Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: GENERATION OF PLANTS WITH ALTERED PROTEIN, FIBER, OR OIL CONTENT

Inventors:
IPC8 Class: AC12N1582FI
USPC Class: 1 1
Class name:
Publication date: 2017-05-11
Patent application number: 20170130240



Abstract:

The present invention is directed to plants that display an improved oil quantity phenotype or an improved meal quality phenotype due to altered expression of an IMQ nucleic acid. The invention is further directed to methods of generating plants with an improved oil quantity phenotype or improved meal quality phenotype.

Claims:

1. A transgenic plant, comprising a plant transformation vector comprising a nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence as set forth in SEQ ID NO: 8, whereby the transgenic plant has an improved meal quality phenotype, relative to control plants.

2. The transgenic plant of claim 1, wherein the IMQ polypeptide comprises the amino acid sequence as set forth in SEQ ID NO: 8.

3. The transgenic plant of claim 1, which is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat, and rice.

4. The transgenic plant of claim 3, wherein the plant is canola.

5. The transgenic plant of claim 1, wherein an improved meal quality phenotype comprises an increase in available metabolizable energy in meal produced from seeds of the transgenic plant, relative to control plants.

6. The transgenic plant of claim 5, wherein an increase in available metabolizable energy comprises an altered protein and/or fiber content in the seeds of the transgenic plant.

7. The transgenic plant of claim 6, wherein the protein content is increased and/or the fiber content is decreased.

8. The transgenic plant of claim 7, wherein an increase in available metabolizable energy comprises a decreased fiber content in the seeds of the transgenic plant.

9. A plant part obtained from the plant according to claim 1.

10. The plant part of claim 9, which is a transgenic seed, wherein the transgenic seed comprises the plant transformation vector.

11. Meal, feed, or food produced from the transgenic seed of claim 10.

12. A method of producing meal, comprising growing the transgenic plant of claim 1, and recovering meal from the plant, thereby producing meal.

13. The method of claim 12, wherein the meal is produced from seeds of the plant.

14. A method of producing an improved meal quality phenotype in a plant, said method comprising: a) introducing into progenitor cells of the plant a plant transformation vector comprising a nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence set forth in SEQ ID NO: 8; and b) growing the transformed progenitor cells to produce a transgenic plant, wherein the nucleotide sequence is expressed, and the transgenic plant exhibits an improved meal quality phenotype relative to control plants, thereby producing the improved meal quality phenotype in the plant.

15. The method of claim 14, wherein the IMQ polypeptide comprises the amino acid sequence as set forth in SEQ ID NO: 8.

16. A plant obtained by a method of claim 14.

17. The plant of claim 16, which is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat, and rice.

18. The plant of claim 17, wherein the plant is canola.

19. The plant of claim 16, wherein the plant is selected from the group consisting of a plant grown from said progenitor cells, a plant that is the direct progeny of a plant grown from said progenitor cells, and a plant that is the indirect progeny of a plant grown from said progenitor cells.

20. A method of generating a plant having an improved meal quality phenotype, comprising: identifying a plant that has an allele in its ortholog of the A. thaliana IMQ gene where the wildtype A. thaliana gene has the nucleic acid sequence set forth as SEQ ID NO: 7, which allele results in improved meal quality phenotype, compared to plants lacking the allele, wherein identifying a plant comprises analyzing the sequence of the allele of the ortholog of the IMQ gene in the plant; and generating progeny of said identified plant, wherein the generated progeny inherit the allele and have the improved meal quality phenotype, thereby generating a plant having an improved meal quality phenotype.

21. The method of claim 20 that employs candidate gene/QTL methodology or TILLING methodology.

Description:

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This is a divisional of U.S. patent application Ser. No. 14/540,606, filed Nov. 13, 2014; which is a divisional of U.S. patent application Ser. No. 13/480,275, filed May 24, 2012, now U.S. Pat. No. 8,916,747, issued Dec. 23, 2014; which is a divisional of U.S. patent application Ser. No. 13/221,790, filed Aug. 30, 2011, now U.S. Pat. No. 8,217,225, issued Jul. 10, 2012; which is a divisional of U.S. patent application Ser. No. 11/940,274, filed Nov. 14, 2007, now U.S. Pat. No. 8,034,993, issued Oct. 11, 2011; which claims the benefit of U.S. Provisional Application No. 60/866,056, filed Nov. 15, 2006; each of which is incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure is related to transgenic plants with altered oil, protein, and/or fiber content, as well as methods of making plants having altered oil, protein, and/or fiber content and producing oil from such plants.

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED AS AN ASCII TEXT FILE

[0003] A Sequence Listing is submitted herewith as an ASCII compliant text file named "Sequence_Listing.txt", created on Jan. 18, 2017, and having a size of 333,149 bytes, as permitted under 37 CFR 1.821(c). The material in the aforementioned file is hereby incorporated by reference in its entirety.

BACKGROUND

[0004] The ability to manipulate the composition of crop seeds, particularly the content and composition of seed oil and protein, as well as the available metabolizable energy ("AME") in the seed meal in livestock, has important applications in the agricultural industries, relating both to processed food oils and to animal feeds. Seeds of agricultural crops contain a variety of valuable constituents, including oil, protein and starch. Industrial processing can separate some or all of these constituents for individual sale in specific applications. For instance, nearly 60% of the U.S. soybean crop is crushed by the soy processing industry. Soy processing yields purified oil, which is sold at high value, while the remaining seed meal is sold for livestock feed (U.S. Soybean Board, 2001 Soy Stats). Canola seed is also crushed to produce oil and the co-product canola meal (Canola Council of Canada). Canola meal contains a high percentage of protein and a good balance of amino acids but because it has a high fiber and phytate content, it is not readily digested by livestock (Slominski, B. A., et al., 1999 Proceedings of the 10.sup.th International Rapeseed Congress, Canberra, Australia) and has a lower value than soybean meal.

[0005] Over 55% of the corn produced in the U.S. is used as animal feed (Iowa Corn Growers Association). The value of the corn is directly related to its ability to be digested by livestock. Thus, it is desirable to maximize both oil content of seeds and the AME of meal. For processed oilseeds such as soy and canola, increasing the absolute oil content of the seed will increase the value of such grains, while increasing the AME of meal will increase its value. For processed corn, either an increase or a decrease in oil content may be desired, depending on how the other major constituents are to be used. Decreasing oil may improve the quality of isolated starch by reducing undesired flavors associated with oil oxidation. Alternatively, when the starch is used for ethanol production, where flavor is unimportant, increasing oil content may increase overall value.

[0006] In many feed grains, such as corn and wheat, it is desirable to increase seed oil content, because oil has higher energy content than other seed constituents such as carbohydrate. Oilseed processing, like most grain processing businesses, is a capital-intensive business; thus small shifts in the distribution of products from the low valued components to the high value oil component can have substantial economic impacts for grain processors. In addition, increasing the AME of meal by adjusting seed protein and fiber content and composition, without decreasing seed oil content, can increase the value of animal feed.

[0007] Biotechnological manipulation of oils has been shown to provide compositional alteration and improvement of oil yield. Compositional alterations include high oleic acid soybean and corn oil (U.S. Pat. Nos. 6,229,033 and 6,248,939), and laurate-containing seeds (U.S. Pat. No. 5,639,790), among others. Work in compositional alteration has predominantly focused on processed oilseeds, but has been readily extendable to non-oilseed crops, including corn. While there is considerable interest in increasing oil content, the only currently practiced biotechnology in this area is High-Oil Corn (HOC) technology (DuPont, U.S. Pat. No. 5,704,160). HOC employs high oil pollinators developed by classical selection breeding along with elite (male-sterile) hybrid females in a production system referred to as TopCross. The TopCross High Oil system raises harvested grain oil content in maize from about 3.5% to about 7%, improving the energy content of the grain.

[0008] While it has been fruitful, the HOC production system has inherent limitations. First, the system of having a low percentage of pollinators responsible for an entire field's seed set contains inherent risks, particularly in drought years. Second, oil content in current HOC fields has plateaued at about 9% oil. Finally, high-oil corn is not primarily a biochemical change, but rather an anatomical mutant (increased embryo size) that has the indirect result of increasing oil content. For these reasons, an alternative high oil strategy, particularly one that derives from an altered biochemical output, would be especially valuable.

[0009] Manipulation of seed composition has identified several components that improve the nutritive quality, digestibility, and AME in seed meal. Increasing the lysine content in canola and soybean (Falco et al., 1995 Bio/Technology 13:577-582) increases the availability of this essential amino acid and decreases the need for nutritional supplements. Soybean varieties with increased seed protein were shown to contain considerably more metabolizable energy than conventional varieties (Edwards et al., 1999, Poultry Sci. 79:525-527). Decreasing the phytate content of corn seed has been shown to increase the bioavailability of amino acids in animal feeds (Douglas et al., 2000, Poultry Sci. 79:1586-1591) and decreasing oligosaccharide content in soybean meal increases the metabolizable energy in the meal (Parsons et al., 2000, Poultry Sci. 79:1127-1131).

[0010] Soybean and canola are the most obvious target crops for the processed oil and seed meal markets since both crops are crushed for oil and the remaining meal sold for animal feed. A large body of commercial work (e.g., U.S. Pat. No. 5,952,544; PCT Application No. WO9411516) demonstrates that Arabidopsis is an excellent model for oil metabolism in these crops. Biochemical screens of seed oil composition have identified Arabidopsis genes for many critical biosynthetic enzymes and have led to identification of agronomically important gene orthologs. For instance, screens using chemically mutagenized populations have identified lipid mutants whose seeds display altered fatty acid composition (Lemieux et al., 1990, Theor. Appl. Genet. 80, 234-240; James and Dooner, 1990, Theor. Appl. Genet. 80, 241-245). T-DNA mutagenesis screens (Feldmann et al., 1989, Science 243: 1351-1354) that detected altered fatty acid composition identified the omega 3 desaturase (FADS) and delta-12 desaturase (FAD2) genes (U.S. Pat. No. 5,952,544; Yadav et al., 1993, Plant Physiol. 103, 467-476; Okuley et al., 1994, Plant Cell 6(1):147-158). A screen which focused on oil content rather than oil quality, analyzed chemically-induced mutants for wrinkled seeds or altered seed density, from which altered seed oil content was inferred (Focks and Benning, 1998, Plant Physiol. 118:91-101).

[0011] Another screen, designed to identify enzymes involved in production of very long chain fatty acids, identified a mutation in the gene encoding a diacylglycerol acyltransferase (DGAT) as being responsible for reduced triacyl glycerol accumulation in seeds (Katavic et al., 1995, Plant Physiol. 108(1):399-409). It was further shown that seed-specific over-expression of the DGAT cDNA was associated with increased seed oil content (Jako et al., 2001, Plant Physiol. 126(2):861-74). Arabidopsis is also a model for understanding the accumulation of seed components that affect meal quality. For example, Arabidopsis contains albumin and globulin seed storage proteins found in many dicotyledonous plants including canola and soybean (Shewry 1995, Plant Cell 7:945-956). The biochemical pathways for synthesizing components of fiber, such as cellulose and lignin, are conserved within the vascular plants, and mutants of Arabidopsis affecting these components have been isolated (reviewed in Chapel and Carpita 1998, Current Opinion in Plant Biology 1:179-185).

[0012] Activation tagging in plants refers to a method of generating random mutations by insertion of a heterologous nucleic acid construct comprising regulatory sequences (e.g., an enhancer) into a plant genome. The regulatory sequences can act to enhance transcription of one or more native plant genes; accordingly, activation tagging is a fruitful method for generating gain-of-function, generally dominant mutants (see, e.g., Hayashi et al., 1992, Science 258: 1350-1353; Weigel D et al., 2000, Plant Physiology, 122:1003-1013). The inserted construct provides a molecular tag for rapid identification of the native plant whose mis-expression causes the mutant phenotype. Activation tagging may also cause loss-of-function phenotypes. The insertion may result in disruption of a native plant gene, in which case the phenotype is generally recessive.

[0013] Activation tagging has been used in various species, including tobacco and Arabidopsis, to identify many different kinds of mutant phenotypes and the genes associated with these phenotypes (Wilson et al., 1996, Plant Cell 8: 659-671; Schaffer et al., 1998, Cell 93: 1219-1229; Fridborg et al., 1999, Plant Cell 11: 1019-1032; Kardailsky et al., 1999, Science 286: 1962-1965; and Christensen S et al., 1998, 9.sup.th International Conference on Arabidopsis Research, Univ. of Wisconsin-Madison, June 24-28, Abstract 165).

SUMMARY

[0014] Provided herein are transgenic plants having an Improved Seed Quality phenotype. Transgenic plants with an Improved Seed Quality phenotype may include an improved oil quantity and/or an improved meal quality. Transgenic plants with improved meal quality have an Improved Meal Quality (IMQ) phenotype and transgenic plants with improved oil quantity have an Improved Oil Quantity (IOQ) phenotype. The IMQ phenotype in a transgenic plant may include altered protein and/or fiber content in any part of the transgenic plant, for example in the seeds. The IOQ phenotype in a transgenic plant may include altered oil content in any part of the transgenic plant, for example in the seeds. In particular embodiments, a transgenic plant may include an IOQ phenotype and/or an IMQ phenotype. In some embodiments of a transgenic plant, the IMQ phenotype may be an increase in protein content in the seed and/or a decrease in the fiber content of the seed. In other embodiments of a transgenic plant, the IOQ phenotype is an increase in the oil content of the seed (a high oil phenotype). Also provided is seed meal derived from the seeds of transgenic plants, wherein the seeds have altered protein content and/or altered fiber content. Further provided is oil derived from the seeds of transgenic plants, wherein the seeds have altered oil content. Any of these changes can lead to an increase in the AME from the seed or seed meal from transgenic plants, relative to control, non-transgenic, or wild-type plants. Also provided herein is meal, feed, or food produced from any part of the transgenic plant with an IMQ phenotype and/or IOQ phenotype.

[0015] In certain embodiments, the disclosed transgenic plants comprise a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an "IMQ" polypeptide. In particular embodiments, expression of an IMQ polypeptide in a transgenic plant causes an altered oil content, an altered protein content, and/or an altered fiber content in the transgenic plant. In preferred embodiments, the transgenic plant is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. Also provided is a method of producing oil or seed meal, comprising growing the transgenic plant and recovering oil and/or seed meal from said plant. The disclosure further provides feed, meal, grain, or seed comprising a nucleic acid sequence that encodes an IMQ polypeptide. The disclosure also provides feed, meal, grain, or seed comprising the IMQ polypeptide, or an ortholog thereof.

[0016] Examples of the disclosed transgenic plant are produced by a method that comprises introducing into progenitor cells of the plant a plant transformation vector comprising an IMQ nucleotide sequence that encodes, or is complementary to a sequence that encodes, an IMQ polypeptide, and growing the transformed progenitor cells to produce a transgenic plant, wherein the IMQ polynucleotide sequence is expressed, causing an IOQ phenotype and/or and IMQ phenotype in the transgenic plant. In some specific, non-limiting examples, the method produces transgenic plants wherein expression of the IMQ polypeptide causes a high (increased) oil, high (increased) protein, and/or low (decreased) fiber phenotype in the transgenic plant, relative to control, non-transgenic, or wild-type plants.

[0017] Additional methods are disclosed herein of generating a plant having an IMQ and/or an IOQ phenotype, wherein a plant is identified that has an allele in its IMQ nucleic acid sequence that results in an IMQ phenotype and/or an IOQ phenotype, compared to plants lacking the allele. The plant can generate progeny, wherein the progeny inherit the allele and have an IMQ phenotype and/or an IOQ phenotype. In some embodiments of the method, the method employs candidate gene/QTL methodology or TILLING methodology.

[0018] Also provided herein is a transgenic plant cell having an IMQ phenotype and/or an IOQ phenotype. The transgenic plant cell comprises a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide. In preferred embodiments, the transgenic plant cell is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. In other embodiments, the plant cell is a seed, pollen, propagule, or embryo cell. The disclosure also provides plant cells from a plant that is the direct progeny or the indirect progeny of a plant grown from said progenitor cells.

DETAILED DESCRIPTION

Terms

[0019] Unless otherwise indicated, all technical and scientific terms used herein have the same meaning as they would to one skilled in the art of the present disclosure. Practitioners are particularly directed to Sambrook et al. (Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Press, Plainview, N.Y., 1989) and Ausubel F M et al. (Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1993) for definitions and terms of the art. It is to be understood that this disclosure is not limited to the particular methodology, protocols, and reagents described, as these may vary.

[0020] As used herein, the term "IMQ phenotype" refers to plants, or any part of a plant (for example, seeds, or meal produced from seeds), with an altered protein and/or fiber content (phenotype). As provided herein, altered protein and/or fiber content includes either an increased or decreased level of protein and/or fiber content in plants, seeds or seed meal. Any combination of these changes can lead to an IMQ phenotype. For example, in one specific non-limiting example, an IMQ phenotype can refer to increased protein and decreased fiber content. In another specific non-limiting example, an IMQ phenotype can refer to unchanged protein and decreased fiber content. In yet another specific non-limiting example, an IMQ phenotype can refer to increased protein and unchanged fiber content. It is also provided that any combination of these changes can lead to an increase in the AME (available metabolizable energy) from the seed or meal generated from the seed. An IMQ phenotype also includes an improved seed quality (ISQ) phenotype or an improved seed meal quality phenotype.

[0021] As used herein, the term "IOQ phenotype" refers to plants, or any part of a plant (for example, seeds), with an altered oil content (phenotype). As provided herein, altered oil content includes an increased, for example a high, oil content in plants or seeds. In some embodiments, a transgenic plant can express both an IOQ phenotype and an IMQ phenotype. In specific, non-limiting examples, a transgenic plant having a combination of an IOQ phenotype and an IMQ phenotype can lead to an increase in the AME (available metabolizable energy) from the seed or meal generated from the seed. An IOQ phenotype also includes an improved seed quality (ISQ) phenotype.

[0022] As used herein, the term "available metabolizable energy" (AME) refers to the amount of energy in the feed that is able to be extracted by digestion in an animal and is correlated with the amount of digestible protein and oil available in animal meal. AME is determined by estimating the amount of energy in the feed prior to feeding and measuring the amount of energy in the excreta of the animal following consumption of the feed. In one specific, non-limiting example, a transgenic plant with an increase in AME includes transgenic plants with altered seed protein and/or fiber content and without a decrease in seed oil content (seed oil content remains unchanged or is increased), resulting in an increase in the value of animal feed derived from the seed.

[0023] As used herein, the term "content" refers to the type and relative amount of, for instance, a seed or seed meal component.

[0024] As used herein, the term "fiber" refers to non-digestible components of the plant seed including cellular components such as cellulose, hemicellulose, pectin, lignin, and phenolics.

[0025] As used herein, the term "meal" refers to seed components remaining following the extraction of oil from the seed. Examples of components of meal include protein and fiber.

[0026] As used herein, the term "vector" refers to a nucleic acid construct designed for transfer between different host cells. An "expression vector" refers to a vector that has the ability to incorporate and express heterologous DNA fragments in a foreign cell. Many prokaryotic and eukaryotic expression vectors are commercially available. Selection of appropriate expression vectors is within the knowledge of those having skill in the art.

[0027] A "heterologous" nucleic acid construct or sequence has a portion of the sequence that is not native to the plant cell in which it is expressed. Heterologous, with respect to a control sequence refers to a control sequence (i.e. promoter or enhancer) that does not function in nature to regulate the same gene the expression of which it is currently regulating. Generally, heterologous nucleic acid sequences are not endogenous to the cell or part of the genome in which they are present, and have been added to the cell by infection, transfection, microinjection, electroporation, or the like. A "heterologous" nucleic acid construct may contain a control sequence/DNA coding sequence combination that is the same as, or different from, a control sequence/DNA coding sequence combination found in the native plant. Specific, non-limiting examples of a heterologous nucleic acid sequence include an IMQ nucleic acid sequence, or a fragment, derivative (variant), or ortholog thereof.

[0028] As used herein, the term "gene" means the segment of DNA involved in producing a polypeptide chain, which may or may not include regions preceding and following the coding region, e.g. 5' untranslated (5' UTR) or "leader" sequences and 3' UTR or "trailer" sequences, as well as intervening sequences (introns) between individual coding segments (exons) and non-transcribed regulatory sequences.

[0029] As used herein, "recombinant" includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid sequence or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed, or not expressed at all as a result of deliberate human intervention.

[0030] As used herein, the term "gene expression" refers to the process by which a polypeptide is produced based on the nucleic acid sequence of a gene. The process includes both transcription and translation; accordingly, "expression" may refer to either a polynucleotide or polypeptide sequence, or both. Sometimes, expression of a polynucleotide sequence will not lead to protein translation. "Over-expression" refers to increased expression of a polynucleotide and/or polypeptide sequence relative to its expression in a wild-type (or other reference [e.g., non-transgenic]) plant and may relate to a naturally-occurring or non-naturally occurring sequence. "Ectopic expression" refers to expression at a time, place, and/or increased level that does not naturally occur in the non-altered or wild-type plant. "Under-expression" refers to decreased expression of a polynucleotide and/or polypeptide sequence, generally of an endogenous gene, relative to its expression in a wild-type plant. The terms "mis-expression" and "altered expression" encompass over-expression, under-expression, and ectopic expression.

[0031] The term "introduced" in the context of inserting a nucleic acid sequence into a cell, includes "transfection," "transformation," and "transduction" and includes reference to the incorporation of a nucleic acid sequence into a eukaryotic or prokaryotic cell where the nucleic acid sequence may be incorporated into the genome of the cell (for example, chromosome, plasmid, plastid, or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (for example, transfected mRNA).

[0032] As used herein, a "plant cell" refers to any cell derived from a plant, including cells from undifferentiated tissue (e.g., callus), as well as from plant seeds, pollen, propagules, and embryos.

[0033] As used herein, the terms "native" and "wild-type" relative to a given plant trait or phenotype refers to the form in which that trait or phenotype is found in the same variety of plant in nature. In one embodiment, a wild-type plant is also a control plant. In another embodiment, a wild-type plant is a non-transgenic plant.

[0034] As used herein, the term "modified" regarding a plant trait, refers to a change in the phenotype of a transgenic plant (for example, a transgenic plant with any combination of an altered oil content, an altered protein content, and/or an altered fiber content) in any part of the transgenic plant, for example the seeds, relative to a similar non-transgenic plant. As used herein, the term "altered" refers to either an increase or a decrease of a plant trait or phenotype (for example, oil content, protein content, and/or fiber content) in a transgenic plant, relative to a similar non-transgenic plant. In one specific, non-limiting example, a transgenic plant with a modified trait includes a plant with an increased oil content, increased protein content, and/or decreased fiber content relative to a similar non-transgenic plant. In another specific, non-limiting example, a transgenic plant with a modified trait includes unchanged oil content, increased protein content, and/or decreased fiber content relative to a similar non-transgenic plant. In yet another specific, non-limiting example, a transgenic plant with a modified trait includes an increased oil content, increased protein content, and/or unchanged fiber content relative to a similar non-transgenic plant. Specific, non-limiting examples of a change in phenotype include an IMQ phenotype or an IOQ phenotype.

[0035] An "interesting phenotype (trait)" with reference to a transgenic plant refers to an observable or measurable phenotype demonstrated by a T1 and/or subsequent generation plant, which is not displayed by the corresponding non-transgenic plant (i.e., a genotypically similar plant that has been raised or assayed under similar conditions). An interesting phenotype may represent an improvement in the plant (for example, increased oil content, increased protein content, and/or decreased fiber content in seeds of the plant) or may provide a means to produce improvements in other plants. An "improvement" is a feature that may enhance the utility of a plant species or variety by providing the plant with a unique and/or novel phenotype or quality. Such transgenic plants may have an improved phenotype, such as an IMQ phenotype or an IOQ phenotype.

[0036] The phrase "altered oil content phenotype" refers to a measurable phenotype of a genetically modified (transgenic) plant, where the plant displays a statistically significant increase or decrease in overall oil content (i.e., the percentage of seed mass that is oil), as compared to the similar, but non-modified (non-transgenic) plant. A high oil phenotype refers to an increase in overall oil content. The phrase "altered protein content phenotype" refers to measurable phenotype of a genetically modified plant, where the plant displays a statistically significant increase or decrease in overall protein content (i.e., the percentage of seed mass that is protein), as compared to the similar, but non-modified plant. A high protein phenotype refers to an increase in overall protein content. The phrase "altered fiber content phenotype" refers to measurable phenotype of a genetically modified plant, where the plant displays a statistically significant increase or decrease in overall fiber content (i.e., the percentage of seed mass that is fiber), as compared to the similar, but non-modified plant. A low fiber phenotype refers to decrease in overall fiber content.

[0037] As used herein, a "mutant" polynucleotide sequence or gene differs from the corresponding wild-type polynucleotide sequence or gene either in terms of sequence or expression, where the difference contributes to a modified or altered plant phenotype or trait. Relative to a plant or plant line, the term "mutant" refers to a plant or plant line which has a modified or altered plant phenotype or trait, where the modified or altered phenotype or trait is associated with the modified or altered expression of a wild-type polynucleotide sequence or gene.

[0038] As used herein, the term "T1" refers to the generation of plants from the seed of T0 plants. The T1 generation is the first set of transformed plants that can be selected by application of a selection agent, e.g., an antibiotic or herbicide, for which the transgenic plant contains the corresponding resistance gene. The term "T2" refers to the generation of plants by self-fertilization of the flowers of T1 plants, previously selected as being transgenic. T3 plants are generated from T2 plants, etc. As used herein, the "direct progeny" of a given plant derives from the seed (or, sometimes, other tissue) of that plant and is in the immediately subsequent generation; for instance, for a given lineage, a T2 plant is the direct progeny of a T1 plant. The "indirect progeny" of a given plant derives from the seed (or other tissue) of the direct progeny of that plant, or from the seed (or other tissue) of subsequent generations in that lineage; for instance, a T3 plant is the indirect progeny of a T1 plant.

[0039] As used herein, the term "plant part" includes any plant organ or tissue, including, without limitation, seeds, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. Plant cells can be obtained from any plant organ or tissue and cultures prepared therefrom. Provided herein is a transgenic plant cell having an IMQ phenotype and/or an IOQ phenotype. The transgenic plant cell comprises a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide. In preferred embodiments, the transgenic plant cell is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. In other embodiments, the plant cell is a seed, pollen, propagule, or embryo cell. The disclosure also provides plant cells from a plant that is the direct progeny or the indirect progeny of a plant grown from said progenitor cells. The class of plants which can be used in the methods of the present invention is generally as broad as the class of higher plants amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants.

[0040] As used herein, "transgenic plant" includes a plant that comprises within its genome a heterologous polynucleotide. The heterologous polynucleotide can be either stably integrated into the genome, or can be extra-chromosomal. Preferably, the polynucleotide of the present invention is stably integrated into the genome such that the polynucleotide is passed on to successive generations. A plant cell, tissue, organ, or plant into which the heterologous polynucleotides have been introduced is considered "transformed," "transfected," or "transgenic." Direct and indirect progeny of transformed plants or plant cells that also contain the heterologous polynucleotide are also considered transgenic.

[0041] Disclosed herein are transgenic plants having an Improved Seed Quality phenotype. Transgenic plants with an Improved Seed Quality phenotype may include an improved oil quantity and/or an improved meal quality. Transgenic plants with improved meal quality have an IMQ phenotype and transgenic plants with improved oil quantity have an IOQ phenotype. The IMQ phenotype in a transgenic plant may include altered protein and/or fiber content in any part of the transgenic plant, for example in the seeds. The IOQ phenotype in a transgenic plant may include altered oil content in any part of the transgenic plant, for example in the seeds. In particular embodiments, a transgenic plant may include an IOQ phenotype and/or an IMQ phenotype. In some embodiments of a transgenic plant, the IMQ phenotype may be an increase in protein content in the seed and/or a decrease in the fiber content of the seed. In other embodiments of a transgenic plant, the IOQ phenotype is an increase in the oil content of the seed (a high oil phenotype). Also provided is seed meal derived from the seeds of transgenic plants, wherein the seeds have altered protein content and/or altered fiber content. Further provided is oil derived from the seeds of transgenic plants, wherein the seeds have altered oil content. Any of these changes can lead to an increase in the AME from the seed or seed meal from transgenic plants, relative to control, non-transgenic, or wild-type plants. Also provided herein is meal, feed, or food produced from any part of the transgenic plant with an IMQ phenotype and/or IOQ phenotype.

[0042] In certain embodiments, the disclosed transgenic plants comprise a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an "IMQ" polypeptide. In particular embodiments, expression of an IMQ polypeptide in a transgenic plant causes an altered oil content, an altered protein content, and/or an altered fiber content in the transgenic plant. In preferred embodiments, the transgenic plant is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. Also provided is a method of producing oil or seed meal, comprising growing the transgenic plant and recovering oil and/or seed meal from said plant. The disclosure further provides feed, meal, grain, or seed comprising a nucleic acid sequence that encodes an IMQ polypeptide. The disclosure also provides feed, meal, grain, or seed comprising the IMQ polypeptide, or an ortholog thereof.

[0043] Various methods for the introduction of a desired polynucleotide sequence encoding the desired protein into plant cells are available and known to those of skill in the art and include, but are not limited to: (1) physical methods such as microinjection, electroporation, and microprojectile mediated delivery (biolistics or gene gun technology); (2) virus mediated delivery methods; and (3) Agrobacterium-mediated transformation methods (see, for example, WO 2007/053482 and WO 2005/107437, which are incorporated herein by reference in their entirety).

[0044] The most commonly used methods for transformation of plant cells are the Agrobacterium-mediated DNA transfer process and the biolistics or microprojectile bombardment mediated process (i.e., the gene gun). Typically, nuclear transformation is desired but where it is desirable to specifically transform plastids, such as chloroplasts or amyloplasts, plant plastids may be transformed utilizing a microprojectile-mediated delivery of the desired polynucleotide.

[0045] Agrobacterium-mediated transformation is achieved through the use of a genetically engineered soil bacterium belonging to the genus Agrobacterium. A number of wild-type and disarmed strains of Agrobacterium tumefaciens and Agrobacterium rhizogenes harboring Ti or Ri plasmids can be used for gene transfer into plants. Gene transfer is done via the transfer of a specific DNA known as "T-DNA" that can be genetically engineered to carry any desired piece of DNA into many plant species.

[0046] Agrobacterium-mediated genetic transformation of plants involves several steps. The first step, in which the virulent Agrobacterium and plant cells are first brought into contact with each other, is generally called "inoculation." Following the inoculation, the Agrobacterium and plant cells/tissues are permitted to be grown together for a period of several hours to several days or more under conditions suitable for growth and T-DNA transfer. This step is termed "co-culture." Following co-culture and T-DNA delivery, the plant cells are treated with bactericidal or bacteriostatic agents to kill the Agrobacterium remaining in contact with the explant and/or in the vessel containing the explant. If this is done in the absence of any selective agents to promote preferential growth of transgenic versus non-transgenic plant cells, then this is typically referred to as the "delay" step. If done in the presence of selective pressure favoring transgenic plant cells, then it is referred to as a "selection" step. When a "delay" is used, it is typically followed by one or more "selection" steps.

[0047] With respect to microprojectile bombardment (U.S. Pat. No. 5,550,318; U.S. Pat. No. 5,538,880, U.S. Pat. No. 5,610,042; and PCT Publication WO 95/06128; each of which is specifically incorporated herein by reference in its entirety), particles are coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, platinum, and preferably, gold.

[0048] An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System (BioRad, Hercules, Calif.), which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with monocot plant cells cultured in suspension.

[0049] Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species. Examples of species that have been transformed by microprojectile bombardment include monocot species such as maize (PCT Publication No. WO 95/06128), barley, wheat (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety), rice, oat, rye, sugarcane, and sorghum, as well as a number of dicots including tobacco, soybean (U.S. Pat. No. 5,322,783, incorporated herein by reference in its entirety), sunflower, peanut, cotton, tomato, and legumes in general (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety).

[0050] To select or score for transformed plant cells regardless of transformation methodology, the DNA introduced into the cell contains a gene that functions in a regenerable plant tissue to produce a compound that confers upon the plant tissue resistance to an otherwise toxic compound. Genes of interest for use as a selectable, screenable, or scorable marker would include but are not limited to GUS, green fluorescent protein (GFP), luciferase (LUX), antibiotic or herbicide tolerance genes. Examples of antibiotic resistance genes include the penicillins, kanamycin (and neomycin, G418, bleomycin), methotrexate (and trimethoprim), chloramphenicol, and tetracycline. Polynucleotide molecules encoding proteins involved in herbicide tolerance are known in the art, and include, but are not limited to a polynucleotide molecule encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) described in U.S. Pat. No. 5,627,061, U.S. Pat. No. 5,633,435, and U.S. Pat. No. 6,040,497 and aroA described in U.S. Pat. No. 5,094,945 for glyphosate tolerance; a polynucleotide molecule encoding bromoxynil nitrilase (Bxn) described in U.S. Pat. No. 4,810,648 for Bromoxynil tolerance; a polynucleotide molecule encoding phytoene desaturase (crtI) described in Misawa et al. (Plant J. 4:833-840, 1993) and Misawa et al. (Plant J. 6:481-489, 1994) for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, also known as ALS) described in Sathasiivan et al. (Nucl. Acids Res. 18:2188-2193, 1990) for tolerance to sulfonylurea herbicides; and the bar gene described in DeBlock et al. (EMBO J. 6:2513-2519, 1987) for glufosinate and bialaphos tolerance.

[0051] The regeneration, development, and cultivation of plants from various transformed explants are well documented in the art. This regeneration and growth process typically includes the steps of selecting transformed cells and culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil. Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants. Developing plantlets are transferred to soil less plant growth mix, and hardened off, prior to transfer to a greenhouse or growth chamber for maturation.

[0052] The present invention can be used with any transformable cell or tissue. By transformable as used herein is meant a cell or tissue that is capable of further propagation to give rise to a plant. Those of skill in the art recognize that a number of plant cells or tissues are transformable in which after insertion of exogenous DNA and appropriate culture conditions the plant cells or tissues can form into a differentiated plant. Tissue suitable for these purposes can include but is not limited to immature embryos, scutellar tissue, suspension cell cultures, immature inflorescence, shoot meristem, nodal explants, callus tissue, hypocotyl tissue, cotyledons, roots, and leaves.

[0053] Any suitable plant culture medium can be used. Examples of suitable media would include but are not limited to MS-based media (Murashige and Skoog, Physiol. Plant, 15:473-497, 1962) or N6-based media (Chu et al., Scientia Sinica 18:659, 1975) supplemented with additional plant growth regulators including but not limited to auxins, cytokinins, ABA, and gibberellins. Those of skill in the art are familiar with the variety of tissue culture media, which when supplemented appropriately, support plant tissue growth and development and are suitable for plant transformation and regeneration. These tissue culture media can either be purchased as a commercial preparation, or custom prepared and modified. Those of skill in the art are aware that media and media supplements such as nutrients and growth regulators for use in transformation and regeneration and other culture conditions such as light intensity during incubation, pH, and incubation temperatures that can be optimized for the particular variety of interest.

[0054] One of ordinary skill will appreciate that, after an expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.

Identification of Plants with an Improved Oil Quantity Phenotype and/or Improved Meal Quality Phenotype

[0055] An Arabidopsis activation tagging screen (ACTTAG) was used to identify the association between 1) ACTTAG plant lines with an altered protein, fiber and/or oil content (phenotype, for example, see columns 4, 5 and 6, respectively, of Table 1, below) and 2) the nucleic acid sequences identified in column 3 of Tables 2 and 3, wherein each nucleic acid sequence is provided with a gene alias or an IMQ designation (IMQ#; see column 1 in Tables 1, 2, and 3). Briefly, and as further described in the Examples, a large number of Arabidopsis plants were mutated with the pSKI015 vector, which comprises a T-DNA from the Ti plasmid of Agrobacterium tumefaciens, a viral enhancer element, and a selectable marker gene (Weigel et al., 2000, Plant Physiology, 122:1003-1013). When the T-DNA inserts into the genome of transformed plants, the enhancer element can cause up-regulation of genes in the vicinity, generally within about nine kilobases (kb) of the enhancers. T1 plants were exposed to the selective agent in order to specifically recover transformed plants that expressed the selectable marker and therefore harbored T-DNA insertions. T1 plants were allowed to grow to maturity, self-fertilize and produce seed. T2 seed was harvested, labeled and stored. To amplify the seed stocks, about eighteen T2 were sown in soil and, after germination, exposed to the selective agent to recover transformed T2 plants. T3 seed from these plants was harvested and pooled. Oil, protein and fiber content of the seed were estimated using Near Infrared Spectroscopy (NIR) as described in the Examples.

[0056] Quantitative determination of fatty acid (FA) content (column 7, Table 1) in T2 seeds was performed using the following methods. A sample of 15 to 20 T2 seeds from each line tested. This sample generally contained plants with homozygous insertions, no insertions, and hemizygous insertions in a standard 1:1:2 ratios. The seed sample was massed on UMT-2 ultra-microbalance (Mettler-Toledo Co., Ohio, US) and then transferred to a glass extraction vial. Lipids were extracted from the seeds and trans-esterified in 500 .mu.l 2.5% H.sub.2SO.sub.4 in MeOH for 3 hours at 80.degree. C., following the method of Browse et al. (Biochem J 235:25-31, 1986) with modifications. A known amount of heptadecanoic acid was included in the reaction as an internal standard. 750 .mu.l of water and 400 .mu.l of hexane were added to each vial, which was then shaken vigorously and allowed to phase separate. Reaction vials were loaded directly onto gas chromatography (GC) for analysis and the upper hexane phase was sampled by the autosampler. Gas chromatography with Flame Ionization detection was used to separate and quantify the fatty acid methyl esters. Agilent 6890 Plus GC's were used for separation with Agilent Innowax columns (30 m.times.0.25 mm ID, 250 um film thickness). The carrier gas was Hydrogen at a constant flow of 2.5 ml/minute. 1 .mu.l of sample was injected in splitless mode (inlet temperature 220.degree. C., Purge flow 15 ml/min at 1 minute). The oven was programmed for an initial temperature of 105.degree. C., initial time 0.5 minutes, followed by a ramp of 60.degree. C. per minute to 175.degree. C., a 40.degree. C./minute ramp to 260.degree. C. with a final hold time of 2 minutes. Detection was by Flame Ionization (Temperature 275.degree. C., Fuel flow 30.0 ml/min, Oxidizer 400.0 ml/min). Instrument control and data collection and analysis were monitored using the Millennium Chromatography Management System (Version 3.2, Waters Corporation, Milford, Mass.). Peaks were initially identified by comparison with standards. Integration and quantification were performed automatically, but all analyses were subsequently examined manually to verify correct peak identification and acceptable signal to noise ratio before inclusion of the derived results in the study.

[0057] The association of an IMQ nucleic acid sequence with an IMQ phenotype or an IOQ phenotype was discovered by analysis of the genomic DNA sequence flanking the T-DNA insertion in the ACTTAG line identified in column 3 of Table 1. An ACTTAG line is a family of plants derived from a single plant that was transformed with a T-DNA element containing four tandem copies of the CaMV 35S enhancers. Accordingly, the disclosed IMQ nucleic acid sequences and/or polypeptides may be employed in the development of transgenic plants having an improved seed quality phenotype, including an IMQ phenotype and/or an IOQ phenotype. IMQ nucleic acid sequences may be used in the generation of transgenic plants, such as oilseed crops, that provide improved oil yield from oilseed processing and result in an increase in the quantity of oil recovered from seeds of the transgenic plant. IMQ nucleic acid sequences may also be used in the generation of transgenic plants, such as feed grain crops, that provide an IMQ phenotype resulting in increased energy for animal feeding, for example, seeds or seed meal with an altered protein and/or fiber content, resulting in an increase in AME. IMQ nucleic acid sequences may further be used to increase the oil content of specialty oil crops, in order to augment yield and/or recovery of desired unusual fatty acids. Transgenic plants that have been genetically modified to express IMQ polypeptides can be used in the production of seeds, wherein the transgenic plants are grown, and oil and seed meal are obtained from plant parts (e.g. seed) using standard methods.

IMQ Nucleic Acids and Polypeptides

[0058] The IMQ designation for each of the IMQ nucleic acid sequences discovered in the activation tagging screen described herein are listed in column 1 of Tables 1-3, below. The disclosed IMQ polypeptides are listed in column 5 of Table 2 and column 4 of Table 3. As used herein, the term "IMQ polypeptide" refers to any polypeptide that when expressed in a plant causes an IMQ phenotype and/or an IOQ phenotype in any part of the plant, for example the seeds. In one embodiment, an IMQ polypeptide refers to a full-length IMQ protein, or a fragment, derivative (variant), or ortholog thereof that is "functionally active," such that the protein fragment, derivative, or ortholog exhibits one or more or the functional activities associated with one or more of the disclosed full-length IMQ polypeptides, for example, the amino acid sequences provided in the GenBank entry referenced in column 5 of Table 2, which correspond to the amino acid sequences set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100, or an ortholog thereof. In one preferred embodiment, a functionally active IMQ polypeptide causes an IMQ phenotype and/or an IOQ phenotype in a transgenic plant. In another embodiment, a functionally active IMQ polypeptide causes an altered oil, protein, and/or fiber content phenotype (for example, an altered seed meal content phenotype) when mis-expressed in a plant. In other preferred embodiments, mis-expression of the IMQ polypeptide causes a high oil (such as, increased oil), high protein (such as, increased protein), and/or low fiber (such as, decreased fiber) phenotype in a plant. In another embodiment, mis-expression of the IMQ polypeptide causes an improved AME of meal. In yet another embodiment, a functionally active IMQ polypeptide can rescue defective (including deficient) endogenous IMQ activity when expressed in a plant or in plant cells; the rescuing polypeptide may be from the same or from a different species as the species with the defective polypeptide activity. The disclosure also provides feed, meal, grain, food, or seed comprising the IMQ polypeptide, or a fragment, derivative (variant), or ortholog thereof.

[0059] In another embodiment, a functionally active fragment of a full length IMQ polypeptide (for example, a functionally active fragment of a native polypeptide having the amino acid sequence set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100, or a naturally occurring ortholog thereof) retains one or more of the biological properties associated with the full-length IMQ polypeptide, such as signaling activity, binding activity, catalytic activity, or cellular or extra-cellular localizing activity. An IMQ fragment preferably comprises an IMQ domain, such as a C- or N-terminal or catalytic domain, among others, and preferably comprises at least 10, preferably at least 20, more preferably at least 25, and most preferably at least 50 contiguous amino acids of an IMQ protein. Functional domains of IMQ genes are listed in column 8 of Table 2 and can be identified using the PFAM program (Bateman A et al., 1999, Nucleic Acids Res. 27:260-262) or INTERPRO (Mulder et al., 2003, Nucleic Acids Res. 31, 315-318) program. Functionally active variants of full-length IMQ polypeptides, or fragments thereof, include polypeptides with amino acid insertions, deletions, or substitutions that retain one of more of the biological properties associated with the full-length IMQ polypeptide. In some cases, variants are generated that change the post-translational processing of an IMQ polypeptide. For instance, variants may have altered protein transport or protein localization characteristics, or altered protein half-life, compared to the native polypeptide.

[0060] As used herein, the term "IMQ nucleic acid" refers to any polynucleotide that when expressed in a plant causes an IMQ phenotype and/or an IOQ phenotype in any part of the plant, for example the seeds. In one embodiment, an IMQ polynucleotide encompasses nucleic acids with the sequence provided in or complementary to the GenBank entry referenced in column 3 of Table 2, which correspond to nucleic acid sequences set forth as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99, as well as functionally active fragments, derivatives, or orthologs thereof. An IMQ nucleic acid of this disclosure may be DNA, derived from genomic DNA or cDNA, or RNA. Genomic sequences of the genes listed in Table 2 are known and available in public databases such as GenBank.

[0061] In one embodiment, a functionally active IMQ nucleic acid encodes or is complementary to a nucleic acid that encodes a functionally active IMQ polypeptide. A functionally active IMQ nucleic acid also includes genomic DNA that serves as a template for a primary RNA transcript (i.e., an mRNA precursor) that requires processing, such as splicing, before encoding the functionally active IMQ polypeptide. An IMQ nucleic acid can include other non-coding sequences, which may or may not be transcribed; such sequences include 5' and 3' UTRs, polyadenylation signals and regulatory sequences that control gene expression, among others, as are known in the art. Some polypeptides require processing events, such as proteolytic cleavage, covalent modification, etc., in order to become fully active. Accordingly, functionally active nucleic acids may encode the mature or the pre-processed IMQ polypeptide, or an intermediate form. An IMQ polynucleotide can also include heterologous coding sequences, for example, sequences that encode a marker included to facilitate the purification of the fused polypeptide, or a transformation marker. In another embodiment, a functionally active IMQ nucleic acid is capable of being used in the generation of loss-of-function IMQ phenotypes, for instance, via antisense suppression, co-suppression, etc. The disclosure also provides feed, meal, grain, food, or seed comprising a nucleic acid sequence that encodes an IMQ polypeptide.

[0062] In one preferred embodiment, an IMQ nucleic acid used in the disclosed methods comprises a nucleic acid sequence that encodes, or is complementary to a sequence that encodes, an IMQ polypeptide having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a disclosed IMQ polypeptide sequence, for example the amino acid sequence set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100.

[0063] In another embodiment, an IMQ polypeptide comprises a polypeptide sequence with at least 50% or 60% identity to a disclosed IMQ polypeptide sequence (for example, the amino acid sequence set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100) and may have at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a disclosed IMQ polypeptide sequence. In a further embodiment, an IMQ polypeptide comprises 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a disclosed IMQ polypeptide sequence, and may include a conserved protein domain of the IMQ polypeptide (such as the protein domain(s) listed in column 8 of Table 2). In another embodiment, an IMQ polypeptide comprises a polypeptide sequence with at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a functionally active fragment of the polypeptide referenced in column 5 of Table 2. In yet another embodiment, an IMQ polypeptide comprises a polypeptide sequence with at least 50%, 60%, 70%, 80%, 90%, 95%, 97%, 98%, or 99% identity to the polypeptide sequence of the GenBank entry referenced in column 5 of Table 2 over its entire length and comprises a conserved protein domain(s) listed in column 8 of Table 2.

[0064] In another aspect, an IMQ polynucleotide sequence is at least 50% to 60% identical over its entire length to a disclosed IMQ nucleic acid sequence, such as the nucleic acid sequence set forth as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99, or nucleic acid sequences that are complementary to such an IMQ sequence, and may comprise at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to the disclosed IMQ sequence, or a functionally active fragment thereof, or complementary sequences. In another embodiment, a disclosed IMQ nucleic acid comprises a nucleic acid sequence as shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99, or nucleic acid sequences that are complementary to such an IMQ sequence, and nucleic acid sequences that have substantial sequence homology to a such IMQ sequences. As used herein, the phrase "substantial sequence homology" refers to those nucleic acid sequences that have slight or inconsequential sequence variations from such IMQ sequences, i.e., the sequences function in substantially the same manner and encode an IMQ polypeptide.

[0065] As used herein, "percent (%) sequence identity" with respect to a specified subject sequence, or a specified portion thereof, is defined as the percentage of nucleotides or amino acids in an identified sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol., 1990, 215:403-410) with search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. A "percent (%) identity value" is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by performing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation. A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.

[0066] Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that selectively hybridize to the disclosed IMQ nucleic acid sequences (for example, the nucleic acid sequence set forth as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99). The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are well known (see, e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Press, Plainview, N.Y.,).

[0067] In some embodiments, a nucleic acid molecule of the disclosure is capable of hybridizing to a nucleic acid molecule containing the disclosed nucleotide sequence under stringent hybridization conditions that are: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65.degree. C. in a solution comprising 6.times. single strength citrate (SSC) (1.times.SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5.times.Denhardt's solution, 0.05% sodium pyrophosphate and 100 .mu.g/ml herring sperm DNA; hybridization for 18-20 hours at 65.degree. C. in a solution containing 6.times.SSC, 1.times.Denhardt's solution, 100 .mu.g/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65.degree. C. for 1 h in a solution containing 0.1.times.SSC and 0.1% SDS (sodium dodecyl sulfate). In other embodiments, moderately stringent hybridization conditions are used that are: pretreatment of filters containing nucleic acid for 6 h at 40.degree. C. in a solution containing 35% formamide, 5.times.SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 .mu.g/ml denatured salmon sperm DNA; hybridization for 18-20 h at 40.degree. C. in a solution containing 35% formamide, 5.times.SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 .mu.g/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55.degree. C. in a solution containing 2.times.SSC and 0.1% SDS. Alternatively, low stringency conditions can be used that comprise: incubation for 8 hours to overnight at 37.degree. C. in a solution comprising 20% formamide, 5.times.SSC, 50 mM sodium phosphate (pH 7.6), 5.times.Denhardt's solution, 10% dextran sulfate, and 20 .mu.g/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1.times.SSC at about 37.degree. C. for 1 hour.

[0068] As a result of the degeneracy of the genetic code, a number of polynucleotide sequences encoding an IMQ polypeptide can be produced. For example, codons may be selected to increase the rate at which expression of the polypeptide occurs in a particular host species, in accordance with the optimum codon usage dictated by the particular host organism (see, e.g., Nakamura et al., 1999, Nucleic Acids Res. 27:292). Such sequence variants may be used in the methods disclosed herein.

[0069] The disclosed methods may use orthologs of a disclosed Arabidopsis IMQ nucleic acid sequence. Representative putative orthologs of each of the disclosed Arabidopsis IMQ genes are identified in column 3 of Table 3, below. Methods of identifying the orthologs in other plant species are known in the art. In general, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. In evolution, when a gene duplication event follows speciation, a single gene in one species, such as Arabidopsis, may correspond to multiple genes (paralogs) in another. As used herein, the term "orthologs" encompasses paralogs. When sequence data is available for a particular plant species, orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen M A and Bork P, 1998, Proc. Natl. Acad. Sci., 95:5849-5856; Huynen M A et al., 2000, Genome Research, 10:1204-1210).

[0070] Programs for multiple sequence alignment, such as CLUSTAL (Thompson J D et al., 1994, Nucleic Acids Res. 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse species (e.g., retrieved through BLAST analysis), orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. Nucleic acid hybridization methods may also be used to find orthologous genes and are preferred when sequence data are not available. Degenerate PCR and screening of cDNA or genomic DNA libraries are common methods for finding related gene sequences and are well known in the art (see, e.g., Sambrook, 1989, Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Press, Plainview, N.Y.; Dieffenbach and Dveksler, 1995, PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY). For instance, methods for generating a cDNA library from the plant species of interest and probing the library with partially homologous gene probes are described in Sambrook et al. A highly conserved portion of the Arabidopsis IMQ coding sequence may be used as a probe. IMQ ortholog nucleic acids may hybridize to the nucleic acid of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99 under high, moderate, or low stringency conditions. After amplification or isolation of a segment of a putative ortholog, that segment may be cloned and sequenced by standard techniques and utilized as a probe to isolate a complete cDNA or genomic DNA clone.

[0071] Alternatively, it is possible to initiate an EST project to generate a database of sequence information for the plant species of interest. In another approach, antibodies that specifically bind known IMQ polypeptides are used for ortholog isolation (see, e.g., Harlow and Lane, 1988, 1999, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York). Western blot analysis can determine that an IMQ ortholog (i.e., a protein orthologous to a disclosed IMQ polypeptide) is present in a crude extract of a particular plant species. When reactivity is observed, the sequence encoding the candidate ortholog may be isolated by screening expression libraries representing the particular plant species. Expression libraries can be constructed in a variety of commercially available vectors, including lambda gt11, as described in Sambrook, et al., 1989. Once the candidate ortholog(s) are identified by any of these means, candidate orthologous sequence are used as bait (the "query") for the reverse BLAST against sequences from Arabidopsis or other species in which IMQ nucleic acid and/or polypeptide sequences have been identified.

[0072] IMQ nucleic acids and polypeptides may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR), as previously described, are well known in the art. Alternatively, nucleic acid sequence may be synthesized. Any known method, such as site directed mutagenesis (Kunkel T A et al., 1991, Methods Enzymol. 204:125-39), may be used to introduce desired changes into a cloned nucleic acid.

[0073] In general, the methods disclosed herein involve incorporating the desired form of the IMQ nucleic acid into a plant expression vector for transformation of plant cells, and the IMQ polypeptide is expressed in the host plant. Transformed plants and plant cells expressing an IMQ polypeptide express an IMQ phenotype and/or an IOQ phenotype and, in one specific, non-limiting example, may have high (increased) oil, high (increased) protein, and/or low (decreased) fiber content.

[0074] An "isolated" IMQ nucleic acid molecule is other than in the form or setting in which it is found in nature, and is identified and separated from least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the IMQ nucleic acid. However, an isolated IMQ nucleic acid molecule includes IMQ nucleic acid molecules contained in cells that ordinarily express IMQ where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

Generation of Genetically Modified Plants with an Improved Oil Quantity Phenotype and/or an Improved Meal Quality Phenotype

[0075] The disclosed IMQ nucleic acids and polypeptides may be used in the generation of transgenic plants having a modified or altered oil, protein, and/or fiber content phenotype. As used herein, an "altered oil content (phenotype)" may refer to altered oil content in any part of the plant. In a preferred embodiment, altered expression of the IMQ gene in a plant is used to generate plants with a high oil content (phenotype). As used herein, an "altered protein content (phenotype)" may refer to altered protein content in any part of the plant. In a preferred embodiment, altered expression of the IMQ gene in a plant is used to generate plants with a high (or increased) protein content (phenotype). As used herein, an "altered fiber content (phenotype)" may refer to altered fiber content in any part of the plant. In a preferred embodiment, altered expression of the IMQ gene in a plant is used to generate plants with a low (or decreased) fiber content (phenotype). The altered oil, protein, and/or fiber content is often observed in seeds. Examples of a transgenic plant include plants comprising a plant transformation vector with a nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide having the amino acid sequence as set forth in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100, or an ortholog thereof.

[0076] Transgenic plants, such as corn, soybean and canola containing the disclosed nucleic acid sequences, can be used in the production of vegetable oil and meal. Vegetable oil is used in a variety of food products, while meal from seed is used as an animal feed. After harvesting seed from transgenic plants, the seed is cleaned to remove plant stalks and other material and then flaked in roller mills to break the hulls. The crushed seed is heated to 75-100.degree. C. to denature hydrolytic enzymes, lyse the unbroken oil containing cells, and allow small oil droplets to coalesce. Most of the oil is then removed (and can be recovered) by pressing the seed material in a screw press. The remaining oil is removed from the presscake by extraction with and organic solvents, such as hexane. The solvent is removed from the meal by heating it to approximately 100.degree. C. After drying, the meal is then granulated to a consistent form. The meal, containing the protein, digestible carbohydrate, and fiber of the seed, may be mixed with other materials prior to being used as an animal feed.

[0077] The methods described herein for generating transgenic plants are generally applicable to all plants. Although activation tagging and gene identification is carried out in Arabidopsis, the IMQ nucleic acid sequence (or an ortholog, variant or fragment thereof) may be expressed in any type of plant. In a preferred embodiment, oil-producing plants produce and store triacylglycerol in specific organs, primarily in seeds. Such species include soybean (Glycine max), rapeseed and canola (including Brassica napus, B. campestris), sunflower (Helianthus annus), cotton (Gossypium hirsutum), corn (Zea mays), cocoa (Theobroma cacao), safflower (Carthamus tinctorius), oil palm (Elaeis guineensis), coconut palm (Cocos nucifera), flax (Linum usitatissimum), castor (Ricinus communis), and peanut (Arachis hypogaea), as well as wheat, rice and oat. Fruit- and vegetable-bearing plants, grain-producing plants, nut-producing plants, rapid cycling Brassica species, alfalfa (Medicago sativa), tobacco (Nicotiana), turfgrass (Poaceae family), other forage crops, and wild species may also be a source of unique fatty acids. In other embodiments, any plant expressing the IMQ nucleic acid sequence can also express increased protein and/or decreased fiber content in a specific plant part or organ, such as in seeds.

[0078] The skilled artisan will recognize that a wide variety of transformation techniques exist in the art, and new techniques are continually becoming available. Any technique that is suitable for the target host plant can be employed within the scope of the present invention. For example, the constructs can be introduced in a variety of forms including, but not limited to, as a strand of DNA, in a plasmid, or in an artificial chromosome. The introduction of the constructs into the target plant cells can be accomplished by a variety of techniques, including, but not limited to, Agrobacterium-mediated transformation, electroporation, microinjection, microprojectile bombardment, calcium-phosphate-DNA co-precipitation, or liposome-mediated transformation of a heterologous nucleic acid. The transformation of the plant is preferably permanent, i.e. by integration of the introduced expression constructs into the host plant genome, so that the introduced constructs are passed onto successive plant generations. Depending upon the intended use, a heterologous nucleic acid construct comprising an IMQ polynucleotide may encode the entire protein or a biologically active portion thereof.

[0079] In one embodiment, binary Ti-based vector systems may be used to transfer polynucleotides. Standard Agrobacterium binary vectors are known to those of skill in the art, and many are commercially available (e.g., pBI121 Clontech Laboratories, Palo Alto, Calif.). A construct or vector may include a plant promoter to express the nucleic acid molecule of choice. In a preferred embodiment, the promoter is a plant promoter.

[0080] The optimal procedure for transformation of plants with Agrobacterium vectors will vary with the type of plant being transformed. Exemplary methods for Agrobacterium-mediated transformation include transformation of explants of hypocotyl, shoot tip, stem or leaf tissue, derived from sterile seedlings and/or plantlets. Such transformed plants may be reproduced sexually, or by cell or tissue culture. Agrobacterium transformation has been previously described for a large number of different types of plants and methods for such transformation may be found in the scientific literature. Of particular relevance are methods to transform commercially important crops, such as plants of the Brassica species, including canola and rapeseed, (De Block et al., 1989, Plant Physiol., 91:694-701), sunflower (Everett et al., 1987, Bio/Technology, 5:1201), soybean (Christou et al., 1989, Proc. Natl. Acad. Sci USA, 86:7500-7504; Kline et al., 1987, Nature, 327:70), wheat, rice and oat.

[0081] Expression (including transcription and translation) of an IMQ nucleic acid sequence may be regulated with respect to the level of expression, the tissue type(s) where expression takes place and/or developmental stage of expression. A number of heterologous regulatory sequences (e.g., promoters and enhancers) are available for controlling the expression of an IMQ nucleic acid. These include constitutive, inducible and regulatable promoters, as well as promoters and enhancers that control expression in a tissue- or temporal-specific manner. Exemplary constitutive promoters include the raspberry E4 promoter (U.S. Pat. Nos. 5,783,393 and 5,783,394), the nopaline synthase (NOS) promoter (Ebert et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:5745-5749, 1987), the octopine synthase (OCS) promoter (which is carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., Plant Mol. Biol. 9:315-324, 1987) and the CaMV 35S promoter (Odell et al., Nature 313:810-812, 1985 and Jones J D et al, 1992, Transgenic Res., 1:285-297), the figwort mosaic virus 35S-promoter (U.S. Pat. No. 5,378,619), the light-inducible promoter from the small subunit of ribulose-1,5-bis-phosphate carboxylase (ssRUBISCO), the Adh promoter (Walker et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:6624-6628, 1987), the sucrose synthase promoter (Yang et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:4144-4148, 1990), the R gene complex promoter (Chandler et al., The Plant Cell 1:1175-1183, 1989), the chlorophyll a/b binding protein gene promoter, the CsVMV promoter (Verdaguer B et al., 1998, Plant Mol Biol., 37:1055-1067), and the melon actin promoter (published PCT application WO0056863). Exemplary tissue-specific promoters include the tomato E4 and E8 promoters (U.S. Pat. No. 5,859,330) and the tomato 2AII gene promoter (Van Haaren M J J et al., 1993, Plant Mol Bio., 21:625-640).

[0082] In one preferred embodiment, expression of the IMQ nucleic acid sequence is under control of regulatory sequences from genes whose expression is associated with early seed and/or embryo development. Indeed, in a preferred embodiment, the promoter used is a seed-enhanced promoter. Examples of such promoters include the 5' regulatory regions from such genes as napin (Kridl et al., Seed Sci. Res. 1:209:219, 1991), globulin (Belanger and Kriz, Genet., 129: 863-872, 1991, GenBank Accession No. L22295), gamma zein Z 27 (Lopes et al., Mol Gen Genet., 247:603-613, 1995), L3 oleosin promoter (U.S. Pat. No. 6,433,252), phaseolin (Bustos et al., Plant Cell, 1(9):839-853, 1989), arcelin5 (U.S. Application No. 2003/0046727), a soybean 7S promoter, a 7S.alpha. promoter (U.S. Application No. 2003/0093828), the soybean 7S.alpha.' beta conglycinin promoter, a 7S .alpha.' promoter (Beachy et al., EMBO J., 4:3047, 1985; Schuler et al., Nucleic Acid Res., 10(24):8225-8244, 1982), soybean trypsin inhibitor (Riggs et al., Plant Cell 1(6):609-621, 1989), ACP (Baerson et al., Plant Mol. Biol., 22(2):255-267, 1993), stearoyl-ACP desaturase (Slocombe et al., Plant Physiol. 104(4):167-176, 1994), soybean a' subunit of .beta.-conglycinin (Chen et al., Proc. Natl. Acad. Sci. 83:8560-8564, 1986), Vicia faba USP (P-Vf.Usp, SEQ ID NO: 1, 2, and 3 in (U.S. Application No. 2003/229918) and Zea mays L3 oleosin promoter (Hong et al., Plant Mol. Biol., 34(3):549-555, 1997). Also included are the zeins, which are a group of storage proteins found in corn endosperm. Genomic clones for zein genes have been isolated (Pedersen et al., Cell, 29:1015-1026, 1982; and Russell et al., Transgenic Res. 6(2):157-168) and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD and genes, could also be used. Other promoters known to function, for example, in corn include the promoters for the following genes: waxy, Brittle, Shrunken 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins and sucrose synthases. Legume genes whose promoters are associated with early seed and embryo development include V. faba legumin (Baumlein et al., 1991, Mol. Gen. Genet. 225:121-8; Baumlein et al., 1992, Plant J. 2:233-9), V. faba usp (Fiedler et al., 1993, Plant Mol. Biol. 22:669-79), pea convicilin (Bown et al., 1988, Biochem. J. 251:717-26), pea lectin (dePater et al., 1993, Plant Cell 5:877-86), P. vulgaris beta phaseolin (Bustos et al., 1991, EMBO J. 10:1469-79), P. vulgaris DLEC2 and PHS [beta] (Bobb et al., 1997, Nucleic Acids Res. 25:641-7), and soybean beta-Conglycinin, 7S storage protein (Chamberland et al., 1992, Plant Mol. Biol. 19:937-49).

[0083] Cereal genes whose promoters are associated with early seed and embryo development include rice glutelin ("GluA-3," Yoshihara and Takaiwa, 1996, Plant Cell Physiol. 37:107-11; "GluB-1," Takaiwa et al., 1996, Plant Mol. Biol. 30:1207-21; Washida et al., 1999, Plant Mol. Biol. 40:1-12; "Gt3," Leisy et al., 1990, Plant Mol. Biol. 14:41-50), rice prolamin (Zhou & Fan, 1993, Transgenic Res. 2:141-6), wheat prolamin (Hammond-Kosack et al., 1993, EMBO J. 12:545-54), maize zein (Z4, Matzke et al., 1990, Plant Mol. Biol. 14:323-32), and barley B-hordeins (Entwistle et al., 1991, Plant Mol. Biol. 17:1217-31).

[0084] Other genes whose promoters are associated with early seed and embryo development include oil palm GLO7A (7S globulin, Morcillo et al., 2001, Physiol. Plant 112:233-243), Brassica napus napin, 2S storage protein, and napA gene (Josefsson et al., 1987, J. Biol. Chem. 262:12196-201; Stalberg et al., 1993, Plant Mol. Biol. 1993 23:671-83; Ellerstrom et al., 1996, Plant Mol. Biol. 32:1019-27), Brassica napus oleosin (Keddie et al., 1994, Plant Mol. Biol. 24:327-40), Arabidopsis oleosin (Plant et al., 1994, Plant Mol. Biol. 25:193-205), Arabidopsis FAE1 (Rossak et al., 2001, Plant Mol. Biol. 46:717-25), Canavalia gladiata conA (Yamamoto et al., 1995, Plant Mol. Biol. 27:729-41), and Catharanthus roseus strictosidine synthase (Str, Ouwerkerk and Memelink, 1999, Mol. Gen. Genet. 261:635-43). In another preferred embodiment, regulatory sequences from genes expressed during oil biosynthesis are used (see, e.g., U.S. Pat. No. 5,952,544). Alternative promoters are from plant storage protein genes (Bevan et al., 1993, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 342:209-15). Additional promoters that may be utilized are described, for example, in U.S. Pat. Nos. 5,378,619; 5,391,725; 5,428,147; 5,447,858; 5,608,144; 5,608,144; 5,614,399; 5,633,441; 5,633,435; and 4,633,436.

[0085] In yet another aspect, in some cases it may be desirable to inhibit the expression of the endogenous IMQ nucleic acid sequence in a host cell. Exemplary methods for practicing this aspect of the invention include, but are not limited to antisense suppression (Smith, et al., 1988, Nature, 334:724-726; van der Krol et al., 1988, BioTechniques, 6:958-976); co-suppression (Napoli, et al., 1990, Plant Cell, 2:279-289); ribozymes (PCT Publication WO 97/10328); and combinations of sense and antisense (Waterhouse, et al., 1998, Proc. Natl. Acad. Sci. USA, 95:13959-13964). Methods for the suppression of endogenous sequences in a host cell typically employ the transcription or transcription and translation of at least a portion of the sequence to be suppressed. Such sequences may be homologous to coding as well as non-coding regions of the endogenous sequence. Antisense inhibition may use the entire cDNA sequence (Sheehy et al., 1988, Proc. Natl. Acad. Sci. USA, 85:8805-8809), a partial cDNA sequence including fragments of 5' coding sequence, (Cannon et al., 1990, Plant Mol. Biol., 15:39-47), or 3' non-coding sequences (Ch'ng et al., 1989, Proc. Natl. Acad. Sci. USA, 86:10006-10010). Cosuppression techniques may use the entire cDNA sequence (Napoli et al., 1990, Plant Cell, 2:279-289; van der Krol et al., 1990, Plant Cell, 2:291-299), or a partial cDNA sequence (Smith et al., 1990, Mol. Gen. Genetics, 224:477-481).

[0086] Standard molecular and genetic tests may be performed to further analyze the association between a nucleic acid sequence and an observed phenotype. Exemplary techniques are described below.

[0087] 1. DNA/RNA Analysis

[0088] The stage- and tissue-specific gene expression patterns in mutant versus wild-type lines may be determined, for instance, by in situ hybridization. Analysis of the methylation status of the gene, especially flanking regulatory regions, may be performed. Other suitable techniques include over-expression, ectopic expression, expression in other plant species and gene knock-out (reverse genetics, targeted knock-out, viral induced gene silencing (VIGS; see, Baulcombe, Arch. Virol. Suppl. 15:189-201, 1999).

[0089] In a preferred application expression profiling, generally by microarray analysis, is used to simultaneously measure differences or induced changes in the expression of many different genes. Techniques for microarray analysis are well known in the art (Schena M et al., Science 1995 270:467-470; Baldwin et al., 1999, Cur. Opin. Plant Biol. 2(2):96-103; Dangond, Physiol Genomics (2000) 2:53-58; van Hal et al., J Biotechnol. (2000) 78:271-280; Richmond T and Somerville S, Curr. Opin. Plant Biol. 2000 3:108-116). Expression profiling of individual tagged lines may be performed. Such analysis can identify other genes that are coordinately regulated as a consequence of the over-expression of the gene of interest, which may help to place an unknown gene in a particular pathway.

[0090] 2. Gene Product Analysis

[0091] Analysis of gene products may include recombinant protein expression, antisera production, immunolocalization, biochemical assays for catalytic or other activity, analysis of phosphorylation status, and analysis of interaction with other proteins via yeast two-hybrid assays.

[0092] 3. Pathway Analysis

[0093] Pathway analysis may include placing a gene or gene product within a particular biochemical, metabolic or signaling pathway based on its mis-expression phenotype or by sequence homology with related genes. Alternatively, analysis may comprise genetic crosses with wild-type lines and other mutant lines (creating double mutants) to order the gene in a pathway, or determining the effect of a mutation on expression of downstream "reporter" genes in a pathway.

Generation of Mutated Plants with an Improved Oil Quantity Phenotype and/or Improved Meal Quality Phenotype

[0094] Additional methods are disclosed herein of generating a plant having an IMQ and/or an IOQ phenotype, wherein a plant is identified that has an allele in its IMQ nucleic acid sequence that results in an IMQ phenotype and/or an IOQ phenotype, compared to plants lacking the allele. The plant can generate progeny, wherein the progeny inherit the allele and have an IMQ phenotype and/or an IOQ phenotype. For example, provided herein is a method of identifying plants that have mutations in the endogenous IMQ nucleic acid sequence that confer an IMQ phenotype and/or an IOQ phenotype and generating progeny of these plants with an IMQ and/or IOQ phenotype that are not genetically modified. In some embodiments, the plants have an IMQ phenotype with an altered protein and/or fiber content or seed meal content, or an IOQ phenotype, with an altered oil content.

[0095] In one method, called "TILLING" (for targeting induced local lesions in genomes), mutations are induced in the seed of a plant of interest, for example, using EMS (ethylmethane sulfonate) treatment. The resulting plants are grown and self-fertilized, and the progeny are used to prepare DNA samples. PCR amplification and sequencing of the IMQ nucleic acid sequence is used to identify whether a mutated plant has a mutation in the IMQ nucleic acid sequence. Plants having IMQ mutations may then be tested for altered oil, protein, and/or fiber content, or alternatively, plants may be tested for altered oil, protein, and/or fiber content, and then PCR amplification and sequencing of the IMQ nucleic acid sequence is used to determine whether a plant having altered oil, protein, and/or fiber content has a mutated IMQ nucleic acid sequence. TILLING can identify mutations that may alter the expression of specific genes or the activity of proteins encoded by these genes (see Colbert et al., 2001, Plant Physiol. 126:480-484; McCallum et al., 2000, Nature Biotechnology 18:455-457).

[0096] In another method, a candidate gene/Quantitative Trait Locus (QTLs) approach can be used in a marker-assisted breeding program to identify alleles of or mutations in the IMQ nucleic acid sequence or orthologs of the IMQ nucleic acid sequence that may confer altered oil, protein, and/or fiber content (see Bert et al., Theor Appl Genet., 2003; 107(1):181-9; and Lionneton et al., Genome, 2002; 45(6):1203-15). Thus, in a further aspect of the disclosure, an IMQ nucleic acid is used to identify whether a plant having altered oil, protein, and/or fiber content has a mutation an endogenous IMQ nucleic acid sequence or has a particular allele that causes altered oil, protein, and/or fiber content.

[0097] While the disclosure has been described with reference to specific methods and embodiments, it will be appreciated that various modifications and changes may be made without departing from the disclosure. All publications cited herein are expressly incorporated herein by reference for the purpose of describing and disclosing compositions and methodologies that might be used in connection with the disclosure. All cited patents, patent applications, and sequence information in referenced public databases are also incorporated by reference.

EXAMPLES

Example 1

[0098] Generation of Plants with an IMQ Phenotype and/or an IOQ Phenotype by Transformation with an Activation Tagging Construct

[0099] This Example describes the generation of transgenic plants with altered oil, protein, and/or fiber content.

[0100] Mutants were generated using the activation tagging "ACTTAG" vector, pSKI015 (GI#6537289; Weigel D et al., 2000, Plant Physiology, 122:1003-1013). Standard methods were used for the generation of Arabidopsis transgenic plants, and were essentially as described in published application PCT WO0183697. Briefly, T0 Arabidopsis (Col-0) plants were transformed with Agrobacterium carrying the pSKI015 vector, which comprises T-DNA derived from the Agrobacterium Ti plasmid, an herbicide resistance selectable marker gene, and the 4.times.CaMV 35S enhancer element. Transgenic plants were selected at the T1 generation based on herbicide resistance. T2 seed (from T1 plants) was harvested and sown in soil. T2 plants were exposed to the herbicide to kill plants lacking the ACTTAG vector. T2 plants were grown to maturity, allowed to self-fertilize and set seed. T3 seed (from the T2 plants) was harvested in bulk for each line.

[0101] T3 seed was analyzed by Near Infrared Spectroscopy (NIR) at the time of harvest. NIR spectra were captured using a Bruker 22 near infrared spectrometer. Bruker Software was used to estimate total seed oil, total seed protein and total seed fiber content using data from NIR analysis and reference methods according to the manufacturer's instructions. Oil content predicting calibrations were developed following the general method of AOCS Procedure Am1-92, Official Methods and Recommended Practices of the American Oil Chemists Society, 5th Ed., AOCS, Champaign, Ill. A NIR protein content predicting calibration was developed using total nitrogen content data of seed samples following the general method of Dumas Procedure AOAC 968.06 (Official Methods of Analysis of AOAC International 17.sup.th Edition AOAC, Gaithersburg, Md.). A fiber content predicting calibration was developed by measuring crude fiber content in a set of seed samples. Fiber content of in a known mass of seed was determined using the method of Honig and Rackis, (1979, J. Agri. Food Chem., 27: 1262-1266). Digestible protein content of in a known mass of seed was determined by quantifying the individual amino acids liberated by an acid hydrolysis Steine and Moore (1958, Anal. Chem., 30:1185-1190). The quantification was performed by the Amino Quant (Agilent). The undigested protein remaining associated with the non-digestible fraction is measured by the same method described for the whole seed homogenate. Digestible protein content is determined by subtracting the amount of undigested protein associated with the non-digestible fraction from the total amount of protein in the seed sample.

[0102] Seed oil, protein, digestible protein and fiber values in 82,274 lines were determined by NIR spectroscopy and normalized to allow comparison of seed component values in plants grown at different times. Oil, protein and fiber values were normalized by calculating the average oil, protein and fiber values in seed from all plants planted on the same day (including a large number of other ACTTAG plants, including control, wild-type, or non-transgenic plants). The seed components for each line was expressed as a "percent relative value" which was calculated by dividing the component value for each line with the average component value for all lines planted on the same day (which should approximate the value in control, wild-type, or non-transgenic plants). The "percent relative protein" and "percent relative fiber" were calculated similarly.

[0103] Inverse PCR was used to recover genomic DNA flanking the T-DNA insertion. The PCR product was subjected to sequence analysis and placed on the genome using a basic BLASTN search and/or a search of the Arabidopsis Information Resource (TAIR) database (available at the publicly available website). Promoters within 9 kb of the enhancers in the ACTTAG element are considered to be within "activation space." Genes with T-DNA inserts within coding sequences were not considered to be within "activation space." The ACTTAG lines with the above average oil and protein values, and below average fiber values were identified and are listed in column 3 of Table 1.

TABLE-US-00001 TABLE 1 4. Relative Seed 5. Relative 6. Relative 1. Gene 3. ACTTAG Protein Seed Fiber Seed 7. alias 2. TAIR Line Content Content Oil Content GC FA IMQ42.3 At3g19870 W000093675 112.46% 94.21% 95.25% IMQ43.1 At3g20170 W000145325 114.17% 89.64% 94.52% IMQ43.2 At3g20180 W000145325 114.17% 89.64% 94.52% IMQ43.3 At3g20190 W000145325 114.17% 89.64% 94.52% 97.33% IMQ43.4 At3g20200 W000145325 114.17% 89.64% 94.52% IMQ43.5 At3g20210 W000145325 114.17% 89.64% 94.52% IMQ44.1 At3g21300 W000148155 114.84% 91.54% 93.83% IMQ44.2 At3g21310 W000148155 114.84% 91.54% 93.83% IMQ45.1 At3g24570 W000141484 113.59% 92.03% 99.29% IMQ45.2 At3g24580 W000141484 113.59% 92.03% 99.29% IMQ45.3 At3g24590 W000141484 113.59% 92.03% 99.29% IMQ45.4 At3g24600 W000141484 113.59% 92.03% 99.29% IMQ45.5 At3g24610 W000141484 113.59% 92.03% 99.29% IMQ46.1 At3g26900 W000109686 108.34% 92.65% 97.24% IMQ46.2 At3g26910 W000109686 108.34% 92.65% 97.24% IMQ46.2 At3g26910 W000109686 108.34% 92.65% 97.24% IMQ46.2 At3g26910 W000109686 108.34% 92.65% 97.24% IMQ46.3 At3g26920 W000109686 108.34% 92.65% 97.24% IMQ46.4 At3g26930 W000109686 108.34% 92.65% 97.24% IMQ47.1 At3g27770 W000194585 103.85% 81.80% 102.51% IMQ47.2 At3g27785 W000194585 103.85% 81.80% 102.51% IMQ48.1 At3g44300 W000160067 110.68% 95.29% 92.96% IMQ48.2 At3g44310 W000160067 110.68% 95.29% 92.96% IMQ48.2 At3g44310 W000160067 110.68% 95.29% 92.96% IMQ48.3 At3g44320 W000160067 110.68% 95.29% 92.96% IMQ49.1 At3g45060 W000185043 108.38% 88.28% 94.42% IMQ49.1 At3g45060 W000136337 124.01% 89.52% 88.72% IMQ49.2 At3g45070 W000185043 108.38% 88.28% 94.42% IMQ49.2 At3g45070 W000136337 124.01% 89.52% 88.72% IMQ49.3 At3g45080 W000185043 108.38% 88.28% 94.42% IMQ49.3 At3g45080 W000136337 124.01% 89.52% 88.72% IMQ49.4 At3g45090 W000185043 108.38% 88.28% 94.42% IMQ49.4 At3g45090 W000136337 124.01% 89.52% 88.72% IMQ49.4 At3g45090 W000185043 108.38% 88.28% 94.42% IMQ49.4 At3g45090 W000136337 124.01% 89.52% 88.72% IMQ49.5 At3g45100 W000136337 124.01% 89.52% 88.72% IMQ49.5 At3g45100 W000136337 124.01% 89.52% 88.72% IMQ49.5 At3g45100 W000136337 124.01% 89.52% 88.72% IMQ49.5 At3g45100 W000136337 124.01% 89.52% 88.72% IMQ49.6 At3g45110 W000136337 124.01% 89.52% 88.72% IMQ49.6 At3g45110 W000136337 124.01% 89.52% 88.72% IMQ50.1 At3g46510 W000185346 111.30% 89.94% 94.03% IMQ50.1 At3g46510 W000185346 111.30% 89.94% 94.03% IMQ50.2 At3g46520 W000185346 111.30% 89.94% 94.03% IMQ50.3 At3g46530 W000185346 111.30% 89.94% 94.03% IMQ50.4 At3g46540 W000185346 111.30% 89.94% 94.03% IMQ50.5 At3g46550 W000185346 111.30% 89.94% 94.03% IMQ50.6 At3g46560 W000185346 111.30% 89.94% 94.03% IMQ51.1 At3g59410 W000148125 110.29% 91.22% 96.30% 97.59% IMQ51.1 At3g59410 W000187558 103.08% 88.95% 99.29% IMQ51.2 At3g59420 W000148125 110.29% 91.22% 96.30% IMQ51.2 At3g59420 W000187558 103.08% 88.95% 99.29% IMQ51.3 At3g59430 W000148125 110.29% 91.22% 96.30% 97.59% IMQ51.3 At3g59430 W000187558 103.08% 88.95% 99.29% IMQ51.3 At3g59430 W000148125 110.29% 91.22% 96.30% IMQ51.3 At3g59430 W000187558 103.08% 88.95% 99.29% IMQ51.3 At3g59430 W000148125 110.29% 91.22% 96.30% IMQ51.3 At3g59430 W000187558 103.08% 88.95% 99.29% IMQ51.4 At3g59440 W000148125 110.29% 91.22% 96.30% IMQ51.4 At3g59440 W000187558 103.08% 88.95% 99.29% IMQ51.5 At3g59450 W000148125 110.29% 91.22% 96.30% IMQ51.5 At3g59450 W000187558 103.08% 88.95% 99.29% IMQ52.1 At4g02010 W000132781 119.33% 90.32% 92.13% IMQ52.2 At4g02020 W000132781 119.33% 90.32% 92.13% IMQ53.1 At4g03470 W000143264 127.95% 94.43% 89.75%

TABLE-US-00002 TABLE 2 7. Putative 3. Nucleic 5. biochemical 1. Gene Acid seq. Polypeptide 6. SEQ ID function/protein 8. Conserved protein alias 2. TAIR GI# 4. SEQ ID NO seq. GI# NO name domain IMQ42.3 At3g19870 gi|30685527 SEQ ID NO: 1 gi|15230976 SEQ ID unknown protein NO: 2 IMQ43.1 At3g20170 gi|42565047 SEQ ID NO: 3 gi|15231056 SEQ ID unknown protein IPR000225 Armadillo; NO: 4 IPR000357 HEAT IMQ43.2 At3g20180 gi|18402522 SEQ ID NO: 5 gi|15231057 SEQ ID unknown protein IPR006121 Heavy metal NO: 6 transport/detoxification protein IMQ43.3 At3g20190 gi|42565048 SEQ ID NO: 7 gi|42565049 SEQ ID ATP binding/kinase/ IPR001611 Leucine-rich NO: 8 protein repeat; serine/threonine IPR007090 Leucine-rich kinase repeat, plant specific; IPR000719 Protein kinase; IPR008271 Serine/threonine protein kinase, active site IMQ43.4 At3g20200 gi|30685667 SEQ ID NO: 9 gi|30685668 SEQ ID ATP binding/kinase/ IPR000719 Protein kinase; NO: 10 protein kinase/protein IPR008271 serine/threonine Serine/threonine protein kinase/protein- kinase, active site; tyrosine kinase IPR006016 UspA IMQ43.5 At3g20210 gi|30685671 SEQ ID gi|15231080 SEQ ID DELTA-VPE; IPR001096 Peptidase NO: 11 NO: 12 cysteine-type C13, legumain endopeptidase IMQ44.1 At3g21300 gi|42565078 SEQ ID gi|42565079 SEQ ID RNA binding/RNA IPR000051 SAM (and NO: 13 NO: 14 methyltransferase some other nucleotide) binding motif; IPR001566 23S rRNA methyltransferase/RumA; IPR002792 Deoxyribonuclease/rho motif-related TRAM; IPR007848 Methyltransferase small; IPR010280 (Uracil-5)- methyltransferase IMQ44.2 At3g21310 gi|18402951 SEQ ID gi|18402952 SEQ ID unknown protein IPR004949 Protein of NO: 15 NO: 16 unknown function DUF266, plant IMQ45.1 At3g24570 gi|30687563 SEQ ID gi|15230132 SEQ ID unknown protein IPR007248 Mpv17/PMP22 NO: 17 NO: 18 IMQ45.2 At3g24580 gi|18404244 SEQ ID gi|15230133 SEQ ID unknown protein IPR006527 F-box protein NO: 19 NO: 20 interaction domain; IPR001810 Cyclin-like F- box IMQ45.3 At3g24590 gi|30687571 SEQ ID gi|30687572 SEQ ID peptidase/serine-type IPR011056 Peptidase S24 NO: 21 NO: 22 peptidase and S26, C-terminal region; IPR006198 Peptidase S24, S26A and S26B; IPR000223 Peptidase S26A, signal peptidase I IMQ45.4 At3g24600 gi|8404257 SEQ ID gi|15230135 SEQ ID unknown protein IPR010847 Harpin- NO: 23 NO: 24 induced 1 IMQ45.5 At3g24610 gi|18404260 SEQ ID gi|15230136 SEQ ID unknown protein IPR001810 Cyclin-like F- NO: 25 NO: 26 box; IPR006652 Kelch repeat IMQ46.1 At3g26900 gi|30688546 SEQ ID gi|30688547 SEQ ID ATP binding/ IPR000623 Shikimate NO: 27 NO: 28 shikimate kinase kinase IMQ46.2 At3g26910 gi|79313785 SEQ ID gi|79313786 SEQ ID unknown protein IPR006706 Extensin-like NO: 29 NO: 30 region IMQ46.2 At3g26910 gi|42565220 SEQ ID gi|30688552 SEQ ID unknown protein IPR006706 Extensin-like NO: 31 NO: 32 region IMQ46.2 At3g26910 gi|30685726 SEQ ID gi|30685727 SEQ ID unknown protein IPR006706 Extensin-like NO: 33 NO: 34 region IMQ46.3 At3g26920 gi|30688555 SEQ ID gi|30688556 SEQ ID unknown protein IPR001810 Cyclin-like F- NO: 35 NO: 36 box; IPR001611 Leucine-rich repeat IMQ46.4 At3g26930 gi|42565221 SEQ ID gi|42565222 SEQ ID unknown protein IPR006566 FBD; NO: 37 NO: 38 IPR001611 Leucine-rich repeat IMQ47.1 At3g27770 gi|30688916 SEQ ID gi|18405512 SEQ ID unknown protein NO: 39 NO: 40 IMQ47.2 At3g27785 gi|30688924 SEQ ID gi|30688925 SEQ ID MYB118; DNA IPR001005 Myb, DNA- NO: 41 NO: 42 binding/transcription binding factor IMQ48.1 At3g44300 gi|30692061 SEQ ID gi|15229932 SEQ ID NIT2 (NITRILASE 2) IPR003010 NO: 43 NO: 44 Nitrilase/cyanide hydratase and apolipoprotein N- acyltransferase; IPR000132 Nitrilase/cyanide hydratase IMQ48.2 At3g44310 gi|30692071 SEQ ID gi|30692072 SEQ ID NIT1 (NITRILASE 1) IPR003010 NO: 45 NO: 46 Nitrilase/cyanide hydratase and apolipoprotein N- acyltransferase; IPR000132 Nitrilase/cyanide hydratase IMQ48.2 At3g44310 gi|30692066 SEQ ID gi|30692067 SEQ ID NIT1 (NITRILASE 1) IPR003010 NO: 47 NO: 48 Nitrilase/cyanide hydratase and apolipoprotein N-acyltransferase; IPR000132 Nitrilase/cyanide hydratase IMQ48.3 At3g44320 gi|30692076 SEQ ID gi|15229936 SEQ ID NIT3 (NITRILASE 3) IPR003010 NO: 49 NO: 50 Nitrilase/cyanide hydratase and apolipoprotein N- acyltransferase; IPR000132 Nitrilase/cyanide hydratase IMQ49.1 At3g45060 gi|42565547 SEQ ID gi|15230589 SEQ ID ATNRT2.6; nitrate IPR007114 Major NO: 51 NO: 52 transporter facilitator superfamily; IPR011701 Major facilitator superfamily MFS_1; IPR004737 Nitrate transporter IMQ49.2 At3g45070 gi|30692514 SEQ ID gi|15230602 SEQ ID sulfotransferase IPR000863 NO: 53 NO: 54 Sulfotransferase IMQ49.3 At3g45080 gi|18407909 SEQ ID gi|15230603 SEQ ID sulfotransferase IPR000863 NO: 55 NO: 56 Sulfotransferase IMQ49.4 At3g45090 gi|42572582 SEQ ID gi|42572583 SEQ ID unknown protein IPR001093 IMP NO: 57 NO: 58 dehydrogenase/GMP reductase; IPR003593 AAA ATPase IMQ49.4 At3g45090 gi|18407910 SEQ ID gi|18407911 SEQ ID unknown protein IPR001093 IMP NO: 59 NO: 60 dehydrogenase/GMP reductase; IPR003593 AAA ATPase IMQ49.5 At3g45100 gi|30692534 SEQ ID gi|30692535 SEQ ID SETH2; transferase, IPR001296 Glycosyl NO: 61 NO: 62 transferring glycosyl transferase, group 1; groups IPR011835 Glycogen/starch synthases, ADP-glucose type IMQ49.5 At3g45100 gi|30692528 SEQ ID gi|18407913 SEQ ID SETH2; transferase, IPR001296 Glycosyl NO: 63 NO: 64 transferring glycosyl transferase, group 1; groups IPR011835 Glycogen/starch synthases, ADP-glucose type IMQ49.6 At3g45110 gi|18407915 SEQ ID gi|15230607 SEQ ID unknown protein NO: 65 NO: 66 IMQ50.1 At3g46510 gi|30692726 SEQ ID gi|15231445 SEQ ID ubiquitin-protein IPR000225 Armadillo; NO: 67 NO: 68 ligase IPR003613 U box IMQ50.1 At3g46510 gi|79527507 SEQ ID gi|79527508 SEQ ID ubiquitin-protein IPR000225 Armadillo; NO: 69 NO: 70 ligase IPR003613 U box; IPR001093 IMP dehydrogenase/GMP reductase IMQ50.2 At3g46520 gi|30692727 SEQ ID gi|15231447 SEQ ID ACT12 (ACTIN-12); IPR004000 Actin/actin-like NO: 71 NO: 72 structural constituent of cytoskeleton IMQ50.3 At3g46530 gi|30692728 SEQ ID gi|15231449 SEQ ID RPP13 IPR002182 NB-ARC; NO: 73 NO: 74 (RECOGNITION OF IPR003593 AAA ATPase; PERONOSPORA IPR007111 NACHT PARASITICA 13); nucleoside triphosphatase ATP binding IMQ50.4 At3g46540 gi|30692729 SEQ ID gi|15231451 SEQ ID binding IPR001026 Epsin, N- NO: 75 NO: 76 terminal IMQ50.5 At3g46550 gi|30692730 SEQ ID gi|15231453 SEQ ID SOS5 (SALT IPR000782 Beta-Ig- NO: 77 NO: 78 OVERLY SENSITIVE H3/fasciclin 5) IMQ50.6 At3g46560 gi|42565665 SEQ ID gi|15231455 SEQ ID TIM9; protein IPR004217 Zinc finger, NO: 79 NO: 80 translocase Tim10/DDP-type IMQ51.1 At3g59410 gi|30694991 SEQ ID gi|30694992 SEQ ID ATP binding/protein IPR011009 Protein kinase- NO: 81 NO: 82 kinase/protein like; serine/threonine IPR000719 Protein kinase; kinase/protein- IPR008271 tyrosine kinase/tRNA Serine/threonine protein ligase kinase, active site; IPR006575 RWD; IPR004154 Anticodon- binding; IPR004516 Histidyl-tRNA synthetase, class IIa IMQ51.2 At3g59420 gi|30694994 SEQ ID gi|15231681 SEQ ID ACR4; kinase IPR000719 Protein kinase; NO: 83 NO: 84 IPR008271 Serine/threonine protein kinase, active site; IPR001368 TNFR/CD27/30/40/95 cysteine-rich region; IPR009091 Regulator of chromosome condensation/beta- lactamase-inhibitor protein II IMQ51.3 At3g59430 gi|79315716 SEQ ID gi|79315717 SEQ ID unknown protein NO: 85 NO: 86 IMQ51.3 At3g59430 gi|42572730 SEQ ID gi|42572731 SEQ ID unknown protein NO: 87 NO: 88 IMQ51.3 At3g59430 gi|42566058 SEQ ID gi|15231683 SEQ ID unknown protein NO: 89 NO: 90 IMQ51.4 At3g59440 gi|30694998 SEQ ID gi|15231685 SEQ ID calcium ion binding IPR002048 Calcium- NO: 91 NO: 92 binding EF-hand IMQ51.5 At3g59450 gi|18411175 SEQ ID gi|15231687 SEQ ID calcium ion binding IPR002048 Calcium-

NO: 93 NO: 94 binding EF-hand IMQ52.1 At4g02010 gi|30679030 SEQ ID gi|30679031 SEQ ID kinase IPR011009 Protein kinase- NO: 95 NO: 96 like; IPR000719 Protein kinase; IPR008271 Serine/threonine protein kinase, active site IMQ52.2 At4g02020 gi|30679033 SEQ ID gi|18411808 SEQ ID EZA1; transcription IPR001214 Nuclear NO: 97 NO: 98 factor protein SET IMQ53.1 At4g03470 gi|18412273 SEQ ID gi|15236312 SEQ ID protein binding IPR002110 Ankyrin NO: 99 NO: 100

TABLE-US-00003 TABLE 3 5. Orthologous Genes: Nucleic Acid/Polypeptide seq. GI# 1. Gene 3. Nucleic Acid 4. Polypeptide Nucleic Acid Polypeptide alias 2. TAIR seq. GI# seq. GI# GI# GI# Species IMQ42.3 At3g19870 gi|30685527 gi|15230976 gi|50916119 gi|50916120 Oryza sativa (japonica cultivar-group) gi|66811721 gi|66811722 Dictyostelium discoideum gi|47227243 gi|47227414 Tetraodon nigroviridis IMQ43.1 At3g20170 gi|42565047 gi|15231056 gi|18406655 gi|18406656 Arabidopsis thaliana gi|30695181 gi|15232303 Arabidopsis thaliana gi|50303104 gi|50303105 Kluyveromyces lactis NRRL Y-1140 IMQ43.2 At3g20180 gi|18402522 gi|15231057 gi|50253060 gi|50253093 Oryza sativa (japonica cultivar-group) gi|50253060 gi|50253092 Oryza sativa (japonica cultivar-group) gi|50253060 gi|50253091 Oryza sativa (japonica cultivar-group) IMQ43.3 At3g20190 gi|42565048 gi|42565049 gi|30694806 gi|30694807 Arabidopsis thaliana gi|3015487 gi|3015488 Lycopersicon esculentum gi|18421452 gi|15238494 Arabidopsis thaliana IMQ43.4 At3g20200 gi|30685667 gi|30685668 gi|18394397 gi|15219360 Arabidopsis thaliana gi|42563329 gi|30699374 Arabidopsis thaliana gi|42567297 gi|42567298 Arabidopsis thaliana IMQ43.5 At3g20210 gi|30685671 gi|15231080 gi|77799871 gi|34530959 Homo sapiens gi|37542691 gi|37542692 Glycine max gi|27544005 gi|27544006 Nicotiana tabacum IMQ44.1 At3g21300 gi|42565078 gi|42565079 gi|34906469 gi|34906470 Oryza sativa (japonica cultivar-group) gi|21672841 gi|21672850 Chlorobium tepidum TLS gi|67938372 gi|67938422 Chlorobium phaeobacteroides BS1 IMQ44.2 At3g21310 gi|18402951 gi|18402952 gi|18403668 gi|15218028 Arabidopsis thaliana gi|30683761 gi|15239155 Arabidopsis thaliana gi|50540715 gi|50540730 Oryza sativa (japonica cultivar-group) IMQ45.1 At3g24570 gi|30687563 gi|15230132 gi|34904255 gi|34904256 Oryza sativa (japonica cultivar-group) gi|66816890 gi|66816891 Dictyostelium discoideum gi|46107693 gi|46107694 Gibberella zeae PH-1 IMQ45.2 At3g24580 gi|18404244 gi|15230133 gi|18402249 gi|18402250 Arabidopsis thaliana gi|18401581 gi|15229086 Arabidopsis thaliana gi|42569113 gi|42569114 Arabidopsis thaliana IMQ45.3 At3g24590 gi|30687571 gi|30687572 gi|45382012 gi|50251480 Oryza sativa (japonica cultivar-group) gi|51535924 gi|51535944 Oryza sativa (japonica cultivar-group) gi|50918990 gi|50918991 Oryza sativa (japonica cultivar-group) IMQ45.4 At3g24600 gi|18404257 gi|15230135 gi|55741371 gi|55741372 Oryza sativa (japonica cultivar-group) gi|34904259 gi|34904260 Oryza sativa (japonica cultivar-group) gi|17385724 gi|56784375 Oryza sativa (japonica cultivar-group) IMQ45.5 At3g24610 gi|18404260 gi|15230136 gi|18416176 gi|15236530 Arabidopsis thaliana gi|18418316 gi|18418317 Arabidopsis thaliana gi|18421782 gi|15240973 Arabidopsis thaliana IMQ46.1 At3g26900 gi|30688546 gi|30688547 gi|55769656 gi|55769657 Oryza sativa (japonica cultivar-group) gi|34894031 gi|34894032 Oryza sativa (japonica cultivar-group) gi|50929064 gi|50929065 Oryza sativa (japonica cultivar-group) IMQ46.2 At3g26910 gi|79313785 gi|79313786 gi|42565220 gi|30688552 Arabidopsis thaliana gi|30693744 gi|30693745 Arabidopsis thaliana gi|30693739 gi|30693740 Arabidopsis thaliana IMQ46.2 At3g26910 gi|42565220 gi|30688552 gi|30693739 gi|30693740 Arabidopsis thaliana gi|30693744 gi|30693745 Arabidopsis thaliana gi|30685726 gi|30685727 Arabidopsis thaliana IMQ46.2 At3g26910 gi|30685726 gi|30685727 gi|50923910 gi|50923911 Oryza sativa (japonica cultivar-group) gi|42565220 gi|30688552 Arabidopsis thaliana gi|52077544 gi|51536022 Oryza sativa (japonica cultivar-group) IMQ46.3 At3g26920 gi|30688555 gi|30688556 gi|42565869 gi|42565870 Arabidopsis thaliana gi|18408760 gi|15229075 Arabidopsis thaliana gi|22328602 gi|22328603 Arabidopsis thaliana IMQ46.4 At3g26930 gi|42565221 gi|42565222 gi|18405188 gi|15221971 Arabidopsis thaliana gi|42565869 gi|42565870 Arabidopsis thaliana gi|18408760 gi|15229075 Arabidopsis thaliana IMQ47.1 At3g27770 gi|30688916 gi|18405512 gi|55770586 gi|55770587 Oryza sativa (japonica cultivar-group) gi|42571426 gi|42571427 Arabidopsis thaliana gi|42571424 gi|42571425 Arabidopsis thaliana gi|42571428 gi|42571429 Arabidopsis thaliana gi|30681842 gi|15220184 Arabidopsis thaliana gi|42568719 gi|42568720 Arabidopsis thaliana IMQ47.2 At3g27785 gi|30688924 gi|30688925 gi|18421976 gi|18421977 Arabidopsis thaliana gi|30684524 gi|15234013 Arabidopsis thaliana gi|77552765 gi|77553798 Oryza sativa (japonica cultivar-group) IMQ48.1 At3g44300 gi|30692061 gi|15229932 gi|30692066 gi|30692067 Arabidopsis thaliana gi|30692076 gi|15229936 Arabidopsis thaliana gi|14211395 gi|14211396 Brassica napus IMQ48.2 At3g44310 gi|30692071 gi|30692072 gi|30692066 gi|30692067 Arabidopsis thaliana gi|30692061 gi|15229932 Arabidopsis thaliana gi|30692076 gi|15229936 Arabidopsis thaliana gi|42568008 gi|15242205 Arabidopsis thaliana IMQ48.2 At3g44310 gi|30692066 gi|30692067 gi|30692061 gi|15229932 Arabidopsis thaliana gi|30692076 gi|15229936 Arabidopsis thaliana gi|14211395 gi|14211396 Brassica napus IMQ48.3 At3g44320 gi|30692076 gi|15229936 gi|30692066 gi|30692067 Arabidopsis thaliana gi|30692061 gi|15229932 Arabidopsis thaliana gi|14211395 gi|14211396 Brassica napus IMQ49.1 At3g45060 gi|42565547 gi|15230589 gi|18424396 gi|15239435 Arabidopsis thaliana gi|48675348 gi|48675349 Prunus persica gi|48675346 gi|48675347 Prunus persica IMQ49.2 At3g45070 gi|30692514 gi|15230602 gi|18407909 gi|15230603 Arabidopsis thaliana gi|30694345 gi|15239947 Arabidopsis thaliana gi|30683282 gi|15222843 Arabidopsis thaliana IMQ49.3 At3g45080 gi|18407909 gi|15230603 gi|30692514 gi|15230602 Arabidopsis thaliana gi|30694345 gi|15239947 Arabidopsis thaliana gi|30683282 gi|15222843 Arabidopsis thaliana IMQ49.4 At3g45090 gi|42572582 gi|42572583 gi|18407910 gi|18407911 Arabidopsis thaliana gi|30697427 gi|30697428 Arabidopsis thaliana gi|40363800 gi|52076103 Oryza sativa (japonica cultivar-group) IMQ49.4 At3g45090 gi|18407910 gi|18407911 gi|42572582 gi|42572583 Arabidopsis thaliana gi|30697427 gi|30697428 Arabidopsis thaliana gi|40363800 gi|52076103 Oryza sativa (japonica cultivar-group) IMQ49.5 At3g45100 gi|30692534 gi|30692535 gi|30692528 gi|18407913 Arabidopsis thaliana gi|50935714 gi|50935715 Oryza sativa (japonica cultivar-group) gi|66810216 gi|66810217 Dictyostelium discoideum gi|72083931 gi|72083932 Strongylocentrotus purpuratus IMQ49.5 At3g45100 gi|30692528 gi|18407913 gi|30692534 gi|30692535 Arabidopsis thaliana gi|50935714 gi|50935715 Oryza sativa (japonica cultivar-group) gi|66810216 gi|66810217 Dictyostelium discoideum gi|72083931 gi|72083932 Strongylocentrotus purpuratus IMQ49.6 At3g45110 gi|18407915 gi|15230607 gi|48783781 gi|48784150 Burkholderia fungorum LB400 gi|18407923 gi|15230616 Arabidopsis thaliana gi|48786263 gi|48786365 Burkholderia fungorum LB400 IMQ50.1 At3g46510 gi|30692726 gi|15231445 gi|30684026 gi|18401867 Arabidopsis thaliana gi|51038702 gi|51038703 Oryza sativa (japonica cultivar-group) gi|77552765 gi|77556856 Oryza sativa (japonica cultivar-group) IMQ50.1 At3g46510 gi|79527507 gi|79527508 gi|50946934 gi|50946935 Oryza sativa (japonica cultivar-group) gi|54291125 gi|54291136 Oryza sativa (japonica cultivar-group) gi|30692726 gi|15231445 Arabidopsis thaliana IMQ50.2 At3g46520 gi|30692727 gi|15231447 gi|30697210 gi|15238387 Arabidopsis thaliana gi|3420238 gi|3420239 Gossypium hirsutum gi|30693903 gi|18409908 Arabidopsis thaliana gi|30687200 gi|30687201 Arabidopsis thaliana IMQ50.3 At3g46530 gi|30692728 gi|15231449 gi|18408266 gi|15232624 Arabidopsis thaliana gi|18408260 gi|15232622 Arabidopsis thaliana gi|18406280 gi|15217954 Arabidopsis thaliana IMQ50.4 At3g46540 gi|30692729 gi|15231451 gi|21104611 gi|56784669 Oryza sativa (japonica cultivar-group) gi|34908157 gi|34908158 Oryza sativa (japonica cultivar-group) gi|30680762 gi|22329424 Arabidopsis thaliana IMQ50.5 At3g46550 gi|30692730 gi|15231453 gi|21104611 gi|56784671 Oryza sativa (japonica cultivar-group) gi|34908161 gi|34908162 Oryza sativa (japonica cultivar-group) gi|607773 gi|607774 Pinus taeda IMQ50.6 At3g46560 gi|42565665 gi|15231455 gi|5107213 gi|5107214 Oryza sativa gi|77552765 gi|77556866 Oryza sativa (japonica cultivar-group) gi|5107211 gi|5107212 Mesembryanthemum crystallinum IMQ51.1 At3g59410 gi|30694991 gi|30694992 gi|50925770 gi|50925771 Oryza sativa (japonica cultivar-group) gi|74000019 gi|74000020 Canis familiaris gi|50748343 gi|50748344 Gallus gallus IMQ51.2 At3g59420 gi|30694994 gi|15231681 gi|40850572 gi|40850578 Musa acuminata gi|50917202 gi|50917203 Oryza sativa (japonica cultivar-group) gi|1597722 gi|1597723 Zea mays IMQ51.3 At3g59430 gi|79315716 gi|79315717 gi|42572730 gi|42572731 Arabidopsis thaliana gi|42566058 gi|15231683 Arabidopsis thaliana IMQ51.3 At3g59430 gi|42572730 gi|42572731 gi|42566058 gi|15231683 Arabidopsis thaliana gi|50725340 gi|50725357 Oryza sativa (japonica cultivar-group) gi|74054322 gi|74054328 Streptococcus agalactiae gi|56384961 gi|56384962 Streptococcus agalactiae IMQ51.3 At3g59430 gi|42566058 gi|15231683 gi|42572730 gi|42572731 Arabidopsis thaliana gi|50725340 gi|50725357 Oryza sativa (japonica cultivar-group) gi|74054322 gi|74054328 Streptococcus agalactiae gi|56384961 gi|56384962 Streptococcus agalactiae IMQ51.4 At3g59440 gi|30694998 gi|15231685 gi|30689331 gi|18406202 Arabidopsis thaliana gi|28301673 gi|28301674 Lotus corniculatus var. japonicus gi|18397964 gi|15231470 Arabidopsis thaliana IMQ51.5 At3g59450 gi|18411175 gi|15231687 gi|30694998 gi|15231685 Arabidopsis thaliana gi|30689331 gi|18406202 Arabidopsis thaliana gi|30679524 gi|15221358 Arabidopsis thaliana IMQ52.1 At4g02010 gi|30679030 gi|30679031 gi|34902827 gi|34902828 Oryza sativa (japonica cultivar-group) gi|6498456 gi|56783692 Oryza sativa (japonica cultivar-group) gi|30696797 gi|22327898 Arabidopsis thaliana IMQ52.2 At4g02020 gi|30679033 gi|18411808 gi|20152908 gi|20152909 Zea mays gi|22535906 gi|22535907 Oryza sativa gi|29565494 gi|29565495 Oryza sativa (indica cultivar-group) IMQ53.1 At4g03470 gi|18412273 gi|15236312 gi|18412781 gi|18412782 Arabidopsis thaliana gi|42572834 gi|42572835 Arabidopsis thaliana gi|42566786 gi|42566787 Arabidopsis thaliana gi|30682836 gi|18414210 Arabidopsis thaliana

Example 2

Analysis of the Arabidopsis IMQ Sequence

[0104] Sequence analyses were performed with BLAST (Altschul et al., 1990, J. Mol. Biol. 215:403-410), PFAM (Bateman et al., 1999, Nucleic Acids Res. 27:260-262), INTERPRO (Mulder et al. 2003 Nucleic Acids Res. 31, 315-318), PSORT (Nakai K, and Horton P, 1999, Trends Biochem. Sci. 24:34-6), and/or CLUSTAL (Thompson J D et al., 1994, Nucleic Acids Res. 22:4673-4680). Conserved domains for each protein are listed in column 8 of Table 2.

Example 3

[0105] To test whether over-expression of the genes in Tables 1 and 2 alter the seed composition phenotype, protein, digestible protein, oil and fiber content in seeds from transgenic plants expressing these genes was compared with protein, digestible protein, oil and fiber content in seeds from non-transgenic control plants. To do this, the genes were cloned into plant transformation vectors behind the strong constitutive CsVMV promoter and the seed specific PRU promoter. These constructs were transformed into Arabidopsis plants using the floral dip method. The plant transformation vector contains a gene, which provides resistance to a toxic compound, and serves as a selectable marker. Seed from the transformed plants were plated on agar medium containing the toxic compound. After 7 days, transgenic plants were identified as healthy green plants and transplanted to soil. Non-transgenic control plants were germinated on agar medium, allowed to grow for 7 days and then transplanted to soil. Transgenic seedlings and non-transgenic control plants were transplanted to two inch pots that were placed in random positions in a 10 inch by 20 inch tray. The plants were grown to maturity, allowed to self-fertilize and set seed. Seed was harvested from each plant and its oil content estimated by Near Infrared (NIR) Spectroscopy using methods previously described. The effect of each construct on seed composition was examined in at least two experiments.

[0106] Table 4 lists constructs tested for causing a significant increase in oil, protein, digestible protein or a significant decrease in fiber were identified by a two-way Analysis of Variance (ANOVA) test at a p-value .ltoreq.0.05. ANOVA p-values for Protein, Oil, Digestible Protein and Fiber are listed in columns 4-7, respectively. Those with a significant p-value are listed in bold. The Average values for Protein, Oil, Digestible Protein and Fiber are listed in columns 8-11, respectively and were calculated by averaging the average values determined for the transgenic plants in each experiment.

TABLE-US-00004 TABLE 4 6. ANOVA 10. 4. ANOVA 5. ANOVA Digestible 7. ANOVA Digestible 1. Gene 2. TAIR 3. Construct Protein Oil Protein Fiber 8. Protein 9. Oil Protein 11. Fiber IMQ43.3 At3g20190 CsVMV::At3g20190 0.659 0.336 0.005 0.002 100.6% 101.6% 101.9% 96.1% IMQ43.3 At3g20190 Pru::At3g20190 0.868 0.709 0.005 0.009 100.3% 100.7% 102.3% 96.7% IMQ47.1 At3g27770 Pru::At3g27770 0.404 0.143 0.033 0.004 99.2% 102.2% 101.1% 97.3% IMQ49.1 At3g45060 CsVMV::At3g45060 0.441 0.623 0.016 0.004 101.4% 100.6% 102.6% 96.9% IMQ49.1 At3g45060 Pru::At3g45060 0.779 0.842 0.023 0.070 100.2% 100.9% 101.2% 98.6% IMQ49.3 At3g45080 Pru::At3g45080 0.375 0.770 0.014 0.007 102.0% 99.6% 102.8% 97.6% IMQ50.5 At3g46550 Pru::At3g46550 0.038 0.171 0.240 0.013 102.9% 102.6% 101.1% 97.1% IMQ51.1 At3g59410 CsVMV::At3g59410 0.040 0.103 0.019 0.305 102.5% 97.3% 101.8% 98.7% IMQ51.3 At3g59430 CsVMV::At3g59430 0.034 0.035 0.347 0.538 95.5% 104.2% 99.2% 99.4% IMQ51.3 At3g59430 Pru::At3g59430 0.911 0.038 0.239 0.017 100.4% 102.8% 101.3% 97.4%

Example 4

[0107] To test whether over-expression of the genes identified in Tables 1-4 alter the seed composition phenotype, protein, digestible protein, oil, and fiber content in seeds from transgenic plants expressing these genes is compared with protein, digestible protein, oil and fiber content in seeds from non-transgenic control plants. Any one of the genes identified in Tables 1-4 is used to transform Brassica napus (canola). To do this, the genes are cloned into plant transformation vectors behind the strong constitutive CsVMV promoter and the seed specific phaseolin promoter. These constructs (which include a gene encoding a selection agent) are transformed into canola plants.

[0108] Transformation of canola is accomplished via Agrobacterium-mediated transformation. Seeds are surface-sterilized with 10% commercial bleach for 10 minutes and rinsed 3 times with sterile distilled water. The seeds are then placed on one half concentration of MS basal medium (Murashige and Skoog, Physiol. Plant. 15:473-497, 1962) and maintained under growth regime set at 25.degree. C., and a photoperiod of 16 hrs light/8 hrs dark.

[0109] Hypocotyl segments (3-5 mm) are excised from 5-7 day old seedlings and placed on callus induction medium K1D1 (MS medium with 1 mg/l kinetin and 1 mg/l 2,4-D) for 3 days as pre-treatment. The segments are then transferred into a petri plate, treated with Agrobacterium Z7075 or LBA4404 strain containing pDAB721. The Agrobacterium is grown overnight at 28.degree. C. in the dark on a shaker at 150 rpm and subsequently re-suspended in the culture medium.

[0110] After 30 minute treatment of the hypocotyl segments with Agrobacterium, these are placed back on the callus induction medium for 3 days. Following co-cultivation, the segments are placed on K1D1TC (callus induction medium containing 250 mg/l Carbenicillin and 300 mg/l Timentin) for one week of recovery. Alternately, the segments are placed directly on selection medium K1D1H1 (above medium with 1 mg/l selection agent, for example an herbicide). Carbenicillin and Timentin are antibiotics used to kill the Agrobacterium. The selection agent is used to allow the growth of the transformed cells.

[0111] Callus samples from independent events are tested by PCR. All the samples tested are positive for the presence of the transformed gene, whereas the non-transformed controls are negative. Callus samples are confirmed to express the appropriate protein as determined by ELISA.

[0112] Callused hypocotyl segments are then placed on B3Z1H1 (MS medium, 3 mg/l benzylamino purine, 1 mg/l Zeatin, 0.5 gm/l MES [2-(N-morpholino) ethane sulfonic acid], 5 mg/l silver nitrate, 1 mg/l selection agent, Carbenicillin and Timentin) shoot regeneration medium. After shoots start to regenerate (approximately 3 weeks), hypocotyl segments along with the shoots are transferred to B3Z1H3 medium (MS medium, 3 mg/l benzylamino purine, 1 mg/l Zeatin, 0.5 gm/l MES [2-(N-morpholino) ethane sulfonic acid], 5 mg/l silver nitrate, 3 mg/l selection agent, Carbenicillin and Timentin) for 3 weeks.

[0113] Shoots are excised from the hypocotyl segments and transferred to shoot elongation medium MESH10 (MS, 0.5 gm/l MES, 10 mg/l selection agent, Carbenicillin, Timentin) for 2-4 weeks. The elongated shoots are cultured for root induction on MSI.1 (MS with 0.1 mg/l Indolebutyric acid). Once the plants have a well-established root system, these are transplanted into soil. The plants are acclimated under controlled environmental conditions in the Conviron for 1-2 weeks before transfer to the greenhouse. The transformed T0 plants self-pollinate in the greenhouse to obtain T1 seed. Transgenic plants are selected at the T1 generation based on resistance to a selection agent. T2 seed (from T1 plants) is harvested and sown in soil. T2 plants are grown to maturity, allowed to self-fertilize and set seed. T3 seed (from the T2 plants) is harvested in bulk for each line. Seed oil, protein, digestible protein, and fiber values are measured as discussed in Example 1.

Sequence CWU 1

1

10013472DNAArabidopsis thaliana 1atgaccacga cgacgccgga gaagactccg gcgagacctc tctctatcca agattgggac 60gttctcatcg acgacttccg cgacgccggc gctcctcgcg actggttcac ttccgttttc 120cagattgatt ctctggtgga cttcgctctc tcgtctctcc tcaaaaaaga cttccctaca 180ccagtgaagc tctcaatcct agtctttctc gatgaatttt ccccgatttt gtttgataat 240tgtggtagcg atacctttga tcgcttcatc gatgttctcc ggacgatcgt gcaatctcca 300actgatggat cgtcaggatt gaaagagcaa gctatggtct ctttcacgtc tgtgcttgta 360tcgattgatt ctttctctgt aggtcacgtt gaagcagttg ttgatttgct tcttgcgctc 420gttaatcgtc ctaaccacgg atttgatcga caagctcgtg ctatcgcctg tgagtgttta 480cgtcagcttg agaaagcttt tcctggtttg ttatctgatg tcgctggtca tctttggtcg 540ttgtgtcaag cggagagaac tcacgccgtg caagcttatc ttctcttgtt caccacaatt 600gtctacaatg tggttaatca gaagcttaag gtttcacttc ttagtacctc tgtacctttg 660gtgcctttta atgctcctaa ttggatgcgt gatgagagtt cgattatgag tcaaggtcaa 720gggttggggc cagatcagaa ggaactgaga cgaacattgg cttttatgtt ggaatctccg 780tatttgttta cttcttgtgc tatgatggaa tttatgggta tggttgtgcc acttgcatcg 840gcgttggagt tacaggcttc tatgttgaaa gttcagttct tggggatgat ttattcgttt 900gatccaatgc tttgtcatgt tgtcttgctt atgtattctc ggttccctga tgcgtttgag 960ggacaagaga aagagatcat gagacgtctt atgctctttt caaaggagac tcagatctat 1020cttgttttcc gtttgcttgc gctgcactgg ttaatgggtt tgttgaataa gcatatgttg 1080agtggggagc ttgagaagag gacatctgtt cttgagatgg gtcagaagtt tcatcctgtc 1140gtttttgatc cactcgcttt gaaagcgttg aagcttgatc tgctggtaca atgctctgtg 1200agttccaacg ctttgagtgg aggtgataac agtaaatctg ctggggattt gttgcaggac 1260tgcttggtat cggtttcgga tttcaaatgg ttgcctccat ggagctcaga aactgaacta 1320gcattccgca ctttacacaa gtttctgata tgtgcatcta cacattccga ctctgaccct 1380tccaccacta gaatccttat ggagtctagc ctcttccaaa acgtgcaggg gttgctggta 1440gacatgactt tggagtttca aatcttggtc cctgttattg tggcttttat tgagcggttg 1500attcactgtc acaagcatca gtggttagga gagcggtttc ttcagatagt cgatgagaat 1560ctgcttccca aacttaagaa aaaaaactta ttaacagctt acttcccgct tttccatcga 1620atagccgaga atgatacaat acctccttct cgattgatag agctgcttac gaagtttgta 1680atttcacttg ttgagaagcg cggacttgat gtggggttga aattgtggga tcaaggaact 1740gaagttcttg gcatctgtcg aacattgatg agtcaccata agagctctag attatttctc 1800ggactctctc gccttctttc cctcacatgt ctctatttcc ctgatctgga ggtccgagac 1860aatgctagga tatatctgag gatgctggtc tgtataccag gacagagaat taagaacatt 1920ttgaagccgg cagatgctgt cactccatca acccattctt ctacattttt tagtgttcaa 1980agtcctcgtt ttcgtcatga tcctagtaaa tctcggaacc tttcatccta tattcatctt 2040gaacgggtta cgcccctact cgtgaaacag tcatggtcat tgtctctacc atctctaagt 2100gttggaactg atggatatag cattatagaa aacaaaatcc aggtagatga agttgagccg 2160gatggcagtc aagaacttca gattttgcca gaagctcgaa gaattgaatc aggaaaacct 2220acgttaaggg taatggactc aaagattgca gagattctag aaagattaag aagatatttc 2280tctgtgattc ctgatttcaa acacatgcca ggaattaagg ttagaataac gtgtactttg 2340agattggatg ctgaaccata tagcagtata tggggaagtg aaactcagaa aatcgattta 2400gagaaagtcg actcacctcc tgcgattttc gcgacggtgc tcaaattctc atcttcagcc 2460ccttatggct ctattccctc atgtcgcata cctttccttc tcggtgagcc tcattggaac 2520agcaatgtac ccaatgaaga agtttcttta gacattgtcg tggtagaaaa cacactgaaa 2580gaggaggaaa aagatggctt gagaggagca cctgtaacag tggaactgga acctagagaa 2640cctacaccag gtttggtcga ggtttcaatg gaagcaaatg cagagaatgg tcagatgatt 2700cagggaaaac tcgagagtgt ccctgtgggg attgaagaca tgttcctaaa agctcttgct 2760ccaccggacg aacctgaaga tacaataccg agctactact cagatctatt caatgctttg 2820tgggaagtgt gtggttcttc gtccagcact gcacacgaaa catttgcact aaaaggtggc 2880aaaatggctg cagcagtcag cgggactcgg tcagtaaaac tgcttgaagt ccctgcggaa 2940actgtaatac aggccactga gcttcgttta gcgccctttg tggtggctat cagtggagaa 3000cagcttgtaa acattgtaag agacggagga attattgaga acattgtgtg gaaggaagag 3060gaagaagaac aaggggatca cacaaatgcg gaccagcctt cttcatcctc ggtgggatta 3120aaccgaggcc ctcttcgtct gacatacatt ggatatggag atgaccaaga ggttccgatg 3180acgagaagta gggggaaaat gggaacgata aagatgctga tgtttctgcc gccaagatat 3240catctaatgt ttgaaatgga agttgggcaa ggatcgacat tggtgcatat aagaacagat 3300tattggcctt gcttagctta tgttgatgat tacttagaag ctttgttttt gtaataatag 3360cagagacttt cactattttc ttcttattct ttgggcccaa cctacatgta aagttttacc 3420caaacgaaca aacacaaatt ctgttttttg agaagtttat ttttattggg at 347221117PRTArabidopsis thaliana 2Met Thr Thr Thr Thr Pro Glu Lys Thr Pro Ala Arg Pro Leu Ser Ile 1 5 10 15 Gln Asp Trp Asp Val Leu Ile Asp Asp Phe Arg Asp Ala Gly Ala Pro 20 25 30 Arg Asp Trp Phe Thr Ser Val Phe Gln Ile Asp Ser Leu Val Asp Phe 35 40 45 Ala Leu Ser Ser Leu Leu Lys Lys Asp Phe Pro Thr Pro Val Lys Leu 50 55 60 Ser Ile Leu Val Phe Leu Asp Glu Phe Ser Pro Ile Leu Phe Asp Asn 65 70 75 80 Cys Gly Ser Asp Thr Phe Asp Arg Phe Ile Asp Val Leu Arg Thr Ile 85 90 95 Val Gln Ser Pro Thr Asp Gly Ser Ser Gly Leu Lys Glu Gln Ala Met 100 105 110 Val Ser Phe Thr Ser Val Leu Val Ser Ile Asp Ser Phe Ser Val Gly 115 120 125 His Val Glu Ala Val Val Asp Leu Leu Leu Ala Leu Val Asn Arg Pro 130 135 140 Asn His Gly Phe Asp Arg Gln Ala Arg Ala Ile Ala Cys Glu Cys Leu 145 150 155 160 Arg Gln Leu Glu Lys Ala Phe Pro Gly Leu Leu Ser Asp Val Ala Gly 165 170 175 His Leu Trp Ser Leu Cys Gln Ala Glu Arg Thr His Ala Val Gln Ala 180 185 190 Tyr Leu Leu Leu Phe Thr Thr Ile Val Tyr Asn Val Val Asn Gln Lys 195 200 205 Leu Lys Val Ser Leu Leu Ser Thr Ser Val Pro Leu Val Pro Phe Asn 210 215 220 Ala Pro Asn Trp Met Arg Asp Glu Ser Ser Ile Met Ser Gln Gly Gln 225 230 235 240 Gly Leu Gly Pro Asp Gln Lys Glu Leu Arg Arg Thr Leu Ala Phe Met 245 250 255 Leu Glu Ser Pro Tyr Leu Phe Thr Ser Cys Ala Met Met Glu Phe Met 260 265 270 Gly Met Val Val Pro Leu Ala Ser Ala Leu Glu Leu Gln Ala Ser Met 275 280 285 Leu Lys Val Gln Phe Leu Gly Met Ile Tyr Ser Phe Asp Pro Met Leu 290 295 300 Cys His Val Val Leu Leu Met Tyr Ser Arg Phe Pro Asp Ala Phe Glu 305 310 315 320 Gly Gln Glu Lys Glu Ile Met Arg Arg Leu Met Leu Phe Ser Lys Glu 325 330 335 Thr Gln Ile Tyr Leu Val Phe Arg Leu Leu Ala Leu His Trp Leu Met 340 345 350 Gly Leu Leu Asn Lys His Met Leu Ser Gly Glu Leu Glu Lys Arg Thr 355 360 365 Ser Val Leu Glu Met Gly Gln Lys Phe His Pro Val Val Phe Asp Pro 370 375 380 Leu Ala Leu Lys Ala Leu Lys Leu Asp Leu Leu Val Gln Cys Ser Val 385 390 395 400 Ser Ser Asn Ala Leu Ser Gly Gly Asp Asn Ser Lys Ser Ala Gly Asp 405 410 415 Leu Leu Gln Asp Cys Leu Val Ser Val Ser Asp Phe Lys Trp Leu Pro 420 425 430 Pro Trp Ser Ser Glu Thr Glu Leu Ala Phe Arg Thr Leu His Lys Phe 435 440 445 Leu Ile Cys Ala Ser Thr His Ser Asp Ser Asp Pro Ser Thr Thr Arg 450 455 460 Ile Leu Met Glu Ser Ser Leu Phe Gln Asn Val Gln Gly Leu Leu Val 465 470 475 480 Asp Met Thr Leu Glu Phe Gln Ile Leu Val Pro Val Ile Val Ala Phe 485 490 495 Ile Glu Arg Leu Ile His Cys His Lys His Gln Trp Leu Gly Glu Arg 500 505 510 Phe Leu Gln Ile Val Asp Glu Asn Leu Leu Pro Lys Leu Lys Lys Lys 515 520 525 Asn Leu Leu Thr Ala Tyr Phe Pro Leu Phe His Arg Ile Ala Glu Asn 530 535 540 Asp Thr Ile Pro Pro Ser Arg Leu Ile Glu Leu Leu Thr Lys Phe Val 545 550 555 560 Ile Ser Leu Val Glu Lys Arg Gly Leu Asp Val Gly Leu Lys Leu Trp 565 570 575 Asp Gln Gly Thr Glu Val Leu Gly Ile Cys Arg Thr Leu Met Ser His 580 585 590 His Lys Ser Ser Arg Leu Phe Leu Gly Leu Ser Arg Leu Leu Ser Leu 595 600 605 Thr Cys Leu Tyr Phe Pro Asp Leu Glu Val Arg Asp Asn Ala Arg Ile 610 615 620 Tyr Leu Arg Met Leu Val Cys Ile Pro Gly Gln Arg Ile Lys Asn Ile 625 630 635 640 Leu Lys Pro Ala Asp Ala Val Thr Pro Ser Thr His Ser Ser Thr Phe 645 650 655 Phe Ser Val Gln Ser Pro Arg Phe Arg His Asp Pro Ser Lys Ser Arg 660 665 670 Asn Leu Ser Ser Tyr Ile His Leu Glu Arg Val Thr Pro Leu Leu Val 675 680 685 Lys Gln Ser Trp Ser Leu Ser Leu Pro Ser Leu Ser Val Gly Thr Asp 690 695 700 Gly Tyr Ser Ile Ile Glu Asn Lys Ile Gln Val Asp Glu Val Glu Pro 705 710 715 720 Asp Gly Ser Gln Glu Leu Gln Ile Leu Pro Glu Ala Arg Arg Ile Glu 725 730 735 Ser Gly Lys Pro Thr Leu Arg Val Met Asp Ser Lys Ile Ala Glu Ile 740 745 750 Leu Glu Arg Leu Arg Arg Tyr Phe Ser Val Ile Pro Asp Phe Lys His 755 760 765 Met Pro Gly Ile Lys Val Arg Ile Thr Cys Thr Leu Arg Leu Asp Ala 770 775 780 Glu Pro Tyr Ser Ser Ile Trp Gly Ser Glu Thr Gln Lys Ile Asp Leu 785 790 795 800 Glu Lys Val Asp Ser Pro Pro Ala Ile Phe Ala Thr Val Leu Lys Phe 805 810 815 Ser Ser Ser Ala Pro Tyr Gly Ser Ile Pro Ser Cys Arg Ile Pro Phe 820 825 830 Leu Leu Gly Glu Pro His Trp Asn Ser Asn Val Pro Asn Glu Glu Val 835 840 845 Ser Leu Asp Ile Val Val Val Glu Asn Thr Leu Lys Glu Glu Glu Lys 850 855 860 Asp Gly Leu Arg Gly Ala Pro Val Thr Val Glu Leu Glu Pro Arg Glu 865 870 875 880 Pro Thr Pro Gly Leu Val Glu Val Ser Met Glu Ala Asn Ala Glu Asn 885 890 895 Gly Gln Met Ile Gln Gly Lys Leu Glu Ser Val Pro Val Gly Ile Glu 900 905 910 Asp Met Phe Leu Lys Ala Leu Ala Pro Pro Asp Glu Pro Glu Asp Thr 915 920 925 Ile Pro Ser Tyr Tyr Ser Asp Leu Phe Asn Ala Leu Trp Glu Val Cys 930 935 940 Gly Ser Ser Ser Ser Thr Ala His Glu Thr Phe Ala Leu Lys Gly Gly 945 950 955 960 Lys Met Ala Ala Ala Val Ser Gly Thr Arg Ser Val Lys Leu Leu Glu 965 970 975 Val Pro Ala Glu Thr Val Ile Gln Ala Thr Glu Leu Arg Leu Ala Pro 980 985 990 Phe Val Val Ala Ile Ser Gly Glu Gln Leu Val Asn Ile Val Arg Asp 995 1000 1005 Gly Gly Ile Ile Glu Asn Ile Val Trp Lys Glu Glu Glu Glu Glu 1010 1015 1020 Gln Gly Asp His Thr Asn Ala Asp Gln Pro Ser Ser Ser Ser Val 1025 1030 1035 Gly Leu Asn Arg Gly Pro Leu Arg Leu Thr Tyr Ile Gly Tyr Gly 1040 1045 1050 Asp Asp Gln Glu Val Pro Met Thr Arg Ser Arg Gly Lys Met Gly 1055 1060 1065 Thr Ile Lys Met Leu Met Phe Leu Pro Pro Arg Tyr His Leu Met 1070 1075 1080 Phe Glu Met Glu Val Gly Gln Gly Ser Thr Leu Val His Ile Arg 1085 1090 1095 Thr Asp Tyr Trp Pro Cys Leu Ala Tyr Val Asp Asp Tyr Leu Glu 1100 1105 1110 Ala Leu Phe Leu 1115 31615DNAArabidopsis thaliana 3atttcgtgct actactctct tgataattcg aagctttttc gttatctcca gaaatgggtt 60cttcagaaac ggaaagtgaa agcagaggtt ttcaaaaccc agattgggaa acagagttta 120accgattcga aaacgcgatt tcgtctggtt ctgcttcaat tcgtgtaaga tccgttttaa 180agttatcaga tttgacgaat cgagtacctg agagctatat atcccgtgca attccgattc 240tcgccggtct tcttcgtgtc tcagacgact ccaatcgttc cgttcaagct gccgccgctc 300attgcttgaa atgtattacc tgttgcggcg gtgaagaaag tggatttgcg gtgacgatgg 360ggaggtgtgg tgtgattgct agcttattag ggttgttact tgaagcgaat acggatggta 420atgtgtttcg aaggatttgg gtgaaatgtt tgtggagctt agttactttt ggatcttcga 480ttcgagttgg tttggctagg ttaggtggtt tagagattgt gattcgtgag ttgaataatt 540gggaagatga tggaagtaga tggtacttgt tagagatcct tagtgctttg acgacgatta 600gagagagcag acgcgttctt gttcattcag gtgggcttaa gtttcttgta gaagctgcta 660aagttgggaa cttggcctca agagagagag cttgtcatgc tatcggactg atcggtgtta 720ctagacgagc tcggcgaata ctggttgaag caggagtgat tccagcactt gtggatctgt 780atcgagatgg ggatgataag gcaaagcttt tagctggtaa tgccttaggg atcatatctg 840ctcagactga gtacattagg cctgtcactg aagctggttc cattcctttg tatgtcgagc 900ttctctcggg acaagatccc atggggaaag atattgcaga ggatgtgttc tgtatattag 960ctgtagctga aggtaatgct gttttgatag cggaacaact ggtgaggatc ttgagagcag 1020gggataacga agccaagctt gcagcttctg atgtgttatg ggatcttgcg ggttataggc 1080attctgtatc tgttattaga gggtctggcg caattccttt gcttattgag cttctgagag 1140atgggtcact tgagttcaga gagaggattt ctggagctat ttctcagttg agttacaatg 1200agaacgaccg tgaggccttt tctgattccg gtatgatacc gattctgatt gaatggttgg 1260gggatgagtc ggaagagctc agggataacg cagctgaggc acttattaat ttttctgaag 1320accaagagca ttatgctaga gtgcgtgagg caataggcca tcctgtgttt cagagtatgc 1380agagcagact ggctagaatc cgagcttccc atgaactgat ggttcgatca atgcgaaggg 1440ttacaatcca acatcttgcc catgaccatg atcttccatg atctgaaggg caaattaagc 1500ttcccatctg ttttgatgta tgtttataat ctgacttgga aaaagaaaag actcaattgc 1560tgtttgattt ctgcaatttg tatttgatac gtttgtatac atgtactaaa agatt 16154475PRTArabidopsis thaliana 4Met Gly Ser Ser Glu Thr Glu Ser Glu Ser Arg Gly Phe Gln Asn Pro 1 5 10 15 Asp Trp Glu Thr Glu Phe Asn Arg Phe Glu Asn Ala Ile Ser Ser Gly 20 25 30 Ser Ala Ser Ile Arg Val Arg Ser Val Leu Lys Leu Ser Asp Leu Thr 35 40 45 Asn Arg Val Pro Glu Ser Tyr Ile Ser Arg Ala Ile Pro Ile Leu Ala 50 55 60 Gly Leu Leu Arg Val Ser Asp Asp Ser Asn Arg Ser Val Gln Ala Ala 65 70 75 80 Ala Ala His Cys Leu Lys Cys Ile Thr Cys Cys Gly Gly Glu Glu Ser 85 90 95 Gly Phe Ala Val Thr Met Gly Arg Cys Gly Val Ile Ala Ser Leu Leu 100 105 110 Gly Leu Leu Leu Glu Ala Asn Thr Asp Gly Asn Val Phe Arg Arg Ile 115 120 125 Trp Val Lys Cys Leu Trp Ser Leu Val Thr Phe Gly Ser Ser Ile Arg 130 135 140 Val Gly Leu Ala Arg Leu Gly Gly Leu Glu Ile Val Ile Arg Glu Leu 145 150 155 160 Asn Asn Trp Glu Asp Asp Gly Ser Arg Trp Tyr Leu Leu Glu Ile Leu 165 170 175 Ser Ala Leu Thr Thr Ile Arg Glu Ser Arg Arg Val Leu Val His Ser 180 185 190 Gly Gly Leu Lys Phe Leu Val Glu Ala Ala Lys Val Gly Asn Leu Ala 195 200 205 Ser Arg Glu Arg Ala Cys His Ala Ile Gly Leu Ile Gly Val Thr Arg 210 215 220 Arg Ala Arg Arg Ile Leu Val Glu Ala Gly Val Ile Pro Ala Leu Val 225 230 235 240 Asp Leu Tyr Arg Asp Gly Asp Asp Lys Ala Lys Leu Leu Ala Gly Asn 245 250 255 Ala Leu Gly Ile Ile Ser Ala Gln Thr Glu Tyr Ile Arg Pro Val Thr 260 265 270 Glu Ala Gly Ser Ile Pro Leu Tyr Val Glu Leu Leu Ser Gly Gln Asp 275 280 285 Pro Met Gly Lys Asp Ile Ala Glu Asp Val Phe Cys Ile Leu Ala Val 290 295 300 Ala Glu Gly Asn Ala Val Leu Ile Ala Glu Gln Leu Val Arg Ile Leu 305 310 315 320 Arg Ala Gly Asp Asn Glu Ala Lys Leu Ala Ala Ser Asp Val Leu Trp 325 330 335 Asp Leu Ala Gly Tyr Arg His Ser Val Ser Val Ile Arg Gly Ser Gly 340 345 350 Ala Ile Pro Leu Leu Ile Glu Leu Leu Arg Asp Gly Ser Leu Glu Phe 355 360 365 Arg Glu Arg Ile Ser Gly Ala Ile Ser Gln Leu Ser Tyr Asn Glu Asn 370 375 380

Asp Arg Glu Ala Phe Ser Asp Ser Gly Met Ile Pro Ile Leu Ile Glu 385 390 395 400 Trp Leu Gly Asp Glu Ser Glu Glu Leu Arg Asp Asn Ala Ala Glu Ala 405 410 415 Leu Ile Asn Phe Ser Glu Asp Gln Glu His Tyr Ala Arg Val Arg Glu 420 425 430 Ala Ile Gly His Pro Val Phe Gln Ser Met Gln Ser Arg Leu Ala Arg 435 440 445 Ile Arg Ala Ser His Glu Leu Met Val Arg Ser Met Arg Arg Val Thr 450 455 460 Ile Gln His Leu Ala His Asp His Asp Leu Pro 465 470 475 5357DNAArabidopsis thaliana 5atgcgtatca aactgtcagt gaatagtgaa aaatgcagga agaaggcaat gcaagtagca 60gttgctgcag atggtgtaac ttcagtggcc atggaaggag aatttcagga tgagcttgtg 120gttgttggag atggagtgga ttcagcttct ttgattatgg ccttaaggaa gaaagcatgt 180catgtcactc ttgagactct tgaagaagtg aagaagccac aggtcgaaga gaagtctatt 240acaccgcatt gctgcatagc tcaatgtcct gtggttagca atgagcagcc aaggcctgag 300gtttatagaa tagtgcatga ttcttatggt ccaaccactg ggtgcttagt tatgtaa 3576118PRTArabidopsis thaliana 6Met Arg Ile Lys Leu Ser Val Asn Ser Glu Lys Cys Arg Lys Lys Ala 1 5 10 15 Met Gln Val Ala Val Ala Ala Asp Gly Val Thr Ser Val Ala Met Glu 20 25 30 Gly Glu Phe Gln Asp Glu Leu Val Val Val Gly Asp Gly Val Asp Ser 35 40 45 Ala Ser Leu Ile Met Ala Leu Arg Lys Lys Ala Cys His Val Thr Leu 50 55 60 Glu Thr Leu Glu Glu Val Lys Lys Pro Gln Val Glu Glu Lys Ser Ile 65 70 75 80 Thr Pro His Cys Cys Ile Ala Gln Cys Pro Val Val Ser Asn Glu Gln 85 90 95 Pro Arg Pro Glu Val Tyr Arg Ile Val His Asp Ser Tyr Gly Pro Thr 100 105 110 Thr Gly Cys Leu Val Met 115 7 2271DNAArabidopsis thaliana 7aaagaggtaa gattgttctt gaagaatcga ttctatagag cgtgttagct tcaatgctaa 60cttgggagac cccagttatg cttgcaagca acaccgcctc aaccaaaaag ctagccttca 120ttaccacctt tctcatcatt gtgttatgtc cggtcacaat ggtcatgtct cagccgcagg 180cggatgtttt gccactgcca gcctcagacg cagattgcct cttgagattt aaagatactt 240tggttaatgc atcgttcatt agcagttggg atccttccat ctccccgtgt aagcgaaact 300cagagaattg gttcggtgtt ctctgtgtta ccggtaatgt ttggggccta caactcgaag 360gaatgggctt aaccgggaag cttgaccttg aaccattagc tgcaatcaag aatctacgaa 420ccttgagctt catgaacaac aaatttaacg gttcaatgcc atctgtcaag aattttggtg 480cgttgaaatc attgtacttg tctaacaacc ggtttacagg ggagataccc gcggatgcgt 540ttgatggtat gcatcatttg aagaagcttc tgttggctaa caacgcgttt cgagggagta 600tcccttcttc tttagcttat ttgccaatgc ttttagagtt gaggctaaat gggaatcagt 660ttcatgggga aataccttat tttaaacaaa aggaccttaa gttggctagc ttcgaaaaca 720atgacctcga gggacctata ccggaaagcc ttagcaacat ggatcctgtc tccttttcag 780ggaacaagaa cttgtgtggt cctccactaa gcccatgttc gagtgattca ggatcttctc 840cggatctccc ttctagtccc acggaaaaga acaagaacca atctttcttc atcattgcaa 900ttgttctgat tgtcattggg ataatactga tgatcatttc gcttgtggtc tgtatccttc 960ataccagaag acgcaagagt ttgtcggctt atccatccgc gggtcaggac aggacagaga 1020aatacaacta cgatcaatct acggacaagg ataaagctgc agattctgta acgagttaca 1080ctagtagaag aggagcagta ccggatcaga ataaactctt gtttttgcaa gatgacattc 1140aaagatttga ccttcaagat cttcttagag cctctgctga agttcttggg agcggaagct 1200ttggctcttc ttataaaact gggataaata gcggacagat gctggtcgtg aagaggtata 1260aacatatgaa caatgttgga agagatgagt ttcatgagca tatgagacgg ttagggagat 1320tgaaacatcc gaatctgttg cctattgtgg cttactatta ccgcagagaa gagaagctct 1380tgatcgctga gttcatgcca aatcgtagct tggcaagcca tcttcacgcg aatcattctg 1440tggatcaacc gggattggat tggccaacaa ggctaaagat tatacaagga gtggctaagg 1500gtttaggtta cttgttcaac gagctaacaa ccctaacaat ccctcacggt catctcaagt 1560catcgaacgt tgtattggac gaatcatttg agccactcct aaccgattat gcactaagac 1620cagtgatgaa ctcagagcag tctcacaatc taatgatctc ttataaatca ccagagtata 1680gcttaaaggg acatctaact aaaaagacag atgtttggtg cctgggggta ttgatcttgg 1740agcttttaac aggtaggttt ccggagaatt atctaagcca agggtacgat gctaacatga 1800gcctcgtaac ttgggtgagc aacatggtta aggagaagaa aacaggtgac gtgtttgaca 1860aggaaatgac tgggaagaaa aactgcaaag cagagatgct aaaccttttg aaaatcgggt 1920tgagttgttg cgaagaagat gaagaaagga ggatggagat gagagatgct gtggagaaga 1980tagagaggtt aaaagaagga gagtttgaca atgatttcgc atcgacgaca cataatgtct 2040ttgcttctcg gttgatagac gacgatgact ttggtttcgc catgaatcga tgatgaaact 2100gatcagtctt ctccagaaca atggaaaaag ctaaacaatt tgtaatcttt gatgccaaat 2160aaaaagaaga actttctttt tcttctttgt tatgtaactt tttccattct tataaatcat 2220tctcttcgtg taattgtaaa tccattttgc agagttttga aaattttact c 22718679PRTArabidopsis thaliana 8Met Leu Thr Trp Glu Thr Pro Val Met Leu Ala Ser Asn Thr Ala Ser 1 5 10 15 Thr Lys Lys Leu Ala Phe Ile Thr Thr Phe Leu Ile Ile Val Leu Cys 20 25 30 Pro Val Thr Met Val Met Ser Gln Pro Gln Ala Asp Val Leu Pro Leu 35 40 45 Pro Ala Ser Asp Ala Asp Cys Leu Leu Arg Phe Lys Asp Thr Leu Val 50 55 60 Asn Ala Ser Phe Ile Ser Ser Trp Asp Pro Ser Ile Ser Pro Cys Lys 65 70 75 80 Arg Asn Ser Glu Asn Trp Phe Gly Val Leu Cys Val Thr Gly Asn Val 85 90 95 Trp Gly Leu Gln Leu Glu Gly Met Gly Leu Thr Gly Lys Leu Asp Leu 100 105 110 Glu Pro Leu Ala Ala Ile Lys Asn Leu Arg Thr Leu Ser Phe Met Asn 115 120 125 Asn Lys Phe Asn Gly Ser Met Pro Ser Val Lys Asn Phe Gly Ala Leu 130 135 140 Lys Ser Leu Tyr Leu Ser Asn Asn Arg Phe Thr Gly Glu Ile Pro Ala 145 150 155 160 Asp Ala Phe Asp Gly Met His His Leu Lys Lys Leu Leu Leu Ala Asn 165 170 175 Asn Ala Phe Arg Gly Ser Ile Pro Ser Ser Leu Ala Tyr Leu Pro Met 180 185 190 Leu Leu Glu Leu Arg Leu Asn Gly Asn Gln Phe His Gly Glu Ile Pro 195 200 205 Tyr Phe Lys Gln Lys Asp Leu Lys Leu Ala Ser Phe Glu Asn Asn Asp 210 215 220 Leu Glu Gly Pro Ile Pro Glu Ser Leu Ser Asn Met Asp Pro Val Ser 225 230 235 240 Phe Ser Gly Asn Lys Asn Leu Cys Gly Pro Pro Leu Ser Pro Cys Ser 245 250 255 Ser Asp Ser Gly Ser Ser Pro Asp Leu Pro Ser Ser Pro Thr Glu Lys 260 265 270 Asn Lys Asn Gln Ser Phe Phe Ile Ile Ala Ile Val Leu Ile Val Ile 275 280 285 Gly Ile Ile Leu Met Ile Ile Ser Leu Val Val Cys Ile Leu His Thr 290 295 300 Arg Arg Arg Lys Ser Leu Ser Ala Tyr Pro Ser Ala Gly Gln Asp Arg 305 310 315 320 Thr Glu Lys Tyr Asn Tyr Asp Gln Ser Thr Asp Lys Asp Lys Ala Ala 325 330 335 Asp Ser Val Thr Ser Tyr Thr Ser Arg Arg Gly Ala Val Pro Asp Gln 340 345 350 Asn Lys Leu Leu Phe Leu Gln Asp Asp Ile Gln Arg Phe Asp Leu Gln 355 360 365 Asp Leu Leu Arg Ala Ser Ala Glu Val Leu Gly Ser Gly Ser Phe Gly 370 375 380 Ser Ser Tyr Lys Thr Gly Ile Asn Ser Gly Gln Met Leu Val Val Lys 385 390 395 400 Arg Tyr Lys His Met Asn Asn Val Gly Arg Asp Glu Phe His Glu His 405 410 415 Met Arg Arg Leu Gly Arg Leu Lys His Pro Asn Leu Leu Pro Ile Val 420 425 430 Ala Tyr Tyr Tyr Arg Arg Glu Glu Lys Leu Leu Ile Ala Glu Phe Met 435 440 445 Pro Asn Arg Ser Leu Ala Ser His Leu His Ala Asn His Ser Val Asp 450 455 460 Gln Pro Gly Leu Asp Trp Pro Thr Arg Leu Lys Ile Ile Gln Gly Val 465 470 475 480 Ala Lys Gly Leu Gly Tyr Leu Phe Asn Glu Leu Thr Thr Leu Thr Ile 485 490 495 Pro His Gly His Leu Lys Ser Ser Asn Val Val Leu Asp Glu Ser Phe 500 505 510 Glu Pro Leu Leu Thr Asp Tyr Ala Leu Arg Pro Val Met Asn Ser Glu 515 520 525 Gln Ser His Asn Leu Met Ile Ser Tyr Lys Ser Pro Glu Tyr Ser Leu 530 535 540 Lys Gly His Leu Thr Lys Lys Thr Asp Val Trp Cys Leu Gly Val Leu 545 550 555 560 Ile Leu Glu Leu Leu Thr Gly Arg Phe Pro Glu Asn Tyr Leu Ser Gln 565 570 575 Gly Tyr Asp Ala Asn Met Ser Leu Val Thr Trp Val Ser Asn Met Val 580 585 590 Lys Glu Lys Lys Thr Gly Asp Val Phe Asp Lys Glu Met Thr Gly Lys 595 600 605 Lys Asn Cys Lys Ala Glu Met Leu Asn Leu Leu Lys Ile Gly Leu Ser 610 615 620 Cys Cys Glu Glu Asp Glu Glu Arg Arg Met Glu Met Arg Asp Ala Val 625 630 635 640 Glu Lys Ile Glu Arg Leu Lys Glu Gly Glu Phe Asp Asn Asp Phe Ala 645 650 655 Ser Thr Thr His Asn Val Phe Ala Ser Arg Leu Ile Asp Asp Asp Asp 660 665 670 Phe Gly Phe Ala Met Asn Arg 675 9 2772DNAArabidopsis thaliana 9ataaactaat tactatggcg gagaattcgc ggctacgaga gctacggaga cacagatgat 60gaaagagaga aagagagaga gagagagaga gaatgtgagg ttaaaattat ccattgttgt 120tcttcagtgc accactgaat cgaagttttc taatttggag aaagaggatt tctcaaaacc 180cctaatttag gaagaccgca gatttcttta gtattgagaa tgagattctc cgagaagatg 240gattagtgaa tcgagaggtt gatatcgtta aatgcgggga ttttgcaatc tagggttctt 300aagcattgta atcgatgaag gctcaaaagg gaagctcgaa gaagaaaggt acgaattctg 360ggttagtcgc tgtagcagtg gataacaata aaggaagcca acatgctctc aaatgggctg 420ctgatcatct tgtctctaaa ggacaaacca ttatcctcct ccatgttatc cttaggtcat 480cctctgattc aggtgagatt actgcagaga aacataagca agctgaaaat ctttttgtga 540catttcattg ctactgcagt cgaaaagaga tacaatgcct tgatgtcacg cttgaggatg 600acaacattgt caagtccctt gcggaatatg tttcctctgg tgtgattgag aatttgattc 660ttggtgctcc ttcgaggcat ggattcatga ggaaatttaa gatttctgat acaccgagca 720atgtagcgaa agcagcacct gatttctgta cagtttacgt tatttcaaaa gggaagatat 780catctgtccg ccatgcctca cgagctgctc catatcggtc tccgcttatg ggtcagattg 840aaaaccactc tgaaatcata aactacgaaa agttcagaaa caccatgagc tttagagata 900gggctcctcc caggtcttcg actgctagct ccattgaaga ttatggaaag tcacctatgg 960caaggacgtc aaattacgca aactcattct ttgatttgga agattccgaa aacgacatat 1020catttgtttg ctcaggcagg ccaagtaccg caagctcagg ccggccaagt acaagtaccg 1080gaaggtctga catatctttt gtgagctcag gcaggccgag tacaagcacc actggaagcc 1140cttccttcat ctacgatttt cctgattctg gtttaactcc gagagagtcg acgagctctg 1200gacactctat gcgtctagga atcaggttca atgacacaaa tatccaacat gatttctcat 1260tcgtctcaca agatagcggt cggtcatctt gttcttgttc accacaaaac ttggaagaag 1320tggaagctga gatgcggaga ttgaagcagg aactgaaaca cgcaattgac atgtatggat 1380cagcttgcag agaagcacta gctgcaaagc aagaggcgaa ggagctccaa cgtcagaaaa 1440ttgaagagga agggtgggtg caagaaggac agttatcaga gaaatctaca aagtccatag 1500tggaaaaaga gagagcacat aaagctgcga aggatgcttc tgaaacagca ggcaagatag 1560cagagctcga aacacaaaga agagctatag aagctgcagg ttctttctct gattccagtt 1620taaggtatcg aaggtatgtc attggtgaga ttgaagaagc cacaaactca ttcgacaagg 1680ctaataaaat aggcgaaggc gggtatggtc ctgtctataa gggttatctt gatcataccc 1740ctgttgctat taaggctttg aaagcagatg cagttcaagg aagatctcaa tttcaaagag 1800aggtagaagt tcttagctgc ataagacacc cacacatggt actactaatt ggagcatgtc 1860cagagtatgg agtgcttgta tatgagtata tggccaaagg gagtttagct gataggctct 1920ataagtatgg aaacacacca ccactctcgt gggagctcag gttccgaatt gcagccgaag 1980ttgcgacggg tctgctcttc ctacaccaga cgaaacccga gcctatagtg caccgtgatc 2040ttaaacccgg aaacattttg attgaccaga actacgtaag caaaataggg gacgttggat 2100tagccaaact agtgcctgca gttgctgaaa acgtcacgca gtgccacgtg tcatcaaccg 2160ctgggacttt ctgttacatt gaccctgagt accaacaaac tggaatgcta ggtgtgaaat 2220ctgatgtcta ctcttttggt atcttgcttc tcgaactgct cacagcgaaa aggccgacgg 2280gtttggctta taccgttgag caagcaatgg agcaagggaa attcaaggat atgttagacc 2340cagcagtgcc taactggccg gtggaagaag ctatgtcttt ggcaaagatt gctcttaaat 2400gtgcacagct gagaaggaaa gaccgaccag acctcggaaa agaggtttta ccagagctca 2460ataaattgag agctcgtgca gatacgaata tggaatggat gatgttcaac ttaagtagag 2520gtcgtctaac accaaatcat agccaagtgt ccttgccacc agttgatgaa ctaagtgtat 2580gctcggataa gtcttataca cattcaagca ctgtatccga cacagagaag aactcagacc 2640aaaacgaaga ggattagcat attttgtgtg ttgaaggaaa tggagtgaga ccattgttaa 2700agcttatgta attgtgaata ttgttgtatg tatgtatgta tataattcgt aaaggaagaa 2760aataactgaa gg 277210780PRTArabidopsis thaliana 10Met Lys Ala Gln Lys Gly Ser Ser Lys Lys Lys Gly Thr Asn Ser Gly 1 5 10 15 Leu Val Ala Val Ala Val Asp Asn Asn Lys Gly Ser Gln His Ala Leu 20 25 30 Lys Trp Ala Ala Asp His Leu Val Ser Lys Gly Gln Thr Ile Ile Leu 35 40 45 Leu His Val Ile Leu Arg Ser Ser Ser Asp Ser Gly Glu Ile Thr Ala 50 55 60 Glu Lys His Lys Gln Ala Glu Asn Leu Phe Val Thr Phe His Cys Tyr 65 70 75 80 Cys Ser Arg Lys Glu Ile Gln Cys Leu Asp Val Thr Leu Glu Asp Asp 85 90 95 Asn Ile Val Lys Ser Leu Ala Glu Tyr Val Ser Ser Gly Val Ile Glu 100 105 110 Asn Leu Ile Leu Gly Ala Pro Ser Arg His Gly Phe Met Arg Lys Phe 115 120 125 Lys Ile Ser Asp Thr Pro Ser Asn Val Ala Lys Ala Ala Pro Asp Phe 130 135 140 Cys Thr Val Tyr Val Ile Ser Lys Gly Lys Ile Ser Ser Val Arg His 145 150 155 160 Ala Ser Arg Ala Ala Pro Tyr Arg Ser Pro Leu Met Gly Gln Ile Glu 165 170 175 Asn His Ser Glu Ile Ile Asn Tyr Glu Lys Phe Arg Asn Thr Met Ser 180 185 190 Phe Arg Asp Arg Ala Pro Pro Arg Ser Ser Thr Ala Ser Ser Ile Glu 195 200 205 Asp Tyr Gly Lys Ser Pro Met Ala Arg Thr Ser Asn Tyr Ala Asn Ser 210 215 220 Phe Phe Asp Leu Glu Asp Ser Glu Asn Asp Ile Ser Phe Val Cys Ser 225 230 235 240 Gly Arg Pro Ser Thr Ala Ser Ser Gly Arg Pro Ser Thr Ser Thr Gly 245 250 255 Arg Ser Asp Ile Ser Phe Val Ser Ser Gly Arg Pro Ser Thr Ser Thr 260 265 270 Thr Gly Ser Pro Ser Phe Ile Tyr Asp Phe Pro Asp Ser Gly Leu Thr 275 280 285 Pro Arg Glu Ser Thr Ser Ser Gly His Ser Met Arg Leu Gly Ile Arg 290 295 300 Phe Asn Asp Thr Asn Ile Gln His Asp Phe Ser Phe Val Ser Gln Asp 305 310 315 320 Ser Gly Arg Ser Ser Cys Ser Cys Ser Pro Gln Asn Leu Glu Glu Val 325 330 335 Glu Ala Glu Met Arg Arg Leu Lys Gln Glu Leu Lys His Ala Ile Asp 340 345 350 Met Tyr Gly Ser Ala Cys Arg Glu Ala Leu Ala Ala Lys Gln Glu Ala 355 360 365 Lys Glu Leu Gln Arg Gln Lys Ile Glu Glu Glu Gly Trp Val Gln Glu 370 375 380 Gly Gln Leu Ser Glu Lys Ser Thr Lys Ser Ile Val Glu Lys Glu Arg 385 390 395 400 Ala His Lys Ala Ala Lys Asp Ala Ser Glu Thr Ala Gly Lys Ile Ala 405 410 415 Glu Leu Glu Thr Gln Arg Arg Ala Ile Glu Ala Ala Gly Ser Phe Ser 420 425 430 Asp Ser Ser Leu Arg Tyr Arg Arg Tyr Val Ile Gly Glu Ile Glu Glu 435 440 445 Ala Thr Asn Ser Phe Asp Lys Ala Asn Lys Ile Gly Glu Gly Gly Tyr 450 455 460 Gly Pro Val Tyr Lys Gly Tyr Leu Asp His Thr Pro Val Ala Ile Lys 465 470 475 480 Ala Leu Lys Ala Asp Ala Val Gln Gly Arg Ser Gln Phe Gln Arg Glu 485 490 495 Val Glu Val Leu Ser Cys Ile Arg His Pro His Met Val Leu Leu Ile 500 505 510 Gly Ala Cys Pro Glu Tyr Gly Val Leu Val Tyr Glu Tyr Met Ala Lys 515 520 525 Gly Ser Leu Ala Asp Arg Leu Tyr Lys Tyr Gly Asn Thr Pro Pro Leu 530 535 540 Ser Trp Glu Leu Arg Phe Arg Ile Ala Ala Glu Val Ala Thr Gly Leu 545 550

555 560 Leu Phe Leu His Gln Thr Lys Pro Glu Pro Ile Val His Arg Asp Leu 565 570 575 Lys Pro Gly Asn Ile Leu Ile Asp Gln Asn Tyr Val Ser Lys Ile Gly 580 585 590 Asp Val Gly Leu Ala Lys Leu Val Pro Ala Val Ala Glu Asn Val Thr 595 600 605 Gln Cys His Val Ser Ser Thr Ala Gly Thr Phe Cys Tyr Ile Asp Pro 610 615 620 Glu Tyr Gln Gln Thr Gly Met Leu Gly Val Lys Ser Asp Val Tyr Ser 625 630 635 640 Phe Gly Ile Leu Leu Leu Glu Leu Leu Thr Ala Lys Arg Pro Thr Gly 645 650 655 Leu Ala Tyr Thr Val Glu Gln Ala Met Glu Gln Gly Lys Phe Lys Asp 660 665 670 Met Leu Asp Pro Ala Val Pro Asn Trp Pro Val Glu Glu Ala Met Ser 675 680 685 Leu Ala Lys Ile Ala Leu Lys Cys Ala Gln Leu Arg Arg Lys Asp Arg 690 695 700 Pro Asp Leu Gly Lys Glu Val Leu Pro Glu Leu Asn Lys Leu Arg Ala 705 710 715 720 Arg Ala Asp Thr Asn Met Glu Trp Met Met Phe Asn Leu Ser Arg Gly 725 730 735 Arg Leu Thr Pro Asn His Ser Gln Val Ser Leu Pro Pro Val Asp Glu 740 745 750 Leu Ser Val Cys Ser Asp Lys Ser Tyr Thr His Ser Ser Thr Val Ser 755 760 765 Asp Thr Glu Lys Asn Ser Asp Gln Asn Glu Glu Asp 770 775 780 111681DNAArabidopsis thaliana 11aatcatcatc caaaaacatt cttctcacaa gaatcagatt caagatagaa gtttttcaaa 60caatgtctag tcctcttggt cactttcaga ttcttgtttt tcttcatgct ttgcttatct 120tctcagctga gtcccgcaaa acccaattgc tgaacgataa tgatgttgaa tctagcgaca 180agagtgcaaa aggcacacga tgggctgttt tagttgctgg atcaaatgaa tattataact 240acaggcatca ggctgacata tgccacgcgt atcagatact ccgaaaaggc ggtttaaaag 300atgaaaacat cattgtgttt atgtatgatg atatcgcgtt ttcctcggag aatcctaggc 360ctggagttat cattaataaa ccagatggag aagatgttta taaaggagtt cctaaggact 420acactaaaga agctgttaat gttcaaaact tctacaatgt gttacttgga aatgaaagtg 480gcgtcacagg aggaaatggc aaagttgtga aaagtggtcc taatgataat atcttcatct 540attatgctga ccatggagct cctggcttaa tagcgatgcc cactggtgat gaagttatgg 600caaaagattt caatgaagtc ttggagaaga tgcataagag aaaaaaatac aacaagatgg 660tgatctatgt tgaagcatgt gaatcaggaa gtatgtttga agggatttta aagaaaaatc 720tcaacatata cgcagtgact gctgctaatt ctaaagagag cagctgggga gtttactgtc 780ctgagtcata tcctcctcct ccttctgaga ttggaacttg tctcggcgat acatttagca 840tctcttggct tgaggacagt gaccttcatg acatgagcaa agagactttg gagcaacaat 900accacgttgt aaagagaaga gtaggatctg atgtaccaga gacttctcat gtatgccgtt 960tcggaacaga gaagatgctt aaagattatc tttcctctta cattggaaga aatcctgaaa 1020acgataactt cactttcacg gaatcctttt cctcaccaat ctctaattct ggcttggtca 1080atccgcgcga tattcctctg ctatacctcc agagaaagat tcaaaaagct ccaatgggat 1140cacttgaaag caaagaagct cagaagaaat tgcttgacga aaagaatcat aggaaacaaa 1200tcgatcagag cattacagac attctgcggc tttcagttaa acaaaccaat gtcttaaatc 1260tcttaacttc cacaagaaca acaggacagc ctcttgtaga cgattgggat tgcttcaaga 1320ctctagttaa tagcttcaag aatcactgcg gtgcaacggt gcattacgga ttgaagtata 1380caggagcgct tgccaatatc tgcaatatgg gagtggatgt gaagcaaact gtttcagcca 1440ttgaacaagc ttgttcgatg taatgatttg caaaacaatg tgatattcga ctttaaaaat 1500atcaaagtta atttcaataa aactcgatgt agagatggtt ggttcatgat actactttta 1560catgaaaagc tttttaatcg atgataacgc gaaagtcttg gtctaaattt gtgaattgga 1620ttcatggaac aataacctcg taccaactgt acggtacgga cggctgtact ttggttgagt 1680t 168112466PRTArabidopsis thaliana 12Met Ser Ser Pro Leu Gly His Phe Gln Ile Leu Val Phe Leu His Ala 1 5 10 15 Leu Leu Ile Phe Ser Ala Glu Ser Arg Lys Thr Gln Leu Leu Asn Asp 20 25 30 Asn Asp Val Glu Ser Ser Asp Lys Ser Ala Lys Gly Thr Arg Trp Ala 35 40 45 Val Leu Val Ala Gly Ser Asn Glu Tyr Tyr Asn Tyr Arg His Gln Ala 50 55 60 Asp Ile Cys His Ala Tyr Gln Ile Leu Arg Lys Gly Gly Leu Lys Asp 65 70 75 80 Glu Asn Ile Ile Val Phe Met Tyr Asp Asp Ile Ala Phe Ser Ser Glu 85 90 95 Asn Pro Arg Pro Gly Val Ile Ile Asn Lys Pro Asp Gly Glu Asp Val 100 105 110 Tyr Lys Gly Val Pro Lys Asp Tyr Thr Lys Glu Ala Val Asn Val Gln 115 120 125 Asn Phe Tyr Asn Val Leu Leu Gly Asn Glu Ser Gly Val Thr Gly Gly 130 135 140 Asn Gly Lys Val Val Lys Ser Gly Pro Asn Asp Asn Ile Phe Ile Tyr 145 150 155 160 Tyr Ala Asp His Gly Ala Pro Gly Leu Ile Ala Met Pro Thr Gly Asp 165 170 175 Glu Val Met Ala Lys Asp Phe Asn Glu Val Leu Glu Lys Met His Lys 180 185 190 Arg Lys Lys Tyr Asn Lys Met Val Ile Tyr Val Glu Ala Cys Glu Ser 195 200 205 Gly Ser Met Phe Glu Gly Ile Leu Lys Lys Asn Leu Asn Ile Tyr Ala 210 215 220 Val Thr Ala Ala Asn Ser Lys Glu Ser Ser Trp Gly Val Tyr Cys Pro 225 230 235 240 Glu Ser Tyr Pro Pro Pro Pro Ser Glu Ile Gly Thr Cys Leu Gly Asp 245 250 255 Thr Phe Ser Ile Ser Trp Leu Glu Asp Ser Asp Leu His Asp Met Ser 260 265 270 Lys Glu Thr Leu Glu Gln Gln Tyr His Val Val Lys Arg Arg Val Gly 275 280 285 Ser Asp Val Pro Glu Thr Ser His Val Cys Arg Phe Gly Thr Glu Lys 290 295 300 Met Leu Lys Asp Tyr Leu Ser Ser Tyr Ile Gly Arg Asn Pro Glu Asn 305 310 315 320 Asp Asn Phe Thr Phe Thr Glu Ser Phe Ser Ser Pro Ile Ser Asn Ser 325 330 335 Gly Leu Val Asn Pro Arg Asp Ile Pro Leu Leu Tyr Leu Gln Arg Lys 340 345 350 Ile Gln Lys Ala Pro Met Gly Ser Leu Glu Ser Lys Glu Ala Gln Lys 355 360 365 Lys Leu Leu Asp Glu Lys Asn His Arg Lys Gln Ile Asp Gln Ser Ile 370 375 380 Thr Asp Ile Leu Arg Leu Ser Val Lys Gln Thr Asn Val Leu Asn Leu 385 390 395 400 Leu Thr Ser Thr Arg Thr Thr Gly Gln Pro Leu Val Asp Asp Trp Asp 405 410 415 Cys Phe Lys Thr Leu Val Asn Ser Phe Lys Asn His Cys Gly Ala Thr 420 425 430 Val His Tyr Gly Leu Lys Tyr Thr Gly Ala Leu Ala Asn Ile Cys Asn 435 440 445 Met Gly Val Asp Val Lys Gln Thr Val Ser Ala Ile Glu Gln Ala Cys 450 455 460 Ser Met 465 131912DNAArabidopsis thaliana 13agaaattagc acccgactcg ggctccgttt caatgttggc cgcgacgcct gctcatggac 60tcaggtacgt ggtggtgccc acacgctcat ggcttcatag gtttcgatgc tgctcgtctt 120ctctcgctcc tctctcccct tctgaattct cgggcggtaa taaagcccag aagaagctca 180acgacgagaa caacaccaac gtaagcaatg agaaaacggc gccgtattat ccgaaacgag 240gagaaacagt ggagcttgtg tgcgagagtt taggattcaa aggcaaagga atctgtaaag 300ttgatggaac tggctacgtc gttatgtgtg accgagctct tcccggcgaa cgttttcttg 360gccgtgtcac tcgccgcaaa ggcagctatg ctgaagtgac aaaaatgaag acaatatctc 420cacataagga cttagtagaa gctccatgtg agtatgcatc ttactgtggt ggttgcaaaa 480ctcagaatct ctcttatgaa gctcagctta gagctaaaga agagcaagtt catgagctta 540tcagacatgt tggaaggttt tctgataaca atcctggcct tgagattgtc ttgaagccta 600ttgttgcttg cgatattcaa ttccattatc ggaataagat ggagttttca tttggtccac 660aaagatggct tccgattgaa atgttaaacg agagacaaga tggtcctaag aactttgcat 720tggggctcca tgcacctgga ttttttgata aggttttaaa tgttgataag tgcttattac 780agagcgagcc aggaaacttg gttcttgctg ctgtccaaga ttgctggaga gatcctgaat 840taagtctttc accatatgat tgtcgttcac atgttgggtt tcttaaacat ttgatgctga 900gaactggaag gaatgtggag actggttcac tagaacttat ggtcaatttt gtgacatcgt 960cttataagcc agagctgttg aaacccctgg ttgataggat ttcatcaatt cctcaagtgg 1020taagcattat gaataatgta aattcttcgg taggaaacac atccgttggc gaaaaggaat 1080atactcttta tgggaaggat acaatcacag aggtcttaag agggcttaca tttcaaattt 1140cagccaactc tttctttcag actaacactc atcaggctga agttttatat aagcttattg 1200aggaatctgc tggacttaaa ggagatggct cagaagtcgt gctcgatctt ttctgtggaa 1260ctggtaccat aggccttaca cttgccagaa gggcgaaaca cgtgtatggt tatgaagtag 1320taccacaagc aataacagat gcacacaaga atgcccaaat aaacggcata gagaatgcaa 1380cattcatcca aggggatcta aacaaaatag gagaagattt tgggaacaat ttccctaagc 1440ctgatatcgt tatttctgat cccaatcgac ctggtatgca catgaagttg atcaagtttc 1500tgctaaagct taaatctcca cggatcattt atgtttcctg taatcctgca acctgcgcca 1560gggatctcga ttacctctgt cacggcgtgg aggagaagaa tctaaaaggt tgctacaaac 1620tgatgagtgt tcagccagtg gatatgttcc ctcacactcc tcacatcgaa tgtgtctgct 1680tgttagagct tgcttgagct ctattgtcac catggctgct tcatttggtc tctaatcaga 1740tgagagacaa atgaaaacag agattttttt agattgaggg agttttggtt ttccattaga 1800gttaagtatc tgtaatcttt ttcatcgagt tctttaatag cattcataga caagaatgta 1860aacgtttttt aaaaagttaa aatcccacca aggcaagtgg tctttaagag tt 191214554PRTArabidopsis thaliana 14Met Leu Ala Ala Thr Pro Ala His Gly Leu Arg Tyr Val Val Val Pro 1 5 10 15 Thr Arg Ser Trp Leu His Arg Phe Arg Cys Cys Ser Ser Ser Leu Ala 20 25 30 Pro Leu Ser Pro Ser Glu Phe Ser Gly Gly Asn Lys Ala Gln Lys Lys 35 40 45 Leu Asn Asp Glu Asn Asn Thr Asn Val Ser Asn Glu Lys Thr Ala Pro 50 55 60 Tyr Tyr Pro Lys Arg Gly Glu Thr Val Glu Leu Val Cys Glu Ser Leu 65 70 75 80 Gly Phe Lys Gly Lys Gly Ile Cys Lys Val Asp Gly Thr Gly Tyr Val 85 90 95 Val Met Cys Asp Arg Ala Leu Pro Gly Glu Arg Phe Leu Gly Arg Val 100 105 110 Thr Arg Arg Lys Gly Ser Tyr Ala Glu Val Thr Lys Met Lys Thr Ile 115 120 125 Ser Pro His Lys Asp Leu Val Glu Ala Pro Cys Glu Tyr Ala Ser Tyr 130 135 140 Cys Gly Gly Cys Lys Thr Gln Asn Leu Ser Tyr Glu Ala Gln Leu Arg 145 150 155 160 Ala Lys Glu Glu Gln Val His Glu Leu Ile Arg His Val Gly Arg Phe 165 170 175 Ser Asp Asn Asn Pro Gly Leu Glu Ile Val Leu Lys Pro Ile Val Ala 180 185 190 Cys Asp Ile Gln Phe His Tyr Arg Asn Lys Met Glu Phe Ser Phe Gly 195 200 205 Pro Gln Arg Trp Leu Pro Ile Glu Met Leu Asn Glu Arg Gln Asp Gly 210 215 220 Pro Lys Asn Phe Ala Leu Gly Leu His Ala Pro Gly Phe Phe Asp Lys 225 230 235 240 Val Leu Asn Val Asp Lys Cys Leu Leu Gln Ser Glu Pro Gly Asn Leu 245 250 255 Val Leu Ala Ala Val Gln Asp Cys Trp Arg Asp Pro Glu Leu Ser Leu 260 265 270 Ser Pro Tyr Asp Cys Arg Ser His Val Gly Phe Leu Lys His Leu Met 275 280 285 Leu Arg Thr Gly Arg Asn Val Glu Thr Gly Ser Leu Glu Leu Met Val 290 295 300 Asn Phe Val Thr Ser Ser Tyr Lys Pro Glu Leu Leu Lys Pro Leu Val 305 310 315 320 Asp Arg Ile Ser Ser Ile Pro Gln Val Val Ser Ile Met Asn Asn Val 325 330 335 Asn Ser Ser Val Gly Asn Thr Ser Val Gly Glu Lys Glu Tyr Thr Leu 340 345 350 Tyr Gly Lys Asp Thr Ile Thr Glu Val Leu Arg Gly Leu Thr Phe Gln 355 360 365 Ile Ser Ala Asn Ser Phe Phe Gln Thr Asn Thr His Gln Ala Glu Val 370 375 380 Leu Tyr Lys Leu Ile Glu Glu Ser Ala Gly Leu Lys Gly Asp Gly Ser 385 390 395 400 Glu Val Val Leu Asp Leu Phe Cys Gly Thr Gly Thr Ile Gly Leu Thr 405 410 415 Leu Ala Arg Arg Ala Lys His Val Tyr Gly Tyr Glu Val Val Pro Gln 420 425 430 Ala Ile Thr Asp Ala His Lys Asn Ala Gln Ile Asn Gly Ile Glu Asn 435 440 445 Ala Thr Phe Ile Gln Gly Asp Leu Asn Lys Ile Gly Glu Asp Phe Gly 450 455 460 Asn Asn Phe Pro Lys Pro Asp Ile Val Ile Ser Asp Pro Asn Arg Pro 465 470 475 480 Gly Met His Met Lys Leu Ile Lys Phe Leu Leu Lys Leu Lys Ser Pro 485 490 495 Arg Ile Ile Tyr Val Ser Cys Asn Pro Ala Thr Cys Ala Arg Asp Leu 500 505 510 Asp Tyr Leu Cys His Gly Val Glu Glu Lys Asn Leu Lys Gly Cys Tyr 515 520 525 Lys Leu Met Ser Val Gln Pro Val Asp Met Phe Pro His Thr Pro His 530 535 540 Ile Glu Cys Val Cys Leu Leu Glu Leu Ala 545 550 151584DNAArabidopsis thaliana 15accaaaatca gattagagtt tcagagacat ctctcgaata cgatcatcag acaagactta 60acctccattt gcacgtcttc ctgctcacga cagacaaatc atgaacgaat ccgacagctg 120aacgaattgc gtgtctgaga agatccaaat cctaattttc tacctttttt ttttgggaac 180taaggttaga atttggagct tctcgtacgt ttttgcttgc ctacgtttcc ggacaaaacc 240ctatttgcat ataaacagaa caggttctgt tcatcaagac actgaagcct gatggggatg 300gaggaaggga ttaaagataa tgctgcatca gctcccaatt caagacctac aaaccaactt 360aaagctcttt taccgatgcg ggtgcttcaa gttttcttgt tgttctttgt tttggttctt 420ggaatctcag tcattagtat gcacatgatc aagtacttaa agattcaaac tttagctcca 480tcgacattga tctctactta tgatgagaga attacgttag agagccttat caagcctcca 540ttgaatggtt ggcattccat gaatgacagt gagcttcttt ggcgtgcttc gatggagcct 600cggatacttg actatccatt taaaagagtt cctaaaatgg cattcatgtt tctcaccaaa 660ggacctttgc catttgctcc actttgggaa aggtttttca aagggcatga gggcttttac 720tcaatctatg ttcatacttt gccaaattat agatcagatt tcccaagctc atctgtgttt 780tacagaagac agatcccaag tcagcatgta gcttggggag agatgagtat gtgtgatgct 840gaaaggaggc ttttggctaa cgcgttgctc gatatctcta acgaatggtt tgttttacta 900tctgaagcgt gtattcctct tcgcggtttc aactttgtct accgttatgt ctctagatca 960agatatagtt tcatgggttc tgttgacgag gacgggcctt acgggagagg cagatatagc 1020tatgcaatgg gaccagaagt aagtctaaac gagtggagaa aagggtctca gtggtttgaa 1080ataaacagag cacttgctgt tgatattgtt gaagacatgg tttactataa caaattcaaa 1140gagttttgta gacctccttg ttatgtagat gaacattact tcccaacaat gctctctatt 1200ggatatccgg attttctcgc taatcggaca ttgacttgga cagattggtc aaggggtggt 1260gctcatccag ctacttttgg caaggctgat ataacagaga agttcatcaa gaagctgtca 1320agaggtaaag cttgcttcta caatgatcag ccatctcaag tttgttatct ttttgcaaga 1380aagtttgctc caagcgcatt gaagccttta cttaaacttg caccaaaggt tcttgggttc 1440taattaatgg atctcttgtc ttctttttgt tcttggtttt tgttctgaaa tgttcttgaa 1500cttgagtgta gcttcgtata gcatggacac aactctgatc cttattgtct ccttccacat 1560tgataatata gatacttcaa tggc 158416383PRTArabidopsis thaliana 16Met Gly Met Glu Glu Gly Ile Lys Asp Asn Ala Ala Ser Ala Pro Asn 1 5 10 15 Ser Arg Pro Thr Asn Gln Leu Lys Ala Leu Leu Pro Met Arg Val Leu 20 25 30 Gln Val Phe Leu Leu Phe Phe Val Leu Val Leu Gly Ile Ser Val Ile 35 40 45 Ser Met His Met Ile Lys Tyr Leu Lys Ile Gln Thr Leu Ala Pro Ser 50 55 60 Thr Leu Ile Ser Thr Tyr Asp Glu Arg Ile Thr Leu Glu Ser Leu Ile 65 70 75 80 Lys Pro Pro Leu Asn Gly Trp His Ser Met Asn Asp Ser Glu Leu Leu 85 90 95 Trp Arg Ala Ser Met Glu Pro Arg Ile Leu Asp Tyr Pro Phe Lys Arg 100 105 110 Val Pro Lys Met Ala Phe Met Phe Leu Thr Lys Gly Pro Leu Pro Phe 115 120 125 Ala Pro Leu Trp Glu Arg Phe Phe Lys Gly His Glu Gly Phe Tyr Ser 130 135 140 Ile Tyr Val His Thr Leu Pro Asn Tyr Arg Ser Asp Phe Pro Ser Ser 145 150 155 160 Ser Val Phe Tyr Arg Arg Gln Ile Pro Ser Gln His Val Ala Trp Gly 165 170 175 Glu Met Ser Met Cys Asp Ala Glu Arg Arg Leu Leu Ala Asn Ala Leu 180 185 190 Leu Asp Ile Ser Asn Glu Trp Phe Val Leu Leu Ser Glu Ala Cys Ile 195 200 205 Pro Leu Arg Gly Phe Asn Phe Val Tyr Arg Tyr Val Ser Arg Ser Arg 210 215 220

Tyr Ser Phe Met Gly Ser Val Asp Glu Asp Gly Pro Tyr Gly Arg Gly 225 230 235 240 Arg Tyr Ser Tyr Ala Met Gly Pro Glu Val Ser Leu Asn Glu Trp Arg 245 250 255 Lys Gly Ser Gln Trp Phe Glu Ile Asn Arg Ala Leu Ala Val Asp Ile 260 265 270 Val Glu Asp Met Val Tyr Tyr Asn Lys Phe Lys Glu Phe Cys Arg Pro 275 280 285 Pro Cys Tyr Val Asp Glu His Tyr Phe Pro Thr Met Leu Ser Ile Gly 290 295 300 Tyr Pro Asp Phe Leu Ala Asn Arg Thr Leu Thr Trp Thr Asp Trp Ser 305 310 315 320 Arg Gly Gly Ala His Pro Ala Thr Phe Gly Lys Ala Asp Ile Thr Glu 325 330 335 Lys Phe Ile Lys Lys Leu Ser Arg Gly Lys Ala Cys Phe Tyr Asn Asp 340 345 350 Gln Pro Ser Gln Val Cys Tyr Leu Phe Ala Arg Lys Phe Ala Pro Ser 355 360 365 Ala Leu Lys Pro Leu Leu Lys Leu Ala Pro Lys Val Leu Gly Phe 370 375 380 171064DNAArabidopsis thaliana 17aagcactgta tcaacctctt tcttctaacc aatcacaatc gccttcttcc acggcggctc 60tccgtcacag gtgacaggtc ccaatctctc tctctcgcgg cgacggcgaa tacggctggt 120acataatgtt gaagctttgg agatggtacc agcgatgcct gacggttcat cctgtgaaaa 180ctcaggtcat cagttctgga tttctttggg gatttggcga tgtcaccgct caatacatca 240ctcattccac tgcgaaacgt cgtcttcttc gtctcaccga aacaaataaa gatgctgacg 300cagatgcaga aattaaggtc aagtggaagc aagatgcaga attcaaagtc aactggaagc 360gagtagctat cacgagcatg tttggatttg gttttgtcgg acctgttggc cacttctggt 420acgaaggctt ggataaattc ataaaactga agcttcgata tgtaccaaag tcaacacgtt 480ttgtagctgc aaaagttgca atggatggtc ttatctttgg acctgtagat ctactggtgt 540tcttcacata catgggattc gccacaggaa agaacacagc tgaagtgaaa gaaggactca 600agagagattt tcttccggct ctagctcttg aaggcggagc atggccactt cttcagattg 660caaacttcag atatgttccc gtgcaatacc agttgcttta cgtcaacatc ttttgcctag 720tagacagtgc cttcctctca tgggtcgagc aacagaagga cgcagcttgg aagcaatggt 780ttacttcatc atttcaacca ttaaaagaac gaggtggcca aggcggagta tgatcgtttt 840ccctgtcata aactttgaat gaaaacaaaa acgagtgtaa ttggcgattt tcaataacgg 900aagttgccta ggatacagat tcttgaatca aatattattt cgtttcacga gaattcagta 960caagtgaata aatgtctgtt agtattgaat gaatgcaaca tgatatggct agactagaga 1020aatgagctat gaccgcctcc gagtggtatt cttggaagaa acac 106418235PRTArabidopsis thaliana 18Met Leu Lys Leu Trp Arg Trp Tyr Gln Arg Cys Leu Thr Val His Pro 1 5 10 15 Val Lys Thr Gln Val Ile Ser Ser Gly Phe Leu Trp Gly Phe Gly Asp 20 25 30 Val Thr Ala Gln Tyr Ile Thr His Ser Thr Ala Lys Arg Arg Leu Leu 35 40 45 Arg Leu Thr Glu Thr Asn Lys Asp Ala Asp Ala Asp Ala Glu Ile Lys 50 55 60 Val Lys Trp Lys Gln Asp Ala Glu Phe Lys Val Asn Trp Lys Arg Val 65 70 75 80 Ala Ile Thr Ser Met Phe Gly Phe Gly Phe Val Gly Pro Val Gly His 85 90 95 Phe Trp Tyr Glu Gly Leu Asp Lys Phe Ile Lys Leu Lys Leu Arg Tyr 100 105 110 Val Pro Lys Ser Thr Arg Phe Val Ala Ala Lys Val Ala Met Asp Gly 115 120 125 Leu Ile Phe Gly Pro Val Asp Leu Leu Val Phe Phe Thr Tyr Met Gly 130 135 140 Phe Ala Thr Gly Lys Asn Thr Ala Glu Val Lys Glu Gly Leu Lys Arg 145 150 155 160 Asp Phe Leu Pro Ala Leu Ala Leu Glu Gly Gly Ala Trp Pro Leu Leu 165 170 175 Gln Ile Ala Asn Phe Arg Tyr Val Pro Val Gln Tyr Gln Leu Leu Tyr 180 185 190 Val Asn Ile Phe Cys Leu Val Asp Ser Ala Phe Leu Ser Trp Val Glu 195 200 205 Gln Gln Lys Asp Ala Ala Trp Lys Gln Trp Phe Thr Ser Ser Phe Gln 210 215 220 Pro Leu Lys Glu Arg Gly Gly Gln Gly Gly Val 225 230 235 191137DNAArabidopsis thaliana 19atgacgaaga tgtctaatct ccctaatgat ttggcggaag aggtgctctc tagggtttcg 60ttaacatctc tgagaaacgt ccgacttact tgtaaagatt ggaatacttt atctaaaggt 120gagagctttg caaagaatca ccttggttat caagcaatag tagcagcgaa ggaaaaagag 180tttatgatgg tcctgatgat ggattttagg gtttatttga ttcgagtcaa cgttcacaat 240gacattgagt cgtgtattaa gcctgaaggt gagcttatta gcttgggcga tgaagtcgat 300gtatctcaag tctttcactg cgacggttta ttgctatgca tcacggaaga taacgaagat 360aacgctaagg tcgttctttg gaacccgtat tgggggcaaa cacggtggat cgagtctaca 420aataatttcc acaaattgga catgtatacg tatgctctcg gatacaagaa gagcagcaaa 480tcaagccgca gctacaaaat cttgagattt attgattttt ctcccacttg ttctgagttc 540aaaatctaca atatcaactc tgattcatgg aaggttcttg atgtgtctcc agactggaag 600atagattctt atattcgtgg cgtgtctctc aagggaaata catactggat tgctagagag 660aggcacggat acggccatac tttcttagtc tgttttgatt tcacaagaga gagatttagg 720tcgcgtttac ctctgccgag tcagccgtgt gttttagata ccgtgagtct atctagtgtt 780agagaagagc agcttgctgt tttatttcag tgctcaagta cattggagat gcagatctgg 840gtaacaacca aaattgagcc caatgcggtg ttgtggaaca gcaaggtgtt cttagctgtg 900gatatgcact cacttaagtt tcagtttcaa gttagagctt cgagtttctt tatcgacgag 960gagaagagag ttgttgttgt ttttgataaa gaaaaacgtt atttagcgtc ctctcgcaac 1020aaagcttaca tcgttggagt ggatggaacc tgggaacaag tggaccttgg aatgtctgta 1080gacaaatttg tttacccact tgtgtgctct tatgttccaa gtttagtgca tttttga 113720378PRTArabidopsis thaliana 20Met Thr Lys Met Ser Asn Leu Pro Asn Asp Leu Ala Glu Glu Val Leu 1 5 10 15 Ser Arg Val Ser Leu Thr Ser Leu Arg Asn Val Arg Leu Thr Cys Lys 20 25 30 Asp Trp Asn Thr Leu Ser Lys Gly Glu Ser Phe Ala Lys Asn His Leu 35 40 45 Gly Tyr Gln Ala Ile Val Ala Ala Lys Glu Lys Glu Phe Met Met Val 50 55 60 Leu Met Met Asp Phe Arg Val Tyr Leu Ile Arg Val Asn Val His Asn 65 70 75 80 Asp Ile Glu Ser Cys Ile Lys Pro Glu Gly Glu Leu Ile Ser Leu Gly 85 90 95 Asp Glu Val Asp Val Ser Gln Val Phe His Cys Asp Gly Leu Leu Leu 100 105 110 Cys Ile Thr Glu Asp Asn Glu Asp Asn Ala Lys Val Val Leu Trp Asn 115 120 125 Pro Tyr Trp Gly Gln Thr Arg Trp Ile Glu Ser Thr Asn Asn Phe His 130 135 140 Lys Leu Asp Met Tyr Thr Tyr Ala Leu Gly Tyr Lys Lys Ser Ser Lys 145 150 155 160 Ser Ser Arg Ser Tyr Lys Ile Leu Arg Phe Ile Asp Phe Ser Pro Thr 165 170 175 Cys Ser Glu Phe Lys Ile Tyr Asn Ile Asn Ser Asp Ser Trp Lys Val 180 185 190 Leu Asp Val Ser Pro Asp Trp Lys Ile Asp Ser Tyr Ile Arg Gly Val 195 200 205 Ser Leu Lys Gly Asn Thr Tyr Trp Ile Ala Arg Glu Arg His Gly Tyr 210 215 220 Gly His Thr Phe Leu Val Cys Phe Asp Phe Thr Arg Glu Arg Phe Arg 225 230 235 240 Ser Arg Leu Pro Leu Pro Ser Gln Pro Cys Val Leu Asp Thr Val Ser 245 250 255 Leu Ser Ser Val Arg Glu Glu Gln Leu Ala Val Leu Phe Gln Cys Ser 260 265 270 Ser Thr Leu Glu Met Gln Ile Trp Val Thr Thr Lys Ile Glu Pro Asn 275 280 285 Ala Val Leu Trp Asn Ser Lys Val Phe Leu Ala Val Asp Met His Ser 290 295 300 Leu Lys Phe Gln Phe Gln Val Arg Ala Ser Ser Phe Phe Ile Asp Glu 305 310 315 320 Glu Lys Arg Val Val Val Val Phe Asp Lys Glu Lys Arg Tyr Leu Ala 325 330 335 Ser Ser Arg Asn Lys Ala Tyr Ile Val Gly Val Asp Gly Thr Trp Glu 340 345 350 Gln Val Asp Leu Gly Met Ser Val Asp Lys Phe Val Tyr Pro Leu Val 355 360 365 Cys Ser Tyr Val Pro Ser Leu Val His Phe 370 375 211046DNAArabidopsis thaliana 21gagaaagcca ttgtttcagt tgatgatggt gatgatatct cttcacttct ctactccgcc 60gctagctttt ctcaaatctg attccaattc cagatttctc aagaacccta atcctaattt 120tatccaattc accccaaaat cccaacttct tttcccccaa cgtctcaatt tcaacaccgg 180aacaaattta aaccggcgaa ctctgagttg ctatgggatt aaggattcaa gtgagacaac 240gaagtctgcg ccgtcattag actccggcga cggtggcggc ggagatggtg gtgatgatga 300taaaggtgaa gtggaggaaa aaaacagact ttttccggaa tggttggatt ttacctcgga 360tgatgcacag actgtgtttg tggctatagc tgtatcgttg gcgtttcgtt attttatcgc 420agaaccaaga tatattcctt ctttgtctat gtatcctact tttgatgttg gagacagatt 480agttgcagag aaggtgagtt attatttcag gaagccttgt gcaaatgata ttgtcatctt 540taaaagtcca ccagttcttc aggaagttgg gtatactgat gccgatgtat ttattaaacg 600gattgttgcc aaagaaggtg accttgtgga ggtacataat gggaaactga tggttaatgg 660tgttgctagg aatgaaaaat tcatcttaga gcctcctggt tatgaaatga caccaattag 720ggtaccggaa aattcagtct ttgtgatggg tgataaccgg aataacagtt atgattcgca 780cgtatggggt cctctgcctt tgaagaatat tattggacgg tcggtttttc ggtattggcc 840accaaacaga gtaagcggga cagtgctaga aggtggctgt gctgtggata agcaatagaa 900catattgtaa cgttttgatt cggcatgtct tcatttgaaa cacttgtgca gataaaaacg 960aaaacaatgt acctttttat gaaggagaga gttgcacatt tgaattagat tgcagattaa 1020tgaggaaaca agaaattctt atttgc 104622291PRTArabidopsis thaliana 22Met Met Val Met Ile Ser Leu His Phe Ser Thr Pro Pro Leu Ala Phe 1 5 10 15 Leu Lys Ser Asp Ser Asn Ser Arg Phe Leu Lys Asn Pro Asn Pro Asn 20 25 30 Phe Ile Gln Phe Thr Pro Lys Ser Gln Leu Leu Phe Pro Gln Arg Leu 35 40 45 Asn Phe Asn Thr Gly Thr Asn Leu Asn Arg Arg Thr Leu Ser Cys Tyr 50 55 60 Gly Ile Lys Asp Ser Ser Glu Thr Thr Lys Ser Ala Pro Ser Leu Asp 65 70 75 80 Ser Gly Asp Gly Gly Gly Gly Asp Gly Gly Asp Asp Asp Lys Gly Glu 85 90 95 Val Glu Glu Lys Asn Arg Leu Phe Pro Glu Trp Leu Asp Phe Thr Ser 100 105 110 Asp Asp Ala Gln Thr Val Phe Val Ala Ile Ala Val Ser Leu Ala Phe 115 120 125 Arg Tyr Phe Ile Ala Glu Pro Arg Tyr Ile Pro Ser Leu Ser Met Tyr 130 135 140 Pro Thr Phe Asp Val Gly Asp Arg Leu Val Ala Glu Lys Val Ser Tyr 145 150 155 160 Tyr Phe Arg Lys Pro Cys Ala Asn Asp Ile Val Ile Phe Lys Ser Pro 165 170 175 Pro Val Leu Gln Glu Val Gly Tyr Thr Asp Ala Asp Val Phe Ile Lys 180 185 190 Arg Ile Val Ala Lys Glu Gly Asp Leu Val Glu Val His Asn Gly Lys 195 200 205 Leu Met Val Asn Gly Val Ala Arg Asn Glu Lys Phe Ile Leu Glu Pro 210 215 220 Pro Gly Tyr Glu Met Thr Pro Ile Arg Val Pro Glu Asn Ser Val Phe 225 230 235 240 Val Met Gly Asp Asn Arg Asn Asn Ser Tyr Asp Ser His Val Trp Gly 245 250 255 Pro Leu Pro Leu Lys Asn Ile Ile Gly Arg Ser Val Phe Arg Tyr Trp 260 265 270 Pro Pro Asn Arg Val Ser Gly Thr Val Leu Glu Gly Gly Cys Ala Val 275 280 285 Asp Lys Gln 290 231521DNAArabidopsis thaliana 23atgaagatgt acccaaaatc tgactcagac gtcacaagcc tcgacctatc atcaccaaaa 60cgtcctactt actacgttca aagcccatca cgtgactccg acaagtcttc ctcggtggca 120ctgactactc atcaaaccac tcccacagag tcgccgtcac acccatcaat tgctagccgg 180gtatccaatg gcggtggtgg cggtttccgg tggaagggac ggaggaaata tcacggcggg 240atatggtggc cggctgataa ggaggaaggt ggtgatggac ggtacgagga tctttatgag 300gacaacagag gagtctccat tgttacttgt agacttattt tgggagttgt tgcgacattg 360agtatctttt ttcttctttg ttctgttctc tttggtgctt ctcaatcttc tcctccaatc 420gtctacatca agggtgtgaa tgtgagaagt ttttactacg gagaaggttc agacaataca 480ggagttccaa caaagatcat gaacgttaaa tgttcagtgg tgatcacaac acacaatcct 540tctacattat tcggcatcca tgttagctcc actgccgtca gcctcatata ctctcgtcaa 600ttcacacttg cgaatgcgcg gctgaagagt tatcaccaac caaaacaaag caaccacaca 660tctaggatca accttattgg ctccaaggtt ccactatatg gagcaggagc cgagttagtt 720gcttcggaca acagtggtgg agttcccgtt cataccccaa actacaccat tctcagtgag 780tcacgtctct cctcttcgag ccgtacctct aatgggacaa gcggtatggg atttcgatgg 840aaaggaagct cccggaggag taatatgtat tggccggaga agccatacac gattaatgaa 900gatgaggttt atgatgataa cagaggatta tcagtgggac aatgtagagc ggttttggta 960atattaggta ctgtggttgt gttctctgtt ttttgctctg ttttgtgggg agcttctcat 1020cctttctctc ctatcgtctc cgttaagagc gttgacatcc atagcttcta ttacggagaa 1080ggaatagaca gaacaggagt cgccaccaag attctaagct ttaacagttc agtgaaggtg 1140acaatagaca gtcctgctcc ttactttggc atccatgtct cttcttctac cttcaaactc 1200actttctctg ctctcacact cgccactggt cagctaaaga gctattacca accaagaaag 1260agtaagcaca tatcaattgt aaagctcact ggcgcagagg ttcctctgta tggagcagga 1320ccacacttag cagcttccga caagaagggt aaagttccag tgaagctgga gtttgagatc 1380agatcaagag gtaatctatt ggggaagcta gtcaagtcga agcacgagaa tcacgtatca 1440tgctctttct tcatctcctc ctccaagact tccaaaccca tagaattcac tcacaagacc 1500tgtaaactcg ttaccaagta a 152124506PRTArabidopsis thaliana 24Met Lys Met Tyr Pro Lys Ser Asp Ser Asp Val Thr Ser Leu Asp Leu 1 5 10 15 Ser Ser Pro Lys Arg Pro Thr Tyr Tyr Val Gln Ser Pro Ser Arg Asp 20 25 30 Ser Asp Lys Ser Ser Ser Val Ala Leu Thr Thr His Gln Thr Thr Pro 35 40 45 Thr Glu Ser Pro Ser His Pro Ser Ile Ala Ser Arg Val Ser Asn Gly 50 55 60 Gly Gly Gly Gly Phe Arg Trp Lys Gly Arg Arg Lys Tyr His Gly Gly 65 70 75 80 Ile Trp Trp Pro Ala Asp Lys Glu Glu Gly Gly Asp Gly Arg Tyr Glu 85 90 95 Asp Leu Tyr Glu Asp Asn Arg Gly Val Ser Ile Val Thr Cys Arg Leu 100 105 110 Ile Leu Gly Val Val Ala Thr Leu Ser Ile Phe Phe Leu Leu Cys Ser 115 120 125 Val Leu Phe Gly Ala Ser Gln Ser Ser Pro Pro Ile Val Tyr Ile Lys 130 135 140 Gly Val Asn Val Arg Ser Phe Tyr Tyr Gly Glu Gly Ser Asp Asn Thr 145 150 155 160 Gly Val Pro Thr Lys Ile Met Asn Val Lys Cys Ser Val Val Ile Thr 165 170 175 Thr His Asn Pro Ser Thr Leu Phe Gly Ile His Val Ser Ser Thr Ala 180 185 190 Val Ser Leu Ile Tyr Ser Arg Gln Phe Thr Leu Ala Asn Ala Arg Leu 195 200 205 Lys Ser Tyr His Gln Pro Lys Gln Ser Asn His Thr Ser Arg Ile Asn 210 215 220 Leu Ile Gly Ser Lys Val Pro Leu Tyr Gly Ala Gly Ala Glu Leu Val 225 230 235 240 Ala Ser Asp Asn Ser Gly Gly Val Pro Val His Thr Pro Asn Tyr Thr 245 250 255 Ile Leu Ser Glu Ser Arg Leu Ser Ser Ser Ser Arg Thr Ser Asn Gly 260 265 270 Thr Ser Gly Met Gly Phe Arg Trp Lys Gly Ser Ser Arg Arg Ser Asn 275 280 285 Met Tyr Trp Pro Glu Lys Pro Tyr Thr Ile Asn Glu Asp Glu Val Tyr 290 295 300 Asp Asp Asn Arg Gly Leu Ser Val Gly Gln Cys Arg Ala Val Leu Val 305 310 315 320 Ile Leu Gly Thr Val Val Val Phe Ser Val Phe Cys Ser Val Leu Trp 325 330 335 Gly Ala Ser His Pro Phe Ser Pro Ile Val Ser Val Lys Ser Val Asp 340 345 350 Ile His Ser Phe Tyr Tyr Gly Glu Gly Ile Asp Arg Thr Gly Val Ala 355 360 365 Thr Lys Ile Leu Ser Phe Asn Ser Ser Val Lys Val Thr Ile Asp Ser 370 375 380 Pro Ala Pro Tyr Phe Gly Ile His Val Ser Ser Ser Thr Phe Lys Leu 385 390 395 400 Thr Phe Ser Ala Leu Thr Leu Ala Thr Gly Gln Leu Lys Ser Tyr Tyr 405 410 415 Gln Pro Arg Lys Ser Lys His Ile Ser Ile Val Lys Leu Thr Gly Ala 420 425 430 Glu Val Pro Leu Tyr Gly Ala Gly Pro His Leu Ala Ala Ser Asp Lys 435 440 445 Lys Gly Lys Val Pro Val Lys Leu Glu Phe Glu Ile Arg Ser Arg Gly 450 455 460

Asn Leu Leu Gly Lys Leu Val Lys Ser Lys His Glu Asn His Val Ser 465 470 475 480 Cys Ser Phe Phe Ile Ser Ser Ser Lys Thr Ser Lys Pro Ile Glu Phe 485 490 495 Thr His Lys Thr Cys Lys Leu Val Thr Lys 500 505 25 1338DNAArabidopsis thaliana 25atggattcgg ttggagcgga cagatcaggt gatcttgtag ccgttcaagt gcttcctcct 60tctttcgtcg tgcttgttct cgatgaaggt tctcgagagg ttaggcttca ctccttgtac 120ttgcttcaga tcttttctga ggtggcagat gttatttcgg gttggctgtg ggcagccgta 180gtaaatctct tcgcaggtgc ttttgaggag gagtttttct ttgccgctta tgctcttagg 240gaatcatggt tttacttggt tgtggccttg tggggaaaaa ctttaatcga gcaaagtcag 300aagtgtgtga caatgtccaa tgaggctccc gaagtggaac cacatagtaa gaggaggaag 360aaagaggcat ctccgtcgtc atcttcaggg tttctacaat ctttgccaga agcggtggct 420atgatttgct tggcccgcgt atcaagattg gaccatgcag ccttatctct cgtctccaag 480agctgccggt caatggttct ttcacccgag ctctaccaga cacgatcgtt gataggttac 540gctgagaagt tcctctactg gcaccacgtg acctccatga gagtggctcg tgtttcccct 600gaagtcagtg tagtggacgg aaagataaac gtgtggggag gctgcaagta caagcattac 660tacgactggg gagaagtgtt cgatccaaag acacaaactt gggctgatat gtcaattcca 720aagccagtgc gggaagaaaa gatatacgtg gtggattcat gggatgttgg aagctattac 780tacttgccga gcaagagtat atgggaaaaa gggaatcaag attcaaagcg tagcaaggat 840tggtgtctaa tagataagtt gatatatagt tgtggtaacg atggaggtat atattggtgt 900gaggcagggg agttggattg gtgtgacgca gtagggatag attggaggga agtgtttggt 960ttggagtttc tgtcaaagga gctccgtgaa tcgagagtgg tctactttgg tgggaaaatg 1020gtgaaagtgt gggagtccta caagatcatg tacaatatta gcttaaacct tgaagaatta 1080cttcccgaga cccaattgac caacttgacc gaacttggtc ataatgtttt ggtcttttgg 1140gaaaagctcg aatgttgttg tgatggtttt aagatcttgg agatttggtg tgcggagatt 1200tcgttggaaa ggtgggaggg aggcgagatt ttggggaggt gtgattggtg ccatcctatc 1260ctcgcaatca atcttctcac ggtcgatcct ctcttctacc actctatggt cttgtattct 1320atccctgttg atgtttga 133826445PRTArabidopsis thaliana 26Met Asp Ser Val Gly Ala Asp Arg Ser Gly Asp Leu Val Ala Val Gln 1 5 10 15 Val Leu Pro Pro Ser Phe Val Val Leu Val Leu Asp Glu Gly Ser Arg 20 25 30 Glu Val Arg Leu His Ser Leu Tyr Leu Leu Gln Ile Phe Ser Glu Val 35 40 45 Ala Asp Val Ile Ser Gly Trp Leu Trp Ala Ala Val Val Asn Leu Phe 50 55 60 Ala Gly Ala Phe Glu Glu Glu Phe Phe Phe Ala Ala Tyr Ala Leu Arg 65 70 75 80 Glu Ser Trp Phe Tyr Leu Val Val Ala Leu Trp Gly Lys Thr Leu Ile 85 90 95 Glu Gln Ser Gln Lys Cys Val Thr Met Ser Asn Glu Ala Pro Glu Val 100 105 110 Glu Pro His Ser Lys Arg Arg Lys Lys Glu Ala Ser Pro Ser Ser Ser 115 120 125 Ser Gly Phe Leu Gln Ser Leu Pro Glu Ala Val Ala Met Ile Cys Leu 130 135 140 Ala Arg Val Ser Arg Leu Asp His Ala Ala Leu Ser Leu Val Ser Lys 145 150 155 160 Ser Cys Arg Ser Met Val Leu Ser Pro Glu Leu Tyr Gln Thr Arg Ser 165 170 175 Leu Ile Gly Tyr Ala Glu Lys Phe Leu Tyr Trp His His Val Thr Ser 180 185 190 Met Arg Val Ala Arg Val Ser Pro Glu Val Ser Val Val Asp Gly Lys 195 200 205 Ile Asn Val Trp Gly Gly Cys Lys Tyr Lys His Tyr Tyr Asp Trp Gly 210 215 220 Glu Val Phe Asp Pro Lys Thr Gln Thr Trp Ala Asp Met Ser Ile Pro 225 230 235 240 Lys Pro Val Arg Glu Glu Lys Ile Tyr Val Val Asp Ser Trp Asp Val 245 250 255 Gly Ser Tyr Tyr Tyr Leu Pro Ser Lys Ser Ile Trp Glu Lys Gly Asn 260 265 270 Gln Asp Ser Lys Arg Ser Lys Asp Trp Cys Leu Ile Asp Lys Leu Ile 275 280 285 Tyr Ser Cys Gly Asn Asp Gly Gly Ile Tyr Trp Cys Glu Ala Gly Glu 290 295 300 Leu Asp Trp Cys Asp Ala Val Gly Ile Asp Trp Arg Glu Val Phe Gly 305 310 315 320 Leu Glu Phe Leu Ser Lys Glu Leu Arg Glu Ser Arg Val Val Tyr Phe 325 330 335 Gly Gly Lys Met Val Lys Val Trp Glu Ser Tyr Lys Ile Met Tyr Asn 340 345 350 Ile Ser Leu Asn Leu Glu Glu Leu Leu Pro Glu Thr Gln Leu Thr Asn 355 360 365 Leu Thr Glu Leu Gly His Asn Val Leu Val Phe Trp Glu Lys Leu Glu 370 375 380 Cys Cys Cys Asp Gly Phe Lys Ile Leu Glu Ile Trp Cys Ala Glu Ile 385 390 395 400 Ser Leu Glu Arg Trp Glu Gly Gly Glu Ile Leu Gly Arg Cys Asp Trp 405 410 415 Cys His Pro Ile Leu Ala Ile Asn Leu Leu Thr Val Asp Pro Leu Phe 420 425 430 Tyr His Ser Met Val Leu Tyr Ser Ile Pro Val Asp Val 435 440 445 27999DNAArabidopsis thaliana 27gggactagag gaaggaggga gagaaggagc ttaagagagc attcgtcgtc gtcaatggag 60atcttctctg cgtctgcttc tctaacttta actggattcg ttcctcgtct tcttcccttg 120ctctctcctc aagctcgaac tactctctgc aagccgttgc tgtcttcttc ttctactaga 180ctcatttctt gtcacagtcg tatagctccg tctcggtctc tcgcagatca atccgcctct 240actgggatca gtgttgttga ttcggatccc attgatgttg taaagaggaa agctatggac 300atagcccctg aactgaaagg agcttccata tttctggttg gaattaataa ctctattaaa 360acgaacacgg ggaagctttt ggctgaggca ttacgatatt actactttga tagtgataat 420ttgatcacag aggcggctgg tggaaatgtg tctgctcaag ctttgaagga agctgatgag 480aaggcttttc aagaatcaga gactgaagtg ctgaagcagc tatcatctat gggtcggctt 540gtagtttgcg ctggagatgg tgcggtccaa agcttgagaa atcttgcact tcttagacac 600gggatctcca tatggatcga tgttcctctg gatatcactg ctaaagggga tgatgattca 660ttccactcag aaccttcccc tgagttgttt gacacactaa aagcgagtta cgagaaatca 720agaaagggtt acgaaacagc agatgtatcc atttcccttg aaaaaatagc tacaaagcta 780gaatttgaag acttggaagc agtaacttct gaagacattg ctttggagat tctgaaagaa 840atagagaagt tgacaagagt gaagaaaatg atggaagaag cttctcgacc tttctaggtc 900gattttacac tctcattcat agtatgattt atgttgtata tcatctcgac attaatatag 960ctttttttgc ataaaatcac tcatatgatt tttaatttc 99928280PRTArabidopsis thaliana 28Met Glu Ile Phe Ser Ala Ser Ala Ser Leu Thr Leu Thr Gly Phe Val 1 5 10 15 Pro Arg Leu Leu Pro Leu Leu Ser Pro Gln Ala Arg Thr Thr Leu Cys 20 25 30 Lys Pro Leu Leu Ser Ser Ser Ser Thr Arg Leu Ile Ser Cys His Ser 35 40 45 Arg Ile Ala Pro Ser Arg Ser Leu Ala Asp Gln Ser Ala Ser Thr Gly 50 55 60 Ile Ser Val Val Asp Ser Asp Pro Ile Asp Val Val Lys Arg Lys Ala 65 70 75 80 Met Asp Ile Ala Pro Glu Leu Lys Gly Ala Ser Ile Phe Leu Val Gly 85 90 95 Ile Asn Asn Ser Ile Lys Thr Asn Thr Gly Lys Leu Leu Ala Glu Ala 100 105 110 Leu Arg Tyr Tyr Tyr Phe Asp Ser Asp Asn Leu Ile Thr Glu Ala Ala 115 120 125 Gly Gly Asn Val Ser Ala Gln Ala Leu Lys Glu Ala Asp Glu Lys Ala 130 135 140 Phe Gln Glu Ser Glu Thr Glu Val Leu Lys Gln Leu Ser Ser Met Gly 145 150 155 160 Arg Leu Val Val Cys Ala Gly Asp Gly Ala Val Gln Ser Leu Arg Asn 165 170 175 Leu Ala Leu Leu Arg His Gly Ile Ser Ile Trp Ile Asp Val Pro Leu 180 185 190 Asp Ile Thr Ala Lys Gly Asp Asp Asp Ser Phe His Ser Glu Pro Ser 195 200 205 Pro Glu Leu Phe Asp Thr Leu Lys Ala Ser Tyr Glu Lys Ser Arg Lys 210 215 220 Gly Tyr Glu Thr Ala Asp Val Ser Ile Ser Leu Glu Lys Ile Ala Thr 225 230 235 240 Lys Leu Glu Phe Glu Asp Leu Glu Ala Val Thr Ser Glu Asp Ile Ala 245 250 255 Leu Glu Ile Leu Lys Glu Ile Glu Lys Leu Thr Arg Val Lys Lys Met 260 265 270 Met Glu Glu Ala Ser Arg Pro Phe 275 280 29 2253DNAArabidopsis thaliana 29aaagaaactt tttttttttg gtcttcctta ttctttcttc aatgtcgttg aacatatctg 60acgatacttg aatctcactc tttcttctct tctattctct gtttttagtc acaatttcat 120ctatatctcc tctcactttt gtttttgaga attttcgatc ccaagctttt ctcagagaat 180tttgactgga aatttcgtaa ttagggtttt tgatttgagg cattattcta cgatgaaagc 240ttcgattgag aagttaagga gattaacatc gcattcacat aaggttgatg tgaaggagaa 300aggagatgtc atggctacaa cacaaatcga cgaactcgat cgagccggga aggatatgca 360agatatgaga gaatgttacg atagactact cgctgcagct gctgccacgg caaatagcgc 420atatgagttc tctgagtcgt tgggagaaat gggttcttgt ttggagcaaa tcgcgcctca 480taacgacgaa gagagcagta gaatcttgtt tatgttgggt aaagtacaga gtgagcttca 540aagacttctt gacacatatc gtagtcatat attcgaaact attacatccc cgtccgaggc 600gcttctcaag gacctcagat atgttgagga tatgaagcaa caatgcgacg ggaagaggaa 660tgtgtatgag atgtcgctag tgaaagagaa aggaaggcct aaaagcagta aaggagagag 720acatattcct cctgagtctc gacctgctta cagtgagttt catgatgaag ccacaatgtg 780catttttcga ttgaaatcgc ttaaagaagg acaagctcgt agtctcctaa tacaagcagt 840ccgtcaccac actgctcaga tgcgtttgtt tcacactgga ctgaaatcgc tcgaggcagt 900tgagcgtcat gtaaaagttg ctgtagagaa acaacacatt gactgtgatc tatctgttca 960tgggaacgag atggaagcta gcgaggatga tgatgatgat ggccgataca tgaatagaga 1020aggagaactc agttttgatt acagaacaaa tgagcagaag gtagaagctt cttctctctc 1080tacaccatgg gccacaaaga tggatgatac agacctctcg tttcctcgcc cttctacaac 1140aagaccagca gcggtaaatg ctgatcatag agaagaatat ccagtttcaa cccgcgataa 1200gtatttgagc agccattcag ctccgttgtt cccagaaaag aaacctgatg tatcagagag 1260gttgagacag gcgaatccat cttttaatgc ctacgtatta ccaacaccaa atgattcaag 1320gtactcaaaa ccggtttccc aagcattaaa tccgaggcca acaaaccaca gtgccggaaa 1380catatggcat tcatctccgt tagagccgat aaaaagcggg aaagatggga aagacgccga 1440aagcaacagc ttctacggcc gcctccctcg gccttctaca acagacacgc atcatcatca 1500gcagcaagca gcaggaagac atgcattttc tggacctctc agaccgtcct caacaaaacc 1560catcaccatg gctgacagtt attcaggcgc tttttgtcct ctgccgactc ctccagtact 1620ccaatctcac cctcattcat catcttctcc aagagtctcc cctaccgctt cacctcctcc 1680tgcttcttcc ccaaggctca acgagcttca cgagcttcca agacccccag gccactttgc 1740accacctcca agacgagcca agtcccctgg tctggttggt cactcagcgc ctctaaccgc 1800atggaaccaa gaaagaagca ctgtcactgt tgctgttccg tccgccacca acattgtggc 1860ctcgccgctt ccggttcctc cgttggttgt ccctagaagc tactctatac cttcaagaaa 1920ccagagagtt gtttctcaac ggctggtcga aaggagagat gatatagtag catccccacc 1980gttaacacca atgagcctgt ctaggccact tcctcaagcc acaggagttg ctcagaccag 2040tcaaatcaga ggagtaggaa agctgatcga acgatgaggc ttccgcgtct gcgtcacgtt 2100tgaccaaaac gctgattgta caaattcaga gatcttcaca agtgaatata gaagtcagta 2160tatgtattat tctttagttg gttaatctcc tttttttttt cccattgtaa atctgaagcc 2220tctgctcttt attccctttt cattttcaat ccc 225330614PRTArabidopsis thaliana 30Met Lys Ala Ser Ile Glu Lys Leu Arg Arg Leu Thr Ser His Ser His 1 5 10 15 Lys Val Asp Val Lys Glu Lys Gly Asp Val Met Ala Thr Thr Gln Ile 20 25 30 Asp Glu Leu Asp Arg Ala Gly Lys Asp Met Gln Asp Met Arg Glu Cys 35 40 45 Tyr Asp Arg Leu Leu Ala Ala Ala Ala Ala Thr Ala Asn Ser Ala Tyr 50 55 60 Glu Phe Ser Glu Ser Leu Gly Glu Met Gly Ser Cys Leu Glu Gln Ile 65 70 75 80 Ala Pro His Asn Asp Glu Glu Ser Ser Arg Ile Leu Phe Met Leu Gly 85 90 95 Lys Val Gln Ser Glu Leu Gln Arg Leu Leu Asp Thr Tyr Arg Ser His 100 105 110 Ile Phe Glu Thr Ile Thr Ser Pro Ser Glu Ala Leu Leu Lys Asp Leu 115 120 125 Arg Tyr Val Glu Asp Met Lys Gln Gln Cys Asp Gly Lys Arg Asn Val 130 135 140 Tyr Glu Met Ser Leu Val Lys Glu Lys Gly Arg Pro Lys Ser Ser Lys 145 150 155 160 Gly Glu Arg His Ile Pro Pro Glu Ser Arg Pro Ala Tyr Ser Glu Phe 165 170 175 His Asp Glu Ala Thr Met Cys Ile Phe Arg Leu Lys Ser Leu Lys Glu 180 185 190 Gly Gln Ala Arg Ser Leu Leu Ile Gln Ala Val Arg His His Thr Ala 195 200 205 Gln Met Arg Leu Phe His Thr Gly Leu Lys Ser Leu Glu Ala Val Glu 210 215 220 Arg His Val Lys Val Ala Val Glu Lys Gln His Ile Asp Cys Asp Leu 225 230 235 240 Ser Val His Gly Asn Glu Met Glu Ala Ser Glu Asp Asp Asp Asp Asp 245 250 255 Gly Arg Tyr Met Asn Arg Glu Gly Glu Leu Ser Phe Asp Tyr Arg Thr 260 265 270 Asn Glu Gln Lys Val Glu Ala Ser Ser Leu Ser Thr Pro Trp Ala Thr 275 280 285 Lys Met Asp Asp Thr Asp Leu Ser Phe Pro Arg Pro Ser Thr Thr Arg 290 295 300 Pro Ala Ala Val Asn Ala Asp His Arg Glu Glu Tyr Pro Val Ser Thr 305 310 315 320 Arg Asp Lys Tyr Leu Ser Ser His Ser Ala Pro Leu Phe Pro Glu Lys 325 330 335 Lys Pro Asp Val Ser Glu Arg Leu Arg Gln Ala Asn Pro Ser Phe Asn 340 345 350 Ala Tyr Val Leu Pro Thr Pro Asn Asp Ser Arg Tyr Ser Lys Pro Val 355 360 365 Ser Gln Ala Leu Asn Pro Arg Pro Thr Asn His Ser Ala Gly Asn Ile 370 375 380 Trp His Ser Ser Pro Leu Glu Pro Ile Lys Ser Gly Lys Asp Gly Lys 385 390 395 400 Asp Ala Glu Ser Asn Ser Phe Tyr Gly Arg Leu Pro Arg Pro Ser Thr 405 410 415 Thr Asp Thr His His His Gln Gln Gln Ala Ala Gly Arg His Ala Phe 420 425 430 Ser Gly Pro Leu Arg Pro Ser Ser Thr Lys Pro Ile Thr Met Ala Asp 435 440 445 Ser Tyr Ser Gly Ala Phe Cys Pro Leu Pro Thr Pro Pro Val Leu Gln 450 455 460 Ser His Pro His Ser Ser Ser Ser Pro Arg Val Ser Pro Thr Ala Ser 465 470 475 480 Pro Pro Pro Ala Ser Ser Pro Arg Leu Asn Glu Leu His Glu Leu Pro 485 490 495 Arg Pro Pro Gly His Phe Ala Pro Pro Pro Arg Arg Ala Lys Ser Pro 500 505 510 Gly Leu Val Gly His Ser Ala Pro Leu Thr Ala Trp Asn Gln Glu Arg 515 520 525 Ser Thr Val Thr Val Ala Val Pro Ser Ala Thr Asn Ile Val Ala Ser 530 535 540 Pro Leu Pro Val Pro Pro Leu Val Val Pro Arg Ser Tyr Ser Ile Pro 545 550 555 560 Ser Arg Asn Gln Arg Val Val Ser Gln Arg Leu Val Glu Arg Arg Asp 565 570 575 Asp Ile Val Ala Ser Pro Pro Leu Thr Pro Met Ser Leu Ser Arg Pro 580 585 590 Leu Pro Gln Ala Thr Gly Val Ala Gln Thr Ser Gln Ile Arg Gly Val 595 600 605 Gly Lys Leu Ile Glu Arg 610 312215DNAArabidopsis thaliana 31aaactttttt tttttggtct tccttattct ttcttcaatg tcgttgaaca tatctgacga 60tacttgaatc tcactctttc ttctcttcta ttctctgttt ttagtcacaa tttcatctat 120atctcctctc acttttgttt ttgagaattt tcgatcccaa gcttttctca gagaattttg 180actggaaatt tcgtaattag ggtttttgat ttgaggcatt attctacgat gaaagcttcg 240attgagaagt taaggagatt aacatcgcat tcacataagg ttgatgtgaa ggagaaagga 300gatgtcatgg ctacaacaca aatcgacgaa ctcgatcgag ccgggaagga tatgcaagat 360atgagagaat gttacgatag actactcgct gcagctgctg ccacggcaaa tagcgcatat 420gagttctctg agtcgttggg agaaatgggt tcttgtttgg agcaaatcgc gcctcataac 480gacgaagaga gcagtagaat cttgtttatg ttgggtaaag tacagagtga gcttcaaaga 540cttcttgaca catatcgtag tcatatattc gaaactatta catccccgtc cgaggcgctt 600ctcaaggacc tcagatatgt tgaggatatg aagcaacaat gcgacgggaa gaggaatgtg 660tatgagatgt cgctagtgaa agagaaagga aggcctaaaa gcagtaaagg agagagacat 720attcctcctg agtctcgacc tgcttacagt gagtttcatg atgaagccac aatgtgcatt 780tttcgattga aatcgcttaa agaaggacaa gctcgtagtc tcctaataca agcagtccgt 840caccacactg ctcagatgcg tttgtttcac actggactga aatcgctcga ggcagttgag 900cgtcatgtaa aagttgctgt agagaaacaa cacattgact gtgatctatc tgttcatggg 960aacgagatgg aagctagcga ggatgatgat gatgatggcc gatacatgaa tagagaagga 1020gaactcagtt ttgattacag aacaaatgag cagaaggtag aagcttcttc tctctctaca 1080ccatgggcca caaagatgga tgatacagac ctctcgtttc ctcgcccttc tacaacaaga

1140ccagcagcgg taaatgctga tcatagagaa gaatatccag tttcaacccg cgataagtat 1200ttgagcagcc attcagctcc gttgttccca gaaaagaaac ctgatgtatc agagaggttg 1260agacaggcga atccatcttt taatgcctac gtattaccaa caccaaatga ttcaaggtac 1320tcaaaaccgg tttcccaagc attaaatccg aggccaacaa accacagtgc cggaaacata 1380tggcattcat ctccgttaga gccgataaaa agcgggaaag atgggaaaga cgccgaaagc 1440aacagcttct acggccgcct ccctcggcct tctacaacag acacgcatca tcatcagcag 1500caagcagcag gaagacatgc attttctgga cctctcagac cgtcctcaac aaaacccatc 1560accatggctg acagttattc aggcgctttt tgtcctctgc cgactcctcc agtactccaa 1620tctcaccctc attcatcatc ttctccaaga gtctccccta ccgcttcacc tcctcctgct 1680tcttccccaa ggctcaacga gcttcacgag cttccaagac ccccaggcca ctttgcacca 1740cctccaagac gagccaagtc ccctggtctg gttggtcact cagcgcctct aaccgcatgg 1800aaccaagaaa gaagcactgt cactgttgct gttccgtccg ccaccaacat tgtggcctcg 1860ccgcttccgg ttcctccgtt ggttgtccct agaagctact ctataccttc aagaaaccag 1920agagttgttt ctcaacggct ggtcgaaagg agagatgata tagtagcatc cccaccgtta 1980acaccaatga gcctgtctag gccacttcct caagccacag gagttgctca gaccagtcaa 2040atcagaggtt attaatcatg caggagtagg aaagctgatc gaacgatgag gcttccgcgt 2100ctgcgtcacg tttgaccaaa acgctgattg tacaaattca gagatcttca caagtgaata 2160tagaagtcag tatatgtatt attctttagt tggttaatct cctttttttt ttccc 221532608PRTArabidopsis thaliana 32Met Lys Ala Ser Ile Glu Lys Leu Arg Arg Leu Thr Ser His Ser His 1 5 10 15 Lys Val Asp Val Lys Glu Lys Gly Asp Val Met Ala Thr Thr Gln Ile 20 25 30 Asp Glu Leu Asp Arg Ala Gly Lys Asp Met Gln Asp Met Arg Glu Cys 35 40 45 Tyr Asp Arg Leu Leu Ala Ala Ala Ala Ala Thr Ala Asn Ser Ala Tyr 50 55 60 Glu Phe Ser Glu Ser Leu Gly Glu Met Gly Ser Cys Leu Glu Gln Ile 65 70 75 80 Ala Pro His Asn Asp Glu Glu Ser Ser Arg Ile Leu Phe Met Leu Gly 85 90 95 Lys Val Gln Ser Glu Leu Gln Arg Leu Leu Asp Thr Tyr Arg Ser His 100 105 110 Ile Phe Glu Thr Ile Thr Ser Pro Ser Glu Ala Leu Leu Lys Asp Leu 115 120 125 Arg Tyr Val Glu Asp Met Lys Gln Gln Cys Asp Gly Lys Arg Asn Val 130 135 140 Tyr Glu Met Ser Leu Val Lys Glu Lys Gly Arg Pro Lys Ser Ser Lys 145 150 155 160 Gly Glu Arg His Ile Pro Pro Glu Ser Arg Pro Ala Tyr Ser Glu Phe 165 170 175 His Asp Glu Ala Thr Met Cys Ile Phe Arg Leu Lys Ser Leu Lys Glu 180 185 190 Gly Gln Ala Arg Ser Leu Leu Ile Gln Ala Val Arg His His Thr Ala 195 200 205 Gln Met Arg Leu Phe His Thr Gly Leu Lys Ser Leu Glu Ala Val Glu 210 215 220 Arg His Val Lys Val Ala Val Glu Lys Gln His Ile Asp Cys Asp Leu 225 230 235 240 Ser Val His Gly Asn Glu Met Glu Ala Ser Glu Asp Asp Asp Asp Asp 245 250 255 Gly Arg Tyr Met Asn Arg Glu Gly Glu Leu Ser Phe Asp Tyr Arg Thr 260 265 270 Asn Glu Gln Lys Val Glu Ala Ser Ser Leu Ser Thr Pro Trp Ala Thr 275 280 285 Lys Met Asp Asp Thr Asp Leu Ser Phe Pro Arg Pro Ser Thr Thr Arg 290 295 300 Pro Ala Ala Val Asn Ala Asp His Arg Glu Glu Tyr Pro Val Ser Thr 305 310 315 320 Arg Asp Lys Tyr Leu Ser Ser His Ser Ala Pro Leu Phe Pro Glu Lys 325 330 335 Lys Pro Asp Val Ser Glu Arg Leu Arg Gln Ala Asn Pro Ser Phe Asn 340 345 350 Ala Tyr Val Leu Pro Thr Pro Asn Asp Ser Arg Tyr Ser Lys Pro Val 355 360 365 Ser Gln Ala Leu Asn Pro Arg Pro Thr Asn His Ser Ala Gly Asn Ile 370 375 380 Trp His Ser Ser Pro Leu Glu Pro Ile Lys Ser Gly Lys Asp Gly Lys 385 390 395 400 Asp Ala Glu Ser Asn Ser Phe Tyr Gly Arg Leu Pro Arg Pro Ser Thr 405 410 415 Thr Asp Thr His His His Gln Gln Gln Ala Ala Gly Arg His Ala Phe 420 425 430 Ser Gly Pro Leu Arg Pro Ser Ser Thr Lys Pro Ile Thr Met Ala Asp 435 440 445 Ser Tyr Ser Gly Ala Phe Cys Pro Leu Pro Thr Pro Pro Val Leu Gln 450 455 460 Ser His Pro His Ser Ser Ser Ser Pro Arg Val Ser Pro Thr Ala Ser 465 470 475 480 Pro Pro Pro Ala Ser Ser Pro Arg Leu Asn Glu Leu His Glu Leu Pro 485 490 495 Arg Pro Pro Gly His Phe Ala Pro Pro Pro Arg Arg Ala Lys Ser Pro 500 505 510 Gly Leu Val Gly His Ser Ala Pro Leu Thr Ala Trp Asn Gln Glu Arg 515 520 525 Ser Thr Val Thr Val Ala Val Pro Ser Ala Thr Asn Ile Val Ala Ser 530 535 540 Pro Leu Pro Val Pro Pro Leu Val Val Pro Arg Ser Tyr Ser Ile Pro 545 550 555 560 Ser Arg Asn Gln Arg Val Val Ser Gln Arg Leu Val Glu Arg Arg Asp 565 570 575 Asp Ile Val Ala Ser Pro Pro Leu Thr Pro Met Ser Leu Ser Arg Pro 580 585 590 Leu Pro Gln Ala Thr Gly Val Ala Gln Thr Ser Gln Ile Arg Gly Tyr 595 600 605 33 2075DNAArabidopsis thaliana 33atgaaaacct ctctccgacg gttacgaggt gtgcttcaca agcatgaatc taaagaccgg 60agagatcttc gagctctggt tcagaaagat gagcttgccc aagcttctca ggacgtagaa 120gacatgagag attgctatga tagcttgctc aatgccgctg ctgctactgc caatagtgct 180tatgaatttt ctgaatcttt gcgagaacta ggtgcttgtc ttcttgagaa aactgcgcta 240aatgatgatg aagaaagtgg tagagtgttg attatgctgg gaaagttgca gtttgaattg 300caaaaacttg ttgataaata tcgttctcat atttttcaaa caatcacaat cccctcagag 360tcacttctaa atgaactccg catagttgag gagatgcagc ggctttgtga tgagaaaagg 420aatgtttatg aaggcatgct tacaagacaa agagagaaag ggagatcaaa gggtgggaaa 480ggagaaactt tttcgccaca gcaactacaa gaagctcatg atgattatga aaacgagacg 540actttatttg ttttccgttt aaaatccctg aaacaagggc aaacacgtag tcttttgact 600caggcagcaa ggcaccatgc agcacagtta tgcttcttca agaaggctct tagttccctt 660gaagaagtgg acccacatgt acagatggta accgagtcac agcatattga ttaccatttc 720agcggattag aagatgatga cggggatgat gaaattgaaa acaatgagaa cgatggttct 780gaggtgcatg atgatggaga gttgagtttt gaatatagag ttaatgacaa ggaccaagat 840gcggattctt cagctggtgg ctcctcagag ttgggtaact cagacatcac atttccacaa 900attggaggac catatactgc acaggaaaat gaggaaggaa attacagaaa atctcattcg 960tttaggagag atgtaagggc agtgagccaa tcagcaccac tttttcccga gaaccgcaca 1020actcctcctt cagaaaagct gttacggatg cgatcaactc tgacacggaa attcaacact 1080tatgcattgc caactcctgt ggaaacaacg agaagtccct catctactac aagtccaggt 1140cacaaaaacg tggggtcatc taatcctaca aaggcaatta caaagcagat ttggtattca 1200tccccacttg aaactcgcgg acctgcaaag gtttcctcaa gatcaatggt agccttgaaa 1260gaacaagtcc tgagagagag taacaagaat acatctcggt tgcctccgcc tttagcagat 1320ggactcttgt tctctcgtct cggtacactc aagagacgat ccttctctgg tccactgaca 1380agtaaaccgt taccgaacaa gcctctctct acaacatctc acttatactc tggtccgatc 1440ccaaggaatc cagtttctaa attgccaaaa gtgtcatcat ctccaactgc ttcccctaca 1500tttgtctcaa ccccaaaaat aagtgagctc catgagcttc ctagaccacc accaagaagc 1560tctactaagt cctctaggga attgggatat tcagctccct tggtttcgag gagccaattg 1620cttagtaaac ctcttattac aaattcagct tctcctcttc ctataccacc tgcaatcact 1680cgtagcttct ctatacctac tagcaacctt agagcatcag atttagatat gtctaagaca 1740agtctgggca ctaaaaagtt aggcactccc tcgcctcctt taaccccaat gtcattgatc 1800catccaccgc cacaggctct tcccgaacgt gcagaccacc taatgatgtc caaacaagag 1860aggaggattt aagatgtaag gtgtaagacg tttgtagctg cctaaaaact gtaggaggaa 1920ggcattccct atagttgcag atatatgtaa atatcctcca atttttagtc tcatggatga 1980tcttagttgt atattacata tagtagttga tcccttttga gaatgatgac aaaaatagag 2040gcaaacagag ttaataataa ttgcctgagg aattt 207534623PRTArabidopsis thaliana 34Met Lys Thr Ser Leu Arg Arg Leu Arg Gly Val Leu His Lys His Glu 1 5 10 15 Ser Lys Asp Arg Arg Asp Leu Arg Ala Leu Val Gln Lys Asp Glu Leu 20 25 30 Ala Gln Ala Ser Gln Asp Val Glu Asp Met Arg Asp Cys Tyr Asp Ser 35 40 45 Leu Leu Asn Ala Ala Ala Ala Thr Ala Asn Ser Ala Tyr Glu Phe Ser 50 55 60 Glu Ser Leu Arg Glu Leu Gly Ala Cys Leu Leu Glu Lys Thr Ala Leu 65 70 75 80 Asn Asp Asp Glu Glu Ser Gly Arg Val Leu Ile Met Leu Gly Lys Leu 85 90 95 Gln Phe Glu Leu Gln Lys Leu Val Asp Lys Tyr Arg Ser His Ile Phe 100 105 110 Gln Thr Ile Thr Ile Pro Ser Glu Ser Leu Leu Asn Glu Leu Arg Ile 115 120 125 Val Glu Glu Met Gln Arg Leu Cys Asp Glu Lys Arg Asn Val Tyr Glu 130 135 140 Gly Met Leu Thr Arg Gln Arg Glu Lys Gly Arg Ser Lys Gly Gly Lys 145 150 155 160 Gly Glu Thr Phe Ser Pro Gln Gln Leu Gln Glu Ala His Asp Asp Tyr 165 170 175 Glu Asn Glu Thr Thr Leu Phe Val Phe Arg Leu Lys Ser Leu Lys Gln 180 185 190 Gly Gln Thr Arg Ser Leu Leu Thr Gln Ala Ala Arg His His Ala Ala 195 200 205 Gln Leu Cys Phe Phe Lys Lys Ala Leu Ser Ser Leu Glu Glu Val Asp 210 215 220 Pro His Val Gln Met Val Thr Glu Ser Gln His Ile Asp Tyr His Phe 225 230 235 240 Ser Gly Leu Glu Asp Asp Asp Gly Asp Asp Glu Ile Glu Asn Asn Glu 245 250 255 Asn Asp Gly Ser Glu Val His Asp Asp Gly Glu Leu Ser Phe Glu Tyr 260 265 270 Arg Val Asn Asp Lys Asp Gln Asp Ala Asp Ser Ser Ala Gly Gly Ser 275 280 285 Ser Glu Leu Gly Asn Ser Asp Ile Thr Phe Pro Gln Ile Gly Gly Pro 290 295 300 Tyr Thr Ala Gln Glu Asn Glu Glu Gly Asn Tyr Arg Lys Ser His Ser 305 310 315 320 Phe Arg Arg Asp Val Arg Ala Val Ser Gln Ser Ala Pro Leu Phe Pro 325 330 335 Glu Asn Arg Thr Thr Pro Pro Ser Glu Lys Leu Leu Arg Met Arg Ser 340 345 350 Thr Leu Thr Arg Lys Phe Asn Thr Tyr Ala Leu Pro Thr Pro Val Glu 355 360 365 Thr Thr Arg Ser Pro Ser Ser Thr Thr Ser Pro Gly His Lys Asn Val 370 375 380 Gly Ser Ser Asn Pro Thr Lys Ala Ile Thr Lys Gln Ile Trp Tyr Ser 385 390 395 400 Ser Pro Leu Glu Thr Arg Gly Pro Ala Lys Val Ser Ser Arg Ser Met 405 410 415 Val Ala Leu Lys Glu Gln Val Leu Arg Glu Ser Asn Lys Asn Thr Ser 420 425 430 Arg Leu Pro Pro Pro Leu Ala Asp Gly Leu Leu Phe Ser Arg Leu Gly 435 440 445 Thr Leu Lys Arg Arg Ser Phe Ser Gly Pro Leu Thr Ser Lys Pro Leu 450 455 460 Pro Asn Lys Pro Leu Ser Thr Thr Ser His Leu Tyr Ser Gly Pro Ile 465 470 475 480 Pro Arg Asn Pro Val Ser Lys Leu Pro Lys Val Ser Ser Ser Pro Thr 485 490 495 Ala Ser Pro Thr Phe Val Ser Thr Pro Lys Ile Ser Glu Leu His Glu 500 505 510 Leu Pro Arg Pro Pro Pro Arg Ser Ser Thr Lys Ser Ser Arg Glu Leu 515 520 525 Gly Tyr Ser Ala Pro Leu Val Ser Arg Ser Gln Leu Leu Ser Lys Pro 530 535 540 Leu Ile Thr Asn Ser Ala Ser Pro Leu Pro Ile Pro Pro Ala Ile Thr 545 550 555 560 Arg Ser Phe Ser Ile Pro Thr Ser Asn Leu Arg Ala Ser Asp Leu Asp 565 570 575 Met Ser Lys Thr Ser Leu Gly Thr Lys Lys Leu Gly Thr Pro Ser Pro 580 585 590 Pro Leu Thr Pro Met Ser Leu Ile His Pro Pro Pro Gln Ala Leu Pro 595 600 605 Glu Arg Ala Asp His Leu Met Met Ser Lys Gln Glu Arg Arg Ile 610 615 620 351760DNAArabidopsis thaliana 35ataatgtcag caagtgtttg ttttcacatc aagctccgtt tctacagagt ttgcatctca 60atatgaactt tgggtgtgac cctcgtataa tggattttga gatattgatt ggaattgcgt 120ttggacgcca actgcgtaag ttggtactca aagtttactc tggggattgg ttcaaatttc 180ctacaagttt gtataactcc gaaactctag agaccttgga actctaccat tgcattctta 240tagatgtccc ttttccggtt tgtctcaagt cccttagaac tctaaacctt cacgaagtgg 300agtttgtaaa cgatgaatca gttgttaacc ttttagctgg ttgtattagc ctggaaaatt 360tggtgattca tcaaactaca gatcttaatg tgaagacttt tactattgcg gtaccatcct 420tgcagaggtt aacagttatt gttgagtatt atgaagagtt ttctgtcttt gtggtaaata 480ctccatcttt gaaatacttg aagattgaag gtattattgt agatgatagg acttgtataa 540ttgagaatac acctgagctg gtggaggcaa gtattattga tgtgtctttt aaagtctttg 600agagcattct tggatccctt gcttcagtcc aacgtctttc cttgaaggtt tcactcgtgg 660agtctcagga acagaggcct tgggagaaat ggaatgaacc gaagaatgtt cctgaatgtt 720tgttgctcca cctcgaaaca tttgtgtgga catgttatga agggaaacta gaaaatgaga 780tagagctggc gaaatatatc ctaaggaacg ctaggcgttt gaaaaaggca actttctcca 840taattgaaat taatccggac aagagagttg agatggttga caggatcagt gacttgcccg 900aagctctgct tctgcagata ttgtctatgc ttccagtaaa agatgttgtt accactagtg 960ttttgtctaa accatggagg tctctctgga agttggtacc tacactcaag tttgattatg 1020aaaacaatca aagtgaagat gagacatact cagagattgt ttgcaggctt ttgctttcca 1080ataaagctcc ttttcttgag agtttgcatc tcggattcag gtttggcgaa tgtcgttcgg 1140tggaagttgg aatgtggatt ggaattgcat acgcacgcca tgtgcgtgat ttggtactcc 1200atgttgaatc tgtgaaaggg tctttcatat ttcctacagg cttgtataac tgtgaaacac 1260tagagagctt gacactgagg agttgggtac tcgttgatgt cccttctccg gcttgtctca 1320agtctcttag aactctgcgt cttgagaatg tggattacaa atacgatgat tcggtttata 1380accttttatc tggctgccct aatcttgaaa atttggttgt gtatcgagga aatctactgg 1440aagtggagac tttcactatt gcagtgccat ctttacagag actaacaatt tatgatgaca 1500atgatggaga atactgtacg ggctatgtga taaatgctcc ttcattgaag tacttgaaga 1560ttgatgggtt taaggctctc gagtcttgtc tgattgagaa cgcaccggag ttggtggagg 1620caactattat gaatgtctct aagataatca atgagaagct tttggaaacc ctcacttcag 1680tcaaacgtct ttccttggct ttatcaccct tggagttaaa gttttcttgc aataattatt 1740cgggtcactt gttgttatga 176036565PRTArabidopsis thaliana 36Met Asn Phe Gly Cys Asp Pro Arg Ile Met Asp Phe Glu Ile Leu Ile 1 5 10 15 Gly Ile Ala Phe Gly Arg Gln Leu Arg Lys Leu Val Leu Lys Val Tyr 20 25 30 Ser Gly Asp Trp Phe Lys Phe Pro Thr Ser Leu Tyr Asn Ser Glu Thr 35 40 45 Leu Glu Thr Leu Glu Leu Tyr His Cys Ile Leu Ile Asp Val Pro Phe 50 55 60 Pro Val Cys Leu Lys Ser Leu Arg Thr Leu Asn Leu His Glu Val Glu 65 70 75 80 Phe Val Asn Asp Glu Ser Val Val Asn Leu Leu Ala Gly Cys Ile Ser 85 90 95 Leu Glu Asn Leu Val Ile His Gln Thr Thr Asp Leu Asn Val Lys Thr 100 105 110 Phe Thr Ile Ala Val Pro Ser Leu Gln Arg Leu Thr Val Ile Val Glu 115 120 125 Tyr Tyr Glu Glu Phe Ser Val Phe Val Val Asn Thr Pro Ser Leu Lys 130 135 140 Tyr Leu Lys Ile Glu Gly Ile Ile Val Asp Asp Arg Thr Cys Ile Ile 145 150 155 160 Glu Asn Thr Pro Glu Leu Val Glu Ala Ser Ile Ile Asp Val Ser Phe 165 170 175 Lys Val Phe Glu Ser Ile Leu Gly Ser Leu Ala Ser Val Gln Arg Leu 180 185 190 Ser Leu Lys Val Ser Leu Val Glu Ser Gln Glu Gln Arg Pro Trp Glu 195 200 205 Lys Trp Asn Glu Pro Lys Asn Val Pro Glu Cys Leu Leu Leu His Leu 210 215 220 Glu Thr Phe Val Trp Thr Cys Tyr Glu Gly Lys Leu Glu Asn Glu Ile 225 230 235 240 Glu Leu Ala Lys Tyr Ile Leu Arg Asn Ala Arg Arg Leu Lys Lys Ala 245 250 255 Thr Phe Ser Ile Ile Glu Ile Asn Pro Asp Lys Arg Val Glu Met Val 260 265 270 Asp Arg Ile Ser Asp Leu Pro Glu Ala Leu Leu Leu Gln Ile Leu Ser 275 280 285 Met

Leu Pro Val Lys Asp Val Val Thr Thr Ser Val Leu Ser Lys Pro 290 295 300 Trp Arg Ser Leu Trp Lys Leu Val Pro Thr Leu Lys Phe Asp Tyr Glu 305 310 315 320 Asn Asn Gln Ser Glu Asp Glu Thr Tyr Ser Glu Ile Val Cys Arg Leu 325 330 335 Leu Leu Ser Asn Lys Ala Pro Phe Leu Glu Ser Leu His Leu Gly Phe 340 345 350 Arg Phe Gly Glu Cys Arg Ser Val Glu Val Gly Met Trp Ile Gly Ile 355 360 365 Ala Tyr Ala Arg His Val Arg Asp Leu Val Leu His Val Glu Ser Val 370 375 380 Lys Gly Ser Phe Ile Phe Pro Thr Gly Leu Tyr Asn Cys Glu Thr Leu 385 390 395 400 Glu Ser Leu Thr Leu Arg Ser Trp Val Leu Val Asp Val Pro Ser Pro 405 410 415 Ala Cys Leu Lys Ser Leu Arg Thr Leu Arg Leu Glu Asn Val Asp Tyr 420 425 430 Lys Tyr Asp Asp Ser Val Tyr Asn Leu Leu Ser Gly Cys Pro Asn Leu 435 440 445 Glu Asn Leu Val Val Tyr Arg Gly Asn Leu Leu Glu Val Glu Thr Phe 450 455 460 Thr Ile Ala Val Pro Ser Leu Gln Arg Leu Thr Ile Tyr Asp Asp Asn 465 470 475 480 Asp Gly Glu Tyr Cys Thr Gly Tyr Val Ile Asn Ala Pro Ser Leu Lys 485 490 495 Tyr Leu Lys Ile Asp Gly Phe Lys Ala Leu Glu Ser Cys Leu Ile Glu 500 505 510 Asn Ala Pro Glu Leu Val Glu Ala Thr Ile Met Asn Val Ser Lys Ile 515 520 525 Ile Asn Glu Lys Leu Leu Glu Thr Leu Thr Ser Val Lys Arg Leu Ser 530 535 540 Leu Ala Leu Ser Pro Leu Glu Leu Lys Phe Ser Cys Asn Asn Tyr Ser 545 550 555 560 Gly His Leu Leu Leu 565 371230DNAArabidopsis thaliana 37atgagtgtct tgtctaaacg atggaggtct ctttggaaga tgttgcctcg gcttaagttt 60gatgattgga tgtttcctga taatgtcaac aggtgtttgc tttcacatca agcttcgttt 120ctacagagtt tgcatcttgt aatagattat gattttgtgt ctcatatgca tactgggata 180ttgatgggaa ttgcgtttgg acgccatata cgtgagctgg tactctatgt taatggcttt 240caagagtcct ttacatttcc tttaagcttg tgtaactgcg aatcactaga gacattgaca 300ctcggtcata acgttcttat agatgtccct tctccggttt ttttgaagtc tcttagaact 360ctacacctag atggggttga gtacacagac gatgaatcag ttgttaacct tttatctggt 420tgtattagcc tggaaaattt ggtggtccat cgagttatac aagctgatgt gacaactttc 480actattgcgg tgccatcctt gaagaggcta acacttacta ctgaatttga tgatgatgaa 540gactcagtct atgtgataaa tgctccttct ttgaaatact tgaagatttt aggtgacaag 600gcttatctga ttgagaattc acctgagttg gtggaggtaa gtctgacaga taggcaagtt 660actgtggatg gttatcccat cgcttcatac gttgagaacc ttcttagatc tcttacttca 720gtcaaacgca tgtctttgaa gatatcatca tacttagaga ttaagtttcc aactggtagc 780atcttctatc agttggtatc tttggagcta tatacaaata aagcagagtg gtggaatctg 840cttgtgttga tgctcgatag ttctcctaaa ttgcaagtcc tcaagctcaa cggtaaattg 900tctggtgaaa acaatcattt agccagtatg aattgggatc aaccaaagaa tattcctgga 960tgtttgttgt ttaatctcga gacattcatt tggaaaggct gcaaaaggat aggagaagat 1020gaaaaagagg tggcgaaata catcctaagg aacacaaatc gtttgaagag ggcgactttc 1080accagagaaa tctatgaaga gaacaattct caagacatgt ttgagaatct tgaaatggtg 1140gaggaattgg aaagtgtggt cagagcttca aagtcatgca agcttgtgtt cgaatctacc 1200ttgtggtcac tatccaatta tgatgtttaa 123038409PRTArabidopsis thaliana 38Met Ser Val Leu Ser Lys Arg Trp Arg Ser Leu Trp Lys Met Leu Pro 1 5 10 15 Arg Leu Lys Phe Asp Asp Trp Met Phe Pro Asp Asn Val Asn Arg Cys 20 25 30 Leu Leu Ser His Gln Ala Ser Phe Leu Gln Ser Leu His Leu Val Ile 35 40 45 Asp Tyr Asp Phe Val Ser His Met His Thr Gly Ile Leu Met Gly Ile 50 55 60 Ala Phe Gly Arg His Ile Arg Glu Leu Val Leu Tyr Val Asn Gly Phe 65 70 75 80 Gln Glu Ser Phe Thr Phe Pro Leu Ser Leu Cys Asn Cys Glu Ser Leu 85 90 95 Glu Thr Leu Thr Leu Gly His Asn Val Leu Ile Asp Val Pro Ser Pro 100 105 110 Val Phe Leu Lys Ser Leu Arg Thr Leu His Leu Asp Gly Val Glu Tyr 115 120 125 Thr Asp Asp Glu Ser Val Val Asn Leu Leu Ser Gly Cys Ile Ser Leu 130 135 140 Glu Asn Leu Val Val His Arg Val Ile Gln Ala Asp Val Thr Thr Phe 145 150 155 160 Thr Ile Ala Val Pro Ser Leu Lys Arg Leu Thr Leu Thr Thr Glu Phe 165 170 175 Asp Asp Asp Glu Asp Ser Val Tyr Val Ile Asn Ala Pro Ser Leu Lys 180 185 190 Tyr Leu Lys Ile Leu Gly Asp Lys Ala Tyr Leu Ile Glu Asn Ser Pro 195 200 205 Glu Leu Val Glu Val Ser Leu Thr Asp Arg Gln Val Thr Val Asp Gly 210 215 220 Tyr Pro Ile Ala Ser Tyr Val Glu Asn Leu Leu Arg Ser Leu Thr Ser 225 230 235 240 Val Lys Arg Met Ser Leu Lys Ile Ser Ser Tyr Leu Glu Ile Lys Phe 245 250 255 Pro Thr Gly Ser Ile Phe Tyr Gln Leu Val Ser Leu Glu Leu Tyr Thr 260 265 270 Asn Lys Ala Glu Trp Trp Asn Leu Leu Val Leu Met Leu Asp Ser Ser 275 280 285 Pro Lys Leu Gln Val Leu Lys Leu Asn Gly Lys Leu Ser Gly Glu Asn 290 295 300 Asn His Leu Ala Ser Met Asn Trp Asp Gln Pro Lys Asn Ile Pro Gly 305 310 315 320 Cys Leu Leu Phe Asn Leu Glu Thr Phe Ile Trp Lys Gly Cys Lys Arg 325 330 335 Ile Gly Glu Asp Glu Lys Glu Val Ala Lys Tyr Ile Leu Arg Asn Thr 340 345 350 Asn Arg Leu Lys Arg Ala Thr Phe Thr Arg Glu Ile Tyr Glu Glu Asn 355 360 365 Asn Ser Gln Asp Met Phe Glu Asn Leu Glu Met Val Glu Glu Leu Glu 370 375 380 Ser Val Val Arg Ala Ser Lys Ser Cys Lys Leu Val Phe Glu Ser Thr 385 390 395 400 Leu Trp Ser Leu Ser Asn Tyr Asp Val 405 392113DNAArabidopsis thaliana 39aagtttcaat ttgacttctc catcacacac aacaacaaga acaaggacaa gcttctacat 60ttctcttaac ataacagaca gtttttgatc tgggttttca agtccggtgt tgatcccatt 120gagtttcgga tctaaaagat ccgaatattc agacggatca acaagagaac aagaaaaaaa 180aaatgaatct tgagaatgtt ttggaattca ccagctttga ttactggttt aattggagag 240tgttactatg tgctatatgg gtaatagttc caatgattgt ttctttatta gtcttatgga 300agtatgaaga tagttcagtt caaactcaac catcacttaa tggtaatgat gttttgtgca 360ttgatgatgt ttggagacct tgttttgaac gaatccatcc gggttggttg ttgggttttc 420gggttctcgg gttttgtttc cttcttgcta acaatattgc ccggtttgct aatcgtggat 480ggcgtattta ctactattat actcagtgga cattcacttt gatagcaatc tacttcggga 540tgggatcatt gctttcaatt tatggatgtt tacaatacaa gaagcaaggg aacactggac 600ttatcgctga tcaagtagga atcgatgcag agaacgggtt tcgttcgcct cttatagatg 660gtgacaacat ggtttcgttc gagaagagaa aaacttctgg ttcggaagca ctaaagtcat 720atgttcatct cttccagatt atatatcaga tgggtgctgg agcagctgtg cttacagaca 780gtatatattg gaccgtgatt ttcccgtttc tgtctttaca ggactatgag atgagtttca 840tgactgtgaa tttgcacaca agcaacctcg ttttgctgct tattgacacg tttctaaacc 900gtctgaaatt tccattgttc aggttctctt acttcatctt atggacagga tgtttcgttc 960ttttccagtg gattctccac atgtttatct ccgttgggtg gccatatcca tttctcaacc 1020tgtcattaga catggctcca gtgtggtatt tgttggtggc actcctgcat cttccttctt 1080atggcctctt tgcattaatc gtcaaaatca aatacaaact catttcttga agtcatttcg 1140aatccaagag tttctgcccc gtaagagtca gtgctcaagg gttacaacaa tcaaagaaac 1200aattttttac cccatatgtc taaaatcttc aaaacagatc attgtaaacg ccacaacatt 1260tcaatgcata aactatttac ttccgatcca attcgcatat cgcaatgaac catttcgtaa 1320atttttcgct acccgaattg atttcagctc gaaccaaatc gaaagaacta accatagcaa 1380cagaatatag tgcaatcttt gccaaaagtg tatgaactta atcaaaaacc gaaccaaacc 1440aaaccgaaaa cccgaaaatt caaggtttta gaattgaaga tttgagtgag acttgagaag 1500ccaagtctgg ctctcctagt ctcaagagac ccttactcaa aacctcagcg acatactcat 1560cagcctccca tgactcagac ccccaaccac tttccctcat caaggtataa accctaacca 1620ccgactctct cctctcagct ccaaccacag ccctaatcaa cttagctaaa gccttatcat 1680cacttctttg atcaattcca tcaatttcac caataagacg atctatctca tcgaactctt 1740tattcctcgt aagagcatta acaatgtctg cgtatagaac aaggtcaaga ggaggatact 1800ctgtacggag agtggagagt acatggacag cgagtgtgca atagtcttga cggagaagct 1860cacggaggac ggagatgaga tcggatttta tgagacggcg gagaggacgg agggtaaggg 1920agagggagac accggttcga tgagctcgtt tgagagattg gattgattgg attgcttcgg 1980tgcttaggat tcggcctttg agaagtggtc cgcggttgtc tcgtggaccg catcggatcg 2040aaacgaacgt tctcttagga acgatgacgc taagggtatg gctatggcta aggcttggtg 2100gtcgagtctg gct 211340315PRTArabidopsis thaliana 40Met Asn Leu Glu Asn Val Leu Glu Phe Thr Ser Phe Asp Tyr Trp Phe 1 5 10 15 Asn Trp Arg Val Leu Leu Cys Ala Ile Trp Val Ile Val Pro Met Ile 20 25 30 Val Ser Leu Leu Val Leu Trp Lys Tyr Glu Asp Ser Ser Val Gln Thr 35 40 45 Gln Pro Ser Leu Asn Gly Asn Asp Val Leu Cys Ile Asp Asp Val Trp 50 55 60 Arg Pro Cys Phe Glu Arg Ile His Pro Gly Trp Leu Leu Gly Phe Arg 65 70 75 80 Val Leu Gly Phe Cys Phe Leu Leu Ala Asn Asn Ile Ala Arg Phe Ala 85 90 95 Asn Arg Gly Trp Arg Ile Tyr Tyr Tyr Tyr Thr Gln Trp Thr Phe Thr 100 105 110 Leu Ile Ala Ile Tyr Phe Gly Met Gly Ser Leu Leu Ser Ile Tyr Gly 115 120 125 Cys Leu Gln Tyr Lys Lys Gln Gly Asn Thr Gly Leu Ile Ala Asp Gln 130 135 140 Val Gly Ile Asp Ala Glu Asn Gly Phe Arg Ser Pro Leu Ile Asp Gly 145 150 155 160 Asp Asn Met Val Ser Phe Glu Lys Arg Lys Thr Ser Gly Ser Glu Ala 165 170 175 Leu Lys Ser Tyr Val His Leu Phe Gln Ile Ile Tyr Gln Met Gly Ala 180 185 190 Gly Ala Ala Val Leu Thr Asp Ser Ile Tyr Trp Thr Val Ile Phe Pro 195 200 205 Phe Leu Ser Leu Gln Asp Tyr Glu Met Ser Phe Met Thr Val Asn Leu 210 215 220 His Thr Ser Asn Leu Val Leu Leu Leu Ile Asp Thr Phe Leu Asn Arg 225 230 235 240 Leu Lys Phe Pro Leu Phe Arg Phe Ser Tyr Phe Ile Leu Trp Thr Gly 245 250 255 Cys Phe Val Leu Phe Gln Trp Ile Leu His Met Phe Ile Ser Val Gly 260 265 270 Trp Pro Tyr Pro Phe Leu Asn Leu Ser Leu Asp Met Ala Pro Val Trp 275 280 285 Tyr Leu Leu Val Ala Leu Leu His Leu Pro Ser Tyr Gly Leu Phe Ala 290 295 300 Leu Ile Val Lys Ile Lys Tyr Lys Leu Ile Ser 305 310 315 411700DNAArabidopsis thaliana 41ctaatcaatt actttcctcg ttatcctttt ttgcagtcaa gttaaattgc tctctttcaa 60gacttgtgtt ctttaaacca aaaaaaaaaa aaaagtatct gtgttcatca ccaactcatt 120cttctttcag atctagggtt tcatgcttca ctcaattttt ttttgtttag gtagttccat 180cttctaaacg ttgtattttt ttttttttgc catcataatc atatggagtt cgagtcagtg 240ttcaaaatgc attatccgta tctcgcagcc gttatctacg atgatagctc cactttaaaa 300gattttcatc catctcttac cgatgatttt tcttgtgtac acaatgtgca tcacaaacca 360tcgatgcctc acacatatga aataccatca aaagaaacca ttaggggcat cactccttct 420ccatgcactg aagctttcga ggcatgtttt catggcacat ccaacgacca tgtttttttt 480ggcatggcct ataccacccc accaactatt gaacccaacg tttcacatgt ctcacatgac 540aatactatgt gggaaaacga tcaaaaccaa ggattcatct ttggaaccga gtcaaccctc 600aatcaagcca tggcggactc taatcaattc aatatgccaa aaccactctt gagcgcaaac 660gaagacacca tcatgaatcg acgtcaaaat aaccaggtaa tgatcaagac cgagcagatc 720aagaagaaga acaagagatt tcagatgagg aggatatgta aacccacaaa aaaagctagc 780atcatcaaag gacaatggac tcctgaagaa gacaagttat tggtgcagct agtggacctt 840cacggaacta aaaaatggtc tcagattgct aagatgcttc aaggacgagt tggaaaacag 900tgcagagaaa ggtggcataa ccatctccgt cccgatatca agaaagatgg atggactgaa 960gaagaggata taatactgat aaaagcccat aaggagattg ggaacagatg ggctgagata 1020gctcgaaaac tcccgggacg cactgaaaat acgatcaaga accattggaa cgcgactaaa 1080cgtcgacaac actcgaggag gactaaagga aaagatgaaa tttccctttc acttggtagc 1140aacactcttc agaactacat taggtctgtt acctacaatg atgatccttt catgaccgca 1200aatgcaaacg caaacattgg tccaagaaac atgagaggta aaggtaagaa tgtaatggtt 1260gcggtctcgg agtatgatga gggtgaatgt aagtatattg tggatggtgt gaataacttg 1320ggtttagaag atggaaggat caagatgccg tcattggcgg ctatgtcggc ctccggatca 1380gcgtctactt ctggttctgc gtctggttct ggaagtggtg tgaccatgga gattgatgag 1440ccgatgactg atagctggat ggtgatgcat ggatgtgatg aagttatgat gaacgagatt 1500gctttgctgg agatgattgc tcatggtcgt ctttagaccg tgcaatataa acaagtcgaa 1560cttgattata tctacctata taattatgct atttatgaaa ttatgtttgt gcttttaatt 1620gaagaattgg acatgtaata tatattgtgg tttaattgaa ggtttctttt ggactaaaca 1680aaaattgaag gttttcttgc 170042437PRTArabidopsis thaliana 42Met Glu Phe Glu Ser Val Phe Lys Met His Tyr Pro Tyr Leu Ala Ala 1 5 10 15 Val Ile Tyr Asp Asp Ser Ser Thr Leu Lys Asp Phe His Pro Ser Leu 20 25 30 Thr Asp Asp Phe Ser Cys Val His Asn Val His His Lys Pro Ser Met 35 40 45 Pro His Thr Tyr Glu Ile Pro Ser Lys Glu Thr Ile Arg Gly Ile Thr 50 55 60 Pro Ser Pro Cys Thr Glu Ala Phe Glu Ala Cys Phe His Gly Thr Ser 65 70 75 80 Asn Asp His Val Phe Phe Gly Met Ala Tyr Thr Thr Pro Pro Thr Ile 85 90 95 Glu Pro Asn Val Ser His Val Ser His Asp Asn Thr Met Trp Glu Asn 100 105 110 Asp Gln Asn Gln Gly Phe Ile Phe Gly Thr Glu Ser Thr Leu Asn Gln 115 120 125 Ala Met Ala Asp Ser Asn Gln Phe Asn Met Pro Lys Pro Leu Leu Ser 130 135 140 Ala Asn Glu Asp Thr Ile Met Asn Arg Arg Gln Asn Asn Gln Val Met 145 150 155 160 Ile Lys Thr Glu Gln Ile Lys Lys Lys Asn Lys Arg Phe Gln Met Arg 165 170 175 Arg Ile Cys Lys Pro Thr Lys Lys Ala Ser Ile Ile Lys Gly Gln Trp 180 185 190 Thr Pro Glu Glu Asp Lys Leu Leu Val Gln Leu Val Asp Leu His Gly 195 200 205 Thr Lys Lys Trp Ser Gln Ile Ala Lys Met Leu Gln Gly Arg Val Gly 210 215 220 Lys Gln Cys Arg Glu Arg Trp His Asn His Leu Arg Pro Asp Ile Lys 225 230 235 240 Lys Asp Gly Trp Thr Glu Glu Glu Asp Ile Ile Leu Ile Lys Ala His 245 250 255 Lys Glu Ile Gly Asn Arg Trp Ala Glu Ile Ala Arg Lys Leu Pro Gly 260 265 270 Arg Thr Glu Asn Thr Ile Lys Asn His Trp Asn Ala Thr Lys Arg Arg 275 280 285 Gln His Ser Arg Arg Thr Lys Gly Lys Asp Glu Ile Ser Leu Ser Leu 290 295 300 Gly Ser Asn Thr Leu Gln Asn Tyr Ile Arg Ser Val Thr Tyr Asn Asp 305 310 315 320 Asp Pro Phe Met Thr Ala Asn Ala Asn Ala Asn Ile Gly Pro Arg Asn 325 330 335 Met Arg Gly Lys Gly Lys Asn Val Met Val Ala Val Ser Glu Tyr Asp 340 345 350 Glu Gly Glu Cys Lys Tyr Ile Val Asp Gly Val Asn Asn Leu Gly Leu 355 360 365 Glu Asp Gly Arg Ile Lys Met Pro Ser Leu Ala Ala Met Ser Ala Ser 370 375 380 Gly Ser Ala Ser Thr Ser Gly Ser Ala Ser Gly Ser Gly Ser Gly Val 385 390 395 400 Thr Met Glu Ile Asp Glu Pro Met Thr Asp Ser Trp Met Val Met His 405 410 415 Gly Cys Asp Glu Val Met Met Asn Glu Ile Ala Leu Leu Glu Met Ile 420 425 430 Ala His Gly Arg Leu 435 43 1423DNAArabidopsis thaliana 43atatcgaagt aagactaaag ctcaagttaa aacagaaaaa atgtcaactt cagaaaacac 60tccgtttaat ggcgttgcct catccaccat tgttcgagct accattgtcc aagcctccac 120cgtctacaac gatactcccg ccactctaga aaaggcgaac aagtttattg tggaggctgc 180aagcaaggga tcggagctgg ttgtgttccc ggaggcgttt atcggtggtt atcctcgagg 240ttttaggttt ggtttagggg tgggagttca taacgaagaa gggcgtgatg agttccgcaa

300gtaccatgct tctgctatta aagttcctgg ccctgaagta gaaaagttgg cggagttggc 360cgggaagaac aatgtgtact tggtaatggg agcgatagag aaggatgggt atacactcta 420ttgcacagca cttttcttca gtccacaagg tcagttcttg ggtaagcacc gtaaactcat 480gcccacaagt ttggaacgtt gcatttgggg tcaaggagac ggatcaacca tccccgttta 540cgacactccg attggaaaac tcggtgctgc tatttgctgg gagaatagga tgcccctcta 600cagaactgct ttgtacgcca aaggcattga gctttattgt gcacctactg ctgatggttc 660gaaagaatgg caatcgtcga tgcttcacat tgcgatcgaa ggtggatgtt tcgtattgtc 720ggcttgccag ttctgccttc gtaaagattt ccctgatcat cctgactact tgtttaccga 780ttggtacgac gacaaagagc ctgactctat tgtttcccaa ggtggaagtg ttattatttc 840acctttggga caggttcttg cgggaccaaa ctttgaatca gagggtctca tcacagctga 900tcttgatctt ggtgatgtag caagagctaa gttgtacttc gattcggttg gacattactc 960gagaccagat gttttacact tgaccgtaaa tgagcacccg aagaaaccgg tcacattcat 1020ttcgaaggtg gagaaagcgg aagatgactc aaacaagtaa tcggttgtga ttcgtcagtt 1080catgtcactc ctatgaagga gtcaagttca aaatgttatg ttgagtttca aacttttatg 1140ctaaactttt tttcttaatt ttcgttaata atggaagaga accaattctc ttgtatctaa 1200agattatcca tctatcatcc aatttgagtg ttcaattctg gatgttgtgt taccctacat 1260tctacaacca tgtagccaat tattatgaat ctggctttga tttcagttgt gttcttttct 1320tttttttctt tgcatatttg catttagaat gtttaataat taagttactg tatttccaca 1380tacattagtt ccaagaatat acatatatta atttattttt ctt 142344339PRTArabidopsis thaliana 44Met Ser Thr Ser Glu Asn Thr Pro Phe Asn Gly Val Ala Ser Ser Thr 1 5 10 15 Ile Val Arg Ala Thr Ile Val Gln Ala Ser Thr Val Tyr Asn Asp Thr 20 25 30 Pro Ala Thr Leu Glu Lys Ala Asn Lys Phe Ile Val Glu Ala Ala Ser 35 40 45 Lys Gly Ser Glu Leu Val Val Phe Pro Glu Ala Phe Ile Gly Gly Tyr 50 55 60 Pro Arg Gly Phe Arg Phe Gly Leu Gly Val Gly Val His Asn Glu Glu 65 70 75 80 Gly Arg Asp Glu Phe Arg Lys Tyr His Ala Ser Ala Ile Lys Val Pro 85 90 95 Gly Pro Glu Val Glu Lys Leu Ala Glu Leu Ala Gly Lys Asn Asn Val 100 105 110 Tyr Leu Val Met Gly Ala Ile Glu Lys Asp Gly Tyr Thr Leu Tyr Cys 115 120 125 Thr Ala Leu Phe Phe Ser Pro Gln Gly Gln Phe Leu Gly Lys His Arg 130 135 140 Lys Leu Met Pro Thr Ser Leu Glu Arg Cys Ile Trp Gly Gln Gly Asp 145 150 155 160 Gly Ser Thr Ile Pro Val Tyr Asp Thr Pro Ile Gly Lys Leu Gly Ala 165 170 175 Ala Ile Cys Trp Glu Asn Arg Met Pro Leu Tyr Arg Thr Ala Leu Tyr 180 185 190 Ala Lys Gly Ile Glu Leu Tyr Cys Ala Pro Thr Ala Asp Gly Ser Lys 195 200 205 Glu Trp Gln Ser Ser Met Leu His Ile Ala Ile Glu Gly Gly Cys Phe 210 215 220 Val Leu Ser Ala Cys Gln Phe Cys Leu Arg Lys Asp Phe Pro Asp His 225 230 235 240 Pro Asp Tyr Leu Phe Thr Asp Trp Tyr Asp Asp Lys Glu Pro Asp Ser 245 250 255 Ile Val Ser Gln Gly Gly Ser Val Ile Ile Ser Pro Leu Gly Gln Val 260 265 270 Leu Ala Gly Pro Asn Phe Glu Ser Glu Gly Leu Ile Thr Ala Asp Leu 275 280 285 Asp Leu Gly Asp Val Ala Arg Ala Lys Leu Tyr Phe Asp Ser Val Gly 290 295 300 His Tyr Ser Arg Pro Asp Val Leu His Leu Thr Val Asn Glu His Pro 305 310 315 320 Lys Lys Pro Val Thr Phe Ile Ser Lys Val Glu Lys Ala Glu Asp Asp 325 330 335 Ser Asn Lys 451121DNAArabidopsis thaliana 45attttttgat atgtaaaatt tatcgaaaac gttccatttc aatatgtaga caaagcggag 60aagtatattg tggaggcggc aagcaaggga gcagagctag tgttgttccc ggaggggttt 120atcggtggct atcctcgagg ttttaggttc ggtttagcgg ttggcgttca taacgaagaa 180gggcgtgatg agtttcggaa gtaccatgct tctgctattc atgttcctgg ccctgaagta 240gcaagattgg ctgacgtggc taggaaaaac catgtgtact tggtaatggg agccatagag 300aaggaagggt ataccctcta ttgcacagtt cttttcttta gtccacaggg tcagttcttg 360ggcaagcacc gtaaactcat gcccacaagt ttggaacgtt gcatttgggg ccaaggggac 420ggatcaacca tccccgttta cgacactccc attggaaaac tcggtgctgc tatttgctgg 480gagaatagga tgcccctcta cagaactgca ttgtacgcca aaggcattga gctttattgt 540gcacctactg ctgatggttc gaaagaatgg caatcgtcga tgcttcacat tgcgatcgaa 600ggtggatgtt tcgtcttgtc ggcttgccaa ttctgccagc gtaaacattt ccctgatcat 660cctgactact tgtttaccga ttggtacgac gacaaagaac atgattctat tgtctcccaa 720ggtggaagtg tcattatttc acctttggga caagttctcg ccggaccaaa ctttgaatca 780gagggtctcg tcacagctga tattgatctt ggtgatatag caagagccaa gttatacttc 840gattcggttg gacattactc gagaccagat gttttacact tgaccgtaaa tgagcacccg 900aggaaatcgg ttacattcgt gacgaaggtg gagaaagctg aggatgactc aaacaaatag 960taagagactt gaagttcgta tctgctggag ttatgtcaat cgtatggagt caagtccaaa 1020atgttctgtt gcgttttcat tttatgttca agtttattta tctttctctt caatggtaag 1080atctatggag tcaagtaata atggtaagac ttatgttgtt g 112146224PRTArabidopsis thaliana 46Met Gly Ala Ile Glu Lys Glu Gly Tyr Thr Leu Tyr Cys Thr Val Leu 1 5 10 15 Phe Phe Ser Pro Gln Gly Gln Phe Leu Gly Lys His Arg Lys Leu Met 20 25 30 Pro Thr Ser Leu Glu Arg Cys Ile Trp Gly Gln Gly Asp Gly Ser Thr 35 40 45 Ile Pro Val Tyr Asp Thr Pro Ile Gly Lys Leu Gly Ala Ala Ile Cys 50 55 60 Trp Glu Asn Arg Met Pro Leu Tyr Arg Thr Ala Leu Tyr Ala Lys Gly 65 70 75 80 Ile Glu Leu Tyr Cys Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln 85 90 95 Ser Ser Met Leu His Ile Ala Ile Glu Gly Gly Cys Phe Val Leu Ser 100 105 110 Ala Cys Gln Phe Cys Gln Arg Lys His Phe Pro Asp His Pro Asp Tyr 115 120 125 Leu Phe Thr Asp Trp Tyr Asp Asp Lys Glu His Asp Ser Ile Val Ser 130 135 140 Gln Gly Gly Ser Val Ile Ile Ser Pro Leu Gly Gln Val Leu Ala Gly 145 150 155 160 Pro Asn Phe Glu Ser Glu Gly Leu Val Thr Ala Asp Ile Asp Leu Gly 165 170 175 Asp Ile Ala Arg Ala Lys Leu Tyr Phe Asp Ser Val Gly His Tyr Ser 180 185 190 Arg Pro Asp Val Leu His Leu Thr Val Asn Glu His Pro Arg Lys Ser 195 200 205 Val Thr Phe Val Thr Lys Val Glu Lys Ala Glu Asp Asp Ser Asn Lys 210 215 220 471338DNAArabidopsis thaliana 47atgaaccaaa gtaaaaaaca aagactcgag ttgatatgtc tagtactaaa gatatgtcaa 60ctgtccaaaa cgcaactcct tttaacggcg ttgccccatc caccaccgtg cgagttacaa 120tcgtccaatc ctccaccgtc tataacgata ctcctgccac tatagacaaa gcggagaagt 180atattgtgga ggcggcaagc aagggagcag agctagtgtt gttcccggag gggtttatcg 240gtggctatcc tcgaggtttt aggttcggtt tagcggttgg cgttcataac gaagaagggc 300gtgatgagtt tcggaagtac catgcttctg ctattcatgt tcctggccct gaagtagcaa 360gattggctga cgtggctagg aaaaaccatg tgtacttggt aatgggagcc atagagaagg 420aagggtatac cctctattgc acagttcttt tctttagtcc acagggtcag ttcttgggca 480agcaccgtaa actcatgccc acaagtttgg aacgttgcat ttggggccaa ggggacggat 540caaccatccc cgtttacgac actcccattg gaaaactcgg tgctgctatt tgctgggaga 600ataggatgcc cctctacaga actgcattgt acgccaaagg cattgagctt tattgtgcac 660ctactgctga tggttcgaaa gaatggcaat cgtcgatgct tcacattgcg atcgaaggtg 720gatgtttcgt cttgtcggct tgccaattct gccagcgtaa acatttccct gatcatcctg 780actacttgtt taccgattgg tacgacgaca aagaacatga ttctattgtc tcccaaggtg 840gaagtgtcat tatttcacct ttgggacaag ttctcgccgg accaaacttt gaatcagagg 900gtctcgtcac agctgatatt gatcttggtg atatagcaag agccaagtta tacttcgatt 960cggttggaca ttactcgaga ccagatgttt tacacttgac cgtaaatgag cacccgagga 1020aatcggttac attcgtgacg aaggtggaga aagctgagga tgactcaaac aaatagtaag 1080agacttgaag ttcgtatctg ctggagttat gtcaatcgta tggagtcaag tccaaaatgt 1140tctgttgcgt tttcatttta tgttcaagtt tatttatctt tctcttcaat ggtaagatct 1200atggagtcaa gtaataatgg taagacttat gttgttgaat aaaacgaatt ggttctctcc 1260tcttgtattt taaaactgtg ccattatgtt tatctaattt gggcgttggg cgttgaatct 1320caattgttgt tcagccgt 133848346PRTArabidopsis thaliana 48Met Ser Ser Thr Lys Asp Met Ser Thr Val Gln Asn Ala Thr Pro Phe 1 5 10 15 Asn Gly Val Ala Pro Ser Thr Thr Val Arg Val Thr Ile Val Gln Ser 20 25 30 Ser Thr Val Tyr Asn Asp Thr Pro Ala Thr Ile Asp Lys Ala Glu Lys 35 40 45 Tyr Ile Val Glu Ala Ala Ser Lys Gly Ala Glu Leu Val Leu Phe Pro 50 55 60 Glu Gly Phe Ile Gly Gly Tyr Pro Arg Gly Phe Arg Phe Gly Leu Ala 65 70 75 80 Val Gly Val His Asn Glu Glu Gly Arg Asp Glu Phe Arg Lys Tyr His 85 90 95 Ala Ser Ala Ile His Val Pro Gly Pro Glu Val Ala Arg Leu Ala Asp 100 105 110 Val Ala Arg Lys Asn His Val Tyr Leu Val Met Gly Ala Ile Glu Lys 115 120 125 Glu Gly Tyr Thr Leu Tyr Cys Thr Val Leu Phe Phe Ser Pro Gln Gly 130 135 140 Gln Phe Leu Gly Lys His Arg Lys Leu Met Pro Thr Ser Leu Glu Arg 145 150 155 160 Cys Ile Trp Gly Gln Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp Thr 165 170 175 Pro Ile Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met Pro 180 185 190 Leu Tyr Arg Thr Ala Leu Tyr Ala Lys Gly Ile Glu Leu Tyr Cys Ala 195 200 205 Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Leu His Ile 210 215 220 Ala Ile Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys Gln 225 230 235 240 Arg Lys His Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp Tyr 245 250 255 Asp Asp Lys Glu His Asp Ser Ile Val Ser Gln Gly Gly Ser Val Ile 260 265 270 Ile Ser Pro Leu Gly Gln Val Leu Ala Gly Pro Asn Phe Glu Ser Glu 275 280 285 Gly Leu Val Thr Ala Asp Ile Asp Leu Gly Asp Ile Ala Arg Ala Lys 290 295 300 Leu Tyr Phe Asp Ser Val Gly His Tyr Ser Arg Pro Asp Val Leu His 305 310 315 320 Leu Thr Val Asn Glu His Pro Arg Lys Ser Val Thr Phe Val Thr Lys 325 330 335 Val Glu Lys Ala Glu Asp Asp Ser Asn Lys 340 345 491396DNAArabidopsis thaliana 49atcaaagtat aaagtaaaaa caaagactcg agttaatatg tctagtactg aagaaatgtc 60atcagtcaaa aacacaactc aggttattgg cgttgaccca tcctccaccg tacgagttac 120catcgttcaa tcttccaccg tctataatga taccccggcc actttagaca aggcggagaa 180gtttattgtg gaggcggcga gcaaaggagc gaagttggtg ttgtttcccg aggcgttcat 240cggcggttat cctcgaggtt ttaggtttgg tttagcggtg ggagttcata acgaagaagg 300gcgtgatgag tttcgtaact accatgcttc tgctattaaa gtccctggcc ctgaagtgga 360aagattggct gagttggccg ggaaaaataa tgtgcacttg gtaatggggg ctatagagaa 420ggatggttat acactctatt gcacagctct tttcttcagt ccacaaggtc agtttttagg 480taagcaccgt aaagtcatgc ccacatcttt ggaacgttgc atatggggtc aaggggacgg 540atcaaccatc cccgtttacg acactcctat tggcaaaatc ggtgctgcta tttgctggga 600gaataggatg cccctctaca gaactgcatt gtacgctaaa ggcattgaga tttattgtgc 660acctactgct gattattcgt tggaatggca agcatcgatg attcacattg cggtagaagg 720tggatgtttc gtgttgtcag cgcaccagtt ctgcaagcgt agagagttcc ctgaacatcc 780tgattacttg tttaatgaca tagtagacac taaagaacat gatcctactg tctccggagg 840tggaagtgtc attatttcac ctttgggaaa ggttctcgcc ggaccaaact atgaatcaga 900gggtctcgtc acagctgatc ttgatcttgg tgatatagca agagccaagt tatacttcga 960tgtggttgga cattactcaa agccagatat ttttaacttg accgtaaatg agcacccgaa 1020gaaaccggtt acattcatga cgaaggtcga gaaagcagag gatgaatcaa acaaatagtc 1080aagatttgca attcgtctac tgaagttaag tcaagttcga aatgtttttt tttcagtttt 1140aaagttgatg ttcaagttta tttttctttc tcttcaataa tgtaagagga ctatttcgat 1200atgttaaaat aaaaccaatt ggttctctcc tcttgtattc aattgtcgtg taataatgtt 1260ttgttcaatt cgagtgttga ttaagttgta ttctttattt ttcctttgca tgtcaaacac 1320agattttttg ctgtttaaat aagttgctag ctaagtctag atgtgagttt gaaaagtcac 1380tacaaaacta cttaat 139650346PRTArabidopsis thaliana 50Met Ser Ser Thr Glu Glu Met Ser Ser Val Lys Asn Thr Thr Gln Val 1 5 10 15 Ile Gly Val Asp Pro Ser Ser Thr Val Arg Val Thr Ile Val Gln Ser 20 25 30 Ser Thr Val Tyr Asn Asp Thr Pro Ala Thr Leu Asp Lys Ala Glu Lys 35 40 45 Phe Ile Val Glu Ala Ala Ser Lys Gly Ala Lys Leu Val Leu Phe Pro 50 55 60 Glu Ala Phe Ile Gly Gly Tyr Pro Arg Gly Phe Arg Phe Gly Leu Ala 65 70 75 80 Val Gly Val His Asn Glu Glu Gly Arg Asp Glu Phe Arg Asn Tyr His 85 90 95 Ala Ser Ala Ile Lys Val Pro Gly Pro Glu Val Glu Arg Leu Ala Glu 100 105 110 Leu Ala Gly Lys Asn Asn Val His Leu Val Met Gly Ala Ile Glu Lys 115 120 125 Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Pro Gln Gly 130 135 140 Gln Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu Arg 145 150 155 160 Cys Ile Trp Gly Gln Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp Thr 165 170 175 Pro Ile Gly Lys Ile Gly Ala Ala Ile Cys Trp Glu Asn Arg Met Pro 180 185 190 Leu Tyr Arg Thr Ala Leu Tyr Ala Lys Gly Ile Glu Ile Tyr Cys Ala 195 200 205 Pro Thr Ala Asp Tyr Ser Leu Glu Trp Gln Ala Ser Met Ile His Ile 210 215 220 Ala Val Glu Gly Gly Cys Phe Val Leu Ser Ala His Gln Phe Cys Lys 225 230 235 240 Arg Arg Glu Phe Pro Glu His Pro Asp Tyr Leu Phe Asn Asp Ile Val 245 250 255 Asp Thr Lys Glu His Asp Pro Thr Val Ser Gly Gly Gly Ser Val Ile 260 265 270 Ile Ser Pro Leu Gly Lys Val Leu Ala Gly Pro Asn Tyr Glu Ser Glu 275 280 285 Gly Leu Val Thr Ala Asp Leu Asp Leu Gly Asp Ile Ala Arg Ala Lys 290 295 300 Leu Tyr Phe Asp Val Val Gly His Tyr Ser Lys Pro Asp Ile Phe Asn 305 310 315 320 Leu Thr Val Asn Glu His Pro Lys Lys Pro Val Thr Phe Met Thr Lys 325 330 335 Val Glu Lys Ala Glu Asp Glu Ser Asn Lys 340 345 51 1725DNAArabidopsis thaliana 51caaaggccac aaagaagaag aaaaccttct tcaacgttta aagtctcttc tctctctctc 60tcttaacttc tcccattttc tttgaactaa agatcaatgg ctcacaacca ttctaatgaa 120gacggctcta ttggaacctc cttgcatgga gtcacggcaa gggagcaagt cttctccttc 180tccgtccaag aagatgtccc ttcatctcaa gccgtccgaa caaacgatcc aacggctaag 240tttgccctac cagtggactc cgaacatagg gcaaaagtgt tcaaaccact atcattcgct 300aaaccacata tgagagcctt ccacttagga tggatctctt tcttcacttg cttcatctcc 360accttcgcag ccgcacctct agtccccgtc attcgcgaca atctcgacct gaccaaaacc 420gacatcggaa atgctggagt tgcatcagtt tccggcgcca ttttctcgag actcgctatg 480ggtgctgtat gtgaccttct aggggcacgt tatggaaccg ccttctcact tatgcttaca 540gctccagcag ttttctccat gtcgttcgta gctgacgcgg gaagctactt agccgtaagg 600ttcatgatcg gtttttgctt agcaacgttc gtatcatgtc agtactggac gagtgttatg 660ttcactggaa agattatcgg actcgttaac ggatgtgctg gagggtgggg agatatggga 720ggaggagtga ctcagctact aatgccaatg gtcttccacg tcatcaaact caccggagcc 780actcccttca cggcttggag gttcgccttc ttcatccccg gcattcttca gatagttatg 840ggtattctcg ttctcactct cggccaagat cttcccgatg gtaacctcag tactctccaa 900aagagtggtc aagtttctaa agacaaattc tccaaggtct tttggttcgc tgtgaaaaac 960tatagaacat ggatcttatt catgctctat ggattttcta tgggagttga attaacgatc 1020aacaacgtta tatctggata cttctacgat aggtttaacc ttacgcttca cacagctggt 1080attatagcag ccagctttgg tatggcaaac ttctttgccc gtccttttgg tggctacgct 1140tcagatgtag ctgcacggct cttcggtatg aggggacggt tatggatctt gtggatctta 1200caaactgttg gagctctctt ttgcatctgg cttggtcgtg ctagttcact acctatagct 1260atcttagcca tgatgctttt ttccatgggc acacaagctg cttgtggagc tctctttggt 1320gttgctcctt ttgtttcccg ccgttctctt ggacttatct cgggattaac tggtgctggt 1380ggaaattttg ggtcgggagt tactcaactt cttttcttct cttcctcgag gtttagtacg 1440gcggaaggac tatcgttgat gggcgttatg gctgttgtgt gctctcttcc ggttgcgttt 1500atacattttc

cgcagtgggg aagcatgttc ttgaggccat cacaagatgg agagaaatca 1560aaggaagagc attactatgg agcggaatgg acagaggaag agaagagctt aggactacac 1620gaaggaagca ttaaatttgc tgaaaacagc cggtcagaga gaggccgcaa ggcgatgttg 1680gctgatattc caacgccgga aaccggatct ccggctcatg tctag 172552542PRTArabidopsis thaliana 52Met Ala His Asn His Ser Asn Glu Asp Gly Ser Ile Gly Thr Ser Leu 1 5 10 15 His Gly Val Thr Ala Arg Glu Gln Val Phe Ser Phe Ser Val Gln Glu 20 25 30 Asp Val Pro Ser Ser Gln Ala Val Arg Thr Asn Asp Pro Thr Ala Lys 35 40 45 Phe Ala Leu Pro Val Asp Ser Glu His Arg Ala Lys Val Phe Lys Pro 50 55 60 Leu Ser Phe Ala Lys Pro His Met Arg Ala Phe His Leu Gly Trp Ile 65 70 75 80 Ser Phe Phe Thr Cys Phe Ile Ser Thr Phe Ala Ala Ala Pro Leu Val 85 90 95 Pro Val Ile Arg Asp Asn Leu Asp Leu Thr Lys Thr Asp Ile Gly Asn 100 105 110 Ala Gly Val Ala Ser Val Ser Gly Ala Ile Phe Ser Arg Leu Ala Met 115 120 125 Gly Ala Val Cys Asp Leu Leu Gly Ala Arg Tyr Gly Thr Ala Phe Ser 130 135 140 Leu Met Leu Thr Ala Pro Ala Val Phe Ser Met Ser Phe Val Ala Asp 145 150 155 160 Ala Gly Ser Tyr Leu Ala Val Arg Phe Met Ile Gly Phe Cys Leu Ala 165 170 175 Thr Phe Val Ser Cys Gln Tyr Trp Thr Ser Val Met Phe Thr Gly Lys 180 185 190 Ile Ile Gly Leu Val Asn Gly Cys Ala Gly Gly Trp Gly Asp Met Gly 195 200 205 Gly Gly Val Thr Gln Leu Leu Met Pro Met Val Phe His Val Ile Lys 210 215 220 Leu Thr Gly Ala Thr Pro Phe Thr Ala Trp Arg Phe Ala Phe Phe Ile 225 230 235 240 Pro Gly Ile Leu Gln Ile Val Met Gly Ile Leu Val Leu Thr Leu Gly 245 250 255 Gln Asp Leu Pro Asp Gly Asn Leu Ser Thr Leu Gln Lys Ser Gly Gln 260 265 270 Val Ser Lys Asp Lys Phe Ser Lys Val Phe Trp Phe Ala Val Lys Asn 275 280 285 Tyr Arg Thr Trp Ile Leu Phe Met Leu Tyr Gly Phe Ser Met Gly Val 290 295 300 Glu Leu Thr Ile Asn Asn Val Ile Ser Gly Tyr Phe Tyr Asp Arg Phe 305 310 315 320 Asn Leu Thr Leu His Thr Ala Gly Ile Ile Ala Ala Ser Phe Gly Met 325 330 335 Ala Asn Phe Phe Ala Arg Pro Phe Gly Gly Tyr Ala Ser Asp Val Ala 340 345 350 Ala Arg Leu Phe Gly Met Arg Gly Arg Leu Trp Ile Leu Trp Ile Leu 355 360 365 Gln Thr Val Gly Ala Leu Phe Cys Ile Trp Leu Gly Arg Ala Ser Ser 370 375 380 Leu Pro Ile Ala Ile Leu Ala Met Met Leu Phe Ser Met Gly Thr Gln 385 390 395 400 Ala Ala Cys Gly Ala Leu Phe Gly Val Ala Pro Phe Val Ser Arg Arg 405 410 415 Ser Leu Gly Leu Ile Ser Gly Leu Thr Gly Ala Gly Gly Asn Phe Gly 420 425 430 Ser Gly Val Thr Gln Leu Leu Phe Phe Ser Ser Ser Arg Phe Ser Thr 435 440 445 Ala Glu Gly Leu Ser Leu Met Gly Val Met Ala Val Val Cys Ser Leu 450 455 460 Pro Val Ala Phe Ile His Phe Pro Gln Trp Gly Ser Met Phe Leu Arg 465 470 475 480 Pro Ser Gln Asp Gly Glu Lys Ser Lys Glu Glu His Tyr Tyr Gly Ala 485 490 495 Glu Trp Thr Glu Glu Glu Lys Ser Leu Gly Leu His Glu Gly Ser Ile 500 505 510 Lys Phe Ala Glu Asn Ser Arg Ser Glu Arg Gly Arg Lys Ala Met Leu 515 520 525 Ala Asp Ile Pro Thr Pro Glu Thr Gly Ser Pro Ala His Val 530 535 540 531067DNAArabidopsis thaliana 53atggagatga acttgagaat tgaagaccta aacgaagaaa caaagactct aatctcttca 60cttccttcag acaaagattt cactgggaaa actatttgca agtatcaagg atgttggtat 120actcacaatg ttcttcaagc tgtcctcaat ttccagaaaa gcttcaagcc tcaagacacc 180gatatcatcg ttgcttcgtt ccctaaatgc ggcaccactt ggctcaaggc gcttacattc 240gcactccttc atagatcaaa acagccttct catgatgatg atcatcctct tctttctaat 300aatccacacg ttcttgtacc ctactttgag atagatctct atctacgtag cgaaaatcct 360gaccttacca agttctcatc atctccgagg ctgttttcga cacacgtgcc gtcacatacg 420ttgcaagaag gtctcaaagg ttctacttgt aaaattgtgt atatatctag aaacgtaaaa 480gacacattgg tttcatattg gcatttcttt actaagaaac aaaccgatga aaaaataata 540agcagtttcg aggatacgtt tgagatgttt tgtaggggag tcagcatttt cgggcctttt 600tgggatcatg tcttaagcta ttggagagga agcttggaag atccaaacca tgtgcttttt 660atgaagtttg aagagatgaa agcagaacct cgtgaccaga tcaagaaatt tgccgagttc 720ttaggttgtc cttttactaa ggaagaagaa gagagcggat cggtggatga gattatcgat 780ctttgttctc tacgtaatct gagcagtttg gagatcaata agaccggaaa attgaattct 840ggtagagaaa acaaaatgtt tttccgtaaa ggagaagttg gtgattggaa gaactatttg 900actcctgaaa tggagaacaa aatcgacatg atcattcaag agaaacttca aaactctggt 960ttgaaattct gagtttgtgc attgtaataa taagactacc tcttatgctg ttgttctatt 1020ccttttgatg taataatgat tatgaataat ggtctttgtt ttcgttc 106754323PRTArabidopsis thaliana 54Met Glu Met Asn Leu Arg Ile Glu Asp Leu Asn Glu Glu Thr Lys Thr 1 5 10 15 Leu Ile Ser Ser Leu Pro Ser Asp Lys Asp Phe Thr Gly Lys Thr Ile 20 25 30 Cys Lys Tyr Gln Gly Cys Trp Tyr Thr His Asn Val Leu Gln Ala Val 35 40 45 Leu Asn Phe Gln Lys Ser Phe Lys Pro Gln Asp Thr Asp Ile Ile Val 50 55 60 Ala Ser Phe Pro Lys Cys Gly Thr Thr Trp Leu Lys Ala Leu Thr Phe 65 70 75 80 Ala Leu Leu His Arg Ser Lys Gln Pro Ser His Asp Asp Asp His Pro 85 90 95 Leu Leu Ser Asn Asn Pro His Val Leu Val Pro Tyr Phe Glu Ile Asp 100 105 110 Leu Tyr Leu Arg Ser Glu Asn Pro Asp Leu Thr Lys Phe Ser Ser Ser 115 120 125 Pro Arg Leu Phe Ser Thr His Val Pro Ser His Thr Leu Gln Glu Gly 130 135 140 Leu Lys Gly Ser Thr Cys Lys Ile Val Tyr Ile Ser Arg Asn Val Lys 145 150 155 160 Asp Thr Leu Val Ser Tyr Trp His Phe Phe Thr Lys Lys Gln Thr Asp 165 170 175 Glu Lys Ile Ile Ser Ser Phe Glu Asp Thr Phe Glu Met Phe Cys Arg 180 185 190 Gly Val Ser Ile Phe Gly Pro Phe Trp Asp His Val Leu Ser Tyr Trp 195 200 205 Arg Gly Ser Leu Glu Asp Pro Asn His Val Leu Phe Met Lys Phe Glu 210 215 220 Glu Met Lys Ala Glu Pro Arg Asp Gln Ile Lys Lys Phe Ala Glu Phe 225 230 235 240 Leu Gly Cys Pro Phe Thr Lys Glu Glu Glu Glu Ser Gly Ser Val Asp 245 250 255 Glu Ile Ile Asp Leu Cys Ser Leu Arg Asn Leu Ser Ser Leu Glu Ile 260 265 270 Asn Lys Thr Gly Lys Leu Asn Ser Gly Arg Glu Asn Lys Met Phe Phe 275 280 285 Arg Lys Gly Glu Val Gly Asp Trp Lys Asn Tyr Leu Thr Pro Glu Met 290 295 300 Glu Asn Lys Ile Asp Met Ile Ile Gln Glu Lys Leu Gln Asn Ser Gly 305 310 315 320 Leu Lys Phe 55990DNAArabidopsis thaliana 55atggatgaga aaaagattac gatgaacgtg agaaacgatg agttaagcga agaatcaaaa 60actctaatct cttcacttcc ttcagacaaa aattccactg gggtaaatgt ttgtaagtac 120caaggatgtt ggtatactcc gcctattctc caaggtgtcc tcaatttcca gaaaaacttt 180aagcctcaag acaccgatat catcgttgct tcgttcccta aatgcggcac cacttggctc 240aaggcgctta cattcgcact cgttcgtaga tcgaagcacc cttctcatga tgatcatcat 300ccacttcttt ctgataatcc acacgttctt tcaccctccc ttgagatgta tctctatcta 360tgtagcgaaa atcccgacct taccaagttc tcatcatctt cgaggctgtt ttcgacacac 420atgccgtcac atacattgca agaaggtctc aaaggttcta cttgtaaaat tgtgtatatg 480tctagaaacg taaaagacac attggtttca tattggcatt tcttttgtaa gaaacaaacc 540gatgataaca taataagcag tgtcgaggat acatttgaga tgttttgtag gggagtcaac 600tttttcgggc ctttttggga ccatgtccta agctactgga gaggaagctt ggaagatcca 660aaccatgtgc tttttatgaa gtttgaggag atgaaagaag aacctcgtga gcagatcaag 720agactagccg aattcttagg atgtcttttt actaaggaag aagaagaaag cggcttggtg 780gatgagatta tcgatctttg ctctctacgt aatctgagca gtttggagat caataagacc 840ggaaaattgc atagtactgg tagagagaac aaaacatttt tccgtaaggg agaagttggt 900gactggaaga actatttgac tcctgaaatg gagaacaaaa tcgacatgat cattcaagag 960aaacttcaaa actctggttt gaaattctga 99056329PRTArabidopsis thaliana 56Met Asp Glu Lys Lys Ile Thr Met Asn Val Arg Asn Asp Glu Leu Ser 1 5 10 15 Glu Glu Ser Lys Thr Leu Ile Ser Ser Leu Pro Ser Asp Lys Asn Ser 20 25 30 Thr Gly Val Asn Val Cys Lys Tyr Gln Gly Cys Trp Tyr Thr Pro Pro 35 40 45 Ile Leu Gln Gly Val Leu Asn Phe Gln Lys Asn Phe Lys Pro Gln Asp 50 55 60 Thr Asp Ile Ile Val Ala Ser Phe Pro Lys Cys Gly Thr Thr Trp Leu 65 70 75 80 Lys Ala Leu Thr Phe Ala Leu Val Arg Arg Ser Lys His Pro Ser His 85 90 95 Asp Asp His His Pro Leu Leu Ser Asp Asn Pro His Val Leu Ser Pro 100 105 110 Ser Leu Glu Met Tyr Leu Tyr Leu Cys Ser Glu Asn Pro Asp Leu Thr 115 120 125 Lys Phe Ser Ser Ser Ser Arg Leu Phe Ser Thr His Met Pro Ser His 130 135 140 Thr Leu Gln Glu Gly Leu Lys Gly Ser Thr Cys Lys Ile Val Tyr Met 145 150 155 160 Ser Arg Asn Val Lys Asp Thr Leu Val Ser Tyr Trp His Phe Phe Cys 165 170 175 Lys Lys Gln Thr Asp Asp Asn Ile Ile Ser Ser Val Glu Asp Thr Phe 180 185 190 Glu Met Phe Cys Arg Gly Val Asn Phe Phe Gly Pro Phe Trp Asp His 195 200 205 Val Leu Ser Tyr Trp Arg Gly Ser Leu Glu Asp Pro Asn His Val Leu 210 215 220 Phe Met Lys Phe Glu Glu Met Lys Glu Glu Pro Arg Glu Gln Ile Lys 225 230 235 240 Arg Leu Ala Glu Phe Leu Gly Cys Leu Phe Thr Lys Glu Glu Glu Glu 245 250 255 Ser Gly Leu Val Asp Glu Ile Ile Asp Leu Cys Ser Leu Arg Asn Leu 260 265 270 Ser Ser Leu Glu Ile Asn Lys Thr Gly Lys Leu His Ser Thr Gly Arg 275 280 285 Glu Asn Lys Thr Phe Phe Arg Lys Gly Glu Val Gly Asp Trp Lys Asn 290 295 300 Tyr Leu Thr Pro Glu Met Glu Asn Lys Ile Asp Met Ile Ile Gln Glu 305 310 315 320 Lys Leu Gln Asn Ser Gly Leu Lys Phe 325 572479DNAArabidopsis thaliana 57tctcttcgag cgatgcgttg aagaaaggcg agtgaccaac aacaatggcg aaaatatctt 60tcctctcttc ttattcttct tcttcttatc acgatcctca ttataaaccc taaatttttc 120caacagtttt tctctttctc tctaacttct ccgatctccg atttttctct tctccgagat 180gatgacggag gcgacgaagg tgttgtatat agtggtgcgt gaagaaggtg atgatgatga 240taataatgga gatgattcgt ttaggtatac gcgtcctgtt ttgcagagta ctcttcagct 300tatgggttgc aaagctcgtc acgccttcaa gccgtagggt ttttgagtta ataagaagtg 360agggatcttg taatacttca ccagagaatg ggaaggaacc tgaatttgct aaggaagttg 420gtggttcaac ttgtgtagag aaacttaact gtttggttgt tgctggtgat gttgacaaga 480ataagagtaa gccatttgag atgtacaaaa gacggacaac tgttgttgtt tcacgagaga 540tattcgttga tgttgtgtgt gatgcactgg ctgaatataa gtatgttggt cgcgaccaaa 600gggcagattt gattctggca tgcagaatcc gagaaaggaa agaatctgta actgttttgc 660tctgtggcac cagcggctgt ggtaaatcta cgttgtctgc attgctgggt agcaggttgg 720gtattacgac tgtggtatca actgactcta taaggcacat gatgaggagc tttgctgatg 780agaagcagaa tcctttgctg tgggcttcaa cataccatgc tggagagtac cttgaccctg 840tggcagttgc cgagtcaaaa gccaaaagaa aagccaaaaa actgaaaggc tctcgaggtg 900taaactccaa tgcccaaaag acggatgctg gatcaaactc tagcaccact gagttgctaa 960gtcataagca gatggctata gaagggtata aggcacaaag tgagatggtg attgacagtc 1020ttgataggct cattaccact tgggaagaga ggaatgagtc agtagtcgtt gaaggagtcc 1080acttaagcct caactttgtg atgggactga tgaaaaagca cccttcgatt gttcccttca 1140tggtatacat cgctaacgag gagaaacact tggaacggtt tgctgtccga gccaagtaca 1200tgacattgga cccagcaaag aataagtatg taaaatatat acgtaacatc agaacaatac 1260aggattatct atgcaaacga gctgacaaac atctcgttcc taagataaac aacacaaatg 1320tcgacaagag cgtggctaca atccacgcga cggtctttgg ttgcctgcgt agacgtgaaa 1380ctggagagaa gctctatgat acaaccacaa acaccgtttc tgttattgac gacgagcata 1440ggaaccaatg tgcagccaat tcattaactt ccaagggaat gtttcaggtg atccaaagac 1500aaggctcctc taggcgattt atggctcttt gcaatactga tggtacggta gcaaaaactt 1560ggcctgttgc ttccgttggt aagatcagga agcccgtcgt gaatactgag atggatgatg 1620gaacagagca tcaactacat aaagctgaac cagtgaatct tcaatttggt cactttggga 1680tcagcgcttg gcctagtgat ggcgcaacta gccacgccgg gagtgtggat gacttaagag 1740cagatattat tgaaaccgga agcaggcatt actcttcttg ctgcagttcg cctcggacat 1800ctgatgggcc ttcaaaagag ctgatggagg agcagtctgt gaatgggagc gatgaagatg 1860atgaagaagg cgacgatgat tttcatgagc ctgattctga tgaagatctc agcgataaca 1920atgacgagcg caaccgcgac gagattggat cggtggatga ggaatcgaca aagtcagatg 1980aagagtacga tgatctggca atggaagaca agagttactg gacagacaac gaagaagaag 2040agtctcgaga cacaatctcc atggtatcgc aaaacaacca caacgaggct tcaaagacca 2100acaaagatga caaatactcc caaaacctcg atcttttcct caagacaacg aaccagccat 2160tgactgaatc ccttgagctc acgagtgaat acagaaacag aatgggagta gccgcctcgg 2220ataaagccaa gatgaggaaa cgttcactta gtattccgcc tgtcgggaaa catggttcaa 2280tcatagatga ccagattttg gctaaccaga ctgattcagt actctaaagt gccccgtgac 2340ctctttgcct gtggttttct ggtttttttt tctttccgtt tttttttttt ttgtgtttta 2400acctatcagg tagcttaggt ttccaaaact cattgaagtg taaaacaaaa tttgctaatt 2460tcatacatct ctgtgcacc 247958698PRTArabidopsis thaliana 58Met Met Met Ile Ile Met Glu Met Ile Arg Leu Gly Ile Arg Val Leu 1 5 10 15 Phe Cys Arg Val Leu Phe Ser Leu Trp Val Ala Lys Leu Val Thr Pro 20 25 30 Ser Ser Arg Arg Val Phe Glu Leu Ile Arg Ser Glu Gly Ser Cys Asn 35 40 45 Thr Ser Pro Glu Asn Gly Lys Glu Pro Glu Phe Ala Lys Glu Val Gly 50 55 60 Gly Ser Thr Cys Val Glu Lys Leu Asn Cys Leu Val Val Ala Gly Asp 65 70 75 80 Val Asp Lys Asn Lys Ser Lys Pro Phe Glu Met Tyr Lys Arg Arg Thr 85 90 95 Thr Val Val Val Ser Arg Glu Ile Phe Val Asp Val Val Cys Asp Ala 100 105 110 Leu Ala Glu Tyr Lys Tyr Val Gly Arg Asp Gln Arg Ala Asp Leu Ile 115 120 125 Leu Ala Cys Arg Ile Arg Glu Arg Lys Glu Ser Val Thr Val Leu Leu 130 135 140 Cys Gly Thr Ser Gly Cys Gly Lys Ser Thr Leu Ser Ala Leu Leu Gly 145 150 155 160 Ser Arg Leu Gly Ile Thr Thr Val Val Ser Thr Asp Ser Ile Arg His 165 170 175 Met Met Arg Ser Phe Ala Asp Glu Lys Gln Asn Pro Leu Leu Trp Ala 180 185 190 Ser Thr Tyr His Ala Gly Glu Tyr Leu Asp Pro Val Ala Val Ala Glu 195 200 205 Ser Lys Ala Lys Arg Lys Ala Lys Lys Leu Lys Gly Ser Arg Gly Val 210 215 220 Asn Ser Asn Ala Gln Lys Thr Asp Ala Gly Ser Asn Ser Ser Thr Thr 225 230 235 240 Glu Leu Leu Ser His Lys Gln Met Ala Ile Glu Gly Tyr Lys Ala Gln 245 250 255 Ser Glu Met Val Ile Asp Ser Leu Asp Arg Leu Ile Thr Thr Trp Glu 260 265 270 Glu Arg Asn Glu Ser Val Val Val Glu Gly Val His Leu Ser Leu Asn 275 280 285 Phe Val Met Gly Leu Met Lys Lys His Pro Ser Ile Val Pro Phe Met 290 295 300 Val Tyr Ile Ala Asn Glu Glu Lys His Leu Glu Arg Phe Ala Val Arg 305 310 315 320 Ala Lys Tyr Met Thr Leu Asp Pro Ala Lys Asn Lys Tyr Val Lys Tyr 325 330

335 Ile Arg Asn Ile Arg Thr Ile Gln Asp Tyr Leu Cys Lys Arg Ala Asp 340 345 350 Lys His Leu Val Pro Lys Ile Asn Asn Thr Asn Val Asp Lys Ser Val 355 360 365 Ala Thr Ile His Ala Thr Val Phe Gly Cys Leu Arg Arg Arg Glu Thr 370 375 380 Gly Glu Lys Leu Tyr Asp Thr Thr Thr Asn Thr Val Ser Val Ile Asp 385 390 395 400 Asp Glu His Arg Asn Gln Cys Ala Ala Asn Ser Leu Thr Ser Lys Gly 405 410 415 Met Phe Gln Val Ile Gln Arg Gln Gly Ser Ser Arg Arg Phe Met Ala 420 425 430 Leu Cys Asn Thr Asp Gly Thr Val Ala Lys Thr Trp Pro Val Ala Ser 435 440 445 Val Gly Lys Ile Arg Lys Pro Val Val Asn Thr Glu Met Asp Asp Gly 450 455 460 Thr Glu His Gln Leu His Lys Ala Glu Pro Val Asn Leu Gln Phe Gly 465 470 475 480 His Phe Gly Ile Ser Ala Trp Pro Ser Asp Gly Ala Thr Ser His Ala 485 490 495 Gly Ser Val Asp Asp Leu Arg Ala Asp Ile Ile Glu Thr Gly Ser Arg 500 505 510 His Tyr Ser Ser Cys Cys Ser Ser Pro Arg Thr Ser Asp Gly Pro Ser 515 520 525 Lys Glu Leu Met Glu Glu Gln Ser Val Asn Gly Ser Asp Glu Asp Asp 530 535 540 Glu Glu Gly Asp Asp Asp Phe His Glu Pro Asp Ser Asp Glu Asp Leu 545 550 555 560 Ser Asp Asn Asn Asp Glu Arg Asn Arg Asp Glu Ile Gly Ser Val Asp 565 570 575 Glu Glu Ser Thr Lys Ser Asp Glu Glu Tyr Asp Asp Leu Ala Met Glu 580 585 590 Asp Lys Ser Tyr Trp Thr Asp Asn Glu Glu Glu Glu Ser Arg Asp Thr 595 600 605 Ile Ser Met Val Ser Gln Asn Asn His Asn Glu Ala Ser Lys Thr Asn 610 615 620 Lys Asp Asp Lys Tyr Ser Gln Asn Leu Asp Leu Phe Leu Lys Thr Thr 625 630 635 640 Asn Gln Pro Leu Thr Glu Ser Leu Glu Leu Thr Ser Glu Tyr Arg Asn 645 650 655 Arg Met Gly Val Ala Ala Ser Asp Lys Ala Lys Met Arg Lys Arg Ser 660 665 670 Leu Ser Ile Pro Pro Val Gly Lys His Gly Ser Ile Ile Asp Asp Gln 675 680 685 Ile Leu Ala Asn Gln Thr Asp Ser Val Leu 690 695 592532DNAArabidopsis thaliana 59aaagagagag agagaagaag aaggtatctt ttaagaagtc gtgaaggctc tcttcgagcg 60atgcgttgaa gaaaggcgag tgaccaacaa caatggcgaa aatatctttc ctctcttctt 120attcttcttc ttcttatcac gatcctcatt ataaacccta aatttttcca acagtttttc 180tctttctctc taacttctcc gatctccgat ttttctcttc tccgagatga tgacggaggc 240gacgaaggtg ttgtatatag tggtgcgtga agaaggtgat gatgatgata ataatggaga 300tgattcgttt aggtatacgc gtcctgtttt gcagagtact cttcagctta tgggttgcaa 360agctcgtcac gccttcaaga tcagccgtag ggtttttgag ttaataagaa gtgagggatc 420ttgtaatact tcaccagaga atgggaagga acctgaattt gctaaggaag ttggtggttc 480aacttgtgta gagaaactta actgtttggt tgttgctggt gatgttgaca agaataagag 540taagccattt gagatgtaca aaagacggac aactgttgtt gtttcacgag agatattcgt 600tgatgttgtg tgtgatgcac tggctgaata taagtatgtt ggtcgcgacc aaagggcaga 660tttgattctg gcatgcagaa tccgagaaag gaaagaatct gtaactgttt tgctctgtgg 720caccagcggc tgtggtaaat ctacgttgtc tgcattgctg ggtagcaggt tgggtattac 780gactgtggta tcaactgact ctataaggca catgatgagg agctttgctg atgagaagca 840gaatcctttg ctgtgggctt caacatacca tgctggagag taccttgacc ctgtggcagt 900tgccgagtca aaagccaaaa gaaaagccaa aaaactgaaa ggctctcgag gtgtaaactc 960caatgcccaa aagacggatg ctggatcaaa ctctagcacc actgagttgc taagtcataa 1020gcagatggct atagaagggt ataaggcaca aagtgagatg gtgattgaca gtcttgatag 1080gctcattacc acttgggaag agaggaatga gtcagtagtc gttgaaggag tccacttaag 1140cctcaacttt gtgatgggac tgatgaaaaa gcacccttcg attgttccct tcatggtata 1200catcgctaac gaggagaaac acttggaacg gtttgctgtc cgagccaagt acatgacatt 1260ggacccagca aagaataagt atgtaaaata tatacgtaac atcagaacaa tacaggatta 1320tctatgcaaa cgagctgaca aacatctcgt tcctaagata aacaacacaa atgtcgacaa 1380gagcgtggct acaatccacg cgacggtctt tggttgcctg cgtagacgtg aaactggaga 1440gaagctctat gatacaacca caaacaccgt ttctgttatt gacgacgagc ataggaacca 1500atgtgcagcc aattcattaa cttccaaggg aatgtttcag gtgatccaaa gacaaggctc 1560ctctaggcga tttatggctc tttgcaatac tgatggtacg gtagcaaaaa cttggcctgt 1620tgcttccgtt ggtaagatca ggaagcccgt cgtgaatact gagatggatg atggaacaga 1680gcatcaacta cataaagctg aaccagtgaa tcttcaattt ggtcactttg ggatcagcgc 1740ttggcctagt gatggcgcaa ctagccacgc cgggagtgtg gatgacttaa gagcagatat 1800tattgaaacc ggaagcaggc attactcttc ttgctgcagt tcgcctcgga catctgatgg 1860gccttcaaaa gagctgatgg aggagcagtc tgtgaatggg agcgatgaag atgatgaaga 1920aggcgacgat gattttcatg agcctgattc tgatgaagat ctcagcgata acaatgacga 1980gcgcaaccgc gacgagattg gatcggtgga tgaggaatcg acaaagtcag atgaagagta 2040cgatgatctg gcaatggaag acaagagtta ctggacagac aacgaagaag aagagtctcg 2100agacacaatc tccatggtat cgcaaaacaa ccacaacgag gcttcaaaga ccaacaaaga 2160tgacaaatac tcccaaaacc tcgatctttt cctcaagaca acgaaccagc cattgactga 2220atcccttgag ctcacgagtg aatacagaaa cagaatggga gtagccgcct cggataaagc 2280caagatgagg aaacgttcac ttagtattcc gcctgtcggg aaacatggtt caatcataga 2340tgaccagatt ttggctaacc agactgattc agtactctaa agtgccccgt gacctctttg 2400cctgtggttt tctggttttt ttttctttcc gttttttttt tttttgtgtt ttaacctatc 2460aggtagctta ggtttccaaa actcattgaa gtgtaaaaca aaatttgcta atttcataca 2520tctctgtgca cc 253260717PRTArabidopsis thaliana 60Met Met Thr Glu Ala Thr Lys Val Leu Tyr Ile Val Val Arg Glu Glu 1 5 10 15 Gly Asp Asp Asp Asp Asn Asn Gly Asp Asp Ser Phe Arg Tyr Thr Arg 20 25 30 Pro Val Leu Gln Ser Thr Leu Gln Leu Met Gly Cys Lys Ala Arg His 35 40 45 Ala Phe Lys Ile Ser Arg Arg Val Phe Glu Leu Ile Arg Ser Glu Gly 50 55 60 Ser Cys Asn Thr Ser Pro Glu Asn Gly Lys Glu Pro Glu Phe Ala Lys 65 70 75 80 Glu Val Gly Gly Ser Thr Cys Val Glu Lys Leu Asn Cys Leu Val Val 85 90 95 Ala Gly Asp Val Asp Lys Asn Lys Ser Lys Pro Phe Glu Met Tyr Lys 100 105 110 Arg Arg Thr Thr Val Val Val Ser Arg Glu Ile Phe Val Asp Val Val 115 120 125 Cys Asp Ala Leu Ala Glu Tyr Lys Tyr Val Gly Arg Asp Gln Arg Ala 130 135 140 Asp Leu Ile Leu Ala Cys Arg Ile Arg Glu Arg Lys Glu Ser Val Thr 145 150 155 160 Val Leu Leu Cys Gly Thr Ser Gly Cys Gly Lys Ser Thr Leu Ser Ala 165 170 175 Leu Leu Gly Ser Arg Leu Gly Ile Thr Thr Val Val Ser Thr Asp Ser 180 185 190 Ile Arg His Met Met Arg Ser Phe Ala Asp Glu Lys Gln Asn Pro Leu 195 200 205 Leu Trp Ala Ser Thr Tyr His Ala Gly Glu Tyr Leu Asp Pro Val Ala 210 215 220 Val Ala Glu Ser Lys Ala Lys Arg Lys Ala Lys Lys Leu Lys Gly Ser 225 230 235 240 Arg Gly Val Asn Ser Asn Ala Gln Lys Thr Asp Ala Gly Ser Asn Ser 245 250 255 Ser Thr Thr Glu Leu Leu Ser His Lys Gln Met Ala Ile Glu Gly Tyr 260 265 270 Lys Ala Gln Ser Glu Met Val Ile Asp Ser Leu Asp Arg Leu Ile Thr 275 280 285 Thr Trp Glu Glu Arg Asn Glu Ser Val Val Val Glu Gly Val His Leu 290 295 300 Ser Leu Asn Phe Val Met Gly Leu Met Lys Lys His Pro Ser Ile Val 305 310 315 320 Pro Phe Met Val Tyr Ile Ala Asn Glu Glu Lys His Leu Glu Arg Phe 325 330 335 Ala Val Arg Ala Lys Tyr Met Thr Leu Asp Pro Ala Lys Asn Lys Tyr 340 345 350 Val Lys Tyr Ile Arg Asn Ile Arg Thr Ile Gln Asp Tyr Leu Cys Lys 355 360 365 Arg Ala Asp Lys His Leu Val Pro Lys Ile Asn Asn Thr Asn Val Asp 370 375 380 Lys Ser Val Ala Thr Ile His Ala Thr Val Phe Gly Cys Leu Arg Arg 385 390 395 400 Arg Glu Thr Gly Glu Lys Leu Tyr Asp Thr Thr Thr Asn Thr Val Ser 405 410 415 Val Ile Asp Asp Glu His Arg Asn Gln Cys Ala Ala Asn Ser Leu Thr 420 425 430 Ser Lys Gly Met Phe Gln Val Ile Gln Arg Gln Gly Ser Ser Arg Arg 435 440 445 Phe Met Ala Leu Cys Asn Thr Asp Gly Thr Val Ala Lys Thr Trp Pro 450 455 460 Val Ala Ser Val Gly Lys Ile Arg Lys Pro Val Val Asn Thr Glu Met 465 470 475 480 Asp Asp Gly Thr Glu His Gln Leu His Lys Ala Glu Pro Val Asn Leu 485 490 495 Gln Phe Gly His Phe Gly Ile Ser Ala Trp Pro Ser Asp Gly Ala Thr 500 505 510 Ser His Ala Gly Ser Val Asp Asp Leu Arg Ala Asp Ile Ile Glu Thr 515 520 525 Gly Ser Arg His Tyr Ser Ser Cys Cys Ser Ser Pro Arg Thr Ser Asp 530 535 540 Gly Pro Ser Lys Glu Leu Met Glu Glu Gln Ser Val Asn Gly Ser Asp 545 550 555 560 Glu Asp Asp Glu Glu Gly Asp Asp Asp Phe His Glu Pro Asp Ser Asp 565 570 575 Glu Asp Leu Ser Asp Asn Asn Asp Glu Arg Asn Arg Asp Glu Ile Gly 580 585 590 Ser Val Asp Glu Glu Ser Thr Lys Ser Asp Glu Glu Tyr Asp Asp Leu 595 600 605 Ala Met Glu Asp Lys Ser Tyr Trp Thr Asp Asn Glu Glu Glu Glu Ser 610 615 620 Arg Asp Thr Ile Ser Met Val Ser Gln Asn Asn His Asn Glu Ala Ser 625 630 635 640 Lys Thr Asn Lys Asp Asp Lys Tyr Ser Gln Asn Leu Asp Leu Phe Leu 645 650 655 Lys Thr Thr Asn Gln Pro Leu Thr Glu Ser Leu Glu Leu Thr Ser Glu 660 665 670 Tyr Arg Asn Arg Met Gly Val Ala Ala Ser Asp Lys Ala Lys Met Arg 675 680 685 Lys Arg Ser Leu Ser Ile Pro Pro Val Gly Lys His Gly Ser Ile Ile 690 695 700 Asp Asp Gln Ile Leu Ala Asn Gln Thr Asp Ser Val Leu 705 710 715 611589DNAArabidopsis thaliana 61gtcaagtcac cggagacagc gactcacggc ctctttggtg gatcctcggt ggctctctca 60gcctctttgc tccgcccgcg aatctttccc aattgtatct atggcggaac caccaaagct 120tagggtttta atggtctctg atttcttctt cccaaacttt ggtggtgtcg agaatcacat 180ctattacctc tctcaatgct tgttaaagct cggtcacaag gtggttgtta tgacacatgc 240ttatgggaac cggtctggag ttagatacat gactggtgga ctcaaagtct attatgtacc 300ttggagacct tttgttatgc agactacatt tccgacggtt tatggaacac ttcccattgt 360gaggactata cttagacgcg agaaaatcac ggtagttcat ggacatcaag ctttctctac 420gctttgtcat gaagctttaa tgcatgccag gacaatgggc tataaagttg tgttcacaga 480tcattccttg tacggttttg ctgatgttgg tagcatccat atgaacaagg ttttacagtt 540tagtttagca gatattgatc aggcgatttg tgtttcacac acgagcaagg agaatacggt 600tctaaggtct ggattgtccc cagcaaaggt ttttatgata ccgaatgctg ttgatactgc 660tatgttcaag cccgcttctg ttcgacccag tactgatatt attactatag ttgtcataag 720tagattggtt tatcgaaaag gtgcggattt gctcgtggaa gtcattccag aagtatgccg 780tttataccca aatgttcgtt ttgtagttgg aggggatgga ccaaaacatg tgcgactcga 840ggaaatgaga gagaagcatt ctctacaaga tagagtcgaa atgctaggtg cagttccgca 900ttctcgtgtg cgctctgttt tggttaccgg tcatattttc ttaaacagtt ctttaacaga 960agccttctgc atagctatat tagaggcggc tagttgcgga ttattaactg tcagcactcg 1020tgttggaggt gtcccagagg tcttaccaga tgacatggtt gtacttgctg aaccagatcc 1080ggatgatatg gtacgagcta ttgagaaggc aatatcaata cttccaacta ttaaccccga 1140ggagatgcac aatcgaatga agaagctcta cagttggcaa gatgttgcta aaagaaccga 1200gattgtgtat gaccgtgcct tgaagtgttc aaataggagt cttctagaac gtctaatgcg 1260gttcctctcg tgtggagctt gggcagggaa gctattttgt atggttatga tcctcgatta 1320cttgctttgg cggttacttc agttactgca gcctgatgaa gatatcgagg aggcacccga 1380tatctgtctt tgccatcacc gaggggttga ggtatctgag ggtctaagga agaagataaa 1440gtgagaaatg ggtgagtaga gtttcatctc cgtcgatatt tggcattttg ttccttgaaa 1500ttatacaagt gagctcttga ttcattgttt tcgtaggacc taagtaactt cataaactta 1560ttatctatac agtttccaga tatttcatt 158962447PRTArabidopsis thaliana 62Met Ala Glu Pro Pro Lys Leu Arg Val Leu Met Val Ser Asp Phe Phe 1 5 10 15 Phe Pro Asn Phe Gly Gly Val Glu Asn His Ile Tyr Tyr Leu Ser Gln 20 25 30 Cys Leu Leu Lys Leu Gly His Lys Val Val Val Met Thr His Ala Tyr 35 40 45 Gly Asn Arg Ser Gly Val Arg Tyr Met Thr Gly Gly Leu Lys Val Tyr 50 55 60 Tyr Val Pro Trp Arg Pro Phe Val Met Gln Thr Thr Phe Pro Thr Val 65 70 75 80 Tyr Gly Thr Leu Pro Ile Val Arg Thr Ile Leu Arg Arg Glu Lys Ile 85 90 95 Thr Val Val His Gly His Gln Ala Phe Ser Thr Leu Cys His Glu Ala 100 105 110 Leu Met His Ala Arg Thr Met Gly Tyr Lys Val Val Phe Thr Asp His 115 120 125 Ser Leu Tyr Gly Phe Ala Asp Val Gly Ser Ile His Met Asn Lys Val 130 135 140 Leu Gln Phe Ser Leu Ala Asp Ile Asp Gln Ala Ile Cys Val Ser His 145 150 155 160 Thr Ser Lys Glu Asn Thr Val Leu Arg Ser Gly Leu Ser Pro Ala Lys 165 170 175 Val Phe Met Ile Pro Asn Ala Val Asp Thr Ala Met Phe Lys Pro Ala 180 185 190 Ser Val Arg Pro Ser Thr Asp Ile Ile Thr Ile Val Val Ile Ser Arg 195 200 205 Leu Val Tyr Arg Lys Gly Ala Asp Leu Leu Val Glu Val Ile Pro Glu 210 215 220 Val Cys Arg Leu Tyr Pro Asn Val Arg Phe Val Val Gly Gly Asp Gly 225 230 235 240 Pro Lys His Val Arg Leu Glu Glu Met Arg Glu Lys His Ser Leu Gln 245 250 255 Asp Arg Val Glu Met Leu Gly Ala Val Pro His Ser Arg Val Arg Ser 260 265 270 Val Leu Val Thr Gly His Ile Phe Leu Asn Ser Ser Leu Thr Glu Ala 275 280 285 Phe Cys Ile Ala Ile Leu Glu Ala Ala Ser Cys Gly Leu Leu Thr Val 290 295 300 Ser Thr Arg Val Gly Gly Val Pro Glu Val Leu Pro Asp Asp Met Val 305 310 315 320 Val Leu Ala Glu Pro Asp Pro Asp Asp Met Val Arg Ala Ile Glu Lys 325 330 335 Ala Ile Ser Ile Leu Pro Thr Ile Asn Pro Glu Glu Met His Asn Arg 340 345 350 Met Lys Lys Leu Tyr Ser Trp Gln Asp Val Ala Lys Arg Thr Glu Ile 355 360 365 Val Tyr Asp Arg Ala Leu Lys Cys Ser Asn Arg Ser Leu Leu Glu Arg 370 375 380 Leu Met Arg Phe Leu Ser Cys Gly Ala Trp Ala Gly Lys Leu Phe Cys 385 390 395 400 Met Val Met Ile Leu Asp Tyr Leu Leu Trp Arg Leu Leu Gln Leu Leu 405 410 415 Gln Pro Asp Glu Asp Ile Glu Glu Ala Pro Asp Ile Cys Leu Cys His 420 425 430 His Arg Gly Val Glu Val Ser Glu Gly Leu Arg Lys Lys Ile Lys 435 440 445 63 1651DNAArabidopsis thaliana 63gtcaagtcac cggagacagc gactcacggc ctctttggtg gatcctcggt ggctctctca 60gcctctttgc tccgcccgcg aatctttccc aattgtatct atggcggaac caccaaagct 120tagggtttta atggtctctg atttcttctt cccaaacttt ggtggtgtcg agaatcacat 180ctattacctc tctcaatgct tgttaaagct cggtcacaag gtggttgtta tgacacatgc 240ttatgggaac cggtctggag ttagatacat gactggtgga ctcaaagtct attatgtacc 300ttggagacct tttgttatgc agactacatt tccgacggtt tatggaacac ttcccattgt 360gaggactata cttagacgcg agaaaatcac ggtagttcat ggacatcaag ctttctctac 420gctttgtcat gaagctttaa tgcatgccag gacaatgggc tataaagttg tgttcacaga 480tcattccttg tacggttttg ctgatgttgg tagcatccat atgaacaagg ttttacagtt 540tagtttagca gatattgatc aggcgatttg tgtttcacac acgagcaagg agaatacggt 600tctaaggtct ggattgtccc cagcaaaggt ttttatgata ccgaatgctg ttgatactgc 660tatgttcaag cccgcttctg ttcgacccag tactgatatt attactatag ttgtcataag 720tagattggtt tatcgaaaag

gtgcggattt gctcgtggaa gtcattccag aagtatgccg 780tttataccca aatgttcgtt ttgtagttgg aggggatgga ccaaaacatg tgcgactcga 840ggaaatgaga gagaagcatt ctctacaaga tagagtcgaa atgctaggtg cagttccgca 900ttctcgtgtg cgctctgttt tggttaccgg tcatattttc ttaaacagtt ctttaacaga 960agccttctgc atagctatat tagaggcggc tagttgcgga ttattaactg tcagcactcg 1020tgttggaggt gtcccagagg tcttaccaga tgacatggtt gtacttgctg aaccagatcc 1080ggatgatatg gtacgagcta ttgagaaggc aatatcaata cttccaacta ttaaccccga 1140ggagatgcac aatcgaatga agaagctcta cagttggcaa gatgttgcta aaagaaccga 1200gattgtgtat gaccgtgcct tgaagtgttc aaataggagt cttctagaac gtctaatgcg 1260gttcctctcg tgtggagctt gggcagggaa gctattttgt atggttatga tcctcgatta 1320cttgctttgg cggttacttc agttactgca gcctgatgaa gatatcgagg aggcacccga 1380tatctgtctt tgccatcacc gaggggttga ggtatctgag ggtctaagga agaagataaa 1440gtgagaaatg gaaataacta tggaaaagag agacgatgat gtagcaaaga gttcagactc 1500gccaggaata agtggttact tttgagtatc ataacattac tgagtttgtt ttactggaaa 1560ttgtcgtgta aaaattagtt caccattgct tgtacggtga catgagccaa tcctttcgag 1620aataaatagc atgcatggta attggtaagg c 165164447PRTArabidopsis thaliana 64Met Ala Glu Pro Pro Lys Leu Arg Val Leu Met Val Ser Asp Phe Phe 1 5 10 15 Phe Pro Asn Phe Gly Gly Val Glu Asn His Ile Tyr Tyr Leu Ser Gln 20 25 30 Cys Leu Leu Lys Leu Gly His Lys Val Val Val Met Thr His Ala Tyr 35 40 45 Gly Asn Arg Ser Gly Val Arg Tyr Met Thr Gly Gly Leu Lys Val Tyr 50 55 60 Tyr Val Pro Trp Arg Pro Phe Val Met Gln Thr Thr Phe Pro Thr Val 65 70 75 80 Tyr Gly Thr Leu Pro Ile Val Arg Thr Ile Leu Arg Arg Glu Lys Ile 85 90 95 Thr Val Val His Gly His Gln Ala Phe Ser Thr Leu Cys His Glu Ala 100 105 110 Leu Met His Ala Arg Thr Met Gly Tyr Lys Val Val Phe Thr Asp His 115 120 125 Ser Leu Tyr Gly Phe Ala Asp Val Gly Ser Ile His Met Asn Lys Val 130 135 140 Leu Gln Phe Ser Leu Ala Asp Ile Asp Gln Ala Ile Cys Val Ser His 145 150 155 160 Thr Ser Lys Glu Asn Thr Val Leu Arg Ser Gly Leu Ser Pro Ala Lys 165 170 175 Val Phe Met Ile Pro Asn Ala Val Asp Thr Ala Met Phe Lys Pro Ala 180 185 190 Ser Val Arg Pro Ser Thr Asp Ile Ile Thr Ile Val Val Ile Ser Arg 195 200 205 Leu Val Tyr Arg Lys Gly Ala Asp Leu Leu Val Glu Val Ile Pro Glu 210 215 220 Val Cys Arg Leu Tyr Pro Asn Val Arg Phe Val Val Gly Gly Asp Gly 225 230 235 240 Pro Lys His Val Arg Leu Glu Glu Met Arg Glu Lys His Ser Leu Gln 245 250 255 Asp Arg Val Glu Met Leu Gly Ala Val Pro His Ser Arg Val Arg Ser 260 265 270 Val Leu Val Thr Gly His Ile Phe Leu Asn Ser Ser Leu Thr Glu Ala 275 280 285 Phe Cys Ile Ala Ile Leu Glu Ala Ala Ser Cys Gly Leu Leu Thr Val 290 295 300 Ser Thr Arg Val Gly Gly Val Pro Glu Val Leu Pro Asp Asp Met Val 305 310 315 320 Val Leu Ala Glu Pro Asp Pro Asp Asp Met Val Arg Ala Ile Glu Lys 325 330 335 Ala Ile Ser Ile Leu Pro Thr Ile Asn Pro Glu Glu Met His Asn Arg 340 345 350 Met Lys Lys Leu Tyr Ser Trp Gln Asp Val Ala Lys Arg Thr Glu Ile 355 360 365 Val Tyr Asp Arg Ala Leu Lys Cys Ser Asn Arg Ser Leu Leu Glu Arg 370 375 380 Leu Met Arg Phe Leu Ser Cys Gly Ala Trp Ala Gly Lys Leu Phe Cys 385 390 395 400 Met Val Met Ile Leu Asp Tyr Leu Leu Trp Arg Leu Leu Gln Leu Leu 405 410 415 Gln Pro Asp Glu Asp Ile Glu Glu Ala Pro Asp Ile Cys Leu Cys His 420 425 430 His Arg Gly Val Glu Val Ser Glu Gly Leu Arg Lys Lys Ile Lys 435 440 445 65363DNAArabidopsis thaliana 65atgaatcatt ttggtaatca ttgtactaac acaagcggtg ttgtttgtca taacaattac 60aactgtacta ttgataactc tatccattat gcggatacac gtggtgttgt tagccatcac 120cgagagaata ttactggcca tcatggactg gtatttccgg cggctacaat gaacggatat 180ggtcctgcaa ctagttttcc agatatgagg gaaaatgggc acttgatggt gaatcaaaat 240agacctgtga cgctacgacc atcaatgtcc cagcagcaac cacaaccaca accactgtct 300gatgagtata ataaggtgga gacggggact gctgagcaag tctatgtccc ctctcgagac 360taa 36366120PRTArabidopsis thaliana 66Met Asn His Phe Gly Asn His Cys Thr Asn Thr Ser Gly Val Val Cys 1 5 10 15 His Asn Asn Tyr Asn Cys Thr Ile Asp Asn Ser Ile His Tyr Ala Asp 20 25 30 Thr Arg Gly Val Val Ser His His Arg Glu Asn Ile Thr Gly His His 35 40 45 Gly Leu Val Phe Pro Ala Ala Thr Met Asn Gly Tyr Gly Pro Ala Thr 50 55 60 Ser Phe Pro Asp Met Arg Glu Asn Gly His Leu Met Val Asn Gln Asn 65 70 75 80 Arg Pro Val Thr Leu Arg Pro Ser Met Ser Gln Gln Gln Pro Gln Pro 85 90 95 Gln Pro Leu Ser Asp Glu Tyr Asn Lys Val Glu Thr Gly Thr Ala Glu 100 105 110 Gln Val Tyr Val Pro Ser Arg Asp 115 120 67 2489DNAArabidopsis thaliana 67gcactttctg caaatggttc tcttcttcct ttaagctcaa tctcgccact ggagtctcaa 60tcgggaaaga tctccatctt ctccggagga aaaacggatc cgtaaatcgt gaatttttaa 120acagagaaga atcaattcaa tggaggaaga gaaagcttct gctgcacaga gcttaatcga 180tgtagttaac gagattgctg cgatttctga ttatcgtata acagtgaaga agctttgtta 240taatctagcg aggagattaa agctgcttgt tcctatgttt gaggaaatta gagaaagtaa 300cgaaccgatc agcgaagata cgttgaagac tttgatgaat ttgaaggaag ctatgtgttc 360agcgaaggat tatctcaaat tttgtagcca agggagcaag atttatctgg tgatggagag 420ggaacaagtg acaagtaaat tgatggaggt gtctgttaag ttagaacaat ctttaagcca 480gattccatat gaagaactcg atatatcgga tgaagttaga gaacaggttg agctggttct 540tagtcagttt cggcgagcta aaggaagagt agatgtatca gatgatgagc tatatgaaga 600tcttcagtcg ctttgcaaca aaagtagtga tgtagatgct tatcagcctg tgctagagcg 660ggttgcgaag aagttacatt tgatggagat tcctgaccta gctcaagaat cagtggctct 720gcatgaaatg gttgcttcaa gcggtggaga tgttggtgaa aatattgagg agatggcaat 780ggtattaaag atgattaagg attttgtgca gacggaggat gataatggcg aggagcagaa 840agtaggagtt aactctagaa gcaatggaca gacttctacg gcagcgagtc agaagatacc 900tgtgattcct gatgattttc gctgtccgat ttcgctggaa atgatgagag atccagttat 960tgtttcatca gggcagacat acgaacgcac atgtattgag aaatggatag aaggtggaca 1020ctcgacatgt ccaaaaacac agcaggcgct aacaagcaca accctcacac caaactatgt 1080tctccgtagt ctcatagctc agtggtgcga ggccaacgat attgagcctc caaagcctcc 1140gagcagttta agacccagaa aagtatcgtc cttctcatct cccgcagaag cgaacaagat 1200tgaagatctt atgtggagac ttgcgtacgg aaaccccgag gaccaacgat ctgcagctgg 1260ggaaatccgc cttcttgcaa aacgaaatgc agacaaccgc gtggccatag ccgaagctgg 1320agccatacct cttctcgtag gtctcctctc aactcctgat tctcgtattc aagaacattc 1380ggtaacagct cttctaaacc tctccatatg tgagaacaac aaaggagcca ttgtttcagc 1440tggagctatt cctggtatag ttcaagtgct taagaaagga agcatggagg ccagagagaa 1500tgcggcggct acacttttca gtctatcagt gatcgatgaa aataaagtga ctatcggtgc 1560cttaggagca attccgccac tcgttgtatt acttaatgaa ggtacacaaa gaggcaagaa 1620agatgctgct actgcactct ttaacctctg tatataccaa ggaaacaaag gaaaagctat 1680acgtgcagga gtgattccca cgttgactag actcttgaca gagcccggaa gcggaatggt 1740cgatgaggca ctcgcgattt tggcgattct ctctagccac cccgaaggaa aagcaatcat 1800aggatcctct gatgcagtcc caagtttggt tgagtttatc agaactggct cgcctagaaa 1860cagagaaaac gcagctgctg ttctagtcca cctctgttct ggagacccac aacatcttgt 1920cgaagcgcag aaactcggcc ttatgggtcc attgatagat ttagctggaa atgggacgga 1980tagagggaaa cgaaaagcag cgcagttgct tgaacgcatc agccgtctcg ctgaacagca 2040gaaggaaacg gctgtgtcac aaccggaaga agaagctgaa ccaacacatc cagaatccac 2100cacagaagct gcagatactt aaagattgtc tttgttttgg atcctcgggt catctctttc 2160acgtacgtat gtttattatt ctcacttttt gtttgtgcta ctcatcctcc ctcgaggtag 2220gattcacggt agacgcggaa gagggaaatg gcctccttct ccgatctact tttaacttta 2280tggtgatatc tttgtgtgga cagagcaatc tggtccacag gagagaaaag caaatatgca 2340tacatacacg tcaacttgta tcattgtaac actatgtttg taatcatttc cacgagcttt 2400tttttgtttt caatacaaga tctctctgtt cgctttctta atagcattga gatactaatt 2460gaatataatg cagattccca tttttcatg 248968660PRTArabidopsis thaliana 68Met Glu Glu Glu Lys Ala Ser Ala Ala Gln Ser Leu Ile Asp Val Val 1 5 10 15 Asn Glu Ile Ala Ala Ile Ser Asp Tyr Arg Ile Thr Val Lys Lys Leu 20 25 30 Cys Tyr Asn Leu Ala Arg Arg Leu Lys Leu Leu Val Pro Met Phe Glu 35 40 45 Glu Ile Arg Glu Ser Asn Glu Pro Ile Ser Glu Asp Thr Leu Lys Thr 50 55 60 Leu Met Asn Leu Lys Glu Ala Met Cys Ser Ala Lys Asp Tyr Leu Lys 65 70 75 80 Phe Cys Ser Gln Gly Ser Lys Ile Tyr Leu Val Met Glu Arg Glu Gln 85 90 95 Val Thr Ser Lys Leu Met Glu Val Ser Val Lys Leu Glu Gln Ser Leu 100 105 110 Ser Gln Ile Pro Tyr Glu Glu Leu Asp Ile Ser Asp Glu Val Arg Glu 115 120 125 Gln Val Glu Leu Val Leu Ser Gln Phe Arg Arg Ala Lys Gly Arg Val 130 135 140 Asp Val Ser Asp Asp Glu Leu Tyr Glu Asp Leu Gln Ser Leu Cys Asn 145 150 155 160 Lys Ser Ser Asp Val Asp Ala Tyr Gln Pro Val Leu Glu Arg Val Ala 165 170 175 Lys Lys Leu His Leu Met Glu Ile Pro Asp Leu Ala Gln Glu Ser Val 180 185 190 Ala Leu His Glu Met Val Ala Ser Ser Gly Gly Asp Val Gly Glu Asn 195 200 205 Ile Glu Glu Met Ala Met Val Leu Lys Met Ile Lys Asp Phe Val Gln 210 215 220 Thr Glu Asp Asp Asn Gly Glu Glu Gln Lys Val Gly Val Asn Ser Arg 225 230 235 240 Ser Asn Gly Gln Thr Ser Thr Ala Ala Ser Gln Lys Ile Pro Val Ile 245 250 255 Pro Asp Asp Phe Arg Cys Pro Ile Ser Leu Glu Met Met Arg Asp Pro 260 265 270 Val Ile Val Ser Ser Gly Gln Thr Tyr Glu Arg Thr Cys Ile Glu Lys 275 280 285 Trp Ile Glu Gly Gly His Ser Thr Cys Pro Lys Thr Gln Gln Ala Leu 290 295 300 Thr Ser Thr Thr Leu Thr Pro Asn Tyr Val Leu Arg Ser Leu Ile Ala 305 310 315 320 Gln Trp Cys Glu Ala Asn Asp Ile Glu Pro Pro Lys Pro Pro Ser Ser 325 330 335 Leu Arg Pro Arg Lys Val Ser Ser Phe Ser Ser Pro Ala Glu Ala Asn 340 345 350 Lys Ile Glu Asp Leu Met Trp Arg Leu Ala Tyr Gly Asn Pro Glu Asp 355 360 365 Gln Arg Ser Ala Ala Gly Glu Ile Arg Leu Leu Ala Lys Arg Asn Ala 370 375 380 Asp Asn Arg Val Ala Ile Ala Glu Ala Gly Ala Ile Pro Leu Leu Val 385 390 395 400 Gly Leu Leu Ser Thr Pro Asp Ser Arg Ile Gln Glu His Ser Val Thr 405 410 415 Ala Leu Leu Asn Leu Ser Ile Cys Glu Asn Asn Lys Gly Ala Ile Val 420 425 430 Ser Ala Gly Ala Ile Pro Gly Ile Val Gln Val Leu Lys Lys Gly Ser 435 440 445 Met Glu Ala Arg Glu Asn Ala Ala Ala Thr Leu Phe Ser Leu Ser Val 450 455 460 Ile Asp Glu Asn Lys Val Thr Ile Gly Ala Leu Gly Ala Ile Pro Pro 465 470 475 480 Leu Val Val Leu Leu Asn Glu Gly Thr Gln Arg Gly Lys Lys Asp Ala 485 490 495 Ala Thr Ala Leu Phe Asn Leu Cys Ile Tyr Gln Gly Asn Lys Gly Lys 500 505 510 Ala Ile Arg Ala Gly Val Ile Pro Thr Leu Thr Arg Leu Leu Thr Glu 515 520 525 Pro Gly Ser Gly Met Val Asp Glu Ala Leu Ala Ile Leu Ala Ile Leu 530 535 540 Ser Ser His Pro Glu Gly Lys Ala Ile Ile Gly Ser Ser Asp Ala Val 545 550 555 560 Pro Ser Leu Val Glu Phe Ile Arg Thr Gly Ser Pro Arg Asn Arg Glu 565 570 575 Asn Ala Ala Ala Val Leu Val His Leu Cys Ser Gly Asp Pro Gln His 580 585 590 Leu Val Glu Ala Gln Lys Leu Gly Leu Met Gly Pro Leu Ile Asp Leu 595 600 605 Ala Gly Asn Gly Thr Asp Arg Gly Lys Arg Lys Ala Ala Gln Leu Leu 610 615 620 Glu Arg Ile Ser Arg Leu Ala Glu Gln Gln Lys Glu Thr Ala Val Ser 625 630 635 640 Gln Pro Glu Glu Glu Ala Glu Pro Thr His Pro Glu Ser Thr Thr Glu 645 650 655 Ala Ala Asp Thr 660 692264DNAArabidopsis thaliana 69gtctctaaaa atgaaacaag agaaaattaa tcttacaatt tccttaacgt ttgctttttc 60cttcaacatc tttggaatca attcaaacgc gatagagagt ctctaatggt cgatgtgatg 120gatacagatg aagaagccac aggagatgca gagaaccgtg atgaagaagt taccgcagaa 180gaaccgattc acgatgaggt tgtggatgcg gtggagattc atgaggaaga agtgaaagaa 240gatgatgatg attgtgaagg attggtgagc gatatcgtat cgattgtcga gtttttggat 300cagattaacg gttatcgaag aacacaacaa aaagaatgtt ttaatctcgt tagacgattg 360aagattctta ttccattttt ggatgagatt cgaggttttg aatcaccaag ttgcaagcat 420tttttaaatc gtttgaggaa agtgtttctt gctgccaaga aattattaga aacttgcagc 480aatggcagta aaatctatat ggcattggat ggcgaaacaa tgatgacgag atttcattcg 540atttacgaaa agttgaatcg tgttcttgtt aaagctcctt ttgatgaatt aatgatttct 600ggtgatgcga aagacgagat tgattcattg tgtaaacaac tgaaaaaagc aaaaagaaga 660acagatacac aagacataga gctagcagta gacatgatgg tggtattctc aaaaaccgat 720cctcgaaacg cagatagcgc gataatagag aggctagcga aaaagcttga gctacaaaca 780attgatgatt taaagacaga aactatagcc atacaaagct taatccaaga caaaggaggt 840ttgaacatag agactaaaca acatatcatt gagcttctta acaagttcaa gaagcttcaa 900ggtcttgaag ctaccgacat tctctaccaa cccgtcatca ataaagcaat caccaagtca 960acgtctctaa tattacctca tgagtttttg tgtcctataa cactcgaaat aatgcttgac 1020ccggttatca tcgccactgg acagacatat gagaaggaga gtatacagaa atggtttgac 1080gcaggacata agacttgtcc taaaacaaga caggagttag atcatctctc tcttgcacct 1140aacttcgctt taaagaactt gattatgcag tggtgtgaga agaacaattt caagattcca 1200gagaaagaag taagtcctga ctcacaaaat gagcagaaag atgaggtctc tttgctggtg 1260gaagcgttat cgtcaagcca actggaagaa caacgaagat cagtgaagca gatgcgtttg 1320ctagccagag aaaatcccga gaaccgcgtt ttaatagcga atgcaggagc gattcctttg 1380ttagttcaac tcctttctta ccctgattca ggaatccaag aaaacgcggt aacgacattg 1440ttgaatctat ctatcgacga ggtcaacaag aaactcattt caaatgaagg agctattcca 1500aacattattg aaatccttga aaatggaaac agagaggcaa gagagaactc tgctgcagct 1560ttgtttagtt tatcgatgct cgatgagaac aaagtaacta tcggattatc gaatgggata 1620ccgcctttag tcgatttact acaacatggg acattaagag ggaagaaaga tgctctcact 1680gcactcttta acttgtctct taactcagct aataaaggaa gagctatcga tgctggtatt 1740gttcaacctt tgcttaacct tcttaaagat aaaaacttag ggatgatcga tgaagcgctt 1800tcgattctgt tgctgcttgc atcacaccct gaaggacgtc aagccattgg acaactctcc 1860ttcattgaaa cacttgtgga attcatcaga caaggcaccc cgaaaaacaa agagtgtgcg 1920acctcggtgc tgcttgaact aggctctaac aactcgtctt ttatcctcgc agcgcttcaa 1980ttcggagttt atgaatatct ggtagaaata accacctctg gaacaaacag agctcagaga 2040aaagcaaatg ctcttataca actcataagc aaatctgaac aaatttagac ttgttctaaa 2100cattttcatc ttctactgta attataggtt tcataatttt tttatttttt ttcattctgt 2160atcaaaccag tgtctgttgt atatttgtat atcctcttcc atttagtcat atactatttg 2220attttcctct ctgtaatttc taactctcac gttgataatt cctc 226470660PRTArabidopsis thaliana 70Met Val Asp Val Met Asp Thr Asp Glu Glu Ala Thr Gly Asp Ala Glu 1 5 10 15 Asn Arg Asp Glu Glu Val Thr Ala Glu Glu Pro Ile His Asp Glu Val 20 25 30 Val Asp Ala Val Glu Ile His Glu Glu Glu Val Lys Glu Asp Asp Asp 35 40 45 Asp Cys Glu Gly Leu Val Ser Asp Ile Val Ser Ile Val Glu Phe Leu 50 55 60 Asp Gln Ile Asn Gly Tyr Arg Arg Thr Gln Gln Lys Glu Cys Phe Asn 65 70 75 80 Leu Val Arg Arg Leu Lys Ile Leu Ile Pro Phe Leu Asp Glu Ile Arg 85 90 95 Gly Phe Glu Ser Pro Ser Cys Lys His Phe Leu Asn Arg Leu Arg Lys

100 105 110 Val Phe Leu Ala Ala Lys Lys Leu Leu Glu Thr Cys Ser Asn Gly Ser 115 120 125 Lys Ile Tyr Met Ala Leu Asp Gly Glu Thr Met Met Thr Arg Phe His 130 135 140 Ser Ile Tyr Glu Lys Leu Asn Arg Val Leu Val Lys Ala Pro Phe Asp 145 150 155 160 Glu Leu Met Ile Ser Gly Asp Ala Lys Asp Glu Ile Asp Ser Leu Cys 165 170 175 Lys Gln Leu Lys Lys Ala Lys Arg Arg Thr Asp Thr Gln Asp Ile Glu 180 185 190 Leu Ala Val Asp Met Met Val Val Phe Ser Lys Thr Asp Pro Arg Asn 195 200 205 Ala Asp Ser Ala Ile Ile Glu Arg Leu Ala Lys Lys Leu Glu Leu Gln 210 215 220 Thr Ile Asp Asp Leu Lys Thr Glu Thr Ile Ala Ile Gln Ser Leu Ile 225 230 235 240 Gln Asp Lys Gly Gly Leu Asn Ile Glu Thr Lys Gln His Ile Ile Glu 245 250 255 Leu Leu Asn Lys Phe Lys Lys Leu Gln Gly Leu Glu Ala Thr Asp Ile 260 265 270 Leu Tyr Gln Pro Val Ile Asn Lys Ala Ile Thr Lys Ser Thr Ser Leu 275 280 285 Ile Leu Pro His Glu Phe Leu Cys Pro Ile Thr Leu Glu Ile Met Leu 290 295 300 Asp Pro Val Ile Ile Ala Thr Gly Gln Thr Tyr Glu Lys Glu Ser Ile 305 310 315 320 Gln Lys Trp Phe Asp Ala Gly His Lys Thr Cys Pro Lys Thr Arg Gln 325 330 335 Glu Leu Asp His Leu Ser Leu Ala Pro Asn Phe Ala Leu Lys Asn Leu 340 345 350 Ile Met Gln Trp Cys Glu Lys Asn Asn Phe Lys Ile Pro Glu Lys Glu 355 360 365 Val Ser Pro Asp Ser Gln Asn Glu Gln Lys Asp Glu Val Ser Leu Leu 370 375 380 Val Glu Ala Leu Ser Ser Ser Gln Leu Glu Glu Gln Arg Arg Ser Val 385 390 395 400 Lys Gln Met Arg Leu Leu Ala Arg Glu Asn Pro Glu Asn Arg Val Leu 405 410 415 Ile Ala Asn Ala Gly Ala Ile Pro Leu Leu Val Gln Leu Leu Ser Tyr 420 425 430 Pro Asp Ser Gly Ile Gln Glu Asn Ala Val Thr Thr Leu Leu Asn Leu 435 440 445 Ser Ile Asp Glu Val Asn Lys Lys Leu Ile Ser Asn Glu Gly Ala Ile 450 455 460 Pro Asn Ile Ile Glu Ile Leu Glu Asn Gly Asn Arg Glu Ala Arg Glu 465 470 475 480 Asn Ser Ala Ala Ala Leu Phe Ser Leu Ser Met Leu Asp Glu Asn Lys 485 490 495 Val Thr Ile Gly Leu Ser Asn Gly Ile Pro Pro Leu Val Asp Leu Leu 500 505 510 Gln His Gly Thr Leu Arg Gly Lys Lys Asp Ala Leu Thr Ala Leu Phe 515 520 525 Asn Leu Ser Leu Asn Ser Ala Asn Lys Gly Arg Ala Ile Asp Ala Gly 530 535 540 Ile Val Gln Pro Leu Leu Asn Leu Leu Lys Asp Lys Asn Leu Gly Met 545 550 555 560 Ile Asp Glu Ala Leu Ser Ile Leu Leu Leu Leu Ala Ser His Pro Glu 565 570 575 Gly Arg Gln Ala Ile Gly Gln Leu Ser Phe Ile Glu Thr Leu Val Glu 580 585 590 Phe Ile Arg Gln Gly Thr Pro Lys Asn Lys Glu Cys Ala Thr Ser Val 595 600 605 Leu Leu Glu Leu Gly Ser Asn Asn Ser Ser Phe Ile Leu Ala Ala Leu 610 615 620 Gln Phe Gly Val Tyr Glu Tyr Leu Val Glu Ile Thr Thr Ser Gly Thr 625 630 635 640 Asn Arg Ala Gln Arg Lys Ala Asn Ala Leu Ile Gln Leu Ile Ser Lys 645 650 655 Ser Glu Gln Ile 660 711453DNAArabidopsis thaliana 71aaatttttga aacccaattt cagggcacga ttccacaacc tctttctttt cttctagatc 60tacgtaaatt catcagctag agattgaaaa atggcggacg gtgaagatat tcagccgctc 120gtttgcgata acgggactgg aatggtcaag gctggttttg caggtgatga tgctcctaga 180gctgtattcc caagtatcgt tggccgtcca cgtcacacgg gagtgatggt tggaatggga 240caaaaggatg catacgtcgg agacgaggca cagtcgaaac gtggtatctt gactctcaag 300tatccaattg agcatggtat tgtcaacaac tgggatgata tggagaagat ttggcatcac 360actttctaca atgagctgcg tgttgccccg gaagagcatc cggttttgct aaccgaagcg 420ccgcttaatc cgaaggctaa ccgtgagaag atgacacaga tcatgtttga aacattcaac 480actcctgcta tgtatgttgc cattcaagct gttctctccc tctatgctag tggccgtact 540actggtattg ttttggactc tggagatggt gtgagccaca cggtaccaat ctacgagggt 600tatgcacttc cacacgcaat cctgcgtctt gatcttgcag gtcgtgacct aaccgaccac 660ctcatgaaaa tcctgacaga gcgtggttac tcattcacca caactgctga gcgtgagatt 720gtcagagaca tgaaggagaa gctctcgtac attgccttgg actatgagca agagcttgag 780acttccaaaa ccagctcatc tgtggagaag agcttcgagc tgccagacgg tcaagtgata 840accatcgggg cagagcgttt ccggtgtcct gaagttctgt tccagccatc catgatcgga 900atggaaaatc cgggaattca tgaaactact tacaactcaa tcatgaaatg tgatgtggat 960atcaggaagg atctttatgg aaacattgtg cttagtggtg gcaccacaat gtttggcggg 1020attggtgata ggatgagtaa agaaatcacc gcgttggcgc cgagcagtat gaagatcaaa 1080gtggttgctc caccggaaag gaagtacagt gtttggatcg gtggctctat cttggcttct 1140ctcagtactt tccagcagat gtggattgcg aaagccgagt atgatgaatc tggaccgtcg 1200atcgtccaca ggaagtgctt ctgatcaaaa gtcaccaagt aaaacaagag cggtaaaaat 1260tttgatatca gtttttcacc ctgaagccat ttgctataat tactcacaac ttctctattt 1320gtgttctttt attcttgtcc ctcattgttc attttaatct ctcttttgca acaaagcaac 1380ttaaaaaaac agatcagtca ttaacagaat gttattatta tatgtataca tattagtata 1440cacccattat ctt 145372377PRTArabidopsis thaliana 72Met Ala Asp Gly Glu Asp Ile Gln Pro Leu Val Cys Asp Asn Gly Thr 1 5 10 15 Gly Met Val Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val 20 25 30 Phe Pro Ser Ile Val Gly Arg Pro Arg His Thr Gly Val Met Val Gly 35 40 45 Met Gly Gln Lys Asp Ala Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg 50 55 60 Gly Ile Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Asn Asn 65 70 75 80 Trp Asp Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu 85 90 95 Arg Val Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu 100 105 110 Asn Pro Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr 115 120 125 Phe Asn Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu 130 135 140 Tyr Ala Ser Gly Arg Thr Thr Gly Ile Val Leu Asp Ser Gly Asp Gly 145 150 155 160 Val Ser His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala 165 170 175 Ile Leu Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp His Leu Met 180 185 190 Lys Ile Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg 195 200 205 Glu Ile Val Arg Asp Met Lys Glu Lys Leu Ser Tyr Ile Ala Leu Asp 210 215 220 Tyr Glu Gln Glu Leu Glu Thr Ser Lys Thr Ser Ser Ser Val Glu Lys 225 230 235 240 Ser Phe Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Ala Glu Arg 245 250 255 Phe Arg Cys Pro Glu Val Leu Phe Gln Pro Ser Met Ile Gly Met Glu 260 265 270 Asn Pro Gly Ile His Glu Thr Thr Tyr Asn Ser Ile Met Lys Cys Asp 275 280 285 Val Asp Ile Arg Lys Asp Leu Tyr Gly Asn Ile Val Leu Ser Gly Gly 290 295 300 Thr Thr Met Phe Gly Gly Ile Gly Asp Arg Met Ser Lys Glu Ile Thr 305 310 315 320 Ala Leu Ala Pro Ser Ser Met Lys Ile Lys Val Val Ala Pro Pro Glu 325 330 335 Arg Lys Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser 340 345 350 Thr Phe Gln Gln Met Trp Ile Ala Lys Ala Glu Tyr Asp Glu Ser Gly 355 360 365 Pro Ser Ile Val His Arg Lys Cys Phe 370 375 732972DNAArabidopsis thaliana 73aagttaagta cgacggtttc tgaaataaag aaaacatttc ttcaatcttg tgcttacggt 60gatatccgtg gattcaaatc gatattgaga agatggtaga tgcgatcacg gagttcgttg 120tgggaaagat cggcaactat ctcattgaag aagcatcaat gtttatggca gtcaaagagg 180atctagaaga gctgaagacg gagttgacgt gcatccatgg ttatctcaag gacgttgaag 240cgcgagaaag agaagatgag gtctcaaaag agtggtcaaa actggtttta gatttcgctt 300atgacgtcga agatgttttg gacacttatc acttgaaact cgaagaaagg tcacaaaggc 360gaggcttgag gagattgacc aacaaaatag gcaggaagat ggatgcgtac agcatagttg 420atgatatcag aattctcaag agaagaattt tggatatcac tcgcaagagg gagacttatg 480gtataggagg cttgaaagag cctcaaggag gagggaatac ttcaagtttg agagtgagac 540aacttcggcg tgctcgatct gttgatcaag aagaggttgt agttggtttg gaagatgatg 600ctaagattct tttggaaaag cttcttgatt atgaagagaa aaatagattt attatctcga 660tcttcggtat gggaggcctt ggaaagactg cacttgctag gaagctctac aactcaaggg 720atgtgaagga aagattcgaa taccgcgcat ggacttatgt ttctcaagag tataaaactg 780gagatatact aatgagaatc attagatctt tgggaatgac ttctggggaa gagttggaaa 840agatcagaaa gtttgcagag gaagagttag aagtttacct ttacggtctt ctagaaggga 900aaaaatattt ggtggtggtg gatgatatat gggagcgaga agcgtgggac agcttaaaga 960gagcgttacc ttgcaaccat gaaggaagta gagtcatcat cactacgcgt attaaagccg 1020tggctgaagg cgtagatggg agattctatg ctcataagtt aaggttcttg acgtttgaag 1080aaagctggga gttgtttgaa caaagagcat tcaggaatat acaaaggaag gatgaagatt 1140tgctgaaaac cggaaaagaa atggttcaaa aatgcagagg gttaccactt tgtatagttg 1200ttcttgcggg gcttttgtcg aggaagacac caagcgagtg gaatgatgtt tgtaacagtt 1260tatggagacg cctaaaggat gactccattc atgttgcccc tattgtgttt gatctaagtt 1320tcaaggagct gcggcatgag tccaaactct gttttctgta ccttagtatc ttcccagagg 1380actatgagat tgacctagag aagttgatac acttacttgt agcagaaggt tttatacaag 1440gggatgaaga gatgatgatg gaagatgtgg ctcggtacta catcgaagag ctgatagata 1500gaagcttact tgaagcagtg agaagagaaa gaggaaaagt gatgtcttgt agaatccatg 1560atcttctgag agacgtggct atcaagaaat ctaaagagct caactttgta aacgtgtata 1620acgatcatgt ggcccaacat tcttctacta cttgcagaag ggaagtggtt caccatcagt 1680tcaagagata ctcatctgag aaacgcaaga acaaacggat gcgatccttc ttatactttg 1740gagaattcga ccatttggta gggcttgatt ttgaaacatt gaagctactt cgagtgcttg 1800atttcggaag tctttggctt ccttttaaaa ttaatgggga tctgatccac ttgaggtacc 1860ttggaattga tggtaattct atcaacgatt ttgatatagc agctattata tccaagttac 1920ggtttctaca aacactattt gtatctgaca attatttcat cgaggaaaca atcgatctcc 1980gtaagctcac atcattaaga catgtcatag gaaatttttt tggaggattg cttataggcg 2040acgtagcgaa ccttcagacc ttgacgtcta tctcctttga cagctggaac aaactaaaac 2100ctgagttgct cataaatctt cgagatttgg ggatttctga aatgtctagg tcaaaggaga 2160gaagagttca tgtgagctgg gcttccttga ctaaactgga aagtcttcgt gttctgaagc 2220tggcgacgcc cactgaagtc catttatcgt tggaatcaga agaagcagtt aggtccatgg 2280atgtgatatc acgcagtctt gaatccgtga cactggttgg aataactttc gaggaagacc 2340caatgccttt tttgcagaaa atgccgagac tggaagatct gatcttgtta agttgtaatt 2400actcggggaa gatgagcgtc agcgaacaag gttttggtag gctgaggaag cttgacttgt 2460taatgagaag tttagatgag ttgcagatag aagaagaggc catgcccaat ttgatcgagc 2520tggaaataag tgtttcgaaa agagaaacaa agctgataat tccaaaccgt ttgcgagcgt 2580ttggtcaaat ctactgctga tgagttatga gctacaagaa acgggaaaac atgtgaacca 2640ggccttaaga tttatgtctt tttaatatca agtctgcgac ataataccac agaatgtgta 2700gatctcttaa agcttttgaa tcagtaccaa tttacacacc acttgtaaac atttactgca 2760gcaaagagat tcacagccgc gcagactcag gtcgtcacat gtctagaaaa gaagttgaac 2820ttcatgtact agtaaagatc atcaaaattg tttagaaaat ttacaaacta catgattttt 2880tgtgcaattg aaaaaaaaaa caattttaag attgaatttc tgcatcagag aaaacaattt 2940gtagcatctt ttctttgtct ttggttacat at 297274835PRTArabidopsis thaliana 74Met Val Asp Ala Ile Thr Glu Phe Val Val Gly Lys Ile Gly Asn Tyr 1 5 10 15 Leu Ile Glu Glu Ala Ser Met Phe Met Ala Val Lys Glu Asp Leu Glu 20 25 30 Glu Leu Lys Thr Glu Leu Thr Cys Ile His Gly Tyr Leu Lys Asp Val 35 40 45 Glu Ala Arg Glu Arg Glu Asp Glu Val Ser Lys Glu Trp Ser Lys Leu 50 55 60 Val Leu Asp Phe Ala Tyr Asp Val Glu Asp Val Leu Asp Thr Tyr His 65 70 75 80 Leu Lys Leu Glu Glu Arg Ser Gln Arg Arg Gly Leu Arg Arg Leu Thr 85 90 95 Asn Lys Ile Gly Arg Lys Met Asp Ala Tyr Ser Ile Val Asp Asp Ile 100 105 110 Arg Ile Leu Lys Arg Arg Ile Leu Asp Ile Thr Arg Lys Arg Glu Thr 115 120 125 Tyr Gly Ile Gly Gly Leu Lys Glu Pro Gln Gly Gly Gly Asn Thr Ser 130 135 140 Ser Leu Arg Val Arg Gln Leu Arg Arg Ala Arg Ser Val Asp Gln Glu 145 150 155 160 Glu Val Val Val Gly Leu Glu Asp Asp Ala Lys Ile Leu Leu Glu Lys 165 170 175 Leu Leu Asp Tyr Glu Glu Lys Asn Arg Phe Ile Ile Ser Ile Phe Gly 180 185 190 Met Gly Gly Leu Gly Lys Thr Ala Leu Ala Arg Lys Leu Tyr Asn Ser 195 200 205 Arg Asp Val Lys Glu Arg Phe Glu Tyr Arg Ala Trp Thr Tyr Val Ser 210 215 220 Gln Glu Tyr Lys Thr Gly Asp Ile Leu Met Arg Ile Ile Arg Ser Leu 225 230 235 240 Gly Met Thr Ser Gly Glu Glu Leu Glu Lys Ile Arg Lys Phe Ala Glu 245 250 255 Glu Glu Leu Glu Val Tyr Leu Tyr Gly Leu Leu Glu Gly Lys Lys Tyr 260 265 270 Leu Val Val Val Asp Asp Ile Trp Glu Arg Glu Ala Trp Asp Ser Leu 275 280 285 Lys Arg Ala Leu Pro Cys Asn His Glu Gly Ser Arg Val Ile Ile Thr 290 295 300 Thr Arg Ile Lys Ala Val Ala Glu Gly Val Asp Gly Arg Phe Tyr Ala 305 310 315 320 His Lys Leu Arg Phe Leu Thr Phe Glu Glu Ser Trp Glu Leu Phe Glu 325 330 335 Gln Arg Ala Phe Arg Asn Ile Gln Arg Lys Asp Glu Asp Leu Leu Lys 340 345 350 Thr Gly Lys Glu Met Val Gln Lys Cys Arg Gly Leu Pro Leu Cys Ile 355 360 365 Val Val Leu Ala Gly Leu Leu Ser Arg Lys Thr Pro Ser Glu Trp Asn 370 375 380 Asp Val Cys Asn Ser Leu Trp Arg Arg Leu Lys Asp Asp Ser Ile His 385 390 395 400 Val Ala Pro Ile Val Phe Asp Leu Ser Phe Lys Glu Leu Arg His Glu 405 410 415 Ser Lys Leu Cys Phe Leu Tyr Leu Ser Ile Phe Pro Glu Asp Tyr Glu 420 425 430 Ile Asp Leu Glu Lys Leu Ile His Leu Leu Val Ala Glu Gly Phe Ile 435 440 445 Gln Gly Asp Glu Glu Met Met Met Glu Asp Val Ala Arg Tyr Tyr Ile 450 455 460 Glu Glu Leu Ile Asp Arg Ser Leu Leu Glu Ala Val Arg Arg Glu Arg 465 470 475 480 Gly Lys Val Met Ser Cys Arg Ile His Asp Leu Leu Arg Asp Val Ala 485 490 495 Ile Lys Lys Ser Lys Glu Leu Asn Phe Val Asn Val Tyr Asn Asp His 500 505 510 Val Ala Gln His Ser Ser Thr Thr Cys Arg Arg Glu Val Val His His 515 520 525 Gln Phe Lys Arg Tyr Ser Ser Glu Lys Arg Lys Asn Lys Arg Met Arg 530 535 540 Ser Phe Leu Tyr Phe Gly Glu Phe Asp His Leu Val Gly Leu Asp Phe 545 550 555 560 Glu Thr Leu Lys Leu Leu Arg Val Leu Asp Phe Gly Ser Leu Trp Leu 565 570 575 Pro Phe Lys Ile Asn Gly Asp Leu Ile His Leu Arg Tyr Leu Gly Ile 580 585 590 Asp Gly Asn Ser Ile Asn Asp Phe Asp Ile Ala Ala Ile Ile Ser Lys 595 600 605 Leu Arg Phe Leu Gln Thr Leu Phe Val Ser Asp Asn Tyr Phe Ile Glu 610 615 620 Glu Thr Ile Asp Leu Arg Lys Leu Thr Ser Leu Arg His Val Ile Gly 625 630 635 640 Asn Phe Phe Gly Gly Leu Leu Ile Gly Asp Val Ala Asn Leu Gln Thr 645 650 655 Leu Thr Ser Ile Ser Phe Asp Ser Trp Asn Lys Leu Lys Pro Glu Leu 660

665 670 Leu Ile Asn Leu Arg Asp Leu Gly Ile Ser Glu Met Ser Arg Ser Lys 675 680 685 Glu Arg Arg Val His Val Ser Trp Ala Ser Leu Thr Lys Leu Glu Ser 690 695 700 Leu Arg Val Leu Lys Leu Ala Thr Pro Thr Glu Val His Leu Ser Leu 705 710 715 720 Glu Ser Glu Glu Ala Val Arg Ser Met Asp Val Ile Ser Arg Ser Leu 725 730 735 Glu Ser Val Thr Leu Val Gly Ile Thr Phe Glu Glu Asp Pro Met Pro 740 745 750 Phe Leu Gln Lys Met Pro Arg Leu Glu Asp Leu Ile Leu Leu Ser Cys 755 760 765 Asn Tyr Ser Gly Lys Met Ser Val Ser Glu Gln Gly Phe Gly Arg Leu 770 775 780 Arg Lys Leu Asp Leu Leu Met Arg Ser Leu Asp Glu Leu Gln Ile Glu 785 790 795 800 Glu Glu Ala Met Pro Asn Leu Ile Glu Leu Glu Ile Ser Val Ser Lys 805 810 815 Arg Glu Thr Lys Leu Ile Ile Pro Asn Arg Leu Arg Ala Phe Gly Gln 820 825 830 Ile Tyr Cys 835 75 1213DNAArabidopsis thaliana 75atcacagatt tggacttttc ttggttatat taaagttttt tttgtccata tattcaatga 60ccaatctaga attcatctgt ttttgaacta acccaacact aaagaaatag atccaaaggc 120ctctctcctc tctctcgttt ttctcatatg gttcttgata ataatttgaa agaaagatgt 180caatgatgag cagaactcga agcagcatcg ccatgggaac accatctttc cttgagttga 240agaaacaagc ttcatttttc ttcaaagaga agcttaaaac ggcgcgttta gctctcaccg 300atgttactcc tcttcaacta atgactgagg aagctacgga tggtgagtca tgtggaccaa 360atacacaaac cttagggtcc atttcaaagg ctgcttttga gtttgaagat tacttggcga 420ttgttgaagt cttgcacaaa agattggcaa agttcgataa gagaaactgg aggatggctt 480ataactcact aatagttgtt gagcatttac tcactcatgg accagagagt gtttccgatg 540agtttcaagg tgatatagat gttatctccc aaatgcaaac cttccaacag attgacgaga 600aagggtttaa ttggggatta gctgttagaa agaaagcaga gaaggtttta aagctacttg 660agaaagggga attacttaag gaagaaagga agcgagctcg tgagctgtct cgagggattc 720aaggtttcgg tagctttaac cacaagtctt catctcattc tttgtcagag catgaagtct 780tacaagaatc tacagtctat aggaaatgta attccaattt taccaagaat tacgatgagg 840atgaccaaga gaacactatg gtttctccta atgacgccaa cctttttcct cagccgctgg 900tagctgaccc gagcgaggaa tctaggacgg gtatgaaaga aaatatggat cctgaagatg 960atgagaacac agaggtaaac ccacttttgg gttttagtaa aaaggagggt caagaactag 1020ccggagaaga cgagaaccat ccatttacgg atggcgagag taagcataca gtagtcttgc 1080ttgatgagaa cacagattaa attttaatta cgtgatatcg caatctgtat aagagaaaaa 1140acacgagaag aagataatgt gtgtatacca atatgtatac atatctacaa taataacact 1200tctgttaatg act 121376307PRTArabidopsis thaliana 76Met Ser Met Met Ser Arg Thr Arg Ser Ser Ile Ala Met Gly Thr Pro 1 5 10 15 Ser Phe Leu Glu Leu Lys Lys Gln Ala Ser Phe Phe Phe Lys Glu Lys 20 25 30 Leu Lys Thr Ala Arg Leu Ala Leu Thr Asp Val Thr Pro Leu Gln Leu 35 40 45 Met Thr Glu Glu Ala Thr Asp Gly Glu Ser Cys Gly Pro Asn Thr Gln 50 55 60 Thr Leu Gly Ser Ile Ser Lys Ala Ala Phe Glu Phe Glu Asp Tyr Leu 65 70 75 80 Ala Ile Val Glu Val Leu His Lys Arg Leu Ala Lys Phe Asp Lys Arg 85 90 95 Asn Trp Arg Met Ala Tyr Asn Ser Leu Ile Val Val Glu His Leu Leu 100 105 110 Thr His Gly Pro Glu Ser Val Ser Asp Glu Phe Gln Gly Asp Ile Asp 115 120 125 Val Ile Ser Gln Met Gln Thr Phe Gln Gln Ile Asp Glu Lys Gly Phe 130 135 140 Asn Trp Gly Leu Ala Val Arg Lys Lys Ala Glu Lys Val Leu Lys Leu 145 150 155 160 Leu Glu Lys Gly Glu Leu Leu Lys Glu Glu Arg Lys Arg Ala Arg Glu 165 170 175 Leu Ser Arg Gly Ile Gln Gly Phe Gly Ser Phe Asn His Lys Ser Ser 180 185 190 Ser His Ser Leu Ser Glu His Glu Val Leu Gln Glu Ser Thr Val Tyr 195 200 205 Arg Lys Cys Asn Ser Asn Phe Thr Lys Asn Tyr Asp Glu Asp Asp Gln 210 215 220 Glu Asn Thr Met Val Ser Pro Asn Asp Ala Asn Leu Phe Pro Gln Pro 225 230 235 240 Leu Val Ala Asp Pro Ser Glu Glu Ser Arg Thr Gly Met Lys Glu Asn 245 250 255 Met Asp Pro Glu Asp Asp Glu Asn Thr Glu Val Asn Pro Leu Leu Gly 260 265 270 Phe Ser Lys Lys Glu Gly Gln Glu Leu Ala Gly Glu Asp Glu Asn His 275 280 285 Pro Phe Thr Asp Gly Glu Ser Lys His Thr Val Val Leu Leu Asp Glu 290 295 300 Asn Thr Asp 305 771413DNAArabidopsis thaliana 77atggcgaacg taatctcaat ttcccatttt acccttctcg cattacctta tttacttctc 60ctcctatctt ccaccgccgc cgcaattaac gtcaccgccg tcctctcctc tttccctaat 120ctctcatctt tctcaaacct cctcgtctct tccggcatcg ctgccgaact ctccggtaga 180aactcattaa ccctcctcgc cgttcccaat tctcaattct cctccgcctc cttggacctc 240acgcgccgcc tacctccttc cgccctagca gatctcctcc gcttccatgt cctcctccag 300ttcctttcag attccgatct ccgacgtatt ccaccgtcag gctccgccgt cactactctc 360tacgaagctt ccggtcgtac attctttgga tctggatccg ttaacgtaac ccgtgacccg 420gcttcaggat ccgtcacgat cggatctcca gccaccaaaa acgtcactgt gttaaagctt 480ctcgagacca aacctcccaa cataaccgtc ctcaccgtgg actccctcat cgtccccacc 540ggaatcgata tcaccgcatc ggagactctc actccaccgc cgacgtcaac atctctctcc 600cctccaccgg cgggaatcaa tctcactcag atactaatca acggacacaa cttcaacgtc 660gctctatccc tcctcgtcgc ttccggtgtc ataacagaat tcgaaaacga cgaacgtggc 720gccggcatca cagtcttcgt ccccaccgac tccgccttct ccgatctccc ttccaacgtt 780aacctccagt cattaccggc ggagcaaaaa gcattcgtgt taaaattcca cgtgctacat 840tcatactaca ctctcggttc actagaatca ataaccaacc cggttcaacc gacattagcc 900actgaagaaa tgggagccgg ttcatacact ctcaacatct cccgggttaa cgggtcaatc 960gtaacgatca attcgggtgt ggttttagct gttgtgactc aaacggcttt tgatcaaaac 1020ccggtttctg ttttcggagt atccaaagtt cttttgccta aagaactatt tccaaaatcg 1080ggtcaacccg ttgccacagc tcctccacag gagatttctt tgtcgccgga gagttctagt 1140gaacagccgt cacgactagt atcaccaccg cgtgagatag tttcttccgg cgcggttaaa 1200agaccacttg gtttcttggt cttgtggtgt tggtgtatag cattttgtta tgttttggta 1260tgattttttt ttctttcttt cttttatcac ataatgtttt gccttcgatt agggctttat 1320ttatttttac tggatttttt ttttcacaag ggtttatatt tattcacgat aatgttattg 1380tatttgagtc gaggaaaaaa caaattcact ttc 141378420PRTArabidopsis thaliana 78Met Ala Asn Val Ile Ser Ile Ser His Phe Thr Leu Leu Ala Leu Pro 1 5 10 15 Tyr Leu Leu Leu Leu Leu Ser Ser Thr Ala Ala Ala Ile Asn Val Thr 20 25 30 Ala Val Leu Ser Ser Phe Pro Asn Leu Ser Ser Phe Ser Asn Leu Leu 35 40 45 Val Ser Ser Gly Ile Ala Ala Glu Leu Ser Gly Arg Asn Ser Leu Thr 50 55 60 Leu Leu Ala Val Pro Asn Ser Gln Phe Ser Ser Ala Ser Leu Asp Leu 65 70 75 80 Thr Arg Arg Leu Pro Pro Ser Ala Leu Ala Asp Leu Leu Arg Phe His 85 90 95 Val Leu Leu Gln Phe Leu Ser Asp Ser Asp Leu Arg Arg Ile Pro Pro 100 105 110 Ser Gly Ser Ala Val Thr Thr Leu Tyr Glu Ala Ser Gly Arg Thr Phe 115 120 125 Phe Gly Ser Gly Ser Val Asn Val Thr Arg Asp Pro Ala Ser Gly Ser 130 135 140 Val Thr Ile Gly Ser Pro Ala Thr Lys Asn Val Thr Val Leu Lys Leu 145 150 155 160 Leu Glu Thr Lys Pro Pro Asn Ile Thr Val Leu Thr Val Asp Ser Leu 165 170 175 Ile Val Pro Thr Gly Ile Asp Ile Thr Ala Ser Glu Thr Leu Thr Pro 180 185 190 Pro Pro Thr Ser Thr Ser Leu Ser Pro Pro Pro Ala Gly Ile Asn Leu 195 200 205 Thr Gln Ile Leu Ile Asn Gly His Asn Phe Asn Val Ala Leu Ser Leu 210 215 220 Leu Val Ala Ser Gly Val Ile Thr Glu Phe Glu Asn Asp Glu Arg Gly 225 230 235 240 Ala Gly Ile Thr Val Phe Val Pro Thr Asp Ser Ala Phe Ser Asp Leu 245 250 255 Pro Ser Asn Val Asn Leu Gln Ser Leu Pro Ala Glu Gln Lys Ala Phe 260 265 270 Val Leu Lys Phe His Val Leu His Ser Tyr Tyr Thr Leu Gly Ser Leu 275 280 285 Glu Ser Ile Thr Asn Pro Val Gln Pro Thr Leu Ala Thr Glu Glu Met 290 295 300 Gly Ala Gly Ser Tyr Thr Leu Asn Ile Ser Arg Val Asn Gly Ser Ile 305 310 315 320 Val Thr Ile Asn Ser Gly Val Val Leu Ala Val Val Thr Gln Thr Ala 325 330 335 Phe Asp Gln Asn Pro Val Ser Val Phe Gly Val Ser Lys Val Leu Leu 340 345 350 Pro Lys Glu Leu Phe Pro Lys Ser Gly Gln Pro Val Ala Thr Ala Pro 355 360 365 Pro Gln Glu Ile Ser Leu Ser Pro Glu Ser Ser Ser Glu Gln Pro Ser 370 375 380 Arg Leu Val Ser Pro Pro Arg Glu Ile Val Ser Ser Gly Ala Val Lys 385 390 395 400 Arg Pro Leu Gly Phe Leu Val Leu Trp Cys Trp Cys Ile Ala Phe Cys 405 410 415 Tyr Val Leu Val 420 79514DNAArabidopsis thaliana 79atgaagaatt gaatctgtag tcgaaagaaa agagttggga aaaaaatgga cgcaagcatg 60atggctggac ttgatggtct tcctgaagaa gacaaagcca aaatggcctc catgatcgat 120cagcttcagc tccgtgatag tttgaggatg tacaattcat tggtggagag gtgtttcgtg 180gactgtgttg atagcttcac acgcaaatct ctgcagaaac aagaggagac ttgtgtgatg 240cgttgcgctg agaagttcct taagcatacg atgcgtgttg gtatgcggtt tgctgagctc 300aatcagaacg caccaaccca agactgatat agtctgcttt ttctgtttgg ttttttcgta 360cggtttacga gtccgaaacc agaataaacc ggttgttagt tgttcaggtt actactccga 420tactgttttt tgaacatctt gtactgtgaa attattttga ctgtatccag ttctgatatt 480gatattgact tgtatttcaa tggagtctag agaa 5148093PRTArabidopsis thaliana 80Met Asp Ala Ser Met Met Ala Gly Leu Asp Gly Leu Pro Glu Glu Asp 1 5 10 15 Lys Ala Lys Met Ala Ser Met Ile Asp Gln Leu Gln Leu Arg Asp Ser 20 25 30 Leu Arg Met Tyr Asn Ser Leu Val Glu Arg Cys Phe Val Asp Cys Val 35 40 45 Asp Ser Phe Thr Arg Lys Ser Leu Gln Lys Gln Glu Glu Thr Cys Val 50 55 60 Met Arg Cys Ala Glu Lys Phe Leu Lys His Thr Met Arg Val Gly Met 65 70 75 80 Arg Phe Ala Glu Leu Asn Gln Asn Ala Pro Thr Gln Asp 85 90 813847DNAArabidopsis thaliana 81gaggaaatgg gtcgcagcag ttcgaagaaa aagaagaaac gaggaggtag cggaagaagg 60ggtcagctga aagaccatgg atctaatgct gatgaagata atgaacttct atctgaggag 120atcactgctc tctctgcaat atttcaagag gactgcaaag ttgtttctga ttcgcgttcg 180cctccgcaaa tagcaatcaa gctcaggccg tactcaaagg acatgggata tgaagacacc 240gacatatctg ctatgcttat agttaggtgc ttaccaggat atccttacaa gtgccccaag 300cttcagatta ctccagaaca agggttgaca acagctgatg ctgagaagct tttatctctt 360ctcgaggacc aggcaaattc caatgctcgt gaaggtcggg ttatgatatt caacctggtg 420gaggctgctc aagagttttt atcagaaatc attccggaaa gtcatgatga ggaatctgtt 480ccatgcttga ctgcacatcg aagcactcag ttcattgagc aacctatgct ttcaaatata 540gcaaaatcct gttctggtgg accttttgtg tatggtttta tagacctatt tagtggcttg 600gaagatgcaa gaaattggag tctgactcca gatgaaaata ggggaatcgt atcttcagta 660caatctcacc cactagacac ttcaagaatt ttgcatcaga agccagacaa gaatctgaag 720cgatttgaag accatgctaa agaagaagtt gcactgcctg ctcccattgc caaactgaat 780actgttcaag aggagaatgt tgatgataca agcatctctt cttttgactc aagtaaatct 840actgacgatg tggaatctgg attattccaa aatgagaaga aggaatcaaa tcttcaagat 900gatacagctg aagatgacag cactaactcc gaaagtgagt cgctggggtc atggtcttct 960gattccttag ctcaagatca agtgcctcag attagcaaga aagatctgtt gatggtccat 1020ttacttcgag tagcttgcac ttcccgagga cctttggctg atgcattacc tcagataact 1080gatgaactgc atgagcttgg tatattgtct gaagaagtgt tggatttagc ttccaaatca 1140tctccagact ttaatagaac ctttgaacat gcattcaatc aaaacatggc ctcaaccagt 1200gttcctcagt tttgggagcc accttctgat tcttgcgagc caaatgcatc actcccaagc 1260tcgcgatatc tcaatgattt tgaagagttg aaaccccttg gccaaggtgg tttcggccac 1320gttgtgttgt gcaaaaataa actggatgga agacaatatg cagtgaagaa aattcgactg 1380aaggacaaag agatacctgt caacagtcgg atagttcgag aagtagcaac actttcccgt 1440ttgcagcatc agcatgttgt acgttactat caggcctggt tcgaaacagg agttgttgat 1500ccctttgctg gcgcaaattg gggatcaaaa actgcaggga gttcaatgtt cagctactca 1560ggtgcagtgt caactgaaat tcctgagcag gacaataatc ttgagtcgac ttatctatat 1620attcaaatgg aatattgtcc caggactctc cgccaggttt ttgaatcata taaccacttc 1680gacaaagact ttgcatggca tttaattcgc caaattgtgg aaggcttagc tcatatccat 1740ggacaaggaa taattcatcg ggattttaca cctaacaata ttttctttga cgctcggaat 1800gatattaaaa ttggggattt tggtcttgca aagttcttga agctggaaca gttggatcaa 1860gatgggggtt tctctacgga tgtggctgga agcggagtcg atagtactgg tcaagctggt 1920acttactttt acacagcacc tgaaattgag caagattggc ctaagattga tgaaaaggcc 1980gacatgtata gcttaggggt tgtgttcttt gaactttggc atccttttgg aaccgccatg 2040gagagacacg ttattttaac taacctgaag ctgaaagggg agctacctct caaatgggta 2100aatgaatttc ccgaacaggc gtctctactg cggcgtttga tgtctccaag tccatctgat 2160cgtccctctg ccacagaact tcttaagcat gcatttcctc ccagaatgga atctgagtta 2220ctggacaata ttctaagaat aatgcaaact tctgaagatt caagtgttta tgatagagta 2280gtaagtgtga tatttgatga agaagtatta gagatgaaaa gccatcagtc tagtagatcg 2340agactctgtg cagatgatag ttatattcaa tacacagaga taaatacaga gcttcgtgat 2400tatgttgttg aaataacaaa agaagtcttt aggcagcatt gtgcgaagca tctagaggtc 2460ataccaatgc gcttacttag tgattgcccc cagtttagca ggaaaactgt aaagcttttg 2520accaatggag gagatatgct tgaactatgc tatgagctac gactgccttt tgtgcattgg 2580ataagcgtaa atcagaaatc ctcattcaag cgatatgaaa tatctcatgt ctacaggaga 2640gcaattggcc attctccacc aaatccgtgt cttcaggcgg actttgacat tgttggaggc 2700acactatccc tgacagaggc agaagttctc aaggtgatag tagacatcac aacccacatc 2760tttcatcgcg gatcttgtga cattcatttg aatcatggag atttgctgga tgcgatttgg 2820tcctgggcag gaattaaggc agagcataga cgaaaggttg cagagcttct ttccatgatg 2880ggatccttgc gtcctcagtc atctgagcgg aagctaaaat gggttttcat aaggcgtcaa 2940cttcttcagg agttgaagtt acctgaagct gttgtcaata gactgcagac tgttgcttca 3000aggttttgtg gagatgcaga tcaagcactt cctcgtttaa gaggggctct gcgtgctgat 3060agacctaccc gcaaagcact cgatgagttg tcaaacctct taacctacct gagagtctgg 3120aggatagaag agcatgttca tattgatgtt ctgatgccac caactgaaag ttatcaccgg 3180aatttgtttt ttcaggtttt cttaaccaaa gaaaatagct ctgggacatc taatgatggc 3240gttttacttg ctgttggtgg tcgttatgat tggttggtgc aggaagtgtg tgatcgtgaa 3300cataaaatga acctccctgg tgctgttgga gttagtcttg cactggagac aatatttcag 3360catcttccta tggatctaag gcctattaga aatgaagtca gcaccagtgt acttgtttgt 3420tcaagaggag gtggtggttt actggtccag cgcatggaac tagttgcgga actatgggaa 3480aaaagtataa aggctgagtt tgttccaaca cctgatccaa gtcttactga gcagtacgaa 3540tatgcaaatg aacatgaaat caaatgtcta gtgatcatca cagagtctgg agtagctcaa 3600aatcaaatag agtttgtaaa ggttcgtcac cttgaactga agaaggagaa agtggtagga 3660agagaagaac ttgtcaaatt tctgctggat gcaatggctg ttcaatttag aaacccctct 3720gtttggagct aaagagagta aataaagagc cactttttgc ttggtgaaaa tattatttgc 3780cactcaacag tcacaaattt tgatcattca caatcttaat gtgcatatat cttggtattg 3840gtcagtt 3847821241PRTArabidopsis thaliana 82Met Gly Arg Ser Ser Ser Lys Lys Lys Lys Lys Arg Gly Gly Ser Gly 1 5 10 15 Arg Arg Gly Gln Leu Lys Asp His Gly Ser Asn Ala Asp Glu Asp Asn 20 25 30 Glu Leu Leu Ser Glu Glu Ile Thr Ala Leu Ser Ala Ile Phe Gln Glu 35 40 45 Asp Cys Lys Val Val Ser Asp Ser Arg Ser Pro Pro Gln Ile Ala Ile 50 55 60 Lys Leu Arg Pro Tyr Ser Lys Asp Met Gly Tyr Glu Asp Thr Asp Ile 65 70 75 80 Ser Ala Met Leu Ile Val Arg Cys Leu Pro Gly Tyr Pro Tyr Lys Cys 85 90 95 Pro Lys Leu Gln Ile Thr Pro Glu Gln Gly Leu Thr Thr Ala Asp Ala 100 105 110 Glu Lys Leu Leu Ser Leu Leu Glu Asp Gln Ala Asn Ser Asn Ala Arg 115 120 125 Glu Gly Arg Val Met Ile Phe Asn Leu Val Glu Ala Ala Gln Glu Phe 130 135 140 Leu Ser Glu Ile Ile Pro Glu Ser His Asp Glu Glu Ser Val Pro Cys 145 150 155 160 Leu Thr Ala His Arg Ser Thr Gln Phe Ile Glu Gln Pro Met Leu Ser 165 170 175 Asn Ile Ala Lys Ser Cys Ser Gly Gly Pro Phe Val Tyr Gly Phe Ile

180 185 190 Asp Leu Phe Ser Gly Leu Glu Asp Ala Arg Asn Trp Ser Leu Thr Pro 195 200 205 Asp Glu Asn Arg Gly Ile Val Ser Ser Val Gln Ser His Pro Leu Asp 210 215 220 Thr Ser Arg Ile Leu His Gln Lys Pro Asp Lys Asn Leu Lys Arg Phe 225 230 235 240 Glu Asp His Ala Lys Glu Glu Val Ala Leu Pro Ala Pro Ile Ala Lys 245 250 255 Leu Asn Thr Val Gln Glu Glu Asn Val Asp Asp Thr Ser Ile Ser Ser 260 265 270 Phe Asp Ser Ser Lys Ser Thr Asp Asp Val Glu Ser Gly Leu Phe Gln 275 280 285 Asn Glu Lys Lys Glu Ser Asn Leu Gln Asp Asp Thr Ala Glu Asp Asp 290 295 300 Ser Thr Asn Ser Glu Ser Glu Ser Leu Gly Ser Trp Ser Ser Asp Ser 305 310 315 320 Leu Ala Gln Asp Gln Val Pro Gln Ile Ser Lys Lys Asp Leu Leu Met 325 330 335 Val His Leu Leu Arg Val Ala Cys Thr Ser Arg Gly Pro Leu Ala Asp 340 345 350 Ala Leu Pro Gln Ile Thr Asp Glu Leu His Glu Leu Gly Ile Leu Ser 355 360 365 Glu Glu Val Leu Asp Leu Ala Ser Lys Ser Ser Pro Asp Phe Asn Arg 370 375 380 Thr Phe Glu His Ala Phe Asn Gln Asn Met Ala Ser Thr Ser Val Pro 385 390 395 400 Gln Phe Trp Glu Pro Pro Ser Asp Ser Cys Glu Pro Asn Ala Ser Leu 405 410 415 Pro Ser Ser Arg Tyr Leu Asn Asp Phe Glu Glu Leu Lys Pro Leu Gly 420 425 430 Gln Gly Gly Phe Gly His Val Val Leu Cys Lys Asn Lys Leu Asp Gly 435 440 445 Arg Gln Tyr Ala Val Lys Lys Ile Arg Leu Lys Asp Lys Glu Ile Pro 450 455 460 Val Asn Ser Arg Ile Val Arg Glu Val Ala Thr Leu Ser Arg Leu Gln 465 470 475 480 His Gln His Val Val Arg Tyr Tyr Gln Ala Trp Phe Glu Thr Gly Val 485 490 495 Val Asp Pro Phe Ala Gly Ala Asn Trp Gly Ser Lys Thr Ala Gly Ser 500 505 510 Ser Met Phe Ser Tyr Ser Gly Ala Val Ser Thr Glu Ile Pro Glu Gln 515 520 525 Asp Asn Asn Leu Glu Ser Thr Tyr Leu Tyr Ile Gln Met Glu Tyr Cys 530 535 540 Pro Arg Thr Leu Arg Gln Val Phe Glu Ser Tyr Asn His Phe Asp Lys 545 550 555 560 Asp Phe Ala Trp His Leu Ile Arg Gln Ile Val Glu Gly Leu Ala His 565 570 575 Ile His Gly Gln Gly Ile Ile His Arg Asp Phe Thr Pro Asn Asn Ile 580 585 590 Phe Phe Asp Ala Arg Asn Asp Ile Lys Ile Gly Asp Phe Gly Leu Ala 595 600 605 Lys Phe Leu Lys Leu Glu Gln Leu Asp Gln Asp Gly Gly Phe Ser Thr 610 615 620 Asp Val Ala Gly Ser Gly Val Asp Ser Thr Gly Gln Ala Gly Thr Tyr 625 630 635 640 Phe Tyr Thr Ala Pro Glu Ile Glu Gln Asp Trp Pro Lys Ile Asp Glu 645 650 655 Lys Ala Asp Met Tyr Ser Leu Gly Val Val Phe Phe Glu Leu Trp His 660 665 670 Pro Phe Gly Thr Ala Met Glu Arg His Val Ile Leu Thr Asn Leu Lys 675 680 685 Leu Lys Gly Glu Leu Pro Leu Lys Trp Val Asn Glu Phe Pro Glu Gln 690 695 700 Ala Ser Leu Leu Arg Arg Leu Met Ser Pro Ser Pro Ser Asp Arg Pro 705 710 715 720 Ser Ala Thr Glu Leu Leu Lys His Ala Phe Pro Pro Arg Met Glu Ser 725 730 735 Glu Leu Leu Asp Asn Ile Leu Arg Ile Met Gln Thr Ser Glu Asp Ser 740 745 750 Ser Val Tyr Asp Arg Val Val Ser Val Ile Phe Asp Glu Glu Val Leu 755 760 765 Glu Met Lys Ser His Gln Ser Ser Arg Ser Arg Leu Cys Ala Asp Asp 770 775 780 Ser Tyr Ile Gln Tyr Thr Glu Ile Asn Thr Glu Leu Arg Asp Tyr Val 785 790 795 800 Val Glu Ile Thr Lys Glu Val Phe Arg Gln His Cys Ala Lys His Leu 805 810 815 Glu Val Ile Pro Met Arg Leu Leu Ser Asp Cys Pro Gln Phe Ser Arg 820 825 830 Lys Thr Val Lys Leu Leu Thr Asn Gly Gly Asp Met Leu Glu Leu Cys 835 840 845 Tyr Glu Leu Arg Leu Pro Phe Val His Trp Ile Ser Val Asn Gln Lys 850 855 860 Ser Ser Phe Lys Arg Tyr Glu Ile Ser His Val Tyr Arg Arg Ala Ile 865 870 875 880 Gly His Ser Pro Pro Asn Pro Cys Leu Gln Ala Asp Phe Asp Ile Val 885 890 895 Gly Gly Thr Leu Ser Leu Thr Glu Ala Glu Val Leu Lys Val Ile Val 900 905 910 Asp Ile Thr Thr His Ile Phe His Arg Gly Ser Cys Asp Ile His Leu 915 920 925 Asn His Gly Asp Leu Leu Asp Ala Ile Trp Ser Trp Ala Gly Ile Lys 930 935 940 Ala Glu His Arg Arg Lys Val Ala Glu Leu Leu Ser Met Met Gly Ser 945 950 955 960 Leu Arg Pro Gln Ser Ser Glu Arg Lys Leu Lys Trp Val Phe Ile Arg 965 970 975 Arg Gln Leu Leu Gln Glu Leu Lys Leu Pro Glu Ala Val Val Asn Arg 980 985 990 Leu Gln Thr Val Ala Ser Arg Phe Cys Gly Asp Ala Asp Gln Ala Leu 995 1000 1005 Pro Arg Leu Arg Gly Ala Leu Arg Ala Asp Arg Pro Thr Arg Lys 1010 1015 1020 Ala Leu Asp Glu Leu Ser Asn Leu Leu Thr Tyr Leu Arg Val Trp 1025 1030 1035 Arg Ile Glu Glu His Val His Ile Asp Val Leu Met Pro Pro Thr 1040 1045 1050 Glu Ser Tyr His Arg Asn Leu Phe Phe Gln Val Phe Leu Thr Lys 1055 1060 1065 Glu Asn Ser Ser Gly Thr Ser Asn Asp Gly Val Leu Leu Ala Val 1070 1075 1080 Gly Gly Arg Tyr Asp Trp Leu Val Gln Glu Val Cys Asp Arg Glu 1085 1090 1095 His Lys Met Asn Leu Pro Gly Ala Val Gly Val Ser Leu Ala Leu 1100 1105 1110 Glu Thr Ile Phe Gln His Leu Pro Met Asp Leu Arg Pro Ile Arg 1115 1120 1125 Asn Glu Val Ser Thr Ser Val Leu Val Cys Ser Arg Gly Gly Gly 1130 1135 1140 Gly Leu Leu Val Gln Arg Met Glu Leu Val Ala Glu Leu Trp Glu 1145 1150 1155 Lys Ser Ile Lys Ala Glu Phe Val Pro Thr Pro Asp Pro Ser Leu 1160 1165 1170 Thr Glu Gln Tyr Glu Tyr Ala Asn Glu His Glu Ile Lys Cys Leu 1175 1180 1185 Val Ile Ile Thr Glu Ser Gly Val Ala Gln Asn Gln Ile Glu Phe 1190 1195 1200 Val Lys Val Arg His Leu Glu Leu Lys Lys Glu Lys Val Val Gly 1205 1210 1215 Arg Glu Glu Leu Val Lys Phe Leu Leu Asp Ala Met Ala Val Gln 1220 1225 1230 Phe Arg Asn Pro Ser Val Trp Ser 1235 1240 833395DNAArabidopsis thaliana 83ctctagctcc tactttcatt acccaattac tctctcaaca cttctttagt cggcagaaaa 60gatttttttt ttgagaagct tagcttcaaa gggtctttgg aggatgttat gatgttgtta 120ccttgcggtc tgagatctga aaggagtaag tgtttttgtt ttcgttgcag aagaacagag 180agacaagagg tccttctttg acttggttgt ctgaattttc cacttcaaga ttgtttccta 240catctccgga gattgtctgg ctgacgagtc ctttgtttct tcgtcactaa ttcagctctc 300attgtttgta atttctattc ttttagttat tgcatgccct tgattgcagt tccacagttt 360ttgtgaactt cgtgtgactc gtttgctatt tactaatcaa gggtcatact cttagtcact 420ctgtggaatg tctcagaaag tgaagacagt aactaagaag cgtgtgtgtt gactttgaaa 480agaatgagaa tgttcgaaac gagagcaagg gaatggattc tccttgtaaa gcttgtgctt 540ttcactagta tatggcagct tgcttcagct cttggttcaa tgtcttcaat tgcaatttct 600tatggagaag gtggttctgt attctgtggt ctgaagtctg atgggtctca tcttgtggtt 660tgctacggat cgaactcagc aatcctctat gggactcctg gtcatctcca gttcatcggt 720ttaacgggtg gagatgggtt tatgtgtggg cttctgatgc tatctcatca gccttattgt 780tggggaaaca gtgcatttat tcaaatggga gttcctcaac caatgaccaa aggagctgag 840tatttagaag ttagtgctgg tgattaccat ctttgtggtt tgaggaagcc aatagtggga 900agaagaaaga acagcaacat tatttcctct tctcttgttg attgttgggg ttacaatatg 960acaagaaact ttgtctttga taagcagtta cattcgcttt cggctggttc ggagttcaac 1020tgcgcgctgt cctctaaaga taagtcggtt ttctgttggg gagatgagaa tagtagtcaa 1080gtaatcagtt taatccccaa ggaaaaaaag tttcagaaaa ttgcagctgg tggataccat 1140gtttgtggca ttcttgacgg gttggaatcg cgagtgctat gttggggaaa gagcttagag 1200ttcgaagagg aggttacagg gacttctaca gaagaaaaga ttcttgattt accaccaaaa 1260gagccactct tagcagtggt aggtgggaag ttttatgctt gtggaatcaa acgctatgat 1320catagtgcgg tctgttgggg ttttttcgtg aacaggagta cacctgctcc tacaggtatc 1380ggcttttatg atcttgcagc ggggaattac ttcacttgcg gagttctcac agggacttct 1440atgtcacctg tttgttgggg tcttggtttc cctgcttcta tccctttagc tgtctcacca 1500ggactctgta tagacactcc ttgtccacca ggaactcatg aactcagtaa ccaagaaaac 1560tcgccttgca aatttactgg ctctcacatt tgcttgccct gtagcaccag ttgccctcct 1620ggaatgtatc agaaaagcgt atgcacagag agatctgatc aagtttgtgt ttacaactgc 1680tccagttgtt cctcacatga ttgctcctca aactgctctt cttcggctac cagtggaggc 1740aaggaaaaag gaaagttttg gtcactgcag ctacctattg caactgcaga gattggattt 1800gctctatttt tggtagcggt tgtctcgata acagcggctt tatacattag gtacagattg 1860aggaattgta ggtgctcaga aaatgataca aggtcttcta aagattcagc ctttacgaaa 1920gataatggca aaatccgtcc ggatcttgat gagctgcaaa agcgcagaag ggctagagtt 1980ttcacttatg aggaacttga aaaagccgct gatggattca aagaagaatc aatagtgggg 2040aaagggagtt tctcatgtgt gtacaaagga gtactgagag atggaaccac tgttgcagtg 2100aagagagcga taatgtcatc agacaaacag aagaattcaa atgagtttcg cacggagctt 2160gatctgttat caagactcaa ccatgctcat cttcttagcc ttcttggata ctgtgaagaa 2220tgtggagaaa ggcttttagt ttatgagttt atggcacacg gctcactgca caaccatctt 2280catggaaaga acaaggcctt gaaagagcaa ctagattggg tcaaaagagt aacgattgct 2340gtccaagctg ctagaggaat cgaatacttg catggttacg cttgccctcc cgtgattcac 2400cgggatatta aatcatcaaa cattcttata gatgaagaac acaatgctcg agtagctgat 2460tttggtctct ccttacttgg tcctgtcgat agcggctctc ctttggcaga actaccagca 2520ggaactctcg gttaccttga tcccgagtac tatcgacttc actatctcac aaccaaatcc 2580gatgtctaca gctttggagt cctgcttctc gagatcctaa gcggaagaaa agccattgac 2640atgcactacg aagaagggaa catagtagaa tgggcagttc ctttgatcaa agcaggagat 2700ataaacgcac tcttggaccc ggtcttgaaa catccatctg aaatcgaagc tttgaaaaga 2760atcgtgagtg tggcttgcaa atgcgtgaga atgagaggga aagatagacc atcaatggat 2820aaagtgacaa cagcattgga acgagcgctt gcacagctaa tgggaaaccc gagcagtgag 2880cagccaatat taccaacaga agtggttctt gggagcagca gaatgcacaa gaagtcatgg 2940aggatcggtt caaaaaggtc tggttccgag aacacggaat tcagaggcgg atcatggata 3000acattcccga gcgtgacatc atcgcagagg aggaaatcat cggcatctga aggagatgtc 3060gcagaggagg aggatgaagg gaggaagcaa caagaagcat tgaggagtct tgaggaagag 3120atagggccag cttctcctgg acagagcttg ttcttgcatc ataatttctg aaaacaagtg 3180tctgttttct caagtcttta gtaactaatg acatatataa gatattttac tctgatgtat 3240aatgtgttcc ttaaggcagg aaagtaacaa agaggcagag agactcttca agcaagaatg 3300tatcaagttt ttttttcaac taattattac aaagttcttt tgtataagtg aacctggtta 3360tttattattg tactagtggt ttttacctgt tgatt 339584895PRTArabidopsis thaliana 84Met Arg Met Phe Glu Thr Arg Ala Arg Glu Trp Ile Leu Leu Val Lys 1 5 10 15 Leu Val Leu Phe Thr Ser Ile Trp Gln Leu Ala Ser Ala Leu Gly Ser 20 25 30 Met Ser Ser Ile Ala Ile Ser Tyr Gly Glu Gly Gly Ser Val Phe Cys 35 40 45 Gly Leu Lys Ser Asp Gly Ser His Leu Val Val Cys Tyr Gly Ser Asn 50 55 60 Ser Ala Ile Leu Tyr Gly Thr Pro Gly His Leu Gln Phe Ile Gly Leu 65 70 75 80 Thr Gly Gly Asp Gly Phe Met Cys Gly Leu Leu Met Leu Ser His Gln 85 90 95 Pro Tyr Cys Trp Gly Asn Ser Ala Phe Ile Gln Met Gly Val Pro Gln 100 105 110 Pro Met Thr Lys Gly Ala Glu Tyr Leu Glu Val Ser Ala Gly Asp Tyr 115 120 125 His Leu Cys Gly Leu Arg Lys Pro Ile Val Gly Arg Arg Lys Asn Ser 130 135 140 Asn Ile Ile Ser Ser Ser Leu Val Asp Cys Trp Gly Tyr Asn Met Thr 145 150 155 160 Arg Asn Phe Val Phe Asp Lys Gln Leu His Ser Leu Ser Ala Gly Ser 165 170 175 Glu Phe Asn Cys Ala Leu Ser Ser Lys Asp Lys Ser Val Phe Cys Trp 180 185 190 Gly Asp Glu Asn Ser Ser Gln Val Ile Ser Leu Ile Pro Lys Glu Lys 195 200 205 Lys Phe Gln Lys Ile Ala Ala Gly Gly Tyr His Val Cys Gly Ile Leu 210 215 220 Asp Gly Leu Glu Ser Arg Val Leu Cys Trp Gly Lys Ser Leu Glu Phe 225 230 235 240 Glu Glu Glu Val Thr Gly Thr Ser Thr Glu Glu Lys Ile Leu Asp Leu 245 250 255 Pro Pro Lys Glu Pro Leu Leu Ala Val Val Gly Gly Lys Phe Tyr Ala 260 265 270 Cys Gly Ile Lys Arg Tyr Asp His Ser Ala Val Cys Trp Gly Phe Phe 275 280 285 Val Asn Arg Ser Thr Pro Ala Pro Thr Gly Ile Gly Phe Tyr Asp Leu 290 295 300 Ala Ala Gly Asn Tyr Phe Thr Cys Gly Val Leu Thr Gly Thr Ser Met 305 310 315 320 Ser Pro Val Cys Trp Gly Leu Gly Phe Pro Ala Ser Ile Pro Leu Ala 325 330 335 Val Ser Pro Gly Leu Cys Ile Asp Thr Pro Cys Pro Pro Gly Thr His 340 345 350 Glu Leu Ser Asn Gln Glu Asn Ser Pro Cys Lys Phe Thr Gly Ser His 355 360 365 Ile Cys Leu Pro Cys Ser Thr Ser Cys Pro Pro Gly Met Tyr Gln Lys 370 375 380 Ser Val Cys Thr Glu Arg Ser Asp Gln Val Cys Val Tyr Asn Cys Ser 385 390 395 400 Ser Cys Ser Ser His Asp Cys Ser Ser Asn Cys Ser Ser Ser Ala Thr 405 410 415 Ser Gly Gly Lys Glu Lys Gly Lys Phe Trp Ser Leu Gln Leu Pro Ile 420 425 430 Ala Thr Ala Glu Ile Gly Phe Ala Leu Phe Leu Val Ala Val Val Ser 435 440 445 Ile Thr Ala Ala Leu Tyr Ile Arg Tyr Arg Leu Arg Asn Cys Arg Cys 450 455 460 Ser Glu Asn Asp Thr Arg Ser Ser Lys Asp Ser Ala Phe Thr Lys Asp 465 470 475 480 Asn Gly Lys Ile Arg Pro Asp Leu Asp Glu Leu Gln Lys Arg Arg Arg 485 490 495 Ala Arg Val Phe Thr Tyr Glu Glu Leu Glu Lys Ala Ala Asp Gly Phe 500 505 510 Lys Glu Glu Ser Ile Val Gly Lys Gly Ser Phe Ser Cys Val Tyr Lys 515 520 525 Gly Val Leu Arg Asp Gly Thr Thr Val Ala Val Lys Arg Ala Ile Met 530 535 540 Ser Ser Asp Lys Gln Lys Asn Ser Asn Glu Phe Arg Thr Glu Leu Asp 545 550 555 560 Leu Leu Ser Arg Leu Asn His Ala His Leu Leu Ser Leu Leu Gly Tyr 565 570 575 Cys Glu Glu Cys Gly Glu Arg Leu Leu Val Tyr Glu Phe Met Ala His 580 585 590 Gly Ser Leu His Asn His Leu His Gly Lys Asn Lys Ala Leu Lys Glu 595 600 605 Gln Leu Asp Trp Val Lys Arg Val Thr Ile Ala Val Gln Ala Ala Arg 610 615 620 Gly Ile Glu Tyr Leu His Gly Tyr Ala Cys Pro Pro Val Ile His Arg 625 630 635 640 Asp Ile Lys Ser Ser Asn Ile Leu Ile Asp Glu Glu His Asn Ala Arg 645 650 655 Val Ala Asp Phe Gly Leu Ser Leu Leu Gly Pro Val Asp Ser Gly Ser 660 665 670 Pro Leu Ala Glu Leu Pro Ala Gly Thr Leu Gly Tyr Leu Asp Pro Glu 675 680 685 Tyr Tyr Arg Leu His Tyr Leu Thr Thr Lys Ser Asp Val Tyr Ser Phe 690 695 700

Gly Val Leu Leu Leu Glu Ile Leu Ser Gly Arg Lys Ala Ile Asp Met 705 710 715 720 His Tyr Glu Glu Gly Asn Ile Val Glu Trp Ala Val Pro Leu Ile Lys 725 730 735 Ala Gly Asp Ile Asn Ala Leu Leu Asp Pro Val Leu Lys His Pro Ser 740 745 750 Glu Ile Glu Ala Leu Lys Arg Ile Val Ser Val Ala Cys Lys Cys Val 755 760 765 Arg Met Arg Gly Lys Asp Arg Pro Ser Met Asp Lys Val Thr Thr Ala 770 775 780 Leu Glu Arg Ala Leu Ala Gln Leu Met Gly Asn Pro Ser Ser Glu Gln 785 790 795 800 Pro Ile Leu Pro Thr Glu Val Val Leu Gly Ser Ser Arg Met His Lys 805 810 815 Lys Ser Trp Arg Ile Gly Ser Lys Arg Ser Gly Ser Glu Asn Thr Glu 820 825 830 Phe Arg Gly Gly Ser Trp Ile Thr Phe Pro Ser Val Thr Ser Ser Gln 835 840 845 Arg Arg Lys Ser Ser Ala Ser Glu Gly Asp Val Ala Glu Glu Glu Asp 850 855 860 Glu Gly Arg Lys Gln Gln Glu Ala Leu Arg Ser Leu Glu Glu Glu Ile 865 870 875 880 Gly Pro Ala Ser Pro Gly Gln Ser Leu Phe Leu His His Asn Phe 885 890 895 852198DNAArabidopsis thaliana 85ggtttcagaa aactaagtat ggctcaggag gaaaaaaact tgttgcttga agataatctg 60aaatcattaa tatgcaactt catgccttgt tgctctataa atttaatatc gtcacatgtc 120ctgttgtttc tcctaatgat ttcttgtttg gaacctaatc atgtgttgtt gtatctatct 180aacaattgca gaaaaataat ttgaacccgg taagttttgg ggtccctggg aatcaagata 240gttcagcgac aacttctaga gcaccagcga ttagaacatg gaatgtgaaa agaggttttg 300gtgaatttat ttctgtttct tatagatttc tcttgtctca ttttgttata ccatttatga 360agactggtta aatgttattg cagattctta tggtaacaaa ttggatgtac ctagagagga 420ttatgttcaa ggtgcagtgg ctagagaacc aggcattatc cttgggaata atacaccgta 480tcaggttcga ttcacttttt ttgaaatatg tatttgtatg aaagtgaagt cggcttacaa 540ccactaggat gagtcagctg tagttttcac taagttggtt ttcattgagc aaattgataa 600aatccgctat tttcgccttt atggtagatg gtacaatagt cataccgcta taatgtacga 660tagtttctca aagaaattta ttgaaatagg tgcatcaatg tttttgtcct taatactctg 720ccaacttcta acgtctctta aatgtttcta tggaaaatgc aggaaagaaa tggaaatgat 780ggtttgattg attttacatc tgctcctcct tatatgagga aattgaatga aaagggccca 840acagcaaact ccaagagagc agattctcgg ctagaaaata gaatgagaga tgtagacagt 900ggtgataatc ctagttcgtc ttcgtttgag tttcatgtca gtttggaaga gggtattagc 960ctttcagttg atctaaattt taatccatca gattggatca atagcatgag agatgaggtc 1020aatgtatgtg atagcatgcg ccgcagaaaa tccccacatt ctgatcttgg cattacagag 1080tgtaagaaac agaagagttc agggcaagac acggatggtc atgtaaggag agaatcatct 1140ttaagtccgc caatgaaaga caatgctcac ttaccttctg atcaccatcc caatggtgaa 1200cgatctctag catcatctgc catagaacca tgcaacagaa tcaaagagag ctcagacact 1260tgcaaggaaa aaagcgggct taacttgtcc atacctgatt cttcaggacc ttgccagatt 1320gcatcatctt gtgtcgaatc atatagtaaa agctgctgtg taaatccagt tgacttggac 1380tgtattattc ctccagggaa gaagttggca agtgaatctg atatggttgc tgcagaacag 1440aatcattcag ctggtgatct ccttgtagaa attccgaaaa atccatccat ggaaagcttt 1500caaatagtcg gaaactcaag tactgttata tgtccacggg gagctggctc tgaattatca 1560tcatcagaag cagaggccta tcactcaaac cagccgtgtt ctcctcgtaa gaccagtaga 1620tcctcgacta tctcttctcc agagttcatc atcgatagag agtctactag ttattctgag 1680tcattcaagt tccgttgcaa tggaggcaaa agtttgccac caaacacgga ggagcaggaa 1740aagagcgaag ttttaagtga gcaggcgcgg tcagagtgac ttgtttgaag ggtgaagcat 1800ccattatgtt gtataatatt gttcaagtaa tagaaaaatg gctatataca tgatgtagag 1860atagtcaaga aatggccttt cctctaacca agaggtttct actgctgctt tttttttgag 1920gtatgatttt gtgctctctc tataaatata cgattgatac aacaaagagt aatgaagact 1980ttatttttgg ttgttggctt gcacttaggc catcaaacac atggagatga gagcattgag 2040tcaaatatta ctgaaggttt tttgcaatga cctagggaga agtcagtttt taggtcagta 2100tgcaattctt tttggttcgt cttttattat ttgtaaggct gtcttgtctg taaacgcaat 2160tctgtgttgt taaacacatc attcataaac caatcttg 219886345PRTArabidopsis thaliana 86Met Phe Leu Trp Lys Met Gln Glu Arg Asn Gly Asn Asp Gly Leu Ile 1 5 10 15 Asp Phe Thr Ser Ala Pro Pro Tyr Met Arg Lys Leu Asn Glu Lys Gly 20 25 30 Pro Thr Ala Asn Ser Lys Arg Ala Asp Ser Arg Leu Glu Asn Arg Met 35 40 45 Arg Asp Val Asp Ser Gly Asp Asn Pro Ser Ser Ser Ser Phe Glu Phe 50 55 60 His Val Ser Leu Glu Glu Gly Ile Ser Leu Ser Val Asp Leu Asn Phe 65 70 75 80 Asn Pro Ser Asp Trp Ile Asn Ser Met Arg Asp Glu Val Asn Val Cys 85 90 95 Asp Ser Met Arg Arg Arg Lys Ser Pro His Ser Asp Leu Gly Ile Thr 100 105 110 Glu Cys Lys Lys Gln Lys Ser Ser Gly Gln Asp Thr Asp Gly His Val 115 120 125 Arg Arg Glu Ser Ser Leu Ser Pro Pro Met Lys Asp Asn Ala His Leu 130 135 140 Pro Ser Asp His His Pro Asn Gly Glu Arg Ser Leu Ala Ser Ser Ala 145 150 155 160 Ile Glu Pro Cys Asn Arg Ile Lys Glu Ser Ser Asp Thr Cys Lys Glu 165 170 175 Lys Ser Gly Leu Asn Leu Ser Ile Pro Asp Ser Ser Gly Pro Cys Gln 180 185 190 Ile Ala Ser Ser Cys Val Glu Ser Tyr Ser Lys Ser Cys Cys Val Asn 195 200 205 Pro Val Asp Leu Asp Cys Ile Ile Pro Pro Gly Lys Lys Leu Ala Ser 210 215 220 Glu Ser Asp Met Val Ala Ala Glu Gln Asn His Ser Ala Gly Asp Leu 225 230 235 240 Leu Val Glu Ile Pro Lys Asn Pro Ser Met Glu Ser Phe Gln Ile Val 245 250 255 Gly Asn Ser Ser Thr Val Ile Cys Pro Arg Gly Ala Gly Ser Glu Leu 260 265 270 Ser Ser Ser Glu Ala Glu Ala Tyr His Ser Asn Gln Pro Cys Ser Pro 275 280 285 Arg Lys Thr Ser Arg Ser Ser Thr Ile Ser Ser Pro Glu Phe Ile Ile 290 295 300 Asp Arg Glu Ser Thr Ser Tyr Ser Glu Ser Phe Lys Phe Arg Cys Asn 305 310 315 320 Gly Gly Lys Ser Leu Pro Pro Asn Thr Glu Glu Gln Glu Lys Ser Glu 325 330 335 Val Leu Ser Glu Gln Ala Arg Ser Glu 340 345 871768DNAArabidopsis thaliana 87gttctgtctg cttaggtccc tgcagagatt tcgaaatcgc tacttccaat ttctccagaa 60actttctttc tcggcaaaat tcccggaaaa agccactcga tcagcagatg gtcaggaagg 120aagatgtgga tttctattgc ggattttcaa ggaaagagct tcagagttta tgcaagaagt 180ataatttgcc tgccaataga tcaagttccg atatggctga atcattggct tcttacttcg 240agaaaaataa tttgaacccg gtaagttttg gggtccctgg gaatcaagat agttcagcga 300caacttctag agcaccagcg attagaacat ggaatgtgaa aagagattct tatggtaaca 360aattggatgt acctagagag gattatgttc aaggtgcagt ggctagagaa ccaggcatta 420tccttgggaa taatacaccg tatcaggaaa gaaatggaaa tgatggtttg attgatttta 480catctgctcc tccttatatg aggaaattga atgaaaaggg cccaacagca aactccaaga 540gagcagattc tcggctagaa aatagaatga gagatgtaga cagtggtgat aatcctagtt 600cgtcttcgtt tgagtttcat gtcagtttgg aagagggtat tagcctttca gttgatctaa 660attttaatcc atcagattgg atcaatagca tgagagatga ggtcaatgta tgtgatagca 720tgcgccgcag aaaatcccca cattctgatc ttggcattac agagtgtaag aaacagaaga 780gttcagggca agacacggat ggtcatgtaa ggagagaatc atctttaagt ccgccaatga 840aagacaatgc tcacttacct tctgatcacc atcccaatgg tgaacgatct ctagcatcat 900ctgccataga accatgcaac agaatcaaag agagctcaga cacttgcaag gaaaaaagcg 960ggcttaactt gtccatacct gattcttcag gaccttgcca gattgcatca tcttgtgtcg 1020aatcatatag taaaagctgc tgtgtaaatc cagttgactt ggactgtatt attcctccag 1080ggaagaagtt ggcaagtgaa tctgatatgg ttgctgcaga acagaatcat tcagctggtg 1140atctccttgt agaaattccg aaaaatccat ccatggaaag ctttcaaata gtcggaaact 1200caagtactgt tatatgtcca cggggagctg gctctgaatt atcatcatca gaagcagagg 1260cctatcactc aaaccagccg tgttctcctc gtaagaccag tagatcctcg actatctctt 1320ctccagagtt catcatcgat agagagtcta ctagttattc tgagtcattc aagttccgtt 1380gcaatggagg caaaagtttg ccaccaaaca cggaggagca ggaaaagagc gaagttttaa 1440gtgagcaggc gcggtcagag tgacttgttt gaagggtgaa gcatccatta tgttgtataa 1500tattgttcaa gtaatagaaa aatggctata tacatgatgt agagatagtc aagaaatggc 1560ctttcctcta accaagaggt ttctactgct gctttttttt tgaggccatc aaacacatgg 1620agatgagagc attgagtcaa atattactga aggttttttg caatgaccta gggagaagtc 1680agtttttagg tcagtatgca attctttttg gttcgtcttt tattatttgt aaggctgtct 1740tgtctgtaaa cgcaattctg tgttgtta 176888451PRTArabidopsis thaliana 88Met Val Arg Lys Glu Asp Val Asp Phe Tyr Cys Gly Phe Ser Arg Lys 1 5 10 15 Glu Leu Gln Ser Leu Cys Lys Lys Tyr Asn Leu Pro Ala Asn Arg Ser 20 25 30 Ser Ser Asp Met Ala Glu Ser Leu Ala Ser Tyr Phe Glu Lys Asn Asn 35 40 45 Leu Asn Pro Val Ser Phe Gly Val Pro Gly Asn Gln Asp Ser Ser Ala 50 55 60 Thr Thr Ser Arg Ala Pro Ala Ile Arg Thr Trp Asn Val Lys Arg Asp 65 70 75 80 Ser Tyr Gly Asn Lys Leu Asp Val Pro Arg Glu Asp Tyr Val Gln Gly 85 90 95 Ala Val Ala Arg Glu Pro Gly Ile Ile Leu Gly Asn Asn Thr Pro Tyr 100 105 110 Gln Glu Arg Asn Gly Asn Asp Gly Leu Ile Asp Phe Thr Ser Ala Pro 115 120 125 Pro Tyr Met Arg Lys Leu Asn Glu Lys Gly Pro Thr Ala Asn Ser Lys 130 135 140 Arg Ala Asp Ser Arg Leu Glu Asn Arg Met Arg Asp Val Asp Ser Gly 145 150 155 160 Asp Asn Pro Ser Ser Ser Ser Phe Glu Phe His Val Ser Leu Glu Glu 165 170 175 Gly Ile Ser Leu Ser Val Asp Leu Asn Phe Asn Pro Ser Asp Trp Ile 180 185 190 Asn Ser Met Arg Asp Glu Val Asn Val Cys Asp Ser Met Arg Arg Arg 195 200 205 Lys Ser Pro His Ser Asp Leu Gly Ile Thr Glu Cys Lys Lys Gln Lys 210 215 220 Ser Ser Gly Gln Asp Thr Asp Gly His Val Arg Arg Glu Ser Ser Leu 225 230 235 240 Ser Pro Pro Met Lys Asp Asn Ala His Leu Pro Ser Asp His His Pro 245 250 255 Asn Gly Glu Arg Ser Leu Ala Ser Ser Ala Ile Glu Pro Cys Asn Arg 260 265 270 Ile Lys Glu Ser Ser Asp Thr Cys Lys Glu Lys Ser Gly Leu Asn Leu 275 280 285 Ser Ile Pro Asp Ser Ser Gly Pro Cys Gln Ile Ala Ser Ser Cys Val 290 295 300 Glu Ser Tyr Ser Lys Ser Cys Cys Val Asn Pro Val Asp Leu Asp Cys 305 310 315 320 Ile Ile Pro Pro Gly Lys Lys Leu Ala Ser Glu Ser Asp Met Val Ala 325 330 335 Ala Glu Gln Asn His Ser Ala Gly Asp Leu Leu Val Glu Ile Pro Lys 340 345 350 Asn Pro Ser Met Glu Ser Phe Gln Ile Val Gly Asn Ser Ser Thr Val 355 360 365 Ile Cys Pro Arg Gly Ala Gly Ser Glu Leu Ser Ser Ser Glu Ala Glu 370 375 380 Ala Tyr His Ser Asn Gln Pro Cys Ser Pro Arg Lys Thr Ser Arg Ser 385 390 395 400 Ser Thr Ile Ser Ser Pro Glu Phe Ile Ile Asp Arg Glu Ser Thr Ser 405 410 415 Tyr Ser Glu Ser Phe Lys Phe Arg Cys Asn Gly Gly Lys Ser Leu Pro 420 425 430 Pro Asn Thr Glu Glu Gln Glu Lys Ser Glu Val Leu Ser Glu Gln Ala 435 440 445 Arg Ser Glu 450 891817DNAArabidopsis thaliana 89ctttctcggc aaaattcccg gaaaaagcca ctcgatcagc agatggtcag gaaggaagat 60gtggatttct attgcggatt ttcaaggaaa gagcttcaga gtttatgcaa gaagtataat 120ttgcctgcca atagatcaag ttccgatatg gctgaatcat tggcttctta cttcgagaaa 180aataatttga acccggtaag ttttggggtc cctgggaatc aagatagttc agcgacaact 240tctagagcac cagcgattag aacatggaat gtgaaaagag attcttatgg taacaaattg 300gatgtaccta gagaggatta tgttcaaggt gcagtggcta gagaaccagg cattatcctt 360gggaataata caccgtatca ggaaagaaat ggaaatgatg gtttgattga ttttacatct 420gctcctcctt atatgaggaa attgaatgaa aagggcccaa cagcaaactc caagagagca 480gattctcggc tagaaaatag aatgagagat gtagacagtg gtgataatcc tagttcgtct 540tcgtttgagt ttcatgtcag tttggaagag ggtattagcc tttcagttga tctaaatttt 600aatccatcag attggatcaa tagcatgaga gatgaggtca atgtatgtga tagcatgcgc 660cgcagaaaat ccccacattc tgatcttggc attacagagt gtaagaaaca gaagagttca 720gggcaagaca cggatggtca tgtaaggaga gaatcatctt taagtccgcc aatgaaagac 780aatgctcact taccttctga tcaccatccc aatggtgaac gatctctagc atcatctgcc 840atagaaccat gcaacagaat caaagagagc tcagacactt gcaaggaaaa aagcgggctt 900aacttgtcca tacctgattc ttcaggacct tgccagattg catcatcttg tgtcgaatca 960tatagtaaaa gctgctgtgt aaatccagtt gacttggact gtattattcc tccagggaag 1020aagttggcaa gtgaatctga tatggttgct gcagaacaga atcattcagc tggtgatctc 1080cttgtagaaa ttccgaaaaa tccatccatg gaaagctttc aaatagtcgg aaactcaagt 1140actgttatat gtccacgggg agctggctct gaattatcat catcagaagc agaggcctat 1200cactcaaacc agccgtgttc tcctcgtaag accagtagat cctcgactat ctcttctcca 1260gagttcatca tcgatagaga gtctactagt tattctgagt cattcaagtt ccgttgcaat 1320ggaggcaaaa gtttgccacc aaacacggag gagcaggaaa agagcgaagt tttaagtgag 1380caggcgcggt cagagtgact tgtttgaagg gtgaagcatc cattatgttg tataatattg 1440ttcaagtaat agaaaaatgg ctatatacat gatgtagaga tagtcaagaa atggcctttc 1500ctctaaccaa gaggtttcta ctgctgcttt ttttttgagg tatgattttg tgctctctct 1560ataaatatac gattgataca acaaagagta atgaagactt tatttttggt tgttggcttg 1620cacttaggcc atcaaacaca tggagatgag agcattgagt caaatattac tgaaggtttt 1680ttgcaatgac ctagggagaa gtcagttttt aggtcagtat gcaattcttt ttggttcgtc 1740ttttattatt tgtaaggctg tcttgtctgt aaacgcaatt ctgtgttgtt aaacacatca 1800ttcataaacc aatcttg 181790451PRTArabidopsis thaliana 90Met Val Arg Lys Glu Asp Val Asp Phe Tyr Cys Gly Phe Ser Arg Lys 1 5 10 15 Glu Leu Gln Ser Leu Cys Lys Lys Tyr Asn Leu Pro Ala Asn Arg Ser 20 25 30 Ser Ser Asp Met Ala Glu Ser Leu Ala Ser Tyr Phe Glu Lys Asn Asn 35 40 45 Leu Asn Pro Val Ser Phe Gly Val Pro Gly Asn Gln Asp Ser Ser Ala 50 55 60 Thr Thr Ser Arg Ala Pro Ala Ile Arg Thr Trp Asn Val Lys Arg Asp 65 70 75 80 Ser Tyr Gly Asn Lys Leu Asp Val Pro Arg Glu Asp Tyr Val Gln Gly 85 90 95 Ala Val Ala Arg Glu Pro Gly Ile Ile Leu Gly Asn Asn Thr Pro Tyr 100 105 110 Gln Glu Arg Asn Gly Asn Asp Gly Leu Ile Asp Phe Thr Ser Ala Pro 115 120 125 Pro Tyr Met Arg Lys Leu Asn Glu Lys Gly Pro Thr Ala Asn Ser Lys 130 135 140 Arg Ala Asp Ser Arg Leu Glu Asn Arg Met Arg Asp Val Asp Ser Gly 145 150 155 160 Asp Asn Pro Ser Ser Ser Ser Phe Glu Phe His Val Ser Leu Glu Glu 165 170 175 Gly Ile Ser Leu Ser Val Asp Leu Asn Phe Asn Pro Ser Asp Trp Ile 180 185 190 Asn Ser Met Arg Asp Glu Val Asn Val Cys Asp Ser Met Arg Arg Arg 195 200 205 Lys Ser Pro His Ser Asp Leu Gly Ile Thr Glu Cys Lys Lys Gln Lys 210 215 220 Ser Ser Gly Gln Asp Thr Asp Gly His Val Arg Arg Glu Ser Ser Leu 225 230 235 240 Ser Pro Pro Met Lys Asp Asn Ala His Leu Pro Ser Asp His His Pro 245 250 255 Asn Gly Glu Arg Ser Leu Ala Ser Ser Ala Ile Glu Pro Cys Asn Arg 260 265 270 Ile Lys Glu Ser Ser Asp Thr Cys Lys Glu Lys Ser Gly Leu Asn Leu 275 280 285 Ser Ile Pro Asp Ser Ser Gly Pro Cys Gln Ile Ala Ser Ser Cys Val 290 295 300 Glu Ser Tyr Ser Lys Ser Cys Cys Val Asn Pro Val Asp Leu Asp Cys 305 310 315 320 Ile Ile Pro Pro Gly Lys Lys Leu Ala Ser Glu Ser Asp Met Val Ala 325 330 335 Ala Glu Gln Asn His Ser Ala Gly Asp Leu Leu Val Glu Ile Pro Lys 340 345 350 Asn Pro Ser Met Glu Ser Phe Gln Ile Val Gly Asn Ser Ser Thr Val 355 360 365 Ile Cys Pro Arg Gly Ala Gly Ser Glu Leu Ser Ser Ser Glu Ala Glu 370 375 380 Ala Tyr His Ser Asn Gln Pro Cys Ser Pro Arg

Lys Thr Ser Arg Ser 385 390 395 400 Ser Thr Ile Ser Ser Pro Glu Phe Ile Ile Asp Arg Glu Ser Thr Ser 405 410 415 Tyr Ser Glu Ser Phe Lys Phe Arg Cys Asn Gly Gly Lys Ser Leu Pro 420 425 430 Pro Asn Thr Glu Glu Gln Glu Lys Ser Glu Val Leu Ser Glu Gln Ala 435 440 445 Arg Ser Glu 450 91768DNAArabidopsis thaliana 91aagttcctct gtataccaaa ctatcaaaaa aactctctcc atttctgttc tcaacaaagc 60caagagttat ggtgagagtc tttcttctct acaacctctt taactccttt cttctttgtt 120tagttcccaa gaagcttaga gttttcttcc ctccttcttg gtacatcgac gacaagaacc 180caccaccgcc tgatgaatcg gaaactgaat ctccggtaga tctaaaacga gtgtttcaga 240tgttcgacaa gaacggagat ggacgcatca caaaggaaga gctgaacgat tctctagaga 300atctaggaat ctttatgcct gacaaagatc tgatccagat gatccagaag atggatgcaa 360atggagatgg gtgtgtagac ataaacgagt ttgagtctct ttatggttcg attgtggagg 420aaaaggagga aggggacatg agagacgcgt tcaatgtgtt tgatcaagac ggtgatggat 480ttatcactgt tgaggagttg aattctgtga tgacttcctt ggggctcaag caaggtaaaa 540ccctagaatg ttgtaaagag atgattatgc aagtggatga agatggagat ggtagagtca 600attacaagga attccttcag atgatgaaaa gtggtgactt tagcaataga tcatgagttt 660attctgacat ggagaagaag gaccaatata tttacctcta gtcctctact atatatgatt 720aatgtatcag ctttctccaa gttaagaaat ttgggcaggg atcgaatc 76892195PRTArabidopsis thaliana 92Met Val Arg Val Phe Leu Leu Tyr Asn Leu Phe Asn Ser Phe Leu Leu 1 5 10 15 Cys Leu Val Pro Lys Lys Leu Arg Val Phe Phe Pro Pro Ser Trp Tyr 20 25 30 Ile Asp Asp Lys Asn Pro Pro Pro Pro Asp Glu Ser Glu Thr Glu Ser 35 40 45 Pro Val Asp Leu Lys Arg Val Phe Gln Met Phe Asp Lys Asn Gly Asp 50 55 60 Gly Arg Ile Thr Lys Glu Glu Leu Asn Asp Ser Leu Glu Asn Leu Gly 65 70 75 80 Ile Phe Met Pro Asp Lys Asp Leu Ile Gln Met Ile Gln Lys Met Asp 85 90 95 Ala Asn Gly Asp Gly Cys Val Asp Ile Asn Glu Phe Glu Ser Leu Tyr 100 105 110 Gly Ser Ile Val Glu Glu Lys Glu Glu Gly Asp Met Arg Asp Ala Phe 115 120 125 Asn Val Phe Asp Gln Asp Gly Asp Gly Phe Ile Thr Val Glu Glu Leu 130 135 140 Asn Ser Val Met Thr Ser Leu Gly Leu Lys Gln Gly Lys Thr Leu Glu 145 150 155 160 Cys Cys Lys Glu Met Ile Met Gln Val Asp Glu Asp Gly Asp Gly Arg 165 170 175 Val Asn Tyr Lys Glu Phe Leu Gln Met Met Lys Ser Gly Asp Phe Ser 180 185 190 Asn Arg Ser 195 93447DNAArabidopsis thaliana 93atgccgatat tccagtggct taaacggtgt ctctgtggag acacaaacat aactattgat 60caggcaatag ctttggttga tgaagagatc gccaacttgc gaaaattgga gcgagggtat 120caaactaata tccgcaacgc agaaaatgcc agagatcaaa ctaatgtcca gatagaaagg 180gacagcttca acgatactat tcgactttta caagcagagt gtaatctcat caacctagag 240atcccaaccc tcaatgaaga gaaatttgcg attacaaggt tgaaatcagc aaaacatttc 300tttggtgctg ttagttcgct caaggaaggt aaagccctag agtgttgtaa agaaatgatt 360aagcaagtgg atgaagatgg acatggtaga gtcgattaca aggagtttct tcagatgatg 420aaaactggtg actttagcaa tagatga 44794148PRTArabidopsis thaliana 94Met Pro Ile Phe Gln Trp Leu Lys Arg Cys Leu Cys Gly Asp Thr Asn 1 5 10 15 Ile Thr Ile Asp Gln Ala Ile Ala Leu Val Asp Glu Glu Ile Ala Asn 20 25 30 Leu Arg Lys Leu Glu Arg Gly Tyr Gln Thr Asn Ile Arg Asn Ala Glu 35 40 45 Asn Ala Arg Asp Gln Thr Asn Val Gln Ile Glu Arg Asp Ser Phe Asn 50 55 60 Asp Thr Ile Arg Leu Leu Gln Ala Glu Cys Asn Leu Ile Asn Leu Glu 65 70 75 80 Ile Pro Thr Leu Asn Glu Glu Lys Phe Ala Ile Thr Arg Leu Lys Ser 85 90 95 Ala Lys His Phe Phe Gly Ala Val Ser Ser Leu Lys Glu Gly Lys Ala 100 105 110 Leu Glu Cys Cys Lys Glu Met Ile Lys Gln Val Asp Glu Asp Gly His 115 120 125 Gly Arg Val Asp Tyr Lys Glu Phe Leu Gln Met Met Lys Thr Gly Asp 130 135 140 Phe Ser Asn Arg 145 952627DNAArabidopsis thaliana 95aacggaatat tttttttctg ggagctgaaa atcgttggtg acgatggcgg attctctttc 60tagggtttac ggaactctgt ttagtggtgt taatatatct ctcttctcgg atccaccgtt 120gaaaaccccc tgaagagtgt ttttttttcc gggtttaagg tcttttacgt ttcgtttttt 180cttgagattt cgtcttccgc tgtgagtttc tgttctcgcg gcgagttttt gtgtagatct 240gagggttttc aaggcaagag aaagtgtcgg tgatgtcgat tttctcactc gcgagctctt 300ctgattcaca aagagatgac ctaataatgg cgttgaaggc ggtggttatt gtatattgtg 360tggtttctct cgtcagtgtt caattagctg atgctcaaca tgaaggactg ccagtttcac 420caacgttatc accttcaact tcaccagtta tcactgatct gcccctacca gctgaatttc 480cgcggtttca cagaaagtat ttcgcaccac aacaagcaga agcacctcag cattctcccc 540cttatagtcg tttggtcgct tctgatcatc cccctaccag ctcacatttc tccaaacctt 600ccatgaaaag gaatgctcag tctcctggag ccggcttggc tgatattgct ccagcacaat 660ctagcaatgg tgttcttcct gatgccttaa ctcagccacc tttgtcgccc tccatttcaa 720attgttgcaa atcagatatg gtgcttaaac gaagaagtat tggttgccac tgcgtgtatc 780ctataaaact ggacatcctt ctcttgaatg tttcagaaac tcctagttgg aacatgttct 840tgaacgaatt tgctacccag cttggtctcc tacctcacca aatcgagctg attaacttct 900atgtgctaag cttatcaagg atgaacatat cgatggatat cacccctcat tctggaatta 960gtttctcagc tagtcaggca tccgcaataa actcttccct tatcagccac aagattcaat 1020ttagccctac tttggtggga gattacaaac ttctaaacct tacttggttt gaggcccctg 1080caccttcgca agcacctcta gtggcttctt cacctcataa agcaccatca caaggatcct 1140cagcaactac gtcagtaaga tctccaggga aaaagaggca tcccaatctt attcttatct 1200tttctatagc cgctggtgtg cttatacttg ccataatcac tgtacttgtt atttgttccc 1260gcgcactccg agaagagaaa gctccagatc ctcacaaaga agctgtaaaa ccaaggaacc 1320tggacgctgg ttcatttggg ggatctcttc ctcacccagc aagtacacgg tttctgtcat 1380atgaagaact caaagaggca actagcaatt ttgaatctgc tagcattcta ggagaaggtg 1440ggtttggcaa ggtttacaga ggcatcttag ccgatggtac tgctgtagcg attaagaagc 1500tcacaagtgg tgggccacaa ggtgataaag aattccaggt ggagattgat atgcttagcc 1560gtcttcatca tcgtaatctt gtgaaacttg tgggttacta tagtagtcga gattcttctc 1620agcacctact ttgttatgag cttgttccaa atggcagcct cgaggcttgg ctccatgggc 1680ctctcgggtt gaactgtcct cttgattggg acaccagaat gaagattgca cttgatgctg 1740caagaggact tgcatacctt catgaagact cgcaaccctc cgttatacac agagatttta 1800aagcctctaa tatactcctt gaaaacaact tcaacgccaa agttgcagat tttggcctag 1860ccaaacaagc tcctgaaggc aggggtaatc acttatctac tcgtgttatg ggcacatttg 1920gatatgttgc gcctgaatat gcaatgacgg gacacctact cgtcaagagt gatgtttata 1980gttacggtgt ggtccttctc gaattgttaa ctggtagaaa acctgtggat atgtcacaac 2040cttcaggcca agaaaatctc gtcacttgga caaggccagt tttaagagac aaagaccggt 2100tagaagaact agtcgattca agacttgaag gaaaataccc gaaagaagat ttcataagag 2160tatgcacaat cgctgcagct tgtgttgcac ctgaagctag ccagagacca acgatgggcg 2220aagtggttca gtcacttaaa atggttcaac gggtggttga gtatcaagac ccggttttaa 2280acacttcaaa taaagctcgt cctaaccgga gacaatcatc agctacgttc gagtcagaag 2340taacctcttc tatgttctct tctggtcctt attctggtct aagcgctttt gatcatgaaa 2400atattacacg aacaactgtt ttctcagaag atcttcacga aggccgatga tagaagccag 2460ggttttcttc tttttatttg tttttctccc acttacggtg agaaaatttc caccagagaa 2520gcttttgagt ttgggacatt attacagctc tttggatttt ggattctcct ttattggagg 2580atagaatttt gtatatattt ttgcgttaat taattaatat ttgccac 262796725PRTArabidopsis thaliana 96Met Ser Ile Phe Ser Leu Ala Ser Ser Ser Asp Ser Gln Arg Asp Asp 1 5 10 15 Leu Ile Met Ala Leu Lys Ala Val Val Ile Val Tyr Cys Val Val Ser 20 25 30 Leu Val Ser Val Gln Leu Ala Asp Ala Gln His Glu Gly Leu Pro Val 35 40 45 Ser Pro Thr Leu Ser Pro Ser Thr Ser Pro Val Ile Thr Asp Leu Pro 50 55 60 Leu Pro Ala Glu Phe Pro Arg Phe His Arg Lys Tyr Phe Ala Pro Gln 65 70 75 80 Gln Ala Glu Ala Pro Gln His Ser Pro Pro Tyr Ser Arg Leu Val Ala 85 90 95 Ser Asp His Pro Pro Thr Ser Ser His Phe Ser Lys Pro Ser Met Lys 100 105 110 Arg Asn Ala Gln Ser Pro Gly Ala Gly Leu Ala Asp Ile Ala Pro Ala 115 120 125 Gln Ser Ser Asn Gly Val Leu Pro Asp Ala Leu Thr Gln Pro Pro Leu 130 135 140 Ser Pro Ser Ile Ser Asn Cys Cys Lys Ser Asp Met Val Leu Lys Arg 145 150 155 160 Arg Ser Ile Gly Cys His Cys Val Tyr Pro Ile Lys Leu Asp Ile Leu 165 170 175 Leu Leu Asn Val Ser Glu Thr Pro Ser Trp Asn Met Phe Leu Asn Glu 180 185 190 Phe Ala Thr Gln Leu Gly Leu Leu Pro His Gln Ile Glu Leu Ile Asn 195 200 205 Phe Tyr Val Leu Ser Leu Ser Arg Met Asn Ile Ser Met Asp Ile Thr 210 215 220 Pro His Ser Gly Ile Ser Phe Ser Ala Ser Gln Ala Ser Ala Ile Asn 225 230 235 240 Ser Ser Leu Ile Ser His Lys Ile Gln Phe Ser Pro Thr Leu Val Gly 245 250 255 Asp Tyr Lys Leu Leu Asn Leu Thr Trp Phe Glu Ala Pro Ala Pro Ser 260 265 270 Gln Ala Pro Leu Val Ala Ser Ser Pro His Lys Ala Pro Ser Gln Gly 275 280 285 Ser Ser Ala Thr Thr Ser Val Arg Ser Pro Gly Lys Lys Arg His Pro 290 295 300 Asn Leu Ile Leu Ile Phe Ser Ile Ala Ala Gly Val Leu Ile Leu Ala 305 310 315 320 Ile Ile Thr Val Leu Val Ile Cys Ser Arg Ala Leu Arg Glu Glu Lys 325 330 335 Ala Pro Asp Pro His Lys Glu Ala Val Lys Pro Arg Asn Leu Asp Ala 340 345 350 Gly Ser Phe Gly Gly Ser Leu Pro His Pro Ala Ser Thr Arg Phe Leu 355 360 365 Ser Tyr Glu Glu Leu Lys Glu Ala Thr Ser Asn Phe Glu Ser Ala Ser 370 375 380 Ile Leu Gly Glu Gly Gly Phe Gly Lys Val Tyr Arg Gly Ile Leu Ala 385 390 395 400 Asp Gly Thr Ala Val Ala Ile Lys Lys Leu Thr Ser Gly Gly Pro Gln 405 410 415 Gly Asp Lys Glu Phe Gln Val Glu Ile Asp Met Leu Ser Arg Leu His 420 425 430 His Arg Asn Leu Val Lys Leu Val Gly Tyr Tyr Ser Ser Arg Asp Ser 435 440 445 Ser Gln His Leu Leu Cys Tyr Glu Leu Val Pro Asn Gly Ser Leu Glu 450 455 460 Ala Trp Leu His Gly Pro Leu Gly Leu Asn Cys Pro Leu Asp Trp Asp 465 470 475 480 Thr Arg Met Lys Ile Ala Leu Asp Ala Ala Arg Gly Leu Ala Tyr Leu 485 490 495 His Glu Asp Ser Gln Pro Ser Val Ile His Arg Asp Phe Lys Ala Ser 500 505 510 Asn Ile Leu Leu Glu Asn Asn Phe Asn Ala Lys Val Ala Asp Phe Gly 515 520 525 Leu Ala Lys Gln Ala Pro Glu Gly Arg Gly Asn His Leu Ser Thr Arg 530 535 540 Val Met Gly Thr Phe Gly Tyr Val Ala Pro Glu Tyr Ala Met Thr Gly 545 550 555 560 His Leu Leu Val Lys Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu 565 570 575 Glu Leu Leu Thr Gly Arg Lys Pro Val Asp Met Ser Gln Pro Ser Gly 580 585 590 Gln Glu Asn Leu Val Thr Trp Thr Arg Pro Val Leu Arg Asp Lys Asp 595 600 605 Arg Leu Glu Glu Leu Val Asp Ser Arg Leu Glu Gly Lys Tyr Pro Lys 610 615 620 Glu Asp Phe Ile Arg Val Cys Thr Ile Ala Ala Ala Cys Val Ala Pro 625 630 635 640 Glu Ala Ser Gln Arg Pro Thr Met Gly Glu Val Val Gln Ser Leu Lys 645 650 655 Met Val Gln Arg Val Val Glu Tyr Gln Asp Pro Val Leu Asn Thr Ser 660 665 670 Asn Lys Ala Arg Pro Asn Arg Arg Gln Ser Ser Ala Thr Phe Glu Ser 675 680 685 Glu Val Thr Ser Ser Met Phe Ser Ser Gly Pro Tyr Ser Gly Leu Ser 690 695 700 Ala Phe Asp His Glu Asn Ile Thr Arg Thr Thr Val Phe Ser Glu Asp 705 710 715 720 Leu His Glu Gly Arg 725 972876DNAArabidopsis thaliana 97ccgttcgtcc ttctcacaag tctgattgcg gaaaaagcag agagagagag aaagttcgag 60cggaagagaa gcggaaagct cgaggagtca tcaatggtga cggacgatag caactcctct 120ggacgaatca agtctcatgt agatgatgat gatgatggtg aagaagaaga agatagactc 180gagggtttgg aaaacagatt aagtgagctt aaaaggaaaa ttcaaggaga aagagttagg 240tctattaaag agaaatttga ggctaataga aagaaagtgg atgctcatgt ttctcccttt 300tcatctgctg catcgagccg agctaccgca gaggataatg gaaatagcaa tatgctttct 360tcgagaatga gaatgccact ctgcaagtta aatggttttt ctcatggtgt gggagataga 420gactatgttc ctactaagga tgttatatca gcaagtgtca agcttcctat tgctgagaga 480ataccgccat acactacctg gatatttttg gacagaaatc aaagaatggc tgaagatcag 540tctgtggttg gtcgaagaca aatctactat gaacaacatg gtggtgagac gctaatatgc 600agcgatagtg aggaagaacc agaacctgag gaggaaaaac gtgaattttc cgagggtgaa 660gattccatta tatggttaat tgggcaggag tatggcatgg gtgaggaagt gcaggatgcc 720ctttgccagt tgctaagcgt agatgcttct gatatcctgg aaagatacaa tgagctcaag 780ttgaaggata agcagaatac cgaggaattt tctaattccg gattcaagct gggaatatct 840ctggaaaagg gccttggtgc agctctagat tcttttgata atcttttctg ccgccgttgc 900ttggtatttg actgtcgtct gcatggatgt tctcagcctt tgattagtgc tagtgaaaaa 960cagccttatt ggtctgatta tgaaggtgat aggaaaccct gcagcaaaca ttgttacctc 1020cagctcaagg cggtcagaga agtaccagaa acatgcagta attttgcatc taaagcagaa 1080gagaaagctt cagaagagga atgcagcaag gctgtctcct ctgatgttcc ccatgctgct 1140gctagtggtg tcagtctgca agttgagaag actgatattg gtatcaagaa tgtagattca 1200tcctctggtg tagaacaaga gcatggaatt agaggaaagc gtgaggtccc aattctaaaa 1260gactccaatg atctgcctaa tttatcgaac aagaaacaga agaccgcagc ctcagataca 1320aaaatgtcat ttgttaattc tgtccctagc ttagatcagg cattggatag cacaaagggt 1380gatcaaggtg gaacaactga caataaagta aacagagact cagaagctga tgcaaaagaa 1440gtaggtgagc ctattccaga caattcggtc catgatggtg gttcctcaat ttgtcagcca 1500caccatggta gtggaaacgg agcaataatc attgcagaaa tgtctgagac aagtcgacca 1560tctacagagt ggaatcctat cgagaaggat ctttacttga agggagtcga aatctttgga 1620agaaacagct gtcttattgc aagaaacctg ctttctggct tgaagacatg cctagatgtg 1680tccaattaca tgcgtgaaaa cgaagtttca gtttttcgaa gatctagtac cccaaatttg 1740ctgttggatg atggcaggac tgacccaggg aatgataatg atgaggtgcc tccaaggaca 1800agattgttcc gtagaaaagg caaaacccgg aagctaaaat actctacaaa gtctgctggt 1860catccgtctg tctggaaaag aatagctggt ggcaaaaacc agtcctgtaa acaatacacg 1920ccgtgtggat gcctgtcaat gtgcggaaag gattgccctt gtctaactaa tgaaacttgc 1980tgcgagaaat attgcgggtg ctcaaaaagc tgtaaaaatc gtttccgagg atgtcattgt 2040gcaaagagtc aatgcagaag taggcagtgt ccctgctttg ctgctggcag agaatgtgat 2100ccagatgttt gcagaaattg ctgggttagt tgtggagatg gttctctcgg tgaagcacca 2160agacgcggag aagggcaatg cggaaacatg agacttctcc tgaggcaaca acagaggatc 2220ctattgggaa agtctgatgt tgctggatgg ggtgcttttc taaagaactc ggtcagcaaa 2280aatgaatacc ttggagaata caccggtgaa ttgatctcac accatgaggc ggataagcgt 2340gggaaaatat atgaccgggc aaattcgtcc ttcctctttg acttgaatga tcagtacgtc 2400ctcgatgctc aacgcaaagg tgacaagctg aaatttgcca atcactcagc taaacccaat 2460tgctacgcta aggtgatgtt tgtagcagga gatcacaggg tcgggatttt tgcaaacgaa 2520cgaatagaag ctagcgaaga gcttttctat gactatagat atggaccaga ccaagcacca 2580gtgtgggctc gcaaacctga aggctccaag aaagatgatt cagccattac tcatcgtaga 2640gccagaaagc accaatctca ttgatgatta ctggctaaga gaagtaactt ttataaaaat 2700aacttataga gttgtgagag atgatatttg aagtttgata acttaagctt gtctttatta 2760attaattatt atagagttga gattttattt tattttgaca tcgagtttgg actttgtata 2820ggtgataaaa caatttatga attattgggg tcaataagta aaaatgtatc atttcg 287698856PRTArabidopsis thaliana 98Met Val Thr Asp Asp Ser Asn Ser Ser Gly Arg Ile Lys Ser His Val 1 5 10 15 Asp Asp Asp Asp Asp Gly Glu Glu Glu Glu Asp Arg Leu Glu Gly Leu 20 25 30 Glu Asn Arg Leu Ser Glu Leu Lys Arg Lys Ile Gln Gly Glu Arg Val 35 40 45 Arg Ser Ile Lys Glu Lys Phe Glu Ala Asn Arg Lys Lys Val Asp Ala 50 55 60 His Val Ser Pro Phe Ser Ser Ala Ala Ser Ser Arg Ala Thr Ala Glu 65 70 75 80 Asp Asn Gly Asn Ser Asn Met Leu Ser Ser Arg Met Arg Met Pro Leu 85 90 95 Cys Lys Leu Asn Gly Phe Ser His Gly Val

Gly Asp Arg Asp Tyr Val 100 105 110 Pro Thr Lys Asp Val Ile Ser Ala Ser Val Lys Leu Pro Ile Ala Glu 115 120 125 Arg Ile Pro Pro Tyr Thr Thr Trp Ile Phe Leu Asp Arg Asn Gln Arg 130 135 140 Met Ala Glu Asp Gln Ser Val Val Gly Arg Arg Gln Ile Tyr Tyr Glu 145 150 155 160 Gln His Gly Gly Glu Thr Leu Ile Cys Ser Asp Ser Glu Glu Glu Pro 165 170 175 Glu Pro Glu Glu Glu Lys Arg Glu Phe Ser Glu Gly Glu Asp Ser Ile 180 185 190 Ile Trp Leu Ile Gly Gln Glu Tyr Gly Met Gly Glu Glu Val Gln Asp 195 200 205 Ala Leu Cys Gln Leu Leu Ser Val Asp Ala Ser Asp Ile Leu Glu Arg 210 215 220 Tyr Asn Glu Leu Lys Leu Lys Asp Lys Gln Asn Thr Glu Glu Phe Ser 225 230 235 240 Asn Ser Gly Phe Lys Leu Gly Ile Ser Leu Glu Lys Gly Leu Gly Ala 245 250 255 Ala Leu Asp Ser Phe Asp Asn Leu Phe Cys Arg Arg Cys Leu Val Phe 260 265 270 Asp Cys Arg Leu His Gly Cys Ser Gln Pro Leu Ile Ser Ala Ser Glu 275 280 285 Lys Gln Pro Tyr Trp Ser Asp Tyr Glu Gly Asp Arg Lys Pro Cys Ser 290 295 300 Lys His Cys Tyr Leu Gln Leu Lys Ala Val Arg Glu Val Pro Glu Thr 305 310 315 320 Cys Ser Asn Phe Ala Ser Lys Ala Glu Glu Lys Ala Ser Glu Glu Glu 325 330 335 Cys Ser Lys Ala Val Ser Ser Asp Val Pro His Ala Ala Ala Ser Gly 340 345 350 Val Ser Leu Gln Val Glu Lys Thr Asp Ile Gly Ile Lys Asn Val Asp 355 360 365 Ser Ser Ser Gly Val Glu Gln Glu His Gly Ile Arg Gly Lys Arg Glu 370 375 380 Val Pro Ile Leu Lys Asp Ser Asn Asp Leu Pro Asn Leu Ser Asn Lys 385 390 395 400 Lys Gln Lys Thr Ala Ala Ser Asp Thr Lys Met Ser Phe Val Asn Ser 405 410 415 Val Pro Ser Leu Asp Gln Ala Leu Asp Ser Thr Lys Gly Asp Gln Gly 420 425 430 Gly Thr Thr Asp Asn Lys Val Asn Arg Asp Ser Glu Ala Asp Ala Lys 435 440 445 Glu Val Gly Glu Pro Ile Pro Asp Asn Ser Val His Asp Gly Gly Ser 450 455 460 Ser Ile Cys Gln Pro His His Gly Ser Gly Asn Gly Ala Ile Ile Ile 465 470 475 480 Ala Glu Met Ser Glu Thr Ser Arg Pro Ser Thr Glu Trp Asn Pro Ile 485 490 495 Glu Lys Asp Leu Tyr Leu Lys Gly Val Glu Ile Phe Gly Arg Asn Ser 500 505 510 Cys Leu Ile Ala Arg Asn Leu Leu Ser Gly Leu Lys Thr Cys Leu Asp 515 520 525 Val Ser Asn Tyr Met Arg Glu Asn Glu Val Ser Val Phe Arg Arg Ser 530 535 540 Ser Thr Pro Asn Leu Leu Leu Asp Asp Gly Arg Thr Asp Pro Gly Asn 545 550 555 560 Asp Asn Asp Glu Val Pro Pro Arg Thr Arg Leu Phe Arg Arg Lys Gly 565 570 575 Lys Thr Arg Lys Leu Lys Tyr Ser Thr Lys Ser Ala Gly His Pro Ser 580 585 590 Val Trp Lys Arg Ile Ala Gly Gly Lys Asn Gln Ser Cys Lys Gln Tyr 595 600 605 Thr Pro Cys Gly Cys Leu Ser Met Cys Gly Lys Asp Cys Pro Cys Leu 610 615 620 Thr Asn Glu Thr Cys Cys Glu Lys Tyr Cys Gly Cys Ser Lys Ser Cys 625 630 635 640 Lys Asn Arg Phe Arg Gly Cys His Cys Ala Lys Ser Gln Cys Arg Ser 645 650 655 Arg Gln Cys Pro Cys Phe Ala Ala Gly Arg Glu Cys Asp Pro Asp Val 660 665 670 Cys Arg Asn Cys Trp Val Ser Cys Gly Asp Gly Ser Leu Gly Glu Ala 675 680 685 Pro Arg Arg Gly Glu Gly Gln Cys Gly Asn Met Arg Leu Leu Leu Arg 690 695 700 Gln Gln Gln Arg Ile Leu Leu Gly Lys Ser Asp Val Ala Gly Trp Gly 705 710 715 720 Ala Phe Leu Lys Asn Ser Val Ser Lys Asn Glu Tyr Leu Gly Glu Tyr 725 730 735 Thr Gly Glu Leu Ile Ser His His Glu Ala Asp Lys Arg Gly Lys Ile 740 745 750 Tyr Asp Arg Ala Asn Ser Ser Phe Leu Phe Asp Leu Asn Asp Gln Tyr 755 760 765 Val Leu Asp Ala Gln Arg Lys Gly Asp Lys Leu Lys Phe Ala Asn His 770 775 780 Ser Ala Lys Pro Asn Cys Tyr Ala Lys Val Met Phe Val Ala Gly Asp 785 790 795 800 His Arg Val Gly Ile Phe Ala Asn Glu Arg Ile Glu Ala Ser Glu Glu 805 810 815 Leu Phe Tyr Asp Tyr Arg Tyr Gly Pro Asp Gln Ala Pro Val Trp Ala 820 825 830 Arg Lys Pro Glu Gly Ser Lys Lys Asp Asp Ser Ala Ile Thr His Arg 835 840 845 Arg Ala Arg Lys His Gln Ser His 850 855 992052DNAArabidopsis thaliana 99atggatgttt ctgaagcacg tctaagtaga attgagtcac agagttcaat tgattcgtct 60catgaccaaa ggagacaagg atatttctcc atgaacaaga taaacaacgg tcttcgctca 120ctcagttcac gaggtttcct tcgaaacaga ggaaaagcca taccgctgcc aatgaaagat 180accgagaaga ctgtgccgga gttcttagtt aatctcaaat tttccgatct tttcgatctc 240cctggtgaat atgtgctgat gaatgcggag atgcttagca cacttgggaa cgaagaatgg 300ctggagaaat tgagaagcca tggaacacca ctaacatgtc tcaagaacga tcgaggagat 360tctgttcttc atcttgctgc tacatggagt catctagaac tagttaagaa cattgtctct 420gaatgttctt gccttctaat ggagtcaaac tctaaggacc agcttccact tcatgtggca 480gctcgaatgg gtcacttagc tgttgttgag gatcttgttg cgtcggttac atttttctca 540gctagactgg ctgaagaaga tagggagata ctgaatccat atcttctgaa ggacataaat 600ggagatactg ctctgaactt ggccttgaaa ggacactata cggaggttgc tctctgtttg 660gtgaatgcaa accgacaagc ttcctttctt gcatgtaaag acggaatatc tcccttgtat 720ttagcagtag aagccaagga tgcatcactt gtaaaagcaa tgttgggaaa tgatggtcct 780caaaggaaaa atttgaactt agaagggaga aaatatcttg cacacgctgc attgaattcc 840ttgagcacag atatccttga tgttattctt aatgaatatc caagtcttgt ggatgagcga 900gatgaagaag gaaggacttg tctttcgttt ggagcatcca ttgggtatca taaaggagta 960tgcaacctgt taaaccgatc aagaaagggt gtttttgtat gtgatgatga tggttcctat 1020ccaatccacc tggcagtaga gaaaggtcgt attaaagttg tcaaagagat ttgcaaacgt 1080tgtccatatt caaagctttt gcttaacaaa aaaggtcaga acctccttca catcgcagct 1140gaaagtggga aatttagaat tctacgccac ttgacagcac atgaacaaat aaaccatcta 1200gctaacgaga aagatgtgga tgggaataca ccactgcatc tagccacaat atattggcgt 1260cctcgagctg ttcgtgagct tggagggaag aaaaacctgt tgatacaaaa caataacggc 1320ttggtagctc tggatattgc tgagtcaaaa ctgcaaccac actacatctt tcgagagagg 1380ttgacactgc tagctttagt acaacttcac ttccaaaatg atcctagatg cgcacatact 1440atgattcaaa caagaccaat aatgcctcaa ggcggaaaca aagattacat caacgctctt 1500ctagtagtgg cagctcttat aaccaccgta acgtttacgt ctggatttac tataccaggt 1560ggttttaaag actctactcc aaacgtgggc atggcaaatc taataactaa ccctcgtctc 1620atccttttcc tgatatttga cattttggca ctggaaacct catttttagc agtagtttct 1680ctcatattgg cgcaattagg tgatccgaca ttatatcaga gttccgtaag ggtggccatg 1740atatcactgt atttcgctat gtatttcatg accttagcat tcttttttgt catggttatt 1800gcagctggga atgttagatg gcttgtttat gtcatcttct gtttaatttt ctccatttta 1860actctggcgt tctcaaggtt tatgcctcat cttctactac attattgtgg ctctagttat 1920aagttgatga tgccatttgt tagttttgca aattcatgtg atgatgacgg acacgaaagt 1980cctcagttct ctgcgcacaa gtctgagaag atctcaaaca atgatcaagt tgaaatgtca 2040gacactactt aa 2052100683PRTArabidopsis thaliana 100Met Asp Val Ser Glu Ala Arg Leu Ser Arg Ile Glu Ser Gln Ser Ser 1 5 10 15 Ile Asp Ser Ser His Asp Gln Arg Arg Gln Gly Tyr Phe Ser Met Asn 20 25 30 Lys Ile Asn Asn Gly Leu Arg Ser Leu Ser Ser Arg Gly Phe Leu Arg 35 40 45 Asn Arg Gly Lys Ala Ile Pro Leu Pro Met Lys Asp Thr Glu Lys Thr 50 55 60 Val Pro Glu Phe Leu Val Asn Leu Lys Phe Ser Asp Leu Phe Asp Leu 65 70 75 80 Pro Gly Glu Tyr Val Leu Met Asn Ala Glu Met Leu Ser Thr Leu Gly 85 90 95 Asn Glu Glu Trp Leu Glu Lys Leu Arg Ser His Gly Thr Pro Leu Thr 100 105 110 Cys Leu Lys Asn Asp Arg Gly Asp Ser Val Leu His Leu Ala Ala Thr 115 120 125 Trp Ser His Leu Glu Leu Val Lys Asn Ile Val Ser Glu Cys Ser Cys 130 135 140 Leu Leu Met Glu Ser Asn Ser Lys Asp Gln Leu Pro Leu His Val Ala 145 150 155 160 Ala Arg Met Gly His Leu Ala Val Val Glu Asp Leu Val Ala Ser Val 165 170 175 Thr Phe Phe Ser Ala Arg Leu Ala Glu Glu Asp Arg Glu Ile Leu Asn 180 185 190 Pro Tyr Leu Leu Lys Asp Ile Asn Gly Asp Thr Ala Leu Asn Leu Ala 195 200 205 Leu Lys Gly His Tyr Thr Glu Val Ala Leu Cys Leu Val Asn Ala Asn 210 215 220 Arg Gln Ala Ser Phe Leu Ala Cys Lys Asp Gly Ile Ser Pro Leu Tyr 225 230 235 240 Leu Ala Val Glu Ala Lys Asp Ala Ser Leu Val Lys Ala Met Leu Gly 245 250 255 Asn Asp Gly Pro Gln Arg Lys Asn Leu Asn Leu Glu Gly Arg Lys Tyr 260 265 270 Leu Ala His Ala Ala Leu Asn Ser Leu Ser Thr Asp Ile Leu Asp Val 275 280 285 Ile Leu Asn Glu Tyr Pro Ser Leu Val Asp Glu Arg Asp Glu Glu Gly 290 295 300 Arg Thr Cys Leu Ser Phe Gly Ala Ser Ile Gly Tyr His Lys Gly Val 305 310 315 320 Cys Asn Leu Leu Asn Arg Ser Arg Lys Gly Val Phe Val Cys Asp Asp 325 330 335 Asp Gly Ser Tyr Pro Ile His Leu Ala Val Glu Lys Gly Arg Ile Lys 340 345 350 Val Val Lys Glu Ile Cys Lys Arg Cys Pro Tyr Ser Lys Leu Leu Leu 355 360 365 Asn Lys Lys Gly Gln Asn Leu Leu His Ile Ala Ala Glu Ser Gly Lys 370 375 380 Phe Arg Ile Leu Arg His Leu Thr Ala His Glu Gln Ile Asn His Leu 385 390 395 400 Ala Asn Glu Lys Asp Val Asp Gly Asn Thr Pro Leu His Leu Ala Thr 405 410 415 Ile Tyr Trp Arg Pro Arg Ala Val Arg Glu Leu Gly Gly Lys Lys Asn 420 425 430 Leu Leu Ile Gln Asn Asn Asn Gly Leu Val Ala Leu Asp Ile Ala Glu 435 440 445 Ser Lys Leu Gln Pro His Tyr Ile Phe Arg Glu Arg Leu Thr Leu Leu 450 455 460 Ala Leu Val Gln Leu His Phe Gln Asn Asp Pro Arg Cys Ala His Thr 465 470 475 480 Met Ile Gln Thr Arg Pro Ile Met Pro Gln Gly Gly Asn Lys Asp Tyr 485 490 495 Ile Asn Ala Leu Leu Val Val Ala Ala Leu Ile Thr Thr Val Thr Phe 500 505 510 Thr Ser Gly Phe Thr Ile Pro Gly Gly Phe Lys Asp Ser Thr Pro Asn 515 520 525 Val Gly Met Ala Asn Leu Ile Thr Asn Pro Arg Leu Ile Leu Phe Leu 530 535 540 Ile Phe Asp Ile Leu Ala Leu Glu Thr Ser Phe Leu Ala Val Val Ser 545 550 555 560 Leu Ile Leu Ala Gln Leu Gly Asp Pro Thr Leu Tyr Gln Ser Ser Val 565 570 575 Arg Val Ala Met Ile Ser Leu Tyr Phe Ala Met Tyr Phe Met Thr Leu 580 585 590 Ala Phe Phe Phe Val Met Val Ile Ala Ala Gly Asn Val Arg Trp Leu 595 600 605 Val Tyr Val Ile Phe Cys Leu Ile Phe Ser Ile Leu Thr Leu Ala Phe 610 615 620 Ser Arg Phe Met Pro His Leu Leu Leu His Tyr Cys Gly Ser Ser Tyr 625 630 635 640 Lys Leu Met Met Pro Phe Val Ser Phe Ala Asn Ser Cys Asp Asp Asp 645 650 655 Gly His Glu Ser Pro Gln Phe Ser Ala His Lys Ser Glu Lys Ile Ser 660 665 670 Asn Asn Asp Gln Val Glu Met Ser Asp Thr Thr 675 680



User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
New patent applications in this class:
DateTitle
2022-09-22Electronic device
2022-09-22Front-facing proximity detection using capacitive sensor
2022-09-22Touch-control panel and touch-control display apparatus
2022-09-22Sensing circuit with signal compensation
2022-09-22Reduced-size interfaces for managing alerts
Website © 2025 Advameg, Inc.