggatcaggtg gtacctgctg tctatgggga gcaatgagaa catccacagc attcacttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggccctg tacaacctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctgggatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg ggatgagcac cctgttcctg gtgtatagca acaagtgcca gacccccctg ggcatggcct ctggccacat cagagacttt cagattactg cctctggcca gtatgggcag tgggccccca agctggccag gctgcactat tctggctcta ttaatgcctg gagcactaag gagcccttca gctggattaa ggtggacctg ctggctccca tgatcatcca tggcatcaag actcaggggg ccaggcagaa gttctcttct ctgtacatca gccagttcat tatcatgtac tccctggatg gcaagaagtg gcagacctat aggggcaaca gcactggcac cctgatggtg ttctttggga atgtggacag ctctggcatc aagcataata tcttcaatcc ccccatcatt gctaggtaca tcaggctgca ccccacccac tactctatta ggtctaccct gaggatggag ctgatgggct gtgacctgaa cagctgcagc atgcctctgg gcatggagag caaagccatc tctgatgccc agatcactgc cagcagctac tttaccaaca tgtttgctac ttggagcccc agcaaggcca ggctgcacct gcaggggagg tctaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag aagactatga aggtgactgg ggtgaccacc cagggggtga agagcctgct gacctctatg tatgtgaagg agttcctgat tagcagcagc caggatggcc accagtggac cctgtttttc cagaatggga aggtgaaggt gtttcagggg aaccaggaca gcttcactcc tgtggtgaac tctctggacc cccccctgct gaccaggtat ctgaggatcc accctcagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta ctga FVIII encoding CpG reduced nucleic acid variant X06 (SEQ ID NO: 6) atgcagattg agctgagcac ctgcttcttc ctgtgcctgc tgaggttttg cttctctgcc accaggaggt actacctggg ggctgtggag ctgagctggg attacatgca gtctgacctg ggggagctgc ctgtggatgc caggttccct cccagggtgc ccaagtcttt ccccttcaac acttctgtgg tgtacaagaa gaccctgttt gtggagttta ctgaccacct gttcaacatt gccaagccca ggcctccctg gatgggcctg ctgggcccca ccattcaggc tgaggtgtat
gacactgtgg tcatcaccct gaaaaatatg gctagccacc ctgtgtctct gcatgctgtg ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac tagccagagg gagaaggagg atgacaaggt gttccctggg ggcagccaca cttatgtgtg gcaggtgctg aaagagaatg gccccatggc ttctgatccc ctgtgtctga cctatagcta cctgagccat gtggatctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ctaaggagaa gacccagacc ctgcataagt tcatcctgct gtttgctgtg tttgatgagg gcaagagctg gcactctgag actaagaaca gcctgatgca ggatagggat gctgcttctg ccagggcctg gcccaagatg cacactgtga atgggtatgt gaacaggagc ctgcctggcc tgattggctg ccataggaag tctgtctatt ggcatgtgat tggcatgggc actactcctg aggtgcacag catctttctg gagggccaca ccttcctggt gaggaaccac aggcaggcca gcctggagat ctctcccatc actttcctga ctgctcagac cctgctgatg gacctgggcc agttcctgct gttctgtcac atctctagcc accagcatga tggcatggag gcctatgtga aggtggatag ctgccctgag gaaccccagc tgaggatgaa gaacaatgag gaggctgagg attatgatga tgatctgact gattctgaga tggatgtggt gaggtttgat gatgacaatt ctcctagctt cattcagatc agatctgtgg ccaaaaagca tcctaagact tgggtgcatt atattgctgc tgaggaggag gattgggatt atgcccccct ggtgctggct cctgatgata ggagctacaa gtctcagtac ctgaataatg ggccccagag gattggcagg aagtacaaga aggtgaggtt catggcctac actgatgaga ccttcaagac cagggaggcc attcagcatg agtctgggat tctggggccc ctgctgtatg gggaggtggg ggataccctg ctgatcattt tcaagaacca ggccagcagg ccctacaaca tctaccccca tgggattact gatgtgaggc ccctgtactc taggaggctg cctaaggggg tgaagcacct gaaggatttt cctatcctgc ctggggaaat cttcaagtac aagtggactg tgactgtgga ggatggcccc actaagtctg atcccaggtg tctgaccagg tattatagct cttttgtgaa catggagagg gatctggcct ctgggctgat tggccctctg ctgatctgct acaaggagtc tgtggaccag aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aacaggagct ggtatctgac tgagaacatc cagaggtttc tgcccaatcc tgctggggtg cagctggagg atcctgagtt ccaggctagc aacatcatgc acagcatcaa tgggtatgtg tttgacagcc tgcagctgtc tgtgtgtctg catgaggtgg cctactggta tatcctgtct attggggccc agactgactt cctgtctgtg tttttttctg ggtatacttt taagcacaag atggtgtatg aggacaccct gactctgttc cccttctctg gggagactgt gtttatgagc atggagaacc ctggcctgtg gatcctgggc tgccacaatt ctgacttcag gaataggggg atgactgccc tgctgaaggt gagcagctgt gataagaata ctggggacta ctatgaggac tcttatgagg acatttctgc ctatctgctg tctaagaaca atgccattga acccaggagc ttctctcaga acccccctgt gctgaagagg caccagaggg aaatcaccag aactactctg cagtctgatc aggaggaaat tgactatgat gacactattt ctgtggagat gaagaaggag gactttgaca tctatgatga ggatgagaac cagagcccaa ggagcttcca gaagaagact aggcactact tcattgctgc tgtggagagg ctgtgggact atggcatgag cagcagcccc catgtgctga gaaacagggc ccagtctggg tctgtgcccc agttcaagaa ggtggtgttc caggagttca ctgatgggag cttcacccag cccctgtata ggggggagct gaatgagcac ctgggcctgc tgggccccta tattagggct gaggtggagg acaacatcat ggtgaccttc aggaatcagg cctctaggcc ctacagcttc tacagcagcc tgattagcta tgaggaggat cagaggcagg gggctgaacc caggaagaac tttgtgaagc ccaatgagac caagacctat ttctggaagg tgcagcatca catggccccc accaaggatg agtttgactg caaggcctgg gcctacttct ctgatgtgga tctggagaag gatgtgcact ctggcctgat tggccccctg ctggtgtgcc acaccaacac cctgaaccct gctcatggca ggcaggtgac tgtgcaggag tttgccctgt tcttcaccat ctttgatgag actaagtctt ggtacttcac tgagaatatg gagaggaatt gcagggcccc ctgcaatatt cagatggaag accccacctt caaggagaat tacaggttcc atgccattaa tggctacatc atggataccc tgcctggcct ggtgatggcc caggatcaga ggatcaggtg gtacctgctg agcatgggca gcaatgagaa catccactct atccacttct ctggccatgt gtttactgtg aggaagaagg aggagtataa gatggccctg tacaacctgt accctggggt ctttgagact gtggagatgc tgccttctaa ggctggcatt tggagggtgg agtgcctgat tggggaacac ctgcatgctg gcatgtctac cctgttcctg gtgtacagca ataagtgcca gacccccctg ggcatggcct ctgggcatat cagggatttc cagatcactg cctctggcca gtatggccag tgggccccaa agctggctag gctgcactac tctgggagca tcaatgcctg gagcactaag gagcccttca gctggatcaa ggtggacctg ctggccccca tgattatcca tgggattaag actcaggggg ccaggcagaa gttcagcagc ctgtacatca gccagttcat tatcatgtac agcctggatg gcaagaagtg gcagacctat aggggcaact ctactgggac cctgatggtg ttctttggga atgtggatag ctctgggatc aagcacaata tcttcaaccc ccccatcatt gccaggtata tcaggctgca ccccacccac tacagcatta ggtctaccct gaggatggag ctgatgggct gtgatctgaa cagctgtagc atgcctctgg gcatggagtc taaggccatt tctgatgccc agattactgc tagcagctac ttcaccaaca tgtttgccac ctggtctccc agcaaggcca ggctgcatct gcagggcagg tctaatgctt ggaggcccca ggtgaacaac ccaaaggagt ggctgcaggt ggatttccag aagactatga aggtgactgg ggtgaccact cagggggtga agtctctgct gacctctatg tatgtgaagg agttcctgat ctctagcagc caggatggcc atcagtggac cctgttcttc cagaatggca aggtgaaagt gttccagggc aatcaggata gcttcactcc agtggtgaac agcctggatc cccctctgct gactaggtac ctgaggatcc acccccagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta ctga FVIII encoding CpG reduced nucleic acid variant X07 (SEQ ID NO: 7) atgcagattg agctgagcac ctgcttcttc ctgtgtctgc tgaggttctg cttctctgcc accaggaggt attacctggg ggctgtggag ctgagctggg actatatgca gtctgacctg ggggagctgc ctgtggatgc taggttcccc cccagggtgc ccaagagctt cccctttaac acttctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct gttcaacatt gccaagccca ggcccccctg gatggggctg ctggggccca ccatccaggc tgaggtgtat gacactgtgg tgatcaccct gaagaacatg gccagccacc ctgtgagcct gcatgctgtg ggggtgagct actggaaggc ttctgagggg gctgagtatg atgaccagac tagccagagg gagaaggagg atgacaaggt gtttcctggg ggcagccata cctatgtgtg gcaggtgctg aaggagaatg gccccatggc ctctgacccc ctgtgcctga cctacagcta cctgtctcat gtggacctgg tgaaggacct gaactctggc ctgattgggg ctctgctggt gtgtagggag ggcagcctgg ctaaggaaaa gacccagacc ctgcataagt ttatcctgct gtttgctgtg tttgatgagg gcaagagctg gcactctgag accaagaaca gcctgatgca ggatagggat gctgcctctg ccagggcttg gcctaagatg cacactgtga atgggtatgt gaataggagc ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tgggatgggc accacccctg aggtccatag catcttcctg gagggccaca ctttcctggt gaggaaccac agacaggcct ctctggagat ctctcccatc accttcctga ctgctcagac tctgctgatg gacctgggcc agttcctgct gttttgccat attagcagcc accagcatga tgggatggag gcctatgtga aggtggatag ctgccctgag gagcctcagc tgaggatgaa gaacaatgag gaggctgaag actatgatga tgacctgact gattctgaga tggatgtggt gaggtttgat gatgacaata gccccagctt cattcagatc aggtctgtgg ccaagaaaca ccccaagacc tgggtgcact acattgctgc tgaggaagag gactgggact atgctcccct ggtgctggcc cctgatgata ggtcttataa gagccagtac ctgaacaatg ggccccagag gattggcagg aagtacaaga aggtgaggtt catggcctac actgatgaaa ccttcaaaac cagggaggcc attcagcatg agtctggcat cctgggccct ctgctgtatg gggaggtggg ggacaccctg ctgatcatct tcaagaacca ggccagcagg ccctacaaca tctatcctca tggcatcact gatgtgaggc ccctgtacag caggaggctg cccaaggggg tgaagcacct gaaagacttc cccatcctgc ctggggagat ctttaagtat aagtggactg tgactgtgga ggatggccct accaagtctg accccaggtg tctgaccagg tactattcta gctttgtgaa catggagagg gacctggcct ctggcctgat tgggcccctg ctgatctgct acaaggagtc tgtggaccag aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttttctgt gtttgatgag aataggagct ggtacctgac tgagaacatc cagaggtttc tgcccaatcc tgctggggtg cagctggagg atcctgagtt ccaggccagc aatatcatgc atagcatcaa tggctatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc attggggccc agactgactt tctgtctgtg ttcttttctg gctatacctt caagcacaag atggtgtatg aggataccct gaccctgttc cccttctctg gggagactgt gttcatgagc atggagaatc ctgggctgtg gatcctgggg tgccacaact ctgattttag gaacaggggg atgactgccc tgctgaaggt gtctagctgt gataagaaca ctggggacta ctatgaggac agctatgagg acatttctgc ttatctgctg tctaagaata atgccattga gcccagaagc ttcagccaga atccccctgt gctgaagaga catcagaggg agatcaccag aactaccctg cagtctgatc aggaggagat tgactatgat gacactatct ctgtggagat gaagaaggag gactttgaca tctatgatga ggatgagaat cagtctccca ggagctttca gaagaagacc agacattact tcattgctgc tgtggagagg ctgtgggact atggcatgag ctctagccct catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa ggtggtgttc caggaattca ctgatggcag cttcacccag cccctgtaca ggggggagct gaatgagcac ctgggcctgc tggggcctta tatcagggct gaggtggagg ataatattat ggtgactttc aggaaccagg ccagcaggcc ctactctttc tatagcagcc tgatctctta tgaggaggat cagaggcagg gggctgagcc taggaagaac tttgtgaagc ccaatgagac taagacctac ttctggaagg tccagcacca catggcccct accaaggatg agtttgactg caaggcctgg gcctatttct ctgatgtgga tctggagaag gatgtccatt ctgggctgat tggccccctg ctggtgtgcc acactaacac tctgaatcct gcccatggca ggcaggtgac tgtccaggag tttgccctgt tcttcactat ctttgatgag accaagagct ggtactttac tgagaacatg gagaggaact gcagagctcc ttgcaatatt cagatggagg accccacctt caaggagaat tacaggttcc atgccattaa tgggtacatc atggacaccc tgcctggcct ggtgatggct caggaccaga ggatcaggtg gtacctgctg agcatgggct ctaatgagaa tatccacagc atccacttct ctgggcatgt gttcactgtg aggaagaagg aggagtacaa gatggctctg tataatctgt accctggggt gtttgaaact gtggagatgc tgccctctaa ggctggcatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac cctgttcctg
gtgtacagca acaagtgcca gacccccctg ggcatggcct ctggccacat cagggacttc cagatcactg cctctggcca gtatggccag tgggccccca agctggccag gctgcactat tctggcagca tcaatgcctg gagcaccaag gagcccttca gctggatcaa ggtggacctg ctggccccca tgatcattca tggcatcaag acccaggggg ccaggcagaa gttcagctct ctgtacatct ctcagttcat catcatgtac tctctggatg ggaagaagtg gcagacctac aggggcaaca gcactggcac cctgatggtg ttctttggga atgtggactc ttctggcatc aagcacaaca tcttcaatcc ccccatcatt gctaggtata ttaggctgca tcccacccac tacagcatca ggtctaccct gaggatggag ctgatgggct gtgacctgaa ctcttgcagc atgcccctgg gcatggagtc taaggccatc tctgatgccc agattactgc cagcagctac ttcaccaaca tgtttgccac ctggagcccc tctaaggcca ggctgcatct gcaggggagg agcaatgcct ggaggcctca ggtgaacaac cccaaggagt ggctgcaggt ggatttccag aagaccatga aggtgactgg ggtgaccacc cagggggtca agagcctgct gaccagcatg tatgtgaagg agttcctgat cagcagcagc caggatggcc accagtggac tctgttcttt cagaatggga aggtgaaggt gtttcagggc aatcaggact ctttcacccc tgtggtgaac agcctggacc cccccctgct gaccagatac ctgaggatcc acccccagtc ttgggtgcat cagattgccc tgaggatgga ggtgctgggc tgtgaggctc aggatctgta ctga FVIII encoding CpG reduced nucleic acid variant X08 (SEQ ID NO: 8) atgcagattg agctgagcac ttgctttttt ctgtgcctgc tgaggttttg tttttctgcc accaggaggt actacctggg ggctgtggag ctgagctggg actatatgca gtctgatctg ggggagctgc ctgtggatgc caggttcccc cccagggtgc ccaagtcttt tcccttcaac acctctgtgg tgtataagaa gaccctgttt gtggagttca ctgaccacct gttcaacatt gctaagccta ggcccccctg gatgggcctg ctgggcccta ccattcaggc tgaggtgtat gacactgtgg tgatcaccct gaagaacatg gccagccatc ctgtgagcct gcatgctgtg ggggtctctt actggaaggc ctctgagggg gctgagtatg atgaccagac cagccagaga gagaaggagg atgacaaggt cttccctggg ggctctcaca cctatgtgtg gcaggtgctg aaggaaaatg gccccatggc ctctgacccc ctgtgcctga cctacagcta tctgagccat gtggatctgg tgaaggacct gaattctggc ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ccaaggagaa gacccagacc ctgcacaagt ttatcctgct gtttgctgtg tttgatgagg gcaagtcttg gcactctgag actaagaaca gcctgatgca ggacagggat gctgcctctg ccagggcctg gcccaagatg cacactgtga atggctatgt gaacaggagc ctgcctgggc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tggcatgggc accacccctg aggtgcacag catcttcctg gaaggccaca ctttcctggt gaggaaccat aggcaggcca gcctggagat cagccctatc accttcctga ctgcccagac cctgctgatg gatctggggc agttcctgct gttctgccac atctctagcc accagcatga tgggatggag gcctatgtga aggtggacag ctgcccagag gagcctcagc tgaggatgaa aaacaatgaa gaggctgagg attatgatga tgatctgact gactctgaga tggatgtggt gagatttgat gatgacaata gccctagctt tattcagatc aggtctgtgg ctaagaagca ccccaagacc tgggtgcatt acattgctgc tgaggaggag gactgggatt atgctcctct ggtgctggcc cctgatgata ggagctacaa gagccagtac ctgaataatg gccctcagag gattggcagg aagtacaaga aggtgaggtt catggcttac actgatgaga ccttcaagac tagggaggcc atccagcatg agtctgggat cctggggccc ctgctgtatg gggaggtggg ggacaccctg ctgatcatct tcaagaacca ggctagcagg ccttacaaca tctatcccca tgggatcact gatgtgagac ctctgtacag caggaggctg cccaaggggg tcaagcatct gaaagacttc cccatcctgc ctggggagat ctttaagtat aagtggactg tgactgtgga ggatgggccc accaagtctg accccaggtg cctgaccagg tattacagca gctttgtgaa catggagagg gatctggcct ctgggctgat tggccccctg ctgatctgtt acaaggaatc tgtggatcag aggggcaatc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aataggtctt ggtacctgac tgaaaacatc cagaggttcc tgcccaaccc tgctggggtc cagctggagg atcctgagtt ccaggctagc aacatcatgc acagcatcaa tgggtatgtg tttgatagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgtct attggggccc agactgactt cctgtctgtg ttcttttctg gctacacctt caagcacaag atggtgtatg aggacaccct gaccctgttc cccttctctg gggagactgt ctttatgagc atggagaacc ctgggctgtg gatcctgggc tgccacaact ctgatttcag gaataggggc atgactgctc tgctgaaggt gagctcttgt gacaagaaca ctggggatta ctatgaggac agctatgagg acatttctgc ctacctgctg agcaagaaca atgccattga gcctaggagc tttagccaga atcctcctgt cctgaagagg caccagaggg agatcaccag gaccaccctg cagtctgacc aggaggagat tgactatgat gataccatct ctgtggagat gaagaaggag gactttgaca tctatgatga ggatgagaat cagtctccca ggagcttcca gaagaagacc aggcactatt tcattgctgc tgtggagagg ctgtgggact atggcatgag cagctctcct catgtgctga ggaatagggc tcagtctggc tctgtgcccc agttcaagaa agtggtgttt caggagttca ctgatggctc tttcacccag cctctgtata ggggggagct gaatgagcac ctggggctgc tgggccccta tatcagggct gaggtggagg ataacatcat ggtgaccttc aggaaccagg cctctaggcc ctacagcttc tatagcagcc tgatcagcta tgaggaggac cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac caagacttac ttctggaagg tgcagcatca catggccccc accaaggatg agtttgactg taaggcctgg gcctacttct ctgatgtgga tctggagaag gatgtgcact ctggcctgat tggccccctg ctggtgtgcc ataccaatac tctgaaccct gctcatggca ggcaggtgac tgtgcaggag tttgctctgt tcttcactat ctttgatgag accaagtctt ggtatttcac tgagaatatg gagaggaact gcagggcccc ctgcaacatc cagatggagg accccacctt taaggagaac tataggtttc atgccatcaa tggctacatc atggacaccc tgcctggcct ggtgatggcc caggatcaga ggatcaggtg gtacctgctg agcatggggt ctaatgagaa catccacagc atccacttct ctggccatgt gtttactgtg agaaagaagg aggagtacaa gatggctctg tacaatctgt accctggggt ctttgagact gtggagatgc tgcctagcaa ggctgggatc tggagggtgg agtgcctgat tggggaacat ctgcatgctg ggatgtctac tctgttcctg gtgtacagca acaagtgcca gacccccctg ggcatggctt ctggccatat cagggacttt cagattactg cctctgggca gtatggccag tgggccccca agctggctag gctgcattat tctggcagca tcaatgcctg gtctactaag gagcccttca gctggatcaa ggtggatctg ctggccccca tgatcatcca tggcatcaag acccaggggg ccaggcagaa gtttagctct ctgtacatta gccagttcat catcatgtac agcctggatg ggaagaagtg gcagacctac aggggcaatt ctactggcac cctgatggtg ttctttggca atgtggacag ctctggcatc aagcacaaca tctttaaccc ccctatcatt gctaggtaca tcaggctgca tcccacccat tacagcatca ggagcaccct gaggatggag ctgatgggct gtgacctgaa ctcttgcagc atgcccctgg gcatggagag caaggccatt tctgatgccc agattactgc cagcagctac ttcactaaca tgtttgccac ctggtctccc agcaaggcca ggctgcacct gcagggcagg agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggatttccag aagaccatga aggtgactgg ggtgaccacc cagggggtga agagcctgct gactagcatg tatgtgaagg agttcctgat cagctctagc caggatggcc accagtggac tctgtttttc cagaatggca aggtgaaggt gttccagggc aaccaggact ctttcactcc tgtggtgaac agcctggacc cccccctgct gaccaggtat ctgaggattc acccccagtc ttgggtgcat cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga FVIII encoding CpG reduced nucleic acid variant X09 (SEQ ID NO: 9) atgcagattg agctgagcac ctgcttcttc ctgtgtctgc tgagattttg cttttctgcc actaggaggt attacctggg ggctgtggag ctgtcttggg actacatgca gtctgatctg ggggagctgc ctgtggatgc caggttccca cctagggtgc ctaagagctt tcccttcaat acctctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct gttcaacatt gccaagccta ggcccccctg gatgggcctg ctgggcccta ccatccaggc tgaagtgtat gacactgtgg tgatcaccct gaagaacatg gccagccacc ctgtgagcct gcatgctgtg ggggtgtctt actggaaggc ctctgagggg gctgagtatg atgatcagac cagccagagg gagaaggaag atgacaaggt gttccctggg ggcagccaca cctatgtctg gcaggtgctg aaggagaatg gccccatggc ctctgatccc ctgtgcctga cctactctta cctgagccat gtggacctgg tgaaggatct gaattctggc ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ccaaggagaa gacccagacc ctgcataagt tcatcctgct gtttgctgtg tttgatgaag ggaagagctg gcactctgag actaagaaca gcctgatgca ggacagggat gctgcttctg ccagggcctg gcccaagatg cacactgtga atggctatgt gaatagaagc ctgcctggcc tgattgggtg ccacaggaag tctgtgtact ggcatgtgat tgggatgggc actacccctg aggtgcatag catcttcctg gaaggccata ccttcctggt gaggaatcat aggcaggctt ctctggaaat ttctcccatc actttcctga ctgctcagac cctgctgatg gacctgggcc agttcctgct gttctgccac atcagctctc accagcatga tgggatggag gcctatgtga aggtggacag ctgtcctgag gagccccagc tgaggatgaa gaacaatgag gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt caggtttgat gatgacaata gcccctcttt catccagatc aggtctgtgg ccaagaagca ccccaagact tgggtgcact acattgctgc tgaggaggag gattgggatt atgcccctct ggtgctggcc cctgatgaca ggagctataa gtctcagtac ctgaataatg gcccccagag gattgggagg aagtataaga aggtgaggtt tatggcctac actgatgaga ccttcaagac cagggaggcc atccagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg ggataccctg ctgatcatct tcaagaacca ggcctctagg ccctacaata tctaccctca tggcatcact gatgtgagac ccctgtatag caggaggctg cctaaggggg tgaagcacct gaaggacttc cccatcctgc ctggggagat cttcaagtat aagtggactg tgactgtgga ggatggcccc accaagtctg accccaggtg cctgaccagg tattacagct cttttgtgaa catggagagg gatctggcct ctgggctgat tggcccactg ctgatctgct acaaggagtc tgtggatcag aggggcaatc agatcatgtc tgacaagagg aatgtgatcc tgttttctgt gtttgatgaa aataggtctt ggtatctgac tgagaacatc cagaggtttc tgcccaatcc tgctggggtg cagctggagg atcctgagtt tcaggcctct aatatcatgc attctatcaa tggctatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc attggggctc agactgactt cctgtctgtg ttcttttctg gctatacttt caagcacaag
atggtgtatg aggacactct gaccctgttc cccttctctg gggagactgt gttcatgtct atggaaaatc ctgggctgtg gattctgggc tgccacaatt ctgacttcag gaataggggg atgactgccc tgctgaaggt gtctagctgt gataagaaca ctggggatta ctatgaggac tcttatgaag atatctctgc ctatctgctg agcaagaaca atgccattga gcccaggagc ttcagccaga acccccctgt gctgaagagg caccagaggg agatcaccag gaccactctg cagtctgatc aggaggagat tgactatgat gacactatct ctgtggagat gaagaaggag gattttgaca tttatgatga ggatgagaac cagtctccca ggagcttcca gaagaagacc aggcattact ttattgctgc tgtggagagg ctgtgggact atgggatgag cagctctcct catgtgctga ggaacagggc ccagtctggg tctgtgcccc agttcaagaa ggtggtgttc caggagttca ctgatgggag cttcacccag cccctgtata ggggggagct gaatgagcac ctgggcctgc tgggccccta catcagggct gaggtggagg ataatatcat ggtgaccttc aggaaccagg ctagcaggcc ttacagcttt tacagcagcc tgatctctta tgaagaagac cagaggcagg gggctgagcc caggaagaat tttgtgaagc ctaatgagac caagacttat ttttggaagg tgcagcatca catggctcct accaaggatg agtttgactg caaggcctgg gcctactttt ctgatgtgga tctggagaag gatgtgcact ctggcctgat tggccctctg ctggtgtgcc atactaacac tctgaaccct gcccatggga ggcaggtgac tgtgcaggag tttgccctgt tcttcactat ttttgatgag accaagtctt ggtatttcac tgagaacatg gagaggaact gcagggctcc ctgcaacatc cagatggaag accccacctt caaggagaac tataggttcc atgccatcaa tgggtacatc atggataccc tgcctggcct ggtgatggcc caggatcaga ggattaggtg gtatctgctg agcatgggct ctaatgagaa catccacagc atccatttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggctctg tacaacctgt atcctggggt gtttgagact gtggagatgc tgcccagcaa ggctggcatc tggagggtgg aatgcctgat tggggagcac ctgcatgctg gcatgagcac tctgttcctg gtgtatagca acaagtgcca gacccccctg ggcatggcct ctggccatat cagggatttc cagatcactg cttctggcca gtatggccag tgggccccca agctggccag gctgcactat tctggcagca tcaatgcctg gagcactaag gagccttttt cttggatcaa ggtggacctg ctggccccta tgattattca tggcatcaag acccaggggg ccaggcagaa gttctctagc ctgtacatct ctcagttcat cattatgtat agcctggatg gcaagaagtg gcagacctac aggggcaata gcactggcac cctgatggtg ttttttggga atgtggactc ttctgggatc aagcacaaca tctttaaccc ccccatcatt gccaggtata ttaggctgca ccccacccac tacagcatca ggagcaccct gaggatggag ctgatgggct gtgatctgaa ttcttgctct atgcccctgg gcatggagag caaggccatc tctgatgccc agatcactgc cagctcttac ttcaccaaca tgtttgccac ctggtctcct agcaaggcca ggctgcatct gcagggcagg agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag aagaccatga aggtgactgg ggtgaccact cagggggtga agagcctgct gacctctatg tatgtgaagg agttcctgat cagcagcagc caggatggcc accagtggac tctgttcttc cagaatggga aggtgaaggt gttccagggc aaccaggata gctttacccc tgtggtgaac agcctggacc ctcctctgct gaccagatac ctgaggatcc atcctcagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga FVIII encoding CpG reduced nucleic acid variant X10 (SEQ ID NO: 10) atgcagattg agctgagcac ttgcttcttc ctgtgcctgc tgaggttctg cttttctgct actaggaggt actacctggg ggctgtggag ctgagctggg attacatgca gtctgacctg ggggagctgc cagtggatgc caggttcccc cccagggtgc ccaagtcttt tcctttcaac acctctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct gttcaacatt gccaagccca ggcccccctg gatggggctg ctggggccca ccatccaggc tgaggtgtat gacactgtgg tgattaccct gaagaacatg gctagccacc ctgtgagcct gcatgctgtg ggggtgagct attggaaggc ctctgagggg gctgagtatg atgatcagac cagccagagg gaaaaggagg atgacaaggt gttccctggg ggcagccata cttatgtgtg gcaggtgctg aaggagaatg ggcccatggc ctctgacccc ctgtgcctga cttacagcta tctgagccat gtggacctgg tgaaggatct gaactctggc ctgattgggg ctctgctggt gtgcagggag ggcagcctgg ctaaggagaa gactcagact ctgcataagt tcatcctgct gtttgctgtg tttgatgaag gcaagagctg gcactctgag accaagaact ctctgatgca ggatagggat gctgcctctg ccagggcttg gcccaagatg cacactgtga atggctatgt gaacaggagc ctgcctggcc tgattgggtg ccacaggaag tctgtgtact ggcatgtgat tggcatgggc accacccctg aggtgcacag cattttcctg gagggccaca ccttcctggt gaggaatcac aggcaggcca gcctggagat cagccccatc accttcctga ctgcccagac cctgctgatg gacctggggc agtttctgct gttctgccac atcagcagcc atcagcatga tggcatggag gcctatgtga aggtggactc ttgccctgag gagccccagc tgaggatgaa gaacaatgag gaggctgagg attatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat gatgacaata gccccagctt catccagatt aggtctgtgg ccaagaagca ccctaagacc tgggtgcact acattgctgc tgaggaggag gattgggatt atgcccccct ggtgctggct cctgatgaca ggtcttataa gagccagtac ctgaacaatg ggccccagag gattggcagg aagtacaaga aggtgaggtt catggcttac actgatgaga ccttcaagac tagggaggcc atccagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg ggataccctg ctgatcatct tcaagaacca ggccagcagg ccctacaaca tttaccctca tggcatcact gatgtgaggc ccctgtacag caggagactg cccaaggggg tgaagcacct gaaggatttt cccattctgc ctggggagat cttcaagtac aagtggactg tgactgtgga ggatggcccc accaagtctg atcccaggtg cctgactagg tactactctt cttttgtgaa tatggagagg gatctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggaccag aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aataggagct ggtacctgac tgagaatatc cagaggttcc tgcctaatcc tgctggggtc cagctggagg atcctgagtt ccaggctagc aacattatgc acagcatcaa tggctatgtg tttgattctc tgcagctgtc tgtgtgcctg catgaggtgg cttactggta catcctgtct attggggccc agactgattt cctgtctgtg ttcttctctg gctacacttt caagcataag atggtgtatg aggataccct gaccctgttc cccttctctg gggagactgt gttcatgtct atggagaacc ctggcctgtg gatcctgggc tgtcataact ctgacttcag aaacaggggc atgactgccc tgctgaaggt gagcagctgt gacaagaaca ctggggacta ctatgaggac agctatgagg atatctctgc ttatctgctg agcaagaata atgccattga gcccaggagc ttcagccaga acccccctgt gctgaagagg caccagaggg agatcactag gactaccctg cagtctgatc aggaggagat tgactatgat gacaccatct ctgtggagat gaagaaggag gactttgaca tctatgatga ggatgagaac cagtccccca ggtctttcca gaagaagacc aggcactact tcattgctgc tgtggagagg ctgtgggact atggcatgag ctctagcccc catgtgctga ggaacagggc tcagtctggc tctgtgcccc agttcaagaa ggtggtcttc caggagttca ctgatggctc ttttacccag cctctgtaca gaggggagct gaatgagcac ctgggcctgc tgggccccta catcagggct gaggtggagg ataatatcat ggtgaccttc agaaaccagg cctctaggcc ctacagcttc tacagcagcc tgatctctta tgaggaggat cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac caagacctac ttctggaagg tgcagcacca tatggcccct actaaggatg agtttgactg caaggcctgg gcttattttt ctgatgtgga cctggagaag gatgtgcact ctgggctgat tggccccctg ctggtgtgcc acaccaacac cctgaaccct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tcttcactat ctttgatgag accaagagct ggtacttcac tgagaacatg gagagaaatt gtagggctcc ctgcaatatc cagatggagg accccacctt caaagaaaat tacagattcc atgccatcaa tgggtacatc atggataccc tgcctgggct ggtgatggct caggaccaga ggatcaggtg gtacctgctg agcatggggt ctaatgagaa catccactct atccatttct ctggccatgt gttcactgtg agaaagaagg aggagtataa gatggctctg tacaacctgt acccaggggt gtttgagact gtggaaatgc tgcccagcaa agctgggatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgtctac cctgttcctg gtgtacagca acaagtgcca gactcccctg ggcatggcct ctgggcacat cagggatttt cagatcactg cctctggcca gtatggccag tgggccccca agctggccag gctgcactac tctggcagca ttaatgcttg gagcactaag gagcccttca gctggatcaa ggtggatctg ctggccccca tgatcatcca tggcatcaag acccaggggg ccaggcagaa gttctctagc ctgtacattt ctcagttcat catcatgtac agcctggatg ggaagaagtg gcagacctac agggggaaca gcactgggac cctgatggtg ttctttggca atgtggatag ctctggcatc aagcacaata tcttcaatcc ccccattatt gccaggtaca ttaggctgca tcctactcac tactctatta ggagcaccct gaggatggag ctgatggggt gtgacctgaa cagctgttct atgcccctgg gcatggagtc taaggctatc tctgatgccc agatcactgc cagcagctac ttcactaata tgtttgccac ctggagccct agcaaggcca gactgcacct gcagggcagg agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag aagaccatga aggtgactgg ggtgaccact cagggggtga agagcctgct gaccagcatg tatgtgaagg agttcctgat cagcagcagc caggatggcc accagtggac cctgttcttc cagaatggga aggtgaaggt gttccagggc aaccaggact ctttcacccc tgtggtgaac agcctggatc ctcccctgct gaccaggtac ctgaggatcc acccccagag ctgggtgcac cagattgctc tgaggatgga agtgctgggc tgtgaggccc aggatctgta ctga FVIII encoding CpG reduced nucleic acid variant X11 (SEQ ID NO: 11) atgcagattg agctgagcac ctgcttcttc ctgtgcctgc tgaggttttg cttctctgct accaggaggt actacctggg ggctgtggag ctgagctggg actatatgca gtctgacctg ggggagctgc ctgtggatgc taggttccct cccagggtgc ccaagagctt cccctttaat acctctgtgg tgtacaagaa aaccctgttt gtggagttca ctgaccatct gttcaacatt gccaagccca ggcccccttg gatgggcctg ctgggcccca ccattcaggc tgaggtgtat gacactgtgg tcattaccct gaagaacatg gcttctcacc ctgtgagcct gcatgctgtg ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac cagccagagg gagaaggagg atgataaggt gttccctggg ggcagccaca cctatgtgtg gcaggtgctg aaggagaatg gccccatggc ctctgatccc ctgtgcctga cctactctta tctgtctcat gtggacctgg tgaaggacct gaactctggc ctgattgggg ctctgctggt gtgcagggag ggctctctgg ccaaggagaa gacccagacc ctgcacaagt ttattctgct gtttgctgtc tttgatgagg gcaagagctg gcattctgag accaagaaca gcctgatgca ggacagggat
gctgcctctg ccagggcctg gcccaaaatg cacactgtga atggctatgt gaacaggagc ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tggcatgggc accacccctg aggtgcacag catcttcctg gagggccaca cctttctggt gaggaatcac aggcaggcca gcctggagat tagccccatc accttcctga ctgcccagac cctgctgatg gacctgggcc agttcctgct gttctgccac atcagcagcc accagcatga tggcatggag gcctatgtga aggtggatag ctgccctgag gagccccagc tgaggatgaa aaacaatgag gaggctgagg attatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat gatgacaata gccccagctt tattcagatt aggtctgtgg ctaagaagca ccccaagact tgggtgcact acattgctgc tgaggaggag gattgggact atgcccctct ggtcctggcc cctgatgata ggtcttacaa gagccagtat ctgaacaatg gcccccagag gattggcagg aagtacaaga aggtgaggtt catggcctac actgatgaga cctttaagac cagggaggcc attcagcatg agtctgggat cctgggcccc ctgctgtatg gggaggtggg ggacactctg ctgatcatct tcaagaacca ggccagcagg ccttataaca tctaccctca tgggatcact gatgtgaggc ccctgtactc tagaaggctg cccaaggggg tcaagcacct gaaggatttt cccatcctgc ctggggagat tttcaagtac aagtggactg tgactgtgga ggatggcccc accaagtctg accctaggtg cctgaccagg tactacagct cttttgtgaa catggagagg gacctggcct ctggcctgat tggccctctg ctgatttgct acaaggagtc tgtggaccag aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttttctgt gtttgatgag aacaggtctt ggtacctgac tgagaacatc cagaggttcc tgcctaaccc agctggggtg cagctggagg atcctgagtt ccaggccagc aatattatgc atagcattaa tggctatgtg tttgatagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc attggggccc agactgactt tctgtctgtg ttcttctctg gctacacctt caagcataag atggtgtatg aggacaccct gactctgttc cctttttctg gggagactgt gtttatgagc atggagaatc ctggcctgtg gatcctgggc tgccataatt ctgacttcag gaacaggggc atgactgccc tgctgaaagt gagcagctgt gacaagaata ctggggacta ctatgaagac agctatgagg acatctctgc ctacctgctg agcaagaaca atgccattga gcccaggagc ttcagccaga accccccagt gctgaagagg caccagagag agatcaccag gactaccctg cagtctgacc aggaggagat tgactatgat gacaccattt ctgtggagat gaagaaggag gactttgaca tttatgatga ggatgagaat cagagcccca ggagcttcca gaagaagact aggcactatt ttattgctgc tgtggagagg ctgtgggact atggcatgag cagctctccc catgtgctga ggaatagggc ccagtctggc tctgtgcctc agttcaagaa ggtggtgttc caggagttca ctgatggcag ctttacccag cccctgtata ggggggagct gaatgagcac ctgggcctgc tgggccccta tatcagggct gaggtggagg acaatattat ggtgaccttt aggaaccagg ccagcaggcc ctactctttc tatagcagcc tgatcagcta tgaggaggac cagaggcagg gggctgagcc caggaagaat tttgtgaagc ctaatgagac caagacctac ttctggaagg tgcagcatca catggccccc accaaggatg agtttgactg caaggcttgg gcctatttct ctgatgtgga cctggagaag gatgtgcact ctggcctgat tggccccctg ctggtgtgcc acactaacac tctgaatcct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tcttcaccat ctttgatgag accaagagct ggtacttcac tgagaacatg gagaggaact gcagggcccc ctgcaacatc cagatggagg atcccacctt caaggagaac tacaggtttc atgccatcaa tggctacatc atggacactc tgcctggcct ggtgatggcc caggatcaga ggatcaggtg gtacctgctg agcatgggct ctaatgagaa tatccatagc atccacttct ctggccatgt gttcactgtc aggaagaagg aggagtacaa gatggctctg tataatctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctggcatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg ggatgagcac cctgtttctg gtgtactcta acaagtgcca gacccccctg ggcatggcct ctgggcacat cagggatttc cagatcactg cttctggcca gtatggccag tgggccccca agctggccag gctgcactac tctggcagca tcaatgcctg gtctaccaag gagccctttt cttggattaa ggtggacctg ctggccccca tgatcatcca tggcatcaag acccaggggg ccaggcagaa gttcagcagc ctgtacatca gccagttcat catcatgtac agcctggatg gcaaaaagtg gcagacctac aggggcaata gcactgggac tctgatggtg ttctttggca atgtggacag ctctgggatc aagcacaata tcttcaaccc tcccatcatt gctaggtaca tcaggctgca ccccacccac tatagcatca ggtctaccct gaggatggag ctgatgggct gtgacctgaa ctcttgcagc atgcccctgg gcatggagtc caaagctatc tctgatgccc agattactgc cagcagctac ttcaccaaca tgtttgccac ctggtctccc tctaaggcca ggctgcacct gcagggcagg agcaatgcct ggaggcccca ggtgaacaat cccaaggagt ggctgcaggt ggatttccag aaaactatga aggtgactgg ggtgaccacc cagggggtga agtctctgct gaccagcatg tatgtgaagg agttcctgat ctcttctagc caggatggcc accagtggac tctgttcttc cagaatggca aggtgaaggt gttccagggc aaccaggaca gcttcacccc tgtggtgaac tctctggatc cccccctgct gaccaggtac ctgaggattc atccccagag ctgggtgcac cagattgctc tgagaatgga ggtgctgggg tgtgaggctc aggacctgta ttga FVIII encoding CpG reduced nucleic acid variant X12 (SEQ ID NO: 12) atgcagattg agctgtctac ttgttttttt ctgtgcctgc tgaggttctg cttctctgcc accaggaggt attacctggg ggctgtggag ctgagctggg attacatgca gtctgatctg ggggagctgc ctgtggatgc caggttcccc cccagggtgc ccaagagctt ccccttcaac acctctgtgg tgtataagaa gaccctgttt gtggagttca ctgatcatct gtttaacatt gccaagccca ggcccccctg gatgggcctg ctgggcccaa ctatccaggc tgaggtgtat gacactgtgg tcatcaccct gaagaatatg gccagccatc ctgtgagcct gcatgctgtg ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac cagccagagg gagaaggagg atgacaaggt gttccctggg ggcagccaca cctatgtgtg gcaggtgctg aaggagaatg gccccatggc ctctgacccc ctgtgcctga cttatagcta cctgtctcat gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt ctgtagggaa ggcagcctgg ccaaggagaa gacccagacc ctgcacaagt ttattctgct gtttgctgtg tttgatgaag gcaagagctg gcactctgag accaagaatt ctctgatgca ggatagggat gctgcctctg ccagggcctg gcccaagatg catactgtga atggctatgt gaacagaagc ctgcctggcc tgattggctg ccataggaag tctgtgtatt ggcatgtgat tgggatgggc actacccctg aagtgcacag cattttcctg gagggccaca ctttcctggt gaggaaccac aggcaggcct ctctggagat cagccccatt actttcctga ctgcccagac cctgctgatg gatctgggcc agttcctgct gttctgccac atctctagcc accagcatga tggcatggag gcctatgtga aggtggacag ctgccctgag gagccccagc tgaggatgaa gaataatgag gaggctgagg attatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat gatgataata gccccagctt catccagatc aggtctgtgg ccaagaagca tcccaagacc tgggtgcact atattgctgc tgaagaggag gactgggact atgcccctct ggtgctggct cctgatgaca ggagctataa gagccagtat ctgaacaatg ggccccagag gattgggagg aagtacaaga aggtgaggtt catggcctac actgatgaga cctttaagac cagggaggcc atccagcatg agtctggcat tctggggccc ctgctgtatg gggaggtggg ggacactctg ctgatcattt tcaagaacca ggccagcagg ccctacaata tttaccccca tggcatcact gatgtgaggc ccctgtacag caggaggctg cccaaggggg tgaagcacct gaaggacttc cccatcctgc ctggggagat cttcaagtac aagtggactg tgactgtgga ggatggccct accaagtctg accctaggtg tctgactagg tactacagca gctttgtgaa catggagaga gacctggctt ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggatcag aggggcaacc agattatgtc tgataagagg aatgtcatcc tgttctctgt gtttgatgag aacaggagct ggtatctgac tgagaacatt cagaggttcc tgcccaaccc tgctggggtg cagctggagg accctgagtt ccaggccagc aacatcatgc attctattaa tggctatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc attggggccc agactgactt tctgtctgtg tttttctctg ggtacacctt caagcacaag atggtctatg aggacaccct gaccctgttc cccttttctg gggaaactgt gtttatgagc atggagaacc ctgggctgtg gatcctgggc tgccacaact ctgactttag gaataggggc atgactgccc tgctgaaggt gagcagctgt gacaagaata ctggggatta ctatgaggac agctatgagg atatctctgc ctacctgctg agcaagaaca atgccattga gcctaggagc ttcagccaga acccccctgt gctgaagagg caccagaggg agatcaccag gaccaccctg cagtctgatc aggaggagat tgactatgat gacaccatct ctgtggagat gaagaaggag gactttgata tttatgatga ggatgagaac cagagcccca ggagcttcca gaagaagacc aggcactatt tcattgctgc tgtggagagg ctgtgggact atggcatgag ctctagcccc catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa ggtggtgttc caggaattta ctgatggcag ctttacccag cccctgtaca gaggggagct gaatgagcac ctgggcctgc tgggccccta catcagggct gaggtggagg ataatatcat ggtgaccttt aggaaccagg cctctaggcc ctattctttt tacagcagcc tgatcagcta tgaggaggac cagaggcagg gggctgagcc taggaagaac tttgtgaagc ccaatgagac caagacctac ttttggaaag tgcagcacca catggccccc actaaggatg agtttgattg caaggcctgg gcctatttct ctgatgtgga cctggagaag gatgtgcact ctggcctgat tggccccctg ctggtgtgcc acaccaacac tctgaaccct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tctttaccat ctttgatgag actaagagct ggtatttcac tgagaacatg gagaggaact gcagagcccc ttgcaacatc cagatggagg accctacctt caaggagaac tataggttcc atgccatcaa tgggtacatc atggataccc tgcctggcct ggtgatggct caggaccaga ggatcaggtg gtacctgctg agcatgggga gcaatgagaa cattcatagc atccacttct ctgggcatgt gttcactgtg aggaagaagg aggagtataa gatggccctg tacaacctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctggcatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac tctgttcctg gtgtacagca acaagtgcca gacccccctg ggcatggcct ctggccacat cagggacttc cagattactg cctctgggca gtatgggcag tgggccccca agctggccag gctgcactac tctgggtcta tcaatgcttg gagcaccaag gagcctttca gctggatcaa ggtggatctg ctggccccca tgatcattca tgggatcaag acccaggggg ccaggcagaa gttcagcagc ctgtatattt ctcagttcat catcatgtat tctctggatg gcaaaaagtg gcagacctat agagggaaca gcactgggac cctgatggtg ttttttggca atgtggatag ctctggcatc
aagcacaata tcttcaaccc ccccattatt gccaggtaca tcaggctgca ccccacccac tactctatca ggagcaccct gaggatggag ctgatgggct gtgatctgaa cagctgctct atgcctctgg ggatggaaag caaggccatc tctgatgccc agatcactgc cagcagctat ttcaccaata tgtttgccac ttggagccct agcaaggcta ggctgcatct gcagggcagg tctaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag aagactatga aagtgactgg ggtgaccacc cagggggtga aaagcctgct gaccagcatg tatgtgaagg agttcctgat tagcagcagc caggatggcc accagtggac cctgttcttc cagaatggga aggtgaaggt gtttcagggc aatcaggata gcttcacccc agtggtgaac agcctggacc cccccctgct gaccaggtac ctgaggatcc acccccagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga FVIII encoding CpG reduced nucleic acid variant X13 (SEQ ID NO: 13) atgcagattg agctgagcac ctgctttttc ctgtgcctgc tgaggttctg cttctctgct accaggaggt actacctggg ggctgtggag ctgtcttggg attacatgca gtctgacctg ggggagctgc ctgtggatgc caggtttccc cccagggtgc ccaagtcttt cccctttaac acctctgtgg tgtataagaa gactctgttt gtggagttca ctgatcacct gttcaatatt gccaagccca ggcccccttg gatgggcctg ctgggcccca ctatccaggc tgaggtgtat gacactgtgg tcatcaccct gaagaacatg gccagccacc ctgtgagcct gcatgctgtg ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac cagccagagg gagaaggagg atgacaaggt gttcccaggg gggtctcaca cttatgtgtg gcaggtgctg aaggagaatg ggcccatggc ctctgaccct ctgtgcctga cttatagcta cctgtctcat gtggatctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag gggagcctgg ccaaggagaa gacccagacc ctgcacaagt tcatcctgct gtttgctgtg tttgatgagg ggaagagctg gcactctgag accaagaata gcctgatgca ggacagggat gctgcttctg ctagggcctg gcctaagatg cacactgtga atggctatgt gaacaggagc ctgcctggcc tgattgggtg tcacaggaag tctgtgtact ggcatgtgat tggcatgggg actactccag aagtgcacag catcttcctg gaggggcaca ccttcctggt gaggaatcac aggcaggcca gcctggagat ttctcccatc actttcctga ctgcccagac cctgctgatg gatctggggc agttcctgct gttctgccac atcagcagcc atcagcatga tgggatggag gcctatgtga aggtggacag ctgccctgag gagcctcagc tgaggatgaa gaacaatgag gaggctgagg actatgatga tgatctgact gactctgaga tggatgtggt gaggtttgat gatgacaact ctcccagctt catccagatc aggtctgtgg ccaagaagca ccccaagacc tgggtgcact acattgctgc tgaggaggag gattgggatt atgctcccct ggtgctggct cctgatgata ggagctacaa gagccagtat ctgaataatg ggccccagag gattggcagg aagtataaga aggtgaggtt catggcctac actgatgaga cctttaagac cagggaggct attcagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg ggacaccctg ctgatcattt tcaagaacca ggccagcagg ccctataaca tctatcccca tgggatcact gatgtgaggc ccctgtactc taggaggctg cccaaggggg tcaagcacct gaaggacttc cccatcctgc ctggggagat cttcaagtac aagtggactg tgactgtgga ggatggcccc actaagtctg accccaggtg cctgactagg tactacagca gctttgtgaa catggagaga gatctggcct ctggcctgat tggccccctg ctgatctgct acaaagagtc tgtggatcag aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aacagaagct ggtacctgac tgagaacatt cagaggtttc tgcccaaccc tgctggggtc cagctggagg accctgagtt tcaggccagc aacatcatgc acagcatcaa tgggtatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta tatcctgagc attggggccc agactgattt cctgtctgtg ttcttctctg gctacacttt caagcacaag atggtgtatg aggataccct gaccctgttc cctttctctg gggaaactgt gttcatgagc atggagaacc ctgggctgtg gatcctgggg tgccacaatt ctgatttcag gaacagaggc atgactgctc tgctgaaggt gtctagctgt gacaagaaca ctggggacta ctatgaggac agctatgagg acatctctgc ctacctgctg agcaagaaca atgctattga acccaggtct ttcagccaga acccccctgt gctgaagagg caccagaggg agatcactag gaccaccctg cagtctgatc aggaggagat tgactatgat gacaccatct ctgtggagat gaagaaggag gactttgaca tctatgatga ggatgagaat cagtctccca ggagcttcca gaagaagact aggcattact tcattgctgc tgtggagagg ctgtgggact atggcatgag ctctagccct catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa ggtggtgttt caggagttca ctgatggcag cttcacccag cccctgtaca ggggggagct gaatgagcat ctgggcctgc tgggccccta catcagggct gaggtggagg acaacatcat ggtgaccttc agaaatcagg ctagcaggcc ctacagcttc tacagcagcc tgatctctta tgaggaggac cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac caagacctat ttctggaagg tgcagcacca catggccccc accaaggatg agtttgattg caaggcctgg gcctacttct ctgatgtgga cctggagaag gatgtgcatt ctgggctgat tggccctctg ctggtgtgcc acaccaacac cctgaatcct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tctttactat ctttgatgag accaagtctt ggtattttac tgagaacatg gagaggaact gcagggcccc ctgcaacatc cagatggagg accccacctt caaggagaac tacagattcc atgccatcaa tggctacatt atggacactc tgcctggcct ggtgatggcc caggaccaga ggatcaggtg gtacctgctg tctatgggca gcaatgagaa cattcactct atccacttct ctgggcatgt gttcactgtg aggaagaagg aggagtacaa gatggccctg tacaacctgt accctggggt gtttgagact gtggagatgc tgcctagcaa ggctgggatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgtctac cctgttcctg gtgtacagca acaagtgcca gacccccctg ggcatggcct ctggccacat cagagatttt cagatcactg cctctggcca gtatggccag tgggctccta agctggccag gctgcactac tctggcagca tcaatgcctg gagcaccaag gagcccttta gctggatcaa ggtggacctg ctggccccca tgatcatcca tggcatcaag actcaggggg ccaggcagaa gttctctagc ctgtacatta gccagttcat catcatgtat agcctggatg gcaagaagtg gcagacctac aggggcaaca gcactgggac cctgatggtg ttctttggga atgtggacag ctctgggatc aagcacaata tcttcaaccc ccccattatt gccaggtata ttaggctgca ccccactcac tacagcatta ggagcaccct gaggatggag ctgatgggct gtgatctgaa cagctgcagc atgcccctgg gcatggagtc taaggccatc tctgatgccc agatcactgc cagctcttac ttcaccaaca tgtttgccac ttggagcccc agcaaggcca ggctgcacct gcagggcagg agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggatttccag aagactatga aggtgactgg ggtgaccact cagggggtga agagcctgct gactagcatg tatgtgaagg agttcctgat cagctctagc caggatggcc accagtggac cctgttcttt cagaatggca aggtgaaggt gttccagggc aaccaggact ctttcacccc tgtggtgaat tctctggacc ctcccctgct gactaggtat ctgaggattc atccccagag ctgggtgcat cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta ttga FVIII encoding CpG reduced nucleic acid variant X14 (SEQ ID NO: 14) atgcagattg agctgagcac ctgcttcttc ctgtgcctgc tgaggttttg cttttctgcc actaggaggt actacctggg ggctgtggag ctgtcttggg attacatgca gtctgacctg ggggagctgc cagtggatgc caggttcccc ccaagggtgc ccaagtcttt tcccttcaat acctctgtgg tgtacaagaa gaccctgttt gtggagttta ctgatcatct gtttaacatt gccaagccca ggcccccctg gatggggctg ctgggcccca ccatccaggc tgaggtgtat gatactgtgg tgattaccct gaagaatatg gccagccatc ctgtgtctct gcatgctgtg ggggtgtctt attggaaggc ctctgagggg gctgagtatg atgatcagac cagccagagg gagaaggagg atgataaggt gttccctggg ggctctcaca cctatgtgtg gcaggtgctg aaggagaatg ggcctatggc ctctgaccca ctgtgcctga cttacagcta tctgagccat gtggacctgg tgaaggacct gaactctggg ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ccaaggagaa gactcagacc ctgcacaagt tcatcctgct gtttgctgtg tttgatgagg gcaagtcttg gcactctgag accaagaaca gcctgatgca ggatagggat gctgcctctg ccagggcctg gcccaagatg cacactgtga atggctatgt gaacaggtct ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tggcatgggc accacccctg aggtgcatag cattttcctg gagggccaca ccttcctggt gaggaaccac aggcaggcta gcctggagat cagccccatc actttcctga ctgcccagac cctgctgatg gacctgggcc agttcctgct gttctgccac atctctagcc accagcatga tggcatggag gcctatgtga aggtggactc ttgtcctgag gagccccagc tgaggatgaa gaacaatgag gaggctgagg attatgatga tgatctgact gattctgaga tggatgtggt gaggtttgat gatgacaaca gcccctcttt catccagatc aggtctgtgg ccaagaagca ccccaagacc tgggtgcact acattgctgc tgaggaggag gattgggatt atgcccccct ggtgctggcc cctgatgaca ggagctataa gtctcagtac ctgaacaatg gcccccagag aattggcagg aagtacaaga aggtgaggtt catggcctat actgatgaga ccttcaaaac cagggaggcc attcagcatg agtctggcat cctggggccc ctgctgtatg gggaggtggg ggacaccctg ctgatcatct tcaagaacca ggctagcagg ccttacaaca tctaccccca tgggatcact gatgtgaggc ccctgtacag caggaggctg cctaaggggg tgaagcacct gaaggacttt cccattctgc ctggggagat cttcaagtat aagtggactg tgactgtgga ggatgggccc accaagtctg accccaggtg cctgactagg tactactcta gctttgtgaa catggagagg gacctggcct ctgggctgat tggccccctg ctgatctgtt acaaggagtc tgtggaccag aggggcaacc agatcatgtc tgataagagg aatgtgatcc tgttctctgt gtttgatgag aacaggagct ggtacctgac tgagaacatc cagagattcc tgcccaaccc tgctggggtg cagctggagg atcctgagtt ccaggccagc aacatcatgc attctatcaa tgggtatgtg tttgatagcc tgcagctgtc tgtgtgtctg catgaggtgg cctactggta cattctgagc attggggccc agactgactt cctgtctgtg ttcttctctg gctacacttt caaacacaag atggtgtatg aggacaccct gaccctgttc cccttctctg gggagactgt gtttatgagc atggagaacc ctgggctgtg gattctgggc tgccacaact ctgacttcag aaacaggggc atgactgccc tgctgaaggt gtcttcttgt gataagaaca ctggggacta ttatgaagac agctatgagg acatctctgc ctacctgctg agcaagaata atgctattga gcccaggtct ttctctcaga acccccctgt gctgaagagg caccagaggg agatcaccag gaccaccctg cagtctgatc aggaggagat tgactatgat gacactattt ctgtggagat gaagaaggaa gactttgata tctatgatga ggatgagaac cagagcccta ggagcttcca gaagaagact
aggcattact tcattgctgc tgtggagagg ctgtgggact atggcatgag cagcagcccc catgtgctga ggaatagggc tcagtctggc tctgtgcctc agttcaagaa ggtggtgttc caggaattca ctgatggcag cttcactcag cccctgtaca ggggggagct gaatgagcac ctggggctgc tgggccctta catcagggct gaggtggagg acaatatcat ggtgaccttt aggaaccagg cctctaggcc ttacagcttc tactctagcc tgatctctta tgaagaggac cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac taagacttac ttctggaagg tgcagcacca catggctccc accaaggatg agtttgactg caaggcttgg gcctacttct ctgatgtgga cctggagaag gatgtgcact ctgggctgat tgggcccctg ctggtgtgcc acactaacac tctgaatcct gcccatggca gacaggtgac tgtgcaggag tttgccctgt tttttaccat ctttgatgag actaagtctt ggtacttcac tgagaacatg gagaggaact gcagggcccc ctgcaacatc cagatggagg atcccacctt caaggagaac tacaggtttc atgccatcaa tggctacatc atggacaccc tgcctggcct ggtgatggct caggaccaga ggattaggtg gtatctgctg agcatgggca gcaatgagaa tatccactct atccacttct ctgggcatgt gttcactgtg aggaagaagg aggagtacaa gatggccctg tataacctgt atcctggggt gtttgagact gtggagatgc tgcccagcaa ggctggcatc tggagagtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac tctgtttctg gtgtatagca acaagtgtca gacccctctg ggcatggcct ctgggcacat tagggacttt cagatcactg cttctggcca gtatgggcag tgggctccca agctggccag gctgcactat tctggcagca ttaatgcctg gagcaccaag gagcctttca gctggatcaa ggtggacctg ctggccccca tgatcatcca tgggatcaag acccaggggg ctaggcagaa gttcagcagc ctgtacatca gccagtttat catcatgtat tctctggatg gcaagaagtg gcagacctac aggggcaatt ctactggcac tctgatggtg ttctttggga atgtggatag ctctgggatc aagcataata tcttcaatcc ccccattatt gctaggtata tcaggctgca ccccacccac tatagcatca ggagcaccct gaggatggag ctgatggggt gtgacctgaa cagctgcagc atgcccctgg gcatggagag caaggctatt tctgatgccc agatcactgc cagcagctac tttactaata tgtttgccac ctggagcccc agcaaggcca gactgcacct gcagggcagg tctaatgcct ggaggcctca ggtgaataac cccaaggagt ggctgcaggt ggacttccag aaaaccatga aggtgactgg ggtgactacc cagggggtga agtctctgct gaccagcatg tatgtgaagg agttcctgat ctcttctagc caggatggcc accagtggac cctgttcttt cagaatggga aggtgaaggt cttccagggc aaccaggata gcttcacccc tgtggtgaat agcctggatc ctcctctgct gaccaggtat ctgaggatcc acccccagag ctgggtgcat cagattgccc tgaggatgga ggtgctgggc tgtgaggctc aggacctgta ctga FVIII encoding CpG reduced nucleic acid variant X15 (SEQ ID NO: 15) atgcagattg agctgagcac ctgtttcttc ctgtgcctgc tgaggttctg tttctctgcc actaggaggt actacctggg ggctgtggag ctgagctggg actatatgca gtctgacctg ggggagctgc ctgtggatgc caggttcccc cccagggtgc ctaagagctt ccccttcaat acttctgtgg tgtacaagaa gactctgttt gtggagttta ctgaccacct gttcaacatt gctaagccca ggcctccctg gatggggctg ctgggcccca ccatccaggc tgaggtgtat gatactgtgg tgattaccct gaagaacatg gcctctcatc cagtgagcct gcatgctgtg ggggtgagct actggaaggc ctctgaaggg gctgagtatg atgaccagac cagccagagg gagaaggagg atgacaaggt gttccctggg ggcagccaca cctatgtgtg gcaggtgctg aaggagaatg gcccaatggc ctctgacccc ctgtgcctga cttatagcta cctgagccat gtggatctgg tgaaggacct gaattctggc ctgattgggg ccctgctggt gtgcagagag ggctctctgg ctaaggagaa gacccagact ctgcacaagt tcatcctgct gtttgctgtg tttgatgagg gcaagagctg gcactctgag actaagaata gcctgatgca ggacagggat gctgcttctg ccagggcctg gcccaagatg catactgtga atggctatgt gaacaggagc ctgcctggcc tgattggctg tcacaggaaa tctgtctact ggcatgtgat tgggatgggc actacccctg aggtgcactc tatcttcctg gagggccata ccttcctggt gaggaaccac aggcaggcca gcctggagat ctctcccatt accttcctga ctgcccagac cctgctgatg gatctgggcc agttcctgct gttctgccac atcagcagcc accagcatga tgggatggag gcttatgtga aggtggatag ctgccctgag gagccccagc tgaggatgaa gaacaatgag gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat gatgacaact ctcccagctt tattcagatc aggtctgtgg ctaagaagca ccccaagact tgggtgcact acattgctgc tgaggaggag gactgggact atgcccctct ggtgctggct cctgatgaca ggtcttacaa gtctcagtac ctgaataatg gccctcagag gattggcagg aagtacaaga aggtgaggtt catggcctac actgatgaga ccttcaagac cagggaggcc atccagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg ggataccctg ctgatcatct tcaagaatca ggccagcagg ccctacaaca tctaccccca tggcatcact gatgtgaggc cactgtacag caggaggctg cccaaggggg tgaagcatct gaaggacttc cccattctgc ctggggagat cttcaagtac aaatggactg tgactgtgga ggatggccct accaagtctg accccaggtg tctgaccagg tactacagca gctttgtgaa tatggagagg gacctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggaccag aggggcaatc agatcatgtc tgataagagg aatgtgattc tgttctctgt gtttgatgag aacaggagct ggtacctgac tgagaacatc cagaggttcc tgcccaatcc tgctggggtg cagctggagg accctgagtt ccaggccagc aatatcatgc acagcatcaa tggctatgtc tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cttactggta tattctgagc attggggccc agactgattt cctgtctgtg ttcttttctg gctatacctt taagcacaag atggtgtatg aggacaccct gaccctgttc cccttctctg gggagactgt gttcatgtct atggagaacc ctgggctgtg gatcctgggc tgccacaact ctgacttcag gaacaggggg atgactgccc tgctgaaggt gtctagctgt gataagaaca ctggggacta ttatgaggac agctatgagg acatctctgc ttacctgctg agcaagaaca atgccattga gcccaggtct ttcagccaga atccccctgt gctgaagagg catcagaggg agatcaccag gaccaccctg cagtctgatc aggaggagat tgattatgat gacactatct ctgtggaaat gaagaaggag gactttgaca tctatgatga ggatgagaac cagagcccca ggagcttcca gaagaagacc aggcactact tcattgctgc tgtggagagg ctgtgggatt atggcatgag cagctctccc catgtgctga ggaacagagc ccagtctggc tctgtgcctc agttcaagaa ggtggtcttc caggagttca ctgatggctc tttcacccag cccctgtaca ggggggagct gaatgagcac ctgggcctgc tggggcccta cattagggct gaggtggagg ataacatcat ggtgactttc agaaaccagg ccagcaggcc ttacagcttt tactcttctc tgattagcta tgaggaggat cagaggcagg gggctgagcc taggaagaac tttgtgaagc ccaatgagac caagacctat ttctggaagg tgcagcacca catggctccc actaaggatg agtttgactg caaggcttgg gcctacttct ctgatgtgga cctggagaag gatgtgcact ctggcctgat tgggcccctg ctggtgtgcc acaccaacac cctgaaccct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tcttcaccat ctttgatgag actaagagct ggtacttcac tgagaacatg gagaggaact gcagggcccc ctgcaacatc cagatggagg accccacctt caaggagaat tacaggttcc atgccatcaa tggctacatt atggacaccc tgcctggcct ggtgatggcc caggatcaga ggatcaggtg gtatctgctg agcatgggct ctaatgagaa catccacagc atccacttct ctggccatgt gtttactgtg aggaagaagg aggaatacaa gatggctctg tataacctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctgggatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg ggatgagcac cctgttcctg gtgtatagca ataagtgcca gacccccctg ggcatggctt ctggccacat cagggatttc cagatcactg cttctggcca gtatggccag tgggctccca agctggctag gctgcattac tctgggtcta tcaatgcctg gagcactaag gagcccttca gctggatcaa ggtggacctg ctggccccca tgatcattca tggcatcaag acccaggggg ctaggcagaa gttcagcagc ctgtacatca gccagttcat cattatgtac agcctggatg gcaagaagtg gcagacttac aggggcaata gcactgggac tctgatggtg ttctttggca atgtggactc ttctggcatc aagcacaaca tcttcaaccc tcccatcatt gccaggtaca ttaggctgca ccctacccac tactctatca ggagcaccct gaggatggag ctgatggggt gtgatctgaa ctcttgcagc atgcctctgg gcatggaaag caaagccatc tctgatgccc agatcactgc ctctagctat ttcaccaata tgtttgccac ctggagccct agcaaggcca ggctgcacct gcagggcaga tctaatgcct ggaggcccca ggtgaacaat cccaaggagt ggctgcaggt ggacttccag aagaccatga aggtgactgg ggtgaccact cagggggtga agagcctgct gactagcatg tatgtgaagg agttcctgat ctcttctagc caggatggcc accagtggac cctgttcttc cagaatggca aggtgaaagt gttccagggc aaccaggata gcttcactcc tgtggtgaac tctctggacc ctcccctgct gactaggtac ctgaggattc atccccagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga FVIII encoding CpG reduced nucleic acid variant X16 (SEQ ID NO: 16) atgcagattg agctgagcac ctgcttcttc ctgtgcctgc tgaggttctg cttctctgcc accaggaggt actacctggg ggctgtggag ctgtcttggg actatatgca gtctgacctg ggggagctgc cagtggatgc caggttcccc cccagggtgc ccaagagctt tcctttcaac acttctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct gttcaatatt gctaagccca ggccaccctg gatgggcctg ctgggcccta ccattcaggc tgaggtgtat gacactgtgg tgattactct gaagaatatg gccagccacc ctgtgagcct gcatgctgtg ggggtgtctt actggaaggc ctctgagggg gctgagtatg atgatcagac ttctcagagg gagaaggagg atgataaggt gttccctggg ggctctcaca cttatgtgtg gcaggtgctg aaggagaatg gccccatggc ttctgatcca ctgtgcctga cctactctta cctgagccat gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ccaaggagaa gacccagacc ctgcataagt tcatcctgct gtttgctgtg tttgatgagg ggaagagctg gcactctgag accaagaatt ctctgatgca ggacagggat gctgcctctg ccagggcctg gcctaagatg cacactgtga atggctatgt gaacaggtct ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tggcatgggc actacccctg aggtgcacag cattttcctg gagggccaca ccttcctggt caggaaccat aggcaggcct ctctggagat cagccccatc actttcctga ctgcccagac cctgctgatg gacctgggcc agttcctgct gttctgccac attagcagcc accagcatga tggcatggag gcctatgtga aggtggactc ttgccctgag gagccccagc tgaggatgaa gaacaatgag
gaagctgagg attatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat gatgacaaca gccccagctt catccagatc aggtctgtgg ccaagaagca ccccaagacc tgggtgcact acattgctgc tgaggaggag gattgggact atgctcccct ggtgctggct cctgatgata ggagctacaa gtctcagtac ctgaataatg gcccccagag gattggcagg aagtacaaga aggtgaggtt catggcctac actgatgaga ccttcaagac cagagaggct atccagcatg agtctgggat cctggggccc ctgctgtatg gggaggtggg ggacaccctg ctgatcatct tcaagaacca ggccagcaga ccctacaaca tctaccccca tgggatcact gatgtgaggc ccctgtacag caggaggctg cctaaggggg tgaagcacct gaaggacttc cccatcctgc ctggggagat cttcaagtat aagtggactg tgactgtgga ggatgggccc accaagtctg accctaggtg cctgactagg tactactcta gctttgtgaa catggagagg gacctggcct ctggcctgat tggccccctg ctgatttgct acaaggagtc tgtggatcag aggggcaatc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag aataggtctt ggtacctgac tgagaacatc cagaggttcc tgcctaatcc tgctggggtg cagctggagg accctgagtt tcaggccagc aacatcatgc acagcatcaa tggctatgtg tttgactctc tgcagctgtc tgtgtgcctg catgaggtgg cttactggta tatcctgagc attggggctc agactgactt cctgtctgtg ttcttttctg gctacacttt taagcacaag atggtgtatg aggacaccct gaccctgttc cccttttctg gggagactgt gttcatgtct atggagaacc ctgggctgtg gattctgggc tgtcacaact ctgacttcag aaacaggggc atgactgccc tgctgaaggt gtctagctgt gacaagaata ctggggacta ctatgaggac agctatgagg acatttctgc ctatctgctg agcaagaaca atgccattga gcccaggagc ttttctcaga atccccctgt gctgaagagg caccagagag agatcaccag gaccactctg cagtctgatc aggaggagat tgattatgat gacactatct ctgtggagat gaagaaagag gactttgata tctatgatga ggatgagaat cagtctccca ggagcttcca gaagaagact agacactact tcattgctgc tgtggagagg ctgtgggact atggcatgag ctctagccct catgtgctga ggaacagggc ccagtctggg tctgtgcccc agttcaagaa ggtggtgttc caggagttca ctgatggcag ctttacccag cccctgtata ggggggagct gaatgagcat ctgggcctgc tgggccccta tattagggct gaagtggagg acaacatcat ggtgaccttt aggaaccagg ccagcaggcc ctacagcttt tacagcagcc tgattagcta tgaggaggat cagagacagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac caagacctac ttctggaagg tgcagcacca catggcccct accaaggatg agtttgactg caaggcctgg gcttacttct ctgatgtgga cctggagaaa gatgtgcact ctggcctgat tgggcccctg ctggtgtgcc acaccaacac cctgaaccct gcccatggga ggcaggtgac tgtgcaggag tttgccctgt ttttcaccat ctttgatgag accaagagct ggtacttcac tgagaacatg gagaggaact gcagggcccc ctgtaacatc cagatggagg atcctacttt caaggagaac tacaggttcc atgccattaa tgggtacatc atggacaccc tgcctgggct ggtgatggcc caggatcaga ggattaggtg gtatctgctg tctatgggct ctaatgagaa catccactct atccacttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggccctg tacaacctgt accctggggt gtttgaaact gtggagatgc tgccctctaa agctgggatc tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac cctgttcctg gtgtacagca ataagtgcca gactcccctg ggcatggctt ctgggcacat cagggatttc cagatcactg cctctggcca gtatggccag tgggccccca agctggctag gctgcactac tctggcagca tcaatgcctg gagcaccaag gagcccttct cttggattaa ggtggacctg ctggctccca tgatcattca tggcatcaag acccaggggg ccaggcagaa gttttctagc ctgtatatta gccagttcat catcatgtat agcctggatg ggaagaagtg gcagacctac agggggaata gcactggcac cctgatggtg ttttttggca atgtggattc ttctggcatc aagcataaca tcttcaatcc ccctatcatt gccaggtaca ttaggctgca tcccacccat tactctatca ggagcaccct gaggatggag ctgatggggt gtgatctgaa cagctgtagc atgcccctgg gcatggagtc caaggctatc tctgatgccc agatcactgc cagcagctac ttcaccaaca tgtttgccac ctggagcccc agcaaggcca ggctgcacct gcagggcagg tctaatgcct ggaggcccca ggtgaacaat cccaaggagt ggctgcaggt ggacttccag aagactatga aggtgactgg ggtgaccact cagggggtga agagcctgct gaccagcatg tatgtgaagg agttcctgat ctcttctagc caggatgggc atcagtggac cctgtttttt cagaatggca aagtgaaggt gtttcagggg aatcaggaca gctttacccc tgtggtgaac agcctggatc ctcctctgct gactagatac ctgaggatcc acccccagag ctgggtccac cagattgctc tgaggatgga ggtgctgggg tgtgaggctc aggacctgta ctga FVIII encoding CpG reduced nucleic acid variant X17 (SEQ ID NO: 17) atgcagattg agctgagcac ctgcttcttt ctgtgcctgc tgaggttctg cttctctgcc accaggaggt actacctggg ggctgtggaa ctgagctggg actatatgca gtctgacctg ggggagctgc ctgtggatgc caggttcccc cccagggtgc ccaagtcttt cccctttaac acttctgtgg tgtacaagaa gaccctgttt gtggagttta ctgaccacct gttcaatatt gccaagccca ggcccccctg gatgggcctg ctgggcccaa ccatccaggc tgaggtgtat gatactgtgg tgatcaccct gaagaacatg gccagccacc ctgtgagcct gcatgctgtg ggggtgagct attggaaggc ttctgagggg gctgagtatg atgaccagac tagccagagg gagaaggagg atgacaaggt gttccctggg gggtctcata cctatgtgtg gcaggtgctg aaggagaatg gccccatggc ctctgacccc ctgtgcctga cctattctta cctgagccat gtggacctgg tcaaggacct gaactctggc ctgattgggg ctctgctggt gtgcagggag ggcagcctgg ccaaggagaa gactcagact ctgcataagt tcatcctgct gtttgctgtg tttgatgagg gcaagagctg gcactctgag accaagaact ctctgatgca ggatagggat gctgcctctg ccagggcctg gcccaagatg cacactgtga atggctatgt gaataggtct ctgcctggcc tgattggctg ccataggaag tctgtgtact ggcatgtgat tggcatgggc actacccctg aggtgcactc tatcttcctg gaggggcaca ccttcctggt gaggaaccac aggcaggcca gcctggagat ctctcccatc accttcctga ctgcccagac tctgctgatg gacctgggcc agttcctgct gttctgccat atcagcagcc accagcatga tggcatggag gcctatgtga aggtggacag ctgcccagag gaaccccagc tgaggatgaa gaacaatgag gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat gatgacaaca gccccagctt tattcagatc aggtctgtgg ccaagaagca ccccaagacc tgggtgcact acattgctgc tgaggaggag gactgggatt atgcccccct ggtgctggcc cctgatgaca ggtcttacaa gtctcagtac ctgaacaatg gcccccagag gattgggagg aagtacaaga aggtgaggtt catggcctac actgatgaga ccttcaagac cagggaggcc atccagcatg agtctggcat cctggggccc ctgctgtatg gggaggtggg ggataccctg ctgattatct tcaagaacca ggctagcagg ccctataaca tctaccccca tggcattact gatgtgaggc ccctgtactc taggagactg cccaaggggg tgaagcacct gaaagacttc cccatcctgc ctggggagat cttcaagtat aagtggactg tgactgtgga ggatggcccc actaagtctg accccaggtg cctgaccagg tattacagca gctttgtgaa tatggagagg gatctggctt ctggcctgat tgggcctctg ctgatttgct acaaggagtc tgtggatcag agggggaacc agattatgtc tgacaagagg aatgtgattc tgttctctgt gtttgatgag aacaggagct ggtacctgac tgagaatatc cagaggttcc tgcctaatcc tgctggggtg cagctggagg accctgagtt ccaggctagc aacattatgc acagcatcaa tggctatgtg tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cttactggta cattctgtct attggggccc agactgactt cctgtctgtg ttcttctctg gctacacctt caagcacaag atggtgtatg aggacactct gaccctgttc cccttctctg gggagactgt gttcatgagc atggagaatc ctgggctgtg gattctgggg tgccacaact ctgatttcag gaacaggggc atgactgccc tgctgaaggt gagcagctgt gacaagaaca ctggggatta ttatgaggac agctatgagg acatttctgc ctacctgctg agcaagaaca atgccattga gcctaggagc ttcagccaga atccccctgt gctgaagaga caccagaggg agatcactag gaccactctg cagtctgatc aggaggagat tgactatgat gacaccattt ctgtggagat gaagaaggag gactttgata tttatgatga ggatgagaac cagagcccca gaagcttcca gaagaagacc aggcactact tcattgctgc tgtggagagg ctgtgggatt atggcatgtc ttctagcccc catgtgctga ggaacagggc tcagtctggc tctgtgcctc agttcaagaa ggtggtgttc caggagttca ctgatgggag cttcacccag cctctgtaca ggggggagct gaatgaacat ctgggcctgc tggggcccta catcagggct gaggtggagg ataatatcat ggtgactttc aggaatcagg cctctaggcc ctacagcttc tactctagcc tgatcagcta tgaggaggac cagaggcagg gggctgagcc taggaagaat tttgtgaaac ccaatgagac caagacctac ttttggaagg tgcagcacca catggcccct accaaggatg agtttgactg taaggcctgg gcctacttct ctgatgtgga cctggagaag gatgtgcatt ctgggctgat tggccccctg ctggtgtgcc acaccaacac cctgaaccct gcccatggca ggcaggtgac tgtgcaggag tttgccctgt tcttcaccat ctttgatgag actaagagct ggtatttcac tgagaacatg gagaggaact gtagggctcc ctgcaacatc cagatggagg atccaacttt caaggagaac tacaggttcc atgccatcaa tggctacatc atggacaccc tgcctggcct ggtgatggcc caggaccaga ggattaggtg gtacctgctg agcatgggct ctaatgagaa catccactct atccacttct ctggccatgt gtttactgtg aggaagaagg aggagtacaa gatggctctg tacaacctgt accctggggt gtttgagact gtggagatgc tgcctagcaa ggctggcatt tggagagtgg agtgtctgat tggggagcac ctgcatgctg ggatgtctac cctgttcctg gtgtactcta acaagtgcca gacccccctg gggatggctt ctgggcacat cagagatttt cagattactg cttctgggca gtatggccag tgggctccca agctggccag actgcattac tctggctcta ttaatgcttg gagcaccaag gagcctttca gctggatcaa ggtggacctg ctggctccca tgatcatcca tggcattaag actcaggggg ctaggcagaa gttcagcagc ctgtatattt ctcagtttat tatcatgtat tctctggatg gcaagaagtg gcagacttac aggggcaaca gcactggcac cctgatggtg ttctttggca atgtggacag ctctgggatc aagcataaca tcttcaaccc ccccattatt gccaggtaca tcaggctgca ccccacccac tattctatca ggagcactct gaggatggag ctgatggggt gtgacctgaa cagctgctct atgcccctgg gcatggagag caaggccatc tctgatgccc agatcactgc cagctcttat ttcaccaaca tgtttgccac ctggagcccc agcaaggcca ggctgcacct gcagggcaga agcaatgcct ggaggcccca ggtgaacaat cctaaggagt ggctgcaggt ggacttccag aagactatga aggtgactgg ggtgactacc cagggggtga agagcctgct gaccagcatg tatgtgaagg agttcctgat tagcagcagc caggatgggc atcagtggac cctgttcttc
cagaatggga aggtgaaggt gttccagggc aatcaggaca gcttcacccc tgtggtgaac agcctggacc cccccctgct gaccaggtac ctgaggatcc atccccagag ctgggtgcac cagattgctc tgagaatgga ggtgctgggc tgtgaggccc aggacctgta ttga FVIII encoding CpG reduced nucleic acid variant X18 (SEQ ID NO: 18) atgcagattg agctgtctac ctgttttttt ctgtgcctgc tgaggttctg cttctctgct accaggaggt attatctggg ggctgtggag ctgagctggg actacatgca gtctgacctg ggggagctgc ctgtggatgc caggtttcct cccagggtgc ctaagagctt ccccttcaac acctctgtgg tgtacaagaa gactctgttt gtggagttca ctgaccacct gttcaacatt gccaagccca ggcccccctg gatggggctg ctgggcccca ctatccaggc tgaggtgtat gatactgtgg tgattaccct gaagaacatg gcctctcacc ctgtgtctct gcatgctgtg ggggtgagct actggaaggc ttctgagggg gctgaatatg atgatcagac ctctcagagg gagaaggagg atgacaaggt gtttcctggg ggcagccaca cctatgtgtg gcaggtgctg aaggagaatg ggcccatggc ctctgatccc ctgtgcctga cctacagcta cctgagccat gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag ggcagcctgg ccaaggaaaa gacccagacc ctgcataagt tcatcctgct gtttgctgtg tttgatgagg gcaagtcttg gcactctgag accaagaaca gcctgatgca ggacagggat gctgcctctg ctagggcctg gcccaagatg cacactgtga atgggtatgt gaacagatct ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tggcatgggg accacccctg aggtgcatag catcttcctg gaggggcaca ccttcctggt gagaaatcat aggcaggcca gcctggagat tagccccatc accttcctga ctgcccagac cctgctgatg gacctgggcc agttcctgct gttctgccac atttctagcc accagcatga tggcatggag gcctatgtga aggtggatag ctgccctgaa gagccccagc tgaggatgaa gaacaatgag gaggctgagg attatgatga tgatctgact gactctgaga tggatgtggt gaggtttgat gatgacaaca gccccagctt catccagatc aggtctgtgg ccaagaagca ccctaagacc tgggtgcact acattgctgc tgaagaggag gactgggact atgcccccct ggtgctggcc ccagatgaca ggtcttacaa gagccagtac ctgaataatg gcccccagag gattgggagg aagtataaga aagtgaggtt catggcttac actgatgaga cctttaagac tagggaggcc attcagcatg agtctgggat tctgggccct ctgctgtatg gggaggtggg ggacaccctg ctgatcattt tcaagaacca ggccagcagg ccctataata tttatcccca tgggattact gatgtcaggc ccctgtacag caggaggctg cctaaggggg tgaagcacct gaaggacttc cccattctgc ctggggagat cttcaagtat aagtggactg tgactgtgga ggatggcccc accaagtctg atcctaggtg cctgaccagg tactatagca gctttgtgaa catggagagg gacctggctt ctggcctgat tggccccctg ctgatctgct acaaggaatc tgtggaccag aggggcaacc agattatgtc tgacaagagg aatgtgatcc tgttttctgt gtttgatgag aataggagct ggtatctgac tgagaacatc cagaggttcc tgcccaatcc tgctggggtg cagctggagg accctgagtt ccaggcttct aacatcatgc atagcatcaa tgggtatgtg tttgactctc tgcagctgtc tgtgtgcctg catgaggtgg cctattggta catcctgagc attggggccc agactgactt cctgtctgtg ttcttctctg gctacacctt caagcacaag atggtgtatg aggacaccct gaccctgttc cctttctctg gggagactgt gttcatgagc atggagaacc ctggcctgtg gattctgggc tgccataatt ctgacttcag aaacaggggc atgactgctc tgctgaaggt gagcagctgt gacaagaata ctggggacta ctatgaggac tcttatgagg atatttctgc ctacctgctg agcaagaaca atgctattga gcccaggagc ttcagccaga acccccctgt cctgaagagg catcagaggg agatcactag gaccaccctg cagtctgatc aggaggagat tgactatgat gacactatct ctgtggaaat gaagaaggag gactttgata tctatgatga ggatgagaac cagagcccca ggtctttcca gaagaagacc aggcactact tcattgctgc tgtggagagg ctgtgggact atggcatgtc tagcagcccc catgtgctga ggaacagagc ccagtctggc tctgtgcccc agttcaagaa ggtggtgttt caggagttca ctgatgggag cttcactcag cccctgtata ggggggagct gaatgagcat ctgggcctgc tggggcccta catcagggct gaggtggagg ataacatcat ggtgaccttc aggaaccagg ccagcaggcc ctactctttc tactcttctc tgatcagcta tgaggaggat cagaggcagg gggctgagcc taggaagaac tttgtcaagc ctaatgagac taagacctac ttttggaagg tgcagcacca catggctccc actaaggatg agtttgattg caaggcctgg gcctacttct ctgatgtgga cctggagaag gatgtgcact ctggcctgat tggccccctg ctggtgtgtc acaccaatac cctgaaccct gcccatggca ggcaggtcac tgtgcaggag tttgccctgt ttttcactat ctttgatgag actaagtctt ggtacttcac tgagaacatg gaaaggaatt gcagggctcc ctgcaacatc cagatggagg accccacctt caaggagaac tacaggtttc atgccatcaa tggctacatc atggacaccc tgcctggcct ggtgatggct caggatcaga ggattaggtg gtatctgctg agcatgggca gcaatgagaa catccacagc atccactttt ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggctctg tacaatctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctgggatc tggagggtgg agtgcctgat tggggaacac ctgcatgctg gcatgtctac cctgttcctg gtgtactcta acaagtgcca gactcccctg ggcatggcct ctgggcacat cagggacttc cagatcactg cctctgggca gtatggccag tgggccccta agctggctag gctgcattac tctggcagca tcaatgcctg gagcaccaag gagcccttca gctggatcaa ggtggacctg ctggccccta tgatcatcca tggcatcaag acccaggggg ccagacagaa gttctcttct ctgtacatct ctcagttcat catcatgtac tctctggatg gcaagaagtg gcagacctac agggggaatt ctactggcac tctgatggtg ttctttggga atgtggatag ctctgggatc aagcataata ttttcaaccc ccccattatt gctaggtaca tcaggctgca cccaacccac tactctatta ggtctaccct gaggatggag ctgatgggct gtgacctgaa ctcttgtagc atgcccctgg gcatggagag caaggctatc tctgatgccc agatcactgc cagcagctac tttaccaaca tgtttgctac ttggagcccc agcaaggcca ggctgcacct gcagggcagg agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggattttcag aagaccatga aggtgactgg ggtgaccact cagggggtga aaagcctgct gactagcatg tatgtgaagg agtttctgat cagcagctct caggatggcc atcagtggac cctgttcttc cagaatggca aggtgaaggt gttccagggc aaccaggata gcttcacccc tgtggtgaat agcctggacc cccccctgct gaccaggtac ctgaggatcc atccccagag ctgggtgcac cagattgccc tgaggatgga ggtgctgggc tgtgaagccc aggacctgta ctga Wild-type factor VIII-BDD cDNA (SEQ ID NO: 19) ATGCAAATAG AGCTCTCCAC CTGCTTCTTT CTGTGCCTTT TGCGATTCTG CTTTAGTGCC ACCAGAAGAT ACTACCTGGG TGCAGTGGAA CTGTCATGGG ACTATATGCA AAGTGATCTC GGTGAGCTGC CTGTGGACGC AAGATTTCCT CCTAGAGTGC CAAAATCTTT TCCATTCAAC ACCTCAGTCG TGTACAAAAA GACTCTGTTT GTAGAATTCA CGGATCACCT TTTCAACATC GCTAAGCCAA GGCCACCCTG GATGGGTCTG CTAGGTCCTA CCATCCAGGC TGAGGTTTAT GATACAGTGG TCATTACACT TAAGAACATG GCTTCCCATC CTGTCAGTCT TCATGCTGTT GGTGTATCCT ACTGGAAAGC TTCTGAGGGA GCTGAATATG ATGATCAGAC CAGTCAAAGG GAGAAAGAAG ATGATAAAGT CTTCCCTGGT GGAAGCCATA CATATGTCTG GCAGGTCCTG AAAGAGAATG GTCCAATGGC CTCTGACCCA CTGTGCCTTA CCTACTCATA TCTTTCTCAT GTGGACCTGG TAAAAGACTT GAATTCAGGC CTCATTGGAG CCCTACTAGT ATGTAGAGAA GGGAGTCTGG CCAAGGAAAA GACACAGACC TTGCACAAAT TTATACTACT TTTTGCTGTA TTTGATGAAG GGAAAAGTTG GCACTCAGAA ACAAAGAACT CCTTGATGCA GGATAGGGAT GCTGCATCTG CTCGGGCCTG GCCTAAAATG CACACAGTCA ATGGTTATGT AAACAGGTCT CTGCCAGGTC TGATTGGATG CCACAGGAAA TCAGTCTATT GGCATGTGAT TGGAATGGGC ACCACTCCTG AAGTGCACTC AATATTCCTC GAAGGTCACA CATTTCTTGT GAGGAACCAT CGCCAGGCGT CCTTGGAAAT CTCGCCAATA ACTTTCCTTA CTGCTCAAAC ACTCTTGATG GACCTTGGAC AGTTTCTACT GTTTTGTCAT ATCTCTTCCC ACCAACATGA TGGCATGGAA GCTTATGTCA AAGTAGACAG CTGTCCAGAG GAACCCCAAC TACGAATGAA AAATAATGAA GAAGCGGAAG ACTATGATGA TGATCTTACT GATTCTGAAA TGGATGTGGT CAGGTTTGAT GATGACAACT CTCCTTCCTT TATCCAAATT CGCTCAGTTG CCAAGAAGCA TCCTAAAACT TGGGTACATT ACATTGCTGC TGAAGAGGAG GACTGGGACT ATGCTCCCTT AGTCCTCGCC CCCGATGACA GAAGTTATAA AAGTCAATAT TTGAACAATG GCCCTCAGCG GATTGGTAGG AAGTACAAAA AAGTCCGATT TATGGCATAC ACAGATGAAA CCTTTAAGAC TCGTGAAGCT ATTCAGCATG AATCAGGAAT CTTGGGACCT TTACTTTATG GGGAAGTTGG AGACACACTG TTGATTATAT TTAAGAATCA AGCAAGCAGA CCATATAACA TCTACCCTCA CGGAATCACT GATGTCCGTC CTTTGTATTC AAGGAGATTA CCAAAAGGTG TAAAACATTT GAAGGATTTT CCAATTCTGC CAGGAGAAAT ATTCAAATAT AAATGGACAG TGACTGTAGA AGATGGGCCA ACTAAATCAG ATCCTCGGTG CCTGACCCGC TATTACTCTA GTTTCGTTAA TATGGAGAGA GATCTAGCTT CAGGACTCAT TGGCCCTCTC CTCATCTGCT ACAAAGAATC TGTAGATCAA AGAGGAAACC AGATAATGTC AGACAAGAGG AATGTCATCC TGTTTTCTGT ATTTGATGAG AACCGAAGCT GGTACCTCAC AGAGAATATA CAACGCTTTC TCCCCAATCC AGCTGGAGTG CAGCTTGAGG ATCCAGAGTT CCAAGCCTCC AACATCATGC ACAGCATCAA TGGCTATGTT TTTGATAGTT TGCAGTTGTC AGTTTGTTTG CATGAGGTGG CATACTGGTA CATTCTAAGC ATTGGAGCAC AGACTGACTT CCTTTCTGTC TTCTTCTCTG GATATACCTT CAAACACAAA ATGGTCTATG AAGACACACT CACCCTATTC CCATTCTCAG GAGAAACTGT CTTCATGTCG ATGGAAAACC CAGGTCTATG GATTCTGGGG TGCCACAACT CAGACTTTCG GAACAGAGGC ATGACCGCCT TACTGAAGGT TTCTAGTTGT GACAAGAACA CTGGTGATTA TTACGAGGAC AGTTATGAAG ATATTTCAGC ATACTTGCTG AGTAAAAACA ATGCCATTGA ACCAAGAAGC TTCTCCCAAA ACCCACCAGT CTTGAAACGC CATCAACGGG AAATAACTCG TACTACTCTT CAGTCAGATC AAGAGGAAAT TGACTATGAT GATACCATAT CAGTTGAAAT GAAGAAGGAA GATTTTGACA TTTATGATGA GGATGAAAAT CAGAGCCCCC GCAGCTTTCA AAAGAAAACA CGACACTATT TTATTGCTGC AGTGGAGAGG CTCTGGGATT ATGGGATGAG TAGCTCCCCA CATGTTCTAA GAAACAGGGC TCAGAGTGGC AGTGTCCCTC AGTTCAAGAA AGTTGTTTTC CAGGAATTTA CTGATGGCTC CTTTACTCAG CCCTTATACC GTGGAGAACT AAATGAACAT TTGGGACTCC TGGGGCCATA TATAAGAGCA GAAGTTGAAG ATAATATCAT GGTAACTTTC AGAAATCAGG CCTCTCGTCC CTATTCCTTC TATTCTAGCC TTATTTCTTA TGAGGAAGAT CAGAGGCAAG GAGCAGAACC TAGAAAAAAC TTTGTCAAGC CTAATGAAAC CAAAACTTAC
TTTTGGAAAG TGCAACATCA TATGGCACCC ACTAAAGATG AGTTTGACTG CAAAGCCTGG GCTTATTTCT CTGATGTTGA CCTGGAAAAA GATGTGCACT CAGGCCTGAT TGGACCCCTT CTGGTCTGCC ACACTAACAC ACTGAACCCT GCTCATGGGA GACAAGTGAC AGTACAGGAA TTTGCTCTGT TTTTCACCAT CTTTGATGAG ACCAAAAGCT GGTACTTCAC TGAAAATATG GAAAGAAACT GCAGGGCTCC CTGCAATATC CAGATGGAAG ATCCCACTTT TAAAGAGAAT TATCGCTTCC ATGCAATCAA TGGCTACATA ATGGATACAC TACCTGGCTT AGTAATGGCT CAGGATCAAA GGATTCGATG GTATCTGCTC AGCATGGGCA GCAATGAAAA CATCCATTCT ATTCATTTCA GTGGACATGT GTTCACCGTA CGAAAAAAAG AGGAGTATAA AATGGCACTG TACAATCTCT ATCCAGGTGT TTTTGAGACA GTGGAAATGT TACCATCCAA AGCTGGAATT TGGCGGGTGG AATGCCTTAT TGGCGAGCAT CTACATGCTG GGATGAGCAC ACTTTTTCTG GTGTACAGCA ATAAGTGTCA GACTCCCCTG GGAATGGCTT CTGGACACAT TAGAGATTTT CAGATTACAG CTTCAGGACA ATATGGACAG TGGGCCCCAA AGCTGGCCAG ACTTCATTAT TCCGGATCAA TCAATGCCTG GAGCACCAAG GAGCCCTTTT CTTGGATCAA GGTGGATCTG TTGGCACCAA TGATTATTCA CGGCATCAAG ACCCAGGGTG CCCGTCAGAA GTTCTCCAGC CTCTACATCT CTCAGTTTAT CATCATGTAT AGTCTTGATG GGAAGAAGTG GCAGACTTAT CGAGGAAATT CCACTGGAAC CTTAATGGTC TTCTTTGGCA ATGTGGATTC ATCTGGGATA AAACACAATA TTTTTAACCC TCCAATTATT GCTCGATACA TCCGTTTGCA CCCAACTCAT TATAGCATTC GCAGCACTCT TCGCATGGAG TTGATGGGCT GTGATTTAAA TAGTTGCAGC ATGCCATTGG GAATGGAGAG TAAAGCAATA TCAGATGCAC AGATTACTGC TTCATCCTAC TTTACCAATA TGTTTGCCAC CTGGTCTCCT TCAAAAGCTC GACTTCACCT CCAAGGGAGG AGTAATGCCT GGAGACCTCA GGTGAATAAT CCAAAAGAGT GGCTGCAAGT GGACTTCCAG AAGACAATGA AAGTCACAGG AGTAACTACT CAGGGAGTAA AATCTCTGCT TACCAGCATG TATGTGAAGG AGTTCCTCAT CTCCAGCAGT CAAGATGGCC ATCAGTGGAC TCTCTTTTTT CAGAATGGCA AAGTAAAGGT TTTTCAGGGA AATCAAGACT CCTTCACACC TGTGGTGAAC TCTCTAGACC CACCGTTACT GACTCGCTAC CTTCGAATTC ACCCCCAGAG TTGGGTGCAC CAGATTGCCC TGAGGATGGA GGTTCTGGGC TGCGAGGCAC AGGACCTCTA CTGA V3 factor VIII cDNA (SEQ ID NO: 20) ATGCAGATTGAGCTGAGCACCTGCTTCTTCCTGTGCCTGCTGAGGTTCTGCTTCTCTGCCACCAGGAG ATACTACCTGGGGGCTGTGGAGCTGAGCTGGGACTACATGCAGTCTGACCTGGGGGAGCTGCCTGTGG ATGCCAGGTTCCCCCCCAGAGTGCCCAAGAGCTTCCCCTTCAACACCTCTGTGGTGTACAAGAAGACC CTGTTTGTGGAGTTCACTGACCACCTGTTCAACATTGCCAAGCCCAGGCCCCCCTGGATGGGCCTGCT GGGCCCCACCATCCAGGCTGAGGTGTATGACACTGTGGTGATCACCCTGAAGAACATGGCCAGCCACC CTGTGAGCCTGCATGCTGTGGGGGTGAGCTACTGGAAGGCCTCTGAGGGGGCTGAGTATGATGACCAG ACCAGCCAGAGGGAGAAGGAGGATGACAAGGTGTTCCCTGGGGGCAGCCACACCTATGTGTGGCAGGT GCTGAAGGAGAATGGCCCCATGGCCTCTGACCCCCTGTGCCTGACCTACAGCTACCTGAGCCATGTGG ACCTGGTGAAGGACCTGAACTCTGGCCTGATTGGGGCCCTGCTGGTGTGCAGGGAGGGCAGCCTGGCC AAGGAGAAGACCCAGACCCTGCACAAGTTCATCCTGCTGTTTGCTGTGTTTGATGAGGGCAAGAGCTG GCACTCTGAAACCAAGAACAGCCTGATGCAGGACAGGGATGCTGCCTCTGCCAGGGCCTGGCCCAAGA TGCACACTGTGAATGGCTATGTGAACAGGAGCCTGCCTGGCCTGATTGGCTGCCACAGGAAGTCTGTG TACTGGCATGTGATTGGCATGGGCACCACCCCTGAGGTGCACAGCATCTTCCTGGAGGGCCACACCTT CCTGGTCAGGAACCACAGGCAGGCCAGCCTGGAGATCAGCCCCATCACCTTCCTGACTGCCCAGACCC TGCTGATGGACCTGGGCCAGTTCCTGCTGTTCTGCCACATCAGCAGCCACCAGCATGATGGCATGGAG GCCTATGTGAAGGTGGACAGCTGCCCTGAGGAGCCCCAGCTGAGGATGAAGAACAATGAGGAGGCTGA GGACTATGATGATGACCTGACTGACTCTGAGATGGATGTGGTGAGGTTTGATGATGACAACAGCCCCA GCTTCATCCAGATCAGGTCTGTGGCCAAGAAGCACCCCAAGACCTGGGTGCACTACATTGCTGCTGAG GAGGAGGACTGGGACTATGCCCCCCTGGTGCTGGCCCCTGATGACAGGAGCTACAAGAGCCAGTACCT GAACAATGGCCCCCAGAGGATTGGCAGGAAGTACAAGAAGGTCAGGTTCATGGCCTACACTGATGAAA CCTTCAAGACCAGGGAGGCCATCCAGCATGAGTCTGGCATCCTGGGCCCCCTGCTGTATGGGGAGGTG GGGGACACCCTGCTGATCATCTTCAAGAACCAGGCCAGCAGGCCCTACAACATCTACCCCCATGGCAT CACTGATGTGAGGCCCCTGTACAGCAGGAGGCTGCCCAAGGGGGTGAAGCACCTGAAGGACTTCCCCA TCCTGCCTGGGGAGATCTTCAAGTACAAGTGGACTGTGACTGTGGAGGATGGCCCCACCAAGTCTGAC CCCAGGTGCCTGACCAGATACTACAGCAGCTTTGTGAACATGGAGAGGGACCTGGCCTCTGGCCTGAT TGGCCCCCTGCTGATCTGCTACAAGGAGTCTGTGGACCAGAGGGGCAACCAGATCATGTCTGACAAGA GGAATGTGATCCTGTTCTCTGTGTTTGATGAGAACAGGAGCTGGTACCTGACTGAGAACATCCAGAGG TTCCTGCCCAACCCTGCTGGGGTGCAGCTGGAGGACCCTGAGTTCCAGGCCAGCAACATCATGCACAG CATCAATGGCTATGTGTTTGACAGCCTGCAGCTGTCTGTGTGCCTGCATGAGGTGGCCTACTGGTACA TCCTGAGCATTGGGGCCCAGACTGACTTCCTGTCTGTGTTCTTCTCTGGCTACACCTTCAAGCACAAG ATGGTGTATGAGGACACCCTGACCCTGTTCCCCTTCTCTGGGGAGACTGTGTTCATGAGCATGGAGAA CCCTGGCCTGTGGATTCTGGGCTGCCACAACTCTGACTTCAGGAACAGGGGCATGACTGCCCTGCTGA AAGTCTCCAGCTGTGACAAGAACACTGGGGACTACTATGAGGACAGCTATGAGGACATCTCTGCCTAC CTGCTGAGCAAGAACAATGCCATTGAGCCCAGGAGCTTCAGCCAGAACAGCAGGCACCCCAGCACCAG GCAGAAGCAGTTCAATGCCACCACCATCCCTGAGAATGACATAGAGAAGACAGACCCATGGTTTGCCC ACCGGACCCCCATGCCCAAGATCCAGAATGTGAGCAGCTCTGACCTGCTGATGCTGCTGAGGCAGAGC CCCACCCCCCATGGCCTGAGCCTGTCTGACCTGCAGGAGGCCAAGTATGAAACCTTCTCTGATGACCC CAGCCCTGGGGCCATTGACAGCAACAACAGCCTGTCTGAGATGACCCACTTCAGGCCCCAGCTGCACC ACTCTGGGGACATGGTGTTCACCCCTGAGTCTGGCCTGCAGCTGAGGCTGAATGAGAAGCTGGGCACC ACTGCTGCCACTGAGCTGAAGAAGCTGGACTTCAAAGTCTCCAGCACCAGCAACAACCTGATCAGCAC CATCCCCTCTGACAACCTGGCTGCTGGCACTGACAACACCAGCAGCCTGGGCCCCCCCAGCATGCCTG TGCACTATGACAGCCAGCTGGACACCACCCTGTTTGGCAAGAAGAGCAGCCCCCTGACTGAGTCTGGG GGCCCCCTGAGCCTGTCTGAGGAGAACAATGACAGCAAGCTGCTGGAGTCTGGCCTGATGAACAGCCA GGAGAGCAGCTGGGGCAAGAATGTGAGCACCAGGAGCTTCCAGAAGAAGACCAGGCACTACTTCATTG CTGCTGTGGAGAGGCTGTGGGACTATGGCATGAGCAGCAGCCCCCATGTGCTGAGGAACAGGGCCCAG TCTGGCTCTGTGCCCCAGTTCAAGAAGGTGGTGTTCCAGGAGTTCACTGATGGCAGCTTCACCCAGCC CCTGTACAGAGGGGAGCTGAATGAGCACCTGGGCCTGCTGGGCCCCTACATCAGGGCTGAGGTGGAGG ACAACATCATGGTGACCTTCAGGAACCAGGCCAGCAGGCCCTACAGCTTCTACAGCAGCCTGATCAGC TATGAGGAGGACCAGAGGCAGGGGGCTGAGCCCAGGAAGAACTTTGTGAAGCCCAATGAAACCAAGAC CTACTTCTGGAAGGTGCAGCACCACATGGCCCCCACCAAGGATGAGTTTGACTGCAAGGCCTGGGCCT ACTTCTCTGATGTGGACCTGGAGAAGGATGTGCACTCTGGCCTGATTGGCCCCCTGCTGGTGTGCCAC ACCAACACCCTGAACCCTGCCCATGGCAGGCAGGTGACTGTGCAGGAGTTTGCCCTGTTCTTCACCAT CTTTGATGAAACCAAGAGCTGGTACTTCACTGAGAACATGGAGAGGAACTGCAGGGCCCCCTGCAACA TCCAGATGGAGGACCCCACCTTCAAGGAGAACTACAGGTTCCATGCCATCAATGGCTACATCATGGAC ACCCTGCCTGGCCTGGTGATGGCCCAGGACCAGAGGATCAGGTGGTACCTGCTGAGCATGGGCAGCAA TGAGAACATCCACAGCATCCACTTCTCTGGCCATGTGTTCACTGTGAGGAAGAAGGAGGAGTACAAGA TGGCCCTGTACAACCTGTACCCTGGGGTGTTTGAGACTGTGGAGATGCTGCCCAGCAAGGCTGGCATC TGGAGGGTGGAGTGCCTGATTGGGGAGCACCTGCATGCTGGCATGAGCACCCTGTTCCTGGTGTACAG CAACAAGTGCCAGACCCCCCTGGGCATGGCCTCTGGCCACATCAGGGACTTCCAGATCACTGCCTCTG GCCAGTATGGCCAGTGGGCCCCCAAGCTGGCCAGGCTGCACTACTCTGGCAGCATCAATGCCTGGAGC ACCAAGGAGCCCTTCAGCTGGATCAAGGTGGACCTGCTGGCCCCCATGATCATCCATGGCATCAAGAC CCAGGGGGCCAGGCAGAAGTTCAGCAGCCTGTACATCAGCCAGTTCATCATCATGTACAGCCTGGATG GCAAGAAGTGGCAGACCTACAGGGGCAACAGCACTGGCACCCTGATGGTGTTCTTTGGCAATGTGGAC AGCTCTGGCATCAAGCACAACATCTTCAACCCCCCCATCATTGCCAGATACATCAGGCTGCACCCCAC CCACTACAGCATCAGGAGCACCCTGAGGATGGAGCTGATGGGCTGTGACCTGAACAGCTGCAGCATGC CCCTGGGCATGGAGAGCAAGGCCATCTCTGATGCCCAGATCACTGCCAGCAGCTACTTCACCAACATG TTTGCCACCTGGAGCCCCAGCAAGGCCAGGCTGCACCTGCAGGGCAGGAGCAATGCCTGGAGGCCCCA GGTCAACAACCCCAAGGAGTGGCTGCAGGTGGACTTCCAGAAGACCATGAAGGTGACTGGGGTGACCA CCCAGGGGGTGAAGAGCCTGCTGACCAGCATGTATGTGAAGGAGTTCCTGATCAGCAGCAGCCAGGAT GGCCACCAGTGGACCCTGTTCTTCCAGAATGGCAAGGTGAAGGTGTTCCAGGGCAACCAGGACAGCTT CACCCCTGTGGTGAACAGCCTGGACCCCCCCCTGCTGACCAGATACCTGAGGATTCACCCCCAGAGCT GGGTGCACCAGATTGCCCTGAGGATGGAGGTGCTGGGCTGTGAGGCCCAGGACCTGTACTGA CO3 factor VIII cDNA (SEQ ID NO 21) atgcagattg agctgtcaac ttgctttttc ctgtgcctgc tgagattttg tttttccgct actagaagat actacctggg ggctgtggaa ctgtcttggg attacatgca gagtgacctg ggagagctgc cagtggacgc acgatttcca cctagagtcc ctaaatcatt ccccttcaac accagcgtgg tctataagaa aacactgttc gtggagttta ctgatcacct gttcaacatc gctaagcctc ggccaccctg gatgggactg ctgggaccaa caatccaggc agaggtgtac gacaccgtgg tcattacact gaaaaacatg gcctcacacc ccgtgagcct gcatgctgtg ggcgtcagct actggaaggc ttccgaaggg gcagagtatg acgatcagac ttcccagaga gaaaaagagg acgataaggt gtttcctggc gggtctcata cctatgtgtg gcaggtcctg aaagagaatg gccccatggc ttccgaccct ctgtgcctga cctactctta tctgagtcac gtggacctgg tcaaggatct gaacagcgga ctgatcggag cactgctggt gtgtagggaa gggagcctgg ctaaggagaa aacccagaca ctgcataagt tcattctgct gttcgccgtg tttgacgaag gaaaatcatg gcacagcgag acaaagaata gtctgatgca ggaccgggat gccgcttcag ccagagcttg gcccaaaatg cacactgtga acggctacgt caatcgctca ctgcctggac tgatcggctg ccaccgaaag agcgtgtatt ggcatgtcat cggaatgggc accacacctg aagtgcactc cattttcctg gaggggcata cctttctggt ccgcaaccac cgacaggcct ccctggagat ctctccaatt accttcctga cagctcagac tctgctgatg gatctgggac agttcctgct gttttgccac atcagctccc accagcatga tggcatggag gcctacgtga aagtggacag ctgtcccgag gaacctcagc tgaggatgaa gaacaatgag gaagctgaag actatgacga tgacctgacc gactccgaga tggatgtggt ccgattcgat gacgataaca gcccctcctt tatccagatt agatctgtgg ccaagaaaca ccctaagaca tgggtccatt acatcgcagc cgaggaagag gactgggatt atgcaccact ggtgctggca ccagacgatc gatcctacaa atctcagtat ctgaacaatg gaccacagcg gattggcaga aagtacaaga aagtgaggtt catggcttat accgatgaaa ccttcaagac tcgcgaagca atccagcacg agagcgggat tctgggacca ctgctgtacg gagaagtggg ggacaccctg ctgatcattt ttaagaacca ggccagcagg ccttacaata tctatccaca tggaattaca gatgtgcgcc ctctgtacag ccggagactg ccaaagggcg tcaaacacct gaaggacttc
ccaatcctgc ccggggaaat ttttaagtat aaatggactg tcaccgtcga ggatggcccc actaagagcg accctaggtg cctgacccgc tactattcta gtttcgtgaa tatggaaagg gatctggcca gcggactgat cggcccactg ctgatttgtt acaaagagag cgtggatcag agaggcaacc agatcatgtc cgacaagagg aatgtgattc tgttcagtgt ctttgacgaa aaccggtcat ggtatctgac cgagaacatc cagagattcc tgcctaatcc agccggagtg cagctggaag atcctgagtt tcaggcttct aacatcatgc atagtattaa tggctacgtg ttcgacagtc tgcagctgtc agtgtgtctg cacgaggtcg cttactggta tatcctgagc attggagcac agacagattt cctgagcgtg ttcttttccg gctacacttt taagcataaa atggtgtatg aggacacact gactctgttc cccttcagcg gcgaaaccgt gtttatgtcc atggagaatc ccgggctgtg gatcctggga tgccacaaca gcgatttcag gaatcgcggg atgactgccc tgctgaaagt gtcaagctgt gacaagaaca ccggagacta ctatgaagat tcatacgagg acatcagcgc atatctgctg tccaaaaaca atgccattga acccaggtct tttagtcaga atcctccagt gctgaagagg caccagcgcg agatcacccg cactaccctg cagagtgatc aggaagagat cgactacgac gatacaattt ctgtggaaat gaagaaagag gacttcgata tctatgacga agatgagaac cagagtcctc gatcattcca gaagaaaacc cggcattact ttattgctgc agtggagcgc ctgtgggatt atggcatgtc ctctagtcct cacgtgctgc gaaatcgggc ccagtcaggg agcgtcccac agttcaagaa agtggtcttc caggagttta cagacggatc ctttactcag ccactgtacc ggggcgaact gaacgagcac ctggggctgc tgggacccta tatcagagct gaagtggagg ataacattat ggtcaccttc agaaatcagg catctaggcc ttacagtttt tattcaagcc tgatctctta cgaagaggac cagaggcagg gagcagaacc acgaaaaaac ttcgtgaagc ctaatgagac caaaacatac ttttggaagg tgcagcacca tatggcccca acaaaagacg aattcgattg caaggcatgg gcctattttt ctgacgtgga tctggagaag gacgtccaca gtggcctgat cgggccactg ctggtgtgtc atactaacac cctgaatccc gcacacggca ggcaggtcac tgtccaggaa ttcgccctgt tctttaccat ctttgatgag acaaaaagct ggtacttcac cgaaaacatg gagcgaaatt gccgggctcc atgtaatatt cagatggaag accccacatt caaggagaac taccgctttc atgccatcaa tgggtatatt atggatactc tgcccggact ggtcatggct caggaccaga gaatcaggtg gtacctgctg agcatggggt ccaacgagaa tatccactca attcatttca gcggacacgt gtttactgtc cggaagaaag aagagtataa aatggccctg tacaacctgt atcccggcgt gttcgaaacc gtcgagatgc tgcctagcaa ggcagggatc tggagagtgg aatgcctgat tggggagcac ctgcatgccg gaatgtctac cctgtttctg gtgtacagta ataagtgtca gacacccctg gggatggctt ccggacatat ccgggatttc cagattaccg catctggaca gtacggccag tgggccccta agctggctag actgcactat tccgggtcta tcaacgcttg gtccacaaaa gagcctttct cttggattaa ggtggacctg ctggcaccaa tgatcattca tggcatcaaa actcaggggg ccaggcagaa gttctcctct ctgtacatct cacagtttat catcatgtac agcctggatg gcaagaaatg gcagacatac cgcggcaata gcacagggac tctgatggtg ttctttggca acgtggacag ttcagggatc aagcacaaca ttttcaatcc ccctatcatt gctagataca tcaggctgca cccaacccat tattctattc gaagtacact gcggatggaa ctgatggggt gcgatctgaa cagttgttca atgcccctgg gaatggagtc caaggcaatc tctgacgccc agattaccgc tagctcctac ttcactaata tgtttgctac ctggagcccc tccaaagcac gactgcatct gcagggacga agcaacgcat ggcgaccaca ggtgaacaat cccaaggagt ggctgcaggt cgattttcag aaaactatga aggtgaccgg agtcacaact cagggcgtga aaagtctgct gacctcaatg tacgtcaagg agttcctgat ctctagttca caggacggcc accagtggac actgttcttt cagaacggaa aggtgaaagt cttccagggc aatcaggatt cctttacacc tgtggtcaac tctctggacc cacccctgct gactcgctac ctgcgaatcc acccacagtc ctgggtgcat cagattgcac tgagaatgga agtcctgggc tgcgaggccc aggacctgta ttga Full length cassette including mutated TTR promoter (TTRmut), synthetic intron, CpG reduced factor VIII cDNA, poly A and ITRs (SEQ ID NO: 23) cctgcaggca gctgcgcgct cgctcgctca ctgaggccgc ccgggcaaag cccgggcgtc gggcgacctt tggtcgcccg gcctcagtga gcgagcgagc gcgcagagag ggagtggcca actccatcac taggggttcc tacgcgtgtc tgtctgcaca tttcgtagag cgagtgttcc gatactctaa tctccctagg caaggttcat attgacttag gttacttatt ctccttttgt tgactaagtc aataatcaga atcagcaggt ttggagtcag cttggcaggg atcagcagcc tgggttggaa ggagggggta taaaagcccc ttcaccagga gaagccgtca cacagatcca caagctcctg ctagcaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg gttatggccc ttgcgtgcct tgaattactg acactgacat ccactttttc tttttctcca caggtttaaa cgccaccatg cagattgagc tgagcacctg cttcttcctg tgtctgctga ggttctgctt ctctgccacc aggaggtatt acctgggggc tgtggagctg agctgggact atatgcagtc tgacctgggg gagctgcctg tggatgctag gttccccccc agggtgccca agagcttccc ctttaacact tctgtggtgt acaagaagac cctgtttgtg gagttcactg accacctgtt caacattgcc aagcccaggc ccccctggat ggggctgctg gggcccacca tccaggctga ggtgtatgac actgtggtga tcaccctgaa gaacatggcc agccaccctg tgagcctgca tgctgtgggg gtgagctact ggaaggcttc tgagggggct gagtatgatg accagactag ccagagggag aaggaggatg acaaggtgtt tcctgggggc agccatacct atgtgtggca ggtgctgaag gagaatggcc ccatggcctc tgaccccctg tgcctgacct acagctacct gtctcatgtg gacctggtga aggacctgaa ctctggcctg attggggctc tgctggtgtg tagggagggc agcctggcta aggaaaagac ccagaccctg cataagttta tcctgctgtt tgctgtgttt gatgagggca agagctggca ctctgagacc aagaacagcc tgatgcagga tagggatgct gcctctgcca gggcttggcc taagatgcac actgtgaatg ggtatgtgaa taggagcctg cctggcctga ttggctgcca caggaagtct gtgtactggc atgtgattgg gatgggcacc acccctgagg tccatagcat cttcctggag ggccacactt tcctggtgag gaaccacaga caggcctctc tggagatctc tcccatcacc ttcctgactg ctcagactct gctgatggac ctgggccagt tcctgctgtt ttgccatatt agcagccacc agcatgatgg gatggaggcc tatgtgaagg tggatagctg ccctgaggag cctcagctga ggatgaagaa caatgaggag gctgaagact atgatgatga cctgactgat tctgagatgg atgtggtgag gtttgatgat gacaatagcc ccagcttcat tcagatcagg tctgtggcca agaaacaccc caagacctgg gtgcactaca ttgctgctga ggaagaggac tgggactatg ctcccctggt gctggcccct gatgataggt cttataagag ccagtacctg aacaatgggc cccagaggat tggcaggaag tacaagaagg tgaggttcat ggcctacact gatgaaacct tcaaaaccag ggaggccatt cagcatgagt ctggcatcct gggccctctg ctgtatgggg aggtggggga caccctgctg atcatcttca agaaccaggc cagcaggccc tacaacatct atcctcatgg catcactgat gtgaggcccc tgtacagcag gaggctgccc aagggggtga agcacctgaa agacttcccc atcctgcctg gggagatctt taagtataag tggactgtga ctgtggagga tggccctacc aagtctgacc ccaggtgtct gaccaggtac tattctagct ttgtgaacat ggagagggac ctggcctctg gcctgattgg gcccctgctg atctgctaca aggagtctgt ggaccagagg ggcaaccaga tcatgtctga caagaggaat gtgatcctgt tttctgtgtt tgatgagaat aggagctggt acctgactga gaacatccag aggtttctgc ccaatcctgc tggggtgcag ctggaggatc ctgagttcca ggccagcaat atcatgcata gcatcaatgg ctatgtgttt gacagcctgc agctgtctgt gtgcctgcat gaggtggcct actggtacat cctgagcatt ggggcccaga ctgactttct gtctgtgttc ttttctggct ataccttcaa gcacaagatg gtgtatgagg ataccctgac cctgttcccc ttctctgggg agactgtgtt catgagcatg gagaatcctg ggctgtggat cctggggtgc cacaactctg attttaggaa cagggggatg actgccctgc tgaaggtgtc tagctgtgat aagaacactg gggactacta tgaggacagc tatgaggaca tttctgctta tctgctgtct aagaataatg ccattgagcc cagaagcttc agccagaatc cccctgtgct gaagagacat cagagggaga tcaccagaac taccctgcag tctgatcagg aggagattga ctatgatgac actatctctg tggagatgaa gaaggaggac tttgacatct atgatgagga tgagaatcag tctcccagga gctttcagaa gaagaccaga cattacttca ttgctgctgt ggagaggctg tgggactatg gcatgagctc tagccctcat gtgctgagga acagggccca gtctggctct gtgccccagt tcaagaaggt ggtgttccag gaattcactg atggcagctt cacccagccc ctgtacaggg gggagctgaa tgagcacctg ggcctgctgg ggccttatat cagggctgag gtggaggata atattatggt gactttcagg aaccaggcca gcaggcccta ctctttctat agcagcctga tctcttatga ggaggatcag aggcaggggg ctgagcctag gaagaacttt gtgaagccca atgagactaa gacctacttc tggaaggtcc agcaccacat ggcccctacc aaggatgagt ttgactgcaa ggcctgggcc tatttctctg atgtggatct ggagaaggat gtccattctg ggctgattgg ccccctgctg gtgtgccaca ctaacactct gaatcctgcc catggcaggc aggtgactgt ccaggagttt gccctgttct tcactatctt tgatgagacc aagagctggt actttactga gaacatggag aggaactgca gagctccttg caatattcag atggaggacc ccaccttcaa ggagaattac aggttccatg ccattaatgg gtacatcatg gacaccctgc ctggcctggt gatggctcag gaccagagga tcaggtggta cctgctgagc atgggctcta atgagaatat ccacagcatc cacttctctg ggcatgtgtt cactgtgagg aagaaggagg agtacaagat ggctctgtat aatctgtacc ctggggtgtt tgaaactgtg gagatgctgc cctctaaggc tggcatctgg agggtggagt gcctgattgg ggagcacctg catgctggca tgagcaccct gttcctggtg tacagcaaca agtgccagac ccccctgggc atggcctctg gccacatcag ggacttccag atcactgcct ctggccagta tggccagtgg gcccccaagc tggccaggct gcactattct ggcagcatca atgcctggag caccaaggag cccttcagct ggatcaaggt ggacctgctg gcccccatga tcattcatgg catcaagacc cagggggcca ggcagaagtt cagctctctg tacatctctc agttcatcat catgtactct ctggatggga agaagtggca gacctacagg ggcaacagca ctggcaccct gatggtgttc tttgggaatg tggactcttc tggcatcaag cacaacatct tcaatccccc catcattgct aggtatatta ggctgcatcc cacccactac agcatcaggt ctaccctgag gatggagctg atgggctgtg acctgaactc ttgcagcatg cccctgggca tggagtctaa ggccatctct gatgcccaga ttactgccag cagctacttc accaacatgt ttgccacctg gagcccctct aaggccaggc tgcatctgca ggggaggagc aatgcctgga ggcctcaggt gaacaacccc aaggagtggc tgcaggtgga tttccagaag accatgaagg tgactggggt gaccacccag ggggtcaaga
gcctgctgac cagcatgtat gtgaaggagt tcctgatcag cagcagccag gatggccacc agtggactct gttctttcag aatgggaagg tgaaggtgtt tcagggcaat caggactctt tcacccctgt ggtgaacagc ctggaccccc ccctgctgac cagatacctg aggatccacc cccagtcttg ggtgcatcag attgccctga ggatggaggt gctgggctgt gaggctcagg atctgtactg agcggccgca ataaaagatc agagctctag agatctgtgt gttggttttt tgtgtaggaa cccctagtga tggagttggc cactccctct ctgcgcgctc gctcgctcac tgaggccggg cgaccaaagg tcgcccgacg cccgggcttt gcccgggcgg cctcagtgag cgagcgagcg cgcagctgcc tgcagg Full length plasmid including mutated TTR promoter (TTRmut), synthetic intron, CpG reduced factor VIII cDNA, poly A and ITRs (SEQ ID NO: 24) cctgcaggca gctgcgcgct cgctcgctca ctgaggccgc ccgggcaaag cccgggcgtc gggcgacctt tggtcgcccg gcctcagtga gcgagcgagc gcgcagagag ggagtggcca actccatcac taggggttcc tacgcgtgtc tgtctgcaca tttcgtagag cgagtgttcc gatactctaa tctccctagg caaggttcat attgacttag gttacttatt ctccttttgt tgactaagtc aataatcaga atcagcaggt ttggagtcag cttggcaggg atcagcagcc tgggttggaa ggagggggta taaaagcccc ttcaccagga gaagccgtca cacagatcca caagctcctg ctagcaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg gttatggccc ttgcgtgcct tgaattactg acactgacat ccactttttc tttttctcca caggtttaaa cgccaccatg cagattgagc tgagcacctg cttcttcctg tgtctgctga ggttctgctt ctctgccacc aggaggtatt acctgggggc tgtggagctg agctgggact atatgcagtc tgacctgggg gagctgcctg tggatgctag gttccccccc agggtgccca agagcttccc ctttaacact tctgtggtgt acaagaagac cctgtttgtg gagttcactg accacctgtt caacattgcc aagcccaggc ccccctggat ggggctgctg gggcccacca tccaggctga ggtgtatgac actgtggtga tcaccctgaa gaacatggcc agccaccctg tgagcctgca tgctgtgggg gtgagctact ggaaggcttc tgagggggct gagtatgatg accagactag ccagagggag aaggaggatg acaaggtgtt tcctgggggc agccatacct atgtgtggca ggtgctgaag gagaatggcc ccatggcctc tgaccccctg tgcctgacct acagctacct gtctcatgtg gacctggtga aggacctgaa ctctggcctg attggggctc tgctggtgtg tagggagggc agcctggcta aggaaaagac ccagaccctg cataagttta tcctgctgtt tgctgtgttt gatgagggca agagctggca ctctgagacc aagaacagcc tgatgcagga tagggatgct gcctctgcca gggcttggcc taagatgcac actgtgaatg ggtatgtgaa taggagcctg cctggcctga ttggctgcca caggaagtct gtgtactggc atgtgattgg gatgggcacc acccctgagg tccatagcat cttcctggag ggccacactt tcctggtgag gaaccacaga caggcctctc tggagatctc tcccatcacc ttcctgactg ctcagactct gctgatggac ctgggccagt tcctgctgtt ttgccatatt agcagccacc agcatgatgg gatggaggcc tatgtgaagg tggatagctg ccctgaggag cctcagctga ggatgaagaa caatgaggag gctgaagact atgatgatga cctgactgat tctgagatgg atgtggtgag gtttgatgat gacaatagcc ccagcttcat tcagatcagg tctgtggcca agaaacaccc caagacctgg gtgcactaca ttgctgctga ggaagaggac tgggactatg ctcccctggt gctggcccct gatgataggt cttataagag ccagtacctg aacaatgggc cccagaggat tggcaggaag tacaagaagg tgaggttcat ggcctacact gatgaaacct tcaaaaccag ggaggccatt cagcatgagt ctggcatcct gggccctctg ctgtatgggg aggtggggga caccctgctg atcatcttca agaaccaggc cagcaggccc tacaacatct atcctcatgg catcactgat gtgaggcccc tgtacagcag gaggctgccc aagggggtga agcacctgaa agacttcccc atcctgcctg gggagatctt taagtataag tggactgtga ctgtggagga tggccctacc aagtctgacc ccaggtgtct gaccaggtac tattctagct ttgtgaacat ggagagggac ctggcctctg gcctgattgg gcccctgctg atctgctaca aggagtctgt ggaccagagg ggcaaccaga tcatgtctga caagaggaat gtgatcctgt tttctgtgtt tgatgagaat aggagctggt acctgactga gaacatccag aggtttctgc ccaatcctgc tggggtgcag ctggaggatc ctgagttcca ggccagcaat atcatgcata gcatcaatgg ctatgtgttt gacagcctgc agctgtctgt gtgcctgcat gaggtggcct actggtacat cctgagcatt ggggcccaga ctgactttct gtctgtgttc ttttctggct ataccttcaa gcacaagatg gtgtatgagg ataccctgac cctgttcccc ttctctgggg agactgtgtt catgagcatg gagaatcctg ggctgtggat cctggggtgc cacaactctg attttaggaa cagggggatg actgccctgc tgaaggtgtc tagctgtgat aagaacactg gggactacta tgaggacagc tatgaggaca tttctgctta tctgctgtct aagaataatg ccattgagcc cagaagcttc agccagaatc cccctgtgct gaagagacat cagagggaga tcaccagaac taccctgcag tctgatcagg aggagattga ctatgatgac actatctctg tggagatgaa gaaggaggac tttgacatct atgatgagga tgagaatcag tctcccagga gctttcagaa gaagaccaga cattacttca ttgctgctgt ggagaggctg tgggactatg gcatgagctc tagccctcat gtgctgagga acagggccca gtctggctct gtgccccagt tcaagaaggt ggtgttccag gaattcactg atggcagctt cacccagccc ctgtacaggg gggagctgaa tgagcacctg ggcctgctgg ggccttatat cagggctgag gtggaggata atattatggt gactttcagg aaccaggcca gcaggcccta ctctttctat agcagcctga tctcttatga ggaggatcag aggcaggggg ctgagcctag gaagaacttt gtgaagccca atgagactaa gacctacttc tggaaggtcc agcaccacat ggcccctacc aaggatgagt ttgactgcaa ggcctgggcc tatttctctg atgtggatct ggagaaggat gtccattctg ggctgattgg ccccctgctg gtgtgccaca ctaacactct gaatcctgcc catggcaggc aggtgactgt ccaggagttt gccctgttct tcactatctt tgatgagacc aagagctggt actttactga gaacatggag aggaactgca gagctccttg caatattcag atggaggacc ccaccttcaa ggagaattac aggttccatg ccattaatgg gtacatcatg gacaccctgc ctggcctggt gatggctcag gaccagagga tcaggtggta cctgctgagc atgggctcta atgagaatat ccacagcatc cacttctctg ggcatgtgtt cactgtgagg aagaaggagg agtacaagat ggctctgtat aatctgtacc ctggggtgtt tgaaactgtg gagatgctgc cctctaaggc tggcatctgg agggtggagt gcctgattgg ggagcacctg catgctggca tgagcaccct gttcctggtg tacagcaaca agtgccagac ccccctgggc atggcctctg gccacatcag ggacttccag atcactgcct ctggccagta tggccagtgg gcccccaagc tggccaggct gcactattct ggcagcatca atgcctggag caccaaggag cccttcagct ggatcaaggt ggacctgctg gcccccatga tcattcatgg catcaagacc cagggggcca ggcagaagtt cagctctctg tacatctctc agttcatcat catgtactct ctggatggga agaagtggca gacctacagg ggcaacagca ctggcaccct gatggtgttc tttgggaatg tggactcttc tggcatcaag cacaacatct tcaatccccc catcattgct aggtatatta ggctgcatcc cacccactac agcatcaggt ctaccctgag gatggagctg atgggctgtg acctgaactc ttgcagcatg cccctgggca tggagtctaa ggccatctct gatgcccaga ttactgccag cagctacttc accaacatgt ttgccacctg gagcccctct aaggccaggc tgcatctgca ggggaggagc aatgcctgga ggcctcaggt gaacaacccc aaggagtggc tgcaggtgga tttccagaag accatgaagg tgactggggt gaccacccag ggggtcaaga gcctgctgac cagcatgtat gtgaaggagt tcctgatcag cagcagccag gatggccacc agtggactct gttctttcag aatgggaagg tgaaggtgtt tcagggcaat caggactctt tcacccctgt ggtgaacagc ctggaccccc ccctgctgac cagatacctg aggatccacc cccagtcttg ggtgcatcag attgccctga ggatggaggt gctgggctgt gaggctcagg atctgtactg agcggccgca ataaaagatc agagctctag agatctgtgt gttggttttt tgtgtaggaa cccctagtga tggagttggc cactccctct ctgcgcgctc gctcgctcac tgaggccggg cgaccaaagg tcgcccgacg cccgggcttt gcccgggcgg cctcagtgag cgagcgagcg cgcagctgcc tgcaggggca gcttgaagga aatactaagg caaaggtact gcaagtgctc gcaacattcg cttatgcgga ttattgccgt agtgccgcga cgccgggggc aagatgcaga gattgccatg gtacaggccg tgcggttgat attgccaaaa cagagctgtg ggggagagtt gtcgagaaag agtgcggaag atgcaaaggc gtcggctatt caaggatgcc agcaagcgca gcatatcgcg ctgtgacgat gctaatccca aaccttaccc aacccacctg gtcacgcact gttaagccgc tgtatgacgc tctggtggtg caatgccaca aagaagagtc aatcgcagac aacattttga atgcggtcac acgttagcag catgattgcc acggatggca acatattaac ggcatgatat tgacttattg aataaaattg ggtaaatttg actcaacgat gggttaattc gctcgttgtg gtagtgagat gaaaagaggc ggcgcttact accgattccg cctagttggt cacttcgacg tatcgtctgg aactccaacc atcgcaggca gagaggtctg caaaatgcaa tcccgaaaca gttcgcaggt aatagttaga gcctgcataa cggtttcggg attttttata tctgcacaac aggtaagagc attgagtcga taatcgtgaa gagtcggcga gcctggttag ccagtgctct ttccgttgtg ctgaattaag cgaataccgg aagcagaacc ggatcaccaa atgcgtacag gcgtcatcgc cgcccagcaa cagcacaacc caaactgagc cgtagccact gtctgtcctg aattcattag taatagttac gctgcggcct tttacacatg accttcgtga aagcgggtgg caggaggtcg cgctaacaac ctcctgccgt tttgcccgtg catatcggtc acgaacaaat ctgattacta aacacagtag cctggatttg ttctatcagt aatcgacctt attcctaatt aaatagagca aatcccctta ttgggggtaa gacatgaaga tgccagaaaa acatgacctg ttggccgcca ttctcgcggc aaaggaacaa ggcatcgggg caatccttgc gtttgcaatg gcgtaccttc gcggcagata taatggcggt gcgtttacaa aaacagtaat cgacgcaacg atgtgcgcca ttatcgccta gttcattcgt gaccttctcg acttcgccgg actaagtagc aatctcgctt atataacgag cgtgtttatc ggctacatcg gtactgactc gattggttcg cttatcaaac gcttcgctgc taaaaaagcc ggagtagaag atggtagaaa tcaataatca acgtaaggcg ttcctcgata tgctggcgtg gtcggaggga actgataacg gacgtcagaa aaccagaaat catggttatg acgtcattgt aggcggagag ctatttactg attactccga tcaccctcgc aaacttgtca cgctaaaccc aaaactcaaa tcaacaggcg ccggacgcta ccagcttctt tcccgttggt gggatgccta ccgcaagcag cttggcctga aagacttctc tccgaaaagt caggacgctg tggcattgca gcagattaag gagcgtggcg ctttacctat gattgatcgt ggtgatatcc gtcaggcaat cgaccgttgc agcaatatct gggcttcact gccgggcgct ggttatggtc agttcgagca taaggctgac agcctgattg caaaattcaa agaagcgggc ggaacggtca gagagattga tgtatgagca gagtcaccgc gattatctcc gctctggtta tctgcatcat cgtctgcctg tcatgggctg
ttaatcatta ccgtgataac gccattacct acaaagccca gcgcgacaaa aatgccagag aactgaagct ggcgaacgcg gcaattactg acatgcagat gcgtcagcgt gatgttgctg cgctcgatgc aaaatacacg aaggagttag ctgatgctaa agctgaaaat gatgctctgc gtgatgatgt tgccgctggt cgtcgtcggt tgcacatcaa agcagtctgt cagtcagtgc gtgaagccac caccgcctcc ggcgtggata atgcagcctc cccccgactg gcagacaccg ctgaacggga ttatttcacc ctcagagaga ggctgatcac tatgcaaaaa caactggaag gaacccagaa gtatattaat gagcagtgca gatagagttg cccatatcga tgggcaactc atgcaattat tgtgagcaat acacacgcgc ttccagcgga gtataaatgc ctaaagtaat aaaaccgagc aatccattta cgaatgtttg ctgggtttct gttttaacaa cattttctgc gccgccacaa attttggctg catcgacagt tttcttctgc ccaattccag aaacgaagaa atgatgggtg atggtttcct ttggtgctac tgctgccggt ttgttttgaa cagtaaacgt ctgttgagca catcctgtaa taagcagggc cagcgcagta gcgagtagca tttttttcat ggtgttattc ccgatgcttt ttgaagttcg cagaatcgta tgtgtagaaa attaaacaaa ccctaaacaa tgagttgaaa tttcatattg ttaatattta ttaatgtatg tcaggtgcga tgaatcgtca ttgtattccc ggattaacta tgtccacagc cctgacgggg aacttctctg cgggagtgtc cgggaataat taaaacgatg cacacagggt ttagcgcgta cacgtattgc attatgccaa cgccccggtg ctgacacgga agaaaccgga cgttatgatt tagcgtggaa agatttgtgt agtgttctga atgctctcag taaatagtaa tgaattatca aaggtatagt aatatctttt atgttcatgg atatttgtaa cccatcggaa aactcctgct ttagcaagat tttccctgta ttgctgaaat gtgatttctc ttgatttcaa cctatcatag gacgtttcta taagatgcgt gtttcttgag aatttaacat ttacaacctt tttaagtcct tttattaaca cggtgttatc gttttctaac acgatgtgaa tattatctgt ggctagatag taaatataat gtgagacgtt gtgacgtttt agttcagaat aaaacaattc acagtctaaa tcttttcgca cttgatcgaa tatttcttta aaaatggcaa cctgagccat tggtaaaacc ttccatgtga tacgagggcg cgtagtttgc attatcgttt ttatcgtttc aatctggtct gacctccttg tgttttgttg atgatttatg tcaaatatta ggaatgtttt cacttaatag tattggttgc gtaacaaagt gcggtcctgc tggcattctg gagggaaata caaccgacag atgtatgtaa ggccaacgtg ctcaaatctt catacagaaa gatttgaagt aatattttaa ccgctagatg aagagcaagc gcatggagcg acaaaatgaa taaagaacaa tctgctgatg atccctccgt ggatctgatt cgtgtaaaaa atatgcttaa tagcaccatt tctatgagtt accctgatgt tgtaattgca tgtatagaac ataaggtgtc tctggaagca ttcagagcaa ttgaggcagc gttggtgaag cacgataata atatgaagga ttattccctg gtggttgact gatcaccata actgctaatc attcaaacta tttagtctgt gacagagcca acacgcagtc tgtcactgtc aggaaagtgg taaaactgca actcaattac tgcaatgccc tcgtaattaa gtgaatttac aatatcgtcc tgttcggagg gaagaacgcg ggatgttcat tcttcatcac ttttaattga tgtatatgct ctcttttctg acgttagtct ccgacggcag gcttcaatga cccaggctga gaaattcccg gacccttttt gctcaagagc gatgttaatt tgttcaatca tttggttagg aaagcggatg ttgcgggttg ttgttctgcg ggttctgttc ttcgttgaca tgaggttgcc ccgtattcag tgtcgctgat ttgtattgtc tgaagttgtt tttacgttaa gttgatgcag atcaattaat acgatacctg cgtcataatt gattatttga cgtggtttga tggcctccac gcacgttgtg atatgtagat gataatcatt atcactttac gggtcctttc cggtgatccg acaggttacg gggcggcgac ctgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatacgtca aagcaaccat agtacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ttagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac tcaactctat ctcgggctat tcttttgatt tagacctgca ggcatgcaag cttggcactg gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg ttacccaact taatcgcctt gcagcacatc cccctttcgc cagctggcgt aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tgcgatttat tcaacaaagc cgccgtcccg tcaagtcagc gtaatgctct gccagtgtta caaccaatta accaattctg attagaaaaa ctcatcgagc atcaaatgaa actgcaattt attcatatca ggattatcaa taccatattt ttgaaaaagc cgtttctgta atgaaggaga aaactcaccg aggcagttcc ataggatggc aagatcctgg tatcggtctg cgattccgac tcgtccaaca tcaatacaac ctattaattt cccctcgtca aaaataaggt tatcaagtga gaaatcacca tgagtgacga ctgaatccgg tgagaatggc aaaagcttat gcatttcttt ccagacttgt tcaacaggcc agccattacg ctcgtcatca aaatcactcg catcaaccaa accgttattc attcgtgatt gcgcctgagc gagacgaaat acgcgatcgc tgttaaaagg acaattacaa acaggaatcg aatgcaaccg gcgcaggaac actgccagcg catcaacaat attttcacct gaatcaggat attcttctaa tacctggaat gctgttttcc cggggatcgc agtggtgagt aaccatgcat catcaggagt acggataaaa tgcttgatgg tcggaagagg cataaattcc gtcagccagt ttagtctgac catctcatct gtaacatcat tggcaacgct acctttgcca tgtttcagaa acaactctgg cgcatcgggc ttcccataca atcgatagat tgtcgcacct gattgcccga cattatcgcg agcccattta tacccatata aatcagcatc catgttggaa tttaatcgcg gcttcgagca agacgtttcc cgttgaatat ggctcataac accccttgta ttactgttta tgtaagcaga cagttttatt gttcatgatg atatattttt atcttgtgca atgtaacatc agagattttg agacacaacg tggctttgtt gaataaatcg aacttttgct gagttgaagg atcagatcac gcatcttccc gacaacgcag accgttccgt ggcaaagcaa aagttcaaaa tcaccaactg gtccacctac aacaaagctc tcatcaaccg tggctccctc actttctggc tggatgatgg ggcgattcag gcctggtatg agtcagcaac accttcttca cgaggcagac ctctcgacgg agttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgt FVIII-BDD encoded by X01-X18 nucleic acid sequences. SQ sequence bold/underlined (SEQ ID NO: 25) MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKT LFVEFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQ TSQREKEDDKVFPGGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLA KEKTQTLHKFILLFAVFDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSV YWHVIGMGTTPEVHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGME AYVKVDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAE EEDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYGEV GDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSD PRCLTRYYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQR FLPNPAGVQLEDPEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHK MVYEDTLTLFPFSGETVFMSMENPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAY LLSKNNAIEPRSFSQNPPVLKRHQREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSF QKKTRHYFIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKVVFQEFTDGSFTQPLYRGELNEHLGLL GPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTYFWKVQHHMAPTK DEFDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQVIVQEFALFFTIFDETKSWYFTENM ERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHFSGHVF TVRKKEEYKMALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGH IRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYIS QFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELM GCDLNSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQ KTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPVVNSLDPPLLT RYLRIHPQSWVHQIALRMEVLGCEAQDLY Wild-type FVIII with BDD (SEQ ID NO: 26) MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKT LFVEFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQ TSQREKEDDKVFPGGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLA KEKTQTLHKFILLFAVFDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSV YWHVIGMGTTPEVHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGME AYVKVDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAE EEDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYGEV GDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSD PRCLTRYYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQR FLPNPAGVQLEDPEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHK MVYEDTLTLFPFSGETVFMSMENPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAY LLSKNNAIEPRSFSQNSRHPSTRQKQFNATTIPENDIEKTDPWFAHRTPMPKIQNVSSSDLLMLLRQS PTPHGLSLSDLQEAKYETFSDDPSPGAIDSNNSLSEMTHFRPQLHHSGDMVFTPESGLQLRLNEKLGT TAATELKKLDFKVSSTSNNLISTIPSDNLAAGTDNTSSLGPPSMPVHYDSQLDTTLFGKKSSPLTESG GPLSLSEENNDSKLLESGLMNSQESSWGKNVSSTESGRLFKGKRAHGPALLTKDNALFKVSISLLKTN KTSNNSATNRKTHIDGPSLLIENSPSVWQNILESDTEFKKVTPLIHDRMLMDKNATALRLNHMSNKTT SSKNMEMVQQKKEGPIPPDAQNPDMSFFKMLFLPESARWIQRTHGKNSLNSGQGPSPKQLVSLGPEKS
VEGQNFLSEKNKVVVGKGEFTKDVGLKEMVFPSSRNLFLTNLDNLHENNTHNQEKKIQEEIEKKETLI QENVVLPQIHTVTGTKNFMKNLFLLSTRQNVEGSYDGAYAPVLQDFRSLNDSTNRTKKHTAHFSKKGE EENLEGLGNQTKQIVEKYACTTRISPNTSQQNFVTQRSKRALKQFRLPLEETELEKRIIVDDTSTQWS KNMKHLTPSTLTQIDYNEKEKGAITQSPLSDCLTRSHSIPQANRSPLPIAKVSSFPSIRPIYLTRVLF QDNSSHLPAASYRKKDSGVQESSHFLQGAKKNNLSLAILTLEMTGDQREVGSLGTSATNSVTYKKVEN TVLPKPDLPKTSGKVELLPKVHIYQKDLFPTETSNGSPGHLDLVEGSLLQGTEGAIKWNEANRPGKVP FLRVATESSAKTPSKLLDPLAWDNHYGTQIPKEEWKSQEKSPEKTAFKKKDTILSLNACESNHAIAAI NEGQNKPEIEVTWAKQGRTERLCSQNPPVLKRHQREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYD EDENQSPRSFQKKTRHYFIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKVVFQEFTDGSFTQPLYR GELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTYFW KVQHHMAPTKDEFDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQVTVQEFALFFTIFDE TKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENI HSIHFSGHVFTVRKKEEYKMALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNKC QTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGA RQKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYS IRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNN PKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPV VNSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY AAV-LK03 VP1 Capsid (SEQ ID NO: 27) MAADGYLPDWLEDNLSEGIREWWALQPGAPKPKANQQHQDNARGLVLPGYKYLGPGNGLDKGEPVNAA DAAALEHDKAYDQQLKAGDNPYLKYNHADAEFQERLKEDTSFGGNLGRAVFQAKKRLLEPLGLVEEAA KTAPGKKRPVDQSPQEPDSSSGVGKSGKQPARKRLNFGQTGDSESVPDPQPLGEPPAAPTSLGSNTMA SGGGAPMADNNEGADGVGNSSGNWHCDSQWLGDRVITTSTRTWALPTYNNHLYKQISSQSGASNDNHY FGYSTPWGYFDFNRFHCHFSPRDWQRLINNNWGFRPKKLSFKLFNIQVKEVTQNDGTTTIANNLTSTV QVFTDSEYQLPYVLGSAHQGCLPPFPADVFMVPQYGYLTLNNGSQAVGRSSFYCLEYFPSQMLRTGNN FQFSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQGTTSGTTNQSRLLFSQAGPQSMSLQAR NWLPGPCYRQQRLSKTANDNNNSNFPWTAASKYHLNGRDSLVNPGPAMASHKDDEEKFFPMHGNLIFG KEGTTASNAELDNVMITDEEEIRTTNPVATEQYGTVANNLQSSNTAPTTRTVNDQGALPGMVWQDRDV YLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQIMIKNTPVPANPPTTFSPAKFASFITQYSTGQVS VEIEWELQKENSKRWNPEIQYTSNYNKSVNVDFTVDTNGVYSEPRPIGTRYLTRPL AAV-SPK VP1 Capsid (SEQ ID NO: 28) used in AAV-SPK-8005 and AAV-SPK-hFIX MAADGYLPDWLEDNLSEGIREWWDLKPGAPKPKANQQKQDNGRGLVLPGYKYLGPFNGLDKGEPVNAA DAAALEHDKAYDQQLQAGDNPYLRYNHADAEFQERLQEDTSFGGNLGRAVFQAKKRVLEPLGLVESPV KTAPGKKRPVEPSPQRSPDSSTGIGKKGQQPAKKRLNFGQTGDSESVPDPQPIGEPPAAPSGVGPNTM AAGGGAPMADNNEGADGVGSSSGNWHCDSTWLGDRVITTSTRTWALPTYNNHLYKQISNGTSGGSTND NTYFGYSTPWGYFDFNRFHCHFSPRDWQRLINNNWGFRPKRLNFKLFNIQVKEVTQNEGTKTIANNLT STIQVFTDSEYQLPYVLGSAHQGCLPPFPADVFMIPQYGYLTLNNGSQAV GRSSFYCLEYFPSQMLRTGNNFEFSYNFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTQSTGGTA GTQQLLFSQAGPNNMSAQAKNWLPGPCYRQQRVSTTLSQNNNSNFAWTGATKYHLNGRDSLVNPGVAM ATHKDDEERFFPSSGVLMFGKQGAGKDNVDYSSVMLTSEEEIKTTNPVATEQYGVVADNLQQQNAAPI VGAVNSQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPPPQILIKNTPVPADPPT TFNQAKLASFITQYSTGQVSVEIEWELQKENSKRWNPEIQYTSNYYKSTNVDFAVNTEGTYSEPRPIG TRYLTRNL
TABLE-US-00010 Percent Identity Matrix of hFVIII Vectors (WT, CO3, x09, X02, X06, X08, X15, X05, X18, X14, X01, X12, X04, X11, X07, X03, X16, X13, X17 and X10) hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII WT CO3 X09 X02 X06 X08 X15 X05 X18 X14 hFVIII 77.2 79.5 79.1 79.3 79.2 79.3 79.1 79 79.6 WT hFVIII 77.2 81.9 81.9 81.5 81.3 81.6 81.6 81.2 81.4 CO3 hFVIII 79.5 81.9 91.5 91.4 91.8 92 91.8 91 91.4 X09 hFVIII 79.1 81.9 91.5 91.4 91.3 92 92.1 92.2 91.7 X02 hFVIII 79.3 81.5 91.4 91.4 91.8 91.9 91.8 91.5 91.8 X06 hFVIII 79.2 81.3 91.8 91.3 91.8 91.8 91.5 91.5 91.8 X08 hFVIII 79.3 81.6 92 92 91.9 91.8 92.2 91.6 91.7 X15 hFVIII 79.1 81.6 91.8 92.1 91.8 91.5 92.2 92.5 91.9 X05 hFVIII 79 81.2 91 92.2 91.5 91.5 91.6 92.5 91.6 X18 hFVIII 79.6 81.4 91.4 91.7 91.8 91.8 91.7 91.9 91.6 X14 hFVIII 79.6 81.1 91.5 92 92.3 92.2 92.3 92.7 93 93 X01 hFVIII 79.4 81.1 91.5 91.9 91.7 91.5 92.1 92.4 92.1 92 X12 hFVIII 79.4 81.3 91.7 91.9 91.8 92.3 92.2 92.1 91.5 91.6 X04 hFVIII 79.4 81.7 91.7 92 92 92.5 92.5 91.5 91.8 91.8 X11 hFVIII 79.2 81.8 92.2 91.5 91.5 92 92 92.1 91.7 91.3 X07 hFVIII 79.4 81.6 91.5 91 91.4 91.7 92.1 91.6 91.4 91.8 X03 hFVIII 79.1 81.9 92.1 91.5 91.7 91.4 92.2 91.7 91.1 92.3 X16 hFVIII 79 81.8 91.8 92.3 92.4 92.3 92.3 92.3 91.8 92.2 X13 hFVIII 79.6 82.1 91.1 91.9 91.6 91.6 92.5 91.9 91.8 91.8 X17 hFVIII 79.3 82.2 91.6 92.1 91.8 91.9 92 92 92 92 X10 hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII hFVIII X01 X12 X04 X11 X07 X03 X16 X13 X17 X10 hFVIII 79.6 79.4 79.4 79.4 79.2 79.4 79.1 79 79.6 79.3 WT hFVIII 81.1 81.1 81.3 81.7 81.8 81.6 81.9 81.8 82.1 82.2 CO3 hFVIII 91.5 91.5 91.7 91.7 92.2 91.5 92.1 91.8 91.1 91.6 X09 hFVIII 92 91.9 91.9 92 91.5 91 91.5 92.3 91.9 92.1 X02 hFVIII 92.3 91.7 91.8 92 91.5 91.4 91.7 92.4 91.6 91.8 X06 hFVIII 92.2 91.5 92.3 92.5 92 91.7 91.4 92.3 91.6 91.9 X08 hFVIII 92.3 92.1 92.2 92.5 92 92.1 92.2 92.3 92.5 92 X15 hFVIII 92.7 92.4 92.1 91.5 92.1 91.6 91.7 92.3 91.9 92 X05 hFVIII 93 92.1 91.5 91.8 91.7 91.4 91.1 91.8 91.8 92 X18 hFVIII 93 92 91.6 91.8 91.3 91.8 92.3 92.2 91.8 92 X14 hFVIII 93.4 92.3 92.5 92.6 92.5 92.2 92.6 92.4 92.1 X01 hFVIII 93.4 92 92 92.4 92.4 91.7 92.4 92.6 92.6 X12 hFVIII 92.3 92 92.6 92 91.5 91.5 92 91.9 92.5 X04 hFVIII 92.5 92 92.6 92.6 92 91.9 92.3 91.8 91.9 X11 hFVIII 92.6 92.4 92 92.6 92.1 92 92.4 91.9 92.7 X07 hFVIII 92.5 92.4 91.5 92 92.1 92 92.7 92.1 91.6 X03 hFVIII 92.2 91.7 91.5 91.9 92 92 92.4 92 92.8 X16 hFVIII 92.6 92.4 92 92.3 92.4 92.7 92.4 92.4 92.8 X13 hFVIII 92.4 92.6 91.9 91.8 91.9 92.1 92 92.4 92.9 X17 hFVIII 92.1 92.6 92.5 91.9 92.7 91.6 92.8 92.8 92.9 X10
Certain Definitions/Abbreviations Used
[0293] BDD: all or at least part of B domain (BD) deleted FVIII-BDD: FVIII with B domain deletion
SQ: SFSQNPPVLKRHQR (SEQ ID NO:29)
[0294] FVIII/SQ: FVIII with SQ FVIIIX01-X18: CpG reduced FVIII encoding nucleic acid variants, set forth as SEQ ID Nos: 1-18, respectively. TTRmut: TTR promoter with 4 mutations, from TAmGTGTAG to TATTGACTTAG CO3: codon optimized FVIII nucleic acid variant, set forth as SEQ ID NO:21 NHP: Non human primate ALT: Alanine aminotransferase D-dimer: A protein fragment from the break down of a blood clot SPK-8005: AAV capsid (SEQ ID NO:28)+TTRmut-hFVIII-X07; also referred to as AAV-SPK-8005 SPK-8011: AAV LK03 capsid (SEQ ID NO:27)+TTRmut-hFVIII-X07; also referred to as AAV-SPK-8011
[0295] While certain of the embodiments of the invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various modifications may be made thereto without departing from the scope and spirit of the invention, as set forth in the following claims.
Sequence CWU
1
1
2914374DNAArtificial SequenceDescription of Artificial Sequence FVIII
Nucleic Acid 1atgcagattg agctgtctac ctgcttcttc ctgtgcctgc tgaggttctg
cttctctgct 60accaggaggt actacctggg ggctgtggag ctgagctggg attacatgca
gtctgacctg 120ggggagctgc ctgtggatgc caggtttccc cccagggtgc ccaagagctt
ccccttcaat 180acctctgtgg tgtataagaa gaccctgttt gtggagttca ctgatcatct
gttcaacatt 240gctaaaccca ggcccccctg gatggggctg ctgggcccta ccatccaggc
tgaggtgtat 300gacactgtgg tgatcactct gaagaacatg gctagccatc ctgtgtctct
gcatgctgtg 360ggggtgagct actggaaggc ttctgagggg gctgagtatg atgatcagac
tagccagagg 420gagaaggagg atgacaaggt gttccctggg ggctctcaca cctatgtctg
gcaggtgctg 480aaggagaatg gccccatggc ctctgatcct ctgtgtctga cctatagcta
cctgagccat 540gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt
gtgtagggag 600gggagcctgg ccaaggagaa gacccagacc ctgcacaagt tcattctgct
gtttgctgtg 660tttgatgagg gcaagagctg gcattctgaa accaagaaca gcctgatgca
ggacagggat 720gctgcctctg ctagggcctg gcccaagatg cacactgtga atgggtatgt
caataggtct 780ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat
tgggatgggc 840accacccctg aggtgcacag catctttctg gagggccaca ccttcctggt
gaggaatcac 900agacaggcca gcctggagat cagccccatc accttcctga ctgcccagac
cctgctgatg 960gacctgggcc agtttctgct gttctgccac atctctagcc accagcatga
tggcatggag 1020gcctatgtga aggtggactc ctgccctgag gagccccagc tgaggatgaa
gaataatgag 1080gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt
gagatttgat 1140gatgacaatt ctcccagctt cattcagatc aggtctgtgg ccaagaagca
tcccaagacc 1200tgggtgcact acattgctgc tgaggaggag gactgggact atgcccccct
ggtgctggcc 1260cctgatgaca ggagctataa gagccagtac ctgaataatg gcccccagag
gattgggagg 1320aagtataaga aggtgaggtt catggcctat actgatgaaa ccttcaagac
cagagaggcc 1380atccagcatg agtctgggat cctggggccc ctgctgtatg gggaggtggg
ggacaccctg 1440ctgatcatct tcaagaacca ggccagcagg ccctacaaca tctaccctca
tggcatcact 1500gatgtgaggc ctctgtacag cagaaggctg cccaaggggg tgaagcatct
gaaggacttc 1560cccattctgc ctggggagat tttcaagtac aagtggactg tgactgtgga
ggatggccca 1620accaagtctg accctaggtg cctgactagg tactacagca gctttgtgaa
tatggagagg 1680gacctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc
tgtggatcag 1740aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt
gtttgatgag 1800aacaggagct ggtacctgac tgagaacatt cagaggtttc tgcccaaccc
tgctggggtg 1860cagctggagg accctgaatt ccaggcctct aacatcatgc acagcattaa
tggctatgtg 1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta
cattctgagc 1980attggggccc agactgactt cctgtctgtg ttcttctctg gctacacctt
taagcacaag 2040atggtgtatg aggataccct gaccctgttt cctttctctg gggagactgt
gttcatgagc 2100atggagaacc ctggcctgtg gatcctgggc tgccacaact ctgacttcag
gaacaggggg 2160atgactgctc tgctgaaggt gagcagctgt gataagaaca ctggggacta
ctatgaggac 2220agctatgagg acatctctgc ctatctgctg agcaagaata atgctattga
gcccaggagc 2280ttctctcaga acccccctgt gctgaagagg caccagaggg agatcaccag
aactactctg 2340cagtctgacc aggaggagat tgactatgat gacaccatct ctgtggagat
gaagaaggag 2400gattttgata tttatgatga ggatgaaaac cagagcccca ggagctttca
gaagaagact 2460aggcactatt tcattgctgc tgtggagagg ctgtgggact atggcatgtc
ttctagcccc 2520catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa
ggtggtgttc 2580caggagttca ctgatggcag cttcactcag cccctgtaca ggggggagct
gaatgagcac 2640ctggggctgc tgggccctta tatcagggct gaggtggagg ataacatcat
ggtgaccttc 2700aggaaccagg ccagcaggcc ctacagcttc tactctagcc tgatcagcta
tgaggaggac 2760cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac
caagacttat 2820ttctggaagg tgcagcacca tatggccccc accaaggatg agtttgattg
caaagcctgg 2880gcctacttct ctgatgtgga cctggagaag gatgtgcact ctgggctgat
tggccccctg 2940ctggtgtgcc acaccaacac tctgaaccct gcccatggca ggcaggtgac
tgtgcaggag 3000tttgccctgt tcttcaccat ctttgatgag actaagagct ggtacttcac
tgagaacatg 3060gagaggaact gcagggcccc ctgcaatatc cagatggagg accccacctt
taaggaaaat 3120tataggtttc atgccattaa tggctacatc atggacaccc tgcctggcct
ggtgatggcc 3180caggaccaga ggatcaggtg gtacctgctg agcatgggca gcaatgagaa
cattcacagc 3240atccacttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa
gatggccctg 3300tataatctgt accctggggt gtttgagact gtggagatgc tgcccagcaa
ggctggcatc 3360tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac
cctgttcctg 3420gtgtattcta acaagtgtca gacccccctg ggcatggcct ctggccatat
cagggacttc 3480cagatcactg cctctggcca gtatgggcag tgggccccca agctggccag
gctgcattac 3540tctggcagca tcaatgcctg gagcaccaag gagccattca gctggattaa
ggtggacctg 3600ctggctccaa tgattatcca tggcatcaag acccaggggg ccaggcagaa
gtttagcagc 3660ctgtacatct ctcagtttat catcatgtac tctctggatg gcaaaaagtg
gcagacctac 3720aggggcaatt ctactggcac tctgatggtg ttctttggca atgtggacag
ctctgggatc 3780aagcacaaca tctttaaccc ccctatcatt gccaggtaca ttaggctgca
ccccacccat 3840tacagcatca ggagcaccct gaggatggag ctgatgggct gtgatctgaa
cagctgcagc 3900atgcccctgg gcatggagag caaggctatc tctgatgccc agattactgc
cagcagctac 3960ttcaccaata tgtttgccac ctggagcccc agcaaggcca ggctgcacct
gcagggcagg 4020tctaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt
ggacttccag 4080aagaccatga aggtgactgg ggtgaccacc cagggggtga agagcctgct
gactagcatg 4140tatgtgaagg agttcctgat cagcagcagc caggatggcc atcagtggac
cctgttcttc 4200cagaatggca aggtgaaggt gttccagggc aatcaggaca gcttcacccc
tgtggtgaac 4260agcctggacc cccccctgct gaccagatac ctgaggatcc acccccagag
ctgggtgcat 4320cagattgccc tgaggatgga ggtgctgggg tgtgaggccc aggacctgta
ctga 437424374DNAArtificial SequenceDescription of Artificial
Sequence FVIII Nucleic Acid 2atgcagattg agctgtctac ctgctttttc
ctgtgtctgc tgaggttctg cttctctgcc 60actaggaggt actacctggg ggctgtggag
ctgtcttggg attacatgca gtctgatctg 120ggggagctgc ctgtggatgc caggtttcct
cccagggtgc ccaagtcttt ccccttcaat 180acctctgtgg tgtataagaa gaccctgttt
gtggagttta ctgatcacct gttcaacatt 240gccaagccca ggcccccttg gatgggcctg
ctggggccca ccatccaggc tgaggtgtat 300gacactgtgg tgatcaccct gaagaacatg
gcctctcacc ctgtgagcct gcatgctgtg 360ggggtgagct actggaaggc ctctgagggg
gctgagtatg atgaccagac cagccagagg 420gagaaggagg atgataaggt gttccctggg
gggagccaca cttatgtgtg gcaggtgctg 480aaggagaatg gcccaatggc ctctgatccc
ctgtgcctga cctattctta cctgagccat 540gtggacctgg tgaaggacct gaactctggc
ctgattgggg ccctgctggt gtgcagggag 600ggctctctgg ctaaggagaa gacccagacc
ctgcacaagt tcatcctgct gtttgctgtg 660tttgatgagg ggaagagctg gcactctgag
accaagaaca gcctgatgca ggacagggat 720gctgcctctg ccagggcctg gcccaaaatg
cacactgtga atggctatgt gaataggagc 780ctgcctggcc tgattggctg ccacaggaag
tctgtgtatt ggcatgtgat tggcatgggc 840accacccctg aggtgcactc tatcttcctg
gagggccata ctttcctggt gaggaatcat 900aggcaggcca gcctggagat tagccccatt
acctttctga ctgcccagac cctgctgatg 960gacctgggcc agttcctgct gttttgccac
atcagctctc accagcatga tggcatggag 1020gcctatgtga aggtggatag ctgccctgag
gagccccagc tgaggatgaa gaacaatgag 1080gaggctgagg attatgatga tgatctgact
gattctgaaa tggatgtggt gaggtttgat 1140gatgacaata gcccctcttt catccagatc
aggtctgtgg ccaagaagca tcctaagacc 1200tgggtgcact acattgctgc tgaggaggag
gactgggact atgctcccct ggtgctggcc 1260cctgatgaca ggtcttacaa gagccagtac
ctgaacaatg gcccccagag aattgggagg 1320aagtataaga aggtgagatt catggcttac
actgatgaga ccttcaagac tagggaggcc 1380atccagcatg agtctggcat tctgggcccc
ctgctgtatg gggaggtggg ggacaccctg 1440ctgatcatct tcaagaacca ggcctctagg
ccctacaata tttaccccca tgggatcact 1500gatgtgaggc ccctgtacag caggaggctg
cctaaggggg tgaagcatct gaaggacttc 1560cccatcctgc ctggggagat cttcaagtat
aagtggactg tgactgtgga agatggcccc 1620accaagtctg accctaggtg cctgaccagg
tactactctt cttttgtgaa catggagagg 1680gacctggcct ctggcctgat tggccccctg
ctgatctgct acaaggagtc tgtggaccag 1740agggggaacc agattatgtc tgacaagagg
aatgtgattc tgttctctgt gtttgatgag 1800aacaggagct ggtatctgac tgagaacatc
cagaggttcc tgcccaatcc tgctggggtg 1860cagctggagg accctgagtt ccaggccagc
aacatcatgc acagcatcaa tgggtatgtg 1920tttgattctc tgcagctgtc tgtgtgcctg
catgaggtgg cctactggta catcctgagc 1980attggggctc agactgattt cctgtctgtg
ttcttttctg gctacacctt taagcataag 2040atggtgtatg aggacactct gaccctgttt
cccttctctg gggagactgt gtttatgagc 2100atggagaacc ctggcctgtg gatcctgggc
tgccacaact ctgatttcag gaacaggggc 2160atgactgctc tgctgaaggt gtcttcttgt
gacaagaaca ctggggacta ttatgaggac 2220agctatgagg acatctctgc ctacctgctg
agcaagaaca atgctattga gcccagatct 2280ttcagccaga acccccctgt gctgaagagg
caccagaggg agatcactag gaccaccctg 2340cagtctgacc aggaggagat tgactatgat
gacactatct ctgtggagat gaagaaggag 2400gactttgata tctatgatga ggatgagaac
cagtctccca ggagcttcca gaaaaagacc 2460aggcactact tcattgctgc tgtggagagg
ctgtgggact atggcatgtc ttctagcccc 2520catgtgctga ggaacagggc ccagtctggg
tctgtgcccc agttcaagaa ggtggtgttc 2580caggagttca ctgatgggag cttcacccag
cctctgtaca ggggggagct gaatgagcac 2640ctggggctgc tgggccctta tattagggct
gaggtggagg acaacatcat ggtgactttc 2700aggaatcagg cctctaggcc ctatagcttc
tacagctctc tgatcagcta tgaggaggat 2760cagaggcagg gggctgagcc caggaagaac
tttgtgaagc ccaatgagac caagacctac 2820ttctggaagg tgcagcacca catggctcct
accaaggatg agtttgactg caaggcctgg 2880gcctactttt ctgatgtgga cctggagaag
gatgtgcact ctggcctgat tggccccctg 2940ctggtgtgtc ataccaacac cctgaaccct
gcccatggca ggcaggtgac tgtgcaggag 3000tttgccctgt tcttcaccat ctttgatgag
accaagagct ggtactttac tgagaacatg 3060gagaggaatt gcagagcccc ttgcaacatc
cagatggagg acccaacctt caaagagaac 3120tacaggttcc atgccatcaa tgggtacatc
atggacaccc tgcctggcct ggtgatggct 3180caggaccaga ggatcaggtg gtatctgctg
agcatgggca gcaatgagaa tatccatagc 3240attcacttct ctggccatgt gttcactgtg
aggaagaagg aggagtacaa gatggccctg 3300tataacctgt accctggggt gtttgagact
gtggagatgc tgccaagcaa ggctgggatt 3360tggagggtgg agtgcctgat tggggagcac
ctgcatgctg gcatgtctac cctgttcctg 3420gtgtactcca ataagtgcca gacccccctg
ggcatggcct ctggccacat cagggacttc 3480cagatcactg cctctggcca gtatgggcag
tgggccccaa agctggccag gctgcactat 3540tctgggagca tcaatgcttg gagcaccaag
gagcctttca gctggattaa ggtggatctg 3600ctggccccca tgatcattca tggcatcaaa
acccaggggg ctagacagaa gttttctagc 3660ctgtacatca gccagttcat catcatgtac
agcctggatg gcaagaagtg gcagacttac 3720aggggcaata gcactggcac cctgatggtg
ttttttggca atgtggacag ctctggcatc 3780aagcacaaca tctttaaccc ccccattatt
gccaggtata tcaggctgca tcccacccac 3840tattctatta ggtctactct gagaatggag
ctgatgggct gtgacctgaa cagctgtagc 3900atgcccctgg ggatggagag caaggctatc
tctgatgccc agatcactgc cagctcttat 3960ttcaccaata tgtttgccac ctggtctccc
tctaaggcca ggctgcacct gcagggcagg 4020agcaatgctt ggaggcccca ggtgaataac
cccaaggagt ggctgcaggt ggacttccag 4080aagaccatga aggtgactgg ggtgactacc
cagggggtga agtctctgct gactagcatg 4140tatgtgaagg agttcctgat cagcagcagc
caggatgggc atcagtggac tctgttcttc 4200cagaatggca aggtgaaggt cttccagggg
aaccaggata gcttcactcc tgtggtgaac 4260tctctggacc cccccctgct gactaggtat
ctgaggatcc acccccagag ctgggtgcac 4320cagattgccc tgaggatgga ggtgctgggc
tgtgaggccc aggacctgta ttga 437434374DNAArtificial
SequenceDescription of Artificial Sequence FVIII Nucleic Acid
3atgcagattg aactgtctac ttgtttcttc ctgtgcctgc tgaggttttg cttctctgct
60actaggaggt actatctggg ggctgtggag ctgtcttggg actatatgca gtctgacctg
120ggggagctgc ctgtggatgc taggtttccc cccagggtgc ccaagagctt cccctttaac
180acctctgtgg tgtataagaa gactctgttt gtggagttca ctgaccatct gttcaacatt
240gccaagccaa ggcccccctg gatgggcctg ctgggcccca ccatccaggc tgaggtgtat
300gacactgtgg tgattactct gaagaacatg gccagccatc ctgtgagcct gcatgctgtg
360ggggtgtctt actggaaggc ctctgagggg gctgagtatg atgaccagac ctctcagagg
420gagaaggagg atgacaaggt gttccctggg ggctctcata cctatgtgtg gcaggtcctg
480aaggagaatg ggcccatggc ctctgacccc ctgtgcctga cctactctta tctgtctcat
540gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag
600ggcagcctgg ctaaggagaa gacccagact ctgcacaagt tcatcctgct gtttgctgtg
660tttgatgagg gcaagagctg gcactctgag accaagaaca gcctgatgca ggacagggat
720gctgcctctg ctagggcctg gcccaagatg cacactgtga atgggtatgt gaacaggagc
780ctgccaggcc tgattggctg ccataggaag tctgtgtatt ggcatgtgat tgggatgggg
840actacccctg aggtccacag cattttcctg gaggggcata cctttctggt gaggaaccac
900aggcaggcct ctctggagat ctctcccatt actttcctga ctgcccagac cctgctgatg
960gacctgggcc agttcctgct gttctgccac atcagcagcc accagcatga tggcatggag
1020gcctatgtga aggtggatag ctgccctgag gagccccagc tgaggatgaa aaacaatgag
1080gaggctgagg attatgatga tgacctgact gattctgaga tggatgtggt gaggtttgat
1140gatgataaca gccccagctt catccagatt aggtctgtgg ccaagaagca tcccaagacc
1200tgggtgcact acattgctgc tgaggaggag gattgggact atgctcctct ggtgctggcc
1260cctgatgaca ggagctacaa gagccagtac ctgaataatg gcccccagag gattggcagg
1320aagtataaga aggtgaggtt catggcctac actgatgaga cctttaagac cagggaggcc
1380atccagcatg aatctgggat cctgggcccc ctgctgtatg gggaggtggg ggacaccctg
1440ctgattatct ttaagaacca ggctagcagg ccctacaaca tttaccccca tggcattact
1500gatgtgaggc ccctgtacag caggaggctg cccaaggggg tgaagcacct gaaggatttc
1560cccattctgc ctggggagat ctttaagtac aaatggactg tgactgtgga ggatggccct
1620actaagtctg atcccaggtg tctgaccaga tactacagca gctttgtgaa tatggagagg
1680gacctggctt ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggaccag
1740aggggcaatc agattatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag
1800aacagaagct ggtacctgac tgagaacatc cagaggttcc tgcccaaccc tgctggggtg
1860cagctggagg accctgagtt ccaggctagc aatatcatgc acagcattaa tggctatgtg
1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctattggta cattctgagc
1980attggggccc agactgattt cctgtctgtg ttcttttctg gctacacctt caagcacaag
2040atggtgtatg aggatactct gaccctgttt cccttctctg gggagactgt gttcatgagc
2100atggagaacc ctggcctgtg gatcctgggc tgtcacaact ctgacttcag gaacaggggc
2160atgactgccc tgctgaaggt gagctcttgt gataagaaca ctggggacta ctatgaggac
2220tcttatgagg acatctctgc ctacctgctg agcaagaaca atgctattga gcccaggagc
2280ttctctcaga atccccctgt gctgaagagg catcagaggg agatcactag gactaccctg
2340cagtctgacc aggaagagat tgactatgat gacaccatct ctgtggaaat gaagaaggag
2400gactttgata tctatgatga ggatgaaaac cagagcccca ggagcttcca gaagaagacc
2460aggcattact tcattgctgc tgtggagagg ctgtgggact atgggatgag ctcttctccc
2520catgtgctga ggaatagggc tcagtctggc tctgtcccac agttcaagaa ggtggtgttt
2580caggagttca ctgatggcag cttcactcag cccctgtaca ggggggagct gaatgagcat
2640ctgggcctgc tggggcccta catcagggct gaggtggagg ataacattat ggtgactttc
2700aggaaccagg cctctaggcc ctacagcttc tacagcagcc tgatcagcta tgaggaggac
2760cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac taagacctat
2820ttctggaagg tgcagcatca catggctccc actaaagatg agtttgactg caaggcctgg
2880gcctacttct ctgatgtgga tctggagaag gatgtgcatt ctgggctgat tggccctctg
2940ctggtctgcc atactaacac cctgaatcct gcccatggca ggcaggtgac tgtgcaggag
3000tttgccctgt tctttaccat ctttgatgag accaagtctt ggtacttcac tgagaacatg
3060gagaggaact gcagggcccc ctgtaacatc cagatggagg accccacctt taaggagaac
3120tacaggttcc atgccatcaa tggctacatc atggacactc tgcctggcct ggtgatggcc
3180caggaccaga ggatcaggtg gtacctgctg tctatgggct ctaatgagaa cattcattct
3240atccacttct ctggccatgt gtttactgtg aggaagaagg aggagtacaa gatggccctg
3300tacaatctgt accctggggt gtttgaaact gtggagatgc tgccctctaa ggctggcatc
3360tggagggtgg agtgcctgat tggggaacac ctgcatgctg gcatgagcac cctgttcctg
3420gtctatagca ataagtgcca gacccccctg gggatggcct ctgggcatat cagagacttc
3480cagatcactg cctctggcca gtatggccag tgggccccca agctggccag gctgcactac
3540tctggcagca ttaatgcctg gagcaccaag gagcccttct cttggatcaa ggtggacctg
3600ctggctccca tgatcatcca tgggatcaag acccaggggg ccaggcagaa gttcagcagc
3660ctgtacatct ctcagttcat catcatgtac tctctggatg gcaagaagtg gcagacctac
3720aggggcaata gcactgggac cctgatggtg ttctttggga atgtggacag ctctggcatc
3780aagcacaata tcttcaaccc ccccatcatt gccaggtaca tcagactgca ccccactcat
3840tacagcatca ggagcactct gaggatggag ctgatgggct gtgacctgaa tagctgctct
3900atgcccctgg gcatggagag caaggccatt tctgatgccc agattactgc ctcttcttac
3960ttcactaata tgtttgccac ctggagcccc agcaaggcca ggctgcatct gcaggggagg
4020agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag
4080aagactatga aggtgactgg ggtgaccact cagggggtga agagcctgct gaccagcatg
4140tatgtgaagg agttcctgat ctcttctagc caggatgggc accagtggac cctgtttttc
4200cagaatggga aggtgaaggt gtttcagggc aatcaggaca gctttactcc tgtggtgaac
4260agcctggacc cccccctgct gactaggtac ctgaggattc acccccagag ctgggtgcac
4320cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga
437444374DNAArtificial SequenceDescription of Artificial Sequence FVIII
Nucleic Acid 4atgcagattg agctgtctac ctgcttcttt ctgtgcctgc tgaggttctg
tttctctgcc 60actaggaggt attatctggg ggctgtggag ctgtcctggg actacatgca
gtctgatctg 120ggggagctgc ctgtggatgc caggttccct cccagggtgc ccaagtcttt
ccctttcaat 180acctctgtgg tgtacaagaa gactctgttt gtggagttta ctgatcacct
gtttaacatt 240gccaagccca ggcccccctg gatggggctg ctgggcccca ccatccaggc
tgaggtgtat 300gacactgtgg tgattactct gaagaatatg gcttctcacc ctgtgagcct
gcatgctgtg 360ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac
cagccagagg 420gagaaggagg atgacaaggt gttccctggg ggcagccaca cttatgtgtg
gcaggtgctg 480aaggagaatg gcccaatggc ctctgacccc ctgtgcctga cctacagcta
tctgagccat 540gtggatctgg tgaaggatct gaactctggc ctgattgggg ccctgctggt
gtgcagggag 600ggctctctgg ccaaggagaa gactcagact ctgcacaagt tcatcctgct
gtttgctgtg 660tttgatgagg gcaagagctg gcactctgag accaagaact ctctgatgca
ggatagggat 720gctgcttctg ccagggcctg gcccaagatg cacactgtga atgggtatgt
gaataggagc 780ctgcctgggc tgattgggtg tcacaggaag tctgtgtact ggcatgtgat
tggcatgggc 840accactcctg aggtgcacag catctttctg gagggccaca cttttctggt
gaggaatcac 900aggcaggcca gcctggagat cagccccatc accttcctga ctgcccagac
cctgctgatg 960gatctgggcc agttcctgct gttttgccat atcagcagcc atcagcatga
tgggatggag 1020gcttatgtga aggtggactc ttgccctgag gagcctcagc tgaggatgaa
gaataatgaa 1080gaggctgagg actatgatga tgatctgact gactctgaga tggatgtggt
gaggtttgat 1140gatgacaaca gccccagctt tatccagatt aggtctgtgg ccaagaagca
ccccaagacc 1200tgggtgcatt acattgctgc tgaggaagag gattgggact atgcccccct
ggtgctggcc 1260cctgatgaca ggagctacaa gtctcagtac ctgaacaatg gccctcagag
gattggcagg 1320aagtacaaga aggtgaggtt catggcttac actgatgaga ccttcaagac
cagggaggcc 1380attcagcatg aatctgggat cctgggcccc ctgctgtatg gggaggtggg
ggacaccctg 1440ctgattattt tcaagaacca ggccagcagg ccctacaaca tttatcctca
tggcattact 1500gatgtgagac ccctgtacag caggaggctg cctaaggggg tgaagcacct
gaaggacttc 1560cccatcctgc ctggggagat cttcaagtac aagtggactg tgactgtgga
ggatggcccc 1620actaagtctg accccaggtg cctgactagg tactactcca gctttgtgaa
catggagagg 1680gacctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc
tgtggatcag 1740aggggcaacc agatcatgtc tgacaagaga aatgtgatcc tgttctctgt
gtttgatgag 1800aataggtctt ggtacctgac tgagaacatc cagaggtttc tgcctaatcc
tgctggggtg 1860cagctggagg atcctgagtt ccaggcctct aacattatgc acagcatcaa
tgggtatgtg 1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta
catcctgagc 1980attggggccc agactgactt tctgtctgtg ttcttctctg gctacacctt
taagcataag 2040atggtgtatg aggacaccct gactctgttc cccttctctg gggagactgt
gttcatgagc 2100atggagaacc caggcctgtg gatcctgggc tgccacaact ctgatttcag
gaataggggc 2160atgactgccc tgctgaaggt gagcagctgt gataagaaca ctggggacta
ttatgaggat 2220agctatgagg acatctctgc ctacctgctg agcaagaaca atgccattga
gcccaggagc 2280ttcagccaga atcctcctgt gctgaagagg caccagaggg agatcaccag
gaccaccctg 2340cagtctgatc aggaggagat tgactatgat gacactatct ctgtggagat
gaagaaggag 2400gactttgaca tctatgatga ggatgagaat cagagcccca ggagcttcca
gaagaagact 2460agacactact ttattgctgc tgtggagagg ctgtgggact atggcatgag
ctcttctccc 2520catgtgctga gaaacagggc ccagtctggc tctgtgcccc agttcaagaa
ggtggtcttc 2580caggagttca ctgatggctc tttcacccag cctctgtata gaggggagct
gaatgagcac 2640ctgggcctgc tgggccctta catcagggct gaggtggagg acaatatcat
ggtgaccttc 2700aggaaccagg ctagcaggcc ctactctttc tacagcagcc tgatcagcta
tgaggaggac 2760cagaggcagg gggctgagcc taggaagaat tttgtgaagc ccaatgagac
caagacctac 2820ttctggaagg tgcagcacca catggctccc actaaggatg agtttgactg
caaggcctgg 2880gcctactttt ctgatgtgga cctggagaag gatgtgcatt ctggcctgat
tggccccctg 2940ctggtctgcc acaccaatac tctgaaccct gctcatggga gacaggtgac
tgtgcaggag 3000tttgccctgt tcttcaccat ctttgatgag accaagtcct ggtactttac
tgagaacatg 3060gagaggaatt gcagggcccc ttgcaacatc cagatggagg accccacctt
caaggaaaat 3120tataggttcc atgccatcaa tggctacatc atggacaccc tgcctggcct
ggtgatggcc 3180caggaccaga ggatcaggtg gtatctgctg tctatgggct ctaatgagaa
catccacagc 3240atccatttct ctggccatgt gttcactgtg aggaagaagg aggagtataa
gatggctctg 3300tacaacctgt accctggggt ctttgagact gtggagatgc tgcccagcaa
ggctggcatt 3360tggagggtgg agtgcctgat tggggaacac ctgcatgctg ggatgagcac
cctgttcctg 3420gtgtactcta acaagtgcca gaccccactg ggcatggctt ctggccacat
cagggatttc 3480cagattactg cctctggcca gtatggccag tgggctccca agctggctag
gctgcactac 3540tctgggagca tcaatgcctg gtctactaag gagcctttct cttggatcaa
agtggacctg 3600ctggccccta tgatcatcca tgggatcaag actcaggggg ccaggcagaa
gttcagcagc 3660ctgtacatct ctcagttcat cattatgtac agcctggatg gcaagaagtg
gcagacctac 3720aggggcaaca gcactggcac cctgatggtg ttctttggga atgtggacag
ctctgggatt 3780aagcacaaca tctttaaccc ccccatcatt gccaggtata tcaggctgca
ccctacccac 3840tacagcatta ggagcaccct gaggatggag ctgatgggct gtgacctgaa
cagctgcagc 3900atgcccctgg ggatggagag caaggccatt tctgatgctc agatcactgc
ttctagctac 3960ttcactaaca tgtttgccac ctggtctccc agcaaggcta gactgcacct
gcaggggagg 4020agcaatgcct ggaggcccca ggtgaataat cccaaggagt ggctgcaggt
ggatttccag 4080aaaaccatga aggtgactgg ggtgactacc cagggggtga agtctctgct
gaccagcatg 4140tatgtgaagg agttcctgat cagcagcagc caggatgggc atcagtggac
cctgttcttt 4200cagaatggga aggtgaaggt gtttcagggc aatcaggaca gcttcacccc
tgtggtgaac 4260agcctggacc cccccctgct gaccaggtac ctgaggatcc acccccagag
ctgggtgcat 4320cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta
ctga 437454374DNAArtificial SequenceDescription of Artificial
Sequence FVIII Nucleic Acid 5atgcagattg agctgtctac ttgcttcttc
ctgtgcctgc tgaggttctg cttctctgcc 60actaggaggt attacctggg ggctgtggag
ctgagctggg actatatgca gtctgacctg 120ggggagctgc ctgtggatgc caggtttcct
cccagggtgc ctaagagctt ccccttcaac 180acctctgtgg tgtacaagaa gactctgttt
gtggagttta ctgatcatct gttcaacatt 240gccaagccca ggcctccttg gatggggctg
ctgggcccca ccatccaggc tgaggtgtat 300gacactgtgg tgattaccct gaagaatatg
gccagccatc ctgtgagcct gcatgctgtg 360ggggtgagct attggaaggc ctctgagggg
gctgagtatg atgatcagac tagccagagg 420gagaaggagg atgacaaggt gttccctggg
gggagccata cctatgtgtg gcaggtgctg 480aaggagaatg gccccatggc ctctgaccct
ctgtgcctga cttatagcta cctgagccat 540gtggatctgg tgaaggacct gaactctggc
ctgattgggg ccctgctggt gtgcagggag 600ggcagcctgg ccaaggagaa gactcagacc
ctgcacaagt tcatcctgct gtttgctgtg 660tttgatgagg ggaagtcctg gcactctgag
actaagaaca gcctgatgca ggatagggat 720gctgcttctg ccagggcctg gcctaagatg
cacactgtga atggctatgt gaataggagc 780ctgcctggcc tgattggctg ccataggaag
tctgtgtact ggcatgtgat tgggatgggc 840accacccctg aggtgcactc tattttcctg
gagggccata ctttcctggt gaggaaccat 900aggcaggcca gcctggagat cagccccatc
actttcctga ctgcccagac tctgctgatg 960gacctgggcc agttcctgct gttctgccac
atcagcagcc atcagcatga tggcatggag 1020gcttatgtga aggtggacag ctgccctgag
gagcctcagc tgaggatgaa gaataatgag 1080gaggctgagg actatgatga tgacctgact
gactctgaga tggatgtggt gaggtttgat 1140gatgacaact ctccctcttt catccagatc
aggtctgtgg ccaagaagca ccctaagacc 1200tgggtgcact acattgctgc tgaggaggag
gattgggact atgcccccct ggtgctggcc 1260ccagatgaca ggagctacaa gtcccagtac
ctgaacaatg gcccccagag gattggcagg 1320aagtacaaga aggtgaggtt catggcttat
actgatgaga ctttcaagac cagggaggcc 1380atccagcatg agtctggcat cctgggccct
ctgctgtatg gggaggtggg ggacaccctg 1440ctgattatct tcaagaacca ggcttctagg
ccctacaata tctaccctca tggcatcact 1500gatgtgaggc ccctgtacag caggaggctg
cccaaggggg tgaagcatct gaaggatttc 1560cccatcctgc ctggggagat ctttaagtat
aagtggactg tgactgtgga ggatggcccc 1620actaagtctg accccaggtg cctgaccagg
tattacagca gctttgtgaa catggagagg 1680gatctggctt ctgggctgat tggccccctg
ctgatctgct acaaggagtc tgtggaccag 1740aggggcaacc agatcatgtc tgacaagagg
aatgtgatcc tgttctctgt gtttgatgag 1800aataggagct ggtacctgac tgagaacatc
cagaggtttc tgcccaatcc tgctggggtg 1860cagctggagg atcctgagtt tcaggcctct
aatatcatgc acagcatcaa tggctatgtg 1920tttgactctc tgcagctgtc tgtgtgcctg
catgaggtgg cctattggta catcctgagc 1980attggggccc agactgactt tctgtctgtg
tttttttctg gctacacctt caagcacaag 2040atggtgtatg aggatactct gactctgttc
cctttttctg gggagactgt gttcatgtct 2100atggagaacc ctgggctgtg gattctgggc
tgccacaatt ctgacttcag gaacagaggc 2160atgactgctc tgctgaaggt gagcagctgt
gacaagaaca ctggggacta ctatgaggac 2220tcttatgagg acatttctgc ctacctgctg
agcaagaaca atgccattga gcccagaagc 2280ttttctcaga acccccctgt gctgaagagg
caccagaggg agatcaccag gaccaccctg 2340cagtctgacc aggaggagat tgactatgat
gatactattt ctgtggagat gaagaaggag 2400gactttgaca tctatgatga ggatgagaac
cagagcccca ggtctttcca gaagaagact 2460aggcactact ttattgctgc tgtggagagg
ctgtgggact atgggatgtc tagctctcct 2520catgtgctga ggaacagggc ccagtctggc
tctgtgcccc agtttaaaaa ggtggtgttc 2580caggaattca ctgatggcag ctttacccag
cctctgtaca ggggggagct gaatgagcac 2640ctggggctgc tggggcctta cattagggct
gaggtggagg acaacatcat ggtgaccttc 2700aggaatcagg ccagcaggcc ctactctttc
tacagcagcc tgatctctta tgaggaggac 2760cagaggcagg gggctgaacc caggaagaac
tttgtgaagc ccaatgagac caagacctac 2820ttctggaagg tgcagcacca catggctccc
accaaggatg agtttgattg caaggcctgg 2880gcttacttct ctgatgtgga tctggagaag
gatgtgcact ctgggctgat tggccccctg 2940ctggtgtgcc acaccaacac tctgaaccct
gcccatggca gacaggtgac tgtgcaggag 3000tttgccctgt tcttcactat ctttgatgag
actaagagct ggtacttcac tgagaacatg 3060gagaggaatt gcagggcccc ttgcaacatc
cagatggagg accccacctt taaggagaac 3120tacaggtttc atgccattaa tggctacatc
atggacaccc tgcctggcct ggtgatggcc 3180caggaccaga ggatcaggtg gtacctgctg
tctatgggga gcaatgagaa catccacagc 3240attcacttct ctggccatgt gttcactgtg
aggaagaagg aggagtacaa gatggccctg 3300tacaacctgt accctggggt gtttgagact
gtggagatgc tgcccagcaa ggctgggatc 3360tggagggtgg agtgcctgat tggggagcac
ctgcatgctg ggatgagcac cctgttcctg 3420gtgtatagca acaagtgcca gacccccctg
ggcatggcct ctggccacat cagagacttt 3480cagattactg cctctggcca gtatgggcag
tgggccccca agctggccag gctgcactat 3540tctggctcta ttaatgcctg gagcactaag
gagcccttca gctggattaa ggtggacctg 3600ctggctccca tgatcatcca tggcatcaag
actcaggggg ccaggcagaa gttctcttct 3660ctgtacatca gccagttcat tatcatgtac
tccctggatg gcaagaagtg gcagacctat 3720aggggcaaca gcactggcac cctgatggtg
ttctttggga atgtggacag ctctggcatc 3780aagcataata tcttcaatcc ccccatcatt
gctaggtaca tcaggctgca ccccacccac 3840tactctatta ggtctaccct gaggatggag
ctgatgggct gtgacctgaa cagctgcagc 3900atgcctctgg gcatggagag caaagccatc
tctgatgccc agatcactgc cagcagctac 3960tttaccaaca tgtttgctac ttggagcccc
agcaaggcca ggctgcacct gcaggggagg 4020tctaatgcct ggaggcccca ggtgaacaac
cccaaggagt ggctgcaggt ggacttccag 4080aagactatga aggtgactgg ggtgaccacc
cagggggtga agagcctgct gacctctatg 4140tatgtgaagg agttcctgat tagcagcagc
caggatggcc accagtggac cctgtttttc 4200cagaatggga aggtgaaggt gtttcagggg
aaccaggaca gcttcactcc tgtggtgaac 4260tctctggacc cccccctgct gaccaggtat
ctgaggatcc accctcagag ctgggtgcac 4320cagattgccc tgaggatgga ggtgctgggc
tgtgaggccc aggacctgta ctga 437464374DNAArtificial
SequenceDescription of Artificial Sequence FVIII Nucleic Acid
6atgcagattg agctgagcac ctgcttcttc ctgtgcctgc tgaggttttg cttctctgcc
60accaggaggt actacctggg ggctgtggag ctgagctggg attacatgca gtctgacctg
120ggggagctgc ctgtggatgc caggttccct cccagggtgc ccaagtcttt ccccttcaac
180acttctgtgg tgtacaagaa gaccctgttt gtggagttta ctgaccacct gttcaacatt
240gccaagccca ggcctccctg gatgggcctg ctgggcccca ccattcaggc tgaggtgtat
300gacactgtgg tcatcaccct gaaaaatatg gctagccacc ctgtgtctct gcatgctgtg
360ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac tagccagagg
420gagaaggagg atgacaaggt gttccctggg ggcagccaca cttatgtgtg gcaggtgctg
480aaagagaatg gccccatggc ttctgatccc ctgtgtctga cctatagcta cctgagccat
540gtggatctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag
600ggcagcctgg ctaaggagaa gacccagacc ctgcataagt tcatcctgct gtttgctgtg
660tttgatgagg gcaagagctg gcactctgag actaagaaca gcctgatgca ggatagggat
720gctgcttctg ccagggcctg gcccaagatg cacactgtga atgggtatgt gaacaggagc
780ctgcctggcc tgattggctg ccataggaag tctgtctatt ggcatgtgat tggcatgggc
840actactcctg aggtgcacag catctttctg gagggccaca ccttcctggt gaggaaccac
900aggcaggcca gcctggagat ctctcccatc actttcctga ctgctcagac cctgctgatg
960gacctgggcc agttcctgct gttctgtcac atctctagcc accagcatga tggcatggag
1020gcctatgtga aggtggatag ctgccctgag gaaccccagc tgaggatgaa gaacaatgag
1080gaggctgagg attatgatga tgatctgact gattctgaga tggatgtggt gaggtttgat
1140gatgacaatt ctcctagctt cattcagatc agatctgtgg ccaaaaagca tcctaagact
1200tgggtgcatt atattgctgc tgaggaggag gattgggatt atgcccccct ggtgctggct
1260cctgatgata ggagctacaa gtctcagtac ctgaataatg ggccccagag gattggcagg
1320aagtacaaga aggtgaggtt catggcctac actgatgaga ccttcaagac cagggaggcc
1380attcagcatg agtctgggat tctggggccc ctgctgtatg gggaggtggg ggataccctg
1440ctgatcattt tcaagaacca ggccagcagg ccctacaaca tctaccccca tgggattact
1500gatgtgaggc ccctgtactc taggaggctg cctaaggggg tgaagcacct gaaggatttt
1560cctatcctgc ctggggaaat cttcaagtac aagtggactg tgactgtgga ggatggcccc
1620actaagtctg atcccaggtg tctgaccagg tattatagct cttttgtgaa catggagagg
1680gatctggcct ctgggctgat tggccctctg ctgatctgct acaaggagtc tgtggaccag
1740aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt gtttgatgag
1800aacaggagct ggtatctgac tgagaacatc cagaggtttc tgcccaatcc tgctggggtg
1860cagctggagg atcctgagtt ccaggctagc aacatcatgc acagcatcaa tgggtatgtg
1920tttgacagcc tgcagctgtc tgtgtgtctg catgaggtgg cctactggta tatcctgtct
1980attggggccc agactgactt cctgtctgtg tttttttctg ggtatacttt taagcacaag
2040atggtgtatg aggacaccct gactctgttc cccttctctg gggagactgt gtttatgagc
2100atggagaacc ctggcctgtg gatcctgggc tgccacaatt ctgacttcag gaataggggg
2160atgactgccc tgctgaaggt gagcagctgt gataagaata ctggggacta ctatgaggac
2220tcttatgagg acatttctgc ctatctgctg tctaagaaca atgccattga acccaggagc
2280ttctctcaga acccccctgt gctgaagagg caccagaggg aaatcaccag aactactctg
2340cagtctgatc aggaggaaat tgactatgat gacactattt ctgtggagat gaagaaggag
2400gactttgaca tctatgatga ggatgagaac cagagcccaa ggagcttcca gaagaagact
2460aggcactact tcattgctgc tgtggagagg ctgtgggact atggcatgag cagcagcccc
2520catgtgctga gaaacagggc ccagtctggg tctgtgcccc agttcaagaa ggtggtgttc
2580caggagttca ctgatgggag cttcacccag cccctgtata ggggggagct gaatgagcac
2640ctgggcctgc tgggccccta tattagggct gaggtggagg acaacatcat ggtgaccttc
2700aggaatcagg cctctaggcc ctacagcttc tacagcagcc tgattagcta tgaggaggat
2760cagaggcagg gggctgaacc caggaagaac tttgtgaagc ccaatgagac caagacctat
2820ttctggaagg tgcagcatca catggccccc accaaggatg agtttgactg caaggcctgg
2880gcctacttct ctgatgtgga tctggagaag gatgtgcact ctggcctgat tggccccctg
2940ctggtgtgcc acaccaacac cctgaaccct gctcatggca ggcaggtgac tgtgcaggag
3000tttgccctgt tcttcaccat ctttgatgag actaagtctt ggtacttcac tgagaatatg
3060gagaggaatt gcagggcccc ctgcaatatt cagatggaag accccacctt caaggagaat
3120tacaggttcc atgccattaa tggctacatc atggataccc tgcctggcct ggtgatggcc
3180caggatcaga ggatcaggtg gtacctgctg agcatgggca gcaatgagaa catccactct
3240atccacttct ctggccatgt gtttactgtg aggaagaagg aggagtataa gatggccctg
3300tacaacctgt accctggggt ctttgagact gtggagatgc tgccttctaa ggctggcatt
3360tggagggtgg agtgcctgat tggggaacac ctgcatgctg gcatgtctac cctgttcctg
3420gtgtacagca ataagtgcca gacccccctg ggcatggcct ctgggcatat cagggatttc
3480cagatcactg cctctggcca gtatggccag tgggccccaa agctggctag gctgcactac
3540tctgggagca tcaatgcctg gagcactaag gagcccttca gctggatcaa ggtggacctg
3600ctggccccca tgattatcca tgggattaag actcaggggg ccaggcagaa gttcagcagc
3660ctgtacatca gccagttcat tatcatgtac agcctggatg gcaagaagtg gcagacctat
3720aggggcaact ctactgggac cctgatggtg ttctttggga atgtggatag ctctgggatc
3780aagcacaata tcttcaaccc ccccatcatt gccaggtata tcaggctgca ccccacccac
3840tacagcatta ggtctaccct gaggatggag ctgatgggct gtgatctgaa cagctgtagc
3900atgcctctgg gcatggagtc taaggccatt tctgatgccc agattactgc tagcagctac
3960ttcaccaaca tgtttgccac ctggtctccc agcaaggcca ggctgcatct gcagggcagg
4020tctaatgctt ggaggcccca ggtgaacaac ccaaaggagt ggctgcaggt ggatttccag
4080aagactatga aggtgactgg ggtgaccact cagggggtga agtctctgct gacctctatg
4140tatgtgaagg agttcctgat ctctagcagc caggatggcc atcagtggac cctgttcttc
4200cagaatggca aggtgaaagt gttccagggc aatcaggata gcttcactcc agtggtgaac
4260agcctggatc cccctctgct gactaggtac ctgaggatcc acccccagag ctgggtgcac
4320cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta ctga
437474374DNAArtificial SequenceDescription of Artificial Sequence FVIII
Nucleic Acid 7atgcagattg agctgagcac ctgcttcttc ctgtgtctgc tgaggttctg
cttctctgcc 60accaggaggt attacctggg ggctgtggag ctgagctggg actatatgca
gtctgacctg 120ggggagctgc ctgtggatgc taggttcccc cccagggtgc ccaagagctt
cccctttaac 180acttctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct
gttcaacatt 240gccaagccca ggcccccctg gatggggctg ctggggccca ccatccaggc
tgaggtgtat 300gacactgtgg tgatcaccct gaagaacatg gccagccacc ctgtgagcct
gcatgctgtg 360ggggtgagct actggaaggc ttctgagggg gctgagtatg atgaccagac
tagccagagg 420gagaaggagg atgacaaggt gtttcctggg ggcagccata cctatgtgtg
gcaggtgctg 480aaggagaatg gccccatggc ctctgacccc ctgtgcctga cctacagcta
cctgtctcat 540gtggacctgg tgaaggacct gaactctggc ctgattgggg ctctgctggt
gtgtagggag 600ggcagcctgg ctaaggaaaa gacccagacc ctgcataagt ttatcctgct
gtttgctgtg 660tttgatgagg gcaagagctg gcactctgag accaagaaca gcctgatgca
ggatagggat 720gctgcctctg ccagggcttg gcctaagatg cacactgtga atgggtatgt
gaataggagc 780ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat
tgggatgggc 840accacccctg aggtccatag catcttcctg gagggccaca ctttcctggt
gaggaaccac 900agacaggcct ctctggagat ctctcccatc accttcctga ctgctcagac
tctgctgatg 960gacctgggcc agttcctgct gttttgccat attagcagcc accagcatga
tgggatggag 1020gcctatgtga aggtggatag ctgccctgag gagcctcagc tgaggatgaa
gaacaatgag 1080gaggctgaag actatgatga tgacctgact gattctgaga tggatgtggt
gaggtttgat 1140gatgacaata gccccagctt cattcagatc aggtctgtgg ccaagaaaca
ccccaagacc 1200tgggtgcact acattgctgc tgaggaagag gactgggact atgctcccct
ggtgctggcc 1260cctgatgata ggtcttataa gagccagtac ctgaacaatg ggccccagag
gattggcagg 1320aagtacaaga aggtgaggtt catggcctac actgatgaaa ccttcaaaac
cagggaggcc 1380attcagcatg agtctggcat cctgggccct ctgctgtatg gggaggtggg
ggacaccctg 1440ctgatcatct tcaagaacca ggccagcagg ccctacaaca tctatcctca
tggcatcact 1500gatgtgaggc ccctgtacag caggaggctg cccaaggggg tgaagcacct
gaaagacttc 1560cccatcctgc ctggggagat ctttaagtat aagtggactg tgactgtgga
ggatggccct 1620accaagtctg accccaggtg tctgaccagg tactattcta gctttgtgaa
catggagagg 1680gacctggcct ctggcctgat tgggcccctg ctgatctgct acaaggagtc
tgtggaccag 1740aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttttctgt
gtttgatgag 1800aataggagct ggtacctgac tgagaacatc cagaggtttc tgcccaatcc
tgctggggtg 1860cagctggagg atcctgagtt ccaggccagc aatatcatgc atagcatcaa
tggctatgtg 1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta
catcctgagc 1980attggggccc agactgactt tctgtctgtg ttcttttctg gctatacctt
caagcacaag 2040atggtgtatg aggataccct gaccctgttc cccttctctg gggagactgt
gttcatgagc 2100atggagaatc ctgggctgtg gatcctgggg tgccacaact ctgattttag
gaacaggggg 2160atgactgccc tgctgaaggt gtctagctgt gataagaaca ctggggacta
ctatgaggac 2220agctatgagg acatttctgc ttatctgctg tctaagaata atgccattga
gcccagaagc 2280ttcagccaga atccccctgt gctgaagaga catcagaggg agatcaccag
aactaccctg 2340cagtctgatc aggaggagat tgactatgat gacactatct ctgtggagat
gaagaaggag 2400gactttgaca tctatgatga ggatgagaat cagtctccca ggagctttca
gaagaagacc 2460agacattact tcattgctgc tgtggagagg ctgtgggact atggcatgag
ctctagccct 2520catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa
ggtggtgttc 2580caggaattca ctgatggcag cttcacccag cccctgtaca ggggggagct
gaatgagcac 2640ctgggcctgc tggggcctta tatcagggct gaggtggagg ataatattat
ggtgactttc 2700aggaaccagg ccagcaggcc ctactctttc tatagcagcc tgatctctta
tgaggaggat 2760cagaggcagg gggctgagcc taggaagaac tttgtgaagc ccaatgagac
taagacctac 2820ttctggaagg tccagcacca catggcccct accaaggatg agtttgactg
caaggcctgg 2880gcctatttct ctgatgtgga tctggagaag gatgtccatt ctgggctgat
tggccccctg 2940ctggtgtgcc acactaacac tctgaatcct gcccatggca ggcaggtgac
tgtccaggag 3000tttgccctgt tcttcactat ctttgatgag accaagagct ggtactttac
tgagaacatg 3060gagaggaact gcagagctcc ttgcaatatt cagatggagg accccacctt
caaggagaat 3120tacaggttcc atgccattaa tgggtacatc atggacaccc tgcctggcct
ggtgatggct 3180caggaccaga ggatcaggtg gtacctgctg agcatgggct ctaatgagaa
tatccacagc 3240atccacttct ctgggcatgt gttcactgtg aggaagaagg aggagtacaa
gatggctctg 3300tataatctgt accctggggt gtttgaaact gtggagatgc tgccctctaa
ggctggcatc 3360tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac
cctgttcctg 3420gtgtacagca acaagtgcca gacccccctg ggcatggcct ctggccacat
cagggacttc 3480cagatcactg cctctggcca gtatggccag tgggccccca agctggccag
gctgcactat 3540tctggcagca tcaatgcctg gagcaccaag gagcccttca gctggatcaa
ggtggacctg 3600ctggccccca tgatcattca tggcatcaag acccaggggg ccaggcagaa
gttcagctct 3660ctgtacatct ctcagttcat catcatgtac tctctggatg ggaagaagtg
gcagacctac 3720aggggcaaca gcactggcac cctgatggtg ttctttggga atgtggactc
ttctggcatc 3780aagcacaaca tcttcaatcc ccccatcatt gctaggtata ttaggctgca
tcccacccac 3840tacagcatca ggtctaccct gaggatggag ctgatgggct gtgacctgaa
ctcttgcagc 3900atgcccctgg gcatggagtc taaggccatc tctgatgccc agattactgc
cagcagctac 3960ttcaccaaca tgtttgccac ctggagcccc tctaaggcca ggctgcatct
gcaggggagg 4020agcaatgcct ggaggcctca ggtgaacaac cccaaggagt ggctgcaggt
ggatttccag 4080aagaccatga aggtgactgg ggtgaccacc cagggggtca agagcctgct
gaccagcatg 4140tatgtgaagg agttcctgat cagcagcagc caggatggcc accagtggac
tctgttcttt 4200cagaatggga aggtgaaggt gtttcagggc aatcaggact ctttcacccc
tgtggtgaac 4260agcctggacc cccccctgct gaccagatac ctgaggatcc acccccagtc
ttgggtgcat 4320cagattgccc tgaggatgga ggtgctgggc tgtgaggctc aggatctgta
ctga 437484374DNAArtificial SequenceDescription of Artificial
Sequence FVIII Nucleic Acid 8atgcagattg agctgagcac ttgctttttt
ctgtgcctgc tgaggttttg tttttctgcc 60accaggaggt actacctggg ggctgtggag
ctgagctggg actatatgca gtctgatctg 120ggggagctgc ctgtggatgc caggttcccc
cccagggtgc ccaagtcttt tcccttcaac 180acctctgtgg tgtataagaa gaccctgttt
gtggagttca ctgaccacct gttcaacatt 240gctaagccta ggcccccctg gatgggcctg
ctgggcccta ccattcaggc tgaggtgtat 300gacactgtgg tgatcaccct gaagaacatg
gccagccatc ctgtgagcct gcatgctgtg 360ggggtctctt actggaaggc ctctgagggg
gctgagtatg atgaccagac cagccagaga 420gagaaggagg atgacaaggt cttccctggg
ggctctcaca cctatgtgtg gcaggtgctg 480aaggaaaatg gccccatggc ctctgacccc
ctgtgcctga cctacagcta tctgagccat 540gtggatctgg tgaaggacct gaattctggc
ctgattgggg ccctgctggt gtgcagggag 600ggcagcctgg ccaaggagaa gacccagacc
ctgcacaagt ttatcctgct gtttgctgtg 660tttgatgagg gcaagtcttg gcactctgag
actaagaaca gcctgatgca ggacagggat 720gctgcctctg ccagggcctg gcccaagatg
cacactgtga atggctatgt gaacaggagc 780ctgcctgggc tgattggctg ccacaggaag
tctgtgtact ggcatgtgat tggcatgggc 840accacccctg aggtgcacag catcttcctg
gaaggccaca ctttcctggt gaggaaccat 900aggcaggcca gcctggagat cagccctatc
accttcctga ctgcccagac cctgctgatg 960gatctggggc agttcctgct gttctgccac
atctctagcc accagcatga tgggatggag 1020gcctatgtga aggtggacag ctgcccagag
gagcctcagc tgaggatgaa aaacaatgaa 1080gaggctgagg attatgatga tgatctgact
gactctgaga tggatgtggt gagatttgat 1140gatgacaata gccctagctt tattcagatc
aggtctgtgg ctaagaagca ccccaagacc 1200tgggtgcatt acattgctgc tgaggaggag
gactgggatt atgctcctct ggtgctggcc 1260cctgatgata ggagctacaa gagccagtac
ctgaataatg gccctcagag gattggcagg 1320aagtacaaga aggtgaggtt catggcttac
actgatgaga ccttcaagac tagggaggcc 1380atccagcatg agtctgggat cctggggccc
ctgctgtatg gggaggtggg ggacaccctg 1440ctgatcatct tcaagaacca ggctagcagg
ccttacaaca tctatcccca tgggatcact 1500gatgtgagac ctctgtacag caggaggctg
cccaaggggg tcaagcatct gaaagacttc 1560cccatcctgc ctggggagat ctttaagtat
aagtggactg tgactgtgga ggatgggccc 1620accaagtctg accccaggtg cctgaccagg
tattacagca gctttgtgaa catggagagg 1680gatctggcct ctgggctgat tggccccctg
ctgatctgtt acaaggaatc tgtggatcag 1740aggggcaatc agatcatgtc tgacaagagg
aatgtgatcc tgttctctgt gtttgatgag 1800aataggtctt ggtacctgac tgaaaacatc
cagaggttcc tgcccaaccc tgctggggtc 1860cagctggagg atcctgagtt ccaggctagc
aacatcatgc acagcatcaa tgggtatgtg 1920tttgatagcc tgcagctgtc tgtgtgcctg
catgaggtgg cctactggta catcctgtct 1980attggggccc agactgactt cctgtctgtg
ttcttttctg gctacacctt caagcacaag 2040atggtgtatg aggacaccct gaccctgttc
cccttctctg gggagactgt ctttatgagc 2100atggagaacc ctgggctgtg gatcctgggc
tgccacaact ctgatttcag gaataggggc 2160atgactgctc tgctgaaggt gagctcttgt
gacaagaaca ctggggatta ctatgaggac 2220agctatgagg acatttctgc ctacctgctg
agcaagaaca atgccattga gcctaggagc 2280tttagccaga atcctcctgt cctgaagagg
caccagaggg agatcaccag gaccaccctg 2340cagtctgacc aggaggagat tgactatgat
gataccatct ctgtggagat gaagaaggag 2400gactttgaca tctatgatga ggatgagaat
cagtctccca ggagcttcca gaagaagacc 2460aggcactatt tcattgctgc tgtggagagg
ctgtgggact atggcatgag cagctctcct 2520catgtgctga ggaatagggc tcagtctggc
tctgtgcccc agttcaagaa agtggtgttt 2580caggagttca ctgatggctc tttcacccag
cctctgtata ggggggagct gaatgagcac 2640ctggggctgc tgggccccta tatcagggct
gaggtggagg ataacatcat ggtgaccttc 2700aggaaccagg cctctaggcc ctacagcttc
tatagcagcc tgatcagcta tgaggaggac 2760cagaggcagg gggctgagcc caggaagaac
tttgtgaagc ccaatgagac caagacttac 2820ttctggaagg tgcagcatca catggccccc
accaaggatg agtttgactg taaggcctgg 2880gcctacttct ctgatgtgga tctggagaag
gatgtgcact ctggcctgat tggccccctg 2940ctggtgtgcc ataccaatac tctgaaccct
gctcatggca ggcaggtgac tgtgcaggag 3000tttgctctgt tcttcactat ctttgatgag
accaagtctt ggtatttcac tgagaatatg 3060gagaggaact gcagggcccc ctgcaacatc
cagatggagg accccacctt taaggagaac 3120tataggtttc atgccatcaa tggctacatc
atggacaccc tgcctggcct ggtgatggcc 3180caggatcaga ggatcaggtg gtacctgctg
agcatggggt ctaatgagaa catccacagc 3240atccacttct ctggccatgt gtttactgtg
agaaagaagg aggagtacaa gatggctctg 3300tacaatctgt accctggggt ctttgagact
gtggagatgc tgcctagcaa ggctgggatc 3360tggagggtgg agtgcctgat tggggaacat
ctgcatgctg ggatgtctac tctgttcctg 3420gtgtacagca acaagtgcca gacccccctg
ggcatggctt ctggccatat cagggacttt 3480cagattactg cctctgggca gtatggccag
tgggccccca agctggctag gctgcattat 3540tctggcagca tcaatgcctg gtctactaag
gagcccttca gctggatcaa ggtggatctg 3600ctggccccca tgatcatcca tggcatcaag
acccaggggg ccaggcagaa gtttagctct 3660ctgtacatta gccagttcat catcatgtac
agcctggatg ggaagaagtg gcagacctac 3720aggggcaatt ctactggcac cctgatggtg
ttctttggca atgtggacag ctctggcatc 3780aagcacaaca tctttaaccc ccctatcatt
gctaggtaca tcaggctgca tcccacccat 3840tacagcatca ggagcaccct gaggatggag
ctgatgggct gtgacctgaa ctcttgcagc 3900atgcccctgg gcatggagag caaggccatt
tctgatgccc agattactgc cagcagctac 3960ttcactaaca tgtttgccac ctggtctccc
agcaaggcca ggctgcacct gcagggcagg 4020agcaatgcct ggaggcccca ggtgaacaac
cccaaggagt ggctgcaggt ggatttccag 4080aagaccatga aggtgactgg ggtgaccacc
cagggggtga agagcctgct gactagcatg 4140tatgtgaagg agttcctgat cagctctagc
caggatggcc accagtggac tctgtttttc 4200cagaatggca aggtgaaggt gttccagggc
aaccaggact ctttcactcc tgtggtgaac 4260agcctggacc cccccctgct gaccaggtat
ctgaggattc acccccagtc ttgggtgcat 4320cagattgccc tgaggatgga ggtgctgggc
tgtgaggccc aggatctgta ctga 437494374DNAArtificial
SequenceDescription of Artificial Sequence FVIII Nucleic Acid
9atgcagattg agctgagcac ctgcttcttc ctgtgtctgc tgagattttg cttttctgcc
60actaggaggt attacctggg ggctgtggag ctgtcttggg actacatgca gtctgatctg
120ggggagctgc ctgtggatgc caggttccca cctagggtgc ctaagagctt tcccttcaat
180acctctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct gttcaacatt
240gccaagccta ggcccccctg gatgggcctg ctgggcccta ccatccaggc tgaagtgtat
300gacactgtgg tgatcaccct gaagaacatg gccagccacc ctgtgagcct gcatgctgtg
360ggggtgtctt actggaaggc ctctgagggg gctgagtatg atgatcagac cagccagagg
420gagaaggaag atgacaaggt gttccctggg ggcagccaca cctatgtctg gcaggtgctg
480aaggagaatg gccccatggc ctctgatccc ctgtgcctga cctactctta cctgagccat
540gtggacctgg tgaaggatct gaattctggc ctgattgggg ccctgctggt gtgcagggag
600ggcagcctgg ccaaggagaa gacccagacc ctgcataagt tcatcctgct gtttgctgtg
660tttgatgaag ggaagagctg gcactctgag actaagaaca gcctgatgca ggacagggat
720gctgcttctg ccagggcctg gcccaagatg cacactgtga atggctatgt gaatagaagc
780ctgcctggcc tgattgggtg ccacaggaag tctgtgtact ggcatgtgat tgggatgggc
840actacccctg aggtgcatag catcttcctg gaaggccata ccttcctggt gaggaatcat
900aggcaggctt ctctggaaat ttctcccatc actttcctga ctgctcagac cctgctgatg
960gacctgggcc agttcctgct gttctgccac atcagctctc accagcatga tgggatggag
1020gcctatgtga aggtggacag ctgtcctgag gagccccagc tgaggatgaa gaacaatgag
1080gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt caggtttgat
1140gatgacaata gcccctcttt catccagatc aggtctgtgg ccaagaagca ccccaagact
1200tgggtgcact acattgctgc tgaggaggag gattgggatt atgcccctct ggtgctggcc
1260cctgatgaca ggagctataa gtctcagtac ctgaataatg gcccccagag gattgggagg
1320aagtataaga aggtgaggtt tatggcctac actgatgaga ccttcaagac cagggaggcc
1380atccagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg ggataccctg
1440ctgatcatct tcaagaacca ggcctctagg ccctacaata tctaccctca tggcatcact
1500gatgtgagac ccctgtatag caggaggctg cctaaggggg tgaagcacct gaaggacttc
1560cccatcctgc ctggggagat cttcaagtat aagtggactg tgactgtgga ggatggcccc
1620accaagtctg accccaggtg cctgaccagg tattacagct cttttgtgaa catggagagg
1680gatctggcct ctgggctgat tggcccactg ctgatctgct acaaggagtc tgtggatcag
1740aggggcaatc agatcatgtc tgacaagagg aatgtgatcc tgttttctgt gtttgatgaa
1800aataggtctt ggtatctgac tgagaacatc cagaggtttc tgcccaatcc tgctggggtg
1860cagctggagg atcctgagtt tcaggcctct aatatcatgc attctatcaa tggctatgtg
1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc
1980attggggctc agactgactt cctgtctgtg ttcttttctg gctatacttt caagcacaag
2040atggtgtatg aggacactct gaccctgttc cccttctctg gggagactgt gttcatgtct
2100atggaaaatc ctgggctgtg gattctgggc tgccacaatt ctgacttcag gaataggggg
2160atgactgccc tgctgaaggt gtctagctgt gataagaaca ctggggatta ctatgaggac
2220tcttatgaag atatctctgc ctatctgctg agcaagaaca atgccattga gcccaggagc
2280ttcagccaga acccccctgt gctgaagagg caccagaggg agatcaccag gaccactctg
2340cagtctgatc aggaggagat tgactatgat gacactatct ctgtggagat gaagaaggag
2400gattttgaca tttatgatga ggatgagaac cagtctccca ggagcttcca gaagaagacc
2460aggcattact ttattgctgc tgtggagagg ctgtgggact atgggatgag cagctctcct
2520catgtgctga ggaacagggc ccagtctggg tctgtgcccc agttcaagaa ggtggtgttc
2580caggagttca ctgatgggag cttcacccag cccctgtata ggggggagct gaatgagcac
2640ctgggcctgc tgggccccta catcagggct gaggtggagg ataatatcat ggtgaccttc
2700aggaaccagg ctagcaggcc ttacagcttt tacagcagcc tgatctctta tgaagaagac
2760cagaggcagg gggctgagcc caggaagaat tttgtgaagc ctaatgagac caagacttat
2820ttttggaagg tgcagcatca catggctcct accaaggatg agtttgactg caaggcctgg
2880gcctactttt ctgatgtgga tctggagaag gatgtgcact ctggcctgat tggccctctg
2940ctggtgtgcc atactaacac tctgaaccct gcccatggga ggcaggtgac tgtgcaggag
3000tttgccctgt tcttcactat ttttgatgag accaagtctt ggtatttcac tgagaacatg
3060gagaggaact gcagggctcc ctgcaacatc cagatggaag accccacctt caaggagaac
3120tataggttcc atgccatcaa tgggtacatc atggataccc tgcctggcct ggtgatggcc
3180caggatcaga ggattaggtg gtatctgctg agcatgggct ctaatgagaa catccacagc
3240atccatttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggctctg
3300tacaacctgt atcctggggt gtttgagact gtggagatgc tgcccagcaa ggctggcatc
3360tggagggtgg aatgcctgat tggggagcac ctgcatgctg gcatgagcac tctgttcctg
3420gtgtatagca acaagtgcca gacccccctg ggcatggcct ctggccatat cagggatttc
3480cagatcactg cttctggcca gtatggccag tgggccccca agctggccag gctgcactat
3540tctggcagca tcaatgcctg gagcactaag gagccttttt cttggatcaa ggtggacctg
3600ctggccccta tgattattca tggcatcaag acccaggggg ccaggcagaa gttctctagc
3660ctgtacatct ctcagttcat cattatgtat agcctggatg gcaagaagtg gcagacctac
3720aggggcaata gcactggcac cctgatggtg ttttttggga atgtggactc ttctgggatc
3780aagcacaaca tctttaaccc ccccatcatt gccaggtata ttaggctgca ccccacccac
3840tacagcatca ggagcaccct gaggatggag ctgatgggct gtgatctgaa ttcttgctct
3900atgcccctgg gcatggagag caaggccatc tctgatgccc agatcactgc cagctcttac
3960ttcaccaaca tgtttgccac ctggtctcct agcaaggcca ggctgcatct gcagggcagg
4020agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag
4080aagaccatga aggtgactgg ggtgaccact cagggggtga agagcctgct gacctctatg
4140tatgtgaagg agttcctgat cagcagcagc caggatggcc accagtggac tctgttcttc
4200cagaatggga aggtgaaggt gttccagggc aaccaggata gctttacccc tgtggtgaac
4260agcctggacc ctcctctgct gaccagatac ctgaggatcc atcctcagag ctgggtgcac
4320cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga
4374104374DNAArtificial SequenceDescription of Artificial Sequence FVIII
Nucleic Acid 10atgcagattg agctgagcac ttgcttcttc ctgtgcctgc tgaggttctg
cttttctgct 60actaggaggt actacctggg ggctgtggag ctgagctggg attacatgca
gtctgacctg 120ggggagctgc cagtggatgc caggttcccc cccagggtgc ccaagtcttt
tcctttcaac 180acctctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct
gttcaacatt 240gccaagccca ggcccccctg gatggggctg ctggggccca ccatccaggc
tgaggtgtat 300gacactgtgg tgattaccct gaagaacatg gctagccacc ctgtgagcct
gcatgctgtg 360ggggtgagct attggaaggc ctctgagggg gctgagtatg atgatcagac
cagccagagg 420gaaaaggagg atgacaaggt gttccctggg ggcagccata cttatgtgtg
gcaggtgctg 480aaggagaatg ggcccatggc ctctgacccc ctgtgcctga cttacagcta
tctgagccat 540gtggacctgg tgaaggatct gaactctggc ctgattgggg ctctgctggt
gtgcagggag 600ggcagcctgg ctaaggagaa gactcagact ctgcataagt tcatcctgct
gtttgctgtg 660tttgatgaag gcaagagctg gcactctgag accaagaact ctctgatgca
ggatagggat 720gctgcctctg ccagggcttg gcccaagatg cacactgtga atggctatgt
gaacaggagc 780ctgcctggcc tgattgggtg ccacaggaag tctgtgtact ggcatgtgat
tggcatgggc 840accacccctg aggtgcacag cattttcctg gagggccaca ccttcctggt
gaggaatcac 900aggcaggcca gcctggagat cagccccatc accttcctga ctgcccagac
cctgctgatg 960gacctggggc agtttctgct gttctgccac atcagcagcc atcagcatga
tggcatggag 1020gcctatgtga aggtggactc ttgccctgag gagccccagc tgaggatgaa
gaacaatgag 1080gaggctgagg attatgatga tgacctgact gactctgaga tggatgtggt
gaggtttgat 1140gatgacaata gccccagctt catccagatt aggtctgtgg ccaagaagca
ccctaagacc 1200tgggtgcact acattgctgc tgaggaggag gattgggatt atgcccccct
ggtgctggct 1260cctgatgaca ggtcttataa gagccagtac ctgaacaatg ggccccagag
gattggcagg 1320aagtacaaga aggtgaggtt catggcttac actgatgaga ccttcaagac
tagggaggcc 1380atccagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg
ggataccctg 1440ctgatcatct tcaagaacca ggccagcagg ccctacaaca tttaccctca
tggcatcact 1500gatgtgaggc ccctgtacag caggagactg cccaaggggg tgaagcacct
gaaggatttt 1560cccattctgc ctggggagat cttcaagtac aagtggactg tgactgtgga
ggatggcccc 1620accaagtctg atcccaggtg cctgactagg tactactctt cttttgtgaa
tatggagagg 1680gatctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc
tgtggaccag 1740aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt
gtttgatgag 1800aataggagct ggtacctgac tgagaatatc cagaggttcc tgcctaatcc
tgctggggtc 1860cagctggagg atcctgagtt ccaggctagc aacattatgc acagcatcaa
tggctatgtg 1920tttgattctc tgcagctgtc tgtgtgcctg catgaggtgg cttactggta
catcctgtct 1980attggggccc agactgattt cctgtctgtg ttcttctctg gctacacttt
caagcataag 2040atggtgtatg aggataccct gaccctgttc cccttctctg gggagactgt
gttcatgtct 2100atggagaacc ctggcctgtg gatcctgggc tgtcataact ctgacttcag
aaacaggggc 2160atgactgccc tgctgaaggt gagcagctgt gacaagaaca ctggggacta
ctatgaggac 2220agctatgagg atatctctgc ttatctgctg agcaagaata atgccattga
gcccaggagc 2280ttcagccaga acccccctgt gctgaagagg caccagaggg agatcactag
gactaccctg 2340cagtctgatc aggaggagat tgactatgat gacaccatct ctgtggagat
gaagaaggag 2400gactttgaca tctatgatga ggatgagaac cagtccccca ggtctttcca
gaagaagacc 2460aggcactact tcattgctgc tgtggagagg ctgtgggact atggcatgag
ctctagcccc 2520catgtgctga ggaacagggc tcagtctggc tctgtgcccc agttcaagaa
ggtggtcttc 2580caggagttca ctgatggctc ttttacccag cctctgtaca gaggggagct
gaatgagcac 2640ctgggcctgc tgggccccta catcagggct gaggtggagg ataatatcat
ggtgaccttc 2700agaaaccagg cctctaggcc ctacagcttc tacagcagcc tgatctctta
tgaggaggat 2760cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac
caagacctac 2820ttctggaagg tgcagcacca tatggcccct actaaggatg agtttgactg
caaggcctgg 2880gcttattttt ctgatgtgga cctggagaag gatgtgcact ctgggctgat
tggccccctg 2940ctggtgtgcc acaccaacac cctgaaccct gcccatggca ggcaggtgac
tgtgcaggag 3000tttgccctgt tcttcactat ctttgatgag accaagagct ggtacttcac
tgagaacatg 3060gagagaaatt gtagggctcc ctgcaatatc cagatggagg accccacctt
caaagaaaat 3120tacagattcc atgccatcaa tgggtacatc atggataccc tgcctgggct
ggtgatggct 3180caggaccaga ggatcaggtg gtacctgctg agcatggggt ctaatgagaa
catccactct 3240atccatttct ctggccatgt gttcactgtg agaaagaagg aggagtataa
gatggctctg 3300tacaacctgt acccaggggt gtttgagact gtggaaatgc tgcccagcaa
agctgggatc 3360tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgtctac
cctgttcctg 3420gtgtacagca acaagtgcca gactcccctg ggcatggcct ctgggcacat
cagggatttt 3480cagatcactg cctctggcca gtatggccag tgggccccca agctggccag
gctgcactac 3540tctggcagca ttaatgcttg gagcactaag gagcccttca gctggatcaa
ggtggatctg 3600ctggccccca tgatcatcca tggcatcaag acccaggggg ccaggcagaa
gttctctagc 3660ctgtacattt ctcagttcat catcatgtac agcctggatg ggaagaagtg
gcagacctac 3720agggggaaca gcactgggac cctgatggtg ttctttggca atgtggatag
ctctggcatc 3780aagcacaata tcttcaatcc ccccattatt gccaggtaca ttaggctgca
tcctactcac 3840tactctatta ggagcaccct gaggatggag ctgatggggt gtgacctgaa
cagctgttct 3900atgcccctgg gcatggagtc taaggctatc tctgatgccc agatcactgc
cagcagctac 3960ttcactaata tgtttgccac ctggagccct agcaaggcca gactgcacct
gcagggcagg 4020agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt
ggacttccag 4080aagaccatga aggtgactgg ggtgaccact cagggggtga agagcctgct
gaccagcatg 4140tatgtgaagg agttcctgat cagcagcagc caggatggcc accagtggac
cctgttcttc 4200cagaatggga aggtgaaggt gttccagggc aaccaggact ctttcacccc
tgtggtgaac 4260agcctggatc ctcccctgct gaccaggtac ctgaggatcc acccccagag
ctgggtgcac 4320cagattgctc tgaggatgga agtgctgggc tgtgaggccc aggatctgta
ctga 4374114374DNAArtificial SequenceDescription of Artificial
Sequence FVIII Nucleic Acid 11atgcagattg agctgagcac ctgcttcttc
ctgtgcctgc tgaggttttg cttctctgct 60accaggaggt actacctggg ggctgtggag
ctgagctggg actatatgca gtctgacctg 120ggggagctgc ctgtggatgc taggttccct
cccagggtgc ccaagagctt cccctttaat 180acctctgtgg tgtacaagaa aaccctgttt
gtggagttca ctgaccatct gttcaacatt 240gccaagccca ggcccccttg gatgggcctg
ctgggcccca ccattcaggc tgaggtgtat 300gacactgtgg tcattaccct gaagaacatg
gcttctcacc ctgtgagcct gcatgctgtg 360ggggtgagct actggaaggc ctctgagggg
gctgagtatg atgaccagac cagccagagg 420gagaaggagg atgataaggt gttccctggg
ggcagccaca cctatgtgtg gcaggtgctg 480aaggagaatg gccccatggc ctctgatccc
ctgtgcctga cctactctta tctgtctcat 540gtggacctgg tgaaggacct gaactctggc
ctgattgggg ctctgctggt gtgcagggag 600ggctctctgg ccaaggagaa gacccagacc
ctgcacaagt ttattctgct gtttgctgtc 660tttgatgagg gcaagagctg gcattctgag
accaagaaca gcctgatgca ggacagggat 720gctgcctctg ccagggcctg gcccaaaatg
cacactgtga atggctatgt gaacaggagc 780ctgcctggcc tgattggctg ccacaggaag
tctgtgtact ggcatgtgat tggcatgggc 840accacccctg aggtgcacag catcttcctg
gagggccaca cctttctggt gaggaatcac 900aggcaggcca gcctggagat tagccccatc
accttcctga ctgcccagac cctgctgatg 960gacctgggcc agttcctgct gttctgccac
atcagcagcc accagcatga tggcatggag 1020gcctatgtga aggtggatag ctgccctgag
gagccccagc tgaggatgaa aaacaatgag 1080gaggctgagg attatgatga tgacctgact
gactctgaga tggatgtggt gaggtttgat 1140gatgacaata gccccagctt tattcagatt
aggtctgtgg ctaagaagca ccccaagact 1200tgggtgcact acattgctgc tgaggaggag
gattgggact atgcccctct ggtcctggcc 1260cctgatgata ggtcttacaa gagccagtat
ctgaacaatg gcccccagag gattggcagg 1320aagtacaaga aggtgaggtt catggcctac
actgatgaga cctttaagac cagggaggcc 1380attcagcatg agtctgggat cctgggcccc
ctgctgtatg gggaggtggg ggacactctg 1440ctgatcatct tcaagaacca ggccagcagg
ccttataaca tctaccctca tgggatcact 1500gatgtgaggc ccctgtactc tagaaggctg
cccaaggggg tcaagcacct gaaggatttt 1560cccatcctgc ctggggagat tttcaagtac
aagtggactg tgactgtgga ggatggcccc 1620accaagtctg accctaggtg cctgaccagg
tactacagct cttttgtgaa catggagagg 1680gacctggcct ctggcctgat tggccctctg
ctgatttgct acaaggagtc tgtggaccag 1740aggggcaacc agatcatgtc tgacaagagg
aatgtgatcc tgttttctgt gtttgatgag 1800aacaggtctt ggtacctgac tgagaacatc
cagaggttcc tgcctaaccc agctggggtg 1860cagctggagg atcctgagtt ccaggccagc
aatattatgc atagcattaa tggctatgtg 1920tttgatagcc tgcagctgtc tgtgtgcctg
catgaggtgg cctactggta catcctgagc 1980attggggccc agactgactt tctgtctgtg
ttcttctctg gctacacctt caagcataag 2040atggtgtatg aggacaccct gactctgttc
cctttttctg gggagactgt gtttatgagc 2100atggagaatc ctggcctgtg gatcctgggc
tgccataatt ctgacttcag gaacaggggc 2160atgactgccc tgctgaaagt gagcagctgt
gacaagaata ctggggacta ctatgaagac 2220agctatgagg acatctctgc ctacctgctg
agcaagaaca atgccattga gcccaggagc 2280ttcagccaga accccccagt gctgaagagg
caccagagag agatcaccag gactaccctg 2340cagtctgacc aggaggagat tgactatgat
gacaccattt ctgtggagat gaagaaggag 2400gactttgaca tttatgatga ggatgagaat
cagagcccca ggagcttcca gaagaagact 2460aggcactatt ttattgctgc tgtggagagg
ctgtgggact atggcatgag cagctctccc 2520catgtgctga ggaatagggc ccagtctggc
tctgtgcctc agttcaagaa ggtggtgttc 2580caggagttca ctgatggcag ctttacccag
cccctgtata ggggggagct gaatgagcac 2640ctgggcctgc tgggccccta tatcagggct
gaggtggagg acaatattat ggtgaccttt 2700aggaaccagg ccagcaggcc ctactctttc
tatagcagcc tgatcagcta tgaggaggac 2760cagaggcagg gggctgagcc caggaagaat
tttgtgaagc ctaatgagac caagacctac 2820ttctggaagg tgcagcatca catggccccc
accaaggatg agtttgactg caaggcttgg 2880gcctatttct ctgatgtgga cctggagaag
gatgtgcact ctggcctgat tggccccctg 2940ctggtgtgcc acactaacac tctgaatcct
gcccatggca ggcaggtgac tgtgcaggag 3000tttgccctgt tcttcaccat ctttgatgag
accaagagct ggtacttcac tgagaacatg 3060gagaggaact gcagggcccc ctgcaacatc
cagatggagg atcccacctt caaggagaac 3120tacaggtttc atgccatcaa tggctacatc
atggacactc tgcctggcct ggtgatggcc 3180caggatcaga ggatcaggtg gtacctgctg
agcatgggct ctaatgagaa tatccatagc 3240atccacttct ctggccatgt gttcactgtc
aggaagaagg aggagtacaa gatggctctg 3300tataatctgt accctggggt gtttgagact
gtggagatgc tgcccagcaa ggctggcatc 3360tggagggtgg agtgcctgat tggggagcac
ctgcatgctg ggatgagcac cctgtttctg 3420gtgtactcta acaagtgcca gacccccctg
ggcatggcct ctgggcacat cagggatttc 3480cagatcactg cttctggcca gtatggccag
tgggccccca agctggccag gctgcactac 3540tctggcagca tcaatgcctg gtctaccaag
gagccctttt cttggattaa ggtggacctg 3600ctggccccca tgatcatcca tggcatcaag
acccaggggg ccaggcagaa gttcagcagc 3660ctgtacatca gccagttcat catcatgtac
agcctggatg gcaaaaagtg gcagacctac 3720aggggcaata gcactgggac tctgatggtg
ttctttggca atgtggacag ctctgggatc 3780aagcacaata tcttcaaccc tcccatcatt
gctaggtaca tcaggctgca ccccacccac 3840tatagcatca ggtctaccct gaggatggag
ctgatgggct gtgacctgaa ctcttgcagc 3900atgcccctgg gcatggagtc caaagctatc
tctgatgccc agattactgc cagcagctac 3960ttcaccaaca tgtttgccac ctggtctccc
tctaaggcca ggctgcacct gcagggcagg 4020agcaatgcct ggaggcccca ggtgaacaat
cccaaggagt ggctgcaggt ggatttccag 4080aaaactatga aggtgactgg ggtgaccacc
cagggggtga agtctctgct gaccagcatg 4140tatgtgaagg agttcctgat ctcttctagc
caggatggcc accagtggac tctgttcttc 4200cagaatggca aggtgaaggt gttccagggc
aaccaggaca gcttcacccc tgtggtgaac 4260tctctggatc cccccctgct gaccaggtac
ctgaggattc atccccagag ctgggtgcac 4320cagattgctc tgagaatgga ggtgctgggg
tgtgaggctc aggacctgta ttga 4374124374DNAArtificial
SequenceDescription of Artificial Sequence FVIII Nucleic Acid
12atgcagattg agctgtctac ttgttttttt ctgtgcctgc tgaggttctg cttctctgcc
60accaggaggt attacctggg ggctgtggag ctgagctggg attacatgca gtctgatctg
120ggggagctgc ctgtggatgc caggttcccc cccagggtgc ccaagagctt ccccttcaac
180acctctgtgg tgtataagaa gaccctgttt gtggagttca ctgatcatct gtttaacatt
240gccaagccca ggcccccctg gatgggcctg ctgggcccaa ctatccaggc tgaggtgtat
300gacactgtgg tcatcaccct gaagaatatg gccagccatc ctgtgagcct gcatgctgtg
360ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac cagccagagg
420gagaaggagg atgacaaggt gttccctggg ggcagccaca cctatgtgtg gcaggtgctg
480aaggagaatg gccccatggc ctctgacccc ctgtgcctga cttatagcta cctgtctcat
540gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt ctgtagggaa
600ggcagcctgg ccaaggagaa gacccagacc ctgcacaagt ttattctgct gtttgctgtg
660tttgatgaag gcaagagctg gcactctgag accaagaatt ctctgatgca ggatagggat
720gctgcctctg ccagggcctg gcccaagatg catactgtga atggctatgt gaacagaagc
780ctgcctggcc tgattggctg ccataggaag tctgtgtatt ggcatgtgat tgggatgggc
840actacccctg aagtgcacag cattttcctg gagggccaca ctttcctggt gaggaaccac
900aggcaggcct ctctggagat cagccccatt actttcctga ctgcccagac cctgctgatg
960gatctgggcc agttcctgct gttctgccac atctctagcc accagcatga tggcatggag
1020gcctatgtga aggtggacag ctgccctgag gagccccagc tgaggatgaa gaataatgag
1080gaggctgagg attatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat
1140gatgataata gccccagctt catccagatc aggtctgtgg ccaagaagca tcccaagacc
1200tgggtgcact atattgctgc tgaagaggag gactgggact atgcccctct ggtgctggct
1260cctgatgaca ggagctataa gagccagtat ctgaacaatg ggccccagag gattgggagg
1320aagtacaaga aggtgaggtt catggcctac actgatgaga cctttaagac cagggaggcc
1380atccagcatg agtctggcat tctggggccc ctgctgtatg gggaggtggg ggacactctg
1440ctgatcattt tcaagaacca ggccagcagg ccctacaata tttaccccca tggcatcact
1500gatgtgaggc ccctgtacag caggaggctg cccaaggggg tgaagcacct gaaggacttc
1560cccatcctgc ctggggagat cttcaagtac aagtggactg tgactgtgga ggatggccct
1620accaagtctg accctaggtg tctgactagg tactacagca gctttgtgaa catggagaga
1680gacctggctt ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggatcag
1740aggggcaacc agattatgtc tgataagagg aatgtcatcc tgttctctgt gtttgatgag
1800aacaggagct ggtatctgac tgagaacatt cagaggttcc tgcccaaccc tgctggggtg
1860cagctggagg accctgagtt ccaggccagc aacatcatgc attctattaa tggctatgtg
1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta catcctgagc
1980attggggccc agactgactt tctgtctgtg tttttctctg ggtacacctt caagcacaag
2040atggtctatg aggacaccct gaccctgttc cccttttctg gggaaactgt gtttatgagc
2100atggagaacc ctgggctgtg gatcctgggc tgccacaact ctgactttag gaataggggc
2160atgactgccc tgctgaaggt gagcagctgt gacaagaata ctggggatta ctatgaggac
2220agctatgagg atatctctgc ctacctgctg agcaagaaca atgccattga gcctaggagc
2280ttcagccaga acccccctgt gctgaagagg caccagaggg agatcaccag gaccaccctg
2340cagtctgatc aggaggagat tgactatgat gacaccatct ctgtggagat gaagaaggag
2400gactttgata tttatgatga ggatgagaac cagagcccca ggagcttcca gaagaagacc
2460aggcactatt tcattgctgc tgtggagagg ctgtgggact atggcatgag ctctagcccc
2520catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa ggtggtgttc
2580caggaattta ctgatggcag ctttacccag cccctgtaca gaggggagct gaatgagcac
2640ctgggcctgc tgggccccta catcagggct gaggtggagg ataatatcat ggtgaccttt
2700aggaaccagg cctctaggcc ctattctttt tacagcagcc tgatcagcta tgaggaggac
2760cagaggcagg gggctgagcc taggaagaac tttgtgaagc ccaatgagac caagacctac
2820ttttggaaag tgcagcacca catggccccc actaaggatg agtttgattg caaggcctgg
2880gcctatttct ctgatgtgga cctggagaag gatgtgcact ctggcctgat tggccccctg
2940ctggtgtgcc acaccaacac tctgaaccct gcccatggca ggcaggtgac tgtgcaggag
3000tttgccctgt tctttaccat ctttgatgag actaagagct ggtatttcac tgagaacatg
3060gagaggaact gcagagcccc ttgcaacatc cagatggagg accctacctt caaggagaac
3120tataggttcc atgccatcaa tgggtacatc atggataccc tgcctggcct ggtgatggct
3180caggaccaga ggatcaggtg gtacctgctg agcatgggga gcaatgagaa cattcatagc
3240atccacttct ctgggcatgt gttcactgtg aggaagaagg aggagtataa gatggccctg
3300tacaacctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctggcatc
3360tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac tctgttcctg
3420gtgtacagca acaagtgcca gacccccctg ggcatggcct ctggccacat cagggacttc
3480cagattactg cctctgggca gtatgggcag tgggccccca agctggccag gctgcactac
3540tctgggtcta tcaatgcttg gagcaccaag gagcctttca gctggatcaa ggtggatctg
3600ctggccccca tgatcattca tgggatcaag acccaggggg ccaggcagaa gttcagcagc
3660ctgtatattt ctcagttcat catcatgtat tctctggatg gcaaaaagtg gcagacctat
3720agagggaaca gcactgggac cctgatggtg ttttttggca atgtggatag ctctggcatc
3780aagcacaata tcttcaaccc ccccattatt gccaggtaca tcaggctgca ccccacccac
3840tactctatca ggagcaccct gaggatggag ctgatgggct gtgatctgaa cagctgctct
3900atgcctctgg ggatggaaag caaggccatc tctgatgccc agatcactgc cagcagctat
3960ttcaccaata tgtttgccac ttggagccct agcaaggcta ggctgcatct gcagggcagg
4020tctaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggacttccag
4080aagactatga aagtgactgg ggtgaccacc cagggggtga aaagcctgct gaccagcatg
4140tatgtgaagg agttcctgat tagcagcagc caggatggcc accagtggac cctgttcttc
4200cagaatggga aggtgaaggt gtttcagggc aatcaggata gcttcacccc agtggtgaac
4260agcctggacc cccccctgct gaccaggtac ctgaggatcc acccccagag ctgggtgcac
4320cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga
4374134374DNAArtificial SequenceDescription of Artificial Sequence FVIII
Nucleic Acid 13atgcagattg agctgagcac ctgctttttc ctgtgcctgc tgaggttctg
cttctctgct 60accaggaggt actacctggg ggctgtggag ctgtcttggg attacatgca
gtctgacctg 120ggggagctgc ctgtggatgc caggtttccc cccagggtgc ccaagtcttt
cccctttaac 180acctctgtgg tgtataagaa gactctgttt gtggagttca ctgatcacct
gttcaatatt 240gccaagccca ggcccccttg gatgggcctg ctgggcccca ctatccaggc
tgaggtgtat 300gacactgtgg tcatcaccct gaagaacatg gccagccacc ctgtgagcct
gcatgctgtg 360ggggtgagct actggaaggc ctctgagggg gctgagtatg atgaccagac
cagccagagg 420gagaaggagg atgacaaggt gttcccaggg gggtctcaca cttatgtgtg
gcaggtgctg 480aaggagaatg ggcccatggc ctctgaccct ctgtgcctga cttatagcta
cctgtctcat 540gtggatctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt
gtgcagggag 600gggagcctgg ccaaggagaa gacccagacc ctgcacaagt tcatcctgct
gtttgctgtg 660tttgatgagg ggaagagctg gcactctgag accaagaata gcctgatgca
ggacagggat 720gctgcttctg ctagggcctg gcctaagatg cacactgtga atggctatgt
gaacaggagc 780ctgcctggcc tgattgggtg tcacaggaag tctgtgtact ggcatgtgat
tggcatgggg 840actactccag aagtgcacag catcttcctg gaggggcaca ccttcctggt
gaggaatcac 900aggcaggcca gcctggagat ttctcccatc actttcctga ctgcccagac
cctgctgatg 960gatctggggc agttcctgct gttctgccac atcagcagcc atcagcatga
tgggatggag 1020gcctatgtga aggtggacag ctgccctgag gagcctcagc tgaggatgaa
gaacaatgag 1080gaggctgagg actatgatga tgatctgact gactctgaga tggatgtggt
gaggtttgat 1140gatgacaact ctcccagctt catccagatc aggtctgtgg ccaagaagca
ccccaagacc 1200tgggtgcact acattgctgc tgaggaggag gattgggatt atgctcccct
ggtgctggct 1260cctgatgata ggagctacaa gagccagtat ctgaataatg ggccccagag
gattggcagg 1320aagtataaga aggtgaggtt catggcctac actgatgaga cctttaagac
cagggaggct 1380attcagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg
ggacaccctg 1440ctgatcattt tcaagaacca ggccagcagg ccctataaca tctatcccca
tgggatcact 1500gatgtgaggc ccctgtactc taggaggctg cccaaggggg tcaagcacct
gaaggacttc 1560cccatcctgc ctggggagat cttcaagtac aagtggactg tgactgtgga
ggatggcccc 1620actaagtctg accccaggtg cctgactagg tactacagca gctttgtgaa
catggagaga 1680gatctggcct ctggcctgat tggccccctg ctgatctgct acaaagagtc
tgtggatcag 1740aggggcaacc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt
gtttgatgag 1800aacagaagct ggtacctgac tgagaacatt cagaggtttc tgcccaaccc
tgctggggtc 1860cagctggagg accctgagtt tcaggccagc aacatcatgc acagcatcaa
tgggtatgtg 1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cctactggta
tatcctgagc 1980attggggccc agactgattt cctgtctgtg ttcttctctg gctacacttt
caagcacaag 2040atggtgtatg aggataccct gaccctgttc cctttctctg gggaaactgt
gttcatgagc 2100atggagaacc ctgggctgtg gatcctgggg tgccacaatt ctgatttcag
gaacagaggc 2160atgactgctc tgctgaaggt gtctagctgt gacaagaaca ctggggacta
ctatgaggac 2220agctatgagg acatctctgc ctacctgctg agcaagaaca atgctattga
acccaggtct 2280ttcagccaga acccccctgt gctgaagagg caccagaggg agatcactag
gaccaccctg 2340cagtctgatc aggaggagat tgactatgat gacaccatct ctgtggagat
gaagaaggag 2400gactttgaca tctatgatga ggatgagaat cagtctccca ggagcttcca
gaagaagact 2460aggcattact tcattgctgc tgtggagagg ctgtgggact atggcatgag
ctctagccct 2520catgtgctga ggaacagggc ccagtctggc tctgtgcccc agttcaagaa
ggtggtgttt 2580caggagttca ctgatggcag cttcacccag cccctgtaca ggggggagct
gaatgagcat 2640ctgggcctgc tgggccccta catcagggct gaggtggagg acaacatcat
ggtgaccttc 2700agaaatcagg ctagcaggcc ctacagcttc tacagcagcc tgatctctta
tgaggaggac 2760cagaggcagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac
caagacctat 2820ttctggaagg tgcagcacca catggccccc accaaggatg agtttgattg
caaggcctgg 2880gcctacttct ctgatgtgga cctggagaag gatgtgcatt ctgggctgat
tggccctctg 2940ctggtgtgcc acaccaacac cctgaatcct gcccatggca ggcaggtgac
tgtgcaggag 3000tttgccctgt tctttactat ctttgatgag accaagtctt ggtattttac
tgagaacatg 3060gagaggaact gcagggcccc ctgcaacatc cagatggagg accccacctt
caaggagaac 3120tacagattcc atgccatcaa tggctacatt atggacactc tgcctggcct
ggtgatggcc 3180caggaccaga ggatcaggtg gtacctgctg tctatgggca gcaatgagaa
cattcactct 3240atccacttct ctgggcatgt gttcactgtg aggaagaagg aggagtacaa
gatggccctg 3300tacaacctgt accctggggt gtttgagact gtggagatgc tgcctagcaa
ggctgggatc 3360tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgtctac
cctgttcctg 3420gtgtacagca acaagtgcca gacccccctg ggcatggcct ctggccacat
cagagatttt 3480cagatcactg cctctggcca gtatggccag tgggctccta agctggccag
gctgcactac 3540tctggcagca tcaatgcctg gagcaccaag gagcccttta gctggatcaa
ggtggacctg 3600ctggccccca tgatcatcca tggcatcaag actcaggggg ccaggcagaa
gttctctagc 3660ctgtacatta gccagttcat catcatgtat agcctggatg gcaagaagtg
gcagacctac 3720aggggcaaca gcactgggac cctgatggtg ttctttggga atgtggacag
ctctgggatc 3780aagcacaata tcttcaaccc ccccattatt gccaggtata ttaggctgca
ccccactcac 3840tacagcatta ggagcaccct gaggatggag ctgatgggct gtgatctgaa
cagctgcagc 3900atgcccctgg gcatggagtc taaggccatc tctgatgccc agatcactgc
cagctcttac 3960ttcaccaaca tgtttgccac ttggagcccc agcaaggcca ggctgcacct
gcagggcagg 4020agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt
ggatttccag 4080aagactatga aggtgactgg ggtgaccact cagggggtga agagcctgct
gactagcatg 4140tatgtgaagg agttcctgat cagctctagc caggatggcc accagtggac
cctgttcttt 4200cagaatggca aggtgaaggt gttccagggc aaccaggact ctttcacccc
tgtggtgaat 4260tctctggacc ctcccctgct gactaggtat ctgaggattc atccccagag
ctgggtgcat 4320cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggacctgta
ttga 4374144374DNAArtificial SequenceDescription of Artificial
Sequence FVIII Nucleic Acid 14atgcagattg agctgagcac ctgcttcttc
ctgtgcctgc tgaggttttg cttttctgcc 60actaggaggt actacctggg ggctgtggag
ctgtcttggg attacatgca gtctgacctg 120ggggagctgc cagtggatgc caggttcccc
ccaagggtgc ccaagtcttt tcccttcaat 180acctctgtgg tgtacaagaa gaccctgttt
gtggagttta ctgatcatct gtttaacatt 240gccaagccca ggcccccctg gatggggctg
ctgggcccca ccatccaggc tgaggtgtat 300gatactgtgg tgattaccct gaagaatatg
gccagccatc ctgtgtctct gcatgctgtg 360ggggtgtctt attggaaggc ctctgagggg
gctgagtatg atgatcagac cagccagagg 420gagaaggagg atgataaggt gttccctggg
ggctctcaca cctatgtgtg gcaggtgctg 480aaggagaatg ggcctatggc ctctgaccca
ctgtgcctga cttacagcta tctgagccat 540gtggacctgg tgaaggacct gaactctggg
ctgattgggg ccctgctggt gtgcagggag 600ggcagcctgg ccaaggagaa gactcagacc
ctgcacaagt tcatcctgct gtttgctgtg 660tttgatgagg gcaagtcttg gcactctgag
accaagaaca gcctgatgca ggatagggat 720gctgcctctg ccagggcctg gcccaagatg
cacactgtga atggctatgt gaacaggtct 780ctgcctggcc tgattggctg ccacaggaag
tctgtgtact ggcatgtgat tggcatgggc 840accacccctg aggtgcatag cattttcctg
gagggccaca ccttcctggt gaggaaccac 900aggcaggcta gcctggagat cagccccatc
actttcctga ctgcccagac cctgctgatg 960gacctgggcc agttcctgct gttctgccac
atctctagcc accagcatga tggcatggag 1020gcctatgtga aggtggactc ttgtcctgag
gagccccagc tgaggatgaa gaacaatgag 1080gaggctgagg attatgatga tgatctgact
gattctgaga tggatgtggt gaggtttgat 1140gatgacaaca gcccctcttt catccagatc
aggtctgtgg ccaagaagca ccccaagacc 1200tgggtgcact acattgctgc tgaggaggag
gattgggatt atgcccccct ggtgctggcc 1260cctgatgaca ggagctataa gtctcagtac
ctgaacaatg gcccccagag aattggcagg 1320aagtacaaga aggtgaggtt catggcctat
actgatgaga ccttcaaaac cagggaggcc 1380attcagcatg agtctggcat cctggggccc
ctgctgtatg gggaggtggg ggacaccctg 1440ctgatcatct tcaagaacca ggctagcagg
ccttacaaca tctaccccca tgggatcact 1500gatgtgaggc ccctgtacag caggaggctg
cctaaggggg tgaagcacct gaaggacttt 1560cccattctgc ctggggagat cttcaagtat
aagtggactg tgactgtgga ggatgggccc 1620accaagtctg accccaggtg cctgactagg
tactactcta gctttgtgaa catggagagg 1680gacctggcct ctgggctgat tggccccctg
ctgatctgtt acaaggagtc tgtggaccag 1740aggggcaacc agatcatgtc tgataagagg
aatgtgatcc tgttctctgt gtttgatgag 1800aacaggagct ggtacctgac tgagaacatc
cagagattcc tgcccaaccc tgctggggtg 1860cagctggagg atcctgagtt ccaggccagc
aacatcatgc attctatcaa tgggtatgtg 1920tttgatagcc tgcagctgtc tgtgtgtctg
catgaggtgg cctactggta cattctgagc 1980attggggccc agactgactt cctgtctgtg
ttcttctctg gctacacttt caaacacaag 2040atggtgtatg aggacaccct gaccctgttc
cccttctctg gggagactgt gtttatgagc 2100atggagaacc ctgggctgtg gattctgggc
tgccacaact ctgacttcag aaacaggggc 2160atgactgccc tgctgaaggt gtcttcttgt
gataagaaca ctggggacta ttatgaagac 2220agctatgagg acatctctgc ctacctgctg
agcaagaata atgctattga gcccaggtct 2280ttctctcaga acccccctgt gctgaagagg
caccagaggg agatcaccag gaccaccctg 2340cagtctgatc aggaggagat tgactatgat
gacactattt ctgtggagat gaagaaggaa 2400gactttgata tctatgatga ggatgagaac
cagagcccta ggagcttcca gaagaagact 2460aggcattact tcattgctgc tgtggagagg
ctgtgggact atggcatgag cagcagcccc 2520catgtgctga ggaatagggc tcagtctggc
tctgtgcctc agttcaagaa ggtggtgttc 2580caggaattca ctgatggcag cttcactcag
cccctgtaca ggggggagct gaatgagcac 2640ctggggctgc tgggccctta catcagggct
gaggtggagg acaatatcat ggtgaccttt 2700aggaaccagg cctctaggcc ttacagcttc
tactctagcc tgatctctta tgaagaggac 2760cagaggcagg gggctgagcc caggaagaac
tttgtgaagc ccaatgagac taagacttac 2820ttctggaagg tgcagcacca catggctccc
accaaggatg agtttgactg caaggcttgg 2880gcctacttct ctgatgtgga cctggagaag
gatgtgcact ctgggctgat tgggcccctg 2940ctggtgtgcc acactaacac tctgaatcct
gcccatggca gacaggtgac tgtgcaggag 3000tttgccctgt tttttaccat ctttgatgag
actaagtctt ggtacttcac tgagaacatg 3060gagaggaact gcagggcccc ctgcaacatc
cagatggagg atcccacctt caaggagaac 3120tacaggtttc atgccatcaa tggctacatc
atggacaccc tgcctggcct ggtgatggct 3180caggaccaga ggattaggtg gtatctgctg
agcatgggca gcaatgagaa tatccactct 3240atccacttct ctgggcatgt gttcactgtg
aggaagaagg aggagtacaa gatggccctg 3300tataacctgt atcctggggt gtttgagact
gtggagatgc tgcccagcaa ggctggcatc 3360tggagagtgg agtgcctgat tggggagcac
ctgcatgctg gcatgagcac tctgtttctg 3420gtgtatagca acaagtgtca gacccctctg
ggcatggcct ctgggcacat tagggacttt 3480cagatcactg cttctggcca gtatgggcag
tgggctccca agctggccag gctgcactat 3540tctggcagca ttaatgcctg gagcaccaag
gagcctttca gctggatcaa ggtggacctg 3600ctggccccca tgatcatcca tgggatcaag
acccaggggg ctaggcagaa gttcagcagc 3660ctgtacatca gccagtttat catcatgtat
tctctggatg gcaagaagtg gcagacctac 3720aggggcaatt ctactggcac tctgatggtg
ttctttggga atgtggatag ctctgggatc 3780aagcataata tcttcaatcc ccccattatt
gctaggtata tcaggctgca ccccacccac 3840tatagcatca ggagcaccct gaggatggag
ctgatggggt gtgacctgaa cagctgcagc 3900atgcccctgg gcatggagag caaggctatt
tctgatgccc agatcactgc cagcagctac 3960tttactaata tgtttgccac ctggagcccc
agcaaggcca gactgcacct gcagggcagg 4020tctaatgcct ggaggcctca ggtgaataac
cccaaggagt ggctgcaggt ggacttccag 4080aaaaccatga aggtgactgg ggtgactacc
cagggggtga agtctctgct gaccagcatg 4140tatgtgaagg agttcctgat ctcttctagc
caggatggcc accagtggac cctgttcttt 4200cagaatggga aggtgaaggt cttccagggc
aaccaggata gcttcacccc tgtggtgaat 4260agcctggatc ctcctctgct gaccaggtat
ctgaggatcc acccccagag ctgggtgcat 4320cagattgccc tgaggatgga ggtgctgggc
tgtgaggctc aggacctgta ctga 4374154374DNAArtificial
SequenceDescription of Artificial Sequence FVIII Nucleic Acid
15atgcagattg agctgagcac ctgtttcttc ctgtgcctgc tgaggttctg tttctctgcc
60actaggaggt actacctggg ggctgtggag ctgagctggg actatatgca gtctgacctg
120ggggagctgc ctgtggatgc caggttcccc cccagggtgc ctaagagctt ccccttcaat
180acttctgtgg tgtacaagaa gactctgttt gtggagttta ctgaccacct gttcaacatt
240gctaagccca ggcctccctg gatggggctg ctgggcccca ccatccaggc tgaggtgtat
300gatactgtgg tgattaccct gaagaacatg gcctctcatc cagtgagcct gcatgctgtg
360ggggtgagct actggaaggc ctctgaaggg gctgagtatg atgaccagac cagccagagg
420gagaaggagg atgacaaggt gttccctggg ggcagccaca cctatgtgtg gcaggtgctg
480aaggagaatg gcccaatggc ctctgacccc ctgtgcctga cttatagcta cctgagccat
540gtggatctgg tgaaggacct gaattctggc ctgattgggg ccctgctggt gtgcagagag
600ggctctctgg ctaaggagaa gacccagact ctgcacaagt tcatcctgct gtttgctgtg
660tttgatgagg gcaagagctg gcactctgag actaagaata gcctgatgca ggacagggat
720gctgcttctg ccagggcctg gcccaagatg catactgtga atggctatgt gaacaggagc
780ctgcctggcc tgattggctg tcacaggaaa tctgtctact ggcatgtgat tgggatgggc
840actacccctg aggtgcactc tatcttcctg gagggccata ccttcctggt gaggaaccac
900aggcaggcca gcctggagat ctctcccatt accttcctga ctgcccagac cctgctgatg
960gatctgggcc agttcctgct gttctgccac atcagcagcc accagcatga tgggatggag
1020gcttatgtga aggtggatag ctgccctgag gagccccagc tgaggatgaa gaacaatgag
1080gaggctgagg actatgatga tgacctgact gactctgaga tggatgtggt gaggtttgat
1140gatgacaact ctcccagctt tattcagatc aggtctgtgg ctaagaagca ccccaagact
1200tgggtgcact acattgctgc tgaggaggag gactgggact atgcccctct ggtgctggct
1260cctgatgaca ggtcttacaa gtctcagtac ctgaataatg gccctcagag gattggcagg
1320aagtacaaga aggtgaggtt catggcctac actgatgaga ccttcaagac cagggaggcc
1380atccagcatg agtctggcat cctgggcccc ctgctgtatg gggaggtggg ggataccctg
1440ctgatcatct tcaagaatca ggccagcagg ccctacaaca tctaccccca tggcatcact
1500gatgtgaggc cactgtacag caggaggctg cccaaggggg tgaagcatct gaaggacttc
1560cccattctgc ctggggagat cttcaagtac aaatggactg tgactgtgga ggatggccct
1620accaagtctg accccaggtg tctgaccagg tactacagca gctttgtgaa tatggagagg
1680gacctggcct ctggcctgat tggccccctg ctgatctgct acaaggagtc tgtggaccag
1740aggggcaatc agatcatgtc tgataagagg aatgtgattc tgttctctgt gtttgatgag
1800aacaggagct ggtacctgac tgagaacatc cagaggttcc tgcccaatcc tgctggggtg
1860cagctggagg accctgagtt ccaggccagc aatatcatgc acagcatcaa tggctatgtc
1920tttgacagcc tgcagctgtc tgtgtgcctg catgaggtgg cttactggta tattctgagc
1980attggggccc agactgattt cctgtctgtg ttcttttctg gctatacctt taagcacaag
2040atggtgtatg aggacaccct gaccctgttc cccttctctg gggagactgt gttcatgtct
2100atggagaacc ctgggctgtg gatcctgggc tgccacaact ctgacttcag gaacaggggg
2160atgactgccc tgctgaaggt gtctagctgt gataagaaca ctggggacta ttatgaggac
2220agctatgagg acatctctgc ttacctgctg agcaagaaca atgccattga gcccaggtct
2280ttcagccaga atccccctgt gctgaagagg catcagaggg agatcaccag gaccaccctg
2340cagtctgatc aggaggagat tgattatgat gacactatct ctgtggaaat gaagaaggag
2400gactttgaca tctatgatga ggatgagaac cagagcccca ggagcttcca gaagaagacc
2460aggcactact tcattgctgc tgtggagagg ctgtgggatt atggcatgag cagctctccc
2520catgtgctga ggaacagagc ccagtctggc tctgtgcctc agttcaagaa ggtggtcttc
2580caggagttca ctgatggctc tttcacccag cccctgtaca ggggggagct gaatgagcac
2640ctgggcctgc tggggcccta cattagggct gaggtggagg ataacatcat ggtgactttc
2700agaaaccagg ccagcaggcc ttacagcttt tactcttctc tgattagcta tgaggaggat
2760cagaggcagg gggctgagcc taggaagaac tttgtgaagc ccaatgagac caagacctat
2820ttctggaagg tgcagcacca catggctccc actaaggatg agtttgactg caaggcttgg
2880gcctacttct ctgatgtgga cctggagaag gatgtgcact ctggcctgat tgggcccctg
2940ctggtgtgcc acaccaacac cctgaaccct gcccatggca ggcaggtgac tgtgcaggag
3000tttgccctgt tcttcaccat ctttgatgag actaagagct ggtacttcac tgagaacatg
3060gagaggaact gcagggcccc ctgcaacatc cagatggagg accccacctt caaggagaat
3120tacaggttcc atgccatcaa tggctacatt atggacaccc tgcctggcct ggtgatggcc
3180caggatcaga ggatcaggtg gtatctgctg agcatgggct ctaatgagaa catccacagc
3240atccacttct ctggccatgt gtttactgtg aggaagaagg aggaatacaa gatggctctg
3300tataacctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctgggatc
3360tggagggtgg agtgcctgat tggggagcac ctgcatgctg ggatgagcac cctgttcctg
3420gtgtatagca ataagtgcca gacccccctg ggcatggctt ctggccacat cagggatttc
3480cagatcactg cttctggcca gtatggccag tgggctccca agctggctag gctgcattac
3540tctgggtcta tcaatgcctg gagcactaag gagcccttca gctggatcaa ggtggacctg
3600ctggccccca tgatcattca tggcatcaag acccaggggg ctaggcagaa gttcagcagc
3660ctgtacatca gccagttcat cattatgtac agcctggatg gcaagaagtg gcagacttac
3720aggggcaata gcactgggac tctgatggtg ttctttggca atgtggactc ttctggcatc
3780aagcacaaca tcttcaaccc tcccatcatt gccaggtaca ttaggctgca ccctacccac
3840tactctatca ggagcaccct gaggatggag ctgatggggt gtgatctgaa ctcttgcagc
3900atgcctctgg gcatggaaag caaagccatc tctgatgccc agatcactgc ctctagctat
3960ttcaccaata tgtttgccac ctggagccct agcaaggcca ggctgcacct gcagggcaga
4020tctaatgcct ggaggcccca ggtgaacaat cccaaggagt ggctgcaggt ggacttccag
4080aagaccatga aggtgactgg ggtgaccact cagggggtga agagcctgct gactagcatg
4140tatgtgaagg agttcctgat ctcttctagc caggatggcc accagtggac cctgttcttc
4200cagaatggca aggtgaaagt gttccagggc aaccaggata gcttcactcc tgtggtgaac
4260tctctggacc ctcccctgct gactaggtac ctgaggattc atccccagag ctgggtgcac
4320cagattgccc tgaggatgga ggtgctgggc tgtgaggccc aggatctgta ctga
4374164374DNAArtificial SequenceDescription of Artificial Sequence FVIII
Nucleic Acid 16atgcagattg agctgagcac ctgcttcttc ctgtgcctgc tgaggttctg
cttctctgcc 60accaggaggt actacctggg ggctgtggag ctgtcttggg actatatgca
gtctgacctg 120ggggagctgc cagtggatgc caggttcccc cccagggtgc ccaagagctt
tcctttcaac 180acttctgtgg tgtacaagaa gaccctgttt gtggagttca ctgaccacct
gttcaatatt 240gctaagccca ggccaccctg gatgggcctg ctgggcccta ccattcaggc
tgaggtgtat 300gacactgtgg tgattactct gaagaatatg gccagccacc ctgtgagcct
gcatgctgtg 360ggggtgtctt actggaaggc ctctgagggg gctgagtatg atgatcagac
ttctcagagg 420gagaaggagg atgataaggt gttccctggg ggctctcaca cttatgtgtg
gcaggtgctg 480aaggagaatg gccccatggc ttctgatcca ctgtgcctga cctactctta
cctgagccat 540gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt
gtgcagggag 600ggcagcctgg ccaaggagaa gacccagacc ctgcataagt tcatcctgct
gtttgctgtg 660tttgatgagg ggaagagctg gcactctgag accaagaatt ctctgatgca
ggacagggat 720gctgcctctg ccagggcctg gcctaagatg cacactgtga atggctatgt
gaacaggtct 780ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat
tggcatgggc 840actacccctg aggtgcacag cattttcctg gagggccaca ccttcctggt
caggaaccat 900aggcaggcct ctctggagat cagccccatc actttcctga ctgcccagac
cctgctgatg 960gacctgggcc agttcctgct gttctgccac attagcagcc accagcatga
tggcatggag 1020gcctatgtga aggtggactc ttgccctgag gagccccagc tgaggatgaa
gaacaatgag 1080gaagctgagg attatgatga tgacctgact gactctgaga tggatgtggt
gaggtttgat 1140gatgacaaca gccccagctt catccagatc aggtctgtgg ccaagaagca
ccccaagacc 1200tgggtgcact acattgctgc tgaggaggag gattgggact atgctcccct
ggtgctggct 1260cctgatgata ggagctacaa gtctcagtac ctgaataatg gcccccagag
gattggcagg 1320aagtacaaga aggtgaggtt catggcctac actgatgaga ccttcaagac
cagagaggct 1380atccagcatg agtctgggat cctggggccc ctgctgtatg gggaggtggg
ggacaccctg 1440ctgatcatct tcaagaacca ggccagcaga ccctacaaca tctaccccca
tgggatcact 1500gatgtgaggc ccctgtacag caggaggctg cctaaggggg tgaagcacct
gaaggacttc 1560cccatcctgc ctggggagat cttcaagtat aagtggactg tgactgtgga
ggatgggccc 1620accaagtctg accctaggtg cctgactagg tactactcta gctttgtgaa
catggagagg 1680gacctggcct ctggcctgat tggccccctg ctgatttgct acaaggagtc
tgtggatcag 1740aggggcaatc agatcatgtc tgacaagagg aatgtgatcc tgttctctgt
gtttgatgag 1800aataggtctt ggtacctgac tgagaacatc cagaggttcc tgcctaatcc
tgctggggtg 1860cagctggagg accctgagtt tcaggccagc aacatcatgc acagcatcaa
tggctatgtg 1920tttgactctc tgcagctgtc tgtgtgcctg catgaggtgg cttactggta
tatcctgagc 1980attggggctc agactgactt cctgtctgtg ttcttttctg gctacacttt
taagcacaag 2040atggtgtatg aggacaccct gaccctgttc cccttttctg gggagactgt
gttcatgtct 2100atggagaacc ctgggctgtg gattctgggc tgtcacaact ctgacttcag
aaacaggggc 2160atgactgccc tgctgaaggt gtctagctgt gacaagaata ctggggacta
ctatgaggac 2220agctatgagg acatttctgc ctatctgctg agcaagaaca atgccattga
gcccaggagc 2280ttttctcaga atccccctgt gctgaagagg caccagagag agatcaccag
gaccactctg 2340cagtctgatc aggaggagat tgattatgat gacactatct ctgtggagat
gaagaaagag 2400gactttgata tctatgatga ggatgagaat cagtctccca ggagcttcca
gaagaagact 2460agacactact tcattgctgc tgtggagagg ctgtgggact atggcatgag
ctctagccct 2520catgtgctga ggaacagggc ccagtctggg tctgtgcccc agttcaagaa
ggtggtgttc 2580caggagttca ctgatggcag ctttacccag cccctgtata ggggggagct
gaatgagcat 2640ctgggcctgc tgggccccta tattagggct gaagtggagg acaacatcat
ggtgaccttt 2700aggaaccagg ccagcaggcc ctacagcttt tacagcagcc tgattagcta
tgaggaggat 2760cagagacagg gggctgagcc caggaagaac tttgtgaagc ccaatgagac
caagacctac 2820ttctggaagg tgcagcacca catggcccct accaaggatg agtttgactg
caaggcctgg 2880gcttacttct ctgatgtgga cctggagaaa gatgtgcact ctggcctgat
tgggcccctg 2940ctggtgtgcc acaccaacac cctgaaccct gcccatggga ggcaggtgac
tgtgcaggag 3000tttgccctgt ttttcaccat ctttgatgag accaagagct ggtacttcac
tgagaacatg 3060gagaggaact gcagggcccc ctgtaacatc cagatggagg atcctacttt
caaggagaac 3120tacaggttcc atgccattaa tgggtacatc atggacaccc tgcctgggct
ggtgatggcc 3180caggatcaga ggattaggtg gtatctgctg tctatgggct ctaatgagaa
catccactct 3240atccacttct ctggccatgt gttcactgtg aggaagaagg aggagtacaa
gatggccctg 3300tacaacctgt accctggggt gtttgaaact gtggagatgc tgccctctaa
agctgggatc 3360tggagggtgg agtgcctgat tggggagcac ctgcatgctg gcatgagcac
cctgttcctg 3420gtgtacagca ataagtgcca gactcccctg ggcatggctt ctgggcacat
cagggatttc 3480cagatcactg cctctggcca gtatggccag tgggccccca agctggctag
gctgcactac 3540tctggcagca tcaatgcctg gagcaccaag gagcccttct cttggattaa
ggtggacctg 3600ctggctccca tgatcattca tggcatcaag acccaggggg ccaggcagaa
gttttctagc 3660ctgtatatta gccagttcat catcatgtat agcctggatg ggaagaagtg
gcagacctac 3720agggggaata gcactggcac cctgatggtg ttttttggca atgtggattc
ttctggcatc 3780aagcataaca tcttcaatcc ccctatcatt gccaggtaca ttaggctgca
tcccacccat 3840tactctatca ggagcaccct gaggatggag ctgatggggt gtgatctgaa
cagctgtagc 3900atgcccctgg gcatggagtc caaggctatc tctgatgccc agatcactgc
cagcagctac 3960ttcaccaaca tgtttgccac ctggagcccc agcaaggcca ggctgcacct
gcagggcagg 4020tctaatgcct ggaggcccca ggtgaacaat cccaaggagt ggctgcaggt
ggacttccag 4080aagactatga aggtgactgg ggtgaccact cagggggtga agagcctgct
gaccagcatg 4140tatgtgaagg agttcctgat ctcttctagc caggatgggc atcagtggac
cctgtttttt 4200cagaatggca aagtgaaggt gtttcagggg aatcaggaca gctttacccc
tgtggtgaac 4260agcctggatc ctcctctgct gactagatac ctgaggatcc acccccagag
ctgggtccac 4320cagattgctc tgaggatgga ggtgctgggg tgtgaggctc aggacctgta
ctga 4374174374DNAArtificial SequenceDescription of Artificial
Sequence FVIII Nucleic Acid 17atgcagattg agctgagcac ctgcttcttt
ctgtgcctgc tgaggttctg cttctctgcc 60accaggaggt actacctggg ggctgtggaa
ctgagctggg actatatgca gtctgacctg 120ggggagctgc ctgtggatgc caggttcccc
cccagggtgc ccaagtcttt cccctttaac 180acttctgtgg tgtacaagaa gaccctgttt
gtggagttta ctgaccacct gttcaatatt 240gccaagccca ggcccccctg gatgggcctg
ctgggcccaa ccatccaggc tgaggtgtat 300gatactgtgg tgatcaccct gaagaacatg
gccagccacc ctgtgagcct gcatgctgtg 360ggggtgagct attggaaggc ttctgagggg
gctgagtatg atgaccagac tagccagagg 420gagaaggagg atgacaaggt gttccctggg
gggtctcata cctatgtgtg gcaggtgctg 480aaggagaatg gccccatggc ctctgacccc
ctgtgcctga cctattctta cctgagccat 540gtggacctgg tcaaggacct gaactctggc
ctgattgggg ctctgctggt gtgcagggag 600ggcagcctgg ccaaggagaa gactcagact
ctgcataagt tcatcctgct gtttgctgtg 660tttgatgagg gcaagagctg gcactctgag
accaagaact ctctgatgca ggatagggat 720gctgcctctg ccagggcctg gcccaagatg
cacactgtga atggctatgt gaataggtct 780ctgcctggcc tgattggctg ccataggaag
tctgtgtact ggcatgtgat tggcatgggc 840actacccctg aggtgcactc tatcttcctg
gaggggcaca ccttcctggt gaggaaccac 900aggcaggcca gcctggagat ctctcccatc
accttcctga ctgcccagac tctgctgatg 960gacctgggcc agttcctgct gttctgccat
atcagcagcc accagcatga tggcatggag 1020gcctatgtga aggtggacag ctgcccagag
gaaccccagc tgaggatgaa gaacaatgag 1080gaggctgagg actatgatga tgacctgact
gactctgaga tggatgtggt gaggtttgat 1140gatgacaaca gccccagctt tattcagatc
aggtctgtgg ccaagaagca ccccaagacc 1200tgggtgcact acattgctgc tgaggaggag
gactgggatt atgcccccct ggtgctggcc 1260cctgatgaca ggtcttacaa gtctcagtac
ctgaacaatg gcccccagag gattgggagg 1320aagtacaaga aggtgaggtt catggcctac
actgatgaga ccttcaagac cagggaggcc 1380atccagcatg agtctggcat cctggggccc
ctgctgtatg gggaggtggg ggataccctg 1440ctgattatct tcaagaacca ggctagcagg
ccctataaca tctaccccca tggcattact 1500gatgtgaggc ccctgtactc taggagactg
cccaaggggg tgaagcacct gaaagacttc 1560cccatcctgc ctggggagat cttcaagtat
aagtggactg tgactgtgga ggatggcccc 1620actaagtctg accccaggtg cctgaccagg
tattacagca gctttgtgaa tatggagagg 1680gatctggctt ctggcctgat tgggcctctg
ctgatttgct acaaggagtc tgtggatcag 1740agggggaacc agattatgtc tgacaagagg
aatgtgattc tgttctctgt gtttgatgag 1800aacaggagct ggtacctgac tgagaatatc
cagaggttcc tgcctaatcc tgctggggtg 1860cagctggagg accctgagtt ccaggctagc
aacattatgc acagcatcaa tggctatgtg 1920tttgacagcc tgcagctgtc tgtgtgcctg
catgaggtgg cttactggta cattctgtct 1980attggggccc agactgactt cctgtctgtg
ttcttctctg gctacacctt caagcacaag 2040atggtgtatg aggacactct gaccctgttc
cccttctctg gggagactgt gttcatgagc 2100atggagaatc ctgggctgtg gattctgggg
tgccacaact ctgatttcag gaacaggggc 2160atgactgccc tgctgaaggt gagcagctgt
gacaagaaca ctggggatta ttatgaggac 2220agctatgagg acatttctgc ctacctgctg
agcaagaaca atgccattga gcctaggagc 2280ttcagccaga atccccctgt gctgaagaga
caccagaggg agatcactag gaccactctg 2340cagtctgatc aggaggagat tgactatgat
gacaccattt ctgtggagat gaagaaggag 2400gactttgata tttatgatga ggatgagaac
cagagcccca gaagcttcca gaagaagacc 2460aggcactact tcattgctgc tgtggagagg
ctgtgggatt atggcatgtc ttctagcccc 2520catgtgctga ggaacagggc tcagtctggc
tctgtgcctc agttcaagaa ggtggtgttc 2580caggagttca ctgatgggag cttcacccag
cctctgtaca ggggggagct gaatgaacat 2640ctgggcctgc tggggcccta catcagggct
gaggtggagg ataatatcat ggtgactttc 2700aggaatcagg cctctaggcc ctacagcttc
tactctagcc tgatcagcta tgaggaggac 2760cagaggcagg gggctgagcc taggaagaat
tttgtgaaac ccaatgagac caagacctac 2820ttttggaagg tgcagcacca catggcccct
accaaggatg agtttgactg taaggcctgg 2880gcctacttct ctgatgtgga cctggagaag
gatgtgcatt ctgggctgat tggccccctg 2940ctggtgtgcc acaccaacac cctgaaccct
gcccatggca ggcaggtgac tgtgcaggag 3000tttgccctgt tcttcaccat ctttgatgag
actaagagct ggtatttcac tgagaacatg 3060gagaggaact gtagggctcc ctgcaacatc
cagatggagg atccaacttt caaggagaac 3120tacaggttcc atgccatcaa tggctacatc
atggacaccc tgcctggcct ggtgatggcc 3180caggaccaga ggattaggtg gtacctgctg
agcatgggct ctaatgagaa catccactct 3240atccacttct ctggccatgt gtttactgtg
aggaagaagg aggagtacaa gatggctctg 3300tacaacctgt accctggggt gtttgagact
gtggagatgc tgcctagcaa ggctggcatt 3360tggagagtgg agtgtctgat tggggagcac
ctgcatgctg ggatgtctac cctgttcctg 3420gtgtactcta acaagtgcca gacccccctg
gggatggctt ctgggcacat cagagatttt 3480cagattactg cttctgggca gtatggccag
tgggctccca agctggccag actgcattac 3540tctggctcta ttaatgcttg gagcaccaag
gagcctttca gctggatcaa ggtggacctg 3600ctggctccca tgatcatcca tggcattaag
actcaggggg ctaggcagaa gttcagcagc 3660ctgtatattt ctcagtttat tatcatgtat
tctctggatg gcaagaagtg gcagacttac 3720aggggcaaca gcactggcac cctgatggtg
ttctttggca atgtggacag ctctgggatc 3780aagcataaca tcttcaaccc ccccattatt
gccaggtaca tcaggctgca ccccacccac 3840tattctatca ggagcactct gaggatggag
ctgatggggt gtgacctgaa cagctgctct 3900atgcccctgg gcatggagag caaggccatc
tctgatgccc agatcactgc cagctcttat 3960ttcaccaaca tgtttgccac ctggagcccc
agcaaggcca ggctgcacct gcagggcaga 4020agcaatgcct ggaggcccca ggtgaacaat
cctaaggagt ggctgcaggt ggacttccag 4080aagactatga aggtgactgg ggtgactacc
cagggggtga agagcctgct gaccagcatg 4140tatgtgaagg agttcctgat tagcagcagc
caggatgggc atcagtggac cctgttcttc 4200cagaatggga aggtgaaggt gttccagggc
aatcaggaca gcttcacccc tgtggtgaac 4260agcctggacc cccccctgct gaccaggtac
ctgaggatcc atccccagag ctgggtgcac 4320cagattgctc tgagaatgga ggtgctgggc
tgtgaggccc aggacctgta ttga 4374184374DNAArtificial
SequenceDescription of Artificial Sequence FVIII Nucleic Acid
18atgcagattg agctgtctac ctgttttttt ctgtgcctgc tgaggttctg cttctctgct
60accaggaggt attatctggg ggctgtggag ctgagctggg actacatgca gtctgacctg
120ggggagctgc ctgtggatgc caggtttcct cccagggtgc ctaagagctt ccccttcaac
180acctctgtgg tgtacaagaa gactctgttt gtggagttca ctgaccacct gttcaacatt
240gccaagccca ggcccccctg gatggggctg ctgggcccca ctatccaggc tgaggtgtat
300gatactgtgg tgattaccct gaagaacatg gcctctcacc ctgtgtctct gcatgctgtg
360ggggtgagct actggaaggc ttctgagggg gctgaatatg atgatcagac ctctcagagg
420gagaaggagg atgacaaggt gtttcctggg ggcagccaca cctatgtgtg gcaggtgctg
480aaggagaatg ggcccatggc ctctgatccc ctgtgcctga cctacagcta cctgagccat
540gtggacctgg tgaaggacct gaactctggc ctgattgggg ccctgctggt gtgcagggag
600ggcagcctgg ccaaggaaaa gacccagacc ctgcataagt tcatcctgct gtttgctgtg
660tttgatgagg gcaagtcttg gcactctgag accaagaaca gcctgatgca ggacagggat
720gctgcctctg ctagggcctg gcccaagatg cacactgtga atgggtatgt gaacagatct
780ctgcctggcc tgattggctg ccacaggaag tctgtgtact ggcatgtgat tggcatgggg
840accacccctg aggtgcatag catcttcctg gaggggcaca ccttcctggt gagaaatcat
900aggcaggcca gcctggagat tagccccatc accttcctga ctgcccagac cctgctgatg
960gacctgggcc agttcctgct gttctgccac atttctagcc accagcatga tggcatggag
1020gcctatgtga aggtggatag ctgccctgaa gagccccagc tgaggatgaa gaacaatgag
1080gaggctgagg attatgatga tgatctgact gactctgaga tggatgtggt gaggtttgat
1140gatgacaaca gccccagctt catccagatc aggtctgtgg ccaagaagca ccctaagacc
1200tgggtgcact acattgctgc tgaagaggag gactgggact atgcccccct ggtgctggcc
1260ccagatgaca ggtcttacaa gagccagtac ctgaataatg gcccccagag gattgggagg
1320aagtataaga aagtgaggtt catggcttac actgatgaga cctttaagac tagggaggcc
1380attcagcatg agtctgggat tctgggccct ctgctgtatg gggaggtggg ggacaccctg
1440ctgatcattt tcaagaacca ggccagcagg ccctataata tttatcccca tgggattact
1500gatgtcaggc ccctgtacag caggaggctg cctaaggggg tgaagcacct gaaggacttc
1560cccattctgc ctggggagat cttcaagtat aagtggactg tgactgtgga ggatggcccc
1620accaagtctg atcctaggtg cctgaccagg tactatagca gctttgtgaa catggagagg
1680gacctggctt ctggcctgat tggccccctg ctgatctgct acaaggaatc tgtggaccag
