Patent application title: 1,2,4-OXADIAZOLE AND 1,2,4-THIADIAZOLE BETA-LACTAMASE INHIBITORS
Inventors:
Yu Gui Gu (Acton, MA, US)
Yu Gui Gu (Acton, MA, US)
Yong He (Bedford, MA, US)
Ning Yin (Lexington, MA, US)
Dylan C. Alexander (Watertown, MA, US)
Jason B. Cross (Acton, MA, US)
Chester A. Metcalf, Iii (Needham, MA, US)
Chester A. Metcalf, Iii (Needham, MA, US)
Robert Busch (Wakefield, MA, US)
IPC8 Class: AC07D47108FI
USPC Class:
51421013
Class name:
Publication date: 2015-01-29
Patent application number: 20150031666
Abstract:
β-Lactamase inhibitor compounds (BLIs) are disclosed, including
compounds that have activity against class A, class C or class D
β-lactamases. Methods of manufacturing the BLIs, and uses of the
compounds in the preparation of pharmaceutical compositions and
antibacterial applications are also disclosed.Claims:
1.-37. (canceled)
38. A pharmaceutical composition comprising aztreonam or a pharmaceutically acceptable salt thereof and a compound of Formula (I) or a pharmaceutically acceptable salt thereof: ##STR00044## wherein Z is selected from a 1,2,4-oxadiazole or a 1,2,4-thiadiazole; R is selected from ##STR00045## and R1 is selected from: hydrogen, ##STR00046## wherein R2 is selected from ##STR00047## wherein each of R3, R4 and R5 is independently selected from hydrogen, (C1-C3)-alkyl, aminoalkyl, aminocycloalkyl, or hydroxyalkyl, and n is selected from 1, 2 or 3, amino, ##STR00048## wherein R6 is selected from H, (C1-C3)-unsubstituted alkyl, amino-(C2-C3)-alkyl, aminocycloalkyl, hydroxyalkyl, ##STR00049## and each of p and q is independently selected from 1 or 2; and --CH2(R7)CH2NH2 wherein R7 is selected from amino or hydroxyl.
39. The pharmaceutical composition of claim 38 wherein Z--R1 is ##STR00050## wherein X is selected from O or S and wherein R and R1 are as previously described.
40. The pharmaceutical composition of claim 38 wherein Z--R1 is ##STR00051## wherein X is selected from O or S and wherein R and R1 are as previously described.
41. The pharmaceutical composition of claim 38 wherein the compound of Formula (I) exhibits a binding affinity for the KPC-2 β-lactamase enzyme of at least 250 mM-1s.sup.-1.
42. The pharmaceutical composition of claim 38 wherein the compound is selected from the group consisting of Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) and Formula (VIII), and pharmaceutically acceptable salts thereof: ##STR00052##
43. The pharmaceutical composition of claim 38 wherein the compound or a pharmaceutically acceptable salts thereof has the Formula: ##STR00053##
44. The pharmaceutical composition of claim 38 wherein the compound or a pharmaceutically acceptable salts thereof has the Formula: ##STR00054##
45. A pharmaceutical composition comprising meropenem or a pharmaceutically acceptable salt thereof and a compound of Formula (I) or a pharmaceutically acceptable salt thereof: ##STR00055## wherein Z is selected from a 1,2,4-oxadiazole or a 1,2,4-thiadiazole; R is selected from ##STR00056## and R1 is selected from: hydrogen, ##STR00057## wherein R2 is selected from ##STR00058## wherein each of R3, R4 and R5 is independently selected from hydrogen, (C1-C3)-alkyl, aminoalkyl, aminocycloalkyl, or hydroxyalkyl, and n is selected from 1, 2 or 3, amino, ##STR00059## wherein R6 is selected from H, (C1-C3)-unsubstituted alkyl, amino-(C2-C3)-alkyl, aminocycloalkyl, hydroxyalkyl, ##STR00060## and each of p and q is independently selected from 1 or 2; and --CH2(R7)CH2NH2 wherein R7 is selected from amino or hydroxyl.
46. The pharmaceutical composition of claim 45 wherein Z--R1 is ##STR00061## wherein X is selected from O or S and wherein R and R1 are as previously described.
47. The pharmaceutical composition of claim 45 wherein Z--R1 is ##STR00062## wherein X is selected from O or S and wherein R and R1 are as previously described.
48. The pharmaceutical composition of claim 45 wherein the compound of Formula (I) exhibits a binding affinity for the KPC-2 β-lactamase enzyme of at least 250 mM-1s.sup.-1.
49. The pharmaceutical composition of claim 45 wherein the compound is selected from the group consisting of Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) and Formula (VIII), and pharmaceutically acceptable salts thereof: ##STR00063##
50. The pharmaceutical composition of claim 45 wherein the compound or a pharmaceutically acceptable salts thereof has the Formula: ##STR00064##
Description:
RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Application No. 61/618,136, filed Mar. 30, 2012. The entire content of this application is incorporated herein by reference in its entirety.
TECHNICAL FIELD
[0002] This disclosure is directed to β-lactamase inhibitors (BLIs) which are effective as inhibitors of β-lactamases and, when used in combination with β-lactam antibiotics are useful in the treatment of bacterial infections. The compounds when combined with a β-lactam antibiotic are effective in treating bacteria that are resistant to β-lactam antibiotics due to the presence of β-lactamases. Pharmaceutical compositions comprising such compounds, methods of using such compounds, and processes for preparing such compounds are also disclosed.
BACKGROUND
[0003] Bacterial resistance to β-lactam antibiotics, especially in Gram-negative bacteria, is most commonly mediated by β-lactamases. β-lactamases are enzymes that catalyze the hydrolysis of the β-lactam ring, which inactivates the antibacterial activity of the β-lactam antibiotic and allows the bacteria to become resistant. Inhibition of the β-lactamase with a BLI slows or prevents degradation of the β-lactam antibiotic and restores β-lactam antibiotic susceptibility to β-lactamase producing bacteria. Many of these β-lactamases are not effectively inhibited by BLIs currently on the market rendering the β-lactam antibiotics ineffective in treating bacteria that produce these β-lactamases. There is an urgent need for novel BLIs that inhibit β-lactamases that are not effectively inhibited by the current clinical BLIs (e.g. KPC, class C and class D β-lactamases) and that could be used in combination with β-lactam antibiotics to treat infections caused by β-lactam resistant bacteria.
SUMMARY OF INVENTION
[0004] The present invention provides, in one aspect, compounds of chemical formula (I), or pharmaceutically-acceptable salts thereof, which are BLIs and are useful in combination with β-lactam antibiotics for the treatment of bacterial infections.
[0005] A compound of Formula (I) or a pharmaceutically acceptable salt thereof:
##STR00001##
[0006] wherein
[0007] Z is selected from a 1,2,4-oxadiazole or a 1,2,4-thiadiazole;
[0008] R is selected from
##STR00002##
[0009] R1 is selected from:
[0010] a. hydrogen,
[0011] b.
[0011] ##STR00003##
[0012] wherein R2 is selected from
[0012] ##STR00004##
[0013] wherein each of R3, R4 and R5 is independently selected from hydrogen, (C1-C3)-alkyl, aminoalkyl, aminocycloalkyl, or hydroxyalkyl, and n is selected from 1, 2 or 3,
[0014] c. amino,
[0015] d.
[0015] ##STR00005##
[0016] wherein R6 is selected from H, (C1-C3)-unsubstituted alkyl, amino-(C2-C3)-alkyl, aminocycloalkyl, hydroxyalkyl,
[0016] ##STR00006##
[0017] and each of p and q is independently selected from 1 or 2; and
[0018] e. --CH2(R7)CH2NH2
[0019] wherein R7 is selected from amino or hydroxyl.
[0020] In another aspect, the invention provides use of a compound of Formula I for inhibiting β-lactamases.
[0021] In yet another aspect, the invention provides compounds of Formula I with high binding affinity for β-lactamase enzymes.
[0022] In a further aspect, the present invention also provides antibacterial compositions comprising compounds of Formula I and at least one β-lactam antibiotic.
[0023] In an even further embodiment, the present invention provides pharmaceutical compositions comprising compounds of Formula I and at least one β-lactam antibiotic and methods of use thereof.
[0024] In a still further aspect, the invention provides methods of use of the compounds of Formula I to treat bacterial infections in a subject.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] FIG. 1 shows Table I, Representative Compounds of Formula II
[0026] FIGS. 2a-2b show Table II, Standard BLI potentiation MIC assay against a panel of isogenic and clinical strains expressing β-lactamases.
[0027] FIG. 3 shows Table III, the synergy MIC of representative compounds of Formula I against a panel of isogenic and clinical strains expressing β-lactamases.
[0028] FIG. 4 shows Table IV, an assay to determine inhibition kinetics of representative compounds of Formula I for the KPC-2 β-lactamase.
DETAILED DESCRIPTION
Definitions
[0029] Molecular terms, when used in this application, have their common meaning unless otherwise specified.
[0030] The term "alkyl" is defined as a linear or branched, saturated radical having one to about twenty carbon atoms unless otherwise specified. Preferred alkyl radicals are "lower alkyl" radicals having one to about five carbon atoms. Examples of alkyl groups include, without limitation, methyl, ethyl, tert-butyl, isopropyl, and hexyl. A subset of the term alkyl is "(C1-C3)-unsubstituted alkyl" which is defined as an alkyl group that bears no substituent groups. Examples of (C1-C3)-unsubstituted alkyl groups include methyl, ethyl, propyl and isopropyl. It is understood that if a (C1-C3)-alkyl is "substituted" that one or more hydrogen atoms is replaced by a substitutent.
[0031] The term amino denotes a NH2 radical
[0032] The term "aminoalkyl" denotes an alkyl in which one or more of the alkyl hydrogen atoms has been replaced by an amino group.
[0033] The term "aminocycloalkyl" denotes a cycloalkyl in which one of the cycloalkyl hydrogen atoms has been replaced by an amino group.
[0034] The term "cycloalkyl" or "cycloalkyl ring" is defined as a saturated or partially unsaturated carbocyclic ring in a single or fused carbocyclic ring system having from three to twelve ring members. In a preferred embodiment, a cycloalkyl is a ring system having three to seven ring members. Examples of a cycloalkyl group include, without limitation, cyclopropyl, cyclobutyl, cyclohexyl, and cycloheptyl.
[0035] The term "hydroxyalkyl" denotes an alkyl radical in which one or more of the alkyl hydrogen atoms has been replaced by a hydroxyl group.
[0036] It will be understood by one of skill in the art that a
##STR00007##
or--
[0037] denote the point of attachment of a substituent group where indicated. For example
##STR00008##
or --C(O)NHR5
[0038] represent that the point of attachment of the amide moiety is at the carbonyl carbon.
[0039] The functional classification of β-lactamases and terms "Class A", "Class C", and "Class D" β-lactamases are understood by one of skill in the art and are described in "Updated Functinal Classification of β-Lactamases", Bush, K.; Jacoby, G. A.; Antimicrob. Agents Chemother. 2010, 54, 969-976, herein incorporated by reference.
[0040] The salts of the compounds of the invention include acid addition salts and base addition salts. In a one embodiment, the salt is a pharmaceutically acceptable salt of the compound of Formula I. The term "pharmaceutically acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically-acceptable. Suitable pharmaceutically acceptable acid addition salts of the compounds of the invention may be prepared from an inorganic acid or an organic acid. Examples of such inorganic acids include, without limitation, hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Examples of appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, arylaliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, examples of which include, without limitation, formic, acetic, propionic, succinic, glycolic, gluconic, maleic, embonic (pamoic), methanesulfonic, ethanesulfonic, 2-hydroxyethanesulfonic, pantothenic, benzenesulfonic, toluenesulfonic, sulfanilic, mesylic, cyclohexylaminosulfonic, stearic, algenic, β-hydroxybutyric, malonic, galactic, and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of the invention include, but are not limited to, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, N-methylglucamine, lysine and procaine. All of these salts may be prepared by conventional means from the corresponding compound of the invention by treating, for example, the compound of the invention with the appropriate acid or base.
[0041] The compounds of the invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or non-racemic mixtures thereof. The compounds of the invention can be utilized in the present invention as a single isomer or as a mixture of stereochemical isomeric forms. Diastereoisomers, i.e., nonsuperimposable stereochemical isomers, can be separated by conventional means such as chromatography, distillation, crystallization or sublimation. The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, for example by formation of diastereoisomeric salts by treatment with an optically active acid or base. Examples of appropriate acids include, without limitation, tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric and camphorsulfonic acid. The mixture of diastereomers can be separated by crystallization followed by liberation of the optically active bases from the optically active salts. An alternative process for separation of optical isomers includes the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers. Still another available method involves synthesis of covalent diastereoisomeric molecules by treating compounds of the invention with an optically pure acid in an activated form or an optically pure isocyanate. The synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to obtain the enantiomerically pure compound. The optically active compounds of the invention can likewise be obtained by utilizing optically active starting materials. These isomers may be in the form of a free acid, a free base, an ester or a salt.
[0042] The invention also embraces isolated compounds. An isolated compound refers to a compound which represents at least 10%, such as at least 20%, such as at least 50% and further such as at least 80% of the compound present in the mixture. In one embodiment, the compound, a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising the compound exhibits detectable (i.e. statistically significant) activity when tested in conventional biological assays such as those described herein.
3-Lactamase Inhibitors (BLIs)
[0043] In one aspect, the invention provides compounds of Formula I or pharmaceutically-acceptable salts thereof:
##STR00009##
[0044] The substituent Z of Formula I is selected from a 1,2,4-oxadiazole or a 1,2,4-thiadiazole. In one aspect of the invention the substituent
##STR00010##
is selected from
##STR00011##
wherein X is as described previously. In another embodiment of the invention,
##STR00012##
is selected from
##STR00013##
[0045] Substituent R of Formula I is selected from
##STR00014##
In a preferred embodiment, R is
##STR00015##
[0046] The group R1 is selected from:
[0047] a. hydrogen,
[0047] ##STR00016##
[0048] b.
[0049] wherein R2 is selected from
[0049] ##STR00017##
[0050] wherein each of R3, R4 and R5 is independently selected from hydrogen, (C1-C3)-alkyl, aminoalkyl, aminocycloalkyl, or hydroxyalkyl, and n is selected from 1, 2 or 3,
[0051] c. amino,
[0052] d.
[0052] ##STR00018##
[0053] wherein R6 is selected from H, (C1-C3)-unsubstituted alkyl, amino-(C2-C3)-alkyl, aminocycloalkyl, hydroxyalkyl,
[0053] ##STR00019##
[0054] and each of p and q is independently selected from 1 or 2; and
[0055] e. --CH2(R7)CH2NH2
[0056] wherein R7 is selected from amino or hydroxyl.
[0057] In one aspect of the invention n is 1. In another aspect of the invention n is 2. In another aspect of the invention n is 3.
[0058] In one aspect of the invention R1 is selected from H, NH2, or.
##STR00020##
[0059] In one embodiment of the invention, the compounds of the invention are of the stereochemistry disclosed in Formula II.
##STR00021##
[0060] In another embodiment of the invention, Z, R and R1 are chosen from the substituents listed in Table I (See Figure I)
[0061] Preferred compounds of Formula I are the compounds:
##STR00022##
[0062] It will be understood by one of skill in the art that depending on the nature of R1 and R, compounds of Formula I may exist in a salt or zwitterionic form.
Enzyme Inhibition and Binding Affinity
[0063] The compounds of Formula I are effective in inhibiting β-lactamase. When used in combination with β-lactam antibiotics, the compounds of Formula I potentiate the activity of the β-lactam antibiotic against microorganisms that are normally resistant to β-lactam antibiotics due to the presence of a β-lactamase or multiple β-lactamases.
[0064] In one aspect of the invention the compounds of Formula I inhibit β-lactamases selected from class A, class C or class D β-lactamases. Class A β-lactamases for example, include, but are not limited to, TEM, SHV, CTX-M, KPC, GES, VEB, SME, and GEX. In a preferred aspect of the invention, the compounds of the invention inhibit KPC β-lactamases. More preferably the compounds of the invention inhibit KPC-2 or KPC-3 β-lactamases. In one aspect of the invention, the compounds of Formula I inhibit KPC-2 or KPC-3 β-lactamases in clinical strains (FIG. 2, Table II). Class C β-lactamases for example, include, but are not limited to chromosomal AmpCs, and plasmid based ACC, DHA, CMY, FOX, ACT, MIR, LAT, MOX β-lactamases. Class D β-lactamase enzymes, for example, include, but are not limited to oxacillinases or OXA β-lactamases.
[0065] Unless otherwise indicated, the activity of the BLI compounds can be described by the MIC value obtained from a Synergy MIC assay or a BLI potentiation assay (e.g as described herein), both of which are run in the presence a β-lactam. The lower the sMIC or MIC value the more active the BLI, regardless of the mechanism of action of the BLI compound (e.g., including inhibition of β-lactamases by the BLI or any other mechanism of action or combination of mechanisms of action). The sMIC and BLI potentiation assay data supports that the compounds of Formula I potentiate (i.e. make more potent) the activity of the β-lactam antibiotic against β-lactamase producing strains by inhibiting the β-lactamase.
[0066] In one embodiment, the BLI activity is measured by growth inhibition of a β-lactamase producing bacterial strains in a Synergy MIC (sMIC) assay. Preferably, sMIC is 8 μg/mL or less. In a more preferred aspect of the invention, the sMIC is 4 μg/mL to 8 μg/mL. In an even more preferred aspect of the invention, the ssMIC is 1 to 2 μg/mL. In a still more preferred aspect of the invention, the sMIC is 0.2 to 0.5 μg/mL. Synergy MICs for representative compounds of the invention are described in Table III (See FIG. 3). It will be understood by one of skill in the art that the growth inhibition of β-lactamase producing strains can also be measured by a checkerboard synergy assay like that disclosed in International Patent Application Number WO 2008/039420 or a standard BLI potentiation assay using a fixed concentration of BLI. In one embodiment, the BLI activity is measured by growth inhibition of a β-lactamase producing bacterial strains in a standard BLI potentiation assay using a fixed concentration of BLI. Preferably, the MIC is 8 μg/mL or less. In a more preferred aspect of the invention, the MIC is 4 to 8 μg/mL. In an even more preferred aspect of the invention, the MIC is 1 to 2 μg/mL. In a still more preferred aspect of the invention, the MIC is 0.2 to 0.5 μg/mL.
[0067] The compounds of the present invention have a broad spectrum of activity across a wide variety of β-lactamase producing bacteria. It was surprisingly found that the compounds of the present invention are active in potentiating activity of β-lactam antibiotics, in particular, Ceftolozane, against strains expressing class D β-lactamases, in particular the OXA-15 β-lactamase. Currently marketed BLIs inhibit most of the class A β-lactamases, but poorly inhibit class A KPC β-lactamases and class C β-lactamases and have variable success in inhibiting penicillinase and carbapenemase-type class D β-lactamases. The compounds of the present invention are active against a wide variety of bacterial strains that express class A and C β-lactamases and also, surprisingly are active against bacterial strains that express the class D cephalosporinase OXA-15 (Tables II and III). This increased activity against the class D β-lactamase is critical because differential effectiveness against different types of β-lactamase producing bacteria is necessary in order to effectively use β-lactam antibiotics to treat resistant strains of bacteria (vide infra).
[0068] In one embodiment, the compounds of Formula I are unexpectedly more active against bacterial strains that express OXA-15 β-lactamases than the most structurally similar compound, Avibactam (comparator compound CCC). Compounds that are more active than Avibactam are, for example, compounds 801, 802, 804, and 805.
[0069] In one embodiment, the compounds of Formula I are unexpectedly more active against and/or show broader spectrum of activity against bacterial strains that express KPC β-lactamases than the most structurally similar compound, Avibactam. Compounds that are more active than, and/or show a better spectrum of activity than Avibactam are, for example, compounds 801, 802, 804, and 805.
[0070] In another aspect of the invention, the compounds of Formula I have higher binding affinity for the β-lactamase enzyme. Consequently these compounds are better inhibitors of the β-lactamase enzyme. The inhibition kinetics of the compounds of Formula I was measured according to the procedure outlined in Example 14. The compounds of Formula I have a high binding affinity for the β-lactamase enzyme.
[0071] In one embodiment the compounds of Formula I have a binding affinity of 1000-5000 mM-1s-1.
[0072] In one embodiment the compounds of Formula I have a binding affinity of 100-999 mM-1s-1. Compounds that have a binding affinity of 100-999 mM-1 s-1 are, for example, compounds 801, 802, 804, 805, and 806 (Table IV).
[0073] In one embodiment the compounds of Formula I have a binding affinity of 1-99 mM-1s-1.
[0074] It was surprisingly found that the compounds of the present invention have a higher binding affinity for the β-lactamase enzyme than the closest structural comparator Avibactam (Table IV, See FIG. 4).
Pharmaceutical Compositions Comprising the Compounds of Formula I and Use Thereof
[0075] Another object of the invention is pharmaceutical compositions or formulations comprising compounds of Formula I, or salts thereof, preferably further comprising a β-lactam antibiotic.
[0076] The pharmaceutical compositions can be formulated for oral, intravenous, intramuscular, subcutaneous or parenteral administration for the therapeutic or prophylactic treatment of diseases, such as bacterial infections. Preferably, the pharmaceutical composition is formulated for intravenous administration.
[0077] The pharmaceutical preparations disclosed herein may be prepared in accordance with standard procedures and are administered at dosages that are selected to reduce, prevent or eliminate infection (see, e.g., Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. and Goodman and Gilman's "The Pharmaceutical Basis of Therapeutics," Pergamon Press, New York, N.Y., the contents of which are incorporated herein by reference, for a general description of the methods for administering various antimicrobial agents for human therapy).
[0078] The pharmaceutical compositions can comprise one or more of the compounds disclosed herein, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, in association with one or more nontoxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants and/or excipients. As used herein, the phrase "pharmaceutically-acceptable carrier" refers to any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Non-limiting examples of carriers and excipients include corn starch or gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid. The compositions may contain croscarmellose sodium, microcrystalline cellulose, corn starch, sodium starch glycolate and alginic acid.
[0079] Tablet binders that can be included are acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Povidone), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose.
[0080] Lubricants that can be used include magnesium stearate or other metallic stearates, stearic acid, silicone fluid, talc, waxes, oils and colloidal silica.
[0081] Flavoring agents such as peppermint, oil of wintergreen, cherry flavoring or the like can also be used. It may also be desirable to add a coloring agent to make the dosage form more aesthetic in appearance or to help identify the product.
[0082] For oral or parenteral administration, compounds of the present invention preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be mixed with conventional pharmaceutical carriers and excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, wafers and the like. The compositions comprising a compound of this invention may contain from about 0.1% to about 99% by weight of the active compound, such as from about 10% to about 30%.
[0083] For oral use, solid formulations such as tablets and capsules are useful. Sustained release or enterically coated preparations may also be devised. For pediatric and geriatric applications, one embodiment provides suspensions, syrups and chewable tablets. For oral administration, the pharmaceutical compositions are in the form of, for example, a tablet, capsule, suspension or liquid.
[0084] The pharmaceutical compositions may be made in the form of a dosage unit containing a therapeutically-effective amount of the active ingredient. Examples of such dosage units are tablets and capsules. For therapeutic purposes, the tablets and capsules which can contain, in addition to the active ingredient, conventional carriers such as binding agents, for example, acacia gum, gelatin, polyvinylpyrrolidone, sorbitol, or tragacanth; fillers, for example, calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose; lubricants, for example, magnesium stearate, polyethylene glycol, silica, or talc; disintegrants, for example, potato starch, flavoring or coloring agents, or acceptable wetting agents. Oral liquid preparations generally are in the form of aqueous or oily solutions, suspensions, emulsions, syrups or elixirs, preparations of the invention may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous agents, preservatives, coloring agents and flavoring agents. Non-limiting examples of additives for liquid preparations include acacia, almond oil, ethyl alcohol, fractionated coconut oil, gelatin, glucose syrup, glycerin, hydrogenated edible fats, lecithin, methyl cellulose, methyl or propyl para-hydroxybenzoate, propylene glycol, sorbitol, or sorbic acid.
[0085] For intravenous (IV) use, the pharmaceutical composition, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be dissolved or suspended in any of the commonly used intravenous fluids and administered by infusion. Intravenous fluids include, without limitation, physiological saline or Ringer's solution. Intravenous administration may be accomplished by using, without limitation, syringe, mini-pump or intravenous line.
[0086] Pharmaceutical compositions of this invention for parenteral injection comprise pharmaceutically-acceptable aqueous or non-aqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and non-aqueous carriers, diluents, solvents or vehicles include water, ethanol, benzyl alcohol, polyols (such as glycerol, propylene glycol, and polyethylene glycol), and suitable mixtures thereof, vegetable oils (such as corn oil or olive oil), and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. The compositions can include various buffers.
[0087] These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents, and dispersing agents. They may also contain taggants or other anti-counterfeiting agents, which are well known in the art. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, and phenol sorbic acid. It may also be desirable to include isotonic agents such as sugars and sodium chloride. Prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption, such as aluminum monostearate and gelatin.
[0088] Injectable depot forms can be made by forming microencapsulating matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations can also be prepared by entrapping the drug in liposomes or microemulsions, which are compatible with body tissues.
[0089] The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
[0090] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. Such forms may include forms that dissolve or disintegrate quickly in the oral environment. In such solid dosage forms, the active compound preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be mixed with at least one inert, pharmaceutically-acceptable excipient or carrier. Suitable excipients include, for example, (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid; (b) binders such as cellulose and cellulose derivatives (such as hydroxypropylmethylcellulose, hydroxypropylcellulose, and carboxymethylcellulose), alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia; (c) humectants such as glycerol; (d) disintegrating agents such as sodium starch glycolate, croscarmellose, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (e) solution retarding agents such as paraffin; (f) absorption accelerators such as quaternary ammonium compounds; (g) wetting agents, such as cetyl alcohol and glycerol monostearate, fatty acid esters of sorbitan, poloxamers, and polyethylene glycols; (h) absorbents such as kaolin and bentonite clay; (i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (j) glidants such as talc, and silicone dioxide. Other suitable excipients include, for example, sodium citrate or dicalcium phosphate. The dosage forms may also comprise buffering agents.
[0091] Solid dosage forms, including those of tablets, dragees, capsules, pills, and granules, can be prepared with coatings and shells such as functional and aesthetic enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and colorants. They may also be in a form capable of controlled or sustained release. Examples of embedding compositions that can be used for such purposes include polymeric substances and waxes.
[0092] The pharmaceutical compositions can be delivered using controlled (e.g., capsules) or sustained release (e.g., bioerodable matrices) delivery systems. Exemplary delayed release delivery systems for drug delivery that are suitable for administering the pharmaceutical compositions are described in U.S. Pat. No. 4,452,775 (issued to Kent), U.S. Pat. No. 5,039,660 (issued to Leonard), and U.S. Pat. No. 3,854,480 (issued to Zaffaroni).
[0093] In some cases, in order to prolong the effect of the drug, it may be desirable to slow the absorption of the drug following subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. Amorphous material may be used alone or together with stabilizers as necessary. The rate of absorption of the drug then depends upon its rate of dissolution, which in turn, may depend upon crystal size and crystalline form.
[0094] Alternatively, delayed absorption of a parenterally administered drug form can be accomplished by dissolving or suspending the drug in an oil vehicle.
[0095] For intramuscular preparations, a sterile formulation of compounds, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, or suitable soluble salt forms thereof, for example hydrochloride salts, can be dissolved and administered in a pharmaceutical diluent such as Water-for-Injection (WFI), physiological saline or 5% glucose. A suitable insoluble form of the compound may be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil base, e.g., an ester of a long chain fatty acid such as ethyl oleate.
[0096] A dose of an intravenous, intramuscular, or parental formulation of compounds, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, may be administered as a bolus or by slow infusion. A bolus is a dose that is administered in less than 30 minutes. In one embodiment, a bolus is administered in less than 15 or less than 10 minutes. In another embodiment, a bolus is administered in less than 5 minutes. In yet another embodiment, a bolus is administered in one minute or less. An infusion is a dose that is administered at a rate of 30 minutes or greater. In one embodiment, the infusion is one hour or greater. In another embodiment, the infusion is substantially constant.
[0097] For topical use the pharmaceutical compositions, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of creams, ointments, liquid sprays or inhalants, lozenges, or throat paints. Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration of the active ingredient.
[0098] For application to the eyes or ears, the pharmaceutical composition can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.
[0099] For rectal administration, the pharmaceutical compositions, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be administered in the form of suppositories admixed with conventional carriers such as cocoa butter, polyethylene glycol or a suppository wax or other glyceride that are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
[0100] Alternatively, the pharmaceutical compositions can be in powder form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery. In another embodiment, the unit dosage form of compounds, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be a solution of one or more compounds, or salts thereof, in a suitable diluent, in sterile hermetically sealed ampoules or sterile syringes. The concentration of the compounds, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, in the unit dosage may vary, e.g. from about 1 percent to about 50 percent, depending on the compound used and its solubility and the dose desired by the physician. If the compositions contain dosage units, each dosage unit can contain from 1-500 mg of the active material. For adult human treatment, the dosage employed can range from 5 mg to 10 g, per day, depending on the route and frequency of administration.
[0101] The pharmaceutical compositions disclosed herein can be placed in a pharmaceutically acceptable carrier and are delivered to a recipient subject (e.g., a human) in accordance with known methods of drug delivery. In general, the methods of delivering the pharmaceutical compositions in vivo utilize ar-recognized protocols for delivering the agent with the only substantial procedural modification being the substitution of the compounds of the present invention for the drugs in the art-recognized protocols. Likewise, methods for using the claimed compositions for treating cells in culture, for example, to eliminate or reduce the level of bacterial contamination of a cell culture, utilize art-recognized protocols for treating cell cultures with antibacterial agent(s) with the only substantial procedural modification being the substitution of the compounds of the present invention, preferably in combination with a β-lactam antibiotic for the drugs in the art-recognized protocols.
[0102] Exemplary procedures for delivering an antibacterial agent are described in U.S. Pat. Nos. 6,468,967; 6,852,689; and 5,041,567, issued to Rogers and in PCT patent application number EP94/02552 (publication no. WO 95/05384), the disclosures of which are incorporated herein by reference in their entirety. In one embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, or pharmaceutical compositions thereof are administered orally, rectally or via injection (intravenous, intramuscular or subcutaneous). In another embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, or pharmaceutical compositions thereof are administered orally, rectally or via injection (intravenous, intramuscular or subcutaneous) to treat an infection caused by β-lactam resistant bacteria. In another embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, or pharmaceutical compositions thereof are administered orally to treat an infection caused by β-lactamase producing bacteria. As used herein, the phrases "therapeutically-effective dose" and "therapeutically-effective amount" refer to an amount of a compound that prevents the onset, alleviates the symptoms, stops the progression of a bacterial infection, or results in another desired biological outcome such as, e.g., improved clinical signs or reduced/elevated levels of lymphocytes and/or antibodies. The term "treating" or "treatment" is defined as administering, to a subject, a therapeutically-effective amount of one or more compounds both to prevent the occurrence of an infection and to control or eliminate an infection. Those in need of treatment may include individuals already having a particular medical disease as well as those at risk for the disease (i.e., those who are likely to ultimately acquire the disorder). The term "subject," as used herein, refers to a mammal, a plant, a lower animal, or a cell culture. In one embodiment, a subject is a human or other animal patient in need of antibacterial treatment.
[0103] The term "administering" or "administration" and the like, refers to providing the compound of Formula I to the subject in need of treatment. Preferably the subject is a mammal, more preferably a human. The present invention comprises administering the compound of Formula I in conjunction with a β-lactam antiobiotic. When a compound of Formula I is administered in conjunction with a β-lactam antiobiotic, the compound of Formula I and the β-lactam antiobiotic can be administered at the same time or different times. When the compounds of Formula I and the β-lactam antiobiotic are administered at the same time, they can be administered as a single composition or pharmaceutical composition or they can be administered separately. It is understood that when a compound of Formula I is administered in conjunction with a β-lactam antiobiotic, that the active agents can be administered in a single combination or in multiple combinations. For example, when administered by IV, the compound of Formula I can be dissolved or suspended in any of the commonly used intravenous fluids and administered by infusion, then a β-lactam antibiotic can be dissolved or suspended in any of the commonly used intravenous fluids and administered by infusion. Conversely the β-lactam antibiotic can be dissolved or suspended in any of the commonly used intravenous fluids and administered by infusion, then a compound of Formula I can be dissolved or suspended in any of the commonly used intravenous fluids and administered by infusion. Alternatively, a pharmaceutical composition comprising a compound of Formula I and a β-lactam antibiotic can be dissolved or suspended in any of the commonly used intravenous fluids and administered by infusion.
[0104] In one embodiment of the invention, is provided a method of treating or preventing a bacterial infection comprising administering to a subject in need thereof a therapeutically-effective amount of the pharmaceutical composition comprising a compound of Formula I and a β-lactam antibiotic.
[0105] In one embodiment of the invention, is provided a method of treating or preventing a bacterial infection comprising administering to a subject in need thereof, a therapeutically-effective amount of a β-lactam antibiotic in conjunction with a compound of claim 1.
[0106] In one embodiment of the invention, is provided a method of treating or preventing a bacterial infection in a subject comprising the steps of
[0107] a. administering to the subject a compound of Formula I; and
[0108] b. administering a therapeutically-effective amount of a β-lactam antibiotic.
[0109] In one embodiment of the invention, is provided a method of treating or preventing a bacterial infection in a subject comprising the steps of
[0110] a. administering a therapeutically-effective amount of a β-lactam antibiotic; and
[0111] b. administering to the subject a compound of Formula I.
[0112] In one embodiment, the invention provides a method for treating an infection in a subject by administering a therapeutically-effective amount of one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, or compositions thereof. In one embodiment, the method comprises administering to a subject in need thereof a pharmaceutical composition comprising at least one of the compounds described herein, preferably a compound of Formula I in conjunction with a β-lactam antibiotic. In one embodiment, the pharmaceutical composition can comprise any one of the compounds described herein as the sole active compound or in combination with another compound, composition, or biological material. The compound may be administered orally, parenterally, by inhalation, topically, rectally, nasally, buccally, vaginally, or by an implanted reservoir, external pump or catheter. The compound may be prepared for opthalmic or aerosolized uses. The compounds of the present invention can be administered as an aerosol for the treatment of pneumonia or other lung-based infections. In one embodiment, the aerosol delivery vehicle is an anhydrous or dry powder inhaler. One or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, or pharmaceutical compositions thereof also may be directly injected or administered into an abscess, ventricle or joint. Parenteral administration includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, cisternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion. In one embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, are administered intravenously, subcutaneously or orally. In one embodiment for administering one or more compounds according to Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic to a cell culture, the one or more compounds may be administered in a nutrient medium.
[0113] In one embodiment, one or more compounds according to Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, may be used to treat a subject having a bacterial infection in which the infection is caused or exacerbated by any type of bacteria, such as Gram-negative bacteria. In one aspect of the invention, the bacterial infection is caused by β-lactam resistant bacteria. In one aspect the bacterial infection is caused by β-lactamase producing bacteria. In another aspect the bacterial infection is caused by class A, class C or class D β-lactamase producing bacteria. In another aspect the bacterial infection is caused by class A β-lactamase producing bacteria. In another aspect the infection is caused by class C β-lactamase producing bacteria. In still another aspect the infection is caused by class D β-lactamase producing bacteria. In still another aspect the infection is caused by KPC β-lactamase producing bacteria. In still another aspect the infection is caused by OXA β-lactamase producing bacteria.
[0114] Representative Gram-negative pathogens known to express β-lactamases include, but are not limited to Acinetobacter spp. (including Acinetobacter baumannii), Citrobacter spp., Escherichia spp. (including Escherichia coli), Haemophilus influenzae, Morganella morganii, Pseudomonas aeruginosa, Klebsiella spp. (including Klebsiella pneumoniae), Enterobacter spp. (including Enterobacter cloacae and Enterobacter aerogenes), Pasteurella spp., Proteus spp. (including Proteus mirabilis), Serratia spp. (including Serratia marcescens), and Providencia spp. Bacterial infections can be caused or exacerbated by Gram-negative bacteria including strains which express β-lactamases that may confer resistance to penicillins, cephalosporins, monobactams and/or carbapenems. The co-administration of a novel BLIs that inhibits these β-lactamases with a β-lactam antibiotic could be used to treat infections caused β-lactam resistant bacteria.
[0115] In one aspect of the invention the infection is caused by a β-lactamase producing bacteria selected from Acinetobacter spp, Citrobacter spp, Escherichia coli, Enterobacter cloacae), Haemophilus influenzae, Pseudomonas aeruginosa, Proteus mirabilis, Serratia marcescens, and Klebsiella pneumoniae,
[0116] β-Lactam antibiotics that may be co-administered with compounds of Formula I include, but are not limited to cephalosporin, carbapenem, monobactam, penem and penicillin classes of antibiotics.
[0117] In one embodiment of the invention, the β-lactam antibiotic is a cephalosporin. Examples of cephalosporins include, but are not limited to, Cefacetrile (cephacetrile), Cefadroxil (cefadroxyl), Cefalexin (cephalexin), Cefaloglycin (cephaloglycin), Cefalonium (cephalonium), Cefaloridine (cephaloradine), Cefalotin (cephalothin), Cefapirin (cephapirin), Cefatrizine, Cefazaflur, Cefazedone, Cefazolin (cephazolin), Cefradine (cephradine), Cefroxadine, Ceftezole, Cefaclor, Cefamandole, Cefmetazole, Cefonicid, Cefotetan, Cefoxitin, Cefprozil (cefproxil), Cefuroxime, Cefuzonam, Cefcapene, Cefdaloxime, Cefdinir, Cefditoren, Cefetamet, Cefixime, Cefmenoxime, Cefodizime, Cefotaxime, Cefpimizole, Cefpodoxime, Cefteram, Ceftibuten, Ceftiofur, Ceftiolene, Ceftizoxime, Ceftriaxone, Cefoperazone, Ceftazidime, Cefclidine, Cefepime, Cefluprenam, Cefoselis, Cefozopran, Cefpirome, Cefquinome, Cefaclomezine, Cefaloram, Cefaparole, Cefcanel, Cefedrolor, Cefempidone, Cefetrizole, Cefivitril, Cefmatilen, Cefmepidium, Cefovecin, Cefoxazole, Cefrotil, Cefsumide, Ceftaroline, Ceftioxide, Cefuracetime, cefbuperazone, cefminox, ceforanide, cefotiam, cefpiramide, cefsulodin, ceftobiprole latamoxef, loracarbef and Ceftolozane. In one embodiment the cephalosporin is Ceftolozane or Ceftazidime.
[0118] In one embodiment of the invention, the β-lactam antibiotic is a carbapenen. Examples of carbapenem antibiotics include, but are not limited to, Imipenem, Imipenem/Cilastatin, Biapenem, Doripenem, Meropenem, Ertapenem and Panipenem. In one embodiment the Carbapenem is Imipenem/Cilastatin or Meropenem.
[0119] In one embodiment of the invention, the β-lactam antibiotic is a monobactam. Examples of monobactam antibiotics include, but are not limited to Aztreonam, Tigemonam, Carumonam, BAL30072 and Nocardicin A.
[0120] In one embodiment of the invention, the β-lactam antibiotic is a penem.
[0121] In one embodiment of the invention, the β-lactam antibiotic is a penicillin Examples of penicillin antibiotics include, but are not limited to
[0122] Amoxicillin, Ampicillin, Azlocillin, Mezlocillin, Apalcillin, Hetacillin, Becampicillin, Carbenicillin, Sulbenicillin, Ticarcillin, Piperacillin, Azlocillin, Mecillinam, Pivmecillinam, Methicillin, Ciclacillin, Talampicillin, Aspoxicillin, Oxacillin, Cloxacillin, Dicloxacillin, Flucloxacillin, Nafcillin and Pivampicillin.
[0123] The pharmaceutical compositions, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be used to treat a bacterial infection of any organ or tissue in the body caused by β-lactam resistant bacteria, preferably, Gram-negative β-lactam resistant bacteria. These organs or tissue include, without limitation, skeletal muscle, skin, bloodstream, kidneys, heart, lung and bone. For example, a pharmaceutical composition comprising at least one compound of Formula (I), preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be administered to a subject to treat, without limitation, skin and soft tissue infections (e.g., complex skin infections), bacteremia, intra-abdominal infections and urinary tract infections (e.g., cUTI). In addition, a compound of Formula (I) may be used to treat community acquired respiratory infections, including, without limitation, otitis media, sinusitis, chronic bronchitis and pneumonia (including community-acquired pneumonia, hospital-acquired pneumonia and ventilator associated pneumonia), including pneumonia caused by drug-resistant Pseudomonas aeruginosa. At least one compound of Formula (I), preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be administered to a subject to treat mixed infections that comprise different types of Gram-negative bacteria, or which comprise both Gram-positive and Gram-negative bacteria. These types of infections include intra-abdominal infections and obstetrical/gynecological infections. At least one compound of Formula (I), preferably a compound of Formula I in conjunction with a β-lactam antibiotic, may also be administered to a subject to treat an infection including, without limitation, endocarditis, nephritis, septic arthritis, intra-abdominal sepsis, bone and joint infections and osteomyelitis. At least one compound of Formula (I), preferably compound of Formula I in conjunction with a β-lactam antibiotic, or pharmaceutical compositions thereof, may also be directly injected or administered into an abscess, ventricle or joint. Pharmaceutical compositions administered as an aerosol for the treatment of pneumonia or other lung-based infections. In one embodiment, the aerosol delivery vehicle is an anhydrous, liquid or dry powder inhaler.
[0124] Actual dosage levels of active ingredients in the pharmaceutical compositions of one or more compounds according to Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, may be varied so as to obtain a therapeutically-effective amount of the active compound(s) to achieve the desired therapeutic response for a particular patient, compositions, and mode of administration. The effective amount can be determined as described herein. The selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. In one embodiment, the data obtained from the assays can be used in formulating a range of dosage for use in humans. It will be understood by one of skill in the art that the when the composition comprises a compound of Formula I and a β-lactam antibiotic, both the compound of Formula I and the β-lactam antibiotic are active compounds.
[0125] The method comprises administering to the subject an effective dose of one or more compounds of Formula I, preferably in conjunction with a β lactam antibiotic. An effective dose of a compound of Formula I is generally between 125 mg/day to 2000 mg/day. In one embodiment, an effective dose is from about 0.1 to about 100 mg/kg of one or more compounds of Formula I or pharmaceutically acceptable salts thereof. In one embodiment, the dose is from about 0.1 to about 50 mg/kg of one or more compounds of Formula I or pharmaceutically acceptable salts thereof. In another embodiment, the dose is from about 1 to about 25 mg/kg of one or more compounds of Formula I or pharmaceutically acceptable salts thereof. In another embodiment, the dose is from about 1 to about 12 mg/kg of one or more compounds of Formula I. In another embodiment, the dose is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 mg/kg of one or more compounds of Formula I. In another embodiment, the compounds of Formula I are administered to a human at a dose of 100 mg to 1000 mg per dose up to four times per day. In another embodiment, the compounds of Formula I are administered to a human at a dose of 125 mg to 750 mg per dose up to four times per day. In another embodiment, the compounds of Formula I are administered to a human at a dose of 250 mg to 500 mg per dose up to four times a day. An effective dose for cell culture is usually between about 0.1 and about 1000 μg/mL. In one embodiment, the effect dose for cell culture is between about 0.1 and about 200 μg/mL.
[0126] In one embodiment, a β-lactam antibiotic and a compound of Formula I are administered in ratio of 1:4 to 8:1 antibiotic:Formula 1 compound. In one embodiment the ratio is 1:4. In another embodiment the ratio is 3:4. In another embodiment the ratio is 5:4. In another embodiment the ratio is 7:4. In another embodiment the ratio is 1:2. In another embodiment the ratio is 3:2. In another embodiment the ratio is 5:2. In another embodiment the ratio is 7:2. In another embodiment the ratio is 1:3. In another embodiment the ratio is 2:3. In another embodiment the ratio is 4:3. In another embodiment the ratio is 5:3. In another embodiment the ratio is 7:3. In another embodiment the ratio is 1:2. In another embodiment the ratio is 3:2. In another embodiment the ratio is 5:2. In another embodiment the ratio is 7:2. In another embodiment the ratio is 1:1. In another embodiment the ratio is 2:1. In another embodiment the ratio is 3:1. In another embodiment the ratio is 4:1. In another embodiment the ratio is 5:1. In another embodiment the ratio is 6:1. In another embodiment the ratio is 7:1. In another embodiment the ratio is 8:1. It will be understood by one of skill in the art that the β-lactam antibiotic and compound of Formula I can be administered within the range of ratios provided regardless of the method of drug delivery. It will also be understood by one of skill in the art that the β-lactam antibiotic and compound of Formula I can be administered within the range of ratios provided together, for example, in a pharmaceutical composition, or sequentially, i.e. the β-lactam antibiotic is administered, followed by administration of a compound of Formula I or vice versa.
[0127] One or more compounds of Formula I may also be administered in the diet or feed of a patient or animal. If administered as part of a total dietary intake, the amount of compound employed can be less than 1% by weight of the diet, such as no more than 0.5% by weight. The diet for animals can be normal foodstuffs to which the compound can be added or it can be added to a premix.
[0128] One or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, can be administered as a single daily dose or in multiple doses per day. In one embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, is administered as a single dose per day. In another embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic is administered as two equal doses per day. In another embodiment, the compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic is administered in three equal doses per day. In another embodiment, the compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic is administered in four equal doses per day. The treatment regime may require administration over extended periods of time, e.g., for several days or for from two to four weeks. The amount per administered dose or the total amount administered will depend on such factors as the nature and severity of the infection, the age and general health of the patient, the tolerance of the patient to the compound and the microorganism or microorganisms involved in the infection. The treatment regimen for one type of infection may differ greatly from the treatment regimen of another infection. For example, one type of infection may require administration via intravenous administration once daily, while another infection may require a treatment regimen of multiple dosing orally.
[0129] One or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, may be administered according to this method until the bacterial infection is eradicated or reduced. In one embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, are administered for a period of time from 3 days to 6 months. In another embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, are administered for 7 to 56 days. In another embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, are administered for 7 to 28 days. In a further embodiment, one or more compounds of Formula I, preferably a compound of Formula I in conjunction with a β-lactam antibiotic, are administered for 7 to 14 days. Compounds of the present invention may be administered for a longer or shorter time period if it is so desired.
[0130] Other embodiments of the invention include:
[0131] A pharmaceutical composition comprising a compound of Formula I and at least 1 β-lactam antibiotic or a pharmaceutically acceptable salt thereof.
[0132] A pharmaceutical composition comprising a compound of Formula I and at least 1 cephalosporin antibiotic or a pharmaceutically acceptable salt thereof.
[0133] A pharmaceutical composition comprising a compound of Formula I and Ceftolozane antibiotic or a pharmaceutically acceptable salt thereof.
[0134] A pharmaceutical composition comprising a compound of Formula I and at least 1 carbapenem antibiotic or a pharmaceutically acceptable salt thereof.
[0135] A pharmaceutical composition comprising a compound of Formula I and at least 1 monobactam antibiotic or a pharmaceutically acceptable salt thereof.
[0136] The embodiments described herein provide compounds of Formula I that are novel and active β-lactamase inhibitors. Other embodiments described herein provide novel compounds of Formula I in conjunction with β-lactam antibiotics for treatment of infections. Further embodiments described herein provide novel compounds of Formula I that show unexpected activity against β-lactamases that other compounds in the class do not have.
[0137] Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.
Preparation of Compounds of Formula I
[0138] A compound of formula (I) can be prepared by a variety of synthetic routes, including synthetic schemes described herein. These synthetic routes can be applied to large scale synthesis with appropriate adjustment of reaction sequence, reaction conditions, isolation/purification methods and choice of solvents which are environmentally friendly and cost-effective.
[0139] The following abbreviations have the following meanings unless otherwise indicated. Abbreviations not defined below have their generally accepted meaning.
[0140] Bn=benzyl
[0141] Boc=tert-butoxycarbonyl
[0142] Boc2O=di-tert-butyldicarbonate
[0143] Burgess reagent=methyl N-triethylammoniumsulfonyl)carbamate
[0144] CDI=carbonyldiimidazole
[0145] CFU=colony-forming units
[0146] CLSI=Clinical Laboratory Standards Institute
[0147] cSSSI=complicated skin and skin structure infections
[0148] DBU=1,8-diazabicyclo[5.4.0]undec-7-ene
[0149] DCM=dichloromethane
[0150] DEAD=diethyl azodicarboxylate
[0151] DIAD=diisopropyl azodicarboxylate
[0152] DIPEA=diisopropylethylamine
[0153] DMF=N,N-dimethylformamide
[0154] DMAc=N,N-dimethylacetamide
[0155] DMSO=dimethyl sulfoxide
[0156] EDCI=1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide
[0157] ELSD=evaporative light scattering detector
[0158] EtOAc=ethyl acetate
[0159] ESI-MS=electrospray ionization mass spectrometry
[0160] Fmoc=Fluorenylmethyloxycarbonyl
[0161] HAP=Hospital-Acquired Pneumonia
[0162] HATU=2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
[0163] HCl=hydrochloride
[0164] HOBt=1-hydroxybenzotrizole
[0165] Hrs=hours
[0166] HPLC=high performance liquid chromatography
[0167] Hunig's base=N,N-Diisopropylethylamine
[0168] Lawesson's reagent=2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfid- e
[0169] MIC=minimum inhibitory concentration
[0170] mL=milliliter
[0171] MS=mass spectrometry
[0172] MRSA=methicillin-resistant Staphylococcus aureus
[0173] NMR=nuclear magnetic resonance
[0174] Ns=nitrobenzenesulfonyl
[0175] Pa=Pseudomonas aeruginosa
[0176] Prep=preparative
[0177] Ppm=parts per million
[0178] sat.=saturated
[0179] rt=room temperature
[0180] TBAF=tetrabutylammonium fluride
[0181] TBS=t-butyldimethylsilyl
[0182] TES=triethylsilyl
[0183] TEA=triethylamine
[0184] TEMPO=2,2,6,6-tetramethyl-1-piperidinyloxy, free radical
[0185] THF=tetrahydrofuran
[0186] TFA=trifluoroacetic acid
[0187] TMS=trimethylsilyl
[0188] TLC=thin layer chromatography
[0189] VAP=Ventilator-Associated Pneumonia
[0190] The compounds of Formula (I) can be prepared from intermediate 1 or 7, according to the following reaction schemes and examples, or modifications thereof, using readily available starting materials, reagents and conventional synthetic procedures including, for example, procedures described in U.S. Pat. No. 7,112,592 and WO2009/091856. As depicted in Scheme 1, compound 3 can be synthesized following standard heterocyclic ring formation chemistry under appropriate reaction conditions from ester intermediate 1, or its corresponding derivatives, such as carboxylic acid derivative 2a and aldehyde derivative 2b (see, e.g., Jakopin, Z.; Dolenc, M. S. Curr. Org. Chem. 2008, 12, 850-898, hereafter Jakopin; Walker, D. G.; Brodfuehrer, P. R.; Brundidge, S. P. Shih, K. M.; Sapino, C. Jr. J. Org. Chem. 1988, 53, 983-991 hereafter Walker and references cited therein).
[0191] It may be necessary to protect certain functionalities in the molecule depending on the nature of the R1 group. Protecting these functionalities should be within the expertise of one skilled in the art. See, e.g. P. G. M. Wuts and T. W. Greene, Protective Groups in Organic Synthesis, Fourth Edition, John Wiley and Sons, 2006, hereafter Greene.
##STR00023##
[0192] Alternatively, compound 3 can be synthesized from intermediate 7 as shown in Scheme 2. Monocyclic ester intermediate 7 can be converted to 8 under standard Mitsunobu reaction conditions. Compound 9 can then be prepared following standard heterocyclic ring formation chemistry under appropriate reaction conditions from ester intermediate 8, or its corresponding derivatives (see, e.g., Jakopinand Walker and references cited therein). Deprotection of N-Ns group in compound 9 provides compound 10, which can be converted to compound 11 by treating with diphosgene. Compound 3 can be obtained upon deprotection of N-Boc group from compound 11 under appropriate conditions, such as 4M HCl in dioxane, and subsequent treatment with base, such as NEt3. Alternatively, deprotection of N-Boc and N-Ns groups in compound 11 under appropriate conditions provides bis-amine derivative 12, which can then be cyclized to form compound 3 by treatment with diphosgene or triphogene, under appropriate conditions.
##STR00024##
[0193] The benzylic ether protecting group in 3 can be removed via standard hydrogenolysis conditions, such as, but not limited to, Pd/H2 in MeOH or THF or by acid-catalyzed hydrolysis, such as, but not limited to, BCl3 in DCM to provide the hydroxy-urea intermediate 4, which can be used directly in the next step without further purification. Sulfation of 4 can be achieved by treatment with a sulfating reagent, such a, but not limited to, SO3.pyridine complex, in an appropriate solvent, such as pyridine, DMF or DMAc at a temperature of 0-80° C., preferable at room temperature. Compound 5 can then be isolated and purified via conventional methods. For example, 5 can be purified by standard reverse phase prep-HPLC using appropriate buffer system, i e ammonium formate buffer. In some cases, 5 can be purified by normal phase silica gel chromatography after converting to an appropriate salt form, such as sulfate tetrabutyl ammonium salt. The tetrabutyl ammonium salt can be converted to a sodium salt by cation exchange. When protecting group(s) are present in the sidechain (i.e. Boc or Fmoc for amine and guanidine protection, TBS or TES for alcohol protection, etc), a deprotection step is needed to convert 5 to its final product 6, which can be purified by reverse phase prep-HPLC using the conditions mentioned above. For example, for N-Boc deprotection, 5 can be treated with an acid, such as TFA, in an appropriate solvent, such as DCM at a temperature of 0-30° C., preferable at 0° C. to rt to give 6. For an O-TBS, or O-TES deprotection, a fluoride reagent such as HF.pyridine, HF.NEt3, or TBAF can be used. For an Fmoc deprotection, amines, such as diethylamine, DBU, piperidine, etc can be used.
##STR00025##
EXAMPLES
[0194] The specific examples which follow illustrate the synthesis of certain compounds. The methods disclosed may be adopted to variations in order to produce compounds of Formula (I), but not otherwise specifically disclosed. Further, the disclosure includes variations of the methods described herein to produce the compounds of Formula (I) that would be understood by one skilled in the art based on the instant disclosure.
[0195] All temperatures are understood to be in Centigrade (C) when not specified. The nuclear magnetic resonance (NMR) spectral characteristics refer to chemical shifts (y) expressed in parts per million (ppm) versus tetramethylsilane (TMS) as reference standard. The relative area reported for the various shifts in the proton NMR spectral data corresponds to the number of hydrogen atoms of a particular functional type in the molecule. The nature of the shifts as to multiplicity is reported as broad singlet (br s), broad doublet (br d), singlet (s), multiplet (m), doublet (d), quartet (q), doublet of doublet (dd), doublet of triplet (dt), and doublet of quartet (dq). The solvents employed for taking NMR spectra are DMSO-d6 (perdeuterodimethysulfoxide), D2O (deuterated water), CDCl3 (deuterochloroform) and other conventional deuterated solvents. The prep-HPLC conditions are: Waters SunFire® C18 (30×100 mm, 5 μm OBD) column; flow rate: 30-80 mL/minute, ELSD or Mass-triggered fraction collection; sample loading: Each injection loading varied from 30-300 mg for different crude samples depending on their solubility and purity profiles; Solvent system using ammonium formate buffer: solvent A: water with 20 mM ammonium formate, solvent B: 85% of acetonitrile in water with 20 mM ammonium formate. Solvent system using NH4HCO3 buffer: solvent A: water with 10 mM NH4HCO3, solvent B: acetonitrile. Solvent system using NH4OH buffer: solvent A: water with 0.1% NH4OH, solvent B: acetonitrile with 0.1% NH4OH.
Example 1
Synthesis of (2S,5R)-ethyl 6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate (Intermediate Compound 1)
##STR00026##
[0196] Step 1: Synthesis of (S)-1-tert-butyl 2-ethyl 5-oxopiperidine-1,2-dicarboxylate
Method A:
##STR00027##
[0198] n-BuLi was added dropwise to a solution of TMSCHN2 (690 mL, 1.38 mol) in dry THF (3 L) (600 mL, 1.5 mol) at -78° C., and the mixture was stirred at -78° C. for 30 minutes. The mixture was then transferred to a solution of (S)-1-tert-butyl 2-ethyl 5-oxopyrrolidine-1,2-dicarboxylate (300 g, 1.17 mol) in dry THF (3 L) via cannula, and the mixture was stirred at -78° C. for 30 minutes. The reaction mixture was then quenched with sat. NH4Cl solution, and extracted with DCM three times. The combined organic layer was concentrated in vacuum and the crude product was purified by silica gel column chromatography (3:1 petroleum ether:EtOAc) to afford (S)-ethyl 2-((tert-butoxycarbonyl)amino)-6-diazo-5-oxohexanoate (262 g, 75%) as a yellow solid.
[0199] A solution of (S)-ethyl 2-((tert-butoxycarbonyl)amino)-6-diazo-5-oxohexanoate (350 g, 1.18 mol) in DCM (1500 mL) was added to a solution of Rh2(OAc)4 (3.5 g, 7.9 mmol) in DCM (750 mL) at 0° C. The reaction was then stirred at 20° C. overnight and then concentrated in vacuum. The crude sample was purified by silica gel column chromatography (5:1 petroleum ether/EtOAc) to afford (S)-1-tert-butyl 2-ethyl 5-oxopiperidine-1,2-dicarboxylate (175.9 g, 55%) as a yellow oil.
Method B:
##STR00028##
[0201] t-BuOK (330 g, 2.9 mol) was added to a solution of trimethylsulfoxonium iodide (750 g, 3.5 mol) in dry DMSO (3 L) and the mixture was stirred at rt for 1 h. (S)-1-tert-Butyl 2-ethyl 5-oxopyrrolidine-1,2-dicarboxylate (900 g, 3.5 mol) was added and the mixture was stirred at rt for 2-3 hrs. Water was added to quench the reaction and the mixture was extracted with EtOAc 5 times. The combined organic layer was concentrated in vacuum and the crude sample was purified by silica gel column chromatography (1:1petroleum ether/EtOAc then 1:10MeOH/DCM) to afford sulfoxonium ylide intermediate (977 g, 80%) as a white solid.
[0202] A solution of sulfoxonium ylide intermediate (156 g, 0.446 mol) and [Ir(COD)Cl]2 (3 g, 4.46 mmol) in toluene (4 L) was degassed by bubbling nitrogen through the solution for 10 minutes. The reaction mixture was heated to 80-90° C. for 2-3 hrs and then cooled to 20° C. Then toluene was concentrated in vacuum, the residue was purified by silica gel column chromatography (gradient elution 10:1 to 3:1 petroleum ether/EtOAc) to afford (S)-1-tert-butyl 2-ethyl 5-oxopiperidine-1,2-dicarboxylate (140 g, 57.8%) as a yellow oil.
Step 2: Synthesis of (2S,5S)-1-ten-butyl 2-ethyl 5-hydroxypiperidine-1,2-dicarboxylate
##STR00029##
[0204] NaBH4 (36 g, 1.0 mol) was added in portions to a solution of (S)-1-tert-butyl 2-ethyl 5-oxopiperidine-1,2-dicarboxylate (250 g, 0.92 mol) in EtOH (1500 mL) at -40° C. The reaction mixture was then stirred at -40° C. for 0.5 hr then quenched with 10% HOAc solution. After diluting with water, the mixture was extracted with DCM three times. The combined organic layer was concentrated in vacuum and purified by silica gel column chromatography (1:1 petroleum ether/EtOAc) to afford (2S,5S)-1-tert-butyl 2-ethyl 5-hydroxypiperidine-1,2-dicarboxylate (205 g, 80%) as a yellow oil.
Step 3: Synthesis of (2S,5R)-1-tert-butyl 2-ethyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)piperidine-1,2-dicarboxylate
##STR00030##
[0206] A solution of 2-nitrobenzene-1-sulfonyl chloride (500 g, 2.26 mol) in pyridine (1500 mL) was added dropwise to a solution of O-benzylhydroxylamine hydrochloride (400 g, 2.51 mol) in pyridine (1500 mL) at 0° C. The reaction mixture was then stirred at 20° C. overnight. The mixture was concentrated in vacuum, diluted with DCM and washed with HCl (10%) three times. The combined organic layer was concentrated in vacuum and re-crystallized with DCM to afford N-(benzyloxy)-2-nitrobenzenesulfonamide (485 g, 62.6%) as a yellow solid.
[0207] To a solution of N-(benzyloxy)-2-nitrobenzenesulfonamide (212 g, 0.69 mol) in THF (1000 mL) was added (2S,5S)-1-tert-butyl 2-ethyl 5-hydroxypiperidine-1,2-dicarboxylate (171 g, 0.63 mol) and PPh3 (275 g, 1.05 mol), followed by dropwise addition of a solution of DEAD (195 g, 1.12 mol) in THF (500 mL). The mixture was then stirred at 20° C. overnight. The reaction mixture was then concentrated in vacuum and purified by silica gel column chromatography (3:1 petroleum ether/EtOAc) to afford (2S,5R)-1-tert-butyl 2-ethyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)piperidine-1,2-dicarboxylate (283.8 g, 80%) as a yellow oil.
Step 4: Synthesis of (2S,5R)-1-tert-butyl 2-ethyl 5-((benzyloxy)amino)piperidine-1,2-dicarboxylate
##STR00031##
[0209] LiOH.H2O (95 g, 2.3 mol) and 2-mercaptoacetic acid (124 g, 1.3 mol) were added to a solution of (2S,5R)-1-tert-butyl 2-ethyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)piperidine-1,2-dicarboxylate (251 g, 0.45 mol) in DMF (1200 mL). The reaction mixture was then stirred at 20° C. overnight. The reaction mixture was diluted with water and extracted with EtOAc (3×). The combined organic layer was washed with brine (3×), concentrated in vacuum and purified by silica gel column chromatography (3:1 petroleum ether/EtOAc) to afford (2S,5R)-1-tert-butyl 2-ethyl 5-((benzyloxy)amino)piperidine-1,2-dicarboxylate (122.9 g, 85%) as a yellow solid.
Step 5: Synthesis of (2S,5R)-ethyl 5-((benzyloxy)amino)piperidine-2-carboxylate
##STR00032##
[0211] TFA (600 mL) was added to a solution of (2S,5R)-1-tert-butyl 2-ethyl 5-((benzyloxy)amino)piperidine-1,2-dicarboxylate (263 g, 0.7 mol) in DCM (600 mL) at 20° C. The mixture was stirred at rt overnight and then concentrated in vacuum. The crude product was adjusted to pH 10 with sat. NaHCO3 solution, and then extracted with DCM three times. The combined organic layer was concentrated in vacuum and purified by silica gel column chromatography (20:1 DCM/MeOH) to afford (2S,5R)-ethyl 5-((benzyloxy)amino)piperidine-2-carboxylate (184.9 g, 95%) as a yellow oil.
Step 6: Synthesis of (2S,5R)-ethyl 6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate
##STR00033##
[0213] Triphosgene (21.3 g, 72 mmol) was added in portions to a solution of (2S,5R)-ethyl 5-((benzyloxy)amino)piperidine-2-carboxylate (50 g, 0.18 mol) and DIPEA (128 mL, 0.72 mol) in DCM (2000 mL) at 0° C. After stirring at 20° C. overnight, the reaction mixture was washed with H3PO4 (10%), sat. NaHCO3 and saturated NaCl. The combined organic layer was concentrated in vacuum and purified by silica gel column chromatography (3:1 petroleum ether/EtOAc) to afford (2S,5R)-ethyl 6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate (27.4 g, 50%) as a yellow solid. 1H NMR (400 Mz, CDCl3): δ 7.43-7.36 (m, 5H), 5.06 (d, J=11.4 Hz, 1H), 4.90 (d, J=11.4 Hz, 1H), 4.24 (q, J=7.1 Hz, 2H), 4.11-4.08 (m, 1H), 3.32-3.31 (m, 1H), 3.08-3.05 (m, 1H), 2.93 (d, J=11.9 Hz, 1H), 2.14-2.05 (m, 2H), 2.05-2.00 (m, 1H), 1.71-1.63 (m, 1H), 1.29 (t, J=7.1 Hz, 3H).
Example 2
Synthesis of (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylic acid (Intermediate Compound 2a)
##STR00034##
[0215] LiOH (1.2 g, 29.6 mmol) was added to a solution of (2S,5R)-ethyl 6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate (9 g, 29.6 mmol) in THF/H2O (3:1, 240 mL). The mixture was then stirred at rt overnight. The reaction mixture was washed with EtOAc twice, then the aqueous solution was adjusted pH 2-3 with 1N HCl. The resulting mixture was extracted with DCM three times, and the combined organic layer was dried over saturated Na2SO4 and concentrated in vacuum to provide (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carbo- xylic acid (7.0 g, 77.7%), which was directly used in the next step without further purification. ESI-MS (EI.sup.+, m/z): 277.31. 1H NMR (300 MHz, CDCl3) δ 7.49-7.29 (m, 5H), 5.06 (d, J=11.4 Hz, 1H), 4.91 (d, J=11.4 Hz, 1H), 4.15-4.10 (m, 1H), 3.36-3.34 (m, 1H), 3.15-3.11 (m, 1H), 2.83 (d, J=11.8 Hz, 1H), 2.32-2.15 (m, 1H), 2.11-2.01 (m, 2H), 1.74-1.56 (m, 1H).
Example 3
Synthesis of (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carbaldehyde (intermediate compound 2b)
##STR00035##
[0217] LiBH4 (0.54 g, 24.67 mmol) was added to a solution of (2S,5R)-ethyl 6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate (5 g, 16.44 mmol) in MeOH (50 mL) at -10° C. After 15 minutes another portion of LiBH4 (0.54 g, 24.67 mmol) was added and the mixture was stirred at -10 to 0° C. for 4-5 h. The reaction mixture was carefully quenched by addition of sat. NaH2PO4 (50 mL) at 0° C. The mixture was diluted with water (20 mL) and extracted with DCM three times. The combined organic layer was concentrated and purified by silica gel column chromatography (gradient elution 0-100% petroleum ether/EtOAc, then 0-2% MeOH/EtOAc) to give (2S,5R)-6-(benzyloxy)-2-(hydroxymethyl)-1,6-diazabicyclo[3.2.1]octan-7-on- e (3.8 g, 88%) as a white solid. ESI-MS (EI.sup.+, m/z): 263.1. 1H-NMR (500M, CDCl3): 7.44-7.35 (m, 5H), 5.05 (d, J=11.5 Hz, 1H), 4.90 (d, J=11.5 Hz, 1H), 3.73-3.69 (m, 1H), 3.61-3.58 (m, 2H), 3.33 (m, 1H), 3.01 (br d, J=12.0 Hz, 1H), 2.91 (m, 1H), 2.03-1.95 (m, 2H), 1.58-1.54 (m, 1H), 1.39-1.24 (m, 1H).
[0218] TEMPO (48 mg, 0.3 mmol) was added in portions to a solution of (2S,5R)-6-(benzyloxy)-2-(hydroxymethyl)-1,6-diazabicyclo[3.2.1]octan-7-on- e (7.8 g, 30 mmol) and 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione (7.0 g, 30 mmol) in DCM (100 mL) at 0° C. The mixture was stirred at 0° C. for 2 h, and filtered through Celite®. The filtrate was dried over Na2SO4 and concentrated to afford (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carbaldehyde (7.0 g, 90%) as a yellow oil. ESI-MS (EI.sup.+, m/z): 261.1. 1H-NMR (500M, CDCl3): 9.74 (s, 1H), 7.45-7.36 (m, 5H), 5.07 (d, J=11.5 Hz, 1H), 4.92 (d, J=11.5 Hz, 1H), 3.89 (d, J=8.0 Hz, 1H), 3.27 (m, 1H), 3.21-3.05 (m, 1H), 2.56 (d, J=12.0 Hz, 1H), 2.20-2.15 (m, 1H), 2.05-2.01 (m, 1H), 1.95-1.93 (m, 1H), 1.49-1.46 (m, 1H).
Example 4
Synthesis of (E)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carbaldehyde oxime (intermediate compound 2c)
##STR00036##
[0220] A solution of (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carbaldehyde (510 mg, 1.96 mmol), hydroxylamine hydrochloride (158 mg, 2.27 mmol) and pyridine (621 mg, 7.85 mmol) in EtOH (15 mL) was stirred at rt for 2 hrs. Then, the reaction mixture was concentrated and the residue was diluted with DCM (25 mL), washed with water (3×), and saturated sodium chloride, dried over Na2SO4 and concentrated. The residue was purified by silica gel column chromatography (3:1 to 3:2 petroleum ether/EtOAc) to afford (E)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carbaldehyde oxime (228 mg, 42%) as a white solid. ESI-MS (EI.sup.+, m/z): 276 [M+H].sup.+.
Example 5
Synthesis of (2S,5R)-2-(1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl hydrogen sulfate (Compound 804)
##STR00037## ##STR00038##
[0221] Step 1:
[0222] A mixture of (2S,5R)-1-tert-butyl 2-ethyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido) piperidine-1,2-dicarboxylate (5 g, 8.9 mmol), and LiOH.H2O (1.5 g, 35.5 mmol) in THF (30 mL) and H2O (100 mL) was stirred at rt for 24 hrs. 1M HCl was then added to adjust the pH to 5˜6, following by the addition of EtOAc (300 mL). The mixture was washed with saturated sodium chloride (5×), dried over Na2SO4, and concentrated. The residue was washed with petroleum ether/EtOAc (95:5, 200 mL) to give (2S,5R)-5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-1-(tert-butoxycarbonyl- )piperidine-2-carboxylic acid (4.75 g, 99%) as a pale yellow solid. ESI-MS (EI.sup.+, m/z): 436.0 [M+H-100].sup.+.
Step 2:
[0223] NH4Cl (1.39 g, 26.18 mmol), HOBt (3.53 g, 26.18 mmol), EDCI (5 g, 26.18 mmol), and DIPEA (8.44 g, 65.45 mmol) were added to a solution of (2S,5R)-5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-1-(tert-butoxycarbo- nyl)piperidine-2-carboxylic acid (10 g, 18.7 mmol) in DMF (90 mL) The mixture was stirred at rt for 17 hrs, then, EtOAc (500 mL) was added. The mixture was washed with saturated sodium chloride (6×), dried over Na2SO4, and concentrated. The residue was washed with petroleum ether/EtOAc (95:5, 200 mL) to give (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-carbamoylpiperidine-1-carbox- ylate (9.9 g, 99%) which was used in the next step. ESI-MS (EI.sup.+, m/z): 535.0 [M+H].sup.+.
Step 3:
[0224] Pyridine (2 mL) was added to a solution of (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-carbamoylpiperidine-1-carbox- ylate (1.0 g, 1.87 mmol) in dry THF (40 mL). Then, Tf2O (1.0 mL) was slowly added over 5 minutes. The mixture was stirred at 0° C. for 1 h and then EtOAc (30 mL) was added. The mixture was washed with saturated sodium chloride (4×), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography (gradient elution 0-40% petroleum ether/EtOAc) to give (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-cyanopiperidine-1-carboxylat- e (0.76 g, 79%) as a yellow solid ESI-MS (EI.sup.+, m/z): 539.0 [M+Na].sup.+.
Step 4:
[0225] A solution of (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-cyanopiperidine-1-carboxylat- e (3.1 g, 6.008 mmol), NH2OH.HCl (400 mg, 12 mmol), and TEA (12.136 g, 120.160 mmol) in MeOH (30 mL) and EtOH (30 mL) was stirred at 70° C. for 17 hrs. EtOAc (300 mL) was then added and the mixture was washed with saturated sodium chloride (3×), dried over Na2SO4, and concentrated to give (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-(N-hydroxycarbamimidoyl)pipe- ridine-1-carboxylate (3.4 g, 99%) as a pale yellow solid, which was used directly in the next step. ESI-MS (EI.sup.+, m/z): 550.2 [M+H].sup.+.
Step 5:
[0226] A mixture of (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-(N-hydroxycarbamimidoyl)pipe- ridine-1-carboxylate (3.0 g, 5.46 mmol), trimethoxymethane (60 mL), and PPTS (0.08 g) was stirred at 70° C. for 4 hrs. The solvent was then removed under vacuum. The residue was purified by silica gel column chromatography (gradient elution 0-35% petroleum ether/EtOAc) to give (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-(1,2,4-oxadiazol-3-yl)piperi- dine-1-carboxylate (2.1 g, 69%) as a yellow solid. ESI-MS (EI.sup.+, m/z): 582 [M+Na].sup.+.
Step 6:
[0227] A mixture of (2S,5R)-tert-butyl5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-(1,2,4-oxa- diazol-3-yl)piperidine-1-carboxylate (1.5 g, 2.683 mmol), HSCH2COOH (1.48 g, 16.1 mmol), LiOH.H2O (1.13 g, 26.83 mmol) in DMF (50 mL) was stirred at 30° C. for 17 hrs. EtOAc (150 mL) was then added and the mixture was washed with water (2×), and saturated sodium chloride (2×), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography (gradient elution 0˜50% petroleum ether/EtOAc) to give (2S,5R)-tert-butyl 5-(benzyloxyamino)-2-(1,2,4-oxadiazol-3-yl)piperidine-1-carboxylate (700 mg, 63%) as a pale yellow solid. ESI-MS (EI.sup.+, m/z): 375.0 [M+H].sup.+.
Step 7:
[0228] TEA (405 mg, 4.0 mmol) and diphosgene (514 mg, 2.6 mmol) were added to a solution of (2S,5R)-tert-butyl 5-(benzyloxyamino)-2-(1,2,4-oxadiazol-3-yl)piperidine-1-carboxylate (750 mg, 2.0 mmol) in DCM (70 mL). The mixture was stirred at 0° C. for 3 hrs. Then, the reaction mixture was washed with saturated sodium chloride (2×), dried over Na2SO4, and concentrated to give (2S,5R)-tert-butyl 5-(benzyloxy(chlorocarbonyl)amino)-2-(1,2,4-oxadiazol-3-yl)piperidine-1-c- arboxylate (1.6 g), which was used directly in the next step. ESI-MS (EI.sup.+, m/z): 437[M+H].sup.+.
Step 8:
[0229] A mixture of (2S,5R)-tert-butyl 5-(benzyloxy(chlorocarbonyl)amino)-2-(1,2,4-oxadiazol-3-yl)piperidine-1-c- arboxylate (1.6 g), and 4 N HCl in dioxane (18 mL), was stirred at rt for 2 hrs. The solvent was then removed under vacuum to give (3R,6S)-6-(1,2,4-oxadiazol-3-yl)piperidin-3-yl(benzyloxy)carbamic chloride (1.4 g) as a white solid, which was used directly in the next step. ESI-MS (EI.sup.+, m/z): 301.0.
Step 9:
[0230] To a solution of (3R,6S)-6-(1,2,4-oxadiazol-3-yl)piperidin-3-yl(benzyloxy)carbamic chloride (1.4 g) in DCM (40 mL) was added TEA until the pH was adjusted topH to 8˜9. The mixture was stirred at rt for 2 hrs then, the solvent was removed and the residue was purified by silica gel column chromatography (gradient elution 0˜4% petroleum ether/EtOAc) to give the desired product (2S,5R)-6-(benzyloxy)-2-(1,2,4-oxadiazol-3-yl)-1,6-diaza-bicyclo[3.2.1]oc- tan-7-one (400 mg, 67% for 3 steps) as a white solid. ESI-MS (EI.sup.-, m/z): 301.2 [M+H].sup.+.
Step 10:
[0231] BCl3 (1M, 3.34 mL, 3.33 mmol) was added to a solution of (2S,5R)-6-(benzyloxy)-2-(1,2,4-oxadiazol-3-yl)-1,6-diaza-bicyclo[3.2.1]oc- tan-7-one (200 mg, 0.67 mmol) in dry DCM (45 mL) at -78° C. The mixture was stirred at 0° C. for 2 hrs., then it was cooled to -78° C. and quenched with MeOH (8 mL). The solvent was removed by vacuum to give (2S,5R)-6-hydroxy-2-(1,2,4-oxadiazol-3-yl)-1,6-diaza-bicyclo[3.2.1]octan-- 7-one (180 mg) as a white solid, which was used directly in the next step. ESI-MS (EI.sup.+, m/z): 209 [M-H].sup.+.
Step 11:
[0232] To a solution of (2S,5R)-6-hydroxy-2-(1,2,4-oxadiazol-3-yl)-1,6-diaza-bicyclo[3.2.1]octan-- 7-one (180 mg crude from above) in dry pyridine (4 mL) was added SO3.Py (608 mg). The mixture was stirred at rt for 3 hrs and then concentrated under vacuum. The residue was re-dissolved in aqueous NaH2PO4 (1.5 M, 50 mL) and then tetrabutylammonium hydrogensulphate (970 mg) was added. The mixture was stirred at rt for 30 minutes and then extracted with EtOAc (3×). The combined organic layer was dried and concentrated and the residue was purified by silica gel column chromatography (gradient elution 0 to 25% EtOAc:Acetone) to afford tetrabutylammonium (2S,5R)-2-(1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-6-yl sulfate (280 mg, 45% for 2 steps) as a white solid. ESI-MS (EI.sup.-, m/z): 289.0 [M-H].sup.-.
Step 12, Resin Exchange:
[0233] Tetrabutylammonium (2S,5R)-2-(1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-6-yl sulfate (280 mg) was dissolved in a minimum amount of HPLC grade water (˜3 mL) and passed through a column of 8 g of DOWEX 50WX 8 Na.sup.+ resin (the resin was pre-washed with >200 mL of HPLC grade water) and eluted with HPLC grade water to provide sodium (2S,5R)-2-(1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-6-yl sulfate (180 mg, 90%) as a white solid after lyophilization. ESI-MS (EI.sup.+, m/z): 289.1 1H-NMR (500 MHz, D2O): δ 9.23 (s, 1H), 4.75 (d, J=7.5 Hz, 1H), 4.20 (br s, 1H), 3.18 (m, 1H), 2.99 (d, J=12 Hz, 1H), 2.32-2.27 (m, 1H), 2.21-2.14 (m, 2H), 1.97-1.92 (m, 1H).
Example 6
Synthesis of (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diazabicyclo[3.2.1]oct- an-6-yl hydrogen sulfate (Compound 805)
##STR00039##
[0234] Step 1:
[0235] a) NCS (0.76 g, 5.72 mmol) was added to a solution of (E)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octane-2-carbaldehyde oxime (1.5 g, 5.45 mmol) in DCM (10 mL) then one drop of pyridine was added. The mixture was stirred at rt for 18 hrs, then the mixture was concentrated under reduced pressure and dried under high vacuum. The crude product was dissolved in absolute EtOH (10 mL). b) In a separate flask, guanidine hydrochloride (1.04 g, 10.9 mmol) was mixed with EtONa (16% in EtOH, 4.63 g, 10.9 mmol) at rt, and the solid was filtered off.
[0236] The solution of a) was added to the filtrate of b) at rt. The mixture was stirred at rt overnight, then, the reaction mixture was concentrated, diluted with water (20 mL), and extracted with EtOAc (3×). The combined organic layer was dried over Na2SO4 and concentrated. The residue was purified by prep-HPLC using ammonium formate buffer to afford (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-6-(benzyloxy)-1,6-diaza-bicyclo[- 3.2.1]octan-7-one (120 mg, 7%) as a white solid. ESI-MS (EI.sup.+, m/z): 316 [M+H].sup.+.
Step 2.
[0237] BCl3 (1M, 5.08 ml, 5.08 mmol) was added to a solution of (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-6-(benzyloxy)-1,6-diaza-bicyclo[- 3.2.1]octan-7-one (160 mg, 0.508 mmol) in dry DCM (8 mL) at -78° C. The mixture was stirred under N2 atmosphere at 0° C. for 2 hrs then, it was cooled to -78° C. and quenched with MeOH (1.0 mL). The solvent was removed by vacuum to afford (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-6-hydroxy-1,6-diaza-bicyclo[3.2.- 1]octan-7-one (110 mg) as a white solid, which was used directly in the next step. ESI-MS (EI.sup.+, m/z): 226 [M+H].sup.+.
Step 3:
[0238] To a mixture of (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-6-hydroxy-1,6-diaza-bicyclo[3.2.- 1]octan-7-one (110 mg, 0.49 mmol) and SO3--Py (389 mg, 2.44 mmol) was added dry pyridine (2 mL) under N2. The mixture was stirred at rt for 2.5 hrs and then concentrated under vacuum to afford (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diaza-bicyclo[3.2.1]oc- tan-6-yl hydrogen sulfate, which was used for next step directly. ESI-MS (EI.sup.-, 304, m/z): [M-H].
Step 4:
[0239] Crude (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diaza-bicyclo[3.2.1]oc- tan-6-yl hydrogen sulfate was purified by Prep-HPLC using ammonium formate buffer to afford (2S,5R)-2-(5-amino-1,2,4-oxadiazol-3-yl)-7-oxo-1,6-diaza-bicyclo[3.2.1]oc- tan-6-yl aminooxy sulfonate (25 mg, 20% of two steps). ESI-MS (EI.sup.-, m/z): 304 [M-H].sup.-. 1H-NMR (500 MHz, D2O): δ 4.42 (d, J=8.0 Hz, 1H), 4.12 (s, 1H), 3.12-3.09 (m, 1H), 3.00 (d, J=15 Hz, 1H), 2.11-1.96 (m, 3H), 1.86-1.79 (m, 1H).
Example 7
Synthesis of (2S,5R)-7-oxo-2-(5-(piperidin-4-yl)-1,2,4-oxadiazol-3-yl)-1,6-diazabicycl- o[3.2.1]octan-6-yl hydrogen sulfate (Compound 806)
##STR00040##
[0240] Step 1:
[0241] A solution of (2S,5R)-tert-butyl 5-(N-(benzyloxy)-2-nitrophenylsulfonamido)-2-(N-hydroxycarbamimidoyl) piperidine-1-carboxylate (3.12 g, 5.7 mmol), 1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidine-4-carboxylic acid (2 g, 5.7 mmol), HATU (3.23 g, 8.55 mmol) and DIPEA (1.50 g, 11.44 mmol) in DMF (50 mL) was stirred at rt for 1 h. EtOAc (150 mL) was then added and the mixture was washed with saturated sodium chloride (3×), dried over Na2SO4, and concentrated. The residue was dissolved in dioxane (50 mL) and heated at 90° C. for 17 hrs. The mixture was then concentrated under vacuum and the residue was purified by silica gel column chromatography (gradient elution 0˜45% petroleum ether/EtOAc) to give (2S,5R)-tert-butyl 2-(5-(1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidin-4-yl)-1,2,4-oxadiaz- ol-3-yl)-5-(N-(benzyloxy)-2-nitrophenylsulfonamido)piperidine-1-carboxylat- e (1.2 g, 24%) as a yellow solid. ESI-MS (EI.sup.+, m/z): 765 [M+H-100].sup.+.
Step 2:
[0242] A mixture of (2S,5R)-tert-butyl 2-(5-(1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidin-4-yl)-1,2,4-oxadiaz- ol-3-yl)-5-(N-(benzyloxy)-2-nitrophenylsulfonamido)piperidine-1-carboxylat- e (200 mg, 0.231 mmol), HSCH2COOH (128 mg, 1.386 mmol) and LiOH.H2O (97 g, 2.310 mmol) in DMF (5.0 mL) was stirred at 30° C. for 17 hrs. EtOAc (50 mL) was then added and the organic layer was washed with water (2×), and saturated sodium chloride (2×), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography (gradient elution 0˜50% petroleum ether/EtOAc) to give (2S,5R)-tert-butyl 2-(5-(1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidin-4-yl)-1,2,4-oxadiaz- ol-3-yl)-5-(benzyloxyamino) piperidine-1-carboxylate (40 mg, 25%) as a yellow oil. ESI-MS (EI.sup.+, m/z): 680 [M+H].sup.+
Step 3:
[0243] Diphosgene (144 mg, 0.727 mmol) was added to a solution of (2S,5R)-tert-butyl 2-(5-(1-(((9H-fluoren-9-yl)methoxy) carbonyl)piperidin-4-yl)-1,2,4-oxadiazol-3-yl)-5-(benzyloxyamino)piperidi- ne-1-carboxylate (380 mg, 0.559 mmol) and TEA (113 mg, 1.118 mmol) in DCM (5.0 mL). The mixture was stirred at 0° C. for 1 h, then, DCM (20 mL) was added and the mixture was washed with saturated sodium chloride (2×), dried over Na2SO4, and concentrated to give (2S,5R)-tert-butyl 2-(5-(1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidin-4-yl)-1,2,4-oxadiaz- ol-3-yl)-5-(benzyloxy(chlorocarbonyl)amino)piperidine-1-carboxylate (400 mg), which was directly used in the next step. ESI-MS (EI.sup.+, m/z): 742 [M+H].sup.+.
Step 4:
[0244] A mixture of (2S,5R)-tert-butyl 2-(5-(1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidin-4-yl)-1,2,4-oxadiaz- ol-3-yl)-5-(benzyloxy(chlorocarbonyl)amino)piperidine-1-carboxylate (˜400 mg) and 4 N HCl/dioxane (5.0 mL) was stirred at rt for 2 hrs. The solvent was then removed under vacuum to give (9H-fluoren-9-yl)methyl 4-(3-((2S,5R)-5-(benzyloxy(chlorocarbonyl)amino)piperidin-2-yl)-1,2,4-oxa- diazol-5-yl)piperidine-1-carboxylate (400 mg) as a white solid. ESI-MS (EI.sup.+, m/z): 642 [M+H].sup.+.
[0245] To a solution of crude (9H-fluoren-9-yl)methyl 4-(3-((2S,5R)-5-(benzyloxy(chlorocarbonyl)amino)piperidin-2-yl)-1,2,4-oxa- diazol-5-yl)piperidine-1-carboxylate (400 mg) in DCM (25 mL) was added TEA until the pH was adjusted topH 8˜9. The mixture was stirred at rt for 2 hrs then, the solvent was removed. The residue was purified by silica gel column (gradient elution 0-45% petroleum ether/EtOAc) to give (9H-fluoren-9-yl)methyl 4-(3-((2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2- ,4-oxadiazol-5-yl)piperidine-1-carboxylate (100 mg, 30% for 3 steps) as a white solid. ESI-MS (EI.sup.-, m/z): 606 [M+H].sup.+.
Step 5:
[0246] BCl3 (850 μL, 0.85 mmol, 1 M in DCM) was added to a solution of (9H-fluoren-9-yl) methyl 4-(3-((2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2- ,4-oxadiazol-5-yl)piperidine-1-carboxylate (100 mg, 0.17 mmol) in dry DCM (10 mL) at -78° C. The mixture was stirred under N2 atmosphere at 0° C. for 6 hrs, cooled to -78° C., then MeOH (1 mL) was slowly added. The solvents were evaporated under vacuum at 0° C. to give (9H-fluoren-9-yl)methyl 4-(3-((2S,5R)-6-hydroxy-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,4-o- xadiazol-5-yl)piperidine-1-carboxylate (97 mg) as a yellow solid, which was used directly in the next step. ESI-MS (EI.sup.+, m/z): 516.3 [M+H].sup.-.
Step 6:
[0247] To a solution of crude (9H-fluoren-9-yl)methyl 4-(3-((2S,5R)-6-hydroxy-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,4-o- xadiazol-5-yl)piperidine-1-carboxylate (97 mg) in dry pyridine (2 mL) was added SO3.Py (140 mg, 0.85 mmol). The mixture was stirred at rt for 6 hrs and then concentrated under vacuum. The residue was re-dissolved in aqueous NaH2PO4 (1.5 M, 10 mL) then tetrabutylammonium hydrogensulphate (75 mg) was added. The mixture was stirred at rt for 20 minutes, then extracted with EtOAc (3×). The combined organic layer was dried and concentrated. The residue was purified by silica gel column chromatography (gradient elution 10:1 to 2:1 DCM/acetone) to give tetrabutylammonium (9H-fluoren-9-yl)methyl 4-(3-((2S,5R)-7-oxo-6-(sulfooxy)-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,- 4-oxadiazol-5-yl)piperidine-1-carboxylate sulfate as a white solid (84 mg, 61% for two steps). ESI-MS (EI.sup.+, m/z): 594.1 [M-H].sup.-.
Step 7:
[0248] Et2NH (0.5 mL, 5.0 mmol)) was added to a solution of tetrabutylammonium (9H-fluoren-9-yl)methyl 4-(3-((2S,5R)-7-oxo-6-(sulfooxy)-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,- 4-oxadiazol-5-yl)piperidine-1-carboxylate sulfate (84 mg, 0.1 mmol) in dry DCM (10 mL. The mixture was stirred at rt for 12 hrs and the solvents were evaporated under vacuum. The residue was purified by prep-HPLC to afford (2S,5R)-7-oxo-2-(5-(piperidin-4-yl)-1,2,4-oxadiazol-3-yl)-1,6-diaz- a-bicyclo[3.2.1]octan-6-yl hydrogen sulfate (9.0 mg). ESI-MS (EI.sup.+, m/z): 374.15 [M+H].sup.+. 1H NMR (300 MHz, D2O) δ 4.61 (d, J=6.0 Hz, 1H), 4.12 (br s, 1H), 3.50-3.33 (m, 3H), 3.15-3.05 (m, 3H), 2.91 (d, J=12.2 Hz, 1H), 2.35-1.72 (m, 8H).
Example 8
Synthesis of (2S,5R)-2-(1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl hydrogen sulfate (Compound 801)
##STR00041##
[0249] Step 1:
[0250] DIPEA (5.8 mL, 36.2 mmol) was added to a solution of (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octane-2-carboxylic acid (5.0 g, 18.1 mmol), EDCI (5.2 g, 27.2 mmol), HOBT (3.7 g, 27.2 mmol) and NH4Cl (1.94 g, 36.2 mmol) in DMF (60 mL) at rt. The reaction mixture was stirred for 17 hrs, then diluted with ice water (100 mL) and extracted with EtOAc (3×). The combined organic layer was dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography (2:1 EtOAc/petroleum ether) to afford (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octane-2-carboxamide (4.0 g, 80%) as a white solid. ESI-MS (EI.sup.+, m/z): 276 [M+H].sup.+.
Step 2.
[0251] Dimethoxy-N,N-dimethylmethanamine (0.97 mL, 7 mmol) was added to a solution of (2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octane-2-carboxamide (1.38 g, 5 mmol) in 1,4-dioxane (20 mL) at rt. The mixture was stirred at 45-50° C. for 2 hrs under vacuum to remove the methanol formed during the reaction. Then, the reaction mixture was concentrated under vacuum, and the residue was washed with Et2O (2×) and dried to give (2S,5R,Z)-6-(benzyloxy)-N-((dimethylamino)methylene)-7-oxo-1,6-diaza- -bicyclo[3.2.1]octane-2-carboxamide (1.33 g, 80%) as a white solid. (ESI-MS (EI.sup.-, 331, m/z): [M+H].sup.+.
Step 3:
[0252] (2S,5R,Z)-6-(benzyloxy)-N-((dimethylamino)methylene)-7-oxo-1,6-diaz- a-bicyclo[3.2.1]octane-2-carboxamide (1.33 g, 4.03 mmol) in EtOH (22 mL) was treated with pyridine (0.64 ml, 8.06 mmol), followed by the addition of a solution of HOSA (547 mg, 4.84 mmol) in MeOH (4.5 mL). The resulting mixture was stirred at rt for 30 minutes and then concentrated under vacuum. The residue was dissolved in DCM/THF (1:2, 30 mL) and washed with water (10 mL). The organic layer was dried over Na2SO4, and concentrated. The residue was re-dissolved in EtOH (22 mL) and 2N HCl (8.0 mL). The mixture was heated at reflux for 20 minutes, concentrated and extracted with DCM (2×). The crude material was purified by prep-HPLC to give (2S,5R)-6-(benzyloxy)-2-(1,2,4-oxadiazol-5-yl)-1,6-diaza-bicyclo[3.2.1]oc- tan-7-one (50 mg, 4.1%) as a light yellow oil. ESI-MS (EI.sup.-, 301, m/z): [M+H].sup.+. 1H-NMR (500 MHz, CDCl3): δ 8.44 (s, 1H), 7.45-7.35 (m, 5H), 5.09 (d, J=11.5 Hz, 1H), 4.94 (d, J=11.5 Hz, 1H), 4.85 (d, J=8.0 Hz, 1H), 3.36 (m, 1H), 3.01 (d, J=12.0 Hz, 1H), 2.81 (d, J=12.0 Hz, 1H), 2.37-2.35 (m, 1H), 2.25-2.21 (m, 1H), 2.01-2.00 (m, 1H), 1.85-1.84 (m, 1H).
Step 4:
[0253] BCl3 (1M in DCM, 1.2 mL, 1.2 mmol) was added to (2S,5R)-6-(benzyloxy)-2-(1,2,4-oxadiazol-5-yl)-1,6-diaza-bicyclo[3.2.1]oc- tan-7-one (50 mg, 0.167 mmol) in DCM (10 mL) at -78° C. The mixture was warmed to 0° C. and stirred for 2 hrs. The reaction was then quenched by the addition of MeOH (1 mL) and the resulting solution was concentrated under vacuum to give (2S,5R)-6-hydroxy-2-(1,2,4-oxadiazol-5-yl)-1,6-diaza-bicyclo[3.2.1]octan-- 7-one (34 mg, 98%) as a white solid, which was used directly in the next step. ESI-MS (EI.sup.-, 211, m/z): [M+H].sup.+.
Step 5:
[0254] A mixture of (2S,5R)-6-hydroxy-2-(1,2,4-oxadiazol-5-yl)-1,6-diaza-bicyclo[3.2.1]octan-- 7-one (48 mg, 0.228 mmol) and SO3--Py (182 mg, 1.14 mmol) in dry pyridine (2 mL) was stirred at rt for 2.5 hrs. The reaction mixture was then concentrated in vacuum and the residue was re-dissolved in aqueous NaH2PO4 (1.5 M, 10 mL). Tetrabutylammonium hydrogensulphate (105 mg) was added, the mixture was stirred at rt for 15 minutes, and then extracted with EtOAc (4×). The combined organic layer was dried and concentrated. The residue was purified by silica gel column chromatography (gradient elution 10:1 to 1:1 DCM/acetone) to give tetrabutylammonium (2S,5R)-2-(1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (50 mg, 41%) as a white solid. ESI-MS (EI.sup.-, 289, m/z): [M-H].sup.-.
Step 6:
[0255] Tetrabutylammonium (2S,5R)-2-(1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (50 mg) was dissolved in a minimum amount of HPLC grade water (˜1 mL) and passed through a column of 2 g of DOWEX 50WX 8 Na.sup.+ resin (the resin was pre-washed with >0.5 L of HPLC grade water) and eluted with HPLC grade water to afford sodium (2S,5R)-2-(1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (21 mg, 72%) as a white solid after lyophilization. ESI-MS (EI.sup.-, m/z): 289 [M-H].sup.-. 1H-NMR (500 MHz, CDCl3): δ 8.76 (s, 1H), 4.92 (d, J=7.5 Hz, 1H), 4.24 (s, 1H), 3.29 (d, J=12.5 Hz, 1H), 2.98 (d, J=12.5 Hz, 1H), 2.42-2.38 (m, 1H), 2.29-2.20 (m, 2H), 2.0-1.97 (m, 1H).
Example 9
Synthesis of (2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diaza-bicyclo[3.2.1]oc- tan-6-yl tetrabutylaminooxy sulfonate (Compound 802)
##STR00042##
[0256] Step 1:
[0257] Hydroxylamine (50% in water, 3.6 mL, 0.059 mol) was added to cyanamide (50% in water, 3.24 g, 0.077 mol) in methanol (100 mL). The mixture was heated to reflux for 4.5 hrs and concentrated to remove methanol/water, followed by co-evaporation with methanol (2×) to remove residual water to obtain 1-hydroxyguanidine (3.0 g, 68%) as a light yellow solid.
Step 2:
[0258] A solution of (2S,5R)-6-(benzyloxy)-2-(5-(piperidin-4-yl)-1,3,4-oxadiazol-2-yl)-1,6-dia- zabicyclo[3.2.1]octan-7-one (2.0 g, 7.25 mmol), EDCI (1.53 g, 7.98 mmol) and HOBT (1.08 g, 7.98 mmol) in DMF (15 mL) was stirred at rt for 0.5 h. 1-Hydroxyguanidine (0.653 g, 7.98 mmol) was then added and the reaction mixture was stirred for an additional 0.5 h. The resulting solution was treated under microwave at 100° C. for 1.5 hrs. The mixture was poured into water and extracted with EtOAc (2×). The combined organic layers were then washed with water (20 mL), and saturated sodium chloride (20 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography (2:1 EtOAc/petroleum ether) to give (2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-6-(benzyloxy)-1,6-diaza-bicyclo[- 3.2.1]octan-7-one (1.0 g, 44%). (ESI-MS (EI.sup.+, m/z): 316 [M+H].sup.+.
Step 3:
[0259] BCl3 (1M, 15.87 mL, 15.87 mmol) was added to a solution of (2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-6-(benzyloxy)-1,6-diaza-bicyclo[- 3.2.1]octan-7-one (1.0 g, 3.17 mmol) in dried DCM (20 mL) at -78° C. The mixture was stirred under N2 atmosphere at 0° C. for 2 hrs, cooled to -78° C. and quenched with MeOH (2 mL). The solvent was removed under vacuum to give ((2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-6-hydroxy-1,6-diaza-bicyclo[3.2- .1]octan-7-one (700 mg), which was used in the next step directly. ESI-MS (EI.sup.+, m/z): 226 [M+H].sup.+.
Step 4:
[0260] A mixture of ((2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-6-hydroxy-1,6-diaza-bicyclo[3.2- .1]octan-7-one (700 mg, 3.11 mmol) and SO3.Py (1.48 g, 9.33 mmol) in dry pyridine (5 mL) was stirred at rt for 2.5 hrs. The reaction mixture was then concentrated under vacuum. then re-dissolved in aqueous NaH2PO4 (1.5 M, 30 mL). Tetrabutylammonium hydrogensulphate (1.16 g) was added, the mixture stirred at rt for 15 minutes, and then extracted with EtOAc (4×). The combined organic layer was dried and concentrated and the residue was purified by silica gel column chromatography (gradient elution 10:1 to 5:1 DCM/acetone) to afford tetrabutylammonium (2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diazabicyclo[3.2.1]oct- an-6-yl sulfate (1.7 g) as a white solid. (ESI-MS (EI.sup.-, 304, m/z): [M-H].sup.-. 1H-NMR (500 MHz, DMSO-d6): δ 6.4 (s, 2H), 4.48 (d, J=8.0 Hz, 1H), 3.67 (s, 1H), 3.24-3.14 (m, 8H), 3.00 (d, J=12 Hz, 1H), 2.24 (d, J=11.5 Hz, 1H), 2.2-2.06 (m, 3H), 1.87-1.82 (m, 1H), 1.59-1.53 (m, 8H), 1.35-1.27 (m, 8H), 0.93-0.82 (m, 12H).
Step 5:
[0261] Tetrabutylammonium (2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diazabicyclo[3.2.1]oct- an-6-yl sulfate was further purified by prep-HPLC using ammonium formate buffer to afford (2S,5R)-2-(3-amino-1,2,4-oxadiazol-5-yl)-7-oxo-1,6-diazabicyclo[3.2.1]oct- an-6-yl hydrogen sulfate. ESI-MS (EI.sup.+, m/z): 306.1. 1H NMR (300 MHz, D2O) δ 4.19 (br s, 1H), 3.27-3.23 (m, 1H), 3.04-2.97 (m, 1H), 2.39-1.66 (m, 4H).
Example 10
Synthesis of (2S,5R)-7-oxo-2-(3-(piperidin-4-yl)-1,2,4-oxadiazol-5-yl)-1,6-diazabicycl- o[3.2.1]octan-6-yl hydrogen sulfate (Compound 803)
##STR00043##
[0262] Step 1:
[0263] CDI (511.3 mg, 3.1 mmol) was added to a solution of crude (2S,5R)-6-(benzyloxy)-2-(5-(piperidin-4-yl)-1,3,4-oxadiazol-2-yl)-1,6-dia- zabicyclo[3.2.1]octan-7-one (726 mg, 2.6 mmol) in DMF (15 mL). The mixture was stirred at rt for 1 h, then, (E)-tert-butyl 4-(N'-hydroxycarbamimidoyl)piperidine-1-carboxylate (631.8 mg, 2.6 mmol) was added at rt. The mixture was stirred at rt for 2 hrs, and then stirred at 50° C. for another 6 hrs. The mixture was diluted with EtOAc (150 mL) and washed with 1 M HCl (2×), water (2×), and saturated sodium chloride (2×), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography (1:5 to 1:1 EtOAc/hexanes) to give tert-butyl 4-(5-((2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2- ,4-oxadiazol-3-yl)piperidine-1-carboxylate (968 mg, 76%) as a white solid. ESI-MS (EI.sup.+, m/z): 506.2 [M+Na].sup.+. 1H-NMR (400 MHz, CDCl3): δ 7.47-7.36 (m, 5H), 4.99-4.94 (m, 2H), 4.73 (d, J=6.0 Hz, 1H), 3.93 (d, J=9.6 Hz, 1H), 3.72 (s, 1H), 3.08-2.90 (m, 4H), 2.72 (d, J=9.6 Hz, 1H), 2.15 (dd, J=12.0, 5.2 Hz, 1H), 2.09-1.93 (m, 5H), 1.85-1.79 (m, 1H), 1.59-1.50 (m, 2H), 1.40 (s, 9H).
Step 2:
[0264] CF3COOH (4 mL) was added to the solution of tert-butyl 4-(5-((2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2- ,4-oxadiazol-3-yl)piperidine-1-carboxylate (960 mg, 2.0 mmol) in 16 mL of CH2Cl2 at 0° C. The mixture was stirred at 0° C. for 2 hrs, then concentrated to give (2S,5R)-6-(benzyloxy)-2-(3-(piperidin-4-yl)-1,2,4-oxadiazol-5-yl)-1,6-dia- za-bicyclo[3.2.1]octan-7-one (1.1 g) as a brown oil, which was used directly in the next step. ESI-MS (EI.sup.+, m/z): 384.2 [M+H].sup.+.
Step 3:
[0265] DIPEA (1.6 mL, 10.0 mmol) was slowly added dropwise to a solution of (2S,5R)-6-(benzyloxy)-2-(3-(piperidin-4-yl)-1,2,4-oxadiazol-5-yl)-1,6-- diaza-bicyclo[3.2.1]octan-7-one (1.1 g, 2.0 mmol) in THF (50 mL) at 0° C. The mixture was stirred under N2 atmosphere at 0° C. for 15 minutes, then, Fmoc-OSu (2.4 g, 7.2 mmol) was added and the mixture was stirred at rt. for 8 hrs. The mixture was concentrated and the residue was purified by silica gel column chromatography (gradient elution 1:6 to 1:2 EtOAc/hexanes) to give (9H-fluoren-9-yl)methyl 4-(5-((2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2- ,4-oxadiazol-3-yl)piperidine-1-carboxylate (1.0 g, 86%) as a white solid.
Step 4:
[0266] BCl3 (8.5 ml, 8.5 mmol; 1 M in CH2Cl2) was added dropwise to a solution of (9H-fluoren-9-yl)methyl 4-(5-((2S,5R)-6-(benzyloxy)-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2- ,4-oxadiazol-3-yl)piperidine-1-carboxylate (1.0 g, 1.7 mmol, 1.0 eq.) in dried CH2Cl2 (20 mL) at -78° C. The mixture was stirred under N2 atmosphere at 0° C. for 6 hrs. Then, the reaction mixture was cooled to -78° C. and MeOH (2 mL) was added dropwise. The solvents were evaporated under vacuum at 0° C. to give ((9H-fluoren-9-yl)methyl 4-(5-((2S,5R)-6-hydroxy-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,4-o- xadiazol-3-yl)piperidine-1-carboxylate (970 mg) as a yellow solid, which was used directly in the next step. ESI-MS (EI.sup.-, m/z): 516.3 [M+H].sup.-.
Step 5:
[0267] To a solution of ((9H-fluoren-9-yl)methyl 4-(5-((2S,5R)-6-hydroxy-7-oxo-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,4-o- xadiazol-3-yl)piperidine-1-carboxylate (970 mg) in dry pyridine (15 mL) was added SO3.Py (1.4 g, 8.5 mmol). The mixture was stirred at rt for 6 h and then concentrated under vacuum. The resulting residue was then re-dissolved in aqueous NaH2PO4 (1.5 M, 100 mL) and Tetrabutylammonium hydrogensulphate (746 mg) was added. The mixture was stirred at rt for 30 minutes, then extracted with EtOAc (4×). The combined organic layer was dried and concentrated and the residue was purified by silica gel column chromatography (gradient elution 10:1 to 2:1 CH2Cl2/acetone) to afford tetrabutylammonium (9H-fluoren-9-yl)methyl 4-(5-((2S,5R)-7-oxo-6-(sulfooxy)-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,- 4-oxadiazol-3-yl)piperidine-1-carboxylate sulfate as a white solid (1.0 g, 71% for two steps). ESI-MS (EI.sup.-, m/z): 594.1 [M-H].sup.-.
Step 6:
[0268] Et2NH (6.1 mL, 60.0 mmol) was added to a solution of tetrabutylammonium (9H-fluoren-9-yl)methyl 4-(5-((2S,5R)-7-oxo-6-(sulfoxy)-1,6-diaza-bicyclo[3.2.1]octan-2-yl)-1,2,4- -oxadiazol-3-yl)piperidine-1-carboxylate sulfate (1.0 g, 1.2 mmol) in dried CH2Cl2 (30 mL). The mixture was stirred under N2 atmosphere at rt. for 12 hrs, then evaporated under vacuum. The residue was purified by prep-HPLC using the ammonium formate conditions. E SI-MS (EI.sup.+, m/z): 314.2. 1H NMR (300 MHz, D2O) δ 4.82 (d, J=8.0 Hz, 1H), 4.17 (br s, 1H), 3.47-3.45 (m, 2H), 3.25-3.12 (m, 3H), 2.96-2.92 (m, 1H), 2.39-1.94 (m, 8H).
Example 11
Construction of Isogenic β-Lactamase Strains
[0269] A set of β-lactamase expressing isogenic E. coli strains was constructed by cloning a β-lactamase gene into a customized derivative of pBR322 (GenBank Accession Number J01749) and transforming the engineered plasmids into E. coli. The NdeI restriction site within the plasmid backbone of pBR322 was removed to generate pBR322 ΔNdeI. The pBR322 ΔNdeI vector itself, minus the blaTEM-1 gene, was amplified using two primers: (1) pBR-Pbla 5'-cgcatatgactcttcctttttcaatattattg-3, SEQ ID 1, a primer with an engineered NdeI restriction site at the 3' end of the blaTEM-1 promoter and (2) pBR-vec-1 5'-gcggatccctgtcagaccaagtttactc-3', SEQ ID 2, a primer with an engineered BamHI restriction site at the 3' end of the blaTEM-1 open reading frame. The chloramphenicol resistance gene, cat, was generated by PCR amplification from pKD3 (GenBank Accession Number AY048742) using primers with an engineered NdeI restriction site at the 5' end (Pbla-cat 5'-gccatatgatggagaaaaaaatcactgg-3', SEQ ID 3) and an engineered BamHI restriction site at the 3' end (Vec-1-cat 5'-cgggatccctagagaataggaacttcgg-3', SEQ ID 4) of the resistance gene. The two PCR products, pBR322 ΔNdeI and cat were ligated together generating pBR-CBST (pBR322 ΔNdeI ΔTEM-1:: cat Seq. ID 5) which retains both the pBR322 tetracycline resistance cassette, tetA, and the plasmid origin of replication but the blaTEM-1 gene was replaced by the cat gene.
[0270] Using this engineering strategy a number of plasmids producing β-lactamase genes from different classes (see below) were generated using synthetic genes with an engineered NdeI restriction site at the 5' end and BamHI restriction site at the 3' end of each gene (GenScript). Both the synthetic β-lactamase genes and cat gene were ligated into the NdeI/BamHI sites of the pBR322 ΔNdeI PCR product and transformed into electrocompetent E. coli ElectroMax DH10B (Invitrogen/Life Technologies). E. coli DH10B harboring the recombinant plasmids were selected on LB agar (supplemented with 25 μg/mL tetracycline) and single isolated colonies were then inoculated into 5 mL LB media (supplemented with 25 μg/mL tetracycline), and incubated at 37° C. with aeration (250 rpm) for 18 hrs. The cultures were frozen back at -80° C. in 20% glycerol. The DNA sequence of the cloned β-lactamase genes was confirmed. The β-lactamase gene expression in the recombinant E. coli strains was driven by the blaTEM-1 promoter in the pBR-CBST plasmid and was characterized by MIC profiling of the E. coli recombinant strains against comparator β-lactam/BLI combinations in broth microdilution assay.
TABLE-US-00001 GenBank Accession Number of β-Lactamase Name & SEQ. ID of β- Species Origin of β-Lactamase Expressing plasmids producing Lactamase β-Lactamase Gene Strain β-Lactamase Class Gene Sequence KPC-2 pBR-CBST-KPC-2 A K. pneumoniae EU784136 SEQ ID 6 CTX-M-15 pBR-CBST-CTX-M-15 A K. pneumoniae JF775516 SEQ ID 7 SHV-12 pBR-CBST-SHV-12 A K. pneumoniae AY008838 SEQ ID 8 P99 AmpC pBR-CBST-P99 AMPC C E. cloacea X07274 SEQ ID 9 OXA-15 pBR-CBST-OXA-15 D P. aeruginosa PAU63835 SEQ ID 10 KPC-4 pBR-CBST-KPC-4 A K. pneumoniae EU447304 SEQ ID 11 DHA-1 pBR-CBST-DHA-1 C K. pneumoniae AY585202 SEQ ID 12 ADC-33 pBR-CBST-ADC-33 C A. baumannii EU687478 SEQ ID 13 Nucleotide Sequences of pBR-CBST Plasmids (Containing β-Lactamase or cat Genes) Used in the E. coli Isogenic Strains (relevant restriction sites are underlined; β-lactamase sequences in all caps, tetA sequence is in italics) pBR-CBST-cat SEQ ID 5 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGGAGAAAAAAATCACTGGATATACC ACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAG TCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCC TTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATT CACATTCTTGCCCGCCTGATGAATGCTCATACGGAATTTCGTATGGCAATG AAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGT TTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGA CGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGG TGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGT CTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAA TATGGACAACTTCTTCGCCCCCGTTTTCACTATGGGCAAATATTATACGCA AGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCT GTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGC GATGAGTGGCAGGGCGGGGCGTAAGTGGCAGGGCGGGGCGTAAGGCGCG CCATTTAAATGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGggatccctgtcagac caagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcct- ttttgataatctcatg accaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttg- agatccttttt ttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagag- ctaccaact ctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttagg- ccaccacttc aagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataa- gtcgtgtctt accgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacaca- gccc agcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccga- aggga gaaaggcggacaggtatccggtaagcggcagggtcgguacaggagagcgcacgagggagcttccagggggaaac- gc ctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcagggg- ggcggagccta tggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcc- tgcgttatcccc tgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgca- gcgagtc agtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgca- tttggtgca ctctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgtgactgggtca- tggctgcgc cccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagct- gtgacc gtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgaggcagctgcggtaaagctc- atcagc gtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgtta- atgtctggctt ctgataaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagggggatttct- gttcatgggg gtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaacatgcccggttactgga- acgttgt gagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgccagcgcttcgt- taatac agatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaacataatggtgcagggcgctg- acttcc gcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgctcaggtcgcagacgtttgcagc- agcagtc gcttcacgttcgctcgcgtatcggtgattcattctgctaaccagtaaggcaaccccgccagcctagccgggtcc- tcaacgac aggagcacgatcatgcgcacccgtggccaggacccaacgctgcccgagatgcgccgcgtgcggctgctggagat- ggc ggacgcgatggatatgttctgccaagggttggtttgcgcattcacagttctccgcaagaattgattggctccaa- ttcttggagt ggtgaatccgttagcgaggtgccgccggcttccattcaggtcgaggtggcccggctccatgcaccgcgacgcaa- cgcg gggaggcagacaaggtatagggcggcgcctacaatccatgccaacccgttccatgtgctcgccgaggcggcata- aat cgccgtgacgatcagcggtccagtgatcgaagttaggctggtaagagccgcgagcgatccttgaagctgtccct- gatg gtcgtcatctacctgcctggacagcatggcctgcaacgcgggcatcccgatgccgccggaagcgagaagaatca- taa tggggaaggccatccagcctcgcgtcgcgaacgccagcaagacgtagcccagcgcgtcggccgccatgccggcg- a taatggcctgcttctcgccgaaacgtttggtggcgggaccagtgacgaaggcttgagcgagggcgtgcaagatt- ccga ataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtcctcgccgaaaatgacccagagcgct- gc cggcacctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgatagtcatgcccgcgccca- cc ggaaggagctgactgggttgaaggctctcaagggcatcggtcgacgctctcccttatgcgactcctgcattagg- aagca gcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaaca- gt ccccatcggtgatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgt- ccg gcgtagaggattcacaggacgggtgtggtcgccatgatcgcgtagtcgatagtggctccaagtagcgaagcgag- cag gactgggcggcggccaaagcggtcggacagtgctccgagaacgggtgcgcatagaaattgcatcaacgcatata- gc gctagcagcacgccatagtgactggcgatgctgtcggaatggacgatatcccgcaagaggcccggcagtaccgg- cat aaccaagcctatgcctacagcatccagggtgacggtgccgaggatgacgatgagcgcattgttagatttcatac- acggt gcctgactgcgttagcaatttaactgtgataaactaccgcattaaagcttatcgatgataagctgtcaaacatg- agaa pBR-CBST-KPC-2 SEQ ID 6 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGTCACTGTATCGCCGTCTAGTTCTGC TGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCA ACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCC ATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCG CGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGC CGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCA TCCGTTACGGCAAAAATGCGCTGGTTCCGTGGTCACCCATCTCGGAAAAA TATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCA ATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCC CGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTC TGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGC GATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACT GGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAA AGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGA CTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGGCACGGCA AATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCC GTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCAT CGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGT AAggatccctgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaagg- atctaggtgaag atcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtaga- aaagatcaaag gatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtg- gtttgtttgccg gatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttct- agtgtagcc gtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtgg- ctgctgcca gtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctga- acgggg ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgaga- aagcg ccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagg- ga gcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttt- tgtgatgctcg tcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttt- tgctcacat gttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgcc- gcagccgaac gaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgt- gcggta tttcacaccgcatttggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgc- tatcgctacgt gactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggc- atccg cttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcg- aggcagc tgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttg- agtttctcca gaagcgttaatgtctggcttctgaiaaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcc- tccgtgtaagg gggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatg- aacatgcc cggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcaggg- tcaatg ccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaaca- taatggt gcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgctcagg- tcgcagac gttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtgattcattctgctaaccagtaaggcaaccccg- ccagcctag ccgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgcccgagatgcgccgcg- tgc ggctgctggagatggcggacgcgatggatatgttctgccaagggttggtttgcgcattcacagttctccgcaag- aattgattg gctccaattcttggagtggtgaatccgttagcgaggtgccgccggcttccattcaggtcgaggtggcccggctc- catgcac cgcgacgcaacgcggggaggcagacaaggtatagggcggcgcctacaatccatgccaacccgttccatgtgctc- gc cgaggcggcataaatcgccgtgacgatcagcggtccagtgatcgaagttaggctggtaagagccgcgagcgatc- ctt gaagctgtccctgatggtcgtcatctacctgcctggacagcatggcctgcaacgcgggcatcccgatgccgccg- gaag cgagaagaatcataatggggaaggccatccagcctcgcgtcgcgaacgccagcaagacgtagcccagcgcgtcg- g ccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtggcgggaccagtgacgaaggcttgagcg- agg gcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtcctcgccgaa- aa tgacccagagcgctgccggcacctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgata- gtc atgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgacgctctcccttatg- cgac tcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaa- gga gatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgctcatgagcccga- a gtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtga- tgcc ggccacgatgcgtccggcgtagaggattcacaggacgggtgtggtcgccatgatcgcgtagtcgatagtggctc- caag tagcgaagcgagcaggactgggcggcggccaaagcggtcggacagtgctccgagaacgggtgcgcatagaaatt- g catcaacgcatatagcgctagcagcacgccatagtgactggcgatgctgtcggaatggacgatatcccgcaaga- ggc ccggcagtaccggcataaccaagcctatgcctacagcatccagggtgacggtgccgaggatgacgatgagcgca- ttg ttagatttcatacacggtgcctgactgcgttagcaatttaactgtgataaactaccgcattaaagcttatcgat- gataagctgtc aaacatgagaa pBR-CBST-CTX-M-15 SEQ ID 7 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg-
agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGGAATCTGTTAAATCAGCGAGTTGA GATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACG TCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTAC AGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGC TAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCG ACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGAT ACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGG TAAAGCATTGGGGGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAA GGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTG GGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATA TCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACT TCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCG GCGGCTAAAATCGTCACCGACGGTTTGTAAggatccctgtcagaccaagtttactcatatatact ttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgacca- aaatcccttaacgtg agttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgc- gtaatctgctgc ttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaa- ggtaactgg cttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctg- tagcaccg cctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggtt- ggactcaag acgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaa- cgac ctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggaca- ggtat ccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatag- tcctg tcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaac- gccagcaa cgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgatt- ctgtggataaccgt attaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgagga- agcg gaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatttggtgcactctcag- tacaatctgct ctgatgccgcatagttaagccagtatacactccgctatcgctacgtgactgggtcatggctgcgccccgacacc- cgccaac acccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccggga- gctgcat gtgtcagaggttttcaccgtcatcaccgaaacgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaa- gcgattc acagatgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataa- agcgggccat gttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagggggatttctgttcatgggggtaatga- taccgatgaaa cgagagaggatgctcacgatacgggttactgatgatgaacatgcccggttactggaacgttgtgagggtaaaca- actggc ggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgccagcgcttcgttaatacagatgtaggtg- ttccaca gggtagccagcagcatcctgcgatgcagatccggaacataatggtgcagggcgctgacttccgcgtttccagac- tttacga aacacggaaaccgaagaccattcatgttgttgctcaggtcgcagacgttttgcagcagcagtcgcttcacgttc- gctcgcgt atcggtgattcattctgctaaccagtaaggcaaccccgccagcctagccgggtcctcaacgacaggagcacgat- catgcg cacccgtggccaggacccaacgctgcccgagatgcgccgcgtgcggctgctggagatggcggacgcgatggata- tgtt ctgccaagggttggtttgcgcattcacagttctccgcaagaattgattggctccaattcttggagtggtgaatc- cgttagcgag gtgccgccggcttccattcaggtcgaggtggcccggctccatgcaccgcgacgcaacgcggggaggcagacaag- gt atagggcggcgcctacaatccatgccaacccgttccatgtgctcgccgaggcggcataaatcgccgtgacgatc- agc ggtccagtgatcgaagttaggctggtaagagccgcgagcgatccttgaagctgtccctgatggtcgtcatctac- ctgcct ggacagcatggcctgcaacgcgggcatcccgatgccgccggaagcgagaagaatcataatggggaaggccatcc- a gcctcgcgtcgcgaacgccagcaagacgtagcccagcgcgtcggccgccatgccggcgataatggcctgcttct- cgc cgaaacgtttggtggcgggaccagtgacgaaggcttgagcgagggcgtgcaagattccgaataccgcaagcgac- ag gccgatcatcgtcgcgctccagcgaaagcggtcctcgccgaaaatgacccagagcgctgccggcacctgtccta- cga gttgcatgataaagaagacagtcataagtgcggcgacgatagtcatgccccgcgcccaccggaaggagctgact- gg gttgaaggctctcaagggcatcggtcgacgctctcccttatgcgactcctgcattaggaagcagcccagtagta- ggttga ggccgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacgggg- c ctgccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatg- tcg gcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggattca- ca ggacgggtgtggtcgccatgatcgcgtagtcgatagtggctccaagtagcgaagcgagcaggactgggcggcgg- cc aaagcggtcggacagtgctccgagaacgggtgcgcatagaaattgcatcaacgcatatagcgctagcagcacgc- ca tagtgactggcgatgctgtcggaatggacgatatcccgcaagaggcccggcagtaccggcataaccaagcctat- gcc tacagcatccagggtgacggtgccgaggatgacgatgagcgcattgttagatttcatacacggtgcctgactgc- gttagc aatttaactgtgataaactaccgcattaaagcttatcgatgataagctgtcaaacatgagaa pBR-CBST-SHV-12 SEQ ID 8 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGCGTTATATTCGCCTGTGTATTATCT CCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTT GAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGA TAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGAT GAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGT GCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCAC TATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCT TGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGA GCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCA GGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGAC CGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACA CCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGC CAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGA CGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGT TTATCGCCGATAAGACCGGAGCTAGCAAGCGGGGTGCGCGCGGGATTGTC GCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCT GCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGG ATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAAggatccctgtcagaccaagttta ctcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgata- atctcatgaccaaaat cccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctt- tttttctgcgc gtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaac- tctttttccg aaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccactt- caagaact ctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgt- cttaccggg ttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccag- cttgg agcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggaga- aagg cggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctgg- tat ctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggag- cctatggaaa aacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgtt- atcccctgattct gtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtc- agtgag cgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatttggt- gcactctca gtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgtgactgggtcatggctg- cgccccga cacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgac- cgtctc cgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgaggcagctgcggtaaagctcatcag- cgtggt cgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtc- tggcttctgat aaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagggggatttctgttca- tgggggtaat gataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaacatgcccggttactggaacgtt- gtgagg gtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgccagcgcttcgttaat- acagat gtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaacataatggtgcagggcgctgactt- ccgcgtt tccagactttacgaaacacggaaaccgaagaccattcatgttgttgctcaggtcgcagacgttttgcagcagca- gtcgcttca cgttcgctcgcgtatcggtgattcattctgctaaccagtaaggcaaccccgccagcctagccgggtcctcaacg- acaggag cacgatcatgcgcacccgtggccaggacccaacgctgcccgagatgcgccgcgtgcggctgctggagatggcgg- acg cgatggatatgttctgccaagggttggtttgcgcattcacagttctccgcaagaattgattggctccaattctt- ggagtggtgaa tccgttagcgaggtgccgccggcttccattcaggtcgaggtggcccggctccatgcaccgcgacgcaacgcggg- gag gcagacaaggtatagggcggcgcctacaatccatgccaacccgttccatgtgctcgccgaggcggcataaatcg- ccg tgacgatcagcggtccagtgatcgaagttaggctggtaagagccgcgagcgatccttgaagctgtccctgatgg- tcgtc atctacctgcctggacagcatggcctgcaacgcgggcatcccgatgccgccggaagcgagaagaatcataatgg- gg aaggccatccagcctcgcgtcgcgaacgccagcaagacgtagcccagcgcgtcggccgccatgccggcgataat- g gcctgcttctcgccgaaacgtttggtggcgggaccagtgacgaaggcttgagcgagggcgtgcaagattccgaa- tacc gcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtcctcgccgaaaatgacccagagcgctgccgg- c acctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgatagtcatgccccgcgcccaccg- gaa ggagctgactgggttgaaggctctcaagggcatcggtcgacgctctcccttatgcgactcctgcattaggaagc- agccc agtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcc- cc cggccacggggcctgccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttcc- cc atcggtgatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccgg- cgt agaggattcacaggacgggtgtggtcgccatgatcgcgtagtcgatagtggctccaagtagcgaagcgagcagg- act gggcggcggccaaagcggtcggacagtgctccgagaacgggtgcgcatagaaattgcatcaacgcatatagcgc- ta gcagcacgccatagtgactggcgatgctgtcggaatggacgatatcccgcaagaggcccggcagtaccggcata- ac caagcctatgcctacagcatccagggtgacggtgccgaggatgacgatgagcgcattgttagatttcatacacg- gtgcc tgactgcgttagcaatttaactgtgataaactaccgcattaaagcttatcgatgataagctgtcaaacatgaga- a pBR-CBST-P99 SEQ ID 9 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGATGAGAAAATCCCTTTGCTGCGCCC TGCTGCTCGGCATCTCTTGCTCTGCTCTCGCCACGCCAGTGTCAGAAAAAC AGCTGGCGGAGGTGGTCGCGAATACGATTACCCCGCTGATGAAAGCCCAG TCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAACCGCACTAT TACACATTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCA GACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGG TGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATGCGGTGACCA GATACTGGCCACAGCTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTG GATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGA GGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGC AGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTT TTTGGTGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATG ACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGT GCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAA GCGGTGCGCGTTTCGCCGGGTATGCTGGATGCACAAGCCTATGGCGTGAA AACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCG GAGAACGTTGCTGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTC GCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGC TCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAGGGCAGCGACAGTAA GGTAGCACTGGCGCCGTTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCC CGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGC AGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCG AATACAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCT CGAGGCGCTACAGTAAggatccctgtcagaccaagtttactcatatatactttagattgatttaaaacttcatt- ttt aatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttc- cactgagcgtca gaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaa- aaaaccaccg ctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagc- gcagatacc aaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcg- ctctgctaat cctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccgg- ataaggcg cagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagata- ccta cagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggt- cgg aacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacc- tctgact tgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttac- ggttcctg gccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgc-
ctttgagtgagctg ataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcgg- tat tttctccttacgcatctgtgcggtatttcacaccgcatttggtgcactctcagtacaatctgctctgatgccgc- atagttaagcca gtatacactccgctatcgctacgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgcc- ctgacg ggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggtttt- caccgtcat caccgaaacgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgt- tcatcc gcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagggcggt- tttttcctgttt ggtcactgatgcctccgtgtaagggggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgc- tcacgata cgggttactgatgatgaacatgcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcg- ggacca gagaaaaatcactcagggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagc- atcctgc gatgcagatccggaacataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccga- agacca ttcatgttgttgctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtgattca- ttctgctaacc agtaaggcaaccccgccagcctagtcgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacc- caa cgctgcccgagatgcgccgcgtgcggctgctggagatggcggacgcgatggatatgttctgccaagggttggtt- tgcgca ttcacagttctccgcaagaattgattggctccaattcttggagtggtgaatccgttagcgaggtgccgccggct- tccattcag gtcgaggtggcccggctccatgcaccgcgacgcaacgcggggaggcagacaaggtatagggcggcgcctacaat- c catgccaacccgttccatgtgctcgccgaggcggcataaatcgccgtgacgatcagcggtccagtgatcgaagt- tagg ctggtaagagccgcgagcgatccttgaagctgtccctgatggtcgtcatctacctgcctggacagcatggcctg- caacg cgggcatcccgatgccgccggaagcgagaagaatcataatggggaaggccatccagcctcgcgtcgcgaacgcc- a gcaagacgtagcccagcgcgtcggccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtggcg- gga ccagtgacgaaggcttgagcgagggcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgcgct- cc agcgaaagcggtcctcgccgaaaatgacccagagcgctgccggcacctgtcctacgagttgcatgataaagaag- ac agtcataagtgcggcgacgatagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagg- gc atcggtcgacgctctcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagcac- cgccg ccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccaccatacccacg- c cgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgcca- gca accgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggattcacaggacgggtgtggtcgc- cat gatcgcgtagtcgatagtggctccaagtagcgaagcgagcaggactgggcggcggccaaagcggtcggacagtg- ct ccgagaacgggtgcgcatagaaattgcatcaacgcatatagcgctagcagcacgccatagtgactggcgatgct- gtc ggaatggacgatatcccgcaagaggcccggcagtaccggcataaccaagcctatgcctacagcatccagggtga- cg gtgccgaggatgacgatgagcgcattgttagatttcatacacggtgcctgactgcgttagcaatttaactgtga- taaactac cgcattaaagcttatcgatgataagctgtcaaacatgagaa pBR-CBST-OXA-15 SEQ ID 10 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGGCAATCCGAATCTTCGCGATACTTT TCTCCATTTTTTCTCTTGCCACTTTCGCGCATGCGCAAGAAGGCACGCTAG AACGTTCTGACTGGAGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACG ATAGTTGTGGCAGACGAACGCCAAGCGGATCGTGCCATGTTGGTTTTTGA TCCTGTGCGATCGAAGAAACGCTACTCGCCTGCATCGACATTCAAGATAC CTCATACACTTTTTGCACTTGATGCAGGCGCTGTTCGTGATGAGTTCCAGA TTTTTCGATGGGACGGCGTTAACAGGGGCTTTGCAGGCCACAATCAAGAC CAAGATTTGCGATCAGCAATGCGGAATTCTACTGTTTGGGTGTATGAGCTA TTTGCAAAGGAAATTGGTGATGACAAAGCTCGGCGCTATTTGAAGAAAAT CGACTATGGCAACGCCGGTCCTTCGACAAGTAATGGCGATTACTGGATAG AAGGCAGCCTTGCAATCTCGGCGCAGGAGCAAATTGCATTTCTCAGGAAG CTCTATCGTAACGAGCTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAG GATCTCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGTGCAAAGAC GGGCTGGGAAGGCCGTATGGGTTGGTGGGTAGGATGGGTTGAGTGGCCGA CTGGCTCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGAATGGATG ATCTTTTCAAGAGGGAGGCAATCGTGCGGGCAATCCTTCGCTCTATTGAA GCGTTACCGCCCAACCCGGCAGTCAACTCGGACGCTGCGCGATAAggatccct gtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtga- agatcctttttgata atctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaagga- tcttcttgag atcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccg- gatcaagagct accaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgt- agttaggcc accacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagt- ggcgataag tcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttc- gtgcac acagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgc- ttccc gaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagg- g ggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctc- gtcagggggg cggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacat- gttctttcctg cgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacg- accgagcg cagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtattt- cacaccg catttggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacg- tgactgggtc atggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgctta- cagac aagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgaggcagctg- cggtaa agctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttgagtttctc- cagaagcgtt aatgtctggcttctgataaagcgggccatgaaagggcggttttttcctgtttggtcactgatgcctccgtgtaa- gggggatttc tgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaacatgcc- cggttact ggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgcc- agcg cttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaacataatgg- tgcaggg cgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgctcaggtcgcag- acgttttgc agcagcagtcgcttcacgttcgctcgcgtatcggtgattcattctgctaaccagtaaggcaaccccgccagcct- agccgggt cctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgcccgagatgcgccgcgtgcggc- tgct ggagatggcggacgcgatggatatgttctgccaagggttggtttgcgcattcacagttctccgcaagaattgat- tggctcca attcttggagtggtgaatccgttagcgaggtgccgccggcttccattcaggtcgaggtggcccggctccatgca- ccgcga cgcaacgcggggaggcagacaaggtatagggcggcgcctacaatccatgccaacccgttccatgtgctcgccga- gg cggcataaatcgccgtgacgatcagcggtccagtgatcgaagttaggctggtaagagccgcgagcgatccttga- agct gtccctgatggtcgtcatctacctgcctggacagcatggcctgcaacgcgggcatcccgatgccgccggaagcg- aga agaatcataatggggaaggccatccagcctcgcgtcgcgaacgccagcaagacgtagcccagcgcgtcggccgc- c atgccggcgataatggcctgcttctcgccgaaacgtttggtggcgggaccagtgacgaaggcttgagcgagggc- gtgc aagattccgaataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtcctcgccgaaaatgac- cc agagcgctgccggcacctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgatagtcatg- ccc cgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgacgctctcccttatgcgactc- ctgc attaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaaggagat- gg cgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgctcatgagcccgaagtgg- c gagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccg- gcca cgatgcgtccggcgtagaggattcacaggacgggtgtggtcgccatgatcgcgtagtcgatagtggctccaagt- agcg aagcgagcaggactgggcggcggccaaagcggtcggacagtgctccgagaacgggtgcgcatagaaattgcatc- a acgcatatagcgctagcagcacgccatagtgactggcgatgctgtcggaatggacgatatcccgcaagaggccc- ggc agtaccggcataaccaagcctatgcctacagcatccagggtgacggtgccgaggatgacgatgagcgcattgtt- agat ttcatacacggtgcctgactgcgttagcaatttaactgtgataaactaccgcattaaagcttatcgatgataag- ctgtcaa acatgagaa pBR-CBST-KPC-4 SEQ ID 11 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGTCACTGTATCGCCGTCTAGTTCTGC TGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCA ACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCC ATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCG CGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGC CGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCA TCCGTTACGGCAAAAATGCGCTGGTTCGGTGGTCACCCATCTCGGAAAAA TATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCA ATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCC CGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTC TGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGC GATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACT GGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAA AGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGA CTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGGGTATGGCACGGCA AATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCC GTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCAT CGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGT AAggatccctgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaagg- atctaggtgaag atcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtaga- aaagatcaaag gatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtg- gtttgtttgccg gatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttct- agtgtagcc gtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtgg- ctgctgcca gtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctga- acgggg ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgaga- aagcg ccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagg- ga gcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttt- tgtgatgctcg tcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttt- tgctcacat gttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgcc- gcagccgaac gaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgt- gcggta tttcacaccgcatttggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgc- tatcgctacgt gactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggc- atccg cttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcg- aggcagc tgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttg- agtttctcca gaagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcc- tccgtgtaagg gggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatg- aacatgcc cggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcaggg- tcaatg ccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaaca- taatggt gcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgctcagg- tcgcagac gttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtgattcattctgctaaccagtaaggcaaccccg- ccagcctag ccgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgcccgagatgcgccgcg- tgc ggctgctggagatggcggacgcgatggatatgttctgccaagggttggtttgcgcattcacagttctccgcaag- aattgattg gctccaattcttggagtggtgaatccgttagcgaggtgccgccggcttccattcaggtcgaggtggcccggctc- catgcac cgcgacgcaacgcggggaggcagacaaggtatagggcggcgcctacaatccatgccaacccgttccatgtgctc- gc cgaggcggcataaatcgccgtgacgatcagcggtccagtgatcgaagttaggctggtaagagccgcgagcgatc- ctt gaagctgtccctgatggtcgtcatctacctgcctggacagcatggcctgcaacgcgggcatcccgatgccgccg- gaag cgagaagaatcataatggggaaggccatccagcctcgcgtcgcgaacgccagcaagacgtagcccagcgcgtcg- g ccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtggcgggaccagtgacgaaggcttgagcg-
agg gcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtcctcgccgaa- aa tgacccagagcgctgccggcacctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgata- gtc atgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgacgctctcccttatg- cgac tcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaa- gga gatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgctcatgagcccga- a gtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtga- tgcc ggccacgatgcgtccggcgtagaggattcacaggacgggtgtggtcgccatgatcgcgtagtcgatagtggctc- caag tagcgaagcgagcaggactgggcggcggccaaagcggtcggacagtgctccgagaacgggtgcgcatagaaatt- g catcaacgcatatagcgctagcagcacgccatagtgactggcgatgctgtcggaatggacgatatcccgcaaga- ggc ccggcagtaccggcataaccaagcctatgcctacagcatccagggtgacggtgccgaggatgacgatgagcgca- ttg ttagatttcatacacggtgcctgactgcgttagcaatttaactgtgataaactaccgcattaaagcttatcgat- gataagctgtc aaacatgagaa pBR-CBST-DHA-1 SEQ ID 12 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGAAAAAATCGTTATCTGCAACACTG ATTTCCGCTCTGCTGGCGTTTTCCGCCCCGGGGTTTTCTGCCGCTGATAAT GTCGCGGCGGTGGTGGACAGCACCATTAAACCGCTGATGGCACAGCAGGA TATTCCCGGGATGGCGGTTGCCGTCTCCGTAAAGGGTAAGCCCTATTATTT CAATTATGGTTTTGCCGATATTCAGGCAAAACAGCCGGTCACTGAAAATA CACTATTTGAGCTCGGATCTGTAAGTAAAACTTTCACAGGTGTGCTGGGTG CGGTTTCTGTGGCGAAAAAAGAGATGGCGCTGAATGATCCGGCGGCAAAA TACCAGCCGGAGCTGGCTCTGCCGCAGTGGAAGGGGATCACATTGCTGGA TCTGGCTACCTATACCGCAGGCGGACTGCCGTTACAGGTGCCGGATGCGG TAAAAAGCCGTGCGGATCTGCTGAATTTCTATCAGCAGTGGCAGCCGTCC CGGAAACCGGGCGATATGCGTCTGTATGCAAACAGCAGTATCGGCCTGTT TGGTGCTCTGACCGCAAACGCGGCGGGGATGCCGTATGAGCAGTTGCTGA CTGCACGCATCCTGGCACCGCTGGGGTTATCTCACACCTTTATTACTGTGC CGGAAAGTGCGCAAAGCCAGTATGCGTACGGTTATAAAAACAAAAAACC GGTCCGCGTGTCGCCGGGACAGCTTGATGCGGAATCTTACGGCGTGAAAT CCGCCTCAAAAGATATGCTGCGCTGGGCGGAAATGAATATGGAGCCGTCA CGGGCCGGTAATGCGGATCTGGAAATGGCAATGTATCTCGCCCAGACCCG CTACTATAAAACCGCCGCGATTAACCAGGGGCTGGGCTGGGAAATGTATG ACTGGCCGCAGCAGAAAGATATGATCATTAACGGTGTGACCAACGAGGTC GCATTGCAGCCGCATCCGGTAACAGACAACCAGGTTCAGCCGTATAACCG TGCTTCCTGGGTGCATAAAACGGGCGCAACAACTGGTTTCGGCGCCTATG TCGCCTTTATTCCGGAAAAACAGGTGGCGATTGTGATTCTGGCGAATAAA AACTACCCGAATACCGAAAGAGTCAAAGCTGCACAGGCTATTTTGAGTGC ACTGGAATAAggatccctgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaat- ttaaaag gatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgt- cagaccccgta gaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccacc- gctaccagcg gtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagatacc- aaatactgtc cttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaat- cctgttacca gtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgca- gcggtcg ggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcg- tgag ctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacagg- aga gcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttg- agcgtcga tttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggc- cttttgctg gccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgag- ctgataccgctcg ccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctcc- ttacg catctgtgcggtatttcacaccgcatttggtgcactctcagtacaatctgctctgatgccgcatagttaagcca- gtatacactcc gctatcgctacgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggctt- gtctgc tcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatca- ccgaaacg cgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgt- ccagctc gttgagtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtt- tggtcactgatg cctccgtgtaagggggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgg- gttactga tgatgaacatgcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaa- aaatca ctcagggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatg- cagatcc ggaacataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcat- gttgttgc tcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtgattcattctgctaaccag- taaggcaac cccgccagcctagccgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgccc- gag atgcgccgcgtgcggctgctggagatggcggacgcgatggatatgttctgccaagggttggtttgcgcattcac- agttctcc gcaagaattgattggctccaattcttggagtggtgaatccgttagcgaggtgccgccggcttccattcaggtcg- aggtggcc cggctccatgcaccgcgacgcaacgcggggaggcagacaaggtatagggcggcgcctacaatccatgccaaccc- g ttccatgtgctcgccgaggcggcataaatcgccgtgacgatcagcggtccagtgatcgaagttaggctggtaag- agcc gcgagcgatccttgaagctgtccctgatggtcgtcatctacctgcctggacagcatggcctgcaacgcgggcat- cccga tgccgccggaagcgagaagaatcataatgggaaggccatccagcctcgcgtcgcgaacgccagcaagacgtagc ccagcgcgtcggccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtggcgggaccagtgacg- aag gcttgagcgagggcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcg- gt cctcgccgaaaatgacccagagcgctgccggcacctgtcctacgagttgcatgataaagaagacagtcataagt- gcg gcgacgatagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgacg- ctc tcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaagga- atgg tgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgc- t catgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctg- tgg cgccggtgatgccggccacgatgcgtccggcgtagaggattcacaggacgggtgtggtcgccatgatcgcgtag- tcg atagtggctccaagtagcgaagcgagcaggactgggcggcggccaaagcggtcggacagtgctccgagaacggg- t gcgcatagaaattgcatcaacgcatatagcgctagcagcacgccatagtgactggcgatgctgtcggaatggac- gat atcccgcaagaggcccggcagtaccggcataaccaagcctatgcctacagcatccagggtgacggtgccgagga- tg acgatgagcgcattgttagatttcatacacggtgcctgactgcgttagcaatttaactgtgataaactaccgca- ttaaagctta tcgatgataagctgtcaaacatgagaa pBR-CBST-ADC-33 SEQ ID 13 ttcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttaga- cgtcaggtggca cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg- agacaataaccct gataaatgcttcaataatattgaaaaaggaagagtcatATGCGATTTAAAAAAATTTCTTGTCTAC TTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACC AAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTAT TAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAAT AAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGC CGTAAATAGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTAC CGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACG ATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAA GTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAG TTTCCAGATGAAGTAAAAACAGACCAACAAGTTTTAACTTTTTTCAAAGA CTGGAAACCTAAAAACTCAATCGGTGAATACAGACAATATTCAAATCCAA GTATTGGCCTATTTGGAAAGGTTGTGGCTTTGTCTATGAATAAACCTTTTCG ACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCT ATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCATTTGGTTATAAC CAAGAAAATCAGCCGATTCGAGTTAACCGCGGCCCACTCGATGCCGCCCC TGCGTATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGC CAACCTTAACCCACAGAAATATCCGGCTGATATTCAACGGGCAATTAATG AAACACATCAAGGGCGCTATCAAGTAAATACCATGTATCAGGCACTCGGT TGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAAT TCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGA ACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCAACGGTTTCGGAA CGTATGTAGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCA ATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTG AATGCAATAAAGAAATAAggatccctgtcagaccaagtttactcatatatactttagattgatttaaaacttca tttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagtttt- cgttccactgagcg tcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaac- aaaaaaacca ccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcag- agcgcagat accaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacc- tcgctctgct aatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttac- cggataag gcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgag- atac ctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcag- ggtc ggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgcca- cctctg acttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttt- tacggttc ctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattac- cgcctttgagtgag ctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatg- cg gtattttctccttacgcatctgtgcggtatttcacaccgcatttggtgcactctcagtacaatctgctctgatg- ccgcatagttaag ccagtatacactccgctatcgctacgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgc- gccctg acgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggt- tttcaccg tcatcaccgaaacgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgc- ctgttca tccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagggc- ggttttttcct gtttggtcactgatgcctccgtgtaagggggatttctgttcatgggggtaatgataccgatgaaacgagagagg- atgctcac gatacgggttactgatgatgaacatgcccggttactggaacgttgtgagggtaaacaactggcggtatggatgc- ggcggg accagagaaaaatcactcagggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccag- cagcatc ctgcgatgcagatccggaacataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaa- ccgaag accattcatgttgttgctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtga- ttcattctgct aaccagtaaggcaaccccgccagcctagccgggtcctcaacgacaggagcacgatcatgcgcacccgtggccag- gac ccaacgctgcccgagatgcgccgcgtgcggctgctggagatggcggacgcgatggatatgttctgccaagggtt- ggtttg cgcattcacagttctccgcaagaattgattggctccaattcttggagtggtgaatccgttagcgaggtgccgcc- ggcttccatt caggtcgaggtggcccggctccatgcaccgcgacgcaacgcggggaggcagacaaaggtataggcggcgcctac aatccatgccaacccgttccatgtgctcgccgaggcggcataaatcgccgtgacgatcagcggtccagtgatcg- aagtt aggctggtaagagccgcgagcgatccttgaagctgtccctgatggtcgtcatctacctgcctggacagcatggc- ctgca acgcgggcatcccgatgccgccggaagcgagaagaatcataatgggaaggccatccagcctcgcgtcgcgaacg ccagcaagacgtagcccagcgcgtcggccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtg- gcg ggaccagtgacgaaggcttgagcgagggcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgc- gc tccagcgaaagcggtcctcgccgaaaatgacccagagcgctgccggcacctgtcctacgagttgcatgataaag- aag acagtcataagtgcggcgacgatagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaa- gg gcatcggtcgacgctctcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagc- accgc cgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccaccataccca- c gccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgc- cag caaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggattcacaggacgggtgtggtc- gcc atgatcgcgtagtcgatagtggctccaagtagcgaagcgagcaggactgggcggcggccaaagcggtcggacag- tg ctccgagaacgggtgcgcatagaaattgcatcaacgcatatagcgctagcagcacgccatagtgactggcgatg- ctgt cggaatggacgatatcccgcaagaggcccggcagtaccggcataaccaagcctatgcctacagcatccagggtg- ac ggtgccgaggatgacgatgagcgcattgttagatttcatacacggtgcctgactgcgttagcaatttaactgtg- ataaacta ccgcattaaagcttatcgatgataagctgtcaaacatgagaa
Example 12
Standard BLI Potentiation MIC Assay
[0271] The ability of compounds to potentiate the activity of β-lactams was demonstrated by determining the minimum inhibitory concentrations (MIC) of β-lactam and BLI compound combinations against various β-lactamase producing bacterial strains using the broth microdilution method. The experimental protocol was performed according to Clinical and Laboratory Standards Institute (CLSI) guidelines with modifications as described below (CLSI guidelines can be derived from the CLSI document M07-A9 published in January 2012: "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition").
[0272] To prepare for MIC testing, frozen glycerol stocks of clinical isolates (Klebsiella pneumoniae, Eschericia coli, Enterobacter spp, Citrobacter spp, or Pseudomonas aeruginosa) were used to streak for isolated colonies on rich, non-selective, tryptic soy agar containing 5% sheep's blood (TSAB). Frozen glycerol stocks of laboratory engineered, isogenic E. coli strains, which contain cloned β-lactamase expressing plasmids were used to streak for isolated colonies on rich, selective LB agar supplemented with 25 μg/mL tetracycline to maintain the plasmid. All strains were incubated at 37° C. for 18-24 hrs.
[0273] On the day of testing, primary cultures were started by scraping off 5-10 colonies from the TSAB plates containing clinical strains or the tetracycline supplemented LB plates containing engineered strains. The clinical strain material was suspended in ˜5 mL of cation adjusted Mueller Hinton Broth (CAMHB) in 14 mL culture tubes. The engineered strain material was suspended in CAMHB (supplemented with 25 ug/mL tetracycline) in 14 mL culture tubes. All strains were incubated at 37° C. with aeration (200 rpm) for ˜2 hrs until the optical density at 600 nm (OD600) was ≧0.1.
[0274] The two compound components of the assay were each diluted in CAMHB and added to the 96-well broth microdilution assay plates. 50 μL of the β-lactam was added to each well of the assay plate in 2-fold dilutions with final concentrations ranging from 128-0.13 μg/mL. 25 μL of the BLI compound was added to all wells in the broth microdilution plates at a final concentration of 4 μg/mL. Inoculum cultures were prepared by standardizing the primary cultures to OD600=0.1 and then adding 20 μL of the adjusted primary culture per 1 mL CAMHB for clinical strains or CAMHB (supplemented with tetracycline at 100 μg/mL) for engineered strains, so that the final inoculum density was ˜105 colony forming units per milliliter. Diluted inoculum cultures were used to inoculate 25 μL per well in 96-well broth microdilution assay plates. The final volume of each well was 100 μL and contained a β-lactam at different concentrations, a BLI compound at 4 μg/mL concentration, the bacterial culture at an OD600 of approximately 0.001 and when necessary tetracycline at 25 μg/mL.
[0275] Plates were incubated for 18-20 hours at 37° C. with aeration (200 rpm). Following incubation, growth was confirmed visually placing plates over a viewing apparatus (stand with a mirror underneath) and then OD600 was measured using a SpectraMax 340PC384 plate reader (Molecular Devices, Sunnyvale, Calif.). Growth was defined as turbidity that could be detected with the naked eye or achieving minimum OD600 of 0.1. MIC values were defined as the lowest concentration producing no visible turbidity.
[0276] MIC values of representative compounds are shown in Table II.
Example 13
Synergy MIC (sMIC) Assay
[0277] The synergy MIC (sMIC) assay determines the concentration of the BLI required to potentiate the activity of a fixed concentration of a β-lactam antibiotic against β-lactamase producing bacterial strains. The experimental protocol was performed according to Clinical and Laboratory Standards Institute (CLSI) guidelines with modifications as described below (CLSI guidelines can be derived from the CLSI document M07-A9 published in January 2012: "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition"). The assay is set-up by serially diluting the BLI across 11 of the 12 wells in each row of a 96-well broth microdilution assay plate, adding the β-lactam at a fixed concentration to all wells in the assay plate, inoculating the assay plate with bacterial strains, and determining the lowest concentration of BLI required to inhibit overnight bacterial growth. Bacterial growth in the 12th well of the assay plate, which contains the β-lactam at a fixed concentration but does not contain any BLI, demonstrates that the bacterial strains are resistant to the β-lactam antibiotic (e.g ceftolozane) at the fixed concentration of 4 μg/mL.
[0278] To prepare for MIC testing, frozen glycerol stocks of clinical isolates (Klebsiella pneumoniae, Eschericia coli, Enterobacter spp, Citrobacter spp, or Pseudomonas aeruginosa) were used to streak for isolated colonies on rich, non-selective, tryptic soy agar containing 5% sheep's blood (TSAB). Frozen glycerol stocks of laboratory engineered, isogenic E. coli strains, which contain cloned β-lactamase expressing plasmids were used to streak for isolated colonies on rich, selective LB agar supplemented with 25 μg/mL tetracycline to maintain the plasmid. All strains were incubated at 37° C. for 18-24 hrs.
[0279] On the day of testing, primary cultures were started by scraping off 5-10 colonies from the TSAB plates containing clinical strains or the tetracycline supplemented LB plates containing engineered strains. The clinical strain material was suspended in ˜5 mL of cation adjusted Mueller Hinton Broth (CAMHB) in 14 mL culture tubes. The engineered strain material was suspended in CAMHB (supplemented with tetracycline at 25 μg/mL) in 14 mL culture tubes. All strains were incubated at 37° C. with aeration (200 rpm) for ˜2 hrs until the OD600 was ≧0.1.
[0280] The two compound components of the assay were each prepared in CAMHB and added to the 96-well broth microdilution assay plates. 50 μL of the BLI was added to each well of the assay plate in 2-fold dilutions with final concentrations ranging from 128 to 0.13 μg/mL. 25 μL of the β-lactam was added to all wells in the broth microdilution plates at a final concentration of 4 μg/mL. Inoculum cultures were prepared by standardizing the primary cultures to OD600=0.1 and then adding 20 μL of the adjusted primary culture per 1 mL CAMHB for clinical strains or CAMHB (supplemented with tetracycline at 100 μg/mL) for isogenic strains, so that the final inoculum density was ˜105 colony forming units per milliliter. Diluted inoculum cultures were used to inoculate 25 μL per well in 96-well broth microdilution assay plates. The final volume of each well was 100 μL and contained a BLI at different concentrations, a β-lactam at 4 μg/mL concentration, the bacterial culture at an OD600 of approximately 0.001 and when necessary tetracycline at 25 ug/mL.
Interpreting the sMIC Data:
[0281] Plates were incubated for 18-20 hours at 37° C. with aeration (200 rpm). Following incubation, growth was confirmed visually placing plates over a viewing apparatus (stand with a mirror underneath) and then OD600 was measured using a SpectraMax 340PC384 plate reader (Molecular Devices, Sunnyvale, Calif.). Growth was defined as turbidity that could be detected with the naked eye or achieving minimum OD600 of 0.1. sMIC values were defined as the lowest concentration producing no visible turbidity.
[0282] The sMIC values represent the amount of BLI required to potentiate the activity of 4 μg/ml of CXA-101 (Ceftolozane) or ceftazidime to inhibit the growth of the β-lactamase producing bacteria.
[0283] sMIC values of representative compounds are shown in Table III.
Example 14
Inhibition Kinetics
[0284] Inhibition or inactivation of KPC-2 by test inhibitors was assessed using 100 μM nitrocefin (NCF) as a reporter substrate. Assays were performed in 1×PBS pH 7.4, 0.1 mg/ml BSA, in 96-well half area plates, 50 μl reaction volume. NCF was dissolved in DMSO and diluted in assay buffer. Test inhibitors were dissolved in water or DMSO and serially diluted in the assay with final concentrations between 2000-0.195 μM.
[0285] The enzyme activity in the presence of varying concentrations of test inhibitor was determined by monitoring the hydrolysis of NCF spectrophotometrically at 486 nm, for 5 minutes, 25° C., using a SpectraMax Plus384 microplate reader with SoftMax Pro software (Molecular Devices). Data analysis was performed using GraphPad Prism (GraphPad Software, Inc.).
[0286] Progress curves were fit to a first-order rate decay equation (Eq. 1) to determine kobserved (kobs).
[0287] kobs vs. inhibitor concentration [I] curves were then fit to Eq. 2 to determine the inhibitor dissociation constant (K) and the first order rate constant of enzyme inactivation at infinite inhibitor concentration (kinact). Table IV shows kinetics results from representative test compounds. A larger kinact/K ratio indicates a more effective enzyme inactivator.
Yt=V0*(1-e.sup.(-kobs*t))/kobs Eq. 1
[0288] Where Y is the absorbance at time t, V0 is the uninhibited enzyme velocity, kobs is the observed rate constant of the enzyme inactivation.
kobs=kinact*[I]/([I]+K(1+S/Km)) Eq. 2
[0289] Where S is the NCF concentration, Km is the KPC-2 Km for NCF.
Sequence CWU
1
1
13132DNAArtificial SequenceSythetic primer pBR-Pbla 1cgcatatgac tcttcctttt
tcaatattat tg 32228DNAArtificial
SequenceSythetic primer pBR-vec-1 2gcggatccct gtcagaccaa gtttactc
28328DNAArtificial SequenceSythetic primer
Pbla-cat 3gccatatgat ggagaaaaaa atcactgg
28428DNAArtificial SequenceSythetic primer Vec-1-cat 4cgggatccct
agagaatagg aacttcgg
2854236DNAArtificial SequenceSynthetic construct pBR-CBST-cat 5ttcttgaaga
cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat 60aatggtttct
tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg 120tttatttttc
taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat 180gcttcaataa
tattgaaaaa ggaagagtca tatggagaaa aaaatcactg gatataccac 240cgttgatata
tcccaatggc atcgtaaaga acattttgag gcatttcagt cagttgctca 300atgtacctat
aaccagaccg ttcagctgga tattacggcc tttttaaaga ccgtaaagaa 360aaataagcac
aagttttatc cggcctttat tcacattctt gcccgcctga tgaatgctca 420tacggaattt
cgtatggcaa tgaaagacgg tgagctggtg atatgggata gtgttcaccc 480ttgttacacc
gttttccatg agcaaactga aacgttttca tcgctctgga gtgaatacca 540cgacgatttc
cggcagtttc tacacatata ttcgcaagat gtggcgtgtt acggtgaaaa 600cctggcctat
ttccctaaag ggtttattga gaatatgttt ttcgtctcag ccaatccctg 660ggtgagtttc
accagttttg atttaaacgt ggccaatatg gacaacttct tcgcccccgt 720tttcactatg
ggcaaatatt atacgcaagg cgacaaggtg ctgatgccgc tggcgattca 780ggttcatcat
gccgtctgtg atggcttcca tgtcggcaga atgcttaatg aattacaaca 840gtactgcgat
gagtggcagg gcggggcgta agtggcaggg cggggcgtaa ggcgcgccat 900ttaaatgaag
ttcctattcc gaagttccta ttctctaggg atccctgtca gaccaagttt 960actcatatat
actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga 1020agatcctttt
tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag 1080cgtcagaccc
cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa 1140tctgctgctt
gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag 1200agctaccaac
tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg 1260tccttctagt
gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat 1320acctcgctct
gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta 1380ccgggttgga
ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg 1440gttcgtgcac
acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc 1500gtgagctatg
agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa 1560gcggcagggt
cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc 1620tttatagtcc
tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt 1680caggggggcg
gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct 1740tttgctggcc
ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc 1800gtattaccgc
ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg 1860agtcagtgag
cgaggaagcg gaagagcgcc tgatgcggta ttttctcctt acgcatctgt 1920gcggtatttc
acaccgcatt tggtgcactc tcagtacaat ctgctctgat gccgcatagt 1980taagccagta
tacactccgc tatcgctacg tgactgggtc atggctgcgc cccgacaccc 2040gccaacaccc
gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg cttacagaca 2100agctgtgacc
gtctccggga gctgcatgtg tcagaggttt tcaccgtcat caccgaaacg 2160cgcgaggcag
ctgcggtaaa gctcatcagc gtggtcgtga agcgattcac agatgtctgc 2220ctgttcatcc
gcgtccagct cgttgagttt ctccagaagc gttaatgtct ggcttctgat 2280aaagcgggcc
atgttaaggg cggttttttc ctgtttggtc actgatgcct ccgtgtaagg 2340gggatttctg
ttcatggggg taatgatacc gatgaaacga gagaggatgc tcacgatacg 2400ggttactgat
gatgaacatg cccggttact ggaacgttgt gagggtaaac aactggcggt 2460atggatgcgg
cgggaccaga gaaaaatcac tcagggtcaa tgccagcgct tcgttaatac 2520agatgtaggt
gttccacagg gtagccagca gcatcctgcg atgcagatcc ggaacataat 2580ggtgcagggc
gctgacttcc gcgtttccag actttacgaa acacggaaac cgaagaccat 2640tcatgttgtt
gctcaggtcg cagacgtttt gcagcagcag tcgcttcacg ttcgctcgcg 2700tatcggtgat
tcattctgct aaccagtaag gcaaccccgc cagcctagcc gggtcctcaa 2760cgacaggagc
acgatcatgc gcacccgtgg ccaggaccca acgctgcccg agatgcgccg 2820cgtgcggctg
ctggagatgg cggacgcgat ggatatgttc tgccaagggt tggtttgcgc 2880attcacagtt
ctccgcaaga attgattggc tccaattctt ggagtggtga atccgttagc 2940gaggtgccgc
cggcttccat tcaggtcgag gtggcccggc tccatgcacc gcgacgcaac 3000gcggggaggc
agacaaggta tagggcggcg cctacaatcc atgccaaccc gttccatgtg 3060ctcgccgagg
cggcataaat cgccgtgacg atcagcggtc cagtgatcga agttaggctg 3120gtaagagccg
cgagcgatcc ttgaagctgt ccctgatggt cgtcatctac ctgcctggac 3180agcatggcct
gcaacgcggg catcccgatg ccgccggaag cgagaagaat cataatgggg 3240aaggccatcc
agcctcgcgt cgcgaacgcc agcaagacgt agcccagcgc gtcggccgcc 3300atgccggcga
taatggcctg cttctcgccg aaacgtttgg tggcgggacc agtgacgaag 3360gcttgagcga
gggcgtgcaa gattccgaat accgcaagcg acaggccgat catcgtcgcg 3420ctccagcgaa
agcggtcctc gccgaaaatg acccagagcg ctgccggcac ctgtcctacg 3480agttgcatga
taaagaagac agtcataagt gcggcgacga tagtcatgcc ccgcgcccac 3540cggaaggagc
tgactgggtt gaaggctctc aagggcatcg gtcgacgctc tcccttatgc 3600gactcctgca
ttaggaagca gcccagtagt aggttgaggc cgttgagcac cgccgccgca 3660aggaatggtg
catgcaagga gatggcgccc aacagtcccc cggccacggg gcctgccacc 3720atacccacgc
cgaaacaagc gctcatgagc ccgaagtggc gagcccgatc ttccccatcg 3780gtgatgtcgg
cgatataggc gccagcaacc gcacctgtgg cgccggtgat gccggccacg 3840atgcgtccgg
cgtagaggat tcacaggacg ggtgtggtcg ccatgatcgc gtagtcgata 3900gtggctccaa
gtagcgaagc gagcaggact gggcggcggc caaagcggtc ggacagtgct 3960ccgagaacgg
gtgcgcatag aaattgcatc aacgcatata gcgctagcag cacgccatag 4020tgactggcga
tgctgtcgga atggacgata tcccgcaaga ggcccggcag taccggcata 4080accaagccta
tgcctacagc atccagggtg acggtgccga ggatgacgat gagcgcattg 4140ttagatttca
tacacggtgc ctgactgcgt tagcaattta actgtgataa actaccgcat 4200taaagcttat
cgatgataag ctgtcaaaca tgagaa
423664391DNAArtificial SequenceSynthetic construct pBR-CBST-KPC-2
6ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatgtcactg tatcgccgtc tagttctgct
240gtcttgtctc tcatggccgc tggctggctt ttctgccacc gcgctgacca acctcgtcgc
300ggaaccattc gctaaactcg aacaggactt tggcggctcc atcggtgtgt acgcgatgga
360taccggctca ggcgcaactg taagttaccg cgctgaggag cgcttcccac tgtgcagctc
420attcaagggc tttcttgctg ccgctgtgct ggctcgcagc cagcagcagg ccggcttgct
480ggacacaccc atccgttacg gcaaaaatgc gctggttccg tggtcaccca tctcggaaaa
540atatctgaca acaggcatga cggtggcgga gctgtccgcg gccgccgtgc aatacagtga
600taacgccgcc gccaatttgt tgctgaagga gttgggcggc ccggccgggc tgacggcctt
660catgcgctct atcggcgata ccacgttccg tctggaccgc tgggagctgg agctgaactc
720cgccatccca ggcgatgcgc gcgatacctc atcgccgcgc gccgtgacgg aaagcttaca
780aaaactgaca ctgggctctg cactggctgc gccgcagcgg cagcagtttg ttgattggct
840aaagggaaac acgaccggca accaccgcat ccgcgcggcg gtgccggcag actgggcagt
900cggagacaaa accggaacct gcggagtgta tggcacggca aatgactatg ccgtcgtctg
960gcccactggg cgcgcaccta ttgtgttggc cgtctacacc cgggcgccta acaaggatga
1020caagcacagc gaggccgtca tcgccgctgc ggctagactc gcgctcgagg gattgggcgt
1080caacgggcag taaggatccc tgtcagacca agtttactca tatatacttt agattgattt
1140aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac
1200caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa
1260aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc
1320accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt
1380aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg
1440ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc
1500agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt
1560accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga
1620gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct
1680tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg
1740cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca
1800cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa
1860cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt
1920ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
1980taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga
2040gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatttggtg
2100cactctcagt acaatctgct ctgatgccgc atagttaagc cagtatacac tccgctatcg
2160ctacgtgact gggtcatggc tgcgccccga cacccgccaa cacccgctga cgcgccctga
2220cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc
2280atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga ggcagctgcg gtaaagctca
2340tcagcgtggt cgtgaagcga ttcacagatg tctgcctgtt catccgcgtc cagctcgttg
2400agtttctcca gaagcgttaa tgtctggctt ctgataaagc gggccatgtt aagggcggtt
2460ttttcctgtt tggtcactga tgcctccgtg taagggggat ttctgttcat gggggtaatg
2520ataccgatga aacgagagag gatgctcacg atacgggtta ctgatgatga acatgcccgg
2580ttactggaac gttgtgaggg taaacaactg gcggtatgga tgcggcggga ccagagaaaa
2640atcactcagg gtcaatgcca gcgcttcgtt aatacagatg taggtgttcc acagggtagc
2700cagcagcatc ctgcgatgca gatccggaac ataatggtgc agggcgctga cttccgcgtt
2760tccagacttt acgaaacacg gaaaccgaag accattcatg ttgttgctca ggtcgcagac
2820gttttgcagc agcagtcgct tcacgttcgc tcgcgtatcg gtgattcatt ctgctaacca
2880gtaaggcaac cccgccagcc tagccgggtc ctcaacgaca ggagcacgat catgcgcacc
2940cgtggccagg acccaacgct gcccgagatg cgccgcgtgc ggctgctgga gatggcggac
3000gcgatggata tgttctgcca agggttggtt tgcgcattca cagttctccg caagaattga
3060ttggctccaa ttcttggagt ggtgaatccg ttagcgaggt gccgccggct tccattcagg
3120tcgaggtggc ccggctccat gcaccgcgac gcaacgcggg gaggcagaca aggtataggg
3180cggcgcctac aatccatgcc aacccgttcc atgtgctcgc cgaggcggca taaatcgccg
3240tgacgatcag cggtccagtg atcgaagtta ggctggtaag agccgcgagc gatccttgaa
3300gctgtccctg atggtcgtca tctacctgcc tggacagcat ggcctgcaac gcgggcatcc
3360cgatgccgcc ggaagcgaga agaatcataa tggggaaggc catccagcct cgcgtcgcga
3420acgccagcaa gacgtagccc agcgcgtcgg ccgccatgcc ggcgataatg gcctgcttct
3480cgccgaaacg tttggtggcg ggaccagtga cgaaggcttg agcgagggcg tgcaagattc
3540cgaataccgc aagcgacagg ccgatcatcg tcgcgctcca gcgaaagcgg tcctcgccga
3600aaatgaccca gagcgctgcc ggcacctgtc ctacgagttg catgataaag aagacagtca
3660taagtgcggc gacgatagtc atgccccgcg cccaccggaa ggagctgact gggttgaagg
3720ctctcaaggg catcggtcga cgctctccct tatgcgactc ctgcattagg aagcagccca
3780gtagtaggtt gaggccgttg agcaccgccg ccgcaaggaa tggtgcatgc aaggagatgg
3840cgcccaacag tcccccggcc acggggcctg ccaccatacc cacgccgaaa caagcgctca
3900tgagcccgaa gtggcgagcc cgatcttccc catcggtgat gtcggcgata taggcgccag
3960caaccgcacc tgtggcgccg gtgatgccgg ccacgatgcg tccggcgtag aggattcaca
4020ggacgggtgt ggtcgccatg atcgcgtagt cgatagtggc tccaagtagc gaagcgagca
4080ggactgggcg gcggccaaag cggtcggaca gtgctccgag aacgggtgcg catagaaatt
4140gcatcaacgc atatagcgct agcagcacgc catagtgact ggcgatgctg tcggaatgga
4200cgatatcccg caagaggccc ggcagtaccg gcataaccaa gcctatgcct acagcatcca
4260gggtgacggt gccgaggatg acgatgagcg cattgttaga tttcatacac ggtgcctgac
4320tgcgttagca atttaactgt gataaactac cgcattaaag cttatcgatg ataagctgtc
4380aaacatgaga a
439174116DNAArtificial SequenceSynthetic construct pBR-CBST-CTX-M-15
7ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatggaatct gttaaatcag cgagttgaga
240tcaaaaaatc tgaccttgtt aactataatc cgattgcgga aaagcacgtc aatgggacga
300tgtcactggc tgagcttagc gcggccgcgc tacagtacag cgataacgtg gcgatgaata
360agctgattgc tcacgttggc ggcccggcta gcgtcaccgc gttcgcccga cagctgggag
420acgaaacgtt ccgtctcgac cgtaccgagc cgacgttaaa caccgccatt ccgggcgatc
480cgcgtgatac cacttcacct cgggcaatgg cgcaaactct gcggaatctg acgctgggta
540aagcattggg cgacagccaa cgggcgcagc tggtgacatg gatgaaaggc aataccaccg
600gtgcagcgag cattcaggct ggactgcctg cttcctgggt tgtgggggat aaaaccggca
660gcggtggcta tggcaccacc aacgatatcg cggtgatctg gccaaaagat cgtgcgccgc
720tgattctggt cacttacttc acccagcctc aacctaaggc agaaagccgt cgcgatgtat
780tagcgtcggc ggctaaaatc gtcaccgacg gtttgtaagg atccctgtca gaccaagttt
840actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga
900agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag
960cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa
1020tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag
1080agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg
1140tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat
1200acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta
1260ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg
1320gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc
1380gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa
1440gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc
1500tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt
1560caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct
1620tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc
1680gtattaccgc ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg
1740agtcagtgag cgaggaagcg gaagagcgcc tgatgcggta ttttctcctt acgcatctgt
1800gcggtatttc acaccgcatt tggtgcactc tcagtacaat ctgctctgat gccgcatagt
1860taagccagta tacactccgc tatcgctacg tgactgggtc atggctgcgc cccgacaccc
1920gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg cttacagaca
1980agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat caccgaaacg
2040cgcgaggcag ctgcggtaaa gctcatcagc gtggtcgtga agcgattcac agatgtctgc
2100ctgttcatcc gcgtccagct cgttgagttt ctccagaagc gttaatgtct ggcttctgat
2160aaagcgggcc atgttaaggg cggttttttc ctgtttggtc actgatgcct ccgtgtaagg
2220gggatttctg ttcatggggg taatgatacc gatgaaacga gagaggatgc tcacgatacg
2280ggttactgat gatgaacatg cccggttact ggaacgttgt gagggtaaac aactggcggt
2340atggatgcgg cgggaccaga gaaaaatcac tcagggtcaa tgccagcgct tcgttaatac
2400agatgtaggt gttccacagg gtagccagca gcatcctgcg atgcagatcc ggaacataat
2460ggtgcagggc gctgacttcc gcgtttccag actttacgaa acacggaaac cgaagaccat
2520tcatgttgtt gctcaggtcg cagacgtttt gcagcagcag tcgcttcacg ttcgctcgcg
2580tatcggtgat tcattctgct aaccagtaag gcaaccccgc cagcctagcc gggtcctcaa
2640cgacaggagc acgatcatgc gcacccgtgg ccaggaccca acgctgcccg agatgcgccg
2700cgtgcggctg ctggagatgg cggacgcgat ggatatgttc tgccaagggt tggtttgcgc
2760attcacagtt ctccgcaaga attgattggc tccaattctt ggagtggtga atccgttagc
2820gaggtgccgc cggcttccat tcaggtcgag gtggcccggc tccatgcacc gcgacgcaac
2880gcggggaggc agacaaggta tagggcggcg cctacaatcc atgccaaccc gttccatgtg
2940ctcgccgagg cggcataaat cgccgtgacg atcagcggtc cagtgatcga agttaggctg
3000gtaagagccg cgagcgatcc ttgaagctgt ccctgatggt cgtcatctac ctgcctggac
3060agcatggcct gcaacgcggg catcccgatg ccgccggaag cgagaagaat cataatgggg
3120aaggccatcc agcctcgcgt cgcgaacgcc agcaagacgt agcccagcgc gtcggccgcc
3180atgccggcga taatggcctg cttctcgccg aaacgtttgg tggcgggacc agtgacgaag
3240gcttgagcga gggcgtgcaa gattccgaat accgcaagcg acaggccgat catcgtcgcg
3300ctccagcgaa agcggtcctc gccgaaaatg acccagagcg ctgccggcac ctgtcctacg
3360agttgcatga taaagaagac agtcataagt gcggcgacga tagtcatgcc ccgcgcccac
3420cggaaggagc tgactgggtt gaaggctctc aagggcatcg gtcgacgctc tcccttatgc
3480gactcctgca ttaggaagca gcccagtagt aggttgaggc cgttgagcac cgccgccgca
3540aggaatggtg catgcaagga gatggcgccc aacagtcccc cggccacggg gcctgccacc
3600atacccacgc cgaaacaagc gctcatgagc ccgaagtggc gagcccgatc ttccccatcg
3660gtgatgtcgg cgatataggc gccagcaacc gcacctgtgg cgccggtgat gccggccacg
3720atgcgtccgg cgtagaggat tcacaggacg ggtgtggtcg ccatgatcgc gtagtcgata
3780gtggctccaa gtagcgaagc gagcaggact gggcggcggc caaagcggtc ggacagtgct
3840ccgagaacgg gtgcgcatag aaattgcatc aacgcatata gcgctagcag cacgccatag
3900tgactggcga tgctgtcgga atggacgata tcccgcaaga ggcccggcag taccggcata
3960accaagccta tgcctacagc atccagggtg acggtgccga ggatgacgat gagcgcattg
4020ttagatttca tacacggtgc ctgactgcgt tagcaattta actgtgataa actaccgcat
4080taaagcttat cgatgataag ctgtcaaaca tgagaa
411684370DNAArtificial SequenceSynthetic construct pBR-CBST-SHV-12
8ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatgcgttat attcgcctgt gtattatctc
240cctgttagcc accctgccgc tggcggtaca cgccagcccg cagccgcttg agcaaattaa
300acaaagcgaa agccagctgt cgggccgcgt aggcatgata gaaatggatc tggccagcgg
360ccgcacgctg accgcctggc gcgccgatga acgctttccc atgatgagca cctttaaagt
420agtgctctgc ggcgcagtgc tggcgcgggt ggatgccggt gacgaacagc tggagcgaaa
480gatccactat cgccagcagg atctggtgga ctactcgccg gtcagcgaaa aacaccttgc
540cgacggcatg acggtcggcg aactctgcgc cgccgccatt accatgagcg ataacagcgc
600cgccaatctg ctgctggcca ccgtcggcgg ccccgcagga ttgactgcct ttttgcgcca
660gatcggcgac aacgtcaccc gccttgaccg ctgggaaacg gaactgaatg aggcgcttcc
720cggcgacgcc cgcgacacca ctaccccggc cagcatggcc gcgaccctgc gcaagctgct
780gaccagccag cgtctgagcg cccgttcgca acggcagctg ctgcagtgga tggtggacga
840tcgggtcgcc ggaccgttga tccgctccgt gctgccggcg ggctggttta tcgccgataa
900gaccggagct agcaagcggg gtgcgcgcgg gattgtcgcc ctgcttggcc cgaataacaa
960agcagagcgc attgtggtga tttatctgcg ggataccccg gcgagcatgg ccgagcgaaa
1020tcagcaaatc gccgggatcg gcgcggcgct gatcgagcac tggcaacgct aaggatccct
1080gtcagaccaa gtttactcat atatacttta gattgattta aaacttcatt tttaatttaa
1140aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt
1200ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt
1260ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg
1320tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca
1380gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt
1440agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga
1500taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc
1560gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact
1620gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga
1680caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg
1740aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt
1800tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt
1860acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga
1920ttctgtggat aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac
1980gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcctgatgc ggtattttct
2040ccttacgcat ctgtgcggta tttcacaccg catttggtgc actctcagta caatctgctc
2100tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg ggtcatggct
2160gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct gctcccggca
2220tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag gttttcaccg
2280tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc gtgaagcgat
2340tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag aagcgttaat
2400gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt ggtcactgat
2460gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa acgagagagg
2520atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg ttgtgagggt
2580aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg tcaatgccag
2640cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc tgcgatgcag
2700atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta cgaaacacgg
2760aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca gcagtcgctt
2820cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc ccgccagcct
2880agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggccagga cccaacgctg
2940cccgagatgc gccgcgtgcg gctgctggag atggcggacg cgatggatat gttctgccaa
3000gggttggttt gcgcattcac agttctccgc aagaattgat tggctccaat tcttggagtg
3060gtgaatccgt tagcgaggtg ccgccggctt ccattcaggt cgaggtggcc cggctccatg
3120caccgcgacg caacgcgggg aggcagacaa ggtatagggc ggcgcctaca atccatgcca
3180acccgttcca tgtgctcgcc gaggcggcat aaatcgccgt gacgatcagc ggtccagtga
3240tcgaagttag gctggtaaga gccgcgagcg atccttgaag ctgtccctga tggtcgtcat
3300ctacctgcct ggacagcatg gcctgcaacg cgggcatccc gatgccgccg gaagcgagaa
3360gaatcataat ggggaaggcc atccagcctc gcgtcgcgaa cgccagcaag acgtagccca
3420gcgcgtcggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg
3480gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc
3540cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg
3600gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca
3660tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgac
3720gctctccctt atgcgactcc tgcattagga agcagcccag tagtaggttg aggccgttga
3780gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc gcccaacagt cccccggcca
3840cggggcctgc caccataccc acgccgaaac aagcgctcat gagcccgaag tggcgagccc
3900gatcttcccc atcggtgatg tcggcgatat aggcgccagc aaccgcacct gtggcgccgg
3960tgatgccggc cacgatgcgt ccggcgtaga ggattcacag gacgggtgtg gtcgccatga
4020tcgcgtagtc gatagtggct ccaagtagcg aagcgagcag gactgggcgg cggccaaagc
4080ggtcggacag tgctccgaga acgggtgcgc atagaaattg catcaacgca tatagcgcta
4140gcagcacgcc atagtgactg gcgatgctgt cggaatggac gatatcccgc aagaggcccg
4200gcagtaccgg cataaccaag cctatgccta cagcatccag ggtgacggtg ccgaggatga
4260cgatgagcgc attgttagat ttcatacacg gtgcctgact gcgttagcaa tttaactgtg
4320ataaactacc gcattaaagc ttatcgatga taagctgtca aacatgagaa
437094655DNAArtificial SequenceSynthetic construct pBR-CBST-P99
9ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatgatgaga aaatcccttt gctgcgccct
240gctgctcggc atctcttgct ctgctctcgc cacgccagtg tcagaaaaac agctggcgga
300ggtggtcgcg aatacgatta ccccgctgat gaaagcccag tctgttccag gcatggcggt
360ggccgttatt tatcagggaa aaccgcacta ttacacattt ggcaaggccg atatcgcggc
420gaataaaccc gttacgcctc agaccctgtt cgagctgggt tctataagta aaaccttcac
480cggcgtttta ggtggggatg ccattgctcg cggtgaaatt tcgctggacg atgcggtgac
540cagatactgg ccacagctga cgggcaagca gtggcagggt attcgtatgc tggatctcgc
600cacctacacc gctggcggcc tgccgctaca ggtaccggat gaggtcacgg ataacgcctc
660cctgctgcgc ttttatcaaa actggcagcc gcagtggaag cctggcacaa cgcgtcttta
720cgccaacgcc agcatcggtc tttttggtgc gctggcggtc aaaccttctg gcatgcccta
780tgagcaggcc atgacgacgc gggtccttaa gccgctcaag ctggaccata cctggattaa
840cgtgccgaaa gcggaagagg cgcattacgc ctggggctat cgtgacggta aagcggtgcg
900cgtttcgccg ggtatgctgg atgcacaagc ctatggcgtg aaaaccaacg tgcaggatat
960ggcgaactgg gtcatggcaa acatggcgcc ggagaacgtt gctgatgcct cacttaagca
1020gggcatcgcg ctggcgcagt cgcgctactg gcgtatcggg tcaatgtatc agggtctggg
1080ctgggagatg ctcaactggc ccgtggaggc caacacggtg gtcgagggca gcgacagtaa
1140ggtagcactg gcgccgttgc ccgtggcaga agtgaatcca ccggctcccc cggtcaaagc
1200gtcctgggtc cataaaacgg gctctactgg cgggtttggc agctacgtgg cctttattcc
1260tgaaaagcag atcggtattg tgatgctcgc gaatacaagc tatccgaacc cggcacgcgt
1320tgaggcggca taccatatcc tcgaggcgct acagtaagga tccctgtcag accaagttta
1380ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga tctaggtgaa
1440gatccttttt gataatctca tgaccaaaat cccttaacgt gagttttcgt tccactgagc
1500gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat cctttttttc tgcgcgtaat
1560ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc cggatcaaga
1620gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac caaatactgt
1680ccttctagtg tagccgtagt taggccacca cttcaagaac tctgtagcac cgcctacata
1740cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt cgtgtcttac
1800cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcgggct gaacgggggg
1860ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat acctacagcg
1920tgagctatga gaaagcgcca cgcttcccga agggagaaag gcggacaggt atccggtaag
1980cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg cctggtatct
2040ttatagtcct gtcgggtttc gccacctctg acttgagcgt cgatttttgt gatgctcgtc
2100aggggggcgg agcctatgga aaaacgccag caacgcggcc tttttacggt tcctggcctt
2160ttgctggcct tttgctcaca tgttctttcc tgcgttatcc cctgattctg tggataaccg
2220tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg agcgcagcga
2280gtcagtgagc gaggaagcgg aagagcgcct gatgcggtat tttctcctta cgcatctgtg
2340cggtatttca caccgcattt ggtgcactct cagtacaatc tgctctgatg ccgcatagtt
2400aagccagtat acactccgct atcgctacgt gactgggtca tggctgcgcc ccgacacccg
2460ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc ttacagacaa
2520gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc
2580gcgaggcagc tgcggtaaag ctcatcagcg tggtcgtgaa gcgattcaca gatgtctgcc
2640tgttcatccg cgtccagctc gttgagtttc tccagaagcg ttaatgtctg gcttctgata
2700aagcgggcca tgttaagggc ggttttttcc tgtttggtca ctgatgcctc cgtgtaaggg
2760ggatttctgt tcatgggggt aatgataccg atgaaacgag agaggatgct cacgatacgg
2820gttactgatg atgaacatgc ccggttactg gaacgttgtg agggtaaaca actggcggta
2880tggatgcggc gggaccagag aaaaatcact cagggtcaat gccagcgctt cgttaataca
2940gatgtaggtg ttccacaggg tagccagcag catcctgcga tgcagatccg gaacataatg
3000gtgcagggcg ctgacttccg cgtttccaga ctttacgaaa cacggaaacc gaagaccatt
3060catgttgttg ctcaggtcgc agacgttttg cagcagcagt cgcttcacgt tcgctcgcgt
3120atcggtgatt cattctgcta accagtaagg caaccccgcc agcctagccg ggtcctcaac
3180gacaggagca cgatcatgcg cacccgtggc caggacccaa cgctgcccga gatgcgccgc
3240gtgcggctgc tggagatggc ggacgcgatg gatatgttct gccaagggtt ggtttgcgca
3300ttcacagttc tccgcaagaa ttgattggct ccaattcttg gagtggtgaa tccgttagcg
3360aggtgccgcc ggcttccatt caggtcgagg tggcccggct ccatgcaccg cgacgcaacg
3420cggggaggca gacaaggtat agggcggcgc ctacaatcca tgccaacccg ttccatgtgc
3480tcgccgaggc ggcataaatc gccgtgacga tcagcggtcc agtgatcgaa gttaggctgg
3540taagagccgc gagcgatcct tgaagctgtc cctgatggtc gtcatctacc tgcctggaca
3600gcatggcctg caacgcgggc atcccgatgc cgccggaagc gagaagaatc ataatgggga
3660aggccatcca gcctcgcgtc gcgaacgcca gcaagacgta gcccagcgcg tcggccgcca
3720tgccggcgat aatggcctgc ttctcgccga aacgtttggt ggcgggacca gtgacgaagg
3780cttgagcgag ggcgtgcaag attccgaata ccgcaagcga caggccgatc atcgtcgcgc
3840tccagcgaaa gcggtcctcg ccgaaaatga cccagagcgc tgccggcacc tgtcctacga
3900gttgcatgat aaagaagaca gtcataagtg cggcgacgat agtcatgccc cgcgcccacc
3960ggaaggagct gactgggttg aaggctctca agggcatcgg tcgacgctct cccttatgcg
4020actcctgcat taggaagcag cccagtagta ggttgaggcc gttgagcacc gccgccgcaa
4080ggaatggtgc atgcaaggag atggcgccca acagtccccc ggccacgggg cctgccacca
4140tacccacgcc gaaacaagcg ctcatgagcc cgaagtggcg agcccgatct tccccatcgg
4200tgatgtcggc gatataggcg ccagcaaccg cacctgtggc gccggtgatg ccggccacga
4260tgcgtccggc gtagaggatt cacaggacgg gtgtggtcgc catgatcgcg tagtcgatag
4320tggctccaag tagcgaagcg agcaggactg ggcggcggcc aaagcggtcg gacagtgctc
4380cgagaacggg tgcgcataga aattgcatca acgcatatag cgctagcagc acgccatagt
4440gactggcgat gctgtcggaa tggacgatat cccgcaagag gcccggcagt accggcataa
4500ccaagcctat gcctacagca tccagggtga cggtgccgag gatgacgatg agcgcattgt
4560tagatttcat acacggtgcc tgactgcgtt agcaatttaa ctgtgataaa ctaccgcatt
4620aaagcttatc gatgataagc tgtcaaacat gagaa
4655104337DNAArtificial SequenceSynthetic construct pBR-CBST-OXA-15
10ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatggcaatc cgaatcttcg cgatactttt
240ctccattttt tctcttgcca ctttcgcgca tgcgcaagaa ggcacgctag aacgttctga
300ctggaggaag tttttcagcg aatttcaagc caaaggcacg atagttgtgg cagacgaacg
360ccaagcggat cgtgccatgt tggtttttga tcctgtgcga tcgaagaaac gctactcgcc
420tgcatcgaca ttcaagatac ctcatacact ttttgcactt gatgcaggcg ctgttcgtga
480tgagttccag atttttcgat gggacggcgt taacaggggc tttgcaggcc acaatcaaga
540ccaagatttg cgatcagcaa tgcggaattc tactgtttgg gtgtatgagc tatttgcaaa
600ggaaattggt gatgacaaag ctcggcgcta tttgaagaaa atcgactatg gcaacgccgg
660tccttcgaca agtaatggcg attactggat agaaggcagc cttgcaatct cggcgcagga
720gcaaattgca tttctcagga agctctatcg taacgagctg ccctttcggg tagaacatca
780gcgcttggtc aaggatctca tgattgtgga agccggtcgc aactggatac tgcgtgcaaa
840gacgggctgg gaaggccgta tgggttggtg ggtaggatgg gttgagtggc cgactggctc
900cgtattcttc gcactgaata ttgatacgcc aaacagaatg gatgatcttt tcaagaggga
960ggcaatcgtg cgggcaatcc ttcgctctat tgaagcgtta ccgcccaacc cggcagtcaa
1020ctcggacgct gcgcgataag gatccctgtc agaccaagtt tactcatata tactttagat
1080tgatttaaaa cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct
1140catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa
1200gatcaaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa
1260aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc
1320gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta
1380gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct
1440gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg
1500atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag
1560cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc
1620cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg
1680agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt
1740tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg
1800gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca
1860catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg
1920agctgatacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc
1980ggaagagcgc ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat
2040ttggtgcact ctcagtacaa tctgctctga tgccgcatag ttaagccagt atacactccg
2100ctatcgctac gtgactgggt catggctgcg ccccgacacc cgccaacacc cgctgacgcg
2160ccctgacggg cttgtctgct cccggcatcc gcttacagac aagctgtgac cgtctccggg
2220agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac gcgcgaggca gctgcggtaa
2280agctcatcag cgtggtcgtg aagcgattca cagatgtctg cctgttcatc cgcgtccagc
2340tcgttgagtt tctccagaag cgttaatgtc tggcttctga taaagcgggc catgttaagg
2400gcggtttttt cctgtttggt cactgatgcc tccgtgtaag ggggatttct gttcatgggg
2460gtaatgatac cgatgaaacg agagaggatg ctcacgatac gggttactga tgatgaacat
2520gcccggttac tggaacgttg tgagggtaaa caactggcgg tatggatgcg gcgggaccag
2580agaaaaatca ctcagggtca atgccagcgc ttcgttaata cagatgtagg tgttccacag
2640ggtagccagc agcatcctgc gatgcagatc cggaacataa tggtgcaggg cgctgacttc
2700cgcgtttcca gactttacga aacacggaaa ccgaagacca ttcatgttgt tgctcaggtc
2760gcagacgttt tgcagcagca gtcgcttcac gttcgctcgc gtatcggtga ttcattctgc
2820taaccagtaa ggcaaccccg ccagcctagc cgggtcctca acgacaggag cacgatcatg
2880cgcacccgtg gccaggaccc aacgctgccc gagatgcgcc gcgtgcggct gctggagatg
2940gcggacgcga tggatatgtt ctgccaaggg ttggtttgcg cattcacagt tctccgcaag
3000aattgattgg ctccaattct tggagtggtg aatccgttag cgaggtgccg ccggcttcca
3060ttcaggtcga ggtggcccgg ctccatgcac cgcgacgcaa cgcggggagg cagacaaggt
3120atagggcggc gcctacaatc catgccaacc cgttccatgt gctcgccgag gcggcataaa
3180tcgccgtgac gatcagcggt ccagtgatcg aagttaggct ggtaagagcc gcgagcgatc
3240cttgaagctg tccctgatgg tcgtcatcta cctgcctgga cagcatggcc tgcaacgcgg
3300gcatcccgat gccgccggaa gcgagaagaa tcataatggg gaaggccatc cagcctcgcg
3360tcgcgaacgc cagcaagacg tagcccagcg cgtcggccgc catgccggcg ataatggcct
3420gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa ggcttgagcg agggcgtgca
3480agattccgaa taccgcaagc gacaggccga tcatcgtcgc gctccagcga aagcggtcct
3540cgccgaaaat gacccagagc gctgccggca cctgtcctac gagttgcatg ataaagaaga
3600cagtcataag tgcggcgacg atagtcatgc cccgcgccca ccggaaggag ctgactgggt
3660tgaaggctct caagggcatc ggtcgacgct ctcccttatg cgactcctgc attaggaagc
3720agcccagtag taggttgagg ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg
3780agatggcgcc caacagtccc ccggccacgg ggcctgccac catacccacg ccgaaacaag
3840cgctcatgag cccgaagtgg cgagcccgat cttccccatc ggtgatgtcg gcgatatagg
3900cgccagcaac cgcacctgtg gcgccggtga tgccggccac gatgcgtccg gcgtagagga
3960ttcacaggac gggtgtggtc gccatgatcg cgtagtcgat agtggctcca agtagcgaag
4020cgagcaggac tgggcggcgg ccaaagcggt cggacagtgc tccgagaacg ggtgcgcata
4080gaaattgcat caacgcatat agcgctagca gcacgccata gtgactggcg atgctgtcgg
4140aatggacgat atcccgcaag aggcccggca gtaccggcat aaccaagcct atgcctacag
4200catccagggt gacggtgccg aggatgacga tgagcgcatt gttagatttc atacacggtg
4260cctgactgcg ttagcaattt aactgtgata aactaccgca ttaaagctta tcgatgataa
4320gctgtcaaac atgagaa
4337114391DNAArtificial SequenceSynthetic construct pBR-CBST-KPC-4
11ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatgtcactg tatcgccgtc tagttctgct
240gtcttgtctc tcatggccgc tggctggctt ttctgccacc gcgctgacca acctcgtcgc
300ggaaccattc gctaaactcg aacaggactt tggcggctcc atcggtgtgt acgcgatgga
360taccggctca ggcgcaactg taagttaccg cgctgaggag cgcttcccac tgtgcagctc
420attcaagggc tttcttgctg ccgctgtgct ggctcgcagc cagcagcagg ccggcttgct
480ggacacaccc atccgttacg gcaaaaatgc gctggttcgg tggtcaccca tctcggaaaa
540atatctgaca acaggcatga cggtggcgga gctgtccgcg gccgccgtgc aatacagtga
600taacgccgcc gccaatttgt tgctgaagga gttgggcggc ccggccgggc tgacggcctt
660catgcgctct atcggcgata ccacgttccg tctggaccgc tgggagctgg agctgaactc
720cgccatccca ggcgatgcgc gcgatacctc atcgccgcgc gccgtgacgg aaagcttaca
780aaaactgaca ctgggctctg cactggctgc gccgcagcgg cagcagtttg ttgattggct
840aaagggaaac acgaccggca accaccgcat ccgcgcggcg gtgccggcag actgggcagt
900cggagacaaa accggaacct gcggagggta tggcacggca aatgactatg ccgtcgtctg
960gcccactggg cgcgcaccta ttgtgttggc cgtctacacc cgggcgccta acaaggatga
1020caagcacagc gaggccgtca tcgccgctgc ggctagactc gcgctcgagg gattgggcgt
1080caacgggcag taaggatccc tgtcagacca agtttactca tatatacttt agattgattt
1140aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac
1200caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa
1260aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc
1320accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt
1380aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg
1440ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc
1500agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt
1560accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga
1620gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct
1680tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg
1740cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca
1800cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa
1860cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt
1920ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
1980taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga
2040gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatttggtg
2100cactctcagt acaatctgct ctgatgccgc atagttaagc cagtatacac tccgctatcg
2160ctacgtgact gggtcatggc tgcgccccga cacccgccaa cacccgctga cgcgccctga
2220cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc
2280atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga ggcagctgcg gtaaagctca
2340tcagcgtggt cgtgaagcga ttcacagatg tctgcctgtt catccgcgtc cagctcgttg
2400agtttctcca gaagcgttaa tgtctggctt ctgataaagc gggccatgtt aagggcggtt
2460ttttcctgtt tggtcactga tgcctccgtg taagggggat ttctgttcat gggggtaatg
2520ataccgatga aacgagagag gatgctcacg atacgggtta ctgatgatga acatgcccgg
2580ttactggaac gttgtgaggg taaacaactg gcggtatgga tgcggcggga ccagagaaaa
2640atcactcagg gtcaatgcca gcgcttcgtt aatacagatg taggtgttcc acagggtagc
2700cagcagcatc ctgcgatgca gatccggaac ataatggtgc agggcgctga cttccgcgtt
2760tccagacttt acgaaacacg gaaaccgaag accattcatg ttgttgctca ggtcgcagac
2820gttttgcagc agcagtcgct tcacgttcgc tcgcgtatcg gtgattcatt ctgctaacca
2880gtaaggcaac cccgccagcc tagccgggtc ctcaacgaca ggagcacgat catgcgcacc
2940cgtggccagg acccaacgct gcccgagatg cgccgcgtgc ggctgctgga gatggcggac
3000gcgatggata tgttctgcca agggttggtt tgcgcattca cagttctccg caagaattga
3060ttggctccaa ttcttggagt ggtgaatccg ttagcgaggt gccgccggct tccattcagg
3120tcgaggtggc ccggctccat gcaccgcgac gcaacgcggg gaggcagaca aggtataggg
3180cggcgcctac aatccatgcc aacccgttcc atgtgctcgc cgaggcggca taaatcgccg
3240tgacgatcag cggtccagtg atcgaagtta ggctggtaag agccgcgagc gatccttgaa
3300gctgtccctg atggtcgtca tctacctgcc tggacagcat ggcctgcaac gcgggcatcc
3360cgatgccgcc ggaagcgaga agaatcataa tggggaaggc catccagcct cgcgtcgcga
3420acgccagcaa gacgtagccc agcgcgtcgg ccgccatgcc ggcgataatg gcctgcttct
3480cgccgaaacg tttggtggcg ggaccagtga cgaaggcttg agcgagggcg tgcaagattc
3540cgaataccgc aagcgacagg ccgatcatcg tcgcgctcca gcgaaagcgg tcctcgccga
3600aaatgaccca gagcgctgcc ggcacctgtc ctacgagttg catgataaag aagacagtca
3660taagtgcggc gacgatagtc atgccccgcg cccaccggaa ggagctgact gggttgaagg
3720ctctcaaggg catcggtcga cgctctccct tatgcgactc ctgcattagg aagcagccca
3780gtagtaggtt gaggccgttg agcaccgccg ccgcaaggaa tggtgcatgc aaggagatgg
3840cgcccaacag tcccccggcc acggggcctg ccaccatacc cacgccgaaa caagcgctca
3900tgagcccgaa gtggcgagcc cgatcttccc catcggtgat gtcggcgata taggcgccag
3960caaccgcacc tgtggcgccg gtgatgccgg ccacgatgcg tccggcgtag aggattcaca
4020ggacgggtgt ggtcgccatg atcgcgtagt cgatagtggc tccaagtagc gaagcgagca
4080ggactgggcg gcggccaaag cggtcggaca gtgctccgag aacgggtgcg catagaaatt
4140gcatcaacgc atatagcgct agcagcacgc catagtgact ggcgatgctg tcggaatgga
4200cgatatcccg caagaggccc ggcagtaccg gcataaccaa gcctatgcct acagcatcca
4260gggtgacggt gccgaggatg acgatgagcg cattgttaga tttcatacac ggtgcctgac
4320tgcgttagca atttaactgt gataaactac cgcattaaag cttatcgatg ataagctgtc
4380aaacatgaga a
4391124649DNAArtificial SequenceSynthetic construct pBR-CBST-DHA-1
12ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatgaaaaaa tcgttatctg caacactgat
240ttccgctctg ctggcgtttt ccgccccggg gttttctgcc gctgataatg tcgcggcggt
300ggtggacagc accattaaac cgctgatggc acagcaggat attcccggga tggcggttgc
360cgtctccgta aagggtaagc cctattattt caattatggt tttgccgata ttcaggcaaa
420acagccggtc actgaaaata cactatttga gctcggatct gtaagtaaaa ctttcacagg
480tgtgctgggt gcggtttctg tggcgaaaaa agagatggcg ctgaatgatc cggcggcaaa
540ataccagccg gagctggctc tgccgcagtg gaaggggatc acattgctgg atctggctac
600ctataccgca ggcggactgc cgttacaggt gccggatgcg gtaaaaagcc gtgcggatct
660gctgaatttc tatcagcagt ggcagccgtc ccggaaaccg ggcgatatgc gtctgtatgc
720aaacagcagt atcggcctgt ttggtgctct gaccgcaaac gcggcgggga tgccgtatga
780gcagttgctg actgcacgca tcctggcacc gctggggtta tctcacacct ttattactgt
840gccggaaagt gcgcaaagcc agtatgcgta cggttataaa aacaaaaaac cggtccgcgt
900gtcgccggga cagcttgatg cggaatctta cggcgtgaaa tccgcctcaa aagatatgct
960gcgctgggcg gaaatgaata tggagccgtc acgggccggt aatgcggatc tggaaatggc
1020aatgtatctc gcccagaccc gctactataa aaccgccgcg attaaccagg ggctgggctg
1080ggaaatgtat gactggccgc agcagaaaga tatgatcatt aacggtgtga ccaacgaggt
1140cgcattgcag ccgcatccgg taacagacaa ccaggttcag ccgtataacc gtgcttcctg
1200ggtgcataaa acgggcgcaa caactggttt cggcgcctat gtcgccttta ttccggaaaa
1260acaggtggcg attgtgattc tggcgaataa aaactacccg aataccgaaa gagtcaaagc
1320tgcacaggct attttgagtg cactggaata aggatccctg tcagaccaag tttactcata
1380tatactttag attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct
1440ttttgataat ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga
1500ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg
1560cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc
1620aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct
1680agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc
1740tctgctaatc ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt
1800ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg
1860cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagct
1920atgagaaagc gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag
1980ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag
2040tcctgtcggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg
2100gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg
2160gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac
2220cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt
2280gagcgaggaa gcggaagagc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat
2340ttcacaccgc atttggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca
2400gtatacactc cgctatcgct acgtgactgg gtcatggctg cgccccgaca cccgccaaca
2460cccgctgacg cgccctgacg ggcttgtctg ctcccggcat ccgcttacag acaagctgtg
2520accgtctccg ggagctgcat gtgtcagagg ttttcaccgt catcaccgaa acgcgcgagg
2580cagctgcggt aaagctcatc agcgtggtcg tgaagcgatt cacagatgtc tgcctgttca
2640tccgcgtcca gctcgttgag tttctccaga agcgttaatg tctggcttct gataaagcgg
2700gccatgttaa gggcggtttt ttcctgtttg gtcactgatg cctccgtgta agggggattt
2760ctgttcatgg gggtaatgat accgatgaaa cgagagagga tgctcacgat acgggttact
2820gatgatgaac atgcccggtt actggaacgt tgtgagggta aacaactggc ggtatggatg
2880cggcgggacc agagaaaaat cactcagggt caatgccagc gcttcgttaa tacagatgta
2940ggtgttccac agggtagcca gcagcatcct gcgatgcaga tccggaacat aatggtgcag
3000ggcgctgact tccgcgtttc cagactttac gaaacacgga aaccgaagac cattcatgtt
3060gttgctcagg tcgcagacgt tttgcagcag cagtcgcttc acgttcgctc gcgtatcggt
3120gattcattct gctaaccagt aaggcaaccc cgccagccta gccgggtcct caacgacagg
3180agcacgatca tgcgcacccg tggccaggac ccaacgctgc ccgagatgcg ccgcgtgcgg
3240ctgctggaga tggcggacgc gatggatatg ttctgccaag ggttggtttg cgcattcaca
3300gttctccgca agaattgatt ggctccaatt cttggagtgg tgaatccgtt agcgaggtgc
3360cgccggcttc cattcaggtc gaggtggccc ggctccatgc accgcgacgc aacgcgggga
3420ggcagacaag gtatagggcg gcgcctacaa tccatgccaa cccgttccat gtgctcgccg
3480aggcggcata aatcgccgtg acgatcagcg gtccagtgat cgaagttagg ctggtaagag
3540ccgcgagcga tccttgaagc tgtccctgat ggtcgtcatc tacctgcctg gacagcatgg
3600cctgcaacgc gggcatcccg atgccgccgg aagcgagaag aatcataatg gggaaggcca
3660tccagcctcg cgtcgcgaac gccagcaaga cgtagcccag cgcgtcggcc gccatgccgg
3720cgataatggc ctgcttctcg ccgaaacgtt tggtggcggg accagtgacg aaggcttgag
3780cgagggcgtg caagattccg aataccgcaa gcgacaggcc gatcatcgtc gcgctccagc
3840gaaagcggtc ctcgccgaaa atgacccaga gcgctgccgg cacctgtcct acgagttgca
3900tgataaagaa gacagtcata agtgcggcga cgatagtcat gccccgcgcc caccggaagg
3960agctgactgg gttgaaggct ctcaagggca tcggtcgacg ctctccctta tgcgactcct
4020gcattaggaa gcagcccagt agtaggttga ggccgttgag caccgccgcc gcaaggaatg
4080gtgcatgcaa ggagatggcg cccaacagtc ccccggccac ggggcctgcc accataccca
4140cgccgaaaca agcgctcatg agcccgaagt ggcgagcccg atcttcccca tcggtgatgt
4200cggcgatata ggcgccagca accgcacctg tggcgccggt gatgccggcc acgatgcgtc
4260cggcgtagag gattcacagg acgggtgtgg tcgccatgat cgcgtagtcg atagtggctc
4320caagtagcga agcgagcagg actgggcggc ggccaaagcg gtcggacagt gctccgagaa
4380cgggtgcgca tagaaattgc atcaacgcat atagcgctag cagcacgcca tagtgactgg
4440cgatgctgtc ggaatggacg atatcccgca agaggcccgg cagtaccggc ataaccaagc
4500ctatgcctac agcatccagg gtgacggtgc cgaggatgac gatgagcgca ttgttagatt
4560tcatacacgg tgcctgactg cgttagcaat ttaactgtga taaactaccg cattaaagct
4620tatcgatgat aagctgtcaa acatgagaa
4649134664DNAArtificial SequenceSynthetic construct pBR-CBST-ADC-33
13ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat
60aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg
120tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat
180gcttcaataa tattgaaaaa ggaagagtca tatgcgattt aaaaaaattt cttgtctact
240tttatccccg ctttttattt ttagtacctc aatttatgcg ggcaatacac caaaagacca
300agaaattaaa aaactggtag atcaaaactt taaaccgtta ttagaaaaat atgatgtgcc
360aggtatggct gtgggtgtta ttcaaaataa taaaaagtat gaaatgtatt atggtcttca
420atctgttcaa gataaaaaag ccgtaaatag cagtaccatt tttgagctag gttctgtcag
480taaattattt accgcgacag caggtggata tgcaaaaaat aaaggaaaaa tctcttttga
540cgatacgcct ggtaaatatt ggaaagaact aaaaaacaca ccgattgacc aagttaactt
600acttcaactc gcgacgtata caagtggtaa ccttgccttg cagtttccag atgaagtaaa
660aacagaccaa caagttttaa cttttttcaa agactggaaa cctaaaaact caatcggtga
720atacagacaa tattcaaatc caagtattgg cctatttgga aaggttgtgg ctttgtctat
780gaataaacct ttcgaccaag tcttagaaaa aacaattttt ccggcccttg gcttaaaaca
840tagctatgta aatgtaccta agacccagat gcaaaactat gcatttggtt ataaccaaga
900aaatcagccg attcgagtta accgcggccc actcgatgcc gcccctgcgt atggcgtcaa
960atcgacacta cccgacatgt tgagttttat tcatgccaac cttaacccac agaaatatcc
1020ggctgatatt caacgggcaa ttaatgaaac acatcaaggg cgctatcaag taaataccat
1080gtatcaggca ctcggttggg aagagttttc ttatccggca acgttacaaa ctttattaga
1140cagtaattca gaacagattg tgatgaaacc taataaagtg actgctattt caaaggaacc
1200ttcagttaag atgtaccata aaactggctc aaccaacggt ttcggaacgt atgtagtgtt
1260tattcctaaa gaaaatattg gcttagtcat gttaaccaat aaacgtattc caaatgaaga
1320gcgcattaag gcagcttatg ctgtgctgaa tgcaataaag aaataaggat ccctgtcaga
1380ccaagtttac tcatatatac tttagattga tttaaaactt catttttaat ttaaaaggat
1440ctaggtgaag atcctttttg ataatctcat gaccaaaatc ccttaacgtg agttttcgtt
1500ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc ctttttttct
1560gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc
1620ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcagcagag cgcagatacc
1680aaatactgtc cttctagtgt agccgtagtt aggccaccac ttcaagaact ctgtagcacc
1740gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg gcgataagtc
1800gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc ggtcgggctg
1860aacggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg aactgagata
1920cctacagcgt gagctatgag aaagcgccac gcttcccgaa gggagaaagg cggacaggta
1980tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag ggggaaacgc
2040ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc gatttttgtg
2100atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct ttttacggtt
2160cctggccttt tgctggcctt ttgctcacat gttctttcct gcgttatccc ctgattctgt
2220ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc gaacgaccga
2280gcgcagcgag tcagtgagcg aggaagcgga agagcgcctg atgcggtatt ttctccttac
2340gcatctgtgc ggtatttcac accgcatttg gtgcactctc agtacaatct gctctgatgc
2400cgcatagtta agccagtata cactccgcta tcgctacgtg actgggtcat ggctgcgccc
2460cgacacccgc caacacccgc tgacgcgccc tgacgggctt gtctgctccc ggcatccgct
2520tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc agaggttttc accgtcatca
2580ccgaaacgcg cgaggcagct gcggtaaagc tcatcagcgt ggtcgtgaag cgattcacag
2640atgtctgcct gttcatccgc gtccagctcg ttgagtttct ccagaagcgt taatgtctgg
2700cttctgataa agcgggccat gttaagggcg gttttttcct gtttggtcac tgatgcctcc
2760gtgtaagggg gatttctgtt catgggggta atgataccga tgaaacgaga gaggatgctc
2820acgatacggg ttactgatga tgaacatgcc cggttactgg aacgttgtga gggtaaacaa
2880ctggcggtat ggatgcggcg ggaccagaga aaaatcactc agggtcaatg ccagcgcttc
2940gttaatacag atgtaggtgt tccacagggt agccagcagc atcctgcgat gcagatccgg
3000aacataatgg tgcagggcgc tgacttccgc gtttccagac tttacgaaac acggaaaccg
3060aagaccattc atgttgttgc tcaggtcgca gacgttttgc agcagcagtc gcttcacgtt
3120cgctcgcgta tcggtgattc attctgctaa ccagtaaggc aaccccgcca gcctagccgg
3180gtcctcaacg acaggagcac gatcatgcgc acccgtggcc aggacccaac gctgcccgag
3240atgcgccgcg tgcggctgct ggagatggcg gacgcgatgg atatgttctg ccaagggttg
3300gtttgcgcat tcacagttct ccgcaagaat tgattggctc caattcttgg agtggtgaat
3360ccgttagcga ggtgccgccg gcttccattc aggtcgaggt ggcccggctc catgcaccgc
3420gacgcaacgc ggggaggcag acaaggtata gggcggcgcc tacaatccat gccaacccgt
3480tccatgtgct cgccgaggcg gcataaatcg ccgtgacgat cagcggtcca gtgatcgaag
3540ttaggctggt aagagccgcg agcgatcctt gaagctgtcc ctgatggtcg tcatctacct
3600gcctggacag catggcctgc aacgcgggca tcccgatgcc gccggaagcg agaagaatca
3660taatggggaa ggccatccag cctcgcgtcg cgaacgccag caagacgtag cccagcgcgt
3720cggccgccat gccggcgata atggcctgct tctcgccgaa acgtttggtg gcgggaccag
3780tgacgaaggc ttgagcgagg gcgtgcaaga ttccgaatac cgcaagcgac aggccgatca
3840tcgtcgcgct ccagcgaaag cggtcctcgc cgaaaatgac ccagagcgct gccggcacct
3900gtcctacgag ttgcatgata aagaagacag tcataagtgc ggcgacgata gtcatgcccc
3960gcgcccaccg gaaggagctg actgggttga aggctctcaa gggcatcggt cgacgctctc
4020ccttatgcga ctcctgcatt aggaagcagc ccagtagtag gttgaggccg ttgagcaccg
4080ccgccgcaag gaatggtgca tgcaaggaga tggcgcccaa cagtcccccg gccacggggc
4140ctgccaccat acccacgccg aaacaagcgc tcatgagccc gaagtggcga gcccgatctt
4200ccccatcggt gatgtcggcg atataggcgc cagcaaccgc acctgtggcg ccggtgatgc
4260cggccacgat gcgtccggcg tagaggattc acaggacggg tgtggtcgcc atgatcgcgt
4320agtcgatagt ggctccaagt agcgaagcga gcaggactgg gcggcggcca aagcggtcgg
4380acagtgctcc gagaacgggt gcgcatagaa attgcatcaa cgcatatagc gctagcagca
4440cgccatagtg actggcgatg ctgtcggaat ggacgatatc ccgcaagagg cccggcagta
4500ccggcataac caagcctatg cctacagcat ccagggtgac ggtgccgagg atgacgatga
4560gcgcattgtt agatttcata cacggtgcct gactgcgtta gcaatttaac tgtgataaac
4620taccgcatta aagcttatcg atgataagct gtcaaacatg agaa
4664
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20200288738 | METHODS OF PREPARING ANTI-AGGLOMERATION YOGURT-BASED PRODUCTS FOR USE AS AEROSOL FOOD PRODUCTS |
20200288737 | New Lactobacillus Plantarum Strain Imparting High Thickness and/or High Ropiness and/or High Mouth Thickness to a Dairy Product Produced Therewith and Uses Thereof |
20200288736 | Cultured Dairy Products and Method of Preparation |
20200288735 | USE OF CELLOBIOSE OXIDASE FOR REDUCTION OF MAILLARD REACTION |
20200288734 | PASTEURIZATION PROCEDURE AND APPARATUS |