Patent application title: STAPHYLOCOCCAL ANTIGENS
Inventors:
IPC8 Class: AC07K1431FI
USPC Class:
1 1
Class name:
Publication date: 2018-08-23
Patent application number: 20180237480
Abstract:
The present invention provides novel sequences encoding Staphylococcus
pseudintermedius proteins/nucleic acids potentially useful in the
treatment and/or prevention of canine disorders. In particular, the
various protein and/or nucleic acid sequences described herein may find
application as vaccines for use in treating and/or preventing a variety
of canine diseases and/or conditions caused or contributed to by
Staphylococcus pseudintermedius.Claims:
1. A Staphylococcus pseudintermedius protein or nucleic acid comprising a
sequence at least 65% homologous or identical to SEQ ID NOS: 1-38 or
fragments, portions, mutants, derivatives and/or homologoues/orthologues
thereof.
2. The Staphylococcus pseudintermedius protein or nucleic acid of claim 1, comprising a sequence at least 65% homologous or identical to (i) the nucleic acid of SEQ ID NO: 5 or a fragment thereof or (ii) the amino acid sequence of SEQ ID NO: 6 or an antigenic fragment thereof, for use in raising an immune response in a subject.
3. The Staphylococcus pseudintermedius protein of claim 2, comprising an antigenic fragment of the amino acid sequence of SEQ ID NO: 6, wherein said fragment comprises SEQ ID NO: 37.
4. The Staphylococcus pseudintermedius nucleic acid of claim 2, comprising a fragment of the nucleic acid, wherein said fragment comprises SEQ ID NO: 38.
5. The Staphylococcus pseudintermedius protein of claim 1, wherein the protein is a cell-wall anchored (CWA) or microbial surface components recognising adhesive matrix molecule (MSCRAMM).
6. The Staphylococcus pseudintermedius protein of claim 1, comprising a replicable expression vector and nucleic acid.
7. A host cell transformed with the nucleic acid of claim 6.
8. The Staphylococcus pseudintermedius protein of claim 1, comprising an amino acid sequence having at least 80% identity to SEQ ID NO: 5.
9. A Staphylococcus pseudintermedius protein comprising an amino acid sequence having at least 80% identity to SEQ ID NO: 37.
10. The Staphylococcus pseudintermedius protein of claim 9, comprising an amino acid sequence having at least 90% identity to SEQ ID NO: 37.
11. A method of raising an immune response to Staphylococcus pseudintermedius in a canine, said method comprising immunising said canine with, or administering said canine a Staphylococcus pseudintermedius protein according to claim 1.
12. An immunogenic composition comprising the protein of claim 1 and a pharmaceutically acceptable carrier.
13. The immunogenic composition of claim 12, further comprising one or more adjuvant(s) and/or antigens for use in treating or preventing other diseases and/or conditions.
14. A method of treating or preventing a Staphylococcus pseudintermedius infection or disease in a canine, said method comprising administering to the canine the immunogenic composition of claim 12.
15. A method of treating or preventing canine pyoderma comprising administering to a dog the immunogenic composition of claim 12.
16. A process for the recombinant production of a Staphylococcus pseudintermedius protein of claim 1, said process comprising the steps of: (a) transforming a host cell with the nucleic acid of claim 1; (b) culturing the cells obtained in (a) under conditions in which expression of a peptide/protein encoded by the nucleic acid occurs; and (c) isolating the expressed peptide/protein from the cell culture or/and a culture supernatant derived therefrom.
17. An antibody that selectively and/or specifically binds to the Staphylococcus pseudintermedius protein of claim 1.
18. An antibody that selectively and/or specifically binds to the Staphylococcus pseudintermedius protein of claim 9.
19. A method of diagnosing an S. pseudintermedius infection, said method comprising the steps of taking a sample from a canine, identifying in the sample a level of a protein or nucleic acid of claim 1, wherein the subject is diagnosed with S. pseudintermedius infection by identification of the protein, peptide or nucleic in the sample.
20. A kit for diagnosing, detecting and/or evaluating possible S. pseudintermedius infections, diseases and/or conditions, said kit comprising one or more components selected from the group consisting of: (i) a substrate having the Staphylococcus pseudintermedius protein of claim 1 bound thereto; (ii) antibodies which exhibit specificity and/or selectivity for the protein; (iii) and instructions for diagnosing, detecting and/or evaluating possible S. pseudintermedius infections, diseases and/or conditions.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a divisional of U.S. patent application Ser. No. 13/446,958, filed Apr. 13, 2012, which is a continuation-in-part of PCT/GB2010/001916, filed Oct. 15, 2010, which claims the benefit under 35 U.S.C. .sctn. 119(e) to U.S. Provisional Application No. 61/252,026, filed Oct. 15, 2009, each of which are hereby incorporated by reference in their entirety.
FIELD OF THE INVENTION
[0002] The present invention provides novel staphylococcal cell wall associated proteins, genes encoding the same and vaccines for use in treating/preventing Staphylococcal infections.
BACKGROUND OF THE INVENTION
[0003] Skin diseases are a major cause of morbidity in dogs and an important animal welfare issue (Hill et al, 2006). In particular, superficial bacterial folliculitis (pyoderma) caused by Staphylococcus pseudintermedius (formerly known as Staphylococcus intermedius) is one of the most common diseases seen in small animal veterinary practice, worldwide (Hill et al, 2006). Superficial pyoderma is characterized by the formation of follicular pustules and is often associated with pruritus, alopecia, erythema and swelling. This may develop into deep pyoderma which typically includes pain, crusting, odor, and exudation of blood and pus. The disease often occurs as a secondary infection in dogs with atopic dermatitis (AD) resulting from a type I hypersensitivity reaction (IgE antibody-associated) to environmental allergens (Hill et al, 2006). Treatment of canine pyoderma is often difficult without resorting to aggressive, medium-term administration of systemic antibacterial agents to prevent relapse of infection, and such therapy predisposes to the development of bacterial resistance that may be transferred to bacteria infecting humans (Guardabassi et al, 2004). Worringly, methicillin-resistant S. pseudintermedius has recently emerged as a major problem in veterinary clinics worldwide (Bannoehr et al, 2007). Although rare, several episodes of life-threatening infections of humans by S. pseudintermedius have been reported with the typical route of transmission being through dog bite wounds (Bannoehr et al, 2007). Previously, crude vaccine preparations based on Staphylococcus aureus phage lysate or S. pseudintermedius autogenous bacterin have shown promise as adjunctive therapies for treatment of pyoderma (Curtis et al, 2006), and a rationally-designed effective vaccine would be a highly desireable means to reducing or eliminating the suffering associated with the disease.
[0004] Accordingly, the present invention aims to obviate one or more of the problems associated with the prior art.
SUMMARY OF THE INVENTION
[0005] The present invention is based upon the identification of novel gene sequences encoding proteins potentially useful in the treatment and/or prevention of canine disorders. In particular, the proteins encoded by the genes described herein, may find application in the treatment and/or prevention of diseases caused or contributed to by the bacterial pathogen Staphylococcus pseudintermedius.
[0006] The inventors have identified a number of Staphylococcus pseudintermedius genes encoding proteins which may broadly be classed as members of the cell-wall anchored (CWA) family of proteins. In certain embodiments, these CWA proteins may be further grouped as surface proteins known as Microbial Surface Components Recognising Adhesive Matrix Molecules (MSCRAMM). It should be understood that while a number microbial organisms may be known to express MSCRAMM type proteins, the term "MSCRAMM" describes the phenotypic function of a wide range of diverse surface-associated proteins of Gram-positive bacteria. As such, while MSCRAMM proteins may all possess cell-wall anchor motifs and signal sequences for cell wall transportation, the proteins belonging to this group may otherwise be structurally diverse. Furthermore, bacterial species within a particular genus, for example the genus Staphylococcus, may possess unique MSCRAMM profiles.
[0007] In view of the above, the present invention relates to a group of surface expressed proteins derived from Staphylococcus pseudintermedius that may be referred to either as CWA or MSCRAMM proteins.
[0008] As such, a first aspect of this invention provides an isolated and/or substantially purified Staphylococcus pseudintermedius CWA or MSCRAMM nucleic acid or protein sequence comprising a nucleic acid or amino acid sequence homologous or identical to any one of the nucleic acid or amino acid sequences provided as SEQ ID NOS: 1-38 below.
TABLE-US-00001 SEQ ID NO: 1 atggaaaacaaaaacttttttagtattcgtaaactatctattggtgtagg ttcttgcttaatcgcgagttctttacttgtaaacacgccaagttttgctg aagaaacagataatgcgaacattaatgacgcacaacaaaacgccttttat gaaattttacatttgccaaacttaactgaagagcaacaaaatggattcat ccaaagtcttaaagatgatccaagtgtgagcaacgacattttagtagaag ctaagaaattaaatgacactcaagctaaacctgattacagtgaagcacaa caaaatgcattttatgaaattttacatttgtcaaacttaactgaagagca acaaaatggattcatccaaagtcttaaagatgatccaagtgtgagcaacg acattttagtagaagctaagaagttaaatgacactcaagctaaacctgat tacagtgaagcacaacaaaatgcattttatgaaattttacatttgtcaaa cttaactgaagagcaacaaaatgggttcatccaaagccttaaagatgatc caagtgtaagtaaagaaattttagcagaagctaagaagttaaatgatagt caagcacctaaagttgataaagctaaaaaaactgacaaagctgaagcgaa agcagatgataaagctaaaggtgaagaagccaaaaaatctgaagacaaaa aagatagcaaagcagataaggcaaaatcgaaaaacgctacacatgttgtt aaacctggtgaaactttagataatattgctaaagatcatcatacaactgt tgataaaattgctaaagataacaaaataaaagataaaaatgtgattaaac taggtcaaaaacttgttgttgataaacaaaaagcaactcaaggaaaacaa gaagctgtagcgaaaaatgaagtgaaggctttacctaatactggtgaaaa tgatgatatcgcattattcagcacaacagttgcgggtggcgtaagtatcg ctttaggttcattattattaggaagaaacagaaaaactagctaa
The protein sequence translated from SEQ ID NO 1 is designated SEQ ID NO: 2 and is shown below:
TABLE-US-00002 SEQ ID NO: 2 MENKNFFSIRKLSIGVGSCLIASSLLVNTPSFAEETDNANINDAQQNAFY EILHLPNLTEEQQNGFIQSLKDDPSVSNDILVEAKKLNDTQAKPDYSEAQ QNAFYEILHLSNLTEEQQNGFIQSLKDDPSVSNDILVEAKKLNDTQAKPD YSEAQQNAFYEILHLSNLTEEQQNGFIQSLKDDPSVSKEILAEAKKLNDS QAPKVDKAKKTDKAEAKADDKAKGEEAKKSEDKKDSKADKAKSKNATHVV KPGETLDNIAKDHHTTVDKIAKDNKIKDKNVIKLGQKLVVDKQKATQGKQ EAVAKNEVKALPNTGENDDIALFSTTVAGGVSIALGSLLLGRNRKTS SEQ ID NO: 3 atggaaaacaaaaactttttcagcattcgtaaattatcaattggggtggg ttcatgtttaatcgcgagctctttacttgtgaatacaccaagtttcgcag aagaaggagataataacgcagaagcgcaacaaaacgctttctctgaggta gtaaaattacctaaccttagcgaagaacaacgtaatggtttcattcaaag ccttaaagatgatccaagtacaagtcaagatgtgcttaatgaagctaaaa aattaaatgatagtcaagagggatctcaacctgctcctgattacagtgat gaacaacaaaatgcattttatgaaattttacaccttccaaacttaactga agaacaacgcaatggctatattcaaagtcttaaagatgacccaagtgtaa gcgctaatattcttgttgaagctaaaaatatgaatgttaaccaaacacct acacaacctgcgccaagtttcgatgaagcgcaacaaaatgcattctatga gattgtaaacttaccaaatcttactgaagagcaacgtaacggtttcatcc aaagccttaaagacgatccaagtgtaagtaaagatatccttgttgaagct aaaaagttaaatgacagccaagcaaaacctgattacagtgaagcgcaaca aaatgcattttatgaaattttacaccttccaaacttaactgaagaacaac gtaacggtttcatccaaagccttaaagacgatccgagtgtaagtagtgat attcttgctgaagctaagaaattaaatgacagccaagcgcctaaagaaga caacaacgtaaaagacaataattcaggtgaaaacaaagctgaagacaaag gcaacaaagaaaacaaagctgaagataaaggcagcaaagaagacaaagct gaagataaaggcagcaaagaagacaaagctgaagataaaggcagcaaaga agacaaagctgaagataaaggcagcaaagaagacaaagctgaagataaag gcagcatagaagataaagctaaagacaaagacaacaaagaaggcaaagct gcagacaaaggtatggacaaagcgaaagatgcaatgcatgtcgttcaacc tggtgaaacagtagaaaaaattgctaaagctaataacacaactgtagaac aaatcgctaaagataatcatttagaagataaaaacatgattttaccaggt caaaaacttgttgttgacaaccaaaaagcaatgaaagacagccaagaagc taaagcaaaccacgaaatgaaagctttacctgaaacaggtgaagaaaacg atatggcattattcggtacatcacttacaggtggtcttagcttagcatta ggtttatacatcttaggacgtggcagaaaaacaaactaa
The protein sequence translated from SEQ ID NO 3 is designated SEQ ID NO: 4 and is shown below:
TABLE-US-00003 SEQ ID NO: 4 MENKNFFSIRKLSIGVGSCLIASSLLVNTPSFAEEGDNNAEAQQNAFSEVVKLPNLSEEQRNGFIQSLKDD PSTSQDVLNEAKKLNDSQEGSQPAPDYSDEQQNAFYEILHLPNLTEEQRNGYIQSLKDDPSVSANILVEAK NMNVNQTPTQPAPSFDEAQQNAFYEIVNLPNLTEEQRNGFIQSLKDDPSVSKDILVEAKKLNDSQAKPDYS EAQQNAFYEILHLPNLTEEQRNGFIQSLKDDPSVSSDILAEAKKLNDSQAPKEDNNVKDNNSGENKAEDKG NKENKAEDKGSKEDKAEDKGSKEDKAEDKGSKEDKAEDKGSKEDKAEDKGSIEDKAKDKDNKEGKAADKGM DKAKDAMHVVQPGETVEKIAKANNTTVEQIAKDNHLEDKNMILPGQKLVVDNQKAMKDSQEAKANHEMKAL PETGEENDMALFGTSLTGGLSLALGLYILGRGRKTN SEQ ID NO: 5 gtgtacaaaaatgaagaagaaaagcattcaataagaaagttatctataggagccgcatct gtcattgttgggggactcatgtatggtgttttgggaaatgatgaagctcaagcgaatgaa gatgtcactgaaacaactgggagaaattcagtgacaacgcaagcttctgagcaacatttg caagtggaagcagtacctcaagaaggcaataatgtaaatgtatcctctgtaaaagtacct acgaatacggcaacgcaagcacaagaagatgttgcaagtgtatccgatgttaaagcacat gctgatgatgcattacaagtacaagaaagtagtcatactgatggtgtttcttcagaattc aagcaggagacagcttatgcgaatcctcaaacagctgagacagttaaacctaatagtgaa gcagtgcatcagtctgaatacgaggataagcaaaaacccgtatcatctagccgcaaagaa gatgagactatgcttcagcagcaacaagttgaagccaaaaatgttgtgagtgcggaggaa gtgtctaaagaagaaaatactcaagtgatgcaatcccctcaagacgttgaacaacatgta ggtggtaaagatatctctaatgaggttgtagtggataggagtgatatcaaaggatttaac agcgaaactactattcgacctcatcagggacaaggtggtaggttgaattatcaattaaag tttcctagcaatgtaaagccaggcgatcagtttactataaaattatctgacaatatcaat acacatggtgtttctgttgaaagaaccgcaccgagaatcatggctaaaaatactgaaggt gcgacggatgtaattgctgaaggtctagtgttggaagatggtaaaaccatcgtatataca tttaaagactatgtaaatggcaagcaaaatttgactgctgagttatcagtgagctatttc gtaagtccggaaaaagtcttgactactgggacacaaacattcacgacgatgatcggtaat cattcaacgcaatccaatattgacgtttattatgataatagtcattatgtagatggacgt atttcgcaagtgaacaaaaaagaagctaaatttcaacaaatagcatacattaaccctaat ggctatttaaatggcagggggacaattgcagttaatggtgaagtggtcagtggtacgact aaagacttaatgcaacctacagtgcgtgtatatcaatataaaggacaaggtgttcctcct gaaagtattactatagaccctaatatgtgggaagaaatcagcataaacgatactatggta agaaaatatgatggtggctatagcttgaatctggataccagcaagaatcaaaaatatgcc atctattatgaaggggcatatgatgcgcaagctgacacactgttgtatagaacatatata cagtcattaaacagttactatccgttcagttaccaaaaaatgaacggtgtgaagttttac gaaaacagtgcgagtggaagcggtgagttgaaaccgaaaccacctgaacaaccaaaacca gaacctgaaattcaagctgatgtagtagatattattgaagatagccatgtgattgatata ggatggaatacagcagttggagaagaaagtggagcaaaccaaggccctcaagaagaaatc acggaaaatcacgacatcgaagtcattgaggaaaacaacttggtggaaatgacagaagat acagcagttggagaagaaagtggagcaaaccaaggccctcaagaagaaatcacggaaaat cacgacatcgaagtcattgaagaaaacaacttagtggaaatgacagaagatacagcgttg gaagaagaaagtggagcaaatcaaggtcctcaagaagagatcacagaaaaccacgatatc gaagtcattgaagaaaacaacttggtggaaatgacagaagatacagcgttggaagaagaa agtggagcaaatcaaggtcctcaagaagagatcacagaaaaccacgacatcgaagtcatt gaagaaaataacttagtagaaatgacagaagatacagcagttggagaagaaagtggagca aatcaaggtcctcaagaagagatcacagaaaaccacgatatcgaagtcattgaggaaaac aacttagtggaaatgacagaagatacagcagttggagaagaaagtggagcaaaccaaggt cctcaagaagaaatcacggaaaatcacgacatcgaagtcattgaagaaaacaacttggtg gaaatgacagaagatacagcgttggaagaagaaagtggagcaaatcaaggtcctcaagaa gagatcacagaaaaccacaacatcgaagtcattgaagaaaacaacttggtggaaatgaca gaagatacagcagttggagaagaaagtggagcaaacccaggacctcaagaagaagtaaca gagaatcaacctcagcaagaagaaatcatggaaaaccaagaagtcgaaaagaaaggcgat agtaacttggtagaaagtacaaaaactccaaaggccgaagaatcagttagcgttcagcca actttagaagacaaaaacacaaagaaccacgttaacacagtagtagtgaatacgaaggta tctgaagttaaagaaaaggatccccaccatacaaaagcactaccagatacggggacaacc tctcgaagtcattccatgatgattcctctccttcttgttgctgggtcagtagtgttgtta cgtcgaaagaaaaagcatagtaaggtgaattaa The protein sequence translated from SEQ ID NO 5 is designated SEQ ID NO: 6 and is shown below: SEQ ID NO: 6 VYKNEEEKHSIRKLSIGAASVIVGGLMYGVLGNDEAQANEDVTETTGRNSVTTQASEQHLQVEAVPQEGNN VNVSSVKVPTNTATQAQEDVASVSDVKAHADDALQVQESSHTDGVSSEFKQETAYANPQTAETVKPNSEAV HQSEYEDKQKPVSSSRKEDETMLQQQQVEAKNVVSAEEVSKEENTQVMQSPQDVEQHVGGKDISNEVVVDR SDIKGFNSETTIRPHQGQGGRLNYQLKFPSNVKPGDQFTIKLSDNINTHGVSVERTAPRIMAKNTEGATDV IAEGLVLEDGKTIVYTFKDYVNGKQNLTAELSVSYFVSPEKVLTTGTQTFTTMIGNHSTQSNIDVYYDNSH YVDGRISQVNKKEAKFQQIAYINPNGYLNGRGTIAVNGEVVSGTTKDLMQPTVRVYQYKGQGVPPESITID PNMWEEISINDTMVRKYDGGYSLNLDTSKNQKYAIYYEGAYDAQADTLLYRTYIQSLNSYYPFSYQKMNGV KFYENSASGSGELKPKPPEQPKPEPEIQADVVDIIEDSHVIDIGWNTAVGEESGANQGPQEEITENHDIEV IEENNLVEMTEDTAVGEESGANQGPQEEITENHDIEVIEENNLVEMTEDTALEEESGANQGPQEEITENHD IEVIEENNLVEMTEDTALEEESGANQGPQEEITENHDIEVIEENNLVEMTEDTAVGEESGANQGPQEEITE NHDIEVIEENNLVEMTEDTAVGEESGANQGPQEEITENHDIEVIEENNLVEMTEDTALEEESGANQGPQEE ITENHNIEVIEENNLVEMTEDTAVGEESGANPGPQEEVTENQPQQEEIMENQEVEKKGDSNLVESTKTPKA EESVSVQPTLEDKNTKNHVNTVVVNTKVSEVKEKDPHHTKALPDTGTTSRSHSMMIPLLLVAGSVVLLRRK KKHSKVN SEQ ID NO: 7 atgaataaatcaagaactaaacattttaattttttatcaaaacgtcagaatcggtatgct attcgccacttttcagctggtactgtgtcagtgcttgtaggagcagctttcttgctaggt gtccatacgagtgatgcatctgctgcagaacaagatcaaacatctgaagcaaagcaaaac ctctttgatgcttccgctatttttggcgctttaacagagacgaacgaaaaggtagcacaa gtgacgccaacagaaaaaaatctttcatcagttgaagaaatgagagataaaggcgcaact ggaaatggaccatcaataacatcactacaaactgtagaacaaaataatgcagtacaacct acagcaacacctattaatgacacagaaaattcaaccgaagcccctatgaaagaacaatcg aatgatgcacaaacgactgacgaaagtaacaatgccactcagaaaaataatactgaaccc caagcaaacaatgaaatatcagcgcgtaatgcaaaaacaacagcatatttaacaagtgaa acctttacaacagcaacgtctacaactgatatgcctacacagaaacaagaatatccatct ttagaaaatccaacaaatcaatcgcaaacgaacagagcacaaccaccaacaatggaagca cccaaactggcagaaggattagacaatctattaaaaaaatcaactttcgaaagtatgtac gtgacaaaaagaaatcaatttgacaaagagacggcttctaaaacaaaagcatggccgagt gatgttgttccagaaaatcaagtagagatacttgctgatgcaattcaaaatggctatatc aaatctgtaaatgatgtgaccaataaagcacatacgttatctggacgtgcatggatgtta gaccacggaacaccaacgacaatagctaatggtttaacacctgttccagagggcactaaa gtttatttgcggtggatagatcaagatggtgccacttcgccaatgtatacagcaaaaacg acaagtagattaagcgctgcggatggtaatcaagtgggtccaggtgcttatgctttcgat ttacgcacaggttggatagatgctaaaggaaaacaccacgtatatagagcagtaaagggt caatattataaaatatggatcaatgattttagaactaaagacggtaatatcgctacaatg ttacgtgttgcaggaggatatgttccgggaacgtacgtggattctgtgacatacaacaat atgggccaatttccattaattggtacaaatatgcaacgtacaggtatctttatgacaacg ataccttcagaaaaatatttaatatcaaaacattacgtgaaagatacaaaaggtgctgca gcaaatccagccgtcacgataattgaaaataactttgtgagcggcaaagtttggatagaa acaggtgctggagattatgtgaactcagcgacaggtccaaaccacaatgcgaaagatgtc gttgcctctggatacaaagtggtcatgtcatcattaacagatcaaggtgctaaagcctac gatgcgcaagtcaatcgcttgccgaagaaagatcgagcagaagcagcacgtcaattatta ataaaacatccagaatatatcgcagcaactgtagaagggataacgaatgagtgggggaga tatacattgcgtttccctaaaggcacattcaacaaagaccatctttacggttacgtattg gattttgatggtgaaattgtaaaaacttattcaggttttacttcaccagagttccggaga ccgaattataatttgaccgttacaccgcaaacagctccctattatagacccgttcgacgt gcatgggtcaatgttaattttgcggttattgaagcaccacaatctcaaatcgaaataaaa gaatttgatgcaacctctaaccctgcgcatcgtgggcaaacagcaactattgatatcata ggtatgcctaaaacttcattacttacacgtgtacaatggaaagattcatcgggcagtatt gttgaggatagtggtcctgtttttacggaagaagaggctgaacatatagcggaatttgta ataccgtctagcgcaaaatcaggcgaagtgtatactgtacaactcgtggtaggtaatcat atcgtagcttcggactctcttattgtacatgtcaatgaagaagcggcgacatatcatccg atatacccatcgacaacagtagaatcaggtcaaagagtaacgattccagcacctaagaat atggatggcaaacctttactagatggcacaacttttgaaaaaggtcatcacgtaccaact tgggctttagtgaatggtgatggctcgattacagtaaaacctggagaaaaagtagcagag ggtgagtatgatattccagtgattgtgacatatccagatggttctaaaaacacaatcttt gcacctgtgaccgttgaagaaaaacaaccaatggcatcgcaatatgagccaataacaact ggagtatcgaaaccatttggaaacccagtaatgccaactgatgtaacagattcaattcaa gtaccgaactatccattggaagggcaacaaccgacagtaacagtggatgatgaaagtcaa ttaccagatggaacaacagaaggttacaaggatatagatgtaacagtgacatacccagac ggaacaaaggatcgtgtcaaagttccagtcgtaacggaacaacaattagatagtgataaa tatgatccggtcgcaacaggtatcttgaaaccgtttggtactccaacaacagaggaagac gttataaaattagtggagataccgaaatatccaacagacttaacacaaccaaaagtaaca gtgacggttccaaatactttaccggatgggcaaacgccaggtaaagtagacgttgatgtg acagtaacgtatccagatggttccacagatcacatttcagttccagtttggacaaacaag catctggataaagacaaatataacccaataacgactggggtatcgaaaccatttggaatc ccagtaacgccaactgatgtaacagattcaattcaagtaccgaactatccattggaaggg caacaactgacagtaacagtggatgatgaaacacaattaccagatggaacaacagaaggt cacaaggatatagatgtaacagtgacatacccagacggaacaaaggatcatatcaaagtt
ccagtcgtaacggaaaaacaatcagataatgaaaaatatgagccaacaactaacggaatc acgaaaaagtacggtatccctacgacagaggatgaagtgatagatatagttcgaattcca tattttccagtagatggcgtgcaacctattgtaacggtaaatgatcctagactattgcca aatggtcaaaaagaaggtcaaatcaatgttccagtcacagtgacgtatccggatggcaca aaagatctcatgacagttccggttattacaggtaagcaagcagaaaatgaaaaatacgat ccaatcacattaggagtaactaaagattatggtgatcctacaactgcaaacgatgtgaca aagtcaatccaaataccaacatatccagcaggtggcgaacaaccaatcgcaacagcggat gatgaaagtcaattaccggatggcacagtagaaggtaaagtggatattccagtcacagtg acgtatccggatggtactcaggatcatatcactgtcccagtatttaccaatcaacaacga gataatcaaaaagccagtaaagctgtgacgaaaatacatggtatatcggtaacaggcact gatatgacagatactaagaaaaatcataactatccagcaggtggtgaacaacctaaagtt actgtgaaagatgacgatcaattatcagagggtaaagtcgattcaacagtgggtgcggat aatgtgacaactacagatgatttatcaagcgtaactgcggtatctcatggtcatcaaaca agtgtacaaacaacaaaagagaaccaatcagtgcatgatgaagaggtgacgatcccaaca gttgcacatgtgtctacaataatgacaggtgtggtaaagggtgagcaagaagcgacggat atcgtggctagaccacatgttgaaacaactcaactcccatcaatttcagctcaagcaaca gttaaaaaactaccagaaacgggtgaaaacaatgaacaatcaggtgttttattaggtgga tttattgcgttcatgggtagcttacttttattcggcagacgtcgcaaaccaaagaaagat taa
The protein sequence translated from SEQ ID NO 7 is designated SEQ ID NO: 8 and is shown below:
TABLE-US-00004 SEQ ID NO: 8 MNKSRTKHFN FLSKRQNRYA IRHFSAGTVS VLVGAAFLLG VHTSDASAAE QDQTSEAKQN LFDASAIFGA LTETNEKVAQ VTPTEKNLSS VEEMRDKGAT GNGPSITSLQ TVEQNNAVQP TATPINDTEN STEAPMKEQS NDAQTTDESN NATQKNNTEP QANNEISARN AKTTAYLTSE TFTTATSTTD MPTQKQEYPS LENPTNQSQT NRAQPPTMEA PKLAEGLDNL LKKSTFESMY VTKRNQFDKE TASKTKAWPS DVVPENQVEI LADAIQNGYI KSVNDVTNKA HTLSGRAWML DHGTPTTIAN GLTPVPEGTK VYLRWIDQDG ATSPMYTAKT TSRLSAADGN QVGPGAYAFD LRTGWIDAKG KHHVYRAVKG QYYKIWINDF RTKDGNIATM LRVAGGYVPG TYVDSVTYNN MGQFPLIGTN MQRTGIFMTT IPSEKYLISK HYVKDTKGAA ANPAVTIIEN NFVSGKVWIE TGAGDYVNSA TGPNHNAKDV VASGYKVVMS SLTDQGAKAY DAQVNRLPKK DRAEAARQLL IKHPEYIAAT VEGITNEWGR YTLRFPKGTF NKDHLYGYVL DFDGEIVKTY SGFTSPEFRR PNYNLTVTPQ TAPYYRPVRR AWVNVNFAVI EAPQSQIEIK EFDATSNPAH RGQTATIDII GMPKTSLLTR VQWKDSSGSI VEDSGPVFTE EEAEHIAEFV IPSSAKSGEV YTVQLVVGNH IVASDSLIVH VNEEAATYHP IYPSTTVESG QRVTIPAPKN MDGKPLLDGT TFEKGHHVPT WALVNGDGSI TVKPGEKVAE GEYDIPVIVT YPDGSKNTIF APVTVEEKQP MASQYEPITT GVSKPFGNPV MPTDVTDSIQ VPNYPLEGQQ PTVTVDDESQ LPDGTTEGYK DIDVTVTYPD GTKDRVKVPV VTEQQLDSDK YDPVATGILK PFGTPTTEED VIKLVEIPKY PTDLTQPKVT VTVPNTLPDG QTPGKVDVDV TVTYPDGSTD HISVPVWTNK HLDKDKYNPI TTGVSKPFGI PVTPTDVTDS IQVPNYPLEG QQLTVTVDDE TQLPDGTTEG HKDIDVTVTY PDGTKDHIKV PVVTEKQSDN EKYEPTTNGI TKKYGIPTTE DEVIDIVRIP YFPVDGVQPI VTVNDPRLLP NGQKEGQINV PVTVTYPDGT KDLMTVPVIT GKQAENEKYD PITLGVTKDY GDPTTANDVT KSIQIPTYPA GGEQPIATAD DESQLPDGTV EGKVDIPVTV TYPDGTQDHI TVPVFTNQQR DNQKASKAVT KIHGISVTGT DMTDTKKNHN YPAGGEQPKV TVKDDDQLSE GKVDSTVGAD NVTTTDDLSS VTAVSHGHQT SVQTTKENQS VHDEEVTIPT VAHVSTIMTG VVKGEQEATD IVARPHVETT QLPSISAQAT VKKLPETGEN NEQSGVLLGG FIAFMGSLLL FGRRRKPKKD SEQ ID NO: 9 atgtttaatcaacaaaaacaacactatggtatccggaaatatgcaatcgggacttcatca gtattattaggcatgacattatttatcacacatgacgcaactgcatctgcagctgaaaac aatacaactgcaaagacagagacaaatcaagcagcaacaatttcttctcgcacttcgcca accgacgtcgctcaacctaatgcagacacgaatgctacaacggcgactaaagagacaaca ccacaatcagattcaacagcattaccgcaagcagcagcgcaacctcaaacgggccaaaca gcatcgaaagacacagtagatacaaataaaacgcaaacagcagattccacaaccgctcct cctgtgacagacgcgccaaaagctaatgacgacacaacacagccagaagctgcgactgta gccaaaaaagaagatgctcagacaccatcgactgcagaccctacaccacaagcgcaacaa ccgcctcagtcaaaagcacctcaagaaacgcaacaacaatcaacagttgaagatacaacg ccacaacaaaacgcatcaactgaagcacaccctaaaaatgtagataccgcttcaacaaaa caacaacaaacaacgccatcaaccgcaccgacaccttacacacaacaagcagacgaagca atgacagatgtcacaacaaccagtgtcgacagcaacgtacagccgttagcccctgcagaa gatcaacctaaaaatacgaacacagctgacaaagcaaccgttgcgacaccaccacgtgac aatgctaagactgctgatccgaacaaaaagatgacacgtgcagcaacgacacaacaagat gatgccgtcgatacattgaagtcaaaagaaatgacagcaacgatcgataaaagttttcca gccgttaaatattacacgttgaaaaatggtaaaaaagtcgatgcacaactgacggatgca cgtcaaatcatcgtcaatggtgaagtcattacaccaacagtcaaatacaacaaaattgat gatcatacggctgaatatgacttaacagcacaaaatgattcacgttcgattgatgccaat tttaaatttcgtttatcagttgaaggtaagaccgttgatttacaaatgacagattacacg aacaacaacacagatccacaaaacgtcattcgcaactttagctttgtaagtcaatcgctc gtatctgtaaacaatcaacagaaaaatgccaaactgcaaacatcgaaactgtctacaaat acaatgaaaagcggcgataaatcatatcatatcgatgaaaatttcaaaaacgacttcaac gactttatgatgtacggtttcgtgtcaaatgatgattacagtgcaggattgtggagtaac gcacaaattggcgtcggcattggtgaacaagacttcttacgtgtctacgcacagtctata caaacagatatcggggtcgctgtcggtttaggctcaatgccatggtttatccaaaaagac gctgcacatccagatgcgaaaaatcaaggactactcccacatgtcaaagttgcaattgcg gaagatgaaaatcaagatggtgaaattaactggcaagacggtgcaattgcttatcgtagc attatgaacaatccatatggtgccgaagaagtacctgaccttgttgggtaccgtatcgcg atgaactttggttctcaagcgcaaaacccatttttaaagacgttagatggtgtgaaaaaa ttctatctcaatacagatggtttagggcaatccattttattaaaaggttataacagtgaa ggccacgactctggtcatttagattacgcgaatattggtcaacgtataggtggcgtgaaa gactttaaaacgttacttcaaaaaggggcagattatggcgcacgtttcggtcttcatgtg aatgcatctgaaacatatccagagtctcaagcattcaatcctgccctcttacgtaaagat gcgaatggaaactatatgtatggctggaactggctcgatcaaggctttaacatcgatgca gattacgatttaatacacgggcgtaaagaacgcttcgaagcactcaaacaaattgtcggt gatgacctcgactttatttatgtcgatgtatgggggaatggacaatccggcgacaataca gcttggccatcacatcaattagccaaagaaatcaacgacttaggatggcgcgtcggtgtc gaatggggtcacggtatggaatatgactccacgttccaacattgggcagccgacttaacg tatggatcgtaccaaaataaagggattaactcagaggtagcacgcttcttacgcaaccat caaaaagattcatgggtcggtaactatccaaaatactcaggtgcagctgacttcccattg ctcggcggttatgacatgaaagattttgaaggttggcaaggtcgtaacgattactctgct tacattaaaaatattttcaatgttgatgtaccaacaaagtttttacaacattataaagtg atgcgtattgtcgatggtgagcctgttaaaatgactgccaatggtcaaacgattgactgg acaccagaaatgcaagtcgatttacaaaatgaagccggtgatcaagtcactgttaaacgt aaatctaacgactatgaaaacgacactgacaactaccgctcacgtacaatcgaattgaat ggtcgcacagtactcgatggcgattcataccttttaccatggaattgggatgcgaacggc caaccattaactggcgataacgaaaaattatatcactggaataaaaaaggcggttcaacg acttggacactgcctgaatcatgggatacagaccaagtcgtgctatacgaattatctgaa acgggtcgtaagtcaccacgtacagtggcagtgaaagaccatcaagtgacactcgataat attaaagcagacacaccgtatgtcgtttataaagtcgcacaaccagacaacacagatgtg aactggagcgaagacatgcacgtgaaagatgccggcttcaactcacaacaactgacacct tggacaatcgaaggcaatcgagataaagtgagcatcgaaaagtcgacaacatcaaatgaa atgctaaaaatcgatagtccaacaaaaacaacgcaattaacgcaacaattgacaggttta gtgccaggacaacgttacgctgtctatgttggcatcgataaccgcagtgatgcagcggcg catattgcagtgacacataacggtaaaacgctcgcaagtaacgaaacaggtcaatcgatc gcgaaaaactatgtgaaagcagatgcacatagtaacaatgctgcgacgtttaaaaatggc ggtagttacttccaaaacatgtacgtgtacttcgttgcgccagaagatggtaaagcagac ttgacgattcaacgcgacccaggtgaaggggccacttatttcgatgatattcgtgtgtta gaaaataacgcgaatctccttcaaaacggcacattcaaccaagacttcgaaaatgtacca caagggttattcccgttcgtcgtgtcagaagttgaaggcgttgaagataatcgcgttcac ttatctgaaaagcacgcaccgtatacacaacgcggatggaataataaacgtgtcgatgat gtcattgatggcaaatggtcacttaaagtaaacggtcaaacaggtaaagataaaatggtc atccaaacgattccgcaaaacttctacttcgaaccaggaaaaacgtatgaagtgtcattt gattatgaagcaggttctgatgatacgtatgcatttgcgacaggtagtggggacatttct aaaaatcgtaactttgaaaagacaccattgaaaaatacagtcgatggtggcaaagcgaaa cgggtgacatttaaagtgacgggtgatgaaaatggtcaaacttggatcggtatttactca acgaaaacacccaatgatccacgaggcgtgaaaaatggcaatcaaatcaacttcgaaggg acgaaagatttcattctagacaacctttctatccgtgaaattgacgcaccgaagcctgat gccacacaagaaagcggtgatagcgcaccaatgaatgaaacagatgagcgtaacgtcaat tcaaacggtacattagccgatcatagtgagacaactgatgtcaatgtcagtgcaacggca gatgatacagcagtcaaaggcgaaatgacgacaaacagaacagatgcaccaactgttaca ctgcctgaagcaacgatagtagatgaaggcacgtcaaatcctgtcactacaacaccaacg aatacaacacaagctatgacaaataaggctgatgagatgccacaaacgatgaacaatgtt cctttaactagcatcgctaccgatatgatgcagtctcatgcggtggattccatggcagca acactagcagctacaaatcaagtggcggcacctgtgcgtcaaacagcaggacctatgcaa catggtatggacagtgcttcaacgcaacacgcacccatacaagttgacaatgtcacagca ccaccattaccagatgaacagtttgccgaattacctaaaactggggatacgactccaaat acacgtggacctttaatggcgatgatagttggcgcagtcttaacagcattcggattcaga cgccaacgtaaagaaaaatag
The protein sequence translated from SEQ ID NO 9 is designated SEQ ID NO: 10 and is shown below:
TABLE-US-00005 SEQ ID NO: 10 MFNQQKQHYGIRKYAIGTSSVLLGMTLFITHDATASAAENNTTAKTETNQAATISSRTSPTDVAQPNADTN ATTATKETTPQSDSTALPQAAAQPQTGQTASKDTVDTNKTQTADSTTAPPVTDAPKANDDTTQPEAATVAK KEDAQTPSTADPTPQAQQPPQSKAPQETQQQSTVEDTTPQQNASTEAHPKNVDTASTKQQQTTPSTAPTPY TQQADEAMTDVTTTSVDSNVQPLAPAEDQPKNTNTADKATVATPPRDNAKTADPNKKMTRAATTQQDDAVD TLKSKEMTATIDKSFPAVKYYTLKNGKKVDAQLTDARQIIVNGEVITPTVKYNKIDDHTAEYDLTAQNDSR SIDANFKFRLSVEGKTVDLQMTDYTNNNTDPQNVIRNFSFVSQSLVSVNNQQKNAKLQTSKLSTNTMKSGD KSYHIDENFKNDFNDFMMYGFVSNDDYSAGLWSNAQIGVGIGEQDFLRVYAQSIQTDIGVAVGLGSMPWFI QKDAAHPDAKNQGLLPHVKVAIAEDENQDGEINWQDGAIAYRSIMNNPYGAEEVPDLVGYRIAMNFGSQAQ NPFLKTLDGVKKFYLNTDGLGQSILLKGYNSEGHDSGHLDYANIGQRIGGVKDFKTLLQKGADYGARFGLH VNASETYPESQAFNPALLRKDANGNYMYGWNWLDQGFNIDADYDLIHGRKERFEALKQIVGDDLDFIYVDV WGNGQSGDNTAWPSHQLAKEINDLGWRVGVEWGHGMEYDSTFQHWAADLTYGSYQNKGINSEVARFLRNHQ KDSWVGNYPKYSGAADFPLLGGYDMKDFEGWQGRNDYSAYIKNIFNVDVPTKFLQHYKVMRIVDGEPVKMT ANGQTIDWTPEMQVDLQNEAGDQVTVKRKSNDYENDTDNYRSRTIELNGRTVLDGDSYLLPWNWDANGQPL TGDNEKLYHWNKKGGSTTWTLPESWDTDQVVLYELSETGRKSPRTVAVKDHQVTLDNIKADTPYVVYKVAQ PDNTDVNWSEDMHVKDAGFNSQQLTPWTIEGNRDKVSIEKSTTSNEMLKIDSPTKTTQLTQQLTGLVPGQR YAVYVGIDNRSDAAAHIAVTHNGKTLASNETGQSIAKNYVKADAHSNNAATFKNGGSYFQNMYVYFVAPED GKADLTIQRDPGEGATYFDDIRVLENNANLLQNGTFNQDFENVPQGLFPFVVSEVEGVEDNRVHLSEKHAP YTQRGWNNKRVDDVIDGKWSLKVNGQTGKDKMVIQTIPQNFYFEPGKTYEVSFDYEAGSDDTYAFATGSGD ISKNRNFEKTPLKNTVDGGKAKRVTFKVTGDENGQTWIGIYSTKTPNDPRGVKNGNQINFEGTKDFILDNL SIREIDAPKPDATQESGDSAPMNETDERNVNSNGTLADHSETTDVNVSATADDTAVKGEMTTNRTDAPTVT LPEATIVDEGTSNPVTTTPTNTTQAMTNKADEMPQTMNNVPLTSIATDMMQSHAVDSMAATLAATNQVAAP VRQTAGPMQHGMDSASTQHAPIQVDNVTAPPLPDEQFAELPKTGDTTPNTRGPLMAMIVGAVLTAFGFRRQ RKEK SEQ ID NO: 11 atgacaagaaaatttagggaatttaagaaaagtttaagtgaagaaaaagcaagagtgaaa ctttacaagtcaggtaaaaactgggttaaagctggaattaaagaatttcagttattaaaa gcattaggcttatcttttttaagccatgacattgtaaaggatgaaaatggagaagtaacg acacaatttggggaacagttgaagaaaaatgcattaagaacaactgcttttgcgggtgga atgttcacagttaatatgttgcatgaccaacaagcatttgcggcgtcggatgcacctata acttctgaactggcaaccaaaagtcaaactattggcgatcaaacatcaattgttattgaa aagtctacatcgtcagatcaatcaacgaacccaataacagaaagtgaaagtaaacacgat tctgaaagtatctcattatctgagcatcaaacatcagagtcaacaagtctttcaacgtca acttccaaatcaatatcaacttcagtagaggaatcagaatcaacatcaaaagattctcat actaaaactcaagatagtcaatcagatagtcatcagtcaacaagtcaagaggtaaatggc tcttccaaccacgagcaatcaacaccacacactgcacaaagtcttacgagcctatctatt gagagccaaacgtcgacttcaaatacatcattgaaggaaactaaagaaggggaattgtca aaaaacctttcgaagttatctcaaaatcaaaacatcaaacttcatgaagaacatacgatg cgttcagcagatttgagctcaggttatacaggatttagagcggcttactatgtaccaaga tcaagaacaacaccaacgacaaaagtctacacagggcaaggaagcttcagaggtagaggt agaattaaatataatattttctacaaagttgtcgttacaagtaatggcaaagaaatgaag atccgctatacattgagtcaagatgatccaaacacgtctaatgttgaaaaacctaggtgg gcaggacagaaacgatttggtattcataatacttgggatgaaggtcctggtcgcgggcaa ttaaagttagggtcggcattcggcaaaccaacagttatacaaggagaaactagaccgaat tatggtagctgggttggcacacctataacgaaatatgtttcaggcgatcgtacaaatggt ttttactggcaagctgctgtacttgcaccgagacatggagagaagggagaaggaatcaca gcagaaattacagttcctattgttaacccttctggaagatttaattgggaattccatcct gtcggtcaacaggacggagttggtggcaaaactgactactttgaaaatgtatggattcga gactatgacccatattacaaatatattcaaactaaggaaggcagagcctcagtttcgcac tctatttctcaggtgaaagcaagtgaatcgagatcgacatcgctcatacaatcggagtct attagaagatcacagtccatatctgagagtgaatctattgtagccgcaagtcattcggca agtgtagcaaaatcgcaatccatctcgagaagtcaatctgtggcgaaatcacaatcgatc tcaagaagtcagtcgatcgcacacagccgatcagcaagtgtggcaaaatcgcaatccatc tcaagaagtcagtcgatcgcacacagccgatcagcaagtgtggcaaaatcacaatcgatt tcaagaagtcagtcgatcgcacacagccgatcagcaagtgtggcgaaatctcaatcgatt tcaagaagtcagtcaattgcgcagagccaatcagcaagtgtggcaaaatcacagtcgatt tcaagaagtcagtcaattgcgcagagccaatcagcaagtgtggcgaaatcgcaatcgatt tcaagaagtcagtcgattgcacatagccgatcagcaagtgtagcggaatcacagtcgatt tcaagaagtcagtcgattgcgaatagccaatctgtagcagcgagtgaatcagagagtcta tcaatatcattgtctaaaaagcagtcaatatcgatgagtaattctgaaagtgcagcaaaa tcacactcgctttcggtgaaaaggtctaactggattaaaaagtcaaaagcggcttcagta agaaagtcacattcactttcggtaagaaaatctaattcggcgaaaaggtcacatgctatt tcggtaagaaagtcaaagtcattatcagttaaaaagtcaatttcgcagagccaatcagca agtgtggcgaaatcgcaatcgatttcaagaagtcaatcagtagcagcgagtgagtcggca tcgctaagtaagtcgaagagcacatcgctcagtaactcagtgagtgcagagaaatcgacg tcattaagtcgttcagcaagtgtagcaaaatcgcaatcgatttcaagaagccaatcagta gtagcgagcgaatcggcatcgttaagtaagtcgaagagcacatcgctcagtaactcagtg agtgcagagaaatcgacgtcattaagtcgatcagcaagtgtagcaaaatcgcaatcgatt tcaagaagccaatcggtggcagcgagcgaatcggcatcgttaagtaagtcgaagagcaca tcgctcagtaactcagtgagtgcagagaaatcgacgtcattaagtcgatcagcaagtgta gcaaaatcgcaatcgatttcaagaagccaatcggtggcagcgagcgaatcggcatcgtta agtaagtcgaagagcacatcgctcagtaactcagtgagtgcagagaaatcgacgtcatta agtcgatcagcaagtgtggcaaaatcgcaatcgatttcaagaagccaatcagtagtagcg agcgaatcggcatcgttaagtaagtcgaagagcacatcgctcagtaactcagtgagtgca gagaaatcgacgtcattaagtcgatcagcaagtgtagcaaaatcgcaatcgatttcaaga agccaatcggtggcagcgagcgaatcggcatcgttaagtaagtcgaagagcacatcgctc agtaactcagtgagtgcagagaaatcgacgtcattaagtcgatcagcaagtgtggcaaaa tcgcaatcgatttcaagaagccagtcagtagcagcaagtgagtcggcatcattaagtaag tcgaagagcacatctttaagcaactcagtgagtgtagagaaatcgacgtcattaagtcga tcagcaagtgtggcgaaatcgcaatcgatttcaagaagtcaatcagtagcagcgagtgag tcggcatcgctaagtaagtcgaagagcacatcgctcagtaactcagtgagtgcagagaaa tcgacgtcattaagtcgttcagcaagtgtagcaaaatcgcaatcgatttcaagaagccag tcagtagcagcaagtgagtcggcatcattgagtaaatcaacaagtacgtcaacaagtgac tcagatagcgcgtcaacatcaacatctgtatcagatagcgattcagcttcattgagtaag tcgactagtacatcaacaagcgattcagacagcgcgtcagcatcattgagcaagtcaaca agtacatcaacgagcgactcagatagcgcatcgacatcaacatcagtatcagatagcgac tccgcatcgttgagtaaatcgacaagcacgtcaacaagtgattcagacagcacgtctact tcattgagtaagtcgacaagtacatcgacaagtgattcagatagtgcgtcaaaatcaacg tcagtatcagacagtacgtccgcatcattgagtaaatcgacaagcacgtcaacaagtgat tcagatagtgcatcaaaatcaacgtcggtatcagatagcacgtcagcatcattaagaaag tcggcaagtacgtcaacgagtgactcagacagcacgtctacttcattgagtaagtcgaca agtacatcgacaagtgattcagatagtgcatcaaaatcaacatcagtatcagatagcgat tcagcttcattgagtaagtcgactagtacatcaacaagcgattcagatagtgcgtcaaaa tcaacgtcggtatcagatagcgactccgcatcgttgagtaagtcgacaagtacgtcaaca agcgattcagacagtgcatcaaaatcaacgtcggtatcagacagtacgtcaacatcatta agtaagtcgacaagtacatcaacaagcgattcagatagtgcgtcaacatcgacatcagta tcggacagtacgtctgcatcattgagtaagtcgacaagcacatcgacaagtgattcagat agcgcatcaacatcagtgtcagatagcgattcagcatcactaagcaagtcaacaagtaca tcgacaagcgattcagacagcgtatcaacatcaacatcagtatcagatagtgattccgcg tcattaagtaagtcgacaagtacgtcaacaagcgattcagatagtgcgtcaaaatcaaca tcagtatcagatagcacgtcaacatcattgagtaaatcaacaagtacatcgacaagtgac tcagatagtgcgtcaacatcggtatcagacagtacgtccgcatcattgagtaaatcgaca agcacgtcaacaagtgattcagatagtgcatcaaaatcaacatcagtatcagatagcgat tcagcatcattaagcaagtcgacaagtacatcgacaagtgattcagatagtgcgtcaaca tcaacgtcagtgtcagatagcgattcagcttcattaagcaaatcaacaagtacgtcaaca agtgactcagatagcgcatcaacatcattaagcaagtcaacaagtacatcgacaagcgat tcagacagtacgtctacatcattaagtaagtcaacaagtacatcaacaagtgattcggat agtgcgtcaaaatcaacatcagtatcagatagcgactcagcttcattaagcaagtcgaca agtacgtcaacaagtgactcagacagtgcgtcaaaatcaacatctgtgtcagatagcgac tccgcatcgttgagtaagtcgacaagtacgtcaacgagcgattcggatagtgcgtcaaaa tcaacatcagtatcagatagtgaatccgcgtcattaagcaagtcgacaagcacatcgaca agtgactcagatagtgcgtcaacatcgacatcggtatcagacagcacatcagtttcatta agcaagtcgacaagcacgtcaacaagcgattcagacagtacgtctacttcattaagcaag tcgacaagcacgtcaacaagtgactcagatagtgactcagcttcgttgagtaaatcgaca agcacgtcaacgagcgattcagatagcgtgtcaacatcaacatctgtgtcagatagcgat tcagcttcattaagcaaatcgacaagtacatcaacaagcgattcagatagtgcgtcaaca tcaacgtcggtatcagatagcggctccgcatcgttgagtaagtcgacaagtacgtcaacg agcgattcagacagtgcatcaaaatcaacgtcggtatcagatagtgattcagcatcacta agcaaatcgacaagcacgtcaacaagtgactcagacagtgcgtcaacatcgacatcggta tcagatagcacatccgcgtcgttaagcaagtcgacaagtacgtcaacaagtgattcagac agcgcatcgacatcaacatcagtatcagatagcgactccgcatcgttgagtaaatcgaca agcacgtcaacaagtgattcggacagtgcgtcaaaatcaacatcagtgtcagatagcgat tcagcttcattgagtaagtcgacaagcacgtcaacaagcgaatcagacagcgcgtcaaaa tcaacgtcagtgtcagatagcgattccgcatcattaagtaaatcgacaagcacgtcaaca agtgactcagatagtgcatcgacatcaacgtcagtatcagatagtgattccgcgtcatta agcaagtcgacaagtacgtcaacaagtgactcagacagtgcgtcaaaatcaacatcagta
tcagatagcgattccgcatcattgagtaagtcgacaagcacgtcaacaagcgaatcagac agtgcgtcaacatcgacattagtatcggatagtacgtcggtttcattgagccaatcaaca agtgtggataaagatagtacagcgaagggatcgacagaattagtaaatgttgcatcactt tcaatcagtgcgagtcaatcaagtagtttatctgcttcaacatccacatcgattgaaaag tctgagtctacatcaacaagtggctcaaattcaactaatgcgtcgttaagtagctcatct tcacttagtacatcagcaagtacttctgtaagcgaagtgacatctgtcacacattctgaa aatgatttaagtgcatctaacgatagagatacatccggatcagtaagtcaatttgcttct gaaaatacatcattaagtgattctgcatcaattagtggcgaagtttctagtagtacgtcc gcgtcaacttcgaaatcatcatcactttcagcaagcgcgttacatgataagcatgtatca gaaagcacttctgcatcattaagtagtggagattcaagtcgtgcttcggcatcagtgtca acgtcattatcagaatcagatagtgcgttaatagactctgaatcaattagcgtttccgag cacacatcaacattacaatcaggtagtcattcactatcacaacaacaatcagcagaatta tcacaatcagagcaaacatcacaatcacaacgcatttcaacaagtgcgtcagtatcggct atgaaatcagaaagtgctgctaaggtatctgaatcgctatctacgtctcaatcaaaagta gatagtcaatcacaatcggtatctgaatcagcgagcaactcacgagtgtcaagagattca aaatcaacaagcgcttcaatgcatcgatcattgtcagagtcagtatctcaaagtatgtca cttattgatcagtcagaaagtgattcaacatctatatcgatttcgacgtcaatcagtgat gaagactctatgctgtattctatgagtgattccgcatcgatcagtactaaggcatcaagt agtatgtctacttcgacaagcgaagagcatgccaacagtcattctcagtctgaatcgaca gcatcggttgaagtatctcaagaaatgagtgcatcggcttcaacaagcaaatctgagtct caatcagagtcagtatcagtaagtaacgaagaatcaaatatctcatctatgcaagagtct tttgtagagagtgcaaaagcatcgcgtagtgcatctatgagcgttgcaaaatctgaagcc tctgaatcacagctattaagtgagtctaatgcttcggtaagccaatcagcaagcacaagt agtaaagcatcagcaagtacgtcagaatctatttcaacgtcactcagcgtatctgaagca actcatggaaaaccgagaaatcattcagaaagtgcatcagcaagtcaattattagaagaa aatgagtcattaagcgattcagcatcaacaagtgttgaagattcagaaagtgcatcagca tctctgtcggtgtatcaatcacaatcagcaagtgcattgaaatcaacacatgcatcagaa aaagcttcagtgaatacaagtgcaaacgcatcgaagcgtgcatcagcatcgacatctatc tctaactcgaaatctaaagtcattgcgagtgaatcgaagtcaacaagcatatcaacatat gaatcgttgtcaatatcgactagtaaagaacaatcaacgcgtgtatcagtgagtgagtcg acatcaacgtctaaagtgaagtcagaaagcgactcggcatcaacgtcgacatctgaatca atctcaattagcgcaaatcgttcaggttacacatcgtctaaacgttcggtacaaatgagt gaagcacaatcaacgagcgattcattatcagtaatgcaatctgaaggttcagtaagtgta tcgcaatctttaagtatatcagataagacatcacagtccttatcggaatcaatatcgcat tcagaaagtgactctgatagtaactcagtgtctattagtcaagagacatctgaacaacat tcggtgtcagacagtgactcgatgtcaatttcggaaagcgaatctattgcatatagtcaa tcagcgagtgaatcagaatcaacaagtatcgcaaaatctgatagtatttcgaactcatta tctgtttcattaagtgaatcagaaagtgaagcaagcacatcagcttcagtgagtacatct gaaagtacgtctgtaaagggttctctatcaacaagtatcttgaacagtcaatcagcatct actcatcaatcaacagaagcttctcaaagtacatcaacttcaaaagttgaggaagcatca ttgagtgactctgcttctgtatcagattcacaatcactttcaatgagtcatgagaaatca caaagtgcatcgacttcaaaatctacgagtctgtcaaaaactatttctgagtcagagtct gtgagtgcatcaacatcaacaagtgaagctgtaagtacagaagcaagcgaatttgtatca gcagtagactcattgagtcaagtaacttctaacggaagcacaacgaaagaagatgcgagt acatttgtatccacagtagattcattgaaagacaaagcatcaaataatggtacaccatca gagtttgcgtcagcagtgaaatcaacacacgcatcagtgagtgtgtcagcatcagaaagt acgtcagcatcaacatcaacaagtgaagctgtaagtacagaagcaagcgaatttgtatca gcagtgaattcgttgagtgaagcgacttctaacggaagcacaacgaaagaagatgcgagt acatttgtatccacagtagattcattgaaagacaaagcatcaaataatggtacaccatca gagtttgcgtcagcagtgaaatcaacacacgcatcagtgagtgtgtcagcatcagaaagt acatcagcatcaacatcaacaagtgaagctgtaagtacagaagcaagcgaatttgtatca gcagtagactcattgagtcaagtaacttctaacggaagcacaacgaaagaagatgcaagc acatttgtatccacagtagattcattgaaagataaagcatcaaacaatggtacaccatca gaatttgaatcagttgtgaaatcagtacacggatcaatgagtgcatcagcaagtgcgtca acatcagcatctacatcagcatctacatctacaagtgaagctgcaagtgcagaagcaagc gaattagaatcagtaaggaaatcattatccaatggagcatcaaacggtagcacagcaaga gaaggtgcaagcacatttgtatcaacggtagattcattgaaagataaagcatcaaacaat ggtacagcatcagaatttgaatcagttgtgaagtcagtacacggatcaacaagtgcatca gcaagtgcgtcaacgtcagcatcaacatcagcaagtgaatcagcaagtacagaagcaagt gaatttgtatcagcagtggcatcattaagcagttcagcatggaacggaagcactacagga gaaggtgcaagcacatttgtatcaacagttgattcatcgaaagattcagcgtcagacaaa gcttcaccatcagaatcagaatcagttgtgaagtcagtacacggatcaacgagtacatca gcaagtgtgtcagcgtcggcaagtacatcagcatcgacatcaacaagtgaagctgtaagc acagaagcaagtgagtttgtatcagcagtgaactcattaagcagtgaagcatcgaacggc agcacaacaagagaaggtgcaagcacatttgtatcaacagtagattcattgaaagacaaa gcatcaaacaatggtacagcatcagaatttgaatcagttgtgaagtcagtacacggatca atgagtacatcagcaagtgtgtcagcatcagaaagtacgtcggcatcgacatcgacaagt gaagctgtaagtacagaagcaagcgagtcagcatcgataagtgtatcaatgtcagtgagc gcatcaacaagtgcttcaatgagcgtatcagtgtcaaacagtgtgtcagtgagtgactct atttcagtaagtgcatcaacaagtgaacctaactcggtaagcacttctatgagtagttct ctttcaacatcggcatcaacgccatcagaaattacttcaagttcgtcatcaagcgattca gcgacagttcaaaaagtagtttctaaagatgaacagcacgctacaaataaagttgaaaaa ttacctgacacaggtcaatcaacgacacaaactggtttattgggtggagtaggtgcttta cttacaggccttggtttactcaaaaaatcaagaaaacaaaaagatgaagaaacatcatca catgaataa
The protein sequence translated from SEQ ID NO 11 is designated SEQ ID NO: 12 and is shown below:
TABLE-US-00006 SEQ ID NO: 12 MTRKFREFKK SLSEEKARVK LYKSGKNWVK AGIKEFQLLK ALGLSFLSHD IVKDENGEVT TQFGEQLKKN ALRTTAFAGG MFTVNMLHDQ QAFAASDAPI TSELATKSQT IGDQTSIVIE KSTSSDQSTN PITESESKHD SESISLSEHQ TSESTSLSTS TSKSISTSVE ESESTSKDSH TKTQDSQSDS HQSTSQEVNG SSNHEQSTPH TAQSLTSLSI ESQTSTSNTS LKETKEGELS KNLSKLSQNQ NIKLHEEHTM RSADLSSGYT GFRAAYYVPR SRTTPTTKVY TGQGSFRGRG RIKYNIFYKV VVTSNGKEMK IRYTLSQDDP NTSNVEKPRW AGQKRFGIHN TWDEGPGRGQ LKLGSAFGKP TVIQGETRPN YGSWVGTPIT KYVSGDRTNG FYWQAAVLAP RHGEKGEGIT AEITVPIVNP SGRFNWEFHP VGQQDGVGGK TDYFENVWIR DYDPYYKYIQ TKEGRASVSH SISQVKASES RSTSLIQSES IRRSQSISES ESIVAASHSA SVAKSQSISR SQSVAKSQSI SRSQSIAHSR SASVAKSQSI SRSQSIAHSR SASVAKSQSI SRSQSIAHSR SASVAKSQSI SRSQSIAQSQ SASVAKSQSI SRSQSIAQSQ SASVAKSQSI SRSQSIAHSR SASVAESQSI SRSQSIANSQ SVAASESESL SISLSKKQSI SMSNSESAAK SHSLSVKRSN WIKKSKAASV RKSHSLSVRK SNSAKRSHAI SVRKSKSLSV KKSISQSQSA SVAKSQSISR SQSVAASESA SLSKSKSTSL SNSVSAEKST SLSRSASVAK SQSISRSQSV VASESASLSK SKSTSLSNSV SAEKSTSLSR SASVAKSQSI SRSQSVAASE SASLSKSKST SLSNSVSAEK STSLSRSASV AKSQSISRSQ SVAASESASL SKSKSTSLSN SVSAEKSTSL SRSASVAKSQ SISRSQSVVA SESASLSKSK STSLSNSVSA EKSTSLSRSA SVAKSQSISR SQSVAASESA SLSKSKSTSL SNSVSAEKST SLSRSASVAK SQSISRSQSV AASESASLSK SKSTSLSNSV SVEKSTSLSR SASVAKSQSI SRSQSVAASE SASLSKSKST SLSNSVSAEK STSLSRSASV AKSQSISRSQ SVAASESASL SKSTSTSTSD SDSASTSTSV SDSDSASLSK STSTSTSDSD SASASLSKST STSTSDSDSA STSTSVSDSD SASLSKSTST STSDSDSTST SLSKSTSTST SDSDSASKST SVSDSTSASL SKSTSTSTSD SDSASKSTSV SDSTSASLRK SASTSTSDSD STSTSLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSDSDSASK STSVSDSDSA SLSKSTSTST SDSDSASKST SVSDSTSTSL SKSTSTSTSD SDSASTSTSV SDSTSASLSK STSTSTSDSD SASTSVSDSD SASLSKSTST STSDSDSVST STSVSDSDSA SLSKSTSTST SDSDSASKST SVSDSTSTSL SKSTSTSTSD SDSASTSVSD STSASLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSDSDSAST STSVSDSDSA SLSKSTSTST SDSDSASTSL SKSTSTSTSD SDSTSTSLSK STSTSTSDSD SASKSTSVSD SDSASLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSDSDSASK STSVSDSESA SLSKSTSTST SDSDSASTST SVSDSTSVSL SKSTSTSTSD SDSTSTSLSK STSTSTSDSD SDSASLSKST STSTSDSDSV STSTSVSDSD SASLSKSTST STSDSDSAST STSVSDSGSA SLSKSTSTST SDSDSASKST SVSDSDSASL SKSTSTSTSD SDSASTSTSV SDSTSASLSK STSTSTSDSD SASTSTSVSD SDSASLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSESDSASK STSVSDSDSA SLSKSTSTST SDSDSASTST SVSDSDSASL SKSTSTSTSD SDSASKSTSV SDSDSASLSK STSTSTSESD SASTSTLVSD STSVSLSQST SVDKDSTAKG STELVNVASL SISASQSSSL SASTSTSIEK SESTSTSGSN STNASLSSSS SLSTSASTSV SEVTSVTHSE NDLSASNDRD TSGSVSQFAS ENTSLSDSAS ISGEVSSSTS ASTSKSSSLS ASALHDKHVS ESTSASLSSG DSSRASASVS TSLSESDSAL IDSESISVSE HTSTLQSGSH SLSQQQSAEL SQSEQTSQSQ RISTSASVSA MKSESAAKVS ESLSTSQSKV DSQSQSVSES ASNSRVSRDS KSTSASMHRS LSESVSQSMS LIDQSESDST SISISTSISD EDSMLYSMSD SASISTKASS SMSTSTSEEH ANSHSQSEST ASVEVSQEMS ASASTSKSES QSESVSVSNE ESNISSMQES FVESAKASRS ASMSVAKSEA SESQLLSESN ASVSQSASTS SKASASTSES ISTSLSVSEA THGKPRNHSE SASASQLLEE NESLSDSAST SVEDSESASA SLSVYQSQSA SALKSTHASE KASVNTSANA SKRASASTSI SNSKSKVIAS ESKSTSISTY ESLSISTSKE QSTRVSVSES TSTSKVKSES DSASTSTSES ISISANRSGY TSSKRSVQMS EAQSTSDSLS VMQSEGSVSV SQSLSISDKT SQSLSESISH SESDSDSNSV SISQETSEQH SVSDSDSMSI SESESIAYSQ SASESESTSI AKSDSISNSL SVSLSESESE ASTSASVSTS ESTSVKGSLS TSILNSQSAS THQSTEASQS TSTSKVEEAS LSDSASVSDS QSLSMSHEKS QSASTSKSTS LSKTISESES VSASTSTSEA VSTEASEFVS AVDSLSQVTS NGSTTKEDAS TFVSTVDSLK DKASNNGTPS EFASAVKSTH ASVSVSASES TSASTSTSEA VSTEASEFVS AVNSLSEATS NGSTTKEDAS TFVSTVDSLK DKASNNGTPS EFASAVKSTH ASVSVSASES TSASTSTSEA VSTEASEFVS AVDSLSQVTS NGSTTKEDAS TFVSTVDSLK DKASNNGTPS EFESVVKSVH GSMSASASAS TSASTSASTS TSEAASAEAS ELESVRKSLS NGASNGSTAR EGASTFVSTV DSLKDKASNN GTASEFESVV KSVHGSTSAS ASASTSASTS ASESASTEAS EFVSAVASLS SSAWNGSTTG EGASTFVSTV DSSKDSASDK ASPSESESVV KSVHGSTSTS ASVSASASTS ASTSTSEAVS TEASEFVSAV NSLSSEASNG STTREGASTF VSTVDSLKDK ASNNGTASEF ESVVKSVHGS MSTSASVSAS ESTSASTSTS EAVSTEASES ASISVSMSVS ASTSASMSVS VSNSVSVSDS ISVSASTSEP NSVSTSMSSS LSTSASTPSE ITSSSSSSDS ATVQKVVSKD EQHATNKVEK LPDTGQSTTQ TGLLGGVGAL LTGLGLLKKS RKQKDEETSS HE SEQ ID NO: 13 atgaaaaagtctagaaaaaagcgtatcgattttttacctaaccgtcaaaatcgatatgcg atacgtcgtttttcagtaggcactgcgtcaattctcgttggagcaacattaatttttgga attcattcaaatgatgcatcggcagcagtagaagacgcaacatctcaagaagcaggaaca actaacgaaaattcaaatagtacagaagaagcaacaacaaacgaaagtacaactgttgaa gcaccaacaagtgaagaagcaacaacggaagagcaatcagtagaggcgccaacaagtgaa gaagtaacaacggaagagcaatcagtagaggcaccaacaagtgaagaagtaacaacggaa gagcaatcagtagaagcgccaacaagtgaagaagtaacaacggaagagcaatcagtagaa gcgccaacaagtgaagaagtaacaacggaagagcaatcagtagaggcaccaacaagtgaa gaagtaacaacggaagagcaatcagtagaggcaccaactagtgaagaagtaactacggaa gagcaatcagtagaagcaccaacaagtgaagaagcaacaacggaagagcaatcagtagaa gcaccaacaagtgaagaagcaactacaaaaactcctgtaaaagaagaaacatcctcaaca caagaaaattcacccacgactacactagaagaacaattttcaaatgaattcaatcagtta acatctacagaagataaaacaaactacacacgtgaatatttaactcaaaacacaaatctt tcggcagaacaagtggaagcaacagttgaacgcttgaatttaagtcaagaaaatgtaaca gcccaagatatctatttcgcattacttaaagatttagctgatcaacaagatgccttatta ccacgtgtaacacttttggccgctagagattctgagctcacaaacgaagcgtctatcgct ttaactgaaaatagtccaatgttccgcgcagcattagcgaatagtccttctggcaatgat gtggtgtcagaagaagataatattattgtggctgatgcactcgcaaatggatacatcaat tcacaaacagatgcaacaaatgcggcaaatacattgtctggtcgtgcatgggttgtggat acagggacaccagcgacaatgtcaaacggcttaacagctgttccagaaggcacaaaagtc tacatgcaatggattgatacagatggcgcggtttcaccagtgtatcaagcaagcacaaca aataaattgagttcaagtggtggtagccaagtaggtccaggtgcatatgcatttgattta cgtgaagcatggatagactcaaatggcaaagcgcacagatatgaagcgtcaagtggccaa tattatcgtttatggattgatgactacaaaacagtagatgggaatacggcaaccatgtta cgccaagcaggtggtttcttccctggttcatatgttaattcggtgacaggtaacaatatt ggtcaattcccacttatcggaacgaacatgcaacgtacaggtatctttatgggtgtgata ccaacgaacgattacatgactacagatacaagcaattggattcaagataatgaaggacct atttcaaacccagcagtaacgagcacaagtgaatttgtcagtggtaaagtatggtctgag acaggttcaggtgactatgcgaactctgcgacaggtccaaactttaactcaggtgatatt gcacgtgaaggttatcaagttgtcatgtcttcattaacaagtgctggtgcccaagcgtat aaagcacaagtcgaatcgttgccaacagaccaacaagcggcagcagcacaccaattattc aaagaccacccagaatttatttctgcgacagtgacgggtaaaactgatgcaaacggtgcg tatacattacgtttcccttcaggctcattgagtaaagattatctttatggttatgtgatg gataataagggcaacttggttaagggctattcatcattcacgtcacctttattccgttcg cctaacagtaacttatctttcgcgccacaaacagcgccatatcatagaccagccaaaaat gcttgggtgaatgtgaactttgcgcttgtagaaacaattgaaacaagtatagacatcacg aactttgatgtgacagccaacccagcgcaacgtggtgatacggctatcattgatgtgact tctacagcattgtcaccattacctacgcatgttgagtggagagattcaaaagggaatgtc gttcaaaaaagtggagatgtcactacggtagaagaagctgaaacggcaggcacatttact attcctgatgatgcgaaaacaggtgaaatctatacagtttatattgtttcaggaggcaat gaagttgcagcagactcactgattgtccaagtgcaagaaaatgcggcaacctatgaacct gtatatccaacaacaacagttgaacaagaccaaactgtaacaattcctacacctacaaat gaagatggtttagcattaccagacggaacaaagttcgaaggtggcaacaatgtacctgaa tgggcaactgtgaatgaagatggttctatttcaatttcaccaaatcaagatgtggaaaaa ggtaactataatgtgcctgttgtcgtcacatatccagatggttcaaaagaaacagtattt gcaccagttttagttcaagaagctgttccaactgcagaacaatacgatccaacaattgaa acaattaataaggaatatggtactactgcaacagaagatgaaattaaaggcgcaatcaca attccggattacccaacagatggagatcaaccaacaatcacgattgacgacccaactcaa attccaaatggaacagaagaaggcacagtgaatgtaggtgtcactgtcacttatccagat ggttcaacagacaaattaacagtaccagtcgttacaggtaagcaagcggataacgataag tacacaccagaaacaacaccaattacgaaagacttcggtacaggtgtaacagaagacgaa gtgaaaggtgcagtcactgttccggattacccaacagatggagaccaaccaacaattacg attgacgacccaagtcagttgcctgatggttcaaaagaaggaacaacggatgtcgacgta
acagtggaatatccagacggcacaacagatcacatcacagttccagtgactgttggaaag caagcggataatgataagtacacaccagaaacaacaccaattacgaaagacttcggtaca ggtgtaacagaagacgaagtgaaaggtgcagtcactgttccggattacccaacagacggt gaccaaccaacaattacaattgatgatccaaatcaattaccggacggttcacaagaaggt acgactgatgtaaatgtaacagtggaatatccagatggcacaacagatcacatcacagtt ccagtgactgttggaaagcaagcggataatgataagtacacaccagaaacaacaccaatt acgaaagacttcggtacaggtgtaacagaagacgaagtgaaaggtgcagtcactgttccg gattacccaacagatggagatcaaccaacggttacaattgatgatccaaatcaattaccg gacggttcacaagaaggtacgactgatgtaaatgtaacagtggaatatccagacggcaca acagatcacatcacagttccagtgactgttggaaagcaagcggataatgataagtacaca ccagaaacaacaccaattacgaaagacttcggtacaggtgtaacagaagacgaagtgaaa ggtgcagtcactgttccggattacccaacagacggtgaccaaccaacggttacaattgat gatccaaatcaattaccggacggttcacaagaaggtacgactgatgtaaatgtaacagtg gaatatccagatggcacaacagatcacatcacagttccagtgactgttggaaagcaagcg gataacgataagtacacaccagaaacaacaccaattacgaaagacttcggtacaggtgta acagaagacgaagtgaaaggtgcagtcactgttccggattacccaacagatggagatcaa ccaacggttacaattgacgatccgagtcagttaccagatggctcacaagaaggcacaaca gatgtgaatgtaacagtggaatatccagatggcacaacagaccacatcacagttccagtg actgttggtaagcaagcagataacgataagtacacgccagaaacaacaccaattacgaaa gacttcggtacaggtgtaacagaagacgaagtgaaaggtgcagtcactgttccggattac ccaacagatggagaccaaccaacaattacaattgacgatccgagtcagttaccagacggt tcacaagaaggtacgactgatgtaaatgtaacagtggaatatccagatggcacaacagat cacatcacagttccagtgactgttggtaagcaagcagataacgataagtacacaccagaa acaacaccaattacgaaagacttcggtacaggtgtaacagaagacgaagtgaaaggtgca gtcactgttccggattacccaacagatggagaccaaccaacaattacaattgacgatccg agtcagttaccagacggttcacaagaaggtacgactgatgtaaatgtaacagtggaatat ccagatggcacaacagatcacatcacagttccagtgactgttggaaagcaagcagataac gataagtacacaccagaaacaacaccaattacgaaagacttcggtacaggtgtaacagaa ggcgaagtgaaagattcaatcacaattcccggttacccaacagatggagaccaaccaaca attacaattgacgacccaagtcagttaccagatggttcacaagaaggtacgactgatgtc gatgtaacagtggaatatccagacggcacaacagatcacattacagttccagtgactgtt ggaaagcaagcagataacgataagtacacaccagaaacagaaggtgtcaacaaagatcat ggtacgtcagtaacagaagatgaagtgaaaggtgcagtcactgttccgggatacccaaca gatggagatcaaccaacggttacaattgatgatccaagtcaattgccggacggttcacaa gaaggtacgactgatgtaaatgtaacagtggaatatccagacggcacaacagaccacatt acagtcccagtaactgttggtaaacaacctactaaagataacggggctacagataatgat ggcgacatgaatcaaggcacagatgaaggaaatagtgctactgatcatggcgacaatgta aaacaagattcaaacggaaactatacgccggttgaacaacgtgacaatcatgcgacttca cctgcaacagatatggatccaatgccaagcaatagccaaacaacttttgatggcataaat gcaaaaggttcaacttcagagaaagcaaaccataaacaacagtctgagcaattaccagac acaggtgaaagcaatacacaaaatggtgcacttttaggcggattatttgcagcacttgga ggcttattcttaatcggcagacgtcgtaaagaaaaagaaggcaaataa
The protein sequence translated from SEQ ID NO 13 is designated SEQ ID NO: 14 and is shown below:
TABLE-US-00007 SEQ ID NO: 14 MKKSRKKRID FLPNRQNRYA IRRFSVGTAS ILVGATLIFG IHSNDASAAV EDATSQEAGT TNENSNSTEE ATTNESTTVE APTSEEATTE EQSVEAPTSE EVTTEEQSVE APTSEEVTTE EQSVEAPTSE EVTTEEQSVE APTSEEVTTE EQSVEAPTSE EVTTEEQSVE APTSEEVTTE EQSVEAPTSE EATTEEQSVE APTSEEATTK TPVKEETSST QENSPTTTLE EQFSNEFNQL TSTEDKTNYT REYLTQNTNL SAEQVEATVE RLNLSQENVT AQDIYFALLK DLADQQDALL PRVTLLAARD SELTNEASIA LTENSPMFRA ALANSPSGND VVSEEDNIIV ADALANGYIN SQTDATNAAN TLSGRAWVVD TGTPATMSNG LTAVPEGTKV YMQWIDTDGA VSPVYQASTT NKLSSSGGSQ VGPGAYAFDL REAWIDSNGK AHRYEASSGQ YYRLWIDDYK TVDGNTATML RQAGGFFPGS YVNSVTGNNI GQFPLIGTNM QRTGIFMGVI PTNDYMTTDT SNWIQDNEGP ISNPAVTSTS EFVSGKVWSE TGSGDYANSA TGPNFNSGDI AREGYQVVMS SLTSAGAQAY KAQVESLPTD QQAAAAHQLF KDHPEFISAT VTGKTDANGA YTLRFPSGSL SKDYLYGYVM DNKGNLVKGY SSFTSPLFRS PNSNLSFAPQ TAPYHRPAKN AWVNVNFALV ETIETSIDIT NFDVTANPAQ RGDTAIIDVT STALSPLPTH VEWRDSKGNV VQKSGDVTTV EEAETAGTFT IPDDAKTGEI YTVYIVSGGN EVAADSLIVQ VQENAATYEP VYPTTTVEQD QTVTIPTPTN EDGLALPDGT KFEGGNNVPE WATVNEDGSI SISPNQDVEK GNYNVPVVVT YPDGSKETVF APVLVQEAVP TAEQYDPTIE TINKEYGTTA TEDEIKGAIT IPDYPTDGDQ PTITIDDPTQ IPNGTEEGTV NVGVTVTYPD GSTDKLTVPV VTGKQADNDK YTPETTPITK DFGTGVTEDE VKGAVTVPDY PTDGDQPTIT IDDPSQLPDG SKEGTTDVDV TVEYPDGTTD HITVPVTVGK QADNDKYTPE TTPITKDFGT GVTEDEVKGA VTVPDYPTDG DQPTITIDDP NQLPDGSQEG TTDVNVTVEY PDGTTDHITV PVTVGKQADN DKYTPETTPI TKDFGTGVTE DEVKGAVTVP DYPTDGDQPT VTIDDPNQLP DGSQEGTTDV NVTVEYPDGT TDHITVPVTV GKQADNDKYT PETTPITKDF GTGVTEDEVK GAVTVPDYPT DGDQPTVTID DPNQLPDGSQ EGTTDVNVTV EYPDGTTDHI TVPVTVGKQA DNDKYTPETT PITKDFGTGV TEDEVKGAVT VPDYPTDGDQ PTVTIDDPSQ LPDGSQEGTT DVNVTVEYPD GTTDHITVPV TVGKQADNDK YTPETTPITK DFGTGVTEDE VKGAVTVPDY PTDGDQPTIT IDDPSQLPDG SQEGTTDVNV TVEYPDGTTD HITVPVTVGK QADNDKYTPE TTPITKDFGT GVTEDEVKGA VTVPDYPTDG DQPTITIDDP SQLPDGSQEG TTDVNVTVEY PDGTTDHITV PVTVGKQADN DKYTPETTPI TKDFGTGVTE GEVKDSITIP GYPTDGDQPT ITIDDPSQLP DGSQEGTTDV DVTVEYPDGT TDHITVPVTV GKQADNDKYT PETEGVNKDH GTSVTEDEVK GAVTVPGYPT DGDQPTVTID DPSQLPDGSQ EGTTDVNVTV EYPDGTTDHI TVPVTVGKQP TKDNGATDND GDMNQGTDEG NSATDHGDNV KQDSNGNYTP VEQRDNHATS PATDMDPMPS NSQTTFDGIN AKGSTSEKAN HKQQSEQLPD TGESNTQNGA LLGGLFAALG GLFLIGRRRK EKEGK SEQ ID NO: 15 atgacagaacgaaaatccccttcatctcaaaacatgcgtcatcgtttagtcaaagctggt actgtccttttattggttggtagtggactgcaaatgccttcaacattgtcacacgaaatg acagcgatagctcagacagatgcgactgatgatttgaaaacattacgtgaaaatgcagat aaaaaagtgaaagcgttacaatatttaaatacggattataaaaatgaatttcttgcgtta attcgtgaatatgatacgtcgtcaaaaaatattgaagtggttgttgacgaagcagaagca gccaatcgtctagctcatgacgctcaatcggacgatgaaatacaacctgaattagatgcc attgatgaaaaaattagcgcgttaaaggcaaaggttgatgaaggtcaacgagaatcaact gaagcgcgtcaagatgtaacgtcaacagagacaaagagtgctgaatcagaaggaagagag ccatccactgaaggcgagagcaaagtaaaggagtcatcttcagcacaaacgattgtagca cctcatcatggtcaacaagatgtgagcgcactgaaagaccatattaagaacgatgtcgat acacttaaacaagactatgcaacgcaagacaagcaagtgacaccactccagggcattgac agtgcaatcacacgcattgaccatttcgtttcagaaagcgtggatcacaagtctgacaat tattttgaagaaaaacgtcaacatttacaaaactttgaacaagacattaaaaaacgtacg gacatttctgggactgagaaggcgactttgcttgatgatgcgaaaacggtagccaaccaa ctgaacgcgcaaaatgatacgattttaactgaacttcaacagcatgacgataaacgtgca gcagttgaatcgatattaggtgagatttttaatgcacaagaagcggctgaacgtgcgaaa cagatagatgttaaaggtaaaacagatcaacaattggcaaacgaaattcatcaacaagcg gacggacttatcaaaacgtcgagtgatgatttattgttaggaatgttggaaaataattca aatacacaaggtctagtggaaagcattttacgaacacgctttgacaaacaagaagcgcac aaaattgccggcgaaatcatgcaaggcaagccttcaaatacagcgatactcgaccgcttg aaagaccattttaaagcgaatggtaaggcgagtggagatgatattttaaatgcgttaatt aataatacggatgcagatgctgaagtgattgaatcaattctagggggccgtcttaatgca gaaaatgcaaaattgattgccgatcgtgtacagcaagataaaaagaagacacatcaaaac ttaaaggcgattgaagacgaacttagtgcgcaagcgaatcgattgttaacgttacggaag caattgcaacaaatccgtcataatacgcaaacagatatgaatgacttgtttgcaccactg cgtcgtattgcaaatattctcggtggtggtttaaatcgtgacgacattcactcttcaggt cgtacgaatgacaaattgcagcaactgttaaatcgtgatcattcgttgttaggtcgtggt ggtgatttattcaaacatgattttgcgccaaagccgaatatcgatccatatcaagcgatt aatagtcaaacggcatcagaaggttttttagatggtttatttgatcaaaatggcgatttc aatttaccgaatacaggtgaaatagtgaagcggacttggctaccgttgggtattttagtc gttgcaatcggtgtactgatcttaacggtgagatttcataaaaaaacacgcaaacaataa
The protein sequence translated from SEQ ID NO 15 is designated SEQ ID NO: 16 and is shown below:
TABLE-US-00008 SEQ ID NO: 16 MTERKSPSSQ NMRHRLVKAG TVLLLVGSGL QMPSTLSHEM TAIAQTDATD DLKTLRENAD KKVKALQYLN TDYKNEFLAL IREYDTSSKN IEVVVDEAEA ANRLAHDAQS DDEIQPELDA IDEKISALKA KVDEGQREST EARQDVTSTE TKSAESEGRE PSTEGESKVK ESSSAQTIVA PHHGQQDVSA LKDHIKNDVD TLKQDYATQD KQVTPLQGID SAITRIDHFV SESVDHKSDN YFEEKRQHLQ NFEQDIKKRT DISGTEKATL LDDAKTVANQ LNAQNDTILT ELQQHDDKRA AVESILGEIF NAQEAAERAK QIDVKGKTDQ QLANEIHQQA DGLIKTSSDD LLLGMLENNS NTQGLVESIL RTRFDKQEAH KIAGEIMQGK PSNTAILDRL KDHFKANGKA SGDDILNALI NNTDADAEVI ESILGGRLNA ENAKLIADRV QQDKKKTHQN LKAIEDELSA QANRLLTLRK QLQQIRHNTQ TDMNDLFAPL RRIANILGGG LNRDDIHSSG RTNDKLQQLL NRDHSLLGRG GDLFKHDFAP KPNIDPYQAI NSQTASEGFL DGLFDQNGDF NLPNTGEIVK RTWLPLGILV VAIGVLILTV RFHKKTRKQ SEQ ID NO: 17 atgttaaaaaaattaattgttacaggtttgattgctacagcggcgacacaagtttatgcg catgacacgcaagcggcggaaaagggtgctacagatgctccgaatgtgatggttaaggat gaggcgaaaaaagaagtgacaccgataatccataaaccgacttgcatttacccgcatcta gaaggcgaagatgatgctgcgtatttaaaacgtatggcaacgaatccaccagaaggcgca gtgccgtacggtgtattgaataaagatggatcgattacagaaccgaatacaaatccacat tttgatgttttaaaaattgaagatccaaatgcgatgaaagatttggttgatacaccggca gatgatcaagatacggtaccgagtgatttacaaattgaaccaccagcattaataggacca gctactaaacatacggatggtacgggagacgcaaaatctaatgatgaccacaaagtaaca aaatcttcgggagcgtcagcccaagatatgaagaaaaaagacgtgacaacacaaactgca caaccaaaagcagataaaaagatggcgactgcaaaagtagcaccagcgaaacaacaagat aaagcagccaaaatgttaccagcagcaggggaaccacaagtgaatgcaatcagtcaaaca gcacttgcactttcaatgatcgcattaggtgtcatcgcgttctttacacgacgacgcaaa acaaattaa
The protein sequence translated from SEQ ID NO 17 is designated SEQ ID NO: 18 and is shown below:
TABLE-US-00009 SEQ ID NO: 18 MLKKLIVTGL IATAATQVYA HDTQAAEKGA TDAPNVMVKD EAKKEVTPII HKPTCIYPHL EGEDDAAYLK RMATNPPEGA VPYGVLNKDG SITEPNTNPH FDVLKIEDPN AMKDLVDTPA DDQDTVPSDL QIEPPALIGP ATKHTDGTGD AKSNDDHKVT KSSGASAQDM KKKDVTTQTA QPKADKKMAT AKVAPAKQQD KAAKMLPAAG EPQVNAISQT ALALSMIALG VIAFFTRRRK TN SEQ ID NO: 19 atggtagaatataaaaaagaacatagcgtaaagcgactattaaaattaggaatcggttca acgagtattttatgtgttgtatcacctcttttattaacacatgacgttgttcaagcagca gatatcaataacaggatgccagctttgaatacattgaagaccacttcttcatatgatcaa agggcacacatggatgaattacgaaacgccattacttcagatagtgacactactcaaaca ccatcattcaatgagataactgtgtcttcaactaatgaaacggatgcagcgtcaacggaa aatgtgaacccgagtgatgaggtcccggcaaaggatgaaagtgaatcaacgacaccgagt acagaacaagacacatctatagaagaaacgggtactgaagaagtgccatctcatgaagac aatcatcacaacaccccaagtcaagaagagcaaccgtctccgcctgatcaaccaggaaca aacaaagatgaagagagtggagaaaaaccgaataaagaaaatcatcggaagccgaatcaa ccgaacaaagaccaaccttcaaaagatgagaataaaaaacctgacaaaggaaacaaacca gcaccaccgtctaaaatgccaaatcgcccggatcaaaaggaagatggttcaaacaacacc ccaccacctgccactgataacggtggaaacagtaatgacggtacaacaacgggtcccaat ggtggaggtggcagtgaagcaagtccaccaccgaatgagcaaccgtcaaatggcaatgca agcgatacccatcaaaacggttcagtttcaagcaccaatcattcgaatcagtatggtaca tcggcttatgatgaatacgcaggtttattgaataataattataaatataatccattgttt aaagaagaggttgcgcgtttaagtcaatttggaagtcaagatcaacatgatattgcaagt ttgagtcgtaaagaacaattttctcaaaatgcatttttagatgacttgcaacaaagtaca gattattttagatatcaatattttaacccgctttccacagagcaatactatcatcgttta gataaacaagtattagcactcgttacgggggaatttggttcgatgccagatttcaagaaa agtggtgataagtcattggttaataagcatcagcaagataaagtgaagaaaattgaacag caaggagaaaatattaatacgcatcatatgaaaaatacgaaagaagatacaggaaaatca ttaagttacaagccgatgatatatattggcattgtcatggtcggttttgtcggcctgatc agtatgattttatggaaacgactgcatcatttttggaaataa
The protein sequence translated from SEQ ID NO 19 is designated SEQ ID NO: 20 and is shown below:
TABLE-US-00010 SEQ ID NO: 20 MVEYKKEHSV KRLLKLGIGS TSILCVVSPL LLTHDVVQAA DINNRMPALN TLKTTSSYDQ RAHMDELRNA ITSDSDTTQT PSFNEITVSS TNETDAASTE NVNPSDEVPA KDESESTTPS TEQDTSIEET GTEEVPSHED NHHNTPSQEE QPSPPDQPGT NKDEESGEKP NKENHRKPNQ PNKDQPSKDE NKKPDKGNKP APPSKMPNRP DQKEDGSNNT PPPATDNGGN SNDGTTTGPN GGGGSEASPP PNEQPSNGNA SDTHQNGSVS STNHSNQYGT SAYDEYAGLL NNNYKYNPLF KEEVARLSQF GSQDQHDIAS LSRKEQFSQN AFLDDLQQST DYFRYQYFNP LSTEQYYHRL DKQVLALVTG EFGSMPDFKK SGDKSLVNKH QQDKVKKIEQ QGENINTHHM KNTKEDTGKS LSYKPMIYIG IVMVGFVGLI SMILWKRLHH FWK SEQ ID NO: 21 gtgattacaaataaaaatatatatagtattcgaaagcataaacttggcgtggcatcattc ttattggggacattatttgttgtagggcatgcaaataatgctgaagcttcagaagtgagc gcaacaacacaagaacataatgtcgagactgagcaaacaaaaactgagggcgaactaaca actgaggtagcacaacaagcagtcagcgaatcagcacctatagctgaaaacatgcagaaa acaacatcagtggcaagtgaaaatgcgaaagaggttacagcttctgatagcacacaagaa gtcacaaaaactgaagcaaaagatacagcaacaatgaaagattcagaaattgcacaacct gtatcagaagtgaataaacctgttactcaaacagctgcacccgtagcagaaccatcaaca gcaaacaaacaaacttcaccacgacaagtacaagaacttactgcaccaatggacacaaaa gtaattaatgtagaaaacggaacagatgtgacaagtaaagtgaaagttgaaaaatcgtca attacagggcatcagaataaagataaaacatatcatcaatcgaacactgtaaatccacat aaagctgaacgtgtgacattaaattatgattggtcatttgaaaatggaattaaagctggt gattattttgacttccaattaagcgataatgtcgatacaaatggaatatcaacaataaaa aaagtcccacacattatggatagtcaaaatagcgaacaaattattgcttacggggaaatt aatgaaaacaaccgtgtccgttaccgatttatggactatgtaaatcaaaaagaaaattta aaaggtaaattgtcattaaacttatttattaaaccagataaagttcaagatgaaggaaaa atcactgtcacttcacaattgggcaaggaaatgacaagtcaggaatttgacattaaatat attgatggtgtaaaaagcccttcaggtatcacattaaacggtcgtcttgatgaattatca aaagcagatcaatcatttacgcattattctatatttaaacctaagcataataacttaact aatgtaactttaagaggcacagtttcaaataacgcacagcaaaatgaaaaaaatggtcaa gttaatgtttacgaatatattggtcaaggagaattgccacaaagtgcttatgccaatgta aatgatacgaagcagttcaatgacattactaagagtatgaaatcaatcaaaaataacagt aatggctatgaaattacttttgacatgaacaaagacaatcatccttatatcatagtatat caaggtcactttaacaataatgcaaaagactttgatttctcaacaaatgcgacaggttat caaaatttaaatcaatcggaatatagttattattggccttacaattattcattcaattta acatgggataatggtgttgctttctactctaataatgcaagtggggaagggaacgacaaa cctgtaccgccgacttatggatatagtccgacagtaaatacaattcaagatactcatgcg gattatcctgtaatgactttccaacaacctggaactctagaggagacagaagacagtatg ccaatcactacacttaccgaatctggtgaggatcgtggtgaaaatacttctccaattatc gagacaacagaagattcacagcctgttgagtttgaagaagagacaaatcatggcattcaa gacgtgacacttcatgcagatgctgttgattttgaggaagaaacaaaccatggtgaacaa gacacggtacaccactctgatgtcgttgaatacgacgaagatacgacaactggcatgtta acaggtgccatttctgaccatacaacagaagaaggcacgatggagtacacaactgatggc ttattgattgagtttgatgatgaaatgaatcctaatgtgagcggtcagtacgatgacatc acaacggatacgatagaggaatcatctcatattgacacattcactgaacttgaatctgaa tttggtcaacatgacggtatagtgacatttgaagaagatactatcgttgagaagccgaaa acagaaaagggtaaccgagtaccacttgtaattgatttatcaacaccaaaacataaccat cagttcaatattcaacctaccgatccaaatattgatacctctgctacgtatcgaattggc aattttgtatggcgcgatgaagatcacaatggcgtacaaaatgatggtgaacatggtctt gaaggtgttcttgtcacacttaaaacagctgatggtgtcgttttaaatacaacgacaagt gatgccaatggacactaccagttcactaatgttcaaaaaggaaaatatattgttgaattc actacacctgaaggttatgaagcaacaagcaaacatactacagcgaatactgaaaaagac tctgatgggttaatcgcaaatatcgatgttactcaagatgatatgtcaatcgatgctggt ttcttcccgttagaaaactggaatcctcagccagagccgaaaaaccctgatgatagagag aaaccggcacctgagcaacctgatgtacctcagccagaaccgaaaaaccctgatgataga gagaaaccggcacctgagcaacctgatgtacctcagccagaaccgaaaaatcctgatgat agagagaaaccggcacctgagcaacctgatgtacctcaaccagagccgaaaaatcctgat gataaagagaaaccggcacctgagcaacctgatgtacctcaaccagagccgaaaaatcct gatgataaagagaaaccggcacctgagcaacctgatgcacctcaaccaaagccgatgctc ccaggtgaaaaggtgaaacccaaaccaactcatcccggtgaagctatgcaaacaacacct caggacaaatcaacatctcaaacagatgaagcacttcctaaaacaggtgaatcatcatca caatcatctgctttaatcttcggtggtttactcagtctattaggacttggtttattacgt cgatcatctaaacaaaaccgttcttcaatgaaataa
The protein sequence translated from SEQ ID NO 21 is designated SEQ ID NO: 22 and is shown below:
TABLE-US-00011 SEQ ID NO: 22 VITNKNIYSI RKHKLGVASF LLGTLFVVGH ANNAEASEVS ATTQEHNVET EQTKTEGELT TEVAQQAVSE SAPIAENMQK TTSVASENAK EVTASDSTQE VTKTEAKDTA TMKDSEIAQP VSEVNKPVTQ TAAPVAEPST ANKQTSPRQV QELTAPMDTK VINVENGTDV TSKVKVEKSS ITGHQNKDKT YHQSNTVNPH KAERVTLNYD WSFENGIKAG DYFDFQLSDN VDTNGISTIK KVPHIMDSQN SEQIIAYGEI NENNRVRYRF MDYVNQKENL KGKLSLNLFI KPDKVQDEGK ITVTSQLGKE MTSQEFDIKY IDGVKSPSGI TLNGRLDELS KADQSFTHYS IFKPKHNNLT NVTLRGTVSN NAQQNEKNGQ VNVYEYIGQG ELPQSAYANV NDTKQFNDIT KSMKSIKNNS NGYEITFDMN KDNHPYIIVY QGHFNNNAKD FDFSTNATGY QNLNQSEYSY YWPYNYSFNL TWDNGVAFYS NNASGEGNDK PVPPTYGYSP TVNTIQDTHA DYPVMTFQQP GTLEETEDSM PITTLTESGE DRGENTSPII ETTEDSQPVE FEEETNHGIQ DVTLHADAVD FEEETNHGEQ DTVHHSDVVE YDEDTTTGML TGAISDHTTE EGTMEYTTDG LLIEFDDEMN PNVSGQYDDI TTDTIEESSH IDTFTELESE FGQHDGIVTF EEDTIVEKPK TEKGNRVPLV IDLSTPKHNH QFNIQPTDPN IDTSATYRIG NFVWRDEDHN GVQNDGEHGL EGVLVTLKTA DGVVLNTTTS DANGHYQFTN VQKGKYIVEF TTPEGYEATS KHTTANTEKD SDGLIANIDV TQDDMSIDAG FFPLENWNPQ PEPKNPDDRE KPAPEQPDVP QPEPKNPDDR EKPAPEQPDV PQPEPKNPDD REKPAPEQPD VPQPEPKNPD DKEKPAPEQP DVPQPEPKNP DDKEKPAPEQ PDAPQPKPML PGEKVKPKPT HPGEAMQTTP QDKSTSQTDE ALPKTGESSS QSSALIFGGL LSLLGLGLLR RSSKQNRSSM K SEQ ID NO: 23 atggcatttgatggtatgtttacaagaaaaatggtagaagatttacaatttctcgtttct gggcgtattcataaaatcaatcaaccggaaaacgatacaatcatcatggttataagacag caacgccaaaatcatcaattgttgttgtcgattcacccgaattttgcacggattcacctc actacaaaaaaatatgataatccatttgaaccgccgatgtttgcgcgcgtctttcgtaaa catttagaaggtggacgtatccttgccattcgccaaatcggaaatgaccgtcgcatcgaa atggacgtggaaagtaaagatgaaattggtgacacgattcatcgtacagtgattttagaa attatgggcaaacatagtaatctcattctcgttaatgaagaacgtaaaattttagaaggt tttaaacaccttacaccaaatacgaatcaatttagaaccgtgatgccaggttttcaatat gaagtgccgccaacacaacataaacagaacccttatgcatatactggtgcgcaagtgctc caacatattgatttcaatgcgggcaaaattgatcgccaactgcttcaaacgtttgaaggt ttttcaccgttaatcacaaaagaaatcacatcaagacgccattttatgaccacacaaact ttacctgaagcttttgacgaagtgatggccgaaacgaaagcgacaccccaaccggtattt cataaaaataacgaaacaggtaaagaagacttttattttatgaagttacatcagttttac gatgattgcgtcacatatgattcactccatgaactgctcgaccgtttttatgatgcacgc ggtgaacgtgaacgcgtcaaacaacgtgcaaacgatttagtcaaactcgtccaacaatta cttcaaaaatatcaaaataaattaagtaagctcgtcgatgaacaagcggggactgaagaa aaagaaaatcaacaattgtacggcgagttaatcacagcgaatatttatcaactcaaacct ggagatcgccagttagaaacagtaaattattatacaggagaaaacgtgactattccgtta aatccacaaaagtcacctgctgaaaatgcgcaatactattacaagcaatacaaccgaatg aaaacacgtgagcgcgaattgacccatcaaattactttaacggaagaaaatatcgcttat tttgaaaatatcgagcaacagttgtcacacattcaagttcatgaaattgacgatattcgt gaagaactagcagaacaaggctttatcaaacaaaagaaacagcagaaaaagaaaaagcaa caaaaaatccagttacaatcctacgtttcgactgatggcgatacgattttagtcggtaaa aataataagcaaaatgattatttaacgaataaacgtgcgcaaaaatcgcatttatggttc catacaaaagatatcccaggaagccatgtcgtgattttaaatgatgcgccaagtgacaaa acgattgaagaagcggcgatgattgcagcgtacttttcaaaggcggggcaatcgggacaa attccagtggattatacaacaattcgcaatgtgcataagccgagtggcagtaaacctgga tttgtaacgtacgataaccagaagacgctttacgcaacgccggattatgacatgattcgt cgattgaaagctgaagaagcgtaa
The protein sequence translated from SEQ ID NO 23 is designated SEQ ID NO: 24 and is shown below:
TABLE-US-00012 SEQ ID NO: 24 MAFDGMFTRK MVEDLQFLVS GRIHKINQPE NDTIIMVIRQ QRQNHQLLLS IHPNFARIHL TTKKYDNPFE PPMFARVFRK HLEGGRILAI RQIGNDRRIE MDVESKDEIG DTIHRTVILE IMGKHSNLIL VNEERKILEG FKHLTPNTNQ FRTVMPGFQY EVPPTQHKQN PYAYTGAQVL QHIDFNAGKI DRQLLQTFEG FSPLITKEIT SRRHFMTTQT LPEAFDEVMA ETKATPQPVF HKNNETGKED FYFMKLHQFY DDCVTYDSLH ELLDRFYDAR GERERVKQRA NDLVKLVQQL LQKYQNKLSK LVDEQAGTEE KENQQLYGEL ITANIYQLKP GDRQLETVNY YTGENVTIPL NPQKSPAENA QYYYKQYNRM KTRERELTHQ ITLTEENIAY FENIEQQLSH IQVHEIDDIR EELAEQGFIK QKKQQKKKKQ QKIQLQSYVS TDGDTILVGK NNKQNDYLTN KRAQKSHLWF HTKDIPGSHV VILNDAPSDK TIEEAAMIAA YFSKAGQSGQ IPVDYTTIRN VHKPSGSKPG FVTYDNQKTL YATPDYDMIR RLKAEEA SEQ ID NO: 25 atggtcaaaaaatttggttataaaacacctacaatcgttgcacttactttggctggaact gcattttctgcacaccaagccaatgccgctgaacaagttgcacctgaaaaaacacctacg aatgtacttgatgatcaatacgcattaaaacaagctgatgatgcgaaacaaacgacacaa ggaacaacacttgcaggttcaaaagaatacaaggatccttcacaaattgatacgactcaa gtcgatacagcagcacaaactgaaacgcccgtagaaggagggcaacaagacgcacaacaa cctactacaactgatgaagcgacatcaacagatcatactgtatcaaaaggtacaaacgaa agtgcatcacctgcaacagcttctatagatgaaggaacattaaacgcacaagtcaattca gatgaaacggctactaaccgtacacaagacgtcactgaaaatgtgacaaaatatccttat cattcaagtgaaatcgatacacatgaagacgcaactgtgtcaccagatacatatcatgca ctggacacgcatgcgcaacaaccttcagcaatggatgtaagcgattcaacatcagcacaa actgaagcgacgcaagtaaatacgtcaacaaatgtaaatgacaaagaggccgtttcgaca acagaagatgcacctactacacaacttcaagcagctgtacaatctgaagccaacaaagaa gcgaaggcaactactgaaacagctcaaaataaaacacctcaagttgaaaagaaagcaaca gcaactcaaaatacagcacagttagcaacggggcatcaggatattactgacaaagtctca aaacgcgtagcagtgacaaatgaaacgaaagcggatgccacaacagcgaaaacacaagca cctacttcagtgacacatcaagctgatacacaagcaaaaacgataacagacaagaaggca acaacttacagtgcacaaaccgcaactgaccaagacataaatgcgaatccggacggtcca acacctccacgcgttggcggtaaagggggtccccctgcttcactttcactccaatcgact ggtcaaacagcattccgttcagctgtcgctagtaaaccgagtgcatatcaacctaaagtg aaatcgtctattaatgactatattcgtaagcaaaactacaaagtgcctgtatatgaagaa gattattcaagttacttccctaaatacggttatcgtaatggtgtcggtaaacctgagggc atcatcgtgcatgatacagcaaatgacaactctacaattgatggcgaaatcagttacatg aaaagaaattatcaaaatgctttcgtacatggctttattaatggtcaacgtattgttgaa acgcaacctacagattatttagcatggggtgcaggtgcgattgcgaatgaacgctttatt catatcgaactcgttcatgttcacagtaaagaagatttcgcacgtcaaatgaacaatatg gcagattatgcggcgacgaacttacaatattatggcctttctccagatagtgcggaatat gatggtcgtgggacagtttggacacatgatgctgtttctagatttttaggtggtacagac cataccgatccgcacggctatttaaaacaacatggttattcctttgatgcgttgtatgat ttaatcaatgaaaaatatcaagtgaaaatgggttatgcctcacctgctaactcgtcttca aaaccatcaacaaatactggcttaacagttaaaaacacaacaggtttcggccgtattaac acaacaaatagcggtttatatacgaccgtttatgatcaaaaaggtaaagcgacgaatcaa acgaatcaaacgttaaaagttacaaaagaagcgacgttaaatggcaacaaattctattta atgagtgatgcaaaatctaatcaaacactcggttgggtcaaatcaaacgacgcaacatat caagctgcccaagctgagaaaaaagtaacgaaaacgtatactgtcaaaccaggaacaaca gtatatcaagtgccttggggtgcctcatctcaaacagtaggcaaagctccaggtacgtca aaccaatcattcaaatcaacgaaagaacaaactgttgcgaaaacgaaatggctttatggg acagttggcaaagtgacaggctggattaatgcaagtagtgttgtagcaaatgatcaaaaa ccatcgacgaataccgcactaaaagtaacaactgacactggtctcggtcgcattaaagac aaaaatagtggtttatacgcaacggtatatgataaaactggtaaaagcacttcagccact aaccaaacattaaaagtaacgaaaaaagcaagtgtcaatggccaatcattctatttagta tcagattatgctaaaggtacaaatgttggttgggtgaaacagtcagatgtcgaatatcaa acaagtaaagccccttctaaagtgaatcaaaattatacgattaaatcgggtgcgaaattg tatcaagtgccttggggtacaagtaaacaagttgccggtacagtgacaggtgctgcgaca caaacatttaaggcaacacaatctcaaactgtaggtaaagcaacatacttgtatgggaca gttggcaaattatctggttggattaattcaacagcattagcagctcaaaaaacaacaacg aatgttactaaaacaatttctcaaatcggtcaactgaacacgaaaaatagcggtgtcaaa gcttctatttatgacaaaacagcaaaagatgcatccaaatgggcaggtcaaacttataaa attactaaaacagcttctgccaataacgaagactatgtattactgcaaaatagtacagga ggcacgccactcggttggttcaatgttaaagacgtcacaacacgcaacttaggtgctgaa acagctgttaaagggcggtacactgttaatagtaaaacatctggactctacgctatgcct tggggtacaacgaagcaacgtgtcgatacattaaaaaatgccacaagtcgtttatttaca gcttcaaaatcagttaaagtcggtaatgatacattcttattcggtacagtgaatcaaaaa ttgggctggattaatcaaaaagacttaacagctgtagcagcaaaagttgcaaacatgaaa actgcatcgaatagcgcagtcaaaggtgccgcaatcacaactttgaaaaaagtagaagat tatgtgattacgaataaaaatggttattattacactaaagttggagattcaaaaacagct ggtgctttaaaaggtttttatcaacaaatttttaaagtcgaaaaaacatctttactgaac ggcattacttggtactatggcgcattccaaaacgggacgaaaggatggattaaagcagct gacatacgttcatcattcattcaacatactgcggtcagtagcacattgaaagcagcactc gataaacaaatggcgctgacttacccgcctcaagttcaacgtgtagccggtaaatgggtc aatgcgaatcgtgcagaaactgaaaaagcaatgaataccgcagcaattgaaaaagatccg actctcatttaccaatttttaaaacttgataaataccaaggtcttggcgtagaagaactt aataaattgttaagaggcaaaggcattttagaaggtcaaggtgccgcatttaaagaagcc gcacaaaaacacaatattaatgaggtttacttaatgtctcacgcatttttagaaacaggt aacgggacttctcaattagccaatggcggtcacgtagataaaaataataaagtcgtaaca aacggtaaaccgaagtattacaacatgttcggtatcggggcaattgatacagacgcttta cgcaatggctttaaaactgctgaaaaatatggttggaatacggtcagcaaagcgattatc ggtggcgcaaaattcatccgtgatcagtacatcggttcaggacaaaacacattgtatcgt atgcgttggaatccagaacaccctgccacacatcagtatgcgactgatattaattgggca aatgtaaacgcacaacgcatgaaatatttctatgatcaaattggtgaaacaggtaaatat ttcgacgtcgatgtatataagaagtag
The protein sequence translated from SEQ ID NO 25 is designated SEQ ID NO: 26 and is shown below:
TABLE-US-00013 SEQ ID NO: 26 MVKKFGYKTP TIVALTLAGT AFSAHQANAA EQVAPEKTPT NVLDDQYALK QADDAKQTTQ GTTLAGSKEY KDPSQIDTTQ VDTAAQTETP VEGGQQDAQQ PTTTDEATST DHTVSKGTNE SASPATASID EGTLNAQVNS DETATNRTQD VTENVTKYPY HSSEIDTHED ATVSPDTYHA LDTHAQQPSA MDVSDSTSAQ TEATQVNTST NVNDKEAVST TEDAPTTQLQ AAVQSEANKE AKATTETAQN KTPQVEKKAT ATQNTAQLAT GHQDITDKVS KRVAVTNETK ADATTAKTQA PTSVTHQADT QAKTITDKKA TTYSAQTATD QDINANPDGP TPPRVGGKGG PPASLSLQST GQTAFRSAVA SKPSAYQPKV KSSINDYIRK QNYKVPVYEE DYSSYFPKYG YRNGVGKPEG IIVHDTANDN STIDGEISYM KRNYQNAFVH GFINGQRIVE TQPTDYLAWG AGAIANERFI HIELVHVHSK EDFARQMNNM ADYAATNLQY YGLSPDSAEY DGRGTVWTHD AVSRFLGGTD HTDPHGYLKQ HGYSFDALYD LINEKYQVKM GYASPANSSS KPSTNTGLTV KNTTGFGRIN TTNSGLYTTV YDQKGKATNQ TNQTLKVTKE ATLNGNKFYL MSDAKSNQTL GWVKSNDATY QAAQAEKKVT KTYTVKPGTT VYQVPWGASS QTVGKAPGTS NQSFKSTKEQ TVAKTKWLYG TVGKVTGWIN ASSVVANDQK PSTNTALKVT TDTGLGRIKD KNSGLYATVY DKTGKSTSAT NQTLKVTKKA SVNGQSFYLV SDYAKGTNVG WVKQSDVEYQ TSKAPSKVNQ NYTIKSGAKL YQVPWGTSKQ VAGTVTGAAT QTFKATQSQT VGKATYLYGT VGKLSGWINS TALAAQKTTT NVTKTISQIG QLNTKNSGVK ASIYDKTAKD ASKWAGQTYK ITKTASANNE DYVLLQNSTG GTPLGWFNVK DVTTRNLGAE TAVKGRYTVN SKTSGLYAMP WGTTKQRVDT LKNATSRLFT ASKSVKVGND TFLFGTVNQK LGWINQKDLT AVAAKVANMK TASNSAVKGA AITTLKKVED YVITNKNGYY YTKVGDSKTA GALKGFYQQI FKVEKTSLLN GITWYYGAFQ NGTKGWIKAA DIRSSFIQHT AVSSTLKAAL DKQMALTYPP QVQRVAGKWV NANRAETEKA MNTAAIEKDP TLIYQFLKLD KYQGLGVEEL NKLLRGKGIL EGQGAAFKEA AQKHNINEVY LMSHAFLETG NGTSQLANGG HVDKNNKVVT NGKPKYYNMF GIGAIDTDAL RNGFKTAEKY GWNTVSKAII GGAKFIRDQY IGSGQNTLYR MRWNPEHPAT HQYATDINWA NVNAQRMKYF YDQIGETGKY FDVDVYKK SEQ ID NO: 27 gtgtcgacagaaaaacaagatgatacacaagcaaaagcgaatgcactttctacagatgat tcaacacctacaacagaacaatcaaaaagtgataccgaaccaacgcaaaatcaagaagtg aatgaaaaagaagcaacacaagttgagcaaactccagataatgcatcatcagaatttaaa gacagtgcagcacaagatgaaacaacatcgaaagacgctgacattgctcaaacaaaagaa gcaaaaaatgaagcattgcaaagtgactcatcagcaaacctatcaaatcaagaagcagaa aaagaaaacacaactaacagtgaatctcaagtaaatgaacaacctaaagcagatacaact tctgattcacaagtttcaaatacacctcaacaagatcctacatcgacagtaccttcacca gaaacatcagaagacaatcgaccttcaacagaattaaaaaatagtgaaacaactgcttct caaacaactttaaacgaacaacctactgaatcaacatccaatcaaactgaaacgacaaaa gcaccaacaaatacaacagtcgcaaacaaaaaagcacctgcacaattaaaagacattaaa ggtacaactcaacttcgcgcagtcagtgcaagtcaacctactgctgttgcagctggtggg acaaacgtaaatgacaaagtaacagcatcaaatatgaaaataactgaatcttatatcgag ccaaacaactcaggaaacttttatttaaaaagtaactttaacgtaaacgggactgttaaa gaaggtgactactttactgtaaaaatgcctgacactgtcaatacttttggtgacacgcgc cattcacctgactttagagaaaaaattacaaatcaaaaaggtgaagttgtggctttaggt gaatatgatgttgccaaccatactatgacatacacgttcactaatgtcgttaataattta gaaaatgtgtccggttcgtttaacttgactcaatttatggatcgtaaagtggcaacagat tctcaaacatatccattaaaatacgacattgcaggcgaatctttagatacacaaattaaa gtgaattacggtcaatattacagtgaaggtgattctaacttaaaatcaatgatcacttca gaagatcctaaaactggggaatatgatcaatacatttatgtcaacccattacaaaaaacg gcaaacggtacagttgtaagagttcaagggttccaagttgatccaactaagagtaatggg caagtgaaaccagatacaacgcagatcaagattttaaaagttgctgatggtcaaccactt aatagtagtttcggtgtgaatgacagtgaatatgaagatgtcacaaaacaatttaatatt gtttatcgtgataataatttggcagatatttactttggaaacttaaatgggcaacgctat atcgttaaagtgacgagcaaagaaaatttggattctaaagaggatttaaacttgcgtgct attatggccactcaaaaccgatatggtcaatataactatattacttgggataacgatatt gtgaaaagctcttctggtggtacagccgacggaaatgaagcatcatatcaattaggcgac aaagtttggaatgatgtgaataaaaatggtatccaagatcaaggtgaaactggtattgct gatgtaaaggttactttaaaagatcttgatggcaacattttggatacaacttatacaaac acgaatggtaaatatatctttgataatttaaaaaatggtaattatcaagtgggttttgaa acaccggaaggctatgctgcaagtccatccaaccaaggtaatgacgcccttgactctgat ggtcctacaaatgtacaagctgtcattagtgatgggaacaacttaactatcgaccaaggt ttttaccaaactgaaacaccaacacacaacgtcggcgacaaagtttgggaagacttaaat aaagatggcatccaagaccaaaatgaaccaggtatcgctaacgttaaggtcactttaaaa gacgcggatggtaacgttgtggatacacgtacgactgatgataaagggaattacttattc gaaaaagttaaagaaggcgaatatacaattgaatttgaaacgcctgaaggttatacaccg acacaaacaggccaaggcagagtcagcactgactctaatgggacatcttcccttatttta gtcgaaggtaacgatgacttaacaatcgatagcggtttctacaaagaacctgttacacac aaagttggcgacaaagtttgggatgacttaaataaagacggtatccaagatgacaatgaa ccaggcatctctgacgttaaagtcactttaaaagatgcggatggtaacgtcgtagataca cgtacaactgatgctaacggtaactatttatttgaaaacgtgaaagaaggcgactatacg attgaatttgaaacgcctgaaggttacacaccgactgttacaggtcaaggtacagctgat aatgactctaacggtacatctacaaaagttacagttaaagatggcgatgacttaacaatt gacagtggtttcactcaagttacacctgagccaccgacacataatgttggcgacaaagtt tgggatgacttaaataaagacggtatccaagatgacaatgaaccaggcatctctgacgtt aaagtcactttaaaagatgcggatggtaacgtcgtagatacacgtacaactgatgctaac ggtaactatttatttgaaaacgtgaaagaaggcgactatacgattgaatttgaaacgcct gaaggttacacaccgactgttacaggtcaaggtacagctgataatgactctaacggtaca tctacaaaagttacagttaaagatggcgatgacttaacaattgacagtggtttcactcaa gttacacctgagccaccgactgaacctgaaaaccctagtccagagcaaccttctgaaccg ggtcaacctgaaaatcctagtccagagcaaccttctgaaccaggtcaacctgaaaatcct agtccagagcaaccttctgaaccaggtcaacctgaaaatcctagtccagaacaaccttct gaaccgggtcaacctgaaaatcctagtccagaacagccttctgagccaggacaacctaaa aatcctagtccagaacagccaaataatccaagtgtgccaggtgttcaaaatcctgaaaaa ccaagcttaactccagtcacacaaccggttcattcaaacggcaataaagcaaaaccatct caacaacaaaaagctttacctgaaacaggtgaaactgaatcacatcaaggtacattattc ggtggtattttagctgctttaggcgcattactctttgcacgtaaaaaacgccacgataaa aaacaatcacactaa
The protein sequence translated from SEQ ID NO 27 is designated SEQ ID NO: 28 and is shown below:
TABLE-US-00014 SEQ ID NO: 28 VSTEKQDDTQ AKANALSTDD STPTTEQSKS DTEPTQNQEV NEKEATQVEQ TPDNASSEFK DSAAQDETTS KDADIAQTKE AKNEALQSDS SANLSNQEAE KENTTNSESQ VNEQPKADTT SDSQVSNTPQ QDPTSTVPSP ETSEDNRPST ELKNSETTAS QTTLNEQPTE STSNQTETTK APTNTTVANK KAPAQLKDIK GTTQLRAVSA SQPTAVAAGG TNVNDKVTAS NMKITESYIE PNNSGNFYLK SNFNVNGTVK EGDYFTVKMP DTVNTFGDTR HSPDFREKIT NQKGEVVALG EYDVANHTMT YTFTNVVNNL ENVSGSFNLT QFMDRKVATD SQTYPLKYDI AGESLDTQIK VNYGQYYSEG DSNLKSMITS EDPKTGEYDQ YIYVNPLQKT ANGTVVRVQG FQVDPTKSNG QVKPDTTQIK ILKVADGQPL NSSFGVNDSE YEDVTKQFNI VYRDNNLADI YFGNLNGQRY IVKVTSKENL DSKEDLNLRA IMATQNRYGQ YNYITWDNDI VKSSSGGTAD GNEASYQLGD KVWNDVNKNG IQDQGETGIA DVKVTLKDLD GNILDTTYTN TNGKYIFDNL KNGNYQVGFE TPEGYAASPS NQGNDALDSD GPTNVQAVIS DGNNLTIDQG FYQTETPTHN VGDKVWEDLN KDGIQDQNEP GIANVKVTLK DADGNVVDTR TTDDKGNYLF EKVKEGEYTI EFETPEGYTP TQTGQGRVST DSNGTSSLIL VEGNDDLTID SGFYKEPVTH KVGDKVWDDL NKDGIQDDNE PGISDVKVTL KDADGNVVDT RTTDANGNYL FENVKEGDYT IEFETPEGYT PTVTGQGTAD NDSNGTSTKV TVKDGDDLTI DSGFTQVTPE PPTHNVGDKV WDDLNKDGIQ DDNEPGISDV KVTLKDADGN VVDTRTTDAN GNYLFENVKE GDYTIEFETP EGYTPTVTGQ GTADNDSNGT STKVTVKDGD DLTIDSGFTQ VTPEPPTEPE NPSPEQPSEP GQPENPSPEQ PSEPGQPENP SPEQPSEPGQ PENPSPEQPS EPGQPENPSP EQPSEPGQPK NPSPEQPNNP SVPGVQNPEK PSLTPVTQPV HSNGNKAKPS QQQKALPETG ETESHQGTLF GGILAALGAL LFARKKRHDK KQSH SEQ ID NO: 29 atgaagaaaacaatttcagtacttggtctagggctattagcaacattttttgtaagtaac gaatcatatgccgcagaaacgattcaaaacaatacgtcatcaagtgaaacgaatcaaaat tcagatcagacgccgttagatcattatattcgaaaagcagatggcacactggttgaaccg aacgtgtacccacataaagattatgtagagaatgaaggacctttaccagagtttaaattt caagttgactctaagaaagattcatctgatccaaatcaagcaccgttagatcattatatt cgaaaagcggatggcacgttggttgaaccgaatgtatatccacacaaagattatgtcgaa aatgaagggcctttaccagagtttaaatttatgtatgctgacaaacaaaatcatcatgac caacagagtaaaaacaacaaggataagcagcgtgcaaattacagtgacaaaaagcataat gatcagccgggtcatccaaaagcagtcacgccagctgtacaacatgataaagcagtcact tcaaacgctactgtaaaagcattgccaaacacaggtgaatctgataaaacaacacaatta ccaatcgtattatcattgttatctgtggggattttagttttattaaaattgagaaaataa
The protein sequence translated from SEQ ID NO 29 is designated SEQ ID NO: 30 and is shown below:
TABLE-US-00015 SEQ ID NO: 30 MKKTISVLGL GLLATFFVSN ESYAAETIQN NTSSSETNQN SDQTPLDHYI RKADGTLVEP NVYPHKDYVE NEGPLPEFKF QVDSKKDSSD PNQAPLDHYI RKADGTLVEP NVYPHKDYVE NEGPLPEFKF MYADKQNHHD QQSKNNKDKQ RANYSDKKHN DQPGHPKAVT PAVQHDKAVT SNATVKALPN TGESDKTTQL PIVLSLLSVG ILVLLKLRK SEQ ID NO: 31 atgaaaagtaaatatgattttttacctaatagacttaataaattttctatacgaaaattt actgttggtagtgtatcagtgctaataggagccactttattattcgggtttgtagaagga gaagcatcagcatcagtaaaagaaggtcaacaaagtataaattctagtgagaaagaaagc gccgatcctacagtagttgatttaattagtaagaaagaaacaaatttagatggactagat gtatcaagagaagaaacgaccaaagtaccaataaatgaaaacaaaagaggtgaggaacaa agtatttctgataaagctataacagaaaaagctgatacaccagtaagcaatttatcaagt aaggaagttgaggagcaaggtgtttctgataaagctataacagaaaaagctgatacacca gtaaccaatttatcaagtaaggaagctaaggagcaaggtgcttctgatagagttataaca gaaaaagctgatacaccagtaagcaatttatcaagtaaggaagctaaggagcaaggtgct tctgatagagttataacagaaaaagctgatacaccagtaagcaatttatcaagtaaggaa gttgaggagcaaggtgtttctgataaagctatagagaaaatagctgatgcatcagctact gatttgtcaagtaaggaagaagtagaacaagatatatctacacaaggtaaagtaaaatca aaggaagcagtacaagtagaaagtagtcagttacaaaatttaaatagtgaaataaatgct gaacctaatgaaattaaggcaatagatagaagttcaatattacctttaaatttaaatgat gaagaaaataacaaaaaagttaataaagggactcgggttccagaagctacattaagaaat gcctctaataaccaactcaatacacgaatgagatcagtgagtttatttagagttgctaga ctaacagaaatcaatagaaatgttaatgataaagtaaaggtttcggatatcgacatcgca atagccccaccgcatactaaccctaaaactggaaaagaagaattttgggcgacatcttct tcagttttaaagttaaaggcaagctatgaattggataatagcatttctaaaggggatcaa tttactattcaatttggtcaaaatattcgtccaggtggattaaatttaccaagaccttat aattttttatatgataaggataaaaaattagttgcaactggccgttacaataaagaatca aatacaatcacatatacatttacggattatgtagataaacatcaaaacattaaaggtagt tttgagatgaatgcattttctagaaaggaaaatgctactactgacaaaacagcatatcca atggatgttactattgcgaatcaaaaatatagtgaaaatattattgtagactatggtaat aaaaagaatgctgctattatttcaagtacagaatatattgatttagatggtagtagaaaa atgacaacatatattaatcaaaatggtagtaaaaattccatctatcgtgctgatatgcaa attgatttgaacggttataaatttgatccatccaaaaacaattttaaaatttatgaagtg gaaaatagcagtgactttgtggatagcttttcaccagatgtgagcaagttaagggatgtt acgagtcaatttaatattcaatatacaaataataatacaatggcaaaagtggattttggt actaacctttggaggggtaaaaaatatattattcagcaagtggcgaatatagacgacagt aaattagtgaaaaatgcttcaatcaattatacattgaataaaatggattttaataataaa agaacggtagaaacacataacaatacttattctacagtgaaagataaatcaacagcacta ggtgacgtacaggaaagtcaatctattagtgagagccaatcagttagtgaaagcgagtca ctaagtgagagccaatcaatcagtgaaagcgaatcattaagtgagagccaatcaatcagt gaaagcgaatcattaagtgaaagtcaatcaatctcagagagcgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatctcagagagtgaatca ttaagtgaaagtcagtcaatttcagagagtgaatcactaagtgaaagtcagtcaatttca gaaagcgaatcattaagcgagagtcagtcaatttcagaaagcgaatcattaagcgagagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatca ctaagcgagagccaatcaatctcagagagtgaatcattaagcgagagtcaatcaatctca gagagcgaatcattaagtgagagtcaatcaatcagtgaaagcgagtcactaagtgagagt caatcaatttcagagagcgaatcattaagtgaaagccaatcaatctcagagagtgaatca ctaagtgagagccaatcaatctcagagagtgaatcattaagtgagagccaatcaatctca gagagcgagtcactaagcgagagccaatcaatttcagagagtgaatcactaagtgaaagt caatcaatttcagagagcgaatcactaagtgagagccaatcaatctcagagagcgaatca ctaagtgaaagtcaatcaatttcagagagtgaatcactaagcgagagccaatcaatctca gagagtgaatcattaagtgaaagtcagtcaatttcagagagtgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatca ctaagcgagagtcaatcaatctcagagagcgaatcattaagtgaaagtcaatcaatttca gaaagcgagtcattaagcgagagtcagtcaatctcagagagcgaatcactaagcgagagt caatcaatctcagagagtgaatcattaagtgagagccaatcagttagtgaaagcgaatca ctaagtgaaagtcagtcaatttcagaaagcgaatcattaagtgagagtcaatcaatttca gaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatcactaagcgagagc caatcaatcagtgaaagcgaatcattaagtgagagtcaatcaatctcagaaagcgaatca ttaagtgagagtcaatcaatcagtgaaagcgaatcactaagcgagagccaatcaatctca gagagcgaatcactaagcgagagccaatcaatctcagagagcgagtcactaagcgagagc caatcaatcagtgaaagcgaatcattaagtgagagtcaatcaatcagtgaaagcgagtca ctaagtgagagccaatcaatctcagagagtgaatcattgagtgagagccaatcaatctca gagagcgagtcactaagtgagagtcaatcaatttcagagagcgaatcattaagtgaaagc caatcaatctcagagagtgaatcattgagtgagagccaatcagttagtgaaagcgagtca ctaagtgagagtcaatcaatcagtgaaagcgagtcactaagtgagagtcaatcaatttca gagagcgaatcattaagcgagagtcagtcaatctcagagagtgaatcactaagtgagagc caatcaatctcagagagtgaatcattaagtgagagccaatcaatctcagagagtgaatca ctaagtgagagtcaatcaatcagtgaaagcgaatcactaagcgagagccaatcaatttca gagagtgaatcattaagtgagagccaatcagttagtgaaagcgaatcactaagcgagagc caatcaatctcagagagcgaatcattgagtgagagccaatcaatctcagagagtgaatca ttgagtgagagtcaatcaatcagtgaaagcgaatcactaagcgaaagtcaatcaatttca gagagtgaatcattgagtgagagccaatcaatttcagagagtgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcactaagcgagagccaatcaatctcagagagcgaatca ctaagtgaaagtcagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatctca gagagtgaatcattaagtgaaagtcagtcaatttcagagagtgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagcgagagtcagtcaatttcagaaagcgaatca ttaagtgaaagccaatcaatcagtgaaagcgaatcactaagcgagagccaatcaatctca gagagcgaatcactaagcgagagccaatcaatctcagagagcgaatcactaagtgaaagt caatcaatttcagagagtgaatcattgagtgagagtcaatcaatttcagagagtgaatca ctaagtgaaagtcaatcaatttcagagagtgaatcactaagcgagagccaatcaatctca gagagtgaatcattaagtgaaagtcagtcaatttcagagagggaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatca ctaagtgaaagtcaatcaatctcagagagtgaatcactaagtgagagccaatcaatctca gagagtgaatcattgagtgagagccaatcaatctcagagagcgaatcactaagtgaaagt caatcaatttcagaaagcgagtcattaagcgagagtcagtcaatctcagagagtgaatca ctaagtgagagccaatcaatctcagagagtgaatcactaagtgagagtcaatcaatcagt gaaagcgaatcactaagcgagagccaatcaatttcagagagtgaatcattaagtgagagc caatcagttagtgaaagcgaatcactaagcgagagccaatcaatctcagagagcgagtca ctaagcgagagtcaatcaatctcagagagtgaatcactaagtgaaagtcagtcaatttca gaaagcgagtcactaagcgagagtcaatcaatctcagagagtgaatcattgagtgagagc caatcaatctcagagagcgaatcattgagtgagagccaatcaatctcagagagtgaatca ttgagtgagagccaatcaatttcagagagcgaatcactaagcgagagccaatcaatcagt gaaagcgaatcattaagtgagagtcagtcaattagcgaaagcgaatcactaagtgagagt caatcaatctcagagagtgaatcactaagtgaaagtcagtcaatcagcgaaagcgaatct aaatctttacctaataccggtactggagaaaagatttctaattatccaggtattttagga ggattattaagcatattaggtataagtttgcttaaaagaaaagacagagagaaaaaatta ggacaaaaatctaataagtag
The protein sequence translated from SEQ ID NO 31 is designated SEQ ID NO: 32 and is shown below:
TABLE-US-00016 SEQ ID NO: 32 MKSKYDFLPN RLNKFSIRKF TVGSVSVLIG ATLLFGFVEG EASASVKEGQ QSINSSEKES ADPTVVDLIS KKETNLDGLD VSREETTKVP INENKRGEEQ SISDKAITEK ADTPVSNLSS KEVEEQGVSD KAITEKADTP VTNLSSKEAK EQGASDRVIT EKADTPVSNL SSKEAKEQGA SDRVITEKAD TPVSNLSSKE VEEQGVSDKA IEKIADASAT DLSSKEEVEQ DISTQGKVKS KEAVQVESSQ LQNLNSEINA EPNEIKAIDR SSILPLNLND EENNKKVNKG TRVPEATLRN ASNNQLNTRM RSVSLFRVAR LTEINRNVND KVKVSDIDIA IAPPHTNPKT GKEEFWATSS SVLKLKASYE LDNSISKGDQ FTIQFGQNIR PGGLNLPRPY NFLYDKDKKL VATGRYNKES NTITYTFTDY VDKHQNIKGS FEMNAFSRKE NATTDKTAYP MDVTIANQKY SENIIVDYGN KKNAAIISST EYIDLDGSRK MTTYINQNGS KNSIYRADMQ IDLNGYKFDP SKNNFKIYEV ENSSDFVDSF SPDVSKLRDV TSQFNIQYTN NNTMAKVDFG TNLWRGKKYI IQQVANIDDS KLVKNASINY TLNKMDFNNK RTVETHNNTY STVKDKSTAL GDVQESQSIS ESQSVSESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSVSESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSVSESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS VSESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISERESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSVSESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES KSLPNTGTGE KISNYPGILG GLLSILGISL LKRKDREKKL GQKSNK SEQ ID NO: 33 atgttaagaacaaattataaactaagaaagcttaaagtaggtttagtatcgacaggtgtg gcgttgacttttgtgatggcaagtgggaatgcagaggcgtcggagaacgagcagactgaa gtaaaaggggaggcgcaagttgcttctgtgaatgaaaaagagagtgaagcagaattacct gtagcgcaacaagaagcatctattcaactagacaaagtacaaccaggcgatgcacagctt tcaggctatacacagccaaacaaagcgatttctgtaaagatcgacaataaagatattgtg tctgtagatgatggctatgaagaggtattatcggatgatacaggtaaatttgtatatgat ttgaaagggcgtcaaattgtttacaatcaaaaagttgatgttgaagcgatgacgccattt aattttgaagattttgatgaatcagcacttgagagcgaagaggcattggaggcgttaggt caattggaagacgaagaaacagcgacagcttctgtgacgacgcctagatatgaaggtgcg tatacagttcctgaagaacgcttgacacccattcaaggccaacagcaagtattcatcgaa cctattttagaaggggcaagtaaaatcaaaggacatacatctgtacaaggtaaagtcgcg ttagcaatcaatcaagaacatgtgcacctaggtgatacgttagaagaacaagcagcactc actgatcaagagtggcaaggtcgttatgacgggatttggcgccatattgatgatcaaggg tttttcgagtttgacttgaaccgtctttacaataaatcttacccattgaagtctggcgat ttagtgactttatcttttaaatctaatgacgaagtaggcccattattcaatgtgaacgtt gagcctttcgaacgtgtggcacaagctaaaacaaagtatgagcagaatgacagtccagta gtcaacaaattggatgatactaaaagtgacttggaggttcaacctatctatggagacctt acacaagcagcagtacatggcgagtcgaaagtgttgataccggggacgtcaaaagttgaa ggacgtacgaattatgcacatgcatggatagagatggcatctaatttaggggaatatcgt agtttccctaaattacaagctgatgcgacaggtgcgtttatatttgatttaaaagcggca gacatacaattgttaaacggagaacgtttgacattcagagccgttgacccacatacaaaa caacagttagctgaaactacatcagaagtacgcccagtagatatgcaagatgaagagtca gaggttgtgcagacttcaagcactgagaaatcagcacttgcggatgaaattcttcgttct atgacaattgacaaatcatttaatcctgaagttaccgagataccgggtcatgtatatcct aagaaaacagaggataaaggtgctgaaaatacagaacaagcctcagagaattctgagaag ccatctcagactacagaatctcaaaatgatgccgtacaagatgtagagaaatcctctgtt aatgaggaggttacgccaccttcaacagaatctgctcaagttgaaaaggggcaaaataca gaaggggctttgcttccaaaaaatgtagaacaacatgtagagagtataccataccaaaaa cgtaaagcgttgataggactgacaaaacatcaaggatcagggcacatgccgccattttct ttaagctttaataataaagaagatgacgtatccacaaaggttaacgaagcaaacgagcat gaacgtaagcagggtacagtttatccagagcaaatagaacaattacctcaaacaggttta actgaaaaatcgccattctgggcattgttatttgttgtatcaggcacaggtttattatta ttcaaacgttctagacgacaacgccaatcttaa
The protein sequence translated from SEQ ID NO 33 is designated SEQ ID NO: 34 and is shown below:
TABLE-US-00017 SEQ ID NO: 34 MLRTNYKLRKLKVGLVSTGVALTFVMASGNAEASENEQTEVKGEAQVASV NEKESEAELPVAQQEASIQLDKVQPGDAQLSGYTQPNKAISVKIDNKDIV SVDDGYEEVLSDDTGKFVYDLKGRQIVYNQKVDVEAMTPFNFEDFDESAL ESEEALEALGQLEDEETATASVTTPRYEGAYTVPEERLTPIQGQQQVFIE PILEGASKIKGHTSVQGKVALAINQEHVHLGDTLEEQAALTDQEWQGRYD GIWRHIDDQGFFEFDLNRLYNKSYPLKSGDLVTLSFKSNDEVGPLFNVNV EPFERVAQAKTKYEQNDSPVVNKLDDTKSDLEVQPIYGDLTQAAVHGESK VLIPGTSKVEGRTNYAHAWIEMASNLGEYRSFPKLQADATGAFIFDLKAA DIQLLNGERLTFRAVDPHTKQQLAETTSEVRPVDMQDEESEVVQTSSTEK SALADEILRSMTIDKSFNPEVTEIPGHVYPKKTEDKGAENTEQASENSEK PSQTTESQNDAVQDVEKSSVNEEVTPPSTESAQVEKGQNTEGALLPKNVE QHVESIPYQKRKALIGLTKHQGSGHMPPFSLSFNNKEDDVSTKVNEANEH ERKQGTVYPEQIEQLPQTGLTEKSPFWALLFVVSGTGLLLFKRSRRQRQS SEQ ID NO: 35 atgaaaactaaatacacagcaaaattattaattggggcagcaacaatatctttagcaaca tttatttcacaagggaacgcacatgcgagcgaacaaactacaggactcgcaccggcacaa cctgtcaactttgattcaatcaatgtaacgccagaccaaaaaacattctatcaagtctta catatggaaggcatttcagaagaccaacgtgaacaatatttgaaacaattgcacgaagac ccaagtagcgcacaaaatgttttttcagaatcaattaaagatgccatccacccggaacgt cgtgttgcgcaacaaaatgcgttttacagcgtattacacaacgatgacttatccgaagag caacgtgatgcatacattggtagaattaaagaagatccagatcaaagccaagaagtattt gttgagtctttaaatgtggcacctaaagcagaatcacatgaagatcgcctcattgaatta caaaacaaaaatttaatggaagcgaatgaagcacttaaagcgttacaacaagaagacagc attcagaatagacgtgcggctcaacgtgctgtcaacaaattgacgccggatagcgcgaac gcattccaaaaagaattagatcaaatcaatgccccacgcgacgctaaaattaaagctgac gctgaagcaaaaaaacaagcacctgaagtaagcgcaccacaaattgaagatgcacctact actgaagttgcaccatctccaaaacaagatatgccaaaagtagataaaaaagaagaagat aaagtagaaagtgatactgaggtcaaagaagtacctaaagctgatacagagaaaaaccct caatctaaagacacttctaaaactgaacaagctaaagaaacacctaaagtagagcaatca cctaaaacagaaaaggctgaagaagcacctaaagcagaaacacctcaaaatggaaataaa gcacaaactgaagaagctaaaccagaagtaaaagacaatgtgaaaaacactccatctgca cctgtgttacctgaaacaggaaaagcaacaacttcaacacttgaaagctactggaattct ttcaaagacagtgtgaataaaggttatacttacattaaacaaagcttagaaagtggttat caatatttaaaaggtcaatacgactatatcactaaaaaatacaatgatgcgaaatactat acaaaaatgtattcaaatcataagtctacaattgatcagtctgtattagctatattaggt aaaactggatctagcgcatatatcaagccattaaatatcgaagaaaattcaaacgtattt tacaaagcttatgcaaaaacaagaaactttgctacagaaagcattaacacaggaaaagta ttatacacattatatcaaaaccctactgtagttaaatctgctttcactgcaattgaaaca gcaaatacagtaaaaaatgcaataagcaatcttttctctctcttcaaataa
The protein sequence translated from SEQ ID NO 35 is designated SEQ ID NO: 36 and is shown below:
TABLE-US-00018 SEQ ID NO: 36 MKTKYTAKLLIGAATISLATFISQGNAHASEQTTGLAPAQPVNFDSINVT PDQKTFYQVLHMEGISEDQREQYLKQLHEDPSSAQNVFSESIKDAIHPER RVAQQNAFYSVLHNDDLSEEQRDAYIGRIKEDPDQSQEVFVESLNVAPKA ESHEDRLIELQNKNLMEANEALKALQQEDSIQNRRAAQRAVNKLTPDSAN AFQKELDQINAPRDAKIKADAEAKKQAPEVSAPQIEDAPTTEVAPSPKQD MPKVDKKEEDKVESDTEVKEVPKADTEKNPQSKDTSKTEQAKETPKVEQS PKTEKAEEAPKAETPQNGNKAQTEEAKPEVKDNVKNTPSAPVLPETGKAT TSTLESYWNSFKDSVNKGYTYIKQSLESGYQYLKGQYDYITKKYNDAKYY TKMYSNHKSTIDQSVLAILGKTGSSAYIKPLNIEENSNVFYKAYAKTRNF ATESINTGKVLYTLYQNPTVVKSAFTAIETANTVKNAISNLFSLFK
An active domain from the protein of SEQ ID NO: 6 is designated SEQ ID NO: 37
TABLE-US-00019 SEQ ID NO: 37 NEDVTETTGRNSVTTQASEQHLQVEAVPQEGNNVNVSSVKVPTNTATQAQ EDVASVSDVKAHADDALQVQESSHTDGVSSEFKQETAYANPQTAETVKPN SEAVHQSEYEDKQKPVSSSRKEDETMLQQQQVEAKNVVSAEEVSKEENTQ VMQSPQDVEQHVGGKDISNEVVVDRSDIKGFNSETTIRPHQGQGGRLNYQ LKFPSNVKPGDQFTIKLSDNINTHGVSVERTAPRIMAKNTEGATDVIAEG LVLEDGKTIVYTFKDYVNGKQNLTAELSVSYFVSPEKVLTTGTQTFTTMI GNHSTQSNIDVYYDNSHYVDGRISQVNKKEAKFQQIAYINPNGYLNGRGT IAVNGEVVSGTTKDLMQPTVRVYQYKGQGVPPESITIDPNMWEEISINDT MVRKYDGGYSLNLDTSKNQKYAIYYEGAYDAQADTLLYRTYIQSLNSYYP FSYQKMNGVKFYENSASGSGELKPKPPEQPKPEPEIQADVVDIIEDSHVI DIGW
An spsl gene fragment corresponding to A domain is designated SEQ ID NO: 38, which encodes the protein of SEQ ID NO: 37
TABLE-US-00020 SEQ ID NO: 38 AATGAAGATGTCACTGAAACAACTGGGAGAAATTCAGTGACAACGCAAGC TTCTGAGCAACATTTGCAAGTGGAAGCAGTACCTCAAGAAGGCAATAATG TAAATGTATCCTCTGTAAAAGTACCTACGAATACGGCAACGCAAGCACAA GAAGATGTTGCAAGTGTATCCGATGTTAAAGCACATGCTGATGATGCATT ACAAGTACAAGAAAGTAGTCATACTGATGGTGTTTCTTCAGAATTCAAGC AGGAGACAGCTTATGCGAATCCTCAAACAGCTGAGACAGTTAAACCTAAT AGTGAAGCAGTGCATCAGTCTGAATACGAGGATAAGCAAAAACCCGTATC ATCTAGCCGCAAAGAAGATGAGACTATGCTTCAGCAGCAACAAGTTGAAG CCAAAAATGTTGTGAGTGCGGAGGAAGTGTCTAAAGAAGAAAATACTCAA GTGATGCAATCCCCTCAAGACGTTGAACAACATGTAGGTGGTAAAGATAT CTCTAATGAGGTTGTAGTGGATAGGAGTGATATCAAAGGATTTAACAGCG AAACTACTATTCGACCTCATCAGGGACAAGGTGGTAGGTTGAATTATCAA TTAAAGTTTCCTAGCAATGTAAAGCCAGGCGATCAGTTTACTATAAAATT ATCTGACAATATCAATACACATGGTGTTTCTGTTGAAAGAACCGCACCGA GAATCATGGCTAAAAATACTGAAGGTGCGACGGATGTAATTGCTGAAGGT CTAGTGTTGGAAGATGGTAAAACCATCGTATATACATTTAAAGACTATGT AAATGGCAAGCAAAATTTGACTGCTGAGTTATCAGTGAGCTATTTCGTAA GTCCGGAAAAAGTCTTGACTACTGGGACACAAACATTCACGACGATGATC GGTAATCATTCAACGCAATCCAATATTGACGTTTATTATGATAATAGTCA TTATGTAGATGGACGTATTTCGCAAGTGAACAAAAAAGAAGCTAAATTTC AACAAATAGCATACATTAACCCTAATGGCTATTTAAATGGCAGGGGGACA ATTGCAGTTAATGGTGAAGTGGTCAGTGGTACGACTAAAGACTTAATGCA ACCTACAGTGCGTGTATATCAATATAAAGGACAAGGTGTTCCTCCTGAAA GTATTACTATAGACCCTAATATGTGGGAAGAAATCAGCATAAACGATACT ATGGTAAGAAAATATGATGGTGGCTATAGCTTGAATCTGGATACCAGCAA GAATCAAAAATATGCCATCTATTATGAAGGGGCATATGATGCGCAAGCTG ACACACTGTTGTATAGAACATATATACAGTCATTAAACAGTTACTATCCG TTCAGTTACCAAAAAATGAACGGTGTGAAGTTTTACGAAAACAGTGCGAG TGGAAGCGGTGAGTTGAAACCGAAACCACCTGAACAACCAAAACCAGAAC CTGAAATTCAAGCTGATGTAGTAGATATTATTGAAGATAGCCATGTGATT GATATAGGATGG
[0009] Since each of the abovementioned proteins/nucleic acid sequences is derived from Staphylococcus pseudintermedius, the inventors have designated these (and the corresponding protein sequences) Staphylococcus pseudintermedius surface genes/nucleic acids/proteins (Sps). For simplicity, the bulk of this specification will use the term "Sps" or "Sps genes" or "Sps nucleic acids" which are intended to encompass all of the nucleic acid sequences described above (i.e. SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35.
[0010] Furthermore, in addition to encompassing the entire or complete gene/nucleic sequences listed above, it is to be understood that the designation "Sps" also encompasses fragments, portions, mutants, derivatives and/or homologoues/orthologues of any of these genes.
[0011] In addition, the term "Sps" or "Sps proteins" encompasses the proteinaceous products of the Sps genes/nucleic acids or fragments, portions, analogues, variants or derivatives thereof (for example short peptide fragments). In particular, the term "Sps proteins" encompasses the sequences given as SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 and 37 above.
[0012] Typically, the gene/nucleic acid fragments, portions, mutants, variants, derivatives and/or homologues/orthologues of the invention are functional or active--that is, they retain the function and/or activity of the wild type or native Sps genes/nucleic acids. Advantageously, fragments, portions, mutants, variants, derivatives and/or homologues/orthologues of any of the Sps genes/nucleic acids provided by this invention, encode proteins (or peptides, peptide fragments) retaining the ability to bind to or associate with extracellular matrix proteins such as, for example, fibrinogen, fibronectin and/or collagen. In other embodiments, the proteins and/or peptides encoded by the nucleic acid sequences described herein are immunogenic or antigenic. Furthermore, fragments, portions, variants or derivatives of any of the proteins encoded by the nucleic acid sequences described herein may also retain the immunogenicity and/or antigenicity of a corresponding wild type Sps protein (for example the proteins listed above). Where the invention relates to immunogenic compositions and/or vaccines, the use of proteins and/or peptides which are immunogenic (or antigenic) is important.
[0013] The term "mutants" may encompass naturally occurring mutants or those artificially created by the introduction of one or more nucleic acid additions, deletions, substitutions or inversions.
[0014] Homologous or identical genes, nucleic acid or protein sequences may exhibit as little as approximately 20 or 30% sequence homology or identity to certain reference sequences, however, in other cases, homologous or identical genes/nucleic acids and/or proteins may exhibit at least 40, 50, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% homology or identity to the various sequences given above as SEQ ID NOS: 1-36 or 37-38. It should be understood that mutant, variant, derivative and/or orthologuous sequences may exhibit similar levels of homology/identity to each other and/or to the Sps genes/nucleic acids shown as SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 and/or 38 above.
[0015] One of skill in this field will readily understand that genes/nucleic acids homologous/identical to the Sps genes detailed herein may be found in other bacterial species. As such, homologous genes from other species may be included within the scope of this invention. Using the various nucleic acid and amino acid sequences described herein, one of skill in the art could readily identify related sequences in other microbial (particularly bacterial) species. For example, nucleic acid obtained from a particular bacterial species may be probed using the probes derived from the sequences of this invention, to identify homologous or closely related sequences.
[0016] It should be understood that Sps nucleic acid sequences of this invention may be single-stranded or double-stranded and a single-stranded nucleic acid molecule may include a polynucleotide fragment having a nucleotide sequence that is complementary to a nucleotide sequence that encodes a Sps protein or fragment thereof. As used herein, the term "complementary" refers to the ability of two single stranded polynucleotide fragments to base pair with each other.
[0017] A single-stranded nucleic acid molecule of the invention may further include a polynucleotide fragment having a nucleotide sequence that is substantially complementary to a nucleotide sequence that encodes a Sps protein or fragment thereof according to the invention, or to the complement of the nucleotide sequence that encodes said Sps protein or fragment thereof. Substantially complementary polynucleotide fragments can include at least one base pair mismatch, such that at least one nucleotide present on a first polynucleotide fragment will not base pair to at least one nucleotide present on a second polynucleotide fragment, however the two polynucleotide fragments will still have the capacity to hybridize. The present invention therefore encompasses polynucleotide fragments which are substantially complementary. Two polynucleotide fragments are substantially complementary if they hybridize under hybridization conditions exemplified by 2.times.SSC (SSC: 150 mM NaCl, 15 mM trisodium citrate, pH 7.6) at 55.degree. C. Substantially complementary polynucleotide fragments for purposes of the present invention may preferably share at least about 60, 65, 70, 75, 80 or 85% nucleotide identity, preferably at least about 90%, 95% or 99% nucleotide identity. Locations and levels of nucleotide sequence identity between two nucleotide sequences can be readily determined using, for example, CLUSTALW multiple sequence alignment software.
[0018] In addition, it should be understood that the present invention also relates to the products of the genes/nucleic acids encompassed by this invention and in particular to proteins or peptides homologous/identical to those having sequences provided by SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 and 37. Furthermore, fragments, portions, analogues, variants, derivatives of any of these or homologous and/or identical or modified proteins are also within the scope of this invention. Typically, fragments, portions, derivatives, variants and/or homologous or modified proteins or peptides of the invention are functional or active--that is they retain the function of a wild type Sps protein. In certain embodiments fragments, portions, derivatives or variants of, and/or modified sequences or sequences with homology or identity to, the amino acid sequences provided by this invention, retain the ability to bind to or associate with extracellular matrix proteins such as, for example, fibrinogen, fibronectin and/or collagen.
[0019] Additionally or alternatively, fragments, portions, mutants, variants, derivatives and/or homologues/orthologues of the Sps genes provided by this invention, may encode proteins (or peptide fragments) that are antigenically similar or identical to the proteins encoded by the genes described herein. Similarly, fragments, portions, derivatives and/or variants of and/or modified sequences or sequences with homology or identity to, the amino acid sequences provided by this invention are also antigenically similar or identical to the proteins encoded by the genes described herein. It should be understood that the term "antigenically similar or identical" may encompass proteins or peptides eliciting an immune response similar or identical to the immune response elicited by any of the Sps proteins described herein. In certain embodiments fragments, portions, derivatives and/or variants of and/or modified sequences or sequences with homology or identity to, the amino acid sequences described herein, elicit immune responses which protect against Staphylococcus pseudintermedius infection and/or prevent, reduce or neutralise Staphylococcus pseudintermedius cell/tissue adhesion and/or colonisation. One of skill will readily understand that the antigenicity of a polypeptide can be evaluated in vitro by, for example, performing a Western blot on the purified polypeptide (for example, an affinity purified polypeptide) using polyclonal antisera from an animal, such as a rabbit that was vaccinated with at least an antigenic portion of an Sps protein of the present invention.
[0020] One of skill in this field will readily understand that for the various nucleic acid sequences and polypeptides described herein, natural variations due to, for example, polymorphisms, may exist between Sps genes and proteins isolated from different microbial species and even different strains of the same species. Gene or protein variants may manifest as proteins and/or genes that exhibit one or more amino acid/nucleic acid substitutions, additions, deletions and/or inversions relative to a reference sequence (for example any of the sequences described above). As such, it is to be understood that all such natural variants, especially those that are functional or display the desired activity, are to be included within the scope of this invention.
[0021] In another embodiment, the invention relates to derivatives of any of the Sps sequences described herein. The term "derivatives" may encompass Sps genes or peptide sequences which, relative to those described herein, comprise one or more amino acid substitutions, deletions, additions and/or inversions.
[0022] Additionally, or alternatively, analogues of the various peptides described herein may be produced by introducing one or more conservative amino acid substitutions into the primary sequence. One of skill in this field will understand that the term "conservative substitution" is intended to embrace the act of replacing one or more amino acids of a protein or peptide with an alternate amino acid with similar properties and which does not substantially alter the physcio-chemical properties and/or structure or function of the native (or wild type) protein. Analogues of this type are also encompassed with the scope of this invention. In one embodiment, substitute amino acids may be selected from other members of the class to which the amino acid belongs. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, praline, phenylalanine, tryptophan, and tyrosine. Polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Examples of preferred conservative substitutions include Lys for Arg and vice versa to maintain a positive charge; Glu for Asp and vice versa to maintain a negative charge; Ser for Thr so that a free --OH is maintained; and Gln for Asn to maintain a free NH.sub.2.
[0023] As is well known in the art, the degeneracy of the genetic code permits substitution of one or more bases in a codon without changing the primary amino acid sequence. Consequently, although the sequences described in this application are known to encode the Sps proteins described herein, the degeneracy of the code may be exploited to yield variant nucleic acid sequences which encode the same primary amino acid sequences.
[0024] The present invention may further provide modified Sps proteins. For example, a "modified" Sps protein may be chemically and/or enzymatically derivatised at one or more constituent amino acids, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, phosphorylation and the attachment of carbohydrate or lipid moieties, cofactors, and the like.
[0025] One of skill in this field will appreciate that the amino acid and/or nucleic acid sequences described herein may be used to generate recombinant Sps genes/proteins and as such, the present invention further contemplates methods of generating and/or expressing recombinant Sps genes and/or proteins, and products for use in such methods. Accordingly, in addition to providing substantially purified or isolated recombinant Sps sequences, a second aspect of this invention provides DNA constructs comprising a replicable expression vector and nucleic acid encoding one or more of the Sps protein(s) described herein.
[0026] Expression vectors for the production of the molecules of the invention include plasmids, phagemids, viruses, bacteriophages, integratable DNA fragments, and other vehicles, which enable the integration of DNA fragments into the genome of the host. Expression vectors are typically self-replicating DNA or RNA constructs containing the desired gene or its fragments, and operably linked genetic control elements that are recognised in a suitable host cell to effect expression of the desired genes.
[0027] Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system. Such systems typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of RNA expression, a sequence that encodes a suitable ribosome binding site, RNA splice junctions, sequences that terminate transcription and translation and so forth. Expression vectors usually contain an origin of replication that allows the vector to replicate independently of the host cell.
[0028] A vector may additionally include appropriate restriction sites, antibiotic resistance or other markers for selection of vector containing cells.
[0029] Plasmids are the most commonly used form of vector but other forms of vectors which serve an equivalent function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels et al. Cloning Vectors: a Laboratory Manual (1985 and supplements), Elsevier, N.Y.; and Rodriquez, et al. (ads.) Vectors: a Survey of Molecular Cloning Vectors and their Uses, Buttersworth, Boston, Mass. (1988).
[0030] In general, such vectors may contain specific genes, which are capable of providing phenotypic selection in transformed cells. The use of prokaryotic and eukaryotic viral expression vectors to express the nucleic acid sequences coding for the recombinant proteins of the present invention are also contemplated.
[0031] The vector is introduced into a host cell by methods known to those of skill in the art. Introduction of the vector into the host cell can be accomplished by any method that introduces the construct into the cell, including, for example, electroporation, heat shock, chemical compounds such, for example, calcium phosphate, stronitium phosphate, microinjection techniques and/or gene guns. See, e.g., Current Protocols in Molecular Biology, Ausuble, F. M., ea., John Wiley & Sons, N.Y. (1989).
[0032] Another aspect relates to a host cell transformed with any one of the nucleic acid constructs of the present invention. Suitable host cells include prokaryote cells, lower eukaryotic and higher eukaryotic cells. Prokaryotes include Gram negative and Gram positive organisms, e.g., E. coli and B. subtilis. Lower eukaryotes include yeast, S. cerevisiae and Pichia, and species of the genus Diclyostelium.
[0033] "Host cell" as used herein refers to cell which can be recombinantly transformed with vectors constructed using recombinant DNA techniques.
[0034] A drug resistance or other selectable marker is intended in part to facilitate the selection of the transformants. Additionally, the presence of a selectable marker, such as a drug resistance marker may be of use in keeping contaminating microorganisms from multiplying in the culture medium. Such a pure culture of the transformed host cells would be obtained by culturing the cells under conditions which require the induced phenotype for survival.
[0035] PCR techniques may be exploited to selectively obtain Sps gene sequences from samples of Staphylococcal DNA. These amplified sequences may be introduced into any of the vectors described above. In one embodiment, the vector may further comprise a nucleotide sequence of a tag or label to assist in protein purification procedures.
[0036] Techniques used to purify recombinant proteins generated in this way are known and, where the recombinant protein is tagged or labelled, these may include the use of, for example, affinity chromatography techniques.
[0037] In view of the above, a fourth aspect of this invention provides a process for the production of recombinant Sps protein(s) or peptide(s) of the invention, said process comprising the steps of (a) transforming a host cell with the nucleotide sequence of the invention or transfecting a host cell with a nucleic acid construct of the invention; (b) culturing the cells obtained in (a) under conditions in which expression of the protein takes place; and (c) isolating the expressed recombinant protein or peptide from the cell culture or/and the culture supernatant.
[0038] The polypeptide may be partially purified from the host and where the polypeptide is secreted from the host cell, the cells may be separated from the media by centrifugation, the cells being pelleted. Alternatively, the polypeptide may be partially purified from this supernatant, for example using affinity chromatography.
[0039] A fifth aspect of this invention provides monoclonal or polyclonal antibodies, whether derived from rodents, mammals, avians, ungulates, or other organisms, that bind to the Sps proteins described herein. Production and isolation of monoclonal and polyclonal antibodies to a selected polypeptide sequence is routine in the art see for example "Basic methods in Antibody production and characterisation" Howard & Bethell, 2000, Taylor & Francis Ltd. Such antibodies may be used in diagnostic procedures, as well as for passive immunisation.
[0040] Staphylococcus pseudintermedius is known to cause cutaneous inflammatory diseases in a variety of animals. One such cutaneous inflammatory disease is canine pyoderma which is a major cause or morbidity in dogs. Pydoderma associated with Staphylococcus pseudintermedius infection is common among dogs and is often associated with puritis, alopecia, erythema and swelling. At present, the treatment of this infection is difficult, requiring the use of aggressive, systemically administered antibiotics. The present inventors have discovered that Sps genes (and their protein products) play a role in Staphylococcus pseudintermedius colonisation and pathogenesis. As such, the Sps genes and proteins described herein may find application in the treatment and/or prevention of cutaneous disorders such as canine pyoderma.
[0041] Accordingly, a sixth aspect of this invention provides an Sps protein or gene as substantially defined above, for use in raising an immune response in an organism. The proteins and genes described herein may find particular application as a vaccine, but could also be used to obtain an immune serum potentially useful in passive vaccination techniques.
[0042] Advantageously, the invention may provide a vaccine for use in preventing or controlling disease in canine species caused or contributed to by Staphylococcus pseudintermedius. In other embodiments, the vaccines provided by this invention may be used to protect against the development of infections caused or contributed to by Staphylococcus pseudintermedius. In other embodiments, the vaccines may be used to protect against instances of canine pyoderma.
[0043] In one embodiment, the vaccine may be a polypeptide and/or polynucleotide vaccine.
[0044] A polynucleotide vaccine may comprise a polynucleotide fragment, preferably a DNA fragment, having a nucleotide sequence encoding an antigenic polypeptide comprising at least an antigenic portion any one or more of the Sps proteins described herein. Vaccines of this type may otherwise be referred to as "DNA vaccines"--such vaccines may be introduced to host cells (such as mammalian, for example, canine cells) where they express antigens which elicit immune responses.
[0045] A polypeptide or protein vaccine may comprises one or more of the Sps proteins (or antigentic fragments or portions) described herein. One of skill will appreciate that the one or more Sps protein(s) may be naturally occurring and isolated from Staphylococcus pseudintermedius, or recombinant.
[0046] A protein vaccine may be administered by any suitable route. Advantageously, a protein vaccine may be administered orally (by ingestion), topically or by direct injection--preferably intraperitoneal or intramuscular injection. A protein subunit vaccine formulated for oral administration can contain the polypeptide encapsulated in for example, a biodegradable polymer as described hereinafter.
[0047] In view of the above, the invention further provides a method of immunising a dog against Staphylococcus pseudintermedius, said method comprising administering to the dog a DNA or protein vaccine of the invention.
[0048] Conveniently, the protein vaccines described herein may further include or comprise one or more adjuvant(s). Further, one or more booster vaccinations are preferably administered at time periods subsequent to the initial administration to create a higher level of immune response in the animal.
[0049] In yet another aspect, the vaccine of the invention may comprise a fusion protein comprising a carrier polypeptide and one or more Sps protein(s) of the invention. The Sps protein(s) for use in this aspect of the invention can itself be antigenic or non-antigenic; in embodiments wherein the protein is non-antigenic, the carrier polypeptide is antigenic, stimulating the immune system to react to the fusion protein thereby generating an immune response in an organism--such as, for example a canine immune response to Staphylococcus pseudintermedius. A non-antigenic protein thus functions as a hapten. An example of an antigenic carrier polypeptide is keyhole limpet hemocyanim (KLH). Conventional fusion constructs between carriers such as glutathione sulfotransferase (GST) and said Sps protein(s) of the invention are also included as protein vaccines according to the invention, as are fusions of the Sps protein(s) and an affinity tag such as a polyhistidine sequence. A fusion construct may be preferred for use as a protein vaccine when the antigenic Sps analog, fragment, or modification thereof is small.
[0050] In a seventh aspect, the present invention provides a method for immunising dogs against Staphylococcus pseudintermedius, said method comprising administering to the dog a vaccine of the invention.
[0051] A polynucleotide vaccine may further comprises a promoter, such as the CMV promoter, operably linked to the coding sequence for the Sps polypeptide or antigenic fragment thereof (e.g., U.S. Pat. No. 5,780,44, Davis). The polynucleotide may be cloned within a vector such as a plasmid. There are numerous plasmids known to those of ordinary skill in the art useful for the production of polynucleotide vaccines.
[0052] Other possible additions to the polynucleotide vaccine constructs include nucleotide sequences encoding cytokines, such as granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-12 (IL-12) and co-stimulatory molecules such B7-1, B7-2, CD40. The cytokines can be used in various combinations to fine-tune the response of the animal's immune system, including both antibody and cytotoxic T lymphocyte responses, to bring out the specific level of response needed to affect the animal's reproductive system. A polynucleotide vaccine of the invention can also encode a fusion product containing the antigenic polypeptide and a molecule, such as CTLA-4, that directs the fusion product to antigen-presenting cells inside the host.
[0053] Plasmid DNA can also be delivered using attenuated bacteria as delivery system, a method that is suitable for DNA vaccines that are administered orally. Bacteria are transformed with an independently replicating plasmid, which becomes released into the host cell cytoplasm following the death of the attenuated bacterium in the host cell. An alternative approach to delivering the polynucleotide to an animal involves the use of a viral or bacterial vector. Examples of suitable viral vectors include adenovirus, polio virus, pox viruses such as vaccinia, canary pox, and fowl pox, herpes viruses, including catfish herpes virus, adenovirus-associated vector, retroviruses and bacteriophage. Exemplary bacterial vectors include attenuated forms of Salmonella, Shigella, Edwardsiella ictaluri, and Yersinia ruckeri. Preferably, the polynucleotide is a vector, such as a plasmid, that is capable of autologous expression of the nucleotide sequence encoding said Sps protein or fragment thereof.
[0054] In one embodiment, the vaccine may be a DNA vaccine comprising a DNA fragment having a nucleotide sequence that encodes a polypeptide having an amino acid sequence homologous or identic to a sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 37 or an antigenic analog, fragment, or modified version thereof.
[0055] Polynucleotide-based immunisation induces an immune response to an antigen expressed in vivo from a heterologous polynucleotide fragment introduced into a cell. DNA vaccine may be particularly useful as the heterologous nucleic acid expression may continue for a length of time sufficient to induce a relatively strong and sustained immune response without the need for subsequent "booster" vaccinations, as may be required when using protein based vaccines. A polynucleotide vaccine comprising a polynucleotide fragment having a nucleotide sequence encoding said Sps can be administered to dog (or rather to a particular tissue or cells thereof) using biolistic bombardment, ingestion or direct injection, as described for example, in U.S. Pat. No. 5,780,448 (Davis), preferably intraperitoneal or intramuscular injection. A preferred method of administration is biolistic bombardment, as with a "gene gun". A polynucleotide vaccine formulated for oral administration preferably contains DNA encapsulated in a biodegradable polymer. Examples of a suitable biodegradable polymer include chitosan and homo- or co-polyers of polylactic acid and polyglycolic acid. Accordingly, the present invention further provides a method for immunising dogs against Staphylococcus pseudintermedius by administering to the dog a polynucleotide vaccine of the invention, preferably a DNA vaccine.
[0056] Other methods of administering nucleic acid vaccines of the type described herein may include, for example, use of the technology described in WO02/076498.
[0057] The amount of protein/polynucleotide vaccine to be administered to an animal depends on the type and size of animal, the condition being treated, and the nature of the protein/polynucleotide, and can be readily determined by one of skill in the art. In some applications, one or more booster administrations of the protein/polynucleotide vaccine at time periods subsequent to the initial administration are useful to create a higher level of immune response in the animal.
[0058] In one embodiment of the vaccine of the invention and/or Sps proteins described herein (including antigenic fragments, analogs or modified version thereof) may be linked, for example, at its carboxy-terminus, to a further component. The further component may serve to facilitate uptake of the Sps protein, or enhance its immunogenicity/processing.
[0059] The immune-stimulating compositions of the invention may be optionally mixed with excipients or diluents that are pharmaceutically acceptable as carriers and compatible with the active component(s). The term "pharmaceutically acceptable carrier" refers to a carrier(s) that is "acceptable" in the sense of being compatible with the other ingredients of a composition and not deleterious to the recipient thereof. Suitable excipients are well known to the person skilled in the art. Examples include; water, saline (e.g. 0.85% sodium chloride; see Ph.Eur. monograph 2001:0062), buffered saline, fish oil with an emulsifier (e.g. a lecithin, Bolec MT), inactivant (e.g. formaldehyde; see Ph.Eur. monograph 1997:0193), mineral oils, such as light mineral oils, alhydrogel, aluminium hydroxide. Where used herein, the term "oil adjuvant" to embraces both mineral oils and synthetic oils. A preferred adjuvant is Montanide ISA 711 (SeppicQuai D'Orsay, 75321 Paris, France) which is a manide oleate in an oil suspension. In addition, if desired, the immune-stimulating composition (including vaccine) may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the immune-stimulating composition.
[0060] A vaccine composition may be administered as a course of a number of discrete doses over a period of time. For example it may be administered over a period of around 2-21 days.
[0061] Vaccination may be repeated at daily, twice-weekly, weekly or monthly intervals. For example a boost vaccination may be administered after the initial dose. For example a boost may be administered at around 4-14 weeks after the vaccination. The initial vaccination and any boost may be carried out using the same or different modes of administration. For example, the initial may be by injection and the boost may be by oral administration. An example regime includes a first vaccination by injection, followed by a course of orally administered boost vaccine, or a booster prior to an expected outbreak. However, it will be appreciated that any suitable route of administration(s) and/or regime(s) may be employed.
[0062] Additionally, knowledge of the Sps protein nucleotide and amino acid sequences set forth herein opens up new possibilities for detecting, diagnosing and characterising Staphylococcus pseudintermedius in canine populations. For example, an oligonucleotide probe or primer based on a conserved region of one or more of the Sps proteins described herein, may be used to detect the presence of the Sps protein in or on a canine host.
[0063] Vaccines may contain one or more of the Sps proteins/nucleic acids/genes described herein (i.e. those shown as SEQ ID NOS: 1-38). In one embodiment, the vaccine may comprise a cocktail of Sps proteins/peptides and or nucleic acids. Typically, a cocktail may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 or 38 Sps nucleic acid and/or protein/peptide components (for example (2 or more) components having sequences homologous or identical to any of SEQ ID NOS: 1-38).
[0064] Furthermore, the vaccines may contain bacterial antigens used to control other diseases, for example diseases caused by other Staphylococcal species and/or antigens to treat, prevent or control diseases and/or conditions with other aetiologies or caused or contributed to by other pathogens. As such, the vaccine compositions described herein may find application in multivalent vaccines including antigens against other canine diseases.
[0065] In addition to vaccines and/or immunogenic compositions comprising one or more of the Sps proteins described herein, the present invention further provides compounds for treating infections caused or contributed to by Staphylococcus pseudintermedius or compounds for the preparation of medicaments for treating the same.
[0066] In one embodiment, the compound may be a small organic molecule, antibody, peptide or carbohydrate which antagonises the interaction between the Sps protein and its ligand (an extracellular matrix (ECM) protein). For example, the compound may be a synthetic peptide comprising or based on, the sequence of an ECM protein known to interact with a particular Sps protein, or the sequence of a protein given above which may interfere with binding between the wild type S. psedintermedius protein and its ligand. Additionally or alternatively, binding agents, such as for example, antibodies with specificity or affinity for one or more Sps protein ligands, may also be used to antagonise the Sps/ligand interaction. Therapeutic approaches of this type may prevent Staphylococcus pseudintermedius colonising or binding/adhering to cells.
[0067] In view of the above, the invention may relate to methods of treating infections caused or contributed to by Staphylococcus pseudintermedius, said method comprising administering to an animal a therapeutically effective amount of a compound which antagonises Sps/ligand interactions.
[0068] In a further aspect, the present invention provides pharmaceutical compositions comprising a compound which antagonises Sps/ligand interactions together with a pharmaceutical excipient, carrier or diluent.
[0069] One of skill will appreciate that the vaccines, methods, uses or medicaments comprising any of the Sps genes/nucleic acids and/or proteins and/or antagonistic compounds (for example Sps protein/nucleic acid fragments and/or antibodies) described herein may be combined with one or more other compounds for treating one or more other conditions--in particular one or more other skin conditions. Said other skin condition may be, for example, atopic dermatitis.
[0070] In a further aspect, the present invention provides methods of diagnosing infections, diseases and/or conditions caused or contributed to by S. pseudintermedius, said methods comprising the steps of identifying in a sample provided by a subject suspected of suffering from an infection, disease and/or conditions S. pseudintermedius caused or contributed to by S. pseudintermedius, a level of a protein, peptide or nucleic acid (for example a gene) encoded by a sequence provided by SEQ ID NOS: 1-38 or a fragment, portion, mutant, derivative and/or homologoue/orthologue thereof.
[0071] It should be understood that all methods of diagnosis or detection described herein, may include an optional step in which the results are compared with the results of a control sample, which does not comprise sequences derived from S. pseudintermedius, in particular sequences corresponding to those provided as SEQ ID NOS: 1-38 disclosed herein.
[0072] The term "sample" may be taken to mean any sample comprising protein and/or nucleic acid. For example, a "sample" may comprise a bodily fluids such as whole blood, plasma, serum, saliva, sweat and/or semen. In other instances "samples" such as tissue biopsies and/or scrapings may be used. In particular, cutaneous (i.e. skin) tissue biopsies and/or scrapings may be used. Advantageously such biopsies may comprise cells obtained from lesions suspected of resulting from or being associated with a S. pseudintermedius. Specifically, a biopsy, tissue sample or scraping may comprise cells derived from lesions exhibiting pathology characteristic of the S. pseudintermedius disease, pyoderma (particularly caninine pyoderma).
[0073] In addition, a sample may comprise a tissue or gland secretion and washing protocols may be used to obtain samples of fluid secreted into or onto various tissues, including, for example, the skin. One of skill in this field will appreciate that the samples described above may yield or comprise quantities of nucleic acid (i.e. DNA or RNA) encoding all or part of the various proteins described herein as well as quantities of proteins or peptides (or fragments thereof) encoded thereby. In one embodiment, the sample may comprise quantities of nucleic acid/peptide having or comprising the sequences given as SEQ ID NOS: 1-38.
[0074] One of skill in the art will be familiar with the techniques that may be used to identify levels of certain nucleic acid sequences and/or proteins, such as, for example, levels of the sequences given as SEQ ID NOS: 1-38 described herein (or a fragment, portion, mutant, derivative and/or homologoue/orthologue thereof).
[0075] For example, PCR based techniques may be used to detect levels of gene expression or gene quantity in a sample. Useful techniques may include, for example, polymerase chain reaction (PCR) or reverse transcriptase (RT)-PCR based techniques in combination with real-time PCR (otherwise known as quantitative PCR).
[0076] Additionally, or alternatively, a level of gene/protein expression may be identified by way of microarray analysis. Such a method would involve the use of a DNA micro-array which comprises nucleic acid derived from one or more of the nucleic acid sequences described herein (for example SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 38). To identify a level of gene expression, one of skill in the art may extract nucleic acid, preferably mRNA, from a sample and subject it to an amplification protocol such as, for example RT-PCR to generate cDNA. Preferably, primers specific for a certain mRNA sequence--in this case a S. pseudintermedius sequence comprised with any of, for example, SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 38.
[0077] The amplified cDNA may be subjected to a further amplification step, optionally in the presence of labelled nucleotides (as described above). Thereafter, the optionally labelled amplified cDNA may be contacted with the microarray under conditions which permit binding with the DNA of the microarray. In this way, it may be possible to identify a level of S. pseudintermedius gene expression.
[0078] Further information regarding the PCR based techniques described herein may be found in, for example, PCR Primer: A Laboratory Manual, Second Edition Edited by Carl W. Dieffenbach & Gabriela S. Dveksler: Cold Spring Harbour Laboratory Press and Molecular Cloning: A Laboratory Manual by Joseph Sambrook & David Russell: Cold Spring Harbour Laboratory Press.
[0079] In addition, other techniques such as deep sequencing and/or pyrosequencing may be used to detect cSCC sequences in any of the samples described above. Further information on these techniques may be found in "Applications of next-generation sequencing technologies in functional genomics", Olena Morozovaa and Marco A. Marra, Genomics Volume 92, Issue 5, November 2008, Pages 255-264 and "Pyrosequencing sheds light on DNA sequencing", Ronaghi, Genome Research, Vol. 11, 2001, pages 3-11.
[0080] In addition to the molecular detection methods described above, one of skill will also appreciate that immunological detection techniques such as, for example, enzyme-linked immunosorbent assays (ELISAs) may be used to identify levels of S. pseudintermedius proteins in samples. In other embodiments, ELISPOT, dot blot and/or Western blot techniques may also be used. In this way, samples provided by subjects suffering from S. pseudintermedius related diseases and/or infections (for example canine subjects suffereing from canine pyoderma), may be probed for levels of one or more S. pseudintermedius proteins, particularly those encoded by SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, or 37 so as to detect the presence of such proteins in a sample which may indicate a S. pseudintermedius infection.
[0081] Immunological detection techniques, may require the use of a substrate to which an antibody and/or antigen may be bound, conjugated or otherwise immobilised.
[0082] Suitable substrates may comprise, for example, glass, nitrocellulose, paper, agarose and/or plastic. A substrate which comprises, for example, a plastic material, may take the form of a microtitre plate.
[0083] Further information regarding ELISA procedures and protocols relating to the other immunological techniques described herein may be found in Using Antibodies: A Laboratory Manual by Harlow & Lane (CSHLP: 1999) and Antibodies: A Laboratory Manual by Harlow & Lane (CSHLP: 1988).
[0084] The present invention also extends to kits comprising reagents and compositions suitable for diagnosing, detecting or evaluating possible S. pseudintermedius infections, diseases and/or conditions. Kits according to this invention may be used to identify and/or detect levels of S. pseudintermedius gene(s)/S. pseudintermedius protein(s) in samples. Depending on whether or not the kits are intended to be used to identify levels of S. pseudintermedius genes and/or S. pseudintermedius proteins in samples, the kits may comprise substrates having S. pseudintermedius proteins or agents capable of binding S. pseudintermedius proteins, bound thereto. In addition, the kits may comprise agents capable of binding S. pseudintermedius proteins--particularly where the kit is to be used to identify levels of one or more S. pseudintermedius proteins in samples. In other embodiments, the kit may comprise polyclonal antibodies or monoclonal antibodies which exhibit specificity and/or selectivity for one or more S. pseudintermedius proteins. Antibodies for inclusion in the kits provided by this invention may be conjugated to detectable moieties. Kits for use in detecting the expression of genes encoding S. pseudintermedius proteins may comprise one or more oligonucleotides/primers for detecting/amplifying/probing samples for S. pseudintermedius protein encoding sequences. The kits may also comprise other reagents to facilitate, for example, sequencing, PCR and/or RFLP analysis. In one embodiment, the kits may comprise one or more oligonucleotides/primers for detecting/amplifying/probing nucleic acid samples (for example nucleic acid derived from canine skin) for levels of sequences corresponding to all or part of those described as SEQ ID NOS: 1-38 herein.
BRIEF DESCRIPTION OF THE DRAWINGS
[0085] FIG. 1: Genomic location of the 17 genes encoding putative CWA proteins in S. pseudintermedius strain ED99.
[0086] FIG. 2: Distribution of the genes encoding putative CWA proteins among 20 S. pseudintermedius strains, representatives of the closely related S. delphini and S. intermedius, and other staphylococcal species associated with animal skin disease.
[0087] FIG. 3: SDS-PAGE analysis (A) and Western blot analysis (B) of cell wall-associated proteins of S. Pseudintermedius ED99 and L. lactis expressing SpsD, SpsL, and SpsO with sera from dogs diagnosed with pyoderma.
[0088] FIG. 4. Adherence of L. lactis expressing specified MSCRAMMs to human Fn.
[0089] FIG. 5. Adherence of L. lactis expressing specified MSCRAMMs to Fg from different animal sources.
[0090] FIG. 6. Adherence of L. lactis expressing specified MSCRAMMs to CK10.
[0091] FIG. 7. Adherence of L. lactis expressing different MSCRAMMs to canine corneocytes of five dogs.
[0092] FIG. 8: SDS-PAGE analysis (A) and Western blot analysis (B) of Sps D, Sps L and Sps O recombinant A domain with canine convalescent serum from pyoderma cases.
[0093] FIG. 9: Inhibition of adherence of L. lactis expressing SpsD (A) and SpsL (B), and S. aureus Newman (C) to fibrinogen by canine convalescent serum from pyoderma cases.
DETAILED DESCRIPTION
[0094] The invention will now be described in more detail with reference to the following Figures which show:
[0095] FIG. 1. Genomic location of the 17 genes encoding putative CWA proteins in S. pseudintermedius strain ED99. Eight genes are situated in the oriC environ, indicated in orange, and nine are located in the core genome. sps=S. pseudintermedius surface protein.
[0096] FIG. 2. Distribution of the genes encoding putative CWA proteins among 20 S. pseudintermedius strains, representatives of the closely related S. delphini and S. intermedius, and other staphylococcal species associated with animal skin disease. The diversity of strains is represented a phylogenetic tree; grey squares indicate that the gene is present, blank squares that the gene is absent based on Southern blot analysis (for spsA to spsO), or PCR amplification (for spsP and spsQ).
[0097] FIG. 3. Western blot analysis of cell wall-associated proteins of S. pseudintermedius ED99 and L. lactis expressing SpsD, SpsL, and SpsO with sera from dogs diagnosed with pyoderma. (A) SDS PAGE analysis and (B) Western blot analysis of protein fractions from S. pseudintermedius ED99 in exponential phase of growth (lane 1); L. lactis expressing SpsL (lane 2); L. lactis expressing SpsD (lane 3); L. lactis expressing SpsO (lane 4); and L. lactis with pOri23 alone (lane 5).
[0098] FIG. 4. Adherence of L. lactis expressing specified MSCRAMMs to human Fn. Plates were coated with 1 .mu.g of human Fn or 1 .mu.g of BSA per well. Absorbance was measured at 590 nm and results are expressed as mean values of triplicate samples. Error bars indicate standard deviation. L. lactis expressing FnbpA from S. aureus and PBS were included as controls.
[0099] FIG. 5. Adherence of L. lactis expressing specified MSCRAMMs to Fg from different animal sources. Plates were coated with 1 .mu.g of Fg or 1 .mu.g of BSA per well. Absorbance was measured at 590 nm and results are expressed as mean values of triplicate samples. Error bars indicate standard deviation. L. lactis expressing FnbpA from S. aureus and PBS were included as controls.
[0100] FIG. 6. Adherence of L. lactis expressing specified MSCRAMMs to CK10. Plates were coated with 1 .mu.g of recombinant CK10 or 1 .mu.g of BSA per well. Absorbance was measured at 590 nm and results are expressed as mean values of triplicate samples. Error bars indicate standard deviation. S. aureus strain SH1000 in exponential and stationary phases of growth and PBS were included as controls.
[0101] FIG. 7. Adherence of L. lactis expressing different MSCRAMMs to canine corneocytes of five dogs. Bacterial adherence is calculated as percentage area covered with bacterial cells per field of corneocytes (ROI=500 .mu.m.sup.2). Results are based on the arithmetic mean of duplicate experiments. The bottom of each box represents the first quartile (Q1), the top of the box the third quartile (Q3), the bold lines the median, and the black circles the mean values. The whiskers define the range of the data.
[0102] FIG. 8: Reactivity of canine convalescent serum from pyoderma cases to Sps D, Sps L and Sps O recombinant A domain. 1 ug aliquots of rSps D and rSps L, and 10 .mu.l volumes of purified rSps O were subjected to SDS-PAGE under standard conditions and Coomassie stained (A) or Western blot transferred onto a nitrocellulose membrane. Membranes were probed with a 1:1000 dilution of canine serum, followed by a 1:3000 dilution of HRP-conjugated sheep anti-canine IgG. Reactive bands were visualized on Chemi-luminescent Film (B). 5 .mu.l aliquots of recombinant ClfB and the superantigen SEI from S. aureus were included in the terminal lanes of each gel as negative controls.
[0103] FIG. 9: Inhibition of adherence of L. lactis expressing SpsD (A) and SpsL (B) to fibrinogen (2 .mu.g per well) by canine convalescent serum from pyoderma cases. Bacterial cultures, normalised to an OD600 of 1 in PBS were pre-incubated for 2 h with doubling dilutions of serum ranging from 2% to .about.0.01% (v/v), prior to inoculation into fibrinogen coated wells. Results (n=3, .+-.SD) are expressed as absorbance readings at 590 nm minus background levels of fluorescence. Background fluorescence was measured by inoculating control cultures, incubated for 2 h in the absence of serum, into wells coated with BSA (2 .mu.g per well). Incubations of S. aureus Newman (C) were included as a negative control.
EXAMPLES
Example 1
Materials and Methods
Genome-Wide Screen for Genes Encoding for Cell-Wall Anchored Proteins
[0104] The S. pseudintermedius strain ED99 draft genome was interrogated for homologous sequences using position specific iterative basic local alignment search tool (PSI-BLAST), available from the National Center for Biotechnology Information (NCBI), USA (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and for the presence of a LPX[TSA][GANS] motif pattern by pattern hit initiated basic local alignment search tool (PHI-BLAST), available from NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Signal sequences were predicted by employing the SignalP server (http://www.cbs.dtu.dk/services/SignalP/), provided by the Center for Biological Sequence Analysis (CBS), Technical University of Denmark.
In Silico Structural Analysis of Cell-Wall Anchored Proteins
[0105] The predicted CWA proteins were searched for functional domains using EMBL-EBI InterPro Scan (http://www.ebi.ac.uk/interpro). Structural analysis was carried out with the PHYRE (Protein Homology/analogY Recognition Engine) fold recognition server, available from the Structural Bioinformatics Group, Imperial College London, UK (http://www.sbg.bio.ic.ac.uk/phyre/). Repeat sequences were predicted by generating nucleic acid dot plots, using software available from Colorado State University, USA (http://www.vivo.colostate.edu/molkit/dnadot/), applying tandem repeats finder software from Boston University, USA (http://tandem.bu.edu/trf/trf.html), and variable sequence tandem repeats extraction and architecture modelling (XSTREAM), available from the University of California, USA (http://jimcooperlab.mcdb.ucsb.edu/xstream/). Sequence alignments and pair-wise sequence comparisons were generated with ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2). Amino acid composition and molecular weight predictions were generated using ProtParam on the ExPASy Proteomics Server (http://www.expasy.ch/tools/protparam.html).
Cloning of Selected Genes Encoding Putative MSCRAMMs of S. pseudintermedius ED99 into L. lactis MG1363
[0106] Oligonucleotides were designed for PCR amplification of the full-length spsD, spsL and spsO genes and either PstI, SalI or BamHI specific restriction sites were inserted on both sides of the DNA fragments. 50 .mu.l PCR reactions contained 2 .mu.l (approximately 100 ng) genomic DNA template, 0.25 .mu.M forward primer, 0.25 .mu.M reverse primer, 1.times.PfuUltra.TM. II reaction buffer (Stratagene, USA), 0.25 mM dNTP's (Promega, USA) and 1 .mu.l PfuUltra.TM. II Fusion HS DNA polymerase (Stratagene, USA). The thermocycler programme included an initial denaturation step at 95.degree. C. for 2 min, followed by 30 cycles of denaturation at 95.degree. C. for 20 s, annealing at 50.degree. C. for 20 s and extension at 72.degree. C. for 2 min, followed by a final extension step at 72.degree. C. for 3 min. PCR products were visualised on 0.8% (w/v) agarose gels, gel extracted under avoidance of UV light exposure and purified using QIAquick Gel Extraction Kit (Qiagen, UK) according to the manufacturer's instructions. Purified DNA fragments were cloned into the StrataClone.TM. Blunt PCR cloning vector pSC-B (Stratagene, USA) using the StrataClone Ultra.TM. Blunt PCR Cloning Kit (Stratagene, USA) according to the manufacturer's instructions. Each cloning reaction consisted of 3 .mu.l Strataclone Buffer Blunt (Stratagene, USA), 2 .mu.l purified PCR product and 1 .mu.l Strataclone.TM. Blunt Vector Mix (Stratagene, USA). StrataClone.TM. SoloPack.RTM. competent cells (Stratagene, USA) were transformed according to the manufacturer's instructions and colonies selected using blue-white screening on LB-ampicillin (100 .mu.g/ml)-X-gal plates. White colonies were transferred into 5 ml LB-ampicillin (100 m/ml) broth and grown overnight at 37.degree. C. with shaking at 200 rpm. Plasmid was isolated using QIAprep Spin Miniprep Kit (Qiagen, UK) according to the manufacturer's instructions. Purified plasmids were digested using appropriate restriction endonucleases (New England Biolabs, UK), and diagnostic digests were analysed on 0.8% (w/v) agarose gels. For generating DNA constructs, the E. coli-L. lactis shuttle vector pOri23 (kindly provided by P. Moreillon, University of Lausanne, Switzerland) was used. The pOri23 vector carries the ermAM gene for erythromycin resistance, the high-copy-number oriColE1 replicon for autonomous replication in E. coli and the constitutive lactococcal promoter P23 (Que et al., 2000). The multiple cloning site of pOri23 consists of restriction sites for endonucleases PstI, SalI and BamHI (Que et al., 2000).
[0107] StrataClone.TM. plasmids containing the DNA inserts of interest and the E. coli-L. lactis shuttle vector pOri23 were each digested in a 100 .mu.l total reaction volume containing 10 .mu.l plasmid (approximately 2.5 .mu.g), 20 units appropriate restriction endonucleases (New England Biolabs, UK), and suitable buffers (New England Biolabs, UK) according to the manufacturer's instructions. Restriction digestions were performed at 37.degree. C. for 16 h. The restriction fragments to be cloned were extracted from 0.8% (w/v) agarose gels without UV exposure as described in the general Material and Methods and purified using QIAquick Gel Extraction Kit (Qiagen, UK) according to the manufacturer's instructions. DNA inserts and restriction-digested pOri23 plasmid were quantified using spectrophotometry (NanoDrop ND-1000, Thermo Scientific, USA) and ligation reactions were carried out with a plasmid to insert ratio of 1:3 in a 10 .mu.l total ligation reaction volume, consisting of 1 .mu.l vector (approximately 10 ng), 400 units T4 DNA ligase (New England Biolabs, UK), lx T4 DNA ligase reaction buffer (New England Biolabs, UK), x ill DNA insert (depending on DNA concentration), and x .mu.l sterile water (depending on the volume of DNA insert). Ligations were incubated at 16.degree. C. for 16 h.
[0108] One 50 .mu.l aliquot of electrocompetent L. lactis cells was thawed on ice and 2 .mu.l (.about.20 ng) pOri23 plasmid carrying the DNA insert of interest was added. Electroporation cuvettes (Sigma-Aldrich, UK) were pre-chilled and L. lactis cells plus plasmid were transferred into the cuvettes. Electroporation was performed at standard settings (25 .mu.F, 2.5 kV, 200 Ohm) and 1 ml GM17 was added immediately. Cells were incubated at 30.degree. C. in a static incubator for 2 h prior to spreading 250 .mu.l of cell suspension per plate onto GM17 plates containing 5 .mu.g/ml erythromycin. Plates were incubated overnight at 30.degree. C.
[0109] For screening of L. lactis transformants, plasmid was isolated using the Qiagen MiniPrep Kit (Qiagen, UK) with addition of 100 U/ml mutanolysin (Sigma-Aldrich, UK) and 100 m/ml lysozyme (Sigma-Aldrich, UK) to buffer P1. Diagnostic digests of purified plasmids were carried out with appropriate restriction enzymes and analysed on 0.8% (w/v) agarose gels.
[0110] Additionally, colony PCR was performed for pOri23 carrying spsD and spsO using gene-specific oligonucleotides (Table 5.3). L. lactis colonies were resuspended in 10 .mu.l 10% (v/v) IGEPAL (Sigma-Aldrich, UK) and incubated for 10 min at 95.degree. C. in a thermocycler machine. 40 .mu.l master mix containing 0.3 .mu.M forward primer, 0.3 .mu.M reverse primer, 0.2 mM dNTP's (Promega, USA), 1.times. reaction buffer (Promega, USA), 1.5 mM MgCl.sub.2 (Promega, USA) and 0.025 u/.mu.l taq polymerase (Promega, USA) was added. The thermocycler programme included an initial denaturation step at 95.degree. C. for 2 min, followed by 30 cycles of denaturation at 95.degree. C. for 1 min, annealing at 50.degree. C. for 1 min and extension at 72.degree. C. for 1 min, followed by a final extension step at 72.degree. C. for 7 min. PCR products were visualised on 0.8% (w/v) agarose gels.
Western Blot Analysis of L. lactis Constructs
[0111] Samples were dissolved in 1.times. Laemmli sample buffer (Sigma-Aldrich, UK), boiled for 10 min and resolved by SDS-PAGE in 10% polyacrylamide gels by standard procedures, and Western blot analysis was carried out as described in the general Materials and Methods. Three canine sera samples from pyoderma cases (obtained from patients at the Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh) were pooled and used as primary antibody in a 1:1000 dilution. HRP-conjugated sheep anti-dog antibody was used as a secondary antibody in a 1:5000 dilution (Bethyl Laboratories Inc., USA).
Canine Corneocyte Adherence Assay
[0112] For preliminary experiments to confirm adherence of S. pseudintermedius ED99 and non-adherence of L. lactis, corneocytes were obtained from a seven-year-old male neutered Border collie cross-breed with no history or physical signs of systemic or cutaneous disease. Corneocytes for the L. lactis adherence study were obtained from five dogs of different breeds (one Labrador retriever, two Border collies and two cross-breeds). Three dogs were ovariohysterectomised females and two were entire males. The median age was seven years (range one to twelve years). The dogs showed no abnormalities on general physical examination and had no history or physical signs of skin disease at the time of corneocyte collection. All dogs were privately owned by staff or students of the Royal (Dick) School of Veterinary Studies, The University of Edinburgh. None of the dogs had received topical or systemic drug treatments for at least three weeks prior to the day of corneocyte collection.
[0113] Samples were taken from the ventral abdomen and inner thigh. If necessary, sample sites were clipped with Oster clippers (Oster Cryotech, USA) using a number 40 blade. For collection of corneocytes, the method described by Forsythe et al. (2002) was used. Briefly, the area was cleaned of surface debris and commensal bacteria by applying four strips of single sided adhesive tape (Cellux, Henkel Consumer Adhesives, UK), using each strip once. To collect corneocytes, double-sided, clear, adhesive wig tape (Tropical Tape Super Grip, USA) was mounted onto a microscope slide in 1 cm.sup.2 pieces and applied to the same area of skin surface 10 times with gentle force. Slides were investigated by microscopic examination and only slides with at least 75% corneocyte coverage were used in the study.
[0114] The corneocyte slides were positioned in moisture chambers (Nunc.TM., Thermo Fisher Scientific, Denmark) as described by Forsythe et al. (2002). The moisture chambers consisted of 30 cm.times.30 cm plastic trays with lids and were prepared by lining the trays with moistened paper towels. S. pseudintermedius ED99 stationary or exponential (OD.sub.600 of 0.5) phase cultures and L. lactis exponential phase cultures (OD.sub.600 0.6 to 0.8) were centrifuged at 4000 rpm for 5 min, washed with PBS and resuspended in PBS to a final OD.sub.600 of 0.5. The moisture chambers were placed in a static incubator and 250 .mu.l of bacterial suspension was added to each 1 cm.sup.2 of tape, forming a meniscus on the tape. Slides incubated with 250 .mu.l of sterile PBS were included as a control. The slides were incubated at 37.degree. C. for 90 min and washed in PBS. Each slide was stained with 0.5% (w/v) crystal violet (Sigma-Aldrich, UK) for 90 s before rinsing off with PBS. The slides were air-dried and a drop of immersion oil (Cargille Laboratories Inc., USA) and a cover slip (Scientific Laboratory Supplies, UK) were added before microscopic quantification. All slides were prepared in duplicate on the same day and incubated at the same time. Prior to incubation with bacterial suspensions or PBS, each slide was labelled with a letter code to allow identification after the microscopic analysis. The identification code on each slide was hidden by a third party for subsequent image acquisition so that the investigator was blinded to the origin of the slide. For quantification of adherent bacteria, computerised image analysis was used as described previously by Forsythe et al. (2002) with minor modifications. For each slide, bright field images of 1000.times. oil-immersion fields were acquired with a Sony DXC-390P 3CCD colour video camera (Scion Corporation, USA) connected to a Leica Laborlux S microscope (Leica Microsystems UK Ltd., UK). The RGB video signal from the camera was digitised using Scion Image (Scion Corporation, USA) installed in a G4 Macintosh computer (Apple Computer, USA) fitted with a CG-7 frame grabber (Scion Corporation, USA). For image acquisition, fields equivalent to 14.4 mm.sup.2 were selected randomly by starting in the bottom left corner of each slide and moving through the slide in a defined way using the scale on the microscope stage. A field was discarded if the corneocyte layer was not confluent, the bacteria were poorly stained against the background or the field could not be focused properly. The software used for quantification of bacterial adherence was set to calculate the percentage area that was covered by bacteria per confluent layer of corneocytes in a defined region of interest (ROI) of 500 .mu.m.sup.2 within each image field acquired. Previous studies by Forsythe et al. (2002) using the same technique and software have demonstrated that 15 replicates of each duplicate slide resulted in acceptable coefficients of variation of approximately 10%. In this study, 25 replicates of each slide were acquired and the overall mean percentage area of adherence was determined by calculating the mean of all replicates.
Results
Identification of Genes Encoding 17 Putative Cell-Wall-Anchored Proteins in the S. Pseudintermedius ED99 Genome
[0115] The initial search for putative CWA proteins identified 34 sequences that fulfilled at least one of the search criteria (homology to characterised MSCRAMMs in the database, predicted LPXTG motif or variant near the C terminus, predicted signal peptide at the N terminus). After gap closure and combination of incomplete sequences, a total of 17 ORFs encoding putative CWA proteins with a predicted minimum length of approximately 250 amino acids was determined. The 17 predicted CWA proteins were designated `Sps` for Staphylococcus pseudintermedius surface proteins`, followed by a capital letter (SpsA to SpsQ). Their position in the S. pseudintermedius ED99 genome is indicated in FIG. 1. Of note, eight genes encoding putative CWA proteins are located near the oriC environ (FIG. 1). Homology searches in the database resulted in sequence identities with known staphylococcal proteins ranging from .about.30% to .about.80% (Table 1). Signal sequences, necessary for Sec-dependent protein secretion (Foster and Hook, 1998), were predicted for 14 putative Sps proteins, consisting of 29 aa for SpsC and SpsK, 33 aa for SpsN, SpsP, and SpsQ, 36 aa for SpsD, 37 for SpsG, 38 aa for SpsA, SpsB, and SpsL, 39 aa for SpsH, 44 aa for SpsO, and 48 aa for SpsF and SpsM. No signal sequence was predicted for SpsE, SpsI, and SpsJ (FIG. 4.3).
The Putative CWA Proteins SpsD, SpsL, and SpsO have Several MSCRAMM Features.
[0116] Out of the 17 putative CWA proteins of S. pseudintermedius ED99, SpsD, SpsL, and SpsO contained each of the MSCRAMM features screened for, including a signal sequence at the N-terminus, followed by a non-repeated A domain with two IgG-like folds, dividing the A domain into N1, N2, and N3 subdomains, a tandemly repeated domain at the C-terminus (and at the N-terminus for SpsO), and a C-terminal LPXTG-anchor motif. The main characteristics of SpsD, SpsL, and SpsO are summarised in Table 2. Of interest, a TYTFTDYVD motif or variant, important for the `dock, lock and latch` ligand-binding mechanism (Ponnuraj et al., 2003), was found in SpsD, SpsL, and SpsO, and putative latching sequences were identified (Table 2). Further, putative Fn-binding motifs with weak homology to FnbpA-10 of FnbpA in S. aureus were detected in the repeat region of SpsL (24% identity in pair-wise alignments for SpsL1-SpsL6, and 21% for SpsL-7). No homology to Fn-binding motifs of FnbpA was detected in the repeat regions of SpsD and SpsO. Of note, the genes encoding for SpsD, SpsL, and SpsO in the S. pseudintermedius ED99 genome are situated in different genomic contexts. While spsD is located in a well-conserved region of the core genome, spsL is part of the oriC environ (Takeuchi et al., 2005) (FIG. 1). The spsO gene appears to be species-specific as it is not present in the genomes of other staphylococcal species. The region contains two putative transposases, suggesting that the whole region might be subjected to horizontal gene transfer.
Distribution of the 17 Genes Encoding Putative Cell-Wall-Anchored Proteins Among the S. intermedius Group
[0117] In order to investigate the distribution of the 17 genes encoding putative CWA proteins identified in the S. pseudintermedius ED99 genome among other members of the SIG and closely related staphylococcal species, Southern blot analysis and PCR amplification were performed. A total of 20 S. pseudintermedius strains representing the breadth of diversity within the species, representatives of the closely related S. delphini and S. intermedius species, and other staphylococcal species associated with animal hosts (FIG. 2) were screened for the presence of the putative CWA encoding genes by Southern blot analysis (spsA to spsO). For the S. aureus spa orthologues spsP and spsQ, PCR amplification was employed, as the genes share 70% nucleotide identity which precluded design of gene-specific probes for Southern blot analysis. For similar reasons, the primers designed for PCR amplification were located upstream of spsP (spsP-F), in the non-repeated region of spsP (spsP-R), in the unique region between spsP and spsQ (spsQ-F), and in a region unique for spsQ (spsQ-R).
[0118] Of the 17 genes examined, 13 were found in all S. pseudintermedius strains investigated. The remaining 4 (spsF, spsO, and the S. aureus spa orthologues spsP and spsQ) were present in 11, 6, 7, and 11 of the 20 S. pseudintermedius strains, respectively. Furthermore, 8 of the 17 genes were detected in S. delphini and 6 in S. intermedius, and 9 genes were exclusive to S. pseudintermedius. None of the genes encoding putative CWA proteins was detected in the non-SIG staphylococcal species examined. Results are summarised in FIG. 2. Of note, it cannot be excluded at this point that DNA sequence variation in PCR primer annealing sites for spsP and spsQ, and weak homology (less than approximate 70%) for spsA to spsO among different strains have influenced the results.
Expression of CWA Proteins on the S. pseudintermedius Bacterial Cell Surface.
[0119] The in silico identification of 17 putative CWA proteins in S. pseudintermedius ED99 raises questions about the expression of these proteins and their role in colonisation and disease. Surface proteome analysis of early-, mid-, and late exponential phase S. pseudintermedius ED99 was performed in collaboration with the Moredun Research Institute, Penicuik, Scotland, UK, using liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS-MS). Six out of the 17 putative CWA proteins predicted in the S. pseudintermedius ED99 genome were detected on the bacterial surface, including SpsD, SpsK, SpsL, SpsN, SpsO, and SpsQ. The putative CWA proteins SpsL, SpsN, and SpsQ were identified in all three phases of growth; SpsK was lacking in early-, SpsO in mid-, and SpsD in late exponential phase. The 11 undetected CWA proteins might not have been expressed under the conditions tested, or the expression level might have been below the detection threshold of the LC-ESI-MS-MS method used.
Cloning and Expression of SpsD, SpsL, and SpsO in L. lactis.
[0120] In order to examine the role of putative selected MSCRAMMs independently on the bacterial cell surface, the full-length spsD (3096 bp), spsL (2793 bp) and spsO (5538 bp) genes were cloned into L. lactis using the shuttle vector pOri23 (Que et al., 2000). Positive clones were identified by restriction digestion of purified pOri23 plasmids from single colonies of transformed L. lactis cells (data not shown). The pOri23 construct inserts were verified by DNA sequencing for spsL and spsD. For spsO, DNA sequence was generated for approximately 3000 bp of the total length of 5538 bp. A segment of the repeat region corresponding to .about.2500 bp could not be determined due to the existence of identical tandem repeats which did not allow directed sequencing. As a negative control for subsequent MSCRAMM characterisation studies, L. lactis was transformed with the empty vector pOri23, confirmed by restriction digestion analysis. The predicted molecular weights were 115 kDa for SpsD, 103 kDa for SpsL, and 198 kDa for SpsO.
[0121] L. lactis Expressing SpsD and SpsL Demonstrated Seroreactivity with Canine Sera from Pyoderma Cases.
[0122] The potential antibody response to SpsD, SpsL, and SpsO in vivo was investigated by Western blot analysis employing canine sera from staphylococcal pyoderma cases. The pyoderma was clinically manifested at the time of blood sampling and the dogs were also diagnosed with AD (Neuber et al., 2008). Cell wall-associated protein fractions of the L. lactis constructs and of S. pseudintermedius ED99 were subjected to SDS-PAGE, transferred to nitrocellulose membrane and incubated with pooled canine sera from three pyoderma cases as described in Materials and Methods. An array of immunoreactive bands was detected for S. pseudintermedius ED99, ranging from 24 kDa to 102 kDa in molecular weight (FIG. 3). For L. lactis expressing SpsD and L. lactis expressing SpsL, multiple seroreactive bands in the range of 38 kDa to 225 kDa for SpsD, and 38 kDa and 52 kDa for SpsL were detected, which were absent in the protein fractions of L. lactis carrying pOri23 alone (FIG. 3). In contrast, L. lactis expressing SpsO did not demonstrate seroreactivity with sera from dogs diagnosed with pyoderma (FIG. 3).
Adherence of L. lactis Constructs to Extracellular Matrix Proteins.
[0123] L. lactis expressing SpsO, SpsD, SpsL, and L. lactis carrying the vector pOri23 alone were tested for their ability to adhere to human Fn, human, canine, feline, and bovine Fg, and to recombinant mouse CK10 in solid phase assays.
The Putative MSCRAMMs SpsD and SpsL Mediate Binding of L. lactis to Fibronectin.
[0124] L. lactis expressing SpsD and SpsL demonstrated adherence to human Fn, whereas L. lactis expressing SpsO demonstrated increased binding to Fn, but also to BSA, indicative of a non-specific interaction (FIG. 4).
The Putative MSCRAMMs SpsD and SpsL Mediate Binding of L. lactis to Fibrinogen, and SpsL Demonstrates Canine Host-Specificity.
[0125] L. lactis expressing SpsD strongly adhered to Fg from several animal sources (FIG. 5). In contrast, L. lactis expressing SpsL adhered to canine and feline Fg only, and did not bind to human and bovine Fg (FIG. 5), indicating a host-specific interaction. L. lactis expressing SpsO did not bind to Fg from any source compared to L. lactis with the pOri23 vector alone (FIG. 5).
The Putative MSCRAMM SpsD Mediates Binding of L. lactis to Cytokeratin 10.
[0126] L. lactis expressing SpsD demonstrated strong adherence to CK10, whereas L. lactis expressing SpsO and SpsL did not show increased binding compared to L. lactis with the vector pOri23 alone (FIG. 6).
The Putative MSCRAMMs SpsD and SpsO, but not SpsL, Mediate Adherence of L. lactis to Ex Vivo Canine Corneocytes.
[0127] L. lactis expressing SpsD, SpsL, and SpsO were tested for their ability to adhere to ex vivo canine corneocytes in comparison to L. lactis with the empty vector pOri23 and S. pseudintermedius ED99. L. lactis carrying the empty vector pOri23 adhered poorly to canine corneocytes (FIG. 7). For S. pseudintermedius ED99, the mean percentage adherence to canine corneocytes was 4.24% which was significantly different to L. lactis carrying pOri23 alone (P=0.001) (FIG. 7). L. lactis expressing SpsD and L. lactis expressing SpsO adhered to ex vivo canine corneocytes (FIG. 7). The increase in adherence was approaching significance for SpsD (P=0.050), and was significant for SpsO when expressed in L. lactis compared to L. lactis carrying pOri23 alone (P=0.004). Binding of L. lactis expressing SpsL was not significantly different to L. lactis carrying pOri23 alone (P=0.108), indicating that SpsL does not promote adherence to canine corneocytes (FIG. 7).
Purified Recombinant Sps D, Sps L and Sps O Demonstrate Reactivity with Canine Convalescent Serum.
[0128] Reactivity of recombinant A domain from Sps D, Sps L and Sps O with canine convalescent serum from pyoderma cases was examined by Western affinity blot analysis (FIG. 8). rSpsD, rSpsL and rSpsO all crossreacted with IgG present in the canine serum (FIG. 8).
Pre-Incubation with Canine Convalescent Serum Inhibits SpsL-Mediated Binding to Fibrinogen.
[0129] The ability of the reactive antibody present in convalescent serum to inhibit SpsD and SpsL ligand binding was investigated using a modified solid phase adherence assay. Prior to inoculation into fibrinogen coated wells, PBS normalised cultures of L. lactis expressing SpsD and SpsL were incubated for 2 h with doubling dilutions of convalescent serum at 28.degree. C. (FIG. 9). Convalescent serum inhibited binding of L. lactis expressing SpsL, but not SpsD to canine fibrinogen, with complete inhibition at a final concentration of 2% v/v (FIG. 9).
Discussion
[0130] In summary, genome-wide analysis of S. pseudintermedius ED99 revealed the presence of 17 genes encoding putative CWA proteins based on typical MSCRAMM features. All MSCRAMM characteristics searched for were identified for SpsD, SpsL, and SpsO, including a signal sequence, a non-repeated A domain with two IgG-like folds, tandemly repeated regions, and a C-terminal LPXTG-anchor motif. Interestingly, SpsD, SpsL, and SpsO belong to different groups based on Southern blot analysis, with SpsD being present in all SIG members, SpsL in S. pseudintermedius only, and SpsO in only six of the S. pseudintermedius strains investigated, and not in the other SIG species tested. Based on in silico analysis and in vitro expression data, SpsD, SpsL, and SpsO were selected for functional characterisation.
[0131] All CWA proteins and in particular, SpsD, SpsL, and SpsO could be employed in passive and active immunisation studies to test their antigenic properties, either singular or in combination, in a similar fashion as proposed for S. aureus ClfA (Josefsson et al., 2001; Hall et al., 2003; Patti, 2004; Nanra et al., 2009). Further, a combinatory vaccine of S. aureus surface proteins IsdA, iron-regulated surface determinant protein B (IsdB), SdrD, and SdrE has proven to be highly protective in a mouse infection model (Stranger-Jones et al., 2006), demonstrating the promising potential of vaccine preparations containing multiple staphylococcal CWA proteins.
[0132] In addition, MSCRAMMs with known ligands could be targets of anti-staphylococcal drug development, e.g. by generating synthetic peptides based on the interacting ECM proteins, which antagonise the MSCRAMM-host protein interaction, but do not interfere profoundly with physiological processes in the host. An excellent example is provided by Ganesh et al. (2008) who demonstrated that synthetic peptides, based on the Fg-binding site for ClfA, hinder the ClfA interaction, but do not block binding of the platelet integrin .alpha..sub.IIb.beta..sub.3 to Fg. Recently, Stranger-Jones et al screened the genome of the human pathogen S. aureus for all genes predicted to encode CWA proteins, and immunized mice with each protein to determine their capacity to protect against lethal or invasive infection (Stranger-Jones et al, 2006). Four of the proteins were combined into a multiple protein vaccine which induced high levels of protection against S. aureus invasive disease of mice. These data have stimulated renewed optimism in a vaccine for the prevention of human S. aureus infections. A similar approach could be used to design an effective vaccine for the prevention of S. pseudintermedius canine pyoderma.
Example 2
[0133] Staphylococcus pseudintermedius Surface Protein Vaccination Experiment.
[0134] S. pseudintermedius surface antigens were divided into 2 pools of 3 and 4 antigens, respectively. Vaccine pool 1 contained antigens SpsC, IsaA, and SpsN and vaccine pool 2 contained SpsD A domain, N2, N3 subdomains, SpsL A domain (SEQ ID NO: 37), and SpsA.
[0135] Groups of 8 or 9 BalbC mice were vaccinated subcutaneously with pool 1 or pool 2 or PBS, each with complete Freund's adjuvant, followed by additional vaccinations at day 8 and day 23 with incomplete Freund's adjuvant. On day 32, mice were challenged through a subcutaneous route with 10.sup.7 cfu S. pseudintermedius ED99. Mice were then examined for abscess formation, and weight loss.
[0136] Mice vaccinated with pool 2 (comprising the protein having amino acid sequence provided in SEQ ID NO: 37) had significantly reduced lesion size (.about.50% reduction), and significantly reduced weight loss (.about.50%) compared to PBS control mock vaccinated animals.
REFERENCES
[0137] Bannoehr J, Ben Zakour N L, Waller A S, Guardabassi L, Thoday K L, van den Broek A H, Fitzgerald J R. (2007). Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol. 189:8685-92
[0138] Ben Zakour, N. L., Guinane, C. M. & Fitzgerald, J. R. (2008) Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiol Lett, 289, 1-12.
[0139] Clarke, S. R. & Foster, S. J. (2006) Surface adhesins of Staphylococcus aureus. Adv Microb Physiol, 51, 187-224.
[0140] Corrigan, R. M., Miajlovic, H. & Foster, T. J. (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol, 9, 22.
[0141] Clarke, S. R., Andre, G., Walsh, E. J., Dufrene, Y. F., Foster, T. J. & Foster, S. J. (2009) Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun, 77, 2408-16.
[0142] Curtis, C. F., et al (2006) Masked, controlled study to investigate the efficacy of a Staphylococcus intermedius autogenous bacterin for the control of canine idiopathic recurrent superficial pyoderma. Vet Dermatol 17, 163-8 (2006).
[0143] Forsythe, P. J., Hill, P. B., Thoday, K. L. & Brown, J. (2002) Use of computerized image analysis to quantify staphylococcal adhesion to canine corneocytes: does breed and body site have any relevance to the pathogenesis of pyoderma? Vet Dermatol, 13, 29-36.
[0144] Foster, T. J. & Hook, M. (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol, 6, 484-8.
[0145] Ganesh, V. K., Rivera, J. J., Smeds, E., Ko, Y. P., Bowden, M. G., Wann, E. R., Gurusiddappa, S., Fitzgerald, J. R. & Hook, M. (2008) A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog, 4, e1000226
[0146] Guardabassi, L., Schwarz, S. & Lloyd, D. H. (2004b) Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother, 54, 321-32.
[0147] Hall, A. E., Domanski, P. J., Patel, P. R., Vernachio, J. H., Syribeys, P. J., Gorovits, E. L., Johnson, M. A., Ross, J. M., Hutchins, J. T. & Patti, J. M. (2003) Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect Immun, 71, 6864-70.
[0148] Hill, P. B. et al. (2006) Survey of the prevalence, diagnosis and treatment of dermatological conditions in small animals in general practice Vet Rec 158, 533-9 (2006).
[0149] Josefsson, E., Hartford, O., O'brien, L., Patti, J. M. & Foster, T. (2001) Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis, 184, 1572-80.
[0150] Lindsay, J. A., Moore, C. E., Day, N. P., Peacock, S. J., Witney, A. A., Stabler, R. A., Husain, S. E., Butcher, P. D. & Hinds, J. (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol, 188, 669-76.
[0151] Mazmanian, S. K., et al. (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760-3 (1999).
[0152] Nanra, J. S., Timofeyeva, Y., Buitrago, S. M., Sellman, B. R., Dilts, D. A., Fink, P., Nunez, L., Hagen, M., Matsuka, Y. V., Mininni, T., Zhu, D., Pavliak, V., Green, B. A., Jansen, K. U. & Anderson, A. S. (2009) Heterogeneous in vivo expression of clumping factor A and capsular polysaccharide by Staphylococcus aureus: implications for vaccine design. Vaccine, 27, 3276-80.
[0153] Otto, M. (2008) Targeted immunotherapy for staphylococcal infections: focus on anti-MSCRAMM antibodies. BioDrugs 22, 27-36 (2008)
[0154] Patti, J. M. (2004) A humanized monoclonal antibody targeting Staphylococcus aureus. Vaccine, 22 Suppl 1, S39-43.
[0155] Pizza, M. et al. (2008) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816-1820
TABLE-US-00021
[0155] TABLE 1 Sequence homology of the 17 predicted cell-wall-anchored proteins against known proteins in the public domain. Putative CWA Identity Similarity protein Best Hit (BLAST) (%) (%) SpsA LPXTG cell-wall surface anchor family protein of S. aureus COL 31.2 56.9 SpsB RodA, a rod shape determining protein of S. epidermidis ATCC 12228 69.7 87.8 SpsC bifunctional autolysin precursor of S. epidermidis ATCC 12228 50.7 65.9 SpsD Fnbp protein homolog of S. aureus Mu50 40.7 59.1 SpsE Fibrinogen binding protein of S. epidermidis ATCC 12228 78.6 90.1 SpsF hypothetical protein, similar to the putative cell-surface adhesin SdrF of S. haemolyticus JCSC1435 52.8 69.3 SpsG hypothetical protein, cell-wall surface anchor family of Streptococcus pneumoniae D39 47.7 63.6 SpsH Sdr-repeat family protein SdrH, S. aureus USA300 36.0 53.1 SpsI serine-aspartate rich, fibrinogen-binding, bone sialoprotein-binding protein S. epidermidis ATCC 12228 37.3 55.5 SpsJ precursor of a serine-rich adhesin for platelets of S. haemolyticus JCSC143S 52.2 61.2 SpsK IgG-binding protein of S. aureus COL 50.4 71.1 SpsL Fnbp protein homolog of S. aureus Mu50 33.4 51.7 SpsM hypothetical protein, similar to the putative cell-surface adhesin SdrF, S. haemolyticus JCSC1435 44.4 61.7 SpsN probable exported protein of S. aureus RF122 38.0 60.0 SpsO serine-aspartate repeat-containing protein C precursor of Staphylococcus warneri L37603 50.0 68 SpsP LPXTG-motif cell wall anchor domain of S. aureus JH9 60.6 74.3 SpsQ IgG-binding protein A precursor of S. aureus MRSA252 57.0 71.7
TABLE-US-00022 TABLE 2 Main characteristics of the predicted CWA proteins SpsD, SpsL, and SpsO of S. pseudintermedius ED99. TYTFTDYVD- Putative latching Repeat Copy Amino MW Signal LPXTG Ig-like fold.sup.b like motif sequence region number acids (kDa).sup.a peptide motif (position) (position).sup.b (position).sup.b (position) repeats SpsD 1031 115 36 aa LPDTG 167-320 aa RYRFMDYVN NNASGEG 867-959 aa 5 322-519 aa (267-275 aa) (491-497 aa) SpsL 930 103 38 aa LPKTG 220-363 aa VYTFKDYVN NSASGSG 543-818 aa 7 364-531 aa (298-306 aa) (502-508 aa) SpsO 1846 198 44 aa LPNTG 339-492 aa TYTFTDYVD DKSTALG 661-1800 aa 96 487-659 aa (424-432 aa) (635-641 aa) .sup. 97-216 aa.sup.c .sup. 4.sup.c aa = amino acids; .sup.aMW = predicted approximate molecular weight in kDa (kilo dalton); .sup.bwithin the A domain; .sup.cN-terminal repeats
Sequence CWU
1
1
3811044DNAStaphylococcus pseudintermedius 1atggaaaaca aaaacttttt
tagtattcgt aaactatcta ttggtgtagg ttcttgctta 60atcgcgagtt ctttacttgt
aaacacgcca agttttgctg aagaaacaga taatgcgaac 120attaatgacg cacaacaaaa
cgccttttat gaaattttac atttgccaaa cttaactgaa 180gagcaacaaa atggattcat
ccaaagtctt aaagatgatc caagtgtgag caacgacatt 240ttagtagaag ctaagaaatt
aaatgacact caagctaaac ctgattacag tgaagcacaa 300caaaatgcat tttatgaaat
tttacatttg tcaaacttaa ctgaagagca acaaaatgga 360ttcatccaaa gtcttaaaga
tgatccaagt gtgagcaacg acattttagt agaagctaag 420aagttaaatg acactcaagc
taaacctgat tacagtgaag cacaacaaaa tgcattttat 480gaaattttac atttgtcaaa
cttaactgaa gagcaacaaa atgggttcat ccaaagcctt 540aaagatgatc caagtgtaag
taaagaaatt ttagcagaag ctaagaagtt aaatgatagt 600caagcaccta aagttgataa
agctaaaaaa actgacaaag ctgaagcgaa agcagatgat 660aaagctaaag gtgaagaagc
caaaaaatct gaagacaaaa aagatagcaa agcagataag 720gcaaaatcga aaaacgctac
acatgttgtt aaacctggtg aaactttaga taatattgct 780aaagatcatc atacaactgt
tgataaaatt gctaaagata acaaaataaa agataaaaat 840gtgattaaac taggtcaaaa
acttgttgtt gataaacaaa aagcaactca aggaaaacaa 900gaagctgtag cgaaaaatga
agtgaaggct ttacctaata ctggtgaaaa tgatgatatc 960gcattattca gcacaacagt
tgcgggtggc gtaagtatcg ctttaggttc attattatta 1020ggaagaaaca gaaaaactag
ctaa 10442347PRTStaphylococcus
pseudintermedius 2Met Glu Asn Lys Asn Phe Phe Ser Ile Arg Lys Leu Ser Ile
Gly Val 1 5 10 15
Gly Ser Cys Leu Ile Ala Ser Ser Leu Leu Val Asn Thr Pro Ser Phe
20 25 30 Ala Glu Glu Thr Asp
Asn Ala Asn Ile Asn Asp Ala Gln Gln Asn Ala 35
40 45 Phe Tyr Glu Ile Leu His Leu Pro Asn
Leu Thr Glu Glu Gln Gln Asn 50 55
60 Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Val Ser
Asn Asp Ile 65 70 75
80 Leu Val Glu Ala Lys Lys Leu Asn Asp Thr Gln Ala Lys Pro Asp Tyr
85 90 95 Ser Glu Ala Gln
Gln Asn Ala Phe Tyr Glu Ile Leu His Leu Ser Asn 100
105 110 Leu Thr Glu Glu Gln Gln Asn Gly Phe
Ile Gln Ser Leu Lys Asp Asp 115 120
125 Pro Ser Val Ser Asn Asp Ile Leu Val Glu Ala Lys Lys Leu
Asn Asp 130 135 140
Thr Gln Ala Lys Pro Asp Tyr Ser Glu Ala Gln Gln Asn Ala Phe Tyr 145
150 155 160 Glu Ile Leu His Leu
Ser Asn Leu Thr Glu Glu Gln Gln Asn Gly Phe 165
170 175 Ile Gln Ser Leu Lys Asp Asp Pro Ser Val
Ser Lys Glu Ile Leu Ala 180 185
190 Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Lys
Ala 195 200 205 Lys
Lys Thr Asp Lys Ala Glu Ala Lys Ala Asp Asp Lys Ala Lys Gly 210
215 220 Glu Glu Ala Lys Lys Ser
Glu Asp Lys Lys Asp Ser Lys Ala Asp Lys 225 230
235 240 Ala Lys Ser Lys Asn Ala Thr His Val Val Lys
Pro Gly Glu Thr Leu 245 250
255 Asp Asn Ile Ala Lys Asp His His Thr Thr Val Asp Lys Ile Ala Lys
260 265 270 Asp Asn
Lys Ile Lys Asp Lys Asn Val Ile Lys Leu Gly Gln Lys Leu 275
280 285 Val Val Asp Lys Gln Lys Ala
Thr Gln Gly Lys Gln Glu Ala Val Ala 290 295
300 Lys Asn Glu Val Lys Ala Leu Pro Asn Thr Gly Glu
Asn Asp Asp Ile 305 310 315
320 Ala Leu Phe Ser Thr Thr Val Ala Gly Gly Val Ser Ile Ala Leu Gly
325 330 335 Ser Leu Leu
Leu Gly Arg Asn Arg Lys Thr Ser 340 345
31389DNAStaphylococcus pseudintermedius 3atggaaaaca aaaacttttt
cagcattcgt aaattatcaa ttggggtggg ttcatgttta 60atcgcgagct ctttacttgt
gaatacacca agtttcgcag aagaaggaga taataacgca 120gaagcgcaac aaaacgcttt
ctctgaggta gtaaaattac ctaaccttag cgaagaacaa 180cgtaatggtt tcattcaaag
ccttaaagat gatccaagta caagtcaaga tgtgcttaat 240gaagctaaaa aattaaatga
tagtcaagag ggatctcaac ctgctcctga ttacagtgat 300gaacaacaaa atgcatttta
tgaaatttta caccttccaa acttaactga agaacaacgc 360aatggctata ttcaaagtct
taaagatgac ccaagtgtaa gcgctaatat tcttgttgaa 420gctaaaaata tgaatgttaa
ccaaacacct acacaacctg cgccaagttt cgatgaagcg 480caacaaaatg cattctatga
gattgtaaac ttaccaaatc ttactgaaga gcaacgtaac 540ggtttcatcc aaagccttaa
agacgatcca agtgtaagta aagatatcct tgttgaagct 600aaaaagttaa atgacagcca
agcaaaacct gattacagtg aagcgcaaca aaatgcattt 660tatgaaattt tacaccttcc
aaacttaact gaagaacaac gtaacggttt catccaaagc 720cttaaagacg atccgagtgt
aagtagtgat attcttgctg aagctaagaa attaaatgac 780agccaagcgc ctaaagaaga
caacaacgta aaagacaata attcaggtga aaacaaagct 840gaagacaaag gcaacaaaga
aaacaaagct gaagataaag gcagcaaaga agacaaagct 900gaagataaag gcagcaaaga
agacaaagct gaagataaag gcagcaaaga agacaaagct 960gaagataaag gcagcaaaga
agacaaagct gaagataaag gcagcataga agataaagct 1020aaagacaaag acaacaaaga
aggcaaagct gcagacaaag gtatggacaa agcgaaagat 1080gcaatgcatg tcgttcaacc
tggtgaaaca gtagaaaaaa ttgctaaagc taataacaca 1140actgtagaac aaatcgctaa
agataatcat ttagaagata aaaacatgat tttaccaggt 1200caaaaacttg ttgttgacaa
ccaaaaagca atgaaagaca gccaagaagc taaagcaaac 1260cacgaaatga aagctttacc
tgaaacaggt gaagaaaacg atatggcatt attcggtaca 1320tcacttacag gtggtcttag
cttagcatta ggtttataca tcttaggacg tggcagaaaa 1380acaaactaa
13894462PRTStaphylococcus
pseudintermedius 4Met Glu Asn Lys Asn Phe Phe Ser Ile Arg Lys Leu Ser Ile
Gly Val 1 5 10 15
Gly Ser Cys Leu Ile Ala Ser Ser Leu Leu Val Asn Thr Pro Ser Phe
20 25 30 Ala Glu Glu Gly Asp
Asn Asn Ala Glu Ala Gln Gln Asn Ala Phe Ser 35
40 45 Glu Val Val Lys Leu Pro Asn Leu Ser
Glu Glu Gln Arg Asn Gly Phe 50 55
60 Ile Gln Ser Leu Lys Asp Asp Pro Ser Thr Ser Gln Asp
Val Leu Asn 65 70 75
80 Glu Ala Lys Lys Leu Asn Asp Ser Gln Glu Gly Ser Gln Pro Ala Pro
85 90 95 Asp Tyr Ser Asp
Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu 100
105 110 Pro Asn Leu Thr Glu Glu Gln Arg Asn
Gly Tyr Ile Gln Ser Leu Lys 115 120
125 Asp Asp Pro Ser Val Ser Ala Asn Ile Leu Val Glu Ala Lys
Asn Met 130 135 140
Asn Val Asn Gln Thr Pro Thr Gln Pro Ala Pro Ser Phe Asp Glu Ala 145
150 155 160 Gln Gln Asn Ala Phe
Tyr Glu Ile Val Asn Leu Pro Asn Leu Thr Glu 165
170 175 Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu
Lys Asp Asp Pro Ser Val 180 185
190 Ser Lys Asp Ile Leu Val Glu Ala Lys Lys Leu Asn Asp Ser Gln
Ala 195 200 205 Lys
Pro Asp Tyr Ser Glu Ala Gln Gln Asn Ala Phe Tyr Glu Ile Leu 210
215 220 His Leu Pro Asn Leu Thr
Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser 225 230
235 240 Leu Lys Asp Asp Pro Ser Val Ser Ser Asp Ile
Leu Ala Glu Ala Lys 245 250
255 Lys Leu Asn Asp Ser Gln Ala Pro Lys Glu Asp Asn Asn Val Lys Asp
260 265 270 Asn Asn
Ser Gly Glu Asn Lys Ala Glu Asp Lys Gly Asn Lys Glu Asn 275
280 285 Lys Ala Glu Asp Lys Gly Ser
Lys Glu Asp Lys Ala Glu Asp Lys Gly 290 295
300 Ser Lys Glu Asp Lys Ala Glu Asp Lys Gly Ser Lys
Glu Asp Lys Ala 305 310 315
320 Glu Asp Lys Gly Ser Lys Glu Asp Lys Ala Glu Asp Lys Gly Ser Ile
325 330 335 Glu Asp Lys
Ala Lys Asp Lys Asp Asn Lys Glu Gly Lys Ala Ala Asp 340
345 350 Lys Gly Met Asp Lys Ala Lys Asp
Ala Met His Val Val Gln Pro Gly 355 360
365 Glu Thr Val Glu Lys Ile Ala Lys Ala Asn Asn Thr Thr
Val Glu Gln 370 375 380
Ile Ala Lys Asp Asn His Leu Glu Asp Lys Asn Met Ile Leu Pro Gly 385
390 395 400 Gln Lys Leu Val
Val Asp Asn Gln Lys Ala Met Lys Asp Ser Gln Glu 405
410 415 Ala Lys Ala Asn His Glu Met Lys Ala
Leu Pro Glu Thr Gly Glu Glu 420 425
430 Asn Asp Met Ala Leu Phe Gly Thr Ser Leu Thr Gly Gly Leu
Ser Leu 435 440 445
Ala Leu Gly Leu Tyr Ile Leu Gly Arg Gly Arg Lys Thr Asn 450
455 460 52793DNAStaphylococcus
pseudintermedius 5gtgtacaaaa atgaagaaga aaagcattca ataagaaagt tatctatagg
agccgcatct 60gtcattgttg ggggactcat gtatggtgtt ttgggaaatg atgaagctca
agcgaatgaa 120gatgtcactg aaacaactgg gagaaattca gtgacaacgc aagcttctga
gcaacatttg 180caagtggaag cagtacctca agaaggcaat aatgtaaatg tatcctctgt
aaaagtacct 240acgaatacgg caacgcaagc acaagaagat gttgcaagtg tatccgatgt
taaagcacat 300gctgatgatg cattacaagt acaagaaagt agtcatactg atggtgtttc
ttcagaattc 360aagcaggaga cagcttatgc gaatcctcaa acagctgaga cagttaaacc
taatagtgaa 420gcagtgcatc agtctgaata cgaggataag caaaaacccg tatcatctag
ccgcaaagaa 480gatgagacta tgcttcagca gcaacaagtt gaagccaaaa atgttgtgag
tgcggaggaa 540gtgtctaaag aagaaaatac tcaagtgatg caatcccctc aagacgttga
acaacatgta 600ggtggtaaag atatctctaa tgaggttgta gtggatagga gtgatatcaa
aggatttaac 660agcgaaacta ctattcgacc tcatcaggga caaggtggta ggttgaatta
tcaattaaag 720tttcctagca atgtaaagcc aggcgatcag tttactataa aattatctga
caatatcaat 780acacatggtg tttctgttga aagaaccgca ccgagaatca tggctaaaaa
tactgaaggt 840gcgacggatg taattgctga aggtctagtg ttggaagatg gtaaaaccat
cgtatataca 900tttaaagact atgtaaatgg caagcaaaat ttgactgctg agttatcagt
gagctatttc 960gtaagtccgg aaaaagtctt gactactggg acacaaacat tcacgacgat
gatcggtaat 1020cattcaacgc aatccaatat tgacgtttat tatgataata gtcattatgt
agatggacgt 1080atttcgcaag tgaacaaaaa agaagctaaa tttcaacaaa tagcatacat
taaccctaat 1140ggctatttaa atggcagggg gacaattgca gttaatggtg aagtggtcag
tggtacgact 1200aaagacttaa tgcaacctac agtgcgtgta tatcaatata aaggacaagg
tgttcctcct 1260gaaagtatta ctatagaccc taatatgtgg gaagaaatca gcataaacga
tactatggta 1320agaaaatatg atggtggcta tagcttgaat ctggatacca gcaagaatca
aaaatatgcc 1380atctattatg aaggggcata tgatgcgcaa gctgacacac tgttgtatag
aacatatata 1440cagtcattaa acagttacta tccgttcagt taccaaaaaa tgaacggtgt
gaagttttac 1500gaaaacagtg cgagtggaag cggtgagttg aaaccgaaac cacctgaaca
accaaaacca 1560gaacctgaaa ttcaagctga tgtagtagat attattgaag atagccatgt
gattgatata 1620ggatggaata cagcagttgg agaagaaagt ggagcaaacc aaggccctca
agaagaaatc 1680acggaaaatc acgacatcga agtcattgag gaaaacaact tggtggaaat
gacagaagat 1740acagcagttg gagaagaaag tggagcaaac caaggccctc aagaagaaat
cacggaaaat 1800cacgacatcg aagtcattga agaaaacaac ttagtggaaa tgacagaaga
tacagcgttg 1860gaagaagaaa gtggagcaaa tcaaggtcct caagaagaga tcacagaaaa
ccacgatatc 1920gaagtcattg aagaaaacaa cttggtggaa atgacagaag atacagcgtt
ggaagaagaa 1980agtggagcaa atcaaggtcc tcaagaagag atcacagaaa accacgacat
cgaagtcatt 2040gaagaaaata acttagtaga aatgacagaa gatacagcag ttggagaaga
aagtggagca 2100aatcaaggtc ctcaagaaga gatcacagaa aaccacgata tcgaagtcat
tgaggaaaac 2160aacttagtgg aaatgacaga agatacagca gttggagaag aaagtggagc
aaaccaaggt 2220cctcaagaag aaatcacgga aaatcacgac atcgaagtca ttgaagaaaa
caacttggtg 2280gaaatgacag aagatacagc gttggaagaa gaaagtggag caaatcaagg
tcctcaagaa 2340gagatcacag aaaaccacaa catcgaagtc attgaagaaa acaacttggt
ggaaatgaca 2400gaagatacag cagttggaga agaaagtgga gcaaacccag gacctcaaga
agaagtaaca 2460gagaatcaac ctcagcaaga agaaatcatg gaaaaccaag aagtcgaaaa
gaaaggcgat 2520agtaacttgg tagaaagtac aaaaactcca aaggccgaag aatcagttag
cgttcagcca 2580actttagaag acaaaaacac aaagaaccac gttaacacag tagtagtgaa
tacgaaggta 2640tctgaagtta aagaaaagga tccccaccat acaaaagcac taccagatac
ggggacaacc 2700tctcgaagtc attccatgat gattcctctc cttcttgttg ctgggtcagt
agtgttgtta 2760cgtcgaaaga aaaagcatag taaggtgaat taa
27936930PRTStaphylococcus pseudintermedius 6Val Tyr Lys Asn
Glu Glu Glu Lys His Ser Ile Arg Lys Leu Ser Ile 1 5
10 15 Gly Ala Ala Ser Val Ile Val Gly Gly
Leu Met Tyr Gly Val Leu Gly 20 25
30 Asn Asp Glu Ala Gln Ala Asn Glu Asp Val Thr Glu Thr Thr
Gly Arg 35 40 45
Asn Ser Val Thr Thr Gln Ala Ser Glu Gln His Leu Gln Val Glu Ala 50
55 60 Val Pro Gln Glu Gly
Asn Asn Val Asn Val Ser Ser Val Lys Val Pro 65 70
75 80 Thr Asn Thr Ala Thr Gln Ala Gln Glu Asp
Val Ala Ser Val Ser Asp 85 90
95 Val Lys Ala His Ala Asp Asp Ala Leu Gln Val Gln Glu Ser Ser
His 100 105 110 Thr
Asp Gly Val Ser Ser Glu Phe Lys Gln Glu Thr Ala Tyr Ala Asn 115
120 125 Pro Gln Thr Ala Glu Thr
Val Lys Pro Asn Ser Glu Ala Val His Gln 130 135
140 Ser Glu Tyr Glu Asp Lys Gln Lys Pro Val Ser
Ser Ser Arg Lys Glu 145 150 155
160 Asp Glu Thr Met Leu Gln Gln Gln Gln Val Glu Ala Lys Asn Val Val
165 170 175 Ser Ala
Glu Glu Val Ser Lys Glu Glu Asn Thr Gln Val Met Gln Ser 180
185 190 Pro Gln Asp Val Glu Gln His
Val Gly Gly Lys Asp Ile Ser Asn Glu 195 200
205 Val Val Val Asp Arg Ser Asp Ile Lys Gly Phe Asn
Ser Glu Thr Thr 210 215 220
Ile Arg Pro His Gln Gly Gln Gly Gly Arg Leu Asn Tyr Gln Leu Lys 225
230 235 240 Phe Pro Ser
Asn Val Lys Pro Gly Asp Gln Phe Thr Ile Lys Leu Ser 245
250 255 Asp Asn Ile Asn Thr His Gly Val
Ser Val Glu Arg Thr Ala Pro Arg 260 265
270 Ile Met Ala Lys Asn Thr Glu Gly Ala Thr Asp Val Ile
Ala Glu Gly 275 280 285
Leu Val Leu Glu Asp Gly Lys Thr Ile Val Tyr Thr Phe Lys Asp Tyr 290
295 300 Val Asn Gly Lys
Gln Asn Leu Thr Ala Glu Leu Ser Val Ser Tyr Phe 305 310
315 320 Val Ser Pro Glu Lys Val Leu Thr Thr
Gly Thr Gln Thr Phe Thr Thr 325 330
335 Met Ile Gly Asn His Ser Thr Gln Ser Asn Ile Asp Val Tyr
Tyr Asp 340 345 350
Asn Ser His Tyr Val Asp Gly Arg Ile Ser Gln Val Asn Lys Lys Glu
355 360 365 Ala Lys Phe Gln
Gln Ile Ala Tyr Ile Asn Pro Asn Gly Tyr Leu Asn 370
375 380 Gly Arg Gly Thr Ile Ala Val Asn
Gly Glu Val Val Ser Gly Thr Thr 385 390
395 400 Lys Asp Leu Met Gln Pro Thr Val Arg Val Tyr Gln
Tyr Lys Gly Gln 405 410
415 Gly Val Pro Pro Glu Ser Ile Thr Ile Asp Pro Asn Met Trp Glu Glu
420 425 430 Ile Ser Ile
Asn Asp Thr Met Val Arg Lys Tyr Asp Gly Gly Tyr Ser 435
440 445 Leu Asn Leu Asp Thr Ser Lys Asn
Gln Lys Tyr Ala Ile Tyr Tyr Glu 450 455
460 Gly Ala Tyr Asp Ala Gln Ala Asp Thr Leu Leu Tyr Arg
Thr Tyr Ile 465 470 475
480 Gln Ser Leu Asn Ser Tyr Tyr Pro Phe Ser Tyr Gln Lys Met Asn Gly
485 490 495 Val Lys Phe Tyr
Glu Asn Ser Ala Ser Gly Ser Gly Glu Leu Lys Pro 500
505 510 Lys Pro Pro Glu Gln Pro Lys Pro Glu
Pro Glu Ile Gln Ala Asp Val 515 520
525 Val Asp Ile Ile Glu Asp Ser His Val Ile Asp Ile Gly Trp
Asn Thr 530 535 540
Ala Val Gly Glu Glu Ser Gly Ala Asn Gln Gly Pro Gln Glu Glu Ile 545
550 555 560 Thr Glu Asn His Asp
Ile Glu Val Ile Glu Glu Asn Asn Leu Val Glu 565
570 575 Met Thr Glu Asp Thr Ala Val Gly Glu Glu
Ser Gly Ala Asn Gln Gly 580 585
590 Pro Gln Glu Glu Ile Thr Glu Asn His Asp Ile Glu Val Ile Glu
Glu 595 600 605 Asn
Asn Leu Val Glu Met Thr Glu Asp Thr Ala Leu Glu Glu Glu Ser 610
615 620 Gly Ala Asn Gln Gly Pro
Gln Glu Glu Ile Thr Glu Asn His Asp Ile 625 630
635 640 Glu Val Ile Glu Glu Asn Asn Leu Val Glu Met
Thr Glu Asp Thr Ala 645 650
655 Leu Glu Glu Glu Ser Gly Ala Asn Gln Gly Pro Gln Glu Glu Ile Thr
660 665 670 Glu Asn
His Asp Ile Glu Val Ile Glu Glu Asn Asn Leu Val Glu Met 675
680 685 Thr Glu Asp Thr Ala Val Gly
Glu Glu Ser Gly Ala Asn Gln Gly Pro 690 695
700 Gln Glu Glu Ile Thr Glu Asn His Asp Ile Glu Val
Ile Glu Glu Asn 705 710 715
720 Asn Leu Val Glu Met Thr Glu Asp Thr Ala Val Gly Glu Glu Ser Gly
725 730 735 Ala Asn Gln
Gly Pro Gln Glu Glu Ile Thr Glu Asn His Asp Ile Glu 740
745 750 Val Ile Glu Glu Asn Asn Leu Val
Glu Met Thr Glu Asp Thr Ala Leu 755 760
765 Glu Glu Glu Ser Gly Ala Asn Gln Gly Pro Gln Glu Glu
Ile Thr Glu 770 775 780
Asn His Asn Ile Glu Val Ile Glu Glu Asn Asn Leu Val Glu Met Thr 785
790 795 800 Glu Asp Thr Ala
Val Gly Glu Glu Ser Gly Ala Asn Pro Gly Pro Gln 805
810 815 Glu Glu Val Thr Glu Asn Gln Pro Gln
Gln Glu Glu Ile Met Glu Asn 820 825
830 Gln Glu Val Glu Lys Lys Gly Asp Ser Asn Leu Val Glu Ser
Thr Lys 835 840 845
Thr Pro Lys Ala Glu Glu Ser Val Ser Val Gln Pro Thr Leu Glu Asp 850
855 860 Lys Asn Thr Lys Asn
His Val Asn Thr Val Val Val Asn Thr Lys Val 865 870
875 880 Ser Glu Val Lys Glu Lys Asp Pro His His
Thr Lys Ala Leu Pro Asp 885 890
895 Thr Gly Thr Thr Ser Arg Ser His Ser Met Met Ile Pro Leu Leu
Leu 900 905 910 Val
Ala Gly Ser Val Val Leu Leu Arg Arg Lys Lys Lys His Ser Lys 915
920 925 Val Asn 930
74323DNAStaphylococcus pseudintermedius 7atgaataaat caagaactaa acattttaat
tttttatcaa aacgtcagaa tcggtatgct 60attcgccact tttcagctgg tactgtgtca
gtgcttgtag gagcagcttt cttgctaggt 120gtccatacga gtgatgcatc tgctgcagaa
caagatcaaa catctgaagc aaagcaaaac 180ctctttgatg cttccgctat ttttggcgct
ttaacagaga cgaacgaaaa ggtagcacaa 240gtgacgccaa cagaaaaaaa tctttcatca
gttgaagaaa tgagagataa aggcgcaact 300ggaaatggac catcaataac atcactacaa
actgtagaac aaaataatgc agtacaacct 360acagcaacac ctattaatga cacagaaaat
tcaaccgaag cccctatgaa agaacaatcg 420aatgatgcac aaacgactga cgaaagtaac
aatgccactc agaaaaataa tactgaaccc 480caagcaaaca atgaaatatc agcgcgtaat
gcaaaaacaa cagcatattt aacaagtgaa 540acctttacaa cagcaacgtc tacaactgat
atgcctacac agaaacaaga atatccatct 600ttagaaaatc caacaaatca atcgcaaacg
aacagagcac aaccaccaac aatggaagca 660cccaaactgg cagaaggatt agacaatcta
ttaaaaaaat caactttcga aagtatgtac 720gtgacaaaaa gaaatcaatt tgacaaagag
acggcttcta aaacaaaagc atggccgagt 780gatgttgttc cagaaaatca agtagagata
cttgctgatg caattcaaaa tggctatatc 840aaatctgtaa atgatgtgac caataaagca
catacgttat ctggacgtgc atggatgtta 900gaccacggaa caccaacgac aatagctaat
ggtttaacac ctgttccaga gggcactaaa 960gtttatttgc ggtggataga tcaagatggt
gccacttcgc caatgtatac agcaaaaacg 1020acaagtagat taagcgctgc ggatggtaat
caagtgggtc caggtgctta tgctttcgat 1080ttacgcacag gttggataga tgctaaagga
aaacaccacg tatatagagc agtaaagggt 1140caatattata aaatatggat caatgatttt
agaactaaag acggtaatat cgctacaatg 1200ttacgtgttg caggaggata tgttccggga
acgtacgtgg attctgtgac atacaacaat 1260atgggccaat ttccattaat tggtacaaat
atgcaacgta caggtatctt tatgacaacg 1320ataccttcag aaaaatattt aatatcaaaa
cattacgtga aagatacaaa aggtgctgca 1380gcaaatccag ccgtcacgat aattgaaaat
aactttgtga gcggcaaagt ttggatagaa 1440acaggtgctg gagattatgt gaactcagcg
acaggtccaa accacaatgc gaaagatgtc 1500gttgcctctg gatacaaagt ggtcatgtca
tcattaacag atcaaggtgc taaagcctac 1560gatgcgcaag tcaatcgctt gccgaagaaa
gatcgagcag aagcagcacg tcaattatta 1620ataaaacatc cagaatatat cgcagcaact
gtagaaggga taacgaatga gtgggggaga 1680tatacattgc gtttccctaa aggcacattc
aacaaagacc atctttacgg ttacgtattg 1740gattttgatg gtgaaattgt aaaaacttat
tcaggtttta cttcaccaga gttccggaga 1800ccgaattata atttgaccgt tacaccgcaa
acagctccct attatagacc cgttcgacgt 1860gcatgggtca atgttaattt tgcggttatt
gaagcaccac aatctcaaat cgaaataaaa 1920gaatttgatg caacctctaa ccctgcgcat
cgtgggcaaa cagcaactat tgatatcata 1980ggtatgccta aaacttcatt acttacacgt
gtacaatgga aagattcatc gggcagtatt 2040gttgaggata gtggtcctgt ttttacggaa
gaagaggctg aacatatagc ggaatttgta 2100ataccgtcta gcgcaaaatc aggcgaagtg
tatactgtac aactcgtggt aggtaatcat 2160atcgtagctt cggactctct tattgtacat
gtcaatgaag aagcggcgac atatcatccg 2220atatacccat cgacaacagt agaatcaggt
caaagagtaa cgattccagc acctaagaat 2280atggatggca aacctttact agatggcaca
acttttgaaa aaggtcatca cgtaccaact 2340tgggctttag tgaatggtga tggctcgatt
acagtaaaac ctggagaaaa agtagcagag 2400ggtgagtatg atattccagt gattgtgaca
tatccagatg gttctaaaaa cacaatcttt 2460gcacctgtga ccgttgaaga aaaacaacca
atggcatcgc aatatgagcc aataacaact 2520ggagtatcga aaccatttgg aaacccagta
atgccaactg atgtaacaga ttcaattcaa 2580gtaccgaact atccattgga agggcaacaa
ccgacagtaa cagtggatga tgaaagtcaa 2640ttaccagatg gaacaacaga aggttacaag
gatatagatg taacagtgac atacccagac 2700ggaacaaagg atcgtgtcaa agttccagtc
gtaacggaac aacaattaga tagtgataaa 2760tatgatccgg tcgcaacagg tatcttgaaa
ccgtttggta ctccaacaac agaggaagac 2820gttataaaat tagtggagat accgaaatat
ccaacagact taacacaacc aaaagtaaca 2880gtgacggttc caaatacttt accggatggg
caaacgccag gtaaagtaga cgttgatgtg 2940acagtaacgt atccagatgg ttccacagat
cacatttcag ttccagtttg gacaaacaag 3000catctggata aagacaaata taacccaata
acgactgggg tatcgaaacc atttggaatc 3060ccagtaacgc caactgatgt aacagattca
attcaagtac cgaactatcc attggaaggg 3120caacaactga cagtaacagt ggatgatgaa
acacaattac cagatggaac aacagaaggt 3180cacaaggata tagatgtaac agtgacatac
ccagacggaa caaaggatca tatcaaagtt 3240ccagtcgtaa cggaaaaaca atcagataat
gaaaaatatg agccaacaac taacggaatc 3300acgaaaaagt acggtatccc tacgacagag
gatgaagtga tagatatagt tcgaattcca 3360tattttccag tagatggcgt gcaacctatt
gtaacggtaa atgatcctag actattgcca 3420aatggtcaaa aagaaggtca aatcaatgtt
ccagtcacag tgacgtatcc ggatggcaca 3480aaagatctca tgacagttcc ggttattaca
ggtaagcaag cagaaaatga aaaatacgat 3540ccaatcacat taggagtaac taaagattat
ggtgatccta caactgcaaa cgatgtgaca 3600aagtcaatcc aaataccaac atatccagca
ggtggcgaac aaccaatcgc aacagcggat 3660gatgaaagtc aattaccgga tggcacagta
gaaggtaaag tggatattcc agtcacagtg 3720acgtatccgg atggtactca ggatcatatc
actgtcccag tatttaccaa tcaacaacga 3780gataatcaaa aagccagtaa agctgtgacg
aaaatacatg gtatatcggt aacaggcact 3840gatatgacag atactaagaa aaatcataac
tatccagcag gtggtgaaca acctaaagtt 3900actgtgaaag atgacgatca attatcagag
ggtaaagtcg attcaacagt gggtgcggat 3960aatgtgacaa ctacagatga tttatcaagc
gtaactgcgg tatctcatgg tcatcaaaca 4020agtgtacaaa caacaaaaga gaaccaatca
gtgcatgatg aagaggtgac gatcccaaca 4080gttgcacatg tgtctacaat aatgacaggt
gtggtaaagg gtgagcaaga agcgacggat 4140atcgtggcta gaccacatgt tgaaacaact
caactcccat caatttcagc tcaagcaaca 4200gttaaaaaac taccagaaac gggtgaaaac
aatgaacaat caggtgtttt attaggtgga 4260tttattgcgt tcatgggtag cttactttta
ttcggcagac gtcgcaaacc aaagaaagat 4320taa
432381440PRTStaphylococcus
pseudintermedius 8Met Asn Lys Ser Arg Thr Lys His Phe Asn Phe Leu Ser Lys
Arg Gln 1 5 10 15
Asn Arg Tyr Ala Ile Arg His Phe Ser Ala Gly Thr Val Ser Val Leu
20 25 30 Val Gly Ala Ala Phe
Leu Leu Gly Val His Thr Ser Asp Ala Ser Ala 35
40 45 Ala Glu Gln Asp Gln Thr Ser Glu Ala
Lys Gln Asn Leu Phe Asp Ala 50 55
60 Ser Ala Ile Phe Gly Ala Leu Thr Glu Thr Asn Glu Lys
Val Ala Gln 65 70 75
80 Val Thr Pro Thr Glu Lys Asn Leu Ser Ser Val Glu Glu Met Arg Asp
85 90 95 Lys Gly Ala Thr
Gly Asn Gly Pro Ser Ile Thr Ser Leu Gln Thr Val 100
105 110 Glu Gln Asn Asn Ala Val Gln Pro Thr
Ala Thr Pro Ile Asn Asp Thr 115 120
125 Glu Asn Ser Thr Glu Ala Pro Met Lys Glu Gln Ser Asn Asp
Ala Gln 130 135 140
Thr Thr Asp Glu Ser Asn Asn Ala Thr Gln Lys Asn Asn Thr Glu Pro 145
150 155 160 Gln Ala Asn Asn Glu
Ile Ser Ala Arg Asn Ala Lys Thr Thr Ala Tyr 165
170 175 Leu Thr Ser Glu Thr Phe Thr Thr Ala Thr
Ser Thr Thr Asp Met Pro 180 185
190 Thr Gln Lys Gln Glu Tyr Pro Ser Leu Glu Asn Pro Thr Asn Gln
Ser 195 200 205 Gln
Thr Asn Arg Ala Gln Pro Pro Thr Met Glu Ala Pro Lys Leu Ala 210
215 220 Glu Gly Leu Asp Asn Leu
Leu Lys Lys Ser Thr Phe Glu Ser Met Tyr 225 230
235 240 Val Thr Lys Arg Asn Gln Phe Asp Lys Glu Thr
Ala Ser Lys Thr Lys 245 250
255 Ala Trp Pro Ser Asp Val Val Pro Glu Asn Gln Val Glu Ile Leu Ala
260 265 270 Asp Ala
Ile Gln Asn Gly Tyr Ile Lys Ser Val Asn Asp Val Thr Asn 275
280 285 Lys Ala His Thr Leu Ser Gly
Arg Ala Trp Met Leu Asp His Gly Thr 290 295
300 Pro Thr Thr Ile Ala Asn Gly Leu Thr Pro Val Pro
Glu Gly Thr Lys 305 310 315
320 Val Tyr Leu Arg Trp Ile Asp Gln Asp Gly Ala Thr Ser Pro Met Tyr
325 330 335 Thr Ala Lys
Thr Thr Ser Arg Leu Ser Ala Ala Asp Gly Asn Gln Val 340
345 350 Gly Pro Gly Ala Tyr Ala Phe Asp
Leu Arg Thr Gly Trp Ile Asp Ala 355 360
365 Lys Gly Lys His His Val Tyr Arg Ala Val Lys Gly Gln
Tyr Tyr Lys 370 375 380
Ile Trp Ile Asn Asp Phe Arg Thr Lys Asp Gly Asn Ile Ala Thr Met 385
390 395 400 Leu Arg Val Ala
Gly Gly Tyr Val Pro Gly Thr Tyr Val Asp Ser Val 405
410 415 Thr Tyr Asn Asn Met Gly Gln Phe Pro
Leu Ile Gly Thr Asn Met Gln 420 425
430 Arg Thr Gly Ile Phe Met Thr Thr Ile Pro Ser Glu Lys Tyr
Leu Ile 435 440 445
Ser Lys His Tyr Val Lys Asp Thr Lys Gly Ala Ala Ala Asn Pro Ala 450
455 460 Val Thr Ile Ile Glu
Asn Asn Phe Val Ser Gly Lys Val Trp Ile Glu 465 470
475 480 Thr Gly Ala Gly Asp Tyr Val Asn Ser Ala
Thr Gly Pro Asn His Asn 485 490
495 Ala Lys Asp Val Val Ala Ser Gly Tyr Lys Val Val Met Ser Ser
Leu 500 505 510 Thr
Asp Gln Gly Ala Lys Ala Tyr Asp Ala Gln Val Asn Arg Leu Pro 515
520 525 Lys Lys Asp Arg Ala Glu
Ala Ala Arg Gln Leu Leu Ile Lys His Pro 530 535
540 Glu Tyr Ile Ala Ala Thr Val Glu Gly Ile Thr
Asn Glu Trp Gly Arg 545 550 555
560 Tyr Thr Leu Arg Phe Pro Lys Gly Thr Phe Asn Lys Asp His Leu Tyr
565 570 575 Gly Tyr
Val Leu Asp Phe Asp Gly Glu Ile Val Lys Thr Tyr Ser Gly 580
585 590 Phe Thr Ser Pro Glu Phe Arg
Arg Pro Asn Tyr Asn Leu Thr Val Thr 595 600
605 Pro Gln Thr Ala Pro Tyr Tyr Arg Pro Val Arg Arg
Ala Trp Val Asn 610 615 620
Val Asn Phe Ala Val Ile Glu Ala Pro Gln Ser Gln Ile Glu Ile Lys 625
630 635 640 Glu Phe Asp
Ala Thr Ser Asn Pro Ala His Arg Gly Gln Thr Ala Thr 645
650 655 Ile Asp Ile Ile Gly Met Pro Lys
Thr Ser Leu Leu Thr Arg Val Gln 660 665
670 Trp Lys Asp Ser Ser Gly Ser Ile Val Glu Asp Ser Gly
Pro Val Phe 675 680 685
Thr Glu Glu Glu Ala Glu His Ile Ala Glu Phe Val Ile Pro Ser Ser 690
695 700 Ala Lys Ser Gly
Glu Val Tyr Thr Val Gln Leu Val Val Gly Asn His 705 710
715 720 Ile Val Ala Ser Asp Ser Leu Ile Val
His Val Asn Glu Glu Ala Ala 725 730
735 Thr Tyr His Pro Ile Tyr Pro Ser Thr Thr Val Glu Ser Gly
Gln Arg 740 745 750
Val Thr Ile Pro Ala Pro Lys Asn Met Asp Gly Lys Pro Leu Leu Asp
755 760 765 Gly Thr Thr Phe
Glu Lys Gly His His Val Pro Thr Trp Ala Leu Val 770
775 780 Asn Gly Asp Gly Ser Ile Thr Val
Lys Pro Gly Glu Lys Val Ala Glu 785 790
795 800 Gly Glu Tyr Asp Ile Pro Val Ile Val Thr Tyr Pro
Asp Gly Ser Lys 805 810
815 Asn Thr Ile Phe Ala Pro Val Thr Val Glu Glu Lys Gln Pro Met Ala
820 825 830 Ser Gln Tyr
Glu Pro Ile Thr Thr Gly Val Ser Lys Pro Phe Gly Asn 835
840 845 Pro Val Met Pro Thr Asp Val Thr
Asp Ser Ile Gln Val Pro Asn Tyr 850 855
860 Pro Leu Glu Gly Gln Gln Pro Thr Val Thr Val Asp Asp
Glu Ser Gln 865 870 875
880 Leu Pro Asp Gly Thr Thr Glu Gly Tyr Lys Asp Ile Asp Val Thr Val
885 890 895 Thr Tyr Pro Asp
Gly Thr Lys Asp Arg Val Lys Val Pro Val Val Thr 900
905 910 Glu Gln Gln Leu Asp Ser Asp Lys Tyr
Asp Pro Val Ala Thr Gly Ile 915 920
925 Leu Lys Pro Phe Gly Thr Pro Thr Thr Glu Glu Asp Val Ile
Lys Leu 930 935 940
Val Glu Ile Pro Lys Tyr Pro Thr Asp Leu Thr Gln Pro Lys Val Thr 945
950 955 960 Val Thr Val Pro Asn
Thr Leu Pro Asp Gly Gln Thr Pro Gly Lys Val 965
970 975 Asp Val Asp Val Thr Val Thr Tyr Pro Asp
Gly Ser Thr Asp His Ile 980 985
990 Ser Val Pro Val Trp Thr Asn Lys His Leu Asp Lys Asp Lys
Tyr Asn 995 1000 1005
Pro Ile Thr Thr Gly Val Ser Lys Pro Phe Gly Ile Pro Val Thr 1010
1015 1020 Pro Thr Asp Val Thr
Asp Ser Ile Gln Val Pro Asn Tyr Pro Leu 1025 1030
1035 Glu Gly Gln Gln Leu Thr Val Thr Val Asp
Asp Glu Thr Gln Leu 1040 1045 1050
Pro Asp Gly Thr Thr Glu Gly His Lys Asp Ile Asp Val Thr Val
1055 1060 1065 Thr Tyr
Pro Asp Gly Thr Lys Asp His Ile Lys Val Pro Val Val 1070
1075 1080 Thr Glu Lys Gln Ser Asp Asn
Glu Lys Tyr Glu Pro Thr Thr Asn 1085 1090
1095 Gly Ile Thr Lys Lys Tyr Gly Ile Pro Thr Thr Glu
Asp Glu Val 1100 1105 1110
Ile Asp Ile Val Arg Ile Pro Tyr Phe Pro Val Asp Gly Val Gln 1115
1120 1125 Pro Ile Val Thr Val
Asn Asp Pro Arg Leu Leu Pro Asn Gly Gln 1130 1135
1140 Lys Glu Gly Gln Ile Asn Val Pro Val Thr
Val Thr Tyr Pro Asp 1145 1150 1155
Gly Thr Lys Asp Leu Met Thr Val Pro Val Ile Thr Gly Lys Gln
1160 1165 1170 Ala Glu
Asn Glu Lys Tyr Asp Pro Ile Thr Leu Gly Val Thr Lys 1175
1180 1185 Asp Tyr Gly Asp Pro Thr Thr
Ala Asn Asp Val Thr Lys Ser Ile 1190 1195
1200 Gln Ile Pro Thr Tyr Pro Ala Gly Gly Glu Gln Pro
Ile Ala Thr 1205 1210 1215
Ala Asp Asp Glu Ser Gln Leu Pro Asp Gly Thr Val Glu Gly Lys 1220
1225 1230 Val Asp Ile Pro Val
Thr Val Thr Tyr Pro Asp Gly Thr Gln Asp 1235 1240
1245 His Ile Thr Val Pro Val Phe Thr Asn Gln
Gln Arg Asp Asn Gln 1250 1255 1260
Lys Ala Ser Lys Ala Val Thr Lys Ile His Gly Ile Ser Val Thr
1265 1270 1275 Gly Thr
Asp Met Thr Asp Thr Lys Lys Asn His Asn Tyr Pro Ala 1280
1285 1290 Gly Gly Glu Gln Pro Lys Val
Thr Val Lys Asp Asp Asp Gln Leu 1295 1300
1305 Ser Glu Gly Lys Val Asp Ser Thr Val Gly Ala Asp
Asn Val Thr 1310 1315 1320
Thr Thr Asp Asp Leu Ser Ser Val Thr Ala Val Ser His Gly His 1325
1330 1335 Gln Thr Ser Val Gln
Thr Thr Lys Glu Asn Gln Ser Val His Asp 1340 1345
1350 Glu Glu Val Thr Ile Pro Thr Val Ala His
Val Ser Thr Ile Met 1355 1360 1365
Thr Gly Val Val Lys Gly Glu Gln Glu Ala Thr Asp Ile Val Ala
1370 1375 1380 Arg Pro
His Val Glu Thr Thr Gln Leu Pro Ser Ile Ser Ala Gln 1385
1390 1395 Ala Thr Val Lys Lys Leu Pro
Glu Thr Gly Glu Asn Asn Glu Gln 1400 1405
1410 Ser Gly Val Leu Leu Gly Gly Phe Ile Ala Phe Met
Gly Ser Leu 1415 1420 1425
Leu Leu Phe Gly Arg Arg Arg Lys Pro Lys Lys Asp 1430
1435 1440 94701DNAStaphylococcus pseudintermedius
9atgtttaatc aacaaaaaca acactatggt atccggaaat atgcaatcgg gacttcatca
60gtattattag gcatgacatt atttatcaca catgacgcaa ctgcatctgc agctgaaaac
120aatacaactg caaagacaga gacaaatcaa gcagcaacaa tttcttctcg cacttcgcca
180accgacgtcg ctcaacctaa tgcagacacg aatgctacaa cggcgactaa agagacaaca
240ccacaatcag attcaacagc attaccgcaa gcagcagcgc aacctcaaac gggccaaaca
300gcatcgaaag acacagtaga tacaaataaa acgcaaacag cagattccac aaccgctcct
360cctgtgacag acgcgccaaa agctaatgac gacacaacac agccagaagc tgcgactgta
420gccaaaaaag aagatgctca gacaccatcg actgcagacc ctacaccaca agcgcaacaa
480ccgcctcagt caaaagcacc tcaagaaacg caacaacaat caacagttga agatacaacg
540ccacaacaaa acgcatcaac tgaagcacac cctaaaaatg tagataccgc ttcaacaaaa
600caacaacaaa caacgccatc aaccgcaccg acaccttaca cacaacaagc agacgaagca
660atgacagatg tcacaacaac cagtgtcgac agcaacgtac agccgttagc ccctgcagaa
720gatcaaccta aaaatacgaa cacagctgac aaagcaaccg ttgcgacacc accacgtgac
780aatgctaaga ctgctgatcc gaacaaaaag atgacacgtg cagcaacgac acaacaagat
840gatgccgtcg atacattgaa gtcaaaagaa atgacagcaa cgatcgataa aagttttcca
900gccgttaaat attacacgtt gaaaaatggt aaaaaagtcg atgcacaact gacggatgca
960cgtcaaatca tcgtcaatgg tgaagtcatt acaccaacag tcaaatacaa caaaattgat
1020gatcatacgg ctgaatatga cttaacagca caaaatgatt cacgttcgat tgatgccaat
1080tttaaatttc gtttatcagt tgaaggtaag accgttgatt tacaaatgac agattacacg
1140aacaacaaca cagatccaca aaacgtcatt cgcaacttta gctttgtaag tcaatcgctc
1200gtatctgtaa acaatcaaca gaaaaatgcc aaactgcaaa catcgaaact gtctacaaat
1260acaatgaaaa gcggcgataa atcatatcat atcgatgaaa atttcaaaaa cgacttcaac
1320gactttatga tgtacggttt cgtgtcaaat gatgattaca gtgcaggatt gtggagtaac
1380gcacaaattg gcgtcggcat tggtgaacaa gacttcttac gtgtctacgc acagtctata
1440caaacagata tcggggtcgc tgtcggttta ggctcaatgc catggtttat ccaaaaagac
1500gctgcacatc cagatgcgaa aaatcaagga ctactcccac atgtcaaagt tgcaattgcg
1560gaagatgaaa atcaagatgg tgaaattaac tggcaagacg gtgcaattgc ttatcgtagc
1620attatgaaca atccatatgg tgccgaagaa gtacctgacc ttgttgggta ccgtatcgcg
1680atgaactttg gttctcaagc gcaaaaccca tttttaaaga cgttagatgg tgtgaaaaaa
1740ttctatctca atacagatgg tttagggcaa tccattttat taaaaggtta taacagtgaa
1800ggccacgact ctggtcattt agattacgcg aatattggtc aacgtatagg tggcgtgaaa
1860gactttaaaa cgttacttca aaaaggggca gattatggcg cacgtttcgg tcttcatgtg
1920aatgcatctg aaacatatcc agagtctcaa gcattcaatc ctgccctctt acgtaaagat
1980gcgaatggaa actatatgta tggctggaac tggctcgatc aaggctttaa catcgatgca
2040gattacgatt taatacacgg gcgtaaagaa cgcttcgaag cactcaaaca aattgtcggt
2100gatgacctcg actttattta tgtcgatgta tgggggaatg gacaatccgg cgacaataca
2160gcttggccat cacatcaatt agccaaagaa atcaacgact taggatggcg cgtcggtgtc
2220gaatggggtc acggtatgga atatgactcc acgttccaac attgggcagc cgacttaacg
2280tatggatcgt accaaaataa agggattaac tcagaggtag cacgcttctt acgcaaccat
2340caaaaagatt catgggtcgg taactatcca aaatactcag gtgcagctga cttcccattg
2400ctcggcggtt atgacatgaa agattttgaa ggttggcaag gtcgtaacga ttactctgct
2460tacattaaaa atattttcaa tgttgatgta ccaacaaagt ttttacaaca ttataaagtg
2520atgcgtattg tcgatggtga gcctgttaaa atgactgcca atggtcaaac gattgactgg
2580acaccagaaa tgcaagtcga tttacaaaat gaagccggtg atcaagtcac tgttaaacgt
2640aaatctaacg actatgaaaa cgacactgac aactaccgct cacgtacaat cgaattgaat
2700ggtcgcacag tactcgatgg cgattcatac cttttaccat ggaattggga tgcgaacggc
2760caaccattaa ctggcgataa cgaaaaatta tatcactgga ataaaaaagg cggttcaacg
2820acttggacac tgcctgaatc atgggataca gaccaagtcg tgctatacga attatctgaa
2880acgggtcgta agtcaccacg tacagtggca gtgaaagacc atcaagtgac actcgataat
2940attaaagcag acacaccgta tgtcgtttat aaagtcgcac aaccagacaa cacagatgtg
3000aactggagcg aagacatgca cgtgaaagat gccggcttca actcacaaca actgacacct
3060tggacaatcg aaggcaatcg agataaagtg agcatcgaaa agtcgacaac atcaaatgaa
3120atgctaaaaa tcgatagtcc aacaaaaaca acgcaattaa cgcaacaatt gacaggttta
3180gtgccaggac aacgttacgc tgtctatgtt ggcatcgata accgcagtga tgcagcggcg
3240catattgcag tgacacataa cggtaaaacg ctcgcaagta acgaaacagg tcaatcgatc
3300gcgaaaaact atgtgaaagc agatgcacat agtaacaatg ctgcgacgtt taaaaatggc
3360ggtagttact tccaaaacat gtacgtgtac ttcgttgcgc cagaagatgg taaagcagac
3420ttgacgattc aacgcgaccc aggtgaaggg gccacttatt tcgatgatat tcgtgtgtta
3480gaaaataacg cgaatctcct tcaaaacggc acattcaacc aagacttcga aaatgtacca
3540caagggttat tcccgttcgt cgtgtcagaa gttgaaggcg ttgaagataa tcgcgttcac
3600ttatctgaaa agcacgcacc gtatacacaa cgcggatgga ataataaacg tgtcgatgat
3660gtcattgatg gcaaatggtc acttaaagta aacggtcaaa caggtaaaga taaaatggtc
3720atccaaacga ttccgcaaaa cttctacttc gaaccaggaa aaacgtatga agtgtcattt
3780gattatgaag caggttctga tgatacgtat gcatttgcga caggtagtgg ggacatttct
3840aaaaatcgta actttgaaaa gacaccattg aaaaatacag tcgatggtgg caaagcgaaa
3900cgggtgacat ttaaagtgac gggtgatgaa aatggtcaaa cttggatcgg tatttactca
3960acgaaaacac ccaatgatcc acgaggcgtg aaaaatggca atcaaatcaa cttcgaaggg
4020acgaaagatt tcattctaga caacctttct atccgtgaaa ttgacgcacc gaagcctgat
4080gccacacaag aaagcggtga tagcgcacca atgaatgaaa cagatgagcg taacgtcaat
4140tcaaacggta cattagccga tcatagtgag acaactgatg tcaatgtcag tgcaacggca
4200gatgatacag cagtcaaagg cgaaatgacg acaaacagaa cagatgcacc aactgttaca
4260ctgcctgaag caacgatagt agatgaaggc acgtcaaatc ctgtcactac aacaccaacg
4320aatacaacac aagctatgac aaataaggct gatgagatgc cacaaacgat gaacaatgtt
4380cctttaacta gcatcgctac cgatatgatg cagtctcatg cggtggattc catggcagca
4440acactagcag ctacaaatca agtggcggca cctgtgcgtc aaacagcagg acctatgcaa
4500catggtatgg acagtgcttc aacgcaacac gcacccatac aagttgacaa tgtcacagca
4560ccaccattac cagatgaaca gtttgccgaa ttacctaaaa ctggggatac gactccaaat
4620acacgtggac ctttaatggc gatgatagtt ggcgcagtct taacagcatt cggattcaga
4680cgccaacgta aagaaaaata g
4701101566PRTStaphylococcus pseudintermedius 10Met Phe Asn Gln Gln Lys
Gln His Tyr Gly Ile Arg Lys Tyr Ala Ile 1 5
10 15 Gly Thr Ser Ser Val Leu Leu Gly Met Thr Leu
Phe Ile Thr His Asp 20 25
30 Ala Thr Ala Ser Ala Ala Glu Asn Asn Thr Thr Ala Lys Thr Glu
Thr 35 40 45 Asn
Gln Ala Ala Thr Ile Ser Ser Arg Thr Ser Pro Thr Asp Val Ala 50
55 60 Gln Pro Asn Ala Asp Thr
Asn Ala Thr Thr Ala Thr Lys Glu Thr Thr 65 70
75 80 Pro Gln Ser Asp Ser Thr Ala Leu Pro Gln Ala
Ala Ala Gln Pro Gln 85 90
95 Thr Gly Gln Thr Ala Ser Lys Asp Thr Val Asp Thr Asn Lys Thr Gln
100 105 110 Thr Ala
Asp Ser Thr Thr Ala Pro Pro Val Thr Asp Ala Pro Lys Ala 115
120 125 Asn Asp Asp Thr Thr Gln Pro
Glu Ala Ala Thr Val Ala Lys Lys Glu 130 135
140 Asp Ala Gln Thr Pro Ser Thr Ala Asp Pro Thr Pro
Gln Ala Gln Gln 145 150 155
160 Pro Pro Gln Ser Lys Ala Pro Gln Glu Thr Gln Gln Gln Ser Thr Val
165 170 175 Glu Asp Thr
Thr Pro Gln Gln Asn Ala Ser Thr Glu Ala His Pro Lys 180
185 190 Asn Val Asp Thr Ala Ser Thr Lys
Gln Gln Gln Thr Thr Pro Ser Thr 195 200
205 Ala Pro Thr Pro Tyr Thr Gln Gln Ala Asp Glu Ala Met
Thr Asp Val 210 215 220
Thr Thr Thr Ser Val Asp Ser Asn Val Gln Pro Leu Ala Pro Ala Glu 225
230 235 240 Asp Gln Pro Lys
Asn Thr Asn Thr Ala Asp Lys Ala Thr Val Ala Thr 245
250 255 Pro Pro Arg Asp Asn Ala Lys Thr Ala
Asp Pro Asn Lys Lys Met Thr 260 265
270 Arg Ala Ala Thr Thr Gln Gln Asp Asp Ala Val Asp Thr Leu
Lys Ser 275 280 285
Lys Glu Met Thr Ala Thr Ile Asp Lys Ser Phe Pro Ala Val Lys Tyr 290
295 300 Tyr Thr Leu Lys Asn
Gly Lys Lys Val Asp Ala Gln Leu Thr Asp Ala 305 310
315 320 Arg Gln Ile Ile Val Asn Gly Glu Val Ile
Thr Pro Thr Val Lys Tyr 325 330
335 Asn Lys Ile Asp Asp His Thr Ala Glu Tyr Asp Leu Thr Ala Gln
Asn 340 345 350 Asp
Ser Arg Ser Ile Asp Ala Asn Phe Lys Phe Arg Leu Ser Val Glu 355
360 365 Gly Lys Thr Val Asp Leu
Gln Met Thr Asp Tyr Thr Asn Asn Asn Thr 370 375
380 Asp Pro Gln Asn Val Ile Arg Asn Phe Ser Phe
Val Ser Gln Ser Leu 385 390 395
400 Val Ser Val Asn Asn Gln Gln Lys Asn Ala Lys Leu Gln Thr Ser Lys
405 410 415 Leu Ser
Thr Asn Thr Met Lys Ser Gly Asp Lys Ser Tyr His Ile Asp 420
425 430 Glu Asn Phe Lys Asn Asp Phe
Asn Asp Phe Met Met Tyr Gly Phe Val 435 440
445 Ser Asn Asp Asp Tyr Ser Ala Gly Leu Trp Ser Asn
Ala Gln Ile Gly 450 455 460
Val Gly Ile Gly Glu Gln Asp Phe Leu Arg Val Tyr Ala Gln Ser Ile 465
470 475 480 Gln Thr Asp
Ile Gly Val Ala Val Gly Leu Gly Ser Met Pro Trp Phe 485
490 495 Ile Gln Lys Asp Ala Ala His Pro
Asp Ala Lys Asn Gln Gly Leu Leu 500 505
510 Pro His Val Lys Val Ala Ile Ala Glu Asp Glu Asn Gln
Asp Gly Glu 515 520 525
Ile Asn Trp Gln Asp Gly Ala Ile Ala Tyr Arg Ser Ile Met Asn Asn 530
535 540 Pro Tyr Gly Ala
Glu Glu Val Pro Asp Leu Val Gly Tyr Arg Ile Ala 545 550
555 560 Met Asn Phe Gly Ser Gln Ala Gln Asn
Pro Phe Leu Lys Thr Leu Asp 565 570
575 Gly Val Lys Lys Phe Tyr Leu Asn Thr Asp Gly Leu Gly Gln
Ser Ile 580 585 590
Leu Leu Lys Gly Tyr Asn Ser Glu Gly His Asp Ser Gly His Leu Asp
595 600 605 Tyr Ala Asn Ile
Gly Gln Arg Ile Gly Gly Val Lys Asp Phe Lys Thr 610
615 620 Leu Leu Gln Lys Gly Ala Asp Tyr
Gly Ala Arg Phe Gly Leu His Val 625 630
635 640 Asn Ala Ser Glu Thr Tyr Pro Glu Ser Gln Ala Phe
Asn Pro Ala Leu 645 650
655 Leu Arg Lys Asp Ala Asn Gly Asn Tyr Met Tyr Gly Trp Asn Trp Leu
660 665 670 Asp Gln Gly
Phe Asn Ile Asp Ala Asp Tyr Asp Leu Ile His Gly Arg 675
680 685 Lys Glu Arg Phe Glu Ala Leu Lys
Gln Ile Val Gly Asp Asp Leu Asp 690 695
700 Phe Ile Tyr Val Asp Val Trp Gly Asn Gly Gln Ser Gly
Asp Asn Thr 705 710 715
720 Ala Trp Pro Ser His Gln Leu Ala Lys Glu Ile Asn Asp Leu Gly Trp
725 730 735 Arg Val Gly Val
Glu Trp Gly His Gly Met Glu Tyr Asp Ser Thr Phe 740
745 750 Gln His Trp Ala Ala Asp Leu Thr Tyr
Gly Ser Tyr Gln Asn Lys Gly 755 760
765 Ile Asn Ser Glu Val Ala Arg Phe Leu Arg Asn His Gln Lys
Asp Ser 770 775 780
Trp Val Gly Asn Tyr Pro Lys Tyr Ser Gly Ala Ala Asp Phe Pro Leu 785
790 795 800 Leu Gly Gly Tyr Asp
Met Lys Asp Phe Glu Gly Trp Gln Gly Arg Asn 805
810 815 Asp Tyr Ser Ala Tyr Ile Lys Asn Ile Phe
Asn Val Asp Val Pro Thr 820 825
830 Lys Phe Leu Gln His Tyr Lys Val Met Arg Ile Val Asp Gly Glu
Pro 835 840 845 Val
Lys Met Thr Ala Asn Gly Gln Thr Ile Asp Trp Thr Pro Glu Met 850
855 860 Gln Val Asp Leu Gln Asn
Glu Ala Gly Asp Gln Val Thr Val Lys Arg 865 870
875 880 Lys Ser Asn Asp Tyr Glu Asn Asp Thr Asp Asn
Tyr Arg Ser Arg Thr 885 890
895 Ile Glu Leu Asn Gly Arg Thr Val Leu Asp Gly Asp Ser Tyr Leu Leu
900 905 910 Pro Trp
Asn Trp Asp Ala Asn Gly Gln Pro Leu Thr Gly Asp Asn Glu 915
920 925 Lys Leu Tyr His Trp Asn Lys
Lys Gly Gly Ser Thr Thr Trp Thr Leu 930 935
940 Pro Glu Ser Trp Asp Thr Asp Gln Val Val Leu Tyr
Glu Leu Ser Glu 945 950 955
960 Thr Gly Arg Lys Ser Pro Arg Thr Val Ala Val Lys Asp His Gln Val
965 970 975 Thr Leu Asp
Asn Ile Lys Ala Asp Thr Pro Tyr Val Val Tyr Lys Val 980
985 990 Ala Gln Pro Asp Asn Thr Asp Val
Asn Trp Ser Glu Asp Met His Val 995 1000
1005 Lys Asp Ala Gly Phe Asn Ser Gln Gln Leu Thr
Pro Trp Thr Ile 1010 1015 1020
Glu Gly Asn Arg Asp Lys Val Ser Ile Glu Lys Ser Thr Thr Ser
1025 1030 1035 Asn Glu Met
Leu Lys Ile Asp Ser Pro Thr Lys Thr Thr Gln Leu 1040
1045 1050 Thr Gln Gln Leu Thr Gly Leu Val
Pro Gly Gln Arg Tyr Ala Val 1055 1060
1065 Tyr Val Gly Ile Asp Asn Arg Ser Asp Ala Ala Ala His
Ile Ala 1070 1075 1080
Val Thr His Asn Gly Lys Thr Leu Ala Ser Asn Glu Thr Gly Gln 1085
1090 1095 Ser Ile Ala Lys Asn
Tyr Val Lys Ala Asp Ala His Ser Asn Asn 1100 1105
1110 Ala Ala Thr Phe Lys Asn Gly Gly Ser Tyr
Phe Gln Asn Met Tyr 1115 1120 1125
Val Tyr Phe Val Ala Pro Glu Asp Gly Lys Ala Asp Leu Thr Ile
1130 1135 1140 Gln Arg
Asp Pro Gly Glu Gly Ala Thr Tyr Phe Asp Asp Ile Arg 1145
1150 1155 Val Leu Glu Asn Asn Ala Asn
Leu Leu Gln Asn Gly Thr Phe Asn 1160 1165
1170 Gln Asp Phe Glu Asn Val Pro Gln Gly Leu Phe Pro
Phe Val Val 1175 1180 1185
Ser Glu Val Glu Gly Val Glu Asp Asn Arg Val His Leu Ser Glu 1190
1195 1200 Lys His Ala Pro Tyr
Thr Gln Arg Gly Trp Asn Asn Lys Arg Val 1205 1210
1215 Asp Asp Val Ile Asp Gly Lys Trp Ser Leu
Lys Val Asn Gly Gln 1220 1225 1230
Thr Gly Lys Asp Lys Met Val Ile Gln Thr Ile Pro Gln Asn Phe
1235 1240 1245 Tyr Phe
Glu Pro Gly Lys Thr Tyr Glu Val Ser Phe Asp Tyr Glu 1250
1255 1260 Ala Gly Ser Asp Asp Thr Tyr
Ala Phe Ala Thr Gly Ser Gly Asp 1265 1270
1275 Ile Ser Lys Asn Arg Asn Phe Glu Lys Thr Pro Leu
Lys Asn Thr 1280 1285 1290
Val Asp Gly Gly Lys Ala Lys Arg Val Thr Phe Lys Val Thr Gly 1295
1300 1305 Asp Glu Asn Gly Gln
Thr Trp Ile Gly Ile Tyr Ser Thr Lys Thr 1310 1315
1320 Pro Asn Asp Pro Arg Gly Val Lys Asn Gly
Asn Gln Ile Asn Phe 1325 1330 1335
Glu Gly Thr Lys Asp Phe Ile Leu Asp Asn Leu Ser Ile Arg Glu
1340 1345 1350 Ile Asp
Ala Pro Lys Pro Asp Ala Thr Gln Glu Ser Gly Asp Ser 1355
1360 1365 Ala Pro Met Asn Glu Thr Asp
Glu Arg Asn Val Asn Ser Asn Gly 1370 1375
1380 Thr Leu Ala Asp His Ser Glu Thr Thr Asp Val Asn
Val Ser Ala 1385 1390 1395
Thr Ala Asp Asp Thr Ala Val Lys Gly Glu Met Thr Thr Asn Arg 1400
1405 1410 Thr Asp Ala Pro Thr
Val Thr Leu Pro Glu Ala Thr Ile Val Asp 1415 1420
1425 Glu Gly Thr Ser Asn Pro Val Thr Thr Thr
Pro Thr Asn Thr Thr 1430 1435 1440
Gln Ala Met Thr Asn Lys Ala Asp Glu Met Pro Gln Thr Met Asn
1445 1450 1455 Asn Val
Pro Leu Thr Ser Ile Ala Thr Asp Met Met Gln Ser His 1460
1465 1470 Ala Val Asp Ser Met Ala Ala
Thr Leu Ala Ala Thr Asn Gln Val 1475 1480
1485 Ala Ala Pro Val Arg Gln Thr Ala Gly Pro Met Gln
His Gly Met 1490 1495 1500
Asp Ser Ala Ser Thr Gln His Ala Pro Ile Gln Val Asp Asn Val 1505
1510 1515 Thr Ala Pro Pro Leu
Pro Asp Glu Gln Phe Ala Glu Leu Pro Lys 1520 1525
1530 Thr Gly Asp Thr Thr Pro Asn Thr Arg Gly
Pro Leu Met Ala Met 1535 1540 1545
Ile Val Gly Ala Val Leu Thr Ala Phe Gly Phe Arg Arg Gln Arg
1550 1555 1560 Lys Glu
Lys 1565 1110509DNAStaphylococcus pseudintermedius 11atgacaagaa
aatttaggga atttaagaaa agtttaagtg aagaaaaagc aagagtgaaa 60ctttacaagt
caggtaaaaa ctgggttaaa gctggaatta aagaatttca gttattaaaa 120gcattaggct
tatctttttt aagccatgac attgtaaagg atgaaaatgg agaagtaacg 180acacaatttg
gggaacagtt gaagaaaaat gcattaagaa caactgcttt tgcgggtgga 240atgttcacag
ttaatatgtt gcatgaccaa caagcatttg cggcgtcgga tgcacctata 300acttctgaac
tggcaaccaa aagtcaaact attggcgatc aaacatcaat tgttattgaa 360aagtctacat
cgtcagatca atcaacgaac ccaataacag aaagtgaaag taaacacgat 420tctgaaagta
tctcattatc tgagcatcaa acatcagagt caacaagtct ttcaacgtca 480acttccaaat
caatatcaac ttcagtagag gaatcagaat caacatcaaa agattctcat 540actaaaactc
aagatagtca atcagatagt catcagtcaa caagtcaaga ggtaaatggc 600tcttccaacc
acgagcaatc aacaccacac actgcacaaa gtcttacgag cctatctatt 660gagagccaaa
cgtcgacttc aaatacatca ttgaaggaaa ctaaagaagg ggaattgtca 720aaaaaccttt
cgaagttatc tcaaaatcaa aacatcaaac ttcatgaaga acatacgatg 780cgttcagcag
atttgagctc aggttataca ggatttagag cggcttacta tgtaccaaga 840tcaagaacaa
caccaacgac aaaagtctac acagggcaag gaagcttcag aggtagaggt 900agaattaaat
ataatatttt ctacaaagtt gtcgttacaa gtaatggcaa agaaatgaag 960atccgctata
cattgagtca agatgatcca aacacgtcta atgttgaaaa acctaggtgg 1020gcaggacaga
aacgatttgg tattcataat acttgggatg aaggtcctgg tcgcgggcaa 1080ttaaagttag
ggtcggcatt cggcaaacca acagttatac aaggagaaac tagaccgaat 1140tatggtagct
gggttggcac acctataacg aaatatgttt caggcgatcg tacaaatggt 1200ttttactggc
aagctgctgt acttgcaccg agacatggag agaagggaga aggaatcaca 1260gcagaaatta
cagttcctat tgttaaccct tctggaagat ttaattggga attccatcct 1320gtcggtcaac
aggacggagt tggtggcaaa actgactact ttgaaaatgt atggattcga 1380gactatgacc
catattacaa atatattcaa actaaggaag gcagagcctc agtttcgcac 1440tctatttctc
aggtgaaagc aagtgaatcg agatcgacat cgctcataca atcggagtct 1500attagaagat
cacagtccat atctgagagt gaatctattg tagccgcaag tcattcggca 1560agtgtagcaa
aatcgcaatc catctcgaga agtcaatctg tggcgaaatc acaatcgatc 1620tcaagaagtc
agtcgatcgc acacagccga tcagcaagtg tggcaaaatc gcaatccatc 1680tcaagaagtc
agtcgatcgc acacagccga tcagcaagtg tggcaaaatc acaatcgatt 1740tcaagaagtc
agtcgatcgc acacagccga tcagcaagtg tggcgaaatc tcaatcgatt 1800tcaagaagtc
agtcaattgc gcagagccaa tcagcaagtg tggcaaaatc acagtcgatt 1860tcaagaagtc
agtcaattgc gcagagccaa tcagcaagtg tggcgaaatc gcaatcgatt 1920tcaagaagtc
agtcgattgc acatagccga tcagcaagtg tagcggaatc acagtcgatt 1980tcaagaagtc
agtcgattgc gaatagccaa tctgtagcag cgagtgaatc agagagtcta 2040tcaatatcat
tgtctaaaaa gcagtcaata tcgatgagta attctgaaag tgcagcaaaa 2100tcacactcgc
tttcggtgaa aaggtctaac tggattaaaa agtcaaaagc ggcttcagta 2160agaaagtcac
attcactttc ggtaagaaaa tctaattcgg cgaaaaggtc acatgctatt 2220tcggtaagaa
agtcaaagtc attatcagtt aaaaagtcaa tttcgcagag ccaatcagca 2280agtgtggcga
aatcgcaatc gatttcaaga agtcaatcag tagcagcgag tgagtcggca 2340tcgctaagta
agtcgaagag cacatcgctc agtaactcag tgagtgcaga gaaatcgacg 2400tcattaagtc
gttcagcaag tgtagcaaaa tcgcaatcga tttcaagaag ccaatcagta 2460gtagcgagcg
aatcggcatc gttaagtaag tcgaagagca catcgctcag taactcagtg 2520agtgcagaga
aatcgacgtc attaagtcga tcagcaagtg tagcaaaatc gcaatcgatt 2580tcaagaagcc
aatcggtggc agcgagcgaa tcggcatcgt taagtaagtc gaagagcaca 2640tcgctcagta
actcagtgag tgcagagaaa tcgacgtcat taagtcgatc agcaagtgta 2700gcaaaatcgc
aatcgatttc aagaagccaa tcggtggcag cgagcgaatc ggcatcgtta 2760agtaagtcga
agagcacatc gctcagtaac tcagtgagtg cagagaaatc gacgtcatta 2820agtcgatcag
caagtgtggc aaaatcgcaa tcgatttcaa gaagccaatc agtagtagcg 2880agcgaatcgg
catcgttaag taagtcgaag agcacatcgc tcagtaactc agtgagtgca 2940gagaaatcga
cgtcattaag tcgatcagca agtgtagcaa aatcgcaatc gatttcaaga 3000agccaatcgg
tggcagcgag cgaatcggca tcgttaagta agtcgaagag cacatcgctc 3060agtaactcag
tgagtgcaga gaaatcgacg tcattaagtc gatcagcaag tgtggcaaaa 3120tcgcaatcga
tttcaagaag ccagtcagta gcagcaagtg agtcggcatc attaagtaag 3180tcgaagagca
catctttaag caactcagtg agtgtagaga aatcgacgtc attaagtcga 3240tcagcaagtg
tggcgaaatc gcaatcgatt tcaagaagtc aatcagtagc agcgagtgag 3300tcggcatcgc
taagtaagtc gaagagcaca tcgctcagta actcagtgag tgcagagaaa 3360tcgacgtcat
taagtcgttc agcaagtgta gcaaaatcgc aatcgatttc aagaagccag 3420tcagtagcag
caagtgagtc ggcatcattg agtaaatcaa caagtacgtc aacaagtgac 3480tcagatagcg
cgtcaacatc aacatctgta tcagatagcg attcagcttc attgagtaag 3540tcgactagta
catcaacaag cgattcagac agcgcgtcag catcattgag caagtcaaca 3600agtacatcaa
cgagcgactc agatagcgca tcgacatcaa catcagtatc agatagcgac 3660tccgcatcgt
tgagtaaatc gacaagcacg tcaacaagtg attcagacag cacgtctact 3720tcattgagta
agtcgacaag tacatcgaca agtgattcag atagtgcgtc aaaatcaacg 3780tcagtatcag
acagtacgtc cgcatcattg agtaaatcga caagcacgtc aacaagtgat 3840tcagatagtg
catcaaaatc aacgtcggta tcagatagca cgtcagcatc attaagaaag 3900tcggcaagta
cgtcaacgag tgactcagac agcacgtcta cttcattgag taagtcgaca 3960agtacatcga
caagtgattc agatagtgca tcaaaatcaa catcagtatc agatagcgat 4020tcagcttcat
tgagtaagtc gactagtaca tcaacaagcg attcagatag tgcgtcaaaa 4080tcaacgtcgg
tatcagatag cgactccgca tcgttgagta agtcgacaag tacgtcaaca 4140agcgattcag
acagtgcatc aaaatcaacg tcggtatcag acagtacgtc aacatcatta 4200agtaagtcga
caagtacatc aacaagcgat tcagatagtg cgtcaacatc gacatcagta 4260tcggacagta
cgtctgcatc attgagtaag tcgacaagca catcgacaag tgattcagat 4320agcgcatcaa
catcagtgtc agatagcgat tcagcatcac taagcaagtc aacaagtaca 4380tcgacaagcg
attcagacag cgtatcaaca tcaacatcag tatcagatag tgattccgcg 4440tcattaagta
agtcgacaag tacgtcaaca agcgattcag atagtgcgtc aaaatcaaca 4500tcagtatcag
atagcacgtc aacatcattg agtaaatcaa caagtacatc gacaagtgac 4560tcagatagtg
cgtcaacatc ggtatcagac agtacgtccg catcattgag taaatcgaca 4620agcacgtcaa
caagtgattc agatagtgca tcaaaatcaa catcagtatc agatagcgat 4680tcagcatcat
taagcaagtc gacaagtaca tcgacaagtg attcagatag tgcgtcaaca 4740tcaacgtcag
tgtcagatag cgattcagct tcattaagca aatcaacaag tacgtcaaca 4800agtgactcag
atagcgcatc aacatcatta agcaagtcaa caagtacatc gacaagcgat 4860tcagacagta
cgtctacatc attaagtaag tcaacaagta catcaacaag tgattcggat 4920agtgcgtcaa
aatcaacatc agtatcagat agcgactcag cttcattaag caagtcgaca 4980agtacgtcaa
caagtgactc agacagtgcg tcaaaatcaa catctgtgtc agatagcgac 5040tccgcatcgt
tgagtaagtc gacaagtacg tcaacgagcg attcggatag tgcgtcaaaa 5100tcaacatcag
tatcagatag tgaatccgcg tcattaagca agtcgacaag cacatcgaca 5160agtgactcag
atagtgcgtc aacatcgaca tcggtatcag acagcacatc agtttcatta 5220agcaagtcga
caagcacgtc aacaagcgat tcagacagta cgtctacttc attaagcaag 5280tcgacaagca
cgtcaacaag tgactcagat agtgactcag cttcgttgag taaatcgaca 5340agcacgtcaa
cgagcgattc agatagcgtg tcaacatcaa catctgtgtc agatagcgat 5400tcagcttcat
taagcaaatc gacaagtaca tcaacaagcg attcagatag tgcgtcaaca 5460tcaacgtcgg
tatcagatag cggctccgca tcgttgagta agtcgacaag tacgtcaacg 5520agcgattcag
acagtgcatc aaaatcaacg tcggtatcag atagtgattc agcatcacta 5580agcaaatcga
caagcacgtc aacaagtgac tcagacagtg cgtcaacatc gacatcggta 5640tcagatagca
catccgcgtc gttaagcaag tcgacaagta cgtcaacaag tgattcagac 5700agcgcatcga
catcaacatc agtatcagat agcgactccg catcgttgag taaatcgaca 5760agcacgtcaa
caagtgattc ggacagtgcg tcaaaatcaa catcagtgtc agatagcgat 5820tcagcttcat
tgagtaagtc gacaagcacg tcaacaagcg aatcagacag cgcgtcaaaa 5880tcaacgtcag
tgtcagatag cgattccgca tcattaagta aatcgacaag cacgtcaaca 5940agtgactcag
atagtgcatc gacatcaacg tcagtatcag atagtgattc cgcgtcatta 6000agcaagtcga
caagtacgtc aacaagtgac tcagacagtg cgtcaaaatc aacatcagta 6060tcagatagcg
attccgcatc attgagtaag tcgacaagca cgtcaacaag cgaatcagac 6120agtgcgtcaa
catcgacatt agtatcggat agtacgtcgg tttcattgag ccaatcaaca 6180agtgtggata
aagatagtac agcgaaggga tcgacagaat tagtaaatgt tgcatcactt 6240tcaatcagtg
cgagtcaatc aagtagttta tctgcttcaa catccacatc gattgaaaag 6300tctgagtcta
catcaacaag tggctcaaat tcaactaatg cgtcgttaag tagctcatct 6360tcacttagta
catcagcaag tacttctgta agcgaagtga catctgtcac acattctgaa 6420aatgatttaa
gtgcatctaa cgatagagat acatccggat cagtaagtca atttgcttct 6480gaaaatacat
cattaagtga ttctgcatca attagtggcg aagtttctag tagtacgtcc 6540gcgtcaactt
cgaaatcatc atcactttca gcaagcgcgt tacatgataa gcatgtatca 6600gaaagcactt
ctgcatcatt aagtagtgga gattcaagtc gtgcttcggc atcagtgtca 6660acgtcattat
cagaatcaga tagtgcgtta atagactctg aatcaattag cgtttccgag 6720cacacatcaa
cattacaatc aggtagtcat tcactatcac aacaacaatc agcagaatta 6780tcacaatcag
agcaaacatc acaatcacaa cgcatttcaa caagtgcgtc agtatcggct 6840atgaaatcag
aaagtgctgc taaggtatct gaatcgctat ctacgtctca atcaaaagta 6900gatagtcaat
cacaatcggt atctgaatca gcgagcaact cacgagtgtc aagagattca 6960aaatcaacaa
gcgcttcaat gcatcgatca ttgtcagagt cagtatctca aagtatgtca 7020cttattgatc
agtcagaaag tgattcaaca tctatatcga tttcgacgtc aatcagtgat 7080gaagactcta
tgctgtattc tatgagtgat tccgcatcga tcagtactaa ggcatcaagt 7140agtatgtcta
cttcgacaag cgaagagcat gccaacagtc attctcagtc tgaatcgaca 7200gcatcggttg
aagtatctca agaaatgagt gcatcggctt caacaagcaa atctgagtct 7260caatcagagt
cagtatcagt aagtaacgaa gaatcaaata tctcatctat gcaagagtct 7320tttgtagaga
gtgcaaaagc atcgcgtagt gcatctatga gcgttgcaaa atctgaagcc 7380tctgaatcac
agctattaag tgagtctaat gcttcggtaa gccaatcagc aagcacaagt 7440agtaaagcat
cagcaagtac gtcagaatct atttcaacgt cactcagcgt atctgaagca 7500actcatggaa
aaccgagaaa tcattcagaa agtgcatcag caagtcaatt attagaagaa 7560aatgagtcat
taagcgattc agcatcaaca agtgttgaag attcagaaag tgcatcagca 7620tctctgtcgg
tgtatcaatc acaatcagca agtgcattga aatcaacaca tgcatcagaa 7680aaagcttcag
tgaatacaag tgcaaacgca tcgaagcgtg catcagcatc gacatctatc 7740tctaactcga
aatctaaagt cattgcgagt gaatcgaagt caacaagcat atcaacatat 7800gaatcgttgt
caatatcgac tagtaaagaa caatcaacgc gtgtatcagt gagtgagtcg 7860acatcaacgt
ctaaagtgaa gtcagaaagc gactcggcat caacgtcgac atctgaatca 7920atctcaatta
gcgcaaatcg ttcaggttac acatcgtcta aacgttcggt acaaatgagt 7980gaagcacaat
caacgagcga ttcattatca gtaatgcaat ctgaaggttc agtaagtgta 8040tcgcaatctt
taagtatatc agataagaca tcacagtcct tatcggaatc aatatcgcat 8100tcagaaagtg
actctgatag taactcagtg tctattagtc aagagacatc tgaacaacat 8160tcggtgtcag
acagtgactc gatgtcaatt tcggaaagcg aatctattgc atatagtcaa 8220tcagcgagtg
aatcagaatc aacaagtatc gcaaaatctg atagtatttc gaactcatta 8280tctgtttcat
taagtgaatc agaaagtgaa gcaagcacat cagcttcagt gagtacatct 8340gaaagtacgt
ctgtaaaggg ttctctatca acaagtatct tgaacagtca atcagcatct 8400actcatcaat
caacagaagc ttctcaaagt acatcaactt caaaagttga ggaagcatca 8460ttgagtgact
ctgcttctgt atcagattca caatcacttt caatgagtca tgagaaatca 8520caaagtgcat
cgacttcaaa atctacgagt ctgtcaaaaa ctatttctga gtcagagtct 8580gtgagtgcat
caacatcaac aagtgaagct gtaagtacag aagcaagcga atttgtatca 8640gcagtagact
cattgagtca agtaacttct aacggaagca caacgaaaga agatgcgagt 8700acatttgtat
ccacagtaga ttcattgaaa gacaaagcat caaataatgg tacaccatca 8760gagtttgcgt
cagcagtgaa atcaacacac gcatcagtga gtgtgtcagc atcagaaagt 8820acgtcagcat
caacatcaac aagtgaagct gtaagtacag aagcaagcga atttgtatca 8880gcagtgaatt
cgttgagtga agcgacttct aacggaagca caacgaaaga agatgcgagt 8940acatttgtat
ccacagtaga ttcattgaaa gacaaagcat caaataatgg tacaccatca 9000gagtttgcgt
cagcagtgaa atcaacacac gcatcagtga gtgtgtcagc atcagaaagt 9060acatcagcat
caacatcaac aagtgaagct gtaagtacag aagcaagcga atttgtatca 9120gcagtagact
cattgagtca agtaacttct aacggaagca caacgaaaga agatgcaagc 9180acatttgtat
ccacagtaga ttcattgaaa gataaagcat caaacaatgg tacaccatca 9240gaatttgaat
cagttgtgaa atcagtacac ggatcaatga gtgcatcagc aagtgcgtca 9300acatcagcat
ctacatcagc atctacatct acaagtgaag ctgcaagtgc agaagcaagc 9360gaattagaat
cagtaaggaa atcattatcc aatggagcat caaacggtag cacagcaaga 9420gaaggtgcaa
gcacatttgt atcaacggta gattcattga aagataaagc atcaaacaat 9480ggtacagcat
cagaatttga atcagttgtg aagtcagtac acggatcaac aagtgcatca 9540gcaagtgcgt
caacgtcagc atcaacatca gcaagtgaat cagcaagtac agaagcaagt 9600gaatttgtat
cagcagtggc atcattaagc agttcagcat ggaacggaag cactacagga 9660gaaggtgcaa
gcacatttgt atcaacagtt gattcatcga aagattcagc gtcagacaaa 9720gcttcaccat
cagaatcaga atcagttgtg aagtcagtac acggatcaac gagtacatca 9780gcaagtgtgt
cagcgtcggc aagtacatca gcatcgacat caacaagtga agctgtaagc 9840acagaagcaa
gtgagtttgt atcagcagtg aactcattaa gcagtgaagc atcgaacggc 9900agcacaacaa
gagaaggtgc aagcacattt gtatcaacag tagattcatt gaaagacaaa 9960gcatcaaaca
atggtacagc atcagaattt gaatcagttg tgaagtcagt acacggatca 10020atgagtacat
cagcaagtgt gtcagcatca gaaagtacgt cggcatcgac atcgacaagt 10080gaagctgtaa
gtacagaagc aagcgagtca gcatcgataa gtgtatcaat gtcagtgagc 10140gcatcaacaa
gtgcttcaat gagcgtatca gtgtcaaaca gtgtgtcagt gagtgactct 10200atttcagtaa
gtgcatcaac aagtgaacct aactcggtaa gcacttctat gagtagttct 10260ctttcaacat
cggcatcaac gccatcagaa attacttcaa gttcgtcatc aagcgattca 10320gcgacagttc
aaaaagtagt ttctaaagat gaacagcacg ctacaaataa agttgaaaaa 10380ttacctgaca
caggtcaatc aacgacacaa actggtttat tgggtggagt aggtgcttta 10440cttacaggcc
ttggtttact caaaaaatca agaaaacaaa aagatgaaga aacatcatca 10500catgaataa
10509123502PRTStaphylococcus pseudintermedius 12Met Thr Arg Lys Phe Arg
Glu Phe Lys Lys Ser Leu Ser Glu Glu Lys 1 5
10 15 Ala Arg Val Lys Leu Tyr Lys Ser Gly Lys Asn
Trp Val Lys Ala Gly 20 25
30 Ile Lys Glu Phe Gln Leu Leu Lys Ala Leu Gly Leu Ser Phe Leu
Ser 35 40 45 His
Asp Ile Val Lys Asp Glu Asn Gly Glu Val Thr Thr Gln Phe Gly 50
55 60 Glu Gln Leu Lys Lys Asn
Ala Leu Arg Thr Thr Ala Phe Ala Gly Gly 65 70
75 80 Met Phe Thr Val Asn Met Leu His Asp Gln Gln
Ala Phe Ala Ala Ser 85 90
95 Asp Ala Pro Ile Thr Ser Glu Leu Ala Thr Lys Ser Gln Thr Ile Gly
100 105 110 Asp Gln
Thr Ser Ile Val Ile Glu Lys Ser Thr Ser Ser Asp Gln Ser 115
120 125 Thr Asn Pro Ile Thr Glu Ser
Glu Ser Lys His Asp Ser Glu Ser Ile 130 135
140 Ser Leu Ser Glu His Gln Thr Ser Glu Ser Thr Ser
Leu Ser Thr Ser 145 150 155
160 Thr Ser Lys Ser Ile Ser Thr Ser Val Glu Glu Ser Glu Ser Thr Ser
165 170 175 Lys Asp Ser
His Thr Lys Thr Gln Asp Ser Gln Ser Asp Ser His Gln 180
185 190 Ser Thr Ser Gln Glu Val Asn Gly
Ser Ser Asn His Glu Gln Ser Thr 195 200
205 Pro His Thr Ala Gln Ser Leu Thr Ser Leu Ser Ile Glu
Ser Gln Thr 210 215 220
Ser Thr Ser Asn Thr Ser Leu Lys Glu Thr Lys Glu Gly Glu Leu Ser 225
230 235 240 Lys Asn Leu Ser
Lys Leu Ser Gln Asn Gln Asn Ile Lys Leu His Glu 245
250 255 Glu His Thr Met Arg Ser Ala Asp Leu
Ser Ser Gly Tyr Thr Gly Phe 260 265
270 Arg Ala Ala Tyr Tyr Val Pro Arg Ser Arg Thr Thr Pro Thr
Thr Lys 275 280 285
Val Tyr Thr Gly Gln Gly Ser Phe Arg Gly Arg Gly Arg Ile Lys Tyr 290
295 300 Asn Ile Phe Tyr Lys
Val Val Val Thr Ser Asn Gly Lys Glu Met Lys 305 310
315 320 Ile Arg Tyr Thr Leu Ser Gln Asp Asp Pro
Asn Thr Ser Asn Val Glu 325 330
335 Lys Pro Arg Trp Ala Gly Gln Lys Arg Phe Gly Ile His Asn Thr
Trp 340 345 350 Asp
Glu Gly Pro Gly Arg Gly Gln Leu Lys Leu Gly Ser Ala Phe Gly 355
360 365 Lys Pro Thr Val Ile Gln
Gly Glu Thr Arg Pro Asn Tyr Gly Ser Trp 370 375
380 Val Gly Thr Pro Ile Thr Lys Tyr Val Ser Gly
Asp Arg Thr Asn Gly 385 390 395
400 Phe Tyr Trp Gln Ala Ala Val Leu Ala Pro Arg His Gly Glu Lys Gly
405 410 415 Glu Gly
Ile Thr Ala Glu Ile Thr Val Pro Ile Val Asn Pro Ser Gly 420
425 430 Arg Phe Asn Trp Glu Phe His
Pro Val Gly Gln Gln Asp Gly Val Gly 435 440
445 Gly Lys Thr Asp Tyr Phe Glu Asn Val Trp Ile Arg
Asp Tyr Asp Pro 450 455 460
Tyr Tyr Lys Tyr Ile Gln Thr Lys Glu Gly Arg Ala Ser Val Ser His 465
470 475 480 Ser Ile Ser
Gln Val Lys Ala Ser Glu Ser Arg Ser Thr Ser Leu Ile 485
490 495 Gln Ser Glu Ser Ile Arg Arg Ser
Gln Ser Ile Ser Glu Ser Glu Ser 500 505
510 Ile Val Ala Ala Ser His Ser Ala Ser Val Ala Lys Ser
Gln Ser Ile 515 520 525
Ser Arg Ser Gln Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln 530
535 540 Ser Ile Ala His
Ser Arg Ser Ala Ser Val Ala Lys Ser Gln Ser Ile 545 550
555 560 Ser Arg Ser Gln Ser Ile Ala His Ser
Arg Ser Ala Ser Val Ala Lys 565 570
575 Ser Gln Ser Ile Ser Arg Ser Gln Ser Ile Ala His Ser Arg
Ser Ala 580 585 590
Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Ile Ala Gln
595 600 605 Ser Gln Ser Ala
Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln 610
615 620 Ser Ile Ala Gln Ser Gln Ser Ala
Ser Val Ala Lys Ser Gln Ser Ile 625 630
635 640 Ser Arg Ser Gln Ser Ile Ala His Ser Arg Ser Ala
Ser Val Ala Glu 645 650
655 Ser Gln Ser Ile Ser Arg Ser Gln Ser Ile Ala Asn Ser Gln Ser Val
660 665 670 Ala Ala Ser
Glu Ser Glu Ser Leu Ser Ile Ser Leu Ser Lys Lys Gln 675
680 685 Ser Ile Ser Met Ser Asn Ser Glu
Ser Ala Ala Lys Ser His Ser Leu 690 695
700 Ser Val Lys Arg Ser Asn Trp Ile Lys Lys Ser Lys Ala
Ala Ser Val 705 710 715
720 Arg Lys Ser His Ser Leu Ser Val Arg Lys Ser Asn Ser Ala Lys Arg
725 730 735 Ser His Ala Ile
Ser Val Arg Lys Ser Lys Ser Leu Ser Val Lys Lys 740
745 750 Ser Ile Ser Gln Ser Gln Ser Ala Ser
Val Ala Lys Ser Gln Ser Ile 755 760
765 Ser Arg Ser Gln Ser Val Ala Ala Ser Glu Ser Ala Ser Leu
Ser Lys 770 775 780
Ser Lys Ser Thr Ser Leu Ser Asn Ser Val Ser Ala Glu Lys Ser Thr 785
790 795 800 Ser Leu Ser Arg Ser
Ala Ser Val Ala Lys Ser Gln Ser Ile Ser Arg 805
810 815 Ser Gln Ser Val Val Ala Ser Glu Ser Ala
Ser Leu Ser Lys Ser Lys 820 825
830 Ser Thr Ser Leu Ser Asn Ser Val Ser Ala Glu Lys Ser Thr Ser
Leu 835 840 845 Ser
Arg Ser Ala Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln 850
855 860 Ser Val Ala Ala Ser Glu
Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr 865 870
875 880 Ser Leu Ser Asn Ser Val Ser Ala Glu Lys Ser
Thr Ser Leu Ser Arg 885 890
895 Ser Ala Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val
900 905 910 Ala Ala
Ser Glu Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser Leu 915
920 925 Ser Asn Ser Val Ser Ala Glu
Lys Ser Thr Ser Leu Ser Arg Ser Ala 930 935
940 Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln
Ser Val Val Ala 945 950 955
960 Ser Glu Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser Leu Ser Asn
965 970 975 Ser Val Ser
Ala Glu Lys Ser Thr Ser Leu Ser Arg Ser Ala Ser Val 980
985 990 Ala Lys Ser Gln Ser Ile Ser Arg
Ser Gln Ser Val Ala Ala Ser Glu 995 1000
1005 Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser
Leu Ser Asn Ser 1010 1015 1020
Val Ser Ala Glu Lys Ser Thr Ser Leu Ser Arg Ser Ala Ser Val
1025 1030 1035 Ala Lys Ser
Gln Ser Ile Ser Arg Ser Gln Ser Val Ala Ala Ser 1040
1045 1050 Glu Ser Ala Ser Leu Ser Lys Ser
Lys Ser Thr Ser Leu Ser Asn 1055 1060
1065 Ser Val Ser Val Glu Lys Ser Thr Ser Leu Ser Arg Ser
Ala Ser 1070 1075 1080
Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val Ala Ala 1085
1090 1095 Ser Glu Ser Ala Ser
Leu Ser Lys Ser Lys Ser Thr Ser Leu Ser 1100 1105
1110 Asn Ser Val Ser Ala Glu Lys Ser Thr Ser
Leu Ser Arg Ser Ala 1115 1120 1125
Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val Ala
1130 1135 1140 Ala Ser
Glu Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr 1145
1150 1155 Ser Asp Ser Asp Ser Ala Ser
Thr Ser Thr Ser Val Ser Asp Ser 1160 1165
1170 Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser
Thr Ser Asp 1175 1180 1185
Ser Asp Ser Ala Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser 1190
1195 1200 Thr Ser Asp Ser Asp
Ser Ala Ser Thr Ser Thr Ser Val Ser Asp 1205 1210
1215 Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr
Ser Thr Ser Thr Ser 1220 1225 1230
Asp Ser Asp Ser Thr Ser Thr Ser Leu Ser Lys Ser Thr Ser Thr
1235 1240 1245 Ser Thr
Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser 1250
1255 1260 Asp Ser Thr Ser Ala Ser Leu
Ser Lys Ser Thr Ser Thr Ser Thr 1265 1270
1275 Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val
Ser Asp Ser 1280 1285 1290
Thr Ser Ala Ser Leu Arg Lys Ser Ala Ser Thr Ser Thr Ser Asp 1295
1300 1305 Ser Asp Ser Thr Ser
Thr Ser Leu Ser Lys Ser Thr Ser Thr Ser 1310 1315
1320 Thr Ser Asp Ser Asp Ser Ala Ser Lys Ser
Thr Ser Val Ser Asp 1325 1330 1335
Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser
1340 1345 1350 Asp Ser
Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp 1355
1360 1365 Ser Ala Ser Leu Ser Lys Ser
Thr Ser Thr Ser Thr Ser Asp Ser 1370 1375
1380 Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser
Thr Ser Thr 1385 1390 1395
Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser 1400
1405 1410 Ala Ser Thr Ser Thr
Ser Val Ser Asp Ser Thr Ser Ala Ser Leu 1415 1420
1425 Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp
Ser Asp Ser Ala Ser 1430 1435 1440
Thr Ser Val Ser Asp Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr
1445 1450 1455 Ser Thr
Ser Thr Ser Asp Ser Asp Ser Val Ser Thr Ser Thr Ser 1460
1465 1470 Val Ser Asp Ser Asp Ser Ala
Ser Leu Ser Lys Ser Thr Ser Thr 1475 1480
1485 Ser Thr Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr
Ser Val Ser 1490 1495 1500
Asp Ser Thr Ser Thr Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr 1505
1510 1515 Ser Asp Ser Asp Ser
Ala Ser Thr Ser Val Ser Asp Ser Thr Ser 1520 1525
1530 Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser
Thr Ser Asp Ser Asp 1535 1540 1545
Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser
1550 1555 1560 Leu Ser
Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala 1565
1570 1575 Ser Thr Ser Thr Ser Val Ser
Asp Ser Asp Ser Ala Ser Leu Ser 1580 1585
1590 Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser
Ala Ser Thr 1595 1600 1605
Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser 1610
1615 1620 Thr Ser Thr Ser Leu
Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp 1625 1630
1635 Ser Asp Ser Ala Ser Lys Ser Thr Ser Val
Ser Asp Ser Asp Ser 1640 1645 1650
Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp
1655 1660 1665 Ser Ala
Ser Lys Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser 1670
1675 1680 Leu Ser Lys Ser Thr Ser Thr
Ser Thr Ser Asp Ser Asp Ser Ala 1685 1690
1695 Ser Lys Ser Thr Ser Val Ser Asp Ser Glu Ser Ala
Ser Leu Ser 1700 1705 1710
Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser Thr 1715
1720 1725 Ser Thr Ser Val Ser
Asp Ser Thr Ser Val Ser Leu Ser Lys Ser 1730 1735
1740 Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser
Thr Ser Thr Ser Leu 1745 1750 1755
Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Asp Ser
1760 1765 1770 Ala Ser
Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp 1775
1780 1785 Ser Val Ser Thr Ser Thr Ser
Val Ser Asp Ser Asp Ser Ala Ser 1790 1795
1800 Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser
Asp Ser Ala 1805 1810 1815
Ser Thr Ser Thr Ser Val Ser Asp Ser Gly Ser Ala Ser Leu Ser 1820
1825 1830 Lys Ser Thr Ser Thr
Ser Thr Ser Asp Ser Asp Ser Ala Ser Lys 1835 1840
1845 Ser Thr Ser Val Ser Asp Ser Asp Ser Ala
Ser Leu Ser Lys Ser 1850 1855 1860
Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser Thr Ser Thr
1865 1870 1875 Ser Val
Ser Asp Ser Thr Ser Ala Ser Leu Ser Lys Ser Thr Ser 1880
1885 1890 Thr Ser Thr Ser Asp Ser Asp
Ser Ala Ser Thr Ser Thr Ser Val 1895 1900
1905 Ser Asp Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr
Ser Thr Ser 1910 1915 1920
Thr Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp 1925
1930 1935 Ser Asp Ser Ala Ser
Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser 1940 1945
1950 Glu Ser Asp Ser Ala Ser Lys Ser Thr Ser
Val Ser Asp Ser Asp 1955 1960 1965
Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser
1970 1975 1980 Asp Ser
Ala Ser Thr Ser Thr Ser Val Ser Asp Ser Asp Ser Ala 1985
1990 1995 Ser Leu Ser Lys Ser Thr Ser
Thr Ser Thr Ser Asp Ser Asp Ser 2000 2005
2010 Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp Ser
Ala Ser Leu 2015 2020 2025
Ser Lys Ser Thr Ser Thr Ser Thr Ser Glu Ser Asp Ser Ala Ser 2030
2035 2040 Thr Ser Thr Leu Val
Ser Asp Ser Thr Ser Val Ser Leu Ser Gln 2045 2050
2055 Ser Thr Ser Val Asp Lys Asp Ser Thr Ala
Lys Gly Ser Thr Glu 2060 2065 2070
Leu Val Asn Val Ala Ser Leu Ser Ile Ser Ala Ser Gln Ser Ser
2075 2080 2085 Ser Leu
Ser Ala Ser Thr Ser Thr Ser Ile Glu Lys Ser Glu Ser 2090
2095 2100 Thr Ser Thr Ser Gly Ser Asn
Ser Thr Asn Ala Ser Leu Ser Ser 2105 2110
2115 Ser Ser Ser Leu Ser Thr Ser Ala Ser Thr Ser Val
Ser Glu Val 2120 2125 2130
Thr Ser Val Thr His Ser Glu Asn Asp Leu Ser Ala Ser Asn Asp 2135
2140 2145 Arg Asp Thr Ser Gly
Ser Val Ser Gln Phe Ala Ser Glu Asn Thr 2150 2155
2160 Ser Leu Ser Asp Ser Ala Ser Ile Ser Gly
Glu Val Ser Ser Ser 2165 2170 2175
Thr Ser Ala Ser Thr Ser Lys Ser Ser Ser Leu Ser Ala Ser Ala
2180 2185 2190 Leu His
Asp Lys His Val Ser Glu Ser Thr Ser Ala Ser Leu Ser 2195
2200 2205 Ser Gly Asp Ser Ser Arg Ala
Ser Ala Ser Val Ser Thr Ser Leu 2210 2215
2220 Ser Glu Ser Asp Ser Ala Leu Ile Asp Ser Glu Ser
Ile Ser Val 2225 2230 2235
Ser Glu His Thr Ser Thr Leu Gln Ser Gly Ser His Ser Leu Ser 2240
2245 2250 Gln Gln Gln Ser Ala
Glu Leu Ser Gln Ser Glu Gln Thr Ser Gln 2255 2260
2265 Ser Gln Arg Ile Ser Thr Ser Ala Ser Val
Ser Ala Met Lys Ser 2270 2275 2280
Glu Ser Ala Ala Lys Val Ser Glu Ser Leu Ser Thr Ser Gln Ser
2285 2290 2295 Lys Val
Asp Ser Gln Ser Gln Ser Val Ser Glu Ser Ala Ser Asn 2300
2305 2310 Ser Arg Val Ser Arg Asp Ser
Lys Ser Thr Ser Ala Ser Met His 2315 2320
2325 Arg Ser Leu Ser Glu Ser Val Ser Gln Ser Met Ser
Leu Ile Asp 2330 2335 2340
Gln Ser Glu Ser Asp Ser Thr Ser Ile Ser Ile Ser Thr Ser Ile 2345
2350 2355 Ser Asp Glu Asp Ser
Met Leu Tyr Ser Met Ser Asp Ser Ala Ser 2360 2365
2370 Ile Ser Thr Lys Ala Ser Ser Ser Met Ser
Thr Ser Thr Ser Glu 2375 2380 2385
Glu His Ala Asn Ser His Ser Gln Ser Glu Ser Thr Ala Ser Val
2390 2395 2400 Glu Val
Ser Gln Glu Met Ser Ala Ser Ala Ser Thr Ser Lys Ser 2405
2410 2415 Glu Ser Gln Ser Glu Ser Val
Ser Val Ser Asn Glu Glu Ser Asn 2420 2425
2430 Ile Ser Ser Met Gln Glu Ser Phe Val Glu Ser Ala
Lys Ala Ser 2435 2440 2445
Arg Ser Ala Ser Met Ser Val Ala Lys Ser Glu Ala Ser Glu Ser 2450
2455 2460 Gln Leu Leu Ser Glu
Ser Asn Ala Ser Val Ser Gln Ser Ala Ser 2465 2470
2475 Thr Ser Ser Lys Ala Ser Ala Ser Thr Ser
Glu Ser Ile Ser Thr 2480 2485 2490
Ser Leu Ser Val Ser Glu Ala Thr His Gly Lys Pro Arg Asn His
2495 2500 2505 Ser Glu
Ser Ala Ser Ala Ser Gln Leu Leu Glu Glu Asn Glu Ser 2510
2515 2520 Leu Ser Asp Ser Ala Ser Thr
Ser Val Glu Asp Ser Glu Ser Ala 2525 2530
2535 Ser Ala Ser Leu Ser Val Tyr Gln Ser Gln Ser Ala
Ser Ala Leu 2540 2545 2550
Lys Ser Thr His Ala Ser Glu Lys Ala Ser Val Asn Thr Ser Ala 2555
2560 2565 Asn Ala Ser Lys Arg
Ala Ser Ala Ser Thr Ser Ile Ser Asn Ser 2570 2575
2580 Lys Ser Lys Val Ile Ala Ser Glu Ser Lys
Ser Thr Ser Ile Ser 2585 2590 2595
Thr Tyr Glu Ser Leu Ser Ile Ser Thr Ser Lys Glu Gln Ser Thr
2600 2605 2610 Arg Val
Ser Val Ser Glu Ser Thr Ser Thr Ser Lys Val Lys Ser 2615
2620 2625 Glu Ser Asp Ser Ala Ser Thr
Ser Thr Ser Glu Ser Ile Ser Ile 2630 2635
2640 Ser Ala Asn Arg Ser Gly Tyr Thr Ser Ser Lys Arg
Ser Val Gln 2645 2650 2655
Met Ser Glu Ala Gln Ser Thr Ser Asp Ser Leu Ser Val Met Gln 2660
2665 2670 Ser Glu Gly Ser Val
Ser Val Ser Gln Ser Leu Ser Ile Ser Asp 2675 2680
2685 Lys Thr Ser Gln Ser Leu Ser Glu Ser Ile
Ser His Ser Glu Ser 2690 2695 2700
Asp Ser Asp Ser Asn Ser Val Ser Ile Ser Gln Glu Thr Ser Glu
2705 2710 2715 Gln His
Ser Val Ser Asp Ser Asp Ser Met Ser Ile Ser Glu Ser 2720
2725 2730 Glu Ser Ile Ala Tyr Ser Gln
Ser Ala Ser Glu Ser Glu Ser Thr 2735 2740
2745 Ser Ile Ala Lys Ser Asp Ser Ile Ser Asn Ser Leu
Ser Val Ser 2750 2755 2760
Leu Ser Glu Ser Glu Ser Glu Ala Ser Thr Ser Ala Ser Val Ser 2765
2770 2775 Thr Ser Glu Ser Thr
Ser Val Lys Gly Ser Leu Ser Thr Ser Ile 2780 2785
2790 Leu Asn Ser Gln Ser Ala Ser Thr His Gln
Ser Thr Glu Ala Ser 2795 2800 2805
Gln Ser Thr Ser Thr Ser Lys Val Glu Glu Ala Ser Leu Ser Asp
2810 2815 2820 Ser Ala
Ser Val Ser Asp Ser Gln Ser Leu Ser Met Ser His Glu 2825
2830 2835 Lys Ser Gln Ser Ala Ser Thr
Ser Lys Ser Thr Ser Leu Ser Lys 2840 2845
2850 Thr Ile Ser Glu Ser Glu Ser Val Ser Ala Ser Thr
Ser Thr Ser 2855 2860 2865
Glu Ala Val Ser Thr Glu Ala Ser Glu Phe Val Ser Ala Val Asp 2870
2875 2880 Ser Leu Ser Gln Val
Thr Ser Asn Gly Ser Thr Thr Lys Glu Asp 2885 2890
2895 Ala Ser Thr Phe Val Ser Thr Val Asp Ser
Leu Lys Asp Lys Ala 2900 2905 2910
Ser Asn Asn Gly Thr Pro Ser Glu Phe Ala Ser Ala Val Lys Ser
2915 2920 2925 Thr His
Ala Ser Val Ser Val Ser Ala Ser Glu Ser Thr Ser Ala 2930
2935 2940 Ser Thr Ser Thr Ser Glu Ala
Val Ser Thr Glu Ala Ser Glu Phe 2945 2950
2955 Val Ser Ala Val Asn Ser Leu Ser Glu Ala Thr Ser
Asn Gly Ser 2960 2965 2970
Thr Thr Lys Glu Asp Ala Ser Thr Phe Val Ser Thr Val Asp Ser 2975
2980 2985 Leu Lys Asp Lys Ala
Ser Asn Asn Gly Thr Pro Ser Glu Phe Ala 2990 2995
3000 Ser Ala Val Lys Ser Thr His Ala Ser Val
Ser Val Ser Ala Ser 3005 3010 3015
Glu Ser Thr Ser Ala Ser Thr Ser Thr Ser Glu Ala Val Ser Thr
3020 3025 3030 Glu Ala
Ser Glu Phe Val Ser Ala Val Asp Ser Leu Ser Gln Val 3035
3040 3045 Thr Ser Asn Gly Ser Thr Thr
Lys Glu Asp Ala Ser Thr Phe Val 3050 3055
3060 Ser Thr Val Asp Ser Leu Lys Asp Lys Ala Ser Asn
Asn Gly Thr 3065 3070 3075
Pro Ser Glu Phe Glu Ser Val Val Lys Ser Val His Gly Ser Met 3080
3085 3090 Ser Ala Ser Ala Ser
Ala Ser Thr Ser Ala Ser Thr Ser Ala Ser 3095 3100
3105 Thr Ser Thr Ser Glu Ala Ala Ser Ala Glu
Ala Ser Glu Leu Glu 3110 3115 3120
Ser Val Arg Lys Ser Leu Ser Asn Gly Ala Ser Asn Gly Ser Thr
3125 3130 3135 Ala Arg
Glu Gly Ala Ser Thr Phe Val Ser Thr Val Asp Ser Leu 3140
3145 3150 Lys Asp Lys Ala Ser Asn Asn
Gly Thr Ala Ser Glu Phe Glu Ser 3155 3160
3165 Val Val Lys Ser Val His Gly Ser Thr Ser Ala Ser
Ala Ser Ala 3170 3175 3180
Ser Thr Ser Ala Ser Thr Ser Ala Ser Glu Ser Ala Ser Thr Glu 3185
3190 3195 Ala Ser Glu Phe Val
Ser Ala Val Ala Ser Leu Ser Ser Ser Ala 3200 3205
3210 Trp Asn Gly Ser Thr Thr Gly Glu Gly Ala
Ser Thr Phe Val Ser 3215 3220 3225
Thr Val Asp Ser Ser Lys Asp Ser Ala Ser Asp Lys Ala Ser Pro
3230 3235 3240 Ser Glu
Ser Glu Ser Val Val Lys Ser Val His Gly Ser Thr Ser 3245
3250 3255 Thr Ser Ala Ser Val Ser Ala
Ser Ala Ser Thr Ser Ala Ser Thr 3260 3265
3270 Ser Thr Ser Glu Ala Val Ser Thr Glu Ala Ser Glu
Phe Val Ser 3275 3280 3285
Ala Val Asn Ser Leu Ser Ser Glu Ala Ser Asn Gly Ser Thr Thr 3290
3295 3300 Arg Glu Gly Ala Ser
Thr Phe Val Ser Thr Val Asp Ser Leu Lys 3305 3310
3315 Asp Lys Ala Ser Asn Asn Gly Thr Ala Ser
Glu Phe Glu Ser Val 3320 3325 3330
Val Lys Ser Val His Gly Ser Met Ser Thr Ser Ala Ser Val Ser
3335 3340 3345 Ala Ser
Glu Ser Thr Ser Ala Ser Thr Ser Thr Ser Glu Ala Val 3350
3355 3360 Ser Thr Glu Ala Ser Glu Ser
Ala Ser Ile Ser Val Ser Met Ser 3365 3370
3375 Val Ser Ala Ser Thr Ser Ala Ser Met Ser Val Ser
Val Ser Asn 3380 3385 3390
Ser Val Ser Val Ser Asp Ser Ile Ser Val Ser Ala Ser Thr Ser 3395
3400 3405 Glu Pro Asn Ser Val
Ser Thr Ser Met Ser Ser Ser Leu Ser Thr 3410 3415
3420 Ser Ala Ser Thr Pro Ser Glu Ile Thr Ser
Ser Ser Ser Ser Ser 3425 3430 3435
Asp Ser Ala Thr Val Gln Lys Val Val Ser Lys Asp Glu Gln His
3440 3445 3450 Ala Thr
Asn Lys Val Glu Lys Leu Pro Asp Thr Gly Gln Ser Thr 3455
3460 3465 Thr Gln Thr Gly Leu Leu Gly
Gly Val Gly Ala Leu Leu Thr Gly 3470 3475
3480 Leu Gly Leu Leu Lys Lys Ser Arg Lys Gln Lys Asp
Glu Glu Thr 3485 3490 3495
Ser Ser His Glu 3500 135688DNAStaphylococcus
pseudintermedius 13atgaaaaagt ctagaaaaaa gcgtatcgat tttttaccta accgtcaaaa
tcgatatgcg 60atacgtcgtt tttcagtagg cactgcgtca attctcgttg gagcaacatt
aatttttgga 120attcattcaa atgatgcatc ggcagcagta gaagacgcaa catctcaaga
agcaggaaca 180actaacgaaa attcaaatag tacagaagaa gcaacaacaa acgaaagtac
aactgttgaa 240gcaccaacaa gtgaagaagc aacaacggaa gagcaatcag tagaggcgcc
aacaagtgaa 300gaagtaacaa cggaagagca atcagtagag gcaccaacaa gtgaagaagt
aacaacggaa 360gagcaatcag tagaagcgcc aacaagtgaa gaagtaacaa cggaagagca
atcagtagaa 420gcgccaacaa gtgaagaagt aacaacggaa gagcaatcag tagaggcacc
aacaagtgaa 480gaagtaacaa cggaagagca atcagtagag gcaccaacta gtgaagaagt
aactacggaa 540gagcaatcag tagaagcacc aacaagtgaa gaagcaacaa cggaagagca
atcagtagaa 600gcaccaacaa gtgaagaagc aactacaaaa actcctgtaa aagaagaaac
atcctcaaca 660caagaaaatt cacccacgac tacactagaa gaacaatttt caaatgaatt
caatcagtta 720acatctacag aagataaaac aaactacaca cgtgaatatt taactcaaaa
cacaaatctt 780tcggcagaac aagtggaagc aacagttgaa cgcttgaatt taagtcaaga
aaatgtaaca 840gcccaagata tctatttcgc attacttaaa gatttagctg atcaacaaga
tgccttatta 900ccacgtgtaa cacttttggc cgctagagat tctgagctca caaacgaagc
gtctatcgct 960ttaactgaaa atagtccaat gttccgcgca gcattagcga atagtccttc
tggcaatgat 1020gtggtgtcag aagaagataa tattattgtg gctgatgcac tcgcaaatgg
atacatcaat 1080tcacaaacag atgcaacaaa tgcggcaaat acattgtctg gtcgtgcatg
ggttgtggat 1140acagggacac cagcgacaat gtcaaacggc ttaacagctg ttccagaagg
cacaaaagtc 1200tacatgcaat ggattgatac agatggcgcg gtttcaccag tgtatcaagc
aagcacaaca 1260aataaattga gttcaagtgg tggtagccaa gtaggtccag gtgcatatgc
atttgattta 1320cgtgaagcat ggatagactc aaatggcaaa gcgcacagat atgaagcgtc
aagtggccaa 1380tattatcgtt tatggattga tgactacaaa acagtagatg ggaatacggc
aaccatgtta 1440cgccaagcag gtggtttctt ccctggttca tatgttaatt cggtgacagg
taacaatatt 1500ggtcaattcc cacttatcgg aacgaacatg caacgtacag gtatctttat
gggtgtgata 1560ccaacgaacg attacatgac tacagataca agcaattgga ttcaagataa
tgaaggacct 1620atttcaaacc cagcagtaac gagcacaagt gaatttgtca gtggtaaagt
atggtctgag 1680acaggttcag gtgactatgc gaactctgcg acaggtccaa actttaactc
aggtgatatt 1740gcacgtgaag gttatcaagt tgtcatgtct tcattaacaa gtgctggtgc
ccaagcgtat 1800aaagcacaag tcgaatcgtt gccaacagac caacaagcgg cagcagcaca
ccaattattc 1860aaagaccacc cagaatttat ttctgcgaca gtgacgggta aaactgatgc
aaacggtgcg 1920tatacattac gtttcccttc aggctcattg agtaaagatt atctttatgg
ttatgtgatg 1980gataataagg gcaacttggt taagggctat tcatcattca cgtcaccttt
attccgttcg 2040cctaacagta acttatcttt cgcgccacaa acagcgccat atcatagacc
agccaaaaat 2100gcttgggtga atgtgaactt tgcgcttgta gaaacaattg aaacaagtat
agacatcacg 2160aactttgatg tgacagccaa cccagcgcaa cgtggtgata cggctatcat
tgatgtgact 2220tctacagcat tgtcaccatt acctacgcat gttgagtgga gagattcaaa
agggaatgtc 2280gttcaaaaaa gtggagatgt cactacggta gaagaagctg aaacggcagg
cacatttact 2340attcctgatg atgcgaaaac aggtgaaatc tatacagttt atattgtttc
aggaggcaat 2400gaagttgcag cagactcact gattgtccaa gtgcaagaaa atgcggcaac
ctatgaacct 2460gtatatccaa caacaacagt tgaacaagac caaactgtaa caattcctac
acctacaaat 2520gaagatggtt tagcattacc agacggaaca aagttcgaag gtggcaacaa
tgtacctgaa 2580tgggcaactg tgaatgaaga tggttctatt tcaatttcac caaatcaaga
tgtggaaaaa 2640ggtaactata atgtgcctgt tgtcgtcaca tatccagatg gttcaaaaga
aacagtattt 2700gcaccagttt tagttcaaga agctgttcca actgcagaac aatacgatcc
aacaattgaa 2760acaattaata aggaatatgg tactactgca acagaagatg aaattaaagg
cgcaatcaca 2820attccggatt acccaacaga tggagatcaa ccaacaatca cgattgacga
cccaactcaa 2880attccaaatg gaacagaaga aggcacagtg aatgtaggtg tcactgtcac
ttatccagat 2940ggttcaacag acaaattaac agtaccagtc gttacaggta agcaagcgga
taacgataag 3000tacacaccag aaacaacacc aattacgaaa gacttcggta caggtgtaac
agaagacgaa 3060gtgaaaggtg cagtcactgt tccggattac ccaacagatg gagaccaacc
aacaattacg 3120attgacgacc caagtcagtt gcctgatggt tcaaaagaag gaacaacgga
tgtcgacgta 3180acagtggaat atccagacgg cacaacagat cacatcacag ttccagtgac
tgttggaaag 3240caagcggata atgataagta cacaccagaa acaacaccaa ttacgaaaga
cttcggtaca 3300ggtgtaacag aagacgaagt gaaaggtgca gtcactgttc cggattaccc
aacagacggt 3360gaccaaccaa caattacaat tgatgatcca aatcaattac cggacggttc
acaagaaggt 3420acgactgatg taaatgtaac agtggaatat ccagatggca caacagatca
catcacagtt 3480ccagtgactg ttggaaagca agcggataat gataagtaca caccagaaac
aacaccaatt 3540acgaaagact tcggtacagg tgtaacagaa gacgaagtga aaggtgcagt
cactgttccg 3600gattacccaa cagatggaga tcaaccaacg gttacaattg atgatccaaa
tcaattaccg 3660gacggttcac aagaaggtac gactgatgta aatgtaacag tggaatatcc
agacggcaca 3720acagatcaca tcacagttcc agtgactgtt ggaaagcaag cggataatga
taagtacaca 3780ccagaaacaa caccaattac gaaagacttc ggtacaggtg taacagaaga
cgaagtgaaa 3840ggtgcagtca ctgttccgga ttacccaaca gacggtgacc aaccaacggt
tacaattgat 3900gatccaaatc aattaccgga cggttcacaa gaaggtacga ctgatgtaaa
tgtaacagtg 3960gaatatccag atggcacaac agatcacatc acagttccag tgactgttgg
aaagcaagcg 4020gataacgata agtacacacc agaaacaaca ccaattacga aagacttcgg
tacaggtgta 4080acagaagacg aagtgaaagg tgcagtcact gttccggatt acccaacaga
tggagatcaa 4140ccaacggtta caattgacga tccgagtcag ttaccagatg gctcacaaga
aggcacaaca 4200gatgtgaatg taacagtgga atatccagat ggcacaacag accacatcac
agttccagtg 4260actgttggta agcaagcaga taacgataag tacacgccag aaacaacacc
aattacgaaa 4320gacttcggta caggtgtaac agaagacgaa gtgaaaggtg cagtcactgt
tccggattac 4380ccaacagatg gagaccaacc aacaattaca attgacgatc cgagtcagtt
accagacggt 4440tcacaagaag gtacgactga tgtaaatgta acagtggaat atccagatgg
cacaacagat 4500cacatcacag ttccagtgac tgttggtaag caagcagata acgataagta
cacaccagaa 4560acaacaccaa ttacgaaaga cttcggtaca ggtgtaacag aagacgaagt
gaaaggtgca 4620gtcactgttc cggattaccc aacagatgga gaccaaccaa caattacaat
tgacgatccg 4680agtcagttac cagacggttc acaagaaggt acgactgatg taaatgtaac
agtggaatat 4740ccagatggca caacagatca catcacagtt ccagtgactg ttggaaagca
agcagataac 4800gataagtaca caccagaaac aacaccaatt acgaaagact tcggtacagg
tgtaacagaa 4860ggcgaagtga aagattcaat cacaattccc ggttacccaa cagatggaga
ccaaccaaca 4920attacaattg acgacccaag tcagttacca gatggttcac aagaaggtac
gactgatgtc 4980gatgtaacag tggaatatcc agacggcaca acagatcaca ttacagttcc
agtgactgtt 5040ggaaagcaag cagataacga taagtacaca ccagaaacag aaggtgtcaa
caaagatcat 5100ggtacgtcag taacagaaga tgaagtgaaa ggtgcagtca ctgttccggg
atacccaaca 5160gatggagatc aaccaacggt tacaattgat gatccaagtc aattgccgga
cggttcacaa 5220gaaggtacga ctgatgtaaa tgtaacagtg gaatatccag acggcacaac
agaccacatt 5280acagtcccag taactgttgg taaacaacct actaaagata acggggctac
agataatgat 5340ggcgacatga atcaaggcac agatgaagga aatagtgcta ctgatcatgg
cgacaatgta 5400aaacaagatt caaacggaaa ctatacgccg gttgaacaac gtgacaatca
tgcgacttca 5460cctgcaacag atatggatcc aatgccaagc aatagccaaa caacttttga
tggcataaat 5520gcaaaaggtt caacttcaga gaaagcaaac cataaacaac agtctgagca
attaccagac 5580acaggtgaaa gcaatacaca aaatggtgca cttttaggcg gattatttgc
agcacttgga 5640ggcttattct taatcggcag acgtcgtaaa gaaaaagaag gcaaataa
5688141895PRTStaphylococcus pseudintermedius 14Met Lys Lys Ser
Arg Lys Lys Arg Ile Asp Phe Leu Pro Asn Arg Gln 1 5
10 15 Asn Arg Tyr Ala Ile Arg Arg Phe Ser
Val Gly Thr Ala Ser Ile Leu 20 25
30 Val Gly Ala Thr Leu Ile Phe Gly Ile His Ser Asn Asp Ala
Ser Ala 35 40 45
Ala Val Glu Asp Ala Thr Ser Gln Glu Ala Gly Thr Thr Asn Glu Asn 50
55 60 Ser Asn Ser Thr Glu
Glu Ala Thr Thr Asn Glu Ser Thr Thr Val Glu 65 70
75 80 Ala Pro Thr Ser Glu Glu Ala Thr Thr Glu
Glu Gln Ser Val Glu Ala 85 90
95 Pro Thr Ser Glu Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala
Pro 100 105 110 Thr
Ser Glu Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr 115
120 125 Ser Glu Glu Val Thr Thr
Glu Glu Gln Ser Val Glu Ala Pro Thr Ser 130 135
140 Glu Glu Val Thr Thr Glu Glu Gln Ser Val Glu
Ala Pro Thr Ser Glu 145 150 155
160 Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr Ser Glu Glu
165 170 175 Val Thr
Thr Glu Glu Gln Ser Val Glu Ala Pro Thr Ser Glu Glu Ala 180
185 190 Thr Thr Glu Glu Gln Ser Val
Glu Ala Pro Thr Ser Glu Glu Ala Thr 195 200
205 Thr Lys Thr Pro Val Lys Glu Glu Thr Ser Ser Thr
Gln Glu Asn Ser 210 215 220
Pro Thr Thr Thr Leu Glu Glu Gln Phe Ser Asn Glu Phe Asn Gln Leu 225
230 235 240 Thr Ser Thr
Glu Asp Lys Thr Asn Tyr Thr Arg Glu Tyr Leu Thr Gln 245
250 255 Asn Thr Asn Leu Ser Ala Glu Gln
Val Glu Ala Thr Val Glu Arg Leu 260 265
270 Asn Leu Ser Gln Glu Asn Val Thr Ala Gln Asp Ile Tyr
Phe Ala Leu 275 280 285
Leu Lys Asp Leu Ala Asp Gln Gln Asp Ala Leu Leu Pro Arg Val Thr 290
295 300 Leu Leu Ala Ala
Arg Asp Ser Glu Leu Thr Asn Glu Ala Ser Ile Ala 305 310
315 320 Leu Thr Glu Asn Ser Pro Met Phe Arg
Ala Ala Leu Ala Asn Ser Pro 325 330
335 Ser Gly Asn Asp Val Val Ser Glu Glu Asp Asn Ile Ile Val
Ala Asp 340 345 350
Ala Leu Ala Asn Gly Tyr Ile Asn Ser Gln Thr Asp Ala Thr Asn Ala
355 360 365 Ala Asn Thr Leu
Ser Gly Arg Ala Trp Val Val Asp Thr Gly Thr Pro 370
375 380 Ala Thr Met Ser Asn Gly Leu Thr
Ala Val Pro Glu Gly Thr Lys Val 385 390
395 400 Tyr Met Gln Trp Ile Asp Thr Asp Gly Ala Val Ser
Pro Val Tyr Gln 405 410
415 Ala Ser Thr Thr Asn Lys Leu Ser Ser Ser Gly Gly Ser Gln Val Gly
420 425 430 Pro Gly Ala
Tyr Ala Phe Asp Leu Arg Glu Ala Trp Ile Asp Ser Asn 435
440 445 Gly Lys Ala His Arg Tyr Glu Ala
Ser Ser Gly Gln Tyr Tyr Arg Leu 450 455
460 Trp Ile Asp Asp Tyr Lys Thr Val Asp Gly Asn Thr Ala
Thr Met Leu 465 470 475
480 Arg Gln Ala Gly Gly Phe Phe Pro Gly Ser Tyr Val Asn Ser Val Thr
485 490 495 Gly Asn Asn Ile
Gly Gln Phe Pro Leu Ile Gly Thr Asn Met Gln Arg 500
505 510 Thr Gly Ile Phe Met Gly Val Ile Pro
Thr Asn Asp Tyr Met Thr Thr 515 520
525 Asp Thr Ser Asn Trp Ile Gln Asp Asn Glu Gly Pro Ile Ser
Asn Pro 530 535 540
Ala Val Thr Ser Thr Ser Glu Phe Val Ser Gly Lys Val Trp Ser Glu 545
550 555 560 Thr Gly Ser Gly Asp
Tyr Ala Asn Ser Ala Thr Gly Pro Asn Phe Asn 565
570 575 Ser Gly Asp Ile Ala Arg Glu Gly Tyr Gln
Val Val Met Ser Ser Leu 580 585
590 Thr Ser Ala Gly Ala Gln Ala Tyr Lys Ala Gln Val Glu Ser Leu
Pro 595 600 605 Thr
Asp Gln Gln Ala Ala Ala Ala His Gln Leu Phe Lys Asp His Pro 610
615 620 Glu Phe Ile Ser Ala Thr
Val Thr Gly Lys Thr Asp Ala Asn Gly Ala 625 630
635 640 Tyr Thr Leu Arg Phe Pro Ser Gly Ser Leu Ser
Lys Asp Tyr Leu Tyr 645 650
655 Gly Tyr Val Met Asp Asn Lys Gly Asn Leu Val Lys Gly Tyr Ser Ser
660 665 670 Phe Thr
Ser Pro Leu Phe Arg Ser Pro Asn Ser Asn Leu Ser Phe Ala 675
680 685 Pro Gln Thr Ala Pro Tyr His
Arg Pro Ala Lys Asn Ala Trp Val Asn 690 695
700 Val Asn Phe Ala Leu Val Glu Thr Ile Glu Thr Ser
Ile Asp Ile Thr 705 710 715
720 Asn Phe Asp Val Thr Ala Asn Pro Ala Gln Arg Gly Asp Thr Ala Ile
725 730 735 Ile Asp Val
Thr Ser Thr Ala Leu Ser Pro Leu Pro Thr His Val Glu 740
745 750 Trp Arg Asp Ser Lys Gly Asn Val
Val Gln Lys Ser Gly Asp Val Thr 755 760
765 Thr Val Glu Glu Ala Glu Thr Ala Gly Thr Phe Thr Ile
Pro Asp Asp 770 775 780
Ala Lys Thr Gly Glu Ile Tyr Thr Val Tyr Ile Val Ser Gly Gly Asn 785
790 795 800 Glu Val Ala Ala
Asp Ser Leu Ile Val Gln Val Gln Glu Asn Ala Ala 805
810 815 Thr Tyr Glu Pro Val Tyr Pro Thr Thr
Thr Val Glu Gln Asp Gln Thr 820 825
830 Val Thr Ile Pro Thr Pro Thr Asn Glu Asp Gly Leu Ala Leu
Pro Asp 835 840 845
Gly Thr Lys Phe Glu Gly Gly Asn Asn Val Pro Glu Trp Ala Thr Val 850
855 860 Asn Glu Asp Gly Ser
Ile Ser Ile Ser Pro Asn Gln Asp Val Glu Lys 865 870
875 880 Gly Asn Tyr Asn Val Pro Val Val Val Thr
Tyr Pro Asp Gly Ser Lys 885 890
895 Glu Thr Val Phe Ala Pro Val Leu Val Gln Glu Ala Val Pro Thr
Ala 900 905 910 Glu
Gln Tyr Asp Pro Thr Ile Glu Thr Ile Asn Lys Glu Tyr Gly Thr 915
920 925 Thr Ala Thr Glu Asp Glu
Ile Lys Gly Ala Ile Thr Ile Pro Asp Tyr 930 935
940 Pro Thr Asp Gly Asp Gln Pro Thr Ile Thr Ile
Asp Asp Pro Thr Gln 945 950 955
960 Ile Pro Asn Gly Thr Glu Glu Gly Thr Val Asn Val Gly Val Thr Val
965 970 975 Thr Tyr
Pro Asp Gly Ser Thr Asp Lys Leu Thr Val Pro Val Val Thr 980
985 990 Gly Lys Gln Ala Asp Asn Asp
Lys Tyr Thr Pro Glu Thr Thr Pro Ile 995 1000
1005 Thr Lys Asp Phe Gly Thr Gly Val Thr Glu
Asp Glu Val Lys Gly 1010 1015 1020
Ala Val Thr Val Pro Asp Tyr Pro Thr Asp Gly Asp Gln Pro Thr
1025 1030 1035 Ile Thr
Ile Asp Asp Pro Ser Gln Leu Pro Asp Gly Ser Lys Glu 1040
1045 1050 Gly Thr Thr Asp Val Asp Val
Thr Val Glu Tyr Pro Asp Gly Thr 1055 1060
1065 Thr Asp His Ile Thr Val Pro Val Thr Val Gly Lys
Gln Ala Asp 1070 1075 1080
Asn Asp Lys Tyr Thr Pro Glu Thr Thr Pro Ile Thr Lys Asp Phe 1085
1090 1095 Gly Thr Gly Val Thr
Glu Asp Glu Val Lys Gly Ala Val Thr Val 1100 1105
1110 Pro Asp Tyr Pro Thr Asp Gly Asp Gln Pro
Thr Ile Thr Ile Asp 1115 1120 1125
Asp Pro Asn Gln Leu Pro Asp Gly Ser Gln Glu Gly Thr Thr Asp
1130 1135 1140 Val Asn
Val Thr Val Glu Tyr Pro Asp Gly Thr Thr Asp His Ile 1145
1150 1155 Thr Val Pro Val Thr Val Gly
Lys Gln Ala Asp Asn Asp Lys Tyr 1160 1165
1170 Thr Pro Glu Thr Thr Pro Ile Thr Lys Asp Phe Gly
Thr Gly Val 1175 1180 1185
Thr Glu Asp Glu Val Lys Gly Ala Val Thr Val Pro Asp Tyr Pro 1190
1195 1200 Thr Asp Gly Asp Gln
Pro Thr Val Thr Ile Asp Asp Pro Asn Gln 1205 1210
1215 Leu Pro Asp Gly Ser Gln Glu Gly Thr Thr
Asp Val Asn Val Thr 1220 1225 1230
Val Glu Tyr Pro Asp Gly Thr Thr Asp His Ile Thr Val Pro Val
1235 1240 1245 Thr Val
Gly Lys Gln Ala Asp Asn Asp Lys Tyr Thr Pro Glu Thr 1250
1255 1260 Thr Pro Ile Thr Lys Asp Phe
Gly Thr Gly Val Thr Glu Asp Glu 1265 1270
1275 Val Lys Gly Ala Val Thr Val Pro Asp Tyr Pro Thr
Asp Gly Asp 1280 1285 1290
Gln Pro Thr Val Thr Ile Asp Asp Pro Asn Gln Leu Pro Asp Gly 1295
1300 1305 Ser Gln Glu Gly Thr
Thr Asp Val Asn Val Thr Val Glu Tyr Pro 1310 1315
1320 Asp Gly Thr Thr Asp His Ile Thr Val Pro
Val Thr Val Gly Lys 1325 1330 1335
Gln Ala Asp Asn Asp Lys Tyr Thr Pro Glu Thr Thr Pro Ile Thr
1340 1345 1350 Lys Asp
Phe Gly Thr Gly Val Thr Glu Asp Glu Val Lys Gly Ala 1355
1360 1365 Val Thr Val Pro Asp Tyr Pro
Thr Asp Gly Asp Gln Pro Thr Val 1370 1375
1380 Thr Ile Asp Asp Pro Ser Gln Leu Pro Asp Gly Ser
Gln Glu Gly 1385 1390 1395
Thr Thr Asp Val Asn Val Thr Val Glu Tyr Pro Asp Gly Thr Thr 1400
1405 1410 Asp His Ile Thr Val
Pro Val Thr Val Gly Lys Gln Ala Asp Asn 1415 1420
1425 Asp Lys Tyr Thr Pro Glu Thr Thr Pro Ile
Thr Lys Asp Phe Gly 1430 1435 1440
Thr Gly Val Thr Glu Asp Glu Val Lys Gly Ala Val Thr Val Pro
1445 1450 1455 Asp Tyr
Pro Thr Asp Gly Asp Gln Pro Thr Ile Thr Ile Asp Asp 1460
1465 1470 Pro Ser Gln Leu Pro Asp Gly
Ser Gln Glu Gly Thr Thr Asp Val 1475 1480
1485 Asn Val Thr Val Glu Tyr Pro Asp Gly Thr Thr Asp
His Ile Thr 1490 1495 1500
Val Pro Val Thr Val Gly Lys Gln Ala Asp Asn Asp Lys Tyr Thr 1505
1510 1515 Pro Glu Thr Thr Pro
Ile Thr Lys Asp Phe Gly Thr Gly Val Thr 1520 1525
1530 Glu Asp Glu Val Lys Gly Ala Val Thr Val
Pro Asp Tyr Pro Thr 1535 1540 1545
Asp Gly Asp Gln Pro Thr Ile Thr Ile Asp Asp Pro Ser Gln Leu
1550 1555 1560 Pro Asp
Gly Ser Gln Glu Gly Thr Thr Asp Val Asn Val Thr Val 1565
1570 1575 Glu Tyr Pro Asp Gly Thr Thr
Asp His Ile Thr Val Pro Val Thr 1580 1585
1590 Val Gly Lys Gln Ala Asp Asn Asp Lys Tyr Thr Pro
Glu Thr Thr 1595 1600 1605
Pro Ile Thr Lys Asp Phe Gly Thr Gly Val Thr Glu Gly Glu Val 1610
1615 1620 Lys Asp Ser Ile Thr
Ile Pro Gly Tyr Pro Thr Asp Gly Asp Gln 1625 1630
1635 Pro Thr Ile Thr Ile Asp Asp Pro Ser Gln
Leu Pro Asp Gly Ser 1640 1645 1650
Gln Glu Gly Thr Thr Asp Val Asp Val Thr Val Glu Tyr Pro Asp
1655 1660 1665 Gly Thr
Thr Asp His Ile Thr Val Pro Val Thr Val Gly Lys Gln 1670
1675 1680 Ala Asp Asn Asp Lys Tyr Thr
Pro Glu Thr Glu Gly Val Asn Lys 1685 1690
1695 Asp His Gly Thr Ser Val Thr Glu Asp Glu Val Lys
Gly Ala Val 1700 1705 1710
Thr Val Pro Gly Tyr Pro Thr Asp Gly Asp Gln Pro Thr Val Thr 1715
1720 1725 Ile Asp Asp Pro Ser
Gln Leu Pro Asp Gly Ser Gln Glu Gly Thr 1730 1735
1740 Thr Asp Val Asn Val Thr Val Glu Tyr Pro
Asp Gly Thr Thr Asp 1745 1750 1755
His Ile Thr Val Pro Val Thr Val Gly Lys Gln Pro Thr Lys Asp
1760 1765 1770 Asn Gly
Ala Thr Asp Asn Asp Gly Asp Met Asn Gln Gly Thr Asp 1775
1780 1785 Glu Gly Asn Ser Ala Thr Asp
His Gly Asp Asn Val Lys Gln Asp 1790 1795
1800 Ser Asn Gly Asn Tyr Thr Pro Val Glu Gln Arg Asp
Asn His Ala 1805 1810 1815
Thr Ser Pro Ala Thr Asp Met Asp Pro Met Pro Ser Asn Ser Gln 1820
1825 1830 Thr Thr Phe Asp Gly
Ile Asn Ala Lys Gly Ser Thr Ser Glu Lys 1835 1840
1845 Ala Asn His Lys Gln Gln Ser Glu Gln Leu
Pro Asp Thr Gly Glu 1850 1855 1860
Ser Asn Thr Gln Asn Gly Ala Leu Leu Gly Gly Leu Phe Ala Ala
1865 1870 1875 Leu Gly
Gly Leu Phe Leu Ile Gly Arg Arg Arg Lys Glu Lys Glu 1880
1885 1890 Gly Lys 1895
151860DNAStaphylococcus pseudintermedius 15atgacagaac gaaaatcccc
ttcatctcaa aacatgcgtc atcgtttagt caaagctggt 60actgtccttt tattggttgg
tagtggactg caaatgcctt caacattgtc acacgaaatg 120acagcgatag ctcagacaga
tgcgactgat gatttgaaaa cattacgtga aaatgcagat 180aaaaaagtga aagcgttaca
atatttaaat acggattata aaaatgaatt tcttgcgtta 240attcgtgaat atgatacgtc
gtcaaaaaat attgaagtgg ttgttgacga agcagaagca 300gccaatcgtc tagctcatga
cgctcaatcg gacgatgaaa tacaacctga attagatgcc 360attgatgaaa aaattagcgc
gttaaaggca aaggttgatg aaggtcaacg agaatcaact 420gaagcgcgtc aagatgtaac
gtcaacagag acaaagagtg ctgaatcaga aggaagagag 480ccatccactg aaggcgagag
caaagtaaag gagtcatctt cagcacaaac gattgtagca 540cctcatcatg gtcaacaaga
tgtgagcgca ctgaaagacc atattaagaa cgatgtcgat 600acacttaaac aagactatgc
aacgcaagac aagcaagtga caccactcca gggcattgac 660agtgcaatca cacgcattga
ccatttcgtt tcagaaagcg tggatcacaa gtctgacaat 720tattttgaag aaaaacgtca
acatttacaa aactttgaac aagacattaa aaaacgtacg 780gacatttctg ggactgagaa
ggcgactttg cttgatgatg cgaaaacggt agccaaccaa 840ctgaacgcgc aaaatgatac
gattttaact gaacttcaac agcatgacga taaacgtgca 900gcagttgaat cgatattagg
tgagattttt aatgcacaag aagcggctga acgtgcgaaa 960cagatagatg ttaaaggtaa
aacagatcaa caattggcaa acgaaattca tcaacaagcg 1020gacggactta tcaaaacgtc
gagtgatgat ttattgttag gaatgttgga aaataattca 1080aatacacaag gtctagtgga
aagcatttta cgaacacgct ttgacaaaca agaagcgcac 1140aaaattgccg gcgaaatcat
gcaaggcaag ccttcaaata cagcgatact cgaccgcttg 1200aaagaccatt ttaaagcgaa
tggtaaggcg agtggagatg atattttaaa tgcgttaatt 1260aataatacgg atgcagatgc
tgaagtgatt gaatcaattc tagggggccg tcttaatgca 1320gaaaatgcaa aattgattgc
cgatcgtgta cagcaagata aaaagaagac acatcaaaac 1380ttaaaggcga ttgaagacga
acttagtgcg caagcgaatc gattgttaac gttacggaag 1440caattgcaac aaatccgtca
taatacgcaa acagatatga atgacttgtt tgcaccactg 1500cgtcgtattg caaatattct
cggtggtggt ttaaatcgtg acgacattca ctcttcaggt 1560cgtacgaatg acaaattgca
gcaactgtta aatcgtgatc attcgttgtt aggtcgtggt 1620ggtgatttat tcaaacatga
ttttgcgcca aagccgaata tcgatccata tcaagcgatt 1680aatagtcaaa cggcatcaga
aggtttttta gatggtttat ttgatcaaaa tggcgatttc 1740aatttaccga atacaggtga
aatagtgaag cggacttggc taccgttggg tattttagtc 1800gttgcaatcg gtgtactgat
cttaacggtg agatttcata aaaaaacacg caaacaataa 186016619PRTStaphylococcus
pseudintermedius 16Met Thr Glu Arg Lys Ser Pro Ser Ser Gln Asn Met Arg
His Arg Leu 1 5 10 15
Val Lys Ala Gly Thr Val Leu Leu Leu Val Gly Ser Gly Leu Gln Met
20 25 30 Pro Ser Thr Leu
Ser His Glu Met Thr Ala Ile Ala Gln Thr Asp Ala 35
40 45 Thr Asp Asp Leu Lys Thr Leu Arg Glu
Asn Ala Asp Lys Lys Val Lys 50 55
60 Ala Leu Gln Tyr Leu Asn Thr Asp Tyr Lys Asn Glu Phe
Leu Ala Leu 65 70 75
80 Ile Arg Glu Tyr Asp Thr Ser Ser Lys Asn Ile Glu Val Val Val Asp
85 90 95 Glu Ala Glu Ala
Ala Asn Arg Leu Ala His Asp Ala Gln Ser Asp Asp 100
105 110 Glu Ile Gln Pro Glu Leu Asp Ala Ile
Asp Glu Lys Ile Ser Ala Leu 115 120
125 Lys Ala Lys Val Asp Glu Gly Gln Arg Glu Ser Thr Glu Ala
Arg Gln 130 135 140
Asp Val Thr Ser Thr Glu Thr Lys Ser Ala Glu Ser Glu Gly Arg Glu 145
150 155 160 Pro Ser Thr Glu Gly
Glu Ser Lys Val Lys Glu Ser Ser Ser Ala Gln 165
170 175 Thr Ile Val Ala Pro His His Gly Gln Gln
Asp Val Ser Ala Leu Lys 180 185
190 Asp His Ile Lys Asn Asp Val Asp Thr Leu Lys Gln Asp Tyr Ala
Thr 195 200 205 Gln
Asp Lys Gln Val Thr Pro Leu Gln Gly Ile Asp Ser Ala Ile Thr 210
215 220 Arg Ile Asp His Phe Val
Ser Glu Ser Val Asp His Lys Ser Asp Asn 225 230
235 240 Tyr Phe Glu Glu Lys Arg Gln His Leu Gln Asn
Phe Glu Gln Asp Ile 245 250
255 Lys Lys Arg Thr Asp Ile Ser Gly Thr Glu Lys Ala Thr Leu Leu Asp
260 265 270 Asp Ala
Lys Thr Val Ala Asn Gln Leu Asn Ala Gln Asn Asp Thr Ile 275
280 285 Leu Thr Glu Leu Gln Gln His
Asp Asp Lys Arg Ala Ala Val Glu Ser 290 295
300 Ile Leu Gly Glu Ile Phe Asn Ala Gln Glu Ala Ala
Glu Arg Ala Lys 305 310 315
320 Gln Ile Asp Val Lys Gly Lys Thr Asp Gln Gln Leu Ala Asn Glu Ile
325 330 335 His Gln Gln
Ala Asp Gly Leu Ile Lys Thr Ser Ser Asp Asp Leu Leu 340
345 350 Leu Gly Met Leu Glu Asn Asn Ser
Asn Thr Gln Gly Leu Val Glu Ser 355 360
365 Ile Leu Arg Thr Arg Phe Asp Lys Gln Glu Ala His Lys
Ile Ala Gly 370 375 380
Glu Ile Met Gln Gly Lys Pro Ser Asn Thr Ala Ile Leu Asp Arg Leu 385
390 395 400 Lys Asp His Phe
Lys Ala Asn Gly Lys Ala Ser Gly Asp Asp Ile Leu 405
410 415 Asn Ala Leu Ile Asn Asn Thr Asp Ala
Asp Ala Glu Val Ile Glu Ser 420 425
430 Ile Leu Gly Gly Arg Leu Asn Ala Glu Asn Ala Lys Leu Ile
Ala Asp 435 440 445
Arg Val Gln Gln Asp Lys Lys Lys Thr His Gln Asn Leu Lys Ala Ile 450
455 460 Glu Asp Glu Leu Ser
Ala Gln Ala Asn Arg Leu Leu Thr Leu Arg Lys 465 470
475 480 Gln Leu Gln Gln Ile Arg His Asn Thr Gln
Thr Asp Met Asn Asp Leu 485 490
495 Phe Ala Pro Leu Arg Arg Ile Ala Asn Ile Leu Gly Gly Gly Leu
Asn 500 505 510 Arg
Asp Asp Ile His Ser Ser Gly Arg Thr Asn Asp Lys Leu Gln Gln 515
520 525 Leu Leu Asn Arg Asp His
Ser Leu Leu Gly Arg Gly Gly Asp Leu Phe 530 535
540 Lys His Asp Phe Ala Pro Lys Pro Asn Ile Asp
Pro Tyr Gln Ala Ile 545 550 555
560 Asn Ser Gln Thr Ala Ser Glu Gly Phe Leu Asp Gly Leu Phe Asp Gln
565 570 575 Asn Gly
Asp Phe Asn Leu Pro Asn Thr Gly Glu Ile Val Lys Arg Thr 580
585 590 Trp Leu Pro Leu Gly Ile Leu
Val Val Ala Ile Gly Val Leu Ile Leu 595 600
605 Thr Val Arg Phe His Lys Lys Thr Arg Lys Gln
610 615 17729DNAStaphylococcus
pseudintermedius 17atgttaaaaa aattaattgt tacaggtttg attgctacag cggcgacaca
agtttatgcg 60catgacacgc aagcggcgga aaagggtgct acagatgctc cgaatgtgat
ggttaaggat 120gaggcgaaaa aagaagtgac accgataatc cataaaccga cttgcattta
cccgcatcta 180gaaggcgaag atgatgctgc gtatttaaaa cgtatggcaa cgaatccacc
agaaggcgca 240gtgccgtacg gtgtattgaa taaagatgga tcgattacag aaccgaatac
aaatccacat 300tttgatgttt taaaaattga agatccaaat gcgatgaaag atttggttga
tacaccggca 360gatgatcaag atacggtacc gagtgattta caaattgaac caccagcatt
aataggacca 420gctactaaac atacggatgg tacgggagac gcaaaatcta atgatgacca
caaagtaaca 480aaatcttcgg gagcgtcagc ccaagatatg aagaaaaaag acgtgacaac
acaaactgca 540caaccaaaag cagataaaaa gatggcgact gcaaaagtag caccagcgaa
acaacaagat 600aaagcagcca aaatgttacc agcagcaggg gaaccacaag tgaatgcaat
cagtcaaaca 660gcacttgcac tttcaatgat cgcattaggt gtcatcgcgt tctttacacg
acgacgcaaa 720acaaattaa
72918242PRTStaphylococcus pseudintermedius 18Met Leu Lys Lys
Leu Ile Val Thr Gly Leu Ile Ala Thr Ala Ala Thr 1 5
10 15 Gln Val Tyr Ala His Asp Thr Gln Ala
Ala Glu Lys Gly Ala Thr Asp 20 25
30 Ala Pro Asn Val Met Val Lys Asp Glu Ala Lys Lys Glu Val
Thr Pro 35 40 45
Ile Ile His Lys Pro Thr Cys Ile Tyr Pro His Leu Glu Gly Glu Asp 50
55 60 Asp Ala Ala Tyr Leu
Lys Arg Met Ala Thr Asn Pro Pro Glu Gly Ala 65 70
75 80 Val Pro Tyr Gly Val Leu Asn Lys Asp Gly
Ser Ile Thr Glu Pro Asn 85 90
95 Thr Asn Pro His Phe Asp Val Leu Lys Ile Glu Asp Pro Asn Ala
Met 100 105 110 Lys
Asp Leu Val Asp Thr Pro Ala Asp Asp Gln Asp Thr Val Pro Ser 115
120 125 Asp Leu Gln Ile Glu Pro
Pro Ala Leu Ile Gly Pro Ala Thr Lys His 130 135
140 Thr Asp Gly Thr Gly Asp Ala Lys Ser Asn Asp
Asp His Lys Val Thr 145 150 155
160 Lys Ser Ser Gly Ala Ser Ala Gln Asp Met Lys Lys Lys Asp Val Thr
165 170 175 Thr Gln
Thr Ala Gln Pro Lys Ala Asp Lys Lys Met Ala Thr Ala Lys 180
185 190 Val Ala Pro Ala Lys Gln Gln
Asp Lys Ala Ala Lys Met Leu Pro Ala 195 200
205 Ala Gly Glu Pro Gln Val Asn Ala Ile Ser Gln Thr
Ala Leu Ala Leu 210 215 220
Ser Met Ile Ala Leu Gly Val Ile Ala Phe Phe Thr Arg Arg Arg Lys 225
230 235 240 Thr Asn
191362DNAStaphylococcus pseudintermedius 19atggtagaat ataaaaaaga
acatagcgta aagcgactat taaaattagg aatcggttca 60acgagtattt tatgtgttgt
atcacctctt ttattaacac atgacgttgt tcaagcagca 120gatatcaata acaggatgcc
agctttgaat acattgaaga ccacttcttc atatgatcaa 180agggcacaca tggatgaatt
acgaaacgcc attacttcag atagtgacac tactcaaaca 240ccatcattca atgagataac
tgtgtcttca actaatgaaa cggatgcagc gtcaacggaa 300aatgtgaacc cgagtgatga
ggtcccggca aaggatgaaa gtgaatcaac gacaccgagt 360acagaacaag acacatctat
agaagaaacg ggtactgaag aagtgccatc tcatgaagac 420aatcatcaca acaccccaag
tcaagaagag caaccgtctc cgcctgatca accaggaaca 480aacaaagatg aagagagtgg
agaaaaaccg aataaagaaa atcatcggaa gccgaatcaa 540ccgaacaaag accaaccttc
aaaagatgag aataaaaaac ctgacaaagg aaacaaacca 600gcaccaccgt ctaaaatgcc
aaatcgcccg gatcaaaagg aagatggttc aaacaacacc 660ccaccacctg ccactgataa
cggtggaaac agtaatgacg gtacaacaac gggtcccaat 720ggtggaggtg gcagtgaagc
aagtccacca ccgaatgagc aaccgtcaaa tggcaatgca 780agcgataccc atcaaaacgg
ttcagtttca agcaccaatc attcgaatca gtatggtaca 840tcggcttatg atgaatacgc
aggtttattg aataataatt ataaatataa tccattgttt 900aaagaagagg ttgcgcgttt
aagtcaattt ggaagtcaag atcaacatga tattgcaagt 960ttgagtcgta aagaacaatt
ttctcaaaat gcatttttag atgacttgca acaaagtaca 1020gattatttta gatatcaata
ttttaacccg ctttccacag agcaatacta tcatcgttta 1080gataaacaag tattagcact
cgttacgggg gaatttggtt cgatgccaga tttcaagaaa 1140agtggtgata agtcattggt
taataagcat cagcaagata aagtgaagaa aattgaacag 1200caaggagaaa atattaatac
gcatcatatg aaaaatacga aagaagatac aggaaaatca 1260ttaagttaca agccgatgat
atatattggc attgtcatgg tcggttttgt cggcctgatc 1320agtatgattt tatggaaacg
actgcatcat ttttggaaat aa 136220453PRTStaphylococcus
pseudintermedius 20Met Val Glu Tyr Lys Lys Glu His Ser Val Lys Arg Leu
Leu Lys Leu 1 5 10 15
Gly Ile Gly Ser Thr Ser Ile Leu Cys Val Val Ser Pro Leu Leu Leu
20 25 30 Thr His Asp Val
Val Gln Ala Ala Asp Ile Asn Asn Arg Met Pro Ala 35
40 45 Leu Asn Thr Leu Lys Thr Thr Ser Ser
Tyr Asp Gln Arg Ala His Met 50 55
60 Asp Glu Leu Arg Asn Ala Ile Thr Ser Asp Ser Asp Thr
Thr Gln Thr 65 70 75
80 Pro Ser Phe Asn Glu Ile Thr Val Ser Ser Thr Asn Glu Thr Asp Ala
85 90 95 Ala Ser Thr Glu
Asn Val Asn Pro Ser Asp Glu Val Pro Ala Lys Asp 100
105 110 Glu Ser Glu Ser Thr Thr Pro Ser Thr
Glu Gln Asp Thr Ser Ile Glu 115 120
125 Glu Thr Gly Thr Glu Glu Val Pro Ser His Glu Asp Asn His
His Asn 130 135 140
Thr Pro Ser Gln Glu Glu Gln Pro Ser Pro Pro Asp Gln Pro Gly Thr 145
150 155 160 Asn Lys Asp Glu Glu
Ser Gly Glu Lys Pro Asn Lys Glu Asn His Arg 165
170 175 Lys Pro Asn Gln Pro Asn Lys Asp Gln Pro
Ser Lys Asp Glu Asn Lys 180 185
190 Lys Pro Asp Lys Gly Asn Lys Pro Ala Pro Pro Ser Lys Met Pro
Asn 195 200 205 Arg
Pro Asp Gln Lys Glu Asp Gly Ser Asn Asn Thr Pro Pro Pro Ala 210
215 220 Thr Asp Asn Gly Gly Asn
Ser Asn Asp Gly Thr Thr Thr Gly Pro Asn 225 230
235 240 Gly Gly Gly Gly Ser Glu Ala Ser Pro Pro Pro
Asn Glu Gln Pro Ser 245 250
255 Asn Gly Asn Ala Ser Asp Thr His Gln Asn Gly Ser Val Ser Ser Thr
260 265 270 Asn His
Ser Asn Gln Tyr Gly Thr Ser Ala Tyr Asp Glu Tyr Ala Gly 275
280 285 Leu Leu Asn Asn Asn Tyr Lys
Tyr Asn Pro Leu Phe Lys Glu Glu Val 290 295
300 Ala Arg Leu Ser Gln Phe Gly Ser Gln Asp Gln His
Asp Ile Ala Ser 305 310 315
320 Leu Ser Arg Lys Glu Gln Phe Ser Gln Asn Ala Phe Leu Asp Asp Leu
325 330 335 Gln Gln Ser
Thr Asp Tyr Phe Arg Tyr Gln Tyr Phe Asn Pro Leu Ser 340
345 350 Thr Glu Gln Tyr Tyr His Arg Leu
Asp Lys Gln Val Leu Ala Leu Val 355 360
365 Thr Gly Glu Phe Gly Ser Met Pro Asp Phe Lys Lys Ser
Gly Asp Lys 370 375 380
Ser Leu Val Asn Lys His Gln Gln Asp Lys Val Lys Lys Ile Glu Gln 385
390 395 400 Gln Gly Glu Asn
Ile Asn Thr His His Met Lys Asn Thr Lys Glu Asp 405
410 415 Thr Gly Lys Ser Leu Ser Tyr Lys Pro
Met Ile Tyr Ile Gly Ile Val 420 425
430 Met Val Gly Phe Val Gly Leu Ile Ser Met Ile Leu Trp Lys
Arg Leu 435 440 445
His His Phe Trp Lys 450 213096DNAStaphylococcus
pseudintermedius 21gtgattacaa ataaaaatat atatagtatt cgaaagcata aacttggcgt
ggcatcattc 60ttattgggga cattatttgt tgtagggcat gcaaataatg ctgaagcttc
agaagtgagc 120gcaacaacac aagaacataa tgtcgagact gagcaaacaa aaactgaggg
cgaactaaca 180actgaggtag cacaacaagc agtcagcgaa tcagcaccta tagctgaaaa
catgcagaaa 240acaacatcag tggcaagtga aaatgcgaaa gaggttacag cttctgatag
cacacaagaa 300gtcacaaaaa ctgaagcaaa agatacagca acaatgaaag attcagaaat
tgcacaacct 360gtatcagaag tgaataaacc tgttactcaa acagctgcac ccgtagcaga
accatcaaca 420gcaaacaaac aaacttcacc acgacaagta caagaactta ctgcaccaat
ggacacaaaa 480gtaattaatg tagaaaacgg aacagatgtg acaagtaaag tgaaagttga
aaaatcgtca 540attacagggc atcagaataa agataaaaca tatcatcaat cgaacactgt
aaatccacat 600aaagctgaac gtgtgacatt aaattatgat tggtcatttg aaaatggaat
taaagctggt 660gattattttg acttccaatt aagcgataat gtcgatacaa atggaatatc
aacaataaaa 720aaagtcccac acattatgga tagtcaaaat agcgaacaaa ttattgctta
cggggaaatt 780aatgaaaaca accgtgtccg ttaccgattt atggactatg taaatcaaaa
agaaaattta 840aaaggtaaat tgtcattaaa cttatttatt aaaccagata aagttcaaga
tgaaggaaaa 900atcactgtca cttcacaatt gggcaaggaa atgacaagtc aggaatttga
cattaaatat 960attgatggtg taaaaagccc ttcaggtatc acattaaacg gtcgtcttga
tgaattatca 1020aaagcagatc aatcatttac gcattattct atatttaaac ctaagcataa
taacttaact 1080aatgtaactt taagaggcac agtttcaaat aacgcacagc aaaatgaaaa
aaatggtcaa 1140gttaatgttt acgaatatat tggtcaagga gaattgccac aaagtgctta
tgccaatgta 1200aatgatacga agcagttcaa tgacattact aagagtatga aatcaatcaa
aaataacagt 1260aatggctatg aaattacttt tgacatgaac aaagacaatc atccttatat
catagtatat 1320caaggtcact ttaacaataa tgcaaaagac tttgatttct caacaaatgc
gacaggttat 1380caaaatttaa atcaatcgga atatagttat tattggcctt acaattattc
attcaattta 1440acatgggata atggtgttgc tttctactct aataatgcaa gtggggaagg
gaacgacaaa 1500cctgtaccgc cgacttatgg atatagtccg acagtaaata caattcaaga
tactcatgcg 1560gattatcctg taatgacttt ccaacaacct ggaactctag aggagacaga
agacagtatg 1620ccaatcacta cacttaccga atctggtgag gatcgtggtg aaaatacttc
tccaattatc 1680gagacaacag aagattcaca gcctgttgag tttgaagaag agacaaatca
tggcattcaa 1740gacgtgacac ttcatgcaga tgctgttgat tttgaggaag aaacaaacca
tggtgaacaa 1800gacacggtac accactctga tgtcgttgaa tacgacgaag atacgacaac
tggcatgtta 1860acaggtgcca tttctgacca tacaacagaa gaaggcacga tggagtacac
aactgatggc 1920ttattgattg agtttgatga tgaaatgaat cctaatgtga gcggtcagta
cgatgacatc 1980acaacggata cgatagagga atcatctcat attgacacat tcactgaact
tgaatctgaa 2040tttggtcaac atgacggtat agtgacattt gaagaagata ctatcgttga
gaagccgaaa 2100acagaaaagg gtaaccgagt accacttgta attgatttat caacaccaaa
acataaccat 2160cagttcaata ttcaacctac cgatccaaat attgatacct ctgctacgta
tcgaattggc 2220aattttgtat ggcgcgatga agatcacaat ggcgtacaaa atgatggtga
acatggtctt 2280gaaggtgttc ttgtcacact taaaacagct gatggtgtcg ttttaaatac
aacgacaagt 2340gatgccaatg gacactacca gttcactaat gttcaaaaag gaaaatatat
tgttgaattc 2400actacacctg aaggttatga agcaacaagc aaacatacta cagcgaatac
tgaaaaagac 2460tctgatgggt taatcgcaaa tatcgatgtt actcaagatg atatgtcaat
cgatgctggt 2520ttcttcccgt tagaaaactg gaatcctcag ccagagccga aaaaccctga
tgatagagag 2580aaaccggcac ctgagcaacc tgatgtacct cagccagaac cgaaaaaccc
tgatgataga 2640gagaaaccgg cacctgagca acctgatgta cctcagccag aaccgaaaaa
tcctgatgat 2700agagagaaac cggcacctga gcaacctgat gtacctcaac cagagccgaa
aaatcctgat 2760gataaagaga aaccggcacc tgagcaacct gatgtacctc aaccagagcc
gaaaaatcct 2820gatgataaag agaaaccggc acctgagcaa cctgatgcac ctcaaccaaa
gccgatgctc 2880ccaggtgaaa aggtgaaacc caaaccaact catcccggtg aagctatgca
aacaacacct 2940caggacaaat caacatctca aacagatgaa gcacttccta aaacaggtga
atcatcatca 3000caatcatctg ctttaatctt cggtggttta ctcagtctat taggacttgg
tttattacgt 3060cgatcatcta aacaaaaccg ttcttcaatg aaataa
3096221031PRTStaphylococcus pseudintermedius 22Val Ile Thr Asn
Lys Asn Ile Tyr Ser Ile Arg Lys His Lys Leu Gly 1 5
10 15 Val Ala Ser Phe Leu Leu Gly Thr Leu
Phe Val Val Gly His Ala Asn 20 25
30 Asn Ala Glu Ala Ser Glu Val Ser Ala Thr Thr Gln Glu His
Asn Val 35 40 45
Glu Thr Glu Gln Thr Lys Thr Glu Gly Glu Leu Thr Thr Glu Val Ala 50
55 60 Gln Gln Ala Val Ser
Glu Ser Ala Pro Ile Ala Glu Asn Met Gln Lys 65 70
75 80 Thr Thr Ser Val Ala Ser Glu Asn Ala Lys
Glu Val Thr Ala Ser Asp 85 90
95 Ser Thr Gln Glu Val Thr Lys Thr Glu Ala Lys Asp Thr Ala Thr
Met 100 105 110 Lys
Asp Ser Glu Ile Ala Gln Pro Val Ser Glu Val Asn Lys Pro Val 115
120 125 Thr Gln Thr Ala Ala Pro
Val Ala Glu Pro Ser Thr Ala Asn Lys Gln 130 135
140 Thr Ser Pro Arg Gln Val Gln Glu Leu Thr Ala
Pro Met Asp Thr Lys 145 150 155
160 Val Ile Asn Val Glu Asn Gly Thr Asp Val Thr Ser Lys Val Lys Val
165 170 175 Glu Lys
Ser Ser Ile Thr Gly His Gln Asn Lys Asp Lys Thr Tyr His 180
185 190 Gln Ser Asn Thr Val Asn Pro
His Lys Ala Glu Arg Val Thr Leu Asn 195 200
205 Tyr Asp Trp Ser Phe Glu Asn Gly Ile Lys Ala Gly
Asp Tyr Phe Asp 210 215 220
Phe Gln Leu Ser Asp Asn Val Asp Thr Asn Gly Ile Ser Thr Ile Lys 225
230 235 240 Lys Val Pro
His Ile Met Asp Ser Gln Asn Ser Glu Gln Ile Ile Ala 245
250 255 Tyr Gly Glu Ile Asn Glu Asn Asn
Arg Val Arg Tyr Arg Phe Met Asp 260 265
270 Tyr Val Asn Gln Lys Glu Asn Leu Lys Gly Lys Leu Ser
Leu Asn Leu 275 280 285
Phe Ile Lys Pro Asp Lys Val Gln Asp Glu Gly Lys Ile Thr Val Thr 290
295 300 Ser Gln Leu Gly
Lys Glu Met Thr Ser Gln Glu Phe Asp Ile Lys Tyr 305 310
315 320 Ile Asp Gly Val Lys Ser Pro Ser Gly
Ile Thr Leu Asn Gly Arg Leu 325 330
335 Asp Glu Leu Ser Lys Ala Asp Gln Ser Phe Thr His Tyr Ser
Ile Phe 340 345 350
Lys Pro Lys His Asn Asn Leu Thr Asn Val Thr Leu Arg Gly Thr Val
355 360 365 Ser Asn Asn Ala
Gln Gln Asn Glu Lys Asn Gly Gln Val Asn Val Tyr 370
375 380 Glu Tyr Ile Gly Gln Gly Glu Leu
Pro Gln Ser Ala Tyr Ala Asn Val 385 390
395 400 Asn Asp Thr Lys Gln Phe Asn Asp Ile Thr Lys Ser
Met Lys Ser Ile 405 410
415 Lys Asn Asn Ser Asn Gly Tyr Glu Ile Thr Phe Asp Met Asn Lys Asp
420 425 430 Asn His Pro
Tyr Ile Ile Val Tyr Gln Gly His Phe Asn Asn Asn Ala 435
440 445 Lys Asp Phe Asp Phe Ser Thr Asn
Ala Thr Gly Tyr Gln Asn Leu Asn 450 455
460 Gln Ser Glu Tyr Ser Tyr Tyr Trp Pro Tyr Asn Tyr Ser
Phe Asn Leu 465 470 475
480 Thr Trp Asp Asn Gly Val Ala Phe Tyr Ser Asn Asn Ala Ser Gly Glu
485 490 495 Gly Asn Asp Lys
Pro Val Pro Pro Thr Tyr Gly Tyr Ser Pro Thr Val 500
505 510 Asn Thr Ile Gln Asp Thr His Ala Asp
Tyr Pro Val Met Thr Phe Gln 515 520
525 Gln Pro Gly Thr Leu Glu Glu Thr Glu Asp Ser Met Pro Ile
Thr Thr 530 535 540
Leu Thr Glu Ser Gly Glu Asp Arg Gly Glu Asn Thr Ser Pro Ile Ile 545
550 555 560 Glu Thr Thr Glu Asp
Ser Gln Pro Val Glu Phe Glu Glu Glu Thr Asn 565
570 575 His Gly Ile Gln Asp Val Thr Leu His Ala
Asp Ala Val Asp Phe Glu 580 585
590 Glu Glu Thr Asn His Gly Glu Gln Asp Thr Val His His Ser Asp
Val 595 600 605 Val
Glu Tyr Asp Glu Asp Thr Thr Thr Gly Met Leu Thr Gly Ala Ile 610
615 620 Ser Asp His Thr Thr Glu
Glu Gly Thr Met Glu Tyr Thr Thr Asp Gly 625 630
635 640 Leu Leu Ile Glu Phe Asp Asp Glu Met Asn Pro
Asn Val Ser Gly Gln 645 650
655 Tyr Asp Asp Ile Thr Thr Asp Thr Ile Glu Glu Ser Ser His Ile Asp
660 665 670 Thr Phe
Thr Glu Leu Glu Ser Glu Phe Gly Gln His Asp Gly Ile Val 675
680 685 Thr Phe Glu Glu Asp Thr Ile
Val Glu Lys Pro Lys Thr Glu Lys Gly 690 695
700 Asn Arg Val Pro Leu Val Ile Asp Leu Ser Thr Pro
Lys His Asn His 705 710 715
720 Gln Phe Asn Ile Gln Pro Thr Asp Pro Asn Ile Asp Thr Ser Ala Thr
725 730 735 Tyr Arg Ile
Gly Asn Phe Val Trp Arg Asp Glu Asp His Asn Gly Val 740
745 750 Gln Asn Asp Gly Glu His Gly Leu
Glu Gly Val Leu Val Thr Leu Lys 755 760
765 Thr Ala Asp Gly Val Val Leu Asn Thr Thr Thr Ser Asp
Ala Asn Gly 770 775 780
His Tyr Gln Phe Thr Asn Val Gln Lys Gly Lys Tyr Ile Val Glu Phe 785
790 795 800 Thr Thr Pro Glu
Gly Tyr Glu Ala Thr Ser Lys His Thr Thr Ala Asn 805
810 815 Thr Glu Lys Asp Ser Asp Gly Leu Ile
Ala Asn Ile Asp Val Thr Gln 820 825
830 Asp Asp Met Ser Ile Asp Ala Gly Phe Phe Pro Leu Glu Asn
Trp Asn 835 840 845
Pro Gln Pro Glu Pro Lys Asn Pro Asp Asp Arg Glu Lys Pro Ala Pro 850
855 860 Glu Gln Pro Asp Val
Pro Gln Pro Glu Pro Lys Asn Pro Asp Asp Arg 865 870
875 880 Glu Lys Pro Ala Pro Glu Gln Pro Asp Val
Pro Gln Pro Glu Pro Lys 885 890
895 Asn Pro Asp Asp Arg Glu Lys Pro Ala Pro Glu Gln Pro Asp Val
Pro 900 905 910 Gln
Pro Glu Pro Lys Asn Pro Asp Asp Lys Glu Lys Pro Ala Pro Glu 915
920 925 Gln Pro Asp Val Pro Gln
Pro Glu Pro Lys Asn Pro Asp Asp Lys Glu 930 935
940 Lys Pro Ala Pro Glu Gln Pro Asp Ala Pro Gln
Pro Lys Pro Met Leu 945 950 955
960 Pro Gly Glu Lys Val Lys Pro Lys Pro Thr His Pro Gly Glu Ala Met
965 970 975 Gln Thr
Thr Pro Gln Asp Lys Ser Thr Ser Gln Thr Asp Glu Ala Leu 980
985 990 Pro Lys Thr Gly Glu Ser Ser
Ser Gln Ser Ser Ala Leu Ile Phe Gly 995 1000
1005 Gly Leu Leu Ser Leu Leu Gly Leu Gly Leu
Leu Arg Arg Ser Ser 1010 1015 1020
Lys Gln Asn Arg Ser Ser Met Lys 1025 1030
231704DNAStaphylococcus pseudintermedius 23atggcatttg atggtatgtt
tacaagaaaa atggtagaag atttacaatt tctcgtttct 60gggcgtattc ataaaatcaa
tcaaccggaa aacgatacaa tcatcatggt tataagacag 120caacgccaaa atcatcaatt
gttgttgtcg attcacccga attttgcacg gattcacctc 180actacaaaaa aatatgataa
tccatttgaa ccgccgatgt ttgcgcgcgt ctttcgtaaa 240catttagaag gtggacgtat
ccttgccatt cgccaaatcg gaaatgaccg tcgcatcgaa 300atggacgtgg aaagtaaaga
tgaaattggt gacacgattc atcgtacagt gattttagaa 360attatgggca aacatagtaa
tctcattctc gttaatgaag aacgtaaaat tttagaaggt 420tttaaacacc ttacaccaaa
tacgaatcaa tttagaaccg tgatgccagg ttttcaatat 480gaagtgccgc caacacaaca
taaacagaac ccttatgcat atactggtgc gcaagtgctc 540caacatattg atttcaatgc
gggcaaaatt gatcgccaac tgcttcaaac gtttgaaggt 600ttttcaccgt taatcacaaa
agaaatcaca tcaagacgcc attttatgac cacacaaact 660ttacctgaag cttttgacga
agtgatggcc gaaacgaaag cgacacccca accggtattt 720cataaaaata acgaaacagg
taaagaagac ttttatttta tgaagttaca tcagttttac 780gatgattgcg tcacatatga
ttcactccat gaactgctcg accgttttta tgatgcacgc 840ggtgaacgtg aacgcgtcaa
acaacgtgca aacgatttag tcaaactcgt ccaacaatta 900cttcaaaaat atcaaaataa
attaagtaag ctcgtcgatg aacaagcggg gactgaagaa 960aaagaaaatc aacaattgta
cggcgagtta atcacagcga atatttatca actcaaacct 1020ggagatcgcc agttagaaac
agtaaattat tatacaggag aaaacgtgac tattccgtta 1080aatccacaaa agtcacctgc
tgaaaatgcg caatactatt acaagcaata caaccgaatg 1140aaaacacgtg agcgcgaatt
gacccatcaa attactttaa cggaagaaaa tatcgcttat 1200tttgaaaata tcgagcaaca
gttgtcacac attcaagttc atgaaattga cgatattcgt 1260gaagaactag cagaacaagg
ctttatcaaa caaaagaaac agcagaaaaa gaaaaagcaa 1320caaaaaatcc agttacaatc
ctacgtttcg actgatggcg atacgatttt agtcggtaaa 1380aataataagc aaaatgatta
tttaacgaat aaacgtgcgc aaaaatcgca tttatggttc 1440catacaaaag atatcccagg
aagccatgtc gtgattttaa atgatgcgcc aagtgacaaa 1500acgattgaag aagcggcgat
gattgcagcg tacttttcaa aggcggggca atcgggacaa 1560attccagtgg attatacaac
aattcgcaat gtgcataagc cgagtggcag taaacctgga 1620tttgtaacgt acgataacca
gaagacgctt tacgcaacgc cggattatga catgattcgt 1680cgattgaaag ctgaagaagc
gtaa 170424567PRTStaphylococcus
pseudintermedius 24Met Ala Phe Asp Gly Met Phe Thr Arg Lys Met Val Glu
Asp Leu Gln 1 5 10 15
Phe Leu Val Ser Gly Arg Ile His Lys Ile Asn Gln Pro Glu Asn Asp
20 25 30 Thr Ile Ile Met
Val Ile Arg Gln Gln Arg Gln Asn His Gln Leu Leu 35
40 45 Leu Ser Ile His Pro Asn Phe Ala Arg
Ile His Leu Thr Thr Lys Lys 50 55
60 Tyr Asp Asn Pro Phe Glu Pro Pro Met Phe Ala Arg Val
Phe Arg Lys 65 70 75
80 His Leu Glu Gly Gly Arg Ile Leu Ala Ile Arg Gln Ile Gly Asn Asp
85 90 95 Arg Arg Ile Glu
Met Asp Val Glu Ser Lys Asp Glu Ile Gly Asp Thr 100
105 110 Ile His Arg Thr Val Ile Leu Glu Ile
Met Gly Lys His Ser Asn Leu 115 120
125 Ile Leu Val Asn Glu Glu Arg Lys Ile Leu Glu Gly Phe Lys
His Leu 130 135 140
Thr Pro Asn Thr Asn Gln Phe Arg Thr Val Met Pro Gly Phe Gln Tyr 145
150 155 160 Glu Val Pro Pro Thr
Gln His Lys Gln Asn Pro Tyr Ala Tyr Thr Gly 165
170 175 Ala Gln Val Leu Gln His Ile Asp Phe Asn
Ala Gly Lys Ile Asp Arg 180 185
190 Gln Leu Leu Gln Thr Phe Glu Gly Phe Ser Pro Leu Ile Thr Lys
Glu 195 200 205 Ile
Thr Ser Arg Arg His Phe Met Thr Thr Gln Thr Leu Pro Glu Ala 210
215 220 Phe Asp Glu Val Met Ala
Glu Thr Lys Ala Thr Pro Gln Pro Val Phe 225 230
235 240 His Lys Asn Asn Glu Thr Gly Lys Glu Asp Phe
Tyr Phe Met Lys Leu 245 250
255 His Gln Phe Tyr Asp Asp Cys Val Thr Tyr Asp Ser Leu His Glu Leu
260 265 270 Leu Asp
Arg Phe Tyr Asp Ala Arg Gly Glu Arg Glu Arg Val Lys Gln 275
280 285 Arg Ala Asn Asp Leu Val Lys
Leu Val Gln Gln Leu Leu Gln Lys Tyr 290 295
300 Gln Asn Lys Leu Ser Lys Leu Val Asp Glu Gln Ala
Gly Thr Glu Glu 305 310 315
320 Lys Glu Asn Gln Gln Leu Tyr Gly Glu Leu Ile Thr Ala Asn Ile Tyr
325 330 335 Gln Leu Lys
Pro Gly Asp Arg Gln Leu Glu Thr Val Asn Tyr Tyr Thr 340
345 350 Gly Glu Asn Val Thr Ile Pro Leu
Asn Pro Gln Lys Ser Pro Ala Glu 355 360
365 Asn Ala Gln Tyr Tyr Tyr Lys Gln Tyr Asn Arg Met Lys
Thr Arg Glu 370 375 380
Arg Glu Leu Thr His Gln Ile Thr Leu Thr Glu Glu Asn Ile Ala Tyr 385
390 395 400 Phe Glu Asn Ile
Glu Gln Gln Leu Ser His Ile Gln Val His Glu Ile 405
410 415 Asp Asp Ile Arg Glu Glu Leu Ala Glu
Gln Gly Phe Ile Lys Gln Lys 420 425
430 Lys Gln Gln Lys Lys Lys Lys Gln Gln Lys Ile Gln Leu Gln
Ser Tyr 435 440 445
Val Ser Thr Asp Gly Asp Thr Ile Leu Val Gly Lys Asn Asn Lys Gln 450
455 460 Asn Asp Tyr Leu Thr
Asn Lys Arg Ala Gln Lys Ser His Leu Trp Phe 465 470
475 480 His Thr Lys Asp Ile Pro Gly Ser His Val
Val Ile Leu Asn Asp Ala 485 490
495 Pro Ser Asp Lys Thr Ile Glu Glu Ala Ala Met Ile Ala Ala Tyr
Phe 500 505 510 Ser
Lys Ala Gly Gln Ser Gly Gln Ile Pro Val Asp Tyr Thr Thr Ile 515
520 525 Arg Asn Val His Lys Pro
Ser Gly Ser Lys Pro Gly Phe Val Thr Tyr 530 535
540 Asp Asn Gln Lys Thr Leu Tyr Ala Thr Pro Asp
Tyr Asp Met Ile Arg 545 550 555
560 Arg Leu Lys Ala Glu Glu Ala 565
254167DNAStaphylococcus pseudintermedius 25atggtcaaaa aatttggtta
taaaacacct acaatcgttg cacttacttt ggctggaact 60gcattttctg cacaccaagc
caatgccgct gaacaagttg cacctgaaaa aacacctacg 120aatgtacttg atgatcaata
cgcattaaaa caagctgatg atgcgaaaca aacgacacaa 180ggaacaacac ttgcaggttc
aaaagaatac aaggatcctt cacaaattga tacgactcaa 240gtcgatacag cagcacaaac
tgaaacgccc gtagaaggag ggcaacaaga cgcacaacaa 300cctactacaa ctgatgaagc
gacatcaaca gatcatactg tatcaaaagg tacaaacgaa 360agtgcatcac ctgcaacagc
ttctatagat gaaggaacat taaacgcaca agtcaattca 420gatgaaacgg ctactaaccg
tacacaagac gtcactgaaa atgtgacaaa atatccttat 480cattcaagtg aaatcgatac
acatgaagac gcaactgtgt caccagatac atatcatgca 540ctggacacgc atgcgcaaca
accttcagca atggatgtaa gcgattcaac atcagcacaa 600actgaagcga cgcaagtaaa
tacgtcaaca aatgtaaatg acaaagaggc cgtttcgaca 660acagaagatg cacctactac
acaacttcaa gcagctgtac aatctgaagc caacaaagaa 720gcgaaggcaa ctactgaaac
agctcaaaat aaaacacctc aagttgaaaa gaaagcaaca 780gcaactcaaa atacagcaca
gttagcaacg gggcatcagg atattactga caaagtctca 840aaacgcgtag cagtgacaaa
tgaaacgaaa gcggatgcca caacagcgaa aacacaagca 900cctacttcag tgacacatca
agctgataca caagcaaaaa cgataacaga caagaaggca 960acaacttaca gtgcacaaac
cgcaactgac caagacataa atgcgaatcc ggacggtcca 1020acacctccac gcgttggcgg
taaagggggt ccccctgctt cactttcact ccaatcgact 1080ggtcaaacag cattccgttc
agctgtcgct agtaaaccga gtgcatatca acctaaagtg 1140aaatcgtcta ttaatgacta
tattcgtaag caaaactaca aagtgcctgt atatgaagaa 1200gattattcaa gttacttccc
taaatacggt tatcgtaatg gtgtcggtaa acctgagggc 1260atcatcgtgc atgatacagc
aaatgacaac tctacaattg atggcgaaat cagttacatg 1320aaaagaaatt atcaaaatgc
tttcgtacat ggctttatta atggtcaacg tattgttgaa 1380acgcaaccta cagattattt
agcatggggt gcaggtgcga ttgcgaatga acgctttatt 1440catatcgaac tcgttcatgt
tcacagtaaa gaagatttcg cacgtcaaat gaacaatatg 1500gcagattatg cggcgacgaa
cttacaatat tatggccttt ctccagatag tgcggaatat 1560gatggtcgtg ggacagtttg
gacacatgat gctgtttcta gatttttagg tggtacagac 1620cataccgatc cgcacggcta
tttaaaacaa catggttatt cctttgatgc gttgtatgat 1680ttaatcaatg aaaaatatca
agtgaaaatg ggttatgcct cacctgctaa ctcgtcttca 1740aaaccatcaa caaatactgg
cttaacagtt aaaaacacaa caggtttcgg ccgtattaac 1800acaacaaata gcggtttata
tacgaccgtt tatgatcaaa aaggtaaagc gacgaatcaa 1860acgaatcaaa cgttaaaagt
tacaaaagaa gcgacgttaa atggcaacaa attctattta 1920atgagtgatg caaaatctaa
tcaaacactc ggttgggtca aatcaaacga cgcaacatat 1980caagctgccc aagctgagaa
aaaagtaacg aaaacgtata ctgtcaaacc aggaacaaca 2040gtatatcaag tgccttgggg
tgcctcatct caaacagtag gcaaagctcc aggtacgtca 2100aaccaatcat tcaaatcaac
gaaagaacaa actgttgcga aaacgaaatg gctttatggg 2160acagttggca aagtgacagg
ctggattaat gcaagtagtg ttgtagcaaa tgatcaaaaa 2220ccatcgacga ataccgcact
aaaagtaaca actgacactg gtctcggtcg cattaaagac 2280aaaaatagtg gtttatacgc
aacggtatat gataaaactg gtaaaagcac ttcagccact 2340aaccaaacat taaaagtaac
gaaaaaagca agtgtcaatg gccaatcatt ctatttagta 2400tcagattatg ctaaaggtac
aaatgttggt tgggtgaaac agtcagatgt cgaatatcaa 2460acaagtaaag ccccttctaa
agtgaatcaa aattatacga ttaaatcggg tgcgaaattg 2520tatcaagtgc cttggggtac
aagtaaacaa gttgccggta cagtgacagg tgctgcgaca 2580caaacattta aggcaacaca
atctcaaact gtaggtaaag caacatactt gtatgggaca 2640gttggcaaat tatctggttg
gattaattca acagcattag cagctcaaaa aacaacaacg 2700aatgttacta aaacaatttc
tcaaatcggt caactgaaca cgaaaaatag cggtgtcaaa 2760gcttctattt atgacaaaac
agcaaaagat gcatccaaat gggcaggtca aacttataaa 2820attactaaaa cagcttctgc
caataacgaa gactatgtat tactgcaaaa tagtacagga 2880ggcacgccac tcggttggtt
caatgttaaa gacgtcacaa cacgcaactt aggtgctgaa 2940acagctgtta aagggcggta
cactgttaat agtaaaacat ctggactcta cgctatgcct 3000tggggtacaa cgaagcaacg
tgtcgataca ttaaaaaatg ccacaagtcg tttatttaca 3060gcttcaaaat cagttaaagt
cggtaatgat acattcttat tcggtacagt gaatcaaaaa 3120ttgggctgga ttaatcaaaa
agacttaaca gctgtagcag caaaagttgc aaacatgaaa 3180actgcatcga atagcgcagt
caaaggtgcc gcaatcacaa ctttgaaaaa agtagaagat 3240tatgtgatta cgaataaaaa
tggttattat tacactaaag ttggagattc aaaaacagct 3300ggtgctttaa aaggttttta
tcaacaaatt tttaaagtcg aaaaaacatc tttactgaac 3360ggcattactt ggtactatgg
cgcattccaa aacgggacga aaggatggat taaagcagct 3420gacatacgtt catcattcat
tcaacatact gcggtcagta gcacattgaa agcagcactc 3480gataaacaaa tggcgctgac
ttacccgcct caagttcaac gtgtagccgg taaatgggtc 3540aatgcgaatc gtgcagaaac
tgaaaaagca atgaataccg cagcaattga aaaagatccg 3600actctcattt accaattttt
aaaacttgat aaataccaag gtcttggcgt agaagaactt 3660aataaattgt taagaggcaa
aggcatttta gaaggtcaag gtgccgcatt taaagaagcc 3720gcacaaaaac acaatattaa
tgaggtttac ttaatgtctc acgcattttt agaaacaggt 3780aacgggactt ctcaattagc
caatggcggt cacgtagata aaaataataa agtcgtaaca 3840aacggtaaac cgaagtatta
caacatgttc ggtatcgggg caattgatac agacgcttta 3900cgcaatggct ttaaaactgc
tgaaaaatat ggttggaata cggtcagcaa agcgattatc 3960ggtggcgcaa aattcatccg
tgatcagtac atcggttcag gacaaaacac attgtatcgt 4020atgcgttgga atccagaaca
ccctgccaca catcagtatg cgactgatat taattgggca 4080aatgtaaacg cacaacgcat
gaaatatttc tatgatcaaa ttggtgaaac aggtaaatat 4140ttcgacgtcg atgtatataa
gaagtag 4167261388PRTStaphylococcus
pseudintermedius 26Met Val Lys Lys Phe Gly Tyr Lys Thr Pro Thr Ile Val
Ala Leu Thr 1 5 10 15
Leu Ala Gly Thr Ala Phe Ser Ala His Gln Ala Asn Ala Ala Glu Gln
20 25 30 Val Ala Pro Glu
Lys Thr Pro Thr Asn Val Leu Asp Asp Gln Tyr Ala 35
40 45 Leu Lys Gln Ala Asp Asp Ala Lys Gln
Thr Thr Gln Gly Thr Thr Leu 50 55
60 Ala Gly Ser Lys Glu Tyr Lys Asp Pro Ser Gln Ile Asp
Thr Thr Gln 65 70 75
80 Val Asp Thr Ala Ala Gln Thr Glu Thr Pro Val Glu Gly Gly Gln Gln
85 90 95 Asp Ala Gln Gln
Pro Thr Thr Thr Asp Glu Ala Thr Ser Thr Asp His 100
105 110 Thr Val Ser Lys Gly Thr Asn Glu Ser
Ala Ser Pro Ala Thr Ala Ser 115 120
125 Ile Asp Glu Gly Thr Leu Asn Ala Gln Val Asn Ser Asp Glu
Thr Ala 130 135 140
Thr Asn Arg Thr Gln Asp Val Thr Glu Asn Val Thr Lys Tyr Pro Tyr 145
150 155 160 His Ser Ser Glu Ile
Asp Thr His Glu Asp Ala Thr Val Ser Pro Asp 165
170 175 Thr Tyr His Ala Leu Asp Thr His Ala Gln
Gln Pro Ser Ala Met Asp 180 185
190 Val Ser Asp Ser Thr Ser Ala Gln Thr Glu Ala Thr Gln Val Asn
Thr 195 200 205 Ser
Thr Asn Val Asn Asp Lys Glu Ala Val Ser Thr Thr Glu Asp Ala 210
215 220 Pro Thr Thr Gln Leu Gln
Ala Ala Val Gln Ser Glu Ala Asn Lys Glu 225 230
235 240 Ala Lys Ala Thr Thr Glu Thr Ala Gln Asn Lys
Thr Pro Gln Val Glu 245 250
255 Lys Lys Ala Thr Ala Thr Gln Asn Thr Ala Gln Leu Ala Thr Gly His
260 265 270 Gln Asp
Ile Thr Asp Lys Val Ser Lys Arg Val Ala Val Thr Asn Glu 275
280 285 Thr Lys Ala Asp Ala Thr Thr
Ala Lys Thr Gln Ala Pro Thr Ser Val 290 295
300 Thr His Gln Ala Asp Thr Gln Ala Lys Thr Ile Thr
Asp Lys Lys Ala 305 310 315
320 Thr Thr Tyr Ser Ala Gln Thr Ala Thr Asp Gln Asp Ile Asn Ala Asn
325 330 335 Pro Asp Gly
Pro Thr Pro Pro Arg Val Gly Gly Lys Gly Gly Pro Pro 340
345 350 Ala Ser Leu Ser Leu Gln Ser Thr
Gly Gln Thr Ala Phe Arg Ser Ala 355 360
365 Val Ala Ser Lys Pro Ser Ala Tyr Gln Pro Lys Val Lys
Ser Ser Ile 370 375 380
Asn Asp Tyr Ile Arg Lys Gln Asn Tyr Lys Val Pro Val Tyr Glu Glu 385
390 395 400 Asp Tyr Ser Ser
Tyr Phe Pro Lys Tyr Gly Tyr Arg Asn Gly Val Gly 405
410 415 Lys Pro Glu Gly Ile Ile Val His Asp
Thr Ala Asn Asp Asn Ser Thr 420 425
430 Ile Asp Gly Glu Ile Ser Tyr Met Lys Arg Asn Tyr Gln Asn
Ala Phe 435 440 445
Val His Gly Phe Ile Asn Gly Gln Arg Ile Val Glu Thr Gln Pro Thr 450
455 460 Asp Tyr Leu Ala Trp
Gly Ala Gly Ala Ile Ala Asn Glu Arg Phe Ile 465 470
475 480 His Ile Glu Leu Val His Val His Ser Lys
Glu Asp Phe Ala Arg Gln 485 490
495 Met Asn Asn Met Ala Asp Tyr Ala Ala Thr Asn Leu Gln Tyr Tyr
Gly 500 505 510 Leu
Ser Pro Asp Ser Ala Glu Tyr Asp Gly Arg Gly Thr Val Trp Thr 515
520 525 His Asp Ala Val Ser Arg
Phe Leu Gly Gly Thr Asp His Thr Asp Pro 530 535
540 His Gly Tyr Leu Lys Gln His Gly Tyr Ser Phe
Asp Ala Leu Tyr Asp 545 550 555
560 Leu Ile Asn Glu Lys Tyr Gln Val Lys Met Gly Tyr Ala Ser Pro Ala
565 570 575 Asn Ser
Ser Ser Lys Pro Ser Thr Asn Thr Gly Leu Thr Val Lys Asn 580
585 590 Thr Thr Gly Phe Gly Arg Ile
Asn Thr Thr Asn Ser Gly Leu Tyr Thr 595 600
605 Thr Val Tyr Asp Gln Lys Gly Lys Ala Thr Asn Gln
Thr Asn Gln Thr 610 615 620
Leu Lys Val Thr Lys Glu Ala Thr Leu Asn Gly Asn Lys Phe Tyr Leu 625
630 635 640 Met Ser Asp
Ala Lys Ser Asn Gln Thr Leu Gly Trp Val Lys Ser Asn 645
650 655 Asp Ala Thr Tyr Gln Ala Ala Gln
Ala Glu Lys Lys Val Thr Lys Thr 660 665
670 Tyr Thr Val Lys Pro Gly Thr Thr Val Tyr Gln Val Pro
Trp Gly Ala 675 680 685
Ser Ser Gln Thr Val Gly Lys Ala Pro Gly Thr Ser Asn Gln Ser Phe 690
695 700 Lys Ser Thr Lys
Glu Gln Thr Val Ala Lys Thr Lys Trp Leu Tyr Gly 705 710
715 720 Thr Val Gly Lys Val Thr Gly Trp Ile
Asn Ala Ser Ser Val Val Ala 725 730
735 Asn Asp Gln Lys Pro Ser Thr Asn Thr Ala Leu Lys Val Thr
Thr Asp 740 745 750
Thr Gly Leu Gly Arg Ile Lys Asp Lys Asn Ser Gly Leu Tyr Ala Thr
755 760 765 Val Tyr Asp Lys
Thr Gly Lys Ser Thr Ser Ala Thr Asn Gln Thr Leu 770
775 780 Lys Val Thr Lys Lys Ala Ser Val
Asn Gly Gln Ser Phe Tyr Leu Val 785 790
795 800 Ser Asp Tyr Ala Lys Gly Thr Asn Val Gly Trp Val
Lys Gln Ser Asp 805 810
815 Val Glu Tyr Gln Thr Ser Lys Ala Pro Ser Lys Val Asn Gln Asn Tyr
820 825 830 Thr Ile Lys
Ser Gly Ala Lys Leu Tyr Gln Val Pro Trp Gly Thr Ser 835
840 845 Lys Gln Val Ala Gly Thr Val Thr
Gly Ala Ala Thr Gln Thr Phe Lys 850 855
860 Ala Thr Gln Ser Gln Thr Val Gly Lys Ala Thr Tyr Leu
Tyr Gly Thr 865 870 875
880 Val Gly Lys Leu Ser Gly Trp Ile Asn Ser Thr Ala Leu Ala Ala Gln
885 890 895 Lys Thr Thr Thr
Asn Val Thr Lys Thr Ile Ser Gln Ile Gly Gln Leu 900
905 910 Asn Thr Lys Asn Ser Gly Val Lys Ala
Ser Ile Tyr Asp Lys Thr Ala 915 920
925 Lys Asp Ala Ser Lys Trp Ala Gly Gln Thr Tyr Lys Ile Thr
Lys Thr 930 935 940
Ala Ser Ala Asn Asn Glu Asp Tyr Val Leu Leu Gln Asn Ser Thr Gly 945
950 955 960 Gly Thr Pro Leu Gly
Trp Phe Asn Val Lys Asp Val Thr Thr Arg Asn 965
970 975 Leu Gly Ala Glu Thr Ala Val Lys Gly Arg
Tyr Thr Val Asn Ser Lys 980 985
990 Thr Ser Gly Leu Tyr Ala Met Pro Trp Gly Thr Thr Lys Gln
Arg Val 995 1000 1005
Asp Thr Leu Lys Asn Ala Thr Ser Arg Leu Phe Thr Ala Ser Lys 1010
1015 1020 Ser Val Lys Val Gly
Asn Asp Thr Phe Leu Phe Gly Thr Val Asn 1025 1030
1035 Gln Lys Leu Gly Trp Ile Asn Gln Lys Asp
Leu Thr Ala Val Ala 1040 1045 1050
Ala Lys Val Ala Asn Met Lys Thr Ala Ser Asn Ser Ala Val Lys
1055 1060 1065 Gly Ala
Ala Ile Thr Thr Leu Lys Lys Val Glu Asp Tyr Val Ile 1070
1075 1080 Thr Asn Lys Asn Gly Tyr Tyr
Tyr Thr Lys Val Gly Asp Ser Lys 1085 1090
1095 Thr Ala Gly Ala Leu Lys Gly Phe Tyr Gln Gln Ile
Phe Lys Val 1100 1105 1110
Glu Lys Thr Ser Leu Leu Asn Gly Ile Thr Trp Tyr Tyr Gly Ala 1115
1120 1125 Phe Gln Asn Gly Thr
Lys Gly Trp Ile Lys Ala Ala Asp Ile Arg 1130 1135
1140 Ser Ser Phe Ile Gln His Thr Ala Val Ser
Ser Thr Leu Lys Ala 1145 1150 1155
Ala Leu Asp Lys Gln Met Ala Leu Thr Tyr Pro Pro Gln Val Gln
1160 1165 1170 Arg Val
Ala Gly Lys Trp Val Asn Ala Asn Arg Ala Glu Thr Glu 1175
1180 1185 Lys Ala Met Asn Thr Ala Ala
Ile Glu Lys Asp Pro Thr Leu Ile 1190 1195
1200 Tyr Gln Phe Leu Lys Leu Asp Lys Tyr Gln Gly Leu
Gly Val Glu 1205 1210 1215
Glu Leu Asn Lys Leu Leu Arg Gly Lys Gly Ile Leu Glu Gly Gln 1220
1225 1230 Gly Ala Ala Phe Lys
Glu Ala Ala Gln Lys His Asn Ile Asn Glu 1235 1240
1245 Val Tyr Leu Met Ser His Ala Phe Leu Glu
Thr Gly Asn Gly Thr 1250 1255 1260
Ser Gln Leu Ala Asn Gly Gly His Val Asp Lys Asn Asn Lys Val
1265 1270 1275 Val Thr
Asn Gly Lys Pro Lys Tyr Tyr Asn Met Phe Gly Ile Gly 1280
1285 1290 Ala Ile Asp Thr Asp Ala Leu
Arg Asn Gly Phe Lys Thr Ala Glu 1295 1300
1305 Lys Tyr Gly Trp Asn Thr Val Ser Lys Ala Ile Ile
Gly Gly Ala 1310 1315 1320
Lys Phe Ile Arg Asp Gln Tyr Ile Gly Ser Gly Gln Asn Thr Leu 1325
1330 1335 Tyr Arg Met Arg Trp
Asn Pro Glu His Pro Ala Thr His Gln Tyr 1340 1345
1350 Ala Thr Asp Ile Asn Trp Ala Asn Val Asn
Ala Gln Arg Met Lys 1355 1360 1365
Tyr Phe Tyr Asp Gln Ile Gly Glu Thr Gly Lys Tyr Phe Asp Val
1370 1375 1380 Asp Val
Tyr Lys Lys 1385 273435DNAStaphylococcus pseudintermedius
27gtgtcgacag aaaaacaaga tgatacacaa gcaaaagcga atgcactttc tacagatgat
60tcaacaccta caacagaaca atcaaaaagt gataccgaac caacgcaaaa tcaagaagtg
120aatgaaaaag aagcaacaca agttgagcaa actccagata atgcatcatc agaatttaaa
180gacagtgcag cacaagatga aacaacatcg aaagacgctg acattgctca aacaaaagaa
240gcaaaaaatg aagcattgca aagtgactca tcagcaaacc tatcaaatca agaagcagaa
300aaagaaaaca caactaacag tgaatctcaa gtaaatgaac aacctaaagc agatacaact
360tctgattcac aagtttcaaa tacacctcaa caagatccta catcgacagt accttcacca
420gaaacatcag aagacaatcg accttcaaca gaattaaaaa atagtgaaac aactgcttct
480caaacaactt taaacgaaca acctactgaa tcaacatcca atcaaactga aacgacaaaa
540gcaccaacaa atacaacagt cgcaaacaaa aaagcacctg cacaattaaa agacattaaa
600ggtacaactc aacttcgcgc agtcagtgca agtcaaccta ctgctgttgc agctggtggg
660acaaacgtaa atgacaaagt aacagcatca aatatgaaaa taactgaatc ttatatcgag
720ccaaacaact caggaaactt ttatttaaaa agtaacttta acgtaaacgg gactgttaaa
780gaaggtgact actttactgt aaaaatgcct gacactgtca atacttttgg tgacacgcgc
840cattcacctg actttagaga aaaaattaca aatcaaaaag gtgaagttgt ggctttaggt
900gaatatgatg ttgccaacca tactatgaca tacacgttca ctaatgtcgt taataattta
960gaaaatgtgt ccggttcgtt taacttgact caatttatgg atcgtaaagt ggcaacagat
1020tctcaaacat atccattaaa atacgacatt gcaggcgaat ctttagatac acaaattaaa
1080gtgaattacg gtcaatatta cagtgaaggt gattctaact taaaatcaat gatcacttca
1140gaagatccta aaactgggga atatgatcaa tacatttatg tcaacccatt acaaaaaacg
1200gcaaacggta cagttgtaag agttcaaggg ttccaagttg atccaactaa gagtaatggg
1260caagtgaaac cagatacaac gcagatcaag attttaaaag ttgctgatgg tcaaccactt
1320aatagtagtt tcggtgtgaa tgacagtgaa tatgaagatg tcacaaaaca atttaatatt
1380gtttatcgtg ataataattt ggcagatatt tactttggaa acttaaatgg gcaacgctat
1440atcgttaaag tgacgagcaa agaaaatttg gattctaaag aggatttaaa cttgcgtgct
1500attatggcca ctcaaaaccg atatggtcaa tataactata ttacttggga taacgatatt
1560gtgaaaagct cttctggtgg tacagccgac ggaaatgaag catcatatca attaggcgac
1620aaagtttgga atgatgtgaa taaaaatggt atccaagatc aaggtgaaac tggtattgct
1680gatgtaaagg ttactttaaa agatcttgat ggcaacattt tggatacaac ttatacaaac
1740acgaatggta aatatatctt tgataattta aaaaatggta attatcaagt gggttttgaa
1800acaccggaag gctatgctgc aagtccatcc aaccaaggta atgacgccct tgactctgat
1860ggtcctacaa atgtacaagc tgtcattagt gatgggaaca acttaactat cgaccaaggt
1920ttttaccaaa ctgaaacacc aacacacaac gtcggcgaca aagtttggga agacttaaat
1980aaagatggca tccaagacca aaatgaacca ggtatcgcta acgttaaggt cactttaaaa
2040gacgcggatg gtaacgttgt ggatacacgt acgactgatg ataaagggaa ttacttattc
2100gaaaaagtta aagaaggcga atatacaatt gaatttgaaa cgcctgaagg ttatacaccg
2160acacaaacag gccaaggcag agtcagcact gactctaatg ggacatcttc ccttatttta
2220gtcgaaggta acgatgactt aacaatcgat agcggtttct acaaagaacc tgttacacac
2280aaagttggcg acaaagtttg ggatgactta aataaagacg gtatccaaga tgacaatgaa
2340ccaggcatct ctgacgttaa agtcacttta aaagatgcgg atggtaacgt cgtagataca
2400cgtacaactg atgctaacgg taactattta tttgaaaacg tgaaagaagg cgactatacg
2460attgaatttg aaacgcctga aggttacaca ccgactgtta caggtcaagg tacagctgat
2520aatgactcta acggtacatc tacaaaagtt acagttaaag atggcgatga cttaacaatt
2580gacagtggtt tcactcaagt tacacctgag ccaccgacac ataatgttgg cgacaaagtt
2640tgggatgact taaataaaga cggtatccaa gatgacaatg aaccaggcat ctctgacgtt
2700aaagtcactt taaaagatgc ggatggtaac gtcgtagata cacgtacaac tgatgctaac
2760ggtaactatt tatttgaaaa cgtgaaagaa ggcgactata cgattgaatt tgaaacgcct
2820gaaggttaca caccgactgt tacaggtcaa ggtacagctg ataatgactc taacggtaca
2880tctacaaaag ttacagttaa agatggcgat gacttaacaa ttgacagtgg tttcactcaa
2940gttacacctg agccaccgac tgaacctgaa aaccctagtc cagagcaacc ttctgaaccg
3000ggtcaacctg aaaatcctag tccagagcaa ccttctgaac caggtcaacc tgaaaatcct
3060agtccagagc aaccttctga accaggtcaa cctgaaaatc ctagtccaga acaaccttct
3120gaaccgggtc aacctgaaaa tcctagtcca gaacagcctt ctgagccagg acaacctaaa
3180aatcctagtc cagaacagcc aaataatcca agtgtgccag gtgttcaaaa tcctgaaaaa
3240ccaagcttaa ctccagtcac acaaccggtt cattcaaacg gcaataaagc aaaaccatct
3300caacaacaaa aagctttacc tgaaacaggt gaaactgaat cacatcaagg tacattattc
3360ggtggtattt tagctgcttt aggcgcatta ctctttgcac gtaaaaaacg ccacgataaa
3420aaacaatcac actaa
3435281144PRTStaphylococcus pseudintermedius 28Val Ser Thr Glu Lys Gln
Asp Asp Thr Gln Ala Lys Ala Asn Ala Leu 1 5
10 15 Ser Thr Asp Asp Ser Thr Pro Thr Thr Glu Gln
Ser Lys Ser Asp Thr 20 25
30 Glu Pro Thr Gln Asn Gln Glu Val Asn Glu Lys Glu Ala Thr Gln
Val 35 40 45 Glu
Gln Thr Pro Asp Asn Ala Ser Ser Glu Phe Lys Asp Ser Ala Ala 50
55 60 Gln Asp Glu Thr Thr Ser
Lys Asp Ala Asp Ile Ala Gln Thr Lys Glu 65 70
75 80 Ala Lys Asn Glu Ala Leu Gln Ser Asp Ser Ser
Ala Asn Leu Ser Asn 85 90
95 Gln Glu Ala Glu Lys Glu Asn Thr Thr Asn Ser Glu Ser Gln Val Asn
100 105 110 Glu Gln
Pro Lys Ala Asp Thr Thr Ser Asp Ser Gln Val Ser Asn Thr 115
120 125 Pro Gln Gln Asp Pro Thr Ser
Thr Val Pro Ser Pro Glu Thr Ser Glu 130 135
140 Asp Asn Arg Pro Ser Thr Glu Leu Lys Asn Ser Glu
Thr Thr Ala Ser 145 150 155
160 Gln Thr Thr Leu Asn Glu Gln Pro Thr Glu Ser Thr Ser Asn Gln Thr
165 170 175 Glu Thr Thr
Lys Ala Pro Thr Asn Thr Thr Val Ala Asn Lys Lys Ala 180
185 190 Pro Ala Gln Leu Lys Asp Ile Lys
Gly Thr Thr Gln Leu Arg Ala Val 195 200
205 Ser Ala Ser Gln Pro Thr Ala Val Ala Ala Gly Gly Thr
Asn Val Asn 210 215 220
Asp Lys Val Thr Ala Ser Asn Met Lys Ile Thr Glu Ser Tyr Ile Glu 225
230 235 240 Pro Asn Asn Ser
Gly Asn Phe Tyr Leu Lys Ser Asn Phe Asn Val Asn 245
250 255 Gly Thr Val Lys Glu Gly Asp Tyr Phe
Thr Val Lys Met Pro Asp Thr 260 265
270 Val Asn Thr Phe Gly Asp Thr Arg His Ser Pro Asp Phe Arg
Glu Lys 275 280 285
Ile Thr Asn Gln Lys Gly Glu Val Val Ala Leu Gly Glu Tyr Asp Val 290
295 300 Ala Asn His Thr Met
Thr Tyr Thr Phe Thr Asn Val Val Asn Asn Leu 305 310
315 320 Glu Asn Val Ser Gly Ser Phe Asn Leu Thr
Gln Phe Met Asp Arg Lys 325 330
335 Val Ala Thr Asp Ser Gln Thr Tyr Pro Leu Lys Tyr Asp Ile Ala
Gly 340 345 350 Glu
Ser Leu Asp Thr Gln Ile Lys Val Asn Tyr Gly Gln Tyr Tyr Ser 355
360 365 Glu Gly Asp Ser Asn Leu
Lys Ser Met Ile Thr Ser Glu Asp Pro Lys 370 375
380 Thr Gly Glu Tyr Asp Gln Tyr Ile Tyr Val Asn
Pro Leu Gln Lys Thr 385 390 395
400 Ala Asn Gly Thr Val Val Arg Val Gln Gly Phe Gln Val Asp Pro Thr
405 410 415 Lys Ser
Asn Gly Gln Val Lys Pro Asp Thr Thr Gln Ile Lys Ile Leu 420
425 430 Lys Val Ala Asp Gly Gln Pro
Leu Asn Ser Ser Phe Gly Val Asn Asp 435 440
445 Ser Glu Tyr Glu Asp Val Thr Lys Gln Phe Asn Ile
Val Tyr Arg Asp 450 455 460
Asn Asn Leu Ala Asp Ile Tyr Phe Gly Asn Leu Asn Gly Gln Arg Tyr 465
470 475 480 Ile Val Lys
Val Thr Ser Lys Glu Asn Leu Asp Ser Lys Glu Asp Leu 485
490 495 Asn Leu Arg Ala Ile Met Ala Thr
Gln Asn Arg Tyr Gly Gln Tyr Asn 500 505
510 Tyr Ile Thr Trp Asp Asn Asp Ile Val Lys Ser Ser Ser
Gly Gly Thr 515 520 525
Ala Asp Gly Asn Glu Ala Ser Tyr Gln Leu Gly Asp Lys Val Trp Asn 530
535 540 Asp Val Asn Lys
Asn Gly Ile Gln Asp Gln Gly Glu Thr Gly Ile Ala 545 550
555 560 Asp Val Lys Val Thr Leu Lys Asp Leu
Asp Gly Asn Ile Leu Asp Thr 565 570
575 Thr Tyr Thr Asn Thr Asn Gly Lys Tyr Ile Phe Asp Asn Leu
Lys Asn 580 585 590
Gly Asn Tyr Gln Val Gly Phe Glu Thr Pro Glu Gly Tyr Ala Ala Ser
595 600 605 Pro Ser Asn Gln
Gly Asn Asp Ala Leu Asp Ser Asp Gly Pro Thr Asn 610
615 620 Val Gln Ala Val Ile Ser Asp Gly
Asn Asn Leu Thr Ile Asp Gln Gly 625 630
635 640 Phe Tyr Gln Thr Glu Thr Pro Thr His Asn Val Gly
Asp Lys Val Trp 645 650
655 Glu Asp Leu Asn Lys Asp Gly Ile Gln Asp Gln Asn Glu Pro Gly Ile
660 665 670 Ala Asn Val
Lys Val Thr Leu Lys Asp Ala Asp Gly Asn Val Val Asp 675
680 685 Thr Arg Thr Thr Asp Asp Lys Gly
Asn Tyr Leu Phe Glu Lys Val Lys 690 695
700 Glu Gly Glu Tyr Thr Ile Glu Phe Glu Thr Pro Glu Gly
Tyr Thr Pro 705 710 715
720 Thr Gln Thr Gly Gln Gly Arg Val Ser Thr Asp Ser Asn Gly Thr Ser
725 730 735 Ser Leu Ile Leu
Val Glu Gly Asn Asp Asp Leu Thr Ile Asp Ser Gly 740
745 750 Phe Tyr Lys Glu Pro Val Thr His Lys
Val Gly Asp Lys Val Trp Asp 755 760
765 Asp Leu Asn Lys Asp Gly Ile Gln Asp Asp Asn Glu Pro Gly
Ile Ser 770 775 780
Asp Val Lys Val Thr Leu Lys Asp Ala Asp Gly Asn Val Val Asp Thr 785
790 795 800 Arg Thr Thr Asp Ala
Asn Gly Asn Tyr Leu Phe Glu Asn Val Lys Glu 805
810 815 Gly Asp Tyr Thr Ile Glu Phe Glu Thr Pro
Glu Gly Tyr Thr Pro Thr 820 825
830 Val Thr Gly Gln Gly Thr Ala Asp Asn Asp Ser Asn Gly Thr Ser
Thr 835 840 845 Lys
Val Thr Val Lys Asp Gly Asp Asp Leu Thr Ile Asp Ser Gly Phe 850
855 860 Thr Gln Val Thr Pro Glu
Pro Pro Thr His Asn Val Gly Asp Lys Val 865 870
875 880 Trp Asp Asp Leu Asn Lys Asp Gly Ile Gln Asp
Asp Asn Glu Pro Gly 885 890
895 Ile Ser Asp Val Lys Val Thr Leu Lys Asp Ala Asp Gly Asn Val Val
900 905 910 Asp Thr
Arg Thr Thr Asp Ala Asn Gly Asn Tyr Leu Phe Glu Asn Val 915
920 925 Lys Glu Gly Asp Tyr Thr Ile
Glu Phe Glu Thr Pro Glu Gly Tyr Thr 930 935
940 Pro Thr Val Thr Gly Gln Gly Thr Ala Asp Asn Asp
Ser Asn Gly Thr 945 950 955
960 Ser Thr Lys Val Thr Val Lys Asp Gly Asp Asp Leu Thr Ile Asp Ser
965 970 975 Gly Phe Thr
Gln Val Thr Pro Glu Pro Pro Thr Glu Pro Glu Asn Pro 980
985 990 Ser Pro Glu Gln Pro Ser Glu Pro
Gly Gln Pro Glu Asn Pro Ser Pro 995 1000
1005 Glu Gln Pro Ser Glu Pro Gly Gln Pro Glu Asn
Pro Ser Pro Glu 1010 1015 1020
Gln Pro Ser Glu Pro Gly Gln Pro Glu Asn Pro Ser Pro Glu Gln
1025 1030 1035 Pro Ser Glu
Pro Gly Gln Pro Glu Asn Pro Ser Pro Glu Gln Pro 1040
1045 1050 Ser Glu Pro Gly Gln Pro Lys Asn
Pro Ser Pro Glu Gln Pro Asn 1055 1060
1065 Asn Pro Ser Val Pro Gly Val Gln Asn Pro Glu Lys Pro
Ser Leu 1070 1075 1080
Thr Pro Val Thr Gln Pro Val His Ser Asn Gly Asn Lys Ala Lys 1085
1090 1095 Pro Ser Gln Gln Gln
Lys Ala Leu Pro Glu Thr Gly Glu Thr Glu 1100 1105
1110 Ser His Gln Gly Thr Leu Phe Gly Gly Ile
Leu Ala Ala Leu Gly 1115 1120 1125
Ala Leu Leu Phe Ala Arg Lys Lys Arg His Asp Lys Lys Gln Ser
1130 1135 1140 His
29660DNAStaphylococcus pseudintermedius 29atgaagaaaa caatttcagt
acttggtcta gggctattag caacattttt tgtaagtaac 60gaatcatatg ccgcagaaac
gattcaaaac aatacgtcat caagtgaaac gaatcaaaat 120tcagatcaga cgccgttaga
tcattatatt cgaaaagcag atggcacact ggttgaaccg 180aacgtgtacc cacataaaga
ttatgtagag aatgaaggac ctttaccaga gtttaaattt 240caagttgact ctaagaaaga
ttcatctgat ccaaatcaag caccgttaga tcattatatt 300cgaaaagcgg atggcacgtt
ggttgaaccg aatgtatatc cacacaaaga ttatgtcgaa 360aatgaagggc ctttaccaga
gtttaaattt atgtatgctg acaaacaaaa tcatcatgac 420caacagagta aaaacaacaa
ggataagcag cgtgcaaatt acagtgacaa aaagcataat 480gatcagccgg gtcatccaaa
agcagtcacg ccagctgtac aacatgataa agcagtcact 540tcaaacgcta ctgtaaaagc
attgccaaac acaggtgaat ctgataaaac aacacaatta 600ccaatcgtat tatcattgtt
atctgtgggg attttagttt tattaaaatt gagaaaataa 66030219PRTStaphylococcus
pseudintermedius 30Met Lys Lys Thr Ile Ser Val Leu Gly Leu Gly Leu Leu
Ala Thr Phe 1 5 10 15
Phe Val Ser Asn Glu Ser Tyr Ala Ala Glu Thr Ile Gln Asn Asn Thr
20 25 30 Ser Ser Ser Glu
Thr Asn Gln Asn Ser Asp Gln Thr Pro Leu Asp His 35
40 45 Tyr Ile Arg Lys Ala Asp Gly Thr Leu
Val Glu Pro Asn Val Tyr Pro 50 55
60 His Lys Asp Tyr Val Glu Asn Glu Gly Pro Leu Pro Glu
Phe Lys Phe 65 70 75
80 Gln Val Asp Ser Lys Lys Asp Ser Ser Asp Pro Asn Gln Ala Pro Leu
85 90 95 Asp His Tyr Ile
Arg Lys Ala Asp Gly Thr Leu Val Glu Pro Asn Val 100
105 110 Tyr Pro His Lys Asp Tyr Val Glu Asn
Glu Gly Pro Leu Pro Glu Phe 115 120
125 Lys Phe Met Tyr Ala Asp Lys Gln Asn His His Asp Gln Gln
Ser Lys 130 135 140
Asn Asn Lys Asp Lys Gln Arg Ala Asn Tyr Ser Asp Lys Lys His Asn 145
150 155 160 Asp Gln Pro Gly His
Pro Lys Ala Val Thr Pro Ala Val Gln His Asp 165
170 175 Lys Ala Val Thr Ser Asn Ala Thr Val Lys
Ala Leu Pro Asn Thr Gly 180 185
190 Glu Ser Asp Lys Thr Thr Gln Leu Pro Ile Val Leu Ser Leu Leu
Ser 195 200 205 Val
Gly Ile Leu Val Leu Leu Lys Leu Arg Lys 210 215
315541DNAStaphylococcus pseudintermedius 31atgaaaagta
aatatgattt tttacctaat agacttaata aattttctat acgaaaattt 60actgttggta
gtgtatcagt gctaatagga gccactttat tattcgggtt tgtagaagga 120gaagcatcag
catcagtaaa agaaggtcaa caaagtataa attctagtga gaaagaaagc 180gccgatccta
cagtagttga tttaattagt aagaaagaaa caaatttaga tggactagat 240gtatcaagag
aagaaacgac caaagtacca ataaatgaaa acaaaagagg tgaggaacaa 300agtatttctg
ataaagctat aacagaaaaa gctgatacac cagtaagcaa tttatcaagt 360aaggaagttg
aggagcaagg tgtttctgat aaagctataa cagaaaaagc tgatacacca 420gtaaccaatt
tatcaagtaa ggaagctaag gagcaaggtg cttctgatag agttataaca 480gaaaaagctg
atacaccagt aagcaattta tcaagtaagg aagctaagga gcaaggtgct 540tctgatagag
ttataacaga aaaagctgat acaccagtaa gcaatttatc aagtaaggaa 600gttgaggagc
aaggtgtttc tgataaagct atagagaaaa tagctgatgc atcagctact 660gatttgtcaa
gtaaggaaga agtagaacaa gatatatcta cacaaggtaa agtaaaatca 720aaggaagcag
tacaagtaga aagtagtcag ttacaaaatt taaatagtga aataaatgct 780gaacctaatg
aaattaaggc aatagataga agttcaatat tacctttaaa tttaaatgat 840gaagaaaata
acaaaaaagt taataaaggg actcgggttc cagaagctac attaagaaat 900gcctctaata
accaactcaa tacacgaatg agatcagtga gtttatttag agttgctaga 960ctaacagaaa
tcaatagaaa tgttaatgat aaagtaaagg tttcggatat cgacatcgca 1020atagccccac
cgcatactaa ccctaaaact ggaaaagaag aattttgggc gacatcttct 1080tcagttttaa
agttaaaggc aagctatgaa ttggataata gcatttctaa aggggatcaa 1140tttactattc
aatttggtca aaatattcgt ccaggtggat taaatttacc aagaccttat 1200aattttttat
atgataagga taaaaaatta gttgcaactg gccgttacaa taaagaatca 1260aatacaatca
catatacatt tacggattat gtagataaac atcaaaacat taaaggtagt 1320tttgagatga
atgcattttc tagaaaggaa aatgctacta ctgacaaaac agcatatcca 1380atggatgtta
ctattgcgaa tcaaaaatat agtgaaaata ttattgtaga ctatggtaat 1440aaaaagaatg
ctgctattat ttcaagtaca gaatatattg atttagatgg tagtagaaaa 1500atgacaacat
atattaatca aaatggtagt aaaaattcca tctatcgtgc tgatatgcaa 1560attgatttga
acggttataa atttgatcca tccaaaaaca attttaaaat ttatgaagtg 1620gaaaatagca
gtgactttgt ggatagcttt tcaccagatg tgagcaagtt aagggatgtt 1680acgagtcaat
ttaatattca atatacaaat aataatacaa tggcaaaagt ggattttggt 1740actaaccttt
ggaggggtaa aaaatatatt attcagcaag tggcgaatat agacgacagt 1800aaattagtga
aaaatgcttc aatcaattat acattgaata aaatggattt taataataaa 1860agaacggtag
aaacacataa caatacttat tctacagtga aagataaatc aacagcacta 1920ggtgacgtac
aggaaagtca atctattagt gagagccaat cagttagtga aagcgagtca 1980ctaagtgaga
gccaatcaat cagtgaaagc gaatcattaa gtgagagcca atcaatcagt 2040gaaagcgaat
cattaagtga aagtcaatca atctcagaga gcgaatcact aagtgaaagt 2100cagtcaattt
cagaaagcga atcattaagt gaaagccaat caatctcaga gagtgaatca 2160ttaagtgaaa
gtcagtcaat ttcagagagt gaatcactaa gtgaaagtca gtcaatttca 2220gaaagcgaat
cattaagcga gagtcagtca atttcagaaa gcgaatcatt aagcgagagt 2280cagtcaattt
cagaaagcga atcattaagt gaaagccaat caatcagtga aagcgaatca 2340ctaagcgaga
gccaatcaat ctcagagagt gaatcattaa gcgagagtca atcaatctca 2400gagagcgaat
cattaagtga gagtcaatca atcagtgaaa gcgagtcact aagtgagagt 2460caatcaattt
cagagagcga atcattaagt gaaagccaat caatctcaga gagtgaatca 2520ctaagtgaga
gccaatcaat ctcagagagt gaatcattaa gtgagagcca atcaatctca 2580gagagcgagt
cactaagcga gagccaatca atttcagaga gtgaatcact aagtgaaagt 2640caatcaattt
cagagagcga atcactaagt gagagccaat caatctcaga gagcgaatca 2700ctaagtgaaa
gtcaatcaat ttcagagagt gaatcactaa gcgagagcca atcaatctca 2760gagagtgaat
cattaagtga aagtcagtca atttcagaga gtgaatcact aagtgaaagt 2820cagtcaattt
cagaaagcga atcattaagt gaaagccaat caatcagtga aagcgaatca 2880ctaagcgaga
gtcaatcaat ctcagagagc gaatcattaa gtgaaagtca atcaatttca 2940gaaagcgagt
cattaagcga gagtcagtca atctcagaga gcgaatcact aagcgagagt 3000caatcaatct
cagagagtga atcattaagt gagagccaat cagttagtga aagcgaatca 3060ctaagtgaaa
gtcagtcaat ttcagaaagc gaatcattaa gtgagagtca atcaatttca 3120gaaagcgaat
cattaagtga aagccaatca atcagtgaaa gcgaatcact aagcgagagc 3180caatcaatca
gtgaaagcga atcattaagt gagagtcaat caatctcaga aagcgaatca 3240ttaagtgaga
gtcaatcaat cagtgaaagc gaatcactaa gcgagagcca atcaatctca 3300gagagcgaat
cactaagcga gagccaatca atctcagaga gcgagtcact aagcgagagc 3360caatcaatca
gtgaaagcga atcattaagt gagagtcaat caatcagtga aagcgagtca 3420ctaagtgaga
gccaatcaat ctcagagagt gaatcattga gtgagagcca atcaatctca 3480gagagcgagt
cactaagtga gagtcaatca atttcagaga gcgaatcatt aagtgaaagc 3540caatcaatct
cagagagtga atcattgagt gagagccaat cagttagtga aagcgagtca 3600ctaagtgaga
gtcaatcaat cagtgaaagc gagtcactaa gtgagagtca atcaatttca 3660gagagcgaat
cattaagcga gagtcagtca atctcagaga gtgaatcact aagtgagagc 3720caatcaatct
cagagagtga atcattaagt gagagccaat caatctcaga gagtgaatca 3780ctaagtgaga
gtcaatcaat cagtgaaagc gaatcactaa gcgagagcca atcaatttca 3840gagagtgaat
cattaagtga gagccaatca gttagtgaaa gcgaatcact aagcgagagc 3900caatcaatct
cagagagcga atcattgagt gagagccaat caatctcaga gagtgaatca 3960ttgagtgaga
gtcaatcaat cagtgaaagc gaatcactaa gcgaaagtca atcaatttca 4020gagagtgaat
cattgagtga gagccaatca atttcagaga gtgaatcact aagtgaaagt 4080cagtcaattt
cagaaagcga atcactaagc gagagccaat caatctcaga gagcgaatca 4140ctaagtgaaa
gtcagtcaat ttcagaaagc gaatcattaa gtgaaagcca atcaatctca 4200gagagtgaat
cattaagtga aagtcagtca atttcagaga gtgaatcact aagtgaaagt 4260cagtcaattt
cagaaagcga atcattaagc gagagtcagt caatttcaga aagcgaatca 4320ttaagtgaaa
gccaatcaat cagtgaaagc gaatcactaa gcgagagcca atcaatctca 4380gagagcgaat
cactaagcga gagccaatca atctcagaga gcgaatcact aagtgaaagt 4440caatcaattt
cagagagtga atcattgagt gagagtcaat caatttcaga gagtgaatca 4500ctaagtgaaa
gtcaatcaat ttcagagagt gaatcactaa gcgagagcca atcaatctca 4560gagagtgaat
cattaagtga aagtcagtca atttcagaga gggaatcact aagtgaaagt 4620cagtcaattt
cagaaagcga atcattaagt gaaagccaat caatcagtga aagcgaatca 4680ctaagtgaaa
gtcaatcaat ctcagagagt gaatcactaa gtgagagcca atcaatctca 4740gagagtgaat
cattgagtga gagccaatca atctcagaga gcgaatcact aagtgaaagt 4800caatcaattt
cagaaagcga gtcattaagc gagagtcagt caatctcaga gagtgaatca 4860ctaagtgaga
gccaatcaat ctcagagagt gaatcactaa gtgagagtca atcaatcagt 4920gaaagcgaat
cactaagcga gagccaatca atttcagaga gtgaatcatt aagtgagagc 4980caatcagtta
gtgaaagcga atcactaagc gagagccaat caatctcaga gagcgagtca 5040ctaagcgaga
gtcaatcaat ctcagagagt gaatcactaa gtgaaagtca gtcaatttca 5100gaaagcgagt
cactaagcga gagtcaatca atctcagaga gtgaatcatt gagtgagagc 5160caatcaatct
cagagagcga atcattgagt gagagccaat caatctcaga gagtgaatca 5220ttgagtgaga
gccaatcaat ttcagagagc gaatcactaa gcgagagcca atcaatcagt 5280gaaagcgaat
cattaagtga gagtcagtca attagcgaaa gcgaatcact aagtgagagt 5340caatcaatct
cagagagtga atcactaagt gaaagtcagt caatcagcga aagcgaatct 5400aaatctttac
ctaataccgg tactggagaa aagatttcta attatccagg tattttagga 5460ggattattaa
gcatattagg tataagtttg cttaaaagaa aagacagaga gaaaaaatta 5520ggacaaaaat
ctaataagta g
5541321846PRTStaphylococcus pseudintermedius 32Met Lys Ser Lys Tyr Asp
Phe Leu Pro Asn Arg Leu Asn Lys Phe Ser 1 5
10 15 Ile Arg Lys Phe Thr Val Gly Ser Val Ser Val
Leu Ile Gly Ala Thr 20 25
30 Leu Leu Phe Gly Phe Val Glu Gly Glu Ala Ser Ala Ser Val Lys
Glu 35 40 45 Gly
Gln Gln Ser Ile Asn Ser Ser Glu Lys Glu Ser Ala Asp Pro Thr 50
55 60 Val Val Asp Leu Ile Ser
Lys Lys Glu Thr Asn Leu Asp Gly Leu Asp 65 70
75 80 Val Ser Arg Glu Glu Thr Thr Lys Val Pro Ile
Asn Glu Asn Lys Arg 85 90
95 Gly Glu Glu Gln Ser Ile Ser Asp Lys Ala Ile Thr Glu Lys Ala Asp
100 105 110 Thr Pro
Val Ser Asn Leu Ser Ser Lys Glu Val Glu Glu Gln Gly Val 115
120 125 Ser Asp Lys Ala Ile Thr Glu
Lys Ala Asp Thr Pro Val Thr Asn Leu 130 135
140 Ser Ser Lys Glu Ala Lys Glu Gln Gly Ala Ser Asp
Arg Val Ile Thr 145 150 155
160 Glu Lys Ala Asp Thr Pro Val Ser Asn Leu Ser Ser Lys Glu Ala Lys
165 170 175 Glu Gln Gly
Ala Ser Asp Arg Val Ile Thr Glu Lys Ala Asp Thr Pro 180
185 190 Val Ser Asn Leu Ser Ser Lys Glu
Val Glu Glu Gln Gly Val Ser Asp 195 200
205 Lys Ala Ile Glu Lys Ile Ala Asp Ala Ser Ala Thr Asp
Leu Ser Ser 210 215 220
Lys Glu Glu Val Glu Gln Asp Ile Ser Thr Gln Gly Lys Val Lys Ser 225
230 235 240 Lys Glu Ala Val
Gln Val Glu Ser Ser Gln Leu Gln Asn Leu Asn Ser 245
250 255 Glu Ile Asn Ala Glu Pro Asn Glu Ile
Lys Ala Ile Asp Arg Ser Ser 260 265
270 Ile Leu Pro Leu Asn Leu Asn Asp Glu Glu Asn Asn Lys Lys
Val Asn 275 280 285
Lys Gly Thr Arg Val Pro Glu Ala Thr Leu Arg Asn Ala Ser Asn Asn 290
295 300 Gln Leu Asn Thr Arg
Met Arg Ser Val Ser Leu Phe Arg Val Ala Arg 305 310
315 320 Leu Thr Glu Ile Asn Arg Asn Val Asn Asp
Lys Val Lys Val Ser Asp 325 330
335 Ile Asp Ile Ala Ile Ala Pro Pro His Thr Asn Pro Lys Thr Gly
Lys 340 345 350 Glu
Glu Phe Trp Ala Thr Ser Ser Ser Val Leu Lys Leu Lys Ala Ser 355
360 365 Tyr Glu Leu Asp Asn Ser
Ile Ser Lys Gly Asp Gln Phe Thr Ile Gln 370 375
380 Phe Gly Gln Asn Ile Arg Pro Gly Gly Leu Asn
Leu Pro Arg Pro Tyr 385 390 395
400 Asn Phe Leu Tyr Asp Lys Asp Lys Lys Leu Val Ala Thr Gly Arg Tyr
405 410 415 Asn Lys
Glu Ser Asn Thr Ile Thr Tyr Thr Phe Thr Asp Tyr Val Asp 420
425 430 Lys His Gln Asn Ile Lys Gly
Ser Phe Glu Met Asn Ala Phe Ser Arg 435 440
445 Lys Glu Asn Ala Thr Thr Asp Lys Thr Ala Tyr Pro
Met Asp Val Thr 450 455 460
Ile Ala Asn Gln Lys Tyr Ser Glu Asn Ile Ile Val Asp Tyr Gly Asn 465
470 475 480 Lys Lys Asn
Ala Ala Ile Ile Ser Ser Thr Glu Tyr Ile Asp Leu Asp 485
490 495 Gly Ser Arg Lys Met Thr Thr Tyr
Ile Asn Gln Asn Gly Ser Lys Asn 500 505
510 Ser Ile Tyr Arg Ala Asp Met Gln Ile Asp Leu Asn Gly
Tyr Lys Phe 515 520 525
Asp Pro Ser Lys Asn Asn Phe Lys Ile Tyr Glu Val Glu Asn Ser Ser 530
535 540 Asp Phe Val Asp
Ser Phe Ser Pro Asp Val Ser Lys Leu Arg Asp Val 545 550
555 560 Thr Ser Gln Phe Asn Ile Gln Tyr Thr
Asn Asn Asn Thr Met Ala Lys 565 570
575 Val Asp Phe Gly Thr Asn Leu Trp Arg Gly Lys Lys Tyr Ile
Ile Gln 580 585 590
Gln Val Ala Asn Ile Asp Asp Ser Lys Leu Val Lys Asn Ala Ser Ile
595 600 605 Asn Tyr Thr Leu
Asn Lys Met Asp Phe Asn Asn Lys Arg Thr Val Glu 610
615 620 Thr His Asn Asn Thr Tyr Ser Thr
Val Lys Asp Lys Ser Thr Ala Leu 625 630
635 640 Gly Asp Val Gln Glu Ser Gln Ser Ile Ser Glu Ser
Gln Ser Val Ser 645 650
655 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser
660 665 670 Leu Ser Glu
Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 675
680 685 Gln Ser Ile Ser Glu Ser Glu Ser
Leu Ser Glu Ser Gln Ser Ile Ser 690 695
700 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu
Ser Glu Ser 705 710 715
720 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser
725 730 735 Gln Ser Ile Ser
Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 740
745 750 Glu Ser Glu Ser Leu Ser Glu Ser Gln
Ser Ile Ser Glu Ser Glu Ser 755 760
765 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser
Glu Ser 770 775 780
Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 785
790 795 800 Glu Ser Glu Ser Leu
Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 805
810 815 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser
Glu Ser Leu Ser Glu Ser 820 825
830 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile
Ser 835 840 845 Glu
Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 850
855 860 Leu Ser Glu Ser Gln Ser
Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 865 870
875 880 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu
Ser Gln Ser Ile Ser 885 890
895 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser
900 905 910 Leu Ser
Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 915
920 925 Gln Ser Ile Ser Glu Ser Glu
Ser Leu Ser Glu Ser Gln Ser Ile Ser 930 935
940 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser
Glu Ser Glu Ser 945 950 955
960 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser
965 970 975 Gln Ser Ile
Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 980
985 990 Glu Ser Glu Ser Leu Ser Glu Ser
Gln Ser Ile Ser Glu Ser Glu Ser 995 1000
1005 Leu Ser Glu Ser Gln Ser Val Ser Glu Ser Glu
Ser Leu Ser Glu 1010 1015 1020
Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser
1025 1030 1035 Ile Ser Glu
Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1040
1045 1050 Ser Glu Ser Leu Ser Glu Ser Gln
Ser Ile Ser Glu Ser Glu Ser 1055 1060
1065 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu
Ser Glu 1070 1075 1080
Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1085
1090 1095 Ile Ser Glu Ser Glu
Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1100 1105
1110 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile
Ser Glu Ser Glu Ser 1115 1120 1125
Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu
1130 1135 1140 Ser Gln
Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1145
1150 1155 Ile Ser Glu Ser Glu Ser Leu
Ser Glu Ser Gln Ser Ile Ser Glu 1160 1165
1170 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu
Ser Glu Ser 1175 1180 1185
Leu Ser Glu Ser Gln Ser Val Ser Glu Ser Glu Ser Leu Ser Glu 1190
1195 1200 Ser Gln Ser Ile Ser
Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1205 1210
1215 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser
Gln Ser Ile Ser Glu 1220 1225 1230
Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser
1235 1240 1245 Leu Ser
Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1250
1255 1260 Ser Gln Ser Ile Ser Glu Ser
Glu Ser Leu Ser Glu Ser Gln Ser 1265 1270
1275 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser
Val Ser Glu 1280 1285 1290
Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1295
1300 1305 Leu Ser Glu Ser Gln
Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1310 1315
1320 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu
Ser Glu Ser Gln Ser 1325 1330 1335
Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu
1340 1345 1350 Ser Glu
Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1355
1360 1365 Leu Ser Glu Ser Gln Ser Ile
Ser Glu Ser Glu Ser Leu Ser Glu 1370 1375
1380 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu
Ser Gln Ser 1385 1390 1395
Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1400
1405 1410 Ser Glu Ser Leu Ser
Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1415 1420
1425 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser
Glu Ser Leu Ser Glu 1430 1435 1440
Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser
1445 1450 1455 Ile Ser
Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1460
1465 1470 Ser Glu Ser Leu Ser Glu Ser
Gln Ser Ile Ser Glu Ser Glu Ser 1475 1480
1485 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser
Leu Ser Glu 1490 1495 1500
Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1505
1510 1515 Ile Ser Glu Ser Glu
Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1520 1525
1530 Arg Glu Ser Leu Ser Glu Ser Gln Ser Ile
Ser Glu Ser Glu Ser 1535 1540 1545
Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu
1550 1555 1560 Ser Gln
Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1565
1570 1575 Ile Ser Glu Ser Glu Ser Leu
Ser Glu Ser Gln Ser Ile Ser Glu 1580 1585
1590 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu
Ser Glu Ser 1595 1600 1605
Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1610
1615 1620 Ser Gln Ser Ile Ser
Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1625 1630
1635 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser
Gln Ser Ile Ser Glu 1640 1645 1650
Ser Glu Ser Leu Ser Glu Ser Gln Ser Val Ser Glu Ser Glu Ser
1655 1660 1665 Leu Ser
Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1670
1675 1680 Ser Gln Ser Ile Ser Glu Ser
Glu Ser Leu Ser Glu Ser Gln Ser 1685 1690
1695 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser
Ile Ser Glu 1700 1705 1710
Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1715
1720 1725 Leu Ser Glu Ser Gln
Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1730 1735
1740 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu
Ser Glu Ser Gln Ser 1745 1750 1755
Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu
1760 1765 1770 Ser Glu
Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1775
1780 1785 Leu Ser Glu Ser Gln Ser Ile
Ser Glu Ser Glu Ser Lys Ser Leu 1790 1795
1800 Pro Asn Thr Gly Thr Gly Glu Lys Ile Ser Asn Tyr
Pro Gly Ile 1805 1810 1815
Leu Gly Gly Leu Leu Ser Ile Leu Gly Ile Ser Leu Leu Lys Arg 1820
1825 1830 Lys Asp Arg Glu Lys
Lys Leu Gly Gln Lys Ser Asn Lys 1835 1840
1845 331953DNAStaphylococcus pseudintermedius 33atgttaagaa
caaattataa actaagaaag cttaaagtag gtttagtatc gacaggtgtg 60gcgttgactt
ttgtgatggc aagtgggaat gcagaggcgt cggagaacga gcagactgaa 120gtaaaagggg
aggcgcaagt tgcttctgtg aatgaaaaag agagtgaagc agaattacct 180gtagcgcaac
aagaagcatc tattcaacta gacaaagtac aaccaggcga tgcacagctt 240tcaggctata
cacagccaaa caaagcgatt tctgtaaaga tcgacaataa agatattgtg 300tctgtagatg
atggctatga agaggtatta tcggatgata caggtaaatt tgtatatgat 360ttgaaagggc
gtcaaattgt ttacaatcaa aaagttgatg ttgaagcgat gacgccattt 420aattttgaag
attttgatga atcagcactt gagagcgaag aggcattgga ggcgttaggt 480caattggaag
acgaagaaac agcgacagct tctgtgacga cgcctagata tgaaggtgcg 540tatacagttc
ctgaagaacg cttgacaccc attcaaggcc aacagcaagt attcatcgaa 600cctattttag
aaggggcaag taaaatcaaa ggacatacat ctgtacaagg taaagtcgcg 660ttagcaatca
atcaagaaca tgtgcaccta ggtgatacgt tagaagaaca agcagcactc 720actgatcaag
agtggcaagg tcgttatgac gggatttggc gccatattga tgatcaaggg 780tttttcgagt
ttgacttgaa ccgtctttac aataaatctt acccattgaa gtctggcgat 840ttagtgactt
tatcttttaa atctaatgac gaagtaggcc cattattcaa tgtgaacgtt 900gagcctttcg
aacgtgtggc acaagctaaa acaaagtatg agcagaatga cagtccagta 960gtcaacaaat
tggatgatac taaaagtgac ttggaggttc aacctatcta tggagacctt 1020acacaagcag
cagtacatgg cgagtcgaaa gtgttgatac cggggacgtc aaaagttgaa 1080ggacgtacga
attatgcaca tgcatggata gagatggcat ctaatttagg ggaatatcgt 1140agtttcccta
aattacaagc tgatgcgaca ggtgcgttta tatttgattt aaaagcggca 1200gacatacaat
tgttaaacgg agaacgtttg acattcagag ccgttgaccc acatacaaaa 1260caacagttag
ctgaaactac atcagaagta cgcccagtag atatgcaaga tgaagagtca 1320gaggttgtgc
agacttcaag cactgagaaa tcagcacttg cggatgaaat tcttcgttct 1380atgacaattg
acaaatcatt taatcctgaa gttaccgaga taccgggtca tgtatatcct 1440aagaaaacag
aggataaagg tgctgaaaat acagaacaag cctcagagaa ttctgagaag 1500ccatctcaga
ctacagaatc tcaaaatgat gccgtacaag atgtagagaa atcctctgtt 1560aatgaggagg
ttacgccacc ttcaacagaa tctgctcaag ttgaaaaggg gcaaaataca 1620gaaggggctt
tgcttccaaa aaatgtagaa caacatgtag agagtatacc ataccaaaaa 1680cgtaaagcgt
tgataggact gacaaaacat caaggatcag ggcacatgcc gccattttct 1740ttaagcttta
ataataaaga agatgacgta tccacaaagg ttaacgaagc aaacgagcat 1800gaacgtaagc
agggtacagt ttatccagag caaatagaac aattacctca aacaggttta 1860actgaaaaat
cgccattctg ggcattgtta tttgttgtat caggcacagg tttattatta 1920ttcaaacgtt
ctagacgaca acgccaatct taa
195334650PRTStaphylococcus pseudintermedius 34Met Leu Arg Thr Asn Tyr Lys
Leu Arg Lys Leu Lys Val Gly Leu Val 1 5
10 15 Ser Thr Gly Val Ala Leu Thr Phe Val Met Ala
Ser Gly Asn Ala Glu 20 25
30 Ala Ser Glu Asn Glu Gln Thr Glu Val Lys Gly Glu Ala Gln Val
Ala 35 40 45 Ser
Val Asn Glu Lys Glu Ser Glu Ala Glu Leu Pro Val Ala Gln Gln 50
55 60 Glu Ala Ser Ile Gln Leu
Asp Lys Val Gln Pro Gly Asp Ala Gln Leu 65 70
75 80 Ser Gly Tyr Thr Gln Pro Asn Lys Ala Ile Ser
Val Lys Ile Asp Asn 85 90
95 Lys Asp Ile Val Ser Val Asp Asp Gly Tyr Glu Glu Val Leu Ser Asp
100 105 110 Asp Thr
Gly Lys Phe Val Tyr Asp Leu Lys Gly Arg Gln Ile Val Tyr 115
120 125 Asn Gln Lys Val Asp Val Glu
Ala Met Thr Pro Phe Asn Phe Glu Asp 130 135
140 Phe Asp Glu Ser Ala Leu Glu Ser Glu Glu Ala Leu
Glu Ala Leu Gly 145 150 155
160 Gln Leu Glu Asp Glu Glu Thr Ala Thr Ala Ser Val Thr Thr Pro Arg
165 170 175 Tyr Glu Gly
Ala Tyr Thr Val Pro Glu Glu Arg Leu Thr Pro Ile Gln 180
185 190 Gly Gln Gln Gln Val Phe Ile Glu
Pro Ile Leu Glu Gly Ala Ser Lys 195 200
205 Ile Lys Gly His Thr Ser Val Gln Gly Lys Val Ala Leu
Ala Ile Asn 210 215 220
Gln Glu His Val His Leu Gly Asp Thr Leu Glu Glu Gln Ala Ala Leu 225
230 235 240 Thr Asp Gln Glu
Trp Gln Gly Arg Tyr Asp Gly Ile Trp Arg His Ile 245
250 255 Asp Asp Gln Gly Phe Phe Glu Phe Asp
Leu Asn Arg Leu Tyr Asn Lys 260 265
270 Ser Tyr Pro Leu Lys Ser Gly Asp Leu Val Thr Leu Ser Phe
Lys Ser 275 280 285
Asn Asp Glu Val Gly Pro Leu Phe Asn Val Asn Val Glu Pro Phe Glu 290
295 300 Arg Val Ala Gln Ala
Lys Thr Lys Tyr Glu Gln Asn Asp Ser Pro Val 305 310
315 320 Val Asn Lys Leu Asp Asp Thr Lys Ser Asp
Leu Glu Val Gln Pro Ile 325 330
335 Tyr Gly Asp Leu Thr Gln Ala Ala Val His Gly Glu Ser Lys Val
Leu 340 345 350 Ile
Pro Gly Thr Ser Lys Val Glu Gly Arg Thr Asn Tyr Ala His Ala 355
360 365 Trp Ile Glu Met Ala Ser
Asn Leu Gly Glu Tyr Arg Ser Phe Pro Lys 370 375
380 Leu Gln Ala Asp Ala Thr Gly Ala Phe Ile Phe
Asp Leu Lys Ala Ala 385 390 395
400 Asp Ile Gln Leu Leu Asn Gly Glu Arg Leu Thr Phe Arg Ala Val Asp
405 410 415 Pro His
Thr Lys Gln Gln Leu Ala Glu Thr Thr Ser Glu Val Arg Pro 420
425 430 Val Asp Met Gln Asp Glu Glu
Ser Glu Val Val Gln Thr Ser Ser Thr 435 440
445 Glu Lys Ser Ala Leu Ala Asp Glu Ile Leu Arg Ser
Met Thr Ile Asp 450 455 460
Lys Ser Phe Asn Pro Glu Val Thr Glu Ile Pro Gly His Val Tyr Pro 465
470 475 480 Lys Lys Thr
Glu Asp Lys Gly Ala Glu Asn Thr Glu Gln Ala Ser Glu 485
490 495 Asn Ser Glu Lys Pro Ser Gln Thr
Thr Glu Ser Gln Asn Asp Ala Val 500 505
510 Gln Asp Val Glu Lys Ser Ser Val Asn Glu Glu Val Thr
Pro Pro Ser 515 520 525
Thr Glu Ser Ala Gln Val Glu Lys Gly Gln Asn Thr Glu Gly Ala Leu 530
535 540 Leu Pro Lys Asn
Val Glu Gln His Val Glu Ser Ile Pro Tyr Gln Lys 545 550
555 560 Arg Lys Ala Leu Ile Gly Leu Thr Lys
His Gln Gly Ser Gly His Met 565 570
575 Pro Pro Phe Ser Leu Ser Phe Asn Asn Lys Glu Asp Asp Val
Ser Thr 580 585 590
Lys Val Asn Glu Ala Asn Glu His Glu Arg Lys Gln Gly Thr Val Tyr
595 600 605 Pro Glu Gln Ile
Glu Gln Leu Pro Gln Thr Gly Leu Thr Glu Lys Ser 610
615 620 Pro Phe Trp Ala Leu Leu Phe Val
Val Ser Gly Thr Gly Leu Leu Leu 625 630
635 640 Phe Lys Arg Ser Arg Arg Gln Arg Gln Ser
645 650 351491DNAStaphylococcus pseudintermedius
35atgaaaacta aatacacagc aaaattatta attggggcag caacaatatc tttagcaaca
60tttatttcac aagggaacgc acatgcgagc gaacaaacta caggactcgc accggcacaa
120cctgtcaact ttgattcaat caatgtaacg ccagaccaaa aaacattcta tcaagtctta
180catatggaag gcatttcaga agaccaacgt gaacaatatt tgaaacaatt gcacgaagac
240ccaagtagcg cacaaaatgt tttttcagaa tcaattaaag atgccatcca cccggaacgt
300cgtgttgcgc aacaaaatgc gttttacagc gtattacaca acgatgactt atccgaagag
360caacgtgatg catacattgg tagaattaaa gaagatccag atcaaagcca agaagtattt
420gttgagtctt taaatgtggc acctaaagca gaatcacatg aagatcgcct cattgaatta
480caaaacaaaa atttaatgga agcgaatgaa gcacttaaag cgttacaaca agaagacagc
540attcagaata gacgtgcggc tcaacgtgct gtcaacaaat tgacgccgga tagcgcgaac
600gcattccaaa aagaattaga tcaaatcaat gccccacgcg acgctaaaat taaagctgac
660gctgaagcaa aaaaacaagc acctgaagta agcgcaccac aaattgaaga tgcacctact
720actgaagttg caccatctcc aaaacaagat atgccaaaag tagataaaaa agaagaagat
780aaagtagaaa gtgatactga ggtcaaagaa gtacctaaag ctgatacaga gaaaaaccct
840caatctaaag acacttctaa aactgaacaa gctaaagaaa cacctaaagt agagcaatca
900cctaaaacag aaaaggctga agaagcacct aaagcagaaa cacctcaaaa tggaaataaa
960gcacaaactg aagaagctaa accagaagta aaagacaatg tgaaaaacac tccatctgca
1020cctgtgttac ctgaaacagg aaaagcaaca acttcaacac ttgaaagcta ctggaattct
1080ttcaaagaca gtgtgaataa aggttatact tacattaaac aaagcttaga aagtggttat
1140caatatttaa aaggtcaata cgactatatc actaaaaaat acaatgatgc gaaatactat
1200acaaaaatgt attcaaatca taagtctaca attgatcagt ctgtattagc tatattaggt
1260aaaactggat ctagcgcata tatcaagcca ttaaatatcg aagaaaattc aaacgtattt
1320tacaaagctt atgcaaaaac aagaaacttt gctacagaaa gcattaacac aggaaaagta
1380ttatacacat tatatcaaaa ccctactgta gttaaatctg ctttcactgc aattgaaaca
1440gcaaatacag taaaaaatgc aataagcaat cttttctctc tcttcaaata a
149136496PRTStaphylococcus pseudintermedius 36Met Lys Thr Lys Tyr Thr Ala
Lys Leu Leu Ile Gly Ala Ala Thr Ile 1 5
10 15 Ser Leu Ala Thr Phe Ile Ser Gln Gly Asn Ala
His Ala Ser Glu Gln 20 25
30 Thr Thr Gly Leu Ala Pro Ala Gln Pro Val Asn Phe Asp Ser Ile
Asn 35 40 45 Val
Thr Pro Asp Gln Lys Thr Phe Tyr Gln Val Leu His Met Glu Gly 50
55 60 Ile Ser Glu Asp Gln Arg
Glu Gln Tyr Leu Lys Gln Leu His Glu Asp 65 70
75 80 Pro Ser Ser Ala Gln Asn Val Phe Ser Glu Ser
Ile Lys Asp Ala Ile 85 90
95 His Pro Glu Arg Arg Val Ala Gln Gln Asn Ala Phe Tyr Ser Val Leu
100 105 110 His Asn
Asp Asp Leu Ser Glu Glu Gln Arg Asp Ala Tyr Ile Gly Arg 115
120 125 Ile Lys Glu Asp Pro Asp Gln
Ser Gln Glu Val Phe Val Glu Ser Leu 130 135
140 Asn Val Ala Pro Lys Ala Glu Ser His Glu Asp Arg
Leu Ile Glu Leu 145 150 155
160 Gln Asn Lys Asn Leu Met Glu Ala Asn Glu Ala Leu Lys Ala Leu Gln
165 170 175 Gln Glu Asp
Ser Ile Gln Asn Arg Arg Ala Ala Gln Arg Ala Val Asn 180
185 190 Lys Leu Thr Pro Asp Ser Ala Asn
Ala Phe Gln Lys Glu Leu Asp Gln 195 200
205 Ile Asn Ala Pro Arg Asp Ala Lys Ile Lys Ala Asp Ala
Glu Ala Lys 210 215 220
Lys Gln Ala Pro Glu Val Ser Ala Pro Gln Ile Glu Asp Ala Pro Thr 225
230 235 240 Thr Glu Val Ala
Pro Ser Pro Lys Gln Asp Met Pro Lys Val Asp Lys 245
250 255 Lys Glu Glu Asp Lys Val Glu Ser Asp
Thr Glu Val Lys Glu Val Pro 260 265
270 Lys Ala Asp Thr Glu Lys Asn Pro Gln Ser Lys Asp Thr Ser
Lys Thr 275 280 285
Glu Gln Ala Lys Glu Thr Pro Lys Val Glu Gln Ser Pro Lys Thr Glu 290
295 300 Lys Ala Glu Glu Ala
Pro Lys Ala Glu Thr Pro Gln Asn Gly Asn Lys 305 310
315 320 Ala Gln Thr Glu Glu Ala Lys Pro Glu Val
Lys Asp Asn Val Lys Asn 325 330
335 Thr Pro Ser Ala Pro Val Leu Pro Glu Thr Gly Lys Ala Thr Thr
Ser 340 345 350 Thr
Leu Glu Ser Tyr Trp Asn Ser Phe Lys Asp Ser Val Asn Lys Gly 355
360 365 Tyr Thr Tyr Ile Lys Gln
Ser Leu Glu Ser Gly Tyr Gln Tyr Leu Lys 370 375
380 Gly Gln Tyr Asp Tyr Ile Thr Lys Lys Tyr Asn
Asp Ala Lys Tyr Tyr 385 390 395
400 Thr Lys Met Tyr Ser Asn His Lys Ser Thr Ile Asp Gln Ser Val Leu
405 410 415 Ala Ile
Leu Gly Lys Thr Gly Ser Ser Ala Tyr Ile Lys Pro Leu Asn 420
425 430 Ile Glu Glu Asn Ser Asn Val
Phe Tyr Lys Ala Tyr Ala Lys Thr Arg 435 440
445 Asn Phe Ala Thr Glu Ser Ile Asn Thr Gly Lys Val
Leu Tyr Thr Leu 450 455 460
Tyr Gln Asn Pro Thr Val Val Lys Ser Ala Phe Thr Ala Ile Glu Thr 465
470 475 480 Ala Asn Thr
Val Lys Asn Ala Ile Ser Asn Leu Phe Ser Leu Phe Lys 485
490 495 37504PRTStaphylococcus
pseudintermedius 37Asn Glu Asp Val Thr Glu Thr Thr Gly Arg Asn Ser Val
Thr Thr Gln 1 5 10 15
Ala Ser Glu Gln His Leu Gln Val Glu Ala Val Pro Gln Glu Gly Asn
20 25 30 Asn Val Asn Val
Ser Ser Val Lys Val Pro Thr Asn Thr Ala Thr Gln 35
40 45 Ala Gln Glu Asp Val Ala Ser Val Ser
Asp Val Lys Ala His Ala Asp 50 55
60 Asp Ala Leu Gln Val Gln Glu Ser Ser His Thr Asp Gly
Val Ser Ser 65 70 75
80 Glu Phe Lys Gln Glu Thr Ala Tyr Ala Asn Pro Gln Thr Ala Glu Thr
85 90 95 Val Lys Pro Asn
Ser Glu Ala Val His Gln Ser Glu Tyr Glu Asp Lys 100
105 110 Gln Lys Pro Val Ser Ser Ser Arg Lys
Glu Asp Glu Thr Met Leu Gln 115 120
125 Gln Gln Gln Val Glu Ala Lys Asn Val Val Ser Ala Glu Glu
Val Ser 130 135 140
Lys Glu Glu Asn Thr Gln Val Met Gln Ser Pro Gln Asp Val Glu Gln 145
150 155 160 His Val Gly Gly Lys
Asp Ile Ser Asn Glu Val Val Val Asp Arg Ser 165
170 175 Asp Ile Lys Gly Phe Asn Ser Glu Thr Thr
Ile Arg Pro His Gln Gly 180 185
190 Gln Gly Gly Arg Leu Asn Tyr Gln Leu Lys Phe Pro Ser Asn Val
Lys 195 200 205 Pro
Gly Asp Gln Phe Thr Ile Lys Leu Ser Asp Asn Ile Asn Thr His 210
215 220 Gly Val Ser Val Glu Arg
Thr Ala Pro Arg Ile Met Ala Lys Asn Thr 225 230
235 240 Glu Gly Ala Thr Asp Val Ile Ala Glu Gly Leu
Val Leu Glu Asp Gly 245 250
255 Lys Thr Ile Val Tyr Thr Phe Lys Asp Tyr Val Asn Gly Lys Gln Asn
260 265 270 Leu Thr
Ala Glu Leu Ser Val Ser Tyr Phe Val Ser Pro Glu Lys Val 275
280 285 Leu Thr Thr Gly Thr Gln Thr
Phe Thr Thr Met Ile Gly Asn His Ser 290 295
300 Thr Gln Ser Asn Ile Asp Val Tyr Tyr Asp Asn Ser
His Tyr Val Asp 305 310 315
320 Gly Arg Ile Ser Gln Val Asn Lys Lys Glu Ala Lys Phe Gln Gln Ile
325 330 335 Ala Tyr Ile
Asn Pro Asn Gly Tyr Leu Asn Gly Arg Gly Thr Ile Ala 340
345 350 Val Asn Gly Glu Val Val Ser Gly
Thr Thr Lys Asp Leu Met Gln Pro 355 360
365 Thr Val Arg Val Tyr Gln Tyr Lys Gly Gln Gly Val Pro
Pro Glu Ser 370 375 380
Ile Thr Ile Asp Pro Asn Met Trp Glu Glu Ile Ser Ile Asn Asp Thr 385
390 395 400 Met Val Arg Lys
Tyr Asp Gly Gly Tyr Ser Leu Asn Leu Asp Thr Ser 405
410 415 Lys Asn Gln Lys Tyr Ala Ile Tyr Tyr
Glu Gly Ala Tyr Asp Ala Gln 420 425
430 Ala Asp Thr Leu Leu Tyr Arg Thr Tyr Ile Gln Ser Leu Asn
Ser Tyr 435 440 445
Tyr Pro Phe Ser Tyr Gln Lys Met Asn Gly Val Lys Phe Tyr Glu Asn 450
455 460 Ser Ala Ser Gly Ser
Gly Glu Leu Lys Pro Lys Pro Pro Glu Gln Pro 465 470
475 480 Lys Pro Glu Pro Glu Ile Gln Ala Asp Val
Val Asp Ile Ile Glu Asp 485 490
495 Ser His Val Ile Asp Ile Gly Trp 500
381512DNAStaphylococcus pseudintermedius 38aatgaagatg tcactgaaac
aactgggaga aattcagtga caacgcaagc ttctgagcaa 60catttgcaag tggaagcagt
acctcaagaa ggcaataatg taaatgtatc ctctgtaaaa 120gtacctacga atacggcaac
gcaagcacaa gaagatgttg caagtgtatc cgatgttaaa 180gcacatgctg atgatgcatt
acaagtacaa gaaagtagtc atactgatgg tgtttcttca 240gaattcaagc aggagacagc
ttatgcgaat cctcaaacag ctgagacagt taaacctaat 300agtgaagcag tgcatcagtc
tgaatacgag gataagcaaa aacccgtatc atctagccgc 360aaagaagatg agactatgct
tcagcagcaa caagttgaag ccaaaaatgt tgtgagtgcg 420gaggaagtgt ctaaagaaga
aaatactcaa gtgatgcaat cccctcaaga cgttgaacaa 480catgtaggtg gtaaagatat
ctctaatgag gttgtagtgg ataggagtga tatcaaagga 540tttaacagcg aaactactat
tcgacctcat cagggacaag gtggtaggtt gaattatcaa 600ttaaagtttc ctagcaatgt
aaagccaggc gatcagttta ctataaaatt atctgacaat 660atcaatacac atggtgtttc
tgttgaaaga accgcaccga gaatcatggc taaaaatact 720gaaggtgcga cggatgtaat
tgctgaaggt ctagtgttgg aagatggtaa aaccatcgta 780tatacattta aagactatgt
aaatggcaag caaaatttga ctgctgagtt atcagtgagc 840tatttcgtaa gtccggaaaa
agtcttgact actgggacac aaacattcac gacgatgatc 900ggtaatcatt caacgcaatc
caatattgac gtttattatg ataatagtca ttatgtagat 960ggacgtattt cgcaagtgaa
caaaaaagaa gctaaatttc aacaaatagc atacattaac 1020cctaatggct atttaaatgg
cagggggaca attgcagtta atggtgaagt ggtcagtggt 1080acgactaaag acttaatgca
acctacagtg cgtgtatatc aatataaagg acaaggtgtt 1140cctcctgaaa gtattactat
agaccctaat atgtgggaag aaatcagcat aaacgatact 1200atggtaagaa aatatgatgg
tggctatagc ttgaatctgg ataccagcaa gaatcaaaaa 1260tatgccatct attatgaagg
ggcatatgat gcgcaagctg acacactgtt gtatagaaca 1320tatatacagt cattaaacag
ttactatccg ttcagttacc aaaaaatgaa cggtgtgaag 1380ttttacgaaa acagtgcgag
tggaagcggt gagttgaaac cgaaaccacc tgaacaacca 1440aaaccagaac ctgaaattca
agctgatgta gtagatatta ttgaagatag ccatgtgatt 1500gatataggat gg
1512
User Contributions:
Comment about this patent or add new information about this topic: