Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: SOLUTION MINING UNDER AN INERT GAS

Inventors:  Ronald Strybos (Kountze, TX, US)
IPC8 Class: AE21B4325FI
USPC Class: 1663051
Class name: Wells processes placing fluid into the formation
Publication date: 2016-05-19
Patent application number: 20160138377



Abstract:

This method includes providing an cased borehole located within a salt bed, injecting an aqueous liquid into the cased borehole at a first pressure, in order to expose the salt bed to the aqueous liquid, thereby dissolving at least a portion of the salt bed and forming a brine solution within an underground storage volume, withdrawing at least a portion of the brine solution from the underground storage volume, and injecting an inert gas into the cased borehole at a second pressure, in order to provide an inert blanket within the underground storage volume, wherein the second pressure is greater than the first pressure but less than the maximum allowable pressure of the cavern.

Claims:

1. A method for solution mining comprising: producing a stable salt cavern within a salt bed by providing a cased borehole located within the salt bed, injecting an aqueous liquid into the cased borehole at a first pressure, in order to expose the salt bed to the aqueous liquid, thereby dissolving at least a portion of the salt bed and forming a brine solution within the stable salt cavern, wherein said underground storage volume comprises a maximum allowable pressure, withdrawing at least a portion of the brine solution from the stable salt cavern, and injecting an inert gas into the cased borehole at a second pressure, in order to provide an inert blanket within the stable salt cavern, wherein the second pressure is greater than the first pressure but less than the maximum allowable pressure of the stable salt cavern, wherein the maximum allowable pressure (Pmax) is defined as Pmax<Dcasing×Gmax, wherein Gmax=0.85 and Dcasing is the death of a final cemented cashing shoe which defines a practical endpoint of a length of casing, permanently cemented into surrounding rock formations.

2. The method of claim 1, wherein the inert gas is selected from the group consisting of nitrogen, helium, and argon.

3. The method of claim 1, wherein the inert gas is nitrogen.

4.-6. (canceled)

Description:

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 14/711,111 filed May 13, 2015 which claims the benefit of priority under 35 U.S.C. §119 (a) and (b) to U.S. Provisional Patent Application No. 62/081,655 filed Nov. 19, 2014, the entire contents of which are incorporated herein by reference.

BACKGROUND

[0002] Leached storage caverns in salt formations typically have a relatively flat roof. Large diameter flat roofs in a salt cavern can be unstable due to the low tensile strength of the salt, salt movement, fractured salt or low pressure in the cavern. The stability of the roof may be increased by leaching a modified dome shape in the roof.

[0003] The leaching of storage caverns in salt formations is typically performed under a blanket of liquid hydrocarbons. Some storage applications may require very clean or ultra pure caverns, where residual hydrocarbons could contaminate the stored product. To prevent these contamination issues, ultra pure salt caverns can be leached under an inert gas blanket.

SUMMARY

[0004] This method includes providing an cased borehole located within a salt bed, injecting an aqueous liquid into the cased borehole at a first pressure, in order to expose the salt bed to the aqueous liquid, thereby dissolving at least a portion of the salt bed and forming a brine solution within an underground storage volume, withdrawing at least a portion of the brine solution from the underground storage volume, and injecting an inert gas into the cased borehole at a second pressure, in order to provide an inert blanket within the underground storage volume, wherein the second pressure that is greater than the first pressure but less than the maximum allowable pressure of the cavern.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] For a further understanding of the nature and objects for the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which like elements are given the same or analogous reference numbers and wherein:

[0006] FIG. 1 illustrates an embodiment of the invention; and

[0007] FIG. 2 illustrates an embodiment of the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0008] Illustrative embodiments of the invention are described below. While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

[0009] It will, of course, be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.

[0010] This invention claims that to leach an ultra pure cavern an inert gas blanket 102, which could be nitrogen, helium, argon or methane, is injected into the outer annulus string 106 of a salt cavern 101. The blanket pressure is maintained at a pressure above the water injection pressure but less than the maximum pressure for the cavern as defined by the depth of the final cemented casing shoe and the maximum pressure gradient for the cavern.

[0011] The blanket depth may be controlled by monitoring the blanket gas pressure and by verification of the blanket depth may be by wire line density measurement for the gas-brine interface. Inert gas may be periodically added to the annulus to maintain the gas-brine interface at the desired depth.

[0012] It is further claimed that the geometry of the storage cavern roof may be controlled by the flow of water 103 into the cavern. The water injection flow into the cavern may be maintained between the minimum flow rate of 5 ft/sec velocity and the maximum flow rate of 8 ft/sec. Ideal cavern roof geometry is achieved by flowing at a constant flow rate of approximately between 6 and 7 ft/sec.

[0013] Turning to FIG. 1, a cased borehole 112 is located within a salt bed 113. An aqueous liquid 101 is injected into the cased borehole 112 at a first pressure, in order to expose the salt bed 113 to the aqueous liquid 103, thereby dissolving at least a portion of the salt bed and forming a brine solution 104 within an underground storage volume 102. At least a portion of the brine solution 104 is withdrawn 105 from the underground storage volume, while an inert gas 108 is injected into the cased borehole 112 at a second pressure. This provides an inert blanket 109 within the underground storage volume, wherein the second pressure that is greater than the first pressure but less than the maximum allowable pressure of the cavern. The inert gas may be nitrogen, helium, or argon. The inert blanket has a blanket depth, and the blanket depth may be measured by means of a wire line density test.

[0014] A length of casing 106, is permanently cemented into the surrounding rock formations 114, with a final cemented casing shoe 111 defining the practical endpoint of the lined casing at an approximate depth (Dcasing), wherein the maximum allowable pressure (Pmax) is defined as Pmax<Dcasing×Gmax, wherein Gmax may be equal to 0.85. Gmax may be equal to 0.8.


Patent applications by Ronald Strybos, Kountze, TX US

Patent applications in class Placing fluid into the formation

Patent applications in all subclasses Placing fluid into the formation


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
SOLUTION MINING UNDER AN INERT GAS diagram and imageSOLUTION MINING UNDER AN INERT GAS diagram and image
Similar patent applications:
DateTitle
2016-02-18Wellsite production machines
2016-03-03Multi-component c-ring coupling
2016-03-24Autonomous untethered well object
2016-05-19Multi-probe reservoir sampling device
2015-12-10Automatic tubing drain
New patent applications in this class:
DateTitle
2022-05-05Methods and systems for the generation of stable oil-in-water or water-in-oil emulsion for enhanced oil recovery
2019-05-16Friction reducers and well treatment fluids
2019-05-16Pre-flush for oil foamers
2017-08-17Mixing tank and method of use
2017-08-17Use of hexamethylenetetramine intensifier for high temperature emulsified acid system
New patent applications from these inventors:
DateTitle
2017-05-18Use of multiple storage caverns for product inventory control
2016-06-09Solution mining a stable roof under an inert gas
2016-06-09Solution mining a stable roof under an inert gas
2016-05-19Materials of construction for use in high pressure hydrogen storage in a salt cavern
2016-05-19Solution mining under an inert gas
Top Inventors for class "Wells"
RankInventor's name
1Michael L. Fripp
2Jean Marc Lopez
3Michael H. Johnson
4Jørgen Hallundbaek
5Dennis P. Nguyen
Website © 2025 Advameg, Inc.