1740aggggcaacc agattatgtc tgacaagagg aatgtgatcc tgttttctgt gtttgatgag
1800aataggagct ggtatctgac tgagaacatc cagaggttcc tgcccaatcc tgctggggtg
1860cagctggagg accctgagtt ccaggcttct aacatcatgc atagcatcaa tgggtatgtg
1920tttgactctc tgcagctgtc tgtgtgcctg catgaggtgg cctattggta catcctgagc
1980attggggccc agactgactt cctgtctgtg ttcttctctg gctacacctt caagcacaag
2040atggtgtatg aggacaccct gaccctgttc cctttctctg gggagactgt gttcatgagc
2100atggagaacc ctggcctgtg gattctgggc tgccataatt ctgacttcag aaacaggggc
2160atgactgctc tgctgaaggt gagcagctgt gacaagaata ctggggacta ctatgaggac
2220tcttatgagg atatttctgc ctacctgctg agcaagaaca atgctattga gcccaggagc
2280ttcagccaga acccccctgt cctgaagagg catcagaggg agatcactag gaccaccctg
2340cagtctgatc aggaggagat tgactatgat gacactatct ctgtggaaat gaagaaggag
2400gactttgata tctatgatga ggatgagaac cagagcccca ggtctttcca gaagaagacc
2460aggcactact tcattgctgc tgtggagagg ctgtgggact atggcatgtc tagcagcccc
2520catgtgctga ggaacagagc ccagtctggc tctgtgcccc agttcaagaa ggtggtgttt
2580caggagttca ctgatgggag cttcactcag cccctgtata ggggggagct gaatgagcat
2640ctgggcctgc tggggcccta catcagggct gaggtggagg ataacatcat ggtgaccttc
2700aggaaccagg ccagcaggcc ctactctttc tactcttctc tgatcagcta tgaggaggat
2760cagaggcagg gggctgagcc taggaagaac tttgtcaagc ctaatgagac taagacctac
2820ttttggaagg tgcagcacca catggctccc actaaggatg agtttgattg caaggcctgg
2880gcctacttct ctgatgtgga cctggagaag gatgtgcact ctggcctgat tggccccctg
2940ctggtgtgtc acaccaatac cctgaaccct gcccatggca ggcaggtcac tgtgcaggag
3000tttgccctgt ttttcactat ctttgatgag actaagtctt ggtacttcac tgagaacatg
3060gaaaggaatt gcagggctcc ctgcaacatc cagatggagg accccacctt caaggagaac
3120tacaggtttc atgccatcaa tggctacatc atggacaccc tgcctggcct ggtgatggct
3180caggatcaga ggattaggtg gtatctgctg agcatgggca gcaatgagaa catccacagc
3240atccactttt ctggccatgt gttcactgtg aggaagaagg aggagtacaa gatggctctg
3300tacaatctgt accctggggt gtttgagact gtggagatgc tgcccagcaa ggctgggatc
3360tggagggtgg agtgcctgat tggggaacac ctgcatgctg gcatgtctac cctgttcctg
3420gtgtactcta acaagtgcca gactcccctg ggcatggcct ctgggcacat cagggacttc
3480cagatcactg cctctgggca gtatggccag tgggccccta agctggctag gctgcattac
3540tctggcagca tcaatgcctg gagcaccaag gagcccttca gctggatcaa ggtggacctg
3600ctggccccta tgatcatcca tggcatcaag acccaggggg ccagacagaa gttctcttct
3660ctgtacatct ctcagttcat catcatgtac tctctggatg gcaagaagtg gcagacctac
3720agggggaatt ctactggcac tctgatggtg ttctttggga atgtggatag ctctgggatc
3780aagcataata ttttcaaccc ccccattatt gctaggtaca tcaggctgca cccaacccac
3840tactctatta ggtctaccct gaggatggag ctgatgggct gtgacctgaa ctcttgtagc
3900atgcccctgg gcatggagag caaggctatc tctgatgccc agatcactgc cagcagctac
3960tttaccaaca tgtttgctac ttggagcccc agcaaggcca ggctgcacct gcagggcagg
4020agcaatgcct ggaggcccca ggtgaacaac cccaaggagt ggctgcaggt ggattttcag
4080aagaccatga aggtgactgg ggtgaccact cagggggtga aaagcctgct gactagcatg
4140tatgtgaagg agtttctgat cagcagctct caggatggcc atcagtggac cctgttcttc
4200cagaatggca aggtgaaggt gttccagggc aaccaggata gcttcacccc tgtggtgaat
4260agcctggacc cccccctgct gaccaggtac ctgaggatcc atccccagag ctgggtgcac
4320cagattgccc tgaggatgga ggtgctgggc tgtgaagccc aggacctgta ctga
4374194374DNAArtificial SequenceDescription of Artificial Sequence FVIII
Nucleic Acid 19atgcaaatag agctctccac ctgcttcttt ctgtgccttt tgcgattctg
ctttagtgcc 60accagaagat actacctggg tgcagtggaa ctgtcatggg actatatgca
aagtgatctc 120ggtgagctgc ctgtggacgc aagatttcct cctagagtgc caaaatcttt
tccattcaac 180acctcagtcg tgtacaaaaa gactctgttt gtagaattca cggatcacct
tttcaacatc 240gctaagccaa ggccaccctg gatgggtctg ctaggtccta ccatccaggc
tgaggtttat 300gatacagtgg tcattacact taagaacatg gcttcccatc ctgtcagtct
tcatgctgtt 360ggtgtatcct actggaaagc ttctgaggga gctgaatatg atgatcagac
cagtcaaagg 420gagaaagaag atgataaagt cttccctggt ggaagccata catatgtctg
gcaggtcctg 480aaagagaatg gtccaatggc ctctgaccca ctgtgcctta cctactcata
tctttctcat 540gtggacctgg taaaagactt gaattcaggc ctcattggag ccctactagt
atgtagagaa 600gggagtctgg ccaaggaaaa gacacagacc ttgcacaaat ttatactact
ttttgctgta 660tttgatgaag ggaaaagttg gcactcagaa acaaagaact ccttgatgca
ggatagggat 720gctgcatctg ctcgggcctg gcctaaaatg cacacagtca atggttatgt
aaacaggtct 780ctgccaggtc tgattggatg ccacaggaaa tcagtctatt ggcatgtgat
tggaatgggc 840accactcctg aagtgcactc aatattcctc gaaggtcaca catttcttgt
gaggaaccat 900cgccaggcgt ccttggaaat ctcgccaata actttcctta ctgctcaaac
actcttgatg 960gaccttggac agtttctact gttttgtcat atctcttccc accaacatga
tggcatggaa 1020gcttatgtca aagtagacag ctgtccagag gaaccccaac tacgaatgaa
aaataatgaa 1080gaagcggaag actatgatga tgatcttact gattctgaaa tggatgtggt
caggtttgat 1140gatgacaact ctccttcctt tatccaaatt cgctcagttg ccaagaagca
tcctaaaact 1200tgggtacatt acattgctgc tgaagaggag gactgggact atgctccctt
agtcctcgcc 1260cccgatgaca gaagttataa aagtcaatat ttgaacaatg gccctcagcg
gattggtagg 1320aagtacaaaa aagtccgatt tatggcatac acagatgaaa cctttaagac
tcgtgaagct 1380attcagcatg aatcaggaat cttgggacct ttactttatg gggaagttgg
agacacactg 1440ttgattatat ttaagaatca agcaagcaga ccatataaca tctaccctca
cggaatcact 1500gatgtccgtc ctttgtattc aaggagatta ccaaaaggtg taaaacattt
gaaggatttt 1560ccaattctgc caggagaaat attcaaatat aaatggacag tgactgtaga
agatgggcca 1620actaaatcag atcctcggtg cctgacccgc tattactcta gtttcgttaa
tatggagaga 1680gatctagctt caggactcat tggccctctc ctcatctgct acaaagaatc
tgtagatcaa 1740agaggaaacc agataatgtc agacaagagg aatgtcatcc tgttttctgt
atttgatgag 1800aaccgaagct ggtacctcac agagaatata caacgctttc tccccaatcc
agctggagtg 1860cagcttgagg atccagagtt ccaagcctcc aacatcatgc acagcatcaa
tggctatgtt 1920tttgatagtt tgcagttgtc agtttgtttg catgaggtgg catactggta
cattctaagc 1980attggagcac agactgactt cctttctgtc ttcttctctg gatatacctt
caaacacaaa 2040atggtctatg aagacacact caccctattc ccattctcag gagaaactgt
cttcatgtcg 2100atggaaaacc caggtctatg gattctgggg tgccacaact cagactttcg
gaacagaggc 2160atgaccgcct tactgaaggt ttctagttgt gacaagaaca ctggtgatta
ttacgaggac 2220agttatgaag atatttcagc atacttgctg agtaaaaaca atgccattga
accaagaagc 2280ttctcccaaa acccaccagt cttgaaacgc catcaacggg aaataactcg
tactactctt 2340cagtcagatc aagaggaaat tgactatgat gataccatat cagttgaaat
gaagaaggaa 2400gattttgaca tttatgatga ggatgaaaat cagagccccc gcagctttca
aaagaaaaca 2460cgacactatt ttattgctgc agtggagagg ctctgggatt atgggatgag
tagctcccca 2520catgttctaa gaaacagggc tcagagtggc agtgtccctc agttcaagaa
agttgttttc 2580caggaattta ctgatggctc ctttactcag cccttatacc gtggagaact
aaatgaacat 2640ttgggactcc tggggccata tataagagca gaagttgaag ataatatcat
ggtaactttc 2700agaaatcagg cctctcgtcc ctattccttc tattctagcc ttatttctta
tgaggaagat 2760cagaggcaag gagcagaacc tagaaaaaac tttgtcaagc ctaatgaaac
caaaacttac 2820ttttggaaag tgcaacatca tatggcaccc actaaagatg agtttgactg
caaagcctgg 2880gcttatttct ctgatgttga cctggaaaaa gatgtgcact caggcctgat
tggacccctt 2940ctggtctgcc acactaacac actgaaccct gctcatggga gacaagtgac
agtacaggaa 3000tttgctctgt ttttcaccat ctttgatgag accaaaagct ggtacttcac
tgaaaatatg 3060gaaagaaact gcagggctcc ctgcaatatc cagatggaag atcccacttt
taaagagaat 3120tatcgcttcc atgcaatcaa tggctacata atggatacac tacctggctt
agtaatggct 3180caggatcaaa ggattcgatg gtatctgctc agcatgggca gcaatgaaaa
catccattct 3240attcatttca gtggacatgt gttcaccgta cgaaaaaaag aggagtataa
aatggcactg 3300tacaatctct atccaggtgt ttttgagaca gtggaaatgt taccatccaa
agctggaatt 3360tggcgggtgg aatgccttat tggcgagcat ctacatgctg ggatgagcac
actttttctg 3420gtgtacagca ataagtgtca gactcccctg ggaatggctt ctggacacat
tagagatttt 3480cagattacag cttcaggaca atatggacag tgggccccaa agctggccag
acttcattat 3540tccggatcaa tcaatgcctg gagcaccaag gagccctttt cttggatcaa
ggtggatctg 3600ttggcaccaa tgattattca cggcatcaag acccagggtg cccgtcagaa
gttctccagc 3660ctctacatct ctcagtttat catcatgtat agtcttgatg ggaagaagtg
gcagacttat 3720cgaggaaatt ccactggaac cttaatggtc ttctttggca atgtggattc
atctgggata 3780aaacacaata tttttaaccc tccaattatt gctcgataca tccgtttgca
cccaactcat 3840tatagcattc gcagcactct tcgcatggag ttgatgggct gtgatttaaa
tagttgcagc 3900atgccattgg gaatggagag taaagcaata tcagatgcac agattactgc
ttcatcctac 3960tttaccaata tgtttgccac ctggtctcct tcaaaagctc gacttcacct
ccaagggagg 4020agtaatgcct ggagacctca ggtgaataat ccaaaagagt ggctgcaagt
ggacttccag 4080aagacaatga aagtcacagg agtaactact cagggagtaa aatctctgct
taccagcatg 4140tatgtgaagg agttcctcat ctccagcagt caagatggcc atcagtggac
tctctttttt 4200cagaatggca aagtaaaggt ttttcaggga aatcaagact ccttcacacc
tgtggtgaac 4260tctctagacc caccgttact gactcgctac cttcgaattc acccccagag
ttgggtgcac 4320cagattgccc tgaggatgga ggttctgggc tgcgaggcac aggacctcta
ctga 4374204890DNAArtificial SequenceDescription of Artificial
Sequence FVIII Nucleic Acid 20atgcagattg agctgagcac ctgcttcttc
ctgtgcctgc tgaggttctg cttctctgcc 60accaggagat actacctggg ggctgtggag
ctgagctggg actacatgca gtctgacctg 120ggggagctgc ctgtggatgc caggttcccc
cccagagtgc ccaagagctt ccccttcaac 180acctctgtgg tgtacaagaa gaccctgttt
gtggagttca ctgaccacct gttcaacatt 240gccaagccca ggcccccctg gatgggcctg
ctgggcccca ccatccaggc tgaggtgtat 300gacactgtgg tgatcaccct gaagaacatg
gccagccacc ctgtgagcct gcatgctgtg 360ggggtgagct actggaaggc ctctgagggg
gctgagtatg atgaccagac cagccagagg 420gagaaggagg atgacaaggt gttccctggg
ggcagccaca cctatgtgtg gcaggtgctg 480aaggagaatg gccccatggc ctctgacccc
ctgtgcctga cctacagcta cctgagccat 540gtggacctgg tgaaggacct gaactctggc
ctgattgggg ccctgctggt gtgcagggag 600ggcagcctgg ccaaggagaa gacccagacc
ctgcacaagt tcatcctgct gtttgctgtg 660tttgatgagg gcaagagctg gcactctgaa
accaagaaca gcctgatgca ggacagggat 720gctgcctctg ccagggcctg gcccaagatg
cacactgtga atggctatgt gaacaggagc 780ctgcctggcc tgattggctg ccacaggaag
tctgtgtact ggcatgtgat tggcatgggc 840accacccctg aggtgcacag catcttcctg
gagggccaca ccttcctggt caggaaccac 900aggcaggcca gcctggagat cagccccatc
accttcctga ctgcccagac cctgctgatg 960gacctgggcc agttcctgct gttctgccac
atcagcagcc accagcatga tggcatggag 1020gcctatgtga aggtggacag ctgccctgag
gagccccagc tgaggatgaa gaacaatgag 1080gaggctgagg actatgatga tgacctgact
gactctgaga tggatgtggt gaggtttgat 1140gatgacaaca gccccagctt catccagatc
aggtctgtgg ccaagaagca ccccaagacc 1200tgggtgcact acattgctgc tgaggaggag
gactgggact atgcccccct ggtgctggcc 1260cctgatgaca ggagctacaa gagccagtac
ctgaacaatg gcccccagag gattggcagg 1320aagtacaaga aggtcaggtt catggcctac
actgatgaaa ccttcaagac cagggaggcc 1380atccagcatg agtctggcat cctgggcccc
ctgctgtatg gggaggtggg ggacaccctg 1440ctgatcatct tcaagaacca ggccagcagg
ccctacaaca tctaccccca tggcatcact 1500gatgtgaggc ccctgtacag caggaggctg
cccaaggggg tgaagcacct gaaggacttc 1560cccatcctgc ctggggagat cttcaagtac
aagtggactg tgactgtgga ggatggcccc 1620accaagtctg accccaggtg cctgaccaga
tactacagca gctttgtgaa catggagagg 1680gacctggcct ctggcctgat tggccccctg
ctgatctgct acaaggagtc tgtggaccag 1740aggggcaacc agatcatgtc tgacaagagg
aatgtgatcc tgttctctgt gtttgatgag 1800aacaggagct ggtacctgac tgagaacatc
cagaggttcc tgcccaaccc tgctggggtg 1860cagctggagg accctgagtt ccaggccagc
aacatcatgc acagcatcaa tggctatgtg 1920tttgacagcc tgcagctgtc tgtgtgcctg
catgaggtgg cctactggta catcctgagc 1980attggggccc agactgactt cctgtctgtg
ttcttctctg gctacacctt caagcacaag 2040atggtgtatg aggacaccct gaccctgttc
cccttctctg gggagactgt gttcatgagc 2100atggagaacc ctggcctgtg gattctgggc
tgccacaact ctgacttcag gaacaggggc 2160atgactgccc tgctgaaagt ctccagctgt
gacaagaaca ctggggacta ctatgaggac 2220agctatgagg acatctctgc ctacctgctg
agcaagaaca atgccattga gcccaggagc 2280ttcagccaga acagcaggca ccccagcacc
aggcagaagc agttcaatgc caccaccatc 2340cctgagaatg acatagagaa gacagaccca
tggtttgccc accggacccc catgcccaag 2400atccagaatg tgagcagctc tgacctgctg
atgctgctga ggcagagccc caccccccat 2460ggcctgagcc tgtctgacct gcaggaggcc
aagtatgaaa ccttctctga tgaccccagc 2520cctggggcca ttgacagcaa caacagcctg
tctgagatga cccacttcag gccccagctg 2580caccactctg gggacatggt gttcacccct
gagtctggcc tgcagctgag gctgaatgag 2640aagctgggca ccactgctgc cactgagctg
aagaagctgg acttcaaagt ctccagcacc 2700agcaacaacc tgatcagcac catcccctct
gacaacctgg ctgctggcac tgacaacacc 2760agcagcctgg gcccccccag catgcctgtg
cactatgaca gccagctgga caccaccctg 2820tttggcaaga agagcagccc cctgactgag
tctgggggcc ccctgagcct gtctgaggag 2880aacaatgaca gcaagctgct ggagtctggc
ctgatgaaca gccaggagag cagctggggc 2940aagaatgtga gcaccaggag cttccagaag
aagaccaggc actacttcat tgctgctgtg 3000gagaggctgt gggactatgg catgagcagc
agcccccatg tgctgaggaa cagggcccag 3060tctggctctg tgccccagtt caagaaggtg
gtgttccagg agttcactga tggcagcttc 3120acccagcccc tgtacagagg ggagctgaat
gagcacctgg gcctgctggg cccctacatc 3180agggctgagg tggaggacaa catcatggtg
accttcagga accaggccag caggccctac 3240agcttctaca gcagcctgat cagctatgag
gaggaccaga ggcagggggc tgagcccagg 3300aagaactttg tgaagcccaa tgaaaccaag
acctacttct ggaaggtgca gcaccacatg 3360gcccccacca aggatgagtt tgactgcaag
gcctgggcct acttctctga tgtggacctg 3420gagaaggatg tgcactctgg cctgattggc
cccctgctgg tgtgccacac caacaccctg 3480aaccctgccc atggcaggca ggtgactgtg
caggagtttg ccctgttctt caccatcttt 3540gatgaaacca agagctggta cttcactgag
aacatggaga ggaactgcag ggccccctgc 3600aacatccaga tggaggaccc caccttcaag
gagaactaca ggttccatgc catcaatggc 3660tacatcatgg acaccctgcc tggcctggtg
atggcccagg accagaggat caggtggtac 3720ctgctgagca tgggcagcaa tgagaacatc
cacagcatcc acttctctgg ccatgtgttc 3780actgtgagga agaaggagga gtacaagatg
gccctgtaca acctgtaccc tggggtgttt 3840gagactgtgg agatgctgcc cagcaaggct
ggcatctgga gggtggagtg cctgattggg 3900gagcacctgc atgctggcat gagcaccctg
ttcctggtgt acagcaacaa gtgccagacc 3960cccctgggca tggcctctgg ccacatcagg
gacttccaga tcactgcctc tggccagtat 4020ggccagtggg cccccaagct ggccaggctg
cactactctg gcagcatcaa tgcctggagc 4080accaaggagc ccttcagctg gatcaaggtg
gacctgctgg cccccatgat catccatggc 4140atcaagaccc agggggccag gcagaagttc
agcagcctgt acatcagcca gttcatcatc 4200atgtacagcc tggatggcaa gaagtggcag
acctacaggg gcaacagcac tggcaccctg 4260atggtgttct ttggcaatgt ggacagctct
ggcatcaagc acaacatctt caaccccccc 4320atcattgcca gatacatcag gctgcacccc
acccactaca gcatcaggag caccctgagg 4380atggagctga tgggctgtga cctgaacagc
tgcagcatgc ccctgggcat ggagagcaag 4440gccatctctg atgcccagat cactgccagc
agctacttca ccaacatgtt tgccacctgg 4500agccccagca aggccaggct gcacctgcag
ggcaggagca atgcctggag gccccaggtc 4560aacaacccca aggagtggct gcaggtggac
ttccagaaga ccatgaaggt gactggggtg 4620accacccagg gggtgaagag cctgctgacc
agcatgtatg tgaaggagtt cctgatcagc 4680agcagccagg atggccacca gtggaccctg
ttcttccaga atggcaaggt gaaggtgttc 4740cagggcaacc aggacagctt cacccctgtg
gtgaacagcc tggacccccc cctgctgacc 4800agatacctga ggattcaccc ccagagctgg
gtgcaccaga ttgccctgag gatggaggtg 4860ctgggctgtg aggcccagga cctgtactga
4890214374DNAArtificial
SequenceDescription of Artificial Sequence FVIII Nucleic Acid
21atgcagattg agctgtcaac ttgctttttc ctgtgcctgc tgagattttg tttttccgct
60actagaagat actacctggg ggctgtggaa ctgtcttggg attacatgca gagtgacctg
120ggagagctgc cagtggacgc acgatttcca cctagagtcc ctaaatcatt ccccttcaac
180accagcgtgg tctataagaa aacactgttc gtggagttta ctgatcacct gttcaacatc
240gctaagcctc ggccaccctg gatgggactg ctgggaccaa caatccaggc agaggtgtac
300gacaccgtgg tcattacact gaaaaacatg gcctcacacc ccgtgagcct gcatgctgtg
360ggcgtcagct actggaaggc ttccgaaggg gcagagtatg acgatcagac ttcccagaga
420gaaaaagagg acgataaggt gtttcctggc gggtctcata cctatgtgtg gcaggtcctg
480aaagagaatg gccccatggc ttccgaccct ctgtgcctga cctactctta tctgagtcac
540gtggacctgg tcaaggatct gaacagcgga ctgatcggag cactgctggt gtgtagggaa
600gggagcctgg ctaaggagaa aacccagaca ctgcataagt tcattctgct gttcgccgtg
660tttgacgaag gaaaatcatg gcacagcgag acaaagaata gtctgatgca ggaccgggat
720gccgcttcag ccagagcttg gcccaaaatg cacactgtga acggctacgt caatcgctca
780ctgcctggac tgatcggctg ccaccgaaag agcgtgtatt ggcatgtcat cggaatgggc
840accacacctg aagtgcactc cattttcctg gaggggcata cctttctggt ccgcaaccac
900cgacaggcct ccctggagat ctctccaatt accttcctga cagctcagac tctgctgatg
960gatctgggac agttcctgct gttttgccac atcagctccc accagcatga tggcatggag
1020gcctacgtga aagtggacag ctgtcccgag gaacctcagc tgaggatgaa gaacaatgag
1080gaagctgaag actatgacga tgacctgacc gactccgaga tggatgtggt ccgattcgat
1140gacgataaca gcccctcctt tatccagatt agatctgtgg ccaagaaaca ccctaagaca
1200tgggtccatt acatcgcagc cgaggaagag gactgggatt atgcaccact ggtgctggca
1260ccagacgatc gatcctacaa atctcagtat ctgaacaatg gaccacagcg gattggcaga
1320aagtacaaga aagtgaggtt catggcttat accgatgaaa ccttcaagac tcgcgaagca
1380atccagcacg agagcgggat tctgggacca ctgctgtacg gagaagtggg ggacaccctg
1440ctgatcattt ttaagaacca ggccagcagg ccttacaata tctatccaca tggaattaca
1500gatgtgcgcc ctctgtacag ccggagactg ccaaagggcg tcaaacacct gaaggacttc
1560ccaatcctgc ccggggaaat ttttaagtat aaatggactg tcaccgtcga ggatggcccc
1620actaagagcg accctaggtg cctgacccgc tactattcta gtttcgtgaa tatggaaagg
1680gatctggcca gcggactgat cggcccactg ctgatttgtt acaaagagag cgtggatcag
1740agaggcaacc agatcatgtc cgacaagagg aatgtgattc tgttcagtgt ctttgacgaa
1800aaccggtcat ggtatctgac cgagaacatc cagagattcc tgcctaatcc agccggagtg
1860cagctggaag atcctgagtt tcaggcttct aacatcatgc atagtattaa tggctacgtg
1920ttcgacagtc tgcagctgtc agtgtgtctg cacgaggtcg cttactggta tatcctgagc
1980attggagcac agacagattt cctgagcgtg ttcttttccg gctacacttt taagcataaa
2040atggtgtatg aggacacact gactctgttc cccttcagcg gcgaaaccgt gtttatgtcc
2100atggagaatc ccgggctgtg gatcctggga tgccacaaca gcgatttcag gaatcgcggg
2160atgactgccc tgctgaaagt gtcaagctgt gacaagaaca ccggagacta ctatgaagat
2220tcatacgagg acatcagcgc atatctgctg tccaaaaaca atgccattga acccaggtct
2280tttagtcaga atcctccagt gctgaagagg caccagcgcg agatcacccg cactaccctg
2340cagagtgatc aggaagagat cgactacgac gatacaattt ctgtggaaat gaagaaagag
2400gacttcgata tctatgacga agatgagaac cagagtcctc gatcattcca gaagaaaacc
2460cggcattact ttattgctgc agtggagcgc ctgtgggatt atggcatgtc ctctagtcct
2520cacgtgctgc gaaatcgggc ccagtcaggg agcgtcccac agttcaagaa agtggtcttc
2580caggagttta cagacggatc ctttactcag ccactgtacc ggggcgaact gaacgagcac
2640ctggggctgc tgggacccta tatcagagct gaagtggagg ataacattat ggtcaccttc
2700agaaatcagg catctaggcc ttacagtttt tattcaagcc tgatctctta cgaagaggac
2760cagaggcagg gagcagaacc acgaaaaaac ttcgtgaagc ctaatgagac caaaacatac
2820ttttggaagg tgcagcacca tatggcccca acaaaagacg aattcgattg caaggcatgg
2880gcctattttt ctgacgtgga tctggagaag gacgtccaca gtggcctgat cgggccactg
2940ctggtgtgtc atactaacac cctgaatccc gcacacggca ggcaggtcac tgtccaggaa
3000ttcgccctgt tctttaccat ctttgatgag acaaaaagct ggtacttcac cgaaaacatg
3060gagcgaaatt gccgggctcc atgtaatatt cagatggaag accccacatt caaggagaac
3120taccgctttc atgccatcaa tgggtatatt atggatactc tgcccggact ggtcatggct
3180caggaccaga gaatcaggtg gtacctgctg agcatggggt ccaacgagaa tatccactca
3240attcatttca gcggacacgt gtttactgtc cggaagaaag aagagtataa aatggccctg
3300tacaacctgt atcccggcgt gttcgaaacc gtcgagatgc tgcctagcaa ggcagggatc
3360tggagagtgg aatgcctgat tggggagcac ctgcatgccg gaatgtctac cctgtttctg
3420gtgtacagta ataagtgtca gacacccctg gggatggctt ccggacatat ccgggatttc
3480cagattaccg catctggaca gtacggccag tgggccccta agctggctag actgcactat
3540tccgggtcta tcaacgcttg gtccacaaaa gagcctttct cttggattaa ggtggacctg
3600ctggcaccaa tgatcattca tggcatcaaa actcaggggg ccaggcagaa gttctcctct
3660ctgtacatct cacagtttat catcatgtac agcctggatg gcaagaaatg gcagacatac
3720cgcggcaata gcacagggac tctgatggtg ttctttggca acgtggacag ttcagggatc
3780aagcacaaca ttttcaatcc ccctatcatt gctagataca tcaggctgca cccaacccat
3840tattctattc gaagtacact gcggatggaa ctgatggggt gcgatctgaa cagttgttca
3900atgcccctgg gaatggagtc caaggcaatc tctgacgccc agattaccgc tagctcctac
3960ttcactaata tgtttgctac ctggagcccc tccaaagcac gactgcatct gcagggacga
4020agcaacgcat ggcgaccaca ggtgaacaat cccaaggagt ggctgcaggt cgattttcag
4080aaaactatga aggtgaccgg agtcacaact cagggcgtga aaagtctgct gacctcaatg
4140tacgtcaagg agttcctgat ctctagttca caggacggcc accagtggac actgttcttt
4200cagaacggaa aggtgaaagt cttccagggc aatcaggatt cctttacacc tgtggtcaac
4260tctctggacc cacccctgct gactcgctac ctgcgaatcc acccacagtc ctgggtgcat
4320cagattgcac tgagaatgga agtcctgggc tgcgaggccc aggacctgta ttga
437422222DNAArtificial SequenceDescription of Artificial Sequence TTR
Promoter 22gtctgtctgc acatttcgta gagcgagtgt tccgatactc taatctccct
aggcaaggtt 60catattgact taggttactt attctccttt tgttgactaa gtcaataatc
agaatcagca 120ggtttggagt cagcttggca gggatcagca gcctgggttg gaaggagggg
gtataaaagc 180cccttcacca ggagaagccg tcacacagat ccacaagctc ct
222235066DNAArtificial SequenceDescription of Artificial
Sequence Expression Cassette 23cctgcaggca gctgcgcgct cgctcgctca
ctgaggccgc ccgggcaaag cccgggcgtc 60gggcgacctt tggtcgcccg gcctcagtga
gcgagcgagc gcgcagagag ggagtggcca 120actccatcac taggggttcc tacgcgtgtc
tgtctgcaca tttcgtagag cgagtgttcc 180gatactctaa tctccctagg caaggttcat
attgacttag gttacttatt ctccttttgt 240tgactaagtc aataatcaga atcagcaggt
ttggagtcag cttggcaggg atcagcagcc 300tgggttggaa ggagggggta taaaagcccc
ttcaccagga gaagccgtca cacagatcca 360caagctcctg ctagcaggta agtgccgtgt
gtggttcccg cgggcctggc ctctttacgg 420gttatggccc ttgcgtgcct tgaattactg
acactgacat ccactttttc tttttctcca 480caggtttaaa cgccaccatg cagattgagc
tgagcacctg cttcttcctg tgtctgctga 540ggttctgctt ctctgccacc aggaggtatt
acctgggggc tgtggagctg agctgggact 600atatgcagtc tgacctgggg gagctgcctg
tggatgctag gttccccccc agggtgccca 660agagcttccc ctttaacact tctgtggtgt
acaagaagac cctgtttgtg gagttcactg 720accacctgtt caacattgcc aagcccaggc
ccccctggat ggggctgctg gggcccacca 780tccaggctga ggtgtatgac actgtggtga
tcaccctgaa gaacatggcc agccaccctg 840tgagcctgca tgctgtgggg gtgagctact
ggaaggcttc tgagggggct gagtatgatg 900accagactag ccagagggag aaggaggatg
acaaggtgtt tcctgggggc agccatacct 960atgtgtggca ggtgctgaag gagaatggcc
ccatggcctc tgaccccctg tgcctgacct 1020acagctacct gtctcatgtg gacctggtga
aggacctgaa ctctggcctg attggggctc 1080tgctggtgtg tagggagggc agcctggcta
aggaaaagac ccagaccctg cataagttta 1140tcctgctgtt tgctgtgttt gatgagggca
agagctggca ctctgagacc aagaacagcc 1200tgatgcagga tagggatgct gcctctgcca
gggcttggcc taagatgcac actgtgaatg 1260ggtatgtgaa taggagcctg cctggcctga
ttggctgcca caggaagtct gtgtactggc 1320atgtgattgg gatgggcacc acccctgagg
tccatagcat cttcctggag ggccacactt 1380tcctggtgag gaaccacaga caggcctctc
tggagatctc tcccatcacc ttcctgactg 1440ctcagactct gctgatggac ctgggccagt
tcctgctgtt ttgccatatt agcagccacc 1500agcatgatgg gatggaggcc tatgtgaagg
tggatagctg ccctgaggag cctcagctga 1560ggatgaagaa caatgaggag gctgaagact
atgatgatga cctgactgat tctgagatgg 1620atgtggtgag gtttgatgat gacaatagcc
ccagcttcat tcagatcagg tctgtggcca 1680agaaacaccc caagacctgg gtgcactaca
ttgctgctga ggaagaggac tgggactatg 1740ctcccctggt gctggcccct gatgataggt
cttataagag ccagtacctg aacaatgggc 1800cccagaggat tggcaggaag tacaagaagg
tgaggttcat ggcctacact gatgaaacct 1860tcaaaaccag ggaggccatt cagcatgagt
ctggcatcct gggccctctg ctgtatgggg 1920aggtggggga caccctgctg atcatcttca
agaaccaggc cagcaggccc tacaacatct 1980atcctcatgg catcactgat gtgaggcccc
tgtacagcag gaggctgccc aagggggtga 2040agcacctgaa agacttcccc atcctgcctg
gggagatctt taagtataag tggactgtga 2100ctgtggagga tggccctacc aagtctgacc
ccaggtgtct gaccaggtac tattctagct 2160ttgtgaacat ggagagggac ctggcctctg
gcctgattgg gcccctgctg atctgctaca 2220aggagtctgt ggaccagagg ggcaaccaga
tcatgtctga caagaggaat gtgatcctgt 2280tttctgtgtt tgatgagaat aggagctggt
acctgactga gaacatccag aggtttctgc 2340ccaatcctgc tggggtgcag ctggaggatc
ctgagttcca ggccagcaat atcatgcata 2400gcatcaatgg ctatgtgttt gacagcctgc
agctgtctgt gtgcctgcat gaggtggcct 2460actggtacat cctgagcatt ggggcccaga
ctgactttct gtctgtgttc ttttctggct 2520ataccttcaa gcacaagatg gtgtatgagg
ataccctgac cctgttcccc ttctctgggg 2580agactgtgtt catgagcatg gagaatcctg
ggctgtggat cctggggtgc cacaactctg 2640attttaggaa cagggggatg actgccctgc
tgaaggtgtc tagctgtgat aagaacactg 2700gggactacta tgaggacagc tatgaggaca
tttctgctta tctgctgtct aagaataatg 2760ccattgagcc cagaagcttc agccagaatc
cccctgtgct gaagagacat cagagggaga 2820tcaccagaac taccctgcag tctgatcagg
aggagattga ctatgatgac actatctctg 2880tggagatgaa gaaggaggac tttgacatct
atgatgagga tgagaatcag tctcccagga 2940gctttcagaa gaagaccaga cattacttca
ttgctgctgt ggagaggctg tgggactatg 3000gcatgagctc tagccctcat gtgctgagga
acagggccca gtctggctct gtgccccagt 3060tcaagaaggt ggtgttccag gaattcactg
atggcagctt cacccagccc ctgtacaggg 3120gggagctgaa tgagcacctg ggcctgctgg
ggccttatat cagggctgag gtggaggata 3180atattatggt gactttcagg aaccaggcca
gcaggcccta ctctttctat agcagcctga 3240tctcttatga ggaggatcag aggcaggggg
ctgagcctag gaagaacttt gtgaagccca 3300atgagactaa gacctacttc tggaaggtcc
agcaccacat ggcccctacc aaggatgagt 3360ttgactgcaa ggcctgggcc tatttctctg
atgtggatct ggagaaggat gtccattctg 3420ggctgattgg ccccctgctg gtgtgccaca
ctaacactct gaatcctgcc catggcaggc 3480aggtgactgt ccaggagttt gccctgttct
tcactatctt tgatgagacc aagagctggt 3540actttactga gaacatggag aggaactgca
gagctccttg caatattcag atggaggacc 3600ccaccttcaa ggagaattac aggttccatg
ccattaatgg gtacatcatg gacaccctgc 3660ctggcctggt gatggctcag gaccagagga
tcaggtggta cctgctgagc atgggctcta 3720atgagaatat ccacagcatc cacttctctg
ggcatgtgtt cactgtgagg aagaaggagg 3780agtacaagat ggctctgtat aatctgtacc
ctggggtgtt tgaaactgtg gagatgctgc 3840cctctaaggc tggcatctgg agggtggagt
gcctgattgg ggagcacctg catgctggca 3900tgagcaccct gttcctggtg tacagcaaca
agtgccagac ccccctgggc atggcctctg 3960gccacatcag ggacttccag atcactgcct
ctggccagta tggccagtgg gcccccaagc 4020tggccaggct gcactattct ggcagcatca
atgcctggag caccaaggag cccttcagct 4080ggatcaaggt ggacctgctg gcccccatga
tcattcatgg catcaagacc cagggggcca 4140ggcagaagtt cagctctctg tacatctctc
agttcatcat catgtactct ctggatggga 4200agaagtggca gacctacagg ggcaacagca
ctggcaccct gatggtgttc tttgggaatg 4260tggactcttc tggcatcaag cacaacatct
tcaatccccc catcattgct aggtatatta 4320ggctgcatcc cacccactac agcatcaggt
ctaccctgag gatggagctg atgggctgtg 4380acctgaactc ttgcagcatg cccctgggca
tggagtctaa ggccatctct gatgcccaga 4440ttactgccag cagctacttc accaacatgt
ttgccacctg gagcccctct aaggccaggc 4500tgcatctgca ggggaggagc aatgcctgga
ggcctcaggt gaacaacccc aaggagtggc 4560tgcaggtgga tttccagaag accatgaagg
tgactggggt gaccacccag ggggtcaaga 4620gcctgctgac cagcatgtat gtgaaggagt
tcctgatcag cagcagccag gatggccacc 4680agtggactct gttctttcag aatgggaagg
tgaaggtgtt tcagggcaat caggactctt 4740tcacccctgt ggtgaacagc ctggaccccc
ccctgctgac cagatacctg aggatccacc 4800cccagtcttg ggtgcatcag attgccctga
ggatggaggt gctgggctgt gaggctcagg 4860atctgtactg agcggccgca ataaaagatc
agagctctag agatctgtgt gttggttttt 4920tgtgtaggaa cccctagtga tggagttggc
cactccctct ctgcgcgctc gctcgctcac 4980tgaggccggg cgaccaaagg tcgcccgacg
cccgggcttt gcccgggcgg cctcagtgag 5040cgagcgagcg cgcagctgcc tgcagg
50662411976DNAArtificial
SequenceDescription of Artificial Sequence Plasmid 24cctgcaggca
gctgcgcgct cgctcgctca ctgaggccgc ccgggcaaag cccgggcgtc 60gggcgacctt
tggtcgcccg gcctcagtga gcgagcgagc gcgcagagag ggagtggcca 120actccatcac
taggggttcc tacgcgtgtc tgtctgcaca tttcgtagag cgagtgttcc 180gatactctaa
tctccctagg caaggttcat attgacttag gttacttatt ctccttttgt 240tgactaagtc
aataatcaga atcagcaggt ttggagtcag cttggcaggg atcagcagcc 300tgggttggaa
ggagggggta taaaagcccc ttcaccagga gaagccgtca cacagatcca 360caagctcctg
ctagcaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg 420gttatggccc
ttgcgtgcct tgaattactg acactgacat ccactttttc tttttctcca 480caggtttaaa
cgccaccatg cagattgagc tgagcacctg cttcttcctg tgtctgctga 540ggttctgctt
ctctgccacc aggaggtatt acctgggggc tgtggagctg agctgggact 600atatgcagtc
tgacctgggg gagctgcctg tggatgctag gttccccccc agggtgccca 660agagcttccc
ctttaacact tctgtggtgt acaagaagac cctgtttgtg gagttcactg 720accacctgtt
caacattgcc aagcccaggc ccccctggat ggggctgctg gggcccacca 780tccaggctga
ggtgtatgac actgtggtga tcaccctgaa gaacatggcc agccaccctg 840tgagcctgca
tgctgtgggg gtgagctact ggaaggcttc tgagggggct gagtatgatg 900accagactag
ccagagggag aaggaggatg acaaggtgtt tcctgggggc agccatacct 960atgtgtggca
ggtgctgaag gagaatggcc ccatggcctc tgaccccctg tgcctgacct 1020acagctacct
gtctcatgtg gacctggtga aggacctgaa ctctggcctg attggggctc 1080tgctggtgtg
tagggagggc agcctggcta aggaaaagac ccagaccctg cataagttta 1140tcctgctgtt
tgctgtgttt gatgagggca agagctggca ctctgagacc aagaacagcc 1200tgatgcagga
tagggatgct gcctctgcca gggcttggcc taagatgcac actgtgaatg 1260ggtatgtgaa
taggagcctg cctggcctga ttggctgcca caggaagtct gtgtactggc 1320atgtgattgg
gatgggcacc acccctgagg tccatagcat cttcctggag ggccacactt 1380tcctggtgag
gaaccacaga caggcctctc tggagatctc tcccatcacc ttcctgactg 1440ctcagactct
gctgatggac ctgggccagt tcctgctgtt ttgccatatt agcagccacc 1500agcatgatgg
gatggaggcc tatgtgaagg tggatagctg ccctgaggag cctcagctga 1560ggatgaagaa
caatgaggag gctgaagact atgatgatga cctgactgat tctgagatgg 1620atgtggtgag
gtttgatgat gacaatagcc ccagcttcat tcagatcagg tctgtggcca 1680agaaacaccc
caagacctgg gtgcactaca ttgctgctga ggaagaggac tgggactatg 1740ctcccctggt
gctggcccct gatgataggt cttataagag ccagtacctg aacaatgggc 1800cccagaggat
tggcaggaag tacaagaagg tgaggttcat ggcctacact gatgaaacct 1860tcaaaaccag
ggaggccatt cagcatgagt ctggcatcct gggccctctg ctgtatgggg 1920aggtggggga
caccctgctg atcatcttca agaaccaggc cagcaggccc tacaacatct 1980atcctcatgg
catcactgat gtgaggcccc tgtacagcag gaggctgccc aagggggtga 2040agcacctgaa
agacttcccc atcctgcctg gggagatctt taagtataag tggactgtga 2100ctgtggagga
tggccctacc aagtctgacc ccaggtgtct gaccaggtac tattctagct 2160ttgtgaacat
ggagagggac ctggcctctg gcctgattgg gcccctgctg atctgctaca 2220aggagtctgt
ggaccagagg ggcaaccaga tcatgtctga caagaggaat gtgatcctgt 2280tttctgtgtt
tgatgagaat aggagctggt acctgactga gaacatccag aggtttctgc 2340ccaatcctgc
tggggtgcag ctggaggatc ctgagttcca ggccagcaat atcatgcata 2400gcatcaatgg
ctatgtgttt gacagcctgc agctgtctgt gtgcctgcat gaggtggcct 2460actggtacat
cctgagcatt ggggcccaga ctgactttct gtctgtgttc ttttctggct 2520ataccttcaa
gcacaagatg gtgtatgagg ataccctgac cctgttcccc ttctctgggg 2580agactgtgtt
catgagcatg gagaatcctg ggctgtggat cctggggtgc cacaactctg 2640attttaggaa
cagggggatg actgccctgc tgaaggtgtc tagctgtgat aagaacactg 2700gggactacta
tgaggacagc tatgaggaca tttctgctta tctgctgtct aagaataatg 2760ccattgagcc
cagaagcttc agccagaatc cccctgtgct gaagagacat cagagggaga 2820tcaccagaac
taccctgcag tctgatcagg aggagattga ctatgatgac actatctctg 2880tggagatgaa
gaaggaggac tttgacatct atgatgagga tgagaatcag tctcccagga 2940gctttcagaa
gaagaccaga cattacttca ttgctgctgt ggagaggctg tgggactatg 3000gcatgagctc
tagccctcat gtgctgagga acagggccca gtctggctct gtgccccagt 3060tcaagaaggt
ggtgttccag gaattcactg atggcagctt cacccagccc ctgtacaggg 3120gggagctgaa
tgagcacctg ggcctgctgg ggccttatat cagggctgag gtggaggata 3180atattatggt
gactttcagg aaccaggcca gcaggcccta ctctttctat agcagcctga 3240tctcttatga
ggaggatcag aggcaggggg ctgagcctag gaagaacttt gtgaagccca 3300atgagactaa
gacctacttc tggaaggtcc agcaccacat ggcccctacc aaggatgagt 3360ttgactgcaa
ggcctgggcc tatttctctg atgtggatct ggagaaggat gtccattctg 3420ggctgattgg
ccccctgctg gtgtgccaca ctaacactct gaatcctgcc catggcaggc 3480aggtgactgt
ccaggagttt gccctgttct tcactatctt tgatgagacc aagagctggt 3540actttactga
gaacatggag aggaactgca gagctccttg caatattcag atggaggacc 3600ccaccttcaa
ggagaattac aggttccatg ccattaatgg gtacatcatg gacaccctgc 3660ctggcctggt
gatggctcag gaccagagga tcaggtggta cctgctgagc atgggctcta 3720atgagaatat
ccacagcatc cacttctctg ggcatgtgtt cactgtgagg aagaaggagg 3780agtacaagat
ggctctgtat aatctgtacc ctggggtgtt tgaaactgtg gagatgctgc 3840cctctaaggc
tggcatctgg agggtggagt gcctgattgg ggagcacctg catgctggca 3900tgagcaccct
gttcctggtg tacagcaaca agtgccagac ccccctgggc atggcctctg 3960gccacatcag
ggacttccag atcactgcct ctggccagta tggccagtgg gcccccaagc 4020tggccaggct
gcactattct ggcagcatca atgcctggag caccaaggag cccttcagct 4080ggatcaaggt
ggacctgctg gcccccatga tcattcatgg catcaagacc cagggggcca 4140ggcagaagtt
cagctctctg tacatctctc agttcatcat catgtactct ctggatggga 4200agaagtggca
gacctacagg ggcaacagca ctggcaccct gatggtgttc tttgggaatg 4260tggactcttc
tggcatcaag cacaacatct tcaatccccc catcattgct aggtatatta 4320ggctgcatcc
cacccactac agcatcaggt ctaccctgag gatggagctg atgggctgtg 4380acctgaactc
ttgcagcatg cccctgggca tggagtctaa ggccatctct gatgcccaga 4440ttactgccag
cagctacttc accaacatgt ttgccacctg gagcccctct aaggccaggc 4500tgcatctgca
ggggaggagc aatgcctgga ggcctcaggt gaacaacccc aaggagtggc 4560tgcaggtgga
tttccagaag accatgaagg tgactggggt gaccacccag ggggtcaaga 4620gcctgctgac
cagcatgtat gtgaaggagt tcctgatcag cagcagccag gatggccacc 4680agtggactct
gttctttcag aatgggaagg tgaaggtgtt tcagggcaat caggactctt 4740tcacccctgt
ggtgaacagc ctggaccccc ccctgctgac cagatacctg aggatccacc 4800cccagtcttg
ggtgcatcag attgccctga ggatggaggt gctgggctgt gaggctcagg 4860atctgtactg
agcggccgca ataaaagatc agagctctag agatctgtgt gttggttttt 4920tgtgtaggaa
cccctagtga tggagttggc cactccctct ctgcgcgctc gctcgctcac 4980tgaggccggg
cgaccaaagg tcgcccgacg cccgggcttt gcccgggcgg cctcagtgag 5040cgagcgagcg
cgcagctgcc tgcaggggca gcttgaagga aatactaagg caaaggtact 5100gcaagtgctc
gcaacattcg cttatgcgga ttattgccgt agtgccgcga cgccgggggc 5160aagatgcaga
gattgccatg gtacaggccg tgcggttgat attgccaaaa cagagctgtg 5220ggggagagtt
gtcgagaaag agtgcggaag atgcaaaggc gtcggctatt caaggatgcc 5280agcaagcgca
gcatatcgcg ctgtgacgat gctaatccca aaccttaccc aacccacctg 5340gtcacgcact
gttaagccgc tgtatgacgc tctggtggtg caatgccaca aagaagagtc 5400aatcgcagac
aacattttga atgcggtcac acgttagcag catgattgcc acggatggca 5460acatattaac
ggcatgatat tgacttattg aataaaattg ggtaaatttg actcaacgat 5520gggttaattc
gctcgttgtg gtagtgagat gaaaagaggc ggcgcttact accgattccg 5580cctagttggt
cacttcgacg tatcgtctgg aactccaacc atcgcaggca gagaggtctg 5640caaaatgcaa
tcccgaaaca gttcgcaggt aatagttaga gcctgcataa cggtttcggg 5700attttttata
tctgcacaac aggtaagagc attgagtcga taatcgtgaa gagtcggcga 5760gcctggttag
ccagtgctct ttccgttgtg ctgaattaag cgaataccgg aagcagaacc 5820ggatcaccaa
atgcgtacag gcgtcatcgc cgcccagcaa cagcacaacc caaactgagc 5880cgtagccact
gtctgtcctg aattcattag taatagttac gctgcggcct tttacacatg 5940accttcgtga
aagcgggtgg caggaggtcg cgctaacaac ctcctgccgt tttgcccgtg 6000catatcggtc
acgaacaaat ctgattacta aacacagtag cctggatttg ttctatcagt 6060aatcgacctt
attcctaatt aaatagagca aatcccctta ttgggggtaa gacatgaaga 6120tgccagaaaa
acatgacctg ttggccgcca ttctcgcggc aaaggaacaa ggcatcgggg 6180caatccttgc
gtttgcaatg gcgtaccttc gcggcagata taatggcggt gcgtttacaa 6240aaacagtaat
cgacgcaacg atgtgcgcca ttatcgccta gttcattcgt gaccttctcg 6300acttcgccgg
actaagtagc aatctcgctt atataacgag cgtgtttatc ggctacatcg 6360gtactgactc
gattggttcg cttatcaaac gcttcgctgc taaaaaagcc ggagtagaag 6420atggtagaaa
tcaataatca acgtaaggcg ttcctcgata tgctggcgtg gtcggaggga 6480actgataacg
gacgtcagaa aaccagaaat catggttatg acgtcattgt aggcggagag 6540ctatttactg
attactccga tcaccctcgc aaacttgtca cgctaaaccc aaaactcaaa 6600tcaacaggcg
ccggacgcta ccagcttctt tcccgttggt gggatgccta ccgcaagcag 6660cttggcctga
aagacttctc tccgaaaagt caggacgctg tggcattgca gcagattaag 6720gagcgtggcg
ctttacctat gattgatcgt ggtgatatcc gtcaggcaat cgaccgttgc 6780agcaatatct
gggcttcact gccgggcgct ggttatggtc agttcgagca taaggctgac 6840agcctgattg
caaaattcaa agaagcgggc ggaacggtca gagagattga tgtatgagca 6900gagtcaccgc
gattatctcc gctctggtta tctgcatcat cgtctgcctg tcatgggctg 6960ttaatcatta
ccgtgataac gccattacct acaaagccca gcgcgacaaa aatgccagag 7020aactgaagct
ggcgaacgcg gcaattactg acatgcagat gcgtcagcgt gatgttgctg 7080cgctcgatgc
aaaatacacg aaggagttag ctgatgctaa agctgaaaat gatgctctgc 7140gtgatgatgt
tgccgctggt cgtcgtcggt tgcacatcaa agcagtctgt cagtcagtgc 7200gtgaagccac
caccgcctcc ggcgtggata atgcagcctc cccccgactg gcagacaccg 7260ctgaacggga
ttatttcacc ctcagagaga ggctgatcac tatgcaaaaa caactggaag 7320gaacccagaa
gtatattaat gagcagtgca gatagagttg cccatatcga tgggcaactc 7380atgcaattat
tgtgagcaat acacacgcgc ttccagcgga gtataaatgc ctaaagtaat 7440aaaaccgagc
aatccattta cgaatgtttg ctgggtttct gttttaacaa cattttctgc 7500gccgccacaa
attttggctg catcgacagt tttcttctgc ccaattccag aaacgaagaa 7560atgatgggtg
atggtttcct ttggtgctac tgctgccggt ttgttttgaa cagtaaacgt 7620ctgttgagca
catcctgtaa taagcagggc cagcgcagta gcgagtagca tttttttcat 7680ggtgttattc
ccgatgcttt ttgaagttcg cagaatcgta tgtgtagaaa attaaacaaa 7740ccctaaacaa
tgagttgaaa tttcatattg ttaatattta ttaatgtatg tcaggtgcga 7800tgaatcgtca
ttgtattccc ggattaacta tgtccacagc cctgacgggg aacttctctg 7860cgggagtgtc
cgggaataat taaaacgatg cacacagggt ttagcgcgta cacgtattgc 7920attatgccaa
cgccccggtg ctgacacgga agaaaccgga cgttatgatt tagcgtggaa 7980agatttgtgt
agtgttctga atgctctcag taaatagtaa tgaattatca aaggtatagt 8040aatatctttt
atgttcatgg atatttgtaa cccatcggaa aactcctgct ttagcaagat 8100tttccctgta
ttgctgaaat gtgatttctc ttgatttcaa cctatcatag gacgtttcta 8160taagatgcgt
gtttcttgag aatttaacat ttacaacctt tttaagtcct tttattaaca 8220cggtgttatc
gttttctaac acgatgtgaa tattatctgt ggctagatag taaatataat 8280gtgagacgtt
gtgacgtttt agttcagaat aaaacaattc acagtctaaa tcttttcgca 8340cttgatcgaa
tatttcttta aaaatggcaa cctgagccat tggtaaaacc ttccatgtga 8400tacgagggcg
cgtagtttgc attatcgttt ttatcgtttc aatctggtct gacctccttg 8460tgttttgttg
atgatttatg tcaaatatta ggaatgtttt cacttaatag tattggttgc 8520gtaacaaagt
gcggtcctgc tggcattctg gagggaaata caaccgacag atgtatgtaa 8580ggccaacgtg
ctcaaatctt catacagaaa gatttgaagt aatattttaa ccgctagatg 8640aagagcaagc
gcatggagcg acaaaatgaa taaagaacaa tctgctgatg atccctccgt 8700ggatctgatt
cgtgtaaaaa atatgcttaa tagcaccatt tctatgagtt accctgatgt 8760tgtaattgca
tgtatagaac ataaggtgtc tctggaagca ttcagagcaa ttgaggcagc 8820gttggtgaag
cacgataata atatgaagga ttattccctg gtggttgact gatcaccata 8880actgctaatc
attcaaacta tttagtctgt gacagagcca acacgcagtc tgtcactgtc 8940aggaaagtgg
taaaactgca actcaattac tgcaatgccc tcgtaattaa gtgaatttac 9000aatatcgtcc
tgttcggagg gaagaacgcg ggatgttcat tcttcatcac ttttaattga 9060tgtatatgct
ctcttttctg acgttagtct ccgacggcag gcttcaatga cccaggctga 9120gaaattcccg
gacccttttt gctcaagagc gatgttaatt tgttcaatca tttggttagg 9180aaagcggatg
ttgcgggttg ttgttctgcg ggttctgttc ttcgttgaca tgaggttgcc 9240ccgtattcag
tgtcgctgat ttgtattgtc tgaagttgtt tttacgttaa gttgatgcag 9300atcaattaat
acgatacctg cgtcataatt gattatttga cgtggtttga tggcctccac 9360gcacgttgtg
atatgtagat gataatcatt atcactttac gggtcctttc cggtgatccg 9420acaggttacg
gggcggcgac ctgcctgatg cggtattttc tccttacgca tctgtgcggt 9480atttcacacc
gcatacgtca aagcaaccat agtacgcgcc ctgtagcggc gcattaagcg 9540cggcgggtgt
ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ttagcgcccg 9600ctcctttcgc
tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc 9660taaatcgggg
gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa 9720aacttgattt
gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc 9780ctttgacgtt
ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac 9840tcaactctat
ctcgggctat tcttttgatt tagacctgca ggcatgcaag cttggcactg 9900gccgtcgttt
tacaacgtcg tgactgggaa aaccctggcg ttacccaact taatcgcctt 9960gcagcacatc
cccctttcgc cagctggcgt aatagcgaag aggcccgcac cgatcgccct 10020tcccaacagt
tgcgcagcct gaatggcgaa tgcgatttat tcaacaaagc cgccgtcccg 10080tcaagtcagc
gtaatgctct gccagtgtta caaccaatta accaattctg attagaaaaa 10140ctcatcgagc
atcaaatgaa actgcaattt attcatatca ggattatcaa taccatattt 10200ttgaaaaagc
cgtttctgta atgaaggaga aaactcaccg aggcagttcc ataggatggc 10260aagatcctgg
tatcggtctg cgattccgac tcgtccaaca tcaatacaac ctattaattt 10320cccctcgtca
aaaataaggt tatcaagtga gaaatcacca tgagtgacga ctgaatccgg 10380tgagaatggc
aaaagcttat gcatttcttt ccagacttgt tcaacaggcc agccattacg 10440ctcgtcatca
aaatcactcg catcaaccaa accgttattc attcgtgatt gcgcctgagc 10500gagacgaaat
acgcgatcgc tgttaaaagg acaattacaa acaggaatcg aatgcaaccg 10560gcgcaggaac
actgccagcg catcaacaat attttcacct gaatcaggat attcttctaa 10620tacctggaat
gctgttttcc cggggatcgc agtggtgagt aaccatgcat catcaggagt 10680acggataaaa
tgcttgatgg tcggaagagg cataaattcc gtcagccagt ttagtctgac 10740catctcatct
gtaacatcat tggcaacgct acctttgcca tgtttcagaa acaactctgg 10800cgcatcgggc
ttcccataca atcgatagat tgtcgcacct gattgcccga cattatcgcg 10860agcccattta
tacccatata aatcagcatc catgttggaa tttaatcgcg gcttcgagca 10920agacgtttcc
cgttgaatat ggctcataac accccttgta ttactgttta tgtaagcaga 10980cagttttatt
gttcatgatg atatattttt atcttgtgca atgtaacatc agagattttg 11040agacacaacg
tggctttgtt gaataaatcg aacttttgct gagttgaagg atcagatcac 11100gcatcttccc
gacaacgcag accgttccgt ggcaaagcaa aagttcaaaa tcaccaactg 11160gtccacctac
aacaaagctc tcatcaaccg tggctccctc actttctggc tggatgatgg 11220ggcgattcag
gcctggtatg agtcagcaac accttcttca cgaggcagac ctctcgacgg 11280agttccactg
agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt 11340ttctgcgcgt
aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt 11400tgccggatca
agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga 11460taccaaatac
tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag 11520caccgcctac
atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata 11580agtcgtgtct
taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 11640gctgaacggg
gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga 11700gatacctaca
gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca 11760ggtatccggt
aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa 11820acgcctggta
tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt 11880tgtgatgctc
gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac 11940ggttcctggc
cttttgctgg ccttttgctc acatgt
11976251457PRTArtificial SequenceDescription of Artificial Sequence FVIII
Peptide 25Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu
Arg Phe 1 5 10 15
Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30 Trp Asp Tyr Met Gln
Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg 35
40 45 Phe Pro Pro Arg Val Pro Lys Ser Phe
Pro Phe Asn Thr Ser Val Val 50 55
60 Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu
Phe Asn Ile 65 70 75
80 Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95 Ala Glu Val Tyr
Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser 100
105 110 His Pro Val Ser Leu His Ala Val Gly
Val Ser Tyr Trp Lys Ala Ser 115 120
125 Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys
Glu Asp 130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu 145
150 155 160 Lys Glu Asn Gly Pro
Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser 165
170 175 Tyr Leu Ser His Val Asp Leu Val Lys Asp
Leu Asn Ser Gly Leu Ile 180 185
190 Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys
Thr 195 200 205 Gln
Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly 210
215 220 Lys Ser Trp His Ser Glu
Thr Lys Asn Ser Leu Met Gln Asp Arg Asp 225 230
235 240 Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His
Thr Val Asn Gly Tyr 245 250
255 Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270 Tyr Trp
His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile 275
280 285 Phe Leu Glu Gly His Thr Phe
Leu Val Arg Asn His Arg Gln Ala Ser 290 295
300 Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln
Thr Leu Leu Met 305 310 315
320 Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
325 330 335 Asp Gly Met
Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro 340
345 350 Gln Leu Arg Met Lys Asn Asn Glu
Glu Ala Glu Asp Tyr Asp Asp Asp 355 360
365 Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp
Asp Asn Ser 370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr 385
390 395 400 Trp Val His Tyr
Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro 405
410 415 Leu Val Leu Ala Pro Asp Asp Arg Ser
Tyr Lys Ser Gln Tyr Leu Asn 420 425
430 Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg
Phe Met 435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu 450
455 460 Ser Gly Ile Leu Gly
Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu 465 470
475 480 Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg
Pro Tyr Asn Ile Tyr Pro 485 490
495 His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro
Lys 500 505 510 Gly
Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe 515
520 525 Lys Tyr Lys Trp Thr Val
Thr Val Glu Asp Gly Pro Thr Lys Ser Asp 530 535
540 Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe
Val Asn Met Glu Arg 545 550 555
560 Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575 Ser Val
Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val 580
585 590 Ile Leu Phe Ser Val Phe Asp
Glu Asn Arg Ser Trp Tyr Leu Thr Glu 595 600
605 Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val
Gln Leu Glu Asp 610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val 625
630 635 640 Phe Asp Ser
Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp 645
650 655 Tyr Ile Leu Ser Ile Gly Ala Gln
Thr Asp Phe Leu Ser Val Phe Phe 660 665
670 Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp
Thr Leu Thr 675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro 690
695 700 Gly Leu Trp Ile
Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly 705 710
715 720 Met Thr Ala Leu Leu Lys Val Ser Ser
Cys Asp Lys Asn Thr Gly Asp 725 730
735 Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu
Ser Lys 740 745 750
Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Leu
755 760 765 Lys Arg His Gln
Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln 770
775 780 Glu Glu Ile Asp Tyr Asp Asp Thr
Ile Ser Val Glu Met Lys Lys Glu 785 790
795 800 Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser
Pro Arg Ser Phe 805 810
815 Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp
820 825 830 Asp Tyr Gly
Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln 835
840 845 Ser Gly Ser Val Pro Gln Phe Lys
Lys Val Val Phe Gln Glu Phe Thr 850 855
860 Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu
Asn Glu His 865 870 875
880 Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile
885 890 895 Met Val Thr Phe
Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser 900
905 910 Ser Leu Ile Ser Tyr Glu Glu Asp Gln
Arg Gln Gly Ala Glu Pro Arg 915 920
925 Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp
Lys Val 930 935 940
Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp 945
950 955 960 Ala Tyr Phe Ser Asp
Val Asp Leu Glu Lys Asp Val His Ser Gly Leu 965
970 975 Ile Gly Pro Leu Leu Val Cys His Thr Asn
Thr Leu Asn Pro Ala His 980 985
990 Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr
Ile Phe 995 1000 1005
Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn 1010
1015 1020 Cys Arg Ala Pro Cys
Asn Ile Gln Met Glu Asp Pro Thr Phe Lys 1025 1030
1035 Glu Asn Tyr Arg Phe His Ala Ile Asn Gly
Tyr Ile Met Asp Thr 1040 1045 1050
Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr
1055 1060 1065 Leu Leu
Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe 1070
1075 1080 Ser Gly His Val Phe Thr Val
Arg Lys Lys Glu Glu Tyr Lys Met 1085 1090
1095 Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr
Val Glu Met 1100 1105 1110
Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly 1115
1120 1125 Glu His Leu His Ala
Gly Met Ser Thr Leu Phe Leu Val Tyr Ser 1130 1135
1140 Asn Lys Cys Gln Thr Pro Leu Gly Met Ala
Ser Gly His Ile Arg 1145 1150 1155
Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro
1160 1165 1170 Lys Leu
Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser 1175
1180 1185 Thr Lys Glu Pro Phe Ser Trp
Ile Lys Val Asp Leu Leu Ala Pro 1190 1195
1200 Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg
Gln Lys Phe 1205 1210 1215
Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp 1220
1225 1230 Gly Lys Lys Trp Gln
Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu 1235 1240
1245 Met Val Phe Phe Gly Asn Val Asp Ser Ser
Gly Ile Lys His Asn 1250 1255 1260
Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro
1265 1270 1275 Thr His
Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly 1280
1285 1290 Cys Asp Leu Asn Ser Cys Ser
Met Pro Leu Gly Met Glu Ser Lys 1295 1300
1305 Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr
Phe Thr Asn 1310 1315 1320
Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln 1325
1330 1335 Gly Arg Ser Asn Ala
Trp Arg Pro Gln Val Asn Asn Pro Lys Glu 1340 1345
1350 Trp Leu Gln Val Asp Phe Gln Lys Thr Met
Lys Val Thr Gly Val 1355 1360 1365
Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys
1370 1375 1380 Glu Phe
Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu 1385
1390 1395 Phe Phe Gln Asn Gly Lys Val
Lys Val Phe Gln Gly Asn Gln Asp 1400 1405
1410 Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro
Leu Leu Thr 1415 1420 1425
Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala 1430
1435 1440 Leu Arg Met Glu Val
Leu Gly Cys Glu Ala Gln Asp Leu Tyr 1445 1450
1455 262351PRTArtificial SequenceDescription of
Artificial Sequence FVIII Peptide 26Met Gln Ile Glu Leu Ser Thr Cys
Phe Phe Leu Cys Leu Leu Arg Phe 1 5 10
15 Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val
Glu Leu Ser 20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45 Phe Pro Pro Arg
Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50
55 60 Tyr Lys Lys Thr Leu Phe Val Glu
Phe Thr Asp His Leu Phe Asn Ile 65 70
75 80 Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly
Pro Thr Ile Gln 85 90
95 Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110 His Pro Val
Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser 115
120 125 Glu Gly Ala Glu Tyr Asp Asp Gln
Thr Ser Gln Arg Glu Lys Glu Asp 130 135
140 Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp
Gln Val Leu 145 150 155
160 Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175 Tyr Leu Ser His
Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile 180
185 190 Gly Ala Leu Leu Val Cys Arg Glu Gly
Ser Leu Ala Lys Glu Lys Thr 195 200
205 Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp
Glu Gly 210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp 225
230 235 240 Ala Ala Ser Ala Arg
Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr 245
250 255 Val Asn Arg Ser Leu Pro Gly Leu Ile Gly
Cys His Arg Lys Ser Val 260 265
270 Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser
Ile 275 280 285 Phe
Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser 290
295 300 Leu Glu Ile Ser Pro Ile
Thr Phe Leu Thr Ala Gln Thr Leu Leu Met 305 310
315 320 Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile
Ser Ser His Gln His 325 330
335 Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350 Gln Leu
Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp 355
360 365 Leu Thr Asp Ser Glu Met Asp
Val Val Arg Phe Asp Asp Asp Asn Ser 370 375
380 Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys
His Pro Lys Thr 385 390 395
400 Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415 Leu Val Leu
Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn 420
425 430 Asn Gly Pro Gln Arg Ile Gly Arg
Lys Tyr Lys Lys Val Arg Phe Met 435 440
445 Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile
Gln His Glu 450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu 465
470 475 480 Leu Ile Ile Phe
Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro 485
490 495 His Gly Ile Thr Asp Val Arg Pro Leu
Tyr Ser Arg Arg Leu Pro Lys 500 505
510 Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu
Ile Phe 515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp 530
535 540 Pro Arg Cys Leu Thr
Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg 545 550
555 560 Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu
Leu Ile Cys Tyr Lys Glu 565 570
575 Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn
Val 580 585 590 Ile
Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu 595
600 605 Asn Ile Gln Arg Phe Leu
Pro Asn Pro Ala Gly Val Gln Leu Glu Asp 610 615
620 Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser
Ile Asn Gly Tyr Val 625 630 635
640 Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655 Tyr Ile
Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe 660
665 670 Ser Gly Tyr Thr Phe Lys His
Lys Met Val Tyr Glu Asp Thr Leu Thr 675 680
685 Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser
Met Glu Asn Pro 690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly 705
710 715 720 Met Thr Ala
Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp 725
730 735 Tyr Tyr Glu Asp Ser Tyr Glu Asp
Ile Ser Ala Tyr Leu Leu Ser Lys 740 745
750 Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser
Arg His Pro 755 760 765
Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp 770
775 780 Ile Glu Lys Thr
Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys 785 790
795 800 Ile Gln Asn Val Ser Ser Ser Asp Leu
Leu Met Leu Leu Arg Gln Ser 805 810
815 Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala
Lys Tyr 820 825 830
Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn
835 840 845 Ser Leu Ser Glu
Met Thr His Phe Arg Pro Gln Leu His His Ser Gly 850
855 860 Asp Met Val Phe Thr Pro Glu Ser
Gly Leu Gln Leu Arg Leu Asn Glu 865 870
875 880 Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys
Leu Asp Phe Lys 885 890
895 Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn
900 905 910 Leu Ala Ala
Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met 915
920 925 Pro Val His Tyr Asp Ser Gln Leu
Asp Thr Thr Leu Phe Gly Lys Lys 930 935
940 Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu
Ser Glu Glu 945 950 955
960 Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu
965 970 975 Ser Ser Trp Gly
Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe 980
985 990 Lys Gly Lys Arg Ala His Gly Pro
Ala Leu Leu Thr Lys Asp Asn Ala 995 1000
1005 Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr
Asn Lys Thr Ser 1010 1015 1020
Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser
1025 1030 1035 Leu Leu Ile
Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu 1040
1045 1050 Ser Asp Thr Glu Phe Lys Lys Val
Thr Pro Leu Ile His Asp Arg 1055 1060
1065 Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn
His Met 1070 1075 1080
Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln 1085
1090 1095 Lys Lys Glu Gly Pro
Ile Pro Pro Asp Ala Gln Asn Pro Asp Met 1100 1105
1110 Ser Phe Phe Lys Met Leu Phe Leu Pro Glu
Ser Ala Arg Trp Ile 1115 1120 1125
Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro
1130 1135 1140 Ser Pro
Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu 1145
1150 1155 Gly Gln Asn Phe Leu Ser Glu
Lys Asn Lys Val Val Val Gly Lys 1160 1165
1170 Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met
Val Phe Pro 1175 1180 1185
Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu 1190
1195 1200 Asn Asn Thr His Asn
Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu 1205 1210
1215 Lys Lys Glu Thr Leu Ile Gln Glu Asn Val
Val Leu Pro Gln Ile 1220 1225 1230
His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu
1235 1240 1245 Leu Ser
Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr 1250
1255 1260 Ala Pro Val Leu Gln Asp Phe
Arg Ser Leu Asn Asp Ser Thr Asn 1265 1270
1275 Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys
Gly Glu Glu 1280 1285 1290
Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu 1295
1300 1305 Lys Tyr Ala Cys Thr
Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln 1310 1315
1320 Asn Phe Val Thr Gln Arg Ser Lys Arg Ala
Leu Lys Gln Phe Arg 1325 1330 1335
Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp
1340 1345 1350 Asp Thr
Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro 1355
1360 1365 Ser Thr Leu Thr Gln Ile Asp
Tyr Asn Glu Lys Glu Lys Gly Ala 1370 1375
1380 Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg
Ser His Ser 1385 1390 1395
Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser 1400
1405 1410 Ser Phe Pro Ser Ile
Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe 1415 1420
1425 Gln Asp Asn Ser Ser His Leu Pro Ala Ala
Ser Tyr Arg Lys Lys 1430 1435 1440
Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys
1445 1450 1455 Lys Asn
Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly 1460
1465 1470 Asp Gln Arg Glu Val Gly Ser
Leu Gly Thr Ser Ala Thr Asn Ser 1475 1480
1485 Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro
Lys Pro Asp 1490 1495 1500
Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His 1505
1510 1515 Ile Tyr Gln Lys Asp
Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser 1520 1525
1530 Pro Gly His Leu Asp Leu Val Glu Gly Ser
Leu Leu Gln Gly Thr 1535 1540 1545
Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val
1550 1555 1560 Pro Phe
Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser 1565
1570 1575 Lys Leu Leu Asp Pro Leu Ala
Trp Asp Asn His Tyr Gly Thr Gln 1580 1585
1590 Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser
Pro Glu Lys 1595 1600 1605
Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys 1610
1615 1620 Glu Ser Asn His Ala
Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys 1625 1630
1635 Pro Glu Ile Glu Val Thr Trp Ala Lys Gln
Gly Arg Thr Glu Arg 1640 1645 1650
Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu
1655 1660 1665 Ile Thr
Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr 1670
1675 1680 Asp Asp Thr Ile Ser Val Glu
Met Lys Lys Glu Asp Phe Asp Ile 1685 1690
1695 Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe
Gln Lys Lys 1700 1705 1710
Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr 1715
1720 1725 Gly Met Ser Ser Ser
Pro His Val Leu Arg Asn Arg Ala Gln Ser 1730 1735
1740 Gly Ser Val Pro Gln Phe Lys Lys Val Val
Phe Gln Glu Phe Thr 1745 1750 1755
Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu
1760 1765 1770 His Leu
Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp 1775
1780 1785 Asn Ile Met Val Thr Phe Arg
Asn Gln Ala Ser Arg Pro Tyr Ser 1790 1795
1800 Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln
Arg Gln Gly 1805 1810 1815
Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr 1820
1825 1830 Tyr Phe Trp Lys Val
Gln His His Met Ala Pro Thr Lys Asp Glu 1835 1840
1845 Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser
Asp Val Asp Leu Glu 1850 1855 1860
Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His
1865 1870 1875 Thr Asn
Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln 1880
1885 1890 Glu Phe Ala Leu Phe Phe Thr
Ile Phe Asp Glu Thr Lys Ser Trp 1895 1900
1905 Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala
Pro Cys Asn 1910 1915 1920
Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His 1925
1930 1935 Ala Ile Asn Gly Tyr
Ile Met Asp Thr Leu Pro Gly Leu Val Met 1940 1945
1950 Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu
Leu Ser Met Gly Ser 1955 1960 1965
Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr
1970 1975 1980 Val Arg
Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr 1985
1990 1995 Pro Gly Val Phe Glu Thr Val
Glu Met Leu Pro Ser Lys Ala Gly 2000 2005
2010 Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu
His Ala Gly 2015 2020 2025
Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro 2030
2035 2040 Leu Gly Met Ala Ser
Gly His Ile Arg Asp Phe Gln Ile Thr Ala 2045 2050
2055 Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys
Leu Ala Arg Leu His 2060 2065 2070
Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser
2075 2080 2085 Trp Ile
Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile 2090
2095 2100 Lys Thr Gln Gly Ala Arg Gln
Lys Phe Ser Ser Leu Tyr Ile Ser 2105 2110
2115 Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys
Trp Gln Thr 2120 2125 2130
Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn 2135
2140 2145 Val Asp Ser Ser Gly
Ile Lys His Asn Ile Phe Asn Pro Pro Ile 2150 2155
2160 Ile Ala Arg Tyr Ile Arg Leu His Pro Thr
His Tyr Ser Ile Arg 2165 2170 2175
Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys
2180 2185 2190 Ser Met
Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln 2195
2200 2205 Ile Thr Ala Ser Ser Tyr Phe
Thr Asn Met Phe Ala Thr Trp Ser 2210 2215
2220 Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser
Asn Ala Trp 2225 2230 2235
Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe 2240
2245 2250 Gln Lys Thr Met Lys
Val Thr Gly Val Thr Thr Gln Gly Val Lys 2255 2260
2265 Ser Leu Leu Thr Ser Met Tyr Val Lys Glu
Phe Leu Ile Ser Ser 2270 2275 2280
Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys
2285 2290 2295 Val Lys
Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val 2300
2305 2310 Asn Ser Leu Asp Pro Pro Leu
Leu Thr Arg Tyr Leu Arg Ile His 2315 2320
2325 Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met
Glu Val Leu 2330 2335 2340
Gly Cys Glu Ala Gln Asp Leu Tyr 2345 2350
27736PRTArtificial SequenceDescription of Artificial Sequence AAV Capsid
27Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1
5 10 15 Glu Gly Ile Arg
Glu Trp Trp Ala Leu Gln Pro Gly Ala Pro Lys Pro 20
25 30 Lys Ala Asn Gln Gln His Gln Asp Asn
Ala Arg Gly Leu Val Leu Pro 35 40
45 Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly
Glu Pro 50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65
70 75 80 Gln Gln Leu Lys Ala
Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85
90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu
Asp Thr Ser Phe Gly Gly 100 105
110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu
Pro 115 120 125 Leu
Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130
135 140 Pro Val Asp Gln Ser Pro
Gln Glu Pro Asp Ser Ser Ser Gly Val Gly 145 150
155 160 Lys Ser Gly Lys Gln Pro Ala Arg Lys Arg Leu
Asn Phe Gly Gln Thr 165 170
175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190 Ala Ala
Pro Thr Ser Leu Gly Ser Asn Thr Met Ala Ser Gly Gly Gly 195
200 205 Ala Pro Met Ala Asp Asn Asn
Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215
220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly
Asp Arg Val Ile 225 230 235
240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255 Tyr Lys Gln
Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260
265 270 Phe Gly Tyr Ser Thr Pro Trp Gly
Tyr Phe Asp Phe Asn Arg Phe His 275 280
285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
Asn Asn Trp 290 295 300
Gly Phe Arg Pro Lys Lys Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305
310 315 320 Lys Glu Val Thr
Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325
330 335 Thr Ser Thr Val Gln Val Phe Thr Asp
Ser Glu Tyr Gln Leu Pro Tyr 340 345
350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro
Ala Asp 355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370
375 380 Gln Ala Val Gly Arg
Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390
395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln
Phe Ser Tyr Thr Phe Glu 405 410
415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp
Arg 420 425 430 Leu
Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435
440 445 Gln Gly Thr Thr Ser Gly
Thr Thr Asn Gln Ser Arg Leu Leu Phe Ser 450 455
460 Gln Ala Gly Pro Gln Ser Met Ser Leu Gln Ala
Arg Asn Trp Leu Pro 465 470 475
480 Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Thr Ala Asn Asp Asn
485 490 495 Asn Asn
Ser Asn Phe Pro Trp Thr Ala Ala Ser Lys Tyr His Leu Asn 500
505 510 Gly Arg Asp Ser Leu Val Asn
Pro Gly Pro Ala Met Ala Ser His Lys 515 520
525 Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Asn
Leu Ile Phe Gly 530 535 540
Lys Glu Gly Thr Thr Ala Ser Asn Ala Glu Leu Asp Asn Val Met Ile 545
550 555 560 Thr Asp Glu
Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln 565
570 575 Tyr Gly Thr Val Ala Asn Asn Leu
Gln Ser Ser Asn Thr Ala Pro Thr 580 585
590 Thr Arg Thr Val Asn Asp Gln Gly Ala Leu Pro Gly Met
Val Trp Gln 595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610
615 620 Thr Asp Gly His
Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630
635 640 Lys His Pro Pro Pro Gln Ile Met Ile
Lys Asn Thr Pro Val Pro Ala 645 650
655 Asn Pro Pro Thr Thr Phe Ser Pro Ala Lys Phe Ala Ser Phe
Ile Thr 660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685 Lys Glu Asn Ser
Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690
695 700 Tyr Asn Lys Ser Val Asn Val Asp
Phe Thr Val Asp Thr Asn Gly Val 705 710
715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu
Thr Arg Pro Leu 725 730
735 28738PRTArtificial SequenceDescription of Artificial Sequence AAV
Capsid 28Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15 Glu Gly
Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20
25 30 Lys Ala Asn Gln Gln Lys Gln
Asp Asn Gly Arg Gly Leu Val Leu Pro 35 40
45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp
Lys Gly Glu Pro 50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65
70 75 80 Gln Gln Leu
Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85
90 95 Asp Ala Glu Phe Gln Glu Arg Leu
Gln Glu Asp Thr Ser Phe Gly Gly 100 105
110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val
Leu Glu Pro 115 120 125
Leu Gly Leu Val Glu Ser Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130
135 140 Pro Val Glu Pro
Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150
155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys
Lys Arg Leu Asn Phe Gly Gln 165 170
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly
Glu Pro 180 185 190
Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met
Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210
215 220 Ser Ser Gly Asn Trp His Cys Asp
Ser Thr Trp Leu Gly Asp Arg Val 225 230
235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr
Tyr Asn Asn His 245 250
255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270 Asn Thr Tyr
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275
280 285 Arg Phe His Cys His Phe Ser Pro
Arg Asp Trp Gln Arg Leu Ile Asn 290 295
300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys
Leu Phe Asn 305 310 315
320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335 Asn Asn Leu Thr
Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340
345 350 Leu Pro Tyr Val Leu Gly Ser Ala His
Gln Gly Cys Leu Pro Pro Phe 355 360
365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr
Leu Asn 370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385
390 395 400 Phe Pro Ser Gln Met
Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405
410 415 Asn Phe Glu Asp Val Pro Phe His Ser Ser
Tyr Ala His Ser Gln Ser 420 425
430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr
Leu 435 440 445 Ser
Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450
455 460 Phe Ser Gln Ala Gly Pro
Asn Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470
475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val
Ser Thr Thr Leu Ser 485 490
495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510 Leu Asn
Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515
520 525 His Lys Asp Asp Glu Glu Arg
Phe Phe Pro Ser Ser Gly Val Leu Met 530 535
540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp
Tyr Ser Ser Val 545 550 555
560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575 Glu Gln Tyr
Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala 580
585 590 Pro Ile Val Gly Ala Val Asn Ser
Gln Gly Ala Leu Pro Gly Met Val 595 600
605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp
Ala Lys Ile 610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625
630 635 640 Gly Leu Lys His
Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645
650 655 Pro Ala Asp Pro Pro Thr Thr Phe Asn
Gln Ala Lys Leu Ala Ser Phe 660 665
670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu
Trp Glu 675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690
695 700 Ser Asn Tyr Tyr Lys
Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710
715 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly
Thr Arg Tyr Leu Thr Arg 725 730
735 Asn Leu 2914PRTArtificial SequenceDescription of Artificial
Sequence FVIII Peptide 29Ser Phe Ser Gln Asn Pro Pro Val Leu Lys Arg
His Gln Arg 1 5 10
User Contributions:
Comment about this patent or add new information about this topic: