Patent application title: PLANTS WITH ENHANCED SIZE AND GROWTH RATE
Inventors:
Oliver J. Ratcliffe (Oakland, CA, US)
Peter P. Repetti (Emeryville, CA, US)
Neal I. Gutterson (Oakland, CA, US)
Robert A. Creelman (Castro Valley, CA, US)
IPC8 Class: AC12N1582FI
USPC Class:
Class name:
Publication date: 2015-07-02
Patent application number: 20150184188
Abstract:
Polynucleotides and polypeptides incorporated into expression vectors
have been introduced into plants and were ectopically expressed. The
polypeptides of the invention regulate transcription in these plants and
have been shown to confer at least one regulatory activity that results
in increased size, biomass, growth rate, and/or yield as compared to a
control plant.Claims:
1. An expression vector comprising: (i) a recombinant nucleic acid
sequence encoding a polypeptide sharing a percentage of amino acid
identity with any of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 198, 202, 210 or 213;
or (ii) a recombinant nucleic acid sequence encoding a polypeptide
sharing a percentage of amino acid identity with any of SEQ ID NO:
85-126, 199, 203, 211, or 214; wherein when the polypeptide is
overexpressed in a plant, the polypeptide regulates transcription and
confers at least one regulatory activity resulting in an altered trait in
the plant as compared to a control plant; wherein the percentage of amino
acid identity of (i) is selected from the group consisting of at least
35%, at least 36%, at least 37%, at least 38%, at least 39%, at least
40%, at least 41%, at least 42%, at least 45%, at least 46%, at least
47%, at least 49%, at least 50%, at least 53%, at least 54%, at least
55%, at least 56%, at least 57%, at least 58%, at least 61%, at least
62%, at least 63%, at least 72%, at least 78%, at least 79%, and at least
86%; or wherein the percentage of amino acid identity of (ii) is selected
from the group consisting of at least 34%, at least 37%, at least 39%, at
least 44%, at least 47%, at least 52%, at least 55%, at least 61%, at
least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at
least 70%, at least 71%, at least 72%, at least 73%, at least 75%, at
least 76%, at least 78%, at least 80%, at least 81%, at least 83%, at
least 84%, at least 85%, at least 86%, at least 87%, at least 89%, at
least 90%, at least 91%, at least 92%, at least 96%, and 100%.
2. (canceled)
3. The expression vector of claim 1, wherein the expression vector encodes a polypeptide comprising any of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 198, 202, 210, or 213.
4. The expression vector of claim 1, wherein the expression vector further comprises a constitutive, inducible, or tissue-specific promoter operably lined to the recombinant nucleic acid sequence.
5. The expression vector of claim 4, wherein the tissue-specific promoter regulates transcription in a tissue selected from the group consisting of floral meristem, epidermis, vascular, shoot apical meristem, embryo, endosperm, and fruit.
6. The expression vector of claim 1, wherein the altered trait is selected from the group consisting of greater yield, greater size, greater biomass, and faster growth rate, as compared to the control plant.
7. A recombinant host cell comprising an expression vector of claim 1.
8. A transgenic plant comprising an expression vector of claim 1, wherein when a polypeptide encoded by the expression vector is overexpressed in the transgenic plant, the polypeptide confers at least one regulatory activity resulting in an altered trait selected from the group consisting of greater size, greater biomass, and faster growth rate, as compared to the control plant.
9. The transgenic plant of claim 8, wherein the transgenic plant is a monocot.
10. The transgenic plant of claim 9, wherein the transgenic plant is a member of the family Gramineae.
11. The transgenic plant of claim 8, wherein the transgenic plant is a dicot.
12. The transgenic plant of claim 11, wherein the transgenic plant is a tomato plant.
13. A transgenic seed produced from the transgenic plant of claim 8.
14. A method for increasing yield of a plant as compared to yield of a control plant, the method comprising: (a) providing an expression vector of claim 1; wherein when a polypeptide encoded by the expression vector is overexpressed in a plant, the polypeptide confers at least one regulatory activity resulting in an altered trait selected from the group consisting of greater size, greater biomass, and faster growth rate, as compared to the control plant; and (b) transforming a target plant with the expression vector to produce a transgenic plant; wherein the transgenic plant produces greater yield than the wild-type plant.
15. The method of claim 14, wherein the methods further comprises the step of: (c) selecting a transgenic plant that ectopically expresses the polypeptide.
16. The method of claim 14, wherein the expression vector further comprises a constitutive, inducible, or tissue-specific promoter operably lined to the recombinant nucleic acid sequence.
17. The method of claim 14, wherein the tissue-specific promoter regulates transcription in a tissue selected from the group consisting of floral meristem, epidermis, vascular, shoot apical meristem, embryo, endosperm, and fruit.
18. The method of claim 14, wherein the expression vector encodes a polypeptide comprising any of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 198, 202, 210, or 213.
19. The method of claim 14, wherein the method steps further comprise selfing or crossing the transgenic plant with itself or another plant, respectively, to produce transgenic seed.
20. A method for producing a transgenic plant having greater biomass, growth rate or yield as compared to a control plant, the method comprising: (a) providing an expression vector of claim 1; wherein when a polypeptide encoded by the expression vector is overexpressed in a plant, the polypeptide confers at least one regulatory activity resulting in an altered trait selected from the group consisting of greater size, greater biomass, and faster growth rate, as compared to the control plant; (b) transforming a target plant with the expression vector to produce a transgenic plant; and (c) optionally, selecting the transgenic plant that has greater biomass, growth rate or yield than the wild-type plant.
Description:
RELATED APPLICATION
[0001] This application claims priority to U.S. Patent Application 60/836,243, filed on Aug. 7, 2006.
JOINT RESEARCH AGREEMENT
[0002] The claimed invention, in the field of functional genomics and the characterization of plant genes for the improvement of plants, was made by or on behalf of Mendel Biotechnology, Inc. and Monsanto Corporation as a result of activities undertaken within the scope of a joint research agreement in effect on or before the date the claimed invention was made.
FIELD OF THE INVENTION
[0003] The present invention relates to plant genomics and plant improvement.
BACKGROUND OF THE INVENTION
[0004] Increasing the size or growth rate of a commercially valuable plant provides a number of important practical applications, and may contribute to an increase in yield. For example, increasing the size of a cultivar may generate higher yield of the edible vegetative portion a crop plant. Increasing the size and/or growth rate of a plant may also provide a competitive advantage in the field. Many weeds outgrow slow-growing young crops or out-compete them for nutrients, and thus it is usually desirable to use plants that establish themselves quickly. Seedlings and young plants are also particularly susceptible to stress conditions such as salinity or disease. Increasing seedling growth rate and shortening the time to emergence from soil contributes to seedling vigor, aids seedlings in coping with these stresses, and may allow these crops to be planted earlier in the season. Early planting helps add days to a critical seed or grain-filling period and increases yield. Modification of the biomass of other tissues, such as root tissue, may be useful to improve a plant's ability to grow under harsh environmental conditions, including drought, high salt or nutrient deprivation, because larger roots may better reach or take up water or nutrients.
[0005] For many plants, including fruit-bearing trees, plants that are used for biofuels, trees that are used for lumber production, or trees and shrubs that serve as view or wind screens, increased stature provides improved benefits in the forms of greater yield or improved screening.
[0006] Increased leaf size may also be of particular interest. Increasing leaf biomass can be used to increase production of plant-derived pharmaceutical or industrial products. An increase in total plant photosynthesis is typically achieved by increasing leaf area of the plant. Additional photosynthetic capacity may be used to increase yield derived from particular plant tissue, including leaves, roots, fruits or seed, or permit better growth of a plant under both decreased and high light intensity.
[0007] However, increasing the size or growth rate of a plant may require controlling a number of regulatory and synthetic pathways. Transcription factors are proteins that influence the expression of a particular gene or sets of genes. Altering the expression of one or more transcription factors may provide the necessary control to manipulate complex biochemical or morphological traits in a plant, and thus multiple cellular processes. This application demonstrates that transformed plants that comprise cells having altered levels of at least one of the closely-related transcription factors of the invention exhibit increased size and/or growth rate relative to control plants.
SUMMARY OF THE INVENTION
[0008] An object of this invention is to provide plants that can express genes to increase the yield of commercially significant plants by increasing the growth rate, yield, and/or mass of the plants. A plant of the invention is transformed with an expression vector that encodes a CCAAT family transcription factor polypeptide of the invention, and the polypeptide is then overexpressed in the plant. Due to the function of these polynucleotides and their encoded polypeptides, the transgenic plant will have greater yield and/or increased size and/or growth rate at one or more stages of growth as compared to a control plant.
[0009] Methods for producing transgenic plants having increased size, yield and/or growth rate are also encompassed by the invention. These method steps include first providing an expression vector comprising a recombinant polynucleotide of the invention. The expression vector may also include at least one regulatory element flanking the polynucleotide sequence. Generally, the regulatory element(s) control expression of the recombinant polynucleotide in a target plant. The expression vector is then introduced into plant cells. The plant cells overexpress a polypeptide encoded by the recombinant polynucleotide, resulting in increased size and/or growth rate of the plant. Those plants that have increased yield, size and/or growth rate may be identified and possibly selected on the basis of the extent to which yield, size and/or growth rate is increased.
[0010] The recombinant polynucleotides, expression vectors and transgenic plants of the invention may comprise any of the following sequences:
[0011] (a) the nucleotide sequences found in the sequence listing;
[0012] (b) nucleotide sequences encoding polypeptides found in the sequence listing;
[0013] (c) sequence variants that are at least 35% sequence identical to any of the nucleotide sequences of (a) or (b);
[0014] (d) polypeptide sequences that are at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 45%, at least 46%, at least 47%, at least 49%, at least 50%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 61%, at least 62%, at least 63%, at least 72%, at least 78%, at least 79%, or at least 86% identical in their amino acid sequence to any of SEQ ID NOs: 2n, where n=1 to 42, or SEQ ID NOs: 198, 202, 210 or 213;
[0015] (e) orthologous and paralogous nucleotide sequences that are at least 35% identical to any of the nucleotide sequences of (a) or (b);
[0016] (f) nucleotide sequence that hybridize to any of the nucleotide sequences of (a) or (b) under stringent conditions, which may include, for example, hybridization with wash steps of 6×SSC and 65° C. for ten to thirty minutes per wash step; and
[0017] (g) polypeptides, and the nucleotide sequences that encode them, having a conserved CCAAT family domain required for the function of regulating transcription and increasing size or biomass in a transgenic plant, the conserved domain being at least 34%, at least 37%, at least 39%, at least 44%, at least 47%, at least 52%, at least 55%, at least 61%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 70%, at least 71%, at least 72%, at least 73%, at least 75%, at least 76%, at least 78%, at least 80%, at least 81%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 89%, at least 90%, at least 91%, at least 92%, at least 96%, or 100% identical to any of the phylogenetically-related conserved domains of SEQ ID NO: 85-126, or SEQ ID NOs: 199, 203, 211 or 214. The polypeptides of the invention, SEQ ID NO: 2n, where n=1 to 42, or 198, 202, 210 or 213 are listed in Tables 1-4. Each polypeptide of the invention comprises a conserved domain required for the function of regulating transcription and altering a trait in a transgenic plant, said trait selected from the group consisting of increased size (for example, seedling size or size of the mature plant), increased growth rate, increased yield, increased biomass, and increased height, as compared to the control plant.
[0018] The expression vectors, and hence the transgenic plants of the invention, comprise putative transcription factor polynucleotides sequences and, in particular, CCAAT family HAP2-like (NF-YA) and HAP5-like (NF-YC) sequences comprising conserved domains that are required for subunit association and/or DNA binding, and hence the regulatory activity of the CCAAT-box transcription factor complex. When any of the polypeptides of the invention is overexpressed in a plant, the polypeptide confers at least one transcriptional regulatory activity to the plant, which in turn is manifested in a trait selected from the group consisting of increased growth rate, increased size, increased biomass, increased yield, and increased height as compared to the control plant.
[0019] The invention is also directed to transgenic seed produced by any of the transgenic plants of the invention, and to methods for making transgenic seed.
BRIEF DESCRIPTION OF THE SEQUENCE LISTING AND DRAWINGS
[0020] The Sequence Listing provides exemplary polynucleotide and polypeptide sequences of the invention. The traits associated with the use of the sequences are included in the Examples.
[0021] CD-ROMs Copy 1 and Copy 2, as well as Copy 3, the latter being a CRF copy of the Sequence Listing under CFR Section 1.821(e), are read-only memory computer-readable compact discs. Each contains a copy of the Sequence Listing in ASCII text format. The Sequence Listing is named "MBI-0072P.ST25.txt", the electronic file of the Sequence Listing contained on each of these CD-ROMs was created on Aug. 4, 2006, and the file is 331 kilobytes in size. The copies of the Sequence Listing on the CD-ROM discs are hereby incorporated by reference in their entirety.
[0022] FIG. 1 shows a conservative estimate of phylogenetic relationships among the orders of flowering plants (modified from Angiosperm Phylogeny Group (1998) Ann. Missouri Bot. Gard. 84: 1-49). Those plants with a single cotyledon (monocots) are a monophyletic clade nested within at least two major lineages of dicots; the eudicots are further divided into rosids and asterids. Arabidopsis is a rosid eudicot classified within the order Brassicales; rice is a member of the monocot order Poales. FIG. 1 was adapted from Daly et al., 2001).
[0023] In FIGS. 2 and 3, phylogenetic trees and multiple sequence alignments of related transcription factors in the HAP2 and HAP5 CCAAT binding families, respectively, were constructed using ClustalW (CLUSTAL W Multiple Sequence Alignment Program version 1.83, 2003). ClustalW multiple alignment parameters were:
[0024] Gap Opening Penalty: 10.00
[0025] Gap Extension Penalty: 0.20
[0026] Delay divergent sequences: 30%
[0027] DNA Transitions Weight: 0.50
[0028] Protein weight matrix: Gonnet series
[0029] DNA weight matrix: IUB
[0030] Use negative matrix: OFF
[0031] A FastA formatted alignment was then used to generate phylogenetic trees in MEGA2 software (MEGA2 (http://www.megasoftware.net) using the neighbor joining algorithm and a p-distance model. A test of phylogeny was done via bootstrap with 1000 replications and Random Seed set to default. Cut off values of the bootstrap tree were set to 50%. Closely-related homologs of G929 (SEQ ID NO: 2) or G3911 (SEQ ID NO: 36) are considered as being those proteins descending from ancestral sequences indicated by strong nodes of the trees. In FIGS. 2 and 3, two ancestral nodes are indicated by arrows have bootstrap values of 100 and 84, respectively. Sequences of closely related homologs that descended from these ancestral nodes are shown within the large boxes in these figures. As indicated in the experiments found in the Examples, many of these sequences have been overexpressed in plants and have been shown to retain the function of increasing size and/or growth rate. SEQ ID NOs. appear in parentheses. Abbreviations: At--Arabidopsis thaliana; Dc--Daucus carota; Ga--Gossypium arboreum; Gm--Glycine max; Gr--Gossypium raimondii; Le--Lycopersicon esculentum; Mt--Medicago truncatula; Nb--Nicotiana benthamiana; Os--Oryza sativa; Pp--Physcomitrella patens; Sb--Sorghum bicolor; St--Solanum tuberosum; Zm--Zea mays.
[0032] FIGS. 4A-4G show a Clustal W alignment of HAP2 transcription factors. SEQ ID NOs: appear in parentheses after each Gene IDentifier (GID). GIDs representing HAP2 polypeptides that are closely related to G929 and G3926 appear in the boxes along the left margin in FIGS. 4A-4G. Highly conserved domains comprising the contiguous subunit association domains and DNA binding domains (Edwards et al., 1998) are identified in FIGS. 4D-4E by the large boxes surrounding the residues within these domains.
[0033] FIGS. 5A-5G show a Clustal W alignment of HAP5 transcription factors. SEQ ID NOs: appear in parentheses after each Gene IDentifier (GID). GIDs representing HAP5 polypeptides that are closely related to G3911 and G3543 appear in the boxes along the left margin in FIGS. 5A-5G. The highly conserved "core sequence" domains first described in related sequences by Edwards et al. (1998) are identified in FIGS. 5B-5D by the large boxes surrounding the residues within these domains.
[0034] FIG. 6 shows a field of transgenic tomato plants overexpressing a number of different promoter and transcription factor combinations. Of particular note is a transgenic plant in the center of this photograph, indicated by the arrow, overexpressing G929 under the regulatory control of the cruciferin promoter. This plant was transformed with a two component expression system consisting of SEQ ID NO: 205 (a driver vector comprising the cruciferin promoter, a LexA DNA binding domain, and a GAL4 transactivation (TA) domain) and SEQ ID NO: 206 (comprising a LexA operator (opLexA) and the G929 transcription factor sequence). The transgenic plant was much larger than virtually all of its neighboring plants, including wild-type and empty vector control plants, and was particularly noted for its high vigor, upright stems, and no noticeable loss in fruit production.
DETAILED DESCRIPTION
[0035] The present invention relates to polynucleotides and polypeptides for modifying phenotypes of plants, particularly those associated with increased yield with respect to a control plant (for example, a wild-type plant). Throughout this disclosure, various information sources are referred to and/or are specifically incorporated. The information sources include scientific journal articles, patent documents, textbooks, and World Wide Web browser-inactive page addresses. While the reference to these information sources clearly indicates that they can be used by one of skill in the art, each and every one of the information sources cited herein are specifically incorporated in their entirety, whether or not a specific mention of "incorporation by reference" is noted. The contents and teachings of each and every one of the information sources can be relied on and used to make and use embodiments of the invention.
[0036] As used herein and in the appended claims, the singular forms "a", "an", and "the" include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "a stress" is a reference to one or more stresses and equivalents thereof known to those skilled in the art, and so forth.
Definitions
[0037] "Polynucleotide" is a nucleic acid molecule comprising a plurality of polymerized nucleotides, e.g., at least about 15 consecutive polymerized nucleotides. A polynucleotide may be a nucleic acid, oligonucleotide, nucleotide, or any fragment thereof. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single-stranded or double-stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can be combined with carbohydrate, lipids, protein, or other materials to perform a particular activity such as transformation or form a useful composition such as a peptide nucleic acid (PNA). The polynucleotide can comprise a sequence in either sense or antisense orientations. "Oligonucleotide" is substantially equivalent to the terms amplimer, primer, oligomer, element, target, and probe and is preferably single-stranded.
[0038] A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.
[0039] An "isolated polynucleotide" is a polynucleotide, whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.
[0040] "Gene" or "gene sequence" refers to the partial or complete coding sequence of a gene, its complement, and its 5' or 3' untranslated regions. A gene is also a functional unit of inheritance, and in physical terms is a particular segment or sequence of nucleotides along a molecule of DNA (or RNA, in the case of RNA viruses) involved in producing a polypeptide chain. The latter may be subjected to subsequent processing such as chemical modification or folding to obtain a functional protein or polypeptide. A gene may be isolated, partially isolated, or found with an organism's genome. By way of example, a transcription factor gene encodes a transcription factor polypeptide, which may be functional or require processing to function as an initiator of transcription.
[0041] Operationally, genes may be defined by the cis-trans test, a genetic test that determines whether two mutations occur in the same gene and that may be used to determine the limits of the genetically active unit (Rieger et al., 1976). A gene generally includes regions preceding ("leaders"; upstream) and following ("trailers"; downstream) the coding region. A gene may also include intervening, non-coding sequences, referred to as "introns", located between individual coding segments, referred to as "exons". Most genes have an associated promoter region, a regulatory sequence 5' of the transcription initiation codon (there are some genes that do not have an identifiable promoter). The function of a gene may also be regulated by enhancers, operators, and other regulatory elements.
[0042] A "polypeptide" is an amino acid sequence comprising a plurality of consecutive polymerized amino acid residues e.g., at least about 15 consecutive polymerized amino acid residues. In many instances, a polypeptide comprises a polymerized amino acid residue sequence that is a transcription factor or a domain or portion or fragment thereof. Additionally, the polypeptide may comprise: (i) a localization domain; (ii) an activation domain; (iii) a repression domain; (iv) an oligomerization domain; (v) a protein-protein interaction domain; (vi) a DNA-binding domain; or the like. The polypeptide optionally comprises modified amino acid residues, naturally occurring amino acid residues not encoded by a codon, non-naturally occurring amino acid residues.
[0043] "Protein" refers to an amino acid sequence, oligopeptide, peptide, polypeptide, or portions thereof whether naturally occurring or synthetic.
[0044] "Portion", as used herein, refers to any part of a protein used for any purpose, but especially for the screening of a library of molecules which specifically bind to that portion or for the production of antibodies.
[0045] A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. A "synthetic polypeptide" is a polypeptide created by consecutive polymerization of isolated amino acid residues using methods well known in the art. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild-type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild-type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.
[0046] "Homology" refers to sequence similarity between a reference sequence and at least a fragment of a newly sequenced clone insert or its encoded amino acid sequence.
[0047] "Identity" or "similarity" refers to sequence similarity between two polynucleotide sequences or between two polypeptide sequences, with identity being a more strict comparison. The phrases "percent identity" and "% identity" refer to the percentage of sequence similarity found in a comparison of two or more polynucleotide sequences or two or more polypeptide sequences. "Sequence similarity" refers to the percent similarity in base pair sequence (as determined by any suitable method) between two or more polynucleotide sequences. Two or more sequences can be anywhere from 0-100% similar, or any integer value therebetween. Identity or similarity can be determined by comparing a position in each sequence that may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same nucleotide base or amino acid, then the molecules are identical at that position. A degree of similarity or identity between polynucleotide sequences is a function of the number of identical, matching or corresponding nucleotides at positions shared by the polynucleotide sequences. A degree of identity of polypeptide sequences is a function of the number of identical amino acids at corresponding positions shared by the polypeptide sequences. A degree of homology or similarity of polypeptide sequences is a function of the number of amino acids at corresponding positions shared by the polypeptide sequences.
[0048] "Alignment" refers to a number of nucleotide bases or amino acid residue sequences aligned by lengthwise comparison so that components in common (i.e., nucleotide bases or amino acid residues at corresponding positions) may be visually and readily identified. The fraction or percentage of components in common is related to the homology or identity between the sequences. Alignments such as those of FIGS. 4A-4G and specifically 4D-4E may be used to identify conserved domains and relatedness within these domains. An alignment may suitably be determined by means of computer programs known in the art, such as MACVECTOR software (1999) (Accelrys, Inc., San Diego, Calif.).
[0049] A "conserved domain" or "conserved region" as used herein refers to a region in heterologous polynucleotide or polypeptide sequences where there is at least one similar conserved function and a relatively high degree of sequence identity between the distinct sequences. Subunit association domains and DNA binding domains such as are found in a polypeptide member of HAP2 transcription factors, or HAP5 core sequences from HAP2 transcription factors (Edwards, 1998) are examples of a conserved domain. With respect to polynucleotides encoding presently disclosed polypeptides, a conserved domain is preferably at least nine base pairs (bp) in length. A conserved domain with respect to presently disclosed polypeptides refers to a domain within a polypeptide family that exhibits similar function and a higher degree of sequence homology, such as at least about 34%, at least about 37%, at least about 39%, at least about 44%, at least about 47%, at least about 52%, at least about 55%, at least about 61%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 75%, at least about 76%, at least about 78%, at least about 80%, at least about 81%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 96%, or 100% amino acid sequence identity to the similar conserved domains of SEQ ID NO: 85-126, 199, 203, 211, or 214. Sequences that possess or encode for conserved domains that meet these criteria of percentage identity, and that have comparable biological activity to the present polypeptide sequences, thus being members of the HAP2 and HAP5 polypeptides, are encompassed by the invention. A fragment or domain can be referred to as outside a conserved domain, outside a consensus sequence, or outside a consensus DNA-binding site that is known to exist or that exists for a particular polypeptide class, family, or sub-family. In this case, the fragment or domain will not include the exact amino acids of a consensus sequence or consensus DNA-binding site of a transcription factor class, family or sub-family, or the exact amino acids of a particular transcription factor consensus sequence or consensus DNA-binding site. Furthermore, a particular fragment, region, or domain of a polypeptide, or a polynucleotide encoding a polypeptide, can be "outside a conserved domain" if all the amino acids of the fragment, region, or domain fall outside of a defined conserved domain(s) for a polypeptide or protein. Sequences having lesser degrees of identity but comparable biological activity are considered to be equivalents.
[0050] As one of ordinary skill in the art recognizes, conserved domains may be identified as regions or domains of identity to a specific consensus sequence (see, for example, Riechmann et al., 2000a, 2000b). Edwards (1998) defined conserved domains of HAP2 transcription factor sequences, and identified these contiguous domains as comprising subunit association and DNA binding activity. Edwards (1998) also defined conserved "core sequence" domains of HAP5 transcription factors that comprise a predicted histone fold triple helix for dimerization and are required for formation of the CCAAT-box transcription factor complex. Thus, by using alignment methods well known in the art, the conserved domains of the CCAAT binding transcription factor proteins may be determined. The conserved domains for many of the polypeptide sequences of the invention are listed in Tables 1-4. Also, the polypeptides of Tables 1-4 have conserved domains specifically indicated by amino acid coordinates of the full length polypeptides. It is expected that these conserved domains are required for the functions of subunit association and/or DNA binding (Edwards, 1998).
[0051] "Complementary" refers to the natural hydrogen bonding by base pairing between purines and pyrimidines. For example, the sequence A-C-G-T (5'→3') forms hydrogen bonds with its complements A-C-G-T (5'→3') or A-C-G-U (5'→3'). Two single-stranded molecules may be considered partially complementary, if only some of the nucleotides bond, or "completely complementary" if all of the nucleotides bond. The degree of complementarity between nucleic acid strands affects the efficiency and strength of hybridization and amplification reactions. "Fully complementary" refers to the case where bonding occurs between every base pair and its complement in a pair of sequences, and the two sequences have the same number of nucleotides.
[0052] The terms "highly stringent" or "highly stringent condition" refer to conditions that permit hybridization of DNA strands whose sequences are highly complementary, wherein these same conditions exclude hybridization of significantly mismatched DNAs. Polynucleotide sequences capable of hybridizing under stringent conditions with the polynucleotides of the present invention may be, for example, variants of the disclosed polynucleotide sequences, including allelic or splice variants, or sequences that encode orthologs or paralogs of presently disclosed polypeptides. Nucleic acid hybridization methods are disclosed in detail by Kashima et al., 1985, Sambrook et al., 1989, and by Haymes et al., 1985), which references are incorporated herein by reference.
[0053] In general, stringency is determined by the temperature, ionic strength, and concentration of denaturing agents (e.g., formamide) used in a hybridization and washing procedure (for a more detailed description of establishing and determining stringency, see the section "Identifying Polynucleotides or Nucleic Acids by Hybridization", below). The degree to which two nucleic acids hybridize under various conditions of stringency is correlated with the extent of their similarity. Thus, similar nucleic acid sequences from a variety of sources, such as within a plant's genome (as in the case of paralogs) or from another plant (as in the case of orthologs) that may perform similar functions can be isolated on the basis of their ability to hybridize with known related polynucleotide sequences. Numerous variations are possible in the conditions and means by which nucleic acid hybridization can be performed to isolate related polynucleotide sequences having similarity to sequences known in the art and are not limited to those explicitly disclosed herein. Such an approach may be used to isolate polynucleotide sequences having various degrees of similarity with disclosed polynucleotide sequences, such as, for example, encoded transcription factors having 34% or greater identity with a conserved domain of disclosed sequences as provided in SEQ ID NOs: 85-126, 199, 203, 211, or 214.
[0054] The terms "paralog" and "ortholog" are defined below in the section entitled "Orthologs and Paralogs". In brief, orthologs and paralogs are evolutionarily related genes that have similar sequences and functions. Orthologs are structurally related genes in different species that are derived by a speciation event. Paralogs are structurally related genes within a single species that are derived by a duplication event.
[0055] The term "equivalog" describes members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families, and otherwise into protein families with other hierarchically defined homology types. This definition is provided at the Institute for Genomic Research (TIGR) World Wide Web (www) website, under "http://www.tigr.org/TIGRFAMs/Explanations.shtml" for the heading "Terms associated with TIGRFAMs".
[0056] In general, the term "variant" refers to molecules with some differences, generated synthetically or naturally, in their base or amino acid sequences as compared to a reference (native) polynucleotide or polypeptide, respectively. These differences include substitutions, insertions, deletions or any desired combinations of such changes in a native polynucleotide of amino acid sequence.
[0057] With regard to polynucleotide variants, differences between presently disclosed polynucleotides and polynucleotide variants are limited so that the nucleotide sequences of the former and the latter are closely similar overall and, in many regions, identical. Due to the degeneracy of the genetic code, differences between the former and latter nucleotide sequences may be silent (i.e., the amino acids encoded by the polynucleotide are the same, and the variant polynucleotide sequence encodes the same amino acid sequence as the presently disclosed polynucleotide. Variant nucleotide sequences may encode different amino acid sequences, in which case such nucleotide differences will result in amino acid substitutions, additions, deletions, insertions, truncations or fusions with respect to the similar disclosed polynucleotide sequences. These variations may result in polynucleotide variants encoding polypeptides that share at least one functional characteristic. The degeneracy of the genetic code also dictates that many different variant polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.
[0058] Also within the scope of the invention is a variant of a nucleic acid listed in the Sequence Listing, that is, one having a sequence that differs from the one of the polynucleotide sequences in the Sequence Listing, or a complementary sequence, that encodes a functionally equivalent polypeptide (i.e., a polypeptide having some degree of equivalent or similar biological activity) but differs in sequence from the sequence in the Sequence Listing, due to degeneracy in the genetic code. Included within this definition are polymorphisms that may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding polypeptide, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding polypeptide.
[0059] "Allelic variant" or "polynucleotide allelic variant" refers to any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations may be "silent" or may encode polypeptides having altered amino acid sequence. "Allelic variant" and "polypeptide allelic variant" may also be used with respect to polypeptides, and in this case the terms refer to a polypeptide encoded by an allelic variant of a gene.
[0060] "Splice variant" or "polynucleotide splice variant" as used herein refers to alternative forms of RNA transcribed from a gene. Splice variation naturally occurs as a result of alternative sites being spliced within a single transcribed RNA molecule or between separately transcribed RNA molecules, and may result in several different forms of mRNA transcribed from the same gene. Thus, splice variants may encode polypeptides having different amino acid sequences, which may or may not have similar functions in the organism. "Splice variant" or "polypeptide splice variant" may also refer to a polypeptide encoded by a splice variant of a transcribed mRNA.
[0061] As used herein, "polynucleotide variants" may also refer to polynucleotide sequences that encode paralogs and orthologs of the presently disclosed polypeptide sequences. "Polypeptide variants" may refer to polypeptide sequences that are paralogs and orthologs of the presently disclosed polypeptide sequences.
[0062] Differences between presently disclosed polypeptides and polypeptide variants are limited so that the sequences of the former and the latter are closely similar overall and, in many regions, identical. Presently disclosed polypeptide sequences and similar polypeptide variants may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination. These differences may produce silent changes and result in a functionally equivalent polypeptides. Thus, it will be readily appreciated by those of skill in the art, that any of a variety of polynucleotide sequences is capable of encoding the polypeptides and homolog polypeptides of the invention. A polypeptide sequence variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties. Deliberate amino acid substitutions may thus be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as a significant amount of the functional or biological activity of the polypeptide is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine. More rarely, a variant may have "non-conservative" changes, e.g., replacement of a glycine with a tryptophan. Similar minor variations may also include amino acid deletions or insertions, or both. Related polypeptides may comprise, for example, additions and/or deletions of one or more N-linked or O-linked glycosylation sites, or an addition and/or a deletion of one or more cysteine residues. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without abolishing functional or biological activity may be found using computer programs well known in the art, for example, DNASTAR software (see U.S. Pat. No. 5,840,544).
[0063] "Fragment", with respect to a polynucleotide, refers to a clone or any part of a polynucleotide molecule that retains a usable, functional characteristic. Useful fragments include oligonucleotides and polynucleotides that may be used in hybridization or amplification technologies or in the regulation of replication, transcription or translation. A "polynucleotide fragment" refers to any subsequence of a polynucleotide, typically, of at least about 9 consecutive nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50 nucleotides, of any of the sequences provided herein. Exemplary polynucleotide fragments are the first sixty consecutive nucleotides of the polynucleotides listed in the Sequence Listing. Exemplary fragments also include fragments that comprise a region that encodes an conserved domain of a polypeptide. Exemplary fragments also include fragments that comprise a conserved domain of a polypeptide. Exemplary fragments include fragments that comprise an conserved domain of a polypeptide, for example, amino acid residues 98-157 of G929 (SEQ ID NO: 2), amino acid residues 164-222 of G3926 (SEQ ID NO: 18), amino acid residues 83-148 of G3911 (SEQ ID NO: 36) or amino acid residues 70-135 of G3543 (SEQ ID NO: 68).
[0064] Fragments may also include subsequences of polypeptides and protein molecules, or a subsequence of the polypeptide. Fragments may have uses in that they may have antigenic potential. In some cases, the fragment or domain is a subsequence of the polypeptide that performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA-binding site or domain that binds to a DNA promoter region, an activation domain, or a domain for protein-protein interactions, and may initiate transcription. Fragments can vary in size from as few as 3 amino acid residues to the full length of the intact polypeptide, but are preferably at least about 30 amino acid residues in length and more preferably at least about 60 amino acid residues in length.
[0065] The invention also encompasses production of DNA sequences that encode polypeptides and derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding polypeptides or any fragment thereof.
[0066] "Derivative" refers to the chemical modification of a nucleic acid molecule or amino acid sequence. Chemical modifications can include replacement of hydrogen by an alkyl, acyl, or amino group or glycosylation, pegylation, or any similar process that retains or enhances biological activity or lifespan of the molecule or sequence.
[0067] The term "plant" includes whole plants, shoot vegetative organs/structures (for example, leaves, stems and tubers), roots, flowers and floral organs/structures (for example, bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit (the mature ovary), plant tissue (for example, vascular tissue, ground tissue, and the like) and cells (for example, guard cells, egg cells, and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, horsetails, psilophytes, lycophytes, bryophytes, and multicellular algae (see for example, FIG. 1, adapted from Daly et al., 2001, and see also Tudge, 2000).
[0068] A "control plant" as used in the present invention refers to a plant cell, seed, plant component, plant tissue, plant organ or whole plant used to compare against transgenic or genetically modified plant for the purpose of identifying an enhanced phenotype in the transgenic or genetically modified plant. A control plant may in some cases be a transgenic plant line that comprises an empty vector or marker gene, that is, a vector that does not contain the recombinant polynucleotide of the present invention that is expressed in the transgenic or genetically modified plant being evaluated. In general, a control plant is a plant of the same line or variety as the transgenic or genetically modified plant being tested. A suitable control plant would include a genetically unaltered or non-transgenic plant of the parental line used to generate a transgenic plant herein.
[0069] A "transgenic plant" refers to a plant that contains genetic material not found in a wild-type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation, but any method can be used as one of skill in the art recognizes.
[0070] A transgenic plant of the invention generally contains an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the controlled expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to in vitro systems that mimic biochemical or cellular components or processes in a cell.
[0071] "Wild type" or "wild-type", as used herein, refers to a plant cell, seed, plant component, plant tissue, plant organ or whole plant that has not been genetically modified or treated in an experimental sense. Wild-type cells, seed, components, tissue, organs or whole plants may be used as controls to compare levels of expression and the extent and nature of trait modification with cells, tissue or plants of the same species in which a polypeptide's expression is altered, e.g., in that it has been knocked out, overexpressed, or ectopically expressed.
[0072] A "trait" refers to a physiological, morphological, biochemical, or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by biochemical techniques, such as detecting the protein, starch, or oil content of seed or leaves, or by observation of a metabolic or physiological process, e.g. by measuring tolerance to water deprivation or particular salt or sugar concentrations, or by the observation of the expression level of a gene or genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays, or reporter gene expression systems, or by agricultural observations such as hyperosmotic stress tolerance or yield. Any technique can be used to measure the amount of, comparative level of, or difference in any selected chemical compound or macromolecule in the transgenic plants.
[0073] "Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild-type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2% increase or decrease, or an even greater difference, in an observed trait as compared with a control or wild-type plant. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution and magnitude of the trait in the plants as compared to control or wild-type plants.
[0074] When two or more plants have "similar morphologies", "substantially similar morphologies", "a morphology that is substantially similar", or are "morphologically similar", the plants have comparable forms or appearances, including analogous features such as overall dimensions, height, width, mass, root mass, shape, glossiness, color, stem diameter, leaf size, leaf dimension, leaf density, internode distance, branching, root branching, number and form of inflorescences, and other macroscopic characteristics, and the individual plants are not readily distinguishable based on morphological characteristics alone.
[0075] "Modulates" refers to a change in activity (biological, chemical, or immunological) or lifespan resulting from specific binding between a molecule and either a nucleic acid molecule or a protein.
[0076] The term "transcript profile" refers to the expression levels of a set of genes in a cell in a particular state, particularly by comparison with the expression levels of that same set of genes in a cell of the same type in a reference state. For example, the transcript profile of a particular polypeptide in a suspension cell is the expression levels of a set of genes in a cell knocking out or overexpressing that polypeptide compared with the expression levels of that same set of genes in a suspension cell that has normal levels of that polypeptide. The transcript profile can be presented as a list of those genes whose expression level is significantly different between the two treatments, and the difference ratios. Differences and similarities between expression levels may also be evaluated and calculated using statistical and clustering methods.
[0077] With regard to gene knockouts as used herein, the term "knockout" refers to a plant or plant cell having a disruption in at least one gene in the plant or cell, where the disruption results in a reduced expression or activity of the polypeptide encoded by that gene compared to a control cell. The knockout can be the result of, for example, genomic disruptions, including transposons, tilling, and homologous recombination, antisense constructs, sense constructs, RNA silencing constructs, or RNA interference. A T-DNA insertion within a gene is an example of a genotypic alteration that may abolish expression of that gene.
[0078] "Ectopic expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant tissue, is different from the expression pattern in a wild-type plant or a reference plant of the same species. The pattern of expression may also be compared with a reference expression pattern in a wild-type plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild-type plant, or by expression at a time other than at the time the sequence is expressed in the wild-type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild-type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.
[0079] The term "overexpression" as used herein refers to a greater expression level of a gene in a plant, plant cell or plant tissue, compared to expression in a wild-type plant, cell or tissue, at any developmental or temporal stage for the gene. Overexpression can occur when, for example, the genes encoding one or more polypeptides are under the control of a strong promoter (e.g., the cauliflower mosaic virus 35S transcription initiation region). Overexpression may also under the control of an inducible or tissue specific promoter. Thus, overexpression may occur throughout a plant, in specific tissues of the plant, or in the presence or absence of particular environmental signals, depending on the promoter used.
[0080] Overexpression may take place in plant cells normally lacking expression of polypeptides functionally equivalent or identical to the present polypeptides. Overexpression may also occur in plant cells where endogenous expression of the present polypeptides or functionally equivalent molecules normally occurs, but such normal expression is at a lower level. Overexpression thus results in a greater than normal production, or "overproduction" of the polypeptide in the plant, cell or tissue.
[0081] The term "transcription regulating region" refers to a DNA regulatory sequence that regulates expression of one or more genes in a plant when a transcription factor having one or more specific binding domains binds to the DNA regulatory sequence. Transcription factors possess a conserved domain. The transcription factors also comprise an amino acid subsequence that forms a transcription activation domain that regulates expression of one or more yield-related genes in a plant when the transcription factor binds to the regulating region.
[0082] "Yield" or "plant yield" refers to increased plant growth, increased crop growth, increased biomass, and/or increased plant product production, and is dependent to some extent on temperature, plant size, organ size, planting density, light, water and nutrient availability, and how the plant copes with various stresses, such as through temperature acclimation and water or nutrient use efficiency. Relative indicators of yield may include volume per land area (e.g. bushels per acre) or weight per land area (e.g., kilograms per hectare) measurements.
[0083] "Planting density" refers to the number of plants that can be grown per acre. For crop species, planting or population density varies from a crop to a crop, from one growing region to another, and from year to year. Using corn as an example, the average prevailing density in 2000 was in the range of 20,000-25,000 plants per acre in Missouri, USA. A desirable higher population density (a measure of yield) would be at least 22,000 plants per acre, and a more desirable higher population density would be at least 28,000 plants per acre, more preferably at least 34,000 plants per acre, and most preferably at least 40,000 plants per acre. The average prevailing densities per acre of a few other examples of crop plants in the USA in the year 2000 were: wheat 1,000,000-1,500,000; rice 650,000-900,000; soybean 150,000-200,000, canola 260,000-350,000, sunflower 17,000-23,000 and cotton 28,000-55,000 plants per acre (Cheikh et al., 2003) U.S. Patent Application No. 20030101479). A desirable higher population density for each of these examples, as well as other valuable species of plants, would be at least 10% higher than the average prevailing density or yield.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS
[0084] Transcription Factors Modify Expression of Endogenous Genes
[0085] A transcription factor may include, but is not limited to, any polypeptide that can activate or repress transcription of a single gene or a number of genes. As one of ordinary skill in the art recognizes, transcription factors can be identified by the presence of a region or domain of structural similarity or identity to a specific consensus sequence or the presence of a specific consensus DNA-binding motif (see, for example, Riechmann et al., 2000a). The plant transcription factors of the present invention belong to the CCAAT binding HAP2 or HAP5 families.
[0086] Generally, transcription factors are involved in cell differentiation and proliferation and the regulation of growth. Accordingly, one skilled in the art would recognize that by expressing the present sequences in a plant, by, for example, introducing into the plant a polynucleotide sequence encoding a transcription factor of the invention, one may change the expression of autologous genes or induce the expression of introduced genes and thus alter the plant's phenotype to one with improved traits related to size, growth rate and/or yield. Plants may then be selected for those that produce the most desirable degree of over- or under-expression of target genes of interest and coincident trait improvement.
[0087] The sequences of the present invention may be derived from any species, particularly plant species, in a naturally occurring form or from any source whether natural, synthetic, semi-synthetic or recombinant. The sequences of the invention may also include functional fragments of the present amino acid sequences. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
[0088] In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e., expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like; as substrates for cloning e.g., including digestion or ligation reactions; and for identifying exogenous or endogenous modulators of the transcription factors. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.
[0089] Expression of genes that encode polypeptides that modify expression of endogenous genes, polynucleotides, and proteins are well known in the art. In addition, transgenic plants comprising isolated polynucleotides encoding transcription factors may also modify expression of endogenous genes, polynucleotides, and proteins. Examples include Peng et al. (1997) and Peng et al. (1999). In addition, many others have demonstrated that an Arabidopsis transcription factor expressed in an exogenous plant species elicits the same or very similar phenotypic response (see, for example, Fu et al., 2001; Nandi et al., 2000; Coupland, 1995; and Weigel and Nilsson, 1995).
[0090] In another example, Mandel et al. (1992b) and Suzuki et al. (2001) teach that a transcription factor expressed in another plant species elicits the same or very similar phenotypic response of the endogenous sequence, as often predicted in earlier studies of Arabidopsis transcription factors in Arabidopsis (see Mandel et al., 1992a; and Suzuki et al., 2001). Other examples include Muller et al. (2001); Kim et al., (2001); Kyozuka and Shimamoto (2002); Boss and Thomas (2002); He et al. (2000); and Robson et al. (2001).
[0091] In yet another example, Gilmour et al. (1998) teach that an Arabidopsis AP2 transcription factor, CBF1, which, when overexpressed in transgenic plants, increases plant freezing tolerance. Jaglo et al. (2001) further identified sequences in Brassica napus which encode CBF-like genes and that transcripts for these genes accumulated rapidly in response to low temperature. Transcripts encoding CBF-like proteins were also found to accumulate rapidly in response to low temperature in wheat, as well as in tomato. An alignment of the CBF proteins from Arabidopsis, B. napus, wheat, rye, and tomato revealed the presence of conserved consecutive amino acid residues, PKK/RPAGR×KF×ETRHP and DSAWR, which bracket the AP2/EREBP DNA binding domains of the proteins and distinguish them from other members of the AP2/EREBP protein family. (Jaglo et al., 2001)
[0092] Transcription factors mediate cellular responses and control traits through altered expression of genes containing cis-acting nucleotide sequences that are targets of the introduced transcription factor. It is well appreciated in the art that the effect of a transcription factor on cellular responses or a cellular trait is determined by the particular genes whose expression is either directly or indirectly (e.g., by a cascade of transcription factor binding events and transcriptional changes) altered by transcription factor binding. In a global analysis of transcription comparing a standard condition with one in which a transcription factor is overexpressed, the resulting transcript profile associated with transcription factor overexpression is related to the trait or cellular process controlled by that transcription factor. For example, the PAP2 gene and other genes in the MYB family have been shown to control anthocyanin biosynthesis through regulation of the expression of genes known to be involved in the anthocyanin biosynthetic pathway (Bruce et al., 2000; and Borevitz et al., 2000). Further, global transcript profiles have been used successfully as diagnostic tools for specific cellular states (e.g., cancerous vs. non-cancerous; Bhattacharjee et al., 2001; and Xu et al., 2001). Consequently, it is evident to one skilled in the art that similarity of transcript profile upon overexpression of different transcription factors would indicate similarity of transcription factor function.
[0093] Polypeptides and Polynucleotides of the Invention
[0094] The present invention includes putative transcription factors (TFs), and isolated or recombinant polynucleotides encoding the polypeptides, or novel sequence variant polypeptides or polynucleotides encoding novel variants of polypeptides derived from the specific sequences provided in the Sequence Listing; the recombinant polynucleotides of the invention may be incorporated in expression vectors for the purpose of producing transformed plants. Also provided are methods for modifying yield from a plant by modifying the mass, size or number of plant organs or seed of a plant by controlling a number of cellular processes. These methods are based on the ability to alter the expression of transcription factors, critical regulatory molecules that may be conserved between diverse plant species. Related conserved regulatory molecules may be originally discovered in a model system such as Arabidopsis and homologous, functional molecules may then be discovered in other plant species. The latter may then be used to confer increased yield in diverse plant species.
[0095] Exemplary polynucleotides encoding the polypeptides of the invention were identified in the Arabidopsis thaliana GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known polypeptides. In addition, further exemplary polynucleotides encoding the polypeptides of the invention were identified in the plant GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known polypeptides.
[0096] Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known polypeptides under low stringency hybridization conditions. Additional sequences, including full length coding sequences, were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full-length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.
[0097] Many of the sequences in the Sequence Listing, derived from diverse plant species, have been ectopically expressed in transgenic plants. Therefore, the present polynucleotides and polypeptides can be used to change expression levels of genes, polynucleotides, and/or proteins of plants or plant cells. The changes in the characteristic(s) or trait(s) of the plants were then observed and found to confer increased growth rate and/or size.
Background Information for HAP2 and HAP5 Related Sequences; the Role of the CCAAT-Box Element and CCAAT-Box Binding Proteins
[0098] Transcriptional regulation of most eukaryotic genes occurs through the binding of transcription factors to sequence specific binding sites in their promoter regions. Many of these protein binding sites have been conserved through evolution and are found in the promoters of diverse eukaryotic organisms. One element that shows a high degree of conservation is the CCAAT-box (Gelinas et al., 1985). This cis-acting regulatory element is found in all eukaryotic species and is present in the promoter and enhancer regions of approximately 30% of genes (Bucher and Trifonov, 1988; Bucher, 1990). The CCAAT-box can function in either orientation, and operates alone, or in possible cooperation with other cis regulatory elements (Tasanen et al., 1992).
[0099] Proteins that bind the CCAAT-box element were first identified in yeast, and function as a hetero-tetrameric complex called the HAP complex (heme activator protein complex) or the CCAAT binding factor (Forsburg and Guarente, 1988). The yeast HAP complex is composed of at least four subunits, HAP2, HAP3, HAP4, and HAP5, each of which is encoded by a single gene. The yeast HAP4 polypeptide does not bind to DNA but associates with the HAP2,3,5 complex and activates transcription through an acidic domain. (Forsburg and Guarente, 1989). The yeast HAP complex has a key role in the regulation of energy metabolism. In particular, the HAP complex is required for growth on non-fermentable carbon sources and is involved in the activation of genes involved in mitochondrial biogenesis (Mazon et al., 1982; Dang et al., 1996; Gancedo, 1998).
[0100] CCAAT binding factors of the HAP2-like, HAP3-like and HAP5-like classes are found in plant proteomes, and as in mammals, HAP4-like factors are absent (Edwards et al., 1998). In vertebrates, the three sequences of the CCAAT-binding factor are known as NF-YA, NF-YB, and NF-YC, respectively, and are homologous to HAP2, HAP3 and HAP5 subunits, respectively. In plants, the HAP2-like, HAP3-like and HAP5-like proteins are each encoded by small gene families and likely play a more complex role in regulating gene transcription than in yeast. We have identified 36 CCAAT family genes in the Arabidopsis genome, and these are approximately equally divided into each of the three subfamilies. In Arabidopsis there are 10 members of the HAP2 (NF-YA) subfamily, 12 members of the HAP3 (NF-YB) subfamily, and 11 members of the HAP5 (NF-YC) subfamily. Three additional Arabidopsis proteins were also identified that did not clearly fit into any of the three sub-groups, but that have some similarity to HAPs; we have designated these as HAP-like factors.
[0101] The three types of subunits in plants have the same kind of structural organization as their counterparts from mammals. For example, G481 (found in PCT patent publication WO2004076638) encodes a 141 amino acid protein of the HAP3 (NF-YB) class. In the case of the HAP3 class, the central conserved region, which confers the DNA binding and subunit interaction properties, is termed the B domain. The more variable N and C terminal regions are called the A and C domains, respectively (Li et al., 1992).
[0102] Like their mammalian counterparts, plant CCAAT binding factors most likely bind DNA as heterotrimers composed of HAP2-like, HAP3-like and HAP5-like subunits. All subunits contain regions that are required for DNA binding and subunit association. However, regions that might have an activation domain function are less apparent than in the mammalian proteins, where Q-rich regions within the HAP2 and HAP5 subunits are thought to fulfill such a role. Nonetheless, some of the HAP2 and HAP5 class proteins that we have identified do have Q-rich regions within the N and C-termini. However, these regions have not been confirmed yet as having such activation domain properties.
[0103] There is some support for the notion that HAP subunits might function in close association with other transcription factors on target promoters as part of a larger complex. This is evidenced by that fact that the CCAAT box is generally found in close proximity to other promoter elements. In particular, a HAP3-like protein from rice, OsNF-YB1, interacts with a MADS-box protein OsMADS18 in vitro as part of a ternary complex (Masiero et al., 2002). It was also shown that the in vitro interaction between these two types of transcription factors requires that OsNF-YB1 dimerizes with a HAP5-like protein, and that OsMADS18 forms a heterodimer with another MADS-box protein. Interestingly, the OsNF-YB1/HAP5 protein dimer is incapable of interacting with HAP2-like subunits and therefore cannot bind the CCAAT element. The authors therefore speculated that there is a select set of HAP3-like proteins in plants that act on non-CCAAT promoter elements by virtue of their interaction with other non-CCAAT transcription factors (Masiero et al., 2002). In support of this, HAP3/HAP5 subunit dimers have been shown to be able to interact with TFIID in the absence of HAP2 subunits (Romier et al., 2003).
[0104] A number of phylogenetically-related sequences from diverse plant species are listed in Tables 1-4 for HAP2 (Tables 1 and 2) and HAP5 (Tables 3 and 4) proteins, respectively. These tables include the SEQ ID NO: (Column 1 of each table), the species from which the sequence was derived and the Gene Identifier ("GID"; Column 2 of each table), the percent identity of each polypeptide to the full length polypeptide of G929, SEQ ID NO: 2 (Table 1, Column 3), G3926, SEQ ID NO: 18 (Table 2, column 3), G3911, SEQ ID NO: 36 (Table 3, Column 3) and G3543, SEQ ID NO: 68 (Table 4, Column 3), as determined by a BLASTp analysis with a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix Henikoff & Henikoff (1989). The numbers in parentheses in Column 3 in each of these tables indicate the number of identical residues over the number of residues in the length of sequence compared in the BLAST analysis. Tables 1-4 also list the amino acid residue coordinates for the conserved domains, in coordinates beginning at the N-terminus of each of the sequences (Column 4 of each table), the conserved domain sequences of the respective polypeptides (Column 5 of each table); the SEQ ID NO: of each of the conserved domains (Column 6 of each table), the percentage identity of each conserved domain in each Column 5 to the conserved domain of G929, SEQ ID NO: 85 (Table 1, Column 7), G3926, SEQ ID NO: 93 (Table 2, Column 7), G3911, SEQ ID NO: 102 (Table 3, Column 7), or G3543, SEQ ID NO: 118 (Table 4, Column 7), and in the assays performed thus far, whether a transgenic plant overexpressing the CCAAT-binding transcription factor was larger, had greater biomass, and/or a faster growth rate relative to a control plant at the seedling stage or adult stage (Column 8 of each table). Positive results are reported when more than one line (except in Tables 3 and 4 for G3886 and G3894 as noted1) had larger size, biomass and/or faster growth rate than wild type controls or control plants harboring an empty vector. Transgenic plants generated with the sequences in Tables 1-4 overexpressed the transcription factor under the regulatory control of the constitutive CaMV 35S promoter, unless otherwise noted for certain tissue-specific promoters. "OE" refers to a transgenic plant overexpressing a CCAAT-binding transcription factor of Column 1. Species abbreviations used in these tables included: At--Arabidopsis thaliana; Gm--Glycine max; Gr--Gossypium raimondii; Le--Lycopersicon esculentum; Os--Oryza sativa; Zm--Zea mays.
[0105] At the time of evaluation, plants were given one of the following scores:
[0106] (+) Enhanced size, biomass and/or growth rate compared to controls. The response was consistent but was only moderately above the normal levels of variability observed for that assay.
[0107] (-) No detectable difference from wild-type controls, or impaired size, biomass and/or growth rate compared to controls.
[0108] (n/d) Experiment failed, data not obtained, or assay not performed.
TABLE-US-00001
[0108] TABLE 1 Sequential and functional similarity of G929-related HAP2 polypeptides and conserved domains Col. 7 Percent Col. 8 identity of OE had Col. 3 conserved greater Col. 1 Percent Col. 4 Col. 6 domain in size, Polypep- identity of Conserved Col. 5 SEQ ID Column 5 to biomass tide Col. 2 polypeptide domain in HAP2 NO: of conserved or faster SEQ ID Species/ in Column amino acid conserved conserved domain of growth NO: GID No. 1 to G929 coordinates domain domain G929 rate 2 At/G929 100% 98-157 EPVFVNAKQ 85 100% + (198/198) YHGILRRRQS (60/60) RAKLEARNR AIKAKKPYM HESRHLHAIR RPRGCGGRF LNAK 4 At/G2344 63% 100-159 EPVFVNAKQ 86 86% + (126/197) YHGILRRRQS (52/60) RARLESQNK VIKSRKPYLH ESRHLHAIRR PRGCGGRFL NAK 6 At/G931 47% 172-231 EPVFVNAKQ 87 76% + (73/155) FHAIMRRRQ (46/60) QRAKLEAQN KLIKARKPYL HESRHVHAL KRPRGSGGR FLNTK 8 Gm/ 50% 149-208 EPVYVNAKQ 88 76% + G3920 (69/136) YHGILRRRQS (46/60) RAKAEIEKK VIKNRKPYL HESRHLHAM RRARGNGGR FLNTK 10 At/G928 45% 179-238 DPVFVNAKQ 89 75% + (68/151) YHAIMRRRQ (45/60) QRAKLEAQN KLIRARKPYL HESRHVHAL KRPRGSGGR FLNTK 12 At/G1782 58% 178-237 EPIFVNAKQY 90 75% + (56/96) HAILRRRKH (45/60) RAKLEAQNK LIKCRKPYLH ESRHLHALK RARGSGGRF LNTK 213 Zm/ 55% 175-231 EPVYVNAKQ 214 75% n/d G4261 (64/116) YHGILRRRQS (45/60) RAKAELEKK VVKARKPYL HESRHQHAM RRARGNGGR FL 14 At/G1363 42% 171-230 EPIFVNAKQY 91 73% + (66/156) QAILRRRERR (44/60) AKLEAQNKL IKVRKPYLHE SRHLHALKR VRGSGGRFL NTK 16 Os/G3924 42% 163-222 EPVYVNAKQ 92 73% + (74/174) YHGILRRRQS (44/60) RAKAELEKK VVKSRKPYL HESRHQHAM RRARGTGGR FLNTK 28 At/G2632 50% 166-223 EPVFVNAKQ 98 73% - (67/134) YQAILRRRQ (41/56) ARAKAELEK KLIKSRKPYL HESRHQHAM RRPRGTGGR FAK 18 Os/G3926 42% 164-222 EPIFVNAKQY 93 71% + (79/184) NAILRRRQTR (43/60) AKLEAQNKA VKGRKPYLH ESRHHHAMK RARGSGGRF LTK 20 Os/G3925 42% 138-197 EPIYVNAKQ 94 71% + (67/158) YHAILRRRQI (43/60) RAKLEAENK LVKNRKPYL HESRHQHAM KRARGTGGR FLNTK 22 Zm/ 41% 148-207 EPIYVNAKQ 95 71% n/d G3921 (71/170) YHAILRRRQT (43/60) RAKLEAQNK MVKGRKPYL HESRHRHAM KRARGSGGR FLNTK 24 Zm/ 35% 171-230 EPIYVNAKQ 96 71% n/d G3922 (69/193) YHAILRRRQT (43/60) RAKLEAQNK MVKNRKPYL HESRHRHAM KRARGSGGR FLNTK 26 Zm/ 38% 155-214 EPIYVNAKQ 97 71% + G4264 (74/193) YHAILRRRQT (43/60) RAKLEAQNK MVKNRKPYL HESRHRHAM KRARGSGGR FLNTK 30 At/G1334 40% 133-190 DGTIYVNSK 99 70% + (60/149) QYHGIIRRRQ (41/58) SRAKAEKLS RCRKPYMHH SRHLHAMRR PRGSGGRFL NTK 32 At/G926 44% 171-228 EPVYVNAKQ 100 66% +1 (58/131) YEGILRRRKA (37/56) RAKAELERK VIRDRKPYLH ESRHKHAMR RARASGGRF AK 34 At/G927 37% 136-199 STIYVNSKQY 101 64% - (59/156) HGIIRRRQSR (40/62) AKAAAVLDQ KKLSSRCRKF YMHHSRHLH ALRRPRGSG GRFLNTK
TABLE-US-00002 TABLE 2 Sequential and functional similarity of G3926-related HAP2 polypeptides and conserved domains Col. 7 Percent Col. 8 identity of OE had Col. 3 conserved greater Col. 1 Percent Col. 4 Col. 6 domain in size, Polypep- identity of Conserved Col. 5 SEQ ID Column 5 to biomass tide Col. 2 polypeptide domain in HAP2 NO: of conserved or faster SEQ ID Species/ in Column amino acid conserved conserved domain of growth NO: GID No. 1 to G3926 coordinates domain domain G3926 rate 18 Os/G392 100% 164-222 EPIFVNAKQY 93 100% + 6 (317/317) NAILRRRQTR (59/59) AKLEAQNKA VKGRKPYLH ESRHHHAMK RARGSGGRF LTK 22 Zm/G392 47% 148-207 EPIYVNAKQ 95 92% n/d 1 (143/304) YHAILRRRQT (53/57) RAKLEAQNK MVKGRKPYL HESRHRHAM KRARGSGGR FLNTK 24 Zm/G392 47% 171-230 EPIYVNAKQ 96 91% n/d 2 (140/295) YHAILRRRQT (52/57) RAKLEAQNK MVKNRKPYL HESRHRHAM KRARGSGGR FLNTK 26 Zm/G426 46% 155-214 EPIYVNAKQ 97 91% + 4 (146/311) YHAILRRRQT (52/57) RAKLEAQNK MVKNRKPYL HESRHRHAM KRARGSGGR FLNTK 12 At/G1782 37% 178-237 EPIFVNAKQY 90 85% + (89/236) HAILRRRKH (49/57) RAKLEAQNK LIKCRKPYLH ESRHLHALK RARGSGGRF LNTK 20 Os/G392 50% 138-197 EPIYVNAKQ 94 85% + 5 (104/204) YHAILRRRQI (49/57) RAKLEAENK LVKNRKPYL HESRHQHAM KRARGTGGR FLNTK 14 At/G1363 37% 171-230 EPIFVNAKQY 91 84% + (98/259) QAILRRRERR (48/57) AKLEAQNKL IKVRKPYLHE SRHLHALKR VRGSGGRFL NTK 6 At/G931 37% 172-231 EPVFVNAKQ 87 80% + (104/278) FHAIMRRRQ (46/57) QRAKLEAQN KLIKARKPYL HESRHVHAL KRPRGSGGR FLNTK 10 At/G928 35% 179-238 DPVFVNAKQ 89 78% + (94/262) YHAIMRRRQ (45/57) QRAKLEAQN KLIKARKPYL HESRHVHAL KRPRGSGGR FLNTK 4 At/G2344 49% 100-159 EPVFVNAKQ 86 75% + (66/134) YHGILRRRQS (43/57) RARLESQNK VIKSRKPYLH ESRHLHAIRR PRGCGGRFL NAK 16 Os/G392 45% 163-222 EPVYVNAKQ 92 75% + 4 (76/167) YHGILRRRQS (43/57) RAKAELEKK VVKSRKPYL HESRHQHAM RRARGTGGR FLNTK 213 Zm/G426 47% 175-231 EPVYVNAKQ 214 75% n/d 1 (87/183) YHGILRRRQS (43/57) RAKAELEKK VVKARKPYL HESRHQHAM RRARGNGGR FL 2 At/G929 42% 98-157 EPVFVNAKQ 85 73% + (79/184) YHGILRRRQS (42/57) RAKLEARNR AIKAKKPYM HESRHLHAIR RPRGCGGRF LNAK 28 At/G2632 40% 166-223 EPVFVNAKQ 98 72% - (87/217) YQAILRRRQ (43/59) ARAKAELEK KLIKSRKPYL HESRHQHAM RRPRGTGGR FAK 8 Gm/G392 36% 149-208 EPVYVNAKQ 88 73% + 0 (76/209) YHGILRRRQS (42/57) RAKAEIEKK VIKNRKPYL HESRHLHAM RRARGNGGR FLNTK 32 At/G926 39% 171-228 EPVYVNAKQ 100 67% +1 (75/192) YEGILRRRKA (40/59) RAKAELERK VIRDRKPYLH ESRHKHAMR RARASGGRF AK 30 At/G1334 39% 133-190 DGTIYVNSK 99 65% + (54/136) QYHGIIRRRQ (36/55) SRAKAEKLS RCRKPYMHH SRHLHAMRR PRGSGGRFL NTK 34 At/G927 34% 136-199 STIYVNSKQY 101 57% - (73/213) HGIIRRRQSR (34/59) AKAAAVLDQ KKLSSRCRKP YMHHSRHLH ALRRPRGSG GRFLNTK Specific notes for Tables 1 and 2: 1Assays with 35S::G926 Arabidopsis plants have not yet been performed. However, 35S::G926 overexpressing tomato plants produced increased average fruit weight in the top 5% and cruciferin::G926 tomato plants produced increased average fruit weight in the top 10% of 3,217 tomato lines tested that overexpressed many different Arabidopsis transcription factors. Arabidopsis plants overexpressing G926-YFP fusion proteins (YFP or "yellow fluorescent protein" is a red-shifted spectral variant of green fluorescent protein (GFP)) were not larger and did not appear to have a faster growth rate than controls.
TABLE-US-00003 TABLE 3 Sequential and functional similarity of G3911-related HAP5 polypeptides and conserved domains Col. 7 Percent identity of Col. 8 conserved OE had Col. 3 domain in greater Col. 1 Percent Col. 4 Col. 6 Column 5 size, Polypep- identity of Conserved SEQ ID to con- biomass tide Col. 2 polypeptide domain in Col. 5 NO: of served or faster SEQ ID Species/ in Column amino acid Conserved conserved domain of growth NO: GID No. 1 to G3911 coordinates domain domain G3911 rate 36 Zm/G391 100% 83-148 LPLARIKKIM 102 100% + 1 (200/200) KADEDVRMI (66/66) AAEAPVVFA RACEMFILEL THRGWAHA EENKRRTLQ KSDIAAAIAR T 38 Os/G3546 79% 91-156 LPLARIKKIM 103 100% + (167/211) KADEDVRMI (66/66) AAEAPVVFA RACEMFILEL THRGWAHA EENKRRTLQ KSDIAAAIAR T 40 Zm/G390 78% 86-151 LPLARIKKIM 104 96% + 9 (159/203) KADEDVRMI (64/66) AAEAPVVFS RACEMFILEL THRGWAHA EENKRRTLQ KSDIAAAVA RT 202 Le/G3894 54% 103-168 LPLARIKKIM 203 89% +1 (119/220) KADEDVRMI (59/66) SAEAPVVFA RACEMFILEL TLRAWNHTE ENKRRTLQK NDIAAAITRT 46 Gm/G354 55% 102-167 LPLARIKKIM 107 87% + 7 (125/226) KADEDVRMI (58/66) SAEAPVIFAR ACEMFILELT LRSWNHTEE NKRRTLQKN DIAAAITRT 48 At/G714 72% 71-136 LPLARIKKIM 108 87% + (96/132) KADEDVRMIS (58/66) AEAPVVFARA CEMFILELTLR SWNHTEENK RRTLQKNDIA AAVTRT 52 At/G489 58% 81-146 LPLARIKKIM 110 87% +2 (107/182) KADEDVRMIS (58/66) AEAPVVFARA CEMFILELTLR SWNHTEENK RRTLQKNDIA AAVTRT 42 Zm/G355 55% 100-165 LPLARIKKIM 105 86% + 2 (121/218) KADEDVRMI (57/66) SAEAPVVFA KACEIFILELT LRSWMHTEE NKRRTLQKN DIAAAITRT 44 At/G483 65% 77-142 LPLARIKKIM 106 86% - (95/144) KADEDVRMI (57/66) SAEAPVIFAK ACEMFILELT LRAWIHTEE NKRRTLQKN DIAAAISRT 50 Os/G3542 54% 106-171 LPLARIKKIM 109 86% + (124/228) KADEDVRMIS (57/66) AEAPVVFAKA CEVFILELTLR SWMHTEENK RRTLQKNDIA AAITRT 56 Gm/G355 56% 107-172 LPLARIKKIM 112 86% + 0 (108/191) KADEDVRMIS (56/65) AEAPVIFAKA CEMFILELTLR SWIHTEENKR RTLQKNDIAA AISRN 58 Gm/G354 56% 90-155 LPLARIKKIM 113 86% + 8 (112/198) KADEDVRMIS (56/65) AEAPVIFAKA CEMFILELTLR SWIHTEENKR RTLQKNDIAA AISRN 54 Os/G3544 56% 102-167 LPLARIKKIM 111 84% + (111/198) KADEDVRMIS (56/66) AEAPVIFAKA CEIFILELTLRS WMHTEENKR RTLQKNDIAA AITRT 60 At/G715 54% 66-131 LPLARIKKIM 114 84% + (117/215) KADEDVRMIS (56/66) AEAPILFAKA CELFILELTIRS WLHAEENKR RTLQKNDIAA AITRT 62 Gm/G388 61% 72-137 LPLARIKKIM 115 84% +1 6 (114/186) KADEDVRMIS (56/66) AEAPILFAKA CELFILELTIRS WLHAEENKR RTLQKNDIAA AITRT 64 Zm/G388 55% 69-134 LPLARIKKIM 116 84% + 9 (114/206) KADEDVRMIS (56/66) AEAPVLFAKA CELFILELTIRS WLHAEENKR RTLQRNDVA AAIART 66 At/G1646 53% 79-144 LPLARIKKIM 117 84% + (111/206) KADEDVRMIS (56/66) AEAPILFAKA CELFILELTIRS WLHAEENKR RTLQKNDIAA AITRT 198 Gr/G3883 61% 67-132 LPLARIKKIM 199 84% - (104/168) KADEDVRMIS (56/66) AEAPILFAKA CELFILELTIRS WLHAEENKR RTLQKNDIAA AITRT 210 Zm/4259 57% 70-135 LPLARIKKIM 211 84% n/d (115/201) KADEDVRMIS (56/66) AEAPVLFAKA CELFILELTIRS WLHAEENKR RTLQRNDVA AAIART 68 Os/G3543 55% 70-135 LPLAGIKKIM 118 83% + (108/193) KADEDVRMIS (55/66) AEAPVLFAKA CELFILELTIRS WLHAEENKR RTLQRKDVA AAIART 70 At/G1820 52% 55-120 LPLARIKKIM 119 73% - (76/145) KADPDVHMV (47/64) SAEAPIIFAKA CEMFIVDLTM RSWLKAEEN KRHTLQKSDI SNAVASS 72 At/G1836 53% 37-102 LPITRIKKIMK 120 63% + (65/122) YDPDVTMIAS (42/66) EAPILLSKACE MFIMDLTMRS WLHAQESKR VTLQKSNVDA AVAQT 74 At/G1819 37% 64-135 FPLTRIKKIMK 121 52% + (64/169) SNPEVNMVTA (37/71) EAPVLISKACE MLILDLTMRS WLHTVEGGR QTLKRSDTLT RSDISAATTRS 76 At/G1818 47% 38-102 PISRIKRIMKF 122 55% + (57/119) DPDVSMIAAE (36/65) APNLLSKACE MFVMDLTMR SWLHAQESNR LTIRKSDVDA VVSQT 78 At/G490 41% 68-133 LPLSRVRKILK 123 44% + (41/99) SDPEVKKISC (28/63) DVPALFSKAC EYFILEVTLRA WMHTQSCTR ETIRRCDIFQA VKNS 80 At/G3074 38% 9-73 FPAARIKKIM 124 37% + (30/77) QADEDVGKIA (24/64) LAVPVLVSKS LELFLQDLCD RTYEITLERG AKTVSSLHLK HCVER 82 At/G1249 35% 12-76 FPIGRVKKIM 125 34% + (27/77) KLDKDINKIN (22/64) SEALHVITYST ELFLHFLAEK SAVVTAEKKR KTVNLDHLRI AVKR 84 At/G3075 25% 110-173 FPMNRIRRIM 126 22% - (19/76) RSDNSAPQIM (14/63) QDAVFLVNK ATEMFIERFSE EAYDSSVKDK KKFIHYKHLS SVVS
TABLE-US-00004 TABLE 4 Sequential and functional similarity of G3543-related HAP5 polypeptides and conserved domains Col. 7 Percent identity Col. 8 of con- OE had Col. 3 served in greater Col. 1 Percent Col. 4 Col. 6 Column 5 size, Polypep- identity of Conserved SEQ ID to con- biomass tide Col. 2 polypeptide domain in Col. 5 NO: of served or faster SEQ ID Species/ in Column amino acid Conserved conserved domain of growth NO: GID No. 1 to G3543 coordinates domain domain G3543 rate 68 Os/G354 100% 70-135 LPLAGIKKIM 118 100% + 3 (246/246) KADEDVRMI (66/66) SAEAPVLFA KACELFILEL TIRSWLHAEE NKRRTLQRK DVAAAIART 210 Zm/4259 87% 70-135 LPLARIKKIM 211 96% n/d (219/251) KADEDVRMI (64/66 SAEAPVLFA KACELFILEL TIRSWLHAEE NKRRTLQRN DVAAAIART 64 Zm/G388 86% 69-134 LPLARIKKIM 116 96% + 9 (218/251) KADEDVRMI (64/66) SAEAPVLFA KACELFILEL TIRSWLHAEE NKRRTLQRN DVAAAIART 60 At/G715 58% 66-131 LPLARIKKIM 114 90% + (144/248) KADEDVRMI (60/66) SAEAPILFAK ACELFILELTI RSWLHAEEN KRRTLQKND IAAAITRT 62 Gm/G388 58% 72-137 LPLARIKKIM 115 90% +1 6 (142/243) KADEDVRMI (60/66) SAEAPILFAK ACELFILELTI RSWLHAEEN KRRTLQKND IAAAITRT 66 At/G1646 56% 79-144 LPLARIKKIM 117 90% + (143/253) KADEDVRMI (60/66) SAEAPILFAK ACELFILELTI RSWLHAEEN KRRTLQKND IAAAITRT 198 Gr/G388 58% 67-132 LPLARIKKIM 199 90% - 3 (142/244) KADEDVRMI (60/66) SAEAPILFAK ACELFILELTI RSWLHAEEN KRRTLQKND IAAAITRT 56 Gm/G355 63% 107-172 LPLARIKKIM 112 84% + 0 (98/154) KADEDVRMI (55/65) SAEAPVIFAK ACEMFILELT LRSWIHTEEN KRRTLQKND IAAAISRN 58 Gm/G354 62% 90-155 LPLARIKKIM 113 84% + 8 (97/154) KADEDVRMI (55/65) SAEAPVIFAK ACEMFILELT LRSWIHTEEN KRRTLQKND IAAAISRN 50 Os/G354 55% 106-171 LPLARIKKIM 109 84% + 2 (113/205) KADEDVRMI (56/66) SAEAPVVFA KACEVFILEL TLRSWMHTE ENKRRTLQK NDIAAAITRT 42 Zm/G355 56% 100-165 LPLARIKKI 105 84% + 2 (110/194) MKADEDVR (56/66) MISAEAPVV FAKACEIFIL ELTLRSWM HTEENKRRT LQKNDIAAA ITRT 54 Os/G354 54% 102-167 LPLARIKKIM 111 84% + 4 (108/198) KADEDVRMI (56/66) SAEAPVIFAK ACEIFILELTL RSWMHTEEN KRRTLQKND IAAAITRT 44 At/G483 65% 77-142 LPLARIKKI 106 83% - (105/161) MKADEDVR (55/66) MISAEAPVI FAKACEMFI LELTLRAWI HTEENKRRT LQKNDIAAA ISRT 46 Gm/G354 53% 102-167 LPLARIKKI 107 83% + 7 (117/220) MKADEDVR (55/66) MISAEAPVI FARACEMFI LELTLRSWN HTEENKRRT LQKNDIAAA ITRT 36 Zm/G391 55% 83-148 LPLARIKKI 102 83% + 1 (108/193) MKADEDVR (55/66) MIAAEAPVV FARACEMFI LELTHRGW AHAEENKR RTLQKSDIA AAIART 38 Os/G354 56% 91-156 LPLARIKKI 103 83% + 6 (110/194) MKADEDVR (55/66) MIAAEAPVV FARACEMFI LELTHRGW AHAEENKR RTLQKSDIA AAIART 48 At/G714 57% 71-136 LPLARIKKIM 108 81% + (106/185) KADEDVRMI (54/66) SAEAPVVFA RACEMFILEL TLRSWNHTE ENKRRTLQK NDIAAAVTR T 52 At/G489 53% 81-146 LPLARIKKIM 110 81% +2 (117/220) KADEDVRMI (54/66) SAEAPVVFA RACEMFILEL TLRSWNHTE ENKRRTLQK NDIAAAVTR T 202 Le/G389 59% 103-168 LPLARIKKI 203 81% +1 4 (108/182) MKADEDVR (54/64) MISAEAPVV FARACEMFI LELTLRAW NHTEENKR RTLQKNDIA AAITRT 40 Zm/G390 55% 86-151 LPLARIKKI 104 80% + 9 (108/193) MKADEDVR (53/66) MIAAEAPVV FSRACEMFI LELTHRGW AHAEENKR RTLQKSDIA AAVART 70 At/G1820 43% 55-120 LPLARIKKIM 119 71% - (85/195) KADPDVHM (46/64) VSAEAPIIFA KACEMFIVD LTMRSWLKA EENKRHTLQ KSDISNAVAS S 72 At/G1836 46% 37-102 LPITRIKKIM 120 63% + (72/154) KYDPDVTMI (42/66) ASEAPILLSK ACEMFIMDL TMRSWLHAQ ESKRVTLQK SNVDAAVAQ T 74 At/G1819 38% 64-135 FPLTRIKKIM 121 61% + (67/174) KSNPEVNMV (35/57) TAEAPVLISK ACEMLILDLT MRSWLHTVE GGRQTLKRS DTLTRSDISA ATTRS 76 At/G1818 35% 38-102 PISRIKRIMKF 122 55% + (70/195) DPDVSMIAA (36/65) EAPNLLSKA CEMFVMDLT MRSWLHAQE SNRLTIRKSD VDAVVSQT 78 At/G490 40% 68-133 LPLSRVRKIL 123 47% + (41/101) KSDPEVKKIS (30/63) CDVPALFSK ACEYFILEVT LRAWMHTQS CTRETIRRCD IFQAVKNS 80 At/G3074 39% 9-73 FPAARIKKIM 124 39% + (31/79) QADEDVGKI (25/64) ALAVPVLVS KSLELFLQDL CDRTYEITLE RGAKTVSSL HLKHCVER 82 At/G1249 34% 12-76 FPIGRVKKIM 125 34% + (27/79) KLDKDINKIN (22/64) SEALHVITYS TELFLHFLAE KSAVVTAEK KRKTVNLDH LRIAVKR 84 At/G3075 26% 110-173 FPMNRIRRIM 126 23% - (27/101) RSDNSAPQIM (15/63) QDAVFLVNK ATEMFIERFS EEAYDSSVK DKKKFIHYK HLSSVVS
Specific notes for Tables 3 and 4: 1One of ten lines had larger seedlings 2Numerous plants overexpressing G489-YFP fusion proteins had larger rosettes than controls; YFP or "yellow fluorescent protein is a red-shifted spectral variant of green fluorescent protein (GFP)
[0109] Orthologs and Paralogs
[0110] Homologous sequences as described above can comprise orthologous or paralogous sequences. Several different methods are known by those of skill in the art for identifying and defining these functionally homologous sequences. General methods for identifying orthologs and paralogs, including phylogenetic methods, sequence similarity and hybridization methods, are described herein; an ortholog or paralog, including equivalogs, may be identified by one or more of the methods described below.
[0111] As described by Eisen (1998), evolutionary information may be used to predict gene function. It is common for groups of genes that are homologous in sequence to have diverse, although usually related, functions. However, in many cases, the identification of homologs is not sufficient to make specific predictions because not all homologs have the same function. Thus, an initial analysis of functional relatedness based on sequence similarity alone may not provide one with a means to determine where similarity ends and functional relatedness begins. Fortunately, it is well known in the art that protein function can be classified using phylogenetic analysis; functional predictions can be greatly improved by focusing on how the genes became similar in sequence, i.e., by evolutionary processes, rather than on the sequence similarity itself (Eisen, 1998). In fact, many specific examples exist in which gene function has been shown to correlate well with gene phylogeny (Eisen, 1998). Thus, "[t]he first step in making functional predictions is the generation of a phylogenetic tree representing the evolutionary history of the gene of interest and its homologs. Such trees are distinct from clusters and other means of characterizing sequence similarity because they are inferred by techniques that help convert patterns of similarity into evolutionary relationships . . . . After the gene tree is inferred, biologically determined functions of the various homologs are overlaid onto the tree. Finally, the structure of the tree and the relative phylogenetic positions of genes of different functions are used to trace the history of functional changes, which is then used to predict functions of [as yet] uncharacterized genes" (Eisen, 1998).
[0112] Within a single plant species, gene duplication may cause two copies of a particular gene, giving rise to two or more genes with similar sequence and often similar function known as paralogs. A paralog is therefore a similar gene formed by duplication within the same species. Paralogs typically cluster together or in the same clade (a group of similar genes) when a gene family phylogeny is analyzed using programs such as CLUSTAL (Thompson et al., 1994; Higgins et al., 1996). Groups of similar genes can also be identified with pair-wise BLAST analysis (Feng and Doolittle, 1987). For example, a clade of very similar MADS domain transcription factors from Arabidopsis all share a related function in flowering time (Ratcliffe et al., 2001, 2003), and a group of very similar AP2 domain transcription factors from Arabidopsis are involved in tolerance of plants to freezing (Gilmour et al., 1998). Analysis of groups of similar genes with similar function that fall within one clade can yield sub-sequences that are particular to the clade. These sub-sequences, known as consensus sequences, can not only be used to define the sequences within each clade, but define the functions of these genes; genes within a clade may contain paralogous sequences, or orthologous sequences that share the same function (see also, for example, Mount, 2001).
[0113] Transcription factor gene sequences are conserved across diverse eukaryotic species lines (Goodrich et al., 1993; Lin et al., 1991; Sadowski et al., 1988). Plants are no exception to this observation; diverse plant species possess transcription factors that have similar sequences and functions. Speciation, the production of new species from a parental species, gives rise to two or more genes with similar sequence and similar function. These genes, termed orthologs, often have an identical function within their host plants and are often interchangeable between species without losing function. Because plants have common ancestors, many genes in any plant species will have a corresponding orthologous gene in another plant species. Once a phylogenic tree for a gene family of one species has been constructed using a program such as CLUSTAL (Thompson et al., 1994; Higgins et al., 1996) potential orthologous sequences can be placed into the phylogenetic tree and their relationship to genes from the species of interest can be determined. Orthologous sequences can also be identified by a reciprocal BLAST strategy. Once an orthologous sequence has been identified, the function of the ortholog can be deduced from the identified function of the reference sequence.
[0114] By using a phylogenetic analysis, one skilled in the art would recognize that the ability to predict similar functions conferred by closely-related polypeptides is predictable. This predictability has been confirmed by our own many studies in which we have found that a wide variety of polypeptides have orthologous or closely-related homologous sequences that function as does the first, closely-related reference sequence. For example, distinct transcription factors, including:
[0115] (i) AP2 family Arabidopsis G47 (found in US patent publication 20040019925A1), a phylogenetically-related sequence from soybean, and two phylogenetically-related homologs from rice all conferred greater tolerance to drought, hyperosmotic stress, or delayed flowering in transgenic plants as compared to control plants;
[0116] (ii) CCAAT family and HAP3 Arabidopsis G481 (found in PCT patent publication WO2004076638), and numerous phylogenetically-related sequences from dicots and monocots conferred greater tolerance to drought-related stress as compared to control plants;
[0117] (iii) Myb-related Arabidopsis G682 (found in PCT patent publication WO2004076638) and numerous phylogenetically-related sequences from dicots and monocots conferred greater tolerance to heat, drought-related stress, cold, and salt as compared to control plants;
[0118] (iv) WRKY family Arabidopsis G1274 (found in U.S. patent application Ser. No. 10/666,642) and numerous closely-related sequences from dicots and monocots have been shown to confer increased water deprivation tolerance, and
[0119] (v) AT-hook family soy sequence G3456 (found in US patent publication 20040128712A1) and numerous phylogenetically-related sequences from dicots and monocots, increased biomass compared to control plants when these sequences were overexpressed in plants.
[0120] The polypeptide sequences belong to distinct clades of polypeptides that include members from diverse species. In each case, most or all of the clade member sequences derived from both dicots and monocots have been shown to confer increased yield or tolerance to one or more abiotic stresses when the sequences were overexpressed. These studies and others demonstrate that evolutionarily conserved genes from diverse species are likely to function similarly (i.e., by regulating similar target sequences and controlling the same traits), and that polynucleotides from one species may be transformed into closely-related or distantly-related plant species to confer or improve traits.
[0121] As shown in Tables 1-4, polypeptides that are phylogenetically related homologs of the polypeptides of the invention may have conserved domains that share at least 34%, at least 37%, at least 39%, at least 44%, at least 47%, at least 52%, at least 55%, at least 61%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 70%, at least 71%, at least 72%, at least 73%, at least 75%, at least 76%, at least 78%, at least 80%, at least 81%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 89%, at least 90%, at least 91%, at least 92%, at least 96%, or 100% amino acid sequence identity to similar conserved domains of any of SEQ ID NO: 85-126, 199, 203, 211, or 214, and have similar functions in that the polypeptides of the invention may, when overexpressed, confer at least one regulatory activity selected from the group consisting of greater yield, more rapid growth, greater size, and increased biomass as compared to a control plant.
[0122] At the nucleotide level, the sequences of the invention will typically share at least about 30% or 35% nucleotide sequence identity, or 40% nucleotide sequence identity, preferably at least about 50%, or about 60%, or about 70% or about 80% sequence identity, or more preferably about 85%, or about 90%, or about 95% or about 97% or more sequence identity to one or more of the listed full-length sequences, or to a listed sequence but excluding or outside of the region(s) encoding a known consensus sequence or consensus DNA-binding site, or outside of the region(s) encoding one or all conserved domains. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein.
[0123] Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Inc. Madison, Wis.). The MEGALIGN program can create alignments between two or more sequences according to different methods, for example, the clustal method (see, for example, Higgins and Sharp (1988). The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. Other alignment algorithms or programs may be used, including FASTA, or BLAST, and which may be used to calculate percent similarity. These are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with or without default settings. In one embodiment, the percent identity of two sequences can be determined by the GCG program with a gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid or nucleotide mismatch between the two sequences (see U.S. Pat. No. 6,262,333).
[0124] Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (see internet, website at http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, 1990; Altschul et al., 1993). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, 1989). Unless otherwise indicated for comparisons of predicted polynucleotides, "sequence identity" refers to the % sequence identity generated from a tblastx using the NCBI version of the algorithm at the default settings using gapped alignments with the filter "off" (see, for example, internet website at http://www.ncbi.nlm.nih.gov/).
[0125] Other techniques for alignment are described by Doolittle (1996). Preferably, an alignment program that permits gaps in the sequence is utilized to align the sequences. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments (see Shpaer (1997). Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. An alternative search strategy uses MPSRCH software, which runs on a MASPAR computer. MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to pick up distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Nucleic acid-encoded amino acid sequences can be used to search both protein and DNA databases.
[0126] The percentage similarity between two polypeptide sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity.
[0127] Percent identity between polynucleotide sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method (see, for example, Hein, 1990). Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions (see US Patent Application No. 20010010913).
[0128] Thus, the invention provides methods for identifying a sequence similar or paralogous or orthologous or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is provided (locally or across an internet or intranet) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.
[0129] In addition, one or more polynucleotide sequences or one or more polypeptides encoded by the polynucleotide sequences may be used to search against a BLOCKS (Bairoch et al., 1997), PFAM, and other databases which contain previously identified and annotated motifs, sequences and gene functions. Methods that search for primary sequence patterns with secondary structure gap penalties (Smith et al., 1992) as well as algorithms such as Basic Local Alignment Search Tool (BLAST; Altschul, 1990; Altschul et al., 1993), BLOCKS (Henikoff and Henikoff, 1991), Hidden Markov Models (HMM; Eddy, 1996; Sonnhammer et al., 1997), and the like, can be used to manipulate and analyze polynucleotide and polypeptide sequences encoded by polynucleotides. These databases, algorithms and other methods are well known in the art and are described in Ausubel et al. (1997) and in Meyers (1995).
[0130] A further method for identifying or confirming that specific homologous sequences control the same function is by comparison of the transcript profile(s) obtained upon overexpression or knockout of two or more related polypeptides. Since transcript profiles are diagnostic for specific cellular states, one skilled in the art will appreciate that genes that have a highly similar transcript profile (e.g., with greater than 50% regulated transcripts in common, or with greater than 70% regulated transcripts in common, or with greater than 90% regulated transcripts in common) will have highly similar functions. Fowler and Thomashow (2002) have shown that three paralogous AP2 family genes (CBF1, CBF2 and CBF3) are induced upon cold treatment, and each of which can condition improved freezing tolerance, and all have highly similar transcript profiles. Once a polypeptide has been shown to provide a specific function, its transcript profile becomes a diagnostic tool to determine whether paralogs or orthologs have the same function.
[0131] Furthermore, methods using manual alignment of sequences similar or homologous to one or more polynucleotide sequences or one or more polypeptides encoded by the polynucleotide sequences may be used to identify regions of similarity and conserved (e.g., CCAAT binding) domains. Such manual methods are well-known by those of skill in the art and can include, for example, comparisons of tertiary structure between a polypeptide sequence encoded by a polynucleotide that comprises a known function and a polypeptide sequence encoded by a polynucleotide sequence that has a function not yet determined. Such examples of tertiary structure may comprise predicted alpha helices, beta-sheets, amphipathic helices, leucine zipper motifs, zinc finger motifs, proline-rich regions, cysteine repeat motifs, and the like.
[0132] Orthologs and paralogs of presently disclosed polypeptides may be cloned using compositions provided by the present invention according to methods well known in the art. cDNAs can be cloned using mRNA from a plant cell or tissue that expresses one of the present sequences. Appropriate mRNA sources may be identified by interrogating Northern blots with probes designed from the present sequences, after which a library is prepared from the mRNA obtained from a positive cell or tissue. Polypeptide-encoding cDNA is then isolated using, for example, PCR, using primers designed from a presently disclosed gene sequence, or by probing with a partial or complete cDNA or with one or more sets of degenerate probes based on the disclosed sequences. The cDNA library may be used to transform plant cells. Expression of the cDNAs of interest is detected using, for example, microarrays, Northern blots, quantitative PCR, or any other technique for monitoring changes in expression. Genomic clones may be isolated using similar techniques to those.
[0133] Examples of Arabidopsis polypeptide sequences and functionally similar and phylogenetically-related sequences are listed in Tables 1-4 and the Sequence Listing. In addition to the sequences in Tables 1-4 and the Sequence Listing, the invention encompasses isolated nucleotide sequences that are phylogenetically and structurally similar to sequences listed in the Sequence Listing) and can function in a plant by increasing yield and/or and abiotic stress tolerance when ectopically expressed in a plant.
[0134] Since a significant number of these sequences are phylogenetically and sequentially related to each other and have been shown to increase yield from a plant and/or abiotic stress tolerance, one skilled in the art would predict that other similar, phylogenetically related sequences falling within the present clades of polypeptides would also perform similar functions when ectopically expressed.
[0135] Identifying Polynucleotides or Nucleic Acids by Hybridization
[0136] Polynucleotides homologous to the sequences illustrated in the Sequence Listing and tables can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physical-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency under which two polynucleotide strands hybridize, the more similar are the two strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number thereof), as described in more detail in the references cited below (e.g., Sambrook et al., 1989; Berger and Kimmel, 1987; and Anderson and Young, 1985).
[0137] Encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, including any of the polynucleotides within the Sequence Listing, and fragments thereof under various conditions of stringency (see, for example, Wahl and Berger, 1987; and Kimmel, 1987). In addition to the nucleotide sequences listed in the Sequence Listing, full length cDNA, orthologs, and paralogs of the present nucleotide sequences may be identified and isolated using well-known methods. The cDNA libraries, orthologs, and paralogs of the present nucleotide sequences may be screened using hybridization methods to determine their utility as hybridization target or amplification probes.
[0138] With regard to hybridization, conditions that are highly stringent, and means for achieving them, are well known in the art (see, for example, Sambrook et al., 1989; Berger, 1987 , pages 467-469; and Anderson and Young, 1985).
[0139] Stability of DNA duplexes is affected by such factors as base composition, length, and degree of base pair mismatch. Hybridization conditions may be adjusted to allow DNAs of different sequence relatedness to hybridize. The melting temperature I is defined as the temperature when 50% of the duplex molecules have dissociated into their constituent single strands. The melting temperature of a perfectly matched duplex, where the hybridization buffer contains formamide as a denaturing agent, may be estimated by the following equations:
DNA-DNA: Tm(° C.)=81.5+16.6(log [Na+])+0.41(% G+C)-0.62(% formamide)-500/L (I)
DNA-RNA: Tm(° C.)=79.8+18.5(log [Na+])+0.58(% G+C)+0.12(% G+C)2-0.5(% formamide)-820/L (II)
RNA-RNA: Tm(° C.)=79.8+18.5(log [Na+])+0.58(% G+C)+0.12(% G+C)2-0.35(% formamide)-820/L (III)
[0140] where L is the length of the duplex formed, [Na+] is the molar concentration of the sodium ion in the hybridization or washing solution, and % G+C is the percentage of (guanine+cytosine) bases in the hybrid. For imperfectly matched hybrids, approximately 1° C. is required to reduce the melting temperature for each 1% mismatch.
[0141] Hybridization experiments are generally conducted in a buffer of pH between 6.8 to 7.4, although the rate of hybridization is nearly independent of pH at ionic strengths likely to be used in the hybridization buffer (Anderson and Young, 1985). In addition, one or more of the following may be used to reduce non-specific hybridization: sonicated salmon sperm DNA or another non-complementary DNA, bovine serum albumin, sodium pyrophosphate, sodium dodecyl sulfate (SDS), polyvinyl-pyrrolidone, ficoll and Denhardt's solution. Dextran sulfate and polyethylene glycol 6000 act to exclude DNA from solution, thus raising the effective probe DNA concentration and the hybridization signal within a given unit of time. In some instances, conditions of even greater stringency may be desirable or required to reduce non-specific and/or background hybridization. These conditions may be created with the use of higher temperature, lower ionic strength and higher concentration of a denaturing agent such as formamide.
[0142] Stringency conditions can be adjusted to screen for moderately similar fragments such as homologous sequences from distantly related organisms, or to highly similar fragments such as genes that duplicate functional enzymes from closely related organisms. The stringency can be adjusted either during the hybridization step or in the post-hybridization washes. Salt concentration, formamide concentration, hybridization temperature and probe lengths are variables that can be used to alter stringency (as described by the formula above). As a general guideline, high stringency is typically performed at Tm-5° C. to Tm-20° C., moderate stringency at Tm-20° C. to Tm-35° C. and low stringency at Tm-35° C. to Tm-50° C. for duplex>150 base pairs. Hybridization may be performed at low to moderate stringency (25-50° C. below Tm), followed by post-hybridization washes at increasing stringencies. Maximum rates of hybridization in solution are determined empirically to occur at Tm-25° C. for DNA-DNA duplex and Tm-15° C. for RNA-DNA duplex. Optionally, the degree of dissociation may be assessed after each wash step to determine the need for subsequent, higher stringency wash steps.
[0143] High stringency conditions may be used to select for nucleic acid sequences with high degrees of identity to the disclosed sequences. An example of stringent hybridization conditions obtained in a filter-based method such as a Southern or Northern blot for hybridization of complementary nucleic acids that have more than 100 complementary residues is about 5° C. to 20° C. lower than the thermal melting point I for the specific sequence at a defined ionic strength and pH. Conditions used for hybridization may include about 0.02 M to about 0.15 M sodium chloride, about 0.5% to about 5% casein, about 0.02% SDS or about 0.1% N-laurylsarcosine, about 0.001 M to about 0.03 M sodium citrate, at hybridization temperatures between about 50° C. and about 70° C. More preferably, high stringency conditions are about 0.02 M sodium chloride, about 0.5% casein, about 0.02% SDS, about 0.001 M sodium citrate, at a temperature of about 50° C. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire DNA molecule or selected portions, e.g., to a unique subsequence, of the DNA.
[0144] Stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate. Increasingly stringent conditions may be obtained with less than about 500 mM NaCl and 50 mM trisodium citrate, to even greater stringency with less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, whereas high stringency hybridization may be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30° C., more preferably of at least about 37° C., and most preferably of at least about 42° C. with formamide present. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS) and ionic strength, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed.
[0145] The washing steps that follow hybridization may also vary in stringency; the post-hybridization wash steps primarily determine hybridization specificity, with the most critical factors being temperature and the ionic strength of the final wash solution. Wash stringency can be increased by decreasing salt concentration or by increasing temperature. Stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate.
[0146] Thus, hybridization and wash conditions that may be used to bind and remove polynucleotides with less than the desired homology to the nucleic acid sequences or their complements that encode the present polypeptides include, for example:
[0147] 6×SSC at 65° C.;
[0148] 50% formamide, 4×SSC at 42° C.; or
[0149] 0.5×SSC, 0.1% SDS at 65° C.;
[0150] with, for example, two wash steps of 10-30 minutes each. Useful variations on these conditions will be readily apparent to those skilled in the art.
[0151] A person of skill in the art would not expect substantial variation among polynucleotide species encompassed within the scope of the present invention because the highly stringent conditions set forth in the above formulae yield structurally similar polynucleotides.
[0152] If desired, one may employ wash steps of even greater stringency, including about 0.2×SSC, 0.1% SDS at 65° C. and washing twice, each wash step being about 30 minutes, or about 0.1×SSC, 0.1% SDS at 65° C. and washing twice for 30 minutes. The temperature for the wash solutions will ordinarily be at least about 25° C., and for greater stringency at least about 42° C. Hybridization stringency may be increased further by using the same conditions as in the hybridization steps, with the wash temperature raised about 3° C. to about 5° C., and stringency may be increased even further by using the same conditions except the wash temperature is raised about 6° C. to about 9° C. For identification of less closely related homologs, wash steps may be performed at a lower temperature, e.g., 50° C.
[0153] An example of a low stringency wash step employs a solution and conditions of at least 25° C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS over 30 minutes. Greater stringency may be obtained at 42° C. in 15 mM NaCl, with 1.5 mM trisodium citrate, and 0.1% SDS over 30 minutes. Even higher stringency wash conditions are obtained at 65° C.-68° C. in a solution of 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Wash procedures will generally employ at least two final wash steps. Additional variations on these conditions will be readily apparent to those skilled in the art (see, for example, US Patent Application No. 20010010913).
[0154] Stringency conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the coding oligonucleotide with at least about a 5-10× higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a polypeptide known as of the filing date of the application. It may be desirable to select conditions for a particular assay such that a higher signal to noise ratio, that is, about 15× or more, is obtained. Accordingly, a subject nucleic acid will hybridize to a unique coding oligonucleotide with at least a 2× or greater signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radioactive label, or the like. Labeled hybridization or PCR probes for detecting related polynucleotide sequences may be produced by oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
EXAMPLES
[0155] It is to be understood that this invention is not limited to the particular devices, machines, materials and methods described. Although particular embodiments are described, equivalent embodiments may be used to practice the invention.
[0156] The invention, now being generally described, will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention and are not intended to limit the invention. It will be recognized by one of skill in the art that a polypeptide that is associated with a particular first trait may also be associated with at least one other, unrelated and inherent second trait that was not predicted by the first trait.
Example I
Project Types and Vector and Cloning Information
[0157] A number of constructs were used to modulate the activity of sequences of the invention. An individual project was defined as the analysis of transgenic plant lines for a particular construct (for example, this might include G929, G3926, G3911 or G3543 lines that constitutively overexpressed a sequence of the invention). In the present study, each gene was directly fused to a promoter that drove its expression in transgenic plants. Such a promoter could be the native promoter of that gene, or the cauliflower mosaic 35S promoter. Alternatively, a promoter that drives tissue specific or conditional expression could be used in similar studies.
[0158] In the present study, expression of a given polynucleotide from a particular promoter was achieved by either a direct-promoter fusion construct in which that sequence was cloned directly behind the promoter of interest, or a two-component system, described below. A direct fusion approach has the advantage of allowing for simple genetic analysis if a given promoter-polynucleotide line is to be crossed into different genetic backgrounds at a later date. The two-component method potentially allows for stronger expression to be obtained via an amplification of transcription.
[0159] For the two-component system, two separate constructs were used: Promoter::LexA-GAL4TA and opLexA::TF. The first of these (Promoter::LexA-GAL4TA) comprised a desired promoter (for example, the floral meristem-specific AP1 promoter, the epidermis and vascular tissue-specific LTP1 promoter, the shoot apical meristem-specific STM promoter, or the embryo-, endosperm-, and fruit-specific cruciferin promoter (SEQ ID NOs: 191, 193, 208 or 205, respectively) cloned in front of a LexA DNA binding domain fused to a GAL4 activation domain. The construct vector backbone (pMEN48, SEQ ID NO: 195) also carried a kanamycin resistance marker along with an opLexA::GFP reporter. Transgenic lines were obtained containing this first component, and a line was selected that showed reproducible expression of the reporter gene in the desired pattern through a number of generations. A homozygous population was established for that line, and the population was supertransformed with the second construct (opLexA::TF) carrying the transcription factor of interest cloned behind a LexA operator site, for example, G1819 (SEQ ID NO: 192), G2344 (SEQ ID NO: 194) or G929 (SEQ ID NO: 206). The backbone of these second construct vectors (pMEN53, SEQ ID NO: 196) also contained a sulfonamide resistance marker. After supertransformation, the LexA-GAL4 transcript was translated, and the resulting fusion protein activated the second component construct causing transcription of the transcription factor of interest.
[0160] For analysis of HAP2- or HAP5-overexpressing plants, transgenic lines were created with an expression vector, for example, P399 (SEQ ID NO: 127) or P26600 (SEQ ID NO: 135) containing HAP2 DNA clones, or P26591 (SEQ ID NO: 143) or P26598 (SEQ ID NO: 159) which contained HAP5 cDNA clones. These constructs constituted 35S::G929, 35S::G3926, 35S::G3911 or 35S::G3543 direct promoter-fusions, respectively in these examples, each carrying a kanamycin resistance marker. The constructs were introduced into Arabidopsis plants as indicated in following Examples.
[0161] A list of constructs (PIDs), indicating the promoter fragment that was used to drive the transgene, along with the cloning vector backbone, is provided in Table 5. Compilations of the sequences of promoter fragments and the expressed transgene sequences within the PIDs are provided in the Sequence Listing.
TABLE-US-00005 TABLE 5 Expression constructs, sequences of promoter fragments and the expressed transgene sequences Gene Construct SEQ ID NO: of Identifier (PID) PID Promoter Project type Vector G929 P399 127 35S Direct promoter- pMEN20 fusion G2344 P1627 128 35S Direct promoter- pMEN65 fusion G931 P1608 129 35S Direct promoter- pMEN65 fusion G3920 P26608 130 35S Direct promoter- pMEN65 fusion G928 P143 131 35S Direct promoter- pMEN20 fusion G1782 P966 132 35S Direct promoter- pMEN65 fusion G1363 P26121 133 35S Protein-YFP-C-fusion P25800 G3924 P26602 134 35S Direct promoter- pMEN65 fusion G3926 P26600 135 35S Direct promoter- pMEN65 fusion G3925 P26597 136 35S Direct promoter- pMEN65 fusion G4264 P26593 137 35S Direct promoter- pMEN65 fusion G2632 P15494 138 35S Direct promoter- pMEN65 fusion G1334 P714 139 35S Direct promoter- pMEN20 fusion G926 P26217 140 35S promoter- pMEN65 fusion G926 P26217 141 35S Protein-YFP-C-fusion P25800 G926 P142 142 35S Direct promoter- pMEN20 fusion G927 P142 142 35S Direct promoter- pMEN20 fusion G3911 P26591 143 35S Direct promoter- pMEN65 fusion G3546 P26603 144 35S Direct promoter- pMEN65 fusion G3909 P26596 145 35S Direct promoter- pMEN20 fusion G3552 P26595 146 35S Direct promoter- pMEN65 fusion G483 P48 147 35S Direct promoter- pMEN20 fusion G3547 P26758 148 35S Direct promoter- pMEN65 fusion G714 P111 149 35S Direct promoter- pMEN20 fusion G3542 P26604 150 35S Direct promoter- pMEN65 fusion G489 P26060 151 35S Protein-YFP-C- P25800 fusion G3544 P26599 152 35S Direct promoter- pMEN65 fusion G3550 P26606 153 35S Direct ppromoter- pMEN65 fusion G3548 P26610 154 35S Direct promoter- pMEN65 fusion G715 P15502 155 35S Direct promoter- pMEN65 fusion G3886 P26607 156 35S Direct promoter- pMEN65 fusion G3889 P26590 157 35S Direct promoter- pMEN65 fusion G1646 P964 158 35S Direct promoter- pMEN65 fusion G3543 P26598 159 35S Direct promoter- pMEN65 fusion G1820 P1284 160 35S Direct promoter- pMEN65 fusion G1836 P973 161 35S Direct promoter- pMEN65 fusion G1819 P1285 162 35S Direct promoter- pMEN65 fusion G1818 P1677 163 35S Direct promoter- pMEN65 fusion G490 P912 164 35S Direct promoter- pMEN65 fusion G3074 P2712 165 35S Direct promoter- pMEN1963 fusion G1249 P1184 166 35S Direct promoter- pMEN65 fusion G3075 P2797 167 35S Direct promoter- pMEN1963 fusion G3883 P26821 200 35S Direct promoter- pMEN65 fusion G3894 P26611 204 355 Direct promoter- pMEN65 fusion P5326 191 AP1 AP1::LexA-GAL4TA pMEN48 driver construct in two-component system G1819 P4039 192 Transcription factor pMEN53 component of two- component system (opLexA::G1819) P5287 193 LTP1 LTP1::LexA- pMEN48 GAL4TA driver construct in two- component system G2344 P6063 194 Transcription factor pMEN53 component of two- component system (opLexA::G2344) P5324 205 Cruciferin CRU::LexA-GAL4TA pMEN48 driver construct in two-component system G926 P5562 207 Transcription factor pMEN53 component of two- component system (opLexA::G926) P5318 208 STM STM::LexA-GAL4TA pMEN48 driver construct in two-component system G929 P9107 206 Transcription factor pMEN53 component of two- component system (opLexA::G929) P25800 168 35S YFP fusion vector pMEN1963 169 35S 35S expression vector pMEN20 170 35S 35S expression vector pMEN48 195 35S Two component driver vector pMEN53 196 LexA operator and polylinker sequence two component target vector pMEN65 171 35S 35S expression vector
Example II
Transformation of Agrobacterium with the Expression Vector
[0162] After the plasmid vector containing the gene was constructed, the vector was used to transform Agrobacterium tumefaciens cells expressing the gene products. The stock of Agrobacterium tumefaciens cells for transformation was made as described by Nagel et al. (1990) FEMS MicroBiol. Letts. 67: 325-328. Agrobacterium strain ABI was grown in 250 ml LB medium (Sigma) overnight at 28° C. with shaking until an absorbance (A600) of 0.5-1.0 was reached. Cells were harvested by centrifugation at 4,000×g for 15 min at 4° C. Cells were then resuspended in 250 μl chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 μl chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 μl and 750 μl, respectively. Resuspended cells were then distributed into 40 μl aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.
[0163] Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50-100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 μl of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2 mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μF and 200 μF using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2-4 hours at 28° C. in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 μg/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28° C. Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.
Example III
Transformation of Arabidopsis Plants
[0164] Transformation of Arabidopsis was performed by an Agrobacterium-mediated protocol based on the method of Bechtold and Pelletier (1998). Most of the experiments were performed with the Arabidopsis thaliana ecotype Columbia (col-0). Some of the results, as noted, were obtained with transformed tomato plants (Lycopersicon esculentum).
[0165] Plant preparation. Seeds were sown on mesh covered pots. The seedlings were thinned so that 6-10 evenly spaced plants remained on each pot 10 days after planting. The primary bolts were cut off a week before transformation to break apical dominance and encourage auxiliary shoots to form. Transformation was typically performed at 4-5 weeks after sowing.
[0166] Bacterial culture preparation. Agrobacterium stocks were inoculated from single colony plates or from glycerol stocks and grown with the appropriate antibiotics and grown until saturation. On the morning of transformation, the saturated cultures were centrifuged and bacterial pellets were re-suspended in Infiltration Media (0.5× MS, 1× B5 Vitamins, 5% sucrose, 1 mg/ml benzylaminopurine riboside, 200 μl/L Silwet L77) until an A600 reading of 0.8 was reached.
[0167] Transformation and seed harvest. The Agrobacterium solution was poured into dipping containers. All flower buds and rosette leaves of the plants were immersed in this solution for 30 seconds. The plants were laid on their side and wrapped with plastic wrap to keep the humidity high. The plants were kept this way overnight at 4° C. and then the pots were turned upright, unwrapped, and moved to growth racks.
[0168] The plants were maintained on growth racks under 24-hour light until seeds were ready to be harvested. Seeds were harvested when 80% of the siliques of the transformed plants were ripe (approximately 5 weeks after the initial transformation). This seed was deemed T0 seed, since it was obtained from the T0 generation, and was later plated on selection plates (either kanamycin or sulfonamide). Resistant plants that were identified on such selection plates comprised the T1 generation.
Example IV
Morphology
[0169] Morphological analysis was performed to determine whether changes in polypeptide levels affect plant growth and development. This was primarily carried out on the T1 generation, when at least 10-20 independent lines were examined. However, in cases where a phenotype required confirmation or detailed characterization, plants from subsequent generations were also analyzed.
[0170] Primary transformants were selected on MS medium with 0.3% sucrose and 50 mg/l kanamycin. T2 and later generation plants were selected in the same manner, except that kanamycin was used at 35 mg/l. In cases where lines carry a sulfonamide marker (as in all lines generated by super-transformation), seeds were selected on MS medium with 0.3% sucrose and 1.5 mg/l sulfonamide. KO lines were usually germinated on plates without a selection. Seeds were cold-treated (stratified) on plates for three days in the dark (in order to increase germination efficiency) prior to transfer to growth cabinets. Initially, plates were incubated at 22° C. under a light intensity of approximately 100 microEinsteins for 7 days. At this stage, transformants were green, possessed two true leaves, and were easily distinguished from bleached kanamycin or sulfonamide-susceptible seedlings. Resistant seedlings were then transferred onto soil (Sunshine potting mix). Following transfer to soil, trays of seedlings were covered with plastic lids for 2-3 days to maintain humidity while they became established. Plants were grown on soil under fluorescent light at an intensity of 70-95 microEinsteins and a temperature of 18-23° C. Light conditions consisted of a 24-hour photoperiod unless otherwise stated. In instances where alterations in flowering time were apparent, flowering time was re-examined under both 12-hour and 24-hour light to assess whether the phenotype was photoperiod dependent. Under our 24-hour light growth conditions, the typical generation time (seed to seed) was approximately 14 weeks.
[0171] Because many aspects of Arabidopsis development are dependent on localized environmental conditions, in all cases plants were evaluated in comparison to controls in the same flat. For a given construct, ten transformed lines were typically examined in subsequent plate based physiology assays. Controls for transgenic lines were wild-type plants or transgenic plants harboring an empty transformation vector selected on kanamycin or sulfonamide. Careful examination was made at the following stages: young seedling (1 week), rosette (2-3 weeks), flowering (4-7 weeks), and late seed set (8-12 weeks). Seed was also inspected. Young seedling size and morphology was assessed on selection plates. At all other stages, plants were macroscopically evaluated while growing on soil. All significant differences (including alterations in growth rate, size, biomass, etc., were recorded as noted in Example V.
Example V
Assessment of Growth Rate and Size
[0172] In subsequent Examples, unless otherwise indicted, morphological traits are disclosed in comparison to control plants. That is, a transformed plant that is described as large and/or has a faster growth rate was large and had a faster growth rate with respect to a control plant, the latter including wild-type plants, parental lines and lines transformed with a vector that does not contain the transcription factor sequence of interest (e.g., an "empty" vector). When a plant is said to have a better performance than controls, it generally was larger, had greater yield, and/or showed fewer stress symptoms than control plants.
[0173] Germination assays. All germination assays were performed in tissue culture. Growing the plants under controlled temperature and humidity on sterile medium produced uniform plant material that has not been exposed to additional stresses (such as water stress) which could cause variability in the results obtained.
[0174] Prior to plating, seed for all experiments were surface sterilized in the following manner: (1) 5 minute incubation with mixing in 70% ethanol, (2) 20 minute incubation with mixing in 30% bleach, 0.01% triton-X 100, (3) 5× rinses with sterile water, (4) Seeds were re-suspended in 0.1% sterile agarose and stratified at 4° C. for 3-4 days.
[0175] All germination assays followed modifications of the same basic protocol. Sterile seeds were sown on the conditional media that has a basal composition of 80% MS+Vitamins. Plates were incubated at 22° C. under 24-hour light (120-130 μE m-2s-1) in a growth chamber. Evaluation of germination and seedling vigor was performed five days after planting.
[0176] Growth assays. Assays were usually conducted on Arabidopsis thaliana ecotype Columbia (col-0) non-selected segregating T2 populations (in order to avoid the extra stress of selection). Control plants for assays on lines containing direct promoter-fusion constructs were wild-type Col-0 plants and/or Col-0 plants transformed with an empty transformation vector (pMEN65, SEQ ID NO: 171).
Example VI
Morphological Observations with HAP2 and HAP5 Overexpressors in Arabidopsis and Tomato
[0177] Overexpression of HAP2 and HAP5 transcription factors in Arabidopsis or tomato plants produced the experimental observations related to size or growth rate that are listed in Tables 6 and 7. Experiments indicating larger seedlings or plants than controls also demonstrated a faster growth rate as the observed larger sizes were achieved in the same time period of growth for both controls and experimental plants. This may be particularly important for seedlings of overexpressors that were larger than controls as these plants may be more tolerant to environmental stresses encountered early in their growth.
TABLE-US-00006 TABLE 6 Yield-related experimental results obtained with HAP2 overexpressors % Identity % Identity of of conserved conserved domain in domain in first first SEQ ID column to column to SEQ ID NO: of conserved conserved NO: of conserved domain of domain of GID polypeptide domain G929 G3926 Experimental Observations At/G929 2 85 100% 73% Two 35S::G929 lines produced seedlings that were larger than controls, and three lines had larger rosettes at the flowering stage A transgenic tomato plant overexpressing G929 under the regulatory control of the cruciferin promoter was considerably larger than control plants (FIG. 6). At/G2344 4 86 86% 75% Three of ten 35S::G2344 lines examined produced seedlings that were larger than controls, and one line had larger rosettes at the flowering stage. The average fruit weights of LTP1::G2344 tomato plants were within the top 1% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 193 and 194), and STM::G2344 tomato plants were within the top 8% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 208 and 194); empty vector controls were in the 56th percentile. At/G931 6 87 76% 80% Four 35S::G931 lines produced plants that were larger than controls at the rosette stage, and two of these lines maintained larger rosettes at the flowering stage. Gm/G3920 8 88 76% 73% Four of ten 35S::G3920 lines produced seedlings that were larger than controls; one line produced plants with larger rosettes than controls at the flowering stage. At/G928 10 88 75% 78% Two 35S::G928 lines produced seedlings that were larger than controls, and one of these lines was also larger at the rosette and flowering stages. At/G1782 12 90 75% 85% Four 35S::G1782 lines produced plants that were larger than controls at the rosette stage, and two of these lines maintained larger rosettes at the flowering stage. At/G1363 14 91 73% 84% One 35S::G1363 line produced plants that were larger at the flowering stage; seven G1363-YFP fusion lines had broader leaves at the rosette stage, and four G1363-YFP fusion lines were large at the flowering stage. Os/G3924 16 92 73% 75% Two of ten 35S::G3924 lines examined produced seedlings that were larger than controls. Os/G3926 18 93 71% 100% Three of ten 35S::G3926 lines tested produced seedlings that were larger than controls. Os/G3925 20 94 71% 85% Two of ten 35S::G3925 lines examine produced seedlings that were larger than controls. Os/G4264 26 97 71% 91% Two of ten 35S::G4264 lines produced seedlings that were larger than controls; four lines produced plants with larger rosettes than controls at the flowering stage. At/G2632 28 98 73% 72% None examined thus far have been found that were larger or had a faster growth rate than controls, and some 35S::G2632 seedlings were smaller than controls; At/G1334 30 99 70% 65% Four of ten 35S::G1334 lines tested produced seedlings that were larger than controls. At/G926 32 100 66% 67% Seedlings overexpressing G926-YFP fusion proteins were similar in size and growth rate to controls. However, the average fruit weights of 35S::G926 tomato plants were within the top 4% of all tomato lines tested (plants comprised the one component expression system of SEQ ID NO: 140), and the average fruit weights of cruciferin::G926 tomato plants were within the top 10% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 205 and 207); empty vector controls were in the 56th percentile. At/G927 34 101 64% 57% 35S::G927 seedlings were similar in size and growth rate to controls.
TABLE-US-00007 TABLE 7 Yield-related experimental results obtained with HAP5 overexpressors % Identity % Identity of of conserved conserved domain in domain in SEQ ID first first NO: of column to column to SEQ ID CCAAT- conserved conserved NO: of binding domain of domain of GID polypeptide domain G3911 G3543 Experimental Observations Zm/G3911 36 102 100% 83% Nine 35S::G3911 lines produced seedlings that were larger than controls, and two lines had larger rosettes at their late flowering stage. Os/G3546 38 103 100% 83% All ten 35S::G3546 lines tested produced seedlings that were larger than controls. Zm/G3909 40 104 96% 80% Seven 35S::G3909 lines produced seedlings that were larger than controls, and seven lines had larger rosettes at their early flowering stage. Le/G3894 202 203 89% 81%% Seedlings from a single line of 35S::G3894 plants of ten lines tested were larger and more vigorous than controls seven days after planting. Zm/G3552 42 105 86% 84% Eight 35S::G3552 lines produced seedlings that were larger than controls, and one line had slightly broader leaves than controls at its early flowering stage. At/G483 44 106 86% 83% 35S::G483 overexpressors were wild-type in size and growth rate in experiments performed to date Gm/G3547 46 107 87% 83% Three 35S::G3547 lines produced seedlings that were larger than controls. At/G714 48 108 87% 81% Three 35S::G714 lines had larger rosettes at their late flowering stage. Os/G3542 50 109 86% 84% Five of ten 35S::G3542 lines tested produced seedlings that were larger than controls. At/G489 52 110 87% 81% Thirteen G489-YFP fusion lines had larger rosettes than controls at their late flowering stage. Os/G3544 54 111 84% 84% Two of ten 35S::G3544 lines tested produced seedlings that were larger than controls. Gr/G3883 198 199 84% 90% 35S::G3883 overexpressors were wild-type in size and growth rate in experiments performed to date. Gm/G3550 56 112 86% 84% Five of ten 35S::G3550 lines tested produced seedlings that were larger than controls. Gm/G3548 58 113 86% 84% Three of ten 35S::G3548 lines tested produced seedlings that were larger than controls. At/G715 60 114 84% 90% One often 35S::G715 lines tested produced seedlings that were larger than controls, and another line was larger at the early flowering stage Gm/G3886 62 115 84% 90% One of ten 35S::G3886 lines tested produced seedlings that were slightly larger than controls. Zm/G3889 64 116 84% 96% Five of ten 35S::G3889 lines tested produced seedlings that were larger than controls. At/G1646 66 117 84% 90% One of ten 35S::G1646 lines tested produced seedlings that were slightly larger than controls; three lines had larger rosettes at early and late flowering stages. Os/G3543 68 118 83% 100% Five of ten 35S::G3543 lines tested produced seedlings that were larger than controls. At/G1820 70 119 73% 71% 35S::G1820 overexpressors were wild-type in size and growth rate in experiments performed to date. At/G1836 72 120 63% 63% One 35S::G1836 line produced larger seedlings in germination and growth assays, and five lines had very full, large rosettes with broad leaves at the late flowering stage. At/G1819 74 121 52% 61% One 35S::G1819 Arabidopsis line was slightly larger than controls at the early flowering stage. The average fruit weights of AP1::G1819 overexpressing tomato plants were within the top 5% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 191 and 192; empty vector controls were in the 56th percentile). At/G1818 76 122 55% 55% At late flowering to late stage, many 35S::G1818 lines produced large, full rosettes. At/G490 78 123 44% 47% Two 35S::G490 lines produced larger fuller rosettes than controls at the late flowering stage. At/G3074 80 124 37% 39% Two 35S::G3074 lines produced larger seedlings in germination and growth assays and five lines had slightly larger rosettes than controls. At/G1249 82 125 34% 34% Two 35S::G1249 lines of ten lines tested of overexpressors produced larger seedlings in germination assays. At/G3075 84 126 22% 23% 35S::G3075 overexpressors were wild-type in size and growth rate in experiments performed to date.
Utilities of HAP2 and HAP5 Transcription Factors in Plants
[0178] Based on the data obtained in the above-disclosed Examples, the increased size, height and/or biomass of plants that overexpress HAP2 or HAP5 transcription factors indicate that these sequences when overexpressed may be used to improve yield of commercially valuable plants or to help these plants become established more successfully or quickly.
Example VII
Transformation of Dicots to Produce Increased Yield
[0179] Crop species that overexpress polypeptides of the invention may produce plants with increased growth rate, size, biomass and/or yield in both stressed and non-stressed conditions. Thus, polynucleotide sequences listed in the Sequence Listing recombined into, for example, one of the expression vectors of the invention, or another suitable expression vector, may be transformed into a plant for the purpose of modifying plant traits for the purpose of improving yield and/or quality. The expression vector may contain a constitutive, tissue-specific or inducible promoter operably linked to the polynucleotide. The cloning vector may be introduced into a variety of plants by means well known in the art such as, for example, direct DNA transfer or Agrobacterium tumefaciens-mediated transformation. It is now routine to produce transgenic plants using most dicot plants (see Weissbach and Weissbach, 1989; Gelvin et al., 1990; Herrera-Estrella et al., 1983; Bevan, 1984; and Klee, 1985). Methods for analysis of traits are routine in the art and examples are disclosed above.
[0180] Numerous protocols for the transformation of tomato and soy plants have been previously described, and are well known in the art. Gruber et al. (1993) and Glick and Thompson (1993) describe several expression vectors and culture methods that may be used for cell or tissue transformation and subsequent regeneration. For soybean transformation, methods are described by Miki et al. (1993) and U.S. Pat. No. 5,563,055, (Townsend and Thomas), issued Oct. 8, 1996.
[0181] There are a substantial number of alternatives to Agrobacterium-mediated transformation protocols, other methods for the purpose of transferring exogenous genes into soybeans or tomatoes. One such method is microprojectile-mediated transformation, in which DNA on the surface of microprojectile particles is driven into plant tissues with a biolistic device (see, for example, Sanford et al., 1987; Christou et al., 1992; Sanford, 1993; Klein et al., 1987; U.S. Pat. No. 5,015,580 (Christou et al), issued May 14, 1991; and U.S. Pat. No. 5,322,783 (Tomes et al., issued Jun. 21, 1994)).
[0182] Alternatively, sonication methods (see, for example, Zhang et al., 1991); direct uptake of DNA into protoplasts using CaCl2 precipitation, polyvinyl alcohol or poly-L-ornithine (see, for example, Hain et al., 1985; Draper et al., 1982); liposome or spheroplast fusion (see, for example, Deshayes et al., 1985); Christou et al., 1987); and electroporation of protoplasts and whole cells and tissues (see, for example, Donn et al., 1990; D'Halluin et al., 1992; and Spencer et al., 1994) have been used to introduce foreign DNA and expression vectors into plants.
[0183] After a plant or plant cell is transformed (and the latter regenerated into a plant), the transformed plant may be crossed with itself or a plant from the same line, a non-transformed or wild-type plant, or another transformed plant from a different transgenic line of plants. Crossing provides the advantages of producing new and often stable transgenic varieties. Genes and the traits they confer that have been introduced into a tomato or soybean line may be moved into distinct lines of plants using traditional backcrossing techniques well known in the art. Transformation of tomato plants may be conducted using the protocols of Koornneef et al (1986), and in U.S. Pat. No. 6,613,962, the latter method described in brief here. Eight day old cotyledon explants are precultured for 24 hours in Petri dishes containing a feeder layer of Petunia hybrida suspension cells plated on MS medium with 2% (w/v) sucrose and 0.8% agar supplemented with 10 μM quadrature-naphthalene acetic acid and 4.4 μM 6-benzylaminopurine. The explants are then infected with a diluted overnight culture of Agrobacterium tumefaciens containing an expression vector comprising a polynucleotide of the invention for 5-10 minutes, blotted dry on sterile filter paper and cocultured for 48 hours on the original feeder layer plates. Culture conditions are as described above. Overnight cultures of Agrobacterium tumefaciens are diluted in liquid MS medium with 2% (w/v/) sucrose, pH 5.7) to an OD600 of 0.8.
[0184] Following cocultivation, the cotyledon explants are transferred to Petri dishes with selective medium comprising MS salts with 4.56 μM zeatin, 67.3 μM vancomycin, 418.9 μM cefotaxime and 171.6 μM kanamycin sulfate, and cultured under the culture conditions described above. The explants are subcultured every three weeks onto fresh medium. Emerging shoots are dissected from the underlying callus and transferred to glass jars with selective medium without zeatin to form roots. The formation of roots in a kanamycin sulfate-containing medium is a positive indication of a successful transformation.
[0185] Transformation of soybean plants may be conducted using the methods found in, for example, U.S. Pat. No. 5,563,055 (Townsend et al., issued Oct. 8, 1996), described in brief here. In this method soybean seed is surface sterilized by exposure to chlorine gas evolved in a glass bell jar. Seeds are germinated by plating on 1/10 strength agar solidified medium without plant growth regulators and culturing at 28° C. with a 16 hour day length. After three or four days, seed may be prepared for cocultivation. The seedcoat is removed and the elongating radicle removed 3-4 mm below the cotyledons.
[0186] Overnight cultures of Agrobacterium tumefaciens harboring the expression vector comprising a polynucleotide of the invention are grown to log phase, pooled, and concentrated by centrifugation. Inoculations are conducted in batches such that each plate of seed was treated with a newly resuspended pellet of Agrobacterium. The pellets are resuspended in 20 ml inoculation medium. The inoculum is poured into a Petri dish containing prepared seed and the cotyledonary nodes are macerated with a surgical blade. After 30 minutes the explants are transferred to plates of the same medium that has been solidified. Explants are embedded with the adaxial side up and level with the surface of the medium and cultured at 22° C. for three days under white fluorescent light. These plants may then be regenerated according to methods well established in the art, such as by moving the explants after three days to a liquid counter-selection medium (see U.S. Pat. No. 5,563,055).
[0187] The explants may then be picked, embedded and cultured in solidified selection medium. After one month on selective media transformed tissue becomes visible as green sectors of regenerating tissue against a background of bleached, less healthy tissue. Explants with green sectors are transferred to an elongation medium. Culture is continued on this medium with transfers to fresh plates every two weeks. When shoots are 0.5 cm in length they may be excised at the base and placed in a rooting medium.
Example VIII
Transformation of Monocots to Produce Increased Yield
[0188] Members of the family Gramineae, including turfgrass or other grasses such as Miscanthus, Panicum virgatum or other Panicum species, or cereal plants such as barley, corn, rice, rye, sorghum, or wheat, may be transformed with the present polynucleotide sequences, including monocot or dicot-derived sequences such as those presented in the present Tables 1-7, cloned into a vector containing a kanamycin-resistance marker, and expressed constitutively under, for example, the CaMV 35S, STM, AP1, LPT1, cruciferin, or COR15 promoters, or with other tissue-specific or inducible promoters. The expression vectors may be one found in the Sequence Listing, or any other suitable expression vector may be similarly used. For example, pMEN020 may be modified to replace the NptII coding region with the Bar gene of Streptomyces hygroscopicus that confers resistance to phosphinothricin. The KpnI and BglII sites of the Bar gene are removed by site-directed mutagenesis with silent codon changes.
[0189] The cloning vector may be introduced into a variety of cereal plants by means well known in the art including direct DNA transfer or Agrobacterium tumefaciens-mediated transformation. The latter approach may be accomplished by a variety of means, including, for example, that of U.S. Pat. No. 5,591,616, in which monocotyledon callus is transformed by contacting dedifferentiating tissue with the Agrobacterium containing the cloning vector.
[0190] The sample tissues are immersed in a suspension of 3×10-9 cells of Agrobacterium containing the cloning vector for 3-10 minutes. The callus material is cultured on solid medium at 25° C. in the dark for several days. The calli grown on this medium are transferred to Regeneration medium. Transfers are continued every 2-3 weeks (2 or 3 times) until shoots develop. Shoots are then transferred to Shoot-Elongation medium every 2-3 weeks. Healthy looking shoots are transferred to rooting medium and after roots have developed, the plants are placed into moist potting soil.
[0191] The transformed plants are then analyzed for the presence of the NPTII gene/kanamycin resistance by ELISA, using the ELISA NPTII kit from 5Prime-3Prime Inc. (Boulder, Colo.).
[0192] It is also routine to use other methods to produce transgenic plants of most cereal crops (Vasil, 1994) such as corn, wheat, rice, sorghum (Cassas et al., 1993), and barley (Wan and Lemeaux, 1994). DNA transfer methods such as the microprojectile method can be used for corn (Fromm et al., 1990; Gordon-Kamm et al., 1990; Ishida, 1990), wheat (Vasil et al., 1992; Vasil et al., 1993; Weeks et al., 1993), and rice (Christou, 1991; Hiei et al., 1994; Aldemita and Hodges, 1996; and Hiei et al., 1997). For most cereal plants, embryogenic cells derived from immature scutellum tissues are the preferred cellular targets for transformation (Hiei et al., 1997; Vasil, 1994). For transforming corn embryogenic cells derived from immature scutellar tissue using microprojectile bombardment, the A188XB73 genotype is the preferred genotype (Fromm et al., 1990; Gordon-Kamm et al., 1990). After microprojectile bombardment, the tissues are selected on phosphinothricin to identify the transgenic embryogenic cells (Gordon-Kamm et al., 1990). Transgenic plants are regenerated by standard corn regeneration techniques (Fromm et al., 1990; Gordon-Kamm et al., 1990).
Example IX
Expression and Analysis of Increased Yield in Non-Arabidopsis Species
[0193] It is expected that structurally similar orthologs of the HAP2 or HAP5 polypeptide sequences, including those found in the Sequence Listing, can confer increased yield relative to control plants.
[0194] Northern blot analysis, RT-PCR or microarray analysis of the regenerated, transformed plants may be used to show expression of a polypeptide or the invention and related genes that are capable of inducing increased growth rate and/or larger size of the plants, including larger seed, plant products or plant parts, such as leaves, roots or stems.
[0195] After a dicot plant, monocot plant or plant cell has been transformed (and the latter regenerated into a plant) and shown to have greater size, improved planting density, that is, able to tolerate greater planting density with a coincident increase in yield in the presence or absence of stress conditions, the transformed monocot plant may be crossed with itself or a plant from the same line, a non-transformed or wild-type monocot plant, or another transformed monocot plant from a different transgenic line of plants.
[0196] The function of specific polypeptides of the invention, including closely-related orthologs, have been analyzed and may be further characterized and incorporated into crop plants. The ectopic overexpression of these sequences may be regulated using constitutive, inducible, or tissue specific regulatory elements. Genes that have been examined and have been shown to modify plant traits (including increasing growth rate and/or yield) encode polypeptides found in the Sequence Listing. In addition to these sequences, it is expected that newly discovered polynucleotide and polypeptide sequences closely related to polynucleotide and polypeptide sequences found in the Sequence Listing can also confer alteration of traits in a similar manner to the sequences found in the Sequence Listing, when transformed into any of a considerable variety of plants of different species, and including dicots and monocots. The polynucleotide and polypeptide sequences derived from monocots (e.g., the rice sequences) may be used to transform both monocot and dicot plants, and those derived from dicots (e.g., the Arabidopsis and soy genes) may be used to transform either group, although it is expected that some of these sequences will function best if the gene is transformed into a plant from the same group as that from which the sequence is derived.
[0197] It is expected that the same methods may be applied to identify other useful and valuable sequences of the present polypeptide clades, and the sequences may be derived from a broad range of plant species.
REFERENCES CITED
[0198] Aldemita and Hodges (1996) Planta 199: 612-617
[0199] Altschul (1990) J. Mol. Biol. 215: 403-410
[0200] Altschul (1993) J. Mol. Evol. 36: 290-300
[0201] Anderson and Young (1985) "Quantitative Filter Hybridisation", In: Hames and Higgins, ed., Nucleic Acid Hybridisation, A Practical Approach. Oxford, IRL Press, 73-111
[0202] Ausubel et al. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., unit 7.7
[0203] Bairoch et al. (1997) Nucleic Acids Res. 25: 217-221
[0204] Bechtold and Pelletier (1998) Methods Mol. Biol. 82: 259-266
[0205] Berger and Kimmel (1987), "Guide to Molecular Cloning Techniques", in Methods in Enzymology, vol. 152, Academic Press, Inc., San Diego, Calif.
[0206] Bevan (1984) Nucleic Acids Res. 12: 8711-8721
[0207] Bhattacharjee et al. (2001) Proc. Natl. Acad. Sci. USA 98: 13790-13795
[0208] Borevitz et al. (2000) Plant Cell 12: 2383-2393
[0209] Boss and Thomas (2002) Nature, 416: 847-850
[0210] Bruce et al. (2000) Plant Cell 12: 65-79
[0211] Bucher (1990) J. Mol. Biol. 212: 563-578
[0212] Bucher and Trifonov (1988) J. Biomol. Struct. Dyn. 5: 1231-1236
[0213] Cassas et al. (1993) Proc. Natl. Acad. Sci. USA 90: 11212-11216
[0214] Cheikh et al. (2003) U.S. Patent Application No. 20030101479
[0215] Christou et al. (1987) Proc. Natl. Acad. Sci. USA 84: 3962-3966
[0216] Christou (1991) Bio/Technol. 9:957-962
[0217] Christou et al. (1992) Plant. J. 2: 275-281
[0218] Coupland (1995) Nature 377: 482-483
[0219] Daly et al. (2001) Plant Physiol. 127: 1328-1333
[0220] Dang et al. (1996) J. Bacteriol. 178: 1842-1849
[0221] Deshayes et al. (1985) EMBO J., 4: 2731-2737
[0222] D'Halluin et al. (1992) Plant Cell 4: 1495-1505
[0223] Donn et al. (1990) in Abstracts of VIIth International Congress on Plant Cell and Tissue Culture IAPTC, A2-38: 53
[0224] Doolittle, ed. (1996) Methods in Enzymology, vol. 266: "Computer Methods for Macromolecular Sequence Analysis" Academic Press, Inc., San Diego, Calif., USA
[0225] Draper et al. (1982) Plant Cell Physiol. 23: 451-458
[0226] Eddy (1996) Curr. Opin. Str. Biol. 6: 361-365
[0227] Edwards et al. (1998) Plant Physiol. 117: 1015-1022
[0228] Eisen (1998) Genome Res. 8: 163-167
[0229] Feng and Doolittle (1987) J. Mol. Evol. 25: 351-360
[0230] Forsburg and Guarente (1988) Genes Dev. 3: 1166-1178
[0231] Forsburg and Guarente (1989) Genes Dev. 3: 1166-1178
[0232] Fowler and Thomashow (2002) Plant Cell 14: 1675-1690
[0233] Fromm et al. (1990) Bio/Technol. 8: 833-839
[0234] Fu et al. (2001) Plant Cell 13: 1791-1802
[0235] Gancedo (1998) Microbiol. Mol. Biol. Rev. 62: 334-361
[0236] Gelinas et al. (1985) Prog. Clin. Biol. Res. 191: 125-139
[0237] Gelvin et al. (1990) Plant Molecular Biology Manual, Kluwer Academic Publishers
[0238] Gilmour et al. (1998) Plant J. 16: 433-442
[0239] Glick and Thompson (1993) Methods in Plant Molecular Biology and Biotechnology. eds., CRC Press, Inc., Boca Raton
[0240] Gruber et al. (in Glick and Thompson (1993) Methods in Plant Molecular Biology and Biotechnology. eds., CRC Press, Inc., Boca Raton
[0241] Goodrich et al. (1993) Cell 75: 519-530
[0242] Gordon-Kamm et al. (1990) Plant Cell 2: 603-618
[0243] Hain et al. (1985) Mol. Gen. Genet. 199: 161-168
[0244] Haymes et al. (1985) Nucleic Acid Hybridization: A Practical Approach, IRL Press, Washington, D.C.
[0245] He et al. (2000) Transgenic Res. 9: 223-227
[0246] Hein (1990) Methods Enzymol. 183: 626-645
[0247] Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915
[0248] Henikoff and Henikoff (1991) Nucleic Acids Res. 19: 6565-6572
[0249] Herrera-Estrella et al. (1983) Nature 303: 209
[0250] Hiei et al. (1994) Plant J. 6:271-282
[0251] Hiei et al. (1997) Plant Mol. Biol. 35:205-218
[0252] Higgins and Sharp (1988) Gene 73: 237-244
[0253] Higgins et al. (1996) Methods Enzymol. 266: 383-402
[0254] Ishida (1990) Nature Biotechnol. 14:745-750
[0255] Jaglo et al. (2001) Plant Physiol. 127: 910-917
[0256] Kashima et al. (1985) Nature 313: 402-404
[0257] Kim et al. (2001) Plant J. 25: 247-259
[0258] Kimmel (1987) Methods Enzymol. 152: 507-511
[0259] Klee (1985) Bio/Technology 3: 637-642
[0260] Klein et al. (1987) Nature 327: 70-73
[0261] Koornneef et al (1986) in Tomato Biotechnology: Alan R. Liss, Inc., 169-178
[0262] Ku et al. (2000) Proc. Natl. Acad. Sci. USA 97: 9121-9126
[0263] Kyozuka and Shimamoto (2002) Plant Cell Physiol. 43: 130-135
[0264] Li et al. (1992) Nucleic Acids Res. 20: 1087-1091
[0265] Lin et al. (1991) Nature 353: 569-571
[0266] Mandel (1992a) Nature 360: 273-277
[0267] Mandel et al. (1992b) Cell 71-133-143
[0268] Masiero et al. (2002) J. Biol. Chem. 277, 26429-26435
[0269] Mazon et al. (1982) Eur. J. Biochem. 127: 605-608
[0270] Meyers (1995) Molecular Biology and Biotechnology, Wiley VCH, New York, N.Y., p 856-853
[0271] Miki et al. (1993) in Methods in Plant Molecular Biology and Biotechnology, p. 67-88, Glick and Thompson, eds., CRC Press, Inc., Boca Raton
[0272] Mount (2001), in Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., p. 543
[0273] Muller et al. (2001) Plant J. 28: 169-179
[0274] Nandi et al. (2000) Curr. Biol. 10: 215-218
[0275] Peng et al. (1997) Genes Development 11: 3194-3205)
[0276] Peng et al. (1999) Nature 400: 256-261
[0277] Ratcliffe et al. (2001) Plant Physiol. 126: 122-132
[0278] Ratcliffe et al. (2003) Plant Cell 15: 1159-1169
[0279] Riechmann et al. (2000a) Science 290: 2105-2110
[0280] Riechmann and Ratcliffe (2000b) Curr. Opin. Plant Biol. 3, 423-434
[0281] Rieger et al. (1976) Glossary of Genetics and Cytogenetics: Classical and Molecular, 4th ed., Springer Verlag, Berlin
[0282] Robson et al. (2001) Plant J. 28: 619-631
[0283] Romier et al. (2003) J. Biol. Chem. 278: 1336-1345
[0284] Sadowski et al. (1988) Nature 335: 563-564
[0285] Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
[0286] Sanford et al. (1987) Part. Sci. Technol. 5:27-37
[0287] Sanford (1993) Methods Enzymol. 217: 483-509
[0288] Shpaer (1997) Methods Mol. Biol. 70: 173-187
[0289] Smith et al. (1992) Protein Engineering 5: 35-51
[0290] Sonnhammer et al. (1997) Proteins 28: 405-420
[0291] Spencer et al. (1994) Plant Mol. Biol. 24: 51-61
[0292] Suzuki et al. (2001) Plant J. 28: 409-418
[0293] Tasanen et al. (1992) J. Biol. Chem. 267: 11513-11519
[0294] Thompson et al. (1994) Nucleic Acids Res. 22: 4673-4680
[0295] Tudge (2000) in The Variety of Life, Oxford University Press, New York, N.Y. pp. 547-606
[0296] Vasil et al. (1992) Bio/Technol. 10:667-674
[0297] Vasil et al. (1993) Bio/Technol. 11:1553-1558
[0298] Vasil (1994) Plant Mol. Biol. 25: 925-937
[0299] Wahl and Berger (1987) Methods Enzymol. 152: 399-407
[0300] Wan and Lemeaux (1994) Plant Physiol. 104: 37-48
[0301] Weeks et al. (1993) Plant Physiol. 102:1077-1084
[0302] Weigel and Nilsson (1995) Nature 377: 482-500
[0303] Weissbach and Weissbach (1989) Methods for Plant Molecular Biology, Academic Press
[0304] Xu et al. (2001) Proc. Natl. Acad. Sci. USA 98: 15089-15094
[0305] Zhang et al. (1991) Bio/Technology 9: 996-997
[0306] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
[0307] The present invention is not limited by the specific embodiments described herein. The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the Claims. Modifications that become apparent from the foregoing description and accompanying figures fall within the scope of the following Claims.
Sequence CWU
1
1
2161953DNAArabidopsis thalianaG929 1ggagagacct ttaacaattt tctgagggta
agatccagag attgattgaa tcagcttact 60attttatata attcagtttg ttgttcctca
gacttgtaac taggacagtc ttctcatgaa 120tcatgacttc ttcagtacat gagctctctg
ataacaatga aagtcatgcg aagaaagaac 180gtccagattc ccaaacccga ccacaggttc
cttcaggacg aagttcggaa tctattgata 240caaactctgt ctactcagag cccatggcac
atggattata cccgtatcca gatccttact 300acagaagcgt ctttgcacag caagcgtatc
ttccacatcc ctatcctggg gtccaattgc 360agttaatggg aatgcagcag ccaggagttc
cattgcaatg tgatgcagtc gaggaacctg 420tttttgttaa cgcaaagcaa taccatggta
tactcaggcg caggcaatcc cgggcaaaac 480ttgaggcacg aaatagagcc atcaaagcaa
aaaagccata catgcatgaa tctcggcatt 540tacatgcgat aagacggcca agaggatgtg
gtggccggtt tctcaatgcc aagaaggaaa 600atggagacca caaggaggag gaggaggcaa
cctctgatga gaacacttca gaagcaagtt 660ccagcctcag gtccgagaaa ttagctatgg
ctacttctgg tcctaatggt agatcttgag 720gaaggtttct gcacaaccac aagtttagtt
tctattttgg gtggatgttc tcagggcatc 780atcgtcttta gtgtttttgg atacgctgtg
tacaggttat ttgctagggt aaactttgtt 840ttagcgatta gaaataaaac taagcaaaga
aatgaaaagt gtgattggaa gtattgttgt 900accaaattga tattctttgc caatgaactc
atgttttgga aagtaaaaaa aaa 9532198PRTArabidopsis thalianaG929
polypeptide (domain in aa coordinates 98-157) 2Met Thr Ser Ser Val
His Glu Leu Ser Asp Asn Asn Glu Ser His Ala 1 5
10 15 Lys Lys Glu Arg Pro Asp Ser Gln Thr Arg
Pro Gln Val Pro Ser Gly 20 25
30 Arg Ser Ser Glu Ser Ile Asp Thr Asn Ser Val Tyr Ser Glu Pro
Met 35 40 45 Ala
His Gly Leu Tyr Pro Tyr Pro Asp Pro Tyr Tyr Arg Ser Val Phe 50
55 60 Ala Gln Gln Ala Tyr Leu
Pro His Pro Tyr Pro Gly Val Gln Leu Gln 65 70
75 80 Leu Met Gly Met Gln Gln Pro Gly Val Pro Leu
Gln Cys Asp Ala Val 85 90
95 Glu Glu Pro Val Phe Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg
100 105 110 Arg Arg
Gln Ser Arg Ala Lys Leu Glu Ala Arg Asn Arg Ala Ile Lys 115
120 125 Ala Lys Lys Pro Tyr Met His
Glu Ser Arg His Leu His Ala Ile Arg 130 135
140 Arg Pro Arg Gly Cys Gly Gly Arg Phe Leu Asn Ala
Lys Lys Glu Asn 145 150 155
160 Gly Asp His Lys Glu Glu Glu Glu Ala Thr Ser Asp Glu Asn Thr Ser
165 170 175 Glu Ala Ser
Ser Ser Leu Arg Ser Glu Lys Leu Ala Met Ala Thr Ser 180
185 190 Gly Pro Asn Gly Arg Ser
195 3573DNAArabidopsis thalianaG2344 3atgacttctt caatccatga
gctttctgat aacattggaa gtcatgagaa gcaagaacag 60agagattctc atttccaacc
accaatccct tctgcaagaa attatgaatc aattgttaca 120agtttagtct actcagaccc
ggggactaca aattccatgg cacctggaca atatccatat 180ccagatcctt actacagaag
catatttgca ccgcctccac aaccgtatac cggggtacat 240ctacagttga tgggagtgca
gcaacaaggc gttcctttac catctgatgc agtcgaggaa 300cctgtttttg ttaacgcaaa
gcaataccac ggtatactaa ggcgcagaca atcaagagca 360agacttgagt ctcagaataa
agtcatcaag tcacgtaagc cgtatttgca tgaatctcgg 420catttgcatg cgataagacg
accaagagga tgtggcgggc ggtttctaaa tgccaagaag 480gaggatgagc atcacgaaga
cagtagtcat gaagaaaaat ccaaccttag cgctggtaaa 540tccgccatgg ctgcttctag
tggtacatct tga 5734190PRTArabidopsis
thalianaG2344 polypeptide (domain in aa coordinates 100-159) 4Met
Thr Ser Ser Ile His Glu Leu Ser Asp Asn Ile Gly Ser His Glu 1
5 10 15 Lys Gln Glu Gln Arg Asp
Ser His Phe Gln Pro Pro Ile Pro Ser Ala 20
25 30 Arg Asn Tyr Glu Ser Ile Val Thr Ser Leu
Val Tyr Ser Asp Pro Gly 35 40
45 Thr Thr Asn Ser Met Ala Pro Gly Gln Tyr Pro Tyr Pro Asp
Pro Tyr 50 55 60
Tyr Arg Ser Ile Phe Ala Pro Pro Pro Gln Pro Tyr Thr Gly Val His 65
70 75 80 Leu Gln Leu Met Gly
Val Gln Gln Gln Gly Val Pro Leu Pro Ser Asp 85
90 95 Ala Val Glu Glu Pro Val Phe Val Asn Ala
Lys Gln Tyr His Gly Ile 100 105
110 Leu Arg Arg Arg Gln Ser Arg Ala Arg Leu Glu Ser Gln Asn Lys
Val 115 120 125 Ile
Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala 130
135 140 Ile Arg Arg Pro Arg Gly
Cys Gly Gly Arg Phe Leu Asn Ala Lys Lys 145 150
155 160 Glu Asp Glu His His Glu Asp Ser Ser His Glu
Glu Lys Ser Asn Leu 165 170
175 Ser Ala Gly Lys Ser Ala Met Ala Ala Ser Ser Gly Thr Ser
180 185 190 51180DNAArabidopsis
thalianaG931 5ggaggttctt tgacagacac atgtatcatc aatcttctct gttgaagcag
agagagagag 60agctaattgt tgcctctgag tcacatggat aagaaagttt catttactag
ctctgtggca 120cattcaactc caccatacct tagtacttcc atctcatggg gacttccaac
caaatccaat 180ggtgtgactg aatcactgag tttgaaggtg gtagatgcaa gaccagaacg
tcttataaac 240acaaagaata tcagtttcca ggaccaggat tcatcttcaa ctctgtcctc
tgctcaatct 300tctaacgatg ttacaagtag tggagatgat aacccctcaa gacaaatctc
atttttagca 360cattcagatg tttgtaaagg atttgaagaa actcaaagga agcgatttgc
aattaaatca 420ggctcctcca cggcaggaat cgctgatatt cactcttctc cttccaaggc
taacttctca 480tttcactatg ccgatccaca ttttggtggt ttaatgcctg cggcttacct
accacaggca 540acaatatgga atccccaaat gactcgagtt ccgctaccat tcgatctcat
agagaatgag 600cctgtctttg tcaatgcaaa gcaattccat gcaattatga ggaggaggca
acagcgtgct 660aagctagagg cgcaaaacaa actaatcaaa gcccgtaagc cgtatcttca
tgaatctcga 720catgttcacg ctcttaaacg acctagagga tctggtggaa gattcctaaa
caccaaaaag 780cttcaagaat ctacagatcc aaaacaagac atgccaatcc aacagcaaca
cgcaacggga 840aacatgtcaa gatttgtgct ttatcagttg cagaacagca atgactgtga
ttgttcaacc 900acttctcgct ctgacatcac atctgcttct gacagcgtta atctctttgg
acactctgaa 960tttctgatat cagattgccc atctcagaca aacccaacaa tgtatgttca
tggtcaatca 1020aatgacatgc atggaggtag gaacacacac catttctctg tccatatctg
agccggtgga 1080atctggtaat gtgtacgttc ctacaaaaaa agggaagtca tccttggctg
ctacttcgct 1140tattagctag ttcttatttc acacgctttg tccagatatc
11806328PRTArabidopsis thalianaG931 polypeptide (domain
in aa coordinates 172-231) 6Met Asp Lys Lys Val Ser Phe Thr Ser Ser Val
Ala His Ser Thr Pro 1 5 10
15 Pro Tyr Leu Ser Thr Ser Ile Ser Trp Gly Leu Pro Thr Lys Ser Asn
20 25 30 Gly Val
Thr Glu Ser Leu Ser Leu Lys Val Val Asp Ala Arg Pro Glu 35
40 45 Arg Leu Ile Asn Thr Lys Asn
Ile Ser Phe Gln Asp Gln Asp Ser Ser 50 55
60 Ser Thr Leu Ser Ser Ala Gln Ser Ser Asn Asp Val
Thr Ser Ser Gly 65 70 75
80 Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Leu Ala His Ser Asp Val
85 90 95 Cys Lys Gly
Phe Glu Glu Thr Gln Arg Lys Arg Phe Ala Ile Lys Ser 100
105 110 Gly Ser Ser Thr Ala Gly Ile Ala
Asp Ile His Ser Ser Pro Ser Lys 115 120
125 Ala Asn Phe Ser Phe His Tyr Ala Asp Pro His Phe Gly
Gly Leu Met 130 135 140
Pro Ala Ala Tyr Leu Pro Gln Ala Thr Ile Trp Asn Pro Gln Met Thr 145
150 155 160 Arg Val Pro Leu
Pro Phe Asp Leu Ile Glu Asn Glu Pro Val Phe Val 165
170 175 Asn Ala Lys Gln Phe His Ala Ile Met
Arg Arg Arg Gln Gln Arg Ala 180 185
190 Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys Ala Arg Lys Pro
Tyr Leu 195 200 205
His Glu Ser Arg His Val His Ala Leu Lys Arg Pro Arg Gly Ser Gly 210
215 220 Gly Arg Phe Leu Asn
Thr Lys Lys Leu Gln Glu Ser Thr Asp Pro Lys 225 230
235 240 Gln Asp Met Pro Ile Gln Gln Gln His Ala
Thr Gly Asn Met Ser Arg 245 250
255 Phe Val Leu Tyr Gln Leu Gln Asn Ser Asn Asp Cys Asp Cys Ser
Thr 260 265 270 Thr
Ser Arg Ser Asp Ile Thr Ser Ala Ser Asp Ser Val Asn Leu Phe 275
280 285 Gly His Ser Glu Phe Leu
Ile Ser Asp Cys Pro Ser Gln Thr Asn Pro 290 295
300 Thr Met Tyr Val His Gly Gln Ser Asn Asp Met
His Gly Gly Arg Asn 305 310 315
320 Thr His His Phe Ser Val His Ile 325
7956DNAGlycine maxG3920 7agttggtgct aagatgccag ggaaacctga cactgatgat
tggcgtgtag agcgtgggga 60gcagattcag tttcagtctt ccatttactc tcatcatcag
ccttggtggc gcggagtggg 120ggaaaatgcc tccaaatcat cttcagatga tcagttaaat
ggttcaatcg tgaatggtat 180cacgcggtct gagaccaatg ataagtcagg cggaggtgtt
gccaaagaat accaaaacat 240caaacatgcc atgttgtcaa ccccatttac catggagaaa
catcttgctc caaatcccca 300gatggaactt gttggtcatt cagttgtttt aacatctcct
tattcagatg cacagtatgg 360tcaaatcttg actacttacg ggcaacaagt tatgataaat
cctcagttgt atggaatgca 420tcatgctaga atgcctttgc cacttgaaat ggaagaggag
cctgtttatg tcaatgcgaa 480gcagtatcat ggtattttga ggcgaagaca gtcacgtgct
aaggctgaga ttgaaaagaa 540agtaatcaaa aacaggaagc catacctcca tgaatcccgt
caccttcatg caatgagaag 600ggcaagaggc aacggtggtc gctttctcaa cacaaagaag
cttgaaaata acaattctaa 660ttccacttca gacaaaggca acaatactcg tgcaaacgcc
tcaacaaact cgcctaacac 720tcaacttttg ttcaccaaca atttgaatct aggctcatca
aatgtttcac aagccacagt 780tcagcacatg cacacagagc agagtttcac tataggttac
cataatggaa atggtcttac 840agcactatac cgttcacaag caaatgggaa aaaggaggga
aactgctttg gtaaagagag 900ggaccctaat ggggatttca aataacactt ccctcagcca
tacagcaaga gttagg 9568303PRTGlycine maxG3920 polypeptide
(domain in aa coordinates 149-208) 8Met Pro Gly Lys Pro Asp Thr Asp Asp
Trp Arg Val Glu Arg Gly Glu 1 5 10
15 Gln Ile Gln Phe Gln Ser Ser Ile Tyr Ser His His Gln Pro
Trp Trp 20 25 30
Arg Gly Val Gly Glu Asn Ala Ser Lys Ser Ser Ser Asp Asp Gln Leu
35 40 45 Asn Gly Ser Ile
Val Asn Gly Ile Thr Arg Ser Glu Thr Asn Asp Lys 50
55 60 Ser Gly Gly Gly Val Ala Lys Glu
Tyr Gln Asn Ile Lys His Ala Met 65 70
75 80 Leu Ser Thr Pro Phe Thr Met Glu Lys His Leu Ala
Pro Asn Pro Gln 85 90
95 Met Glu Leu Val Gly His Ser Val Val Leu Thr Ser Pro Tyr Ser Asp
100 105 110 Ala Gln Tyr
Gly Gln Ile Leu Thr Thr Tyr Gly Gln Gln Val Met Ile 115
120 125 Asn Pro Gln Leu Tyr Gly Met His
His Ala Arg Met Pro Leu Pro Leu 130 135
140 Glu Met Glu Glu Glu Pro Val Tyr Val Asn Ala Lys Gln
Tyr His Gly 145 150 155
160 Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Ile Glu Lys Lys
165 170 175 Val Ile Lys Asn
Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His 180
185 190 Ala Met Arg Arg Ala Arg Gly Asn Gly
Gly Arg Phe Leu Asn Thr Lys 195 200
205 Lys Leu Glu Asn Asn Asn Ser Asn Ser Thr Ser Asp Lys Gly
Asn Asn 210 215 220
Thr Arg Ala Asn Ala Ser Thr Asn Ser Pro Asn Thr Gln Leu Leu Phe 225
230 235 240 Thr Asn Asn Leu Asn
Leu Gly Ser Ser Asn Val Ser Gln Ala Thr Val 245
250 255 Gln His Met His Thr Glu Gln Ser Phe Thr
Ile Gly Tyr His Asn Gly 260 265
270 Asn Gly Leu Thr Ala Leu Tyr Arg Ser Gln Ala Asn Gly Lys Lys
Glu 275 280 285 Gly
Asn Cys Phe Gly Lys Glu Arg Asp Pro Asn Gly Asp Phe Lys 290
295 300 91516DNAArabidopsis
thalianaG928 9ctcatggcga tgttggtttc ccaggaaagg taaaagagac ggagacgaac
caaaacaagg 60aagaaagaag aagatcttac atacgaagat cactctctga ttcactctga
gagacaaact 120ggtttacttt ggttctgttt gacaaaagga gacatgcaaa aataaatctc
tatcccttgt 180ttttcttctt cgcttcatcg attactcaaa gaggttgttg gttgtgagaa
taattagctt 240gttaaggaag acgttatgat gcatcagatg ttgaataaga aagattcagc
tactcattcc 300actttgccat accttaatac tagcatctct tggggagtgg ttccaactga
ttccgttgct 360aatcgtcgcg gtcctgctga atcactaagc ttgaaggttg attcaagacc
tgggcatata 420caaactacaa agcaaatcag ttttcaggac caagattcat cttcaacaca
gtccactggt 480caatcttata ctgaagttgc tagtagtggt gatgataatc cttccagaca
aatctccttt 540tcggctaaat caggatctga aataactcaa cggaaggggt ttgcaagtaa
tcctaaacaa 600ggctcgatga ctggatttcc gaatattcac tttgctcctg cacaggctaa
tttctcattt 660cactatgctg atccacatta tggtggttta ttagctgcaa cttacctacc
acaggcacca 720acatgcaatc ctcaaatggt gagtatgatt cctggtcgtg ttcctttacc
agcagagctc 780acagaaactg atccagtctt tgtcaatgcg aagcaatacc acgcaattat
gaggaggaga 840cagcaacgtg ctaagcttga ggctcaaaac aaactaatca gagcccgtaa
gccctatctt 900catgagtctc gacatgttca tgctcttaaa aggccaagag gatctggtgg
aagattccta 960aacaccaaaa aacttcttca agaatccgaa caggctgctg ctagagaaca
agaacaggac 1020aagttaggcc aacaggtaaa cagaaagacc aacatgtcta gattcgaagc
tcatatgctg 1080cagaacaaca aagaccgcag ctcaaccact tctggctcag acatcacctc
tgtttccgac 1140ggtgctgata tctttggaca cactgaattc cagttttcag gtttcccaac
tccgataaac 1200cgagccatgc ttgttcatgg tcagtctaat gacatgcatg gaggtggaga
catgcaccat 1260ttctctgtcc atatctgaga cagtggatct tggtgctgtg ttcatgttcc
caccaagaag 1320gggaagtcat ccttggctac tactagttct ttcgcttgtt gtaacttcag
tgtttttatt 1380tcatattatg tctgtgttag acatcacaag aacgaccaag atcttcactt
tgaaacactc 1440tattaccttt tcatcttctg ttaccatgga tctcttgtct aaactagtga
tatgattctt 1500ctgataaaaa aaaaaa
151610340PRTArabidopsis thalianaG928 polypeptide (domain
in aa coordinates 179-238) 10Met Met His Gln Met Leu Asn Lys Lys Asp Ser
Ala Thr His Ser Thr 1 5 10
15 Leu Pro Tyr Leu Asn Thr Ser Ile Ser Trp Gly Val Val Pro Thr Asp
20 25 30 Ser Val
Ala Asn Arg Arg Gly Pro Ala Glu Ser Leu Ser Leu Lys Val 35
40 45 Asp Ser Arg Pro Gly His Ile
Gln Thr Thr Lys Gln Ile Ser Phe Gln 50 55
60 Asp Gln Asp Ser Ser Ser Thr Gln Ser Thr Gly Gln
Ser Tyr Thr Glu 65 70 75
80 Val Ala Ser Ser Gly Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Ser
85 90 95 Ala Lys Ser
Gly Ser Glu Ile Thr Gln Arg Lys Gly Phe Ala Ser Asn 100
105 110 Pro Lys Gln Gly Ser Met Thr Gly
Phe Pro Asn Ile His Phe Ala Pro 115 120
125 Ala Gln Ala Asn Phe Ser Phe His Tyr Ala Asp Pro His
Tyr Gly Gly 130 135 140
Leu Leu Ala Ala Thr Tyr Leu Pro Gln Ala Pro Thr Cys Asn Pro Gln 145
150 155 160 Met Val Ser Met
Ile Pro Gly Arg Val Pro Leu Pro Ala Glu Leu Thr 165
170 175 Glu Thr Asp Pro Val Phe Val Asn Ala
Lys Gln Tyr His Ala Ile Met 180 185
190 Arg Arg Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln Asn Lys
Leu Ile 195 200 205
Arg Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His Val His Ala Leu 210
215 220 Lys Arg Pro Arg Gly
Ser Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu 225 230
235 240 Leu Gln Glu Ser Glu Gln Ala Ala Ala Arg
Glu Gln Glu Gln Asp Lys 245 250
255 Leu Gly Gln Gln Val Asn Arg Lys Thr Asn Met Ser Arg Phe Glu
Ala 260 265 270 His
Met Leu Gln Asn Asn Lys Asp Arg Ser Ser Thr Thr Ser Gly Ser 275
280 285 Asp Ile Thr Ser Val Ser
Asp Gly Ala Asp Ile Phe Gly His Thr Glu 290 295
300 Phe Gln Phe Ser Gly Phe Pro Thr Pro Ile Asn
Arg Ala Met Leu Val 305 310 315
320 His Gly Gln Ser Asn Asp Met His Gly Gly Gly Asp Met His His Phe
325 330 335 Ser Val
His Ile 340 11927DNAArabidopsis thalianaG1782 11atgcaagtgt
ttcaaaggaa agaagattca tcttggggaa actcaatgcc tacaacaaat 60tcaaatattc
aaggatctga atctttcagc ttgactaagg atatgataat gtctacaaca 120caattacccg
cgatgaaaca ttcgggtttg cagctgcaaa atcaagattc aacctcatca 180caatctactg
aagaagaatc aggcggcggt gaagttgcaa gctttggaga atataagcgt 240tatggatgca
gcattgttaa taacaatctc tcaggttaca tcgaaaactt gggaaagcct 300attgaaaatt
atactaagtc aattactacc tcgtcgatgg tgtctcaaga ctctgtgttt 360cctgctccta
cttctggtca aatatcttgg tctcttcaat gtgctgaaac gtcacatttc 420aatggtttct
tggctcctga atatgcatca acaccaacgg cgctgccaca tttagagatg 480atgggtttgg
tttcttcaag agtgccattg cctcatcaca ttcaagagaa tgaaccaata 540tttgtcaatg
cgaaacagta tcatgcgatt ctccgtcgca ggaagcaccg tgctaaactc 600gaagctcaga
acaaactcat caaatgccgt aaaccgtacc ttcatgagtc tcgccatctt 660catgctttaa
agagagctag aggctccggt ggacgtttcc tcaatacaaa gaagcttcaa 720gaatcatcaa
actcactgtg ttcttctcaa atggcaaatg gacaaaattt ctctatgagc 780cctcacggtg
gtggaagcgg aatcgggtct agttcgatct caccgagctc caattcaaac 840tgtatcaaca
tgttccaaaa cccgcagttc agattctcag gttatccgtc aacacaccat 900gcctcagctc
tcatgtcagg gacttga
92712308PRTArabidopsis thalianaG1782 polypeptide (domain in aa
coordinates 178-237) 12Met Gln Val Phe Gln Arg Lys Glu Asp Ser Ser Trp
Gly Asn Ser Met 1 5 10
15 Pro Thr Thr Asn Ser Asn Ile Gln Gly Ser Glu Ser Phe Ser Leu Thr
20 25 30 Lys Asp Met
Ile Met Ser Thr Thr Gln Leu Pro Ala Met Lys His Ser 35
40 45 Gly Leu Gln Leu Gln Asn Gln Asp
Ser Thr Ser Ser Gln Ser Thr Glu 50 55
60 Glu Glu Ser Gly Gly Gly Glu Val Ala Ser Phe Gly Glu
Tyr Lys Arg 65 70 75
80 Tyr Gly Cys Ser Ile Val Asn Asn Asn Leu Ser Gly Tyr Ile Glu Asn
85 90 95 Leu Gly Lys Pro
Ile Glu Asn Tyr Thr Lys Ser Ile Thr Thr Ser Ser 100
105 110 Met Val Ser Gln Asp Ser Val Phe Pro
Ala Pro Thr Ser Gly Gln Ile 115 120
125 Ser Trp Ser Leu Gln Cys Ala Glu Thr Ser His Phe Asn Gly
Phe Leu 130 135 140
Ala Pro Glu Tyr Ala Ser Thr Pro Thr Ala Leu Pro His Leu Glu Met 145
150 155 160 Met Gly Leu Val Ser
Ser Arg Val Pro Leu Pro His His Ile Gln Glu 165
170 175 Asn Glu Pro Ile Phe Val Asn Ala Lys Gln
Tyr His Ala Ile Leu Arg 180 185
190 Arg Arg Lys His Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile
Lys 195 200 205 Cys
Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Leu Lys 210
215 220 Arg Ala Arg Gly Ser Gly
Gly Arg Phe Leu Asn Thr Lys Lys Leu Gln 225 230
235 240 Glu Ser Ser Asn Ser Leu Cys Ser Ser Gln Met
Ala Asn Gly Gln Asn 245 250
255 Phe Ser Met Ser Pro His Gly Gly Gly Ser Gly Ile Gly Ser Ser Ser
260 265 270 Ile Ser
Pro Ser Ser Asn Ser Asn Cys Ile Asn Met Phe Gln Asn Pro 275
280 285 Gln Phe Arg Phe Ser Gly Tyr
Pro Ser Thr His His Ala Ser Ala Leu 290 295
300 Met Ser Gly Thr 305
131011DNAArabidopsis thalianaG1363 13cgtctaccta ctatggtctg gagattagtt
cgtttattga actaatgttt tagacaatgc 60aagagttcca tagtagcaaa gattcattgc
cttgtcctgc aacttcttgg gataactctg 120tcttcaccaa ctcaaatgtc caaggatcat
catccttgac cgataacaac actttaagct 180tgacaatgga gatgaaacaa actggttttc
aaatgcagca ctatgattcc tcctctactc 240aatccactgg aggagaatca tatagtgaag
ttgctagctt aagtgaacct actaatcgtt 300atggccacaa cattgttgtc actcatctct
caggttacaa agaaaacccg gaaaatccta 360ttggaagtca ttcgatatca aaggtgtctc
aagattcagt ggttcttcct attgaggcgg 420cttcttggcc tttacacggc aatgtaacgc
cacatttcaa tggtttcttg tcttttcctt 480atgcatcaca acacacggtg cagcatcctc
aaatcagagg gttggttccg tctagaatgc 540ctttgcctca caacattcca gagaacgaac
caattttcgt caatgcaaaa cagtaccaag 600ccattctccg ccgcagagag cgccgtgcaa
agcttgaagc tcagaacaag ctcatcaaag 660tccgcaaacc atatcttcac gagtcgcggc
acctccatgc actaaagaga gttagaggct 720ctggtggacg tttcctcaac acaaagaagc
atcaagaatc aaattcctca ctatctcctc 780cattcttgat tccacctcat gtcttcaaga
actctccagg aaagttccgg caaatggaca 840tttcaagggg tggggttgtg tctagtgtct
cgacaacatc ttgctcggac ataaccggga 900acaacaacga catgttccag caaaacccac
aattcaggtt ctcaggttat ccatcaaacc 960accatgtctc agtcctcatg tgagagagct
cccgcaagtg gtggatgagg c 101114308PRTArabidopsis thalianaG1363
polypeptide (domain in aa coordinates 171-230) 14Met Gln Glu Phe
His Ser Ser Lys Asp Ser Leu Pro Cys Pro Ala Thr 1 5
10 15 Ser Trp Asp Asn Ser Val Phe Thr Asn
Ser Asn Val Gln Gly Ser Ser 20 25
30 Ser Leu Thr Asp Asn Asn Thr Leu Ser Leu Thr Met Glu Met
Lys Gln 35 40 45
Thr Gly Phe Gln Met Gln His Tyr Asp Ser Ser Ser Thr Gln Ser Thr 50
55 60 Gly Gly Glu Ser Tyr
Ser Glu Val Ala Ser Leu Ser Glu Pro Thr Asn 65 70
75 80 Arg Tyr Gly His Asn Ile Val Val Thr His
Leu Ser Gly Tyr Lys Glu 85 90
95 Asn Pro Glu Asn Pro Ile Gly Ser His Ser Ile Ser Lys Val Ser
Gln 100 105 110 Asp
Ser Val Val Leu Pro Ile Glu Ala Ala Ser Trp Pro Leu His Gly 115
120 125 Asn Val Thr Pro His Phe
Asn Gly Phe Leu Ser Phe Pro Tyr Ala Ser 130 135
140 Gln His Thr Val Gln His Pro Gln Ile Arg Gly
Leu Val Pro Ser Arg 145 150 155
160 Met Pro Leu Pro His Asn Ile Pro Glu Asn Glu Pro Ile Phe Val Asn
165 170 175 Ala Lys
Gln Tyr Gln Ala Ile Leu Arg Arg Arg Glu Arg Arg Ala Lys 180
185 190 Leu Glu Ala Gln Asn Lys Leu
Ile Lys Val Arg Lys Pro Tyr Leu His 195 200
205 Glu Ser Arg His Leu His Ala Leu Lys Arg Val Arg
Gly Ser Gly Gly 210 215 220
Arg Phe Leu Asn Thr Lys Lys His Gln Glu Ser Asn Ser Ser Leu Ser 225
230 235 240 Pro Pro Phe
Leu Ile Pro Pro His Val Phe Lys Asn Ser Pro Gly Lys 245
250 255 Phe Arg Gln Met Asp Ile Ser Arg
Gly Gly Val Val Ser Ser Val Ser 260 265
270 Thr Thr Ser Cys Ser Asp Ile Thr Gly Asn Asn Asn Asp
Met Phe Gln 275 280 285
Gln Asn Pro Gln Phe Arg Phe Ser Gly Tyr Pro Ser Asn His His Val 290
295 300 Ser Val Leu Met
305 151959DNAOryza sativaG3924 15gactggatcc tgattggcgt
tgcggccaat caggatcctg ctggatcctg attggatcct 60gattggcgtt gcggccgtgt
ctctactgtt gttgttgttg tgtttttttt ttctttttta 120cctttttttg ccgccttggt
tttgatgcgg agtctggatg tttctacttt tggatggggt 180ttttttacct tacccgaccg
aattcgtggg tggattggat gcggttcatg gaagggaacg 240ggatcttggt cggctactcg
gatggggggt ttgccggccg gttgggattt cgggaaccgg 300atcgaggaag aggcggagga
gaattgatcc gcggcggcgg cggcggagga ggaggagaga 360atatgtggtg attttcatct
gagcccggtt gcagaagtcc aactgtatcg gagaatctta 420ctcggttcgt actacagtcc
cccacgctgg tattcaagga atcttctctg gatggaccag 480ttcttggttg gtcccggttc
tttcatgtcc agttccccat ggtggttcag ttggcagttg 540tgccctagtt gttgtaggag
taattgtcgg tggctttaaa tggttcatgc tcgtcagttc 600ttccgagcat tccgaggtga
gcgagcatgg agtcgaggcc ggggggaacc aacctcgtgg 660agccgagggg gcagggcgcg
ctgccgtccg gcataccgat ccagcagccg tggtggacga 720cctccgccgg ggtcggggcg
gtgtcgcccg ccgtcgtggc gccggggagc ggtgcgggga 780tcagcctgtc gggcagggat
ggcggcggcg acgacgcggc agaggagagc agcgatgact 840cacgaagatc aggggagacc
aaagatggaa gcactgatca agaaaagcat catgcaacat 900cgcagatgac tgctttggca
tcagactatt taacaccatt ttcacagctg gaactaaacc 960aaccaattgc ttcggcagca
taccagtacc ctgactctta ctatatgggc atggttggtc 1020cctatggacc tcaagctatg
tccgcacaga ctcatttcca gctacctgga ttaactcact 1080ctcgtatgcc gttgcctctt
gaaatatctg aggagcctgt ttatgtaaat gctaagcaat 1140atcatggaat tttaagacgg
aggcagtcac gtgcgaaggc tgaacttgag aaaaaagttg 1200ttaaatcaag aaagccctat
cttcatgagt ctcgtcatca acatgctatg cgaagggcaa 1260gaggaacggg tggacgcttc
ctgaacacaa agaaaaatga agatggtgct cccagtgaga 1320aagccgaacc aaacaaagga
gagcagaact ccgggtatcg ccggatccct cctgacttac 1380agctcctaca gaaggaaaca
tgaagtagcg gctcgaaacc tagaacagtg gcttctgtcc 1440accggcattc actcttgagg
gtggattctt gctccagaat tgtgctgcca tctttcaaat 1500gatcttcatc gtgcaaagta
attatatgta cattcctctg aatgatctat gcaccaattg 1560ttgatcctgg cagggtaata
atctggatgt attgagtcca tcacagtgcg aatgtcacgg 1620gtagatctgc tgttttcagg
caattcattc ttggctttct atcccacccg ttgttgttgc 1680aagttaagct agcagtactt
gtctcagtgt ccgtgagacg tttgtgtaag attaggttaa 1740actagaagtt gtaatgctgt
attaagtgtt tgtatttcta atatgaaccg taacaaggcc 1800agagcagaac tcgttataca
tacaaaaatt gatggccagg tcagtgttac cgtattatta 1860tgcaatggca gaagcttgca
taaggcgtgg tgccactcgt tgctttgctg tatgtttttg 1920agtttcattc gatttatttt
cactgttgag tttgtgggt 195916258PRTOryza
sativaG3924 polypeptide (domain in aa coordinates 163-222) 16Met
Glu Ser Arg Pro Gly Gly Thr Asn Leu Val Glu Pro Arg Gly Gln 1
5 10 15 Gly Ala Leu Pro Ser Gly
Ile Pro Ile Gln Gln Pro Trp Trp Thr Thr 20
25 30 Ser Ala Gly Val Gly Ala Val Ser Pro Ala
Val Val Ala Pro Gly Ser 35 40
45 Gly Ala Gly Ile Ser Leu Ser Gly Arg Asp Gly Gly Gly Asp
Asp Ala 50 55 60
Ala Glu Glu Ser Ser Asp Asp Ser Arg Arg Ser Gly Glu Thr Lys Asp 65
70 75 80 Gly Ser Thr Asp Gln
Glu Lys His His Ala Thr Ser Gln Met Thr Ala 85
90 95 Leu Ala Ser Asp Tyr Leu Thr Pro Phe Ser
Gln Leu Glu Leu Asn Gln 100 105
110 Pro Ile Ala Ser Ala Ala Tyr Gln Tyr Pro Asp Ser Tyr Tyr Met
Gly 115 120 125 Met
Val Gly Pro Tyr Gly Pro Gln Ala Met Ser Ala Gln Thr His Phe 130
135 140 Gln Leu Pro Gly Leu Thr
His Ser Arg Met Pro Leu Pro Leu Glu Ile 145 150
155 160 Ser Glu Glu Pro Val Tyr Val Asn Ala Lys Gln
Tyr His Gly Ile Leu 165 170
175 Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val
180 185 190 Lys Ser
Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met 195
200 205 Arg Arg Ala Arg Gly Thr Gly
Gly Arg Phe Leu Asn Thr Lys Lys Asn 210 215
220 Glu Asp Gly Ala Pro Ser Glu Lys Ala Glu Pro Asn
Lys Gly Glu Gln 225 230 235
240 Asn Ser Gly Tyr Arg Arg Ile Pro Pro Asp Leu Gln Leu Leu Gln Lys
245 250 255 Glu Thr
171631DNAOryza sativaG3926 17gagtacaaag gagagagaga gagagactct agtgcatatt
tggcaggaag agccgaagag 60gggaggtgag gatcagagga ggcagcctca tcgtcatgct
tcagcactag tagtagtagt 120gccaccattt ctttgccctc gatctttccc cagagagaga
gagagagaga gagagagtct 180tgattggggg aggagagagg gagagagaga aagagagagg
acagaaaatg tttgtggatc 240ttgagtaatg ccttctaata atgataatgc tgttgcaaga
aatggagaat catcctgtcc 300aatgcatggc caagaccaac tatgattttc ttgccaggaa
taactatcca atgaaacagt 360tagttcagag gaactctgat ggtgactcgt caccaacaaa
gtctggggag tctcaccaag 420aagcatctgc agtaagtgac agcagtctca acggacaaca
cacctcacca caatcagtgt 480ttgtcccctc agatattaac aacaatgata gttgtgggga
gcgggaccat ggcactaagt 540cggtattgtc tttggggaac acagaagctg cctttcctcc
ttcaaagttc gattacaacc 600agccttttgc atgtgtttct tatccatatg gtactgatcc
atattatggt ggagtatcaa 660caggatacac ttcacatgca tttgttcatc ctcaaattac
tggtgctgca aactctagga 720tgccattggc tgttgatcct tctgtagaag agcccatatt
tgtcaatgca aagcaataca 780atgcgatcct tagaagaagg caaacgcgtg caaaattgga
ggcccaaaat aaggcggtga 840aaggtcggaa gccttacctc catgaatctc gacatcatca
tgctatgaag cgagcccgtg 900gatcaggtgg tcggttcctt accaaaaagg agctgctgga
acagcagcag cagcagcagc 960agcagaagcc accaccggca tcagctcagt ctccaacagg
tagagccaga acgagcggcg 1020gtgccgttgt ccttggcaag aacctgtgcc cagagaacag
cacatcctgc tcgccatcga 1080caccgacagg ctccgagatc tccagcatct catttggggg
cggcatgctg gctcaccaag 1140agcacatcag cttcgcatcc gctgatcgcc accccacaat
gaaccagaac caccgtgtcc 1200ccgtcatgag gtgaaaacct cgggatcgcg ggacacgggc
ggttctggtt taccctcact 1260ggcgcactcc ggtgtgcccg tggcaattca tccttggctt
atgaagtatc tacctgataa 1320tagtctgctg tcagtttata tgcaatgcaa cctctgtcag
ataaactctt atagtttgtt 1380ttattgtaag ctatgactga acgaactgtc gagcagatgg
ctaatttgta tgttgtgggt 1440acagaaatcc tgaagctttt gatgtaccta attgcctttt
gcttatactc ttggtgtata 1500cccattacca agttgcctta aaaaccctcc aattatgtaa
tcagtcatgg ttttatagaa 1560ccttgccaca tgtaatcaat cacctgtttt tgtaaattga
tctataaacg ctataggctg 1620ctgtgttatc t
163118317PRTOryza sativaG3926 polypeptide
(domain in aa coordinates 164-222) 18Met Ile Met Leu Leu Gln Glu Met Glu
Asn His Pro Val Gln Cys Met 1 5 10
15 Ala Lys Thr Asn Tyr Asp Phe Leu Ala Arg Asn Asn Tyr Pro
Met Lys 20 25 30
Gln Leu Val Gln Arg Asn Ser Asp Gly Asp Ser Ser Pro Thr Lys Ser
35 40 45 Gly Glu Ser His
Gln Glu Ala Ser Ala Val Ser Asp Ser Ser Leu Asn 50
55 60 Gly Gln His Thr Ser Pro Gln Ser
Val Phe Val Pro Ser Asp Ile Asn 65 70
75 80 Asn Asn Asp Ser Cys Gly Glu Arg Asp His Gly Thr
Lys Ser Val Leu 85 90
95 Ser Leu Gly Asn Thr Glu Ala Ala Phe Pro Pro Ser Lys Phe Asp Tyr
100 105 110 Asn Gln Pro
Phe Ala Cys Val Ser Tyr Pro Tyr Gly Thr Asp Pro Tyr 115
120 125 Tyr Gly Gly Val Ser Thr Gly Tyr
Thr Ser His Ala Phe Val His Pro 130 135
140 Gln Ile Thr Gly Ala Ala Asn Ser Arg Met Pro Leu Ala
Val Asp Pro 145 150 155
160 Ser Val Glu Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile
165 170 175 Leu Arg Arg Arg
Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala 180
185 190 Val Lys Gly Arg Lys Pro Tyr Leu His
Glu Ser Arg His His His Ala 195 200
205 Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Thr Lys
Lys Glu 210 215 220
Leu Leu Glu Gln Gln Gln Gln Gln Gln Gln Gln Lys Pro Pro Pro Ala 225
230 235 240 Ser Ala Gln Ser Pro
Thr Gly Arg Ala Arg Thr Ser Gly Gly Ala Val 245
250 255 Val Leu Gly Lys Asn Leu Cys Pro Glu Asn
Ser Thr Ser Cys Ser Pro 260 265
270 Ser Thr Pro Thr Gly Ser Glu Ile Ser Ser Ile Ser Phe Gly Gly
Gly 275 280 285 Met
Leu Ala His Gln Glu His Ile Ser Phe Ala Ser Ala Asp Arg His 290
295 300 Pro Thr Met Asn Gln Asn
His Arg Val Pro Val Met Arg 305 310 315
191020DNAOryza sativaG3925 19ccacgcgtcc ggcaaggtga gaagtgagga
ggcagcaagg gaggaggttt gccggagagg 60ggacatgctc cctcctcatc tcacagaaaa
tggcacagta atgattcagt ttggtcataa 120aatgcctgac tacgagtcat cagctaccca
atcaactagt ggatctcctc gtgaagtgtc 180tggaatgagc gaaggaagcc tcaatgagca
gaatgatcaa tctggtaatc ttgatggtta 240cacgaagagt gatgaaggta agatgatgtc
agctttatct ctgggcaaat cagaaactgt 300gtatgcacat tcggaacctg accgtagcca
accctttggc atatcatatc catatgctga 360ttcgttctat ggtggtgctg tagcgactta
tggcacacat gctattatgc atccccagat 420tgtgggcgtg atgtcatcct cccgagtccc
gctaccaata gaaccagcca ccgaagagcc 480tatttatgta aatgcaaagc aataccatgc
gattctccga aggagacagc tccgtgcaaa 540gttagaggct gaaaacaagc tggtgaaaaa
ccgcaagccg tacctccatg aatcccggca 600tcaacacgcg atgaaaagag ctcggggaac
aggggggaga ttcctcaaca caaagcagca 660gcctgaagct tcagatggtg gcaccccaag
gctcgtctct gcaaacggcg ttgtgttctc 720aaagcacgag cacagcttgt cgtccagtga
tctccatcat cgtgcgaaag agggcgcttg 780agatcctcgc cgtttctgtc atggcaaatc
atccttggct tatgtgtggt gcccagcaaa 840aaaaaatctg actgaacctg tgtgtaaact
gatgggtatg ggtgggtttt gtgcaactgt 900tacttgggtg cttgaaatct gtttctgtgt
ttcctctgcc tccttagttt ggagacggtg 960cagctgcagc tggtaccagt aatctgatca
tgctagactt gtgacaaaaa aaaaaaaaaa 102020238PRTOryza sativaG3925
polypeptide (domain in aa coordinates 138-197) 20Met Leu Pro Pro
His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe 1 5
10 15 Gly His Lys Met Pro Asp Tyr Glu Ser
Ser Ala Thr Gln Ser Thr Ser 20 25
30 Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu
Asn Glu 35 40 45
Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu 50
55 60 Gly Lys Met Met Ser
Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr 65 70
75 80 Ala His Ser Glu Pro Asp Arg Ser Gln Pro
Phe Gly Ile Ser Tyr Pro 85 90
95 Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr
His 100 105 110 Ala
Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val 115
120 125 Pro Leu Pro Ile Glu Pro
Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala 130 135
140 Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln
Leu Arg Ala Lys Leu 145 150 155
160 Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu
165 170 175 Ser Arg
His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg 180
185 190 Phe Leu Asn Thr Lys Gln Gln
Pro Glu Ala Ser Asp Gly Gly Thr Pro 195 200
205 Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys
His Glu His Ser 210 215 220
Leu Ser Ser Ser Asp Leu His His Arg Ala Lys Glu Gly Ala 225
230 235 21885DNAZea maysG3921
21atggaggatc attctgtcca tcccatgtct aagtctaacc atggctcctt gtcaggaaat
60ggttatgaga tgaaacatcc aggccatgaa gtttgcgata gggattcatc atcggagtct
120gatcggtctc accaagaagc atcagcagcg agtgaaagca gtccagatga acacacatca
180actcaatcag acaatgatga agatcatggg aaggataatc aggacacatt gaagccagta
240ttgtccttgg ggaaggaagg ctctgccact ggggccccaa aattacatta cagcccatct
300tttgcttgta ttccttatac tgctgacgct tactatggtg ccgttggggt cttgacagga
360tatcctccac atgccattgt ccatccccag caaaatgata caacgaacac tccgggtatg
420ttacctgtgg aacctgcaga agaaccaata tatgttaatg caaaacaata ccatgcaatc
480cttaggagga ggcaaacacg tgctaaattg gaggcccaga acaagatggt gaaaggtcgg
540aagccatacc ttcatgagtc ccgacatcgt catgccatga aacgggcccg tggctcagga
600gggcggttcc tcaacacaaa gcagctccag gaccaaaacc agcagtttca ggaagcgtcg
660agtggttcaa tgtgctcaaa gatcattggc aacagcataa tctcccaaag tggccccacc
720tgcacgccct cttctggcac tgcaggtgct tcaacagcca gccaggaccg cagctgcttg
780ccctcagttg gcttccgccc cacaaccaac ttcagtgacc aaggtcgagg aggcttgaag
840ctggccgtga tcggcatgca gcagcgtgtt tccaccataa ggtga
88522294PRTZea maysG3921 polypeptide (domain in aa coordinates
148-207) 22Met Glu Asp His Ser Val His Pro Met Ser Lys Ser Asn His Gly
Ser 1 5 10 15 Leu
Ser Gly Asn Gly Tyr Glu Met Lys His Pro Gly His Glu Val Cys
20 25 30 Asp Arg Asp Ser Ser
Ser Glu Ser Asp Arg Ser His Gln Glu Ala Ser 35
40 45 Ala Ala Ser Glu Ser Ser Pro Asp Glu
His Thr Ser Thr Gln Ser Asp 50 55
60 Asn Asp Glu Asp His Gly Lys Asp Asn Gln Asp Thr Leu
Lys Pro Val 65 70 75
80 Leu Ser Leu Gly Lys Glu Gly Ser Ala Thr Gly Ala Pro Lys Leu His
85 90 95 Tyr Ser Pro Ser
Phe Ala Cys Ile Pro Tyr Thr Ala Asp Ala Tyr Tyr 100
105 110 Gly Ala Val Gly Val Leu Thr Gly Tyr
Pro Pro His Ala Ile Val His 115 120
125 Pro Gln Gln Asn Asp Thr Thr Asn Thr Pro Gly Met Leu Pro
Val Glu 130 135 140
Pro Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala Ile 145
150 155 160 Leu Arg Arg Arg Gln
Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Met 165
170 175 Val Lys Gly Arg Lys Pro Tyr Leu His Glu
Ser Arg His Arg His Ala 180 185
190 Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys
Gln 195 200 205 Leu
Gln Asp Gln Asn Gln Gln Phe Gln Glu Ala Ser Ser Gly Ser Met 210
215 220 Cys Ser Lys Ile Ile Gly
Asn Ser Ile Ile Ser Gln Ser Gly Pro Thr 225 230
235 240 Cys Thr Pro Ser Ser Gly Thr Ala Gly Ala Ser
Thr Ala Ser Gln Asp 245 250
255 Arg Ser Cys Leu Pro Ser Val Gly Phe Arg Pro Thr Thr Asn Phe Ser
260 265 270 Asp Gln
Gly Arg Gly Gly Leu Lys Leu Ala Val Ile Gly Met Gln Gln 275
280 285 Arg Val Ser Thr Ile Arg
290 231405DNAZea maysG3922 23tgggaccctc gaggccggcc
gggatacgat tccgaagaag gtagcgaccc acgcgcgcgg 60gccagaggcc ggaagaggga
gatacaggtt aatttttagg taccagatca tctgatttct 120cagaagcaaa atgttgtttg
gagctcagtg acaccatctt gtaatgcctg tgattttacg 180ggaaatggag gatcattctg
tccatcccat gtctaagtct aaccatggct ccttgtcagg 240aaatggttat gagatgaaac
attcaggcca taaagtttgc gatagggatt catcatcgga 300gtctgatcgg tctcaccaag
aagcatcagc agcaagtgaa agcagtccaa atgaacacac 360atcaactcaa tcagacaatg
atgaagatca tgggaaagat aatcaggaca caatgaagcc 420agtattgtcc ttggggaagg
aaggctctgc ctttttggcc ccaaaattac attacagccc 480atcttttgct tgtattcctt
atactgctga tgcttattat agtggggttg gggtctcgac 540aggatatgct ccacatgcca
ttgtatgttc actcttaatc tttcagtttc tgtcttcctg 600gccacattct gtccatcccc
agcaaaatga tacaacgaac actccgggta tgttacctgt 660ggaacctgca gaagaaccaa
tatatgttaa tgcaaaacaa taccatgcaa tccttaggag 720gaggcaaaca cgtgctaaat
tggaggccca gaacaagatg gtgaaaaatc ggaagccata 780tcttcatgag tcccgacatc
gtcatgccat gaaacgggct cgtggatcag gaggacggtt 840cctcaacaca aagcagctcc
aggagcagaa ccagcagtat caggcatcga gtggttcatt 900gtgctcaaag atcattgcca
acagcataat ctcccaaagt ggccccacct gcacgccctc 960ttctgacact gcaggtcttc
agcagccagc caggaccgcg gctgcttgcc ctcggtgggc 1020ttccgcccca cagccaactt
cagtgagcaa ggtggaggcg gctcgaagct ggtcgtgaac 1080ggcatgcagc agcgtgtttc
caccataagg tgaagagaag tgggcacgac accattccca 1140ggcgcgcact gcctgtggca
actcatcctt ggcttttgaa actatggata tgcaatggac 1200atgtagcttc gagttcctca
gaataaccaa acgtgaagaa tatgcaaagt ccttttgaga 1260tttgctgtag ctgaaagaac
tgtggttagg ttgagtttct tcctggagac tgatccatac 1320atgacatgct acctcgtgct
gagtttctga ggtgaagcca tcgaaacatg accgtgtggt 1380tcagtaaaaa aaaaaaaaaa
aaaaa 140524304PRTZea maysG3922
polypeptide (domain in aa coordinates 171-230) 24Met Pro Val Ile
Leu Arg Glu Met Glu Asp His Ser Val His Pro Met 1 5
10 15 Ser Lys Ser Asn His Gly Ser Leu Ser
Gly Asn Gly Tyr Glu Met Lys 20 25
30 His Ser Gly His Lys Val Cys Asp Arg Asp Ser Ser Ser Glu
Ser Asp 35 40 45
Arg Ser His Gln Glu Ala Ser Ala Ala Ser Glu Ser Ser Pro Asn Glu 50
55 60 His Thr Ser Thr Gln
Ser Asp Asn Asp Glu Asp His Gly Lys Asp Asn 65 70
75 80 Gln Asp Thr Met Lys Pro Val Leu Ser Leu
Gly Lys Glu Gly Ser Ala 85 90
95 Phe Leu Ala Pro Lys Leu His Tyr Ser Pro Ser Phe Ala Cys Ile
Pro 100 105 110 Tyr
Thr Ala Asp Ala Tyr Tyr Ser Gly Val Gly Val Ser Thr Gly Tyr 115
120 125 Ala Pro His Ala Ile Val
Cys Ser Leu Leu Ile Phe Gln Phe Leu Ser 130 135
140 Ser Trp Pro His Ser Val His Pro Gln Gln Asn
Asp Thr Thr Asn Thr 145 150 155
160 Pro Gly Met Leu Pro Val Glu Pro Ala Glu Glu Pro Ile Tyr Val Asn
165 170 175 Ala Lys
Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys 180
185 190 Leu Glu Ala Gln Asn Lys Met
Val Lys Asn Arg Lys Pro Tyr Leu His 195 200
205 Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg
Gly Ser Gly Gly 210 215 220
Arg Phe Leu Asn Thr Lys Gln Leu Gln Glu Gln Asn Gln Gln Tyr Gln 225
230 235 240 Ala Ser Ser
Gly Ser Leu Cys Ser Lys Ile Ile Ala Asn Ser Ile Ile 245
250 255 Ser Gln Ser Gly Pro Thr Cys Thr
Pro Ser Ser Asp Thr Ala Gly Leu 260 265
270 Gln Gln Pro Ala Arg Thr Ala Ala Ala Cys Pro Arg Trp
Ala Ser Ala 275 280 285
Pro Gln Pro Thr Ser Val Ser Lys Val Glu Ala Ala Arg Ser Trp Ser 290
295 300 251155DNAZea
maysG4264 25tggtttcggc aatttgggtt aatttttagg taccagatca tctgatttct
cagaagcaaa 60atgttgtttg gagctcagtg acaccatctt gtaatgcctg tgattttacg
ggaaatggag 120gatcattctg tccatcccat gtctaagtct aaccatggct ccttgtcagg
aaatggttat 180gagatgaaac attcaggcca taaagtttgc gatagggatt catcatcgga
gtctgatcgg 240tctcaccaag aagcatcagc agcaagtgaa agcagtccaa atgaacacac
atcaactcaa 300tcagacaatg atgaagatca tgggaaagat aatcaggaca caatgaagcc
agtattgtcc 360ttggggaagg aaggctctgc ctttttggcc ccaaaattac attacagccc
atcttttgct 420tgtattcctt atacttctga tgcttattat agtgcggttg gggtcttgac
aggatatcct 480ccacatgcca ttgtccatcc ccagcaaaat gatacaacga acactccggg
tatgttacct 540gtggaacctg cagaagaacc aatatatgtt aatgcaaaac aataccatgc
aatccttagg 600aggaggcaaa cacgtgctaa attggaggcc cagaacaaga tggtgaaaaa
tcggaagcca 660tatcttcatg agtcccgaca tcgtcatgcc atgaaacggg ctcgtggatc
aggaggacgg 720ttcctcaaca caaagcagct ccaggagcag aaccagcagt atcaggcatc
gagtggttca 780ttgtgctcaa agatcattgc caacagcata atctcccaaa gtggccccac
ctgcacgccc 840tcttctggca ctgcaggtgc ttcaacagcc ggccaggacc gcagctgctt
gccctcagtt 900ggcttccgcc ccacgacaaa cttcagtgac caaggtcgag gaggcttgaa
gttggccgtg 960atcggcatgc agcagcgtgt ttccaccata aggtgaagag aagtgggcac
aacaccattc 1020ccaggcacac tgcctgtggc aactcatcct tggctcttgg aactttgaat
atgcaatcga 1080catgtagctt gagatcctca gaataaacca aaccttcagt tatatgcaag
ccttttttga 1140ggttgctgtt gctgt
115526300PRTZea maysG4264 polypeptide (domain in aa
coordinates 155-214) 26Met Pro Val Ile Leu Arg Glu Met Glu Asp His Ser
Val His Pro Met 1 5 10
15 Ser Lys Ser Asn His Gly Ser Leu Ser Gly Asn Gly Tyr Glu Met Lys
20 25 30 His Ser Gly
His Lys Val Cys Asp Arg Asp Ser Ser Ser Glu Ser Asp 35
40 45 Arg Ser His Gln Glu Ala Ser Ala
Ala Ser Glu Ser Ser Pro Asn Glu 50 55
60 His Thr Ser Thr Gln Ser Asp Asn Asp Glu Asp His Gly
Lys Asp Asn 65 70 75
80 Gln Asp Thr Met Lys Pro Val Leu Ser Leu Gly Lys Glu Gly Ser Ala
85 90 95 Phe Leu Ala Pro
Lys Leu His Tyr Ser Pro Ser Phe Ala Cys Ile Pro 100
105 110 Tyr Thr Ser Asp Ala Tyr Tyr Ser Ala
Val Gly Val Leu Thr Gly Tyr 115 120
125 Pro Pro His Ala Ile Val His Pro Gln Gln Asn Asp Thr Thr
Asn Thr 130 135 140
Pro Gly Met Leu Pro Val Glu Pro Ala Glu Glu Pro Ile Tyr Val Asn 145
150 155 160 Ala Lys Gln Tyr His
Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys 165
170 175 Leu Glu Ala Gln Asn Lys Met Val Lys Asn
Arg Lys Pro Tyr Leu His 180 185
190 Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly
Gly 195 200 205 Arg
Phe Leu Asn Thr Lys Gln Leu Gln Glu Gln Asn Gln Gln Tyr Gln 210
215 220 Ala Ser Ser Gly Ser Leu
Cys Ser Lys Ile Ile Ala Asn Ser Ile Ile 225 230
235 240 Ser Gln Ser Gly Pro Thr Cys Thr Pro Ser Ser
Gly Thr Ala Gly Ala 245 250
255 Ser Thr Ala Gly Gln Asp Arg Ser Cys Leu Pro Ser Val Gly Phe Arg
260 265 270 Pro Thr
Thr Asn Phe Ser Asp Gln Gly Arg Gly Gly Leu Lys Leu Ala 275
280 285 Val Ile Gly Met Gln Gln Arg
Val Ser Thr Ile Arg 290 295 300
27912DNAArabidopsis thalianaG2632 27atgggaattg aagacatgca ttcaaaatct
gacagtggtg ggaacaaggt tgattcagag 60gttcatggta cagtatcgtc gtcgataaat
agtttaaacc cttggcatcg tgctgctgct 120gcttgcaatg caaattctag tgtggaagct
ggagataaat cttctaagtc aatagcatta 180gcattggaat caaacggttc caaatcacca
tccaatagag ataatactgt taacaaggaa 240tcacaagtca caacgtctcc acaatcagct
ggagattata gtgataaaaa ccaagaatct 300ctgcatcatg gcatcacaca acctcctcct
caccctcaac ttgttggcca cacagttgga 360tgggcatcct caaatccata ccaggatcca
tattatgcag gagtgatggg agcctatgga 420catcatcccc tggggtttgt tccatatggt
gggatgcctc attcaagaat gccactgccg 480cctgagatgg cacaagaacc agttttcgtg
aatgctaaac agtaccaggc gattctgagg 540cgaaggcagg cacgcgccaa ggcagagcta
gagaagaagc taataaaatc cagaaagcct 600tatctacatg aatctcggca tcaacatgct
atgaggaggc caaggggtac tggaggacgg 660tttgcaaaga aaaccaacac cgaagcttca
aagcgtaaag ctgaagaaaa gagcaatggt 720catgttactc agtccccgtc atcatctaat
tctgatcaag gtgaagcttg gaatggtgac 780tatagaacac ctcagggaga tgagatgcag
agctcagctt ataagagaag ggaagaagga 840gagtgttcag ggcagcaatg gaacagcctt
tcctcaaacc atccttctca agctcgtcta 900gccattaaat ga
91228303PRTArabidopsis thalianaG2632
polypeptide (domain in aa coordinates 166-223) 28Met Gly Ile Glu
Asp Met His Ser Lys Ser Asp Ser Gly Gly Asn Lys 1 5
10 15 Val Asp Ser Glu Val His Gly Thr Val
Ser Ser Ser Ile Asn Ser Leu 20 25
30 Asn Pro Trp His Arg Ala Ala Ala Ala Cys Asn Ala Asn Ser
Ser Val 35 40 45
Glu Ala Gly Asp Lys Ser Ser Lys Ser Ile Ala Leu Ala Leu Glu Ser 50
55 60 Asn Gly Ser Lys Ser
Pro Ser Asn Arg Asp Asn Thr Val Asn Lys Glu 65 70
75 80 Ser Gln Val Thr Thr Ser Pro Gln Ser Ala
Gly Asp Tyr Ser Asp Lys 85 90
95 Asn Gln Glu Ser Leu His His Gly Ile Thr Gln Pro Pro Pro His
Pro 100 105 110 Gln
Leu Val Gly His Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln 115
120 125 Asp Pro Tyr Tyr Ala Gly
Val Met Gly Ala Tyr Gly His His Pro Leu 130 135
140 Gly Phe Val Pro Tyr Gly Gly Met Pro His Ser
Arg Met Pro Leu Pro 145 150 155
160 Pro Glu Met Ala Gln Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln
165 170 175 Ala Ile
Leu Arg Arg Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys 180
185 190 Lys Leu Ile Lys Ser Arg Lys
Pro Tyr Leu His Glu Ser Arg His Gln 195 200
205 His Ala Met Arg Arg Pro Arg Gly Thr Gly Gly Arg
Phe Ala Lys Lys 210 215 220
Thr Asn Thr Glu Ala Ser Lys Arg Lys Ala Glu Glu Lys Ser Asn Gly 225
230 235 240 His Val Thr
Gln Ser Pro Ser Ser Ser Asn Ser Asp Gln Gly Glu Ala 245
250 255 Trp Asn Gly Asp Tyr Arg Thr Pro
Gln Gly Asp Glu Met Gln Ser Ser 260 265
270 Ala Tyr Lys Arg Arg Glu Glu Gly Glu Cys Ser Gly Gln
Gln Trp Asn 275 280 285
Ser Leu Ser Ser Asn His Pro Ser Gln Ala Arg Leu Ala Ile Lys 290
295 300 291274DNAArabidopsis
thalianaG1334 29atagctccca actaatagga atctcaagct tctcactctc tcttgttttt
ccattggact 60tttggaacat aagctatgca aactgaggag cttttgtcgc caccacagac
tccttggtgg 120aatgcttttg gatctcagcc gttgactaca gagagccttt ccggcgaagc
ttctgattca 180ttcaccggag ttaaggcagt tactacggag gcagaacaag gtgtggtgga
taaacaaact 240tctacaactc tcttcacttt ctcacctggt ggtgaaaaga gttcaagaga
tgtgccaaag 300cctcatgttg ctttcgcgat gcaatcagct tgcttcgagt ttggatttgc
tcagccaatg 360atgtacacaa agcatcctca tgttgaacaa tactatggag ttgtttcagc
atacggatct 420cagaggtctt cgggccgagt aatgattcca ctgaagatgg agacagaaga
agatggtacc 480atctatgtga actcaaagca gtaccatgga attatcaggc gacgccagtc
ccgagcaaag 540gctgaaaaac tgagtagatg ccgtaagcca tatatgcatc actcacgcca
tctccatgct 600atgcgccgtc ctagaggatc tggcgggcgt ttcttgaaca ccaagacagc
tgatgcggct 660aagcagtcta agccgagtaa ttctcagagt tctgaagtct ttcatccgga
aaatgagacc 720ataaactcat cgagggaagc aaatgagtca aatctctcgg attctgcagt
tacaagtatg 780gattactttc taagttcgtc ggcttattct cctggtggca tggtcatgcc
tatcaagtgg 840aatgcagcag caatggatat tggctgctgc aaacttaata tatgatcagc
agatagggga 900caagacatga ttggtcacca gtccttttgt cttgtccctt atctttcagc
caaacggaaa 960gagaacttgt gtcttggaaa aaagacattg agtttccttg gtttataaga
ttggtccttt 1020taccatccgt ttggctgtaa acaggcaaat catctttggc tcatgcttca
tcaagttctt 1080atcttcgtct gttttcttct acgcatcttc ataagatctc tgaactagtg
aataacattt 1140cctagcatca tgtttcaact agtgtgtgtt gtaagaaact ctgccttatt
tccagatgat 1200gtattgtgtg taacgtgttt atgaaacaaa cgtaagactt tcaagttaaa
aaaaaaaaaa 1260aaaaaaaaaa aaaa
127430269PRTArabidopsis thalianaG1334 polypeptide
(domain in aa coordinates 133-190) 30Met Gln Thr Glu Glu Leu Leu Ser Pro
Pro Gln Thr Pro Trp Trp Asn 1 5 10
15 Ala Phe Gly Ser Gln Pro Leu Thr Thr Glu Ser Leu Ser Gly
Glu Ala 20 25 30
Ser Asp Ser Phe Thr Gly Val Lys Ala Val Thr Thr Glu Ala Glu Gln
35 40 45 Gly Val Val Asp
Lys Gln Thr Ser Thr Thr Leu Phe Thr Phe Ser Pro 50
55 60 Gly Gly Glu Lys Ser Ser Arg Asp
Val Pro Lys Pro His Val Ala Phe 65 70
75 80 Ala Met Gln Ser Ala Cys Phe Glu Phe Gly Phe Ala
Gln Pro Met Met 85 90
95 Tyr Thr Lys His Pro His Val Glu Gln Tyr Tyr Gly Val Val Ser Ala
100 105 110 Tyr Gly Ser
Gln Arg Ser Ser Gly Arg Val Met Ile Pro Leu Lys Met 115
120 125 Glu Thr Glu Glu Asp Gly Thr Ile
Tyr Val Asn Ser Lys Gln Tyr His 130 135
140 Gly Ile Ile Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu
Lys Leu Ser 145 150 155
160 Arg Cys Arg Lys Pro Tyr Met His His Ser Arg His Leu His Ala Met
165 170 175 Arg Arg Pro Arg
Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Thr Ala 180
185 190 Asp Ala Ala Lys Gln Ser Lys Pro Ser
Asn Ser Gln Ser Ser Glu Val 195 200
205 Phe His Pro Glu Asn Glu Thr Ile Asn Ser Ser Arg Glu Ala
Asn Glu 210 215 220
Ser Asn Leu Ser Asp Ser Ala Val Thr Ser Met Asp Tyr Phe Leu Ser 225
230 235 240 Ser Ser Ala Tyr Ser
Pro Gly Gly Met Val Met Pro Ile Lys Trp Asn 245
250 255 Ala Ala Ala Met Asp Ile Gly Cys Cys Lys
Leu Asn Ile 260 265
311388DNAArabidopsis thalianaG926 31ccaaaatcta gggttttctt ctcgcccaat
ttcacttttc ttctacgaaa ttctccattc 60ctgccggctg tcgggttttc tgaatcgatt
ctccttcacc aacttcttct ctggttctgt 120tcgattctga ttttttttca aggtcaattt
tttcttctct ttaaactctg caaaatcgtg 180atcgattaaa ttcacctcag ggttttttga
tttctgaaag aagttaatct tcttcgaagg 240cgattgcaaa agagtgctct gctgtgaatt
tccactgaga tgcaatcaaa accgggaaga 300gaaaacgaag aggaagtcaa taatcaccat
gctgttcagc agccgatgat gtatgcagag 360ccctggtgga aaaacaactc ctttggtgtt
gtacctcaag cgagaccttc tggaattcca 420tcaaattcct cttctttgga ttgccccaat
ggttccgagt caaacgatgt tcattcagca 480tctgaagacg gtgcgttgaa tggtgaaaac
gatggcactt ggaaggattc acaagctgca 540acttcctctc gttcagataa tcacggaatg
gaaggaaatg acccagcgct ctctatccgt 600aacatgcatg atcagccact tgtacaacca
ccagagcttg ttggacacta tatcgcttgt 660gtcccaaacc catatcagga tccatattat
gggggattga tgggagcata tggtcatcag 720caattgggtt ttcgtccata tcttggaatg
cctcgtgaaa gaacagctct gccacttgac 780atggcacaag agcccgttta tgtgaatgca
aagcagtacg agggaattct aaggcgaaga 840aaagcacgtg ccaaggcaga gctagagagg
aaagtcatcc gggacagaaa gccatatctt 900cacgagtcaa gacacaagca tgcaatgaga
agggcacgag cgagtggagg ccggtttgcg 960aagaaaagtg aggtagaagc gggagaggat
gcaggaggga gagacagaga aaggggttca 1020gcaaccaact catcaggctc tgaacaagtt
gagacagact ctaatgagac cctgaattct 1080tctggtgcac cataataaaa aaagccaaag
ctctgagagg agagagagac acacactttg 1140gctaatataa tccattgcct caaaccggca
aatcattctt ggctttttcg tttttgtgtt 1200tgctagttgt tcttgtcaga gtctcatatt
gtgtgggttt aacagttatg atgaatgtac 1260aaagagcgag ttatgttagg tgttagattt
tggagacaag agacaaagga atagcaagta 1320ggtcttgttt ttattctttg accttttttt
tctcttttgc aaaattgaaa aatacgtttg 1380cttaaaaa
138832271PRTArabidopsis thalianaG926
polypeptide (domain in aa coordinates 171-228) 32Met Gln Ser Lys
Pro Gly Arg Glu Asn Glu Glu Glu Val Asn Asn His 1 5
10 15 His Ala Val Gln Gln Pro Met Met Tyr
Ala Glu Pro Trp Trp Lys Asn 20 25
30 Asn Ser Phe Gly Val Val Pro Gln Ala Arg Pro Ser Gly Ile
Pro Ser 35 40 45
Asn Ser Ser Ser Leu Asp Cys Pro Asn Gly Ser Glu Ser Asn Asp Val 50
55 60 His Ser Ala Ser Glu
Asp Gly Ala Leu Asn Gly Glu Asn Asp Gly Thr 65 70
75 80 Trp Lys Asp Ser Gln Ala Ala Thr Ser Ser
Arg Ser Asp Asn His Gly 85 90
95 Met Glu Gly Asn Asp Pro Ala Leu Ser Ile Arg Asn Met His Asp
Gln 100 105 110 Pro
Leu Val Gln Pro Pro Glu Leu Val Gly His Tyr Ile Ala Cys Val 115
120 125 Pro Asn Pro Tyr Gln Asp
Pro Tyr Tyr Gly Gly Leu Met Gly Ala Tyr 130 135
140 Gly His Gln Gln Leu Gly Phe Arg Pro Tyr Leu
Gly Met Pro Arg Glu 145 150 155
160 Arg Thr Ala Leu Pro Leu Asp Met Ala Gln Glu Pro Val Tyr Val Asn
165 170 175 Ala Lys
Gln Tyr Glu Gly Ile Leu Arg Arg Arg Lys Ala Arg Ala Lys 180
185 190 Ala Glu Leu Glu Arg Lys Val
Ile Arg Asp Arg Lys Pro Tyr Leu His 195 200
205 Glu Ser Arg His Lys His Ala Met Arg Arg Ala Arg
Ala Ser Gly Gly 210 215 220
Arg Phe Ala Lys Lys Ser Glu Val Glu Ala Gly Glu Asp Ala Gly Gly 225
230 235 240 Arg Asp Arg
Glu Arg Gly Ser Ala Thr Asn Ser Ser Gly Ser Glu Gln 245
250 255 Val Glu Thr Asp Ser Asn Glu Thr
Leu Asn Ser Ser Gly Ala Pro 260 265
270 331385DNAArabidopsis thalianaG927 33ggaatctgaa gctcttctct
actctctact ctatcactcc atctgtgaac atatctttct 60tattcttcta ggcactatct
atttttcact ttttgtaatt ggaatttgga gatggctatg 120caaactgtga gagaaggtct
cttctctgct ccacagactt cttggtggac tgcttttgga 180tctcagccgt tggctccgga
gagtctcgcc ggcgattctg actcattcgc cggagttaag 240gtcggatctg tcggagagac
aagacaacgt gtggataaac agagcaactc tgcaacgcac 300ttagctttct cacttggtga
tgtaaagagt ccaagacttg tgccaaagcc tcatggagct 360actttctcaa tgcaatcacc
ttgcttggaa cttggatttt ctcagccacc gatctataca 420aagtatccct atggagaaca
acaatactat ggagttgttt cagcctatgg atctcagagc 480agggtaatgc ttcctctaaa
catggaaacg gaagatagta ccatctatgt gaactcaaag 540caataccatg gaatcataag
gagacgccaa tcccgcgcaa aggctgctgc tgttcttgat 600cagaagaaat tgagtagtag
atgccgcaag ccatatatgc atcattcgcg ccatctccat 660gcattgcggc gtcctagagg
atccggtggg agattcttga acactaaaag tcagaacttg 720gaaaatagcg gaaccaatgc
aaagaaaggt gatggaagta tgcagattca gtctcagcct 780aagcctcagc aaagtaactc
tcagaattct gaagttgttc atccggaaaa cgggaccatg 840aacttatcga acggattaaa
tgtgtcggga tcagaagtta ctagcatgaa ctacttccta 900agttctcccg ttcattctct
tggtggcatg gtaatgccta gcaagtggat agcagcagca 960gcagcaatgg ataatggctg
ctgcaatttc aaaacctgat cctttaccgt ttcacagtca 1020aacggagaga gataaagaac
tcttgccttg gtataaagga ttttcctttt tgccaatccg 1080ctttggctgt gaacaggcaa
atcatctttg gctcattctc tattaaggta acttcgccgt 1140gaggtgaaaa aagctttgat
atatttatct tcagtgtaaa agtagttaaa actggtgaag 1200aacaatgatg tgtttggtca
ctaaacccac ttgttccaac tagtagtgtg tgttttaaga 1260aaactctgtt atctgatttt
gtagctctct ctggctttgt gtgtttctca aacaactgta 1320acaactttta agttatgtgg
tttatgtaac atatttaaga cctgtgtttt tgtataaaaa 1380aaaaa
138534295PRTArabidopsis
thalianaG927 polypeptide (domain in aa coordinates 136-199) 34Met
Ala Met Gln Thr Val Arg Glu Gly Leu Phe Ser Ala Pro Gln Thr 1
5 10 15 Ser Trp Trp Thr Ala Phe
Gly Ser Gln Pro Leu Ala Pro Glu Ser Leu 20
25 30 Ala Gly Asp Ser Asp Ser Phe Ala Gly Val
Lys Val Gly Ser Val Gly 35 40
45 Glu Thr Arg Gln Arg Val Asp Lys Gln Ser Asn Ser Ala Thr
His Leu 50 55 60
Ala Phe Ser Leu Gly Asp Val Lys Ser Pro Arg Leu Val Pro Lys Pro 65
70 75 80 His Gly Ala Thr Phe
Ser Met Gln Ser Pro Cys Leu Glu Leu Gly Phe 85
90 95 Ser Gln Pro Pro Ile Tyr Thr Lys Tyr Pro
Tyr Gly Glu Gln Gln Tyr 100 105
110 Tyr Gly Val Val Ser Ala Tyr Gly Ser Gln Ser Arg Val Met Leu
Pro 115 120 125 Leu
Asn Met Glu Thr Glu Asp Ser Thr Ile Tyr Val Asn Ser Lys Gln 130
135 140 Tyr His Gly Ile Ile Arg
Arg Arg Gln Ser Arg Ala Lys Ala Ala Ala 145 150
155 160 Val Leu Asp Gln Lys Lys Leu Ser Ser Arg Cys
Arg Lys Pro Tyr Met 165 170
175 His His Ser Arg His Leu His Ala Leu Arg Arg Pro Arg Gly Ser Gly
180 185 190 Gly Arg
Phe Leu Asn Thr Lys Ser Gln Asn Leu Glu Asn Ser Gly Thr 195
200 205 Asn Ala Lys Lys Gly Asp Gly
Ser Met Gln Ile Gln Ser Gln Pro Lys 210 215
220 Pro Gln Gln Ser Asn Ser Gln Asn Ser Glu Val Val
His Pro Glu Asn 225 230 235
240 Gly Thr Met Asn Leu Ser Asn Gly Leu Asn Val Ser Gly Ser Glu Val
245 250 255 Thr Ser Met
Asn Tyr Phe Leu Ser Ser Pro Val His Ser Leu Gly Gly 260
265 270 Met Val Met Pro Ser Lys Trp Ile
Ala Ala Ala Ala Ala Met Asp Asn 275 280
285 Gly Cys Cys Asn Phe Lys Thr 290
295 351446DNAZea maysG3911 35accacacgtc cgcccacgcg tccgcctacg cgtcggcgga
ctcgcgtgcc cccacgcggg 60cgggcttggc ttgggactgg gccgcccggc cgcgaggaat
aaactcactc ctgccttcat 120acgtatccat agccgcggca gtacgtgtat gtggttagct
atacgcgacc tcagctcggg 180cgcaagctac aacgccgacc aggcgagaag aagcatcgat
agtgtgacga gctaacccac 240cagcagcaac gtaatccaaa tccatggaca accagccgct
gccctactcc acaggccagc 300cccctgcccc cggaggagcc ccggtggcgg gcatgcctgg
cgcggccggc ctcccacccg 360tgccgcacca cctacccgtt ccatctcaag tgaaagagat
gacaactgtc ctaacaaaca 420aactagggct caaaactaac ttcaaaaaaa tcacccacta
aaagcacctt cctcttcctc 480ttcctccgcc cccaatcccc ctcgtctcac aaccctagct
gcccccgaat ccatggatcc 540taacaaatcc agcaccccgc cgccgcctcc agtcatgggt
gcccccgttg cctaccctcc 600gcctgcgtac cctcccggtg tggccgccgg cgccggcgcc
tacccgccgc agctctacgc 660accgccggct gctgccgcgg cccagcaggc ggcggccgcg
cagcagcagc agctgcagat 720attctgggcg gagcagtacc gcgagatcga ggccactacc
gacttcaaga atcacaacct 780cccgctcgcc cgcatcaaga agatcatgaa agccgacgag
gacgtccgca tgatcgccgc 840cgaggctccc gtggtgttcg cccgggcctg cgagatgttc
atcctcgagc tcacccatcg 900cggctgggcg cacgccgaag agaacaagcg ccgcacgctc
cagaaatccg acattgccgc 960tgccatcgcc cgcaccgagg tattcgactt ccttgtggac
atcgttccgc gcgacgacgg 1020taaagacgct gatgcggcgg ccgccgcagc tgccgcggct
gccgggatcc cgcgccccgc 1080cgccggagta ccagccaccg accctctcgc ctactactac
gtgcctcagc agtaatgtat 1140catcatcacg ttattgttcc gtctatgtgc ctgagcaata
atgtatcatc attgccttat 1200tgttccgggg cagttgtgtt atttgtgtct gtttagttgc
tgctgctgtt accgcgtaat 1260agcatatgtg ttatctgtgt ctgtttagtt gctgctgctg
ttgccgcgta ataaaacttg 1320gtcatttacg gggctccctc aagattaaga attgagttgt
ttgatggtag aatcctggta 1380aggttgttgt aactgggggg cgcctttgtt tgggctggta
gtgtatgcct aggcctcact 1440tatctg
144636200PRTZea maysG3911 polypeptide (domain
in aa coordinates 83-148) 36Met Asp Pro Asn Lys Ser Ser Thr Pro Pro Pro
Pro Pro Val Met Gly 1 5 10
15 Ala Pro Val Ala Tyr Pro Pro Pro Ala Tyr Pro Pro Gly Val Ala Ala
20 25 30 Gly Ala
Gly Ala Tyr Pro Pro Gln Leu Tyr Ala Pro Pro Ala Ala Ala 35
40 45 Ala Ala Gln Gln Ala Ala Ala
Ala Gln Gln Gln Gln Leu Gln Ile Phe 50 55
60 Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr
Asp Phe Lys Asn 65 70 75
80 His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
85 90 95 Asp Val Arg
Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala 100
105 110 Cys Glu Met Phe Ile Leu Glu Leu
Thr His Arg Gly Trp Ala His Ala 115 120
125 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile
Ala Ala Ala 130 135 140
Ile Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile Val Pro Arg 145
150 155 160 Asp Asp Gly Lys
Asp Ala Asp Ala Ala Ala Ala Ala Ala Ala Ala Ala 165
170 175 Ala Gly Ile Pro Arg Pro Ala Ala Gly
Val Pro Ala Thr Asp Pro Leu 180 185
190 Ala Tyr Tyr Tyr Val Pro Gln Gln 195
200 37618DNAOryza sativaG3546 37atggagccca aatccaccac ccctcctccg
cctcctccgc cccccgtgct gggcgccccc 60gtcccttacc cgccggcggg agcctacccc
ccacccgtcg ggccctacgc ccacgcgccg 120ccgctctacg ccccgcctcc ccccgccgcc
gccgccgcct ccgccgccgc caccgccgcc 180tcgcagcagg ccgccgccgc gcagctccag
aacttctggg cggagcagta ccgcgagatc 240gagcacacca ccgacttcaa gaaccacaac
ctccccctcg cccgcatcaa gaagatcatg 300aaggccgacg aggacgtccg catgatcgcc
gccgaggccc ccgtcgtgtt cgccagggcg 360tgcgagatgt tcatcctcga gctcacccac
cgcggctggg cgcacgccga ggagaacaag 420cgccgcacgc tccagaagtc cgacatcgcc
gccgccatcg cccgcaccga ggtcttcgac 480ttcctcgtcg acatcgtgcc ccgcgacgag
gccaaggacg ccgaggccgc cgccgccgtt 540gccgccggga tcccccaccc cgccgccggt
ttgcccgcca ccgaccccat ggcctactac 600tatgtccagc cgcagtaa
61838205PRTOryza sativaG3546
polypeptide (domain in aa coordinates 91-156) 38Met Glu Pro Lys Ser
Thr Thr Pro Pro Pro Pro Pro Pro Pro Pro Val 1 5
10 15 Leu Gly Ala Pro Val Pro Tyr Pro Pro Ala
Gly Ala Tyr Pro Pro Pro 20 25
30 Val Gly Pro Tyr Ala His Ala Pro Pro Leu Tyr Ala Pro Pro Pro
Pro 35 40 45 Ala
Ala Ala Ala Ala Ser Ala Ala Ala Thr Ala Ala Ser Gln Gln Ala 50
55 60 Ala Ala Ala Gln Leu Gln
Asn Phe Trp Ala Glu Gln Tyr Arg Glu Ile 65 70
75 80 Glu His Thr Thr Asp Phe Lys Asn His Asn Leu
Pro Leu Ala Arg Ile 85 90
95 Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu
100 105 110 Ala Pro
Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu 115
120 125 Thr His Arg Gly Trp Ala His
Ala Glu Glu Asn Lys Arg Arg Thr Leu 130 135
140 Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala Arg Thr
Glu Val Phe Asp 145 150 155
160 Phe Leu Val Asp Ile Val Pro Arg Asp Glu Ala Lys Asp Ala Glu Ala
165 170 175 Ala Ala Ala
Val Ala Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro 180
185 190 Ala Thr Asp Pro Met Ala Tyr Tyr
Tyr Val Gln Pro Gln 195 200 205
39865DNAZea maysG3909 39ccctgaccgc cgtaacaccc taggcaatgg agcccaaatc
caccacccct cccccgcccc 60ccgtgatggg cgcgcccatc gcgtatcctc ccccgcccgg
cgccgcgtac cccgccgggc 120cgtacgtgca cgcgccggcg gccgcgctct accctcctcc
tcccctgccg ccggcgcccc 180cctcctcgca gcagggcgcc gcggcggcgc accagcagca
gctattctgg gcggagcaat 240accgcgagat cgaggccacc accgacttca agaaccacaa
cctgccgctc gcccgcatca 300agaagatcat gaaggccgac gaggacgtgc gcatgatcgc
cgccgaggcg cccgtcgtct 360tctcccgcgc ctgcgagatg ttcatcctcg agctcaccca
ccgcggctgg gcacacgccg 420aggagaacaa gcgccgcacg ctgcagaagt ccgacatcgc
cgccgccgtc gcgcgcaccg 480aggtcttcga cttcctcgtc gacatcgtgc cgcgggacga
ggccaaggac gccgactccg 540ccgccatggg agcagccggg atcccgcacc ccgccgccgg
cctgcccgcc gccgatccca 600tgggctacta ctacgtccag ccgccgcagt aacgaatttg
cttccttatc atggcttcgc 660ttccatgcag cctttgcggg ttttagtaaa ctattattat
tactgagagt gccctgttgt 720tacccatgct ctgttgttgc cacccaataa ctcgatgacc
tgatgatcat ctgatgtgcc 780ccccgttccg taacaagtga ttccatttct gatttcagag
aaaaaaaaaa aaaaaaaaaa 840aaaaaaaaaa aaaaaaaaaa aaaaa
86540201PRTZea maysG3909 polypeptide (domain
in aa coordinates 86-151) 40Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro
Pro Val Met Gly Ala 1 5 10
15 Pro Ile Ala Tyr Pro Pro Pro Pro Gly Ala Ala Tyr Pro Ala Gly Pro
20 25 30 Tyr Val
His Ala Pro Ala Ala Ala Leu Tyr Pro Pro Pro Pro Leu Pro 35
40 45 Pro Ala Pro Pro Ser Ser Gln
Gln Gly Ala Ala Ala Ala His Gln Gln 50 55
60 Gln Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu
Ala Thr Thr Asp 65 70 75
80 Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
85 90 95 Ala Asp Glu
Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe 100
105 110 Ser Arg Ala Cys Glu Met Phe Ile
Leu Glu Leu Thr His Arg Gly Trp 115 120
125 Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys
Ser Asp Ile 130 135 140
Ala Ala Ala Val Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile 145
150 155 160 Val Pro Arg Asp
Glu Ala Lys Asp Ala Asp Ser Ala Ala Met Gly Ala 165
170 175 Ala Gly Ile Pro His Pro Ala Ala Gly
Leu Pro Ala Ala Asp Pro Met 180 185
190 Gly Tyr Tyr Tyr Val Gln Pro Pro Gln 195
200 411256DNAZea maysG3552 41ttaagaacct agtaggcaga cccggccggc
gtagagaggg ggggaggtcg acgagacaga 60gagagaaggc caagaggctt cctctcccca
ttcctccctt ccgtgcccta gccgagccag 120ccgcgaggaa ggaggcatcc cgccgtctcg
cctggcgccc gcccgtcggc cgaccttctg 180ccgcagcttc caattctaaa aagatcatag
atttttgtgc aagagcgagt ggatatggaa 240ccatcccctc agcctatggg tgtcgctgcc
ggtgggtcac aagtgtatcc tgcctctgcc 300tatccgcctg cagcaacagt agctcctgct
tctgttgtat ctgctggttt acagtcaggg 360cagccattcc cagccaaccc tggtcatatg
agtgctcagc accagattgt ctaccaacaa 420gctcaacaat tccaccaaca gctccagcag
cagcaacagc agcagcttca gcagttctgg 480gtcgaacgca tgactgaaat tgaggcgacg
actgatttca agaaccacaa cttgccactt 540gcgaggataa agaagatcat gaaggccgat
gaagatgttc gcatgatctc agccgaagct 600cctgtggtct tcgcaaaagc ttgtgagata
ttcatactgg agctgacact taggtcgtgg 660atgcacactg aggagaacaa gcgccgcacc
ttgcaaaaga atgacattgc agcagcgatc 720actaggactg acatttatga cttcttggtc
gacattgttc ccagggatga gatgaaggag 780gacggaattg ggcttcctag ggctggtctg
ccacccatgg gagccccagc tgatgcatat 840ccatactact acatgccaca gcagcaggtg
cctggttctg gaatggttta tggtgcccag 900caagggcacc cagtgactta tttgtggcag
gagcctcagc aacagcagga gcaagctcct 960gaagagcagc aatctgcatg aaagtggctg
agaatattgc tcagaagcta tcacctgatt 1020cagagttctc attttaggtt gtccaaactg
caggttttct tagtaatatc gttggttatc 1080aaactgaaac aggcgattct aagtagggtg
tagcatcatg gtagtttcat ttctgcttgt 1140gatgttagtt gaaaggataa tgattagtgg
ctagtggatt aaagttacca taccatttcc 1200ttctattccg aaagtttgcc tccatgaggc
ctctgatatg acgaaaaaat aaaaaa 125642248PRTZea maysG3552 polypeptide
(domain in aa coordinates 100-165) 42Met Glu Pro Ser Pro Gln Pro Met
Gly Val Ala Ala Gly Gly Ser Gln 1 5 10
15 Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala Ala Thr Val
Ala Pro Ala 20 25 30
Ser Val Val Ser Ala Gly Leu Gln Ser Gly Gln Pro Phe Pro Ala Asn
35 40 45 Pro Gly His Met
Ser Ala Gln His Gln Ile Val Tyr Gln Gln Ala Gln 50
55 60 Gln Phe His Gln Gln Leu Gln Gln
Gln Gln Gln Gln Gln Leu Gln Gln 65 70
75 80 Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala Thr
Thr Asp Phe Lys 85 90
95 Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
100 105 110 Glu Asp Val
Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys 115
120 125 Ala Cys Glu Ile Phe Ile Leu Glu
Leu Thr Leu Arg Ser Trp Met His 130 135
140 Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
Ile Ala Ala 145 150 155
160 Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp Ile Val Pro
165 170 175 Arg Asp Glu Met
Lys Glu Asp Gly Ile Gly Leu Pro Arg Ala Gly Leu 180
185 190 Pro Pro Met Gly Ala Pro Ala Asp Ala
Tyr Pro Tyr Tyr Tyr Met Pro 195 200
205 Gln Gln Gln Val Pro Gly Ser Gly Met Val Tyr Gly Ala Gln
Gln Gly 210 215 220
His Pro Val Thr Tyr Leu Trp Gln Glu Pro Gln Gln Gln Gln Glu Gln 225
230 235 240 Ala Pro Glu Glu Gln
Gln Ser Ala 245 43748DNAArabidopsis
thalianaG483 43gagatagctt agcaatggag cagtcagaag agggtcaaca gcaacagcaa
cagggagtga 60tggattatgt acctcctcat gcttatcaga gtgggccagt aaatgcagct
tcccatatgg 120cattccaaca agctcaccac ttccaccacc accatcagca gcaacaacag
cagcagcttc 180agatgttctg ggctaaccaa atgcaagaga tcgagcatac cactgatttc
aagaaccaca 240cccttcccct agcccgcatc aagaagatca tgaaagctga tgaagatgtg
aggatgatct 300ctgcggaggc tcctgtgatt tttgccaagg cctgtgagat gttcattttg
gagctcactc 360tacgtgcttg gatccacacc gaggagaaca agaggaggac cttgcagaag
aacgacatcg 420ccgctgccat ttccaggacc gacgtgtttg atttccttgt ggacataatc
ccgagggacg 480agctgaaaga agaaggttta ggcgtgacca aagggaccat accatcggtg
gtgggttccc 540cgccatacta ttacttgcaa caacagggga tgatgcaaca ctggccccag
gagcaacacc 600ctgatgagtc ttaaaacttt tcccctttcg tttgtttggt tgtatcgtag
taaggtagct 660ctgctctgct gggaaccatt tctattgtgt tctgtaatga catgttagta
tatccccagt 720ctatatctat ggcaatgcag tttctgtt
74844199PRTArabidopsis thalianaG483 polypeptide (domain
in aa coordinates 77-142) 44Met Glu Gln Ser Glu Glu Gly Gln Gln Gln Gln
Gln Gln Gly Val Met 1 5 10
15 Asp Tyr Val Pro Pro His Ala Tyr Gln Ser Gly Pro Val Asn Ala Ala
20 25 30 Ser His
Met Ala Phe Gln Gln Ala His His Phe His His His His Gln 35
40 45 Gln Gln Gln Gln Gln Gln Leu
Gln Met Phe Trp Ala Asn Gln Met Gln 50 55
60 Glu Ile Glu His Thr Thr Asp Phe Lys Asn His Thr
Leu Pro Leu Ala 65 70 75
80 Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser
85 90 95 Ala Glu Ala
Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu 100
105 110 Glu Leu Thr Leu Arg Ala Trp Ile
His Thr Glu Glu Asn Lys Arg Arg 115 120
125 Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg
Thr Asp Val 130 135 140
Phe Asp Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu 145
150 155 160 Gly Leu Gly Val
Thr Lys Gly Thr Ile Pro Ser Val Val Gly Ser Pro 165
170 175 Pro Tyr Tyr Tyr Leu Gln Gln Gln Gly
Met Met Gln His Trp Pro Gln 180 185
190 Glu Gln His Pro Asp Glu Ser 195
451123DNAGlycine maxG3547 45acagcttttg ttctagcact tcgctgtctg aggttctgga
ttctcagtgt ttgcggagcg 60cagcatcatc ttttagggaa gaatggatca tcaagggcat
agccagaacc catctatggg 120ggttgttggt agtggagctc aattagcata tggttctaac
ccatatcagc caggccaaat 180aactgggcca ccggggtctg ttgtgacatc agttgggacc
attcaatcca ccggtcaacc 240tgctggagct cagcttggac agcatcaact tgcttatcag
catattcatc agcaacaaca 300gcaccagctt cagcaacagc tccaacaatt ttggtcaagc
cagtaccaag aaattgagaa 360ggttactgat tttaagaacc acagtcttcc cctggcaagg
atcaagaaga ttatgaaggc 420tgacgaggat gttaggatga tatcagctga agcaccagtc
atttttgcaa gggcatgtga 480aatgttcata ttagagttaa ccctgcgctc ttggaatcac
actgaagaga acaaaaggcg 540aacacttcag aaaaatgata ttgctgctgc tatcacaagg
actgacatct ttgatttctt 600ggttgacatt gtgcctcgtg aggacttgaa agatgaagtg
cttgcatcaa tcccaagagg 660aacaatgcct gttgcagggc ctgctgatgc ccttccatac
tgctacatgc cgcctcagca 720tccgtcccaa gttggagctg ctggtgtcat aatgggtaag
cctgtgatgg acccaaacat 780gtatgctcag cagtctcacc cttacatggc accacaaatg
tggccacagc caccagacca 840acgacagtcg tctccagaac attagctgat gtgtcgtgga
aattaagata accaggcact 900ggaatcagtt gtgaatgtca aactgaatgg ttgggaaggt
cgatactaca tagcgagcag 960aagctgtagc tgatagttta catgcaatgc agactataaa
catatgtaga taatgtgcta 1020gggaaaactt aaccttatct ttgatttagc tggaaaaaat
ggtatttttc attttaattc 1080acaggtcatc agatgataat atttatttac tggtgcatag
cag 112346260PRTGlycine maxG3547 polypeptide
(domain in aa coordinates 102-167) 46Met Asp His Gln Gly His Ser Gln Asn
Pro Ser Met Gly Val Val Gly 1 5 10
15 Ser Gly Ala Gln Leu Ala Tyr Gly Ser Asn Pro Tyr Gln Pro
Gly Gln 20 25 30
Ile Thr Gly Pro Pro Gly Ser Val Val Thr Ser Val Gly Thr Ile Gln
35 40 45 Ser Thr Gly Gln
Pro Ala Gly Ala Gln Leu Gly Gln His Gln Leu Ala 50
55 60 Tyr Gln His Ile His Gln Gln Gln
Gln His Gln Leu Gln Gln Gln Leu 65 70
75 80 Gln Gln Phe Trp Ser Ser Gln Tyr Gln Glu Ile Glu
Lys Val Thr Asp 85 90
95 Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
100 105 110 Ala Asp Glu
Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe 115
120 125 Ala Arg Ala Cys Glu Met Phe Ile
Leu Glu Leu Thr Leu Arg Ser Trp 130 135
140 Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys
Asn Asp Ile 145 150 155
160 Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile
165 170 175 Val Pro Arg Glu
Asp Leu Lys Asp Glu Val Leu Ala Ser Ile Pro Arg 180
185 190 Gly Thr Met Pro Val Ala Gly Pro Ala
Asp Ala Leu Pro Tyr Cys Tyr 195 200
205 Met Pro Pro Gln His Pro Ser Gln Val Gly Ala Ala Gly Val
Ile Met 210 215 220
Gly Lys Pro Val Met Asp Pro Asn Met Tyr Ala Gln Gln Ser His Pro 225
230 235 240 Tyr Met Ala Pro Gln
Met Trp Pro Gln Pro Pro Asp Gln Arg Gln Ser 245
250 255 Ser Pro Glu His 260
47925DNAArabidopsis thalianaG714 47ccacgcgtcc gcgtcaatct ttgagtttgg
tagagaaatg gatcaacaag gacaatcatc 60agctatgaac tatggttcaa acccatatca
aaccaacgcc atgaccacta caccaaccgg 120ttcagaccat ccagcttacc atcagatcca
ccagcaacaa caacaacagc tcactcaaca 180gcttcaatct ttctgggaga ctcaattcaa
agagattgag aaaaccactg atttcaagaa 240ccatagcctt ccattggcaa gaatcaagaa
aatcatgaaa gctgatgaag atgtgcgtat 300gatctcggcc gaggcgcctg ttgtgttcgc
cagggcctgc gagatgttta ttctggagct 360tacgttaagg tcttggaacc atactgagga
gaacaagaga aggacgttgc agaagaatga 420tatcgcggct gcggtgacta gaactgatat
ttttgatttt cttgtggata ttgttcctcg 480ggaggatctt cgtgatgaag tcttgggtgg
tgttggtgct gaagctgcta cagctgcggg 540ttatccgtat ggatacttgc ctcctggaac
agctccaatt gggaacccgg gaatggttat 600gggtaacccg ggcgcgtatc cgccgaaggc
gtatatgggt cagccaatgt ggcaacaacc 660aggacctgag cagcaggatc ctgacaatta
gcttggccta ataaactagc cgtctaattc 720gaagctctcc ccggtggatc tactcaagaa
gaagaatgtt aatagaaaac tattgcgaca 780taaaaagttt ggtgtagtag aataatttct
gttttatgat ccatggattt atcaattgtt 840attcagtttg gtttatcttg tcatcaaact
gttttcggtc aatgtaacaa attcataaat 900tgagaattga acttacaaaa ggcta
92548217PRTArabidopsis thalianaG714
polypeptide (domain in aa coordinates 71-136) 48Met Asp Gln Gln Gly
Gln Ser Ser Ala Met Asn Tyr Gly Ser Asn Pro 1 5
10 15 Tyr Gln Thr Asn Ala Met Thr Thr Thr Pro
Thr Gly Ser Asp His Pro 20 25
30 Ala Tyr His Gln Ile His Gln Gln Gln Gln Gln Gln Leu Thr Gln
Gln 35 40 45 Leu
Gln Ser Phe Trp Glu Thr Gln Phe Lys Glu Ile Glu Lys Thr Thr 50
55 60 Asp Phe Lys Asn His Ser
Leu Pro Leu Ala Arg Ile Lys Lys Ile Met 65 70
75 80 Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala
Glu Ala Pro Val Val 85 90
95 Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser
100 105 110 Trp Asn
His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp 115
120 125 Ile Ala Ala Ala Val Thr Arg
Thr Asp Ile Phe Asp Phe Leu Val Asp 130 135
140 Ile Val Pro Arg Glu Asp Leu Arg Asp Glu Val Leu
Gly Gly Val Gly 145 150 155
160 Ala Glu Ala Ala Thr Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Pro
165 170 175 Gly Thr Ala
Pro Ile Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly 180
185 190 Ala Tyr Pro Pro Lys Ala Tyr Met
Gly Gln Pro Met Trp Gln Gln Pro 195 200
205 Gly Pro Glu Gln Gln Asp Pro Asp Asn 210
215 49780DNAOryza sativaG3542 49atggaaccat cctcacagcc
tcagcctgtg atgggtgttg ccactggtgg gtcacaagca 60tatcctcctc ctgctgctgc
atatccacct caagccatgg ttcctggagc tcctgctgtt 120gttcctcctg gctcacagcc
atcagcacca ttccccacta atccagctca actcagtgct 180cagcaccagc tagtctacca
acaagcccag caatttcatc agcagctgca gcaacagcaa 240cagcagcaac tccgtgagtt
ctgggctaac caaatggaag agattgagca aacaaccgac 300ttcaagaacc acagcttgcc
actcgcaagg ataaagaaga taatgaaggc tgatgaggat 360gtccggatga tctcggcaga
agcccccgtt gtcttcgcaa aggcatgcga ggtattcata 420ttagagttaa cattgaggtc
gtggatgcac acggaggaga acaagcgccg gaccttgcag 480aagaatgaca ttgcagctgc
catcaccagg actgatatct atgacttctt ggtggacata 540gttcccaggg atgaaatgaa
agaagaaggg cttgggcttc cgagggttgg cctaccgcct 600aatgtggggg gcgcagcaga
cacatatcca tattactacg tgccagcgca gcaggggcct 660ggatcaggaa tgatgtacgg
tggacagcaa ggtcacccgg tgacgtatgt gtggcagcag 720cctcaagagc aacaggaaga
ggcccctgaa gagcagcact ctctgccaga aagtagctaa 78050259PRTOryza
sativaG3542 polypeptide (domain in aa coordinates 106-171) 50Met
Glu Pro Ser Ser Gln Pro Gln Pro Val Met Gly Val Ala Thr Gly 1
5 10 15 Gly Ser Gln Ala Tyr Pro
Pro Pro Ala Ala Ala Tyr Pro Pro Gln Ala 20
25 30 Met Val Pro Gly Ala Pro Ala Val Val Pro
Pro Gly Ser Gln Pro Ser 35 40
45 Ala Pro Phe Pro Thr Asn Pro Ala Gln Leu Ser Ala Gln His
Gln Leu 50 55 60
Val Tyr Gln Gln Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln 65
70 75 80 Gln Gln Gln Leu Arg
Glu Phe Trp Ala Asn Gln Met Glu Glu Ile Glu 85
90 95 Gln Thr Thr Asp Phe Lys Asn His Ser Leu
Pro Leu Ala Arg Ile Lys 100 105
110 Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu
Ala 115 120 125 Pro
Val Val Phe Ala Lys Ala Cys Glu Val Phe Ile Leu Glu Leu Thr 130
135 140 Leu Arg Ser Trp Met His
Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln 145 150
155 160 Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr
Asp Ile Tyr Asp Phe 165 170
175 Leu Val Asp Ile Val Pro Arg Asp Glu Met Lys Glu Glu Gly Leu Gly
180 185 190 Leu Pro
Arg Val Gly Leu Pro Pro Asn Val Gly Gly Ala Ala Asp Thr 195
200 205 Tyr Pro Tyr Tyr Tyr Val Pro
Ala Gln Gln Gly Pro Gly Ser Gly Met 210 215
220 Met Tyr Gly Gly Gln Gln Gly His Pro Val Thr Tyr
Val Trp Gln Gln 225 230 235
240 Pro Gln Glu Gln Gln Glu Glu Ala Pro Glu Glu Gln His Ser Leu Pro
245 250 255 Glu Ser Ser
51927DNAArabidopsis thalianaG489 51gaattcggca cgagacccac caagaggatc
aaccagtctc ttccccttca gattctcctt 60tccacagtaa tggatcaaca agaccatgga
cagtctggag ctatgaacta tggcacaaac 120ccataccaaa ccaacccgat gagcaccact
gctgctactg tagcaggagg tgcggcacaa 180ccaggccagc tggcgttcca ccagatccat
cagcagcagc agcagcaaca gctggcacag 240cagcttcaag cattttggga gaaccaattc
aaagagattg agaagactac cgatttcaag 300aagcacagcc ttccccttgc gagaatcaag
aaaatcatga aagcggatga agatgtccgt 360atgatctcgg ctgaggcgcc tgtcgtgttt
gcaagggcct gtgagatgtt catcctggag 420ctgacactca ggtcgtggaa ccacactgag
gagaataaga ggcggacgtt gcagaagaac 480gatattgctg ctgctgtgac tagaaccgat
atttttgatt tccttgtgga tattgttccc 540cgggaggatc tccgagatga agtcttggga
agtattccga ggggcactgt cccggaagct 600gctgctgctg gttacccgta tggatacttg
cctgcaggaa ctgctccaat aggaaatccg 660ggaatggtta tgggtaatcc cggtggtgcg
tatccaccta atccttatat gggtcaacca 720atgtggcaac aacaggcacc tgaccaacct
gaccaggaaa attagcaaga aactgtgagt 780cttcccgctt cttttaggcc taccttgtag
tcttggggtt ttgtttctgt tttcgaataa 840tggtaacctt tgtataactt atttcagtat
cgtctcagtt tggtactatg tcagttttgg 900taaaaaaaaa aaaaaaaaaa aaaaaaa
92752231PRTArabidopsis thalianaG489
polypeptide (domain in aa coordinates 81-146) 52Met Asp Gln Gln Asp
His Gly Gln Ser Gly Ala Met Asn Tyr Gly Thr 1 5
10 15 Asn Pro Tyr Gln Thr Asn Pro Met Ser Thr
Thr Ala Ala Thr Val Ala 20 25
30 Gly Gly Ala Ala Gln Pro Gly Gln Leu Ala Phe His Gln Ile His
Gln 35 40 45 Gln
Gln Gln Gln Gln Gln Leu Ala Gln Gln Leu Gln Ala Phe Trp Glu 50
55 60 Asn Gln Phe Lys Glu Ile
Glu Lys Thr Thr Asp Phe Lys Lys His Ser 65 70
75 80 Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
Ala Asp Glu Asp Val 85 90
95 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu
100 105 110 Met Phe
Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu 115
120 125 Asn Lys Arg Arg Thr Leu Gln
Lys Asn Asp Ile Ala Ala Ala Val Thr 130 135
140 Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val
Pro Arg Glu Asp 145 150 155
160 Leu Arg Asp Glu Val Leu Gly Ser Ile Pro Arg Gly Thr Val Pro Glu
165 170 175 Ala Ala Ala
Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Ala Gly Thr Ala 180
185 190 Pro Ile Gly Asn Pro Gly Met Val
Met Gly Asn Pro Gly Gly Ala Tyr 195 200
205 Pro Pro Asn Pro Tyr Met Gly Gln Pro Met Trp Gln Gln
Gln Ala Pro 210 215 220
Asp Gln Pro Asp Gln Glu Asn 225 230 53753DNAOryza
sativaG3544 53atggagccat catcacaacc tcagccggca attggtgttg ttgctggtgg
atcacaagtg 60taccctgcat accggcctgc agcaacagtg cctacagctc ctgctgtcat
tcctgccggt 120tcacagccag caccgtcgtt ccctgccaac cctgatcaac tgagtgctca
gcaccagctc 180gtctatcagc aagcccagca atttcaccag cagcttcagc agcagcaaca
gcgtcaactc 240cagcagtttt gggctgaacg tctggtcgat attgaacaaa ctactgactt
caagaaccac 300agcttgccac ttgctaggat aaagaagatc atgaaggcag atgaggacgt
tcgcatgatc 360tccgcagagg ctcctgtgat ctttgcgaaa gcatgtgaga tattcatact
ggagctgacc 420ctgagatcat ggatgcacac ggaggagaac aagcgccgta ccttgcagaa
gaatgacata 480gcagctgcca tcaccaggac ggatatgtac gatttcttgg tagatatagt
tcccagggat 540gacttgaagg aggagggagt tgggctccct agggctggat tgccgccctt
gggtgtccct 600gctgactcat atccgtatgg ctactatgtg ccacagcagc aggtcccagg
tgcaggaata 660gcgtatggtg gtcagcaagg tcatccgggg tatctgtggc aggatcctca
ggaacagcag 720gaagagcctc ctgcagagca gcaaagtgat taa
75354250PRTOryza sativaG3544 polypeptide (domain in aa
coordinates 102-167) 54Met Glu Pro Ser Ser Gln Pro Gln Pro Ala Ile Gly
Val Val Ala Gly 1 5 10
15 Gly Ser Gln Val Tyr Pro Ala Tyr Arg Pro Ala Ala Thr Val Pro Thr
20 25 30 Ala Pro Ala
Val Ile Pro Ala Gly Ser Gln Pro Ala Pro Ser Phe Pro 35
40 45 Ala Asn Pro Asp Gln Leu Ser Ala
Gln His Gln Leu Val Tyr Gln Gln 50 55
60 Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln
Arg Gln Leu 65 70 75
80 Gln Gln Phe Trp Ala Glu Arg Leu Val Asp Ile Glu Gln Thr Thr Asp
85 90 95 Phe Lys Asn His
Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 100
105 110 Ala Asp Glu Asp Val Arg Met Ile Ser
Ala Glu Ala Pro Val Ile Phe 115 120
125 Ala Lys Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg
Ser Trp 130 135 140
Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile 145
150 155 160 Ala Ala Ala Ile Thr
Arg Thr Asp Met Tyr Asp Phe Leu Val Asp Ile 165
170 175 Val Pro Arg Asp Asp Leu Lys Glu Glu Gly
Val Gly Leu Pro Arg Ala 180 185
190 Gly Leu Pro Pro Leu Gly Val Pro Ala Asp Ser Tyr Pro Tyr Gly
Tyr 195 200 205 Tyr
Val Pro Gln Gln Gln Val Pro Gly Ala Gly Ile Ala Tyr Gly Gly 210
215 220 Gln Gln Gly His Pro Gly
Tyr Leu Trp Gln Asp Pro Gln Glu Gln Gln 225 230
235 240 Glu Glu Pro Pro Ala Glu Gln Gln Ser Asp
245 250 551126DNAGlycine maxG3550
55cttgcgccca atttccatgg aactgtaaag agaggatagt tagaagatta aatcttaaag
60cagtaagtca tcatggataa atcagagcag actcaacagc agcagcagca acaacagcat
120gtgatgggag ttgccgcagg ggctagccaa atggcctatt cttctcacta cccgactgct
180tccatggtgg cttctggcac gcccgctgta actgctcctt ccccaactca ggctccagct
240gccttctcta gttctgctca ccagcttgca taccagcaag cacagcattt ccaccaccaa
300cagcagcaac accaacaaca gcagcttcaa atgttctggt caaaccaaat gcaagaaatt
360gagcaaacaa ttgactttaa aaaccatagc cttcctcttg ctcggataaa aaagataatg
420aaagctgatg aagatgtccg gatgatttca gcagaagctc cggtcatatt tgcaaaagct
480tgtgaaatgt tcatattaga gttgacgttg cgatcttgga tccacacaga agagaacaag
540aggagaactc tacaaaagaa tgatatagca gctgctattt cgagaaacga tgtttttgat
600ttcttggttg atattattcc aagagatgag ttgaaagagg aaggacttgg aataaccaag
660gctactattc cgttagtggg ttctccagct gatatgccat attactatgt ccctccacag
720catcctgttg taggaccacc tgggatgatc atgggcaagc ccattggcgc tgagcaagca
780acactatatt ctacacagca gcctcgacct cctgtggcgt tcatgccatg gcctcataca
840caacccctgc aacagcagcc accccaacat caacaaacag actcatgatg actatgcaat
900tcaattaggt tggaaagtag cctgcacctt ttgattatta caaatttact taatgccttt
960cagccagctg tagtttagtg ttgtgcattg aaaaaaagca aaagattgtt ttgaggtttc
1020ttgcactcat ttatgattgt atgagctctt gtgatgagtt acttttggtt gtgtttacta
1080ttggtgtagt ggttaaatta tttggcagct gtccataacc agagag
112656271PRTGlycine maxG3550 polypeptide (domain in aa coordinates
107-172) 56Met Asp Lys Ser Glu Gln Thr Gln Gln Gln Gln Gln Gln Gln Gln
His 1 5 10 15 Val
Met Gly Val Ala Ala Gly Ala Ser Gln Met Ala Tyr Ser Ser His
20 25 30 Tyr Pro Thr Ala Ser
Met Val Ala Ser Gly Thr Pro Ala Val Thr Ala 35
40 45 Pro Ser Pro Thr Gln Ala Pro Ala Ala
Phe Ser Ser Ser Ala His Gln 50 55
60 Leu Ala Tyr Gln Gln Ala Gln His Phe His His Gln Gln
Gln Gln His 65 70 75
80 Gln Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile
85 90 95 Glu Gln Thr Ile
Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile 100
105 110 Lys Lys Ile Met Lys Ala Asp Glu Asp
Val Arg Met Ile Ser Ala Glu 115 120
125 Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu
Glu Leu 130 135 140
Thr Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu 145
150 155 160 Gln Lys Asn Asp Ile
Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp 165
170 175 Phe Leu Val Asp Ile Ile Pro Arg Asp Glu
Leu Lys Glu Glu Gly Leu 180 185
190 Gly Ile Thr Lys Ala Thr Ile Pro Leu Val Gly Ser Pro Ala Asp
Met 195 200 205 Pro
Tyr Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly 210
215 220 Met Ile Met Gly Lys Pro
Ile Gly Ala Glu Gln Ala Thr Leu Tyr Ser 225 230
235 240 Thr Gln Gln Pro Arg Pro Pro Val Ala Phe Met
Pro Trp Pro His Thr 245 250
255 Gln Pro Leu Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265 270 571223DNAGlycine
maxG3548 57caaaccaaac ctctctttct cagtttctct ctcttagggt tttctcctcc
cccattgacc 60caccgtccat cgcaaaggaa gtcgcgccca atttccatgg actcagcagc
aacatcagca 120tgggatgggc gttgccacag gtgctagcca aatggcctat tcttctcact
acccgactgc 180tcccatggtg gcttctggca cgcctgctgt agctgttcct tccccaactc
aggctccagc 240tgccttctct agttctgctc accagcttgc ataccagcaa gcacagcatt
tccaccacca 300acagcagcaa caccaacaac agcagcttca aatgttctgg tcaaaccaaa
tgcaagaaat 360tgagcaaaca attgacttta aaaaccacag tcttcctctt gctcggataa
aaaagataat 420gaaagctgat gaagatgtcc ggatgatttc tgcagaagct ccagtcatat
ttgcaaaagc 480atgtgaaatg ttcatattag agttgacgtt gagatcttgg atccacacag
aagagaacaa 540gaggagaact ctacaaaaga atgatatagc agctgctatt tcgagaaacg
atgtttttga 600tttcttggtt gatattatcc caagagatga gttgaaagag gaaggacttg
gaataaccaa 660ggctactatt ccattggtga attctccagc tgatatgcca tattactatg
tccctccaca 720gcatcctgtt gtaggacctc ctgggatgat catgggcaag cccgttggtg
ctgagcaagc 780aacgctgtat tctacacagc agcctcgacc tcccatggcg ttcatgccat
ggccccatac 840acaaccccag caacagcagc caccccaaca tcaacaaaca gactcatgat
gaccatgcaa 900ttcaattagg tcggaaagta gcatgcacct tatgattatt acaaatttac
ttaatgcctt 960taagtcagct gtagtttagt gttttgcatt gaaaaatgcc aaagattgtt
tgaggtttct 1020tgcactcatt tatgattgta tgagctctta tgctgagtta cttttggttg
tgtttatttg 1080aggtactggt gtggtagtta aattagtttg tagctgtcca taagtaaaca
gcgtagctgc 1140ttaattagga ggtctgaaat gatgaaatag tttgtattgt tattgcagaa
ggtaggtttt 1200attcagtatt tcattctact gca
122358254PRTGlycine maxG3548 polypeptide (domain in aa
coordinates 90-155) 58Met Gly Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser
Ser His Tyr 1 5 10 15
Pro Thr Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro
20 25 30 Ser Pro Thr Gln
Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu 35
40 45 Ala Tyr Gln Gln Ala Gln His Phe His
His Gln Gln Gln Gln His Gln 50 55
60 Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln
Glu Ile Glu 65 70 75
80 Gln Thr Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys
85 90 95 Lys Ile Met Lys
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala 100
105 110 Pro Val Ile Phe Ala Lys Ala Cys Glu
Met Phe Ile Leu Glu Leu Thr 115 120
125 Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr
Leu Gln 130 135 140
Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe 145
150 155 160 Leu Val Asp Ile Ile
Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly 165
170 175 Ile Thr Lys Ala Thr Ile Pro Leu Val Asn
Ser Pro Ala Asp Met Pro 180 185
190 Tyr Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly
Met 195 200 205 Ile
Met Gly Lys Pro Val Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr 210
215 220 Gln Gln Pro Arg Pro Pro
Met Ala Phe Met Pro Trp Pro His Thr Gln 225 230
235 240 Pro Gln Gln Gln Gln Pro Pro Gln His Gln Gln
Thr Asp Ser 245 250
59705DNAArabidopsis thalianaG715 59atggatacca acaaccagca accacctccc
tccgccgccg gaatccctcc tccaccacct 60ggaaccacca tctccgccgc aggaggagga
gcttcttacc accaccttct ccaacaacaa 120caacaacagc tccaactatt ctggacctac
caacgccaag agatcgaaca agttaacgat 180ttcaaaaacc atcagcttcc actagctagg
ataaaaaaga tcatgaaagc cgatgaagat 240gttcgtatga tctccgcaga agcaccgatt
ctcttcgcga aagcttgtga gcttttcatt 300ctcgagctca cgatcagatc ttggcttcac
gctgaggaga ataaacgtcg tacgcttcag 360aaaaacgata tcgctgctgc gattactagg
actgatatct tcgatttcct tgttgatatt 420gttcctagag atgagattaa ggacgaagcc
gcagtcctcg gtggtggaat ggtggtggct 480cctaccgcga gcggcgtgcc ttactattat
ccgccgatgg gacaaccagc tggtcctgga 540gggatgatga ttgggagacc agctatggat
ccgaatggtg tttatgtcca gcctccgtct 600caggcgtggc agagtgtttg gcagacttcg
acggggacgg gagatgatgt ctcttatggt 660agtggtggaa gttccggtca agggaatctc
gacggccaag gttaa 70560234PRTArabidopsis thalianaG715
polypeptide (domain in aa coordinates 66-131) 60Met Asp Thr Asn Asn
Gln Gln Pro Pro Pro Ser Ala Ala Gly Ile Pro 1 5
10 15 Pro Pro Pro Pro Gly Thr Thr Ile Ser Ala
Ala Gly Gly Gly Ala Ser 20 25
30 Tyr His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Leu Phe
Trp 35 40 45 Thr
Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His 50
55 60 Gln Leu Pro Leu Ala Arg
Ile Lys Lys Ile Met Lys Ala Asp Glu Asp 65 70
75 80 Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu
Phe Ala Lys Ala Cys 85 90
95 Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu
100 105 110 Glu Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile 115
120 125 Thr Arg Thr Asp Ile Phe Asp
Phe Leu Val Asp Ile Val Pro Arg Asp 130 135
140 Glu Ile Lys Asp Glu Ala Ala Val Leu Gly Gly Gly
Met Val Val Ala 145 150 155
160 Pro Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro
165 170 175 Ala Gly Pro
Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro Asn 180
185 190 Gly Val Tyr Val Gln Pro Pro Ser
Gln Ala Trp Gln Ser Val Trp Gln 195 200
205 Thr Ser Thr Gly Thr Gly Asp Asp Val Ser Tyr Gly Ser
Gly Gly Ser 210 215 220
Ser Gly Gln Gly Asn Leu Asp Gly Gln Gly 225 230
61711DNAGlycine maxG3886 61atggagacca acaaccagca acaacaacaa
caaggagctc aagcccaatc gggaccctac 60cccgtcgccg gcgccggcgg cagtgcaggt
gcaggtgcag gcgctcctcc ccctttccag 120caccttctcc agcagcagca gcagcagctc
cagatgttct ggtcttacca gcgtcaagaa 180atcgagcacg tgaacgactt taagaatcac
cagctccctc ttgcccgcat caagaagatc 240atgaaggccg acgaggatgt ccgcatgatc
tccgccgagg cccccatcct cttcgccaag 300gcctgcgagc tcttcatcct cgagctcacc
atccgctcct ggctccacgc cgaggagaac 360aagcgccgca ccctccagaa gaacgacatc
gccgccgcca tcacccgcac cgacattttc 420gacttcctcg ttgatattgt cccccgcgac
gagatcaagg acgacgctgc tcttgtgggg 480gccaccgcca gtggggtgcc ttactactac
ccgcccattg gacagcctgc cgggatgatg 540attggccgcc ccgccgtcga tcccgccacc
ggggtttatg tccagccgcc ctcccaggca 600tggcagtccg tctggcagtc cgctgccgag
gacgcttcct atggcaccgg ccccgccggt 660gcccagcgga gccttgatgg ccagagctag
ctcgagcctg caggaagggc g 71162229PRTGlycine maxG3886
polypeptide (domain in aa coordinates 72-137) 62Met Glu Thr Asn Asn
Gln Gln Gln Gln Gln Gln Gly Ala Gln Ala Gln 1 5
10 15 Ser Gly Pro Tyr Pro Val Ala Gly Ala Gly
Gly Ser Ala Gly Ala Gly 20 25
30 Ala Gly Ala Pro Pro Pro Phe Gln His Leu Leu Gln Gln Gln Gln
Gln 35 40 45 Gln
Leu Gln Met Phe Trp Ser Tyr Gln Arg Gln Glu Ile Glu His Val 50
55 60 Asn Asp Phe Lys Asn His
Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile 65 70
75 80 Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser
Ala Glu Ala Pro Ile 85 90
95 Leu Phe Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg
100 105 110 Ser Trp
Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn 115
120 125 Asp Ile Ala Ala Ala Ile Thr
Arg Thr Asp Ile Phe Asp Phe Leu Val 130 135
140 Asp Ile Val Pro Arg Asp Glu Ile Lys Asp Asp Ala
Ala Leu Val Gly 145 150 155
160 Ala Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Ile Gly Gln Pro
165 170 175 Ala Gly Met
Met Ile Gly Arg Pro Ala Val Asp Pro Ala Thr Gly Val 180
185 190 Tyr Val Gln Pro Pro Ser Gln Ala
Trp Gln Ser Val Trp Gln Ser Ala 195 200
205 Ala Glu Asp Ala Ser Tyr Gly Thr Gly Pro Ala Gly Ala
Gln Arg Ser 210 215 220
Leu Asp Gly Gln Ser 225 63760DNAZea maysG3889
63cccagcagca acgtaatcca aatccatgga caaccagccg ctgccctact ccacaggcca
60gccccctgcc cccggaggag ccccggtggc gggcatgcct ggcgcggccg gcctcccacc
120cgtgccgcac caccacctgc tccagcagca ggcccagctg caggcgttct gggcgtacca
180gcgccaggag gcggagcgcg cgtccgcgtc ggacttcaag aaccaccagc tgcctctggc
240ccggatcaag aagatcatga aggccgacga ggacgtgcgc atgatctccg ccgaggcgcc
300cgtgctgttc gccaaggcct gcgagctctt catcctcgag ctcactatcc gctcctggct
360ccacgccgag gagaacaagc gccgcaccct gcagcgcaac gacgtcgccg cggccatcgc
420gcgcaccgac gtcttcgatt tcctcgtcga catcgtgccc cgcgaggagg ccaaggagga
480gcccggcagc gccctcggct tcgcggcgcc tgggaccggc gtcgtcgggg ctggcgcccc
540gggcggggcg ccagccgccg ggatgcccta ctactatccg ccgatggggc agccggcgcc
600gatgatgccg gcctggcatg ttccggcctg ggacccggcc tggcagcaag gggcagcgga
660tgtcgatcag agcggcagct tcagcgagga aggacaaggg tttggagcag gccatggcgg
720cgccgctagc ttccctcctg cgcctccgac ctccgagtga
76064244PRTZea maysG3889 polypeptide (domain in aa coordinates
69-134) 64Met Asp Asn Gln Pro Leu Pro Tyr Ser Thr Gly Gln Pro Pro Ala Pro
1 5 10 15 Gly Gly
Ala Pro Val Ala Gly Met Pro Gly Ala Ala Gly Leu Pro Pro 20
25 30 Val Pro His His His Leu Leu
Gln Gln Gln Ala Gln Leu Gln Ala Phe 35 40
45 Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser
Ala Ser Asp Phe 50 55 60
Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala 65
70 75 80 Asp Glu Asp
Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala 85
90 95 Lys Ala Cys Glu Leu Phe Ile Leu
Glu Leu Thr Ile Arg Ser Trp Leu 100 105
110 His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn
Asp Val Ala 115 120 125
Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile Val 130
135 140 Pro Arg Glu Glu
Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe Ala 145 150
155 160 Ala Pro Gly Thr Gly Val Val Gly Ala
Gly Ala Pro Gly Gly Ala Pro 165 170
175 Ala Ala Gly Met Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro
Ala Pro 180 185 190
Met Met Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln Gln
195 200 205 Gly Ala Ala Asp
Val Asp Gln Ser Gly Ser Phe Ser Glu Glu Gly Gln 210
215 220 Gly Phe Gly Ala Gly His Gly Gly
Ala Ala Ser Phe Pro Pro Ala Pro 225 230
235 240 Pro Thr Ser Glu 65800DNAArabidopsis thalianaG1646
65gatcttttga tccaatcaca aggcaaagat ccaatggaca ataacaacaa caacaacaac
60cagcaaccac caccaacctc cgtctatcca cctggctccg ccgtcacaac cgtaatccct
120cctccaccat ctggatctgc atcaatagtc accggaggag gagcgacata ccaccacctc
180ctccagcaac aacagcaaca gcttcaaatg ttctggacat accagagaca agagatcgaa
240caggtaaacg atttcaaaaa ccatcagctc cctctagctc gtatcaaaaa aatcatgaaa
300gctgatgaag atgtgcgtat gatctccgcc gaagcaccga ttctcttcgc gaaagcttgt
360gagcttttca ttctcgaact tacgattaga tcttggcttc acgctgaaga gaacaaacgt
420cgtacgcttc agaaaaacga tatcgctgct gcgattacta gaaccgatat cttcgatttc
480cttgttgata ttgttcctag ggaagagatc aaggaagagg aagatgcagc atcggctctt
540ggtggaggag gtatggttgc tcccgccgcg agcggtgttc cttattatta tccaccgatg
600ggacaaccgg cggttcctgg agggatgatg attggaagac cggcgatgga tcctagcggt
660gtttatgctc agcctccttc tcaggcatgg caaagcgttt ggcagaattc agctggtggt
720ggtgatgatg tgtcttatgg aagtggagga agtagcggcc atggtaatct cgatagccaa
780gggtaagtga attctagtag
80066250PRTArabidopsis thalianaG1646 polypeptide (domain in aa
coordinates 79-144) 66Met Asp Asn Asn Asn Asn Asn Asn Asn Gln Gln Pro Pro
Pro Thr Ser 1 5 10 15
Val Tyr Pro Pro Gly Ser Ala Val Thr Thr Val Ile Pro Pro Pro Pro
20 25 30 Ser Gly Ser Ala
Ser Ile Val Thr Gly Gly Gly Ala Thr Tyr His His 35
40 45 Leu Leu Gln Gln Gln Gln Gln Gln Leu
Gln Met Phe Trp Thr Tyr Gln 50 55
60 Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His
Gln Leu Pro 65 70 75
80 Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met
85 90 95 Ile Ser Ala Glu
Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu Leu Phe 100
105 110 Ile Leu Glu Leu Thr Ile Arg Ser Trp
Leu His Ala Glu Glu Asn Lys 115 120
125 Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr
Arg Thr 130 135 140
Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Glu Ile Lys 145
150 155 160 Glu Glu Glu Asp Ala
Ala Ser Ala Leu Gly Gly Gly Gly Met Val Ala 165
170 175 Pro Ala Ala Ser Gly Val Pro Tyr Tyr Tyr
Pro Pro Met Gly Gln Pro 180 185
190 Ala Val Pro Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro
Ser 195 200 205 Gly
Val Tyr Ala Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln 210
215 220 Asn Ser Ala Gly Gly Gly
Asp Asp Val Ser Tyr Gly Ser Gly Gly Ser 225 230
235 240 Ser Gly His Gly Asn Leu Asp Ser Gln Gly
245 250 67915DNAOryza sativaG3543
67atggacaacc agcagctacc ctacgccggt cagccggcgg ccgcaggcgc cggagccccg
60gtgccgggcg tgcctggcgc gggcgggccg ccggcggtgc cgcaccacca cctgctccag
120cagcagcagg cgcagctgca ggcgttctgg gcgtaccagc ggcaggaggc ggagcgcgcg
180tcggcgtcgg acttcaagaa ccaccagctg ccgctggcgg ggatcaagaa gatcatgaag
240gcggacgagg acgtgcgcat gatctcggcg gaggcgcccg tgctgttcgc caaggcgtgc
300gagctcttca tcctggagct caccatccgc tcgtggctgc acgccgagga gaacaagcgc
360cgcaccctgc agcgcaagga cgtcgccgcc gccatcgcgc gcaccgacgt gttcgacttc
420ctcgtcgaca tcgtgccgcg ggaggaggcc aaggaggagc ccggcagcgc gctcgggttc
480gcggcgggag ggcccgccgg cgccgttgga gcggccggcc ccgccgcggg gctgccgtac
540tactacccgc cgatggggca gccggcgccg atgatgccgg cgtggcatgt tccggcgtgg
600gacccggcgt ggcagcaagg agcagcgccg gatgtggacc agggcgccgc cggcagcttc
660agcgaggaag ggcagcaagg ttttgcaggc catggcggtg cggcagctag cttccctcct
720gcacctccaa gctccgaata gtgatgatcc atatggttcc atgcatgcat cgctgaggtg
780ctagctagct actatagctg ctcaaatcaa atgctcaatg tgtcggtaat taattaatgt
840ggtacgtatt aacttaaccg atgtacgtaa tggacgctca agctaattaa gggatgtaca
900atttactaaa aaaaa
91568246PRTOryza sativaG3543 polypeptide (domain in aa coordinates
70-135) 68Met Asp Asn Gln Gln Leu Pro Tyr Ala Gly Gln Pro Ala Ala Ala Gly
1 5 10 15 Ala Gly
Ala Pro Val Pro Gly Val Pro Gly Ala Gly Gly Pro Pro Ala 20
25 30 Val Pro His His His Leu Leu
Gln Gln Gln Gln Ala Gln Leu Gln Ala 35 40
45 Phe Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala
Ser Ala Ser Asp 50 55 60
Phe Lys Asn His Gln Leu Pro Leu Ala Gly Ile Lys Lys Ile Met Lys 65
70 75 80 Ala Asp Glu
Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe 85
90 95 Ala Lys Ala Cys Glu Leu Phe Ile
Leu Glu Leu Thr Ile Arg Ser Trp 100 105
110 Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg
Lys Asp Val 115 120 125
Ala Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile 130
135 140 Val Pro Arg Glu
Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe 145 150
155 160 Ala Ala Gly Gly Pro Ala Gly Ala Val
Gly Ala Ala Gly Pro Ala Ala 165 170
175 Gly Leu Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro
Met Met 180 185 190
Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln Gln Gly Ala
195 200 205 Ala Pro Asp Val
Asp Gln Gly Ala Ala Gly Ser Phe Ser Glu Glu Gly 210
215 220 Gln Gln Gly Phe Ala Gly His Gly
Gly Ala Ala Ala Ser Phe Pro Pro 225 230
235 240 Ala Pro Pro Ser Ser Glu 245
69732DNAArabidopsis thalianaG1820 69ctcacttcca acatccaaat ccctagaaat
tgtaaatggc tgagaacaac aacaacaacg 60gcgacaacat gaacaacgac aaccaccagc
aaccaccgtc gtactcgcag ctgccgccga 120tggcatcatc caaccctcag ttacgtaatt
actggattga gcagatggaa accgtctcgg 180atttcaaaaa ccgtcagctt ccattggctc
gaattaagaa gatcatgaag gctgatccag 240atgtgcacat ggtctccgca gaggctccga
tcatcttcgc aaaggcttgc gaaatgttca 300tcgttgatct cacgatgcgg tcgtggctca
aagccgagga gaacaaacgc cacacgcttc 360agaaatcgga tatctccaac gcagtggcta
gctctttcac ctacgatttc cttcttgatg 420ttgtccctaa ggacgagtct atcgccaccg
ctgatcctgg ctttgtggct atgccacatc 480ctgacggtgg aggagtaccg caatattatt
atccaccggg agtggtgatg ggaactccta 540tggttggtag tggaatgtac gcgccatcgc
aggcgtggcc agcagcggct ggtgacgggg 600aggatgatgc tgaggataat ggaggaaacg
gcggcggaaa ttgaagtgta gatttagggt 660ttgtaaccgc ctatgtggga aatttgaaat
ttggtggtgt ttattagggt tcttcaattc 720gtcggatttg ct
73270202PRTArabidopsis thalianaG1820
polypeptide (domain in aa coordinates 55-120) 70Met Ala Glu Asn Asn
Asn Asn Asn Gly Asp Asn Met Asn Asn Asp Asn 1 5
10 15 His Gln Gln Pro Pro Ser Tyr Ser Gln Leu
Pro Pro Met Ala Ser Ser 20 25
30 Asn Pro Gln Leu Arg Asn Tyr Trp Ile Glu Gln Met Glu Thr Val
Ser 35 40 45 Asp
Phe Lys Asn Arg Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met 50
55 60 Lys Ala Asp Pro Asp Val
His Met Val Ser Ala Glu Ala Pro Ile Ile 65 70
75 80 Phe Ala Lys Ala Cys Glu Met Phe Ile Val Asp
Leu Thr Met Arg Ser 85 90
95 Trp Leu Lys Ala Glu Glu Asn Lys Arg His Thr Leu Gln Lys Ser Asp
100 105 110 Ile Ser
Asn Ala Val Ala Ser Ser Phe Thr Tyr Asp Phe Leu Leu Asp 115
120 125 Val Val Pro Lys Asp Glu Ser
Ile Ala Thr Ala Asp Pro Gly Phe Val 130 135
140 Ala Met Pro His Pro Asp Gly Gly Gly Val Pro Gln
Tyr Tyr Tyr Pro 145 150 155
160 Pro Gly Val Val Met Gly Thr Pro Met Val Gly Ser Gly Met Tyr Ala
165 170 175 Pro Ser Gln
Ala Trp Pro Ala Ala Ala Gly Asp Gly Glu Asp Asp Ala 180
185 190 Glu Asp Asn Gly Gly Asn Gly Gly
Gly Asn 195 200 71668DNAArabidopsis
thalianaG1836 71ataacaagcc tagaacacta gaaacttcaa aaaagaaaaa aatcttatgg
agaacaacaa 60cggcaacaac cagctgccac cgaaaggtaa cgagcaactg aagagtttct
ggtcaaaaga 120gatggaaggt aacttagatt tcaaaaatca cgaccttcct ataactcgta
tcaagaagat 180tatgaagtat gatccggatg tgactatgat agctagtgag gctccaatcc
tcctctcgaa 240agcatgtgag atgtttatca tggatctcac gatgcgttcg tggctccatg
ctcaggaaag 300caaacgagtc acgctacaga aatctaatgt cgatgccgca gtggctcaaa
ctgttatctt 360tgatttcttg cttgatgatg acattgaggt aaagagagag tctgttgccg
ccgctgctga 420tcctgtggcc atgccaccta ttgacgatgg agagctgcct ccaggaatgg
taattggaac 480tcctgtttgt tgtagtcttg gaatccacca accacaacca caaatgcagg
catggcctgg 540agcttggacc tcggtgtctg gtgaggagga agaagcgcgt gggaaaaaag
gaggtgacga 600cggaaactaa taagtggaat acgttttagg gtattttcaa gggaatatgt
agtaaatagt 660catggatc
66872187PRTArabidopsis thalianaG1836 polypeptide
(domain in aa coordinates 37-102) 72Met Glu Asn Asn Asn Gly Asn Asn Gln
Leu Pro Pro Lys Gly Asn Glu 1 5 10
15 Gln Leu Lys Ser Phe Trp Ser Lys Glu Met Glu Gly Asn Leu
Asp Phe 20 25 30
Lys Asn His Asp Leu Pro Ile Thr Arg Ile Lys Lys Ile Met Lys Tyr
35 40 45 Asp Pro Asp Val
Thr Met Ile Ala Ser Glu Ala Pro Ile Leu Leu Ser 50
55 60 Lys Ala Cys Glu Met Phe Ile Met
Asp Leu Thr Met Arg Ser Trp Leu 65 70
75 80 His Ala Gln Glu Ser Lys Arg Val Thr Leu Gln Lys
Ser Asn Val Asp 85 90
95 Ala Ala Val Ala Gln Thr Val Ile Phe Asp Phe Leu Leu Asp Asp Asp
100 105 110 Ile Glu Val
Lys Arg Glu Ser Val Ala Ala Ala Ala Asp Pro Val Ala 115
120 125 Met Pro Pro Ile Asp Asp Gly Glu
Leu Pro Pro Gly Met Val Ile Gly 130 135
140 Thr Pro Val Cys Cys Ser Leu Gly Ile His Gln Pro Gln
Pro Gln Met 145 150 155
160 Gln Ala Trp Pro Gly Ala Trp Thr Ser Val Ser Gly Glu Glu Glu Glu
165 170 175 Ala Arg Gly Lys
Lys Gly Gly Asp Asp Gly Asn 180 185
73639DNAArabidopsis thalianaG1819 73atggaagaga acaacggcaa caacaaccac
tacctgccgc aaccatcgtc ttcccaactg 60ccgccgccac cattgtatta tcaatcaatg
ccgttgccgt catattcact gccgctgccg 120tactcaccgc agatgcggaa ttattggatt
gcgcagatgg gaaacgcaac tgatgttaag 180catcatgcgt ttccactaac caggataaag
aaaatcatga agtccaaccc ggaagtgaac 240atggtcactg cagaggctcc ggtccttata
tcgaaggcct gtgagatgct cattcttgat 300ctcacaatgc gatcgtggct tcataccgtg
gagggcggtc gccaaactct caagagatcc 360gatacgctca cgagatccga tatctccgcc
gcaacgactc gtagtttcaa atttaccttc 420cttggcgacg ttgtcccaag agacccttcc
gtcgttaccg atgatcccgt gctacatccg 480gacggtgaag tacttcctcc gggaacggtg
ataggatatc cggtgtttga ttgtaatggt 540gtgtacgcgt caccgccaca gatgcaggag
tggccggcgg tgcctggtga cggagaggag 600gcagctgggg aaattggagg aagcagcggc
ggtaattga 63974212PRTArabidopsis thalianaG1819
polypeptide (domain in aa coordinates 64-135) 74Met Glu Glu Asn Asn
Gly Asn Asn Asn His Tyr Leu Pro Gln Pro Ser 1 5
10 15 Ser Ser Gln Leu Pro Pro Pro Pro Leu Tyr
Tyr Gln Ser Met Pro Leu 20 25
30 Pro Ser Tyr Ser Leu Pro Leu Pro Tyr Ser Pro Gln Met Arg Asn
Tyr 35 40 45 Trp
Ile Ala Gln Met Gly Asn Ala Thr Asp Val Lys His His Ala Phe 50
55 60 Pro Leu Thr Arg Ile Lys
Lys Ile Met Lys Ser Asn Pro Glu Val Asn 65 70
75 80 Met Val Thr Ala Glu Ala Pro Val Leu Ile Ser
Lys Ala Cys Glu Met 85 90
95 Leu Ile Leu Asp Leu Thr Met Arg Ser Trp Leu His Thr Val Glu Gly
100 105 110 Gly Arg
Gln Thr Leu Lys Arg Ser Asp Thr Leu Thr Arg Ser Asp Ile 115
120 125 Ser Ala Ala Thr Thr Arg Ser
Phe Lys Phe Thr Phe Leu Gly Asp Val 130 135
140 Val Pro Arg Asp Pro Ser Val Val Thr Asp Asp Pro
Val Leu His Pro 145 150 155
160 Asp Gly Glu Val Leu Pro Pro Gly Thr Val Ile Gly Tyr Pro Val Phe
165 170 175 Asp Cys Asn
Gly Val Tyr Ala Ser Pro Pro Gln Met Gln Glu Trp Pro 180
185 190 Ala Val Pro Gly Asp Gly Glu Glu
Ala Ala Gly Glu Ile Gly Gly Ser 195 200
205 Ser Gly Gly Asn 210
751740DNAArabidopsis thalianaG1818 75taacaaatca aataattaga gaaataacca
aaatttaact tttagaggga ctacaggatt 60tgtactttgt acattcatat attattgtta
tatatcgttt catacattaa tttgaaccaa 120tgtaaattaa gtaaaattca atttaacatc
atgagcaaat tcttattaaa attctcttaa 180aattttgagc aaattatgct ttcacattta
acatttgaaa acatcatttt taacaagata 240ttcaaaacta agttttgtac agcaaaattt
taactttcaa ttttatagag aaaaaggtat 300tttttttttt gtttcatttt tataagacta
ttatttggta tataatatac actttaagta 360aaaacaaatc tctttctttt ttcttcttat
aataccaacc acaagtctgt cagtcacaca 420catacagtta ataacattaa atattcttaa
caaactacta aataggttga gattcatata 480tgtaaagaga tcacttctta atcttatcct
accatatctt atatacgctt aattttcctt 540tatatatgca aacctccaca taaaaatatc
tcaaacccaa acacttcaaa caaaaaaaaa 600atggagaaca acaacaacaa ccaccaacag
ccaccgaaag ataacgagca actaaagagt 660ttctggtcaa aggggatgga aggtgacttg
aatgtcaaga atcacgagtt ccccatctct 720cgtatcaaga ggataatgaa gtttgatccg
gatgtgagta tgatcgctgc tgaggctcca 780aatctcttat ctaaggcttg tgaaatgttt
gtcatggacc tcacgatgcg ttcatggctc 840catgctcaag agagcaaccg actcacgata
cggaaatctg atgttgatgc cgtagtgtct 900caaaccgtca tctttgattt cttgcgtgat
gatgtcccta aggacgaggg agagcccgtt 960gtcgccgctg ctgatcctgt ggacgatgtt
gctgatcatg tggctgtgcc agatcttaac 1020aatgaagaac tgccgccggg aacggtgata
ggaactccgg tttgttacgg tttaggaata 1080cacgcgccac acccgcagat gcctggagct
tggaccgagg aggatgcgac tggggcaaat 1140ggaggaaacg gtgggaatta atatttggat
tgggttttgt aaccgctgtt gtgagaactt 1200gaatttcttt ttgagttctg cttatgtttt
caatgttatg ttttttagtt gttgaatgta 1260tttctgttgt tttgtccaaa aaaaaaaaag
aatgtatttc tgttgttgtc tttcaaatga 1320atctaatggt ttatgaatat tggctttaga
ttaatttatg catacaaaaa cacaaggatt 1380acggataaaa aagtcctcag tttacccatg
gaaacataat cttctagtga ttccttatga 1440gagtagaaaa gaatcatata ttataatcta
tttcataaga gatagggtac tgtaaacaag 1500gatgtttatt cggctatttc tttttttttt
aatcactttt acttgtcaag actcttttgt 1560gtttgcagct ttttgttaga ttacattcta
gaggcaacaa gatccagaga tctagcaaaa 1620aaaacttatt ttgaaacctg aatctatttt
aaaaattttc caactcattt ttcgttctta 1680ttctttgttt tccaacggaa tttggcgcac
aaacgattta tttgaatttt gtctttcaag 174076186PRTArabidopsis thalianaG1818
polypeptide (domain in aa coordinates 38-102) 76Met Glu Asn Asn Asn
Asn Asn His Gln Gln Pro Pro Lys Asp Asn Glu 1 5
10 15 Gln Leu Lys Ser Phe Trp Ser Lys Gly Met
Glu Gly Asp Leu Asn Val 20 25
30 Lys Asn His Glu Phe Pro Ile Ser Arg Ile Lys Arg Ile Met Lys
Phe 35 40 45 Asp
Pro Asp Val Ser Met Ile Ala Ala Glu Ala Pro Asn Leu Leu Ser 50
55 60 Lys Ala Cys Glu Met Phe
Val Met Asp Leu Thr Met Arg Ser Trp Leu 65 70
75 80 His Ala Gln Glu Ser Asn Arg Leu Thr Ile Arg
Lys Ser Asp Val Asp 85 90
95 Ala Val Val Ser Gln Thr Val Ile Phe Asp Phe Leu Arg Asp Asp Val
100 105 110 Pro Lys
Asp Glu Gly Glu Pro Val Val Ala Ala Ala Asp Pro Val Asp 115
120 125 Asp Val Ala Asp His Val Ala
Val Pro Asp Leu Asn Asn Glu Glu Leu 130 135
140 Pro Pro Gly Thr Val Ile Gly Thr Pro Val Cys Tyr
Gly Leu Gly Ile 145 150 155
160 His Ala Pro His Pro Gln Met Pro Gly Ala Trp Thr Glu Glu Asp Ala
165 170 175 Thr Gly Ala
Asn Gly Gly Asn Gly Gly Asn 180 185
77588DNAArabidopsis thalianaG490 77atgaggaggc caaagtcatc tcacgtcagg
atggaacctg ttgcgcctcg ttcacataac 60acgatgccaa tgcttgatca atttcgatct
aatcatcctg aaacaagcaa gatcgagggg 120gtctcttcgt tggacacagc tctgaaggtg
ttttggaata atcaaaggga gcagctagga 180aactttgcag gccaaactca tttgccgcta
tctagggtca gaaagatttt gaaatctgat 240cctgaagtca agaagataag ctgtgatgtt
cctgctttgt tttcgaaagc ctgtgaatac 300ttcattctag aggtaacatt acgagcttgg
atgcatactc aatcatgcac tcgtgagacc 360atccggcgtt gtgatatctt ccaggccgta
aagaactcag gaacttatga tttcctgatt 420gatcgtgtcc cttttggacc gcactgtgtc
acccatcagg gtgtgcaacc tcctgctgaa 480atgattttgc cggatatgaa tgttccaatc
gatatggacc agattgagga ggagaatatg 540atggaagagc gctctgtcgg gtttgacctc
aactgtgatc tccagtga 58878195PRTArabidopsis thalianaG490
polypeptide (domain in aa coordinates 68-133) 78Met Arg Arg Pro Lys
Ser Ser His Val Arg Met Glu Pro Val Ala Pro 1 5
10 15 Arg Ser His Asn Thr Met Pro Met Leu Asp
Gln Phe Arg Ser Asn His 20 25
30 Pro Glu Thr Ser Lys Ile Glu Gly Val Ser Ser Leu Asp Thr Ala
Leu 35 40 45 Lys
Val Phe Trp Asn Asn Gln Arg Glu Gln Leu Gly Asn Phe Ala Gly 50
55 60 Gln Thr His Leu Pro Leu
Ser Arg Val Arg Lys Ile Leu Lys Ser Asp 65 70
75 80 Pro Glu Val Lys Lys Ile Ser Cys Asp Val Pro
Ala Leu Phe Ser Lys 85 90
95 Ala Cys Glu Tyr Phe Ile Leu Glu Val Thr Leu Arg Ala Trp Met His
100 105 110 Thr Gln
Ser Cys Thr Arg Glu Thr Ile Arg Arg Cys Asp Ile Phe Gln 115
120 125 Ala Val Lys Asn Ser Gly Thr
Tyr Asp Phe Leu Ile Asp Arg Val Pro 130 135
140 Phe Gly Pro His Cys Val Thr His Gln Gly Val Gln
Pro Pro Ala Glu 145 150 155
160 Met Ile Leu Pro Asp Met Asn Val Pro Ile Asp Met Asp Gln Ile Glu
165 170 175 Glu Glu Asn
Met Met Glu Glu Arg Ser Val Gly Phe Asp Leu Asn Cys 180
185 190 Asp Leu Gln 195
79882DNAArabidopsis thalianaG3074 79atgaggaaga agctcgatac tcggttccca
gctgctcgta ttaaaaagat tatgcaagct 60gatgaggatg ttggcaagat agctttggca
gtgcctgtct tagtctcaaa atctttggag 120ttgttcttgc aagacctttg tgatcgtaca
tatgaaatta cccttgaaag aggtgccaag 180actgtgagct cattgcacct aaaacattgt
gtggaaagat ataacgtgtt tgattttctg 240agggaagttg tgagtaaggt gcctgactat
ggccattccc aagggcaagg acatggtgat 300gttaccatgg atgatcgcag catctccaag
agaaggaagc ccatcagcga tgaagtgaat 360gacagtgacg aggaatataa gaaaagcaaa
acgcaagaga tagggagtgc taagaccagt 420ggcaggggtg gtagaggaag agggcgagga
agaggtcgtg gtggacgagc tgcaaaagca 480gccgaaagag agggtctcaa ccgcgagatg
gaagtagaag ccgccaattc tggacagcca 540ccaccagaag acaatgtcaa gatgcatgcg
tcagagtcat caccacaaga ggatgagaag 600aaaggcatcg acggcacagc agcatcgaac
gaagacacca agcaacacct tcaaagtccc 660aaagaaggca ttgactttga tctcaacgct
gaatccctcg acctaaacga gaccaaactg 720gcaccagcca caggcacaac cacaaccaca
actgcagcaa cagactctga ggagtattcg 780ggctggccta tgatggacat aagcaaaatg
gatccagcac agcttgctag tctgggtaag 840aggatagacg aggatgagga agattatgac
gaagaaggct aa 88280293PRTArabidopsis thalianaG3074
polypeptide (domain in aa coordinates 9-73) 80Met Arg Lys Lys Leu
Asp Thr Arg Phe Pro Ala Ala Arg Ile Lys Lys 1 5
10 15 Ile Met Gln Ala Asp Glu Asp Val Gly Lys
Ile Ala Leu Ala Val Pro 20 25
30 Val Leu Val Ser Lys Ser Leu Glu Leu Phe Leu Gln Asp Leu Cys
Asp 35 40 45 Arg
Thr Tyr Glu Ile Thr Leu Glu Arg Gly Ala Lys Thr Val Ser Ser 50
55 60 Leu His Leu Lys His Cys
Val Glu Arg Tyr Asn Val Phe Asp Phe Leu 65 70
75 80 Arg Glu Val Val Ser Lys Val Pro Asp Tyr Gly
His Ser Gln Gly Gln 85 90
95 Gly His Gly Asp Val Thr Met Asp Asp Arg Ser Ile Ser Lys Arg Arg
100 105 110 Lys Pro
Ile Ser Asp Glu Val Asn Asp Ser Asp Glu Glu Tyr Lys Lys 115
120 125 Ser Lys Thr Gln Glu Ile Gly
Ser Ala Lys Thr Ser Gly Arg Gly Gly 130 135
140 Arg Gly Arg Gly Arg Gly Arg Gly Arg Gly Gly Arg
Ala Ala Lys Ala 145 150 155
160 Ala Glu Arg Glu Gly Leu Asn Arg Glu Met Glu Val Glu Ala Ala Asn
165 170 175 Ser Gly Gln
Pro Pro Pro Glu Asp Asn Val Lys Met His Ala Ser Glu 180
185 190 Ser Ser Pro Gln Glu Asp Glu Lys
Lys Gly Ile Asp Gly Thr Ala Ala 195 200
205 Ser Asn Glu Asp Thr Lys Gln His Leu Gln Ser Pro Lys
Glu Gly Ile 210 215 220
Asp Phe Asp Leu Asn Ala Glu Ser Leu Asp Leu Asn Glu Thr Lys Leu 225
230 235 240 Ala Pro Ala Thr
Gly Thr Thr Thr Thr Thr Thr Ala Ala Thr Asp Ser 245
250 255 Glu Glu Tyr Ser Gly Trp Pro Met Met
Asp Ile Ser Lys Met Asp Pro 260 265
270 Ala Gln Leu Ala Ser Leu Gly Lys Arg Ile Asp Glu Asp Glu
Glu Asp 275 280 285
Tyr Asp Glu Glu Gly 290 81738DNAArabidopsis thalianaG1249
81tcgaccgttc ttctcaatct caccaatcgg tttaagctga aaacccgaat tagcaaaatc
60ttcgttcggg ctgttttggt taatccggtt tacatgtttt ctcattgctc attttcattt
120tcccgccgtg acagagcgcg taaatctcaa aaccctaaaa atgtcgaaca tatacaattc
180attaccttaa tcagattttc tcaacagaat caaaatcaaa atccatggag gaagaagaag
240gatcaatccg accagagttt ccaatcggaa gagtaaagaa gataatgaaa ctggacaaag
300acatcaacaa aatcaactca gaagctcttc acgtcatcac ttactccacc gaactcttcc
360tccacttcct cgccgagaaa tctgctgttg ttacggcgga gaagaagcgt aagactgtta
420atctcgatca tttaagaatc gccgtgaaaa gacaccaacc tactagtgat ttcctcttag
480actcgcttcc gttgccggct cagcctgtca aacataccaa atcggtttcc gacaagaaga
540ttccggcgcc gccaattggg actcgtcgta tcgatgattt cttcagtaaa gggaaagcaa
600agactgattc agcctaaagt aaaatttctc attttgttca caattgcaaa ttttactctg
660ttctcaaatc aaaatcttgt tttgctaaaa gtgtagtgag aatgtatgga tcatgaggaa
720cttttatagg aagcggcc
73882130PRTArabidopsis thalianaG1249 polypeptide (domain in aa
coordinates 12-76) 82Met Glu Glu Glu Glu Gly Ser Ile Arg Pro Glu Phe Pro
Ile Gly Arg 1 5 10 15
Val Lys Lys Ile Met Lys Leu Asp Lys Asp Ile Asn Lys Ile Asn Ser
20 25 30 Glu Ala Leu His
Val Ile Thr Tyr Ser Thr Glu Leu Phe Leu His Phe 35
40 45 Leu Ala Glu Lys Ser Ala Val Val Thr
Ala Glu Lys Lys Arg Lys Thr 50 55
60 Val Asn Leu Asp His Leu Arg Ile Ala Val Lys Arg His
Gln Pro Thr 65 70 75
80 Ser Asp Phe Leu Leu Asp Ser Leu Pro Leu Pro Ala Gln Pro Val Lys
85 90 95 His Thr Lys Ser
Val Ser Asp Lys Lys Ile Pro Ala Pro Pro Ile Gly 100
105 110 Thr Arg Arg Ile Asp Asp Phe Phe Ser
Lys Gly Lys Ala Lys Thr Asp 115 120
125 Ser Ala 130 83621DNAArabidopsis thalianaG3075
83atggtgtcgt caaagaaacc caaggagaag aaggcgagga gcgatgtcgt cgtcaataaa
60gcgagtggtc ggagtaaacg cagctccggt tccagaacga agaagacgtc gaacaaggtt
120aacattgtga agaagaagcc ggagatttac gagatctcag aatcatcgag cagtgactct
180gtggaagaag caataagagg cgatgaggcg aagaaaagta acggcgtcgt gagcaagagg
240ggtaacggaa agagtgtagg aattccgacg aagacgagta aaaatcgaga agaggacgat
300ggaggcgcgg aagatgctaa gatcaagttt ccgatgaatc ggattcggcg gatcatgaga
360agcgataatt ctgctcctca gattatgcag gatgctgtat ttcttgtcaa caaagccacg
420gagatgttca ttgagcggtt ttctgaagaa gcttatgata gttccgtcaa ggacaaaaag
480aaattcatcc actacaaaca cctctcatcc gtagtgagta acgaccagag atacgagttc
540cttgcagata gtgttcccga gaaacttaaa gcagaggccg cgttggagga atgggaaaga
600ggcatgacag atgcaggctg a
62184206PRTArabidopsis thalianaG3075 polypeptide (domain in aa
coordinates 110-173) 84Met Val Ser Ser Lys Lys Pro Lys Glu Lys Lys Ala
Arg Ser Asp Val 1 5 10
15 Val Val Asn Lys Ala Ser Gly Arg Ser Lys Arg Ser Ser Gly Ser Arg
20 25 30 Thr Lys Lys
Thr Ser Asn Lys Val Asn Ile Val Lys Lys Lys Pro Glu 35
40 45 Ile Tyr Glu Ile Ser Glu Ser Ser
Ser Ser Asp Ser Val Glu Glu Ala 50 55
60 Ile Arg Gly Asp Glu Ala Lys Lys Ser Asn Gly Val Val
Ser Lys Arg 65 70 75
80 Gly Asn Gly Lys Ser Val Gly Ile Pro Thr Lys Thr Ser Lys Asn Arg
85 90 95 Glu Glu Asp Asp
Gly Gly Ala Glu Asp Ala Lys Ile Lys Phe Pro Met 100
105 110 Asn Arg Ile Arg Arg Ile Met Arg Ser
Asp Asn Ser Ala Pro Gln Ile 115 120
125 Met Gln Asp Ala Val Phe Leu Val Asn Lys Ala Thr Glu Met
Phe Ile 130 135 140
Glu Arg Phe Ser Glu Glu Ala Tyr Asp Ser Ser Val Lys Asp Lys Lys 145
150 155 160 Lys Phe Ile His Tyr
Lys His Leu Ser Ser Val Val Ser Asn Asp Gln 165
170 175 Arg Tyr Glu Phe Leu Ala Asp Ser Val Pro
Glu Lys Leu Lys Ala Glu 180 185
190 Ala Ala Leu Glu Glu Trp Glu Arg Gly Met Thr Asp Ala Gly
195 200 205 8560PRTArabidopsis
thalianaG929 conserved domain 85Glu Pro Val Phe Val Asn Ala Lys Gln Tyr
His Gly Ile Leu Arg Arg 1 5 10
15 Arg Gln Ser Arg Ala Lys Leu Glu Ala Arg Asn Arg Ala Ile Lys
Ala 20 25 30 Lys
Lys Pro Tyr Met His Glu Ser Arg His Leu His Ala Ile Arg Arg 35
40 45 Pro Arg Gly Cys Gly Gly
Arg Phe Leu Asn Ala Lys 50 55 60
8660PRTArabidopsis thalianaG2344 conserved domain 86Glu Pro Val Phe Val
Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg 1 5
10 15 Arg Gln Ser Arg Ala Arg Leu Glu Ser Gln
Asn Lys Val Ile Lys Ser 20 25
30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Ile Arg
Arg 35 40 45 Pro
Arg Gly Cys Gly Gly Arg Phe Leu Asn Ala Lys 50 55
60 8760PRTArabidopsis thalianaG931 conserved domain 87Glu
Pro Val Phe Val Asn Ala Lys Gln Phe His Ala Ile Met Arg Arg 1
5 10 15 Arg Gln Gln Arg Ala Lys
Leu Glu Ala Gln Asn Lys Leu Ile Lys Ala 20
25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His
Val His Ala Leu Lys Arg 35 40
45 Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50
55 60 8860PRTGlycine maxG3920 conserved
domain 88Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg
1 5 10 15 Arg Gln
Ser Arg Ala Lys Ala Glu Ile Glu Lys Lys Val Ile Lys Asn 20
25 30 Arg Lys Pro Tyr Leu His Glu
Ser Arg His Leu His Ala Met Arg Arg 35 40
45 Ala Arg Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys
50 55 60 8960PRTArabidopsis
thalianaG928 conserved domain 89Asp Pro Val Phe Val Asn Ala Lys Gln Tyr
His Ala Ile Met Arg Arg 1 5 10
15 Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Arg
Ala 20 25 30 Arg
Lys Pro Tyr Leu His Glu Ser Arg His Val His Ala Leu Lys Arg 35
40 45 Pro Arg Gly Ser Gly Gly
Arg Phe Leu Asn Thr Lys 50 55 60
9060PRTArabidopsis thalianaG1782 conserved domain 90Glu Pro Ile Phe Val
Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5
10 15 Arg Lys His Arg Ala Lys Leu Glu Ala Gln
Asn Lys Leu Ile Lys Cys 20 25
30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Leu Lys
Arg 35 40 45 Ala
Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55
60 9160PRTArabidopsis thalianaG1363 conserved domain 91Glu
Pro Ile Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg 1
5 10 15 Arg Glu Arg Arg Ala Lys
Leu Glu Ala Gln Asn Lys Leu Ile Lys Val 20
25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His
Leu His Ala Leu Lys Arg 35 40
45 Val Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50
55 60 9260PRTOryza sativaG3924 conserved
domain 92Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg
1 5 10 15 Arg Gln
Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val Lys Ser 20
25 30 Arg Lys Pro Tyr Leu His Glu
Ser Arg His Gln His Ala Met Arg Arg 35 40
45 Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys
50 55 60 9359PRTOryza sativaG3926
conserved domain 93Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile
Leu Arg Arg 1 5 10 15
Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala Val Lys Gly
20 25 30 Arg Lys Pro Tyr
Leu His Glu Ser Arg His His His Ala Met Lys Arg 35
40 45 Ala Arg Gly Ser Gly Gly Arg Phe Leu
Thr Lys 50 55 9460PRTOryza
sativaG3925 conserved domain 94Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr
His Ala Ile Leu Arg Arg 1 5 10
15 Arg Gln Leu Arg Ala Lys Leu Glu Ala Glu Asn Lys Leu Val Lys
Asn 20 25 30 Arg
Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Lys Arg 35
40 45 Ala Arg Gly Thr Gly Gly
Arg Phe Leu Asn Thr Lys 50 55 60
9560PRTZea maysG3921 conserved domain 95Glu Pro Ile Tyr Val Asn Ala Lys
Gln Tyr His Ala Ile Leu Arg Arg 1 5 10
15 Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Met
Val Lys Gly 20 25 30
Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys Arg
35 40 45 Ala Arg Gly Ser
Gly Gly Arg Phe Leu Asn Thr Lys 50 55
60 9660PRTZea maysG3922 conserved domain 96Glu Pro Ile Tyr Val Asn Ala
Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5
10 15 Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn
Lys Met Val Lys Asn 20 25
30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys
Arg 35 40 45 Ala
Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55
60 9760PRTZea maysG4264 conserved domain 97Glu Pro Ile Tyr
Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5
10 15 Arg Gln Thr Arg Ala Lys Leu Glu Ala
Gln Asn Lys Met Val Lys Asn 20 25
30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met
Lys Arg 35 40 45
Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50
55 60 9858PRTArabidopsis thalianaG2632 conserved domain
98Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg 1
5 10 15 Arg Gln Ala Arg
Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Ser 20
25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg
His Gln His Ala Met Arg Arg 35 40
45 Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys 50
55 9958PRTArabidopsis thalianaG1334 conserved domain
99Asp Gly Thr Ile Tyr Val Asn Ser Lys Gln Tyr His Gly Ile Ile Arg 1
5 10 15 Arg Arg Gln Ser
Arg Ala Lys Ala Glu Lys Leu Ser Arg Cys Arg Lys 20
25 30 Pro Tyr Met His His Ser Arg His Leu
His Ala Met Arg Arg Pro Arg 35 40
45 Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50
55 10058PRTArabidopsis thalianaG926 conserved domain
100Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg 1
5 10 15 Arg Lys Ala Arg
Ala Lys Ala Glu Leu Glu Arg Lys Val Ile Arg Asp 20
25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg
His Lys His Ala Met Arg Arg 35 40
45 Ala Arg Ala Ser Gly Gly Arg Phe Ala Lys 50
55 10164PRTArabidopsis thalianaG927 conserved domain
101Ser Thr Ile Tyr Val Asn Ser Lys Gln Tyr His Gly Ile Ile Arg Arg 1
5 10 15 Arg Gln Ser Arg
Ala Lys Ala Ala Ala Val Leu Asp Gln Lys Lys Leu 20
25 30 Ser Ser Arg Cys Arg Lys Pro Tyr Met
His His Ser Arg His Leu His 35 40
45 Ala Leu Arg Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn
Thr Lys 50 55 60
10266PRTZea maysG3911 conserved domain 102Leu Pro Leu Ala Arg Ile Lys Lys
Ile Met Lys Ala Asp Glu Asp Val 1 5 10
15 Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg
Ala Cys Glu 20 25 30
Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala Glu Glu
35 40 45 Asn Lys Arg Arg
Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala 50
55 60 Arg Thr 65 10366PRTOryza
sativaG3546 conserved domain 103Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
Lys Ala Asp Glu Asp Val 1 5 10
15 Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys
Glu 20 25 30 Met
Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala Glu Glu 35
40 45 Asn Lys Arg Arg Thr Leu
Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala 50 55
60 Arg Thr 65 10466PRTZea maysG3909
conserved domain 104Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
Glu Asp Val 1 5 10 15
Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ser Arg Ala Cys Glu
20 25 30 Met Phe Ile Leu
Glu Leu Thr His Arg Gly Trp Ala His Ala Glu Glu 35
40 45 Asn Lys Arg Arg Thr Leu Gln Lys Ser
Asp Ile Ala Ala Ala Val Ala 50 55
60 Arg Thr 65 10566PRTZea maysG3552 conserved
domain 105Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val
1 5 10 15 Arg Met
Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys Ala Cys Glu 20
25 30 Ile Phe Ile Leu Glu Leu Thr
Leu Arg Ser Trp Met His Thr Glu Glu 35 40
45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala
Ala Ala Ile Thr 50 55 60
Arg Thr 65 10666PRTArabidopsis thalianaG483 conserved domain
106Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1
5 10 15 Arg Met Ile Ser
Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu 20
25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg
Ala Trp Ile His Thr Glu Glu 35 40
45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala
Ile Ser 50 55 60
Arg Thr 65 10766PRTGlycine maxG3547 conserved domain 107Leu Pro Leu
Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro
Val Ile Phe Ala Arg Ala Cys Glu 20 25
30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His
Thr Glu Glu 35 40 45
Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
10866PRTArabidopsis thalianaG714 conserved domain 108Leu Pro Leu Ala Arg
Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val
Phe Ala Arg Ala Cys Glu 20 25
30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr 50
55 60 Arg Thr 65
10966PRTOryza sativaG3542 conserved domain 109Leu Pro Leu Ala Arg Ile Lys
Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe
Ala Lys Ala Cys Glu 20 25
30 Val Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His Thr Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
11066PRTArabidopsis thalianaG489 conserved domain 110Leu Pro Leu Ala Arg
Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val
Phe Ala Arg Ala Cys Glu 20 25
30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr 50
55 60 Arg Thr 65
11166PRTOryza sativaG3544 conserved domain 111Leu Pro Leu Ala Arg Ile Lys
Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe
Ala Lys Ala Cys Glu 20 25
30 Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His Thr Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
11266PRTGlycine maxG3550 conserved domain 112Leu Pro Leu Ala Arg Ile Lys
Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe
Ala Lys Ala Cys Glu 20 25
30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Ile His Thr Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser 50
55 60 Arg Asn 65
11366PRTGlycine maxG3548 conserved domain 113Leu Pro Leu Ala Arg Ile Lys
Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe
Ala Lys Ala Cys Glu 20 25
30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Ile His Thr Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser 50
55 60 Arg Asn 65
11466PRTArabidopsis thalianaG715 conserved domain 114Leu Pro Leu Ala Arg
Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile Leu
Phe Ala Lys Ala Cys Glu 20 25
30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
11566PRTGlycine maxG3886 conserved domain 115Leu Pro Leu Ala Arg Ile Lys
Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe
Ala Lys Ala Cys Glu 20 25
30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
11666PRTZea maysG3889 conserved domain 116Leu Pro Leu Ala Arg Ile Lys Lys
Ile Met Lys Ala Asp Glu Asp Val 1 5 10
15 Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala Lys
Ala Cys Glu 20 25 30
Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu
35 40 45 Asn Lys Arg Arg
Thr Leu Gln Arg Asn Asp Val Ala Ala Ala Ile Ala 50
55 60 Arg Thr 65
11766PRTArabidopsis thalianaG1646 conserved domain 117Leu Pro Leu Ala Arg
Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile Leu
Phe Ala Lys Ala Cys Glu 20 25
30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
11866PRTOryza sativaG3543 conserved domain 118Leu Pro Leu Ala Gly Ile Lys
Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe
Ala Lys Ala Cys Glu 20 25
30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu
Glu 35 40 45 Asn
Lys Arg Arg Thr Leu Gln Arg Lys Asp Val Ala Ala Ala Ile Ala 50
55 60 Arg Thr 65
11966PRTArabidopsis thalianaG1820 conserved domain 119Leu Pro Leu Ala Arg
Ile Lys Lys Ile Met Lys Ala Asp Pro Asp Val 1 5
10 15 His Met Val Ser Ala Glu Ala Pro Ile Ile
Phe Ala Lys Ala Cys Glu 20 25
30 Met Phe Ile Val Asp Leu Thr Met Arg Ser Trp Leu Lys Ala Glu
Glu 35 40 45 Asn
Lys Arg His Thr Leu Gln Lys Ser Asp Ile Ser Asn Ala Val Ala 50
55 60 Ser Ser 65
12066PRTArabidopsis thalianaG1836 conserved domain 120Leu Pro Ile Thr Arg
Ile Lys Lys Ile Met Lys Tyr Asp Pro Asp Val 1 5
10 15 Thr Met Ile Ala Ser Glu Ala Pro Ile Leu
Leu Ser Lys Ala Cys Glu 20 25
30 Met Phe Ile Met Asp Leu Thr Met Arg Ser Trp Leu His Ala Gln
Glu 35 40 45 Ser
Lys Arg Val Thr Leu Gln Lys Ser Asn Val Asp Ala Ala Val Ala 50
55 60 Gln Thr 65
12165PRTArabidopsis thalianaG1819 conserved domain 121Phe Pro Leu Thr Arg
Ile Lys Lys Ile Met Lys Ser Asn Pro Glu Val 1 5
10 15 Asn Met Val Thr Ala Glu Ala Pro Val Leu
Ile Ser Lys Ala Cys Glu 20 25
30 Met Leu Ile Leu Asp Leu Thr Met Arg Ser Trp Leu His Thr Val
Glu 35 40 45 Gly
Gly Arg Gln Thr Leu Lys Arg Ser Asp Thr Leu Thr Arg Ser Asp 50
55 60 Ile 65
12265PRTArabidopsis thalianaG1818 conserved domain 122Pro Ile Ser Arg Ile
Lys Arg Ile Met Lys Phe Asp Pro Asp Val Ser 1 5
10 15 Met Ile Ala Ala Glu Ala Pro Asn Leu Leu
Ser Lys Ala Cys Glu Met 20 25
30 Phe Val Met Asp Leu Thr Met Arg Ser Trp Leu His Ala Gln Glu
Ser 35 40 45 Asn
Arg Leu Thr Ile Arg Lys Ser Asp Val Asp Ala Val Val Ser Gln 50
55 60 Thr 65
12366PRTArabidopsis thalianaG490 conserved domain 123Leu Pro Leu Ser Arg
Val Arg Lys Ile Leu Lys Ser Asp Pro Glu Val 1 5
10 15 Lys Lys Ile Ser Cys Asp Val Pro Ala Leu
Phe Ser Lys Ala Cys Glu 20 25
30 Tyr Phe Ile Leu Glu Val Thr Leu Arg Ala Trp Met His Thr Gln
Ser 35 40 45 Cys
Thr Arg Glu Thr Ile Arg Arg Cys Asp Ile Phe Gln Ala Val Lys 50
55 60 Asn Ser 65
12464PRTArabidopsis thalianaG3074 conserved domain 124Pro Ala Ala Arg Ile
Lys Lys Ile Met Gln Ala Asp Glu Asp Val Gly 1 5
10 15 Lys Ile Ala Leu Ala Val Pro Val Leu Val
Ser Lys Ser Leu Glu Leu 20 25
30 Phe Leu Gln Asp Leu Cys Asp Arg Thr Tyr Glu Ile Thr Leu Glu
Arg 35 40 45 Gly
Ala Lys Thr Val Ser Ser Leu His Leu Lys His Cys Val Glu Arg 50
55 60 12564PRTArabidopsis
thalianaG1249 conserved domain 125Pro Ile Gly Arg Val Lys Lys Ile Met Lys
Leu Asp Lys Asp Ile Asn 1 5 10
15 Lys Ile Asn Ser Glu Ala Leu His Val Ile Thr Tyr Ser Thr Glu
Leu 20 25 30 Phe
Leu His Phe Leu Ala Glu Lys Ser Ala Val Val Thr Ala Glu Lys 35
40 45 Lys Arg Lys Thr Val Asn
Leu Asp His Leu Arg Ile Ala Val Lys Arg 50 55
60 12663PRTArabidopsis thalianaG3075 conserved
domain 126Pro Met Asn Arg Ile Arg Arg Ile Met Arg Ser Asp Asn Ser Ala Pro
1 5 10 15 Gln Ile
Met Gln Asp Ala Val Phe Leu Val Asn Lys Ala Thr Glu Met 20
25 30 Phe Ile Glu Arg Phe Ser Glu
Glu Ala Tyr Asp Ser Ser Val Lys Asp 35 40
45 Lys Lys Lys Phe Ile His Tyr Lys His Leu Ser Ser
Val Val Ser 50 55 60
127953DNAArtificial sequencesynthetic sequence 127ggagagacct ttaacaattt
tctgagggta agatccagag attgattgaa tcagcttact 60attttatata attcagtttg
ttgttcctca gacttgtaac taggacagtc ttctcatgaa 120tcatgacttc ttcagtacat
gagctctctg ataacaatga aagtcatgcg aagaaagaac 180gtccagattc ccaaacccga
ccacaggttc cttcaggacg aagttcggaa tctattgata 240caaactctgt ctactcagag
cccatggcac atggattata cccgtatcca gatccttact 300acagaagcgt ctttgcacag
caagcgtatc ttccacatcc ctatcctggg gtccaattgc 360agttaatggg aatgcagcag
ccaggagttc cattgcaatg tgatgcagtc gaggaacctg 420tttttgttaa cgcaaagcaa
taccatggta tactcaggcg caggcaatcc cgggcaaaac 480ttgaggcacg aaatagagcc
atcaaagcaa aaaagccata catgcatgaa tctcggcatt 540tacatgcgat aagacggcca
agaggatgtg gtggccggtt tctcaatgcc aagaaggaaa 600atggagacca caaggaggag
gaggaggcaa cctctgatga gaacacttca gaagcaagtt 660ccagcctcag gtccgagaaa
ttagctatgg ctacttctgg tcctaatggt agatcttgag 720gaaggtttct gcacaaccac
aagtttagtt tctattttgg gtggatgttc tcagggcatc 780atcgtcttta gtgtttttgg
atacgctgtg tacaggttat ttgctagggt aaactttgtt 840ttagcgatta gaaataaaac
taagcaaaga aatgaaaagt gtgattggaa gtattgttgt 900accaaattga tattctttgc
caatgaactc atgttttgga aagtaaaaaa aaa 953128812DNAArtificial
sequencesynthetic sequence 128ttattctaag tagcttgact tgtttagttt aaatatgagg
ttaatgattt tgtggggatt 60tgatagttct ggttcttgag tttatttaaa ataggtttac
caggatcatg tactgactct 120gttctttgga acttttcaga attctgcttc ggacattaag
ctcatgagtc atgacttctt 180caatccatga gctttctgat aacattggaa gtcatgagaa
gcaagaacag agagattctc 240atttccaacc accaatccct tctgcaagaa attatgaatc
aattgttaca agtttagtct 300actcagaccc ggggactaca aattccatgg cacctggaca
atatccatat ccagatcctt 360actacagaag catatttgca ccgcctccac aaccgtatac
cggggtacat ctacagttga 420tgggagtgca gcaacaaggc gttcctttac catctgatgc
agtcgaggaa cctgtttttg 480ttaacgcaaa gcaataccac ggtatactaa ggcgcagaca
atcaagagca agacttgagt 540ctcagaataa agtcatcaag tcacgtaagc cgtatttgca
tgaatctcgg catttgcatg 600cgataagacg accaagagga tgtggcgggc ggtttctaaa
tgccaagaag gaggatgagc 660atcacgaaga cagtagtcat gaagaaaaat ccaaccttag
cgctggtaaa tccgccatgg 720ctgcttctag tggtacatct tgagaaggtc ctacaagtag
ctttgttgta ttttggctct 780gtttggtctc agatcatcta tgtcttttag tg
8121291138DNAArtificial sequencesynthetic sequence
129tgacagacac atgtatcatc aatcttctct gttgaagcag agagagagag agctaattgt
60tgcctctgag tcacatggat aagaaagttt catttactag ctctgtggca cattcaactc
120caccatacct tagtacttcc atctcatggg gacttccaac caaatccaat ggtgtgactg
180aatcactgag tttgaaggtg gtagatgcaa gaccagaacg tcttataaac acaaagaata
240tcagtttcca ggaccaggat tcatcttcaa ctctgtcctc tgctcaatct tctaacgatg
300ttacaagtag tggagatgat aacccctcaa gacaaatctc atttttagca cattcagatg
360tttgtaaagg atttgaagaa actcaaagga agcgatttgc aattaaatca ggctcctcca
420cggcaggaat cgctgatatt cactcttctc cttccaaggc taacttctca tttcactatg
480ccgatccaca ttttggtggt ttaatgcctg cggcttacct accacaggca acaatatgga
540atccccaaat gactcgagtt ccgctaccat tcgatctcat agagaatgag cctgtctttg
600tcaatgcaaa gcaattccat gcaattatga ggaggaggca acagcgtgct aagctagagg
660cgcaaaacaa actaatcaaa gcccgtaagc cgtatcttca tgaatctcga catgttcacg
720ctcttaaacg acctagagga tctggtggaa gattcctaaa caccaaaaag cttcaagaat
780ctacagatcc aaaacaagac atgccaatcc aacagcaaca cgcaacggga aacatgtcaa
840gatttgtgct ttatcagttg cagaacagca atgactgtga ttgttcaacc acttctcgct
900ctgacatcac atctgcttct gacagcgtta atctctttgg acactctgaa tttctgatat
960cagattgccc atctcagaca aacccaacaa tgtatgttca tggtcaatca aatgacatgc
1020atggaggtag gaacacacac catttctctg tccatatctg agccggtgga atctggtaat
1080gtgtacgttc ctacaaaaaa agggaagtca tccttggctg ctacttcgct tattagct
1138130956DNAArtificial sequencesynthetic sequence 130agttggtgct
aagatgccag ggaaacctga cactgatgat tggcgtgtag agcgtgggga 60gcagattcag
tttcagtctt ccatttactc tcatcatcag ccttggtggc gcggagtggg 120ggaaaatgcc
tccaaatcat cttcagatga tcagttaaat ggttcaatcg tgaatggtat 180cacgcggtct
gagaccaatg ataagtcagg cggaggtgtt gccaaagaat accaaaacat 240caaacatgcc
atgttgtcaa ccccatttac catggagaaa catcttgctc caaatcccca 300gatggaactt
gttggtcatt cagttgtttt aacatctcct tattcagatg cacagtatgg 360tcaaatcttg
actacttacg ggcaacaagt tatgataaat cctcagttgt atggaatgca 420tcatgctaga
atgcctttgc cacttgaaat ggaagaggag cctgtttatg tcaatgcgaa 480gcagtatcat
ggtattttga ggcgaagaca gtcacgtgct aaggctgaga ttgaaaagaa 540agtaatcaaa
aacaggaagc catacctcca tgaatcccgt caccttcatg caatgagaag 600ggcaagaggc
aacggtggtc gctttctcaa cacaaagaag cttgaaaata acaattctaa 660ttccacttca
gacaaaggca acaatactcg tgcaaacgcc tcaacaaact cgcctaacac 720tcaacttttg
ttcaccaaca atttgaatct aggctcatca aatgtttcac aagccacagt 780tcagcacatg
cacacagagc agagtttcac tataggttac cataatggaa atggtcttac 840agcactatac
cgttcacaag caaatgggaa aaaggaggga aactgctttg gtaaagagag 900ggaccctaat
ggggatttca aataacactt ccctcagcca tacagcaaga gttagg
9561311486DNAArtificial sequencesynthetic sequence 131cccaggaaag
gtaaaagaga cggagacgaa ccaaaacaag gaagaaagaa gaagatctta 60catacgaaga
tcactctctg attcactctg agagacaaac tggtttactt tggttctgtt 120tgacaaaagg
agacatgcaa aaataaatct ctatcccttg tttttcttct tcgcttcatc 180gattactcaa
agaggttgtt ggttgtgaga ataattagct tgttaaggaa gacgttatga 240tgcatcagat
gttgaataag aaagattcag ctactcattc cactttgcca taccttaata 300ctagcatctc
ttggggagtg gttccaactg attccgttgc taatcgtcgc ggtcctgctg 360aatcactaag
cttgaaggtt gattcaagac ctgggcatat acaaactaca aagcaaatca 420gttttcagga
ccaagattca tcttcaacac agtccactgg tcaatcttat actgaagttg 480ctagtagtgg
tgatgataat ccttccagac aaatctcctt ttcggctaaa tcaggatctg 540aaataactca
acggaagggg tttgcaagta atcctaaaca aggctcgatg actggatttc 600cgaatattca
ctttgctcct gcacaggcta atttctcatt tcactatgct gatccacatt 660atggtggttt
attagctgca acttacctac cacaggcacc aacatgcaat cctcaaatgg 720tgagtatgat
tcctggtcgt gttcctttac cagcagagct cacagaaact gatccagtct 780ttgtcaatgc
gaagcaatac cacgcaatta tgaggaggag acagcaacgt gctaagcttg 840aggctcaaaa
caaactaatc agagcccgta agccctatct tcatgagtct cgacatgttc 900atgctcttaa
aaggccaaga ggatctggtg gaagattcct aaacaccaaa aaacttcttc 960aagaatccga
acaggctgct gctagagaac aagaacagga caagttaggc caacaggtaa 1020acagaaagac
caacatgtct agattcgaag ctcatatgct gcagaacaac aaagaccgca 1080gctcaaccac
ttctggctca gacatcacct ctgtttccga cggtgctgat atctttggac 1140acactgaatt
ccagttttca ggtttcccaa ctccgataaa ccgagccatg cttgttcatg 1200gtcagtctaa
tgacatgcat ggaggtggag acatgcacca tttctctgtc catatctgag 1260acagtggatc
ttggtgctgt gttcatgttc ccaccaagaa ggggaagtca tccttggcta 1320ctactagttc
tttcgcttgt tgtaacttca gtgtttttat ttcatattat gtctgtgtta 1380gacatcacaa
gaacgaccaa gatcttcact ttgaaacact ctattacctt ttcatcttct 1440gttaccatgg
atctcttgtc taaactagtg atatgattct tctgat
14861321007DNAArtificial sequencesynthetic sequence 132gatttgtgac
tggacttgtt ggtttggaca tttagtttat tgaagtaaag atttgaagac 60aatgcaagtg
tttcaaagga aagaagattc atcttgggga aactcaatgc ctacaacaaa 120ttcaaatatt
caaggatctg aatctttcag cttgactaag gatatgataa tgtctacaac 180acaattaccc
gcgatgaaac attcgggttt gcagctgcaa aatcaagatt caacctcatc 240acaatctact
gaagaagaat caggcggcgg tgaagttgca agctttggag aatataagcg 300ttatggatgc
agcattgtta ataacaatct ctcaggttac atcgaaaact tgggaaagcc 360tattgaaaat
tatactaagt caattactac ctcgtcgatg gtgtctcaag actctgtgtt 420tcctgctcct
acttctggtc aaatatcttg gtctcttcaa tgtgctgaaa cgtcacattt 480caatggtttc
ttggctcctg aatatgcatc aacaccaacg gcgctgccac atttagagat 540gatgggtttg
gtttcttcaa gagtgccatt gcctcatcac attcaagaga atgaaccaat 600atttgtcaat
gcgaaacagt atcatgcgat tctccgtcgc aggaagcacc gtgctaaact 660cgaagctcag
aacaaactca tcaaatgccg taaaccgtac cttcatgagt ctcgccatct 720tcatgcttta
aagagagcta gaggctccgg tggacgtttc ctcaatacaa agaagcttca 780agaatcatca
aactcactgt gttcttctca aatggcaaat ggacaaaatt tctctatgag 840ccctcacggt
ggtggaagcg gaatcgggtc tagttcgatc tcaccgagct ccaattcaaa 900ctgtatcaac
atgttccaaa acccgcagtt cagattctca ggttatccgt caacacacca 960tgcctcagct
ctcatgtcag ggacttgagg cacatgagaa gaccttg
10071331671DNAArtificial sequencesynthetic sequence 133atgcaagagt
tccatagtag caaagattca ttgccttgtc ctgcaacttc ttgggataac 60tctgtcttca
ccaactcaaa tgtccaagga tcatcatcct tgaccgataa caacacttta 120agcttgacaa
tggagatgaa acaaactggt tttcaaatgc agcactatga ttcctcctct 180actcaatcca
ctggaggaga atcatatagt gaagttgcta gcttaagtga acctactaat 240cgttatggcc
acaacattgt tgtcactcat ctctcaggtt acaaagaaaa cccggaaaat 300cctattggaa
gtcattcgat atcaaaggtg tctcaagatt cagtggttct tcctattgag 360gcggcttctt
ggcctttaca cggcaatgta acgccacatt tcaatggttt cttgtctttt 420ccttatgcat
cacaacacac ggtgcagcat cctcaaatca gagggttggt tccgtctaga 480atgcctttgc
ctcacaacat tccagagaac gaaccaattt tcgtcaatgc aaaacagtac 540caagccattc
tccgccgcag agagcgccgt gcaaagcttg aagctcagaa caagctcatc 600aaagtccgca
aaccatatct tcacgagtcg cggcacctcc atgcactaaa gagagttaga 660ggctctggtg
gacgtttcct caacacaaag aagcatcaag aatcaaattc ctcactatct 720cctccattct
tgattccacc tcatgtcttc aagaactctc caggaaagtt ccggcaaatg 780gacatttcaa
ggggtggggt tgtgtctagt gtctcgacaa catcttgctc ggacataacc 840gggaacaaca
acgacatgtt ccagcaaaac ccacaattca ggttctcagg ttatccatca 900aaccaccatg
tctcagtcct catggcggcc gctgccgctg cggcagcggc catggtgagc 960aagggcgagg
agctgttcac cggggtggtg cccatcctgg tcgagctgga cggcgacgta 1020aacggccaca
agttcagcgt gtccggcgag ggcgagggcg atgccaccta cggcaagctg 1080accctgaagt
tcatctgcac caccggcaag ctgcccgtgc cctggcccac cctcgtgacc 1140accttcggct
acggcctgca gtgcttcgcc cgctaccccg accacatgaa gcagcacgac 1200ttcttcaagt
ccgccatgcc cgaaggctac gtccaggagc gcaccatctt cttcaaggac 1260gacggcaact
acaagacccg cgccgaggtg aagttcgagg gcgacaccct ggataaccga 1320atcgagctga
agggcatcga cttcaaggag gacggcaaca tcctggggca caagctggag 1380tacaactaca
acagccacaa cgtctatatc atggccgaca agcagaagaa cggcatcaag 1440gtgaacttca
agatccgcca caacatcgag gacggcagcg tgcagctcgc cgaccactac 1500cagcagaaca
cccccatcgg cgacggcccc gtggtgctgc ccgacaacca ctacctgagc 1560taccagtccg
ccctgagcaa agaccccaac gagaagcgcg atcacatggt cctgctggag 1620ttcgtgaccg
ccgccgggat cactctcggc atggacgagc tgtacaagta a
1671134824DNAArtificial sequencesynthetic sequence 134gcattccgag
gtgagcgagc atggagtcga ggccgggggg aaccaacctc gtggagccga 60gggggcaggg
cgcgctgccg tccggcatac cgatccagca gccgtggtgg acgacctccg 120ccggggtcgg
ggcggtgtcg cccgccgtcg tggcgccggg gagcggtgcg gggatcagcc 180tgtcgggcag
ggatggcggc ggcgacgacg cggcagagga gagcagcgat gactcacgaa 240gatcagggga
gaccaaagat ggaagcactg atcaagaaaa gcatcatgca acatcgcaga 300tgactgcttt
ggcatcagac tatttaacac cattttcaca gctggaacta aaccaaccaa 360ttgcttcggc
agcataccag taccctgact cttactatat gggcatggtt ggtccctatg 420gacctcaagc
tatgtccgca cagactcatt tccagctacc tggattaact cactctcgta 480tgccgttgcc
tcttgaaata tctgaggagc ctgtttatgt aaatgctaag caatatcatg 540gaattttaag
acggaggcag tcacgtgcga aggctgaact tgagaaaaaa gttgttaaat 600caagaaagcc
ctatcttcat gagtctcgtc atcaacatgc tatgcgaagg gcaagaggaa 660cgggtggacg
cttcctgaac acaaagaaaa atgaagatgg tgctcccagt gagaaagccg 720aaccaaacaa
aggagagcag aactccgggt atcgccggat ccctcctgac ttacagctcc 780tacagaagga
aacatgaagt agcggctcga aacctagaac agtg
8241351000DNAArtificial sequencesynthetic sequence 135gtggatcttg
agtaatgcct tctaataatg ataatgctgt tgcaagaaat ggagaatcat 60cctgtccaat
gcatggccaa gaccaactat gattttcttg ccaggaataa ctatccaatg 120aaacagttag
ttcagaggaa ctctgatggt gactcgtcac caacaaagtc tggggagtct 180caccaagaag
catctgcagt aagtgacagc agtctcaacg gacaacacac ctcaccacaa 240tcagtgtttg
tcccctcaga tattaacaac aatgatagtt gtggggagcg ggaccatggc 300actaagtcgg
tattgtcttt ggggaacaca gaagctgcct ttcctccttc aaagttcgat 360tacaaccagc
cttttgcatg tgtttcttat ccatatggta ctgatccata ttatggtgga 420gtattaacag
gatacacttc acatgcattt gttcatcctc aaattactgg tgctgcaaac 480tctaggatgc
cattgcctgt tgatccttct gtagaagagc ccatatttgt caatgcaaag 540caatacaatg
cgatccttag aagaaggcaa acgcgtgcaa aattggaggc ccaaaataag 600gcggtgaaag
gtcggaagcc ttacctccat gaatctcgac atcatcatgc tatgaagcga 660gcccgtggat
caggtggtcg gttccttacc aaaaaggagc tgctggaaca gcagcagcag 720cagcagcagc
agaagccacc accggcatca gctcagtctc caacaggtag agccagaacg 780agcggcggtg
ccgttgtcct tggcaagaac ctgtgcccag agaacagcac atcctgctcg 840ccatcgacac
cgacaggctc cgagatctcc agcatctcat ttgggggcgg catgctggct 900caccaagagc
acatcagctt cgcatccgct gatcgccacc ccacaatgaa ccagaaccac 960cgtgtccccg
tcatgaggtg aaaacctcgg gatcgcggga
1000136756DNAArtificial sequencesynthetic sequence 136ggaggaggtt
tgccggagag gggacatgct ccctcctcat ctcacagaaa atggcacagt 60aatgattcag
tttggtcata aaatgcctga ctacgagtca tcagctaccc aatcaactag 120tggatctcct
cgtgaagtgt ctggaatgag cgaaggaagc ctcaatgagc agaatgatca 180atctggtaat
cttgatggtt acacgaagag tgatgaaggt aagatgatgt cagctttatc 240tctgggcaaa
tcagaaactg tgtatgcaca ttcggaacct gaccgtagcc aaccctttgg 300catatcatat
ccatatgctg attcgttcta tggtggtgct gtagcgactt atggcacaca 360tgctattatg
catccccaga ttgtgggcgt gatgtcatcc tcccgagtcc cgctaccaat 420agaaccagcc
accgaagagc ctatttatgt aaatgcaaag caataccatg cgattctccg 480aaggagacag
ctccgtgcaa agttagaggc tgaaaacaag ctggtgaaaa accgcaagcc 540gtacctccat
gaatcccggc atcaacacgc gatgaagaga gctcggggaa caggggggag 600attcctcaac
acaaagcagc agcctgaagc ttcagatggt ggcaccccaa ggctcgtctc 660tgcaaacggc
gttgtgttct caaagcacga gcacagcttg tcgtccagtg atctccatca 720tcgtcgtgcg
aaagagggcg cttgagatcc tcgccg
7561371091DNAArtificial sequencesynthetic sequence 137agatcatctg
atttctcaga agcaaaatgt tgtttggagc tcagtgacac catcttgtaa 60tgcctgtgat
tttacgggaa atggaggatc attctgtcca tcccatgtct aagtctaacc 120atggctcctt
gtcaggaaat ggttatgaga tgaaacattc aggccataaa gtttgcgata 180gggattcatc
atcggagtct gatcggtctc accaagaagc atcagcagca agtgaaagca 240gtccaaatga
acacacatca actcaatcag acaatgatga agatcatggg aaagataatc 300aggacacaat
gaagccagta ttgtccttgg ggaaggaagg ctctgccttt ttggccccaa 360aattacatta
cagcccatct tttgcttgta ttccttatac ttctgatgct tattatagtg 420cggttggggt
cttgacagga tatcctccac atgccattgt ccatccccag caaaatgata 480caacgaacac
tccgggtatg ttacctgtgg aacctgcaga agaaccaata tatgttaatg 540caaaacaata
ccatgcaatc cttaggagga ggcaaacacg tgctaaattg gaggcccaga 600acaagatggt
gaaaaatcgg aagccatatc ttcatgagtc ccgacatcgt catgccatga 660aacgggctcg
tggatcagga ggacggttcc tcaacacaaa gcagctccag gagcagaacc 720agcagtatca
ggcatcgagt ggttcattgt gctcaaagat cattgccaac agcataatct 780cccaaagtgg
ccccacctgc acgccctctt ctggcactgc aggtgcttca acagccggcc 840aggaccgcag
ctgcttgccc tcagttggct tccgccccac gacaaacttc agtgaccaag 900gtcgaggagg
cttgaagctg gccgtgatcg gcatgcagca gcgtgtttcc accataaggt 960gaagagaagt
gggcacaaca ccattcccag gcacactgcc tgtggcaact catccttggc 1020tcttggaact
ttgaatatgc aatcgacatg tagcttgagt tcctcagaat aaccaaaccg 1080tgaagaatat g
10911381149DNAArtificial sequencesynthetic sequence 138agatcgtttc
atcgtccaag cggaagaagc gtctccttca atcaccgtgg acacctccga 60gactgtctcc
gattgaatgg gaattgaaga catgcattca aaatctgaca gtggtgggaa 120caaggttgat
tcagaggttc atggtacagt atcgtcgtcg ataaatagtt taaacccttg 180gcatcgtgct
gctgctgctt gcaatgcaaa ttctagtgtg gaagctggag ataaatcttc 240taagtcaata
gcattagcat tggaatcaaa cggttccaaa tcaccatcca atagagataa 300tactgttaac
aaggaatcac aagtcacaac gtctccacaa tcagctggag attatagtga 360taaaaaccaa
gaatctctgc atcatggcat cacacaacct cctcctcacc ctcaacttgt 420tggccacaca
gttgtaactt cccaatatag atatattgtt cttatcattt cctttgggaa 480aattttagct
atggttgctt acaatttagt tttttcccgg ttatgaatca tgcagggatg 540ggcatcctca
aatccatacc aggatccata ttatgcagga gtgatgggag cctatggaca 600tcatcccctg
gggtttgttc catatggtgg gatgcctcat tcaagaatgc cactgccgcc 660tgagatggca
caagaaccag ttttcgtgaa tgctaaacag taccaggcga ttctgaggcg 720aaggcaggca
cgcgccaagg cagagctaga gaagaagcta ataaaatcca gaaagcctta 780tctacatgaa
tctcggcatc aacatgctat gaggaggcca aggggtactg gaggacggtt 840tgcaaagaaa
accaacaccg aagcttcaaa gcgtaaagct gaagaaaaga gcaatggtca 900tgttactcag
tccccgtcat catctaattc tgatcaaggt gaagcttgga atggtgacta 960tagaacacct
cagggagatg agatgcagag ctcagcttat aagagaaggg aagaaggaga 1020gtgttcaggg
cagcaatgga acagcctttc ctcaaaccat ccttctcaag ctcgtctagc 1080cattaaatga
cctcacaagg cggcaattca ttcttggctt tctctttgtt ggcttattcg 1140gtagcagcc
1149139873DNAArtificial sequencesynthetic sequence 139ccattggact
tttggaacat aagctatgca aactgaggag cttttgtcgc caccacagac 60tccttggtgg
aatgcttttg gatctcagcc gttgactaca gagagccttt ccggcgaagc 120ttctgattca
ttcaccggag ttaaggcagt tactacggag gcagaacaag gtgtggtgga 180taaacaaact
tctacaactc tcttcacttt ctcacctggt ggtgaaaaga gttcaagaga 240tgtgccaaag
cctcatgttg ctttcgcgat gcaatcagct tgcttcgagt ttggatttgc 300tcagccaatg
atgtacacaa agcatcctca tgttgaacaa tactatggag ttgtttcagc 360atacggatct
cagaggtctt cgggccgagt aatgattcca ctgaagatgg agacagaaga 420agatggtacc
atctatgtga actcaaagca gtaccatgga attatcaggc gacgccagtc 480ccgagcaaag
gctgaaaaac tgagtagatg ccgtaagcca tatatgcatc actcacgcca 540tctccatgct
atgcgccgtc ctagaggatc tggcgggcgt ttcttgaaca ccaagacagc 600tgatgcggct
aagcagtcta agccgagtaa ttctcagagt tctgaagtct ttcatccgga 660aaatgagacc
ataaactcat cgagggaagc aaatgagtca aatctctcgg attctgcagt 720tacaagtatg
gattactttc taagttcgtc ggcttattct cctggtggca tggtcatgcc 780tatcaagtgg
aatgcagcag caatggatat tggctgctgc aaacttaata tatgatcagc 840agatagggga
caagacatga ttggtcacca gtc
8731401394DNAArtificial sequencesynthetic sequence 140tgtttgatct
ttgtccagag aactccaaga tagaccaaaa aggttcaacc tcaaaacaaa 60caacacaaaa
acagccaaat agctagagac caagatgaga tcaagcagcc aaaattctga 120aaactccaag
acttgtctat ctaacaacat caaagcaacc accaagaatg aagaagataa 180agatgaagag
gatgatgaag aaggcgaaga ggatgaagaa gagagatctg gagatcagag 240cccatctagc
aatagctatg aggaagagag tgggagtcac caccatgatc agaacaagaa 300gaatggagga
tccgtgaggc cgtacaaccg ctcaaagact ccgaggctgc gatggacgcc 360ggagctccat
atttgctttc ttcaagctgt ggagagattg ggtggcccag atagagcaac 420accgaagctt
gttctccaat tgatgaacgt caaggggcta agtattgccc atgttaagag 480tcatcttcag
atgtacagaa gcaagaagac cgatgagcct aatgaaggag atcaaggatt 540ttcgtttgaa
cacggagctg gttacactta caaccttagc caacttccaa tgctacaaag 600ttttgatcaa
aggccttctt ctagtttagg atatggtggt ggttcgtgga ctgaccacag 660acgacagatc
taccgtagcc cttggagagg attaacgaca cgagaaaata caagaacaag 720acaaacaatg
tttagctcac agcctggtga gagatatcac ggagttagca atagtattct 780taacgataag
aacaaaacta tttcatttcg aatcaattct catgaagggg ttcatgataa 840caatggagta
gctggagctg ttccaagaat tcatagaagt tttcttgaag gtatgaaaac 900gtttaacaaa
tcatggggac agagcctctc ttccaatctt aagtcctcca ccgcaacaat 960accacaagat
catattgcta caacgctaaa ttcttatcaa tgggagaatg ctggagtggc 1020agaaggatca
gagaatgttt tgaagaggaa gaggttatta ttttctgatg actgcaataa 1080gtcagaccaa
gatttggatc taagcttgtc ccttaaggta cctcggacac acgacaatct 1140tggagaatgc
ttgttagaag atgaagtaaa agaacatgat gatcatcaag atatcaagag 1200tttgtctctt
tcgttatcat cttcaggttc atcaaaactc gaccgaacca ttaggaaaga 1260agatcaaact
gatcacaaaa agagaaagat ttcggtcttg gcaagtcccc ttgatctcac 1320tctgtgaata
tgtataacaa cttatatacg tatattctaa gtgagatctt gtggtacttg 1380ttgatggaag
acgg
13941411560DNAArtificial sequencesynthetic sequence 141atgcaatcaa
aaccgggaag agaaaacgaa gaggaagtca ataatcacca tgctgttcag 60cagccgatga
tgtatgcaga gccctggtgg aaaaacaact cctttggtgt tgtacctcaa 120gcgagacctt
ctggaattcc atcaaattcc tcttctttgg attgccccaa tggttccgag 180tcaaacgatg
ttcattcagc atctgaagac ggtgcgttga atggtgaaaa cgatggcact 240tggaaggatt
cacaagctgc aacttcctct cgttcagata atcacggaat ggaaggaaat 300gacccagcgc
tctctatccg taacatgcat gatcagccac ttgtacaacc accagagctt 360gttggacact
atatcgcttg tgtcccaaac ccatatcagg atccatatta tgggggattg 420atgggagcat
atggtcatca gcaattgggt tttcgtccat atcttggaat gcctcgtgaa 480agaacagctc
tgccacttga catggcacaa gagcccgttt atgtgaatgc aaagcagtac 540gagggaattc
taaggcgaag aaaagcacgt gccaaggcag agctagagag gaaagtcatc 600cgggacagaa
agccatatct tcacgagtca agacacaagc atgcaatgag aagggcacga 660gcgagtggag
gccggtttgc gaagaaaagt gaggtagaag cgggagagga tgcaggaggg 720agagacagag
aaaggggttc agcaaccaac tcatcaggct ctgaacaagt tgagacagac 780tctaatgaga
ccctgaattc ttctggtgca ccagcggccg ctgccgctgc ggcagcggcc 840atggtgagca
agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 900ggcgacgtaa
acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 960ggcaagctga
ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 1020ctcgtgacca
ccttcggcta cggcctgcag tgcttcgccc gctaccccga ccacatgaag 1080cagcacgact
tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 1140ttcaaggacg
acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 1200gataaccgaa
tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 1260aagctggagt
acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 1320ggcatcaagg
tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 1380gaccactacc
agcagaacac ccccatcggc gacggccccg tggtgctgcc cgacaaccac 1440tacctgagct
accagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 1500ctgctggagt
tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa
15601421304DNAArtificial sequencesynthetic sequence 142ggaatctgaa
gctcttctct actctctact ctatcactcc atctgtgaac atatctttct 60tattcttcta
ggcactatct atttttcact ttttgtaatt ggaatttgga gatggctatg 120caaactgtga
gagaaggtct cttctctgct ccacagactt cttggtggac tgcttttgga 180tctcagccgt
tggctccgga gagtctcgcc ggcgattctg actcattcgc cggagttaag 240gtcggatctg
tcggagagac aagacaacgt gtggataaac agagcaactc tgcaacgcac 300ttagctttct
cacttggtga tgtaaagagt ccaagacttg tgccaaagcc tcatggagct 360actttctcaa
tgcaatcacc ttgcttggaa cttggatttt ctcagccacc gatctataca 420aagtatccct
atggagaaca acaatactat ggagttgttt cagcctatgg atctcagagc 480agggtaatgc
ttcctctaaa catggaaacg gaagatagta ccatctatgt gaactcaaag 540caataccatg
gaatcataag gagacgccaa tcccgcgcaa aggctgctgc tgttcttgat 600cagaagaaat
tgagtagtag atgccgcaag ccatatatgc atcattcgcg ccatctccat 660gcattgcggc
gtcctagagg atccggtggg agattcttga acactaaaag tcagaacttg 720gaaaatagcg
gaaccaatgc aaagaaaggt gatggaagta tgcagattca gtctcagcct 780aagcctcagc
aaagtaactc tcagaattct gaagttgttc atccggaaaa cgggaccatg 840aacttatcga
acggattaaa tgtgtcggga tcagaagtta ctagcatgaa ctacttccta 900agttctcccg
ttcattctct tggtggcatg gtaatgccta gcaagtggat agcagcagca 960gcagcaatgg
ataatggctg ctgcaatttc aaaacctgat cctttaccgt ttcacagtca 1020aacggagaga
gataaagaac tcttgccttg gtataaagga ttttcctttt tgccaatccg 1080ctttggctgt
gaacaggcaa atcatctttg gctcattctc tattaaggta acttcgccgt 1140gaggtgaaaa
aagctttgat atatttatct tcagtgtaaa agtagttaaa actggtgaag 1200aacaatgatg
tgtttggtca ctaaacccac ttgttccaac tagtagtgtg tgttttaaga 1260aaactctgtt
atctgatttt gtagctctct ctggctttgt gtgt
1304143627DNAArtificial sequencesynthetic sequence 143acaaccctag
ctgcccccga atccatggat cctaacaaat ccagcacccc gccgccgcct 60ccagtcatgg
gtgcccccgt tgcctaccct ccgcctgcgt accctcccgg tgtggccgcc 120ggcgccggcg
cctacccgcc gcagctctac gcaccgccgg ctgctgccgc ggcccagcag 180gcggcggccg
cgcagcagca gcagctgcag atattctggg cggagcagta ccgcgagatc 240gaggccacta
ccgacttcaa gaatcacaac ctcccgctcg cccgcatcaa gaagatcatg 300aaagccgacg
aggacgtccg catgatcgcc gccgaggctc ccgtggtgtt cgcccgggcc 360tgcgagatgt
tcatcctcga gctcacccat cgcggctggg cgcacgccga agagaacaag 420cgccgcacgc
tccagaaatc cgacattgcc gctgccatcg cccgcaccga ggtattcgac 480ttccttgtgg
acatcgttcc gcgcgacgac ggtaaagacg ctgatgcggc ggccgccgca 540gctgccgcgg
ctgccgggat cccgcgcccc gccgccggag taccagccac cgaccctctc 600gcctactact
acgtgcctca gcagtaa
627144649DNAArtificial sequencesynthetic sequence 144gagaaaccct
agcaatggag cccaaatcca ccacccctcc tccgcctcct ccgccccccg 60tgctgggcgc
ccccgtccct tacccgccgg cgggagccta ccccccaccc gtcgggccct 120acgcccacgc
gccgccgctc tacgccccgc ctccccccgc cgccgccgcc gcctccgccg 180ccgccaccgc
cgcctcgcag caggccgccg ccgcgcagct ccagaacttc tgggcggagc 240agtaccgcga
gatcgagcac accaccgact tcaagaacca caacctcccc ctcgcccgca 300tcaagaagat
catgaaggcc gacgaggacg tccgcatgat cgccgccgag gcccccgtcg 360tgttcgccag
ggcgtgcgag atgttcatcc tcgagctcac ccaccgcggc tgggcgcacg 420ccgaggagaa
caagcgccgc acgctccaga agtccgacat cgccgccgcc atcgcccgca 480ccgaggtctt
cgacttcctc gtcgacatcg tgccccgcga cgaggccaag gacgccgagg 540ccgccgccgc
cgttgccgcc gggatccccc accccgccgc cggtttgccc gccaccgacc 600ccatggccta
ctactatgtc cagccgcagt aacattttcc taccgtata
649145638DNAArtificial sequencesynthetic sequence 145tgaccgccgt
aacaccctag gcaatggagc ccaaatccac cacccctccc ccgccccccg 60tgatgggcgc
gcccatcgcg tatcctcccc cgcccggcgc cgcgtacccc gccgggccgt 120acgtgcacgc
gccggcggcc gcgctctacc ctcctcctcc cctgccgccg gcgcccccct 180cctcgcagca
gggcgccgcg gcggcgcacc agcagcagct attctgggcg gagcaatacc 240gcgagatcga
ggccaccacc gacttcaaga accacaacct gccgctcgcc cgcatcaaga 300agatcatgaa
ggccgacgag gacgtgcgca tgatcgccgc cgaggcgccc gtcgtcttct 360cccgcgcctg
cgagatgttc atcctcgagc tcacccaccg cggctgggca cacgccgagg 420agaacaagcg
ccgcacgctg cagaagtccg acatcgccgc cgccgtcgcg cgcaccgagg 480tcttcgactt
cctcgtcgac atcgtgccgc gggacgaggc caaggacgcc gactccgccg 540ccatgggagc
agccgggatc ccgcaccccg ccgccggcct gcccgccgcc gatcccatgg 600gctactacta
cgtccagccg ccgcagtaac gaatttgc
638146778DNAArtificial sequencesynthetic sequence 146gagtggatat
ggaaccatcc cctcagccta tgggtgtcgc tgccggtggg tcacaagtgt 60atcctgcctc
tgcctatccg cctgcagcaa cagtagctcc tgcttctgtt gtatctgctg 120gtttacagtc
agggcagcca ttcccagcca atcctggtca tatgagtgct cagcaccaga 180ttgtctacca
acaagctcaa caattccacc aacagctcca gcagcaacaa caacagcagc 240ttcagcagtt
ctgggttgaa cgcatgactg aaattgaggc gacgactgat ttcaagaacc 300acaacttgcc
acttgcgagg ataaagaaga tcatgaaggc cgatgaagat gttcgcatga 360tctcagctga
agctcctgta gtctttgcaa aagcttgtga gatattcata ctggagctga 420cacttaggtc
gtggatgcac actgaggaga acaagcgccg caccttgcaa aagaatgaca 480ttgcagcagc
gatcactagg actgacattt atgacttctt ggtcgacatt gttcccaggg 540atgagatgaa
ggaggacgga attgggcttc ctagggctgg tctgccaccc atgggagccc 600cagctgatgc
atatccatac tactacatgc cacagcagca ggtgcctggt tctggaatgg 660tttatggtgc
ccagcaaggg cacccagtga cttatttgtg gcaggagcct cagcaacagc 720aggagcaagc
tcctgaagag cagcaatctg catgaaagtg gctgagaata ttgctcag
778147553DNAArtificial sequencesynthetic sequence 147tgggctaacc
aaatgcaaga gatcgagcat accactgatt tcaagaacca cacccttccc 60ctagcccgca
tcaagaagat catgaaagct gatgaagatg tgaggatgat ctctgcggag 120gctcctgtga
tttttgccaa ggcctgtgag atgttcattt tggagctcac tctacgtgct 180tggatccaca
ccgaggagaa caagaggagg accttgcaga agaacgacat cgccgctgcc 240atttccagga
ccgacgtgtt tgatttcctt gtggacataa tcccgaggga cgagctgaaa 300gaagaaggtt
taggcgtgac caaagggacc ataccatcgg tggtgggttc cccgccatac 360tattacttgc
aacaacaggg gatgatgcaa cactggcccc aggagtaaca ccctgatgag 420tcttaaaact
tttccccttt cgtttgtttg gttgtatcgt agtaaggtag ctctgctctg 480ctgggaacca
tttctattgt gttctgtaat gacatgttag tatatcccca gtctatatct 540atggcaatgc
agt
553148806DNAArtificial sequencesynthetic sequence 148gggaagaatg
gatcatcaag ggcatagcca gaacccatct atgggggttg ttggtagtgg 60agctcaatta
gcatatggtt ctaacccata tcagccaggc caaataactg ggccaccggg 120gtctgttgtg
acatcagttg ggaccattca atccaccggt caacctgctg gagctcagct 180tggacagcat
caacttgctt atcagcatat tcatcagcaa caacagcacc agcttcagca 240acagctccaa
caattttggt caagccagta ccaagaaatt gagaaggtta ctgattttaa 300gaaccacagt
cttcccctgg caaggatcaa gaagattatg aaggctgacg aggatgttag 360gatgatatca
gctgaagcac cagtcatttt tgcaagggca tgtgaaatgt tcatattaga 420gttaaccctg
cgctcttgga atcacactga agagaacaaa aggcgaacac ttcagaaaaa 480tgatattgct
gctgctatca caaggactga catctttgat ttcttggttg acattgtgcc 540tcgtgaggac
ttgaaagatg aagtgcttgc atcaatccca agaggaacaa tgcctgttgc 600agggcctgct
gatgcccttc catactgcta catgccgcct cagcatccgt cccaagttgg 660agctgctggt
gtcataatgg gtaagcctgt gatggaccca aacatgtatg ctcagcagtc 720tcacccttac
atggcaccac aaatgtggcc acagccacca gaccaacgac agtcatctcc 780agaacattag
ctgatgtgtc gtggaa
806149925DNAArtificial sequencesynthetic sequence 149ccacgcgtcc
gcgtcaatct ttgagtttgg tagagaaatg gatcaacaag gacaatcatc 60agctatgaac
tatggttcaa acccatatca aaccaacgcc atgaccacta caccaaccgg 120ttcagaccat
ccagcttacc atcagatcca ccagcaacaa caacaacagc tcactcaaca 180gcttcaatct
ttctgggaga ctcaattcaa agagattgag aaaaccactg atttcaagaa 240ccatagcctt
ccattggcaa gaatcaagaa aatcatgaaa gctgatgaag atgtgcgtat 300gatctcggcc
gaggcgcctg ttgtgttcgc cagggcctgc gagatgttta ttctggagct 360tacgttaagg
tcttggaacc atactgagga gaacaagaga aggacgttgc agaagaatga 420tatcgcggct
gcggtgacta gaactgatat ttttgatttt cttgtggata ttgttcctcg 480ggaggatctt
cgtgatgaag tcttgggtgg tgttggtgct gaagctgcta cagctgcggg 540ttatccgtat
ggatacttgc ctcctggaac agctccaatt gggaacccgg gaatggttat 600gggtaacccg
ggcgcgtatc cgccgaaggc gtatatgggt cagccaatgt ggcaacaacc 660aggacctgag
cagcaggatc ctgacaatta gcttggccta ataaactagc cgtctaattc 720gaagctctcc
ccggtggatc tactcaagaa gaagaatgtt aatagaaaac tattgcgaca 780taaaaagttt
ggtgtagtag aataatttct gttttatgat ccatggattt atcaattgtt 840attcagtttg
gtttatcttg tcatcaaact gttttcggtc aatgtaacaa attcataaat 900tgagaattga
acttacaaaa ggcta
925150798DNAArtificial sequencesynthetic sequence 150agctgacatg
gaaccatcct cacagcctca gcctgtgatg ggtgttgcca ctggtgggtc 60acaagcatat
cctcctcctg ctgctgcata tccacctcaa gccatggttc ctggagctcc 120tgctgttgtt
cctcctggct cacagccatc agcaccattc cccactaatc cagctcaact 180cagtgctcag
caccagctag tctaccaaca agcccagcaa tttcatcagc agctgcagca 240acagcaacag
cagcaactcc gtgagttctg ggctaaccaa atggaagaga ttgagcaaac 300aaccgacttc
aagaaccaca gcttgccact cgcaaggata aagaagataa tgaaggctga 360tgaggatgtc
cggatgatct cggcagaagc ccccgttgtc ttcgcaaagg catgcgaggt 420attcatatta
gagttaacat tgaggtcgtg gatgcacacg gaggagaaca agcgccggac 480cttgcagaag
aatgacattg cagctgccat caccaggact gatatctatg acttcttggt 540ggacatagtt
cccagggatg aaatgaaaga agaagggctt gggcttccga gggttggcct 600accgcctaat
gtggggggcg cagcagacac atatccatat tactacgtgc cagcgcagca 660ggggcctgga
tcaggaatga tgtacggtgg acagcaaggt cacccggtga cgtatgtgtg 720gcagcagcct
caagagcaac aggaagaggc ccctgaagag cagcactctc tgccagaaag 780tagctaaaga
tgatacag
7981511407DNAArtificial sequencesynthetic sequence 151atgaactatg
gcacaaaccc ataccaaacc aacccgatga gcaccactgc tgctactgta 60gcaggaggtg
cggcacaacc aggccagctg gcgttccacc agatccatca gcagcagcag 120cagcaacagc
tggcacagca gcttcaagca ttttgggaga accaattcaa agagattgag 180aagactaccg
atttcaagaa ccacagcctt ccccttgcga gaatcaagaa aatcatgaaa 240gcggatgaag
atgtccgtat gatctcggct gaggcgcctg tcgtgtttgc aagggcctgt 300gagatgttca
tcctggagct gacactcagg tcgtggaacc acactgagga gaataagagg 360cggacgttgc
agaagaacga tattgctgct gctgtgacta gaaccgatat ttttgatttc 420cttgtggata
ttgttccccg ggaggatctc cgagatgaag tcttgggaag tattccgagg 480ggcactgtcc
cggaagctgc tgctgctggt tacccgtatg gatacttgcc tgcaggaact 540gctccaatag
gaaatccggg aatggttatg ggtaatcccg gtggtgcgta tccacctaat 600ccttatatgg
gtcaaccaat gtggcaacaa caggcacctg accaacctga ccaggaaaat 660gcggccgctg
ccgctgcggc agcggccatg gtgagcaagg gcgaggagct gttcaccggg 720gtggtgccca
tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc 780ggcgagggcg
agggcgatgc cacctacggc aagctgaccc tgaagttcat ctgcaccacc 840ggcaagctgc
ccgtgccctg gcccaccctc gtgaccacct tcggctacgg cctgcagtgc 900ttcgcccgct
accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa 960ggctacgtcc
aggagcgcac catcttcttc aaggacgacg gcaactacaa gacccgcgcc 1020gaggtgaagt
tcgagggcga caccctggat aaccgaatcg agctgaaggg catcgacttc 1080aaggaggacg
gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc 1140tatatcatgg
ccgacaagca gaagaacggc atcaaggtga acttcaagat ccgccacaac 1200atcgaggacg
gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac 1260ggccccgtgg
tgctgcccga caaccactac ctgagctacc agtccgccct gagcaaagac 1320cccaacgaga
agcgcgatca catggtcctg ctggagttcg tgaccgccgc cgggatcact 1380ctcggcatgg
acgagctgta caagtaa
1407152760DNAArtificial sequencesynthetic sequence 152agaggacatg
gagccatcat cacaacctca gccggcaatt ggtgttgttg ctggtggatc 60acaagtgtac
cctgcatacc ggcctgcagc aacagtgcct acagctcctg ctgtcattcc 120tgccggttca
cagccagcac cgtcgttccc tgccaaccct gatcaactga gtgctcagca 180ccagctcgtc
tatcagcaag cccagcaatt tcaccagcag cttcagcagc agcaacagcg 240tcaactccag
cagttttggg ctgaacgtct ggtcgatatt gaacaaacta ctgacttcaa 300gaaccacagc
ttgccacttg ctaggataaa gaagatcatg aaggcagatg aggacgttcg 360catgatctcc
gcagaggctc ctgtgatctt tgcgaaagca tgtgagatat tcatactgga 420gctgaccctg
agatcatgga tgcacacgga ggagaacaag cgccgtacct tgcagaagaa 480tgacatagca
gctgccatca ccaggacgga tatgtacgat ttcttggtag atatagttcc 540cagggatgac
ttgaaggagg agggagttgg gctccctagg gctggattgc cgcccttggg 600tgtccctgct
gactcatatc cgtatggcta ctatgtgcca cagcagcagg tcccaggtgc 660aggaatagcg
tatggtggtc agcaaggtca tccggggtat ctgtggcagg atcctcagga 720acagcaggaa
gagcctcctg cagagcagca aagtgattaa
760153847DNAArtificial sequencesynthetic sequence 153agtaagtcat
catggataaa tcagagcaga ctcaacagca gcagcagcaa caacagcatg 60tgatgggagt
tgccgcaggg gctagccaaa tggcctattc ttctcactac ccgactgctt 120ccatggtggc
ttctggcacg cccgctgtaa ctgctccttc cccaactcag gctccagctg 180ccttctctag
ttctgctcac cagcttgcat accagcaagc acagcatttc caccaccaac 240agcagcaaca
ccaacaacag cagcttcaaa tgttctggtc aaaccaaatg caagaaattg 300agcaaacaat
tgactttaaa aaccatagcc ttcctcttgc tcggataaaa aagataatga 360aagctgatga
agatgtccgg atgatttcag cagaagctcc ggtcatattt gcaaaagctt 420gtgaaatgtt
catattagag ttgacgttgc gatcttggat ccacacagaa gagaacaaga 480ggagaactct
acaaaagaat gatatagcag ctgctatttc gagaaacgat gtttttgatt 540tcttggttga
tattattcca agagatgagt tgaaagagga aggacttgga ataaccaagg 600ctactattcc
gttagtgggt tctccagctg atatgccata ttactatgtc cctccacagc 660atcctgttgt
aggaccacct gggatgatca tgggcaagcc cattggcgct gagcaagcaa 720cactatattc
tacacagcag cctcgacctc ctgtggcgtt catgccatgg cctcatacac 780aacccctgca
acagcagcca ccccaacatc aacaaacaga ctcatgatga ctatgcaatt 840caattag
847154786DNAArtificial sequencesynthetic sequence 154aacatcaggg
gatgggcgtt gccacaggtg ctagccaaat ggcctattct tctcactacc 60cgactgctcc
catggtggct tctggcacgc ctgctgtagc tgttccttcc ccaactcagg 120ctccagctgc
cttctctagt tctgctcacc agcttgcata ccagcaagca cagcatttcc 180accaccaaca
gcagcaacac caacaacagc agcttcaaat gttctggtca aaccaaatgc 240aagaaattga
gcaaacaatt gactttaaaa accacagtct tcctcttgct cggataaaaa 300agataatgaa
agctgatgaa gatgtccgga tgatttctgc agaagctcca gtcatatttg 360caaaagcatg
tgaaatgttc atattagagt tgacgttgag atcttggatc cacacagaag 420agaacaagag
gagaactcta caaaagaatg atatagcagc tgctatttcg agaaacgatg 480tttttgattt
cttggttgat attatcccaa gagatgagtt gaaagaggaa ggacttggaa 540taaccaaggc
tactattcca ttggtgaatt ctccagctga tatgccatat tactatgtcc 600ctccacagca
tcctgttgta ggacctcctg ggatgatcat gggcaagccc gttggtgctg 660agcaagcaac
gctgtattct acacagcagc ctcgacctcc catggcgttc atgccatggc 720cccatacaca
accccagcaa cagcagccac cccaacatca acaaacagac tcatgatgac 780catgca
786155748DNAArtificial sequencesynthetic sequence 155ccgaccaatg
gataccaaca accagcaacc acctccctcc gccgccggaa tccctcctcc 60accacctgga
accaccatct ccgccgcagg aggaggagct tcttaccacc accttctcca 120acaacaacaa
caacagctcc aactattctg gacctaccaa cgccaagaga tcgaacaagt 180taacgatttc
aaaaaccatc agcttccact agctaggata aaaaagatca tgaaagccga 240tgaagatgtt
cgtatgatct ccgcagaagc accgattctc ttcgcgaaag cttgtgagct 300tttcattctc
gagctcacga tcagatcttg gcttcacgct gaggagaata aacgtcgtac 360gcttcagaaa
aacgatatcg ctgctgcgat tactaggact gatatcttcg atttccttgt 420tgatattgtt
cctagagatg agattaagga cgaagccgca gtcctcggtg gtggaatggt 480ggtggctcct
accgcgagcg gcgtgcctta ctattatccg ccgatgggac aaccagctgg 540tcctggaggg
atgatgattg ggagaccagc tatggatccg aatggtgttt atgtccagcc 600tccgtctcag
gcgtggcaga gtgtttggca gacttcgacg gggacgggag atgatgtctc 660ttatggtagt
ggtggaagtt ccggtcaagg gaatctcgac ggccaaggtt aagctcagag 720tattccagat
gatgcttgac ctgcttga
748156750DNAArtificial sequencesynthetic sequence 156attgggggaa
tggagaccaa caaccagcaa caacaacaac aaggagctca agcccaatcg 60ggaccctacc
ccgtcgccgg cgccggcggc agtgcaggtg caggtgcagg cgctcctccc 120cctttccagc
accttctcca gcagcagcag cagcagctcc agatgttctg gtcttaccag 180cgtcaagaaa
tcgagcacgt gaacgacttt aagaatcacc agctccctct tgcccgcatc 240aagaagatca
tgaaggccga cgaggatgtc cgcatgatct ccgccgaggc ccccatcctc 300ttcgccaagg
cctgcgagct cttcatcctc gagctcacca tccgctcctg gctccacgcc 360gaggagaaca
agcgccgcac cctccagaag aacgacatcg ccgccgccat cacccgcacc 420gacattttcg
acttcctcgt tgatattgtc ccccgcgacg agatcaagga cgacgctgct 480cttgtggggg
ccaccgccag tggggtgcct tactactacc cgcccattgg acagcctgcc 540gggatgatga
ttggccgccc cgccgtcgat cccgccaccg gggtttatgt ccagccgccc 600tcccaggcat
ggcagtccgt ctggcagtcc gctgccgagg acgcttccta tggcaccggc 660ggggccggtg
cccagcggag ccttgatggc cagagttgag tgacatcgat gccgatgatg 720gacagtcagg
agttatgaag attctgaact
750157768DNAArtificial sequencesynthetic sequence 157aatccatgga
caaccagccg ctgccctact ccacaggcca gccccctgcc cccggaggag 60ccccggtggc
gggcatgcct ggcgcggccg gcctcccacc cgtgccgcac caccacctgc 120tccagcagca
gcaggcccag ctgcaggcgt tctgggcgta ccagcgccag gaggcggagc 180gcgcgtccgc
gtcggacttc aagaaccacc agctgcctct ggcccggatc aagaagatca 240tgaaggccga
cgaggacgtg cgcatgatct ccgccgaggc gcccgtgctg ttcgccaagg 300cctgcgagct
cttcatcctc gagctcacta tccgctcctg gctccacgcc gaggagaaca 360agcgccgcac
cctgcagcgc aacgacgtcg ccgcggccat cgcgcgcacc gacgtcttcg 420atttcctcgt
cgacatcgtg ccccgcgagg aggccaagga ggagcccggc agcgccctcg 480gcttcgcggc
gcctgggacc ggcgtcgtcg gggctggcgc cccgggcggg gcgccagccg 540ccgggatgcc
ctactactat ccgccgatgg ggcagccggc gccgatgatg ccggcctggc 600atgttccggc
ctgggacccg gcctggcagc aaggggcagc ggatgtcgat cagagcggca 660gcttcagcga
ggaaggacaa gggtttggag caggccatgg cggcgccgct agcttccctc 720ctgcgcctcc
gacctccgag tgatcgatcg gcgcgtctct tggtcctg
768158800DNAArtificial sequencesynthetic sequence 158gatcttttga
tccaatcaca aggcaaagat ccaatggaca ataacaacaa caacaacaac 60cagcaaccac
caccaacctc cgtctatcca cctggctccg ccgtcacaac cgtaatccct 120cctccaccat
ctggatctgc atcaatagtc accggaggag gagcgacata ccaccacctc 180ctccagcaac
aacagcaaca gcttcaaatg ttctggacat accagagaca agagatcgaa 240caggtaaacg
atttcaaaaa ccatcagctc cctctagctc gtatcaaaaa aatcatgaaa 300gctgatgaag
atgtgcgtat gatctccgcc gaagcaccga ttctcttcgc gaaagcttgt 360gagcttttca
ttctcgaact tacgattaga tcttggcttc acgctgaaga gaacaaacgt 420cgtacgcttc
agaaaaacga tatcgctgct gcgattacta gaaccgatat cttcgatttc 480cttgttgata
ttgttcctag ggaagagatc aaggaagagg aagatgcagc atcggctctt 540ggtggaggag
gtatggttgc tcccgccgcg agcggtgttc cttattatta tccaccgatg 600ggacaaccgg
cggttcctgg agggatgatg attggaagac cggcgatgga tcctagcggt 660gtttatgctc
agcctccttc tcaggcatgg caaagcgttt ggcagaattc agctggtggt 720ggtgatgatg
tgtcttatgg aagtggagga agtagcggcc atggtaatct cgatagccaa 780gggtaagtga
attctagtag
800159762DNAArtificial sequencesynthetic sequence 159ggtgacaatg
gacaaccagc agctacccta cgccggtcag ccggcggccg caggcgccgg 60agccccggtg
ccgggcgtgc ctggcgcggg cgggccgccg gcggtgccgc accaccacct 120gctccagcag
cagcaggcgc agctgcaggc gttctgggcg taccagcggc aggaggcgga 180gcgcgcgtcg
gcgtcggact tcaagaacca ccagctgccg ctggcgcgga tcaagaagat 240catgaaggcg
gacgaggacg tgcgcatgat ctcggcggag gcgcccgtgc tgttcgccaa 300ggcgtgcgag
ctcttcatcc tggagctcac catccgctcg tggctgcacg ccgaggagaa 360caagcgccgc
accctgcagc gcaacgacgt cgccgccgcc atcgcgcgca ccgacgtgtt 420cgacttcctc
gtcgacatcg tgccgcggga ggaggccaag gaggagcccg gcagcgcgct 480cgggttcgcg
gcgggagggc ccgccggcgc cgttggagcg gccggccccg ccgcggggct 540gccgtactac
tacccgccga tggggcagcc ggcgccgatg atgccggcgt ggcatgttcc 600ggcgtgggac
ccggcgtggc agcaaggagc agcgccggat gtggaccagg gcgccgccgg 660cagcttcagc
gaggaagggc agcaaggttt tgcaggccat ggcggtgcgg cagctagctt 720ccctcctgca
cctccaagct ccgaatagtg atgatccata tg
762160734DNAArtificial sequencesynthetic sequence 160tctcacttcc
aacatccaaa tccctagaaa ttgtaaatgg ctgagaacaa caacaacaac 60ggcgacaaca
tgaacaacga caaccaccag caaccaccgt cgtactcgca gctgccgccg 120atggcatcat
ccaaccctca gttacgtaat tactggattg agcagatgga aaccgtctcg 180gatttcaaaa
accgtcagct tccattggct cgaattaaga agatcatgaa ggctgatcca 240gatgtgcaca
tggtctccgc agaggctccg atcatcttcg caaaggcttg cgaaatgttc 300atcgttgatc
tcacgatgcg gtcgtggctc aaagccgagg agaacaaacg ccacacgctt 360cagaaatcgg
atatctccaa cgcagtggct agctctttca cctacgattt ccttcttgat 420gttgtcccta
aggacgagtc tatcgccacc gctgatcctg gctttgtggc tatgccacat 480cctgacggtg
gaggagtacc gcaatattat tatccaccgg gagtggtgat gggaactcct 540atggttggta
gtggaatgta cgcgccatcg caggcgtggc cagcagcggc tggtgacggg 600gaggatgatg
ctgaggataa tggaggaaac ggcggcggaa attgaagtgt agatttaggg 660tttgtaaccg
cctatgtggg aaatttgaaa tttggtggtg tttattaggg ttcttcaatt 720cgtcggattt
gctt
734161668DNAArtificial sequencesynthetic sequence 161ataacaagcc
tagaacacta gaaacttcaa aaaagaaaaa aatcttatgg agaacaacaa 60cggcaacaac
cagctgccac cgaaaggtaa cgagcaactg aagagtttct ggtcaaaaga 120gatggaaggt
aacttagatt tcaaaaatca cgaccttcct ataactcgta tcaagaagat 180tatgaagtat
gatccggatg tgactatgat agctagtgag gctccaatcc tcctctcgaa 240agcatgtgag
atgtttatca tggatctcac gatgcgttcg tggctccatg ctcaggaaag 300caaacgagtc
acgctacaga aatctaatgt cgatgccgca gtggctcaaa ctgttatctt 360tgatttcttg
cttgatgatg acattgaggt aaagagagag tctgttgccg ccgctgctga 420tcctgtggcc
atgccaccta ttgacgatgg agagctgcct ccaggaatgg taattggaac 480tcctgtttgt
tgtagtcttg gaatccacca accacaacca caaatgcagg catggcctgg 540agcttggacc
tcggtgtctg gtgaggagga agaagcgcgt gggaaaaaag gaggtgacga 600cggaaactaa
taagtggaat acgttttagg gtattttcaa gggaatatgt agtaaatagt 660catggatc
668162800DNAArtificial sequencesynthetic sequence 162aatagttggg
ctgatttcgt agcccactta atcagccttt aaatatggaa accctagcct 60agaaagtgaa
caagaaaaac gtaaagatca aaatggaaga gaacaacggc aacaacaacc 120actacctgcc
gcaaccatcg tcttcccaac tgccgccgcc accattgtat tatcaatcaa 180tgccgttgcc
gtcatattca ctgccgctgc cgtactcacc gcagatgcgg aattattgga 240ttgcgcagat
gggaaacgca actgatgtta agcatcatgc gtttccacta accaggataa 300agaaaatcat
gaagtccaac ccggaagtga acatggtcac tgcagaggct ccggtcctta 360tatcgaaggc
ctgtgagatg ctcattcttg atctcacaat gcgatcgtgg cttcataccg 420tggagggcgg
tcgccaaact ctcaagagat ccgatacgct cacgagatcc gatatctccg 480ccgcaacgac
tcgtagtttc aaatttacct tccttggcga cgttgtccca agagaccctt 540ccgtcgttac
cgatgatccc gtgctacatc cggacggtga agtacttcct ccgggaacgg 600tgataggata
tccggtgttt gattgtaatg gtgtgtacgc gtcaccgcca cagatgcagg 660agtggccggc
ggtgcctggt gacggagagg aggcagctgg ggaaattgga ggaagcagcg 720gcggtaattg
aaaagtgttg attgggtttt agggttgtaa tgcttttgtg agaatttgta 780tctctatgga
gtcatgtttg
800163736DNAArtificial sequencesynthetic sequence 163taggttgaga
ttcatatatg taaagagatc acttcttaat cttatcctac catatcttat 60atacgcttaa
ttttccttta tatatgcaaa cctccacata aaaatatctc aaacccaaac 120acttcaaaca
aaaaaaaaat ggagaacaac aacaacaacc accaacagcc accgaaagat 180aacgagcaac
taaagagttt ctggtcaaag gggatggaag gtgacttgaa tgtcaagaat 240cacgagttcc
ccatctctcg tatcaagagg ataatgaagt ttgatccgga tgtgagtatg 300atcgctgctg
aggctccaaa tctcttatct aaggcttgtg aaatgtttgt catggacctc 360acgatgcgtt
catggctcca tgctcaagag agcaaccgac tcacgatacg gaaatctgat 420gttgatgccg
tagtgtctca aaccgtcatc tttgatttct tgcgtgatga tgtccctaag 480gacgagggag
agcccgttgt cgccgctgct gatcctgtgg acgatgttgc tgatcatgtg 540gctgtgccag
atcttaacaa tgaagaactg ccgccgggaa cggtgatagg aactccggtt 600tgttacggtt
taggaataca cgcgccacac ccgcagatgc ctggagcttg gaccgaggag 660gatgcgactg
gggcaaatgg aggaaacggt gggaattaat atttggattg ggttttgtaa 720ccgctgttgt
gagaac
736164779DNAArtificial sequencesynthetic sequence 164acccttgttc
ttgccaaact ctacatcttc aaagattttt catcatctgt tgtgaaatat 60aacatgagga
ggccaaagtc atctcacgtc aggatggaac ctgttgcgcc tcgttcacat 120aacacgatgc
caatgcttga tcaatttcga tctaatcatc ctgaaacaag caagatcgag 180ggggtctctt
cgttggacac agctctgaag gtgttttgga ataatcaaag ggagcagcta 240ggaaactttg
caggccaaac tcatttgccg ctatctaggg tcagaaagat tttgaaatct 300gatcctgaag
tcaagaagat aagctgtgat gttcctgctt tgttttcgaa agcctgtgaa 360tacttcattc
tagaggtaac attacgagct tggatgcata ctcaatcatg cactcgtgag 420accatccggc
gttgtgatat cttccaggcc gtaaagaact caggaactta tgatttcctg 480attgatcgtg
tcccttttgg accgcactgt gtcacccatc agggtgtgca acctcctgct 540gaaatgattt
tgccggatat gaatgttcca atcgatatgg accagattga ggaggagaat 600atgatggaag
agcgctctgt cgggtttgac ctcaactgtg atctccagtg aacatgaagc 660tgctctggaa
gacaaaaact tgaagaagag aagaaatctg aagaggaatc acccaacaac 720tctatgttat
gttcacctta taatagttta tcataaactc attcactaaa ctatgtgta
779165715DNAArtificial sequencesynthetic sequence 165cattgtgtgg
aaagatataa cgtgtttgat tttctgaggg aagttgtgag taaggtgcct 60gactatggcc
attcccaagg gcaaggacat ggtgatgtta ccatggatga tcgcagcatc 120tccaagagaa
ggaagcccat cagcgatgaa gtgaatgaca gtgacgagga atataagaaa 180agcaaaacgc
aagagatagg gagtgctaag accagtggca ggggtggtag aggaagaggg 240cgaggaagag
gtcgtggtgg acgagctgca aaagcagccg aaagagaggg tctcaaccgc 300gagatggaag
tagaagccgc caattctgga cagccaccac cagaagacaa tgtcaagatg 360catgcgtcag
agtcatcacc acaagaggat gagaagaaag gcatcgacgg cacagcagca 420tcgaacgaag
acaccaagca acaccttcaa agtcccaaag aaggcattga ctttgatctc 480aacgctgaat
ccctcgacct aaacgagacc aaactggcac cagccacagg cacaaccaca 540accacaactg
cagcaacaga ctctgaggag tattcgggct ggcctatgat ggacataagc 600aaaatggatc
cagcacagct tgctagtctg ggtaagagga tagacgagga tgaggaagat 660tatgacgaag
aaggctaagt cataacagca ctataggata tatagagtag cagcg
715166738DNAArtificial sequencesynthetic sequence 166tcgaccgttc
ttctcaatct caccaatcgg tttaagctga aaacccgaat tagcaaaatc 60ttcgttcggg
ctgttttggt taatccggtt tacatgtttt ctcattgctc attttcattt 120tcccgccgtg
acagagcgcg taaatctcaa aaccctaaaa atgtcgaaca tatacaattc 180attaccttaa
tcagattttc tcaacagaat caaaatcaaa atccatggag gaagaagaag 240gatcaatccg
accagagttt ccaatcggaa gagtaaagaa gataatgaaa ctggacaaag 300acatcaacaa
aatcaactca gaagctcttc acgtcatcac ttactccacc gaactcttcc 360tccacttcct
cgccgagaaa tctgctgttg ttacggcgga gaagaagcgt aagactgtta 420atctcgatca
tttaagaatc gccgtgaaaa gacaccaacc tactagtgat ttcctcttag 480actcgcttcc
gttgccggct cagcctgtca aacataccaa atcggtttcc gacaagaaga 540ttccggcgcc
gccaattggg actcgtcgta tcgatgattt cttcagtaaa gggaaagcaa 600agactgattc
agcctaaagt aaaatttctc attttgttca caattgcaaa ttttactctg 660ttctcaaatc
aaaatcttgt tttgctaaaa gtgtagtgag aatgtatgga tcatgaggaa 720cttttatagg
aagcggcc
7381671461DNAArtificial sequencesynthetic sequence 167ggcgaaaggg
tgaaacatac tgtagttcta aaaaattaat ggtgtcgtca aagaaaccca 60aggagaagaa
ggcgaggagc gatgtcgtcg tcaataaagc gagtggtcgg agtaaacgca 120gctccggttc
cagaacgaag aagacgtcga acaaggttaa cattgtgaag aagaagccgg 180agatttacga
gatctcagaa tcatcgagca gtgactctgt ggaagaagca ataagaggcg 240atgaggcgaa
gaaaagtaac ggcgtcgtga gcaagagggg taacggaaag agtgtaggaa 300ttccgacgaa
gacgagtaaa aatcgagaag aggacgatgg aggcgcggaa gatgctaaga 360tcaagtttcc
gatgaatcgg attcggcgga tcatgagaag cgataattct gctcctcaga 420ttatgcagga
tgctgtattt cttgtcaaca aagccacggt atagtactaa ttagacatat 480aaatttagct
tgaggaactt aatttcacat ggtttttgat gaatttggga gtatcaattg 540ctagtcagtg
ttaattgggc gttataatct cgcaaattgc tacagtaatg agattgtttc 600tgttaattaa
gccgggaatt aacgttattg cttcatctcc atgtgtgttt gatgaaaccg 660tagttactgt
gcttgattgt cataggttta gcttttacat ccagaacttg tagacaccta 720acacatgaga
aagtccttat atatgattta ggttcatatt ttcaaagctt aagtgatgag 780tgtttaattt
tcctgtattg gaacttggca ttgttttttc tttcttttga tttcatcttg 840tgttcatcga
aattgatgtt cattgcgttt acagtacatt aactggtttt tgtgattgaa 900ggagatgttc
attgagcggt tttctgaaga agcttatgat agttccgtca aggacaaaaa 960gaaattcatc
cactacaaac acctctgtaa gctctaatct cgtccctatt tgccaatatc 1020tggttacctc
aatactgaat cccatgtcga aaatctcatg ctgctgcacc aattgctgaa 1080cttaggattt
ctggcttctg cacaagggcc agtagttagt cttaggaaga gtttagataa 1140tgagttaatc
cgttcgtatc acttgcaaga tttgttgcac tcctaacata attgatgaca 1200ctgtcatttc
tactcgttgg cagcatccgt agtgagtaac gaccagagat acgagttcct 1260tgcaggtact
taataacctc tgaagtattc gttttatgag ttccatgtgg tttacgaaca 1320gcattttaat
acctgtaata tcttgaatgc agatagtgtt cccgagaaac ttaaagcaga 1380ggccgcgttg
gaggaatggg aaagaggcat gacagatgca ggctgaaata aatccggttg 1440gaatcgaact
gaaccatttg g
1461168747DNAArtificial sequencesynthetic sequence 168gcggccgctg
ccgctgcggc agcggccatg gtgagcaagg gcgaggagct gttcaccggg 60gtggtgccca
tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc 120ggcgagggcg
agggcgatgc cacctacggc aagctgaccc tgaagttcat ctgcaccacc 180ggcaagctgc
ccgtgccctg gcccaccctc gtgaccacct tcggctacgg cctgcagtgc 240ttcgcccgct
accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa 300ggctacgtcc
aggagcgcac catcttcttc aaggacgacg gcaactacaa gacccgcgcc 360gaggtgaagt
tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc 420aaggaggacg
gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc 480tatatcatgg
ccgacaagca gaagaacggc atcaaggtga acttcaagat ccgccacaac 540atcgaggacg
gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac 600ggccccgtgc
tgctgcccga caaccactac ctgagctacc agtccgccct gagcaaagac 660cccaacgaga
agcgcgatca catggtcctg ctggagttcg tgaccgccgc cgggatcact 720ctcggcatgg
acgagctgta caagtaa
7471694856DNAArtificial sequencesynthetic sequence 169aagcttnnnn
ctgcagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nntcggattc 60cattgcccag
ctatctgtca ctttattgtg aagatagtga aaaagaaggt ggctcctaca 120aatgccatca
ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc 180ccaaagatgg
acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt 240cttcaaagca
agtggattga tgtgatggtc cgattgagac ttttcaacaa agggtaatat 300ccggaaacct
cctcggattc cattgcccag ctatctgtca ctttattgtg aagatagtgg 360aaaaggaagg
tggctcctac aaatgccatc attgcgataa aggaaaggcc atcgttgaag 420atgcctctgc
cgacagtggt cccaaagatg gacccccacc cacgaggagc atcgtggaaa 480aagaagacgt
tccaaccacg tcttcaaagc aagtggattg atgtgatatc tccactgacg 540taagggatga
cgcacaatcc cactatcctt cgcaagaccc ttcctctata taaggaagtt 600catttcattt
ggagaggaca cgctgacaag ctgactctag cagatctggt accgtcgaat 660cacaagtttg
tacaaaaaag ctgaacgaga aacgtaaaat gatataaata tcaatatatt 720aaattagatt
ttgcataaaa aacagactac ataatactgt aaaacacaac atatccagtc 780actatggcgg
ccgcattagg caccccaggc tttacacttt atgcttccgg ctcgtataat 840gtgtggattt
tgagttagga tccgtcgaga ttttcaggag ctaaggaagc taaaatggag 900aaaaaaatca
ctggatatac caccgttgat atatcccaat ggcatcgtaa agaacatttt 960gaggcatttc
agtcagttgc tcaatgtacc tataaccaga ccgttcagct ggatattacg 1020gcctttttaa
agaccgtaaa gaaaaataag cacaagtttt atccggcctt tattcacatt 1080cttgcccgcc
tgatgaatgc tcatccggaa ttccgtatgg caatgaaaga cggtgagctg 1140gtgatatggg
atagtgttca cccttgttac accgttttcc atgagcaaac tgaaacgttt 1200tcatcgctct
ggagtgaata ccacgacgat ttccggcagt ttctacacat atattcgcaa 1260gatgtggcgt
gttacggtga aaacctggcc tatttcccta aagggtttat tgagaatatg 1320tttttcgtct
cagccaatcc ctgggtgagt ttcaccagtt ttgatttaaa cgtggccaat 1380atggacaact
tcttcgcccc cgttttcacc atgggcaaat attatacgca aggcgacaag 1440gtgctgatgc
cgctggcgat tcaggttcat catgccgtct gtgatggctt ccatgtcggc 1500agaatgctta
atgaattaca acagtactgc gatgagtggc agggcggggc gtaaagatct 1560ggatccggct
tactaaaagc cagataacag tatgcgtatt tgcgcgctga tttttgcggt 1620ataagaatat
atactgatat gtatacccga agtatgtcaa aaagaggtat gctatgaagc 1680agcgtattac
agtgacagtt gacagcgaca gctatcagtt gctcaaggca tatatgatgt 1740caatatctcc
ggtctggtaa gcacaaccat gcagaatgaa gcccgtcgtc tgcgtgccga 1800acgctggaaa
gcggaaaatc aggaagggat ggctgaggtc gcccggttta ttgaaatgaa 1860cggctctttt
gctgacgaga acaggggctg gtgaaatgca gtttaaggtt tacacctata 1920aaagagagag
ccgttatcgt ctgtttgtgg atgtacagag tgatattatt gacacgcccg 1980ggcgacggat
ggtgatcccc ctggccagtg cacgtctgct gtcagataaa gtctcccgtg 2040aactttaccc
ggtggtgcat atcggggatg aaagctggcg catgatgacc accgatatgg 2100ccagtgtgcc
ggtctccgtt atcggggaag aagtggctga tctcagccac cgcgaaaatg 2160acatcaaaaa
cgccattaac ctgatgttct ggggaatata aatgtcaggc tcccttatac 2220acagccagtc
tgcaggtcga ccatagtgac tggatatgtt gtgttttaca gtattatgta 2280gtctgttttt
tatgcaaaat ctaatttaat atattgatat ttatatcatt ttacgtttct 2340cgttcagctt
tcttgtacaa agtggtgatg gccgctctag acaggcctcg taccggatcc 2400tctagctaga
gctttcgttc gtatcatcgg tttcgacaac gttcgtcaag ttcaatgcat 2460cagtttcatt
gcgcacacac cagaatccta ctgagtttga gtattatggc attgggaaaa 2520ctgtttttct
tgtaccattt gttgtgcttg taatttactg tgttttttat tcggttttcg 2580ctatcgaact
gtgaaatgga aatggatgga gaagagttaa tgaatgatat ggtccttttg 2640ttcattctca
aattaatatt atttgttttt tctcttattt gttgtgtgtt gaatttgaaa 2700ttataagaga
tatgcaaaca ttttgttttg agtaaaaatg tgtcaaatcg tggcctctaa 2760tgaccgaagt
taatatgagg agtaaaacac ttgtagttgt accattatgc ttattcacta 2820ggcaacaaat
atattttcag acctagaaaa gctgcaaatg ttactgaata caagtatgtc 2880ctcttgtgtt
ttagacattt atgaactttc ctttatgtaa ttttccagaa tccttgtcag 2940attctaatca
ttgctttata attatagtta tactcatgga tttgtagttg agtatgaaaa 3000tattttttaa
tgcattttat gacttgccaa ttgattgaca acatgcatca atcgacctgc 3060agccactcga
agcggccggc cgccactcga gatcatgagc ggagaattaa gggagtcacg 3120ttatgacccc
cgccgatgac gcgggacaag ccgttttacg tttggaactg acagaaccgc 3180aacgttgaag
gagccactca gccgcgggtt tctggagttt aatgagctaa gcacatacgt 3240cagaaaccat
tattgcgcgt tcaaaagtcg cctaaggtca ctatcagcta gcaaatattt 3300cttgtcaaaa
atgctccact gacgttccat aaattcccct cggtatccaa ttagagtctc 3360atattcactc
tcaatccaaa taatctgcac cggatctgga tcgtttcgca tgattgaaca 3420agatggattg
cacgcaggtt ctccggccgc ttgggtggag aggctattcg gctatgactg 3480ggcacaacag
acaatcggct gctctgatgc cgccgtgttc cggctgtcag cgcaggggcg 3540cccggttctt
tttgtcaaga ccgacctgtc cggtgccctg aatgaactgc aggacgaggc 3600agcgcggcta
tcgtggctgg ccacgacggg cgttccttgc gcagctgtgc tcgacgttgt 3660cactgaagcg
ggaagggact ggctgctatt gggcgaagtg ccggggcagg atctcctgtc 3720atctcacctt
gctcctgccg agaaagtatc catcatggct gatgcaatgc ggcggctgca 3780tacgcttgat
ccggctacct gcccattcga ccaccaagcg aaacatcgca tcgagcgagc 3840acgtactcgg
atggaagccg gtcttgtcga tcaggatgat ctggacgaag agcatcaggg 3900gctcgcgcca
gccgaactgt tcgccaggct caaggcgcgc atgcccgacg gcgaggatct 3960cgtcgtgacc
catggcgatg cctgcttgcc gaatatcatg gtggaaaatg gccgcttttc 4020tggattcatc
gactgtggcc ggctgggtgt ggcggaccgc tatcaggaca tagcgttggc 4080tacccgtgat
attgctgaag agcttggcgg cgaatgggct gaccgcttcc tcgtgcttta 4140cggtatcgcc
gctcccgatt cgcagcgcat cgccttctat cgccttcttg acgagttctt 4200ctgagcggga
ctctggggtt cgaaatgacc gaccaagcga cgcccaacct gccatcacga 4260gatttcgatt
ccaccgccgc cttctatgaa aggttgggct tcggaatcgt tttccgggac 4320gccggctgga
tgatcctcca gcgcggggat ctcatgctgg agttcttcgc ccacgggatc 4380tctgcggaac
aggcggtcga aggtgccgat atcattacga cagcaacggc cgacaagcac 4440aacgccacga
tcctgagcga caatatgatc gggcccggcg tccacatcaa cggcgtcggc 4500ggcgactgcc
caggcaagac cgagatgcac cgcgatatct tgctgcgttc ggatattttc 4560gtggagttcc
cgccacagac ccggatgatc cccgatcgtt caaacatttg gcaataaagt 4620ttcttaagat
tgaatcctgt tgccggtctt gcgatgatta tcatataatt tctgttgaat 4680tacgttaagc
atgtaataat taacatgtaa tgcatgacgt tatttatgag atgggttttt 4740atgattagag
tcccgcaatt atacatttaa tacgcgatag aaaacaaaat atagcgcgca 4800aactaggata
aattatcgcg cgcggtgtca tctatgttac tagatcgggc tcgaga
48561701394DNAArtificial sequencesynthetic sequence 170aagcttnnnn
ctgcagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nntcggattc 60cattgcccag
ctatctgtca ctttattgtg aagatagtga aaaagaaggt ggctcctaca 120aatgccatca
ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc 180ccaaagatgg
acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt 240cttcaaagca
agtggattga tgtgatggtc cgattgagac ttttcaacaa agggtaatat 300ccggaaacct
cctcggattc cattgcccag ctatctgtca ctttattgtg aagatagtgg 360aaaaggaagg
tggctcctac aaatgccatc attgcgataa aggaaaggcc atcgttgaag 420atgcctctgc
cgacagtggt cccaaagatg gacccccacc cacgaggagc atcgtggaaa 480aagaagacgt
tccaaccacg tcttcaaagc aagtggattg atgtgatatc tccactgacg 540taagggatga
cgcacaatcc cactatcctt cgcaagaccc ttcctctata taaggaagtt 600catttcattt
ggagaggaca cgctgacaag ctgactctag cagatctggt accgtcgacg 660gtgagctccg
cggccgctct agacaggcct cgtaccggat cctctagcta gagctttcgt 720tcgtatcatc
ggtttcgaca acgttcgtca agttcaatgc atcagtttca ttgcgcacac 780accagaatcc
tactgagttt gagtattatg gcattgggaa aactgttttt cttgtaccat 840ttgttgtgct
tgtaatttac tgtgtttttt attcggtttt cgctatcgaa ctgtgaaatg 900gaaatggatg
gagaagagtt aatgaatgat atggtccttt tgttcattct caaattaata 960ttatttgttt
tttctcttat ttgttgtgtg ttgaatttga aattataaga gatatgcaaa 1020cattttgttt
tgagtaaaaa tgtgtcaaat cgtggcctct aatgaccgaa gttaatatga 1080ggagtaaaac
acttgtagtt gtaccattat gcttattcac taggcaacaa atatattttc 1140agacctagaa
aagctgcaaa tgttactgaa tacaagtatg tcctcttgtg ttttagacat 1200ttatgaactt
tcctttatgt aattttccag aatccttgtc agattctaat cattgcttta 1260taattatagt
tatactcatg gatttgtagt tgagtatgaa aatatttttt aatgcatttt 1320atgacttgcc
aattgattga caacatgcat caatcgacct gcagccactc gaagcggccg 1380gccgccactc
gaga
13941713158DNAArtificial sequencesynthetic sequence 171aagcttnnnn
ctgcagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nntcggattc 60cattgcccag
ctatctgtca ctttattgtg aagatagtga aaaagaaggt ggctcctaca 120aatgccatca
ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc 180ccaaagatgg
acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt 240cttcaaagca
agtggattga tgtgatggtc cgattgagac ttttcaacaa agggtaatat 300ccggaaacct
cctcggattc cattgcccag ctatctgtca ctttattgtg aagatagtgg 360aaaaggaagg
tggctcctac aaatgccatc attgcgataa aggaaaggcc atcgttgaag 420atgcctctgc
cgacagtggt cccaaagatg gacccccacc cacgaggagc atcgtggaaa 480aagaagacgt
tccaaccacg tcttcaaagc aagtggattg atgtgatatc tccactgacg 540taagggatga
cgcacaatcc cactatcctt cgcaagaccc ttcctctata taaggaagtt 600catttcattt
ggagaggaca cgctgacaag ctgactctag cagatctggt accgtcgacg 660gtgagctccg
cggccgctct agacaggcct cgtaccggat cctctagcta gagctttcgt 720tcgtatcatc
ggtttcgaca acgttcgtca agttcaatgc atcagtttca ttgcgcacac 780accagaatcc
tactgagttt gagtattatg gcattgggaa aactgttttt cttgtaccat 840ttgttgtgct
tgtaatttac tgtgtttttt attcggtttt cgctatcgaa ctgtgaaatg 900gaaatggatg
gagaagagtt aatgaatgat atggtccttt tgttcattct caaattaata 960ttatttgttt
tttctcttat ttgttgtgtg ttgaatttga aattataaga gatatgcaaa 1020cattttgttt
tgagtaaaaa tgtgtcaaat cgtggcctct aatgaccgaa gttaatatga 1080ggagtaaaac
acttgtagtt gtaccattat gcttattcac taggcaacaa atatattttc 1140agacctagaa
aagctgcaaa tgttactgaa tacaagtatg tcctcttgtg ttttagacat 1200ttatgaactt
tcctttatgt aattttccag aatccttgtc agattctaat cattgcttta 1260taattatagt
tatactcatg gatttgtagt tgagtatgaa aatatttttt aatgcatttt 1320atgacttgcc
aattgattga caacatgcat caatcgacct gcagccactc gaagcggccg 1380gccgccactc
gagatcatga gcggagaatt aagggagtca cgttatgacc cccgccgatg 1440acgcgggaca
agccgtttta cgtttggaac tgacagaacc gcaacgttga aggagccact 1500cagccgcggg
tttctggagt ttaatgagct aagcacatac gtcagaaacc attattgcgc 1560gttcaaaagt
cgcctaaggt cactatcagc tagcaaatat ttcttgtcaa aaatgctcca 1620ctgacgttcc
ataaattccc ctcggtatcc aattagagtc tcatattcac tctcaatcca 1680aataatctgc
accggatctg gatcgtttcg catgattgaa caagatggat tgcacgcagg 1740ttctccggcc
gcttgggtgg agaggctatt cggctatgac tgggcacaac agacaatcgg 1800ctgctctgat
gccgccgtgt tccggctgtc agcgcagggg cgcccggttc tttttgtcaa 1860gaccgacctg
tccggtgccc tgaatgaact gcaggacgag gcagcgcggc tatcgtggct 1920ggccacgacg
ggcgttcctt gcgcagctgt gctcgacgtt gtcactgaag cgggaaggga 1980ctggctgcta
ttgggcgaag tgccggggca ggatctcctg tcatctcacc ttgctcctgc 2040cgagaaagta
tccatcatgg ctgatgcaat gcggcggctg catacgcttg atccggctac 2100ctgcccattc
gaccaccaag cgaaacatcg catcgagcga gcacgtactc ggatggaagc 2160cggtcttgtc
gatcaggatg atctggacga agagcatcag gggctcgcgc cagccgaact 2220gttcgccagg
ctcaaggcgc gcatgcccga cggcgaggat ctcgtcgtga cccatggcga 2280tgcctgcttg
ccgaatatca tggtggaaaa tggccgcttt tctggattca tcgactgtgg 2340ccggctgggt
gtggcggacc gctatcagga catagcgttg gctacccgtg atattgctga 2400agagcttggc
ggcgaatggg ctgaccgctt cctcgtgctt tacggtatcg ccgctcccga 2460ttcgcagcgc
atcgccttct atcgccttct tgacgagttc ttctgagcgg gactctgggg 2520ttcgaaatga
ccgaccaagc gacgcccaac ctgccatcac gagatttcga ttccaccgcc 2580gccttctatg
aaaggttggg cttcggaatc gttttccggg acgccggctg gatgatcctc 2640cagcgcgggg
atctcatgct ggagttcttc gcccacggga tctctgcgga acaggcggtc 2700gaaggtgccg
atatcattac gacagcaacg gccgacaagc acaacgccac gatcctgagc 2760gacaatatga
tcgggcccgg cgtccacatc aacggcgtcg gcggcgactg cccaggcaag 2820accgagatgc
accgcgatat cttgctgcgt tcggatattt tcgtggagtt cccgccacag 2880acccggatga
tccccgatcg ttcaaacatt tggcaataaa gtttcttaag attgaatcct 2940gttgccggtc
ttgcgatgat tatcatataa tttctgttga attacgttaa gcatgtaata 3000attaacatgt
aatgcatgac gttatttatg agatgggttt ttatgattag agtcccgcaa 3060ttatacattt
aatacgcgat agaaaacaaa atatagcgcg caaactagga taaattatcg 3120cgcgcggtgt
catctatgtt actagatcgg gctcgaga
3158172230PRTLycopersicon esculentumG3553 polypeptide 172Met Asp Gln His
Gly Asn Gly Gln Pro Pro Val Ser Ala Gly Ala Ile 1 5
10 15 Gln Ser Pro Gln Ala Ala Gly Leu Ala
Ala Ser Ser Ala Gln Met Ala 20 25
30 Gln His Gln Leu Ala Tyr Gln His Ile His Gln Gln Gln Gln
Gln Gln 35 40 45
Leu Gln Gln Gln Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile 50
55 60 Glu His Val Thr Asp
Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile 65 70
75 80 Lys Lys Ile Met Lys Ala Asp Glu Asp Val
Arg Met Ile Ser Ala Glu 85 90
95 Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu
Leu 100 105 110 Thr
Leu Arg Ala Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu 115
120 125 Gln Lys Asn Asp Ile Ala
Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp 130 135
140 Phe Leu Val Asp Ile Val Pro Arg Glu Asp Leu
Lys Asp Glu Val Leu 145 150 155
160 Ala Thr Ile Pro Arg Gly Thr Leu Pro Val Gly Gly Pro Thr Glu Gly
165 170 175 Leu Pro
Phe Tyr Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly 180
185 190 Ala Pro Gly Met Tyr Met Gly
Lys Pro Val Asp Gln Ala Leu Tyr Ala 195 200
205 Gln Gln Pro Arg Pro Tyr Met Ala Gln Pro Ile Trp
Pro Gln Gln Gln 210 215 220
Gln Pro Pro Ser Asp Ser 225 230
173271PRTLycopersicon esculentumG3554 polypeptide 173Met Asp Gln His Gly
Asn Gly Gln Pro Pro Gly Ile Gly Val Val Thr 1 5
10 15 Ser Ser Ala Pro Ile Tyr Gly Ala Pro Tyr
Gln Ala Asn Gln Met Ala 20 25
30 Gly Pro Ser Pro Pro Ala Val Ser Ala Gly Ala Ile Gln Ser Pro
Gln 35 40 45 Ala
Ala Gly Leu Ala Ala Ser Ser Ala Gln Met Ala Gln His Gln Leu 50
55 60 Ala Tyr Gln His Ile His
Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln 65 70
75 80 Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu
Ile Glu His Val Thr 85 90
95 Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
100 105 110 Lys Ala
Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val 115
120 125 Phe Ala Arg Ala Cys Glu Met
Phe Ile Leu Glu Leu Thr Leu Arg Ala 130 135
140 Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu
Gln Lys Asn Asp 145 150 155
160 Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp
165 170 175 Ile Val Pro
Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Thr Ile Pro 180
185 190 Arg Gly Thr Leu Pro Val Gly Gly
Pro Thr Glu Gly Leu Pro Phe Tyr 195 200
205 Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly Ala
Pro Gly Met 210 215 220
Tyr Met Gly Lys Ala Cys Arg Ser Ser Ser Val Cys Pro Ala Ala Pro 225
230 235 240 Pro Ile Tyr Gly
Thr Ala Asn Leu Ala Pro Ala Ala Ala Thr Thr Leu 245
250 255 Arg Phe Leu Ser Ser Ser Lys Leu Arg
Leu Gln Glu Ser Arg Ser 260 265
270 174258PRTLycopersicon esculentumG3894 polypeptide 174Met Asp
Gln His Gly Asn Gly Gln Pro Pro Gly Ile Gly Val Val Thr 1 5
10 15 Ser Ser Ala Pro Ile Tyr Gly
Ala Pro Tyr Gln Ala Asn Gln Met Ala 20 25
30 Gly Pro Ser Pro Pro Ala Val Ser Ala Gly Ala Ile
Gln Ser Pro Gln 35 40 45
Ala Ala Gly Leu Ala Ala Ser Ser Ala Gln Met Ala Gln His Gln Leu
50 55 60 Ala Tyr Gln
His Ile His Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln 65
70 75 80 Leu Gln Thr Phe Trp Ala Asn
Gln Tyr Gln Glu Ile Glu His Val Thr 85
90 95 Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg
Ile Lys Lys Ile Met 100 105
110 Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val
Val 115 120 125 Phe
Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ala 130
135 140 Trp Asn His Thr Glu Glu
Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp 145 150
155 160 Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe
Asp Phe Leu Val Asp 165 170
175 Ile Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Thr Ile Pro
180 185 190 Arg Gly
Thr Leu Pro Val Gly Gly Pro Thr Glu Gly Leu Pro Phe Tyr 195
200 205 Tyr Gly Met Pro Pro Gln Ser
Ala Gln Pro Ile Gly Ala Pro Gly Met 210 215
220 Tyr Met Gly Lys Pro Val Asp Gln Ala Leu Tyr Ala
Gln Gln Pro Arg 225 230 235
240 Pro Tyr Met Ala Gln Pro Ile Trp Pro Gln Gln Gln Gln Pro Pro Ser
245 250 255 Asp Ser
175230PRTSolanum tuberosumG3892 polypeptide 175Met Asp His His Gly Asn
Gly Gln Pro Pro Val Ser Ala Gly Ala Ile 1 5
10 15 Gln Ser Pro Gln Ala Ala Gly Leu Ser Ala Ser
Ser Ala Gln Met Ala 20 25
30 Gln His Gln Leu Ala Tyr Gln His Ile His Gln Gln Gln Gln Gln
Gln 35 40 45 Leu
Gln Gln Gln Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile 50
55 60 Glu His Val Thr Asp Phe
Lys Asn His Ser Leu Pro Leu Ala Arg Ile 65 70
75 80 Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg
Met Ile Ser Ala Glu 85 90
95 Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu
100 105 110 Thr Leu
Arg Ala Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu 115
120 125 Gln Lys Asn Asp Ile Ala Ala
Ala Ile Thr Arg Thr Asp Ile Phe Asp 130 135
140 Phe Leu Val Asp Ile Val Pro Arg Glu Asp Leu Lys
Asp Glu Val Leu 145 150 155
160 Ala Thr Ile Pro Arg Gly Thr Leu Pro Val Gly Gly Pro Thr Glu Gly
165 170 175 Leu Pro Phe
Tyr Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly 180
185 190 Ala Pro Gly Met Tyr Met Gly Lys
Pro Val Asp Gln Ala Leu Tyr Ala 195 200
205 Gln Gln Pro Arg Pro Phe Met Ala Gln Pro Ile Trp Pro
Gln Gln Gln 210 215 220
Gln Pro Pro Ser Asp Ser 225 230 176228PRTSolanum
tuberosumG3893 polypeptide 176Met Asp His His Gly Asn Gly Gln Pro Pro Gly
Ile Gly Val Val Thr 1 5 10
15 Ser Ser Ala Pro Ile Tyr Gly Ala Pro Tyr Gln Ala Asn Gln Met Ala
20 25 30 Gly Pro
Pro Ala Val Ser Ala Gly Ala Ile Gln Ser Pro Gln Ala Ala 35
40 45 Gly Leu Ser Ala Ser Ser Ala
Gln Met Ala Gln His Gln Leu Ala Tyr 50 55
60 Gln His Ile His Gln Gln Gln Gln Gln Gln Leu Gln
Gln Gln Leu Gln 65 70 75
80 Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile Glu His Val Thr Asp Phe
85 90 95 Lys Asn His
Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala 100
105 110 Asp Glu Asp Val Arg Met Ile Ser
Ala Glu Ala Pro Val Val Phe Ala 115 120
125 Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg
Ala Trp Asn 130 135 140
His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala 145
150 155 160 Ala Ala Ile Thr
Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val 165
170 175 Pro Arg Glu Asp Leu Lys Asp Glu Val
Leu Ala Thr Ile Pro Arg Gly 180 185
190 Thr Leu Pro Val Gly Gly Pro Thr Glu Gly Leu Pro Phe Tyr
Tyr Gly 195 200 205
Met Pro Pro Gln Ser Ala Gln Pro Ile Gly Ala Pro Gly Met Tyr Met 210
215 220 Gly Lys Pro Val 225
177260PRTMedicago truncatulaG3896 polypeptide 177Met Asp His
Gln Gly His Asn Gln Asn Pro Gln Met Gly Val Val Gly 1 5
10 15 Ser Gly Ser Gln Met Pro Tyr Gly
Ser Asn Pro Tyr Gln Ser Asn Gln 20 25
30 Met Thr Gly Ala Pro Gly Ser Val Val Thr Ser Val Gly
Gly Met Gln 35 40 45
Ser Thr Gly Gln Pro Ala Gly Ala Gln Leu Gly Gln His Gln Leu Ala 50
55 60 Tyr Gln His Ile
His Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln Leu 65 70
75 80 Gln Ser Phe Trp Ser Asn Gln Tyr Gln
Glu Ile Glu Lys Val Thr Asp 85 90
95 Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile
Met Lys 100 105 110
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe
115 120 125 Ala Arg Ala Cys
Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp 130
135 140 Asn His Thr Glu Glu Asn Lys Arg
Arg Thr Leu Gln Lys Asn Asp Ile 145 150
155 160 Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe
Leu Val Asp Ile 165 170
175 Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Ser Ile Pro Arg
180 185 190 Gly Thr Met
Pro Val Ala Gly Pro Ala Asp Ala Leu Pro Tyr Cys Tyr 195
200 205 Met Pro Pro Gln His Ala Ser Gln
Val Gly Thr Ala Gly Val Ile Met 210 215
220 Gly Lys Pro Val Met Asp Pro Asn Met Tyr Ala Gln Gln
Pro His Pro 225 230 235
240 Tyr Met Ala Pro Gln Met Trp Pro Gln Pro Pro Glu Gln Arg Pro Pro
245 250 255 Ser Pro Asp His
260 178248PRTZea maysG3551 polypeptide 178Met Glu Pro Ser Pro
Gln Pro Met Gly Val Ala Ala Gly Gly Ser Gln 1 5
10 15 Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala
Ala Thr Val Ala Pro Ala 20 25
30 Ser Val Val Ser Ala Gly Leu Gln Ser Gly Gln Pro Phe Pro Ala
Asn 35 40 45 Pro
Gly His Met Ser Ala Gln His Gln Ile Val Tyr Gln Gln Ala Gln 50
55 60 Gln Phe His Gln Gln Leu
Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln 65 70
75 80 Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala
Thr Thr Asp Phe Lys 85 90
95 Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
100 105 110 Glu Asp
Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys 115
120 125 Ala Cys Glu Ile Phe Ile Leu
Glu Leu Thr Leu Arg Ser Trp Met His 130 135
140 Thr Glu Val Asn Lys Arg Arg Thr Leu Gln Lys Asn
Asp Ile Ala Ala 145 150 155
160 Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp Ile Val Pro
165 170 175 Arg Asp Glu
Met Lys Glu Asp Gly Ile Gly Leu Pro Arg Ala Gly Leu 180
185 190 Pro Pro Met Gly Ala Pro Ala Asp
Ala Tyr Pro Tyr Tyr Tyr Met Pro 195 200
205 Gln Gln Gln Val Pro Gly Ser Gly Met Val Tyr Gly Ala
Gln Gln Gly 210 215 220
His Pro Val Thr Tyr Leu Trp Gln Glu Pro Gln Gln Gln Gln Glu Gln 225
230 235 240 Ala Pro Glu Glu
Gln Gln Ser Ala 245 179249PRTDaucus
carotaG3899 polypeptide 179Met Asp Glu Ser Glu Glu Pro Gln Gln Gln Gln
Glu Ala Val Ile Asp 1 5 10
15 Ser Ala Ser Gln Met Thr Tyr Gly Val Pro His Tyr His Ala Val Gly
20 25 30 Leu Gly
Val Ala Thr Gly Thr Pro Val Val Pro Val Ser Ala Pro Thr 35
40 45 Gln His Pro Thr Gly Thr Thr
Ser Gln Gln Gln Pro Glu Tyr Tyr Glu 50 55
60 Ala Gln His Val Tyr Gln Gln Gln Gln Leu Gln Leu
Arg Thr Gln Leu 65 70 75
80 Gln Ala Phe Trp Ala Asn Gln Ile Gln Glu Ile Gly Gln Thr Pro Asp
85 90 95 Phe Lys Asn
His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 100
105 110 Ala Asp Glu Asp Val Arg Met Ile
Ser Ser Glu Ala Pro Val Ile Phe 115 120
125 Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Met
Arg Ser Trp 130 135 140
Leu Leu Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile 145
150 155 160 Ala Ala Ala Ile
Ser Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile 165
170 175 Ile Pro Arg Asp Glu Leu Lys Glu Glu
Gly Leu Gly Ile Thr Lys Ala 180 185
190 Thr Ile Pro Leu Leu Gly Ser Pro Ala Asp Ser Ala Pro Tyr
Tyr Tyr 195 200 205
Val Pro Gln Gln His Ala Val Glu Gln Ala Gly Phe Tyr Pro Asp Gln 210
215 220 Gln Ala His Pro Gln
Leu Pro Tyr Met Ser Trp Gln Gln Pro His Glu 225 230
235 240 His Lys Asp Gln Glu Glu Asn Gly Asp
245 180229PRTDaucus carotaG3900 polypeptide
180Met Asp His Ser Glu Glu Ser Gln Gln Gln Gln Glu Glu Val Ile Asp 1
5 10 15 Ile Ala Tyr Gly
Met Pro Gln Tyr His Ala Gly Pro Gly Val Ala Thr 20
25 30 Gly Thr Pro Val Val Pro Val Ser Ala
Ala Thr Gln Ala Gln His Phe 35 40
45 Phe Gln Gln Lys Leu Gln Leu Gln Gln Gln Asp Gln Leu Gln
Ala Phe 50 55 60
Trp Ala Asn Gln Met Gln Glu Ile Glu Gln Thr Thr Asp Phe Lys Asn 65
70 75 80 His Ser Leu Pro Leu
Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 85
90 95 Asp Val Arg Met Ile Ser Ser Glu Ala Pro
Val Val Phe Ala Lys Ala 100 105
110 Cys Glu Met Phe Ile Met Asp Leu Thr Met Arg Ser Trp Ser His
Thr 115 120 125 Glu
Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala 130
135 140 Val Ser Arg Thr Asp Val
Phe Asp Phe Leu Val Asp Ile Ile Pro Lys 145 150
155 160 Asp Glu Met Lys Glu Asp Thr Arg Ala Ser Ile
Pro Leu Met Gly Gln 165 170
175 Pro Pro Ala Asp Ser Val Pro Tyr Tyr Tyr Val Pro Gln Gln His Ala
180 185 190 Ala Gly
Gln Ala Gly Phe Tyr Pro Asp Gln His Gln Gln Gln Pro Leu 195
200 205 Pro Tyr Met Gln Trp Gln Gln
Pro Gln Gln Asp Gln Asn Gln Gln Gln 210 215
220 Gln Glu Asn Gly Asn 225
181184PRTGossypium arboreumG3907 polypeptide 181Met Asp Gln Arg Glu Lys
Thr Gln Gln Gln Gln Gln Gln Pro Val Met 1 5
10 15 Gly Val Val Pro Gly Ala Gly Gln Met Gly Tyr
Ser Thr Ala Tyr Gln 20 25
30 Thr Ala Ser Met Val Ala Ser Gly Thr Thr Gly Val Ala Val Pro
Ile 35 40 45 Gln
Thr Gln Pro Ser Ala Thr Phe Ser Ser Ser Pro His Gln Leu Ala 50
55 60 Tyr Gln Gln Ala Gln His
Phe His His Gln Gln Gln Gln Gln Gln Gln 65 70
75 80 Gln Gln Leu Gln Met Phe Trp Ala Asn Gln Met
His Glu Ile Glu Gln 85 90
95 Thr Thr Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys
100 105 110 Ile Met
Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro 115
120 125 Val Ile Phe Ala Lys Ala Cys
Glu Met Phe Val Leu Glu Leu Thr Leu 130 135
140 Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg
Thr Leu Gln Lys 145 150 155
160 Asn Asp Ile Ala Ala Ala Ile Ser Arg Thr Asp Val Phe Asp Phe Leu
165 170 175 Val Asp Ile
Ile Pro Gly Thr Glu 180 182270PRTGlycine
maxG3549 polypeptide 182Met Asp Lys Ser Glu Gln Thr Gln Gln Gln Gln Gln
Gln Gln His Val 1 5 10
15 Met Gly Val Ala Ala Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr
20 25 30 Pro Thr Ala
Ser Met Val Ala Ser Gly Thr Pro Ala Val Thr Ala Pro 35
40 45 Ser Pro Thr Gln Ala Pro Ala Ala
Phe Ser Ser Ser Ala His Gln Leu 50 55
60 Ala Tyr Gln Gln Ala Gln His Phe His His Gln Gln Gln
Gln His Gln 65 70 75
80 Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu
85 90 95 Gln Thr Ile Asp
Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys 100
105 110 Lys Ile Met Lys Ala Asp Glu Asp Val
Arg Met Ile Ser Ala Glu Ala 115 120
125 Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu
Leu Thr 130 135 140
Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln 145
150 155 160 Lys Asn Asp Ile Ala
Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe 165
170 175 Leu Val Asp Ile Ile Pro Arg Asp Glu Leu
Lys Glu Glu Gly Leu Gly 180 185
190 Ile Thr Lys Ala Thr Ile Pro Leu Val Asn Ser Pro Ala Asp Met
Pro 195 200 205 Tyr
Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met 210
215 220 Ile Met Gly Lys Pro Val
Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr 225 230
235 240 Gln Gln Pro Arg Pro Pro Met Ala Phe Met Pro
Trp Pro His Thr Gln 245 250
255 Pro Gln Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265 270 183201PRTSorghum
bicolorG3910 polypeptide 183Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro
Pro Val Met Gly Ala 1 5 10
15 Pro Val Ala Tyr Pro Pro Pro Pro Gly Ala Ala Tyr Pro Ala Gly Pro
20 25 30 Tyr Ala
His Ala Pro Ala Ala Ala Leu Tyr Pro Pro Pro Pro Pro Pro 35
40 45 Pro Ala Pro Pro Thr Ser Gln
Gln Gly Ala Ala Ala Ala Gln Gln Leu 50 55
60 Gln Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu
Ala Thr Thr Asp 65 70 75
80 Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
85 90 95 Ala Asp Glu
Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe 100
105 110 Ala Arg Ala Cys Glu Met Phe Ile
Leu Glu Leu Thr His Arg Gly Trp 115 120
125 Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys
Ser Asp Ile 130 135 140
Ala Ala Ala Val Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile 145
150 155 160 Val Pro Arg Asp
Glu Ala Lys Glu Ala Asp Ser Ala Ala Ala Met Gly 165
170 175 Pro Ala Gly Ile Pro His Pro Ala Ala
Gly Leu Pro Ala Thr Asp Pro 180 185
190 Met Gly Tyr Tyr Tyr Val Gln Pro Gln 195
200 184232PRTLycopersicon esculentumG3555 polypeptide 184Met
Asp Asn Asn Pro His Gln Ser Pro Thr Glu Ala Ala Ala Ala Ala 1
5 10 15 Ala Ala Ala Ala Ala Ala
Ala Gln Ser Ala Thr Tyr Pro Ser Gln Thr 20
25 30 Pro Tyr His His Leu Leu Gln Gln Gln Gln
Gln Gln Leu Gln Met Phe 35 40
45 Trp Thr Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe
Lys Asn 50 55 60
His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65
70 75 80 Asp Val Arg Met Ile
Ser Ala Glu Ala Pro Val Leu Phe Ala Lys Ala 85
90 95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile
Arg Ser Trp Leu His Ala 100 105
110 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
Ala 115 120 125 Ile
Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130
135 140 Asp Glu Ile Lys Asp Glu
Gly Val Gly Leu Gly Pro Gly Ile Val Gly 145 150
155 160 Ser Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro
Pro Met Gly Gln Pro 165 170
175 Ala Pro Gly Gly Val Met Leu Gly Arg Pro Ala Val Pro Gly Val Asp
180 185 190 Pro Ser
Met Tyr Val His Pro Pro Pro Ser Gln Ala Trp Gln Ser Val 195
200 205 Trp Gln Thr Gly Asp Asp Asn
Ser Tyr Ala Ser Gly Gly Ser Ser Gly 210 215
220 Gln Gly Asn Leu Asp Gly Gln Ile 225
230 185232PRTSolanum tuberosumG3885 polypeptide 185Met Asp
Asn Asn Pro His Gln Ser Pro Thr Glu Ala Ala Ala Ala Ala 1 5
10 15 Ala Ala Ala Ala Ala Ala Ala
Gln Ser Ala Thr Tyr Pro Pro Gln Thr 20 25
30 Pro Tyr His His Leu Leu Gln Gln Gln Gln Gln Gln
Leu Gln Met Phe 35 40 45
Trp Thr Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn
50 55 60 His Gln Leu
Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65
70 75 80 Asp Val Arg Met Ile Ser Ala
Glu Ala Pro Val Leu Phe Ala Lys Ala 85
90 95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg
Ser Trp Leu His Ala 100 105
110 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
Ala 115 120 125 Ile
Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130
135 140 Asp Glu Ile Lys Asp Glu
Gly Val Val Leu Gly Pro Gly Ile Val Gly 145 150
155 160 Ser Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro
Pro Met Gly Gln Pro 165 170
175 Ala Pro Gly Gly Val Met Leu Gly Arg Pro Ala Val Pro Gly Val Asp
180 185 190 Pro Ser
Met Tyr Val His Pro Pro Pro Ser Gln Ala Trp Gln Ser Val 195
200 205 Trp Gln Thr Gly Asp Asp Asn
Ser Tyr Ala Ser Gly Gly Ser Ser Gly 210 215
220 Gln Gly Asn Leu Asp Gly Gln Ile 225
230 186233PRTGossypium raimondiiG3883 polypeptide 186Met Asp
Ser Asn Gln Gln Thr Gln Ser Thr Pro Tyr Pro Pro Gln Pro 1 5
10 15 Pro Thr Ser Ala Ile Thr Pro
Pro Ser Ser Ala Thr Ala Thr Ala Pro 20 25
30 Pro Phe His His Leu Leu Gln Gln Gln Gln Gln Gln
Leu Gln Met Phe 35 40 45
Trp Ser Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn
50 55 60 His Gln Leu
Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65
70 75 80 Asp Val Arg Met Ile Ser Ala
Glu Ala Pro Ile Leu Phe Ala Lys Ala 85
90 95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg
Ser Trp Leu His Ala 100 105
110 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
Ala 115 120 125 Ile
Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130
135 140 Asp Glu Ile Lys Asp Glu
Thr Gly Leu Ala Pro Met Val Gly Ala Thr 145 150
155 160 Ala Ser Gly Val Pro Tyr Phe Tyr Pro Pro Met
Gly Gln Pro Ala Ala 165 170
175 Gly Gly Pro Gly Gly Met Met Ile Gly Arg Pro Ala Val Asp Pro Thr
180 185 190 Gly Gly
Ile Tyr Gly Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp 195
200 205 Gln Thr Ala Gly Thr Asp Asp
Gly Ser Tyr Gly Ser Gly Val Thr Gly 210 215
220 Gly Gln Gly Asn Leu Asp Gly Gln Gly 225
230 187227PRTNicotiana benthamianaG3884 polypeptide
187Met Glu Asn Asn Gln Gln Ser Ala Ala Asn Ala Ala Ala Ala Ala Ala 1
5 10 15 Ala Ala Ala Ala
Tyr Pro Ala Gln Pro Pro Tyr His His Leu Leu Gln 20
25 30 Gln Gln Gln Gln Gln Leu Gln Met Phe
Trp Thr Tyr Gln Arg Gln Glu 35 40
45 Ile Glu Gln Val Asn Asp Phe Lys Asn His Gln Leu Pro Leu
Ala Arg 50 55 60
Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala 65
70 75 80 Glu Ala Pro Ile Leu
Phe Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu 85
90 95 Leu Thr Ile Arg Ser Trp Leu His Ala Glu
Glu Asn Lys Arg Arg Thr 100 105
110 Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile
Phe 115 120 125 Asp
Phe Leu Val Asp Ile Val Pro Arg Asp Glu Ile Lys Glu Glu Gly 130
135 140 Gly Val Gly Leu Gly Pro
Ala Gly Ile Val Gly Ser Thr Ala Ser Gly 145 150
155 160 Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro
Ala Pro Pro Gly Val 165 170
175 Met Met Gly Arg Pro Ala Met Pro Gly Val Asp Pro Ser Met Tyr Val
180 185 190 Gln Pro
Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Thr Ala Glu 195
200 205 Asp Asn Ser Tyr Ala Ser Gly
Gly Ser Ser Gly Gln Gly Asn Leu Asp 210 215
220 Gly Gln Ser 225 188214PRTPhyscomitrella
patensG3867 polypeptide 188Met Ser His Pro Gly Ala Val Met Pro Leu Gln
Met His Tyr Pro Gln 1 5 10
15 Ala Gln Gln Gln Met Met Pro Gln Leu Gly Asp Gln Gln Met Gln Pro
20 25 30 Gln Leu
His Tyr Gln Gln Ile Gln Lys Gln Gln Leu Ser Gln Phe Trp 35
40 45 Gln Gln Gln Met Gln Glu Met
Glu Gln Val Asn Asp Phe Lys Thr His 50 55
60 Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
Ser Asp Glu Asp 65 70 75
80 Val Lys Met Ile Ala Ala Glu Ala Pro Val Leu Phe Ser Lys Ala Cys
85 90 95 Glu Met Phe
Ile Leu Glu Leu Thr Leu Arg Ser Trp Ile His Thr Glu 100
105 110 Glu Asn Lys Arg Arg Thr Leu Gln
Arg Asn Asp Ile Ala Gly Ala Ile 115 120
125 Thr Arg Gly Asp Ile Phe Asp Phe Leu Val Asp Ile Val
Pro Arg Asp 130 135 140
Glu Leu Lys Glu Glu Asp Leu Gly Val Pro Trp Thr Gly Val Pro Gly 145
150 155 160 Asp Gly Ser Val
Pro Tyr Gly Gly Ile Phe Tyr Pro Pro Met Ala Gly 165
170 175 Gln Gln Met His His Ser Met Gly Ala
Pro Glu Met Met Val Gly Gln 180 185
190 Pro Pro Asn Pro Gln Met Met Tyr Gln Pro Pro Gln Thr Ala
Phe Val 195 200 205
Pro Glu Gln Gln Gln Gln 210 189249PRTOryza
sativaG3545 polypeptide 189Met Asp Pro His Ser His Lys Lys Ala His Glu
Gly Leu Ile Gly Asp 1 5 10
15 Asn Pro Asp Ala Tyr Ala Val Thr Thr Tyr Gln Pro Val Leu Met Val
20 25 30 Glu Pro
Ser Ala Ala Ala Ala Phe Pro Pro Ala Pro Gln Val Ala Pro 35
40 45 Ala Tyr Pro Val Asn Pro Met
Gln Leu Pro Glu His Gln Gln His Ala 50 55
60 Ile Gln Gln Val Gln Gln Leu Gln Gln Gln Gln Lys
Glu Gln Leu Gln 65 70 75
80 Ala Phe Trp Ala Asp Gln Met Ala Glu Val Glu Gln Met Thr Glu Phe
85 90 95 Lys Leu Pro
Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala 100
105 110 Asp Glu Asp Val Lys Met Ile Ala
Gly Glu Ala Pro Ala Leu Phe Ala 115 120
125 Lys Ala Cys Glu Met Phe Ile Leu Asp Met Thr Leu Arg
Ser Trp Gln 130 135 140
His Thr Glu Glu Gly Arg Arg Arg Thr Leu Gln Arg Ser Asp Val Glu 145
150 155 160 Ala Val Ile Lys
Lys Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Ile 165
170 175 Thr Asp Asp Lys Met Lys Asp Asp Gly
Met Gly Ser Gln Ala Ala Ser 180 185
190 Met Val Ser Pro Tyr Thr Ser Gly Gly Met Gly Phe Ser Phe
Asp Leu 195 200 205
Tyr Pro Asn Gln His His Leu Ala Tyr Met Trp Pro Pro Gln Glu Gln 210
215 220 Gln Glu Gln Trp Pro
Pro Gln Glu Gln Gln Glu Gln Lys Gln Lys Gln 225 230
235 240 Asp Ser Asp Gly Gly Gly Gln Asp Glu
245 190275PRTArabidopsis thalianaG2637
polypeptide 190Met Glu Ser Glu Lys Val Val Val Asp Glu Leu Pro Leu Ala
Ile Val 1 5 10 15
Arg Arg Val Val Lys Lys Lys Leu Ser Glu Cys Ser Pro Asp Tyr Asp
20 25 30 Val Ser Ile His Lys
Glu Ala Leu Leu Ala Phe Ser Glu Ser Ala Arg 35
40 45 Ile Phe Ile His Tyr Leu Ser Ala Thr
Ala Asn Asp Phe Cys Lys Asp 50 55
60 Ala Arg Arg Gln Thr Met Lys Ala Asp Asp Val Phe Lys
Ala Leu Glu 65 70 75
80 Glu Met Asp Phe Ser Glu Phe Leu Glu Pro Leu Lys Ser Ser Leu Glu
85 90 95 Asp Phe Lys Lys
Lys Asn Ala Gly Lys Lys Ala Gly Ala Ala Ala Ala 100
105 110 Ser Tyr Pro Ala Gly Gly Ala Ala Leu
Lys Ser Ser Ser Gly Thr Ala 115 120
125 Ser Lys Pro Lys Glu Thr Lys Lys Arg Lys Gln Glu Glu Pro
Ser Thr 130 135 140
Gln Lys Gly Ala Arg Lys Ser Lys Ile Asp Glu Glu Thr Lys Arg Asn 145
150 155 160 Asp Glu Glu Thr Glu
Asn Asp Asn Thr Glu Glu Glu Asn Gly Asn Asp 165
170 175 Glu Glu Asp Glu Asn Gly Asn Asp Glu Glu
Asp Glu Asn Asp Asp Glu 180 185
190 Asn Thr Glu Glu Asn Gly Asn Asp Glu Glu Asn Asp Asp Glu Asn
Thr 195 200 205 Glu
Glu Asn Gly Asn Asp Glu Glu Asn Glu Lys Glu Asp Glu Glu Asn 210
215 220 Ser Met Glu Glu Asn Gly
Asn Glu Ser Glu Glu Ser Gly Asn Glu Asp 225 230
235 240 His Ser Met Glu Glu Asn Gly Ser Gly Val Gly
Glu Asp Asn Glu Asn 245 250
255 Glu Asp Gly Ser Val Ser Gly Ser Gly Glu Glu Val Glu Ser Asp Glu
260 265 270 Glu Asp
Glu 275 1913446DNAArtificial sequencesynthetic sequence
191cacggacctt ggatctgaag ttatgaacaa taacatattt ggcaaaacaa agaaaaaaga
60aacaacaata ctaacatatt ttggtaaaag aacattgaga agtctcaaaa attaacttct
120tcttattttg tttcctaata agaccgtttg cttcatttca agttcttagg aaataatttc
180atgtaacgtg tatgtagata tgtttatgta cagataaaga gagatctgaa aatgatatat
240agagcttttg tggtgataag tgcaacaagc aggatatata tatcgaacgt ggtggttaga
300agatagcgtc aaaatagatg ctagctgctg cgtatacatc atattcatat catatgtact
360tctcttttgt gatttctcat gtgattgaac atactacata aatcttgata gatttataaa
420aatgcaacaa attgttgttt atataagaaa aataaaacac tgatatgata tttcattagt
480tattatcaaa tttgcaatat aatgtttaac atccaagatt tgttttacat aatcgttacg
540gttactaaag tttaatttat gatgttttaa aacaaattga gactaaattt ctaaaagaaa
600catatacgta catgtgtgta gctgcgtata tatatagaat ggtggggcta aaagctaatg
660atgtgtacat taattggaca tttgatgtgg ctggattgga cccaacttgc tctttgatag
720agacctaact aagacaattt tgctcttcat tcatttctcc cgtatacata attgaattaa
780ctgtacataa tgtttcacaa caagcgatct agctatatat ttcaaaataa cagagactga
840tattttaatc tggtcttcta agctctaacg tcaaattaaa aaaaaaatcc gatcttctaa
900ttaattagaa gaaatcaatt atagaacctc tctctttaat ttcatttatt taaaactgct
960tggaaattta attattcact aaagactcac tattctcctt aatttatgat aatttgtaga
1020tcatatgttc agtttttatt tatttgccat tcgaatgttg agttttaatt aaaccaatat
1080gttaatattc gaattaaaaa aacttaccta taattcactt atttaaaaac ataaaataat
1140aataattgca tcaccgtgat acaaagcaac ctcacaagtc acaactctcg tgactacaaa
1200gatcactcat taaacaaacc ttcctgcctt ctttttttct acttgggcac ctcgaccgat
1260cgaagactat tcttgggatc tgcttcaaaa acgactatat gttctaaatc cacttcgtat
1320gatgacgaac atttggttta ctactgaaga tagagattac gtccttctaa ttagaagtaa
1380ttaattattt tagtatttgg aagctaatgg tggagatgta accgtatctt agtggatcga
1440gatattgtat ataaaatatg tatgctacat cgaataataa actgaaagag agtaaaaagg
1500gatatttaat gggaagaaaa gaagggtgga gatgtaacaa aggcgaagat aatggatatt
1560cttgggatgt tgtcttcaag gccacgagct tagattcttt tagttttgct caatttgtta
1620agtttctact tttccttttg ttgcttacta cttttgctca tgatctccat atacatatca
1680tacatatata tagtatacta tctttagact gatttctcta tacactatct tttaacttat
1740gtatcgtttc aaaactcagg acgtacatgt ttaaatttgg ttatataacc acgaccattt
1800caagtatata tgtcatacca taccagattt aatataactt ctatgaagaa aatacataaa
1860gttggattaa aatgcaagtg acatcttttt agcataggtt catttggcat agaagaaata
1920tataactaaa aatgaacttt aacttaaata gattttacta tattacaatt ttttcttttt
1980acatggtcta atttattttt ctaaaattag tataattgtt gttttgatga aacaataata
2040ccgtaagcaa tagttgctaa aagatgtcca aatatttata aattacaaag taaatcaaat
2100aaggaagaag acacgtggaa aacaccaaat aagagaagaa atggaaaaaa cagaaagaaa
2160ttttttaaca agaaaaatca attagtcctc aaacctgaga tatttaaagt aatcaactaa
2220aacaggaaca cttgactaac aaagaaattt gaaacgtggt ccaactttca cttaattata
2280ttgttttctc taaggcttat gcaatatatg ccttaagcaa atgccgaatc tgtttttttt
2340ttttttgtta ttggatattg actgaaaata aggggttttt tcacacttga agatctcaaa
2400agagaaaact attacaacgg aaattcattg taaaagaagt gattaagcaa attgagcaaa
2460ggtttttatg tggtttattt cattatatga ttgacatcaa attgtatata tatggttgtt
2520ttatttaaca atatatatgg atataacgta caaactaaat atgtttgatt gacgaaaaaa
2580aatatatgta tgtttgatta acaacatagc acatattcaa ctgatttttg tcctgatcat
2640ctacaactta ataagaacac acaacattga acaaatcttt gacaaaatac tatttttggg
2700tttgaaattt tgaatactta caattattct tctcgatctt cctctctttc cttaaatcct
2760gcgtacaaat ccgtcgacgc aatacattac acagttgtca attggttctc agctctacca
2820aaaacatcta ttgccaaaag aaaggtctat ttgtacttca ctgttacagc tgagaacatt
2880aaatataata agcaaatttg ataaaacaaa gggttctcac cttattccaa aagaatagtg
2940taaaataggg taatagagaa atgttaataa aaggaaatta aaaatagata ttttggttgg
3000ttcagatttt gtttcgtaga tctacaggga aatctccgcc gtcaatgcaa agcgaaggtg
3060acacttgggg aaggaccagt ggtccgtaca atgttactta cccatttctc ttcacgagac
3120gtcgataatc aaattgttta ttttcatatt tttaagtccg cagttttatt aaaaaatcat
3180ggacccgaca ttagtacgag atataccaat gagaagtcga cacgcaaatc ctaaagaaac
3240cactgtggtt tttgcaaaca agagaaacca gctttagctt ttccctaaaa ccactcttac
3300ccaaatctct ccataaataa agatcccgag actcaaacac aagtcttttt ataaaggaaa
3360gaaagaaaaa ctttcctaat tggttcatac caaagtctga gctcttcttt atatctctct
3420tgtagtttct tattgggggt ctttgt
3446192800DNAArtificial sequencesynthetic sequence 192aatagttggg
ctgatttcgt agcccactta atcagccttt aaatatggaa accctagcct 60agaaagtgaa
caagaaaaac gtaaagatca aaatggaaga gaacaacggc aacaacaacc 120actacctgcc
gcaaccatcg tcttcccaac tgccgccgcc accattgtat tatcaatcaa 180tgccgttgcc
gtcatattca ctgccgctgc cgtactcacc gcagatgcgg aattattgga 240ttgcgcagat
gggaaacgca actgatgtta agcatcatgc gtttccacta accaggataa 300agaaaatcat
gaagtccaac ccggaagtga acatggtcac tgcagaggct ccggtcctta 360tatcgaaggc
ctgtgagatg ctcattcttg atctcacaat gcgatcgtgg cttcataccg 420tggagggcgg
tcgccaaact ctcaagagat ccgatacgct cacgagatcc gatatctccg 480ccgcaacgac
tcgtagtttc aaatttacct tccttggcga cgttgtccca agagaccctt 540ccgtcgttac
cgatgatccc gtgctacatc cggacggtga agtacttcct ccgggaacgg 600tgataggata
tccggtgttt gattgtaatg gtgtgtacgc gtcaccgcca cagatgcagg 660agtggccggc
ggtgcctggt gacggagagg aggcagctgg ggaaattgga ggaagcagcg 720gcggtaattg
aaaagtgttg attgggtttt agggttgtaa tgcttttgtg agaatttgta 780tctctatgga
gtcatgtttg
8001931183DNAArtificial sequencesynthetic sequence 193gatatgacca
aaatgattaa cttgcattac agttgggaag tatcaagtaa acaacatttt 60gtttttgttt
gatatcggga atctcaaaac caaagtccac actagttttt ggactatata 120atgataaaag
tcagatatct actaatacta gttgatcagt atattcgaaa acatgacttt 180ccaaatgtaa
gttatttact ttttttttgc tattataatt aagatcaata aaaatgtcta 240agttttaaat
ctttatcatt atatccaaac aatcataatc ttattgttaa tctctcatca 300acacacagtt
tttaaaataa attaattacc ctttgcatga taccgaagag aaacgaattc 360gttcaaataa
ttttataaca ggaaataaaa tagataaccg aaataaacga tagaatgatt 420tcttagtact
aactcttaac aacagtttta tttaaatgac ttttgtaaaa aaaacaaagt 480taacttatac
acgtacacgt gtcgaaaata ttattgacaa tggatagcat gattcttatt 540agagtcatgt
aaaagataaa cacatgcaaa tatatatatg aataatatgt tgttaagata 600aactagacga
ttagaatata tagcacatct atagtttgta aaataactat ttctcaacta 660gacttaagtc
ttcgaaatac ataaataaac aaaactataa aaattcagaa aaaaacatga 720gagtacgtta
gtaaaatgta tttttttggt aaaataatca cttttcatca ggtcttttgt 780aaagcagttt
tcatgttaga taaacgagat tttaattttt tttaaaaaaa gaagtaaact 840aactatgttc
ctatctacac acctataatt ttgaacaatt acaaaacaac aatgaaatgc 900aaagaagacg
tagggcactg tcacactaca atacgattaa taaatgtatt ttggtcgaat 960taataacttt
ccatacgata aagttgaatt aacatgtcaa acaaaagaga tgagtggtcc 1020tatacatagt
taggaattag gaacctctaa attaaatgag tacaaccacc aactactcct 1080tccctctata
atctatcgca ttcacaccac ataacatata cgtacctact ctatataaca 1140ctcactcccc
aaactctctt catcatccat cactacacac atc
1183194812DNAArtificial sequencesynthetic sequence 194ttattctaag
tagcttgact tgtttagttt aaatatgagg ttaatgattt tgtggggatt 60tgatagttct
ggttcttgag tttatttaaa ataggtttac caggatcatg tactgactct 120gttctttgga
acttttcaga attctgcttc ggacattaag ctcatgagtc atgacttctt 180caatccatga
gctttctgat aacattggaa gtcatgagaa gcaagaacag agagattctc 240atttccaacc
accaatccct tctgcaagaa attatgaatc aattgttaca agtttagtct 300actcagaccc
ggggactaca aattccatgg cacctggaca atatccatat ccagatcctt 360actacagaag
catatttgca ccgcctccac aaccgtatac cggggtacat ctacagttga 420tgggagtgca
gcaacaaggc gttcctttac catctgatgc agtcgaggaa cctgtttttg 480ttaacgcaaa
gcaataccac ggtatactaa ggcgcagaca atcaagagca agacttgagt 540ctcagaataa
agtcatcaag tcacgtaagc cgtatttgca tgaatctcgg catttgcatg 600cgataagacg
accaagagga tgtggcgggc ggtttctaaa tgccaagaag gaggatgagc 660atcacgaaga
cagtagtcat gaagaaaaat ccaaccttag cgctggtaaa tccgccatgg 720ctgcttctag
tggtacatct tgagaaggtc ctacaagtag ctttgttgta ttttggctct 780gtttggtctc
agatcatcta tgtcttttag tg
8121951110DNAArtificial sequencesynthetic sequence 195aagctttgag
ctccgcggcc gcaagaccct tcctctatat aaggaagttc atttcatttg 60gagaggacac
gctcgagtat aagagctcat ttttacaaca attaccaaca acaacaaaca 120acaaacaaca
ttacaattac atttacaatt accatggaag cgttaacggc caggcaacaa 180gaggtgtttg
atctcatccg tgatcacatc agccagacag gtatgccgcc gacgcgtgcg 240gaaatcgcgc
agcgtttggg gttccgttcc ccaaacgcgg ctgaagaaca tctgaaggcg 300ctggcacgca
aaggcgttat tgaaattgtt tccggcgcat cacgcgggat tcgtctgttg 360caggaagagg
aagaagggtt gccgctggta ggtcgtgtgg ctgccggtga accacttctg 420gcgcaacagc
atattgaagg tcattatcag gtcgatcctt ccttattcaa gccgaatgct 480gatttcctgc
tgcgcgtcag cgggatgtcg atgaaagata tcggcattat ggatggtgac 540ttgctggcag
tgcataaaac tcaggatgta cgtaacggtc aggtcgttgt cgcacgtatt 600gatgacgaag
ttaccgttaa gcgcctgaaa aaacagggca ataaagtcga actgttgcca 660gaaaatagcg
agtttaaacc aattgtcgta gatcttcgtc agcagagctt caccattgaa 720gggctggcgg
ttggggttat tcgcaacggc gactggctgg aattccccaa ttttaatcaa 780agtgggaata
ttgctgatag ctcattgtcc ttcactttca ctaacagtag caacggtccg 840aacctcataa
caactcaaac aaattctcaa gcgctttcac aaccaattgc ctcctctaac 900gttcatgata
acttcatgaa taatgaaatc acggctagta aaattgatga tggtaataat 960tcaaaaccac
tgtcacctgg ttggacggac caaactgcgt ataacgcgtt tggaatcact 1020acagggatgt
ttaataccac tacaatggat gatgtatata actatctatt cgatgatgaa 1080gataccccac
caaacccaaa aaaagagtag
1110196333DNAArtificial sequencesynthetic sequence 196acatatccat
atctaatctt acctcgactg ctgtatataa aaccagtggt tatatgtcca 60gtactgctgt
atataaaacc agtggttata tgtacagtac gtcgatcgat cgacgactgc 120tgtatataaa
accagtggtt atatgtacag tactgctgta tataaaacca gtggttatat 180gtacagtacg
tcgaggggat gatcaagacc cttcctctat ataaggaagt tcatttcatt 240tggagaggac
acgctgacaa gctgactcta gcagatctgg taccgtcgac ggtgagctcc 300gcggccgctc
tagacaggcc tcgtaccgga tcc
3331971098DNAGossypium raimondiiG3883 197aaataataat aataaacaaa gccagcgccc
attacaatgg ccgctgtacc ttatcccatc 60catatctgac ctttaaaaat atccaccgcc
gccaccacca ccacgatcac caccgccaca 120tccccatctc ccgccatttg ttcaccagcc
aatggacagt aaccagcaaa ctcaatccac 180cccataccca cctcagcctc ccacatccgc
cattacccct ccttcatccg ccacagcaac 240cgcgcctcct ttccaccacc tccttcaaca
acaacagcaa cagctccaaa tgttttggtc 300ataccaacgc caagaaatcg agcaagttaa
cgattttaag aaccaccaac tcccattagc 360tcgcattaag aagataatga aagccgacga
agacgtccgt atgatctccg ccgaggctcc 420cattctcttc gccaaagctt gtgagctttt
cattttggaa ctcactatcc gttcttggct 480tcacgccgag gaaaacaagc gacggacact
tcagaaaaac gacatcgctg cggctattac 540gaggaccgac attttcgatt tcttggtaga
tattgtgcct agggatgaga tcaaggatga 600aactggtttg gctccgatgg ttggggctac
cgccagtggg gtaccttact tttatccccc 660tatgggtcaa cctgctgctg gtggtcctgg
tgggatgatg attggccggc ctgccgtcga 720tcccaccgga ggtatttacg gtcagccacc
ttctcaggct tggcagagtg tttggcagac 780ggcgggaact gatgatggct cgtatggcag
tggagttacc ggtggtcaag ggaatcttga 840cggtcaaggc taacctaaaa tcatgggtcc
gatatcgtac agtggatggt gtggaaaacg 900cgtggaactc aggtgatcta ctggggaatt
tatgcttttg tgcttattga tttatgaatg 960cagttgtgtt ggtattgttt atgggaaaaa
agaaaagcta ccttgaattt gatgacactt 1020ctatagtaac ttgttaaaaa aacaaactct
tttaactcat ttttagtgca gctaaaacaa 1080tatcttgctg ccatgcca
1098198233PRTGossypium raimondiiG3883
polypeptide (domain in aa coordinates 67-132) 198Met Asp Ser Asn
Gln Gln Thr Gln Ser Thr Pro Tyr Pro Pro Gln Pro 1 5
10 15 Pro Thr Ser Ala Ile Thr Pro Pro Ser
Ser Ala Thr Ala Thr Ala Pro 20 25
30 Pro Phe His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln
Met Phe 35 40 45
Trp Ser Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn 50
55 60 His Gln Leu Pro Leu
Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65 70
75 80 Asp Val Arg Met Ile Ser Ala Glu Ala Pro
Ile Leu Phe Ala Lys Ala 85 90
95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His
Ala 100 105 110 Glu
Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala 115
120 125 Ile Thr Arg Thr Asp Ile
Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130 135
140 Asp Glu Ile Lys Asp Glu Thr Gly Leu Ala Pro
Met Val Gly Ala Thr 145 150 155
160 Ala Ser Gly Val Pro Tyr Phe Tyr Pro Pro Met Gly Gln Pro Ala Ala
165 170 175 Gly Gly
Pro Gly Gly Met Met Ile Gly Arg Pro Ala Val Asp Pro Thr 180
185 190 Gly Gly Ile Tyr Gly Gln Pro
Pro Ser Gln Ala Trp Gln Ser Val Trp 195 200
205 Gln Thr Ala Gly Thr Asp Asp Gly Ser Tyr Gly Ser
Gly Val Thr Gly 210 215 220
Gly Gln Gly Asn Leu Asp Gly Gln Gly 225 230
19966PRTGossypium raimondiiG3883 conserved domain 199Leu Pro Leu Ala
Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile
Leu Phe Ala Lys Ala Cys Glu 20 25
30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala
Glu Glu 35 40 45
Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
200719DNAArtificial sequencesynthetic sequence 200gttcaccagc caatggacag
taaccagcaa actcaatcca ccccataccc acctcagcct 60cccacatccg ccattacccc
tccttcatcc gccacagcaa cagcgcctcc tttccaccac 120ctccttcaac aacaacagca
acagctccaa atgttttggt cataccaacg ccaagaaatc 180gagcaagtta acgattttaa
gaaccaccaa ctcccattag ctcgcattaa gaagataatg 240aaagccgacg aagacgtccg
tatgatctcc gccgaggctc ccattctctt cgccaaagct 300tgtgagcttt tcattttgga
actcactatc cgttcttggc ttcacgccga ggaaaacaag 360cgacggacac ttcagaaaaa
cgacatcgct gcggctatta cgaggaccga cattttcgat 420ttcttggtag atattgtgcc
tagggatgag atcaaggatg aaactgcttt ggctccgatg 480gtcggtgcta ccgccagtgg
ggtaccttac ttttatcccc ctatgggtca acctgctggt 540ggtggtcctg gtgggatgat
gattggccgg cctgccgtcg atcccaccgg agttatttac 600ggtcagccac cttctcaggc
ttggcagagt gtttggcaga cggcggggac tgatgatggc 660tcgtatggca gtggagttac
cggtggtcaa gggaatcttg acggtcaagg ctaacctaa 7192011221DNALycopersicon
esculentumG3894 201tatcaatcat ctacctcttt gattgaaccc tagctctcac tctctctttc
tctctctaaa 60aaaaaagcat aaaagtttca atctttcagg taatttgatt ggagaggcgt
atccagaatt 120tggagcttca atcagtgggg agcctaagtt agctttggat tctccaaaag
ggaatcttgc 180tcaaaatgga tcaacatgga aatggacagc ctccaggtat tggagtcgtt
actagctcag 240ctccaatata tggtgctcca taccaagcta accaaatggc agggccctct
cctcctgcag 300tttcagctgg tgcaattcaa tctcctcaag cagctggtct tgctgcttcg
tcagctcaga 360tggcgcaaca tcagctcgct tatcagcaca ttcatcagca gcagcaacaa
cagttgcagc 420aacaactcca gactttctgg gcaaatcaat atcaagaaat cgagcatgtt
actgatttca 480agaatcatag cttgccattg gcaaggatca agaaaatcat gaaagcggat
gaagatgtta 540ggatgatatc tgctgaagca ccagtcgtat ttgctcgtgc ctgtgagatg
ttcatacttg 600aattgacact gcgtgcatgg aaccacactg aggagaacaa aaggaggacg
ctgcagaaaa 660atgatatcgc tgcagccata acaaggactg acatatttga tttcttagtt
gacattgtcc 720caagagagga cttgaaagat gaggtgcttg caacaattcc tagaggaacg
cttcctgttg 780gaggcccaac tgagggtctg ccattctatt atggcatgcc accacaatct
gctcaaccga 840ttggagctcc agggatgtac atgggaaagc ctgtcgatca agctctgtat
gcccagcagc 900cccgcccata tatggcacag ccaatttggc cccagcagca gcaaccaccc
tcagattctt 960aagcagctca aagcttagat tacaggaatc cagaagctag gagcagtgag
tagtctgagt 1020agcgaagtac tggagaacac atagcagtct gcatactttg aactttattt
taatatatat 1080cgacatgaag cactagttat taaaagtcga gtgttccctt agtgtagcta
aaactttaca 1140ccatgagctt gatgttcttg gtgatgttta tgaacaaata tgtttttaag
tgtgtgattt 1200aaaagtaaaa aaaaaaaaaa a
1221202258PRTLycopersicon esculentumG3894 polypeptide
(domain in aa coordinates 103-168) 202Met Asp Gln His Gly Asn Gly Gln Pro
Pro Gly Ile Gly Val Val Thr 1 5 10
15 Ser Ser Ala Pro Ile Tyr Gly Ala Pro Tyr Gln Ala Asn Gln
Met Ala 20 25 30
Gly Pro Ser Pro Pro Ala Val Ser Ala Gly Ala Ile Gln Ser Pro Gln
35 40 45 Ala Ala Gly Leu
Ala Ala Ser Ser Ala Gln Met Ala Gln His Gln Leu 50
55 60 Ala Tyr Gln His Ile His Gln Gln
Gln Gln Gln Gln Leu Gln Gln Gln 65 70
75 80 Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile
Glu His Val Thr 85 90
95 Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
100 105 110 Lys Ala Asp
Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val 115
120 125 Phe Ala Arg Ala Cys Glu Met Phe
Ile Leu Glu Leu Thr Leu Arg Ala 130 135
140 Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln
Lys Asn Asp 145 150 155
160 Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp
165 170 175 Ile Val Pro Arg
Glu Asp Leu Lys Asp Glu Val Leu Ala Thr Ile Pro 180
185 190 Arg Gly Thr Leu Pro Val Gly Gly Pro
Thr Glu Gly Leu Pro Phe Tyr 195 200
205 Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly Ala Pro
Gly Met 210 215 220
Tyr Met Gly Lys Pro Val Asp Gln Ala Leu Tyr Ala Gln Gln Pro Arg 225
230 235 240 Pro Tyr Met Ala Gln
Pro Ile Trp Pro Gln Gln Gln Gln Pro Pro Ser 245
250 255 Asp Ser 20366PRTLycopersicon
esculentumG3894 conserved domain 203Leu Pro Leu Ala Arg Ile Lys Lys Ile
Met Lys Ala Asp Glu Asp Val 1 5 10
15 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala
Cys Glu 20 25 30
Met Phe Ile Leu Glu Leu Thr Leu Arg Ala Trp Asn His Thr Glu Glu
35 40 45 Asn Lys Arg Arg
Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50
55 60 Arg Thr 65
204799DNAArtificial sequencesynthetic sequence 204gctcaaaatg gatcaacatg
gaaatggaca gcctccaggt attggagtcg ttactagctc 60agctccaata tatggtgctc
cataccaagc taaccaaatg gcagggccct ctcctcctgc 120agtttcagct ggtgcaattc
aatctcctca agcagctggt cttgctgctt cgtcagctca 180gatggcgcaa catcagctcg
cttatcagca cattcatcag cagcagcaac aacagttgca 240gcaacaactc cagactttct
gggcaaatca atatcaagaa atcgagcatg ttactgattt 300caagaatcat agcttgccat
tggcaaggat caagaaaatc atgaaagcgg atgaagatgt 360taggatgata tctgctgaag
caccagtcgt atttgctcgt gcctgtgaga tgttcatact 420tgaattgaca ctgcgtgcat
ggaaccacac tgaggagaac aaaaggagga cgctgcagaa 480aaatgatatc gctgcagcca
taacaaggac tgacatattt gatttcttag ttgacattgt 540cccaagagag gacttgaaag
atgaggtgct tgcaacaatt cctagaggaa cgcttcctgt 600tggaggccca actgagggtc
tgccattcta ttatggcatg ccaccacaat ctgctcaacc 660gattggagct ccagggatgt
acatgggaaa gcctgtcgat caagctctgt atgcccagca 720gccccgccca tatatggcac
agccaatttg gccccagcag cagcaaccac cctcagattc 780ttaagcagct caaagctta
7992051109DNAArtificial
sequencesynthetic sequence 205ctacacgttt tgaaaagtta acctgttggt taaatggtta
gctatgactc tcgcaacaaa 60cccaaccctt aagatgatga tggtttaaca tttgacaaca
tagttaagac tgtgtctata 120taatagtcaa caaattcaga ttgtagtatt atggagtcaa
catatttcga gatcaaaaac 180attcaaaacg taaatctatc gacgtctcac atagttttgt
tatgaagctg atgaaaaaag 240ttggaagaca tagttttgca aacatcattt gttgctaacg
tataaacgtt ggtttgatta 300aatgtaatag gataaggata tccgtttgtt catataattg
agttaaatta tattttggtt 360attataatat gttaagttga aaataaatag gtccaacaac
cttgtttaaa tagatttttt 420aggagtgatt cccttttaat agtatagatt atactctctt
cctaatcgac cttccgtggg 480gtaaagtggt caattatatt ctttatggat gagcttgatt
gagaatgggt ttatgggtta 540tgacaagggc atgtacaaat gtcactgcct cttgacatgc
aaccgaacag ttggcgactc 600aagtcgcaga agatacaacg gaccaaaccc tccgagtgtc
gccgcgtctg ttatgtgtca 660cctttttgtc tcctttcctt aaaaattggt aactcatttt
tcaaaaaaag aagaggatag 720ttttggctgt atctcctaaa ctattcgatc acaacgccag
atattttaat actggatact 780agtgatgtaa tttgatttgt taattgtcaa aaagtagatt
ctcctatctc gtttttagtt 840caattattat atggttaaat gaatttaagt cgattagaaa
tgattagtta atcaaccaga 900gttgctctat aagtctatac tgataacatg aaccattttc
taaaaatgag atagatacat 960ttgaattttg tcgtggtttg gagtatgcgg agatagtcgt
acgcgcatga acatcatgag 1020acacttgctt cagctcacag agtgacgtgt aaagaccata
gacccacgac ttcatgcaaa 1080cccattccta cgtggcacaa accttcatg
11092061341DNAArtificial sequencesynthetic sequence
206atgacttctt cagtacatga gctctctgat aacaatgaaa gtcatgcgaa gaaagaacgt
60ccagattccc aaacccgacc acaggttcct tcaggacgaa gttcggaatc tattgataca
120aactctgtct actcagagcc catggcacat ggattatacc cgtatccaga tccttactac
180agaagcgtct ttgcacagca agcgtatctt ccacatccct atcctggggt ccaattgcag
240ttaatgggaa tgcagcagcc aggagttcca ttgcaatgtg atgcagtcga ggaacctgtt
300tttgttaacg caaagcaata ccatggtata ctcaggcgca ggcaatcccg ggcaaaactt
360gaggcacgaa atagagccat caaagcaaaa aagccataca tgcatgaatc tcggcattta
420catgcgataa gacggccaag aggatgtggt ggccggtttc tcaatgccaa gaaggaaaat
480ggagaccaca aggaggagga ggaggcaacc tctgatgaga acacttcaga agcaagttcc
540agcctcaggt ccgagaaatt agctatggct acttctggtc ctaatggtag atctgcggcc
600gctgccgctg cggcagcggc catggtgagc aagggcgagg agctgttcac cggggtggtg
660cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag
720ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag
780ctgcccgtgc cctggcccac cctcgtgacc accttcggct acggcctgca gtgcttcgcc
840cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc cgaaggctac
900gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg
960aagttcgagg gcgacaccct ggataaccga atcgagctga agggcatcga cttcaaggag
1020gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc
1080atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag
1140gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg cgacggcccc
1200gtggtgctgc ccgacaacca ctacctgagc taccagtccg ccctgagcaa agaccccaac
1260gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat cactctcggc
1320atggacgagc tgtacaagta a
13412071386DNAArtificial sequencesynthetic sequence 207ccaaaatcta
gggttttctt ctcgcccaat ttcacttttc ttctacgaaa ttctccattc 60ctgccggctg
tcgggttttc tgaatcgatt ctccttcacc aacttcttct ctggttctgt 120tcgattctga
ttttttttca aggtcaattt tttcttctct ttaaactctg caaaatcgtg 180atcgattaaa
ttcacctcag ggttttttga tttctgaaag aagttaatct tcttcgaagg 240cgattgcaaa
agagtgctct gctgtgaatt tccactgaga tgcaatcaaa accgggaaga 300gaaaacgaag
aggaagtcaa taatcaccat gctgttcagc agccgatgat gtatgcagag 360ccctggtgga
aaaacaactc ctttggtgtt gtacctcaag cgagaccttc tggaattcca 420tcaaattcct
cttctttgga ttgccccaat ggttccgagt caaacgatgt tcattcagca 480tctgaagacg
gtgcgttgaa tggtgaaaac gatggcactt ggaaggattc acaagctgca 540acttcctctc
gttcagataa tcacggaatg gaaggaaatg acccagcgct ctctatccgt 600aacatgcatg
atcagccact tgtacaacca ccagagcttg ttggacacta tatcgcttgt 660gtcccaaacc
catatcagga tccatattat gggggattga tgggagcata tggtcatcag 720caattgggtt
ttcgtccata tcttggaatg cctcgtgaaa gaacagctct gccacttgac 780atggcacaag
agcccgttta tgtgaatgca aagcagtacg agggaattct aaggcgaaga 840aaagcacgtg
ccaaggcaga gctagagagg aaagtcatcc gggacagaaa gccatatctt 900cacgagtcaa
gacacaagca tgcaatgaga agggcacgag cgagtggagg ccggtttgcg 960aagaaaagtg
aggtagaagc gggagaggat gcaggaggga gagacagaga aaggggttca 1020gcaaccaact
catcaggctc tgaacaagtt gagacagact ctaatgagac cctgaattct 1080tctggtgcac
cataataaaa aaagccaaag ctctgagagg agagagagac acacactttg 1140gctaatataa
tccattgcct caaaccggca aatcattctt ggctttttcg tttttgtgtt 1200tgctagttgt
tcttgtcaga gtctcatatt gtgtgggttt aacagttatg atgaatgtac 1260aaagagcgag
ttatgttagg tgttagattt tggagacaag agacaaagga atagcaagta 1320ggtcttgttt
ttattctttg accttttttt tctcttttgc aaaattgaaa aatacgtttg 1380cttaaa
13862084361DNAArtificial sequencesynthetic sequence 208agaatgtagc
aatacaaata tatgacggta ccgttatcca tcaccattat atgtatatat 60gtataatttg
ataaatattc actttgtgtt tcgtcgtttg cttaataaac agctcatttc 120catggtattg
agtcttctat atgcgagaga atcagattcc cgctgggata acaaaagaac 180aaggtactga
aaaaaataga caaaactttt ttttaaatta tataagctat aaaagaaaag 240agtatagaga
gagattagcc ctactgttta agagggagag agtagggtca ttagggcttt 300agagagagaa
gacattcgga ctgtccccac ttgcttttct gtagaataac attatttaaa 360tcttattttt
aattaaatat tacaactaaa agaagaaacc aacttttaaa ataaatgcag 420attatatgct
ctgacttgga ctaaataaaa cttgcaagta acagtttcaa gtccttttgt 480tttagaactt
tttctttcgt agaagtgata aatgattgcc ctagacctga tagattctct 540aaaattctac
gtattacagc ataagttacc tcctttattt gactattaga ccatccatat 600tggtgggctt
ttagcaaatg ttcttaacaa taattttata atttatttta atgttaagag 660gtttgataat
tttttttttt taagagtgta ttttgtttat taaaatgtgt tttgtttctt 720atataagaac
caaatcttaa ctattttacc aattaaacat taaatttaaa ttttaatatc 780tctaagaatt
atattaagag ccaatataga tgcttttaaa accattggtt gaataaataa 840atctaacctt
cttaattatt tctgtgtgaa tattttctaa attttcattt taatttagca 900caatataatc
catgttctaa aaagaacaat taacataata tttacaaacc taaaaagatt 960ataaaacaca
attttatttt ttacagctta taatgtttta aagttcaggt ttatttttta 1020aaagttcagg
tttattacat taggtttgac ttgtaatcat catttatcac aacgatcaaa 1080ctattattac
aatcacaata gtagacaaaa tttaggatat atatatatat atataattat 1140gtataaacta
tgaacattta aagtgagatt tttcaaaata atatataaat tcaaatagaa 1200atagactatt
tggttcttaa atgagagacc cccgaaaaaa tctttttttt tttctcatca 1260agctgtttac
atttttagat ataaaatcat attctttata gtttagaata tgaattaaat 1320agttttatat
gttattaact tatcataaga tatgcgtgag gttggccaaa aactcatcaa 1380ttaaccaaat
aagaaaagta aaattgtatt ttgctttgct aaaaatgtaa atatttcatt 1440gaaaaatgaa
aaaggtttag gtaatacaat taagtaaatc ctacaatttt ggttccatgg 1500caaaagaata
aaattgtatt gctttggtaa aagttgatcc aactaatata ttcagtagaa 1560actgcaaaac
tgaagaaata agtttgttta gtagaattgc tttcggttat gtaatgaata 1620tacatccaaa
atggcttttt agtaatgatg tcttttcata ctctttccaa tccctactac 1680tttcagatta
tttgtcctac tattatagag atatacgttc gttttcaata atatgaaaag 1740tgatatatat
ttaaatagtg tgatatatat ataagttttg caagtgcatc acttcccaaa 1800atcgcataaa
tcattaatca tattgtcgaa aacagtataa taacttctta aacgaaaacg 1860cagcgcaatt
aaaaataaca actagagata attgacaaaa cattgattaa tatttaccta 1920taagttaatt
attgtattta aaatttattt aaagttcata aggaaaacat atgcaaaaat 1980atttatatct
aatattttgc tatgttatcc tttttttttt ttacgttatc ctaattttgt 2040ttatcctaat
ttgttgtggt taaaatctta ttattgataa aaagagaact tttttttttg 2100tcatcataaa
aaagagaact tattacttcg attttaaaat tctatgagcg taggagacaa 2160agaaaaaaaa
aataaaaaaa aaaagaagag aaaaatcact tcttttcttc tttttagtcc 2220agatccaaca
tattttggat aactaaatga agatttttta aaaaaatata ttttagggta 2280tatataaatc
ataatttgaa gcaaatgaaa taaaatccag tttggtaata tataaatatg 2340atttgatggg
ttccttgtaa tctctctcta tctattagtt tctcagttat cttttctttg 2400ccagaaatgg
cagtgaaggc agtggctgag gagagagttt tttttcttct ttcatgggga 2460aagtaaaact
ttgccttgaa gatttctctc ttcaatattt ttctaagact tttgatttca 2520acgaatcact
gtccttaacc taaaagcaag aaaaattagc tttatactgg tctttacttt 2580tttttaacat
atttattttt atatagttta cttataaaca tagacatacg agtatgggaa 2640tatatagtat
atccaacttc taaataatat ttcgaatagt gataacaaaa ttagcaatac 2700atacggctag
tgaaatgttg atcgaataaa cggcactgat gtaatgtact tatcaatttt 2760gataatttta
attgtattgt ttttcttttt ttcccacagt attgaactag acaattaaat 2820ttaaagtaaa
attatacatt tctttcgttg tgtattaaag taacatgcat aatatcattt 2880tccttcgtac
aatcctccaa attgacaatt gatgaattac tttgtcaatc gtaaatgaat 2940ttttctcaag
tctgtatact attttcaggg ataaacaggt acaggtgtcc catgcttatt 3000ctcttgatag
taacatgtgt cctatgttga gtcaattcta cgttcgaaga agtgctaaca 3060attgttaata
gcctcgtata ttattctaat taaaatgcct cgatagattt ggttagtggt 3120ctgaatgtga
ttggttattt tttcaagtgg caagaggtct accatctaat attacaatca 3180atcgaccaaa
aaggtcgaga acatgataat ggtggcaaat acaaatggtt cattgttgtc 3240taatataaca
agccatcagt tgtcactttt taaaaacaat acagaataca agatactttt 3300tttttaaggt
aaaatgtgtg tttaatattt tcgtttatat aacaaataaa cagttacatg 3360ttttactcta
tgattatatt tatgacattt ttcttcttct taacaacatt tttttcccat 3420aagaacattt
acaatagtat taaaactttg attgcaatca aatgttagat cacttattat 3480aaaattacta
agactgctat cttttcctat tgacaaaagc gaatccaata tatgttactg 3540aaacaaatgc
gtaaattata ctatatggag atctatcggt taattattga gagaatctaa 3600gaaagttttt
gagtacaaca gtcctaataa tatcttcaca taccatataa tatacatata 3660tacatataca
caaatgtact ttttaaacca acatcagcat acgtatatcc catcaggaaa 3720cttagacttt
tgggaattca tggtatgaaa accaaaacca aatgacaaca ttcgatttga 3780tactcccgac
ccatggtaaa gaaataacaa attccaatat atctttcact ggactttccg 3840aggcacattc
cggttttctc catttcaaga aattgtcaaa aataaattga gatccggttt 3900attacctcaa
aaaagaagaa gagaaattac aacattaatt tccgaaaagg cataaatgag 3960aaatcatatt
tcagcagaag aacacaaaag agttaagaac ccacagatca cacaacctct 4020gtccatgtct
gctttttaca cttttttaaa ataagtttct cctaaaaagt tatttcctat 4080ttataataat
ttccttagat ttatcttcct ggtctctctt ctgctgcttc cctctccccc 4140ataactatca
ctatttagaa ttttcaatgt ggaaaaggaa gctgattgtt gaagcataaa 4200tcccgggaga
ccacttttgc attttcaaat aattaaatta aaccatagat acacacacac 4260agttacttac
tcttttaggg tttcccaata aatttatagt actttaatgt gtttcatgat 4320attgatgata
aatgctagct gtatttacaa tgggggctcc t
43612091243DNAZea maysG4259 209aaaaaaagaa gcttgccatt tcgctcaggg
ccctgcaacg cgcggcagcg cgccacgcgc 60cgagcttggc ttgggactgg gccgcccggc
cgcgaggaat aaactcactc ctgccttcat 120acgtatccaa atagccgcgg cagtacgtgt
atgtggttag ctatacgcga cctcagctcg 180ggcgcaagct acaacgccga ccaggcgaga
agaagcatcg atagtgtgac gagctaaccc 240accagcagca acgtaatcca aatccatgga
caaccagccg ctgccctact ccacaggcca 300gccccctgcc cccggaggag ccccggtggc
gggcatgcct ggcgcggccg gcctcccacc 360cgtgccgcac caccacctgc tccagcagca
gcaggcccag ctgcaggcgt tctgggcgta 420ccagcgccag gaggcggagc gcgcgtccgc
gtcggacttc aagaaccacc agctgcctct 480ggcccggatc aagaagatca tgaaggccga
cgaggacgtg cgcatgatct ccgccgaggc 540gcccgtgctg ttcgccaagg cctgcgagct
cttcatcctc gagctcacta tccgctcctg 600gctccacgcc gaggagaaca agcgccgcac
cctgcagcgc aacgacgtcg ccgcggccat 660cgcgcgcacc gacgtcttcg atttcctcgt
agacatcgtg ccccgcgagg aggccaagga 720ggagcccggc agcgccctcg gcttcgcggc
gcctgggacc ggcgtcgtcg gggctggcgc 780cccgggcggg gcgccagccg ccgggatgcc
ctactactat ccgccgatgg ggcagccggc 840gccgatgatg ccggcctggc atgttccggc
ctgggacccg gcctggcagc aaggggcagc 900ggatgtcgat cagagcggca gcttcagcga
ggaaggacaa gggtttggag caggccatgg 960cggcgccgct agcttccctc ctgcgcctcc
gacctccgag tgatcgatcg gcgcgtctct 1020tggtcctggc ctcctggctt agctacatgt
gcatgatgtc aatcgttcaa tgtgccatgc 1080tgtgtatatt ctacagcaaa cgtggtaatg
gagctgctat gcatacagaa cgaataaggc 1140gtgacgtgtg agaccgtaag agtacgtagt
actaatatgt agatgcacgt gacgtgccaa 1200ttaatcaaag attaacatgc agttaattaa
ttagatcctc cct 1243210245PRTZea maysG4259 polypeptide
(domain in aa coordinates 70-135) 210Met Asp Asn Gln Pro Leu Pro
Tyr Ser Thr Gly Gln Pro Pro Ala Pro 1 5
10 15 Gly Gly Ala Pro Val Ala Gly Met Pro Gly Ala
Ala Gly Leu Pro Pro 20 25
30 Val Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln
Ala 35 40 45 Phe
Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp 50
55 60 Phe Lys Asn His Gln Leu
Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 65 70
75 80 Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu
Ala Pro Val Leu Phe 85 90
95 Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp
100 105 110 Leu His
Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val 115
120 125 Ala Ala Ala Ile Ala Arg Thr
Asp Val Phe Asp Phe Leu Val Asp Ile 130 135
140 Val Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser
Ala Leu Gly Phe 145 150 155
160 Ala Ala Pro Gly Thr Gly Val Val Gly Ala Gly Ala Pro Gly Gly Ala
165 170 175 Pro Ala Ala
Gly Met Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala 180
185 190 Pro Met Met Pro Ala Trp His Val
Pro Ala Trp Asp Pro Ala Trp Gln 195 200
205 Gln Gly Ala Ala Asp Val Asp Gln Ser Gly Ser Phe Ser
Glu Glu Gly 210 215 220
Gln Gly Phe Gly Ala Gly His Gly Gly Ala Ala Ser Phe Pro Pro Ala 225
230 235 240 Pro Pro Thr Ser
Glu 245 21166PRTZea maysG4259 conserved domain 211Leu Pro
Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5
10 15 Arg Met Ile Ser Ala Glu Ala
Pro Val Leu Phe Ala Lys Ala Cys Glu 20 25
30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu
His Ala Glu Glu 35 40 45
Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val Ala Ala Ala Ile Ala
50 55 60 Arg Thr 65
2121505DNAZea maysG4261 212gcgcgaggga gagacagagt gaggaaacga gggaaggaga
cgacgcgctc gcctattggc 60cgccggctcc gctccttcgc gcccagtgcg acggccacgg
cctgagcggc gctgccagca 120aggcggctag tatgagcagc atggagtcgc ggccgggccg
aacgaacctg gtggagccca 180tagggcacgg cgccgcgctg ccgtccggcg gccaggcagt
gcagccgtgg tggacgagct 240ccggggctgt gctcggtgca gtctcgccag ccgtcgtggc
ggtggcgccc gggagcggga 300cggggattag cctgtcgagc agcccggcag gtggtagtgg
tggtggcggc gcggctaaag 360gagccgcgag tgacgagagc agcgaggatt cacggagatc
tggggaacca aaagatggaa 420gcgctagtca agaaaagaac catgccacat cgcagatacc
cgctctggcg ccagagtatt 480tggcaccata ctcgcagctg gaactgaacc aatcaattgc
ttctgcagca tatcagtacc 540cagatcctta ctatgcaggc atggttgctc cctatggaag
tcatgctgtg gctcattttc 600agctacctgg actaactcaa tctcgaatgc cattacctct
tgaagtatcc gaggagcctg 660tttatgtaaa tgccaagcag taccatggta tcttaagacg
acggcagtcc cgtgctaagg 720ctgaacttga gaaaaaggtg gtcaaagcca gaaagccata
ccttcacgag tctcgtcatc 780agcacgcgat gaggagggca agaggaaacg ggggacgctt
cctgaacaca aagaaaagtg 840acagtggtgc tcccaatgga ggcgaaaacg ccgagcatct
ccatgtccct cccgacttac 900tacagctacg acagaacgag gcttgaagta gcggtatggc
tctggcatcc ttgaacagca 960gttcctgtcc acgggcgtag gcattcgaga ccggattcat
atagctctcc acagcatacg 1020cgcagccatc tctgcggtaa cgcacgttct cctgaacgag
ctttgtagcg agataggtat 1080gcaagtgcaa tctgggcgca ggaatccatc atcaagtgcc
caatgcccat ggggtaggta 1140cgctgtttca ggcaattcat tcttggcttt cacgttccac
ccttgtgtaa ctggtgtgtt 1200gtaaatgtgt ggaaaactaa gcttgtgctc tgtatcgggc
cgttcagcgg aactgcaaaa 1260cgcctgtata attaagatcg aactttggat taactcggta
atgctttgtc tggttttctt 1320ttagcttttc aactgtaaca cggccacagc tgattcatgt
gatgtgcttg ctaatattta 1380aataaacacc ttgacccggc cgggcgcgga gtaattttat
attttttata ttcgggagtc 1440cacacaatcg tgtaaggttc ctgcgaacca gttctgactt
taattgaacc gcccggattc 1500atatg
1505213264PRTZea maysG4261 polypeptide
(domain in aa coordinates 175-231) 213Met Ser Ser Met Glu Ser Arg Pro Gly
Arg Thr Asn Leu Val Glu Pro 1 5 10
15 Ile Gly His Gly Ala Ala Leu Pro Ser Gly Gly Gln Ala Val
Gln Pro 20 25 30
Trp Trp Thr Ser Ser Gly Ala Val Leu Gly Ala Val Ser Pro Ala Val
35 40 45 Val Ala Val Ala
Pro Gly Ser Gly Thr Gly Ile Ser Leu Ser Ser Ser 50
55 60 Pro Ala Gly Gly Ser Gly Gly Gly
Gly Ala Ala Lys Gly Ala Ala Ser 65 70
75 80 Asp Glu Ser Ser Glu Asp Ser Arg Arg Ser Gly Glu
Pro Lys Asp Gly 85 90
95 Ser Ala Ser Gln Glu Lys Asn His Ala Thr Ser Gln Ile Pro Ala Leu
100 105 110 Ala Pro Glu
Tyr Leu Ala Pro Tyr Ser Gln Leu Glu Leu Asn Gln Ser 115
120 125 Ile Ala Ser Ala Ala Tyr Gln Tyr
Pro Asp Pro Tyr Tyr Ala Gly Met 130 135
140 Val Ala Pro Tyr Gly Ser His Ala Val Ala His Phe Gln
Leu Pro Gly 145 150 155
160 Leu Thr Gln Ser Arg Met Pro Leu Pro Leu Glu Val Ser Glu Glu Pro
165 170 175 Val Tyr Val Asn
Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln 180
185 190 Ser Arg Ala Lys Ala Glu Leu Glu Lys
Lys Val Val Lys Ala Arg Lys 195 200
205 Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg
Ala Arg 210 215 220
Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys Lys Ser Asp Ser Gly Ala 225
230 235 240 Pro Asn Gly Gly Glu
Asn Ala Glu His Leu His Val Pro Pro Asp Leu 245
250 255 Leu Gln Leu Arg Gln Asn Glu Ala
260 21457PRTZea maysG4261 conserved domain 214Glu Pro
Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg 1 5
10 15 Arg Gln Ser Arg Ala Lys Ala
Glu Leu Glu Lys Lys Val Val Lys Ala 20 25
30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His
Ala Met Arg Arg 35 40 45
Ala Arg Gly Asn Gly Gly Arg Phe Leu 50 55
21516PRTArtificial sequencederived from wheat, rye, and tomato 215Pro
Lys Xaa Pro Ala Gly Arg Xaa Lys Phe Xaa Glu Thr Arg His Pro 1
5 10 15 2165PRTarabidopsis
thaliana 216Asp Ser Ala Trp Arg 1 5
User Contributions:
Comment about this patent or add new information about this topic: