Patent application title: VALVE OPERATING SYSTEM
Inventors:
Garth Cody Nichols (Columbus, OH, US)
IPC8 Class: AF01L126FI
USPC Class:
123 9036
Class name: Poppet valve operating mechanism lubrication rocker fulcrum as conduit
Publication date: 2016-03-24
Patent application number: 20160084118
Abstract:
A valve operating system for an internal combustion engine in which two
valves are simultaneously operated by one valve bridge. The valve
operating system includes two valves each having a valve stem end; a
rocker arm having a forward end, the forward end having a contact
surface; and a valve bridge that operates the two valves. The valve
bridge includes first and second ends each having an internal sleeve
adapted to receive the respective stem end of each valve, a central
reservoir, and a roller operably recessed within the central reservoir
which is in contact with the contact surface of the rocker arm during
actuation. The presence of the roller during operation mitigates the
transverse force created by the rotation of the rocker arm upon the valve
bridge, thereby increasing efficiency and minimizing wear on the engine.Claims:
1. A valve operating system for an internal combustion engine in which
two valves are simultaneously operated, each having a valve stem,
comprising: (a) a rocker arm having a forward end, the forward end having
a contact surface; and (b) a valve bridge that operates the two valves,
the valve bridge comprising: i) first and second ends each having an
internal sleeve adapted to receive the respective stem end of each valve;
ii) a central reservoir; and iii) a roller having a curved surface
operably recessed within the central reservoir in contact with the
contact surface of the rocker arm, whereby downward movement of the
rocker arm actuates the valve bridge without a transverse force
increasing efficiency and minimizing wear on the engine.
2. The valve operating system of claim 1, wherein central reservoir is adapted to retain and provide oil to the roller during operation of the valves.
3. The valve operating system of claim 2, wherein the central reservoir comprises a concave surface which partially extends radially about the curved surface of the roller forming a space therebetween for oil to collect and to apply to the roller during operation.
4. The valve operating system of claim 3, wherein the first and second ends of the valve bridge each further comprise an oil passage connecting the upper surface with each respective internal sleeve.
5. The valve operating system of claim 4, wherein the valve bridge further comprises at least one exterior recessed surface for reducing the weight of the valve bridge.
6. The valve operating system of claim 1, wherein the first and second ends of the valve bridge each further comprise an oil passage connecting the upper surface with each respective internal sleeve.
7. The valve operating system of claim 6, wherein central reservoir is adapted to retain and provide oil to the roller during operation of the valves.
8. The valve operating system of claim 7, wherein the central reservoir comprises a concave surface which partially extends radially about the curved surface of the roller forming a space therebetween for oil to collect and to apply to the roller during operation.
9. The valve operating system of claim 1, wherein the contact surface includes a pad which is in contact with the roller.
10. The valve operating system of claim 1, wherein the contact surface is generally flat.
11. The valve operating system of claim 1, wherein the valve bridge further comprises at least one exterior recessed surface for reducing the weight of the valve bridge.
12. A valve operating system for an internal combustion engine in which two valves are simultaneously operated, each having a valve stem end, comprising: (a) a rocker arm having a forward end, the forward end having a contact surface; and (b) a valve bridge that operates the two valves having an upper and lower surface, the valve bridge comprising: i) first and second ends each having an internal sleeve adapted to receive the respective stem end of each valve, wherein the first and second ends of the valve bridge each further comprise an oil passage connecting the upper surface with each respective internal sleeve, whereby enabling oil to freely pass between the upper surface and the lower surface and around the engaged valve stems during operation of the valve. ii) a central reservoir; iii) a roller having a curved surface operably recessed within the central reservoir for making contact with the contact surface of the rocker arm, whereby downward movement of the rocker arm actuates the valve bridge without a transverse force increasing efficiency and minimizing wear on the engine, wherein the central reservoir further comprises a concave surface which partially extends radially about the curved surface of the roller forming a space therebetween for oil to collect and to apply to the roller during operation; and iv) at least one exterior recessed surface for reducing the weight of the valve bridge.
13. The valve operating system of claim 12, wherein the contact surface includes a pad which is in contact with the roller.
14. The valve operating system of claim 12, wherein the contact surface is generally flat.
Description:
FIELD OF THE INVENTION
[0001] This invention relates to a valve operating system for an internal combustion engine in which two valves are simultaneously operated by one valve bridge.
BACKGROUND OF THE INVENTION
[0002] In some valve operating systems for large Diesel engines, two valves are simultaneously operated by one valve bridge pushable downward by a rocker arm. As an engine cam shaft rotates, a push rod is selectively actuated by cams located on the cam shaft. The push rods, in turn, direct an upward force on one end of a rocker arm to cause the rocker arm to pivot about a pivot point. As the rocker arm pivots, its opposite end generates a downward force to selectively open an engine valve. Thus, the rocker arm translates the motion of the cam shaft into the opening of the engine valves. Since the timing of the opening of the intake and exhaust valves is important to proper operation of an internal combustion engine, anything that interferes with the timing will detrimentally effect engine performance.
[0003] In more detail, typical diesel valve operating systems include rocker arms which are integral, one-piece components having a first end, a second end, and an intermediate portion for pivotally mounting the rocker arm. The first end of the rocker arm has a push rod engagement portion that engages with an upper end of a push rod. Typically, the push rod engagement portion is a downwardly facing recess which receives the upper end of the push rod. The second end of the rocker arm includes a contact surface that engages a valve bridge, which in turn applies downward movement to the respective valve stems, thereby opening the engine valves.
[0004] Prior art designs for engaging a valve bridge are undesirable in that they are susceptible to scrubbing. Since the rocker arm makes a circular motion with its rocker shaft as its center, it pushes downward the valve bridge at the top of the bridge while slightly scrubbing the surface in the transverse direction, which in turn leads to irregularity in the timing relationship between the cam shaft and the valves. Irregularity in the timing relationship increases engine noise and decreases engine performance and efficiency.
[0005] Accordingly, there is a need to provide an improved valve bridge that minimizes or eliminates scrubbing, thereby increasing power and efficiency of the engine.
SUMMARY
[0006] In accordance with the invention, a valve operation system is provided which utilizes a unique valve bridge adapted to fit current and future combustion engines in which two valves are simultaneously operated by an valve bridge. The operation system is easy to install, lightweight, and provides significant increases in gas mileage and power output.
[0007] Generally speaking the valve operating system for the internal combustion engine in which two valves are simultaneously operated includes two valves each having a valve stem end; a rocker arm having a forward end, the forward end having a contact surface; and a valve bridge that operates the two valves.
[0008] The valve bridge includes first and second ends each having an internal sleeve adapted to receive the respective stem end of each valve, a central reservoir, and a roller operably recessed within the central reservoir which is in contact with the contact surface of the rocker arm during actuation. The presence of the roller during operation mitigates the transverse force created by the rotation of the rocker arm upon the valve bridge, thereby increasing efficiency and minimizing wear on the engine.
[0009] In a version of the invention, the valve bridge central reservoir is adapted to retain and provide oil to the roller during operation of the valves. More particular, the central reservoir may include a concave surface which partially extends radially about the curved surface of the roller forming a space therebetween for oil to collect and to apply to the roller during operation, thereby further reducing friction and increasing efficiency. Optionally, the first and second ends of the valve bridge each may further comprise an oil passage connecting the upper surface with each respective internal sleeve allowing oil to pass freely from the upper surface to the lower surface of the valve bridge.
[0010] In other version, it may be beneficial to incorporate one or more exterior recessed curved surface in order to reduce the overall weight of the valve operation system, which further increases efficiency and power output.
[0011] Still other benefits and advantages of the invention will become apparent to those skilled in the art to which it pertains upon a reading and understanding of the following detailed specification.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description and accompanying figures where:
[0013] FIG. 1 is a perspective view of a reciprocating engine including a version of the valve operating system in accordance with the invention;
[0014] FIG. 2 is a sectional view of the valve operating system of the version shown in FIG. 1;
[0015] FIG. 3 is a front perspective view of the valve bridge of the valve operating system of the version shown in FIG. 1, taken along line A-A in FIG. 8;
[0016] FIG. 4 is a rear perspective view of the valve bridge of the valve operating system of the version shown in FIG. 1;
[0017] FIG. 5 is a front elevation view of the valve bridge of the valve operating system of the version shown in FIG. 1;
[0018] FIG. 6 is a rear elevation view of the valve bridge of the valve operating system of the version shown in FIG. 1;
[0019] FIG. 7 is a top plan view of the valve bridge of the valve operating system of the version shown in FIG. 1;
[0020] FIG. 8 is a bottom plan view of the valve bridge of the valve operating system of the version shown in FIG. 1; and
[0021] FIG. 9 is a section view of the valve bridge of the valve operating system of the version shown in FIG. 1, taken along line A-A in FIG. 8.
DETAILED DESCRIPTION
[0022] Referring now to the figures wherein the showings are for purposes of illustrating a preferred version of the invention only and not for purposes of limiting the same, the present invention is a valve operating system for an internal combustion engine in which two valves are simultaneously operated by a unique valve bridge system.
[0023] The following detailed description is of the best currently contemplated modes of carrying out exemplary versions of the invention. The description is not to be taken in the limiting sense, but is made merely for the purpose illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
[0024] Various inventive features are described below that can each be used independently of one another or in combination with other features.
[0025] With reference to the drawings, and in particular to FIG. 1 and FIG. 2 thereof, a version of the valve operating system embodying the principles and concepts of the present invention is shown for an internal combustion engine 08. An engine may have one or more of the operating systems as illustrated by FIG. 1.
[0026] Conventionally, as known in the diesel engine industry, a diesel engine typically has two or more cylinders, each cylinder having two or more exhaust valves. For example, a Duramax diesel engine manufactured by General Motors has eight cylinders, each having two exhaust valves per cylinder, with the pair of exhaust valves operated by one valve bridge operating system.
[0027] In the version shown, the valve operating system 10 generally comprises two valves 12 each having a valve stem 14, a rocker arm 16, and a valve bridge 18.
[0028] FIG. 2 is a cross-section view of the valve operating system. As illustrated, a pair of exhaust valves 12 are depicted in relation to one of the engine 08 cylinders. The pair of exhaust valves 12 include valve springs 11, valve keepers 13, and valve stems 14 as known in the industry. Preferably, the system is adapted to be utilized with existing valve stems such as what is found on a General Motors Duramax Diesel Engine. However, the system can be tailored to fit other valve stems as known in the art.
[0029] The rocker arm 16 is generally a one-piece components having a rear end 22, a forward end 24, and an intermediate portion 26 for pivotally mounting the rocker arm 16 about the rocker shaft 28. The rear end 22 of the rocker arm 16 has a push rod engagement portion 30 that engages with an upper end of a push rod 32. The push rod engagement portion 30 is a downwardly facing recess which receives the upper end of the push rod 32. The forward end 24 of the rocker arm 16 includes a contact surface 27 or optionally a wear pad 29 as known in the automotive industry that engages the valve bridge 18 when actuated. In the version 10, the contact surface 27 is generally flat, however, can be manufactured with a curved or angled surface as an alternative configuration for contacting the valve bridge 18. It will be known, that a wear pad 29 does not need to be utilized.
[0030] As illustrated in detail in FIG. 3-FIG. 9, the valve bridge 18 is an elongated rigid piece preferably made of metal such as an aluminum alloy or other strong, but lightweight material. The valve bridge 18 comprises a first end portion 34, a second end portion 36, and an intermediate portion 38. The intermediate portion 38 has a roller 40 operably and partially recessed within a central reservoir 42 for making contact with the contact surface 27 of the rocker arm 16. In particular, the roller 40 is a cylinder supported by roller shaft 44 for rotation about an axis which is perpendicular to a plane passing through the longitudinal center axes of the valve stems 14. The roller 40 is positioned so that a portion of its curved surface rises higher than the upper surface 46 of the valve bridge 18, in order to provide an accessible contact point 45 with the rocker arm 16 contact surface 27. As illustrated, the roller 40 may be positioned a distance lateral of the plane passing through the longitudinal center axes of the valve stems 14.
[0031] Moreover, the central reservoir 42 is adapted to retain and provide oil to the roller during operation of the valves 12. The central reservoir 42 includes a concave surface 48 which partially extends radially about the curved surface 50 of the roller 40 forming a space 52 therebetween for oil to collect and to apply to the roller 40 during operation of the valve operating system 10.
[0032] The first end portion 34 and the second end portion 36 each have an internal sleeve 54 and 56 adapted to receive the respective valve stem end 15 of each valve stem 14. The sleeves 54 and 56 are generally cylindrical in shape and are laterally spaced apart in order to bridge the gap between the valve stem ends 15. The sleeves 54 and 56 are of sufficient depth to securely seat over the valve stem ends 15 of the valve stems 14 as shown in FIG. 2.
[0033] In the illustrated version, the first end portion 34 and the second end portion 36 each have an oil passage 58 and 60 connecting the upper surface 46 with each respective internal sleeves 54 and 56. This enables oil to freely pass between the upper surface 46 and the lower surface 62 and around the engaged valve stem ends 15 during operation of the valve operation system 10.
[0034] As best illustrated by FIG. 3-FIG. 6, the valve bridge may comprise at least one exterior recessed surface 64 primarily for reducing the overall weight of the valve bridge. In the version, the valve bridge has four exterior recessed surfaces 64, two positioned near the first end portion 34 and two positioned near the second end portion 36.
[0035] Referring to FIG. 1 and particularly FIG. 2, the operation of the valve operation system 10 will be described in detail. During operation, the push rod 32 is selectively actuated by cams located on the cam shaft (not shown) as known in the art. The upper end of push rod 32, in turn, directs an upward force on the rear end 22 of the rocker arm 16 to cause the rocker arm 16 to pivot about a pivot point created by the rocker shaft 28. As the rocker arm 16 pivots, its forward end 24 via the contact surface 27 generates a downward force and a transverse force applied to the valve bridge 18 via the roller 40. Thus, valve stems 14 are also pushed downward opening their respective valves. When the downward force is released, the valve stems 14 and respective valves return to their initial positions by the upward biasing force created by the valve springs 11. Thus, the rocker arm 16 translates the motion of the cam shaft into the opening of the engine valves.
[0036] When a transverse force acts upon the roller 40 pushing the valve bridge downward, the roller 40 rolls on the contact surface 27 or a wear pad 29 while pushing downward. Since the roller 40 does not transversely scrub the surface of the contact surface 27, but rolls while pushing downward, no transverse force is delivered to the valve bridge 18. Accordingly, guiding mechanisms for resisting the transverse force are not necessary as is different from the prior art.
[0037] The valve operation system utilizing the novel valve bridge has produced excellent results in fuels efficiency and horsepower output. Tests utilizing the system in conjunction with a General Motors Duramax diesel engine have produced an increase in approximately 15 HP detected at the rear wheel. Testing has also have shown an increase in fuel efficiency in as much as 1.3 miles per gallon when applied to a General Motors Duramax diesel engine.
[0038] The present invention can be made in any manner and of any material chosen with sound engineering judgment. Preferably, materials will be strong, lightweight, long lasting, economic, and ergonomic. Portions of the system, including the valve bridge 18, may be fabricated from any number of suitable materials, such as, without limitation, titanium, steel and aluminum. Likewise, the portions of the system may be finished in any number of ways, including anodizing, painting, milling or left in their respective unfinished states.
[0039] Although preferred embodiments of the invention have been described in considerable detail, other versions and embodiments of the invention are certainly possible. Therefore, the present invention should not be limited to the described embodiments herein.
[0040] All features disclosed in this specification including any claims, abstract, and drawings may be replaced by alternative features serving the same, equivalent or similar purpose unless expressly stated otherwise.
User Contributions:
Comment about this patent or add new information about this topic: