Patent application title: MULTIMERIC IL-15-BASED MOLECULES
Inventors:
IPC8 Class: AA61K39395FI
USPC Class:
1 1
Class name:
Publication date: 2018-07-19
Patent application number: 20180200366
Abstract:
The invention features multi-specific protein complexes with one domain
comprising IL-15 or a functional variant and a binding domain specific to
a disease antigen, immune checkpoint or signaling molecule.Claims:
1. An isolated soluble fusion protein complex comprising at least two
soluble proteins, wherein a first soluble protein comprises an
interleukin-15 (IL-15) polypeptide domain and a second soluble protein
comprises a soluble IL-15 receptor alpha sushi-binding domain
(IL-15R.alpha.Su) fused to an immunoglobulin Fc domain, wherein one of
the first or second soluble protein further comprises a binding domain
that specifically binds to a disease antigen, immune checkpoint molecule
or immune signaling molecule, and wherein the IL-15 domain of the first
soluble protein binds to the IL-15R.alpha.Su domain of the second soluble
protein to form a soluble fusion protein complex.
2. The soluble fusion protein complex of claim 1, wherein one of the first or second soluble protein further comprises a second binding domain that specifically binds to a disease antigen, immune checkpoint molecule, or immune signaling molecule.
3. The soluble fusion protein complex of claim 1, wherein the IL-15 polypeptide is an IL-15 variant comprising an N72D mutation (IL-15N72D).
4. The soluble fusion protein complex of claim 1, wherein the binding domain comprises an immunoglobulin light chain variable domain covalently linked to an immunoglobulin heavy chain variable domain by a polypeptide linker sequence.
5. The soluble fusion protein complex of claim 1, wherein the binding domain specifically binds to one or more molecules comprising: programmed death ligand 1 (PD-L1), programmed death 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), cluster of differentiation 33 (CD33), cluster of differentiation 47 (CD47), glucocorticoid-induced tumor necrosis factor receptor (TNFR) family related gene (GITR), lymphocyte function-associated antigen 1 (LFA-1), tissue factor (TF), delta-like protein 4 (DLL4), single strand DNA or T-cell immunoglobulin and mucin-domain containing-3 (Tim-3).
6. The soluble fusion protein complex of claim 1, wherein the first soluble protein comprises the amino acid sequence set forth in one of SEQ ID NOs: 2, 6, 10, 18, 20, 24, 28, 32, or 38.
7. The soluble fusion protein complex of claim 1, wherein the second soluble protein comprises the amino acid sequence set forth in one of SEQ ID NOs: 4, 8, 12, 14, 16, 22, 26, 30, 34, 36, 40, 42, 44, 46, 51, 52, 53, or 54.
8. A soluble fusion protein complex comprising a first soluble fusion protein complex wherein the first soluble protein complex comprises an interleukin-15 (IL-15) polypeptide domain covalently linked to a second soluble fusion protein complex wherein the second soluble protein complex comprises a soluble IL-15 receptor alpha sushi-binding domain (IL-15R.alpha.Su).
9. The soluble fusion protein complex of claim 8, wherein the first soluble fusion protein complex is covalently linked to the second soluble fusion protein complex by a disulfide bond linking the Fc domain of the first soluble fusion protein complex to the Fc domain of the second soluble fusion protein complex.
10. A nucleic acid sequence encoding a first soluble protein, wherein said nucleic acid sequence comprises the sequence set forth in one of SEQ ID NOs: 1, 5, 9, 17, 19, 23, 27, 31 or 37.
11. The nucleic acid sequence of claim 10, wherein the nucleic acid sequence further comprises a promoter, translation initiation signal, and leader sequence operably linked to the sequence encoding the soluble protein.
12. A nucleic acid sequence encoding a second soluble protein, wherein said nucleic acid sequence comprises the sequence set forth in one of SEQ ID NOs: 3, 7, 11, 13, 15, 21, 25, 29, 33, 35, 39, 41, 43, 45, 47, 48, 49, or 50.
13. The nucleic acid sequence of claim 12, wherein the nucleic acid sequence further comprises a promoter, translation initiation signal, and leader sequence operably linked to the sequence encoding the soluble protein.
14. A DNA vector comprising the nucleic acid sequences set forth in one of SEQ ID NOs: 1, 5, 9, 17, 19, 23, 27, 31 or 37 and/or nucleic acid sequences set forth in one of SEQ ID NOs: 3, 7, 11, 13, 15, 21, 25, 29, 33, 35, 39, 41, 43, 45, 47, 48, 49, or 50, wherein the nucleic acid sequences further comprise a promoter, translation initiation signal, and leader sequence operably linked to the sequence encoding the soluble protein.
15. The soluble fusion protein complex of claim 1, wherein the disease antigen is associated with neoplasia, infectious disease, or autoimmune disease.
16. A method for killing a target cell, the method comprising: a) contacting a plurality of cells with a soluble fusion protein complex the soluble fusion protein complex comprising at least two soluble proteins, wherein the first soluble protein comprises an interleukin-15 (IL-15) polypeptide domain and the second soluble protein comprises a soluble IL-15 receptor alpha sushi-binding domain (IL-15R.alpha.Su) fused to an immunoglobulin Fc domain, wherein one of the first or second soluble protein further comprises a binding domain that specifically binds to a disease antigen, immune checkpoint molecule or immune signaling molecule, and wherein the IL-15 domain of the first soluble protein binds to the IL-15R.alpha.Su domain of the second soluble protein to form a soluble fusion protein complex, wherein the plurality of cells further comprises immune cells bearing the IL-15 receptor (IL-15R) chains recognized by the IL-15 domain of the soluble fusion protein complex, or immune cells bearing a disease antigen, checkpoint or signaling molecules recognized by the binding domains of the soluble fusion protein complex, and the target cells; b) activating the immune cells via the IL-15R or signaling molecules or via blockade of the checkpoint molecules; and c) killing the target cells by the activated immune cells; or, a1) contacting a plurality of cells with a soluble fusion protein complex, the soluble fusion protein complex comprising at least two soluble proteins, wherein the first soluble protein comprises an interleukin-15 (IL-15) polypeptide domain and the second soluble protein comprises a soluble IL-15 receptor alpha sushi-binding domain (IL-15R.alpha.Su) fused to an immunoglobulin Fc domain, wherein one of the first or second soluble protein further comprises a binding domain that specifically binds to a disease antigen, immune checkpoint molecule or immune signaling molecule, and wherein the IL-15 domain of the first soluble protein binds to the IL-15R.alpha.Su domain of the second soluble protein to form a soluble fusion protein complex, wherein the plurality of cells further comprises immune cells bearing Fc receptor chains recognized by the Fc domain of the soluble fusion protein complex and the target cells bearing an antigen recognized by the antigen-specific binding domain of the soluble fusion protein complex, b1) forming a specific binding complex (bridge) between the antigen on the target cells and the Fc receptor chains on the immune cells sufficient to bind and activate the immune cells; and c1) killing the target cells by the bound activated immune cells.
17. (canceled)
18. The method of claim 16, wherein the target cells are tumor cells, infected cells or autoimmune disease associated cells.
19. The method of claim 16 or 17, wherein binding domain comprises an anti-PD-L1 antibody.
20. (canceled)
21. A method for treating a neoplasia, infectious disease or autoimmune disease in a subject in need thereof comprising administering to said subject an effective amount of a pharmaceutical composition comprising a soluble fusion protein complex, the soluble fusion protein complex comprising at least two soluble proteins, wherein the first soluble protein comprises an interleukin-15 (IL-15) polypeptide domain and the second soluble protein comprises a soluble IL-15 receptor alpha sushi-binding domain (IL-15R.alpha.Su) fused to an immunoglobulin Fc domain, wherein one of the first or second soluble protein further comprises a binding domain that specifically binds to a disease antigen, immune checkpoint molecule or immune signaling molecule, and wherein the IL-15 domain of the first soluble protein binds to the IL-15R.alpha.Su domain of the second soluble protein to form a soluble fusion protein complex, thereby treating said neoplasia, infectious disease or autoimmune disease.
22. The method of claim 21, wherein said neoplasia is selected from the group consisting of a glioblastoma, prostate cancer, hematological cancer, B-cell neoplasms, multiple myeloma, B-cell lymphoma, B cell non-Hodgkin lymphoma, Hodgkin's lymphoma, chronic lymphocytic leukemia, acute myeloid leukemia, cutaneous T-cell lymphoma, T-cell lymphoma, a solid tumor, urothelial/bladder carcinoma, melanoma, lung cancer, renal cell carcinoma, breast cancer, gastric and esophageal cancer, prostate cancer, pancreatic cancer, colorectal cancer, ovarian cancer, non-small cell lung carcinoma, and squamous cell head and neck carcinoma.
23. The method of claim 21, wherein said effective amount is between about 1 and 100 .mu.g/kg said fusion protein complex.
24. The method of claim 21, wherein said fusion protein complex is administered at least one time per week.
25. The method of claim 21, wherein said pharmaceutical composition is administered systemically, locally, intravenously, subcutaneously or intratumorally.
26. The method of claim 21, wherein said fusion protein complex induces an immune response in the subject.
27. The method of claim 21, wherein said fusion protein complex increases immune cell proliferation.
28. The method of claim 21, wherein said fusion protein complex stimulates immune cell responses against cells associated with said neoplasia, infectious disease or autoimmune disease.
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This Application claims the benefit of U.S. Provisional Application 62/513,964 filed on Jun. 1, 2017 and U.S. Provisional Application 62/411,216 filed on Oct. 21, 2016. The entire contents of these applications are incorporated herein by reference in their entirety.
FIELD OF THE INVENTION
[0002] This invention relates generally to the field of multimeric fusion molecules.
BACKGROUND OF THE INVENTION
[0003] Prior to the invention described herein, there was a pressing need to develop new strategies to target various effector molecules to a disease site to provide therapeutic benefit without the side effects associated with non-specific immune activity.
SUMMARY OF THE INVENTION
[0004] The invention is based, at least in part, on the surprising discovery that multi-specific IL-15-based protein complexes enhance the stimulation of immune cells and promote their activity against disease cells, thereby resulting in reduction or prevention of disease. These IL-15-based protein complexes also show increased binding to disease and target antigens. Provided herein are multi-specific protein complexes with one domain comprising IL-15 or a functional variant and a binding domain specific to a disease antigen, immune checkpoint or signaling molecule. Specifically, described herein are protein complexes comprising an IL-15N72D:IL-15R.alpha.Su-Ig Fc scaffold fused to binding domains that recognize programmed death ligand 1 (PD-L1), programmed death 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), cluster of differentiation 47 (CD47), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3, TIM3) or glucocorticoid-induced tumor necrosis factor receptor (TNFR) family related gene (GITR). These complexes induce NK and T cell responses via IL-15 activity and further augment immune responses through immune checkpoint blockade via the anti-PD-L1, PD-1, CTLA-4, CD47, TIM3 or GITR binding domains (FIG. 1). In some cases, these complexes also recognize antigens, such as PD-L1, single stranded deoxyribonucleic acid (ssDNA), CD20, human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), CD19, CD38, CD52, disialoganglioside (GD2), CD33, Notch1, intercellular adhesion molecule 1 (ICAM-1), tissue factor or HIV envelope, expressed on disease cells and stimulate antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against the disease cell via the Fc binding domain.
[0005] Provided is an isolated soluble fusion protein complex comprising at least two soluble proteins. For example, the first protein comprises an interleukin-15 (IL-15) polypeptide, e.g., a variant IL-15 polypeptide comprising an N72D mutation (IL-15N72D). The second protein comprises a soluble IL-15 receptor alpha sushi-binding domain (IL-15R.alpha.Su) fused to an immunoglobulin Fc domain (IL-15R.alpha.Su/Fc). A third component of the isolated soluble fusion protein complex comprises a binding domain that recognizes a disease antigen, immune checkpoint molecule or a signaling molecule, e.g., PD-L1, PD-1, CTLA-4, CD47, TIM3 or GITR, wherein the binding domain is fused to the either the IL-15N72D or the IL-15R.alpha.Su/Fc protein. In some cases, these binding domains are fused to both the IL-15N72D and IL-15R.alpha.Su/Fc proteins. In other cases, one of these binding domains is fused to the IL-15N72D or the IL-15R.alpha.Su/Fc proteins and a second binding domain, i.e. specific to an immune checkpoint or signaling molecule or a disease antigen, is fused to the other protein. In one aspect, the disease antigen is associated with neoplasia, infectious disease, or autoimmune disease. In some cases, the first or second soluble protein further comprises a binding domain that recognizes a disease antigen, e.g., PD-L1, ssDNA, CD20, HER2, EGFR, CD19, CD38, CD52, GD2, CD33, Notch1, intercellular adhesion molecule 1 (ICAM-1), tissue factor or HIV envelope or other known antigens, expressed on disease cells. Alternatively, either the IL-15N72D or the IL-15R.alpha.Su/Fc protein comprise the binding domain specific to a disease antigen, immune checkpoint or signaling molecule and the other protein (IL-15R.alpha.Su/Fc or IL-15N72D protein, respectively) do not comprise an additional fused binding domain. The IL-15N72D domain of the first protein binds to the soluble IL-15R.alpha.Su domain of the second protein to form a soluble fusion protein complex. An exemplary fusion protein complex comprises an anti-PD-L1 antibody covalently linked to an IL-15N72D and/or an IL-15R.alpha.Su/Fc fusion protein (FIG. 1 and FIG. 2). Alternatively, the first protein comprises an anti-PD-L1 antibody covalently linked to a soluble IL-15 receptor alpha sushi-binding domain (IL-15R.alpha.Su) fused to an immunoglobulin Fc domain whereas the second protein comprises a binding domain that recognizes disease antigens covalently linked and a variant interleukin-15 (IL-15) polypeptide comprising an N72D mutation (IL-15N72D).
[0006] In some cases, the binding domain comprises a single chain antibody (scAb or scFv) wherein an immunoglobulin light chain variable domain is covalently linked to an immunoglobulin heavy chain variable domain by a polypeptide linker sequence. Alternatively, the binding domain comprises a soluble or extracellular ligand or receptor domain capable of acting as an immune checkpoint inhibitor or immune agonist.
[0007] Exemplary first proteins comprise the amino acid sequences set forth in SEQ ID NOs: 2, 6, 10, 18, 20, 24, 28, 32, or 38. Exemplary second proteins comprise the amino acid sequences set forth in SEQ ID NOs: 4, 8, 12, 14, 16, 22, 26, 30, 34, 36, 40, 42, 44, 46, 51, 52, 53, or 54. Exemplary nucleic acid sequences encoding the first protein comprise the sequences set forth in SEQ ID NOs: 1, 5, 9, 17, 19, 23, 27, 31 or 37. Exemplary nucleic acid sequences encoding the second protein comprise the sequences set forth in SEQ ID NOs: 3, 7, 11, 13, 15, 21, 25, 29, 33, 35, 39, 41, 43, 45, 47, 48, 49, or 50. In one aspect, the nucleic acid sequence(s) further comprises a promoter, translation initiation signal, and leader sequence operably linked to the sequence encoding the fusion protein. Also provided are DNA vector(s) comprising the nucleic acid sequences described herein. For example, the nucleic acid sequence is in a vector for replication, expression, or both.
[0008] Also provided is a soluble fusion protein complex comprising a first soluble fusion protein complex covalently linked to a second soluble fusion protein complex. For example, the soluble fusion protein complexes of the invention are multimerized, e.g., dimerized, trimerized, or otherwise multimerized (e.g., 4 complexes, 5 complexes, etc.). For example, the multimers are homomultimers or heteromultimers. The soluble fusion protein complexes are joined by covalent bonds, e.g., disulfide bonds, chemical cross-linking agents. In some cases, one soluble fusion protein is covalently linked to another soluble fusion protein by a disulfide bond linking the Fc domain of the first soluble protein to the Fc domain of the second soluble protein.
[0009] The Fc domain or functional fragment thereof includes an Fc domain selected from the group consisting of IgG Fc domain, human IgG1 Fc domain, human IgG2 Fc domain, human IgG3 Fc domain, human IgG4 Fc domain, IgA Fc domain, IgD Fc domain, IgE Fc domain, and IgM Fc domain; mouse IgG2A domain, or any combination thereof. Optionally, the Fc domain includes an amino acid change that results in an Fc domain with altered complement or Fc receptor binding properties or altered dimerization or glycosylation profiles. Amino acid changes to produce an Fc domain with altered complement or Fc receptor binding properties or altered dimerization or glycosylation profiles are known in the art. For example, a substitution of leucine residues at positions 234 and 235 of the IgG1 CH2 (numbering based on antibody consensus sequence) (i.e., . . . P E L L G G . . . ) with alanine residues (i.e., . . . P E A A G G . . . ) results in a loss of Fc gamma receptor binding, whereas the substitution of the lysine residue at position 322 of the IgG1 CH2 (numbering based on antibody consensus sequence) (i.e., . . . K C K S L . . . ) with an alanine residue (i.e., . . . K C A S L . . . ) results in a loss of complement activation. In some examples, such mutations are combined.
[0010] In some aspects, the binding domain is covalently linked to an IL-15 polypeptide (or functional fragment thereof) by a polypeptide linker sequence. Similarly, the binding domain is covalently linked to an IL-15R.alpha. polypeptide (or functional fragment thereof) by polypeptide linker sequence. Optionally, the IL-15R.alpha. polypeptide (or functional fragment thereof) is covalently linked to the Fc domain (or functional fragment thereof) by polypeptide linker sequence. Each polypeptide linker sequence can be selected independently. Optionally, the polypeptide linker sequences are the same. Alternatively, they are different.
[0011] Optionally, the soluble fusion protein complexes of the invention are provided wherein at least one of the soluble fusion proteins comprise a detectable label. Detectable labels include, but are not limited to, biotin, streptavidin, an enzyme, or catalytically active fragment thereof, a radionuclide, a nanoparticle, a paramagnetic metal ion, or a fluorescent, phosphorescent, or chemiluminescent molecule, or any combination thereof.
[0012] In some embodiments, a nucleic acid sequence encoding a first soluble protein comprises the sequence set forth in one of SEQ ID NOS: 1, 5, 9, 17, 19, 23, 27, 31 or 37. In some embodiments, a nucleic acid sequence encoding the second soluble protein comprises the sequence set forth in one of SEQ ID NOS: 3, 7, 11, 13, 15, 21, 25, 29, 33, 35, 39, 41, 43, 45, 47, 48, 49 or 50.
[0013] In some embodiments, a nucleic acid sequence comprises SEQ ID NOS. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 35, 39, 41, 43,45, 47, 48, 49 or 50.
[0014] The nucleic acid sequences further comprise a promoter, translation initiation signal, and leader sequence operably linked to the sequence encoding the soluble protein.
[0015] In other embodiments, a peptide comprises SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 51, 52, 53 or 54.
[0016] The invention provides method for making the soluble fusion protein complexes of the invention. The method includes the steps of: a) introducing into a first host cell a DNA vector with appropriate control sequences encoding the first protein, b) culturing the first host cell in media under conditions sufficient to express the first protein in the cell or the media; c) purifying the first protein from the host cells or media, d) introducing into a second host cell a DNA vector with appropriate control sequences encoding the second protein, e) culturing the second host cell in media under conditions sufficient to express the second protein in the cell or the media; and f) purifying the second protein from the host cells or media, and g) mixing the first and second proteins under conditions sufficient to allow binding between IL-15 domain of a first protein and the soluble IL-15R.alpha. domain of a second protein to form the soluble fusion protein complex.
[0017] In some cases, the method further includes mixing the first and second protein under conditions sufficient to allow formation of a disulfide bond between the polypeptides expressed from the expression vectors.
[0018] Alternatively, methods for making soluble fusion protein complexes of the invention are carried out by a) introducing into a host cell a DNA vector with appropriate control sequences encoding the first protein and a DNA vector with appropriate control sequences encoding the second protein, b) culturing the host cell in media under conditions sufficient to express the proteins in the cell or the media and allow association between IL-15 domain of a first protein and the soluble IL-15R.alpha. domain of a second protein to form the soluble fusion protein complex; and c) purifying the soluble fusion protein complex from the host cells or media.
[0019] In one aspect, the method further includes mixing the first and second protein under conditions sufficient to allow formation of a disulfide bond between the polypeptides expressed from the expression vectors.
[0020] Also provided are methods for making soluble fusion protein complexes comprising a) introducing into a host cell a DNA vector with appropriate control sequences encoding the first and second proteins, b) culturing the host cell in media under conditions sufficient to express the proteins in the cell or the media and allow association between IL-15 domain of a first protein and the soluble IL-15R.alpha. domain of a second protein to form the soluble fusion protein complex, and to allow formation of a disulfide bond between the polypeptides; and c) purifying the soluble fusion protein complex from the host cells or media.
[0021] Optionally, the method further includes mixing the first and second protein under conditions sufficient to allow formation of a disulfide bond between the polypeptides expressed from the expression vectors.
[0022] Methods for treating a neoplasia, infectious disease, or autoimmune disease in a subject in need thereof are carried out by administering to a subject an effective amount of a pharmaceutical composition comprising a soluble fusion protein complex described herein, e.g., a soluble anti-PD-L1 scAb/IL-15N72D:anti-PD-L1 scAb/IL-15R.alpha.Su/Fc fusion protein complex, thereby treating the neoplasia, infectious disease, or autoimmune disease. For example, methods for treating solid or hematological malignancies in a subject in need thereof are carried out by administering to a subject an effective amount of a pharmaceutical composition comprising a soluble anti-human PD-L1 scAb/huIL-15N72D:anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion protein complex, thereby treating the malignancy. Exemplary anti-human PD-L1 scAb/huIL-15N72D proteins comprise the amino acid sequences set forth in SEQ ID NOs: 2 and 6. Exemplary anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc proteins comprise the amino acid sequences set forth in SEQ ID NOs: 4 and 8.
[0023] Suitable neoplasias for treatment with the methods described herein include a glioblastoma, prostate cancer, acute myeloid leukemia, B-cell neoplasm, multiple myeloma, B-cell lymphoma, B cell non-Hodgkin's lymphoma, Hodgkin's lymphoma, chronic lymphocytic leukemia, acute myeloid leukemia, cutaneous T-cell lymphoma, T-cell lymphoma, a solid tumor, urothelial/bladder carcinoma, melanoma, lung cancer, renal cell carcinoma, breast cancer, gastric and esophageal cancer, head and neck cancer, prostate cancer, pancreatic cancer, colorectal cancer, ovarian cancer, non-small cell lung carcinoma, and squamous cell head and neck carcinoma.
[0024] An exemplary infection for treatment using the methods described herein is infection with human immunodeficiency virus (HIV). Exemplary nucleic acid sequences include: SEQ ID NOS: 47, 48, 49 or 50. Exemplary amino acid sequences include: SEQ ID NOS: 51, 52, 53 or 54. The methods described herein are also useful to treat bacterial infections (e.g., gram positive or gram negative bacteria) (Oleksiewicz et al. 2012. Arch Biochem Biophys. 526:124-31). An exemplary autoimmune disease for treatment using the methods described herein is an autoimmune disease mediated by B cells. Such autoimmune diseases include rheumatoid arthritis, multiple sclerosis, idiopathic thrombocytopaenia, IgM-mediated polyneuropathy, Factor VIII deficiency, systemic lupus erythematosus, Sjogren's syndrome, inflammatory myositis, pemphigus vulgaris, neuromyelitis optica, ANCA-associated vasculitis, chronic inflammatory demyelinating polyneuropathy, autoimmune anemias, pure red cell aplasia, thrombotic thrombocytopenic purpura (TTP), idiopathic thrombocytopenic purpura (ITP), Evans syndrome, vasculitis (for example granulomatosis with polyangiitis, formerly Wegener's), bullous skin disorders (for example pemphigus, pemphigoid), type 1 diabetes mellitus, anti-NMDA receptor encephalitis and Devic's disease, Graves' ophthalmopathy, autoimmune pancreatitis, Opsoclonus myoclonus syndrome (OMS), and IgG4-related disease.
[0025] The pharmaceutical composition comprising a fusion protein complex is administered in an effective amount. For example, an effective amount of the pharmaceutical composition is between about 1 .mu.g/kg and 100 .mu.g/kg, e.g., 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 .mu.g/kg. Alternatively, T.times.M complex is administered as a fixed dose or based on body surface area (i.e., per m.sup.2).
[0026] The pharmaceutical composition comprising the fusion protein complex is administered at least one time per month, e.g., twice per month, once per week, twice per week, once per day, twice per day, every 8 hours, every 4 hours, every 2 hours, or every hour. Suitable modes of administration for the pharmaceutical composition include systemic administration, intravenous administration, local administration, subcutaneous administration, intramuscular administration, intratumoral administration, inhalation, and intraperitoneal administration.
[0027] Preferably, the fusion protein complex increases serum levels of interferon gamma (IFN-.gamma.), and/or stimulates CD4.sup.+ and CD8.sup.+ T cells and NK cells to kill diseased cells or tumor cells in a subject.
[0028] In certain aspects of the soluble fusion protein complexes of the invention, the IL-15 polypeptide is an IL-15 variant having a different amino acid sequence than native IL-15 polypeptide. The human IL-15 polypeptide is referred to herein as huIL-15, hIL-15, huIL15, hIL15, IL-15 wild type (wt), and variants thereof are referred to using the native amino acid, its position in the mature sequence and the variant amino acid. For example, huIL15N72D refers to human IL-15 comprising a substitution of N to D at position 72. In one aspect, the IL-15 variant functions as an IL-15 agonist as demonstrated, e.g., by increased binding activity for the IL-15/IL-2 .beta..gamma.c receptors (IL-15R) compared to the native IL-15 polypeptide. Alternatively, the IL-15 variant functions as an IL-15 antagonist as demonstrated by e.g., decreased binding activity for the IL-15R compared to the native IL-15 polypeptide.
[0029] Methods for killing a target cell are carried out by a) contacting a plurality of cells with a soluble fusion protein complex of the invention, wherein the plurality of cells further include immune cells bearing the IL-15R chains recognized by the IL-15 domain, or immune cells bearing checkpoint or signaling molecules modulated by the checkpoint inhibitor or immune agonist binding domains, and the target disease cells; b) activating the immune cells via the IL-15R or signaling molecules or via blockade of the checkpoint molecules; and c) killing the target disease cells by the activated immune cells. For example, the target disease cells are tumor cells, autoimmune cells, or virally infected cells. In some cases, the binding domain comprises an anti-PD-L1 antibody.
[0030] Methods for killing a target cell further comprise a) contacting a plurality of cells with a soluble fusion protein complex of the invention, wherein the plurality of cells further include immune cells bearing Fc receptor chains recognized by the Fc domain, and the target disease cells bearing an antigen recognized by binding domain such as an antigen-specific scAb; b) forming a specific binding complex (bridge) between the antigen on the target disease cells and Fc receptor chains on the immune cells sufficient to bind and activate the immune cells; and c) killing the target disease cells by the bound activated immune cells. For example, the target disease cells are tumor cells, autoimmune cells, or virally infected cells. In some cases, the binding domain comprises an anti-PD-L1 antibody.
[0031] Also provided are methods for preventing or treating disease in a patient, the method including the steps of: a) administering to the patient a soluble fusion protein complex of the invention; b) activating the immune cells in the patient; and c) damaging or killing the disease cells via the activated immune cells sufficient to prevent or treat the disease in the patient.
[0032] The invention also provides methods for preventing or treating disease in a patient in which the diseased cells, the method including the steps of: a) mixing immune cells bearing IL-15R chains or checkpoint or signaling molecules with a soluble fusion protein complex of the invention; b) activating the immune cells; c) administering to the patient the activated immune cells; and d) damaging or killing the disease cells via the activated immune cells sufficient to prevent or treat the disease in the patient.
[0033] Administration of the fusion protein complexes of the invention induces an immune response in a subject. For example, administration of the fusion protein complexes of the invention induces an immune response against cells associated with neoplasia, infectious disease, or autoimmune disease. In one aspect, the fusion protein complex of the invention increases immune cell proliferation.
[0034] The invention provides methods of stimulating immune responses in a mammal by administering to the mammal an effective amount of the soluble fusion protein complex of the invention. The invention also provides methods of suppressing immune responses in a mammal by administering to the mammal an effective amount of the soluble fusion protein complex of any one of the invention.
[0035] Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.
[0036] By "agent" is meant a peptide, nucleic acid molecule, or small compound.
[0037] By "T.times.M" is meant a complex comprising an IL-15N72D:IL-15R.alpha.Su/Fc scaffold linked to a binding domain (FIG. 2). An exemplary T.times.M is an IL-15N72D:IL-15R.alpha.Su complex comprising a fusion to a binding domain that specifically recognizes PD-L1 (PD-L1 T.times.M).
[0038] By "ameliorate" is meant decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease.
[0039] By "analog" is meant a molecule that is not identical, but has analogous functional or structural features. For example, a polypeptide analog retains the biological activity of a corresponding naturally-occurring polypeptide, while having certain biochemical modifications that enhance the analog's function relative to a naturally occurring polypeptide. Such biochemical modifications could increase the analog's protease resistance, membrane permeability, or half-life, without altering, for example, ligand binding. An analog may include an unnatural amino acid.
[0040] The term "binding domain" is intended to encompass an antibody, single chain antibody, Fab, Fv, T-cell receptor binding domain, ligand binding domain, receptor binding domain, or other antigen-specific polypeptides known in the art.
[0041] The invention includes antibodies or fragments of such antibodies, so long as they exhibit the desired biological activity. Also included in the invention are chimeric antibodies, such as humanized antibodies. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. Humanization can be performed, for example, using methods described in the art, by substituting at least a portion of a rodent complementarity-determining region for the corresponding regions of a human antibody.
[0042] The term "antibody" or "immunoglobulin" is intended to encompass both polyclonal and monoclonal antibodies. The preferred antibody is a monoclonal antibody reactive with the antigen. The term "antibody" is also intended to encompass mixtures of more than one antibody reactive with the antigen (e.g., a cocktail of different types of monoclonal antibodies reactive with the antigen). The term "antibody" is further intended to encompass whole antibodies, biologically functional fragments thereof, single-chain antibodies, and genetically altered antibodies such as chimeric antibodies comprising portions from more than one species, bifunctional antibodies, antibody conjugates, humanized and human antibodies. Biologically functional antibody fragments, which can also be used, are those peptide fragments derived from an antibody that are sufficient for binding to the antigen. "Antibody" as used herein is meant to include the entire antibody as well as any antibody fragments (e.g. F(ab')2, Fab', Fab, Fv) capable of binding the epitope, antigen, or antigenic fragment of interest.
[0043] By "binding to" a molecule is meant having a physicochemical affinity for that molecule.
[0044] "Detect" refers to identifying the presence, absence, or amount of the analyte to be detected.
[0045] By "disease" is meant any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ. Examples of diseases include neoplasias, autoimmune diseases and viral infections.
[0046] By the terms "effective amount" and "therapeutically effective amount" of a formulation or formulation component is meant a sufficient amount of the formulation or component, alone or in a combination, to provide the desired effect. For example, by "an effective amount" is meant an amount of a compound, alone or in a combination, required to ameliorate the symptoms of a disease relative to an untreated patient. The effective amount of active compound(s) used to practice the present invention for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an "effective" amount.
[0047] By "fragment" is meant a portion of a polypeptide or nucleic acid molecule. This portion contains, preferably, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide. For example, a fragment may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nucleotides or amino acids. However, the invention also comprises polypeptides and nucleic acid fragments, so long as they exhibit the desired biological activity of the full-length polypeptides and nucleic acid, respectively. A nucleic acid fragment of almost any length is employed. For example, illustrative polynucleotide segments with total lengths of about 10,000, about 5,000, about 3,000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length (including all intermediate lengths) are included in many implementations of this invention. Similarly, a polypeptide fragment of almost any length is employed. For example, illustrative polypeptide segments with total lengths of about 10,000, about 5,000, about 3,000, about 2,000, about 1,000, about 5,000, about 1,000, about 500, about 200, about 100, or about 50 amino acids in length (including all intermediate lengths) are included in many implementations of this invention.
[0048] The terms "isolated", "purified", or "biologically pure" refer to material that is free to varying degrees from components which normally accompany it as found in its native state. "Isolate" denotes a degree of separation from original source or surroundings. "Purify" denotes a degree of separation that is higher than isolation.
[0049] A "purified" or "biologically pure" protein is sufficiently free of other materials such that any impurities do not materially affect the biological properties of the protein or cause other adverse consequences. That is, a nucleic acid or peptide of this invention is purified if it is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Purity and homogeneity are typically determined using analytical chemistry techniques, for example, polyacrylamide gel electrophoresis or high-performance liquid chromatography. The term "purified" can denote that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. For a protein that can be subjected to modifications, for example, phosphorylation or glycosylation, different modifications may give rise to different isolated proteins, which can be separately purified.
[0050] Similarly, by "substantially pure" is meant a nucleotide or polypeptide that has been separated from the components that naturally accompany it. Typically, the nucleotides and polypeptides are substantially pure when they are at least 60%, 70%, 80%, 90%, 95%, or even 99%, by weight, free from the proteins and naturally-occurring organic molecules with they are naturally associated.
[0051] By "isolated nucleic acid" is meant a nucleic acid that is free of the genes which flank it in the naturally-occurring genome of the organism from which the nucleic acid is derived. The term covers, for example: (a) a DNA which is part of a naturally occurring genomic DNA molecule, but is not flanked by both of the nucleic acid sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner, such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein. Isolated nucleic acid molecules according to the present invention further include molecules produced synthetically, as well as any nucleic acids that have been altered chemically and/or that have modified backbones. For example, the isolated nucleic acid is a purified cDNA or RNA polynucleotide. Isolated nucleic acid molecules also include messenger ribonucleic acid (mRNA) molecules.
[0052] By an "isolated polypeptide" is meant a polypeptide of the invention that has been separated from components that naturally accompany it. Typically, the polypeptide is isolated when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, a polypeptide of the invention. An isolated polypeptide of the invention may be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid encoding such a polypeptide; or by chemically synthesizing the protein. Purity can be measured by any appropriate method, for example, column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis.
[0053] By "marker" is meant any protein or polynucleotide having an alteration in expression level or activity that is associated with a disease or disorder.
[0054] By "neoplasia" is meant a disease or disorder characterized by excess proliferation or reduced apoptosis. Illustrative neoplasms for which the invention can be used include, but are not limited to leukemias (e.g., acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myelocytic leukemia, chronic lymphocytic leukemia), polycythemia vera, lymphoma (Hodgkin's disease, non-Hodgkin's disease), Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors such as sarcomas and carcinomas (e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, nile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, uterine cancer, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, glioblastoma multiforme, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodenroglioma, schwannoma, meningioma, melanoma, neuroblastoma, and retinoblastoma). In particular embodiments, the neoplasia is multiple myeloma, beta-cell lymphoma, urothelial/bladder carcinoma, or melanoma. As used herein, "obtaining" as in "obtaining an agent" includes synthesizing, purchasing, or otherwise acquiring the agent.
[0055] By "reduces" is meant a negative alteration of at least 5%, 10%, 25%, 50%, 75%, or 100%.
[0056] By "reference" is meant a standard or control condition.
[0057] A "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset of or the entirety of a specified sequence; for example, a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence. For polypeptides, the length of the reference polypeptide sequence will generally be at least about 16 amino acids, preferably at least about 20 amino acids, more preferably at least about 25 amino acids, and even more preferably about 35 amino acids, about 50 amino acids, or about 100 amino acids. For nucleic acids, the length of the reference nucleic acid sequence will generally be at least about 50 nucleotides, preferably at least about 60 nucleotides, more preferably at least about 75 nucleotides, and even more preferably about 100 nucleotides or about 300 nucleotides or any integer thereabout or therebetween.
[0058] By "specifically binds" is meant a compound or antibody that recognizes and binds a polypeptide of the invention, but which does not substantially recognize and bind other molecules in a sample, for example, a biological sample, which naturally includes a polypeptide of the invention.
[0059] Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. By "hybridize" is meant pair to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399; Kimmel, A. R. (1987) Methods Enzymol. 152:507).
[0060] For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and more preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30.degree. C., more preferably of at least about 37.degree. C., and most preferably of at least about 42.degree. C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred: embodiment, hybridization will occur at 30.degree. C. in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37.degree. C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 .mu.g/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42.degree. C. in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 .mu.g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.
[0061] For most applications, washing steps that follow hybridization will also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25.degree. C., more preferably of at least about 42.degree. C., and even more preferably of at least about 68.degree. C. In a preferred embodiment, wash steps will occur at 25.degree. C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42 C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 68.degree. C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art. Hybridization techniques are well known to those skilled in the art and are described, for example, in Benton and Davis (Science 196:180, 1977); Grunstein and Hogness (Proc. Natl. Acad. Sci., USA 72:3961, 1975); Ausubel et al. (Current Protocols in Molecular Biology, Wiley Interscience, New York, 2001); Berger and Kimmel (Guide to Molecular Cloning Techniques, 1987, Academic Press, New York); and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.
[0062] By "substantially identical" is meant a polypeptide or nucleic acid molecule exhibiting at least 50% identity to a reference amino acid sequence (for example, any one of the amino acid sequences described herein) or nucleic acid sequence (for example, any one of the nucleic acid sequences described herein). Preferably, such a sequence is at least 60%, more preferably 80% or 85%, and more preferably 90%, 95% or even 99% identical at the amino acid level or nucleic acid to the sequence used for comparison.
[0063] Sequence identity is typically measured using sequence analysis software (for example, Sequencher, Gene Codes Corporation, 775 Technology Drive, Ann Arbor, Mich.; Vector NTI, Life Technologies, 3175 Staley Rd. Grand Island, N.Y.). Such software matches identical or similar sequences by assigning degrees of homology to various substitutions, deletions, and/or other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. In an exemplary approach to determining the degree of identity, a BLAST program may be used, with a probability score between e.sup.-3 and e.sup.-100 indicating a closely related sequence.
[0064] By "subject" is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline. The subject is preferably a mammal in need of such treatment, e.g., a subject that has been diagnosed with B cell lymphoma or a predisposition thereto. The mammal is any mammal, e.g., a human, a primate, a mouse, a rat, a dog, a cat, a horse, as well as livestock or animals grown for food consumption, e.g., cattle, sheep, pigs, chickens, and goats. In a preferred embodiment, the mammal is a human.
[0065] Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
[0066] The terms "treating" and "treatment" as used herein refer to the administration of an agent or formulation to a clinically symptomatic individual afflicted with an adverse condition, disorder, or disease, so as to affect a reduction in severity and/or frequency of symptoms, eliminate the symptoms and/or their underlying cause, and/or facilitate improvement or remediation of damage. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition, or symptoms associated therewith be completely eliminated.
[0067] The terms "preventing" and "prevention" refer to the administration of an agent or composition to a clinically asymptomatic individual who is susceptible or predisposed to a particular adverse condition, disorder, or disease, and thus relates to the prevention of the occurrence of symptoms and/or their underlying cause.
[0068] Unless specifically stated or obvious from context, as used herein, the term "or" is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms "a", "an", and "the" are understood to be singular or plural.
[0069] Unless specifically stated or obvious from context, as used herein, the term "about" is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.
[0070] The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
[0071] Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
[0072] The transitional term "comprising," which is synonymous with "including," "containing," or "characterized by," is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. By contrast, the transitional phrase "consisting of" excludes any element, step, or ingredient not specified in the claim. The transitional phrase "consisting essentially of" limits the scope of a claim to the specified materials or steps "and those that do not materially affect the basic and novel characteristic(s)" of the claimed invention.
[0073] Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All published foreign patents and patent applications cited herein are incorporated herein by reference.
[0074] Genbank and NCBI submissions indicated by accession number cited herein are incorporated herein by reference. All other published references, documents, manuscripts, and scientific literature cited herein are incorporated herein by reference. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
BRIEF DESCRIPTION OF THE DRAWINGS
[0075] FIG. 1 is a schematic diagram illustrating the activity of the PD-L1 T.times.M complex comprising anti-PD-L1 scAb/huIL-15N72D and anti-PD-L1 scAb/huIL-15R.alpha.Su/Fc fusion proteins, and its immune-mediated effects against disease cells expressing PD-L1 antigen.
[0076] FIG. 2 is a schematic diagram illustrating different T.times.M complexes comprising the IL-15/ IL-15R.alpha.Su/Fc scaffold fused to binding domains that recognize immune checkpoint molecules, immune signaling molecule and/or disease antigens.
[0077] FIG. 3 is a photograph showing a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the T.times.M complex following disulfide bond reduction. Right lane: PD-L1 T.times.M; left lane: marker.
[0078] FIG. 4A is a line graph showing the binding activity of an anti-human PD-L1 T.times.M complex to antibodies specific to human IL-15 and human IgG. FIG. 4B is a line graph showing the binding activity of a second anti-human PD-L1 T.times.M complex to antibodies specific to human IL-15 and human IgG. FIG. 4C is a line graph showing the binding activity of an anti-mouse PD-L1 T.times.M complex to antibodies specific to human IL-15 and mouse IgG.
[0079] FIG. 5A is a line graph showing the binding activity of a PD-L1 T.times.M complex to PD-L1-bearing human MB231 tumor cells. FIG. 5B is a line graph showing the blocking activity of a PD-L1 T.times.M complex of PD-L1 expressed on human MB231 tumor cells. FIG. 5C is a line graph showing the binding activity of a PD-L1 T.times.M complex to PD-L1-bearing human MB231 tumor cells.
[0080] FIG. 6A is a line graph showing the blocking activity of a PD-L1 T.times.M complex of PD-L1 expressed on mouse 5T33P tumor cells. FIG. 6B is a line graph showing the blocking activity of a PD-L1 T.times.M complex of PD-L1 expressed on mouse MB49luc tumor cells.
[0081] FIG. 7A and FIG. 7B are line graphs comparing the blocking activities of an anti-PD-L1 Ab and a PD-L1 T.times.M complex of PD-L1 expressed on mouse A20 tumor cells.
[0082] FIG. 8 is a line graph illustrating the proliferation of IL-15-dependent 32D.beta. cells mediated by a PD-L1 T.times.M complex.
[0083] FIG. 9A is a schematic diagram illustrating "4 headed" and "2 headed" PD-L1 T.times.M complexes. FIG. 9B is a photograph showing SDS-PAGE analysis of four- and two-headed mouse-specific PD-L1 T.times.M complexes following disulfide bond reduction. FIG. 9C and FIG. 9D show line graphs representing the chromatographic profiles of two- and four-headed mouse-specific PD-L1 T.times.M complexes, respectively, following elution on an analytical size exclusion column, demonstrating separation of T.times.M complexes from protein aggregates.
[0084] FIG. 10A is a line graph showing the binding activity of two- and four-headed mouse-specific PD-L1 T.times.M complexes to IL-2R.beta..gamma.-bearing 32D.beta. cells. FIG. 10B and FIG. 10C show line graphs demonstrating the blocking activity of the two- and four-headed mouse-specific PD-L1 T.times.M complexes of PD-L1 expressed on 5T33P myeloma cells.
[0085] FIG. 11A is a line graph illustrating the proliferation of IL-15-dependent 32D.beta. cells mediated by a two-headed mouse-specific PD-L1 T.times.M complex compared to ALT-803 (IL-15N72D:IL-15R.alpha./Fc complex). FIG. 11B is a line graph illustrating the proliferation of IL-15-dependent 32D.beta. cells mediated by a four-headed mouse-specific PD-L1 T.times.M complex compared to ALT-803.
[0086] FIG. 12A is a photograph showing SDS-PAGE analysis of the two and four headed human-specific PD-L1 T.times.M complexes following disulfide bond reduction. FIG. 12B and FIG. 12C show line graphs representing the chromatographic profiles of two- and four-headed human-specific PD-L1 T.times.M complexes, respectively, following elution on an analytical size exclusion column, demonstrating separation of T.times.M complexes from protein aggregates.
[0087] FIG. 13 is a line graph showing the blocking activity of the two- and four-headed human-specific PD-L1 T.times.M complexes of PD-L1 expressed on PC-3 human prostate cancer cells.
[0088] FIG. 14A is a line graph illustrating the proliferation of IL-15-dependent 32D.beta. cells mediated by a two-headed human-specific PD-L1 T.times.M complex compared to ALT-803. FIG. 14B is a line graph illustrating the proliferation of IL-15-dependent 32D.beta. cells mediated by a four-headed human-specific PD-L1 T.times.M complex compared to ALT-803.
[0089] FIG. 15A is a bar chart showing the spleen weights of mice treated with PBS, ALT-803, four-headed mouse-specific PD-L1 T.times.M (T4M-mPD-L1), and two-headed mouse-specific PD-L1 T.times.M (T2M-mPD-L1). FIG. 15B and FIG. 15C show bar charts illustrating the percentage of different immune cell subsets in the spleens and lymph nodes, respectively, of mice treated with PBS, ALT-803, four-headed mouse-specific PD-L1 T.times.M (T4M-mPD-L1), and two-headed mouse-specific PD-L1 T.times.M (T2M-mPD-L1).
[0090] FIG. 16 is a bar chart illustrating the cytotoxicity of immune cells against 5T33 myeloma cells induced by PD-L1 T.times.M, anti-PD-L1 Ab or ALT-803.
[0091] FIG. 17 is a bar chart illustrating the cytotoxicity of human immune cells against PD-L1-positive SW1990 human pancreatic cancer cells induced by anti-human PD-L1 Ab, two-headed human-specific PD-L1 T.times.M (T4M-mPD-L1), or four-headed human-specific PD-L1 T.times.M (T2M-mPD-L1) compared to medium alone.
[0092] FIG. 18 is a line graph illustrating the survival of mice bearing 5T33 myeloma tumors following treatment with PD-L1 T.times.M complex, ALT-803, ALT-803+anti-PD-L1 Ab or PBS.
[0093] FIG. 19 is a line graph illustrating the survival of mice bearing orthotopic MB49luc bladder tumors following treatment with 2H PD-L1 T.times.M complex, ALT-803, ALT-803+anti-PD-L1 Ab or PBS.
[0094] FIGS. 20A and 20B show line graphs representing the chromatographic profiles of different purified T.times.M proteins following elution on an analytical size exclusion column, demonstrating separation of T.times.M complexes from protein aggregates.
[0095] FIG. 21A is a line graph showing the blocking activity of a CTLA-4 T.times.M complex of CTLA-4 expressed on mouse lymphocytes. FIG. 21B is a line graph showing the blocking activity of a CTLA-4 T.times.M complex of CTLA-4 expressed on human lymphocytes.
[0096] FIG. 22A is a line graph showing the blocking activity of a PD-L1/CTLA-4 T.times.M complex of PD-L1 expressed on mouse 5T33P tumor cells. FIG. 22B is a line graph showing the blocking activity of a PD-L1/CTLA-4 T.times.M complex of CTLA-4 expressed on mouse lymphocytes.
[0097] FIG. 23A is a line graph showing the binding activity of a CD47 T.times.M complex to CD47-bearing mouse B 16F10 melanoma tumor cells. FIG. 23B is a line graph showing the binding activity of a CD47 T.times.M complex to CD47-bearing human Jurkat T cells.
[0098] FIG. 24A is a line graph demonstrating the binding activity of an TNT scAb T.times.M complex to single stranded DNA. FIG. 24B is a line graph demonstrating the binding activity of an TNT scAb/anti-PD-L1 scAb T.times.M complex to single stranded DNA.
[0099] FIG. 25A is a line graph showing the binding activity of TNT scAb T.times.M, TNT scAb/anti-PD-L1 scAb T.times.M and 2-headed anti-PD-L1 scAb T.times.M complexes to permeabilized human MB231 breast cancer cells. FIG. 25B is a line graph showing the binding activity of TNT scAb T.times.M, TNT scAb/anti-PD-L1 scAb T.times.M and 2-headed anti-PD-L1 scAb T.times.M complexes to permeabilized human A549 lung cancer cells.
[0100] FIG. 26 is a line graph showing the binding activity of 2-headed hOAT scAb T.times.M, anti-human PD-L1 scAb/hOAT scAb T.times.M, 2-headed anti-human PD-L1 scAb T.times.M complexes and hOAT and anti-human PD-L1 control Abs to human TF-positive PD-L1-positive SW1990 human pancreatic cancer cells
[0101] FIG. 27A is a line graph demonstrating the binding activity of an LFA-1 T.times.M complex to antibodies specific to human IL-15 and human IgG. FIG. 27B is a bar graph showing the binding activity of an LFA-1 T.times.M complex to ICAM-1.
[0102] FIG. 28 is a line graph demonstrating the binding activity of a Notch1-specific T.times.M complex to antibodies specific to human IL-15 and human IgG.
[0103] FIG. 29 is a line graph demonstrating the binding activity of an anti-human TIM3 scAb T.times.M complex to antibodies specific to human IL-15 and human IgG.
[0104] FIG. 30A and FIG. 30B are line graphs demonstrating the binding activity of HIV-specific bNAb scFv T.times.M complexes to antibodies specific to human IL-15 and human IgG.
[0105] FIG. 30C through FIG. 30F show line graphs demonstrating the binding activity of HIV-specific bNAb T.times.M complexes to HIV envelope proteins.
[0106] FIG. 31 is a bar chart illustrating the cytotoxicity of human immune cells against human TF-positive SW1990 human pancreatic cancer cells induced by 2-headed hOAT scAb T.times.M or hOAT control Ab compared to medium alone.
DETAILED DESCRIPTION
[0107] The invention is based, at least in part, on the surprising discovery that multi-specific IL-15-based protein complexes enhance the activity of immune cells and promote their activity against disease cells, thereby resulting in reduction or prevention of disease. These protein complexes also show increased binding to disease and target antigens. Provided herein are multi-specific protein complexes with one domain comprising IL-15 or a functional variant and a binding domain comprising a disease-specific binding domain, immune checkpoint inhibitor or immune agonist. Such protein complexes have utility in methods for treating a neoplasia, infectious disease, or autoimmune disease in a subject. Specifically, as described in detail below, a soluble anti-PD-L1 scAb/huIL-15N72D:anti-PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc complex ("PD-L1 T.times.M") stimulated immune cells to kill tumor target cells (FIG. 1). Thus, provided herein are compositions featuring PD-L1 T.times.M and methods of using such compositions to enhance an immune response against a neoplasia (e.g., solid and hematologic tumors).
[0108] As described herein, the use of proteins with the capability of targeting diseased cells for host immune recognition and response is an effective strategy for treating cancer, infectious diseases, and autoimmune diseases. As described in U.S. Pat. No. 8,507,222 (incorporated herein by reference), a protein scaffold comprising IL-15 and IL-15 receptor a domains has been used to generate multi-specific proteins capable of recognizing antigens on disease cells and receptors on immune cells. See, U.S. Pat. No. 8,507,222 at Example 15. Described herein is the generation of soluble multi-specific protein complexes comprising IL-15 and IL-15 receptor a linked to one or more binding domains recognizing immune checkpoint or signaling molecules. In some cases, these complexes also comprise binding domains that recognize antigens, such as PD-L1, ssDNA, CD20, HER2, EGFR, CD19, CD38, CD52, GD2, CD33, Notch1, intercellular adhesion molecule 1 (ICAM-1), tissue factor, HIV envelope or other tumor antigens, expressed on disease cells.
[0109] In some cases, the binding domain comprises a single chain antibody wherein an immunoglobulin light chain variable domain covalently linked to an immunoglobulin heavy chain variable domain by a polypeptide linker sequence. The single chain antibody domain can be arranged in either the VH-linker-VL or VL-linker-VH format. Alternatively, the binding domain comprises a soluble or extracellular ligand or receptor domain capable of acting as an immune checkpoint inhibitor or immune agonist. The binding domains recognizing an immune checkpoint or signaling molecule are linked to either the N- or C-termini of the IL-15 or IL-15 receptor a proteins with or without an additional linker sequence so long as binding activity is maintained. Preferably, the binding domain is linked to the N-terminus of the human IL-15N72D superagonist protein (huIL-15N72D). Alternatively, the binding domain is linked to the C-terminus of the human IL-15N72D protein. Preferably, the binding domain is linked to the N-terminus of the human IL-15 receptor a sushi domain (huIL-15R.alpha.Su). Alternatively, the binding domain is linked to the C-terminus of the huIL-15R.alpha.SuFc protein. In some cases, the multi-specific protein complexes of the invention further comprise an IgG Fc domain for protein dimerization and recognition of CD16 receptors on immune cells. Such a domain mediates stimulation of antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) against target cells. In some examples, it is useful to employ Fc domains with enhanced or decreased CD16 binding activity. In one aspect, the Fc domain contains amino acid substitutions L234A and L235A (LALA) (number based on Fc consensus sequence) that reduce ADCC activity, but retain the ability to form disulfide-bound dimers.
Interleukin-15
[0110] Interleukin-15 (IL-15) is an important cytokine for the development, proliferation, and activation of effector NK cells and CD8.sup.+ memory T cells. IL-15 binds to the IL-15 receptor a (IL-15R.alpha.) and is presented in trans to the IL-2/IL-15 receptor .beta.-common .gamma. chain (IL-15R.beta..gamma..sub.c) complex on effector cells. IL-15 and IL-2 share binding to the IL-15R.beta..gamma..sub.c, and signal through STAT3 and STAT5 pathways. However, unlike IL-2, IL-15 does not support maintenance of CD4.sup.+CD25.sup.+FoxP3.sup.+ regulatory T (Treg) cells or induce cell death of activated CD8.sup.+ T cells, effects that may have limited the therapeutic activity of IL-2 against multiple myeloma. Additionally, IL-15 is the only cytokine known to provide anti-apoptotic signaling to effector CD8.sup.+ T cells. IL-15, either administered alone or as a complex with the IL-15R.alpha., exhibits potent anti-tumor activities against well-established solid tumors in experimental animal models and, thus, has been identified as one of the most promising immunotherapeutic drugs that could potentially cure cancer.
[0111] To facilitate clinical development of an IL-15-based cancer therapeutic, an IL-15 mutant (IL-15N72D) with increased biological activity compared to IL-15 was identified (Zhu et al., J Immunol, 183: 3598-3607, 2009). The pharmacokinetics and biological activity of this IL-15 super-agonist (IL-15N72D) was further improved by the creation of IL-15N72D:IL-15R.alpha./Fc fusion complex (ALT-803), such that the super agonist complex has at least 25-times the activity of the native cytokine in vivo (Han et al., Cytokine, 56: 804-810, 2011).
Immune Checkpoint Inhibitor and Immune Agonist Domains
[0112] In other embodiments, the binding domain is specific to an immune checkpoint or signaling molecule or its ligand and acts as an inhibitor of immune checkpoint suppressive activity or as an agonist of immune stimulatory activity. Such immune checkpoint and signaling molecules and ligands include PD-1, PD-L1, PD-L2, CTLA-4, CD28, CD80, CD86, B7-H3, B7-H4, B7-H5, ICOS-L, ICOS, BTLA, CD137L, CD137, HVEM, KIR, 4-1BB, OX40L, CD70, CD27, CD47, CIS, OX40, GITR, IDO, TIM3, GAL9, VISTA, CD155, TIGIT, LIGHT, LAIR-1, Siglecs and A2aR (Pardoll DM. 2012. Nature Rev Cancer 12:252-264, Thaventhiran T, et al. 2012. J Clin Cell Immunol S12:004). Additionally, preferred antibody domains of the invention may include ipilimumab and/or tremelimumab (anti-CTLA4), nivolumab, pembrolizumab, pidilizumab, TSR-042, ANB011, AMP-514 and AMP-224 (a ligand-Fc fusion) (anti-PD1), atezolizumab (MPDL3280A), avelumab (MSB0010718C), durvalumab (MEDI4736), MEDI0680, and BMS-9365569 (anti-PDL1), MEDI6469 (anti-OX40 agonist), BMS-986016, IMP701, IMP731, IMP321 (anti-LAG3) and GITR ligand.
Antigen-Specific Binding Domains
[0113] Antigen-specific binding domains consist of polypeptides that specifically bind to targets on diseased cells. Alternatively, these domains may bind to targets on other cells that support the diseased state, such as targets on stromal cells that support tumor growth or targets on immune cells that support disease-mediated immunosuppression. Antigen-specific binding domains include antibodies, single chain antibodies, Fabs, Fv, T-cell receptor binding domains, ligand binding domains, receptor binding domains, domain antibodies, single domain antibodies, minibodies, nanobodies, peptibodies, or various other antibody mimics (such as affimers, affitins, alphabodies, atrimers, CTLA4-based molecules, adnectins, anticalins, Kunitz domain-based proteins, avimers, knottins, fynomers, darpins, affibodies, affilins, monobodies and armadillo repeat protein-based proteins (Weidle, UH, et al. 2013. Cancer Genomics & Proteomics 10: 155-168)) known in the art.
[0114] In certain embodiments, the antigen for the antigen-specific binding domain comprises a cell surface receptor or ligand. In a further embodiment, the antigen comprises a CD antigen, cytokine or chemokine receptor or ligand, growth factor receptor or ligand, tissue factor, cell adhesion molecule, MHC/MHC-like molecules, Fc receptor, Toll-like receptor, NK receptor, TCR, BCR, positive/negative co-stimulatory receptor or ligand, death receptor or ligand, tumor associated antigen, or virus encoded antigen.
[0115] Preferably, the antigen-specific binding domain is capable of binding to an antigen on a tumor cell. Tumor-specific binding domain may be derived from antibodies approved for treatment of patients with cancer include rituximab, ofatumumab, and obinutuzumab (anti-CD20 Abs); trastuzumab and pertuzumab (anti-HER2 Abs); cetuximab and panitumumab (anti-EGFR Abs); and alemtuzumab (anti-CD52 Ab). Similarly, binding domains from approved antibody-effector molecule conjugates specific to CD20 (.sup.90Y-labeled ibritumomab tiuxetan, .sup.131I-labeled tositumomab), HER2 (ado-trastuzumab emtansine), CD30 (brentuximab vedotin) and CD33 (gemtuzumab ozogamicin) (Sliwkowski MX, Mellman I. 2013 Science 341:1192) could be used.
[0116] Additionally, preferred binding domains of the invention may include various other tumor-specific antibody domains known in the art. The antibodies and their respective targets for treatment of cancer include but are not limited to nivolumab (anti-PD-1 Ab), TA99 (anti-gp75), 3F8 (anti-GD2), 8H9 (anti-B7-H3), abagovomab (anti-CA-125 (imitation)), adecatumumab (anti-EpCAM), afutuzumab (anti-CD20), alacizumab pegol (anti-VEGFR2), altumomab pentetate (anti-CEA), amatuximab (anti-mesothelin), AME-133 (anti-CD20), anatumomab mafenatox (anti-TAG-72), apolizumab (anti-HLA-DR), arcitumomab (anti-CEA), bavituximab (anti-phosphatidylserine), bectumomab (anti-CD22), belimumab (anti-BAFF), besilesomab (anti-CEA-related antigen), bevacizumab (anti-VEGF-A), bivatuzumab mertansine (anti-CD44 v6), blinatumomab (anti-CD19), BMS-663513 (anti-CD137), brentuximab vedotin (anti-CD30 (TNFRSF8)), cantuzumab mertansine (anti-mucin CanAg), cantuzumab ravtansine (anti-MUC1), capromab pendetide (anti-prostatic carcinoma cells), carlumab (anti-MCP-1), catumaxomab (anti-EpCAM, CD3), cBR96-doxorubicin immunoconjugate (anti-Lewis-Y antigen), CC49 (anti-TAG-72), cedelizumab (anti-CD4), Ch.14.18 (anti-GD2), ch-TNT (anti-DNA associated antigens), citatuzumab bogatox (anti-EpCAM), cixutumumab (anti-IGF-1 receptor), clivatuzumab tetraxetan (anti-MUC1), conatumumab (anti-TRAIL-R2), CP-870893 (anti-CD40), dacetuzumab (anti-CD40), daclizumab (anti-CD25), dalotuzumab (anti-insulin-like growth factor I receptor), daratumumab (anti-CD38 (cyclic ADP ribose hydrolase)), demcizumab (anti-DLL4), detumomab (anti-B-lymphoma cell), drozitumab (anti-DR5), duligotumab (anti-HER3), dusigitumab (anti-ILGF2), ecromeximab (anti-GD3 ganglioside), edrecolomab (anti-EpCAM), elotuzumab (anti-SLAMF7), elsilimomab (anti-IL-6), enavatuzumab (anti-TWEAK receptor), enoticumab (anti-DLL4), ensituximab (anti-5AC), epitumomab cituxetan (anti-episialin), epratuzumab (anti-CD22), ertumaxomab (anti-HER2/neu, CD3), etaracizumab (anti-integrin .alpha.v.beta.3), faralimomab (anti-Interferon receptor), farletuzumab (anti-folate receptor 1), FBTA05 (anti-CD20), ficlatuzumab (anti-HGF), figitumumab (anti-IGF-1 receptor), flanvotumab (anti-TYRP1(glycoprotein 75)), fresolimumab (anti-TGF (3), futuximab (anti-EGFR), galiximab (anti-CD80), ganitumab (anti-IGF-I), gemtuzumab ozogamicin (anti-CD33), girentuximab (anti-carbonic anhydrase 9 (CA-IX)), glembatumumab vedotin (anti-GPNMB), guselkumab (anti-IL13), ibalizumab (anti-CD4), ibritumomab tiuxetan (anti-CD20), icrucumab (anti-VEGFR-1), igovomab (anti-CA-125), IMAB362 (anti-CLDN18.2), IMC-CS4 (anti-CSF1R), IMC-TR1 (TGF.beta.RII), imgatuzumab (anti-EGFR), inclacumab (anti-selectin P), indatuximab ravtansine (anti-SDC1), inotuzumab ozogamicin (anti-CD22), intetumumab (anti-CD51), ipilimumab (anti-CD152), iratumumab (anti-CD30 (TNFRSF8)), KM3065 (anti-CD20), KW-0761 (anti-CD194), LY2875358 (anti-MET) labetuzumab (anti-CEA), lambrolizumab (anti-PDCD1), lexatumumab (anti-TRAIL-R2), lintuzumab (anti-CD33), lirilumab (anti-KIR2D), lorvotuzumab mertansine (anti-CD56), lucatumumab (anti-CD40), lumiliximab (anti-CD23 (IgE receptor)), mapatumumab (anti-TRAIL-R1), margetuximab (anti-ch4D5), matuzumab (anti-EGFR), mavrilimumab (anti-GMCSF receptor .alpha.-chain), milatuzumab (anti-CD74), minretumomab (anti-TAG-72), mitumomab (anti-GD3 ganglioside), mogamulizumab (anti-CCR4), moxetumomab pasudotox (anti-CD22), nacolomab tafenatox (anti-C242 antigen), naptumomab estafenatox (anti-5T4), narnatumab (anti-RON), necitumumab (anti-EGFR), nesvacumab (anti-angiopoietin 2), nimotuzumab (anti-EGFR), nivolumab (anti-IgG4), nofetumomab merpentan, ocrelizumab (anti-CD20), ocaratuzumab (anti-CD20), olaratumab (anti-PDGF-R .alpha.), onartuzumab (anti-c-MET), ontuxizumab (anti-TEM1), oportuzumab monatox (anti-EpCAM), oregovomab (anti-CA-125), otlertuzumab (anti-CD37), pankomab (anti-tumor specific glycosylation of MUC1), parsatuzumab (anti-EGFL7), pascolizumab (anti-IL-4), patritumab (anti-HER3), pemtumomab (anti-MUC1), pertuzumab (anti-HER2/neu), pidilizumab (anti-PD-1), pinatuzumab vedotin (anti-CD22), pintumomab (anti-adenocarcinoma antigen), polatuzumab vedotin (anti-CD79B), pritumumab (anti-vimentin), PRO131921 (anti-CD20), quilizumab (anti-IGHE), racotumomab (anti-N-glycolylneuraminic acid), radretumab (anti-fibronectin extra domain-B), ramucirumab (anti-VEGFR2), rilotumumab (anti-HGF), robatumumab (anti-IGF-1 receptor), roledumab (anti-RHD), rovelizumab (anti-CD11 & CD18), samalizumab (anti-CD200), satumomab pendetide (anti-TAG-72), seribantumab (anti-ERBB3), SGN-CD19A (anti-CD19), SGN-CD33A (anti-CD33), sibrotuzumab (anti-FAP), siltuximab (anti-IL-6), solitomab (anti-EpCAM), sontuzumab (anti-episialin), tabalumab (anti-BAFF), tacatuzumab tetraxetan (anti-alpha-fetoprotein), taplitumomab paptox (anti-CD19), telimomab aritox, tenatumomab (anti-tenascin C), teneliximab (anti-CD40), teprotumumab (anti-CD221), TGN1412 (anti-CD28), ticilimumab (anti-CTLA-4), tigatuzumab (anti-TRAIL-R2), TNX-650 (anti-IL-13), tositumomab (anti-CS20), tovetumab (anti-CD140a), TRBS07 (anti-GD2), tregalizumab (anti-CD4), tremelimumab (anti-CTLA-4), TRU-016 (anti-CD37), tucotuzumab celmoleukin (anti-EpCAM), ublituximab (anti-CD20), urelumab (anti-4-1BB), vantictumab (anti-Frizzled receptor), vapaliximab (anti-AOC3 (VAP-1)), vatelizumab (anti-ITGA2), veltuzumab (anti-CD20), vesencumab (anti-NRP1), visilizumab (anti-CD3), volociximab (anti-integrin .alpha.5.beta.1), vorsetuzumab mafodotin (anti-CD70), votumumab (anti-tumor antigen CTAA16.88), zalutumumab (anti-EGFR), zanolimumab (anti-CD4), zatuximab (anti-HER1), ziralimumab (anti-CD147 (basigin)), RG7636 (anti-ETBR), RG7458 (anti-MUC16), RG7599 (anti-NaPi2b), MPDL3280A (anti-PD-L1), RG7450 (anti-STEAP1), and GDC-0199 (anti-Bcl-2).
[0117] Other antibody domains or tumor target binding proteins useful in the invention (e.g. TCR domains) include, but are not limited to, those that bind the following antigens (note, the cancer indications indicated represent non-limiting examples): aminopeptidase N (CD13), annexin A1, B7-H3 (CD276, various cancers), CA125 (ovarian cancers), CA15-3 (carcinomas), CA19-9 (carcinomas), L6 (carcinomas), Lewis Y (carcinomas), Lewis X (carcinomas), alpha fetoprotein (carcinomas), CA242 (colorectal cancers), placental alkaline phosphatase (carcinomas), prostate specific antigen (prostate), prostatic acid phosphatase (prostate), epidermal growth factor (carcinomas), CD2 (Hodgkin's disease, NHL lymphoma, multiple myeloma), CD3 epsilon (T cell lymphoma, lung, breast, gastric, ovarian cancers, autoimmune diseases, malignant ascites), CD19 (B cell malignancies), CD20 (non-Hodgkin's lymphoma, B-cell neoplasmas, autoimmune diseases), CD21 (B-cell lymphoma), CD22 (leukemia, lymphoma, multiple myeloma, SLE), CD30 (Hodgkin's lymphoma), CD33 (leukemia, autoimmune diseases), CD38 (multiple myeloma), CD40 (lymphoma, multiple myeloma, leukemia (CLL)), CD51 (metastatic melanoma, sarcoma), CD52 (leukemia), CD56 (small cell lung cancers, ovarian cancer, Merkel cell carcinoma, and the liquid tumor, multiple myeloma), CD66e (carcinomas), CD70 (metastatic renal cell carcinoma and non-Hodgkin lymphoma), CD74 (multiple myeloma), CD80 (lymphoma), CD98 (carcinomas), CD123 (leukemia), mucin (carcinomas), CD221 (solid tumors), CD227 (breast, ovarian cancers), CD262 (NSCLC and other cancers), CD309 (ovarian cancers), CD326 (solid tumors), CEACAM3 (colorectal, gastric cancers), CEACAM5 (CEA, CD66e) (breast, colorectal and lung cancers), DLL4 (A-like-4), EGFR (various cancers), CTLA4 (melanoma), CXCR4 (CD 184, heme-oncology, solid tumors), Endoglin (CD 105, solid tumors), EPCAM (epithelial cell adhesion molecule, bladder, head, neck, colon, NHL prostate, and ovarian cancers), ERBB2 (lung, breast, prostate cancers), FCGR1 (autoimmune diseases), FOLR (folate receptor, ovarian cancers), FGFR (carcinomas), GD2 ganglioside (carcinomas), G-28 (a cell surface antigen glycolipid, melanoma), GD3 idiotype (carcinomas), heat shock proteins (carcinomas), HER1 (lung, stomach cancers), HER2 (breast, lung and ovarian cancers), HLA-DR10 (NHL), HLA-DRB (NHL, B cell leukemia), human chorionic gonadotropin (carcinomas), IGF1R (solid tumors, blood cancers), IL-2 receptor (T-cell leukemia and lymphomas), IL-6R (multiple myeloma, RA, Castleman's disease, IL6 dependent tumors), integrins (.alpha.v.beta.3, .alpha.5.beta.1, .alpha.6.beta.4, .alpha.11.beta.3, .alpha.5.beta.5, .alpha.v.beta.5, for various cancers), MAGE-1 (carcinomas), MAGE-2 (carcinomas), MAGE-3 (carcinomas), MAGE 4 (carcinomas), anti-transferrin receptor (carcinomas), p97 (melanoma), MS4A1 (membrane-spanning 4-domains subfamily A member 1, Non-Hodgkin's B cell lymphoma, leukemia), MUC1 (breast, ovarian, cervix, bronchus and gastrointestinal cancer), MUC16 (CA125) (ovarian cancers), CEA (colorectal cancer), gp100 (melanoma), MARTI (melanoma), MPG (melanoma), MS4A1 (membrane-spanning 4-domains subfamily A, small cell lung cancers, NHL), nucleolin, Neu oncogene product (carcinomas), P21 (carcinomas), nectin-4 (carcinomas), paratope of anti-(N-glycolylneuraminic acid, breast, melanoma cancers), PLAP-like testicular alkaline phosphatase (ovarian, testicular cancers), PSMA (prostate tumors), PSA (prostate), ROB04, TAG 72 (tumour associated glycoprotein 72, AML, gastric, colorectal, ovarian cancers), T cell transmembrane protein (cancers), Tie (CD202b), tissue factor, TNFRSF10B (tumor necrosis factor receptor superfamily member 10B, carcinomas), TNFRSF13B (tumor necrosis factor receptor superfamily member 13B, multiple myeloma, NHL, other cancers, RA and SLE), TPBG (trophoblast glycoprotein, renal cell carcinoma), TRAIL-R1 (tumor necrosis apoptosis inducing ligand receptor 1, lymphoma, NHL, colorectal, lung cancers), VCAM-1 (CD106, Melanoma), VEGF, VEGF-A, VEGF-2 (CD309) (various cancers). Some other tumor associated antigen targets have been reviewed (Gerber, et al, mAbs 2009 1:247-253; Novellino et al, Cancer Immunol Immunother. 2005 54:187-207, Franke, et al, Cancer Biother Radiopharm. 2000, 15:459-76, Guo, et al., Adv Cancer Res. 2013; 119: 421-475, Parmiani et al. J Immunol. 2007 178:1975-9). Examples of these antigens include Cluster of Differentiations (CD4, CD5, CD6, CD7, CD8, CD9, CD10, CD11a, CD11b, CD11c, CD12w, CD14, CD15, CD16, CDw17, CD18, CD21, CD23, CD24, CD25, CD26, CD27, CD28, CD29, CD31, CD32, CD34, CD35, CD36, CD37, CD41, CD42, CD43, CD44, CD45, CD46, CD47, CD48, CD49b, CD49c, CD53, CD54, CD55, CD58, CD59, CD61, CD62E, CD62L, CD62P, CD63, CD68, CD69, CD71, CD72, CD79, CD81, CD82, CD83, CD86, CD87, CD88, CD89, CD90, CD91, CD95, CD96, CD100, CD103, CD105, CD106, CD109, CD117, CD120, CD127, CD133, CD134, CD135, CD138, CD141, CD142, CD143, CD144, CD147, CD151, CD152, CD154, CD156, CD158, CD163, CD166, CD168, CD184, CDw186, CD195, CD202 (a, b), CD209, CD235a, CD271, CD303, CD304), annexin Al, nucleolin, endoglin (CD105), ROB04, amino-peptidase N, -like-4 (DLL4), VEGFR-2 (CD309), CXCR4 (CD184), Tie2, B7-H3, WT1, MUC1, LMP2, HPV E6 E7, EGFRvIII, HER-2/neu, idiotype, MAGE A3, p53 nonmutant, NY-ESO-1, GD2, CEA, MelanA/MART1, Ras mutant, gp100, p53 mutant, proteinase3 (PR1), bcr-abl, tyrosinase, survivin, hTERT, sarcoma translocation breakpoints, EphA2, PAP, ML-IAP, AFP, EpCAM, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, ALK, androgen receptor, cyclin B1, polysialic acid, MYCN, RhoC, TRP-2, GD3, fucosyl GM1 , mesothelin, PSCA, MAGE A1, sLe(a), CYPIB I, PLAC1, GM3, BORIS, Tn, GloboH, ETV6-AML, NY-BR-1, RGS5, SART3, STn, carbonic anhydrase IX, PAXS, OY-TES1, sperm protein 17, LCK, HMWMAA, AKAP-4, SSX2, XAGE 1, B7H3, legumain, Tie 2, Page4, VEGFR2, MAD-CT-1, FAP, PDGFR-.beta., MAD-CT-2, Notch1, ICAM1 and Fos-related antigen 1.
[0118] Additionally, preferred binding domains of the invention include those specific to antigens and epitope targets associated with infected cells that are known in the art. Such targets include but are not limited those derived from the following infectious agents are of interest: HIV virus (particularly antigens derived from the HIV envelope spike and/or gp120 and gp41 epitopes), Human papilloma virus (HPV), Mycobacterium tuberculosis, Streptococcus agalactiae, methicillin-resistant Staphylococcus aureus, Legionella pneumophilia, Streptococcus pyogenes, Escherichia coli, Neisseria gonorrhoeae, Neisseria meningitidis, Pneumococcus, Cryptococcus neoformans, Histoplasma capsulatum, -influenzae B, Treponema pallidum, Lyme disease spirochetes, Pseudomonas aeruginosa, Mycobacterium leprae, Brucella abortus, rabies virus, influenza virus, cytomegalovirus, herpes simplex virus I, herpes simplex virus II, human serum parvo-like virus, respiratory syncytial virus, varicella-zoster virus, hepatitis B virus, hepatitis C virus, measles virus, adenovirus, human T-cell leukemia viruses, Epstein-Barr virus, murine leukemia virus, mumps virus, vesicular stomatitis virus, sindbis virus, lymphocytic choriomeningitis virus, wart virus, blue tongue virus, Sendai virus, feline leukemia virus, reovirus, polio virus, simian virus 40, mouse mammary tumor virus, dengue virus, rubella virus, West Nile virus, Plasmodium falciparum, Plasmodium vivax, Toxoplasma gondii, Trypanosoma rangeli, Trypanosoma cruzi, Trypanosoma rhodesiensei, Trypanosoma brucei, Schistosoma mansoni, Schistosoma japonicum, Babesia bovis, Elmeria tenella, Onchocerca volvulus, Leishmania tropica, Trichinella spiralis, Theileria parva, Taenia hydatigena, Taenia ovis, Taenia saginata, Echinococcus granulosus, Mesocestoides corti, Mycoplasma arthritidis, M. hyorhinis, M. orale, M arginini, Acholeplasma laidlawii, M. salivarium and M. pneumoniae.
T-Cell Receptors (TCRs)
[0119] T-cells are a subgroup of cells which together with other immune cell types (polymorphonuclear cells, eosinophils, basophils, mast cells, B-cells, NK cells), constitute the cellular component of the immune system. Under physiological conditions, T-cells function in immune surveillance and in the elimination of foreign antigen. However, under pathological conditions, there is compelling evidence that T-cells play a major role in the causation and propagation of disease. In these disorders, breakdown of T-cell immunological tolerance, either central or peripheral is a fundamental process in the causation of autoimmune disease.
[0120] The TCR complex is composed of at least seven transmembrane proteins. The disulfide-linked (.alpha..beta. or .gamma..delta.) heterodimer forms the monotypic antigen recognition unit, while the invariant chains of CD3, consisting of .epsilon., .gamma., .zeta., and .eta. chains, are responsible for coupling the ligand binding to signaling pathways that result in T-cell activation and the elaboration of the cellular immune responses. Despite the gene diversity of the TCR chains, two structural features are common to all known subunits. First, they are transmembrane proteins with a single transmembrane spanning domain--presumably alpha-helical. Second, all TCR chains have the unusual feature of possessing a charged amino acid within the predicted transmembrane domain. The invariant chains have a single negative charge, conserved between the mouse and human, and the variant chains possess one (TCR-.beta.) or two (TCR-.alpha.) positive charges. The transmembrane sequence of TCR-.alpha. is highly conserved in a number of species and thus phylogenetically may serve an important functional role. The octapeptide sequence containing the hydrophilic amino acids arginine and lysine is identical between the species.
[0121] A T-cell response is modulated by antigen binding to a TCR. One type of TCR is a membrane bound heterodimer consisting of an .alpha. and .beta. chain resembling an immunoglobulin variable (V) and constant (C) region. The TCR .alpha. chain includes a covalently linked V-.alpha. and C-.alpha. chain, whereas the .beta. chain includes a V-.beta. chain covalently linked to a C-.beta. chain. The V-.alpha. and V-.beta. chains form a pocket or cleft that can bind a superantigen or antigen in the context of a major histocompatibility complex (MHC) (known in humans as an HLA complex). See, Davis Ann. Rev. of Immunology 3: 537 (1985); Fundamental Immunology 3rd Ed., W. Paul Ed. Rsen Press LTD. New York (1993).
[0122] The extracellular domains of the TCR chains (.alpha..beta. or .gamma..delta.) can also engineered as fusions to heterologous transmembrane domains for expression on the cell surface. Such TCRs may include fusions to CD3, CD28, CD8, 4-1BB and/or chimeric activation receptor (CAR) transmembrane or activation domains. TCRs can also be the soluble proteins comprising one or more of the antigen binding domains of .alpha..beta. or .gamma..delta. chains. Such TCRs may include the TCR variable domains or function fragments thereof with or without the TCR constant domains. Soluble TCRs may be heterodimeric or single-chain molecules.
Fc Domain
[0123] Protein complexes of the invention may contain an Fc domain. For example, PD-L1 T.times.M comprises an anti-PD-L1 scAb/huIL-15N72D:anti-PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion complex. Fusion proteins that combine the Fc regions of IgG with the domains of another protein, such as various cytokines and soluble receptors have been reported (see, for example, Capon et al., Nature, 337:525-531, 1989; Chamow et al., Trends Biotechnol., 14:52-60, 1996); U.S. Pat. Nos. 5,116,964 and 5,541,087). The prototype fusion protein is a homodimeric protein linked through cysteine residues in the hinge region of IgG Fc, resulting in a molecule similar to an IgG molecule without the heavy chain variable and C.sub.Hl domains and light chains. The dimeric nature of fusion proteins comprising the Fc domain may be advantageous in providing higher order interactions (i.e. bivalent or bispecific binding) with other molecules. Due to the structural homology, Fc fusion proteins exhibit an in vivo pharmacokinetic profile comparable to that of human IgG with a similar isotype. Immunoglobulins of the IgG class are among the most abundant proteins in human blood, and their circulation half-lives can reach as long as 21 days. To extend the circulating half-life of IL-15 or an IL-15 fusion protein and/or to increase its biological activity, fusion protein complexes containing the IL-15 domain non-covalently bound to IL-15R.alpha. covalently linked to the Fc portion of the human heavy chain IgG protein are described herein.
[0124] The term "Fc" refers to the fragment crystallizable region which is the constant region of an antibody that interacts with cell surface receptors called Fc receptors and some proteins of the complement system. Such an "Fc" is in dimeric form. The original immunoglobulin source of the native Fc is preferably of human origin and may be any of the immunoglobulins, although IgG1 and IgG2 are preferred. Native Fc's are made up of monomeric polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide bonds) and non-covalent association. The number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgG1, IgG2, IgG3, IgA1, IgGA2). One example of a native Fc is a disulfide-bonded dimer resulting from papain digestion of an IgG (see Ellison et al. (1982), Nucleic Acids Res. 10: 4071-9). The term "native Fc" as used herein is generic to the monomeric, dimeric, and multimeric forms. Fc domains containing binding sites for Protein A, Protein G, various Fc receptors and complement proteins. In some embodiments, Fc domain of the complex is capable of interacting with Fc receptors to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) and/or antibody dependent cellular phagocytosis (ADCP). In other applications, the complex comprises an Fc domain (e.g., IgG4 Fc) that is incapable of effectively mediating ADCC or ADCP.
[0125] In some embodiments, the term "Fc variant" refers to a molecule or sequence that is modified from a native Fc, but still comprises a binding site for the salvage receptor, FcRn. International applications WO 97/34631 and WO 96/32478 describe exemplary Fc variants, as well as interaction with the salvage receptor, and are hereby incorporated by reference. Thus, the term "Fc variant" comprises a molecule or sequence that is humanized from a non-human native Fc. Furthermore, a native Fc comprises sites that may be removed because they provide structural features or biological activity that are not required for the fusion molecules of the present invention. Thus, in certain embodiments, the term "Fc variant" comprises a molecule or sequence that alters one or more native Fc sites or residues that affect or are involved in (1) disulfide bond formation, (2) incompatibility with a selected host cell (3) N-terminal heterogeneity upon expression in a selected host cell, (4) glycosylation, (5) interaction with complement, (6) binding to an Fc receptor other than a salvage receptor, (7) antibody-dependent cellular cytotoxicity (ADCC) or (8) antibody-dependent cellular phagocytosis (ADCP). Such alterations can increase or decrease any one or more of these Fc properties. Fc variants are described in further detail hereinafter.
[0126] The term "Fc domain" encompasses native Fc and Fc variant molecules and sequences as defined above. As with Fc variants and native Fc's, the term "Fc domain" includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by recombinant gene expression or by other means.
Fusions Protein Complexes
[0127] The invention provides for fusion protein complexes (FIG. 1 and FIG. 2). In some cases, the first protein comprises a first biologically active polypeptide covalently linked to interleukin-15 (IL-15) or functional fragment thereof; and the second protein comprises a second biologically active polypeptide covalently linked to soluble interleukin-15 receptor alpha (IL-15R.alpha.) polypeptide or functional fragment thereof, where the IL-15 domain of a first protein binds to the soluble IL-15R.alpha. domain of the second protein to form a soluble fusion protein complex. Fusion protein complexes of the invention also comprise immunoglobulin Fc domain or a functional fragment thereof linked to one or both of the first and second proteins. Preferably, the Fc domains linked to the fusion proteins interact to form a fusion protein complex. Such a complex may be stabilized by disulfide bond formation between the immunoglobulin Fc domains. In one aspect, the soluble fusion protein complexes of the invention include an IL-15 polypeptide, IL-15 variant or a functional fragment thereof and a soluble IL-15R.alpha. polypeptide or a functional fragment thereof, wherein one or both of the IL-15 and IL-15R.alpha. polypeptides further include an immunoglobulin Fc domain or a functional fragment thereof.
[0128] In certain examples, one or both of the first and second proteins comprises an antibody or functional fragment thereof. For example, one of the binding domain comprises a soluble anti-PD-L1 single chain antibody or functional fragment thereof. In another example, the other or second binding domain comprises an anti-CTLA4 single chain antibody or a disease antigen-specific antibody or functional fragment thereof. In one embodiment, the invention provides PD-L1 T.times.M, comprising a soluble anti-PD-L1 scAb/huIL-15N72D:anti-PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion protein complex. In this complex, the huIL-15N72D and huIL-15R.alpha.Su domains interact and the hu/IgG1 Fc domains on two anti-PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion protein to form a multichain fusion protein complex.
[0129] As used herein, the term "biologically active polypeptide" or "effector molecule" is meant an amino acid sequence such as a protein, polypeptide, or peptide; a sugar or polysaccharide; a lipid or a glycolipid, glycoprotein, or lipoprotein that can produce the desired effects as discussed herein. Effector molecules also include chemical agents. Also contemplated are effector molecule nucleic acids encoding a biologically active or effector protein, polypeptide, or peptide. Thus, suitable molecules include regulatory factors, enzymes, antibodies, or drugs as well as DNA, RNA, and oligonucleotides. The biologically active polypeptides or effector molecule can be naturally-occurring or it can be synthesized from known components, e.g., by recombinant or chemical synthesis and can include heterologous components. A biologically active polypeptide or effector molecule is generally between about 0.1 to 100 KD or greater up to about 1000 KD, preferably between about 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30 and 50 KD as judged by standard molecule sizing techniques such as centrifugation or SDS-polyacrylamide gel electrophoresis. Desired effects of the invention include, but are not limited to, for example, forming a fusion protein complex of the invention with increased binding activity, killing a target cell, e.g. either to induce cell proliferation or cell death, initiate an immune response, in preventing or treating a disease, or to act as a detection molecule for diagnostic purposes. For such detection, an assay could be used, for example an assay that includes sequential steps of culturing cells to proliferate same, and contacting the cells with a fusion complex of the invention and then evaluating whether the fusion complex inhibits further development of the cells.
[0130] Covalently linking the effector molecule to the fusion protein complexes of the invention in accordance with the invention provides a number of significant advantages. Fusion protein complexes of the invention can be produced that contain a single effector molecule, including a peptide of known structure. Additionally, a wide variety of effector molecules can be produced in similar DNA vectors. That is, a library of different effector molecules can be linked to the fusion protein complexes for recognition of infected or diseased cells. Further, for therapeutic applications, rather than administration of a fusion protein complex of the invention to a subject, a DNA expression vector coding for the fusion protein complex can be administered for in vivo expression of the fusion protein complex. Such an approach avoids costly purification steps typically associated with preparation of recombinant proteins and avoids the complexities of antigen uptake and processing associated with conventional approaches.
[0131] As noted, components of the fusion proteins disclosed herein, e.g., effector molecule such as cytokines, chemokines, growth factors, protein toxins, immunoglobulin domains or other bioactive molecules and any peptide linkers, can be organized in nearly any fashion provided that the fusion protein has the function for which it was intended. In particular, each component of the fusion protein can be spaced from another component by at least one suitable peptide linker sequence if desired. Additionally, the fusion proteins may include tags, e.g., to facilitate modification, identification and/or purification of the fusion protein. More specific fusion proteins are in the Examples described below.
Linkers
[0132] The fusion complexes of the invention preferably also include a flexible linker sequence interposed between the IL-15 or IL-15R.alpha. domains and the biologically active polypeptide. The linker sequence should allow effective positioning of the biologically active polypeptide with respect to the IL-15 or IL-15R.alpha. domains to allow functional activity of both domains.
[0133] In certain cases, the soluble fusion protein complex has a linker wherein the first biologically active polypeptide is covalently linked to IL-15 (or functional fragment thereof) by polypeptide linker sequence. In other aspects, the soluble fusion protein complex as described herein has a linker wherein the second biologically active polypeptide is covalently linked to IL-15R.alpha. polypeptide (or functional fragment thereof) by polypeptide linker sequence.
[0134] The linker sequence is preferably encoded by a nucleotide sequence resulting in a peptide that can effectively position the binding groove of a TCR molecule for recognition of a presenting antigen or the binding domain of an antibody molecule for recognition of an antigen. As used herein, the phrase "effective positioning of the biologically active polypeptide with respect to the IL-15 or IL-15R.alpha. domains", or other similar phrase, is intended to mean the biologically active polypeptide linked to the IL-15 or IL-15R.alpha. domains is positioned so that the IL-15 or IL-15R.alpha. domains are capable of interacting with each other to form a protein complex. For example, the IL-15 or IL-15R.alpha. domains are effectively positioned to allow interactions with immune cells to initiate or inhibit an immune reaction, or to inhibit or stimulate cell development.
[0135] The fusion complexes of the invention preferably also include a flexible linker sequence interposed between the IL-15 or IL-15R.alpha. domains and the immunoglobulin Fc domain. The linker sequence should allow effective positioning of the Fc domain, biologically active polypeptide and IL-15 or IL-15R.alpha. domains to allow functional activity of each domain. For example, the Fc domains are effectively positioned to allow proper fusion protein complex formation and/or interactions with Fc receptors on immune cells or proteins of the complement system to stimulate Fc-mediated effects including opsonization, cell lysis, degranulation of mast cells, basophils, and eosinophils, and other Fc receptor-dependent processes; activation of the complement pathway; and enhanced in vivo half-life of the fusion protein complex.
[0136] Linker sequences can also be used to link two or more polypeptides of the biologically active polypeptide to generate a single-chain molecule with the desired functional activity.
[0137] Preferably, the linker sequence comprises from about 7 to 20 amino acids, more preferably from about 10 to 20 amino acids. The linker sequence is preferably flexible so as not hold the biologically active polypeptide or effector molecule in a single undesired conformation. The linker sequence can be used, e.g., to space the recognition site from the fused molecule. Specifically, the peptide linker sequence can be positioned between the biologically active polypeptide and the effector molecule, e.g., to chemically cross-link same and to provide molecular flexibility. The linker preferably predominantly comprises amino acids with small side chains, such as glycine, alanine, and serine, to provide for flexibility. Preferably, about 80 or 90 percent or greater of the linker sequence comprises glycine, alanine, or serine residues, particularly glycine and serine residues.
[0138] Different linker sequences could be used including any of a number of flexible linker designs that have been used successfully to join antibody variable regions together (see, Whitlow, M. et al., (1991) Methods: A Companion to Methods in Enzymology, 2:97-105).
Pharmaceutical Therapeutics
[0139] The invention provides pharmaceutical compositions comprising fusion protein complexes for use as a therapeutic. In one aspect, fusion protein complex of the invention is administered systemically, for example, formulated in a pharmaceutically-acceptable buffer such as physiological saline. Preferable routes of administration include, for example, instillation into the bladder, subcutaneous, intravenous, intraperitoneal, intramuscular, intratumoral or intradermal injections that provide continuous, sustained, or effective levels of the composition in the patient. Treatment of human patients or other animals is carried out using a therapeutically effective amount of a therapeutic identified herein in a physiologically-acceptable carrier. Suitable carriers and their formulation are described, for example, in Remington's Pharmaceutical Sciences by E. W. Martin. The amount of the therapeutic agent to be administered varies depending upon the manner of administration, the age and body weight of the patient, and with the clinical symptoms of the neoplasia. Generally, amounts will be in the range of those used for other agents used in the treatment of other diseases associated with neoplasia, autoimmune or infectious diseases, although in certain instances lower amounts will be needed because of the increased specificity of the compound. A compound is administered at a dosage that enhances an immune response of a subject, or that reduces the proliferation, survival, or invasiveness of a neoplastic, infected, or autoimmune cell as determined by a method known to one skilled in the art.
Formulation of Pharmaceutical Compositions
[0140] The administration of the fusion protein complex of the invention for the treatment of a neoplasia, infectious or autoimmune disease is by any suitable means that results in a concentration of the therapeutic that, combined with other components, is effective in ameliorating, reducing, or stabilizing said neoplasia, infectious or autoimmune disease. The fusion protein complex of the invention may be contained in any appropriate amount in any suitable carrier substance, and is generally present in an amount of 1-95% by weight of the total weight of the composition. The composition may be provided in a dosage form that is suitable for parenteral (e.g., subcutaneous, intravenous, intramuscular, intravesicular, intratumoral or intraperitoneal) administration route. For example, the pharmaceutical compositions are formulated according to conventional pharmaceutical practice (see, e.g., Remington: The Science and Practice of Pharmacy (20th ed.), ed. A. R. Gennaro, Lippincott Williams & Wilkins, 2000 and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York).
[0141] Human dosage amounts are initially determined by extrapolating from the amount of compound used in mice or non-human primates, as a skilled artisan recognizes it is routine in the art to modify the dosage for humans compared to animal models. For example, the dosage may vary from between about 1 .mu.g compound/kg body weight to about 5000 mg compound/kg body weight; or from about 5 mg/kg body weight to about 4,000 mg/kg body weight or from about 10 mg/kg body weight to about 3,000 mg/kg body weight; or from about 50 mg/kg body weight to about 2000 mg/kg body weight; or from about 100 mg/kg body weight to about 1000 mg/kg body weight; or from about 150 mg/kg body weight to about 500 mg/kg body weight. For example, the dose is about 1, 5, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1,000, 1,050, 1,100, 1,150, 1,200, 1,250, 1,300, 1,350, 1,400, 1,450, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, or 5,000 mg/kg body weight. Alternatively, doses are in the range of about 5 mg compound/Kg body weight to about 20 mg compound/kg body weight. In another example, the doses are about 8, 10, 12, 14, 16 or 18 mg/kg body weight. Preferably, the fusion protein complex is administered at 0.5 mg/kg-about 10 mg/kg (e.g., 0.5, 1, 3, 5, 10 mg/kg). Of course, this dosage amount may be adjusted upward or downward, as is routinely done in such treatment protocols, depending on the results of the initial clinical trials and the needs of a particular patient.
[0142] Pharmaceutical compositions are formulated with appropriate excipients into a pharmaceutical composition that, upon administration, releases the therapeutic in a controlled manner. Examples include single or multiple unit tablet or capsule compositions, oil solutions, suspensions, emulsions, microcapsules, microspheres, molecular complexes, nanoparticles, patches, and liposomes. Preferably, the fusion protein complex is formulated in an excipient suitable for parenteral administration.
Parenteral Compositions
[0143] The pharmaceutical composition comprising a fusion protein complex of the invention are administered parenterally by injection, infusion, or implantation (subcutaneous, intravenous, intramuscular, intratumoral, intravesicular, intraperitoneal) in dosage forms, formulations, or via suitable delivery devices or implants containing conventional, non-toxic pharmaceutically acceptable carriers and adjuvants. The formulation and preparation of such compositions are well known to those skilled in the art of pharmaceutical formulation. Formulations can be found in Remington: The Science and Practice of Pharmacy, supra.
[0144] Compositions comprising a fusion protein complex of the invention for parenteral use are provided in unit dosage forms (e.g., in single-dose ampoules). Alternatively, the composition is provided in vials containing several doses and in which a suitable preservative may be added (see below). The composition is in the form of a solution, a suspension, an emulsion, an infusion device, or a delivery device for implantation, or it is presented as a dry powder to be reconstituted with water or another suitable vehicle before use. Apart from the active agent that reduces or ameliorates a neoplasia, infectious or autoimmune disease, the composition includes suitable parenterally acceptable carriers and/or excipients. The active therapeutic agent(s) may be incorporated into microspheres, microcapsules, nanoparticles, liposomes for controlled release. Furthermore, the composition may include suspending, solubilizing, stabilizing, pH-adjusting agents, tonicity adjusting agents, and/or dispersing, agents.
[0145] As indicated above, the pharmaceutical compositions comprising a fusion protein complex of the invention may be in a form suitable for sterile injection. To prepare such a composition, the suitable active therapeutic(s) are dissolved or suspended in a parenterally acceptable liquid vehicle. Among acceptable vehicles and solvents that may be employed are water, water adjusted to a suitable pH by addition of an appropriate amount of hydrochloric acid, sodium hydroxide or a suitable buffer, 1,3-butanediol, Ringer's solution, and isotonic sodium chloride solution and dextrose solution. The aqueous formulation may also contain one or more preservatives (e.g., methyl, ethyl, or n-propyl p-hydroxybenzoate). In cases where one of the compounds is only sparingly or slightly soluble in water, a dissolution enhancing or solubilizing agent can be added, or the solvent may include 10-60% w/w of propylene glycol.
[0146] The present invention provides methods of treating neoplasia, infectious or autoimmune diseases or symptoms thereof which comprise administering a therapeutically effective amount of a pharmaceutical composition comprising a compound of the formulae herein to a subject (e.g., a mammal such as a human). Thus, one embodiment is a method of treating a subject suffering from or susceptible to a neoplasia, infectious or autoimmune disease or symptom thereof. The method includes the step of administering to the mammal a therapeutic amount of an amount of a compound herein sufficient to treat the disease or disorder or symptom thereof, under conditions such that the disease or disorder is treated.
[0147] The methods herein include administering to the subject (including a subject identified as in need of such treatment) an effective amount of a compound described herein, or a composition described herein to produce such effect. Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
[0148] The therapeutic methods of the invention (which include prophylactic treatment) in general comprise administration of a therapeutically effective amount of the compounds herein, such as a compound of the formulae herein to a subject (e.g., animal, human) in need thereof, including a mammal, particularly a human. Such treatment will be suitably administered to subjects, particularly humans, suffering from, having, susceptible to, or at risk for a neoplasia, infectious disease, autoimmune disease, disorder, or symptom thereof. Determination of those subjects "at risk" can be made by any objective or subjective determination by a diagnostic test or opinion of a subject or health care provider (e.g., genetic test, enzyme or protein marker, Marker (as defined herein), family history, and the like). The fusion protein complexes of the invention may be used in the treatment of any other disorders in which an increase in an immune response is desired.
[0149] The invention also provides a method of monitoring treatment progress. The method includes the step of determining a level of diagnostic marker (Marker) (e.g., any target delineated herein modulated by a compound herein, a protein or indicator thereof, etc.) or diagnostic measurement (e.g., screen, assay) in a subject suffering from or susceptible to a disorder or symptoms thereof associated with neoplasia in which the subject has been administered a therapeutic amount of a compound herein sufficient to treat the disease or symptoms thereof. The level of Marker determined in the method can be compared to known levels of Marker in either healthy normal controls or in other afflicted patients to establish the subject's disease status. In some cases, a second level of Marker in the subject is determined at a time point later than the determination of the first level, and the two levels are compared to monitor the course of disease or the efficacy of the therapy. In certain aspects, a pre-treatment level of Marker in the subject is determined prior to beginning treatment according to this invention; this pre-treatment level of Marker can then be compared to the level of Marker in the subject after the treatment commences, to determine the efficacy of the treatment.
Combination Therapies
[0150] Optionally, the fusion protein complex of the invention is administered in combination with any other standard therapy; such methods are known to the skilled artisan and described in Remington's Pharmaceutical Sciences by E. W. Martin. If desired, fusion protein complexes of the invention is administered in combination with any conventional anti-neoplastic therapy, including but not limited to, immunotherapy, therapeutic antibodies, targeted therapy, surgery, radiation therapy, or chemotherapy.
Kits or Pharmaceutical Systems
[0151] Pharmaceutical compositions comprising the fusion protein complex of the invention may be assembled into kits or pharmaceutical systems for use in ameliorating a neoplasia, infectious or autoimmune disease. Kits or pharmaceutical systems according to this aspect of the invention comprise a carrier means, such as a box, carton, tube, having in close confinement therein one or more container means, such as vials, tubes, ampoules, bottles, and the like. The kits or pharmaceutical systems of the invention may also comprise associated instructions for using the fusion protein complex of the invention.
Recombinant Protein Expression
[0152] In general, preparation of the fusion protein complexes of the invention (e.g., components of a T.times.M complex) can be accomplished by procedures disclosed herein and by recognized recombinant DNA techniques.
[0153] In general, recombinant polypeptides are produced by transformation of a suitable host cell with all or part of a polypeptide-encoding nucleic acid molecule or fragment thereof in a suitable expression vehicle. Those skilled in the field of molecular biology will understand that any of a wide variety of expression systems may be used to provide the recombinant protein. The precise host cell used is not critical to the invention. A recombinant polypeptide may be produced in virtually any eukaryotic host (e.g., Saccharomyces cerevisiae, insect cells, e.g., Sf21 cells, or mammalian cells, e.g., NIH 3T3, HeLa, or preferably COS cells). Such cells are available from a wide range of sources (e.g., the American Type Culture Collection, Rockland, Md.; also, see, e.g., Ausubel et al., Current Protocol in Molecular Biology, New York: John Wiley and Sons, 1997). The method of transfection and the choice of expression vehicle will depend on the host system selected. Transformation methods are described, e.g., in Ausubel et al. (supra); expression vehicles may be chosen from those provided, e.g., in Cloning Vectors: A Laboratory Manual (P. H. Pouwels et al., 1985, Supp. 1987).
[0154] A variety of expression systems exist for the production of recombinant polypeptides. Expression vectors useful for producing such polypeptides include, without limitation, chromosomal, episomal, and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof.
[0155] Once the recombinant polypeptide is expressed, it is isolated, e.g., using affinity chromatography. In one example, an antibody (e.g., produced as described herein) raised against the polypeptide may be attached to a column and used to isolate the recombinant polypeptide. Lysis and fractionation of polypeptide-harboring cells prior to affinity chromatography may be performed by standard methods (see, e.g., Ausubel et al., supra). Once isolated, the recombinant protein can, if desired, be further purified, e.g., by high performance liquid chromatography (see, e.g., Fisher, Laboratory Techniques in Biochemistry and Molecular Biology, eds., Work and Burdon, Elsevier, 1980).
[0156] As used herein, biologically active polypeptides or effector molecules of the invention may include factors such as cytokines, chemokines, growth factors, protein toxins, immunoglobulin domains or other bioactive proteins such as enzymes. Also, biologically active polypeptides may include conjugates to other compounds such as non-protein toxins, cytotoxic agents, chemotherapeutic agents, detectable labels, radioactive materials, and such.
[0157] Cytokines of the invention are defined by any factor produced by cells that affect other cells and are responsible for any of a number of multiple effects of cellular immunity. Examples of cytokines include but are not limited to the IL-2 family, interferon (IFN), IL-10, IL-1, IL-17, TGF and TNF cytokine families, and to IL-1 through IL-35, IFN-.alpha., IFN-.beta., IFN.gamma., TGF-.beta., TNF-.alpha., and TNF.beta..
[0158] In an aspect of the invention, the first protein comprises a first biologically active polypeptide covalently linked to interleukin-15 (IL-15) domain or a functional fragment thereof. IL-15 is a cytokine that affects T-cell activation and proliferation. IL-15 activity in affecting immune cell activation and proliferation is similar in some respects to IL-2, although fundamental differences have been well characterized (Waldmann, T A, 2006, Nature Rev. Immunol. 6:595-601).
[0159] In another aspect of the invention, the first protein comprises an interleukin-15 (IL-15) domain that is an IL-15 variant (also referred to herein as IL-15 mutant). The IL-15 variant preferably comprises a different amino acid sequence that the native (or wild type) IL-15 protein. The IL-15 variant preferably binds the IL-15R.alpha. polypeptide and functions as an IL-15 agonist or antagonist. Preferably, IL-15 variants with agonist activity have super agonist activity. The IL-15 variant can function as an IL-15 agonist or antagonist independent of its association with IL-15R.alpha.. IL-15 agonists are exemplified by comparable or increased biological activity compared to wild type IL-15. IL-15 antagonists are exemplified by decreased biological activity compared to wild type IL-15 or by the ability to inhibit IL-15-mediated responses. In some examples, the IL-15 variant binds with increased or decreased activity to the IL-15R.beta..gamma.C receptors. In some cases, the sequence of the IL-15 variant has at least one amino acid change, e.g. substitution or deletion, compared to the native IL-2 sequence, such changes resulting in IL-15 agonist or antagonist activity. Preferably, the amino acid substitutions/deletions are in the domains of IL-15 that interact with IL-15R.beta. and/or .gamma.C. More preferably, the amino acid substitutions/deletions do not affect binding to the IL-15R.alpha. polypeptide or the ability to produce the IL-15 variant. Suitable amino acid substitutions/deletions to generate IL-15 variants can be identified based on putative or known IL-15 structures, comparisons of IL-15 with homologous molecules such as IL-2 with known structure, through rational or random mutagenesis and functional assays, as provided herein, or other empirical methods. Additionally, suitable amino acid substitutions can be conservative or non-conservative changes and insertions of additional amino acids. Preferably, IL-15 variants of the invention contain one or more than one amino acid substitutions/deletions at position 6, 8, 10, 61, 65, 72, 92, 101, 104, 105, 108, 109, 111, or 112 of the mature human IL-15 sequence; particularly, D8N ("D8" refers to the amino acid and residue position in the native mature human IL-15 sequence and "N" refers to the substituted amino acid residue at that position in the IL-15 variant), I6S, D8A, D61A, N65A, N72R, V104P or Q108A substitutions result in IL-15 variants with antagonist activity and N72D substitutions result in IL-15 variants with agonist activity.
[0160] Chemokines, similar to cytokines, are defined as any chemical factor or molecule which when exposed to other cells are responsible for any of a number of multiple effects of cellular immunity. Suitable chemokines may include but are not limited to the CXC, CC, C, and CX.sub.3C chemokine families and to CCL-1 through CCL-28, CXC-1 through CXC-17, XCL-1, XCL-2, CX3CL1, MIP-1b, IL-8, MCP-1, and Rantes.
[0161] Growth factors include any molecules which when exposed to a particular cell induce proliferation and/or differentiation of the affected cell. Growth factors include proteins and chemical molecules, some of which include: GM-CSF, G-CSF, human growth factor and stem cell growth factor. Additional growth factors may also be suitable for uses described herein.
[0162] Toxins or cytotoxic agents include any substance that has a lethal effect or an inhibitory effect on growth when exposed to cells. More specifically, the effector molecule can be a cell toxin of, e.g., plant or bacterial origin such as, e.g., diphtheria toxin (DT), shiga toxin, abrin, cholera toxin, ricin, saporin, pseudomonas exotoxin (PE), pokeweed antiviral protein, or gelonin. Biologically active fragments of such toxins are well known in the art and include, e.g., DT A chain and ricin A chain. Additionally, the toxin can be an agent active at the cell surface such as, e.g., phospholipase enzymes (e.g., phospholipase C).
[0163] Further, the effector molecule can be a chemotherapeutic drug such as, e.g., vindesine, vincristine, vinblastin, methotrexate, adriamycin, bleomycin, or cisplatin.
[0164] Additionally, the effector molecule can be a detectably-labeled molecule suitable for diagnostic or imaging studies. Such labels include biotin or streptavidin/avidin, a detectable nanoparticles or crystal, an enzyme or catalytically active fragment thereof, a fluorescent label such as green fluorescent protein, FITC, phycoerythrin, cychome, texas red or quantum dots; a radionuclide e.g., iodine-131, yttrium-90, rhenium-188 or bismuth-212; phosphorescent or chemiluminescent molecules or a label detectable by PET, ultrasound, or MRI such as Gd-- or paramagnetic metal ion-based contrast agents. See e.g., Moskaug, et al. J. Biol. Chem. 264, 15709 (1989); Pastan, I. et al. Cell 47, 641, 1986; Pastan et al., Recombinant Toxins as Novel Therapeutic Agents, Ann. Rev. Biochem. 61, 331, (1992); "Chimeric Toxins" Olsnes and Phil, Pharmac. Ther., 25, 355 (1982); published PCT application no. WO 94/29350; published PCT application no. WO 94/04689; published PCT application no. WO2005046449 and U.S. Pat. No. 5,620,939 for disclosure relating to making and using proteins comprising effectors or tags.
[0165] A protein fusion or conjugate complex that includes a covalently linked IL-15 and IL-15R.alpha. domains has several important uses. For example, the protein fusion or conjugate complex comprising an anti-PD-L1 scAb can be employed to deliver the IL-15:IL-15R.alpha. complex to certain cells, e.g., tumor cells that express PD-L1. Accordingly, the protein fusion or conjugate complex provides means of selectively damaging or killing cells comprising the ligand. Examples of cells or tissue capable of being damaged or killed by the protein fusion or conjugate complexes include tumors and virally or bacterially infected cells expressing one or more ligands. Cells or tissue susceptible to being damaged or killed can be readily assayed by the methods disclosed herein.
[0166] The IL-15 and IL-15R.alpha. polypeptides of the invention suitably correspond in amino acid sequence to naturally occurring IL-15 and IL-15R.alpha. molecules, e.g. IL-15 and IL-15R.alpha. molecules of a human, mouse or other rodent, or other mammals. Sequences of these polypeptides and encoding nucleic acids are known in the literature, including human interleukin 15 (IL15) mRNA--GenBank: U14407.1 (incorporated herein by reference), Mus musculus interleukin 15 (IL15) mRNA--GenBank: U14332.1 (incorporated herein by reference), human interleukin-15 receptor alpha chain precursor (IL15RA) mRNA--GenBank: U31628.1 (incorporated herein by reference), Mus musculus interleukin 15 receptor, alpha chain--GenBank: BC095982.1 (incorporated herein by reference).
[0167] In some settings, it can be useful to make the protein fusion or conjugate complexes of the present invention polyvalent, e.g., to increase the valency of the sc-antibody. In particular, interactions between the IL-15 and IL-15R.alpha. domains of the fusion protein complex provide a means of generating polyvalent complexes. In addition, the polyvalent fusion protein can be made by covalently or non-covalently linking together between one and four proteins (the same or different) by using e.g., standard biotin-streptavidin labeling techniques, or by conjugation to suitable solid supports such as latex beads. Chemically cross-linked proteins (for example cross-linked to dendrimers) are also suitable polyvalent species. For example, the protein can be modified by including sequences encoding tag sequences that can be modified such as the biotinylation BirA tag or amino acid residues with chemically reactive side chains such as Cys or His. Such amino acid tags or chemically reactive amino acids may be positioned in a variety of positions in the fusion protein, preferably distal to the active site of the biologically active polypeptide or effector molecule. For example, the C-terminus of a soluble fusion protein can be covalently linked to a tag or other fused protein which includes such a reactive amino acid(s). Suitable side chains can be included to chemically link two or more fusion proteins to a suitable dendrimer or other nanoparticle to give a multivalent molecule. Dendrimers are synthetic chemical polymers that can have any one of a number of different functional groups of their surface (D. Tomalia, Aldrichimica Acta, 26:91:101 (1993)). Exemplary dendrimers for use in accordance with the present invention include e.g. E9 starburst polyamine dendrimer and E9 combust polyamine dendrimer, which can link cystine residues. Exemplary nanoparticles include liposomes, core-shell particles, or PLGA-based particles.
[0168] In another aspect, one or both of the polypeptides of the fusion protein complex comprises an immunoglobulin domain. Alternatively, the protein binding domain-IL-15 fusion protein can be further linked to an immunoglobulin domain. The preferred immunoglobulin domains comprise regions that allow interaction with other immunoglobulin domains to form multichain proteins as provided above. For example, the immunoglobulin heavy chain regions, such as the IgG1 C.sub.H2-C.sub.H3, are capable of stably interacting to create the Fc region. Preferred immunoglobulin domains including Fc domains also comprise regions with effector functions, including Fc receptor or complement protein binding activity, and/or with glycosylation sites. In some aspects, the immunoglobulin domains of the fusion protein complex contain mutations that reduce or augment Fc receptor or complement binding activity or glycosylation or dimerization, thereby affecting the biological activity of the resulting protein. For example, immunoglobulin domains containing mutations that reduce binding to Fc receptors could be used to generate fusion protein complex of the invention with lower binding activity to Fc receptor-bearing cells, which may be advantageous for reagents designed to recognize or detect specific antigens.
Nucleic Acids and Vectors
[0169] The invention further provides nucleic acid sequences and particularly DNA sequences that encode the present fusion proteins (e.g., components of T.times.M). Preferably, the DNA sequence is carried by a vector suited for extrachromosomal replication such as a phage, virus, plasmid, phagemid, cosmid, YAC, or episome. In particular, a DNA vector that encodes a desired fusion protein can be used to facilitate preparative methods described herein and to obtain significant quantities of the fusion protein. The DNA sequence can be inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. A variety of host-vector systems may be utilized to express the protein-coding sequence. These include mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage DNA, plasmid DNA or cosmid DNA. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used. See, Sambrook et al., supra and Ausubel et al. supra.
[0170] Included in the invention are methods for making a soluble fusion protein complex, the method comprising introducing into a host cell a DNA vector as described herein encoding the first and second proteins, culturing the host cell in media under conditions sufficient to express the fusion proteins in the cell or the media and allow association between IL-15 domain of a first protein and the soluble IL-15R.alpha. domain of a second protein to form the soluble fusion protein complex, purifying the soluble fusion protein complex from the host cells or media.
[0171] In general, a preferred DNA vector according to the invention comprises a nucleotide sequence linked by phosphodiester bonds comprising, in a 5' to 3' direction a first cloning site for introduction of a first nucleotide sequence encoding a biologically active polypeptide, operatively linked to a sequence encoding an effector molecule.
[0172] The fusion protein components encoded by the DNA vector can be provided in a cassette format. By the term "cassette" is meant that each component can be readily substituted for another component by standard recombinant methods. In particular, a DNA vector configured in a cassette format is particularly desirable when the encoded fusion complex is to be used against pathogens that may have or have capacity to develop serotypes.
[0173] To make the vector coding for a fusion protein complex, the sequence coding for the biologically active polypeptide is linked to a sequence coding for the effector peptide by use of suitable ligases. DNA coding for the presenting peptide can be obtained by isolating DNA from natural sources such as from a suitable cell line or by known synthetic methods, e.g. the phosphate triester method. See, e.g., Oligonucleotide Synthesis, IRL Press (M. J. Gait, ed., 1984). Synthetic oligonucleotides also may be prepared using commercially available automated oligonucleotide synthesizers. Once isolated, the gene coding for the biologically active polypeptide can be amplified by the polymerase chain reaction (PCR) or other means known in the art. Suitable PCR primers to amplify the biologically active polypeptide gene may add restriction sites to the PCR product. The PCR product preferably includes splice sites for the effector peptide and leader sequences necessary for proper expression and secretion of the biologically active polypeptide-effector fusion complex. The PCR product also preferably includes a sequence coding for the linker sequence, or a restriction enzyme site for ligation of such a sequence.
[0174] The fusion proteins described herein are preferably produced by standard recombinant DNA techniques. For example, once a DNA molecule encoding the biologically active polypeptide is isolated, sequence can be ligated to another DNA molecule encoding the effector polypeptide. The nucleotide sequence coding for a biologically active polypeptide may be directly joined to a DNA sequence coding for the effector peptide or, more typically, a DNA sequence coding for the linker sequence as discussed herein may be interposed between the sequence coding for the biologically active polypeptide and the sequence coding for the effector peptide and joined using suitable ligases. The resultant hybrid DNA molecule can be expressed in a suitable host cell to produce the fusion protein complex. The DNA molecules are ligated to each other in a 5' to 3' orientation such that, after ligation, the translational frame of the encoded polypeptides is not altered (i.e., the DNA molecules are ligated to each other in-frame). The resulting DNA molecules encode an in-frame fusion protein.
[0175] Other nucleotide sequences also can be included in the gene construct. For example, a promoter sequence, which controls expression of the sequence coding for the biologically active polypeptide fused to the effector peptide, or a leader sequence, which directs the fusion protein to the cell surface or the culture medium, can be included in the construct or present in the expression vector into which the construct is inserted. An immunoglobulin or CMV promoter is particularly preferred.
[0176] In obtaining variant biologically active polypeptide, IL-15, IL-15R.alpha. or Fc domain coding sequences, those of ordinary skill in the art will recognize that the polypeptides may be modified by certain amino acid substitutions, additions, deletions, and post-translational modifications, without loss or reduction of biological activity. In particular, it is well-known that conservative amino acid substitutions, that is, substitution of one amino acid for another amino acid of similar size, charge, polarity, and conformation, are unlikely to significantly alter protein function. The 20 standard amino acids that are the constituents of proteins can be broadly categorized into four groups of conservative amino acids as follows: the nonpolar (hydrophobic) group includes alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan and valine; the polar (uncharged, neutral) group includes asparagine, cysteine, glutamine, glycine, serine, threonine and tyrosine; the positively charged (basic) group contains arginine, histidine and lysine; and the negatively charged (acidic) group contains aspartic acid and glutamic acid. Substitution in a protein of one amino acid for another within the same group is unlikely to have an adverse effect on the biological activity of the protein. In other instance, modifications to amino acid positions can be made to reduce or enhance the biological activity of the protein. Such changes can be introduced randomly or via site-specific mutations based on known or presumed structural or functional properties of targeted residue(s). Following expression of the variant protein, the changes in the biological activity due to the modification can be readily assessed using binding or functional assays.
[0177] Homology between nucleotide sequences can be determined by DNA hybridization analysis, wherein the stability of the double-stranded DNA hybrid is dependent on the extent of base pairing that occurs. Conditions of high temperature and/or low salt content reduce the stability of the hybrid, and can be varied to prevent annealing of sequences having less than a selected degree of homology. For instance, for sequences with about 55% G-C content, hybridization, and wash conditions of 40-50 C, 6.times.SSC (sodium chloride/sodium citrate buffer) and 0.1% SDS (sodium dodecyl sulfate) indicate about 60-70% homology, hybridization, and wash conditions of 50-65 C, 1.times.SSC and 0.1% SDS indicate about 82-97% homology, and hybridization, and wash conditions of 52 C, 0.1.times.SSC and 0.1% SDS indicate about 99-100% homology. A wide range of computer programs for comparing nucleotide and amino acid sequences (and measuring the degree of homology) are also available, and a list providing sources of both commercially available and free software is found in Ausubel et al. (1999). Readily available sequence comparison and multiple sequence alignment algorithms are, respectively, the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1997) and ClustalW programs. BLAST is available on the world wide web at ncbi.nlm.nih.gov and a version of ClustalW is available at 2.ebi.ac.uk.
[0178] The components of the fusion protein can be organized in nearly any order provided each is capable of performing its intended function. For example, in one embodiment, the biologically active polypeptide is situated at the C or N terminal end of the effector molecule.
[0179] Preferred effector molecules of the invention will have sizes conducive to the function for which those domains are intended. The effector molecules of the invention can be made and fused to the biologically active polypeptide by a variety of methods including well-known chemical cross-linking methods. See, e.g., Means, G. E. and Feeney, R. E. (1974) in Chemical Modification of Proteins, Holden-Day. See also, S. S. Wong (1991) in Chemistry of Protein Conjugation and Cross-Linking, CRC Press. However, it is generally preferred to use recombinant manipulations to make the in-frame fusion protein.
[0180] As noted, a fusion molecule or a conjugate molecule in accord with the invention can be organized in several ways. In an exemplary configuration, the C-terminus of the biologically active polypeptide is operatively linked to the N-terminus of the effector molecule. That linkage can be achieved by recombinant methods if desired. However, in another configuration, the N-terminus of the biologically active polypeptide is linked to the C-terminus of the effector molecule.
[0181] Alternatively, or in addition, one or more additional effector molecules can be inserted into the biologically active polypeptide or conjugate complexes as needed.
Vectors and Expression
[0182] A number of strategies can be employed to express the components of fusion protein complex of the invention (e.g., T.times.M). For example, a construct encoding one or more components of fusion protein complex of the invention can be incorporated into a suitable vector using restriction enzymes to make cuts in the vector for insertion of the construct followed by ligation. The vector containing the gene construct is then introduced into a suitable host for expression of the fusion protein. See, generally, Sambrook et al., supra. Selection of suitable vectors can be made empirically based on factors relating to the cloning protocol. For example, the vector should be compatible with, and have the proper replicon for the host that is being employed. The vector must be able to accommodate the DNA sequence coding for the fusion protein complex that is to be expressed. Suitable host cells include eukaryotic and prokaryotic cells, preferably those cells that can be easily transformed and exhibit rapid growth in culture medium. Specifically, preferred hosts cells include prokaryotes such as E. coli, Bacillus subtillus, etc. and eukaryotes such as animal cells and yeast strains, e.g., S. cerevisiae. Mammalian cells are generally preferred, particularly J558, NSO, SP2-O or CHO. Other suitable hosts include, e.g., insect cells such as Sf9. Conventional culturing conditions are employed. See, Sambrook, supra. Stable transformed or transfected cell lines can then be selected. Cells expressing a fusion protein complex of the invention can be determined by known procedures. For example, expression of a fusion protein complex linked to an immunoglobulin can be determined by an ELISA specific for the linked immunoglobulin and/or by immunoblotting. Other methods for detecting expression of fusion proteins comprising biologically active polypeptides linked to IL-15 or IL-15R.alpha. domains are disclosed in the Examples.
[0183] As mentioned generally above, a host cell can be used for preparative purposes to propagate nucleic acid encoding a desired fusion protein. Thus, a host cell can include a prokaryotic or eukaryotic cell in which production of the fusion protein is specifically intended. Thus, host cells specifically include yeast, fly, worm, plant, frog, mammalian cells and organs that are capable of propagating nucleic acid encoding the fusion. Non-limiting examples of mammalian cell lines which can be used include CHO dhfr-cells (Urlaub and Chasm, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)), 293 cells (Graham et al., J Gen. Virol., 36:59 (1977)) or myeloma cells like SP2 or NSO (Galfre and Milstein, Meth. Enzymol., 73(B):3 (1981)).
[0184] Host cells capable of propagating nucleic acid encoding a desired fusion protein complexes encompass non-mammalian eukaryotic cells as well, including insect (e.g., Sp. frugiperda), yeast (e.g., S. cerevisiae, S. pombe, P. pastoris., K. lactis, H. polymorpha; as generally reviewed by Fleer, R., Current Opinion in Biotechnology, 3(5):486496 (1992)), fungal and plant cells. Also contemplated are certain prokaryotes such as E. coli and Bacillus.
[0185] Nucleic acid encoding a desired fusion protein can be introduced into a host cell by standard techniques for transfecting cells. The term "transfecting" or "transfection" is intended to encompass all conventional techniques for introducing nucleic acid into host cells, including calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, microinjection, viral transduction and/or integration. Suitable methods for transfecting host cells can be found in Sambrook et al. supra, and other laboratory textbooks.
[0186] Various promoters (transcriptional initiation regulatory region) may be used according to the invention. The selection of the appropriate promoter is dependent upon the proposed expression host. Promoters from heterologous sources may be used as long as they are functional in the chosen host.
[0187] Promoter selection is also dependent upon the desired efficiency and level of peptide or protein production. Inducible promoters such as tac are often employed in order to dramatically increase the level of protein expression in E. coli. Overexpression of proteins may be harmful to the host cells. Consequently, host cell growth may be limited. The use of inducible promoter systems allows the host cells to be cultivated to acceptable densities prior to induction of gene expression, thereby facilitating higher product yields.
[0188] Various signal sequences may be used according to the invention. A signal sequence which is homologous to the biologically active polypeptide coding sequence may be used. Alternatively, a signal sequence which has been selected or designed for efficient secretion and processing in the expression host may also be used. For example, suitable signal sequence/host cell pairs include the B. subtilis sacB signal sequence for secretion in B. subtilis, and the Saccharomyces cerevisiae .alpha.-mating factor or P. pastoris acid phosphatase phol signal sequences for P. pastoris secretion. The signal sequence may be joined directly through the sequence encoding the signal peptidase cleavage site to the protein coding sequence, or through a short nucleotide bridge consisting of usually fewer than ten codons, where the bridge ensures correct reading frame of the downstream TCR sequence.
[0189] Elements for enhancing transcription and translation have been identified for eukaryotic protein expression systems. For example, positioning the cauliflower mosaic virus (CaMV) promoter 1,000 bp on either side of a heterologous promoter may elevate transcriptional levels by 10- to 400-fold in plant cells. The expression construct should also include the appropriate translational initiation sequences. Modification of the expression construct to include a Kozak consensus sequence for proper translational initiation may increase the level of translation by 10-fold.
[0190] A selective marker is often employed, which may be part of the expression construct or separate from it (e.g., carried by the expression vector), so that the marker may integrate at a site different from the gene of interest. Examples include markers that confer resistance to antibiotics (e.g., bla confers resistance to ampicillin for E. coli host cells, nptII confers kanamycin resistance to a wide variety of prokaryotic and eukaryotic cells) or that permit the host to grow on minimal medium (e.g., HIS4 enables P. pastoris or His.sup.- S. cerevisiae to grow in the absence of histidine). The selectable marker has its own transcriptional and translational initiation and termination regulatory regions to allow for independent expression of the marker. If antibiotic resistance is employed as a marker, the concentration of the antibiotic for selection will vary depending upon the antibiotic, generally ranging from 10 to 600 .mu.g of the antibiotic/mL of medium.
[0191] The expression construct is assembled by employing known recombinant DNA techniques (Sambrook et al., 1989; Ausubel et al., 1999). Restriction enzyme digestion and ligation are the basic steps employed to join two fragments of DNA. The ends of the DNA fragment may require modification prior to ligation, and this may be accomplished by filling in overhangs, deleting terminal portions of the fragment(s) with nucleases (e.g., ExoIII), site directed mutagenesis, or by adding new base pairs by PCR. Polylinkers and adaptors may be employed to facilitate joining of selected fragments. The expression construct is typically assembled in stages employing rounds of restriction, ligation, and transformation of E. coli. Numerous cloning vectors suitable for construction of the expression construct are known in the art (.lamda.ZAP and pBLUESCRIPT SK-1, Stratagene, La Jolla, Calif., pET, Novagen Inc., Madison, Wis., cited in Ausubel et al., 1999) and the particular choice is not critical to the invention. The selection of cloning vector will be influenced by the gene transfer system selected for introduction of the expression construct into the host cell. At the end of each stage, the resulting construct may be analyzed by restriction, DNA sequence, hybridization, and PCR analyses.
[0192] The expression construct may be transformed into the host as the cloning vector construct, either linear or circular, or may be removed from the cloning vector and used as is or introduced onto a delivery vector. The delivery vector facilitates the introduction and maintenance of the expression construct in the selected host cell type. The expression construct is introduced into the host cells by any of a number of known gene transfer systems (e.g., natural competence, chemically mediated transformation, protoplast transformation, electroporation, biolistic transformation, transfection, or conjugation) (Ausubel et al., 1999; Sambrook et al., 1989). The gene transfer system selected depends upon the host cells and vector systems used.
[0193] For instance, the expression construct can be introduced into S. cerevisiae cells by protoplast transformation or electroporation. Electroporation of S. cerevisiae is readily accomplished, and yields transformation efficiencies comparable to spheroplast transformation.
[0194] The present invention further provides a production process for isolating a fusion protein of interest. In the process, a host cell (e.g., a yeast, fungus, insect, bacterial or animal cell), into which has been introduced a nucleic acid encoding the protein of the interest operatively linked to a regulatory sequence, is grown at production scale in a culture medium to stimulate transcription of the nucleotides sequence encoding the fusion protein of interest. Subsequently, the fusion protein of interest is isolated from harvested host cells or from the culture medium. Standard protein purification techniques can be used to isolate the protein of interest from the medium or from the harvested cells. In particular, the purification techniques can be used to express and purify a desired fusion protein on a large-scale (i.e. in at least milligram quantities) from a variety of implementations including roller bottles, spinner flasks, tissue culture plates, bioreactor, or a fermentor.
[0195] An expressed protein fusion complex can be isolated and purified by known methods. Typically, the culture medium is centrifuged or filtered and then the supernatant is purified by affinity or immunoaffinity chromatography, e.g. Protein-A or Protein-G affinity chromatography or an immunoaffinity protocol comprising use of monoclonal antibodies that bind the expressed fusion complex. The fusion proteins of the present invention can be separated and purified by appropriate combination of known techniques. These methods include, for example, methods utilizing solubility such as salt precipitation and solvent precipitation, methods utilizing the difference in molecular weight such as dialysis, ultra-filtration, gel-filtration, and SDS-polyacrylamide gel electrophoresis, methods utilizing a difference in electrical charge such as ion-exchange column chromatography, methods utilizing specific affinity such as affinity chromatography, methods utilizing a difference in hydrophobicity such as reverse-phase high performance liquid chromatography and methods utilizing a difference in isoelectric point, such as isoelectric focusing electrophoresis, metal affinity columns such as Ni-NTA. See generally Sambrook et al. and Ausubel et al. supra for disclosure relating to these methods.
[0196] It is preferred that the fusion proteins of the present invention be substantially pure. That is, the fusion proteins have been isolated from cell substituents that naturally accompany it so that the fusion proteins are present preferably in at least 80% or 90% to 95% homogeneity (w/w). Fusion proteins having at least 98 to 99% homogeneity (w/w) are most preferred for many pharmaceutical, clinical and research applications. Once substantially purified the fusion protein should be substantially free of contaminants for therapeutic applications. Once purified partially or to substantial purity, the soluble fusion proteins can be used therapeutically, or in performing in vitro or in vivo assays as disclosed herein. Substantial purity can be determined by a variety of standard techniques such as chromatography and gel electrophoresis.
[0197] The present fusion protein complexes are suitable for in vitro or in vivo use with a variety of cells that are cancerous or are infected or that may become infected by one or more diseases.
[0198] Human interleukin-15 (huIL-15) is trans-presented to immune effector cells by the human IL-15 receptor a chain (huIL-15R.alpha.) expressed on antigen presenting cells. IL-15R.alpha. binds huIL-15 with high affinity (38 pM) primarily through the extracellular sushi domain (huIL-15R.alpha.Su). As described herein, the huIL-15 and huIL-15R.alpha.Su domains can be used as a scaffold to construct multi-domain fusion complexes.
[0199] IgG domains, particularly the Fc fragment, have been used successfully as dimeric scaffolds for a number of therapeutic molecules including approved biologic drugs. For example, etanercept is a dimer of soluble human p75 tumor necrosis factor-.alpha. (TNF-.alpha.) receptor (sTNFR) linked to the Fc domain of human IgG1. This dimerization allows etanercept to be up to 1,000 times more potent at inhibiting TNF-.alpha. activity than the monomeric sTNFR and provides the fusion with a five-fold longer serum half-life than the monomeric form. As a result, etanercept is effective at neutralization of the pro-inflammatory activity of TNF-.alpha. in vivo and improving patient outcomes for a number of different autoimmune indications.
[0200] In addition to its dimerization activity, the Fc fragment also provides cytotoxic effector functions through the complement activation and interaction with Fcy receptors displayed on natural killer (NK) cells, neutrophils, phagocytes, and dendritic cells. In the context of anti-cancer therapeutic antibodies and other antibody domain-Fc fusion proteins, these activities likely play an important role in efficacy observed in animal tumor models and in cancer patients. However, these cytotoxic effector responses may not be sufficient in a number of therapeutic applications. Thus, there has been considerable interest in improving and expanding on the effector activity of the Fc domain and developing other means of recruiting cytolytic immune responses, including T cell activity, to the disease site via targeted therapeutic molecules. IgG domains have been used as a scaffold to form bispecific antibodies to improve the quality and quantity of products generated by the traditional hybridoma fusion technology. Although these methods bypass the shortcomings of other scaffolds, it has been difficult to produce bispecific antibodies in mammalian cells at levels sufficient to support clinical development and use.
[0201] In an effort to develop human-derived immunostimulatory multimeric scaffold, human IL-15 (huIL-15) and IL-15 receptor domains were used. huIL-15 is a member of the small four .alpha.-helix bundle family of cytokines that associates with the huIL-15 receptor .alpha.-chain (huIL-15R.alpha.) with a high binding affinity (equilibrium dissociation constant (KD) .about.10.sup.-11 M). The resulting complex is then trans-presented to the human IL-2/15 receptor .beta./common .gamma. chain (huIL-15R.beta..gamma.C) complexes displayed on the surface of T cells and NK cells. This cytokine/receptor interaction results in expansion and activation of effector T cells and NK cells, which play an important role in eradicating virally infected and malignant cells. Normally, huIL-15 and huIL-15R.alpha. are co-produced in dendritic cells to form complexes intracellularly that are subsequently secreted and displayed as heterodimeric molecules on cell surfaces. Thus, the characteristics of huIL-15 and huIL-15R.alpha. interactions suggest that these inter chain binding domains could serve as a human-derived immunostimulatory scaffold to make soluble dimeric molecules capable of target-specific binding.
[0202] As described in detail below, an huIL-15:huIL-15R.alpha.Su-based scaffold was used to create PD-L1 T.times.M. The dimeric fusion protein complexes retained immunostimulatory and target-specific biological activity of their huIL-15 domains and binding domains, indicating that the addition of huIL-15 and huIL-15R.alpha. did not significantly alter the spatial arrangement of the fusion domains and provided an adequate degree of conformational flexibility without impacting cytokine activity. Thus, this scaffold could be used to form multivalent fusion complexes, such as the PD-L1 T.times.M, to increase the overall binding affinity of molecules. The soluble fusion proteins were produced at relatively high levels in recombinant CHO cell culture (mgs per liter in cell culture supernatant without extensive cell line screening or optimization) and could be readily purified from the cell culture supernatants.
[0203] The practice of the present invention employs, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, and immunology, which are well within the purview of the skilled artisan. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", second edition (Sambrook, 1989); "Oligonucleotide Synthesis" (Gait, 1984); "Animal Cell Culture" (Freshney, 1987); "Methods in Enzymology" "Handbook of Experimental Immunology" (Weir, 1996); "Gene Transfer Vectors for Mammalian Cells" (Miller and Calos, 1987); "Current Protocols in Molecular Biology" (Ausubel, 1987); "PCR: The Polymerase Chain Reaction", (Mullis, 1994); "Current Protocols in Immunology" (Coligan, 1991). These techniques are applicable to the production of the polynucleotides and polypeptides of the invention, and, as such, may be considered in making and practicing the invention. Particularly useful techniques for particular embodiments will be discussed in the sections that follow.
Lymphoma
[0204] Lymphoma is a type of blood cancer that occurs when B or T lymphocytes divide faster than normal cells or live longer than intended. For example, B cell lymphomas include both Hodgkin's lymphomas and most non-Hodgkin's lymphomas. B cell lymphomas express CD20.
[0205] Lymphoma may develop in the lymph nodes, spleen, bone marrow, blood, or other organs. These malignant cells often originate in the lymph nodes, presenting as an enlargement of the node, i.e., a solid tumor of lymphoid cells. Lymphoma is definitively diagnosed by a lymph node biopsy, i.e., a partial or total excision of a lymph node, which is examined under a microscope. This examination may reveal histopathological features that may indicate lymphoma. Treatment might involve chemotherapy, radiotherapy, and/or bone marrow transplantation.
[0206] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the assay, screening, and therapeutic methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention.
EXAMPLES
Example 1
Generation and Characterization of IL-15-Based Fusion Protein Complexes Comprising Anti-PD-L1 Binding Domains (PD-L1 T.times.M)
[0207] Cancer cells are able to turn on various immune inhibitory pathways which are regulated by immune checkpoint molecules and ligands, such as PD-L1. Antibodies that block these checkpoint molecules have been shown to enhance anti-tumor immunity. IL-15 activates and expands NK and CD8.sup.+ cells while increasing their cytolytic activity. The Fc region of Ig molecules can interact with Fcy receptors on NK cells and macrophages and mediate antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) against target disease cells. As described in detail below, protein complexes comprising an IL-15N72D:IL-15R.alpha.Su/Fc scaffold fused to anti-PD-L1 binding domains were generated. These complexes recognize tumor cells via the anti-PD-L1 binding domain, induce NK and T cells responses via IL-15 activity, and stimulate ADCC and CDC via the Fc binding domain.
[0208] Specifically, constructs were made linking a single-chain anti-PD-L1 antibody to the huIL-15N72D and IL-15R.alpha.Su/Fc chains. The anti-PD-L1 single chain antibody (anti-PD-L1 scAb) sequence comprises the coding regions of the heavy and light chain V antibody domains antibody linked via a flexible linker sequence. The single chain antibody domain can be arranged in either the VH-linker-VL or VL-linker-VH format. In some cases, the anti-PD-L1 scAb is linked to the C-terminus of the IL-15N72D and/or IL-15R.alpha.Su/Fc chains. In other cases, the anti-PD-L1 is linked to the N-terminus of IL-15N72D and/or IL-15R.alpha.Su/Fc chains. Anti-PD-L1 scAbs specific to either the mouse or human PD-L1 molecules were used in these constructs.
[0209] 1) The nucleic acid and protein sequences of constructs comprising an anti-human PD-L1 scAb linked to the N-terminus of the huIL-15N72D and huIL-15R.alpha.Su/huIgG1 Fc chains are shown below. The nucleic acid sequence of anti-human PD-L1 scAb/IL-15N72D construct (including signal peptide sequence and stop codon) is as follows (SEQ ID NO: 1):
TABLE-US-00001 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-human PD-L1 scAb) (VL) AACATCCAGATGACCCAGTCCCCTAGCTCCGTGTCCGCCTCCGTGGGAGA TCGGGTGACCATCACCTGTAGGGCCTCCCAGGACATCTCCAGGTGGCTGG CCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGCC GCCTCCTCCCTGCAGTCCGGAGTGCCTAGCAGGTTCTCCGGCTCCGGATC CGGCACAGACTTCGCCCTGACCATCTCCTCCCTGCAGCCCGAGGACTTCG CCACCTACTACTGCCAGCAGGCCGACTCCAGGTTCTCCATCACCTTCGGC CAGGGCACCAGGCTGGAGATCAAGAGG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTGCAGCTGGTGCAGTCCGGAGGAGGACTGGTGCAGCCTGGCGGATC CCTGAGGCTGTCCTGTGCCGCTTCCGGCTTCACCTTCAGCTCCTACTCCA TGAACTGGGTGAGGCAGGCCCCTGGAAAGGGCCTGGAGTGGGTGTCCTAC ATCTCCAGCTCCTCCTCCACCATCCAGTACGCCGACTCCGTGAAGGGCAG GTTCACCATCTCCAGGGACAACGCCAAGAACTCCCTGTACCTGCAGATGA ACAGCCTGAGGGACGAGGACACCGCCGTGTACTACTGCGCCAGGGGCGAC TATTACTACGGCATGGACGTGTGGGGCCAGGGAACCACCGTGACCGTGTC CTCC (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0210] The amino acid sequence of the anti-human PD-L1 scAb/IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 2):
TABLE-US-00002 (Signal peptide) MKWVTFISLLFLFSSAYS (Anti-human PD-L1 scAb) (VL) NIQMTQSPSSVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLIYA ASSLQSGVPSRFSGSGSGTDFALTISSLQPEDFATYYCQQADSRFSITFG QGTRLEIKR (Linker) GGGGSGGGGSGGGGS (VH) EVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSY ISSSSSTIQYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARGD YYYGMDVWGQGTTVTVSS (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS
[0211] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0212] The nucleic acid sequence of an anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 3):
TABLE-US-00003 (Leader sequence) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-human PD-L1 scAb) (VL) AACATCCAGATGACCCAGTCCCCTAGCTCCGTGTCCGCCTCCGTGGGAGA TCGGGTGACCATCACCTGTAGGGCCTCCCAGGACATCTCCAGGTGGCTGG CCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGCC GCCTCCTCCCTGCAGTCCGGAGTGCCTAGCAGGTTCTCCGGCTCCGGATC CGGCACAGACTTCGCCCTGACCATCTCCTCCCTGCAGCCCGAGGACTTCG CCACCTACTACTGCCAGCAGGCCGACTCCAGGTTCTCCATCACCTTCGGC CAGGGCACCAGGCTGGAGATCAAGAGG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTGCAGCTGGTGCAGTCCGGAGGAGGACTGGTGCAGCCTGGCGGATC CCTGAGGCTGTCCTGTGCCGCTTCCGGCTTCACCTTCAGCTCCTACTCCA TGAACTGGGTGAGGCAGGCCCCTGGAAAGGGCCTGGAGTGGGTGTCCTAC ATCTCCAGCTCCTCCTCCACCATCCAGTACGCCGACTCCGTGAAGGGCAG GTTCACCATCTCCAGGGACAACGCCAAGAACTCCCTGTACCTGCAGATGA ACAGCCTGAGGGACGAGGACACCGCCGTGTACTACTGCGCCAGGGGCGAC TATTACTACGGCATGGACGTGTGGGGCCAGGGAACCACCGTGACCGTGTC CTCC (Human IL-15R .alpha. sushi domain) ATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0213] The amino acid sequence of the anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 4):
TABLE-US-00004 (Leader peptide) MKWVTFISLLFLFSSAYS (Anti-human PD-L1 scAb) (VL) NIQMTQSPSSVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLIYA ASSLQSGVPSRFSGSGSGTDFALTISSLQPEDFATYYCQQADSRFSITFG QGTRLEIKR (Linker) GGGGSGGGGSGGGGS (VH) EVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSY ISSSSSTIQYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARGD YYYGMDVWGQGTTVTVSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0214] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0215] 2) The nucleic acid and protein sequences of constructs comprising a second anti-human PD-L1 (avelumab) scAb linked to the N-terminus of the huIL-15N72D and huIL-15R.alpha.Su/huIgG1 Fc chains are shown below. The nucleic acid sequence of anti-human PD-L1 scAb/IL-15N72D construct (including signal peptide sequence and stop codon) is as follows (SEQ ID NO: 5):
TABLE-US-00005 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-human PD-L1 scAb) (VL) CAGTCCGCTCTGACCCAGCCTGCTTCCGTGTCCGGCTCCCCTGGACAGTC CATCACCATCTCCTGTACCGGCACCTCCTCCGATGTGGGCGGCTACAACT ACGTGTCCTGGTACCAGCAGCACCCCGGCAAAGCCCCCAAGCTGATGATC TATGACGTGTCCAACCGGCCCTCCGGCGTGTCCAACAGGTTCTCCGGCTC CAAGTCCGGCAACACCGCCTCCCTGACAATCTCCGGCCTGCAGGCCGAGG ATGAGGCTGACTACTACTGCTCCTCCTACACCTCCTCCTCCACCAGGGTG TTCGGCACCGGCACCAAGGTGACCGTGCTG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTGCAGCTGCTGGAGTCCGGAGGCGGACTGGTGCAGCCTGGAGGATC CCTGAGGCTGTCCTGCGCTGCCTCCGGCTTCACCTTCTCCTCCTACATCA TGATGTGGGTGAGGCAGGCTCCTGGCAAGGGCCTGGAGTGGGTGTCCTCC ATCTACCCCTCCGGCGGCATCACCTTCTACGCCGATACCGTGAAGGGCAG GTTCACCATCTCCCGGGACAACTCCAAGAACACCCTGTACCTGCAGATGA ACTCCCTGAGGGCTGAGGACACCGCCGTGTACTACTGCGCCAGGATCAAG CTGGGCACCGTGACCACAGTGGACTACTGGGGACAGGGCACCCTGGTGAC CGTGTCCTCC (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0216] The amino acid sequence of the anti-human PD-L1 scAb/IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 6):
TABLE-US-00006 (Signal peptide) MKWVTFISLLFLFSSAYS (Anti-human PD-L1 scAb) (VL) QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMI YDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRV FGTGTKVTVL (Linker) GGGGSGGGGSGGGGS (VH) EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSS IYPSGGITFYADTVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIK LGTVTTVDYWGQGTLVTVSS (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS
[0217] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0218] The nucleic acid sequence of an anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 7):
TABLE-US-00007 (Leader sequence) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-human PD-L1 scAb) (VL) CAGTCCGCTCTGACCCAGCCTGCTTCCGTGTCCGGCTCCCCTGGACAGTC CATCACCATCTCCTGTACCGGCACCTCCTCCGATGTGGGCGGCTACAACT ACGTGTCCTGGTACCAGCAGCACCCCGGCAAAGCCCCCAAGCTGATGATC TATGACGTGTCCAACCGGCCCTCCGGCGTGTCCAACAGGTTCTCCGGCTC CAAGTCCGGCAACACCGCCTCCCTGACAATCTCCGGCCTGCAGGCCGAGG ATGAGGCTGACTACTACTGCTCCTCCTACACCTCCTCCTCCACCAGGGTG TTCGGCACCGGCACCAAGGTGACCGTGCTG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTGCAGCTGCTGGAGTCCGGAGGCGGACTGGTGCAGCCTGGAGGATC CCTGAGGCTGTCCTGCGCTGCCTCCGGCTTCACCTTCTCCTCCTACATCA TGATGTGGGTGAGGCAGGCTCCTGGCAAGGGCCTGGAGTGGGTGTCCTCC ATCTACCCCTCCGGCGGCATCACCTTCTACGCCGATACCGTGAAGGGCAG GTTCACCATCTCCCGGGACAACTCCAAGAACACCCTGTACCTGCAGATGA ACTCCCTGAGGGCTGAGGACACCGCCGTGTACTACTGCGCCAGGATCAAG CTGGGCACCGTGACCACAGTGGACTACTGGGGACAGGGCACCCTGGTGAC CGTGTCCTCC (Human IL-15R .alpha. sushi domain) ATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0219] The amino acid sequence of the anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 8):
TABLE-US-00008 (Leader peptide) MKWVTFISLLFLFSSAYS (Anti-human PD-L1 scAb) (VL) QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMI YDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRV FGTGTKVTVL (Linker) GGGGSGGGGSGGGGS (VH) EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSS IYPSGGITFYADTVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIK LGTVTTVDYWGQGTLVT VSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPS LKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0220] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0221] 3) The nucleic acid and protein sequences of constructs comprising am anti-mouse PD-Li scAb linked to the N-terminus of the huIL-15N72D and huIL-15R.alpha.Su/muIgG2A Fc chains are shown below. The nucleic acid sequence of anti-mouse PD-L1 scAb/IL-15N72D construct (including signal peptide sequence and stop codon) is as follows (SEQ ID NO: 9):
TABLE-US-00009 (Signal peptide) ATGACATGGACTCTACTATTCCTTGCCTTCCTTCATCACTTAACAGGGTC ATGTGCCCAGTTTGTGCTTACTCAGCCAAACTCT (Anti-mouse PD-L1 scAb) (VL) GTGTCTACGAATCTCGGAAGCACAGTCAAGCTGTCTTGCAACCGCAGCAC TGGTAACATTGGAAACAATTATGTGAACTGGTACCAGCAGCATGAAGGAA GATCTCCCACCACTCTGATTTATTGGGATGATAGGAGACCAGATGGAGTT CCTGACAGGTTCTCTGGCTCCATTGACAGATCTTCCAACTCAGCCCTCCT GACAATCAATAATGTGCAGACTGAGGATGAAACTGACTACTTCTGTCAGT CTTACAGTAGTGGTATGTATATTTTCGGCGGTGGAACCAAGCTCACTGTC CTA (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTTCAGCTGCAGCAGTCTGGGGCTGAGCTGGTGAAGCCTGGGGCTTC AGTAAAGTTGTCCTGCAAAACTTCTGGTTACACCTTCAGCAATTACTATA TGAGTTGGTTGAAGCAGATGCCTGGACAGAATATTGAGTGGATCGGAAAC ATTTATGGTGGAAATGGTGGTGCTGGCTATAATCAGAAGTTCAAGGGCAA GGCCACACTGACAGTGGACAAATCTTCCAGCACAGCGTACATGGATCTCA GCAGCCTGACATCTGAGGCCTCTGCAGTCTATTTTTGTGCAAGGGTCGGA CTTCCCGGCCTTTTTGATTACTGGGGCCAGGGAGTCATGGTCACAGTCTC CTCA (Human IL-15N72D) AACTGGGTGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0222] The amino acid sequence of the anti-mouse PD-L1 scAb/IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 10):
TABLE-US-00010 (Signal peptide) MTWTLLFLAFLHHLTGSCAQFVLTQPNS (Anti-mouse PD-L1 scAb) (VL) VSTNLGSTVKLSCNRSTGNIGNNYVNWYQQHEGRSPTTLIYWDDRRPDGV PDRFSGSIDRSSNSALLTINNVQTEDETDYFCQSYSSGMYIFGGGTKLTV L (Linker) GGGGSGGGGSGGGGS (VH) EVQLQQSGAELVKPGASVKLSCKTSGYTFSNYYMSWLKQMPGQNIEWIGN IYGGNGGAGYNQKFKGKATLTVDKSSSTAYMDLSSLTSEASAVYFCARVG LPGLFDYWGQGVMVTVSS (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS
[0223] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0224] The nucleic acid sequence of an anti-mouse PD-L1 scAb/huIL-15R.alpha.Su/muIgG2A Fc construct (including leader sequence) is as follows (SEQ ID NO: 11):
TABLE-US-00011 (Signal peptide) ATGACATGGACTCTACTATTCCTTGCCTTCCTTCATCACTTAACAGGGTC ATGTGCCCAGTTTGTGCTTACTCAGCCAAACTCT (Anti-mouse PD-L1 scAb) (VL) GTGTCTACGAATCTCGGAAGCACAGTCAAGCTGTCTTGCAACCGCAGCAC TGGTAACATTGGAAACAATTATGTGAACTGGTACCAGCAGCATGAAGGAA GATCTCCCACCACTCTGATTTATTGGGATGATAGGAGACCAGATGGAGTT CCTGACAGGTTCTCTGGCTCCATTGACAGATCTTCCAACTCAGCCCTCCT GACAATCAATAATGTGCAGACTGAGGATGAAACTGACTACTTCTGTCAGT CTTACAGTAGTGGTATGTATATTTTCGGCGGTGGAACCAAGCTCACTGTC CTA (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTTCAGCTGCAGCAGTCTGGGGCTGAGCTGGTGAAGCCTGGGGCTTC AGTAAAGTTGTCCTGCAAAACTTCTGGTTACACCTTCAGCAATTACTATA TGAGTTGGTTGAAGCAGATGCCTGGACAGAATATTGAGTGGATCGGAAAC ATTTATGGTGGAAATGGTGGTGCTGGCTATAATCAGAAGTTCAAGGGCAA GGCCACACTGACAGTGGACAAATCTTCCAGCACAGCGTACATGGATCTCA GCAGCCTGACATCTGAGGCCTCTGCAGTCTATTTTTGTGCAAGGGTCGGA CTTCCCGGCCTTTTTGATTACTGGGGCCAGGGAGTCATGGTCACAGTCTC CTCA (Human IL-15R .alpha. sushi domain) ATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Mouse IgG2a CH2-CH3 domain) GAACCAAGAGGGCCCACAATCAAGCCCTGTCCTCCATGCAAATGCCCAGC ACCTAACCTCTTGGGTGGACCATCCGTCTTCATCTTCCCTCCAAAGATCA AGGATGTACTCATGATCTCCCTGAGCCCCATAGTCACATGTGTGGTGGTG GATGTGAGCGAGGATGACCCAGATGTCCAGATCAGCTGGTTTGTGAACAA CGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGATTACAACA GTACTCTCCGGGTGGTCAGTGCCCTCCCCATCCAGCACCAGGACTGGATG AGTGGCAAGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCAGCGCC CATCGAGAGAACCATCTCAAAACCCAAAGGGTCAGTAAGAGCTCCACAGG TATATGTCTTGCCTCCACCAGAAGAAGAGATGACTAAGAAACAGGTCACT CTGACCTGCATGGTCACAGACTTCATGCCTGAAGACATTTACGTGGAGTG GACCAACAACGGGAAAACAGAGCTAAACTACAAGAACACTGAACCAGTCC TGGACTCTGATGGTTCTTACTTCATGTACAGCAAGCTGAGAGTGGAAAAG AAGAACTGGGTGGAAAGAAATAGCTACTCCTGTTCAGTGGTCCACGAGGG TCTGCACAATCACCACACGACTAAGAGCTTCTCCCGGACTCCAGGTAAAT AA
[0225] The amino acid sequence of the anti-mouse PD-L1 scAb/huIL-15R.alpha.Su/muIgG2A Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 12):
TABLE-US-00012 (Signal peptide) MTWTLLFLAFLHHLTGSCAQFVLTQPNS (Anti-mouse PD-L1 scAb) (VL) VSTNLGSTVKLSCNRSTGNIGNNYVNWYQQHEGRSPTTLIYWDDRRPDGV PDRFSGSIDRSSNSALLTINNVQTEDETDYFCQSYSSGMYIFGGGTKLTV L (Linker) GGGGSGGGGSGGGGS (VH) EVQLQQSGAELVKPGASVKLSCKTSGYTFSNYYMSWLKQMPGQNIEWIGN IYGGNGGAGYNQKFKGKATLTVDKSSSTAYMDLSSLTSEASAVYFCARVG LPGLFDYWGQGVMVTVSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Mouse IgG2a CH2-CH3 domain) EPRGPTIKPCPPCKCPAPNLLGGPSVFIFPPKIKDVLMISLSPIVTCVVV DVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWM SGKEFKCKVNNKDLPAPIERTISKPKGSVRAPQVYVLPPPEEEMTKKQVT LTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGSYFMYSKLRVEK KNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK
[0226] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0227] The anti-PD-L1 scAb/IL-15N72D and anti-PD-L1 scAb/IL-15R.alpha.Su/Fc sequences were cloned into expression vectors as described previously (U.S. Pat. No. 8,507,222, incorporated herein by reference), and the expression vectors transfected into CHO cells. Co-expression of the two constructs in CHO cells allowed formation and secretion of a soluble anti-PD-L1 scAb/IL-15N72D:anti-PD-L1 scAb/IL-15R.alpha.Su/Fc complex which was purified from the CHO cell culture supernatant using Protein A affinity chromatography.
[0228] SDS-PAGE analysis of the purified anti-PD-L1 scAb/IL-15N72D:anti-PD-L1 scAb/IL-15R.alpha.Su/Fc protein complexes is shown in FIG. 3. Bands corresponding to the soluble anti-mouse PD-L1 scAb/huIL-15R.alpha.Su/muIgG2A and anti-mouse PD-L1 scAb/IL-15N72D proteins at .about.60 kDa and .about.40 kDa, respectively, were observed.
Example 2
In Vitro Characterization of the Activities of PD-L1 T.times.M
[0229] ELISA-based methods confirmed the formation of a PD-L1 T.times.M complex. In FIG. 4A, the anti-human PD-L1 scAb/IL-15N72D:anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion protein complexes in the culture supernatant from transfected CHO cells were detected using a huIgG1/huIL15-specific ELISA with a capture antibody, anti-human IgG antibody (Jackson ImmunoResearch), and a detection antibody, biotinylated anti-human IL-15 antibody (BAM 247, R&D Systems). This is compared to a control sample using only the supernatant of media containing untransfected CHO cells. The increased signal observed in the culture supernatant from transfected CHO cells verifies formations of the PD-L1 T.times.M complex. Similar results were obtained from a second anti-human PD-L1 scAb/IL-15N72D:anti-human PD-L1 scAb/huIL-15R.alpha.Su/huIgG1 Fc fusion protein complex (avelumab T.times.M) (FIG. 4B).
[0230] For the mouse specific PD-L1 T.times.M, the fusion protein complexes were detected using a mIgG2a-specific or huIL15-specific ELISA with a capture antibody, affinipure donkey anti-mouse IgG (Jackson ImmunoResearch) or human/primate IL15 antibody (MAB647, R&D system) and a detection antibody horseradish peroxidase-affinipure donkey anti-mouse IgG (Jackson ImmunoResearch) or biotinylated anti-human IL-15 antibody (BAM 247, R&D Systems), respectively (FIG. 4C). Compared to the positive controls, antibody reactivity to the purified mouse specific PD-L1 T.times.M verified formation of the complex.
[0231] The ability of these fusion protein complexes to bind PD-L1 on tumor cells was also examined. The binding of human specific PD-L1 T.times.M was assessed by flow cytometry using receptor bearing MB231 tumor cells. In these studies, 1.times.10.sup.5 cells were stained with PD-L1 T.times.M complexes. As shown in FIG. 5A, flow cytometry analysis demonstrated binding of the PD-L1 T.times.M complex to MB231 cells when detected using an APC conjugated mouse anti-human Fc Ab (Biolegend). In FIG. 5B, specificity of this binding was tested by using the PD-L1 T.times.M complex to block the staining of MB231 cells with a commercially available APC conjugated anti-human PD-L1 Ab (Biolegend). Similarly, flow cytometry analysis demonstrated binding of the avelumab-based PD-L1 T.times.M complex to MB231 tumor cells (FIG. 5C).
[0232] To assess binding of the mouse-specific PD-L1 T.times.M complexes, PD-L1-positive 5T33P myeloma and MB49luc bladder tumor cells (5.times.10.sup.5 cells/test) initially were stained with PE or Brilliant Violet labeled anti-mouse PD-L1 Ab (2 .mu.g/test in 100 .mu.L) (FIG. 6 A and FIG. 6B). Specificity of this binding was tested by addition of purified mouse-specific PD-L1 T.times.M complexes to block antibody binding to PD-L1 ligand. A purified anti-mPD-L1 Ab (S1-PD-L1) was used as a positive control. Interestingly, the PD-L1 T.times.M complexes were found to block PD-L1 staining on the tumor cell better than the equivalent amount of anti-PD-L1 Ab. This was further assessed in blocking studies using A20 B-cell lymphoma cells. Titration analysis indicated that PD-L1 T.times.M was at least 5-fold more effective than anti-PD-L1 Ab at blocking interactions with PD-L1 expressed on the tumor cell surface (FIG. 7A and FIG. 7B).
[0233] To assess the IL-15 immunostimulatory activity of PD-L1 T.times.M complexes, proliferation of IL-15-dependent 32D.beta. cells, a mouse hematopoietic cell line, was assessed. Increasing levels of PD-L1 T.times.M were added to 32D.beta. cells (10.sup.4 cell/well) and cell proliferation was determined 2 days later using WST-1 proliferation reagent. As shown in FIG. 8, a dose dependent increase in 32D.beta. cell proliferation was mediated by PD-L1 T.times.M verifying the immunostimulatory activity of the complex.
[0234] Further studies were conducted to assess the characteristics and activity of different forms of the PD-L1 T.times.M complex. Complexes comprising anti-PD-L1 scAb/IL-15N72D and anti-PD-L1 scAb/IL-15R.alpha.Su/Fc proteins are expected to have four anti-PD-L1 scAb binding domains (i.e., 4 headed (4H)) whereas complexes comprising IL-15N72D and anti-PD-L1 scAb/IL-15R.alpha.Su/Fc proteins are expected to have two anti-PD-L1 scAb binding domains (i.e., 2 headed (2H)) (FIG. 9A). These complexes are expected to have different activities based on the higher avidity binding to target cells of the 4H T.times.M compared to the 2H T.times.M. Protein fusion to the IL-15N72D has also been shown to reduce the IL-15 biological activity. Thus, the 4H T.times.M format is expected to have lower IL-15 activity than the 2H T.times.M. These differences are expected to provide advantages where high (antibody-like) targeting and lower immunostimulatory activity is preferred (i.e., 4H T.times.M format) or where lower targeting and higher immunostimulatory activity (immunocytokine) is preferred.
[0235] To evaluate these formats, 4H mouse-specific PD-L1 T.times.M (2C2) and 2H mouse-specific PD-L1 T.times.M (PDN3) were generated by transfecting CHO cells with anti-mouse PD-L1 scAb/IL-15N72D and anti-mouse PD-L1 scAb-/IL-15R.alpha.Su/Fc expression vectors or IL-15N72D and anti-mouse PD-L1 scAb-/IL-15R.alpha.Su/Fc expression vectors, respectively. The T.times.M complexes were then purified from the transfected CHO cell supernatant by Protein A chromatography and the purified proteins evaluated by reduced SDS-PAGE (FIG. 9B). Bands corresponding to the soluble anti-mouse PD-L1 scAb/huIL-15R.alpha.Su/muIgG2A, anti-mouse PD-L1 scAb/IL-15N72D and IL-15N72D proteins at .about.60 kDa, .about.40 kDa and .about.16 kDa, respectively, were observed. Additionally, the purified 4H PD-L1 T.times.M (2C2) and 2H PD-L1 T.times.M (PDN3) complexes migrate as a single protein peak when analyzed by analytical size exclusion chromatography (SEC) (FIG. 9C and FIG. 9D). These results indicate that the two different PD-L1 T.times.M complexes can be produced and purified as soluble proteins with the expected structural properties.
[0236] Similar to studies described above, the ability of these fusion protein complexes to bind IL-2R.beta./.gamma. on immune cells and PD-L1 on tumor cells was examined. IL-2R.beta./.gamma.-positive 32D.beta. cells were incubated with 4H PD-L1 T.times.M (2C2), 2H PD-L1 T.times.M (PDN3) or control ALT-803 complexes. Followed by a wash step, anti-human IL-15 Ab-PE (or isotype control Ab) was added to detect bound T.times.M/ALT-803 complexes by flow cytometry. As shown in FIG. 10A, 4H PD-L1 T.times.M (2C2), 2H PD-L1 T.times.M (PDN3) and ALT-803 proteins were capable of 32D.beta. cells compared to the controls. To assess binding to PD-L1, PD-L1-positive 5T33P myeloma cells initially were stained with Brilliant Violet 421 (BV421)-labeled anti-mouse PD-L1 Ab (10F.9G2). Specificity of this binding was tested by addition of purified 4H PD-L1 T.times.M (2C2) and 2H PD-L1 T.times.M (PDN3) complexes to block BV421 antibody binding to PD-L1 ligand (FIG. 10B and FIG. 10C). A purified anti-mPD-L1 Ab (NJI6) was used as a positive control. Consistent with its higher avidity, 1 .mu.g of 4H PD-L1 T.times.M was as effective at blocking anti-PD-L1 Ab staining as 6 .mu.g of 2H PD-L1 T.times.M. These results confirm that the 4H PD-L1 and 2H PD-L1 T.times.M complexes retain IL-2R.beta./.gamma. and PD-L1 target binding activity.
[0237] As described above, the IL-15 immunostimulatory activity of the mouse-specific 4H PD-L1 and 2H PD-L1 T.times.M complexes was determined based on proliferation of IL-15-dependent 32D.beta. cells. As shown in FIG. 11A and FIG. 11B, a dose dependent increase in 32D.beta. cell proliferation was mediated by either 4H PD-L1 and 2H PD-L1 T.times.M complexes, verifying the immunostimulatory activity of these T.times.M formats. The 2H PD-L1 T.times.M complex (PDN-3) exhibits a slight decrease in IL-15 bioactivity compared to ALT-803 whereas the 4H PD-L1 T.times.M complex (2C2) exhibits approximately a 30-fold decrease in IL-15 bioactivity. This is consistent with the lower IL-15 activity of previous binding domain-IL-15N72D fusion proteins.
[0238] Similar studies were conducted on 4H human-specific PD-L1 T.times.M and 2H human-specific PD-L1 T.times.M complexes. These proteins were generated by transfecting CHO cells with anti-human PD-L1 scAb/IL-15N72D and anti-human PD-L1 scAb-/IL-15R.alpha.Su/Fc expression vectors or IL-15N72D and anti-human PD-L1 scAb-/IL-15R.alpha.Su/Fc expression vectors, respectively, followed by purification from cell culture supernatants via Protein A chromatography. Reduced SDS-PAGE analysis confirmed the expected protein bands in the purified 4H human-specific PD-L1 T.times.M and 2H human-specific PD-L1 T.times.M preparations (FIG. 12A). Similarly, analytical SEC indicated that the purified 4H human-specific PD-L1 T.times.M and 2H human-specific PD-L1 T.times.M complexes migrated as single protein peaks (FIG. 12B and FIG. 12C).
[0239] The ability of these fusion protein complexes to bind PD-L1 on tumor cells was examined. PD-L1-positive PC-3 human prostate cancer cells were stained with APC labeled anti-mouse PD-L1 Ab in the presence or absence of 10 nM of purified human-specific 4H PD-L1 T.times.M, 2H PD-L1 T.times.M or control 2H anti-CD20 scAb (2B8) T.times.M complexes (FIG. 13). The results show that the human-specific 4H PD-L1 and 2H PD-L1 T.times.M complexes were capable of blocking anti-PD-L1 Ab binding to human tumor cells, whereas the control T.times.M complex was not. Consistent with previous results the 4H PD-L1 T.times.M complex showed better binding activity than the 2H PD-L1 T.times.M complexes. These results confirm that the human-specific 4H PD-L1 and 2H PD-L1 T.times.M complexes retain PD-L1 target binding activity on human tumor cells.
[0240] As described above, the IL-15 immunostimulatory activity of the human-specific 4H PD-L1 and 2H PD-L1 T.times.M complexes was determined based on proliferation of IL-15-dependent 32D.beta. cells. As shown in FIG. 14A and FIG. 14B, a dose dependent increase in 32D.beta. cell proliferation was mediated by either 4H PD-L1 and 2H PD-L1 T.times.M complexes, verifying the immunostimulatory activity of these T.times.M formats. The 2H PD-L1 T.times.M complex exhibits a slight decrease in IL-15 bioactivity compared to ALT-803 whereas the 4H PD-L1 T.times.M complex exhibits approximately a 5-fold decrease in IL-15 bioactivity compared to ALT-803. This is consistent with the lower IL-15 activity of previous binding domain-IL-15N72D fusion proteins.
Example 3
Immunostimulatory and Anti-Tumor Activity of PD-L1 T.times.M In Vitro and In Vivo
[0241] The ability of PD-L1 T.times.M to stimulate immune responses in vivo was assessed in mice. C57BL/6 mice were injected subcutaneously with 200 .mu.l of PBS, ALT-803 (0.4 mg/kg, control), 4H mouse-specific PD-L1 T.times.M (200 .mu.g, 2C2 (T4M-mPD-L1)), or 2H mouse-specific PD-L1 T.times.M (200 .mu.g, PDN3 (T2M-mPD-L1)). Three days after treatment, spleens and lymph nodes were collected. Splenocytes and lymphocytes were prepared for flow cytometry following staining of immune cell subsets using anti-CD4, CD8, NK, and CD19 Abs. As shown in FIG. 15A, treatment with ALT-803, 2H PD-L1 T.times.M and 4H PD-L1 T.times.M induce an increase in spleen weights consistent with the immunostimulatory activities of these proteins. In particular, 2H PD-L1 T.times.M treatment induced a greater increase in spleen weights than 4H PD-L1 T.times.M, consistent with the difference in IL-15 activity observed with these complexes. Treatment with 2H PD-L1 T.times.M and 4H PD-L1 T.times.M also resulted in an increase in the percentage of CD8 T cells and NK cells in the spleen and lymph nodes of mice compared to the PBS control group (FIG. 15B and FIG. 15C). These immune responses are consistent with the IL-15 bioactivity of these T.times.M complexes.
[0242] Additionally, the ability of PD-L1 T.times.M to stimulate immune cell cytotoxicity against tumor cells was assessed in vitro. PD-L1-positive cells were labeled with CellTrace Violet (Invitrogen) according to the manufacturer's instructions, and cultured with immune effector cells (i.e. splenocytes) at effector:5T33P myeloma target ratio of 10:1 in R10 media (RPMI-1640 with 10% fetal calf serum) at 37.degree. C. with 5% CO.sub.2. The effector cells were prepared by stimulation of P-mel mice splenocytes for 3 days with anti-CD3 Ab (2C11: 4 .mu.g/ml). The tumor and effector cells were incubated for 4 days with mouse specific PD-L1 T.times.M and then analyzed by flow cytometry to determine target cells survival. PBS served as a negative control and ALT-803 (IL-15N72D:IL-15R.alpha./Fc), anti-PD-L1 Ab and ALT-803+anti-PD-L1 Ab served as positive controls. As shown in FIG. 16, significant killing of 5T33P tumor cells was found in the group containing 2.1 .mu.g of PD-L1 T.times.M compared to PBS treatment.
[0243] Similar in vitro anti-tumor activity was assessed using human-specific 2H PD-L1 T.times.M and 4H PD-L1 T.times.M complexes. Human NK cells from two different donors were purified from blood buffy coats with NK cell isolation kit from Stemcell Technologies and used as effector cells. PD-L1-positive human pancreatic tumor cells, SW1990, were labeled with Celltrace-violet and used as target cells. The human NK cells and SW1990 tumor cells were mixed at an E:T ratio of 5:1 in media alone or media containing 50 nM anti-human PD-L1 Ab (control), human-specific 2H PD-L1 T.times.M complex or 4H PD-L1 T.times.M complex. After 40 hrs, the percent of target cell death was assessed by flow cytometry based on propidium iodide staining of violet-labeled target cells. As shown in FIG. 17, human NK cells incubated with either human-specific 2H PD-L1 T.times.M or 4H PD-L1 T.times.M complexes were capable of mediating greater cytotoxicity against PD-L1-positive human tumor cells than untreated NK cells or NK cells treated with anti-human PD-L1 Ab (i.e., traditional ADCC). These results represent a significant improvement in immune cell-mediated targeted anti-tumor activity of the PD-L1 T.times.M complexes compared to anti-PD-L1 Abs.
[0244] An orthotopic 5T33P myeloma model was used to assess the efficacy of PD-L1 T.times.M in tumor bearing animals. Female C57BL/6NHsd mice (4 mice/group) were injected i.v. with 5T33P myeloma cells (1.times.10.sup.7/mouse) on day 0. Low dose PD-L1 T.times.M (0.11 mg/kg, a molar equivalent dose to 0.05 mg/kg ALT-803) or high dose PD-L1 T.times.M (52.5 .mu.g/dose, a molar equivalent dose to 25 .mu.g/dose anti-PD-L1 Ab) was then administered subcutaneously on days 7 and 14. ALT-803 (0.15 mg/kg) and ALT-803 (0.05 mg/kg)+anti-PD-L1 Ab (25 .mu.g/dose) served as positive controls and PBS served as a negative control. Survival (or morbidity due to hind leg paralysis) was monitored as a study endpoint. Clearly, high dose PD-L1 T.times.M (52.5 .mu.g/mouse) treatment was found to prolong survival of tumor-bearing mice compared to PBS treatment (FIG. 18). This effect was equivalent to that observed with the comparable ALT-80330 anti-PD-L1 Ab combination therapy. No apparent toxicity was observed following PD-L1 T.times.M treatment of tumor bearing animals.
[0245] Additionally, the antitumor activity of PD-L1 T.times.M complexes was assessed in mice bearing orthotopic MB49luc tumor. C57BL/6NHsd mice (6 mice/group) were instilled intravesically into the bladder with MB49luc bladder tumor cells (3.times.10.sup.4/mouse) on day 0. Tumor bearing mice were treated subcutaneously with mouse-specific 2H PD-L1 T.times.M (2.8 mg/kg) on days 7, 11, 14 and 18. ALT-803 treatment (0.2 mg/kg, subQ) and ALT-803 (0.2 mg/kg, subQ)+anti-PD-L1 Ab (50 .mu.g/dose, subQ) served as positive controls and PBS served as a negative control. Survival (or morbidity) was monitored as a study endpoint. As shown in FIG. 19, 2H PD-L1 T.times.M treatment was found to prolong survival of MB49luc tumor-bearing mice compared to PBS treatment. The anti-tumor effects of 2H PD-L1 T.times.M were as good or better than that observed with the ALT-803 and ALT-803+anti-PD-L1 Ab positive controls.
Example 4
Generation of IL-15-Based Fusion Protein Complexes Comprising Anti-CTLA4 Binding Domains (CTLA4 T.times.M) and Anti-PD-1 Binding Domains (PD-1 T.times.M)
[0246] Similar to the fusion protein complexes described in Examples 1-3, fusion protein complexes of the invention have been generated comprising binding domains that recognize CTLA4 and PD-1. Specifically, constructs were made linking a single-chain anti-CTLA4 antibody to the huIL-15N72D and IL-15R.alpha.Su/Fc chains. The anti-CTLA4 single chain antibody (anti-CTLA4scAb) sequence comprises the coding regions of the heavy and light chain V antibody domains antibody linked via a flexible linker sequence. The single chain antibody domain can be arranged in either the VH-linker-VL or VL-linker-VH format. In some cases, the anti-CTLA4scAb is linked to the C-terminus of the IL-15N72D and/or IL-15R.alpha.Su/Fc chains. In other cases, the anti-CTLA4 is linked to the N-terminus of IL-15N72D and/or IL-15R.alpha.Su/Fc chains. Anti-CTLA4scAbs specific to either the mouse or human CTLA4 molecules were used in these constructs.
[0247] The nucleic acid sequence of anti-human CTLA-4 scAb/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 13):
TABLE-US-00013 (Signal peptide) ATGAAGTGGGTGACCTTTATCTCCCTGCTGTTCCTGTTTTCCTCCGCCTA CAGC- (anti-human CTLA-4 scAb) (VL) ATCGTGATGACCCAGTCCCCTAGCTCCCTGAGCGCTAGCGTGGGAGACCG GGTGACCATCACCTGTCGGGCCTCCCAGAGCATTTCCAGCTACCTGAACT GGTACCAGCAGAAGCCCGGCAAGGCCCCTAAGCTGCTGATTTACGCTGCC AGCAGCCTGCAGTCCGGAGTGCCTCCCAGGTTTAGCGGCTCCGGATCCGG CACCGAGTTCACCCTGACCATCTCCTCCCTGCAGCCCGAGGACTTCGCCA CCTACTACTGTCAGCAGGCCAACAGCTTTCCCCCCACCTTTGGCCAAGGA ACCAAGGTGGACATCAAGAGGACCGTGGCC (Linker) GGAGGCGGAGGCTCCGGCGGCGGCGGCTCCGGCGGCGGCGGCTCC (VH) CTGGTGCAGTCCGGCGCTGAAGTGAAGAAGCCTGGCGCCTCCGTGAAGGT GTCCTGCGAGGCCTCCGGCTACACCTTCACCAACTACTACATCCACTGGC TGAGGCAGGCTCCTGGACAGGGCCTGGAGTGGATGGGCATCATCAACCCC TCCGGAGGCTCCACCACCTACGCCCAGAAGTTCCAGGGCAGGATCACCAT GACAAGGGACACCTCCACCAACACCCTGTACATGGAACTGTCCTCCCTCC GGTCCGAGGACACCGCCATCTACTACTGCGCCAGGAGGGATTGCAGGGGC CCTAGCTGCTACTTCGCTTACTGGGGCCAGGGAACCACCGTGACCGTGTC CTCCGCCTCCACCAAGGGC (Human IL-15R .alpha. sushi domain) ATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0248] The amino acid sequence of the human CTLA-4 scAb/huIL-15R.alpha.Su/huIgG1 Fc protein (including leader sequence) is as follows (SEQ ID NO: 14):
TABLE-US-00014 (Signal peptide) MKWVTFISLLFLFSSAYS- (anti-human CTLA-4 scAb) (VL) IVMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAA SSLQSGVPPRFSGSGSGTEFTLTISSLQPEDFATYYCQQANSFPPTFGQG TKVDIKRTVA (Linker) GGGGSGGGGSGGGGS (VH) LVQSGAEVKKPGASVKVSCEASGYTFTNYYIHWLRQAPGQGLEWMGIINP SGGSTTYAQKFQGRITMTRDTSTNTLYMELSSLRSEDTAIYYCARRDCRG PSCYFAYWGQGTTVTVSSASTKG (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0249] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0250] Similarly, the nucleic acid sequence of anti-mouse CTLA-4 scAb/huIL-15R.alpha.Su/mIgG2a construct (including leader sequence) is as follows (SEQ ID NO: 15):
TABLE-US-00015 (Signal peptide) ATGAAGTGGGTAACCTTTATTTCCCTTCTTTTTCTCTTTAGCTCGGCTTA TTCC (anti-mouse CTLA-4 scAb) (VL) GACATCATGATGACCCAGTCCCCTTCCTCCCTGTCCGTGAGCGCTGGCGA GAAGGCTACCATCAGCTGCAAGTCCTCCCAGTCCCTGTTCAACAGCAACG CCAAGACCAACTACCTGAACTGGTACCTGCAGAAGCCCGGCCAGTCCCCC AAGCTGCTGATCTATTACGCTAGCACCAGGCATACCGGCGTGCCCGACAG GTTTAGGGGATCCGGCAGCGGCACCGACTTCACCCTGACCATCTCCAGCG TGCAGGACGAGGACCTCGCTTTCTACTACTGCCAGCAATGGTACGATTAC CCTTACACCTTCGGCGCTGGCACCAAGGTGGAGATTAAGAGG (Linker) GGCGGAGGCGGATCCGGCGGCGGCGGCTCCGGCGGCGGAGGCTCC (VH) CAGATTCAGCTGCAGGAGTCCGGCCCTGGACTGGTCAACCCTAGCCAGTC CCTGAGCCTGTCCTGTTCCGTGACAGGCTATAGCATCACCAGCGGCTACG GCTGGAACTGGATCAGGCAGTTTCCCGGCCAGAAAGTGGAGTGGATGGGC TTCATCTACTACGAGGGCTCCACCTACTATAACCCCTCCATCAAGTCCCG GATCAGCATCACCAGGGATACCTCCAAGAACCAGTTCTTCCTGCAAGTCA ACTCCGTGACCACCGAAGACACCGCCACCTACTACTGCGCCAGGCAGACA GGCTACTTCGACTACTGGGGCCAGGGCACAATGGTGACCGTCAGCAGCGC C (Human IL-15R .alpha. sushi domain) ATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Mouse IgG2a CH2-CH3 domain) GAACCAAGAGGGCCCACAATCAAGCCCTGTCCTCCATGCAAATGCCCAGC ACCTAACCTCTTGGGTGGACCATCCGTCTTCATCTTCCCTCCAAAGATCA AGGATGTACTCATGATCTCCCTGAGCCCCATAGTCACATGTGTGGTGGTG GATGTGAGCGAGGATGACCCAGATGTCCAGATCAGCTGGTTTGTGAACAA CGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGATTACAACA GTACTCTCCGGGTGGTCAGTGCCCTCCCCATCCAGCACCAGGACTGGATG AGTGGCAAGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCAGCGCC CATCGAGAGAACCATCTCAAAACCCAAAGGGTCAGTAAGAGCTCCACAGG TATATGTCTTGCCTCCACCAGAAGAAGAGATGACTAAGAAACAGGTCACT CTGACCTGCATGGTCACAGACTTCATGCCTGAAGACATTTACGTGGAGTG GACCAACAACGGGAAAACAGAGCTAAACTACAAGAACACTGAACCAGTCC TGGACTCTGATGGTTCTTACTTCATGTACAGCAAGCTGAGAGTGGAAAAG AAGAACTGGGTGGAAAGAAATAGCTACTCCTGTTCAGTGGTCCACGAGGG TCTGCACAATCACCACACGACTAAGAGCTTCTCCCGGACTCCAGGTAAAT AA
[0251] The amino acid sequence of the anti-mouse CTLA-4 scAb/huIL-15R.alpha.Su/mIgG2a fusion protein (including leader sequence) is as follows (SEQ ID NO: 16):
TABLE-US-00016 (Signal peptide) MKWVTFISLLFLFSSAYS- (Anti-mouse CTLA-4 scAb) (VL) DIMMTQSPSSLSVSAGEKATISCKSSQSLFNSNAKTNYLNWYLQKPGQSP KLLIYYASTRHTGVPDRFRGSGSGTDFTLTISSVQDEDLAFYYCQQWYDY PYTFGAGTKVEIKR (Linker) GGGGSGGGGSGGGGS (VH) QIQLQESGPGLVNPSQSLSLSCSVTGYSITSGYGWNWIRQFPGQKVEWMG FIYYEGSTYYNPSIKSRISITRDTSKNQFFLQVNSVTTEDTATYYCARQT GYFDYWGQGTMVTVSSA- (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Mouse IgG2a CH2-CH3 domain) EPRGPTIKPCPPCKCPAPNLLGGPSVFIFPPKIKDVLMISLSPIVTCVVV DVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWM SGKEFKCKVNNKDLPAPIERTISKPKGSVRAPQVYVLPPPEEEMTKKQVT LTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGSYFMYSKLRVEK KNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK
[0252] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0253] As indicated above, the anti-human and mouse CTLA4 scAb domains have also been generated as fusions to the IL-15N72D protein.
[0254] Similarly, the nucleic acid sequence of anti-human PD1 scAb/IL-15N72D construct (including signal peptide sequence and stop codon) is as follows (SEQ ID NO: 17):
TABLE-US-00017 (Signal peptide) ATGGAATGGAGCTGGGTGTTCCTGTTCTTTCTGTCCGTGACCACCGGTGT CCACTCC (Anti-human PD1 scAb) (VL) CTGCCTGTGCTGACTCAACCACCCTCGGTGTCTGAAGTCCCCGGGCAGAG GGTCACCATTTCCTGTTCTGGAGGCATCTCCAACATCGGAAGCAATGCTG TAAACTGGTACCAGCACTTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT TATAATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGCCTCCAA GTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATG AGGCTGATTATTACTGTGCAGCATGGGATGACAATCTGAGTGCTTATGTC TTCGCAACTGGGACCAAGGTCACCGTCCTGAGT (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) CAGGTTCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTC AGTGAAGGTCTCCTGCAAGGCTTCTGGTTACACCTTTACCAGCTATGGTA TCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGG ATCAGCGCTTACAATGGTAACACAAACTATGCACAGAAGCTCCAGGGCAG AGTCACCATGACCACAGACACATCCACGAGCACAGCCTACATGGAGCTGA GGAGCCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGGGTTA TACGGTGACGAGGACTACTGGGGCCAGGGAACCCTGGTCACCGTGAGCTC A (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0255] The amino acid sequence of the anti-PD1 scAb-IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 18):
TABLE-US-00018 (Signal peptide) MEWSWVFLFFLSVTTGVHS- (Anti-human PD1 scAb) (VL) LPVLTQPPSVSEVPGQRVTISCSGGISNIGSNAVNWYQHFPGKAPKLLIYY NDLLPSGVSDRFSASKSGTSASLAISGLRSEDEADYYCAAWDDNLSAYVFA TGTKVTVLS (Linker) GGGGSGGGGSGGGGS (VH) QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWI SAYNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARGLYG DEDYWGQGTLVTVSS (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVIS LESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFLQS FVHIVQMFINTS
[0256] In some cases, the leader peptide is cleaved from the mature polypeptide. As indicated above, the anti-human PD-1 scAb domain has also been generated as fusions to the huIL-15R.alpha.Su/Fc construct.
[0257] The sequences were cloned into expression vectors as described in Example 1 and previously (U.S. Pat. No. 8,507,222, at Examples 1 and 2, incorporated herein by reference), and the expression vectors transfected into CHO cells. In some cases, the CHO cells were transfected with vectors encoding both huIL-15N72D and huIL-15R.alpha.Su/Fc fusion proteins with the same or different (i.e. anti-PD-L1 and anti-CTLA4 scAb) binding domains. The fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
[0258] In addition of anti-human PD-1 scAb/anti-human CTLA-4 scAb T.times.M complexes described above, an anti-human PD-L1 scAb/anti-human CTLA-4 scAb T.times.M complex was generated by co-transfecting CHO cells with expression vectors comprising the anti-human PD-L1 scAb/IL-15N72D (SEQ. ID NO: 1) and anti-human CTLA-4 scAb/huIL-15R.alpha.Su/huIgG1 Fc ((SEQ ID NO: 15) constructs. These fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
Example 5
Generation of IL-15-Based Fusion Protein Complexes Comprising Other Binding Domains
[0259] Similar to the fusion protein complexes described in Examples 1-4, fusion protein complexes of the invention have been generated comprising binding domains that recognize CD47, GITR, ssDNA and other disease related targets (i.e., CD20, CD19, etc).
[0260] CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRP.alpha.), which serves as an inhibitory receptor on macrophages. This "don't eat me signal" can be disrupted by blocking the interaction of CD47 and SIRP.alpha., thus restoring antibody-dependent cellular phagocytosis (ADCP) by macrophages. The IL-15 domains of the invention activate and expand NK and CD8.sup.+ cells while increasing their cytolytic activity. At high enough concentrations, the Fc region of the invention may interact with Fc.gamma. receptors on NK cells and macrophages for ADCC or ADCP, respectively. This example describes the generation and initial characterization of a fusion protein complex that comprises a Vh region of a nanobody (NbVh; PNAS 2016 113 (19) E2646-E2654) to block the CD47/SIRP.alpha. pathway, activation of NK and CD8.sup.+ cells through the IL-15 domain, and allow for tumor clearance via Fc-mediated ADCC/ADCP. As described in detail below, a protein complex comprising an anti-mouse CD47 NbVh/huIL-15N72D and an anti-mouse CD47 NbVh/huIL-15R.alpha.Su/mIgG2a Fc was generated.
[0261] Specifically, constructs were made linking anti-mouse CD47 NbVh to the huIL-15N72D chains. The anti-mouse CD47 NbVh sequence comprises the coding regions of the heavy chain variable domain of an alpaca nanobody. The anti-mouse CD47 NbVh is linked to the N-terminus of huIL-15N72D. The nucleic acid and protein sequences of a construct comprising the anti-mouse CD47 NbVh linked to the N-terminus of the huIL-15N72D are shown below.
[0262] The nucleic acid sequence of the anti-mouse CD47 NbVh/huIL-15N72D construct (including signal peptide sequence) is as follows (SEQ ID NO: 19):
TABLE-US-00019 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-mouse CD47 Vh chain of nanobody) CAGGTGCAGCTGGTGGAGTCCGGAGGAGGCCTGGTGGAGCCTGGAGGATC CCTGAGGCTGTCCTGTGCCGCCAGCGGCATCATCTTCAAGATCAACGACA TGGGCTGGTATCGGCAGGCCCCTGGCAAAAGGAGGGAGTGGGTGGCCGCT TCCACAGGAGGCGATGAGCCATCTACAGGGACTCCGTGAAGGACAGGTTC ACCATCTCCAGGGACGCCAAGAACTCCGTGTTCCTGCAGATGAACTCCCT GAAGCCCGAGGATACCGCCGTGTACTACTGCACCGCCGTGATCTCCACCG ATAGGGACGGCACCGAGTGGAGGAGGTACTGGGGCCAGGGCACACAGGTG ACTGTGTCCTCCGGCGGC (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0263] The amino acid sequence of the anti-mouse CD47 NbVh/IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 20):
TABLE-US-00020 (Signal peptide) MKWVTFISLLFLFSSAYS (Anti-mouse CD47 Vh chain of nanobody) QVQLVESGGGLVEPGGSLRLSCAASGIIFKINDMGWYRQAPGKRREWVAA STGGDEAIYRDSVKDRFTISRDAKNSVFLQMNSLKPEDTAVYYCTAVIST DRDGTEWRRYWGQGTQVTVSSGG (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS
[0264] The nucleic acid sequence of the anti-mouse CD47 NbVh/huIL-15R.alpha.Su/mIgG2a Fc construct (including leader sequence) is as follows (SEQ ID NO: 21):
TABLE-US-00021 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-mouse CD47 Vh chain of nanobody) CAGGTGCAGCTGGTGGAGTCCGGAGGAGGCCTGGTGGAGCCTGGAGGATC CCTGAGGCTGTCCTGTGCCGCCAGCGGCATCATCTTCAAGATCAACGACA TGGGCTGGTATCGGCAGGCCCCTGGCAAAAGGAGGGAGTGGGTGGCCGCT TCCACAGGAGGCGATGAGGCCATCTACAGGGACTCCGTGAAGGACAGGTT CACCATCTCCAGGGACGCCAAGAACTCCGTGTTCCTGCAGATGAACTCCC TGAAGCCCGAGGATACCGCCGTGTACTACTGCACCGCCGTGATCTCCACC GATAGGGACGGCACCGAGTGGAGGAGGTACTGGGGCCAGGGCACACAGGT GACTGTGTCCTCCGGCGGC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Mouse IgG2a CH2-CH3 (Fc) domain) GAACCAAGAGGGCCCACAATCAAGCCCTGTCCTCCATGCAAATGCCCAGC ACCTAACCTCTTGGGTGGACCATCCGTCTTCATCTTCCCTCCAAAGATCA AGGATGTACTCATGATCTCCCTGAGCCCCATAGTCACATGTGTGGTGGTG GATGTGAGCGAGGATGACCCAGATGTCCAGATCAGCTGGTTTGTGAACAA CGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGATTACAACA GTACTCTCCGGGTGGTCAGTGCCCTCCCCATCCAGCACCAGGACTGGATG AGTGGCAAGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCAGCGCC CATCGAGAGAACCATCTCAAAACCCAAAGGGTCAGTAAGAGCTCCACAGG TATATGTCTTGCCTCCACCAGAAGAAGAGATGACTAAGAAACAGGTCACT CTGACCTGCATGGTCACAGACTTCATGCCTGAAGACATTTACGTGGAGTG GACCAACAACGGGAAAACAGAGCTAAACTACAAGAACACTGAACCAGTCC TGGACTCTGATGGTTCTTACTTCATGTACAGCAAGCTGAGAGTGGAAAAG AAGAACTGGGTGGAAAGAAATAGCTACTCCTGTTCAGTGGTCCACGAGGG TCTGCACAATCACCACACGACTAAGAGCTTCTCCCGGACTCCAGGTAAA
[0265] The amino acid sequence of the anti-mouse CD47 NbVh/huIL-15R.alpha.Su/mIgG2a Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 22):
TABLE-US-00022 (Signal peptide) MKWVTFISLLFLFSSAYS (Anti-mouse CD47 Vh chain of nanobody) QVQLVESGGGLVEPGGSLRLSCAASGIIFKINDMGWYRQAPGKRREWVAA STGGDEAIYRDSVKDRFTISRDAKNSVFLQMNSLKPEDTAVYYCTAVIST DRDGTEWRRYWGQGTQVTVSSGG (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Mouse IgG2a CH2-CH3 (Fc) domain) EPRGPTIKPCPPCKCPAPNLLGGPSVFIFPPKIKDVLMISLSPIVTCVVV DVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWM SGKEFKCKVNNKDLPAPIERTISKPKGSVRAPQVYVLPPPEEEMTKKQVT LTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGSYFMYSKLRVEK KNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK
[0266] As indicated above, in some cases, the leader peptide is cleaved from the mature polypeptide.
[0267] Similar constructs were generated using a single chain antibody domain derived from an antibody specific to human CD47. The nucleic acid sequence of the anti-human CD47 scAb/huIL-15N72D construct (including signal peptide sequence) is as follows (SEQ ID NO: 23):
TABLE-US-00023 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-human CD47 scAb) (VL) AACATCCAGATGACCCAGTCCCCTTCCGCCATGAGCGCTTCCGTGGGCGA CAGGGTGACCATCACCTGCAAGGCCTCCCAGGACATCCACAGGTACCTGT CCTGGTTCCAGCAGAAGCCCGGCAAGGTGCCCAAGCACCTGATCTACAGG GCTAACAGGCTGGTGTCCGGCGTGCCTTCCAGGTTTTCCGGCTCCGGCTC CGGCACCGAGTTCACCCTGACCATCTCCAGCCTGCAGCCCGAGGACTTCG CCACCTACTACTGCCTGCAGTACGACGAGTTCCCCTACACCTTCGGCGGC GGCACCAAGGTGGAGATCAAG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) CAGATGCAGCTGGTACAGTCCGGCGCCGAGGTGAAGAAGACCGGCTCCAG CGTGAAGGTGTCCTGCAAGGCCTCCGGCTTCAACATCAAGGACTACTACC TGCACTGGGTGAGGCAGGCCCCTGGACAAGCCCTGGAGTGGATGGGCTGG ATCGACCCCGACAACGGCGACACCGAGTACGCCCAGAAGTTCCAGGACAG GGTGACCATCACCAGGGACAGGTCCATGAGCACCGCCTACATGGAGCTGT CCTCCCTGAGGTCCGAGGACACCGCCATGTACTACTGCAACGCCGCCTAC GGCTCCTCCTCCTACCCCATGGACTACTGGGGCCAGGGCACCACCGTGAC CGTG (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0268] The amino acid sequence of the anti-human CD47 scAb/huIL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 24):
TABLE-US-00024 (Signal peptide) MKWVTFISLLFLFSSAYS (Anti-human CD47 scAb) (VL) NIQMTQSPSAMSASVGDRVTITCKASQDIHRYLSWFQQKPGKVPKHLIYR ANRLVSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQYDEFPYTFGG GTKVEIK (Linker) GGGGSGGGGSGGGGS (VH) QMQLVQSGAEVKKTGSSVKVSCKASGFNIKDYYLHWVRQAPGQALEWMGW IDPDNGDTEYAQKFQDRVTITRDRSMSTAYMELSSLRSEDTAMYYCNAAY GSSSYPMDYWGQGTTVTV (human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS
[0269] The nucleic acid sequence of the anti-human CD47 scAb /huIL-15R.alpha.Su/hIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 25):
TABLE-US-00025 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Anti-human CD47 scAb) (VL) AACATCCAGATGACCCAGTCCCCTTCCGCCATGAGCGCTTCCGTGGGCGA CAGGGTGACCATCACCTGCAAGGCCTCCCAGGACATCCACAGGTACCTGT CCTGGTTCCAGCAGAAGCCCGGCAAGGTGCCCAAGCACCTGATCTACAGG GCTAACAGGCTGGTGTCCGGCGTGCCTTCCAGGTTTTCCGGCTCCGGCTC CGGCACCGAGTTCACCCTGACCATCTCCAGCCTGCAGCCCGAGGACTTCG CCACCTACTACTGCCTGCAGTACGACGAGTTCCCCTACACCTTCGGCGGC GGCACCAAGGTGGAGATCAAG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) CAGATGCAGCTGGTACAGTCCGGCGCCGAGGTGAAGAAGACCGGCTCCAG CGTGAAGGTGTCCTGCAAGGCCTCCGGCTTCAACATCAAGGACTACTACC TGCACTGGGTGAGGCAGGCCCCTGGACAAGCCCTGGAGTGGATGGGCTGG ATCGACCCCGACAACGGCGACACCGAGTACGCCCAGAAGTTCCAGGACAG GGTGACCATCACCAGGGACAGGTCCATGAGCACCGCCTACATGGAGCTGT CCTCCCTGAGGTCCGAGGACACCGCCATGTACTACTGCAACGCCGCCTAC GGCTCCTCCTCCTACCCCATGGACTACTGGGGCCAGGGCACCACCGTGAC CGTG (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0270] The amino acid sequence of the anti-human CD47 scAb /huIL-15R.alpha.Su/hIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 26):
TABLE-US-00026 (Signal peptide) MKWVTFISLLFLFSSAYS (Anti-human CD47 scAb) (VL) NIQMTQSPSAMSASVGDRVTITCKASQDIHRYLSWFQQKPGKVPKHLIYR ANRLVSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQYDEFPYTFGG GTKVEIK (Linker) GGGGSGGGGSGGGGS (VH) QMQLVQSGAEVKKTGSSVKVSCKASGFNIKDYYLHWVRQAPGQALEWMGW IDPDNGDTEYAQKFQDRVTITRDRSMSTAYMELSSLRSEDTAMYYCNAAY GSSSYPMDYWGQGTTVTV (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0271] Interactions between GITR ligand and GITR are known to provide stimulatory signaling to immune cells, thus GITR ligand (GITRL) is known to be an immune agonist molecule that could potentially act synergistically with the immune stimulatory activity of IL-15. Thus, constructs were made linking human GIRTL to the huIL-15N72D chains.
[0272] The nucleic acid sequence of the human GITRL/huIL-15N72D construct (including signal peptide sequence) is as follows (SEQ ID NO: 27):
TABLE-US-00027 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Human GITRL) ACCGCCAAGGAGCCCTGCATGGCCAAGTTCGGCCCTCTGCCCTCCAAGTG GCAGATGGCCTCCTCCGAGCCTCCCTGTGTGAACAAGGTGTCCGACTGGA AGCTGGAGATCCTGCAGAACGGCCTGTACCTGATCTACGGCCAGGTGGCC CCCAACGCCAACTACAACGACGTGGCCCCCTTCGAGGTGCGGCTGTACAA GAACAAGGACATGATCCAGACCCTGACCAACAAGTCCAAGATCCAGAACG TGGGCGGCACCTATGAGCTGCACGTGGGCGACACCATCGACCTGATCTTC AACTCCGAGCACCAGGTGCTGAAGAACAACACCTACTGGGGCATC (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0273] The amino acid sequence of the human GITRL/IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 28):
TABLE-US-00028 (Signal peptide) MKWVTFISLLFLFSSAYS (Human GITRL) TAKEPCMAKFGPLPSKWQMASSEPPCVNKVSDWKLEILQNGLYLIYGQVA PNANYNDVAPFEVRLYKNKDMIQTLTNKSKIQNVGGTYELHVGDTIDLIF NSEHQVLKNNTYWGI (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS The nucleic acid sequence of the human GITRL/ huIL-15RaSu/hIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 29): (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (Human GITRL) ACCGCCAAGGAGCCCTGCATGGCCAAGTTCGGCCCTCTGCCCTCCAAGTG GCAGATGGCCTCCTCCGAGCCTCCCTGTGTGAACAAGGTGTCCGACTGGA AGCTGGAGATCCTGCAGAACGGCCTGTACCTGATCTACGGCCAGGTGGCC CCCAACGCCAACTACAACGACGTGGCCCCCTTCGAGGTGCGGCTGTACAA GAACAAGGACATGATCCAGACCCTGACCAACAAGTCCAAGATCCAGAACG TGGGCGGCACCTATGAGCTGCACGTGGGCGACACCATCGACCTGATCTTC AACTCCGAGCACCAGGTGCTGAAGAACAACACCTACTGGGGCATC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCGCACCAGGACTGGCTGAATG GCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTA CACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGA CCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA CTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTG CACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0274] The amino acid sequence of the human GITRL/huIL-15R.alpha.Su/hIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 30):
TABLE-US-00029 (Signal peptide) MKWVTFISLLFLFSSAYS (Human GITRL) TAKEPCMAKFGPLPSKWQMASSEPPCVNKVSDWKLEILQNGLYLIYGQVA PNANYNDVAPFEVRLYKNKDMIQTLTNKSKIQNVGGTYELHVGDTIDLIF NSEHQVLKNNTYWGI (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0275] Fusion protein complexes of the invention could also be generated comprising binding domains that target antigens expressed by diseased cells. Such antigens could comprise single stranded DNA (ssDNA) released by disease cells including tumor cells. Thus, fusion protein complexes of the invention were generated with single chain Ab domains that recognize ssDNA (TNT scAb from Hu51-4 antibody).
[0276] The nucleic acid sequence of the TNT scAb/huIL-15N72D construct (including signal peptide sequence) is as follows (SEQ ID NO: 31):
TABLE-US-00030 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (TNT scAb) (VL) GAGATCGTGCTGACCCAGTCCCCTGCTACCCTGTCCCTGTCCCCTGGCGA GAGGGCTACCCTGTCCTGCAGGGCCAGGCAATCCATCTCCAACTACCTGC ACTGGTACCAGCAGAAACCTGGCCAGGCCCCCAGGCTGCTGATCTACTAC GCCTCCCAGTCCATCTCCGGCATCCCTGACAGGTTCAGCGGATCCGGCTC CGGCACCGACTTCACCCTGACCATCTCCAGGCTGGAGCCTGAGGACTTCG CCGTGTACTACTGCCAGCAGTCCAACTCCTGGCCTCTGACCTTCGGCCAG GGCACCAAGGTGGAGATCAAGCGG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTGCAGCTGGTGCAGTCCGGCGCCGAAGTGAAGAAGCCCGGAGCCTC CGTGAAGGTGTCCTGCAAGGCCTCCGGCTACACCTTCACCAGGTACTGGA TGCACTGGGTGAGGCAGGCCCCTGGACAGGGACTGGAGTGGATCGGCGCC ATCTACCCCGGCAACTCCGACACCTCCTACAACCAGAAGTTCAAGGGCAA GGCCACCATCACCGCCGACACCTCCACCAACACCGCCTACATGGAGCTGT CCTCCCTGAGGTCCGAGGACACCGCCGTGTACTACTGCGCTAGGGGCGAG GAGATCGGCGTGAGGAGGTGGTTCGCCTACTGGGGACAGGGCACCCTGGT GACCGTGTCCAGC (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0277] The amino acid sequence of the TNT scAb/IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 32):
TABLE-US-00031 (Signal peptide) MKWVTFISLLFLFSSAYS (TNT scAb) (VL) EIVLTQSPATLSLSPGERATLSCRARQSISNYLHWYQQKPGQAPRLLIYY ASQSISGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQSNSWPLTFGQ GTKVEIKR (Linker) GGGGSGGGGSGGGGS (VH) EVQLVQSGAEVKKPGASVKVSCKASGYTFTRYWMHWVRQAPGQGLEWIGA IYPGNSDTSYNQKFKGKATITADTSTNTAYMELSSLRSEDTAVYYCARGE EIGVRRWFAYWGQGTLVTVSS (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS
[0278] The nucleic acid sequence of the TNT/huIL-15R.alpha.Su/hIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 33):
TABLE-US-00032 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (TNT scAb) (VL) GAGATCGTGCTGACCCAGTCCCCTGCTACCCTGTCCCTGTCCCCTGGCGA GAGGGCTACCCTGTCCTGCAGGGCCAGGCAATCCATCTCCAACTACCTGC ACTGGTACCAGCAGAAACCTGGCCAGGCCCCCAGGCTGCTGATCTACTAC GCCTCCCAGTCCATCTCCGGCATCCCTGACAGGTTCAGCGGATCCGGCTC CGGCACCGACTTCACCCTGACCATCTCCAGGCTGGAGCCTGAGGACTTCG CCGTGTACTACTGCCAGCAGTCCAACTCCTGGCCTCTGACCTTCGGCCAG GGCACCAAGGTGGAGATCAAGCGG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTGCAGCTGGTGCAGTCCGGCGCCGAAGTGAAGAAGCCCGGAGCCTC CGTGAAGGTGTCCTGCAAGGCCTCCGGCTACACCTTCACCAGGTACTGGA TGCACTGGGTGAGGCAGGCCCCTGGACAGGGACTGGAGTGGATCGGCGCC ATCTACCCCGGCAACTCCGACACCTCCTACAACCAGAAGTTCAAGGGCAA GGCCACCATCACCGCCGACACCTCCACCAACACCGCCTACATGGAGCTGT CCTCCCTGAGGTCCGAGGACACCGCCGTGTACTACTGCGCTAGGGGCGAG GAGATCGGCGTGAGGAGGTGGTTCGCCTACTGGGGACAGGGCACCCTGGT GACCGTGTCCAGC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0279] The amino acid sequence of the TNT scAb/huIL-15R.alpha.Su/hIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 34):
TABLE-US-00033 (Signal peptide) MKWVTFISLLFLFSSAYS (TNT scAb) (VL) EIVLTQSPATLSLSPGERATLSCRARQSISNYLHWYQQKPGQAPRLLIYY ASQSISGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQSNSWPLTFG QGTKVEIKR (Linker) GGGGSGGGGSGGGGS (VH) EVQLVQSGAEVKKPGASVKVSCKASGYTFTRYWMHWVRQAPGQGLEWIGA IYPGNSDTSYNQKFKGKATITADTSTNTAYMELSSLRSEDTAVYYCARGE EIGVRRWFAYWGQGTLVTVSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0280] Fusion protein complexes of the invention could also be generated comprising binding domains that target other antigens expressed by diseased cells. Such antigens could comprise tissue factor or CD33 expressed on disease cells including tumor cells or checkpoint inhibitors expressed on immune cells.
[0281] Tissue Factor (TF) is a transmembrane glycoprotein reported to be overexpressed in several tumor cell types. Importantly, increased TF expression has been implicated in cancer cell signaling, tumor cell migration, and decreased apoptosis leading to enhanced prospect of metastasis. Therefore, targeting of TF may be beneficial in immunotherapeutic strategies against tumor cell types that overexpress this protein. A chimeric anti-tissue factor antibody, ALT-836, has been previously generated and clinically tested. Humanized variable chains of this antibody (hOAT) have also been characterized. Thus, fusion protein complexes of the invention were generated with single chain Ab domains that recognize human tissue factor (hOAT scAb).
[0282] The nucleic acid sequence of the hOAT scAb/huIL-15R.alpha.Su/hIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 35):
TABLE-US-00034 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (hOAT scAb) (VL) GACATCCAGATGACCCAGTCCCCTGCTTCCCTGTCCGCTTCCGTGGGCGA CAGGGTGACCATCACCTGCCTGGCCTCCCAGACCATCGACACCTGGCTGG CCTGGTACCTGCAGAAGCCCGGCAAGTCCCCCCAGCTGCTGATCTACGCC GCTACCAACCTGGCCGACGGCGTGCCTAGCAGGTTTTCCGGCTCCGGCTC CGGCACCGACTTCTCCTTCACCATCTCCTCCCTGCAGCCCGAGGACTTCG CCACCTACTACTGCCAGCAGGTGTACTCCTCCCCCTTCACCTTCGGCCAG GGCACCAAGCTGGAGATCAAG (Linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) CAGATCCAGCTGGTGCAGTCCGGCGGCGAAGTGAAAAAGCCCGGCGCCAG CGTGAGGGTGTCCTGTAAGGCCTCCGGCTACTCCTTCACCGACTACAACG TGTACTGGGTGAGGCAGTCCCCCGGCAAGGGACTGGAGTGGATCGGCTAC ATCGACCCCTACAACGGCATCACCATCTACGACCAGAACTTCAAGGGCAA GGCCACCCTGACCGTGGACAAGTCCACCTCCACAGCCTACATGGAGCTGT CCTCCCTGAGGTCCGAGGACACCGCCGTGTACTTCTGCGCCAGGGACGTG ACCACCGCTCTGGACTTCTGGGGACAGGGCACCACCGTGACCGTGAGCTC C (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAA
[0283] The amino acid sequence of the hOAT scAb/huIL-15R.alpha.Su/hIgG1 Fc fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 36):
TABLE-US-00035 (Signal peptide) MKWVTFISLLFLFSSAYS (hOAT scAb) (VL) DIQMTQSPASLSASVGDRVTITCLASQTIDTWLAWYLQKPGKSPQLLIYA ATNLADGVPSRFSGSGSGTDFSFTISSLQPEDFATYYCQQVYSSPFTFGQ GTKLEIK (Linker) GGGGSGGGGSGGGGS (VH) QIQLVQSGGEVKKPGASVRVSCKASGYSFTDYNVYWVRQSPGKGLEWIGY IDPYNGITIYDQNFKGKATLTVDKSTSTAYMELSSLRSEDTAVYFCARDV TTALDFWGQGTTVTVSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0284] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0285] Similar constructs could be generated to express the hOAT scAb/huIL-15N72D fusion protein.
[0286] The sequences were cloned into expression vectors as described in Example 1 and previously (U.S. Pat. No. 8,507,222, at Examples 1 and 2, incorporated herein by reference), and the expression vectors transfected into CHO cells. In some cases, the CHO cells were transfected with vectors encoding both huIL-15N72D and huIL-15R.alpha.Su/Fc fusion proteins with the same or different binding domains of the invention. The fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
[0287] Fusion protein complexes of the invention were also generated with single chain Ab domains that recognize CD33 (CD33 scAb). The nucleic acid sequence of the CD33 scAb/huIL-15N72D construct (including signal peptide sequence) is as follows (SEQ ID NO: 37):
TABLE-US-00036 (Signal peptide) ATGGATTTTCAGGTGCAGATTATCAGCTTCCTGCTAATCAGTGCTTCAGT CATAATGTCAAGAGGA (CD33 scAb) (VL) CAGGTGCAGCTGGTTCAGAGCGGTGCGGAAGTTAAAAAGCCGGGCTCTTC CGTGAAAGTTAGCTGCAAAGCGTCTGGTTATACCTTCACCGACTACAACA TGCACTGGGTCCGCCAGGCCCCAGGCCAGGGTCTGGAATGGATCGGTTAT ATTTACCCGTACAACGGTGGCACGGGATATAACCAGAAATTCAAATCCAA AGCTACCATCACTGCGGACGAAAGCACCAACACCGCATATATGGAATTGT CTTCTCTGCGTAGCGAAGATACCGCGGTTTACTATTGCGCTCGTGGTCGT CCAGCGATGGATTACTGGGGTCAGGGCACCCTGGTGACCGTGAGCTCT (Linker) GGCGGAGGCGGATCTGGTGGTGGCGGATCCGGTGGAGGCGGAAGC (VH) GATATCCAGATGACCCAGTCCCCGAGCTCCCTGTCTGCCAGCGTGGGCGA CCGCGTGACTATCACCTGCCGTGCGTCCGAAAGCGTGGATAACTACGGCA TTTCCTTTATGAACTGGTTCCAGCAGAAACCGGGTAAAGCCCCGAAACTG CTGATTTATGCGGCCTCTAACCAGGGCAGCGGTGTGCCGAGCCGCTTTTC CGGCAGCGGTTCGGGGACCGATTTCACTCTGACCATTTCTAGCCTGCAGC CAGATGACTTCGCGACCTACTACTGCCAACAGTCTAAAGAAGTTCCGTGG ACCTTCGGTCAGGGTACCAAAGTTGAAATTAAA (Human IL-15N72D) AACTGGGTTAACGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCA ATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCA GTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATT TCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGAT CATCCTAGCAAACGACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTG GATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTG CAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTTAA
[0288] The amino acid sequence of the CD33 scAb/IL-15N72D fusion protein (including signal peptide sequence) is as follows (SEQ ID NO: 38):
TABLE-US-00037 (Signal peptide) MDFQVQIISFLLISASVIMSRG (CD33 scAb) (VL) QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQGLEWIGY IYPYNGGTGYNQKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGR PAMDYWGQGTLVTVSS (Linker) GGGGSGGGGSGGGGS (VH) DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKL LIYAASNQGSGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPW TFGQGTKVEIK (Human IL-15N72D) NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVI SLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEKNIKEFL QSFVHIVQMFINTS
[0289] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0290] The nucleic acid sequence of the CD33 scAb/huIL-15R.alpha.Su/hIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 39):
TABLE-US-00038 (Signal peptide) ATGGATTTTCAGGTGCAGATTATCAGCTTCCTGCTAATCAGTGCTTCAGT CATAATGTCAAGAGGA (CD33 scAb) (VL) CAGGTGCAGCTGGTTCAGAGCGGTGCGGAAGTTAAAAAGCCGGGCTCTTC CGTGAAAGTTAGCTGCAAAGCGTCTGGTTATACCTTCACCGACTACAACA TGCACTGGGTCCGCCAGGCCCCAGGCCAGGGTCTGGAATGGATCGGTTAT ATTTACCCGTACAACGGTGGCACGGGATATAACCAGAAATTCAAATCCAA AGCTACCATCACTGCGGACGAAAGCACCAACACCGCATATATGGAATTGT CTTCTCTGCGTAGCGAAGATACCGCGGTTTACTATTGCGCTCGTGGTCGT CCAGCGATGGATTACTGGGGTCAGGGCACCCTGGTGACCGTGAGCTCT (Linker) GGCGGAGGCGGATCTGGTGGTGGCGGATCCGGTGGAGGCGGAAGC (VH) GATATCCAGATGACCCAGTCCCCGAGCTCCCTGTCTGCCAGCGTGGGCGA CCGCGTGACTATCACCTGCCGTGCGTCCGAAAGCGTGGATAACTACGGCA TTTCCTTTATGAACTGGTTCCAGCAGAAACCGGGTAAAGCCCCGAAACTG CTGATTTATGCGGCCTCTAACCAGGGCAGCGGTGTGCCGAGCCGCTTTTC CGGCAGCGGTTCGGGGACCGATTTCACTCTGACCATTTCTAGCCTGCAGC CAGATGACTTCGCGACCTACTACTGCCAACAGTCTAAAGAAGTTCCGTGG ACCTTCGGTCAGGGTACCAAAGTTGAAATTAAA (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0291] The amino acid sequence of the CD33 scAb/huIL-15R.alpha.Su/hIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 40):
TABLE-US-00039 (Signal peptide) MDFQVQIISFLLISASVIMSRG (CD33 scAb) (VL) QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQGLEWIGY IYPYNGGTGYNQKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGR PAMDYWGQGTLVTVSS (Linker) GGGGSGGGGSGGGGS (VH) DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKL LIYAASNQGSGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPW TFGQGTKVEIK (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0292] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0293] The sequences were cloned into expression vectors as described in Example 1 and previously (U.S. Pat. No. 8,507,222, at Examples 1 and 2, incorporated herein by reference), and the expression vectors transfected into CHO cells. In some cases, the CHO cells were transfected with vectors encoding both huIL-15N72D and huIL-15R.alpha.Su/Fc fusion proteins with the same or different binding domains of the invention. The fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
[0294] Intercellular adhesion molecule 1 (ICAM-1) is a cell surface glycoprotein in the immunoglobulin superfamily. It has been demonstrated that the level of ICAM-1 protein expression on the cell surface positively correlated with metastatic potential of various solid tumors. Lymphocyte function-associated antigen 1 (LFA-1) is found on all T-cells and on B-cells, macrophages, neutrophils, and NK cells. It is known to bind to ICAM-1, specifically through the "I domain", to sustain cellular adhesion (immunological/cytolytic synapse formation) or rolling (to slow the movement of cells in the bloodstream prior to extravasation). The I domain alone can support high affinity binding to ICAM-1 with the addition of two mutations: K287C and K294C. Therefore, a T.times.M was created comprising the LFA-1 I domain, along with the mutations, in order to target tumors and facilitate activation and localization of effector immune cells via the huIL-15N72D: huIL-15R.alpha.Su complex.
[0295] The nucleic acid sequence of the human LFA-1 I domain(K287C/K294C)/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 41):
TABLE-US-00040 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (human LFA-1 I domain (K287C/K294C)) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCCGATTTAGTGTTTCTGTTCGACGGCTCCATGTCTTTACAGCCCGATG AGTTCCAGAAGATTTTAGACTTCATGAAGGACGTGATGAAGAAACTGTCC AACACCAGCTACCAGTTCGCTGCCGTGCAGTTCTCCACCTCCTACAAGAC CGAGTTCGACTTCTCCGACTACGTGAAGCGGAAGGACCCCGATGCTTTAC TGAAGCACGTCAAGCACATGCTGCTGCTCACCAACACCTTTGGCGCCATC AACTACGTGGCCACCGAGGTGTTTCGTGAGGAACTGGGAGCTCGGCCCGA TGCCACCAAGGTGCTGATTATCATCACCGACGGCGAAGCCACCGATAGCG GAAACATCGATGCCGCCAAGGACATCATCCGGTACATTATCGGCATCGGC AAGCACTTCCAGACCAAGGAGAGCCAAGAGACTTTACACAAGTTCGCCTC CAAGCCCGCTTCCGAGTTCGTGTGCATTTTAGACACCTTCGAGTGTTTAA AGGATTTATTTACCGAGCTGCAGAAGAAGATCTACGTGATTGAGGGCACC AGCAAGCAAGATCTGACCTCCTTCAACATGGAGCTGTCCAGCAGCGGCAT TTCCGCTGATTTATCTCGTGGCCACGCC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0296] The amino acid sequence of the mature human LFA-1 I domain(K287C/K294C)/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 42):
TABLE-US-00041 (Signal peptide) MKWVTFISLLFLFSSAYS (human LFA-1 I domain(K287C/K294C) DLVFLFDGSMSLQPDEFQKILDFMKDVMKKLSNTSYQFAAVQFSTSYKTE FDFSDYVKRKDPDALLKHVKHMLLLTNTFGAINYVATEVFREELGARPDA TKVLIIITDGEATDSGNIDAAKDIIRYIIGIGKHFQTKESQETLHKFASK PASEFVCILDTFECLKDLFTELQKKIYVIEGTSKQDLTSFNMELSSSGIS ADLSRGHA (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0297] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0298] Similar constructs could be generated to express the human LFA-1 I domain (K287C/K294C)/huIL-15N72D fusion protein.
[0299] The sequences were cloned into expression vectors as described in Example 1 and previously (U.S. Pat. No. 8,507,222, at Examples 1 and 2, incorporated herein by reference), and the expression vectors transfected into CHO cells. In some cases, the CHO cells were transfected with vectors encoding both huIL-15N72D and huIL-15R.alpha.Su/Fc fusion proteins with the same or different binding domains of the invention. The fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
[0300] For example. CHO cells were transfected with the huIL-15N72D expression vector. Cells were also transfected with vectors expressing the human LFA-1 I domain(K287C/K294C)/huIL-15R.alpha.Su/huIgG1 Fc construct. Co-expression of the two constructs in CHO cells allowed formation and secretion of a soluble huIL-15N72D: human LFA-1 I domain(K287C/K294C)/huIL-15R.alpha.Su/huIgG1 Fc complex (referred to as 2*hLFA1/T.times.M).
[0301] Notch1 is a member of the Type I transmembrane protein family, which shares structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple different domain types. Its overexpression has been demonstrated in several tumor types making it an attractive target for immunotherapy. Delta-like protein 4 (DLL4) is one several ligands for Notch1 and has been shown to have the highest affinity. Therefore, the extracellular domain of DLL4 (positions 27-529) was used for targeting of Notch1 in the creation of a T.times.M complex.
[0302] The nucleic acid sequence of the hDLL4/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 43):
TABLE-US-00042 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (hDLL4) AGCGGCGTGTTCCAGCTGCAGCTGCAAGAGTTTATCAACGAGAGGGGCGT GCTGGCTTCCGGTCGTCCTTGTGAGCCCGGTTGTAGGACCTTTTTCCGGG TGTGTTTAAAGCATTTTCAAGCTGTGGTGTCCCCCGGACCTTGTACCTTC GGCACCGTGTCCACCCCCGTTCTGGGCACCAACTCCTTCGCCGTTCGTGA CGACAGCTCCGGAGGAGGTCGTAATCCTTTACAGCTGCCTTTCAACTTTA CTTGGCCCGGCACCTTCTCCCTCATCATCGAAGCTTGGCATGCCCCCGGT GACGATCTGCGGCCCGAAGCTCTGCCCCCCGATGCTTTAATCAGCAAGAT TGCCATTCAAGGTTCTTTAGCCGTGGGCCAGAACTGGCTGCTGGACGAGC AGACCAGCACACTCACTCGTCTGAGGTACTCCTATCGTGTGATCTGCAGC GACAACTACTACGGCGACAATTGCAGCCGGCTGTGCAAGAAGAGGAACGA CCACTTCGGCCATTACGTCTGCCAGCCCGACGGCAATTTATCTTGTCTGC CCGGTTGGACCGGCGAGTACTGTCAGCAGCCCATCTGTTTAAGCGGCTGC CACGAGCAGAACGGCTACTGCAGCAAGCCCGCTGAGTGTCTGTGTAGGCC CGGCTGGCAAGGTAGGCTGTGCAACGAGTGCATCCCCCACAATGGCTGTC GGCACGGCACTTGTTCCACCCCTTGGCAGTGCACTTGTGACGAGGGCTGG GGAGGTTTATTCTGCGACCAAGATCTGAACTACTGCACCCACCACAGCCC TTGTAAGAACGGAGCTACTTGTTCCAACAGCGGCCAGAGGTCCTACACTT GTACTTGTAGGCCCGGTTACACCGGCGTCGACTGCGAACTGGAACTGAGC GAATGCGATAGCAACCCTTGTCGTAACGGCGGCAGCTGCAAGGACCAAGA AGACGGCTACCACTGTTTATGCCCTCCCGGATACTACGGTTTACACTGCG AGCACTCCACACTGTCTTGTGCCGACTCCCCTTGTTTCAACGGCGGAAGC TGTCGTGAGAGGAACCAAGGTGCCAACTACGCTTGTGAGTGCCCTCCCAA CTTCACCGGCTCCAACTGCGAGAAGAAGGTGGATCGTTGCACCTCCAACC CTTGCGCCAACGGCGGCCAGTGTTTAAATAGGGGCCCTTCCCGGATGTGT CGTTGTCGTCCCGGTTTTACCGGCACCTACTGCGAGCTGCACGTCAGCGA TTGCGCCCGGAATCCTTGCGCTCACGGCGGAACTTGTCACGATTTAGAGA ACGGTTTAATGTGCACTTGTCCCGCTGGATTCAGCGGTCGTAGGTGTGAG GTGAGGACCTCCATCGACGCTTGTGCCAGCAGCCCTTGCTTCAATCGTGC CACTTGTTACACCGATTTATCCACCGACACCTTCGTGTGCAACTGCCCCT ACGGCTTCGTGGGATCTCGTTGCGAGTTCCCCGTTGGCCTGCCTCCTAGC TTTCCCTGG (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0303] The amino acid sequence of the mature hDLL4/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 44):
TABLE-US-00043 (Signal peptide) MKWVTFISLLFLFSSAYS (hDLL4) SGVFQLQLQEFINERGVLASGRPCEPGCRTFFRVCLKHFQAVVSPGPCTF GTVSTPVLGTNSFAVRDDSSGGGRNPLQLPFNFTWPGTFSLIIEAWHAPG DDLRPEALPPDALISKIAIQGSLAVGQNWLLDEQTSTLTRLRYSYRVICS DNYYGDNCSRLCKKRNDHFGHYVCQPDGNLSCLPGWTGEYCQQPICLSGC HEQNGYCSKPAECLCRPGWQGRLCNECIPHNGCRHGTCSTPWQCTCDEGW GGLFCDQDLNYCTHHSPCKNGATCSNSGQRSYTCTCRPGYTGVDCELELS ECDSNPCRNGGSCKDQEDGYHCLCPPGYYGLHCEHSTLSCADSPCFNGGS CRERNQGANYACECPPNFTGSNCEKKVDRCTSNPCANGGQCLNRGPSRMC RCRPGFTGTYCELHVSDCARNPCAHGGTCHDLENGLMCTCPAGFSGRRCE VRTSIDACASSPCFNRATCYTDLSTDTFVCNCPYGFVGSRCEFPVGLPPS FPW (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0304] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0305] Similar constructs could be generated to express hDLL4 domain/huIL-15N72D fusion protein.
[0306] The sequences were cloned into expression vectors as described in Example 1 and previously (U.S. Pat. No. 8,507,222, at Examples 1 and 2, incorporated herein by reference), and the expression vectors transfected into CHO cells. In some cases, the CHO cells were transfected with vectors encoding both huIL-15N72D and huIL-15R.alpha.Su/Fc fusion proteins with the same or different binding domains of the invention. The fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
[0307] For example, co-expression of huIL-15N72D and hDLL4/huIL-15R.alpha.Su/huIgG1 Fc expression vectors in CHO cells allowed formation and secretion of a soluble T.times.M complex referred to as 2*hDLL4/T.times.M.
[0308] T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is an immune checkpoint receptor found on IFN-.gamma.-producing CD4.sup.+ T helper 1 (Th1) and CD8.sup.+ T cytotoxic 1 (Tc1) T cells. Therefore, it is an attractive target for cancer immunotherapy. Thus, fusion protein complexes of the invention were generated with single chain Ab domains that recognize human Tim-3 (haTIM3scFv).
[0309] The nucleic acid sequence of the haTIM3scFv/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 45):
TABLE-US-00044 (Signal peptide) ATGGAATGGAGCTGGGTCTTTCTCTTCTTCCTGTCAGTAACCACCGGTGT CCACTCC (haTIM3scFv: VL-linker-VH scFv) (VL) TCCTATGTGCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCA GTCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAATAATAACTAT GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTAT GATGTCAGTAATCGGCCCTCAGGGGTTTCTACTCGCTTCTCTGGCTCCAAG TCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAG GCTGATTATTACTGCAGCTCATATACAACCAGCAGTACTTATGTCTTCGGA ACTGGGACCAAGCTGACCGTCCTGGGGCAGCCAAAGGCG (linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) CTGGTGCAATCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTC TCCTGCAAGGCTTCTGGATACACCTTCACCGGCTACTATATGCACTGGGTG CGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAACCCTAAC AGTGGTGGCACAAACTATGCACAGAAGTTCCAGGGCAGAGTCACCATGACC AGGAACACCTCCATAAGCACAGCCTACATGGAGTTGAGCAGCCTGAGATCT GACGACACGGCCGTGTATTACTGTGCGAGAGAGATGTATTACTATGGTTCG GGGTACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTGAGC TCA (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAAG AGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCAAG CGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCCACG AATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCT GAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTG CCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTG GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCATGGGC AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT CCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGG GGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0310] The amino acid sequence of the mature haTIM3scFv/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 46):
TABLE-US-00045 (Signal peptide) MEWSWVFLFFLSVTTGVHS (haTIM3scFv: VL-linker-VH scFv) (VL) SYVLTQPPSASGSPGQSVTISCTGTSSDVGNNNYVSWYQQHPGKAPKLMI YDVSNRPSGVSTRFSGSKSGNTASLTISGLQAEDEADYYCSSYTTSSTYV FGTGTKLTVLGQPKA (linker) GGGGSGGGGSGGGGS (VH) LVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINP NSGGTNYAQKFQGRVTMTRNTSISTAYMELSSLRSDDTAVYYCAREMYYY GSGYNWFDPWGQGTLVTVSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0311] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0312] Similar constructs could be generated to express the haTIM3scFv/huIL-15N72D fusion protein.
[0313] The sequences were cloned into expression vectors as described in Example 1 and previously (U.S. Pat. No. 8,507,222, at Examples 1 and 2, incorporated herein by reference), and the expression vectors transfected into CHO cells. In some cases, the CHO cells were transfected with vectors encoding both huIL-15N72D and huIL-15R.alpha.Su/Fc fusion proteins with the same or different binding domains of the invention. The fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
[0314] For example. CHO cells were transfected with the huIL-15N72D expression vector. Cells were also transfected with vectors expressing the haTIM3scFv/huIL-15R.alpha.Su/huIgG1 Fc construct. Co-expression of the two constructs in CHO cells allowed formation and secretion of a soluble huIL-15N72D: haTIM3scFv/huIL-15R.alpha.Su/huIgG1 Fc complex (referred to as 2*haTIM3/T.times.M).
[0315] In addition to tumor targeting molecules, T.times.M complexes can be created that detect and act against virally infected cells. The recent discovery of highly potent, broadly neutralizing, HIV-specific monoclonal antibodies (bNAbs) provides a novel class of potential therapeutic agents. It has long been known that neutralizing antibodies can target the HIV envelope (Env) and effectively suppress viral replication in vitro. To combine this Ab mediated suppression with the "kick and kill" approach of waking up latent virus replication and killing it with activated effector cells (via IL-15 stimulation), T.times.M complexes have been created comprising single chain antibody domains (scFvs) of bNAbs. The creation and characterization of four different anti-HIV T.times.Ms comprising scFvs from bNAbs N6, 2G12, VRC07 and 10-1074 are described below.
[0316] The nucleic acid sequence of N6scFv/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 47):
TABLE-US-00046 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (N6 scFv: VL-linker-VH scFv) (VL) TACATCCACGTGACCCAGTCCCCCTCCTCTTTAAGCGTGAGCATCGGAGA TCGTGTGACCATCAACTGCCAGACCTCCCAAGGTGTGGGCTCCGATTTAC ACTGGTACCAGCACAAGCCCGGTCGGGCCCCCAAGCTGCTGATCCACCAC ACCAGCTCCGTGGAGGATGGCGTGCCCTCTCGTTTCTCCGGCTCCGGCTT CCATACCTCCTTCAATTTAACCATCAGCGATTTACAAGCTGACGACATCG CCACCTACTACTGCCAAGTTCTCCAGTTCTTCGGCCGGGGCTCTCGTCTG CATATCAAG (linker) GGAGGCGGCGGATCCGGCGGCGGAGGCAGCGGCGGAGGCGGATCT (VH) CGTGCTCATCTGGTGCAGAGCGGAACCGCCATGAAGAAGCCCGGTGCTAG CGTGCGGGTGTCTTGTCAGACCAGCGGATACACCTTCACCGCCCACATTT TATTCTGGTTTCGTCAAGCTCCCGGTCGTGGACTGGAATGGGTGGGCTGG ATCAAGCCCCAGTATGGCGCCGTGAACTTTGGCGGCGGCTTTCGTGATCG GGTGACTTTAACTCGTGACGTGTATCGGGAGATCGCCTACATGGACATTA GGGGTTTAAAGCCCGACGATACCGCCGTGTACTACTGCGCTCGTGATCGT TCCTACGGCGATAGCAGCTGGGCTTTAGATGCTTGGGGCCAAGGTACCAC AGTGTGGTCCGCC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0317] The nucleic acid sequence of 2G12scFv/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 48):
TABLE-US-00047 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTAC TCC (2G12 scFv: VL-linker-VH scFv) (VL) GTGGTGATGACCCAGTCCCCTTCCACCCTGTCCGCTTCCGTGGGCGACACC ATCACCATCACCTGCAGGGCCTCCCAGTCCATCGAGACCTGGCTGGCCTGG TACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACAAGGCCTCC ACCCTGAAGACCGGCGTGCCCTCCAGGTTTTCCGGATCCGGCTCCGGCACC GAGTTCACCCTGACCATCAGCGGCCTGCAGTTCGACGACTTCGCCACCTAC CACTGCCAGCACTACGCCGGCTACTCCGCCACCTTTGGACAGGGCACCAGG GTGGAGATCAAG (linker) GGAGGTGGCGGATCCGGAGGTGGAGGTTCTGGTGGAGGTGGGAGT (VH) GAGGTGCAGCTGGTGGAATCCGGAGGCGGCCTGGTGAAAGCTGGCGGAAG CCTGATCCTGAGCTGCGGCGTGTCCAACTTCAGGATCTCCGCCCACACCA TGAACTGGGTGAGGAGGGTGCCTGGAGGAGGACTGGAGTGGGTGGCCAGC ATCTCCACCTCCTCCACCTACAGGGACTACGCCGACGCCGTGAAGGGCAG GTTCACCGTGAGCAGGGACGACCTGGAGGACTTCGTGTACCTGCAGATGC ACAAGATGCGGGTGGAGGACACCGCCATCTACTACTGCGCCAGGAAGGGC TCCGACAGGCTGTCCGACAACGACCCCTTTGACGCCTGGGGCCCTGGAAC CGTGGTGACAGTGTCCCCC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0318] The nucleic acid sequence of VRC07(523)scFv/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 49):
TABLE-US-00048 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (VRC07(523) scFv: VL-linker-VH scFv) (VL) TCCTCCCTGACCCAGAGCCCCGGAACACTCTCCCTCTCCCCCGGTGAGAC CGCTATCATCTCTTGTAGGACCAGCCAGTACGGCTCTTTAGCTTGGTATC AACAGAGGCCCGGCCAAGCTCCTAGGCTGGTCATTTACAGCGGCAGCACA AGGGCCGCCGGCATCCCCGATAGGTTCTCCGGCTCCCGGTGGGGCCCCGA TTACAATTTAACAATCTCCAATTTAGAGTCCGGAGACTTCGGCGTCTACT ACTGCCAGCAGTACGAGTTCTTCGGCCAAGGTACCAAAGTGCAAGTTGAT ATCAAG (linker) GGCGGCGGAGGCTCCGGCGGCGGCGGATCCGGCGGAGGAGGATCC (VH) CAAGTTAGGCTGTCCCAGAGCGGAGGCCAGATGAAGAAGCCCGGTGACTC CATGCGGATCAGCTGTCGTGCCAGCGGCTACGAGTTCATCAACTGCCCCA TCAACTGGATTCGTCTGGCCCCCGGTAAGCGGCCCGAATGGATGGGCTGG ATGAAACCTCGTCACGGCGCTGTGTCCTACGCTCGTCAGCTGCAAGGTCG TGTGACCATGACTCGTGACATGTACAGCGAGACCGCCTTTTTAGAGCTGA GGTCTTTAACCTCCGACGACACCGCTGTGTACTTCTGCACCCGGGGCAAG TACTGCACCGCTCGGGACTACTACAACTGGGACTTCGAGCACTGGGGCCA AGGTACACCCGTGACAGTGTCCTCC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0319] The nucleic acid sequence of 10-1074scFv/huIL-15R.alpha.Su/huIgG1 Fc construct (including leader sequence) is as follows (SEQ ID NO: 50):
TABLE-US-00049 (Signal peptide) ATGAAGTGGGTGACCTTCATCAGCCTGCTGTTCCTGTTCTCCAGCGCCTA CTCC (10-1074 scFv: VL-linker-VH scFv) (VL) TCCAGCTACGTGAGGCCTCTCTCCGTGGCTCTGGGCGAAACAGCTCGTAT CAGCTGCGGTCGTCAAGCTCTGGGATCTCGTGCTGTGCAGTGGTACCAGC ACCGGCCCGGTCAAGCTCCCATTTTACTGATCTACAACAACCAAGATCGG CCCTCCGGCATCCCCGAAAGGTTTAGCGGCACCCCCGATATCAACTTCGG CACAAGGGCCACTTTAACCATTAGCGGAGTGGAGGCCGGCGACGAGGCCG ACTACTACTGCCACATGTGGGACTCCCGGTCCGGCTTTTCTTGGAGCTTT GGCGGCGCTACTCGTCTGACAGTGCTG (linker) GGCGGAGGCGGCTCCGGAGGCGGCGGCAGCGGAGGAGGCGGATCC (VH) CAAGTTCAGCTGCAAGAATCCGGACCCGGTTTAGTGAAGCCCAGCGAGAC TTTAAGCGTGACTTGTAGCGTGAGCGGCGACAGCATGAACAACTACTACT GGACTTGGATTCGTCAGAGCCCCGGTAAGGGTTTAGAGTGGATCGGCTAC ATCTCCGACCGGGAGTCCGCCACCTACAACCCCTCTTTAAACTCCCGGGT GGTGATCTCTCGTGACACCTCCAAGAACCAGCTGTCTTTAAAGCTGAACT CCGTGACCCCCGCTGACACCGCCGTGTACTACTGCGCTACCGCTAGGCGG GGCCAGAGGATCTACGGCGTGGTGAGCTTCGGCGAGTTCTTCTACTACTA CAGCATGGACGTGTGGGGCAAAGGCACCACCGTGACCGTGTCCTCC (Human IL-15R .alpha. sushi domain) ATCACGTGTCCTCCTCCTATGTCCGTGGAACACGCAGACATCTGGGTCAA GAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCA AGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCC ACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGA (Human IgG1 CH2-CH3 (Fc) domain) GAGCCGAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCTGGTAAATAA
[0320] The amino acid sequence of the mature N6scFv/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 51):
TABLE-US-00050 (Signal peptide) MKWVTFISLLFLFSSAYS (N6 scFv: VL-linker-VH scFv) (VL) YIHVTQSPSSLSVSIGDRVTINCQTSQGVGSDLHWYQHKPGRAPKLLIHH TSSVEDGVPSRFSGSGFHTSFNLTISDLQADDIATYYCQVLQFFGRGSRL HIK (linker) GGGGSGGGGSGGGGS (VH) RAHLVQSGTAMKKPGASVRVSCQTSGYTFTAHILFWFRQAPGRGLEWVGW IKPQYGAVNFGGGFRDRVTLTRDVYREIAYMD1RGLKPDDTAVYYCARDR SYGDSSWALDAWGQGTTVWSA (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0321] The amino acid sequence of the mature 2G12scFv/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 52):
TABLE-US-00051 (Signal peptide) MKWVTFISLLFLFSSAYS (2G12 scFv: VL-linker-VH scFv) (VL) VVMTQSPSTLSASVGDTITITCRASQSIETWLAWYQQKPGKAPKLLIYKA STLKTGVPSRFSGSGSGTEFTLTISGLQFDDFATYHCQHYAGYSATFGQG TRVEIK (linker) GGGGSGGGGSGGGGS (VH) EVQLVESGGGLVKAGGSLILSCGVSNFRISAHTMNWVRRVPGGGLEWVAS ISTSSTYRDYADAVKGRFTVSRDDLEDFVYLQMHKMRVEDTAIYYCARKG SDRLSDNDPFDAWGPGTVVTVSP (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0322] The amino acid sequence of the mature VRC07(523)scFv/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 53):
TABLE-US-00052 (Signal peptide) MKWVTFISLLFLFSSAYS (VRC07(523) scFv: VL-linker-VH scFv) (VL) SSLTQSPGTLSLSPGETAIISCRTSQYGSLAWYQQRPGQAPRLVIYSGST RAAGIPDRFSGSRWGPDYNLTISNLESGDFGVYYCQQYEFFGQGTKVQVD IK (linker) GGGGSGGGGSGGGGS (VH) QVRLSQSGGQMKKPGDSMRISCRASGYEFINCPINWIRLAPGKRPEWMGW MKPRHGAVSYARQLQGRVTMTRDMYSETAFLELRSLTSDDTAVYFCTRGK YCTARDYYNWDFEHWGQGTPVTVSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0323] The amino acid sequence of the mature 10-1074scFv/huIL-15R.alpha.Su/huIgG1 Fc fusion protein (including leader sequence) is as follows (SEQ ID NO: 54):
TABLE-US-00053 (Signal peptide) MKWVTFISLLFLFSSAYS (10-1074) scFv: VL-linker-VH scFv) (VL) SSYVRPLSVALGETARISCGRQALGSRAVQWYQHRPGQAPILLIYNNQDR PSGIPERFSGTPDINFGTRATLTISGVEAGDEADYYCHMWDSRSGFSWSF GGATRLTVL (linker) GGGGSGGGGSGGGGS (VH) QVQLQESGPGLVKPSETLSVTCSVSGDSMNNYYWTWIRQSPGKGLEWIGY ISDRESATYNPSLNSRVVISRDTSKNQLSLKLNSVTPADTAVYYCATARR GQRIYGVVSFGEFFYYYSMDVWGKGTTVTVSS (Human IL-15R .alpha. sushi domain) ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKA TNVAHWTTPSLKCIR (Human IgG1 CH2-CH3 (Fc) domain) EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
[0324] In some cases, the leader peptide is cleaved from the mature polypeptide.
[0325] Similar constructs could be generated to express bNAb scFv/huIL-15N72D fusion proteins as described above.
[0326] The sequences were cloned into expression vectors as described in Example 1 and previously (U.S. Pat. No. 8,507,222, at Examples 1 and 2, incorporated herein by reference), and the expression vectors transfected into CHO cells. In some cases, the CHO cells were transfected with vectors encoding both huIL-15N72D and huIL-15R.alpha.Su/Fc fusion proteins with the same or different binding domains of the invention. The fusion protein complexes were purified from the CHO cell culture supernatant using Protein A affinity chromatography as described above.
[0327] For example, co-expression of the huIL-15N72D and N6scFv/huIL-15R.alpha.Su/huIgG1 Fc expression vectors in CHO cells allowed formation and secretion of a soluble T.times.M complex referred to as 2*hN6/T.times.M. Co-expression of the huIL-15N72D and 2G12scFv/huIL-15R.alpha.Su/huIgG1 Fc expression vectors in CHO cells allowed formation and secretion of a soluble T.times.M complex referred to as 2*h2G12/T.times.M . Co-expression of the huIL-15N72D and VRC07(523)scFv/huIL-15R.alpha.Su/huIgG1 Fc expression vectors in CHO cells allowed formation and secretion of a soluble T.times.M complex referred to as 2*hVRC07(523)/T.times.M. Co-expression of the huIL-15N72D and 10-1074scFv/huIL-15R.alpha.Su/huIgG1 Fc expression vectors in CHO cells allowed formation and secretion of a soluble T.times.M complex referred to as 2*h10-1074/T.times.M.
[0328] As indicated above, the T.times.M proteins can be purified from CHO cell supernatants by Protein A chromatography and other separation methods (i.e., ion exchange, hydrophobic, and/or size exclusion chromatography, and filtration methods). Furthermore, the purified proteins can be characterized by gel, chromatography, and other analytical methods. For example, FIG. 20 shows size exclusion chromatography analysis of various T.times.M complexes including those with 2 scAb or binding domains (i.e. 2 headed (2H) IL-15N72D:anti-PD-L1 scAb/IL-15R.alpha.Su/Fc complexes) or 4 scAb or binding domains (i.e. 4 headed (4H) anti-PD-L1 scAb/IL-15N72D:anti-PD-L1 scAb/IL-15R.alpha.Su/Fc complexes) or combinations of different targeting domains (i.e., tumor targeting domains/anti-PDL1scAb T.times.M complexes). The SEC chromatographs indicate that the Protein A-purified T.times.M proteins are primarily comprised of a major protein peak with a migration pattern consistent with the IL-15N72D:IL-15R.alpha.Su/Fc complex.
[0329] Similar T.times.M constructs comprising scAb or binding domains could be readily generated with antibody sequences specific to other CD antigens, cytokines or chemokine receptors or ligands, growth factor receptors or ligands, cell adhesion molecules, MHC/MHC-like molecules, Fc receptors, Toll-like receptors, NK receptors, TCRs, BCRs, positive/negative co-stimulatory receptors or ligands, death receptors or ligands, tumor associated antigens, virus-encoded and bacterial-encoded antigens, and bacterial-specific. Of particular interest are T.times.M with disease specific binding domains (e.g. scAbs) to antigens of CD4, CD19, CD20, CD21, CD22, CD23, CD25, CD30, CD33, CD38, CD40, CD44, CD51, CD52, CD70, CD74, CD80, CD123, CD152, CD147, CD221, EGFR, HER-2/neu, HER-1, HER-3, HER-4, CEA, OX40 ligand, cMet, tissue factor, Nectin-4, PSA, PSMA, EGFL7, FGFR, IL-6 receptor, IGF-1 receptor, GD2, CA-125, EpCam, death receptor 5, MUC1, VEGFR1, VEGFR2, PDGFR, Trail R2, folate receptor, angiopoietin-2, alphavbeta3 integrin receptor, HLA-DR antigens and other disease targets described herein. Antibody domains against viral antigens from HIV, HCV, HBC, CMV, HTLV, HPV, EBV, RSV and other virus are also of interest, particularly those recognizing the HIV envelope spike and/or gp120 and gp41 epitopes. Such antibody domains can be generated from sequences known in the art or isolated de novo from a variety of sources (i.e., vertebrate hosts or cells, combinatorial libraries, random synthetic libraries, computational modeling, etc.) know in the art.
Example 6
Characterization of Activities of Other T.times.M
[0330] The binding activities of CTLA-4 T.times.M were assessed using CTLA-4-positive immune cells. In studies on mouse specific CTLA-4 T.times.M, the expression of CTLA-4 in mouse lymphocytes was first induced by anti-CD3 Ab (2C11, 4 .mu.g/ml) for 4 days. CTLA-4 expression was assessed by staining with PE anti-mouse CTLA-4 antibody (clone UC10-4B9) or PE Armenian Hamster IgG isotype control. As shown in FIG. 21A, flow cytometry analysis demonstrated that mouse CTLA-4 was markedly induced. Addition of mouse specific CTLA-4 T.times.M (100 .mu.l sup) was capable of blocking anti-mouse CTLA-4 antibody binding as did a positive control anti-mCTLA-4 antibody (clone HB304). For studies with human specific CTLA-4 T.times.M, the expression of CTLA-4 in human PBMC was induced by anti-CD3 Ab (OKT3 :4 .mu.g/ml) for 3 days. Cells were then stained with PE anti-human CTLA-4 antibody (clone BNI3, Biolegend) or PE mouse IgG2a, .kappa. isotype control. Consistent with the results described above, human specific CTLA-4 T.times.M (CL-8-100 ul) was capable of blocking CTLA-4 on the surface of human immune cells (FIG. 21B). These results demonstrate the specificity of the CTLA-4 T.times.M complex.
[0331] Similarly, the binding activity of a mouse specific PD-L1/CTLA-4 T.times.M complex was assessed on PD-L1-positive 5T33 myeloma tumor cells (per methods described in Example 2) and CTLA-4-positive immune cells. As shown in FIG. 22A and FIG. 22B, the PD-L1/CTLA-4 T.times.M (sup) was capable of blocking binding to both PD-L1 and CTLA-4 expressed on the cell surface. This also indicates that multispecific T.times.M complexes retain reactivity of each of the linked binding domains.
[0332] Direct binding of the CD47 T.times.M constructs was assessed using CD47-positive cells. As shown in FIG. 23A and FIG. 23B, mouse and human specific CD47 T.times.M complexes were able to stain mouse B16F10 melanoma and human Jurkat T cells, respectively. These results indicate that these complexes retained CD47 binding activity.
[0333] A single stranded DNA ELISA method (ALPCO ssDNA ELISA kit 35-SSSHU-E01) was used to assess binding of T.times.M complexes comprising the TNT scAb domain. Briefly, purified T.times.M protein comprising TNT scAb domains were serially diluted and 100 .mu.L was added to ELISA wells coated with human recombinant single stranded DNA. After 30 min incubation, the wells were washed and 100 .mu.L of HRP-anti-human IgG antibody was added. After additional incubation and wash steps, the bound T.times.M protein was detected with TMB substrate. Absorbance of the wells was read at 450 nM. As shown in FIG. 24A and FIG. 24B, TNT scAb T.times.M and TNT scAb/anti-human PD-L1 scAb T.times.M complexes were capable of binding single stranded DNA, with TNT scAb T.times.M having a lower Kd (188 pM) compare to that of TNT scAb/anti-human PD-L1 scAb T.times.M (10279 pM), potentially because of the higher avidity of the 4H TNT scAb in TNT scAb T.times.M compared to 2H TNT scAb in TNT scAb/anti-human PD-L1 scAb T.times.M.
[0334] The ability of TNT scAb T.times.M complexes to bind tumor cells was also evaluated, exposing the tumor cell DNA by fixing and permeabilizing the cells. In the initial study, MB231 breast cancer cells were first fixed with 1.5% paraformaldehyde and permeabilized with 0.1% saponin and then 10.sup.5 cells (10.sup.6 cells/mL) were incubated for 30 min at room temperature with 0.01-100 nM of TNT scAb T.times.M, TNT scAb/anti-human PD-L1 scAb T.times.M or 2H-anti-human PD-L1 scAb T.times.M (negative control). The cells were washed and stained with anti-human IgG Fc-APC and then were analyzed by flow cytometry. FIG. 25A shows the mean fluorescence intensity (MFI) of MB231 cell staining at different T.times.M concentrations, confirming specific and concentration dependent binding of TNT scAb T.times.M and TNT scAb/anti-human PD-L1 scAb T.times.M to permeabilized breast tumor cells. Minimal binding was seen with the negative control PD-L1 scAb T.times.M complex, consistent with low level expression of PD-L1 on the MB231 cell line. A similar study was conducted with fixed and permeabilized PD-L1-negative A549 human lung tumor cells. Again, the results (FIG. 25B) confirm specific and concentration dependent binding of TNT scAb T.times.M and TNT scAb/anti-human PD-L1 scAb T.times.M to permeabilized lung tumor cells.
[0335] Furthermore, the ability of T.times.M complexes comprising hOAT scAb and/or anti-human PD-L1 scAb domains to bind tumor cells was assessed. The SW1990 human pancreatic cancer cell line expresses high levels of human TF and low levels of human PD-L1. In this study, 10.sup.5 SW1990 cells (10.sup.6 cells/mL) were incubated for 30 min at room temperature with 0.01-100 nM of 2 headed (h2) hOATscAb/T.times.M, anti-human PD-L1scAb/hOATscAb/T.times.M, h2*anti-human PD-L1scAb/T.times.M or control hOAT Ab or control anti-human PD-L1 Ab (Avelumab). The cells were washed and stained with anti-human IgG Fc-APC and then were analyzed by flow cytometry. FIG. 26 shows the mean fluorescence intensity (MFI) of SW1990 cell staining at different protein concentrations. The results confirm that the T.times.M complexes comprising hOAT scAb (h2*hOATscAb/T.times.M and anti-human PD-L1scAb/hOATscAb/T.times.M) exhibit similar high-level staining of human TF on SW1990 tumor cells as the control hOAT Ab. T.times.M complexes comprising anti-human PD-L1 scAb (h2*anti-human PD-L1scAb/T.times.M) exhibit lower level staining of human PD-L1 on SW1990 tumor cells similar to the control anti-human PD-L1 Ab (Avelumab).
[0336] ELISA-based methods were used to confirm the formation of the huIL-15N72D: human LFA-1 I domain(K287C/K294C)/huIL-15R.alpha.Su/huIgG1 Fc complex. Binding activity was assessed in culture supernatant from CHO cells co-transfected with the huIL-15N72D and human LFA-1 I domain(K287C/K294C)/huIL-15R.alpha.Su/huIgG1 Fc expression vectors. In FIG. 27A, the fusion protein complexes were detected using a huIL15/hu/IgGl-specific ELISA with a capture antibody, anti-human IL-15 antibody (R&D Systems) and a detection antibody, anti-human IgG antibody (Jackson ImmunoResearch). This binding was compared to a control sample using only the supernatant of media containing untransfected CHO cells. The results indicate production and proper complex formation for the 2*hLFA1/T.times.M.
[0337] Additionally, 2*hLFA1/T.times.M binding to ICAM-1 was assessed by ELISA (FIG. 27B). Wells of an immunoplate were coated with 1 .mu.g of human ICAM-1-Fc (Biolegend). After wash steps, CHO culture supernatant containing 2*hLFA1/T.times.M was added to the cells. Following incubation and additional wash steps, binding of the fusion protein complexes was detected using an HRP-conjugated anti-human IL-15 antibody (R&D Systems). The absorbance in the wells was read at 405 nm after incubation with ABTS. The results in FIG. 27B indicate that this complex recognizes ICAM-1.
[0338] Similar ELISA-based methods confirmed the formation of a huIL-15N72D: hDLL4/huIL-15R.alpha.Su/huIgG1 Fc complex in the transfected CHO cell culture supernatant. In FIG. 28, the fusion protein complexes in the culture supernatant were detected using a huIL15/huIgG1-specific ELISA with a capture antibody, anti-human IL-15 antibody (R&D Systems) and a detection antibody, anti-human IgG antibody (Jackson ImmunoResearch). The sample is compared to a control sample using only the supernatant of media containing untransfected CHO cells. The results indicate production and proper complex formation of the 2*hDLL4/T.times.M complexes.
[0339] ELISA-based methods also confirmed the formation of the huIL-15N72D: haTIM3scFv/huIL-15R.alpha.Su/huIgG1 Fc complex. In FIG. 29, the fusion protein complexes in the transfected CHO culture supernatant were detected using a huIL15/huIgG1-specific ELISA with a capture antibody, anti-human IL-15 antibody (R&D Systems) and a detection antibody, anti-human IgG antibody (Jackson ImmunoResearch). This binding was compared to a control sample using only the supernatant of media containing untransfected CHO cells. The results indicate production and proper complex formation of 2*haTIM3/T.times.M complexes.
[0340] Supernatant from CHO cells co-transfected with bNAb scFv T.times.M expression vectors was used to determine the expression and binding capabilities of the T.times.M complexes. ELISA-based methods confirmed the formation of the bNAb scFv T.times.M complexes. In FIG. 30A and FIG. 30B, the fusion protein complexes in the transfected CHO culture supernatant were detected using a huIL15/huIgG1-specific ELISA with a capture antibody, anti-human IL-15 antibody (R&D Systems) and a detection antibody, anti-human IgG antibody (Jackson ImmunoResearch). The positive control T.times.M is one that recognizes hCD20. The results indicate production and proper complex formation for four different bNAb scFv T.times.M complexes.
[0341] Additionally, bNAb scFv T.times.M binding to HIV protein targets (gp120(SF162.LS) and gp140 (SF162.LS)) was assessed by ELISA. For this study, wells of an immunoplate were coated with 0.1 .mu.g of HIV gp120(SF162.LS) or gp140(SF162.LS) (ProtTech, Inc.). After wash steps, CHO culture supernatants containing bNAb scFv T.times.Ms were added to the cells. The negative control T.times.M is one that recognizes hCD20. Following incubation and additional wash steps, binding of the fusion protein complexes was detected using an HRP-conjugated anti-human IgG antibody (Jackson ImmunoResearch). The absorbance in the wells was read at 405 nm after incubation with ABTS. The results in FIG. 30C to FIG. 30F indicate that the bNAb scFv T.times.M complexes recognizes HIV protein targets.
[0342] Overall these results demonstrate that T.times.M complexes with binding domains specific to a variety of immune checkpoint and signaling molecules can be generated and provide enhanced binding activities to target molecules. These complexes exhibit IL-15 immunostimulatory activity and are capable of directing immune mediated cytotoxicity against target antigens on cells. These complexes also are highly efficacious in animal tumor models.
Example 7
Immunostimulatory and Anti-tumor Activities of T.times.M Complexes
[0343] As indicated in Example 2, the IL-15 immunostimulatory activity of T.times.M complexes has been assessed based on proliferation of IL-2R.beta./.gamma.-bearing immune cells such as the 32D.beta. cell line. Briefly, increasing concentrations of purified T.times.M proteins were added to 32D.beta. cells (10.sup.4 cells/well) in 200 .mu.L IMDM:10% FBS media and cells were incubated for 3 days at 37.degree. C. PrestoBlue cell viability reagent (20 .mu.L/well) then was added. After 4 hours, absorbance was measured at 570 nm (with a 600-nm reference wavelength for normalization) to determine cell proliferation based on reduction of PrestoBlue, a resazurin-based solution, by metabolically active cells. The half maximal effective concentration (EC50) of IL-15 bioactivity for the T.times.M complexes was then determined based on the relationship between absorbance and T.times.M protein concentration. Table 1 show the IL-15 EC50 values for various T.times.M complexes comprising binding domains of the invention. The results confirm the immunostimulatory activity of various purified T.times.M complexes including those with two scAb/binding domains (i.e., 2 headed (2H) anti-PD-L1 scAb/IL-15N72D:anti-PD-L1 scAb/IL-15R.alpha.Su/Fc complexes) or four scAb/binding domains (i.e., 4 headed (4H) anti-PD-L1 scAb/IL-15N72D:anti-PD-L1 scAb/IL-15R.alpha.Su/Fc complexes) or combinations of different targeting domains (i.e., tumor targeting domains/anti-PDL1scAb T.times.M complexes).
TABLE-US-00054 TABLE 1 IL-15 Activity of TxM Complexes EC50 (pM TxM) 2H-anti-human PD-L1 scAb TxM 14 4H-anti-human PD-L1 scAb TxM 220 2H-anti-mouse PD-L1 scAb TxM 58 anti-human CTLA-4 scAb/anti-human PD-L1 scAb TxM 73 TNT scAb TxM 1013 TNT scAb/anti-human PD-L1 scAb TxM 8498 2H-hOAT TxM 115 hOAT/anti-human PD-L1 scAb TxM 202
[0344] The ability of hOAT scAb T.times.M to stimulate immune cell cytotoxicity against tumor cells was assessed in vitro. Human NK cells were purified from blood buffy coats with NK cell isolation kit from Stemcell Technologies and used as effector cells. TF-positive human pancreatic tumor cells, SW1990, were labeled with Celltrace-violet and used as target cells. The human NK cells and SW1990 tumor cells were mixed at an E:T ratio of 1:1 in media alone or media containing 10 nM hOAT Ab (control) or 2H hOAT scAb T.times.M complex. After 40 hrs, the percent of target cell death was assessed by flow cytometry based on propidium iodide staining of violet-labeled target cells. As shown in FIG. 31, human NK cells incubated with 2H hOAT scAb T.times.M complex were capable of mediating greater cytotoxicity against TF-positive human tumor cells than untreated NK cells or NK cells treated with hOAT Ab (i.e., traditional ADCC). These results represent a significant improvement in immune cell-mediated targeted anti-tumor activity of the anti-TF T.times.M complexes compared to anti-TF Abs.
[0345] The ability of T.times.M complexes to overcome checkpoint-mediated inhibition of T cell activity is assessed in previously described in vitro assays (Steward, R, et al Cancer Immunol Res 2015 3(9):1052-1062). For example, freshly isolated primary human T cells are cultured together with anti-CD3 and anti-CD28-coated beads to demonstrate increased immune cell proliferation (measured by BrDU incorporation) and IFN.gamma. release (measured by ELISA). Addition of PD-L1 antibody on the beads significantly reduces T cell proliferation and IFN.gamma. release due inhibitory signaling of PD-L1/PD-1 interactions. Addition of soluble PD-L1 T.times.M or PD-1 T.times.M in the context of anti-CD3, anti-CD28, PD-L1-coated beads and T cells increases T cell proliferation and IFN.gamma. release due to blockade of PD-L1/PD-1 interactions. Similar assays with CTLA-4 T.times.M in the context of anti-CD3, anti-CD28, anti-CTLA-4-coated beads and T cells also demonstrate the immune checkpoint inhibitory activity of CTLA-4 T.times.M.
[0346] The anti-tumor activity of these complexes is assessed in mouse xenograft models using human tumor cell lines and patient derived tumor cells (Morton, J. J., et al. Cancer Research 2016 doi: 10.1158/0008-5472). Commercially available humanized mouse models (i.e., Hu-CD34 NSG.TM., Jackson laboratory) have been developed to assess the activity of immunotherapies on human immune cell responses against tumors derived from human tumor cell lines and patient derived tumor cells. For example, Hu-CD34 NSG.TM. mice bearing PD-L1-positive subcutaneous human MDA-MB-231 breast cancer tumors is treated with PBS or increasing dose levels of PD-L1 T.times.M or PD-1 T.times.M (i.e., subcutaneous administration twice weekly for 2 weeks) and tumor growth is assessed. Dose dependent decreases in tumor volume provides evidence of the therapeutic activity of PD-L1 T.times.M and/or PD-1 T.times.M against PD-L1-positive human tumors. Solid tumor mouse models are also available using patient derived PD-L1-postive tumor cells (i.e., BR1126(TM00098), LG1306(TM00302)). The activity of PD-L1 T.times.M and/or PD-1 T.times.M in BR1126 tumor-bearing Hu-CD34 NSG.TM. mice is assessed by evaluating tumor growth or mouse survival post-treatment. In addition, treatment dependent changes in T cell responses in the blood and tumor microenvironment is evaluated in these models. An increase in T cells levels or activity (i.e., IFN.gamma.-positive cells) in the blood or tumor post PD-L1 T.times.M and/or PD-1 T.times.M treatment provide evidences of immunostimulatory activity of these complexes in tumor-bearing mice. Together, these studies demonstrate the immune cell-mediated activity of PD-L1 T.times.M and/or PD-1 T.times.M against human tumors in vivo.
Other Embodiments
[0347] While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
[0348] The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. Genbank and NCBI submissions indicated by accession number cited herein are hereby incorporated by reference. All other published references, documents, manuscripts, and scientific literature cited herein are hereby incorporated by reference.
[0349] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Sequence CWU
1
1
5811125DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 1atgaagtggg tgaccttcat cagcctgctg ttcctgttct
ccagcgccta ctccaacatc 60cagatgaccc agtcccctag ctccgtgtcc gcctccgtgg
gagatcgggt gaccatcacc 120tgtagggcct cccaggacat ctccaggtgg ctggcctggt
accagcagaa gcccggcaag 180gcccccaagc tgctgatcta cgccgcctcc tccctgcagt
ccggagtgcc tagcaggttc 240tccggctccg gatccggcac agacttcgcc ctgaccatct
cctccctgca gcccgaggac 300ttcgccacct actactgcca gcaggccgac tccaggttct
ccatcacctt cggccagggc 360accaggctgg agatcaagag gggaggtggc ggatccggag
gtggaggttc tggtggaggt 420gggagtgagg tgcagctggt gcagtccgga ggaggactgg
tgcagcctgg cggatccctg 480aggctgtcct gtgccgcttc cggcttcacc ttcagctcct
actccatgaa ctgggtgagg 540caggcccctg gaaagggcct ggagtgggtg tcctacatct
ccagctcctc ctccaccatc 600cagtacgccg actccgtgaa gggcaggttc accatctcca
gggacaacgc caagaactcc 660ctgtacctgc agatgaacag cctgagggac gaggacaccg
ccgtgtacta ctgcgccagg 720ggcgactatt actacggcat ggacgtgtgg ggccagggaa
ccaccgtgac cgtgtcctcc 780aactgggtta acgtaataag tgatttgaaa aaaattgaag
atcttattca atctatgcat 840attgatgcta ctttatatac ggaaagtgat gttcacccca
gttgcaaagt aacagcaatg 900aagtgctttc tcttggagtt acaagttatt tcacttgagt
ccggagatgc aagtattcat 960gatacagtag aaaatctgat catcctagca aacgacagtt
tgtcttctaa tgggaatgta 1020acagaatctg gatgcaaaga atgtgaggaa ctggaggaaa
aaaatattaa agaatttttg 1080cagagttttg tacatattgt ccaaatgttc atcaacactt
cttaa 11252374PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 2Met Lys Trp Val Thr Phe
Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1 5
10 15 Tyr Ser Asn Ile Gln Met Thr Gln Ser Pro Ser
Ser Val Ser Ala Ser 20 25
30 Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile
Ser 35 40 45 Arg
Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 50
55 60 Leu Ile Tyr Ala Ala Ser
Ser Leu Gln Ser Gly Val Pro Ser Arg Phe 65 70
75 80 Ser Gly Ser Gly Ser Gly Thr Asp Phe Ala Leu
Thr Ile Ser Ser Leu 85 90
95 Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asp Ser Arg
100 105 110 Phe Ser
Ile Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg Gly 115
120 125 Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Glu Val 130 135
140 Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro
Gly Gly Ser Leu 145 150 155
160 Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met
165 170 175 Asn Trp Val
Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr 180
185 190 Ile Ser Ser Ser Ser Ser Thr Ile
Gln Tyr Ala Asp Ser Val Lys Gly 195 200
205 Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu
Tyr Leu Gln 210 215 220
Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg 225
230 235 240 Gly Asp Tyr Tyr
Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val 245
250 255 Thr Val Ser Ser Asn Trp Val Asn Val
Ile Ser Asp Leu Lys Lys Ile 260 265
270 Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala Thr Leu Tyr
Thr Glu 275 280 285
Ser Asp Val His Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu 290
295 300 Leu Glu Leu Gln Val
Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His 305 310
315 320 Asp Thr Val Glu Asn Leu Ile Ile Leu Ala
Asn Asp Ser Leu Ser Ser 325 330
335 Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu
Glu 340 345 350 Glu
Lys Asn Ile Lys Glu Phe Leu Gln Ser Phe Val His Ile Val Gln 355
360 365 Met Phe Ile Asn Thr Ser
370 31674DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 3atgaagtggg tgaccttcat
cagcctgctg ttcctgttct ccagcgccta ctccaacatc 60cagatgaccc agtcccctag
ctccgtgtcc gcctccgtgg gagatcgggt gaccatcacc 120tgtagggcct cccaggacat
ctccaggtgg ctggcctggt accagcagaa gcccggcaag 180gcccccaagc tgctgatcta
cgccgcctcc tccctgcagt ccggagtgcc tagcaggttc 240tccggctccg gatccggcac
agacttcgcc ctgaccatct cctccctgca gcccgaggac 300ttcgccacct actactgcca
gcaggccgac tccaggttct ccatcacctt cggccagggc 360accaggctgg agatcaagag
gggaggtggc ggatccggag gtggaggttc tggtggaggt 420gggagtgagg tgcagctggt
gcagtccgga ggaggactgg tgcagcctgg cggatccctg 480aggctgtcct gtgccgcttc
cggcttcacc ttcagctcct actccatgaa ctgggtgagg 540caggcccctg gaaagggcct
ggagtgggtg tcctacatct ccagctcctc ctccaccatc 600cagtacgccg actccgtgaa
gggcaggttc accatctcca gggacaacgc caagaactcc 660ctgtacctgc agatgaacag
cctgagggac gaggacaccg ccgtgtacta ctgcgccagg 720ggcgactatt actacggcat
ggacgtgtgg ggccagggaa ccaccgtgac cgtgtcctcc 780atcacgtgcc ctccccccat
gtccgtggaa cacgcagaca tctgggtcaa gagctacagc 840ttgtactcca gggagcggta
catttgtaac tctggtttca agcgtaaagc cggcacgtcc 900agcctgacgg agtgcgtgtt
gaacaaggcc acgaatgtcg cccactggac aacccccagt 960ctcaaatgca ttagagagcc
gaaatcttgt gacaaaactc acacatgccc accgtgccca 1020gcacctgaac tcctgggggg
accgtcagtc ttcctcttcc ccccaaaacc caaggacacc 1080ctcatgatct cccggacccc
tgaggtcaca tgcgtggtgg tggacgtgag ccacgaagac 1140cctgaggtca agttcaactg
gtacgtggac ggcgtggagg tgcataatgc caagacaaag 1200ccgcgggagg agcagtacaa
cagcacgtac cgtgtggtca gcgtcctcac cgtcctgcac 1260caggactggc tgaatggcaa
ggagtacaag tgcaaggtct ccaacaaagc cctcccagcc 1320cccatcgaga aaaccatctc
caaagccaaa gggcagcccc gagaaccaca ggtgtacacc 1380ctgcccccat cccgggatga
gctgaccaag aaccaggtca gcctgacctg cctggtcaaa 1440ggcttctatc ccagcgacat
cgccgtggag tgggagagca atgggcagcc ggagaacaac 1500tacaagacca cgcctcccgt
gctggactcc gacggctcct tcttcctcta cagcaagctc 1560accgtggaca agagcaggtg
gcagcagggg aacgtcttct catgctccgt gatgcatgag 1620gctctgcaca accactacac
gcagaagagc ctctccctgt ctcctggtaa ataa 16744557PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
4Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Asn Ile
Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser 20
25 30 Val Gly Asp Arg Val Thr Ile Thr Cys
Arg Ala Ser Gln Asp Ile Ser 35 40
45 Arg Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
Lys Leu 50 55 60
Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe 65
70 75 80 Ser Gly Ser Gly Ser
Gly Thr Asp Phe Ala Leu Thr Ile Ser Ser Leu 85
90 95 Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys
Gln Gln Ala Asp Ser Arg 100 105
110 Phe Ser Ile Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg
Gly 115 120 125 Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val 130
135 140 Gln Leu Val Gln Ser Gly
Gly Gly Leu Val Gln Pro Gly Gly Ser Leu 145 150
155 160 Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
Ser Ser Tyr Ser Met 165 170
175 Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr
180 185 190 Ile Ser
Ser Ser Ser Ser Thr Ile Gln Tyr Ala Asp Ser Val Lys Gly 195
200 205 Arg Phe Thr Ile Ser Arg Asp
Asn Ala Lys Asn Ser Leu Tyr Leu Gln 210 215
220 Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr
Tyr Cys Ala Arg 225 230 235
240 Gly Asp Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val
245 250 255 Thr Val Ser
Ser Ile Thr Cys Pro Pro Pro Met Ser Val Glu His Ala 260
265 270 Asp Ile Trp Val Lys Ser Tyr Ser
Leu Tyr Ser Arg Glu Arg Tyr Ile 275 280
285 Cys Asn Ser Gly Phe Lys Arg Lys Ala Gly Thr Ser Ser
Leu Thr Glu 290 295 300
Cys Val Leu Asn Lys Ala Thr Asn Val Ala His Trp Thr Thr Pro Ser 305
310 315 320 Leu Lys Cys Ile
Arg Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 325
330 335 Pro Pro Cys Pro Ala Pro Glu Leu Leu
Gly Gly Pro Ser Val Phe Leu 340 345
350 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
Pro Glu 355 360 365
Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 370
375 380 Phe Asn Trp Tyr Val
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 385 390
395 400 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
Arg Val Val Ser Val Leu 405 410
415 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
Lys 420 425 430 Val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 435
440 445 Ala Lys Gly Gln Pro Arg
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 450 455
460 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys 465 470 475
480 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
485 490 495 Pro Glu
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 500
505 510 Ser Phe Phe Leu Tyr Ser Lys
Leu Thr Val Asp Lys Ser Arg Trp Gln 515 520
525 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
Ala Leu His Asn 530 535 540
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 545
550 555 51134DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
5atgaagtggg tgaccttcat cagcctgctg ttcctgttct ccagcgccta ctcccagtcc
60gctctgaccc agcctgcttc cgtgtccggc tcccctggac agtccatcac catctcctgt
120accggcacct cctccgatgt gggcggctac aactacgtgt cctggtacca gcagcacccc
180ggcaaagccc ccaagctgat gatctatgac gtgtccaacc ggccctccgg cgtgtccaac
240aggttctccg gctccaagtc cggcaacacc gcctccctga caatctccgg cctgcaggcc
300gaggatgagg ctgactacta ctgctcctcc tacacctcct cctccaccag ggtgttcggc
360accggcacca aggtgaccgt gctgggaggt ggcggatccg gaggtggagg ttctggtgga
420ggtgggagtg aggtgcagct gctggagtcc ggaggcggac tggtgcagcc tggaggatcc
480ctgaggctgt cctgcgctgc ctccggcttc accttctcct cctacatcat gatgtgggtg
540aggcaggctc ctggcaaggg cctggagtgg gtgtcctcca tctacccctc cggcggcatc
600accttctacg ccgataccgt gaagggcagg ttcaccatct cccgggacaa ctccaagaac
660accctgtacc tgcagatgaa ctccctgagg gctgaggaca ccgccgtgta ctactgcgcc
720aggatcaagc tgggcaccgt gaccacagtg gactactggg gacagggcac cctggtgacc
780gtgtcctcca actgggttaa cgtaataagt gatttgaaaa aaattgaaga tcttattcaa
840tctatgcata ttgatgctac tttatatacg gaaagtgatg ttcaccccag ttgcaaagta
900acagcaatga agtgctttct cttggagtta caagttattt cacttgagtc cggagatgca
960agtattcatg atacagtaga aaatctgatc atcctagcaa acgacagttt gtcttctaat
1020gggaatgtaa cagaatctgg atgcaaagaa tgtgaggaac tggaggaaaa aaatattaaa
1080gaatttttgc agagttttgt acatattgtc caaatgttca tcaacacttc ttaa
11346377PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 6Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe
Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro
20 25 30 Gly Gln
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly 35
40 45 Gly Tyr Asn Tyr Val Ser Trp
Tyr Gln Gln His Pro Gly Lys Ala Pro 50 55
60 Lys Leu Met Ile Tyr Asp Val Ser Asn Arg Pro Ser
Gly Val Ser Asn 65 70 75
80 Arg Phe Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser
85 90 95 Gly Leu Gln
Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Thr 100
105 110 Ser Ser Ser Thr Arg Val Phe Gly
Thr Gly Thr Lys Val Thr Val Leu 115 120
125 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Glu 130 135 140
Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 145
150 155 160 Leu Arg Leu Ser
Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ile 165
170 175 Met Met Trp Val Arg Gln Ala Pro Gly
Lys Gly Leu Glu Trp Val Ser 180 185
190 Ser Ile Tyr Pro Ser Gly Gly Ile Thr Phe Tyr Ala Asp Thr
Val Lys 195 200 205
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 210
215 220 Gln Met Asn Ser Leu
Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 225 230
235 240 Arg Ile Lys Leu Gly Thr Val Thr Thr Val
Asp Tyr Trp Gly Gln Gly 245 250
255 Thr Leu Val Thr Val Ser Ser Asn Trp Val Asn Val Ile Ser Asp
Leu 260 265 270 Lys
Lys Ile Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala Thr Leu 275
280 285 Tyr Thr Glu Ser Asp Val
His Pro Ser Cys Lys Val Thr Ala Met Lys 290 295
300 Cys Phe Leu Leu Glu Leu Gln Val Ile Ser Leu
Glu Ser Gly Asp Ala 305 310 315
320 Ser Ile His Asp Thr Val Glu Asn Leu Ile Ile Leu Ala Asn Asp Ser
325 330 335 Leu Ser
Ser Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys Glu 340
345 350 Glu Leu Glu Glu Lys Asn Ile
Lys Glu Phe Leu Gln Ser Phe Val His 355 360
365 Ile Val Gln Met Phe Ile Asn Thr Ser 370
375 71683DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 7atgaagtggg tgaccttcat
cagcctgctg ttcctgttct ccagcgccta ctcccagtcc 60gctctgaccc agcctgcttc
cgtgtccggc tcccctggac agtccatcac catctcctgt 120accggcacct cctccgatgt
gggcggctac aactacgtgt cctggtacca gcagcacccc 180ggcaaagccc ccaagctgat
gatctatgac gtgtccaacc ggccctccgg cgtgtccaac 240aggttctccg gctccaagtc
cggcaacacc gcctccctga caatctccgg cctgcaggcc 300gaggatgagg ctgactacta
ctgctcctcc tacacctcct cctccaccag ggtgttcggc 360accggcacca aggtgaccgt
gctgggaggt ggcggatccg gaggtggagg ttctggtgga 420ggtgggagtg aggtgcagct
gctggagtcc ggaggcggac tggtgcagcc tggaggatcc 480ctgaggctgt cctgcgctgc
ctccggcttc accttctcct cctacatcat gatgtgggtg 540aggcaggctc ctggcaaggg
cctggagtgg gtgtcctcca tctacccctc cggcggcatc 600accttctacg ccgataccgt
gaagggcagg ttcaccatct cccgggacaa ctccaagaac 660accctgtacc tgcagatgaa
ctccctgagg gctgaggaca ccgccgtgta ctactgcgcc 720aggatcaagc tgggcaccgt
gaccacagtg gactactggg gacagggcac cctggtgacc 780gtgtcctcca tcacgtgccc
tccccccatg tccgtggaac acgcagacat ctgggtcaag 840agctacagct tgtactccag
ggagcggtac atttgtaact ctggtttcaa gcgtaaagcc 900ggcacgtcca gcctgacgga
gtgcgtgttg aacaaggcca cgaatgtcgc ccactggaca 960acccccagtc tcaaatgcat
tagagagccg aaatcttgtg acaaaactca cacatgccca 1020ccgtgcccag cacctgaact
cctgggggga ccgtcagtct tcctcttccc cccaaaaccc 1080aaggacaccc tcatgatctc
ccggacccct gaggtcacat gcgtggtggt ggacgtgagc 1140cacgaagacc ctgaggtcaa
gttcaactgg tacgtggacg gcgtggaggt gcataatgcc 1200aagacaaagc cgcgggagga
gcagtacaac agcacgtacc gtgtggtcag cgtcctcacc 1260gtcctgcacc aggactggct
gaatggcaag gagtacaagt gcaaggtctc caacaaagcc 1320ctcccagccc ccatcgagaa
aaccatctcc aaagccaaag ggcagccccg agaaccacag 1380gtgtacaccc tgcccccatc
ccgggatgag ctgaccaaga accaggtcag cctgacctgc 1440ctggtcaaag gcttctatcc
cagcgacatc gccgtggagt gggagagcaa tgggcagccg 1500gagaacaact acaagaccac
gcctcccgtg ctggactccg acggctcctt cttcctctac 1560agcaagctca ccgtggacaa
gagcaggtgg cagcagggga acgtcttctc atgctccgtg 1620atgcatgagg ctctgcacaa
ccactacacg cagaagagcc tctccctgtc tcctggtaaa 1680taa
16838560PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
8Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Gln Ser
Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro 20
25 30 Gly Gln Ser Ile Thr Ile Ser Cys Thr
Gly Thr Ser Ser Asp Val Gly 35 40
45 Gly Tyr Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys
Ala Pro 50 55 60
Lys Leu Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn 65
70 75 80 Arg Phe Ser Gly Ser
Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser 85
90 95 Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr
Tyr Cys Ser Ser Tyr Thr 100 105
110 Ser Ser Ser Thr Arg Val Phe Gly Thr Gly Thr Lys Val Thr Val
Leu 115 120 125 Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu 130
135 140 Val Gln Leu Leu Glu Ser
Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 145 150
155 160 Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr
Phe Ser Ser Tyr Ile 165 170
175 Met Met Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser
180 185 190 Ser Ile
Tyr Pro Ser Gly Gly Ile Thr Phe Tyr Ala Asp Thr Val Lys 195
200 205 Gly Arg Phe Thr Ile Ser Arg
Asp Asn Ser Lys Asn Thr Leu Tyr Leu 210 215
220 Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
Tyr Tyr Cys Ala 225 230 235
240 Arg Ile Lys Leu Gly Thr Val Thr Thr Val Asp Tyr Trp Gly Gln Gly
245 250 255 Thr Leu Val
Thr Val Ser Ser Ile Thr Cys Pro Pro Pro Met Ser Val 260
265 270 Glu His Ala Asp Ile Trp Val Lys
Ser Tyr Ser Leu Tyr Ser Arg Glu 275 280
285 Arg Tyr Ile Cys Asn Ser Gly Phe Lys Arg Lys Ala Gly
Thr Ser Ser 290 295 300
Leu Thr Glu Cys Val Leu Asn Lys Ala Thr Asn Val Ala His Trp Thr 305
310 315 320 Thr Pro Ser Leu
Lys Cys Ile Arg Glu Pro Lys Ser Cys Asp Lys Thr 325
330 335 His Thr Cys Pro Pro Cys Pro Ala Pro
Glu Leu Leu Gly Gly Pro Ser 340 345
350 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
Ser Arg 355 360 365
Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 370
375 380 Glu Val Lys Phe Asn
Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 385 390
395 400 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
Ser Thr Tyr Arg Val Val 405 410
415 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
Tyr 420 425 430 Lys
Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 435
440 445 Ile Ser Lys Ala Lys Gly
Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 450 455
460 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln
Val Ser Leu Thr Cys 465 470 475
480 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
485 490 495 Asn Gly
Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 500
505 510 Ser Asp Gly Ser Phe Phe Leu
Tyr Ser Lys Leu Thr Val Asp Lys Ser 515 520
525 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
Met His Glu Ala 530 535 540
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 545
550 555 560
91131DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 9atgacatgga ctctactatt ccttgccttc cttcatcact taacagggtc
atgtgcccag 60tttgtgctta ctcagccaaa ctctgtgtct acgaatctcg gaagcacagt
caagctgtct 120tgcaaccgca gcactggtaa cattggaaac aattatgtga actggtacca
gcagcatgaa 180ggaagatctc ccaccactct gatttattgg gatgatagga gaccagatgg
agttcctgac 240aggttctctg gctccattga cagatcttcc aactcagccc tcctgacaat
caataatgtg 300cagactgagg atgaaactga ctacttctgt cagtcttaca gtagtggtat
gtatattttc 360ggcggtggaa ccaagctcac tgtcctagga ggtggcggat ccggaggtgg
aggttctggt 420ggaggtggga gtgaggttca gctgcagcag tctggggctg agctggtgaa
gcctggggct 480tcagtaaagt tgtcctgcaa aacttctggt tacaccttca gcaattacta
tatgagttgg 540ttgaagcaga tgcctggaca gaatattgag tggatcggaa acatttatgg
tggaaatggt 600ggtgctggct ataatcagaa gttcaagggc aaggccacac tgacagtgga
caaatcttcc 660agcacagcgt acatggatct cagcagcctg acatctgagg cctctgcagt
ctatttttgt 720gcaagggtcg gacttcccgg cctttttgat tactggggcc agggagtcat
ggtcacagtc 780tcctcaaact gggtgaatgt aataagtgat ttgaaaaaaa ttgaagatct
tattcaatct 840atgcatattg atgctacttt atatacggaa agtgatgttc accccagttg
caaagtaaca 900gcaatgaagt gctttctctt ggagttacaa gttatttcac ttgagtccgg
agatgcaagt 960attcatgata cagtagaaaa tctgatcatc ctagcaaacg acagtttgtc
ttctaatggg 1020aatgtaacag aatctggatg caaagaatgt gaggaactgg aggaaaaaaa
tattaaagaa 1080tttttgcaga gttttgtaca tattgtccaa atgttcatca acacttctta a
113110376PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 10Met Thr Trp Thr Leu Leu Phe Leu Ala
Phe Leu His His Leu Thr Gly 1 5 10
15 Ser Cys Ala Gln Phe Val Leu Thr Gln Pro Asn Ser Val Ser
Thr Asn 20 25 30
Leu Gly Ser Thr Val Lys Leu Ser Cys Asn Arg Ser Thr Gly Asn Ile
35 40 45 Gly Asn Asn Tyr
Val Asn Trp Tyr Gln Gln His Glu Gly Arg Ser Pro 50
55 60 Thr Thr Leu Ile Tyr Trp Asp Asp
Arg Arg Pro Asp Gly Val Pro Asp 65 70
75 80 Arg Phe Ser Gly Ser Ile Asp Arg Ser Ser Asn Ser
Ala Leu Leu Thr 85 90
95 Ile Asn Asn Val Gln Thr Glu Asp Glu Thr Asp Tyr Phe Cys Gln Ser
100 105 110 Tyr Ser Ser
Gly Met Tyr Ile Phe Gly Gly Gly Thr Lys Leu Thr Val 115
120 125 Leu Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser 130 135
140 Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys
Pro Gly Ala 145 150 155
160 Ser Val Lys Leu Ser Cys Lys Thr Ser Gly Tyr Thr Phe Ser Asn Tyr
165 170 175 Tyr Met Ser Trp
Leu Lys Gln Met Pro Gly Gln Asn Ile Glu Trp Ile 180
185 190 Gly Asn Ile Tyr Gly Gly Asn Gly Gly
Ala Gly Tyr Asn Gln Lys Phe 195 200
205 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr
Ala Tyr 210 215 220
Met Asp Leu Ser Ser Leu Thr Ser Glu Ala Ser Ala Val Tyr Phe Cys 225
230 235 240 Ala Arg Val Gly Leu
Pro Gly Leu Phe Asp Tyr Trp Gly Gln Gly Val 245
250 255 Met Val Thr Val Ser Ser Asn Trp Val Asn
Val Ile Ser Asp Leu Lys 260 265
270 Lys Ile Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala Thr Leu
Tyr 275 280 285 Thr
Glu Ser Asp Val His Pro Ser Cys Lys Val Thr Ala Met Lys Cys 290
295 300 Phe Leu Leu Glu Leu Gln
Val Ile Ser Leu Glu Ser Gly Asp Ala Ser 305 310
315 320 Ile His Asp Thr Val Glu Asn Leu Ile Ile Leu
Ala Asn Asp Ser Leu 325 330
335 Ser Ser Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu
340 345 350 Leu Glu
Glu Lys Asn Ile Lys Glu Phe Leu Gln Ser Phe Val His Ile 355
360 365 Val Gln Met Phe Ile Asn Thr
Ser 370 375 111683DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
11atgacatgga ctctactatt ccttgccttc cttcatcact taacagggtc atgtgcccag
60tttgtgctta ctcagccaaa ctctgtgtct acgaatctcg gaagcacagt caagctgtct
120tgcaaccgca gcactggtaa cattggaaac aattatgtga actggtacca gcagcatgaa
180ggaagatctc ccaccactct gatttattgg gatgatagga gaccagatgg agttcctgac
240aggttctctg gctccattga cagatcttcc aactcagccc tcctgacaat caataatgtg
300cagactgagg atgaaactga ctacttctgt cagtcttaca gtagtggtat gtatattttc
360ggcggtggaa ccaagctcac tgtcctagga ggtggcggat ccggaggtgg aggttctggt
420ggaggtggga gtgaggttca gctgcagcag tctggggctg agctggtgaa gcctggggct
480tcagtaaagt tgtcctgcaa aacttctggt tacaccttca gcaattacta tatgagttgg
540ttgaagcaga tgcctggaca gaatattgag tggatcggaa acatttatgg tggaaatggt
600ggtgctggct ataatcagaa gttcaagggc aaggccacac tgacagtgga caaatcttcc
660agcacagcgt acatggatct cagcagcctg acatctgagg cctctgcagt ctatttttgt
720gcaagggtcg gacttcccgg cctttttgat tactggggcc agggagtcat ggtcacagtc
780tcctcaatca cgtgccctcc ccccatgtcc gtggaacacg cagacatctg ggtcaagagc
840tacagcttgt actccaggga gcggtacatt tgtaactctg gtttcaagcg taaagccggc
900acgtccagcc tgacggagtg cgtgttgaac aaggccacga atgtcgccca ctggacaacc
960cccagtctca aatgcattag agaaccaaga gggcccacaa tcaagccctg tcctccatgc
1020aaatgcccag cacctaacct cttgggtgga ccatccgtct tcatcttccc tccaaagatc
1080aaggatgtac tcatgatctc cctgagcccc atagtcacat gtgtggtggt ggatgtgagc
1140gaggatgacc cagatgtcca gatcagctgg tttgtgaaca acgtggaagt acacacagct
1200cagacacaaa cccatagaga ggattacaac agtactctcc gggtggtcag tgccctcccc
1260atccagcacc aggactggat gagtggcaag gagttcaaat gcaaggtcaa caacaaagac
1320ctcccagcgc ccatcgagag aaccatctca aaacccaaag ggtcagtaag agctccacag
1380gtatatgtct tgcctccacc agaagaagag atgactaaga aacaggtcac tctgacctgc
1440atggtcacag acttcatgcc tgaagacatt tacgtggagt ggaccaacaa cgggaaaaca
1500gagctaaact acaagaacac tgaaccagtc ctggactctg atggttctta cttcatgtac
1560agcaagctga gagtggaaaa gaagaactgg gtggaaagaa atagctactc ctgttcagtg
1620gtccacgagg gtctgcacaa tcaccacacg actaagagct tctcccggac tccaggtaaa
1680taa
168312560PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 12Met Thr Trp Thr Leu Leu Phe Leu Ala Phe Leu
His His Leu Thr Gly 1 5 10
15 Ser Cys Ala Gln Phe Val Leu Thr Gln Pro Asn Ser Val Ser Thr Asn
20 25 30 Leu Gly
Ser Thr Val Lys Leu Ser Cys Asn Arg Ser Thr Gly Asn Ile 35
40 45 Gly Asn Asn Tyr Val Asn Trp
Tyr Gln Gln His Glu Gly Arg Ser Pro 50 55
60 Thr Thr Leu Ile Tyr Trp Asp Asp Arg Arg Pro Asp
Gly Val Pro Asp 65 70 75
80 Arg Phe Ser Gly Ser Ile Asp Arg Ser Ser Asn Ser Ala Leu Leu Thr
85 90 95 Ile Asn Asn
Val Gln Thr Glu Asp Glu Thr Asp Tyr Phe Cys Gln Ser 100
105 110 Tyr Ser Ser Gly Met Tyr Ile Phe
Gly Gly Gly Thr Lys Leu Thr Val 115 120
125 Leu Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser 130 135 140
Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala 145
150 155 160 Ser Val Lys Leu
Ser Cys Lys Thr Ser Gly Tyr Thr Phe Ser Asn Tyr 165
170 175 Tyr Met Ser Trp Leu Lys Gln Met Pro
Gly Gln Asn Ile Glu Trp Ile 180 185
190 Gly Asn Ile Tyr Gly Gly Asn Gly Gly Ala Gly Tyr Asn Gln
Lys Phe 195 200 205
Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 210
215 220 Met Asp Leu Ser Ser
Leu Thr Ser Glu Ala Ser Ala Val Tyr Phe Cys 225 230
235 240 Ala Arg Val Gly Leu Pro Gly Leu Phe Asp
Tyr Trp Gly Gln Gly Val 245 250
255 Met Val Thr Val Ser Ser Ile Thr Cys Pro Pro Pro Met Ser Val
Glu 260 265 270 His
Ala Asp Ile Trp Val Lys Ser Tyr Ser Leu Tyr Ser Arg Glu Arg 275
280 285 Tyr Ile Cys Asn Ser Gly
Phe Lys Arg Lys Ala Gly Thr Ser Ser Leu 290 295
300 Thr Glu Cys Val Leu Asn Lys Ala Thr Asn Val
Ala His Trp Thr Thr 305 310 315
320 Pro Ser Leu Lys Cys Ile Arg Glu Pro Arg Gly Pro Thr Ile Lys Pro
325 330 335 Cys Pro
Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser 340
345 350 Val Phe Ile Phe Pro Pro Lys
Ile Lys Asp Val Leu Met Ile Ser Leu 355 360
365 Ser Pro Ile Val Thr Cys Val Val Val Asp Val Ser
Glu Asp Asp Pro 370 375 380
Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala 385
390 395 400 Gln Thr Gln
Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val Val 405
410 415 Ser Ala Leu Pro Ile Gln His Gln
Asp Trp Met Ser Gly Lys Glu Phe 420 425
430 Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile
Glu Arg Thr 435 440 445
Ile Ser Lys Pro Lys Gly Ser Val Arg Ala Pro Gln Val Tyr Val Leu 450
455 460 Pro Pro Pro Glu
Glu Glu Met Thr Lys Lys Gln Val Thr Leu Thr Cys 465 470
475 480 Met Val Thr Asp Phe Met Pro Glu Asp
Ile Tyr Val Glu Trp Thr Asn 485 490
495 Asn Gly Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro Val
Leu Asp 500 505 510
Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Glu Lys Lys
515 520 525 Asn Trp Val Glu
Arg Asn Ser Tyr Ser Cys Ser Val Val His Glu Gly 530
535 540 Leu His Asn His His Thr Thr Lys
Ser Phe Ser Arg Thr Pro Gly Lys 545 550
555 560 131692DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 13atgaagtggg tgacctttat
ctccctgctg ttcctgtttt cctccgccta cagcatcgtg 60atgacccagt cccctagctc
cctgagcgct agcgtgggag accgggtgac catcacctgt 120cgggcctccc agagcatttc
cagctacctg aactggtacc agcagaagcc cggcaaggcc 180cctaagctgc tgatttacgc
tgccagcagc ctgcagtccg gagtgcctcc caggtttagc 240ggctccggat ccggcaccga
gttcaccctg accatctcct ccctgcagcc cgaggacttc 300gccacctact actgtcagca
ggccaacagc tttcccccca cctttggcca aggaaccaag 360gtggacatca agaggaccgt
ggccggaggc ggaggctccg gcggcggcgg ctccggcggc 420ggcggctccc tggtgcagtc
cggcgctgaa gtgaagaagc ctggcgcctc cgtgaaggtg 480tcctgcgagg cctccggcta
caccttcacc aactactaca tccactggct gaggcaggct 540cctggacagg gcctggagtg
gatgggcatc atcaacccct ccggaggctc caccacctac 600gcccagaagt tccagggcag
gatcaccatg acaagggaca cctccaccaa caccctgtac 660atggaactgt cctccctccg
gtccgaggac accgccatct actactgcgc caggagggat 720tgcaggggcc ctagctgcta
cttcgcttac tggggccagg gaaccaccgt gaccgtgtcc 780tccgcctcca ccaagggcat
cacgtgccct ccccccatgt ccgtggaaca cgcagacatc 840tgggtcaaga gctacagctt
gtactccagg gagcggtaca tttgtaactc tggtttcaag 900cgtaaagccg gcacgtccag
cctgacggag tgcgtgttga acaaggccac gaatgtcgcc 960cactggacaa cccccagtct
caaatgcatt agagagccga aatcttgtga caaaactcac 1020acatgcccac cgtgcccagc
acctgaactc ctggggggac cgtcagtctt cctcttcccc 1080ccaaaaccca aggacaccct
catgatctcc cggacccctg aggtcacatg cgtggtggtg 1140gacgtgagcc acgaagaccc
tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg 1200cataatgcca agacaaagcc
gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc 1260gtcctcaccg tcctgcacca
ggactggctg aatggcaagg agtacaagtg caaggtctcc 1320aacaaagccc tcccagcccc
catcgagaaa accatctcca aagccaaagg gcagccccga 1380gaaccacagg tgtacaccct
gcccccatcc cgggatgagc tgaccaagaa ccaggtcagc 1440ctgacctgcc tggtcaaagg
cttctatccc agcgacatcg ccgtggagtg ggagagcaat 1500gggcagccgg agaacaacta
caagaccacg cctcccgtgc tggactccga cggctccttc 1560ttcctctaca gcaagctcac
cgtggacaag agcaggtggc agcaggggaa cgtcttctca 1620tgctccgtga tgcatgaggc
tctgcacaac cactacacgc agaagagcct ctccctgtct 1680cctggtaaat aa
169214563PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
14Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Ile Val
Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 20
25 30 Gly Asp Arg Val Thr Ile Thr Cys Arg
Ala Ser Gln Ser Ile Ser Ser 35 40
45 Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
Leu Leu 50 55 60
Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Pro Arg Phe Ser 65
70 75 80 Gly Ser Gly Ser Gly
Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln 85
90 95 Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln
Gln Ala Asn Ser Phe Pro 100 105
110 Pro Thr Phe Gly Gln Gly Thr Lys Val Asp Ile Lys Arg Thr Val
Ala 115 120 125 Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Leu 130
135 140 Val Gln Ser Gly Ala Glu
Val Lys Lys Pro Gly Ala Ser Val Lys Val 145 150
155 160 Ser Cys Glu Ala Ser Gly Tyr Thr Phe Thr Asn
Tyr Tyr Ile His Trp 165 170
175 Leu Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Ile Ile Asn
180 185 190 Pro Ser
Gly Gly Ser Thr Thr Tyr Ala Gln Lys Phe Gln Gly Arg Ile 195
200 205 Thr Met Thr Arg Asp Thr Ser
Thr Asn Thr Leu Tyr Met Glu Leu Ser 210 215
220 Ser Leu Arg Ser Glu Asp Thr Ala Ile Tyr Tyr Cys
Ala Arg Arg Asp 225 230 235
240 Cys Arg Gly Pro Ser Cys Tyr Phe Ala Tyr Trp Gly Gln Gly Thr Thr
245 250 255 Val Thr Val
Ser Ser Ala Ser Thr Lys Gly Ile Thr Cys Pro Pro Pro 260
265 270 Met Ser Val Glu His Ala Asp Ile
Trp Val Lys Ser Tyr Ser Leu Tyr 275 280
285 Ser Arg Glu Arg Tyr Ile Cys Asn Ser Gly Phe Lys Arg
Lys Ala Gly 290 295 300
Thr Ser Ser Leu Thr Glu Cys Val Leu Asn Lys Ala Thr Asn Val Ala 305
310 315 320 His Trp Thr Thr
Pro Ser Leu Lys Cys Ile Arg Glu Pro Lys Ser Cys 325
330 335 Asp Lys Thr His Thr Cys Pro Pro Cys
Pro Ala Pro Glu Leu Leu Gly 340 345
350 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr
Leu Met 355 360 365
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 370
375 380 Glu Asp Pro Glu Val
Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 385 390
395 400 His Asn Ala Lys Thr Lys Pro Arg Glu Glu
Gln Tyr Asn Ser Thr Tyr 405 410
415 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
Gly 420 425 430 Lys
Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 435
440 445 Glu Lys Thr Ile Ser Lys
Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 450 455
460 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
Lys Asn Gln Val Ser 465 470 475
480 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
485 490 495 Trp Glu
Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 500
505 510 Val Leu Asp Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys Leu Thr Val 515 520
525 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
Cys Ser Val Met 530 535 540
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 545
550 555 560 Pro Gly Lys
151689DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 15atgaagtggg taacctttat ttcccttctt tttctcttta
gctcggctta ttccgacatc 60atgatgaccc agtccccttc ctccctgtcc gtgagcgctg
gcgagaaggc taccatcagc 120tgcaagtcct cccagtccct gttcaacagc aacgccaaga
ccaactacct gaactggtac 180ctgcagaagc ccggccagtc ccccaagctg ctgatctatt
acgctagcac caggcatacc 240ggcgtgcccg acaggtttag gggatccggc agcggcaccg
acttcaccct gaccatctcc 300agcgtgcagg acgaggacct cgctttctac tactgccagc
aatggtacga ttacccttac 360accttcggcg ctggcaccaa ggtggagatt aagaggggcg
gaggcggatc cggcggcggc 420ggctccggcg gcggaggctc ccagattcag ctgcaggagt
ccggccctgg actggtcaac 480cctagccagt ccctgagcct gtcctgttcc gtgacaggct
atagcatcac cagcggctac 540ggctggaact ggatcaggca gtttcccggc cagaaagtgg
agtggatggg cttcatctac 600tacgagggct ccacctacta taacccctcc atcaagtccc
ggatcagcat caccagggat 660acctccaaga accagttctt cctgcaagtc aactccgtga
ccaccgaaga caccgccacc 720tactactgcg ccaggcagac aggctacttc gactactggg
gccagggcac aatggtgacc 780gtcagcagcg ccatcacgtg ccctcccccc atgtccgtgg
aacacgcaga catctgggtc 840aagagctaca gcttgtactc cagggagcgg tacatttgta
actctggttt caagcgtaaa 900gccggcacgt ccagcctgac ggagtgcgtg ttgaacaagg
ccacgaatgt cgcccactgg 960acaaccccca gtctcaaatg cattagagaa ccaagagggc
ccacaatcaa gccctgtcct 1020ccatgcaaat gcccagcacc taacctcttg ggtggaccat
ccgtcttcat cttccctcca 1080aagatcaagg atgtactcat gatctccctg agccccatag
tcacatgtgt ggtggtggat 1140gtgagcgagg atgacccaga tgtccagatc agctggtttg
tgaacaacgt ggaagtacac 1200acagctcaga cacaaaccca tagagaggat tacaacagta
ctctccgggt ggtcagtgcc 1260ctccccatcc agcaccagga ctggatgagt ggcaaggagt
tcaaatgcaa ggtcaacaac 1320aaagacctcc cagcgcccat cgagagaacc atctcaaaac
ccaaagggtc agtaagagct 1380ccacaggtat atgtcttgcc tccaccagaa gaagagatga
ctaagaaaca ggtcactctg 1440acctgcatgg tcacagactt catgcctgaa gacatttacg
tggagtggac caacaacggg 1500aaaacagagc taaactacaa gaacactgaa ccagtcctgg
actctgatgg ttcttacttc 1560atgtacagca agctgagagt ggaaaagaag aactgggtgg
aaagaaatag ctactcctgt 1620tcagtggtcc acgagggtct gcacaatcac cacacgacta
agagcttctc ccggactcca 1680ggtaaataa
168916562PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 16Met Lys Trp Val Thr Phe
Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1 5
10 15 Tyr Ser Asp Ile Met Met Thr Gln Ser Pro Ser
Ser Leu Ser Val Ser 20 25
30 Ala Gly Glu Lys Ala Thr Ile Ser Cys Lys Ser Ser Gln Ser Leu
Phe 35 40 45 Asn
Ser Asn Ala Lys Thr Asn Tyr Leu Asn Trp Tyr Leu Gln Lys Pro 50
55 60 Gly Gln Ser Pro Lys Leu
Leu Ile Tyr Tyr Ala Ser Thr Arg His Thr 65 70
75 80 Gly Val Pro Asp Arg Phe Arg Gly Ser Gly Ser
Gly Thr Asp Phe Thr 85 90
95 Leu Thr Ile Ser Ser Val Gln Asp Glu Asp Leu Ala Phe Tyr Tyr Cys
100 105 110 Gln Gln
Trp Tyr Asp Tyr Pro Tyr Thr Phe Gly Ala Gly Thr Lys Val 115
120 125 Glu Ile Lys Arg Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly 130 135
140 Gly Gly Ser Gln Ile Gln Leu Gln Glu Ser Gly Pro
Gly Leu Val Asn 145 150 155
160 Pro Ser Gln Ser Leu Ser Leu Ser Cys Ser Val Thr Gly Tyr Ser Ile
165 170 175 Thr Ser Gly
Tyr Gly Trp Asn Trp Ile Arg Gln Phe Pro Gly Gln Lys 180
185 190 Val Glu Trp Met Gly Phe Ile Tyr
Tyr Glu Gly Ser Thr Tyr Tyr Asn 195 200
205 Pro Ser Ile Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr
Ser Lys Asn 210 215 220
Gln Phe Phe Leu Gln Val Asn Ser Val Thr Thr Glu Asp Thr Ala Thr 225
230 235 240 Tyr Tyr Cys Ala
Arg Gln Thr Gly Tyr Phe Asp Tyr Trp Gly Gln Gly 245
250 255 Thr Met Val Thr Val Ser Ser Ala Ile
Thr Cys Pro Pro Pro Met Ser 260 265
270 Val Glu His Ala Asp Ile Trp Val Lys Ser Tyr Ser Leu Tyr
Ser Arg 275 280 285
Glu Arg Tyr Ile Cys Asn Ser Gly Phe Lys Arg Lys Ala Gly Thr Ser 290
295 300 Ser Leu Thr Glu Cys
Val Leu Asn Lys Ala Thr Asn Val Ala His Trp 305 310
315 320 Thr Thr Pro Ser Leu Lys Cys Ile Arg Glu
Pro Arg Gly Pro Thr Ile 325 330
335 Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly
Gly 340 345 350 Pro
Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile 355
360 365 Ser Leu Ser Pro Ile Val
Thr Cys Val Val Val Asp Val Ser Glu Asp 370 375
380 Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn
Asn Val Glu Val His 385 390 395
400 Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg
405 410 415 Val Val
Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys 420
425 430 Glu Phe Lys Cys Lys Val Asn
Asn Lys Asp Leu Pro Ala Pro Ile Glu 435 440
445 Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg Ala
Pro Gln Val Tyr 450 455 460
Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys Lys Gln Val Thr Leu 465
470 475 480 Thr Cys Met
Val Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Glu Trp 485
490 495 Thr Asn Asn Gly Lys Thr Glu Leu
Asn Tyr Lys Asn Thr Glu Pro Val 500 505
510 Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu
Arg Val Glu 515 520 525
Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val His 530
535 540 Glu Gly Leu His
Asn His His Thr Thr Lys Ser Phe Ser Arg Thr Pro 545 550
555 560 Gly Lys 171131DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
17atggaatgga gctgggtgtt cctgttcttt ctgtccgtga ccaccggtgt ccactccctg
60cctgtgctga ctcaaccacc ctcggtgtct gaagtccccg ggcagagggt caccatttcc
120tgttctggag gcatctccaa catcggaagc aatgctgtaa actggtacca gcacttccca
180ggaaaggctc ccaaactcct catctattat aatgatctgc tgccctcagg ggtctctgac
240cgattctctg cctccaagtc tggcacctca gcctccctgg ccatcagtgg gctccggtcc
300gaggatgagg ctgattatta ctgtgcagca tgggatgaca atctgagtgc ttatgtcttc
360gcaactggga ccaaggtcac cgtcctgagt ggaggtggcg gatccggagg tggaggttct
420ggtggaggtg ggagtcaggt tcagctggtg cagtctgggg ctgaggtgaa gaagcctggg
480gcctcagtga aggtctcctg caaggcttct ggttacacct ttaccagcta tggtatcagc
540tgggtgcgac aggcccctgg acaagggctt gagtggatgg gatggatcag cgcttacaat
600ggtaacacaa actatgcaca gaagctccag ggcagagtca ccatgaccac agacacatcc
660acgagcacag cctacatgga gctgaggagc ctgagatctg acgacacggc cgtgtattac
720tgtgcgagag ggttatacgg tgacgaggac tactggggcc agggaaccct ggtcaccgtg
780agctcaaact gggttaacgt aataagtgat ttgaaaaaaa ttgaagatct tattcaatct
840atgcatattg atgctacttt atatacggaa agtgatgttc accccagttg caaagtaaca
900gcaatgaagt gctttctctt ggagttacaa gttatttcac ttgagtccgg agatgcaagt
960attcatgata cagtagaaaa tctgatcatc ctagcaaacg acagtttgtc ttctaatggg
1020aatgtaacag aatctggatg caaagaatgt gaggaactgg aggaaaaaaa tattaaagaa
1080tttttgcaga gttttgtaca tattgtccaa atgttcatca acacttctta a
113118376PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 18Met Glu Trp Ser Trp Val Phe Leu Phe Phe Leu
Ser Val Thr Thr Gly 1 5 10
15 Val His Ser Leu Pro Val Leu Thr Gln Pro Pro Ser Val Ser Glu Val
20 25 30 Pro Gly
Gln Arg Val Thr Ile Ser Cys Ser Gly Gly Ile Ser Asn Ile 35
40 45 Gly Ser Asn Ala Val Asn Trp
Tyr Gln His Phe Pro Gly Lys Ala Pro 50 55
60 Lys Leu Leu Ile Tyr Tyr Asn Asp Leu Leu Pro Ser
Gly Val Ser Asp 65 70 75
80 Arg Phe Ser Ala Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser
85 90 95 Gly Leu Arg
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp 100
105 110 Asp Asn Leu Ser Ala Tyr Val Phe
Ala Thr Gly Thr Lys Val Thr Val 115 120
125 Leu Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
Gly Gly Gly 130 135 140
Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly 145
150 155 160 Ala Ser Val Lys
Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser 165
170 175 Tyr Gly Ile Ser Trp Val Arg Gln Ala
Pro Gly Gln Gly Leu Glu Trp 180 185
190 Met Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala
Gln Lys 195 200 205
Leu Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala 210
215 220 Tyr Met Glu Leu Arg
Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr 225 230
235 240 Cys Ala Arg Gly Leu Tyr Gly Asp Glu Asp
Tyr Trp Gly Gln Gly Thr 245 250
255 Leu Val Thr Val Ser Ser Asn Trp Val Asn Val Ile Ser Asp Leu
Lys 260 265 270 Lys
Ile Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala Thr Leu Tyr 275
280 285 Thr Glu Ser Asp Val His
Pro Ser Cys Lys Val Thr Ala Met Lys Cys 290 295
300 Phe Leu Leu Glu Leu Gln Val Ile Ser Leu Glu
Ser Gly Asp Ala Ser 305 310 315
320 Ile His Asp Thr Val Glu Asn Leu Ile Ile Leu Ala Asn Asp Ser Leu
325 330 335 Ser Ser
Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu 340
345 350 Leu Glu Glu Lys Asn Ile Lys
Glu Phe Leu Gln Ser Phe Val His Ile 355 360
365 Val Gln Met Phe Ile Asn Thr Ser 370
375 19768DNAArtificial SequenceDescription of Artificial
Sequence Synthetic polynucleotide 19atgaagtggg tgaccttcat cagcctgctg
ttcctgttct ccagcgccta ctcccaggtg 60cagctggtgg agtccggagg aggcctggtg
gagcctggag gatccctgag gctgtcctgt 120gccgccagcg gcatcatctt caagatcaac
gacatgggct ggtatcggca ggcccctggc 180aaaaggaggg agtgggtggc cgcttccaca
ggaggcgatg aggccatcta cagggactcc 240gtgaaggaca ggttcaccat ctccagggac
gccaagaact ccgtgttcct gcagatgaac 300tccctgaagc ccgaggatac cgccgtgtac
tactgcaccg ccgtgatctc caccgatagg 360gacggcaccg agtggaggag gtactggggc
cagggcacac aggtgactgt gtcctccggc 420ggcaactggg ttaacgtaat aagtgatttg
aaaaaaattg aagatcttat tcaatctatg 480catattgatg ctactttata tacggaaagt
gatgttcacc ccagttgcaa agtaacagca 540atgaagtgct ttctcttgga gttacaagtt
atttcacttg agtccggaga tgcaagtatt 600catgatacag tagaaaatct gatcatccta
gcaaacgaca gtttgtcttc taatgggaat 660gtaacagaat ctggatgcaa agaatgtgag
gaactggagg aaaaaaatat taaagaattt 720ttgcagagtt ttgtacatat tgtccaaatg
ttcatcaaca cttcttaa 76820255PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
20Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Gln Val
Gln Leu Val Glu Ser Gly Gly Gly Leu Val Glu Pro 20
25 30 Gly Gly Ser Leu Arg Leu Ser Cys Ala
Ala Ser Gly Ile Ile Phe Lys 35 40
45 Ile Asn Asp Met Gly Trp Tyr Arg Gln Ala Pro Gly Lys Arg
Arg Glu 50 55 60
Trp Val Ala Ala Ser Thr Gly Gly Asp Glu Ala Ile Tyr Arg Asp Ser 65
70 75 80 Val Lys Asp Arg Phe
Thr Ile Ser Arg Asp Ala Lys Asn Ser Val Phe 85
90 95 Leu Gln Met Asn Ser Leu Lys Pro Glu Asp
Thr Ala Val Tyr Tyr Cys 100 105
110 Thr Ala Val Ile Ser Thr Asp Arg Asp Gly Thr Glu Trp Arg Arg
Tyr 115 120 125 Trp
Gly Gln Gly Thr Gln Val Thr Val Ser Ser Gly Gly Asn Trp Val 130
135 140 Asn Val Ile Ser Asp Leu
Lys Lys Ile Glu Asp Leu Ile Gln Ser Met 145 150
155 160 His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp
Val His Pro Ser Cys 165 170
175 Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu Gln Val Ile Ser
180 185 190 Leu Glu
Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu Asn Leu Ile 195
200 205 Ile Leu Ala Asn Asp Ser Leu
Ser Ser Asn Gly Asn Val Thr Glu Ser 210 215
220 Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys Asn
Ile Lys Glu Phe 225 230 235
240 Leu Gln Ser Phe Val His Ile Val Gln Met Phe Ile Asn Thr Ser
245 250 255 211317DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
21atgaagtggg tgaccttcat cagcctgctg ttcctgttct ccagcgccta ctcccaggtg
60cagctggtgg agtccggagg aggcctggtg gagcctggag gatccctgag gctgtcctgt
120gccgccagcg gcatcatctt caagatcaac gacatgggct ggtatcggca ggcccctggc
180aaaaggaggg agtgggtggc cgcttccaca ggaggcgatg aggccatcta cagggactcc
240gtgaaggaca ggttcaccat ctccagggac gccaagaact ccgtgttcct gcagatgaac
300tccctgaagc ccgaggatac cgccgtgtac tactgcaccg ccgtgatctc caccgatagg
360gacggcaccg agtggaggag gtactggggc cagggcacac aggtgactgt gtcctccggc
420ggcatcacgt gtcctcctcc tatgtccgtg gaacacgcag acatctgggt caagagctac
480agcttgtact ccagggagcg gtacatttgt aactctggtt tcaagcgtaa agccggcacg
540tccagcctga cggagtgcgt gttgaacaag gccacgaatg tcgcccactg gacaaccccc
600agtctcaaat gcattagaga accaagaggg cccacaatca agccctgtcc tccatgcaaa
660tgcccagcac ctaacctctt gggtggacca tccgtcttca tcttccctcc aaagatcaag
720gatgtactca tgatctccct gagccccata gtcacatgtg tggtggtgga tgtgagcgag
780gatgacccag atgtccagat cagctggttt gtgaacaacg tggaagtaca cacagctcag
840acacaaaccc atagagagga ttacaacagt actctccggg tggtcagtgc cctccccatc
900cagcaccagg actggatgag tggcaaggag ttcaaatgca aggtcaacaa caaagacctc
960ccagcgccca tcgagagaac catctcaaaa cccaaagggt cagtaagagc tccacaggta
1020tatgtcttgc ctccaccaga agaagagatg actaagaaac aggtcactct gacctgcatg
1080gtcacagact tcatgcctga agacatttac gtggagtgga ccaacaacgg gaaaacagag
1140ctaaactaca agaacactga accagtcctg gactctgatg gttcttactt catgtacagc
1200aagctgagag tggaaaagaa gaactgggtg gaaagaaata gctactcctg ttcagtggtc
1260cacgagggtc tgcacaatca ccacacgact aagagcttct cccggactcc aggtaaa
131722439PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 22Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe
Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Glu Pro
20 25 30 Gly Gly
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ile Ile Phe Lys 35
40 45 Ile Asn Asp Met Gly Trp Tyr
Arg Gln Ala Pro Gly Lys Arg Arg Glu 50 55
60 Trp Val Ala Ala Ser Thr Gly Gly Asp Glu Ala Ile
Tyr Arg Asp Ser 65 70 75
80 Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Ala Lys Asn Ser Val Phe
85 90 95 Leu Gln Met
Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys 100
105 110 Thr Ala Val Ile Ser Thr Asp Arg
Asp Gly Thr Glu Trp Arg Arg Tyr 115 120
125 Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser Gly Gly
Ile Thr Cys 130 135 140
Pro Pro Pro Met Ser Val Glu His Ala Asp Ile Trp Val Lys Ser Tyr 145
150 155 160 Ser Leu Tyr Ser
Arg Glu Arg Tyr Ile Cys Asn Ser Gly Phe Lys Arg 165
170 175 Lys Ala Gly Thr Ser Ser Leu Thr Glu
Cys Val Leu Asn Lys Ala Thr 180 185
190 Asn Val Ala His Trp Thr Thr Pro Ser Leu Lys Cys Ile Arg
Glu Pro 195 200 205
Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro 210
215 220 Asn Leu Leu Gly Gly
Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys 225 230
235 240 Asp Val Leu Met Ile Ser Leu Ser Pro Ile
Val Thr Cys Val Val Val 245 250
255 Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val
Asn 260 265 270 Asn
Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr 275
280 285 Asn Ser Thr Leu Arg Val
Val Ser Ala Leu Pro Ile Gln His Gln Asp 290 295
300 Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val
Asn Asn Lys Asp Leu 305 310 315
320 Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg
325 330 335 Ala Pro
Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys 340
345 350 Lys Gln Val Thr Leu Thr Cys
Met Val Thr Asp Phe Met Pro Glu Asp 355 360
365 Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu
Leu Asn Tyr Lys 370 375 380
Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser 385
390 395 400 Lys Leu Arg
Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser 405
410 415 Cys Ser Val Val His Glu Gly Leu
His Asn His His Thr Thr Lys Ser 420 425
430 Phe Ser Arg Thr Pro Gly Lys 435
231119DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 23atgaagtggg tgaccttcat cagcctgctg
ttcctgttct ccagcgccta ctccaacatc 60cagatgaccc agtccccttc cgccatgagc
gcttccgtgg gcgacagggt gaccatcacc 120tgcaaggcct cccaggacat ccacaggtac
ctgtcctggt tccagcagaa gcccggcaag 180gtgcccaagc acctgatcta cagggctaac
aggctggtgt ccggcgtgcc ttccaggttt 240tccggctccg gctccggcac cgagttcacc
ctgaccatct ccagcctgca gcccgaggac 300ttcgccacct actactgcct gcagtacgac
gagttcccct acaccttcgg cggcggcacc 360aaggtggaga tcaagggagg tggcggatcc
ggaggtggag gttctggtgg aggtgggagt 420cagatgcagc tggtacagtc cggcgccgag
gtgaagaaga ccggctccag cgtgaaggtg 480tcctgcaagg cctccggctt caacatcaag
gactactacc tgcactgggt gaggcaggcc 540cctggacaag ccctggagtg gatgggctgg
atcgaccccg acaacggcga caccgagtac 600gcccagaagt tccaggacag ggtgaccatc
accagggaca ggtccatgag caccgcctac 660atggagctgt cctccctgag gtccgaggac
accgccatgt actactgcaa cgccgcctac 720ggctcctcct cctaccccat ggactactgg
ggccagggca ccaccgtgac cgtgaactgg 780gttaacgtaa taagtgattt gaaaaaaatt
gaagatctta ttcaatctat gcatattgat 840gctactttat atacggaaag tgatgttcac
cccagttgca aagtaacagc aatgaagtgc 900tttctcttgg agttacaagt tatttcactt
gagtccggag atgcaagtat tcatgataca 960gtagaaaatc tgatcatcct agcaaacgac
agtttgtctt ctaatgggaa tgtaacagaa 1020tctggatgca aagaatgtga ggaactggag
gaaaaaaata ttaaagaatt tttgcagagt 1080tttgtacata ttgtccaaat gttcatcaac
acttcttaa 111924372PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
24Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Asn Ile
Gln Met Thr Gln Ser Pro Ser Ala Met Ser Ala Ser 20
25 30 Val Gly Asp Arg Val Thr Ile Thr Cys
Lys Ala Ser Gln Asp Ile His 35 40
45 Arg Tyr Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys Val Pro
Lys His 50 55 60
Leu Ile Tyr Arg Ala Asn Arg Leu Val Ser Gly Val Pro Ser Arg Phe 65
70 75 80 Ser Gly Ser Gly Ser
Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu 85
90 95 Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys
Leu Gln Tyr Asp Glu Phe 100 105
110 Pro Tyr Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Gly Gly
Gly 115 120 125 Gly
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Met Gln Leu 130
135 140 Val Gln Ser Gly Ala Glu
Val Lys Lys Thr Gly Ser Ser Val Lys Val 145 150
155 160 Ser Cys Lys Ala Ser Gly Phe Asn Ile Lys Asp
Tyr Tyr Leu His Trp 165 170
175 Val Arg Gln Ala Pro Gly Gln Ala Leu Glu Trp Met Gly Trp Ile Asp
180 185 190 Pro Asp
Asn Gly Asp Thr Glu Tyr Ala Gln Lys Phe Gln Asp Arg Val 195
200 205 Thr Ile Thr Arg Asp Arg Ser
Met Ser Thr Ala Tyr Met Glu Leu Ser 210 215
220 Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys
Asn Ala Ala Tyr 225 230 235
240 Gly Ser Ser Ser Tyr Pro Met Asp Tyr Trp Gly Gln Gly Thr Thr Val
245 250 255 Thr Val Asn
Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp 260
265 270 Leu Ile Gln Ser Met His Ile Asp
Ala Thr Leu Tyr Thr Glu Ser Asp 275 280
285 Val His Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe
Leu Leu Glu 290 295 300
Leu Gln Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr 305
310 315 320 Val Glu Asn Leu
Ile Ile Leu Ala Asn Asp Ser Leu Ser Ser Asn Gly 325
330 335 Asn Val Thr Glu Ser Gly Cys Lys Glu
Cys Glu Glu Leu Glu Glu Lys 340 345
350 Asn Ile Lys Glu Phe Leu Gln Ser Phe Val His Ile Val Gln
Met Phe 355 360 365
Ile Asn Thr Ser 370 251668DNAArtificial SequenceDescription
of Artificial Sequence Synthetic polynucleotide 25atgaagtggg
tgaccttcat cagcctgctg ttcctgttct ccagcgccta ctccaacatc 60cagatgaccc
agtccccttc cgccatgagc gcttccgtgg gcgacagggt gaccatcacc 120tgcaaggcct
cccaggacat ccacaggtac ctgtcctggt tccagcagaa gcccggcaag 180gtgcccaagc
acctgatcta cagggctaac aggctggtgt ccggcgtgcc ttccaggttt 240tccggctccg
gctccggcac cgagttcacc ctgaccatct ccagcctgca gcccgaggac 300ttcgccacct
actactgcct gcagtacgac gagttcccct acaccttcgg cggcggcacc 360aaggtggaga
tcaagggagg tggcggatcc ggaggtggag gttctggtgg aggtgggagt 420cagatgcagc
tggtacagtc cggcgccgag gtgaagaaga ccggctccag cgtgaaggtg 480tcctgcaagg
cctccggctt caacatcaag gactactacc tgcactgggt gaggcaggcc 540cctggacaag
ccctggagtg gatgggctgg atcgaccccg acaacggcga caccgagtac 600gcccagaagt
tccaggacag ggtgaccatc accagggaca ggtccatgag caccgcctac 660atggagctgt
cctccctgag gtccgaggac accgccatgt actactgcaa cgccgcctac 720ggctcctcct
cctaccccat ggactactgg ggccagggca ccaccgtgac cgtgatcacg 780tgtcctcctc
ctatgtccgt ggaacacgca gacatctggg tcaagagcta cagcttgtac 840tccagggagc
ggtacatttg taactctggt ttcaagcgta aagccggcac gtccagcctg 900acggagtgcg
tgttgaacaa ggccacgaat gtcgcccact ggacaacccc cagtctcaaa 960tgcattagag
agccgaaatc ttgtgacaaa actcacacat gcccaccgtg cccagcacct 1020gaactcctgg
ggggaccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg 1080atctcccgga
cccctgaggt cacatgcgtg gtggtggacg tgagccacga agaccctgag 1140gtcaagttca
actggtacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg 1200gaggagcagt
acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac 1260tggctgaatg
gcaaggagta caagtgcaag gtctccaaca aagccctccc agcccccatc 1320gagaaaacca
tctccaaagc caaagggcag ccccgagaac cacaggtgta caccctgccc 1380ccatcccggg
atgagctgac caagaaccag gtcagcctga cctgcctggt caaaggcttc 1440tatcccagcg
acatcgccgt ggagtgggag agcaatgggc agccggagaa caactacaag 1500accacgcctc
ccgtgctgga ctccgacggc tccttcttcc tctacagcaa gctcaccgtg 1560gacaagagca
ggtggcagca ggggaacgtc ttctcatgct ccgtgatgca tgaggctctg 1620cacaaccact
acacgcagaa gagcctctcc ctgtctcctg gtaaataa
166826555PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 26Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe
Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Asn Ile Gln Met Thr Gln Ser Pro Ser Ala Met Ser Ala Ser
20 25 30 Val Gly
Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His 35
40 45 Arg Tyr Leu Ser Trp Phe Gln
Gln Lys Pro Gly Lys Val Pro Lys His 50 55
60 Leu Ile Tyr Arg Ala Asn Arg Leu Val Ser Gly Val
Pro Ser Arg Phe 65 70 75
80 Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu
85 90 95 Gln Pro Glu
Asp Phe Ala Thr Tyr Tyr Cys Leu Gln Tyr Asp Glu Phe 100
105 110 Pro Tyr Thr Phe Gly Gly Gly Thr
Lys Val Glu Ile Lys Gly Gly Gly 115 120
125 Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln
Met Gln Leu 130 135 140
Val Gln Ser Gly Ala Glu Val Lys Lys Thr Gly Ser Ser Val Lys Val 145
150 155 160 Ser Cys Lys Ala
Ser Gly Phe Asn Ile Lys Asp Tyr Tyr Leu His Trp 165
170 175 Val Arg Gln Ala Pro Gly Gln Ala Leu
Glu Trp Met Gly Trp Ile Asp 180 185
190 Pro Asp Asn Gly Asp Thr Glu Tyr Ala Gln Lys Phe Gln Asp
Arg Val 195 200 205
Thr Ile Thr Arg Asp Arg Ser Met Ser Thr Ala Tyr Met Glu Leu Ser 210
215 220 Ser Leu Arg Ser Glu
Asp Thr Ala Met Tyr Tyr Cys Asn Ala Ala Tyr 225 230
235 240 Gly Ser Ser Ser Tyr Pro Met Asp Tyr Trp
Gly Gln Gly Thr Thr Val 245 250
255 Thr Val Ile Thr Cys Pro Pro Pro Met Ser Val Glu His Ala Asp
Ile 260 265 270 Trp
Val Lys Ser Tyr Ser Leu Tyr Ser Arg Glu Arg Tyr Ile Cys Asn 275
280 285 Ser Gly Phe Lys Arg Lys
Ala Gly Thr Ser Ser Leu Thr Glu Cys Val 290 295
300 Leu Asn Lys Ala Thr Asn Val Ala His Trp Thr
Thr Pro Ser Leu Lys 305 310 315
320 Cys Ile Arg Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro
325 330 335 Cys Pro
Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 340
345 350 Pro Lys Pro Lys Asp Thr Leu
Met Ile Ser Arg Thr Pro Glu Val Thr 355 360
365 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu
Val Lys Phe Asn 370 375 380
Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 385
390 395 400 Glu Glu Gln
Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 405
410 415 Leu His Gln Asp Trp Leu Asn Gly
Lys Glu Tyr Lys Cys Lys Val Ser 420 425
430 Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys 435 440 445
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 450
455 460 Glu Leu Thr Lys
Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 465 470
475 480 Tyr Pro Ser Asp Ile Ala Val Glu Trp
Glu Ser Asn Gly Gln Pro Glu 485 490
495 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
Ser Phe 500 505 510
Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
515 520 525 Asn Val Phe Ser
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 530
535 540 Thr Gln Lys Ser Leu Ser Leu Ser
Pro Gly Lys 545 550 555
27744DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 27atgaagtggg tgaccttcat cagcctgctg ttcctgttct
ccagcgccta ctccaccgcc 60aaggagccct gcatggccaa gttcggccct ctgccctcca
agtggcagat ggcctcctcc 120gagcctccct gtgtgaacaa ggtgtccgac tggaagctgg
agatcctgca gaacggcctg 180tacctgatct acggccaggt ggcccccaac gccaactaca
acgacgtggc ccccttcgag 240gtgcggctgt acaagaacaa ggacatgatc cagaccctga
ccaacaagtc caagatccag 300aacgtgggcg gcacctatga gctgcacgtg ggcgacacca
tcgacctgat cttcaactcc 360gagcaccagg tgctgaagaa caacacctac tggggcatca
actgggttaa cgtaataagt 420gatttgaaaa aaattgaaga tcttattcaa tctatgcata
ttgatgctac tttatatacg 480gaaagtgatg ttcaccccag ttgcaaagta acagcaatga
agtgctttct cttggagtta 540caagttattt cacttgagtc cggagatgca agtattcatg
atacagtaga aaatctgatc 600atcctagcaa acgacagttt gtcttctaat gggaatgtaa
cagaatctgg atgcaaagaa 660tgtgaggaac tggaggaaaa aaatattaaa gaatttttgc
agagttttgt acatattgtc 720caaatgttca tcaacacttc ttaa
74428247PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 28Met Lys Trp Val Thr Phe
Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1 5
10 15 Tyr Ser Thr Ala Lys Glu Pro Cys Met Ala Lys
Phe Gly Pro Leu Pro 20 25
30 Ser Lys Trp Gln Met Ala Ser Ser Glu Pro Pro Cys Val Asn Lys
Val 35 40 45 Ser
Asp Trp Lys Leu Glu Ile Leu Gln Asn Gly Leu Tyr Leu Ile Tyr 50
55 60 Gly Gln Val Ala Pro Asn
Ala Asn Tyr Asn Asp Val Ala Pro Phe Glu 65 70
75 80 Val Arg Leu Tyr Lys Asn Lys Asp Met Ile Gln
Thr Leu Thr Asn Lys 85 90
95 Ser Lys Ile Gln Asn Val Gly Gly Thr Tyr Glu Leu His Val Gly Asp
100 105 110 Thr Ile
Asp Leu Ile Phe Asn Ser Glu His Gln Val Leu Lys Asn Asn 115
120 125 Thr Tyr Trp Gly Ile Asn Trp
Val Asn Val Ile Ser Asp Leu Lys Lys 130 135
140 Ile Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala
Thr Leu Tyr Thr 145 150 155
160 Glu Ser Asp Val His Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe
165 170 175 Leu Leu Glu
Leu Gln Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile 180
185 190 His Asp Thr Val Glu Asn Leu Ile
Ile Leu Ala Asn Asp Ser Leu Ser 195 200
205 Ser Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys
Glu Glu Leu 210 215 220
Glu Glu Lys Asn Ile Lys Glu Phe Leu Gln Ser Phe Val His Ile Val 225
230 235 240 Gln Met Phe Ile
Asn Thr Ser 245 291293DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
29atgaagtggg tgaccttcat cagcctgctg ttcctgttct ccagcgccta ctccaccgcc
60aaggagccct gcatggccaa gttcggccct ctgccctcca agtggcagat ggcctcctcc
120gagcctccct gtgtgaacaa ggtgtccgac tggaagctgg agatcctgca gaacggcctg
180tacctgatct acggccaggt ggcccccaac gccaactaca acgacgtggc ccccttcgag
240gtgcggctgt acaagaacaa ggacatgatc cagaccctga ccaacaagtc caagatccag
300aacgtgggcg gcacctatga gctgcacgtg ggcgacacca tcgacctgat cttcaactcc
360gagcaccagg tgctgaagaa caacacctac tggggcatca tcacgtgtcc tcctcctatg
420tccgtggaac acgcagacat ctgggtcaag agctacagct tgtactccag ggagcggtac
480atttgtaact ctggtttcaa gcgtaaagcc ggcacgtcca gcctgacgga gtgcgtgttg
540aacaaggcca cgaatgtcgc ccactggaca acccccagtc tcaaatgcat tagagagccg
600aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga
660ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct
720gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg
780tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac
840agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag
900gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc
960aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggatgag
1020ctgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc
1080gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg
1140ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg
1200cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg
1260cagaagagcc tctccctgtc tcctggtaaa taa
129330430PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 30Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe
Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Thr Ala Lys Glu Pro Cys Met Ala Lys Phe Gly Pro Leu Pro
20 25 30 Ser Lys
Trp Gln Met Ala Ser Ser Glu Pro Pro Cys Val Asn Lys Val 35
40 45 Ser Asp Trp Lys Leu Glu Ile
Leu Gln Asn Gly Leu Tyr Leu Ile Tyr 50 55
60 Gly Gln Val Ala Pro Asn Ala Asn Tyr Asn Asp Val
Ala Pro Phe Glu 65 70 75
80 Val Arg Leu Tyr Lys Asn Lys Asp Met Ile Gln Thr Leu Thr Asn Lys
85 90 95 Ser Lys Ile
Gln Asn Val Gly Gly Thr Tyr Glu Leu His Val Gly Asp 100
105 110 Thr Ile Asp Leu Ile Phe Asn Ser
Glu His Gln Val Leu Lys Asn Asn 115 120
125 Thr Tyr Trp Gly Ile Ile Thr Cys Pro Pro Pro Met Ser
Val Glu His 130 135 140
Ala Asp Ile Trp Val Lys Ser Tyr Ser Leu Tyr Ser Arg Glu Arg Tyr 145
150 155 160 Ile Cys Asn Ser
Gly Phe Lys Arg Lys Ala Gly Thr Ser Ser Leu Thr 165
170 175 Glu Cys Val Leu Asn Lys Ala Thr Asn
Val Ala His Trp Thr Thr Pro 180 185
190 Ser Leu Lys Cys Ile Arg Glu Pro Lys Ser Cys Asp Lys Thr
His Thr 195 200 205
Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 210
215 220 Leu Phe Pro Pro Lys
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 225 230
235 240 Glu Val Thr Cys Val Val Val Asp Val Ser
His Glu Asp Pro Glu Val 245 250
255 Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
Thr 260 265 270 Lys
Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 275
280 285 Leu Thr Val Leu His Gln
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 290 295
300 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
Glu Lys Thr Ile Ser 305 310 315
320 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
325 330 335 Ser Arg
Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 340
345 350 Lys Gly Phe Tyr Pro Ser Asp
Ile Ala Val Glu Trp Glu Ser Asn Gly 355 360
365 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
Leu Asp Ser Asp 370 375 380
Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 385
390 395 400 Gln Gln Gly
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 405
410 415 Asn His Tyr Thr Gln Lys Ser Leu
Ser Leu Ser Pro Gly Lys 420 425
430 311131DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 31atgaagtggg tgaccttcat cagcctgctg
ttcctgttct ccagcgccta ctccgagatc 60gtgctgaccc agtcccctgc taccctgtcc
ctgtcccctg gcgagagggc taccctgtcc 120tgcagggcca ggcaatccat ctccaactac
ctgcactggt accagcagaa acctggccag 180gcccccaggc tgctgatcta ctacgcctcc
cagtccatct ccggcatccc tgacaggttc 240agcggatccg gctccggcac cgacttcacc
ctgaccatct ccaggctgga gcctgaggac 300ttcgccgtgt actactgcca gcagtccaac
tcctggcctc tgaccttcgg ccagggcacc 360aaggtggaga tcaagcgggg aggtggcgga
tccggaggtg gaggttctgg tggaggtggg 420agtgaggtgc agctggtgca gtccggcgcc
gaagtgaaga agcccggagc ctccgtgaag 480gtgtcctgca aggcctccgg ctacaccttc
accaggtact ggatgcactg ggtgaggcag 540gcccctggac agggactgga gtggatcggc
gccatctacc ccggcaactc cgacacctcc 600tacaaccaga agttcaaggg caaggccacc
atcaccgccg acacctccac caacaccgcc 660tacatggagc tgtcctccct gaggtccgag
gacaccgccg tgtactactg cgctaggggc 720gaggagatcg gcgtgaggag gtggttcgcc
tactggggac agggcaccct ggtgaccgtg 780tccagcaact gggttaacgt aataagtgat
ttgaaaaaaa ttgaagatct tattcaatct 840atgcatattg atgctacttt atatacggaa
agtgatgttc accccagttg caaagtaaca 900gcaatgaagt gctttctctt ggagttacaa
gttatttcac ttgagtccgg agatgcaagt 960attcatgata cagtagaaaa tctgatcatc
ctagcaaacg acagtttgtc ttctaatggg 1020aatgtaacag aatctggatg caaagaatgt
gaggaactgg aggaaaaaaa tattaaagaa 1080tttttgcaga gttttgtaca tattgtccaa
atgttcatca acacttctta a 113132376PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
32Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Glu Ile
Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser 20
25 30 Pro Gly Glu Arg Ala Thr Leu Ser Cys
Arg Ala Arg Gln Ser Ile Ser 35 40
45 Asn Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
Arg Leu 50 55 60
Leu Ile Tyr Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Asp Arg Phe 65
70 75 80 Ser Gly Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu 85
90 95 Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys
Gln Gln Ser Asn Ser Trp 100 105
110 Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly
Gly 115 120 125 Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln 130
135 140 Leu Val Gln Ser Gly Ala
Glu Val Lys Lys Pro Gly Ala Ser Val Lys 145 150
155 160 Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr
Arg Tyr Trp Met His 165 170
175 Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Ala Ile
180 185 190 Tyr Pro
Gly Asn Ser Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys 195
200 205 Ala Thr Ile Thr Ala Asp Thr
Ser Thr Asn Thr Ala Tyr Met Glu Leu 210 215
220 Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
Cys Ala Arg Gly 225 230 235
240 Glu Glu Ile Gly Val Arg Arg Trp Phe Ala Tyr Trp Gly Gln Gly Thr
245 250 255 Leu Val Thr
Val Ser Ser Asn Trp Val Asn Val Ile Ser Asp Leu Lys 260
265 270 Lys Ile Glu Asp Leu Ile Gln Ser
Met His Ile Asp Ala Thr Leu Tyr 275 280
285 Thr Glu Ser Asp Val His Pro Ser Cys Lys Val Thr Ala
Met Lys Cys 290 295 300
Phe Leu Leu Glu Leu Gln Val Ile Ser Leu Glu Ser Gly Asp Ala Ser 305
310 315 320 Ile His Asp Thr
Val Glu Asn Leu Ile Ile Leu Ala Asn Asp Ser Leu 325
330 335 Ser Ser Asn Gly Asn Val Thr Glu Ser
Gly Cys Lys Glu Cys Glu Glu 340 345
350 Leu Glu Glu Lys Asn Ile Lys Glu Phe Leu Gln Ser Phe Val
His Ile 355 360 365
Val Gln Met Phe Ile Asn Thr Ser 370 375
331680DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 33atgaagtggg tgaccttcat cagcctgctg ttcctgttct
ccagcgccta ctccgagatc 60gtgctgaccc agtcccctgc taccctgtcc ctgtcccctg
gcgagagggc taccctgtcc 120tgcagggcca ggcaatccat ctccaactac ctgcactggt
accagcagaa acctggccag 180gcccccaggc tgctgatcta ctacgcctcc cagtccatct
ccggcatccc tgacaggttc 240agcggatccg gctccggcac cgacttcacc ctgaccatct
ccaggctgga gcctgaggac 300ttcgccgtgt actactgcca gcagtccaac tcctggcctc
tgaccttcgg ccagggcacc 360aaggtggaga tcaagcgggg aggtggcgga tccggaggtg
gaggttctgg tggaggtggg 420agtgaggtgc agctggtgca gtccggcgcc gaagtgaaga
agcccggagc ctccgtgaag 480gtgtcctgca aggcctccgg ctacaccttc accaggtact
ggatgcactg ggtgaggcag 540gcccctggac agggactgga gtggatcggc gccatctacc
ccggcaactc cgacacctcc 600tacaaccaga agttcaaggg caaggccacc atcaccgccg
acacctccac caacaccgcc 660tacatggagc tgtcctccct gaggtccgag gacaccgccg
tgtactactg cgctaggggc 720gaggagatcg gcgtgaggag gtggttcgcc tactggggac
agggcaccct ggtgaccgtg 780tccagcatca cgtgtcctcc tcctatgtcc gtggaacacg
cagacatctg ggtcaagagc 840tacagcttgt actccaggga gcggtacatt tgtaactctg
gtttcaagcg taaagccggc 900acgtccagcc tgacggagtg cgtgttgaac aaggccacga
atgtcgccca ctggacaacc 960cccagtctca aatgcattag agagccgaaa tcttgtgaca
aaactcacac atgcccaccg 1020tgcccagcac ctgaactcct ggggggaccg tcagtcttcc
tcttcccccc aaaacccaag 1080gacaccctca tgatctcccg gacccctgag gtcacatgcg
tggtggtgga cgtgagccac 1140gaagaccctg aggtcaagtt caactggtac gtggacggcg
tggaggtgca taatgccaag 1200acaaagccgc gggaggagca gtacaacagc acgtaccgtg
tggtcagcgt cctcaccgtc 1260ctgcaccagg actggctgaa tggcaaggag tacaagtgca
aggtctccaa caaagccctc 1320ccagccccca tcgagaaaac catctccaaa gccaaagggc
agccccgaga accacaggtg 1380tacaccctgc ccccatcccg ggatgagctg accaagaacc
aggtcagcct gacctgcctg 1440gtcaaaggct tctatcccag cgacatcgcc gtggagtggg
agagcaatgg gcagccggag 1500aacaactaca agaccacgcc tcccgtgctg gactccgacg
gctccttctt cctctacagc 1560aagctcaccg tggacaagag caggtggcag caggggaacg
tcttctcatg ctccgtgatg 1620catgaggctc tgcacaacca ctacacgcag aagagcctct
ccctgtctcc tggtaaataa 168034559PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 34Met Lys Trp Val Thr Phe
Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1 5
10 15 Tyr Ser Glu Ile Val Leu Thr Gln Ser Pro Ala
Thr Leu Ser Leu Ser 20 25
30 Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Arg Gln Ser Ile
Ser 35 40 45 Asn
Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu 50
55 60 Leu Ile Tyr Tyr Ala Ser
Gln Ser Ile Ser Gly Ile Pro Asp Arg Phe 65 70
75 80 Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu
Thr Ile Ser Arg Leu 85 90
95 Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Asn Ser Trp
100 105 110 Pro Leu
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly 115
120 125 Gly Gly Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser Glu Val Gln 130 135
140 Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
Ala Ser Val Lys 145 150 155
160 Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr Trp Met His
165 170 175 Trp Val Arg
Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Ala Ile 180
185 190 Tyr Pro Gly Asn Ser Asp Thr Ser
Tyr Asn Gln Lys Phe Lys Gly Lys 195 200
205 Ala Thr Ile Thr Ala Asp Thr Ser Thr Asn Thr Ala Tyr
Met Glu Leu 210 215 220
Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly 225
230 235 240 Glu Glu Ile Gly
Val Arg Arg Trp Phe Ala Tyr Trp Gly Gln Gly Thr 245
250 255 Leu Val Thr Val Ser Ser Ile Thr Cys
Pro Pro Pro Met Ser Val Glu 260 265
270 His Ala Asp Ile Trp Val Lys Ser Tyr Ser Leu Tyr Ser Arg
Glu Arg 275 280 285
Tyr Ile Cys Asn Ser Gly Phe Lys Arg Lys Ala Gly Thr Ser Ser Leu 290
295 300 Thr Glu Cys Val Leu
Asn Lys Ala Thr Asn Val Ala His Trp Thr Thr 305 310
315 320 Pro Ser Leu Lys Cys Ile Arg Glu Pro Lys
Ser Cys Asp Lys Thr His 325 330
335 Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser
Val 340 345 350 Phe
Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 355
360 365 Pro Glu Val Thr Cys Val
Val Val Asp Val Ser His Glu Asp Pro Glu 370 375
380 Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
Val His Asn Ala Lys 385 390 395
400 Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser
405 410 415 Val Leu
Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 420
425 430 Cys Lys Val Ser Asn Lys Ala
Leu Pro Ala Pro Ile Glu Lys Thr Ile 435 440
445 Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
Tyr Thr Leu Pro 450 455 460
Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 465
470 475 480 Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 485
490 495 Gly Gln Pro Glu Asn Asn Tyr Lys
Thr Thr Pro Pro Val Leu Asp Ser 500 505
510 Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
Lys Ser Arg 515 520 525
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 530
535 540 His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 545 550
555 351662DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 35atgaagtggg tgaccttcat
cagcctgctg ttcctgttct ccagcgccta ctccgacatc 60cagatgaccc agtcccctgc
ttccctgtcc gcttccgtgg gcgacagggt gaccatcacc 120tgcctggcct cccagaccat
cgacacctgg ctggcctggt acctgcagaa gcccggcaag 180tccccccagc tgctgatcta
cgccgctacc aacctggccg acggcgtgcc tagcaggttt 240tccggctccg gctccggcac
cgacttctcc ttcaccatct cctccctgca gcccgaggac 300ttcgccacct actactgcca
gcaggtgtac tcctccccct tcaccttcgg ccagggcacc 360aagctggaga tcaagggagg
tggcggatcc ggaggtggag gttctggtgg aggtgggagt 420cagatccagc tggtgcagtc
cggcggcgaa gtgaaaaagc ccggcgccag cgtgagggtg 480tcctgtaagg cctccggcta
ctccttcacc gactacaacg tgtactgggt gaggcagtcc 540cccggcaagg gactggagtg
gatcggctac atcgacccct acaacggcat caccatctac 600gaccagaact tcaagggcaa
ggccaccctg accgtggaca agtccacctc cacagcctac 660atggagctgt cctccctgag
gtccgaggac accgccgtgt acttctgcgc cagggacgtg 720accaccgctc tggacttctg
gggacagggc accaccgtga ccgtgagctc catcacgtgt 780cctcctccta tgtccgtgga
acacgcagac atctgggtca agagctacag cttgtactcc 840agggagcggt acatttgtaa
ctctggtttc aagcgtaaag ccggcacgtc cagcctgacg 900gagtgcgtgt tgaacaaggc
cacgaatgtc gcccactgga caacccccag tctcaaatgc 960attagagagc cgaaatcttg
tgacaaaact cacacatgcc caccgtgccc agcacctgaa 1020ctcctggggg gaccgtcagt
cttcctcttc cccccaaaac ccaaggacac cctcatgatc 1080tcccggaccc ctgaggtcac
atgcgtggtg gtggacgtga gccacgaaga ccctgaggtc 1140aagttcaact ggtacgtgga
cggcgtggag gtgcataatg ccaagacaaa gccgcgggag 1200gagcagtaca acagcacgta
ccgtgtggtc agcgtcctca ccgtcctgca ccaggactgg 1260ctgaatggca aggagtacaa
gtgcaaggtc tccaacaaag ccctcccagc ccccatcgag 1320aaaaccatct ccaaagccaa
agggcagccc cgagaaccac aggtgtacac cctgccccca 1380tcccgggatg agctgaccaa
gaaccaggtc agcctgacct gcctggtcaa aggcttctat 1440cccagcgaca tcgccgtgga
gtgggagagc aatgggcagc cggagaacaa ctacaagacc 1500acgcctcccg tgctggactc
cgacggctcc ttcttcctct acagcaagct caccgtggac 1560aagagcaggt ggcagcaggg
gaacgtcttc tcatgctccg tgatgcatga ggctctgcac 1620aaccactaca cgcagaagag
cctctccctg tctcctggta aa 166236554PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
36Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Asp Ile
Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Ala Ser 20
25 30 Val Gly Asp Arg Val Thr Ile Thr Cys
Leu Ala Ser Gln Thr Ile Asp 35 40
45 Thr Trp Leu Ala Trp Tyr Leu Gln Lys Pro Gly Lys Ser Pro
Gln Leu 50 55 60
Leu Ile Tyr Ala Ala Thr Asn Leu Ala Asp Gly Val Pro Ser Arg Phe 65
70 75 80 Ser Gly Ser Gly Ser
Gly Thr Asp Phe Ser Phe Thr Ile Ser Ser Leu 85
90 95 Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys
Gln Gln Val Tyr Ser Ser 100 105
110 Pro Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Gly Gly
Gly 115 120 125 Gly
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Ile Gln Leu 130
135 140 Val Gln Ser Gly Gly Glu
Val Lys Lys Pro Gly Ala Ser Val Arg Val 145 150
155 160 Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Asp
Tyr Asn Val Tyr Trp 165 170
175 Val Arg Gln Ser Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Ile Asp
180 185 190 Pro Tyr
Asn Gly Ile Thr Ile Tyr Asp Gln Asn Phe Lys Gly Lys Ala 195
200 205 Thr Leu Thr Val Asp Lys Ser
Thr Ser Thr Ala Tyr Met Glu Leu Ser 210 215
220 Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
Ala Arg Asp Val 225 230 235
240 Thr Thr Ala Leu Asp Phe Trp Gly Gln Gly Thr Thr Val Thr Val Ser
245 250 255 Ser Ile Thr
Cys Pro Pro Pro Met Ser Val Glu His Ala Asp Ile Trp 260
265 270 Val Lys Ser Tyr Ser Leu Tyr Ser
Arg Glu Arg Tyr Ile Cys Asn Ser 275 280
285 Gly Phe Lys Arg Lys Ala Gly Thr Ser Ser Leu Thr Glu
Cys Val Leu 290 295 300
Asn Lys Ala Thr Asn Val Ala His Trp Thr Thr Pro Ser Leu Lys Cys 305
310 315 320 Ile Arg Glu Pro
Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 325
330 335 Pro Ala Pro Glu Leu Leu Gly Gly Pro
Ser Val Phe Leu Phe Pro Pro 340 345
350 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
Thr Cys 355 360 365
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 370
375 380 Tyr Val Asp Gly Val
Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 385 390
395 400 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
Ser Val Leu Thr Val Leu 405 410
415 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
Asn 420 425 430 Lys
Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 435
440 445 Gln Pro Arg Glu Pro Gln
Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 450 455
460 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
Val Lys Gly Phe Tyr 465 470 475
480 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
485 490 495 Asn Tyr
Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 500
505 510 Leu Tyr Ser Lys Leu Thr Val
Asp Lys Ser Arg Trp Gln Gln Gly Asn 515 520
525 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
Asn His Tyr Thr 530 535 540
Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 545 550
371137DNAArtificial SequenceDescription of Artificial
Sequence Synthetic polynucleotide 37atggattttc aggtgcagat tatcagcttc
ctgctaatca gtgcttcagt cataatgtca 60agaggacagg tgcagctggt tcagagcggt
gcggaagtta aaaagccggg ctcttccgtg 120aaagttagct gcaaagcgtc tggttatacc
ttcaccgact acaacatgca ctgggtccgc 180caggccccag gccagggtct ggaatggatc
ggttatattt acccgtacaa cggtggcacg 240ggatataacc agaaattcaa atccaaagct
accatcactg cggacgaaag caccaacacc 300gcatatatgg aattgtcttc tctgcgtagc
gaagataccg cggtttacta ttgcgctcgt 360ggtcgtccag cgatggatta ctggggtcag
ggcaccctgg tgaccgtgag ctctggcgga 420ggcggatctg gtggtggcgg atccggtgga
ggcggaagcg atatccagat gacccagtcc 480ccgagctccc tgtctgccag cgtgggcgac
cgcgtgacta tcacctgccg tgcgtccgaa 540agcgtggata actacggcat ttcctttatg
aactggttcc agcagaaacc gggtaaagcc 600ccgaaactgc tgatttatgc ggcctctaac
cagggcagcg gtgtgccgag ccgcttttcc 660ggcagcggtt cggggaccga tttcactctg
accatttcta gcctgcagcc agatgacttc 720gcgacctact actgccaaca gtctaaagaa
gttccgtgga ccttcggtca gggtaccaaa 780gttgaaatta aaaactgggt taacgtaata
agtgatttga aaaaaattga agatcttatt 840caatctatgc atattgatgc tactttatat
acggaaagtg atgttcaccc cagttgcaaa 900gtaacagcaa tgaagtgctt tctcttggag
ttacaagtta tttcacttga gtccggagat 960gcaagtattc atgatacagt agaaaatctg
atcatcctag caaacgacag tttgtcttct 1020aatgggaatg taacagaatc tggatgcaaa
gaatgtgagg aactggagga aaaaaatatt 1080aaagaatttt tgcagagttt tgtacatatt
gtccaaatgt tcatcaacac ttcttaa 113738378PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
38Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser 1
5 10 15 Val Ile Met Ser
Arg Gly Gln Val Gln Leu Val Gln Ser Gly Ala Glu 20
25 30 Val Lys Lys Pro Gly Ser Ser Val Lys
Val Ser Cys Lys Ala Ser Gly 35 40
45 Tyr Thr Phe Thr Asp Tyr Asn Met His Trp Val Arg Gln Ala
Pro Gly 50 55 60
Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Gly Gly Thr 65
70 75 80 Gly Tyr Asn Gln Lys
Phe Lys Ser Lys Ala Thr Ile Thr Ala Asp Glu 85
90 95 Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser
Ser Leu Arg Ser Glu Asp 100 105
110 Thr Ala Val Tyr Tyr Cys Ala Arg Gly Arg Pro Ala Met Asp Tyr
Trp 115 120 125 Gly
Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 130
135 140 Gly Gly Gly Ser Gly Gly
Gly Gly Ser Asp Ile Gln Met Thr Gln Ser 145 150
155 160 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg
Val Thr Ile Thr Cys 165 170
175 Arg Ala Ser Glu Ser Val Asp Asn Tyr Gly Ile Ser Phe Met Asn Trp
180 185 190 Phe Gln
Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala 195
200 205 Ser Asn Gln Gly Ser Gly Val
Pro Ser Arg Phe Ser Gly Ser Gly Ser 210 215
220 Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln
Pro Asp Asp Phe 225 230 235
240 Ala Thr Tyr Tyr Cys Gln Gln Ser Lys Glu Val Pro Trp Thr Phe Gly
245 250 255 Gln Gly Thr
Lys Val Glu Ile Lys Asn Trp Val Asn Val Ile Ser Asp 260
265 270 Leu Lys Lys Ile Glu Asp Leu Ile
Gln Ser Met His Ile Asp Ala Thr 275 280
285 Leu Tyr Thr Glu Ser Asp Val His Pro Ser Cys Lys Val
Thr Ala Met 290 295 300
Lys Cys Phe Leu Leu Glu Leu Gln Val Ile Ser Leu Glu Ser Gly Asp 305
310 315 320 Ala Ser Ile His
Asp Thr Val Glu Asn Leu Ile Ile Leu Ala Asn Asp 325
330 335 Ser Leu Ser Ser Asn Gly Asn Val Thr
Glu Ser Gly Cys Lys Glu Cys 340 345
350 Glu Glu Leu Glu Glu Lys Asn Ile Lys Glu Phe Leu Gln Ser
Phe Val 355 360 365
His Ile Val Gln Met Phe Ile Asn Thr Ser 370 375
391686DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 39atggattttc aggtgcagat tatcagcttc
ctgctaatca gtgcttcagt cataatgtca 60agaggacagg tgcagctggt tcagagcggt
gcggaagtta aaaagccggg ctcttccgtg 120aaagttagct gcaaagcgtc tggttatacc
ttcaccgact acaacatgca ctgggtccgc 180caggccccag gccagggtct ggaatggatc
ggttatattt acccgtacaa cggtggcacg 240ggatataacc agaaattcaa atccaaagct
accatcactg cggacgaaag caccaacacc 300gcatatatgg aattgtcttc tctgcgtagc
gaagataccg cggtttacta ttgcgctcgt 360ggtcgtccag cgatggatta ctggggtcag
ggcaccctgg tgaccgtgag ctctggcgga 420ggcggatctg gtggtggcgg atccggtgga
ggcggaagcg atatccagat gacccagtcc 480ccgagctccc tgtctgccag cgtgggcgac
cgcgtgacta tcacctgccg tgcgtccgaa 540agcgtggata actacggcat ttcctttatg
aactggttcc agcagaaacc gggtaaagcc 600ccgaaactgc tgatttatgc ggcctctaac
cagggcagcg gtgtgccgag ccgcttttcc 660ggcagcggtt cggggaccga tttcactctg
accatttcta gcctgcagcc agatgacttc 720gcgacctact actgccaaca gtctaaagaa
gttccgtgga ccttcggtca gggtaccaaa 780gttgaaatta aaatcacgtg tcctcctcct
atgtccgtgg aacacgcaga catctgggtc 840aagagctaca gcttgtactc cagggagcgg
tacatttgta actctggttt caagcgtaaa 900gccggcacgt ccagcctgac ggagtgcgtg
ttgaacaagg ccacgaatgt cgcccactgg 960acaaccccca gtctcaaatg cattagagag
ccgaaatctt gtgacaaaac tcacacatgc 1020ccaccgtgcc cagcacctga actcctgggg
ggaccgtcag tcttcctctt ccccccaaaa 1080cccaaggaca ccctcatgat ctcccggacc
cctgaggtca catgcgtggt ggtggacgtg 1140agccacgaag accctgaggt caagttcaac
tggtacgtgg acggcgtgga ggtgcataat 1200gccaagacaa agccgcggga ggagcagtac
aacagcacgt accgtgtggt cagcgtcctc 1260accgtcctgc accaggactg gctgaatggc
aaggagtaca agtgcaaggt ctccaacaaa 1320gccctcccag cccccatcga gaaaaccatc
tccaaagcca aagggcagcc ccgagaacca 1380caggtgtaca ccctgccccc atcccgggat
gagctgacca agaaccaggt cagcctgacc 1440tgcctggtca aaggcttcta tcccagcgac
atcgccgtgg agtgggagag caatgggcag 1500ccggagaaca actacaagac cacgcctccc
gtgctggact ccgacggctc cttcttcctc 1560tacagcaagc tcaccgtgga caagagcagg
tggcagcagg ggaacgtctt ctcatgctcc 1620gtgatgcatg aggctctgca caaccactac
acgcagaaga gcctctccct gtctcctggt 1680aaataa
168640561PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
40Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser 1
5 10 15 Val Ile Met Ser
Arg Gly Gln Val Gln Leu Val Gln Ser Gly Ala Glu 20
25 30 Val Lys Lys Pro Gly Ser Ser Val Lys
Val Ser Cys Lys Ala Ser Gly 35 40
45 Tyr Thr Phe Thr Asp Tyr Asn Met His Trp Val Arg Gln Ala
Pro Gly 50 55 60
Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Gly Gly Thr 65
70 75 80 Gly Tyr Asn Gln Lys
Phe Lys Ser Lys Ala Thr Ile Thr Ala Asp Glu 85
90 95 Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser
Ser Leu Arg Ser Glu Asp 100 105
110 Thr Ala Val Tyr Tyr Cys Ala Arg Gly Arg Pro Ala Met Asp Tyr
Trp 115 120 125 Gly
Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 130
135 140 Gly Gly Gly Ser Gly Gly
Gly Gly Ser Asp Ile Gln Met Thr Gln Ser 145 150
155 160 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg
Val Thr Ile Thr Cys 165 170
175 Arg Ala Ser Glu Ser Val Asp Asn Tyr Gly Ile Ser Phe Met Asn Trp
180 185 190 Phe Gln
Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala 195
200 205 Ser Asn Gln Gly Ser Gly Val
Pro Ser Arg Phe Ser Gly Ser Gly Ser 210 215
220 Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln
Pro Asp Asp Phe 225 230 235
240 Ala Thr Tyr Tyr Cys Gln Gln Ser Lys Glu Val Pro Trp Thr Phe Gly
245 250 255 Gln Gly Thr
Lys Val Glu Ile Lys Ile Thr Cys Pro Pro Pro Met Ser 260
265 270 Val Glu His Ala Asp Ile Trp Val
Lys Ser Tyr Ser Leu Tyr Ser Arg 275 280
285 Glu Arg Tyr Ile Cys Asn Ser Gly Phe Lys Arg Lys Ala
Gly Thr Ser 290 295 300
Ser Leu Thr Glu Cys Val Leu Asn Lys Ala Thr Asn Val Ala His Trp 305
310 315 320 Thr Thr Pro Ser
Leu Lys Cys Ile Arg Glu Pro Lys Ser Cys Asp Lys 325
330 335 Thr His Thr Cys Pro Pro Cys Pro Ala
Pro Glu Leu Leu Gly Gly Pro 340 345
350 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
Ile Ser 355 360 365
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 370
375 380 Pro Glu Val Lys Phe
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 385 390
395 400 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
Asn Ser Thr Tyr Arg Val 405 410
415 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
Glu 420 425 430 Tyr
Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 435
440 445 Thr Ile Ser Lys Ala Lys
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 450 455
460 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
Gln Val Ser Leu Thr 465 470 475
480 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
485 490 495 Ser Asn
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 500
505 510 Asp Ser Asp Gly Ser Phe Phe
Leu Tyr Ser Lys Leu Thr Val Asp Lys 515 520
525 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser
Val Met His Glu 530 535 540
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 545
550 555 560 Lys
411626DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 41atgaagtggg tgaccttcat cagcctgctg ttcctgttct
ccagcgccta ctccatgaag 60tgggtgacct tcatcagcct gctgttcctg ttctccagcg
cctactccga tttagtgttt 120ctgttcgacg gctccatgtc tttacagccc gatgagttcc
agaagatttt agacttcatg 180aaggacgtga tgaagaaact gtccaacacc agctaccagt
tcgctgccgt gcagttctcc 240acctcctaca agaccgagtt cgacttctcc gactacgtga
agcggaagga ccccgatgct 300ttactgaagc acgtcaagca catgctgctg ctcaccaaca
cctttggcgc catcaactac 360gtggccaccg aggtgtttcg tgaggaactg ggagctcggc
ccgatgccac caaggtgctg 420attatcatca ccgacggcga agccaccgat agcggaaaca
tcgatgccgc caaggacatc 480atccggtaca ttatcggcat cggcaagcac ttccagacca
aggagagcca agagacttta 540cacaagttcg cctccaagcc cgcttccgag ttcgtgtgca
ttttagacac cttcgagtgt 600ttaaaggatt tatttaccga gctgcagaag aagatctacg
tgattgaggg caccagcaag 660caagatctga cctccttcaa catggagctg tccagcagcg
gcatttccgc tgatttatct 720cgtggccacg ccatcacgtg tcctcctcct atgtccgtgg
aacacgcaga catctgggtc 780aagagctaca gcttgtactc cagggagcgg tacatttgta
actctggttt caagcgtaaa 840gccggcacgt ccagcctgac ggagtgcgtg ttgaacaagg
ccacgaatgt cgcccactgg 900acaaccccca gtctcaaatg cattagagag ccgaaatctt
gtgacaaaac tcacacatgc 960ccaccgtgcc cagcacctga actcctgggg ggaccgtcag
tcttcctctt ccccccaaaa 1020cccaaggaca ccctcatgat ctcccggacc cctgaggtca
catgcgtggt ggtggacgtg 1080agccacgaag accctgaggt caagttcaac tggtacgtgg
acggcgtgga ggtgcataat 1140gccaagacaa agccgcggga ggagcagtac aacagcacgt
accgtgtggt cagcgtcctc 1200accgtcctgc accaggactg gctgaatggc aaggagtaca
agtgcaaggt ctccaacaaa 1260gccctcccag cccccatcga gaaaaccatc tccaaagcca
aagggcagcc ccgagaacca 1320caggtgtaca ccctgccccc atcccgggat gagctgacca
agaaccaggt cagcctgacc 1380tgcctggtca aaggcttcta tcccagcgac atcgccgtgg
agtgggagag caatgggcag 1440ccggagaaca actacaagac cacgcctccc gtgctggact
ccgacggctc cttcttcctc 1500tacagcaagc tcaccgtgga caagagcagg tggcagcagg
ggaacgtctt ctcatgctcc 1560gtgatgcatg aggctctgca caaccactac acgcagaaga
gcctctccct gtctcctggt 1620aaataa
162642523PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 42Met Lys Trp Val Thr Phe
Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1 5
10 15 Tyr Ser Asp Leu Val Phe Leu Phe Asp Gly Ser
Met Ser Leu Gln Pro 20 25
30 Asp Glu Phe Gln Lys Ile Leu Asp Phe Met Lys Asp Val Met Lys
Lys 35 40 45 Leu
Ser Asn Thr Ser Tyr Gln Phe Ala Ala Val Gln Phe Ser Thr Ser 50
55 60 Tyr Lys Thr Glu Phe Asp
Phe Ser Asp Tyr Val Lys Arg Lys Asp Pro 65 70
75 80 Asp Ala Leu Leu Lys His Val Lys His Met Leu
Leu Leu Thr Asn Thr 85 90
95 Phe Gly Ala Ile Asn Tyr Val Ala Thr Glu Val Phe Arg Glu Glu Leu
100 105 110 Gly Ala
Arg Pro Asp Ala Thr Lys Val Leu Ile Ile Ile Thr Asp Gly 115
120 125 Glu Ala Thr Asp Ser Gly Asn
Ile Asp Ala Ala Lys Asp Ile Ile Arg 130 135
140 Tyr Ile Ile Gly Ile Gly Lys His Phe Gln Thr Lys
Glu Ser Gln Glu 145 150 155
160 Thr Leu His Lys Phe Ala Ser Lys Pro Ala Ser Glu Phe Val Cys Ile
165 170 175 Leu Asp Thr
Phe Glu Cys Leu Lys Asp Leu Phe Thr Glu Leu Gln Lys 180
185 190 Lys Ile Tyr Val Ile Glu Gly Thr
Ser Lys Gln Asp Leu Thr Ser Phe 195 200
205 Asn Met Glu Leu Ser Ser Ser Gly Ile Ser Ala Asp Leu
Ser Arg Gly 210 215 220
His Ala Ile Thr Cys Pro Pro Pro Met Ser Val Glu His Ala Asp Ile 225
230 235 240 Trp Val Lys Ser
Tyr Ser Leu Tyr Ser Arg Glu Arg Tyr Ile Cys Asn 245
250 255 Ser Gly Phe Lys Arg Lys Ala Gly Thr
Ser Ser Leu Thr Glu Cys Val 260 265
270 Leu Asn Lys Ala Thr Asn Val Ala His Trp Thr Thr Pro Ser
Leu Lys 275 280 285
Cys Ile Arg Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro 290
295 300 Cys Pro Ala Pro Glu
Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 305 310
315 320 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
Arg Thr Pro Glu Val Thr 325 330
335 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
Asn 340 345 350 Trp
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 355
360 365 Glu Glu Gln Tyr Asn Ser
Thr Tyr Arg Val Val Ser Val Leu Thr Val 370 375
380 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
Lys Cys Lys Val Ser 385 390 395
400 Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
405 410 415 Gly Gln
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 420
425 430 Glu Leu Thr Lys Asn Gln Val
Ser Leu Thr Cys Leu Val Lys Gly Phe 435 440
445 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
Gly Gln Pro Glu 450 455 460
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 465
470 475 480 Phe Leu Tyr
Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 485
490 495 Asn Val Phe Ser Cys Ser Val Met
His Glu Ala Leu His Asn His Tyr 500 505
510 Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
515 520 432457DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
43atgaagtggg tgaccttcat cagcctgctg ttcctgttct ccagcgccta ctccagcggc
60gtgttccagc tgcagctgca agagtttatc aacgagaggg gcgtgctggc ttccggtcgt
120ccttgtgagc ccggttgtag gacctttttc cgggtgtgtt taaagcattt tcaagctgtg
180gtgtcccccg gaccttgtac cttcggcacc gtgtccaccc ccgttctggg caccaactcc
240ttcgccgttc gtgacgacag ctccggagga ggtcgtaatc ctttacagct gcctttcaac
300tttacttggc ccggcacctt ctccctcatc atcgaagctt ggcatgcccc cggtgacgat
360ctgcggcccg aagctctgcc ccccgatgct ttaatcagca agattgccat tcaaggttct
420ttagccgtgg gccagaactg gctgctggac gagcagacca gcacactcac tcgtctgagg
480tactcctatc gtgtgatctg cagcgacaac tactacggcg acaattgcag ccggctgtgc
540aagaagagga acgaccactt cggccattac gtctgccagc ccgacggcaa tttatcttgt
600ctgcccggtt ggaccggcga gtactgtcag cagcccatct gtttaagcgg ctgccacgag
660cagaacggct actgcagcaa gcccgctgag tgtctgtgta ggcccggctg gcaaggtagg
720ctgtgcaacg agtgcatccc ccacaatggc tgtcggcacg gcacttgttc caccccttgg
780cagtgcactt gtgacgaggg ctggggaggt ttattctgcg accaagatct gaactactgc
840acccaccaca gcccttgtaa gaacggagct acttgttcca acagcggcca gaggtcctac
900acttgtactt gtaggcccgg ttacaccggc gtcgactgcg aactggaact gagcgaatgc
960gatagcaacc cttgtcgtaa cggcggcagc tgcaaggacc aagaagacgg ctaccactgt
1020ttatgccctc ccggatacta cggtttacac tgcgagcact ccacactgtc ttgtgccgac
1080tccccttgtt tcaacggcgg aagctgtcgt gagaggaacc aaggtgccaa ctacgcttgt
1140gagtgccctc ccaacttcac cggctccaac tgcgagaaga aggtggatcg ttgcacctcc
1200aacccttgcg ccaacggcgg ccagtgttta aataggggcc cttcccggat gtgtcgttgt
1260cgtcccggtt ttaccggcac ctactgcgag ctgcacgtca gcgattgcgc ccggaatcct
1320tgcgctcacg gcggaacttg tcacgattta gagaacggtt taatgtgcac ttgtcccgct
1380ggattcagcg gtcgtaggtg tgaggtgagg acctccatcg acgcttgtgc cagcagccct
1440tgcttcaatc gtgccacttg ttacaccgat ttatccaccg acaccttcgt gtgcaactgc
1500ccctacggct tcgtgggatc tcgttgcgag ttccccgttg gcctgcctcc tagctttccc
1560tggatcacgt gtcctcctcc tatgtccgtg gaacacgcag acatctgggt caagagctac
1620agcttgtact ccagggagcg gtacatttgt aactctggtt tcaagcgtaa agccggcacg
1680tccagcctga cggagtgcgt gttgaacaag gccacgaatg tcgcccactg gacaaccccc
1740agtctcaaat gcattagaga gccgaaatct tgtgacaaaa ctcacacatg cccaccgtgc
1800ccagcacctg aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac
1860accctcatga tctcccggac ccctgaggtc acatgcgtgg tggtggacgt gagccacgaa
1920gaccctgagg tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca
1980aagccgcggg aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg
2040caccaggact ggctgaatgg caaggagtac aagtgcaagg tctccaacaa agccctccca
2100gcccccatcg agaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac
2160accctgcccc catcccggga tgagctgacc aagaaccagg tcagcctgac ctgcctggtc
2220aaaggcttct atcccagcga catcgccgtg gagtgggaga gcaatgggca gccggagaac
2280aactacaaga ccacgcctcc cgtgctggac tccgacggct ccttcttcct ctacagcaag
2340ctcaccgtgg acaagagcag gtggcagcag gggaacgtct tctcatgctc cgtgatgcat
2400gaggctctgc acaaccacta cacgcagaag agcctctccc tgtctcctgg taaataa
245744818PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 44Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe
Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Ser Gly Val Phe Gln Leu Gln Leu Gln Glu Phe Ile Asn Glu
20 25 30 Arg Gly
Val Leu Ala Ser Gly Arg Pro Cys Glu Pro Gly Cys Arg Thr 35
40 45 Phe Phe Arg Val Cys Leu Lys
His Phe Gln Ala Val Val Ser Pro Gly 50 55
60 Pro Cys Thr Phe Gly Thr Val Ser Thr Pro Val Leu
Gly Thr Asn Ser 65 70 75
80 Phe Ala Val Arg Asp Asp Ser Ser Gly Gly Gly Arg Asn Pro Leu Gln
85 90 95 Leu Pro Phe
Asn Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu 100
105 110 Ala Trp His Ala Pro Gly Asp Asp
Leu Arg Pro Glu Ala Leu Pro Pro 115 120
125 Asp Ala Leu Ile Ser Lys Ile Ala Ile Gln Gly Ser Leu
Ala Val Gly 130 135 140
Gln Asn Trp Leu Leu Asp Glu Gln Thr Ser Thr Leu Thr Arg Leu Arg 145
150 155 160 Tyr Ser Tyr Arg
Val Ile Cys Ser Asp Asn Tyr Tyr Gly Asp Asn Cys 165
170 175 Ser Arg Leu Cys Lys Lys Arg Asn Asp
His Phe Gly His Tyr Val Cys 180 185
190 Gln Pro Asp Gly Asn Leu Ser Cys Leu Pro Gly Trp Thr Gly
Glu Tyr 195 200 205
Cys Gln Gln Pro Ile Cys Leu Ser Gly Cys His Glu Gln Asn Gly Tyr 210
215 220 Cys Ser Lys Pro Ala
Glu Cys Leu Cys Arg Pro Gly Trp Gln Gly Arg 225 230
235 240 Leu Cys Asn Glu Cys Ile Pro His Asn Gly
Cys Arg His Gly Thr Cys 245 250
255 Ser Thr Pro Trp Gln Cys Thr Cys Asp Glu Gly Trp Gly Gly Leu
Phe 260 265 270 Cys
Asp Gln Asp Leu Asn Tyr Cys Thr His His Ser Pro Cys Lys Asn 275
280 285 Gly Ala Thr Cys Ser Asn
Ser Gly Gln Arg Ser Tyr Thr Cys Thr Cys 290 295
300 Arg Pro Gly Tyr Thr Gly Val Asp Cys Glu Leu
Glu Leu Ser Glu Cys 305 310 315
320 Asp Ser Asn Pro Cys Arg Asn Gly Gly Ser Cys Lys Asp Gln Glu Asp
325 330 335 Gly Tyr
His Cys Leu Cys Pro Pro Gly Tyr Tyr Gly Leu His Cys Glu 340
345 350 His Ser Thr Leu Ser Cys Ala
Asp Ser Pro Cys Phe Asn Gly Gly Ser 355 360
365 Cys Arg Glu Arg Asn Gln Gly Ala Asn Tyr Ala Cys
Glu Cys Pro Pro 370 375 380
Asn Phe Thr Gly Ser Asn Cys Glu Lys Lys Val Asp Arg Cys Thr Ser 385
390 395 400 Asn Pro Cys
Ala Asn Gly Gly Gln Cys Leu Asn Arg Gly Pro Ser Arg 405
410 415 Met Cys Arg Cys Arg Pro Gly Phe
Thr Gly Thr Tyr Cys Glu Leu His 420 425
430 Val Ser Asp Cys Ala Arg Asn Pro Cys Ala His Gly Gly
Thr Cys His 435 440 445
Asp Leu Glu Asn Gly Leu Met Cys Thr Cys Pro Ala Gly Phe Ser Gly 450
455 460 Arg Arg Cys Glu
Val Arg Thr Ser Ile Asp Ala Cys Ala Ser Ser Pro 465 470
475 480 Cys Phe Asn Arg Ala Thr Cys Tyr Thr
Asp Leu Ser Thr Asp Thr Phe 485 490
495 Val Cys Asn Cys Pro Tyr Gly Phe Val Gly Ser Arg Cys Glu
Phe Pro 500 505 510
Val Gly Leu Pro Pro Ser Phe Pro Trp Ile Thr Cys Pro Pro Pro Met
515 520 525 Ser Val Glu His
Ala Asp Ile Trp Val Lys Ser Tyr Ser Leu Tyr Ser 530
535 540 Arg Glu Arg Tyr Ile Cys Asn Ser
Gly Phe Lys Arg Lys Ala Gly Thr 545 550
555 560 Ser Ser Leu Thr Glu Cys Val Leu Asn Lys Ala Thr
Asn Val Ala His 565 570
575 Trp Thr Thr Pro Ser Leu Lys Cys Ile Arg Glu Pro Lys Ser Cys Asp
580 585 590 Lys Thr His
Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly 595
600 605 Pro Ser Val Phe Leu Phe Pro Pro
Lys Pro Lys Asp Thr Leu Met Ile 610 615
620 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val
Ser His Glu 625 630 635
640 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
645 650 655 Asn Ala Lys Thr
Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 660
665 670 Val Val Ser Val Leu Thr Val Leu His
Gln Asp Trp Leu Asn Gly Lys 675 680
685 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro
Ile Glu 690 695 700
Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 705
710 715 720 Thr Leu Pro Pro Ser
Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 725
730 735 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
Asp Ile Ala Val Glu Trp 740 745
750 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
Val 755 760 765 Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 770
775 780 Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met His 785 790
795 800 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
Leu Ser Leu Ser Pro 805 810
815 Gly Lys 451701DNAArtificial SequenceDescription of Artificial
Sequence Synthetic polynucleotide 45atggaatgga gctgggtctt tctcttcttc
ctgtcagtaa ccaccggtgt ccactcctcc 60tatgtgctga ctcagcctcc ctccgcgtcc
gggtctcctg gacagtcagt caccatctcc 120tgcactggaa ccagcagtga cgttggtaat
aataactatg tctcctggta ccaacagcac 180ccaggcaaag cccccaaact catgatttat
gatgtcagta atcggccctc aggggtttct 240actcgcttct ctggctccaa gtctggcaac
acggcctccc tgaccatctc tgggctccag 300gctgaggacg aggctgatta ttactgcagc
tcatatacaa ccagcagtac ttatgtcttc 360ggaactggga ccaagctgac cgtcctgggg
cagccaaagg cgggaggtgg cggatccgga 420ggtggaggtt ctggtggagg tgggagtctg
gtgcaatctg gggctgaggt gaagaagcct 480ggggcctcag tgaaggtctc ctgcaaggct
tctggataca ccttcaccgg ctactatatg 540cactgggtgc gacaggcccc tggacaaggg
cttgagtgga tgggatggat caaccctaac 600agtggtggca caaactatgc acagaagttc
cagggcagag tcaccatgac caggaacacc 660tccataagca cagcctacat ggagttgagc
agcctgagat ctgacgacac ggccgtgtat 720tactgtgcga gagagatgta ttactatggt
tcggggtaca actggttcga cccctggggc 780cagggaaccc tggtcaccgt gagctcaatc
acgtgtcctc ctcctatgtc cgtggaacac 840gcagacatct gggtcaagag ctacagcttg
tactccaggg agcggtacat ttgtaactct 900ggtttcaagc gtaaagccgg cacgtccagc
ctgacggagt gcgtgttgaa caaggccacg 960aatgtcgccc actggacaac ccccagtctc
aaatgcatta gagagccgaa atcttgtgac 1020aaaactcaca catgcccacc gtgcccagca
cctgaactcc tggggggacc gtcagtcttc 1080ctcttccccc caaaacccaa ggacaccctc
atgatctccc ggacccctga ggtcacatgc 1140gtggtggtgg acgtgagcca cgaagaccct
gaggtcaagt tcaactggta cgtggacggc 1200gtggaggtgc ataatgccaa gacaaagccg
cgggaggagc agtacaacag cacgtaccgt 1260gtggtcagcg tcctcaccgt cctgcaccag
gactggctga atggcaagga gtacaagtgc 1320aaggtctcca acaaagccct cccagccccc
atcgagaaaa ccatctccaa agccaaaggg 1380cagccccgag aaccacaggt gtacaccctg
cccccatccc gggatgagct gaccaagaac 1440caggtcagcc tgacctgcct ggtcaaaggc
ttctatccca gcgacatcgc cgtggagtgg 1500gagagcaatg ggcagccgga gaacaactac
aagaccacgc ctcccgtgct ggactccgac 1560ggctccttct tcctctacag caagctcacc
gtggacaaga gcaggtggca gcaggggaac 1620gtcttctcat gctccgtgat gcatgaggct
ctgcacaacc actacacgca gaagagcctc 1680tccctgtctc ctggtaaata a
170146566PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
46Met Glu Trp Ser Trp Val Phe Leu Phe Phe Leu Ser Val Thr Thr Gly 1
5 10 15 Val His Ser Ser
Tyr Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Ser 20
25 30 Pro Gly Gln Ser Val Thr Ile Ser Cys
Thr Gly Thr Ser Ser Asp Val 35 40
45 Gly Asn Asn Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly
Lys Ala 50 55 60
Pro Lys Leu Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser 65
70 75 80 Thr Arg Phe Ser Gly
Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile 85
90 95 Ser Gly Leu Gln Ala Glu Asp Glu Ala Asp
Tyr Tyr Cys Ser Ser Tyr 100 105
110 Thr Thr Ser Ser Thr Tyr Val Phe Gly Thr Gly Thr Lys Leu Thr
Val 115 120 125 Leu
Gly Gln Pro Lys Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 130
135 140 Gly Gly Gly Gly Ser Leu
Val Gln Ser Gly Ala Glu Val Lys Lys Pro 145 150
155 160 Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser
Gly Tyr Thr Phe Thr 165 170
175 Gly Tyr Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu
180 185 190 Trp Met
Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln 195
200 205 Lys Phe Gln Gly Arg Val Thr
Met Thr Arg Asn Thr Ser Ile Ser Thr 210 215
220 Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Asp Asp
Thr Ala Val Tyr 225 230 235
240 Tyr Cys Ala Arg Glu Met Tyr Tyr Tyr Gly Ser Gly Tyr Asn Trp Phe
245 250 255 Asp Pro Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ile Thr Cys 260
265 270 Pro Pro Pro Met Ser Val Glu His
Ala Asp Ile Trp Val Lys Ser Tyr 275 280
285 Ser Leu Tyr Ser Arg Glu Arg Tyr Ile Cys Asn Ser Gly
Phe Lys Arg 290 295 300
Lys Ala Gly Thr Ser Ser Leu Thr Glu Cys Val Leu Asn Lys Ala Thr 305
310 315 320 Asn Val Ala His
Trp Thr Thr Pro Ser Leu Lys Cys Ile Arg Glu Pro 325
330 335 Lys Ser Cys Asp Lys Thr His Thr Cys
Pro Pro Cys Pro Ala Pro Glu 340 345
350 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
Lys Asp 355 360 365
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 370
375 380 Val Ser His Glu Asp
Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 385 390
395 400 Val Glu Val His Asn Ala Lys Thr Lys Pro
Arg Glu Glu Gln Tyr Asn 405 410
415 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
Trp 420 425 430 Leu
Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 435
440 445 Ala Pro Ile Glu Lys Thr
Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 450 455
460 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu Thr Lys Asn 465 470 475
480 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
485 490 495 Ala Val
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 500
505 510 Thr Pro Pro Val Leu Asp Ser
Asp Gly Ser Phe Phe Leu Tyr Ser Lys 515 520
525 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
Val Phe Ser Cys 530 535 540
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 545
550 555 560 Ser Leu Ser
Pro Gly Lys 565 471665DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
47atgaagtggg tgaccttcat cagcctgctg ttcctgttct ccagcgccta ctcctacatc
60cacgtgaccc agtccccctc ctctttaagc gtgagcatcg gagatcgtgt gaccatcaac
120tgccagacct cccaaggtgt gggctccgat ttacactggt accagcacaa gcccggtcgg
180gcccccaagc tgctgatcca ccacaccagc tccgtggagg atggcgtgcc ctctcgtttc
240tccggctccg gcttccatac ctccttcaat ttaaccatca gcgatttaca agctgacgac
300atcgccacct actactgcca agttctccag ttcttcggcc ggggctctcg tctgcatatc
360aagggaggcg gcggatccgg cggcggaggc agcggcggag gcggatctcg tgctcatctg
420gtgcagagcg gaaccgccat gaagaagccc ggtgctagcg tgcgggtgtc ttgtcagacc
480agcggataca ccttcaccgc ccacatttta ttctggtttc gtcaagctcc cggtcgtgga
540ctggaatggg tgggctggat caagccccag tatggcgccg tgaactttgg cggcggcttt
600cgtgatcggg tgactttaac tcgtgacgtg tatcgggaga tcgcctacat ggacattagg
660ggtttaaagc ccgacgatac cgccgtgtac tactgcgctc gtgatcgttc ctacggcgat
720agcagctggg ctttagatgc ttggggccaa ggtaccacag tgtggtccgc catcacgtgt
780cctcctccta tgtccgtgga acacgcagac atctgggtca agagctacag cttgtactcc
840agggagcggt acatttgtaa ctctggtttc aagcgtaaag ccggcacgtc cagcctgacg
900gagtgcgtgt tgaacaaggc cacgaatgtc gcccactgga caacccccag tctcaaatgc
960attagagagc cgaaatcttg tgacaaaact cacacatgcc caccgtgccc agcacctgaa
1020ctcctggggg gaccgtcagt cttcctcttc cccccaaaac ccaaggacac cctcatgatc
1080tcccggaccc ctgaggtcac atgcgtggtg gtggacgtga gccacgaaga ccctgaggtc
1140aagttcaact ggtacgtgga cggcgtggag gtgcataatg ccaagacaaa gccgcgggag
1200gagcagtaca acagcacgta ccgtgtggtc agcgtcctca ccgtcctgca ccaggactgg
1260ctgaatggca aggagtacaa gtgcaaggtc tccaacaaag ccctcccagc ccccatcgag
1320aaaaccatct ccaaagccaa agggcagccc cgagaaccac aggtgtacac cctgccccca
1380tcccgggatg agctgaccaa gaaccaggtc agcctgacct gcctggtcaa aggcttctat
1440cccagcgaca tcgccgtgga gtgggagagc aatgggcagc cggagaacaa ctacaagacc
1500acgcctcccg tgctggactc cgacggctcc ttcttcctct acagcaagct caccgtggac
1560aagagcaggt ggcagcaggg gaacgtcttc tcatgctccg tgatgcatga ggctctgcac
1620aaccactaca cgcagaagag cctctccctg tctcctggta aataa
1665481680DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 48atgaagtggg tgaccttcat cagcctgctg
ttcctgttct ccagcgccta ctccgtggtg 60atgacccagt ccccttccac cctgtccgct
tccgtgggcg acaccatcac catcacctgc 120agggcctccc agtccatcga gacctggctg
gcctggtacc agcagaagcc cggcaaggcc 180cccaagctgc tgatctacaa ggcctccacc
ctgaagaccg gcgtgccctc caggttttcc 240ggatccggct ccggcaccga gttcaccctg
accatcagcg gcctgcagtt cgacgacttc 300gccacctacc actgccagca ctacgccggc
tactccgcca cctttggaca gggcaccagg 360gtggagatca agggaggtgg cggatccgga
ggtggaggtt ctggtggagg tgggagtgag 420gtgcagctgg tggaatccgg aggcggcctg
gtgaaagctg gcggaagcct gatcctgagc 480tgcggcgtgt ccaacttcag gatctccgcc
cacaccatga actgggtgag gagggtgcct 540ggaggaggac tggagtgggt ggccagcatc
tccacctcct ccacctacag ggactacgcc 600gacgccgtga agggcaggtt caccgtgagc
agggacgacc tggaggactt cgtgtacctg 660cagatgcaca agatgcgggt ggaggacacc
gccatctact actgcgccag gaagggctcc 720gacaggctgt ccgacaacga cccctttgac
gcctggggcc ctggaaccgt ggtgacagtg 780tcccccatca cgtgtcctcc tcctatgtcc
gtggaacacg cagacatctg ggtcaagagc 840tacagcttgt actccaggga gcggtacatt
tgtaactctg gtttcaagcg taaagccggc 900acgtccagcc tgacggagtg cgtgttgaac
aaggccacga atgtcgccca ctggacaacc 960cccagtctca aatgcattag agagccgaaa
tcttgtgaca aaactcacac atgcccaccg 1020tgcccagcac ctgaactcct ggggggaccg
tcagtcttcc tcttcccccc aaaacccaag 1080gacaccctca tgatctcccg gacccctgag
gtcacatgcg tggtggtgga cgtgagccac 1140gaagaccctg aggtcaagtt caactggtac
gtggacggcg tggaggtgca taatgccaag 1200acaaagccgc gggaggagca gtacaacagc
acgtaccgtg tggtcagcgt cctcaccgtc 1260ctgcaccagg actggctgaa tggcaaggag
tacaagtgca aggtctccaa caaagccctc 1320ccagccccca tcgagaaaac catctccaaa
gccaaagggc agccccgaga accacaggtg 1380tacaccctgc ccccatcccg ggatgagctg
accaagaacc aggtcagcct gacctgcctg 1440gtcaaaggct tctatcccag cgacatcgcc
gtggagtggg agagcaatgg gcagccggag 1500aacaactaca agaccacgcc tcccgtgctg
gactccgacg gctccttctt cctctacagc 1560aagctcaccg tggacaagag caggtggcag
caggggaacg tcttctcatg ctccgtgatg 1620catgaggctc tgcacaacca ctacacgcag
aagagcctct ccctgtctcc tggtaaataa 1680491674DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
49atgaagtggg tgaccttcat cagcctgctg ttcctgttct ccagcgccta ctcctcctcc
60ctgacccaga gccccggaac actctccctc tcccccggtg agaccgctat catctcttgt
120aggaccagcc agtacggctc tttagcttgg tatcaacaga ggcccggcca agctcctagg
180ctggtcattt acagcggcag cacaagggcc gccggcatcc ccgataggtt ctccggctcc
240cggtggggcc ccgattacaa tttaacaatc tccaatttag agtccggaga cttcggcgtc
300tactactgcc agcagtacga gttcttcggc caaggtacca aagtgcaagt tgatatcaag
360ggcggcggag gctccggcgg cggcggatcc ggcggaggag gatcccaagt taggctgtcc
420cagagcggag gccagatgaa gaagcccggt gactccatgc ggatcagctg tcgtgccagc
480ggctacgagt tcatcaactg ccccatcaac tggattcgtc tggcccccgg taagcggccc
540gaatggatgg gctggatgaa acctcgtcac ggcgctgtgt cctacgctcg tcagctgcaa
600ggtcgtgtga ccatgactcg tgacatgtac agcgagaccg cctttttaga gctgaggtct
660ttaacctccg acgacaccgc tgtgtacttc tgcacccggg gcaagtactg caccgctcgg
720gactactaca actgggactt cgagcactgg ggccaaggta cacccgtgac agtgtcctcc
780atcacgtgtc ctcctcctat gtccgtggaa cacgcagaca tctgggtcaa gagctacagc
840ttgtactcca gggagcggta catttgtaac tctggtttca agcgtaaagc cggcacgtcc
900agcctgacgg agtgcgtgtt gaacaaggcc acgaatgtcg cccactggac aacccccagt
960ctcaaatgca ttagagagcc gaaatcttgt gacaaaactc acacatgccc accgtgccca
1020gcacctgaac tcctgggggg accgtcagtc ttcctcttcc ccccaaaacc caaggacacc
1080ctcatgatct cccggacccc tgaggtcaca tgcgtggtgg tggacgtgag ccacgaagac
1140cctgaggtca agttcaactg gtacgtggac ggcgtggagg tgcataatgc caagacaaag
1200ccgcgggagg agcagtacaa cagcacgtac cgtgtggtca gcgtcctcac cgtcctgcac
1260caggactggc tgaatggcaa ggagtacaag tgcaaggtct ccaacaaagc cctcccagcc
1320cccatcgaga aaaccatctc caaagccaaa gggcagcccc gagaaccaca ggtgtacacc
1380ctgcccccat cccgggatga gctgaccaag aaccaggtca gcctgacctg cctggtcaaa
1440ggcttctatc ccagcgacat cgccgtggag tgggagagca atgggcagcc ggagaacaac
1500tacaagacca cgcctcccgt gctggactcc gacggctcct tcttcctcta cagcaagctc
1560accgtggaca agagcaggtg gcagcagggg aacgtcttct catgctccgt gatgcatgag
1620gctctgcaca accactacac gcagaagagc ctctccctgt ctcctggtaa ataa
1674501716DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 50atgaagtggg tgaccttcat cagcctgctg
ttcctgttct ccagcgccta ctcctccagc 60tacgtgaggc ctctctccgt ggctctgggc
gaaacagctc gtatcagctg cggtcgtcaa 120gctctgggat ctcgtgctgt gcagtggtac
cagcaccggc ccggtcaagc tcccatttta 180ctgatctaca acaaccaaga tcggccctcc
ggcatccccg aaaggtttag cggcaccccc 240gatatcaact tcggcacaag ggccacttta
accattagcg gagtggaggc cggcgacgag 300gccgactact actgccacat gtgggactcc
cggtccggct tttcttggag ctttggcggc 360gctactcgtc tgacagtgct gggcggaggc
ggctccggag gcggcggcag cggaggaggc 420ggatcccaag ttcagctgca agaatccgga
cccggtttag tgaagcccag cgagacttta 480agcgtgactt gtagcgtgag cggcgacagc
atgaacaact actactggac ttggattcgt 540cagagccccg gtaagggttt agagtggatc
ggctacatct ccgaccggga gtccgccacc 600tacaacccct ctttaaactc ccgggtggtg
atctctcgtg acacctccaa gaaccagctg 660tctttaaagc tgaactccgt gacccccgct
gacaccgccg tgtactactg cgctaccgct 720aggcggggcc agaggatcta cggcgtggtg
agcttcggcg agttcttcta ctactacagc 780atggacgtgt ggggcaaagg caccaccgtg
accgtgtcct ccatcacgtg tcctcctcct 840atgtccgtgg aacacgcaga catctgggtc
aagagctaca gcttgtactc cagggagcgg 900tacatttgta actctggttt caagcgtaaa
gccggcacgt ccagcctgac ggagtgcgtg 960ttgaacaagg ccacgaatgt cgcccactgg
acaaccccca gtctcaaatg cattagagag 1020ccgaaatctt gtgacaaaac tcacacatgc
ccaccgtgcc cagcacctga actcctgggg 1080ggaccgtcag tcttcctctt ccccccaaaa
cccaaggaca ccctcatgat ctcccggacc 1140cctgaggtca catgcgtggt ggtggacgtg
agccacgaag accctgaggt caagttcaac 1200tggtacgtgg acggcgtgga ggtgcataat
gccaagacaa agccgcggga ggagcagtac 1260aacagcacgt accgtgtggt cagcgtcctc
accgtcctgc accaggactg gctgaatggc 1320aaggagtaca agtgcaaggt ctccaacaaa
gccctcccag cccccatcga gaaaaccatc 1380tccaaagcca aagggcagcc ccgagaacca
caggtgtaca ccctgccccc atcccgggat 1440gagctgacca agaaccaggt cagcctgacc
tgcctggtca aaggcttcta tcccagcgac 1500atcgccgtgg agtgggagag caatgggcag
ccggagaaca actacaagac cacgcctccc 1560gtgctggact ccgacggctc cttcttcctc
tacagcaagc tcaccgtgga caagagcagg 1620tggcagcagg ggaacgtctt ctcatgctcc
gtgatgcatg aggctctgca caaccactac 1680acgcagaaga gcctctccct gtctcctggt
aaataa 171651554PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
51Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1
5 10 15 Tyr Ser Tyr Ile
His Val Thr Gln Ser Pro Ser Ser Leu Ser Val Ser 20
25 30 Ile Gly Asp Arg Val Thr Ile Asn Cys
Gln Thr Ser Gln Gly Val Gly 35 40
45 Ser Asp Leu His Trp Tyr Gln His Lys Pro Gly Arg Ala Pro
Lys Leu 50 55 60
Leu Ile His His Thr Ser Ser Val Glu Asp Gly Val Pro Ser Arg Phe 65
70 75 80 Ser Gly Ser Gly Phe
His Thr Ser Phe Asn Leu Thr Ile Ser Asp Leu 85
90 95 Gln Ala Asp Asp Ile Ala Thr Tyr Tyr Cys
Gln Val Leu Gln Phe Phe 100 105
110 Gly Arg Gly Ser Arg Leu His Ile Lys Gly Gly Gly Gly Ser Gly
Gly 115 120 125 Gly
Gly Ser Gly Gly Gly Gly Ser Arg Ala His Leu Val Gln Ser Gly 130
135 140 Thr Ala Met Lys Lys Pro
Gly Ala Ser Val Arg Val Ser Cys Gln Thr 145 150
155 160 Ser Gly Tyr Thr Phe Thr Ala His Ile Leu Phe
Trp Phe Arg Gln Ala 165 170
175 Pro Gly Arg Gly Leu Glu Trp Val Gly Trp Ile Lys Pro Gln Tyr Gly
180 185 190 Ala Val
Asn Phe Gly Gly Gly Phe Arg Asp Arg Val Thr Leu Thr Arg 195
200 205 Asp Val Tyr Arg Glu Ile Ala
Tyr Met Asp Ile Arg Gly Leu Lys Pro 210 215
220 Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Arg
Ser Tyr Gly Asp 225 230 235
240 Ser Ser Trp Ala Leu Asp Ala Trp Gly Gln Gly Thr Thr Val Trp Ser
245 250 255 Ala Ile Thr
Cys Pro Pro Pro Met Ser Val Glu His Ala Asp Ile Trp 260
265 270 Val Lys Ser Tyr Ser Leu Tyr Ser
Arg Glu Arg Tyr Ile Cys Asn Ser 275 280
285 Gly Phe Lys Arg Lys Ala Gly Thr Ser Ser Leu Thr Glu
Cys Val Leu 290 295 300
Asn Lys Ala Thr Asn Val Ala His Trp Thr Thr Pro Ser Leu Lys Cys 305
310 315 320 Ile Arg Glu Pro
Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 325
330 335 Pro Ala Pro Glu Leu Leu Gly Gly Pro
Ser Val Phe Leu Phe Pro Pro 340 345
350 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
Thr Cys 355 360 365
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 370
375 380 Tyr Val Asp Gly Val
Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 385 390
395 400 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
Ser Val Leu Thr Val Leu 405 410
415 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
Asn 420 425 430 Lys
Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 435
440 445 Gln Pro Arg Glu Pro Gln
Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 450 455
460 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
Val Lys Gly Phe Tyr 465 470 475
480 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
485 490 495 Asn Tyr
Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 500
505 510 Leu Tyr Ser Lys Leu Thr Val
Asp Lys Ser Arg Trp Gln Gln Gly Asn 515 520
525 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
Asn His Tyr Thr 530 535 540
Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 545 550
52559PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 52Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe
Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Val Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val
20 25 30 Gly Asp
Thr Ile Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Glu Thr 35
40 45 Trp Leu Ala Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu 50 55
60 Ile Tyr Lys Ala Ser Thr Leu Lys Thr Gly Val Pro
Ser Arg Phe Ser 65 70 75
80 Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Gly Leu Gln
85 90 95 Phe Asp Asp
Phe Ala Thr Tyr His Cys Gln His Tyr Ala Gly Tyr Ser 100
105 110 Ala Thr Phe Gly Gln Gly Thr Arg
Val Glu Ile Lys Gly Gly Gly Gly 115 120
125 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val
Gln Leu Val 130 135 140
Glu Ser Gly Gly Gly Leu Val Lys Ala Gly Gly Ser Leu Ile Leu Ser 145
150 155 160 Cys Gly Val Ser
Asn Phe Arg Ile Ser Ala His Thr Met Asn Trp Val 165
170 175 Arg Arg Val Pro Gly Gly Gly Leu Glu
Trp Val Ala Ser Ile Ser Thr 180 185
190 Ser Ser Thr Tyr Arg Asp Tyr Ala Asp Ala Val Lys Gly Arg
Phe Thr 195 200 205
Val Ser Arg Asp Asp Leu Glu Asp Phe Val Tyr Leu Gln Met His Lys 210
215 220 Met Arg Val Glu Asp
Thr Ala Ile Tyr Tyr Cys Ala Arg Lys Gly Ser 225 230
235 240 Asp Arg Leu Ser Asp Asn Asp Pro Phe Asp
Ala Trp Gly Pro Gly Thr 245 250
255 Val Val Thr Val Ser Pro Ile Thr Cys Pro Pro Pro Met Ser Val
Glu 260 265 270 His
Ala Asp Ile Trp Val Lys Ser Tyr Ser Leu Tyr Ser Arg Glu Arg 275
280 285 Tyr Ile Cys Asn Ser Gly
Phe Lys Arg Lys Ala Gly Thr Ser Ser Leu 290 295
300 Thr Glu Cys Val Leu Asn Lys Ala Thr Asn Val
Ala His Trp Thr Thr 305 310 315
320 Pro Ser Leu Lys Cys Ile Arg Glu Pro Lys Ser Cys Asp Lys Thr His
325 330 335 Thr Cys
Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val 340
345 350 Phe Leu Phe Pro Pro Lys Pro
Lys Asp Thr Leu Met Ile Ser Arg Thr 355 360
365 Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
Glu Asp Pro Glu 370 375 380
Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 385
390 395 400 Thr Lys Pro
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser 405
410 415 Val Leu Thr Val Leu His Gln Asp
Trp Leu Asn Gly Lys Glu Tyr Lys 420 425
430 Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
Lys Thr Ile 435 440 445
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 450
455 460 Pro Ser Arg Asp
Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 465 470
475 480 Val Lys Gly Phe Tyr Pro Ser Asp Ile
Ala Val Glu Trp Glu Ser Asn 485 490
495 Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
Asp Ser 500 505 510
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
515 520 525 Trp Gln Gln Gly
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 530
535 540 His Asn His Tyr Thr Gln Lys Ser
Leu Ser Leu Ser Pro Gly Lys 545 550 555
53557PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 53Met Lys Trp Val Thr Phe Ile Ser Leu
Leu Phe Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Ser Ser Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu
Ser Pro 20 25 30
Gly Glu Thr Ala Ile Ile Ser Cys Arg Thr Ser Gln Tyr Gly Ser Leu
35 40 45 Ala Trp Tyr Gln
Gln Arg Pro Gly Gln Ala Pro Arg Leu Val Ile Tyr 50
55 60 Ser Gly Ser Thr Arg Ala Ala Gly
Ile Pro Asp Arg Phe Ser Gly Ser 65 70
75 80 Arg Trp Gly Pro Asp Tyr Asn Leu Thr Ile Ser Asn
Leu Glu Ser Gly 85 90
95 Asp Phe Gly Val Tyr Tyr Cys Gln Gln Tyr Glu Phe Phe Gly Gln Gly
100 105 110 Thr Lys Val
Gln Val Asp Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly 115
120 125 Gly Ser Gly Gly Gly Gly Ser Gln
Val Arg Leu Ser Gln Ser Gly Gly 130 135
140 Gln Met Lys Lys Pro Gly Asp Ser Met Arg Ile Ser Cys
Arg Ala Ser 145 150 155
160 Gly Tyr Glu Phe Ile Asn Cys Pro Ile Asn Trp Ile Arg Leu Ala Pro
165 170 175 Gly Lys Arg Pro
Glu Trp Met Gly Trp Met Lys Pro Arg His Gly Ala 180
185 190 Val Ser Tyr Ala Arg Gln Leu Gln Gly
Arg Val Thr Met Thr Arg Asp 195 200
205 Met Tyr Ser Glu Thr Ala Phe Leu Glu Leu Arg Ser Leu Thr
Ser Asp 210 215 220
Asp Thr Ala Val Tyr Phe Cys Thr Arg Gly Lys Tyr Cys Thr Ala Arg 225
230 235 240 Asp Tyr Tyr Asn Trp
Asp Phe Glu His Trp Gly Gln Gly Thr Pro Val 245
250 255 Thr Val Ser Ser Ile Thr Cys Pro Pro Pro
Met Ser Val Glu His Ala 260 265
270 Asp Ile Trp Val Lys Ser Tyr Ser Leu Tyr Ser Arg Glu Arg Tyr
Ile 275 280 285 Cys
Asn Ser Gly Phe Lys Arg Lys Ala Gly Thr Ser Ser Leu Thr Glu 290
295 300 Cys Val Leu Asn Lys Ala
Thr Asn Val Ala His Trp Thr Thr Pro Ser 305 310
315 320 Leu Lys Cys Ile Arg Glu Pro Lys Ser Cys Asp
Lys Thr His Thr Cys 325 330
335 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu
340 345 350 Phe Pro
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 355
360 365 Val Thr Cys Val Val Val Asp
Val Ser His Glu Asp Pro Glu Val Lys 370 375
380 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
Ala Lys Thr Lys 385 390 395
400 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu
405 410 415 Thr Val Leu
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 420
425 430 Val Ser Asn Lys Ala Leu Pro Ala
Pro Ile Glu Lys Thr Ile Ser Lys 435 440
445 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
Pro Pro Ser 450 455 460
Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 465
470 475 480 Gly Phe Tyr Pro
Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 485
490 495 Pro Glu Asn Asn Tyr Lys Thr Thr Pro
Pro Val Leu Asp Ser Asp Gly 500 505
510 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
Trp Gln 515 520 525
Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 530
535 540 His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser Pro Gly Lys 545 550
555 54571PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 54Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe
Leu Phe Ser Ser Ala 1 5 10
15 Tyr Ser Ser Ser Tyr Val Arg Pro Leu Ser Val Ala Leu Gly Glu Thr
20 25 30 Ala Arg
Ile Ser Cys Gly Arg Gln Ala Leu Gly Ser Arg Ala Val Gln 35
40 45 Trp Tyr Gln His Arg Pro Gly
Gln Ala Pro Ile Leu Leu Ile Tyr Asn 50 55
60 Asn Gln Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe
Ser Gly Thr Pro 65 70 75
80 Asp Ile Asn Phe Gly Thr Arg Ala Thr Leu Thr Ile Ser Gly Val Glu
85 90 95 Ala Gly Asp
Glu Ala Asp Tyr Tyr Cys His Met Trp Asp Ser Arg Ser 100
105 110 Gly Phe Ser Trp Ser Phe Gly Gly
Ala Thr Arg Leu Thr Val Leu Gly 115 120
125 Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
Ser Gln Val 130 135 140
Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu 145
150 155 160 Ser Val Thr Cys
Ser Val Ser Gly Asp Ser Met Asn Asn Tyr Tyr Trp 165
170 175 Thr Trp Ile Arg Gln Ser Pro Gly Lys
Gly Leu Glu Trp Ile Gly Tyr 180 185
190 Ile Ser Asp Arg Glu Ser Ala Thr Tyr Asn Pro Ser Leu Asn
Ser Arg 195 200 205
Val Val Ile Ser Arg Asp Thr Ser Lys Asn Gln Leu Ser Leu Lys Leu 210
215 220 Asn Ser Val Thr Pro
Ala Asp Thr Ala Val Tyr Tyr Cys Ala Thr Ala 225 230
235 240 Arg Arg Gly Gln Arg Ile Tyr Gly Val Val
Ser Phe Gly Glu Phe Phe 245 250
255 Tyr Tyr Tyr Ser Met Asp Val Trp Gly Lys Gly Thr Thr Val Thr
Val 260 265 270 Ser
Ser Ile Thr Cys Pro Pro Pro Met Ser Val Glu His Ala Asp Ile 275
280 285 Trp Val Lys Ser Tyr Ser
Leu Tyr Ser Arg Glu Arg Tyr Ile Cys Asn 290 295
300 Ser Gly Phe Lys Arg Lys Ala Gly Thr Ser Ser
Leu Thr Glu Cys Val 305 310 315
320 Leu Asn Lys Ala Thr Asn Val Ala His Trp Thr Thr Pro Ser Leu Lys
325 330 335 Cys Ile
Arg Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro 340
345 350 Cys Pro Ala Pro Glu Leu Leu
Gly Gly Pro Ser Val Phe Leu Phe Pro 355 360
365 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
Pro Glu Val Thr 370 375 380
Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn 385
390 395 400 Trp Tyr Val
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 405
410 415 Glu Glu Gln Tyr Asn Ser Thr Tyr
Arg Val Val Ser Val Leu Thr Val 420 425
430 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
Lys Val Ser 435 440 445
Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys 450
455 460 Gly Gln Pro Arg
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 465 470
475 480 Glu Leu Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe 485 490
495 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
Pro Glu 500 505 510
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
515 520 525 Phe Leu Tyr Ser
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 530
535 540 Asn Val Phe Ser Cys Ser Val Met
His Glu Ala Leu His Asn His Tyr 545 550
555 560 Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
565 570 556PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 55Pro
Glu Leu Leu Gly Gly 1 5 566PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 56Pro
Glu Ala Ala Gly Gly 1 5 575PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 57Lys
Cys Lys Ser Leu 1 5 585PRTArtificial SequenceDescription
of Artificial Sequence Synthetic peptide 58Lys Cys Ala Ser Leu 1
5
User Contributions:
Comment about this patent or add new information about this topic: