Patent application title: ANTIBODY THAT BINDS MURINE WISE PROTEIN
Inventors:
IPC8 Class: AC07K1618FI
USPC Class:
1 1
Class name:
Publication date: 2018-08-09
Patent application number: 20180222968
Abstract:
The present invention relates to methods and compositions for the
prevention and treatment of renal damage. The invention provides
protein-based renal therapeutic agents for administration to subjects in
order to prevent or treat renal degeneration or damage.Claims:
1.-20. (canceled)
21. An isolated antibody that specifically binds to the contiguous amino acids of SEQ ID NO: 91.
22. The isolated antibody of claim 1, wherein the antibody is selected from the group consisting of a monoclonal antibody, a polyclonal antibody, a Fv fragment of an antibody, a Fab fragment of an antibody, a F(ab')2 fragment of an antibody, a recombinant single chain Fv fragment (scFv), a diabody, a triabody, and a tetrabody.
23. The isolated antibody of claim 2, wherein the antibody is a monoclonal antibody.
24. An isolated antibody that specifically binds to the contiguous amino acids of SEQ ID NO: 93.
25. The isolated antibody of claim 4, wherein the antibody is selected from the group consisting of a monoclonal antibody, a polyclonal antibody, a Fv fragment of an antibody, a Fab fragment of an antibody, a F(ab')2 fragment of an antibody, a recombinant single chain Fv fragment (scFv), a diabody, a triabody, and a tertrabody.
26. The isolated antibody of claim 2, wherein the antibody is a monoclonal antibody.
27. An isolated antibody that specifically binds to the contiguous amino acids of SEQ ID NO: 95.
28. The isolated antibody of claim 6, wherein the antibody is selected from the group consisting of a monoclonal antibody, a polyclonal antibody, a Fv fragment of an antibody, a Fab fragment of an antibody, a F(ab')2 fragment of an antibody, a recombinant single chain Fv fragment (scFv), a diabody, a triabody, and a tertrabody.
29. The isolated antibody of claim 8, wherein the antibody is a monoclonal antibody.
Description:
[0001] The present application claims benefit to and is a continuation
application of U.S. patent application Ser. No. 14/564,979, which was
filed on Dec. 9, 2014, which is pending. The Ser. No. 14/654,979 claims
benefit to and is a continuation of U.S. patent application Ser. No.
13/950,553, which was filed on Jul. 25, 2013, which is now abandoned. The
'553 application claims benefit to and is a continuation application of
U.S. patent application Ser. No. 13/030,863, which was filed on Feb. 18,
2011, which is now U.S. Pat. No. 8,519,105. The '863 application claims
benefit to and is a divisional application of U.S. patent application
Ser. No. 12/459,764, which was filed on Jul. 6, 2009, which is now U.S.
Pat. No. 7,914,786. The '764 application claims benefit to and is a
divisional application of U.S. patent application Ser. No. 11/613,658,
which was filed on Dec. 20, 2006, which is now U.S. Pat. No. 7,585,501.
The '658 application claims benefit to and is a continuation-in-part
application of U.S. patent application Ser. No. 11/508,701, which was
filed on Aug. 23, 2006, which is now U.S. Pat. No. 7,893,218. The '701
application claims benefit to U.S. Provisional Patent Application Ser.
No. 60/710,803, filed Aug. 23, 2005, now expired. The '701 application
also claims benefit to and is a continuation-in-part of U.S. patent
application Ser. No. 10/464,368, which was filed on Jun. 16, 2003, now
abandoned. The '368 application claims benefit to U.S. Provisional Patent
Application Ser. No. 60/388,970, filed Jun. 14, 2002, now expired. The
contents of each application identified above are incorporated by
reference in their entirety as if recited in full herein.
INCORPORATION BY REFERENCE OF SEQUENCE LISTING
[0002] This application contains references to amino acids and/or nucleic acid sequences that have been filed concurrently herewith as sequence listing text file "SequenceListing.txt", file size of 225 KB, created on Mar. 30, 2018. The aforementioned sequence listing is hereby incorporated by reference in its entirety pursuant to 37 C.F.R. .sctn. 1.52(e)(5).
BACKGROUND OF INVENTION
A. Field of the Invention
[0003] The present invention relates to compositions and methods for the prevention and treatment of renal damage. In particular, the invention relates to administration of novel therapeutics to subjects in order to prevent or treat renal degeneration or damage. These novel therapeutics include antibodies, peptides, and small molecules based upon the WISE/SOST family of proteins.
B. Background of the Invention
[0004] The mammalian renal system serves primary roles both in the removal of catabolic waste products from the bloodstream and in the maintenance of fluid and electrolyte balances in the body. Renal failures are, therefore, life-threatening conditions in which the build-up of catabolites and other toxins, and/or the development of significant imbalances in electrolytes or fluids, may lead to the failure of other major organs systems and death. Chronic renal failure is a debilitating and life-threatening disease for which no adequate treatment exists.
[0005] Tubular damage and interstitial fibrosis are the final common pathways leading to end stage renal disease. Irrespective of the nature of the initial renal injury, the degree of tubular damage parallels the impairment of renal function. Once nephronic degeneration or tubular damage is established, it cannot be reversed or repaired by currently available treatment, and renal function deteriorates to renal failure, which is often life threatening. Renal damage and failure can only be managed through dialysis or organ transplantation.
[0006] Dialysis dependency is one of the leading causes of morbidity and mortality in the world. Despite advancement in understanding the pathophysiology of renal diseases, the incidence of end-stage renal disease is increasing. Approximately 600 patients per million receive chronic dialysis each year in the United States, at an average cost approaching $60,000-$80,000 per patient per year. Of the new cases of end-stage renal disease each year, approximately 28-33% are due to diabetic nephropathy (or diabetic glomerulopathy or diabetic renal hypertrophy), 24-29% are due to hypertensive nephrosclerosis (or hypertensive glomeruloscierosis), and 15-22% are due to glomerulonephritis. The 5-year survival rate for all chronic dialysis patients is approximately 40%, but for patients over 65, the rate drops to approximately 20%.
[0007] A need remains, therefore, for treatments that will prevent the progressive loss of renal function which has caused almost two hundred thousand patients in the United States alone to become dependent upon chronic dialysis, and which results in the premature deaths of tens of thousands each year.
SUMMARY OF INVENTION
[0008] The present invention provides protein-based renal therapeutic agents for administration to subjects in, or at risk of, renal failure. The methods and compositions of the present invention may be used to prevent, inhibit, delay, or reverse nephronic degeneration, which otherwise leads to the need for renal replacement therapy to prevent death. Specifically, the present invention is directed to compositions and methods that regulate the interaction between SOST and WISE proteins with their natural receptors. Exemplary natural receptors for WISE and SOST proteins include, but are not limited to, LRPS, LRP6, and BMP molecules. Methods and compositions of the present invention therefore provide a therapy that may reverse nephronic degeneration and/or prevent the progressive loss of renal function, thereby preventing premature death.
[0009] Methods of the invention include administering a therapeutically effective amount of an antibody to a patient in which the antibody specifically binds a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of a developmental regulator and the antibody interferes with the interaction between at least two developmental regulators thereby providing nephron protection and/or regeneration. Exemplary developmental regulators include those molecules disclosed as SEQ ID NOS: 1-217.
[0010] In some embodiments of the invention, the developmental regulators are a ligand and the ligand's natural receptor. For example, the ligand may be WISE and a known WISE receptor, such as LRP5, LRP6, BMP2, or BMP7. Another exemplary pair is SOST protein and one or more of its known receptors, e.g., LRP5, LRP6, BMP6, or BMP7.
[0011] The invention also provides a pharmaceutical composition for administration to a subject that includes an antibody and optional excipient(s). Antibodies suitable for the present invention may be administered in a therapeutically effective amount resulting in an improvement of renal function by at least 10%, 15%, 20%, 25%, or more following renal insult, as measured by a standard assay of renal function. Examples of such assays are provided herein. For example, a suitable assay of renal function include, determining rates of increase in Blood Urea Nitrogen (BUN) levels, rates of increase in serum creatinine, static measurements of BUN, static measurements of serum creatinine, glomerular filtration rates (GFR), ratios of BUN/creatinine, and serum concentrations of sodium (Na+). Suitable excipients include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
[0012] Antibodies of the invention may be monoclonal, polyclonal, humanized, or a fragment thereof (Fab or Fab.sub.2), as described in greater detail, below. Preferably, antibodies of the present invention specifically bind a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of a developmental regulator and the antibody interferes with the interaction between at least two developmental regulators thereby providing nephron protection and/or regeneration. More preferably, the antibody specifically binds a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of or encoded by SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 15-18, 20, 85-87, 91, 93, 95, 98, 101, 103, 105, and 109-217; preferably SEQ ID NOS. 90-108, 215, and 216; more preferably, SEQ ID NOS. 19-89, 15-18, and 217; preferentially, SEQ ID NOS. 90-93, 215, and 216; alternatively, SEQ ID NOS. 15-20 and 217; more preferably, SEQ ID NOS. 92, 93, and 215; more preferably SEQ ID NOS. 15-18 and 217; ideally, SEQ ID NOS. 15-18. Alternatively, the antibody specifically binds a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of positions 50-62, 68-80, or 83-98 of SEQ ID NOS. 20, and 215-217.
[0013] The method and pharmaceutical composition of the invention may be administered to any subject receiving renal injury, chemical or physical insult resulting in apoptosis or necrosis of renal tissue, disease, or those otherwise at risk of chronic renal failure. For example, subjects in, or at risk of, chronic renal failure, or at risk of the need for renal replacement therapy, include but are not limited to the following: subjects which may be regarded as afflicted with chronic renal failure, end-stage renal disease, chronic diabetic nephropathy, hypertensive nephrosclerosis, chronic glomerulonephritis, hereditary nephritis, and/or renal dysplasia; subjects having a biopsy indicating glomerular hypertrophy, tubular hypertrophy, chronic glomerulosclerosis, renal cell carcinoma, and/or chronic tubulointerstitial sclerosis; subjects having an ultrasound, MRI, CAT scan, or other non-invasive examination indicating renal fibrosis.
[0014] The methods and compositions of the present invention may be utilized for any mammalian subject. For example, human subjects or patients, domesticated mammals (e.g., dogs, cats, horses), mammals with significant commercial value (e.g., dairy cows, beef cattle, sporting animals), mammals with significant scientific value (e.g., captive or free specimens of endangered species), or mammals which otherwise have value.
Definitions
[0015] Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd Ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them unless specified otherwise.
[0016] As used herein, "antibody" includes reference to an immunoglobulin molecule immunologically reactive with a particular antigen, and includes both polyclonal and monoclonal antibodies. The term also includes genetically engineered forms such as chimeric antibodies (e.g., humanized murine antibodies) and heteroconjugate antibodies (e.g., bispecific antibodies). The term "antibody" also includes antigen binding forms of antibodies, including fragments with antigen-binding capability (e.g., Fab', F(ab').sub.2, Fab, Fv and r1gG). See also, Pierce Catalog and Handbook, 1994-1995 (Pierce Chemical Co., Rockford, Ill.). See also, e.g., Kuby, J., Immunology, 3rd Ed., W.H. Freeman & Co., New York (1998). The term also refers to recombinant single chain Fv fragments (scFv). The term antibody also includes bivalent or bispecific molecules, diabodies, triabodies, and tetrabodies. Bivalent and bispecific molecules are described in, e.g., Kostelny et al. (1992) J Immunol 148:1547, Pack and Pluckthun (1992) Biochemistry 31:1579, Hollinger et al., 1993, supra, Gruber et al. (1994) J Immunol :5368, Zhu et al. (1997) Protein Sci 6:781, Hu et al. (1996) Cancer Res. 56:3055, Adams et al. (1993) Cancer Res. 53:4026, and McCartney, et al. (1995) Protein Eng. 8:301.
[0017] An antibody immunologically reactive with a particular antigen can be generated by recombinant methods such as selection of libraries of recombinant antibodies in phage or similar vectors, see, e.g., Huse et al., Science 246:1275-1281 (1989); Ward et al., Nature 341:544-546 (1989); and Vaughan et al., Nature Biotech. 4:309-314 (1996), or by immunizing an animal with the antigen or with DNA encoding the antigen.
[0018] The term "insult" refers to any injury or damage to a cell or population of cells that results in cell death or apoptosis, necrosis, altered kidney function, or decreased kidney function. An insult may have a variety of causes including, but not limited to, disease, chemical injury, or physical injury.
[0019] The phrase "specifically binds" when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein, in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein sequence at least two times the background and more typically more than 10 to 100 times background.
[0020] Specific recognition by an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, antibodies raised against a particular protein, polymorphic variants, alleles, orthologs, and conservatively modified variants, or splice variants, or portions thereof, can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with WISE/SOST-like peptides such as those exemplified by SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 15-18, 20-82, 85-87, 91, 93, 95, 98, 101, 103, 105, 109-217 and not with other random proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).
[0021] The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same as measured using a BLAST or BLAST 2.0 sequence comparison algorithm with default parameters described below, or by manual alignment and visual inspection. Such sequences are said to be "substantially identical" when they have about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, once compared and aligned for maximum correspondence over a comparison window or designated region. This definition also refers to, or may be applied to, the complement of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions, as well as naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like.
[0022] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
[0023] A "comparison window", as used herein, includes reference to a segment of one of the number of contiguous positions selected from the group typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)).
[0024] Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990). BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.
[0025] The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be large negative numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.
[0026] The phrase "conditions suitable for protein binding" refers to those conditions (in terms of salt concentration, pH, detergent, protein concentration, temperature, etc.) which allow for binding to occur between a protein and its binding partner in solution. The conditions are not so lenient that a significant amount of nonspecific protein binding occurs.
[0027] As used herein, the term "developmental regulators" refers to molecules associated with the Wnt and BMP signaling pathways. Specifically, the term refers to the ligands and receptors responsible for regulating the Wnt and BMP signaling pathways including, but not limited to, LRP5, LRP6, BMP2, BMP4, BMP6, and BMP7. For example, several of these developmental regulators are provided by SEQ ID NOS: 1-217 as presented in the present application.
DESCRIPTION OF THE DRAWINGS
[0028] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
[0029] FIG. I graphically illustrates inhibition of SOST association with LRP6. Relative LRP6 binding to variants of SOST was measured following immunoprecipiation. SOST variants M1, M2, M3, and M8 significantly exhibited reduced binding to LRP6 compared to wild type SOST.
DETAILED DESCRIPTION
I Introduction
[0030] The present invention provides compositions and methods of using certain protein-based renal therapeutic agents that surprisingly prevent, inhibit, delay or alleviate the progressive loss of renal function. In a preferred embodiment, the present invention is suitable for treatment of renal disease.
[0031] In some forms, renal disease is caused by aberrant signal transduction during kidney development. The kidney develops from the ureteric bud, extending out from a pre-existing epithelial tube, giving rise to the branched collecting duct system while the surrounding metanephric mesenchyme undergoes mesenchymal-epithelial transition to form the proximal parts of the nephron. Signaling by members of the Wnt, BMP and FGF protein families, mediate this nephrogenesis by adjusting the balance between the ureteric bud epithelium, stromal and nephrogenic tissues. Inappropriate alteration of the balance of these signaling pathways, gives rise to renal disease. For example, over-activation of the Wnt pathway leads to cancer development (e.g. Wilms tumor), while inhibition of BMP signaling results in nephronic degeneration, both ultimately leading to renal failure.
[0032] WISE and/or SOST signaling also influences mature kidney tissue homeostasis, particularly in the case of renal damage or disease. In certain embodiments of the present invention, renal disease or damage is mitigated or reversed by administering to a patient antibodies that perturb or block the association of WISE and/or SOST to its receptor molecules in vivo. For example, administration of antibodies that mimick the WISE and/or SOST association with LRP5 or LRP6 may be used to subdue over-activated Wnt signaling in the treatment of kidney cancer. Alternatively, the association of WISE and/or SOST with BMP6, BMP7, and/or BMP2 may be inhibited to allow BMA signaling, which may result in protection from nephronic injury and/or promotion of nephronic regeneration.
II. Biological Assays of the Invention
[0033] The phrase "nephronic degeneration" refers to deterioration of an individual's kidney in which kidney or renal function is diminished as result of tissue necrosis or apoptosis by at least 5% preferably 10%, 15%, 20%, 25%, 30%, 40% 50% or more from the range of normal values medically determined for the individual. Nephronic degeneration can result from physical insult, chemical insult, or disease. The presence of nephronic degeneration can be measured by assays well known to those of ordinary skill of the art, such as elevation of serum creatinine levels or decrease in creatinine clearance (see, Brenner and Lazarus (1994), in HARRISON'S PRINCIPLES OF INTERNAL MEDICINE, 13th edition, Isselbacher et al., eds., McGraw Hill Text, N.Y.). Preferably a decrease of 5%, more preferably 10%, 15%, 20%, 25%, 30%, 40%, 50% or more of creatinine clearance compared to normal levels marks nephronic degeneration. Likewise, a 5% elevation of serum creatinine levels, more preferably 10%, 15%, 20%, 25%, 30%, 40%, 50% or more compared to normal levels indicates nephronic degeneration.
[0034] The phrase "nephron protection" refers to an in vivo phenomenon that protects against and prevents degeneration of nephronic or renal function caused by physical insult, chemical insult, or disease. As such, nephron protection refers to an in vivo phenomenon that inhibits elevation of serum creatinine levels or decrease in creatinine clearance by at least 5% preferably 10%, 15%, 20%, 25%, 30%, 40% 50% or more from the range of elevated values medically determined for the individual. Nephron protection also encompasses regeneration or repair of degenerate nephronic function caused by tissue necrosis or apoptosis resulting from physical insult, chemical insult, or disease. The regeneration or repair of degenerate nephronic function can be measured by assays well known to those of ordinary skill of the art, such as serum creatinine levels or creatinine clearance. Preferably an increase of 5%, more preferably 10%, 15%, 20%, 25%, 30%, 40%, 50% or more of creatinine clearance compared to normal levels marks nephronic protection. Likewise, a 5% decrease of serum creatinine levels, more preferably a 10%, 15%, 20%, 25%, 30%, 40%, 50% or more compared to normal levels indicates nephronic protection.
[0035] Assays of renal function are well known to those of ordinary skill of the art and include, without being limited to, rates of increase in Blood Urea Nitrogen (BUN) levels, rates of increase in serum creatinine, static measurements of BUN, static measurements of serum creatinine, glomerular filtration rates (GFR), ratios of BUN/creatinine, serum concentrations of sodium (Na+), urine/plasma ratios for creatinine, urine/plasma ratios for urea, urine osmolality, daily urine output, and the like (see, Brenner and Lazarus (1994), in HARRISON'S PRINCIPLES OF INTERNAL MEDICINE, 13th edition, Isselbacher et al., eds., McGraw Hill Text, N.Y.). Exemplary normal levels are as follows: serum creatinine levels of 0.8 to 1.4 mg/dL; BUN levels of 5 to 20 mg/dL; GFR score of 90 mL/min or more; BUN/Creatinine ratio of 10:1 to 20:1 and up to 30:1 in infants under 12 months of age; and serum sodium levels of 135 to 145 mEq/L. A skilled artisan will recognize that the normal ranges may vary with age, muscle mass, gender, weight, body surface area, and other characteristics. An "improvement" in one of the assays of renal function refers to an increase or decrease in level that is closer to the normal range. For example, a 10% improvement of a serum creatinine level of 0.2 mg/dL would be a serum creatinine level of 0.22 mg/dL, while a 10% improvement of a serum creatinine level of 3.0 mg/dL would be a serum creatinine level of 2.7 mg/dL.
III. Therapeutic Compositions
[0036] The present invention is directed to compositions and methods that regulate the interaction between SOST and WISE proteins with their natural receptors, particularly LRPS, LRP6, and BMP molecules. The renal therapeutic agents of the invention include, but are not limited to, peptides, proteins, antibodies, and small molecules derived from the WISE/SOST and LRP/BMP families and resultantly regulate Wnt and BMP signaling. For example, any peptide of at least 20, preferably 25, 30, 35, 40, 50 or more amino acids encoded by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 15-18, 20-82, 85-87, 91, 93, 95, 98, 101, 103, 105, 109-217, or any fragment of any sequence thereof, may be used to raise antibodies, derive peptides, or derive small molecules suitable for antagonizing the interaction between SOST and WISE proteins with their natural receptors.
[0037] Such peptides may provide the basis of therapeutics by their inherent properties. For example, as inhibitors of renal damage, blocking peptides that antagonize the interaction between SOST and WISE proteins with their natural receptors may be useful. Further, peptides that activate SOST and WISE natural receptors by mimicking the necessary interaction between SOST or WISE and their natural receptors may also be useful. Exemplary antagonizing or activating peptides may include those provided by SEQ ID NOS: 21-82 or fragments of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 15-18, 20, 85-87, 91, 93, 95, 98, 101, 103, 105, 109-217.
[0038] A. Peptides and Proteins
[0039] Proteins and peptides useful to the invention may be isolated from natural sources, prepared synthetically or recombinantly, or any combination of the same using techniques well known to those of skill in the art. Generally, any purification protocol suitable for isolating proteins and known to those of skill in the art can be used. For example, affinity purification, column chromatography techniques, precipitation protocols and other methods for separating proteins may be used (see, e.g., Scopes, Protein Purification: Principles and Practice (1982); and U.S. Pat. No. 4,673,641). Further, peptides may be produced synthetically using solid phase techniques and other techniques known to those skilled in the art (see, Barany, G. and Merrifield, R. B. Solid Phase Peptide Synthesis in PEPTIDES, Vol. 2, Academic Press, New York, N.Y., pp. 100-118 (1980)). Peptides and proteins of the invention may also be available commercially, or may be produced commercially.
[0040] B. Antibodies
[0041] The renal therapeutic agents of the present invention may be antibodies that recognize developmental regulator proteins, polypeptides, amino acid sequences, or fragments thereof. Suitable antibodies include those that recognize the WISE/SOST and LRP/BMP families and resultantly regulate Wnt and BMP signaling, such as those described in U.S. application Ser. No. 11/508,701 and incorporated herein by reference. For example, antibodies of the invention will recognize proteins or amino acid sequences encoding developmental regulators or fragments thereof, such as, but not limited to, those provided by SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 15-18, 20-82, 85-87, 91, 93, 95, 98, 101, 103, 105, 109-217. More preferably, the antibody specifically binds a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of or encoded by SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 15-18, 20, 85-87, 91, 93, 95, 98, 101, 103, 105, and 109-217; more preferably SEQ ID NOS. 90-108, 215, and 216; more preferably, SEQ ID NOS. 19-89, 15-18, and 217; more preferably, SEQ ID NOS. 90-93, 215, and 216; more preferably, SEQ ID NOS. 15-20 and 217; more preferably, SEQ ID NOS. 92, 93, and 215; more preferably SEQ ID NOS. 15-18 and 217; more preferably, SEQ ID NOS. 15-18. Alternatively, the antibody specifically binds a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of positions 50-62, 68-80, or 83-98 of SEQ ID NOS. 20, and 215-217.
[0042] When the above family of amino acid sequences, including WISE and SOST, are allowed to bind to their natural receptors, renal regeneration is repressed. When the above-mentioned family of amino acid sequences are prevented from binding to their natural receptors, renal regeneration will increase. Thus, the present invention relates to tools and methods used to inhibit or mimic the binding of the WISE/SOST family to their natural receptors.
[0043] 1. Antigen Specificity and Production
[0044] The present invention provides at least one antibody that inhibits interaction between Wnt or BMP antagonistic ligands (developmental regulators) with LRP or BMP receptors, thus promoting constitutive Wnt or BMP signaling and renal regeneration. Suitable antibodies are obtained by immunizing a host animal with peptides, or antigens, that are all or a portion of the subject protein of the presently claimed invention. The antigen may be the complete protein, or fragments and derivatives thereof. For example, a suitable antigen may have at least 75%, 80%, 85%, 90%, 95%, 98%, 99% or 100% identity to at least 5, 8, 10, 12, 15, 20, or 25 contiguous amino acids of a protein encoded by SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 15-18, 20-82, 85-87, 91, 93, 95, 98, 101, 103, 105, 109-217. More preferably, the antibody specifically binds a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of or encoded by SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 15-18, 20, 85-87, 91, 93, 95, 98, 101, 103, 105, and 109-217; more preferably SEQ ID NOS. 90-108, 215, and 216; more preferably, SEQ ID NOS. 19-89, 15-18, and 217; more preferably, SEQ ID NOS. 90-93, 215, and 216; more preferably, SEQ ID NOS. 15-20 and 217; more preferably, SEQ ID NOS. 92, 93, and 215; more preferably SEQ ID NOS. 15-18 and 217; more preferably, SEQ ID NOS. 15-18. Alternatively, the antibody specifically binds a peptide having at least 75%, 80%, 85%, 90%, 95%, 99% or more identity to at least 5, 8, 10, 15, 20 or more contiguous amino acids of positions 50-62, 68-80, or 83-98 of SEQ ID NOS. 20, and 215-217.
[0045] Some exemplary embodiment of the present invention includes antibodies that inhibit, block, or otherwise interfere with the specific binding of an LRP or BMP molecule to a Wnt or BMP antagonistic ligand. A skilled artisan will recognize that an antigen may be selected to generate an antibody that interferes by specifically binding to the LRP or BMP molecule or by specifically binding to the Wnt or BMP antagonistic ligand. The selected antigen will result in an antibody that will specifically bind to WISE-like or SOST-like proteins and prevent the interaction of WISE-like or SOST-like proteins with LRPS, LRP6, BMP2, BMP6, or BMP7. in alternative examples, a selected antigen will result in an antibody that will specifically bind to LRPS, LRP6, or BMP molecules and prevent the interaction with WISE-like or SOST-like proteins.
[0046] Suitable amounts of well-characterized antigen for production of antibodies can be obtained using standard techniques known in the art such as, but not limited to, cloning or synthetic synthesis. Antigenic proteins can be obtained from transfected cultured cells that overproduce the antigen of interest. For example, expression vectors that have nucleotide sequences encoding an antigen of interest can be constructed, transfected into cultured cells, and then the antigen can be subsequently isolated using methods well-known to those skilled in the art (see, Wilson et al., J. Exp. Med 173:137, 1991; Wilson et al., J. Immunol. 150:5013, 1993). Alternatively, DNA molecules encoding an antigen of choice can be obtained by synthesizing DNA molecules using mutually priming long oligonucleotides (see, Ausubel et al., (eds.), Current Protocols In Molecular Biology, pages 8.2.8 to 8.2.13, 1990; Wosnick et al., Gene 60:115, 1987; and Ausubel et al. (eds.), Short Protocols In Molecular Biology, 3rd Edition, pages 8-8 to 8-9, John Wiley & Sons, Inc., 1995). As a skilled artisan will recognize, established techniques using the polymerase chain reaction provide the ability to synthesize antigens (Adang et al., Plant Molec. Biol. 2/:1131, 1993; Bambot et al., PCR Methods and Applications 2:266, 1993; Dillon et al., "Use of the Polymerase Chain Reaction for the Rapid Construction of Synthetic Genes," in METHODS IN MOLECULAR BIOLOGY, Vol. 15: PCR PROTOCOLS: CURRENT METHODS AND APPLICATIONS, White (ed.), pages 263 268, Humana Press, Inc. 1993). Once produced, the antigen of choice is used to generate antigen specific antibodies.
[0047] 2. Antibody Production
[0048] The present invention provides antibodies as renal therapeutic agents. It is envisioned that such antibodies include, but are not limited to, polyclonal, monoclonal, humanized, part human, or fragments thereof. A skilled artisan will appreciate the benefits and disadvantages of the type of antibody used for therapeutic treatment and will further recognize the selection is dependent upon the intended use.
[0049] a. Polyclonal Antibodies
[0050] Means for preparing and characterizing polyclonal antibodies are well known to those skilled in the art (see, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference). For example, for the preparation of polyclonal antibodies, the first step is immunization of the host animal with the target antigen, where the target antigen will preferably be in substantially pure form, with less than about 1% contaminant. The antigen may include the complete target protein, fragments, or derivatives thereof. To prepare polyclonal antisera an animal is immunized with an antigen of interest, and antisera is collected from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically the animal used for production of anti-antisera is a rabbit, mouse, rat, hamster, guinea pig or goat. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for the production of polyclonal antibodies.
[0051] The amount of antigen used in the production of polyclonal antibodies varies upon the nature of the antigen as well as the animal used for immunization. A variety of routes can be used to administer the antigen of choice; subcutaneous, intramuscular, intradermal, intravenous, intraperitoneal and intrasplenic. The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster injection, may also be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired titer level is obtained, the immunized animal can be bled and the serum isolated and stored. The animal can also be used to generate monoclonal antibodies, as is well known to those skilled in the art.
[0052] The immunogenicity of a particular composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Exemplary adjuvants include complete Freund's adjuvant, a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis; incomplete Freund's adjuvant; and aluminum hydroxide adjuvant.
[0053] It may also be desired to boost the host immune system, as may be achieved by associating the antigen with, or coupling the antigen to, a carrier. Exemplary carriers include keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. As is also known in the art, a given composition may vary in its immunogenicity.
[0054] b. Monoclonal Antibodies
[0055] Monoclonal antibodies (Mabs) may be readily prepared through use of well-known techniques to those skilled in the art, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with the selected antigen. The antigen is administered in a manner effective to stimulate antibody-producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep and frog cells is also possible.
[0056] By way of example, following immunization the somatic cells with the potential for producing antigen specific antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of the animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5.times.10.sup.7 to 2.times.10.sup.8 lymphocytes.
[0057] The anti-antigen antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).
[0058] Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65 66, 1986; Campbell, pp. 75 83, 1984; each incorporated herein by reference). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 41, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XXO Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F, 4B210 or one of the above listed mouse cell lines; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6, are all useful in connection with human cell fusions.
[0059] The heterogeneous cell population may be cultured in the presence of a selection medium to select out the hybridoma cells. A suitable selection medium includes an inhibitor of de novo synthesis, such as aminopterin in HAT medium, methotrexate in HMT medium, or azaserine in AzaH medium plus the necessary purine and/or pyrimidine salvage precursors (i.e. hypoxanthine and thymidine in HAT or HMT media; hypoxanthine in AzaH medium). Only cells capable of operating nucleotide salvage pathways are able to survive in the selection medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and cannot survive. The B cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells (hybridomas).
[0060] Culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired anti-antigen reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.
[0061] The selected hybridomas would then be serially diluted and cloned into individual anti-antigen antibody-producing cell lines, which clones can then be propagated indefinitely to provide MAbs. The cell lines may be exploited for MAb production in two basic ways. A sample of the hybridoma can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration. The individual cell lines could also be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations.
[0062] MAbs produced by either means will generally be further purified, e.g., using filtration, centrifugation and various chromatographic methods, such as HPLC or affinity chromatography, all of which purification techniques are well known to those of skill in the art. These purification techniques each involve fractionation to separate the desired antibody from other components of a mixture. Analytical methods particularly suited to the preparation of antibodies include, for example, protein A-Sepharose and/or protein G-Sepharose chromatography.
[0063] c. Humanized Antibodies
[0064] Also of interest are humanized antibodies. Methods of humanizing antibodies are known in the art. The humanized antibody may be the product of an animal having transgenic human immunoglobulin constant region genes (see for example International Patent Applications WO 90/10077 and WO 90/04036, both incorporated herein by reference). Alternatively, the antibody of interest may be engineered by recombinant DNA techniques to substitute the CH1, CH2, CH3, hinge domains, and/or the framework domain with the corresponding human sequence (see WO 92/02190 and incorporated herein by reference).
[0065] The use of Ig cDNA for construction of chimeric immunoglobulin genes is known in the art (Liu et al. P.N.A.S. 84:3439, 1987 and incorporated herein by reference). mRNA is isolated from a hybridoma or other cell producing the antibody and used to produce cDNA.
[0066] The cDNA of interest may be amplified by the polymerase chain reaction using specific primers (see U.S. Pat. Nos. 4,683,195 and 4,683,202, both incorporated herein by reference). Alternatively, a library is made and screened to isolate the sequence of interest. The DNA sequence encoding the variable region of the antibody is then fused to human constant region sequences. The sequences of human constant region genes may be found in Kabat et al. Sequences of Proteins of Immunological Interest, N.I.H. publication no. 91-3242, 1991 and incorporated herein by reference. Human C region genes are readily available from known clones. The chimeric, humanized antibody is then expressed by conventional methods known to those of skill in the art.
[0067] d. Antibody Fragments
[0068] Antibody fragments, such as Fv, F(ab')2 and Fab may be prepared by cleavage of the intact protein, e.g. by protease or chemical cleavage. Alternatively, a truncated gene is designed. For example, a chimeric gene encoding a portion of the F(ab')2 fragment would include DNA sequences encoding the CH1 domain and hinge region of the H chain, followed by a translational stop codon to yield the truncated molecule. The following patents and patent applications are specifically incorporated herein by reference for the preparation and use of functional, antigen-binding regions of antibodies, including scFv, Fv, Fab', Fab and F(ab').sub.2 fragments: U.S. Pat. Nos. 5,855,866; 5,965,132; 6,051,230; 6,004,555; and 5,877,289.
[0069] Also contemplated are diabodies, which are small antibody fragments with two antigen-binding sites. The fragments may include a heavy chain variable domain (V.sub.H) connected to a light chain variable domain (V.sub.L) in the same polypeptide chain (V.sub.H V.sub.L). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Techniques for generating diabodies are well known to those of skill in the art and are also described in EP 404,097 and WO 93/11161, each specifically incorporated herein by reference. Also, linear antibodies, which can be bispecific or monospecific, may include a pair of tandem Fd segments (V.sub.H C.sub.HI-V.sub.H C.sub.HI) that form a pair of antigen binding regions may be useful to the invention as described in Zapata et al. (1995), and incorporated herein by reference.
[0070] C. Compositions
[0071] The renal therapeutic agents contemplated herein can be expressed from intact or truncated genomic or eDNA or from synthetic DNAs in prokaryotic or eukaryotic host cells by techniques well known to those of skill in the art. Exemplary host cells include, without limitation, prokaryotes including E. coli, or eukaryotes including yeast, Saccharomyces, insect cells, or mammalian cells, such as CHO, COS or BSC cells. One of ordinary kill in the art will appreciate that other host cells can be used to advantage.
[0072] The term "construct" as used herein refers to a nucleic acid sequence containing at least one polynucleotide encoding a polypeptide of the invention operably linked or fused to additional nucleic acids. Such constructs include vectors, plasmids, and expression cassettes encoding at least one polynucleotide encoding a polypeptide of the invention. It is also envisioned that constructs could be polynucleotides encoding a polypeptide of the invention fused to other protein coding sequence to generate fusion proteins as known to those of skill in the art.
[0073] Constructs can be inserted into mammalian host cells by methods known to those of skill in the art including, but not limited to, electroporation, transfection, microinjection, micro-vessel transfer, particle bombardment, biolistic particle delivery, liposome mediated transfer and other methods described in Current Protocols in Cell Biology, Unit 20, pub. John Wiley & Sons, Inc., 2004 and incorporated herein by reference.
III. Therapeutic Uses
[0074] A. Subjects for Treatment
[0075] Renal therapeutic agents of the invention may be used in subjects that have received renal injury, or those at risk of chronic renal failure. As used herein, a subject is said to be in, or at risk of, chronic renal failure, or at risk of the need for renal replacement therapy (i.e., chronic hemodialysis, continuous peritoneal dialysis, or kidney transplantation), if the subject is reasonably expected to suffer a progressive loss of renal function associated with progressive loss of functioning nephron units. Whether a particular subject is in, or at risk of, chronic renal failure is a determination which may routinely be made by one of ordinary skill in the relevant medical or veterinary art. Subjects in, or at risk of, chronic renal failure, or at risk of the need for renal replacement therapy, include but are not limited to the following: subjects which may be regarded as afflicted with chronic renal failure, end-stage renal disease, chronic diabetic nephropathy, hypertensive nephrosclerosis, chronic glomerulonephritis, hereditary nephritis, and/or renal dysplasia; subjects having a biopsy indicating glomerular hypertrophy, tubular hypertrophy, chronic glomerulosclerosis, renal cell carcinoma, and/or chronic tubulointerstitial sclerosis; subjects having an ultrasound, MRI, CAT scan, or other non-invasive examination indicating renal fibrosis; subjects having an unusual number of broad casts present in urinary sediment; subjects having a GFR which is chronically less than about 50%, and more particularly less than about 40%, 30% or 20%, of the expected GFR for the subject; human male subjects weighing at least about 50 kg and having a GFR which is chronically less than about 50 ml/min, and more particularly less than about 40 ml/min, 30 ml/min or 20 ml/min; human female subjects weighing at least about 40 kg and having a GFR which is chronically less than about 40 ml/min, and more particularly less than about 30 ml/min, 20 ml/min or 10 ml/min; subjects possessing a number of functional nephron units which is less than about 50%, and more particularly less than about 40%, 30% or 20%, of the number of functional nephron units possessed by a healthy but otherwise similar subject; subjects which have a single kidney; and subjects which are kidney transplant recipients.
[0076] The methods and compositions of the present invention may be utilized for any mammalian subject. Such mammalian subjects include, but are not limited to, human subjects or patients. Exemplary subjects may also include domesticated mammals (e.g., dogs, cats, horses), mammals with significant commercial value (e.g., dairy cows, beef cattle, sporting animals), mammals with significant scientific value (e.g., captive or free specimens of endangered species), or mammals which otherwise have value.
[0077] B. Excipients
[0078] The renal therapeutic agents of the invention, alone or conjugated, may be formulated according to methods known to those skilled in the art to prepare pharmaceutically useful compositions, whereby the therapeutic agents are combined in a mixture with a pharmaceutically acceptable carrier or excipient. A composition is said to be a "pharmaceutically acceptable carrier" if its administration can be tolerated by a recipient patient and preserves the activity of the active component, in this case the renal therapeutic agent. Exemplary carriers include, but not are limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration. Other suitable carriers are well known to those skilled in the art (see, REMINGTON'S PHARMACEUTICAL SCIENCES, 19th Ed., 1995). Upon formulation, the antibody or immunoconjugate solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
[0079] C. Dosage
[0080] In general, the dosage of administered renal therapeutic agents will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition and previous medical history. For example, it is typically desirable to provide the recipient with a dosage of an antibody component, which is in the range of from about 1 .mu.g/kg to 10 mg/kg (amount of agent/body weight of patient), although a lower or higher dosage also may be administered as circumstances dictate. Range finding studies may be conducted to determine appropriate dosage by techniques known to those skilled in the art and as described in Current Protocols in Pharmacology, Unit 10, pub. John Wiley & Sons, 2003 and incorporated herein by reference. A skilled artisan will recognize the therapeutically effective amount for each active compound may vary with factors including, but not limited to, the activity of the compound used, stability of the active compound in the recipient's body, the total weight of the recipient treated, the route of administration, the ease of absorption, distribution, and excretion of the active compound by the recipient, the age and sensitivity of the recipient to be treated, the type of tissue, and the like.
[0081] For purposes of therapy, renal therapeutic agents are administered to a patient in a therapeutically effective amount in a pharmaceutically acceptable carrier. In this regard, a "therapeutically effective amount" is one that is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient. In the present context, an agent is physiologically significant if its presence results in a clinically significant improvement in an assay of renal function when administered to a mammalian subject (e.g., a human patient). Such assays of renal function are well known to those of skill in the art and include, without being limited to, rates of increase in Blood Urea Nitrogen (BUN) levels, rates of increase in serum creatinine, static measurements of BUN, static measurements of serum creatinine, glomerular filtration rates (GFR), ratios of BUN/creatinine, serum concentrations of sodium (Na+), urine/plasma ratios for creatinine, urine/plasma ratios for urea, urine osmolality, daily urine output, and the like (see, Brenner and Lazarus (1994), in HARRISON'S PRINCIPLES OF INTERNAL MEDICINE, 13th edition, Isselbacher et al., eds., McGraw Hill Text, N.Y.)
[0082] Additional pharmaceutical methods may be employed to control the duration of action of an antibody in a therapeutic application. Control release preparations can be prepared through the use of polymers to complex or adsorb the renal therapeutic agent. For example, biocompatible polymers include matrices of poly(ethylene-co-vinyl acetate) and matrices of a polyanhydride copolymer of a stearic acid dimer and sebacic acid (Sherwood et al., Bio/Technology 10:1446, 1992). The rate of release of an agent from such a matrix depends upon the molecular weight of the protein, the amount of agent within the matrix, and the size of dispersed particles (Saltzman et al., Biophys. 1 55:163, 1989; Sherwood et al., Bio/Technology 10:1446, 1992). Other solid dosage forms are described in REMINGTON'S PHARMACEUTICAL SCIENCES, 19th ed. (1995) and can be prepared by techniques known to those skilled in the art.
[0083] D. Routes of Administration
[0084] Administration of renal therapeutic agents to a patient can be intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, intrapleural, intrathecal, by perfusion through a regional catheter, or by direct intralesional injection. When administering therapeutic proteins by injection, the administration may be by continuous infusion or by single or multiple boluses. Intravenous injection provides a useful mode of administration due to the thoroughness of the circulation in rapidly distributing antibodies.
[0085] E. Methods for Testing Renal Therapeutic Agents
[0086] The renal therapeutic agents of the present invention may be tested in animal models of chronic renal failure or nephronic degeneration. Mammalian models of nephronic degeneration in, for example, mice, rats, guinea pigs, cats, dogs, sheep, goats, pigs, cows, horses, and non-human primates, may be created by causing an appropriate direct or indirect injury or insult to the renal tissues of the animal. For example, animal models of nephronic degeneration may be created by administering cisplatin, which causes nephrotoxicity and reduced creatinine clearance. Animal models of nephronic degeneration may also be created by performing a partial (e.g., ) nephrectomy which reduces the number of function nephron units to a level which initiates compensatory renal hypertrophy, further nephron loss, and the progressive decline in renal function (see, Vukicevic, et al. J. Bone Mineral Res. 2:533, 1987). Alternatively, animal models of renal cell carcinoma may be generated by subcapsular renal injection of renal carcinoma (RENCA) cells that results in the development of primary tumors with subsequent development of metastases in the lungs, lymph nodes, and spleen (see, Hillman, G. G., Droz, J., and Haas, G. H. In Vivo, 8: 77-80, 1994). The above-described animal models may be generated by techniques well-known to those of skill in the art.
[0087] The renal therapeutic agents may be administered to the above-described animal models and markers of renal function can be monitored (see, Examples 1-3). Preferably kidney function is determined using markers of renal function such as Blood Urea Nitrogen (BUN) levels, serum creatinine levels, or glomerular filtration. Exemplary renal therapeutic agents will result in a decrease of BUN or serum creatinine levels or increase in glomerular filtration rate compared to control animals. Control animals will be animal models treated with a control solution not containing the renal therapeutic agent being tested, preferably a non-irritating buffer solution or other carrier.
IV. Kits
[0088] The present invention provides articles of manufacture and kits containing materials useful for treating the pathological conditions described herein. The article of manufacture may include a container of a medicament as described herein with a label. Suitable containers include, for example, bottles, vials, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition having an active agent which is effective for treating, for example, diseases characterized by nephronic degeneration. Alternatively, the container may hold a composition that includes a nephronic degeneration-inducing agent. The active agent in the composition is a renal therapeutic agent of the invention, including a peptide, protein, antibody, small molecule, or an agent such as a vector or cell preparation capable of allowing production of a renal therapeutic agent in vivo. The label on the container indicates that the composition is used for treating nephronic degenerative diseases, or malignant diseases, and may also indicate directions for administration and monitoring techniques, such as those described above.
[0089] The kit of the invention includes the container described above and a second container, which may include a pharmaceutically acceptable diluent. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
EXAMPLES
[0090] As can be appreciated from the disclosure provided above, the present invention has a wide variety of applications. Accordingly, the following examples are offered for illustration purposes and are not intended to be construed as a limitation on the invention in any way. Those of skill in the art will readily recognize a variety of non-critical parameters that could be changed or modified to yield essentially similar results.
Example 1
WISE/SOST Antibody Production
[0091] SOST and Wise both share the same gene structure, and produce a secreted protein whose second exon encodes a cystein knot. Molecular dissection of SOST at the amino acid level revealed putative LRP5/6 binding sites located in the first arm of the cystein knot. An immunoprecipitation assay of Flag tagged SOST variants and LRP6 was used to confirm which of these sites were necessary for LRP5/6 binding. Variants of SOST were generated with mutations at positions 60-62 (M1), 78-81 (M2), 89-90 (M3), 100-103 (M4), 140-143 (M7), and 162-166 (M8s). An immunoprecipitated western blot of Flag tagged SOST was mixed with LRP6-IgG and was quantified using phosphor-imager and its software ImageQuant. SOST variants M1, M2 and M3 showed a significant loss of binding ability to LRP6 (FIG. 1), thus indicating potential sites for mediating the block between SOST and its natural binding partners including LRP5/6, BMP6, and BMP7.
[0092] In order to block the binding of SOST to LRP 5/6, BMP6, or BMP7 inhibitory antibodies were generated that recognize the altered amino acids of SOST variants M1, M2, and M3. Specific epitopes targeting these amino acids were identified using antigenic hydrophobic plots. These plots revealed that the best sites for generation of an antibody were between amino acids 50-62, 68-80, and 83-98 of SEQ ID NO. 215 and 217. The resultant peptides selected as antigens to produce antibodies are listed in SEQ ID NOS 15-18 and were used to generate monoclonal antibodies.
[0093] The peptides of SEQ ID NO 15-18 were used to immunize mice. Following immunization, B lymphocytes (B cells) were obtained from peripheral blood samples. The B cells from the immunized mice were then fused with murine myeloma cells to produce hybridomas. The cells were cultured in HAT medium with hypoxanthine and thymidine to select out the hybridoma cells. Hybridomas were then cultured by single-clone dilution in microtiter plates, followed by ELISA testing of the individual clonal supernatants for desired anti-antigen reactivity. There were 27 ELISA positive monoclonal antibodies generated against SOST.
Example 2
Acute Renal Failure Treatment
[0094] Acute renal failure manifests itself immediately following renal insult or injury. Therapeutics of the present invention may be analyzed for use as a treatment for preventing or reversing acute renal failure.
[0095] Mice subjected to partial nephrectomies or decapsulation may be used as models of nephronic degeneration to test renal therapeutic agents of the invention (see, Vukicevic, et al. J. Bone Mineral Res. 2:533, 1987). A partial nephrectomy involves removing one kidney and 2/3 of the remaining kidney. After initial dramatic increases in plasma creatinine and BUN levels indicating an acute failure phase, the levels decline to an elevated level compared to normal levels. Approximately two weeks following surgery, the elevated level gradually increases with time as the animal progresses to chronic renal failure. Decapsulation is a mock surgery in which the kidneys are decapsulated but no renal tissue is removed or nephronic injury introduced. Decapsulated mice may be used as controls for kidney functionality comparison.
[0096] To determine if a renal therapeutic agent of the invention can prevent or delay the effects of acute renal failure, nephrectomized and decapsulated mice that have immediately recovered from their respective surgeries may be used. Mice may be divided into six groups as follows: 1) nephrectomized, receiving renal therapeutic agent; 2) nephrectomized, receiving vehicle buffer only; 3) nephrectomized, receiving no treatment; 4) decapsulated, receiving renal therapeutic agent; 5) decapsulated, receiving vehicle buffer only; and 6) decapsulated, receiving no treatment. Group one can be further divided into mice receiving 1, 3, 10, or 50 .mu.g/kg body weight of renal therapeutic agent. Prior to or during the acute failure phase, nephrectomized mice may be administered their respective treatment by intraperitoneal injection twice daily for at least three days. Serum creatinine levels should be monitored prior to surgery, immediately following surgery, each day of treatment, and for each of at least four days following the last injection.
[0097] A decrease in serum creatinine levels in nephrectomized mice treated with a therapeutic agent of the invention may indicate a successful candidate for further testing of preventing nephronic degeneration or inducing nephronic regeneration. An increase in serum creatinine levels beyond increases of serum creatinine levels of vehicle-only treated mice may indicate a therapeutic agent capable of inducing nephronic degeneration. Such an agent may be useful in treating renal cell carcinoma or other kidney cancer type.
Example 3
Chronic Renal Failure Treatment
[0098] Chronic renal failure manifests itself progressively following an initial acute renal failure phase or renal insult without concomitant acute renal failure. Therapeutics of the present invention may be analyzed for use as a treatment for preventing or reversing chronic renal failure.
[0099] To determine if a therapeutic agent of the invention may prevent the development of chronic renal failure, nephrectomized and decapsulated mice that have recovered from their respective surgeries for at least two weeks may be used. Animals surviving the surgery for two weeks are past the acute renal failure phase and have not yet entered chronic renal failure.
[0100] Mice may be divided into six groups as follows: 1) nephrectomized, receiving renal therapeutic agent; 2) nephrectomized, receiving vehicle buffer only; 3) nephrectomized, receiving no treatment; 4) decapsulated, receiving renal therapeutic agent; 5) decapsulated, receiving vehicle buffer only; and 6) decapsulated, receiving no treatment. Group one can be further divided into mice receiving 1, 3, 10, or 50 .mu.g/kg body weight of renal therapeutic agent. Mice may be treated intraperitoneally at least three times per week for a period of approximately 6-9 weeks. Serum creatinine levels should be monitored prior to treatment, during the treatment period, and at least 1 week following the treatment period.
[0101] During weeks 1-5 of treatment, nephrectomized mice may exhibit elevated serum creatinine levels compared to decapsulated mice. The amount of elevation between the groups of nephrectomized mice may correlate with the course of treatment used. If the serum creatinine levels are less elevated with increasing amounts of the renal therapeutic agent being tested, then the agent may be a successful candidate for further tests of preventing nephronic degeneration and inducing nephronic regeneration. If the serum creatinine levels become increasingly elevated with increasing amounts of the renal therapeutic agent in decapsulated mice, then the agent may be a nephronic degeneration inducing agent. Such an agent may be useful in treating renal cell carcinoma or other kidney cancer type.
Example 4
Renal Cell Carcinoma Treatment
[0102] Constitutive activation of the Wnt signaling pathway may be involved in the development of renal cell carcinoma and other kidney cancer types. The renal therapeutic agents of the invention that result in ectopic activation of the Wnt signaling pathway via interaction with the natural receptors of WISE and SOST may be useful in therapies treating renal cell carcinoma or other kidney cancer types. Therapeutics of the present invention may be analyzed for use as a treatment for preventing or reversing kidney cancer types.
[0103] To investigate novel therapeutic strategies for the treatment of human renal cell carcinoma, such as adoptive immunotherapy or cytolcine therapy, murine renal cell carcinoma has been a particularly suitable animal model for assessing novel therapeutic approaches (Sayers, T. J., Wiltrout, T. A., McCormick, K., Husted, C., and Wiltrout, R. H., Cancer Res., 50: 5414-5420, 1990; Salup, R. R., and Wiltrout, R. H. Cancer Res., 46: 3358-3363, 1986). In this model, primary kidney tumors are induced by subcapsular renal injection of renal carcinoma (RENCA) cells with subsequent development of metastases in the lungs, lymph nodes, and spleen (Hillman, G. G., Droz, J., and Haas, G. H. In Vivo, 8: 77-80, 1994).
[0104] Murine RENCA cells originally obtained from a tumor that arose spontaneously in the kidney of BALB/c mice may be injected into BALB/c mice to generate a renal cell carcinoma model. Histologically, RENCA is a granular cell type adenocarcinoma, which is pleomorphic with large nuclei. Monolayers of murine RENCA cells may be grown in RPMI 1640 with phenol red supplemented with 10% FCS, 2 mM L-glutamine, 100 units penicillin/ml, and 100 .mu.g of streptomycin/ml. RENCA cells may be cultured in a humidified atmosphere of 95% air and 5% carbon dioxide at 37.degree. C.
[0105] Female BALB/c mice approximately 6-8 weeks of age (approximate weight, 20 g) may be injected with RENCA cells in 0.2-ml aliquots into the subcapsular space of the left kidney performed through a flank incision after the animals are anesthetized with 0.5-1.5 volume percent isoflurane, which may be used in combination with an oxygen flow of 1.5 1/min. The subcapsular renal injection of RENCA cells in a syngeneic BALB/c mouse may be followed by the progressive development of a primary tumor mass in the left kidney. One week after application, the primary tumor may be macroscopically visible; after 10 days, spontaneous metastases may develop in the regional lymph nodes, in the lung, the peritoneum, and the liver, allowing the RENCA model to be staged similarly to human renal cell carcinoma. The mean survival time of RENCA-bearing mice may be 32 days after RENCA cells are injected.
[0106] Treatments with a renal therapeutic agent of the invention or vehicle only may be initiated 1 day after tumor cell inoculation into the subcapsular space of the left kidney. Mice receiving the renal therapeutic agent may receive about 1, 3, 10, or 50 .mu.g/kg body weight of the renal therapeutic agent intraperitoneally at least three times per week for a period of approximately 6-9 weeks. Serum creatinine levels should be monitored prior to treatment, during the treatment period, and at least 1 week following the treatment period. Animal weights should be taken every other day.
[0107] Two or 3 weeks after starting treatment, 6 or 10 mice, respectively, may be sacrificed in each group for determination of weight and volume of primary tumors, weight, and number of metastasis of the lung and metastasis formation in the abdominal lymph nodes. The volumes of primary tumors taken macroscopically may be calculated by taking and multiplying the distances of all three dimensions. The number of metastases in the lung and abdominal lymph nodes may be counted using a dissection microscope. In the abdominal cave, all visible lymph nodes may be counted for detection of metastasis, knowing that in healthy animals visible lymph nodes are usually absent. More animals may be sacrificed at later time points to monitor the progression or regression of tumor development.
[0108] A renal therapeutic agent of the invention that results in a significant decrease in primary tumor size or number of metastasis compared to mice treated with vehicle only may be successful candidates for renal cell carcinoma therapy. Agents that do not result in a significant decrease or result in a significant increase in primary tumor size or number of metastasis may be successful candidates for preventing nephronic degeneration or promoting nephronic regeneration.
SEQUENCE LISTING
[0109] The Sequence Listing, in computer readable form (CRF), is submitted on compact disc, and is hereby incorporated by reference into this patent application. A total of 217 sequences are being submitted.
Sequence CWU
1
1
21714131DNAHuman 1atgggggccg tcctgaggag cctcctggcc tgcagcttct gtgtgctcct
gagagcggcc 60cctttgttgc tttatgcaaa cagacgggac ttgcgattgg ttgatgctac
aaatggcaaa 120gagaatgcta cgattgtagt tggaggcttg gaggatgcag ctgcggtgga
ctttgtgttt 180agtcatggct tgatatactg gagtgatgtc agcgaagaag ccattaaacg
aacagaattt 240aacaaaactg agagtgtgca gaatgttgtt gtttctggat tattgtcccc
cgatgggctg 300gcatgtgatt ggcttggaga aaaattgtac tggacagatt ctgaaactaa
tcggattgaa 360gtttctaatt tagatggatc tttacgaaaa gttttatttt ggcaagagtt
ggatcaaccc 420agagctattg ccttagatcc ttcaagtggg ttcatgtact ggacagactg
gggagaagtg 480ccaaagatag aacgtgctgg aatggatggt tcaagtcgct tcattataat
aaacagtgaa 540atttactggc caaatggact gactttggat tatgaagaac aaaagcttta
ttgggcagat 600gcaaaactta atttcatcca caaatcaaat ctggatggaa caaatcggca
ggcagtggtt 660aaaggttccc ttccacatcc ttttgccttg acgttatttg aggacatatt
gtactggact 720gactggagca cacactccat tttggcttgc aacaagtata ctggtgaggg
tctgcgtgaa 780atccattctg acatcttctc tcccatggat atacatgcct tcagccaaca
gaggcagcca 840aatgccacaa atccatgtgg aattgacaat gggggttgtt cccatttgtg
tttgatgtct 900ccagtcaagc ctttttatca gtgtgcttgc cccactgggg tcaaactcct
ggagaatgga 960aaaacctgca aagatggtgc cacagaatta ttgcttttag ctcgaaggac
agacttgaga 1020cgcatttctt tggatacacc agattttaca gacattgttc tgcagttaga
agacatccgt 1080catgccattg ccatagatta cgatcctgtg gaaggctaca tctactggac
tgatgatgaa 1140gtgagggcca tacgccgttc atttatagat ggatctggca gtcagtttgt
ggtcactgct 1200caaattgccc atcctgatgg tattgctgtg gactgggttg cacgaaatct
ttattggaca 1260gacactggca ctgatcgaat agaagtgaca aggctcaatg ggaccatgag
gaagatcttg 1320atttcagagg acttagagga accccgggct attgtgttag atcccatggt
tgggtacatg 1380tattggactg actggggaga aattccgaaa attgagcgag cagctctgga
tggttctgac 1440cgtgtagtat tggttaacac ttctcttggt tggccaaatg gtttagcctt
ggattatgat 1500gaaggcaaaa tatactgggg agatgccaaa acagacaaga ttgaggttat
gaatactgat 1560ggcactggga gacgagtact agtggaagac aaaattcctc acatatttgg
atttactttg 1620ttgggtgact atgtttactg gactgactgg cagaggcgta gcattgaaag
agttcataaa 1680cgaagtgcag agagggaagt gatcatagat cagctgcctg acctcatggg
cctaaaggct 1740acaaatgttc atcgagtgat tggttccaac ccctgtgctg aggaaaacgg
gggatgtagc 1800catctctgcc tctatagacc tcagggcctt cgctgtgctt gccctattgg
ctttgaactc 1860atcagtgaca tgaagacctg cattgtccca gaggctttcc ttttgttttc
acggagagca 1920gatatcagac gaatttctct ggaaacaaac aataataatg tggctattcc
actcactggt 1980gtcaaagaag cttctgcttt ggattttgat gtgacagaca accgaattta
ttggactgat 2040atatcactca agaccatcag cagagccttt atgaatggca gtgcactgga
acatgtggta 2100gaattcggct tagattatcc agaaggcatg gcagtagact ggcttgggaa
gaacttgtac 2160tgggcagaca caggaacgaa tcgaattgag gtgtcaaagt tggatgggca
gcaccgacaa 2220gttttggtgt ggaaagacct agatagtccc agagctctcg cgttggaccc
tgccgaagga 2280tttatgtatt ggactgaatg gggtggaaaa cctaagatag acagagctgc
aatggatgga 2340agtgaacgta ctaccttagt tccaaatgtg gggcgggcaa acggcctaac
tattgattat 2400gctaaaagga ggctttattg gacagacctg gacaccaact taatagaatc
ttcaaatatg 2460cttgggctca accgtgaagt tatagcagat gacttgcctc atccttttgg
cttaactcag 2520taccaagatt atatctactg gacggactgg agccgacgca gcattgagcg
tgccaacaaa 2580accagtggcc aaaaccgcac catcattcag ggccatttgg attatgtgat
ggacatcctc 2640gtctttcact catctcgaca gtcagggtgg aatgaatgtg cttccagcaa
tgggcactgc 2700tcccacctct gcttggctgt gccagttggg ggttttgttt gtggatgccc
tgcccactac 2760tctcttaatg ctgacaacag gacttgtagt gctcctacga ctttcctgct
cttcagtcaa 2820aagagtgcca tcaaccgcat ggtgattgat gaacaacaga gccccgacat
catccttccc 2880atccacagcc ttcggaatgt ccgggccatt gactatgacc cactggacaa
gcaactctat 2940tggattgact cacgacaaaa catgatccga aaggcacaag aagatggcag
ccagggcttt 3000actgtggttg tgagctcagt tccgagtcag aacctggaaa tacaacccta
tgacctcagc 3060attgatattt acagccgcta catctactgg acttgtgagg ctaccaatgt
cattaatgtg 3120acaagattag atgggagatc agttggagtg gtgctgaaag gcgagcagga
cagacctcga 3180gccattgtgg taaacccaga gaaagggtat atgtatttta ccaatcttca
ggaaaggtct 3240cctaaaattg aacgggctgc tttggatggg acagaacggg aggtcctctt
tttcagtggc 3300ttaagtaaac caattgcttt agcccttgat agcaggctgg gcaagctctt
ttgggctgat 3360tcagatctcc ggcgaattga aagcagtgat ctctcaggtg ctaaccggat
agtattagaa 3420gactccaata tcttgcagcc tgtgggactt actgtgtttg aaaactggct
ctattggatt 3480gataaacagc agcaaatgat tgaaaaaatt gacatgacag gtcgagaggg
tagaaccaaa 3540gtccaagctc gaattgccca gcttagtgac attcatgcag taaaggagct
gaaccttcaa 3600gaatacagac agcacccttg tgctcaggat aatggtggct gttcacatat
ttgtcttgta 3660aagggggatg gtactacaag gtgttcttgc cccatgcacc tggttctact
tcaagatgag 3720ctatcatgtg gagaacctcc aacatgttct cctcagcagt ttacttgttt
cacgggggaa 3780attgactgta tccctgtggc ttggcggtgc gatgggttta ctgaatgtga
agaccacagt 3840gatgaactca attgtcctgt atgctcagag tcccagttcc agtgtgccag
tgggcagtgt 3900attgatggtg ccctccgatg caatggagat gcaaactgcc aggacaaatc
agatgagaag 3960aactgtgaag tgctttgttt aattgatcag ttccgctgtg ccaatggtca
gtgcattgga 4020aagcacaaga agtgtgatca taatgtggat tgcagtgaca agtcagatga
actggattgt 4080tatccgactg aagaaccagc accacaggcc accaatacag ttggttctgt t
413121377PRTHuman 2Met Gly Ala Val Leu Arg Ser Leu Leu Ala Cys
Ser Phe Cys Val Leu 1 5 10
15 Leu Arg Ala Ala Pro Leu Leu Leu Tyr Ala Asn Arg Arg Asp Leu Arg
20 25 30 Leu Val
Asp Ala Thr Asn Gly Lys Glu Asn Ala Thr Ile Val Val Gly 35
40 45 Gly Leu Glu Asp Ala Ala Ala
Val Asp Phe Val Phe Ser His Gly Leu 50 55
60 Ile Tyr Trp Ser Asp Val Ser Glu Glu Ala Ile Lys
Arg Thr Glu Phe 65 70 75
80 Asn Lys Thr Glu Ser Val Gln Asn Val Val Val Ser Gly Leu Leu Ser
85 90 95 Pro Asp Gly
Leu Ala Cys Asp Trp Leu Gly Glu Lys Leu Tyr Trp Thr 100
105 110 Asp Ser Glu Thr Asn Arg Ile Glu
Val Ser Asn Leu Asp Gly Ser Leu 115 120
125 Arg Lys Val Leu Phe Trp Gln Glu Leu Asp Gln Pro Arg
Ala Ile Ala 130 135 140
Leu Asp Pro Ser Ser Gly Phe Met Tyr Trp Thr Asp Trp Gly Glu Val 145
150 155 160 Pro Lys Ile Glu
Arg Ala Gly Met Asp Gly Ser Ser Arg Phe Ile Ile 165
170 175 Ile Asn Ser Glu Ile Tyr Trp Pro Asn
Gly Leu Thr Leu Asp Tyr Glu 180 185
190 Glu Gln Lys Leu Tyr Trp Ala Asp Ala Lys Leu Asn Phe Ile
His Lys 195 200 205
Ser Asn Leu Asp Gly Thr Asn Arg Gln Ala Val Val Lys Gly Ser Leu 210
215 220 Pro His Pro Phe Ala
Leu Thr Leu Phe Glu Asp Ile Leu Tyr Trp Thr 225 230
235 240 Asp Trp Ser Thr His Ser Ile Leu Ala Cys
Asn Lys Tyr Thr Gly Glu 245 250
255 Gly Leu Arg Glu Ile His Ser Asp Ile Phe Ser Pro Met Asp Ile
His 260 265 270 Ala
Phe Ser Gln Gln Arg Gln Pro Asn Ala Thr Asn Pro Cys Gly Ile 275
280 285 Asp Asn Gly Gly Cys Ser
His Leu Cys Leu Met Ser Pro Val Lys Pro 290 295
300 Phe Tyr Gln Cys Ala Cys Pro Thr Gly Val Lys
Leu Leu Glu Asn Gly 305 310 315
320 Lys Thr Cys Lys Asp Gly Ala Thr Glu Leu Leu Leu Leu Ala Arg Arg
325 330 335 Thr Asp
Leu Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp Ile 340
345 350 Val Leu Gln Leu Glu Asp Ile
Arg His Ala Ile Ala Ile Asp Tyr Asp 355 360
365 Pro Val Glu Gly Tyr Ile Tyr Trp Thr Asp Asp Glu
Val Arg Ala Ile 370 375 380
Arg Arg Ser Phe Ile Asp Gly Ser Gly Ser Gln Phe Val Val Thr Ala 385
390 395 400 Gln Ile Ala
His Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn 405
410 415 Leu Tyr Trp Thr Asp Thr Gly Thr
Asp Arg Ile Glu Val Thr Arg Leu 420 425
430 Asn Gly Thr Met Arg Lys Ile Leu Ile Ser Glu Asp Leu
Glu Glu Pro 435 440 445
Arg Ala Ile Val Leu Asp Pro Met Val Gly Tyr Met Tyr Trp Thr Asp 450
455 460 Trp Gly Glu Ile
Pro Lys Ile Glu Arg Ala Ala Leu Asp Gly Ser Asp 465 470
475 480 Arg Val Val Leu Val Asn Thr Ser Leu
Gly Trp Pro Asn Gly Leu Ala 485 490
495 Leu Asp Tyr Asp Glu Gly Lys Ile Tyr Trp Gly Asp Ala Lys
Thr Asp 500 505 510
Lys Ile Glu Val Met Asn Thr Asp Gly Thr Gly Arg Arg Val Leu Val
515 520 525 Glu Asp Lys Ile
Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Tyr 530
535 540 Val Tyr Trp Thr Asp Trp Gln Arg
Arg Ser Ile Glu Arg Val His Lys 545 550
555 560 Arg Ser Ala Glu Arg Glu Val Ile Ile Asp Gln Leu
Pro Asp Leu Met 565 570
575 Gly Leu Lys Ala Thr Asn Val His Arg Val Ile Gly Ser Asn Pro Cys
580 585 590 Ala Glu Glu
Asn Gly Gly Cys Ser His Leu Cys Leu Tyr Arg Pro Gln 595
600 605 Gly Leu Arg Cys Ala Cys Pro Ile
Gly Phe Glu Leu Ile Ser Asp Met 610 615
620 Lys Thr Cys Ile Val Pro Glu Ala Phe Leu Leu Phe Ser
Arg Arg Ala 625 630 635
640 Asp Ile Arg Arg Ile Ser Leu Glu Thr Asn Asn Asn Asn Val Ala Ile
645 650 655 Pro Leu Thr Gly
Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Thr 660
665 670 Asp Asn Arg Ile Tyr Trp Thr Asp Ile
Ser Leu Lys Thr Ile Ser Arg 675 680
685 Ala Phe Met Asn Gly Ser Ala Leu Glu His Val Val Glu Phe
Gly Leu 690 695 700
Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Leu Gly Lys Asn Leu Tyr 705
710 715 720 Trp Ala Asp Thr Gly
Thr Asn Arg Ile Glu Val Ser Lys Leu Asp Gly 725
730 735 Gln His Arg Gln Val Leu Val Trp Lys Asp
Leu Asp Ser Pro Arg Ala 740 745
750 Leu Ala Leu Asp Pro Ala Glu Gly Phe Met Tyr Trp Thr Glu Trp
Gly 755 760 765 Gly
Lys Pro Lys Ile Asp Arg Ala Ala Met Asp Gly Ser Glu Arg Thr 770
775 780 Thr Leu Val Pro Asn Val
Gly Arg Ala Asn Gly Leu Thr Ile Asp Tyr 785 790
795 800 Ala Lys Arg Arg Leu Tyr Trp Thr Asp Leu Asp
Thr Asn Leu Ile Glu 805 810
815 Ser Ser Asn Met Leu Gly Leu Asn Arg Glu Val Ile Ala Asp Asp Leu
820 825 830 Pro His
Pro Phe Gly Leu Thr Gln Tyr Gln Asp Tyr Ile Tyr Trp Thr 835
840 845 Asp Trp Ser Arg Arg Ser Ile
Glu Arg Ala Asn Lys Thr Ser Gly Gln 850 855
860 Asn Arg Thr Ile Ile Gln Gly His Leu Asp Tyr Val
Met Asp Ile Leu 865 870 875
880 Val Phe His Ser Ser Arg Gln Ser Gly Trp Asn Glu Cys Ala Ser Ser
885 890 895 Asn Gly His
Cys Ser His Leu Cys Leu Ala Val Pro Val Gly Gly Phe 900
905 910 Val Cys Gly Cys Pro Ala His Tyr
Ser Leu Asn Ala Asp Asn Arg Thr 915 920
925 Cys Ser Ala Pro Thr Thr Phe Leu Leu Phe Ser Gln Lys
Ser Ala Ile 930 935 940
Asn Arg Met Val Ile Asp Glu Gln Gln Ser Pro Asp Ile Ile Leu Pro 945
950 955 960 Ile His Ser Leu
Arg Asn Val Arg Ala Ile Asp Tyr Asp Pro Leu Asp 965
970 975 Lys Gln Leu Tyr Trp Ile Asp Ser Arg
Gln Asn Met Ile Arg Lys Ala 980 985
990 Gln Glu Asp Gly Ser Gln Gly Phe Thr Val Val Val Ser
Ser Val Pro 995 1000 1005
Ser Gln Asn Leu Glu Ile Gln Pro Tyr Asp Leu Ser Ile Asp Ile
1010 1015 1020 Tyr Ser Arg
Tyr Ile Tyr Trp Thr Cys Glu Ala Thr Asn Val Ile 1025
1030 1035 Asn Val Thr Arg Leu Asp Gly Arg
Ser Val Gly Val Val Leu Lys 1040 1045
1050 Gly Glu Gln Asp Arg Pro Arg Ala Ile Val Val Asn Pro
Glu Lys 1055 1060 1065
Gly Tyr Met Tyr Phe Thr Asn Leu Gln Glu Arg Ser Pro Lys Ile 1070
1075 1080 Glu Arg Ala Ala Leu
Asp Gly Thr Glu Arg Glu Val Leu Phe Phe 1085 1090
1095 Ser Gly Leu Ser Lys Pro Ile Ala Leu Ala
Leu Asp Ser Arg Leu 1100 1105 1110
Gly Lys Leu Phe Trp Ala Asp Ser Asp Leu Arg Arg Ile Glu Ser
1115 1120 1125 Ser Asp
Leu Ser Gly Ala Asn Arg Ile Val Leu Glu Asp Ser Asn 1130
1135 1140 Ile Leu Gln Pro Val Gly Leu
Thr Val Phe Glu Asn Trp Leu Tyr 1145 1150
1155 Trp Ile Asp Lys Gln Gln Gln Met Ile Glu Lys Ile
Asp Met Thr 1160 1165 1170
Gly Arg Glu Gly Arg Thr Lys Val Gln Ala Arg Ile Ala Gln Leu 1175
1180 1185 Ser Asp Ile His Ala
Val Lys Glu Leu Asn Leu Gln Glu Tyr Arg 1190 1195
1200 Gln His Pro Cys Ala Gln Asp Asn Gly Gly
Cys Ser His Ile Cys 1205 1210 1215
Leu Val Lys Gly Asp Gly Thr Thr Arg Cys Ser Cys Pro Met His
1220 1225 1230 Leu Val
Leu Leu Gln Asp Glu Leu Ser Cys Gly Glu Pro Pro Thr 1235
1240 1245 Cys Ser Pro Gln Gln Phe Thr
Cys Phe Thr Gly Glu Ile Asp Cys 1250 1255
1260 Ile Pro Val Ala Trp Arg Cys Asp Gly Phe Thr Glu
Cys Glu Asp 1265 1270 1275
His Ser Asp Glu Leu Asn Cys Pro Val Cys Ser Glu Ser Gln Phe 1280
1285 1290 Gln Cys Ala Ser Gly
Gln Cys Ile Asp Gly Ala Leu Arg Cys Asn 1295 1300
1305 Gly Asp Ala Asn Cys Gln Asp Lys Ser Asp
Glu Lys Asn Cys Glu 1310 1315 1320
Val Leu Cys Leu Ile Asp Gln Phe Arg Cys Ala Asn Gly Gln Cys
1325 1330 1335 Ile Gly
Lys His Lys Lys Cys Asp His Asn Val Asp Cys Ser Asp 1340
1345 1350 Lys Ser Asp Glu Leu Asp Cys
Tyr Pro Thr Glu Glu Pro Ala Pro 1355 1360
1365 Gln Ala Thr Asn Thr Val Gly Ser Val 1370
1375 34842DNAHuman 3atgggggccg tcctgaggag cctcctggcc
tgcagcttct gtgtgctcct gagagcggcc 60cctttgttgc tttatgcaaa cagacgggac
ttgcgattgg ttgatgctac aaatggcaaa 120gagaatgcta cgattgtagt tggaggcttg
gaggatgcag ctgcggtgga ctttgtgttt 180agtcatggct tgatatactg gagtgatgtc
agcgaagaag ccattaaacg aacagaattt 240aacaaaactg agagtgtgca gaatgttgtt
gtttctggat tattgtcccc cgatgggctg 300gcatgtgatt ggcttggaga aaaattgtac
tggacagatt ctgaaactaa tcggattgaa 360gtttctaatt tagatggatc tttacgaaaa
gttttatttt ggcaagagtt ggatcaaccc 420agagctattg ccttagatcc ttcaagtggg
ttcatgtact ggacagactg gggagaagtg 480ccaaagatag aacgtgctgg aatggatggt
tcaagtcgct tcattataat aaacagtgaa 540atttactggc caaatggact gactttggat
tatgaagaac aaaagcttta ttgggcagat 600gcaaaactta atttcatcca caaatcaaat
ctggatggaa caaatcggca ggcagtggtt 660aaaggttccc ttccacatcc ttttgccttg
acgttatttg aggacatatt gtactggact 720gactggagca cacactccat tttggcttgc
aacaagtata ctggtgaggg tctgcgtgaa 780atccattctg acatcttctc tcccatggat
atacatgcct tcagccaaca gaggcagcca 840aatgccacaa atccatgtgg aattgacaat
gggggttgtt cccatttgtg tttgatgtct 900ccagtcaagc ctttttatca gtgtgcttgc
cccactgggg tcaaactcct ggagaatgga 960aaaacctgca aagatggtgc cacagaatta
ttgcttttag ctcgaaggac agacttgaga 1020cgcatttctt tggatacacc agattttaca
gacattgttc tgcagttaga agacatccgt 1080catgccattg ccatagatta cgatcctgtg
gaaggctaca tctactggac tgatgatgaa 1140gtgagggcca tacgccgttc atttatagat
ggatctggca gtcagtttgt ggtcactgct 1200caaattgccc atcctgatgg tattgctgtg
gactgggttg cacgaaatct ttattggaca 1260gacactggca ctgatcgaat agaagtgaca
aggctcaatg ggaccatgag gaagatcttg 1320atttcagagg acttagagga accccgggct
attgtgttag atcccatggt tgggtacatg 1380tattggactg actggggaga aattccgaaa
attgagcgag cagctctgga tggttctgac 1440cgtgtagtat tggttaacac ttctcttggt
tggccaaatg gtttagcctt ggattatgat 1500gaaggcaaaa tatactgggg agatgccaaa
acagacaaga ttgaggttat gaatactgat 1560ggcactggga gacgagtact agtggaagac
aaaattcctc acatatttgg atttactttg 1620ttgggtgact atgtttactg gactgactgg
cagaggcgta gcattgaaag agttcataaa 1680cgaagtgcag agagggaagt gatcatagat
cagctgcctg acctcatggg cctaaaggct 1740acaaatgttc atcgagtgat tggttccaac
ccctgtgctg aggaaaacgg gggatgtagc 1800catctctgcc tctatagacc tcagggcctt
cgctgtgctt gccctattgg ctttgaactc 1860atcagtgaca tgaagacctg cattgtccca
gaggctttcc ttttgttttc acggagagca 1920gatatcagac gaatttctct ggaaacaaac
aataataatg tggctattcc actcactggt 1980gtcaaagaag cttctgcttt ggattttgat
gtgacagaca accgaattta ttggactgat 2040atatcactca agaccatcag cagagccttt
atgaatggca gtgcactgga acatgtggta 2100gaattcggct tagattatcc agaaggcatg
gcagtagact ggcttgggaa gaacttgtac 2160tgggcagaca caggaacgaa tcgaattgag
gtgtcaaagt tggatgggca gcaccgacaa 2220gttttggtgt ggaaagacct agatagtccc
agagctctcg cgttggaccc tgccgaagga 2280tttatgtatt ggactgaatg gggtggaaaa
cctaagatag acagagctgc aatggatgga 2340agtgaacgta ctaccttagt tccaaatgtg
gggcgggcaa acggcctaac tattgattat 2400gctaaaagga ggctttattg gacagacctg
gacaccaact taatagaatc ttcaaatatg 2460cttgggctca accgtgaagt tatagcagat
gacttgcctc atccttttgg cttaactcag 2520taccaagatt atatctactg gacggactgg
agccgacgca gcattgagcg tgccaacaaa 2580accagtggcc aaaaccgcac catcattcag
ggccatttgg attatgtgat ggacatcctc 2640gtctttcact catctcgaca gtcagggtgg
aatgaatgtg cttccagcaa tgggcactgc 2700tcccacctct gcttggctgt gccagttggg
ggttttgttt gtggatgccc tgcccactac 2760tctcttaatg ctgacaacag gacttgtagt
gctcctacga ctttcctgct cttcagtcaa 2820aagagtgcca tcaaccgcat ggtgattgat
gaacaacaga gccccgacat catccttccc 2880atccacagcc ttcggaatgt ccgggccatt
gactatgacc cactggacaa gcaactctat 2940tggattgact cacgacaaaa catgatccga
aaggcacaag aagatggcag ccagggcttt 3000actgtggttg tgagctcagt tccgagtcag
aacctggaaa tacaacccta tgacctcagc 3060attgatattt acagccgcta catctactgg
acttgtgagg ctaccaatgt cattaatgtg 3120acaagattag atgggagatc agttggagtg
gtgctgaaag gcgagcagga cagacctcga 3180gccattgtgg taaacccaga gaaagggtat
atgtatttta ccaatcttca ggaaaggtct 3240cctaaaattg aacgggctgc tttggatggg
acagaacggg aggtcctctt tttcagtggc 3300ttaagtaaac caattgcttt agcccttgat
agcaggctgg gcaagctctt ttgggctgat 3360tcagatctcc ggcgaattga aagcagtgat
ctctcaggtg ctaaccggat agtattagaa 3420gactccaata tcttgcagcc tgtgggactt
actgtgtttg aaaactggct ctattggatt 3480gataaacagc agcaaatgat tgaaaaaatt
gacatgacag gtcgagaggg tagaaccaaa 3540gtccaagctc gaattgccca gcttagtgac
attcatgcag taaaggagct gaaccttcaa 3600gaatacagac agcacccttg tgctcaggat
aatggtggct gttcacatat ttgtcttgta 3660aagggggatg gtactacaag gtgttcttgc
cccatgcacc tggttctact tcaagatgag 3720ctatcatgtg gagaacctcc aacatgttct
cctcagcagt ttacttgttt cacgggggaa 3780attgactgta tccctgtggc ttggcggtgc
gatgggttta ctgaatgtga agaccacagt 3840gatgaactca attgtcctgt atgctcagag
tcccagttcc agtgtgccag tgggcagtgt 3900attgatggtg ccctccgatg caatggagat
gcaaactgcc aggacaaatc agatgagaag 3960aactgtgaag tgctttgttt aattgatcag
ttccgctgtg ccaatggtca gtgcattgga 4020aagcacaaga agtgtgatca taatgtggat
tgcagtgaca agtcagatga actggattgt 4080tatccgactg aagaaccagc accacaggcc
accaatacag ttggttctgt tattggcgta 4140attgtcacca tttttgtgtc tggaactgta
tactttatct gccagaggat gttgtgtcca 4200cgtatgaagg gagatgggga aactatgact
aatgactatg tagttcatgg accagcttct 4260gtgcctcttg gttatgtgcc acacccaagt
tctttgtcag gatctcttcc aggaatgtct 4320cgaggtaaat caatgatcag ctccctcagt
atcatggggg gaagcagtgg acccccctat 4380gaccgagccc atgttacagg agcatcatca
agtagttctt caagcaccaa aggcacttac 4440ttccctgcaa ttttgaaccc tccaccatcc
ccagccacag agcgatcaca ttacactatg 4500gaatttggat attcttcaaa cagtccttcc
actcataggt catacagcta caggccatat 4560agctaccggc actttgcacc ccccaccaca
ccctgcagca cagatgtttg tgacagtgac 4620tatgctccta gtcggagaat gacctcagtg
gcaacagcca agggctatac cagtgacttg 4680aactatgatt cagaacctgt gcccccacct
cccacacccc gaagccaata cttgtcagca 4740gaggagaact atgaaagctg cccaccttct
ccatacacag agaggagcta ttctcatcac 4800ctctacccac cgccaccctc tccctgtaca
gactcctcct ga 484241613PRTHuman 4Met Gly Ala Val Leu
Arg Ser Leu Leu Ala Cys Ser Phe Cys Val Leu 1 5
10 15 Leu Arg Ala Ala Pro Leu Leu Leu Tyr Ala
Asn Arg Arg Asp Leu Arg 20 25
30 Leu Val Asp Ala Thr Asn Gly Lys Glu Asn Ala Thr Ile Val Val
Gly 35 40 45 Gly
Leu Glu Asp Ala Ala Ala Val Asp Phe Val Phe Ser His Gly Leu 50
55 60 Ile Tyr Trp Ser Asp Val
Ser Glu Glu Ala Ile Lys Arg Thr Glu Phe 65 70
75 80 Asn Lys Thr Glu Ser Val Gln Asn Val Val Val
Ser Gly Leu Leu Ser 85 90
95 Pro Asp Gly Leu Ala Cys Asp Trp Leu Gly Glu Lys Leu Tyr Trp Thr
100 105 110 Asp Ser
Glu Thr Asn Arg Ile Glu Val Ser Asn Leu Asp Gly Ser Leu 115
120 125 Arg Lys Val Leu Phe Trp Gln
Glu Leu Asp Gln Pro Arg Ala Ile Ala 130 135
140 Leu Asp Pro Ser Ser Gly Phe Met Tyr Trp Thr Asp
Trp Gly Glu Val 145 150 155
160 Pro Lys Ile Glu Arg Ala Gly Met Asp Gly Ser Ser Arg Phe Ile Ile
165 170 175 Ile Asn Ser
Glu Ile Tyr Trp Pro Asn Gly Leu Thr Leu Asp Tyr Glu 180
185 190 Glu Gln Lys Leu Tyr Trp Ala Asp
Ala Lys Leu Asn Phe Ile His Lys 195 200
205 Ser Asn Leu Asp Gly Thr Asn Arg Gln Ala Val Val Lys
Gly Ser Leu 210 215 220
Pro His Pro Phe Ala Leu Thr Leu Phe Glu Asp Ile Leu Tyr Trp Thr 225
230 235 240 Asp Trp Ser Thr
His Ser Ile Leu Ala Cys Asn Lys Tyr Thr Gly Glu 245
250 255 Gly Leu Arg Glu Ile His Ser Asp Ile
Phe Ser Pro Met Asp Ile His 260 265
270 Ala Phe Ser Gln Gln Arg Gln Pro Asn Ala Thr Asn Pro Cys
Gly Ile 275 280 285
Asp Asn Gly Gly Cys Ser His Leu Cys Leu Met Ser Pro Val Lys Pro 290
295 300 Phe Tyr Gln Cys Ala
Cys Pro Thr Gly Val Lys Leu Leu Glu Asn Gly 305 310
315 320 Lys Thr Cys Lys Asp Gly Ala Thr Glu Leu
Leu Leu Leu Ala Arg Arg 325 330
335 Thr Asp Leu Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp
Ile 340 345 350 Val
Leu Gln Leu Glu Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp 355
360 365 Pro Val Glu Gly Tyr Ile
Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile 370 375
380 Arg Arg Ser Phe Ile Asp Gly Ser Gly Ser Gln
Phe Val Val Thr Ala 385 390 395
400 Gln Ile Ala His Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn
405 410 415 Leu Tyr
Trp Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu 420
425 430 Asn Gly Thr Met Arg Lys Ile
Leu Ile Ser Glu Asp Leu Glu Glu Pro 435 440
445 Arg Ala Ile Val Leu Asp Pro Met Val Gly Tyr Met
Tyr Trp Thr Asp 450 455 460
Trp Gly Glu Ile Pro Lys Ile Glu Arg Ala Ala Leu Asp Gly Ser Asp 465
470 475 480 Arg Val Val
Leu Val Asn Thr Ser Leu Gly Trp Pro Asn Gly Leu Ala 485
490 495 Leu Asp Tyr Asp Glu Gly Lys Ile
Tyr Trp Gly Asp Ala Lys Thr Asp 500 505
510 Lys Ile Glu Val Met Asn Thr Asp Gly Thr Gly Arg Arg
Val Leu Val 515 520 525
Glu Asp Lys Ile Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Tyr 530
535 540 Val Tyr Trp Thr
Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys 545 550
555 560 Arg Ser Ala Glu Arg Glu Val Ile Ile
Asp Gln Leu Pro Asp Leu Met 565 570
575 Gly Leu Lys Ala Thr Asn Val His Arg Val Ile Gly Ser Asn
Pro Cys 580 585 590
Ala Glu Glu Asn Gly Gly Cys Ser His Leu Cys Leu Tyr Arg Pro Gln
595 600 605 Gly Leu Arg Cys
Ala Cys Pro Ile Gly Phe Glu Leu Ile Ser Asp Met 610
615 620 Lys Thr Cys Ile Val Pro Glu Ala
Phe Leu Leu Phe Ser Arg Arg Ala 625 630
635 640 Asp Ile Arg Arg Ile Ser Leu Glu Thr Asn Asn Asn
Asn Val Ala Ile 645 650
655 Pro Leu Thr Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Thr
660 665 670 Asp Asn Arg
Ile Tyr Trp Thr Asp Ile Ser Leu Lys Thr Ile Ser Arg 675
680 685 Ala Phe Met Asn Gly Ser Ala Leu
Glu His Val Val Glu Phe Gly Leu 690 695
700 Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Leu Gly Lys
Asn Leu Tyr 705 710 715
720 Trp Ala Asp Thr Gly Thr Asn Arg Ile Glu Val Ser Lys Leu Asp Gly
725 730 735 Gln His Arg Gln
Val Leu Val Trp Lys Asp Leu Asp Ser Pro Arg Ala 740
745 750 Leu Ala Leu Asp Pro Ala Glu Gly Phe
Met Tyr Trp Thr Glu Trp Gly 755 760
765 Gly Lys Pro Lys Ile Asp Arg Ala Ala Met Asp Gly Ser Glu
Arg Thr 770 775 780
Thr Leu Val Pro Asn Val Gly Arg Ala Asn Gly Leu Thr Ile Asp Tyr 785
790 795 800 Ala Lys Arg Arg Leu
Tyr Trp Thr Asp Leu Asp Thr Asn Leu Ile Glu 805
810 815 Ser Ser Asn Met Leu Gly Leu Asn Arg Glu
Val Ile Ala Asp Asp Leu 820 825
830 Pro His Pro Phe Gly Leu Thr Gln Tyr Gln Asp Tyr Ile Tyr Trp
Thr 835 840 845 Asp
Trp Ser Arg Arg Ser Ile Glu Arg Ala Asn Lys Thr Ser Gly Gln 850
855 860 Asn Arg Thr Ile Ile Gln
Gly His Leu Asp Tyr Val Met Asp Ile Leu 865 870
875 880 Val Phe His Ser Ser Arg Gln Ser Gly Trp Asn
Glu Cys Ala Ser Ser 885 890
895 Asn Gly His Cys Ser His Leu Cys Leu Ala Val Pro Val Gly Gly Phe
900 905 910 Val Cys
Gly Cys Pro Ala His Tyr Ser Leu Asn Ala Asp Asn Arg Thr 915
920 925 Cys Ser Ala Pro Thr Thr Phe
Leu Leu Phe Ser Gln Lys Ser Ala Ile 930 935
940 Asn Arg Met Val Ile Asp Glu Gln Gln Ser Pro Asp
Ile Ile Leu Pro 945 950 955
960 Ile His Ser Leu Arg Asn Val Arg Ala Ile Asp Tyr Asp Pro Leu Asp
965 970 975 Lys Gln Leu
Tyr Trp Ile Asp Ser Arg Gln Asn Met Ile Arg Lys Ala 980
985 990 Gln Glu Asp Gly Ser Gln Gly Phe
Thr Val Val Val Ser Ser Val Pro 995 1000
1005 Ser Gln Asn Leu Glu Ile Gln Pro Tyr Asp Leu
Ser Ile Asp Ile 1010 1015 1020
Tyr Ser Arg Tyr Ile Tyr Trp Thr Cys Glu Ala Thr Asn Val Ile
1025 1030 1035 Asn Val Thr
Arg Leu Asp Gly Arg Ser Val Gly Val Val Leu Lys 1040
1045 1050 Gly Glu Gln Asp Arg Pro Arg Ala
Ile Val Val Asn Pro Glu Lys 1055 1060
1065 Gly Tyr Met Tyr Phe Thr Asn Leu Gln Glu Arg Ser Pro
Lys Ile 1070 1075 1080
Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu Val Leu Phe Phe 1085
1090 1095 Ser Gly Leu Ser Lys
Pro Ile Ala Leu Ala Leu Asp Ser Arg Leu 1100 1105
1110 Gly Lys Leu Phe Trp Ala Asp Ser Asp Leu
Arg Arg Ile Glu Ser 1115 1120 1125
Ser Asp Leu Ser Gly Ala Asn Arg Ile Val Leu Glu Asp Ser Asn
1130 1135 1140 Ile Leu
Gln Pro Val Gly Leu Thr Val Phe Glu Asn Trp Leu Tyr 1145
1150 1155 Trp Ile Asp Lys Gln Gln Gln
Met Ile Glu Lys Ile Asp Met Thr 1160 1165
1170 Gly Arg Glu Gly Arg Thr Lys Val Gln Ala Arg Ile
Ala Gln Leu 1175 1180 1185
Ser Asp Ile His Ala Val Lys Glu Leu Asn Leu Gln Glu Tyr Arg 1190
1195 1200 Gln His Pro Cys Ala
Gln Asp Asn Gly Gly Cys Ser His Ile Cys 1205 1210
1215 Leu Val Lys Gly Asp Gly Thr Thr Arg Cys
Ser Cys Pro Met His 1220 1225 1230
Leu Val Leu Leu Gln Asp Glu Leu Ser Cys Gly Glu Pro Pro Thr
1235 1240 1245 Cys Ser
Pro Gln Gln Phe Thr Cys Phe Thr Gly Glu Ile Asp Cys 1250
1255 1260 Ile Pro Val Ala Trp Arg Cys
Asp Gly Phe Thr Glu Cys Glu Asp 1265 1270
1275 His Ser Asp Glu Leu Asn Cys Pro Val Cys Ser Glu
Ser Gln Phe 1280 1285 1290
Gln Cys Ala Ser Gly Gln Cys Ile Asp Gly Ala Leu Arg Cys Asn 1295
1300 1305 Gly Asp Ala Asn Cys
Gln Asp Lys Ser Asp Glu Lys Asn Cys Glu 1310 1315
1320 Val Leu Cys Leu Ile Asp Gln Phe Arg Cys
Ala Asn Gly Gln Cys 1325 1330 1335
Ile Gly Lys His Lys Lys Cys Asp His Asn Val Asp Cys Ser Asp
1340 1345 1350 Lys Ser
Asp Glu Leu Asp Cys Tyr Pro Thr Glu Glu Pro Ala Pro 1355
1360 1365 Gln Ala Thr Asn Thr Val Gly
Ser Val Ile Gly Val Ile Val Thr 1370 1375
1380 Ile Phe Val Ser Gly Thr Val Tyr Phe Ile Cys Gln
Arg Met Leu 1385 1390 1395
Cys Pro Arg Met Lys Gly Asp Gly Glu Thr Met Thr Asn Asp Tyr 1400
1405 1410 Val Val His Gly Pro
Ala Ser Val Pro Leu Gly Tyr Val Pro His 1415 1420
1425 Pro Ser Ser Leu Ser Gly Ser Leu Pro Gly
Met Ser Arg Gly Lys 1430 1435 1440
Ser Met Ile Ser Ser Leu Ser Ile Met Gly Gly Ser Ser Gly Pro
1445 1450 1455 Pro Tyr
Asp Arg Ala His Val Thr Gly Ala Ser Ser Ser Ser Ser 1460
1465 1470 Ser Ser Thr Lys Gly Thr Tyr
Phe Pro Ala Ile Leu Asn Pro Pro 1475 1480
1485 Pro Ser Pro Ala Thr Glu Arg Ser His Tyr Thr Met
Glu Phe Gly 1490 1495 1500
Tyr Ser Ser Asn Ser Pro Ser Thr His Arg Ser Tyr Ser Tyr Arg 1505
1510 1515 Pro Tyr Ser Tyr Arg
His Phe Ala Pro Pro Thr Thr Pro Cys Ser 1520 1525
1530 Thr Asp Val Cys Asp Ser Asp Tyr Ala Pro
Ser Arg Arg Met Thr 1535 1540 1545
Ser Val Ala Thr Ala Lys Gly Tyr Thr Ser Asp Leu Asn Tyr Asp
1550 1555 1560 Ser Glu
Pro Val Pro Pro Pro Pro Thr Pro Arg Ser Gln Tyr Leu 1565
1570 1575 Ser Ala Glu Glu Asn Tyr Glu
Ser Cys Pro Pro Ser Pro Tyr Thr 1580 1585
1590 Glu Arg Ser Tyr Ser His His Leu Tyr Pro Pro Pro
Pro Ser Pro 1595 1600 1605
Cys Thr Asp Ser Ser 1610 54161DNAHuman 5atggaggcag
cgccgcccgg gccgccgtgg ccgctgctgc tgctgctgct gctgctgctg 60gcgctgtgcg
gctgcccggc ccccgccgcg gcctcgccgc tcctgctatt tgccaaccgc 120cgggacgtac
ggctggtgga cgccggcgga gtcaagctgg agtccaccat cgtggtcagc 180ggcctggagg
atgcggccgc agtggacttc cagttttcca agggagccgt gtactggaca 240gacgtgagcg
aggaggccat caagcagacc tacctgaacc agacgggggc cgccgtgcag 300aacgtggtca
tctccggcct ggtctctccc gacggcctcg cctgcgactg ggtgggcaag 360aagctgtact
ggacggactc agagaccaac cgcatcgagg tggccaacct caatggcaca 420tcccggaagg
tgctcttctg gcaggacctt gaccagccga gggccatcgc cttggacccc 480gctcacgggt
acatgtactg gacagactgg ggtgagacgc cccggattga gcgggcaggg 540atggatggca
gcacccggaa gatcattgtg gactcggaca tttactggcc caatggactg 600accatcgacc
tggaggagca gaagctctac tgggctgacg ccaagctcag cttcatccac 660cgtgccaacc
tggacggctc gttccggcag aaggtggtgg agggcagcct gacgcacccc 720ttcgccctga
cgctctccgg ggacactctg tactggacag actggcagac ccgctccatc 780catgcctgca
acaagcgcac tggggggaag aggaaggaga tcctgagtgc cctctactca 840cccatggaca
tccaggtgct gagccaggag cggcagcctt tcttccacac tcgctgtgag 900gaggacaatg
gcggctgctc ccacctgtgc ctgctgtccc caagcgagcc tttctacaca 960tgcgcctgcc
ccacgggtgt gcagctgcag gacaacggca ggacgtgtaa ggcaggagcc 1020gaggaggtgc
tgctgctggc ccggcggacg gacctacgga ggatctcgct ggacacgccg 1080gactttaccg
acatcgtgct gcaggtggac gacatccggc acgccattgc catcgactac 1140gacccgctag
agggctatgt ctactggaca gatgacgagg tgcgggccat ccgcagggcg 1200tacctggacg
ggtctggggc gcagacgctg gtcaacaccg agatcaacga ccccgatggc 1260atcgcggtcg
actgggtggc ccgaaacctc tactggaccg acacgggcac ggaccgcatc 1320gaggtgacgc
gcctcaacgg cacctcccgc aagatcctgg tgtcggagga cctggacgag 1380ccccgagcca
tcgcactgca ccccgtgatg ggcctcatgt actggacaga ctggggagag 1440aaccctaaaa
tcgagtgtgc caacttggat gggcaggagc ggcgtgtgct ggtcaatgcc 1500tccctcgggt
ggcccaacgg cctggccctg gacctgcagg aggggaagct ctactgggga 1560gacgccaaga
cagacaagat cgaggtgatc aatgttgatg ggacgaagag gcggaccctc 1620ctggaggaca
agctcccgca cattttcggg ttcacgctgc tgggggactt catctactgg 1680actgactggc
agcgccgcag catcgagcgg gtgcacaagg tcaaggccag ccgggacgtc 1740atcattgacc
agctgcccga cctgatgggg ctcaaagctg tgaatgtggc caaggtcgtc 1800ggaaccaacc
cgtgtgcgga caggaacggg gggtgcagcc acctgtgctt cttcacaccc 1860cacgcaaccc
ggtgtggctg ccccatcggc ctggagctgc tgagtgacat gaagacctgc 1920atcgtgcctg
aggccttctt ggtcttcacc agcagagccg ccatccacag gatctccctc 1980gagaccaata
acaacgacgt ggccatcccg ctcacgggcg tcaaggaggc ctcagccctg 2040gactttgatg
tgtccaacaa ccacatctac tggacagacg tcagcctgaa gaccatcagc 2100cgcgccttca
tgaacgggag ctcggtggag cacgtggtgg agtttggcct tgactacccc 2160gagggcatgg
ccgttgactg gatgggcaag aacctctact gggccgacac tgggaccaac 2220agaatcgaag
tggcgcggct ggacgggcag ttccggcaag tcctcgtgtg gagggacttg 2280gacaacccga
ggtcgctggc cctggatccc accaagggct acatctactg gaccgagtgg 2340ggcggcaagc
cgaggatcgt gcgggccttc atggacggga ccaactgcat gacgctggtg 2400gacaaggtgg
gccgggccaa cgacctcacc attgactacg ctgaccagcg cctctactgg 2460accgacctgg
acaccaacat gatcgagtcg tccaacatgc tgggtcagga gcgggtcgtg 2520attgccgacg
atctcccgca cccgttcggt ctgacgcagt acagcgatta tatctactgg 2580acagactgga
atctgcacag cattgagcgg gccgacaaga ctagcggccg gaaccgcacc 2640ctcatccagg
gccacctgga cttcgtgatg gacatcctgg tgttccactc ctcccgccag 2700gatggcctca
atgactgtat gcacaacaac gggcagtgtg ggcagctgtg ccttgccatc 2760cccggcggcc
accgctgcgg ctgcgcctca cactacaccc tggaccccag cagccgcaac 2820tgcagcccgc
ccaccacctt cttgctgttc agccagaaat ctgccatcag tcggatgatc 2880ccggacgacc
agcacagccc ggatctcatc ctgcccctgc atggactgag gaacgtcaaa 2940gccatcgact
atgacccact ggacaagttc atctactggg tggatgggcg ccagaacatc 3000aagcgagcca
aggacgacgg gacccagccc tttgttttga cctctctgag ccaaggccaa 3060aacccagaca
ggcagcccca cgacctcagc atcgacatct acagccggac actgttctgg 3120acgtgcgagg
ccaccaatac catcaacgtc cacaggctga gcggggaagc catgggggtg 3180gtgctgcgtg
gggaccgcga caagcccagg gccatcgtcg tcaacgcgga gcgagggtac 3240ctgtacttca
ccaacatgca ggaccgggca gccaagatcg aacgcgcagc cctggacggc 3300accgagcgcg
aggtcctctt caccaccggc ctcatccgcc ctgtggccct ggtggtagac 3360aacacactgg
gcaagctgtt ctgggtggac gcggacctga agcgcattga gagctgtgac 3420ctgtcagggg
ccaaccgcct gaccctggag gacgccaaca tcgtgcagcc tctgggcctg 3480accatccttg
gcaagcatct ctactggatc gaccgccagc agcagatgat cgagcgtgtg 3540gagaagacca
ccggggacaa gcggactcgc atccagggcc gtgtcgccca cctcactggc 3600atccatgcag
tggaggaagt cagcctggag gagttctcag cccacccatg tgcccgtgac 3660aatggtggct
gctcccacat ctgtattgcc aagggtgatg ggacaccacg gtgctcatgc 3720ccagtccacc
tcgtgctcct gcagaacctg ctgacctgtg gagagccgcc cacctgctcc 3780ccggaccagt
ttgcatgtgc cacaggggag atcgactgta tccccggggc ctggcgctgt 3840gacggctttc
ccgagtgcga tgaccagagc gacgaggagg gctgccccgt gtgctccgcc 3900gcccagttcc
cctgcgcgcg gggtcagtgt gtggacctgc gcctgcgctg cgacggcgag 3960gcagactgtc
aggaccgctc agacgaggcg gactgtgacg ccatctgcct gcccaaccag 4020ttccggtgtg
cgagcggcca gtgtgtcctc atcaaacagc agtgcgactc cttccccgac 4080tgtatcgacg
gctccgacga gctcatgtgt gaaatcacca agccgccctc agacgacagc 4140ccggcccaca
gcagtgccat c
416161383PRTHuman 6Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu
Leu Leu Leu 1 5 10 15
Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala Ala Ala Ser
20 25 30 Pro Leu Leu Leu
Phe Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala 35
40 45 Gly Gly Val Lys Leu Glu Ser Thr Ile
Val Val Ser Gly Leu Glu Asp 50 55
60 Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val
Tyr Trp Thr 65 70 75
80 Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly
85 90 95 Ala Ala Val Gln
Asn Val Val Ile Ser Gly Leu Val Ser Pro Asp Gly 100
105 110 Leu Ala Cys Asp Trp Val Gly Lys Lys
Leu Tyr Trp Thr Asp Ser Glu 115 120
125 Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser Arg
Lys Val 130 135 140
Leu Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala Leu Asp Pro 145
150 155 160 Ala His Gly Tyr Met
Tyr Trp Thr Asp Trp Gly Glu Thr Pro Arg Ile 165
170 175 Glu Arg Ala Gly Met Asp Gly Ser Thr Arg
Lys Ile Ile Val Asp Ser 180 185
190 Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu Glu Gln
Lys 195 200 205 Leu
Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg Ala Asn Leu 210
215 220 Asp Gly Ser Phe Arg Gln
Lys Val Val Glu Gly Ser Leu Thr His Pro 225 230
235 240 Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr
Trp Thr Asp Trp Gln 245 250
255 Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly Lys Arg Lys
260 265 270 Glu Ile
Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln Val Leu Ser 275
280 285 Gln Glu Arg Gln Pro Phe Phe
His Thr Arg Cys Glu Glu Asp Asn Gly 290 295
300 Gly Cys Ser His Leu Cys Leu Leu Ser Pro Ser Glu
Pro Phe Tyr Thr 305 310 315
320 Cys Ala Cys Pro Thr Gly Val Gln Leu Gln Asp Asn Gly Arg Thr Cys
325 330 335 Lys Ala Gly
Ala Glu Glu Val Leu Leu Leu Ala Arg Arg Thr Asp Leu 340
345 350 Arg Arg Ile Ser Leu Asp Thr Pro
Asp Phe Thr Asp Ile Val Leu Gln 355 360
365 Val Asp Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp
Pro Leu Glu 370 375 380
Gly Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg Ala 385
390 395 400 Tyr Leu Asp Gly
Ser Gly Ala Gln Thr Leu Val Asn Thr Glu Ile Asn 405
410 415 Asp Pro Asp Gly Ile Ala Val Asp Trp
Val Ala Arg Asn Leu Tyr Trp 420 425
430 Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu Asn
Gly Thr 435 440 445
Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro Arg Ala Ile 450
455 460 Ala Leu His Pro Val
Met Gly Leu Met Tyr Trp Thr Asp Trp Gly Glu 465 470
475 480 Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp
Gly Gln Glu Arg Arg Val 485 490
495 Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu Asp
Leu 500 505 510 Gln
Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu 515
520 525 Val Ile Asn Val Asp Gly
Thr Lys Arg Arg Thr Leu Leu Glu Asp Lys 530 535
540 Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly
Asp Phe Ile Tyr Trp 545 550 555
560 Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala
565 570 575 Ser Arg
Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys 580
585 590 Ala Val Asn Val Ala Lys Val
Val Gly Thr Asn Pro Cys Ala Asp Arg 595 600
605 Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro
His Ala Thr Arg 610 615 620
Cys Gly Cys Pro Ile Gly Leu Glu Leu Leu Ser Asp Met Lys Thr Cys 625
630 635 640 Ile Val Pro
Glu Ala Phe Leu Val Phe Thr Ser Arg Ala Ala Ile His 645
650 655 Arg Ile Ser Leu Glu Thr Asn Asn
Asn Asp Val Ala Ile Pro Leu Thr 660 665
670 Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser
Asn Asn His 675 680 685
Ile Tyr Trp Thr Asp Val Ser Leu Lys Thr Ile Ser Arg Ala Phe Met 690
695 700 Asn Gly Ser Ser
Val Glu His Val Val Glu Phe Gly Leu Asp Tyr Pro 705 710
715 720 Glu Gly Met Ala Val Asp Trp Met Gly
Lys Asn Leu Tyr Trp Ala Asp 725 730
735 Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln
Phe Arg 740 745 750
Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala Leu
755 760 765 Asp Pro Thr Lys
Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro 770
775 780 Arg Ile Val Arg Ala Phe Met Asp
Gly Thr Asn Cys Met Thr Leu Val 785 790
795 800 Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp
Tyr Ala Asp Gln 805 810
815 Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asn
820 825 830 Met Leu Gly
Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro 835
840 845 Phe Gly Leu Thr Gln Tyr Ser Asp
Tyr Ile Tyr Trp Thr Asp Trp Asn 850 855
860 Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg
Asn Arg Thr 865 870 875
880 Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His
885 890 895 Ser Ser Arg Gln
Asp Gly Leu Asn Asp Cys Met His Asn Asn Gly Gln 900
905 910 Cys Gly Gln Leu Cys Leu Ala Ile Pro
Gly Gly His Arg Cys Gly Cys 915 920
925 Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser
Pro Pro 930 935 940
Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser Arg Met Ile 945
950 955 960 Pro Asp Asp Gln His
Ser Pro Asp Leu Ile Leu Pro Leu His Gly Leu 965
970 975 Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro
Leu Asp Lys Phe Ile Tyr 980 985
990 Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp
Gly Thr 995 1000 1005
Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp 1010
1015 1020 Arg Gln Pro His Asp
Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu 1025 1030
1035 Phe Trp Thr Cys Glu Ala Thr Asn Thr Ile
Asn Val His Arg Leu 1040 1045 1050
Ser Gly Glu Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys
1055 1060 1065 Pro Arg
Ala Ile Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe 1070
1075 1080 Thr Asn Met Gln Asp Arg Ala
Ala Lys Ile Glu Arg Ala Ala Leu 1085 1090
1095 Asp Gly Thr Glu Arg Glu Val Leu Phe Thr Thr Gly
Leu Ile Arg 1100 1105 1110
Pro Val Ala Leu Val Val Asp Asn Thr Leu Gly Lys Leu Phe Trp 1115
1120 1125 Val Asp Ala Asp Leu
Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly 1130 1135
1140 Ala Asn Arg Leu Thr Leu Glu Asp Ala Asn
Ile Val Gln Pro Leu 1145 1150 1155
Gly Leu Thr Ile Leu Gly Lys His Leu Tyr Trp Ile Asp Arg Gln
1160 1165 1170 Gln Gln
Met Ile Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg 1175
1180 1185 Thr Arg Ile Gln Gly Arg Val
Ala His Leu Thr Gly Ile His Ala 1190 1195
1200 Val Glu Glu Val Ser Leu Glu Glu Phe Ser Ala His
Pro Cys Ala 1205 1210 1215
Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly Asp 1220
1225 1230 Gly Thr Pro Arg Cys
Ser Cys Pro Val His Leu Val Leu Leu Gln 1235 1240
1245 Asn Leu Leu Thr Cys Gly Glu Pro Pro Thr
Cys Ser Pro Asp Gln 1250 1255 1260
Phe Ala Cys Ala Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala Trp
1265 1270 1275 Arg Cys
Asp Gly Phe Pro Glu Cys Asp Asp Gln Ser Asp Glu Glu 1280
1285 1290 Gly Cys Pro Val Cys Ser Ala
Ala Gln Phe Pro Cys Ala Arg Gly 1295 1300
1305 Gln Cys Val Asp Leu Arg Leu Arg Cys Asp Gly Glu
Ala Asp Cys 1310 1315 1320
Gln Asp Arg Ser Asp Glu Ala Asp Cys Asp Ala Ile Cys Leu Pro 1325
1330 1335 Asn Gln Phe Arg Cys
Ala Ser Gly Gln Cys Val Leu Ile Lys Gln 1340 1345
1350 Gln Cys Asp Ser Phe Pro Asp Cys Ile Asp
Gly Ser Asp Glu Leu 1355 1360 1365
Met Cys Glu Ile Thr Lys Pro Pro Ser Asp Asp Ser Pro Ala His
1370 1375 1380
74161DNAMouse 7atggaggcag cgccgcccgg gccgccgtgg ccgctgctgc tgctgctgct
gctgctgctg 60gcgctgtgcg gctgcccggc ccccgccgcg gcctcgccgc tcctgctatt
tgccaaccgc 120cgggacgtac ggctggtgga cgccggcgga gtcaagctgg agtccaccat
cgtggtcagc 180ggcctggagg atgcggccgc agtggacttc cagttttcca agggagccgt
gtactggaca 240gacgtgagcg aggaggccat caagcagacc tacctgaacc agacgggggc
cgccgtgcag 300aacgtggtca tctccggcct ggtctctccc gacggcctcg cctgcgactg
ggtgggcaag 360aagctgtact ggacggactc agagaccaac cgcatcgagg tggccaacct
caatggcaca 420tcccggaagg tgctcttctg gcaggacctt gaccagccga gggccatcgc
cttggacccc 480gctcacgggt acatgtactg gacagactgg ggtgagacgc cccggattga
gcgggcaggg 540atggatggca gcacccggaa gatcattgtg gactcggaca tttactggcc
caatggactg 600accatcgacc tggaggagca gaagctctac tgggctgacg ccaagctcag
cttcatccac 660cgtgccaacc tggacggctc gttccggcag aaggtggtgg agggcagcct
gacgcacccc 720ttcgccctga cgctctccgg ggacactctg tactggacag actggcagac
ccgctccatc 780catgcctgca acaagcgcac tggggggaag aggaaggaga tcctgagtgc
cctctactca 840cccatggaca tccaggtgct gagccaggag cggcagcctt tcttccacac
tcgctgtgag 900gaggacaatg gcggctgctc ccacctgtgc ctgctgtccc caagcgagcc
tttctacaca 960tgcgcctgcc ccacgggtgt gcagctgcag gacaacggca ggacgtgtaa
ggcaggagcc 1020gaggaggtgc tgctgctggc ccggcggacg gacctacgga ggatctcgct
ggacacgccg 1080gactttaccg acatcgtgct gcaggtggac gacatccggc acgccattgc
catcgactac 1140gacccgctag agggctatgt ctactggaca gatgacgagg tgcgggccat
ccgcagggcg 1200tacctggacg ggtctggggc gcagacgctg gtcaacaccg agatcaacga
ccccgatggc 1260atcgcggtcg actgggtggc ccgaaacctc tactggaccg acacgggcac
ggaccgcatc 1320gaggtgacgc gcctcaacgg cacctcccgc aagatcctgg tgtcggagga
cctggacgag 1380ccccgagcca tcgcactgca ccccgtgatg ggcctcatgt actggacaga
ctggggagag 1440aaccctaaaa tcgagtgtgc caacttggat gggcaggagc ggcgtgtgct
ggtcaatgcc 1500tccctcgggt ggcccaacgg cctggccctg gacctgcagg aggggaagct
ctactgggga 1560gacgccaaga cagacaagat cgaggtgatc aatgttgatg ggacgaagag
gcggaccctc 1620ctggaggaca agctcccgca cattttcggg ttcacgctgc tgggggactt
catctactgg 1680actgactggc agcgccgcag catcgagcgg gtgcacaagg tcaaggccag
ccgggacgtc 1740atcattgacc agctgcccga cctgatgggg ctcaaagctg tgaatgtggc
caaggtcgtc 1800ggaaccaacc cgtgtgcgga caggaacggg gggtgcagcc acctgtgctt
cttcacaccc 1860cacgcaaccc ggtgtggctg ccccatcggc ctggagctgc tgagtgacat
gaagacctgc 1920atcgtgcctg aggccttctt ggtcttcacc agcagagccg ccatccacag
gatctccctc 1980gagaccaata acaacgacgt ggccatcccg ctcacgggcg tcaaggaggc
ctcagccctg 2040gactttgatg tgtccaacaa ccacatctac tggacagacg tcagcctgaa
gaccatcagc 2100cgcgccttca tgaacgggag ctcggtggag cacgtggtgg agtttggcct
tgactacccc 2160gagggcatgg ccgttgactg gatgggcaag aacctctact gggccgacac
tgggaccaac 2220agaatcgaag tggcgcggct ggacgggcag ttccggcaag tcctcgtgtg
gagggacttg 2280gacaacccga ggtcgctggc cctggatccc accaagggct acatctactg
gaccgagtgg 2340ggcggcaagc cgaggatcgt gcgggccttc atggacggga ccaactgcat
gacgctggtg 2400gacaaggtgg gccgggccaa cgacctcacc attgactacg ctgaccagcg
cctctactgg 2460accgacctgg acaccaacat gatcgagtcg tccaacatgc tgggtcagga
gcgggtcgtg 2520attgccgacg atctcccgca cccgttcggt ctgacgcagt acagcgatta
tatctactgg 2580acagactgga atctgcacag cattgagcgg gccgacaaga ctagcggccg
gaaccgcacc 2640ctcatccagg gccacctgga cttcgtgatg gacatcctgg tgttccactc
ctcccgccag 2700gatggcctca atgactgtat gcacaacaac gggcagtgtg ggcagctgtg
ccttgccatc 2760cccggcggcc accgctgcgg ctgcgcctca cactacaccc tggaccccag
cagccgcaac 2820tgcagcccgc ccaccacctt cttgctgttc agccagaaat ctgccatcag
tcggatgatc 2880ccggacgacc agcacagccc ggatctcatc ctgcccctgc atggactgag
gaacgtcaaa 2940gccatcgact atgacccact ggacaagttc atctactggg tggatgggcg
ccagaacatc 3000aagcgagcca aggacgacgg gacccagccc tttgttttga cctctctgag
ccaaggccaa 3060aacccagaca ggcagcccca cgacctcagc atcgacatct acagccggac
actgttctgg 3120acgtgcgagg ccaccaatac catcaacgtc cacaggctga gcggggaagc
catgggggtg 3180gtgctgcgtg gggaccgcga caagcccagg gccatcgtcg tcaacgcgga
gcgagggtac 3240ctgtacttca ccaacatgca ggaccgggca gccaagatcg aacgcgcagc
cctggacggc 3300accgagcgcg aggtcctctt caccaccggc ctcatccgcc ctgtggccct
ggtggtagac 3360aacacactgg gcaagctgtt ctgggtggac gcggacctga agcgcattga
gagctgtgac 3420ctgtcagggg ccaaccgcct gaccctggag gacgccaaca tcgtgcagcc
tctgggcctg 3480accatccttg gcaagcatct ctactggatc gaccgccagc agcagatgat
cgagcgtgtg 3540gagaagacca ccggggacaa gcggactcgc atccagggcc gtgtcgccca
cctcactggc 3600atccatgcag tggaggaagt cagcctggag gagttctcag cccacccatg
tgcccgtgac 3660aatggtggct gctcccacat ctgtattgcc aagggtgatg ggacaccacg
gtgctcatgc 3720ccagtccacc tcgtgctcct gcagaacctg ctgacctgtg gagagccgcc
cacctgctcc 3780ccggaccagt ttgcatgtgc cacaggggag atcgactgta tccccggggc
ctggcgctgt 3840gacggctttc ccgagtgcga tgaccagagc gacgaggagg gctgccccgt
gtgctccgcc 3900gcccagttcc cctgcgcgcg gggtcagtgt gtggacctgc gcctgcgctg
cgacggcgag 3960gcagactgtc aggaccgctc agacgaggcg gactgtgacg ccatctgcct
gcccaaccag 4020ttccggtgtg cgagcggcca gtgtgtcctc atcaaacagc agtgcgactc
cttccccgac 4080tgtatcgacg gctccgacga gctcatgtgt gaaatcacca agccgccctc
agacgacagc 4140ccggcccaca gcagtgccat c
416184842PRTMouse 8Ala Thr Gly Gly Gly Gly Gly Cys Cys Gly Thr
Gly Cys Thr Gly Ala 1 5 10
15 Gly Gly Ala Gly Cys Cys Thr Cys Cys Thr Gly Gly Cys Cys Thr Gly
20 25 30 Cys Ala
Gly Cys Thr Thr Cys Thr Gly Cys Gly Thr Gly Cys Thr Gly 35
40 45 Cys Thr Gly Ala Gly Ala Gly
Cys Gly Gly Cys Cys Cys Cys Thr Thr 50 55
60 Thr Gly Thr Thr Gly Cys Thr Thr Thr Ala Thr Gly
Cys Ala Ala Ala 65 70 75
80 Cys Ala Gly Ala Cys Gly Gly Gly Ala Cys Thr Thr Gly Ala Gly Ala
85 90 95 Thr Thr Gly
Gly Thr Thr Gly Ala Thr Gly Cys Thr Ala Cys Ala Ala 100
105 110 Ala Thr Gly Gly Cys Ala Ala Ala
Gly Ala Gly Ala Ala Thr Gly Cys 115 120
125 Ala Ala Cys Gly Ala Thr Thr Gly Thr Ala Gly Thr Thr
Gly Gly Ala 130 135 140
Gly Gly Cys Thr Thr Gly Gly Ala Gly Gly Ala Thr Gly Cys Ala Gly 145
150 155 160 Cys Thr Gly Cys
Gly Gly Thr Gly Gly Ala Cys Thr Thr Thr Gly Thr 165
170 175 Gly Thr Thr Thr Gly Gly Thr Cys Ala
Thr Gly Gly Cys Thr Thr Gly 180 185
190 Ala Thr Ala Thr Ala Cys Thr Gly Gly Ala Gly Thr Gly Ala
Thr Gly 195 200 205
Thr Cys Ala Gly Cys Gly Ala Ala Gly Ala Ala Gly Cys Cys Ala Thr 210
215 220 Thr Ala Ala Ala Cys
Gly Ala Ala Cys Ala Gly Ala Ala Thr Thr Thr 225 230
235 240 Ala Ala Cys Ala Ala Ala Ala Gly Thr Gly
Ala Ala Ala Gly Thr Gly 245 250
255 Thr Ala Cys Ala Gly Ala Ala Thr Gly Thr Thr Gly Thr Thr Gly
Thr 260 265 270 Thr
Thr Cys Thr Gly Gly Ala Thr Thr Ala Thr Thr Gly Thr Cys Cys 275
280 285 Cys Cys Gly Gly Ala Thr
Gly Gly Gly Cys Thr Gly Gly Cys Ala Thr 290 295
300 Gly Thr Gly Ala Thr Thr Gly Gly Cys Thr Thr
Gly Gly Ala Gly Ala 305 310 315
320 Ala Ala Ala Ala Thr Thr Gly Thr Ala Cys Thr Gly Gly Ala Cys Ala
325 330 335 Gly Ala
Thr Thr Cys Thr Gly Ala Ala Ala Cys Thr Ala Ala Thr Cys 340
345 350 Gly Thr Ala Thr Thr Gly Ala
Ala Gly Thr Thr Thr Cys Thr Ala Ala 355 360
365 Thr Thr Thr Ala Gly Ala Thr Gly Gly Ala Thr Cys
Thr Thr Thr Ala 370 375 380
Cys Gly Ala Ala Ala Ala Gly Thr Thr Thr Thr Ala Thr Thr Thr Thr 385
390 395 400 Gly Gly Cys
Ala Ala Gly Ala Gly Thr Thr Gly Gly Ala Thr Cys Ala 405
410 415 Ala Cys Cys Cys Ala Gly Ala Gly
Cys Thr Ala Thr Thr Gly Cys Cys 420 425
430 Thr Thr Ala Gly Ala Thr Cys Cys Ala Thr Cys Ala Ala
Gly Thr Gly 435 440 445
Gly Gly Thr Thr Cys Ala Thr Gly Thr Ala Cys Thr Gly Gly Ala Cys 450
455 460 Ala Gly Ala Cys
Thr Gly Gly Gly Gly Ala Gly Ala Ala Gly Thr Gly 465 470
475 480 Cys Cys Ala Ala Ala Gly Ala Thr Ala
Gly Ala Ala Cys Gly Gly Gly 485 490
495 Cys Thr Gly Gly Gly Ala Thr Gly Gly Ala Thr Gly Gly Cys
Thr Cys 500 505 510
Ala Ala Gly Thr Cys Gly Cys Thr Thr Cys Gly Thr Thr Ala Thr Ala
515 520 525 Ala Thr Ala Ala
Ala Cys Ala Cys Gly Gly Ala Gly Ala Thr Thr Thr 530
535 540 Ala Cys Thr Gly Gly Cys Cys Ala
Ala Ala Cys Gly Gly Ala Cys Thr 545 550
555 560 Gly Ala Cys Thr Cys Thr Gly Gly Ala Thr Thr Ala
Thr Cys Ala Gly 565 570
575 Gly Ala Gly Cys Gly Gly Ala Ala Gly Cys Thr Thr Thr Ala Cys Thr
580 585 590 Gly Gly Gly
Cys Cys Gly Ala Thr Gly Cys Ala Ala Ala Ala Cys Thr 595
600 605 Thr Ala Ala Thr Thr Thr Cys Ala
Thr Cys Cys Ala Thr Ala Ala Ala 610 615
620 Thr Cys Ala Ala Ala Cys Cys Thr Gly Gly Ala Thr Gly
Gly Ala Ala 625 630 635
640 Cys Ala Ala Ala Cys Cys Gly Gly Cys Ala Gly Gly Cys Ala Gly Thr
645 650 655 Gly Gly Thr Thr
Ala Ala Ala Gly Gly Thr Thr Cys Cys Cys Thr Thr 660
665 670 Cys Cys Ala Cys Ala Thr Cys Cys Thr
Thr Thr Thr Gly Cys Cys Thr 675 680
685 Thr Gly Ala Cys Gly Thr Thr Ala Thr Thr Thr Gly Ala Gly
Gly Ala 690 695 700
Cys Ala Cys Ala Thr Thr Gly Thr Ala Cys Thr Gly Gly Ala Cys Thr 705
710 715 720 Gly Ala Cys Thr Gly
Gly Ala Ala Thr Ala Cys Ala Cys Ala Cys Thr 725
730 735 Cys Thr Ala Thr Thr Thr Thr Gly Gly Cys
Thr Thr Gly Cys Ala Ala 740 745
750 Cys Ala Ala Ala Thr Ala Thr Ala Cys Thr Gly Gly Cys Gly Ala
Gly 755 760 765 Gly
Gly Thr Cys Thr Gly Cys Gly Thr Gly Ala Ala Ala Thr Thr Cys 770
775 780 Ala Thr Thr Cys Thr Ala
Ala Cys Ala Thr Cys Thr Thr Cys Thr Cys 785 790
795 800 Thr Cys Cys Cys Ala Thr Gly Gly Ala Thr Ala
Thr Ala Cys Ala Thr 805 810
815 Gly Cys Thr Thr Thr Cys Ala Gly Cys Cys Ala Ala Cys Ala Gly Ala
820 825 830 Gly Gly
Cys Ala Gly Cys Cys Ala Ala Ala Thr Gly Cys Thr Ala Cys 835
840 845 Ala Ala Ala Thr Cys Cys Ala
Thr Gly Thr Gly Gly Ala Ala Thr Thr 850 855
860 Gly Ala Thr Ala Ala Thr Gly Gly Thr Gly Gly Thr
Thr Gly Thr Thr 865 870 875
880 Cys Cys Cys Ala Thr Thr Thr Gly Thr Gly Thr Thr Thr Gly Ala Thr
885 890 895 Gly Thr Cys
Thr Cys Cys Ala Gly Thr Cys Ala Ala Gly Cys Cys Thr 900
905 910 Thr Thr Thr Thr Ala Thr Cys Ala
Gly Thr Gly Thr Gly Cys Thr Thr 915 920
925 Gly Cys Cys Cys Ala Ala Cys Thr Gly Gly Gly Gly Thr
Cys Ala Ala 930 935 940
Gly Cys Thr Gly Ala Thr Gly Gly Ala Gly Ala Ala Thr Gly Gly Ala 945
950 955 960 Ala Ala Gly Ala
Cys Cys Thr Gly Cys Ala Ala Ala Gly Ala Thr Gly 965
970 975 Gly Thr Gly Cys Cys Ala Cys Thr Gly
Ala Ala Cys Thr Ala Thr Thr 980 985
990 Gly Cys Thr Gly Thr Thr Ala Gly Cys Cys Cys Gly Ala
Cys Gly Gly 995 1000 1005
Ala Cys Ala Gly Ala Cys Thr Thr Gly Ala Gly Gly Cys Gly Ala
1010 1015 1020 Ala Thr Thr
Thr Cys Thr Thr Thr Gly Gly Ala Thr Ala Cys Ala 1025
1030 1035 Cys Cys Cys Gly Ala Thr Thr Thr
Thr Ala Cys Thr Gly Ala Cys 1040 1045
1050 Ala Thr Thr Gly Thr Thr Cys Thr Gly Cys Ala Gly Thr
Thr Ala 1055 1060 1065
Gly Ala Ala Gly Ala Thr Ala Thr Cys Cys Gly Gly Cys Ala Thr 1070
1075 1080 Gly Cys Cys Ala Thr
Thr Gly Cys Cys Ala Thr Ala Gly Ala Cys 1085 1090
1095 Thr Ala Thr Gly Ala Cys Cys Cys Thr Gly
Thr Ala Gly Ala Ala 1100 1105 1110
Gly Gly Cys Thr Ala Cys Ala Thr Ala Thr Ala Cys Thr Gly Gly
1115 1120 1125 Ala Cys
Ala Gly Ala Thr Gly Ala Cys Gly Ala Ala Gly Thr Gly 1130
1135 1140 Ala Gly Gly Gly Cys Thr Ala
Thr Cys Cys Gly Thr Cys Gly Cys 1145 1150
1155 Thr Cys Cys Thr Thr Cys Ala Thr Ala Gly Ala Thr
Gly Gly Ala 1160 1165 1170
Thr Cys Thr Gly Gly Cys Ala Gly Thr Cys Ala Gly Thr Thr Thr 1175
1180 1185 Gly Thr Gly Gly Thr
Cys Ala Cys Gly Gly Cys Cys Cys Ala Gly 1190 1195
1200 Ala Thr Thr Gly Cys Thr Cys Ala Thr Cys
Cys Thr Gly Ala Thr 1205 1210 1215
Gly Gly Thr Ala Thr Thr Gly Cys Thr Gly Thr Thr Gly Ala Cys
1220 1225 1230 Thr Gly
Gly Gly Thr Thr Gly Cys Ala Ala Gly Gly Ala Ala Cys 1235
1240 1245 Cys Thr Gly Thr Ala Cys Thr
Gly Gly Ala Cys Ala Gly Ala Cys 1250 1255
1260 Ala Cys Thr Gly Gly Cys Ala Cys Gly Gly Ala Thr
Cys Gly Thr 1265 1270 1275
Ala Thr Ala Gly Ala Ala Gly Thr Gly Ala Cys Ala Ala Gly Gly 1280
1285 1290 Cys Thr Cys Ala Ala
Thr Gly Gly Gly Ala Cys Cys Ala Thr Gly 1295 1300
1305 Ala Gly Gly Ala Ala Gly Ala Thr Cys Thr
Thr Gly Ala Thr Thr 1310 1315 1320
Thr Cys Ala Gly Ala Gly Gly Ala Cys Thr Thr Ala Gly Ala Gly
1325 1330 1335 Gly Ala
Gly Cys Cys Cys Cys Gly Gly Gly Cys Thr Ala Thr Cys 1340
1345 1350 Gly Thr Gly Thr Thr Ala Gly
Ala Thr Cys Cys Cys Ala Thr Gly 1355 1360
1365 Gly Thr Thr Gly Gly Gly Thr Ala Cys Ala Thr Gly
Thr Ala Thr 1370 1375 1380
Thr Gly Gly Ala Cys Ala Gly Ala Cys Thr Gly Gly Gly Gly Ala 1385
1390 1395 Gly Ala Ala Ala Thr
Cys Cys Cys Ala Ala Ala Ala Ala Thr Ala 1400 1405
1410 Gly Ala Gly Cys Gly Ala Gly Cys Thr Gly
Cys Thr Cys Thr Gly 1415 1420 1425
Gly Ala Cys Gly Gly Ala Thr Cys Thr Gly Ala Cys Cys Gly Ala
1430 1435 1440 Gly Thr
Ala Gly Thr Thr Cys Thr Thr Gly Thr Cys Ala Ala Cys 1445
1450 1455 Ala Cys Thr Thr Cys Cys Cys
Thr Thr Gly Gly Thr Thr Gly Gly 1460 1465
1470 Cys Cys Ala Ala Ala Cys Gly Gly Cys Thr Thr Ala
Gly Cys Cys 1475 1480 1485
Cys Thr Gly Gly Ala Thr Thr Ala Thr Gly Ala Thr Gly Ala Ala 1490
1495 1500 Gly Gly Cys Ala Cys
Ala Ala Thr Ala Thr Ala Cys Thr Gly Gly 1505 1510
1515 Gly Gly Ala Gly Ala Thr Gly Cys Cys Ala
Ala Ala Ala Cys Ala 1520 1525 1530
Gly Ala Cys Ala Ala Ala Ala Thr Thr Gly Ala Gly Gly Thr Thr
1535 1540 1545 Ala Thr
Gly Ala Ala Thr Ala Cys Cys Gly Ala Thr Gly Gly Cys 1550
1555 1560 Ala Cys Cys Gly Gly Gly Ala
Gly Gly Cys Gly Ala Gly Thr Gly 1565 1570
1575 Cys Thr Gly Gly Thr Gly Gly Ala Ala Gly Ala Cys
Ala Ala Gly 1580 1585 1590
Ala Thr Cys Cys Cys Thr Cys Ala Cys Ala Thr Ala Thr Thr Thr 1595
1600 1605 Gly Gly Gly Thr Thr
Thr Ala Cys Cys Thr Thr Gly Cys Thr Gly 1610 1615
1620 Gly Gly Thr Gly Ala Cys Thr Ala Thr Gly
Thr Thr Thr Ala Cys 1625 1630 1635
Thr Gly Gly Ala Cys Thr Gly Ala Cys Thr Gly Gly Cys Ala Gly
1640 1645 1650 Ala Gly
Gly Cys Gly Gly Ala Gly Cys Ala Thr Cys Gly Ala Gly 1655
1660 1665 Ala Gly Ala Gly Thr Ala Cys
Ala Cys Ala Ala Ala Cys Gly Gly 1670 1675
1680 Ala Gly Cys Gly Cys Ala Gly Ala Gly Ala Gly Gly
Gly Ala Ala 1685 1690 1695
Gly Thr Cys Ala Thr Cys Ala Thr Ala Gly Ala Cys Cys Ala Gly 1700
1705 1710 Cys Thr Gly Cys Cys
Ala Gly Ala Cys Cys Thr Cys Ala Thr Gly 1715 1720
1725 Gly Gly Ala Cys Thr Gly Ala Ala Gly Gly
Cys Cys Ala Cys Ala 1730 1735 1740
Ala Gly Thr Gly Thr Thr Cys Ala Cys Ala Gly Ala Gly Thr Cys
1745 1750 1755 Ala Thr
Thr Gly Gly Thr Thr Cys Thr Ala Ala Cys Cys Cys Cys 1760
1765 1770 Thr Gly Thr Gly Cys Thr Gly
Ala Gly Gly Ala Cys Ala Ala Thr 1775 1780
1785 Gly Gly Ala Gly Gly Ala Thr Gly Thr Ala Gly Cys
Cys Ala Thr 1790 1795 1800
Cys Thr Thr Thr Gly Cys Cys Thr Gly Thr Ala Cys Ala Gly Gly 1805
1810 1815 Cys Cys Thr Cys Ala
Gly Gly Gly Gly Cys Thr Thr Cys Gly Ala 1820 1825
1830 Thr Gly Cys Gly Cys Cys Thr Gly Thr Cys
Cys Cys Ala Thr Thr 1835 1840 1845
Gly Gly Cys Thr Thr Thr Gly Ala Gly Cys Thr Cys Ala Thr Cys
1850 1855 1860 Gly Gly
Thr Gly Ala Cys Ala Thr Gly Ala Ala Gly Ala Cys Ala 1865
1870 1875 Thr Gly Cys Ala Thr Thr Gly
Thr Cys Cys Cys Cys Gly Ala Gly 1880 1885
1890 Gly Cys Thr Thr Thr Cys Cys Thr Thr Cys Thr Gly
Thr Thr Cys 1895 1900 1905
Thr Cys Gly Ala Gly Gly Ala Gly Ala Gly Cys Gly Gly Ala Thr 1910
1915 1920 Ala Thr Cys Ala Gly
Ala Cys Gly Cys Ala Thr Ala Thr Cys Thr 1925 1930
1935 Thr Thr Gly Gly Ala Ala Ala Cys Ala Ala
Ala Cys Ala Ala Cys 1940 1945 1950
Ala Ala Cys Ala Ala Thr Gly Thr Gly Gly Cys Cys Ala Thr Thr
1955 1960 1965 Cys Cys
Thr Cys Thr Cys Ala Cys Thr Gly Gly Thr Gly Thr Cys 1970
1975 1980 Ala Ala Ala Gly Ala Ala Gly
Cys Cys Thr Cys Thr Gly Cys Thr 1985 1990
1995 Thr Thr Gly Gly Ala Thr Thr Thr Thr Gly Ala Thr
Gly Thr Cys 2000 2005 2010
Ala Cys Ala Gly Ala Cys Ala Ala Cys Ala Gly Gly Ala Thr Thr 2015
2020 2025 Thr Ala Cys Thr Gly
Gly Ala Cys Thr Gly Ala Thr Ala Thr Ala 2030 2035
2040 Thr Cys Ala Cys Thr Gly Ala Ala Gly Ala
Cys Thr Ala Thr Thr 2045 2050 2055
Ala Gly Cys Ala Gly Ala Gly Cys Cys Thr Thr Thr Ala Thr Gly
2060 2065 2070 Ala Ala
Thr Gly Gly Cys Ala Gly Thr Gly Cys Ala Cys Thr Gly 2075
2080 2085 Gly Ala Ala Cys Ala Thr Gly
Thr Gly Gly Thr Ala Gly Ala Gly 2090 2095
2100 Thr Thr Thr Gly Gly Cys Thr Thr Ala Gly Ala Thr
Thr Ala Thr 2105 2110 2115
Cys Cys Ala Gly Ala Ala Gly Gly Cys Ala Thr Gly Gly Cys Ala 2120
2125 2130 Gly Thr Gly Gly Ala
Cys Thr Gly Gly Cys Thr Thr Gly Gly Gly 2135 2140
2145 Ala Ala Gly Ala Ala Cys Thr Thr Ala Thr
Ala Cys Thr Gly Gly 2150 2155 2160
Gly Cys Ala Gly Ala Cys Ala Cys Ala Gly Gly Ala Ala Cys Ala
2165 2170 2175 Ala Ala
Thr Cys Gly Cys Ala Thr Thr Gly Ala Gly Gly Thr Ala 2180
2185 2190 Thr Cys Ala Ala Ala Gly Thr
Thr Gly Gly Ala Cys Gly Gly Ala 2195 2200
2205 Cys Ala Gly Cys Ala Cys Cys Gly Ala Cys Ala Gly
Gly Thr Thr 2210 2215 2220
Thr Thr Gly Gly Thr Ala Thr Gly Gly Ala Ala Ala Gly Ala Cys 2225
2230 2235 Cys Thr Thr Gly Ala
Cys Ala Gly Thr Cys Cys Thr Cys Gly Ala 2240 2245
2250 Gly Cys Thr Cys Thr Gly Gly Cys Ala Cys
Thr Gly Gly Ala Thr 2255 2260 2265
Cys Cys Thr Gly Cys Thr Gly Ala Ala Gly Gly Gly Thr Thr Thr
2270 2275 2280 Ala Thr
Gly Thr Ala Thr Thr Gly Gly Ala Cys Thr Gly Ala Gly 2285
2290 2295 Thr Gly Gly Gly Gly Ala Gly
Gly Cys Ala Ala Gly Cys Cys Thr 2300 2305
2310 Ala Ala Gly Ala Thr Thr Gly Ala Cys Ala Gly Gly
Gly Cys Thr 2315 2320 2325
Gly Cys Thr Ala Thr Gly Gly Ala Thr Gly Gly Ala Ala Gly Thr 2330
2335 2340 Gly Ala Ala Cys Gly
Cys Ala Cys Thr Ala Cys Ala Thr Thr Ala 2345 2350
2355 Gly Thr Thr Cys Cys Ala Ala Ala Thr Gly
Thr Ala Gly Gly Cys 2360 2365 2370
Cys Gly Ala Gly Cys Ala Ala Ala Thr Gly Gly Thr Cys Thr Cys
2375 2380 2385 Ala Cys
Cys Ala Thr Cys Gly Ala Cys Thr Ala Thr Gly Cys Thr 2390
2395 2400 Ala Ala Ala Ala Gly Gly Cys
Gly Gly Cys Thr Thr Thr Ala Cys 2405 2410
2415 Thr Gly Gly Ala Cys Ala Gly Ala Cys Cys Thr Gly
Gly Ala Cys 2420 2425 2430
Ala Cys Thr Ala Ala Cys Cys Thr Ala Ala Thr Ala Gly Ala Ala 2435
2440 2445 Thr Cys Cys Thr Cys
Ala Gly Ala Thr Ala Thr Gly Cys Thr Cys 2450 2455
2460 Gly Gly Ala Cys Thr Cys Ala Ala Cys Cys
Gly Thr Gly Ala Ala 2465 2470 2475
Gly Thr Thr Ala Thr Ala Gly Cys Ala Gly Ala Thr Gly Ala Cys
2480 2485 2490 Thr Thr
Gly Cys Cys Thr Cys Ala Thr Cys Cys Thr Thr Thr Thr 2495
2500 2505 Gly Gly Cys Thr Thr Ala Ala
Cys Thr Cys Ala Gly Thr Ala Cys 2510 2515
2520 Cys Ala Ala Gly Ala Thr Thr Ala Cys Ala Thr Cys
Thr Ala Cys 2525 2530 2535
Thr Gly Gly Ala Cys Ala Gly Ala Cys Thr Gly Gly Ala Gly Cys 2540
2545 2550 Cys Gly Ala Cys Gly
Cys Ala Gly Cys Ala Thr Thr Gly Ala Ala 2555 2560
2565 Cys Gly Thr Gly Cys Cys Ala Ala Cys Ala
Ala Ala Ala Cys Cys 2570 2575 2580
Ala Gly Thr Gly Gly Cys Cys Ala Ala Ala Ala Cys Cys Gly Cys
2585 2590 2595 Ala Cys
Cys Ala Thr Cys Ala Thr Cys Cys Ala Gly Gly Gly Cys 2600
2605 2610 Cys Ala Thr Thr Thr Gly Gly
Ala Cys Thr Ala Thr Gly Thr Gly 2615 2620
2625 Ala Thr Gly Gly Ala Cys Ala Thr Cys Cys Thr Gly
Gly Thr Cys 2630 2635 2640
Thr Thr Cys Cys Ala Cys Thr Cys Thr Thr Cys Cys Cys Gly Gly 2645
2650 2655 Cys Ala Gly Gly Cys
Ala Gly Gly Gly Thr Gly Gly Ala Ala Thr 2660 2665
2670 Gly Ala Gly Thr Gly Thr Gly Cys Cys Thr
Cys Cys Ala Gly Cys 2675 2680 2685
Ala Ala Cys Gly Gly Gly Cys Ala Cys Thr Gly Cys Thr Cys Cys
2690 2695 2700 Cys Ala
Cys Cys Thr Cys Thr Gly Cys Thr Thr Gly Gly Cys Thr 2705
2710 2715 Gly Thr Gly Cys Cys Cys Gly
Thr Cys Gly Gly Ala Gly Gly Thr 2720 2725
2730 Thr Thr Thr Gly Thr Gly Thr Gly Thr Gly Gly Ala
Thr Gly Cys 2735 2740 2745
Cys Cys Thr Gly Cys Cys Cys Ala Cys Thr Ala Cys Thr Cys Cys 2750
2755 2760 Cys Thr Gly Ala Ala
Thr Gly Cys Thr Gly Ala Cys Ala Ala Cys 2765 2770
2775 Ala Gly Gly Ala Cys Cys Thr Gly Cys Ala
Gly Thr Gly Cys Thr 2780 2785 2790
Cys Cys Cys Ala Gly Cys Ala Cys Cys Thr Thr Cys Cys Thr Gly
2795 2800 2805 Cys Thr
Cys Thr Thr Cys Ala Gly Thr Cys Ala Gly Ala Ala Gly 2810
2815 2820 Ala Gly Cys Gly Cys Cys Ala
Thr Cys Ala Ala Cys Cys Gly Cys 2825 2830
2835 Ala Thr Gly Gly Thr Gly Ala Thr Thr Gly Ala Thr
Gly Ala Ala 2840 2845 2850
Cys Ala Ala Cys Ala Gly Ala Gly Cys Cys Cys Thr Gly Ala Cys 2855
2860 2865 Ala Thr Cys Ala Thr
Cys Cys Thr Thr Cys Cys Thr Ala Thr Cys 2870 2875
2880 Cys Ala Cys Ala Gly Cys Cys Thr Thr Cys
Gly Gly Ala Ala Cys 2885 2890 2895
Gly Thr Cys Cys Gly Gly Gly Cys Cys Ala Thr Thr Gly Ala Cys
2900 2905 2910 Thr Ala
Thr Gly Ala Cys Cys Cys Thr Thr Thr Gly Gly Ala Cys 2915
2920 2925 Ala Ala Gly Cys Ala Gly Cys
Thr Cys Thr Ala Cys Thr Gly Gly 2930 2935
2940 Ala Thr Thr Gly Ala Cys Thr Cys Thr Cys Gly Ala
Cys Ala Ala 2945 2950 2955
Ala Ala Cys Thr Cys Cys Ala Thr Ala Cys Gly Ala Ala Ala Gly 2960
2965 2970 Gly Cys Ala Cys Ala
Thr Gly Ala Ala Gly Ala Thr Gly Gly Thr 2975 2980
2985 Gly Gly Cys Cys Ala Gly Gly Gly Thr Thr
Thr Thr Ala Ala Thr 2990 2995 3000
Gly Thr Ala Gly Thr Thr Gly Cys Ala Ala Ala Cys Thr Cys Gly
3005 3010 3015 Gly Thr
Cys Gly Cys Ala Ala Ala Thr Cys Ala Gly Ala Ala Cys 3020
3025 3030 Cys Thr Thr Gly Ala Ala Ala
Thr Ala Cys Ala Gly Cys Cys Cys 3035 3040
3045 Thr Ala Thr Gly Ala Thr Cys Thr Cys Ala Gly Cys
Ala Thr Thr 3050 3055 3060
Gly Ala Thr Ala Thr Thr Thr Ala Thr Ala Gly Cys Cys Gly Thr 3065
3070 3075 Thr Ala Cys Ala Thr
Cys Thr Ala Cys Thr Gly Gly Ala Cys Cys 3080 3085
3090 Thr Gly Thr Gly Ala Ala Gly Cys Thr Ala
Cys Cys Ala Ala Thr 3095 3100 3105
Gly Thr Cys Ala Thr Thr Gly Ala Thr Gly Thr Gly Ala Cys Gly
3110 3115 3120 Ala Gly
Ala Thr Thr Ala Gly Ala Thr Gly Gly Ala Cys Gly Ala 3125
3130 3135 Thr Cys Ala Gly Thr Thr Gly
Gly Ala Gly Thr Gly Gly Thr Thr 3140 3145
3150 Cys Thr Ala Ala Ala Ala Gly Gly Cys Gly Ala Gly
Cys Ala Ala 3155 3160 3165
Gly Ala Cys Ala Gly Ala Cys Cys Thr Cys Gly Ala Gly Cys Cys 3170
3175 3180 Ala Thr Thr Gly Thr
Gly Gly Thr Ala Ala Ala Cys Cys Cys Cys 3185 3190
3195 Gly Ala Gly Ala Ala Ala Gly Gly Gly Thr
Ala Thr Ala Thr Gly 3200 3205 3210
Thr Ala Thr Thr Thr Thr Ala Cys Cys Ala Ala Thr Cys Thr Thr
3215 3220 3225 Cys Ala
Gly Gly Ala Ala Ala Gly Ala Thr Cys Thr Cys Cys Thr 3230
3235 3240 Ala Ala Ala Ala Thr Thr Gly
Ala Ala Cys Gly Gly Gly Cys Thr 3245 3250
3255 Gly Cys Ala Thr Thr Gly Gly Ala Thr Gly Gly Thr
Ala Cys Ala 3260 3265 3270
Gly Ala Ala Cys Gly Ala Gly Ala Gly Gly Thr Cys Cys Thr Cys 3275
3280 3285 Thr Thr Thr Thr Thr
Cys Ala Gly Thr Gly Gly Cys Thr Thr Ala 3290 3295
3300 Ala Gly Thr Ala Ala Ala Cys Cys Ala Ala
Thr Thr Gly Cys Thr 3305 3310 3315
Thr Thr Gly Gly Cys Thr Cys Thr Thr Gly Ala Thr Ala Gly Cys
3320 3325 3330 Ala Ala
Gly Cys Thr Gly Gly Gly Cys Ala Ala Gly Cys Thr Cys 3335
3340 3345 Thr Thr Cys Thr Gly Gly Gly
Cys Thr Gly Ala Cys Thr Cys Ala 3350 3355
3360 Gly Ala Thr Cys Thr Cys Cys Gly Gly Cys Gly Ala
Ala Thr Thr 3365 3370 3375
Gly Ala Ala Ala Gly Cys Ala Gly Thr Gly Ala Thr Cys Thr Cys 3380
3385 3390 Thr Cys Ala Gly Gly
Thr Gly Cys Cys Ala Ala Cys Ala Gly Gly 3395 3400
3405 Ala Thr Cys Gly Thr Gly Cys Thr Ala Gly
Ala Ala Gly Ala Cys 3410 3415 3420
Thr Cys Thr Ala Ala Thr Ala Thr Ala Thr Thr Ala Cys Ala Gly
3425 3430 3435 Cys Cys
Thr Gly Thr Gly Gly Gly Cys Cys Thr Gly Ala Cys Cys 3440
3445 3450 Gly Thr Gly Thr Thr Thr Gly
Ala Ala Ala Ala Cys Thr Gly Gly 3455 3460
3465 Cys Thr Cys Thr Ala Thr Thr Gly Gly Ala Thr Thr
Gly Ala Thr 3470 3475 3480
Ala Ala Ala Cys Ala Gly Cys Ala Gly Cys Ala Gly Ala Thr Gly 3485
3490 3495 Ala Thr Thr Gly Ala
Ala Ala Ala Ala Ala Thr Thr Gly Ala Cys 3500 3505
3510 Ala Thr Gly Ala Cys Thr Gly Gly Thr Cys
Gly Ala Gly Ala Ala 3515 3520 3525
Gly Gly Ala Ala Gly Ala Ala Cys Cys Ala Ala Gly Gly Thr Cys
3530 3535 3540 Cys Ala
Gly Gly Cys Thr Cys Gly Ala Ala Thr Thr Gly Cys Thr 3545
3550 3555 Cys Ala Gly Cys Thr Gly Ala
Gly Thr Gly Ala Cys Ala Thr Cys 3560 3565
3570 Cys Ala Thr Gly Cys Ala Gly Thr Ala Ala Ala Gly
Gly Ala Gly 3575 3580 3585
Cys Thr Gly Ala Ala Cys Cys Thr Thr Cys Ala Gly Gly Ala Gly 3590
3595 3600 Thr Ala Cys Ala Gly
Ala Cys Ala Gly Cys Ala Cys Cys Cys Thr 3605 3610
3615 Thr Gly Thr Gly Cys Cys Cys Ala Gly Gly
Ala Thr Ala Ala Thr 3620 3625 3630
Gly Gly Thr Gly Gly Cys Thr Gly Thr Thr Cys Ala Cys Ala Thr
3635 3640 3645 Ala Thr
Cys Thr Gly Cys Cys Thr Thr Gly Thr Ala Ala Ala Ala 3650
3655 3660 Gly Gly Ala Gly Ala Thr Gly
Gly Thr Ala Cys Gly Ala Cys Ala 3665 3670
3675 Ala Gly Ala Thr Gly Cys Thr Cys Cys Thr Gly Cys
Cys Cys Cys 3680 3685 3690
Ala Thr Gly Cys Ala Cys Thr Thr Ala Gly Thr Thr Cys Thr Gly 3695
3700 3705 Cys Thr Thr Cys Ala
Gly Gly Ala Thr Gly Ala Gly Cys Thr Gly 3710 3715
3720 Thr Cys Cys Thr Gly Thr Gly Gly Ala Gly
Ala Gly Cys Cys Thr 3725 3730 3735
Cys Cys Ala Ala Cys Gly Thr Gly Thr Thr Cys Thr Cys Cys Thr
3740 3745 3750 Cys Ala
Gly Cys Ala Gly Thr Thr Thr Ala Cys Cys Thr Gly Cys 3755
3760 3765 Thr Thr Cys Ala Cys Thr Gly
Gly Gly Gly Ala Cys Ala Thr Thr 3770 3775
3780 Gly Ala Cys Thr Gly Cys Ala Thr Cys Cys Cys Thr
Gly Thr Gly 3785 3790 3795
Gly Cys Thr Thr Gly Gly Cys Gly Gly Thr Gly Thr Gly Ala Thr 3800
3805 3810 Gly Gly Gly Thr Thr
Cys Ala Cys Thr Gly Ala Gly Thr Gly Cys 3815 3820
3825 Gly Ala Ala Gly Ala Cys Cys Ala Cys Ala
Gly Cys Gly Ala Thr 3830 3835 3840
Gly Ala Ala Cys Thr Cys Ala Ala Thr Thr Gly Thr Cys Cys Cys
3845 3850 3855 Gly Thr
Gly Thr Gly Cys Thr Cys Ala Gly Ala Gly Thr Cys Thr 3860
3865 3870 Cys Ala Gly Thr Thr Cys Cys
Ala Gly Thr Gly Thr Gly Cys Cys 3875 3880
3885 Ala Gly Cys Gly Gly Gly Cys Ala Gly Thr Gly Cys
Ala Thr Thr 3890 3895 3900
Gly Ala Thr Gly Gly Thr Gly Cys Cys Cys Thr Thr Cys Gly Ala 3905
3910 3915 Thr Gly Cys Ala Ala
Thr Gly Gly Cys Gly Ala Thr Gly Cys Gly 3920 3925
3930 Ala Ala Cys Thr Gly Cys Cys Ala Gly Gly
Ala Cys Ala Ala Ala 3935 3940 3945
Thr Cys Ala Gly Ala Thr Gly Ala Gly Ala Ala Gly Ala Ala Cys
3950 3955 3960 Thr Gly
Thr Gly Ala Ala Gly Thr Gly Cys Thr Thr Thr Gly Thr 3965
3970 3975 Thr Thr Ala Ala Thr Thr Gly
Ala Thr Cys Ala Gly Thr Thr Cys 3980 3985
3990 Cys Gly Cys Thr Gly Thr Gly Cys Cys Ala Ala Thr
Gly Gly Thr 3995 4000 4005
Cys Ala Gly Thr Gly Cys Gly Thr Thr Gly Gly Ala Ala Ala Gly 4010
4015 4020 Cys Ala Cys Ala Ala
Gly Ala Ala Ala Thr Gly Thr Gly Ala Cys 4025 4030
4035 Cys Ala Cys Ala Gly Thr Gly Thr Gly Gly
Ala Cys Thr Gly Cys 4040 4045 4050
Ala Gly Thr Gly Ala Cys Ala Gly Ala Thr Cys Thr Gly Ala Cys
4055 4060 4065 Gly Ala
Gly Cys Thr Gly Gly Ala Cys Thr Gly Thr Thr Ala Thr 4070
4075 4080 Cys Cys Ala Ala Cys Thr Gly
Ala Gly Gly Ala Gly Cys Cys Ala 4085 4090
4095 Gly Cys Ala Cys Cys Ala Cys Ala Ala Gly Cys Cys
Ala Cys Cys 4100 4105 4110
Ala Ala Cys Ala Cys Ala Gly Thr Thr Gly Gly Thr Thr Cys Cys 4115
4120 4125 Gly Thr Thr Ala Thr
Thr Gly Gly Ala Gly Thr Ala Ala Thr Thr 4130 4135
4140 Gly Thr Cys Ala Cys Cys Ala Thr Thr Thr
Thr Thr Gly Thr Gly 4145 4150 4155
Thr Cys Thr Gly Gly Ala Ala Cys Cys Ala Thr Ala Thr Ala Cys
4160 4165 4170 Thr Thr
Thr Ala Thr Cys Thr Gly Cys Cys Ala Gly Ala Gly Gly 4175
4180 4185 Ala Thr Gly Cys Thr Gly Thr
Gly Thr Cys Cys Thr Cys Gly Thr 4190 4195
4200 Ala Thr Gly Ala Ala Gly Gly Gly Ala Gly Ala Cys
Gly Gly Gly 4205 4210 4215
Gly Ala Gly Ala Cys Cys Ala Thr Gly Ala Cys Thr Ala Ala Cys 4220
4225 4230 Gly Ala Cys Thr Ala
Thr Gly Thr Gly Gly Thr Thr Cys Ala Cys 4235 4240
4245 Ala Gly Cys Cys Cys Gly Gly Cys Gly Thr
Cys Thr Gly Thr Gly 4250 4255 4260
Cys Cys Cys Cys Thr Thr Gly Gly Thr Thr Ala Thr Gly Thr Thr
4265 4270 4275 Cys Cys
Thr Cys Ala Cys Cys Cys Ala Ala Gly Cys Thr Cys Thr 4280
4285 4290 Cys Thr Cys Thr Cys Thr Gly
Gly Ala Thr Cys Thr Cys Thr Thr 4295 4300
4305 Cys Cys Ala Gly Gly Ala Ala Thr Gly Thr Cys Thr
Cys Gly Ala 4310 4315 4320
Gly Gly Cys Ala Ala Ala Thr Cys Ala Ala Thr Gly Ala Thr Cys 4325
4330 4335 Ala Gly Thr Thr Cys
Cys Cys Thr Cys Ala Gly Thr Ala Thr Cys 4340 4345
4350 Ala Thr Gly Gly Gly Gly Gly Gly Ala Ala
Gly Cys Ala Gly Thr 4355 4360 4365
Gly Gly Gly Cys Cys Cys Cys Cys Cys Thr Ala Thr Gly Ala Thr
4370 4375 4380 Cys Gly
Ala Gly Cys Gly Cys Ala Cys Gly Thr Cys Ala Cys Gly 4385
4390 4395 Gly Gly Ala Gly Cys Cys Thr
Cys Cys Thr Cys Ala Ala Gly Cys 4400 4405
4410 Ala Gly Thr Thr Cys Thr Thr Cys Cys Ala Gly Thr
Ala Cys Cys 4415 4420 4425
Ala Ala Ala Gly Gly Cys Ala Cys Thr Thr Ala Thr Thr Thr Cys 4430
4435 4440 Cys Cys Thr Gly Cys
Ala Ala Thr Thr Thr Thr Gly Ala Ala Cys 4445 4450
4455 Cys Cys Ala Cys Cys Ala Cys Cys Ala Thr
Cys Cys Cys Cys Thr 4460 4465 4470
Gly Cys Cys Ala Cys Ala Gly Ala Ala Ala Gly Ala Thr Cys Cys
4475 4480 4485 Cys Ala
Thr Thr Ala Thr Ala Cys Cys Ala Thr Gly Gly Ala Ala 4490
4495 4500 Thr Thr Thr Gly Gly Thr Thr
Ala Thr Thr Cys Thr Thr Cys Cys 4505 4510
4515 Ala Ala Cys Ala Gly Thr Cys Cys Thr Thr Cys Cys
Ala Cys Ala 4520 4525 4530
Cys Ala Thr Ala Gly Gly Thr Cys Cys Thr Ala Cys Ala Gly Cys 4535
4540 4545 Thr Ala Thr Ala Gly
Gly Cys Cys Gly Thr Ala Cys Ala Gly Cys 4550 4555
4560 Thr Ala Cys Cys Gly Gly Cys Ala Cys Thr
Thr Thr Gly Cys Ala 4565 4570 4575
Cys Cys Gly Cys Cys Cys Ala Cys Cys Ala Cys Ala Cys Cys Cys
4580 4585 4590 Thr Gly
Cys Ala Gly Cys Ala Cys Thr Gly Ala Thr Gly Thr Cys 4595
4600 4605 Thr Gly Thr Gly Ala Cys Ala
Gly Thr Gly Ala Cys Thr Ala Thr 4610 4615
4620 Gly Cys Thr Cys Cys Thr Ala Gly Cys Cys Gly Gly
Ala Gly Gly 4625 4630 4635
Ala Thr Gly Ala Cys Cys Thr Cys Gly Gly Thr Gly Gly Cys Ala 4640
4645 4650 Ala Cys Ala Gly Cys
Cys Ala Ala Gly Gly Gly Cys Thr Ala Cys 4655 4660
4665 Ala Cys Cys Ala Gly Thr Gly Ala Cys Gly
Thr Gly Ala Ala Cys 4670 4675 4680
Thr Ala Thr Gly Ala Cys Thr Cys Ala Gly Ala Ala Cys Cys Thr
4685 4690 4695 Gly Thr
Gly Cys Cys Cys Cys Cys Ala Cys Cys Gly Cys Cys Cys 4700
4705 4710 Ala Cys Ala Cys Cys Cys Cys
Gly Ala Ala Gly Cys Cys Ala Gly 4715 4720
4725 Thr Ala Cys Thr Thr Gly Thr Cys Ala Gly Cys Gly
Gly Ala Gly 4730 4735 4740
Gly Ala Gly Ala Ala Cys Thr Ala Thr Gly Ala Ala Ala Gly Cys 4745
4750 4755 Thr Gly Cys Cys Cys
Cys Cys Cys Thr Thr Cys Cys Cys Cys Ala 4760 4765
4770 Thr Ala Cys Ala Cys Gly Gly Ala Gly Ala
Gly Gly Ala Gly Thr 4775 4780 4785
Thr Ala Cys Thr Cys Cys Cys Ala Cys Cys Ala Cys Cys Thr Cys
4790 4795 4800 Thr Ala
Cys Cys Cys Gly Cys Cys Ala Cys Cys Ala Cys Cys Cys 4805
4810 4815 Thr Cys Cys Cys Cys Cys Thr
Gly Cys Ala Cys Gly Gly Ala Cys 4820 4825
4830 Thr Cys Cys Thr Cys Cys Thr Gly Ala 4835
4840 94842DNAMouse 9atgggggccg tgctgaggag cctcctggcc
tgcagcttct gcgtgctgct gagagcggcc 60cctttgttgc tttatgcaaa cagacgggac
ttgagattgg ttgatgctac aaatggcaaa 120gagaatgcaa cgattgtagt tggaggcttg
gaggatgcag ctgcggtgga ctttgtgttt 180ggtcatggct tgatatactg gagtgatgtc
agcgaagaag ccattaaacg aacagaattt 240aacaaaagtg aaagtgtaca gaatgttgtt
gtttctggat tattgtcccc ggatgggctg 300gcatgtgatt ggcttggaga aaaattgtac
tggacagatt ctgaaactaa tcgtattgaa 360gtttctaatt tagatggatc tttacgaaaa
gttttatttt ggcaagagtt ggatcaaccc 420agagctattg ccttagatcc atcaagtggg
ttcatgtact ggacagactg gggagaagtg 480ccaaagatag aacgggctgg gatggatggc
tcaagtcgct tcgttataat aaacacggag 540atttactggc caaacggact gactctggat
tatcaggagc ggaagcttta ctgggccgat 600gcaaaactta atttcatcca taaatcaaac
ctggatggaa caaaccggca ggcagtggtt 660aaaggttccc ttccacatcc ttttgccttg
acgttatttg aggacacatt gtactggact 720gactggaata cacactctat tttggcttgc
aacaaatata ctggcgaggg tctgcgtgaa 780attcattcta acatcttctc tcccatggat
atacatgctt tcagccaaca gaggcagcca 840aatgctacaa atccatgtgg aattgataat
ggtggttgtt cccatttgtg tttgatgtct 900ccagtcaagc ctttttatca gtgtgcttgc
ccaactgggg tcaagctgat ggagaatgga 960aagacctgca aagatggtgc cactgaacta
ttgctgttag cccgacggac agacttgagg 1020cgaatttctt tggatacacc cgattttact
gacattgttc tgcagttaga agatatccgg 1080catgccattg ccatagacta tgaccctgta
gaaggctaca tatactggac agatgacgaa 1140gtgagggcta tccgtcgctc cttcatagat
ggatctggca gtcagtttgt ggtcacggcc 1200cagattgctc atcctgatgg tattgctgtt
gactgggttg caaggaacct gtactggaca 1260gacactggca cggatcgtat agaagtgaca
aggctcaatg ggaccatgag gaagatcttg 1320atttcagagg acttagagga gccccgggct
atcgtgttag atcccatggt tgggtacatg 1380tattggacag actggggaga aatcccaaaa
atagagcgag ctgctctgga cggatctgac 1440cgagtagttc ttgtcaacac ttcccttggt
tggccaaacg gcttagccct ggattatgat 1500gaaggcacaa tatactgggg agatgccaaa
acagacaaaa ttgaggttat gaataccgat 1560ggcaccggga ggcgagtgct ggtggaagac
aagatccctc acatatttgg gtttaccttg 1620ctgggtgact atgtttactg gactgactgg
cagaggcgga gcatcgagag agtacacaaa 1680cggagcgcag agagggaagt catcatagac
cagctgccag acctcatggg actgaaggcc 1740acaagtgttc acagagtcat tggttctaac
ccctgtgctg aggacaatgg aggatgtagc 1800catctttgcc tgtacaggcc tcaggggctt
cgatgcgcct gtcccattgg ctttgagctc 1860atcggtgaca tgaagacatg cattgtcccc
gaggctttcc ttctgttctc gaggagagcg 1920gatatcagac gcatatcttt ggaaacaaac
aacaacaatg tggccattcc tctcactggt 1980gtcaaagaag cctctgcttt ggattttgat
gtcacagaca acaggattta ctggactgat 2040atatcactga agactattag cagagccttt
atgaatggca gtgcactgga acatgtggta 2100gagtttggct tagattatcc agaaggcatg
gcagtggact ggcttgggaa gaacttatac 2160tgggcagaca caggaacaaa tcgcattgag
gtatcaaagt tggacggaca gcaccgacag 2220gttttggtat ggaaagacct tgacagtcct
cgagctctgg cactggatcc tgctgaaggg 2280tttatgtatt ggactgagtg gggaggcaag
cctaagattg acagggctgc tatggatgga 2340agtgaacgca ctacattagt tccaaatgta
ggccgagcaa atggtctcac catcgactat 2400gctaaaaggc ggctttactg gacagacctg
gacactaacc taatagaatc ctcagatatg 2460ctcggactca accgtgaagt tatagcagat
gacttgcctc atccttttgg cttaactcag 2520taccaagatt acatctactg gacagactgg
agccgacgca gcattgaacg tgccaacaaa 2580accagtggcc aaaaccgcac catcatccag
ggccatttgg actatgtgat ggacatcctg 2640gtcttccact cttcccggca ggcagggtgg
aatgagtgtg cctccagcaa cgggcactgc 2700tcccacctct gcttggctgt gcccgtcgga
ggttttgtgt gtggatgccc tgcccactac 2760tccctgaatg ctgacaacag gacctgcagt
gctcccagca ccttcctgct cttcagtcag 2820aagagcgcca tcaaccgcat ggtgattgat
gaacaacaga gccctgacat catccttcct 2880atccacagcc ttcggaacgt ccgggccatt
gactatgacc ctttggacaa gcagctctac 2940tggattgact ctcgacaaaa ctccatacga
aaggcacatg aagatggtgg ccagggtttt 3000aatgtagttg caaactcggt cgcaaatcag
aaccttgaaa tacagcccta tgatctcagc 3060attgatattt atagccgtta catctactgg
acctgtgaag ctaccaatgt cattgatgtg 3120acgagattag atggacgatc agttggagtg
gttctaaaag gcgagcaaga cagacctcga 3180gccattgtgg taaaccccga gaaagggtat
atgtatttta ccaatcttca ggaaagatct 3240cctaaaattg aacgggctgc attggatggt
acagaacgag aggtcctctt tttcagtggc 3300ttaagtaaac caattgcttt ggctcttgat
agcaagctgg gcaagctctt ctgggctgac 3360tcagatctcc ggcgaattga aagcagtgat
ctctcaggtg ccaacaggat cgtgctagaa 3420gactctaata tattacagcc tgtgggcctg
accgtgtttg aaaactggct ctattggatt 3480gataaacagc agcagatgat tgaaaaaatt
gacatgactg gtcgagaagg aagaaccaag 3540gtccaggctc gaattgctca gctgagtgac
atccatgcag taaaggagct gaaccttcag 3600gagtacagac agcacccttg tgcccaggat
aatggtggct gttcacatat ctgccttgta 3660aaaggagatg gtacgacaag atgctcctgc
cccatgcact tagttctgct tcaggatgag 3720ctgtcctgtg gagagcctcc aacgtgttct
cctcagcagt ttacctgctt cactggggac 3780attgactgca tccctgtggc ttggcggtgt
gatgggttca ctgagtgcga agaccacagc 3840gatgaactca attgtcccgt gtgctcagag
tctcagttcc agtgtgccag cgggcagtgc 3900attgatggtg cccttcgatg caatggcgat
gcgaactgcc aggacaaatc agatgagaag 3960aactgtgaag tgctttgttt aattgatcag
ttccgctgtg ccaatggtca gtgcgttgga 4020aagcacaaga aatgtgacca cagtgtggac
tgcagtgaca gatctgacga gctggactgt 4080tatccaactg aggagccagc accacaagcc
accaacacag ttggttccgt tattggagta 4140attgtcacca tttttgtgtc tggaaccata
tactttatct gccagaggat gctgtgtcct 4200cgtatgaagg gagacgggga gaccatgact
aacgactatg tggttcacag cccggcgtct 4260gtgccccttg gttatgttcc tcacccaagc
tctctctctg gatctcttcc aggaatgtct 4320cgaggcaaat caatgatcag ttccctcagt
atcatggggg gaagcagtgg gcccccctat 4380gatcgagcgc acgtcacggg agcctcctca
agcagttctt ccagtaccaa aggcacttat 4440ttccctgcaa ttttgaaccc accaccatcc
cctgccacag aaagatccca ttataccatg 4500gaatttggtt attcttccaa cagtccttcc
acacataggt cctacagcta taggccgtac 4560agctaccggc actttgcacc gcccaccaca
ccctgcagca ctgatgtctg tgacagtgac 4620tatgctccta gccggaggat gacctcggtg
gcaacagcca agggctacac cagtgacgtg 4680aactatgact cagaacctgt gcccccaccg
cccacacccc gaagccagta cttgtcagcg 4740gaggagaact atgaaagctg ccccccttcc
ccatacacgg agaggagtta ctcccaccac 4800ctctacccgc caccaccctc cccctgcacg
gactcctcct ga 4842101613PRTMouse 10Met Gly Ala Val
Leu Arg Ser Leu Leu Ala Cys Ser Phe Cys Val Leu 1 5
10 15 Leu Arg Ala Ala Pro Leu Leu Leu Tyr
Ala Asn Arg Arg Asp Leu Arg 20 25
30 Leu Val Asp Ala Thr Asn Gly Lys Glu Asn Ala Thr Ile Val
Val Gly 35 40 45
Gly Leu Glu Asp Ala Ala Ala Val Asp Phe Val Phe Gly His Gly Leu 50
55 60 Ile Tyr Trp Ser Asp
Val Ser Glu Glu Ala Ile Lys Arg Thr Glu Phe 65 70
75 80 Asn Lys Ser Glu Ser Val Gln Asn Val Val
Val Ser Gly Leu Leu Ser 85 90
95 Pro Asp Gly Leu Ala Cys Asp Trp Leu Gly Glu Lys Leu Tyr Trp
Thr 100 105 110 Asp
Ser Glu Thr Asn Arg Ile Glu Val Ser Asn Leu Asp Gly Ser Leu 115
120 125 Arg Lys Val Leu Phe Trp
Gln Glu Leu Asp Gln Pro Arg Ala Ile Ala 130 135
140 Leu Asp Pro Ser Ser Gly Phe Met Tyr Trp Thr
Asp Trp Gly Glu Val 145 150 155
160 Pro Lys Ile Glu Arg Ala Gly Met Asp Gly Ser Ser Arg Phe Val Ile
165 170 175 Ile Asn
Thr Glu Ile Tyr Trp Pro Asn Gly Leu Thr Leu Asp Tyr Gln 180
185 190 Glu Arg Lys Leu Tyr Trp Ala
Asp Ala Lys Leu Asn Phe Ile His Lys 195 200
205 Ser Asn Leu Asp Gly Thr Asn Arg Gln Ala Val Val
Lys Gly Ser Leu 210 215 220
Pro His Pro Phe Ala Leu Thr Leu Phe Glu Asp Thr Leu Tyr Trp Thr 225
230 235 240 Asp Trp Asn
Thr His Ser Ile Leu Ala Cys Asn Lys Tyr Thr Gly Glu 245
250 255 Gly Leu Arg Glu Ile His Ser Asn
Ile Phe Ser Pro Met Asp Ile His 260 265
270 Ala Phe Ser Gln Gln Arg Gln Pro Asn Ala Thr Asn Pro
Cys Gly Ile 275 280 285
Asp Asn Gly Gly Cys Ser His Leu Cys Leu Met Ser Pro Val Lys Pro 290
295 300 Phe Tyr Gln Cys
Ala Cys Pro Thr Gly Val Lys Leu Met Glu Asn Gly 305 310
315 320 Lys Thr Cys Lys Asp Gly Ala Thr Glu
Leu Leu Leu Leu Ala Arg Arg 325 330
335 Thr Asp Leu Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr
Asp Ile 340 345 350
Val Leu Gln Leu Glu Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp
355 360 365 Pro Val Glu Gly
Tyr Ile Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile 370
375 380 Arg Arg Ser Phe Ile Asp Gly Ser
Gly Ser Gln Phe Val Val Thr Ala 385 390
395 400 Gln Ile Ala His Pro Asp Gly Ile Ala Val Asp Trp
Val Ala Arg Asn 405 410
415 Leu Tyr Trp Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu
420 425 430 Asn Gly Thr
Met Arg Lys Ile Leu Ile Ser Glu Asp Leu Glu Glu Pro 435
440 445 Arg Ala Ile Val Leu Asp Pro Met
Val Gly Tyr Met Tyr Trp Thr Asp 450 455
460 Trp Gly Glu Ile Pro Lys Ile Glu Arg Ala Ala Leu Asp
Gly Ser Asp 465 470 475
480 Arg Val Val Leu Val Asn Thr Ser Leu Gly Trp Pro Asn Gly Leu Ala
485 490 495 Leu Asp Tyr Asp
Glu Gly Thr Ile Tyr Trp Gly Asp Ala Lys Thr Asp 500
505 510 Lys Ile Glu Val Met Asn Thr Asp Gly
Thr Gly Arg Arg Val Leu Val 515 520
525 Glu Asp Lys Ile Pro His Ile Phe Gly Phe Thr Leu Leu Gly
Asp Tyr 530 535 540
Val Tyr Trp Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys 545
550 555 560 Arg Ser Ala Glu Arg
Glu Val Ile Ile Asp Gln Leu Pro Asp Leu Met 565
570 575 Gly Leu Lys Ala Thr Ser Val His Arg Val
Ile Gly Ser Asn Pro Cys 580 585
590 Ala Glu Asp Asn Gly Gly Cys Ser His Leu Cys Leu Tyr Arg Pro
Gln 595 600 605 Gly
Leu Arg Cys Ala Cys Pro Ile Gly Phe Glu Leu Ile Gly Asp Met 610
615 620 Lys Thr Cys Ile Val Pro
Glu Ala Phe Leu Leu Phe Ser Arg Arg Ala 625 630
635 640 Asp Ile Arg Arg Ile Ser Leu Glu Thr Asn Asn
Asn Asn Val Ala Ile 645 650
655 Pro Leu Thr Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Thr
660 665 670 Asp Asn
Arg Ile Tyr Trp Thr Asp Ile Ser Leu Lys Thr Ile Ser Arg 675
680 685 Ala Phe Met Asn Gly Ser Ala
Leu Glu His Val Val Glu Phe Gly Leu 690 695
700 Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Leu Gly
Lys Asn Leu Tyr 705 710 715
720 Trp Ala Asp Thr Gly Thr Asn Arg Ile Glu Val Ser Lys Leu Asp Gly
725 730 735 Gln His Arg
Gln Val Leu Val Trp Lys Asp Leu Asp Ser Pro Arg Ala 740
745 750 Leu Ala Leu Asp Pro Ala Glu Gly
Phe Met Tyr Trp Thr Glu Trp Gly 755 760
765 Gly Lys Pro Lys Ile Asp Arg Ala Ala Met Asp Gly Ser
Glu Arg Thr 770 775 780
Thr Leu Val Pro Asn Val Gly Arg Ala Asn Gly Leu Thr Ile Asp Tyr 785
790 795 800 Ala Lys Arg Arg
Leu Tyr Trp Thr Asp Leu Asp Thr Asn Leu Ile Glu 805
810 815 Ser Ser Asp Met Leu Gly Leu Asn Arg
Glu Val Ile Ala Asp Asp Leu 820 825
830 Pro His Pro Phe Gly Leu Thr Gln Tyr Gln Asp Tyr Ile Tyr
Trp Thr 835 840 845
Asp Trp Ser Arg Arg Ser Ile Glu Arg Ala Asn Lys Thr Ser Gly Gln 850
855 860 Asn Arg Thr Ile Ile
Gln Gly His Leu Asp Tyr Val Met Asp Ile Leu 865 870
875 880 Val Phe His Ser Ser Arg Gln Ala Gly Trp
Asn Glu Cys Ala Ser Ser 885 890
895 Asn Gly His Cys Ser His Leu Cys Leu Ala Val Pro Val Gly Gly
Phe 900 905 910 Val
Cys Gly Cys Pro Ala His Tyr Ser Leu Asn Ala Asp Asn Arg Thr 915
920 925 Cys Ser Ala Pro Ser Thr
Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile 930 935
940 Asn Arg Met Val Ile Asp Glu Gln Gln Ser Pro
Asp Ile Ile Leu Pro 945 950 955
960 Ile His Ser Leu Arg Asn Val Arg Ala Ile Asp Tyr Asp Pro Leu Asp
965 970 975 Lys Gln
Leu Tyr Trp Ile Asp Ser Arg Gln Asn Ser Ile Arg Lys Ala 980
985 990 His Glu Asp Gly Gly Gln Gly
Phe Asn Val Val Ala Asn Ser Val Ala 995 1000
1005 Asn Gln Asn Leu Glu Ile Gln Pro Tyr Asp
Leu Ser Ile Asp Ile 1010 1015 1020
Tyr Ser Arg Tyr Ile Tyr Trp Thr Cys Glu Ala Thr Asn Val Ile
1025 1030 1035 Asp Val
Thr Arg Leu Asp Gly Arg Ser Val Gly Val Val Leu Lys 1040
1045 1050 Gly Glu Gln Asp Arg Pro Arg
Ala Ile Val Val Asn Pro Glu Lys 1055 1060
1065 Gly Tyr Met Tyr Phe Thr Asn Leu Gln Glu Arg Ser
Pro Lys Ile 1070 1075 1080
Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu Val Leu Phe Phe 1085
1090 1095 Ser Gly Leu Ser Lys
Pro Ile Ala Leu Ala Leu Asp Ser Lys Leu 1100 1105
1110 Gly Lys Leu Phe Trp Ala Asp Ser Asp Leu
Arg Arg Ile Glu Ser 1115 1120 1125
Ser Asp Leu Ser Gly Ala Asn Arg Ile Val Leu Glu Asp Ser Asn
1130 1135 1140 Ile Leu
Gln Pro Val Gly Leu Thr Val Phe Glu Asn Trp Leu Tyr 1145
1150 1155 Trp Ile Asp Lys Gln Gln Gln
Met Ile Glu Lys Ile Asp Met Thr 1160 1165
1170 Gly Arg Glu Gly Arg Thr Lys Val Gln Ala Arg Ile
Ala Gln Leu 1175 1180 1185
Ser Asp Ile His Ala Val Lys Glu Leu Asn Leu Gln Glu Tyr Arg 1190
1195 1200 Gln His Pro Cys Ala
Gln Asp Asn Gly Gly Cys Ser His Ile Cys 1205 1210
1215 Leu Val Lys Gly Asp Gly Thr Thr Arg Cys
Ser Cys Pro Met His 1220 1225 1230
Leu Val Leu Leu Gln Asp Glu Leu Ser Cys Gly Glu Pro Pro Thr
1235 1240 1245 Cys Ser
Pro Gln Gln Phe Thr Cys Phe Thr Gly Asp Ile Asp Cys 1250
1255 1260 Ile Pro Val Ala Trp Arg Cys
Asp Gly Phe Thr Glu Cys Glu Asp 1265 1270
1275 His Ser Asp Glu Leu Asn Cys Pro Val Cys Ser Glu
Ser Gln Phe 1280 1285 1290
Gln Cys Ala Ser Gly Gln Cys Ile Asp Gly Ala Leu Arg Cys Asn 1295
1300 1305 Gly Asp Ala Asn Cys
Gln Asp Lys Ser Asp Glu Lys Asn Cys Glu 1310 1315
1320 Val Leu Cys Leu Ile Asp Gln Phe Arg Cys
Ala Asn Gly Gln Cys 1325 1330 1335
Val Gly Lys His Lys Lys Cys Asp His Ser Val Asp Cys Ser Asp
1340 1345 1350 Arg Ser
Asp Glu Leu Asp Cys Tyr Pro Thr Glu Glu Pro Ala Pro 1355
1360 1365 Gln Ala Thr Asn Thr Val Gly
Ser Val Ile Gly Val Ile Val Thr 1370 1375
1380 Ile Phe Val Ser Gly Thr Ile Tyr Phe Ile Cys Gln
Arg Met Leu 1385 1390 1395
Cys Pro Arg Met Lys Gly Asp Gly Glu Thr Met Thr Asn Asp Tyr 1400
1405 1410 Val Val His Ser Pro
Ala Ser Val Pro Leu Gly Tyr Val Pro His 1415 1420
1425 Pro Ser Ser Leu Ser Gly Ser Leu Pro Gly
Met Ser Arg Gly Lys 1430 1435 1440
Ser Met Ile Ser Ser Leu Ser Ile Met Gly Gly Ser Ser Gly Pro
1445 1450 1455 Pro Tyr
Asp Arg Ala His Val Thr Gly Ala Ser Ser Ser Ser Ser 1460
1465 1470 Ser Ser Thr Lys Gly Thr Tyr
Phe Pro Ala Ile Leu Asn Pro Pro 1475 1480
1485 Pro Ser Pro Ala Thr Glu Arg Ser His Tyr Thr Met
Glu Phe Gly 1490 1495 1500
Tyr Ser Ser Asn Ser Pro Ser Thr His Arg Ser Tyr Ser Tyr Arg 1505
1510 1515 Pro Tyr Ser Tyr Arg
His Phe Ala Pro Pro Thr Thr Pro Cys Ser 1520 1525
1530 Thr Asp Val Cys Asp Ser Asp Tyr Ala Pro
Ser Arg Arg Met Thr 1535 1540 1545
Ser Val Ala Thr Ala Lys Gly Tyr Thr Ser Asp Val Asn Tyr Asp
1550 1555 1560 Ser Glu
Pro Val Pro Pro Pro Pro Thr Pro Arg Ser Gln Tyr Leu 1565
1570 1575 Ser Ala Glu Glu Asn Tyr Glu
Ser Cys Pro Pro Ser Pro Tyr Thr 1580 1585
1590 Glu Arg Ser Tyr Ser His His Leu Tyr Pro Pro Pro
Pro Ser Pro 1595 1600 1605
Cys Thr Asp Ser Ser 1610 114161DNAMouse 11atggaaacgg
cgccgacccg ggcccctccg ccgccgccgc cgccgctgct gctgctggtg 60ctgtactgca
gcttggtccc cgccgcggcc tcaccgctcc tgttgtttgc caaccgccgg 120gatgtgcggc
tagtggatgc cggcggagtg aagctggagt ccaccattgt ggccagtggc 180ctggaggatg
cagctgctgt agacttccag ttctccaagg gtgctgtgta ctggacagat 240gtgagcgagg
aggccatcaa acagacctac ctgaaccaga ctggagctgc tgcacagaac 300attgtcatct
cgggcctcgt gtcacctgat ggcctggcct gtgactgggt tggcaagaag 360ctgtactgga
cggactccga gaccaaccgc attgaggttg ccaacctcaa tgggacgtcc 420cgtaaggttc
tcttctggca ggacctggac cagccaaggg ccattgccct ggatcctgca 480catgggtaca
tgtactggac tgactggggg gaagcacccc ggatcgagcg ggcagggatg 540gatggcagta
cccggaagat cattgtagac tccgacattt actggcccaa tgggctgacc 600atcgacctgg
aggaacagaa gctgtactgg gccgatgcca agctcagctt catccaccgt 660gccaacctgg
acggctcctt ccggcagaag gtggtggagg gcagcctcac tcaccctttt 720gccctgacac
tctctgggga cacactctac tggacagact ggcagacccg ctccatccac 780gcctgcaaca
agtggacagg ggagcagagg aaggagatcc ttagtgctct gtactcaccc 840atggacatcc
aagtgctgag ccaggagcgg cagcctccct tccacacacc atgcgaggag 900gacaacggtg
gctgttccca cctgtgcctg ctgtccccga gggagccttt ctactcctgt 960gcctgcccca
ctggtgtgca gttgcaggac aatggcaaga cgtgcaagac aggggctgag 1020gaagtgctgc
tgctggctcg gaggacagac ctgaggagga tctctctgga cacccctgac 1080ttcacagaca
tagtgctgca ggtgggcgac atccggcatg ccattgccat tgactacgat 1140cccctggagg
gctacgtgta ctggaccgat gatgaggtgc gggctatccg cagggcgtac 1200ctagatggct
caggtgcgca gacacttgtg aacactgaga tcaatgaccc cgatggcatt 1260gctgtggact
gggtcgcccg gaacctctac tggacagata caggcactga cagaattgag 1320gtgactcgcc
tcaacggcac ctcccgaaag atcctggtat ctgaggacct ggacgaaccg 1380cgagccattg
tgttgcaccc tgtgatgggc ctcatgtact ggacagactg gggggagaac 1440cccaaaatcg
aatgcgccaa cctagatggg agagatcggc atgtcctggt gaacacctcc 1500cttgggtggc
ccaatggact ggccctggac ctgcaggagg gcaagctgta ctggggggat 1560gccaaaactg
ataaaatcga ggtgatcaac atagacggga caaagcggaa gaccctgctt 1620gaggacaagc
tcccacacat ttttgggttc acactgctgg gggacttcat ctactggacc 1680gactggcaga
gacgcagtat tgaaagggtc cacaaggtca aggccagccg ggatgtcatc 1740attgatcaac
tccccgacct gatgggactc aaagccgtga atgtggccaa ggttgtcgga 1800accaacccat
gtgcggatgg aaatggaggg tgcagccatc tgtgcttctt caccccacgt 1860gccaccaagt
gtggctgccc cattggcctg gagctgttga gtgacatgaa gacctgcata 1920atccccgagg
ccttcctggt attcaccagc agagccacca tccacaggat ctccctggag 1980actaacaaca
acgatgtggc tatcccactc acgggtgtca aagaggcctc tgcactggac 2040tttgatgtgt
ccaacaatca catctactgg actgatgtta gcctcaagac gatcagccga 2100gccttcatga
atgggagctc agtggagcac gtgattgagt ttggcctcga ctaccctgaa 2160ggaatggctg
tggactggat gggcaagaac ctctattggg cggacacagg gaccaacagg 2220attgaggtgg
cccggctgga tgggcagttc cggcaggtgc ttgtgtggag agaccttgac 2280aaccccaggt
ctctggctct ggatcctact aaaggctaca tctactggac tgagtggggt 2340ggcaagccaa
ggattgtgcg ggccttcatg gatgggacca attgtatgac actggtagac 2400aaggtgggcc
gggccaacga cctcaccatt gattatgccg accagcgact gtactggact 2460gacctggaca
ccaacatgat tgagtcttcc aacatgctgg gtcaggagcg catggtgata 2520gctgacgatc
tgccctaccc gtttggcctg actcaatata gcgattacat ctactggact 2580gactggaacc
tgcatagcat tgaacgggcg gacaagacca gtgggcggaa ccgcaccctc 2640atccagggtc
acctggactt cgtcatggac atcctggtgt tccactcctc ccgtcaggat 2700ggcctcaacg
actgcgtgca cagcaatggc cagtgtgggc agctgtgcct cgccatcccc 2760ggaggccacc
gctgtggctg tgcttcacac tacacgctgg accccagcag ccgcaactgc 2820agcccgccct
ccaccttctt gctgttcagc cagaaatttg ccatcagccg gatgatcccc 2880gatgaccagc
tcagcccgga ccttgtccta ccccttcatg ggctgaggaa cgtcaaagcc 2940atcaactatg
acccgctgga caagttcatc tactgggtgg acgggcgcca gaacatcaag 3000agggccaagg
acgacggtac ccagccctcc atgctgacct ctcccagcca aagcctgagc 3060ccagacagac
agccacacga cctcagcatt gacatctaca gccggacact gttctggacc 3120tgtgaggcca
ccaacactat caatgtccac cggctggatg gggatgccat gggagtggtg 3180cttcgagggg
accgtgacaa gccaagggcc attgctgtca atgctgagcg agggtacatg 3240tactttacca
acatgcagga ccatgctgcc aagatcgagc gagcctccct ggatggcaca 3300gagcgggagg
tcctcttcac cacaggcctc atccgtcccg tggcccttgt ggtggacaat 3360gctctgggca
agctcttctg ggtggatgcc gacctaaagc gaatcgaaag ctgtgacctc 3420tctggggcca
accgcctgac cctggaagat gccaacatcg tacagccagt aggtctgaca 3480gtgctgggca
ggcacctcta ctggatcgac cgccagcagc agatgatcga gcgcgtggag 3540aagaccactg
gggacaagcg gactagggtt cagggccgtg tcacccacct gacaggcatc 3600catgccgtgg
aggaagtcag cctggaggag ttctcagccc atccttgtgc ccgagacaat 3660ggcggctgct
cccacatctg tatcgccaag ggtgatggaa caccgcgctg ctcgtgccct 3720gtccacctgg
tgctcctgca gaacctgctg acttgtggtg agcctcctac ctgctcccct 3780gatcagtttg
catgtaccac tggtgagatc gactgcatcc ccggagcctg gcgctgtgac 3840ggcttccctg
agtgtgctga ccagagtgat gaagaaggct gcccagtgtg ctccgcctct 3900cagttcccct
gcgctcgagg ccagtgtgtg gacctgcggt tacgctgcga cggtgaggcc 3960gactgccagg
atcgctctga tgaagctaac tgcgatgctg tctgtctgcc caatcagttc 4020cggtgcacca
gcggccagtg tgtcctcatc aagcaacagt gtgactcctt ccccgactgt 4080gctgatgggt
ctgatgagct catgtgtgaa atcaacaagc caccctctga tgacatccca 4140gcccacagca
gtgccattgg g
4161121384PRTMouse 12Met Glu Thr Ala Pro Thr Arg Ala Pro Pro Pro Pro Pro
Pro Pro Leu 1 5 10 15
Leu Leu Leu Val Leu Tyr Cys Ser Leu Val Pro Ala Ala Ala Ser Pro
20 25 30 Leu Leu Leu Phe
Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala Gly 35
40 45 Gly Val Lys Leu Glu Ser Thr Ile Val
Ala Ser Gly Leu Glu Asp Ala 50 55
60 Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val Tyr
Trp Thr Asp 65 70 75
80 Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly Ala
85 90 95 Ala Ala Gln Asn
Ile Val Ile Ser Gly Leu Val Ser Pro Asp Gly Leu 100
105 110 Ala Cys Asp Trp Val Gly Lys Lys Leu
Tyr Trp Thr Asp Ser Glu Thr 115 120
125 Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser Arg Lys
Val Leu 130 135 140
Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala Leu Asp Pro Ala 145
150 155 160 His Gly Tyr Met Tyr
Trp Thr Asp Trp Gly Glu Ala Pro Arg Ile Glu 165
170 175 Arg Ala Gly Met Asp Gly Ser Thr Arg Lys
Ile Ile Val Asp Ser Asp 180 185
190 Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu Glu Gln Lys
Leu 195 200 205 Tyr
Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg Ala Asn Leu Asp 210
215 220 Gly Ser Phe Arg Gln Lys
Val Val Glu Gly Ser Leu Thr His Pro Phe 225 230
235 240 Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp
Thr Asp Trp Gln Thr 245 250
255 Arg Ser Ile His Ala Cys Asn Lys Trp Thr Gly Glu Gln Arg Lys Glu
260 265 270 Ile Leu
Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln Val Leu Ser Gln 275
280 285 Glu Arg Gln Pro Pro Phe His
Thr Pro Cys Glu Glu Asp Asn Gly Gly 290 295
300 Cys Ser His Leu Cys Leu Leu Ser Pro Arg Glu Pro
Phe Tyr Ser Cys 305 310 315
320 Ala Cys Pro Thr Gly Val Gln Leu Gln Asp Asn Gly Lys Thr Cys Lys
325 330 335 Thr Gly Ala
Glu Glu Val Leu Leu Leu Ala Arg Arg Thr Asp Leu Arg 340
345 350 Arg Ile Ser Leu Asp Thr Pro Asp
Phe Thr Asp Ile Val Leu Gln Val 355 360
365 Gly Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp Pro
Leu Glu Gly 370 375 380
Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg Ala Tyr 385
390 395 400 Leu Asp Gly Ser
Gly Ala Gln Thr Leu Val Asn Thr Glu Ile Asn Asp 405
410 415 Pro Asp Gly Ile Ala Val Asp Trp Val
Ala Arg Asn Leu Tyr Trp Thr 420 425
430 Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu Asn Gly
Thr Ser 435 440 445
Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro Arg Ala Ile Val 450
455 460 Leu His Pro Val Met
Gly Leu Met Tyr Trp Thr Asp Trp Gly Glu Asn 465 470
475 480 Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly
Arg Asp Arg His Val Leu 485 490
495 Val Asn Thr Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu Asp Leu
Gln 500 505 510 Glu
Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu Val 515
520 525 Ile Asn Ile Asp Gly Thr
Lys Arg Lys Thr Leu Leu Glu Asp Lys Leu 530 535
540 Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp
Phe Ile Tyr Trp Thr 545 550 555
560 Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala Ser
565 570 575 Arg Asp
Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys Ala 580
585 590 Val Asn Val Ala Lys Val Val
Gly Thr Asn Pro Cys Ala Asp Gly Asn 595 600
605 Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro Arg
Ala Thr Lys Cys 610 615 620
Gly Cys Pro Ile Gly Leu Glu Leu Leu Ser Asp Met Lys Thr Cys Ile 625
630 635 640 Ile Pro Glu
Ala Phe Leu Val Phe Thr Ser Arg Ala Thr Ile His Arg 645
650 655 Ile Ser Leu Glu Thr Asn Asn Asn
Asp Val Ala Ile Pro Leu Thr Gly 660 665
670 Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser Asn
Asn His Ile 675 680 685
Tyr Trp Thr Asp Val Ser Leu Lys Thr Ile Ser Arg Ala Phe Met Asn 690
695 700 Gly Ser Ser Val
Glu His Val Ile Glu Phe Gly Leu Asp Tyr Pro Glu 705 710
715 720 Gly Met Ala Val Asp Trp Met Gly Lys
Asn Leu Tyr Trp Ala Asp Thr 725 730
735 Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln Phe
Arg Gln 740 745 750
Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala Leu Asp
755 760 765 Pro Thr Lys Gly
Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro Arg 770
775 780 Ile Val Arg Ala Phe Met Asp Gly
Thr Asn Cys Met Thr Leu Val Asp 785 790
795 800 Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr
Ala Asp Gln Arg 805 810
815 Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asn Met
820 825 830 Leu Gly Gln
Glu Arg Met Val Ile Ala Asp Asp Leu Pro Tyr Pro Phe 835
840 845 Gly Leu Thr Gln Tyr Ser Asp Tyr
Ile Tyr Trp Thr Asp Trp Asn Leu 850 855
860 His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg Asn
Arg Thr Leu 865 870 875
880 Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His Ser
885 890 895 Ser Arg Gln Asp
Gly Leu Asn Asp Cys Val His Ser Asn Gly Gln Cys 900
905 910 Gly Gln Leu Cys Leu Ala Ile Pro Gly
Gly His Arg Cys Gly Cys Ala 915 920
925 Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser Pro
Pro Ser 930 935 940
Thr Phe Leu Leu Phe Ser Gln Lys Phe Ala Ile Ser Arg Met Ile Pro 945
950 955 960 Asp Asp Gln Leu Ser
Pro Asp Leu Val Leu Pro Leu His Gly Leu Arg 965
970 975 Asn Val Lys Ala Ile Asn Tyr Asp Pro Leu
Asp Lys Phe Ile Tyr Trp 980 985
990 Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly
Thr Gln 995 1000 1005
Pro Ser Met Leu Thr Ser Pro Ser Gln Ser Leu Ser Pro Asp Arg 1010
1015 1020 Gln Pro His Asp Leu
Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe 1025 1030
1035 Trp Thr Cys Glu Ala Thr Asn Thr Ile Asn
Val His Arg Leu Asp 1040 1045 1050
Gly Asp Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro
1055 1060 1065 Arg Ala
Ile Ala Val Asn Ala Glu Arg Gly Tyr Met Tyr Phe Thr 1070
1075 1080 Asn Met Gln Asp His Ala Ala
Lys Ile Glu Arg Ala Ser Leu Asp 1085 1090
1095 Gly Thr Glu Arg Glu Val Leu Phe Thr Thr Gly Leu
Ile Arg Pro 1100 1105 1110
Val Ala Leu Val Val Asp Asn Ala Leu Gly Lys Leu Phe Trp Val 1115
1120 1125 Asp Ala Asp Leu Lys
Arg Ile Glu Ser Cys Asp Leu Ser Gly Ala 1130 1135
1140 Asn Arg Leu Thr Leu Glu Asp Ala Asn Ile
Val Gln Pro Val Gly 1145 1150 1155
Leu Thr Val Leu Gly Arg His Leu Tyr Trp Ile Asp Arg Gln Gln
1160 1165 1170 Gln Met
Ile Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg Thr 1175
1180 1185 Arg Val Gln Gly Arg Val Thr
His Leu Thr Gly Ile His Ala Val 1190 1195
1200 Glu Glu Val Ser Leu Glu Glu Phe Ser Ala His Pro
Cys Ala Arg 1205 1210 1215
Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly Asp Gly 1220
1225 1230 Thr Pro Arg Cys Ser
Cys Pro Val His Leu Val Leu Leu Gln Asn 1235 1240
1245 Leu Leu Thr Cys Gly Glu Pro Pro Thr Cys
Ser Pro Asp Gln Phe 1250 1255 1260
Ala Cys Thr Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala Trp Arg
1265 1270 1275 Cys Asp
Gly Phe Pro Glu Cys Ala Asp Gln Ser Asp Glu Glu Gly 1280
1285 1290 Cys Pro Val Cys Ser Ala Ser
Gln Phe Pro Cys Ala Arg Gly Gln 1295 1300
1305 Cys Val Asp Leu Arg Leu Arg Cys Asp Gly Glu Ala
Asp Cys Gln 1310 1315 1320
Asp Arg Ser Asp Glu Ala Asn Cys Asp Ala Val Cys Leu Pro Asn 1325
1330 1335 Gln Phe Arg Cys Thr
Ser Gly Gln Cys Val Leu Ile Lys Gln Gln 1340 1345
1350 Cys Asp Ser Phe Pro Asp Cys Ala Asp Gly
Ser Asp Glu Leu Met 1355 1360 1365
Cys Glu Ile Asn Lys Pro Pro Ser Asp Asp Ile Pro Ala His Ser
1370 1375 1380 Ser
134845DNAMouse 13atggaaacgg cgccgacccg ggcccctccg ccgccgccgc cgccgctgct
gctgctggtg 60ctgtactgca gcttggtccc cgccgcggcc tcaccgctcc tgttgtttgc
caaccgccgg 120gatgtgcggc tagtggatgc cggcggagtg aagctggagt ccaccattgt
ggccagtggc 180ctggaggatg cagctgctgt agacttccag ttctccaagg gtgctgtgta
ctggacagat 240gtgagcgagg aggccatcaa acagacctac ctgaaccaga ctggagctgc
tgcacagaac 300attgtcatct cgggcctcgt gtcacctgat ggcctggcct gtgactgggt
tggcaagaag 360ctgtactgga cggactccga gaccaaccgc attgaggttg ccaacctcaa
tgggacgtcc 420cgtaaggttc tcttctggca ggacctggac cagccaaggg ccattgccct
ggatcctgca 480catgggtaca tgtactggac tgactggggg gaagcacccc ggatcgagcg
ggcagggatg 540gatggcagta cccggaagat cattgtagac tccgacattt actggcccaa
tgggctgacc 600atcgacctgg aggaacagaa gctgtactgg gccgatgcca agctcagctt
catccaccgt 660gccaacctgg acggctcctt ccggcagaag gtggtggagg gcagcctcac
tcaccctttt 720gccctgacac tctctgggga cacactctac tggacagact ggcagacccg
ctccatccac 780gcctgcaaca agtggacagg ggagcagagg aaggagatcc ttagtgctct
gtactcaccc 840atggacatcc aagtgctgag ccaggagcgg cagcctccct tccacacacc
atgcgaggag 900gacaacggtg gctgttccca cctgtgcctg ctgtccccga gggagccttt
ctactcctgt 960gcctgcccca ctggtgtgca gttgcaggac aatggcaaga cgtgcaagac
aggggctgag 1020gaagtgctgc tgctggctcg gaggacagac ctgaggagga tctctctgga
cacccctgac 1080ttcacagaca tagtgctgca ggtgggcgac atccggcatg ccattgccat
tgactacgat 1140cccctggagg gctacgtgta ctggaccgat gatgaggtgc gggctatccg
cagggcgtac 1200ctagatggct caggtgcgca gacacttgtg aacactgaga tcaatgaccc
cgatggcatt 1260gctgtggact gggtcgcccg gaacctctac tggacagata caggcactga
cagaattgag 1320gtgactcgcc tcaacggcac ctcccgaaag atcctggtat ctgaggacct
ggacgaaccg 1380cgagccattg tgttgcaccc tgtgatgggc ctcatgtact ggacagactg
gggggagaac 1440cccaaaatcg aatgcgccaa cctagatggg agagatcggc atgtcctggt
gaacacctcc 1500cttgggtggc ccaatggact ggccctggac ctgcaggagg gcaagctgta
ctggggggat 1560gccaaaactg ataaaatcga ggtgatcaac atagacggga caaagcggaa
gaccctgctt 1620gaggacaagc tcccacacat ttttgggttc acactgctgg gggacttcat
ctactggacc 1680gactggcaga gacgcagtat tgaaagggtc cacaaggtca aggccagccg
ggatgtcatc 1740attgatcaac tccccgacct gatgggactc aaagccgtga atgtggccaa
ggttgtcgga 1800accaacccat gtgcggatgg aaatggaggg tgcagccatc tgtgcttctt
caccccacgt 1860gccaccaagt gtggctgccc cattggcctg gagctgttga gtgacatgaa
gacctgcata 1920atccccgagg ccttcctggt attcaccagc agagccacca tccacaggat
ctccctggag 1980actaacaaca acgatgtggc tatcccactc acgggtgtca aagaggcctc
tgcactggac 2040tttgatgtgt ccaacaatca catctactgg actgatgtta gcctcaagac
gatcagccga 2100gccttcatga atgggagctc agtggagcac gtgattgagt ttggcctcga
ctaccctgaa 2160ggaatggctg tggactggat gggcaagaac ctctattggg cggacacagg
gaccaacagg 2220attgaggtgg cccggctgga tgggcagttc cggcaggtgc ttgtgtggag
agaccttgac 2280aaccccaggt ctctggctct ggatcctact aaaggctaca tctactggac
tgagtggggt 2340ggcaagccaa ggattgtgcg ggccttcatg gatgggacca attgtatgac
actggtagac 2400aaggtgggcc gggccaacga cctcaccatt gattatgccg accagcgact
gtactggact 2460gacctggaca ccaacatgat tgagtcttcc aacatgctgg gtcaggagcg
catggtgata 2520gctgacgatc tgccctaccc gtttggcctg actcaatata gcgattacat
ctactggact 2580gactggaacc tgcatagcat tgaacgggcg gacaagacca gtgggcggaa
ccgcaccctc 2640atccagggtc acctggactt cgtcatggac atcctggtgt tccactcctc
ccgtcaggat 2700ggcctcaacg actgcgtgca cagcaatggc cagtgtgggc agctgtgcct
cgccatcccc 2760ggaggccacc gctgtggctg tgcttcacac tacacgctgg accccagcag
ccgcaactgc 2820agcccgccct ccaccttctt gctgttcagc cagaaatttg ccatcagccg
gatgatcccc 2880gatgaccagc tcagcccgga ccttgtccta ccccttcatg ggctgaggaa
cgtcaaagcc 2940atcaactatg acccgctgga caagttcatc tactgggtgg acgggcgcca
gaacatcaag 3000agggccaagg acgacggtac ccagccctcc atgctgacct ctcccagcca
aagcctgagc 3060ccagacagac agccacacga cctcagcatt gacatctaca gccggacact
gttctggacc 3120tgtgaggcca ccaacactat caatgtccac cggctggatg gggatgccat
gggagtggtg 3180cttcgagggg accgtgacaa gccaagggcc attgctgtca atgctgagcg
agggtacatg 3240tactttacca acatgcagga ccatgctgcc aagatcgagc gagcctccct
ggatggcaca 3300gagcgggagg tcctcttcac cacaggcctc atccgtcccg tggcccttgt
ggtggacaat 3360gctctgggca agctcttctg ggtggatgcc gacctaaagc gaatcgaaag
ctgtgacctc 3420tctggggcca accgcctgac cctggaagat gccaacatcg tacagccagt
aggtctgaca 3480gtgctgggca ggcacctcta ctggatcgac cgccagcagc agatgatcga
gcgcgtggag 3540aagaccactg gggacaagcg gactagggtt cagggccgtg tcacccacct
gacaggcatc 3600catgccgtgg aggaagtcag cctggaggag ttctcagccc atccttgtgc
ccgagacaat 3660ggcggctgct cccacatctg tatcgccaag ggtgatggaa caccgcgctg
ctcgtgccct 3720gtccacctgg tgctcctgca gaacctgctg acttgtggtg agcctcctac
ctgctcccct 3780gatcagtttg catgtaccac tggtgagatc gactgcatcc ccggagcctg
gcgctgtgac 3840ggcttccctg agtgtgctga ccagagtgat gaagaaggct gcccagtgtg
ctccgcctct 3900cagttcccct gcgctcgagg ccagtgtgtg gacctgcggt tacgctgcga
cggtgaggcc 3960gactgccagg atcgctctga tgaagctaac tgcgatgctg tctgtctgcc
caatcagttc 4020cggtgcacca gcggccagtg tgtcctcatc aagcaacagt gtgactcctt
ccccgactgt 4080gctgatgggt ctgatgagct catgtgtgaa atcaacaagc caccctctga
tgacatccca 4140gcccacagca gtgccattgg gcccgtcatt ggtatcatcc tctccctctt
cgtcatgggc 4200ggggtctact ttgtctgcca gcgtgtgatg tgccagcgct acacaggggc
cagtgggccc 4260tttccccacg agtatgttgg tggagcccct catgtgcctc tcaacttcat
agccccaggt 4320ggctcacagc acggtccctt cccaggcatc ccgtgcagca agtccgtgat
gagctccatg 4380agcctggtgg gggggcgcgg cagcgtgccc ctctatgacc ggaatcacgt
cactggggcc 4440tcatccagca gctcgtccag cacaaaggcc acactatatc cgccgatcct
gaacccaccc 4500ccgtccccgg ccacagaccc ctctctctac aacgtggacg tgttttattc
ttcaggcatc 4560ccggccaccg ctagaccata caggccctac gtcattcgag gtatggcacc
cccaacaaca 4620ccgtgcagca cagatgtgtg tgacagtgac tacagcatca gtcgctggaa
gagcagcaaa 4680tactacctgg acttgaattc ggactcagac ccctaccccc ccccgcccac
cccccacagc 4740cagtacctat ctgcagagga cagctgccca ccctcaccag gcactgagag
gagttactgc 4800cacctcttcc cgcccccacc gtccccctgc acggactcgt cctga
4845141614PRTMouse 14Met Glu Thr Ala Pro Thr Arg Ala Pro Pro
Pro Pro Pro Pro Pro Leu 1 5 10
15 Leu Leu Leu Val Leu Tyr Cys Ser Leu Val Pro Ala Ala Ala Ser
Pro 20 25 30 Leu
Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala Gly 35
40 45 Gly Val Lys Leu Glu Ser
Thr Ile Val Ala Ser Gly Leu Glu Asp Ala 50 55
60 Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala
Val Tyr Trp Thr Asp 65 70 75
80 Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly Ala
85 90 95 Ala Ala
Gln Asn Ile Val Ile Ser Gly Leu Val Ser Pro Asp Gly Leu 100
105 110 Ala Cys Asp Trp Val Gly Lys
Lys Leu Tyr Trp Thr Asp Ser Glu Thr 115 120
125 Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser
Arg Lys Val Leu 130 135 140
Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala Leu Asp Pro Ala 145
150 155 160 His Gly Tyr
Met Tyr Trp Thr Asp Trp Gly Glu Ala Pro Arg Ile Glu 165
170 175 Arg Ala Gly Met Asp Gly Ser Thr
Arg Lys Ile Ile Val Asp Ser Asp 180 185
190 Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu Glu
Gln Lys Leu 195 200 205
Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg Ala Asn Leu Asp 210
215 220 Gly Ser Phe Arg
Gln Lys Val Val Glu Gly Ser Leu Thr His Pro Phe 225 230
235 240 Ala Leu Thr Leu Ser Gly Asp Thr Leu
Tyr Trp Thr Asp Trp Gln Thr 245 250
255 Arg Ser Ile His Ala Cys Asn Lys Trp Thr Gly Glu Gln Arg
Lys Glu 260 265 270
Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln Val Leu Ser Gln
275 280 285 Glu Arg Gln Pro
Pro Phe His Thr Pro Cys Glu Glu Asp Asn Gly Gly 290
295 300 Cys Ser His Leu Cys Leu Leu Ser
Pro Arg Glu Pro Phe Tyr Ser Cys 305 310
315 320 Ala Cys Pro Thr Gly Val Gln Leu Gln Asp Asn Gly
Lys Thr Cys Lys 325 330
335 Thr Gly Ala Glu Glu Val Leu Leu Leu Ala Arg Arg Thr Asp Leu Arg
340 345 350 Arg Ile Ser
Leu Asp Thr Pro Asp Phe Thr Asp Ile Val Leu Gln Val 355
360 365 Gly Asp Ile Arg His Ala Ile Ala
Ile Asp Tyr Asp Pro Leu Glu Gly 370 375
380 Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg
Arg Ala Tyr 385 390 395
400 Leu Asp Gly Ser Gly Ala Gln Thr Leu Val Asn Thr Glu Ile Asn Asp
405 410 415 Pro Asp Gly Ile
Ala Val Asp Trp Val Ala Arg Asn Leu Tyr Trp Thr 420
425 430 Asp Thr Gly Thr Asp Arg Ile Glu Val
Thr Arg Leu Asn Gly Thr Ser 435 440
445 Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro Arg Ala
Ile Val 450 455 460
Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp Trp Gly Glu Asn 465
470 475 480 Pro Lys Ile Glu Cys
Ala Asn Leu Asp Gly Arg Asp Arg His Val Leu 485
490 495 Val Asn Thr Ser Leu Gly Trp Pro Asn Gly
Leu Ala Leu Asp Leu Gln 500 505
510 Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu
Val 515 520 525 Ile
Asn Ile Asp Gly Thr Lys Arg Lys Thr Leu Leu Glu Asp Lys Leu 530
535 540 Pro His Ile Phe Gly Phe
Thr Leu Leu Gly Asp Phe Ile Tyr Trp Thr 545 550
555 560 Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His
Lys Val Lys Ala Ser 565 570
575 Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys Ala
580 585 590 Val Asn
Val Ala Lys Val Val Gly Thr Asn Pro Cys Ala Asp Gly Asn 595
600 605 Gly Gly Cys Ser His Leu Cys
Phe Phe Thr Pro Arg Ala Thr Lys Cys 610 615
620 Gly Cys Pro Ile Gly Leu Glu Leu Leu Ser Asp Met
Lys Thr Cys Ile 625 630 635
640 Ile Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala Thr Ile His Arg
645 650 655 Ile Ser Leu
Glu Thr Asn Asn Asn Asp Val Ala Ile Pro Leu Thr Gly 660
665 670 Val Lys Glu Ala Ser Ala Leu Asp
Phe Asp Val Ser Asn Asn His Ile 675 680
685 Tyr Trp Thr Asp Val Ser Leu Lys Thr Ile Ser Arg Ala
Phe Met Asn 690 695 700
Gly Ser Ser Val Glu His Val Ile Glu Phe Gly Leu Asp Tyr Pro Glu 705
710 715 720 Gly Met Ala Val
Asp Trp Met Gly Lys Asn Leu Tyr Trp Ala Asp Thr 725
730 735 Gly Thr Asn Arg Ile Glu Val Ala Arg
Leu Asp Gly Gln Phe Arg Gln 740 745
750 Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala
Leu Asp 755 760 765
Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro Arg 770
775 780 Ile Val Arg Ala Phe
Met Asp Gly Thr Asn Cys Met Thr Leu Val Asp 785 790
795 800 Lys Val Gly Arg Ala Asn Asp Leu Thr Ile
Asp Tyr Ala Asp Gln Arg 805 810
815 Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asn
Met 820 825 830 Leu
Gly Gln Glu Arg Met Val Ile Ala Asp Asp Leu Pro Tyr Pro Phe 835
840 845 Gly Leu Thr Gln Tyr Ser
Asp Tyr Ile Tyr Trp Thr Asp Trp Asn Leu 850 855
860 His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly
Arg Asn Arg Thr Leu 865 870 875
880 Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His Ser
885 890 895 Ser Arg
Gln Asp Gly Leu Asn Asp Cys Val His Ser Asn Gly Gln Cys 900
905 910 Gly Gln Leu Cys Leu Ala Ile
Pro Gly Gly His Arg Cys Gly Cys Ala 915 920
925 Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys
Ser Pro Pro Ser 930 935 940
Thr Phe Leu Leu Phe Ser Gln Lys Phe Ala Ile Ser Arg Met Ile Pro 945
950 955 960 Asp Asp Gln
Leu Ser Pro Asp Leu Val Leu Pro Leu His Gly Leu Arg 965
970 975 Asn Val Lys Ala Ile Asn Tyr Asp
Pro Leu Asp Lys Phe Ile Tyr Trp 980 985
990 Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp
Asp Gly Thr Gln 995 1000 1005
Pro Ser Met Leu Thr Ser Pro Ser Gln Ser Leu Ser Pro Asp Arg
1010 1015 1020 Gln Pro His
Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe 1025
1030 1035 Trp Thr Cys Glu Ala Thr Asn Thr
Ile Asn Val His Arg Leu Asp 1040 1045
1050 Gly Asp Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp
Lys Pro 1055 1060 1065
Arg Ala Ile Ala Val Asn Ala Glu Arg Gly Tyr Met Tyr Phe Thr 1070
1075 1080 Asn Met Gln Asp His
Ala Ala Lys Ile Glu Arg Ala Ser Leu Asp 1085 1090
1095 Gly Thr Glu Arg Glu Val Leu Phe Thr Thr
Gly Leu Ile Arg Pro 1100 1105 1110
Val Ala Leu Val Val Asp Asn Ala Leu Gly Lys Leu Phe Trp Val
1115 1120 1125 Asp Ala
Asp Leu Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly Ala 1130
1135 1140 Asn Arg Leu Thr Leu Glu Asp
Ala Asn Ile Val Gln Pro Val Gly 1145 1150
1155 Leu Thr Val Leu Gly Arg His Leu Tyr Trp Ile Asp
Arg Gln Gln 1160 1165 1170
Gln Met Ile Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg Thr 1175
1180 1185 Arg Val Gln Gly Arg
Val Thr His Leu Thr Gly Ile His Ala Val 1190 1195
1200 Glu Glu Val Ser Leu Glu Glu Phe Ser Ala
His Pro Cys Ala Arg 1205 1210 1215
Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly Asp Gly
1220 1225 1230 Thr Pro
Arg Cys Ser Cys Pro Val His Leu Val Leu Leu Gln Asn 1235
1240 1245 Leu Leu Thr Cys Gly Glu Pro
Pro Thr Cys Ser Pro Asp Gln Phe 1250 1255
1260 Ala Cys Thr Thr Gly Glu Ile Asp Cys Ile Pro Gly
Ala Trp Arg 1265 1270 1275
Cys Asp Gly Phe Pro Glu Cys Ala Asp Gln Ser Asp Glu Glu Gly 1280
1285 1290 Cys Pro Val Cys Ser
Ala Ser Gln Phe Pro Cys Ala Arg Gly Gln 1295 1300
1305 Cys Val Asp Leu Arg Leu Arg Cys Asp Gly
Glu Ala Asp Cys Gln 1310 1315 1320
Asp Arg Ser Asp Glu Ala Asn Cys Asp Ala Val Cys Leu Pro Asn
1325 1330 1335 Gln Phe
Arg Cys Thr Ser Gly Gln Cys Val Leu Ile Lys Gln Gln 1340
1345 1350 Cys Asp Ser Phe Pro Asp Cys
Ala Asp Gly Ser Asp Glu Leu Met 1355 1360
1365 Cys Glu Ile Asn Lys Pro Pro Ser Asp Asp Ile Pro
Ala His Ser 1370 1375 1380
Ser Ala Ile Gly Pro Val Ile Gly Ile Ile Leu Ser Leu Phe Val 1385
1390 1395 Met Gly Gly Val Tyr
Phe Val Cys Gln Arg Val Met Cys Gln Arg 1400 1405
1410 Tyr Thr Gly Ala Ser Gly Pro Phe Pro His
Glu Tyr Val Gly Gly 1415 1420 1425
Ala Pro His Val Pro Leu Asn Phe Ile Ala Pro Gly Gly Ser Gln
1430 1435 1440 His Gly
Pro Phe Pro Gly Ile Pro Cys Ser Lys Ser Val Met Ser 1445
1450 1455 Ser Met Ser Leu Val Gly Gly
Arg Gly Ser Val Pro Leu Tyr Asp 1460 1465
1470 Arg Asn His Val Thr Gly Ala Ser Ser Ser Ser Ser
Ser Ser Thr 1475 1480 1485
Lys Ala Thr Leu Tyr Pro Pro Ile Leu Asn Pro Pro Pro Ser Pro 1490
1495 1500 Ala Thr Asp Pro Ser
Leu Tyr Asn Val Asp Val Phe Tyr Ser Ser 1505 1510
1515 Gly Ile Pro Ala Thr Ala Arg Pro Tyr Arg
Pro Tyr Val Ile Arg 1520 1525 1530
Gly Met Ala Pro Pro Thr Thr Pro Cys Ser Thr Asp Val Cys Asp
1535 1540 1545 Ser Asp
Tyr Ser Ile Ser Arg Trp Lys Ser Ser Lys Tyr Tyr Leu 1550
1555 1560 Asp Leu Asn Ser Asp Ser Asp
Pro Tyr Pro Pro Pro Pro Thr Pro 1565 1570
1575 His Ser Gln Tyr Leu Ser Ala Glu Asp Ser Cys Pro
Pro Ser Pro 1580 1585 1590
Gly Thr Glu Arg Ser Tyr Cys His Leu Phe Pro Pro Pro Pro Ser 1595
1600 1605 Pro Cys Thr Asp Ser
Ser 1610 1514PRTHuman 15Glu Asn Asn Lys Thr Met Asn
Arg Ala Glu Asn Gly Gly Arg 1 5 10
1616PRTHuman 16His Pro Phe Glu Thr Lys Asp Val Ser Glu Tyr Ser
Cys Arg Glu Leu 1 5 10
15 1717PRTHuman 17Arg Glu Leu His Phe Thr Arg Tyr Val Thr Asp Gly
Pro Cys Arg Ser 1 5 10
15 Ala 1812PRTHuman 18Leu Cys Pro Gly Gly Glu Ala Pro Arg Ala Arg
Lys 1 5 10 19615DNAMouse
19atgcagccct cactagcccc gtgcctcatc tgcctacttg tgcacgctgc cttctgtgct
60gtggagggcc aggggtggca agccttcagg aatgatgcca cagaggtcat cccagggctt
120ggagagtacc ccgagcctac tcctgagaac aaccagacca tgaaccgggc ggagaatggt
180ggcagacctc cccaccatcc ctatgacgcc aaagatgtgt ccgagtacag ctgccgcgag
240ctgcactaca cccgcttcct gacagacggc ccatgccgca gcgccaagcc ggtcaccgag
300ttggtgtgct ccggccagtg cggccccgcg cggctgctgc ccaacgccat cgggcgcgtg
360aagtggtggc gcccgaacgg accggatttc cgctgcatcc cggatcgcta ccgcgcgcag
420cgggtgcagc tgctgtgccc cgggggcgcg gcgccacgct cgcgcaaggt gcgtctggtg
480gcctcgtgca agtgcaagcg ccccacccgc ttccacaacc agtcggagct caaggacttc
540gggccggaga ccgcgcggcc gcagaagggt cgcaagccgc ggcccggcgc ccggggagcc
600aaagccaacc aggcg
61520203PRTMouse 20Met Gln Pro Ser Leu Ala Pro Cys Leu Ile Cys Leu Leu
Val His Ala 1 5 10 15
Ala Phe Cys Ala Val Glu Gly Gln Gly Trp Gln Ala Phe Arg Asn Asp
20 25 30 Ala Thr Glu Val
Ile Pro Gly Leu Gly Glu Tyr Pro Glu Pro Pro Pro 35
40 45 Glu Asn Asn Gln Thr Met Asn Arg Ala
Glu Asn Gly Gly Arg Pro Pro 50 55
60 His His Pro Tyr Asp Ala Lys Asp Val Ser Glu Tyr Ser
Cys Arg Glu 65 70 75
80 Leu His Tyr Thr Arg Phe Leu Thr Asp Gly Pro Cys Arg Ser Ala Lys
85 90 95 Pro Val Thr Glu
Leu Val Cys Ser Gly Gln Cys Gly Pro Ala Arg Leu 100
105 110 Leu Pro Asn Ala Ile Gly Arg Val Lys
Trp Trp Arg Pro Asn Gly Pro 115 120
125 Asp Phe Arg Cys Ile Pro Asp Arg Tyr Arg Ala Gln Arg Val
Gln Leu 130 135 140
Leu Cys Pro Gly Gly Ala Ala Pro Arg Ser Arg Lys Val Arg Leu Val 145
150 155 160 Ala Ser Cys Lys Cys
Lys Arg Leu Thr Arg Phe His Asn Gln Ser Glu 165
170 175 Leu Lys Asp Phe Gly Pro Glu Thr Ala Arg
Pro Gln Lys Gly Arg Lys 180 185
190 Pro Arg Pro Gly Ala Arg Gly Ala Lys Ala Asn 195
200 21203PRTArtificialWise/SOST Peptides 21Met
Gln Pro Ser Leu Ala Pro Cys Leu Ile Cys Leu Leu Val His Ala 1
5 10 15 Ala Phe Cys Ala Val Glu
Gly Gln Gly Trp Gln Ala Phe Arg Asn Asp 20
25 30 Ala Thr Glu Val Ile Pro Gly Leu Gly Glu
Tyr Pro Glu Pro Pro Pro 35 40
45 Glu Asn Asn Gln Thr Met Asn Arg Ala Glu Asn Gly Gly Arg
Pro Pro 50 55 60
His His Pro Tyr Asp Ala Lys Asp Val Ser Glu Tyr Ser Cys Arg Glu 65
70 75 80 Leu His Tyr Thr Arg
Phe Leu Thr Asp Gly Pro Cys Arg Ser Ala Lys 85
90 95 Pro Val Thr Glu Leu Val Cys Ser Gly Gln
Cys Gly Pro Ala Arg Leu 100 105
110 Leu Pro Asn Ala Ile Gly Arg Val Lys Trp Trp Arg Pro Asn Gly
Pro 115 120 125 Asp
Phe Arg Cys Ile Pro Asp Arg Tyr Arg Ala Gln Arg Val Gln Leu 130
135 140 Leu Cys Pro Gly Gly Ala
Ala Pro Arg Ser Arg Lys Val Arg Leu Val 145 150
155 160 Ala Ser Cys Lys Cys Lys Arg Leu Thr Arg Phe
His Asn Gln Ser Glu 165 170
175 Leu Lys Asp Phe Gly Pro Glu Thr Ala Arg Pro Gln Lys Gly Arg Lys
180 185 190 Pro Arg
Pro Gly Ala Arg Gly Ala Lys Ala Asn 195 200
2214PRTArtificialWise/SOST Peptides 22Leu Asn Asn Lys Thr Met Asn
Arg Ala Glu Asn Gly Gly Arg 1 5 10
2314PRTArtificialWise/SOST Peptides 23Ser Ser Asn Ser Thr Met
Asn Gln Ala Arg Asn Gly Gly Arg 1 5 10
2414PRTArtificialWise/SOST Peptides 24Ala Asn Ser Ser Ala
Leu Asn Gln Ala Arg Asn Gly Gly Arg 1 5
10 2514PRTArtificialWise/SOST Peptides 25Ala Asn Ser Ser
Thr Leu Asn Gln Ala Arg Asn Gly Gly Arg 1 5
10 2614PRTArtificialWise/SOST Peptides 26Ser Ser Ser
Asn Gly Gly Asn Arg Ala Lys Ser Gly Gly Arg 1 5
10 2714PRTArtificialWise/SOST Peptides 27Ala Ser
Ser Asn Ala Gly Asn Arg Ala Lys Ser Gly Ala Arg 1 5
10 2814PRTArtificialWise/SOST Peptides 28Ser
Asn Asn Asn Thr Met Asn Gln Ala Lys His Gly Gly Arg 1 5
10 2914PRTArtificialWise/SOST Peptides
29Glu Asn Asn Gln Thr Met Asn Arg Ala Glu Asn Gly Gly Arg 1
5 10 3016PRTArtificialWise/SOST
Peptides 30His Pro Phe Glu Thr Lys Asp Ala Ser Glu Tyr Ser Cys Arg Glu
Leu 1 5 10 15
3116PRTArtificialWise/SOST Peptides 31His Pro Tyr Asp Ala Lys Gly Val Ser
Glu Tyr Ser Cys Arg Glu Leu 1 5 10
15 3216PRTArtificialWise/SOST Peptides 32His Pro Tyr Asp
Thr Lys Asp Val Ser Glu Tyr Ser Cys Arg Glu Leu 1 5
10 15 3316PRTArtificialWise/SOST Peptides
33Gln Ala Pro Asp Pro Asn Asp Val Ser Asp Phe Ser Cys Arg Glu Met 1
5 10 15
3416PRTArtificialWise/SOST Peptides 34Thr Gly Leu Asp Arg Asn Thr Arg Val
Gln Val Gly Cys Arg Glu Leu 1 5 10
15 3516PRTArtificialWise/SOST Peptides 35Thr Gly Leu Asp
Arg Asn Ser Arg Val Gln Val Gly Cys Arg Glu Leu 1 5
10 15 3616PRTArtificialWise/SOST Peptides
36Thr Gly Ser Asp Arg Asn Asn Arg Val Gln Val Gly Cys Arg Glu Leu 1
5 10 15
3716PRTArtificialWise/SOST Peptides 37Ser Ala Met Asp Arg Thr Asn Pro His
Gln Val Gly Cys Arg Glu Leu 1 5 10
15 3816PRTArtificialWise/SOST Peptides 38Ser Ala Leu Asp
Arg Thr Asn His His Gln Val Gly Cys Arg Glu Leu 1 5
10 15 3916PRTArtificialWise/SOST Peptides
39Thr Ser Ser Val Thr Tyr Ser Ala Ser Glu Leu Ser Cys Arg Glu Leu 1
5 10 15
4016PRTArtificialWise/SOST Peptides 40Thr Ser Thr Val Ser Tyr Ser Ala Ser
Glu Leu Ser Cys Arg Glu Leu 1 5 10
15 4117PRTArtificialWise/SOST Peptides 41Arg Glu Leu Arg
Ser Thr Lys Tyr Ile Ser Asp Gly Gln Cys Thr Ser 1 5
10 15 Ile 4216PRTArtificialWise/SOST
Peptodes 42Lys Thr Gln Pro Leu Lys Gln Thr Ile His Glu Asp Gly Cys Asn
Ser 1 5 10 15
4317PRTArtificialWise/SOST Peptides 43Arg Glu Leu Arg Ser Thr Arg Tyr Val
Thr Asp Gly Ser Cys Arg Ser 1 5 10
15 Ala 4417PRTArtificialWise/SOST Peptides 44Arg Glu Met
Arg Ile Thr Arg Tyr Val Thr Glu Gly Pro Cys Arg Ser 1 5
10 15 Leu 4517PRTArtificialWise/SOST
Peptides 45Arg Glu Leu His Tyr Thr Arg Phe Leu Thr Asp Gly Pro Cys Arg
Ser 1 5 10 15 Ala
4615PRTArtificialWise/SOST Peptides 46Glu Leu Val Cys Ser Gly Gln Cys Gly
Pro Ala Arg Leu Leu Pro 1 5 10
15 4715PRTArtificialWise/SOST Peptides 47Glu Leu Val Cys Ser Gly
Gln Cys Val Pro Ser His Leu Leu Pro 1 5
10 15 4815PRTArtificialWise/SOST Peptides 48Glu Leu Val
Cys Ser Gly Gln Cys Leu Pro Ala His Leu Met Pro 1 5
10 15 4915PRTArtificialWise/SOST Peptides
49Glu Leu Val Cys Thr Gly Gln Cys Leu Pro Ala Gln Met Leu Pro 1
5 10 15
5015PRTArtificialWise/SOST Peptides 50Glu Leu Val Cys Ala Gly Glu Cys Leu
Pro Leu Pro Ile Leu Pro 1 5 10
15 5115PRTArtificialWise/SOST Peptides 51Glu Leu Val Cys Ala Gly
Glu Cys Leu Pro Leu Pro Leu Leu Pro 1 5
10 15 5215PRTArtificialWise/SOST Peptides 52Glu Leu Val
Cys Ala Gly Glu Cys Leu Pro Leu Pro Val Leu Pro 1 5
10 15 5315PRTArtificialWise/SOST Peptides
53Glu Leu Val Cys Ser Gly Gln Cys Gly Pro Ala Arg Leu Leu Pro 1
5 10 15
5415PRTArtificialWise/SOST Peptides 54Glu Leu Val Cys Ala Gly Glu Cys Leu
Pro Leu Ser Val Leu Pro 1 5 10
15 5515PRTArtificialWise/SOST Peptides 55Glu Leu Val Cys Ser Gly
Gln Cys Gly Pro Ala Arg Leu Leu Pro 1 5
10 15 5621PRTArtificialWise/SOST Peptides 56Asn Ala Ile
Gly Arg Gly Lys Trp Trp Arg Pro Ser Gly Pro Asp Phe 1 5
10 15 Arg Cys Ile Pro Asp
20 5725PRTArtificialWise/SOST Peptides 57Asn Trp Ile Gly Gly Gly Tyr
Gly Thr Lys Tyr Trp Ser Arg Arg Ser 1 5
10 15 Ser Gln Glu Trp Arg Cys Val Asn Asp
20 25 5825PRTArtificialWise Peptides 58Asn Trp Ile
Gly Gly Gly Tyr Gly Thr Lys Tyr Trp Ser Arg Arg Ser 1 5
10 15 Ser Gln Glu Trp Arg Cys Val Asn
Asp 20 25 5921PRTArtificialWise Peptides
59Asn Ala Ile Gly Arg Gly Lys Trp Trp Arg Pro Ser Gly Pro Asp Phe 1
5 10 15 Arg Cys Ile Pro
Asp 20 6025PRTArtificialWise Peptides 60Asn Trp Ile Gly
Gly Gly Tyr Gly Thr Lys Tyr Trp Ser Arg Arg Ser 1 5
10 15 Ser Gln Glu Trp Arg Cys Val Asn Asp
20 25 6125PRTArtificialWise/SOST Peptides
61Asn Trp Ile Gly Gly Gly Tyr Gly Thr Lys Tyr Trp Ser Arg Arg Gly 1
5 10 15 Ser Gln Glu Trp
Arg Cys Val Asn Asp 20 25
6224PRTArtificialWise/SOST Peptides 62Asn Trp Ile Gly Gly Tyr Gly Lys Lys
Ser Trp Asn Arg Arg Asn Ser 1 5 10
15 Gln Glu Trp Arg Cys Val Asn Asp 20
6321PRTArtificialWise/SOST Peptides 63Asn Thr Ile Gly Arg Gly Lys
Trp Trp Arg Ser Asn Thr Ser Glu Tyr 1 5
10 15 Arg Cys Ile Pro Ala 20
6421PRTArtificialWise/SOST Peptides 64Asn Thr Ile Gly Arg Ala Lys Trp Trp
Arg Ser Ser Thr Ser Glu Tyr 1 5 10
15 Arg Cys Val Pro Ala 20
6521PRTArtificialWise/SOST Peptides 65Asn Ser Ile Gly Arg Gly Lys Trp Trp
Arg Gln Asn Ser Pro Asp Tyr 1 5 10
15 Arg Cys Ile Pro Ala 20
6621PRTArtificialWise/SOST Peptides 66Asn Ala Ile Gly Arg Val Lys Trp Trp
Arg Pro Asn Gly Pro Asp Phe 1 5 10
15 Arg Cys Ile Pro Asp 20
6721PRTArtificialWise/SOST Peptides 67Asn Ala Ile Gly Arg Gly Lys Trp Trp
Arg Pro Ser Gly Pro Asp Phe 1 5 10
15 Arg Cys Ile Pro Asp 20
6813PRTArtificialWise/SOST Peptides 68Leu Leu Cys Pro Gly Gly Ala Ala Pro
Arg Ala Arg Lys 1 5 10
6913PRTArtificialWise/SOST Peptides 69Leu Leu Cys Pro Gly Gly Glu Ala Pro
Arg Ala Arg Lys 1 5 10
7012PRTArtificialWise/SOST Peptides 70Leu Gln Cys Gln Asp Gly Ser Thr Arg
Thr Tyr Lys 1 5 10
7112PRTArtificialWise/SOST Peptides 71Leu Gln Cys Glu Asp Gly Thr Thr Arg
Thr Tyr Lys 1 5 10
7212PRTArtificialWise/SOST Peptides 72Leu Gln Cys Pro Asn Gly Asn Thr Arg
Thr Tyr Lys 1 5 10
7312PRTArtificialWise/SOST Peptides 73Leu Arg Cys Pro Asn Gly Asn Thr Arg
Thr Tyr Lys 1 5 10
7412PRTArtificialWise/SOST Peptides 74Met Ala Cys Pro Glu Asp Glu Thr Arg
Thr Tyr Lys 1 5 10
7513PRTArtificialWise/SOST Peptides 75Leu Leu Cys Pro Gly Gly Ala Ala Pro
Arg Ser Arg Lys 1 5 10
7611PRTArtificialWise/SOST Peptides 76Asp Thr Gly Thr Asp Arg Ile Glu Val
Thr Arg 1 5 10
7711PRTArtificialWise/SOST Peptides 77Asp Thr Val Thr Asp Arg Ile Glu Val
Cys Arg 1 5 10
7811PRTArtificialWise/SOST Peptidesmisc_feature(4)..(4)Xaa can be any
naturally occurring amino acid 78Asp Thr Val Xaa Asp Arg Ile Glu Val Cys
Arg 1 5 10
7911PRTArtificialWise/SOST Peptides 79Asp Ala Gly Thr Asp Arg Ile Glu Val
Ala Asn 1 5 10
8011PRTArtificialWise/SOST Peptides 80Asp Ala Gly Thr Asp Arg Ile Glu Val
Ala Asn 1 5 10
8111PRTArtificialWise/SOST Peptides 81Asn Lys Ile Thr Gln Thr Ile Glu Ile
Ile Arg 1 5 10
8211PRTArtificialWise/SOST Peptides 82Asp Arg Gly Arg Ser Leu Ile Glu Gly
Ser Asp 1 5 10 83546DNADog
83atgcagctct ctcttgctct gtgtctcgtc tgcttgctgg tgcatgcagc cttccgtgca
60gtggagggcc aggggtggca ggccttcaag aacgatgcca cagaaatcat ccccgagctg
120ggcgagtacc ccgagcctcc accagagctg gagaacaaca agaccatgaa ccgggcggag
180aacggagggc ggccccctca ccatcccttt gagaccaaag acgcatccga gtacagctgc
240cgcgagctgc acttcacccg ctacgtgacg gacgggccgt gccgcagcgc caagccggtc
300accgagctgg tgtgctcggg ccagtgcggc cccgcgcgcc tgctgcccaa cgccatcggc
360cgcggcaagt ggtggcgccc gagcgggccc gacttccgct gcatccccga ccgctaccgc
420gcgcagcggg tgcagctgct gttgcgcctg gtggcctcgt gcaagtgcaa gcgactcacc
480cgcttccaca accagtccga gctcaaggac ttcgggcccg aggccgcgcg gccgcagaag
540ggccga
54684642DNAChimp 84atgcagctcc cactggccct gtgtctcgtc tgcctgctgg tacacacagc
cttccgtgta 60gtggagggcc aggggtggca ggcgttcaag aatgatgcca cggaaatcat
ccccgagctc 120ggagagtacc ccgagcctcc accggagctg gagaacaaca agaccatgaa
ccgggcggag 180aacggagggc ggcctcccca ccaccccttt gagaccaaag acgtgtccga
gtacagctgc 240cgcgagctgc acttcacccg ctacgtgacc gatgggccgt gccgcagcgc
caagccggtc 300accgagctgg tgtgctccgg ccagtgcggc ccggcgcgcc tgctgcccaa
cgccatcggc 360cgcggcaagt ggtggcgacc tagtgggccc gacttccgct gcatccccga
ccgctaccgc 420gcgcagcgcg tgcagctgct gtgtcccggt ggtgcggcgc cgcgcgcgcg
caaggtgcgc 480ctggtggcct cgtgcaagtg caagcgcctc acccgcttcc acaaccagtc
ggagctcaag 540gacttcggga ccgaggccgc tcggccgcag aagggccgga agccgcggcc
ccgcgcccgg 600agcgccaaag ccaaccaggc cgagctggag aacgcctact ag
6428513PRTChick 85Ser Asn Asn Asn Thr Met Asn Gln Ala Lys Gly
Gly Arg 1 5 10 8615PRTChick
86Ala Pro Asp Pro Asn Asp Val Ser Asp Phe Ser Cys Arg Glu Met 1
5 10 15 8727PRTChick 87Arg Glu
Met Arg Ile Thr Arg Tyr Val Thr Glu Gly Pro Cys Arg Ser 1 5
10 15 Leu Lys Pro Val Lys Glu Leu
Val Cys Ser Gly 20 25 88641DNAChick
88atgcagatct cctgggctgt gtgctctgtc tgcgtcctca tccaaatcgc atcccgggca
60ctggagggtg gcaagtgttc aaaaatgatg cgacagaaat catccccgag atcaccgaaa
120acacagagac cccaatggag cagatttaca gcaacaacaa cacgatgaac caggcaaagc
180acgggggaag gcacatacag caagctccgg accctaatga tgtctccgac ttcagctgca
240gagagatgcg catcacccgc tacgtgacgg aggggccgtg ccgcagcctg aagcccgtga
300aggagctggt gtgctcgggg cagtgcgtcc catcccacct cctgcccaac tccatcggca
360gagggaagtg gtggaggcag aactccccgg attaccgctg catcccggct cacacccgca
420cgcagcgcat ccagatggcg tgtcccgagg atgagactcg gacttacaaa ttccgagctg
480tcacagcctg caaatgcaag cgctacactc ggtaccacaa ccagtccgag ctgaaggact
540ttgggaagga gccctccagg cagcagaaga acaagaagtc gcgtctgtcc cgagccagga
600gcagcaaacc gaaccagcac gagctggaaa acgcctatta g
64189555DNAFugu 89tggaaggtgc tgaagaacga cgccacagag attttaccgg actaccggga
gcggagtccg 60cacgagccga tgacgcaggc ggcgaacagc agcagtaacg gcgggaaccg
cgcgaagagc 120ggcgggagaa gcacgagctc ggtgacctac agtgcctcgg agctgagctg
cagggagctg 180cgttccaccc gctacgtcac cgatggatct tgccgcagcg ccaaacccat
caaggagctg 240gtgtgctcgg gccagtgcct gccagcgcac ctcatgccca acaccatcgg
ccgcggcaag 300tggtggcgga gcaacacctc ggagtaccgc tgcatcccgg ctcactccag
gaccaggagg 360atccagctgc agtgccccaa cggcaacact cggacttaca aaatccgcat
agtgacctcc 420tgcaagtgta agcggttcag ggctcaccac aaccagtcgg aggccaagga
ggtcctgagg 480aggcagcgga gcaagaagcg cacgtctcaa ggacggagca aaaacaacac
gcctttgatt 540gacaattcat actga
55590618DNAMousemisc_feature(283)..(283)n is a, c, g, or
tmisc_feature(383)..(383)n is a, c, g, or t 90atgcttcctc ctgccattca
tctctctctc attcccctgc tctgcatcct gatgagaaac 60tgtttggctt ttaaaaatga
tgccacagaa atcctttatt cacatgtggt taaacctgtc 120ccggcacacc ccagcagcaa
cagcaccctg aatcaagcca ggaatggagg caggcatttc 180agtagcactg gactggatcg
aaacagtcga gttcaagtgg gctgcaggga actgcggtcc 240accaaataca tttcggacgg
ccagtgcacc agcatcagcc ctntgaagga gctggtgtgc 300gcgggcgagt gcttgcccct
gccggtgctt cccaactgga tcggaggagg ctatggaaca 360aagtactgga gccggaggag
ctntcaggag tggcggtgtg tcaacgacaa gacgcgcacc 420cagaggatcc agctgcagtg
tcaggacggc agcacgcgca cctacaaaat caccgtggtc 480acggcgtgca agtgcaagag
gtacacccgt cagcacaacg agtccagcca caactttgaa 540agcgtgtcgc ccgccaagcc
cgcccagcac cacagagagc ggaagagagc cagcaaatcc 600agcaagcaca gtctgagc
6189114PRTMouse 91Ser Ser
Asn Ser Thr Leu Asn Gln Ala Arg Asn Gly Gly Arg 1 5
10 92621DNAHuman 92atgcttcctc ctgccattca
tctctctctc attcccctgc tctgcatcct gatgaaaaac 60tgtttggctt ttaaaaatga
tgccacagaa atcctttatt cacatgtggt taaacctgtt 120tcagcacacc ccagcagcaa
cagcaccttg aatcaagcca ggaatggagg caggcacttc 180agtagcacgg gactggatcg
aaatagtcga gttcaagtgg gctgcaggga actgcggtcc 240accaaataca tctcggatgg
ccagtgcacc agcatcagcc ctctgaagga gctggtgtgc 300gcgggtgagt gcttgccctt
gccagtgctt cccaactgga tcggaggagg ctacggaaca 360aagtactgga gccggagggg
ctcccaggag tggcggtgtg tcaacgacaa gacgcgcacc 420cagagaatcc agctgcagtg
tcaggacggc agcacacgca cctacaaaat caccgtggtc 480acagcgtgca agtgcaagag
gtacacccgg cagcacaacg agtccagcca caactttgaa 540agcgtgtctc ccgccaagcc
cgcccagcac cacagagagc ggaagagagc cagcaaatcc 600agcaagcaca gtctgagcta g
6219315PRTHuman 93Pro Ser
Ser Asn Ser Thr Leu Asn Gln Ala Arg Asn Gly Gly Arg 1 5
10 15 94642DNAXenopus Leavis 94atggttgtct
caaggctcca gtgctgcatg ctctaccttg cgtgtattct catagaaagc 60tgcgtgtctt
ttaagaatga cgctacagaa atcctgtatt cccacgtgga taaacatatc 120caagatagtg
caaacagcag caccctgaat caggctagaa atggaggaag aaatgctgca 180aactctgcac
tggacagaac aaatcaccat caggttggat gcagagagct gagatctacc 240aagtacatct
cggatggaca gtgcaccagt atccagcctt tgaaagaact ggtctgtgct 300ggagagtgtc
ttcctctttc tattttggcc cactggatcg ggggtggcta cgggctgaaa 360tattggagtc
gaagaagttc ccaggaatgg agatgtgtca atgacaagac ccgcactcag 420cgtatccagt
tacagtgtga ggatggcact actagaacct acaaagtcac agtggttact 480tcctgcaagt
gcaagagata caccagacag cacaatgaat ccagccataa ctaccaagga 540gcttctccca
ttaaacccgt tcactctcac caacatcatc actcccacca caaccgtgat 600aagaaaagac
taatcaagat gtccaagcac attcctagct ag
6429514PRTXenopus Leavis 95Arg Ser Thr Lys Tyr Ile Ser Asp Gly Gln Cys
Thr Ser Ile 1 5 10
96642DNAXenopus tropicalis 96atggtcgtct caaggctcca atgctgcatg ttatactttg
catgcatttt catagaaagc 60tgcatgtctt ttaagaacga tgccacagaa atcctgtatt
cccatgtgga taaaaacatc 120caagagagtg ccaacagcag tgccctgaac caggctagga
atggaggaag acacacggct 180aactctgcca tggacaggac aaatccccat caagttggat
gcagggagct gagatctaca 240aagtacatct cagatgggca gtgcaccagt atccagcctt
tgaaagaact ggtctgtgct 300ggagagtgtc ttcctcttcc tattttgccc aactggatcg
ggggtggcta tgggctgaag 360tactggagtc ggagaagctc tcaggaatgg agatgtgtca
atgacaagac tcgcactcag 420cgtatccagt tgcagtgtga ggatggcacg actagaacct
acaaagtcac ggtggtaact 480tcctgcaagt gcaagaggta caccaggcag cacaacgaat
ccagccataa ctacgaagga 540gcttctccaa tgaaacccat tcactctctc caacatcatc
actcccacca caaccgtgat 600aagaaaagac taatcaagat gtccaagcac attcctagct
ag 64297621DNAChick 97atgcttctct ccgccattca
cttctacggc ttactcctag cttgcacctt cacgagaagc 60tactcggctt tcaagaacga
tgccactgag atactttatt cccacgtcgt taaacctgcc 120cctgcgagcc cgagcagcaa
cagcacgttg aaccaagcca ggaacggagg gaggcactac 180gccggcacgg gctccgaccg
taacaatcgc gttcaagttg gctgccggga actgcgatct 240accaagtaca tctcagacgg
ccagtgcacc agcatcaatc ccctgaagga gctggtgtgt 300gctggcgaat gcctcccctt
gccgctcctg cccaactgga ttggaggagg ttatggaacc 360aagtactgga gcagacggag
ctcgcaagag tggagatgtg tcaatgacaa aactcgcacc 420cagaggatcc agctgcagtg
ccaggatgga agtataagaa cctacaaaat aactgtggtc 480acggcctgca agtgcaagcg
atacaccagg cagcacaacg agtccagcca caactttgag 540ggaacctctc aagcaaagcc
tgtccagcat cacaaagaga gaaaaagagc cagtaaatcc 600agcaaacata gtacaagtta g
6219815PRTChick 98Gly Ser
Asp Arg Asn Asn Arg Val Gln Val Gly Cys Arg Glu Leu 1 5
10 15 99621DNADog 99atgcttcctc ctgccattca
tctctctctc attcccctgc tctgcatcct gatgaaaaac 60tgtttggctt ttaaaaatga
tgccacagaa atcctttatt cacatgtggt taaacctgtt 120tcagcacacc ccagcagcaa
cagcaccttg aatcaagcca ggaatggagg caggcacttc 180agtagcacgg gactggatcg
aaatagtcga gttcaagtgg gctgcaggga actgcggtcc 240accaaataca tctcggatgg
ccagtgcacc agcatcagcc ctctgaagga gctggtgtgc 300gcgggtgagt gcttgccctt
gccagtgctt cccaactgga tcggaggagg ctacggaaca 360aagtactgga gccggagggg
ctcccaggag tggcggtgtg tcaacgacaa gacgcgcacc 420cagagaatcc agctgcagtg
tcaggacggc agcacacgca cctacaaaat caccgtggtc 480acagcgtgca agtgcaagag
gtacacccgg cagcacaacg agtccagcca caactttgaa 540agcgtgtctc ccgccaagcc
cgcccagcac cacagagagc ggaagagagc cagcaaatcc 600agcaagcaca gtctgagcta g
621100625DNARat
100atgcttcctc ctgccattca tctctctctc attcccctgc tctgcatcct gatgaaaaac
60tgtttggctt ttaaaaatga tgccacagaa atcctttatt cacatgtggt taaacctgtt
120tcagcacacc ccagcagcaa cagcaccttg aatcaagcca ggaatggagg caggcacttc
180agtagcacgg gactggatcg aaatagtcga gttcaagtgg gctgcaggga actgcggtcc
240accaaataca tctcggatgg ccagtgcacc agcatcagcc ctctgaagga gctggtgtgc
300gcgggtgagt gcttgccctt gccagtgctt cccaactgga tcggaggagg ctacggaaca
360aagtactgga gccggaggag ctcccaggag tggcggtgtg tcaacgacaa gacgcgcacc
420cagagaatcc agctgcagtg tcaggacggc agcacacgca cctacaaaat caccgtggtc
480acagcgtgca agtgcaagag gtacacccgg cagcacaacg agtccagcca caactttgaa
540agcgtgtctc ccgccaagcc cgcccagcac cacagagagc ggaagagagc cagcaaatcc
600agcaagcaca gtctgagcta gagct
62510114PRTZebrafish 101Thr His Asp Arg Glu Arg Ile Pro Val Gly Cys Arg
Glu Leu 1 5 10
102608DNAZebrafish 102cagagttgaa gcacatctct ccattggccg tgggtcatta
cgcatcgcca tgtatataaa 60cgcaccagag tcgtgcaatt tcatggtttt attttgcttt
ttaataagga gtggtttgac 120tttgaagaac gatgctacgg agattttcta ctcgcatgtg
gtcagtcccg ttcaggatgc 180gcagagcaac gcgtctctca accgcgcgcg ctccggagga
agaggcttca gcacgcacga 240cagagaacga atcccagtag gctgcagaga gctccgatcc
accaagtaca tctcagatgg 300ccagtgcacc agcataaacc ctgtgaaaga gctggtgtgc
acaggacagt gcctccccgc 360tcagatgctg cccaattgga ttggaggata cggcaagaag
tcctggaacc gccggaacag 420tcaggaatgg cgctgtgtaa atgacaagac ccgaactcag
cggattcagc tccagtgcca 480ggatggcagc accaggacct acaagatcac agtggtgacc
tcctgcaaat gcaaacgata 540ctcgcggcaa cacaatgaat caggagttaa gtctgaggga
tactctcata gccagatcaa 600aaaacaga
60810312PRTFugu 103Thr Tyr Ser Ala Ser Glu Leu Ser
Cys Arg Glu Leu 1 5 10
104576DNAFugu 104tgctgcaccg ccgcgcgcgg atggaaggtg ctgaagaacg acgccacaga
gattttaccg 60gactaccggg agcggagtcc gcacgagccg atgacgcagg cggcgaacag
cagcagtaac 120ggcgggaacc gcgcgaagag cggcgggaga agcacgagct cggtgaccta
cagtgcctcg 180gagctgagct gcagggagct gcgttccacc cgctacgtca ccgatggatc
ttgccgcagc 240gccaaaccca tcaaggagct ggtgtgctcg ggccagtgcc tgccagcgca
cctcatgccc 300aacaccatcg gccgcggcaa gtggtggcgg agcaacacct cggagtaccg
ctgcatcccg 360gctcactcca ggaccaggag gatccagctg cagtgcccca acggcaacac
tcggacttac 420aaaatccgca tagtgacctc ctgcaagtgt aagcggttca gggctcacca
caaccagtcg 480gaggccaagg aggtcctgag gaggcagcgg agcaagaagc gcacgtctca
aggacggagc 540aaaaacaaca cgcctttgat tgacaattca tactga
57610516PRTPan troglodytes chimp 105His Pro Ser Ser Asn Ser
Thr Leu Asn Gln Ala Arg Asn Gly Gly Arg 1 5
10 15 106618DNAPan troglodytes chimp
106atgcttcctc ctgccattca tttctatctc cttccccttg catgcatcct aatgaaaagc
60tgtttggctt ttaaaaatga tgccacagaa atcctttatt cacatgtggt taaacctgtt
120ccagcacacc ccagcagcaa cagcacgttg aatcaagcca gaaatggagg caggcatttc
180agtaacactg gactggatcg gaacactcgg gttcaagtgg gttgccggga actgcgttcc
240accaaataca tctctgatgg ccagtgcacc agcatcagcc ctctgaagga gctggtgtgt
300gctggtgagt gcttgcccct gccagtgctc cctaactgga ttggaggagg ctatggaaca
360aagtactgga gcaggaggag ctcccaggag tggcggtgtg tcaatgacaa aacccgtacc
420cagagaatcc agctgcagtg ccaagatggc agcacacgca cctacaaaat cacagtagtc
480actgcctgca agtgcaagag gtacacccgg cagcacaacg agtccagtca caactttgag
540agcatgtcac ctgccaagcc agtccagcat cacagagagc ggaaaagagc cagcaaatcc
600agcaagcaca gcatgagt
618107633DNATetradon fish 107atgcaggtgt ctctggtcct cctcgtgtcc agctcggcgc
tcgtgctgct gcagggatgc 60tgcgccgccg cgcgcggctg gaaggcgctg aagaacgacg
ccaccgaggt tttagcggac 120gaccgcgagc ggagcccgca cgagcccgcc gcgcacgcgg
ccaacgccag cagtaacgcg 180ggaaaccggg cgaagagcgg cgcgaggagc acgagcacgg
tgtcctacag tgcctcggag 240ctaagctgca gggagctgcg ctccacccgt tacgtcaccg
atgggtcctg ccgcagcgcc 300aaacccatca aagagctggt gtgctcgggc cagtgcctgc
cggcgcacct catgcccaac 360accattggcc gggccaagtg gtggcggagc agcacctcgg
agtaccgctg cgtcccggct 420cactccaggc ccaggaggat ccagctgcgc tgccccaacg
gcaacactcg gacttacaaa 480atccgcacgg tgacctcctg caagtgcaag aggttccggg
ctcaccacaa ccagtcggag 540gccaaggagg tcccgaggag gcaacgcacc aagaagcggc
catcccgagg ccgcagcaag 600aaccccacgc ctttgattga caattcctac tga
633108621DNAPongo pygmaeus 108atgcttcctc
ccgccattca tttctatctc cttccccttg catgcatcct aatgaaaagc 60tgtttggctt
ttaaaaatga tgccacagaa atcctttatt cacatgtggt taaacctgtt 120ccagcacacc
ccagcagcaa cagcacgttg aatcaagcca gaaatggagg caggcatttc 180agtaacactg
gactggatcg gaacactcgg gttcaagtgg gttgccggga actgcgttcc 240accaaataca
tctctgatgg ccagtgcacc agcatcagcc ctctgaagga gctggtgtgt 300gctggcgagt
gcttgcccct gtcagtgctc cctaactgga ttggaggagg ttatggaaca 360aagtactgga
gcaggaggag ctcccaggag tggcggtgcg tcaatgacaa aacccgtacc 420cagagaatcc
agctgcagtg ccaagatggc agcacacgca cctacaaaat cacagtagtc 480actgcctgca
agtgcaagag gtacacccgg cagcacaacg agtccagtca caactttgag 540agcatgtcac
ctgccaagcc agtccagcat cacagagagc ggaaaagagc cagcaaatcc 600agcaagcaca
gcatgagtta g
62110915PRTArtificialLRP 5/6 Peptides 109Leu Phe Ala Asn Arg Arg Asp Val
Arg Leu Val Asp Ala Gly Gly 1 5 10
15 1108PRTArtificialLTRP 5/6 Peptides 110Tyr Trp Thr Asp Val
Ser Glu Glu 1 5 11119PRTArtificialLRP 5/6
Peptides 111Lys Leu Tyr Trp Thr Asp Ser Glu Thr Asn Arg Ile Glu Val Ala
Asn 1 5 10 15 Leu
Asn Gly 1127PRTArtificialLRP 5/6 Peptides 112Leu Phe Trp Gln Asp Leu Asp
1 5 11323PRTArtificialLRP 5/6 Peptides 113Thr Asp
Trp Gly Glu Thr Pro Arg Ile Glu Arg Ala Gly Met Asp Gly 1 5
10 15 Ser Thr Arg Lys Ile Ile Val
20 11411PRTArtificialLRP 5/6 Peptides 114His Ala
Cys Asn Lys Arg Thr Gly Gly Lys Arg 1 5
10 11515PRTArtificialLRP 5/6 Peptides 115Thr Gly Val Gln Leu Gln Asp
Asn Gly Arg Thr Cys Lys Ala Gly 1 5 10
15 11619PRTArtificialLRP 5/6 Peptides 116Glu Val Leu Leu
Leu Ala Arg Arg Thr Asp Leu Arg Arg Ile Ser Leu 1 5
10 15 Asp Thr Pro 11714PRTArtificialLRP
5/6 Peptides 117Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg Ala Tyr 1
5 10
11810PRTArtificialLRP 5/6 Peptides 118Val Asn Thr Glu Ile Asn Asp Pro Asp
Gly 1 5 10 11929PRTArtificialLRP 5/6
Peptides 119Tyr Trp Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu
Asn 1 5 10 15 Gly
Thr Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp 20
25 12020PRTLRP 5/6 Peptides 120Thr Asp Trp Gln Arg
Arg Ser Ile Glu Arg Val His Lys Val Lys Ala 1 5
10 15 Ser Arg Asp Val 20
12111PRTArtificialLRP 5/6 Peptides 121Asn Val Asp Gly Thr Lys Arg Arg Thr
Leu Leu 1 5 10
122109PRTArtificialLRP 5/6 Peptides 122Pro Glu Pro Pro Pro Glu Leu Glu
Asn Asn Lys Thr Met Asn Arg Ala 1 5 10
15 Glu Asn Gly Gly Arg Pro Pro His His Pro Phe Glu Thr
Lys Asp Val 20 25 30
Ser Glu Tyr Ser Cys Arg Glu Leu His Phe Thr Arg Tyr Val Thr Asp
35 40 45 Gly Pro Cys Arg
Ser Ala Lys Pro Val Thr Glu Leu Val Cys Ser Gly 50
55 60 Gln Cys Gly Pro Ala Arg Leu Leu
Pro Asn Ala Ile Gly Arg Gly Lys 65 70
75 80 Trp Trp Arg Pro Ser Gly Pro Asp Phe Arg Cys Ile
Pro Asp Arg Tyr 85 90
95 Arg Ala Gln Arg Val Gln Leu Leu Cys Pro Gly Gly Glu
100 105 12356PRTArtificialLRP 5/6
Peptides 123Pro Glu Pro Pro Pro Glu Leu Glu Asn Asn Lys Thr Met Asn Arg
Ala 1 5 10 15 Glu
Asn Gly Gly Arg Pro Pro His His Pro Phe Glu Thr Lys Asp Val
20 25 30 Ser Glu Tyr Ser Cys
Arg Glu Leu His Phe Thr Arg Tyr Val Thr Asp 35
40 45 Gly Pro Cys Arg Ser Ala Lys Pro
50 55 12453PRTArtificialLRP 5/6 Peptides 124Val Thr
Glu Leu Val Cys Ser Gly Gln Cys Gly Pro Ala Arg Leu Leu 1 5
10 15 Pro Asn Ala Ile Gly Arg Gly
Lys Trp Trp Arg Pro Ser Gly Pro Asp 20 25
30 Phe Arg Cys Ile Pro Asp Arg Tyr Arg Ala Gln Arg
Val Gln Leu Leu 35 40 45
Cys Pro Gly Gly Glu 50 12524PRTArtificialLRP 5/6
Peptides 125Gly Phe Met Tyr Trp Thr Asp Trp Gly Glu Val Pro Lys Ile Glu
Arg 1 5 10 15 Ala
Gly Met Asp Gly Ser Ser Arg 20
12613PRTArtificialLRP 5/6 Peptides 126Pro Lys Ile Glu Arg Ala Gly Met Asp
Gly Ser Ser Arg 1 5 10
12718PRTArtificialLRP 5/6 Peptides 127Ala Ala Pro Leu Leu Leu Tyr Ala Asn
Arg Arg Asp Leu Arg Leu Val 1 5 10
15 Asp Ala 12817PRTArtificialLRP 5/6 Peptides 128Thr Ile
Val Val Gly Gly Leu Glu Asp Ala Ala Ala Val Asp Phe Val 1 5
10 15 Phe 12914PRTArtificialLRP
5/6 Peptides 129Gly Leu Ile Tyr Trp Ser Asp Val Ser Glu Glu Ala Ile Lys 1
5 10
13040PRTArtificialLRP 5/6 Peptides 130Ser Val Gln Asn Val Val Val Ser Gly
Leu Leu Ser Pro Asp Gly Leu 1 5 10
15 Ala Cys Asp Trp Leu Gly Glu Lys Leu Tyr Trp Thr Asp Ser
Glu Thr 20 25 30
Asn Arg Ile Glu Val Ser Asn Leu 35 40
13119PRTArtificialLRP 5/6 Peptides 131Gln Asn Val Val Val Ser Gly Leu Leu
Ser Pro Asp Gly Leu Ala Cys 1 5 10
15 Asp Trp Leu 13220PRTArtificialLRP 5/6 Peptides 132Lys
Leu Tyr Trp Thr Asp Ser Glu Thr Asn Arg Ile Glu Val Ser Asn 1
5 10 15 Leu Asp Gly Ser
20 13319PRTArtificialLRP 5/6 Peptides 133Arg Lys Val Leu Phe Trp Gln
Glu Leu Asp Gln Pro Arg Ala Ile Ala 1 5
10 15 Leu Asp Pro 13420PRTArtificialLRP 5/6
Peptides 134Met Tyr Trp Thr Asp Trp Gly Glu Val Pro Lys Ile Glu Arg Ala
Gly 1 5 10 15 Met
Asp Gly Ser 20 1358PRTArtificialLRP 5/6 Peptides 135Ile Tyr
Trp Pro Asn Gly Leu Thr 1 5
1369PRTArtificialLRP 5/6 Peptides 136Lys Leu Tyr Trp Ala Asp Ala Lys Leu
1 5 13713PRTArtificialLRP 5/6 Peptides
137Phe Ile His Lys Ser Asn Leu Asp Gly Thr Asn Arg Gln 1 5
10 13814PRTArtificialLRP 5/6 Peptides
138Val Val Lys Gly Ser Leu Pro His Pro Phe Ala Leu Thr Leu 1
5 10 13921PRTArtificialLRP 5/6
Peptides 139Asp Thr Leu Tyr Trp Thr Asp Trp Asn Thr His Ser Ile Leu Ala
Cys 1 5 10 15 Asn
Lys Tyr Thr Gly 20 14013PRTArtificialLRP 5/6 Peptides
140Arg Glu Ile His Ser Asn Ile Phe Ser Pro Met Asp Ile 1 5
10 14121PRTArtificialLRP 5/6 Peptides
141Ser Asp Arg Asn Asn Arg Val Gln Val Gly Cys Arg Glu Leu Arg Ser 1
5 10 15 Thr Lys Tyr Ile
Ser 20 14221PRTArtificialLRP 5/6 Peptides 142Pro Glu Pro
Pro Pro Glu Leu Glu Asn Asn Lys Thr Met Asn Arg Ala 1 5
10 15 Glu Asn Gly Gly Arg
20 14332PRTArtificialLRP 5/6 Peptides 143Asn Gly Gly Arg Pro Pro His
His Pro Phe Glu Thr Lys Asp Val Ser 1 5
10 15 Glu Tyr Ser Cys Arg Glu Leu His Phe Thr Arg
Tyr Val Thr Asp Gly 20 25
30 1448PRTArtificialLRP 5/6 Peptides 144Asn Asn Lys Thr Met Asn
Arg Ala 1 5 1455PRTArtificialLRP 5/6 Peptides
145Thr Met Asn Arg Ala 1 5 1468PRTArtificialLRP 5/6
Peptides 146Gly Gly Arg Pro Pro His His Pro 1 5
1479PRTArtificialLRP 5/6 Peptides 147His His Pro Phe Glu Thr Lys Asp
Val 1 5 14810PRTArtificialLRP 5/6
Peptides 148Asp Val Ser Glu Tyr Ser Cys Arg Glu Leu 1 5
10 14917PRTArtificialLRP 5/6 Peptides 149Cys Arg Glu Leu
His Phe Thr Arg Tyr Val Thr Asp Gly Pro Cys Arg 1 5
10 15 Ser 1507PRTArtificialLRP 5/6
Peptides 150Thr Arg Tyr Val Thr Asp Gly 1 5
1515PRTArtificialLRP 5/6 Peptides 151Tyr Val Thr Asp Gly 1
5 1526PRTArtificialLRP 5/6 Peptides 152Asp Gly Pro Cys Arg Ser 1
5 15312PRTArtificialLRP 5/6 Peptides 153Leu Pro Asn Ala Ile
Gly Arg Gly Lys Trp Trp Arg 1 5 10
1548PRTArtificialLRP 5/6 Peptides 154Pro Asn Trp Ile Gly Gly Gly Tyr 1
5 15511PRTArtificialLRP 5/6 Peptides 155Thr
Leu Asn Gln Ala Arg Asn Gly Gly Arg His 1 5
10 1565PRTArtificialLRP 5/6 Peptides 156Gly Leu Asp Arg Asn 1
5 15713PRTArtificialLRP 5/6 Peptides 157Cys Arg Glu Leu Arg
Ser Thr Lys Tyr Ile Ser Asp Gly 1 5 10
15815PRTArtificialLRP 5/6 Peptides 158Leu Phe Ala Asn Arg Arg
Asp Val Arg Leu Val Asp Ala Gly Gly 1 5
10 15 1598PRTArtificialLRP 5/6 Peptides 159Tyr Trp Thr
Asp Val Ser Glu Glu 1 5 16019PRTArtificialLRP
5/6 Peptides 160Lys Leu Tyr Trp Thr Asp Ser Glu Thr Asn Arg Ile Glu Val
Ala Asn 1 5 10 15
Leu Asn Gly 1617PRTArtificialLRP 5/6 Peptides 161Leu Phe Trp Gln Asp Leu
Asp 1 5 16223PRTArtificialLRP 5/6 Peptides 162Thr
Asp Trp Gly Glu Thr Pro Arg Ile Glu Arg Ala Gly Met Asp Gly 1
5 10 15 Ser Thr Arg Lys Ile Ile
Val 20 16311PRTArtificialLRP 5/6 Peptides 163His
Ala Cys Asn Lys Arg Thr Gly Gly Lys Arg 1 5
10 16415PRTArtificialLRP 5/6 Peptides 164Thr Gly Val Gln Leu Gln
Asp Asn Gly Arg Thr Cys Lys Ala Gly 1 5
10 15 16519PRTArtificialLRP 5/6 Peptides 165Glu Val Leu
Leu Leu Ala Arg Arg Thr Asp Leu Arg Arg Ile Ser Leu 1 5
10 15 Asp Thr Pro
16614PRTArtificialLRP 5/6 Peptides 166Tyr Trp Thr Asp Asp Glu Val Arg Ala
Ile Arg Arg Ala Tyr 1 5 10
16710PRTArtificialLRP 5/6 Peptides 167Val Asn Thr Glu Ile Asn Asp Pro
Asp Gly 1 5 10 16829PRTArtificialLRP 5/6
Peptides 168Tyr Trp Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu
Asn 1 5 10 15 Gly
Thr Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp 20
25 16920PRTArtificialLRP 5/6 Peptides 169Thr Asp
Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala 1 5
10 15 Ser Arg Asp Val
20 17011PRTArtificialLRP 5/6 Peptides 170Asn Val Asp Gly Thr Lys Arg Arg
Thr Leu Leu 1 5 10
171109PRTArtificialLRP 5/6 Peptides 171Pro Glu Pro Pro Pro Glu Leu Glu
Asn Asn Lys Thr Met Asn Arg Ala 1 5 10
15 Glu Asn Gly Gly Arg Pro Pro His His Pro Phe Glu Thr
Lys Asp Val 20 25 30
Ser Glu Tyr Ser Cys Arg Glu Leu His Phe Thr Arg Tyr Val Thr Asp
35 40 45 Gly Pro Cys Arg
Ser Ala Lys Pro Val Thr Glu Leu Val Cys Ser Gly 50
55 60 Gln Cys Gly Pro Ala Arg Leu Leu
Pro Asn Ala Ile Gly Arg Gly Lys 65 70
75 80 Trp Trp Arg Pro Ser Gly Pro Asp Phe Arg Cys Ile
Pro Asp Arg Tyr 85 90
95 Arg Ala Gln Arg Val Gln Leu Leu Cys Pro Gly Gly Glu
100 105 17256PRTArtificialLRP 5/6
Peptides 172Pro Glu Pro Pro Pro Glu Leu Glu Asn Asn Lys Thr Met Asn Arg
Ala 1 5 10 15 Glu
Asn Gly Gly Arg Pro Pro His His Pro Phe Glu Thr Lys Asp Val
20 25 30 Ser Glu Tyr Ser Cys
Arg Glu Leu His Phe Thr Arg Tyr Val Thr Asp 35
40 45 Gly Pro Cys Arg Ser Ala Lys Pro
50 55 17353PRTArtificialLRP 5/6 Peptides 173Val Thr
Glu Leu Val Cys Ser Gly Gln Cys Gly Pro Ala Arg Leu Leu 1 5
10 15 Pro Asn Ala Ile Gly Arg Gly
Lys Trp Trp Arg Pro Ser Gly Pro Asp 20 25
30 Phe Arg Cys Ile Pro Asp Arg Tyr Arg Ala Gln Arg
Val Gln Leu Leu 35 40 45
Cys Pro Gly Gly Glu 50 17418PRTArtificialLRP 5/6
Peptides 174Ala Ala Pro Leu Leu Leu Tyr Ala Asn Arg Arg Asp Leu Arg Leu
Val 1 5 10 15 Asp
Ala 17517PRTArtificialLRP 5/6 Peptides 175Thr Ile Val Val Gly Gly Leu Glu
Asp Ala Ala Ala Val Asp Phe Val 1 5 10
15 Phe 17614PRTArtificialLRP 5/6 Peptides 176Gly Leu
Ile Tyr Trp Ser Asp Val Ser Glu Glu Ala Ile Lys 1 5
10 17740PRTArtificialLRP 5/6 Peptides 177Ser
Val Gln Asn Val Val Val Ser Gly Leu Leu Ser Pro Asp Gly Leu 1
5 10 15 Ala Cys Asp Trp Leu Gly
Glu Lys Leu Tyr Trp Thr Asp Ser Glu Thr 20
25 30 Asn Arg Ile Glu Val Ser Asn Leu
35 40 17819PRTArtificialLRP 5/6 Peptides 178Gln Asn Val
Val Val Ser Gly Leu Leu Ser Pro Asp Gly Leu Ala Cys 1 5
10 15 Asp Trp Leu
17920PRTArtificialLRP 5/6 Peptides 179Lys Leu Tyr Trp Thr Asp Ser Glu Thr
Asn Arg Ile Glu Val Ser Asn 1 5 10
15 Leu Asp Gly Ser 20 18019PRTArtificialLRP
5/6 Peptides 180Arg Lys Val Leu Phe Trp Gln Glu Leu Asp Gln Pro Arg Ala
Ile Ala 1 5 10 15
Leu Asp Pro 18120PRTArtificialLRP 5/6 Peptides 181Met Tyr Trp Thr Asp Trp
Gly Glu Val Pro Lys Ile Glu Arg Ala Gly 1 5
10 15 Met Asp Gly Ser 20
1828PRTArtificialLRP 5/6 Peptides 182Ile Tyr Trp Pro Asn Gly Leu Thr 1
5 1839PRTArtificialLRP 5/6 Peptides 183Lys Leu
Tyr Trp Ala Asp Ala Lys Leu 1 5
18413PRTArtificialLRP 5/6 Peptides 184Phe Ile His Lys Ser Asn Leu Asp Gly
Thr Asn Arg Gln 1 5 10
18514PRTArtificialLRP 5/6 Peptides 185Val Val Lys Gly Ser Leu Pro His Pro
Phe Ala Leu Thr Leu 1 5 10
18621PRTArtificialLRP 5/6 Peptides 186Asp Thr Leu Tyr Trp Thr Asp Trp
Asn Thr His Ser Ile Leu Ala Cys 1 5 10
15 Asn Lys Tyr Thr Gly 20
18713PRTArtificialLRP 5/6 Peptides 187Arg Glu Ile His Ser Asn Ile Phe Ser
Pro Met Asp Ile 1 5 10
18810PRTArtificialLRP 5/6 Peptides 188Asp Asn Gly Gly Cys Ser His Leu Cys
Leu 1 5 10 18911PRTArtificialLRP 5/6
Peptides 189Pro Phe Tyr Gln Cys Ala Cys Pro Thr Gly Val 1 5
10 19025PRTArtificialLRP 5/6 Peptides 190Leu Leu
Leu Ala Arg Arg Thr Asp Leu Arg Arg Ile Ser Leu Asp Thr 1 5
10 15 Pro Asp Phe Thr Asp Ile Val
Leu Gln 20 25 19112PRTArtificialLRP 5/6
Peptides 191Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp Pro 1
5 10 19216PRTArtificialLRP 5/6 Peptides
192Glu Gly Tyr Ile Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg 1
5 10 15
19331PRTArtificialLRP 5/6 Peptides 193Pro Asp Gly Ile Ala Val Asp Trp Val
Ala Arg Asn Leu Tyr Trp Thr 1 5 10
15 Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu Asn Gly
Thr 20 25 30
19415PRTArtificialLRP 5/6 Peptides 194Arg Lys Ile Leu Ile Ser Glu Asp Leu
Glu Glu Pro Arg Ala Ile 1 5 10
15 1958PRTArtificialLRP 5/6 Peptides 195Met Tyr Trp Thr Asp Trp
Gly Glu 1 5 19610PRTArtificialLRP 5/6
Peptides 196Pro Lys Ile Glu Arg Ala Ala Leu Asp Gly 1 5
10 19716PRTArtificialLRP 5/6 Peptides 197Val Leu Val Asn
Thr Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu Asp 1 5
10 15 19812PRTArtificialLRP 5/6 Peptides
198Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu Val 1 5
10 19932PRTArtificialLRP 5/6 Peptides 199Glu Asp
Lys Ile Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Tyr 1 5
10 15 Val Tyr Trp Thr Asp Trp Gln
Arg Arg Ser Ile Glu Arg Val His Lys 20 25
30 20024PRTArtificialLRP 5/6 Peptides 200Gly Phe
Met Tyr Trp Thr Asp Trp Gly Glu Val Pro Lys Ile Glu Arg 1 5
10 15 Ala Gly Met Asp Gly Ser Ser
Arg 20 20113PRTArtificialLRP 5/6 Peptides
201Pro Lys Ile Glu Arg Ala Gly Met Asp Gly Ser Ser Arg 1 5
10 20210PRTArtificialLRP 5/6 Peptides
202Asp Asn Gly Gly Cys Ser His Leu Cys Leu 1 5
10 20311PRTArtificialLRP 5/6 Peptides 203Pro Phe Tyr Gln Cys Ala
Cys Pro Thr Gly Val 1 5 10
20425PRTArtificialLRP 5/6 Peptides 204Leu Leu Leu Ala Arg Arg Thr Asp Leu
Arg Arg Ile Ser Leu Asp Thr 1 5 10
15 Pro Asp Phe Thr Asp Ile Val Leu Gln 20
25 20512PRTArtificialLRP 5/6 Peptides 205Asp Ile Arg His Ala
Ile Ala Ile Asp Tyr Asp Pro 1 5 10
20616PRTArtificialLRP 5/6 Peptides 206Glu Gly Tyr Ile Tyr Trp Thr Asp
Asp Glu Val Arg Ala Ile Arg Arg 1 5 10
15 20731PRTArtificialLRP 5/6 Peptides 207Pro Asp Gly
Ile Ala Val Asp Trp Val Ala Arg Asn Leu Tyr Trp Thr 1 5
10 15 Asp Thr Gly Thr Asp Arg Ile Glu
Val Thr Arg Leu Asn Gly Thr 20 25
30 20815PRTArtificialLRP 5/6 Peptides 208Arg Lys Ile Leu Ile
Ser Glu Asp Leu Glu Glu Pro Arg Ala Ile 1 5
10 15 2098PRTArtificialLRP 5/6 Peptides 209Met Tyr
Trp Thr Asp Trp Gly Glu 1 5
21010PRTArtificialLRP 5/6 Peptides 210Pro Lys Ile Glu Arg Ala Ala Leu Asp
Gly 1 5 10 21116PRTArtificialLRP 5/6
Peptides 211Val Leu Val Asn Thr Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu
Asp 1 5 10 15
21212PRTArtificialLRP 5/6 Peptides 212Tyr Trp Gly Asp Ala Lys Thr Asp Lys
Ile Glu Val 1 5 10
21332PRTArtificialLRP 5/6 Peptides 213Glu Asp Lys Ile Pro His Ile Phe Gly
Phe Thr Leu Leu Gly Asp Tyr 1 5 10
15 Val Tyr Trp Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val
His Lys 20 25 30
21421PRTArtificialLRP 5/6 Peptides 214Ser Asp Arg Asn Asn Arg Val Gln Val
Gly Cys Arg Glu Leu Arg Ser 1 5 10
15 Thr Lys Tyr Ile Ser 20 215621DNAHuman
215atgcttcctc ctgccattca tctctctctc attcccctgc tctgcatcct gatgaaaaac
60tgtttggctt ttaaaaatga tgccacagaa atcctttatt cacatgtggt taaacctgtt
120tcagcacacc ccagcagcaa cagcaccttg aatcaagcca ggaatggagg caggcacttc
180agtagcacgg gactggatcg aaatagtcga gttcaagtgg gctgcaggga actgcggtcc
240accaaataca tctcggatgg ccagtgcacc agcatcagcc ctctgaagga gctggtgtgc
300gcgggtgagt gcttgccctt gccagtgctt cccaactgga tcggaggagg ctacggaaca
360aagtactgga gccggagggg ctcccaggag tggcggtgtg tcaacgacaa gacgcgcacc
420cagagaatcc agctgcagtg tcaggacggc agcacacgca cctacaaaat caccgtggtc
480acagcgtgca agtgcaagag gtacacccgg cagcacaacg agtccagcca caactttgaa
540agcgtgtctc ccgccaagcc cgcccagcac cacagagagc ggaagagagc cagcaaatcc
600agcaagcaca gtctgagcta g
621216206PRTMousemisc_feature(95)..(95)Xaa can be any naturally occurring
amino acidmisc_feature(128)..(128)Xaa can be any naturally occurring
amino acid 216Met Leu Pro Pro Ala Ile His Leu Ser Leu Ile Pro Leu Leu Cys
Ile 1 5 10 15 Leu
Met Arg Asn Cys Leu Ala Phe Lys Asn Asp Ala Thr Glu Ile Leu
20 25 30 Tyr Ser His Val Val
Lys Pro Val Pro Ala His Pro Ser Ser Asn Ser 35
40 45 Thr Leu Asn Gln Ala Arg Asn Gly Gly
Arg His Phe Ser Ser Thr Gly 50 55
60 Leu Asp Arg Asn Ser Arg Val Gln Val Gly Cys Arg Glu
Leu Arg Ser 65 70 75
80 Thr Lys Tyr Ile Ser Asp Gly Gln Cys Thr Ser Ile Ser Pro Xaa Lys
85 90 95 Glu Leu Val Cys
Ala Gly Glu Cys Leu Pro Leu Pro Val Leu Pro Asn 100
105 110 Trp Ile Gly Gly Gly Tyr Gly Thr Lys
Tyr Trp Ser Arg Arg Ser Xaa 115 120
125 Gln Glu Trp Arg Cys Val Asn Asp Lys Thr Arg Thr Gln Arg
Ile Gln 130 135 140
Leu Gln Cys Gln Asp Gly Ser Thr Arg Thr Tyr Lys Ile Thr Val Val 145
150 155 160 Thr Ala Cys Lys Cys
Lys Arg Tyr Thr Arg Gln His Asn Glu Ser Ser 165
170 175 His Asn Phe Glu Ser Val Ser Pro Ala Lys
Pro Ala Gln His His Arg 180 185
190 Glu Arg Lys Arg Ala Ser Lys Ser Ser Lys His Ser Leu Ser
195 200 205 217168PRTHuman 217Met
Gln Leu Pro Leu Ala Leu Cys Leu Val Cys Leu Leu Val His Thr 1
5 10 15 Ala Phe Arg Val Val Glu
Gly Gln Gly Trp Gln Ala Phe Lys Asn Asp 20
25 30 Ala Thr Glu Ile Ile Pro Glu Leu Gly Glu
Tyr Pro Glu Pro Pro Pro 35 40
45 Glu Leu Glu Asn Asn Lys Thr Met Asn Arg Ala Glu Asn Gly
Gly Arg 50 55 60
Pro Pro His His Pro Phe Glu Thr Lys Asp Val Ser Glu Tyr Ser Cys 65
70 75 80 Arg Glu Leu His Phe
Thr Arg Tyr Val Thr Asp Gly Pro Cys Arg Ser 85
90 95 Ala Lys Pro Val Thr Glu Leu Val Cys Ser
Gly Gln Cys Gly Pro Ala 100 105
110 Arg Leu Leu Pro Asn Ala Ile Gly Arg Gly Lys Trp Trp Arg Pro
Ser 115 120 125 Gly
Pro Asp Phe Arg Cys Ile Pro Asp Arg Tyr Arg Ala Gln Arg Val 130
135 140 Gln Leu Leu Cys Pro Gly
Gly Glu Ala Pro Arg Ala Arg Lys Val Arg 145 150
155 160 Leu Val Ala Ser Cys Lys Cys Lys
165
User Contributions:
Comment about this patent or add new information about this topic: