Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: SOLAR-POWERED VENTILATOR

Inventors:
IPC8 Class: AF24F500FI
USPC Class: 1 1
Class name:
Publication date: 2016-11-10
Patent application number: 20160327291



Abstract:

A solar-powered ventilator may include a solar power unit, a shell, a fan and a sensor. The solar power unit comprises a solar panel, a controller and an energy storage unit, and the solar panel is secured on a top surface of the shell to receive sunlight. The shell has a plurality of air outlets formed on a surface thereof, so the air and odors from the interior can be sucked out or released from the air outlets of the shell when the fan is activated. The sensor can electrically connected with controller as a switch to control the on/off action of the solar-powered ventilator.

Claims:

1. A solar-powered ventilator comprising a solar power assembly, a shell, a fan, and a sensor unit, wherein the solar power assembly includes a solar panel, a controller and an energy storage unit; the solar panel is secured on a top surface of the shell to receive the solar power, the controller is electrically connected with the solar panel, the fan, the energy storage unit, and the sensor unit, wherein the controller is disposed inside an upper portion of the shell to convert the solar energy into electrical energy, and store it to the energy storage unit, and the energy storage unit is configured to store the electrical energy converted from sunlight and provide the electric power to driver the fan.

2. The solar-powered ventilator of claim 1, wherein the shell is integrally formed, and the controller, the energy storage unit and the fan are received and secured therein.

3. The solar-powered ventilator of claim 1, wherein a plurality of air outlets are formed on a surface of the shell.

4. The solar-powered ventilator of claim 1, wherein a bottom portion of the shell has a connecting portion configured for air intake and enabled the solar-powered ventilator to secure on the roof of a mobile restroom.

5. The solar-powered ventilator of claim 3, wherein a bottom portion of the shell has a connecting portion configured for air intake and enabled the solar-powered ventilator to secure on the roof of a mobile restroom.

6. The solar-powered ventilator of claim 1, wherein a space formed inside the shell is between the fan and the connecting portion for air convection, and the air and odors are allowed to be released from the air outlets of the shell.

7. The solar-powered ventilator of claim 5, wherein a space formed inside the shell is between the fan and the connecting portion for air convection, and the air and odors are allowed to be released from the air outlets of the shell.

8. The solar-powered ventilator of claim 1, wherein the sensor unit is electrically connected with the controller as a switch to control the on/off action of the solar-powered ventilator.

9. The solar-powered ventilator of claim 7, wherein the sensor unit is electrically connected with the controller as a switch to control the on/off action of the solar-powered ventilator.

10. The solar-powered ventilator of claim 1, wherein the sensor unit is a motion sensor.

11. The solar-powered ventilator of claim 9, wherein the sensor unit is a motion sensor.

Description:

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority under 35 U.S.C. .sctn.119 (e) to U.S. Provisional Patent Application Ser. No. 62/159,260 filed on May 9, 2015, the entire contents of which are hereby incorporated by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to a solar-powered ventilator, and more particularly to a solar-powered ventilator connecting with a sensor to activate the ventilator automatically.

BACK GROUND OF THE INVENTION

[0003] Conventionally, a solar-powered ventilator has a solar power unit, a motor, and a fan. The motor is connected with the solar power unit and the fan, and the function thereof is to arrange the power converted from the solar power unit to drive the fan. The solar-powered ventilator is located on the roof of building such as houses or mobile restrooms to take advantage of the access to sunlight, and the ventilator is driven to force the air convection and pumping the odor out of the mobile restrooms to provide better air quality to the restroom users.

[0004] However, the conventional solar-powered ventilator is disadvantageous because: (i) current solar-powered ventilator has to connect with a switch to turn on/off the fan, so it is hard to control the time of air exhaust after the user leave the restroom and the odor may still remain in the restroom; and (ii) the size of current solar-powered ventilator is too large to install in a limited space, like a mobile restroom. Therefore, there remains a need for a new and improved design for a solar-powered ventilator to overcome the problems presented above.

SUMMARY OF THE INVENTION

[0005] It is an object to provide a ventilator to be powered by solar energy and automatically turned on/off to provide better air quality for mobile restrooms.

[0006] It is another object to provide a solar-powered ventilator that can be easily installed on the top portion of the mobile restroom.

[0007] It is a further object to provide a solar-powered ventilator with a sensor to activate the ventilator when the sensor is triggered.

[0008] In one aspect, a solar-powered ventilator may include a solar power assembly, a shell, a fan, and a sensor unit. The solar power assembly may include a solar panel, a controller and an energy storage unit, and the solar panel is secured on a top surface of the shell to receive the solar power. The controller is electrically connected with the solar panel, the fan, the energy storage unit, and the sensor. In one embodiment, the controller is disposed inside an upper portion of the shell to convert the solar energy into electrical energy, and store it to the energy storage unit. The energy storage unit mounted beside the controller is configured to store the electrical energy converted from sunlight and provide the electric power to driver the fan.

[0009] The shell is integrally formed, and the controller and energy storage unit and fan can be received and secured therein. A plurality of air outlets are formed on a surface of the shell. A bottom portion of the shell has a connecting portion configured for air intake and enabled the solar-powered ventilator to secure on the roof of a mobile restroom. Also, a space formed inside the shell is between the fan and the connecting portion for air convection, and the air and odors can be released from the air outlets of the shell, and the fan can secured in the shell.

[0010] The sensor is electrically connected with the controller as a switch to control the on/off action of the solar-powered ventilator. In one embodiment, the sensor is secured on a top of the door to detect the opening/closing action of door. For example, when a person is opening the door of the mobile restroom, the sensor is activated and transmits a detection signal to the controller to turn on the solar-powered ventilator for a predetermined period of time. In another embodiment, the sensor can be a motion sensor, which comprises a motion detector activated by the motion of a user entering into the mobile restroom. The motion sensor can be wireless or connected by wire to transmit the signal to the controller to turn on/off the solar-powered ventilator.

[0011] Comparing with conventional solar-powered ventilator, the present invention is advantageous because: (i) the solar-powered ventilator can convert the solar power to electrical power to drive the ventilator, and can be activated by sensors, so it can be easily installed in mobile restrooms; and (ii) the size of the solar-powered ventilator of the present invention is smaller than conventional ones, so the manufacturing costs can be reduced, and can be more efficiently used, especially in mobile restrooms.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a three-dimensional view of the solar-powered ventilator in the present invention.

[0013] FIG. 2 is a bottom view of the solar-powered ventilator in the present invention.

[0014] FIG. 3 is a schematic view of the solar-powered ventilator in the present invention installed on a mobile restroom.

[0015] FIG. 4 is a schematic view of a ventilation pipe of the mobile restroom connected with the solar-powered ventilator in the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0016] The detailed description set forth below is intended as a description of the presently exemplary device provided in accordance with aspects of the present invention and is not intended to represent the only forms in which the present invention may be prepared or utilized. It is to be understood, rather, that the same or equivalent functions and components may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.

[0017] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described can be used in the practice or testing of the invention, the exemplary methods, devices and materials are now described.

[0018] All publications mentioned are incorporated by reference for the purpose of describing and disclosing, for example, the designs and methodologies that are described in the publications that might be used in connection with the presently described invention. The publications listed or discussed above, below and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.

[0019] In order to further understand the goal, characteristics and effect of the present invention, a number of embodiments along with the drawings are illustrated as following:

[0020] In one aspect, referring to FIGS. 1 and 2, a solar-powered ventilator (10) may include a solar power assembly (20), a shell (30), a fan (40), and a sensor unit (50). The solar power assembly (20) may include a solar panel (21), a controller (22) and an energy storage unit (23), and the solar panel (21) is secured on a top surface of the shell (30) to receive the solar power. The controller (22) is electrically connected with the solar panel (21), the fan (40), the energy storage unit (23), and the sensor unit (50). In one embodiment, the controller (22) is disposed inside an upper portion of the shell (30) to convert the solar energy into electrical energy, and store it to the energy storage unit (23). The energy storage unit (23) mounted beside the controller (22) is configured to store the electrical energy converted from sunlight and provide the electric power to driver the fan (40).

[0021] The shell (30) is integrally formed, and the controller (22), the energy storage unit (23) and the fan (40) can be received and secured therein. A plurality of air outlets (31) are formed on a surface of the shell. A bottom portion of the shell (30) has a connecting portion (32) configured for air intake and enabled the solar-powered ventilator to secure on the roof of a ventilating pipe (110) of the mobile restroom (100), as shown in FIGS. 3 and 4.

[0022] It is noted that the connecting portion (32) is configured to connect with a top portion of the ventilating pipe (110) extending from inside the mobile restroom (100), so the odor can be sucked out from the mobile restroom. Also, a space (33) formed inside the shell (30) is between the fan (40) and the connecting portion (32) for air convection, and the air and odors can be released from the air outlets (31) of the shell (30), and the fan (40) can secured in the shell (30).

[0023] The sensor unit (50) is electrically connected with the controller (22) as a switch to control the on/off action of the solar-powered ventilator. In one embodiment, the sensor unit (50) is secured on a top of the door to detect the opening/closing action of door. For example, when a person is opening the door of the mobile restroom (100), the sensor unit (50) is activated and transmits a detection signal to the controller (22) to turn on the solar-powered ventilator (10) for a predetermined period of time. In another embodiment, the sensor unit (50) can be a motion sensor, which comprises a motion detector activated by the motion of a user entering into the mobile restroom (100). The motion sensor can be wireless or connected by wire to transmit the signal to the controller (22) to turn on/off the solar-powered ventilator.

[0024] Comparing with conventional solar-powered ventilator, the present invention is advantageous because: (i) the solar-powered ventilator can convert the solar power to electrical power to drive the ventilator, and can be activated by sensors, so it can be easily installed in mobile restrooms; and (ii) the size of the solar-powered ventilator (10) of the present invention is smaller than conventional ones, so the manufacturing costs can be reduced, and can be more efficiently used, especially in mobile restrooms.

[0025] Having described the invention by the description and illustrations above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Accordingly, the invention is not to be considered as limited by the foregoing description, but includes any equivalents.



User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
SOLAR-POWERED VENTILATOR diagram and imageSOLAR-POWERED VENTILATOR diagram and image
SOLAR-POWERED VENTILATOR diagram and imageSOLAR-POWERED VENTILATOR diagram and image
SOLAR-POWERED VENTILATOR diagram and image
New patent applications in this class:
DateTitle
2022-09-22Electronic device
2022-09-22Front-facing proximity detection using capacitive sensor
2022-09-22Touch-control panel and touch-control display apparatus
2022-09-22Sensing circuit with signal compensation
2022-09-22Reduced-size interfaces for managing alerts
Website © 2025 Advameg, Inc.