Patent application title: USE OF NON-SUBTYPE B GAG PROTEINS FOR LENTIVIRAL PACKAGING
Inventors:
IPC8 Class: AC12N1586FI
USPC Class:
1 1
Class name:
Publication date: 2017-12-21
Patent application number: 20170362607
Abstract:
The invention encompasses a lentiviral packaging vector comprising a
non-subtype B gag-pol sequence, particularly a subtype D gag-pol
sequence. The invention further encompasses methods for making and using
these vectors. The invention further encompasses lentiviral vector
particles comprising HIV-1 non-subtype B Gag and/or Pol proteins.Claims:
1. A replication-defective lentiviral packaging vector lacking a 4) site
and encoding an HIV-1 Gag MA protein; wherein the HIV-1 Gag MA protein:
a) has an amino acid at position 12 that is not a glutamic acid, b) has
an amino acid at position 15 that is not an arginine, c) does not have
both a valine at position 46 and a leucine at position 61; and wherein
the lentiviral packaging vector encoding the HIV-1 Gag MA protein
generates at least a 1.5 fold increase in the titer of a packaged
lentiviral vector as compared to the lentiviral packaging vector encoding
an HIV-1 Gag MA protein of HIV-1 BRU.
2. The vector of claim 1, wherein the amino acid at position 12 is a lysine.
3. The vector of claim 1, wherein the amino acid at position 12 is an arginine.
4. The vector of claim 1, wherein the amino acid at position 15 is a threonine.
5. The vector of claim 1, wherein the amino acid at position 15 is an alanine.
6. The vector of claim 1, wherein the amino acid at position 46 is a leucine.
7. The vector of claim 1, wherein the amino acid at position 61 is an isoleucine.
8. The vector of claim 1, wherein the amino acid at position 61 is a methionine.
9. The vector of claim 2, wherein the amino acid at position 15 is a threonine.
11. The vector of claim 2, wherein the amino acid at position 46 is a leucine.
12. The vector of claim 2, wherein the amino acid at position 61 is an isoleucine.
13. The vector of claim 9, wherein the amino acid at position 46 is a leucine.
14. The vector of claim 9, wherein the amino acid at position 61 is an isoleucine.
15. The vector of claim 13, wherein the amino acid at position 61 is an isoleucine.
16. The vector of claim 15, wherein the HIV-1 Gag MA protein is the HIV-1 Gag MA protein of HIV-1 NDK.
17. The vector of claim 16, wherein the vector encodes the amino acid sequence of SEQ ID NO:4.
18. A method for generating a packaging vector comprising inserting a Gag and/or Pol sequence from a non-subtype B HIV-1 virus into a plasmid under the control of a non-HIV promoter to generate the packaging vector.
19. A method for generating a lentiviral vector comprising administering a packaging vector encoding a non-subtype B HIV-1 Gag or Pol protein to a cell with a lentiviral vector.
20. The method of claim 19, further comprising selecting for a packaging vector that packages a higher titer of the lentiviral vector than a same packaging vector encoding a subtype B HIV-1 Gag or Pol protein.
Description:
BACKGROUND OF THE INVENTION
[0001] Recombinant vaccines have been developed with the progress of recombinant DNA technology, allowing the modification of viral genomes to produce modified viruses. In this manner, it has been possible to introduce genetic sequences into non-pathogenic viruses, so that they encode immunogenic proteins to be expressed in target cells upon infection, in order to develop a specific immune response in their host.
[0002] Such vaccines constitute a major advance in vaccine technology (Kutzler et al., Nat Rev Genet, 9(10): 776-788, 2008). In particular, they have the advantage over traditional vaccines of avoiding live (attenuated) virus and eliminating risks associated with the manufacture of inactivated vaccines.
[0003] Gene delivery using modified retroviruses (retroviral vectors) was introduced in the early 1980s by Mann et al. (Cell, 33(1):153-9, 1983). The most commonly used oncogenic retroviral vectors are based on the Moloney murine leukemia virus (MLV). They have a simple genome from which the polyproteins Gag, Pol and Env are produced and are required in trans for viral replication (Breckpot et al., 2007, Gene Ther, 14(11):847-62; He et al. 2007, Expert Rev vaccines, 6(6):913-24). Sequences generally required in cis are the long terminal repeats (LTRs) and its vicinity: the inverted repeats (IR or att sites) required for integration, the packaging sequence .PSI., the transport RNA-binding site (primer binding site, PBS), and some additional sequences involved in reverse transcription (the repeat R within the LTRs, and the polypurine tracts, PPT, necessary for plus strand initiation). To generate replication-defective retroviral vectors, the gag, pol, and env genes are generally entirely deleted and replaced with an expression cassette.
[0004] Retroviral vectors deriving from lentivirus genomes (i.e. lentiviral vectors) have emerged as promising tools for both gene therapy and immunotherapy purposes, because they exhibit several advantages over other viral systems. In particular, lentiviral vectors themselves are not toxic and, unlike other retroviruses, lentiviruses are capable of transducing non-dividing cells, in particular dendritic cells (He et al. 2007, Expert Rev vaccines, 6(6):913-24), allowing antigen presentation through the endogenous pathway.
[0005] Lentiviruses represent a genus of slow viruses of the Retroviridae family, which includes the human immunodeficiency viruses (HIV), the simian immunodeflciency virus (SIV), the equine infectious encephalitis virus (EIAV), the caprine arthritis encephalitis virus (CAEV), the bovine immunodeficiency virus (BIV) and the feline immunodeficiency virus (FIV). Lentiviruses can persist indefinitely in their hosts and replicate continuously at variable rates during the course of the lifelong infection. Persistent replication of the viruses in their hosts depends on their ability to circumvent host defenses.
[0006] The design of recombinant lentiviral vectors is based on the separation of the cis- and trans-acting sequences of the lentivirus. Efficient integration and replication in non-dividing cells requires the presence of two cis-acting sequences in the lentiviral genome, the central polypurine tract (cPPT) and the central terminal sequence (CTS). These lead to the formation of a triple-stranded DNA structure called the central DNA "flap", which maximizes the efficiency of gene import into the nuclei of non-dividing cells, including dendritic cells (DCs) (Zennou et al., 2000, Cell, 101(2) 173-85; Arhel et al., 2007, EMBO J, 26(12):3025-37).
[0007] HIV-1 lentiviral vectors have been generated based on providing the subtype B Gag, Pol, Tat and Rev proteins for packaging vectors in trans from a packaging construct (Naldini et al, PNAS 15: 11382-8 (1996); Zufferey et al, Nature Biotechnology 15:871-875, 1997); Dull et al, Journal of Virology (1997)). These studies were performed with subtype B Gag and Pol proteins. The effect of non-subtype B gag and poi sequences in a HIV-1 packaging construct was not assessed.
[0008] There are many different subtypes of HIV-1 other than subtype B. Some subtypes of HIV-1, such as C, E, and A, appear to be transmitted more efficiently than HIV-1 subtype B, which is the major subtype in the United States and Europe. Essex et al., Adv Virus Res. 1999; 53:71-88. The predominant subtype of HIV-1 that is found in the developed Western World, clade B, differs considerably from those subtypes and recombinants that exist in Africa and Asia, where the vast majority of HIV-infected persons reside. Spira et al., J. Antimicrobial Chemotherapy (2003) 51, 229-240. Thus, serious discrepancies may exist between the subtype B retrovirus encountered in North America and Europe and those viral subtypes that plague humanity on a global scale. Id. Subtype diversity may impact on modes of HIV transmission. Homosexual and intravenous drug abuse are the primary modes of transmission observed for clade B strains in Europe and the Americas. Id. In contrast, clades A, C, D and E predominate in Africa and Asia where heterosexual transmission predominates. Id. In addition, some studies suggest that AIDS progression differs as a function of infecting subtype. Id. Thus, it appears that HIV-1 subtype B is quite different than the other HIV-1 subtypes.
[0009] HIV phylogenic classifications are normally based either on nucleotide sequences derived from multiple sub genomic regions (gag, pol and env) of the same isolates, or on full-length genome sequence analysis. A phylogenic analysis of HIV-1 near-full length sequences revealed that HIV-1 subtype B was most closely related genetically to HIV subtype D (FIG. 1). Phylogenic analyses of HIV-1 Gag and Pol protein sequences also showed that HIV-1 subtype B was most closely related genetically to HIV subtype D (FIG. 2).
[0010] Nevertheless, HIV-1-NDK, a subtype D virus, is significantly more cytopathic for CD4+ lymphocytes than the HIV-1-BRU prototype, a subtype B virus. This may be due to enhanced fusogenicity and infectivity of subtype D viruses. De Mareuil et al., J. Virol. 66: 6797 (1992). Phenotypic analysis of recombinant viruses indicated that 75 amino acids from the N-terminal part of HIV-1-NDK matrix (MA) protein, together with the HIV-1-NDK envelope glycoprotein, are responsible for enhanced fusogenicity of HIV-1-NDK in CD4+ lymphocytes as well as for enhanced infectivity of HIV-1-NDK in some CD4- cell lines. Id.
[0011] There is a need in the art for lentiviral packaging constructs producing higher titers of packaged lentiviral vectors, in order to reduce injection volumes, increase dosages, reduce the cost of vaccination, and increase the number of patients that could be treated with one batch. The current invention fulfills this need.
BRIEF SUMMARY OF THE INVENTION
[0012] The gag-pol gene of subtype B of HIV-1 in a lentiviral packaging plasmid (construct p8.74) was replaced by the gag-pol gene of a subtype D HIV-1 to generate construct pThV-GP-N. The constructs were used for lentiviral vector production. Approximately 2-fold higher titers were obtained using the pThV-GP-N plasmid as compared to construct p8.74. Thus, the Gag-Pol of a subtype D virus increases the titer of lentiviral vector particles relative to a Gag-Pol of a subtype B virus.
[0013] The invention encompasses a lentiviral packaging vector comprising a subtype D gag-pol sequence, particularly from HIV-1 NDK. In a preferred embodiment, the lentiviral packaging vector comprises the nucleotide sequence of SEQ ID NO:1. In a preferred embodiment, the lentiviral packaging vector encodes the amino acid sequence of SEQ ID NO:2.
The nucleotide sequence of SEQ ID NO 1 is:
TABLE-US-00001 (SEQ ID NO 1) atgggtgcgagagcgtcagtattaagcgggggaaaattagatacatgggaaagaattcggttacggcca ggaggaaagaaaaaatatgcactaaaacatttgatatgggcaagcagggagctagaacgatttacactt aatcctggccttttagagacatcagaaggctgtaaacaaataataggacagctacaaccatctattcaa acaggatcagaagaaattagatcattatataatacagtagcaaccctctattgtgtacatgaaaggata gaggtaaaagacaccaaagaagctgtagaaaagatggaggaagaacaaaacaaaagtaagaaaaagaca cagcaagcagcagctgatagcagccaggtcagccaaaattaccctatagtgcagaacctacaggggcaa atggtacatcaggccatatcacctagaactttgaacgcatgggtaaaagtaatagaagaaaaggccttc agcccggaagtaatacccatgttttcagcattatcagaaggagccaccccacaagatttaaacaccatg ctaaacacagtggggggacatcaagcagctatgcaaatgctaaaagagaccatcaatgacgaagctgca gaatgggacagattacatccagtgcatgcagggcctgttgcaccaggccaaatgagagaaccaagggga agtgatatagcaggaactactagtacccttcaggaacaaatagcatggatgacaagcaacccacctatc ccagtaggagaaatctataaaagatggataatcctgggattaaataaaatagtaagaatgtatagccct gtcagcattttggacataagacagggaccaaaggaaccttttagagactatgtagaccggttctataaa actctaagagccgagcaagcttcacaggatgtaaaaaactggatgacagaaaccttgttggtccaaaat gcaaacccagattgtaaaactatcttaaaagcattgggaccacaggctacactagaagaaatgatgaca gcatgccagggagtgggggggcccggccataaagcaagagttttggctgaggcaatgagccaagtaaca ggttcagctactgcagtaatgatgcagagaggcaattttaagggcccaagaaaaagtattaagtgtttc aactgtggcaaggaagggcacacagcaaaaaattgcagggcccctagaaaaaagggctgttggaaatgc ggaagggaaggacaccaaatgaaagattgcactgaaagacaggctaattttttagggaagatttggcct tcccacaagggaaggccggggaattttcttcagagcagaccagagccaacagccccaccagcagagagc ttcgggtttggggaggagataaccccctctcagaaacaggagcagaaagacaaggaactgtatccttta gcttccctcaaatcactctttggcaacgacccctcgtcacaataaagatagggggacagctaaaggaag ctctattagatacaggagcagatgatacagtattagaagaaataaatttgccaggaaaatggaagccaa aaatgatagggggaattggaggttttatcaaagtaagacagtatgatcaaatactcatagaaatctgtg gatataaagctatgggtacagtattagtaggacctacacctgtcaacataattggaagaaatttgttga cccagattggctgcactttaaattttccaattagtcctattgaaactgtaccagtaaaattaaagccag gaatggatggcccaaaagttaaacaatggccattgacgaagaaaaaataaaagcattaacagaaatttg tacagaaatggaaaaggaaggaaaaatttcaagaattgggcctgaaaatccatataatactccaatatt tgccataaagaaaaaagacagtaccaagtggagaaaattagtagatttcagagaacttaataagagaac tcaagatttctgggaggttcaattaggaataccgcatcctgcagggctgaaaaagaaaaaatcagtaac agtactggatgtgggtgatgcatatttctcagttcccttagatgaagattttaggaaatataccgcatt taccatacctagtataaacaatgagacaccagggattagatatcagtacaatgtgctcccacagggatg gaaaggatcaccggcaatattccaaagtagcatgacaaaaatcttagagccctttagaaaacaaaatcc agaaatagttatctatcaatacatggatgatttgtatgtaggatctgacttagaaatagggcagcatag aacaaaaatagaggaattaagagaacatctattgaggtggggatttaccacaccagataaaaaacatca gaaagaacctccatttctttggatgggttatgaactccatcctgataaatggacagtacagcctataaa cctgccagaaaaagaaagctggactgtcaatgatatacagaagttagtggggaaattaaactgggcaag ccagatttatgcaggaattaaagtaaagcaattatgtaaactccttaggggaaccaaagcactaacaga agtagtaccactaacagaagaagcagaattagaactggcagaaaacagggaaattctaaaagaaccagt acatggagtgtattatgacccatcaaaagacttaatagcagaactacagaaacaaggggacggccaatg gacataccaaatttatcaagaaccatttaaaaatctaaaaacaggaaagtatgcaagaacgaggggtgc ccacactaatgatgtaaaacaattaacagaggcagtgcaaaaaatagccacagaaagcatagtgatatg gggaaagactcctaaatttaaactacccatacaaaaggaaacatgggaaacatggtggatagagtattg gcaagccacctggattcctgagtgggaatttgtcaatacccctcctttagtaaaattatggtaccagtt agagaaggaacccataataggagcagaaactttctatgtagatggggcagctaatagagagactaaatt aggaaaagcaggatatgttactgacagaggaagacagaaagttgtccctttcactgacacgacaaatca gaagactgagttacaagcaattaatctagctttacaggattcgggattagaagtaaacatagtaacaga ttcacaatatgcactaggaatcattcaagcacaaccagataagagtgaatcagagttagtcagtcaaat aatagagcagctaataaaaaaggaaaaggtttacctggcatgggtaccagcacacaaaggaattggagg aaatgaacaagtagataaattagtcagtcagggaatcaggaaagtactatttttggatggaatagataa ggctcaggaagaacatgagaaatatcacaacaattggagagcaatggctagtgattttaacctaccacc tgtggtagcgaaagaaatagtagctagctgtgataaatgtcagctaaaaggagaagccatgcatggaca agtagactgtagtccaggaatatggcaattagattgtacacatctggaaggaaaagttatcctggtagc agttcatgtagccagtggctatatagaagcagaagttattccagcagaaacggggcaagaaacagcata ctttctcttaaaattagcaggaagatggccagtaaaagtagtacatacagataatggcagcaatttcac cagtgctacagttaaggccgcctgttggtgggcagggatcaaacaggaatttggaattccctacaatcc ccaaagtcaaggagtagtagaatctatgaataaagaattaaagaaaattataggacaggtaagagatca agctgaacatcttaagacagcagtacaaatggcagtatttatccacaattttaaaagaaaaggggggat tgggggatacagtgcaggggaaagaataatagacataatagcaacagacatacaaactagagaattaca aaaacaaatcataaaaattcaaaattttcgggtttattacagggacagcagagatccaatttggaaagg accagcaaagcttctctggaaaggtgaaggggcagtagtaatacaagacaatagtgacataaaggtagt accaagaagaaaagtaaagatcattagggattatggaaaacagatggcaggtgatgattgtgtggcaag tagacaggatgaggattaac.
[0014] The amino acid sequence of SEQ ID NO 2 is:
TABLE-US-00002 (SEQ ID NO: 2) MGARASVLSGGKLDAWERIRLRPGGKKKYALKHLIWASRELERIALN PGLLETSEGCKQIIGQLQPSIQTGSEELRSLYNTIATLYCVHERIEV KDTKEAVEKMEEEQNKSKKKTQQAAADSSQVSQNYPIVQNLQGQMVH QAISPRTLNAWVKVIEEKAFSPEVIPMFSALSEGATPQDLNTMLNTV GGHQAAMQMLKETINDEAAEWDRLHPVHAGPVAPGQMREPRGSDIAG TTSTLQEQIAWMTSNPPIPVGEIYKRWIILGLNKIVRMYSPVSILDI RQGPKEPFRDYVDRFYKTLRAEQASQDVKNWMTETLLVQNANPDCKT ILKALGPQATLEEMMTACQGVGGPGHKARVLAEAMSQVTGSVTAVMM QRGNFKGPRKSIKCFNCGKEGHTAKNCRAPRKKGCWKCGREGHQMKD CSERQANFLGKIWPSHKGRPGNFLQSRPEPTAPPAESFGFGEEITPS QKQEQKDKELYPLASLKSLFGNDPSSQFFREDLAFPQGKAGEFSSEQ TRANSPTSRELRVWGGDNPLSETGAEGQGTVSFSFPQITLWQRPLVT IKIGGQLKEALLDTGADDTVLEEMNLPGKWKPKMIGGIGGFIKVRQY DQILIEICGYKAMGTVLVGPTPVNIIGRNLLTQIGCTLNFPISPIET VPVKLKPGMDGPKVKQWPLTEEKIKALTEICTEMEKEGKISRIGPEN PYNTPIFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGLK KKKSVTVLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNV LPQGWKGSPAIFQSSMTKILEPFRKQNPEIVIYQYMDDLYVGSDLEI GQHRTKIEELREHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQ PIKLPEKESWTVNDIQKLVGKLNWASQIYAGIKVKQLCKLLRGTKAL TEVVPLTEEAELELAENREILKEPVHGVYYDPSKDLIAELQKQGDGQ WTYQIYQEPFKNLKTGKYARTRGAHTNDVKQLTEAVQKIATESIVIW GKTPKFKLPIQKETWETWWIEYWQATWIPEWEFVNTPPLVKLWYQLE KEPIIGAETFYVDGAANRETKLGKAGYVTDRGRQKVVPFTDTTNQKT ELQAINLALQDSGLEVNIVTDSQYALGIIQAQPDKSESELVSQIIEQ LIKKEKVYLAWVPAHKGIGGNEQVDKLVSQGIRKVLFLDGIDKAQEE HEKYHNNWRAMASDFNLPPVVAKEIVASCDKCQLKGEAMHGQVDCSP GIWQLDCTHLEGKVILVAVHVASGYIEAEVIPAETGQETAYFLLKLA GRWPVKVVHTDNGSNFTSATVKAACWWAGIKQEFGIPYNPQSQGVVE SMNKELKKIIGQVRDQAEHLKTAVQMAVFIHNFKRKGGIGGYSAGER IIDIIATDIQTRELQKQIIKIQNFRVYYRDSRDPIWKGPAKLIWKGE GAVVIQDNSDIKVVPRRKVKIIRDYGKQMAGDDCVASRQDED.
[0015] The invention encompasses a lentiviral packaging vector comprising a subtype D MA sequence, particularly from HIV-1 NDK. In a preferred embodiment, the lentiviral packaging vector encodes an MA protein comprising the amino acid sequence of SEQ ID NO:3.
[0016] The amino acid sequence of SEQ ID NO 3 is:
TABLE-US-00003 (SEQ ID NO: 3) MGARASVLSGGKLDTWERIRLRPGGKKKYALKHLIWASRELERFTLNPG LLETSEGCKQIIGQLQPSIQTGSEEIRSLYNTVATLYCVHERIEVKDTK EAVEKMEEEQNKSKKKTQQAAADSSQVSQNY.
[0017] Preferably, the lentiviral packaging vector encoding the HIV Gag MA protein generates at least a 1.5 fold increase, or at least a 2-fold increase, in the titer of a packaged lentiviral vector as compared to the lentiviral packaging vector encoding an HIV Gag MA protein of HIV-1 BRU, e.g., p8.74. Preferably, the lentiviral packaging vector is replication-defective and lacks a .PSI. site.
[0018] In a preferred embodiment, the lentiviral packaging vector encodes an HIV Gag MA protein having an amino acid at position 12 that is not a glutamic acid and an amino acid at position 15 that is not an arginine. Preferably, the lentiviral packaging vector does not have both a valine at position 46 and a leucine at position 61.
[0019] In a preferred embodiment, the amino acid at position 12 of the MA protein is a lysine. In a preferred embodiment, the amino acid at position 15 is a threonine. In a preferred embodiment, the amino acid at position 15 is an alanine. In a preferred embodiment, the amino acid at position 46 is a leucine. In a preferred embodiment, the amino acid at position 61 is an isoleucine. In a preferred embodiment, the amino acid at position 61 is a methionine.
[0020] In one embodiment, the vector does not encode a functional Env protein.
[0021] The invention also encompasses methods for making the above lentiviral packaging vectors and methods for using these lentiviral packaging vectors.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022] The invention is more fully understood through reference to the drawings.
[0023] FIG. 1 depicts phylogenic trees of HIV viruses.
[0024] FIGS. 2A and B depict phylogenic trees of HIV GAG (A) and POL (B) proteins.
[0025] GAG and POL protein sequences were obtained from: http://www.hiv.lanl.gov/content/sequence/NEWALGN/align.html. For each known HIV clade, one patient's (for clade B) or two patients' virus sequences were randomly chosen and GAG and POL protein sequences were compared to the reference clade B proteins (B.FR.83.HXB2_LAI_IIIB_BRU.KO3455). Alignments were performed using Vector NTI advance 11 (Invitrogen).
[0026] FIG. 3 depicts titers obtained using the p8.74 and the pThV-GP-N plasmids for vector production. Lentiviral particles were produced using the proviral plasmid (pFLAP-CMV-GFP), the pseudotyping plasmid (pTHV-VSV.G) and either the commonly used packaging plasmid (derived from the BRU strain, p8,74) or an NDK-derived packaging plasmid (pTHV-GP-N). With each packaging plasmid, 18 independent transfections were performed and the particles titers were measured by FACS analysis. Similar results were also obtained using a vector employing a proviral plasmid containing the 02 microglobulin promoter driving HIV antigen expression.
[0027] FIGS. 4A and B depicts production of wild type BRU and NDK viruses and evaluation of their respective early phase efficiency. 293T cells were transfected either with plasmid encoding for the wild type BRU (pBRU) or NDK (pNDK-N) virus. Viral supernatants were collected after 48 hours and diluted to infect P4-CCR5 cells (encompassing a stable luciferase reporting gene which expression is driven by the HIV LTR, allowing a luciferase production in presence of the TAT protein (brought by the virus). Serial dilution of either BRU or NDK viruses were used to infect P4-CCR5 cells and the luciferase expression (A) or the luciferase/P24 ratio (B) were measured.
[0028] FIG. 5 depicts vector production using different ratios of BRU (p8,74) and NDK (pThV GP-N) derived packaging plasmids. For each conditions (from 0 .mu.g NDK+10 .mu.g BRU to 10 .mu.g NDK+0 .mu.g BRU), the titer (gray bars) and the P24 level (black squares) were measured.
[0029] FIG. 6 depicts a Western blot of vector supernatants produced using either BRU (8,74) or NDK (pThV GP-N) derived packaging plasmids. The P24 protein and precursors detection was performed using the NIH anti-P24 MAB (183-H12-5C).
[0030] FIG. 7 depicts a sequence alignment of the N-terminal MA sequences of a clade B virus (BRU; SEQ ID NO:3) with a clade D virus (NDK; SEQ ID NO:4).
[0031] FIG. 8 depicts a sequence alignment of the N-terminal MA sequences of clade B viruses.
[0032] FIG. 9 depicts a sequence alignment of the N-terminal MA sequences of clade D viruses.
[0033] FIG. 10 depicts a sequence alignment of the N-terminal MA sequences of a clade B virus (BRU) with viruses of other clades.
DETAILED DESCRIPTION OF THE INVENTION
[0034] Subtype B HIV-1 viruses differ from other HIV-1 subtypes in that subtype B viruses appear to be transmitted less efficiently and have a different mode of transmission. Nevertheless, subtype B viruses have been used extensively in the generation of HIV-1 lentiviral vectors and lentiviral packaging vectors. To determine whether the Gag and Pol proteins of non-subtype B viruses could be used for the generation of lentiviral packaging vectors, the gag-pol gene of HIV-1 subtype B in a lentiviral packaging plasmid (construct p8.74) was replaced by the gag-pol gene of a subtype D HIV-1 to generate construct pThV-GP-N. The constructs were used for lentiviral vector production. Approximately 2-fold higher titers were obtained using the pThV-GP-N plasmid as compared to construct p8.74 (FIG. 3). Thus, the subtype D HIV-1 Gag-Pol in the packaging vector increased the titer of lentiviral vector over the titer seen with a subtype B HIV-1 Gag-Pol.
[0035] Increased titer of the lentiviral vector is beneficial in allowing the reduction in contaminants in a given dose of lentiviral vector. This facilitates a reduction in injection volumes, and an increase in possible dosages. It further facilitates reducing the cost of vaccination by reducing the quantity of materials and labor necessary to achieve a particular dose, and by increasing the number of patients that could be treated with a single batch of lentival vector.
[0036] Serial dilutions of HIV-1 BRU and HIV-1 NDK viruses indicated that the HIV-1 NDK virus was more efficient in the early phases of the virus life cycle (FIG. 4). By mixing different amounts of the subtype B and subtype D packaging vectors, it was demonstrated that the subtype D packaging vector increased both the titer and the level of p24 in the lentiviral vector preparations (FIG. 5). The p24 in the lentiviral vector preparations using the subtype D packaging vector was also observed to be less completely processed, showing higher levels of p24 precursors (FIG. 6). Thus, the Gag protein in the subtype D packaging vector was exhibiting various differences from the subtype B packaging vectors.
[0037] It is known that, with HIV-1 Env, the 75 amino acids from the N-terminal part of HIV-1-NDK matrix (MA) protein is responsible for enhanced fusogenicity of HIV-1-NDK in CD4+ lymphocytes as well as for enhanced infectivity of HIV-1-NDK in some CD4- cell lines. De Mareuil et al., J. Virol. 66: 6797 (1992). Since the Env protein used for generation of lentiviral vectors with the subtype B and subtype D packaging vectors is the same (i.e., VSV), only the differences in HIV-1 MA are present in the subtype B and subtype D packaging vectors.
[0038] The conservation and divergence of amino acids in the N-terminal 75 amino acids of M from various clades of HIV-1 viruses was examined. HIV-1 NDK showed 10 differences in amino acids from HIV-1 BRU (FIG. 7). However, only eight of these differences were seen when HIV-1 NDK was compared to an assortment of 20 different HIV-1 subtype B viruses (FIG. 8). When other subtype D viruses were included in the comparison, only 4 of these differences remained (FIG. 9). These differences are the absence of a glutamic acid at amino acid position 12, the absence of an arginine at amino acid position 15, the absence of a valine at amino acid position 46, and the absence of a leucine at amino acid position 61 in subtype D viruses.
[0039] When other subtype viruses were included in the comparison, the other subtypes appeared to align with subtype D, preserving nearly all of these differences (FIG. 10). Nearly all of the non-subtype B viruses exhibited a lysine at position 12. Many of the non-subtype B viruses exhibited an alanine at position 15. Nearly all of the non-subtype B viruses exhibited a leucine at position 46. Nearly all of the non-subtype B viruses exhibited a methionine or isoleucine at position 61. The non-subtype B viruses exhibited the consensus of a lysine at position 12, an amino acid other than arginine at position 15, a leucine at position 46, and an isoleucine or methionine at position 61.
[0040] The invention encompasses packaging vectors encoding non-subtype B Gag and/or Pol proteins and host cells comprising these vectors. The invention further encompasses methods for making packaging vectors encoding non-subtype B Gag and/or Pol proteins. The invention also encompasses methods for using these packaging vectors to generate lentiviral vectors, and lentiviral vectors comprising non-subtype B Gag and/or Pol proteins.
[0041] Packaging Vectors
[0042] The invention encompasses packaging vectors encoding non-subtype B Gag and/or Pol proteins. A lentiviral "packaging vector" is defined herein as a nucleic acid sequence not encoding functional HIV-1 Env and lacking a .PSI. site, but capable of expressing lentiviral Gag and/or Pol proteins that can be incorporated into viral particles when cotransfected with a vector containing appropriate lentiviral cis-acting signals for packaging. The lentiviral packaging vector of the invention is unable to replicate itself by packaging and reverse transcribing its own sequence.
[0043] The packaging vector can be an RNA or DNA vector. The non-subtype B Gag and Pol proteins can be selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J proteins, and recombinants thereof. A preferred packaging vector comprises SEQ ID NO:1 or encodes SEQ ID NO:2.
[0044] The invention encompasses packaging vectors encoding non-subtype B Gag proteins and host cells comprising these vectors. The non-subtype B Gag proteins can be selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J proteins, and recombinants thereof. A preferred packaging vector encodes the Gag protein portion of SEQ ID NO:2.
[0045] The invention encompasses packaging vectors encoding non-subtype B MA proteins and host cells comprising these vectors. The non-subtype B MA proteins can be selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J proteins, and recombinants thereof. A preferred packaging vector encodes SEQ ID NO:3 or the MA protein portion of SEQ ID NO:2.
[0046] In various embodiments, the packaging vector comprises SEQ ID NO:1 or a nucleic acid sequence that is at least 95%, 96%, 97%, 98%, 99% identical with SEQ ID NO:1. In various embodiments, the packaging vector encodes SEQ ID NO:2, SEQ ID NO:3, or an amino acid sequence that is at least 95%, 96%, 97%, 98%, 99% identical with SEQ ID NO:2 or SEQ ID NO:3.
[0047] As used herein, the percent identity of two nucleic acid sequences can be determined by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG), using the default parameters for the GAP program including: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14:6745, 1986, as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358, 1979; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.
[0048] In various embodiments, the vector comprises a sequence encoding an HIV-1 MA protein having one or more of the following features:
[0049] the absence of a glutamic acid at amino acid position 12;
[0050] the absence of an arginine at amino acid position 15;
[0051] the absence of a valine at amino acid position 46; and
[0052] the absence of a leucine at amino acid position 61.
[0053] In various embodiments, the vector comprises a sequence encoding an HIV-1 MA protein having one or more of the following features:
[0054] the amino acid at position 12 is a lysine;
[0055] the amino acid at position 15 is a threonine;
[0056] the amino acid at position 15 is an alanine;
[0057] the amino acid at position 46 is a leucine;
[0058] the amino acid at position 61 is an isoleucine; and/or
[0059] the amino acid at position 61 is a methionine.
[0060] The packaging vector preferably encodes HIV-1 Gag and Pol. Most preferably, the packaging vector encodes an HIV-1 Gag MA protein.
[0061] The packaging vector can contain viral or non-viral sequences for expression of Gag and Pol. The packaging vector can contain an HIV-1 LTR or the U3 region of an HIV-1 LTR. In other embodiments, the packaging vector does not contain HIV-1 LTRs. Any promoter can be used to drive expression of Gag and Pol. Preferably, the promoter is a strong promoter in human cells. Most preferably, the packaging vector contains a Cytomegalovirus (CMV) promoter, a CMV early enhancer/chicken 1 actin (CAG) promoter, a Rous Sarcoma Virus (RSV) promoter, a human phosphoglycerate kinase (hPGK) promoter, or a U3 from an LTR (e.g., myeloproliferative sarcoma virus (MPSV) U3) promoter driving expression of the encoded genes, e.g. gag and pol.
[0062] Preferably, the packaging vector contains a polyadenylation signal. Any polyadenylation signal can be. Preferably, polyadenylation signal is a strong signal in human cells. Most preferably, the polyadenylation signal is a human .alpha.2 globin or a Bovine Growth hormone (BGH) polyadenylation signal.
[0063] Preferably, the packaging vector contains a Rev-responsive element (RRE). In a preferred embodiment, the packaging vector expresses an HIV-1 Rev protein. In a preferred embodiment, the packaging vector contains at least one splice donor site and at least one splice acceptor site. In one embodiment, the packaging vector expresses an HIV-1 Tat protein.
[0064] In preferred embodiments, the packaging vector lacks sequences encoding HIV-1 Vif, Vpr, Vpu, and/or Nef. The packaging vector can comprise a sequence encoding an HIV-1 MA protein having one or more of the features discussed herein.
[0065] In one embodiment, the packaging vector encodes only 1 HIV-1 protein, Gag. In one embodiment, the packaging vector encodes only 2 HIV-1 proteins, Gag and Pol. In one embodiment, the packaging vector encodes only 3 HIV-1 proteins, selected from Gag, Pol, Rev, and Tat. In one embodiment, the packaging vector encodes only 4 HIV-1 proteins, Gag, Pol, Rev, and Tat.
[0066] In one embodiment, the vector comprises (from 5' to 3') a CMV promoter, a nucleic acid sequence encoding HIV-1 Gag-Pol, an exon encoding part of Tat and Rev, a splice donor site, an intron containing an RRE, a splice acceptor site, an exon encoding part of Tat and Rev, and a polyadenylation signal. Preferably, the HIV-1 Gag-Pol is a subtype D HIV-1 Gag-Pol.
[0067] The packaging vector may further contain an origin for replication in bacteria or eukaryotic cells. The packaging vector may contain a selectable marker gene for selection in bacteria or eukaryotic cells.
[0068] The invention encompasses host cells comprising the packaging vectors of the invention. The host cells can be transiently transfected with the packaging vectors of the invention. The host cells can be cell lines with the packaging vectors of the invention integrated into the genome of the host cell. Many different cells are suitable host cells Preferably, the cells are human cells, most preferably an immortalized human cell line. In one embodiment, the cells are HEK 293T cells. In one embodiment, the cells are HeLA, HT1080 or PER C6 cells (Delenda et al, Cells for Gene Therapy and vector Production, from Methods in Biotechnology, Vol 24: Animal Cell Biotechnology: Methods and Protocols, 2.sup.nd Ed. Edited by R. Portner, Humana Press Inc., Totowa, N.J.).
[0069] Packaging Systems
[0070] The invention encompasses lentiviral packaging systems comprising cells expressing non-subtype B Gag and/or Pol proteins. A lentiviral "packaging system" is defined herein as a cell-based system comprising cells expressing at least lentiviral Gag and Pol proteins in the absence of a .PSI. site, and capable of packaging and reverse transcribing an exogenous nucleic acid containing a .PSI. site. The cells of the lentiviral packaging system can also express other viral proteins. Preferably, the lentiviral packaging system expresses an envelope protein. The envelope protein can be a lentiviral (e.g., HIV-1 Env) or non-lentiviral (e.g., VSV, Sindbis virus, Rabies virus) envelope protein. In various embodiments, the lentiviral packaging system expresses an HIV-1 Tat and/or Rev protein.
[0071] In various embodiments, the cells of the lentiviral packaging system contain sequences encoding HIV-1 Gag and/or Pol stably integrated into their genome. In various embodiments, the cells of the lentiviral packaging system contain sequences encoding an envelope protein stably integrated into their genome. In various embodiments, the cells of the lentiviral packaging system contain sequences encoding HIV-1 Tat and/or Rev stably integrated into their genome.
[0072] In various embodiments, the cells of the lentiviral packaging system transiently express HIV-1 Gag and/or Pol proteins. In various embodiments, the cells of the lentiviral packaging system transiently express an envelope protein. In various embodiments, the cells of the lentiviral packaging system transiently express HIV-1 Tat and/or Rev proteins.
[0073] The cells of the lentiviral packaging system can express non-subtype B Gag and Pol proteins selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J proteins, and recombinants thereof. In one embodiment, the cells of the lentiviral packaging system comprise SEQ ID NO:1 or express SEQ ID NO:2.
[0074] In various embodiments, the cells of the lentiviral packaging system express non-subtype B Gag proteins. The non-subtype B Gag proteins can be selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J proteins, and recombinants thereof.
[0075] In various embodiments, the cells of the lentiviral packaging system express non-subtype B MA proteins. The non-subtype B MA proteins can be selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J proteins, and recombinants thereof. A preferred packaging vector encodes SEQ ID NO:3 or the MA protein portion of SEQ ID NO:2.
[0076] In various embodiments, the cells of the lentiviral packaging system can contain any of the lentiviral vectors of the invention.
[0077] In various embodiments, the cells of the lentiviral packaging system contain SEQ ID NO:1 or a nucleic acid sequence that is at least 95%, 96%, 97%, 98%, 99% identical with SEQ ID NO:1. In various embodiments, the cells of the lentiviral packaging system express a protein with the amino acid sequence of SEQ ID NO:2, SEQ ID NO:3, or an amino acid sequence that is at least 95%, 96%, 97%, 98%, 99% identical with SEQ ID NO:2 or SEQ ID NO:3.
[0078] Methods of Producing Packaging Vectors
[0079] The invention encompasses methods for making packaging vectors encoding non-subtype B Gag and/or Pol proteins. The packaging vector can comprise any of the features discussed herein.
[0080] In one embodiment, the method comprises inserting a Gag and/or Pol sequence from a non-subtype B HIV-1 virus into a plasmid under the control of a non-HIV promoter (e.g., CMV promoter) to generate a packaging vector. In one embodiment, the packaging vector encodes only 1 HIV-1 protein. In one embodiment, the packaging vector encodes only 2 HIV-1 proteins. In one embodiment, the packaging vector encodes only 3 HIV-1 proteins, selected from Gag, Pol, Rev, and Tat. In one embodiment, the packaging vector encodes only 4 HIV-1 proteins, Gag, Pol, Rev, and Tat.
[0081] In various embodiments, the plasmid comprises one or more of a CMV promoter, an exon encoding part of Tat and Rev, a splice donor site, an intron containing an RRE, a splice acceptor site, an exon encoding part of Tat and Rev, and a polyadenylation signal.
[0082] In various embodiments, the packaging vector comprises a CMV promoter, an exon encoding part of Tat and Rev, a splice donor site, an intron containing an RRE, a splice acceptor site, an exon encoding part of Tat and Rev, and a polyadenylation signal.
[0083] The non-subtype B HIV-1 virus can be selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J viruses, and recombinants thereof.
[0084] In one embodiment, the method comprises providing a packaging vector comprising a Gag sequence of an HIV-1 subtype B virus and replacing Gag sequences in the vector with sequences from an HIV-1 non-subtype B virus.
[0085] The non-subtype B HIV-1 virus can be selected from subtype A, subtype C, subtype D, subtype E, subtype F1, subtype F2, subtype G, subtype H, and subtype J viruses, and recombinants thereof. In a preferred embodiment, non-subtype B HIV-1 virus is HIV-1 NDK.
[0086] Methods of Producing Lentiviral Vectors
[0087] The invention also encompasses methods for using packaging vectors encoding HIV-1 non-subtype B Gag and/or Pol proteins to generate lentiviral vectors. In one embodiment, the invention encompasses administering a packaging vector encoding an HIV-1 non-subtype B Gag or Pol protein to a cell with a lentiviral vector. The packaging vector can comprise any of the features discussed herein.
[0088] The lentiviral vector comprises cis-acting sequences for packaging and reverse transcription, including a .PSI. site and primer binding site. Preferably, the lentiviral vector comprises two HIV-1 LTR sequences. In one embodiment, one of the LTRs is deleted for U3 and R sequences. Preferably, the lentiviral vector comprises a central polypurine tract (cPPT) and a central terminal sequence (CTS). The lentiviral vector preferably encodes a lentiviral or non-lentiviral protein, such as a selectable marker or tumor antigen.
[0089] In one embodiment, the lentiviral vector comprises one or more HIV antigen, preferably an HIV-1 antigen. Most preferably, the antigen is a Gag, Pol, Env, Vif, Vpr, Vpu, Nef, Tat, or Rev antigen. The antigen can be a single antigen, a mix of antigens, an antigenic polypeptide, or a mix of antigenic polypeptides from these proteins. In a preferred embodiment, the lentiviral vector comprises an HIV-1 p24 Gag antigen.
[0090] In one embodiment, the invention encompasses a lentiviral vector comprising an NIS-containing promoter. An "NIS-containing promoter" comprises an NF-Kb binding site, an interferon stimulated response element (ISRE), and an SXY module (SXY). Examples of naturally occurring NIS-containing promoters are the .beta.2m promoter and the MHC class I gene promoters. These naturally occurring NIS-containing promoters are generally cloned or reproduced from the promoter region of a gene encoding a protein .beta.2m or a MHC class I protein, or referred to as putatively encoding such proteins in genome databases (ex: NCBI polynucleotide database http://www.ncbi.nlm.nih.gov/guide/dna-ma). Both .beta.2m and class I MHC proteins enter the Major Histocompatibility Complex (MHC). .beta.2m and class I MHC promoter sequences are also usually referred to as such in genome databases--i.e. annotated as being .beta.2m and class I MHC promoter sequences.
[0091] MHC class I and .beta.2-microglobulin promoters contain the shared structural homologies of NIS-containing promoters. These promoters also share the ability to be strongly activated in dendritic cells, as well as, to lower intensity, in the majority of the other human body tissues.
[0092] In one embodiment, the packaging vector and the lentiviral vector are introduced together into a cell to allow the formation of lentiviral vector particles containing the Gag protein produced by the packaging vector and the nucleic acid produced by the lentiviral vector. Preferably, this is achieved by cotransfection of the cells with the packaging vector and the lentiviral vector. The cells can also be transfected with a nucleic acid encoding an Env protein, preferably a VSV Glycoprotein G. Preferably, the lentiviral vector particles are capable of entry, reverse transcription, and expression in an appropriate host cell.
[0093] In one embodiment, the packaging vector or the lentiviral vector is stably integrated into cells, and the non-integrated vector is transfected into the cells to allow the formation of lentiviral vector particles.
[0094] In one embodiment, the method further comprises collecting the lentiviral vector produced by the cells.
[0095] In one embodiment, the method further comprises selecting for a packaging vector that packages a higher titer of the lentiviral vector than a same packaging vector encoding a subtype B Gag or Pol protein. Preferably, the titer is increased at least 1.5 or 2-fold relative to the packaging vector encoding a subtype B Gag or Pol protein.
[0096] Lentiviral Vector Particles
[0097] The invention also encompasses lentiviral vector particles comprising HIV-1 non-subtype B Gag and/or Pol proteins. The non-subtype B Gag and Pol proteins can comprise any of the features discussed herein.
[0098] The lentiviral vector particle comprises a nucleic acid comprising cis-acting sequences for packaging and reverse transcription, including a .PSI. site and primer binding site in association with Gag, Pol and Env proteins. Preferably, the nucleic acid comprises two HIV-1 LTR sequences. In one embodiment, one of the LTRs is deleted for U3 and R sequences. Preferably, the nucleic acid of the lentiviral vector particle comprises a central polypurine tract (cPPT) and a central terminal sequence (CTS). The nucleic acid preferably encodes a lentiviral or non-lentiviral protein, such as a selectable marker or tumor antigen. Preferably, the lentiviral vector particle comprises a VSV Glycoprotein.
[0099] Preferably, the lentiviral vector comprises an NIS-containing promoter. In one embodiment, the promoter is a .beta.2m promoter.
[0100] In one embodiment, the lentiviral vector comprises one or more HIV antigen, preferably an HIV-1 antigen. Most preferably, the antigen is a Gag, Pol, Env, Vif, Vpr, Vpu, Nef, Tat, or Rev antigen.
[0101] The lentiviral vectors of the invention can be administered to a host cell, including a human host.
[0102] The lentiviral vector particle can contain a targeting mechanism for specific cell types. See, e.g., Yang et al., Targeting lentiviral vectors to specific cell types in vivo, PNAS 113(31):11479-11484 (2006), which is hereby incorporated by reference. Targeting can be achieved through an antibody that binds to a cell surface protein on a cell. The targeted cell type is preferably a dendritic cell, a T cell, a B cell. Targeting to dendritic cell type is preferred and can be accomplished through envelope proteins that specifically bind to a DC surface protein. See, e.g., Yang at al., Engineered Lentivector Targeting of Dendritic Cells for In Vivo, Nat Biotechnol. 2008 March; 26(3): 326-334, which is hereby incorporated by reference.
[0103] The present invention further relates to the use of the lentiviral vectors according to the invention, especially in the form of lentiviral vector particles, for the preparation of therapeutic compositions or vaccines which are capable of inducing or contributing to the occurrence or improvement of an immunogical reaction against epitopes, more particularly those encoded by the transgene present in the vectors.
EXAMPLES
Example 1. Plasmid Construction
[0104] The gag-pol gene was amplified by PCR, using two primers and pNDK-N, a clone of HIV-1 NDK, as template. In order to obtain pThV-GP-N plasmid, the PCR product was digested with EagI/SalI and inserted in packaging construct p8.74, also digested by EagI/SalI.
Example 2. Production of Lentiviral Vector by Transfection
[0105] Lentiviral vector stock was produced using pFLAP CMV GFP bis and pTHV-VSV.G (INDI-CO)bis in combination with p8.74 or pThV-GP-N. 36 transfections were done, 18 with p8.74 and 18 with pThV-GP-N. All the supernatant were stored at -80.degree. C.
[0106] The plasmid pFLAP-CMV GFP bis encoded for the Green Fluorescence protein (GFP), which expression can be detected by flow cytometry.
Example 3. Titration of Lentiviral Vector Production
[0107] Vector titer was determined by the frequency of GFP expression in 293T cells. Cells were cultivated in 24-well plates, in DMEM containing 10% FBS, until they reached a density of 1.times.10.sup.5 cells per well. The cells were then transduced with different volume of vector supernatant in a final volume of 300 .mu.L. After 2 hours, 700 .mu.l of fresh medium containing 10% FBS was added in each well. 72 hours after transduction, the medium was then removed and the cells washed in Dulbecco's phosphate-buffered saline (DPBS; Gibco). Cells were removed with 0.05% Trypsin-EDTA (Gibco). Trypsinization was stopped by the addition of 300 .mu.l complete DMEM, and the cells were transferred to a tube for FACS, after which the number of GFP-expressing cells was counted with a FACSCalibur (BD Biosciences) using an excitation wavelength of 509 nm. Only the percent of GFP positive cells under 30% was considered.
[0108] The results are shown in FIG. 3. A significant difference between the pThV-GP-N and the p8.74 vectors productions was seen, with higher titers obtained using the pThV-GP-N plasmid. Indeed, the vector titer obtained with the packaging plasmid pThV-GP-N was 2 fold higher than the vector titer obtained with the classically used plasmid p8.74 (p<0.001 according to Student test).
Example 4. Increased Titer of Lentiviral Vector with pThV-GP-N
[0109] HIV-1 BRU and HIV-1 NDK viruses were made on 293T cells and used to transduced P4 CCR5 cells. These cells encompass a stable luciferase gene under the control of the HIV LTR: If they are transduced with TAT protein (which is the case when they are infected with a WT HIV), the LacZ gene is expressed and a luciferase expression can be measured. HIV-1 Gag p24 and luciferase expression were measured. The results are shown in FIG. 4, and confirm that wild type NDK virus has a higher transduction rate than the wild type BRU one.
Example 5. Increased p24 and Titer with pThV-GP-N
[0110] Different ratios of p8,74 and pSD GP NDK packaging vectors were used to produce lentiviral vector particles. For each ratio, the titer and the P24 level were measured. The results are shown in FIG. 5 and demonstrate that it is the presence of the NDK packaging plasmid that is responsible for the enhancement of the production titers and of the P24 level.
Example 6. Decreased p24 Processing with pThV-GP-N
[0111] Packaging vectors p8.74 and pTHV-GP-N were used to produce supernatants containing lentiviral vector particles. Western blots were performed on the supernatants using the NIH anti-P24 MAB (183-H12-5C). The results are shown in FIG. 6, and confirm that the difference between the NDK and BRU packaging plasmids relies on the production of P24 protein and precursor, as the NDK seems to generate a higher P24 synthesis (presence of P24 precursor in the viral supernatant) when the BRU shows only P24 in viral supernatant.
Sequence CWU
1
1
6714298DNAHuman immunodeficiency virus type 1 1atgggtgcga gagcgtcagt
attaagcggg ggaaaattag atacatggga aagaattcgg 60ttacggccag gaggaaagaa
aaaatatgca ctaaaacatt tgatatgggc aagcagggag 120ctagaacgat ttacacttaa
tcctggcctt ttagagacat cagaaggctg taaacaaata 180ataggacagc tacaaccatc
tattcaaaca ggatcagaag aaattagatc attatataat 240acagtagcaa ccctctattg
tgtacatgaa aggatagagg taaaagacac caaagaagct 300gtagaaaaga tggaggaaga
acaaaacaaa agtaagaaaa agacacagca agcagcagct 360gatagcagcc aggtcagcca
aaattaccct atagtgcaga acctacaggg gcaaatggta 420catcaggcca tatcacctag
aactttgaac gcatgggtaa aagtaataga agaaaaggcc 480ttcagcccgg aagtaatacc
catgttttca gcattatcag aaggagccac cccacaagat 540ttaaacacca tgctaaacac
agtgggggga catcaagcag ctatgcaaat gctaaaagag 600accatcaatg acgaagctgc
agaatgggac agattacatc cagtgcatgc agggcctgtt 660gcaccaggcc aaatgagaga
accaagggga agtgatatag caggaactac tagtaccctt 720caggaacaaa tagcatggat
gacaagcaac ccacctatcc cagtaggaga aatctataaa 780agatggataa tcctgggatt
aaataaaata gtaagaatgt atagccctgt cagcattttg 840gacataagac agggaccaaa
ggaacctttt agagactatg tagaccggtt ctataaaact 900ctaagagccg agcaagcttc
acaggatgta aaaaactgga tgacagaaac cttgttggtc 960caaaatgcaa acccagattg
taaaactatc ttaaaagcat tgggaccaca ggctacacta 1020gaagaaatga tgacagcatg
ccagggagtg ggggggcccg gccataaagc aagagttttg 1080gctgaggcaa tgagccaagt
aacaggttca gctactgcag taatgatgca gagaggcaat 1140tttaagggcc caagaaaaag
tattaagtgt ttcaactgtg gcaaggaagg gcacacagca 1200aaaaattgca gggcccctag
aaaaaagggc tgttggaaat gcggaaggga aggacaccaa 1260atgaaagatt gcactgaaag
acaggctaat tttttaggga agatttggcc ttcccacaag 1320ggaaggccgg ggaattttct
tcagagcaga ccagagccaa cagccccacc agcagagagc 1380ttcgggtttg gggaggagat
aaccccctct cagaaacagg agcagaaaga caaggaactg 1440tatcctttag cttccctcaa
atcactcttt ggcaacgacc cctcgtcaca ataaagatag 1500ggggacagct aaaggaagct
ctattagata caggagcaga tgatacagta ttagaagaaa 1560taaatttgcc aggaaaatgg
aagccaaaaa tgataggggg aattggaggt tttatcaaag 1620taagacagta tgatcaaata
ctcatagaaa tctgtggata taaagctatg ggtacagtat 1680tagtaggacc tacacctgtc
aacataattg gaagaaattt gttgacccag attggctgca 1740ctttaaattt tccaattagt
cctattgaaa ctgtaccagt aaaattaaag ccaggaatgg 1800atggcccaaa agttaaacaa
tggccattga cgaagaaaaa ataaaagcat taacagaaat 1860ttgtacagaa atggaaaagg
aaggaaaaat ttcaagaatt gggcctgaaa atccatataa 1920tactccaata tttgccataa
agaaaaaaga cagtaccaag tggagaaaat tagtagattt 1980cagagaactt aataagagaa
ctcaagattt ctgggaggtt caattaggaa taccgcatcc 2040tgcagggctg aaaaagaaaa
aatcagtaac agtactggat gtgggtgatg catatttctc 2100agttccctta gatgaagatt
ttaggaaata taccgcattt accataccta gtataaacaa 2160tgagacacca gggattagat
atcagtacaa tgtgctccca cagggatgga aaggatcacc 2220ggcaatattc caaagtagca
tgacaaaaat cttagagccc tttagaaaac aaaatccaga 2280aatagttatc tatcaataca
tggatgattt gtatgtagga tctgacttag aaatagggca 2340gcatagaaca aaaatagagg
aattaagaga acatctattg aggtggggat ttaccacacc 2400agataaaaaa catcagaaag
aacctccatt tctttggatg ggttatgaac tccatcctga 2460taaatggaca gtacagccta
taaacctgcc agaaaaagaa agctggactg tcaatgatat 2520acagaagtta gtggggaaat
taaactgggc aagccagatt tatgcaggaa ttaaagtaaa 2580gcaattatgt aaactcctta
ggggaaccaa agcactaaca gaagtagtac cactaacaga 2640agaagcagaa ttagaactgg
cagaaaacag ggaaattcta aaagaaccag tacatggagt 2700gtattatgac ccatcaaaag
acttaatagc agaactacag aaacaagggg acggccaatg 2760gacataccaa atttatcaag
aaccatttaa aaatctaaaa acaggaaagt atgcaagaac 2820gaggggtgcc cacactaatg
atgtaaaaca attaacagag gcagtgcaaa aaatagccac 2880agaaagcata gtgatatggg
gaaagactcc taaatttaaa ctacccatac aaaaggaaac 2940atgggaaaca tggtggatag
agtattggca agccacctgg attcctgagt gggaatttgt 3000caatacccct cctttagtaa
aattatggta ccagttagag aaggaaccca taataggagc 3060agaaactttc tatgtagatg
gggcagctaa tagagagact aaattaggaa aagcaggata 3120tgttactgac agaggaagac
agaaagttgt ccctttcact gacacgacaa atcagaagac 3180tgagttacaa gcaattaatc
tagctttaca ggattcggga ttagaagtaa acatagtaac 3240agattcacaa tatgcactag
gaatcattca agcacaacca gataagagtg aatcagagtt 3300agtcagtcaa ataatagagc
agctaataaa aaaggaaaag gtttacctgg catgggtacc 3360agcacacaaa ggaattggag
gaaatgaaca agtagataaa ttagtcagtc agggaatcag 3420gaaagtacta tttttggatg
gaatagataa ggctcaggaa gaacatgaga aatatcacaa 3480caattggaga gcaatggcta
gtgattttaa cctaccacct gtggtagcga aagaaatagt 3540agctagctgt gataaatgtc
agctaaaagg agaagccatg catggacaag tagactgtag 3600tccaggaata tggcaattag
attgtacaca tctggaagga aaagttatcc tggtagcagt 3660tcatgtagcc agtggctata
tagaagcaga agttattcca gcagaaacgg ggcaagaaac 3720agcatacttt ctcttaaaat
tagcaggaag atggccagta aaagtagtac atacagataa 3780tggcagcaat ttcaccagtg
ctacagttaa ggccgcctgt tggtgggcag ggatcaaaca 3840ggaatttgga attccctaca
atccccaaag tcaaggagta gtagaatcta tgaataaaga 3900attaaagaaa attataggac
aggtaagaga tcaagctgaa catcttaaga cagcagtaca 3960aatggcagta tttatccaca
attttaaaag aaaagggggg attgggggat acagtgcagg 4020ggaaagaata atagacataa
tagcaacaga catacaaact agagaattac aaaaacaaat 4080cataaaaatt caaaattttc
gggtttatta cagggacagc agagatccaa tttggaaagg 4140accagcaaag cttctctgga
aaggtgaagg ggcagtagta atacaagaca atagtgacat 4200aaaggtagta ccaagaagaa
aagtaaagat cattagggat tatggaaaac agatggcagg 4260tgatgattgt gtggcaagta
gacaggatga ggattaac 429821499PRTHuman
immunodeficiency virus type 1 2Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Lys Leu Asp Ala Trp 1 5 10
15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Ala Leu
Lys 20 25 30 His
Leu Ile Trp Ala Ser Arg Glu Leu Glu Arg Ile Ala Leu Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Lys Gln Ile Ile Gly Gln Leu 50 55
60 Gln Pro Ser Ile Gln Thr Gly Ser Glu Glu Leu
Arg Ser Leu Tyr Asn 65 70 75
80 Thr Ile Ala Thr Leu Tyr Cys Val His Glu Arg Ile Glu Val Lys Asp
85 90 95 Thr Lys
Glu Ala Val Glu Lys Met Glu Glu Glu Gln Asn Lys Ser Lys 100
105 110 Lys Lys Thr Gln Gln Ala Ala
Ala Asp Ser Ser Gln Val Ser Gln Asn 115 120
125 Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val
His Gln Ala Ile 130 135 140
Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Ile Glu Glu Lys Ala 145
150 155 160 Phe Ser Pro
Glu Val Ile Pro Met Phe Ser Ala Leu Ser Glu Gly Ala 165
170 175 Thr Pro Gln Asp Leu Asn Thr Met
Leu Asn Thr Val Gly Gly His Gln 180 185
190 Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Asp Glu
Ala Ala Glu 195 200 205
Trp Asp Arg Leu His Pro Val His Ala Gly Pro Val Ala Pro Gly Gln 210
215 220 Met Arg Glu Pro
Arg Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr Leu 225 230
235 240 Gln Glu Gln Ile Ala Trp Met Thr Ser
Asn Pro Pro Ile Pro Val Gly 245 250
255 Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile
Val Arg 260 265 270
Met Tyr Ser Pro Val Ser Ile Leu Asp Ile Arg Gln Gly Pro Lys Glu
275 280 285 Pro Phe Arg Asp
Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu 290
295 300 Gln Ala Ser Gln Asp Val Lys Asn
Trp Met Thr Glu Thr Leu Leu Val 305 310
315 320 Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys
Ala Leu Gly Pro 325 330
335 Gln Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly
340 345 350 Pro Gly His
Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Val Thr 355
360 365 Gly Ser Val Thr Ala Val Met Met
Gln Arg Gly Asn Phe Lys Gly Pro 370 375
380 Arg Lys Ser Ile Lys Cys Phe Asn Cys Gly Lys Glu Gly
His Thr Ala 385 390 395
400 Lys Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Arg
405 410 415 Glu Gly His Gln
Met Lys Asp Cys Ser Glu Arg Gln Ala Asn Phe Leu 420
425 430 Gly Lys Ile Trp Pro Ser His Lys Gly
Arg Pro Gly Asn Phe Leu Gln 435 440
445 Ser Arg Pro Glu Pro Thr Ala Pro Pro Ala Glu Ser Phe Gly
Phe Gly 450 455 460
Glu Glu Ile Thr Pro Ser Gln Lys Gln Glu Gln Lys Asp Lys Glu Leu 465
470 475 480 Tyr Pro Leu Ala Ser
Leu Lys Ser Leu Phe Gly Asn Asp Pro Ser Ser 485
490 495 Gln Phe Phe Arg Glu Asp Leu Ala Phe Pro
Gln Gly Lys Ala Gly Glu 500 505
510 Phe Ser Ser Glu Gln Thr Arg Ala Asn Ser Pro Thr Ser Arg Glu
Leu 515 520 525 Arg
Val Trp Gly Gly Asp Asn Pro Leu Ser Glu Thr Gly Ala Glu Gly 530
535 540 Gln Gly Thr Val Ser Phe
Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg 545 550
555 560 Pro Leu Val Thr Ile Lys Ile Gly Gly Gln Leu
Lys Glu Ala Leu Leu 565 570
575 Asp Thr Gly Ala Asp Asp Thr Val Leu Glu Glu Met Asn Leu Pro Gly
580 585 590 Lys Trp
Lys Pro Lys Met Ile Gly Gly Ile Gly Gly Phe Ile Lys Val 595
600 605 Arg Gln Tyr Asp Gln Ile Leu
Ile Glu Ile Cys Gly Tyr Lys Ala Met 610 615
620 Gly Thr Val Leu Val Gly Pro Thr Pro Val Asn Ile
Ile Gly Arg Asn 625 630 635
640 Leu Leu Thr Gln Ile Gly Cys Thr Leu Asn Phe Pro Ile Ser Pro Ile
645 650 655 Glu Thr Val
Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val 660
665 670 Lys Gln Trp Pro Leu Thr Glu Glu
Lys Ile Lys Ala Leu Thr Glu Ile 675 680
685 Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Arg Ile
Gly Pro Glu 690 695 700
Asn Pro Tyr Asn Thr Pro Ile Phe Ala Ile Lys Lys Lys Asp Ser Thr 705
710 715 720 Lys Trp Arg Lys
Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln 725
730 735 Asp Phe Trp Glu Val Gln Leu Gly Ile
Pro His Pro Ala Gly Leu Lys 740 745
750 Lys Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr
Phe Ser 755 760 765
Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro 770
775 780 Ser Ile Asn Asn Glu
Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu 785 790
795 800 Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile
Phe Gln Ser Ser Met Thr 805 810
815 Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Glu Ile Val Ile
Tyr 820 825 830 Gln
Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln 835
840 845 His Arg Thr Lys Ile Glu
Glu Leu Arg Glu His Leu Leu Arg Trp Gly 850 855
860 Phe Thr Thr Pro Asp Lys Lys His Gln Lys Glu
Pro Pro Phe Leu Trp 865 870 875
880 Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Lys
885 890 895 Leu Pro
Glu Lys Glu Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val 900
905 910 Gly Lys Leu Asn Trp Ala Ser
Gln Ile Tyr Ala Gly Ile Lys Val Lys 915 920
925 Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu
Thr Glu Val Val 930 935 940
Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile 945
950 955 960 Leu Lys Glu
Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu 965
970 975 Ile Ala Glu Leu Gln Lys Gln Gly
Asp Gly Gln Trp Thr Tyr Gln Ile 980 985
990 Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys
Tyr Ala Arg Thr 995 1000 1005
Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val
1010 1015 1020 Gln Lys Ile
Ala Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro 1025
1030 1035 Lys Phe Lys Leu Pro Ile Gln Lys
Glu Thr Trp Glu Thr Trp Trp 1040 1045
1050 Ile Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu
Phe Val 1055 1060 1065
Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu 1070
1075 1080 Pro Ile Ile Gly Ala
Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn 1085 1090
1095 Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr
Val Thr Asp Arg Gly 1100 1105 1110
Arg Gln Lys Val Val Pro Phe Thr Asp Thr Thr Asn Gln Lys Thr
1115 1120 1125 Glu Leu
Gln Ala Ile Asn Leu Ala Leu Gln Asp Ser Gly Leu Glu 1130
1135 1140 Val Asn Ile Val Thr Asp Ser
Gln Tyr Ala Leu Gly Ile Ile Gln 1145 1150
1155 Ala Gln Pro Asp Lys Ser Glu Ser Glu Leu Val Ser
Gln Ile Ile 1160 1165 1170
Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro 1175
1180 1185 Ala His Lys Gly Ile
Gly Gly Asn Glu Gln Val Asp Lys Leu Val 1190 1195
1200 Ser Gln Gly Ile Arg Lys Val Leu Phe Leu
Asp Gly Ile Asp Lys 1205 1210 1215
Ala Gln Glu Glu His Glu Lys Tyr His Asn Asn Trp Arg Ala Met
1220 1225 1230 Ala Ser
Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val 1235
1240 1245 Ala Ser Cys Asp Lys Cys Gln
Leu Lys Gly Glu Ala Met His Gly 1250 1255
1260 Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Asp
Cys Thr His 1265 1270 1275
Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly 1280
1285 1290 Tyr Ile Glu Ala Glu
Val Ile Pro Ala Glu Thr Gly Gln Glu Thr 1295 1300
1305 Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg
Trp Pro Val Lys Val 1310 1315 1320
Val His Thr Asp Asn Gly Ser Asn Phe Thr Ser Ala Thr Val Lys
1325 1330 1335 Ala Ala
Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro 1340
1345 1350 Tyr Asn Pro Gln Ser Gln Gly
Val Val Glu Ser Met Asn Lys Glu 1355 1360
1365 Leu Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala
Glu His Leu 1370 1375 1380
Lys Thr Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg 1385
1390 1395 Lys Gly Gly Ile Gly
Gly Tyr Ser Ala Gly Glu Arg Ile Ile Asp 1400 1405
1410 Ile Ile Ala Thr Asp Ile Gln Thr Arg Glu
Leu Gln Lys Gln Ile 1415 1420 1425
Ile Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asp
1430 1435 1440 Pro Ile
Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly 1445
1450 1455 Ala Val Val Ile Gln Asp Asn
Ser Asp Ile Lys Val Val Pro Arg 1460 1465
1470 Arg Lys Val Lys Ile Ile Arg Asp Tyr Gly Lys Gln
Met Ala Gly 1475 1480 1485
Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp 1490
1495 3129PRTHuman immunodeficiency virus type 1 3Met Gly
Ala Arg Ala Ser Val Leu Ser Gly Gly Lys Leu Asp Thr Trp 1 5
10 15 Glu Arg Ile Arg Leu Arg Pro
Gly Gly Lys Lys Lys Tyr Ala Leu Lys 20 25
30 His Leu Ile Trp Ala Ser Arg Glu Leu Glu Arg Phe
Thr Leu Asn Pro 35 40 45
Gly Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile Gly Gln Leu
50 55 60 Gln Pro Ser
Ile Gln Thr Gly Ser Glu Glu Ile Arg Ser Leu Tyr Asn 65
70 75 80 Thr Val Ala Thr Leu Tyr Cys
Val His Glu Arg Ile Glu Val Lys Asp 85
90 95 Thr Lys Glu Ala Val Glu Lys Met Glu Glu Glu
Gln Asn Lys Ser Lys 100 105
110 Lys Lys Thr Gln Gln Ala Ala Ala Asp Ser Ser Gln Val Ser Gln
Asn 115 120 125 Tyr
4129PRTHuman immunodeficiency virus type 1 4Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Lys Leu Asp Thr Trp 1 5
10 15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Ala Leu Lys 20 25
30 His Leu Ile Trp Ala Ser Arg Glu Leu Glu Arg Phe Thr Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile Gly Gln Leu 50
55 60 Gln Pro Ser Ile Gln Thr
Gly Ser Glu Glu Ile Arg Ser Leu Tyr Asn 65 70
75 80 Thr Val Ala Thr Leu Tyr Cys Val His Glu Arg
Ile Glu Val Lys Asp 85 90
95 Thr Lys Glu Ala Val Glu Lys Met Glu Glu Glu Gln Asn Lys Ser Lys
100 105 110 Lys Lys
Thr Gln Gln Ala Ala Ala Asp Ser Ser Gln Val Ser Gln Asn 115
120 125 Tyr 5132PRTHuman
immunodeficiency virus type 1 5Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Glu Leu Asp Arg Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu
Lys 20 25 30 His
Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu 50 55
60 Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu
Arg Ser Leu Tyr Asn 65 70 75
80 Thr Val Ala Thr Leu Tyr Cys Val His Gln Arg Ile Glu Ile Lys Asp
85 90 95 Thr Lys
Glu Ala Leu Asp Lys Ile Glu Glu Glu Gln Asn Lys Ser Lys 100
105 110 Lys Lys Ala Gln Gln Ala Ala
Ala Asp Thr Gly His Ser Asn Gln Val 115 120
125 Ser Gln Asn Tyr 130 675PRTHuman
immunodeficiency virus type 1 6Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Glu Leu Asp Arg Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu
Lys 20 25 30 His
Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu 50 55
60 Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu
65 70 75 773PRTHuman immunodeficiency
virus type 1 7Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp Glu
Lys 1 5 10 15 Ile
Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu Lys His Ile
20 25 30 Val Trp Ala Ser Arg
Glu Leu Glu Arg Phe Ala Val Asn Pro Gly Leu 35
40 45 Leu Glu Thr Thr Glu Gly Cys Arg Gln
Ile Leu Gly Gln Leu Gln Pro 50 55
60 Ser Leu Gln Thr Gly Ser Glu Glu Leu 65
70 875PRTHuman immunodeficiency virus type 1 8Met Gly Ala
Arg Ala Ser Val Leu Ser Gly Gly Gln Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly
Gly Lys Lys Lys Tyr Arg Leu Lys 20 25
30 His Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala
Val Asn Pro 35 40 45
Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Glu Gln Leu 50
55 60 Gln Pro Ser Leu
Gln Thr Gly Ser Glu Glu Leu 65 70 75
975PRTHuman immunodeficiency virus type 1 9Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Gly Gly Cys Arg Gln Ile Leu Glu Gln Leu 50
55 60 Gln Pro Ser Leu Gln Thr
Gly Ser Glu Glu Leu 65 70 75
1075PRTHuman immunodeficiency virus type 1 10Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Arg Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Ile Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Ala Gly Cys Arg Gln Ile Leu Gly Gln Leu 50
55 60 His Pro Ser Leu Gln Thr
Gly Ser Glu Glu Leu 65 70 75
1173PRTHuman immunodeficiency virus type 1 11Ala Arg Ala Ser Val Leu Ser
Gly Gly Glu Leu Asp Lys Trp Glu Lys 1 5
10 15 Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr
Arg Leu Lys His Ile 20 25
30 Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro Gly
Leu 35 40 45 Leu
Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Ala Gln Leu Gln Pro 50
55 60 Ser Leu Pro Thr Gly Ser
Glu Glu Leu 65 70 1275PRTHuman
immunodeficiency virus type 1 12Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Glu Leu Asp Arg Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu
Lys 20 25 30 His
Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu 50 55
60 Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu
65 70 75 1373PRTHuman immunodeficiency
virus type 1 13Ala Arg Ala Ser Ile Leu Ser Gly Gly Glu Leu Asp Arg Trp
Glu Lys 1 5 10 15
Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu Lys His Ile
20 25 30 Val Trp Ala Ser Arg
Glu Leu Glu Arg Phe Ala Val Asn Pro Gly Leu 35
40 45 Leu Glu Thr Ser Glu Gly Cys Ile Gln
Ile Leu Gly Gln Leu Gln Pro 50 55
60 Ser Leu Gln Thr Gly Ser Glu Glu Leu 65
70 1475PRTHuman immunodeficiency virus type 1 14Met Gly
Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro
Gly Gly Lys Lys Lys Tyr Lys Leu Lys 20 25
30 His Val Val Trp Ala Ser Arg Glu Leu Glu Arg Phe
Ala Val Asn Pro 35 40 45
Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Lys Ile Leu Gly Gln Leu
50 55 60 Gln Pro Ser
Leu Gln Thr Gly Ser Glu Glu Leu 65 70
75 1575PRTHuman immunodeficiency virus type 1 15Met Gly Ala Arg Ala Ser
Val Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Gln Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Glu Gln Leu 50
55 60 Gln Pro Ser Leu Gln Thr
Gly Ser Glu Glu Ile 65 70 75
1675PRTHuman immunodeficiency virus type 1 16Met Gly Ala Arg Ala Ser Ile
Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Gln Tyr Arg Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Gly Gly Cys Lys Gln Ile Leu Ala Gln Leu 50
55 60 His Pro Ser Leu Gln Thr
Gly Ser Glu Glu Leu 65 70 75
1773PRTHuman immunodeficiency virus type 1 17Ala Arg Ala Ser Ile Leu Ser
Gly Gly Glu Leu Asp Arg Trp Glu Lys 1 5
10 15 Ile Arg Leu Arg Pro Gly Gly Lys Lys Arg Tyr
Arg Leu Lys His Ile 20 25
30 Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro Gly
Leu 35 40 45 Leu
Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile Arg Gln Leu Gln Pro 50
55 60 Ser Leu Gln Thr Gly Ser
Glu Glu Leu 65 70 1875PRTHuman
immunodeficiency virus type 1 18Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Glu Leu Asp Arg Trp 1 5 10
15 Glu Arg Ile Arg Leu Arg Pro Arg Gly Lys Lys Lys Tyr Gln Leu
Lys 20 25 30 His
Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ser Val Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Arg Gln Ile Leu Arg Gln Leu 50 55
60 Gln Pro Ala Leu Gln Thr Gly Ser Glu Asp Phe
65 70 75 1975PRTHuman immunodeficiency
virus type 1 19Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp
Arg Trp 1 5 10 15
Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu Lys
20 25 30 His Leu Val Trp Ala
Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser Glu Gly Cys
Arg Gln Ile Leu Gly Gln Leu 50 55
60 Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu 65
70 75 2075PRTHuman immunodeficiency virus
type 1 20Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp
1 5 10 15 Glu Arg
Ile Arg Leu Arg Pro Gly Gly Ser Lys Lys Tyr Lys Leu Lys 20
25 30 His Ile Val Trp Ala Ser Arg
Glu Leu Glu Arg Phe Ala Val Asn Pro 35 40
45 Ser Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile
Leu Gly Gln Leu 50 55 60
Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu 65 70
75 2175PRTHuman immunodeficiency virus type 1 21Met Gly
Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro
Gly Gly Lys Lys Lys Tyr Gln Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe
Ala Val Asn Pro 35 40 45
Ser Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu
50 55 60 Gln Pro Ser
Leu Gln Thr Gly Ser Glu Glu Leu 65 70
75 2275PRTHuman immunodeficiency virus type 1 22Met Gly Ala Arg Ala Ser
Val Leu Ser Gly Gly Glu Leu Asp Lys Trp 1 5
10 15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Ile Gly Gln Leu 50
55 60 Gln Pro Ser Leu Gln Thr
Gly Ser Glu Glu Leu 65 70 75
2375PRTHuman immunodeficiency virus type 1 23Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Arg Leu Lys 20 25
30 His Val Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ala Glu Gly Cys Lys Gln Ile Leu Ala Gln Leu 50
55 60 His Pro Ser Leu Gln Thr
Gly Ser Glu Glu Leu 65 70 75
2472PRTHuman immunodeficiency virus type 1misc_feature(18)..(18)Xaa can
be any naturally occurring amino acidmisc_feature(51)..(51)Xaa can be any
naturally occurring amino acid 24Arg Ala Ser Val Leu Ser Gly Gly Glu Leu
Asp Arg Trp Glu Lys Ile 1 5 10
15 Arg Xaa Arg Gln Gly Gly Lys Lys Lys Tyr Lys Leu Lys His Ile
Val 20 25 30 Trp
Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro Gly Leu Leu 35
40 45 Glu Thr Xaa Glu Gly Cys
Arg Gln Ile Leu Glu Gln Leu Gln Pro Ala 50 55
60 Leu Gln Thr Gly Ser Glu Glu Leu 65
70 2575PRTHuman immunodeficiency virus type 1 25Met Gly
Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro
Gly Gly Lys Lys Lys Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe
Ala Val Asn Pro 35 40 45
Gly Leu Leu Glu Thr Ser Gly Gly Cys Arg Gln Ile Leu Gly Gln Leu
50 55 60 Gln Pro Ser
Leu Gln Thr Gly Ser Glu Glu Leu 65 70
75 2675PRTHuman immunodeficiency virus type 1 26Met Gly Ala Arg Ala Ser
Val Leu Ser Gly Gly Lys Leu Asp Thr Trp 1 5
10 15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Ala Leu Lys 20 25
30 His Leu Ile Trp Ala Ser Arg Glu Leu Glu Arg Phe Thr Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile Gly Gln Leu 50
55 60 Gln Pro Ser Ile Gln Thr
Gly Ser Glu Glu Ile 65 70 75
2775PRTHuman immunodeficiency virus type 1 27Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Glu Leu Asp Arg Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu 50
55 60 Gln Pro Ser Leu Gln Thr
Gly Ser Glu Glu Leu 65 70 75
2875PRTHuman immunodeficiency virus type 1 28Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Lys Leu Asp Thr Trp 1 5
10 15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Ala Leu Lys 20 25
30 His Leu Ile Trp Ala Ser Arg Glu Leu Glu Arg Phe Thr Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile Gly Gln Leu 50
55 60 Gln Pro Ser Ile Gln Thr
Gly Ser Glu Glu Ile 65 70 75
2975PRTHuman immunodeficiency virus type 1 29Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Ile Ser Gln Leu 50
55 60 Gln Pro Ser Leu Lys Thr
Gly Ser Glu Glu Leu 65 70 75
3075PRTHuman immunodeficiency virus type 1 30Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Lys Leu Asp Glu Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Arg Lys
Thr Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile Ala Gln Leu 50
55 60 Gln Ser Ser Ile Gln Thr
Gly Ser Glu Glu Ile 65 70 75
3173PRTHuman immunodeficiency virus type 1 31Ala Arg Ala Ser Val Leu Ser
Gly Gly Lys Leu Asp Glu Trp Glu Lys 1 5
10 15 Ile Gln Leu Arg Pro Gly Gly His Lys Arg Tyr
Lys Leu Lys His Ile 20 25
30 Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Ile Asn Pro Gly
Leu 35 40 45 Leu
Glu Thr Ser Gly Gly Cys Arg Gln Ile Met Gly Gln Leu Gln Pro 50
55 60 Ala Ile Gln Thr Gly Ser
Glu Glu Leu 65 70 3273PRTHuman
immunodeficiency virus type 1 32Ala Arg Ala Ser Val Leu Ser Gly Gly Lys
Leu Asp Ala Trp Glu Lys 1 5 10
15 Ile Arg Leu Arg Pro Gly Gly Arg Lys Arg Tyr Arg Leu Lys His
Ile 20 25 30 Val
Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro Gly Leu 35
40 45 Leu Glu Thr Ser Glu Gly
Cys Lys Gln Ile Ile Ser Gln Leu Gln Pro 50 55
60 Ser Leu Lys Thr Gly Ser Glu Glu Leu 65
70 3361PRTHuman immunodeficiency virus type 1
33Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu Lys 20
25 30 His Ile Val Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Val Asn Pro 35 40
45 Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu
50 55 60 3461PRTHuman
immunodeficiency virus type 1 34Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Lys Leu Asp Thr Trp 1 5 10
15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Ala Leu
Lys 20 25 30 His
Leu Ile Trp Ala Ser Arg Glu Leu Glu Arg Phe Thr Leu Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Lys Gln Ile Ile 50 55
60 3561PRTHuman immunodeficiency virus type 1 35Met Gly Ala Arg Ala
Ser Val Leu Ser Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys
Lys Lys Tyr Lys Leu Lys 20 25
30 His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Ile 50
55 60 3661PRTHuman immunodeficiency virus type 1
36Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Lys Leu Asp Glu Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Arg Lys Thr Tyr Lys Leu Lys 20
25 30 His Ile Val Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Leu Asn Pro 35 40
45 Gly Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile
50 55 60 3759PRTHuman
immunodeficiency virus type 1 37Ala Arg Ala Ser Val Leu Ser Gly Gly Lys
Leu Asp Glu Trp Glu Lys 1 5 10
15 Ile Gln Leu Arg Pro Gly Gly His Lys Arg Tyr Lys Leu Lys His
Ile 20 25 30 Val
Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Ile Asn Pro Gly Leu 35
40 45 Leu Glu Thr Ser Gly Gly
Cys Arg Gln Ile Met 50 55
3859PRTHuman immunodeficiency virus type 1 38Ala Arg Ala Ser Val Leu Ser
Gly Gly Lys Leu Asp Ala Trp Glu Lys 1 5
10 15 Ile Arg Leu Arg Pro Gly Gly Arg Lys Arg Tyr
Arg Leu Lys His Ile 20 25
30 Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro Gly
Leu 35 40 45 Leu
Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile 50 55
3961PRTHuman immunodeficiency virus type 1 39Met Gly Ala Arg
Ala Ser Val Leu Ser Gly Gly Arg Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly
Lys Lys Lys Tyr Arg Met Lys 20 25
30 His Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu
Asn Pro 35 40 45
Gly Leu Leu Glu Thr Ala Glu Gly Cys Lys Gln Leu Met 50
55 60 4061PRTHuman immunodeficiency virus type
1misc_feature(54)..(54)Xaa can be any naturally occurring amino
acidmisc_feature(61)..(61)Xaa can be any naturally occurring amino acid
40Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Lys Leu Asp Ser Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Met Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Met
Glu Arg Phe Ala Leu Asn Pro 35 40
45 Asp Leu Leu Glu Thr Xaa Glu Gly Cys Gln Gln Ile Xaa
50 55 60 4159PRTHuman
immunodeficiency virus type 1 41Ala Arg Ala Ser Val Leu Ser Gly Gly Lys
Leu Asp Ala Trp Glu Lys 1 5 10
15 Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Ile Lys His
Leu 20 25 30 Val
Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro Gly Leu 35
40 45 Leu Glu Thr Ala Glu Gly
Cys Gln Gln Ile Met 50 55
4261PRTHuman immunodeficiency virus type 1 42Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Arg Tyr Arg Met Lys 20 25
30 His Leu Val Trp Ala Ser Arg Glu Leu Asp Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ala Glu Gly Cys Gln Lys Ile Met 50
55 60 4361PRTHuman immunodeficiency virus type 1
43Met Gly Ala Arg Ala Ser Val Leu Thr Gly Gly Lys Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Arg Lys Ser Tyr Lys Ile Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Leu Asn Pro 35 40
45 Asp Leu Leu Glu Thr Ala Glu Gly Cys Gln Gln Ile Met
50 55 60 4461PRTHuman
immunodeficiency virus type 1 44Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Lys Leu Asp Ala Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu
Lys 20 25 30 His
Leu Val Trp Ala Ser Arg Glu Leu Asp Arg Phe Ala Leu Asn Pro 35
40 45 Ser Leu Leu Glu Thr Ser
Glu Gly Cys Gln Gln Ile Ile 50 55
60 4561PRTHuman immunodeficiency virus type 1 45Met Gly Ala Arg Ala
Ser Val Leu Ser Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Arg
Lys Lys Tyr Arg Met Lys 20 25
30 His Leu Val Trp Ala Ser Arg Glu Leu Asp Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ala Glu Gly Cys Gln Gln Ile Leu 50
55 60 4661PRTHuman immunodeficiency virus type
1misc_feature(42)..(42)Xaa can be any naturally occurring amino
acidmisc_feature(49)..(49)Xaa can be any naturally occurring amino acid
46Met Gly Ala Arg Ala Ser Ile Leu Ser Gly Gly Arg Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Leu
Xaa Arg Phe Ala Leu Asn Pro 35 40
45 Xaa Leu Leu Glu Ser Ala Glu Gly Cys Gln Gln Ile Met
50 55 60 4759PRTHuman
immunodeficiency virus type 1 47Ala Arg Ala Ser Val Leu Ser Gly Gly Lys
Leu Asp Ala Trp Glu Lys 1 5 10
15 Ile Gln Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu Lys His
Leu 20 25 30 Val
Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro Asp Leu 35
40 45 Leu Glu Thr Ser Glu Gly
Cys Gln Gln Ile Ile 50 55
4859PRTHuman immunodeficiency virus type 1 48Ala Arg Ala Ser Val Leu Ser
Gly Gly Lys Leu Asp Ser Trp Glu Lys 1 5
10 15 Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr
Arg Leu Lys His Leu 20 25
30 Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro Ser
Leu 35 40 45 Leu
Glu Thr Ala Glu Gly Cys Gln Gln Ile Met 50 55
4961PRTHuman immunodeficiency virus type 1 49Met Gly Ala Arg
Ala Ser Val Leu Arg Gly Glu Lys Leu Asp Thr Trp 1 5
10 15 Glu Arg Ile Arg Leu Arg Pro Gly Gly
Lys Lys Lys Tyr Met Met Lys 20 25
30 His Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu
Ala Pro 35 40 45
Gly Leu Leu Glu Thr Ala Glu Gly Cys Arg Gln Ile Ile 50
55 60 5061PRTHuman immunodeficiency virus type 1
50Met Gly Ala Arg Ala Ser Ile Leu Arg Gly Gly Lys Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Gln
Leu Arg Pro Gly Gly Lys Lys Arg Tyr Met Leu Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Leu Asn Pro 35 40
45 Gly Leu Leu Glu Thr Ala Glu Gly Cys Arg Gln Ile Ile
50 55 60 5161PRTHuman
immunodeficiency virus type 1 51Met Gly Ala Arg Ala Ser Val Leu Arg Gly
Glu Lys Leu Asp Thr Trp 1 5 10
15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Met Met
Lys 20 25 30 His
Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Ala Pro 35
40 45 Gly Leu Leu Glu Thr Ala
Glu Gly Cys Arg Gln Ile Ile 50 55
60 5261PRTHuman immunodeficiency virus type 1 52Met Gly Ala Arg Ala
Ser Ile Leu Arg Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Gln Leu Arg Pro Gly Gly Lys
Lys Arg Tyr Met Leu Lys 20 25
30 His Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ala Glu Gly Cys Arg Gln Ile Ile 50
55 60 5359PRTHuman immunodeficiency virus type 1
53Ala Arg Ala Ser Ile Leu Arg Gly Gly Gln Leu Asp Arg Trp Glu Lys 1
5 10 15 Ile Arg Leu Arg
Pro Gly Gly Lys Lys His Tyr Met Leu Lys His Leu 20
25 30 Val Trp Ala Ser Arg Glu Leu Glu Arg
Phe Val Leu Asn Pro Gly Leu 35 40
45 Leu Glu Thr Ala Glu Gly Cys Lys Gln Ile Met 50
55 5461PRTHuman immunodeficiency virus type
1 54Met Gly Ala Arg Ala Ser Ile Leu Thr Gly Glu Lys Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Met Ile Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Leu Asn Pro 35 40
45 Gly Leu Leu Glu Thr Ala Glu Gly Cys Gln Gln Ile Ile
50 55 60 5561PRTHuman
immunodeficiency virus type 1 55Met Gly Ala Arg Ala Ser Ile Leu Ser Gly
Gly Lys Leu Asp Ala Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Arg Lys Lys Tyr Arg Met
Lys 20 25 30 His
Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ala
Glu Gly Cys Gln Gln Leu Ile 50 55
60 5661PRTHuman immunodeficiency virus type 1 56Met Gly Ala Arg Ala
Ser Val Leu Ser Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys
Lys Lys Tyr Gln Leu Lys 20 25
30 His Val Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn
Pro 35 40 45 Gly
Leu Leu Glu Thr Ala Glu Gly Cys Gln Gln Ile Ile 50
55 60 5761PRTHuman immunodeficiency virus type 1
57Met Gly Ala Arg Ala Ser Ile Leu Thr Gly Glu Lys Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Met Ile Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Leu Asn Pro 35 40
45 Gly Leu Leu Glu Thr Ala Glu Gly Cys Gln Gln Ile Ile
50 55 60 5861PRTHuman
immunodeficiency virus type 1 58Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Lys Leu Asp Asp Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Gln Tyr Lys Leu
Lys 20 25 30 His
Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Arg Lys Ile Ile 50 55
60 5961PRTHuman immunodeficiency virus type 1 59Met Gly Ala Arg Ala
Ser Val Leu Ser Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys
Lys Lys Tyr Arg Met Lys 20 25
30 His Leu Ile Trp Ala Gly Arg Glu Leu Asp Arg Phe Ala Leu Asp
Pro 35 40 45 Gly
Leu Leu Glu Thr Ser Glu Gly Cys Arg Lys Ile Ile 50
55 60 6061PRTHuman immunodeficiency virus type 1
60Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Lys Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Met Lys 20
25 30 His Leu Ile Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Leu Asp Ser 35 40
45 Gly Leu Leu Glu Thr Thr Glu Gly Cys Arg Lys Ile Ile
50 55 60 6161PRTHuman
immunodeficiency virus type 1 61Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Lys Leu Asp Ala Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Arg Lys Lys Tyr Lys Met
Lys 20 25 30 His
Leu Ile Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asp Pro 35
40 45 Gly Leu Leu Glu Thr Ser
Glu Gly Cys Arg Lys Ile Ile 50 55
60 6238PRTHuman immunodeficiency virus type 1 62Gly Gly Lys Lys Lys
Tyr Arg Leu Lys His Leu Val Trp Ala Ser Arg 1 5
10 15 Glu Leu Glu Arg Phe Ala Leu Asn Pro Gly
Leu Leu Glu Thr Thr Glu 20 25
30 Gly Cys Lys Gln Ile Ile 35
6361PRTHuman immunodeficiency virus type 1 63Met Gly Ala Arg Ala Ser Val
Leu Ser Gly Gly Lys Leu Asp Ala Trp 1 5
10 15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Arg Lys
Lys Tyr Arg Leu Lys 20 25
30 His Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn
Pro 35 40 45 Asp
Leu Leu Glu Thr Ala Asp Gly Cys Gln Gln Ile Leu 50
55 60 6461PRTHuman immunodeficiency virus type 1
64Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Lys Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Leu
Glu Arg Phe Ala Leu Asn Pro 35 40
45 Asp Leu Leu Asp Thr Ala Glu Gly Cys Leu Gln Leu Ile
50 55 60 6561PRTHuman
immunodeficiency virus type 1 65Met Gly Ala Arg Ala Ser Val Leu Ser Gly
Gly Lys Leu Asp Ala Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu
Lys 20 25 30 His
Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro 35
40 45 Gly Leu Leu Glu Thr Pro
Glu Gly Cys Leu Gln Ile Ile 50 55
60 6661PRTHuman immunodeficiency virus type
1misc_feature(61)..(61)Xaa can be any naturally occurring amino acid
66Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Lys Leu Asp Ala Trp 1
5 10 15 Glu Lys Ile Arg
Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Leu Lys 20
25 30 His Leu Val Trp Ala Ser Arg Glu Leu
Asp Arg Phe Ala Leu Asn Pro 35 40
45 Asp Leu Leu Glu Thr Ala Asp Gly Cys Leu Lys Ile Xaa
50 55 60 6761PRTHuman
immunodeficiency virus type 1 67Met Gly Ala Arg Ala Ser Ile Leu Ser Gly
Gly Lys Leu Asp Asp Trp 1 5 10
15 Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Gln Tyr Arg Ile
Lys 20 25 30 His
Leu Val Trp Ala Ser Arg Glu Leu Asp Arg Phe Ala Leu Asn Pro 35
40 45 Gly Leu Leu Glu Ser Ala
Lys Gly Cys Gln Gln Ile Leu 50 55
60
User Contributions:
Comment about this patent or add new information about this topic: