Patent application title: METHODS AND COMPOSITIONS FOR RNA-GUIDED TREATMENT OF HIV INFECTION
Inventors:
IPC8 Class: AA61K3846FI
USPC Class:
1 1
Class name:
Publication date: 2018-08-02
Patent application number: 20180214521
Abstract:
A method of immunizing a subject at risk of HIV-1 virus infection, by
administering to the subject a prophylactically effective amount of a
composition comprising a Clustered Regularly Interspaced Short
Palindromic Repeat (CRISPR)-associated endonuclease, and two or more
different multiplex guide RNAs (gRNAs), wherein each of the at least two
gRNAs is complementary to a different target nucleic acid sequence in a
long terminal repeat (LTR) of proviral DNA of the virus that is unique
from the genome of the host cell, cleaving a double strand of the
proviral DNA at a first target protospacer sequence with the
CRISPR-associated endonuclease, cleaving a double strand of the proviral
DNA at a second target protospacer sequence with the CRISPR-associated
endonuclease, excising an entire HIV-1 proviral genome, eradicating the
HIV-1 proviral DNA from the host cell, and preventing HIV-1 virus
infection in the subject.Claims:
1. A method of immunizing a subject at risk of HIV-1 virus infection,
including the steps of: administering to the subject a prophylactically
effective amount of a composition comprising a Clustered Regularly
Interspaced Short Palindromic Repeat (CRISPR)-associated endonuclease,
and two or more different multiplex guide RNAs (gRNAs), wherein each of
the at least two gRNAs is complementary to a different target nucleic
acid sequence in a long terminal repeat (LTR) of proviral DNA of the
virus that is unique from the genome of a host cell; cleaving a double
strand of the proviral DNA at a first target protospacer sequence with
the CRISPR-associated endonuclease; cleaving a double strand of the
proviral DNA at a second target protospacer sequence with the
CRISPR-associated endonuclease; excising an entire HIV-1 proviral genome;
eradicating the HIV-1 proviral DNA from the host cell; and preventing
HIV-1 infection in the subject.
2. The method of claim 1, wherein said administering step includes the steps of: exposing the host cell to a composition including an isolated nucleic acid encoding the CRISPR-associated endonuclease; an isolated nucleic acid sequence encoding a first gRNA having a first spacer sequence that is complementary to a first target protospacer sequence in the proviral DNA; and an isolated nucleic acid encoding a second gRNA having a second spacer sequence that is complementary to a second target protospacer sequence in the proviral DNA; expressing in the host cell the CRISPR-associated endonuclease, the first gRNA, and the second gRNA; assembling, in the host cell, a first gene editing complex including the CRISPR-associated endonuclease and the first gRNA; and a second gene editing complex including the CRISPR-associated endonuclease and the second gRNA; directing the first gene editing complex to the first target protospacer sequence by complementary base pairing between the first spacer sequence and the first target protospacer sequence; and directing the second gene editing complex to the second target protospacer sequence by complementary base pairing between the second spacer sequence and the second target protospacer sequence.
3. The method of claim 1, wherein at least one of the first target protospacer sequence and the second target protospacer sequence is situated within the U3 region of the LTR.
4. The method of claim 1, wherein the first spacer sequence and the second spacer sequence each include a sequence complementary to a target protospacer sequence selected from the group consisting of SEQ ID NO: 96, SEQ ID NO: 121, SEQ ID NO: 87, and SEQ ID NO: 110.
5. The method of claim 1, wherein the first spacer sequence and the second spacer sequence include, respectively, a sequence complementary to the target protospacer sequences SEQ ID NO: 96 and SEQ ID NO: 121.
6. The method of claim 1, wherein the first spacer sequence and the second spacer sequence each include, respectively, a sequence complementary to the target protospacer sequences SEQ ID NO: 87 and SEQ ID NO: 110.
7. The method of claim 1, wherein the CRISPR-associated endonuclease is Cas9 or a human-optimized Cas9.
8. The method of claim 1, wherein the composition is encoded in a vector selected from the group consisting of a plasmid vector, a lentiviral vector, an adenoviral vector, and an adeno-associated virus vector.
9. The method of claim 1, wherein at least one of the gRNAs comprises a CRISPR RNA (crRNA) and a trans-activated small RNA (tracrRNA), which are expressed as separate nucleic acids.
10. The method of claim 1, wherein at least one of the gRNAs is engineered as an artificial fusion small guide RNA (sgRNA) comprised of a crRNA and a tracrRNA.
11. The method of claim 1, wherein the host cell is chosen from the group consisting of a CD4+ T cell, a macrophage, a monocyte, a gut associated lymphoid cell, a microglial cell, and an astrocyte.
12. The method of claim 1, wherein the subject at risk is chosen from the group consisting of any sexually active individual engaging in unprotected sex, a sexually active individual having another sexually transmitted infection, an intravenous drug user, an uncircumcised man, an individual whose occupation may bring him or her into contact with HIV-infected populations, an inmate in a correctional setting, a sex worker, a pregnant woman, and a lactating woman.
Description:
BACKGROUND OF THE INVENTION
1. Technical Field
[0002] The present invention relates to compositions that specifically cleave target sequences in retroviruses, for example human immunodeficiency virus (HIV). Such compositions, which can include nucleic acids encoding a Clustered Regularly Interspace Short Palindromic Repeat (CRISPR) associated endonuclease and a guide RNA sequence complementary to a target sequence in a human immunodeficiency virus, can be administered to a subject having or at risk for contracting an HIV infection.
2. Background Art
[0003] For more than three decades since the discovery of HIV-1, AIDS remains a major public health problem affecting greater than 35.3 million people worldwide. AIDS remains incurable due to the permanent integration of HIV-1 into the host genome. Current therapy (highly active antiretroviral therapy or HAART) for controlling HIV-1 infection and impeding AIDS development profoundly reduces viral replication in cells that support HIV-1 infection and reduces plasma viremia to a minimal level. But HAART fails to suppress low level viral genome expression and replication in tissues and fails to target the latently-infected cells, for example, resting memory T cells, brain macrophages, microglia, and astrocytes, gut-associated lymphoid cells, that serve as a reservoir for HIV-1. Persistent HIV-1 infection is also linked to co-morbidities including heart and renal diseases, osteopenia, and neurological disorders. There is a continuing need for curative therapeutic strategies that target persistent viral reservoirs.
SUMMARY OF THE INVENTION
[0004] The present invention provides for a method of immunizing a subject at risk of HIV-1 virus infection, by administering to the subject a prophylactically effective amount of a composition comprising a Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated endonuclease, and two or more different multiplex guide RNAs (gRNAs), wherein each of the at least two gRNAs is complementary to a different target nucleic acid sequence in a long terminal repeat (LTR) of proviral DNA of the virus that is unique from the genome of the host cell, cleaving a double strand of the proviral DNA at a first target protospacer sequence with the CRISPR-associated endonuclease, cleaving a double strand of the proviral DNA at a second target protospacer sequence with the CRISPR-associated endonuclease, excising an entire HIV-1 proviral genome, eradicating the HIV-1 proviral DNA from the host cell, and preventing HIV-1 virus infection in the subject.
[0005] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, FIG. 1E, FIG. 1F, FIG. 1G, and FIG. 1H show that Cas9/LTR-gRNA suppresses HIV-1 reporter virus production in CHME5 microglial cells latently infected with HIV-1. FIG. 1A shows a representative gating diagram of EGFP flow cytometry shows a dramatic reduction in TSA-induced reactivation of latent pNL4-3-.DELTA.Gag-d2EGFP reporter virus by stably expressed Cas9 plus LTR-A or -B, vs. empty U6-driven gRNA expression vector (U6-CAG). FIG. 1B shows SURVEYOR Cel-I nuclease assay of PCR product (-453 to +43 within LTR) from selected LTR-A- or -B-expressing stable clones shows dramatic indel mutation patterns (arrows). FIG. 1C shows a PCR fragment analysis of a precise deletion of 190-bp region between LTRs A and B cutting sites (arrowhead and arrow in FIG. 1D), leaving 306-bp fragment (arrow in FIG. 1C) validated by TA-cloning and sequencing results. FIG. 1D discloses SEQ ID NOS 1-3, respectively, in order of appearance. FIG. 1E is a graph showing subcloning of LTR-A/B stable clones reveals complete loss of reporter reactivation determined by EGFP flow cytometry, and FIG. 1F shows elimination of pNL4-3-.DELTA.Gag-d2EGFP proviral genome detected by standard, and FIG. 1G shows real-time (1G) PCR amplification of genomic DNA for EGFP and HIV-1 Rev response element (RRE); .beta.-actin is a DNA purification and loading control. FIG. 1H shows PCR genotyping of LTR-A/B subclones (#8, 13) using primers to amplify DNA fragment covering HIV-1 LTR U3/R/U5 regions (-411 to +129) shows indels (a, deletion; c, insertion) and "intact" or combined LTR (b).
[0007] FIG. 2A, FIG. 2B, and FIG. 2C show that Cas9/LTR-gRNA efficiently eradicates latent HIV-1 virus from U1 monocytic cells. FIG. 2A shows a diagram showing excision of HIV-1 entire genome in chromosome Xp11.4. HIV-1 integration sites were identified using a Genome-Walker link PCR kit. Left, analysis of PCR amplicon lengths using a primer pair (P1/P2) targeting chromosome X integration site-flanking sequence reveals elimination of the entire HIV-1 genome (9709-bp), leaving two fragments (833- and 670-bp). FIG. 2B shows TA cloning and sequencing of the LTR fragment (833-bp) showing the host genomic sequence (small letters, 226-bp) and the partial sequences (634-27=607 bp) of 5'-LTR (underlined using dashes) and 3'-LTR (first underlined section) with a 27-bp deletion around the LTR-A targeting site (second underlined section). Bottom, two indel alleles identified from 15 sequenced clonal amplicons. The 670-bp fragment consists of a host sequence (226-bp) and the remaining LTR sequence (634-190-444 bp) after 190-bp excision by simultaneous cutting at LTR-A and B target sites. The underlined and highlighted sequences indicate the gRNA LTR-A target site and PAM. FIG. 2B discloses SEQ ID NOS 4-13, respectively, in order of appearance. FIG. 2C shows a functional analysis of LTR-A/B-induced eradication of HIV-1 genome, showing substantial blockade of TSA/PMA reactivation-induced p24 virion release. U1 cells were transfected with pX260-LTRs-A, -B, or -A/B. After 2-week puromycin selection, cells were treated with TSA (250 nM)/PMA for 2 days before p24 Gag ELISA was performed.
[0008] FIG. 3A, FIG. 3B, and FIG. 3C show that stable expression of Cas9 plus LTR-A/B vaccinates TZM-bl cells against new HIV-1 virus infection. FIG. 3A shows immunohistochemistry (ICC) and Western blot (WB) analyses with anti-Flag antibody confirm the expression of Flag-Cas9 in TZM-bl stable clones puromycin (2 .mu.g/ml)-selected for 2 weeks. FIG. 3B shows PCR genotyping of Cas9/LTR-A/B stable clones (c1-c7) reveals a close correlation of LTR excision with repression of LTR luciferase reporter activation. Fold changes represent TSA/PMA-induced levels over corresponding non-induction levels. FIG. 3C shows Cas9/LTR-A/B-expressing cells (c4) were infected with pseudotyped-pNL4-3-Nef-EGFP lentivirus at indicated multiplicity of infection (MOI) and infection efficiency measured by EGFP flow cytometry, 2 d post-infection. FIG. 3D shows phase-contrast/fluorescence micrographs show that LTR-A/B stable, but not control (U6-CAG; black) cells, are resistant to new infection (right panel) by pNL4-3-AE-EGFP HIV-1 reporter virus (gray).
[0009] FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D illustrate the off-target effects of Cas9/LTR-A/B on the human genome. FIG. 4A is a SURVEYOR assay that shows no indel mutations in predicted/potential off-target regions in human TZM-bl and U1 cells. LTR-A on-target region (A) was used as a positive control and empty U6-CAG vector (U6) as a negative control. FIG. 4B shoes whole-genome sequencing of LTR-A/B stable TZM-bl subclone showing the numbers of called indels in the U6-CAG control and LTR-A/B samples, FIG. 4C shows detailed information on 10 called indels near gRNA target sites in both samples, and FIG. 4D shows distribution of off-target called indels. FIG. 4C discloses SEQ ID NOS 14-15, respectively, in order of appearance.
[0010] FIG. 5 shows the LTR U3 sequence of the integrated lentiviral LTR-firefly luciferase reporter identified by TA-cloning and sequencing of PCR product (-411 to -10) from the genomic DNA of human TZM-bl cells. The protospacer and PAM (NGG) sequences of 4 gRNAs (LTR-A to D) and the predicted binding sites of indicated transcription factors are highlighted. The precise cleavage sites are marked with scissors. +1 indicates the transcriptional start site. FIG. 5 discloses SEQ ID NO: 16.
[0011] FIG. 6A, FIG. 6B, and FIG. 6C show that LTR-C and LTR-D remarkably suppress TSA-induced reactivation of latent pNL4-3-.DELTA.Gag-d2EGFP virus in CHME5 microglia cells. FIG. 6A is a diagram schematically showing pNL4-3-.DELTA.Gag-d2EGFP vector containing Tat, Rev, Env, Vpu, and Nef with the reporter gene d2EGFP. FIG. 6B shows a SURVEYOR assay showing indel mutations in the on-target LTR genome of Cas9/LTR-D but not Cas9/LTR-C transfected cells. FIG. 6C shows a representative gating diagram of EGFP flow cytometry showing a dramatic reduction in TSA-induced reactivation of latent pNL4-3-.DELTA.Gag-d2EGFP reporter viruses by stable expression of Cas9/LTR-C or LTR-D as compared with empty U6-driven gRNA expression vector (U6-CAG).
[0012] FIG. 7A, FIG. 7B, FIG. 7C, FIG. 7D, FIG. 7E, and FIG. 7F show that both LTR-C and LTR-D induced indel mutations and significantly decreased constitutive and TSA/PMA-induced luciferase activity in TZM-bl cells stably incorporated with HIV-1 LTR-firefly luciferase reporter gene. FIG. 7A shows a functional luciferase reporter assay revealing a significant reduction of LTR reactivation by LTR-C, LTR-D or both. FIG. 7B shows a SURVEYOR assay showing indel mutation in LTR DNA (-453 to +43) induced by LTR-C and LTR-D (upper arrow). A combination of LTR-C and LTR-D generates a 194 bp fragment (lower arrow) resulting from the deletion of 302 bp region between LTR-C and LTR-D. FIG. 7C and FIG. 7D show Sanger sequencing of 30 clones validating the indel efficiency at 23% for LTR-C and 13% for LTR-D and example chromatograms showing insertion/deletion. FIG. 7C discloses SEQ ID NOS 17-25, respectively, in order of appearance. FIG. 7D discloses SEQ ID NOS 26-30, respectively, in order of appearance. FIG. 7E shows PCR-restriction fragment length polymorphism (RFLP) analysis using BsaJ I to cut 5 sites (96, 102, 372, 386, 482) of the PCR product covering -453 to +43 of LTR showing two major bands (96 bp and 270 bp) in the U6-CAG control sample, but an additional 372 bp band (upper arrow) after LTR-C-induced indel mutation at the 96/102 sites, a 290 bp band (middle arrow) after LTR-D-induced mutations at the 372 site and a 180 bp fragment (lower arrow) after LTR-C/D-induced excision. FIG. 7F shows chromatograms showing the deletion of a 302 bp fragment between LTR-C and LTR-D (top) and an additional 17 bp deletion (bottom). Red arrows indicate the junction sites. *P<0.05 indicates a significant decrease in LTR-C or LTR-D-mediated luciferase activation compared to U6-CAG control. FIG. 7F discloses SEQ ID NOS 31-32, respectively, in order of appearance.
[0013] FIG. 8A, FIG. 8B, and FIG. 8C illustrate the TA cloning and Sanger sequencing of PCR products from CHME5 subclones of LTR-A/B and empty U6-CAG control using primers covering HIV-1 LTR U3/R/U5 regions (-411 to +129). FIG. 8A shows possible combination of LTR-A and LTR-B cuts on both 5'- and 3'-LTRs generating potential fragments a-c as indicated. FIG. 8B shows blasting of fragment a (351 bp) showing 190 bp deletion between LTR-A and LTR-B cut sites. FIG. 8C shows a blast of fragment c (682 bp) showing a 175 bp insertion at the LTR-A cleavage site and a 27 bp deletion at the LTR-B cleavage site. FIG. 8C discloses SEQ ID NOS 33-34, respectively, in order of appearance.
[0014] FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D demonstrate that Cas9/LTR-gRNA efficiently eradicates latent HIV-1 virus from U1 monocytic cells. FIG. 9A shows a Sanger sequencing of a 1.1 kb fragment from long-range PCR using a primer pair (T492/T493) targeting a chromosome 2 integration site-flanking sequence (small letters, 467-bp) reveals elimination of the entire HIV-1 genome (9709-bp), leaving combined 5'-LTR (underlined using dashes) and 3'-LTR with a 6-bp insertion (boxed) precisely at the third nucleotide from PAM (TGG) LTR-A targeting site (underlined) and a 4-bp deletion (nnnn). FIG. 9A discloses SEQ ID NO: 35. FIG. 9B is a representative DNA gel picture that shows specific eradication of the HIV-1 genome. NS, non-specific band. FIG. 9C is a graph and FIG. 9D is a graph showing quantitative PCR analysis using the primer pair targeting the Gag gene (T457/T458) shows 85% efficiency of entire HIV-1 genome eradication in Cas9/LTR-A/B-expressing U1 cells. U1 cells were transfected with pX260 empty vector (U6-CAG) or LTRs-A/B-encoding vectors. After 2-week puromycin selection, the cellular genomic DNAs were used for absolute quantitative qPCR analysis using spiked pNL4-3-AE-EGFP human genomic DNA as a standard. **P<0.01 indicates a significant decrease compared to the U6-CAG control.
[0015] FIG. 10A, FIG. 10B, and FIG. 10C show that Cas9/LTR gRNAs effectively eradicates HIV-1 provirus in J-Lat latently infected T cells. FIG. 10A shows functional analysis by EGFP flow cytometry reveals approximately 50% reduction of PMA and TNF.alpha.-induced reactivation of EGFP reporter viruses. FIG. 10B is a SURVEYOR assay that shows indel mutations (arrow) in the on-target LTR genome of Cas9/LTR-A/B transfected cells. J-Lat cells were transfected with pX260 empty vector or LTRs-A and -B. After 2-week puromycin selection, cells were treated with PMA or TNF.alpha. for 24 h. The genomic DNAs were subject to PCR using primers covering HIV-1 LTR U3/R/U5 regions (-411 to +129) and the SURVEYOR assay was performed. **P<0.01 indicates a significant decrease compared to the U6-CAG control. FIG. 10C shows a PCR fragment analysis using primers covering HIV-1 LTR (-374 to +43) shows a precise deletion of 190-bp region between LTRs A and B cutting sites, leaving 227-bp fragment (arrow). House-keeping gene .beta.-actin serves as a DNA purification and loading control.
[0016] FIG. 11A, FIG. 11B, FIG. 11C, and FIG. 11D show that genome editing efficiency depends upon the presence of Cas9 and gRNAs. FIG. 11A shows PCR genotyping reveals the absence of a U6-driven LTR-A or LTR-B expression cassette and FIG. 11B shows absence/reduction of CMV-driven Cas9 DNA in puromycin-selected TZM-bl subclones without any indication of genomic editing. Genomic DNAs from indicated subclones were subject to conventional (FIG. 11A) or real-time (FIG. 11B) PCR analyses using a primer pair covering U6 promoter (T351) and LTR-A (T354) or -B (T356), and targeting Cas9 (T477/T491). FIG. 11C and FIG. 11D show Cas9 protein expression is absent in ineffective TZM-bl subclones. FIG. 11C shows that the Flag-tagged Cas9 fusion protein was detected by Western blot (WB) and immunocytochemistry (ICC) with anti-Flag monoclonal antibody. HEK293T cell line stably expressing Flag-Cas9 was used as a positive control for WB. GAPDH serves as a protein loading control. Clone c6 contains Cas9 DNA but no Cas9 protein expression, suggesting a potential mechanism of epigenetic repression after puromycin selection. Clone c5 and c3 may represent a truncated Flag-Cas9 (tCas9). FIG. 11D shows that the nucleus was stained with Hoechst 33258.
[0017] FIG. 12A, FIG. 12B, FIG. 12C, and FIG. 12D demonstrate that stable expression of Cas9/LTR-A/B gRNAs in TZM-bl cells vaccinates against pseudotyped or native HIV-1 viruses. FIG. 12 shows that flow cytometry shows a significant reduction of native pNL4-3-AE-EGFP reporter virus infection efficiency in Cas9/LTR-A/B expressing TZM-bl subclones. Real-time PCR analysis reveals suppression or elimination of viral RNA as shown in FIG. 12B and DNA as shown in FIG. 12C by Cas9/LTR-A/B gRNAs. FIG. 12D shows that the firefly-luciferase luminescent assay demonstrates dramatic inhibition of virus infection-stimulated LTR promoter activity by Cas9/LTR-A/B gRNAs. The stable Cas9/LTR-A/B gRNA-expressing TZM-bl cells were infected for 2 hours with indicated native HIV-1 viruses, and washed twice with PBS. At 2 days post-infection, cells were collected, fixed and analyzed by flow cytometry for EGFP expression (in FIG. 12A), or lysed for total RNA extraction and RT-qPCR (in FIG. 12B), genomic DNA purification for qPCR (in FIG. 12C) and luminescence measurement (in FIG. 12D). *P<0.05 and **P<0.01 indicate significant decreases compared to the U6-CAG control.
[0018] FIG. 13 shows the predicted LTR gRNAs and their off-target numbers (100% match). The 5'-LTR sense and antisense sequences (SEQ ID NOS 79-111 and 112-141, respectively) (634 bp) of pHR'-CMV-LacZ lentiviral vector (AF105229) were utilized to search for Cas9/gRNA target sites containing a 20-bp guide sequence (protospacer) plus the protospacer adjacent motif sequence (NGG) using Jack Lin's CRISPR/Cas9 gRNA finder tool (http://spot.colorado.edu/.about.slin/cas9.html). Each gRNA plus NGG (AGG, TGG, GGG, CGG) was blasted against available human genomic and transcript sequences with 1000 aligned sequences being displayed. After pressing Control+F, copy/paste the target sequence (1-23 through 9-23 nucleotides) and find the number of genomic targets with 100% match. The number of off-targets for each searching was divided by 3 because of repeated genome library. The number shown indicates the sum of 4 searches (NGG). The top number (for example, for gRNA sequence (sense): 20, 19, 19, 17, 16, 15, 14, 13, 12) indicates the gRNA target sequences farthest from NGG. The sequence and off-target numbers for the selected LTR-A/B and LTR-C/D are highlighted red and green respectively.
[0019] FIG. 14 depicts the oligonucleotides for gRNA targeting sites and primers (SEQ ID NOS 36-78, respectively, in order of appearance) used for PCR and sequencing.
[0020] FIG. 15 shows the locations of predicted gRNA targeting sites of LTR-A and LTR-B and discloses "query Seq" sequences as SEQ ID NOS 142-252, and "ref Seq" sequences as SEQ ID NOS 253-363, all respectively, in order of appearance.
[0021] FIG. 16A, FIG. 16B, FIG. 16C, FIG. 16D, FIG. 16E, FIG. 16F, FIG. 16G, and FIG. 16H show that both LTR-C and LTR-D decreased constitutive and TSA/PMA-induced luciferase activity in TZMBI cells stably incorporated with HIV-1 LTR firefly luciferase reporter gene and combination induced precise genome excision. FIG. 16A shows that six gRNA targets were designed for the promoter region of HIV-LTR. FIG. 16A discloses SEQ ID NO: 16. TZMBI cells were cotransfected with Cas9-EGFP and chimera gRNA expression cassette (PCR products) by lipofectamine 2000. FIG. 16B is a graph showing that after 3 d, EGFP-positive cells were sorted through FACS and 2000 cells per group were collected for luciferase assay. FIG. 16B discloses SEQ ID: 31. FIG. 16C is a graph showing the population sorted cells were cultured for 2 d and treated with TSA/PMA for 1 d before luciferase assay. The single cells were sorted into 96-well plate and cultured till confluence for luciferase assay in the absence (shown in the graph of FIG. 16D) of TSA/PMA for 1 d or presence (shown in the graph of FIG. 1E) of TSA/PMA for 1 d. FIG. 16F and FIG. 16G show the PCR product from the population sorted cells were analyzed with Surveyor Cel-I nuclease assay and restriction fragment length polymorphism with Bsajl (FIG. 16G) showing mutation (FIG. 16F) or uncut (FIG. 16G) band (red arrow). A 200 bp fragment (FIG. 16F, FIG. 16G, black arrow) resulting from the deletion of 321 bp region between LTR-C and LTR-D as predicted (FIG. 16A, red arrowhead) was validated by TA-cloning and sequencing showing precise genomic excision (FIG. 16H). Sanger sequencing of PCR products from individual LTR-C and -D identified % and % indel mutation efficiency respectively. *p<0.05 indicates statistically significant reduction using a student's t test compared to the corresponding U6-CAG control. Protospace(E), Protospace(C), Protospace(A), Protospace(B), Protospace(D), and Protospace(F) correspond to SEQ ID NOS 365, 367, 369, 371, 373, and 375, respectively, in order of appearance.
[0022] FIG. 17A, FIG. 17B, FIG. 17C, FIG. 17D, FIG. 17E, FIG. 17F, FIG. 17G, and FIG. 17H show that Cas9/LTR-gRNA inhibited constitutive and inducible production of HIV-1 virus measured by EGFP flow cytometry in HIV-1 latently infected CHME5 microglia cell line. The pHR' lentiviral vector containing Tat, Rev, Env, Vpu, and Nef with the reported gene d2EGFP was transduced into human fetal microglia cell line CHME5 and 400 bp deletion in U3 region of 3'-LTR is illustrated (shown in FIG. 17A). FIG. 17B is a graph showing transient transfection of Cas9/gRNA, Human HIV-1 LTR-A, B alone or combination decreased the intensity but not percentage of EGFP due to suppression of LTR promoter activity. FIG. 17C is a graph showing transient transfection of Cas9/gRNA, Human HIV-1 LTR-C, D alone or combination decreased the intensity but not percentage of EGFP due to suppression of LTR promoter activity. FIG. 17D and FIG. 18 are graphs showing that after antibiotic selection for 1-2 weeks, the percentage of EGFP cells was also reduced. FIG. 17F and FIG. 17G show the PCR product from the stable selected clones were analyzed with Surveyor Cel-I nuclease assay showing indel mutation dramatically in LTR-A and LTR-B but weakly in the combination of LTR-A/B (red arrow). A 331 bp fragment (shown in FIG. 17F and FIG. 17G, black arrow) resulting from the deletion of 190 bp region between LTR-A and LTR-B as predicted (FIG. 17H, red arrowhead) was validated by TA-cloning and sequencing showing precise genomic excision (FIG. 17H). FIG. 17H discloses SEQ ID NOS 1-3, respectively, in order of appearance.
[0023] FIG. 18 shows LTR of a representative HIV-1 sequence (SEQ ID NO: 376). The U3 region extends from nucleotide 1 to nucleotide 432 (SEQ ID NO: 377), the R region extends from nucleotide 432 to nucleotide 559 (SEQ ID NO: 378), and the U5 region extends from 560 to nucleotide 634 (SEQ ID NO: 379).
[0024] FIG. 19 shows LTR of a representative SIV sequence (SEQ ID NO: 380). The U3 region extends from nucleotide 1 to nucleotide 517 (SEQ ID NO: 381), the R region extends from nucleotide 518 to nucleotide 693 (SEQ ID NO: 382), and the U5 region extends from 694 to nucleotide 818 (SEQ ID NO: 383).
DETAILED DESCRIPTION OF THE INVENTION
[0025] The present invention is based, in part, on our discovery that we could eliminate the integrated HIV-1 genome from HIV-1 infected cells by using the RNA-guided Clustered Regularly Interspace Short Palindromic Repeat (CRISPR)-Cas 9 nuclease system (Cas9/gRNA) in single and multiplex configurations. We identified highly specific targets within the HIV-1 LTR U3 region that were efficiently edited by Cas9/gRNA, inactivating viral gene expression and replication in latently-infected microglial, promonocytic and T cells. Cas9/gRNAs caused neither genotoxicity nor off-target editing to the host cells, and completely excised a 9709-bp fragment of integrated proviral DNA that spanned from its 5'- to 3'-LTRs. Furthermore, the presence of multiplex gRNAs within Cas9-expressing cells prevented HIV-1 infection. Our results suggest that Cas9/gRNA can be engineered to provide a specific, efficacious prophylactic and therapeutic approach against AIDS.
[0026] Accordingly, the invention features compositions comprising a nucleic acid encoding a CRISPR-associated endonuclease and a guide RNA that is complementary to a target sequence in a retrovirus, e.g., HIV, as well as pharmaceutical formulations comprising a nucleic acid encoding a CRISPR-associated endonuclease and a guide RNA that is complementary to a target sequence in HIV. Also featured are compositions comprising a CRISPR-associated endonuclease polypeptide and a guide RNA that is complementary to a target sequence in HIV, as well as pharmaceutical formulations comprising a CRISPR-associated endonuclease polypeptide and a guide RNA that is complementary to a target sequence in HIV.
[0027] Also featured are methods of administering the compositions to treat a retroviral infection, e.g., HIV infection, methods of eliminating viral replication, and methods of preventing HIV infection. The therapeutic methods described herein can be carried out in connection with other antiretroviral therapies (e.g., HAART).
[0028] The clinical course of HIV infection can vary according to a number of factors, including the subject's genetic background, age, general health, nutrition, treatment received, and the HIV subtype. In general, most individuals develop flu-like symptoms within a few weeks or months of infection. The symptoms can include fever, headache, muscle aches, rash, chills, sore throat, mouth or genital ulcers, swollen lymph glands, joint pain, night sweats, and diarrhea. The intensity of the symptoms can vary from mild to severe depending upon the individual. During the acute phase, the HIV viral particles are attracted to and enter cells expressing the appropriate CD4 receptor molecules. Once the virus has entered the host cell, the HIV encoded reverse transcriptase generates a proviral DNA copy of the HIV RNA and the pro-viral DNA becomes integrated into the host cell genomic DNA. It is this HIV provirus that is replicated by the host cell, resulting in the release of new HIV virions which can then infect other cells. The methods and compositions of the invention are generally and variously useful for excision of integrated HIV proviral DNA, although the invention is not so limited, and the compositions may be administered to a subject at any stage of infection or to an uninfected subject who is at risk for HIV infection.
[0029] The primary HIV infection subsides within a few weeks to a few months, and is typically followed by a long clinical "latent" period which may last for up to 10 years. The latent period is also referred to as asymptomatic HIV infection or chronic HIV infection. The subject's CD4 lymphocyte numbers rebound, but not to pre-infection levels and most subjects undergo seroconversion, that is, they have detectable levels of anti-HIV antibody in their blood, within 2 to 4 weeks of infection. During this latent period, there can be no detectable viral replication in peripheral blood mononuclear cells and little or no culturable virus in peripheral blood. During the latent period, also referred to as the clinical latency stage, people who are infected with HIV may experience no HIV-related symptoms, or only mild ones. But, the HIV virus continues to reproduce at very low levels. In subjects who have treated with anti-retroviral therapies, this latent period may extend for several decades or more. However, subjects at this stage are still able to transmit HIV to others even if they are receiving antiretroviral therapy, although anti-retroviral therapy reduces the risk of transmission. As noted above, anti-retroviral therapy does not suppress low levels of viral genome expression nor does it efficiently target latently infected cells such as resting memory T cells, brain macrophages, microglia, astrocytes and gut associated lymphoid cells.
[0030] Clinical signs and symptoms of AIDS (acquired immunodeficiency syndrome) appear as CD4 lymphocyte numbers decrease, resulting in irreversible damage to the immune system. Many patients also present with AIDS-related complications, including, for example, opportunistic infections such as tuberculosis, salmonellosis, cytomegalovirus, candidiasis, cryptococcal meningitis, toxoplasmosis, and cryptosporidiosis, as well as certain kinds of cancers, including for example, Kaposi's sarcoma, and lymphomas, as well as wasting syndrome, neurological complications, and HIV-associated nephropathy.
[0031] Compositions
[0032] The compositions of the invention include nucleic acids encoding a CRISPR-associated endonuclease, e.g., Cas9, and a guide RNA that is complementary to a target sequence in a retrovirus, e.g., HIV. In bacteria the CRISPR/Cas loci encode RNA-guided adaptive immune systems against mobile genetic elements (viruses, transposable elements and conjugative plasmids). Three types (I-III) of CRISPR systems have been identified. CRISPR clusters contain spacers, the sequences complementary to antecedent mobile elements. CRISPR clusters are transcribed and processed into mature CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) RNA (crRNA). The CRISPR-associated endonuclease, Cas9, belongs to the type II CRISPR/Cas system and has strong endonuclease activity to cut target DNA. Cas9 is guided by a mature crRNA that contains about 20 base pairs (bp) of unique target sequence (called spacer) and a trans-activated small RNA (tracrRNA) that serves as a guide for ribonuclease III-aided processing of pre-crRNA. The crRNA:tracrRNA duplex directs Cas9 to target DNA via complementary base pairing between the spacer on the crRNA and the complementary sequence (called protospacer) on the target DNA. Cas9 recognizes a trinucleotide (NGG) protospacer adjacent motif (PAM) to specify the cut site (the 3rd nucleotide from PAM). The crRNA and tracrRNA can be expressed separately or engineered into an artificial fusion small guide RNA (sgRNA) via a synthetic stem loop (AGAAAU) to mimic the natural crRNA/tracrRNA duplex. Such sgRNA, like shRNA, can be synthesized or in vitro transcribed for direct RNA transfection or expressed from U6 or Hi-promoted RNA expression vector, although cleavage efficiencies of the artificial sgRNA are lower than those for systems with the crRNA and tracrRNA expressed separately.
[0033] The compositions of the invention can include a nucleic acid encoding a CRISPR-associated endonuclease. In some embodiments, the CRISPR-associated endonuclease can be a Cas9 nuclease. The Cas9 nuclease can have a nucleotide sequence identical to the wild type Streptococcus pyrogenes sequence. In some embodiments, the CRISPR-associated endonuclease can be a sequence from other species, for example other Streptococcus species, such as thermophilus; Psuedomona aeruginosa, Escherichia coli, or other sequenced bacteria genomes and archaea, or other prokaryotic microorganisms. Alternatively, the wild type Streptococcus pyrogenes Cas9 sequence can be modified. The nucleic acid sequence can be codon optimized for efficient expression in mammalian cells, i.e., "humanized." A humanized Cas9 nuclease sequence can be for example, the Cas9 nuclease sequence encoded by any of the expression vectors listed in Genbank accession numbers KM099231.1 GI:669193757; KM099232.1 GI:669193761; or KM099233.1 GI:669193765. Alternatively, the Cas9 nuclease sequence can be for example, the sequence contained within a commercially available vector such as PX330 or PX260 from Addgene (Cambridge, Mass.). In some embodiments, the Cas9 endonuclease can have an amino acid sequence that is a variant or a fragment of any of the Cas9 endonuclease sequences of Genbank accession numbers KM099231.1 GI:669193757; KM099232.1 GI:669193761; or KM099233.1 GI:669193765 or Cas9 amino acid sequence of PX330 or PX260 (Addgene, Cambridge, Mass.). The Cas9 nucleotide sequence can be modified to encode biologically active variants of Cas9, and these variants can have or can include, for example, an amino acid sequence that differs from a wild type Cas9 by virtue of containing one or more mutations (e.g., an addition, deletion, or substitution mutation or a combination of such mutations). One or more of the substitution mutations can be a substitution (e.g., a conservative amino acid substitution). For example, a biologically active variant of a Cas9 polypeptide can have an amino acid sequence with at least or about 50% sequence identity (e.g., at least or about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity) to a wild type Cas9 polypeptide. Conservative amino acid substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine, and leucine; aspartic acid and glutamic acid; asparagine, glutamine, serine and threonine; lysine, histidine and arginine; and phenylalanine and tyrosine. The amino acid residues in the Cas9 amino acid sequence can be non-naturally occurring amino acid residues. Naturally occurring amino acid residues include those naturally encoded by the genetic code as well as non-standard amino acids (e.g., amino acids having the D-configuration instead of the L-configuration). The present peptides can also include amino acid residues that are modified versions of standard residues (e.g. pyrrolysine can be used in place of lysine and selenocysteine can be used in place of cysteine). Non-naturally occurring amino acid residues are those that have not been found in nature, but that conform to the basic formula of an amino acid and can be incorporated into a peptide. These include D-alloisoleucine(2R,3S)-2-amino-3-methylpentanoic acid and L-cyclopentyl glycine (S)-2-amino-2-cyclopentyl acetic acid. For other examples, one can consult textbooks or the worldwide web (a site is currently maintained by the California Institute of Technology and displays structures of non-natural amino acids that have been successfully incorporated into functional proteins).
[0034] The Cas9 nuclease sequence can be a mutated sequence. For example the Cas9 nuclease can be mutated in the conserved HNH and RuvC domains, which are involved in strand specific cleavage. For example, an aspartate-to-alanine (D10A) mutation in the RuvC catalytic domain allows the Cas9 nickase mutant (Cas9n) to nick rather than cleave DNA to yield single-stranded breaks, and the subsequent preferential repair through HDR can potentially decrease the frequency of unwanted indel mutations from off-target double-stranded breaks.
[0035] In some embodiments, compositions of the invention can include a CRISPR-associated endonuclease polypeptide encoded by any of the nucleic acid sequences described above. The terms "peptide," "polypeptide," and "protein" are used interchangeably herein, although typically they refer to peptide sequences of varying sizes. We may refer to the amino acid-based compositions of the invention as "polypeptides" to convey that they are linear polymers of amino acid residues, and to help distinguish them from full-length proteins. A polypeptide of the invention can "constitute" or "include" a fragment of a CRISPR-associated endonuclease, and the invention encompasses polypeptides that constitute or include biologically active variants of a CRISPR-associated endonuclease. It will be understood that the polypeptides can therefore include only a fragment of a CRISPR-associated endonuclease (or a biologically active variant thereof) but may include additional residues as well. Biologically active variants will retain sufficient activity to cleave target DNA.
[0036] The bonds between the amino acid residues can be conventional peptide bonds or another covalent bond (such as an ester or ether bond), and the polypeptides can be modified by amidation, phosphorylation or glycosylation. A modification can affect the polypeptide backbone and/or one or more side chains. Chemical modifications can be naturally occurring modifications made in vivo following translation of an mRNA encoding the polypeptide (e.g., glycosylation in a bacterial host) or synthetic modifications made in vitro. A biologically active variant of a CRISPR-associated endonuclease can include one or more structural modifications resulting from any combination of naturally occurring (i.e., made naturally in vivo) and synthetic modifications (i.e., naturally occurring or non-naturally occurring modifications made in vitro). Examples of modifications include, but are not limited to, amidation (e.g., replacement of the free carboxyl group at the C-terminus by an amino group); biotinylation (e.g., acylation of lysine or other reactive amino acid residues with a biotin molecule); glycosylation (e.g., addition of a glycosyl group to either asparagines, hydroxylysine, serine or threonine residues to generate a glycoprotein or glycopeptide); acetylation (e.g., the addition of an acetyl group, typically at the N-terminus of a polypeptide); alkylation (e.g., the addition of an alkyl group); isoprenylation (e.g., the addition of an isoprenoid group); lipoylation (e.g. attachment of a lipoate moiety); and phosphorylation (e.g., addition of a phosphate group to serine, tyrosine, threonine or histidine).
[0037] One or more of the amino acid residues in a biologically active variant may be a non-naturally occurring amino acid residue. Naturally occurring amino acid residues include those naturally encoded by the genetic code as well as non-standard amino acids (e.g., amino acids having the D-configuration instead of the L-configuration). The present peptides can also include amino acid residues that are modified versions of standard residues (e.g. pyrrolysine can be used in place of lysine and selenocysteine can be used in place of cysteine). Non-naturally occurring amino acid residues are those that have not been found in nature, but that conform to the basic formula of an amino acid and can be incorporated into a peptide. These include D-alloisoleucine(2R,3S)-2-amino-3-methylpentanoic acid and L-cyclopentyl glycine (S)-2-amino-2-cyclopentyl acetic acid. For other examples, one can consult textbooks or the worldwide web (a site is currently maintained by the California Institute of Technology and displays structures of non-natural amino acids that have been successfully incorporated into functional proteins).
[0038] Alternatively, or in addition, one or more of the amino acid residues in a biologically active variant can be a naturally occurring residue that differs from the naturally occurring residue found in the corresponding position in a wildtype sequence. In other words, biologically active variants can include one or more amino acid substitutions. We may refer to a substitution, addition, or deletion of amino acid residues as a mutation of the wildtype sequence. As noted, the substitution can replace a naturally occurring amino acid residue with a non-naturally occurring residue or just a different naturally occurring residue. Further the substitution can constitute a conservative or non-conservative substitution. Conservative amino acid substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine, and leucine; aspartic acid and glutamic acid; asparagine, glutamine, serine and threonine; lysine, histidine and arginine; and phenylalanine and tyrosine.
[0039] The polypeptides that are biologically active variants of a CRISPR-associated endonuclease can be characterized in terms of the extent to which their sequence is similar to or identical to the corresponding wild-type polypeptide. For example, the sequence of a biologically active variant can be at least or about 80% identical to corresponding residues in the wild-type polypeptide. For example, a biologically active variant of a CRISPR-associated endonuclease can have an amino acid sequence with at least or about 80% sequence identity (e.g., at least or about 85%, 90%, 95%, 97%, 98%, or 99% sequence identity) to a CRISPR-associated endonuclease or to a homolog or ortholog thereof.
[0040] A biologically active variant of a CRISPR-associated endonuclease polypeptide will retain sufficient biological activity to be useful in the present methods. The biologically active variants will retain sufficient activity to function in targeted DNA cleavage. The biological activity can be assessed in ways known to one of ordinary skill in the art and includes, without limitation, in vitro cleavage assays or functional assays.
[0041] Polypeptides can be generated by a variety of methods including, for example, recombinant techniques or chemical synthesis. Once generated, polypeptides can be isolated and purified to any desired extent by means well known in the art. For example, one can use lyophilization following, for example, reversed phase (preferably) or normal phase HPLC, or size exclusion or partition chromatography on polysaccharide gel media such as Sephadex G-25. The composition of the final polypeptide may be confirmed by amino acid analysis after degradation of the peptide by standard means, by amino acid sequencing, or by FAB-MS techniques. Salts, including acid salts, esters, amides, and N-acyl derivatives of an amino group of a polypeptide may be prepared using methods known in the art, and such peptides are useful in the context of the present invention.
[0042] The compositions of the invention include sequence encoding a guide RNA (gRNA) comprising a sequence that is complementary to a target sequence in a retrovirus. The retrovirus can be a lentivirus, for example, a human immunodeficiency virus, a simian immunodeficiency virus, a feline immunodeficiency virus or a bovine immunodeficiency virus. The human immunodeficiency virus can be HIV-1 or HIV-2. The target sequence can include a sequence from any HIV, for example, HIV-1 and HIV-2, and any circulating recombinant form thereof. The genetic variability of HIV is reflected in the multiple groups and subtypes that have been described. A collection of HIV sequences is compiled in the Los Alamos HIV databases and compendiums. The methods and compositions of the invention can be applied to HIV from any of those various groups, subtypes, and circulating recombinant forms. These include for example, the HIV-1 major group (often referred to as Group M) and the minor groups, Groups N, O, and P, as well as but not limited to, any of the following subtypes, A, B, C, D, F, G, H, J and K. or group (for example, but not limited to any of the following Groups, N, O and P) of HIV. The methods and compositions can also be applied to HIV-2 and any of the A, B, C, F or G clades (also referred to as "subtypes" or "groups"), as well as any circulating recombinant form of HIV-2.
[0043] The guide RNA can be a sequence complimentary to a coding or a non-coding sequence. For example, the guide RNA can be an HIV sequence, such as a long terminal repeat (LTR) sequence, a protein coding sequence, or a regulatory sequence. In some embodiments, the guide RNA comprises a sequence that is complementary to an HIV long terminal repeat (LTR) region. The HIV-1 LTR is approximately 640 bp in length. An exemplary HIV-1 LTR is the sequence of SEQ ID NO: 376. An exemplary SIV LTR is the sequence of SEQ ID NO: 380. HIV-1 long terminal repeats (LTRs) are divided into U3, R and U5 regions. Exemplary HIV-1 LTR U3, R and U5 regions are SEQ ID NOs: 377, 378 and 379, respectively. Exemplary SIV LTR U3, R and U5 regions are SEQ ID NOs: 381, 382, and 383, respectively. The configuration of the U1, R, U5 regions for exemplary HIV-1 and SIV sequences are shown in FIG. 18 and FIG. 19, respectively. LTRs contain all of the required signals for gene expression and are involved in the integration of a provirus into the genome of a host cell. For example, the basal or core promoter, a core enhancer and a modulatory region is found within U3 while the transactivation response element is found within R. In HIV-1, the U5 region includes several sub-regions, for example, TAR or trans-acting responsive element, which is involved in transcriptional activation; Poly A, which is involved in dimerization and genome packaging; PBS or primer binding site; Psi or the packaging signal; DIS or dimer initiation site
[0044] Useful guide sequences are complementary to the U3, R, or U5 region of the LTR. Exemplary guide RNA sequences that target the U3 region of HIV-1 are shown in FIG. 13. A guide RNA sequence can comprise, for example, a sequence complementary to the target protospacer sequence of:
TABLE-US-00001 LTR A: (SEQ ID NO: 96) ATCAGATATCCACTGACCTTTGG, LTR B: (SEQ ID NO: 121) CAGCAGTTCTTGAAGTACTCCGG, LTR C: (SEQ ID NO: 87) GATTGGCAGAACTACACACCAGG, or LTR D: (SEQ ID NO: 110) GCGTGGCCTGGGCGGGACTGGGG.
[0045] The locations of LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87) and LTR D (SEQ ID NO: 110) within the U3 (SEQ ID NO: 16) region are shown FIG. 5. Additional exemplary guide RNA sequences that target the U3 region are listed in the table shown in FIG. 13 and can have the sequence of any of SEQ ID NOs: 79-111 and SEQ ID NOs: 111-141. In some embodiments, the guide sequence can comprise a sequence having 95% identity to any of SEQ ID NOs: 79-111 and SEQ ID NOs: 111-141. Thus, a guide RNA sequence can comprise, for example, a sequence having 95% identity to a sequence complementary to the target protospacer sequence of:
TABLE-US-00002 LTR A: (SEQ ID NO: 96) ATCAGATATCCACTGACCTTTGG, LTR B: (SEQ ID NO: 121) CAGCAGTTCTTGAAGTACTCCGG, LTR C (SEQ ID NO: 87) GATTGGCAGAACTACACACCAGG, or LTR D: (SEQ ID NO: 110) GCGTGGCCTGGGCGGGACTGGGG.
[0046] We may also be refer to the guide RNA sequence as a spacer, e.g., spacer (A), spacer (B), spacer (C), and spacer (D).
[0047] The guide RNA sequence can be complementary to a sequence found within an HIV-1 U3, R, or U5 region reference sequence or consensus sequence. The invention is not so limiting however, and the guide RNA sequences can be selected to target any variant or mutant HIV sequence. In some embodiments, more than one guide RNA sequence is employed, for example a first guide RNA sequence and a second guide RNA sequence, with the first and second guide RNA sequences being complimentary to target sequences in any of the above mentioned retroviral regions. In some embodiments, the guide RNA can include a variant sequence or quasi-species sequence. In some embodiments, the guide RNA can be a sequence corresponding to a sequence in the genome of the virus harbored by the subject undergoing treatment. Thus for example, the sequence of the particular U3, R, or U5 region in the HIV virus harbored by the subject can be obtained and guide RNAs complementary to the patient's particular sequences can be used.
[0048] In some embodiments, the guide RNA can be a sequence complimentary to a protein coding sequence, for example, a sequence encoding one or more viral structural proteins, (e.g., gag, pol, env and tat). Thus, the sequence can be complementary to sequence within the gag polyprotein, e.g., MA (matrix protein, p17); CA (capsid protein, p24); SP1 (spacer peptide 1, p2); NC (nucleocapsid protein, p7); SP2 (spacer peptide 2, p1) and P6 protein; pol, e.g., reverse transcriptase (RT) and RNase H, integrase (IN), and HIV protease (PR); env, e.g., gp160, or a cleavage product of gp160, e.g., gp120 or SU, and gp41 or TM; or tat, e.g., the 72-amino acid one-exon Tat or the 86-101 amino-acid two-exon Tat. In some embodiments, the guide RNA can be a sequence complementary to a sequence encoding an accessory protein, including, for example, vif, nef (negative factor) vpu (Virus protein U) and tev.
[0049] In some embodiments, the sequence can be a sequence complementary to a structural or regulatory element, for example, an LTR, as described above; TAR (Target sequence for viral transactivation), the binding site for Tat protein and for cellular proteins, consists of approximately the first 45 nucleotides of the viral mRNAs in HIV-1 (or the first 100 nucleotides in HIV-2) forms a hairpin stem-loop structure; RRE (Rev responsive element) an RNA element encoded within the env region of HIV-1, consisting of approximately 200 nucleotides (positions 7710 to 8061 from the start of transcription in HIV-1, spanning the border of gp120 and gp41); PE (Psi element), a set of 4 stem-loop structures preceding and overlapping the Gag start codon; SLIP, a TTTTTT "slippery site", followed by a stem-loop structure; CRS (Cis-acting repressive sequences); INS Inhibitory/Instability RNA sequences) found for example, at nucleotides 414 to 631 in the gag region of HIV-1.
[0050] The guide RNA sequence can be a sense or anti-sense sequence. The guide RNA sequence generally includes a proto-spacer adjacent motif (PAM). The sequence of the PAM can vary depending upon the specificity requirements of the CRISPR endonuclease used. In the CRISPR-Cas system derived from S. pyogenes, the target DNA typically immediately precedes a 5'-NGG proto-spacer adjacent motif (PAM). Thus, for the S. pyogenes Cas9, the PAM sequence can be AGG, TGG, CGG or GGG. Other Cas9 orthologs may have different PAM specificities. For example, Cas9 from S. thermophilus requires 5'-NNAGAA for CRISPR 1 and 5'-NGGNG for CRISPR3) and Neiseria menigiditis requires 5'-NNNNGATT). The specific sequence of the guide RNA may vary, but, regardless of the sequence, useful guide RNA sequences will be those that minimize off-target effects while achieving high efficiency and complete ablation of the genomically integrated HIV-1 provirus. The length of the guide RNA sequence can vary from about 20 to about 60 or more nucleotides, for example about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 45, about 50, about 55, about 60 or more nucleotides. Useful selection methods identify regions having extremely low homology between the foreign viral genome and host cellular genome including endogenous retroviral DNA, include bioinformatic screening using 12-bp+NGG target-selection criteria to exclude off-target human transcriptome or (even rarely) untranslated-genomic sites; avoiding transcription factor binding sites within the HIV-1 LTR promoter (potentially conserved in the host genome); selection of LTR-A- and -B-directed, 30-bp gRNAs and also pre-crRNA system reflecting the original bacterial immune mechanism to enhance specificity/efficiency vs. 20-bp gRNA-, chimeric crRNA-tracRNA-based system and WGS, Sanger sequencing and SURVEYOR assay, to identify and exclude potential off-target effects.
[0051] The guide RNA sequence can be configured as a single sequence or as a combination of one or more different sequences, e.g., a multiplex configuration. Multiplex configurations can include combinations of two, three, four, five, six, seven, eight, nine, ten, or more different guide RNAs, for example any combination of sequences in U3, R, or U5. In some embodiments, combinations of LTR A, LTR B, LTR C and LTR D can be used. In some embodiments, combinations of any of the sequences LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87), and LTR D (SEQ ID NO: 110), can be used. In some embodiments, any combinations of the sequences having the sequence of SEQ ID NOs: 79-111 and SEQ ID NOs: 111-141 can be used. When the compositions are administered in an expression vector, the guide RNAs can be encoded by a single vector. Alternatively, multiple vectors can be engineered to each include two or more different guide RNAs. Useful configurations will result in the excision of viral sequences between cleavage sites resulting in the ablation of HIV genome or HIV protein expression. Thus, the use of two or more different guide RNAs promotes excision of the viral sequences between the cleavage sites recognized by the CRISPR endonuclease. The excised region can vary in size from a single nucleotide to several thousand nucleotides. Exemplary excised regions are described in the examples.
[0052] When the compositions are administered as a nucleic acid or are contained within an expression vector, the CRISPR endonuclease can be encoded by the same nucleic acid or vector as the guide RNA sequences. Alternatively or in addition, the CRISPR endonuclease can be encoded in a physically separate nucleic acid from the guide RNA sequences or in a separate vector.
[0053] In some embodiments, the RNA molecules e.g. crRNA, tracrRNA, gRNA are engineered to comprise one or more modified nucleobases. For example, known modifications of RNA molecules can be found, for example, in Genes VI, Chapter 9 ("Interpreting the Genetic Code"), Lewis, ed. (1997, Oxford University Press, New York), and Modification and Editing of RNA, Grosjean and Benne, eds. (1998, ASM Press, Washington D.C.). Modified RNA components include the following: 2'-O-methylcytidine; N.sup.4-methylcytidine; N.sup.4-2'-O-dimethylcytidine; N.sup.4-acetylcytidine; 5-methylcytidine; 5,2'-O-dimethylcytidine; 5-hydroxymethylcytidine; 5-formylcytidine; 2'-O-methyl-5-formaylcytidine; 3-methylcytidine; 2-thiocytidine; lysidine; 2'-O-methyluridine; 2-thiouridine; 2-thio-2'-O-methyluridine; 3,2'-O-dimethyluridine; 3-(3-amino-3-carboxypropyl)uridine; 4-thiouridine; ribosylthymine; 5,2'-O-dimethyluridine; 5-methyl-2-thiouridine; 5-hydroxyuridine; 5-methoxyuridine; uridine 5-oxyacetic acid; uridine 5-oxyacetic acid methyl ester; 5-carboxymethyluridine; 5-methoxycarbonylmethyluridine; 5-methoxycarbonylmethyl-2'-O-methyluridine; 5-methoxycarbonylmethyl-2'-thiouridine; 5-carbamoylmethyluridine; 5-carbamoylmethyl-2'-O-methyluridine; 5-(carboxyhydroxymethyl)uridine; 5-(carboxyhydroxymethyl) uridinemethyl ester; 5-aminomethyl-2-thiouridine; 5-methylaminomethyluridine; 5-methylaminomethyl-2-thiouridine; 5-methylaminomethyl-2-selenouridine; 5-carboxymethylaminomethyluridine; 5-carboxymethylaminomethyl-2'-O-methyl-uridine; 5-carboxymethylaminomethyl-2-thiouridine; dihydrouridine; dihydroribosylthymine; 2'-methyladenosine; 2-methyladenosine; N.sup.6N-methyladenosine; N.sup.6, N.sup.6-dimethyladenosine; N.sup.6,2'-O-trimethyladenosine; 2-methylthio-N.sup.6N-isopentenyladenosine; N.sup.6-(cis-hydroxyisopentenyl)-adenosine; 2-methylthio-N.sup.6-(cis-hydroxyisopentenyl)-adenosine; N.sup.6-glycinylcarbamoyl)adenosine; N.sup.6-threonylcarbamoyl adenosine; N.sup.6-methyl-N.sup.6-threonylcarbamoyl adenosine; 2-methylthio-N.sup.6-methyl-N.sup.6-threonylcarbamoyl adenosine; N.sup.6-hydroxynorvalylcarbamoyl adenosine; 2-methylthio-N.sup.6-hydroxnorvalylcarbamoyl adenosine; 2'-O-ribosyladenosine (phosphate); inosine; 2'O-methyl inosine; 1-methyl inosine; 1;2'-O-dimethyl inosine; 2'-O-methyl guanosine; 1-methyl guanosine; N.sup.2-methyl guanosine; N.sup.2,N.sup.2-dimethyl guanosine; N.sup.2, 2'-O-dimethyl guanosine; N.sup.2, N.sup.2, 2'-O-trimethyl guanosine; 2'-O-ribosyl guanosine (phosphate); 7-methyl guanosine; N.sup.2;7-dimethyl guanosine; N.sup.2; N.sup.2;7-trimethyl guanosine; wyosine; methylwyosine; under-modified hydroxywybutosine; wybutosine; hydroxywybutosine; peroxywybutosine; queuosine; epoxyqueuosine; galactosyl-queuosine; mannosyl-queuosine; 7-cyano-7-deazaguanosine; arachaeosine [also called 7-formamido-7-deazaguanosine]; and 7-aminomethyl-7-deazaguanosine.
[0054] We may use the terms "nucleic acid" and "polynucleotide" interchangeably to refer to both RNA and DNA, including cDNA, genomic DNA, synthetic DNA, and DNA (or RNA) containing nucleic acid analogs, any of which may encode a polypeptide of the invention and all of which are encompassed by the invention. Polynucleotides can have essentially any three-dimensional structure. A nucleic acid can be double-stranded or single-stranded (i.e., a sense strand or an antisense strand). Non-limiting examples of polynucleotides include genes, gene fragments, exons, introns, messenger RNA (mRNA) and portions thereof, transfer RNA, ribosomal RNA, siRNA, micro-RNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers, as well as nucleic acid analogs. In the context of the present invention, nucleic acids can encode a fragment of a naturally occurring Cas9 or a biologically active variant thereof and a guide RNA where in the guide RNA is complementary to a sequence in HIV.
[0055] An "isolated" nucleic acid can be, for example, a naturally-occurring DNA molecule or a fragment thereof, provided that at least one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule, independent of other sequences (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by the polymerase chain reaction (PCR) or restriction endonuclease treatment). An isolated nucleic acid also refers to a DNA molecule that is incorporated into a vector, an autonomously replicating plasmid, a virus, or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among many (e.g., dozens, or hundreds to millions) of other nucleic acids within, for example, cDNA libraries or genomic libraries, or gel slices containing a genomic DNA restriction digest, is not an isolated nucleic acid.
[0056] Isolated nucleic acid molecules can be produced by standard techniques. For example, polymerase chain reaction (PCR) techniques can be used to obtain an isolated nucleic acid containing a nucleotide sequence described herein, including nucleotide sequences encoding a polypeptide described herein. PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from total genomic DNA or total cellular RNA. Various PCR methods are described in, for example, PCR Primer: A Laboratory Manual, Dieffenbach and Dveksler, eds., Cold Spring Harbor Laboratory Press, 1995. Generally, sequence information from the ends of the region of interest or beyond is employed to design oligonucleotide primers that are identical or similar in sequence to opposite strands of the template to be amplified. Various PCR strategies also are available by which site-specific nucleotide sequence modifications can be introduced into a template nucleic acid.
[0057] Isolated nucleic acids also can be chemically synthesized, either as a single nucleic acid molecule (e.g., using automated DNA synthesis in the 3' to 5' direction using phosphoramidite technology) or as a series of oligonucleotides. For example, one or more pairs of long oligonucleotides (e.g., >50-100 nucleotides) can be synthesized that contain the desired sequence, with each pair containing a short segment of complementarity (e.g., about 15 nucleotides) such that a duplex is formed when the oligonucleotide pair is annealed. DNA polymerase is used to extend the oligonucleotides, resulting in a single, double-stranded nucleic acid molecule per oligonucleotide pair, which then can be ligated into a vector. Isolated nucleic acids of the invention also can be obtained by mutagenesis of, e.g., a naturally occurring portion of a Cas9-encoding DNA (in accordance with, for example, the formula above).
[0058] Two nucleic acids or the polypeptides they encode may be described as having a certain degree of identity to one another. For example, a Cas9 protein and a biologically active variant thereof may be described as exhibiting a certain degree of identity. Alignments may be assembled by locating short Cas9 sequences in the Protein Information Research (PIR) site, followed by analysis with the "short nearly identical sequences." Basic Local Alignment Search Tool (BLAST) algorithm on the NCBI website.
[0059] As used herein, the term "percent sequence identity" refers to the degree of identity between any given query sequence and a subject sequence. For example, a naturally occurring Cas9 can be the query sequence and a fragment of a Cas9 protein can be the subject sequence. Similarly, a fragment of a Cas9 protein can be the query sequence and a biologically active variant thereof can be the subject sequence.
[0060] To determine sequence identity, a query nucleic acid or amino acid sequence can be aligned to one or more subject nucleic acid or amino acid sequences, respectively, using the computer program ClustalW (version 1.83, default parameters), which allows alignments of nucleic acid or protein sequences to be carried out across their entire length (global alignment). See Chenna et al., Nucleic Acids Res. 31:3497-3500, 2003.
[0061] ClustalW calculates the best match between a query and one or more subject sequences and aligns them so that identities, similarities and differences can be determined. Gaps of one or more residues can be inserted into a query sequence, a subject sequence, or both, to maximize sequence alignments. For fast pair wise alignment of nucleic acid sequences, the following default parameters are used: word size: 2; window size: 4; scoring method: percentage; number of top diagonals: 4; and gap penalty: 5. for multiple alignments of nucleic acid sequences, the following parameters are used: gap opening penalty: 10.0; gap extension penalty: 5.0; and weight transitions: yes. For fast pair wise alignment of protein sequences, the following parameters are used: word size: 1; window size: 5; scoring method: percentage; number of top diagonals: 5; gap penalty: 3. For multiple alignment of protein sequences, the following parameters are used: weight matrix: blosum; gap opening penalty: 10.0; gap extension penalty: 0.05; hydrophilic gaps: on; hydrophilic residues: Gly, Pro, Ser, Asn, Asp, Gln, Glu, Arg, and Lys; residue-specific gap penalties: on. The output is a sequence alignment that reflects the relationship between sequences. ClustalW can be run, for example, at the Baylor College of Medicine Search Launcher site (searchlauncher.bcm.tmc.edu/multi-align/multi-align.html) and at the European Bioinformatics Institute site on the World Wide Web (ebi.ac.uk/clustalw).
[0062] To determine a percent identity between a query sequence and a subject sequence, ClustalW divides the number of identities in the best alignment by the number of residues compared (gap positions are excluded), and multiplies the result by 100. The output is the percent identity of the subject sequence with respect to the query sequence. It is noted that the percent identity value can be rounded to the nearest tenth. For example, 78.11, 78.12, 78.13, and 78.14 are rounded down to 78.1, while 78.15, 78.16, 78.17, 78.18, and 78.19 are rounded up to 78.2.
[0063] The nucleic acids and polypeptides described herein may be referred to as "exogenous". The term "exogenous" indicates that the nucleic acid or polypeptide is part of, or encoded by, a recombinant nucleic acid construct, or is not in its natural environment. For example, an exogenous nucleic acid can be a sequence from one species introduced into another species, i.e., a heterologous nucleic acid. Typically, such an exogenous nucleic acid is introduced into the other species via a recombinant nucleic acid construct. An exogenous nucleic acid can also be a sequence that is native to an organism and that has been reintroduced into cells of that organism. An exogenous nucleic acid that includes a native sequence can often be distinguished from the naturally occurring sequence by the presence of non-natural sequences linked to the exogenous nucleic acid, e.g., non-native regulatory sequences flanking a native sequence in a recombinant nucleic acid construct. In addition, stably transformed exogenous nucleic acids typically are integrated at positions other than the position where the native sequence is found.
[0064] Recombinant constructs are also provided herein and can be used to transform cells in order to express Cas9 and/or a guide RNA complementary to a target sequence in HIV. A recombinant nucleic acid construct comprises a nucleic acid encoding a Cas9 and/or a guide RNA complementary to a target sequence in HIV as described herein, operably linked to a regulatory region suitable for expressing the Cas9 and/or a guide RNA complementary to a target sequence in HIV in the cell. It will be appreciated that a number of nucleic acids can encode a polypeptide having a particular amino acid sequence. The degeneracy of the genetic code is well known in the art. For many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino acid. For example, codons in the coding sequence for Cas9 can be modified such that optimal expression in a particular organism is obtained, using appropriate codon bias tables for that organism.
[0065] Vectors containing nucleic acids such as those described herein also are provided. A "vector" is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Generally, a vector is capable of replication when associated with the proper control elements. Suitable vector backbones include, for example, those routinely used in the art such as plasmids, viruses, artificial chromosomes, BACs, YACs, or PACs. The term "vector" includes cloning and expression vectors, as well as viral vectors and integrating vectors. An "expression vector" is a vector that includes a regulatory region. A wide variety of host/expression vector combinations may be used to express the nucleic acid sequences described herein. Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, and retroviruses. Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, Wis.), Clontech (Palo Alto, Calif.), Stratagene (La Jolla, Calif.), and Invitrogen/Life Technologies (Carlsbad, Calif.).
[0066] The vectors provided herein also can include, for example, origins of replication, scaffold attachment regions (SARs), and/or markers. A marker gene can confer a selectable phenotype on a host cell. For example, a marker can confer biocide resistance, such as resistance to an antibiotic (e.g., kanamycin, G418, bleomycin, or hygromycin). As noted above, an expression vector can include a tag sequence designed to facilitate manipulation or detection (e.g., purification or localization) of the expressed polypeptide. Tag sequences, such as green fluorescent protein (GFP), glutathione S-transferase (GST), polyhistidine, c-myc, hemagglutinin, or Flag.TM. tag (Kodak, New Haven, Conn.) sequences typically are expressed as a fusion with the encoded polypeptide. Such tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus.
[0067] Additional expression vectors also can include, for example, segments of chromosomal, non-chromosomal and synthetic DNA sequences. Suitable vectors include derivatives of SV40 and known bacterial plasmids, e.g., E. coli plasmids col E1, pCR1, pBR322, pMal-C2, pET, pGEX, pMB9 and their derivatives, plasmids such as RP4; phage DNAs, e.g., the numerous derivatives of phage 1, e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2 .mu.l plasmid or derivatives thereof, vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences.
[0068] Yeast expression systems can also be used. For example, the non-fusion pYES2 vector (XbaI, SphI, ShoI, NotI, GstXI, EcoRI, BstXI, BamHI, SacI, KpnI, and HindIII cloning sites; Invitrogen) or the fusion pYESHisA, B, C (XbaI, SphI, ShoI, NotI, BstXI, EcoRI, BamHI, SacI, KpnI, and HindIII cloning sites, N-terminal peptide purified with ProBond resin and cleaved with enterokinase; Invitrogen), to mention just two, can be employed according to the invention. A yeast two-hybrid expression system can also be prepared in accordance with the invention.
[0069] The vector can also include a regulatory region. The term "regulatory region" refers to nucleotide sequences that influence transcription or translation initiation and rate, and stability and/or mobility of a transcription or translation product. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5' and 3' untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, nuclear localization signals, and introns.
[0070] As used herein, the term "operably linked" refers to positioning of a regulatory region and a sequence to be transcribed in a nucleic acid so as to influence transcription or translation of such a sequence. For example, to bring a coding sequence under the control of a promoter, the translation initiation site of the translational reading frame of the polypeptide is typically positioned between one and about fifty nucleotides downstream of the promoter. A promoter can, however, be positioned as much as about 5,000 nucleotides upstream of the translation initiation site or about 2,000 nucleotides upstream of the transcription start site. A promoter typically comprises at least a core (basal) promoter. A promoter also may include at least one control element, such as an enhancer sequence, an upstream element or an upstream activation region (UAR). The choice of promoters to be included depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and cell- or tissue-preferential expression. It is a routine matter for one of skill in the art to modulate the expression of a coding sequence by appropriately selecting and positioning promoters and other regulatory regions relative to the coding sequence.
[0071] Vectors include, for example, viral vectors (such as adenoviruses ("Ad"), adeno-associated viruses (AAV), and vesicular stomatitis virus (VSV) and retroviruses), liposomes and other lipid-containing complexes, and other macromolecular complexes capable of mediating delivery of a polynucleotide to a host cell. Vectors can also comprise other components or functionalities that further modulate gene delivery and/or gene expression, or that otherwise provide beneficial properties to the targeted cells. As described and illustrated in more detail below, such other components include, for example, components that influence binding or targeting to cells (including components that mediate cell-type or tissue-specific binding); components that influence uptake of the vector nucleic acid by the cell; components that influence localization of the polynucleotide within the cell after uptake (such as agents mediating nuclear localization); and components that influence expression of the polynucleotide. Such components also might include markers, such as detectable and/or selectable markers that can be used to detect or select for cells that have taken up and are expressing the nucleic acid delivered by the vector. Such components can be provided as a natural feature of the vector (such as the use of certain viral vectors which have components or functionalities mediating binding and uptake), or vectors can be modified to provide such functionalities. Other vectors include those described by Chen et al; BioTechniques, 34: 167-171 (2003). A large variety of such vectors are known in the art and are generally available.
[0072] A "recombinant viral vector" refers to a viral vector comprising one or more heterologous gene products or sequences. Since many viral vectors exhibit size-constraints associated with packaging, the heterologous gene products or sequences are typically introduced by replacing one or more portions of the viral genome. Such viruses may become replication-defective, requiring the deleted function(s) to be provided in trans during viral replication and encapsidation (by using, e.g., a helper virus or a packaging cell line carrying gene products necessary for replication and/or encapsidation). Modified viral vectors in which a polynucleotide to be delivered is carried on the outside of the viral particle have also been described (see, e.g., Curiel, D T, et al. PNAS 88: 8850-8854, 1991).
[0073] Suitable nucleic acid delivery systems include recombinant viral vector, typically sequence from at least one of an adenovirus, adenovirus-associated virus (AAV), helper-dependent adenovirus, retrovirus, or hemagglutinating virus of Japan-liposome (HVJ) complex. In such cases, the viral vector comprises a strong eukaryotic promoter operably linked to the polynucleotide e.g., a cytomegalovirus (CMV) promoter. The recombinant viral vector can include one or more of the polynucleotides therein, preferably about one polynucleotide. In some embodiments, the viral vector used in the invention methods has a pfu (plague forming units) of from about 10.sup.8 to about 5.times.10.sup.10 pfu. In embodiments in which the polynucleotide is to be administered with a non-viral vector, use of between from about 0.1 nanograms to about 4000 micrograms will often be useful e.g., about 1 nanogram to about 100 micrograms.
[0074] Additional vectors include viral vectors, fusion proteins and chemical conjugates. Retroviral vectors include Moloney murine leukemia viruses and HIV-based viruses. One HIV-based viral vector comprises at least two vectors wherein the gag and pol genes are from an HIV genome and the env gene is from another virus. DNA viral vectors include pox vectors such as orthopox or avipox vectors, herpesvirus vectors such as a herpes simplex I virus (HSV) vector [Geller, A. I. et al., J. Neurochem, 64: 487 (1995); Lim, F., et al., in DNA Cloning: Mammalian Systems, D. Glover, Ed. (Oxford Univ. Press, Oxford England) (1995); Geller, A. I. et al., Proc Natl. Acad. Sci.: U.S.A.: 90 7603 (1993); Geller, A. I., et al., Proc Natl. Acad. Sci USA: 87:1149 (1990)], Adenovirus Vectors [LeGal LaSalle et al., Science, 259:988 (1993); Davidson, et al., Nat. Genet. 3: 219 (1993); Yang, et al., J. Virol. 69: 2004 (1995)] and Adeno-associated Virus Vectors [Kaplitt, M. G., et al., Nat. Genet. 8:148 (1994)].
[0075] Pox viral vectors introduce the gene into the cells cytoplasm. Avipox virus vectors result in only a short term expression of the nucleic acid. Adenovirus vectors, adeno-associated virus vectors and herpes simplex virus (HSV) vectors may be an indication for some invention embodiments. The adenovirus vector results in a shorter term expression (e.g., less than about a month) than adeno-associated virus, in some embodiments, may exhibit much longer expression. The particular vector chosen will depend upon the target cell and the condition being treated. The selection of appropriate promoters can readily be accomplished. An example of a suitable promoter is the 763-base-pair cytomegalovirus (CMV) promoter. Other suitable promoters which may be used for gene expression include, but are not limited to, the Rous sarcoma virus (RSV) (Davis, et al., Hum Gene Ther 4:151 (1993)), the SV40 early promoter region, the herpes thymidine kinase promoter, the regulatory sequences of the metallothionein (MMT) gene, prokaryotic expression vectors such as the .beta.-lactamase promoter, the tac promoter, promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter; and the animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells, insulin gene control region which is active in pancreatic beta cells, immunoglobulin gene control region which is active in lymphoid cells, mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells, albumin gene control region which is active in liver, alpha-fetoprotein gene control region which is active in liver, alpha 1-antitrypsin gene control region which is active in the liver, beta-globin gene control region which is active in myeloid cells, myelin basic protein gene control region which is active in oligodendrocyte cells in the brain, myosin light chain-2 gene control region which is active in skeletal muscle, and gonadotropic releasing hormone gene control region which is active in the hypothalamus. Certain proteins can expressed using their native promoter. Other elements that can enhance expression can also be included such as an enhancer or a system that results in high levels of expression such as a tat gene and tar element. This cassette can then be inserted into a vector, e.g., a plasmid vector such as, pUC19, pUC118, pBR322, or other known plasmid vectors, that includes, for example, an E. coli origin of replication. See, Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory press, (1989). The plasmid vector may also include a selectable marker such as the .beta.-lactamase gene for ampicillin resistance, provided that the marker polypeptide does not adversely affect the metabolism of the organism being treated. The cassette can also be bound to a nucleic acid binding moiety in a synthetic delivery system, such as the system disclosed in WO 95/22618.
[0076] If desired, the polynucleotides of the invention may also be used with a microdelivery vehicle such as cationic liposomes and adenoviral vectors. For a review of the procedures for liposome preparation, targeting and delivery of contents, see Mannino and Gould-Fogerite, BioTechniques, 6:682 (1988). See also, Feigner and Holm, Bethesda Res. Lab. Focus, 11(2):21 (1989) and Maurer, R. A., Bethesda Res. Lab. Focus, 11(2):25 (1989).
[0077] Replication-defective recombinant adenoviral vectors, can be produced in accordance with known techniques. See, Quantin, et al., Proc. Natl. Acad. Sci. USA, 89:2581-2584 (1992); Stratford-Perricadet, et al., J. Clin. Invest., 90:626-630 (1992); and Rosenfeld, et al., Cell, 68:143-155 (1992).
[0078] Another delivery method is to use single stranded DNA producing vectors which can produce the expressed products intracellularly. See for example, Chen et al, BioTechniques, 34: 167-171 (2003), which is incorporated herein, by reference, in its entirety.
[0079] Pharmaceutical Compositions
[0080] As described above, the compositions of the present invention can be prepared in a variety of ways known to one of ordinary skill in the art. Regardless of their original source or the manner in which they are obtained, the compositions of the invention can be formulated in accordance with their use. For example, the nucleic acids and vectors described above can be formulated within compositions for application to cells in tissue culture or for administration to a patient or subject. Any of the pharmaceutical compositions of the invention can be formulated for use in the preparation of a medicament, and particular uses are indicated below in the context of treatment, e.g., the treatment of a subject having an HIV infection or at risk for contracting and HIV infection. When employed as pharmaceuticals, any of the nucleic acids and vectors can be administered in the form of pharmaceutical compositions. These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), ocular, oral or parenteral. Methods for ocular delivery can include topical administration (eye drops), subconjunctival, periocular or intravitreal injection or introduction by balloon catheter or ophthalmic inserts surgically placed in the conjunctival sac. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular administration. Parenteral administration can be in the form of a single bolus dose, or may be, for example, by a continuous perfusion pump. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, powders, and the like. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
[0081] This invention also includes pharmaceutical compositions which contain, as the active ingredient, nucleic acids and vectors described herein in combination with one or more pharmaceutically acceptable carriers. We use the terms "pharmaceutically acceptable" (or "pharmacologically acceptable") to refer to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal or a human, as appropriate. The term "pharmaceutically acceptable carrier," as used herein, includes any and all solvents, dispersion media, coatings, antibacterial, isotonic and absorption delaying agents, buffers, excipients, binders, lubricants, gels, surfactants and the like, that may be used as media for a pharmaceutically acceptable substance. In making the compositions of the invention, the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, for example, a capsule, tablet, sachet, paper, or other container. When the excipient serves as a diluent, it can be a solid, semisolid, or liquid material (e.g., normal saline), which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), lotions, creams, ointments, gels, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders. As is known in the art, the type of diluent can vary depending upon the intended route of administration. The resulting compositions can include additional agents, such as preservatives. In some embodiments, the carrier can be, or can include, a lipid-based or polymer-based colloid. In some embodiments, the carrier material can be a colloid formulated as a liposome, a hydrogel, a microparticle, a nanoparticle, or a block copolymer micelle. As noted, the carrier material can form a capsule, and that material may be a polymer-based colloid.
[0082] The nucleic acid sequences of the invention can be delivered to an appropriate cell of a subject. This can be achieved by, for example, the use of a polymeric, biodegradable microparticle or microcapsule delivery vehicle, sized to optimize phagocytosis by phagocytic cells such as macrophages. For example, PLGA (poly-lacto-co-glycolide) microparticles approximately 1-10 .mu.m in diameter can be used. The polynucleotide is encapsulated in these microparticles, which are taken up by macrophages and gradually biodegraded within the cell, thereby releasing the polynucleotide. Once released, the DNA is expressed within the cell. A second type of microparticle is intended not to be taken up directly by cells, but rather to serve primarily as a slow-release reservoir of nucleic acid that is taken up by cells only upon release from the micro-particle through biodegradation. These polymeric particles should therefore be large enough to preclude phagocytosis (i.e., larger than 5 .mu.m and preferably larger than 20 .mu.m). Another way to achieve uptake of the nucleic acid is using liposomes, prepared by standard methods. The nucleic acids can be incorporated alone into these delivery vehicles or co-incorporated with tissue-specific antibodies, for example antibodies that target cell types that are commonly latently infected reservoirs of HIV infection, for example, brain macrophages, microglia, astrocytes, and gut-associated lymphoid cells. Alternatively, one can prepare a molecular complex composed of a plasmid or other vector attached to poly-L-lysine by electrostatic or covalent forces. Poly-L-lysine binds to a ligand that can bind to a receptor on target cells. Delivery of "naked DNA" (i.e., without a delivery vehicle) to an intramuscular, intradermal, or subcutaneous site, is another means to achieve in vivo expression. In the relevant polynucleotides (e.g., expression vectors) the nucleic acid sequence encoding the an isolated nucleic acid sequence comprising a sequence encoding a CRISPR-associated endonuclease and a guide RNA is operatively linked to a promoter or enhancer-promoter combination. Promoters and enhancers are described above.
[0083] In some embodiments, the compositions of the invention can be formulated as a nanoparticle, for example, nanoparticles comprised of a core of high molecular weight linear polyethylenimine (LPEI) complexed with DNA and surrounded by a shell of polyethyleneglycol-modified (PEGylated) low molecular weight LPEI.
[0084] The nucleic acids and vectors may also be applied to a surface of a device (e.g., a catheter) or contained within a pump, patch, or other drug delivery device. The nucleic acids and vectors of the invention can be administered alone, or in a mixture, in the presence of a pharmaceutically acceptable excipient or carrier (e.g., physiological saline). The excipient or carrier is selected on the basis of the mode and route of administration. Suitable pharmaceutical carriers, as well as pharmaceutical necessities for use in pharmaceutical formulations, are described in Remington's Pharmaceutical Sciences (E. W. Martin), a well-known reference text in this field, and in the USP/NF (United States Pharmacopeia and the National Formulary).
[0085] In some embodiments, the compositions may be formulated as a topical gel for blocking sexual transmission of HIV. The topical gel can be applied directly to the skin or mucous membranes of the male or female genital region prior to sexual activity. Alternatively or in addition the topical gel can be applied to the surface or contained within a male or female condom or diaphragm.
[0086] In some embodiments, the compositions can be formulated as a nanoparticle encapsulating a nucleic acid encoding Cas9 or a variant Cas9 and a guide RNA sequence complementary to a target HIV or vector comprising a nucleic acid encoding Cas9 and a guide RNA sequence complementary to a target HIV. Alternatively, the compositions can be formulated as a nanoparticle encapsulating a CRISPR-associated endonuclease polypeptide, e.g., Cas9 or a variant Cas9 and a guide RNA sequence complementary to a target.
[0087] The present formulations can encompass a vector encoding Cas9 and a guide RNA sequence complementary to a target HIV. The guide RNA sequence can include a sequence complementary to a single region, e.g. LTR A, B, C, or D or it can include any combination of sequences complementary to LTR A, B, C, and D. Alternatively the sequence encoding Cas9 and the sequence encoding the guide RNA sequence can be on separate vectors.
[0088] Methods of Treatment
[0089] The compositions disclosed herein are generally and variously useful for treatment of a subject having a retroviral infection, e.g., an HIV infection. We may refer to a subject, patient, or individual interchangeably. The methods are useful for targeting any HIV, for example, HIV-1, HIV-2, and any circulating recombinant form thereof. A subject is effectively treated whenever a clinically beneficial result ensues. This may mean, for example, a complete resolution of the symptoms of a disease, a decrease in the severity of the symptoms of the disease, or a slowing of the disease's progression. These methods can further include the steps of a) identifying a subject (e.g., a patient and, more specifically, a human patient) who has an HIV infection; and b) providing to the subject a composition comprising a nucleic acid encoding a CRISPR-associated nuclease, e.g., Cas9, and a guide RNA complementary to an HIV target sequence, e.g. an HIV LTR. A subject can be identified using standard clinical tests, for example, immunoassays to detect the presence of HIV antibodies or the HIV polypeptide p24 in the subject's serum, or through HIV nucleic acid amplification assays. An amount of such a composition provided to the subject that results in a complete resolution of the symptoms of the infection, a decrease in the severity of the symptoms of the infection, or a slowing of the infection's progression is considered a therapeutically effective amount. The present methods may also include a monitoring step to help optimize dosing and scheduling as well as predict outcome. In some methods of the present invention, one can first determine whether a patient has a latent HIV-1 infection, and then make a determination as to whether or not to treat the patient with one or more of the compositions described herein. Monitoring can also be used to detect the onset of drug resistance and to rapidly distinguish responsive patients from nonresponsive patients. In some embodiments, the methods can further include the step of determining the nucleic acid sequence of the particular HIV harbored by the patient and then designing the guide RNA to be complementary to those particular sequences. For example, one can determine the nucleic acid sequence of a subject's LTR U3, R or U5 region and then design one or more guide RNAs to be precisely complementary to the patient's sequences.
[0090] The compositions are also useful for the treatment, for example, as a prophylactic treatment, of a subject at risk for having a retroviral infection, e.g., an HIV infection. These methods can further include the steps of a) identifying a subject at risk for having an HIV infection; b) providing to the subject a composition comprising a nucleic acid encoding a CRISPR-associated nuclease, e.g., Cas9, and a guide RNA complementary to an HIV target sequence, e.g. an HIV LTR. A subject at risk for having an HIV infection can be, for example, any sexually active individual engaging in unprotected sex, i.e., engaging in sexual activity without the use of a condom; a sexually active individual having another sexually transmitted infection; an intravenous drug user; or an uncircumcised man. A subject at risk for having an HIV infection can be, for example, an individual whose occupation may bring him or her into contact with HIV-infected populations, e.g., healthcare workers or first responders. A subject at risk for having an HIV infection can be, for example, an inmate in a correctional setting or a sex worker, that is, an individual who uses sexual activity for income employment or nonmonetary items such as food, drugs, or shelter.
[0091] The compositions can also be administered to a pregnant or lactating woman having an HIV infection in order to reduce the likelihood of transmission of HIV from the mother to her offspring. A pregnant woman infected with HIV can pass the virus to her offspring transplacentally in utero, at the time of delivery through the birth canal or following delivery, through breast milk. The compositions disclosed herein can be administered to the HIV infected mother either prenatally, perinatally or postnatally during the breast-feeding period, or any combination of prenatal, perinatal, and postnatal administration. Compositions can be administered to the mother along with standard antiretroviral therapies as described below. In some embodiments, the compositions of the invention are also administered to the infant immediately following delivery and, in some embodiments, at intervals thereafter. The infant also can receive standard antiretroviral therapy.
[0092] The methods and compositions disclosed herein are useful for the treatment of retroviral infections. Exemplary retroviruses include human immunodeficiency viruses, e.g. HIV-1, HIV-2; simian immunodeficiency virus (SIV); feline immunodeficiency virus (FIV); bovine immunodeficiency virus (BIV); equine infectious anemia virus (EIAV); and caprine arthritis/encephalitis virus (CAEV). The methods disclosed herein can be applied to a wide range of species, e.g., humans, non-human primates (e.g., monkeys), horses or other livestock, dogs, cats, ferrets or other mammals kept as pets, rats, mice, or other laboratory animals.
[0093] The methods of the invention can be expressed in terms of the preparation of a medicament. Accordingly, the invention encompasses the use of the agents and compositions described herein in the preparation of a medicament. The compounds described herein are useful in therapeutic compositions and regimens or for the manufacture of a medicament for use in treatment of diseases or conditions as described herein.
[0094] Any composition described herein can be administered to any part of the host's body for subsequent delivery to a target cell. A composition can be delivered to, without limitation, the brain, the cerebrospinal fluid, joints, nasal mucosa, blood, lungs, intestines, muscle tissues, skin, or the peritoneal cavity of a mammal. In terms of routes of delivery, a composition can be administered by intravenous, intracranial, intraperitoneal, intramuscular, subcutaneous, intramuscular, intrarectal, intravaginal, intrathecal, intratracheal, intradermal, or transdermal injection, by oral or nasal administration, or by gradual perfusion over time. In a further example, an aerosol preparation of a composition can be given to a host by inhalation.
[0095] The dosage required will depend on the route of administration, the nature of the formulation, the nature of the patient's illness, the patient's size, weight, surface area, age, and sex, other drugs being administered, and the judgment of the attending clinicians. Wide variations in the needed dosage are to be expected in view of the variety of cellular targets and the differing efficiencies of various routes of administration. Variations in these dosage levels can be adjusted using standard empirical routines for optimization, as is well understood in the art. Administrations can be single or multiple (e.g., 2- or 3-, 4-, 6-, 8-, 10-, 20-, 50-, 100-, 150-, or more fold). Encapsulation of the compounds in a suitable delivery vehicle (e.g., polymeric microparticles or implantable devices) may increase the efficiency of delivery.
[0096] The duration of treatment with any composition provided herein can be any length of time from as short as one day to as long as the life span of the host (e.g., many years). For example, a compound can be administered once a week (for, for example, 4 weeks to many months or years); once a month (for, for example, three to twelve months or for many years); or once a year for a period of 5 years, ten years, or longer. It is also noted that the frequency of treatment can be variable. For example, the present compounds can be administered once (or twice, three times, etc.) daily, weekly, monthly, or yearly.
[0097] An effective amount of any composition provided herein can be administered to an individual in need of treatment. The term "effective" as used herein refers to any amount that induces a desired response while not inducing significant toxicity in the patient. Such an amount can be determined by assessing a patient's response after administration of a known amount of a particular composition. In addition, the level of toxicity, if any, can be determined by assessing a patient's clinical symptoms before and after administering a known amount of a particular composition. It is noted that the effective amount of a particular composition administered to a patient can be adjusted according to a desired outcome as well as the patient's response and level of toxicity. Significant toxicity can vary for each particular patient and depends on multiple factors including, without limitation, the patient's disease state, age, and tolerance to side effects.
[0098] Any method known to those in the art can be used to determine if a particular response is induced. Clinical methods that can assess the degree of a particular disease state can be used to determine if a response is induced. The particular methods used to evaluate a response will depend upon the nature of the patient's disorder, the patient's age, and sex, other drugs being administered, and the judgment of the attending clinician.
[0099] The compositions may also be administered with another therapeutic agent, for example, an anti-retroviral agent, used in HAART. Exemplary antiretroviral agents include reverse transcriptase inhibitors (e.g., nucleoside/nucleotide reverse transcriptase inhibitors, zidovudine, emtricitibine, lamivudine and tenofivir; and non-nucleoside reverse transcriptase inhibitors such as efavarenz, nevirapine, rilpivirine); protease inhibitors, e.g., tipiravir, darunavir, indinavir; entry inhibitors, e.g., maraviroc; fusion inhibitors, e.g., enfuviritide; or integrase inhibitors e.g., raltegrivir, dolutegravir. Exemplary antiretroviral agents can also include multi-class combination agents for example, combinations of emtricitabine, efavarenz, and tenofivir; combinations of emtricitabine; rilpivirine, and tenofivir; or combinations of elvitegravir, cobicistat, emtricitabine and tenofivir.
[0100] Concurrent administration of two or more therapeutic agents does not require that the agents be administered at the same time or by the same route, as long as there is an overlap in the time period during which the agents are exerting their therapeutic effect. Simultaneous or sequential administration is contemplated, as is administration on different days or weeks. The therapeutic agents may be administered under a metronomic regimen, e.g., continuous low-doses of a therapeutic agent.
[0101] Dosage, toxicity and therapeutic efficacy of such compositions can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD.sub.50 (the dose lethal to 50% of the population) and the ED.sub.50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD.sub.50/ED.sub.50.
[0102] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compositions lies preferably within a range of circulating concentrations that include the ED.sub.50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any composition used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC.sub.50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
[0103] As described, a therapeutically effective amount of a composition (i.e., an effective dosage) means an amount sufficient to produce a therapeutically (e.g., clinically) desirable result. The compositions can be administered one from one or more times per day to one or more times per week; including once every other day. The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of the compositions of the invention can include a single treatment or a series of treatments.
[0104] The compositions described herein are suitable for use in a variety of drug delivery systems described above. Additionally, in order to enhance the in vivo serum half-life of the administered compound, the compositions may be encapsulated, introduced into the lumen of liposomes, prepared as a colloid, or other conventional techniques may be employed which provide an extended serum half-life of the compositions. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., U.S. Pat. Nos. 4,235,871, 4,501,728 and 4,837,028 each of which is incorporated herein by reference. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a tissue-specific antibody. The liposomes will be targeted to and taken up selectively by the organ.
[0105] Also provided, are methods of inactivating a retrovirus, for example a lentivirus such as a human immunodeficiency virus, a simian immunodeficiency virus, a feline immunodeficiency virus, or a bovine immunodeficiency virus in a mammalian cell. The human immunodeficiency virus can be HIV-1 or HIV-2. The human immunodeficiency virus can be a chromosomally integrated provirus. The mammalian cell can be any cell type infected by HIV, including, but not limited to CD4+ lymphocytes, macrophages, fibroblasts, monocytes, T lymphocytes, B lymphocytes, natural killer cells, dendritic cells such as Langerhans cells and follicular dendritic cells, hematopoietic stem cells, endothelial cells, brain microglial cells, and gastrointestinal epithelial cells. Such cell types include those cell types that are typically infected during a primary infection, for example, a CD4+ lymphocyte, a macrophage, or a Langerhans cell, as well as those cell types that make up latent HIV reservoirs, i.e., a latently infected cell.
[0106] The methods can include exposing the cell to a composition comprising an isolated nucleic acid encoding a gene editing complex comprising a CRISPR-associated endonuclease and one or more guide RNAs wherein the guide RNA is complementary to a target nucleic acid sequence in the retrovirus. In a preferred embodiment, as previously described, the method of inactivating a proviral DNA integrated into the genome of a host cell latently infected with a retrovirus includes the steps of treating the host cell with a composition comprising a CRISPR-associated endonuclease, and two or more different guide RNAs (gRNAs), wherein each of the at least two gRNAs is complementary to a different target nucleic acid sequence in the proviral DNA; and inactivating the proviral DNA. The at least two gRNAs can be configured as a single sequence or as a combination of one or more different sequences, e.g., a multiplex configuration. Multiplex configurations can include combinations of two, three, four, five, six, seven, eight, nine, ten, or more different gRNAs, for example any combination of sequences in U3, R, or U5. In some embodiments, combinations of LTR A, LTR B, LTR C and LTR D can be used. In some embodiments, combinations of any of the sequences LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87), and LTR D (SEQ ID NO: 110), can be used. In experiments described in the Examples, the use of two different gRNAs caused the excision of the viral sequences between the cleavage sites recognized by the CRISPR endonuclease. The excised region can include the entire HIV-1 genome. The treating step can take place in vivo, that is, the compositions can be administered directly to a subject having HIV infection. The methods are not so limited however, and the treating step can take place ex vivo. For example, a cell or plurality of cells, or a tissue explant, can be removed from a subject having an HIV infection and placed in culture, and then treated with a composition comprising a CRISPR-associated endonuclease and a guide RNA wherein the guide RNA is complementary to the nucleic acid sequence in the human immunodeficiency virus. As described above, the composition can be a nucleic acid encoding a CRISPR-associated endonuclease and a guide RNA wherein the guide RNA is complementary to the nucleic acid sequence in the human immunodeficiency virus; an expression vector comprising the nucleic acid sequence; or a pharmaceutical composition comprising a nucleic acid encoding a CRISPR-associated endonuclease and a guide RNA wherein the guide RNA is complementary to the nucleic acid sequence in the human immunodeficiency virus; or an expression vector comprising the nucleic acid sequence. In some embodiments, the gene editing complex can comprise a CRISPR-associated endonuclease polypeptide and a guide RNA wherein the guide RNA is complementary to the nucleic acid sequence in the human immunodeficiency virus.
[0107] Regardless of whether compositions are administered as nucleic acids or polypeptides, they are formulated in such a way as to promote uptake by the mammalian cell. Useful vector systems and formulations are described above. In some embodiments the vector can deliver the compositions to a specific cell type. The invention is not so limited however, and other methods of DNA delivery such as chemical transfection, using, for example calcium phosphate, DEAE dextran, liposomes, lipoplexes, surfactants, and perfluoro chemical liquids are also contemplated, as are physical delivery methods, such as electroporation, micro injection, ballistic particles, and "gene gun" systems.
[0108] Standard methods, for example, immunoassays to detect the CRISPR-associated endonuclease, or nucleic acid-based assays such as PCR to detect the gRNA, can be used to confirm that the complex has been taken up and expressed by the cell into which it has been introduced. The engineered cells can then be reintroduced into the subject from whom they were derived as described below.
[0109] The gene editing complex comprises a CRISPR-associated nuclease, e.g., Cas9, and a guide RNA complementary to the retroviral target sequence, for example, an HIV target sequence. The gene editing complex can introduce various mutations into the proviral DNA. The mechanism by which such mutations inactivate the virus can vary, for example the mutation can affect proviral replication, viral gene expression or proviral excision. The mutations may be located in regulatory sequences or structural gene sequences and result in defective production of HIV. The mutation can comprise a deletion. The size of the deletion can vary from a single nucleotide base pair to about 10,000 base pairs. In some embodiments, the deletion can include all or substantially all of the proviral sequence. In some embodiments the deletion can include the entire proviral sequence. The mutation can comprise an insertion; that is the addition of one or more nucleotide base pairs to the pro-viral sequence. The size of the inserted sequence also may vary, for example from about one base pair to about 300 nucleotide base pairs. The mutation can comprise a point mutation, that is, the replacement of a single nucleotide with another nucleotide. Useful point mutations are those that have functional consequences, for example, mutations that result in the conversion of an amino acid codon into a termination codon or that result in the production of a nonfunctional protein.
[0110] In exemplary multiplex methods for inactivating proviral DNA integrated into the genome of a host cell, as demonstrated in Examples 2-5, two different gRNA sequences are deployed, with each gRNA sequence targeting a different site in the proviral DNA. That is, the methods include the steps of exposing the host cell to a composition including an isolated nucleic acid encoding a CRISPR-associated endonuclease; an isolated nucleic acid sequence encoding a first gRNA having a first spacer sequence that is complementary to a first target protospacer sequence in a proviral DNA; and an isolated nucleic acid encoding a second gRNA having a second spacer sequence that is complementary to a second target protospacer sequence in the proviral DNA; expressing in the host cell the CRISPR-associated endonuclease, the first gRNA, and the second gRNA; assembling, in the host cell, a first gene editing complex including the CRISPR-associated endonuclease and the first gRNA; and a second gene editing complex including the CRISPR-associated endonuclease and the second gRNA; directing the first gene editing complex to the first target protospacer sequence by complementary base pairing between the first spacer sequence and the first target protospacer sequence; directing the second gene editing complex to the second target protospacer sequence by complementary base pairing between the second spacer sequence and the second target protospacer sequence; cleaving the proviral DNA at the first target protospacer sequence with the CRISPR-associated endonuclease; cleaving the proviral DNA at the second target protospacer sequence with the CRISPR-associated endonuclease; and inducing at least one mutation in the proviral DNA. The same multiplex method is readily incorporated into methods for treating a subject having a human immunodeficiency virus, and for reducing the risk of a human immunodeficiency virus infection. It will be understood that the term "composition" can include not only a mixture of components, but also separate components that are not necessarily administered simultaneously. As a non-limiting example, a composition according to the present invention can include separate component preparations of nucleic acid sequences encoding a Cas9 nuclease, a first gRNA, and a second gRNA, with each component being administered sequentially in an infusion, during a time frame that results in a host cell being exposed to all three components.
[0111] In other embodiments, the compositions comprise a cell which has been transformed or transfected with one or more Cas/gRNA vectors. In some embodiments, the methods of the invention can be applied ex vivo. That is, a subject's cells can be removed from the body and treated with the compositions in culture to excise HIV sequences and the treated cells returned to the subject's body. The cell can be the subject's cells or they can be haplotype matched or a cell line. The cells can be irradiated to prevent replication. In some embodiments, the cells are human leukocyte antigen (HLA)-matched, autologous, cell lines, or combinations thereof. In other embodiments the cells can be a stem cell. For example, an embryonic stem cell or an artificial pluripotent stem cell (induced pluripotent stem cell (iPS cell)). Embryonic stem cells (ES cells) and artificial pluripotent stem cells (induced pluripotent stem cell, iPS cells) have been established from many animal species, including humans. These types of pluripotent stem cells would be the most useful source of cells for regenerative medicine because these cells are capable of differentiation into almost all of the organs by appropriate induction of their differentiation, with retaining their ability of actively dividing while maintaining their pluripotency. iPS cells, in particular, can be established from self-derived somatic cells, and therefore are not likely to cause ethical and social issues, in comparison with ES cells which are produced by destruction of embryos. Further, iPS cells, which are self-derived cell, make it possible to avoid rejection reactions, which are the biggest obstacle to regenerative medicine or transplantation therapy.
[0112] The gRNA expression cassette can be easily delivered to a subject by methods known in the art, for example, methods which deliver siRNA. In some aspects, the Cas may be a fragment wherein the active domains of the Cas molecule are included, thereby cutting down on the size of the molecule. Thus, the, Cas9/gRNA molecules can be used clinically, similar to the approaches taken by current gene therapy. In particular, a Cas9/multiplex gRNA stable expression stem cell or iPS cells for cell transplantation therapy as well as HIV-1 vaccination will be developed for use in subjects.
[0113] Transduced cells are prepared for reinfusion according to established methods. After a period of about 2-4 weeks in culture, the cells may number between 1.times.10.sup.6 and 1.times.10.sup.10. In this regard, the growth characteristics of cells vary from patient to patient and from cell type to cell type. About 72 hours prior to reinfusion of the transduced cells, an aliquot is taken for analysis of phenotype, and percentage of cells expressing the therapeutic agent. For administration, cells of the present invention can be administered at a rate determined by the LD.sub.50 of the cell type, and the side effects of the cell type at various concentrations, as applied to the mass and overall health of the patient. Administration can be accomplished via single or divided doses. Adult stem cells may also be mobilized using exogenously administered factors that stimulate their production and egress from tissues or spaces that may include, but are not restricted to, bone marrow or adipose tissues.
[0114] Articles of Manufacture
[0115] The compositions described herein can be packaged in suitable containers labeled, for example, for use as a therapy to treat a subject having a retroviral infection, for example, an HIV infection or a subject at for contracting a retroviral infection, for example, an HIV infection. The containers can include a composition comprising a nucleic acid sequence encoding a CRISPR-associated endonuclease, for example, a Cas9 endonuclease, and a guide RNA complementary to a target sequence in a human immunodeficiency virus, or a vector encoding that nucleic acid, and one or more of a suitable stabilizer, carrier molecule, flavoring, and/or the like, as appropriate for the intended use. Accordingly, packaged products (e.g., sterile containers containing one or more of the compositions described herein and packaged for storage, shipment, or sale at concentrated or ready-to-use concentrations) and kits, including at least one composition of the invention, e.g., a nucleic acid sequence encoding a CRISPR-associated endonuclease, for example, a Cas9 endonuclease, and a guide RNA complementary to a target sequence in a human immunodeficiency virus, or a vector encoding that nucleic acid and instructions for use, are also within the scope of the invention. A product can include a container (e.g., a vial, jar, bottle, bag, or the like) containing one or more compositions of the invention. In addition, an article of manufacture further may include, for example, packaging materials, instructions for use, syringes, delivery devices, buffers or other control reagents for treating or monitoring the condition for which prophylaxis or treatment is required.
[0116] In some embodiments, the kits can include one or more additional antiretroviral agents, for example, a reverse transcriptase inhibitor, a protease inhibitor or an entry inhibitor. The additional agents can be packaged together in the same container as a nucleic acid sequence encoding a CRISPR-associated endonuclease, for example, a Cas9 endonuclease, and a guide RNA complementary to a target sequence in a human immunodeficiency virus, or a vector encoding that nucleic acid or they can be packaged separately. The nucleic acid sequence encoding a CRISPR-associated endonuclease, for example, a Cas9 endonuclease, and a guide RNA complementary to a target sequence in a human immunodeficiency virus, or a vector encoding that nucleic acid and the additional agent may be combined just before use or administered separately.
[0117] The product may also include a legend (e.g., a printed label or insert or other medium describing the product's use (e.g., an audio- or videotape)). The legend can be associated with the container (e.g., affixed to the container) and can describe the manner in which the compositions therein should be administered (e.g., the frequency and route of administration), indications therefor, and other uses. The compositions can be ready for administration (e.g., present in dose-appropriate units), and may include one or more additional pharmaceutically acceptable adjuvants, carriers or other diluents and/or an additional therapeutic agent. Alternatively, the compositions can be provided in a concentrated form with a diluent and instructions for dilution.
Example 1: Materials and Methods
[0118] Plasmid preparation: Vectors containing human Cas9 and gRNA expression cassette, pX260, and pX330 (Addgene) were utilized to create various constructs, LTR-A, B, C, and D.
[0119] Cell culture and stable cell lines: TZM-bl reporter and U1 cell lines were obtained from the NIH AIDS Reagent Program and CHME5 microglial cells are known in the art.
[0120] Immunohistochemistry and Western Blot: Standard methods for immunocytochemical observation of the cells and evaluation of protein expression by Western blot were utilized.
[0121] Firefly-luciferase assay: Cells were lysed 24 h post-treatment using Passive Lysis Buffer (Promega) and assayed with a Luciferase Reporter Gene Assay kit (Promega) according to the manufacturer's protocol. Luciferase activity was normalized to the number of cells determined by a parallel MTT assay (Vybrant, Invitrogen)
[0122] p24 ELISA: After infection or reactivation, the levels of HIV-1 viral load in the supernatants were quantified by p24 Gag ELISA (Advanced BioScience Laboratories, Inc) following the manufacturer's protocol. To assess cell viability upon treatments, MTT assay was performed in parallel according to the manufacturer's manual (Vybrant, Invitrogen).
[0123] EGFP Flow cytometry: Cells were trypsinized, washed with PBS and fixed in 2% paraformaldehyde for 10 min at room temperature, then washed twice with PBS and analyzed using a Guava EasyCyte Mini flow cytometer (Guava Technologies).
[0124] HIV-1 reporter virus preparation and infections: HEK293T cells were transfected using Lipofectamine 2000 reagent (Invitrogen) with pNL4-3-AE-EGFP (NIH AIDS Research and Reference Reagent Program). After 48 h, the supernatant was collected, 0.45 .mu.m filtered and tittered in HeLa cells using EGFP as an infection marker. For viral infection, stable Cas9/gRNA TZM-bl cells were incubated 2 h with diluted viral stock, and then washed twice with PBS. At 2 and 4 d post-infection, cells were collected, fixed and analyzed by flow cytometry for EGFP expression, or genomic DNA purification was performed for PCR and whole genome sequencing.
[0125] Genomic DNA amplification, PCR, TA-cloning, and Sanger sequencing, GenomeWalker link PCR: Standard methods for DNA manipulation for cloning and sequencing were utilized. For identification of the integration sites of HIV-1, we utilized Lenti-X.TM. integration site analysis kit was used.
[0126] Surveyor assay: The presence of mutations in PCR products was examined using a SURVEYOR Mutation Detection Kit (Transgenomic) according to the protocol from the manufacturer. Briefly heterogeneous PCR product was denatured for 10 min in 95.degree. C. and hybridized by gradual cooling using a thermocycler. Next, 300 ng of hybridized DNA (9 .mu.l) was subjected to digestion with 0.25 .mu.l of SURVEYOR Nuclease in the presence of 0.25 .mu.l SURVEYOR Enhancer S and 15 mM MgCl.sub.2 for 4 h at 42.degree. C. Then Stop Solution was added and samples were resolved in 2% agarose gel together with equal amounts of undigested PCR product controls.
[0127] Some PCR products were used for restriction fragment length polymorphism analysis. Equal amounts of the PCR products were digested with BsaJI. Digested DNA was separated on an ethidium bromide-contained agarose gel (2%). For sequencing, PCR products were cloned using a TA Cloning.RTM. Kit Dual Promoter with pCR.TM. II vector (Invitrogen). The insert was confirmed by digestion with EcoRI and positive clones were sent to Genewiz for Sanger sequencing.
[0128] Selection of LTR target sites, whole genome sequencing and bioinformatics and statistical analysis. We utilized Jack Lin's CRISPR/Cas9 gRNA finder tool for initial identification of potential target sites within the LTR.
[0129] Plasmid preparation. DNA segment expressing LTR-A or LTR-B for pre-crRNA was cloned into the pX260 vector that contains the puromycin selection gene (Addgene, plasmid #42229). DNA segments expressing LTR-C or LTR-D for the chimeric crRNA-tracrRNA were cloned into the pX330 vector (Addgene, plasmid #42230). Both vectors contain a humanized Cas9 coding sequence driven by a CAG promoter and a gRNA expression cassette driven by a human U6 promoter. The vectors were digested with BbsI and treated with Antarctic Phosphatase, and the linearized vector was purified with a Quick nucleotide removal kit (Qiagen). A pair of oligonucleotides for each targeting site (FIG. 14, AlphaDNA) was annealed, phosphorylated, and ligated to the linearized vector. The gRNA expression cassette was sequenced with U6 sequencing primer (FIG. 14) in GENEWIZ. For pX330 vectors, we designed a pair of universal PCR primers with overhang digestion sites (FIG. 14) that can tease out the gRNA expression cassette (U6-gRNA-crRNA-stem-tracrRNA) for direct transfection or subcloning to other vectors.
[0130] Cell culture. TZM-bl reporter cell line from Dr John C. Kappes, Dr Xiaoyun Wu and Tranzyme Inc, U1/Hiv-1 cell line from Dr. Thomas Folks and J-Lat full length clone from Dr. Eric Verdin were obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH. CHME5/HIV fetal microglia cell line were generated as previously described. TZM-bl and CHME5 cells were cultured in Dulbecco's minimal essential medium high glucose supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin/streptomycin. U1 and J-Lat cells were cultured in RPMI 1640 containing 2.0 mM L-glutamine, 10% FBS and 1% penicillin/streptomycin.
[0131] Stable cell lines and subcloning. TZM-bl or CHME5/HIV cells were seeded in 6-well plates at 1.5.times.10.sup.5 cells/well and transfected using Upofectamine 2000 reagent (Invitrogen) with 1 .mu.g of pX260 (for LTR-A and B) or 1 .mu.g/0.1 .mu.g of pX330/pX260 (for LTR-C and D) plasmids. Next day, cells were transferred into 100-mm dishes and incubated with growth medium containing 1 .mu.g/ml of puromycin (Sigma). Two weeks later, surviving cell colonies were isolated using cloning cylinders (Corning). U1 cells (1.5.times.10.sup.5) were electroporated with 1 .mu.g of DNA using 10 .mu.l tip, 3.times.10 ms 1400 V impulses at The Neon.TM. Transfection System (Invitrogen). Cells were selected with 0.5 .mu.g/ml of puromycin for two weeks. The stable clones were subcultured using a limited dilution method in 96-well plates and single cell-derived subclones were maintained for further studies.
[0132] Immunocytochemistry and western blot. The Cas9/gRNA stable expression TZM-bl cells were cultured in 8-well chamber slides for 2 days and fixed for 10 min in 4% paraformaldehyde/PBS. After three rinses, the cells were treated with 0.5% Triton X-100/PBS for 20 min and blocked in 10% donkey serum for 1 h. Cells were incubated overnight at 4.degree. C. with mouse anti-Flag M2 primary antibody (1:500, Sigma). After rinsing three times, cells were incubated for 1 h with donkey anti-mouse Alexa-Fluor-594 secondary antibodies, and incubated with Hoechst 33258 for 5 min. After three rinses with PBS, the cells were coverslipped with anti-fading aqueous mounting media (Biomeda) and analyzed under a Leica DMI6000B fluorescence microscope.
[0133] TZM-bl cells cultured in 6-well plate were solubilized in 200 .mu.l of Triton X-100-based lysis buffer containing 20 mM Tris-HCl (pH 7.4), 1% Triton X-100, 5 mM ethylenediaminetetraacetic acid, 5 mM dithiothreitol, 150 mM NaCl, 1 mM phenylmethylsulfonyl fluoride, 1.times. nuclear extraction proteinase inhibitor cocktail (Cayman Chemical, Ann Arbor, Mich.), 1 mM sodium orthovanadate and 30 mM NaF. Cell lysates were rotated at 4.degree. C. for 30 min. Nuclear and cellular debris was cleared by centrifugation at 20,000 g for 20 min at 4.degree. C. Equal amounts of lysate proteins (20 .mu.g) were denatured by boiling for 5 min in sodium dodecyl sulphate (SDS) sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis in tris-glycine buffer, and transferred to nitrocellulose membrane (BioRad). The SeeBlue prestained standards (Invitrogen) were used as a molecular weight reference. Blots were blocked in 5% BSA/tris-buffered saline (pH 7.6) plus 0.1% Tween-20 (TBS-T) for 1 h and then incubated overnight at 4.degree. C. with mouse anti-Flag M2 monoclonal antibody (1:1000, Sigma) or mouse anti-GAPDH monoclonal antibody (1:3000, Santa Cruz Biotechnology). After washing with TBS-T, the blots were incubated with IRDye 680LT-conjugated anti-mouse antibody for 1 h at room temperature. Membranes were scanned and analyzed using an Odyssey Infrared Imaging System (LI-COR Biosciences).
[0134] Firefly-luciferase assay. Cells were lysed 24 h post-treatment using Passive Lysis Buffer (Promega) and assayed with a Luciferase Reporter Gene Assay kit (Promega) according to the protocol of the manufacturer. Luciferase activity was normalized to the number of cells determined by parallel MTT assay (Vybrant, Invitrogen).
[0135] p24 ELISA After infection or reactivation, the HIV-1 viral load levels in the supernatants were quantified by p24 Gag ELISA (Advanced BioScience Laboratories, Inc) following the manufacturer's protocol. To assess the cell viability upon treatments, MTT assay was performed in parallel according to the manufacturer's protocol (Vybrant, Invitrogen).
[0136] EGFP Flow cytometry. Cells were trypsinized, washed with PBS and fixed in 2% paraformaldehyde for 10 min at room temperature, then washed twice with PBS and analyzed using a Guava EasyCyte Mini flow cytometer (Guava Technologies).
[0137] Hiv-1 reporter virus preparation and infections. HEK293T cells were transfected using Lipofectamine 2000 reagent (Invitrogen) with pNL4-3-.DELTA.E-EGFP, SF162 and JRFL (NIH AIDS Research and Reference Reagent Program). For pseudotyped pNL4-3-.DELTA.E-EGFP, the VSVG vector was cotransfected. After 48 h, the supernatant was collected, 0.45 .mu.m filtered and tittered in HeLa cells using expressed EGFP as an infection marker. For viral infection, stable Cas9/gRNA TZM-bl cells were incubated 2 h with a diluted viral stock, and washed twice with PBS. At 2 and 4 days post-infection, cells were collected, fixed and analyzed by flow cytometry for EGFP expression, or genomic DNA purification was performed for PCR and whole genome sequencing.
[0138] Genomic DNA purification, PCR, TA-cloning and Sanger sequencing. Genomic DNA was isolated from cells using an ArchivePure DNA cell/tissue purification kit (5PRIME) according to the protocol recommended by the manufacturer. One hundred ng of extracted DNA were subjected to PCR using a high-fidelity FailSafe PCR kit (Epicentre) using primers listed in FIG. 14. Three steps of standard PCR were carried out for 30 cycles with 55.degree. C. annealing and 72.degree. C. extension. The products were resolved in 2% agarose gel. The bands of interest were gel-purified and cloned into pCRII T-A vector (Invitrogen), and the nucleotide sequence of individual clones was determined by sequencing at Genewiz using universal T7 and/or SP6 primers.
[0139] Conventional and real-time reverse transcription (RT)-PCR. For total RNA extraction, cells were processed with an RNeasy Mini kit (Qiagen) as per manufacturer's instructions. The potentially residual genomic DNA was removed through on-column DNase digestion with an RNase-Free DNase Set (Qiagen). One .mu.g of RNA for each sample was reversely transcribed into cDNAs using random hexanucleotide primers with a High Capacity cDNA Reverse Transcription Kit (Invitrogen, Grand Island, N.Y.). Conventional PCR was performed using a standard protocol. Quantitative PCR (qPCR) analyses were carried out in a LightCycler480 (Roche) using an SYBR.RTM. Green PCR Master Mix Kit (Applied Biosystems). The RT reactions were diluted to 5 ng of total RNA per micro-liter of reactions and 2 .mu.l was used in a 20-.mu.l PCR reaction. For qPCR analysis of HIV-1 proviruses, 50 ng of genomic DNA were used. The primers were synthesized in AlphaDNA and shown in FIG. 14. The primers for human housekeeping genes GAPDH and RPL13A were obtained from RealTimePrimers (Elkins Park, Pa.). Each sample was tested in triplicate. Cycle threshold (Ct) values were obtained graphically for the target genes and house-keeping genes. The difference in Ct values between the housekeeping gene and target gene was represented as .DELTA.Ct values. The .DELTA..DELTA.Ct values were obtained by subtracting the .DELTA.Ct values of control samples from those of experimental samples. Relative fold or percentage change was calculated as 2-.DELTA..DELTA.Ct. In some cases, absolute quantification was performed using the pNL4-3-.DELTA.E-EGFP plasmid spiked in human genomic DNA as a standard. The number of HIV-1 viral copies was calculated based on standard curve after normalization with housekeeping gene.
[0140] GenomeWalker link PCR and long-range PCR. The integration sites of HIV-1 in host cells were identified using a Lenti-X.TM. Integration Site Analysis kit (Clontech) following the manufacturer's instruction. Briefly, high quality genomic DNAs were extracted from U1 cells using a NucleoSpin Tissue kit (Clontech). To construct the viral integration libraries, each genomic DNA sample was digested with blunt-end-generating digestion enzymes Dra I, Ssp I or HpaI separately overnight at 37.degree. C. The digestion efficiency was verified by electrophoresis on 0.6% agarose. The digested DNA was purified using a NucleoSpin Gel and PCR Clean-Up kit followed by ligation of the digested genomic DNA fragments to GenomeWalker.TM. Adaptor at 16.degree. C. overnight. The ligation reaction was stopped by incubation at 70.degree. C. for 5 min and diluted 5 times with TE buffer. The primary PCR was performed on the DNA segments with adaptor primer 1 (AP1) and LTR-specific primer 1 (LSP1) using Advantage 2 Polymerase Mix followed by a secondary (nested) PCR using AP2 and LSP2 primers (FIG. 14). The secondary PCR products were separated on 1.5% ethidium bromide-containing agarose gel. The major bands were gel-purified and cloned into pCRII T-A vector (Invitrogen), and the nucleotide sequence of individual clones was determined by sequencing at Genewiz using universal T7 and SP6 primers. The sequence reads were analyzed by NCBI BLAST searching. Two integration sites of HIV-1 in U1 cells were identified in chromosomes X and 2. A pair of primers covering each integration site (FIG. 14) was synthesized in AlphaDNA. Long-range PCR using the U1 genomic DNA was performed with a Phusion High-Fidelity PCR kit (New England Biolabs) following the manufacturer's protocol. The PCR products were visualized on 1% agarose gel and validated by Sanger sequencing.
[0141] Surveyor assay. The presence of mutations in PCR products was tested using a SURVEYOR Mutation Detection Kit (Transgenomic) according to the protocol of the manufacturer. Briefly heterogeneous PCR products were denatured for 10 min in 95.degree. C. and hybridized by gradual cooling using a thermocycler. Next 300 ng of hybridized DNA (9 ul) was subjected to digestion with 0.25 .mu.l of SURVEYOR Nuclease in the presence of 0.25 .mu.l SURVEYOR Enhancer S and 15 mM MgCl.sub.2 for 4 h at 42.degree. C. Then Stop Solution was added and samples were resolved in 2% agarose gel together with equal amounts of undigested PCR products.
[0142] Some PCR products were used for restriction fragment length polymorphism analysis. Equal amount of PCR products were digested with BsaJI. Digested DNA was separated on an ethidium bromide-contained agarose gel (2%). For sequencing, PCR products were cloned using a TA Cloning.RTM. Kit Dual Promoter with pCR.TM. II vector (Invitrogen). The insert was confirmed by digestion with EcoRI and positive clones were sent to Genwiz for Sanger sequencing.
[0143] Selection of LTR target sites and prediction of potential off-target sites. For initial studies, we obtained the LTR promoter sequence (-411 to -10) of the integrated lentiviral LTR-luciferase reporter by TA-cloning sequencing of PCR products from the genome of human TZM-bl cells because of potential mutation of LTR during passaging. This promoter sequence has 100% match to the 5'-LTR of pHR'-CMV-LacZ lentiviral vector (AF105229). Thus, sense and antisense sequences of the full-length pHR' 5'-LTR (634 bp) were utilized to search for Cas9/gRNA target sites containing 20 bp gRNA targeting sequence plus the PAM sequence (NRG) using Jack Lin's CRISPR/Cas9 gRNA finder tool. The number of potential off-targets with exact match was predicted by blasting each gRNA targeting sequence plus NRG (AGG, TGG, GGG and CGG; AAG, TAG, GAG, CAG) against all available human genomic and transcript sequences using the NCBI/blastn suite with E-value cutoff 1,000 and word size 7. After pressing Control+F, copy/paste the target sequence (1-23 through 9-23 nucleotides) and find the number of genomic targets with 100% match to the target sequence. The number of off-targets for each search was divided by 3 because of repeated genome library.
[0144] Whole genome sequencing and bioinformatics analysis. The control subclone C1 and experimental subclone AB7 of TZM-bl cells were validated for target cut efficiency and functional suppression of the LTR-luciferase reporter. The genomic DNA was isolated with NucleoSpin Tissue kit (Clontech). The DNA samples were submitted to the NextGen sequencing facility at Temple University Fox Chase Cancer Center. Duplicated genomic DNA libraries were prepared from each subclone using a NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolab) following the manufacturer's instruction. All libraries were sequenced with paired-end 141-bp reads in two Illumina Rapid Run flowcells on HiSeq 2500 instrument (Illumina). Demultiplexed read data from the sequenced libraries were sent to AccuraScience, LLC for professional bioinformatics analysis. Briefly, the raw reads were mapped against human genome (hg19) and HIV-1 genome by using Bowtie2. A genomic analysis toolkit (GATK, version 2.8.1) was used for the duplicated read removal, local alignment, base quality recalibration and indel calling. The confidence scores 10 and 30 were the thresholds for low quality (LowQual) and high confidence calling (PASS). The potential off-target sites of LTR-A and LTR-B with various mismatches were predicted by NCBI/blastn suite as described above and by a CRISPR Design Tool. All the potential gRNA target sites (FIG. 15) were used to map the .+-.300 bp regions around each indel identified by GATK. The locations of the overlapped regions in the human genome and HIV-1 genome were compared between the control C1 and experimental AB7.
[0145] Statistical analysis. The quantitative data represented mean.+-.standard deviation from 3-5 independent experiments, and were evaluated by Student's t-test or ANOVA and Newman-Keuls multiple comparison test. A p value that is <0.05 or 0.01 was considered as a statistically significant difference.
Example 2: Cas9/LTR-gRNA Suppresses HIV-1 Reporter Virus Production in CHME5 Microglial Cells Latently Infected with HIV-1
[0146] We assessed the ability of HIV-1-directed guide RNAs (gRNAs) to abrogate LTR transcriptional activity and eradicate proviral DNA from the genomes of latently-infected myeloid cells that serve as HIV-1 reservoirs in the brain, a particularly intractable target population. Our strategy was focused on targeting the HIV-1 LTR promoter U3 region. By bioinformatic screening and efficiency/off-target prediction, we identified four gRNA targets (protospacers; LTRs A-D) that avoid conserved transcription factor binding sites, minimizing the likelihood of altering host gene expression (FIG. 5 and FIG. 13). We inserted DNA fragments complementary to gRNAs A-D into a humanized Cas9 expression vector (A/B in pX260; C/D in pX330) and tested their individual and combined abilities to alter the integrated HIV-1 genome activity. We first utilized the microglial cell line CHME5, which harbors integrated copies of a single round HIV-1 vector that includes the 5' and 3' LTRs, and a gene encoding an enhanced green fluorescent protein (EGFP) reporter replacing Gag (pNL4-3-.DELTA.Gag-d2EGFP). Treating CHME5 cells with trichostatin A (TSA), a histone deacetylase inhibitor, reactivates transcription from the majority of the integrated proviruses and leads to expression of EGFP and the remaining HIV-1 proteome. Expressing of gRNAs plus Cas9 markedly decreased the fraction of TSA-induced EGFP-positive CHME5 cells (FIG. 1A and FIG. 6). We detected insertion/deletion gene mutations (indels) for LTRs A-D (FIG. 1B and FIG. 6B) using a Cel I nuclease-based heteroduplex-specific SURVEYOR assay. Similarly, expressing gRNAs targeting LTRs C and D in HeLa-derived TZM-bl cells, that contain stably incorporated HIV-1 LTR copies driving a firefly-luciferase reporter gene, suppressed viral promoter activity (FIG. 7A), and elicited indels within the LTR U3 region (FIG. 7B, FIG. 7C, and FIG. 7D) demonstrated by SURVEYOR and Sanger sequencing. Moreover, the combined expression of LTR C/D-targeting gRNAs in these cells caused excision of the predicted 302-bp viral DNA sequence, and emergence of the residual 194-bp fragment (FIG. 7E and FIG. 7F).
[0147] Multiplex expression of LTR-A/B gRNAs in mixed clonal CHME5 cells caused deletion of a 190-bp fragment between A and B target sites and led to indels to various extents (FIG. 1C and FIG. 1D). Among >20 puromycin-selected stable subclones, we found cell populations with complete blockade of TSA-induced HIV-1 proviral reactivation determined by flow cytometry for EGFP (FIG. 1E). PCR-based analysis for EGFP and HIV-1 Rev response element (RRE) in the proviral genome validated the eradication of HIV-1 genome (FIG. 1F, FIG. 1G). Furthermore, sequencing of the PCR products revealed the entire 5'-3' LTR-spanning viral genome was deleted, yielding a 351-bp fragment via a 190-bp excision between cleavage sites A and B (FIG. 1G and FIG. 8B), and a 682-bp fragment with a 175-bp insertion and a 27-bp deletion at the LTR-A and -B sites respectively (FIG. 8C). The residual HIV-1 genome (FIG. 1F, FIG. 1G, and FIG. 1H) may reflect the presence of trace Cas9/gRNA-negative cells. These results indicate that LTR-targeting Cas9/gRNAs A/B eradicates the HIV-1 genome and blocks its reactivation in latently infected microglial cells.
Example 3: Cas9/LTR-gRNA Efficiently Eradicates Latent HIV-1 Virus from U1 Monocytic Cells
[0148] The promonocytic U-937 cell subclone U1, an HIV-1 latency model for infected perivascular macrophages and monocytes, is chronically HIV-1-infected and exhibits low level constitutive viral gene expression and replication. GenomeWalker mapping detected two integrated proviral DNA copies at chromosomes Xp11-4 (FIG. 2A) and 2p21 (FIG. 9A) in U1 cells. A 9935-bp DNA fragment representing the entire 9709-bp proviral HIV-1 DNA plus a flanking 226-bp X-chromosome-derived sequence (FIG. 2A), and a 10176-bp fragment containing 9709-bp HIV-1 genome plus its flanking 2-chromosome-derived 467-bp (FIG. 9A, FIG. 9B) were identified by the long-range PCR analysis of the parental control or empty-vector (U6-CAG) U1 cells. The 226-bp and 467-bp fragments represent the predicted segment from the other copy of chromosome X and 2 respectively, which lacked the integrated proviral DNA. In U1 cells expressing LTR-A/B gRNAs and Cas9, we found two additional DNA fragments of 833 and 670 bp in chromosome X and one additional 1102-bp fragment in chromosome 2. Thus, gRNAs A/B enabled Cas9 to excise the HIV-1 5'-3' LTR-spanning viral genome segment in both chromosomes. The 833-bp fragment includes the expected 226-bp from the host genome and a 607-bp viral LTR sequence with a 27-bp deletion around the LTR-A site (FIG. 2A and FIG. 2B). The 670-bp fragment encompassed a 226-bp host sequence and residual 444-bp viral LTR sequence after 190-bp fragment excision (FIG. 1D), caused by gRNAs-A/B-guided cleavage at both LTRs (FIG. 2A). The additional fragments did not emerge via circular LTR integration, because it was absent in the parental U1 cells, and such circular LTR viral genome configuration occurs immediately after HIV-1 infection but is short lived and intolerant to repeated passaging. These cells exhibited substantially decreased HIV-1 viral load, shown by the functional p24 ELISA replication assay (FIG. 2C) and real-time PCR analysis (FIG. 9C, FIG. 9D). The detectable but low residual viral load and reactivation may result from cell population heterogeneity and/or incomplete genome editing. We also validated the ablation of HIV-1 genome by Cas9/LTR-A/B gRNAs in latently infected J-Lat T cells harboring integrated HIV-R7/E-/EGFP using flow cytometry analysis, SURVEYOR assay and PCR genotyping (FIG. 10), supporting the results of previous reports on HIV-1 proviral deletion in Jurkat T cells by Cas9/gRNA and ZFN. Taken together, our results suggest that the multiplex LTR-gRNAs/Cas9 system efficiently suppress HIV-1 replication and reactivation in latently HIV-1-infected "reservoir" (microglial, monocytic and T) cells typical of human latent HIV-1 infection, and in TZM-bl cells highly sensitive for detecting HIV-1 transcription and reactivation. Single or multiplex gRNAs targeting 5'- and 3'-LTRs effectively eradicated the entire HIV-1 genome.
Example 4: Stable Expression of Cas9 Plus LTR-A/B Vaccinates TZM-bl Cells Against New HIV-1 Virus Infection
[0149] We next tested whether combined Cas9/LTR gRNAs can immunize cells against HIV-1 infection using stable Cas9/gRNAs-A and -B-expressing TZM-bl-based clones (FIG. 3A). Two of 7 puromycin-selected subclones exhibited efficient excision of the 190-bp LTR-A/B site-spanning DNA fragment (FIG. 3B). However, the remaining 5 subclones exhibited no excision (FIG. 3B) and no indel mutations as verified by Sanger sequencing. PCR genotyping using primers targeting Cas9 and U6-LTR showed that none of these ineffective subclones retained the integrated copies of Cas9/LTR-A/B gRNA expression cassettes. (FIG. 11A, FIG. 11B). As a result, no expression of full-length Cas9 was detected (FIG. 11C, FIG. 11D). The long-term expression of Cas9/LTR-A/B gRNAs did not adversely affect cell growth or viability, suggesting a low occurrence of off-target interference with the host genome or Cas9-induced toxicity in this model. We assessed de novo HIV-1 replication by infecting cells with the VSVG-pseudotyped pNL4-3-.DELTA.E-EGFP reporter virus, with EGFP-positivity by flow cytometry indicating HIV-1 replication. Unlike the control U6-CAG cells, the cells stably expressing Cas9/gRNAs LTRs-A/B failed to support HIV-1 replication at 2 d post infection, indicating that they were immunized effectively against new HIV-1 infection (FIG. 3C and FIG. 3D). A similar immunity against HIV-1 was observed in Cas/LTR-A/B gRNA expressing cells infected with native T-tropic X4 strain pNL4-3-.DELTA.E-EGFP reporter virus (FIG. 12A) or native M-tropic R5 strains such as SF162 and JRFL (FIG. 12B, FIG. 12C, and FIG. 12D).
Example 5: Off-Target Effects of Cas9/LTR-A/B on Human Genome
[0150] The appeal of Cas9/gRNA as an interventional approach rests on its highly specific on-target indel-producing cleavage, but multiplex gRNAs could potentially cause host genome mutagenesis and chromosomal disorders, cytotoxicity, genotoxicity, or oncogenesis. Fairly low viral-human genome homology reduces this risk, but the human genome contains numerous endogenous retroviral genomes that are potentially susceptible to HIV-1-directed gRNAs. Therefore, we assessed off-target effects of selected HIV-1 LTR gRNAs on the human genome. Because the 12-14-bp seed sequence nearest the protospacer-adjacent motif (PAM) region (NGG) is critical for cleavage specificity, we searched >14-bp seed+NGG, and found no off-target candidate sites by LTR gRNAs A-D (FIG. 13). It is not surprising that progressively shorter gRNA segments yielded increasing off-target cleavage sites 100% matched to corresponding on-target sequences (i.e., NGG+13 bp yielded 6, 0, 2 and 9 off-target sites, respectively, whereas NGG+12 bp yielded 16, 5, 16 and 29; FIG. 13). From human genomic DNA we obtained a 500-800-bp sequence covering one of predicted off-target sites using high-fidelity PCR, and analyzed the potential mutations by SURVEYOR and Sanger sequencing. We found no mutations (see representative off-target sites #1, 5 and 6 in TZM-bl and U1 cells; FIG. 4A).
[0151] To assess risk of off-target effects comprehensively, we performed whole genome sequencing (WGS) using the stable Cas9/gRNA A/B-expressing and control U6-CAG TZM-bl cells (FIG. 4B, FIG. 4C, and FIG. 4D). We identified 676,105 indels, using a genome analysis toolkit (GATK, v.2.8.1) with human (hg19) and HIV-1 genomes as reference sequences. Among the indels, 24% occurred in the U6-CAG control, 26% in LTR-A/B subclone, and 50% in both (FIG. 4B). Such substantial inter-sample indel-calling discrepancy suggests the probable off-target effects, but most likely results from its limited confidence, limited WGS coverage (15-30.times.), and cellular heterogeneity. GATK reported only confidently-identified indels: some found in the U6-CAG control but not in the LTR-A/B subclone, and others in the LTR-A/B but not in the U6-CAG. We expected abundant missing indel calls for both samples due to the limited WGS coverage. Such limited indel-calling confidence also implies the possibility of false negatives: missed indels occurring in LTR-A/B but not U6-CAG controls. Cellular heterogeneity may reflect variability of Cas9/gRNA editing efficiency and effects of passaging. Therefore, we tested whether each indel was LTR-A/B gRNA-induced, by analyzing .+-.300 bp flanking each indel against LTRs-A/-B-targeted sites of the HIV-1 genome and predicted/potential gRNA off-target sites of the host genome (FIG. 15). For sequences 100% matched to one containing the seed (12-bp) plus NRG, we identified only 8 overlapped regions of 92 potential off-target sites against 676,105 indels: 6 indels occurring in both samples, and 2 only in the U6-CAG control (FIG. 4C, FIG. 4D). We also identified 2 indels on HIV-1 LTR that occurred only in the LTR-A/B subclone but, as expected, not in the U6-CAG control (FIG. 4C). The results suggest that LTR-A/B gRNAs induce the indicated on-target indels, but no off-target indels, consistent with prior findings using deep sequencing of PCR products covering predicted/potential off-target site.
[0152] Our combined approaches minimized off-target effects while achieving high efficiency and complete ablation of the genomically integrated HIV-1 provirus. In addition to an extremely low homology between the foreign viral genome and host cellular genome including endogenous retroviral DNA, the key design attributes in our study included: bioinformatic screening using the strictest 12-bp+NGG target-selection criteria to exclude off-target human transcriptome or (even rarely) untranslated-genomic sites; avoiding transcription factor binding sites within the HIV-1 LTR promoter (potentially conserved in the host genome); selection of LTR-A- and -B-directed, 30-bp gRNAs and also pre-crRNA system reflecting the original bacterial immune mechanism to enhance specificity/efficiency vs. 20-bp gRNA-, chimeric crRNA-tracRNA-based system; and WGS, Sanger sequencing and SURVEYOR assay, to identify and exclude potential off-target effects. Indeed, the use of newly developed Cas9 double-nicking and RNA-guided FokI nuclease may further assist identification of new targets within the various conserved regions of HIV-1 with reduced off-target effects.
[0153] Our results show that the HIV-1 Cas9/gRNA system has the ability to target more than one copy of the LTR, which are positioned on different chromosomes, suggesting that this genome editing system can alter the DNA sequence of HIV-1 in latently infected patient's cells harboring multiple proviral DNAs. To further ensure high editing efficacy and consistency of our technology, one may consider the most stable region of HIV-1 genome as a target to eradicate HIV-1 in patient samples, which may not harbor only one strain of HIV-1. Alternatively, one may develop personalized treatment modalities based on the data from deep sequencing of the patient-derived viral genome prior to engineering therapeutic Cas9/gRNA molecules.
[0154] Our results also demonstrate that Cas9/gRNA genome editing can be used to immunize cells against HIV-1 infection. The preventative vaccination is independent of HIV-1 strain's diversity because the system targets genomic sequences regardless of how the viruses enter the infected cells. The preexistence of the Cas9/gRNA system in cells led to a rapid elimination of the new HIV-1 before it integrates into the host genome. One may explore various systems for delivery of Cas9/LTR-gRNA for immunizing high-risk subjects, e.g., gene therapies (viral vector and nanoparticle) and transplantation of autologous Cas9/gRNA-modified bone marrow stem/progenitor cells or inducible pluripotent stem cells for eradicating HIV-1 infection.
[0155] Here, we demonstrated the high specificity of Cas9/gRNAs in editing HIV-1 target genome. Results from subclone data revealed the strict dependence of genome editing on the presence of both Cas9 and gRNA. Moreover, only one nucleotide mismatch in the designed gRNA target will disable the editing potency. In addition, all of our 4 designed LTR gRNAs worked well with different cell lines, indicating that the editing is more efficient in the HIV-1 genome than the host cellular genome, wherein not all designed gRNAs are functional, which may be due to different epigenetic regulation, variable genome accessibility, or other reasons. Given the ease and rapidity of Cas9/gRNA development, even if HIV-1 mutations confer resistance to one Cas9/gRNA-based therapy, as described above, HIV-1 variants can be genotyped to enable another personalized therapy for individual patients.
[0156] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
Sequence CWU
1
1
389130DNAHuman immunodeficiency virus 1 1gccagggatc agatatccac tgacctttgg
30234DNAHuman immunodeficiency virus
1 2tccggagtac ttcaagaact gctgacatcg agct
34319DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 3ccactgacta cttcaagaa
194859DNAArtificial SequenceDescription of Artificial
Sequence Synthetic polynucleotidemodified_base(289)..(313)a, c, t,
g, unknown or othermisc_feature(289)..(313)n is a, c, g, or t 4ctaggtgatt
aggatattct acaatccaaa ttcttaccag tttgggatta ttcaaattgg 60gcaccttggc
agatatgttt tgaaaactgc taggcaaagc attctggaag aatagacaaa 120gaagtaataa
aatataacaa aaagcagtgg aagttacaaa aaaaaatgtt tctcttttgg 180aagggctaat
ttggtcccaa agaagacaag atatccttga tctgtggatc taccacacac 240aaggctactt
ccctgattgg cagaactaca acaccagggc cagggatcnn nnnnnnnnnn 300nnnnnnnnnn
nnnttcaagt tagtaccagt tgagccaggg caggtagaag aggccaatga 360aggagagaac
aacaccttgt tacaccctat gagcctgcat gggatggagg acccggaggg 420agaagtatta
gtgtggaagt ttgacagcct cctagcattt cgtcacatgg cccgagagct 480gcatccggag
tactacaaag actgctgaca tcgagttttc tacaagggac tttccgctgg 540ggactttcca
gggaggtgtg gcctgggcgg gactggggag tggcgagccc tcagatgctg 600catataagca
gctgcttttt gcctgtactg ggtctctctg gttagaccag atctgagcct 660gggagctctc
tggctagcta gggaacccac tgcttaagcc tcaataaagc ttgccttgag 720tgctacaagt
agtgtgtgcc cgtctgttgt gtgactctgg taactagaga tccctcagac 780ccttttagtc
agtgtggaaa atctctagca tctttaaagt acagaatgcc aaaacaggaa 840ggattgataa
gatagtcgt 859510DNAHuman
immunodeficiency virus 1 5tcttttggaa
10676DNAHuman immunodeficiency virus 1 6gattggcaga
actacacacc agggccaggg atcagatatc cactgacctt tggatggtgc 60ttcaagttag
taccag 76710DNAHuman
immunodeficiency virus 1 7tctttaaagt
10810DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 8tcttttggaa
10963DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
9gattggcaga actacaacac cagggccagg gatcagatgg atggtgcttc aagttagtac
60cag
631010DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 10tctttaaagt
101110DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 11tcttttggaa
101250DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
12gattggcaga actacaacac cagggccagg gatcttcaag ttagtaccag
501310DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 13tctttaaagt
101424DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 14gagatcctgt ctcaaaaaaa agtt
241517DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
15atctatccat gagggcg
1716402DNAHuman immunodeficiency virus 1 16gatctgtgga tctaccacac
acaaggctac ttccctgatt ggcagaacta cacaccaggg 60ccagggatca gatatccact
gacctttgga tggtgctaca agctagtacc agttgagcaa 120gagaaggtag aagaagccaa
tgaaggagag aacacccgct tgttacaccc tgtgagcctg 180catgggatgg atgacccgga
gagagaagta ttagagtgga ggtttgacag ccgcctagca 240tttcatcaca tggcccgaga
gctgcatccg gagtacttca agaactgctg acatcgagct 300tgctacaagg gactttccgc
tggggacttt ccagggaggc gtggcctggg cgggactggg 360gagtggcgag ccctcagatg
ctgcatataa gcagctgctt tt 4021731DNAHuman
immunodeficiency virus 1 17ccctgattgg cagaactaca caccagggcc a
311832DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 18ccctgattgg
cagaactaca acaccagggc ca
321932DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 19ccctgattgg cagaactaca acaccagggc ca
322032DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 20ccctgattgg cagaactaca
acaccagggc ca 322130DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
21ccctgattgg cagaactaca accagggcca
302229DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 22ccctgattgg cagaactaca ccagggcca
292329DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 23ccctgattgg cagaactaca ccagggcca
292426DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
24ccctgattgg cagaactaca gggcca
262529DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 25ccctgattgg cagaactaca gggccaggg
292686DNAHuman immunodeficiency virus 1 26gactttccag
ggaggcgtgg cctgggcggg actggggagt ggcgagccct cagatgctgc 60atataagcag
cggtgaagcc gaattc
862786DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 27gactttccag ggaggcgtgg cctgggcggg actggggggt
ggcgagccct cagatgctgc 60atataagcag cggtgaagcc gaattc
862888DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 28gactttccag
ggaggcgtgg cctgggcggg tatctgggga gtggcgagcc ctcagatgct 60gcatataagc
agcggtgaag ccgaattc
882985DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 29gactttccag gggggcgtgg cctgggcggg actggggagt
ggcgagccct cagatgctgc 60ataaagcagc ggtgaagccg aattc
853023DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 30gactttccag
ggaagccgaa ttc
233125DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 31gattggcaga actacactgg ggagt
253226DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 32gattggcaga actacacctc agatgc
263328DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
33catcacatgg cccgctgctg acatcgag
283455DNAHuman immunodeficiency virus 1 34catcacgtgg cccgagagct
gcatccggag tacttcaaga actgctgaca tcgag 55351106DNAArtificial
SequenceDescription of Artificial Sequence Synthetic
polynucleotidemodified_base(152)..(155)a, c, t, g, unknown or
othermisc_feature(152)..(155)n is a, c, g, or t 35gctattgtat ctgatcacaa
gctgttaaaa gcggtcatgc cacttcttga atgctttgca 60gctggaaggg ctaatttggt
cccaaagaag acaagatatc cttgatctgt ggatctacca 120cacacaaggc tacttccctg
attggcagaa cnnnncacca gggccaggga tcagatatcc 180actgaccatc cactttggat
ggtgcttcaa gttagtacca gttgagccag ggcaggtaga 240agaggccaat gaaggagaga
acaacacctt gttacaccct atgagcctgc atgggatgga 300ggacccggag ggagaagtat
tagtgtggaa gtttgacagc ctcctagcat ttcgtcacat 360ggcccgagag ctgcatccgg
agtactacaa agactgctga catcgagttt tctacaaggg 420actttccgct ggggactttc
cagggaggtg tggcctgggc gggactgggg agtggcgagc 480cctcagatgc tgcatataag
cagctgcttt ttgcctgtac tgggtctctc tggttagacc 540agatctgagc ctgggagctc
tctggctagc tagggaaccc actgcttaag cctcaataaa 600gcttgccttg agtgctacaa
gtagtgtgtg cccgtctgtt gtgtgactct ggtaactaga 660gatccctcag acccttttag
tcagtgtgga aaatctctag cagcagctta gaaatttttt 720ccaccagagg ccgggcgtgg
tggctcacgc ctgtaatccc agcactttgg gaggccgagg 780tgggcggatc acctgaagtc
aggagttcga gaccagcctc aacatggaga aaccccatct 840ctactaaaaa tacaaaatta
gctgggcgtg gtggtgcatg cctgtaatcc cagctacttg 900ggaggctgag acaggataat
tgcttgaacc tggaaggcag aggttgcggt gagccgagat 960tgcgccattg cattccagcc
tgggcaacag gagcgaaact tcgtctcaaa aaaaaaaaaa 1020aaagacattt tttccaccag
ataccctaga tcatgactgt taagtctggc cttccacgaa 1080gccctaggac ctggacacac
aatcaa 11063636DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
36aaacagggcc agggatcaga tatccactga ccttgt
363735DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 37taaacaaggt cagtggatat ctgatccctg gccct
353836DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 38aaacagctcg atgtcagcag
ttcttgaagt actcgt 363935DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
39taaacgagta cttcaagaac tgctgacatc gagct
354024DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 40caccgattgg cagaactaca cacc
244124DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 41aaacggtgtg tagttctgcc aatc
244224DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
42caccgcgtgg cctgggcggg actg
244324DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 43aaaccagtcc cgcccaggcc acgc
244424DNAArtificial SequenceDescription of Artificial
Sequence Synthetic primer 44tggaagggct aattcactcc caac
244524DNAArtificial SequenceDescription of
Artificial Sequence Synthetic primer 45ccgagagctc ccaggctcag atct
244627DNAArtificial
SequenceDescription of Artificial Sequence Synthetic primer
46caccgatctg tggatctacc acacaca
274724DNAArtificial SequenceDescription of Artificial Sequence Synthetic
primer 47aaacgagtca cacaacagac gggc
244837DNAArtificial SequenceDescription of Artificial Sequence
Synthetic primer 48cgcctcgagg atccgagggc ctatttccca tgattcc
374935DNAArtificial SequenceDescription of Artificial
Sequence Synthetic primer 49tgtgaattca ggcgggccat ttaccgtaag ttatg
355025DNAArtificial SequenceDescription of
Artificial Sequence Synthetic primer 50acgactatct tatcaatcct tcctg
255126DNAArtificial
SequenceDescription of Artificial Sequence Synthetic primer
51ctaggtgatt aggatattct acaatc
265224DNAArtificial SequenceDescription of Artificial Sequence Synthetic
primer 52gctattgtat ctgatcacaa gctg
245324DNAArtificial SequenceDescription of Artificial Sequence
Synthetic primer 53ttgattgtgt gtccaggtcc tagg
245423DNAArtificial SequenceDescription of Artificial
Sequence Synthetic primer 54gcaagggcga ggagctgttc acc
235524DNAArtificial SequenceDescription of
Artificial Sequence Synthetic primer 55ttgtagttgc cgtcgtcctt gaag
245623DNAArtificial
SequenceDescription of Artificial Sequence Synthetic primer
56aatggtacat caggccatat cac
235723DNAArtificial SequenceDescription of Artificial Sequence Synthetic
primer 57cccactgtgt ttagcatggt att
235823DNAArtificial SequenceDescription of Artificial Sequence
Synthetic primer 58cacagcatca agaagaacct gat
235924DNAArtificial SequenceDescription of Artificial
Sequence Synthetic primer 59tcttccgtct ggtgtatctt cttc
246028DNAArtificial SequenceDescription of
Artificial Sequence Synthetic primer 60cgccaagctt gaataggagc
tttgttcc 286130DNAArtificial
SequenceDescription of Artificial Sequence Synthetic primer
61ctaggatcca ggagctgttg atcctttagg
306223DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 62gtggactttg gatggtgaga tag
236323DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 63gcctggcaag agtgaactga gtc
236423DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
64aagataatga gttgtggcag agc
236524DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 65tctacctggt aatccagcat ctgg
246623DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 66ataggaggaa ggcaccaaga ggg
236723DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
67aatgatgctt tggtcctact cct
236824DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 68tgctcttgct actctggcat gtac
246923DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 69aatctacctc tgagagctgc agg
237023DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
70tcagacacag ctgaagcaga ggc
237123DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 71atgccagtgt cagtagatgt cag
237224DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 72tcaagatcag ccagagtgca catg
247323DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
73tgctcttccg agcctctctg gag
237422DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 74atggactatc atatgcttac cg
227528DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 75gcttcagcaa gccgagtcct gcgtcgag
287628DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
76gctcctctgg tttccctttc gctttcaa
287722DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 77gtaatacgac tcactatagg gc
227819DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 78actatagggc acgcgtggt
197923DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
79tcagaccctt ttagtcagtg tgg
238023DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 80ttgcttgtac tgggtctctc tgg
238123DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 81cagctgcttt ttgcttgtac tgg
238223DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
82ctgacatcga gcttgctaca agg
238323DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 83ccgcctagca tttcatcaca tgg
238423DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 84cggagagaga agtattagag tgg
238523DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
85agtaccagtt gagcaagaga agg
238623DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 86gatatccact gacctttgga tgg
238723DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 87gattggcaga actacacacc agg
238823DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
88cacaaggcta cttccctgat tgg
238923DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 89ctgtggatct accacacaca agg
239023DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 90tgggagctct ctggctaact agg
239123DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
91ggttagacca gatctgagcc tgg
239223DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 92tgctacaagg gactttccgc tgg
239323DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 93agagagaagt attagagtgg agg
239423DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
94ttacaccctg tgagcctgca tgg
239523DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 95aaggtagaag aagccaatga agg
239623DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 96atcagatatc cactgacctt tgg
239723DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
97gacaagatat ccttgatctg tgg
239823DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 98gcccgtctgt tgtgtgactc tgg
239923DNAArtificial SequenceDescription of Artificial
Sequence Synthetic oligonucleotide 99atctgagcct gggagctctc tgg
2310023DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
100ctttccgctg gggactttcc agg
2310123DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 101cagaactaca caccagggcc agg
2310223DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 102cctgcatggg
atggatgacc cgg
2310323DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 103ccctgtgagc ctgcatggga tgg
2310423DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 104ctttccaggg
aggcgtggcc tgg
2310523DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 105ggggactttc cagggaggcg tgg
2310623DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 106ccgctgggga
ctttccaggg agg
2310723DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 107catggcccga gagctgcatc cgg
2310823DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 108gcctgggcgg
gactggggag tgg
2310923DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 109aggcgtggcc tgggcgggac tgg
2311023DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 110gcgtggcctg
ggcgggactg ggg
2311123DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 111ccagggaggc gtggcctggg cgg
2311223DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 112tgtggtagat
ccacagatca agg
2311323DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 113ggtgtgtagt tctgccaatc agg
2311423DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 114gtcagtggat
atctgatccc tgg
2311523DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 115tagcaccatc caaaggtcag tgg
2311623DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 116tagcttgtag
caccatccaa agg
2311723DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 117tctaccttct cttgctcaac tgg
2311823DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 118cactctaata
cttctctctc cgg
2311923DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 119ccatgtgatg aaatgctagg cgg
2312023DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 120gggccatgtg
atgaaatgct agg
2312123DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 121cagcagttct tgaagtactc cgg
2312223DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 122ctgcttatat
gcagcatctg agg
2312323DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 123cacactactt gaagcactca agg
2312423DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 124taccagagtc
acacaacaga cgg
2312523DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 125acactgacta aaagggtctg agg
2312623DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 126caaggatatc
ttgtcttcgt tgg
2312723DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 127cagggaagta gccttgtgtg tgg
2312823DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 128gcgggtgttc
tctccttcat tgg
2312923DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 129tagttagcca gagagctccc agg
2313023DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 130ctttattgag
gcttaagcag tgg
2313123DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 131actcaaggca agctttattg agg
2313223DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 132ggatatctga
tccctggccc tgg
2313323DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 133ggctcacagg gtgtaacaag cgg
2313423DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 134tccatcccat
gcaggctcac agg
2313523DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 135agtactccgg atgcagctct cgg
2313623DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 136agagctccca
ggctcagatc tgg
2313723DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 137gattttccac actgactaaa agg
2313823DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 138ccgggtcatc
catcccatgc agg
2313923DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 139cctccctgga aagtccccag cgg
2314023DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 140gccactcccc
agtcccgccc agg
2314123DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 141ccgcccaggc cacgcctccc tgg
2314223DNAHuman immunodeficiency virus 1
142atcagatatc cactgacctt tgg
2314322DNAHuman immunodeficiency virus 1 143tcagatatcc actgaccttt gg
2214422DNAHuman immunodeficiency
virus 1 144tcagatatcc actgaccttt gg
2214521DNAHuman immunodeficiency virus 1 145cagatatcca ctgacctttg
g 2114621DNAHuman
immunodeficiency virus 1 146cagatatcca ctgacctttg g
2114720DNAHuman immunodeficiency virus 1
147agatatccac tgacctttgg
2014820DNAHuman immunodeficiency virus 1 148agatatccac tgacctttgg
2014919DNAHuman immunodeficiency
virus 1 149gatatccact gacctttgg
1915019DNAHuman immunodeficiency virus 1 150gatatccact gacctttgg
1915118DNAHuman
immunodeficiency virus 1 151atatccactg acctttgg
1815218DNAHuman immunodeficiency virus 1
152atatccactg acctttgg
1815317DNAHuman immunodeficiency virus 1 153tatccactga ccttggg
1715417DNAHuman immunodeficiency
virus 1 154tatccactga cctttgg
1715517DNAHuman immunodeficiency virus 1 155tatccactga cctttgg
1715617DNAHuman
immunodeficiency virus 1 156tatccactga ccttaag
1715717DNAHuman immunodeficiency virus 1
157tatccactga ccttgag
1715816DNAHuman immunodeficiency virus 1 158atccactgac cttagg
1615916DNAHuman immunodeficiency
virus 1 159atccactgac cttagg
1616016DNAHuman immunodeficiency virus 1 160atccactgac cttggg
1616116DNAHuman
immunodeficiency virus 1 161atccactgac cttggg
1616216DNAHuman immunodeficiency virus 1
162atccactgac cttggg
1616316DNAHuman immunodeficiency virus 1 163atccactgac cttggg
1616416DNAHuman immunodeficiency
virus 1 164atccactgac ctttgg
1616516DNAHuman immunodeficiency virus 1 165atccactgac ctttgg
1616616DNAHuman
immunodeficiency virus 1 166atccactgac ctttgg
1616716DNAHuman immunodeficiency virus 1
167atccactgac cttaag
1616816DNAHuman immunodeficiency virus 1 168atccactgac cttaag
1616916DNAHuman immunodeficiency
virus 1 169atccactgac cttcag
1617016DNAHuman immunodeficiency virus 1 170atccactgac cttcag
1617116DNAHuman
immunodeficiency virus 1 171atccactgac cttgag
1617216DNAHuman immunodeficiency virus 1
172atccactgac cttgag
1617315DNAHuman immunodeficiency virus 1 173tccactgacc ttagg
1517415DNAHuman immunodeficiency
virus 1 174tccactgacc ttagg
1517515DNAHuman immunodeficiency virus 1 175tccactgacc ttagg
1517615DNAHuman
immunodeficiency virus 1 176tccactgacc ttagg
1517715DNAHuman immunodeficiency virus 1
177tccactgacc ttagg
1517815DNAHuman immunodeficiency virus 1 178tccactgacc ttagg
1517915DNAHuman immunodeficiency
virus 1 179tccactgacc ttggg
1518015DNAHuman immunodeficiency virus 1 180tccactgacc ttggg
1518115DNAHuman
immunodeficiency virus 1 181tccactgacc ttggg
1518215DNAHuman immunodeficiency virus 1
182tccactgacc ttggg
1518315DNAHuman immunodeficiency virus 1 183tccactgacc ttggg
1518415DNAHuman immunodeficiency
virus 1 184tccactgacc ttggg
1518515DNAHuman immunodeficiency virus 1 185tccactgacc ttggg
1518615DNAHuman
immunodeficiency virus 1 186tccactgacc ttggg
1518715DNAHuman immunodeficiency virus 1
187tccactgacc tttgg
1518815DNAHuman immunodeficiency virus 1 188tccactgacc tttgg
1518915DNAHuman immunodeficiency
virus 1 189tccactgacc tttgg
1519015DNAHuman immunodeficiency virus 1 190tccactgacc tttgg
1519115DNAHuman
immunodeficiency virus 1 191tccactgacc tttgg
1519215DNAHuman immunodeficiency virus 1
192tccactgacc tttgg
1519315DNAHuman immunodeficiency virus 1 193tccactgacc tttgg
1519415DNAHuman immunodeficiency
virus 1 194tccactgacc tttgg
1519515DNAHuman immunodeficiency virus 1 195tccactgacc tttgg
1519615DNAHuman
immunodeficiency virus 1 196tccactgacc ttaag
1519715DNAHuman immunodeficiency virus 1
197tccactgacc ttaag
1519815DNAHuman immunodeficiency virus 1 198tccactgacc ttaag
1519915DNAHuman immunodeficiency
virus 1 199tccactgacc ttaag
1520015DNAHuman immunodeficiency virus 1 200tccactgacc ttaag
1520115DNAHuman
immunodeficiency virus 1 201tccactgacc ttcag
1520215DNAHuman immunodeficiency virus 1
202tccactgacc ttcag
1520315DNAHuman immunodeficiency virus 1 203tccactgacc ttcag
1520415DNAHuman immunodeficiency
virus 1 204tccactgacc ttcag
1520515DNAHuman immunodeficiency virus 1 205tccactgacc ttcag
1520615DNAHuman
immunodeficiency virus 1 206tccactgacc ttcag
1520715DNAHuman immunodeficiency virus 1
207tccactgacc ttcag
1520815DNAHuman immunodeficiency virus 1 208tccactgacc ttcag
1520915DNAHuman immunodeficiency
virus 1 209tccactgacc ttcag
1521015DNAHuman immunodeficiency virus 1 210tccactgacc ttcag
1521115DNAHuman
immunodeficiency virus 1 211tccactgacc ttcag
1521215DNAHuman immunodeficiency virus 1
212tccactgacc ttcag
1521315DNAHuman immunodeficiency virus 1 213tccactgacc ttgag
1521415DNAHuman immunodeficiency
virus 1 214tccactgacc ttgag
1521515DNAHuman immunodeficiency virus 1 215tccactgacc ttgag
1521615DNAHuman
immunodeficiency virus 1 216tccactgacc ttgag
1521715DNAHuman immunodeficiency virus 1
217tccactgacc ttgag
1521815DNAHuman immunodeficiency virus 1 218tccactgacc ttgag
1521915DNAHuman immunodeficiency
virus 1 219tccactgacc ttgag
1522015DNAHuman immunodeficiency virus 1 220tccactgacc ttgag
1522115DNAHuman
immunodeficiency virus 1 221tccactgacc ttgag
1522215DNAHuman immunodeficiency virus 1
222tccactgacc tttag
1522315DNAHuman immunodeficiency virus 1 223tccactgacc tttag
1522415DNAHuman immunodeficiency
virus 1 224tccactgacc tttag
1522515DNAHuman immunodeficiency virus 1 225tccactgacc tttag
1522615DNAHuman
immunodeficiency virus 1 226tccactgacc tttag
1522723DNAHuman immunodeficiency virus 1
227cagcagttct tgaagtactc cgg
2322822DNAHuman immunodeficiency virus 1 228agcagttctt gaagtactcc gg
2222921DNAHuman immunodeficiency
virus 1 229gcagttcttg aagtactccg g
2123020DNAHuman immunodeficiency virus 1 230cagttcttga agtactccgg
2023119DNAHuman
immunodeficiency virus 1 231agttcttgaa gtactccgg
1923218DNAHuman immunodeficiency virus 1
232gttcttgaag tactccgg
1823317DNAHuman immunodeficiency virus 1 233ttcttgaagt actccgg
1723416DNAHuman immunodeficiency
virus 1 234tcttgaagta ctccgg
1623516DNAHuman immunodeficiency virus 1 235tcttgaagta ctctag
1623615DNAHuman
immunodeficiency virus 1 236cttgaagtac tcagg
1523715DNAHuman immunodeficiency virus 1
237cttgaagtac tcagg
1523815DNAHuman immunodeficiency virus 1 238cttgaagtac tcagg
1523915DNAHuman immunodeficiency
virus 1 239cttgaagtac tcagg
1524015DNAHuman immunodeficiency virus 1 240cttgaagtac tccgg
1524115DNAHuman
immunodeficiency virus 1 241cttgaagtac tctgg
1524215DNAHuman immunodeficiency virus 1
242cttgaagtac tcaag
1524315DNAHuman immunodeficiency virus 1 243cttgaagtac tcaag
1524415DNAHuman immunodeficiency
virus 1 244cttgaagtac tcaag
1524515DNAHuman immunodeficiency virus 1 245cttgaagtac tcaag
1524615DNAHuman
immunodeficiency virus 1 246cttgaagtac tcaag
1524715DNAHuman immunodeficiency virus 1
247cttgaagtac tccag
1524815DNAHuman immunodeficiency virus 1 248cttgaagtac tccag
1524915DNAHuman immunodeficiency
virus 1 249cttgaagtac tccag
1525015DNAHuman immunodeficiency virus 1 250cttgaagtac tccag
1525115DNAHuman
immunodeficiency virus 1 251cttgaagtac tctag
1525215DNAHuman immunodeficiency virus 1
252cttgaagtac tctag
1525323DNAHuman immunodeficiency virus 1 253atcagatatc cactgacctt tgg
2325422DNAHuman immunodeficiency
virus 1 254tcagatatcc actgaccttt gg
2225522DNAHuman immunodeficiency virus 1 255tcagatatcc actgaccttt
gg 2225621DNAHuman
immunodeficiency virus 1 256cagatatcca ctgacctttg g
2125721DNAHuman immunodeficiency virus 1
257cagatatcca ctgacctttg g
2125820DNAHuman immunodeficiency virus 1 258agatatccac tgacctttgg
2025920DNAHuman immunodeficiency
virus 1 259agatatccac tgacctttgg
2026019DNAHuman immunodeficiency virus 1 260gatatccact gacctttgg
1926119DNAHuman
immunodeficiency virus 1 261gatatccact gacctttgg
1926218DNAHuman immunodeficiency virus 1
262atatccactg acctttgg
1826318DNAHuman immunodeficiency virus 1 263atatccactg acctttgg
1826417DNAHuman immunodeficiency
virus 1 264tatccactga ccttggg
1726517DNAHuman immunodeficiency virus 1 265tatccactga cctttgg
1726617DNAHuman
immunodeficiency virus 1 266tatccactga cctttgg
1726717DNAHuman immunodeficiency virus 1
267tatccactga ccttaag
1726817DNAHuman immunodeficiency virus 1 268tatccactga ccttgag
1726916DNAHuman immunodeficiency
virus 1 269atccactgac cttagg
1627016DNAHuman immunodeficiency virus 1 270atccactgac cttagg
1627116DNAHuman
immunodeficiency virus 1 271atccactgac cttggg
1627216DNAHuman immunodeficiency virus 1
272atccactgac cttggg
1627316DNAHuman immunodeficiency virus 1 273atccactgac cttggg
1627416DNAHuman immunodeficiency
virus 1 274atccactgac cttggg
1627516DNAHuman immunodeficiency virus 1 275atccactgac ctttgg
1627616DNAHuman
immunodeficiency virus 1 276atccactgac ctttgg
1627716DNAHuman immunodeficiency virus 1
277atccactgac ctttgg
1627816DNAHuman immunodeficiency virus 1 278atccactgac cttaag
1627916DNAHuman immunodeficiency
virus 1 279atccactgac cttaag
1628016DNAHuman immunodeficiency virus 1 280atccactgac cttcag
1628116DNAHuman
immunodeficiency virus 1 281atccactgac cttcag
1628216DNAHuman immunodeficiency virus 1
282atccactgac cttgag
1628316DNAHuman immunodeficiency virus 1 283atccactgac cttgag
1628415DNAHuman immunodeficiency
virus 1 284tccactgacc ttagg
1528515DNAHuman immunodeficiency virus 1 285tccactgacc ttagg
1528615DNAHuman
immunodeficiency virus 1 286tccactgacc ttagg
1528715DNAHuman immunodeficiency virus 1
287tccactgacc ttagg
1528815DNAHuman immunodeficiency virus 1 288tccactgacc ttagg
1528915DNAHuman immunodeficiency
virus 1 289tccactgacc ttagg
1529015DNAHuman immunodeficiency virus 1 290tccactgacc ttggg
1529115DNAHuman
immunodeficiency virus 1 291tccactgacc ttggg
1529215DNAHuman immunodeficiency virus 1
292tccactgacc ttggg
1529315DNAHuman immunodeficiency virus 1 293tccactgacc ttggg
1529415DNAHuman immunodeficiency
virus 1 294tccactgacc ttggg
1529515DNAHuman immunodeficiency virus 1 295tccactgacc ttggg
1529615DNAHuman
immunodeficiency virus 1 296tccactgacc ttggg
1529715DNAHuman immunodeficiency virus 1
297tccactgacc ttggg
1529815DNAHuman immunodeficiency virus 1 298tccactgacc tttgg
1529915DNAHuman immunodeficiency
virus 1 299tccactgacc tttgg
1530015DNAHuman immunodeficiency virus 1 300tccactgacc tttgg
1530115DNAHuman
immunodeficiency virus 1 301tccactgacc tttgg
1530215DNAHuman immunodeficiency virus 1
302tccactgacc tttgg
1530315DNAHuman immunodeficiency virus 1 303tccactgacc tttgg
1530415DNAHuman immunodeficiency
virus 1 304tccactgacc tttgg
1530515DNAHuman immunodeficiency virus 1 305tccactgacc tttgg
1530615DNAHuman
immunodeficiency virus 1 306tccactgacc tttgg
1530715DNAHuman immunodeficiency virus 1
307tccactgacc ttaag
1530815DNAHuman immunodeficiency virus 1 308tccactgacc ttaag
1530915DNAHuman immunodeficiency
virus 1 309tccactgacc ttaag
1531015DNAHuman immunodeficiency virus 1 310tccactgacc ttaag
1531115DNAHuman
immunodeficiency virus 1 311tccactgacc ttaag
1531215DNAHuman immunodeficiency virus 1
312tccactgacc ttcag
1531315DNAHuman immunodeficiency virus 1 313tccactgacc ttcag
1531415DNAHuman immunodeficiency
virus 1 314tccactgacc ttcag
1531515DNAHuman immunodeficiency virus 1 315tccactgacc ttcag
1531615DNAHuman
immunodeficiency virus 1 316tccactgacc ttcag
1531715DNAHuman immunodeficiency virus 1
317tccactgacc ttcag
1531815DNAHuman immunodeficiency virus 1 318tccactgacc ttcag
1531915DNAHuman immunodeficiency
virus 1 319tccactgacc ttcag
1532015DNAHuman immunodeficiency virus 1 320tccactgacc ttcag
1532115DNAHuman
immunodeficiency virus 1 321tccactgacc ttcag
1532215DNAHuman immunodeficiency virus 1
322tccactgacc ttcag
1532315DNAHuman immunodeficiency virus 1 323tccactgacc ttcag
1532415DNAHuman immunodeficiency
virus 1 324tccactgacc ttgag
1532515DNAHuman immunodeficiency virus 1 325tccactgacc ttgag
1532615DNAHuman
immunodeficiency virus 1 326tccactgacc ttgag
1532715DNAHuman immunodeficiency virus 1
327tccactgacc ttgag
1532815DNAHuman immunodeficiency virus 1 328tccactgacc ttgag
1532915DNAHuman immunodeficiency
virus 1 329tccactgacc ttgag
1533015DNAHuman immunodeficiency virus 1 330tccactgacc ttgag
1533115DNAHuman
immunodeficiency virus 1 331tccactgacc ttgag
1533215DNAHuman immunodeficiency virus 1
332tccactgacc ttgag
1533315DNAHuman immunodeficiency virus 1 333tccactgacc tttag
1533415DNAHuman immunodeficiency
virus 1 334tccactgacc tttag
1533515DNAHuman immunodeficiency virus 1 335tccactgacc tttag
1533615DNAHuman
immunodeficiency virus 1 336tccactgacc tttag
1533715DNAHuman immunodeficiency virus 1
337tccactgacc tttag
1533823DNAHuman immunodeficiency virus 1 338cagcagttct tgaagtactc cgg
2333922DNAHuman immunodeficiency
virus 1 339agcagttctt gaagtactcc gg
2234021DNAHuman immunodeficiency virus 1 340gcagttcttg aagtactccg
g 2134120DNAHuman
immunodeficiency virus 1 341cagttcttga agtactccgg
2034219DNAHuman immunodeficiency virus 1
342agttcttgaa gtactccgg
1934318DNAHuman immunodeficiency virus 1 343gttcttgaag tactccgg
1834417DNAHuman immunodeficiency
virus 1 344ttcttgaagt actccgg
1734516DNAHuman immunodeficiency virus 1 345tcttgaagta ctccgg
1634616DNAHuman
immunodeficiency virus 1 346tcttgaagta ctctag
1634715DNAHuman immunodeficiency virus 1
347cttgaagtac tcagg
1534815DNAHuman immunodeficiency virus 1 348cttgaagtac tcagg
1534915DNAHuman immunodeficiency
virus 1 349cttgaagtac tcagg
1535015DNAHuman immunodeficiency virus 1 350cttgaagtac tcagg
1535115DNAHuman
immunodeficiency virus 1 351cttgaagtac tccgg
1535215DNAHuman immunodeficiency virus 1
352cttgaagtac tctgg
1535315DNAHuman immunodeficiency virus 1 353cttgaagtac tcaag
1535415DNAHuman immunodeficiency
virus 1 354cttgaagtac tcaag
1535515DNAHuman immunodeficiency virus 1 355cttgaagtac tcaag
1535615DNAHuman
immunodeficiency virus 1 356cttgaagtac tcaag
1535715DNAHuman immunodeficiency virus 1
357cttgaagtac tcaag
1535815DNAHuman immunodeficiency virus 1 358cttgaagtac tccag
1535915DNAHuman immunodeficiency
virus 1 359cttgaagtac tccag
1536015DNAHuman immunodeficiency virus 1 360cttgaagtac tccag
1536115DNAHuman
immunodeficiency virus 1 361cttgaagtac tccag
1536215DNAHuman immunodeficiency virus 1
362cttgaagtac tctag
1536315DNAHuman immunodeficiency virus 1 363cttgaagtac tctag
1536423DNAHuman immunodeficiency
virus 1 364gatctgtgga tctaccacac aca
2336526DNAHuman immunodeficiency virus 1 365gatctgtgga tctaccacac
acaagg 2636620DNAHuman
immunodeficiency virus 1 366gattggcaga actacacacc
2036723DNAHuman immunodeficiency virus 1
367gattggcaga actacacacc agg
2336827DNAHuman immunodeficiency virus 1 368gccagggatc agatatccac tgacctt
2736930DNAHuman immunodeficiency
virus 1 369gccagggatc agatatccac tgacctttgg
3037030DNAHuman immunodeficiency virus 1 370gagtacttca agaactgctg
acatcgagct 3037133DNAHuman
immunodeficiency virus 1 371ccggagtact tcaagaactg ctgacatcga gct
3337220DNAHuman immunodeficiency virus 1
372gcgtggcctg ggcgggactg
2037323DNAHuman immunodeficiency virus 1 373gcgtggcctg ggcgggactg ggg
2337422DNAHuman immunodeficiency
virus 1 374tcagatgctg catataagca gc
2237525DNAHuman immunodeficiency virus 1 375ccctcagatg ctgcatataa
gcagc 25376634DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
376tggaagggct aattcactcc caacgaagac aagatatcct tgatctgtgg atctaccaca
60cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc agatatccac
120tgacctttgg atggtgctac aagctagtac cagttgagca agagaaggta gaagaagcca
180atgaaggaga gaacacccgc ttgttacacc ctgtgagcct gcatgggatg gatgacccgg
240agagagaagt attagagtgg aggtttgaca gccgcctagc atttcatcac atggcccgag
300agctgcatcc ggagtacttc aagaactgct gacatcgagc ttgctacaag ggactttccg
360ctggggactt tccagggagg cgtggcctgg gcgggactgg ggagtggcga gccctcagat
420gctgcatata agcagctgct ttttgcttgt actgggtctc tctggttaga ccagatctga
480gcctgggagc tctctggcta actagggaac ccactgctta agcctcaata aagcttgcct
540tgagtgcttc aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta gagatccctc
600agaccctttt agtcagtgtg gaaaatctct agca
634377453DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 377tggaagggct aattcactcc caacgaagac
aagatatcct tgatctgtgg atctaccaca 60cacaaggcta cttccctgat tggcagaact
acacaccagg gccagggatc agatatccac 120tgacctttgg atggtgctac aagctagtac
cagttgagca agagaaggta gaagaagcca 180atgaaggaga gaacacccgc ttgttacacc
ctgtgagcct gcatgggatg gatgacccgg 240agagagaagt attagagtgg aggtttgaca
gccgcctagc atttcatcac atggcccgag 300agctgcatcc ggagtacttc aagaactgct
gacatcgagc ttgctacaag ggactttccg 360ctggggactt tccagggagg cgtggcctgg
gcgggactgg ggagtggcga gccctcagat 420gctgcatata agcagctgct ttttgcttgt
act 45337897DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
378gggtctctct ggttagacca gatctgagcc tgggagctct ctggctaact agggaaccca
60ctgcttaagc ctcaataaag cttgccttga gtgcttc
9737984DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 379aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta
gagatccctc agaccctttt 60agtcagtgtg gaaaatctct agca
84380818DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 380tggaagggat
ttattacagt gcaagaagac atagaatctt agacatatac ttagaaaagg 60aagaaggcat
cataccagat tggcaggatt acacctcagg accaggaatt agatacccaa 120agacatttgg
ctggctatgg aaattagtcc ctgtaaatgt atcagatgag gcacaggagg 180atgaggagca
ttatttaatg catccagctc aaacttccca gtgggatgac ccttggggag 240aggttctagc
atggaagttt gatccaactc tggcctacac ttatgaggca tatgttagat 300acccagaaga
gtttggaagc aagtcaggcc tgtcagagga agaggttaga agaaggctaa 360ccgcaagagg
ccttcttaac atggctgaca agaaggaaac tcgctgaaac agcagggact 420ttccacaagg
ggatgttacg gggaggtact ggggaggagc cggtcgggaa cgcccacttt 480cttgatgtat
aaatatcact gcatttcgct ctgtattcag tcgctctgcg gagaggctgg 540cagattgagc
cctgggaggt tctctccagc actagcaggt agagcctggg tgttccctgc 600tagactctca
ccagcacttg gccggtgctg ggcagagtga ctccacgctt gcttgcttaa 660agccctcttc
aataaagctg ccattttaga agtaagctag tgtgtgttcc catctctcct 720agccgccgcc
tggtcaactc ggtactcaat aataagaaga ccctggtctg ttaggaccct 780ttctgctttg
ggaaaccgaa gcaggaaaat ccctagca
818381517DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 381tggaagggat ttattacagt gcaagaagac
atagaatctt agacatatac ttagaaaagg 60aagaaggcat cataccagat tggcaggatt
acacctcagg accaggaatt agatacccaa 120agacatttgg ctggctatgg aaattagtcc
ctgtaaatgt atcagatgag gcacaggagg 180atgaggagca ttatttaatg catccagctc
aaacttccca gtgggatgac ccttggggag 240aggttctagc atggaagttt gatccaactc
tggcctacac ttatgaggca tatgttagat 300acccagaaga gtttggaagc aagtcaggcc
tgtcagagga agaggttaga agaaggctaa 360ccgcaagagg ccttcttaac atggctgaca
agaaggaaac tcgctgaaac agcagggact 420ttccacaagg ggatgttacg gggaggtact
ggggaggagc cggtcgggaa cgcccacttt 480cttgatgtat aaatatcact gcatttcgct
ctgtatt 517382176DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
382cagtcgctct gcggagaggc tggcagattg agccctggga ggttctctcc agcactagca
60ggtagagcct gggtgttccc tgctagactc tcaccagcac ttggccggtg ctgggcagag
120tgactccacg cttgcttgct taaagccctc ttcaataaag ctgccatttt agaagt
176383125DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 383aagctagtgt gtgttcccat ctctcctagc
cgccgcctgg tcaactcggt actcaataat 60aagaagaccc tggtctgtta ggaccctttc
tgctttggga aaccgaagca ggaaaatccc 120tagca
12538414825DNAHuman immunodeficiency
virus 1 384tggaagggct aatttggtcc caaaaaagac aagagatcct tgatctgtgg
atctaccaca 60cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc
agatatccac 120tgacctttgg atggtgcttc aagttagtac cagttgaacc agagcaagta
gaagaggcca 180atgaaggaga gaacaacagc ttgttacacc ctatgagcca gcatgggatg
gaggacccgg 240agggagaagt attagtgtgg aagtttgaca gcctcctagc atttcgtcac
atggcccgag 300agctgcatcc ggagtactac aaagactgct gacatcgagc tttctacaag
ggactttccg 360ctggggactt tccagggagg tgtggcctgg gcgggactgg ggagtggcga
gccctcagat 420gctacatata agcagctgct ttttgcctgt actgggtctc tctggttaga
ccagatctga 480gcctgggagc tctctggcta actagggaac ccactgctta agcctcaata
aagcttgcct 540tgagtgctca aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta
gagatccctc 600agaccctttt agtcagtgtg gaaaatctct agcagtggcg cccgaacagg
gacttgaaag 660cgaaagtaaa gccagaggag atctctcgac gcaggactcg gcttgctgaa
gcgcgcacgg 720caagaggcga ggggcggcga ctggtgagta cgccaaaaat tttgactagc
ggaggctaga 780aggagagaga tgggtgcgag agcgtcggta ttaagcgggg gagaattaga
taaatgggaa 840aaaattcggt taaggccagg gggaaagaaa caatataaac taaaacatat
agtatgggca 900agcagggagc tagaacgatt cgcagttaat cctggccttt tagagacatc
agaaggctgt 960agacaaatac tgggacagct acaaccatcc cttcagacag gatcagaaga
acttagatca 1020ttatataata caatagcagt cctctattgt gtgcatcaaa ggatagatgt
aaaagacacc 1080aaggaagcct tagataagat agaggaagag caaaacaaaa gtaagaaaaa
ggcacagcaa 1140gcagcagctg acacaggaaa caacagccag gtcagccaaa attaccctat
agtgcagaac 1200ctccaggggc aaatggtaca tcaggccata tcacctagaa ctttaaatgc
atgggtaaaa 1260gtagtagaag agaaggcttt cagcccagaa gtaataccca tgttttcagc
attatcagaa 1320ggagccaccc cacaagattt aaataccatg ctaaacacag tggggggaca
tcaagcagcc 1380atgcaaatgt taaaagagac catcaatgag gaagctgcag aatgggatag
attgcatcca 1440gtgcatgcag ggcctattgc accaggccag atgagagaac caaggggaag
tgacatagca 1500ggaactacta gtacccttca ggaacaaata ggatggatga cacataatcc
acctatccca 1560gtaggagaaa tctataaaag atggataatc ctgggattaa ataaaatagt
aagaatgtat 1620agccctacca gcattctgga cataagacaa ggaccaaagg aaccctttag
agactatgta 1680gaccgattct ataaaactct aagagccgag caagcttcac aagaggtaaa
aaattggatg 1740acagaaacct tgttggtcca aaatgcgaac ccagattgta agactatttt
aaaagcattg 1800ggaccaggag cgacactaga agaaatgatg acagcatgtc agggagtggg
gggacccggc 1860cataaagcaa gagttttggc tgaagcaatg agccaagtaa caaatccagc
taccataatg 1920atacagaaag gcaattttag gaaccaaaga aagactgtta agtgtttcaa
ttgtggcaaa 1980gaagggcaca tagccaaaaa ttgcagggcc cctaggaaaa agggctgttg
gaaatgtgga 2040aaggaaggac accaaatgaa agattgtact gagagacagg ctaatttttt
agggaagatc 2100tggccttccc acaagggaag gccagggaat tttcttcaga gcagaccaga
gccaacagcc 2160ccaccagaag agagcttcag gtttggggaa gagacaacaa ctccctctca
gaagcaggag 2220ccgatagaca aggaactgta tcctttagct tccctcagat cactctttgg
cagcgacccc 2280tcgtcacaat aaagataggg gggcaattaa aggaagctct attagataca
ggagcagatg 2340atacagtatt agaagaaatg aatttgccag gaagatggaa accaaaaatg
atagggggaa 2400ttggaggttt tatcaaagta agacagtatg atcagatact catagaaatc
tgcggacata 2460aagctatagg tacagtatta gtaggaccta cacctgtcaa cataattgga
agaaatctgt 2520tgactcagat tggctgcact ttaaattttc ccattagtcc tattgagact
gtaccagtaa 2580aattaaagcc aggaatggat ggcccaaaag ttaaacaatg gccattgaca
gaagaaaaaa 2640taaaagcatt agtagaaatt tgtacagaaa tggaaaagga aggaaaaatt
tcaaaaattg 2700ggcctgaaaa tccatacaat actccagtat ttgccataaa gaaaaaagac
agtactaaat 2760ggagaaaatt agtagatttc agagaactta ataagagaac tcaagatttc
tgggaagttc 2820aattaggaat accacatcct gcagggttaa aacagaaaaa atcagtaaca
gtactggatg 2880tgggcgatgc atatttttca gttcccttag ataaagactt caggaagtat
actgcattta 2940ccatacctag tataaacaat gagacaccag ggattagata tcagtacaat
gtgcttccac 3000agggatggaa aggatcacca gcaatattcc agtgtagcat gacaaaaatc
ttagagcctt 3060ttagaaaaca aaatccagac atagtcatct atcaatacat ggatgatttg
tatgtaggat 3120ctgacttaga aatagggcag catagaacaa aaatagagga actgagacaa
catctgttga 3180ggtggggatt taccacacca gacaaaaaac atcagaaaga acctccattc
ctttggatgg 3240gttatgaact ccatcctgat aaatggacag tacagcctat agtgctgcca
gaaaaggaca 3300gctggactgt caatgacata cagaaattag tgggaaaatt gaattgggca
agtcagattt 3360atgcagggat taaagtaagg caattatgta aacttcttag gggaaccaaa
gcactaacag 3420aagtagtacc actaacagaa gaagcagagc tagaactggc agaaaacagg
gagattctaa 3480aagaaccggt acatggagtg tattatgacc catcaaaaga cttaatagca
gaaatacaga 3540agcaggggca aggccaatgg acatatcaaa tttatcaaga gccatttaaa
aatctgaaaa 3600caggaaagta tgcaagaatg aagggtgccc acactaatga tgtgaaacaa
ttaacagagg 3660cagtacaaaa aatagccaca gaaagcatag taatatgggg aaagactcct
aaatttaaat 3720tacccataca aaaggaaaca tgggaagcat ggtggacaga gtattggcaa
gccacctgga 3780ttcctgagtg ggagtttgtc aatacccctc ccttagtgaa gttatggtac
cagttagaga 3840aagaacccat aataggagca gaaactttct atgtagatgg ggcagccaat
agggaaacta 3900aattaggaaa agcaggatat gtaactgaca gaggaagaca aaaagttgtc
cccctaacgg 3960acacaacaaa tcagaagact gagttacaag caattcatct agctttgcag
gattcgggat 4020tagaagtaaa catagtgaca gactcacaat atgcattggg aatcattcaa
gcacaaccag 4080ataagagtga atcagagtta gtcagtcaaa taatagagca gttaataaaa
aaggaaaaag 4140tctacctggc atgggtacca gcacacaaag gaattggagg aaatgaacaa
gtagataaat 4200tggtcagtgc tggaatcagg aaagtactat ttttagatgg aatagataag
gcccaagaag 4260aacatgagaa atatcacagt aattggagag caatggctag tgattttaac
ctaccacctg 4320tagtagcaaa agaaatagta gccagctgtg ataaatgtca gctaaaaggg
gaagccatgc 4380atggacaagt agactgtagc ccaggaatat ggcagctaga ttgtacacat
ttagaaggaa 4440aagttatctt ggtagcagtt catgtagcca gtggatatat agaagcagaa
gtaattccag 4500cagagacagg gcaagaaaca gcatacttcc tcttaaaatt agcaggaaga
tggccagtaa 4560aaacagtaca tacagacaat ggcagcaatt tcaccagtac tacagttaag
gccgcctgtt 4620ggtgggcggg gatcaagcag gaatttggca ttccctacaa tccccaaagt
caaggagtaa 4680tagaatctat gaataaagaa ttaaagaaaa ttataggaca ggtaagagat
caggctgaac 4740atcttaagac agcagtacaa atggcagtat tcatccacaa ttttaaaaga
aaagggggga 4800ttggggggta cagtgcaggg gaaagaatag tagacataat agcaacagac
atacaaacta 4860aagaattaca aaaacaaatt acaaaaattc aaaattttcg ggtttattac
agggacagca 4920gagatccagt ttggaaagga ccagcaaagc tcctctggaa aggtgaaggg
gcagtagtaa 4980tacaagataa tagtgacata aaagtagtgc caagaagaaa agcaaagatc
atcagggatt 5040atggaaaaca gatggcaggt gatgattgtg tggcaagtag acaggatgag
gattaacaca 5100tggaaaagat tagtaaaaca ccatatgtat atttcaagga aagctaagga
ctggttttat 5160agacatcact atgaaagtac taatccaaaa ataagttcag aagtacacat
cccactaggg 5220gatgctaaat tagtaataac aacatattgg ggtctgcata caggagaaag
agactggcat 5280ttgggtcagg gagtctccat agaatggagg aaaaagagat atagcacaca
agtagaccct 5340gacctagcag accaactaat tcatctgcac tattttgatt gtttttcaga
atctgctata 5400agaaatacca tattaggacg tatagttagt cctaggtgtg aatatcaagc
aggacataac 5460aaggtaggat ctctacagta cttggcacta gcagcattaa taaaaccaaa
acagataaag 5520ccacctttgc ctagtgttag gaaactgaca gaggacagat ggaacaagcc
ccagaagacc 5580aagggccaca gagggagcca tacaatgaat ggacactaga gcttttagag
gaacttaaga 5640gtgaagctgt tagacatttt cctaggatat ggctccataa cttaggacaa
catatctatg 5700aaacttacgg ggatacttgg gcaggagtgg aagccataat aagaattctg
caacaactgc 5760tgtttatcca tttcagaatt gggtgtcgac atagcagaat aggcgttact
cgacagagga 5820gagcaagaaa tggagccagt agatcctaga ctagagccct ggaagcatcc
aggaagtcag 5880cctaaaactg cttgtaccaa ttgctattgt aaaaagtgtt gctttcattg
ccaagtttgt 5940ttcatgacaa aagccttagg catctcctat ggcaggaaga agcggagaca
gcgacgaaga 6000gctcatcaga acagtcagac tcatcaagct tctctatcaa agcagtaagt
agtacatgta 6060atgcaaccta taatagtagc aatagtagca ttagtagtag caataataat
agcaatagtt 6120gtgtggtcca tagtaatcat agaatatagg aaaatattaa gacaaagaaa
aatagacagg 6180ttaattgata gactaataga aagagcagaa gacagtggca atgagagtga
aggagaagta 6240tcagcacttg tggagatggg ggtggaaatg gggcaccatg ctccttggga
tattgatgat 6300ctgtagtgct acagaaaaat tgtgggtcac agtctattat ggggtacctg
tgtggaagga 6360agcaaccacc actctatttt gtgcatcaga tgctaaagca tatgatacag
aggtacataa 6420tgtttgggcc acacatgcct gtgtacccac agaccccaac ccacaagaag
tagtattggt 6480aaatgtgaca gaaaatttta acatgtggaa aaatgacatg gtagaacaga
tgcatgagga 6540tataatcagt ttatgggatc aaagcctaaa gccatgtgta aaattaaccc
cactctgtgt 6600tagtttaaag tgcactgatt tgaagaatga tactaatacc aatagtagta
gcgggagaat 6660gataatggag aaaggagaga taaaaaactg ctctttcaat atcagcacaa
gcataagaga 6720taaggtgcag aaagaatatg cattctttta taaacttgat atagtaccaa
tagataatac 6780cagctatagg ttgataagtt gtaacacctc agtcattaca caggcctgtc
caaaggtatc 6840ctttgagcca attcccatac attattgtgc cccggctggt tttgcgattc
taaaatgtaa 6900taataagacg ttcaatggaa caggaccatg tacaaatgtc agcacagtac
aatgtacaca 6960tggaatcagg ccagtagtat caactcaact gctgttaaat ggcagtctag
cagaagaaga 7020tgtagtaatt agatctgcca atttcacaga caatgctaaa accataatag
tacagctgaa 7080cacatctgta gaaattaatt gtacaagacc caacaacaat acaagaaaaa
gtatccgtat 7140ccagagggga ccagggagag catttgttac aataggaaaa ataggaaata
tgagacaagc 7200acattgtaac attagtagag caaaatggaa tgccacttta aaacagatag
ctagcaaatt 7260aagagaacaa tttggaaata ataaaacaat aatctttaag caatcctcag
gaggggaccc 7320agaaattgta acgcacagtt ttaattgtgg aggggaattt ttctactgta
attcaacaca 7380actgtttaat agtacttggt ttaatagtac ttggagtact gaagggtcaa
ataacactga 7440aggaagtgac acaatcacac tcccatgcag aataaaacaa tttataaaca
tgtggcagga 7500agtaggaaaa gcaatgtatg cccctcccat cagtggacaa attagatgtt
catcaaatat 7560tactgggctg ctattaacaa gagatggtgg taataacaac aatgggtccg
agatcttcag 7620acctggagga ggcgatatga gggacaattg gagaagtgaa ttatataaat
ataaagtagt 7680aaaaattgaa ccattaggag tagcacccac caaggcaaag agaagagtgg
tgcagagaga 7740aaaaagagca gtgggaatag gagctttgtt ccttgggttc ttgggagcag
caggaagcac 7800tatgggcgca gcgtcaatga cgctgacggt acaggccaga caattattgt
ctgatatagt 7860gcagcagcag aacaatttgc tgagggctat tgaggcgcaa cagcatctgt
tgcaactcac 7920agtctggggc atcaaacagc tccaggcaag aatcctggct gtggaaagat
acctaaagga 7980tcaacagctc ctggggattt ggggttgctc tggaaaactc atttgcacca
ctgctgtgcc 8040ttggaatgct agttggagta ataaatctct ggaacagatt tggaataaca
tgacctggat 8100ggagtgggac agagaaatta acaattacac aagcttaata cactccttaa
ttgaagaatc 8160gcaaaaccag caagaaaaga atgaacaaga attattggaa ttagataaat
gggcaagttt 8220gtggaattgg tttaacataa caaattggct gtggtatata aaattattca
taatgatagt 8280aggaggcttg gtaggtttaa gaatagtttt tgctgtactt tctatagtga
atagagttag 8340gcagggatat tcaccattat cgtttcagac ccacctccca atcccgaggg
gacccgacag 8400gcccgaagga atagaagaag aaggtggaga gagagacaga gacagatcca
ttcgattagt 8460gaacggatcc ttagcactta tctgggacga tctgcggagc ctgtgcctct
tcagctacca 8520ccgcttgaga gacttactct tgattgtaac gaggattgtg gaacttctgg
gacgcagggg 8580gtgggaagcc ctcaaatatt ggtggaatct cctacagtat tggagtcagg
aactaaagaa 8640tagtgctgtt aacttgctca atgccacagc catagcagta gctgagggga
cagatagggt 8700tatagaagta ttacaagcag cttatagagc tattcgccac atacctagaa
gaataagaca 8760gggcttggaa aggattttgc tataagatgg gtggcaagtg gtcaaaaagt
agtgtgattg 8820gatggcctgc tgtaagggaa agaatgagac gagctgagcc agcagcagat
ggggtgggag 8880cagtatctcg agacctagaa aaacatggag caatcacaag tagcaataca
gcagctaaca 8940atgctgcttg tgcctggcta gaagcacaag aggaggaaga ggtgggtttt
ccagtcacac 9000ctcaggtacc tttaagacca atgacttaca aggcagctgt agatcttagc
cactttttaa 9060aagaaaaggg gggactggaa gggctaattc actcccaaag aagacaagat
atccttgatc 9120tgtggatcta ccacacacaa ggctacttcc ctgattggca gaactacaca
ccagggccag 9180gggtcagata tccactgacc tttggatggt gctacaagct agtaccagtt
gagccagata 9240aggtagaaga ggccaataaa ggagagaaca ccagcttgtt acaccctgtg
agcctgcatg 9300gaatggatga ccctgagaga gaagtgttag agtggaggtt tgacagccgc
ctagcatttc 9360atcacgtggc ccgagagctg catccggagt acttcaagaa ctgctgacat
cgagcttgct 9420acaagggact ttccgctggg gactttccag ggaggcgtgg cctgggcggg
actggggagt 9480ggcgagccct cagatgctgc atataagcag ctgctttttg cctgtactgg
gtctctctgg 9540ttagaccaga tctgagcctg ggagctctct ggctaactag ggaacccact
gcttaagcct 9600caataaagct tgccttgagt gcttcaagta gtgtgtgccc gtctgttgtg
tgactctggt 9660aactagagat ccctcagacc cttttagtca gtgtggaaaa tctctagcac
ccaggaggta 9720gaggttgcag tgagccaaga tcgcgccact gcattccagc ctgggcaaga
aaacaagact 9780gtctaaaata ataataataa gttaagggta ttaaatatat ttatacatgg
aggtcataaa 9840aatatatata tttgggctgg gcgcagtggc tcacacctgc gcccggccct
ttgggaggcc 9900gaggcaggtg gatcacctga gtttgggagt tccagaccag cctgaccaac
atggagaaac 9960cccttctctg tgtattttta gtagatttta ttttatgtgt attttattca
caggtatttc 10020tggaaaactg aaactgtttt tcctctactc tgataccaca agaatcatca
gcacagagga 10080agacttctgt gatcaaatgt ggtgggagag ggaggttttc accagcacat
gagcagtcag 10140ttctgccgca gactcggcgg gtgtccttcg gttcagttcc aacaccgcct
gcctggagag 10200aggtcagacc acagggtgag ggctcagtcc ccaagacata aacacccaag
acataaacac 10260ccaacaggtc caccccgcct gctgcccagg cagagccgat tcaccaagac
gggaattagg 10320atagagaaag agtaagtcac acagagccgg ctgtgcggga gaacggagtt
ctattatgac 10380tcaaatcagt ctccccaagc attcggggat cagagttttt aaggataact
tagtgtgtag 10440ggggccagtg agttggagat gaaagcgtag ggagtcgaag gtgtcctttt
gcgccgagtc 10500agttcctggg tgggggccac aagatcggat gagccagttt atcaatccgg
gggtgccagc 10560tgatccatgg agtgcagggt ctgcaaaata tctcaagcac tgattgatct
taggttttac 10620aatagtgatg ttaccccagg aacaatttgg ggaaggtcag aatcttgtag
cctgtagctg 10680catgactcct aaaccataat ttcttttttg tttttttttt tttatttttg
agacagggtc 10740tcactctgtc acctaggctg gagtgcagtg gtgcaatcac agctcactgc
agcctcaacg 10800tcgtaagctc aagcgatcct cccacctcag cctgcctggt agctgagact
acaagcgacg 10860ccccagttaa tttttgtatt tttggtagag gcagcgtttt gccgtgtggc
cctggctggt 10920ctcgaactcc tgggctcaag tgatccagcc tcagcctccc aaagtgctgg
gacaaccggg 10980gccagtcact gcacctggcc ctaaaccata atttctaatc ttttggctaa
tttgttagtc 11040ctacaaaggc agtctagtcc ccaggcaaaa agggggtttg tttcgggaaa
gggctgttac 11100tgtctttgtt tcaaactata aactaagttc ctcctaaact tagttcggcc
tacacccagg 11160aatgaacaag gagagcttgg aggttagaag cacgatggaa ttggttaggt
cagatctctt 11220tcactgtctg agttataatt ttgcaatggt ggttcaaaga ctgcccgctt
ctgacaccag 11280tcgctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat
tgggcgctct 11340tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc ggctgcggcg
agcggtatca 11400gctcactcaa aggcggtaat acggttatcc acagaatcag gggataacgc
aggaaagaac 11460atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt
gctggcgttt 11520ttccataggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag
tcagaggtgg 11580cgaaacccga caggactata aagataccag gcgtttcccc ctggaagctc
cctcgtgcgc 11640tctcctgttc cgaccctgcc gcttaccgga tacctgtccg cctttctccc
ttcgggaagc 11700gtggcgcttt ctcatagctc acgctgtagg tatctcagtt cggtgtaggt
cgttcgctcc 11760aagctgggct gtgtgcacga accccccgtt cagcccgacc gctgcgcctt
atccggtaac 11820tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc
agccactggt 11880aacaggatta gcagagcgag gtatgtaggc ggtgctacag agttcttgaa
gtggtggcct 11940aactacggct acactagaag aacagtattt ggtatctgcg ctctgctgaa
gccagttacc 12000ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg
tagcggtggt 12060ttttttgttt gcaagcagca gattacgcgc agaaaaaaag gatctcaaga
agatcctttg 12120atcttttcta cggggtctga cgctcagtgg aacgaaaact cacgttaagg
gattttggtc 12180atgagattat caaaaaggat cttcacctag atccttttaa attaaaaatg
aagttttaaa 12240tcaatctaaa gtatatatga gtaaacttgg tctgacagtt accaatgctt
aatcagtgag 12300gcacctatct cagcgatctg tctatttcgt tcatccatag ttgcctgact
ccccgtcgtg 12360tagataacta cgatacggga gggcttacca tctggcccca gtgctgcaat
gataccgcga 12420gacccacgct caccggctcc agatttatca gcaataaacc agccagccgg
aagggccgag 12480cgcagaagtg gtcctgcaac tttatccgcc tccatccagt ctattaattg
ttgccgggaa 12540gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat
tgctacaggc 12600atcgtggtgt cacgctcgtc gtttggtatg gcttcattca gctccggttc
ccaacgatca 12660aggcgagtta catgatcccc catgttgtgc aaaaaagcgg ttagctcctt
cggtcctccg 12720atcgttgtca gaagtaagtt ggccgcagtg ttatcactca tggttatggc
agcactgcat 12780aattctctta ctgtcatgcc atccgtaaga tgcttttctg tgactggtga
gtactcaacc 12840aagtcattct gagaatagtg tatgcggcga ccgagttgct cttgcccggc
gtcaatacgg 12900gataataccg cgccacatag cagaacttta aaagtgctca tcattggaaa
acgttcttcg 12960gggcgaaaac tctcaaggat cttaccgctg ttgagatcca gttcgatgta
acccactcgt 13020gcacccaact gatcttcagc atcttttact ttcaccagcg tttctgggtg
agcaaaaaca 13080ggaaggcaaa atgccgcaaa aaagggaata agggcgacac ggaaatgttg
aatactcata 13140ctcttccttt ttcaatatta ttgaagcatt tatcagggtt attgtctcat
gagcggatac 13200atatttgaat gtatttagaa aaataaacaa ataggggttc cgcgcacatt
tccccgaaaa 13260gtgccacctg acgtctaaga aaccattatt atcatgacat taacctataa
aaataggcgt 13320atcacgaggc cctttcgtct cgcgcgtttc ggtgatgacg gtgaaaacct
ctgacacatg 13380cagctcccgg agacggtcac agcttgtctg taagcggatg ccgggagcag
acaagcccgt 13440cagggcgcgt cagcgggtgt tggcgggtgt cggggctggc ttaactatgc
ggcatcagag 13500cagattgtac tgagagtgca ccatatgcgg tgtgaaatac cgcacagatg
cgtaaggaga 13560aaataccgca tcaggcgcca ttcgccattc aggctgcgca actgttggga
agggcgatcg 13620gtgcgggcct cttcgctatt acgccagggg aggcagagat tgcagtaagc
tgagatcgca 13680gcactgcact ccagcctggg cgacagagta agactctgtc tcaaaaataa
aataaataaa 13740tcaatcagat attccaatct tttcctttat ttatttattt attttctatt
ttggaaacac 13800agtccttcct tattccagaa ttacacatat attctatttt tctttatatg
ctccagtttt 13860ttttagacct tcacctgaaa tgtgtgtata caaaatctag gccagtccag
cagagcctaa 13920aggtaaaaaa taaaataata aaaaataaat aaaatctagc tcactccttc
acatcaaaat 13980ggagatacag ctgttagcat taaataccaa ataacccatc ttgtcctcaa
taattttaag 14040cgcctctctc caccacatct aactcctgtc aaaggcatgt gccccttccg
ggcgctctgc 14100tgtgctgcca accaactggc atgtggactc tgcagggtcc ctaactgcca
agccccacag 14160tgtgccctga ggctgcccct tccttctagc ggctgccccc actcggcttt
gctttcccta 14220gtttcagtta cttgcgttca gccaaggtct gaaactaggt gcgcacagag
cggtaagact 14280gcgagagaaa gagaccagct ttacaggggg tttatcacag tgcaccctga
cagtcgtcag 14340cctcacaggg ggtttatcac attgcaccct gacagtcgtc agcctcacag
ggggtttatc 14400acagtgcacc cttacaatca ttccatttga ttcacaattt ttttagtctc
tactgtgcct 14460aacttgtaag ttaaatttga tcagaggtgt gttcccagag gggaaaacag
tatatacagg 14520gttcagtact atcgcatttc aggcctccac ctgggtcttg gaatgtgtcc
cccgaggggt 14580gatgactacc tcagttggat ctccacaggt cacagtgaca caagataacc
aagacacctc 14640ccaaggctac cacaatgggc cgccctccac gtgcacatgg ccggaggaac
tgccatgtcg 14700gaggtgcaag cacacctgcg catcagagtc cttggtgtgg agggagggac
cagcgcagct 14760tccagccatc cacctgatga acagaaccta gggaaagccc cagttctact
tacaccagga 14820aaggc
1482538510535DNASimian immunodeficiency virus 385gcatgcacat
tttaaaggct tttgctaaat atagccaaaa gtccttctac aaattttcta 60agagttctga
ttcaaagcag taacaggcct tgtctcatca tgaactttgg catttcatct 120acagctaagt
ttatatcata aatagttctt tacaggcagc accaacttat acccttatag 180catactttac
tgtgtgaaaa ttgcatcttt cattaagctt actgtaaatt tactggctgt 240cttccttgca
ggtttctgga agggatttat tacagtgcaa gaagacatag aatcttagac 300atatacttag
aaaaggaaga aggcatcata ccagattggc aggattacac ctcaggacca 360ggaattagat
acccaaagac atttggctgg ctatggaaat tagtccctgt aaatgtatca 420gatgaggcac
aggaggatga ggagcattat ttaatgcatc cagctcaaac ttcccagtgg 480gatgaccctt
ggggagaggt tctagcatgg aagtttgatc caactctggc ctacacttat 540gaggcatatg
ttagataccc agaagagttt ggaagcaagt caggcctgtc agaggaagag 600gttagaagaa
ggctaaccgc aagaggcctt cttaacatgg ctgacaagaa ggaaactcgc 660tgaaacagca
gggactttcc acaaggggat gttacgggga ggtactgggg aggagccggt 720cgggaacgcc
cactttcttg atgtataaat atcactgcat ttcgctctgt attcagtcgc 780tctgcggaga
ggctggcaga ttgagccctg ggaggttctc tccagcacta gcaggtagag 840cctgggtgtt
ccctgctaga ctctcaccag cacttggccg gtgctgggca gagtgactcc 900acgcttgctt
gcttaaagcc ctcttcaata aagctgccat tttagaagta agctagtgtg 960tgttcccatc
tctcctagcc gccgcctggt caactcggta ctcaataata agaagaccct 1020ggtctgttag
gaccctttct gctttgggaa accgaagcag gaaaatccct agcagattgg 1080cgcctgaaca
gggacttgaa ggagagtgag agactcctga gtacggctga gtgaaggcag 1140taagggcggc
aggaaccaac cacgacggag tgctcctata aaggcgcggg tcggtaccag 1200acggcgtgag
gagcgggaga ggaagaggcc tccggttgca ggtaagtgca acacaaaaaa 1260gaaatagctg
tcttttatcc aggaaggggt aataagatag agtgggagat gggcgtgaga 1320aactccgtct
tgtcagggaa gaaagcagat gaattagaaa aaattaggct acgacccaac 1380ggaaagaaaa
agtacatgtt gaagcatgta gtatgggcag caaatgaatt agatagattt 1440ggattagcag
aaagcctgtt ggagaacaaa gaaggatgtc aaaaaatact ttcggtctta 1500gctccattag
tgccaacagg ctcagaaaat ttaaaaagcc tttataatac tgtctgcgtc 1560atctggtgca
ttcacgcaga agagaaagtg aaacacactg aggaagcaaa acagatagtg 1620cagagacacc
tagtggtgga aacaggaaca acagaaacta tgccaaaaac aagtagacca 1680acagcaccat
ctagcggcag aggaggaaat tacccagtac aacaaatagg tggtaactat 1740gtccacctgc
cattaagccc gagaacatta aatgcctggg taaaattgat agaggaaaag 1800aaatttggag
cagaagtagt gccaggattt caggcactgt cagaaggttg caccccctat 1860gacattaatc
agatgttaaa ttgtgtggga gaccatcaag cggctatgca gattatcaga 1920gatattataa
acgaggaggc tgcagattgg gacttgcagc acccacaacc agctccacaa 1980caaggacaac
ttagggagcc gtcaggatca gatattgcag gaacaactag ttcagtagat 2040gaacaaatcc
agtggatgta cagacaacag aaccccatac cagtaggcaa catttacagg 2100agatggatcc
aactggggtt gcaaaaatgt gtcagaatgt ataacccaac aaacattcta 2160gatgtaaaac
aagggccaaa agagccattt cagagctatg tagacaggtt ctacaaaagt 2220ttaagagcag
aacagacaga tgcagcagta aagaattgga tgactcaaac actgctgatt 2280caaaatgcta
acccagattg caagctagtg ctgaaggggc tgggtgtgaa tcccacccta 2340gaagaaatgc
tgacggcttg tcaaggagta ggggggccgg gacagaaggc tagattaatg 2400gcagaagccc
tgaaagaggc cctcgcacca gtgccaatcc cttttgcagc agcccaacag 2460aggggaccaa
gaaagccaat taagtgttgg aattgtggga aagagggaca ctctgcaagg 2520caatgcagag
ccccaagaag acagggatgc tggaaatgtg gaaaaatgga ccatgttatg 2580gccaaatgcc
cagacagaca ggcgggtttt ttaggccttg gtccatgggg aaagaagccc 2640cgcaatttcc
ccatggctca agtgcatcag gggctgatgc caactgctcc cccagaggac 2700ccagctgtgg
atctgctaaa gaactacatg cagttgggca agcagcagag agaaaagcag 2760agagaaagca
gagagaagcc ttacaaggag gtgacagagg atttgctgca cctcaattct 2820ctctttggag
gagaccagta gtcactgctc atattgaagg acagcctgta gaagtattac 2880tggatacagg
ggctgatgat tctattgtaa caggaataga gttaggtcca cattataccc 2940caaaaatagt
aggaggaata ggaggtttta ttaatactaa agaatacaaa aatgtagaaa 3000tagaagtttt
aggcaaaagg attaaaggga caatcatgac aggggacacc ccgattaaca 3060tttttggtag
aaatttgcta acagctctgg ggatgtctct aaattttccc atagctaaag 3120tagagcctgt
aaaagtcgcc ttaaagccag gaaaggatgg accaaaattg aagcagtggc 3180cattatcaaa
agaaaagata gttgcattaa gagaaatctg tgaaaagatg gaaaaggatg 3240gtcagttgga
ggaagctccc ccgaccaatc catacaacac ccccacattt gctataaaga 3300aaaaggataa
gaacaaatgg agaatgctga tagattttag ggaactaaat agggtcactc 3360aggactttac
ggaagtccaa ttaggaatac cacaccctgc aggactagca aaaaggaaaa 3420gaattacagt
actggatata ggtgatgcat atttctccat acctctagat gaagaattta 3480ggcagtacac
tgcctttact ttaccatcag taaataatgc agagccagga aaacgataca 3540tttataaggt
tctgcctcag ggatggaagg ggtcaccagc catcttccaa tacactatga 3600gacatgtgct
agaacccttc aggaaggcaa atccagatgt gaccttagtc cagtatatgg 3660atgacatctt
aatagctagt gacaggacag acctggaaca tgacagggta gttttacagt 3720caaaggaact
cttgaatagc atagggtttt ctaccccaga agagaaattc caaaaagatc 3780ccccatttca
atggatgggg tacgaattgt ggccaacaaa atggaagttg caaaagatag 3840agttgccaca
aagagagacc tggacagtga atgatataca gaagttagta ggagtattaa 3900attgggcagc
tcaaatttat ccaggtataa aaaccaaaca tctctgtagg ttaattagag 3960gaaaaatgac
tctaacagag gaagttcagt ggactgagat ggcagaagca gaatatgagg 4020aaaataaaat
aattctcagt caggaacaag aaggatgtta ttaccaagaa ggcaagccat 4080tagaagccac
ggtaataaag agtcaggaca atcagtggtc ttataaaatt caccaagaag 4140acaaaatact
gaaagtagga aaatttgcaa agataaagaa tacacatacc aatggagtga 4200gactattagc
acatgtaata cagaaaatag gaaaggaagc aatagtgatc tggggacagg 4260tcccaaaatt
ccacttacca gttgagaagg atgtatggga acagtggtgg acagactatt 4320ggcaggtaac
ctggataccg gaatgggatt ttatctcaac accaccgcta gtaagattag 4380tcttcaatct
agtgaaggac cctatagagg gagaagaaac ctattataca gatggatcat 4440gtaataaaca
gtcaaaagaa gggaaagcag gatatatcac agataggggc aaagacaaag 4500taaaagtgtt
agaacagact actaatcaac aagcagaatt ggaagcattt ctcatggcat 4560tgacagactc
agggccaaag gcaaatatta tagtagattc acaatatgtt atgggaataa 4620taacaggatg
ccctacagaa tcagagagca ggctagttaa tcaaataata gaagaaatga 4680ttaaaaagtc
agaaatttat gtagcatggg taccagcaca caaaggtata ggaggaaacc 4740aagaaataga
ccacctagtt agtcaaggga ttagacaagt tctcttcttg gaaaagatag 4800agccagcaca
agaagaacat gataaatacc atagtaatgt aaaagaattg gtattcaaat 4860ttggattacc
cagaatagtg gccagacaga tagtagacac ctgtgataaa tgtcatcaga 4920aaggagaggc
tatacatggg caggcaaatt cagatctagg gacttggcaa atggattgta 4980cccatctaga
gggaaaaata atcatagttg cagtacatgt agctagtgga ttcatagaag 5040cagaggtaat
tccacaagag acaggaagac agacagcact atttctgtta aaattggcag 5100gcagatggcc
tattacacat ctacacacag ataatggtgc taactttgct tcgcaagaag 5160taaagatggt
tgcatggtgg gcagggatag agcacacctt tggggtacca tacaatccac 5220agagtcaggg
agtagtggaa gcaatgaatc accacctgaa aaatcaaata gatagaatca 5280gggaacaagc
aaattcagta gaaaccatag tattaatggc agttcattgc atgaatttta 5340aaagaagggg
aggaataggg gatatgactc cagcagaaag attaattaac atgatcacta 5400cagaacaaga
gatacaattt caacaatcaa aaaactcaaa atttaaaaat tttcgggtct 5460attacagaga
aggcagagat caactgtgga agggacccgg tgagctattg tggaaagggg 5520aaggagcagt
catcttaaag gtagggacag acattaaggt agtacccaga agaaaggcta 5580aaattatcaa
agattatgga ggaggaaaag aggtggatag cagttcccac atggaggata 5640ccggagaggc
tagagaggtg gcatagcctc ataaaatatc tgaaatataa aactaaagat 5700ctacaaaagg
tttgctatgt gccccatttt aaggtcggat gggcatggtg gacctgcagc 5760agagtaatct
tcccactaca ggaaggaagc catttagaag tacaagggta ttggcatttg 5820acaccagaaa
aagggtggct cagtacttat gcagtgagga taacctggta ctcaaagaac 5880ttttggacag
atgtaacacc aaactatgca gacattttac tgcatagcac ttatttccct 5940tgctttacag
cgggagaagt gagaagggcc atcaggggag aacaactgct gtcttgctgc 6000aggttcccga
gagctcataa gtaccaggta ccaagcctac agtacttagc actgaaagta 6060gtaagcgatg
tcagatccca gggagagaat cccacctgga aacagtggag aagagacaat 6120aggagaggcc
ttcgaatggc taaacagaac agtagaggag ataaacagag aggcggtaaa 6180ccacctacca
agggagctaa ttttccaggt ttggcaaagg tcttgggaat actggcatga 6240tgaacaaggg
atgtcaccaa gctatgtaaa atacagatac ttgtgtttaa tacaaaaggc 6300tttatttatg
cattgcaaga aaggctgtag atgtctaggg gaaggacatg gggcaggggg 6360atggagacca
ggacctcctc ctcctccccc tccaggacta gcataaatgg aagaaagacc 6420tccagaaaat
gaaggaccac aaagggaacc atgggatgaa tgggtagtgg aggttctgga 6480agaactgaaa
gaagaagctt taaaacattt tgatcctcgc ttgctaactg cacttggtaa 6540tcatatctat
aatagacatg gagacaccct tgagggagca ggagaactca ttagaatcct 6600ccaacgagcg
ctcttcatgc atttcagagg cggatgcatc cactccagaa tcggccaacc 6660tgggggagga
aatcctctct cagctatacc gccctctaga agcatgctat aacacatgct 6720attgtaaaaa
gtgttgctac cattgccagt tttgttttct taaaaaaggc ttggggatat 6780gttatgagca
atcacgaaag agaagaagaa ctccgaaaaa ggctaaggct aatacatctt 6840ctgcatcaaa
caagtaagta tgggatgtct tgggaatcag ctgcttatcg ccatcttgct 6900tttaagtgtc
tatgggatct attgtactct atatgtcaca gtcttttatg gtgtaccagc 6960ttggaggaat
gcgacaattc ccctcttttg tgcaaccaag aatagggata cttggggaac 7020aactcagtgc
ctaccagata atggtgatta ttcagaagtg gcccttaatg ttacagaaag 7080ctttgatgcc
tggaataata cagtcacaga acaggcaata gaggatgtat ggcaactctt 7140tgagacctca
ataaagcctt gtgtaaaatt atccccatta tgcattacta tgagatgcaa 7200taaaagtgag
acagatagat ggggattgac aaaatcaata acaacaacag catcaacaac 7260atcaacgaca
gcatcagcaa aagtagacat ggtcaatgag actagttctt gtatagccca 7320ggataattgc
acaggcttgg aacaagagca aatgataagc tgtaaattca acatgacagg 7380gttaaaaaga
gacaagaaaa aagagtacaa tgaaacttgg tactctgcag atttggtatg 7440tgaacaaggg
aataacactg gtaatgaaag tagatgttac atgaaccact gtaacacttc 7500tgttatccaa
gagtcttgtg acaaacatta ttgggatgct attagattta ggtattgtgc 7560acctccaggt
tatgctttgc ttagatgtaa tgacacaaat tattcaggct ttatgcctaa 7620atgttctaag
gtggtggtct cttcatgcac aaggatgatg gagacacaga cttctacttg 7680gtttggcttt
aatggaacta gagcagaaaa tagaacttat atttactggc atggtaggga 7740taataggact
ataattagtt taaataagta ttataatcta acaatgaaat gtagaagacc 7800aggaaataag
acagttttac cagtcaccat tatgtctgga ttggttttcc actcacaacc 7860aatcaatgat
aggccaaagc aggcatggtg ttggtttgga ggaaaatgga aggatgcaat 7920aaaagaggtg
aagcagacca ttgtcaaaca tcccaggtat actggaacta acaatactga 7980taaaatcaat
ttgacggctc ctggaggagg agatccggaa gttaccttca tgtggacaaa 8040ttgcagagga
gagttcctct actgtaaaat gaattggttt ctaaattggg tagaagatag 8100gaatacagct
aaccagaagc caaaggaaca gcataaaagg aattacgtgc catgtcatat 8160tagacaaata
atcaacactt ggcataaagt aggcaaaaat gtttatttgc ctccaagaga 8220gggagacctc
acgtgtaact ccacagtgac cagtctcata gcaaacatag attggattga 8280tggaaaccaa
actaatatca ccatgagtgc agaggtggca gaactgtatc gattggaatt 8340gggagattat
aaattagtag agatcactcc aattggcttg gcccccacag atgtgaagag 8400gtacactact
ggtggcacct caagaaataa aagaggggtc tttgtgctag ggttcttggg 8460ttttctcgca
acggcaggtt ctgcaatggg cgcggcgtcg ttgacgctga ccgctcagtc 8520ccgaacttta
ttggctggga tagtgcagca acagcaacag ctgttggacg tggtcaagag 8580acaacaagaa
ttgttgcgac tgaccgtctg gggaacaaag aacctccaga ctagggtcac 8640tgccatcgag
aagtacttaa aggaccaggc gcagctgaat gcttggggat gtgcgtttag 8700acaagtctgc
cacactactg taccatggcc aaatgcaagt ctaacaccaa agtggaacaa 8760tgagacttgg
caagagtggg agcgaaaggt tgacttcttg gaagaaaata taacagccct 8820cctagaggag
gcacaaattc aacaagagaa gaacatgtat gaattacaaa agttgaatag 8880ctgggatgtg
tttggcaatt ggtttgacct tgcttcttgg ataaagtata tacaatatgg 8940agtttatata
gttgtaggag taatactgtt aagaatagtg atctatatag tacaaatgct 9000agctaagtta
aggcaggggt ataggccagt gttctcttcc ccaccctctt atttccagca 9060gacccatatc
caacaggacc cggcactgcc aaccagagaa ggcaaagaaa gagacggtgg 9120agaaggcggt
ggcaacagct cctggccttg gcagatagaa tatattcatt tcctgatccg 9180ccaactgata
cgcctcttga cttggctatt cagcaactgc agaaccttgc tatcgagagt 9240ataccagatc
ctccaaccaa tactccagag gctctctgcg accctacaga ggattcgaga 9300agtcctcagg
actgaactga cctacctaca atatgggtgg agctatttcc atgaggcggt 9360ccaggccgtc
tggagatctg cgacagagac tcttgcgggc gcgtggggag acttatggga 9420gactcttagg
agaggtggaa gatggatact cgcaatcccc aggaggatta gacaagggct 9480tgagctcact
ctcttgtgag ggacagaaat acaatcaggg acagtatatg aatactccat 9540ggagaaaccc
agctgaagag agagaaaaat tagcatacag aaaacaaaat atggatgata 9600tagatgagta
agatgatgac ttggtagggg tatcagtgag gccaaaagtt cccctaagaa 9660caatgagtta
caaattggca atagacatgt ctcattttat aaaagaaaag gggggactgg 9720aagggattta
ttacagtgca agaagacata gaatcttaga catatactta gaaaaggaag 9780aaggcatcat
accagattgg caggattaca cctcaggacc aggaattaga tacccaaaga 9840catttggctg
gctatggaaa ttagtccctg taaatgtatc agatgaggca caggaggatg 9900aggagcatta
tttaatgcat ccagctcaaa cttcccagtg ggatgaccct tggggagagg 9960ttctagcatg
gaagtttgat ccaactctgg cctacactta tgaggcatat gttagatacc 10020cagaagagtt
tggaagcaag tcaggcctgt cagaggaaga ggttagaaga aggctaaccg 10080caagaggcct
tcttaacatg gctgacaaga aggaaactcg ctgaaacagc agggactttc 10140cacaagggga
tgttacgggg aggtactggg gaggagccgg tcgggaacgc ccactttctt 10200gatgtataaa
tatcactgca tttcgctctg tattcagtcg ctctgcggag aggctggcag 10260attgagccct
gggaggttct ctccagcact agcaggtaga gcctgggtgt tccctgctag 10320actctcacca
gcacttggcc ggtgctgggc agagtgactc cacgcttgct tgcttaaagc 10380cctcttcaat
aaagctgcca ttttagaagt aagctagtgt gtgttcccat ctctcctagc 10440cgccgcctgg
tcaactcggt actcaataat aagaagaccc tggtctgtta ggaccctttc 10500tgctttggga
aaccgaagca ggaaaatccc tagca
105353869713DNAHuman immunodeficiency virus 2 386agtcgctctg cggagaggct
ggcagattga gccctgggag gttctctcca gcactagcag 60gtagagcctg ggtgttccct
gctagactct caccggtgct tggccggcac tgggcagacg 120gctccacgct tgcttgctta
aaagacctct taataaagct gccagttaga agcaagttaa 180gtgtgtgttc ccatctctcc
tagtcgccgc ctggtcattc ggtgttcatc tgaataacaa 240gaccctggtc tgttaggacc
ctttctgctt tgggaaacca aagcaggaaa atccctagca 300ggttggcgcc cgaacaggga
cttagagaag actgaaaagc cttggaacac ggctgagtga 360aggcagtaag ggcggcagga
acaaaccacg acggagtgct cctagaaagg cgcaggccaa 420ggtaccaaag gcggcgtgtg
gagcgggagt aaagaggcct ccgggtgaag gtaagtacct 480acaccaaaaa attgtagcca
ggaagggctt gttatcctac ctttagacag gtagaagatt 540gtgggagatg ggcgcgagaa
actccgtctt gaaagggaaa aaagcagacg aattagaaac 600aattaggtta cggcccggcg
gaaagaaaaa atacaggcta aagcatattg tgtgggcagc 660gaatgaattg gacagattcg
gattagcaga gagcctgttg gagtcaaaag aaggttgcca 720aagaattctt acagttttag
gtccattagt accgacaggt tcagaaaatt taaaaagcct 780ttttaatact gtctgcgtca
tttggtgcat acacgcagaa gagaaagtga aagatactga 840aggagcaaaa caaatagtac
agagacatct agcggcagaa acaggaactg cagagaaaat 900gccaaataca agtagaccaa
cagcaccacc tagcgggaag ggaggaaact tccccgtaca 960acaagtaggc ggcaattata
cccatgtgcc gctgagtcct cgaaccctaa atgcttgggt 1020aaaattagta gaggaaaaga
agttcggggc agaggtagtg ccaggatttc aggcactctc 1080agaaggctgc acgccctatg
atatcaacca aatgcttaat tgtgtgggcg accatcaagc 1140agctatgcaa ataatcaggg
agatcgttaa tgaagaagca gcagattggg atgtgcaaca 1200tccaatacca ggtcccttac
cagcggggca gcttagagaa ccaagagggt ctgacatagc 1260agggacaaca agcacagtag
atgaacagat ccagtggatg tttaggccac aaaatcccgt 1320accagtggga aacatctata
ggagatggat ccagatagga ctgcagaagt gcgtcaggat 1380gtacaacccg accaacatcc
tagacataaa acaaggacca aaggaaccat tccaaagtta 1440tgtagataga ttctacaaaa
gcttgagggc agaacaaaca gatccagcag tgaagaattg 1500gatgacccag acactactag
tacagaatgc caacccagac tgtaaattag tactaaaagg 1560actagggatg aatcctacct
tagaagagat gctaaccgcc tgccaagggg taggtgggcc 1620aggccagaaa gctagactaa
tggcagaagc cttaaaagag gccttgacac cagcccctat 1680cccatttgca gcagcccagc
agaaaaggac aattaaatgc tggaattgtg gaaaggaagg 1740acactcggca agacaatgcc
gagcacctag aagacagggc tgctggaagt gtggtaaacc 1800aggacatgtc atagcaaatt
gcccagatag acaggtgggt tttttaggga tgggcccccg 1860gggaaagaag ccccgcaact
tccccgtggc ccaagtcccg caggggctaa caccaacagc 1920acccccagta gatccagcag
tggacctact ggagaattat atgcagcaag gaaaaagaca 1980aagagaacag agagagagac
catacaaaga agtgacagag gacttactgc acctcgagca 2040gggagaggca ccatgcagag
agacgacaga ggacttgctg cacctcaatt ctctcttttg 2100aaaagaccag tagtcacggc
atacgtcgag ggccagccag tagaagttct gctagacacg 2160ggggctgacg actcaatagt
agcagggata gagttaggga gcaattatag tccaaagata 2220gtaggaggaa tagggggatt
cataaatacc aaggaatata aaaatgtaaa aatagaagtt 2280ttaggtaaaa aggtaagggc
caccataatg acaggtgaca ccccaatcaa catttttggc 2340agaaatattc tgacagcctt
aggcatgtca ttaaatttac cagtcgccaa aatagaacca 2400ataaaaataa tgttaaagcc
aggaaaagat ggaccaaaac tgaggcaatg gcccttaaca 2460aaagaaaaaa tagaggcact
aaaagaaatc tgtgaaaaaa tggaaagaga aggccagcta 2520gaggaagcgc ctccaactaa
tccttataac acccccacat ttgcaatcaa gaaaaaggac 2580aaaaataaat ggaggatgct
aatagatttt agagaactaa acaaggtaac tcaagatttc 2640acagaaattc agttaggaat
tccacaccca gcaggattgg ccaagaaaaa aagaattact 2700gtactagata taggggatgc
ttacttttcc ataccactac atgaagactt tagacagtat 2760actgcattta ctttaccatc
aataaacaat gcagaaccag gaaaaagata tatatataag 2820gtcctgcctc agggatggaa
ggggtcacca gcaatttttc aatacacaat gaggcaggtc 2880ttagaaccat tcagaaaagc
aaacctagat gtcattatca ttcagtacat ggatgatatc 2940ctaatagcta gtgacaggac
agatctagaa catgacaagg tggtcctgca gctaaaggaa 3000cttctaaata acctaggatt
ttctacccca gatgagaagt tccaaaagga ccctccatac 3060cactggatgg gctatgaact
gtggccaact aagtggaagc tgcagaagat acagttgccc 3120caaaaagatg tatggacagt
aaatgacatc caaaagttag tgggtgtctt aaactgggca 3180gcacaaatct acccagggat
aaaaaccaga cacttatgta agctaattag aggaaaaatg 3240acactcacag aagaagtaca
gtggacagaa ctagcagagg cggagttaga agagaacaag 3300attatcttaa gccaggagca
agagggacac tattaccaag aagaaaaaga gttagaagca 3360acagtccaaa aggatcaaga
caatcagtgg acatataaag tacaccaggg agagaaaatt 3420ctaaaagtag ggaaatatgc
aaagataaaa aatacccata ccaatggggt cagattgtta 3480gcacaagtag ttcaaaagat
aggaaaagaa gcactaatca tttggggacg aataccaaaa 3540tttcacctac cagtagaaag
agagacatgg gaacagtggt gggatgacta ctggcaggtg 3600acatggatcc ctgactggga
cttcgtatct accccgccgc tggtcagact agcatttaac 3660ctggtaaaag atcctatacc
aagaacagag actttctaca cagatggatc ctgcaatagg 3720caatcaaagg aaggaaaagc
aggatatgta acagatagag ggagagacaa ggtaaggatg 3780ctagaacaaa ctaccaatca
gcaagcagaa ttagaagcct ttgcaatggc actaacagac 3840tcaggtccaa aagccaatat
tatagtagac tcacagtatg taatggggat agtagcaggc 3900cagccaacag aatcagagag
tagaatagta aatcaaatca tagaggagat gataaaaaag 3960gaagcaatct atgttgcatg
ggtcccagcc cataaaggca taggagggaa tcaggaggta 4020gatcagttag taagtcaggg
catcagacaa gtgttgttcc tggaaaaaat agagcccgct 4080caggaagaac atgagaaata
ccatagcaat gtaaaagaac tatcccataa atttggattg 4140cccaaattag tagcaagaca
aatagtaaac acatgtgccc aatgtcaaca gaaaggggag 4200gctatacatg ggcaagtaga
tgcagaatta ggcacttggc aaatggactg cacacactta 4260gaaggaaaga tcattatagt
agcagtacat gttgcaagtg gattcataga agcagaagtc 4320atcccacagg aatcaggaag
gcagacagca ctcttcctat taaaactggc cagtaggtgg 4380ccaataacac acttgcacac
agataatggt gccaacttca cttcacagga agtaaaaatg 4440gtagcatggt gggtaggtat
agaacaatct ttcggagtac cttacaatcc acaaagccaa 4500ggagtagtag aagcaatgaa
tcaccaccta aaaaatcaga taagtagaat tagagaacag 4560gcaaatacag tagaaacaat
agtactgatg gcaacacact gcatgaattt taaaagaagg 4620ggaggaatag gggatatgac
cccagcagaa agactaatca atatgatcac cacagaacaa 4680gaaatacaat tcctccacgc
caaaaattca aaattaaaaa attttcgggt ctatttcaga 4740gaaggcagag atcagctgtg
gaaaggaccc ggggaactac tgtggaaggg agacggagca 4800gtcatagtca aggtagggac
agacataaaa gtagtaccaa ggaggaaagc caagatcatc 4860aaagactatg gaggaaggca
agaactggat agtggttccc acttggaggg tgccagggag 4920gatggagaaa tggcatagcc
ttgtcaaata tctaaaatac agaacaaaag atctagaaga 4980cgtgtgctat gttccccacc
ataaagtagg atgggcatgg tggacttgca gcagggtaat 5040attcccatta aagggaaaca
gtcatctaga aatacaggca tattggaacc taacgccaga 5100aaaaggatgg ctctcctctt
attcagtaag aatgacttgg tatacggaaa ggttctggac 5160agatgttacc ccagactgtg
cagactccct aatacatagc acttatttct cttgctttac 5220agcaggtgaa gtaagaagag
ccatcagagg ggaaaagtta ttgtcctgct gcaattatcc 5280ccaagcccat agagcccagg
taccgtcact ccaatttttg gccttagtgg tagtgcagca 5340aaatgacaga ccccagagaa
acggtacccc caggaaacag tggcgaagag actatcgaag 5400aggccttcaa ttggctagac
aggacggtag aagccataaa cagagaggca gtgaatcacc 5460tgccccgaga gcttattttc
caggtgtggc agaggtcctg gagatactgg catgatgaac 5520aagggatgtc acaaagttac
acaaagtata gatatttgtg cttaatacag aaggctatgt 5580tcacacattg taagagaggg
tgcacttgcc tggggggagg acatgggcca ggagggtgga 5640gaccaggacc tccccctcct
ccccctccag gtctagtcta atgactgaag caccaacaga 5700gtttcccccg gaggatggga
ccccaccgag ggaaccaggg gatgagtgga taatagaaat 5760cctgagaaaa ataaagaaag
aagctttaaa gcattttgac cctcgcttgc taactgctct 5820tggcaactat atccatacta
gacatggaga cacccttgaa ggcgccagag agctcattaa 5880tgtcctacaa cgagccctct
tcatgcactt cagagcggga tgtaggctct caagaattgg 5940ccaaacaggg ggaagaactc
ctttcccagc tacatcgacc cctagaacca tgcaataaca 6000aatgctattg taaaggatgc
tgcttccact gccagctgtg ttttttaaac aaggggctcg 6060ggatatgtta tgaccggaag
ggcagacgaa gaagaactcc gaagaaaact aaggctcatt 6120catcttctgc atcagacaag
tgagtatgat gggtggtaga aatcagctgc ttgttgccat 6180tttgctaact agtacttgct
tgatatattg caccaattat gtgactgttt tctatggcat 6240acccgcgtgg agaaatgcat
ccattcccct cttttgtgca accaagaata gggatacttg 6300gggaaccata cagtgcttgc
cagacaatga tgattatcag gagataactt tgaatgtgac 6360agaggctttc gatgcatggg
ataatacagt aacagaacaa gcaatagaag atgtctggaa 6420tctatttgag acatcaataa
aaccatgtgt caaattaacg cctttatgtg tagcaatgag 6480atgtaacaac acagatgcaa
ggaacacaac cacacccaca acagcatccc cgcgtacaat 6540aaaacccgtg acagagataa
gtgagaattc ctcatgcata cgcgcaaaca actgctcagg 6600attgggagaa gaagaggtgg
tcaattgtca attcaatatg acaggattag agagagataa 6660gaaaaagcaa tatagtgaga
catggtactc gaaggatgta gtttgtgaag gaaatggcac 6720cacagataca tgttacatga
accattgcaa cacatcggtc atcacagagt catgtgacaa 6780gcactattgg gatgctatga
ggtttagata ctgtgcacca ccaggttttg ccctactaag 6840atgcaatgat accaattatt
caggctttgc gcccaattgc tctaaggtag tagctgctac 6900atgcaccaga atgatggaaa
cgcaaacttc tacatggttt ggctttaatg gcactagagc 6960agaaaataga acatttatct
attggcatgg tagggataac agaactatca tcagcttaaa 7020caaatattat aatctcacta
tacattgtaa gaggccagga aataagacag tggtaccaat 7080aacacttatg tcagggttaa
ggtttcactc ccagccggtc atcaataaaa gacccagaca 7140agcatggtgt tggttcaaag
gtgaatggaa gggagccatg caggaggtga aggaaaccct 7200tgcaaaacat cccaggtata
aaggaaccaa tgaaacaaag aatattaact ttacagcacc 7260aggaaagggc tcagacccag
aggtggcata catgtggact aactgcagag gagaatttct 7320ctactgcaac atgacttggt
tcctcaattg gatagaaaat aagacacacc gcaattatgt 7380accgtgccat ataagacaaa
taattaacac ctggcataag gtagggaaaa atgtatattt 7440gcctcccagg gaaggggagt
tgacctgcaa ctcaacagta actagcataa ttgctaacat 7500tgatgcaaat ggaaataata
caaatattac ctttagtgca gaggtggcag aactataccg 7560attagagttg ggagattata
aattggtaga aataacacca attggcttcg cacctacagc 7620agaaaaaaga tactcctcta
ctccaatgag gaacaagaga ggtgtgttcg tgctagggtt 7680cttgggtttt ctcgcaacag
caggctctgc aatgggcgcg gcgtccttaa cgctgtcggc 7740tcagtctcgg actttactgg
ccgggatagt gcagcaacag caacagctgt tggacgtggt 7800caagagacaa caggaaatgt
tgcgactgac cgtctgggga acaaaaaatc tccaggcaag 7860agtcactgct atcgagaagt
acttaaagga ccaggcgcaa ctaaattcat ggggatgtgc 7920atttagacaa gtctgccaca
ctactgtacc atgggtaaat gataccttaa cgcctgagtg 7980gaacaatatg acgtggcaag
aatgggaagg caaaatccgc gacctggagg caaatatcag 8040tcaacaatta gaacaagcac
aaattcagca agagaagaat atgtatgaac tacaaaagtt 8100aaatagctgg gatgtttttg
gtaactggtt tgacttaacc tcctggatca agtatattca 8160atatggagtt tatataataa
taggaatagt agttcttaga atagtaatat atatagtaca 8220gatgttaagt agacttagaa
agggctatag gcctgttttc tcttcccccc ccggttacct 8280ccaacagatc catatccaca
aggactggga acagccagcc agagaagaaa cagaagaaga 8340cgttggaaac aacgttggag
acagctcgtg gccttggccg ataagatata tacatttcct 8400gatccaccag ctgattcgcc
tcttggccgg actatacaac atctgcagga acttactatc 8460caggatctcc ctgaccctcc
gaccagtttt ccagagtctt cagagggcac tgacagcaat 8520cagagactgg ctaagaactg
acgcagccta cttgcagtat gggtgcgagt ggatccaagg 8580agcgttccag gccttcgcaa
gggctacgag agagactctt gcgggcacgt ggagagactt 8640gtggggggca ctgcagcgga
tcgggagggg aatacttgca gtcccaagaa gaatcaggca 8700gggagcagag atcgccctcc
tatgagggac agcggtatca gcagggagac tttatgaata 8760ccccatggag aaccccagca
aaagaagggg agaaagaatt gtacaagcaa caaaatagag 8820atgatgtaga ttcggatgat
gatgacctag taggggtctc tgtcacacca agagtaccac 8880taagagaatt gacacataga
ttagcaatag atgtgtcaca ttttataaaa gaaaaagggg 8940gactggaagg gatgtattac
agtgagagaa gacatagaat cttagacata taccttgaaa 9000aggaagaagg gataattgca
gattggcaga actatactca tgggccagga ataagatacc 9060caatgttctt tgggtggcta
tggaagctag taccagtaga tgtcacacga caggaggagg 9120acgatgggac tcactgttta
ctacacccag cacaaacaag caggtttgat gacccgcatg 9180gggaaacact gatatggaag
tttgacccca cgctggctca tgattacaag gcttttatcc 9240tgcacccaga ggaatttggg
cataagtcag gcctgccaga agaagactgg aaggcaagac 9300tgaaagcaag agggatacca
tttagttaga gacaggaaca gctatatttg gccagggcag 9360gaaataacta ctgaaaacag
ctgagactgc agggactttc cgaaggggct gtaaccaggg 9420gagggacatg ggaggagccg
gtggggaacg ccctcatact ttctgtataa agatacccgc 9480tgcttgcatt gtacttcagt
cgctctgcgg agaggctggc agattgagcc ctgggaggtt 9540ctctccagca ctagcaggta
gagcctgggt gttccctgct agactctcac cggtgcttgg 9600ccggcactgg gcagacggct
ccacgcttgc ttgcttaaaa gacctcttaa taaagctgcc 9660agttagaagc aagttaagtg
tgtgttccca tctctcctag tcgccgcctg gtc 971338711878DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
387gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt
60gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc
120atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag
180atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa
240aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg
300aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag
360ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg
420ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga
480tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc
540ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc
600acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga
660gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt
720cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg
780aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac
840atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga
900gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg
960gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc
1020tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt
1080tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt
1140ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga ttacgccaag
1200ctatttaggt gacactatag aatactcaag cttgggggga tcctctagag tcgacctgca
1260ggcatgctat ttgatgaatt aactacactt aaaataatac aattattatt aaattttttt
1320ttgatttatt tattaatttt taaacttaat catttgtatt tgggaggaat tatatatatc
1380tttataatta ttttattttt ttttattttt ttattttttt attattatta ttttttttta
1440tttttttttt ttactgtatc aaagaaaaac ctttaaaaaa aaaattataa tttccccatc
1500ttactatatt tttaatacat acgttttaag gaattaaatt agacaaaagc tatattatgc
1560tttacatata attagaattt ataaacgttt ggttattaga tatttcatgt ctcagtaaag
1620tctttcaata catatgtaaa aaaatatata tgaatacaca taagttgtta atatatttta
1680tatgcataaa tgtataaata tatatatata tatatatata tgtatgtatg tatatgtgtg
1740tatatgaaat tatttcaatg tttaattttt taaattttaa tttttttttt tttttttttt
1800tttattatgt atattgatct ttattattta aatattactt ttttcgtttt ttcttctttt
1860tattattttt tttttttttt atattttata caaatggtaa ttcaaataaa aggtataaat
1920ttatatttaa ttttctttta tggataaata aaagaaaaat ataaatatat aaaaatataa
1980aaatatatat atgtatattg gggtgatgat aaaatgaaag ataatatata tatatatata
2040tctttatttt tttttttttg tagaccccat tgtgagtaca taaatatatt atataactcg
2100ggagcatcag tcatggaatt cttatttctt tttctttttt gcctggccgg cctttttcgt
2160ggccgccggc cttttgtcgc ctcccagctg agacaggtcg atccgtgtct cgtacaggcc
2220ggtgatgctc tggtggatca gggtggcgtc cagcacctct ttggtgctgg tgtacctctt
2280ccggtcgatg gtggtgtcaa agtacttgaa ggcggcaggg gctcccagat tggtcagggt
2340aaacaggtgg atgatattct cggcctgctc tctgatgggc ttatcccggt gcttgttgta
2400ggcggacagc actttgtcca gattagcgtc ggccaggatc actctcttgg agaactcgct
2460gatctgctcg atgatctcgt ccaggtagtg cttgtgctgt tccacaaaca gctgtttctg
2520ctcattatcc tcgggggagc ccttcagctt ctcatagtgg ctggccaggt acaggaagtt
2580cacatatttg gagggcaggg ccagttcgtt tcccttctgc agttcgccgg cagaggccag
2640cattctcttc cggccgtttt ccagctcgaa cagggagtac ttaggcagct tgatgatcag
2700gtcctttttc acttctttgt agcccttggc ttccagaaag tcgatgggat tcttctcgaa
2760gctgcttctt tccatgatgg tgatccccag cagctctttc acactcttca gtttcttgga
2820cttgcccttt tccactttgg ccaccaccag cacagaatag gccacggtgg ggctgtcgaa
2880gccgccgtac ttcttagggt cccagtcctt ctttctggcg atcagcttat cgctgttcct
2940cttgggcagg atagactctt tgctgaagcc gcctgtctgc acctcggtct ttttcacgat
3000attcacttgg ggcatgctca gcactttccg cacggtggca aaatcccggc ccttatccca
3060cacgatctcc ccggtttcgc cgtttgtctc gatcagaggc cgcttccgga tctcgccgtt
3120ggccagggta atctcggtct tgaaaaagtt catgatgttg ctgtagaaga agtacttggc
3180ggtagccttg ccgatttcct gctcgctctt ggcgatcatc ttccgcacgt cgtacacctt
3240gtagtcgccg tacacgaact cgctttccag cttagggtac tttttgatca gggcggttcc
3300cacgacggcg ttcaggtagg cgtcgtgggc gtggtggtag ttgttgatct cgcgcacttt
3360gtaaaactgg aaatccttcc ggaaatcgga caccagcttg gacttcaggg tgatcacttt
3420cacttcccgg atcagcttgt cattctcgtc gtacttagtg ttcatccggg agtccaggat
3480ctgtgccacg tgctttgtga tctgccgggt ttccaccagc tgtctcttga tgaagccggc
3540cttatccagt tcgctcaggc cgcctctctc ggccttggtc agattgtcga actttctctg
3600ggtaatcagc ttggcgttca gcagctgccg ccagtagttc ttcatcttct tcacgacctc
3660ttcggagggc acgttgtcgc tcttgccccg gttcttgtcg cttctggtca gcaccttgtt
3720gtcgatggag tcgtccttca gaaagctctg aggcacgata tggtccacat cgtagtcgga
3780cagccggttg atgtccagtt cctggtccac gtacatatcc cgcccattct gcaggtagta
3840caggtacagc ttctcgttct gcagctgggt gttttccacg gggtgttctt tcaggatctg
3900gctgcccagc tctttgatgc cctcttcgat ccgcttcatt ctctcgcggc tgttcttctg
3960tcccttctgg gtggtctggt tctctctggc catttcgatc acgatgttct cgggcttgtg
4020ccggcccatc actttcacga gctcgtccac caccttcact gtctgcagga tgcccttctt
4080aatggcgggg ctgccggcca gattggcaat gtgctcgtgc aggctatcgc cctggccgga
4140cacctgggct ttctggatgt cctctttaaa ggtcaggctg tcgtcgtgga tcagctgcat
4200gaagtttctg ttggcgaagc cgtcggactt caggaaatcc aggattgtct tgccggactg
4260cttgtcccgg atgccgttga tcagcttccg gctcagcctg ccccagccgg tgtatctccg
4320ccgcttcagc tgcttcatca ctttgtcgtc gaacaggtgg gcataggttt tcagccgttc
4380ctcgatcatc tctctgtcct caaacagtgt cagggtcagc acgatatctt ccagaatgtc
4440ctcgttttcc tcattgtcca ggaagtcctt gtccttgata attttcagca gatcgtggta
4500tgtgcccagg gaggcgttga accgatcttc cacgccggag atttccacgg agtcgaagca
4560ctcgattttc ttgaagtagt cctctttcag ctgcttcacg gtcactttcc ggttggtctt
4620gaacagcagg tccacgatgg cctttttctg ctcgccgctc aggaaggcgg gctttctcat
4680tccctcggtc acgtatttca ctttggtcag ctcgttatac acggtgaagt actcgtacag
4740caggctgtgc ttgggcagca ccttctcgtt gggcaggttc ttatcgaagt tggtcatccg
4800ctcgatgaag ctctgggcgg aagcgccctt gtccaccact tcctcgaagt tccagggggt
4860gatggtttcc tcgctctttc tggtcatcca ggcgaatctg ctgtttcccc tggccagagg
4920gcccacgtag taggggatgc ggaaggtcag gatcttctcg atcttttccc ggttgtcctt
4980caggaatggg taaaaatctt cctgccgccg cagaatggcg tgcagctctc ccaggtggat
5040ctggtggggg atgctgccgt tgtcgaaggt ccgctgcttc cgcagcaggt cctctctgtt
5100cagcttcacg agcagttcct cggtgccgtc catcttttcc aggatgggct tgatgaactt
5160gtagaactct tcctggctgg ctccgccgtc aatgtagccg gcgtagccgt tcttgctctg
5220gtcgaagaaa atctctttgt acttctcagg cagctgctgc cgcacgagag ctttcagcag
5280ggtcaggtcc tggtggtgct cgtcgtatct cttgatcata gaggcgctca ggggggcctt
5340ggtgatctcg gtgttcactc tcaggatgtc gctcagcagg atggcgtcgg acaggttctt
5400ggcggccaga aacaggtcgg cgtactggtc gccgatctgg gccagcaggt tgtccaggtc
5460gtcgtcgtag gtgtccttgc tcagctgcag tttggcatcc tcggccaggt cgaagttgct
5520cttgaagttg ggggtcaggc ccaggctcag ggcaatcagg tttccgaaca ggccattctt
5580cttctcgccg ggcagctggg cgatcagatt ttccagccgt ctgctcttgc tcagtctggc
5640agacaggatg gccttggcgt ccacgccgct ggcgttgatg gggttttcct cgaacagctg
5700gttgtaggtc tgcaccagct ggatgaacag cttgtccacg tcgctgttgt cggggttcag
5760gtcgccctcg atcaggaagt ggccccggaa cttgatcatg tgggccaggg ccagatagat
5820cagccgcagg tcggccttgt cggtgctgtc caccagtttc tttctcaggt ggtagatggt
5880ggggtacttc tcgtggtagg ccacctcgtc cacgatgttg ccgaagatgg ggtgccgctc
5940gtgcttctta tcctcttcca ccaggaagga ctcttccagt ctgtggaaga agctgtcgtc
6000caccttggcc atctcgttgc tgaagatctc ttgcagatag cagatccggt tcttccgtct
6060ggtgtatctt cttctggcgg ttctcttcag ccgggtggcc tcggctgttt cgccgctgtc
6120gaacagcagg gctccgatca ggttcttctt gatgctgtgc cggtcggtgt tgcccagcac
6180cttgaatttc ttgctgggca ccttgtactc gtcggtgatc acggcccagc ccacagagtt
6240ggtgccgatg tccaggccga tgctgtactt cttgtcggct gctgggactc cgtggatacc
6300gaccttccgc ttcttctttg gggccatctt atcgtcatcg tctttgtaat caatatcatg
6360atccttgtag tctccgtcgt ggtccttata gtccattttt ctcgagggat cctgatatat
6420ttctattagg tatttattat tataaaatat aaatcttgaa tgataataaa taaaatatta
6480gttattcctt ttctagttta aaatatacat attataaata tatatatata tatatatatt
6540tttattgtga caagaatata taattataaa ttatattatt tatttttgta tttttttttt
6600tttttttttt tttttctttt tttgttttat ttttcttttt ttttataaat attatttttt
6660tcttttatca tgcacattgg aataatacat taatatatat atatatatta tattatacat
6720atattgaata atgtttataa aaaatgcata acttatatga atataatttt ttttaaatat
6780gacaaaaaga aaaaaaaaaa aaaccaaaaa aaattaaaat tgaaatgaaa tatataaata
6840tattatttat atatattata cattgtttaa tactactaca tgtatatata tatattatat
6900atatatatat atatcaattt tttcaaaaat aaattaatat aaaaagaggg gaaaaaaaaa
6960aaaaaaaaaa aaaaaagata attaagtaag catttaaaaa tatataaatt gataatatat
7020aaaattaatc acatataaaa gcttataaac actaggttag ctaattcgct tgtaagaggt
7080actctcgttt atgcaaaact atttgatata gcattttaac aagtacacat atatatatgt
7140aatatatata ctatatatat ctattgcatg tgtactaagc atgtgcatgg catccccttt
7200ttctcgtgtt taaaacagtt tgtatgataa aatataaagg atttgaaaaa gagaaaaaaa
7260tatatgatct catcctatat agcgccataa tttttatttg ggttgaataa aattttctac
7320taaatttagg tgtaagtaaa ataatggaat atatataagt acaataaaaa agtgcataaa
7380ttaaaaaatt tttataataa atattttttt taaaaaagtc aataataata ttaaatatat
7440ataacacagg attatatatg ttcactacaa ttttttatat tataatataa attcttttca
7500attttcattt tattttacat acactttcct tttttgtcac tatattttaa tattcacata
7560tttagtttaa atactggcta tttctttcta catttgctag taacaattgt gtagtgctta
7620aatatataca cacacctaaa acttacaaag tatcctagga ccatggccaa gcctttgtct
7680caagaagaat ccaccctcat tgaaagagca acggctacaa tcaacagcat ccccatctct
7740gaagactaca gcgtcgccag cgcagctctc tctagcgacg gccgcatctt cactggtgtc
7800aatgtatatc attttactgg gggaccttgt gcagaactcg tggtgctggg cactgctgct
7860gctgcggcag ctggcaacct gacttgtatc gtcgcgatcg gaaatgagaa caggggcatc
7920ttgagcccct gcggacggtg ccgacaggtg cttctcgatc tgcatcctgg gatcaaagcc
7980atagtgaagg acagtgatgg acagccgacg gcagttggga ttcgtgaatt gctgccctct
8040ggttatgtgt gggagggcta accgcgggta ccccattaaa tttatttaat aatagattaa
8100aaatattata aaaataaaaa cataaacaca gaaattacaa aaaaaataca tatgaatttt
8160ttttttgtaa tcttccttat aaatatagaa taatgaatca tataaaacat atcattattc
8220atttatttac atttaaaatt attgtttcag tatctttaat ttattatgta tatataaaaa
8280taacttacaa ttttattaat aaacaatata tgtttattaa ttcatgtttt gtaatttatg
8340ggatagcgat tttttttact gtctgtattt tcttttttaa ttatgtttta attgtattta
8400ttttattttt attattgttc tttttatagt attattttaa aacaaaatgt attttctaag
8460aacttataat aataataata taaattttaa taaaaattat atttatcttt tacaatatga
8520acataaagta caacattaat atatagcttt taatattttt attcctaatc atgtaaatct
8580taaatttttc tttttaaaca tatgttaaat atttatttct cattatatat aagaacatat
8640ttattacatc tagaggtacc gagctcgttt tcgacactgg atggcggcgt tagtatcgaa
8700tcgacagcag tatagcgacc agcattcaca tacgattgac gcatgatatt actttctgcg
8760cacttaactt cgcatctggg cagatgatgt cgaggcgaaa aaaaatataa atcacgctaa
8820catttgatta aaatagaaca actacaatat aaaaaaacta tacaaatgac aagttcttga
8880aaacaagaat ctttttattg tcagtactga ttagaaaaac tcatcgagca tcaaatgaaa
8940ctgcaattta ttcatatcag gattatcaat accatatttt tgaaaaagcc gtttctgtaa
9000tgaaggagaa aactcaccga ggcagttcca taggatggca agatcctggt atcggtctgc
9060gattccgact cgtccaacat caatacaacc tattaatttc ccctcgtcaa aaataaggtt
9120atcaagtgag aaatcaccat gagtgacgac tgaatccggt gagaatggca aaagcttatg
9180catttctttc cagacttgtt caacaggcca gccattacgc tcgtcatcaa aatcactcgc
9240atcaaccaaa ccgttattca ttcgtgattg cgcctgagcg agacgaaata cgcgatcgct
9300gttaaaagga caattacaaa caggaatcga atgcaaccgg cgcaggaaca ctgccagcgc
9360atcaacaata ttttcacctg aatcaggata ttcttctaat acctggaatg ctgttttgcc
9420ggggatcgca gtggtgagta accatgcatc atcaggagta cggataaaat gcttgatggt
9480cggaagaggc ataaattccg tcagccagtt tagtctgacc atctcatctg taacatcatt
9540ggcaacgcta cctttgccat gtttcagaaa caactctggc gcatcgggct tcccatacaa
9600tcgatagatt gtcgcacctg attgcccgac attatcgcga gcccatttat acccatataa
9660atcagcatcc atgttggaat ttaatcgcgg cctcgaaacg tgagtctttt ccttacccat
9720ggttgtttat gttcggatgt gatgtgagaa ctgtatccta gcaagatttt aaaaggaagt
9780atatgaaaga agaacctcag tggcaaatcc taacctttta tatttctcta caggggcgcg
9840gcgtggggac aattcaacgc gtctgtgagg ggagcgtttc cctgctcgca ggtctgcagc
9900gaggagccgt aatttttgct tcgcgccgtg cggccatcaa aatgtatgga tgcaaatgat
9960tatacatggg gatgtatggg ctaaatgtac gggcgacagt cacatcatgc ccctgagctg
10020cgcacgtcaa gactgtcaag gagggtattc tgggcctcca tgtcgctggc ctaacattag
10080taatgtaggt ctgactttca ctcatataag tcttatggta actaaactaa ggtcttacct
10140ttactgatat atgtcttact ttcactaact taggtattac ttttactaac ttaggtctta
10200aattcagtaa ctaaggtcat acttcgacta actaaggtct tacattcact gatataggtc
10260ttatgattac taacttaggt cctaatttga ctaacataag tcctaacatt agtaatgtag
10320gtcttaactt aactaactta ggtcttacct tcactaatat aggtcttaat attactgact
10380taagtaatta aggtactaac ttaggtcgta aggtaactaa tatataggtc ttaaggtaac
10440taatttaggt cttgacttaa taaatatagg tcctaacata aatagtatag gtcctaatat
10500aagtactata ggccttaact taaccaacat aggtcctaac ataagttata taggtcttaa
10560cgtaactaac ataagtcatt aaggtactaa gtttggtctt aatttaacaa taacatgtcg
10620ctggcctaac attagtaatg taggtctgac tttcactcat ataagtctta tggtaactaa
10680actaaggtct tacctttact gatatatgtc ttactttcac taacttaggt attactttta
10740ctaacttagg tcttaaattc agtaactaag gtcatacttc gactaactaa ggtcttacat
10800tcactgatat aggtcttatg attactaact taggtcctaa tttgactaac ataagtccta
10860acattagtaa tgtaggtctt aacttaacta acttaggtct taccttcact aatataggtc
10920ttaatattac tgacttaagt aattaaggta ctaacttagg tcgtaaggta actaatatat
10980aggtcttaag gtaactaatt taggtcttga cttaataaat ataggtccta acataaatag
11040tataggtcct aatataagta ctataggcct taacttaacc aacataggtc ctaacataag
11100ttatataggt cttaacgtaa ctaacataag tcattaaggt actaagtttg gtcttaattt
11160aacaataacc atgtcgctgg ccgggtggtc ttaatttaac aaatatagac catgtcgctg
11220gccgggtgac ccggcgggga cgaggcaagc taaacagatc ctcgtgatac gcctattttt
11280ataggttaat gtcatgataa taatggtttc ttaggacgga tcgcttgcct gtaacttaca
11340cgcgcctcgt atcttttaat gatggaataa tttgggaatt tactctgtgt ttatttattt
11400ttatgttttg tatttggatt ttagaaagta aataaagaag gtagaagagt tacggaatga
11460agaaaaaaaa ataaacaaag gtttaaaaaa tttcaacaaa aagcgtactt tacatatata
11520tttattagac aagaaaagca gattaaatag atatacattc gattaacgat aagtaaaatg
11580taaaatcaca ggattttcgt gtgtggtctt ctacacagac aagatgaaac aattcggcat
11640taatacctga gagcaggaag agcaagataa aaggtagtat ttgttggcga tccccctaga
11700gtcttttaca tcttcggaaa acaaaaacta ttttttcttt aatttctttt tttactttct
11760atttttaatt tatatattta tattaaaaaa tttaaattat aattattttt atagcacgtg
11820atgaaaagga cccaggtggc acttttcggg gaaatctcga cctgcagcgt acgaagct
1187838812044DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 388gcctcactga ttaagcattg gtaactgtca
gaccaagttt actcatatat actttagatt 60gatttaaaac ttcattttta atttaaaagg
atctaggtga agatcctttt tgataatctc 120atgaccaaaa tcccttaacg tgagttttcg
ttccactgag cgtcagaccc cgtagaaaag 180atcaaaggat cttcttgaga tccttttttt
ctgcgcgtaa tctgctgctt gcaaacaaaa 240aaaccaccgc taccagcggt ggtttgtttg
ccggatcaag agctaccaac tctttttccg 300aaggtaactg gcttcagcag agcgcagata
ccaaatactg ttcttctagt gtagccgtag 360ttaggccacc acttcaagaa ctctgtagca
ccgcctacat acctcgctct gctaatcctg 420ttaccagtgg ctgctgccag tggcgataag
tcgtgtctta ccgggttgga ctcaagacga 480tagttaccgg ataaggcgca gcggtcgggc
tgaacggggg gttcgtgcac acagcccagc 540ttggagcgaa cgacctacac cgaactgaga
tacctacagc gtgagctatg agaaagcgcc 600acgcttcccg aagggagaaa ggcggacagg
tatccggtaa gcggcagggt cggaacagga 660gagcgcacga gggagcttcc agggggaaac
gcctggtatc tttatagtcc tgtcgggttt 720cgccacctct gacttgagcg tcgatttttg
tgatgctcgt caggggggcg gagcctatgg 780aaaaacgcca gcaacgcggc ctttttacgg
ttcctggcct tttgctggcc ttttgctcac 840atgttctttc ctgcgttatc ccctgattct
gtggataacc gtattaccgc ctttgagtga 900gctgataccg ctcgccgcag ccgaacgacc
gagcgcagcg agtcagtgag cgaggaagcg 960gaagagcgcc caatacgcaa accgcctctc
cccgcgcgtt ggccgattca ttaatgcagc 1020tggcacgaca ggtttcccga ctggaaagcg
ggcagtgagc gcaacgcaat taatgtgagt 1080tagctcactc attaggcacc ccaggcttta
cactttatgc ttccggctcg tatgttgtgt 1140ggaattgtga gcggataaca atttcacaca
ggaaacagct atgaccatga ttacgccaag 1200ctatttaggt gacactatag aatactcaag
cttgggggga tcctctagag tcgactaata 1260cgactcacta taggaacata atctatagcg
gcgttttaga gctagaaata gcaagttaaa 1320ataaggctag tccgttatca acttgaaaaa
gtggcaccga gtcggtgcta gcataacccc 1380ttggggcctc taaacgggtc ttgaggggtt
ttttggtcga cctgcaggca tgctatttga 1440tgaattaact acacttaaaa taatacaatt
attattaaat ttttttttga tttatttatt 1500aatttttaaa cttaatcatt tgtatttggg
aggaattata tatatcttta taattatttt 1560attttttttt atttttttat ttttttatta
ttattatttt tttttatttt ttttttttac 1620tgtatcaaag aaaaaccttt aaaaaaaaaa
ttataatttc cccatcttac tatattttta 1680atacatacgt tttaaggaat taaattagac
aaaagctata ttatgcttta catataatta 1740gaatttataa acgtttggtt attagatatt
tcatgtctca gtaaagtctt tcaatacata 1800tgtaaaaaaa tatatatgaa tacacataag
ttgttaatat attttatatg cataaatgta 1860taaatatata tatatatata tatatatgta
tgtatgtata tgtgtgtata tgaaattatt 1920tcaatgttta attttttaaa ttttaatttt
tttttttttt ttttttttta ttatgtatat 1980tgatctttat tatttaaata ttactttttt
cgttttttct tctttttatt attttttttt 2040ttttttatat tttatacaaa tggtaattca
aataaaaggt ataaatttat atttaatttt 2100cttttatgga taaataaaag aaaaatataa
atatataaaa atataaaaat atatatatgt 2160atattggggt gatgataaaa tgaaagataa
tatatatata tatatatctt tatttttttt 2220tttttgtaga ccccattgtg agtacataaa
tatattatat aactcgggag catcagtcat 2280ggaattctta tttctttttc ttttttgcct
ggccggcctt tttcgtggcc gccggccttt 2340tgtcgcctcc cagctgagac aggtcgatcc
gtgtctcgta caggccggtg atgctctggt 2400ggatcagggt ggcgtccagc acctctttgg
tgctggtgta cctcttccgg tcgatggtgg 2460tgtcaaagta cttgaaggcg gcaggggctc
ccagattggt cagggtaaac aggtggatga 2520tattctcggc ctgctctctg atgggcttat
cccggtgctt gttgtaggcg gacagcactt 2580tgtccagatt agcgtcggcc aggatcactc
tcttggagaa ctcgctgatc tgctcgatga 2640tctcgtccag gtagtgcttg tgctgttcca
caaacagctg tttctgctca ttatcctcgg 2700gggagccctt cagcttctca tagtggctgg
ccaggtacag gaagttcaca tatttggagg 2760gcagggccag ttcgtttccc ttctgcagtt
cgccggcaga ggccagcatt ctcttccggc 2820cgttttccag ctcgaacagg gagtacttag
gcagcttgat gatcaggtcc tttttcactt 2880ctttgtagcc cttggcttcc agaaagtcga
tgggattctt ctcgaagctg cttctttcca 2940tgatggtgat ccccagcagc tctttcacac
tcttcagttt cttggacttg cccttttcca 3000ctttggccac caccagcaca gaataggcca
cggtggggct gtcgaagccg ccgtacttct 3060tagggtccca gtccttcttt ctggcgatca
gcttatcgct gttcctcttg ggcaggatag 3120actctttgct gaagccgcct gtctgcacct
cggtcttttt cacgatattc acttggggca 3180tgctcagcac tttccgcacg gtggcaaaat
cccggccctt atcccacacg atctccccgg 3240tttcgccgtt tgtctcgatc agaggccgct
tccggatctc gccgttggcc agggtaatct 3300cggtcttgaa aaagttcatg atgttgctgt
agaagaagta cttggcggta gccttgccga 3360tttcctgctc gctcttggcg atcatcttcc
gcacgtcgta caccttgtag tcgccgtaca 3420cgaactcgct ttccagctta gggtactttt
tgatcagggc ggttcccacg acggcgttca 3480ggtaggcgtc gtgggcgtgg tggtagttgt
tgatctcgcg cactttgtaa aactggaaat 3540ccttccggaa atcggacacc agcttggact
tcagggtgat cactttcact tcccggatca 3600gcttgtcatt ctcgtcgtac ttagtgttca
tccgggagtc caggatctgt gccacgtgct 3660ttgtgatctg ccgggtttcc accagctgtc
tcttgatgaa gccggcctta tccagttcgc 3720tcaggccgcc tctctcggcc ttggtcagat
tgtcgaactt tctctgggta atcagcttgg 3780cgttcagcag ctgccgccag tagttcttca
tcttcttcac gacctcttcg gagggcacgt 3840tgtcgctctt gccccggttc ttgtcgcttc
tggtcagcac cttgttgtcg atggagtcgt 3900ccttcagaaa gctctgaggc acgatatggt
ccacatcgta gtcggacagc cggttgatgt 3960ccagttcctg gtccacgtac atatcccgcc
cattctgcag gtagtacagg tacagcttct 4020cgttctgcag ctgggtgttt tccacggggt
gttctttcag gatctggctg cccagctctt 4080tgatgccctc ttcgatccgc ttcattctct
cgcggctgtt cttctgtccc ttctgggtgg 4140tctggttctc tctggccatt tcgatcacga
tgttctcggg cttgtgccgg cccatcactt 4200tcacgagctc gtccaccacc ttcactgtct
gcaggatgcc cttcttaatg gcggggctgc 4260cggccagatt ggcaatgtgc tcgtgcaggc
tatcgccctg gccggacacc tgggctttct 4320ggatgtcctc tttaaaggtc aggctgtcgt
cgtggatcag ctgcatgaag tttctgttgg 4380cgaagccgtc ggacttcagg aaatccagga
ttgtcttgcc ggactgcttg tcccggatgc 4440cgttgatcag cttccggctc agcctgcccc
agccggtgta tctccgccgc ttcagctgct 4500tcatcacttt gtcgtcgaac aggtgggcat
aggttttcag ccgttcctcg atcatctctc 4560tgtcctcaaa cagtgtcagg gtcagcacga
tatcttccag aatgtcctcg ttttcctcat 4620tgtccaggaa gtccttgtcc ttgataattt
tcagcagatc gtggtatgtg cccagggagg 4680cgttgaaccg atcttccacg ccggagattt
ccacggagtc gaagcactcg attttcttga 4740agtagtcctc tttcagctgc ttcacggtca
ctttccggtt ggtcttgaac agcaggtcca 4800cgatggcctt tttctgctcg ccgctcagga
aggcgggctt tctcattccc tcggtcacgt 4860atttcacttt ggtcagctcg ttatacacgg
tgaagtactc gtacagcagg ctgtgcttgg 4920gcagcacctt ctcgttgggc aggttcttat
cgaagttggt catccgctcg atgaagctct 4980gggcggaagc gcccttgtcc accacttcct
cgaagttcca gggggtgatg gtttcctcgc 5040tctttctggt catccaggcg aatctgctgt
ttcccctggc cagagggccc acgtagtagg 5100ggatgcggaa ggtcaggatc ttctcgatct
tttcccggtt gtccttcagg aatgggtaaa 5160aatcttcctg ccgccgcaga atggcgtgca
gctctcccag gtggatctgg tgggggatgc 5220tgccgttgtc gaaggtccgc tgcttccgca
gcaggtcctc tctgttcagc ttcacgagca 5280gttcctcggt gccgtccatc ttttccagga
tgggcttgat gaacttgtag aactcttcct 5340ggctggctcc gccgtcaatg tagccggcgt
agccgttctt gctctggtcg aagaaaatct 5400ctttgtactt ctcaggcagc tgctgccgca
cgagagcttt cagcagggtc aggtcctggt 5460ggtgctcgtc gtatctcttg atcatagagg
cgctcagggg ggccttggtg atctcggtgt 5520tcactctcag gatgtcgctc agcaggatgg
cgtcggacag gttcttggcg gccagaaaca 5580ggtcggcgta ctggtcgccg atctgggcca
gcaggttgtc caggtcgtcg tcgtaggtgt 5640ccttgctcag ctgcagtttg gcatcctcgg
ccaggtcgaa gttgctcttg aagttggggg 5700tcaggcccag gctcagggca atcaggtttc
cgaacaggcc attcttcttc tcgccgggca 5760gctgggcgat cagattttcc agccgtctgc
tcttgctcag tctggcagac aggatggcct 5820tggcgtccac gccgctggcg ttgatggggt
tttcctcgaa cagctggttg taggtctgca 5880ccagctggat gaacagcttg tccacgtcgc
tgttgtcggg gttcaggtcg ccctcgatca 5940ggaagtggcc ccggaacttg atcatgtggg
ccagggccag atagatcagc cgcaggtcgg 6000ccttgtcggt gctgtccacc agtttctttc
tcaggtggta gatggtgggg tacttctcgt 6060ggtaggccac ctcgtccacg atgttgccga
agatggggtg ccgctcgtgc ttcttatcct 6120cttccaccag gaaggactct tccagtctgt
ggaagaagct gtcgtccacc ttggccatct 6180cgttgctgaa gatctcttgc agatagcaga
tccggttctt ccgtctggtg tatcttcttc 6240tggcggttct cttcagccgg gtggcctcgg
ctgtttcgcc gctgtcgaac agcagggctc 6300cgatcaggtt cttcttgatg ctgtgccggt
cggtgttgcc cagcaccttg aatttcttgc 6360tgggcacctt gtactcgtcg gtgatcacgg
cccagcccac agagttggtg ccgatgtcca 6420ggccgatgct gtacttcttg tcggctgctg
ggactccgtg gataccgacc ttccgcttct 6480tctttggggc catcttatcg tcatcgtctt
tgtaatcaat atcatgatcc ttgtagtctc 6540cgtcgtggtc cttatagtcc atttttctcg
agggatcctg atatatttct attaggtatt 6600tattattata aaatataaat cttgaatgat
aataaataaa atattagtta ttccttttct 6660agtttaaaat atacatatta taaatatata
tatatatata tatattttta ttgtgacaag 6720aatatataat tataaattat attatttatt
tttgtatttt tttttttttt tttttttttt 6780tctttttttg ttttattttt cttttttttt
ataaatatta tttttttctt ttatcatgca 6840cattggaata atacattaat atatatatat
atattatatt atacatatat tgaataatgt 6900ttataaaaaa tgcataactt atatgaatat
aatttttttt aaatatgaca aaaagaaaaa 6960aaaaaaaaac caaaaaaaat taaaattgaa
atgaaatata taaatatatt atttatatat 7020attatacatt gtttaatact actacatgta
tatatatata ttatatatat atatatatat 7080caattttttc aaaaataaat taatataaaa
agaggggaaa aaaaaaaaaa aaaaaaaaaa 7140aagataatta agtaagcatt taaaaatata
taaattgata atatataaaa ttaatcacat 7200ataaaagctt ataaacacta ggttagctaa
ttcgcttgta agaggtactc tcgtttatgc 7260aaaactattt gatatagcat tttaacaagt
acacatatat atatgtaata tatatactat 7320atatatctat tgcatgtgta ctaagcatgt
gcatggcatc ccctttttct cgtgtttaaa 7380acagtttgta tgataaaata taaaggattt
gaaaaagaga aaaaaatata tgatctcatc 7440ctatatagcg ccataatttt tatttgggtt
gaataaaatt ttctactaaa tttaggtgta 7500agtaaaataa tggaatatat ataagtacaa
taaaaaagtg cataaattaa aaaattttta 7560taataaatat tttttttaaa aaagtcaata
ataatattaa atatatataa cacaggatta 7620tatatgttca ctacaatttt ttatattata
atataaattc ttttcaattt tcattttatt 7680ttacatacac tttccttttt tgtcactata
ttttaatatt cacatattta gtttaaatac 7740tggctatttc tttctacatt tgctagtaac
aattgtgtag tgcttaaata tatacacaca 7800cctaaaactt acaaagtatc ctaggaccat
ggccaagcct ttgtctcaag aagaatccac 7860cctcattgaa agagcaacgg ctacaatcaa
cagcatcccc atctctgaag actacagcgt 7920cgccagcgca gctctctcta gcgacggccg
catcttcact ggtgtcaatg tatatcattt 7980tactggggga ccttgtgcag aactcgtggt
gctgggcact gctgctgctg cggcagctgg 8040caacctgact tgtatcgtcg cgatcggaaa
tgagaacagg ggcatcttga gcccctgcgg 8100acggtgccga caggtgcttc tcgatctgca
tcctgggatc aaagccatag tgaaggacag 8160tgatggacag ccgacggcag ttgggattcg
tgaattgctg ccctctggtt atgtgtggga 8220gggctaaccg cgggtacccc attaaattta
tttaataata gattaaaaat attataaaaa 8280taaaaacata aacacagaaa ttacaaaaaa
aatacatatg aatttttttt ttgtaatctt 8340ccttataaat atagaataat gaatcatata
aaacatatca ttattcattt atttacattt 8400aaaattattg tttcagtatc tttaatttat
tatgtatata taaaaataac ttacaatttt 8460attaataaac aatatatgtt tattaattca
tgttttgtaa tttatgggat agcgattttt 8520tttactgtct gtattttctt ttttaattat
gttttaattg tatttatttt atttttatta 8580ttgttctttt tatagtatta ttttaaaaca
aaatgtattt tctaagaact tataataata 8640ataatataaa ttttaataaa aattatattt
atcttttaca atatgaacat aaagtacaac 8700attaatatat agcttttaat atttttattc
ctaatcatgt aaatcttaaa tttttctttt 8760taaacatatg ttaaatattt atttctcatt
atatataaga acatatttat tacatctaga 8820ggtaccgagc tcgttttcga cactggatgg
cggcgttagt atcgaatcga cagcagtata 8880gcgaccagca ttcacatacg attgacgcat
gatattactt tctgcgcact taacttcgca 8940tctgggcaga tgatgtcgag gcgaaaaaaa
atataaatca cgctaacatt tgattaaaat 9000agaacaacta caatataaaa aaactataca
aatgacaagt tcttgaaaac aagaatcttt 9060ttattgtcag tactgattag aaaaactcat
cgagcatcaa atgaaactgc aatttattca 9120tatcaggatt atcaatacca tatttttgaa
aaagccgttt ctgtaatgaa ggagaaaact 9180caccgaggca gttccatagg atggcaagat
cctggtatcg gtctgcgatt ccgactcgtc 9240caacatcaat acaacctatt aatttcccct
cgtcaaaaat aaggttatca agtgagaaat 9300caccatgagt gacgactgaa tccggtgaga
atggcaaaag cttatgcatt tctttccaga 9360cttgttcaac aggccagcca ttacgctcgt
catcaaaatc actcgcatca accaaaccgt 9420tattcattcg tgattgcgcc tgagcgagac
gaaatacgcg atcgctgtta aaaggacaat 9480tacaaacagg aatcgaatgc aaccggcgca
ggaacactgc cagcgcatca acaatatttt 9540cacctgaatc aggatattct tctaatacct
ggaatgctgt tttgccgggg atcgcagtgg 9600tgagtaacca tgcatcatca ggagtacgga
taaaatgctt gatggtcgga agaggcataa 9660attccgtcag ccagtttagt ctgaccatct
catctgtaac atcattggca acgctacctt 9720tgccatgttt cagaaacaac tctggcgcat
cgggcttccc atacaatcga tagattgtcg 9780cacctgattg cccgacatta tcgcgagccc
atttataccc atataaatca gcatccatgt 9840tggaatttaa tcgcggcctc gaaacgtgag
tcttttcctt acccatggtt gtttatgttc 9900ggatgtgatg tgagaactgt atcctagcaa
gattttaaaa ggaagtatat gaaagaagaa 9960cctcagtggc aaatcctaac cttttatatt
tctctacagg ggcgcggcgt ggggacaatt 10020caacgcgtct gtgaggggag cgtttccctg
ctcgcaggtc tgcagcgagg agccgtaatt 10080tttgcttcgc gccgtgcggc catcaaaatg
tatggatgca aatgattata catggggatg 10140tatgggctaa atgtacgggc gacagtcaca
tcatgcccct gagctgcgca cgtcaagact 10200gtcaaggagg gtattctggg cctccatgtc
gctggcctaa cattagtaat gtaggtctga 10260ctttcactca tataagtctt atggtaacta
aactaaggtc ttacctttac tgatatatgt 10320cttactttca ctaacttagg tattactttt
actaacttag gtcttaaatt cagtaactaa 10380ggtcatactt cgactaacta aggtcttaca
ttcactgata taggtcttat gattactaac 10440ttaggtccta atttgactaa cataagtcct
aacattagta atgtaggtct taacttaact 10500aacttaggtc ttaccttcac taatataggt
cttaatatta ctgacttaag taattaaggt 10560actaacttag gtcgtaaggt aactaatata
taggtcttaa ggtaactaat ttaggtcttg 10620acttaataaa tataggtcct aacataaata
gtataggtcc taatataagt actataggcc 10680ttaacttaac caacataggt cctaacataa
gttatatagg tcttaacgta actaacataa 10740gtcattaagg tactaagttt ggtcttaatt
taacaataac atgtcgctgg cctaacatta 10800gtaatgtagg tctgactttc actcatataa
gtcttatggt aactaaacta aggtcttacc 10860tttactgata tatgtcttac tttcactaac
ttaggtatta cttttactaa cttaggtctt 10920aaattcagta actaaggtca tacttcgact
aactaaggtc ttacattcac tgatataggt 10980cttatgatta ctaacttagg tcctaatttg
actaacataa gtcctaacat tagtaatgta 11040ggtcttaact taactaactt aggtcttacc
ttcactaata taggtcttaa tattactgac 11100ttaagtaatt aaggtactaa cttaggtcgt
aaggtaacta atatataggt cttaaggtaa 11160ctaatttagg tcttgactta ataaatatag
gtcctaacat aaatagtata ggtcctaata 11220taagtactat aggccttaac ttaaccaaca
taggtcctaa cataagttat ataggtctta 11280acgtaactaa cataagtcat taaggtacta
agtttggtct taatttaaca ataaccatgt 11340cgctggccgg gtggtcttaa tttaacaaat
atagaccatg tcgctggccg ggtgacccgg 11400cggggacgag gcaagctaaa cagatcctcg
tgatacgcct atttttatag gttaatgtca 11460tgataataat ggtttcttag gacggatcgc
ttgcctgtaa cttacacgcg cctcgtatct 11520tttaatgatg gaataatttg ggaatttact
ctgtgtttat ttatttttat gttttgtatt 11580tggattttag aaagtaaata aagaaggtag
aagagttacg gaatgaagaa aaaaaaataa 11640acaaaggttt aaaaaatttc aacaaaaagc
gtactttaca tatatattta ttagacaaga 11700aaagcagatt aaatagatat acattcgatt
aacgataagt aaaatgtaaa atcacaggat 11760tttcgtgtgt ggtcttctac acagacaaga
tgaaacaatt cggcattaat acctgagagc 11820aggaagagca agataaaagg tagtatttgt
tggcgatccc cctagagtct tttacatctt 11880cggaaaacaa aaactatttt ttctttaatt
tcttttttta ctttctattt ttaatttata 11940tatttatatt aaaaaattta aattataatt
atttttatag cacgtgatga aaaggaccca 12000ggtggcactt ttcggggaaa tctcgacctg
cagcgtacga agct 1204438912044DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
389gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt
60gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc
120atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag
180atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa
240aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg
300aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag
360ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg
420ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga
480tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc
540ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc
600acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga
660gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt
720cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg
780aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac
840atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga
900gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg
960gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc
1020tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt
1080tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt
1140ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga ttacgccaag
1200ctatttaggt gacactatag aatactcaag cttgggggga tcctctagag tcgactaata
1260cgactcacta taggaaatga tatggatttt gggttttaga gctagaaata gcaagttaaa
1320ataaggctag tccgttatca acttgaaaaa gtggcaccga gtcggtgcta gcataacccc
1380ttggggcctc taaacgggtc ttgaggggtt ttttggtcga cctgcaggca tgctatttga
1440tgaattaact acacttaaaa taatacaatt attattaaat ttttttttga tttatttatt
1500aatttttaaa cttaatcatt tgtatttggg aggaattata tatatcttta taattatttt
1560attttttttt atttttttat ttttttatta ttattatttt tttttatttt ttttttttac
1620tgtatcaaag aaaaaccttt aaaaaaaaaa ttataatttc cccatcttac tatattttta
1680atacatacgt tttaaggaat taaattagac aaaagctata ttatgcttta catataatta
1740gaatttataa acgtttggtt attagatatt tcatgtctca gtaaagtctt tcaatacata
1800tgtaaaaaaa tatatatgaa tacacataag ttgttaatat attttatatg cataaatgta
1860taaatatata tatatatata tatatatgta tgtatgtata tgtgtgtata tgaaattatt
1920tcaatgttta attttttaaa ttttaatttt tttttttttt ttttttttta ttatgtatat
1980tgatctttat tatttaaata ttactttttt cgttttttct tctttttatt attttttttt
2040ttttttatat tttatacaaa tggtaattca aataaaaggt ataaatttat atttaatttt
2100cttttatgga taaataaaag aaaaatataa atatataaaa atataaaaat atatatatgt
2160atattggggt gatgataaaa tgaaagataa tatatatata tatatatctt tatttttttt
2220tttttgtaga ccccattgtg agtacataaa tatattatat aactcgggag catcagtcat
2280ggaattctta tttctttttc ttttttgcct ggccggcctt tttcgtggcc gccggccttt
2340tgtcgcctcc cagctgagac aggtcgatcc gtgtctcgta caggccggtg atgctctggt
2400ggatcagggt ggcgtccagc acctctttgg tgctggtgta cctcttccgg tcgatggtgg
2460tgtcaaagta cttgaaggcg gcaggggctc ccagattggt cagggtaaac aggtggatga
2520tattctcggc ctgctctctg atgggcttat cccggtgctt gttgtaggcg gacagcactt
2580tgtccagatt agcgtcggcc aggatcactc tcttggagaa ctcgctgatc tgctcgatga
2640tctcgtccag gtagtgcttg tgctgttcca caaacagctg tttctgctca ttatcctcgg
2700gggagccctt cagcttctca tagtggctgg ccaggtacag gaagttcaca tatttggagg
2760gcagggccag ttcgtttccc ttctgcagtt cgccggcaga ggccagcatt ctcttccggc
2820cgttttccag ctcgaacagg gagtacttag gcagcttgat gatcaggtcc tttttcactt
2880ctttgtagcc cttggcttcc agaaagtcga tgggattctt ctcgaagctg cttctttcca
2940tgatggtgat ccccagcagc tctttcacac tcttcagttt cttggacttg cccttttcca
3000ctttggccac caccagcaca gaataggcca cggtggggct gtcgaagccg ccgtacttct
3060tagggtccca gtccttcttt ctggcgatca gcttatcgct gttcctcttg ggcaggatag
3120actctttgct gaagccgcct gtctgcacct cggtcttttt cacgatattc acttggggca
3180tgctcagcac tttccgcacg gtggcaaaat cccggccctt atcccacacg atctccccgg
3240tttcgccgtt tgtctcgatc agaggccgct tccggatctc gccgttggcc agggtaatct
3300cggtcttgaa aaagttcatg atgttgctgt agaagaagta cttggcggta gccttgccga
3360tttcctgctc gctcttggcg atcatcttcc gcacgtcgta caccttgtag tcgccgtaca
3420cgaactcgct ttccagctta gggtactttt tgatcagggc ggttcccacg acggcgttca
3480ggtaggcgtc gtgggcgtgg tggtagttgt tgatctcgcg cactttgtaa aactggaaat
3540ccttccggaa atcggacacc agcttggact tcagggtgat cactttcact tcccggatca
3600gcttgtcatt ctcgtcgtac ttagtgttca tccgggagtc caggatctgt gccacgtgct
3660ttgtgatctg ccgggtttcc accagctgtc tcttgatgaa gccggcctta tccagttcgc
3720tcaggccgcc tctctcggcc ttggtcagat tgtcgaactt tctctgggta atcagcttgg
3780cgttcagcag ctgccgccag tagttcttca tcttcttcac gacctcttcg gagggcacgt
3840tgtcgctctt gccccggttc ttgtcgcttc tggtcagcac cttgttgtcg atggagtcgt
3900ccttcagaaa gctctgaggc acgatatggt ccacatcgta gtcggacagc cggttgatgt
3960ccagttcctg gtccacgtac atatcccgcc cattctgcag gtagtacagg tacagcttct
4020cgttctgcag ctgggtgttt tccacggggt gttctttcag gatctggctg cccagctctt
4080tgatgccctc ttcgatccgc ttcattctct cgcggctgtt cttctgtccc ttctgggtgg
4140tctggttctc tctggccatt tcgatcacga tgttctcggg cttgtgccgg cccatcactt
4200tcacgagctc gtccaccacc ttcactgtct gcaggatgcc cttcttaatg gcggggctgc
4260cggccagatt ggcaatgtgc tcgtgcaggc tatcgccctg gccggacacc tgggctttct
4320ggatgtcctc tttaaaggtc aggctgtcgt cgtggatcag ctgcatgaag tttctgttgg
4380cgaagccgtc ggacttcagg aaatccagga ttgtcttgcc ggactgcttg tcccggatgc
4440cgttgatcag cttccggctc agcctgcccc agccggtgta tctccgccgc ttcagctgct
4500tcatcacttt gtcgtcgaac aggtgggcat aggttttcag ccgttcctcg atcatctctc
4560tgtcctcaaa cagtgtcagg gtcagcacga tatcttccag aatgtcctcg ttttcctcat
4620tgtccaggaa gtccttgtcc ttgataattt tcagcagatc gtggtatgtg cccagggagg
4680cgttgaaccg atcttccacg ccggagattt ccacggagtc gaagcactcg attttcttga
4740agtagtcctc tttcagctgc ttcacggtca ctttccggtt ggtcttgaac agcaggtcca
4800cgatggcctt tttctgctcg ccgctcagga aggcgggctt tctcattccc tcggtcacgt
4860atttcacttt ggtcagctcg ttatacacgg tgaagtactc gtacagcagg ctgtgcttgg
4920gcagcacctt ctcgttgggc aggttcttat cgaagttggt catccgctcg atgaagctct
4980gggcggaagc gcccttgtcc accacttcct cgaagttcca gggggtgatg gtttcctcgc
5040tctttctggt catccaggcg aatctgctgt ttcccctggc cagagggccc acgtagtagg
5100ggatgcggaa ggtcaggatc ttctcgatct tttcccggtt gtccttcagg aatgggtaaa
5160aatcttcctg ccgccgcaga atggcgtgca gctctcccag gtggatctgg tgggggatgc
5220tgccgttgtc gaaggtccgc tgcttccgca gcaggtcctc tctgttcagc ttcacgagca
5280gttcctcggt gccgtccatc ttttccagga tgggcttgat gaacttgtag aactcttcct
5340ggctggctcc gccgtcaatg tagccggcgt agccgttctt gctctggtcg aagaaaatct
5400ctttgtactt ctcaggcagc tgctgccgca cgagagcttt cagcagggtc aggtcctggt
5460ggtgctcgtc gtatctcttg atcatagagg cgctcagggg ggccttggtg atctcggtgt
5520tcactctcag gatgtcgctc agcaggatgg cgtcggacag gttcttggcg gccagaaaca
5580ggtcggcgta ctggtcgccg atctgggcca gcaggttgtc caggtcgtcg tcgtaggtgt
5640ccttgctcag ctgcagtttg gcatcctcgg ccaggtcgaa gttgctcttg aagttggggg
5700tcaggcccag gctcagggca atcaggtttc cgaacaggcc attcttcttc tcgccgggca
5760gctgggcgat cagattttcc agccgtctgc tcttgctcag tctggcagac aggatggcct
5820tggcgtccac gccgctggcg ttgatggggt tttcctcgaa cagctggttg taggtctgca
5880ccagctggat gaacagcttg tccacgtcgc tgttgtcggg gttcaggtcg ccctcgatca
5940ggaagtggcc ccggaacttg atcatgtggg ccagggccag atagatcagc cgcaggtcgg
6000ccttgtcggt gctgtccacc agtttctttc tcaggtggta gatggtgggg tacttctcgt
6060ggtaggccac ctcgtccacg atgttgccga agatggggtg ccgctcgtgc ttcttatcct
6120cttccaccag gaaggactct tccagtctgt ggaagaagct gtcgtccacc ttggccatct
6180cgttgctgaa gatctcttgc agatagcaga tccggttctt ccgtctggtg tatcttcttc
6240tggcggttct cttcagccgg gtggcctcgg ctgtttcgcc gctgtcgaac agcagggctc
6300cgatcaggtt cttcttgatg ctgtgccggt cggtgttgcc cagcaccttg aatttcttgc
6360tgggcacctt gtactcgtcg gtgatcacgg cccagcccac agagttggtg ccgatgtcca
6420ggccgatgct gtacttcttg tcggctgctg ggactccgtg gataccgacc ttccgcttct
6480tctttggggc catcttatcg tcatcgtctt tgtaatcaat atcatgatcc ttgtagtctc
6540cgtcgtggtc cttatagtcc atttttctcg agggatcctg atatatttct attaggtatt
6600tattattata aaatataaat cttgaatgat aataaataaa atattagtta ttccttttct
6660agtttaaaat atacatatta taaatatata tatatatata tatattttta ttgtgacaag
6720aatatataat tataaattat attatttatt tttgtatttt tttttttttt tttttttttt
6780tctttttttg ttttattttt cttttttttt ataaatatta tttttttctt ttatcatgca
6840cattggaata atacattaat atatatatat atattatatt atacatatat tgaataatgt
6900ttataaaaaa tgcataactt atatgaatat aatttttttt aaatatgaca aaaagaaaaa
6960aaaaaaaaac caaaaaaaat taaaattgaa atgaaatata taaatatatt atttatatat
7020attatacatt gtttaatact actacatgta tatatatata ttatatatat atatatatat
7080caattttttc aaaaataaat taatataaaa agaggggaaa aaaaaaaaaa aaaaaaaaaa
7140aagataatta agtaagcatt taaaaatata taaattgata atatataaaa ttaatcacat
7200ataaaagctt ataaacacta ggttagctaa ttcgcttgta agaggtactc tcgtttatgc
7260aaaactattt gatatagcat tttaacaagt acacatatat atatgtaata tatatactat
7320atatatctat tgcatgtgta ctaagcatgt gcatggcatc ccctttttct cgtgtttaaa
7380acagtttgta tgataaaata taaaggattt gaaaaagaga aaaaaatata tgatctcatc
7440ctatatagcg ccataatttt tatttgggtt gaataaaatt ttctactaaa tttaggtgta
7500agtaaaataa tggaatatat ataagtacaa taaaaaagtg cataaattaa aaaattttta
7560taataaatat tttttttaaa aaagtcaata ataatattaa atatatataa cacaggatta
7620tatatgttca ctacaatttt ttatattata atataaattc ttttcaattt tcattttatt
7680ttacatacac tttccttttt tgtcactata ttttaatatt cacatattta gtttaaatac
7740tggctatttc tttctacatt tgctagtaac aattgtgtag tgcttaaata tatacacaca
7800cctaaaactt acaaagtatc ctaggaccat ggccaagcct ttgtctcaag aagaatccac
7860cctcattgaa agagcaacgg ctacaatcaa cagcatcccc atctctgaag actacagcgt
7920cgccagcgca gctctctcta gcgacggccg catcttcact ggtgtcaatg tatatcattt
7980tactggggga ccttgtgcag aactcgtggt gctgggcact gctgctgctg cggcagctgg
8040caacctgact tgtatcgtcg cgatcggaaa tgagaacagg ggcatcttga gcccctgcgg
8100acggtgccga caggtgcttc tcgatctgca tcctgggatc aaagccatag tgaaggacag
8160tgatggacag ccgacggcag ttgggattcg tgaattgctg ccctctggtt atgtgtggga
8220gggctaaccg cgggtacccc attaaattta tttaataata gattaaaaat attataaaaa
8280taaaaacata aacacagaaa ttacaaaaaa aatacatatg aatttttttt ttgtaatctt
8340ccttataaat atagaataat gaatcatata aaacatatca ttattcattt atttacattt
8400aaaattattg tttcagtatc tttaatttat tatgtatata taaaaataac ttacaatttt
8460attaataaac aatatatgtt tattaattca tgttttgtaa tttatgggat agcgattttt
8520tttactgtct gtattttctt ttttaattat gttttaattg tatttatttt atttttatta
8580ttgttctttt tatagtatta ttttaaaaca aaatgtattt tctaagaact tataataata
8640ataatataaa ttttaataaa aattatattt atcttttaca atatgaacat aaagtacaac
8700attaatatat agcttttaat atttttattc ctaatcatgt aaatcttaaa tttttctttt
8760taaacatatg ttaaatattt atttctcatt atatataaga acatatttat tacatctaga
8820ggtaccgagc tcgttttcga cactggatgg cggcgttagt atcgaatcga cagcagtata
8880gcgaccagca ttcacatacg attgacgcat gatattactt tctgcgcact taacttcgca
8940tctgggcaga tgatgtcgag gcgaaaaaaa atataaatca cgctaacatt tgattaaaat
9000agaacaacta caatataaaa aaactataca aatgacaagt tcttgaaaac aagaatcttt
9060ttattgtcag tactgattag aaaaactcat cgagcatcaa atgaaactgc aatttattca
9120tatcaggatt atcaatacca tatttttgaa aaagccgttt ctgtaatgaa ggagaaaact
9180caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt ccgactcgtc
9240caacatcaat acaacctatt aatttcccct cgtcaaaaat aaggttatca agtgagaaat
9300caccatgagt gacgactgaa tccggtgaga atggcaaaag cttatgcatt tctttccaga
9360cttgttcaac aggccagcca ttacgctcgt catcaaaatc actcgcatca accaaaccgt
9420tattcattcg tgattgcgcc tgagcgagac gaaatacgcg atcgctgtta aaaggacaat
9480tacaaacagg aatcgaatgc aaccggcgca ggaacactgc cagcgcatca acaatatttt
9540cacctgaatc aggatattct tctaatacct ggaatgctgt tttgccgggg atcgcagtgg
9600tgagtaacca tgcatcatca ggagtacgga taaaatgctt gatggtcgga agaggcataa
9660attccgtcag ccagtttagt ctgaccatct catctgtaac atcattggca acgctacctt
9720tgccatgttt cagaaacaac tctggcgcat cgggcttccc atacaatcga tagattgtcg
9780cacctgattg cccgacatta tcgcgagccc atttataccc atataaatca gcatccatgt
9840tggaatttaa tcgcggcctc gaaacgtgag tcttttcctt acccatggtt gtttatgttc
9900ggatgtgatg tgagaactgt atcctagcaa gattttaaaa ggaagtatat gaaagaagaa
9960cctcagtggc aaatcctaac cttttatatt tctctacagg ggcgcggcgt ggggacaatt
10020caacgcgtct gtgaggggag cgtttccctg ctcgcaggtc tgcagcgagg agccgtaatt
10080tttgcttcgc gccgtgcggc catcaaaatg tatggatgca aatgattata catggggatg
10140tatgggctaa atgtacgggc gacagtcaca tcatgcccct gagctgcgca cgtcaagact
10200gtcaaggagg gtattctggg cctccatgtc gctggcctaa cattagtaat gtaggtctga
10260ctttcactca tataagtctt atggtaacta aactaaggtc ttacctttac tgatatatgt
10320cttactttca ctaacttagg tattactttt actaacttag gtcttaaatt cagtaactaa
10380ggtcatactt cgactaacta aggtcttaca ttcactgata taggtcttat gattactaac
10440ttaggtccta atttgactaa cataagtcct aacattagta atgtaggtct taacttaact
10500aacttaggtc ttaccttcac taatataggt cttaatatta ctgacttaag taattaaggt
10560actaacttag gtcgtaaggt aactaatata taggtcttaa ggtaactaat ttaggtcttg
10620acttaataaa tataggtcct aacataaata gtataggtcc taatataagt actataggcc
10680ttaacttaac caacataggt cctaacataa gttatatagg tcttaacgta actaacataa
10740gtcattaagg tactaagttt ggtcttaatt taacaataac atgtcgctgg cctaacatta
10800gtaatgtagg tctgactttc actcatataa gtcttatggt aactaaacta aggtcttacc
10860tttactgata tatgtcttac tttcactaac ttaggtatta cttttactaa cttaggtctt
10920aaattcagta actaaggtca tacttcgact aactaaggtc ttacattcac tgatataggt
10980cttatgatta ctaacttagg tcctaatttg actaacataa gtcctaacat tagtaatgta
11040ggtcttaact taactaactt aggtcttacc ttcactaata taggtcttaa tattactgac
11100ttaagtaatt aaggtactaa cttaggtcgt aaggtaacta atatataggt cttaaggtaa
11160ctaatttagg tcttgactta ataaatatag gtcctaacat aaatagtata ggtcctaata
11220taagtactat aggccttaac ttaaccaaca taggtcctaa cataagttat ataggtctta
11280acgtaactaa cataagtcat taaggtacta agtttggtct taatttaaca ataaccatgt
11340cgctggccgg gtggtcttaa tttaacaaat atagaccatg tcgctggccg ggtgacccgg
11400cggggacgag gcaagctaaa cagatcctcg tgatacgcct atttttatag gttaatgtca
11460tgataataat ggtttcttag gacggatcgc ttgcctgtaa cttacacgcg cctcgtatct
11520tttaatgatg gaataatttg ggaatttact ctgtgtttat ttatttttat gttttgtatt
11580tggattttag aaagtaaata aagaaggtag aagagttacg gaatgaagaa aaaaaaataa
11640acaaaggttt aaaaaatttc aacaaaaagc gtactttaca tatatattta ttagacaaga
11700aaagcagatt aaatagatat acattcgatt aacgataagt aaaatgtaaa atcacaggat
11760tttcgtgtgt ggtcttctac acagacaaga tgaaacaatt cggcattaat acctgagagc
11820aggaagagca agataaaagg tagtatttgt tggcgatccc cctagagtct tttacatctt
11880cggaaaacaa aaactatttt ttctttaatt tcttttttta ctttctattt ttaatttata
11940tatttatatt aaaaaattta aattataatt atttttatag cacgtgatga aaaggaccca
12000ggtggcactt ttcggggaaa tctcgacctg cagcgtacga agct
12044
User Contributions:
Comment about this patent or add new information about this topic: