Patent application title: METHODS, REAGENTS AND CELLS FOR BIOSYNTHESIZING COMPOUNDS
Inventors:
IPC8 Class: AC12P762FI
USPC Class:
1 1
Class name:
Publication date: 2018-09-27
Patent application number: 20180273987
Abstract:
This document describes biochemical pathways for producing
2,4-pentadienoyl-CoA by forming one or two terminal functional groups,
comprised of carboxyl or hydroxyl group, in a C5 backbone substrate such
as glutaryl-CoA, glutaryl-[acp] or glutarate methyl ester.
2,4-pentadienoyl-CoA can be enzymatically converted to 1,3-butadiene.Claims:
1-22. (canceled)
23. A method of making glutarate, said method comprising (i) enzymatically converting glutaryl-[acp] methyl ester to glutaryl-[acp] or glutaryl-CoA methyl ester to glutaryl-CoA using a polypeptide having pimeloyl-[acp] methyl ester methylesterase activity, and (ii) enzymatically converting glutaryl-[acp] or glutaryl-CoA to glutarate using at least one polypeptide having thioesterase activity, reversible CoA-ligase activity, a CoA-transferase activity, an acylating dehydrogenase activity, an aldehyde dehydrogenase activity, a glutarate semialdehyde dehydrogenase activity, or a succinate-semialdehyde dehydrogenase activity.
24. The method of claim 23, wherein said polypeptide having pimeloyl-[acp] methyl ester methylesterase activity has at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1.
25. The method of claim 23, wherein glutaryl-[acp] or glutaryl-CoA is enzymatically converted to glutaric acid using a polypeptide having thioesterase activity.
26. The method of claim 23, wherein glutaryl-[acp] or glutaryl-CoA is enzymatically converted to glutaric acid using a polypeptide having reversible CoA-ligase activity or a CoA-transferase activity.
27. The method of claim 23, wherein glutaryl-[acp] or glutaryl-CoA is enzymatically converted to glutaric acid using a polypeptide having an acylating dehydrogenase activity, an aldehyde dehydrogenase activity, a glutarate semialdehyde dehydrogenase activity, or a succinate-semialdehyde dehydrogenase activity.
28. The method of claim 23, wherein the method is performed in a host subjected to a cultivation strategy under aerobic or micro-aerobic cultivation conditions, a host cultured under conditions of nutrient limitation either via nitrogen, phosphate or oxygen limitation, and/or a host retained using a ceramic membrane to maintain a high cell density during fermentation.
29-30. (canceled)
31. The method of claim 23, wherein a principal carbon source fed to the fermentation is derived from a biological feedstock which is, or derives from monosaccharides, disaccharides, lignocellulose, hemicellulose, cellulose, lignin, levulinic acid and formic acid, triglycerides, glycerol, fatty acids, agricultural waste, condensed distillers' solubles, or municipal waste or a non-biological feedstock which is, or derives from, natural gas, syngas, CO.sub.2/H.sub.2, methanol, ethanol, benzoate, non-volatile residue (NVR) or a caustic wash waste stream from cyclohexane oxidation processes, or terephthalic acid/isophthalic acid mixture waste streams.
32-34. (canceled)
35. The method of claim 23, wherein the host is method is performed in a prokaryote selected from the group consisting of Escherichia; Clostridia; Corynebacteria; Cupriavidus; Pseudomonas; Delftia; Bacilluss; Lactobacillus; Lactococcus; and Rhodococcus or a eukaryote is selected from the group consisting of Aspergillus, Saccharomyces, Pichia, Yarrowia, Issatchenkia, Debaryomyces, Arxula, and Kluyveromyces.
36. (canceled)
37. The method of claim 35, wherein the prokaryote is selected from the group consisting of Escherichia coli, Clostridium ljungdahlii, Clostridium autoethanogenum, Clostridium kluyveri, Corynebacterium glutamicum, Cupriavidus necator, Cupriavidus metallidurans. Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas oleavorans, Delftia acidovorans, Bacillus subtillis, Lactobacillus delbrueckii, Lactococcus lactis, and Rhodococcus equi.
38-39. (canceled)
40. The method of claim 35, wherein the eukaryote is selected from the group consisting of Aspergillus niger, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Issathenkia orientalis, Debaryomyces hansenii, Arxula adenoinivorans, and Kluyveromyces lactis.
41. The method of claim 23, wherein the method is performed in a host exhibiting tolerance to high concentrations of a C5 building block, and wherein the tolerance to high concentrations of a C5 building block is improved through continuous cultivation in a selective environment.
42. The method of claim 23, wherein the method is performed in a host expressing one or more of the following exogenous polypeptides having an acetyl-CoA synthetase, a 6-phosphogluconate dehydrogenase; a transketolase; a feedback resistant threonine deaminase; a puridine nucleotide transhydrogenase; a formate dehydrogenase; a glyceraldehyde-3P-dehydrogenase; a malic enzyme; a glucose-6-phosphate dehydrogenase; a fructose 1,6 diphosphatase; a propionyl-CoA synthetase; a L-alanine dehydrogenase; a L-glutamate dehydrogenase; a L-glutamine synthetase; a lysine transporter; a dicarboxylate transporter; and/or a multidrug transporter activity.
43. The method of claim 23, wherein the method is performed in a host comprises comprising an attenuation of one or more polypeptides having an activity selected from the group consisting of: polyhydroxyalkanoate synthase, an acetyl-CoA thioesterase, an acetyl-CoA specific .beta.-ketothiolase, an acetoacetyl-CoA reductase, a phosphotransacetylase forming acetate, an acetate kinase, a lactate dehydrogenase, a menaquinol-fumarate oxidoreductase, a 2-oxoacid decarboxylase producing isobutanol, an alcohol dehydrogenase forming ethanol, a triose phosphate isomerase, a pyruvate decarboxylase, a glucose-6-phosphate isomerase, a transhydrogenase dissipating the cofactor imbalance, aglutamate dehydrogenase specific for the co-factor for which an imbalance is created, a NADH/NADPH-utilizing glutamate dehydrogenase, a pimeloyl-CoA dehydrogenase; an acyl-CoA dehydrogenase accepting C5 building blocks and central precursors as substrates; a glutaryl-CoA dehydrogenase; and a pimeloyl-CoA synthetase.
44. A recombinant host cell comprising at least one exogenous nucleic acid encoding a polypeptide having malonyl-CoA O-methyltransferase activity; and a polypeptide having thioesterase activity, the host producing glutarate methyl ester.
45. The host of claim 44, the host further comprising an exogenous polypeptide having carboxylate reductase activity, said host further producing glutarate semialdehyde methyl ester.
46. The host of claim 44, the host further comprising one or more exogenous polypeptides having an activity selected from the group consisting of synthase activity, dehydrogenase activity, dehydratase activity, and reductase activity.
47. The host of claim 44, the host further comprising one or more exogenous polypeptides having an activity selected from the group consisting of synthase activity, .beta.-ketothiolase activity, dehydrogenase activity, hydratase activity, and reductase activity.
48. The host of claim 44, wherein the polypeptide having malonyl-CoA O-methyltransferase activity has at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:13.
49. The host of claim 44, wherein the polypeptide having thioesterase activity has at least 70% sequence identity to any one of the amino acid sequences set forth in SEQ ID NOs: 14 or 15.
50. The host of claim 45, wherein the polypeptide having reductase activity has at least 70% sequence identity to any one of the amino acid sequences set forth in SEQ ID NOs: 11 or 12.
51. The host of claim 44 further comprising an exogenous polypeptide having esterase activity, the host further producing glutaric acid or 5-oxopentanoic acid.
52. The host of claim 44 further comprising one or more exogenous polypeptides having an activity selected from the group consisting of esterase activity, 6-hydroxyhexanoate dehydrogenase activity, 4-hydroxybutyrate dehydrogenase activity, 5-hydroxypentanoate dehydrogenase activity, and alcohol dehydrogenase activity, the host producing 5-hydroxypentanoic acid.
53. The host of claim 52, further comprising one or more exogenous polypeptides having an activity selected from the group consisting of CoA-transferase activity, a synthase activity, and dehydratase activity, the host producing 2,4-pentadienoyl-CoA from 5-hydroxypentanoic acid.
54. The host of claim 53, further comprising one or more exogenous polypeptides having an activity selected from the group consisting of hydratase activity, thioesterase activity, decarboxylase activity, dehydrogenase activity, CoA-transferase activity, and dehydratase activity, the host producing 1,3-butadiene from 2,4-pentadienoyl-CoA.
55. The host of claim 54, wherein said polypeptide having thioesterase activity has at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 14 or SEQ ID NO: 15
56. The host of claim 45, wherein the polypeptide having carboxylate reductase activity has at least 70% sequence identity to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 2-7.
57. A recombinant host comprising at least one exogenous nucleic acid encoding a polypeptide having pimeloyl-[acp] methyl ester methylesterase activity, and at least one polypeptide having an activity selected from the group consisting of thioesterase activity, reversible CoA-ligase activity, a CoA-transferase activity, an acylating dehydrogenase activity, an aldehyde dehydrogenase activity, a glutarate semialdehyde dehydrogenase activity, and a succinate-semialdehyde dehydrogenase activity.
58. The recombinant host of claim 57, wherein said polypeptide having pimeloyl-[acp] methyl ester methylesterase activity has at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1.
59. A bio-derived product, bio-based product or fermentation-derived product, wherein said product comprises: i. a composition comprising at least one bio-derived, bio-based or fermentation-derived compound according to claim 23, or any one of FIGS. 1-7, or any combination thereof, ii. a bio-derived, bio-based or fermentation-derived polymer comprising the bio-derived, bio-based or fermentation-derived composition or compound of i., or any combination thereof, iii. a bio-derived, bio-based or fermentation-derived resin comprising the bio-derived, bio-based or fermentation-derived compound or bio-derived, bio-based or fermentation-derived composition of i. or any combination thereof or the bio-derived, bio-based or fermentation-derived polymer of ii. or any combination thereof, iv. a molded substance obtained by molding the bio-derived, bio-based or fermentation-derived polymer of ii. or the bio-derived, bio-based or fermentation-derived resin of iii., or any combination thereof, v. a bio-derived, bio-based or fermentation-derived formulation comprising the bio-derived, bio-based or fermentation-derived composition of i., bio-derived, bio-based or fermentation-derived compound of i., bio-derived, bio-based or fermentation-derived polymer of ii., bio-derived, bio-based or fermentation-derived resin of iii., or bio-derived, bio-based or fermentation-derived molded substance of iv, or any combination thereof, or vi. a bio-derived, bio-based or fermentation-derived semi-solid or a non-semi-solid stream, comprising the bio-derived, bio-based or fermentation-derived composition of i., bio-derived, bio-based or fermentation-derived compound of i., bio-derived, bio-based or fermentation-derived polymer of ii., bio-derived, bio-based or fermentation-derived resin of iii., bio-derived, bio-based or fermentation-derived formulation of v., or bio-derived, bio-based or fermentation-derived molded substance of iv., or any combination thereof.
60. A method of increasing the activity of a polypeptide having carboxylate reductase activity on a substituted or unsubstituted C.sub.4-C.sub.8 dicarboxylic acid, the method comprising enzymatically converting said C.sub.4-C.sub.8 dicarboxylic acid to a HOC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 ester using a polypeptide having malonyl-CoA methyltransferase activity before enzymatically converting the HOC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 ester to a HC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 using a polypeptide having carboxylate reductase activity.
61. The method of claim 60, further comprising converting said HC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 to a HOCH.sub.2(C2-C6 alkyl)-C(.dbd.O)OCH.sub.3 using a polypeptide having dehydrogenase activity.
62. The method of claim 61, further comprising enzymatically converting the HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 to a HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OH using a polypeptide having esterase activity.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of U.S. Ser. No. 14/741,414 filed Jun. 16, 2015, which claims the benefit of priority from U.S. Provisional Application Ser. No. 62/012,722, filed Jun. 16, 2014, and U.S. Provisional Application Ser. No. 62/012,586, filed Jun. 16, 2014, the disclosures of which are incorporated by reference herein in their entireties.
TECHNICAL FIELD
[0002] This invention relates to a method of increasing the activity of a polypeptide having carboxylate reductase activity on a dicarboxylic acid by enzymatically converting the dicarboxylic acid to a methyl ester using a polypeptide having malonyl-CoA methyltransferase activity. This invention also relates to methods for biosynthesizing 2,4-pentadienoyl-CoA (e.g., as a precursor to the biosynthesis of 1,3-butadiene), and more particularly to synthesizing 2,4-pentadienoyl-CoA using one or more isolated enzymes such as one or more of a malonyl-CoA O-methyltransferase, methyl ester esterase, a carboxylate reductase, or a 5-hydroxyvaleryl-CoA dehydratase, or using recombinant host cells expressing one or more of such enzymes.
BACKGROUND
[0003] 1,3-butadiene (hereinafter butadiene) is an important monomer for the production of synthetic rubbers including styrene-butadiene-rubber (SBR), polybutadiene (PB), styrene-butadiene latex (SBL), acrylonitrile-butadiene-styrene resins (ABS), nitrile rubber, and adiponitrile, which is used in the manufacture of Nylon-66 (White, Chemico-Biological Interactions, 2007, 166, 10-14).
[0004] Butadiene is typically produced as a co-product from the steam cracking process, distilled to a crude butadiene stream, and purified via extractive distillation (White, Chemico-Biological Interactions, 2007, 166, 10-14).
[0005] On-purpose butadiene has been prepared among other methods by dehydrogenation of n-butane and n-butene (Houdry process); and oxidative dehydrogenation of n-butene (Oxo-D or O-X-D process) (White, Chemico-Biological Interactions, 2007, 166, 10-14).
[0006] Industrially, 95% of global butadiene production is undertaken via the steam cracking process using petrochemical-based feedstocks such as naphtha. Production of on-purpose butadiene is not significant, given the high cost of production and low process yield (White, Chemico-Biological Interactions, 2007, 166, 10-14).
[0007] Given a reliance on petrochemical feedstocks and, for on-purpose butadiene, energy intensive catalytic steps; biotechnology offers an alternative approach via biocatalysis. Biocatalysis is the use of biological catalysts, such as enzymes, to perform biochemical transformations of organic compounds.
[0008] Accordingly, against this background, it is clear that there is a need for sustainable methods for producing intermediates wherein the methods are biocatalyst based (Jang et al., Biotechnology & Bioengineering, 2012, 109(10), 2437-2459).
SUMMARY
[0009] This disclosure is based at least in part on the development of enzymatic systems and recombinant hosts for biosynthesizing 2,4-pentadienoyl-CoA or precursors thereof, which are useful for producing, for example, 1,3-butadiene and polymers or copolymers of 1,3-butadiene. In particular, as described herein, 2,4-pentadienoyl-CoA can be biosynthetically produced from renewable feedstocks without the need for any chemical catalysts such as metal oxides. For example, in the pathways described herein, 2,4-pentadienoyl-CoA can be produced from malonyl-CoA or malonyl-[acp] via various methyl-ester shielded routes. Such methyl-ester shielded routes include using a methyl ester esterase such as apimelyl-[acp] methyl ester esterase or esterase to hydrolyze the methyl ester of glutaryl-[acp] methyl ester, glutaryl-CoA methyl ester, glutarate methyl ester, glutarate semialdehyde methyl ester, or 5-hydroxypentanoate methyl ester, and using a 5-hydroxyvaleryl-CoA dehydratase to introduce the first terminal vinyl group of 1,3-butadiene. For example, 1,3-butadiene can be produced from precursors stemming from 2,4-pentadienoyl-CoA as outlined in FIG. 7.
[0010] In some embodiments, the C5 aliphatic backbone for conversion to 1,3-butadiene can be formed from malonyl-[acp] or malonyl-CoA via conversion to glutaryl-[acp] methyl ester or glutaryl-CoA methyl ester, followed by (i) de-esterification of glutaryl-[acp] methyl ester or glutaryl-CoA methyl ester to glutaryl-[acp] or glutaryl-CoA respectively, or (ii) hydrolysis of glutaryl-[acp] methyl ester or glutaryl-CoA methyl ester to glutarate methyl ester. See FIG. 1-3.
[0011] In some embodiments, an enzyme in the pathway generating the C5 aliphatic backbone purposefully contains irreversible enzymatic steps.
[0012] In some embodiments, the terminal carboxyl groups can be enzymatically formed using an esterase, a thioesterase, a reversible CoA-ligase, a CoA-transferase, an aldehyde dehydrogenase, a 7-oxoheptanoate dehydrogenase, a 6-oxohexanoate dehydrogenase or a 5-oxopentanoate dehydrogenase. See FIG. 4.
[0013] In some embodiments, the terminal hydroxyl group can be enzymatically formed using an alcohol dehydrogenase, a 4-hydroxybutyrate dehydrogenase, a 5-hydroxypentanoate dehydrogenase and a 6-hydroxyhexanoate dehydrogenase. See FIG. 5.
[0014] In some embodiments, the terminal vinyl group can be enzymatically formed using a 5-hydroxyvaleryl-CoA dehydratase. See FIG. 6.
[0015] In one aspect this document features a method of biosynthesizing glutarate methyl ester in a recombinant host. The method includes enzymatically converting at least one of malonyl-[acp] and malonyl-CoA to glutarate methyl ester in the host using at least one polypeptide having malonyl-CoA O-methyltransferase activity and at least one polypeptide having thioesterase activity.
[0016] In some embodiments, the malonyl-[acp] is enzymatically converted to malonyl-[acp] methyl ester using the at least one polypeptide having malonyl-CoA O-methyltransferase activity. The the malonyl-[acp] methyl ester can be enzymatically converted to glutaryl-[acp] methyl ester using at least one polypeptide having an activity selected from the group consisting of synthase activity, dehydrogenase activity, dehydratase activity, and reductase activity. The glutaryl-[acp] methyl ester can be enzymatically converted to glutarate methyl ester using the at least one polypeptide having thioesterase activity.
[0017] In some embodiments, malonyl-CoA is enzymatically converted to malonyl-CoA methyl ester using the at least one polypeptide having malonyl-CoA O-methyltransferase activity. The malonyl-CoA methyl ester can be enzymatically converted to glutaryl-CoA methyl ester using at least one polypeptide having an activity selected from the group consisting of synthase activity, .beta.-ketothiolase activity, dehydrogenase activity, hydratase activity, and reductase activity. The glutaryl-CoA methyl ester can be enzymatically converted to glutarate methyl ester using the at least one polypeptide having thioesterase activity.
[0018] The polypeptide having malonyl-CoA O-methyltransferase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence set forth in SEQ ID NO:13.
[0019] The polypeptide having reductase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence set forth in SEQ ID NO: 11 or 12.
[0020] In some embodiments, the method further includes enzymatically converting glutarate methyl ester to glutarate semialdehyde methyl ester in the host using at least one polypeptide having carboxylate reductase activity. The polypeptide having carboxylate reductase activity can be used in combination with a polypeptide having phosphopantetheine transferase enhancer activity.
[0021] In some embodiments, the method further includes enzymatically converting glutarate methyl ester to 5-oxopentanoic acid using at least one polypeptide having an activity selected from the group consisting of carboxylate reductase activity and esterase activity. The polypeptide having carboxylate reductase activity can be used in combination with a polypeptide having phosphopantetheine transferase enhancer activity.
[0022] In some embodiments, the method further includes enzymatically converting glutarate semialdehyde methyl ester to 5-hydroxypentanoic acid using at least one polypeptide having esterase activity. In some embodiments, the method further includes using at least one polypeptide having dehydrogenase activity to enzymatically convert glutarate semialdehyde methyl ester to 5-hydroxypentanoic acid.
[0023] The polypeptide having esterase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence set forth in SEQ ID NO:8.
[0024] In some embodiments, the method further includes enzymatically converting glutarate methyl ester to glutaric acid using at least one polypeptide having esterase activity. The method can further include enzymatically converting glutaric acid to 5-hydroxypentanoic acid using at least one polypeptide having carboxylate reductase activity and at least one polypeptide having dehydrogenase activity classified under EC 1.1.1.-. The polypeptide having carboxylate reductase activity can be used in combination with a polypeptide having phosphopantetheine transferase enhancer activity.
[0025] The polypeptide having carboxylate reductase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 2-7.
[0026] The polypeptide having thioesterase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to any one of the amino acid sequences set forth in SEQ ID NO: 9, 10, 14 or 15.
[0027] In some embodiments, the method further includes enzymatically converting 5-hydroxypentanoic acid to 2,4-pentadienoyl-CoA using at least one polypeptide having an activity selected from the group consisting of CoA-transferase activity, a synthase activity, and dehydratase activity. A polypeptide having a CoA-transferase activity or a synthase activity and a polypeptide having dehydratase activity can enzymatically convert 5-hydroxypentanoic acid to 2,4-pentadienoyl-CoA. The method can further include enzymatically converting 2,4-pentadienoyl-CoA into 1,3 butadiene using at least one polypeptide having an activity selected from the group consisting of hydratase activity, thioesterase activity, decarboxylase activity, dehydrogenase activity, CoA-transferase activity, and dehydratase activity.
[0028] The polypeptide having thioesterase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to any one of the amino acid sequences set forth in SEQ ID NOs: 14-15.
[0029] In another aspect, this document features a method of making glutarate. The method includes (i) enzymatically converting glutaryl-[acp] methyl ester to glutaryl-[acp] or glutaryl-CoA methyl ester to glutaryl-CoA using a polypeptide having pimeloyl-[acp] methyl ester methylesterase activity, and (ii) enzymatically converting glutaryl-[acp] or glutaryl-CoA to glutarate using at least one polypeptide having thioesterase activity, reversible CoA-ligase activity, a CoA-transferase activity, an acylating dehydrogenase activity, an aldehyde dehydrogenase activity, a glutarate semialdehyde dehydrogenase activity, or a succinate-semialdehyde dehydrogenase activity.
[0030] The polypeptide having pimeloyl-[acp] methyl ester methylesterase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence set forth in SEQ ID NO: 1.
[0031] In some embodiments, glutaryl-[acp] or glutaryl-CoA is enzymatically converted to glutaric acid using a polypeptide having thioesterase activity. In some embodiments, glutaryl-[acp] or glutaryl-CoA is enzymatically converted to glutaric acid using a polypeptide having reversible CoA-ligase activity or a CoA-transferase activity. In some embodiments, glutaryl-[acp] or glutaryl-CoA is enzymatically converted to glutaric acid using a polypeptide having an acylating dehydrogenase activity, an aldehyde dehydrogenase activity, a glutarate semialdehyde dehydrogenase activity, or a succinate-semialdehyde dehydrogenase activity. In another aspect, this document features a recombinant host cell. The recombinant host cell includes at least one exogenous nucleic acid encoding a polypeptide having malonyl-CoA O-methyltransferase activity and a polypeptide having thioesterase activity, the host producing glutarate methyl ester.
[0032] The host can further include an exogenous polypeptide having carboxylate reductase activity, the host further producing glutarate semialdehyde methyl ester. In some embodiments, the host furthers include one or more exogenous polypeptides having an activity selected from the group consisting of synthase activity, dehydrogenase activity, dehydratase activity, and reductase activity. In some embodiments, the host further includes one or more exogenous polypeptides having an activity selected from the group consisting of synthase activity, .beta.-ketothiolase activity, dehydrogenase activity, hydratase activity, and reductase activity.
[0033] The polypeptide having malonyl-CoA O-methyltransferase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence set forth in SEQ ID NO: 13.
[0034] The polypeptide having thioesterase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 14-15.
[0035] The polypeptide having reductase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to any one of the amino acid sequences set forth in SEQ ID NOs: 11 or 12.
[0036] The host can further include an exogenous polypeptide having esterase activity, the host further producing glutaric acid or 5-oxopentanoic acid.
[0037] In some embodiments, the host includes one or more exogenous polypeptides having an activity selected from the group consisting of esterase activity, 6-hydroxyhexanoate dehydrogenase activity, 4-hydroxybutyrate dehydrogenase activity, 5-hydroxypentanoate dehydrogenase activity, and alcohol dehydrogenase activity, the host producing 5-hydroxypentanoic acid. The host can further include one or more exogenous polypeptides having an activity selected from the group consisting of CoA-transferase activity, a synthase activity, and dehydratase activity, the host producing 2,4-pentadienoyl-CoA from 5-hydroxypentanoic acid. The host can further include one or more exogenous polypeptides having an activity selected from the group consisting of hydratase activity, thioesterase activity, decarboxylase activity, dehydrogenase activity, CoA-transferase activity, and dehydratase activity, the host producing 1,3-butadiene from 2,4-pentadienoyl-CoA.
[0038] The polypeptide having thioesterase activity can at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence set forth in SEQ ID NO: 14 or SEQ ID NO: 15
[0039] The polypeptide having carboxylate reductase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 2-7.
[0040] In some embodiments, when the host includes an exogenous polypeptide having carboxylate reductase activity it is used in combination with an exogenous polypeptide having phosphopantetheine transferase enhancer activity.
[0041] In another aspect, this document features a recombinant host including at least one exogenous nucleic acid encoding a polypeptide having pimeloyl-[acp] methyl ester methylesterase activity, and at least one polypeptide having an activity selected from the group consisting of thioesterase activity, reversible CoA-ligase activity, a CoA-transferase activity, an acylating dehydrogenase activity, an aldehyde dehydrogenase activity, a glutarate semialdehyde dehydrogenase activity, and a succinate-semialdehyde dehydrogenase activity.
[0042] The polypeptide having pimeloyl-[acp] methyl ester methylesterase activity can have at least 70% sequence identity (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence set forth in SEQ ID NO: 1.
[0043] In some embodiments, when the host includes an exogenous polypeptide having carboxylate reductase activity it is used in combination with an exogenous polypeptide having phosphopantetheine transferase enhancer activity.
[0044] In another aspect, this document features a bio-derived product, bio-based product or fermentation-derived product, wherein the product includes (i.) a composition including at least one bio-derived, bio-based or fermentation-derived compound as described herein, or any combination thereof; (ii.) a bio-derived, bio-based or fermentation-derived polymer including the bio-derived, bio-based or fermentation-derived composition or compound of (i.), or any combination thereof; (iii.) a bio-derived, bio-based or fermentation-derived resin including the bio-derived, bio-based or fermentation-derived compound or bio-derived, bio-based or fermentation-derived composition of (i.) or any combination thereof or the bio-derived, bio-based or fermentation-derived polymer of ii. or any combination thereof; (iv.) a molded substance obtained by molding the bio-derived, bio-based or fermentation-derived polymer of (ii.) or the bio-derived, bio-based or fermentation-derived resin of (iii.), or any combination thereof; (v.) a bio-derived, bio-based or fermentation-derived formulation including the bio-derived, bio-based or fermentation-derived composition of (i.), bio-derived, bio-based or fermentation-derived compound of (i.), bio-derived, bio-based or fermentation-derived polymer of (ii.), bio-derived, bio-based or fermentation-derived resin of (iii.), or bio-derived, bio-based or fermentation-derived molded substance of (iv.), or any combination thereof; or (vi.) a bio-derived, bio-based or fermentation-derived semi-solid or a non-semi-solid stream, including the bio-derived, bio-based or fermentation-derived composition of (i.), bio-derived, bio-based or fermentation-derived compound of (i.), bio-derived, bio-based or fermentation-derived polymer of (ii.), bio-derived, bio-based or fermentation-derived resin of (iii.), bio-derived, bio-based or fermentation-derived formulation of (v.), or bio-derived, bio-based or fermentation-derived molded substance of (iv.), or any combination thereof.
[0045] This document also features a method of increasing the activity of a polypeptide having carboxylate reductase activity on a substituted or unsubstituted C.sub.4-C.sub.8 dicarboxylic acid such as glutaric acid or adipic acid. The method includes enzymatically converting the C.sub.4-C.sub.8 dicarboxylic acid to a HOC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 ester using a polypeptide having malonyl-CoA methyltransferase activity before enzymatically converting the HOC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 ester to a HC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 using a polypeptide having carboxylate reductase activity. The method further can include enzymatically converting the HC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 to HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 using a polypeptide having dehydrogenase activity. In some embodiments, the method further includes enzymatically converting the HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 product to a HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OH product using a polypeptide having the activity of an esterase.
[0046] This document also features a recombinant host that includes at least one exogenous nucleic acid encoding a (i) malonyl-[acp] O-methyltransferase, (ii) a pimeloyl-[acp] methyl ester methylesterase and (iii) a thioesterase, and produce glutarate methyl ester, glutaryl-[acp] or glutaryl-CoA.
[0047] Such a recombinant host producing glutarate methyl ester further can include an esterase, and further produce glutaric acid.
[0048] Such a recombinant host producing glutaryl-[acp] further can include a thioesterase and produce glutaric acid.
[0049] Such a recombinant host producing glutaryl-CoA further can include one or more of (i) a thioesterase, (ii) a reversible CoA-ligase, (iii) a CoA-transferase, or (iv) an acylating dehydrogenase, and (v) an aldehyde dehydrogenase such as such as 7-oxoheptanoate dehydrogenase, 6-oxohexanoate dehydrogenase or 5-oxopentanoate dehydrogenase and further produce glutaric acid or 5-oxopentanoate.
[0050] A recombinant host producing 5-oxopentanoate or glutaric acid further can include one or more of (i) an alcohol dehydrogenase or (ii) a carboxylate reductase and further produce 5-hydroxypentanoate.
[0051] A recombinant host producing glutarate methyl ester further can include one or more of (i) an alcohol dehydrogenase, (ii) an esterase or (iii) a carboxylate reductase and further produce 5-hydroxypentanoate.
[0052] In another aspect, this document features a method for producing a bioderived four or five carbon compound. The method includes culturing or growing a host as described herein under conditions and for a sufficient period of time to produce the bioderived four or five carbon compound, wherein, optionally, the bioderived four or five carbon compound can be selected from the group consisting of 2,4-pentadienoyl-CoA, glutaryl-[acp] methyl ester, 5-hydroxypentanoic acid, 3-buten-2-one, 3-buten-2-ol, 1,3-butadiene and combinations thereof.
[0053] In another aspect, this document features a composition including a bioderived for or five carbon compound and a compound other than the bioderived four or five carbon compound, wherein the bioderived four or five carbon compound is selected from the group consisting of 2,4-pentadienoyl-CoA, glutaryl-[acp] methyl ester, 5-hydroxypentanoic acid, 3-buten-2-one, 3-buten-2-ol, 1,3-butadiene and combinations thereof. For example, the bioderived 4-carbon compound can be a cellular portion of a host cell or an organism.
[0054] This document also features a biobased polymer including the bioderived four or five carbon compound including 2,4-pentadienoyl-CoA, glutaryl-[acp] methyl ester, 5-hydroxypentanoic acid, 3-buten-2-one, 3-buten-2-ol, 1,3-butadiene and combinations thereof.
[0055] This document also features biobased resin including the bioderived four or five carbon compound including 2,4-pentadienoyl-CoA, glutaryl-[acp] methyl ester, 5-hydroxypentanoic acid, 3-buten-2-one, 3-buten-2-ol, 1,3-butadiene and combinations thereof, as well as a molded product obtained by molding a biobased resin.
[0056] In another aspect this document also features a process for producing a biobased polymer including chemically reacting the bioderived four or five carbon compoundwith itself or another compound in a polymer-producing reaction.
[0057] In another aspect this document features a process for producing a biobased resin as described herein including chemically reacting the bioderived four or five carbon compound with itself or another compound in a resin producing reaction.
[0058] This document also features a biochemical network including a malonyl-CoA O-methyltransferase, wherein the malonyl-CoA O-methyltransferase enzymatically converts malonyl-[acp] to malonyl-[acp] methyl ester. The biochemical network can further include a synthase, a dehydrogenase, a dehydratase, a reductase, and a thioesterase, wherein the synthase, the dehydrogenase, the dehydratase, the reductase, and the thioesterase, enzymatically convert the malonyl-[acp] methyl ester to glutarate methyl ester.
[0059] In some embodiments the biochemical network further includes a carboxylate reductase, wherein the carboxylate reductase enzymatically converts glutarate methyl ester to glutarate semialdehyde methyl ester. The biochemical network can further include an esterase and a dehydrogenase, wherein the esterase and dehydrogenase enzymatically convert glutarate semialdehyde methyl ester to 5-hydroxypentanoic acid.
[0060] In some embodiments, the biochemical network can further include a CoA-transferase and dehydratase, wherein the CoA-transferase and dehydratase enzymatically convert 5-hydroxypentanoic acid to 2,4-pentadienoyl-CoA. The biochemical network can further include a hydratase, a thioesterase, a decarboxylase, a dehydrogenase, a CoA-transferase, and a dehydratase, wherein the hydratase, the thioesterase, the decarboxylase, the dehydrogenase, the CoA-transferase, and the dehydratase enzymatically convert the 2,4-pentadienoyl-CoA to 1,3-butadiene.
[0061] This document also features a biochemical network including a malonyl-CoA O-methyltransferase, wherein the malonyl-CoA O-methyltransferase enzymatically converts malonyl-CoA to malonyl-CoA methyl ester. The biochemical network can further include a synthase, a .beta.-ketothiolase, a dehydrogenase, a hydratase, a reductase, and a thioesterase, wherein the synthase, the .beta.-ketothiolase, the dehydrogenase, the hydratase, the reductase, and the thioesterase, enzymatically convert the malonyl-CoA methyl ester to glutarate methyl ester.
[0062] In some embodiments the biochemical network further includes a carboxylate reductase, wherein the carboxylate reductase enzymatically converts glutarate methyl ester to glutarate semialdehyde methyl ester. The biochemical network can further include an esterase and a dehydrogenase, wherein the esterase and dehydrogenase enzymatically convert glutarate semialdehyde methyl ester to 5-hydroxypentanoic acid.
[0063] In some embodiments, the biochemical network can further include a CoA-transferase and dehydratase, wherein the CoA-transferase and dehydratase enzymatically convert 5-hydroxypentanoic acid to 2,4-pentadienoyl-CoA. The biochemical network can further include a hydratase, a thioesterase, a decarboxylase, a dehydrogenase, a CoA-transferase, and a dehydratase, wherein the hydratase, the thioesterase, the decarboxylase, the dehydrogenase, the CoA-transferase, and the dehydratase enzymatically convert the 2,4-pentadienoyl-CoA to 1,3-butadiene.
[0064] This document also features a method of increasing the activity of a polypeptide having carboxylate reductase activity on a substituted or unsubstituted C.sub.4-C.sub.8 dicarboxylic acid such as glutaric acid or adipic acid. The method includes enzymatically converting the C.sub.4-C.sub.8 dicarboxylic acid to a HOC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 ester using a polypeptide having malonyl-CoA methyltransferase activity before enzymatically converting the HOC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 ester to a HC(.dbd.O)(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 using a polypeptide having carboxylate reductase activity. The method further can include enzymatically converting the HC(.dbd.O)(C.sub.2-C.sub.6alkyl)-C(.dbd.O)OCH.sub.3 to HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 using a polypeptide having dehydrogenase activity. In some embodiments, the method further includes enzymatically converting the HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OCH.sub.3 product to a HOCH.sub.2(C.sub.2-C.sub.6 alkyl)-C(.dbd.O)OH product using a polypeptide having the activity of an esterase.
[0065] Any of the methods can be performed in a recombinant host by fermentation. The host can be subjected to a cultivation strategy under aerobic, anaerobic, or micro-aerobic cultivation conditions. The host can be cultured under conditions of nutrient limitation such as phosphate, oxygen or nitrogen limitation. The host can be retained using a ceramic membrane to maintain a high cell density during fermentation.
[0066] In some embodiments, the host is subjected to a cultivation strategy under aerobic or micro-aerobic cultivation conditions.
[0067] In some embodiments, a biological feedstock can be used as the principal carbon source for the fermentation. For example, the biological feedstock can be, or can derive from monosaccharides, disaccharides, lignocellulose, hemicellulose, cellulose, lignin, levulinic acid and formic acid, triglycerides, glycerol, fatty acids, agricultural waste, condensed distillers' solubles, or municipal waste.
[0068] In some embodiments, a non-biological feedstock can be used as the principal carbon source for the fermentation. The non-biological feedstock can be, or can be derived from, natural gas, syngas, CO.sub.2/H.sub.2, methanol, ethanol, benzoate, non-volatile residue (NVR) or a caustic wash waste stream from cyclohexane oxidation processes, or terephthalic acid/isophthalic acid mixture waste streams.
[0069] In any of the embodiments described herein, the host can be a prokaryote. The prokaryote can be selected from the group consisting of Escherichia; Clostridia; Corynebacteria; Cupriavidus; Pseudomonas; Delftia; Bacilluss; Lactobacillus; Lactococcus; and Rhodococcus. For example, the prokaryote can be selected from the group consisting of Escherichia coli, Clostridium ljungdahlii, Clostridium autoethanogenum, Clostridium kluyveri, Corynebacterium glutamicum, Cupriavidus necator, Cupriavidus metallidurans. Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas oleavorans, Delftia acidovorans, Bacillus subtillis, Lactobacillus delbrueckii, Lactococcus lactis, and Rhodococcus equi.
[0070] In any of the embodiments described herein, the host can be a eukaryote. The eukaryote can selected from the group consisting of Aspergillus, Saccharomyces, Pichia, Yarrowia, Issatchenkia, Debagomyces, Arxula, and Kluyveromyces. For example, the eukaryote can be selected from the group consisting of Aspergillus niger, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Issathenkia orientalis, Debaryomyces hansenii, Arxula adenoinivorans, and Kluyveromyces lactis.
[0071] In some embodiments, the host exhibits tolerance to high concentrations of a C5 building block, and wherein the tolerance to high concentrations of a C5 building block is improved through continuous cultivation in a selective environment.
[0072] In some embodiments, the host's endogenous biochemical network is attenuated or augmented to (1) ensure the intracellular availability of acetyl-CoA, (2) create a cofactor, i.e. NADH or NADPH, imbalance that may be balanced via the formation of glutarate methyl ester, 2,4-pentadienoyl-CoA, or 1,3-butadiene, (3) prevent degradation of central metabolites, central precursors leading to and including glutarate methyl ester, 2,4-pentadienoyl-CoA, or 1,3-butadiene and (4) ensure efficient efflux from the cell.
[0073] In some embodiments, the host includes one or more of the following: the intracellular concentration of oxaloacetate for biosynthesis of a C5 building block is increased in the host by overexpressing recombinant genes forming oxaloacetate; wherein an imbalance in NADPH is generated that can be balanced via the formation of a C5 building block; wherein an exogenous lysine biosynthesis pathway synthesizing lysine from 2-oxoglutarate via 2-oxoadipate is introduced in a host using the meso 2,6 diaminopimelate pathway for lysine synthesis; wherein an exogenous lysine biosynthesis pathway synthesizing lysine from oxaloacetate to meso 2,6 diaminopimelate is introduced in a host using the 2-oxoadipate pathway for lysine synthesis; wherein endogenous degradation pathways of central metabolites and central precursors leading to and including C5 building blocks are attenuated in the host; or wherein the efflux of a C5 building block across the cell membrane to the extracellular media is enhanced or amplified by genetically engineering structural modifications to the cell membrane or increasing any associated transporter activity for a C5 building block.
[0074] Any of the recombinant hosts described herein further can include one or more of the following attenuated polypeptides having attenuated activity of a: polyhydroxyalkanoate synthase, an acetyl-CoA thioesterase, an acetyl-CoA specific .beta.-ketothiolase, an acetoacetyl-CoA reductase, a phosphotransacetylase forming acetate, an acetate kinase, a lactate dehydrogenase, a menaquinol-fumarate oxidoreductase, a 2-oxoacid decarboxylase producing isobutanol, an alcohol dehydrogenase forming ethanol, a triose phosphate isomerase, a pyruvate decarboxylase, a glucose-6-phosphate isomerase, a transhydrogenase dissipating the cofactor imbalance, aglutamate dehydrogenase specific for the co-factor for which an imbalance is created, a NADH/NADPH-utilizing glutamate dehydrogenase, a pimeloyl-CoA dehydrogenase; an acyl-CoA dehydrogenase accepting C5 building blocks and central precursors as substrates; a glutaryl-CoA dehydrogenase; or a pimeloyl-CoA synthetase.
[0075] Any of the recombinant hosts described herein further can overexpress one or more genes encoding a polypeptide having: an acetyl-CoA synthetase, a 6-phosphogluconate dehydrogenase; a transketolase; a feedback resistant threonine deaminase; a puridine nucleotide transhydrogenase; aformate dehydrogenase; a glyceraldehyde-3P-dehydrogenase; a malic enzyme; a glucose-6-phosphate dehydrogenase; afructose 1,6 diphosphatase; a propionyl-CoA synthetase; a L-alanine dehydrogenase; a L-glutamate dehydrogenase; a L-glutamine synthetase; a lysine transporter; a dicarboxylate transporter; and/or a multidrug transporter activity.
[0076] The reactions of the pathways described herein can be performed in one or more cell (e.g., host cell) strains (a) naturally expressing one or more relevant enzymes, (b) genetically engineered to express one or more relevant enzymes, or (c) naturally expressing one or more relevant enzymes and genetically engineered to express one or more relevant enzymes. Alternatively, relevant enzymes can be extracted from of the above types of host cells and used in a purified or semi-purified form. Extracted enzymes can optionally be immobilized to the floors and/or walls of appropriate reaction vessels. Moreover, such extracts include lysates (e.g. cell lysates) that can be used as sources of relevant enzymes. In the methods provided by the document, all the steps can be performed in cells (e.g., host cells), all the steps can be performed using extracted enzymes, or some of the steps can be performed in cells and others can be performed using extracted enzymes.
[0077] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein including GenBank and NCBI submissions with accession numbers are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[0078] One of skill in the art understands that compounds containing carboxylic acid groups (including, but not limited to, organic monoacids, hydroxyacids, aminoacids, and dicarboxylic acids) are formed or converted to their ionic salt form when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base. Acceptable organic bases include, but are not limited to, ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like. Acceptable inorganic bases include, but are not limited to, aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like. A salt of the present invention is isolated as a salt or converted to the free acid by reducing the pH to below the pKa, through addition of acid or treatment with an acidic ion exchange resin.
[0079] One of skill in the art understands that compounds containing amine groups (including, but not limited to, organic amines, aminoacids, and diamines) are formed or converted to their ionic salt form, for example, by addition of an acidic proton to the amine to form the ammonium salt, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids including, but not limited to, acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 4-methylbicyclo-[2.2.2]oct-2-ene-1-carboxylic acid, glucoheptonic acid, 4,4'-methylenebis-(3-hydroxy-2-ene-1-carboxylic acid), 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like. Acceptable inorganic bases include, but are not limited to, aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like. A salt of the present invention is isolated as a salt or converted to the free amine by raising the pH to above the pKb through addition of base or treatment with a basic ion exchange resin.
[0080] One of skill in the art understands that compounds containing both amine groups and carboxylic acid groups (including, but not limited to, aminoacids) are formed or converted to their ionic salt form by either 1) acid addition salts, formed with inorganic acids including, but not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids including, but not limited to, acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 4-methylbicyclo-[2.2.2]oct-2-ene-1-carboxylic acid, glucoheptonic acid, 4,4'-methylenebis-(3-hydroxy-2-ene-1-carboxylic acid), 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like. Acceptable inorganic bases include, but are not limited to, aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like, or 2) when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base. Acceptable organic bases include, but are not limited to, ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methyiglucamine, and the like. Acceptable inorganic bases include, but are not limited to, aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like. A salt can of the present invention is isolated as a salt or converted to the free acid by reducing the pH to below the pKa through addition of acid or treatment with an acidic ion exchange resin.
[0081] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and the drawings, and from the claims. The word "comprising" in the claims may be replaced by "consisting essentially of or with "consisting of," according to standard practice in patent law.
DESCRIPTION OF DRAWINGS
[0082] FIG. 1 is a schematic of exemplary biochemical pathways leading to glutarate methyl ester or glutaryl-[acp] from malonyl-[acp].
[0083] FIG. 2 is a schematic of exemplary biochemical pathways leading to glutarate methyl ester or glutaryl-CoA from malonyl-CoA using NADPH as reducing equivalent.
[0084] FIG. 3 is a schematic of exemplary biochemical pathways leading to glutarate methyl ester or glutaryl-CoA from malonyl-CoA using NADH as reducing equivalent.
[0085] FIG. 4 is a schematic of exemplary biochemical pathways leading to glutarate using glutarate methyl ester, glutaryl-[acp] or glutaryl-CoA as central precursor.
[0086] FIG. 5 is a schematic of an exemplary biochemical pathway leading to 5-hydroxypentanoate using glutarate methyl ester or glutarate as a central precursor.
[0087] FIG. 6 is a schematic of an exemplary biochemical pathway leading to 2,4-pentadienoyl-CoA using 5-hydroxypentanoate as a central precursor.
[0088] FIG. 7 is a schematic of an exemplary biochemical pathway leading to 1,3-butadiene using 2,4-pentadienoyl-CoA as central precursor.
[0089] FIGS. 8A, 8B, 8C, 8D, 8E, 8F, 8G and 8H contain the amino acid sequences of an Escherichia coli pimeloyl-[acp] methyl ester methylesterase (see Genbank Accession No. AAC76437.1, SEQ ID NO: 1), a Mycobacterium marinum carboxylate reductase (see Genbank Accession No. ACC40567.1, SEQ ID NO: 2), a Mycobacterium smegmatis carboxylate reductase (see Genbank Accession No. ABK71854.1, SEQ ID NO: 3), a Segniliparus rugosus carboxylate reductase (see Genbank Accession No. EFV11917.1, SEQ ID NO: 4), a Mycobacterium smegmatis carboxylate reductase (see Genbank Accession No. ABK75684.1, SEQ ID NO: 5), a Mycobacterium massiliense carboxylate reductase (see Genbank Accession No. EIV11143.1, SEQ ID NO: 6), a Segniliparus rotundus carboxylate reductase (see Genbank Accession No. ADG98140.1, SEQ ID NO: 7), an Pseudomonas fluorescens esterase (see Genbank Accession No. AAC60471.2, SEQ ID NO: 8), a Lactobacillus brevis acyl-[acp] thioesterase (see Genbank Accession NO: ABJ63754.1, SEQ ID NO:9), a Lactobacillus plantarum acyl-[acp] thioesterase (see Genbank Accession Nos. CCC78182.1, SEQ ID NO: 10), a Treponema denticola enoyl-CoA reductase (see, e.g., Genbank Accession No. AAS11092.1, SEQ ID NO: 11), an Euglena gracilis enoyl-CoA reductase (see, e.g., Genbank Accession No. AAW66853.1, SEQ ID NO: 12), a Bacillus cereus malonyl-[acp] O-methyltransferase (see, e.g., Genbank Accession No. AAP11034.1, SEQ ID NO: 13), an Escherichia coli thioesterase (see, e.g., Genbank Accession No. AAB59067.1, SEQ ID NO: 14), and an Escherichia coli thioesterase (see, e.g., Genbank Accession No. AAA24665.1, SEQ ID NO: 15), a Bacillus subtilis phosphopantetheinyl transferase (see Genbank Accession No. CAA44858.1, SEQ ID NO:16), a Nocardia sp. NRRL 5646 phosphopantetheinyl transferase (see Genbank Accession No. ABI83656.1, SEQ ID NO:17),
[0090] FIG. 9 is a bar graph summarizing the change in absorbance at 340 nm after 20 minutes, which is a measure of the consumption of NADPH and activity of five carboxylate reductase preparations in enzyme only controls (no substrate).
[0091] FIG. 10 is a bar graph of the change in absorbance at 340 nm after 20 minutes, which is a measure of the consumption of NADPH and activity of a carboxylate reductase preparation for converting glutarate methyl ester to glutarate semialdehyde methyl ester relative to the empty vector control.
[0092] FIG. 11 is a table of conversion after 1 hour of glutaryl-CoA methyl ester to glutaryl-CoA bypimeloyl-[acp] methyl ester methylesterase.
DETAILED DESCRIPTION
[0093] This document provides enzymes, non-natural pathways, cultivation strategies, feedstocks, host microorganisms and attenuations to the host's biochemical network, which can be used to synthesize 2,4-pentadienoyl-CoA and, optionally, 1,3-butadiene (also known as buta-1,3-diene, biethylene, or vinylethylene) from central precursors or central metabolites. Production of butadiene thus can proceed through a common intermediate, 2,4-pentadienoyl-CoA, even though there are a number of different feedstocks and different pathways that can be used to produce 2,4-pentadienoyl-CoA. For example, malonyl-CoA or malonyl-[acp] can be used to produce 2,4-pentadienoyl-CoA via different methyl-ester shielded routes. As used herein, the term "central precursor" is used to denote any metabolite in any metabolic pathway shown herein leading to the synthesis of 5-hydroxypentanoate, 2,4-pentadienoyl-CoA or butadiene. The term "central metabolite" is used herein to denote a metabolite that is produced in all microorganisms to support growth.
[0094] As such, host microorganisms described herein can include endogenous pathways that can be manipulated such that 2,4-pentadienoyl-CoA can be produced. In an endogenous pathway, the host microorganism naturally expresses all of the enzymes catalyzing the reactions within the pathway. A host microorganism containing an engineered pathway does not naturally express all of the enzymes catalyzing the reactions within the pathway but has been engineered such that all of the enzymes within the pathway are expressed in the host.
[0095] The term "exogenous" as used herein with reference to a nucleic acid (or a protein) and a host refers to a nucleic acid that does not occur in (and cannot be obtained from) a cell of that particular type as it is found in nature or a protein encoded by such a nucleic acid. Thus, a non-naturally-occurring nucleic acid is considered to be exogenous to a host once in the host. It is important to note that non-naturally-occurring nucleic acids can contain nucleic acid subsequences or fragments of nucleic acid sequences that are found in nature provided the nucleic acid as a whole does not exist in nature. For example, a nucleic acid molecule containing a genomic DNA sequence within an expression vector is non-naturally-occurring nucleic acid, and thus is exogenous to a host cell once introduced into the host, since that nucleic acid molecule as a whole (genomic DNA plus vector DNA) does not exist in nature. Thus, any vector, autonomously replicating plasmid, or virus (e.g., retrovirus, adenovirus, or herpes virus) that as a whole does not exist in nature is considered to be non-naturally-occurring nucleic acid. It follows that genomic DNA fragments produced by PCR or restriction endonuclease treatment as well as cDNAs are considered to be non-naturally-occurring nucleic acid since they exist as separate molecules not found in nature. It also follows that any nucleic acid containing a promoter sequence and polypeptide-encoding sequence (e.g., cDNA or genomic DNA) in an arrangement not found in nature is non-naturally-occurring nucleic acid. A nucleic acid that is naturally-occurring can be exogenous to a particular host microorganism. For example, an entire chromosome isolated from a cell of yeast x is an exogenous nucleic acid with respect to a cell of yeast y once that chromosome is introduced into a cell of yeast y.
[0096] In contrast, the term "endogenous" as used herein with reference to a nucleic acid (e.g., a gene) (or a protein) and a host refers to a nucleic acid (or protein) that does occur in (and can be obtained from) that particular host as it is found in nature. Moreover, a cell "endogenously expressing" a nucleic acid (or protein) expresses that nucleic acid (or protein) as does a host of the same particular type as it is found in nature. Moreover, a host "endogenously producing" or that "endogenously produces" a nucleic acid, protein, or other compound produces that nucleic acid, protein, or compound as does a host of the same particular type as it is found in nature.
[0097] For example, depending on the host and the compounds produced by the host, one or more of the following enzymes may be expressed in the host including a malonyl-[acp] O-methyltransferase, a pimeloyl-[acp] methyl ester methyl esterase, an esterase, a reversible CoA-ligase, CoA-transferase, a 4-hydroxybutyrate dehydrogenase, a 5-hydroxypentanoate dehydrogenase, a 6-hydroxyhexanoate dehydrogenase, an alcohol dehydrogenase, a 5-oxopentanoate dehydrogenase, a 6-oxohexanoate dehydrogenase, a 7-oxoheptanoate dehydrogenase, an aldehyde dehydrogenase, or a carboxylate reductase. In recombinant hosts expressing a carboxylate reductase, a phosphopantetheinyl transferase also can be expressed as it enhances activity of the carboxylate reductase.
[0098] This document also features a recombinant host that includes at least one exogenous nucleic acid encoding (i) a polypeptide having malonyl-[acp] O-methyltransferase activity, (ii) a polypeptide having pimeloyl-[acp] methyl ester methylesterase activity and (iii) a polypeptide having thioesterase activity, and produce glutarate methyl ester, glutaryl-[acp] or glutaryl-CoA.
[0099] Such a recombinant host producing glutarate methyl ester further can include a polypeptide having esterase activity, and further produce glutaric acid.
[0100] Such a recombinant host producing glutaryl-[acp] further can include a polypeptide having thioesterase activity and produce glutaric acid.
[0101] Such a recombinant host producing glutaryl-CoA further can include one or more of (i) a polypeptide having thioesterase activity, (ii) a polypeptide having reversible CoA-ligase activity, (iii) a polypeptide having CoA-transferase activity, or (iv) a polypeptide having acylating dehydrogenase activity, and (v) a polypeptide having aldehyde dehydrogenase activity such as a 7-oxoheptanoate dehydrogenase, 6-oxohexanoate dehydrogenase or 5-oxopentanoate dehydrogenase activity and further produce glutaric acid or 5-oxopentanoate.
[0102] A recombinant host producing 5-oxopentanoate or glutaric acid further can include one or more of (i) a polypeptide having alcohol dehydrogenase activity or (ii) a polypeptide having carboxylate reductase activity and further produce 5-hydroxypentanoate.
[0103] A recombinant host producing glutarate methyl ester further can include one or more of (i) a polypeptide having alcohol dehydrogenase activity, (ii) a polypeptide having esterase activity or (iii) a polypeptide having carboxylate reductase activity and further produce 5-hydroxypentanoate.
[0104] Within an engineered pathway, the enzymes can be from a single source, i.e., from one species or genus, or can be from multiple sources, i.e., different species or genera. Nucleic acids encoding the enzymes described herein have been identified from various organisms and are readily available in publicly available databases such as GenBank or EMBL.
[0105] Any of the enzymes described herein that can be used for production of one or more C5 building blocks can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of the corresponding wild-type enzyme. It will be appreciated that the sequence identity can be determined on the basis of the mature enzyme (e.g., with any signal sequence removed) or on the basis of the immature enzyme (e.g., with any signal sequence included). It also will be appreciated that the initial methionine residue may or may not be present on any of the enzyme sequences described herein.
[0106] For example, a polypeptide having pimeloyl-[acp] methyl ester methylesterase activity described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of an Escherichia coli (see Genbank Accession Nos. AAC76437.1, SEQ ID NO: 1)pimeloyl-[acp] methyl ester methylesterase. See FIG. 1-3.
[0107] For example, a polypeptide having carboxylate reductase activity described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Mycobacterium marinum (see Genbank Accession No. ACC40567.1, SEQ ID NO: 2), a Mycobacterium smegmatis (see Genbank Accession No. ABK71854.1, SEQ ID NO: 3), a Segniliparus rugosus (see Genbank Accession No. EFV11917.1, SEQ ID NO: 4), a Mycobacterium smegmatis (see Genbank Accession No. ABK75684.1, SEQ ID NO: 5), a Mycobacterium massiliense (see Genbank Accession No. EIV11143.1, SEQ ID NO: 6), or a Segniliparus rotundus (see Genbank Accession No. ADG98140.1, SEQ ID NO: 7) carboxylate reductase. See, FIG. 5.
[0108] For example, a polypeptide having phosphopantetheinyl transferase activity described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Bacillus subtilis phosphopantetheinyl transferase (see Genbank Accession No. CAA44858.1, SEQ ID NO: 16) or a Nocardia sp. NRRL 5646 phosphopantetheinyl transferase (see Genbank Accession No. ABI83656.1, SEQ ID NO: 17). See FIG. 5.
[0109] For example, a polypeptide having esterase activity described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Pseudomonas fluorescens esterase (see Genbank Accession Nos. AAC60471.2, SEQ ID NO: 8). See FIG. 4, 5.
[0110] For example, a polypeptide having thioesterase activity described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Lactobacillus brevis acyl-[acp] thioesterase (see Genbank Accession Nos. ABJ63754.1, SEQ ID NO: 9), a Lactobacillus plantarum acyl-[acp] thioesterase (see Genbank Accession Nos. CCC78182.1, SEQ ID NO: 10), or a Escherichia coli thioesterase (see Genbank Accession Nos. AAB59067.1 or AAA24665.1, SEQ ID NO: 14 or 15). See FIG. 4.
[0111] For example, a polypeptide having malonyl-[acp] O-methyltransferase activity described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Bacillus cereus (see Genbank Accession Nos. AAP11034.1, SEQ ID NO: 13) malonyl-[acp] O-methyltransferase. See FIG. 1-3.
[0112] For example, a polypeptide having enoyl-CoA reductase activity described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Treponema denticola (see Genbank Accession Nos. AAS11092.1, SEQ ID NO:11), or a Euglena gracilis (see Genbank Accession Nos. AAW66853.1, SEQ ID NO:12) enoyl-CoA reductase. See FIGS. 1-3.
[0113] The percent identity (homology) between two amino acid sequences can be determined as follows. First, the amino acid sequences are aligned using the BLAST 2 Sequences (Bl2seq) program from the stand-alone version of BLASTZ containing BLASTP version 2.0.14. This stand-alone version of BLASTZ can be obtained from Fish & Richardson's web site (e.g., www.fr.com/blast/) or the U.S. government's National Center for Biotechnology Information web site (www.ncbi.nlm.nih.gov). Instructions explaining how to use the Bl2seq program can be found in the readme file accompanying BLASTZ. Bl2seq performs a comparison between two amino acid sequences using the BLASTP algorithm. To compare two amino acid sequences, the options of Bl2seq are set as follows: -i is set to a file containing the first amino acid sequence to be compared (e.g., C:\seq1.txt); -j is set to a file containing the second amino acid sequence to be compared (e.g., C:\seq2.txt); -p is set to blastp; -o is set to any desired file name (e.g., C:\output.txt); and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two amino acid sequences: C:\Bl2seq -i c:\seq1.txt -j c:\seq2.txt -p blastp -o c:\output.txt. If the two compared sequences share homology (identity), then the designated output file will present those regions of homology as aligned sequences. If the two compared sequences do not share homology (identity), then the designated output file will not present aligned sequences. Similar procedures can be following for nucleic acid sequences except that blastn is used.
[0114] Once aligned, the number of matches is determined by counting the number of positions where an identical amino acid residue is presented in both sequences. The percent identity (homology) is determined by dividing the number of matches by the length of the full-length polypeptide amino acid sequence followed by multiplying the resulting value by 100. It is noted that the percent identity (homology) value is rounded to the nearest tenth. For example, 78.11, 78.12, 78.13, and 78.14 is rounded down to 78.1, while 78.15, 78.16, 78.17, 78.18, and 78.19 is rounded up to 78.2. It also is noted that the length value will always be an integer.
[0115] It will be appreciated that a number of nucleic acids can encode a polypeptide having a particular amino acid sequence. The degeneracy of the genetic code is well known to the art; i.e., for many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino acid. For example, codons in the coding sequence for a given enzyme can be modified such that optimal expression in a particular species (e.g., bacteria or fungus) is obtained, using appropriate codon bias tables for that species.
[0116] Functional fragments of any of the enzymes described herein can also be used in the methods of the document. The term "functional fragment" as used herein refers to a peptide fragment of a protein that has at least 25% (e.g., at least: 30%; 40%; 50%; 60%; 70%; 75%; 80%; 85%; 90%; 95%; 98%; 99%; 100%; or even greater than 100%) of the activity of the corresponding mature, full-length, wild-type protein. The functional fragment can generally, but not always, be comprised of a continuous region of the protein, wherein the region has functional activity.
[0117] This document also provides (i) functional variants of the enzymes used in the methods of the document and (ii) functional variants of the functional fragments described above. Functional variants of the enzymes and functional fragments can contain additions, deletions, or substitutions relative to the corresponding wild-type sequences. Enzymes with substitutions will generally have not more than 50 (e.g., not more than one, two, three, four, five, six, seven, eight, nine, ten, 12, 15, 20, 25, 30, 35, 40, or 50) amino acid substitutions (e.g., conservative substitutions). This applies to any of the enzymes described herein and functional fragments. A conservative substitution is a substitution of one amino acid for another with similar characteristics. Conservative substitutions include substitutions within the following groups: valine, alanine and glycine; leucine, valine, and isoleucine; aspartic acid and glutamic acid; asparagine and glutamine; serine, cysteine, and threonine; lysine and arginine; and phenylalanine and tyrosine. The nonpolar hydrophobic amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Any substitution of one member of the above-mentioned polar, basic or acidic groups by another member of the same group can be deemed a conservative substitution. By contrast, a nonconservative substitution is a substitution of one amino acid for another with dissimilar characteristics.
[0118] Deletion variants can lack one, two, three, four, five, six, seven, eight, nine, ten, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid segments (of two or more amino acids) or non-contiguous single amino acids. Additions (addition variants) include fusion proteins containing: (a) any of the enzymes described herein or a fragment thereof; and (b) internal or terminal (C or N) irrelevant or heterologous amino acid sequences. In the context of such fusion proteins, the term "heterologous amino acid sequences" refers to an amino acid sequence other than (a). A heterologous sequence can be, for example a sequence used for purification of the recombinant protein (e.g., FLAG, polyhistidine (e.g., hexahistidine), hemagglutinin (HA), glutathione-S-transferase (GST), or maltosebinding protein (MBP)). Heterologous sequences also can be proteins useful as detectable markers, for example, luciferase, green fluorescent protein (GFP), or chloramphenicol acetyl transferase (CAT). In some embodiments, the fusion protein contains a signal sequence from another protein. In certain host cells (e.g., yeast host cells), expression and/or secretion of the target protein can be increased through use of a heterologous signal sequence. In some embodiments, the fusion protein can contain a carrier (e.g., KLH) useful, e.g., in eliciting an immune response for antibody generation) or ER or Golgi apparatus retention signals. Heterologous sequences can be of varying length and in some cases can be a longer sequences than the full-length target proteins to which the heterologous sequences are attached.
[0119] Engineered hosts can naturally express none or some (e.g., one or more, two or more, three or more, four or more, five or more, or six or more) of the enzymes of the pathways described herein. Thus, a pathway within an engineered host can include all exogenous enzymes, or can include both endogenous and exogenous enzymes. Endogenous genes of the engineered hosts also can be disrupted to prevent the formation of undesirable metabolites or prevent the loss of intermediates in the pathway through other enzymes acting on such intermediates. Engineered hosts can be referred to as recombinant hosts or recombinant host cells. As described herein recombinant hosts can include nucleic acids encoding one or more polypeptide having the activity of a reductase, deacetylase, N-acetyltransferase, malonyl-[acp] O-methyltransferase, esterase, thioesterase, hydratase, dehydrogenase, CoA-ligase, and/or CoA-transferase as described herein.
[0120] In addition, the production of one or more C5 building blocks can be performed in vitro using the isolated enzymes described herein, using a lysate (e.g., a cell lysate) from a host microorganism as a source of the enzymes, or using a plurality of lysates from different host microorganisms as the source of the enzymes.
Enzymes Generating the Terminal Carboxyl Groups in the Biosynthesis of 2,4-Pentadienoyl-CoA
[0121] As depicted in FIG. 4, a terminal carboxyl group can be enzymatically formed using (i) a polypeptide having thioesterase activity, (ii) a polypeptide having reversible CoA-ligase activity, (iii) a polypeptide having CoA-transferase activity, (iv) a polypeptide having acylating dehydrogenase activity, or (v) a polypeptide having aldehyde dehydrogenase activity such as a 7-oxoheptanoate dehydrogenase, a 6-oxohexanoate dehydrogenase, or a 5-oxopentanoate dehydrogenase activity, or (vi) a polypeptide having esterase activity.
[0122] In some embodiments, a terminal carboxyl group leading to the synthesis of glutarate is enzymatically formed by a thioesterase classified under EC 3.1.2.-, such as the gene product of YciA (SEQ ID NO: 14), tesB (Genbank Accession No. AAA24665.1, SEQ ID NO: 15) or Acot13 (see, for example, Cantu et al., Protein Science, 2010, 19, 1281-1295; Zhuang et al., Biochemistry, 2008, 47(9), 2789-2796; or Naggert et al., J. Biol. Chem., 1991, 266(17), 11044-11050).
[0123] In some embodiments, the second terminal carboxyl group leading to the synthesis of glutaric acid is enzymatically formed by a CoA-transferase such as a glutaconate CoA-transferase classified, for example, under EC 2.8.3.12 such as from Acidaminococcus fermentans. See, for example, Buckel et al., 1981, Eur. J. Biochem., 118:315-321. FIG. 4.
[0124] In some embodiments, the second terminal carboxyl group leading to the synthesis of glutaric acid is enzymatically formed by a reversible CoA-ligase such as a succinate-CoA ligase classified, for example, under EC 6.2.1.5 such as from Thermococcus kodakaraensis. See, for example, Shikata et al., 2007, J. Biol. Chem., 282(37):26963-26970.
[0125] In some embodiments, the second terminal carboxyl group leading to the synthesis of glutaric acid is enzymatically formed by an acyl-[acp] thioesterase classified under EC 3.1.2.-, such as the acyl-[acp] thioesterase from Lactobacillus brevis (GenBank Accession No. ABJ63754.1, SEQ ID NO: 9) or from Lactobacillus plantarum (GenBank Accession No. CCC78182.1, SEQ ID NO: 10). Such acyl-[acp] thioesterases have C6-C8 chain length specificity (see, for example, Jing et al., 2011, BMC Biochemistry, 12(44)). See, e.g., FIG. 4.
[0126] In some embodiments, the second terminal carboxyl group leading to the synthesis of glutaric acid is enzymatically formed by an aldehyde dehydrogenase classified, for example, under EC 1.2.1.3 (see, Guerrillot & Vandecasteele, Eur. J. Biochem., 1977, 81, 185-192). See, FIG. 4.
[0127] In some embodiments, the second terminal carboxyl group leading to the synthesis of glutaric acid is enzymatically formed by an aldehyde dehydrogenase classified under EC 1.2.1.- such as a glutarate semialdehyde dehydrogenase classified, for example, under EC 1.2.1.20, a succinate-semialdehyde dehydrogenase classified, for example, under EC 1.2.1.16 or EC 1.2.1.79, or an aldehyde dehydrogenase classified under EC 1.2.1.3. For example, an aldehyde dehydrogenase classified under EC 1.2.1.- can be a 5-oxopentanoate dehydrogenase such as the gene product of CpnE, a 6-oxohexanoate dehydrogenase (e.g., the gene product of ChnE from Acinetobacter sp.), or a 7-oxoheptanoate dehydrogenase (e.g., the gene product of ThnG from Sphingomonas macrogolitabida) (Iwaki et al., Appl. Environ. Microbiol., 1999, 65(11), 5158-5162; Lopez-Sanchez et al., Appl. Environ. Microbiol., 2010, 76(1), 110-118). For example, a 6-oxohexanoate dehydrogenase can be classified under EC 1.2.1.63 such as the gene product of ChnE. For example, a 7-oxoheptanoate dehydrogenase can be classified under EC 1.2.1.-.
[0128] In some embodiments, the second terminal carboxyl group leading to the synthesis of glutaric acid is enzymatically formed by a polypeptide having esterase activity such as an esterase classified under EC 3.1.1.- such as EC 3.1.1.1 or EC 3.1.1.6.
[0129] Enzymes Generating the Terminal Hydroxyl Groups in the Biosynthesis of a 2,4-Pentadienoyl-CoA
[0130] As depicted in FIGS. 5, a terminal hydroxyl group can be enzymatically formed using an alcohol dehydrogenase such as a 6-hydroxyhexanoate dehydrogenase, a 5-hydroxypentanoate dehydrogenase, or a 4-hydroxybutyrate dehydrogenase.
[0131] For example, a terminal hydroxyl group leading to the synthesis of 5-hydroxypentanoate can be enzymatically formed by a dehydrogenase classified, for example, under EC 1.1.1.- such as a 6-hydroxyhexanoate dehydrogenase classified, for example, under EC 1.1.1.258 (e.g., the gene from of ChnD), a 5-hydroxypentanoate dehydrogenase classified, for example, under EC 1.1.1.- such as the gene product of CpnD (see, for example, Iwaki et al., 2002, Appl. Environ. Microbiol., 68(11):5671-5684), a 5-hydroxypentanoate dehydrogenase from Clostridium viride, or a 4-hydroxybutyrate dehydrogenase such as gabD (see, for example, Lutke-Eversloh & Steinbuchel, 1999, FEMS Microbiology Letters, 181(1):63-71). See, FIG. 5.
Enzymes Generating the Terminal Vinyl Group in the Biosynthesis of a 2,4-Pentadienoyl-CoA
[0132] As depicted in FIG. 6, a terminal vinyl group can be enzymatically formed using a dehydratase such as 5-hydroxypentanoyl-CoA dehydratase from Clostridium viride (Eikmanns and Buckel, 1991, Eur. J. Biochem., 197, 661 -668).
Biochemical Pathways
[0133] Pathway to Glutarate Methyl Ester, Glutaryl-CoA or Glutaryl-[acp] from Malonyl-[acp] or Malonyl-CoA
[0134] As shown in FIG. 1, glutarate methyl ester can be synthesized from malonyl-[acp] by conversion of malonyl-[acp] to malonyl-[acp] methyl ester by a malonyl-CoA O-methyltransferase classified, for example, under EC 2.1.1.197 such as the gene product of bioC; followed by conversion to 3-oxoglutaryl-[acp] methyl ester by condensation with malonyl-[acp] and a .beta.-ketoacyl-[acp] synthase classified, for example, under EC 2.3.1.- such as EC 2.3.1.41, EC 2.3.1.179 or EC 2.3.1.180 (e.g., the gene product of fabB,fabF or fabII); followed by conversion to 3-hydroxy-glutaryl-[acp] methyl ester by a 3-hydroxyacyl-CoA dehydrogenase classified, for example, under EC 1.1.1.- such as EC 1.1.1.100 (e.g., the gene product of fabG); followed by conversion to 2,3-dehydroglutaryl-[acp] methyl ester by a 3-hydroxyacyl-[acp] dehydratase classified, for example, under EC 4.2.1.59 such as the gene product of fabZ; followed by conversion to glutaryl-[acp] methyl ester by a trans-2-enoyl-CoA reductase classified, for example, EC 1.3.1.- such as EC 1.3.1.10 such as the gene product of fabI; followed by (i) conversion to glutarate methyl ester by a thioesterase classified, for example, under EC 3.1.2.- such as the tesB (SEQ ID NO:15), YciA (SEQ ID NO:14) or Acot13, a Bacteroides thetaiotaomicron acyl-ACP thioesterase (GenBank Accession No. AAO77182) or a Lactobacillus plantarum acyl-CoA thioesterase (GenBank Accession No. CCC78182.1) or (ii) conversion to glutaryl-[acp] by a pimeloyl-[acp] methyl ester methylesterase classified, for example, under EC 3.1.1.85 such as bioH(SEQ ID NO: 1).
[0135] As shown in FIG. 2, glutarate methyl ester can be synthesized from malonyl-CoA by conversion of malonyl-CoA to malonyl-CoA methyl ester by a malonyl-CoA O-methyltransferase classified, for example, under EC 2.1.1.197 such as the gene product of bioC; followed by conversion to 3-oxoglutaryl-CoA methyl ester by condensation with acetyl-CoA by a .beta.-ketothiolase classified, for example, under EC 2.3.1.16 such as the gene product of bktB or by condensation with malonyl-CoA by a .beta.-ketoacyl-[acp]synthase classified, for example, under EC 2.3.1.180 such as the gene product of fabH; followed by conversion to 3-hydroxy-glutaryl-CoA methyl ester by a 3-hydroxyacyl-CoA dehydrogenase classified, for example, under EC 1.1.1.- such as EC 1.1.1.100 (e.g., the gene product of fabG) or EC 1.1.1.36 (e.g., the gene product ofphaB); followed by conversion to 2,3-dehydroglutaryl-CoA methyl ester by an enoyl-CoA hydratase classified, for example, under EC 4.2.1.119 such as the gene product of phaJ (Shen et al., Appl. Environ. Microbiol., 2011, 77(9), 2905-2915; Fukui et al., Journal of Bacteriology, 1998, 180(3), 667-673); followed by conversion to glutaryl-CoA methyl ester by a trans-2-enoyl-CoA reductase classified, for example, EC 1.3.1.- such as EC 1.3.1.38, EC 1.3.1.8, EC 1.3.1.10 or EC 1.3.1.44; followed by (i) conversion to glutarate methyl ester by a thioesterase classified, for example, under EC 3.1.2.- such as the tesB (SEQ ID NO:15), YciA (SEQ ID NO:14) or Acot13, a Bacteroides thetaiotaomicron acyl-ACP thioesterase (GenBank Accession No. AAO77182) or a Lactobacillus plantarum acyl-ACP thioesterase (GenBank Accession No. CCC78182.1) or (ii) conversion to glutaryl-CoA by a pimeloyl-[acp] methyl ester methylesterase classified, for example, under EC 3.1.1.85 such as bioH (SEQ ID NO: 1).
[0136] As shown in FIG. 3, glutarate methyl ester can be synthesized from malonyl-CoA by conversion of malonyl-CoA to malonyl-CoA methyl ester by a malonyl-CoA O-methyltransferase classified, for example, under EC 2.1.1.197 such as the gene product of bioC; followed by conversion to 3-oxoglutaryl-CoA methyl ester by condensation with acetyl-CoA by a .beta.-ketothiolase classified, for example, under EC 2.3.1.16 such as the gene product of bktB or by condensation with malonyl-CoA by a .beta.-ketoacyl-[acp] synthase classified, for example, under EC 2.3.1.180 such as the gene product of fabH; followed by conversion to 3-hydroxy-glutaryl-CoA methyl ester by a 3-hydroxyacyl-CoA dehydrogenase classified, for example, under EC 1.1.1.- such as EC 1.1.1.35 or EC 1.1.1.157 (e.g., the gene product of fadB or hbd); followed by conversion to 2,3-dehydroglutaryl-CoA methyl ester by an enoyl-CoA hydratase classified, for example, under EC 4.2.1.17 such as the gene product of crt; followed by conversion to glutaryl-CoA methyl ester by a trans-2-enoyl-CoA reductase classified, for example, under EC 1.3.1.44 such as the gene product of ter or tdter; followed by (i) conversion to glutarate methyl ester by a thioesterase classified, for example, under EC 3.1.2.- such as the tesB (SEQ ID NO:15), YciA (SEQ ID NO:14) or Acot13, a Bacteroides thetaiotaomicron acyl-ACP thioesterase (GenBank Accession No. AAO77182) or a Lactobacillus plantarum acyl-CoA thioesterase (GenBank Accession No. CCC78182.1) or (ii) conversion to glutaryl-CoA by a pimeloyl-[acp] methyl ester methylesterase classified, for example, under EC 3.1.1.85 such as bioH (SEQ ID NO: 1).
Pathway to Glutarate or 5-Oxopentanoate Using Glutarate Methyl Ester, Glutaryl-[acp] or Glutaryl-CoA as a Central Precursor
[0137] As depicted in FIG. 4, glutarate methyl ester can be converted to glutarate by an esterase classified, for example, EC 3.1.1.-, such as EC 3.1.1.1 or EC 3.1.1.6 such as estC (SEQ ID NO: 8).
[0138] As depicted in FIG. 4, glutaryl-CoA can be converted to glutarate by a (i) a thioesterase classified, for example, EC 3.1.2.-, such as the tesB (SEQ ID NO:15), YciA (SEQ ID NO:14) or Acot13, a Bacteroides thetaiotaomicron acyl ACP thioesterase (GenBank Accession No. AAO77182) or a Lactobacillus plantarum acyl-CoA thioesterase (GenBank Accession No. CCC78182.1) (ii) a reversible CoA-ligase classified, for example, under EC 6.2.1.5, (iii) a CoA-transferase classified, for example, under EC 2.8.3.- such as EC 2.8.3.12, or (iv) an acylating dehydrogenase classified under, for example, EC 1.2.1.10 or EC 1.2.1.76 such as encoded by PduB or PduP and an aldehyde dehydrogenase classified under EC 1.2.1.- such as a glutarate semialdehyde dehydrogenase classified, for example, under EC 1.2.1.20, a succinate-semialdehyde dehydrogenase classified, for example, under EC 1.2.1.16 or EC 1.2.1.79, or an aldehyde dehydrogenase classified under EC 1.2.1.3. For example, a 5-oxovalerate dehydrogenase such as the gene product of CpnE, a 6-oxohexanoate dehydrogenase such as the gene product of ChnE, or a 7-oxoheptanoate dehydrogenase (e.g., the gene product of ThnG from Sphingomonas macrogolitabida) can be used to convert 5-oxopentanoic acid to glutarate.
[0139] As depicted in FIG. 4, glutaryl-{acp] can be converted to glutarate by a thioesterase classified, for example, EC 3.1.2.-, such as the tesB (SEQ ID NO:15), YciA (SEQ ID NO:14) or Acot13, a Bacteroides thetaiotaomicron acyl-ACP thioesterase (GenBank Accession No. AAO77182) or a Lactobacillus plantarum acyl-CoA thioesterase (GenBank Accession No. CCC78182.1).
Pathway to 5-Hydroxypentanoate Using Glutarate Methyl Ester as a Central Precursor
[0140] As depicted in FIG. 5, 5-hydroxypentanoate can be synthesized from the central precursor glutarate methyl ester by conversion of glutarate methyl ester to glutaric acid by an esterase classified under EC 3.1.1.- (e.g., the gene product of estC) such as a carboxyl esterase classified under EC 3.1.1.1 or an acetylesterase classified under EC 3.1.1.6; followed by conversion of glutaric acid to glutarate semialdehyde by a carboxylate reductase classified, for example, under EC 1.2.99.6 such as the gene product of car in combination with a phosphopantetheine transferase enhancer (e.g., encoded by a sfp (Genbank Accession No. CAA44858.1, SEQ ID NO:16) gene from Bacillus subtilis or npt (Genbank Accession No. ABI83656.1, SEQ ID NO:17) gene from Nocardia), or the gene product of GriC & GriD (Suzuki et al., J. Antibiot., 2007, 60(6), 380-387); followed by conversion to 5-hydroxypentanoate by a dehydrogenase classified, for example, under EC 1.1.1.- such as a 6-hydroxyhexanoate dehydrogenase classified, for example, under EC 1.1.1.258 (e.g., the gene from of ChnD), a 5-hydroxypentanoate dehydrogenase classified, for example, under EC 1.1.1.- such as the gene product of CpnD (see, for example, Iwaki et al., 2002, Appl. Environ. Microbiol., 68(11):5671-5684), or a 4-hydroxybutyrate dehydrogenase such as gabD (see, for example, Lutke-Eversloh & Steinbuchel, 1999, FEMS Microbiology Letters, 181(1):63-71). See, FIG. 5.
[0141] As depicted in FIG. 5, 5-hydroxypentanoate can be synthesized from the central precursor glutarate methyl ester by conversion of glutarate methyl ester to glutarate semialdehyde methyl ester by a carboxylate reductase classified, for example, under EC 1.2.99.6 such as from a Mycobacterium marinum (see Genbank Accession No. ACC40567.1, SEQ ID NO: 2), a Mycobacterium smegmatis (see Genbank Accession No. ABK71854.1, SEQ ID NO: 3), a Mycobacterium massiliense (see Genbank Accession No. EIV11143.1, SEQ ID NO: 6), or a Segniliparus rotundus (see Genbank Accession No. ADG98140.1, SEQ ID NO: 7), in combination with a phosphopantetheine transferase enhancer (e.g., encoded by a sfp (Genbank Accession No. CAA44858.1, SEQ ID NO:16) gene from Bacillus subtilis or npt (Genbank Accession No. ABI83656.1, SEQ ID NO:17) gene from Nocardia), or the gene product of GriC & GriD (Suzuki et al., J. Antibiot., 2007, 60(6), 380-387); followed by conversion to glutarate semialdehyde by an esterase classified under EC 3.1.1.- (e.g., the gene product of estC) such as a carboxyl esterase classified under EC 3.1.1.1 or an acetylesterase classified under EC 3.1.1.6; followed by conversion to 5-hydroxypentanoate by a dehydrogenase classified, for example, under EC 1.1.1.- such as a 6-hydroxyhexanoate dehydrogenase classified, for example, under EC 1.1.1.258 (e.g., the gene from of ChnD), a 5-hydroxypentanoate dehydrogenase classified, for example, under EC 1.1.1.- such as the gene product of CpnD, or a 4-hydroxybutyrate dehydrogenase such as gabD.
[0142] As depicted in FIG. 5, 5-hydroxypentanoate can be synthesized from the central precursor glutarate methyl ester by conversion of glutarate methyl ester to glutarate semialdehyde methyl ester by a carboxylate reductase classified, for example, under EC 1.2.99.6 such as from a Mycobacterium marinum (see Genbank Accession No. ACC40567.1, SEQ ID NO: 2), a Mycobacterium smegmatis (see Genbank Accession No. ABK71854.1, SEQ ID NO: 3), a Mycobacterium massiliense (see Genbank Accession No. EIV11143.1, SEQ ID NO: 6), or a Segniliparus rotundus (see Genbank Accession No. ADG98140.1, SEQ ID NO: 7), in combination with aphosphopantetheine transferase enhancer (e.g., encoded by a sfp (Genbank Accession No. CAA44858.1, SEQ ID NO:16) gene from Bacillus subtilis or npt (Genbank Accession No. ABI83656.1, SEQ ID NO:17) gene from Nocardia), or the gene product of GriC & GriD (Suzuki et al., J. Antibiot., 2007, 60(6), 380-387); followed by conversion to 5-hydroxypentanoate methyl ester by an alcohol dehydrogenase classified, for example, under EC 1.1.1.- (e.g., EC 1.1.1.1, EC 1.1.1.2, EC 1.1.1.21, or EC 1.1.1.184) such as the gene product of YMR318C, YqhD, or the protein having GenBank Accession No. CAA81612.1; followed by conversion to 5-hydroxypentanoate by an esterase classified under EC 3.1.1.- (e.g., the gene product of estC) such as a carboxyl esterase classified under EC 3.1.1.1 or an acetylesterase classified under EC 3.1.1.6.
Pathway to 2,4-Pentadienoyl-CoA Using 5-Hydroxypentanoate as a Central Precursor
[0143] As depicted in FIG. 6, 2,4-pentadienoyl-CoA can be synthesized from 5-hydroxypentanoate by conversion of 5-hydroxypentanoate to 5-hydroxypentanoyl-CoA by a 5-hydroxypentanoate CoA-transferase or 4-hydroxybutryrate CoA-transferase classified, for example, under EC 2.8.3.- such as EC 2.8.3.14 or EC 2.8.3.9 or by a synthase classified, for example, under EC 6.2.1.- such as a 3-hydroxypropionyl-CoA synthase classified under EC 6.2.1.36; followed by conversion to 2,4-pentadienoyl-CoA by a dehydratase such as 5-hydroxypentanoy-CoA dehydratase classified, for example, under EC 4.2.1.- obtained from Clostridium virile.
Cultivation Strategy
[0144] In some embodiments, the cultivation strategy entails achieving an aerobic, anaerobic, micro-aerobic, or mixed oxygen/denitrification cultivation condition. Enzymes characterized in vitro as being oxygen sensitive require a micro-aerobic cultivation strategy maintaining a very low dissolved oxygen concentration (See, for example, Chayabatra & Lu-Kwang, Appl. Environ. Microbiol., 2000, 66(2), 493 0 498; Wilson and Bouwer, 1997, Journal of Industrial Microbiology and Biotechnology, 18(2-3), 116-130).
[0145] In some embodiments, a cyclical cultivation strategy entails alternating between achieving an anaerobic cultivation condition and achieving an aerobic cultivation condition.
[0146] In some embodiments, the cultivation strategy entails nutrient limitation such as nitrogen, phosphate or oxygen limitation.
[0147] In some embodiments, a final electron acceptor other than oxygen such as nitrates can be utilized. In some embodiments, a cell retention strategy using, for example, ceramic membranes can be employed to achieve and maintain a high cell density during either fed-batch or continuous fermentation.
[0148] In some embodiments, the principal carbon source fed to the fermentation in the synthesis of one or more CS building blocks can derive from biological or non-biological feedstocks.
[0149] In some embodiments, the biological feedstock can be or can derive from, monosaccharides, disaccharides, lignocellulose, hemicellulose, cellulose, lignin, levulinic acid and formic acid, triglycerides, glycerol, fatty acids, agricultural waste, condensed distillers' solubles, or municipal waste.
[0150] The efficient catabolism of crude glycerol stemming from the production of biodiesel has been demonstrated in several microorganisms such as Escherichia coli, Cupriavidus necator, Pseudomonas oleavorans, Pseudomonas putida and Yarrowia lipolytica (Lee et al., Appl. Biochem. Biotechnol., 2012, 166:1801-1813; Yang et al., Biotechnology for Biofuels, 2012, 5:13; Meijnen et al., Appl. Microbiol. Biotechnol., 2011, 90:885-893).
[0151] The efficient catabolism of lignocellulosic-derived levulinic acid has been demonstrated in several organisms such as Cupriavidus necator and Pseudomonas putida in the synthesis of 3-hydroxyvalerate via the precursor propanoyl-CoA (Jaremko and Yu, 2011, supra; Martin and Prather, J. Biotechnol., 2009, 139:61-67).
[0152] The efficient catabolism of lignin-derived aromatic compounds such as benzoate analogues has been demonstrated in several microorganisms such as Pseudomonas putida, Cupriavidus necator (Bugg et al., Current Opinion in Biotechnology, 2011, 22, 394-400; Perez-Pantoja et al., FEMS Microbiol. Rev., 2008, 32, 736-794).
[0153] The efficient utilization of agricultural waste, such as olive mill waste water has been demonstrated in several microorganisms, including Yarrowia lipolytica (Papanikolaou et al., Bioresour. Technol, 2008, 99(7):2419-2428).
[0154] The efficient utilization of fermentable sugars such as monosaccharides and disaccharides derived from cellulosic, hemicellulosic, cane and beet molasses, cassava, corn and other agricultural sources has been demonstrated for several microorganism such as Escherichia coli, Corynebacterium glutamicum and Lactobacillus delbrueckii and Lactococcus lactis (see, e.g., Hermann et al, J. Biotechnol., 2003, 104:155-172; Wee et al., Food Technol. Biotechnol., 2006, 44(2):163-172; Ohashi et al., J. Bioscience and Bioengineering, 1999, 87(5):647-654).
[0155] The efficient utilization of furfural, derived from a variety of agricultural lignocellulosic sources, has been demonstrated for Cupriavidus necator (Li et al., Biodegradation, 2011, 22:1215-1225).
[0156] In some embodiments, the non-biological feedstock can be or can derive from natural gas, syngas, CO.sub.2/H.sub.2, methanol, ethanol, benzoate, non-volatile residue (NVR) or a caustic wash waste stream from cyclohexane oxidation processes, or terephthalic acid/isophthalic acid mixture waste streams.
[0157] The efficient catabolism of methanol has been demonstrated for the methylotrophic yeast Pichia pastoris.
[0158] The efficient catabolism of ethanol has been demonstrated for Clostridium kluyveri (Seedorf et al., Proc. Natl. Acad. Sci. USA, 2008, 105(6) 2128-2133).
[0159] The efficient catabolism of CO.sub.2 and H.sub.2, which may be derived from natural gas and other chemical and petrochemical sources, has been demonstrated for Cupriavidus necator (Prybylski et al., Energy, Sustainability and Society, 2012, 2:11).
[0160] The efficient catabolism of syngas has been demonstrated for numerous microorganisms, such as Clostridium ljungdahlii and Clostridium autoethanogenum (Kopke et al., Applied and Environmental Microbiology, 2011, 77(15):5467-5475).
[0161] The efficient catabolism of the non-volatile residue waste stream from cyclohexane processes has been demonstrated for numerous microorganisms, such as Delftia acidovorans and Cupriavidus necator (Ramsay et al., Applied and Environmental Microbiology, 1986, 52(1):152-156).
Metabolic Engineering
[0162] The present document provides methods involving less than all the steps described for all the above pathways. Such methods can involve, for example, one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve or more of such steps. Where less than all the steps are included in such a method, the first, and in some embodiments the only, step can be any one of the steps listed.
[0163] Furthermore, recombinant hosts described herein can include any combination of the above enzymes such that one or more of the steps, e.g., one, two, three, four, five, six, seven, eight, nine, ten, or more of such steps, can be performed within a recombinant host. This document provides host cells of any of the genera and species listed and genetically engineered to express one or more (e.g., two, three, four, five, six, seven, eight, nine, 10, 11, 12 or more) recombinant forms of any of the enzymes recited in the document. Thus, for example, the host cells can contain exogenous nucleic acids encoding enzymes catalyzing one or more of the steps of any of the pathways described herein.
[0164] In addition, this document recognizes that where enzymes have been described as accepting CoA-activated substrates, analogous enzyme activities associated with [acp]-bound substrates exist that are not necessarily in the same enzyme class.
[0165] Also, this document recognizes that where enzymes have been described accepting (R)-enantiomers of substrate, analogous enzyme activities associated with (S)-enantiomer substrates exist that are not necessarily in the same enzyme class.
[0166] This document also recognizes that where an enzyme is shown to accept a particular co-factor, such as NADPH, or co-substrate, such as acetyl-CoA, many enzymes are promiscuous in terms of accepting a number of different co-factors or co-substrates in catalyzing a particular enzyme activity. Also, this document recognizes that where enzymes have high specificity for e.g., a particular co-factor such as NADH, an enzyme with similar or identical activity that has high specificity for the co-factor NADPH may be in a different enzyme class.
[0167] In some embodiments, the enzymes in the pathways outlined herein are the result of enzyme engineering via non-direct or rational enzyme design approaches with aims of improving activity, improving specificity, reducing feedback inhibition, reducing repression, improving enzyme solubility, changing stereo-specificity, or changing co-factor specificity.
[0168] In some embodiments, the enzymes in the pathways outlined here can be gene dosed, i.e., overexpressed, into the resulting genetically modified organism via episomal or chromosomal integration approaches.
[0169] In some embodiments, genome-scale system biology techniques such as Flux Balance Analysis can be utilized to devise genome scale attenuation or knockout strategies for directing carbon flux to a 2,4-pentadienoyl-CoA.
[0170] Attenuation strategies include, but are not limited to; the use of transposons, homologous recombination (double cross-over approach), mutagenesis, enzyme inhibitors and RNAi interference.
[0171] In some embodiments, fluxomic, metabolomic and transcriptomal data can be utilized to inform or support genome-scale system biology techniques, thereby devising genome scale attenuation or knockout strategies in directing carbon flux to 2,4-pentadienoyl-CoA.
[0172] In some embodiments, the host microorganism's tolerance to high concentrations of 2,4-pentadienoyl-CoA can be improved through continuous cultivation in a selective environment.
[0173] In some embodiments, the host microorganism's endogenous biochemical network can be attenuated or augmented to (1) ensure the intracellular availability of acetyl-CoA, (2) create a NADH or NADPH imbalance that may be balanced via the formation of 2,4-pentadienoyl-CoA, and/or (3) prevent degradation of central metabolites, central precursors leading to and including 2,4-pentadienoyl-CoA.
[0174] In some embodiments requiring intracellular availability of acetyl-CoA-CoA for C5 building block synthesis, endogenous enzymes catalyzing the hydrolysis of acetyl-CoA such as short-chain length thioesterases can be attenuated in the host organism.
[0175] In some embodiments requiring condensation of acetyl-CoA and malonyl-CoA for 2,4-pentadienoyl-CoA synthesis, one or more endogenous .beta.-ketothiolases catalyzing the condensation of only acetyl-CoA to acetoacetyl-CoA such as the endogenous gene products of AtoB or phaA can be attenuated.
[0176] In some embodiments requiring the intracellular availability of acetyl-CoA for 2,4-pentadienoyl-CoA synthesis, an endogenous phosphotransacetylase generating acetate such as pta can be attenuated (Shen et al., Appl. Environ. Microbiol., 2011, 77(9):2905-2915).
[0177] In some embodiments requiring the intracellular availability of acetyl-CoA for 2,4-pentadienoyl-CoA synthesis, an endogenous gene in an acetate synthesis pathway encoding an acetate kinase, such as ack, can be attenuated.
[0178] In some embodiments requiring the intracellular availability of acetyl-CoA and NADH for 2,4-pentadienoyl-CoA synthesis, an endogenous gene encoding an enzyme that catalyzes the degradation of pyruvate to lactate such as a lactate dehydrogenase encoded by ldhA can be attenuated (Shen et al., 2011, supra).
[0179] In some embodiments requiring the intracellular availability of acetyl-CoA and NADH for 2,4-pentadienoyl-CoA synthesis, endogenous genes encoding enzymes, such as menaquinol-fumarate oxidoreductase, that catalyze the degradation of phophoenolpyruvate to succinate such as frdBC can be attenuated (see, e.g., Shen et al., 2011, supra).
[0180] In some embodiments requiring the intracellular availability of acetyl-CoA and NADH for 2,4-pentadienoyl-CoAsynthesis, an endogenous gene encoding an enzyme that catalyzes the degradation of acetyl-CoA to ethanol such as the alcohol dehydrogenase encoded by adhE can be attenuated (Shen et al., 2011, supra).
[0181] In some embodiments, where pathways require excess NADH co-factor for 2,4-pentadienoyl-CoA synthesis, a recombinant formate dehydrogenase gene can be overexpressed in the host organism (Shen et al., 2011, supra).
[0182] In some embodiments, acetyl-CoA carboxylase can be overexpressed in the host organisms.
[0183] In some embodiments, one or more of 3-phosphoglycerate dehydrogenase, 3-phosphoserine aminotransferase and phosphoserine phosphatase can be overexpressed in the host to generate serine as a methyl donor for the S-Adenosyl-L-methionine cycle.
[0184] In some embodiments, a methanol dehydrogenase or a formaldehyde dehydrogenase can be overexpressed in the host to allow methanol catabolism via formate.
[0185] In some embodiments, where pathways require excess NADH or NADPH co-factor for 2,4-pentadienoyl-CoA synthesis, a transhydrogenase dissipating the cofactor imbalance can be attenuated.
[0186] In some embodiments, an endogenous gene encoding an enzyme that catalyzes the degradation of pyruvate to ethanol such as pyruvate decarboxylase can be attenuated.
[0187] In some embodiments, an endogenous gene encoding an enzyme that catalyzes the generation of isobutanol such as a 2-oxoacid decarboxylase can be attenuated.
[0188] In some embodiments requiring the intracellular availability of acetyl-CoA for 2,4-pentadienoyl-CoA synthesis, a recombinant acetyl-CoA synthetase such as the gene product of acs can be overexpressed in the microorganism (Satoh et al., J. Bioscience and Bioengineering, 2003, 95(4):335-341).
[0189] In some embodiments, carbon flux can be directed into the pentose phosphate cycle to increase the supply of NADPH by attenuating an endogenous glucose-6-phosphate isomerase (EC 5.3.1.9).
[0190] In some embodiments, carbon flux can be redirected into the pentose phosphate cycle to increase the supply of NADPH by overexpression a 6-phosphogluconate dehydrogenase and/or a transketolase (Lee et al., 2003, Biotechnology Progress, 19(5), 1444-1449).
[0191] In some embodiments, where pathways require excess NADPH co-factor in the synthesis of 2,4-pentadienoyl-CoA, a gene such as UdhA encoding a puridine nucleotide transhydrogenase can be overexpressed in the host organisms (Brigham et al., Advanced Biofuels and Bioproducts, 2012, Chapter 39, 1065-1090).
[0192] In some embodiments, where pathways require excess NADPH co-factor in the synthesis of 2,4-pentadienoyl-CoA, a recombinant glyceraldehyde-3-phosphate-dehydrogenase gene such as GapN can be overexpressed in the host organisms (Brigham et al., 2012, supra).
[0193] In some embodiments, where pathways require excess NADPH co-factor in the synthesis of 2,4-pentadienoyl-CoA, a recombinant malic enzyme gene such as maeA or maeB can be overexpressed in the host organisms (Brigham et al., 2012, supra).
[0194] In some embodiments, where pathways require excess NADPH co-factor in the synthesis of 2,4-pentadienoyl-CoA, a recombinant glucose-6-phosphate dehydrogenase gene such as zwf can be overexpressed in the host organisms (Lim et al., J. Bioscience and Bioengineering, 2002, 93(6), 543-549).
[0195] In some embodiments, where pathways require excess NADPH co-factor in the synthesis of 2,4-pentadienoyl-CoA, a recombinant fructose 1,6 diphosphatase gene such as fbp can be overexpressed in the host organisms (Becker et al., J. Biotechnol., 2007, 132:99-109).
[0196] In some embodiments, where pathways require excess NADPH co-factor in the synthesis of a C5 building block, endogenous triose phosphate isomerase (EC 5.3.1.1) can be attenuated.
[0197] In some embodiments, where pathways require excess NADPH co-factor in the synthesis of 2,4-pentadienoyl-CoA, a recombinant glucose dehydrogenase such as the gene product of gdh can be overexpressed in the host organism (Satoh et al., J. Bioscience and Bioengineering, 2003, 95(4):335-341).
[0198] In some embodiments, endogenous enzymes facilitating the conversion of NADPH to NADH can be attenuated, such as the NADH generation cycle that may be generated via inter-conversion of glutamate dehydrogenases classified under EC 1.4.1.2 (NADH-specific) and EC 1.4.1.4 (NADPH-specific).
[0199] In some embodiments, an endogenous glutamate dehydrogenase (EC 1.4.1.3) that utilizes both NADH and NADPH as co-factors can be attenuated.
[0200] In some embodiments, a membrane-bound enoyl-CoA reductase can be solubilized via expression as a fusion protein to a small soluble protein such as a maltose binding protein (Gloerich et al., FEBS Letters, 2006, 580, 2092-2096).
[0201] In some embodiments using hosts that naturally accumulate polyhydroxyalkanoates, the endogenous polyhydroxyalkanoate synthase enzymes can be attenuated in the host strain.
[0202] In some embodiments using hosts that naturally accumulate lipid bodies, the genes encoding enzymes involved with lipid body synthesis are attenuated.
[0203] In some embodiments, a L-glutamate dehydrogenase, a L-glutamine synthetase, or a glutamate synthase can be overexpressed in the host to regenerate L-glutamate from 2-oxoglutarate as an amino donor for .omega.-transaminase reactions.
[0204] In some embodiments, enzymes such as pimeloyl-CoA dehydrogenase classified under, EC 1.3.1.62; an acyl-CoA dehydrogenase classified, for example, under EC 1.3.8.7 or EC 1.3.8.1; and/or a glutaryl-CoA dehydrogenase classified, for example, under EC 1.3.8.6 that degrade central metabolites and central precursors leading to and including C5 building blocks can be attenuated.
[0205] In some embodiments, endogenous enzymes activating C5 building blocks via Coenzyme A esterification such as CoA-ligases (e.g., a glutaryl-CoA synthetase) classified under, for example, EC 6.2.1.6 can be attenuated.
Producing 2,4-Pentadienoyl-CoA Using a Recombinant Host
[0206] Typically, 2,4-pentadienoyl-CoA can be produced by providing a host microorganism and culturing the provided microorganism with a culture medium containing a suitable carbon source as described above. In general, the culture media and/or culture conditions can be such that the microorganisms grow to an adequate density and produce 2,4-pentadienoyl-CoA efficiently. For large-scale production processes, any method can be used such as those described elsewhere (Manual of Industrial Microbiology and Biotechnology, 2.sup.nd Edition, Editors: A. L. Demain and J. E. Davies, ASM Press; and Principles of Fermentation Technology, P. F. Stanbury and A. Whitaker, Pergamon). Briefly, a large tank (e.g., a 100 gallon, 200 gallon, 500 gallon, or more tank) containing an appropriate culture medium is inoculated with a particular microorganism. After inoculation, the microorganism is incubated to allow biomass to be produced. Once a desired biomass is reached, the broth containing the microorganisms can be transferred to a second tank. This second tank can be any size. For example, the second tank can be larger, smaller, or the same size as the first tank. Typically, the second tank is larger than the first such that additional culture medium can be added to the broth from the first tank. In addition, the culture medium within this second tank can be the same as, or different from, that used in the first tank.
[0207] Once transferred, the microorganisms can be incubated to allow for the production of 2,4-pentadienoyl-CoA. Once produced, any method can be used to produce 1,3-butadiene from 2,4-pentadienoyl-CoA such as depicted in FIG. 7. The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
EXAMPLES
Example 1
Enzyme Activity of Carboxylate Reductase Using Glutarate Methyl Ester as Substrate and Forming Glutarate Semialdehyde Methyl Ester
[0208] A nucleotide sequence encoding a His-tag was added to the genes from Mycobacterium marinum, Mycobacterium smegmatis, Segniliparus rugosus, Mycobacterium massiliense, and Segniliparus rotundus that encode the carboxylate reductases of SEQ ID NOs: 2-4, 6 and 7, respectively (GenBank Accession Nos. ACC40567.1, ABK71854.1, EFV11917.1, EIV11143.1, and ADG98140.1, respectively) (see FIG. 8) such that N-terminal HIS tagged carboxylate reductases could be produced. Each of the modified genes was cloned into a pET Duet expression vector alongside a sfp gene encoding a His-tagged phosphopantetheine transferase from Bacillus subtilis, both under control of the T7 promoter. Each expression vector was transformed into a BL21[DE3] E. coli host along with the expression vectors from Example 2. Each resulting recombinant E. coli strain was cultivated at 37.degree. C. in a 250 mL shake flask culture containing 50 mL LB media and antibiotic selection pressure, with shaking at 230 rpm. Each culture was induced overnight at 37.degree. C. using an auto-induction media.
[0209] The pellet from each induced shake flask culture was harvested via centrifugation. Each pellet was resuspended and lysed via sonication. The cell debris was separated from the supernatant via centrifugation. The carboxylate reductases and phosphopantetheine transferase were purified from the supernatant using Ni-affinity chromatography, diluted 10-fold into 50 mM HEPES buffer (pH=7.5) and concentrated via ultrafiltration.
[0210] The enzyme activity assay was performed in triplicate in a buffer composed of a final concentration of 50 mM HEPES buffer (pH=7.5), 2 mM glutarate methyl ester, 10 mM MgCl.sub.2, 1 mM ATP and 1 mM NADPH. The enzyme activity assay reaction was initiated by adding purified carboxylate reductase and phosphopantetheine transferase or the empty vector control to the assay buffer containing the glutarate methyl ester and then incubated at room temperature for 20 min. The consumption of NADPH was monitored by absorbance at 340 nm. The enzyme only control without glutarate methyl ester demonstrated low base line consumption of NADPH. See FIG. 9.
[0211] The gene product of SEQ ID NO 2, 3, 6 and 7, enhanced by the gene product of sfp, accepted glutarate methyl ester as substrate as confirmed against the empty vector control (see FIG. 10) and synthesized glutarate semialdehyde methyl ester.
Example 2
Enzyme Activity of Pimeloyl-[acp] Methyl Ester Methylesterase Using Glutaryl-CoA Methyl Ester as Substrate and Forming Glutaryl-CoA
[0212] A sequence encoding an C-terminal His-tag was added to the gene from Escherichia coli encoding the pimeloyl-[acp] methyl ester methylesterase of SEQ ID NO: 1 (see FIG. 8) such that C-terminal HIS tagged pimeloyl-[acp] methyl ester methylesterase could be produced. The resulting modified gene was cloned into a pET28b+ expression vector under control of the T7 promoter and the expression vector was transformed into a BL21[DE3] E. coli host. The resulting recombinant E. coli strain was cultivated at 37.degree. C. in a 500 mL shake flask culture containing 100 mL LB media and antibiotic selection pressure, with shaking at 230 rpm. Each culture was induced overnight at 18.degree. C. using 0.3 mM IPTG.
[0213] The pellet from each induced shake flask culture was harvested via centrifugation. Each pellet was resuspended and lysed via sonication. The cell debris was separated from the supernatant via centrifugation. The pimeloyl-[acp] methyl ester methylesterase was purified from the supernatant using Ni-affinity chromatography, buffer exchanged and concentrated into 20 mM HEPES buffer (pH=7.5) via ultrafiltration and stored at 4.degree. C.
[0214] Enzyme activity assays converting glutaryl-CoA methyl ester to glutaryl-CoA were performed in triplicate in a buffer composed of a final concentration of 25 mM Tris.HCl buffer (pH=7.0) and 5 [mM] glutaryl-CoA methyl ester. The enzyme activity assay reaction was initiated by adding pimeloyl-[acp] methyl ester methylesterase to a final concentration of 10 [.mu.M] to the assay buffer containing the glutaryl-CoA methyl ester and incubated at 30.degree. C. for 1 h, with shaking at 250 rpm. The formation of glutaryl-CoA was quantified via LC-MS.
[0215] The substrate only control without enzyme showed no trace quantities of the substrate glutaryl-CoA. See FIG. 11. The pimeloyl-[acp] methyl ester methylesterase of SEQ ID NO. 1 accepted glutaryl-CoA methyl ester as substrate and synthesized glutaryl-CoA as reaction product as confirmed via LC-MS. See FIG. 11.
Other Embodiments
[0216] It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Sequence CWU
1
1
171256PRTEscherichia coli 1Met Asn Asn Ile Trp Trp Gln Thr Lys Gly Gln Gly
Asn Val His Leu1 5 10 15
Val Leu Leu His Gly Trp Gly Leu Asn Ala Glu Val Trp Arg Cys Ile
20 25 30 Asp Glu Glu Leu
Ser Ser His Phe Thr Leu His Leu Val Asp Leu Pro 35
40 45 Gly Phe Gly Arg Ser Arg Gly Phe Gly
Ala Leu Ser Leu Ala Asp Met 50 55 60
Ala Glu Ala Val Leu Gln Gln Ala Pro Asp Lys Ala Ile Trp
Leu Gly65 70 75 80
Trp Ser Leu Gly Gly Leu Val Ala Ser Gln Ile Ala Leu Thr His Pro
85 90 95 Glu Arg Val Gln Ala
Leu Val Thr Val Ala Ser Ser Pro Cys Phe Ser 100
105 110 Ala Arg Asp Glu Trp Pro Gly Ile Lys Pro
Asp Val Leu Ala Gly Phe 115 120
125 Gln Gln Gln Leu Ser Asp Asp Phe Gln Arg Thr Val Glu Arg
Phe Leu 130 135 140
Ala Leu Gln Thr Met Gly Thr Glu Thr Ala Arg Gln Asp Ala Arg Ala145
150 155 160 Leu Lys Lys Thr Val
Leu Ala Leu Pro Met Pro Glu Val Asp Val Leu 165
170 175 Asn Gly Gly Leu Glu Ile Leu Lys Thr Val
Asp Leu Arg Gln Pro Leu 180 185
190 Gln Asn Val Ser Met Pro Phe Leu Arg Leu Tyr Gly Tyr Leu Asp
Gly 195 200 205 Leu
Val Pro Arg Lys Val Val Pro Met Leu Asp Lys Leu Trp Pro His 210
215 220 Ser Glu Ser Tyr Ile Phe
Ala Lys Ala Ala His Ala Pro Phe Ile Ser225 230
235 240 His Pro Ala Glu Phe Cys His Leu Leu Val Ala
Leu Lys Gln Arg Val 245 250
255 21174PRTMycobacterium marinum 2Met Ser Pro Ile Thr Arg Glu Glu
Arg Leu Glu Arg Arg Ile Gln Asp1 5 10
15 Leu Tyr Ala Asn Asp Pro Gln Phe Ala Ala Ala Lys Pro
Ala Thr Ala 20 25 30
Ile Thr Ala Ala Ile Glu Arg Pro Gly Leu Pro Leu Pro Gln Ile Ile
35 40 45 Glu Thr Val Met
Thr Gly Tyr Ala Asp Arg Pro Ala Leu Ala Gln Arg 50 55
60 Ser Val Glu Phe Val Thr Asp Ala Gly
Thr Gly His Thr Thr Leu Arg65 70 75
80 Leu Leu Pro His Phe Glu Thr Ile Ser Tyr Gly Glu Leu Trp
Asp Arg 85 90 95
Ile Ser Ala Leu Ala Asp Val Leu Ser Thr Glu Gln Thr Val Lys Pro
100 105 110 Gly Asp Arg Val Cys
Leu Leu Gly Phe Asn Ser Val Asp Tyr Ala Thr 115
120 125 Ile Asp Met Thr Leu Ala Arg Leu Gly
Ala Val Ala Val Pro Leu Gln 130 135
140 Thr Ser Ala Ala Ile Thr Gln Leu Gln Pro Ile Val Ala
Glu Thr Gln145 150 155
160 Pro Thr Met Ile Ala Ala Ser Val Asp Ala Leu Ala Asp Ala Thr Glu
165 170 175 Leu Ala Leu Ser
Gly Gln Thr Ala Thr Arg Val Leu Val Phe Asp His 180
185 190 His Arg Gln Val Asp Ala His Arg Ala
Ala Val Glu Ser Ala Arg Glu 195 200
205 Arg Leu Ala Gly Ser Ala Val Val Glu Thr Leu Ala Glu Ala
Ile Ala 210 215 220
Arg Gly Asp Val Pro Arg Gly Ala Ser Ala Gly Ser Ala Pro Gly Thr225
230 235 240 Asp Val Ser Asp Asp
Ser Leu Ala Leu Leu Ile Tyr Thr Ser Gly Ser 245
250 255 Thr Gly Ala Pro Lys Gly Ala Met Tyr Pro
Arg Arg Asn Val Ala Thr 260 265
270 Phe Trp Arg Lys Arg Thr Trp Phe Glu Gly Gly Tyr Glu Pro Ser
Ile 275 280 285 Thr
Leu Asn Phe Met Pro Met Ser His Val Met Gly Arg Gln Ile Leu 290
295 300 Tyr Gly Thr Leu Cys Asn
Gly Gly Thr Ala Tyr Phe Val Ala Lys Ser305 310
315 320 Asp Leu Ser Thr Leu Phe Glu Asp Leu Ala Leu
Val Arg Pro Thr Glu 325 330
335 Leu Thr Phe Val Pro Arg Val Trp Asp Met Val Phe Asp Glu Phe Gln
340 345 350 Ser Glu Val
Asp Arg Arg Leu Val Asp Gly Ala Asp Arg Val Ala Leu 355
360 365 Glu Ala Gln Val Lys Ala Glu Ile
Arg Asn Asp Val Leu Gly Gly Arg 370 375
380 Tyr Thr Ser Ala Leu Thr Gly Ser Ala Pro Ile Ser Asp
Glu Met Lys385 390 395
400 Ala Trp Val Glu Glu Leu Leu Asp Met His Leu Val Glu Gly Tyr Gly
405 410 415 Ser Thr Glu Ala
Gly Met Ile Leu Ile Asp Gly Ala Ile Arg Arg Pro 420
425 430 Ala Val Leu Asp Tyr Lys Leu Val Asp
Val Pro Asp Leu Gly Tyr Phe 435 440
445 Leu Thr Asp Arg Pro His Pro Arg Gly Glu Leu Leu Val Lys
Thr Asp 450 455 460
Ser Leu Phe Pro Gly Tyr Tyr Gln Arg Ala Glu Val Thr Ala Asp Val465
470 475 480 Phe Asp Ala Asp Gly
Phe Tyr Arg Thr Gly Asp Ile Met Ala Glu Val 485
490 495 Gly Pro Glu Gln Phe Val Tyr Leu Asp Arg
Arg Asn Asn Val Leu Lys 500 505
510 Leu Ser Gln Gly Glu Phe Val Thr Val Ser Lys Leu Glu Ala Val
Phe 515 520 525 Gly
Asp Ser Pro Leu Val Arg Gln Ile Tyr Ile Tyr Gly Asn Ser Ala 530
535 540 Arg Ala Tyr Leu Leu Ala
Val Ile Val Pro Thr Gln Glu Ala Leu Asp545 550
555 560 Ala Val Pro Val Glu Glu Leu Lys Ala Arg Leu
Gly Asp Ser Leu Gln 565 570
575 Glu Val Ala Lys Ala Ala Gly Leu Gln Ser Tyr Glu Ile Pro Arg Asp
580 585 590 Phe Ile Ile
Glu Thr Thr Pro Trp Thr Leu Glu Asn Gly Leu Leu Thr 595
600 605 Gly Ile Arg Lys Leu Ala Arg Pro
Gln Leu Lys Lys His Tyr Gly Glu 610 615
620 Leu Leu Glu Gln Ile Tyr Thr Asp Leu Ala His Gly Gln
Ala Asp Glu625 630 635
640 Leu Arg Ser Leu Arg Gln Ser Gly Ala Asp Ala Pro Val Leu Val Thr
645 650 655 Val Cys Arg Ala
Ala Ala Ala Leu Leu Gly Gly Ser Ala Ser Asp Val 660
665 670 Gln Pro Asp Ala His Phe Thr Asp Leu
Gly Gly Asp Ser Leu Ser Ala 675 680
685 Leu Ser Phe Thr Asn Leu Leu His Glu Ile Phe Asp Ile Glu
Val Pro 690 695 700
Val Gly Val Ile Val Ser Pro Ala Asn Asp Leu Gln Ala Leu Ala Asp705
710 715 720 Tyr Val Glu Ala Ala
Arg Lys Pro Gly Ser Ser Arg Pro Thr Phe Ala 725
730 735 Ser Val His Gly Ala Ser Asn Gly Gln Val
Thr Glu Val His Ala Gly 740 745
750 Asp Leu Ser Leu Asp Lys Phe Ile Asp Ala Ala Thr Leu Ala Glu
Ala 755 760 765 Pro
Arg Leu Pro Ala Ala Asn Thr Gln Val Arg Thr Val Leu Leu Thr 770
775 780 Gly Ala Thr Gly Phe Leu
Gly Arg Tyr Leu Ala Leu Glu Trp Leu Glu785 790
795 800 Arg Met Asp Leu Val Asp Gly Lys Leu Ile Cys
Leu Val Arg Ala Lys 805 810
815 Ser Asp Thr Glu Ala Arg Ala Arg Leu Asp Lys Thr Phe Asp Ser Gly
820 825 830 Asp Pro Glu
Leu Leu Ala His Tyr Arg Ala Leu Ala Gly Asp His Leu 835
840 845 Glu Val Leu Ala Gly Asp Lys Gly
Glu Ala Asp Leu Gly Leu Asp Arg 850 855
860 Gln Thr Trp Gln Arg Leu Ala Asp Thr Val Asp Leu Ile
Val Asp Pro865 870 875
880 Ala Ala Leu Val Asn His Val Leu Pro Tyr Ser Gln Leu Phe Gly Pro
885 890 895 Asn Ala Leu Gly
Thr Ala Glu Leu Leu Arg Leu Ala Leu Thr Ser Lys 900
905 910 Ile Lys Pro Tyr Ser Tyr Thr Ser Thr
Ile Gly Val Ala Asp Gln Ile 915 920
925 Pro Pro Ser Ala Phe Thr Glu Asp Ala Asp Ile Arg Val Ile
Ser Ala 930 935 940
Thr Arg Ala Val Asp Asp Ser Tyr Ala Asn Gly Tyr Ser Asn Ser Lys945
950 955 960 Trp Ala Gly Glu Val
Leu Leu Arg Glu Ala His Asp Leu Cys Gly Leu 965
970 975 Pro Val Ala Val Phe Arg Cys Asp Met Ile
Leu Ala Asp Thr Thr Trp 980 985
990 Ala Gly Gln Leu Asn Val Pro Asp Met Phe Thr Arg Met Ile Leu
Ser 995 1000 1005 Leu
Ala Ala Thr Gly Ile Ala Pro Gly Ser Phe Tyr Glu Leu Ala Ala 1010
1015 1020 Asp Gly Ala Arg Gln Arg
Ala His Tyr Asp Gly Leu Pro Val Glu Phe1025 1030
1035 1040 Ile Ala Glu Ala Ile Ser Thr Leu Gly Ala Gln
Ser Gln Asp Gly Phe 1045 1050
1055 His Thr Tyr His Val Met Asn Pro Tyr Asp Asp Gly Ile Gly Leu Asp
1060 1065 1070 Glu Phe Val
Asp Trp Leu Asn Glu Ser Gly Cys Pro Ile Gln Arg Ile 1075
1080 1085 Ala Asp Tyr Gly Asp Trp Leu Gln
Arg Phe Glu Thr Ala Leu Arg Ala 1090 1095
1100 Leu Pro Asp Arg Gln Arg His Ser Ser Leu Leu Pro Leu
Leu His Asn1105 1110 1115
1120 Tyr Arg Gln Pro Glu Arg Pro Val Arg Gly Ser Ile Ala Pro Thr Asp
1125 1130 1135 Arg Phe Arg Ala
Ala Val Gln Glu Ala Lys Ile Gly Pro Asp Lys Asp 1140
1145 1150 Ile Pro His Val Gly Ala Pro Ile Ile
Val Lys Tyr Val Ser Asp Leu 1155 1160
1165 Arg Leu Leu Gly Leu Leu 1170
31173PRTMycobacterium smegmatis 3Met Thr Ser Asp Val His Asp Ala Thr Asp
Gly Val Thr Glu Thr Ala1 5 10
15 Leu Asp Asp Glu Gln Ser Thr Arg Arg Ile Ala Glu Leu Tyr Ala
Thr 20 25 30 Asp
Pro Glu Phe Ala Ala Ala Ala Pro Leu Pro Ala Val Val Asp Ala 35
40 45 Ala His Lys Pro Gly Leu
Arg Leu Ala Glu Ile Leu Gln Thr Leu Phe 50 55
60 Thr Gly Tyr Gly Asp Arg Pro Ala Leu Gly Tyr
Arg Ala Arg Glu Leu65 70 75
80 Ala Thr Asp Glu Gly Gly Arg Thr Val Thr Arg Leu Leu Pro Arg Phe
85 90 95 Asp Thr Leu
Thr Tyr Ala Gln Val Trp Ser Arg Val Gln Ala Val Ala 100
105 110 Ala Ala Leu Arg His Asn Phe Ala
Gln Pro Ile Tyr Pro Gly Asp Ala 115 120
125 Val Ala Thr Ile Gly Phe Ala Ser Pro Asp Tyr Leu Thr
Leu Asp Leu 130 135 140
Val Cys Ala Tyr Leu Gly Leu Val Ser Val Pro Leu Gln His Asn Ala145
150 155 160 Pro Val Ser Arg Leu
Ala Pro Ile Leu Ala Glu Val Glu Pro Arg Ile 165
170 175 Leu Thr Val Ser Ala Glu Tyr Leu Asp Leu
Ala Val Glu Ser Val Arg 180 185
190 Asp Val Asn Ser Val Ser Gln Leu Val Val Phe Asp His His Pro
Glu 195 200 205 Val
Asp Asp His Arg Asp Ala Leu Ala Arg Ala Arg Glu Gln Leu Ala 210
215 220 Gly Lys Gly Ile Ala Val
Thr Thr Leu Asp Ala Ile Ala Asp Glu Gly225 230
235 240 Ala Gly Leu Pro Ala Glu Pro Ile Tyr Thr Ala
Asp His Asp Gln Arg 245 250
255 Leu Ala Met Ile Leu Tyr Thr Ser Gly Ser Thr Gly Ala Pro Lys Gly
260 265 270 Ala Met Tyr
Thr Glu Ala Met Val Ala Arg Leu Trp Thr Met Ser Phe 275
280 285 Ile Thr Gly Asp Pro Thr Pro Val
Ile Asn Val Asn Phe Met Pro Leu 290 295
300 Asn His Leu Gly Gly Arg Ile Pro Ile Ser Thr Ala Val
Gln Asn Gly305 310 315
320 Gly Thr Ser Tyr Phe Val Pro Glu Ser Asp Met Ser Thr Leu Phe Glu
325 330 335 Asp Leu Ala Leu
Val Arg Pro Thr Glu Leu Gly Leu Val Pro Arg Val 340
345 350 Ala Asp Met Leu Tyr Gln His His Leu
Ala Thr Val Asp Arg Leu Val 355 360
365 Thr Gln Gly Ala Asp Glu Leu Thr Ala Glu Lys Gln Ala Gly
Ala Glu 370 375 380
Leu Arg Glu Gln Val Leu Gly Gly Arg Val Ile Thr Gly Phe Val Ser385
390 395 400 Thr Ala Pro Leu Ala
Ala Glu Met Arg Ala Phe Leu Asp Ile Thr Leu 405
410 415 Gly Ala His Ile Val Asp Gly Tyr Gly Leu
Thr Glu Thr Gly Ala Val 420 425
430 Thr Arg Asp Gly Val Ile Val Arg Pro Pro Val Ile Asp Tyr Lys
Leu 435 440 445 Ile
Asp Val Pro Glu Leu Gly Tyr Phe Ser Thr Asp Lys Pro Tyr Pro 450
455 460 Arg Gly Glu Leu Leu Val
Arg Ser Gln Thr Leu Thr Pro Gly Tyr Tyr465 470
475 480 Lys Arg Pro Glu Val Thr Ala Ser Val Phe Asp
Arg Asp Gly Tyr Tyr 485 490
495 His Thr Gly Asp Val Met Ala Glu Thr Ala Pro Asp His Leu Val Tyr
500 505 510 Val Asp Arg
Arg Asn Asn Val Leu Lys Leu Ala Gln Gly Glu Phe Val 515
520 525 Ala Val Ala Asn Leu Glu Ala Val
Phe Ser Gly Ala Ala Leu Val Arg 530 535
540 Gln Ile Phe Val Tyr Gly Asn Ser Glu Arg Ser Phe Leu
Leu Ala Val545 550 555
560 Val Val Pro Thr Pro Glu Ala Leu Glu Gln Tyr Asp Pro Ala Ala Leu
565 570 575 Lys Ala Ala Leu
Ala Asp Ser Leu Gln Arg Thr Ala Arg Asp Ala Glu 580
585 590 Leu Gln Ser Tyr Glu Val Pro Ala Asp
Phe Ile Val Glu Thr Glu Pro 595 600
605 Phe Ser Ala Ala Asn Gly Leu Leu Ser Gly Val Gly Lys Leu
Leu Arg 610 615 620
Pro Asn Leu Lys Asp Arg Tyr Gly Gln Arg Leu Glu Gln Met Tyr Ala625
630 635 640 Asp Ile Ala Ala Thr
Gln Ala Asn Gln Leu Arg Glu Leu Arg Arg Ala 645
650 655 Ala Ala Thr Gln Pro Val Ile Asp Thr Leu
Thr Gln Ala Ala Ala Thr 660 665
670 Ile Leu Gly Thr Gly Ser Glu Val Ala Ser Asp Ala His Phe Thr
Asp 675 680 685 Leu
Gly Gly Asp Ser Leu Ser Ala Leu Thr Leu Ser Asn Leu Leu Ser 690
695 700 Asp Phe Phe Gly Phe Glu
Val Pro Val Gly Thr Ile Val Asn Pro Ala705 710
715 720 Thr Asn Leu Ala Gln Leu Ala Gln His Ile Glu
Ala Gln Arg Thr Ala 725 730
735 Gly Asp Arg Arg Pro Ser Phe Thr Thr Val His Gly Ala Asp Ala Thr
740 745 750 Glu Ile Arg
Ala Ser Glu Leu Thr Leu Asp Lys Phe Ile Asp Ala Glu 755
760 765 Thr Leu Arg Ala Ala Pro Gly Leu
Pro Lys Val Thr Thr Glu Pro Arg 770 775
780 Thr Val Leu Leu Ser Gly Ala Asn Gly Trp Leu Gly Arg
Phe Leu Thr785 790 795
800 Leu Gln Trp Leu Glu Arg Leu Ala Pro Val Gly Gly Thr Leu Ile Thr
805 810 815 Ile Val Arg Gly
Arg Asp Asp Ala Ala Ala Arg Ala Arg Leu Thr Gln 820
825 830 Ala Tyr Asp Thr Asp Pro Glu Leu Ser
Arg Arg Phe Ala Glu Leu Ala 835 840
845 Asp Arg His Leu Arg Val Val Ala Gly Asp Ile Gly Asp Pro
Asn Leu 850 855 860
Gly Leu Thr Pro Glu Ile Trp His Arg Leu Ala Ala Glu Val Asp Leu865
870 875 880 Val Val His Pro Ala
Ala Leu Val Asn His Val Leu Pro Tyr Arg Gln 885
890 895 Leu Phe Gly Pro Asn Val Val Gly Thr Ala
Glu Val Ile Lys Leu Ala 900 905
910 Leu Thr Glu Arg Ile Lys Pro Val Thr Tyr Leu Ser Thr Val Ser
Val 915 920 925 Ala
Met Gly Ile Pro Asp Phe Glu Glu Asp Gly Asp Ile Arg Thr Val 930
935 940 Ser Pro Val Arg Pro Leu
Asp Gly Gly Tyr Ala Asn Gly Tyr Gly Asn945 950
955 960 Ser Lys Trp Ala Gly Glu Val Leu Leu Arg Glu
Ala His Asp Leu Cys 965 970
975 Gly Leu Pro Val Ala Thr Phe Arg Ser Asp Met Ile Leu Ala His Pro
980 985 990 Arg Tyr Arg
Gly Gln Val Asn Val Pro Asp Met Phe Thr Arg Leu Leu 995
1000 1005 Leu Ser Leu Leu Ile Thr Gly Val
Ala Pro Arg Ser Phe Tyr Ile Gly 1010 1015
1020 Asp Gly Glu Arg Pro Arg Ala His Tyr Pro Gly Leu Thr
Val Asp Phe1025 1030 1035
1040 Val Ala Glu Ala Val Thr Thr Leu Gly Ala Gln Gln Arg Glu Gly Tyr
1045 1050 1055 Val Ser Tyr Asp
Val Met Asn Pro His Asp Asp Gly Ile Ser Leu Asp 1060
1065 1070 Val Phe Val Asp Trp Leu Ile Arg Ala
Gly His Pro Ile Asp Arg Val 1075 1080
1085 Asp Asp Tyr Asp Asp Trp Val Arg Arg Phe Glu Thr Ala Leu
Thr Ala 1090 1095 1100
Leu Pro Glu Lys Arg Arg Ala Gln Thr Val Leu Pro Leu Leu His Ala1105
1110 1115 1120 Phe Arg Ala Pro Gln
Ala Pro Leu Arg Gly Ala Pro Glu Pro Thr Glu 1125
1130 1135 Val Phe His Ala Ala Val Arg Thr Ala Lys
Val Gly Pro Gly Asp Ile 1140 1145
1150 Pro His Leu Asp Glu Ala Leu Ile Asp Lys Tyr Ile Arg Asp Leu
Arg 1155 1160 1165 Glu
Phe Gly Leu Ile 1170 41148PRTSegniliparus rugosus 4Met Gly
Asp Gly Glu Glu Arg Ala Lys Arg Phe Phe Gln Arg Ile Gly1 5
10 15 Glu Leu Ser Ala Thr Asp Pro
Gln Phe Ala Ala Ala Ala Pro Asp Pro 20 25
30 Ala Val Val Glu Ala Val Ser Asp Pro Ser Leu Ser
Phe Thr Arg Tyr 35 40 45
Leu Asp Thr Leu Met Arg Gly Tyr Ala Glu Arg Pro Ala Leu Ala His
50 55 60 Arg Val Gly
Ala Gly Tyr Glu Thr Ile Ser Tyr Gly Glu Leu Trp Ala65 70
75 80 Arg Val Gly Ala Ile Ala Ala Ala
Trp Gln Ala Asp Gly Leu Ala Pro 85 90
95 Gly Asp Phe Val Ala Thr Val Gly Phe Thr Ser Pro Asp
Tyr Val Ala 100 105 110
Val Asp Leu Ala Ala Ala Arg Ser Gly Leu Val Ser Val Pro Leu Gln
115 120 125 Ala Gly Ala Ser
Leu Ala Gln Leu Val Gly Ile Leu Glu Glu Thr Glu 130
135 140 Pro Lys Val Leu Ala Ala Ser Ala
Ser Ser Leu Glu Gly Ala Val Ala145 150
155 160 Cys Ala Leu Ala Ala Pro Ser Val Gln Arg Leu Val
Val Phe Asp Leu 165 170
175 Arg Gly Pro Asp Ala Ser Glu Ser Ala Ala Asp Glu Arg Arg Gly Ala
180 185 190 Leu Ala Asp
Ala Glu Glu Gln Leu Ala Arg Ala Gly Arg Ala Val Val 195
200 205 Val Glu Thr Leu Ala Asp Leu Ala
Ala Arg Gly Glu Ala Leu Pro Glu 210 215
220 Ala Pro Leu Phe Glu Pro Ala Glu Gly Glu Asp Pro Leu
Ala Leu Leu225 230 235
240 Ile Tyr Thr Ser Gly Ser Thr Gly Ala Pro Lys Gly Ala Met Tyr Ser
245 250 255 Gln Arg Leu Val
Ser Gln Leu Trp Gly Arg Thr Pro Val Val Pro Gly 260
265 270 Met Pro Asn Ile Ser Leu His Tyr Met
Pro Leu Ser His Ser Tyr Gly 275 280
285 Arg Ala Val Leu Ala Gly Ala Leu Ser Ala Gly Gly Thr Ala
His Phe 290 295 300
Thr Ala Asn Ser Asp Leu Ser Thr Leu Phe Glu Asp Ile Ala Leu Ala305
310 315 320 Arg Pro Thr Phe Leu
Ala Leu Val Pro Arg Val Cys Glu Met Leu Phe 325
330 335 Gln Glu Ser Gln Arg Gly Gln Asp Val Ala
Glu Leu Arg Glu Arg Val 340 345
350 Leu Gly Gly Arg Leu Leu Val Ala Val Cys Gly Ser Ala Pro Leu
Ser 355 360 365 Pro
Glu Met Arg Ala Phe Met Glu Glu Val Leu Gly Phe Pro Leu Leu 370
375 380 Asp Gly Tyr Gly Ser Thr
Glu Ala Leu Gly Val Met Arg Asn Gly Ile385 390
395 400 Ile Gln Arg Pro Pro Val Ile Asp Tyr Lys Leu
Val Asp Val Pro Glu 405 410
415 Leu Gly Tyr Arg Thr Thr Asp Lys Pro Tyr Pro Arg Gly Glu Leu Cys
420 425 430 Ile Arg Ser
Thr Ser Leu Ile Ser Gly Tyr Tyr Lys Arg Pro Glu Ile 435
440 445 Thr Ala Glu Val Phe Asp Ala Gln
Gly Tyr Tyr Lys Thr Gly Asp Val 450 455
460 Met Ala Glu Ile Ala Pro Asp His Leu Val Tyr Val Asp
Arg Ser Lys465 470 475
480 Asn Val Leu Lys Leu Ser Gln Gly Glu Phe Val Ala Val Ala Lys Leu
485 490 495 Glu Ala Ala Tyr
Gly Thr Ser Pro Tyr Val Lys Gln Ile Phe Val Tyr 500
505 510 Gly Asn Ser Glu Arg Ser Phe Leu Leu
Ala Val Val Val Pro Asn Ala 515 520
525 Glu Val Leu Gly Ala Arg Asp Gln Glu Glu Ala Lys Pro Leu
Ile Ala 530 535 540
Ala Ser Leu Gln Lys Ile Ala Lys Glu Ala Gly Leu Gln Ser Tyr Glu545
550 555 560 Val Pro Arg Asp Phe
Leu Ile Glu Thr Glu Pro Phe Thr Thr Gln Asn 565
570 575 Gly Leu Leu Ser Glu Val Gly Lys Leu Leu
Arg Pro Lys Leu Lys Ala 580 585
590 Arg Tyr Gly Glu Ala Leu Glu Ala Arg Tyr Asp Glu Ile Ala His
Gly 595 600 605 Gln
Ala Asp Glu Leu Arg Ala Leu Arg Asp Gly Ala Gly Gln Arg Pro 610
615 620 Val Val Glu Thr Val Val
Arg Ala Ala Val Ala Ile Ser Gly Ser Glu625 630
635 640 Gly Ala Glu Val Gly Pro Glu Ala Asn Phe Ala
Asp Leu Gly Gly Asp 645 650
655 Ser Leu Ser Ala Leu Ser Leu Ala Asn Leu Leu His Asp Val Phe Glu
660 665 670 Val Glu Val
Pro Val Arg Ile Ile Ile Gly Pro Thr Ala Ser Leu Ala 675
680 685 Gly Ile Ala Lys His Ile Glu Ala
Glu Arg Ala Gly Ala Ser Ala Pro 690 695
700 Thr Ala Ala Ser Val His Gly Ala Gly Ala Thr Arg Ile
Arg Ala Ser705 710 715
720 Glu Leu Thr Leu Glu Lys Phe Leu Pro Glu Asp Leu Leu Ala Ala Ala
725 730 735 Lys Gly Leu Pro
Ala Ala Asp Gln Val Arg Thr Val Leu Leu Thr Gly 740
745 750 Ala Asn Gly Trp Leu Gly Arg Phe Leu
Ala Leu Glu Gln Leu Glu Arg 755 760
765 Leu Ala Arg Ser Gly Gln Asp Gly Gly Lys Leu Ile Cys Leu
Val Arg 770 775 780
Gly Lys Asp Ala Ala Ala Ala Arg Arg Arg Ile Glu Glu Thr Leu Gly785
790 795 800 Thr Asp Pro Ala Leu
Ala Ala Arg Phe Ala Glu Leu Ala Glu Gly Arg 805
810 815 Leu Glu Val Val Pro Gly Asp Val Gly Glu
Pro Lys Phe Gly Leu Asp 820 825
830 Asp Ala Ala Trp Asp Arg Leu Ala Glu Glu Val Asp Val Ile Val
His 835 840 845 Pro
Ala Ala Leu Val Asn His Val Leu Pro Tyr His Gln Leu Phe Gly 850
855 860 Pro Asn Val Val Gly Thr
Ala Glu Ile Ile Arg Leu Ala Ile Thr Ala865 870
875 880 Lys Arg Lys Pro Val Thr Tyr Leu Ser Thr Val
Ala Val Ala Ala Gly 885 890
895 Val Glu Pro Ser Ser Phe Glu Glu Asp Gly Asp Ile Arg Ala Val Val
900 905 910 Pro Glu Arg
Pro Leu Gly Asp Gly Tyr Ala Asn Gly Tyr Gly Asn Ser 915
920 925 Lys Trp Ala Gly Glu Val Leu Leu
Arg Glu Ala His Glu Leu Val Gly 930 935
940 Leu Pro Val Ala Val Phe Arg Ser Asp Met Ile Leu Ala
His Thr Arg945 950 955
960 Tyr Thr Gly Gln Leu Asn Val Pro Asp Gln Phe Thr Arg Leu Val Leu
965 970 975 Ser Leu Leu Ala
Thr Gly Ile Ala Pro Lys Ser Phe Tyr Gln Gln Gly 980
985 990 Ala Ala Gly Glu Arg Gln Arg Ala His
Tyr Asp Gly Ile Pro Val Asp 995 1000
1005 Phe Thr Ala Glu Ala Ile Thr Thr Leu Gly Ala Glu Pro Ser
Trp Phe 1010 1015 1020
Asp Gly Gly Ala Gly Phe Arg Ser Phe Asp Val Phe Asn Pro His His1025
1030 1035 1040 Asp Gly Val Gly Leu
Asp Glu Phe Val Asp Trp Leu Ile Glu Ala Gly 1045
1050 1055 His Pro Ile Ser Arg Ile Asp Asp His Lys
Glu Trp Phe Ala Arg Phe 1060 1065
1070 Glu Thr Ala Val Arg Gly Leu Pro Glu Ala Gln Arg Gln His Ser
Leu 1075 1080 1085 Leu
Pro Leu Leu Arg Ala Tyr Ser Phe Pro His Pro Pro Val Asp Gly 1090
1095 1100 Ser Val Tyr Pro Thr Gly
Lys Phe Gln Gly Ala Val Lys Ala Ala Gln1105 1110
1115 1120 Val Gly Ser Asp His Asp Val Pro His Leu Gly
Lys Ala Leu Ile Val 1125 1130
1135 Lys Tyr Ala Asp Asp Leu Lys Ala Leu Gly Leu Leu 1140
1145 51168PRTMycobacterium smegmatis 5Met Thr
Ile Glu Thr Arg Glu Asp Arg Phe Asn Arg Arg Ile Asp His1 5
10 15 Leu Phe Glu Thr Asp Pro Gln
Phe Ala Ala Ala Arg Pro Asp Glu Ala 20 25
30 Ile Ser Ala Ala Ala Ala Asp Pro Glu Leu Arg Leu
Pro Ala Ala Val 35 40 45
Lys Gln Ile Leu Ala Gly Tyr Ala Asp Arg Pro Ala Leu Gly Lys Arg
50 55 60 Ala Val Glu
Phe Val Thr Asp Glu Glu Gly Arg Thr Thr Ala Lys Leu65 70
75 80 Leu Pro Arg Phe Asp Thr Ile Thr
Tyr Arg Gln Leu Ala Gly Arg Ile 85 90
95 Gln Ala Val Thr Asn Ala Trp His Asn His Pro Val Asn
Ala Gly Asp 100 105 110
Arg Val Ala Ile Leu Gly Phe Thr Ser Val Asp Tyr Thr Thr Ile Asp
115 120 125 Ile Ala Leu Leu
Glu Leu Gly Ala Val Ser Val Pro Leu Gln Thr Ser 130
135 140 Ala Pro Val Ala Gln Leu Gln Pro
Ile Val Ala Glu Thr Glu Pro Lys145 150
155 160 Val Ile Ala Ser Ser Val Asp Phe Leu Ala Asp Ala
Val Ala Leu Val 165 170
175 Glu Ser Gly Pro Ala Pro Ser Arg Leu Val Val Phe Asp Tyr Ser His
180 185 190 Glu Val Asp
Asp Gln Arg Glu Ala Phe Glu Ala Ala Lys Gly Lys Leu 195
200 205 Ala Gly Thr Gly Val Val Val Glu
Thr Ile Thr Asp Ala Leu Asp Arg 210 215
220 Gly Arg Ser Leu Ala Asp Ala Pro Leu Tyr Val Pro Asp
Glu Ala Asp225 230 235
240 Pro Leu Thr Leu Leu Ile Tyr Thr Ser Gly Ser Thr Gly Thr Pro Lys
245 250 255 Gly Ala Met Tyr
Pro Glu Ser Lys Thr Ala Thr Met Trp Gln Ala Gly 260
265 270 Ser Lys Ala Arg Trp Asp Glu Thr Leu
Gly Val Met Pro Ser Ile Thr 275 280
285 Leu Asn Phe Met Pro Met Ser His Val Met Gly Arg Gly Ile
Leu Cys 290 295 300
Ser Thr Leu Ala Ser Gly Gly Thr Ala Tyr Phe Ala Ala Arg Ser Asp305
310 315 320 Leu Ser Thr Phe Leu
Glu Asp Leu Ala Leu Val Arg Pro Thr Gln Leu 325
330 335 Asn Phe Val Pro Arg Ile Trp Asp Met Leu
Phe Gln Glu Tyr Gln Ser 340 345
350 Arg Leu Asp Asn Arg Arg Ala Glu Gly Ser Glu Asp Arg Ala Glu
Ala 355 360 365 Ala
Val Leu Glu Glu Val Arg Thr Gln Leu Leu Gly Gly Arg Phe Val 370
375 380 Ser Ala Leu Thr Gly Ser
Ala Pro Ile Ser Ala Glu Met Lys Ser Trp385 390
395 400 Val Glu Asp Leu Leu Asp Met His Leu Leu Glu
Gly Tyr Gly Ser Thr 405 410
415 Glu Ala Gly Ala Val Phe Ile Asp Gly Gln Ile Gln Arg Pro Pro Val
420 425 430 Ile Asp Tyr
Lys Leu Val Asp Val Pro Asp Leu Gly Tyr Phe Ala Thr 435
440 445 Asp Arg Pro Tyr Pro Arg Gly Glu
Leu Leu Val Lys Ser Glu Gln Met 450 455
460 Phe Pro Gly Tyr Tyr Lys Arg Pro Glu Ile Thr Ala Glu
Met Phe Asp465 470 475
480 Glu Asp Gly Tyr Tyr Arg Thr Gly Asp Ile Val Ala Glu Leu Gly Pro
485 490 495 Asp His Leu Glu
Tyr Leu Asp Arg Arg Asn Asn Val Leu Lys Leu Ser 500
505 510 Gln Gly Glu Phe Val Thr Val Ser Lys
Leu Glu Ala Val Phe Gly Asp 515 520
525 Ser Pro Leu Val Arg Gln Ile Tyr Val Tyr Gly Asn Ser Ala
Arg Ser 530 535 540
Tyr Leu Leu Ala Val Val Val Pro Thr Glu Glu Ala Leu Ser Arg Trp545
550 555 560 Asp Gly Asp Glu Leu
Lys Ser Arg Ile Ser Asp Ser Leu Gln Asp Ala 565
570 575 Ala Arg Ala Ala Gly Leu Gln Ser Tyr Glu
Ile Pro Arg Asp Phe Leu 580 585
590 Val Glu Thr Thr Pro Phe Thr Leu Glu Asn Gly Leu Leu Thr Gly
Ile 595 600 605 Arg
Lys Leu Ala Arg Pro Lys Leu Lys Ala His Tyr Gly Glu Arg Leu 610
615 620 Glu Gln Leu Tyr Thr Asp
Leu Ala Glu Gly Gln Ala Asn Glu Leu Arg625 630
635 640 Glu Leu Arg Arg Asn Gly Ala Asp Arg Pro Val
Val Glu Thr Val Ser 645 650
655 Arg Ala Ala Val Ala Leu Leu Gly Ala Ser Val Thr Asp Leu Arg Ser
660 665 670 Asp Ala His
Phe Thr Asp Leu Gly Gly Asp Ser Leu Ser Ala Leu Ser 675
680 685 Phe Ser Asn Leu Leu His Glu Ile
Phe Asp Val Asp Val Pro Val Gly 690 695
700 Val Ile Val Ser Pro Ala Thr Asp Leu Ala Gly Val Ala
Ala Tyr Ile705 710 715
720 Glu Gly Glu Leu Arg Gly Ser Lys Arg Pro Thr Tyr Ala Ser Val His
725 730 735 Gly Arg Asp Ala
Thr Glu Val Arg Ala Arg Asp Leu Ala Leu Gly Lys 740
745 750 Phe Ile Asp Ala Lys Thr Leu Ser Ala
Ala Pro Gly Leu Pro Arg Ser 755 760
765 Gly Thr Glu Ile Arg Thr Val Leu Leu Thr Gly Ala Thr Gly
Phe Leu 770 775 780
Gly Arg Tyr Leu Ala Leu Glu Trp Leu Glu Arg Met Asp Leu Val Asp785
790 795 800 Gly Lys Val Ile Cys
Leu Val Arg Ala Arg Ser Asp Asp Glu Ala Arg 805
810 815 Ala Arg Leu Asp Ala Thr Phe Asp Thr Gly
Asp Ala Thr Leu Leu Glu 820 825
830 His Tyr Arg Ala Leu Ala Ala Asp His Leu Glu Val Ile Ala Gly
Asp 835 840 845 Lys
Gly Glu Ala Asp Leu Gly Leu Asp His Asp Thr Trp Gln Arg Leu 850
855 860 Ala Asp Thr Val Asp Leu
Ile Val Asp Pro Ala Ala Leu Val Asn His865 870
875 880 Val Leu Pro Tyr Ser Gln Met Phe Gly Pro Asn
Ala Leu Gly Thr Ala 885 890
895 Glu Leu Ile Arg Ile Ala Leu Thr Thr Thr Ile Lys Pro Tyr Val Tyr
900 905 910 Val Ser Thr
Ile Gly Val Gly Gln Gly Ile Ser Pro Glu Ala Phe Val 915
920 925 Glu Asp Ala Asp Ile Arg Glu Ile
Ser Ala Thr Arg Arg Val Asp Asp 930 935
940 Ser Tyr Ala Asn Gly Tyr Gly Asn Ser Lys Trp Ala Gly
Glu Val Leu945 950 955
960 Leu Arg Glu Ala His Asp Trp Cys Gly Leu Pro Val Ser Val Phe Arg
965 970 975 Cys Asp Met Ile
Leu Ala Asp Thr Thr Tyr Ser Gly Gln Leu Asn Leu 980
985 990 Pro Asp Met Phe Thr Arg Leu Met Leu
Ser Leu Val Ala Thr Gly Ile 995 1000
1005 Ala Pro Gly Ser Phe Tyr Glu Leu Asp Ala Asp Gly Asn Arg
Gln Arg 1010 1015 1020
Ala His Tyr Asp Gly Leu Pro Val Glu Phe Ile Ala Glu Ala Ile Ser1025
1030 1035 1040 Thr Ile Gly Ser Gln
Val Thr Asp Gly Phe Glu Thr Phe His Val Met 1045
1050 1055 Asn Pro Tyr Asp Asp Gly Ile Gly Leu Asp
Glu Tyr Val Asp Trp Leu 1060 1065
1070 Ile Glu Ala Gly Tyr Pro Val His Arg Val Asp Asp Tyr Ala Thr
Trp 1075 1080 1085 Leu
Ser Arg Phe Glu Thr Ala Leu Arg Ala Leu Pro Glu Arg Gln Arg 1090
1095 1100 Gln Ala Ser Leu Leu Pro
Leu Leu His Asn Tyr Gln Gln Pro Ser Pro1105 1110
1115 1120 Pro Val Cys Gly Ala Met Ala Pro Thr Asp Arg
Phe Arg Ala Ala Val 1125 1130
1135 Gln Asp Ala Lys Ile Gly Pro Asp Lys Asp Ile Pro His Val Thr Ala
1140 1145 1150 Asp Val Ile
Val Lys Tyr Ile Ser Asn Leu Gln Met Leu Gly Leu Leu 1155
1160 1165 61185PRTMycobacterium
massiliense 6Met Thr Asn Glu Thr Asn Pro Gln Gln Glu Gln Leu Ser Arg Arg
Ile1 5 10 15 Glu
Ser Leu Arg Glu Ser Asp Pro Gln Phe Arg Ala Ala Gln Pro Asp 20
25 30 Pro Ala Val Ala Glu Gln
Val Leu Arg Pro Gly Leu His Leu Ser Glu 35 40
45 Ala Ile Ala Ala Leu Met Thr Gly Tyr Ala Glu
Arg Pro Ala Leu Gly 50 55 60
Glu Arg Ala Arg Glu Leu Val Ile Asp Gln Asp Gly Arg Thr Thr
Leu65 70 75 80 Arg
Leu Leu Pro Arg Phe Asp Thr Thr Thr Tyr Gly Glu Leu Trp Ser
85 90 95 Arg Thr Thr Ser Val Ala
Ala Ala Trp His His Asp Ala Thr His Pro 100
105 110 Val Lys Ala Gly Asp Leu Val Ala Thr Leu
Gly Phe Thr Ser Ile Asp 115 120
125 Tyr Thr Val Leu Asp Leu Ala Ile Met Ile Leu Gly Gly Val
Ala Val 130 135 140
Pro Leu Gln Thr Ser Ala Pro Ala Ser Gln Trp Thr Thr Ile Leu Ala145
150 155 160 Glu Ala Glu Pro Asn
Thr Leu Ala Val Ser Ile Glu Leu Ile Gly Ala 165
170 175 Ala Met Glu Ser Val Arg Ala Thr Pro Ser
Ile Lys Gln Val Val Val 180 185
190 Phe Asp Tyr Thr Pro Glu Val Asp Asp Gln Arg Glu Ala Phe Glu
Ala 195 200 205 Ala
Ser Thr Gln Leu Ala Gly Thr Gly Ile Ala Leu Glu Thr Leu Asp 210
215 220 Ala Val Ile Ala Arg Gly
Ala Ala Leu Pro Ala Ala Pro Leu Tyr Ala225 230
235 240 Pro Ser Ala Gly Asp Asp Pro Leu Ala Leu Leu
Ile Tyr Thr Ser Gly 245 250
255 Ser Thr Gly Ala Pro Lys Gly Ala Met His Ser Glu Asn Ile Val Arg
260 265 270 Arg Trp Trp
Ile Arg Glu Asp Val Met Ala Gly Thr Glu Asn Leu Pro 275
280 285 Met Ile Gly Leu Asn Phe Met Pro
Met Ser His Ile Met Gly Arg Gly 290 295
300 Thr Leu Thr Ser Thr Leu Ser Thr Gly Gly Thr Gly Tyr
Phe Ala Ala305 310 315
320 Ser Ser Asp Met Ser Thr Leu Phe Glu Asp Met Glu Leu Ile Arg Pro
325 330 335 Thr Ala Leu Ala
Leu Val Pro Arg Val Cys Asp Met Val Phe Gln Arg 340
345 350 Phe Gln Thr Glu Val Asp Arg Arg Leu
Ala Ser Gly Asp Thr Ala Ser 355 360
365 Ala Glu Ala Val Ala Ala Glu Val Lys Ala Asp Ile Arg Asp
Asn Leu 370 375 380
Phe Gly Gly Arg Val Ser Ala Val Met Val Gly Ser Ala Pro Leu Ser385
390 395 400 Glu Glu Leu Gly Glu
Phe Ile Glu Ser Cys Phe Glu Leu Asn Leu Thr 405
410 415 Asp Gly Tyr Gly Ser Thr Glu Ala Gly Met
Val Phe Arg Asp Gly Ile 420 425
430 Val Gln Arg Pro Pro Val Ile Asp Tyr Lys Leu Val Asp Val Pro
Glu 435 440 445 Leu
Gly Tyr Phe Ser Thr Asp Lys Pro His Pro Arg Gly Glu Leu Leu 450
455 460 Leu Lys Thr Asp Gly Met
Phe Leu Gly Tyr Tyr Lys Arg Pro Glu Val465 470
475 480 Thr Ala Ser Val Phe Asp Ala Asp Gly Phe Tyr
Met Thr Gly Asp Ile 485 490
495 Val Ala Glu Leu Ala His Asp Asn Ile Glu Ile Ile Asp Arg Arg Asn
500 505 510 Asn Val Leu
Lys Leu Ser Gln Gly Glu Phe Val Ala Val Ala Thr Leu 515
520 525 Glu Ala Glu Tyr Ala Asn Ser Pro
Val Val His Gln Ile Tyr Val Tyr 530 535
540 Gly Ser Ser Glu Arg Ser Tyr Leu Leu Ala Val Val Val
Pro Thr Pro545 550 555
560 Glu Ala Val Ala Ala Ala Lys Gly Asp Ala Ala Ala Leu Lys Thr Thr
565 570 575 Ile Ala Asp Ser
Leu Gln Asp Ile Ala Lys Glu Ile Gln Leu Gln Ser 580
585 590 Tyr Glu Val Pro Arg Asp Phe Ile Ile
Glu Pro Gln Pro Phe Thr Gln 595 600
605 Gly Asn Gly Leu Leu Thr Gly Ile Ala Lys Leu Ala Arg Pro
Asn Leu 610 615 620
Lys Ala His Tyr Gly Pro Arg Leu Glu Gln Met Tyr Ala Glu Ile Ala625
630 635 640 Glu Gln Gln Ala Ala
Glu Leu Arg Ala Leu His Gly Val Asp Pro Asp 645
650 655 Lys Pro Ala Leu Glu Thr Val Leu Lys Ala
Ala Gln Ala Leu Leu Gly 660 665
670 Val Ser Ser Ala Glu Leu Ala Ala Asp Ala His Phe Thr Asp Leu
Gly 675 680 685 Gly
Asp Ser Leu Ser Ala Leu Ser Phe Ser Asp Leu Leu Arg Asp Ile 690
695 700 Phe Ala Val Glu Val Pro
Val Gly Val Ile Val Ser Ala Ala Asn Asp705 710
715 720 Leu Gly Gly Val Ala Lys Phe Val Asp Glu Gln
Arg His Ser Gly Gly 725 730
735 Thr Arg Pro Thr Ala Glu Thr Val His Gly Ala Gly His Thr Glu Ile
740 745 750 Arg Ala Ala
Asp Leu Thr Leu Asp Lys Phe Ile Asp Glu Ala Thr Leu 755
760 765 His Ala Ala Pro Ser Leu Pro Lys
Ala Ala Gly Ile Pro His Thr Val 770 775
780 Leu Leu Thr Gly Ser Asn Gly Tyr Leu Gly His Tyr Leu
Ala Leu Glu785 790 795
800 Trp Leu Glu Arg Leu Asp Lys Thr Asp Gly Lys Leu Ile Val Ile Val
805 810 815 Arg Gly Lys Asn
Ala Glu Ala Ala Tyr Gly Arg Leu Glu Glu Ala Phe 820
825 830 Asp Thr Gly Asp Thr Glu Leu Leu Ala
His Phe Arg Ser Leu Ala Asp 835 840
845 Lys His Leu Glu Val Leu Ala Gly Asp Ile Gly Asp Pro Asn
Leu Gly 850 855 860
Leu Asp Ala Asp Thr Trp Gln Arg Leu Ala Asp Thr Val Asp Val Ile865
870 875 880 Val His Pro Ala Ala
Leu Val Asn His Val Leu Pro Tyr Asn Gln Leu 885
890 895 Phe Gly Pro Asn Val Val Gly Thr Ala Glu
Ile Ile Lys Leu Ala Ile 900 905
910 Thr Thr Lys Ile Lys Pro Val Thr Tyr Leu Ser Thr Val Ala Val
Ala 915 920 925 Ala
Tyr Val Asp Pro Thr Thr Phe Asp Glu Glu Ser Asp Ile Arg Leu 930
935 940 Ile Ser Ala Val Arg Pro
Ile Asp Asp Gly Tyr Ala Asn Gly Tyr Gly945 950
955 960 Asn Ala Lys Trp Ala Gly Glu Val Leu Leu Arg
Glu Ala His Asp Leu 965 970
975 Cys Gly Leu Pro Val Ala Val Phe Arg Ser Asp Met Ile Leu Ala His
980 985 990 Ser Arg Tyr
Thr Gly Gln Leu Asn Val Pro Asp Gln Phe Thr Arg Leu 995
1000 1005 Ile Leu Ser Leu Ile Ala Thr Gly
Ile Ala Pro Gly Ser Phe Tyr Gln 1010 1015
1020 Ala Gln Thr Thr Gly Glu Arg Pro Leu Ala His Tyr Asp
Gly Leu Pro1025 1030 1035
1040 Gly Asp Phe Thr Ala Glu Ala Ile Thr Thr Leu Gly Thr Gln Val Pro
1045 1050 1055 Glu Gly Ser Glu
Gly Phe Val Thr Tyr Asp Cys Val Asn Pro His Ala 1060
1065 1070 Asp Gly Ile Ser Leu Asp Asn Phe Val
Asp Trp Leu Ile Glu Ala Gly 1075 1080
1085 Tyr Pro Ile Ala Arg Ile Asp Asn Tyr Thr Glu Trp Phe Thr
Arg Phe 1090 1095 1100
Asp Thr Ala Ile Arg Gly Leu Ser Glu Lys Gln Lys Gln His Ser Leu1105
1110 1115 1120 Leu Pro Leu Leu His
Ala Phe Glu Gln Pro Ser Ala Ala Glu Asn His 1125
1130 1135 Gly Val Val Pro Ala Lys Arg Phe Gln His
Ala Val Gln Ala Ala Gly 1140 1145
1150 Ile Gly Pro Val Gly Gln Asp Gly Thr Thr Asp Ile Pro His Leu
Ser 1155 1160 1165 Arg
Arg Leu Ile Val Lys Tyr Ala Lys Asp Leu Glu Gln Leu Gly Leu 1170
1175 1180
Leu118571186PRTSegniliparus rotundus 7Met Thr Gln Ser His Thr Gln Gly Pro
Gln Ala Ser Ala Ala His Ser1 5 10
15 Arg Leu Ala Arg Arg Ala Ala Glu Leu Leu Ala Thr Asp Pro
Gln Ala 20 25 30
Ala Ala Thr Leu Pro Asp Pro Glu Val Val Arg Gln Ala Thr Arg Pro 35
40 45 Gly Leu Arg Leu Ala
Glu Arg Val Asp Ala Ile Leu Ser Gly Tyr Ala 50 55
60 Asp Arg Pro Ala Leu Gly Gln Arg Ser Phe
Gln Thr Val Lys Asp Pro65 70 75
80 Ile Thr Gly Arg Ser Ser Val Glu Leu Leu Pro Thr Phe Asp Thr
Ile 85 90 95 Thr
Tyr Arg Glu Leu Arg Glu Arg Ala Thr Ala Ile Ala Ser Asp Leu
100 105 110 Ala His His Pro Gln
Ala Pro Ala Lys Pro Gly Asp Phe Leu Ala Ser 115
120 125 Ile Gly Phe Ile Ser Val Asp Tyr Val
Ala Ile Asp Ile Ala Gly Val 130 135
140 Phe Ala Gly Leu Thr Ala Val Pro Leu Gln Thr Gly Ala
Thr Leu Ala145 150 155
160 Thr Leu Thr Ala Ile Thr Ala Glu Thr Ala Pro Thr Leu Phe Ala Ala
165 170 175 Ser Ile Glu His
Leu Pro Thr Ala Val Asp Ala Val Leu Ala Thr Pro 180
185 190 Ser Val Arg Arg Leu Leu Val Phe Asp
Tyr Arg Ala Gly Ser Asp Glu 195 200
205 Asp Arg Glu Ala Val Glu Ala Ala Lys Arg Lys Ile Ala Asp
Ala Gly 210 215 220
Ser Ser Val Leu Val Asp Val Leu Asp Glu Val Ile Ala Arg Gly Lys225
230 235 240 Ser Ala Pro Lys Ala
Pro Leu Pro Pro Ala Thr Asp Ala Gly Asp Asp 245
250 255 Ser Leu Ser Leu Leu Ile Tyr Thr Ser Gly
Ser Thr Gly Thr Pro Lys 260 265
270 Gly Ala Met Tyr Pro Glu Arg Asn Val Ala His Phe Trp Gly Gly
Val 275 280 285 Trp
Ala Ala Ala Phe Asp Glu Asp Ala Ala Pro Pro Val Pro Ala Ile 290
295 300 Asn Ile Thr Phe Leu Pro
Leu Ser His Val Ala Ser Arg Leu Ser Leu305 310
315 320 Met Pro Thr Leu Ala Arg Gly Gly Leu Met His
Phe Val Ala Lys Ser 325 330
335 Asp Leu Ser Thr Leu Phe Glu Asp Leu Lys Leu Ala Arg Pro Thr Asn
340 345 350 Leu Phe Leu
Val Pro Arg Val Val Glu Met Leu Tyr Gln His Tyr Gln 355
360 365 Ser Glu Leu Asp Arg Arg Gly Val
Gln Asp Gly Thr Arg Glu Ala Glu 370 375
380 Ala Val Lys Asp Asp Leu Arg Thr Gly Leu Leu Gly Gly
Arg Ile Leu385 390 395
400 Thr Ala Gly Phe Gly Ser Ala Pro Leu Ser Ala Glu Leu Ala Gly Phe
405 410 415 Ile Glu Ser Leu
Leu Gln Ile His Leu Val Asp Gly Tyr Gly Ser Thr 420
425 430 Glu Ala Gly Pro Val Trp Arg Asp Gly
Tyr Leu Val Lys Pro Pro Val 435 440
445 Thr Asp Tyr Lys Leu Ile Asp Val Pro Glu Leu Gly Tyr Phe
Ser Thr 450 455 460
Asp Ser Pro His Pro Arg Gly Glu Leu Ala Ile Lys Thr Gln Thr Ile465
470 475 480 Leu Pro Gly Tyr Tyr
Lys Arg Pro Glu Thr Thr Ala Glu Val Phe Asp 485
490 495 Glu Asp Gly Phe Tyr Leu Thr Gly Asp Val
Val Ala Gln Ile Gly Pro 500 505
510 Glu Gln Phe Ala Tyr Val Asp Arg Arg Lys Asn Val Leu Lys Leu
Ser 515 520 525 Gln
Gly Glu Phe Val Thr Leu Ala Lys Leu Glu Ala Ala Tyr Ser Ser 530
535 540 Ser Pro Leu Val Arg Gln
Leu Phe Val Tyr Gly Ser Ser Glu Arg Ser545 550
555 560 Tyr Leu Leu Ala Val Ile Val Pro Thr Pro Asp
Ala Leu Lys Lys Phe 565 570
575 Gly Val Gly Glu Ala Ala Lys Ala Ala Leu Gly Glu Ser Leu Gln Lys
580 585 590 Ile Ala Arg
Asp Glu Gly Leu Gln Ser Tyr Glu Val Pro Arg Asp Phe 595
600 605 Ile Ile Glu Thr Asp Pro Phe Thr
Val Glu Asn Gly Leu Leu Ser Asp 610 615
620 Ala Arg Lys Ser Leu Arg Pro Lys Leu Lys Glu His Tyr
Gly Glu Arg625 630 635
640 Leu Glu Ala Met Tyr Lys Glu Leu Ala Asp Gly Gln Ala Asn Glu Leu
645 650 655 Arg Asp Ile Arg
Arg Gly Val Gln Gln Arg Pro Thr Leu Glu Thr Val 660
665 670 Arg Arg Ala Ala Ala Ala Met Leu Gly
Ala Ser Ala Ala Glu Ile Lys 675 680
685 Pro Asp Ala His Phe Thr Asp Leu Gly Gly Asp Ser Leu Ser
Ala Leu 690 695 700
Thr Phe Ser Asn Phe Leu His Asp Leu Phe Glu Val Asp Val Pro Val705
710 715 720 Gly Val Ile Val Ser
Ala Ala Asn Thr Leu Gly Ser Val Ala Glu His 725
730 735 Ile Asp Ala Gln Leu Ala Gly Gly Arg Ala
Arg Pro Thr Phe Ala Thr 740 745
750 Val His Gly Lys Gly Ser Thr Thr Ile Lys Ala Ser Asp Leu Thr
Leu 755 760 765 Asp
Lys Phe Ile Asp Glu Gln Thr Leu Glu Ala Ala Lys His Leu Pro 770
775 780 Lys Pro Ala Asp Pro Pro
Arg Thr Val Leu Leu Thr Gly Ala Asn Gly785 790
795 800 Trp Leu Gly Arg Phe Leu Ala Leu Glu Trp Leu
Glu Arg Leu Ala Pro 805 810
815 Ala Gly Gly Lys Leu Ile Thr Ile Val Arg Gly Lys Asp Ala Ala Gln
820 825 830 Ala Lys Ala
Arg Leu Asp Ala Ala Tyr Glu Ser Gly Asp Pro Lys Leu 835
840 845 Ala Gly His Tyr Gln Asp Leu Ala
Ala Thr Thr Leu Glu Val Leu Ala 850 855
860 Gly Asp Phe Ser Glu Pro Arg Leu Gly Leu Asp Glu Ala
Thr Trp Asn865 870 875
880 Arg Leu Ala Asp Glu Val Asp Phe Ile Ser His Pro Gly Ala Leu Val
885 890 895 Asn His Val Leu
Pro Tyr Asn Gln Leu Phe Gly Pro Asn Val Ala Gly 900
905 910 Val Ala Glu Ile Ile Lys Leu Ala Ile
Thr Thr Arg Ile Lys Pro Val 915 920
925 Thr Tyr Leu Ser Thr Val Ala Val Ala Ala Gly Val Glu Pro
Ser Ala 930 935 940
Leu Asp Glu Asp Gly Asp Ile Arg Thr Val Ser Ala Glu Arg Ser Val945
950 955 960 Asp Glu Gly Tyr Ala
Asn Gly Tyr Gly Asn Ser Lys Trp Gly Gly Glu 965
970 975 Val Leu Leu Arg Glu Ala His Asp Arg Thr
Gly Leu Pro Val Arg Val 980 985
990 Phe Arg Ser Asp Met Ile Leu Ala His Gln Lys Tyr Thr Gly Gln
Val 995 1000 1005 Asn
Ala Thr Asp Gln Phe Thr Arg Leu Val Gln Ser Leu Leu Ala Thr 1010
1015 1020 Gly Leu Ala Pro Lys Ser
Phe Tyr Glu Leu Asp Ala Gln Gly Asn Arg1025 1030
1035 1040 Gln Arg Ala His Tyr Asp Gly Ile Pro Val Asp
Phe Thr Ala Glu Ser 1045 1050
1055 Ile Thr Thr Leu Gly Gly Asp Gly Leu Glu Gly Tyr Arg Ser Tyr Asn
1060 1065 1070 Val Phe Asn
Pro His Arg Asp Gly Val Gly Leu Asp Glu Phe Val Asp 1075
1080 1085 Trp Leu Ile Glu Ala Gly His Pro
Ile Thr Arg Ile Asp Asp Tyr Asp 1090 1095
1100 Gln Trp Leu Ser Arg Phe Glu Thr Ser Leu Arg Gly Leu
Pro Glu Ser1105 1110 1115
1120 Lys Arg Gln Ala Ser Val Leu Pro Leu Leu His Ala Phe Ala Arg Pro
1125 1130 1135 Gly Pro Ala Val
Asp Gly Ser Pro Phe Arg Asn Thr Val Phe Arg Thr 1140
1145 1150 Asp Val Gln Lys Ala Lys Ile Gly Ala
Glu His Asp Ile Pro His Leu 1155 1160
1165 Gly Lys Ala Leu Val Leu Lys Tyr Ala Asp Asp Ile Lys Gln
Leu Gly 1170 1175 1180
Leu Leu1185 8382PRTPseudomonas fluorescens 8Met Gln Ile Gln Gly His
Tyr Glu Leu Gln Phe Glu Ala Val Arg Glu1 5
10 15 Ala Phe Ala Ala Leu Phe Asp Asp Pro Gln Glu
Arg Gly Ala Gly Leu 20 25 30
Cys Ile Gln Ile Gly Gly Glu Thr Val Val Asp Leu Trp Ala Gly Thr
35 40 45 Ala Asp Lys
Asp Gly Thr Glu Ala Trp His Ser Asp Thr Ile Val Asn 50
55 60 Leu Phe Ser Cys Thr Lys Thr Phe
Thr Ala Val Thr Ala Leu Gln Leu65 70 75
80 Val Ala Glu Gly Lys Leu Gln Leu Asp Ala Pro Val Ala
Asn Tyr Trp 85 90 95
Pro Glu Phe Ala Ala Ala Gly Lys Glu Ala Ile Thr Leu Arg Gln Leu
100 105 110 Leu Cys His Gln Ala
Gly Leu Pro Ala Ile Arg Glu Met Leu Pro Thr 115
120 125 Glu Ala Leu Tyr Asp Trp Arg Leu Met
Val Asp Thr Leu Ala Ala Glu 130 135
140 Ala Pro Trp Trp Thr Pro Gly Gln Gly His Gly Tyr Glu
Ala Ile Thr145 150 155
160 Tyr Gly Trp Leu Val Gly Glu Leu Leu Arg Arg Ala Asp Gly Arg Gly
165 170 175 Pro Gly Glu Ser
Ile Val Ala Arg Val Ala Arg Pro Leu Gly Leu Asp 180
185 190 Phe His Val Gly Leu Ala Asp Glu Glu
Phe Tyr Arg Val Ala His Ile 195 200
205 Ala Arg Ser Lys Gly Asn Met Gly Asp Glu Ala Ala Gln Arg
Leu Leu 210 215 220
Gln Val Met Met Arg Glu Pro Thr Ala Met Thr Thr Arg Ala Phe Ala225
230 235 240 Asn Pro Pro Ser Ile
Leu Thr Ser Thr Asn Lys Pro Glu Trp Arg Arg 245
250 255 Met Gln Gln Pro Ala Ala Asn Gly His Gly
Asn Ala Arg Ser Leu Ala 260 265
270 Gly Phe Tyr Ser Gly Leu Leu Asp Gly Ser Leu Leu Glu Ala Asp
Met 275 280 285 Leu
Glu Gln Leu Thr Arg Glu His Ser Ile Gly Pro Asp Lys Thr Leu 290
295 300 Leu Thr Gln Thr Arg Phe
Gly Leu Gly Cys Met Leu Asp Gln Gln Pro305 310
315 320 Gln Leu Pro Asn Ala Thr Phe Gly Leu Gly Pro
Arg Ala Phe Gly His 325 330
335 Pro Arg Ser Ala Pro Val Val Arg Trp Val Leu Pro Glu His Asp Val
340 345 350 Ala Phe Gly
Phe Val Thr Asn Thr Leu Gly Pro Tyr Val Leu Met Asp 355
360 365 Pro Arg Ala Gln Lys Leu Val Gly
Ile Leu Ala Gly Cys Leu 370 375 380
9246PRTLactobacillus brevis 9Met Ala Ala Asn Glu Phe Ser Glu Thr His
Arg Val Val Tyr Tyr Glu1 5 10
15 Ala Asp Asp Thr Gly Gln Leu Thr Leu Ala Met Leu Ile Asn Leu
Phe 20 25 30 Val
Leu Val Ser Glu Asp Gln Asn Asp Ala Leu Gly Leu Ser Thr Ala 35
40 45 Phe Val Gln Ser His Gly
Val Gly Trp Val Val Thr Gln Tyr His Leu 50 55
60 His Ile Asp Glu Leu Pro Arg Thr Gly Ala Gln
Val Thr Ile Lys Thr65 70 75
80 Arg Ala Thr Ala Tyr Asn Arg Tyr Phe Ala Tyr Arg Glu Tyr Trp Leu
85 90 95 Leu Asp Asp
Ala Gly Gln Val Leu Ala Tyr Gly Glu Gly Ile Trp Val 100
105 110 Thr Met Ser Tyr Ala Thr Arg Lys
Ile Thr Thr Ile Pro Ala Glu Val 115 120
125 Met Ala Pro Tyr His Ser Glu Glu Gln Thr Arg Leu Pro
Arg Leu Pro 130 135 140
Arg Pro Asp His Phe Asp Glu Ala Val Asn Gln Thr Leu Lys Pro Tyr145
150 155 160 Thr Val Arg Tyr Phe
Asp Ile Asp Gly Asn Gly His Val Asn Asn Ala 165
170 175 His Tyr Phe Asp Trp Met Leu Asp Val Leu
Pro Ala Thr Phe Leu Arg 180 185
190 Ala His His Pro Thr Asp Val Lys Ile Arg Phe Glu Asn Glu Val
Gln 195 200 205 Tyr
Gly His Gln Val Thr Ser Glu Leu Ser Gln Ala Ala Ala Leu Thr 210
215 220 Thr Gln His Met Ile Lys
Val Gly Asp Leu Thr Ala Val Lys Ala Thr225 230
235 240 Ile Gln Trp Asp Asn Arg 245
10261PRTLactobacillus plantarum 10Met Ala Thr Leu Gly Ala Asn Ala Ser
Leu Tyr Ser Glu Gln His Arg1 5 10
15 Ile Thr Tyr Tyr Glu Cys Asp Arg Thr Gly Arg Ala Thr Leu
Thr Thr 20 25 30
Leu Ile Asp Ile Ala Val Leu Ala Ser Glu Asp Gln Ser Asp Ala Leu 35
40 45 Gly Leu Thr Thr Glu
Met Val Gln Ser His Gly Val Gly Trp Val Val 50 55
60 Thr Gln Tyr Ala Ile Asp Ile Thr Arg Met
Pro Arg Gln Asp Glu Val65 70 75
80 Val Thr Ile Ala Val Arg Gly Ser Ala Tyr Asn Pro Tyr Phe Ala
Tyr 85 90 95 Arg
Glu Phe Trp Ile Arg Asp Ala Asp Gly Gln Gln Leu Ala Tyr Ile
100 105 110 Thr Ser Ile Trp Val
Met Met Ser Gln Thr Thr Arg Arg Ile Val Lys 115
120 125 Ile Leu Pro Glu Leu Val Ala Pro Tyr
Gln Ser Glu Val Val Lys Arg 130 135
140 Ile Pro Arg Leu Pro Arg Pro Ile Ser Phe Glu Ala Thr
Asp Thr Thr145 150 155
160 Ile Thr Lys Pro Tyr His Val Arg Phe Phe Asp Ile Asp Pro Asn Arg
165 170 175 His Val Asn Asn
Ala His Tyr Phe Asp Trp Leu Val Asp Thr Leu Pro 180
185 190 Ala Thr Phe Leu Leu Gln His Asp Leu
Val His Val Asp Val Arg Tyr 195 200
205 Glu Asn Glu Val Lys Tyr Gly Gln Thr Val Thr Ala His Ala
Asn Ile 210 215 220
Leu Pro Ser Glu Val Ala Asp Gln Val Thr Thr Ser His Leu Ile Glu225
230 235 240 Val Asp Asp Glu Lys
Cys Cys Glu Val Thr Ile Gln Trp Arg Thr Leu 245
250 255 Pro Glu Pro Ile Gln 260
11397PRTTreponema denticola 11Met Ile Val Lys Pro Met Val Arg Asn Asn Ile
Cys Leu Asn Ala His1 5 10
15 Pro Gln Gly Cys Lys Lys Gly Val Glu Asp Gln Ile Glu Tyr Thr Lys
20 25 30 Lys Arg Ile
Thr Ala Glu Val Lys Ala Gly Ala Lys Ala Pro Lys Asn 35
40 45 Val Leu Val Leu Gly Cys Ser Asn
Gly Tyr Gly Leu Ala Ser Arg Ile 50 55
60 Thr Ala Ala Phe Gly Tyr Gly Ala Ala Thr Ile Gly Val
Ser Phe Glu65 70 75 80
Lys Ala Gly Ser Glu Thr Lys Tyr Gly Thr Pro Gly Trp Tyr Asn Asn
85 90 95 Leu Ala Phe Asp Glu
Ala Ala Lys Arg Glu Gly Leu Tyr Ser Val Thr 100
105 110 Ile Asp Gly Asp Ala Phe Ser Asp Glu Ile
Lys Ala Gln Val Ile Glu 115 120
125 Glu Ala Lys Lys Lys Gly Ile Lys Phe Asp Leu Ile Val Tyr
Ser Leu 130 135 140
Ala Ser Pro Val Arg Thr Asp Pro Asp Thr Gly Ile Met His Lys Ser145
150 155 160 Val Leu Lys Pro Phe
Gly Lys Thr Phe Thr Gly Lys Thr Val Asp Pro 165
170 175 Phe Thr Gly Glu Leu Lys Glu Ile Ser Ala
Glu Pro Ala Asn Asp Glu 180 185
190 Glu Ala Ala Ala Thr Val Lys Val Met Gly Gly Glu Asp Trp Glu
Arg 195 200 205 Trp
Ile Lys Gln Leu Ser Lys Glu Gly Leu Leu Glu Glu Gly Cys Ile 210
215 220 Thr Leu Ala Tyr Ser Tyr
Ile Gly Pro Glu Ala Thr Gln Ala Leu Tyr225 230
235 240 Arg Lys Gly Thr Ile Gly Lys Ala Lys Glu His
Leu Glu Ala Thr Ala 245 250
255 His Arg Leu Asn Lys Glu Asn Pro Ser Ile Arg Ala Phe Val Ser Val
260 265 270 Asn Lys Gly
Leu Val Thr Arg Ala Ser Ala Val Ile Pro Val Ile Pro 275
280 285 Leu Tyr Leu Ala Ser Leu Phe Lys
Val Met Lys Glu Lys Gly Asn His 290 295
300 Glu Gly Cys Ile Glu Gln Ile Thr Arg Leu Tyr Ala Glu
Arg Leu Tyr305 310 315
320 Arg Lys Asp Gly Thr Ile Pro Val Asp Glu Glu Asn Arg Ile Arg Ile
325 330 335 Asp Asp Trp Glu
Leu Glu Glu Asp Val Gln Lys Ala Val Ser Ala Leu 340
345 350 Met Glu Lys Val Thr Gly Glu Asn Ala
Glu Ser Leu Thr Asp Leu Ala 355 360
365 Gly Tyr Arg His Asp Phe Leu Ala Ser Asn Gly Phe Asp Val
Glu Gly 370 375 380
Ile Asn Tyr Glu Ala Glu Val Glu Arg Phe Asp Arg Ile385
390 395 12539PRTEuglena gracilis 12Met Ser Cys
Pro Ala Ser Pro Ser Ala Ala Val Val Ser Ala Gly Ala1 5
10 15 Leu Cys Leu Cys Val Ala Thr Val
Leu Leu Ala Thr Gly Ser Asn Pro 20 25
30 Thr Ala Leu Ser Thr Ala Ser Thr Arg Ser Pro Thr Ser
Leu Val Arg 35 40 45
Gly Val Asp Arg Gly Leu Met Arg Pro Thr Thr Ala Ala Ala Leu Thr 50
55 60 Thr Met Arg Glu Val
Pro Gln Met Ala Glu Gly Phe Ser Gly Glu Ala65 70
75 80 Thr Ser Ala Trp Ala Ala Ala Gly Pro Gln
Trp Ala Ala Pro Leu Val 85 90
95 Ala Ala Ala Ser Ser Ala Leu Ala Leu Trp Trp Trp Ala Ala Arg
Arg 100 105 110 Ser
Val Arg Arg Pro Leu Ala Ala Leu Ala Glu Leu Pro Thr Ala Val 115
120 125 Thr His Leu Ala Pro Pro
Met Ala Met Phe Thr Thr Thr Ala Lys Val 130 135
140 Ile Gln Pro Lys Ile Arg Gly Phe Ile Cys Thr
Thr Thr His Pro Ile145 150 155
160 Gly Cys Glu Lys Arg Val Gln Glu Glu Ile Ala Tyr Ala Arg Ala His
165 170 175 Pro Pro Thr
Ser Pro Gly Pro Lys Arg Val Leu Val Ile Gly Cys Ser 180
185 190 Thr Gly Tyr Gly Leu Ser Thr Arg
Ile Thr Ala Ala Phe Gly Tyr Gln 195 200
205 Ala Ala Thr Leu Gly Val Phe Leu Ala Gly Pro Pro Thr
Lys Gly Arg 210 215 220
Pro Ala Ala Ala Gly Trp Tyr Asn Thr Val Ala Phe Glu Lys Ala Ala225
230 235 240 Leu Glu Ala Gly Leu
Tyr Ala Arg Ser Leu Asn Gly Asp Ala Phe Asp 245
250 255 Ser Thr Thr Lys Ala Arg Thr Val Glu Ala
Ile Lys Arg Asp Leu Gly 260 265
270 Thr Val Asp Leu Val Val Tyr Ser Ile Ala Ala Pro Lys Arg Thr
Asp 275 280 285 Pro
Ala Thr Gly Val Leu His Lys Ala Cys Leu Lys Pro Ile Gly Ala 290
295 300 Thr Tyr Thr Asn Arg Thr
Val Asn Thr Asp Lys Ala Glu Val Thr Asp305 310
315 320 Val Ser Ile Glu Pro Ala Ser Pro Glu Glu Ile
Ala Asp Thr Val Lys 325 330
335 Val Met Gly Gly Glu Asp Trp Glu Leu Trp Ile Gln Ala Leu Ser Glu
340 345 350 Ala Gly Val
Leu Ala Glu Gly Ala Lys Thr Val Ala Tyr Ser Tyr Ile 355
360 365 Gly Pro Glu Met Thr Trp Pro Val
Tyr Trp Ser Gly Thr Ile Gly Glu 370 375
380 Ala Lys Lys Asp Val Glu Lys Ala Ala Lys Arg Ile Thr
Gln Gln Tyr385 390 395
400 Gly Cys Pro Ala Tyr Pro Val Val Ala Lys Ala Leu Val Thr Gln Ala
405 410 415 Ser Ser Ala Ile
Pro Val Val Pro Leu Tyr Ile Cys Leu Leu Tyr Arg 420
425 430 Val Met Lys Glu Lys Gly Thr His Glu
Gly Cys Ile Glu Gln Met Val 435 440
445 Arg Leu Leu Thr Thr Lys Leu Tyr Pro Glu Asn Gly Ala Pro
Ile Val 450 455 460
Asp Glu Ala Gly Arg Val Arg Val Asp Asp Trp Glu Met Ala Glu Asp465
470 475 480 Val Gln Gln Ala Val
Lys Asp Leu Trp Ser Gln Val Ser Thr Ala Asn 485
490 495 Leu Lys Asp Ile Ser Asp Phe Ala Gly Tyr
Gln Thr Glu Phe Leu Arg 500 505
510 Leu Phe Gly Phe Gly Ile Asp Gly Val Asp Tyr Asp Gln Pro Val
Asp 515 520 525 Val
Glu Ala Asp Leu Pro Ser Ala Ala Gln Gln 530 535
13269PRTBacillus cereus 13Met Ile Asn Lys Thr Leu Leu Gln Lys
Arg Phe Asn Gly Ala Ala Val1 5 10
15 Ser Tyr Asp Arg Tyr Ala Asn Val Gln Lys Lys Met Ala His
Ser Leu 20 25 30
Leu Ser Ile Leu Lys Glu Arg Tyr Ser Glu Thr Ala Ser Ile Arg Ile 35
40 45 Leu Glu Leu Gly Cys
Gly Thr Gly Tyr Val Thr Glu Gln Leu Ser Lys 50 55
60 Leu Phe Pro Lys Ser His Ile Thr Ala Val
Asp Phe Ala Glu Ser Met65 70 75
80 Ile Ala Ile Ala Gln Thr Arg Gln Asn Val Lys Asn Val Thr Phe
His 85 90 95 Cys
Glu Asp Ile Glu Arg Leu Arg Leu Glu Glu Ser Tyr Asp Val Ile
100 105 110 Ile Ser Asn Ala Thr
Phe Gln Trp Leu Asn Asn Leu Gln Gln Val Leu 115
120 125 Arg Asn Leu Phe Gln His Leu Ser Ile
Asp Gly Ile Leu Leu Phe Ser 130 135
140 Thr Phe Gly His Glu Thr Phe Gln Glu Leu His Ala Ser
Phe Gln Arg145 150 155
160 Ala Lys Glu Glu Arg Asn Ile Lys Asn Glu Thr Ser Ile Gly Gln Arg
165 170 175 Phe Tyr Ser Lys
Asp Gln Leu Leu His Ile Cys Lys Ile Glu Thr Gly 180
185 190 Asp Val His Val Ser Glu Thr Cys Tyr
Ile Glu Ser Phe Thr Glu Val 195 200
205 Lys Glu Phe Leu His Ser Ile Arg Lys Val Gly Ala Thr Asn
Ser Asn 210 215 220
Glu Gly Ser Tyr Cys Gln Ser Pro Ser Leu Phe Arg Ala Met Leu Arg225
230 235 240 Ile Tyr Glu Arg Asp
Phe Thr Gly Asn Glu Gly Ile Met Ala Thr Tyr 245
250 255 His Ala Leu Phe Ile His Ile Thr Lys Glu
Gly Lys Arg 260 265
14132PRTEscherichia coli 14Met Ser Thr Thr His Asn Val Pro Gln Gly Asp
Leu Val Leu Arg Thr1 5 10
15 Leu Ala Met Pro Ala Asp Thr Asn Ala Asn Gly Asp Ile Phe Gly Gly
20 25 30 Trp Leu Met
Ser Gln Met Asp Ile Gly Gly Ala Ile Leu Ala Lys Glu 35
40 45 Ile Ala His Gly Arg Val Val Thr
Val Arg Val Glu Gly Met Thr Phe 50 55
60 Leu Arg Pro Val Ala Val Gly Asp Val Val Cys Cys Tyr
Ala Arg Cys65 70 75 80
Val Gln Lys Gly Thr Thr Ser Val Ser Ile Asn Ile Glu Val Trp Val
85 90 95 Lys Lys Val Ala Ser
Glu Pro Ile Gly Gln Arg Tyr Lys Ala Thr Glu 100
105 110 Ala Leu Phe Lys Tyr Val Ala Val Asp Pro
Glu Gly Lys Pro Arg Ala 115 120
125 Leu Pro Val Glu 130 15286PRTEscherichia coli
15Met Ser Gln Ala Leu Lys Asn Leu Leu Thr Leu Leu Asn Leu Glu Lys1
5 10 15 Ile Glu Glu Gly
Leu Phe Arg Gly Gln Ser Glu Asp Leu Gly Leu Arg 20
25 30 Gln Val Phe Gly Gly Gln Val Val Gly
Gln Ala Leu Tyr Ala Ala Lys 35 40
45 Glu Thr Val Pro Glu Glu Arg Leu Val His Ser Phe His Ser
Tyr Phe 50 55 60
Leu Arg Pro Gly Asp Ser Lys Lys Pro Ile Ile Tyr Asp Val Glu Thr65
70 75 80 Leu Arg Asp Gly Asn
Ser Phe Ser Ala Arg Arg Val Ala Ala Ile Gln 85
90 95 Asn Gly Lys Pro Ile Phe Tyr Met Thr Ala
Ser Phe Gln Ala Pro Glu 100 105
110 Ala Gly Phe Glu His Gln Lys Thr Met Pro Ser Ala Pro Ala Pro
Asp 115 120 125 Gly
Leu Pro Ser Glu Thr Gln Ile Ala Gln Ser Leu Ala His Leu Leu 130
135 140 Pro Pro Val Leu Lys Asp
Lys Phe Ile Cys Asp Arg Pro Leu Glu Val145 150
155 160 Arg Pro Val Glu Phe His Asn Pro Leu Lys Gly
His Val Ala Glu Pro 165 170
175 His Arg Gln Val Trp Ile Arg Ala Asn Gly Ser Val Pro Asp Asp Leu
180 185 190 Arg Val His
Gln Tyr Leu Leu Gly Tyr Ala Ser Asp Leu Asn Phe Leu 195
200 205 Pro Val Ala Leu Gln Pro His Gly
Ile Gly Phe Leu Glu Pro Gly Ile 210 215
220 Gln Ile Ala Thr Ile Asp His Ser Met Trp Phe His Arg
Pro Phe Asn225 230 235
240 Leu Asn Glu Trp Leu Leu Tyr Ser Val Glu Ser Thr Ser Ala Ser Ser
245 250 255 Ala Arg Gly Phe
Val Arg Gly Glu Phe Tyr Thr Gln Asp Gly Val Leu 260
265 270 Val Ala Ser Thr Val Gln Glu Gly Val
Met Arg Asn His Asn 275 280 285
16224PRTBacillus subtilis 16Met Lys Ile Tyr Gly Ile Tyr Met Asp Arg Pro
Leu Ser Gln Glu Glu1 5 10
15 Asn Glu Arg Phe Met Ser Phe Ile Ser Pro Glu Lys Arg Glu Lys Cys
20 25 30 Arg Arg Phe
Tyr His Lys Glu Asp Ala His Arg Thr Leu Leu Gly Asp 35
40 45 Val Leu Val Arg Ser Val Ile Ser
Arg Gln Tyr Gln Leu Asp Lys Ser 50 55
60 Asp Ile Arg Phe Ser Thr Gln Glu Tyr Gly Lys Pro Cys
Ile Pro Asp65 70 75 80
Leu Pro Asp Ala His Phe Asn Ile Ser His Ser Gly Arg Trp Val Ile
85 90 95 Cys Ala Phe Asp Ser
Gln Pro Ile Gly Ile Asp Ile Glu Lys Thr Lys 100
105 110 Pro Ile Ser Leu Glu Ile Ala Lys Arg Phe
Phe Ser Lys Thr Glu Tyr 115 120
125 Ser Asp Leu Leu Ala Lys Asp Lys Asp Glu Gln Thr Asp Tyr
Phe Tyr 130 135 140
His Leu Trp Ser Met Lys Glu Ser Phe Ile Lys Gln Glu Gly Lys Gly145
150 155 160 Leu Ser Leu Pro Leu
Asp Ser Phe Ser Val Arg Leu His Gln Asp Gly 165
170 175 Gln Val Ser Ile Glu Leu Pro Asp Ser His
Ser Pro Cys Tyr Ile Lys 180 185
190 Thr Tyr Glu Val Asp Pro Gly Tyr Lys Met Ala Val Cys Ala Ala
His 195 200 205 Pro
Asp Phe Pro Glu Asp Ile Thr Met Val Ser Tyr Glu Glu Leu Leu 210
215 220 17222PRTNocardia sp.
NRRL 5646 17Met Ile Glu Thr Ile Leu Pro Ala Gly Val Glu Ser Ala Glu Leu
Leu1 5 10 15 Glu
Tyr Pro Glu Asp Leu Lys Ala His Pro Ala Glu Glu His Leu Ile 20
25 30 Ala Lys Ser Val Glu Lys
Arg Arg Arg Asp Phe Ile Gly Ala Arg His 35 40
45 Cys Ala Arg Leu Ala Leu Ala Glu Leu Gly Glu
Pro Pro Val Ala Ile 50 55 60
Gly Lys Gly Glu Arg Gly Ala Pro Ile Trp Pro Arg Gly Val Val
Gly65 70 75 80 Ser
Leu Thr His Cys Asp Gly Tyr Arg Ala Ala Ala Val Ala His Lys
85 90 95 Met Arg Phe Arg Ser Ile
Gly Ile Asp Ala Glu Pro His Ala Thr Leu 100
105 110 Pro Glu Gly Val Leu Asp Ser Val Ser Leu
Pro Pro Glu Arg Glu Trp 115 120
125 Leu Lys Thr Thr Asp Ser Ala Leu His Leu Asp Arg Leu Leu
Phe Cys 130 135 140
Ala Lys Glu Ala Thr Tyr Lys Ala Trp Trp Pro Leu Thr Ala Arg Trp145
150 155 160 Leu Gly Phe Glu Glu
Ala His Ile Thr Phe Glu Ile Glu Asp Gly Ser 165
170 175 Ala Asp Ser Gly Asn Gly Thr Phe His Ser
Glu Leu Leu Val Pro Gly 180 185
190 Gln Thr Asn Asp Gly Gly Thr Pro Leu Leu Ser Phe Asp Gly Arg
Trp 195 200 205 Leu
Ile Ala Asp Gly Phe Ile Leu Thr Ala Ile Ala Tyr Ala 210
215 220
User Contributions:
Comment about this patent or add new information about this topic: