Patent application title: IMPROVING SEQUENCE-SPECIFIC ANTIMICROBIALS BY BLOCKING DNA REPAIR
Inventors:
IPC8 Class: AA61K3846FI
USPC Class:
1 1
Class name:
Publication date: 2018-07-19
Patent application number: 20180200342
Abstract:
The invention relates to the improvement of endonuclease-based
antimicrobials by blocking DNA repair of double-strand break(s) (DSB(s))
in prokaryotic cells. In this respect, the invention especially concerns
a method involving blocking DNA repair after a nucleic acid has been
submitted to DSB, in particular by a Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) associated programmable double-strand
endonuclease. The invention particularly relates to the use of an
exogenous molecule that inhibits DNA repair, preferably a protein that
binds to the ends of the double-stranded break to block DSB repair. The
invention also relates to vectors, particularly phagemids and plasmids,
comprising nucleic acids encoding nucleases and Gam proteins, and a
pharmaceutical composition and a product containing these vectors and
their application.Claims:
1-27. (canceled)
28. A method for killing a bacterium comprising contacting the bacterium with at least one recombinant phagemid(s) or plasmid(s); wherein the recombinant phagemid(s) or plasmid(s) encodes an endonuclease that creates a double-stranded break (DSB) in the chromosomal or extrachromosomal DNA of the bacterium, and an exogenous protein that inhibits DSB repair.
29. The method of claim 28, wherein the exogenous protein is encoded by the same vector as the endonuclease or by a separate vector.
30. The method of claim 28, wherein the protein is synthetized before contacting with the bacterium.
31. The method of claim 28, wherein the endonuclease is selected from a meganuclease or an artificial endonuclease.
32. The method of claim 28, wherein the endonuclease specifically cleaves the chromosomal or extrachromosomal DNA of the bacterium at less than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 different sites.
33. The method of claim 28, wherein the at least one recombinant phagemid(s) or plasmid(s) encodes a Cas9 nuclease, a guide RNA, and an exogenous protein that inhibits DNA repair selected from the group consisting of a Mu phage Gam protein, a lambda phage Gam protein, and a phage T7 gp5.9 protein.
34. The method of claim 28, wherein the at least one recombinant phagemid(s) is selected from the group consisting of M13, lambda, p22, T7, Mu, T4 phage, PBSX, P1Puna-like, P2, 13, Bcep 1, Bcep 43, Bcep 78, T5 phage, phi, C2, L5, HK97, N15, T3 phage, P37, MS2, Q.beta., or Phi X 174, T2 phage, T12 phage, R17 phage, M13 phage, G4 phage, Enterobacteria phage P2, P4 phage, N4 phage, Pseudomonas phage .PHI.6, .PHI.29 phage and 186 phage.
35. The method of claim 28, wherein the bacterium comprises a recBCD homologous repair pathway or addAB system.
36. The method of claim 28, wherein the bacterium is selected from the group consisting of Enterobacter, Streptococci, Staphylococci, Enterococci, Salmonella, Pseudomonas, and Mycobacterium.
37. The method of claim 28 wherein the recombinant phagemid(s) or plasmid(s) encode(s) an endonuclease that creates a double-stranded break (DSB) in an antibiotic resistance gene encoded by the bacterium
38. .lamda. phagemid or plasmid vector encoding an endonuclease and an exogenous protein inhibiting DSB repair.
39. The phagemid or plasmid vector of claim 38 wherein the recombinant phagemid(s) is selected from the group consisting of M13, lambda, p22, T7, Mu, T4 phage, PBSX, P1Puna-like, P2, 13, Bcep 1, Bcep 43, Bcep 78, T5 phage, phi, C2, L5, HK97, N15, T3 phage, P37, MS2, Q.beta., or Phi X 174, T2 phage, T12 phage, R17 phage, M13 phage, G4 phage, Enterobacteria phage P2, P4 phage, N4 phage, Pseudomonas phage .PHI.6, .PHI.29 phage and 186 phage.
40. The phagemid or plasmid vector of claim 38, wherein the phagemid vector is a P1 bacteriophage.
41. The phagemid or plasmid vector of claim 38, wherein the phagemid vector is a .lamda. bacteriophage.
42. A pharmaceutical composition comprising a phagemid or plasmid vector encoding an endonuclease, and an exogenous protein inhibiting DSB repair or a vector encoding an exogenous protein inhibiting DSB repair, and a pharmaceutically acceptable vehicle.
43. The pharmaceutical composition of claim 42 further comprising an antibiotic.
44. The pharmaceutical composition of claim 42 containing a phagemid or plasmid vector encoding an endonuclease and a vector encoding an exogenous protein inhibiting DSB repair.
45. The pharmaceutical composition of claim 42, wherein said exogenous protein is encoded by the same vector as the endonuclease.
Description:
FIELD OF THE INVENTION
[0001] The invention relates to endonuclease-based antimicrobials that generate double-strand break(s) (DSB(s)) in prokaryotic cells. In this respect, the invention especially concerns a method involving blocking DNA repair after a nucleic acid has been submitted to DSB. The invention also relates to a vector encoding such endonuclease and a protein blocking DNA repair, a pharmaceutical composition and a product comprising said vector for use in the treatment of diseases dues to a bacterium infection
BACKGROUND OF THE INVENTION
[0002] Cas proteins such as Cas9, of CRISPR-Cas systems, are members of the programmable nucleases, that have emerged as popular tools to introduce mutations in eukaryotic genomes as also are Zinc Finger Nucleases (ZFN) or Transcription Activator-Like Effector Nucleases (TALEN). Double strand breaks introduced in genomes by these nucleases can be repaired either through Homology Directed Repair (HDR) or through Non-Homologous End Joining (NHEJ). Most bacterial species lack a Non-Homologous End Joining (NHEJ) system. When a double strand beak is introduced at a given position in all copies of the chromosome simultaneously, the bacterium will die without DNA repair. When a double strand beak is introduced at a given position in all copies of an antibiotic resistance plasmid simultaneously, the bacterium will be susceptible to the antibiotic without DNA repair.
[0003] In bacteria, double strand breaks are generally repaired through homologous recombination with an intact sister chromosome. The first step of repair involves loading of the RecBCD or AddAB complex on the double strand ends. The ends are then resected through a helicase and exonuclease activity until a specific sequence motif known as the chi site is found. In E. coli the sequence of the chi site is GCTGGTGG. Once a chi site is found, the RecBCD/AddAB complex keeps degrading one of the strands while the other strand is loaded with the recA protein. The nucleoprotein filament can then invade the sister chromosome and initiate replication dependent repair. RecBCD/AddAB resects double stranded ends present in the cell at the very high speed of .about.1 kb/sec. If no homologous sequence is present in the cell the DNA molecule is completely destroyed. Upon infection, phages thus need to protect their double strand ends from RecBCD/AddAB. For these purpose they have evolved different strategies to either block the access of the double strand end (e.g. the Mu Gam protein) d'Adda di Fagagna et al., EMBO reports, 4(1):47-52 (2003), or directly block the activity of RecBCD/AddAB through direct binding (e.g. the lambda Gam protein). Murphy et al., J. Bacteriology 173 (18): 5808-5821 (1991).
[0004] It was shown in the prior art that nuclease cleavage can kill the cells when all chromosomal copies are cut simultaneously and no intact template is available for homology directed repair. However, not all targets are equal and some positions are being targeted more efficiently than others. Inefficient nuclease interference can be tolerated through continuous repair by the homologous recombination pathway. Accordingly, in several bacteria a DNA repair occurs after nuclease cleavage. Thereof, the use of the nucleases only is not sufficient to kill bacteria.
[0005] Consequently, there is a need to novel method allowing efficiently killing of bacteria and thus being used in antimicrobial treatments.
SUMMARY OF THE INVENTION
[0006] Surprisingly, the inventors of the present invention found that combining the action of an endonuclease with the action of some proteins involved in bacteriophage DNA protection enhance the ability of endonuclease to kill bacteria cells since these proteins do not allow DNA repair.
[0007] According to a first aspect, the invention thus relates to a method for killing a bacterium comprising contacting the bacterium with an endonuclease, preferably encoded by at least one recombinant phagemid(s) or plasmid(s), that creates a double-stranded break in the chromosomal DNA of the bacterium and an exogenous molecule that inhibits double-stranded break repair, preferably a protein that binds to the ends of the double-stranded break.
[0008] Using the method of the present application, it is possible to select specific DNA sites for the cleavage. Such site may be the part of the DNA sequences responsible for the antibiotic resistance of bacterium.
[0009] According to another aspect, the method of the invention is used for making a bacterium more susceptible to an antibiotic, said method comprising contacting the bacterium with an endonuclease, preferably encoded by at least recombinant phagemid(s) or plasmid(s), and the antibiotic, wherein the endonuclease creates a double-stranded break in an antibiotic resistance gene encoded by the bacterium, and an exogenous molecule that inhibits double-stranded break repair, preferably a protein that binds to the ends of the double-stranded break. In one embodiment, the recombinant phagemid or plasmid encodes a Cas9 nuclease, a guide RNA, and an exogenous Gam protein.
[0010] In order to implement the method of the invention, it is necessary to provide a vector, particularly a phagemid vector encoding a nuclease susceptible to cleave DNA double strand of bacterium and a protein that binds to the ends of the double-stranded break and inhibit DSB repair.
[0011] According to one aspect, the invention thus relates to a phagemid vector encoding a nuclease, and optionally, an exogenous protein that binds to the ends of the double-stranded break and inhibit DSB repair.
[0012] In various embodiments, the invention relates to a phagemid vector encoding a nuclease, preferably Cas9 nuclease, a guide RNA, and an exogenous protein that binds to the ends of the double-stranded break and inhibit DSB repair, particularly Gam protein. In another embodiment, the guide RNA targets an antibiotic resistance plasmid or a plasmid carrying virulence genes. In various embodiments, the guide RNA targets the bacterial chromosome. In various embodiments, the phagemid vector is a P1 bacteriophage. In various embodiments, the phagemid vector is a .lamda. bacteriophage.
[0013] According to another aspect, the invention also relates to a host cell comprising the phagemid or plasmid vector of the invention and a phagemid or plasmid vector encoding the protein inhibiting DSB repair.
[0014] According to a further aspect, the invention also relates to a pharmaceutical composition comprising the phagemid or plasmid vector of the invention and a vector encoding the protein inhibiting DSB repair or the protein inhibiting DSB repair and a pharmaceutical acceptable vehicle for use in the treatment of diseases due to a bacterium infection.
[0015] The present application also relates to a product comprising
[0016] at least one phagemid or plasmid vector or pharmaceutical composition of the invention, and
[0017] at least another therapeutic agent, in particular an antibiotic
[0018] as a combination product for simultaneous, separate or sequential use for the treatment of at least one disease due to a bacterium infection, particularly infection due to at least one of bacteria selected from the group comprising of Enterobacter, Streptococci, Staphylococci, Enterococci, Salmonella, Pseudomonas, Mycobacterium.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019] FIG. 1A-D. Weak self-targeting CRISPR-Cas9 systems can be tolerated through homology directed repair. (A) Position of the targets on the E. coli chromosome. Targets on the inside of the circle are on the non-template strand, targets on the outside are on the template strand. (B) The pCRRNA carrying different spacers was transformed in cells expressing Cas9 constitutively. Average CFU numbers are reported for transformation in wild-type cells (black bars) and recA- cells (white bars), showing that some spacers can be tolerated in the presence of recA but not in the recA- strain (mean.+-.s.d., n.gtoreq.3). Transformation events yielding small colonies are marked with a star. (C) Schematics of the transformation assay performed to demonstrate homology directed repair. The pCas9 (also designated pCas9-a carrying a control spacer that can be easily replaced through restriction-ligation cloning) plasmid SEQ ID NO: 60 (indicated as SEQ ID No. 117 in the priority application) carrying Cas9, the tracrRNA and a CRISPR array was programmed to target a position within the lacZ gene. The resulting plasmid pCas9::lacZ2 (carrying a spacer targeting the lacZ gene) having the sequence of SEQ ID No. 119 was transformed in cells carrying a plasmid with homologies to the target region but carrying a mutation preventing Cas9 cleavage (pLCX SEQ ID NO: 66). (D) CFU numbers are reported after transformation either in wild-type (black bars) or recA- cells (white bars), showing that the presence of a repair template rescues killing induced by Cas9 cleavage of the lacZ2 target (mean.+-.s.d., n.gtoreq.13).
[0020] FIG. 2: Colony size after transformation with self-targeting CRISPR systems. The pCRRNA plasmid carrying different spacers was transformed in MG1655 cells expressing Cas9 constitutively from plasmid pCas9. Cells were plated on selective medium and colony diameter was quantified after 16H of incubation at 37.degree. C. using the ImageJ software. A minimum of 50 colonies were counted for each individual transformation.
[0021] FIG. 3A-C: Cas9 cleavage in the chromosome induces the SOS response. (A) The pCRRNA plasmid programmed to target the lacZ1 position (black bars) or a control empty pCRRNA (white bars) were introduced in cells expressing Cas9 under the leaky control of a non-induced ptet promoter in the chromosome. SOS induction is reported by a GFPmut2 gene under the control of the sulA promoter (pZA31-sulA-GFP). GFP fluorescence was measured during exponential growth (mean.+-.s.d., n.gtoreq.3). (B) SOS response induced by targeting with different spacers. The bar marked as "control" indicates the auto-fluorescence level of E. coli without the pZA31-sulA-GFP plasmid. Spacers that cannot be transformed under constitutive Cas9 expression from the pCas9 (see FIG. 1B) are shown in white. Spacers that can be transformed but lead to the formation of small colonies (see FIG. 1B) are shown in grey. Finally, spacers that can be transformed in the presence of pCas9 and form colonies of regular size (see FIG. 1B) are shown in black (mean.+-.s.d., n.gtoreq.3). (C) analysis of Cas 9 induced deletions in recB-strain: the deletions observed after transformation of the stain are indicated.
[0022] FIG. 4: SOS activation by Cas9 cleavage of the lacZ1 target with or without anhydrotetracyclin (aTc) induction. The pZA31-sulA-GFP plasmid was used to monitor SOS induction after pCRRNA::O or pCRRNA::lacZ1 transformation in LCE03 cells expressing cas9 under the control of a ptet promoter in the chromosome (see Table 1). Cells were grown to an OD of 0.4 and 1 uM aTc was added. GFP fluorescence was measured 2H after induction. The strong GFP signal measured in the absence of aTc indicates that the ptet promoter controlling Cas9 is leaky.
[0023] FIG. 5: Map of plasmid psgRNAc BsaI SEQ ID NO: 62 (indicated as SEQ ID No. 123 in the priority application)
[0024] FIG. 6A-B: Gam can block DNA repair of double strand breaks introduced by Cas9. A) Representation of possible outcomes of Cas9 cleavage in the presence or absence of Gam. Upon targeting by weak spacers or in any other situation where a homologous template molecule is present in the cell, Cas9 breaks can be repaired through homology directed repair (HDR). In E. coli this can be achieved by the recBCD homologous recombination pathway. In the presence of Gam, DNA ends are protected from the action of recombinases. The presence of unrepaired DNA in the cell will ultimately lead to cell death. B) The pCas9 plasmid carrying either an empty CRISPR array, the lacZ1 spacer or the lacZ2 spacer was transformed in cells containing the pLC13 plasmid which carries the Mu gam gene under the control of a pBAD promoter. Transformants were plated on selective medium either with or without arabinose (-ara/+ara). The number of colony forming units is reported. Error bars represent the standard deviation of three independent assays.
[0025] FIG. 7: pPhIF-Cas9 plasmid map (SEQ ID NO: 68)
[0026] FIG. 8: pBAD-MuGam plasmid map (SEQ ID NO: 69)
[0027] FIG. 9: MuGam RBS library (selection). Black squares mark selected clones for further characterization. The RBS sequence upstream of the mu-gam gene in pBAD-MuGam was modified by running an iPCR reaction on the plasmid followed by a one-pot phosphorylation-ligation reaction. The religated plasmids were co-transformed into MG1655 cells containing the pPhIF-Cas9 plasmid, plated in LB-agar supplemented with 50 .mu.g/mL kanamycin, 100 .mu.g/mL chloramphenicol, 0.1 mM IPTG and 40 .mu.g/mL X-gal and grown for 20 hours at 30.degree. C. Next, 95 single colonies were selected and grown in 500 .mu.L LB supplemented with 50 .mu.g/mL kanamycin and 100 .mu.g/mL chloramphenicol in 96-deep-well plates for 18 hours at 1000 rpm at 30.degree. C. Next day, each culture was diluted 1:100 in distilled water. The cells were assayed in four conditions: plates without inducer; plates that contained 5 mM arabinose; plates that contained 0.1 mM DAPG; and plates that contained both 5 mM arabinose and 0.1 mM DAPG. This experiment allows for the comparison of cell morphology and/or toxicity in the presence of Mu-Gam only and its effects when Cas9-sgRNA is co-expressed. Highlighted RBS library hits (black rectangles) shows dying colonies upon induction of Cas9 and Mu-Gam.
[0028] FIG. 10: CFUs of droplet dilutions of selected MuGam RBS clone. One clone were selected for its potential Mu_Gam adjuvant activity and a more detailed characterization was performed on LB-agar plates in the particular conditions (no inducer; plus arabinose; plus DAPG; plus DAPG and arabinose). After an additional 24-hour incubation period CFUs were counted. For the "+DAPG, +Ara" dataset, colonies were directly counted from the undiluted droplet. For the "+DAPG" dataset, colonies were counted at 10.sup.-2 and 10.sup.-3 dilutions, the dilution factor calculated and the number of CFUs in the undiluted droplet estimated. For "No inducer" and "+Ara" conditions, the number of CFUs in the undiluted droplet was estimated by counting the number of colonies in the 10.sup.-5 and 10.sup.-6 dilutions and calculation the dilution factor.
[0029] FIG. 11: Activity of MuGam in a non-targeted sgRNA background. Cells containing pBAD-MuGam hit were co-transformed with a pPhIF-Cas9 variant with a non-targeted sgRNA sequence. Cells were analyzed by the droplet method as explained in (A) and CFUs counted. To estimate the CFUs in the undiluted droplet, CFUs were counted at the 10.sup.-6 and 10.sup.-5 dilutions, the dilution factor calculated and the number of CFUs in the undiluted droplet calculated. No toxicity of MuGam can be observed in the absence of Cas9 targeting in the chromosome.
[0030] FIG. 12: pBAD-LambdaGam plasmid map (SEQ ID NO: 72).
[0031] FIG. 13: pCas9-MuGam/LambdaGam plasmid map (SEQ ID NO: 71/SEQ ID NO: 72).
DETAILED DESCRIPTION OF THE INVENTION
[0032] In the aim to avoid bacterium DNA sequence repair after nuclease cleavage, the inventor found that specific proteins that bind the end of cleaved site may be used. The inventors thus implemented a method for killing bacterium comprising contacting the bacterium with an endonuclease, preferably encoded by a recombinant phagemid(s) or plasmid(s), wherein the recombinant phagemid(s) or plasmid(s) encodes an endonuclease that creates a double-stranded break in the chromosomal DNA of the bacterium, and an exogenous molecule that inhibits DNA repair.
[0033] In a preferred embodiment, the molecule is an exogenous protein that binds to the ends of the double-stranded break and inhibits DSB repair.
[0034] In another embodiment, the exogenous protein does not bind to the ends of the double strand break but affects other repairing mechanism, preferably recBCD.
[0035] In a particular embodiment, the method encompasses generating a double-strand break (DSB) in the chromosomal DNA of the cell using a chemical reagent such as nuclease, in particular a meganuclease selected from a Homing endonuceases (HEs) or an artificial endonuclease selected from the group comprising or consisting of a Zinc Finger Nuclease, TALEN and a CRISPR-Cas system, or using a physical reagent such as irradiation, or expressing said chemical reagent in the cell as a result of expression of a polynucleotide encoding the same when said cell has been genetically transformed with said polynucleotide.
[0036] In one embodiment, the endonuclease specifically cleaves the chromosomal or extrachromosomal DNA of the bacterium at less than 2, 3, 4, 5, 6, 7, 8, 9, or 10 different sites. Most preferably, the endonuclease specifically cleaves the chromosomal or extrachromosomal DNA of the bacterium at a single site.
[0037] In another embodiment of the invention, the protein which binds cleaved ends of DNA and block in such way DNA repair is selected from the group comprising or consisting of Mu phage Gam protein, a lambda phage Gam protein, or a phage T7 gp5.9 protein. Preferably, the protein is a recBCD or AddAB inhibitor. Other inhibitors of recBCD or AddAB are known in the art [43] In various embodiments, the bacterium comprises a recBCD homologous repair pathway or an AddAB system. In various embodiments, the bacterium does not comprise a recBCD homologous repair pathway or an AddAB system.
[0038] In the present invention a programmable nucleases and in particular the CRISPR-Cas9 system can be used as a sequence specific antimicrobial when delivered in bacterial populations [15] This system relies on the ability of the RNA-guided Cas9 nuclease to kill bacteria when introducing a double strand break in the chromosome. However, some bacterial DNA repair pathways can compete with Cas9 cleavage allowing cells to survive. The recBCD homologous repair pathway can indeed repair breaks introduced when Cas9 is guided by weak guide RNAs that do not lead to the simultaneous cleavage of all copies of the target sequence, leaving an intact copy of the target sequence available as a repair template at any given time.
[0039] The term "CRISPR" or "Clustered regularly interspaced short palindromic repeats" as used in the present invention relates to segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacteriophage virus or plasmid.
[0040] The term "CRISPR/Cas9 system" as used in the present invention relates to a prokaryotic immune system that confers resistance to foreign genetic elements such as those present within plasmids and phages and provides a form of acquired immunity. CRISPR spacers recognize and cut these exogenous genetic elements in a manner analogous to RNA interference in eukaryotic organisms. By delivering the Cas9 nuclease and appropriate guide RNAs into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added [07].
[0041] According to preferred embodiment of the invention, a DNA end binding protein known as Gam is used to prevent the action of the DNA repair machinery upon Cas9 cleavage. Gam is a protein from bacteriophage Mu that is orthologue to the Ku protein of NHEJ systems [44]. It is however not involved in repair but protects the Mu phage DNA in its linear form from host exonucleases [45]. Gam binds double strand ends (DSE) and protects them from recBCD exonuclease activity. It was shown that upon UV exposure, the survival of cells expressing Gam is similar to that of a recB mutant, indicating that Gam blocks DNA repair [46]. The inventors shown here that Gam expression can be combined with Cas9 targeting to efficiently kill bacteria even when using weak guide RNAs that would otherwise be tolerated by the cell.
[0042] The fact that not all targets are able to kill E. coli means that it might be difficult to use Cas9 as a reliable tool for genome editing or as a sequence-specific antimicrobial. In order to make Cas9 killing more reliable, the inventors investigated methods to prevent DNA repair which can restore Cas9's or other endonucleases' ability to kill a bacterium (e.g., E. coli) even when directed by a weak crRNA. The Gam protein of phage Mu binds double stranded ends and protects the phage DNA from degradation by host exonucleases. The inventors cloned the Mu gam gene under the control of a pBAD promoter and measured the transformation efficiency of pCas9 programmed either with a spacer that they previously described as weak (lacZ1) or with a stronger spacer (lacZ2). Surprisingly, transformation of pCas9::lacZ1 in the presence of arabinose led to .about.250.times. fewer colonies than in the absence of arabinose, while the expression of Gam had no effect on CFU numbers of a non-targeting control pCas9 plasmid. Also surprisingly, the efficiency of killing of the lacZ2 spacer, which is already good, was further improved .about.14.times. in the presence of Gam. Together, these results demonstrate the usefulness of using an inhibitor of double strand break repair pathways in combination with Cas9 or other endonucleases to ensure that it will kill the targeted cells.
[0043] As used herein the term "plasmid" relates to a small DNA molecule within a cell that is physically separated from a chromosomal DNA and can replicate independently. The plasmids are most commonly found in bacteria as small circular, double-stranded DNA molecules; however, plasmids are sometimes present in archaea and eukaryotic organisms. The artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms.
[0044] As used herein the term "phagmid" refers to a plasmid that can be packaged into a phage capsid. This includes f1/M13 filamentous phages but also other type of phages. A phagemid is thus defined as a DNA circuit that can be packaged into a phage capsid and delivered to target bacteria. Typically a phagemid is obtained from a temperate phage by cloning the packaging signal of the phage on a plasmid. The production of phagemid particles, i.e. the plasmid DNA packaged into the phage protein capsids, is achieved by using a production strain carrying the lysogenic helper phage and the phagemid. Upon induction of the phage lytic cycle, phage capsids are produced that will package the phagemid DNA. The packaging signal can be removed from the helper phage in order to obtain pure phagemid particles.
[0045] According to one embodiment of the method of the present invention a phagemid(s) or bacterial conjugation can be used to deliver the endonuclease and the inhibitor of DSB repair, particularly a protein that binds to the ends of the double-stranded break and inhibits DSB repair. Suitable phagemids can be based on the following phages, including M13, lambda, p22, T7, Mu, T4 phage, PBSX, P1 Puna-like, P2, 13, Bcep 1, Bcep 43, Bcep 78, T5 phage, phi, C2, L5, HK97, N15, T3 phage, P37, MS2, Q.beta., or Phi X 174. Preferred phages are selected from .lamda. phage, T2 phage, T4 phage, T7 phage, T12 phage, R17 phage, M13 phage, MS2 phage, G4 phage, P1 phage, Enterobacteria phage P2, P4 phage, Phi X 174 phage, N4 phage, Pseudomonas phage .PHI.6, .PHI.29 phage, and 186 phage. Other suitable phages can be found in the Felix d'Herelle collection (http://www.phage.ulaval.ca/en/accueil/).
[0046] According to one embodiment of the invention, one phagimid or plasmid encodes the endonuclease and another phagemid or plasmid encodes the protein inhibiting DSB repair.
[0047] According to another embodiment, the protein inhibiting DSB repair is synthetized prior to contacting it with bacterium.
[0048] In a specific embodiment of the method, the prokaryotic cell, in particular a bacterial cell, is transformed with DNA polynucleotide(s) encoding the polypeptide(s) and RNA transcripts of a bacterial CRISPR-Cas system comprising (i) a nucleic acid molecule encoding a programmable double-stranded DNA Cas endonuclease and (ii) DNA molecule(s) comprising a combination of sequences encoding a guide RNA (gRNA) encompassing the crRNA and tracrRNA transcripts, wherein the DNA molecule(s) is (are) either a two-molecule DNA encoding crDNA and tracrRNA independently or a chimeric DNA encoding a single crRNA-tracrRNA transcript (said chimeric DNA being designated as sgRNA for single guide RNA), wherein the nucleic acid molecule and DNA molecule(s) are under the control of regulatory elements for transcription including promoter(s).
[0049] The crRNA (CRISPR RNA) is encoded by a DNA molecule comprising a CRISPR array that comprises one or multiple distinct DNA sequence(s) (designated spacer(s)) suitable for screening or for recognition of and base pairing hydridization to one or respectively multiple distinct target nucleotide sequence(s) in a genomic nucleic acid in said prokaryotic cell said spacer sequence(s) being framed by a repeat sequence, said DNA being transcribed as a primary transcript which gives rise to short crRNA by processing.
[0050] crRNA is obtained as a result of the processing of the primary transcript of the CRISPR array, said processing involving binding of the tracrRNA transcript to the repeat region of the CRISPR primary transcript and recognition of the tracrRNA::CRISPR RNA duplex by Cas, especially Cas 9 and cleavage by the host RNAselII.
[0051] According to the invention, the DNA polynucleotide(s) encoding the polypeptide(s) and RNA transcripts of the CRISPR-Cas system are borne by a vector, in particular a recombinant plasmid(s) or phagemid(s).
[0052] In the DNA polynucleotide(s) encoding the guide RNA, the DNA molecule encoding the tracrRNA can be combined or fused, on a single plasmid or phagemid, with the sequence encoding the crRNA comprising the CRISPR array. In the CRISPR array a leader sequence may be present adjacent to the spacer sequences framed by the repeat sequences.
[0053] In the plasmid(s) or phagemid(s), the coding sequences are under the control of a promoter for transcription, in particular a constitutive promoter or an inducible promoter.
[0054] According to the invention, the DNA polynucleotide(s) encoding the polypeptide(s) and RNA transcripts of the CRISPR-Cas system comprise(s) (i) a nucleic acid molecule encoding a programmable double-stranded DNA Cas endocuclease and (ii) DNA molecule(s) comprising a combination of or alternatively a fusion of a sequence encoding a guide RNA (gRNA) which comprises the crRNA and the tracrRNA transcripts, wherein the DNA molecule encoding the crRNA encompasses (a) a CRISPR array and (b) a sequence complementary to part of a sequence of the tracRNA coding sequence.
[0055] In a particular embodiment, the CRISPR system is from a Streptococcus, particularly a Streptococcus pyogenes.
[0056] In one embodiment, the bacterium is a Mycobacterium, in particular Mycobacterium tuberculosis, or a Pseudomonas, in particular Pseudomonas aeruginosa. In various embodiments, the bacterium is selected from the group comprising or consisting of an E. coli, a Bacillus subtilis, a Pseudomonas Aeruginosa, a Mycobacteria, a Streptococcus pyogenes, or a Staplylococcus aureus. In various embodiments, the bacterium is selected from the group comprising or consisting of an Enterococci, Clostridium diffcile, Enterobacteriaceae, Neisseria gonorrhoeae, Acinetobacter, Campylobacter, Salmonella, Shigella, or Streptococcus pneumonia.
[0057] In preferred embodiment, bacteria are selected from the group comprising Enterobacter, Streptococci, Staphylococci, Enterococci, particularly E. coli, Salmonella, Pseudomonas Aeruginosa, Mycobacterium tuberculosis, Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecali.
[0058] Particularly, bacteria are antibiotic resistant bacteria.
[0059] The invention further relates to the use of the method of the invention for making a bacterium more susceptible to an antibiotic comprising contacting the bacterium with an endonuclease, preferably encoded by a recombinant phagemid(s) or plasmid(s), wherein the endonuclease creates a double-stranded break in an antibiotic resistance gene encoded by the bacterium, the antibiotic, and an exogenous molecule that inhibits DNA repair. In a preferred embodiment, the molecule is an exogenous protein that binds to the ends of the double-stranded break and inhibits DSB repair that binds to the ends of the double-stranded break and inhibits DSB repair. Preferably, the protein is Mu phage Gam protein, a lambda phage Gam protein, or a phage T7 gp5.9 protein. Preferably, the protein is a recBCD or AddAB inhibitor. Other inhibitors of recBCD are for example genes abc1 and abc2 from phage P22 [43].
[0060] Introduction of a DSB in the chromosome (and in the presence of Gam) will kill the bacterium, no matter where the target is. If the target is in an antibiotic resistance gene, the bacterium will die and will thus not be resensitized to the antibiotic. On the other hand, if the target is carried by a plasmid, no matter where the target is on the plasmid sequence, then the plasmid will be destroyed. If the plasmid carries an antibiotic resistance gene, then the bacterium will be made more susceptible to the antibiotic.
[0061] Preferably, the double-strand break(s) is (are) performed in a chromosomal context, i.e. on a double strand DNA when it is present on the chromosomal DNA of the cell, either naturally or as a result of insertion of a DNA sequence in said cell chromosome(s).
[0062] The prokaryotic cell, in particular the bacterial cell used to carry out the methods of the invention can be an isolated cell or a culture of cells.
[0063] The invention also relates to a method for making a bacterium more susceptible to an antibiotic comprising contacting the bacterium with an endonuclease, preferably encoded by a recombinant phagemid(s) or plasmid(s), wherein the endonuclease creates a double-stranded break in an antibiotic resistance gene encoded by the bacterium, the antibiotic, and an exogenous molecule that inhibits DNA repair. This method have the same characteristics as the method of the invention for making a bacterium more susceptible to an antibiotic described above.
[0064] The invention encompasses phagemid vectors and plasmids encoding endonucleases and/or proteins that inhibit DSB repair. Preferably, the phagemid or plasmid vector(s) encodes the endnuclease and the protein that binds to the ends of the double-stranded break and inhibits DSB repair.
[0065] According to one embodiment of the invention, the plasmid or phagimig vector encodes only the endonuclease and the protein inhibiting DSB repair is encoded by another plasmid or phagimid.
[0066] In one embodiment the endonuclease encoded by phagemid and/or plasmid vectors is selected from a meganuclease, preferably a Homing endonuclease (HEs) or an artificial endonuclease, preferably selected from the group comprising a Zinc Finger Nuclease, TALEN and Cas nuclease of CRISPR-Cas system, more preferably, a Cas9 nuclease, a guide RNA, and the exogenous protein is selected from the group comprising Mu phage Gam protein, a lambda phage Gam protein, a phage T7 gp5.9 protein, preferably a Mu phage Gam protein and a lambda phage Gam protein.
[0067] According to one preferred embodiment of the invention, the phagemid(s) or plasmid(s) encode a nuclease, a guide RNA, and an exogenous protein.
[0068] According to another preferred embodiment the guide RNA encompasses a two molecule DNA encoding a CRISPR system's crRNA and tracrRNA independently or a chimeric DNA (sgRNA) encoding a single crRNA-tracrRNA transcript.
[0069] Most preferably, the phagemid(s) or plamid(s) encode a Cas9 nuclease, a guide RNA, and an exogenous Gam protein. In various embodiments, the guide RNA targets an antibiotic resistance plasmid or a plasmid carrying virulence genes. In various embodiments, the guide RNA targets the bacterial chromosome. In various embodiments, the phagemid vector is a P1 bacteriophage. In various embodiments, the phagemid vector is a .lamda. bacteriophage.
[0070] The invention accordingly relates in particular to a plasmid or phagemid vector encoding a CRISPR-Cas system, in particular wherein the CRISPR-Cas system is a type II CRISPR associated (Cas) system comprising DNA polynucleotide(s) encoding the polypeptide(s) and RNA transcripts of a bacterial CRISPR-Cas system encompassing (i) a polynucleotide comprising a sequence encoding a Cas double-stranded DNA endonuclease, in particular Cas 9, (ii) DNA molecule(s) comprising a combination of sequences encoding a guide RNA (gRNA) encompassing the crRNA and tracrRNA transcripts, wherein the DNA molecule(s) is (are) either a two-molecule DNA encoding crRNA and tracrRNA independently or a chimeric DNA encoding a single crRNA-tracrRNA transcript (said chimeric DNA being designated as sgRNA for single guide RNA), wherein the nucleic acid molecule and DNA molecule(s) are under the control of regulatory elements for transcription including promoter(s) wherein in the gRNA a succession of DNA targeting nucleotide sequences (designated spacers) having 20 to 40 nucleotides, in particular 30 nucleotides or any value in the ranges defined by the thus disclosed values is present and wherein each spacer's transcript is intended to screen or is able to target a specific DNA sequence of interest to form a RNA-DNA interaction with the target sequence and wherein each spacer is framed by identical DNA repeat sequences. Said CRISPR associated Cas system is provided in the cell as a single operon or as multiple polynucleotides.
[0071] The so-called spacer sequence may be designed to target a specific nucleotide sequence in the chromosomal DNA of the cell, i.e. to target a determined polynucleotide strand. In a particular embodiment, the spacer sequence may be designed to possibly hybridize with a known sequence of nucleotides of a chromosome in a determined polynucleotide of interest. Alternatively it may be designed randomly, i.e., with no predetermined target in the chromosomal sequence of the cell and accordingly the polynucleotide of interest may be a sequence randomly targeted or screened in said chromosomal DNA. The spacer(s) sequence may thus be the natural sequence of the CRISPR system or may be a sequence heterologous to said natural CRISPR system, selected for its ability to target a proper determined or undetermined sequence in the chromosomal DNA of the prokaryotic cell. Accordingly, the CRISPR system is designed for programmed targeting in the chromosomal DNA of the prokaryotic cell whether the sequence of the targeted polynucleotide comprising the target is known or not said sequence being of prokaryotic origin or brought to the prokaryotic cell from a eukaryotic DNA by recombination of the prokaryotic cell.
[0072] The targeted polynucleotide may be of any type and is further disclosed hereafter.
[0073] The "repeat sequence" that frames the spacer sequences in the CRISPR system is involved in the maturation of the preCRISPR RNA transcript and in the mature transcript designated crRNA. Accordingly, part of the repeat sequence is contained in the crRNA. The repeat sequence may encompass 20 to 50, in particular 20 to 40 or 35 to 40 nucleotides or any range that may be defined having recourse to these disclosed values, or any value in-between and especially 36 nucleotides as illustrated in the example of S. pyrogenes.
[0074] For Illustration, particular repeat sequences are SEQ ID Nos 1 to 10 below (these sequences correspond to the SEQ ID Nos: 99 to 108 of the priority application):
TABLE-US-00001 SEQ ID No. 1 (GTTTTTGTACTCTCAAGATTTAAGTAACTGTACAAC) SEQ ID No. 2 (GATATAAACCTAATTACCTCGAGAGGGGACGGAAAC) SEQ ID No. 3 (GTTTTGGAACCATTCGAAACAACACAGCTCTAAAAC) SEQ ID No. 4 (GTTTTAGAGCTATGCTGTTTTGAATGGTCCCAAAAC) SEQ ID No. 5 (ATTTCAATCCACTCACCCATGAAGGGTGAGAC) SEQ ID No. 6 (GTTTCAGTAGCTAGATTATTTGATATACTGCTGTTAG) SEQ ID No. 7 (AATCAGAGAATACCCCGTATAAAAGGGGACGAGAAC) SEQ ID No. 8 (GTTCACTGCCGCACAGGCAGCTTAGAAA) SEQ ID No. 9 (GGTTGTAGCTCCCTTTCTCATTTCGCAGTGCTACAAT) SEQ ID No. 10 (CCGGATTCCCGCCTGCGCGGGAATGACG)
[0075] As mentioned above, alternatively to being composed of a DNA molecule encoding the Cas9 protein and DNA molecules encoding tracrRNA and crRNA transcripts provided as separate genes, the CRISPR-Cas system is a type II CRISPR associated (Cas) system encompassing (i) a polynucleotide comprising a sequence encoding a Cas double-stranded DNA endonuclease, in particular Cas 9, and (ii) a chimeric DNA that is transcribed as a chimeric RNA i.e., single guide RNA (sgRNA) encompassing a fusion of the nucleic acids transcribed as the tracrRNA and the crRNA on the same or on a different plasmid or phagemid as the one expressing Cas.
[0076] The CRISPR associated system may encompass a Cas double-stranded DNA endonuclease the gene of which flanks the polynucleotide encoding the gRNA or the sgRNA in a Cas operon. This CRISPR associated system may involve in particular the programmable endonuclease Cas 9 as described in detail in the Examples and illustrated for the performance of DSB in E. coli.
[0077] Alternatively, the gene of the CAS endonuclease may be provided on a separate DNA construct. The polynucleotide encoding the gRNA or the sgRNA (CRISPR genetic construct) and the polynucleotide encoding the endonuclease may thus be introduced into the cell by transformation with a single or multiple plasmids or phagemids.
[0078] The CRISPR array comprises one or multiple spacer sequences framed by a repeat sequence that are transcribed into pre-CRISPR RNA which is processed to small RNA sequences (crRNA) that allow DNA targeting in the chromosomal nucleic acid of the prokaryotic cell, the DNA target being complementary enough to the spacer transcript present in the crRNA to hybridize with it when the target DNA comprises, in addition, immediately downstream to the target region, a recognition sequence designated PAM sequence (Photospacer-adjacent Motif).
[0079] The spacer sequence(s) of the CRISPR array may advantageously consist of 20 to 40 nucleotides, in particular 30 nucleotides or any value in the ranges defined by the thus disclosed values and the sequence(s) are chosen by reference to the target in the chromosomal nucleic acid or as a random sequence when no specific sequence is targeted in the nucleic acid. The repeat sequence in the CRISPR system is one which may be processed by the enzymes of the prokaryotic cell thereby giving rise to the small crRNA encompassing a transcript of at least part of the repeat sequence. Illustration of spacer sequences is provided herein as SEQ ID No. 1 to 10 and in the Examples.
[0080] The polynucleotide transcribed into the tracrRNA is a short RNA antisense to the precursor RNA. The formed tracrRNA enables the loading of the crRNA on the Cas protein and accordingly participates in a RNA-protein complex that involves tracrRNA, crRNA and Cas protein (so-called dual-RNA:Cas) that targets the chromosomal nucleic acid to then allow the DSB to take place at the targeted loci. As mentioned above, the nucleic acids transcribed as the tracrRNA and the crRNA may be fused in a chimeric nucleic acid giving rise to a sgRNA when the CRISPR system is active in the cell.
[0081] In a particular embodiment, the CRISPR-Cas system is composed of associated nucleic acid molecules, one of them encoding the Cas 9 protein and the additional one(s) being transcribed as the tracrRNA, and as the crRNA, the nucleic acids being under the control of distinct or common regulatory sequences for expression, including a promoter. In a particular embodiment the tracrRNA and crRNA give rise to a chimeric transcript i.e., a sgRNA and are under the control of the same transcription promoter.
[0082] Optionally, the nucleic acid molecules are borne by different plasmids or phagemids and remain independent. The polynucleotide or nucleic acid molecules are under the control of suitable transcription or expression control elements.
[0083] In a particular embodiment, the CRISPR-associated Cas9 system is encoded by a nucleic acid from a Streptococcus genus in particular from a Streptococcus pyrogenes strain.
[0084] In a preferred embodiment, the CRISPR system comprises the sequence of the leader and the repeat sequence from the locus of Streptococcus pyrogenes disclosed as SF370 under accession number NC_002737.
[0085] In a particular embodiment the CRISPR-Cas system is provided by plasmid pCas9 (also named pCas9-a) having the sequence of SEQ ID NO: 60 (indicated as SEQ ID No. 117 in the priority application) or a derivative thereof, particularly a phagemid, wherein the region corresponding to the control spacer, from nucleotide position 6520 to position 6549, is substituted by one or multiple spacer(s) of choice or is provided by plasmid pCas9-LacZ2 having the sequence of SEQ ID NO: 61 (indicated as SEQ ID No. 119 in the priority application) or a derivative thereof, particularly a phagemid, wherein the region from nucleotide position 6520 to position 6549 (CRISPR target ELZ2) is substituted by one or multiple spacer(s) of choice.
[0086] Other bacterial species may provide the Cas 9 protein or nucleic acid molecule encoding the Cas 9 protein. These species include, for illustrative purposes only: Francisella novicida, Legionella pneumophila, Streptococcus thermophulus, Streptococcus mutans, Coriobacterium glomerans, Staphylococcus lugdumensis, Enterococcus faecalis, Mycoplasma canis, Campylobacter jejuni, Neisseria meningitidis, Pasteurella multocida.
[0087] According to another particular embodiment of the invention, the CRISPR system is provided by two plasmids or phagemids used for the transformation of the cell: a first plasmid or phagemid provides the polynucleotides encoding the Cas protein (said first plasmid or phagemid can be built on the same basis as the pCas9 provided it is not recombined with the sequence encoding the crRNA and the tracrRNA transcripts), a second plasmid or phagemid that encodes the crRNA and the tracrRNA transcripts said second plasmid or phagemid comprising in a particular embodiment a DNA polynucleotide that comprises the "gRNA scaffold for the CRISPR/Cas 9 system" having the sequence from nucleotide 1565 to nucleotide 1640 in the sequence of SEQ ID NO:62 (indicated as SEQ ID No. 123.in the priority application).
[0088] Said second plasmid or phagemid can be in particular derived from plasmid psgRNAc BsaI (SEQ ID No. 62).
[0089] According to a particular embodiment of the invention, in the second plasmid or phagemid, the DNA polynucleotide(s) comprise(s) in addition, the sequence of the tracrRNA ending at position 1647 in the sequence of SEQ ID No. 62.
[0090] According to a particular embodiment of the invention, said second recombinant plasmid or phagemid encoding the single guide RNA for the CRISPR/Cas 9 system comprises the sequence of SEQ ID No.62. In said phagemid, the sequence of the control spacer from nucleotide position 1545 to nucleotide position 1564 in the sequence of SEQ ID No. 62 may be substituted by any selected sequence of choice for a spacer and in particular a spacer sequence disclosed herein.
[0091] The protein that binds to the ends of the double-stranded break and inhibits DSB repair can be expressed from either the first or second recombinant plasmid or phagemid or on a third plasmid or phagemid.
[0092] In a particular embodiment the CRISPR-associated Cas9 system is expressed in the recombinant prokaryotic cell as a ternary complex that involves tracrRNA paired to crRNA and bound to Cas9 wherein the crRNA targets DNA on the chromosome of the recombinant prokaryotic cell to cause at least one DSB in the DNA.
[0093] In a particular embodiment, the CRISPR array comprises 1 to 10, in particular 1 to 5 spacer sequences. When multiple spacer sequences are thus contained in the CRISPR array, this array is transcribed as multiple crRNA molecules having distinct spacer sequence, thereby enabling multiplex DSB to take place at different loci of the chromosomal DNA of the prokaryotic cell.
[0094] In a particular embodiment of the invention, the method is used to introduce DSBs at any locus (loci) of interest in the chromosome simply by changing the sequence of the guide spacer.
[0095] According to the invention, a chromosomal sequence, in which a DSB is generated is defined as a "polynucleotide of interest". According to a particular embodiment, as stated above, a polynucleotide of interest can be a targeted polynucleotide despite it does not require that its nucleotide sequence upstream and downstream of the cut site for DSB is determined. Targeting in this respect may rely on criteria such as location into the chromosome, functional parameters of the target DNA, which are known or are to be identified, involvement in phenotypic traits, or structural parameters of the DNA. Targeting may take into consideration possible functional or structural relationship among multiple DNA. Alternatively, in another embodiment of the invention, the said polynucleotide of interest is a nucleic acid which is heterologous with respect to the natural chromosomal nucleic acid of the prokaryotic cells wherein the invention is carried out. The expression "heterologous" means that said nucleic acid is originating from a different cell, species or organism than the cell type which is used to perform the invention, or is a non-naturally occurring nucleic acid such as a chimeric or an artificial nucleic acid. Such heterologous polynucleotide may nevertheless have been inserted in the genome of the cell, possibly using recombinant technologies. In a particular embodiment the heterologous sequence may be a eukaryotic DNA sequence, especially a chromosomal eukaryotic sequence.
[0096] The polynucleotide of interest may comprise the cleavage site where the DSB is generated and the required PAM (photospacer adjacent motif) sequence the latter corresponding to a sequence either naturally present in the target DNA or introduced in it. The PAM sequence is recognized by the Cas protein and is accordingly dependent of the choice of this protein. The PAM sequence functional with the Cas9 protein is a sequence 5'XGG3' on the complementary strand of the target polynucleotide, wherein X means any nucleotide.
[0097] Alternatively, the polynucleotide of interest may have been inserted into the chromosomal substrate through the action of an agent or of an organism, such as a bactreiophage.
[0098] The polynucleotide of interest can be in its native form, or it may have undergone modifications with respect to a reference wild-type form if any, especially when it is a polynucleotide which is inserted and integrated in the chromosomes of the cell. The modifications may be carried out prior to or after the insertion into the cell or as a result of recombination into the cell genome.
[0099] The polynucleotide of interest of the invention, either known in its composition or randomly selected (random polynucleotide), may be a nucleic acid of a gene or of a gene fragment, including an exon, an intron, an expression regulatory sequence such as a promoter, a coding sequence, a non-coding sequence. It may be a nucleic acid of prokaryotic or of eukaryotic origin. It may be a nucleic acid, especially of prokaryotic origin, originating from a pathogenic organism, such as a viral or bacterial or parasite nucleic acid, including a protein coding sequence. It may be a nucleic acid of prokaryotic origin, originating from a non-pathogenic organism.
[0100] The polynucleotide of interest of the invention may be present as a single sequence in the chromosomal substrate of the cell or rather may be present as multiple copies of its sequence, either contiguous in the chromosome or spread on the chromosome. In a particular embodiment, different polynucleotides, i.e., polynucleotides having different nucleotide sequences, present in the chromosomal substrate of the cell are subject to the double-strand break.
[0101] According to a first step of the method of the invention, a DSB is generated in a targeted way in the DNA sequence of the targeted polynucleotide, which means that a specific locus of the polynucleotide is the target of the break in the prokaryotic cell.
[0102] In another embodiment of the invention, the site for the DSB is not a single site, i.e., there can be multiple sites in the polynucleotide.
[0103] Double-strand break site for the purpose of the invention may be unique in the polynucleotide of interest (giving rise to a single DSB event) or may be multiple (giving rise to multiple DSB events) especially as a result of the presence of multiple distinct spacers in the CRISPR system. DSB sites are indeed determined by the sequence of the spacer(s) of the CRISPR system and the presence in the chromosomal DNA (possibly after modification) of PAM sequences.
[0104] As a result of the CRISPR construct used, it is possible to perform double-strand break, especially targeted DSB, in one or more than one locus of the chromosomal DNA of prokaryotic cells.
[0105] As examples of DNA targets of interest, the invention provides nucleic acids consisting in or contained in:
[0106] a gene expressing an enzyme, such as a kinase, in particular wherein the sequence of the polynucleotide of interest encodes the active site of the enzyme,
[0107] a gene expressing a cell receptor,
[0108] a gene expressing a structural protein, a secreted protein,
[0109] a gene expressing resistance to an antibiotic, or to a drug in general
[0110] a gene expressing a toxic protein or a toxic factor,
[0111] a gene expressing a virulence protein or a virulence factor,
[0112] a polynucleotide, especially a gene of a pathogen such as a virus a bacterium or a parasite,
[0113] regulatory sequences for transcription or for expression of said genes.
[0114] In one embodiment, the method of the invention may be used for increasing the nuclease activity, particularly when in suboptimal conditions (variating the in vitro used conditions) or when there is one or several mutations in target DNA, the nuclease activity is decreased. Thus, the method of the invention may be used for enhancing nuclease efficiency.
[0115] In one aspect the present invention also relates to a host cell comprising a vector encoding an endonuclease according to the invention and a vector encoding a protein inhibiting DSB repair.
[0116] In one embodiment, the host cell can contain a vector encoding an endonuclease and a protein inhibiting DSB repair.
[0117] Such host cell may be used for research purposes.
[0118] In another aspect, the invention also relates to a pharmaceutical composition comprising the vector as described above and a pharmaceutical acceptable vehicle for the treatment of diseases due to a bacterium infection.
[0119] In the context of the present invention "pharmaceutical acceptable vehicle" refers to a compound, or a combination of compounds, entering a pharmaceutical composition that does not cause secondary reactions and that, for example, facilitates administration of the active compounds, increases its lifespan and/or effectiveness in the organism, increases its solubility in solution or improves its storage. Such pharmaceutical carriers are well-known and will be adapted by a person skilled in the art according to the nature and the administration route of the active compounds selected.
[0120] The pharmaceutical composition according to the invention further comprises a vector encoding the protein inhibiting DSB repair or protein inhibiting DSB repair.
[0121] In one embodiment, the pharmaceutical composition is suitable for the treatment of diseases due to a bacterium selected from the group comprising Enterobacter, Streptococci, Staphylococci, Enterococci, Salmonella, Pseudomonas, Mycobacterium.
[0122] In another embodiment, the pharmaceutical composition further comprising an antibiotic, particularly a suitable antibiotic for treating infection due to a bacterium selected from the group of Enterobacter, Streptococci, Staphylococci, Enterococci Salmonella, Pseudomonas, Mycobacterium.
[0123] According to a further aspect, the invention relates to a product comprising
[0124] at least one phagemid or plasmid vector of the invention as described above or a pharmaceutical composition of the invention, and
[0125] at least another therapeutic agent, in particular an antibiotic
[0126] as a combination product for simultaneous, separate or sequential use for the treatment of at least one disease due to a bacterium infection, particularly an infection due to at least one bacterium selected from the group comprising Enterobacter, Streptococci, Staphylococci, Enterococci, Salmonella, Pseudomonas, Mycobacterium.
[0127] According to another aspect, the invention also relates to a method for treating diseases due to a bacterial infection, said method comprising administering at least one phagemid or plasmid vector or a pharmaceutical composition or a product according to the invention to a subject suffering from a bacterium infection.
[0128] According to one embodiment, the therapeutic method of the invention is used for treating a patient suffering from an infection with at least one bacterium selected in the group comprising Enterobacter, Streptococci, Staphylococci, Enterococci, Salmonella, Pseudomonas, Mycobacterium.
[0129] Further characteristics and embodiments will be apparent from the Examples which follow and from the figures.
EXAMPLES
Example 1 Effect of Double Strand Breaks Introduced by Cas9 on Cell Death and Conditions for Survival to Such DNA Damage
[0130] Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas) genes are the adaptive immune system of bacteria and archaea [1]. The RNA-guided Cas9 nuclease from Streptococcus pyogenes has emerged as a useful and versatile tool [2]. The ease with which it can be reprogrammed has in particular been driving its adoption for genome editing applications. Cas9 is guided by a small CRISPR RNA (crRNA) that is processed from the initial transcript of the CRISPR locus by Cas9 together with a trans-activating CRISPR RNA (tracrRNA) and the host RNAselII [3]. Both the tracrRNA and the processed crRNA remain bound to Cas9 and act as a complex to direct interference against target DNA molecules[4]. Alternatively, the crRNA and tracrRNA can be fused forming a chimeric single guide RNA (sgRNA) [4]. Cas9 scans DNA looking for a short sequence motif known as the Protospacer Adjacent Motif (PAM) [5]. Once a PAM is found, DNA is unwound to make base-pair contacts between the crRNA and the target DNA. If base-pairing occurs, a conformational shift in Cas9 brings two nuclease domains in contact with the target DNA leading to the creation of a double strand break (DSB) [6].
[0131] Genome editing using Cas9 has been reported in a large number of eukaryotes including insects, plants, mammals, yeast, zebrafish, xenopus and nematode [2]. However it has so far only been demonstrated in a few bacteria species and with a handful of target positions [7-9]. In eukaryotic cells DSB introduced by Cas9 can be repaired through Homology Directed Repair (HDR) with a template DNA molecule carrying a mutation of interest [10,11]. Alternatively, error-prone repair by Non-Homologous End Joining (NHEJ) can lead to small indels at the target site which are used to knockout genes [10,11]. In contrast, most bacteria lack a NHEJ system [12,13] and Cas9-induced breaks in bacterial genomes lead to cell death [14-16]. This repair pathway thus cannot be used to introduce small deletions and knockout genes. However, the ability to kill bacteria carrying a specific sequence in the chromosome can be used in conjunction with a mutagenesis strategy to select for cells that carry a desired mutation [7].
[0132] More recently, the ability of chromosome-targeting CRISPR systems to kill bacteria was used to develop sequence-specific antimicrobials [14,15]. In these studies phage capsids are used to deliver a CRISPR system programmed to target antibiotic resistance or virulence genes either in E. coli or S. aureus. In both cases this strategy was able to efficiently kill the targeted bacteria specifically.
[0133] First, the inventors investigated why DSB introduced by Cas9 leads to cell death and whether some cells can survive such DNA damage.
Example 2 Bacterial Strains and Media
[0134] E. coli strains were grown in Luria-Bertani (LB) broth (10 g Tryptone, 5 g Yeast Extract, 10 g NaCl, add ddH2O to 1000 ml, PH7.5, autoclaved). 1.5% LB Agar was used as solid medium. Different antibiotics (20 ug/ml chloramphenicol, 100 ug/ml carbenicillin, 50 ug/ml kanamycin) were used as needed. Plates containing IPTG (100 uM) and X-gal (40 ug/ml) were used for blue/white screening. Escherichia coli strain MG1656 (a .DELTA.lacI-lacZ derivative of MG1655) was used as a cloning strain for plasmid pCas9::lacZ2 (see below). E. coli strains N4278 (MG1655 recB268::Tn10).sup.29, MG1655 RecA::Tn10 and JJC443 (lexAind3 MalF::Tn10).sup.30 are gifts from the Mazel lab.
Example 3 Plasmid Cloning
[0135] pCRRNA was assembled by amplification of pCRISPR using primer B299/LC34 and of the tracrRNA fragment from pCas9 using primers LC35/LC36, followed by Gibson assembly [31]. Novel spacers were cloned into pCRRNA or pCas9 plasmids as previously described [7]. The vector was digested with BsaI, followed by ligation of annealed oligonucleotides designed as follows: 5'-aaac+(target sequence)+g-3' and 5'-aaaac+(reverse complement of the target sequence)-3'. A list of all spacers tested in this study is provided in (Table 2 in the present application was indicated with the number 4 in the text of the priority application corresponding to the table 2 of the priority application).
[0136] The pLCX plasmid was assembled from the pCRISPR backbone amplified using primers LC41/LC42 and two lacZ fragments amplified from MG1655 genomic DNA using primers LC38/LC39 and LC37/LC40. The pZA31-sulA-GFP plasmid was assembled from pZA31-Luc [32] linearized with primers LC192/LC193, the sulA promoter fragment amplified with primers LC194/LC196 and GFPmut2 [33] amplified with primers LC191/LC195. All PCR primers are listed in (Table 3 in the present application was indicated with the number 5 in the text of the priority application corresponding to the table 3 of the priority application).
Example 4 CRISPR Transformation Assays
[0137] The pCRRNA or pCas9 plasmids (with different spacers) were transformed in recipient E. coli strains by chemical transformation using 100 ng of plasmid DNA. CFU numbers were normalized by pUC19 transformation efficiency. All transformations were repeated at least 3 times.
Example 5 SOS Response
[0138] The pZA31-sulA-GFP plasmid was used to monitor SOS induction [34]. The OSIP system [36] was used to integrate cas9 or dcas9 under the control of a ptet promoter [20] in the chromosome of strains MG1655, N4278 (MG1655 recB268:Tn10) [29], MG1655 RecA::Tn10 and JJC443 (lexAind3 MalF::Tn10) [30] (Table 1 in the present application was indicated with the number 3 in the text of the priority application corresponding to the table 1 of the priority application). pCRRNA plasmids with different spacers were transformed by chemical transformation. Colonies isolated from the transformation plate were re-suspended in 200 ul LB in a 96 well microtiter plate. The microtiter plate was loaded into a TECAN infinite M200 Pro machine. OD (600 nm) and GFP fluorescence (excitation filter set to 486 nm and emission filter set to 518 nm) were measured over a 10 hour time course. GFP values at OD of 0.4 are reported.
Example 6 Cloning of the pLC13 Plasmid
[0139] The pLC13 plasmid was constructed through Gibson assembly of plasmid pBAD18 [47, amplified with primers LC2/LC296 together with the gam gene of bacteriophage Mu amplified with primers LC397/LC398 from the genomic DNA of E. coli S17-1 LPIR[5]. The sequence of pLC13 (which is fully present in the text of the description of the priority application) corresponds to SEQ ID NO: 11 of the sequence listed annexed to the present specification.
Example 7 pCas9 Transformation and Plating Assay
[0140] The pCas9, pCas9:LacZ1 and pCas9:LacZ2 plasmids were transferred into MG1655 cells carrying the pLC13 plasmid. Cells were plated on LB-agar with or without 0.2% L-arabinose. Serial dilutions were performed to quantify CFU for each transformation.
TABLE-US-00002 TABLE 4 Primers used for pCas9 transfection. SEQ ID Primer NO: Name Primer sequences (5' to 3') 12 LC2 CCTTCTTAAAGTTACCGAGCTCGAATTCGC 13 LC296 TATATTTTAGGAATTCTAAAGATCTTTGACA GCTAGCTCAGTCCTAGGTATAATACTAGT 14 LC397 ATCCGCCAAAACAGCCAATTAAATACCGGCT TCCTGTTC 15 LC398 GCGAATTCGAGCTCGGTAACTTTAAGAAGGA GATATACCATGGCTAAACCAGCAAAACGT
Example 8 E. coli can Survive Cas9 Cleavage Through Homology Directed Repair
[0141] Evidence that CRISPR interference directed against the chromosome leads to cell death first came from the observation that an active CRISPR system and its target cannot coexist in the same cell [16-18]. Transformation of E. coli by a plasmid carrying a CRISPR system targeting the chromosome is very inefficient, typically resulting in 1,000-fold decrease in transformation efficiency compared to a non-targeting control [7,17, 19]. In a previous study, we took advantage of this to introduce a mutation in the rpsL gene of E. coli [7]. Targeting of the rpsL gene by Cas9 killed the cells that did not incorporate a desired mutation provided by an oligonucleotide. To investigate whether this approach could be extended to other loci, we programmed a plasmid-born CRISPR array to target 12 positions spread throughout the E. coli chromosome and compared them with the rpsL target previously published. All targets were chosen in non-essential genes to ensure that killing by Cas9 would be the result of DNA cleavage and not repression of the target gene [20,21]. The pCRRNA plasmid carries the tracrRNA and a minimal CRISPR array consisting of the leader sequence and a single spacer framed by two repeats. This plasmid was transformed in cells containing the pCas9 plasmid expressing Cas9 constitutively [7]. Surprisingly, 8 out of 12 spacers could be readily transformed with efficiencies comparable to that of the non-targeting control (FIG. 1). Interestingly, three of them (lacZ1, tsuB and wcaH) resulted in colonies smaller than the control (FIG. 2). The inventors hypothesized that Cas9 cleavage in these cells might be inefficient and that competition with the bacteria repair system would stress the cells and slow down colony growth. To test this idea, the inventors repeated this transformation experiment in cells deleted for recA. Consistently with inventors' hypothesis, no colonies could be recovered after transformation of spacers lacZ1, tsuB and wcaH, but also after transformation of all the other spacers. This shows that all spacers are able to direct Cas9 cleavage in the chromosome, including those that can be transformed efficiently, and all spacers induce lethal DSB in the absence of recA. However, only some spacers are able to kill cells in the presence of recA. This indicates that weak spacers might be tolerated in wild-type cells thanks to the Homology Directed Repair (HDR) pathway.
[0142] Homologous recombination can only rescue a DSB if an intact sister chromosome is available. This suggests that for some spacers Cas9 cleavage is not efficient enough to cut all copies of the chromosome simultaneously. A corollary is that spacers that do lead to cell death probably kill the cells because no repair template is available. If this is true, then providing an intact repair template during targeting should be able to rescue the cells. To test this hypothesis the inventors constructed a plasmid, pLCX, carrying a 1 kb fragment homologous to the target region of spacer lacZ2, but with a point mutation in the PAM motif blocking CRISPR interference (FIG. 1C). Transformation of the lacZ2 spacer led to .about.100.times. more colonies in the presence of pLCX than in cells carrying a control empty plasmid, and no colonies could be recovered in the recA mutant (FIG. 1D). The lacZ gene of the recovered colonies was sequenced and confirmed to carry the point mutation provided by the pLCX plasmid, showing that it was indeed used as a template for HDR.
Example 9 Cas9 Cleavage Leads to SOS Induction
[0143] Spacers that can be tolerated likely result in constant Cas9 cleavage and recA mediated repair. This should lead to an elevated level of SOS induction. To test this the inventors integrated cas9 in the chromosome under the control of a ptet promoter and monitored SOS levels with a GFP reporter plasmid. Spacers were provided on the pCRRNA. Targeting with the lacZ1 spacer led to elevated GFP fluorescence levels when aTc was added to the media, but more surprisingly also in the absence of induction (FIG. 3A and FIG. 4). This demonstrates that the ptet promoter controlling Cas9 is leaky and that the small amount of Cas9 proteins produced can already lead to the introduction of DSB resulting in SOS induction. Consistently with an induction of the SOS pathway, no fluorescence could be observed in recA, recB or lexA(ind-) mutants (FIG. 3A). Mutations in the catalytic sites of Cas9 also abolished SOS induction showing that cleavage of DNA and not mere binding is the cause of the SOS induction (FIG. 3A, dCas9). We further measured the SOS response triggered by all 13 spacers (FIG. 3B). Interestingly, the strength of SOS induction correlates well with the ability of the spacers to kill the cells. This corroborates the idea that efficient cleavage of all copies of the chromosome is responsible for cell death.
TABLE-US-00003 TABLE 1 Integrated E. coli strains. This table shows the backbones and fragments used for integrations in the chromosome of E. coli following methods described previously (ref 35). The pOSIP backbone was removed from the chromosome using plasmid pE-FLP. Primers and templates used to generate the fragments are listed in Table 3. Name of the new pOSIP Integration Original pOSIP Strain strain Backbone Fragment 1 Fragment 2 site strains backbone description LC-E01 pOSIP-KH Mt-LigD Mt-LigD HK022 attB MG1655, removed MG1655 with promoter fragment RecB- Mt-LigD LC-E02 pOSIP-KO Tet-dCas9 N/A 186 attB MG1655 removed MG1655 with inducible dCs9 LC-E03 pOSIP-KO Tet-wtCas9 N/A 186 attB MG1655 removed MG1655 with inducible wtCs9 LC-E05 pOSIP-KO Mt-Ku Mt-Ku 186 attB LC-E01 removed MG1655 with promoter fragment Mt-LigD and Mt-Ku LC-E06 pOSIP-KO Tet-wtCas9 N/A 186 attB MG1655, removed MG1655 (RecA-) RecA- with inducible wtCs9 LC-E07 pOSIP-KO Tet-wtCas9 N/A 186 attB N4278 removed MG1655 (RecB-) with inducible wtCs9 LC-E08 pOSIP-KO Tet-wtCas9 N/A 186 attB JJC443 removed MG1655 (LexA-) with inducible wtCs9
TABLE-US-00004 TABLE 2 CRISPR spacers used in this invention. CRISPR spacer CRISPR spacer sequence (from 5' to 3') / Targeted name SEQ ID NO: strand PAM lacZ1 TCACTGGCCGTCGTTTTACAACGTCGTGAC 16 Template TGG strand lacZ2 CCATTACGGTCAATCCGCCGTTTGTTCCCA 17 Template CGG strand rpsL TACTTTACGCAGCGCGGAGTTCGGTTTTTT 18 Non template AGG strand mhpR GGAATTAATCGAAATGTTAGCCTCCCGCCC 19 Template CGG strand tsuB TAAGGTCTTCGTTCAGGGCATAGACCTTAA 20 Non template TGG strand wcaH TTTTCTCGCTGAGAAGCGTACCGGAGTACC 21 Template CGG strand irhA ATTCCGCTGCGCAGTACCAGTGTGTTGGCG 22 Non template AGG strand eamB CAGCGGTACACCTTTTGAGTTGGGCGGGGG 23 Template CGG strand speA AGCAGAACGTCTGAATGTCGTTCCTCGTCT 24 Template GGG strand garD CGTGGTGGGGCTGAATCATTTGTACGGTTG 25 Template TGG strand treF GTACCGCGATTTACGCGCGGGGGCGGCCTC 26 Template CGG strand yfaP ATTCGTGCACGTTTACGGCTGGTTCTCTCG 27 Template TGG strand ada GGTGCGTTACGCGCTGGCTGATTGTGAGCT 28 Template GGG strand
The SEQ ID Nos: 16 to 28 in table 2 correspond to SEQ ID Nos: 39 to 51 of the priority application.
TABLE-US-00005 TABLE 3 Primers used in this invention. Fragments generated (of Primer primer Name Primer sequences (from 5' to 3') SEQ ID NO: Template function) B299 CATGAATTCAACTCAACAAGTCTCAGTGTGCTG 29 pCRISPR pCRISPR backbone LC34 TTTAGGCGCTGCCATCTTAAGACGAAAGGGCCTCGTGATA 30 pCRISPR pCRISPR backbone LC35 TTCAGCACACTGAGACTTGTTGAGTTGAATTCATGAGTATT 31 pCas9 TracrRNA AAGTATTGTTTTATGGCTGATA fragment LC36 TATCACGAGGCCCTTTCGTCTTAAGATGGCAGCGCCTAAA 32 pCas9 TracrRNA fragment LC41 TGCAGCGCGATCGTAATCAGGATCCCATGGTACGCGT 33 pCRISPR pCRISPR backbone LC42 ACAGAACTTAATGGGCCCGAAGACGAAAGGGCCTCGT 34 pCRISPR pCRISPR backbone LC37 TCCGCCGTTTGTTCCCACGTAGAATCCGACGGGTTGTTAC 35 MG1655 the 2nd lacZ genomic homologous DNA fragment LC38 GTAACAACCCGTCGGATTCTACGTGGGAACAAACGGCGGA 36 MG1655 the 1st lacZ genomic homologous DNA fragment LC39 ACGAGGCCCTTTCGTCTTCGGGCCCATTAAGTTCTGT 37 MG1655 the 1st lacZ genomic homologous DNA fragment LC40 ACGCGTACCATGGGATCCTGATTACGATCGCGCTGCA 38 MG1655 the 2nd lacZ genomic homologous DNA fragment LC191 GTCTAGGGCGGCGGATTTG 39 pDB127 GFPmut2 fragment LC192 CGCTCTCCTGAGTAGGACAAAT 40 pZA31-Luc pbZA31-Luc backbone LC193 ACAATTGAATACCGATCGGCCTCGTGATACGCCTAT 41 pZA31 -Luc pbZA31-Luc backbone LC194 ATAGGCGTATCACGAGGCCGATCGGTATTCAATTGTGCCCAA 42 MG1655 sulA promoter genomic fragment DNA LC195 CAGGGGCTGGATTGATTATGAGTAAAGGAGAAGAACTTTTC 43 pDB127 GFPmut2 fragment LC196 TTCTTCTCCTTTACTCATAATCAATCCAGCCCCTGTGA 44 MG1655 sulA promoter genomic fragment DNA LC95 CTCCGACGCCGAACCCATACAACCTCCTTAGTACATCAAGCA 45 pE-FLP Mt-LigD promoter LC96 GCAGGACGCCCGCCATAAACTGCCAGGAATTGGGGATCGGG 46 pE-FLP Mt-LigD GGGTTCCGCGCACATTT promoter or Mt-Ku promoter LC94 TGCTTGATGTACTAAGGAGGTTGTATGGGTTCGGCGTCGGAG 47 M. Mt-LigD tuberculosis fragment H37Rv genomic DNA LC98 AGTTTAGGTTAGGCGCCATGCATCTCGAGGCATGCCTGCATC 48 M. Mt-LigD ATTCGCGCACCACCTCA tuberculosis fragment H37Rv genomic DNA LC93 CGTCCAAATGGCTCGCATACAACCTCCTTAGTACATCAAGCA 49 pE-FLP Mt-Ku promoter LC92 TGCTTGATGTACTAAGGAGGTTGTATGCGAGCCATTTGGACG 50 M. Mt-Ku tuberculosis fragment H37Rv genomic DNA LC97 AGTTTAGGTTAGGCGCCATGCATCTCGAGGCATGCCTGCATC 51 M. Mt-Ku ACGGAGGCGTTGGGAC tuberculosis fragment H37Rv genomic DNA LC100 GCAGGACGCCCGCCATAAACTGCCAGGAATTGGGGATCGGT 52 pdCas9- Tet-dCas9 or TAAGACCCACTTTCACATTTAAG bacteria or Tet-Cas9 pwtCas9- fragment bacteria LC101 AGTTTAGGTTAGGCGCCATGCATCTCGAGGCATGCCTGC 53 pdCas9- Tet-dCas9 or ATATAAACGCAGAAAGGCCC bacteria or Tet-Cas9 pwtCas9- fragment bacteria LC33 GACTGGAAAGCGGGCAGT 54 Sequencing LC47 CGCACGATAGAGATTCGGGA 55 Sequencing LC80 TCAGGCGGGATGAAGATGAT 56 PCR verification LC153 GCTGGGATACGCTGGTGTTTA 57 PCR verification LC154 CACAGCGCAAGGACGTTGA 58 PCR verification LC155 ACACAACATGACGGGCTT 59 PCR verification
The SEQ ID Nos: 29 to 59 in table 3 correspond to SEQ ID Nos: 52 to 82 of the priority application.
[0144] The ability of Cas9 to kill bacteria when directed to cut in their chromosome has been used as a counter-selection tool for the purpose of gene editing and for the development of sequence-specific antimicrobials [7, 14, 15]. However, the mechanism of Cas9-mediated cell death has so far remained unclear. Here the inventors shown that not all targets are equal and E. coli can survive active targeting at some positions. Cas9-induced breaks activate the SOS response and can be repaired by the HDR pathway. This enables E. coli to tolerate the presence of weak self-targeting CRISPR systems. Other targets can be cleaved efficiently leading to the introduction of DSB in all copies of the chromosome simultaneously. In the absence of a template for HDR, extensive recession of the DNA ends by RecBCD and other nucleases is likely the cause of cell death.
[0145] Variations in the efficiency of Cas9 cleavage between different targets have been reported previously [10,26,27]. The ability to predict the efficacy of guide RNAs is of prime importance for all applications of Cas9 technologies. High-throughput screens of sgRNA libraries in human or mouse cells have allowed identifying good targets[26,28], and were used to build predictive models for the design of highly active sgRNAs. However, the most recent model from Jong and colleagues [28] gave very poor prediction for the activity of the 13 targets that were used in our study. This could stem from differences in the requirements for efficient Cas9 targeting between mammalian cells and E. coli, as well as the fact that these screens were performed using sgRNAs instead of the dual crRNA and tracrRNA system. In particular some features that influence the expression of the sgRNA, loading of the sgRNA on Cas9, or the accessibility of the target DNA are likely not generalizable to present system. This highlights the necessity to perform similar screens in bacteria. The inventors demonstrate here that the level of SOS induction can be used to estimate the efficiency of Cas9 interference in E. coli, with good targets showing a more pronounced SOS response (FIG. 3B). This might be useful to score candidate targets and could also be used in combination with Fluorescence-Activated Cell Sorting (FACS) to screen for highly active guides in a library. A better knowledge of what makes a good CRISPR target will be critical for the development of reliable genome engineering tools as well as CRISPR antimicrobials.
[0146] Interestingly cell death is not the only possible outcome of efficient Cas9 cleavage in the chromosome of E. coli. Large deletions can be introduced through recombination between distant homologous sequences. This is consistent with rearrangements observed in a previous study where a mRFP gene integrated in the genome was targeted by Cas9 [20].
[0147] The pCas9 plasmid carrying either an empty CRISPR array, the lacZ1 spacer or the lacZ2 spacer was transformed in cells containing the pLC13 plasmid which carries the Mu gam gene under the control of a pBAD promoter. Transformants were plated on selective medium either with or without arabinose (-ara/+ara). The results are shown in FIG. 6A-B. Upon Mu-Gam induction with arabinose, Cas9 killing efficiency using the weak lacZ1 spacer is increased more than 1000.times.. A more moderated increase in killing efficiency is also observed when targeting with the stronger lacZ2 spacer.
Example 10
[0148] The inventors have developed an inducible Cas9-sgRNA system targeting the E. coli chromosome with very low leakiness and high cleaving efficiency. This setup allows for a 3-log difference in cell survival in the presence of inducer with virtually no difference in the amount of viable cells in its absence. In this architecture, Cas9 expression is under the control of the PhIF repressor (1), which can be activated upon addition of a small molecule, 2,4-diacetylphloroglucinol (DAPG). The transcription of the sgRNA, which targets a genomic sequence at the 5' end of the lacZ gene, is under the control of a synthetic constitutive promoter, PJ23108. Both elements are encoded in a low copy thermosensitive origin of replication, pSC101* (FIG. 7).
[0149] The inventors show that the co-expression of Mu-Gam, a viral protein that inhibits the host's homologous recombination machinery, can serve as an adjuvant to increase Cas9-mediated killing when targeting the bacterial chromosome. The effects can increase the efficiency of Cas9-mediated cell death by 15-200 fold. These results have been demonstrated for different crRNA sequences, especially when they are not optimized. This system implements a different architecture, relying on the tightly regulated expression of Cas9 as well as a constitutively transcribed sgRNA that targets a genomic sequence. The inventors assessed if the addition of Mu- and Lambda-Gam proteins to this system improves the efficiency of Cas9-mediated killing of target bacteria.
[0150] This approach is important, since there exist a variety of conditions where cleavage may be suboptimal as compared to in vitro assays. Even though laboratory experiments show that invention's current Cas9-sgRNA design allows for a 3-log killing upon induction, the conditions may vary in other setups; for instance, natural SNPs of the target sequence or escape mechanisms due to mutations in the targeted sequence can reduce the efficiency of Cas9 cleavage; non-optimally designed sgRNAs or targeting a heterogeneous population; protein expression inducers may not be efficiently administered or show toxicity in different setups, such as in vivo models, reducing expression levels of Cas9 and hence efficiency; and finally, the physiological state of the cell may influence the expression levels and cleavage efficiency of Cas9: in a laboratory setup, cells are typically maintained in the log growth phase, while in many other situations they may enter different growth regimes (such as stationary phase). For all these situations, an adjuvant for Cas9 activity will be beneficial to achieve the desired effects.
[0151] A) Use Non-Optimally Designed sgRNA Sequences to Reduce Cas9 Efficiency Even in the Presence of Maximal Amounts of Inducer.
[0152] It has been shown that the Cas9-sgRNA machinery can tolerate mismatches at the 5' end of the sgRNA in the targeted genomic sequence, although with reduced cleavage efficiency. To do this, the inventors constructed variants of the plasmid pPhIF-Cas9 possessing sequential mutations in the first 5 nucleotides at the 5' end of the sgRNA. The cleavage efficiency of these variants was assessed in LB-agar plates by the droplet method at different concentrations of DAPG. These plasmid variants were used in subsequent experiments to assess the effect of the Mu-Gam and the Lambda-Gam proteins in suboptimal cleavage conditions caused by non-optimized sgRNA sequences.
[0153] B) Optimize Mu- and Lambda-Gam Expression Levels.
[0154] The inventors verified that a defined expression level exists for the Mu/Lambda-Gam proteins to act as adjuvants of Cas9-mediated killing while proving non-toxic upon expression on their own. In an initial step to facilitate the characterization and further engineering of the system, several RBS sequences for the Mu-Gam protein were screened in a separate plasmid, pBAD-MuGam (SEQ ID NO: 69):
[0155] The RBS sequence upstream of the mu-gam gene in pBAD-MuGam (FIG. 8) was modified by running an iPCR reaction on the plasmid followed by a one-pot phosphorylation-ligation reaction. The religated plasmids were co-transformed into MG1655 cells containing the pPhIF-Cas9 plasmid, plated in LB-agar supplemented with 50 .mu.g/mL kanamycin, 100 .mu.g/mL chloramphenicol, 0.1 mM IPTG and 40 .mu.g/mL X-gal and grown for 20 hours at 30.degree. C. Next, 95 single colonies were selected and grown in 500 .mu.L LB supplemented with 50 .mu.g/mL kanamycin and 100 .mu.g/mL chloramphenicol in 96-deep-well plates for 18 hours at 1000 rpm at 30.degree. C. Next day, each culture was diluted 1:100 in distilled water and assayed by the droplet method in LB agar plates. Briefly, individual 8 .mu.L droplets were plated onto the surface of LB-agar plates supplemented with 50 .mu.g/mL kanamycin, 25 .mu.g/mL chloramphenicol, 0.1 mM IPTG and 40 .mu.g/mL X-gal. The plates were then gently turned in a vertical position to allow the droplets to slide down the surface of LB-agar and incubated o/n at 30.degree. C. for 18 hours. The cells were assayed in four conditions: plates without inducer; plates that contained 5 mM arabinose; plates that contained 0.1 mM DAPG; and plates that contained both 5 mM arabinose and 0.1 mM DAPG. This experiment allows for the comparison of cell morphology and/or toxicity in the presence of Mu-Gam only and its effects when Cas9-sgRNA is co-expressed (FIG. 9).
[0156] The initial RBS screening yielded several clones that had altered cell morphology and appearance (smaller and translucent) in the presence of both Mu-Gam and Cas9-sgRNA while showing a normal aspect in the presence of Mu-Gam only. These clones were also verified for Cas9-sgRNA activity and achieved similar killing efficiencies as the pPhIF-Cas9 system alone.
[0157] The inventors selected one clone based on its potential Mu-Gam adjuvant activity and performed a more detailed characterization on LB-agar plates in the same four conditions described above (no inducer; plus arabinose; plus DAPG; plus DAPG and arabinose). After a 24-hour incubation period, massive cell death occurred, which was especially pronounced in cells that were plated at a higher density, as can be seen in FIG. 10. For the "+DAPG, +Ara" dataset, colonies were directly counted from the undiluted droplet. For the "+DAPG" dataset, colonies were counted at 10.sup.-2 and 10.sup.-3 dilutions, the dilution factor calculated and the number of CFUs in the undiluted droplet estimated. For "No inducer" and "+Ara" conditions, the number of CFUs in the uniduluted droplet was estimated by counting the number of colonies in the 10.sup.-5 and 10.sup.-6 dilutions and the dilution factor calculated. Moreover, if the same experiment is performed in cells containing pBAD-MuGam and a pPhIF-Cas9 variant with a sgRNA not targeting the genome, no cell death is seen for any conditions (FIG. 11). Cells containing pBAD-MuGam hit were co-transformed with a pPhIF-Cas9 variant with a non-targeted sgRNA sequence. Cells were analyzed by the droplet method as explained in (A) and CFUs counted. To estimate the CFUs in the undiluted droplet, CFUs were counted at the 10.sup.-6 and 10.sup.-5 dilutions, the dilution factor calculated and the number of CFUs in the undiluted droplet calculated. These results indicate that expression of Gam together with a targeted Cas9-sgRNA system leads to improved cell killing, in an assay where Cas9-mediate killing is already very efficient in itself. This assay was also performed under sub-optimal targeting conditions through the introduction of mismatches between the guide RNA and the target. Additionally, the same experiments can be performed with Lambda-Gam by constructing the plasmid pBAD-LambdaGam (FIG. 12):
[0158] C) Construction of an Integrated Architecture Encoding Cas9-sgRNA and Mu/Lambda-Gam.
[0159] Both Cas9-sgRNA and Mu/Lambda-Gam inducible cassettes can be integrated in the same plasmid containing a low copy origin of replication (pSC101) as well as a cos site. This architecture possesses two advantages: a low copy origin of replication allows for a wider tunable range of RBS strengths and reduced leakiness, hence increasing the expression space for a given protein; and also offers a platform for generating packaged cosmids to transduce the genetic program into a target strain. The integrated vectors, pCas9-MuGam and pCas9-LambdaGam, are shown on FIG. 13.
[0160] The expression levels of the Mu/Lambda-Gam proteins was tuned and characterized as described in (B) in MG1655 using transformed cells as a testbed.
[0161] D) Packaging of pCas9-MuGam and pCas9-LambdaGam into Cosmid Particles.
[0162] Once optimal expression levels for Mu-Gam and Lambda-Gam have been found as described in (C), the inventors performed transduction experiments with the packaged cosmid particles. To do this, the optimized pCas-MuGam/Lambda-Gam plasmids was transformed in CY2120 cells, plated on LB-agar plus 50 .mu.g/mL kanamycin and incubated o/n at 30.degree. C. A single colony was picked and grown in liquid LB to an OD600 of 0.5 at 30.degree. C. To induce the packaging, the culture was heat-shocked at 42.degree. C. for 20 minutes and subsequently incubated at 37.degree. C. for 4 hours. Cells were harvested, resuspended in lambda dilution buffer and lysed by adding chloroform. The packaged cosmid was isolated from the supernatant by centrifugation to pellet cell debris. The titer of the packaged cosmid was then determined by transduction of E. coli DH5-alpha.
[0163] Both pPhIF-Cas9 and pCas9-MuGam or pCas9-LambdaGam cosmids were generated and assayed in parallel to assess the efficiency of Cas9-mediated cell death and the effects of the addition of one of the viral proteins.
[0164] E) Pathogenic E. coli Strains.
[0165] Finally, the same tests are performed in pathogenic E. coli strains The sgRNA variant used in all experiments described above also targets the genome of E. coli LF82, a known human pathogen. The efficiency of the engineered cosmids was assessed in this bacterial strain and can be potentially expanded to many other known human pathogens.
REFERENCES
[0166] 1. Sorek, R., Lawrence, C. M. Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual review of biochemistry 82, 237-266, doi:10.1146/annurev-biochem-072911-172315 (2013).
[0167] 2. Hsu, P. D., Lander, E. S. a Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278, doi:10.1016/j.cell.2014.05.010 (2014).
[0168] 3. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607, doi:10.1038/nature09886 (2011).
[0169] 4. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821, doi:10.1126/science.1225829 (2012).
[0170] 5. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67, doi:10.1038/nature13011 (2014).
[0171] 6. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997, doi:10.1126/science.1247997 (2014).
[0172] 7. Jiang, W., Bikard, D., Cox, D., Zhang, F. Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239, doi:10.1038/nbt.2508 (2013).
[0173] 8. Oh, J. H. a van Pijkeren, J. P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic acids research 42, e131, doi:10.1093/nar/gku623 (2014).
[0174] 9. Cobb, R. E., Wang, Y. Zhao, H. High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System. ACS synthetic biology, doi:10.1021/sb500351f (2014).
[0175] 10. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, doi:10.1126/science.1231143 (2013).
[0176] 11. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826, doi:10.1126/science.1232033 (2013).
[0177] 12. Shuman, S. Glickman, M. S. Bacterial DNA repair by non-homologous end joining. Nature reviews. Microbiology 5, 852-861, doi:10.1038/nrmicro1768 (2007).
[0178] 13. Bowater, R. Doherty, A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS genetics 2, e8, doi:10.1371/journal.pgen.0020008 (2006).
[0179] 14. Citorik, R. J., Mimee, M. Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature biotechnology, doi:10.1038/nbt.3011 (2014).
[0180] 15. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature biotechnology, doi:10.1038/nbt.3043 (2014).
[0181] 16. Bikard, D., Hatoum-Aslan, A., Mucida, D. Marraffini, L. A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell host microbe 12, 177-186, doi:10.1016/j.chom.2012.06.003 (2012).
[0182] 17. Edgar, R. Qimron, U. The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. Journal of bacteriology 192, 6291-6294, doi:10.1128/JB.00644-10 (2010).
[0183] 18. Stern, A., Keren, L., Wurtzel, O., Amitai, G. Sorek, R. Self-targeting by CRISPR:
[0184] gene regulation or autoimmunity? Trends in genetics: TIG 26, 335-340, doi:10.1016/j.tig.2010.05.008 (2010).
[0185] 19. Gomaa, A. A. et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5, e00928-00913, doi:10.1128/mBio.00928-13 (2014).
[0186] 20. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183, doi:10.1016/j.cell.2013.02.022 (2013).
[0187] 21. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic acids research 41, 7429-7437, doi:10.1093/nar/gkt520 (2013).
[0188] 22. Ton-Hoang, B. et al. Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences. Nucleic acids research 40, 3596-3609, doi:10.1093/nar/gkr1198 (2012).
[0189] 23. Kofoid, E., Bergthorsson, U., Slechta, E. S. Roth, J. R. Formation of an F' plasmid by recombination between imperfectly repeated chromosomal Rep sequences: a closer look at an old friend (F'(128) pro lac). Journal of bacteriology 185, 660-663 (2003).
[0190] 24. Malyarchuk, S. et al. Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology. DNA repair 6, 1413-1424, doi:10.1016/j.dnarep.2007.04.004 (2007).
[0191] 25. Chayot, R., Montagne, B., Mazel, D. Ricchetti, M. An end-joining repair mechanism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 107, 2141-2146, doi:10.1073/pnas.0906355107 (2010).
[0192] 26. Wang, T., Wei, J. J., Sabatini, D. M. Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84, doi:10.1126/science.1246981 (2014).
[0193] 27. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87, doi:10.1126/science.1247005 (2014).
[0194] 28. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature biotechnology 32, 1262-1267, doi:10.1038/nbt.3026 (2014).
[0195] 29. Meddows, T. R., Savory, A. P., Grove, J. I., Moore, T. Lloyd, R. G. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Molecular microbiology 57, 97-110, doi:10.1111/j.1365-2958.2005.04677.x (2005).
[0196] 30. Bierne, H., Seigneur, M., Ehrlich, S. D. Michel, B. uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway. Molecular microbiology 26, 557-567 (1997).
[0197] 31. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature methods 6, 343-345, doi:10.1038/nmeth.1318 (2009).
[0198] 32. Lutz, R. Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic acids research 25, 1203-1210 (1997).
[0199] 33. Cormack, B. P., Valdivia, R. H. Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33-38 (1996).
[0200] 34. Cole, S. T. Characterisation of the promoter for the LexA regulated sulA gene of Escherichia coli. Molecular general genetics: MGG 189, 400-404 (1983).
[0201] 35. St-Pierre, F. et al. One-step cloning and chromosomal integration of DNA. ACS synthetic biology 2, 537-541, doi:10.1021/sb400021j (2013).
[0202] 36. Makarova, K. S., D. H. Haft, R. Barrangou, S. J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F. J. Mojica, Y. I. Wolf, A. F. Yakunin, J. van der Oost and E. V. Koonin (2011). "Evolution and classification of the CRISPR-Cas systems." Nat Rev Microbiol 9(6): 467-477.
[0203] 37. Pennisi, E. (2013). "The CRISPR craze." Science 341(6148): 833-836.
[0204] 38. Weller G. R. (2002) Science, 297, pp. 1686-1689
[0205] 39. Ahu H. and Shuman S. (2005) J Biol Chem, 280, pp 25973-25981
[0206] 40. Cong C. et al (2005) Nat Struct. Mol. Biol., 12 pp 304-312
[0207] 41. Datsenko K. A. and Wanner B. L. (PNAS Jun. 6, 2000, vol 97, no.12 pp 6640-6645).
[0208] 42. Fernandez de Henestrosa A. R. (2002) Molecular Microbiology Vol 35, Issue 6, pages 1560-1572
[0209] 43. Murphy, J Bacteriol. 1993 March; 175(6): 1756-1766.
[0210] 44. di Fagagna, F. D., et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. Embo Reports, 2003. 4(1): p. 47-52.
[0211] 45. Akroyd, J. and N. Symonds, Localization of the Gam Gene of Bacteriophage-Mu and Characterization of the Gene-Product. Gene, 1986. 49(2): p. 273-282.
[0212] 46. Shee, C., et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife, 2013, 2.
[0213] 47. (Guzman et al., J. Bacteriology 177(14): 4121-4130, 1995).
Sequence CWU
1
1
72136DNAArtificialrepeat sequence 1gtttttgtac tctcaagatt taagtaactg tacaac
36236DNAArtificialrepeat sequence
2gatataaacc taattacctc gagaggggac ggaaac
36336DNAArtificialrepeat sequence 3gttttggaac cattcgaaac aacacagctc
taaaac 36436DNAArtificialrepeat sequence
4gttttagagc tatgctgttt tgaatggtcc caaaac
36532DNAArtificialrepeat sequence 5atttcaatcc actcacccat gaagggtgag ac
32637DNAArtificialrepeat sequence
6gtttcagtag ctagattatt tgatatactg ctgttag
37736DNAArtificialrepeat sequence 7aatcagagaa taccccgtat aaaaggggac
gagaac 36828DNAArtificialrepeat sequence
8gttcactgcc gcacaggcag cttagaaa
28937DNAArtificialrepeat sequence 9ggttgtagct ccctttctca tttcgcagtg
ctacaat 371028DNAArtificialrepeat sequence
10ccggattccc gcctgcgcgg gaatgacg
28115120DNAArtificialpLC13 11atcgatgcat aatgtgcctg tcaaatggac gaagcaggga
ttctgcaaac cctatgctac 60tccgtcaagc cgtcaattgt ctgattcgtt accaattatg
acaacttgac ggctacatca 120ttcacttttt cttcacaacc ggcacggaac tcgctcgggc
tggccccggt gcatttttta 180aatacccgcg agaaatagag ttgatcgtca aaaccaacat
tgcgaccgac ggtggcgata 240ggcatccggg tggtgctcaa aagcagcttc gcctggctga
tacgttggtc ctcgcgccag 300cttaagacgc taatccctaa ctgctggcgg aaaagatgtg
acagacgcga cggcgacaag 360caaacatgct gtgcgacgct ggcgatatca aaattgctgt
ctgccaggtg atcgctgatg 420tactgacaag cctcgcgtac ccgattatcc atcggtggat
ggagcgactc gttaatcgct 480tccatgcgcc gcagtaacaa ttgctcaagc agatttatcg
ccagcagctc cgaatagcgc 540ccttcccctt gcccggcgtt aatgatttgc ccaaacaggt
cgctgaaatg cggctggtgc 600gcttcatccg ggcgaaagaa ccccgtattg gcaaatattg
acggccagtt aagccattca 660tgccagtagg cgcgcggacg aaagtaaacc cactggtgat
accattcgcg agcctccgga 720tgacgaccgt agtgatgaat ctctcctggc gggaacagca
aaatatcacc cggtcggcaa 780acaaattctc gtccctgatt tttcaccacc ccctgaccgc
gaatggtgag attgagaata 840taacctttca ttcccagcgg tcggtcgata aaaaaatcga
gataaccgtt ggcctcaatc 900ggcgttaaac ccgccaccag atgggcatta aacgagtatc
ccggcagcag gggatcattt 960tgcgcttcag ccatactttt catactcccg ccattcagag
aagaaaccaa ttgtccatat 1020tgcatcagac attgccgtca ctgcgtcttt tactggctct
tctcgctaac caaaccggta 1080accccgctta ttaaaagcat tctgtaacaa agcgggacca
aagccatgac aaaaacgcgt 1140aacaaaagtg tctataatca cggcagaaaa gtccacattg
attatttgca cggcgtcaca 1200ctttgctatg ccatagcatt tttatccata agattagcgg
atcctacctg acgcttttta 1260tcgcaactct ctactgtttc tccatacccg tttttttggg
ctagcgaatt cgagctcggt 1320aactttaaga aggagatata ccatggctaa accagcaaaa
cgtatcaaga gtgccgcagc 1380ggcttatgtg ccacaaaacc gcgatgcggt gattaccgat
attaaacgca tcggggattt 1440acagcgcgaa gcatcacgtc tggaaacgga aatgaatgat
gccatcgcgg aaattacgga 1500gaaatttgcg gcccggattg caccgattaa aaccgatatt
gaaacccttt caaaaggcgt 1560tcagggatgg tgtgaagcga accgcgacga actgacgaac
ggcggcaaag tgaagacggc 1620gaatcttgtc accggtgatg tatcgtggcg ggtccgtcca
ccatcagtaa gtattcgtgg 1680tatggatgca gtgatggaaa cgctggagcg tcttggcctg
caacgcttta ttcgcacgaa 1740gcaggaaatc aacaaggaag cgattttact ggaaccgaaa
gcggtcgcag gcgttgccgg 1800aattacagtt aaatcaggca ttgaggattt ttctattatt
ccatttgaac aggaagccgg 1860tatttaattg gctgttttgg cggatgagag aagattttca
gcctgataca gattaaatca 1920gaacgcagaa gcggtctgat aaaacagaat ttgcctggcg
gcagtagcgc ggtggtccca 1980cctgacccca tgccgaactc agaagtgaaa cgccgtagcg
ccgatggtag tgtggggtct 2040ccccatgcga gagtagggaa ctgccaggca tcaaataaaa
cgaaaggctc agtcgaaaga 2100ctgggccttt cgttttatct gttgtttgtc ggtgaacgct
ctcctgagta ggacaaatcc 2160gccgggagcg gatttgaacg ttgcgaagca acggcccgga
gggtggcggg caggacgccc 2220gccataaact gccaggcatc aaattaagca gaaggccatc
ctgacggatg gcctttttgc 2280gtttctacaa actcttttgt ttatttttct aaatacattc
aaatatgtat ccgctcatga 2340gacaataacc ctgataaatg cttcaataat attgaaaaag
gaagagtatg agtattcaac 2400atttccgtgt cgcccttatt cccttttttg cggcattttg
ccttcctgtt tttgctcacc 2460cagaaacgct ggtgaaagta aaagatgctg aagatcagtt
gggtgcacga gtgggttaca 2520tcgaactgga tctcaacagc ggtaagatcc ttgagagttt
tcgccccgaa gaacgttttc 2580caatgatgag cacttttaaa gttctgctat gtggcgcggt
attatcccgt gttgacgccg 2640ggcaagagca actcggtcgc cgcatacact attctcagaa
tgacttggtt gagtactcac 2700cagtcacaga aaagcatctt acggatggca tgacagtaag
agaattatgc agtgctgcca 2760taaccatgag tgataacact gcggccaact tacttctgac
aacgatcgga ggaccgaagg 2820agctaaccgc ttttttgcac aacatggggg atcatgtaac
tcgccttgat cgttgggaac 2880cggagctgaa tgaagccata ccaaacgacg agcgtgacac
cacgatgcct gcagcaatgg 2940caacaacgtt gcgcaaacta ttaactggcg aactacttac
tctagcttcc cggcaacaat 3000taatagactg gatggaggcg gataaagttg caggaccact
tctgcgctcg gcccttccgg 3060ctggctggtt tattgctgat aaatctggag ccggtgagcg
tgggtctcgc ggtatcattg 3120cagcactggg gccagatggt aagccctccc gtatcgtagt
tatctacacg acggggagtc 3180aggcaactat ggatgaacga aatagacaga tcgctgagat
aggtgcctca ctgattaagc 3240attggtaact gtcagaccaa gtttactcat atatacttta
gattgattta cgcgccctgt 3300agcggcgcat taagcgcggc gggtgtggtg gttacgcgca
gcgtgaccgc tacacttgcc 3360agcgccctag cgcccgctcc tttcgctttc ttcccttcct
ttctcgccac gttcgccggc 3420tttccccgtc aagctctaaa tcgggggctc cctttagggt
tccgatttag tgctttacgg 3480cacctcgacc ccaaaaaact tgatttgggt gatggttcac
gtagtgggcc atcgccctga 3540tagacggttt ttcgcccttt gacgttggag tccacgttct
ttaatagtgg actcttgttc 3600caaacttgaa caacactcaa ccctatctcg ggctattctt
ttgatttata agggattttg 3660ccgatttcgg cctattggtt aaaaaatgag ctgatttaac
aaaaatttaa cgcgaatttt 3720aacaaaatat taacgtttac aatttaaaag gatctaggtg
aagatccttt ttgataatct 3780catgaccaaa atcccttaac gtgagttttc gttccactga
gcgtcagacc ccgtagaaaa 3840gatcaaagga tcttcttgag atcctttttt tctgcgcgta
atctgctgct tgcaaacaaa 3900aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa
gagctaccaa ctctttttcc 3960gaaggtaact ggcttcagca gagcgcagat accaaatact
gtccttctag tgtagccgta 4020gttaggccac cacttcaaga actctgtagc accgcctaca
tacctcgctc tgctaatcct 4080gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt
accgggttgg actcaagacg 4140atagttaccg gataaggcgc agcggtcggg ctgaacgggg
ggttcgtgca cacagcccag 4200cttggagcga acgacctaca ccgaactgag atacctacag
cgtgagctat gagaaagcgc 4260cacgcttccc gaagggagaa aggcggacag gtatccggta
agcggcaggg tcggaacagg 4320agagcgcacg agggagcttc cagggggaaa cgcctggtat
ctttatagtc ctgtcgggtt 4380tcgccacctc tgacttgagc gtcgattttt gtgatgctcg
tcaggggggc ggagcctatg 4440gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc
ttttgctggc cttttgctca 4500catgttcttt cctgcgttat cccctgattc tgtggataac
cgtattaccg cctttgagtg 4560agctgatacc gctcgccgca gccgaacgac cgagcgcagc
gagtcagtga gcgaggaagc 4620ggaagagcgc ctgatgcggt attttctcct tacgcatctg
tgcggtattt cacaccgcat 4680atggtgcact ctcagtacaa tctgctctga tgccgcatag
ttaagccagt atacactccg 4740ctatcgctac gtgactgggt catggctgcg ccccgacacc
cgccaacacc cgctgacgcg 4800ccctgacggg cttgtctgct cccggcatcc gcttacagac
aagctgtgac cgtctccggg 4860agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac
gcgcgaggca gcaaggagat 4920ggcgcccaac agtcccccgg ccacggggcc tgccaccata
cccacgccga aacaagcgct 4980catgagcccg aagtggcgag cccgatcttc cccatcggtg
atgtcggcga tataggcgcc 5040agcaaccgca cctgtggcgc cggtgatgcc ggccacgatg
cgtccggcgt agaggatctg 5100ctcatgtttg acagcttatc
51201230DNAArtificialprimer LC2 12ccttcttaaa
gttaccgagc tcgaattcgc
301360DNAArtificialprimer LC296 13tatattttag gaattctaaa gatctttgac
agctagctca gtcctaggta taatactagt 601439DNAArtificialprimer LC397
14atccgccaaa acagccaatt aaataccggc ttcctgttc
391561DNAArtificialprimer LC398 15gcgaattcga gctcggtaac tttaagaagg
agatatacca tggctaaacc agcaaaacgt 60a
611630DNAArtificialCRISPR spacer LacZ1
16tcactggccg tcgttttaca acgtcgtgac
301730DNAArtificialCRISPR spacer LacZ2 17ccattacggt caatccgccg tttgttccca
301830DNAArtificialCRISPR spacer
rpsL 18tactttacgc agcgcggagt tcggtttttt
301930DNAArtificialCRISPR spacer mhpR 19ggaattaatc gaaatgttag
cctcccgccc 302030DNAArtificialCRISPR
spacer tsuB 20taaggtcttc gttcagggca tagaccttaa
302130DNAArtificialCRISPR spacer wcaH 21ttttctcgct gagaagcgta
ccggagtacc 302230DNAArtificialCRISPR
spacer irhA 22attccgctgc gcagtaccag tgtgttggcg
302330DNAArtificialCRISPR spacer eamB 23cagcggtaca ccttttgagt
tgggcggggg 302430DNAArtificialCRISPR
spacer speA 24agcagaacgt ctgaatgtcg ttcctcgtct
302530DNAArtificialCRISPR spacer garD 25cgtggtgggg ctgaatcatt
tgtacggttg 302630DNAArtificialCRISPR
spacer treF 26gtaccgcgat ttacgcgcgg gggcggcctc
302730DNAArtificialCRISPR spacer yfaP 27attcgtgcac gtttacggct
ggttctctcg 302830DNAArtificialCRISPR
spacer ada 28ggtgcgttac gcgctggctg attgtgagct
302933DNAArtificialprimer B299 29catgaattca actcaacaag
tctcagtgtg ctg 333040DNAArtificialprimer
LC34 30tttaggcgct gccatcttaa gacgaaaggg cctcgtgata
403163DNAArtificialprimer LC35 31ttcagcacac tgagacttgt tgagttgaat
tcatgagtat taagtattgt tttatggctg 60ata
633240DNAArtificialprimer LC36
32tatcacgagg ccctttcgtc ttaagatggc agcgcctaaa
403337DNAArtificialprimer LC41 33tgcagcgcga tcgtaatcag gatcccatgg tacgcgt
373437DNAArtificialprimer LC42 34acagaactta
atgggcccga agacgaaagg gcctcgt
373540DNAArtificialprimer LC37 35tccgccgttt gttcccacgt agaatccgac
gggttgttac 403640DNAArtificialprimer LC38
36gtaacaaccc gtcggattct acgtgggaac aaacggcgga
403737DNAArtificialprimer LC39 37acgaggccct ttcgtcttcg ggcccattaa gttctgt
373837DNAArtificialprimer LC40 38acgcgtacca
tgggatcctg attacgatcg cgctgca
373919DNAArtificialprimer LC191 39gtctagggcg gcggatttg
194022DNAArtificialprimer LC192
40cgctctcctg agtaggacaa at
224136DNAArtificialprimer LC193 41acaattgaat accgatcggc ctcgtgatac gcctat
364242DNAArtificialprimer LC194
42ataggcgtat cacgaggccg atcggtattc aattgtgccc aa
424341DNAArtificialprimer LC195 43caggggctgg attgattatg agtaaaggag
aagaactttt c 414438DNAArtificialprimer LC196
44ttcttctcct ttactcataa tcaatccagc ccctgtga
384542DNAArtificialprimer LC95 45ctccgacgcc gaacccatac aacctcctta
gtacatcaag ca 424658DNAArtificialprimer LC96
46gcaggacgcc cgccataaac tgccaggaat tggggatcgg ggggttccgc gcacattt
584758DNAArtificialprimer LC94 47gcaggacgcc cgccataaac tgccaggaat
tggggatcgg ggggttccgc gcacattt 584859DNAArtificialprimer LC98
48agtttaggtt aggcgccatg catctcgagg catgcctgca tcattcgcgc accacctca
594942DNAArtificialprimer LC93 49cgtccaaatg gctcgcatac aacctcctta
gtacatcaag ca 425042DNAArtificialprimer LC92
50tgcttgatgt actaaggagg ttgtatgcga gccatttgga cg
425158DNAArtificialprimer LC97 51agtttaggtt aggcgccatg catctcgagg
catgcctgca tcacggaggc gttgggac 585264DNAArtificialprimer LC100
52gcaggacgcc cgccataaac tgccaggaat tggggatcgg ttaagaccca ctttcacatt
60taag
645359DNAArtificialprimer LC101 53agtttaggtt aggcgccatg catctcgagg
catgcctgca tataaacgca gaaaggccc 595418DNAArtificialprimer LC33
54gactggaaag cgggcagt
185520DNAArtificialprimer LC47 55cgcacgatag agattcggga
205620DNAArtificialprimer LC80 56tcaggcggga
tgaagatgat
205721DNAArtificialprimer LC153 57gctgggatac gctggtgttt a
215819DNAArtificialprimer LC154
58cacagcgcaa ggacgttga
195918DNAArtificialprimer LC155 59acacaacatg acgggctt
18609326DNAArtificialpCas9
(pCas9-a)gene(219)..(8886)gene cat - positions are given on the
complementary strand complement (8886..219)promoter(220)..(322)cat
promoter - positions are given on the complementary strand
complement (220..322)rep_origin(848)..(1393)p15A ori - positions are
given on the complementary strand complement
(848..1393)promoter(1505)..(1533)tet
promotermisc_feature(1844)..(2014)tracrRNA sequence of S. p (Zhangfeng) -
positions are given on the complementary strand complement
(1844..2014)misc_feature(1846)..(1932)tracrRNA sequence of S. p
(Zhangfeng)gene(2225)..(6331)Cas9 (Csn1) endonuclease from the
streptococcus pyogenes Type II CRISPR/Cas
systemmisc_feature(6484)..(6519)repeatmisc_feature(6550)..(6585)repeat
60gaattccgga tgagcattca tcaggcgggc aagaatgtga ataaaggccg gataaaactt
60gtgcttattt ttctttacgg tctttaaaaa ggccgtaata tccagctgaa cggtctggtt
120ataggtacat tgagcaactg actgaaatgc ctcaaaatgt tctttacgat gccattggga
180tatatcaacg gtggtatatc cagtgatttt tttctccatt ttagcttcct tagctcctga
240aaatctcgat aactcaaaaa atacgcccgg tagtgatctt atttcattat ggtgaaagtt
300ggaacctctt acgtgccgat caacgtctca ttttcgccaa aagttggccc agggcttccc
360ggtatcaaca gggacaccag gatttattta ttctgcgaag tgatcttccg tcacaggtat
420ttattcggcg caaagtgcgt cgggtgatgc tgccaactta ctgatttagt gtatgatggt
480gtttttgagg tgctccagtg gcttctgttt ctatcagctg tccctcctgt tcagctactg
540acggggtggt gcgtaacggc aaaagcaccg ccggacatca gcgctagcgg agtgtatact
600ggcttactat gttggcactg atgagggtgt cagtgaagtg cttcatgtgg caggagaaaa
660aaggctgcac cggtgcgtca gcagaatatg tgatacagga tatattccgc ttcctcgctc
720actgactcgc tacgctcggt cgttcgactg cggcgagcgg aaatggctta cgaacggggc
780ggagatttcc tggaagatgc caggaagata cttaacaggg aagtgagagg gccgcggcaa
840agccgttttt ccataggctc cgcccccctg acaagcatca cgaaatctga cgctcaaatc
900agtggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggcggctccc
960tcgtgcgctc tcctgttcct gcctttcggt ttaccggtgt cattccgctg ttatggccgc
1020gtttgtctca ttccacgcct gacactcagt tccgggtagg cagttcgctc caagctggac
1080tgtatgcacg aaccccccgt tcagtccgac cgctgcgcct tatccggtaa ctatcgtctt
1140gagtccaacc cggaaagaca tgcaaaagca ccactggcag cagccactgg taattgattt
1200agaggagtta gtcttgaagt catgcgccgg ttaaggctaa actgaaagga caagttttgg
1260tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc agagaacctt
1320cgaaaaaccg ccctgcaagg cggttttttc gttttcagag caagagatta cgcgcagacc
1380aaaacgatct caagaagatc atcttattaa tcagataaaa tatttctaga tttcagtgca
1440atttatctct tcaaatgtag cacctgaagt cagccccata cgatataagt tgtaattctc
1500atgtttgaca gcttatcatc gataagcttt aatgcggtag tttatcacag ttaaattgct
1560aacgcagtca ggcaccgtgt atgaaatcta acaatgcgct catcgtcatc ctcggcaccg
1620tcaccctgga tgctgtaggc ataggcttgg ttatgccggt actgccgggc ctcttgcggg
1680attacgaaat catcctgtgg agcttagtag gtttagcaag atggcagcgc ctaaatgtag
1740aatgataaaa ggattaagag attaatttcc ctaaaaatga taaaacaagc gttttgaaag
1800cgcttgtttt tttggtttgc agtcagagta gaatagaagt atcaaaaaaa gcaccgactc
1860ggtgccactt tttcaagttg ataacggact agccttattt taacttgcta tgctgttttg
1920aatggttcca acaagattat tttataactt ttataacaaa taatcaagga gaaattcaaa
1980gaaatttatc agccataaaa caatacttaa tactatagaa tgataacaaa ataaactact
2040ttttaaaaga attttgtgtt ataatctatt tattattaag tattgggtaa tattttttga
2100agagatattt tgaaaaagaa aaattaaagc atattaaact aatttcggag gtcattaaaa
2160ctattattga aatcatcaaa ctcattatgg atttaattta aactttttat tttaggaggc
2220aaaaatggat aagaaatact caataggctt agatatcggc acaaatagcg tcggatgggc
2280ggtgatcact gatgaatata aggttccgtc taaaaagttc aaggttctgg gaaatacaga
2340ccgccacagt atcaaaaaaa atcttatagg ggctctttta tttgacagtg gagagacagc
2400ggaagcgact cgtctcaaac ggacagctcg tagaaggtat acacgtcgga agaatcgtat
2460ttgttatcta caggagattt tttcaaatga gatggcgaaa gtagatgata gtttctttca
2520tcgacttgaa gagtcttttt tggtggaaga agacaagaag catgaacgtc atcctatttt
2580tggaaatata gtagatgaag ttgcttatca tgagaaatat ccaactatct atcatctgcg
2640aaaaaaattg gtagattcta ctgataaagc ggatttgcgc ttaatctatt tggccttagc
2700gcatatgatt aagtttcgtg gtcatttttt gattgaggga gatttaaatc ctgataatag
2760tgatgtggac aaactattta tccagttggt acaaacctac aatcaattat ttgaagaaaa
2820ccctattaac gcaagtggag tagatgctaa agcgattctt tctgcacgat tgagtaaatc
2880aagacgatta gaaaatctca ttgctcagct ccccggtgag aagaaaaatg gcttatttgg
2940gaatctcatt gctttgtcat tgggtttgac ccctaatttt aaatcaaatt ttgatttggc
3000agaagatgct aaattacagc tttcaaaaga tacttacgat gatgatttag ataatttatt
3060ggcgcaaatt ggagatcaat atgctgattt gtttttggca gctaagaatt tatcagatgc
3120tattttactt tcagatatcc taagagtaaa tactgaaata actaaggctc ccctatcagc
3180ttcaatgatt aaacgctacg atgaacatca tcaagacttg actcttttaa aagctttagt
3240tcgacaacaa cttccagaaa agtataaaga aatctttttt gatcaatcaa aaaacggata
3300tgcaggttat attgatgggg gagctagcca agaagaattt tataaattta tcaaaccaat
3360tttagaaaaa atggatggta ctgaggaatt attggtgaaa ctaaatcgtg aagatttgct
3420gcgcaagcaa cggacctttg acaacggctc tattccccat caaattcact tgggtgagct
3480gcatgctatt ttgagaagac aagaagactt ttatccattt ttaaaagaca atcgtgagaa
3540gattgaaaaa atcttgactt ttcgaattcc ttattatgtt ggtccattgg cgcgtggcaa
3600tagtcgtttt gcatggatga ctcggaagtc tgaagaaaca attaccccat ggaattttga
3660agaagttgtc gataaaggtg cttcagctca atcatttatt gaacgcatga caaactttga
3720taaaaatctt ccaaatgaaa aagtactacc aaaacatagt ttgctttatg agtattttac
3780ggtttataac gaattgacaa aggtcaaata tgttactgaa ggaatgcgaa aaccagcatt
3840tctttcaggt gaacagaaga aagccattgt tgatttactc ttcaaaacaa atcgaaaagt
3900aaccgttaag caattaaaag aagattattt caaaaaaata gaatgttttg atagtgttga
3960aatttcagga gttgaagata gatttaatgc ttcattaggt acctaccatg atttgctaaa
4020aattattaaa gataaagatt ttttggataa tgaagaaaat gaagatatct tagaggatat
4080tgttttaaca ttgaccttat ttgaagatag ggagatgatt gaggaaagac ttaaaacata
4140tgctcacctc tttgatgata aggtgatgaa acagcttaaa cgtcgccgtt atactggttg
4200gggacgtttg tctcgaaaat tgattaatgg tattagggat aagcaatctg gcaaaacaat
4260attagatttt ttgaaatcag atggttttgc caatcgcaat tttatgcagc tgatccatga
4320tgatagtttg acatttaaag aagacattca aaaagcacaa gtgtctggac aaggcgatag
4380tttacatgaa catattgcaa atttagctgg tagccctgct attaaaaaag gtattttaca
4440gactgtaaaa gttgttgatg aattggtcaa agtaatgggg cggcataagc cagaaaatat
4500cgttattgaa atggcacgtg aaaatcagac aactcaaaag ggccagaaaa attcgcgaga
4560gcgtatgaaa cgaatcgaag aaggtatcaa agaattagga agtcagattc ttaaagagca
4620tcctgttgaa aatactcaat tgcaaaatga aaagctctat ctctattatc tccaaaatgg
4680aagagacatg tatgtggacc aagaattaga tattaatcgt ttaagtgatt atgatgtcga
4740tcacattgtt ccacaaagtt tccttaaaga cgattcaata gacaataagg tcttaacgcg
4800ttctgataaa aatcgtggta aatcggataa cgttccaagt gaagaagtag tcaaaaagat
4860gaaaaactat tggagacaac ttctaaacgc caagttaatc actcaacgta agtttgataa
4920tttaacgaaa gctgaacgtg gaggtttgag tgaacttgat aaagctggtt ttatcaaacg
4980ccaattggtt gaaactcgcc aaatcactaa gcatgtggca caaattttgg atagtcgcat
5040gaatactaaa tacgatgaaa atgataaact tattcgagag gttaaagtga ttaccttaaa
5100atctaaatta gtttctgact tccgaaaaga tttccaattc tataaagtac gtgagattaa
5160caattaccat catgcccatg atgcgtatct aaatgccgtc gttggaactg ctttgattaa
5220gaaatatcca aaacttgaat cggagtttgt ctatggtgat tataaagttt atgatgttcg
5280taaaatgatt gctaagtctg agcaagaaat aggcaaagca accgcaaaat atttctttta
5340ctctaatatc atgaacttct tcaaaacaga aattacactt gcaaatggag agattcgcaa
5400acgccctcta atcgaaacta atggggaaac tggagaaatt gtctgggata aagggcgaga
5460ttttgccaca gtgcgcaaag tattgtccat gccccaagtc aatattgtca agaaaacaga
5520agtacagaca ggcggattct ccaaggagtc aattttacca aaaagaaatt cggacaagct
5580tattgctcgt aaaaaagact gggatccaaa aaaatatggt ggttttgata gtccaacggt
5640agcttattca gtcctagtgg ttgctaaggt ggaaaaaggg aaatcgaaga agttaaaatc
5700cgttaaagag ttactaggga tcacaattat ggaaagaagt tcctttgaaa aaaatccgat
5760tgacttttta gaagctaaag gatataagga agttaaaaaa gacttaatca ttaaactacc
5820taaatatagt ctttttgagt tagaaaacgg tcgtaaacgg atgctggcta gtgccggaga
5880attacaaaaa ggaaatgagc tggctctgcc aagcaaatat gtgaattttt tatatttagc
5940tagtcattat gaaaagttga agggtagtcc agaagataac gaacaaaaac aattgtttgt
6000ggagcagcat aagcattatt tagatgagat tattgagcaa atcagtgaat tttctaagcg
6060tgttatttta gcagatgcca atttagataa agttcttagt gcatataaca aacatagaga
6120caaaccaata cgtgaacaag cagaaaatat tattcattta tttacgttga cgaatcttgg
6180agctcccgct gcttttaaat attttgatac aacaattgat cgtaaacgat atacgtctac
6240aaaagaagtt ttagatgcca ctcttatcca tcaatccatc actggtcttt atgaaacacg
6300cattgatttg agtcagctag gaggtgactg aagtatattt tagatgaaga ttatttctta
6360ataactaaaa atatggtata atactcttaa taaatgcagt aatacagggg cttttcaaga
6420ctgaagtcta gctgagacaa atagtgcgat tacgaaattt tttagacaaa aatagtctac
6480gaggttttag agctatgctg ttttgaatgg tcccaaaact gagaccagtc tcggaagctc
6540aaaggtctcg ttttagagct atgctgtttt gaatggtccc aaaacttcag cacactgaga
6600cttgttgagt tccatgtttt agagctatgc tgttttgaat ggactccatt caacattgcc
6660gatgataact tgagaaagag ggttaatacc agcagtcgga taccttccta ttctttctgt
6720taaagcgttt tcatgttata ataggcaaaa gaagagtagt gtgatcgtcc attccgacag
6780catcgccagt cactatggcg tgctgctagc gctatatgcg ttgatgcaat ttctatgcgc
6840acccgttctc ggagcactgt ccgaccgctt tggccgccgc ccagtcctgc tcgcttcgct
6900acttggagcc actatcgact acgcgatcat ggcgaccaca cccgtcctgt ggatcctcta
6960cgccggacgc atcgtggccg gcatcaccgg cgccacaggt gcggttgctg gcgcctatat
7020cgccgacatc accgatgggg aagatcgggc tcgccacttc gggctcatga gcgcttgttt
7080cggcgtgggt atggtggcag gccccgtggc cgggggactg ttgggcgcca tctccttgca
7140tgcaccattc cttgcggcgg cggtgctcaa cggcctcaac ctactactgg gctgcttcct
7200aatgcaggag tcgcataagg gagagcgtcg accgatgccc ttgagagcct tcaacccagt
7260cagctccttc cggtgggcgc ggggcatgac tatcgtcgcc gcacttatga ctgtcttctt
7320tatcatgcaa ctcgtaggac aggtgccggc agcgctctgg gtcattttcg gcgaggaccg
7380ctttcgctgg agcgcgacga tgatcggcct gtcgcttgcg gtattcggaa tcttgcacgc
7440cctcgctcaa gccttcgtca ctggtcccgc caccaaacgt ttcggcgaga agcaggccat
7500tatcgccggc atggcggccg acgcgctggg ctacgtcttg ctggcgttcg cgacgcgagg
7560ctggatggcc ttccccatta tgattcttct cgcttccggc ggcatcggga tgcccgcgtt
7620gcaggccatg ctgtccaggc aggtagatga cgaccatcag ggacagcttc aaggatcgct
7680cgcggctctt accagcctaa cttcgatcat tggaccgctg atcgtcacgg cgatttatgc
7740cgcctcggcg agcacatgga acgggttggc atggattgta ggcgccgccc tataccttgt
7800ctgcctcccc gcgttgcgtc gcggtgcatg gagccgggcc acctcgacct gaatggaagc
7860cggcggcacc tcgctaacgg attcaccact ccaagaattg gagccaatca attcttgcgg
7920agaactgtga atgcgcaaac caacccttgg cagaacatat ccatcgcgtc cgccatctcc
7980agcagccgca cgcggcgcat ctcgggcagc gttgggtcct ggccacgggt gcgcatgatc
8040gtgctcctgt cgttgaggac ccggctaggc tggcggggtt gccttactgg ttagcagaat
8100gaatcaccga tacgcgagcg aacgtgaagc gactgctgct gcaaaacgtc tgcgacctga
8160gcaacaacat gaatggtctt cggtttccgt gtttcgtaaa gtctggaaac gcggaagtcc
8220cctacgtgct gctgaagttg cccgcaacag agagtggaac caaccggtga taccacgata
8280ctatgactga gagtcaacgc catgagcggc ctcatttctt attctgagtt acaacagtcc
8340gcaccgctgt ccggtagctc cttccggtgg gcgcggggca tgactatcgt cgccgcactt
8400atgactgtct tctttatcat gcaactcgta ggacaggtgc cggcagcgcc caacagtccc
8460ccggccacgg ggcctgccac catacccacg ccgaaacaag cgccctgcac cattatgttc
8520cggatctgca tcgcaggatg ctgctggcta ccctgtggaa cacctacatc tgtattaacg
8580aagcgctaac cgtttttatc aggctctggg aggcagaata aatgatcata tcgtcaatta
8640ttacctccac ggggagagcc tgagcaaact ggcctcaggc atttgagaag cacacggtca
8700cactgcttcc ggtagtcaat aaaccggtaa accagcaata gacataagcg gctatttaac
8760gaccctgccc tgaaccgacg accgggtcga atttgctttc gaatttctgc cattcatccg
8820cttattatca cttattcagg cgtagcacca ggcgtttaag ggcaccaata actgccttaa
8880aaaaattacg ccccgccctg ccactcatcg cagtactgtt gtaattcatt aagcattctg
8940ccgacatgga agccatcaca gacggcatga tgaacctgaa tcgccagcgg catcagcacc
9000ttgtcgcctt gcgtataata tttgcccatg gtgaaaacgg gggcgaagaa gttgtccata
9060ttggccacgt ttaaatcaaa actggtgaaa ctcacccagg gattggctga gacgaaaaac
9120atattctcaa taaacccttt agggaaatag gccaggtttt caccgtaaca cgccacatct
9180tgcgaatata tgtgtagaaa ctgccggaaa tcgtcgtggt attcactcca gagcgatgaa
9240aacgtttcag tttgctcatg gaaaacggtg taacaagggt gaacactatc ccatatcacc
9300agctcaccgt ctttcattgc catacg
9326619326DNAArtificialpCas9_LacZ2gene(2225)..(6331)productmisc_feature(6-
484)..(6519)repeatmisc_feature(6520)..(6549)CRSIPR target
ELZ2misc_feature(6550)..(6585)repeat 61gaattccgga tgagcattca tcaggcgggc
aagaatgtga ataaaggccg gataaaactt 60gtgcttattt ttctttacgg tctttaaaaa
ggccgtaata tccagctgaa cggtctggtt 120ataggtacat tgagcaactg actgaaatgc
ctcaaaatgt tctttacgat gccattggga 180tatatcaacg gtggtatatc cagtgatttt
tttctccatt ttagcttcct tagctcctga 240aaatctcgat aactcaaaaa atacgcccgg
tagtgatctt atttcattat ggtgaaagtt 300ggaacctctt acgtgccgat caacgtctca
ttttcgccaa aagttggccc agggcttccc 360ggtatcaaca gggacaccag gatttattta
ttctgcgaag tgatcttccg tcacaggtat 420ttattcggcg caaagtgcgt cgggtgatgc
tgccaactta ctgatttagt gtatgatggt 480gtttttgagg tgctccagtg gcttctgttt
ctatcagctg tccctcctgt tcagctactg 540acggggtggt gcgtaacggc aaaagcaccg
ccggacatca gcgctagcgg agtgtatact 600ggcttactat gttggcactg atgagggtgt
cagtgaagtg cttcatgtgg caggagaaaa 660aaggctgcac cggtgcgtca gcagaatatg
tgatacagga tatattccgc ttcctcgctc 720actgactcgc tacgctcggt cgttcgactg
cggcgagcgg aaatggctta cgaacggggc 780ggagatttcc tggaagatgc caggaagata
cttaacaggg aagtgagagg gccgcggcaa 840agccgttttt ccataggctc cgcccccctg
acaagcatca cgaaatctga cgctcaaatc 900agtggtggcg aaacccgaca ggactataaa
gataccaggc gtttccccct ggcggctccc 960tcgtgcgctc tcctgttcct gcctttcggt
ttaccggtgt cattccgctg ttatggccgc 1020gtttgtctca ttccacgcct gacactcagt
tccgggtagg cagttcgctc caagctggac 1080tgtatgcacg aaccccccgt tcagtccgac
cgctgcgcct tatccggtaa ctatcgtctt 1140gagtccaacc cggaaagaca tgcaaaagca
ccactggcag cagccactgg taattgattt 1200agaggagtta gtcttgaagt catgcgccgg
ttaaggctaa actgaaagga caagttttgg 1260tgactgcgct cctccaagcc agttacctcg
gttcaaagag ttggtagctc agagaacctt 1320cgaaaaaccg ccctgcaagg cggttttttc
gttttcagag caagagatta cgcgcagacc 1380aaaacgatct caagaagatc atcttattaa
tcagataaaa tatttctaga tttcagtgca 1440atttatctct tcaaatgtag cacctgaagt
cagccccata cgatataagt tgtaattctc 1500atgtttgaca gcttatcatc gataagcttt
aatgcggtag tttatcacag ttaaattgct 1560aacgcagtca ggcaccgtgt atgaaatcta
acaatgcgct catcgtcatc ctcggcaccg 1620tcaccctgga tgctgtaggc ataggcttgg
ttatgccggt actgccgggc ctcttgcggg 1680attacgaaat catcctgtgg agcttagtag
gtttagcaag atggcagcgc ctaaatgtag 1740aatgataaaa ggattaagag attaatttcc
ctaaaaatga taaaacaagc gttttgaaag 1800cgcttgtttt tttggtttgc agtcagagta
gaatagaagt atcaaaaaaa gcaccgactc 1860ggtgccactt tttcaagttg ataacggact
agccttattt taacttgcta tgctgttttg 1920aatggttcca acaagattat tttataactt
ttataacaaa taatcaagga gaaattcaaa 1980gaaatttatc agccataaaa caatacttaa
tactatagaa tgataacaaa ataaactact 2040ttttaaaaga attttgtgtt ataatctatt
tattattaag tattgggtaa tattttttga 2100agagatattt tgaaaaagaa aaattaaagc
atattaaact aatttcggag gtcattaaaa 2160ctattattga aatcatcaaa ctcattatgg
atttaattta aactttttat tttaggaggc 2220aaaaatggat aagaaatact caataggctt
agatatcggc acaaatagcg tcggatgggc 2280ggtgatcact gatgaatata aggttccgtc
taaaaagttc aaggttctgg gaaatacaga 2340ccgccacagt atcaaaaaaa atcttatagg
ggctctttta tttgacagtg gagagacagc 2400ggaagcgact cgtctcaaac ggacagctcg
tagaaggtat acacgtcgga agaatcgtat 2460ttgttatcta caggagattt tttcaaatga
gatggcgaaa gtagatgata gtttctttca 2520tcgacttgaa gagtcttttt tggtggaaga
agacaagaag catgaacgtc atcctatttt 2580tggaaatata gtagatgaag ttgcttatca
tgagaaatat ccaactatct atcatctgcg 2640aaaaaaattg gtagattcta ctgataaagc
ggatttgcgc ttaatctatt tggccttagc 2700gcatatgatt aagtttcgtg gtcatttttt
gattgaggga gatttaaatc ctgataatag 2760tgatgtggac aaactattta tccagttggt
acaaacctac aatcaattat ttgaagaaaa 2820ccctattaac gcaagtggag tagatgctaa
agcgattctt tctgcacgat tgagtaaatc 2880aagacgatta gaaaatctca ttgctcagct
ccccggtgag aagaaaaatg gcttatttgg 2940gaatctcatt gctttgtcat tgggtttgac
ccctaatttt aaatcaaatt ttgatttggc 3000agaagatgct aaattacagc tttcaaaaga
tacttacgat gatgatttag ataatttatt 3060ggcgcaaatt ggagatcaat atgctgattt
gtttttggca gctaagaatt tatcagatgc 3120tattttactt tcagatatcc taagagtaaa
tactgaaata actaaggctc ccctatcagc 3180ttcaatgatt aaacgctacg atgaacatca
tcaagacttg actcttttaa aagctttagt 3240tcgacaacaa cttccagaaa agtataaaga
aatctttttt gatcaatcaa aaaacggata 3300tgcaggttat attgatgggg gagctagcca
agaagaattt tataaattta tcaaaccaat 3360tttagaaaaa atggatggta ctgaggaatt
attggtgaaa ctaaatcgtg aagatttgct 3420gcgcaagcaa cggacctttg acaacggctc
tattccccat caaattcact tgggtgagct 3480gcatgctatt ttgagaagac aagaagactt
ttatccattt ttaaaagaca atcgtgagaa 3540gattgaaaaa atcttgactt ttcgaattcc
ttattatgtt ggtccattgg cgcgtggcaa 3600tagtcgtttt gcatggatga ctcggaagtc
tgaagaaaca attaccccat ggaattttga 3660agaagttgtc gataaaggtg cttcagctca
atcatttatt gaacgcatga caaactttga 3720taaaaatctt ccaaatgaaa aagtactacc
aaaacatagt ttgctttatg agtattttac 3780ggtttataac gaattgacaa aggtcaaata
tgttactgaa ggaatgcgaa aaccagcatt 3840tctttcaggt gaacagaaga aagccattgt
tgatttactc ttcaaaacaa atcgaaaagt 3900aaccgttaag caattaaaag aagattattt
caaaaaaata gaatgttttg atagtgttga 3960aatttcagga gttgaagata gatttaatgc
ttcattaggt acctaccatg atttgctaaa 4020aattattaaa gataaagatt ttttggataa
tgaagaaaat gaagatatct tagaggatat 4080tgttttaaca ttgaccttat ttgaagatag
ggagatgatt gaggaaagac ttaaaacata 4140tgctcacctc tttgatgata aggtgatgaa
acagcttaaa cgtcgccgtt atactggttg 4200gggacgtttg tctcgaaaat tgattaatgg
tattagggat aagcaatctg gcaaaacaat 4260attagatttt ttgaaatcag atggttttgc
caatcgcaat tttatgcagc tgatccatga 4320tgatagtttg acatttaaag aagacattca
aaaagcacaa gtgtctggac aaggcgatag 4380tttacatgaa catattgcaa atttagctgg
tagccctgct attaaaaaag gtattttaca 4440gactgtaaaa gttgttgatg aattggtcaa
agtaatgggg cggcataagc cagaaaatat 4500cgttattgaa atggcacgtg aaaatcagac
aactcaaaag ggccagaaaa attcgcgaga 4560gcgtatgaaa cgaatcgaag aaggtatcaa
agaattagga agtcagattc ttaaagagca 4620tcctgttgaa aatactcaat tgcaaaatga
aaagctctat ctctattatc tccaaaatgg 4680aagagacatg tatgtggacc aagaattaga
tattaatcgt ttaagtgatt atgatgtcga 4740tcacattgtt ccacaaagtt tccttaaaga
cgattcaata gacaataagg tcttaacgcg 4800ttctgataaa aatcgtggta aatcggataa
cgttccaagt gaagaagtag tcaaaaagat 4860gaaaaactat tggagacaac ttctaaacgc
caagttaatc actcaacgta agtttgataa 4920tttaacgaaa gctgaacgtg gaggtttgag
tgaacttgat aaagctggtt ttatcaaacg 4980ccaattggtt gaaactcgcc aaatcactaa
gcatgtggca caaattttgg atagtcgcat 5040gaatactaaa tacgatgaaa atgataaact
tattcgagag gttaaagtga ttaccttaaa 5100atctaaatta gtttctgact tccgaaaaga
tttccaattc tataaagtac gtgagattaa 5160caattaccat catgcccatg atgcgtatct
aaatgccgtc gttggaactg ctttgattaa 5220gaaatatcca aaacttgaat cggagtttgt
ctatggtgat tataaagttt atgatgttcg 5280taaaatgatt gctaagtctg agcaagaaat
aggcaaagca accgcaaaat atttctttta 5340ctctaatatc atgaacttct tcaaaacaga
aattacactt gcaaatggag agattcgcaa 5400acgccctcta atcgaaacta atggggaaac
tggagaaatt gtctgggata aagggcgaga 5460ttttgccaca gtgcgcaaag tattgtccat
gccccaagtc aatattgtca agaaaacaga 5520agtacagaca ggcggattct ccaaggagtc
aattttacca aaaagaaatt cggacaagct 5580tattgctcgt aaaaaagact gggatccaaa
aaaatatggt ggttttgata gtccaacggt 5640agcttattca gtcctagtgg ttgctaaggt
ggaaaaaggg aaatcgaaga agttaaaatc 5700cgttaaagag ttactaggga tcacaattat
ggaaagaagt tcctttgaaa aaaatccgat 5760tgacttttta gaagctaaag gatataagga
agttaaaaaa gacttaatca ttaaactacc 5820taaatatagt ctttttgagt tagaaaacgg
tcgtaaacgg atgctggcta gtgccggaga 5880attacaaaaa ggaaatgagc tggctctgcc
aagcaaatat gtgaattttt tatatttagc 5940tagtcattat gaaaagttga agggtagtcc
agaagataac gaacaaaaac aattgtttgt 6000ggagcagcat aagcattatt tagatgagat
tattgagcaa atcagtgaat tttctaagcg 6060tgttatttta gcagatgcca atttagataa
agttcttagt gcatataaca aacatagaga 6120caaaccaata cgtgaacaag cagaaaatat
tattcattta tttacgttga cgaatcttgg 6180agctcccgct gcttttaaat attttgatac
aacaattgat cgtaaacgat atacgtctac 6240aaaagaagtt ttagatgcca ctcttatcca
tcaatccatc actggtcttt atgaaacacg 6300cattgatttg agtcagctag gaggtgactg
aagtatattt tagatgaaga ttatttctta 6360ataactaaaa atatggtata atactcttaa
taaatgcagt aatacagggg cttttcaaga 6420ctgaagtcta gctgagacaa atagtgcgat
tacgaaattt tttagacaaa aatagtctac 6480gaggttttag agctatgctg ttttgaatgg
tcccaaaacc cattacggtc aatccgccgt 6540ttgttcccag ttttagagct atgctgtttt
gaatggtccc aaaacttcag cacactgaga 6600cttgttgagt tccatgtttt agagctatgc
tgttttgaat ggactccatt caacattgcc 6660gatgataact tgagaaagag ggttaatacc
agcagtcgga taccttccta ttctttctgt 6720taaagcgttt tcatgttata ataggcaaaa
gaagagtagt gtgatcgtcc attccgacag 6780catcgccagt cactatggcg tgctgctagc
gctatatgcg ttgatgcaat ttctatgcgc 6840acccgttctc ggagcactgt ccgaccgctt
tggccgccgc ccagtcctgc tcgcttcgct 6900acttggagcc actatcgact acgcgatcat
ggcgaccaca cccgtcctgt ggatcctcta 6960cgccggacgc atcgtggccg gcatcaccgg
cgccacaggt gcggttgctg gcgcctatat 7020cgccgacatc accgatgggg aagatcgggc
tcgccacttc gggctcatga gcgcttgttt 7080cggcgtgggt atggtggcag gccccgtggc
cgggggactg ttgggcgcca tctccttgca 7140tgcaccattc cttgcggcgg cggtgctcaa
cggcctcaac ctactactgg gctgcttcct 7200aatgcaggag tcgcataagg gagagcgtcg
accgatgccc ttgagagcct tcaacccagt 7260cagctccttc cggtgggcgc ggggcatgac
tatcgtcgcc gcacttatga ctgtcttctt 7320tatcatgcaa ctcgtaggac aggtgccggc
agcgctctgg gtcattttcg gcgaggaccg 7380ctttcgctgg agcgcgacga tgatcggcct
gtcgcttgcg gtattcggaa tcttgcacgc 7440cctcgctcaa gccttcgtca ctggtcccgc
caccaaacgt ttcggcgaga agcaggccat 7500tatcgccggc atggcggccg acgcgctggg
ctacgtcttg ctggcgttcg cgacgcgagg 7560ctggatggcc ttccccatta tgattcttct
cgcttccggc ggcatcggga tgcccgcgtt 7620gcaggccatg ctgtccaggc aggtagatga
cgaccatcag ggacagcttc aaggatcgct 7680cgcggctctt accagcctaa cttcgatcat
tggaccgctg atcgtcacgg cgatttatgc 7740cgcctcggcg agcacatgga acgggttggc
atggattgta ggcgccgccc tataccttgt 7800ctgcctcccc gcgttgcgtc gcggtgcatg
gagccgggcc acctcgacct gaatggaagc 7860cggcggcacc tcgctaacgg attcaccact
ccaagaattg gagccaatca attcttgcgg 7920agaactgtga atgcgcaaac caacccttgg
cagaacatat ccatcgcgtc cgccatctcc 7980agcagccgca cgcggcgcat ctcgggcagc
gttgggtcct ggccacgggt gcgcatgatc 8040gtgctcctgt cgttgaggac ccggctaggc
tggcggggtt gccttactgg ttagcagaat 8100gaatcaccga tacgcgagcg aacgtgaagc
gactgctgct gcaaaacgtc tgcgacctga 8160gcaacaacat gaatggtctt cggtttccgt
gtttcgtaaa gtctggaaac gcggaagtcc 8220cctacgtgct gctgaagttg cccgcaacag
agagtggaac caaccggtga taccacgata 8280ctatgactga gagtcaacgc catgagcggc
ctcatttctt attctgagtt acaacagtcc 8340gcaccgctgt ccggtagctc cttccggtgg
gcgcggggca tgactatcgt cgccgcactt 8400atgactgtct tctttatcat gcaactcgta
ggacaggtgc cggcagcgcc caacagtccc 8460ccggccacgg ggcctgccac catacccacg
ccgaaacaag cgccctgcac cattatgttc 8520cggatctgca tcgcaggatg ctgctggcta
ccctgtggaa cacctacatc tgtattaacg 8580aagcgctaac cgtttttatc aggctctggg
aggcagaata aatgatcata tcgtcaatta 8640ttacctccac ggggagagcc tgagcaaact
ggcctcaggc atttgagaag cacacggtca 8700cactgcttcc ggtagtcaat aaaccggtaa
accagcaata gacataagcg gctatttaac 8760gaccctgccc tgaaccgacg accgggtcga
atttgctttc gaatttctgc cattcatccg 8820cttattatca cttattcagg cgtagcacca
ggcgtttaag ggcaccaata actgccttaa 8880aaaaattacg ccccgccctg ccactcatcg
cagtactgtt gtaattcatt aagcattctg 8940ccgacatgga agccatcaca gacggcatga
tgaacctgaa tcgccagcgg catcagcacc 9000ttgtcgcctt gcgtataata tttgcccatg
gtgaaaacgg gggcgaagaa gttgtccata 9060ttggccacgt ttaaatcaaa actggtgaaa
ctcacccagg gattggctga gacgaaaaac 9120atattctcaa taaacccttt agggaaatag
gccaggtttt caccgtaaca cgccacatct 9180tgcgaatata tgtgtagaaa ctgccggaaa
tcgtcgtggt attcactcca gagcgatgaa 9240aacgtttcag tttgctcatg gaaaacggtg
taacaagggt gaacactatc ccatatcacc 9300agctcaccgt ctttcattgc catacg
9326622349DNAArtificialpsgRNAc
BsaIgene(219)..(1909)cat CmR chloramphenicol acetyltransferase -
positions are given on the complementary strand complement
(1909-219)promoter(220)..(322)cat promoter - positions are given on the
complementary strand complement
(220..322)rep_origin(848)..(1393)p15A ori - positions are given on the
complementary strand complement
(848..1393)promoter(1510)..(1538)Promoter
(BBa_J23119)misc_feature(1545)..(1564)Control spacer with 2
BsaImisc_RNA(1565)..(1640)gRNA scaffoldmisc_feature(1642)..(1647)part of
the tracrRNAgene(1648)..(1652)lacI 62gaattccgga tgagcattca tcaggcgggc
aagaatgtga ataaaggccg gataaaactt 60gtgcttattt ttctttacgg tctttaaaaa
ggccgtaata tccagctgaa cggtctggtt 120ataggtacat tgagcaactg actgaaatgc
ctcaaaatgt tctttacgat gccattggga 180tatatcaacg gtggtatatc cagtgatttt
tttctccatt ttagcttcct tagctcctga 240aaatctcgat aactcaaaaa atacgcccgg
tagtgatctt atttcattat ggtgaaagtt 300ggaacctctt acgtgccgat caacgtctca
ttttcgccaa aagttggccc agggcttccc 360ggtatcaaca gggacaccag gatttattta
ttctgcgaag tgatcttccg tcacaggtat 420ttattcggcg caaagtgcgt cgggtgatgc
tgccaactta ctgatttagt gtatgatggt 480gtttttgagg tgctccagtg gcttctgttt
ctatcagctg tccctcctgt tcagctactg 540acggggtggt gcgtaacggc aaaagcaccg
ccggacatca gcgctagcgg agtgtatact 600ggcttactat gttggcactg atgagggtgt
cagtgaagtg cttcatgtgg caggagaaaa 660aaggctgcac cggtgcgtca gcagaatatg
tgatacagga tatattccgc ttcctcgctc 720actgactcgc tacgctcggt cgttcgactg
cggcgagcgg aaatggctta cgaacggggc 780ggagatttcc tggaagatgc caggaagata
cttaacaggg aagtgagagg gccgcggcaa 840agccgttttt ccataggctc cgcccccctg
acaagcatca cgaaatctga cgctcaaatc 900agtggtggcg aaacccgaca ggactataaa
gataccaggc gtttccccct ggcggctccc 960tcgtgcgctc tcctgttcct gcctttcggt
ttaccggtgt cattccgctg ttatggccgc 1020gtttgtctca ttccacgcct gacactcagt
tccgggtagg cagttcgctc caagctggac 1080tgtatgcacg aaccccccgt tcagtccgac
cgctgcgcct tatccggtaa ctatcgtctt 1140gagtccaacc cggaaagaca tgcaaaagca
ccactggcag cagccactgg taattgattt 1200agaggagtta gtcttgaagt catgcgccgg
ttaaggctaa actgaaagga caagttttgg 1260tgactgcgct cctccaagcc agttacctcg
gttcaaagag ttggtagctc agagaacctt 1320cgaaaaaccg ccctgcaagg cggttttttc
gttttcagag caagagatta cgcgcagacc 1380aaaacgatct caagaagatc atcttattaa
tcagataaaa tatttctaga tttcagtgca 1440atttatctct tcaaatgtag cacctggcta
ggaggtgact gaagtatatt ttaggaattc 1500taaagatctt tgacagctag ctcagtccta
ggtataatac tagttgagac cagtctaggt 1560ctcggtttta gagctagaaa tagcaagtta
aaataaggct agtccgttat caacttgaaa 1620aagtggcacc gagtcggtgc tttttttggt
agtgcagcgc gatcgtaatc aggggggaga 1680gcctgagcaa actggcctca ggcatttgag
aagcacacgg tcacactgct tccggtagtc 1740aataaaccgg taaaccagca atagacataa
gcggctattt aacgaccctg ccctgaaccg 1800acgaccgggt cgaatttgct ttcgaatttc
tgccattcat ccgcttatta tcacttattc 1860aggcgtagca ccaggcgttt aagggcacca
ataactgcct taaaaaaatt acgccccgcc 1920ctgccactca tcgcagtact gttgtaattc
attaagcatt ctgccgacat ggaagccatc 1980acagacggca tgatgaacct gaatcgccag
cggcatcagc accttgtcgc cttgcgtata 2040atatttgccc atggtgaaaa cgggggcgaa
gaagttgtcc atattggcca cgtttaaatc 2100aaaactggtg aaactcaccc agggattggc
tgagacgaaa aacatattct caataaaccc 2160tttagggaaa taggccaggt tttcaccgta
acacgccaca tcttgcgaat atatgtgtag 2220aaactgccgg aaatcgtcgt ggtattcact
ccagagcgat gaaaacgttt cagtttgctc 2280atggaaaacg gtgtaacaag ggtgaacact
atcccatatc accagctcac cgtctttcat 2340tgccatacg
2349639326DNAArtificialpCas9
63gaattccgga tgagcattca tcaggcgggc aagaatgtga ataaaggccg gataaaactt
60gtgcttattt ttctttacgg tctttaaaaa ggccgtaata tccagctgaa cggtctggtt
120ataggtacat tgagcaactg actgaaatgc ctcaaaatgt tctttacgat gccattggga
180tatatcaacg gtggtatatc cagtgatttt tttctccatt ttagcttcct tagctcctga
240aaatctcgat aactcaaaaa atacgcccgg tagtgatctt atttcattat ggtgaaagtt
300ggaacctctt acgtgccgat caacgtctca ttttcgccaa aagttggccc agggcttccc
360ggtatcaaca gggacaccag gatttattta ttctgcgaag tgatcttccg tcacaggtat
420ttattcggcg caaagtgcgt cgggtgatgc tgccaactta ctgatttagt gtatgatggt
480gtttttgagg tgctccagtg gcttctgttt ctatcagctg tccctcctgt tcagctactg
540acggggtggt gcgtaacggc aaaagcaccg ccggacatca gcgctagcgg agtgtatact
600ggcttactat gttggcactg atgagggtgt cagtgaagtg cttcatgtgg caggagaaaa
660aaggctgcac cggtgcgtca gcagaatatg tgatacagga tatattccgc ttcctcgctc
720actgactcgc tacgctcggt cgttcgactg cggcgagcgg aaatggctta cgaacggggc
780ggagatttcc tggaagatgc caggaagata cttaacaggg aagtgagagg gccgcggcaa
840agccgttttt ccataggctc cgcccccctg acaagcatca cgaaatctga cgctcaaatc
900agtggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggcggctccc
960tcgtgcgctc tcctgttcct gcctttcggt ttaccggtgt cattccgctg ttatggccgc
1020gtttgtctca ttccacgcct gacactcagt tccgggtagg cagttcgctc caagctggac
1080tgtatgcacg aaccccccgt tcagtccgac cgctgcgcct tatccggtaa ctatcgtctt
1140gagtccaacc cggaaagaca tgcaaaagca ccactggcag cagccactgg taattgattt
1200agaggagtta gtcttgaagt catgcgccgg ttaaggctaa actgaaagga caagttttgg
1260tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc agagaacctt
1320cgaaaaaccg ccctgcaagg cggttttttc gttttcagag caagagatta cgcgcagacc
1380aaaacgatct caagaagatc atcttattaa tcagataaaa tatttctaga tttcagtgca
1440atttatctct tcaaatgtag cacctgaagt cagccccata cgatataagt tgtaattctc
1500atgtttgaca gcttatcatc gataagcttt aatgcggtag tttatcacag ttaaattgct
1560aacgcagtca ggcaccgtgt atgaaatcta acaatgcgct catcgtcatc ctcggcaccg
1620tcaccctgga tgctgtaggc ataggcttgg ttatgccggt actgccgggc ctcttgcggg
1680attacgaaat catcctgtgg agcttagtag gtttagcaag atggcagcgc ctaaatgtag
1740aatgataaaa ggattaagag attaatttcc ctaaaaatga taaaacaagc gttttgaaag
1800cgcttgtttt tttggtttgc agtcagagta gaatagaagt atcaaaaaaa gcaccgactc
1860ggtgccactt tttcaagttg ataacggact agccttattt taacttgcta tgctgttttg
1920aatggttcca acaagattat tttataactt ttataacaaa taatcaagga gaaattcaaa
1980gaaatttatc agccataaaa caatacttaa tactatagaa tgataacaaa ataaactact
2040ttttaaaaga attttgtgtt ataatctatt tattattaag tattgggtaa tattttttga
2100agagatattt tgaaaaagaa aaattaaagc atattaaact aatttcggag gtcattaaaa
2160ctattattga aatcatcaaa ctcattatgg atttaattta aactttttat tttaggaggc
2220aaaaatggat aagaaatact caataggctt agatatcggc acaaatagcg tcggatgggc
2280ggtgatcact gatgaatata aggttccgtc taaaaagttc aaggttctgg gaaatacaga
2340ccgccacagt atcaaaaaaa atcttatagg ggctctttta tttgacagtg gagagacagc
2400ggaagcgact cgtctcaaac ggacagctcg tagaaggtat acacgtcgga agaatcgtat
2460ttgttatcta caggagattt tttcaaatga gatggcgaaa gtagatgata gtttctttca
2520tcgacttgaa gagtcttttt tggtggaaga agacaagaag catgaacgtc atcctatttt
2580tggaaatata gtagatgaag ttgcttatca tgagaaatat ccaactatct atcatctgcg
2640aaaaaaattg gtagattcta ctgataaagc ggatttgcgc ttaatctatt tggccttagc
2700gcatatgatt aagtttcgtg gtcatttttt gattgaggga gatttaaatc ctgataatag
2760tgatgtggac aaactattta tccagttggt acaaacctac aatcaattat ttgaagaaaa
2820ccctattaac gcaagtggag tagatgctaa agcgattctt tctgcacgat tgagtaaatc
2880aagacgatta gaaaatctca ttgctcagct ccccggtgag aagaaaaatg gcttatttgg
2940gaatctcatt gctttgtcat tgggtttgac ccctaatttt aaatcaaatt ttgatttggc
3000agaagatgct aaattacagc tttcaaaaga tacttacgat gatgatttag ataatttatt
3060ggcgcaaatt ggagatcaat atgctgattt gtttttggca gctaagaatt tatcagatgc
3120tattttactt tcagatatcc taagagtaaa tactgaaata actaaggctc ccctatcagc
3180ttcaatgatt aaacgctacg atgaacatca tcaagacttg actcttttaa aagctttagt
3240tcgacaacaa cttccagaaa agtataaaga aatctttttt gatcaatcaa aaaacggata
3300tgcaggttat attgatgggg gagctagcca agaagaattt tataaattta tcaaaccaat
3360tttagaaaaa atggatggta ctgaggaatt attggtgaaa ctaaatcgtg aagatttgct
3420gcgcaagcaa cggacctttg acaacggctc tattccccat caaattcact tgggtgagct
3480gcatgctatt ttgagaagac aagaagactt ttatccattt ttaaaagaca atcgtgagaa
3540gattgaaaaa atcttgactt ttcgaattcc ttattatgtt ggtccattgg cgcgtggcaa
3600tagtcgtttt gcatggatga ctcggaagtc tgaagaaaca attaccccat ggaattttga
3660agaagttgtc gataaaggtg cttcagctca atcatttatt gaacgcatga caaactttga
3720taaaaatctt ccaaatgaaa aagtactacc aaaacatagt ttgctttatg agtattttac
3780ggtttataac gaattgacaa aggtcaaata tgttactgaa ggaatgcgaa aaccagcatt
3840tctttcaggt gaacagaaga aagccattgt tgatttactc ttcaaaacaa atcgaaaagt
3900aaccgttaag caattaaaag aagattattt caaaaaaata gaatgttttg atagtgttga
3960aatttcagga gttgaagata gatttaatgc ttcattaggt acctaccatg atttgctaaa
4020aattattaaa gataaagatt ttttggataa tgaagaaaat gaagatatct tagaggatat
4080tgttttaaca ttgaccttat ttgaagatag ggagatgatt gaggaaagac ttaaaacata
4140tgctcacctc tttgatgata aggtgatgaa acagcttaaa cgtcgccgtt atactggttg
4200gggacgtttg tctcgaaaat tgattaatgg tattagggat aagcaatctg gcaaaacaat
4260attagatttt ttgaaatcag atggttttgc caatcgcaat tttatgcagc tgatccatga
4320tgatagtttg acatttaaag aagacattca aaaagcacaa gtgtctggac aaggcgatag
4380tttacatgaa catattgcaa atttagctgg tagccctgct attaaaaaag gtattttaca
4440gactgtaaaa gttgttgatg aattggtcaa agtaatgggg cggcataagc cagaaaatat
4500cgttattgaa atggcacgtg aaaatcagac aactcaaaag ggccagaaaa attcgcgaga
4560gcgtatgaaa cgaatcgaag aaggtatcaa agaattagga agtcagattc ttaaagagca
4620tcctgttgaa aatactcaat tgcaaaatga aaagctctat ctctattatc tccaaaatgg
4680aagagacatg tatgtggacc aagaattaga tattaatcgt ttaagtgatt atgatgtcga
4740tcacattgtt ccacaaagtt tccttaaaga cgattcaata gacaataagg tcttaacgcg
4800ttctgataaa aatcgtggta aatcggataa cgttccaagt gaagaagtag tcaaaaagat
4860gaaaaactat tggagacaac ttctaaacgc caagttaatc actcaacgta agtttgataa
4920tttaacgaaa gctgaacgtg gaggtttgag tgaacttgat aaagctggtt ttatcaaacg
4980ccaattggtt gaaactcgcc aaatcactaa gcatgtggca caaattttgg atagtcgcat
5040gaatactaaa tacgatgaaa atgataaact tattcgagag gttaaagtga ttaccttaaa
5100atctaaatta gtttctgact tccgaaaaga tttccaattc tataaagtac gtgagattaa
5160caattaccat catgcccatg atgcgtatct aaatgccgtc gttggaactg ctttgattaa
5220gaaatatcca aaacttgaat cggagtttgt ctatggtgat tataaagttt atgatgttcg
5280taaaatgatt gctaagtctg agcaagaaat aggcaaagca accgcaaaat atttctttta
5340ctctaatatc atgaacttct tcaaaacaga aattacactt gcaaatggag agattcgcaa
5400acgccctcta atcgaaacta atggggaaac tggagaaatt gtctgggata aagggcgaga
5460ttttgccaca gtgcgcaaag tattgtccat gccccaagtc aatattgtca agaaaacaga
5520agtacagaca ggcggattct ccaaggagtc aattttacca aaaagaaatt cggacaagct
5580tattgctcgt aaaaaagact gggatccaaa aaaatatggt ggttttgata gtccaacggt
5640agcttattca gtcctagtgg ttgctaaggt ggaaaaaggg aaatcgaaga agttaaaatc
5700cgttaaagag ttactaggga tcacaattat ggaaagaagt tcctttgaaa aaaatccgat
5760tgacttttta gaagctaaag gatataagga agttaaaaaa gacttaatca ttaaactacc
5820taaatatagt ctttttgagt tagaaaacgg tcgtaaacgg atgctggcta gtgccggaga
5880attacaaaaa ggaaatgagc tggctctgcc aagcaaatat gtgaattttt tatatttagc
5940tagtcattat gaaaagttga agggtagtcc agaagataac gaacaaaaac aattgtttgt
6000ggagcagcat aagcattatt tagatgagat tattgagcaa atcagtgaat tttctaagcg
6060tgttatttta gcagatgcca atttagataa agttcttagt gcatataaca aacatagaga
6120caaaccaata cgtgaacaag cagaaaatat tattcattta tttacgttga cgaatcttgg
6180agctcccgct gcttttaaat attttgatac aacaattgat cgtaaacgat atacgtctac
6240aaaagaagtt ttagatgcca ctcttatcca tcaatccatc actggtcttt atgaaacacg
6300cattgatttg agtcagctag gaggtgactg aagtatattt tagatgaaga ttatttctta
6360ataactaaaa atatggtata atactcttaa taaatgcagt aatacagggg cttttcaaga
6420ctgaagtcta gctgagacaa atagtgcgat tacgaaattt tttagacaaa aatagtctac
6480gaggttttag agctatgctg ttttgaatgg tcccaaaact gagaccagtc tcggaagctc
6540aaaggtctcg ttttagagct atgctgtttt gaatggtccc aaaacttcag cacactgaga
6600cttgttgagt tccatgtttt agagctatgc tgttttgaat ggactccatt caacattgcc
6660gatgataact tgagaaagag ggttaatacc agcagtcgga taccttccta ttctttctgt
6720taaagcgttt tcatgttata ataggcaaaa gaagagtagt gtgatcgtcc attccgacag
6780catcgccagt cactatggcg tgctgctagc gctatatgcg ttgatgcaat ttctatgcgc
6840acccgttctc ggagcactgt ccgaccgctt tggccgccgc ccagtcctgc tcgcttcgct
6900acttggagcc actatcgact acgcgatcat ggcgaccaca cccgtcctgt ggatcctcta
6960cgccggacgc atcgtggccg gcatcaccgg cgccacaggt gcggttgctg gcgcctatat
7020cgccgacatc accgatgggg aagatcgggc tcgccacttc gggctcatga gcgcttgttt
7080cggcgtgggt atggtggcag gccccgtggc cgggggactg ttgggcgcca tctccttgca
7140tgcaccattc cttgcggcgg cggtgctcaa cggcctcaac ctactactgg gctgcttcct
7200aatgcaggag tcgcataagg gagagcgtcg accgatgccc ttgagagcct tcaacccagt
7260cagctccttc cggtgggcgc ggggcatgac tatcgtcgcc gcacttatga ctgtcttctt
7320tatcatgcaa ctcgtaggac aggtgccggc agcgctctgg gtcattttcg gcgaggaccg
7380ctttcgctgg agcgcgacga tgatcggcct gtcgcttgcg gtattcggaa tcttgcacgc
7440cctcgctcaa gccttcgtca ctggtcccgc caccaaacgt ttcggcgaga agcaggccat
7500tatcgccggc atggcggccg acgcgctggg ctacgtcttg ctggcgttcg cgacgcgagg
7560ctggatggcc ttccccatta tgattcttct cgcttccggc ggcatcggga tgcccgcgtt
7620gcaggccatg ctgtccaggc aggtagatga cgaccatcag ggacagcttc aaggatcgct
7680cgcggctctt accagcctaa cttcgatcat tggaccgctg atcgtcacgg cgatttatgc
7740cgcctcggcg agcacatgga acgggttggc atggattgta ggcgccgccc tataccttgt
7800ctgcctcccc gcgttgcgtc gcggtgcatg gagccgggcc acctcgacct gaatggaagc
7860cggcggcacc tcgctaacgg attcaccact ccaagaattg gagccaatca attcttgcgg
7920agaactgtga atgcgcaaac caacccttgg cagaacatat ccatcgcgtc cgccatctcc
7980agcagccgca cgcggcgcat ctcgggcagc gttgggtcct ggccacgggt gcgcatgatc
8040gtgctcctgt cgttgaggac ccggctaggc tggcggggtt gccttactgg ttagcagaat
8100gaatcaccga tacgcgagcg aacgtgaagc gactgctgct gcaaaacgtc tgcgacctga
8160gcaacaacat gaatggtctt cggtttccgt gtttcgtaaa gtctggaaac gcggaagtcc
8220cctacgtgct gctgaagttg cccgcaacag agagtggaac caaccggtga taccacgata
8280ctatgactga gagtcaacgc catgagcggc ctcatttctt attctgagtt acaacagtcc
8340gcaccgctgt ccggtagctc cttccggtgg gcgcggggca tgactatcgt cgccgcactt
8400atgactgtct tctttatcat gcaactcgta ggacaggtgc cggcagcgcc caacagtccc
8460ccggccacgg ggcctgccac catacccacg ccgaaacaag cgccctgcac cattatgttc
8520cggatctgca tcgcaggatg ctgctggcta ccctgtggaa cacctacatc tgtattaacg
8580aagcgctaac cgtttttatc aggctctggg aggcagaata aatgatcata tcgtcaatta
8640ttacctccac ggggagagcc tgagcaaact ggcctcaggc atttgagaag cacacggtca
8700cactgcttcc ggtagtcaat aaaccggtaa accagcaata gacataagcg gctatttaac
8760gaccctgccc tgaaccgacg accgggtcga atttgctttc gaatttctgc cattcatccg
8820cttattatca cttattcagg cgtagcacca ggcgtttaag ggcaccaata actgccttaa
8880aaaaattacg ccccgccctg ccactcatcg cagtactgtt gtaattcatt aagcattctg
8940ccgacatgga agccatcaca gacggcatga tgaacctgaa tcgccagcgg catcagcacc
9000ttgtcgcctt gcgtataata tttgcccatg gtgaaaacgg gggcgaagaa gttgtccata
9060ttggccacgt ttaaatcaaa actggtgaaa ctcacccagg gattggctga gacgaaaaac
9120atattctcaa taaacccttt agggaaatag gccaggtttt caccgtaaca cgccacatct
9180tgcgaatata tgtgtagaaa ctgccggaaa tcgtcgtggt attcactcca gagcgatgaa
9240aacgtttcag tttgctcatg gaaaacggtg taacaagggt gaacactatc ccatatcacc
9300agctcaccgt ctttcattgc catacg
9326642433DNAArtificialpCRISPR 64ctcgagtccc tatcagtgat agagattgac
atccctatca gtgatagaga tactgagcac 60atcagcagga cgcactgacc gaattcaact
caacaagtct cagtgtgctg aagttttggg 120accattcaaa acagcatagc tctaaaacga
gacctttgag cttccgagac tggtctcagt 180tttgggacca ttcaaaacag catagctcta
aaacctcgta gactattttt gtctaaaaaa 240tttcgtaatc gcactatttg tctcagctag
acttcagtct tgaaaagccc ctgtattact 300gcatttatta agagtattat accatatttt
tagttattaa gaaataggat cccatggtac 360gcgtgctaga ggcatcaaat aaaacgaaag
gctcagtcga aagactgggc ctttcgtttt 420atctgttgtt tgtcggtgaa cgctctcctg
agtaggacaa atccgccgcc ctagacctag 480ggcgttcggc tgcggcgagc ggtatcagct
cactcaaagg cggtaatacg gttatccaca 540gaatcagggg ataacgcagg aaagaacatg
tgagcaaaag gccagcaaaa ggccaggaac 600cgtaaaaagg ccgcgttgct ggcgtttttc
cataggctcc gcccccctga cgagcatcac 660aaaaatcgac gctcaagtca gaggtggcga
aacccgacag gactataaag ataccaggcg 720tttccccctg gaagctccct cgtgcgctct
cctgttccga ccctgccgct taccggatac 780ctgtccgcct ttctcccttc gggaagcgtg
gcgctttctc aatgctcacg ctgtaggtat 840ctcagttcgg tgtaggtcgt tcgctccaag
ctgggctgtg tgcacgaacc ccccgttcag 900cccgaccgct gcgccttatc cggtaactat
cgtcttgagt ccaacccggt aagacacgac 960ttatcgccac tggcagcagc cactggtaac
aggattagca gagcgaggta tgtaggcggt 1020gctacagagt tcttgaagtg gtggcctaac
tacggctaca ctagaaggac agtatttggt 1080atctgcgctc tgctgaagcc agttaccttc
ggaaaaagag ttggtagctc ttgatccggc 1140aaacaaacca ccgctggtag cggtggtttt
tttgtttgca agcagcagat tacgcgcaga 1200aaaaaaggat ctcaagaaga tcctttgatc
ttttctacgg ggtctgacgc tcagtggaac 1260gaaaactcac gttaagggat tttggtcatg
actagtgctt ggattctcac caataaaaaa 1320cgcccggcgg caaccgagcg ttctgaacaa
atccagatgg agttctgagg tcattactgg 1380atctatcaac aggagtccaa gcgagctctc
gaaccccaga gtcccgctca gaagaactcg 1440tcaagaaggc gatagaaggc gatgcgctgc
gaatcgggag cggcgatacc gtaaagcacg 1500aggaagcggt cagcccattc gccgccaagc
tcttcagcaa tatcacgggt agccaacgct 1560atgtcctgat agcggtccgc cacacccagc
cggccacagt cgatgaatcc agaaaagcgg 1620ccattttcca ccatgatatt cggcaagcag
gcatcgccat gggtcacgac gagatcctcg 1680ccgtcgggca tgcgcgcctt gagcctggcg
aacagttcgg ctggcgcgag cccctgatgc 1740tcttcgtcca gatcatcctg atcgacaaga
ccggcttcca tccgagtacg tgctcgctcg 1800atgcgatgtt tcgcttggtg gtcgaatggg
caggtagccg gatcaagcgt atgcagccgc 1860cgcattgcat cagccatgat ggatactttc
tcggcaggag caaggtgaga tgacaggaga 1920tcctgccccg gcacttcgcc caatagcagc
cagtcccttc ccgcttcagt gacaacgtcg 1980agcacagctg cgcaaggaac gcccgtcgtg
gccagccacg atagccgcgc tgcctcgtcc 2040tgcagttcat tcagggcacc ggacaggtcg
gtcttgacaa aaagaaccgg gcgcccctgc 2100gctgacagcc ggaacacggc ggcatcagag
cagccgattg tctgttgtgc ccagtcatag 2160ccgaatagcc tctccaccca agcggccgga
gaacctgcgt gcaatccatc ttgttcaatc 2220atgcgaaacg atcctcatcc tgtctcttga
tcagatcttg atcccctgcg ccatcagatc 2280cttggcggca agaaagccat ccagtttact
ttgcagggct tcccaacctt accagagggc 2340gccccagctg gcaattccga cgtctaagaa
accattatta tcatgacatt aacctataaa 2400aataggcgta tcacgaggcc ctttcgtctt
cac 2433652650DNAArtificialpCRRNA
65aagatggcag cgcctaaatg tagaatgata aaaggattaa gagattaatt tccctaaaaa
60tgataaaaca agcgttttga aagcgcttgt ttttttggtt tgcagtcaga gtagaataga
120agtatcaaaa aaagcaccga ctcggtgcca ctttttcaag ttgataacgg actagcctta
180ttttaacttg ctatgctgtt ttgaatggtt ccaacaagat tattttataa cttttataac
240aaataatcaa ggagaaattc aaagaaattt atcagccata aaacaatact taatactcat
300gaattcaact caacaagtct cagtgtgctg aagttttggg accattcaaa acagcatagc
360tctaaaacga gacctttgag cttccgagac tggtctcagt tttgggacca ttcaaaacag
420catagctcta aaacctcgta gactattttt gtctaaaaaa tttcgtaatc gcactatttg
480tctcagctag acttcagtct tgaaaagccc ctgtattact gcatttatta agagtattat
540accatatttt tagttattaa gaaataggat cccatggtac gcgtgctaga ggcatcaaat
600aaaacgaaag gctcagtcga aagactgggc ctttcgtttt atctgttgtt tgtcggtgaa
660cgctctcctg agtaggacaa atccgccgcc ctagacctag ggcgttcggc tgcggcgagc
720ggtatcagct cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg
780aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct
840ggcgtttttc cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca
900gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct
960cgtgcgctct cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc
1020gggaagcgtg gcgctttctc aatgctcacg ctgtaggtat ctcagttcgg tgtaggtcgt
1080tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc
1140cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc
1200cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg
1260gtggcctaac tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc
1320agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag
1380cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga
1440tcctttgatc ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat
1500tttggtcatg actagtgctt ggattctcac caataaaaaa cgcccggcgg caaccgagcg
1560ttctgaacaa atccagatgg agttctgagg tcattactgg atctatcaac aggagtccaa
1620gcgagctctc gaaccccaga gtcccgctca gaagaactcg tcaagaaggc gatagaaggc
1680gatgcgctgc gaatcgggag cggcgatacc gtaaagcacg aggaagcggt cagcccattc
1740gccgccaagc tcttcagcaa tatcacgggt agccaacgct atgtcctgat agcggtccgc
1800cacacccagc cggccacagt cgatgaatcc agaaaagcgg ccattttcca ccatgatatt
1860cggcaagcag gcatcgccat gggtcacgac gagatcctcg ccgtcgggca tgcgcgcctt
1920gagcctggcg aacagttcgg ctggcgcgag cccctgatgc tcttcgtcca gatcatcctg
1980atcgacaaga ccggcttcca tccgagtacg tgctcgctcg atgcgatgtt tcgcttggtg
2040gtcgaatggg caggtagccg gatcaagcgt atgcagccgc cgcattgcat cagccatgat
2100ggatactttc tcggcaggag caaggtgaga tgacaggaga tcctgccccg gcacttcgcc
2160caatagcagc cagtcccttc ccgcttcagt gacaacgtcg agcacagctg cgcaaggaac
2220gcccgtcgtg gccagccacg atagccgcgc tgcctcgtcc tgcagttcat tcagggcacc
2280ggacaggtcg gtcttgacaa aaagaaccgg gcgcccctgc gctgacagcc ggaacacggc
2340ggcatcagag cagccgattg tctgttgtgc ccagtcatag ccgaatagcc tctccaccca
2400agcggccgga gaacctgcgt gcaatccatc ttgttcaatc atgcgaaacg atcctcatcc
2460tgtctcttga tcagatcttg atcccctgcg ccatcagatc cttggcggca agaaagccat
2520ccagtttact ttgcagggct tcccaacctt accagagggc gccccagctg gcaattccga
2580cgtctaagaa accattatta tcatgacatt aacctataaa aataggcgta tcacgaggcc
2640ctttcgtctt
2650664085DNAArtificialpLCX 66taaaaatagg cgtatcacga ggccctttcg tcttcgggcc
cattaagttc tgtctcggcg 60cgtctgcgtc tggctggctg gcataaatat ctcactcgca
atcaaattca gccgatagcg 120gaacgggaag gcgactggag tgccatgtcc ggttttcaac
aaaccatgca aatgctgaat 180gagggcatcg ttcccactgc gatgctggtt gccaacgatc
agatggcgct gggcgcaatg 240cgcgccatta ccgagtccgg gctgcgcgtt ggtgcggata
tctcggtagt gggatacgac 300gataccgaag acagctcatg ttatatcccg ccgttaacca
ccatcaaaca ggattttcgc 360ctgctggggc aaaccagcgt ggaccgcttg ctgcaactct
ctcagggcca ggcggtgaag 420ggcaatcagc tgttgcccgt ctcactggtg aaaagaaaaa
ccaccctggc gcccaatacg 480caaaccgcct ctccccgcgc gttggccgat tcattaatgc
agctggcacg acaggtttcc 540cgactggaaa gcgggcagtg agcgcaacgc aattaatgtg
agttagctca ctcattaggc 600accccaggct ttacacttta tgcttccggc tcgtatgttg
tgtggaattg tgagcggata 660acaatttcac acaggaaaca gctatgacca tgattacgga
ttcactggcc gtcgttttac 720aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa
tcgccttgca gcacatcccc 780ctttcgccag ctggcgtaat agcgaagagg cccgcaccga
tcgcccttcc caacagttgc 840gcagcctgaa tggcgaatgg cgctttgcct ggtttccggc
accagaagcg gtgccggaaa 900gctggctgga gtgcgatctt cctgaggccg atactgtcgt
cgtcccctca aactggcaga 960tgcacggtta cgatgcgccc atctacacca acgtgaccta
tcccattacg gtcaatccgc 1020cgtttgttcc cacgtagaat ccgacgggtt gttactcgct
cacatttaat gttgatgaaa 1080gctggctaca ggaaggccag acgcgaatta tttttgatgg
cgttaactcg gcgtttcatc 1140tgtggtgcaa cgggcgctgg gtcggttacg gccaggacag
tcgtttgccg tctgaatttg 1200acctgagcgc atttttacgc gccggagaaa accgcctcgc
ggtgatggtg ctgcgctgga 1260gtgacggcag ttatctggaa gatcaggata tgtggcggat
gagcggcatt ttccgtgacg 1320tctcgttgct gcataaaccg actacacaaa tcagcgattt
ccatgttgcc actcgcttta 1380atgatgattt cagccgcgct gtactggagg ctgaagttca
gatgtgcggc gagttgcgtg 1440actacctacg ggtaacagtt tctttatggc agggtgaaac
gcaggtcgcc agcggcaccg 1500cgcctttcgg cggtgaaatt atcgatgagc gtggtggtta
tgccgatcgc gtcacactac 1560gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat
cccgaatctc tatcgtgcgg 1620tggttgaact gcacaccgcc gacggcacgc tgattgaagc
agaagcctgc gatgtcggtt 1680tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa
cggcaagccg ttgctgattc 1740gaggcgttaa ccgtcacgag catcatcctc tgcatggtca
ggtcatggat gagcagacga 1800tggtgcagga tatcctgctg atgaagcaga acaactttaa
cgccgtgcgc tgttcgcatt 1860atccgaacca tccgctgtgg tacacgctgt gcgaccgcta
cggcctgtat gtggtggatg 1920aagccaatat tgaaacccac ggcatggtgc caatgaatcg
tctgaccgat gatccgcgct 1980ggctaccggc gatgagcgaa cgcgtaacgc gaatggtgca
gcgcgatcgt aatcaggatc 2040ccatggtacg cgtgctagag gcatcaaata aaacgaaagg
ctcagtcgaa agactgggcc 2100tttcgtttta tctgttgttt gtcggtgaac gctctcctga
gtaggacaaa tccgccgccc 2160tagacctagg gcgttcggct gcggcgagcg gtatcagctc
actcaaaggc ggtaatacgg 2220ttatccacag aatcagggga taacgcagga aagaacatgt
gagcaaaagg ccagcaaaag 2280gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc
ataggctccg cccccctgac 2340gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa
acccgacagg actataaaga 2400taccaggcgt ttccccctgg aagctccctc gtgcgctctc
ctgttccgac cctgccgctt 2460accggatacc tgtccgcctt tctcccttcg ggaagcgtgg
cgctttctca atgctcacgc 2520tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc
tgggctgtgt gcacgaaccc 2580cccgttcagc ccgaccgctg cgccttatcc ggtaactatc
gtcttgagtc caacccggta 2640agacacgact tatcgccact ggcagcagcc actggtaaca
ggattagcag agcgaggtat 2700gtaggcggtg ctacagagtt cttgaagtgg tggcctaact
acggctacac tagaaggaca 2760gtatttggta tctgcgctct gctgaagcca gttaccttcg
gaaaaagagt tggtagctct 2820tgatccggca aacaaaccac cgctggtagc ggtggttttt
ttgtttgcaa gcagcagatt 2880acgcgcagaa aaaaaggatc tcaagaagat cctttgatct
tttctacggg gtctgacgct 2940cagtggaacg aaaactcacg ttaagggatt ttggtcatga
ctagtgcttg gattctcacc 3000aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa
tccagatgga gttctgaggt 3060cattactgga tctatcaaca ggagtccaag cgagctctcg
aaccccagag tcccgctcag 3120aagaactcgt caagaaggcg atagaaggcg atgcgctgcg
aatcgggagc ggcgataccg 3180taaagcacga ggaagcggtc agcccattcg ccgccaagct
cttcagcaat atcacgggta 3240gccaacgcta tgtcctgata gcggtccgcc acacccagcc
ggccacagtc gatgaatcca 3300gaaaagcggc cattttccac catgatattc ggcaagcagg
catcgccatg ggtcacgacg 3360agatcctcgc cgtcgggcat gcgcgccttg agcctggcga
acagttcggc tggcgcgagc 3420ccctgatgct cttcgtccag atcatcctga tcgacaagac
cggcttccat ccgagtacgt 3480gctcgctcga tgcgatgttt cgcttggtgg tcgaatgggc
aggtagccgg atcaagcgta 3540tgcagccgcc gcattgcatc agccatgatg gatactttct
cggcaggagc aaggtgagat 3600gacaggagat cctgccccgg cacttcgccc aatagcagcc
agtcccttcc cgcttcagtg 3660acaacgtcga gcacagctgc gcaaggaacg cccgtcgtgg
ccagccacga tagccgcgct 3720gcctcgtcct gcagttcatt cagggcaccg gacaggtcgg
tcttgacaaa aagaaccggg 3780cgcccctgcg ctgacagccg gaacacggcg gcatcagagc
agccgattgt ctgttgtgcc 3840cagtcatagc cgaatagcct ctccacccaa gcggccggag
aacctgcgtg caatccatct 3900tgttcaatca tgcgaaacga tcctcatcct gtctcttgat
cagatcttga tcccctgcgc 3960catcagatcc ttggcggcaa gaaagccatc cagtttactt
tgcagggctt cccaacctta 4020ccagagggcg ccccagctgg caattccgac gtctaagaaa
ccattattat catgacatta 4080accta
4085672349DNAArtificialpsgRNAc 67gaattccgga
tgagcattca tcaggcgggc aagaatgtga ataaaggccg gataaaactt 60gtgcttattt
ttctttacgg tctttaaaaa ggccgtaata tccagctgaa cggtctggtt 120ataggtacat
tgagcaactg actgaaatgc ctcaaaatgt tctttacgat gccattggga 180tatatcaacg
gtggtatatc cagtgatttt tttctccatt ttagcttcct tagctcctga 240aaatctcgat
aactcaaaaa atacgcccgg tagtgatctt atttcattat ggtgaaagtt 300ggaacctctt
acgtgccgat caacgtctca ttttcgccaa aagttggccc agggcttccc 360ggtatcaaca
gggacaccag gatttattta ttctgcgaag tgatcttccg tcacaggtat 420ttattcggcg
caaagtgcgt cgggtgatgc tgccaactta ctgatttagt gtatgatggt 480gtttttgagg
tgctccagtg gcttctgttt ctatcagctg tccctcctgt tcagctactg 540acggggtggt
gcgtaacggc aaaagcaccg ccggacatca gcgctagcgg agtgtatact 600ggcttactat
gttggcactg atgagggtgt cagtgaagtg cttcatgtgg caggagaaaa 660aaggctgcac
cggtgcgtca gcagaatatg tgatacagga tatattccgc ttcctcgctc 720actgactcgc
tacgctcggt cgttcgactg cggcgagcgg aaatggctta cgaacggggc 780ggagatttcc
tggaagatgc caggaagata cttaacaggg aagtgagagg gccgcggcaa 840agccgttttt
ccataggctc cgcccccctg acaagcatca cgaaatctga cgctcaaatc 900agtggtggcg
aaacccgaca ggactataaa gataccaggc gtttccccct ggcggctccc 960tcgtgcgctc
tcctgttcct gcctttcggt ttaccggtgt cattccgctg ttatggccgc 1020gtttgtctca
ttccacgcct gacactcagt tccgggtagg cagttcgctc caagctggac 1080tgtatgcacg
aaccccccgt tcagtccgac cgctgcgcct tatccggtaa ctatcgtctt 1140gagtccaacc
cggaaagaca tgcaaaagca ccactggcag cagccactgg taattgattt 1200agaggagtta
gtcttgaagt catgcgccgg ttaaggctaa actgaaagga caagttttgg 1260tgactgcgct
cctccaagcc agttacctcg gttcaaagag ttggtagctc agagaacctt 1320cgaaaaaccg
ccctgcaagg cggttttttc gttttcagag caagagatta cgcgcagacc 1380aaaacgatct
caagaagatc atcttattaa tcagataaaa tatttctaga tttcagtgca 1440atttatctct
tcaaatgtag cacctggcta ggaggtgact gaagtatatt ttaggaattc 1500taaagatctt
tgacagctag ctcagtccta ggtataatac tagttgagac cagtctaggt 1560ctcggtttta
gagctagaaa tagcaagtta aaataaggct agtccgttat caacttgaaa 1620aagtggcacc
gagtcggtgc tttttttggt agtgcagcgc gatcgtaatc aggggggaga 1680gcctgagcaa
actggcctca ggcatttgag aagcacacgg tcacactgct tccggtagtc 1740aataaaccgg
taaaccagca atagacataa gcggctattt aacgaccctg ccctgaaccg 1800acgaccgggt
cgaatttgct ttcgaatttc tgccattcat ccgcttatta tcacttattc 1860aggcgtagca
ccaggcgttt aagggcacca ataactgcct taaaaaaatt acgccccgcc 1920ctgccactca
tcgcagtact gttgtaattc attaagcatt ctgccgacat ggaagccatc 1980acagacggca
tgatgaacct gaatcgccag cggcatcagc accttgtcgc cttgcgtata 2040atatttgccc
atggtgaaaa cgggggcgaa gaagttgtcc atattggcca cgtttaaatc 2100aaaactggtg
aaactcaccc agggattggc tgagacgaaa aacatattct caataaaccc 2160tttagggaaa
taggccaggt tttcaccgta acacgccaca tcttgcgaat atatgtgtag 2220aaactgccgg
aaatcgtcgt ggtattcact ccagagcgat gaaaacgttt cagtttgctc 2280atggaaaacg
gtgtaacaag ggtgaacact atcccatatc accagctcac cgtctttcat 2340tgccatacg
2349688701DNAArtificialpPh1F-Cas9 68tcagatcctt ccgtatttag ccagtatgtt
ctctagtgtg gttcgttgtt tttgcgtgag 60ccatgagaac gaaccattga gatcatactt
actttgcatg tcactcaaaa attttgcctc 120aaaactggtg agctgaattt ttgcagttaa
agcatcgtgt agtgtttttc ttagtccgtt 180acgtaggtag gaatctgatg taatggttgt
tggtattttg tcaccattca tttttatctg 240gttgttctca agttcggtta cgagatccat
ttgtctatct agttcaactt ggaaaatcaa 300cgtatcagtc gggcggcctc gcttatcaac
caccaatttc atattgctgt aagtgtttaa 360atctttactt attggtttca aaacccattg
gttaagcctt ttaaactcat ggtagttatt 420ttcaagcatt aacatgaact taaattcatc
aaggctaatc tctatatttg ccttgtgagt 480tttcttttgt gttagttctt ttaataacca
ctcataaatc ctcatagagt atttgttttc 540aaaagactta acatgttcca gattatattt
tatgaatttt tttaactgga aaagataagg 600caatatctct tcactaaaaa ctaattctaa
tttttcgctt gagaacttgg catagtttgt 660ccactggaaa atctcaaagc ctttaaccaa
aggattcctg atttccacag ttctcgtcat 720cagctctctg gttgctttag ctaatacacc
ataagcattt tccctactga tgttcatcat 780ctgagcgtat tggttataag tgaacgatac
cgtccgttct ttccttgtag ggttttcaat 840cgtggggttg agtagtgcca cacagcataa
aattagcttg gtttcatgct ccgttaagtc 900atagcgacta atcgctagtt catttgcttt
gaaaacaact aattcagaca tacatctcaa 960ttggtctagg tgattttaat cactatacca
attgagatgg gctagtcaat gataattact 1020agtccttttc ctttgagttg tgggtatctg
taaattctgc tagacctttg ctggaaaact 1080tgtaaattct gctagaccct ctgtaaattc
cgctagacct ttgtgtgttt tttttgttta 1140tattcaagtg gttataattt atagaataaa
gaaagaataa aaaaagataa aaagaataga 1200tcccagccct gtgtataact cactacttta
gtcagttccg cagtattaca aaaggatgtc 1260gcaaacgctg tttgctcctc tacaaaacag
accttaaaac cctaaaggct taagtagcac 1320cctcgcaagc tcggttgcgg ccgcaatcgg
gcaaatcgct gaatattcct tttgtctccg 1380accatcaggc acctgagtcg ctgtcttttt
cgtgacattc agttcgctgc gctcacggct 1440ctggcagtga atgggggtaa atggcactac
aggcgccttt tatggattca tgcaaggaaa 1500ctacccataa tacaagaaaa gcccgtcacg
ggcttctcag ggcgttttat ggcgggtctg 1560ctatgtggtg ctatctgact ttttgctgtt
cagcagttcc tgccctctga ttttccagtc 1620tgaccacttc ggattatccc gtgacaggtc
attcagactg gctaatgcac ccagtaaggc 1680agcggtatca tcaacggggt ctgacgctca
gtggaacgaa aactcacgtt aagggatttt 1740ggtcatgaga ttatcaaaaa ggatcttcac
ctagatcctt ttaaattaaa aatgaagttt 1800taaatcaatc taaagtatat atgagtaaac
ttggtctgac agttacgttt ccacaaccaa 1860ttaaccaatt ctgatttaga aaaactcatc
gagcatcaaa tgaaactgca atttattcat 1920atcaggatta tcaataccat atttttgaaa
aagccgtttc tgtaatgaag gagaaaactc 1980accgaggcag ttccatagga tggcaagatc
ctggtatcgg tctgcgattc cgactcgtcc 2040aacatcaata caacctatta atttcccctc
gtcaaaaata aggttatcaa gtgagaaatc 2100accatgagtg acgactgaat ccggtgagaa
tggcaaaagc ttatgcattt ctttccagac 2160ttgttcaaca ggccagccat tacgctcgtc
atcaaaatca ctcgcatcaa ccaaaccgtt 2220attcattcgt gattgcgcct gagcgagacg
aaatacgcga tcgctgttaa aaggacaatt 2280acaaacagga atcgaatgca accggcgcag
gaacactgcc agcgcatcaa caatattttc 2340acctgaatca ggatattctt ctaatacctg
gaatgctgtt ttcccgggga tcgcagtggt 2400gagtaaccat gcatcatcag gagtacggat
aaaatgcttg atggtcggaa gaggcataaa 2460ttccgtcagc cagtttagtc tgaccatctc
atctgtaaca tcattggcaa cgctaccttt 2520gccatgtttc agaaacaact ctggcgcatc
gggcttccca tacaatcgat agattgtcgc 2580acctgattgc ccgacattat cgcgagccca
tttataccca tataaatcag catccatgtt 2640ggaatttaat cgcggcctcg agcaagacgt
ttcccgttga atatggctca taacacccct 2700tgtattactg tttatgtaag cagacagttt
tattgttcat gatgatatat ttttatcttg 2760tgcaatgtaa catcagagat tttgagacac
aacgtggctt tccctgcagg atttcggagg 2820cctgcgttat cccctgattc tgtggataac
cgtattaccg cctttgagtg agctgatacc 2880gctcgccgca gccgaacgcc ccaaaaagcc
tcgctttcag cacctgtcgt ttcctttctt 2940ttcagagggt attttaaata aaaacattaa
gttatgacga agaagaacgg aaacgcctta 3000aaccggaaaa ttttcataaa tagcgaaaac
ccgcgaggtc gccgccccgt aacctgtcgg 3060atcaccggaa aggacccgta aagtgataat
gattatcatc tacatatcac aacgtgcgtg 3120gagggactag tggattttac ggctagctca
gtcctaggta caatgctagc gaattcatta 3180aagaggagaa aggtacccat ggcacgtacc
ccgagccgta gcagcattgg tagcctgcgt 3240agtccgcata cccataaagc aattctgacc
agcaccattg aaatcctgaa agaatgtggt 3300tatagcggtc tgagcattga aagcgttgca
cgtcgtgccg gtgcaagcaa accgaccatt 3360tatcgttggt ggaccaataa agcagcactg
attgccgaag tgtatgaaaa tgaaagcgaa 3420caggtgcgta aatttccgga tctgggtagc
tttaaagccg atctggattt tctgctgcgt 3480aatctgtgga aagtttggcg tgaaaccatt
tgtggtgaag catttcgttg tgttattgca 3540gaagcacagc tggaccctgc aaccctgacc
cagctgaaag atcagtttat ggaacgtcgt 3600cgtgagatgc cgaaaaaact ggttgaaaat
gccattagca atggtgaact gccgaaagat 3660accaatcgtg aactgctgct ggatatgatt
tttggttttt gttggtatcg cctgctgacc 3720gaacagctga ccgttgaaca ggatattgaa
gaatttacct tcctgctgat taatggtgtt 3780tgtccgggta cacagcgtta actagggccc
atacccccaa ttattgaagg ccgctaacgc 3840ggcctttttt tgtttctggt ctgcccgacg
tacggtgaat ctgattcgtt accaattgac 3900atgatacgaa acgtaccgta tcgttaaggt
tactagagat taaagaggag aaatactaga 3960tggataagaa atactcaata ggcttagata
tcggcacaaa tagcgtcgga tgggcggtga 4020tcactgatga atataaggtt ccgtctaaaa
agttcaaggt tctgggaaat acagaccgcc 4080acagtatcaa aaaaaatctt ataggggctc
ttttatttga cagtggagag acagcggaag 4140cgactcgtct caaacggaca gctcgtagaa
ggtatacacg tcggaagaat cgtatttgtt 4200atctacagga gattttttca aatgagatgg
cgaaagtaga tgatagtttc tttcatcgac 4260ttgaagagtc ttttttggtg gaagaagaca
agaagcatga acgtcatcct atttttggaa 4320atatagtaga tgaagttgct tatcatgaga
aatatccaac tatctatcat ctgcgaaaaa 4380aattggtaga ttctactgat aaagcggatt
tgcgcttaat ctatttggcc ttagcgcata 4440tgattaagtt tcgtggtcat tttttgattg
agggagattt aaatcctgat aatagtgatg 4500tggacaaact atttatccag ttggtacaaa
cctacaatca attatttgaa gaaaacccta 4560ttaacgcaag tggagtagat gctaaagcga
ttctttctgc acgattgagt aaatcaagac 4620gattagaaaa tctcattgct cagctccccg
gtgagaagaa aaatggctta tttgggaatc 4680tcattgcttt gtcattgggt ttgaccccta
attttaaatc aaattttgat ttggcagaag 4740atgctaaatt acagctttca aaagatactt
acgatgatga tttagataat ttattggcgc 4800aaattggaga tcaatatgct gatttgtttt
tggcagctaa gaatttatca gatgctattt 4860tactttcaga tatcctaaga gtaaatactg
aaataactaa ggctccccta tcagcttcaa 4920tgattaaacg ctacgatgaa catcatcaag
acttgactct tttaaaagct ttagttcgac 4980aacaacttcc agaaaagtat aaagaaatct
tttttgatca atcaaaaaac ggatatgcag 5040gttatattga tgggggagct agccaagaag
aattttataa atttatcaaa ccaattttag 5100aaaaaatgga tggtactgag gaattattgg
tgaaactaaa tcgtgaagat ttgctgcgca 5160agcaacggac ctttgacaac ggctctattc
cccatcaaat tcacttgggt gagctgcatg 5220ctattttgag aagacaagaa gacttttatc
catttttaaa agacaatcgt gagaagattg 5280aaaaaatctt gacttttcga attccttatt
atgttggtcc attggcgcgt ggcaatagtc 5340gttttgcatg gatgactcgg aagtctgaag
aaacaattac cccatggaat tttgaagaag 5400ttgtcgataa aggtgcttca gctcaatcat
ttattgaacg catgacaaac tttgataaaa 5460atcttccaaa tgaaaaagta ctaccaaaac
atagtttgct ttatgagtat tttacggttt 5520ataacgaatt gacaaaggtc aaatatgtta
ctgaaggaat gcgaaaacca gcatttcttt 5580caggtgaaca gaagaaagcc attgttgatt
tactcttcaa aacaaatcga aaagtaaccg 5640ttaagcaatt aaaagaagat tatttcaaaa
aaatagaatg ttttgatagt gttgaaattt 5700caggagttga agatagattt aatgcttcat
taggtaccta ccatgatttg ctaaaaatta 5760ttaaagataa agattttttg gataatgaag
aaaatgaaga tatcttagag gatattgttt 5820taacattgac cttatttgaa gatagggaga
tgattgagga aagacttaaa acatatgctc 5880acctctttga tgataaggtg atgaaacagc
ttaaacgtcg ccgttatact ggttggggac 5940gtttgtctcg aaaattgatt aatggtatta
gggataagca atctggcaaa acaatattag 6000attttttgaa atcagatggt tttgccaatc
gcaattttat gcagctgatc catgatgata 6060gtttgacatt taaagaagac attcaaaaag
cacaagtgtc tggacaaggc gatagtttac 6120atgaacatat tgcaaattta gctggtagcc
ctgctattaa aaaaggtatt ttacagactg 6180taaaagttgt tgatgaattg gtcaaagtaa
tggggcggca taagccagaa aatatcgtta 6240ttgaaatggc acgtgaaaat cagacaactc
aaaagggcca gaaaaattcg cgagagcgta 6300tgaaacgaat cgaagaaggt atcaaagaat
taggaagtca gattcttaaa gagcatcctg 6360ttgaaaatac tcaattgcaa aatgaaaagc
tctatctcta ttatctccaa aatggaagag 6420acatgtatgt ggaccaagaa ttagatatta
atcgtttaag tgattatgat gtcgatcaca 6480ttgttccaca aagtttcctt aaagacgatt
caatagacaa taaggtctta acgcgttctg 6540ataaaaatcg tggtaaatcg gataacgttc
caagtgaaga agtagtcaaa aagatgaaaa 6600actattggag acaacttcta aacgccaagt
taatcactca acgtaagttt gataatttaa 6660cgaaagctga acgtggaggt ttgagtgaac
ttgataaagc tggttttatc aaacgccaat 6720tggttgaaac tcgccaaatc actaagcatg
tggcacaaat tttggatagt cgcatgaata 6780ctaaatacga tgaaaatgat aaacttattc
gagaggttaa agtgattacc ttaaaatcta 6840aattagtttc tgacttccga aaagatttcc
aattctataa agtacgtgag attaacaatt 6900accatcatgc ccatgatgcg tatctaaatg
ccgtcgttgg aactgctttg attaagaaat 6960atccaaaact tgaatcggag tttgtctatg
gtgattataa agtttatgat gttcgtaaaa 7020tgattgctaa gtctgagcaa gaaataggca
aagcaaccgc aaaatatttc ttttactcta 7080atatcatgaa cttcttcaaa acagaaatta
cacttgcaaa tggagagatt cgcaaacgcc 7140ctctaatcga aactaatggg gaaactggag
aaattgtctg ggataaaggg cgagattttg 7200ccacagtgcg caaagtattg tccatgcccc
aagtcaatat tgtcaagaaa acagaagtac 7260agacaggcgg attctccaag gagtcaattt
taccaaaaag aaattcggac aagcttattg 7320ctcgtaaaaa agactgggat ccaaaaaaat
atggtggttt tgatagtcca acggtagctt 7380attcagtcct agtggttgct aaggtggaaa
aagggaaatc gaagaagtta aaatccgtta 7440aagagttact agggatcaca attatggaaa
gaagttcctt tgaaaaaaat ccgattgact 7500ttttagaagc taaaggatat aaggaagtta
aaaaagactt aatcattaaa ctacctaaat 7560atagtctttt tgagttagaa aacggtcgta
aacggatgct ggctagtgcc ggagaattac 7620aaaaaggaaa tgagctggct ctgccaagca
aatatgtgaa ttttttatat ttagctagtc 7680attatgaaaa gttgaagggt agtccagaag
ataacgaaca aaaacaattg tttgtggagc 7740agcataagca ttatttagat gagattattg
agcaaatcag tgaattttct aagcgtgtta 7800ttttagcaga tgccaattta gataaagttc
ttagtgcata taacaaacat agagacaaac 7860caatacgtga acaagcagaa aatattattc
atttatttac gttgacgaat cttggagctc 7920ccgctgcttt taaatatttt gatacaacaa
ttgatcgtaa acgatatacg tctacaaaag 7980aagttttaga tgccactctt atccatcaat
ccatcactgg tctttatgaa acacgcattg 8040atttgagtca gctaggaggt gactaactcg
agtaaggatc tccaggcatt gcaggcatgc 8100ctcgagatgc atggcgccta acctaaactg
atgacgcatc ctcacgataa tatccgggta 8160ggcgcaatca ctttcgtcta ctccgttaca
aagcgaggct gggtatttcc cggcctttct 8220gttatccgaa atccactgaa agcacagcgg
ctggctgagg agataaataa taaacgaggg 8280gctgtatgca caaagcatct tctgttgagt
taagaacgag tatcgagatg gcacatagcc 8340ttgctcaaat tggaatcagg tttgtgccaa
taccagtaga aacagacgaa gaatccatgg 8400gtatggacag atctcaaaaa aagcaccgac
tcggtgccac tttttcaagt tgataacgga 8460ctagccttat tttaacttgc tatttctagc
tctaaaacgg gttttcccag tcacgacgtg 8520ctagcattat acctaggact gagctagctg
tcagccattc gatggtgtca acgtaaatgc 8580atgccgctcg ccttccatgg gtatggacag
ttttcccttt gatatgtaac ggtgaacagt 8640tgttctactt ttgtttgtta gtcttgatgc
ttcactgata gatacaagag ccataagaac 8700c
8701694083DNAArtificial
SequencepBAD-MuGammisc_feature(2566)..(2595)n is a, c, g, or t
69aaaatctcga taactcaaaa aatacgcccg gtagtgatct tatttcatta tggtgaaagt
60tggaacctct tacgtgccga tcaacgtctc attttcgcca aaagttggcc cagggcttcc
120cggtatcaac agggacacca ggatttattt attctgcgaa gtgatcttcc gtcacaggta
180tttattcggc gcaaagtgcg tcgggtgatg ctgccaactt actgatttag tgtatgatgg
240tgtttttgag gtgctccagt ggcttctgtt tctatcagct gtccctcctg ttcagctact
300gacggggtgg tgcgtaacgg caaaagcacc gccggacatc agcgctagcg gagtgtatac
360tggcttacta tgttggcact gatgagggtg tcagtgaagt gcttcatgtg gcaggagaaa
420aaaggctgca ccggtgcgtc agcagaatat gtgatacagg atatattccg cttcctcgct
480cactgactcg ctacgctcgg tcgttcgact gcggcgagcg gaaatggctt acgaacgggg
540cggagatttc ctggaagatg ccaggaagat acttaacagg gaagtgagag ggccgcggca
600aagccgtttt tccataggct ccgcccccct gacaagcatc acgaaatctg acgctcaaat
660cagtggtggc gaaacccgac aggactataa agataccagg cgtttccccc tggcggctcc
720ctcgtgcgct ctcctgttcc tgcctttcgg tttaccggtg tcattccgct gttatggccg
780cgtttgtctc attccacgcc tgacactcag ttccgggtag gcagttcgct ccaagctgga
840ctgtatgcac gaaccccccg ttcagtccga ccgctgcgcc ttatccggta actatcgtct
900tgagtccaac ccggaaagac atgcaaaagc accactggca gcagccactg gtaattgatt
960tagaggagtt agtcttgaag tcatgcgccg gttaaggcta aactgaaagg acaagttttg
1020gtgactgcgc tcctccaagc cagttacctc ggttcaaaga gttggtagct cagagaacct
1080tcgaaaaacc gccctgcaag gcggtttttt cgttttcaga gcaagagatt acgcgcagac
1140caaaacgatc tcaagaagat catcttatta atcagataaa atatttctag atttcagtgc
1200aatttatctc ttcaaatgta gcacctgaag tcagccccat acgatataag ttgtatcgat
1260gcataatgtg cctgtcaaat ggacgaagca gggattctgc aaaccctatg ctactccgtc
1320aagccgtcaa ttgtctgatt cgttaccaat tatgacaact tgacggctac atcattcact
1380ttttcttcac aaccggcacg gaactcgctc gggctggccc cggtgcattt tttaaatacc
1440cgcgagaaat agagttgatc gtcaaaacca acattgcgac cgacggtggc gataggcatc
1500cgggtggtgc tcaaaagcag cttcgcctgg ctgatacgtt ggtcctcgcg ccagcttaag
1560acgctaatcc ctaactgctg gcggaaaaga tgtgacagac gcgacggcga caagcaaaca
1620tgctgtgcga cgctggcgat atcaaaattg ctgtctgcca ggtgatcgct gatgtactga
1680caagcctcgc gtacccgatt atccatcggt ggatggagcg actcgttaat cgcttccatg
1740cgccgcagta acaattgctc aagcagattt atcgccagca gctccgaata gcgcccttcc
1800ccttgcccgg cgttaatgat ttgcccaaac aggtcgctga aatgcggctg gtgcgcttca
1860tccgggcgaa agaaccccgt attggcaaat attgacggcc agttaagcca ttcatgccag
1920taggcgcgcg gacgaaagta aacccactgg tgataccatt cgcgagcctc cggatgacga
1980ccgtagtgat gaatctctcc tggcgggaac agcaaaatat cacccggtcg gcaaacaaat
2040tctcgtccct gatttttcac caccccctga ccgcgaatgg tgagattgag aatataacct
2100ttcattccca gcggtcggtc gataaaaaaa tcgagataac cgttggcctc aatcggcgtt
2160aaacccgcca ccagatgggc attaaacgag tatcccggca gcaggggatc attttgcgct
2220tcagccatac ttttcatact cccgccattc agagaagaaa ccaattgtcc atattgcatc
2280agacattgcc gtcactgcgt cttttactgg ctcttctcgc taaccaaacc ggtaaccccg
2340cttattaaaa gcattctgta acaaagcggg accaaagcca tgacaaaaac gcgtaacaaa
2400agtgtctata atcacggcag aaaagtccac attgattatt tgcacggcgt cacactttgc
2460tatgccatag catttttatc cataagatta gcggatccta cctgacgctt tttatcgcaa
2520ctctctactg tttctccata cccgtttttt tgggctagcg aattcnnnnn nnnnnnnnnn
2580nnnnnnnnnn nnnnnatggc taaaccagca aaacgtatca agagtgccgc agcggcttat
2640gtgccacaaa accgcgatgc ggtgattacc gatattaaac gcatcgggga tttacagcgc
2700gaagcatcac gtctggaaac ggaaatgaat gatgccatcg cggaaattac ggagaaattt
2760gcggcccgga ttgcaccgat taaaaccgat attgaaaccc tttcaaaagg cgttcaggga
2820tggtgtgaag cgaaccgcga cgaactgacg aacggcggca aagtgaagac ggcgaatctt
2880gtcaccggtg atgtatcgtg gcgggtccgt ccaccatcag taagtattcg tggtatggat
2940gcagtgatgg aaacgctgga gcgtcttggc ctgcaacgct ttattcgcac gaagcaggaa
3000atcaacaagg aagcgatttt actggaaccg aaagcggtcg caggcgttgc cggaattaca
3060gttaaatcag gcattgagga tttttctatt attccatttg aacaggaagc cggtatttaa
3120taattttccc gccctcaaaa aagcaataaa gcggctcaat agccgcttta ttcacatcag
3180caaaaattat atcgggtagc accagaagca cacggtcaca ctgcttccgg tagtcaataa
3240accggtaaac cagcaataga cataagcggc tatttaacga ccctgccctg aaccgacgac
3300cgggtcgaat ttgctttcga atttctgcca ttcatccgct tattatcact tattcaggcg
3360tagcaccagg cgtttaaggg caccaataac tgccttaaaa aaattacgcc ccgccctgcc
3420actcatcgca gtactgttgt aattcattaa gcattctgcc gacatggaag ccatcacaga
3480cggcatgatg aacctgaatc gccagcggca tcagcacctt gtcgccttgc gtataatatt
3540tgcccatggt gaaaacgggg gcgaagaagt tgtccatatt ggccacgttt aaatcaaaac
3600tggtgaaact cacccaggga ttggctgaga cgaaaaacat attctcaata aaccctttag
3660ggaaataggc caggttttca ccgtaacacg ccacatcttg cgaatatatg tgtagaaact
3720gccggaaatc gtcgtggtat tcactccaga gcgatgaaaa cgtttcagtt tgctcatgga
3780aaacggtgta acaagggtga acactatccc atatcaccag ctcaccgtct ttcattgcca
3840tacggaattc cggatgagca ttcatcaggc gggcaagaat gtgaataaag gccggataaa
3900acttgtgctt atttttcttt acggtcttta aaaaggccgt aatatccagc tgaacggtct
3960ggttataggt acattgagca actgactgaa atgcctcaaa atgttcttta cgatgccatt
4020gggatatatc aacggtggta tatccagtga tttttttctc cattttagct tccttagctc
4080ctg
4083703979DNAartificialpBAD-LambdaGammisc_feature(2570)..(2599)n is a, c,
g, or t 70aaaatctcga taactcaaaa aatacgcccg gtagtgatct tatttcatta
tggtgaaagt 60tggaacctct tacgtgccga tcaacgtctc attttcgcca aaagttggcc
cagggcttcc 120cggtatcaac agggacacca ggatttattt attctgcgaa gtgatcttcc
gtcacaggta 180tttattcggc gcaaagtgcg tcgggtgatg ctgccaactt actgatttag
tgtatgatgg 240tgtttttgag gtgctccagt ggcttctgtt tctatcagct gtccctcctg
ttcagctact 300gacggggtgg tgcgtaacgg caaaagcacc gccggacatc agcgctagcg
gagtgtatac 360tggcttacta tgttggcact gatgagggtg tcagtgaagt gcttcatgtg
gcaggagaaa 420aaaggctgca ccggtgcgtc agcagaatat gtgatacagg atatattccg
cttcctcgct 480cactgactcg ctacgctcgg tcgttcgact gcggcgagcg gaaatggctt
acgaacgggg 540cggagatttc ctggaagatg ccaggaagat acttaacagg gaagtgagag
ggccgcggca 600aagccgtttt tccataggct ccgcccccct gacaagcatc acgaaatctg
acgctcaaat 660cagtggtggc gaaacccgac aggactataa agataccagg cgtttccccc
tggcggctcc 720ctcgtgcgct ctcctgttcc tgcctttcgg tttaccggtg tcattccgct
gttatggccg 780cgtttgtctc attccacgcc tgacactcag ttccgggtag gcagttcgct
ccaagctgga 840ctgtatgcac gaaccccccg ttcagtccga ccgctgcgcc ttatccggta
actatcgtct 900tgagtccaac ccggaaagac atgcaaaagc accactggca gcagccactg
gtaattgatt 960tagaggagtt agtcttgaag tcatgcgccg gttaaggcta aactgaaagg
acaagttttg 1020gtgactgcgc tcctccaagc cagttacctc ggttcaaaga gttggtagct
cagagaacct 1080tcgaaaaacc gccctgcaag gcggtttttt cgttttcaga gcaagagatt
acgcgcagac 1140caaaacgatc tcaagaagat catcttatta atcagataaa atatttctag
atttcagtgc 1200aatttatctc ttcaaatgta gcacctgaag tcagccccat acgatataag
ttgtatcgat 1260gcataatgtg cctgtcaaat ggacgaagca gggattctgc aaaccctatg
ctactccgtc 1320aagccgtcaa ttgtctgatt cgttaccaat tatgacaact tgacggctac
atcattcact 1380ttttcttcac aaccggcacg gaactcgctc gggctggccc cggtgcattt
tttaaatacc 1440cgcgagaaat agagttgatc gtcaaaacca acattgcgac cgacggtggc
gataggcatc 1500cgggtggtgc tcaaaagcag cttcgcctgg ctgatacgtt ggtcctcgcg
ccagcttaag 1560acgctaatcc ctaactgctg gcggaaaaga tgtgacagac gcgacggcga
caagcaaaca 1620tgctgtgcga cgctggcgat atcaaaattg ctgtctgcca ggtgatcgct
gatgtactga 1680caagcctcgc gtacccgatt atccatcggt ggatggagcg actcgttaat
cgcttccatg 1740cgccgcagta acaattgctc aagcagattt atcgccagca gctccgaata
gcgcccttcc 1800ccttgcccgg cgttaatgat ttgcccaaac aggtcgctga aatgcggctg
gtgcgcttca 1860tccgggcgaa agaaccccgt attggcaaat attgacggcc agttaagcca
ttcatgccag 1920taggcgcgcg gacgaaagta aacccactgg tgataccatt cgcgagcctc
cggatgacga 1980ccgtagtgat gaatctctcc tggcgggaac agcaaaatat cacccggtcg
gcaaacaaat 2040tctcgtccct gatttttcac caccccctga ccgcgaatgg tgagattgag
aatataacct 2100ttcattccca gcggtcggtc gataaaaaaa tcgagataac cgttggcctc
aatcggcgtt 2160aaacccgcca ccagatgggc attaaacgag tatcccggca gcaggggatc
attttgcgct 2220tcagccatac ttttcatact cccgccattc agagaagaaa ccaattgtcc
atattgcatc 2280agacattgcc gtcactgcgt cttttactgg ctcttctcgc taaccaaacc
ggtaaccccg 2340cttattaaaa gcattctgta acaaagcggg accaaagcca tgacaaaaac
gcgtaacaaa 2400agtgtctata atcacggcag aaaagtccac attgattatt tgcacggcgt
cacactttgc 2460tatgccatag catttttatc cataagatta gcggatccta cctgacgctt
tttatcgcaa 2520ctctctactg tttctccata cccgtttttt tgggctagcg aattcgagcn
nnnnnnnnnn 2580nnnnnnnnnn nnnnnnnnna tggatattaa tactgaaact gagatcaagc
aaaagcattc 2640actaaccccc tttcctgttt tcctaatcag cccggcattt cgcgggcgat
attttcacag 2700ctatttcagg agttcagcca tgaacgctta ttacattcag gatcgtcttg
aggctcagag 2760ctgggcgcgt cactaccagc agctcgcccg tgaagagaaa gaggcagaac
tggcagacga 2820catggaaaaa ggcctgcccc agcacctgtt tgaatcgcta tgcatcgatc
atttgcaacg 2880ccacggggcc agcaaaaaat ccattacccg tgcgtttgat gacgatgttg
agtttcagga 2940gcgcatggca gaacacatcc ggtacatggt tgaaaccatt gctcaccacc
aggttgatat 3000tgattcagag gtataataat tttcccgccc tcaaaaaagc aataaagcgg
ctcaatagcc 3060gctttattca catcagcaaa aattatatcg ggtagcacca gaagcacacg
gtcacactgc 3120ttccggtagt caataaaccg gtaaaccagc aatagacata agcggctatt
taacgaccct 3180gccctgaacc gacgaccggg tcgaatttgc tttcgaattt ctgccattca
tccgcttatt 3240atcacttatt caggcgtagc accaggcgtt taagggcacc aataactgcc
ttaaaaaaat 3300tacgccccgc cctgccactc atcgcagtac tgttgtaatt cattaagcat
tctgccgaca 3360tggaagccat cacagacggc atgatgaacc tgaatcgcca gcggcatcag
caccttgtcg 3420ccttgcgtat aatatttgcc catggtgaaa acgggggcga agaagttgtc
catattggcc 3480acgtttaaat caaaactggt gaaactcacc cagggattgg ctgagacgaa
aaacatattc 3540tcaataaacc ctttagggaa ataggccagg ttttcaccgt aacacgccac
atcttgcgaa 3600tatatgtgta gaaactgccg gaaatcgtcg tggtattcac tccagagcga
tgaaaacgtt 3660tcagtttgct catggaaaac ggtgtaacaa gggtgaacac tatcccatat
caccagctca 3720ccgtctttca ttgccatacg gaattccgga tgagcattca tcaggcgggc
aagaatgtga 3780ataaaggccg gataaaactt gtgcttattt ttctttacgg tctttaaaaa
ggccgtaata 3840tccagctgaa cggtctggtt ataggtacat tgagcaactg actgaaatgc
ctcaaaatgt 3900tctttacgat gccattggga tatatcaacg gtggtatatc cagtgatttt
tttctccatt 3960ttagcttcct tagctcctg
39797110701DNAArtificialpCas9-MuGammisc_feature(9946)..(9976)n
is a, c, g, or t 71tcagatcctt ccgtatttag ccagtatgtt ctctagtgtg gttcgttgtt
tttgcgtgag 60ccatgagaac gaaccattga gatcatactt actttgcatg tcactcaaaa
attttgcctc 120aaaactggtg agctgaattt ttgcagttaa agcatcgtgt agtgtttttc
ttagtccgtt 180acgtaggtag gaatctgatg taatggttgt tggtattttg tcaccattca
tttttatctg 240gttgttctca agttcggtta cgagatccat ttgtctatct agttcaactt
ggaaaatcaa 300cgtatcagtc gggcggcctc gcttatcaac caccaatttc atattgctgt
aagtgtttaa 360atctttactt attggtttca aaacccattg gttaagcctt ttaaactcat
ggtagttatt 420ttcaagcatt aacatgaact taaattcatc aaggctaatc tctatatttg
ccttgtgagt 480tttcttttgt gttagttctt ttaataacca ctcataaatc ctcatagagt
atttgttttc 540aaaagactta acatgttcca gattatattt tatgaatttt tttaactgga
aaagataagg 600caatatctct tcactaaaaa ctaattctaa tttttcgctt gagaacttgg
catagtttgt 660ccactggaaa atctcaaagc ctttaaccaa aggattcctg atttccacag
ttctcgtcat 720cagctctctg gttgctttag ctaatacacc ataagcattt tccctactga
tgttcatcat 780ctgagcgtat tggttataag tgaacgatac cgtccgttct ttccttgtag
ggttttcaat 840cgtggggttg agtagtgcca cacagcataa aattagcttg gtttcatgct
ccgttaagtc 900atagcgacta atcgctagtt catttgcttt gaaaacaact aattcagaca
tacatctcaa 960ttggtctagg tgattttaat cactatacca attgagatgg gctagtcaat
gataattact 1020agtccttttc ctttgagttg tgggtatctg taaattctgc tagacctttg
ctggaaaact 1080tgtaaattct gctagaccct ctgtaaattc cgctagacct ttgtgtgttt
tttttgttta 1140tattcaagtg gttataattt atagaataaa gaaagaataa aaaaagataa
aaagaataga 1200tcccagccct gtgtataact cactacttta gtcagttccg cagtattaca
aaaggatgtc 1260gcaaacgctg tttgctcctc tacaaaacag accttaaaac cctaaaggct
taagtagcac 1320cctcgcaagc tcggttgcgg ccgcaatcgg gcaaatcgct gaatattcct
tttgtctccg 1380accatcaggc acctgagtcg ctgtcttttt cgtgacattc agttcgctgc
gctcacggct 1440ctggcagtga atgggggtaa atggcactac aggcgccttt tatggattca
tgcaaggaaa 1500ctacccataa tacaagaaaa gcccgtcacg ggcttctcag ggcgttttat
ggcgggtctg 1560ctatgtggtg ctatctgact ttttgctgtt cagcagttcc tgccctctga
ttttccagtc 1620tgaccacttc ggattatccc gtgacaggtc attcagactg gctaatgcac
ccagtaaggc 1680agcggtatca tcaacggggt ctgacgctca gtggaacgaa aactcacgtt
aagggatttt 1740ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa
aatgaagttt 1800taaatcaatc taaagtatat atgagtaaac ttggtctgac agttacgttt
ccacaaccaa 1860ttaaccaatt ctgatttaga aaaactcatc gagcatcaaa tgaaactgca
atttattcat 1920atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag
gagaaaactc 1980accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc
cgactcgtcc 2040aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa
gtgagaaatc 2100accatgagtg acgactgaat ccggtgagaa tggcaaaagc ttatgcattt
ctttccagac 2160ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa
ccaaaccgtt 2220attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa
aaggacaatt 2280acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcaa
caatattttc 2340acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga
tcgcagtggt 2400gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa
gaggcataaa 2460ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa
cgctaccttt 2520gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat
agattgtcgc 2580acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag
catccatgtt 2640ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca
taacacccct 2700tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat
ttttatcttg 2760tgcaatgtaa catcagagat tttgagacac aacgtggctt tccctgcagg
atttcggagg 2820cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg
agctgatacc 2880gctcgccgca gccgaacgcc ccaaaaagcc tcgctttcag cacctgtcgt
ttcctttctt 2940ttcagagggt attttaaata aaaacattaa gttatgacga agaagaacgg
aaacgcctta 3000aaccggaaaa ttttcataaa tagcgaaaac ccgcgaggtc gccgccccgt
aacctgtcgg 3060atcaccggaa aggacccgta aagtgataat gattatcatc tacatatcac
aacgtgcgtg 3120gagggactag tggattttac ggctagctca gtcctaggta caatgctagc
gaattcatta 3180aagaggagaa aggtacccat ggcacgtacc ccgagccgta gcagcattgg
tagcctgcgt 3240agtccgcata cccataaagc aattctgacc agcaccattg aaatcctgaa
agaatgtggt 3300tatagcggtc tgagcattga aagcgttgca cgtcgtgccg gtgcaagcaa
accgaccatt 3360tatcgttggt ggaccaataa agcagcactg attgccgaag tgtatgaaaa
tgaaagcgaa 3420caggtgcgta aatttccgga tctgggtagc tttaaagccg atctggattt
tctgctgcgt 3480aatctgtgga aagtttggcg tgaaaccatt tgtggtgaag catttcgttg
tgttattgca 3540gaagcacagc tggaccctgc aaccctgacc cagctgaaag atcagtttat
ggaacgtcgt 3600cgtgagatgc cgaaaaaact ggttgaaaat gccattagca atggtgaact
gccgaaagat 3660accaatcgtg aactgctgct ggatatgatt tttggttttt gttggtatcg
cctgctgacc 3720gaacagctga ccgttgaaca ggatattgaa gaatttacct tcctgctgat
taatggtgtt 3780tgtccgggta cacagcgtta actagggccc atacccccaa ttattgaagg
ccgctaacgc 3840ggcctttttt tgtttctggt ctgcccgacg tacggtgaat ctgattcgtt
accaattgac 3900atgatacgaa acgtaccgta tcgttaaggt tactagagat taaagaggag
aaatactaga 3960tggataagaa atactcaata ggcttagata tcggcacaaa tagcgtcgga
tgggcggtga 4020tcactgatga atataaggtt ccgtctaaaa agttcaaggt tctgggaaat
acagaccgcc 4080acagtatcaa aaaaaatctt ataggggctc ttttatttga cagtggagag
acagcggaag 4140cgactcgtct caaacggaca gctcgtagaa ggtatacacg tcggaagaat
cgtatttgtt 4200atctacagga gattttttca aatgagatgg cgaaagtaga tgatagtttc
tttcatcgac 4260ttgaagagtc ttttttggtg gaagaagaca agaagcatga acgtcatcct
atttttggaa 4320atatagtaga tgaagttgct tatcatgaga aatatccaac tatctatcat
ctgcgaaaaa 4380aattggtaga ttctactgat aaagcggatt tgcgcttaat ctatttggcc
ttagcgcata 4440tgattaagtt tcgtggtcat tttttgattg agggagattt aaatcctgat
aatagtgatg 4500tggacaaact atttatccag ttggtacaaa cctacaatca attatttgaa
gaaaacccta 4560ttaacgcaag tggagtagat gctaaagcga ttctttctgc acgattgagt
aaatcaagac 4620gattagaaaa tctcattgct cagctccccg gtgagaagaa aaatggctta
tttgggaatc 4680tcattgcttt gtcattgggt ttgaccccta attttaaatc aaattttgat
ttggcagaag 4740atgctaaatt acagctttca aaagatactt acgatgatga tttagataat
ttattggcgc 4800aaattggaga tcaatatgct gatttgtttt tggcagctaa gaatttatca
gatgctattt 4860tactttcaga tatcctaaga gtaaatactg aaataactaa ggctccccta
tcagcttcaa 4920tgattaaacg ctacgatgaa catcatcaag acttgactct tttaaaagct
ttagttcgac 4980aacaacttcc agaaaagtat aaagaaatct tttttgatca atcaaaaaac
ggatatgcag 5040gttatattga tgggggagct agccaagaag aattttataa atttatcaaa
ccaattttag 5100aaaaaatgga tggtactgag gaattattgg tgaaactaaa tcgtgaagat
ttgctgcgca 5160agcaacggac ctttgacaac ggctctattc cccatcaaat tcacttgggt
gagctgcatg 5220ctattttgag aagacaagaa gacttttatc catttttaaa agacaatcgt
gagaagattg 5280aaaaaatctt gacttttcga attccttatt atgttggtcc attggcgcgt
ggcaatagtc 5340gttttgcatg gatgactcgg aagtctgaag aaacaattac cccatggaat
tttgaagaag 5400ttgtcgataa aggtgcttca gctcaatcat ttattgaacg catgacaaac
tttgataaaa 5460atcttccaaa tgaaaaagta ctaccaaaac atagtttgct ttatgagtat
tttacggttt 5520ataacgaatt gacaaaggtc aaatatgtta ctgaaggaat gcgaaaacca
gcatttcttt 5580caggtgaaca gaagaaagcc attgttgatt tactcttcaa aacaaatcga
aaagtaaccg 5640ttaagcaatt aaaagaagat tatttcaaaa aaatagaatg ttttgatagt
gttgaaattt 5700caggagttga agatagattt aatgcttcat taggtaccta ccatgatttg
ctaaaaatta 5760ttaaagataa agattttttg gataatgaag aaaatgaaga tatcttagag
gatattgttt 5820taacattgac cttatttgaa gatagggaga tgattgagga aagacttaaa
acatatgctc 5880acctctttga tgataaggtg atgaaacagc ttaaacgtcg ccgttatact
ggttggggac 5940gtttgtctcg aaaattgatt aatggtatta gggataagca atctggcaaa
acaatattag 6000attttttgaa atcagatggt tttgccaatc gcaattttat gcagctgatc
catgatgata 6060gtttgacatt taaagaagac attcaaaaag cacaagtgtc tggacaaggc
gatagtttac 6120atgaacatat tgcaaattta gctggtagcc ctgctattaa aaaaggtatt
ttacagactg 6180taaaagttgt tgatgaattg gtcaaagtaa tggggcggca taagccagaa
aatatcgtta 6240ttgaaatggc acgtgaaaat cagacaactc aaaagggcca gaaaaattcg
cgagagcgta 6300tgaaacgaat cgaagaaggt atcaaagaat taggaagtca gattcttaaa
gagcatcctg 6360ttgaaaatac tcaattgcaa aatgaaaagc tctatctcta ttatctccaa
aatggaagag 6420acatgtatgt ggaccaagaa ttagatatta atcgtttaag tgattatgat
gtcgatcaca 6480ttgttccaca aagtttcctt aaagacgatt caatagacaa taaggtctta
acgcgttctg 6540ataaaaatcg tggtaaatcg gataacgttc caagtgaaga agtagtcaaa
aagatgaaaa 6600actattggag acaacttcta aacgccaagt taatcactca acgtaagttt
gataatttaa 6660cgaaagctga acgtggaggt ttgagtgaac ttgataaagc tggttttatc
aaacgccaat 6720tggttgaaac tcgccaaatc actaagcatg tggcacaaat tttggatagt
cgcatgaata 6780ctaaatacga tgaaaatgat aaacttattc gagaggttaa agtgattacc
ttaaaatcta 6840aattagtttc tgacttccga aaagatttcc aattctataa agtacgtgag
attaacaatt 6900accatcatgc ccatgatgcg tatctaaatg ccgtcgttgg aactgctttg
attaagaaat 6960atccaaaact tgaatcggag tttgtctatg gtgattataa agtttatgat
gttcgtaaaa 7020tgattgctaa gtctgagcaa gaaataggca aagcaaccgc aaaatatttc
ttttactcta 7080atatcatgaa cttcttcaaa acagaaatta cacttgcaaa tggagagatt
cgcaaacgcc 7140ctctaatcga aactaatggg gaaactggag aaattgtctg ggataaaggg
cgagattttg 7200ccacagtgcg caaagtattg tccatgcccc aagtcaatat tgtcaagaaa
acagaagtac 7260agacaggcgg attctccaag gagtcaattt taccaaaaag aaattcggac
aagcttattg 7320ctcgtaaaaa agactgggat ccaaaaaaat atggtggttt tgatagtcca
acggtagctt 7380attcagtcct agtggttgct aaggtggaaa aagggaaatc gaagaagtta
aaatccgtta 7440aagagttact agggatcaca attatggaaa gaagttcctt tgaaaaaaat
ccgattgact 7500ttttagaagc taaaggatat aaggaagtta aaaaagactt aatcattaaa
ctacctaaat 7560atagtctttt tgagttagaa aacggtcgta aacggatgct ggctagtgcc
ggagaattac 7620aaaaaggaaa tgagctggct ctgccaagca aatatgtgaa ttttttatat
ttagctagtc 7680attatgaaaa gttgaagggt agtccagaag ataacgaaca aaaacaattg
tttgtggagc 7740agcataagca ttatttagat gagattattg agcaaatcag tgaattttct
aagcgtgtta 7800ttttagcaga tgccaattta gataaagttc ttagtgcata taacaaacat
agagacaaac 7860caatacgtga acaagcagaa aatattattc atttatttac gttgacgaat
cttggagctc 7920ccgctgcttt taaatatttt gatacaacaa ttgatcgtaa acgatatacg
tctacaaaag 7980aagttttaga tgccactctt atccatcaat ccatcactgg tctttatgaa
acacgcattg 8040atttgagtca gctaggaggt gactaactcg agtaaggatc tccaggcatt
gcaggcatgc 8100ctcgagatgc atggcgccta acctaaactg atgacgcatc ctcacgataa
tatccgggta 8160ggcgcaatca ctttcgtcta ctccgttaca aagcgaggct gggtatttcc
cggcctttct 8220gttatccgaa atccactgaa agcacagcgg ctggctgagg agataaataa
taaacgaggg 8280gctgtatgca caaagcatct tctgttgagt taagaacgag tatcgagatg
gcacatagcc 8340ttgctcaaat tggaatcagg tttgtgccaa taccagtaga aacagacgaa
gaatccatgg 8400gtatggacag atctcaaaaa aagcaccgac tcggtgccac tttttcaagt
tgataacgga 8460ctagccttat tttaacttgc tatttctagc tctaaaacgg gttttcccag
tcacgacgtg 8520ctagcattat acctaggact gagctagctg tcagccattc gatggtgtca
acgtaaatgc 8580atgccgcttc gcctcgtccg gcgtagagga tctgctcatg tttgacagct
tatcatcgat 8640gcataatgtg cctgtcaaat ggacgaagca gggattctgc aaaccctatg
ctactccgtc 8700aagccgtcaa ttgtctgatt cgttaccaat tatgacaact tgacggctac
atcattcact 8760ttttcttcac aaccggcacg gaactcgctc gggctggccc cggtgcattt
tttaaatacc 8820cgcgagaaat agagttgatc gtcaaaacca acattgcgac cgacggtggc
gataggcatc 8880cgggtggtgc tcaaaagcag cttcgcctgg ctgatacgtt ggtcctcgcg
ccagcttaag 8940acgctaatcc ctaactgctg gcggaaaaga tgtgacagac gcgacggcga
caagcaaaca 9000tgctgtgcga cgctggcgat atcaaaattg ctgtctgcca ggtgatcgct
gatgtactga 9060caagcctcgc gtacccgatt atccatcggt ggatggagcg actcgttaat
cgcttccatg 9120cgccgcagta acaattgctc aagcagattt atcgccagca gctccgaata
gcgcccttcc 9180ccttgcccgg cgttaatgat ttgcccaaac aggtcgctga aatgcggctg
gtgcgcttca 9240tccgggcgaa agaaccccgt attggcaaat attgacggcc agttaagcca
ttcatgccag 9300taggcgcgcg gacgaaagta aacccactgg tgataccatt cgcgagcctc
cggatgacga 9360ccgtagtgat gaatctctcc tggcgggaac agcaaaatat cacccggtcg
gcaaacaaat 9420tctcgtccct gatttttcac caccccctga ccgcgaatgg tgagattgag
aatataacct 9480ttcattccca gcggtcggtc gataaaaaaa tcgagataac cgttggcctc
aatcggcgtt 9540aaacccgcca ccagatgggc attaaacgag tatcccggca gcaggggatc
attttgcgct 9600tcagccatac ttttcatact cccgccattc agagaagaaa ccaattgtcc
atattgcatc 9660agacattgcc gtcactgcgt cttttactgg ctcttctcgc taaccaaacc
ggtaaccccg 9720cttattaaaa gcattctgta acaaagcggg accaaagcca tgacaaaaac
gcgtaacaaa 9780agtgtctata atcacggcag aaaagtccac attgattatt tgcacggcgt
cacactttgc 9840tatgccatag catttttatc cataagatta gcggatccta cctgacgctt
tttatcgcaa 9900ctctctactg tttctccata cccgtttttt tgggctagcg aattcnnnnn
nnnnnnnnnn 9960nnnnnnnnnn nnnnnnatgg ctaaaccagc aaaacgtatc aagagtgccg
cagcggctta 10020tgtgccacaa aaccgcgatg cggtgattac cgatattaaa cgcatcgggg
atttacagcg 10080cgaagcatca cgtctggaaa cggaaatgaa tgatgccatc gcggaaatta
cggagaaatt 10140tgcggcccgg attgcaccga ttaaaaccga tattgaaacc ctttcaaaag
gcgttcaggg 10200atggtgtgaa gcgaaccgcg acgaactgac gaacggcggc aaagtgaaga
cggcgaatct 10260tgtcaccggt gatgtatcgt ggcgggtccg tccaccatca gtaagtattc
gtggtatgga 10320tgcagtgatg gaaacgctgg agcgtcttgg cctgcaacgc tttattcgca
cgaagcagga 10380aatcaacaag gaagcgattt tactggaacc gaaagcggtc gcaggcgttg
ccggaattac 10440agttaaatca ggcattgagg atttttctat tattccattt gaacaggaag
ccggtattta 10500attggctgtt ttggcggatg agagaagatt ttcagcggaa acacagaaaa
aagcccgcac 10560ctgacagtgc gggctttttt tttcgaccaa aggtccatgg gtatggacag
ttttcccttt 10620gatatgtaac ggtgaacagt tgttctactt ttgtttgtta gtcttgatgc
ttcactgata 10680gatacaagag ccataagaac c
107017210593DNAArtificialpCas9-LambdaGammisc_feature(9946)..(99-
76)n is a, c, g, or t 72tcagatcctt ccgtatttag ccagtatgtt ctctagtgtg
gttcgttgtt tttgcgtgag 60ccatgagaac gaaccattga gatcatactt actttgcatg
tcactcaaaa attttgcctc 120aaaactggtg agctgaattt ttgcagttaa agcatcgtgt
agtgtttttc ttagtccgtt 180acgtaggtag gaatctgatg taatggttgt tggtattttg
tcaccattca tttttatctg 240gttgttctca agttcggtta cgagatccat ttgtctatct
agttcaactt ggaaaatcaa 300cgtatcagtc gggcggcctc gcttatcaac caccaatttc
atattgctgt aagtgtttaa 360atctttactt attggtttca aaacccattg gttaagcctt
ttaaactcat ggtagttatt 420ttcaagcatt aacatgaact taaattcatc aaggctaatc
tctatatttg ccttgtgagt 480tttcttttgt gttagttctt ttaataacca ctcataaatc
ctcatagagt atttgttttc 540aaaagactta acatgttcca gattatattt tatgaatttt
tttaactgga aaagataagg 600caatatctct tcactaaaaa ctaattctaa tttttcgctt
gagaacttgg catagtttgt 660ccactggaaa atctcaaagc ctttaaccaa aggattcctg
atttccacag ttctcgtcat 720cagctctctg gttgctttag ctaatacacc ataagcattt
tccctactga tgttcatcat 780ctgagcgtat tggttataag tgaacgatac cgtccgttct
ttccttgtag ggttttcaat 840cgtggggttg agtagtgcca cacagcataa aattagcttg
gtttcatgct ccgttaagtc 900atagcgacta atcgctagtt catttgcttt gaaaacaact
aattcagaca tacatctcaa 960ttggtctagg tgattttaat cactatacca attgagatgg
gctagtcaat gataattact 1020agtccttttc ctttgagttg tgggtatctg taaattctgc
tagacctttg ctggaaaact 1080tgtaaattct gctagaccct ctgtaaattc cgctagacct
ttgtgtgttt tttttgttta 1140tattcaagtg gttataattt atagaataaa gaaagaataa
aaaaagataa aaagaataga 1200tcccagccct gtgtataact cactacttta gtcagttccg
cagtattaca aaaggatgtc 1260gcaaacgctg tttgctcctc tacaaaacag accttaaaac
cctaaaggct taagtagcac 1320cctcgcaagc tcggttgcgg ccgcaatcgg gcaaatcgct
gaatattcct tttgtctccg 1380accatcaggc acctgagtcg ctgtcttttt cgtgacattc
agttcgctgc gctcacggct 1440ctggcagtga atgggggtaa atggcactac aggcgccttt
tatggattca tgcaaggaaa 1500ctacccataa tacaagaaaa gcccgtcacg ggcttctcag
ggcgttttat ggcgggtctg 1560ctatgtggtg ctatctgact ttttgctgtt cagcagttcc
tgccctctga ttttccagtc 1620tgaccacttc ggattatccc gtgacaggtc attcagactg
gctaatgcac ccagtaaggc 1680agcggtatca tcaacggggt ctgacgctca gtggaacgaa
aactcacgtt aagggatttt 1740ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt
ttaaattaaa aatgaagttt 1800taaatcaatc taaagtatat atgagtaaac ttggtctgac
agttacgttt ccacaaccaa 1860ttaaccaatt ctgatttaga aaaactcatc gagcatcaaa
tgaaactgca atttattcat 1920atcaggatta tcaataccat atttttgaaa aagccgtttc
tgtaatgaag gagaaaactc 1980accgaggcag ttccatagga tggcaagatc ctggtatcgg
tctgcgattc cgactcgtcc 2040aacatcaata caacctatta atttcccctc gtcaaaaata
aggttatcaa gtgagaaatc 2100accatgagtg acgactgaat ccggtgagaa tggcaaaagc
ttatgcattt ctttccagac 2160ttgttcaaca ggccagccat tacgctcgtc atcaaaatca
ctcgcatcaa ccaaaccgtt 2220attcattcgt gattgcgcct gagcgagacg aaatacgcga
tcgctgttaa aaggacaatt 2280acaaacagga atcgaatgca accggcgcag gaacactgcc
agcgcatcaa caatattttc 2340acctgaatca ggatattctt ctaatacctg gaatgctgtt
ttcccgggga tcgcagtggt 2400gagtaaccat gcatcatcag gagtacggat aaaatgcttg
atggtcggaa gaggcataaa 2460ttccgtcagc cagtttagtc tgaccatctc atctgtaaca
tcattggcaa cgctaccttt 2520gccatgtttc agaaacaact ctggcgcatc gggcttccca
tacaatcgat agattgtcgc 2580acctgattgc ccgacattat cgcgagccca tttataccca
tataaatcag catccatgtt 2640ggaatttaat cgcggcctcg agcaagacgt ttcccgttga
atatggctca taacacccct 2700tgtattactg tttatgtaag cagacagttt tattgttcat
gatgatatat ttttatcttg 2760tgcaatgtaa catcagagat tttgagacac aacgtggctt
tccctgcagg atttcggagg 2820cctgcgttat cccctgattc tgtggataac cgtattaccg
cctttgagtg agctgatacc 2880gctcgccgca gccgaacgcc ccaaaaagcc tcgctttcag
cacctgtcgt ttcctttctt 2940ttcagagggt attttaaata aaaacattaa gttatgacga
agaagaacgg aaacgcctta 3000aaccggaaaa ttttcataaa tagcgaaaac ccgcgaggtc
gccgccccgt aacctgtcgg 3060atcaccggaa aggacccgta aagtgataat gattatcatc
tacatatcac aacgtgcgtg 3120gagggactag tggattttac ggctagctca gtcctaggta
caatgctagc gaattcatta 3180aagaggagaa aggtacccat ggcacgtacc ccgagccgta
gcagcattgg tagcctgcgt 3240agtccgcata cccataaagc aattctgacc agcaccattg
aaatcctgaa agaatgtggt 3300tatagcggtc tgagcattga aagcgttgca cgtcgtgccg
gtgcaagcaa accgaccatt 3360tatcgttggt ggaccaataa agcagcactg attgccgaag
tgtatgaaaa tgaaagcgaa 3420caggtgcgta aatttccgga tctgggtagc tttaaagccg
atctggattt tctgctgcgt 3480aatctgtgga aagtttggcg tgaaaccatt tgtggtgaag
catttcgttg tgttattgca 3540gaagcacagc tggaccctgc aaccctgacc cagctgaaag
atcagtttat ggaacgtcgt 3600cgtgagatgc cgaaaaaact ggttgaaaat gccattagca
atggtgaact gccgaaagat 3660accaatcgtg aactgctgct ggatatgatt tttggttttt
gttggtatcg cctgctgacc 3720gaacagctga ccgttgaaca ggatattgaa gaatttacct
tcctgctgat taatggtgtt 3780tgtccgggta cacagcgtta actagggccc atacccccaa
ttattgaagg ccgctaacgc 3840ggcctttttt tgtttctggt ctgcccgacg tacggtgaat
ctgattcgtt accaattgac 3900atgatacgaa acgtaccgta tcgttaaggt tactagagat
taaagaggag aaatactaga 3960tggataagaa atactcaata ggcttagata tcggcacaaa
tagcgtcgga tgggcggtga 4020tcactgatga atataaggtt ccgtctaaaa agttcaaggt
tctgggaaat acagaccgcc 4080acagtatcaa aaaaaatctt ataggggctc ttttatttga
cagtggagag acagcggaag 4140cgactcgtct caaacggaca gctcgtagaa ggtatacacg
tcggaagaat cgtatttgtt 4200atctacagga gattttttca aatgagatgg cgaaagtaga
tgatagtttc tttcatcgac 4260ttgaagagtc ttttttggtg gaagaagaca agaagcatga
acgtcatcct atttttggaa 4320atatagtaga tgaagttgct tatcatgaga aatatccaac
tatctatcat ctgcgaaaaa 4380aattggtaga ttctactgat aaagcggatt tgcgcttaat
ctatttggcc ttagcgcata 4440tgattaagtt tcgtggtcat tttttgattg agggagattt
aaatcctgat aatagtgatg 4500tggacaaact atttatccag ttggtacaaa cctacaatca
attatttgaa gaaaacccta 4560ttaacgcaag tggagtagat gctaaagcga ttctttctgc
acgattgagt aaatcaagac 4620gattagaaaa tctcattgct cagctccccg gtgagaagaa
aaatggctta tttgggaatc 4680tcattgcttt gtcattgggt ttgaccccta attttaaatc
aaattttgat ttggcagaag 4740atgctaaatt acagctttca aaagatactt acgatgatga
tttagataat ttattggcgc 4800aaattggaga tcaatatgct gatttgtttt tggcagctaa
gaatttatca gatgctattt 4860tactttcaga tatcctaaga gtaaatactg aaataactaa
ggctccccta tcagcttcaa 4920tgattaaacg ctacgatgaa catcatcaag acttgactct
tttaaaagct ttagttcgac 4980aacaacttcc agaaaagtat aaagaaatct tttttgatca
atcaaaaaac ggatatgcag 5040gttatattga tgggggagct agccaagaag aattttataa
atttatcaaa ccaattttag 5100aaaaaatgga tggtactgag gaattattgg tgaaactaaa
tcgtgaagat ttgctgcgca 5160agcaacggac ctttgacaac ggctctattc cccatcaaat
tcacttgggt gagctgcatg 5220ctattttgag aagacaagaa gacttttatc catttttaaa
agacaatcgt gagaagattg 5280aaaaaatctt gacttttcga attccttatt atgttggtcc
attggcgcgt ggcaatagtc 5340gttttgcatg gatgactcgg aagtctgaag aaacaattac
cccatggaat tttgaagaag 5400ttgtcgataa aggtgcttca gctcaatcat ttattgaacg
catgacaaac tttgataaaa 5460atcttccaaa tgaaaaagta ctaccaaaac atagtttgct
ttatgagtat tttacggttt 5520ataacgaatt gacaaaggtc aaatatgtta ctgaaggaat
gcgaaaacca gcatttcttt 5580caggtgaaca gaagaaagcc attgttgatt tactcttcaa
aacaaatcga aaagtaaccg 5640ttaagcaatt aaaagaagat tatttcaaaa aaatagaatg
ttttgatagt gttgaaattt 5700caggagttga agatagattt aatgcttcat taggtaccta
ccatgatttg ctaaaaatta 5760ttaaagataa agattttttg gataatgaag aaaatgaaga
tatcttagag gatattgttt 5820taacattgac cttatttgaa gatagggaga tgattgagga
aagacttaaa acatatgctc 5880acctctttga tgataaggtg atgaaacagc ttaaacgtcg
ccgttatact ggttggggac 5940gtttgtctcg aaaattgatt aatggtatta gggataagca
atctggcaaa acaatattag 6000attttttgaa atcagatggt tttgccaatc gcaattttat
gcagctgatc catgatgata 6060gtttgacatt taaagaagac attcaaaaag cacaagtgtc
tggacaaggc gatagtttac 6120atgaacatat tgcaaattta gctggtagcc ctgctattaa
aaaaggtatt ttacagactg 6180taaaagttgt tgatgaattg gtcaaagtaa tggggcggca
taagccagaa aatatcgtta 6240ttgaaatggc acgtgaaaat cagacaactc aaaagggcca
gaaaaattcg cgagagcgta 6300tgaaacgaat cgaagaaggt atcaaagaat taggaagtca
gattcttaaa gagcatcctg 6360ttgaaaatac tcaattgcaa aatgaaaagc tctatctcta
ttatctccaa aatggaagag 6420acatgtatgt ggaccaagaa ttagatatta atcgtttaag
tgattatgat gtcgatcaca 6480ttgttccaca aagtttcctt aaagacgatt caatagacaa
taaggtctta acgcgttctg 6540ataaaaatcg tggtaaatcg gataacgttc caagtgaaga
agtagtcaaa aagatgaaaa 6600actattggag acaacttcta aacgccaagt taatcactca
acgtaagttt gataatttaa 6660cgaaagctga acgtggaggt ttgagtgaac ttgataaagc
tggttttatc aaacgccaat 6720tggttgaaac tcgccaaatc actaagcatg tggcacaaat
tttggatagt cgcatgaata 6780ctaaatacga tgaaaatgat aaacttattc gagaggttaa
agtgattacc ttaaaatcta 6840aattagtttc tgacttccga aaagatttcc aattctataa
agtacgtgag attaacaatt 6900accatcatgc ccatgatgcg tatctaaatg ccgtcgttgg
aactgctttg attaagaaat 6960atccaaaact tgaatcggag tttgtctatg gtgattataa
agtttatgat gttcgtaaaa 7020tgattgctaa gtctgagcaa gaaataggca aagcaaccgc
aaaatatttc ttttactcta 7080atatcatgaa cttcttcaaa acagaaatta cacttgcaaa
tggagagatt cgcaaacgcc 7140ctctaatcga aactaatggg gaaactggag aaattgtctg
ggataaaggg cgagattttg 7200ccacagtgcg caaagtattg tccatgcccc aagtcaatat
tgtcaagaaa acagaagtac 7260agacaggcgg attctccaag gagtcaattt taccaaaaag
aaattcggac aagcttattg 7320ctcgtaaaaa agactgggat ccaaaaaaat atggtggttt
tgatagtcca acggtagctt 7380attcagtcct agtggttgct aaggtggaaa aagggaaatc
gaagaagtta aaatccgtta 7440aagagttact agggatcaca attatggaaa gaagttcctt
tgaaaaaaat ccgattgact 7500ttttagaagc taaaggatat aaggaagtta aaaaagactt
aatcattaaa ctacctaaat 7560atagtctttt tgagttagaa aacggtcgta aacggatgct
ggctagtgcc ggagaattac 7620aaaaaggaaa tgagctggct ctgccaagca aatatgtgaa
ttttttatat ttagctagtc 7680attatgaaaa gttgaagggt agtccagaag ataacgaaca
aaaacaattg tttgtggagc 7740agcataagca ttatttagat gagattattg agcaaatcag
tgaattttct aagcgtgtta 7800ttttagcaga tgccaattta gataaagttc ttagtgcata
taacaaacat agagacaaac 7860caatacgtga acaagcagaa aatattattc atttatttac
gttgacgaat cttggagctc 7920ccgctgcttt taaatatttt gatacaacaa ttgatcgtaa
acgatatacg tctacaaaag 7980aagttttaga tgccactctt atccatcaat ccatcactgg
tctttatgaa acacgcattg 8040atttgagtca gctaggaggt gactaactcg agtaaggatc
tccaggcatt gcaggcatgc 8100ctcgagatgc atggcgccta acctaaactg atgacgcatc
ctcacgataa tatccgggta 8160ggcgcaatca ctttcgtcta ctccgttaca aagcgaggct
gggtatttcc cggcctttct 8220gttatccgaa atccactgaa agcacagcgg ctggctgagg
agataaataa taaacgaggg 8280gctgtatgca caaagcatct tctgttgagt taagaacgag
tatcgagatg gcacatagcc 8340ttgctcaaat tggaatcagg tttgtgccaa taccagtaga
aacagacgaa gaatccatgg 8400gtatggacag atctcaaaaa aagcaccgac tcggtgccac
tttttcaagt tgataacgga 8460ctagccttat tttaacttgc tatttctagc tctaaaacgg
gttttcccag tcacgacgtg 8520ctagcattat acctaggact gagctagctg tcagccattc
gatggtgtca acgtaaatgc 8580atgccgcttc gcctcgtccg gcgtagagga tctgctcatg
tttgacagct tatcatcgat 8640gcataatgtg cctgtcaaat ggacgaagca gggattctgc
aaaccctatg ctactccgtc 8700aagccgtcaa ttgtctgatt cgttaccaat tatgacaact
tgacggctac atcattcact 8760ttttcttcac aaccggcacg gaactcgctc gggctggccc
cggtgcattt tttaaatacc 8820cgcgagaaat agagttgatc gtcaaaacca acattgcgac
cgacggtggc gataggcatc 8880cgggtggtgc tcaaaagcag cttcgcctgg ctgatacgtt
ggtcctcgcg ccagcttaag 8940acgctaatcc ctaactgctg gcggaaaaga tgtgacagac
gcgacggcga caagcaaaca 9000tgctgtgcga cgctggcgat atcaaaattg ctgtctgcca
ggtgatcgct gatgtactga 9060caagcctcgc gtacccgatt atccatcggt ggatggagcg
actcgttaat cgcttccatg 9120cgccgcagta acaattgctc aagcagattt atcgccagca
gctccgaata gcgcccttcc 9180ccttgcccgg cgttaatgat ttgcccaaac aggtcgctga
aatgcggctg gtgcgcttca 9240tccgggcgaa agaaccccgt attggcaaat attgacggcc
agttaagcca ttcatgccag 9300taggcgcgcg gacgaaagta aacccactgg tgataccatt
cgcgagcctc cggatgacga 9360ccgtagtgat gaatctctcc tggcgggaac agcaaaatat
cacccggtcg gcaaacaaat 9420tctcgtccct gatttttcac caccccctga ccgcgaatgg
tgagattgag aatataacct 9480ttcattccca gcggtcggtc gataaaaaaa tcgagataac
cgttggcctc aatcggcgtt 9540aaacccgcca ccagatgggc attaaacgag tatcccggca
gcaggggatc attttgcgct 9600tcagccatac ttttcatact cccgccattc agagaagaaa
ccaattgtcc atattgcatc 9660agacattgcc gtcactgcgt cttttactgg ctcttctcgc
taaccaaacc ggtaaccccg 9720cttattaaaa gcattctgta acaaagcggg accaaagcca
tgacaaaaac gcgtaacaaa 9780agtgtctata atcacggcag aaaagtccac attgattatt
tgcacggcgt cacactttgc 9840tatgccatag catttttatc cataagatta gcggatccta
cctgacgctt tttatcgcaa 9900ctctctactg tttctccata cccgtttttt tgggctagcg
aattcnnnnn nnnnnnnnnn 9960nnnnnnnnnn nnnnnnatgg atattaatac tgaaactgag
atcaagcaaa agcattcact 10020aacccccttt cctgttttcc taatcagccc ggcatttcgc
gggcgatatt ttcacagcta 10080tttcaggagt tcagccatga acgcttatta cattcaggat
cgtcttgagg ctcagagctg 10140ggcgcgtcac taccagcagc tcgcccgtga agagaaagag
gcagaactgg cagacgacat 10200ggaaaaaggc ctgccccagc acctgtttga atcgctatgc
atcgatcatt tgcaacgcca 10260cggggccagc aaaaaatcca ttacccgtgc gtttgatgac
gatgttgagt ttcaggagcg 10320catggcagaa cacatccggt acatggttga aaccattgct
caccaccagg ttgatattga 10380ttcagaggta taattggctg ttttggcgga tgagagaaga
ttttcagcgg aaacacagaa 10440aaaagcccgc acctgacagt gcgggctttt tttttcgacc
aaaggtccat gggtatggac 10500agttttccct ttgatatgta acggtgaaca gttgttctac
ttttgtttgt tagtcttgat 10560gcttcactga tagatacaag agccataaga acc
10593
User Contributions:
Comment about this patent or add new information about this topic: