Patent application title: ANTIBODIES TO HUMAN TRANSMEMBRANE PROTEINS
Inventors:
Y. Tom Tang (San Jose, CA, US)
Preeti G. Lal (Burlingame, CA, US)
Jennifer L. Jackson (Santa Cruz, CA, US)
Henry Yue (Sunnyvale, CA, US)
Henry Yue (Sunnyvale, CA, US)
Karl J. Guegler (Menlo Park, CA, US)
Karl J. Guegler (Menlo Park, CA, US)
Neil C. Corley (Castro Valley, CA, US)
Neil C. Corley (Castro Valley, CA, US)
Olga Bandman (Mountain View, CA, US)
Olga Bandman (Mountain View, CA, US)
Chandra S. Arvizu (San Diego, CA, US)
Gina A. Gorgone Simone (Earleville, MD, US)
Matthew R. Kaser (Castro Valley, CA, US)
Mariah R. Baughn (San Diego, CA, US)
Janice K. Au-Young (Brisbane, IL, US)
Assignees:
INCYTE CORPORATION
IPC8 Class: AC07K1628FI
USPC Class:
4241391
Class name: Drug, bio-affecting and body treating compositions immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material binds antigen or epitope whose amino acid sequence is disclosed in whole or in part (e.g., binds specifically-identified amino acid sequence, etc.)
Publication date: 2015-01-15
Patent application number: 20150017173
Abstract:
The invention provides human transmembrane proteins (HTMPN) and
polynucleotides which identify and encode HTMPN. The invention also
provides expression vectors, host cells, antibodies, agonists, and
antagonists. The invention also provides methods for diagnosing,
treating, or preventing disorders associated with expression of HTMPN.Claims:
1.-20. (canceled)
21. An isolated antibody or fragment thereof that specifically binds to a polypeptide having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:74.
22. The isolated antibody or fragment thereof of claim 21, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO:74.
23. The isolated antibody or fragment thereof of claim 21, wherein the polypeptide consists of the amino acid sequence of SEQ ID NO:74.
24. The isolated antibody or fragment thereof of claim 21, which is a monoclonal antibody.
25. The isolated antibody or fragment thereof of claim 21, which is a Fab fragment.
26. The isolated antibody or fragment thereof of claim 21, which is a F(ab')2 fragment.
27. The isolated antibody or fragment thereof of claim 21, which is a single-chain antibody.
28. The isolated antibody or fragment thereof of claim 21, which is a chimeric antibody.
29. The isolated antibody or fragment thereof of claim 21, which is a humanized antibody.
30. The isolated antibody or fragment thereof of claim 21, which is labeled.
31. The isolated antibody or fragment thereof of claim 30, wherein the antibody or fragment thereof is labeled by covalent or non-covalent attachment of a reporter molecule.
32. The isolated antibody or fragment thereof of claim 31, wherein the reporter molecule is selected from the group consisting of radionuclides, enzymes, fluorescent, chemiluminescent, chromogenic agents, substrates, cofactors, inhibitors, and magnetic particles.
33. A composition comprising the antibody or fragment thereof of claim 21, and a pharmaceutically acceptable carrier.
34. A method for detecting in a sample the presence of a polypeptide having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:74, wherein the method comprises: (a) contacting the sample with the antibody or fragment thereof of claim 21 under conditions suitable for antibody-antigen complex formation; and (b) detecting the complex formation, wherein the complex formation indicates the presence of the polypeptide in the sample.
35. The method of claim 34, wherein the antibody or fragment thereof is labeled.
36. The method of claim 35, wherein the antibody or fragment thereof is labeled by covalent or non-covalent attachment of a reporter molecule.
37. The method of claim 36, wherein the reporter molecule is selected from the group consisting of radionuclides, enzymes, fluorescent, chemiluminescent, chromogenic agents, substrates, cofactors, inhibitors, and magnetic particles.
Description:
TECHNICAL FIELD
[0001] This invention relates to nucleic acid and amino acid sequences of human transmembrane proteins and to the use of these sequences in the diagnosis, treatment, and prevention of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.
BACKGROUND OF THE INVENTION
[0002] Eukaryotic organisms are distinct from prokaryotes in possessing many intracellular organelle and vesicle structures. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these structures. In particular, many cellular functions require very stringent reaction conditions, and the organelles and vesicles enable compartmentalization and isolation of reactions which might otherwise disrupt cytosolic metabolic processes. The organelles include mitochondria, smooth and rough endoplasmic reticula, sarcoplasmic reticulum, and the Golgi body. The vesicles include phagosomes, lysosomes, endosomes, peroxisomes, and secretory vesicles. Organelles and vesicles are bounded by single or double membranes.
[0003] Biological membranes are highly selective permeable barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, glycolipids, proteoglycans, and proteins. Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps, channels, and receptors to amplify and regulate transmission of these signals.
Plasma Membrane Proteins
[0004] Plasma membrane proteins (MPs) are divided into two groups based upon methods of protein extraction from the membrane. Extrinsic or peripheral membrane proteins can be released using extremes of ionic strength or pH, urea, or other disruptors of protein interactions. Intrinsic or integral membrane proteins are released only when the lipid bilayer of the membrane is dissolved by detergent.
[0005] Transmembrane proteins (TM) are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an α-helical conformation. TM proteins are classified as bitopic (Types I and II) proteins, which span the membrane once, and polytopic (Types III and IV) (Singer, S. J. (1990) Annu. Rev. Cell Biol. 6:247-96) proteins which contain multiple membrane-spanning segments. TM proteins that act as cell-surface receptor proteins involved in signal transduction include growth and differentiation factor receptors, and receptor-interacting proteins such as Drosophila pecanex and frizzled proteins, LIV-1 protein, NF2 protein, and GNS1/SUR4 eukaryotic integral membrane proteins. TM proteins also act as transporters of ions or metabolites, such as gap junction channels (connexins), and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins. TM proteins are found in vesicle organelle-forming molecules, such as calveolins; or cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins.
[0006] Many membrane proteins (MPs) contain amino acid sequence motifs that serve to localize proteins to specific subcellular sites. Examples of these motifs include PDZ domains. KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380). Membrane proteins may also contain amino acid sequence motifs that serve to interact with extracellular or intracellular molecules, such as carbohydrate recognition domains.
[0007] Chemical modification of amino acid residue side chains alters the manner in which MPs interact with other molecules, for example, phospholipid membranes. Examples of such chemical modifications to amino acid residue side chains are covalent bond formation with glycosaminoglycans, oligosaccharides, phospholipids, acetyl and palmitoyl moieties, ADP-ribose, phosphate, and sulphate groups.
[0008] RNA-encoding membrane proteins may have alternative splice sites which give rise to proteins encoded by the same gene but with different messenger RNA and amino acid sequences. Splice variant membrane proteins may interact with other ligand and protein isoforms.
G-Protein Coupled Receptors
[0009] G-protein coupled receptors (GPCR) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators.
[0010] The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane (serpentine) regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S, and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego, Calif., pp 2-6). Mutations and changes in transcriptional activation of GPCR-encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.
Scavenger Receptors
[0011] Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer domain, an α-helical coiled-coil domain, and a triple helical collagenous domain. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids, and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. 87:9133-9137; and Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa.
Tetraspan Family Proteins
[0012] The transmembrane 4 superfamily (TM4SF) or tetraspan family is a multigene family encoding type III integral membrane proteins (Wright, M. D. and Tomlinson, M. G. (1994) Immunol. Today 15:588). TM4SF is comprised of membrane proteins which traverse the cell membrane four times. Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor-associated antigens, and surface proteins of the schistosome parasites (Jankowski, S. A. (1994) Oncogene 9:1205-1211). Members of the TM4SF share about 25-30% amino acid sequence identity with one another.
[0013] A number of TM4SF members have been implicated in signal transduction, control of cell adhesion, regulation of cell growth and proliferation, including development and oncogenesis, and cell motility, including tumor cell metastasis. Expression of TM4SF proteins is associated with a variety of tumors and the level of expression may be altered when cells are growing or activated.
Tumor Antigens
[0014] Tumor antigens are surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) Int. J. Cancer 61: 706-715; Liu, E. et al. (1992) Oncogene 7: 1027-1032).
Ion Channels
[0015] Ion channels are found in the plasma membranes of virtually every cell in the body. For example, chloride channels mediate a variety of cellular functions including regulation of membrane potentials and absorption and secretion of ions across epithelial membranes. When present in intracellular membranes of the Golgi apparatus and endocytic vesicles, chloride channels also regulate organelle pH (see, e.g., Greger, R. (1988) Annu. Rev. Physiol. 50:111-122). Electrophysiological and pharmacological properties of chloride channels, including ion conductance, current-voltage relationships, and sensitivity to modulators, suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes.
[0016] Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.
Proton Pumps
[0017] Proton ATPases are a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na.sup.+, K.sup.+, or Cl.sup.-) or to maintain organelle pH. Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases. The vacuolar ATPases establish and maintain an acidic pH within various vesicles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Ann. Rev. Biochem. 55:663-700).
[0018] Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorbtion of peptides using an electrochemical H.sup.+ gradient as the driving force. Another type of peptide transporter, the TAP transporter, is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. 93:284-289). Pathogenic microorganisms, such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and Manaco, J. J. (1996) Curr. Opin. Hematol. 3:19-26).
ABC Transporters
[0019] The ATP-binding cassette (ABC) transporters, also called the "traffic ATPases", comprise a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C. F. (1992) Annu. Rev. Cell Biol. 8:67-113). ABC proteins share a similar overall structure and significant sequence homology. All ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoluekodystrophy, multidrug resistance, celiac disease, and cystic fibrosis.
Membrane Proteins Associated with Intercellular Communication
[0020] Intercellular communication is essential for the development and survival of multicellular organisms. Cells communicate with one another through the secretion and uptake of protein signaling molecules. The uptake of proteins into the cell is achieved by endocytosis, in which the interaction of signaling molecules with the plasma membrane surface, often via binding to specific receptors, results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol. The secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell are packaged into membrane-bound transport vesicles derived from the trans-Golgi network. These vesicles fuse with the plasma membrane and release their contents into the surrounding extracellular space. Endocytosis and exocytosis result in the removal and addition of plasma membrane components and the recycling of these components is essential to maintain the integrity, identity, and functionality of both the plasma membrane and internal membrane-bound compartments.
[0021] Lysosomes are the site of degradation of intracellular material during autophagy and of extracellular molecules following endocytosis. Lysosomal enzymes are packaged into vesicles which bud from the trans-Golgi network. These vesicles fuse with endosomes to form the mature lysosome in which hydrolytic digestion of endocytosed material occurs. Lysosomes can fuse with autophagosomes to form a unique compartment in which the degradation of organelles and other intracellular components occurs. Protein sorting by transport vesicles, such as the endosome, has important consequences for a variety of physiological processes including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled secretion of hormones and neurotransmitters (Rothman, J. E. and Wieland, F. T. (1996) Science 272:227-234). In particular, neurodegenerative disorders and other neuronal pathologies are associated with biochemical flaws during endosomal protein sorting or endosomal biogenesis (Mayer R. J. et al. (1996) Adv. Exp. Med. Biol. 389:261-269).
[0022] Peroxisomes are organelles independent from the secretory pathway. They are the site of many peroxide-generating oxidative reactions in the cell. Peroxisomes are unique among eukaryotic organelles in that their size, number, and enzyme content vary depending upon organism, cell type, and metabolic needs. The majority of peroxisome-associated proteins are membrane-bound or are found proximal to the cytosolic or the lumenal side of the peroxisome membrane (Waterham, H. R. and Cregg, J. M. (1997) BioEssays 19:57-66).
[0023] Genetic defects in peroxisome proteins which result in peroxisomal deficiencies have been linked to a number of human pathologies, including Zellweger syndrome, rhizomelic chonrodysplasia punctata, X-linked adrenoleukodystrophy, acyl-CoA oxidase deficiency, bifunctional enzyme deficiency, classical Refsum's disease, DHAP alkyl transferase deficiency, and acatalasemia (Moser, H. W. and Moser, A. B. (1996) Ann. NY Acad. Sci. 804:427-441). In addition, Gartner, J. et al. (1991; Pediatr. Res. 29:141-146) found a 22 kDa integral membrane protein associated with lower density peroxisome-like subcellular fractions in patients with Zellweger syndrome.
[0024] Normal embryonic development and control of germ cell maturation is modulated by a number of secretory proteins which interact with their respective membrane-bound receptors. Cell fate during embryonic development is determined by members of the activin/TGF-β superfamily, cadherins, IGF-2, and other morphogens. In addition, proliferation, maturation, and redifferentiation of germ cell and reproductive tissues are regulated, for example, by IGF-2, inhibins, activins, and follistatins (Petraglia, F. (1997) Placenta 18:3-8; Mather, J. P. et al. (1997) Proc. Soc. Exp. Biol. Med. 215:209-222).
Endoplasmic Reticulum Membrane Proteins
[0025] The normal functioning of the eukaryotic cell requires that all newly synthesized proteins be correctly folded, modified, and delivered to specific intra- and extracellular sites. Newly synthesized membrane and secretory proteins enter a cellular sorting and distribution network during or immediately after synthesis and are routed to specific locations inside and outside of the cell. The initial compartment in this process is the endoplasmic reticulum (ER) where proteins undergo modifications such as glycosylation, disulfide bond formation, and assembly into oligomers. The modified proteins are then transported through a series of membrane-bound compartments which include the various cisternae of the Golgi complex, where further carbohydrate modifications occur. Transport between compartments occurs by means of vesicles that bud and fuse in a manner specific to the type of protein being transported. Once within the secretory pathway, proteins do not have to cross a membrane to reach the cell surface.
[0026] Although the majority of proteins processed through the ER are transported out of the organelle, some are retained. The signal for retention in the ER in mammalian cells consists of the tetrapeptide sequence, KDEL, located at the carboxyl terminus of proteins (Munro, S. (1986) Cell 46:291-300). Proteins containing this sequence leave the ER but are quickly retrieved from the early Golgi cisternae and returned to the ER, while proteins lacking this signal continue through the secretory pathway.
[0027] Disruptions in the cellular secretory pathway have been implicated in several human diseases. In familial hypercholesterolemia the low density lipoprotein receptors remain in the ER, rather than moving to the cell surface (Pathak, R. K. (1988) J. Cell Biol. 106:1831-1841). Altered transport and processing of the β-amyloid precursor protein (βAPP) involves the putative vesicle transport protein presenilin, and may play a role in early-onset Alzheimer's disease (Levy-Lahad. E. et al. (1995) Science 269:973-977). Changes in ER-derived calcium homeostasis have been associated with diseases such as cardiomyopathy, cardiac hypertrophy, myotonic dystrophy, Brody disease, Smith-McCort dysplasia, and diabetes mellitus.
Mitochondrial Membrane Proteins
[0028] The mitochondrial electron transport (or respiratory) chain is a series of three enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH to oxygen and the coupling of this oxidation to the synthesis of ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving the many energy-requiring reactions of a cell.
[0029] Most of the protein components of the mitochondrial respiratory chain are the products of nuclear encoded genes that are imported into the mitochondria and the remainder are products of mitochondrial genes. Defects and altered expression of enzymes in the respiratory chain are associated with a variety of disease conditions in man, including, for example, neurodegenerative diseases, myopathies, and cancer.
Lymphocyte and Leukocyte Membrane Proteins
[0030] The B-cell response to antigens, which is modulated through receptors, is an essential component of the normal immune system. Mature B cells recognize foreign antigens through B cell receptors (BCR) which are membrane-bound, specific antibodies that bind foreign antigens. The antigen/receptor complex is internalized and the antigen is proteolytically processed. To generate an efficient response to complex antigens, the BCR, BCR-associated proteins, and T cell response are all required. Proteolytic fragments of the antigen are complexed with major histocompatability complex-II (MHCII) molecules on the surface of the B cells where the complex can be recognized by T cells. In contrast, macrophages and other lymphoid cells present antigens in association with MHCI molecules to T cells. T cells recognize and are activated by the MHCI-antigen complex through interactions with the T cell receptor/CD3 complex, a T cell-surface multimeric protein located in the plasma membrane. T cells activated by antigen presentation secrete a variety of lymphokines that induce B cell maturation and T cell proliferation and activate macrophages, which kill target cells.
[0031] Leukocytes have a fundamental role in the inflammatory and immune response and include monocytes/macrophages, mast cells, polymorphonucleoleukocytes, natural killer cells, neutrophils, eosinophils, basophils, and myeloid precursors. Leukocyte membrane proteins include members of the CD antigens, N-CAM, I-CAM, human leukocyte antigen (HLA) class I and HLA class II gene products, immunoglobulins, immunoglobulin receptors, complement, complement receptors, interferons, interferon receptors, interleukin receptors, and chemokine receptors.
[0032] Abnormal lymphocyte and leukocyte activity has been associated with acute disorders, such as AIDS, immune hypersensitivity, leukemias, leukopenia, systemic lupus, granulomatous disease, and eosinophilia.
Apoptosis-Associated Membrane Proteins
[0033] A variety of ligands, receptors, enzymes, tumor suppressors, viral gene products, pharmacological agents, and inorganic ions have important positive or negative roles in regulating and implementing the apoptotic destruction of a cell. Although some specific components of the apoptotic pathway have been identified and characterized, many interactions between the proteins involved are undefined, leaving major aspects of the pathway unknown.
[0034] A requirement for calcium in apoptosis was previously suggested by studies showing the involvement of calcium levels in DNA cleavage and Fas-mediated cell death (Hewish, D. R. and L. A. Burgoyne (1973) Biochem. Biophys. Res. Comm. 52:504-510; Vignaux, F. et al. (1995) J. Exp. Med. 181:781-786; Oshimi, Y. and S. Miyazaki (1995) J. Immunol. 154:599-609). Other studies show that intracellular calcium concentrations increase when apoptosis is triggered in thymocytes by either T cell receptor cross-linking or by glucocorticoids and cell death can be prevented by blocking this increase (McConkey, D. J. et al. (1989) J. Immunol. 143:1801-1806; McConkey, D. J. et al. (1989) Arch. Biochem. Biophys. 269:365-370). Therefore, membrane proteins such as calcium channels are important for the apopoptic response.
Tumorgenesis
[0035] Tumorgenesis is associated with the activation of oncogenes which are derived from normal cellular genes. These oncogenes encode oncoproteins which are capable of converting normal cells into malignant cells. Some oncoproteins are mutant isoforms of the normal protein and other oncoproteins are abnormally expressed with respect to location or level of expression. The latter category of oncoprotein causes cancer by altering transcriptional control of cell proliferation. Five classes of oncoproteins are known to affect the cell cycle controls. These classes include growth factors, growth factor receptors, intracellular signal transducers, nuclear transcription factors, and cell-cycle control proteins. These proteins include those which are modified by glycosylation, phosphorylation, glycosaminoglycan attachment, sulphation, and lipidation.
[0036] Modulation of factors which act in the coordination of the human cell division cycle may provide an important means to reduce tumorgenesis. An example of the metastasis-associated proteins is the lysosomal membrane glycoprotein P2B/LAMP-1 which is also expressed in normal tissues. (Heffernan, M. et al. (1989) Cancer Res. 49:6077-6084.) In addition, mammalian proteins homologous to the plant pathogenesis-related proteins have been identified in hyperplastic glioma. (Murphy, E. V. et al. (1995) Gene 159:131-135.)
[0037] The discovery of new human transmembrane proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.
SUMMARY OF THE INVENTION
[0038] The invention features substantially purified polypeptides, human transmembrane proteins, referred to collectively as "HTMPN" and individually as "HTMPN-1", "HTMPN-2", "HTMPN-3", "HTMPN-4", "HTMPN-5", "HTMPN-6", "HTMPN-7", "HTMPN-8", "HTMPN-9", "HTMPN-10", "HTMPN-11", "HTMPN-12", "HTMPN-13", "HTMPN-14", "HTMPN-15", "HTMPN-16", "HTMPN-17", "HTMPN-18", "HTMPN-19", "HTMPN-20", "HTMPN-21", "HTMPN-22", "HTMPN-23", "HTMPN-24", "HTMPN-25", "HTMPN-26", "HTMPN-27", "HTMPN-28", "HTMPN-29", "HTMPN-30", "HTMPN-31", "HTMPN-32", "HTMPN-33", "HTMPN-34", "HTMPN-35", "HTMPN-36", "HTMPN-37", "HTMPN-38", "HTMPN-39", "HTMPN-40", "HTMPN-41", "HTMPN-42", "HTMPN-43", "HTMPN-44", "HTMPN-45", "HTMPN-46", "HTMPN-47", "HTMPN-48", "HTMPN-49", "HTMPN-50", "HTMPN-51", "HTMPN-52", "HTMPN-53", "HTMPN-54", "HTMPN-55", "HTMPN-56", "HTMPN-57", "HTMPN-58", "HTMPN-59", "HTMPN-60", "HTMPN-61", "HTMPN-62", "HTMPN-63", "HTMPN-64", "HTMPN-65", "HTMPN-66", "HTMPN-67", "HTMPN-68", "HTMPN-69". "HTMPN-70", "HTMPN-71", "HTMPN-72", "HTMPN-73", "HTMPN-74", "HTMPN-75", "HTMPN-76", "HTMPN-77", "HTMPN-78", and "HTMPN-79". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, and SEQ ID NO:79 (SEQ ID NO:1-79), and fragments thereof.
[0039] The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.
[0040] Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.
[0041] The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, and SEQ ID NO:158 (SEQ ID NO:80-158), and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:80-158, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:80-158, and fragments thereof.
[0042] The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.
[0043] The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. In another aspect, the expression vector is contained within a host cell.
[0044] The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.
[0045] The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.
[0046] The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.
[0047] The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of HTMPN, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.
[0048] The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HTMPN, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.
BRIEF DESCRIPTION OF THE TABLES
[0049] Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HTMPN.
[0050] Table 2 shows features of each polypeptide sequence including predicted transmembrane sequences, potential motifs, homologous sequences, and methods and algorithms used for identification of HTMPN.
[0051] Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.
[0052] Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding HTMPN were isolated.
[0053] Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HTMPN.
DESCRIPTION OF THE INVENTION
[0054] Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
[0055] It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
[0056] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
DEFINITIONS
[0057] "HTMPN" refers to the amino acid sequences of substantially purified HTMPN obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.
[0058] The term "agonist" refers to a molecule which, when bound to HTMPN, increases or prolongs the duration of the effect of HTMPN. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HTMPN.
[0059] An "allelic variant" is an alternative form of the gene encoding HTMPN. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
[0060] "Altered" nucleic acid sequences encoding HTMPN include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HTMPN or a polypeptide with at least one functional characteristic of HTMPN. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HTMPN, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTMPN. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTMPN. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTMPN is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.
[0061] The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HTMPN which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HTMPN. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
[0062] "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
[0063] The term "antagonist" refers to a molecule which, when bound to HTMPN, decreases the amount or the duration of the effect of the biological or immunological activity of HTMPN. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HTMPN.
[0064] The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HTMPN polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
[0065] The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
[0066] The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.
[0067] The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HTMPN, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
[0068] The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.
[0069] A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HTMPN or fragments of HTMPN may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
[0070] "Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk Conn.) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW Fragment Assembly system (GCG, Madison Wis.). Some sequences have been both extended and assembled to produce the consensus sequence.
[0071] The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HTMPN, by northern analysis is indicative of the presence of nucleic acids encoding HTMPN in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HTMPN.
[0072] A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
[0073] The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
[0074] The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.
[0075] The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison Wis.) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D. G. and P. M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.
[0076] "Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.
[0077] The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
[0078] "Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.
[0079] The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C0t or R0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
[0080] The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.
[0081] "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
[0082] The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.
[0083] The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.
[0084] The term "modulate" refers to a change in the activity of HTMPN. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTMPN.
[0085] The phrases "nucleic acid" or "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.
[0086] The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.
[0087] The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer." "oligomer," and "probe," as these terms are commonly defined in the art.
[0088] "Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
[0089] The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HTMPN, or fragments thereof, or HTMPN itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
[0090] The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
[0091] The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.
[0092] The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.
[0093] A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.
[0094] "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
[0095] "Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
[0096] A "variant" of HTMPN polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).
[0097] The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HTMPN. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
THE INVENTION
[0098] The invention is based on the discovery of new human transmembrane proteins (HTMPN), the polynucleotides encoding HTMPN, and the use of these compositions for the diagnosis, treatment, or prevention of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.
[0099] Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding HTMPN. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HTMPN were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences. The clones and shotgun sequences are part of the consensus nucleotide sequence of each HTMPN and are useful as fragments in hybridization technologies.
[0100] The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the identity of each protein; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs. Hidden Markov Model analysis indicates the presence of one or more potential transmembrane motifs in each of SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO: 66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO: 75, SEQ ID NO:76, SEQ ID NO:77, and SEQ ID NO: 79; as well as the presence of one or more potential signal peptide motifs in each of SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:77, and SEQ ID NO:79.
Motifs analysis indicates the presence of a potential ATP/GTP binding site in SEQ ID NO:68, a potential calcium-binding site also in SEQ ID NO:68, a potential leucine zipper gene regulatory motif in each of SEQ ID NO:68 and SEQ ID NO:73; and a potential microbody (single-membraned organelle) targeting signal site in SEQ ID NO:78. BLOCKS analysis indicates the presence of two potential PMP-22 integral membrane glycoprotein motifs and a trehalase motif, all in SEQ ID NO:77, as well as a potential protein-splicing motif in SEQ ID NO:66. PRINTS analysis indicates the presence of a potential G-protein coupled receptor motif in SEQ ID NO:79.
[0101] The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTMPN. The first column of Table 3 lists the nucleotide sequence identifiers. The second column lists tissue categories which express HTMPN as a fraction of total tissue categories expressing HTMPN. The third column lists the diseases, disorders, or conditions associated with those tissues expressing HTMPN. The fourth column lists the vectors used to subclone the cDNA library. Of particular note is the expression of HTMPN in tissue involved in inflammation and the immune response and with cell proliferative conditions including cancer, and in reproductive, gastrointestinal, fetal, smooth muscle, cardiovascular, urologic, endocrine, developmental, and nervous tissue.
[0102] The following fragments of the nucleotide sequences encoding HTMPN are useful in hybridization or amplification technologies to identify SEQ ID NO:121-158 and to distinguish between SEQ ID NO:121-158 and related polynucleotide sequences. The useful fragments are the fragment of SEQ ID NO:121 from about nucleotide 151 to about nucleotide 189; the fragment of SEQ ID NO:122 from about nucleotide 280 to about nucleotide 318; the fragment of SEQ ID NO:123 from about nucleotide 505 to about nucleotide 558; the fragments of SEQ ID NO:124 from about nucleotide 1 to about nucleotide 21 and from about nucleotide 694 to about nucleotide 720; the fragment of SEQ ID NO:125 from about nucleotide 331 to about nucleotide 378; the fragment of SEQ ID NO:126 from about nucleotide 1012 to about nucleotide 1047; the fragment of SEQ ID NO:127 from about nucleotide 1070 to about nucleotide 1106; the fragment of SEQ ID NO:128 from about nucleotide 133 to about nucleotide 186; the fragment of SEQ ID NO:129 from about nucleotide 432 to about nucleotide 482; the fragments of SEQ ID NO:130 from about nucleotide 1745 to about nucleotide 1795 and from about nucleotide 1910 to about nucleotide 1979; the fragment of SEQ ID NO:131 from about nucleotide 322 to about nucleotide 375; the fragment of SEQ ID NO:132 from about nucleotide 147 to about nucleotide 203; the fragment of SEQ ID NO:133 from about nucleotide 557 to about nucleotide 613; the fragment of SEQ ID NO:134 from about nucleotide 509 to about nucleotide 595; the fragment of SEQ ID NO:135 from about nucleotide 808 to about nucleotide 848; the fragment of SEQ ID NO:136 from about nucleotide 216 to about nucleotide 260; the fragment of SEQ ID NO:137 from about nucleotide 132 to about nucleotide 188; the fragment of SEQ ID NO:138 from about nucleotide 231 to about nucleotide 278; the fragment of SEQ ID NO:139 from about nucleotide 303 to about nucleotide 350; the fragment of SEQ ID NO:140 from about nucleotide 507 to about nucleotide 550; the fragment of SEQ ID NO:141 from about nucleotide 433 to about nucleotide 477; the fragment of SEQ ID NO:142 from about nucleotide 266 to about nucleotide 314; the fragment of SEQ ID: 143 from about nucleotide 3 to about nucleotide 48; the fragment of SEQ ID NO:144 from about nucleotide 76 to about nucleotide 122; the fragment of SEQ ID NO:145 from about nucleotide 93 to about nucleotide 139; the fragment of SEQ ID NO:146 from about nucleotide 241 to about nucleotide 286; the fragment of SEQ ID NO:147 from about nucleotide 43 to about nucleotide 89; the fragment of SEQ ID NO:148 from about nucleotide 219 to about nucleotide 265; the fragment of SEQ ID NO:149 from about nucleotide 619 to about nucleotide 663; the fragment of SEQ ID NO:150 from about nucleotide 25 to about nucleotide 69; the fragment of SEQ ID NO:151 from about nucleotide 175 to about nucleotide 221; the fragment of SEQ ID NO:152 from about nucleotide 94 to about nucleotide 138; the fragment of SEQ ID NO:153 from about nucleotide 46 to about nucleotide 90; the fragment of SEQ ID NO:154 from about nucleotide 1081 to about nucleotide 1127; the fragment of SEQ ID NO:155 from about nucleotide 31 to about nucleotide 77; the fragment of SEQ ID NO:156 from about nucleotide 157 to about nucleotide 201; the fragment of SEQ ID NO:157 from about nucleotide 216 to about nucleotide 259; and the fragment of SEQ ID NO:158 from about nucleotide 517 to about nucleotide 561. The polypeptides encoded by these fragments may be useful, for example, as antigenic polypeptides.
[0103] The invention also encompasses HTMPN variants. A preferred HTMPN variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HTMPN amino acid sequence, and which contains at least one functional or structural characteristic of HTMPN.
[0104] The invention also encompasses polynucleotides which encode HTMPN. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:80-158, which encodes HTMPN.
[0105] The invention also encompasses a variant of a polynucleotide sequence encoding HTMPN. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HTMPN. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:80-158 which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:80-158. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HTMPN.
[0106] It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HTMPN, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTMPN, and all such variations are to be considered as being specifically disclosed.
[0107] Although nucleotide sequences which encode HTMPN and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HTMPN under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTMPN or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HTMPN and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
[0108] The invention also encompasses production of DNA sequences which encode HTMPN and HTMPN derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HTMPN or any fragment thereof.
[0109] Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:80-158 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A. R. (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30° C., more preferably of at least about 37° C., and most preferably of at least about 42° C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30° C. in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37° C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 μg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42° C. in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS. 50% formamide, and 200 μg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.
[0110] The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25° C., more preferably of at least about 42° C., and most preferably of at least about 68° C. In a preferred embodiment, wash steps will occur at 25° C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42° C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68° C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.
[0111] Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland Ohio), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway N.J.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg Md.). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno Nev.), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown Mass.) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale Calif.). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F. M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., unit 7.7; Meyers, R. A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York N.Y., pp. 856-853.)
[0112] The nucleic acid sequences encoding HTMPN may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J. D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto Calif.) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth Minn.) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68° C. to 72° C.
[0113] When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
[0114] Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
[0115] In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HTMPN may be cloned in recombinant DNA molecules that direct expression of HTMPN, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTMPN.
[0116] The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTMPN-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
[0117] In another embodiment, sequences encoding HTMPN may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M. H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.) Alternatively, HTMPN itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J. Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HTMPN, or any part thereof may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.
[0118] The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R. M. and F. Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York N.Y.)
[0119] In order to express a biologically active HTMPN, the nucleotide sequences encoding HTMPN or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTMPN. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTMPN. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HTMPN and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)
[0120] Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HTMPN and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview N.Y., ch. 4, 8, and 16-17; Ausubel, F. M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., ch. 9, 13, and 16.)
[0121] A variety of expression vector/host systems may be utilized to contain and express sequences encoding HTMPN. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.
[0122] In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTMPN. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTMPN can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla Calif.) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HTMPN into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HTMPN are needed, e.g. for the production of antibodies, vectors which direct high level expression of HTMPN may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.
[0123] Yeast expression systems may be used for production of HTMPN. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g. Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)
[0124] Plant systems may also be used for expression of HTMPN. Transcription of sequences encoding HTMPN may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York N.Y., pp. 191-196.)
[0125] In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HTMPN may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HTMPN in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.
[0126] Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355.)
[0127] For long term production of recombinant proteins in mammalian systems, stable expression of HTMPN in cell lines is preferred. For example, sequences encoding HTMPN can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
[0128] Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk.sup.- or apr.sup.- cells, respectively. (See, e.g., Wigler. M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides, neomycin and G-418; and als or pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C. A. (1995) Methods Mol. Biol. 55:121-131.)
[0129] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HTMPN is inserted within a marker gene sequence, transformed cells containing sequences encoding HTMPN can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HTMPN under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
[0130] In general, host cells that contain the nucleic acid sequence encoding HTMPN and that express HTMPN may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
[0131] Immunological methods for detecting and measuring the expression of HTMPN using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HTMPN is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul Minn., Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York N.Y.; and Pound, J. D. (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).
[0132] A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTMPN include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HTMPN, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison Wis.), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
[0133] Host cells transformed with nucleotide sequences encoding HTMPN may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HTMPN may be designed to contain signal sequences which direct secretion of HTMPN through a prokaryotic or eukaryotic cell membrane.
[0134] In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda Md.) and may be chosen to ensure the correct modification and processing of the foreign protein.
[0135] In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HTMPN may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HTMPN protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HTMPN activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HTMPN encoding sequence and the heterologous protein sequence, so that HTMPN may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
[0136] In a further embodiment of the invention, synthesis of radiolabeled HTMPN may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably 35S-methionine.
[0137] Fragments of HTMPN may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra., pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HTMPN may be synthesized separately and then combined to produce the full length molecule.
Therapeutics
[0138] Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HTMPN and human transmembrane proteins. In addition, the expression of HTMPN is closely associated with tissue involved in inflammation and the immune response and with cell proliferative conditions including cancer, and in reproductive, gastrointestinal, fetal, smooth muscle, cardiovascular, developmental, and nervous tissue. Therefore, HTMPN appears to play a role in immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders. In the treatment of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders associated with increased HTMPN expression or activity, it is desirable to decrease the expression or activity of HTMPN. In the treatment of the above conditions associated with decreased HTMPN expression or activity, it is desirable to increase the expression or activity of HTMPN.
[0139] Therefore, in one embodiment, HTMPN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN. Examples of such disorders include, but are not limited to, an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease. Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy, cirrhosis, jaundice, cholestasis, hereditary hyperbilirubinemia, hepatic encephalopathy, hepatorenal syndrome, hepatitis, hepatic steatosis, hemochromatosis, Wilson's disease, α1-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, passive congestion, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hernoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a developmental disorder including, but not limited to, those listed above.
[0140] In another embodiment, a vector capable of expressing HTMPN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those described above.
[0141] In a further embodiment, a pharmaceutical composition comprising a substantially purified HTMPN in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those provided above.
[0142] In still another embodiment, an agonist which modulates the activity of HTMPN may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those listed above.
[0143] In a further embodiment, an antagonist of HTMPN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMPN. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HTMPN may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HTMPN.
[0144] In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HTMPN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMPN including, but not limited to, those described above.
[0145] In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
[0146] An antagonist of HTMPN may be produced using methods which are generally known in the art. In particular, purified HTMPN may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTMPN. Antibodies to HTMPN may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.
[0147] For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTMPN or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.
[0148] It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HTMPN have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HTMPN amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
[0149] Monoclonal antibodies to HTMPN may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; and Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120.)
[0150] In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M. S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HTMPN-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D. R. (1991) Proc. Natl. Acad. Sci. 88:10134-10137.)
[0151] Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
[0152] Antibody fragments which contain specific binding sites for HTMPN may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W. D. et al. (1989) Science 246:1275-1281.)
[0153] Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HTMPN and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTMPN epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).
[0154] Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HTMPN. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of HTMPN-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTMPN epitopes, represents the average affinity, or avidity, of the antibodies for HTMPN. The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTMPN epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about 109 to 1012 L/mole are preferred for use in immunoassays in which the HTMPN-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Ka ranging from about 106 to 107 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTMPN, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, D.C.; Liddell. J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York N.Y.).
[0155] The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HTMPN-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)
[0156] In another embodiment of the invention, the polynucleotides encoding HTMPN, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HTMPN may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HTMPN. Thus, complementary molecules or fragments may be used to modulate HTMPN activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTMPN.
[0157] Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HTMPN. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)
[0158] Genes encoding HTMPN can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HTMPN. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.
[0159] As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HTMPN. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J. E. et al. (1994) in Huber, B. E. and B. I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco N.Y., pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
[0160] Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTMPN.
[0161] Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
[0162] Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HTMPN. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
[0163] RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.
[0164] Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See. e.g., Goldman, C. K. et al. (1997) Nature Biotechnology 15:462-466.)
[0165] Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.
[0166] An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HTMPN, antibodies to HTMPN, and mimetics, agonists, antagonists, or inhibitors of HTMPN. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.
[0167] The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
[0168] In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.).
[0169] Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
[0170] Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.
[0171] Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
[0172] Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
[0173] Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.
[0174] For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
[0175] The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
[0176] The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
[0177] After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HTMPN, such labeling would include amount, frequency, and method of administration.
[0178] Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.
[0179] For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
[0180] A therapeutically effective dose refers to that amount of active ingredient, for example HTMPN or fragments thereof, antibodies of HTMPN, and agonists, antagonists or inhibitors of HTMPN, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD50/ED50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
[0181] The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
[0182] Normal dosage amounts may vary from about 0.1 μg to 100.000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
Diagnostics
[0183] In another embodiment, antibodies which specifically bind HTMPN may be used for the diagnosis of disorders characterized by expression of HTMPN, or in assays to monitor patients being treated with HTMPN or agonists, antagonists, or inhibitors of HTMPN. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HTMPN include methods which utilize the antibody and a label to detect HTMPN in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
[0184] A variety of protocols for measuring HTMPN, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HTMPN expression. Normal or standard values for HTMPN expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HTMPN under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HTMPN expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.
[0185] In another embodiment of the invention, the polynucleotides encoding HTMPN may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HTMPN may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HTMPN, and to monitor regulation of HTMPN levels during therapeutic intervention.
[0186] In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTMPN or closely related molecules may be used to identify nucleic acid sequences which encode HTMPN. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HTMPN, allelic variants, or related sequences.
[0187] Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HTMPN encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:80-158 or from genomic sequences including promoters, enhancers, and introns of the HTMPN gene.
[0188] Means for producing specific hybridization probes for DNAs encoding HTMPN include the cloning of polynucleotide sequences encoding HTMPN or HTMPN derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
[0189] Polynucleotide sequences encoding HTMPN may be used for the diagnosis of disorders associated with expression of HTMPN. Examples of such disorders include, but are not limited to, an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxia& multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy, cirrhosis, jaundice, cholestasis, hereditary hyperbilirubinemia, hepatic encephalopathy, hepatorenal syndrome, hepatitis, hepatic steatosis, hemochromatosis, Wilson's disease, α1-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, passive congestion, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a developmental disorder including, but not limited to, those listed above. The polynucleotide sequences encoding HTMPN may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTMPN expression. Such qualitative or quantitative methods are well known in the art.
[0190] In a particular aspect, the nucleotide sequences encoding HTMPN may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HTMPN may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HTMPN in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
[0191] In order to provide a basis for the diagnosis of a disorder associated with expression of HTMPN, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTMPN, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
[0192] Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
[0193] With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
[0194] Additional diagnostic uses for oligonucleotides designed from the sequences encoding HTMPN may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HTMPN, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTMPN, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.
[0195] Methods which may also be used to quantitate the expression of HTMPN include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P. C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.)
[0196] The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
[0197] In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.
[0198] Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T. M. et al. (1995) U.S. Pat. No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R. A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M. J. et al. (1997) U.S. Pat. No. 5,605,662.)
[0199] In another embodiment of the invention, nucleic acid sequences encoding HTMPN may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355; Price, C. M. (1993) Blood Rev. 7:127-134; and Trask, B. J. (1991) Trends Genet. 7:149-154.)
[0200] Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HTMPN on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.
[0201] In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another to mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R. A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
[0202] In another embodiment of the invention, HTMPN, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HTMPN and the agent being tested may be measured.
[0203] Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HTMPN, or fragments thereof, and washed. Bound HTMPN is then detected by methods well known in the art. Purified HTMPN can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
[0204] In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HTMPN specifically compete with a test compound for binding HTMPN. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HTMPN.
[0205] In additional embodiments, the nucleotide sequences which encode HTMPN may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
[0206] Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
[0207] The entire disclosure of all applications, patents, and publications, cited above and below, and of U.S. provisional application 60/087,260 (filed May 29, 1998), 60/091,674 (filed Jul. 2, 1998), 60/102,954 (filed Oct. 2, 1998), and 60/109,869 (filed Nov. 24, 1998) is hereby incorporated by reference.
EXAMPLES
I. Construction of cDNA Libraries
[0208] RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
[0209] Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia Calif.), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).
[0210] In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto Calif.). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.
II. Isolation of cDNA Clones
[0211] Plasmids were recovered from host cells by in vivo excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg Md.); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4° C.
[0212] Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V. B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene Oreg.) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
III. Sequencing and Analysis
[0213] The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 (Hamilton) systems in combination with the PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced using the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). In yet another alternative. cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, supra. unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.
[0214] The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco Calif.) and LASERGENE software (DNASTAR).
[0215] The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probalistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S. R. (1996) Cur. Opin. Str. Biol. 6:361-365.)
[0216] The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:80-158. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.
IV. Northern Analysis
[0217] Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)
[0218] Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
% sequence identity × % maximum BLAST score 100 ##EQU00001##
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.
[0219] The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HTMPN occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.
V. Extension of HTMPN Encoding Polynucleotides
[0220] Full length nucleic acid sequences of SEQ ID NOs:80-120 were produced by extension of the component fragments described in Table 1, column 5, using oligonucleotide primers based on these fragments. For each nucleic acid sequence, one primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to facilitate the extension of the known sequence "outward" generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGO® 4.06 (National Biosciences, Plymouth, Minn.), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
[0221] Selected human cDNA libraries (GIBCO BRL) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.
[0222] High fidelity amplification was obtained by following the instructions for the XL-PCR® kit (The Perkin-Elmer Corp., Norwalk, Conn.) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the PTC-200 thermal cycler (MJ Research, Inc., Watertown, Mass.), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:
TABLE-US-00001 Step 1 94° C. for 1 min (initial denaturation) Step 2 65° C. for 1 min Step 3 68° C. for 6 min Step 4 94° C. for 15 sec Step 5 65° C. for 1 min Step 6 68° C. for 7 min Step 7 Repeat steps 4 through 6 for an additional 15 cycles Step 8 94° C. for 15 sec Step 9 65° C. for 1 min Step 10 68° C. for 7:15 min Step 11 Repeat steps 8 through 10 for an additional 12 cycles Step 12 72° C. for 8 min Step 13 4° C. (and holding)
[0223] A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICK® (QIAGEN Inc.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.
[0224] After ethanol precipitation, the products were redissolved in 13 μl of ligation buffer, 1 μl T4-DNA ligase (15 units) and 1 μl T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16° C. Competent E. coli cells (in 40 μl of appropriate media) were transformed with 3 μl of ligation mixture and cultured in 80 μl of SOC medium. (See, e.g., Sambrook, supra, Appendix A, p. 2.) After incubation for one hour at 37° C., the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2× carb). The following day, several colonies were randomly picked from each plate and cultured in 150 μl of liquid LB/2× carb medium placed in an individual well of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 μl of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 μl from each sample was transferred into a PCR array.
[0225] For PCR amplification, 18 μl of concentrated PCR reaction mix (3.3×) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:
TABLE-US-00002 Step 1 94° C. for 60 sec Step 2 94° C. for 20 sec Step 3 55° C. for 30 sec Step 4 72° C. for 90 sec Step 5 Repeat steps 2 through 4 for an additional 29 cycles Step 6 72° C. for 180 sec Step 7 4° C. (and holding)
[0226] Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.
[0227] The full length nucleic acid sequences of SEQ ID NO:121-158 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
[0228] Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
[0229] High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH4)2SO4, and β-mercaptoethanol. Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94° C., 3 min: Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 57° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.
[0230] The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene Oreg.) dissolved in 1×TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.
[0231] The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly Mass.) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37° C. in 384-well plates in LB/2× carb liquid media.
[0232] The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 72° C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72° C., 5 min; Step 7: storage at 4° C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).
[0233] In like manner, the nucleotide sequences of SEQ ID NO:80-158 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.
VI. Labeling and Use of Individual Hybridization Probes
[0234] Hybridization probes derived from SEQ ID NO:80-158 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston Mass.). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, XbaI, or Pvu II (DuPont NEN).
[0235] The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham N.H.). Hybridization is carried out for 16 hours at 40° C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1× saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester N.Y.) is exposed to the blots to film for several hours, hybridization patterns are compared visually.
VII. Microarrays
[0236] A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.
[0237] Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena. M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.
VIII. Complementary Polynucleotides
[0238] Sequences complementary to the HTMPN-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTMPN. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HTMPN. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTMPN-encoding transcript.
IX. Expression of HTMPN
[0239] Expression and purification of HTMPN is achieved using bacterial or virus-based expression systems. For expression of HTMPN in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HTMPN upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HTMPN in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTMPN by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)
[0240] In most expression systems, HTMPN is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HTMPN at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified HTMPN obtained by these methods can be used directly in the following activity assay.
X. Demonstration of HTMPN Activity
[0241] Given the chemical and structural similarity between the HTMPN and other members of the transmembrane protein families, HTMPN is identified as a new member of the membrane spanning proteins and is presumed to be involved in the regulation of cell growth. To demonstrate that increased levels of HTMPN expression correlates with decreased cell motility and increased cell proliferation, expression vectors encoding HTMPN are electroporated into highly motile cell lines, such as U-937 (ATCC CRL 1593), HEL 92.1.7 (ATCC TIB 180) and MAC10, and the motility of the electroporated and control cells are compared. Methods for the design and construction of an expression vector capable of expressing HTMPN in the desired mammalian cell line(s) chosen are well known to the art. Assays for examining the motility of cells in culture are known to the art (cf Miyake, M. et al. (1991) J. Exp. Med. 174:1347-1354 and Ikeyama, S. et al. (1993) J. Exp. Med. 177:1231-1237). Increasing the level of HTMPN in highly motile cell lines by transfection with an HTMPN expression vector inhibits or reduces the motility of these cell lines, and the amount of this inhibition is proportional to the activity of HTMPN in the assay.
[0242] Alternatively, the activity of HTMPN may be measured using an assay based upon the property of MPs to support in vitro proliferation of fibroblasts and tumor cells under serum-free conditions. (Chiquet-Ehrismann, R. et al. (1986) Cell 47:131-139.) Wells in 96 well cluster plates (Falcon, Fisher Scientific, Santa Clara, Calif.) are coated with HTMPN by incubation with solutions at 50-100 μg HTMPN/ml for 15 min at ambient temperature. The coating solution is aspirated, and the wells washed with Dulbecco's medium before cells are plated. Rat fibroblast cultures or rat mammary tumor cells are prepared as described. (Chiquet-Ehrismann, R. et al. supra.) and plated at a density of 104-105 cells/ml in Dulbecco's medium supplemented with 10% fetal calf serum.
[0243] After three days the medium is removed, and the cells washed three times with phosphate-buffered saline (PBS), pH 7.0, before addition of serum-free Dulbecco's medium containing 0.25 mg/ml bovine serum albumin (BSA, Fraction V, Sigma Chemical Company, St. Louis. MO). After 2 days the medium is aspirated, and 100 μl of [3H]thymidine (NEN) at 2 μCi/ml in fresh Dulbecco's medium containing 0.25 mg/ml BSA is added. Parallel plates are fixed and stained to determine cell numbers. After 16 hr, the medium is aspirated, the cell layer washed with PBS, and the 10% trichloroacetic acid-precipitable radioactivity in the cell layer determined by liquid scintillation counting (normalized to relative cell numbers; Chiquet-Ehrismann, R. et al. supra). The amount of radioisotope-labeled DNA incorporated into chromatin under serum-free conditions is proportional to the activity of HTMPN.
[0244] Alternatively. HTMPN, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent (See, e.g., Bolton et al. (1973) Biochem. J. 133:529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMPN, washed, and any wells with labeled HTMPN complex are assayed. Data obtained using different concentrations of HTMPN are used to calculate values for the number, affinity, and association of HTMPN with the candidate molecules.
XI. Functional Assays
[0245] HTMPN function is assessed by expressing the sequences encoding HTMPN at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad Calif.), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York N.Y.
[0246] The influence of HTMPN on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTMPN and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success N.Y.). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTMPN and other genes of interest can be analyzed by northern analysis or microarray techniques.
XII. Production of HTMPN Specific Antibodies
[0247] HTMPN substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M. G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
[0248] Alternatively, the HTMPN amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
[0249] Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
XIII. Purification of Naturally Occurring HTMPN Using Specific Antibodies
[0250] Naturally occurring or recombinant HTMPN is substantially purified by immunoaffinity chromatography using antibodies specific for HTMPN. An immunoaffinity column is constructed by covalently coupling anti-HTMPN antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
[0251] Media containing HTMPN are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTMPN (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HTMPN binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTMPN is collected.
XIV. Identification of Molecules which Interact with HTMPN
[0252] HTMPN, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent (See, e.g., Bolton et al. (1973) Biochem. J. 133:529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMPN, washed, and any wells with labeled HTMPN complex are assayed. Data obtained using different concentrations of HTMPN are used to calculate values for the number, affinity, and association of HTMPN with the candidate molecules.
[0253] Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
TABLE-US-00003 TABLE 1 Nucle- Protein otide SEQ ID SEQ ID NO: NO: Clone ID Library Fragments 1 80 153831 THPIPLB02 153831 (THPIPLB02), 2700741H1 (OVARTUT10), 881348R1 (THYRNOT02), 1856588F6 (PROSNOT18) 2 81 350629 LVENNOT01 350629 and 350629T6 (LVENNOT01), 3499109H1 (PROSTUT13) 3 82 729171 LUNGNOT03 729171 and 729171R6 (LUNGNOT03), 1645343H1 (HEARFET01), 680519X2 and 680519X1 (UTRSNOT02), 625051R6 (PGANNOT01), 1459466F1 (COLNFET02), 1225759T1 (COLNNOT01), 2590526H1 (LUNGNOT22), 2807811H1 (BLADTUT08) 4 83 1273641 TESTTUT02 1273641 and 1273641F6 (TESTTUT02), 1308181F6 and 1308181F1 (COLNFET02), 1427606F1 (SINTBST01), 756171H1 (BRAITUT02), 2416518F6 (HNT3AZT01), 4242346H1 (SYNWDIT01) 5 84 1427389 SINTBST01 1427389 (SINTBST01), 3097151H1 (CERVNOT03), 723779R1 (SYNOOAT01) 6 85 1458357 COLNFET02 1458357 (COLNFET02), SAOA01955F1, SAOA03146F1, SAOA03356F1, SAOA00213F1 7 86 1482837 CORPNOT02 1482837 and 1482837T6 (CORPNOT02), 869453H1 (LUNGAST01), 3564972F6 (SKINNOT05), 663983H1 (SCORNOT01), 1315073F6 (BLADTUT02), 3809242H1 (CONTTUT01), 311459T6 (LUNGNOT02), 1798893F6 (COLNNOT27) 8 87 1517434 PANCTUT01 1517434 (PANCTUT01), 2848842H1 (BRSTTUT13), 586843X1 (UTRSNOT01), 1261245R1 (SYNORAT05), 1554505F1 (BLADTUT04) 9 88 1536052 SPLNNOT04 1536052 and 1531447T6 (SPLNNOT04), 1729124T6 (BRSTTUT08) 10 89 1666118 BRSTNOT09 1666118 (BRSTNOT09), 907075R2 (COLNNOT08), 1524914T1 (UCMCL5T01), 1283459F6 (COLNNOT16) 11 90 1675560 BLADNOT05 1675560 and 1675560T6 (BLADNOT05) 12 91 1687323 PROSTUT10 1687323 and 1687323F6(PROSTUT10), 2292356R3 (BRAINON01) 13 92 1692236 PROSTUT10 1692236 (PROSTUT10), 2786557F6 (BRSTNOT13), 602869R6 and 602869T6 (BRSTTUT01), 2258230H1 (OVARTUT01), 780083T1 (MYOMNOT01), 2057230T6 (BEPINOT01), 288105R1 (EOSIHET02) 14 93 1720847 BLADNOT06 1720847, 1722250F6, and 1722250T6 (BLADNOT06) 15 94 1752821 LIVRTUT01 1752821 (LIVRTUT01), 3180328H1 (TLYJNOT01), 1969457T6 (BRSTNOT04), 2608504H1 (BONTNOT01), 2455688T6 and 2455688F6 (ENDANOT01), 1816354F6 (PROSNOT20) 16 95 1810923 PROSTUT12 1810923 and 1810923T6 (PROSTUT12), 3221260H1 (COLNNON03) 17 96 1822315 GBLATUT01 1822315 (GBLATUT01), 1841726H1 (COLNNOT07), 1598582T6 (BLADNOT03), 1264125R1 (SYNORAT05), 645048H1 (BRSTTUT02), 1474782H1 (LUNGTUT03), 352739F1 (LVENNOT01), 876001R1 (LUNGAST01) 18 97 1877777 LEUKNOT03 1877777 (LEUKNOT03), 1219656H1 (NEUTGMT01), 1471553T1 (LUNGTUT03) 19 98 1879819 LEUKNOT03 1879819 (LEUKNOT03), 1734538H1 (COLNNOT22), 1428615F6 (SINTBST01), 3558710H1 (LUNGNOT31), 1996096R6 (BRSTTUT03) 20 99 1932945 COLNNOT16 1932945 (COLNNOT16), 2383333H1 (ISLTNOT01), 2706050F6 (PONSAZT01), 21 100 2061026 OVARNOT03 2061026 (OVARNOT03) 22 101 2096687 BRAITUT02 2096687 (BRAITUT02), 2204640H1 (SPLNFET02) 23 102 2100530 BRAITUT02 2100530 (BRAITUT02), 2740969F6 (BRSTTUT14) 24 103 2357636 LUNGNOT20 2357636 (LUNGNOT20), 2693537H1 (LUNGNOT23), 1794235T6 (PROSTUT05), 235425R6 (SINTNOT02), 760091R1 (BRAITUT02), 887877R1 (PANCNOT05) 25 104 2365230 ADRENOT07 2365230 (ADRENOT07), 2921195H1 (SININOT04) 26 105 2455121 ENDANOT01 2455121 and 2455121F6 (ENDANOT01) 27 106 2472514 THPINOT03 2472514 (THPINOT03), 3212904H1 (BLADNOT08) 28 107 2543486 UTRSNOT11 2543486 (UTRSNOT11), 2374764H1 (ISLTNOT01), 1359576F1 (LUNGNOT12), 1357170H1 (LUNGNOT09) 29 108 2778171 OVARTUT03 2778171 (OVARTUT03), 1822045H1 (GBLATUT01), 1692535F6 (COLNNOT23), 1905275F6 (OVARNOT07) 30 109 2799575 PENCNOT01 2799575 (PENCNOT01), 874115H1 (LUNGAST01), 967837R1 (BRSTNOT05), 3235248T6 and 3235248F6 (COLNUCT03) 31 110 2804955 BLADTUT08 2804955 (BLADTUT08), 732534H1 (LUNGNOT03), 402168R1 (TMLR3DT01), 3481814H1 (K1DNNOT31), 1485989F1 (CORPNOT02) 32 111 2806395 BLADTUT08 2806395 (BLADTUT08), 1579109H1 (DUODNOT01), 1533572F1 (SPLNNOT04), 1889837F6 and 1889837T6 (BLADTUT07), 2414178F6 (HNT3AZT01) 33 112 2836858 TLYMNOT03 2836858 and 2836858CT1 (TLYMNOT03), 2127516H1 (KIDNNOT05) 34 113 2844513 DRGLNOT01 2844513 and 2844513T6 (DRGLNOT01), 388885T6 (THYMNOT02), 287344F1 (EOSIHET02), 3867626H1 (BMARNOT03) 35 114 3000380 TLYMNOT06 3000380 (TLYMNOT06), 1930658H1 (COLNTUT03), 2395295F6 (THP1AZT01), 1242456R6 (LUNGNOT03) 36 115 182532 PLACNOB01 062374H1, 062962R6, 064457R6, and 182532H1 (PLACNOB01), 3144248X12F1 (HNT2AZS07) 37 116 239589 HIPONOT01 239589H1 and 239589X13 (HIPONOT01), 264805R6 (HNT2AGT01), 552683X17 (SCORNOT01), 1595053F1 (BRAINOT14) 38 117 1671302 BMARNOT03 399804H1 (PITUNOT02), 1458549H1 (COLNFET02), 1671302F6 and 1671302H1 (BMARNOT03), 2093453R6 (PANCNOT04), 2498385F6 and 2498385T6 (ADRETUT05) 39 118 2041858 HIPONON02 063184R1 (PLACNOB01), 1294823F1 (PGANNOT03), 1303974F1 (PLACNOT02), 1648770F6 (PROSTUT09), 2041858H1 (HIPONON02) 40 119 2198863 SPLNFET02 1880470F6 (LEUKNOT03), 1888946F6 (BLADTUT07), 2198863F6 and 2198863H1 (SPLNFET02) 41 120 3250703 SEMVNOT03 1317728H1, 1318433H1, 1319354H1, 1319380F1, 1320494H1, and 1320812F1 (BLADNOT04), 3247874H1, 3249188H1, 3249385H1, and 3250703H1 (SEMVNOT03) 42 121 350287 LVENNOT01 062018F1 (PLACNOB01), 350287H1 (LVENNOT01), 869320R1 (LUNGAST01), 1416927F6 (BRAINOT12), 3083789H1 (OVARTUN01) 43 122 1618171 BRAITUT12 1618171F6 and 1618171H1 (BRAITUT12), 3316315F6 (PROSBPT03) 44 123 1625863 COLNPOT01 1625863H1 and 1625863T6 (COLNPOT01), 2100364R6 (BRA1TUT02) 45 124 1638353 UTRSNOT06 1638353H1 (UTRSNOT06), 3733085H1 (SMCCNOS01), 3882774T6 (SPLNNOT11), 1626195T6 (COLNPOT01), 1495745H1 (PROSNON01) 46 125 1726843 PROSNOT14 826000T1 (PROSNOT06), 1726843F6 and 1726843H1 (PROSNOT14), 2225762F6 (SEMVNOT01), 2480248H1 (SMCANOT01), 2600692F6 (UTRSNOT10), 2728257F6 (OVARTUT05) 47 126 1754506 LIVRTUT01 907854R2 (COLNNOT09), 1354345F1 (LUNGNOT09), 1359472F1 (LUNGNOT12), 1397284F1 (BRAITUT08), 1557921F1 (BLADTUT04), 1754506F6 and 1754506H1 (LIVRTUT01) 48 127 1831378 THP1AZT01 441541R1 (MPHGNOT03), 712292R6 (SYNORAT04), 1311835F1 (COLNFET02), 1555765F6 (BLADTUT04), 1831378H1 (THPIAZT01), 1865502F6 (PROSNOT19), 3077521H1 (BONEUNT01), 3555043H1 (SYNONOT01), 3774618H1 (BRSTNOT25) 49 128 1864943 PROSNOT19 714070F1 (PROSTUT01), 736327R1 (TONSNOT01), 1864943H1 (PROSNOT19), 2672921F6 (KIDNNOT19) 50 129 1911316 CONNTUT01 777070F1 (COLNNOT05), 1911316H1 and 1911316T6 (CONNTUT01) 51 130 1943120 HIPONOT01 1516263F1 (PANCTUT01), 1943120H1 (HIPONOT01), 2469009F6 (THYRNOT08), 2522459F6 (BRAITUT21), 3202972F6 (PENCNOT02), 4383679H1 (BRAVUTT02) 52 131 2314236 NGANNOT01 2314236H1 (NGANNOT01), 2812085F6 (OVARNOT10), 3949704T6 (DRGCNOT01) 53 132 2479409 SMCANOT01 2479409F6 and 2479409H1 (SMCANOT01) 54 133 2683149 S1N1UCT01 760389H1 (BRAITUT02), 1634372F6 (COLNNOT19), 1695052F6 (COLNNOT23), 1736429F6 (COLNNOT22), 2048429F6 (LIVRFET02), 2683149H1 (SINIUCT01), 3282234F6 (STOMFET02) 55 134 2774051 PANCNOT15 1852505F6 (LUNGFET03), 2774051F6 and 2774051H1 (PANCNOT15) 56 135 2869038 THYRNOT10 536017R6 (ADRENOT03), 2770632F6 (COLANOT02), 2795420F6 (NPOLNOT01), 2869038F6 and 2869038H1 (THYRNOT10), 3323992H1 (PTHYNOT03) 57 136 2918334 THYMFET03 2918334H1 (THYMFET03), SBNA01788F1 58 137 2949916 KIDNFET01 2949916H1 (KIDNFET01), SBMA00738F1 59 138 2989375 KIDNFET02 437481R6 and 437481T6 (THYRNOT01), 2989375H1 (KIDNFET02) 60 139 3316764 PROSBPT03 1328462F1 (PANCNOT07), 1691807F6 (PROSTUT10), 1851237F6 (LUNGFET03), 3316764H1 (PROSBPT03), 5092348H1 (UTRSTMR01) 61 140 3359559 PROSTUT16 943684 and 943564 (ADRENOT03), 1697079F6 (COLNNOT23), 2717735H1 (THYRNOT09), 2792705H1 (COLNTUT16), 3359559H1 (PROSTUT16) 62 141 4289208 BRABDIR01 3990421R6 (LUNGNON03), 4289208H1 (BRABDIR01) 63 142 2454013 ENDANOT01 014571R1 (THP1PLB01), 1303790T1 (PLACNOT02), 1342791T1 (COLNTUT03), 1351680F1 (LATRTUT02), 1359607T1 (LUNGNOT12), 2454013F6 and 2454013H1 (ENDANOT01) 64 143 2454048 ENDANOT01 551329R1 and 2056675R6 (BEPINOT01), 819281R1 (KERANOT02), 2454048H1 (ENDANOT01), 3143588H1 (HNT2AZS07) 65 144 2479282 SMCANOT01 873307R1 (LUNGAST01), 2479282H1 and 2479282T6 (SMCANOT01), 2610082F6 (COLNTUTI5), SANA03636F1 66 145 2483432 SMCANOT01 940455T1 (ADRENOT03), 1863558T6 (PROSNOT19), 2483432H1 (SMCANOT01), 2641345H1 (LUNGTUT08), 3245089T6 (BRAINOT19), SBCA02765F1 67 146 2493824 ADRETUT05 489685F1 (HNT2AGT01), 530794H1 (BRAINOT03), 735826R1 (TONSNOT01), 2056809R6 (BEPINOT01), 2493824H1 (ADRETUT05), 2763162F6 (BRSTNOT12), 2812426H1 (OVARNOT10) 68 147 2555823 THYMNOT03 1266972F6 (BRAINOT09), 1335461T1 (COLNNOT13), 1900947F6 (BLADTUT06), 1942256T6 (HIPONOT01), 2555823H1 (THYMNOT03), SARB01019F1, SARB01303F1 69 148 2598242 OVARTUT02 320268F1 (EOSIHET02), 738915R1 (PANCNOT04), 1250161F1 (LUNGFET03), 2598242F6 and 2598242H1 (OVARTUT02), 5020793H1 (OVARNON03), SASA00178F1 70 149 2634120 COLNTUT15 1398694F1 (BRAITUT08), 1506594F1 (BRAITUT07), 2120954F6 (BRSTNOT07), 2634120F6 and 2634120H1 (COLNTUT15), 2761586H1 (BRAINOS12), 2806841F6 (BLADTUT08) 71 150 2765411 BRSTNOT12 2765236T6 and 27654HH1 (BRSTNOT12), 4058218H1 (SPLNNOT13) 72 151 2769412 COLANOT02 1715480F6 (UCMCNOT02), 2769412H1 (COLANOT02), SBDA04076F1 73 152 2842779 DRGLNOT01 12627HR1 (SYNORAT05), 1710449T6 (PROSNOT16), 2842779F6 (DRGLNOT01), 2842779H1 (DRGLNOT01), 2850941F6 (BRSTTUT13), 3123378H1 (LNODNOT05), 3457873H1 (293TF1T01), SBGA04623F1, SAOA02667F1 74 153 2966260 SCORNOT04 530242H1 (BRAINOT03), 2113607H1 (BRAITUT03), 2125619F6 (BRSTNOT07), 2155349H1 and 2156022H1 (BRAINOT09), 2966260F6, 2966260H1, and 2966260T6 (SCORNOT04), 3270731H1 (BRAINOT20), 3272328F6 (PROSBPT06) 75 154 2993326 KIDNFET02 190217F1 (SYNORAB01), 815990R1 and 815990T1 (OVARTUT01), 2993326H1 (KIDNFET02), 3629860H1 (COLNNOT38) 76 155 3001124 TLYMNOT06 2123347T6 (BRSTNOT07), 3001124H1 (TLYMNOT06), SBEA07088F3 77 156 3120070 LUNGTUT13 021565F1 (ADENINB01), 144798R1 (TLYMNOR01), 1216676H1 (BRSTTUT01), 2024357H1 (KERANOT02), 2616322H1 (GBLANOT01), 2742604H1 (BRSTTUT14), 2746025H1 (LUNGTUT11), 2924884H1 (SININOT04), 3120070H1 (LUNGTUT13) 78 157 3133035 SMCCNOT01 1478001F1 and 1482667H1 (CORPNOT02), 2812193F6 and 2812193T6 (OVARNOT10), 3133035H1 and 3133035T6 (SMCCNOT01), 5025075F6 (OVARNON03) 79 158 3436879 PENCNOT05 3323031F6 (PTHYNOT03), 3436879F6 and 3436879H1 (PENCNOT05), 4247733H1 (BRABDIT01)
TABLE-US-00004 TABLE 2 SEQ Amino Potential ID Acid Glycosylation Analytical NO: Residues Potential Phosphorylation Sites Sites Signature Sequence Identification Methods 1 240 S233 S159 T194 T43 T77 T129 N73 N101 N167 S33-G36 Somatostatin receptor BLAST, T134 S171 L198-L219 tyrosine kinase BLOCKS, HMM 2 100 S6 S64 Meningioma-expressed BLAST, antigen 11 PRINTS, HMM 3 416 S14 S62 T109 T177 T340 S365 N144 N277 PMP-22/EMP/MP20 family BLOCKS, S380 S6 T7 T205 S327 T331 PRINTS, HMM Y56 4 224 T31 T57 S86 S173 S214 B cell growth factor BLAST 5 247 S103 T60 S113 S235 5-hydroxytryptamine PRINTS receptor 6 72 Frizzled protein PRINTS, HMM 7 106 S97 S9 S24 T31 Dopamine 2 receptor BLAST, PRINTS, HMM 8 239 S233 N230 PB39 protein BLAST, HMM 9 150 S53 S111 T127 CD44 antigen precursor PRINTS, HMM 10 110 S12 N92 Anion exchanger BLOCKS, PRINTS, HMM 11 58 N5 N9 Neurofibromatosis type 2 BLAST, PRINTS, HMM 12 221 S35 S178 S60 S183 mitsugumin 23 BLAST, HMM 13 262 T33 S94 S150 T225 T245 T14 N104 C5a-anaphylatoxin receptor PRINTS, HMM S22 T30 T57 S137 T201 S207 T230 14 90 S67 T52 Frizzled protein PRINTS, HMM 15 208 T119 T123 T132 S56 S142 N121 Rieske iron-sulphur protein BLOCKS, PRINTS, HMM 16 97 S61 T2 Endothelin B receptor PRINTS, HMM 17 243 S82 T104 S168 T181 S6 S99 Thromboxane receptor PRINTS, HMM T195 Y24 18 162 S26 N6 G protein-couple receptor BLOCKS, PRINTS, HMM 19 470 S285 S29 T136 S145 T167 N118 N298 N466 R306-D308 Molluscan rhodopsin C- PRINTS, HMM T168 S199 S236 S249 T401 terminus S172 S209 S254 T264 S335 T385 20 144 S42 S21 T72 N30 N36 Lysosome-associated PRINTS, HMM membrane protein 21 221 S75 T82 S151-G154 Glycoprotein hormone BLAST, receptor PRINTS, HMM 22 688 T60 T186 T103 T298 S405 N198 N576 N577 S5-G8 Ring3 BLAST, S484 S488 S492 S494 S498 N582 A80-N140 PRINTS S499 S503 S584 S601 S611 S647 T663 T109 T188 T284 T315 S324 S347 T402 T573 S643 T658 T681 Y118 23 439 T75 T257 S397 S424 S210 N227 S365-G368 Prostanoid EP3 receptor BLOCKS, S435 PRINTS 24 192 S20 S44 N68 PMP-22/EMP/MP20 family BLOCKS, PRINTS, HMM 25 175 T171 T43 S136 T7 Progesterone receptor PRINTS 26 91 S34 S19 S29 Similar to mouse BLAST, dishevelled-3(Dvl-3). BLOCKS, PRINTS, HMM 27 214 T34 S83 T118 T152 S17 Somatostatin receptor BLOCKS, tyrosine kinasre PRINTS, HMM 28 250 S64 S132 T154 Sec22 homolog BLAST, HMM 29 84 T80 T3 S76 DPM2 protein BLAST, HMM 30 277 T140 S217 S19 S85 T129 Somatomedin B domain BLOCKS, protein PRINTS, HMM 31 273 S64 S4 S114 S179 S256 S14 N187 Anion exchanger family BLOCKS, T167 T218 PRINTS, HMM 32 524 T190 S5 T131 S148 S171 S262 N152 N471 N501 L46-L67 G protein-coupled receptor BLOCKS, S275 T302 S356 S404 S473 N513 PRINTS, HMM S177 S207 T492 33 257 S48 S52 S55 T64 S82 T90 S96 N98 N187 Nucleoporin p62 homolog BLAST T97 S123 T129 T144 S192 S224 T227 S250 34 274 S16 T84 S249 S56 S113 N234 Molluscan rhodopsin C- PRINTS terminus 35 281 S52 T150 S165 S263 T48 S116 G125-S132 ABC-2 type transport BLOCKS, T167 T226 T241 S185-G188 protein PRINTS, HMM 36 335 S96 T113 T131 T308 T14 T146 N104 N111 E296 to A307 pregnancy-specific beta 1- Blast, BLOCKS, T292 S302 S312 T317 Y258 R127 to G129 glycoprotein 4 precursor PRINTS, Motifs 37 280 T41 S102 T135 S148 N35 N53 N127 T56 to Y70 lysosomal membrane Blast, BLOCKS, glycoprotein-type A PRINTS, Motifs precursor 38 210 S50 S143 S151 S63 S107 S153 Butyrophilin Blast 39 279 T90 N66 N171 Plasma membrane Blast glycoprotein CIG30 40 154 T75 S121 S48 S58 T112 Y84 G101 to G122 Pathogenesis-related protein Blast, BLOCKS, Y90 V115 to F130 PR-1 PRINTS 41 582 S160 S255 T256 S291 S292 G520 to S527 semenogelin II Blast, Motifs S316 S351 S352 S411 S412 S471 S472 T485 S533 T559 S79 T93 S96 S151 S231 42 71 S17 T45 T50 M1 to T50 Integral membrane protein BLOCKS, P5 to C29 PRINTS 43 102 T44 S33 T75 S6 to L24 TM4SF BLOCKS, S33 to G36 PRINTS, HMM I49 to I74 A2 to S29 44 226 S60 T3 T4 S85 T169 N46 N82 N83 I184 to R205 Cation-dependant mannose PRINTS, HMM G128 to Q152 transporter protein Y179 to Y201 45 154 T145 T148 S33 T134 T141 M1 to A22 Frizzled protein PRINTS, HMM S152 P56 to M78 P58 to M82 L91 to S110 L109 to L125 46 167 S154 S3 T25 T29 T126 S140 E72 to F103 GPCR BLOCKS, PRINTS, HMM 47 545 T257 S513 S10 T11 S47 S166 N8 N406 E376 to K410 Human secreted protein Blast, BLOCKS, S408 S495 K640 variant PRINTS, HMM 48 570 T529 S128 S130 T184 T235 N27 N61 N75 V296 to C309 GPCR Blast, BLOCKS, T161 S293 Y199 N87 N264 F321 to F332 PRINTS, HMM 49 127 S24 T118 N10 to G30 Anion exchanger PRINTS, HMM 50 152 T49 S16 L78 to L99 TM4SF BLOCKS, L85 to L106 GNS1/SUR4 family HMM, Motifs V47 to Y63 Y45 to V94 51 777 T48 S66 S162 T268 S272 T322 N64 N205 N470 T20 to D34 pecanex protein Blast, PRINTS, T355 S393 S471 S559 S574 N706 R122 to L132 Motifs S624 S660 S700 T742 S750 L598 to L619 S11 T12 S196 S346 T400 S423 D331 to L349 T493 T579 T582 S599 S723 R565 to T582 52 108 S52 T31 T105 L76 to Y92 GNS1/SUR4 family BLOCKS, PRINTS, PROFILESCAN 53 66 S4 S35 N2 F22 to G58 NF2 protein Blast, BLOCKS, PRINTS, HMM 54 540 S135 S149 T527 T82 T94 T177 N50 N92 N160 S115 to G118 LIV-1 protein Blast, PRINTS, S441 N334 N395 L295 to L308 HMM, Motifs L490 to L518 55 87 T4 S13 S37 S68 S69 I46 to L82 calvcolin BLOCKS, HMM 56 100 S94 I7 to N34 ammonium ion transporters BLOCKS, G8 to F21 PRINTS, HMM K65 to N91 T78 to C97 57 58 T43 shox protein BLAST, HMM 58 61 S51 S58 S42 R2 to L23 carboxyl ester lipase Blast, PRINTS, HMM 59 50 S9 C33 to W45 Lipoxygenase; growth BLOCKS, C11 to L40 factor and cytokines PRINTS, HMM, receptor family Motifs 60 310 T46 T156 S301 T81 S108 S166 A153 to S166 C4 methyl-sterol oxidase Blast, PRINTS, S305 HMM 61 160 S114 L71 to W84 C5A-anaphylatoxin receptor Blast, BLOCKS, Y143 to T154 PRINTS, HMM 62 35 K11 to M34 steroid hormone receptor PRINTS 63 323 T92 S105 S182 T263 S301 N90 M1-G31 Signal Peptide Signal Peptide Containing Motifs S271 M1-A27 Signal Peptide Transmembrane Protein SPScan L234-L254 TM Protein HMM 64 129 T112 T117 S5 S54 M1-G27 Signal Peptide Signal Peptide Containing Motifs M1-G27 Signal Peptide Transmembrane Protein SPScan I81-V100 TM Prot. HMM 65 461 T56 T41 S47 T56 T127 S146 N193 N236 Signal Peptide Containing Motifs S147 S197 S198 T407 S8 S47 Transmembrane Protein T51 T284 T341 T407 66 264 S243 T264 S33 T211 S260 S22 N172 N250 M1-A17 Signal Peptide Protein Splicing Protein Motifs S243 S260 M1-S22 Signal Peptide SPScan L173-Y195TM Prot. HMM M1-L21 TM Prot. BLOCKS L25-R30 Prot. Splicing 67 339 T99 S119 S157 S166 S321 T54 N172 M1-G30 Signal Peptide Signal Peptide Containing Motifs S55 T77 S149 S211 S279 T336 M1-G26 Signal Peptide Transmembrane Protein SPScan Y105 L176-L194 TM, Prot. HMM 68 397 S104 T148 T166 T259 S303 G202-S209 ATP/GTP Gene Regulatory Protein Motifs S317 T127 T191 S302 binding SPScan L10-L31 Leucine zipper BLAST D106-L108 Ca binding HMM S367-L384 Signal Peptide M1-G29 Transmembr. Prot. 69 301 T7 S52 S100 S133 S239 T155 N162 N211 V12-A32 TM. Prot. Aminoacyl tRNA ligase Motifs T206 V282-G300 TMr. Prot. HMM L59-V64 aatRNA ligase BLOCKS 70 217 S8 S142 T112 T197 W73-I99 TM. Prot. Cell Proliferation Protein Motifs HMM 71 143 S81 T120 S139 S116 M1-C26 Signal Peptide Signal Peptide Containing Motifs M1-R25 Signal Peptide Transmembrane Protein SPScan M1-V22 TM Prot. HMM 72 186 T50 S132 T151 S116 Y43 N29 N104 M1-S25 Signal Peptide T-cell Receptor Interacting Motifs M1-S31 Signal Peptide Molecule SPScan F9-F28 TM Prot. HMM A27-G891 T-cell receptor BLAST interacting molecule 73 364 S172 S213 S243 S302 N229 L234-L255 Leucine Gene Regulatory Protein Motifs zipper SPScan M1-G28 Signal Peptide HMM L151-L170 TM Prot. L72-E92 TM Prot. 74 605 S46 T54 S108 S129 S195 S220 N106 N193 N395 M1-A32 Signal Peptide 2-Membrane Spanning Motifs S231 T254 T261 S316 S440 N480 V494-I515 TM. Prot. Signal Peptide Containing SPScan S472 S536 S560 T124 L17-E36 TM Prot. Transmembrane Protein HMM 75 97 T2 S87 M1-G26 Signal Peptide 2-Membrane Spanning Motifs M1-G23 Signal Peptide Signal Peptide Containing SPScan V35-M54 TM. Prot. Transmembrane Protein HMM I11-I34 TM Prot. 76 247 S160 T204 S165 F72-L90 Transmembr. 2-Membrane Spanning Motifs Prot. Signal Peptide Containing HMM L45-T64 Transmembr. Transmembrane Protein Prot. 77 193 S60 S67 M1-D26 Signal Peptide Peripheral Myclin Protein Motifs M1-A31 Signal Peptide 22 SPScan M80-M104 TM Prot. HMM R109-Y129 TM Prot. BLOCKS S67-L108 PMP-22 Y149-Y176 PMP-22 N150-A159 Trehalase 78 128 S30 S30 S50 N71 N84 N91 N126-L128 microbodies Microbody Protein Motifs targeting motif 79 115 S109 M1-S16 Signal Peptide G Protein Receptor Motifs M1-T24 Signal Peptide SPScan M1-W19 TM Prot. HMM V27-Y46 TM Prot. PRINTS V5-V15 G Prot. Receptor
TABLE-US-00005 TABLE 3 Nucleotide SEQ ID NO: Tissue Expression (Fraction of Total) Disease Class (Fraction of Total) Vector 80 Reproductive (0.321) Cardiovascular (0.143) Cancer (0.527) Inflammation (0.232) Fetal (0.170) pBLUESCRIPT Gastrointestinal (0.134) 81 Cardiovascular (0.500) Gastrointestinal (0.250) Other Cancer (0.500) Fetal (0.250) Other (0.250) pBLUESCRIPT (0.250) 82 Reproductive (0.260) Cardiovascular (0.220) Cancer (0.500) Inflammation (0.180) Fetal (0.160) pSPORT I Gastrointestinal (0.120) 83 Nervous (0.400) Gastrointestinal (0.300) Developmental Cancer (0.500) Inflammation (0.300) Fetal (0.200) pINCY I (0.100) 84 Reproductive (0.266) Gastrointestinal (0.141) Cancer (0.469) Inflammation (0.250) Fetal (0.195) pINCY I Cardiovascular (0.125) 85 Reproductive (0.750) Developmental (0.250) Cancer (0.750) Fetal (0.250) pINCY I 86 Reproductive (0.250) Cardiovascular (0.143) Nervous Inflammation (0.321) Trauma (0.286) Cancer (0.250) pINCY I (0.143) 87 Reproductive (0.368) Developmental (0.158) Cancer (0.421) Fetal (0.368) Inflammation (0.211) pINCY I Cardiovascular (0.105) 88 Hematopoietic/Immune (0.417) Cardiovascular (0.250) Inflammation (0.417) Cancer (0.333) Fetal (0.167) pINCY I Reproductive (0.167) 89 Cardiovascular (0.220) Nervous (0.171) Reproductive Cancer (0.463) Inflammation (0.195) Trauma (0.171) pINCY I (0.122) 90 Gastrointestinal (0.200) Reproductive (0.200) Urologic Cancer (0.500) Inflammation (0.300) Other (0.100) pINCY I (0.200) 91 Reproductive (0.306) Cardiovascular (0.204) Nervous Cancer (0.510) Inflammation (0.204) Fetal (0.143) pINCY I (0.122) 92 Reproductive (0.227) Hematopoietic/Immune (0.182) Cancer (0.432) Fetal (0.273) Inflammation (0.273) pINCY I Cardiovascular (0.136) 93 Gastrointestinal (0.375) Reproductive (0.188) Cancer (0.500) Inflammation (0.250) Trauma (0.125) pINCY I Cardiovascular (0.125) 94 Reproductive (0.333) Cardiovascular (0.214) Cancer (0.548) Inflammation (0.167) Fetal (0.143) pINCY I Gastrointestinal (0.143) 95 Cardiovascular (0.231) Gastrointestinal (0.231) Cancer (0.500) Inflammation (0.231) Fetal (0.154) pINCY I Reproductive (0.192) 96 Gastrointestinal (0.208) Cardiovascular (0.167) Cancer (0.542) Inflammation (0.292) Other (0.083) pINCY I Reproductive (0.167) 97 Hematopoietic/Immune (0.341) Reproductive (0.268) Cancer (0.415) Inflammation (0.415) Fetal (0.195) pINCY I Cardiovascular (0.122) 98 Gastrointestinal (0.346) Reproductive (0.231) Inflammation (0.462) Cancer (0.385) Fetal (0.115) pSPORT I Hematopoietic/Immune (0.154) 99 Gastrointestinal (0.400) Developmental (0.200) Nervous Cancer (0.400) Fetal (0.200) Neurological (0.200) pSPORT I (0.200) 100 Reproductive (0.231) Nervous (0.168) Cardiovascular Cancer (0.441) Inflammation (0.231) Fetal (0.133) pSPORT 1 (0.140) 101 Hematopoietic/Immune (0.225) Reproductive (0.225) Cancer (0.475) Inflammation (0.325) Fetal (0.175) pINCY I Gastrointestinal (0.125) 102 Reproductive (0.333) Gastrointestinal (0.185) Nervous Cancer (0.630) Fetal (0.185) Inflammation (0.111) pINCY I (0.148) 103 Gastrointestinal (0.242) Reproductive (0.182) Cancer (0.455) Inflammation (0.364) Fetal (0.182) pINCY I Developmental (0.121) 104 Gastrointestinal (0.188) Hematopoietic/Immune (0.188) Inflammation (0.438) Cancer (0.281) Fetal (0.250) pINCY I Urologic (0.188) 105 Urologic (0.250) Cardiovascular (0.167) Gastrointestinal Fetal (0.500) Cancer (0.417) Inflammation (0.333) pINCY I (0.167) 106 Hematopoietic/Immune (0.333) Urologic (0.333) Cancer (0.333) Fetal (0.333) Inflammation (0.333) pINCY I 107 Reproductive (0.286) Cardiovascular (0.204) Nervous Cancer (0.592) Fetal (0.143) Inflammation (0.143) pINCY I (0.184) 108 Reproductive (0.231) Gastrointestinal (0.215) Cancer (0.462) Inflammation (0.292) Fetal (0.185) pINCY I Hematopoietic/Immune (0.154) 109 Reproductive (0.304) Cardiovascular (0.261) Cancer (0.609) Inflammation (0.174) Trauma (0.087) pINCY I Gastrointestinal (0.130) 110 Reproductive (0.256) Gastrointestinal (0.186) Cancer (0.558) Inflammation (0.349) Trauma (0.070) pINCY I Hematopoietic/Immune (0.186) 111 Nervous (0.200) Reproductive (0.200) Gastrointestinal Cancer (0.550) Fetal (0.175) Inflammation (0.150) pINCY I (0.175) 112 Developmental (0.222) Endocrine (0.222) Cancer (0.222) Inflammation (0.222) Fetal (0.222) pINCY I Hematopoietic/Immune (0.222) 113 Hematopoietic/Immune (0.267) Nervous (0.200) Cancer (0.467) Trauma (0.267) Inflammation (0.200) pINCY I Gastrointestinal (0.133) 114 Hematopoietic/Immune (0.304) Gastrointestinal (0.130) Inflammation (0.391) Cancer (0.304) Fetal (0.130) pINCY I Nervous (0.130) 115 Developmental (0.333) Cardiovascular (0.167) Fetal (0.667) Inflammation (0.500) pBLUESCRIPT Dermatologic (0.167) 116 Nervous (0.478) Gastrointestinal (0.130) Cancer (0.565) Fetal (0.217) Inflammation (0.217) pBLUESCRIPT Hematopoietic/Immune (0.130) 117 Reproductive (0.222) Hematopoietic/Immune (0.200) Cancer (0.422) Inflammation (0.311) Fetal (0.178) pINCY Nervous (0.156) 118 Reproductive (0.256) Gastrointestinal (0.148) Nervous Cancer (0.430) Inflammation (0.259) Fetal (0.196) pSPORT1 (0.125) 119 Reproductive (0.190) Nervous (0.167) Developmental Cancer (0.381) Inflammation (0.333) Fetal (0.262) pINCY (0.143) 120 Reproductive (0.800) Urologic (0.100) Cancer (0.900) Trauma (0.100) pINCY 121 Reproductive (0.295) Nervous (0.182) Cardiovascular Cancer (0.455) Inflammation (0.182) pBLUESCRIPT (0.159) Cell Proliferation (0.159) 122 Developmental (0.250) Musculoskeletal (0.250) Nervous Cancer (0.500) Cell Proliferation (0.250) Inflammation pINCY (0.250) (0.250) 123 Gastrointestinal (0.786) Developmental (0.071) Nervous Cancer (0.500) Inflammation (0.429) pINCY (0.071) Cell Proliferation (0.071) 124 Reproductive (0.348) Cardiovascular (0.159) Cancer (0.493) Inflammation (0.246) pINCY Hematopoietic/Immune (0.130) Cell Proliferation (0.145) 125 Nervous (0.405) Reproductive (0.324) Cardiovascular Cancer (0.459) Proliferation (0.189) Inflammation (0.108) pINCY (0.108) 126 Reproductive (0.275) Nervous (0.231) Gastrointestinal Cancer (0.549) Inflammation (0.220) pINCY (0.154) Cell Proliferation (0.154) 127 Reproductive (0.250) Nervous (0.150) Cardiovascular Cancer (0.517) Cell Proliferation (0.350) Inflammation pINCY (0.133) (0.233) 128 Nervous (0.333) Reproductive (0.333) Cancer (0.593) Inflammation (0.259) Neurological pINCY Hematopoietic/Immune (0.111) (0.111) 129 Hematopoietic/Immune (0.304) Gastrointestinal (0.214) Cancer (0.446) Inflammation (0.446) pINCY Reproductive (0.196) Cell Proliferation (0.161) 130 Nervous (0.400) Reproductive (0.300) Endocrine (0.100) Cancer (0.300) Inflammation (0.300) pBLUESCRIPT Cell Proliferation (0.200) 131 Reproductive (0.364) Cardiovascular (0.227) Nervous Cancer (0.545) Inflammation (0.318) pSPORT1 (0.227) Cell Proliferation (0.091) 132 Cardiovascular (0.667) Nervous (0.333) Cell Proliferation (1.000) Cancer (0.333) pINCY 133 Gastrointestinal (0.750) Developmental (0.125) Cancer (0.375) Cell Proliferation (0.292) Inflammation pINCY Reproductive (0.083) (0.250) 134 Cardiovascular (0.250) Developmental (0.250) Cancer (0.500) Cell Proliferation (0.500) Inflammation pINCY Gastrointestinal (0.250) (0.250) 135 Reproductive (0.250) Nervous (0.208) Endocrine (0.167) Inflammation (0.417) Cancer (0.208) Trauma (0.167) pINCY 136 Developmental (0.500) Reproductive (0.500) Cancer (0.500) Cell Proliferation (0.500) pINCY 137 Developmental (1.000) Cell Proliferation (1.000) pINCY 138 Developmental (0.333) Endocrine (0.333) Gastrointestinal Cancer (0.666) Fetal (0.333) pINCY (0.333) 139 Reproductive (0.538) Developmental (0.154) Cancer (0.462) Inflammation (0.231) pINCY Gastrointestinal (0.154) Cell Proliferation (0.154) 140 Gastrointestinal (0.385) Endocrine (0.231) Reproductive Cancer (0.308) Inflammation (0.308) pINCY (0.231) Cell Proliferation (0.077) 141 Nervous (0.500) Cardiovascular (0.167) Gastrointestinal Cancer (0.333) Trauma (0.333) Neurological (0.167) pINCY (0.167) 142 Reproductive (0.220) Gastrointestinal (0.155) Nervous Cell Proliferation (0.637) Inflammation (0.312) pBLUESCRIPT (0.152) 143 Cardiovascular (0.202) Reproductive (0.190) Cell Proliferation (0.583) Inflammation (0.322) pBLUESCRIPT Gastrointestinal (0.179) 144 Reproductive (0.242) Nervous (0.158) Gastrointestinal Cell Proliferation (0.632) Inflammation (0.379) pINCY (0.116) 145 Cardiovascular (0.238) Reproductive (0.238) Nervous Cell Proliferation (0.619) Inflammation (0.476) pINCY (0.143) 146 Reproductive (0.235) Nervous (0.189) Cell Proliferation (0.625) Inflammation (0.348) pINCY Hematopoietic/Immune (0.131) 147 Reproductive (0.191) Hematopoietic/Immune (0.173) Cell Proliferation (0.582) Inflammation (0.455) pINCY Nervous (0.145) 148 Reproductive (0.279) Hematopoietic/Immune (0.140) Cell Proliferation (0.674) Inflammation (0.232) pINCY Nervous (0.128) 149 Reproductive (0.286) Nervous (0.214) Cardiovascular Cell Proliferation (0.834) Inflammation (0.215) pINCY (0.095) 150 Hematopoietic/Immune (0.400) Endocrine (0.200) Cell Proliferation (0.200) Inflammation (0.800) pINCY Gastrointestinal (0.200) 151 Hematopoietic/Immune (0.667) Gastrointestinal (0.167) Cell Proliferation (0.167) Inflammation (0.667) pINCY Musculoskeletal (0.167) 152 Reproductive (0.240) Nervous (0.173) Cell Proliferation (0.546) Inflammation (0.360) pINCY Hematopoietic/Immune (0.133) 153 Reproductive (0.308) Nervous (0.231) Gastrointestinal Cell Proliferation (0.885) Inflammation (0.154) pINCY (0.115) 154 Nervous (0.455) Reproductive (0.182) Developmental Cell Proliferation (0.682) Inflammation (0.181) pINCY (0.136) 155 Reproductive (0.286) Urologic (0.286) Cardiovascular Cell Proliferation (0.857) Inflammation (0.429) pINCY (0.143) 156 Reproductive (0.299) Gastrointestinal (0.216) Cell Proliferation (0.767) Inflammation (0.246) pINCY Cardiovascular (0.120) 157 Nervous (0.222) Reproductive (0.222) Cell Proliferation (0.333) Inflammation (0.222) pINCY 158 Reproductive (0.429) Nervous (0.357) Cell Proliferation (0.286) Inflammation (0.357) pINCY
TABLE-US-00006 TABLE 4 Clone ID Library Library Comment Nu- cleo- tide SEQ ID NO: 80 153831 THP1PLB02 The THP1PLB02 library was constructed by reamplification of THP1PLB01, which was made using RNA isolated from THP-1 cells cultured for 48 hours with 100 ng/ml phorbol ester (PMA), followed by a 4-hour culture in media containing 1 g/ml LPS. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26: 171). 81 350629 LVENNOT01 The LVENNOT01 library was constructed using RNA isolated from the left ventricle of a 51-year-old Caucasian female, who died from an intracranial bleed. 82 729171 LUNGNOT03 The LUNGNOT03 library was constructed using polyA RNA isolated from nontumorous lung tissue of a 79-year- old Caucasian male. Tissue had been removed from the upper and lower left lobes of the lung, superior (left paratracheal) and inferior (subclavian) mediastinal lymph nodes, and the right paratracheal region. Pathology for the associated tumor tissue indicated grade 4 carcinoma. Patient history included a benign prostate neoplasm, atherosclerosis, benign hypertension, and tobacco use. 83 1273641 TESTTUT02 The TESTTUT02 library was constructed using polyA RNA isolated from a testicular tumor removed from a 31-year-old Caucasian male during unilateral orchiectomy. Pathology indicated embryonal carcinoma forming a largely necrotic mass involving the entire testicle. Rare foci of residual testicle showed intralobular germ cell neoplasia and tumor was identified at the spermatic cord margin. 84 1427389 SINTBST01 The SINTBST01 library was constructed using polyA RNA isolated from the ileum tissue of an 18-year-old Caucasian female with irritable bowel syndrome (IBS). Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. Patient history included osteoporosis of the vertebra and abnormal blood chemistry. Family history included cerebrovascular disease and atherosclerotic coronary artery disease. 85 1458357 COLNFET02 The COLNFET02 library was constructed using RNA isolated from the colon tissue of a Caucasian female fetus, who died at 20 weeks' gestation from fetal demise. Serology was negative. 86 1482837 CORPNOT02 The CORPNOT02 library was constructed using polyA RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male, who died from Alzheimer's disease. Serologies were negative. Pro- tein SEQ ID NO: 87 1517434 PANCTUT01 The PANCTUT01 library was constructed using polyA RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included osteoarthritis, benign hypertension, atherosclerotic coronary artery disease, an acute myocardial infarction, benign neoplasm in the large bowel, and a cataract disorder. Family history included benign hypertension and atherosclerotic coronary artery disease, Type II diabetes, impaired renal function, and stomach cancer. 88 1536052 SPLNNOT04 The SPLNNOT04 library was constructed using polyA RNA isolated from the spleen tissue of a 2-year-old Hispanic male, who died from cerebral anoxia. Past medical history and serologies were negative. 89 1666118 BRSTNOT09 The BRSTNOT09 library was constructed using polyA RNA isolated from nontumor breast tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated invasive nuclear grade 2-3 adenocarcinoma in the same breast, with 3 of 23 lymph nodes positive for metastatic disease. There were also positive estrogen/progesterone receptors and uninvolved tissue showing proliferative changes. Patient history included valvuloplasty of mitral valve without replacement, rheumatic mitral insufficiency, rheumatic heart disease, and tobacco use. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and Type II diabetes. 90 1675560 BLADNOT05 The BLADNOT05 library was constructed using polyA RNA isolated from nontumorous bladder tissue removed from a 60-year-old Caucasian male during a radical cystectomy, prostatectomy, and vasectomy. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma. The patient presented with dysuria. Family history included Type I diabetes, a malignant neoplasm of the stomach, atherosclerotic coronary artery disease, and an acute myocardial infarction. 91 1687323 PROSTUT10 The PROSTUT10 library was constructed using polyA RNA isolated from prostatic tumor tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 2 + 3). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension. 92 1692236 PROSTUT10 The PROSTUT10 library was constructed using polyA RNA isolated from prostatic tumor tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 2 + 3). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension. 93 1720847 BLADNOT06 The BLADNOT06 library was constructed using polyA RNA isolated from the posterior wall bladder tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma. The patient presented with prostatic inflammatory disease. Family history included a malignant breast neoplasm, benign hypertension, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer. 94 1752821 LIVRTUT01 The LIVRTUT01 library was constructed using polyA RNA isolated from liver tumor tissue removed from a 51-year-old Caucasian female during a hepatic lobectomy. Pathology indicated metastatic grade 3 adenocarcinoma consistent with colon cancer. Patient history included thrombophlebitis and pure hypercholesterolemia. Patient medications included Premarin and Provera. The patient had also received 8 cycles of fluorouracil and leucovorin in the two years prior to surgery. Family history included a malignant neoplasm of the liver. 95 1810923 PROSTUT12 The PROSTUT12 library was constructed using polyA RNA isolated from prostate tumor tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated an adenocarcinoma (Gleason grade 2 + 2). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). 96 1822315 GBLATUT01 The GBLATUT01 library was constructed using polyA RNA isolated from gallbladder tumor tissue removed from a 78-year-old Caucasian female during a cholecystectomy. Pathology indicated invasive grade 3 transitional cell carcinoma. The patient was taking Indural (propranolol hydrochloride) for hypertension. Family history included a cholecystectomy, atherosclerosis, hyperlipidemia, and benign hypertension. 97 1877777 LEUKNOT03 The LEUKNOT03 library was constructed using polyA RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV). 98 1879819 LEUKNOT03 The LEUKNOT03 library was constructed using polyA RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV). 99 1932945 COLNNOT16 The COLNNOT16 library was constructed using polyA RNA isolated from nontumorous sigmoid colon tissue removed from a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy. Pathology for the associated tumor tissue indicated invasive grade 2 adenocarcinoma. Family history included benign hypertension, atherosclerotic coronary artery disease, hyperlipidemia, breast cancer, and prostate cancer. 100 2061026 OVARNOT03 The OVARNOT03 library was constructed using polyA RNA isolated from nontumorous ovarian tissue removed from a 43-year-old Caucasian female during a bilateral salpingo-oopherectomy. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer. 101 2096687 BRAITUT02 The BRAITUT02 library was constructed using polyA RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Previous surgeries included a nephroureterectomy. Patient medications included Decadron (dexamethasone) and Dilantin (phenytoin). Family history included a malignant neoplasm of the kidney. 102 2100530 BRAITUT02 The BRAITUT02 library was constructed using polyA RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Previous surgeries included a nephroureterectomy. Patient medications included Decadron (dexamethasone) and Dilantin (phenytoin). Family history included a malignant neoplasm of the kidney. 103 2357636 LUNGNOT20 The LUNGNOT20 library was constructed using polyA RNA isolated from lung tissue removed from the right upper lobe a 61-year-old Caucasian male during a segmental lung resection. Pathology indicated panacinal emphysema. Family history included a subdural hemorrhage, cancer at an unidentified site, benign hypertension, atherosclerotic coronary artery disease, pneumonia, and an unspecified muscle disorder. 104 2365230 ADRENOT07 The ADRENOT07 library was constructed using polyA RNA isolated from adrenal tissue removed from a 61-year-old female during a bilateral adrenalectomy. Patient history included an unspecified disorder of the adrenal glands, depressive disorder, benign hypertension, vocal cord paralysis, hemiplegia, subarachnoid hemorrhage, communicating hydrocephalus, neoplasm of uncertain behavior of pituitary gland, hyperlipidemia, Type II diabetes, a benign neoplasm of the colon, osteoarthritis, Meckel's diverticulum, and tobacco use. Previous surgeries included total excision of the pituitary gland and a unilateral thyroid lobectomy. Patient medications included Calderol and Premarin (conjugated estrogen). Family history included prostate cancer, benign hypertension, myocardial infarction, atherosclerotic coronary artery disease, congestive heart failure, hyperlipidemia, depression, anxiety disorder, colon cancer, and gas gangrene. 105 2455121 ENDANOT01 The ENDANOT01 library was constructed using polyA RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 106 2472514 THP1NOT03 The THP1NOT03 library was constructed using polyA RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26: 171). 107 2543486 UTRSNOT11 The UTRSNOT11 library was constructed using polyA RNA isolated from uterine myometrial tissue removed from a 43-year-old female during a vaginal hysterectomy and salpingo-oopherectomy. The endometrium was in proliferative phase. Family history included benign hypertension, hyperlipidemia, colon cancer, Type II diabetes, and atherosclerotic coronary artery disease. 108 2778171 OVARTUT03 The OVARTUT03 library was constructed using polyA RNA isolated from ovarian tumor tissue removed from the left ovary of a 52-year-old mixed ethnicity female during a total abdominal hysterectomy, bilateral salpingo-oopherectomy, peritoneal and lymphatic structure biopsy, regional lymph node excision, and peritoneal tissue destruction. Pathology indicated an invasive grade 3 (of 4) seroanaplastic carcinoma. Pathology also indicated a metastatic grade 3 seroanaplastic carcinoma. Patient history included breast cancer, chronic peptic ulcer, joint pain, and a normal delivery. Family history included colon cancer, cerebrovascular disease, breast cancer, Type II diabetes, esophagus cancer, and depressive disorder. 109 2799575 PENCNOT01 The PENCNOT01 library was constructed using polyA RNA isolated from penis corpus cavernosum tissue removed from a 53-year-old male. Patient history included an untreated penile carcinoma.
110 2804955 BLADTUT08 The BLADTUT08 library was constructed using polyA RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma. Family history included myocardial infarction, cerebrovascular disease, and brain cancer. 111 2806395 BLADTUT08 The BLADTUT08 library was constructed using polyA RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma. Family history included myocardial infarction, cerebrovascular disease, and brain cancer. 112 2836858 TLYMNOT03 The TLYMNOT03 library was constructed using polyA RNA isolated from nonactivated Th1 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-12 and B7-transfected COS cells. 113 2844513 DRGLNOT01 The DRGLNOT01 library was constructed using polyA RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year-old Caucasian male, who died from acute pulmonary edema, acute bronchopneumonia, bilateral pleural effusions, pericardial effusion, and malignant lymphoma (natural killer cell type). Patient medications included Difulcan (fluconazole), Deltasone (prednisone), hydrocodone, Lortab, Alprazolam, Reazodone, Cytabom, Etoposide, Cisplatin, Cytarabine, and dexamethasome. The patient received radiation therapy and multiple blood transfusions. 114 3000380 TLYMNOT06 The TLYMNOT06 library was constructed using polyA RNA isolated from activated Th2 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-4 in the presence of anti-IL-12 antibodies and B7-transfected COS cells, and then activated for six hours with anti-CD3 and anti-CD28 antibodies. 115 182532 PLACNOB01 The PLACNOB01 library was constructed using RNA isolated from placenta. 116 239589 HIPONOT01 The HIPONOT01 library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. 117 1671302 BMARNOT03 The BMARNOT03 library was constructed using RNA isolated from the left tibial bone marrow tissue of a 16-year- old Caucasian male during a partial left tibial ostectomy with free skin graft. Patient history included an abnormality of the red blood cells. Family history included osteoarthritis. 118 2041858 HIPONON02 This normalized hippocampus library was constructed from 1.13M independent clones from HIPONOT01 library. RNA was isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91: 9928). 119 2198863 SPLNFET02 The SPLNFET02 library was constructed using RNA isolated from spleen tissue removed from a Caucasian male fetus, who died at 23 weeks gestation. 120 3250703 SEMVNOT03 The SEMVNOT03 library was constructed using RNA isolated from seminal vesicle tissue removed from a 56-year- old male during a radical prostatectomy. Pathology for the associated tumor tissue indicated adenocarcinoma (Gleason grade 3 + 3). 121 350287 LVENNOT01 The LVENNOT01 library was constructed using RNA isolated from the left ventricle of a 51-year-old Caucasian female who died from intracranial bleeding. 122 1618171 BRAITUT12 The BRAITUT12 library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe of a 40-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated grade 4 gemistocytic astrocytoma. Medications included dexamethasone and phenytoin sodium. 123 1625863 COLNPOT01 The COLNPOT01 library was constructed using RNA isolated from colon polyp tissue removed from a 40-year-old Caucasian female during a total colectomy. Pathology indicated an inflammatory pseudopolyp; this tissue was associated with a focally invasive grade 2 adenocarcinoma and multiple tubuvillous adenomas. Patient history included a benign neoplasm of the bowel. Medications included Zantac, betamethasone, furosamide, and amiodarone. 124 1638353 UTRSNOT06 The UTRSNOT06 library was constructed using RNA isolated from myometrial tissue removed from a 50-year-old Caucasian female during a vaginal hysterectomy. Pathology indicated residual atypical complex endometrial hyperplasia. Pathology for the associated tissue removed during dilation and curettage indicated fragments of atypical complex hyperplasia and a single microscopic focus suspicious for grade 1 adenocarcinoma. Patient history included benign breast neoplasm, hypothyroid disease, polypectomy, and arthralgia. 125 1726843 PROSNOT14 The PROSNOT14 library was constructed using RNA isolated from diseased prostate tissue removed from a 60- year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3 + 4). The patient presented with elevated prostate specific antigen (PSA). Patient history included a kidney cyst and hematuria. Family history included benign hypertension, cerebrovascular disease, and arteriosclerotic coronary artery disease. 126 1754506 LIVRTUT01 The LIVRTUT01 library was constructed using RNA isolated from liver tumor tissue removed from a 51-year-old Caucasian female during a hepatic lobectomy. Pathology indicated metastatic grade 3 adenocarcinoma consistent with colon cancer. Medications included Premarin, Provera, and earlier, fluorouracil, and leucovorin. Family history included a malignant neoplasm of the liver. 127 1831378 THP1AZT01 The THP1AZT01 library was constructed using RNA isolated from THP-1 promonocyte cells treated for 3 days with 0.8 micromolar 5-aza-2'-deoxycitidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a one-year-old Caucasian male with acute monocytic leukemia (Int. J. Cancer (1980) 26: 171). 128 1864943 PROSNOT19 The PROSNOT19 library was constructed using RNA isolated from diseased prostate tissue removed from a 59- year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3 + 3). The patient presented with elevated prostate-specific antigen (PSA). Family history included benign hypertension, multiple myeloma, hyperlipidemia, and rheumatoid arthritis. 129 1911316 CONNTUT01 The CONNTUT01 library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin. Medications included medroxyprogesterone acetate. 130 1943120 HIPONOT01 The HIPONOT01 library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from intracranial bleeding. Patient history included nose cancer, hypertension, and arthritis. 131 2314236 NGANNOT01 The NGANNOT01 library was constructed using RNA isolated from tumorous neuroganglion tissue removed from a 9-year-old Caucasian male during a soft tissue excision of the chest wall. Pathology indicated a ganglioneuroma forming an encapsulated lobulated mass. The tissue from the medial aspect pleura surrounding the tumor showed fibrotic tissue with chronic inflammation. Family history included asthma. 132 2479409 SMCANOT01 The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant. 133 2683149 SINIUCT01 The SINIUCT01 library was constructed using RNA isolated from ileum tissue obtained from a 42-year-old Caucasian male during a total intra-abdominal colectomy and endoscopic jejunostomy. Previous surgeries included polypectomy, colonoscopy, and spinal canal exploration. Medications included Prednisone, mesalamine, and Deltasone. Family history included cerebrovascular disease, benign hypertension, atherosclerotic coronary artery disease, and type II diabetes. 134 2774051 PANCNOT15 The PANCNOT15 library was constructed using RNA isolated from diseased pancreatic tissue removed from a 15- year-old Caucasian male during an exploratory laparotomy with distal pancreatectomy and total splenectomy. Pathology indicated islet cell hyperplasia. A single pancreatic lymph node was negative. Family history included prostate cancer and cardiovacular disease. 135 2869038 THYRNOT10 The THYRNOT10 library was constructed using RNA isolated from the diseased left thyroid tissue removed from a 30-year-old Caucasian female during a unilateral thyroid lobectomy and parathyroid reimplantation. Pathology indicated lymphocytic thyroiditis. Pathology for the associated tumor indicated grade 1 (of 4) papillary carcinoma of the right thyroid gland, follicular variant. Multiple perithyroidal and other lymph nodes were negative. Patient history included hyperlipidemia and benign ovary neoplasm. Medications included Premarian, Provera, and Anaprox. 136 2918334 THYMFET03 The THYMFET03 library was constructed using RNA isolated from thymus tissue removed from a Caucasian male fetus who died at premature birth. Serology was negative. 137 2949916 KIDNFET01 The KIDNFET01 library was constructed using RNA isolated from kidney tissue removed from a Caucasian female fetus, who died at 17 weeks gestation from anencephalus. Serology was negative. 138 2989375 KIDNFET02 The KIDNFET02 library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus who was stillborn with a hypoplastic left heart at 23 weeks gestation. Serology was negative. 139 3316764 PROSBPT03 The PROSBPT03 library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year- old Caucasian male during a radical prostatectomy and regional lymph node excision. Pathology indicated benign prostatic hyperplasia. Pathology for the associated tumor indicated adenocarcinoma, Gleason grade 3 + 3. The patient presented with elevated prostate specific antigen (PSA), benign hypertension, and hyperlipidemia. Medications included Lotensin and Pravachol. Family history included cerebrovascular disease, benign hypertension, and prostate cancer. 140 3359559 PROSTUT16 The PROSTUT16 library was constructed using RNA isolated from prostate tumor tissue removed from a 55-year- old Caucasian male. Pathology indicated adenocarcinoma, Gleason grade 5 + 4. Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Patient history included calculus of the kidney. Family history included lung cancer and breast cancer. 141 4289208 BRABDIR01 The BRABDIR01 library was constructed using RNA isolated from diseased cerebellum tissue removed from the brain of a 57-year-old Caucasian male who died from a cerebrovascular accident. Patient history included Huntington's disease, emphysema, and long-term tobacco use. 142 2454013 ENDANOT01 The ENDANOT01 library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 143 2454048 ENDANOT01 The ENDANOT01 library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 144 2479282 SMCANOT01 The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant. 145 2483432 SMCANOT01 The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant. 146 2493824 ADRETUT05 The ADRETUT05 library was constructed using RNA isolated from adrenal tumor tissue removed from a 52-year- old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma. 147 2555823 THYMNOT03 The THYMNOT03 library was constructed using 0.5 micrograms of polyA RNA isolated from thymus tissue removed from a 21-year-old Caucasian male during a thymectomy. Pathology indicated an unremarkable thymus and a benign parathyroid adenoma in the right inferior parathyroid. Patient history included atopic dermatitis, a benign neoplasm of the parathyroid, and tobacco use. Patient medications included multivitamins. Family history included atherosclerotic coronary artery disease and benign hypertension. 148 2598242 OVARTUT02 The OVARTUT02 library was constructed using RNA isolated from ovarian tumor tissue removed from a 51-year- old Caucasian female during an exploratory laparotomy, total abdominal hysterectomy, salpingo-oophorectomy, and an incidental appendectomy. Pathology indicated mucinous cystadenoma presenting as a multiloculated neoplasm involving the entire left ovary. The right ovary contained a follicular cyst and a hemorrhagic corpus luteum. The uterus showed proliferative endometrium and a single intramural leiomyoma. The peritoneal biopsy indicated benign glandular inclusions consistent with endosalpingiosis. Family history included atherosclerotic coronary artery disease, benign hypertension, breast cancer, and uterine cancer. 149 2634120 COLNTUT15 The COLNTUT15 library was constructed using RNA isolated from colon tumor tissue obtained from a 64-year-old Caucasian female during a right hemicolectomy with ileostomy and bilateral salpingo-oophorectomy (removal of the fallopian tubes and ovaries). Pathology indicated an invasive grade 3 adenocarcinoma. Patient history included
hypothyroidism, depression, and anemia. Family history included colon cancer and uterine cancer. 150 2765411 BRSTNOT12 The BRSTNOT12 library was constructed using RNA isolated from diseased breast tissue removed from a 32-year- old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocystic disease. Family history included benign hypertension and atherosclerotic coronary artery disease. 151 2769412 COLANOT02 The COLANOT02 library was constructed using RNA isolated from diseased ascending colon tissue removed from a 25-year-old Caucasian female during a multiple segmental resection of the large bowel. Pathology indicated moderately to severely active chronic ulcerative colitis, involving the entire colectomy specimen and sparing 2 cm of the attached ileum. Grossly, the specimen showed continuous involvement from the rectum proximally; marked mucosal atrophy and no skip areas were identified. Microscopically, the specimen showed dense, predominantly mucosal inflammation and crypt abscesses. Patient history included benign large bowel neoplasm. 152 2842779 DRGLNOT01 The DRGLNOT01 library was constructed using RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus, infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy. 153 2966260 SCORNOT04 The SCORNOT04 library was constructed using RNA isolated from cervical spinal cord tissue removed from a 32- year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus, infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy. 154 2993326 KIDNFET02 The KIDNFET02 library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation. 155 3001124 TLYMNOT06 The TLYMNOT06 library was constructed using 0.5 micrograms of polyA RNA isolated from activated Th2 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-4 in the presence of anti-IL-12 antibodies and B7-transfected COS cells, and then activated for six hours with anti-CD3 and anti-CD28 antibodies. 156 3120070 LUNGTUT13 The LUNGTUT13 library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes. 157 3133035 SMCCNOT01 The SMCCNOT01 library was constructed using RNA isolated from smooth muscle cells removed from the coronary artery of a 3-year-old Caucasian male. 158 3436879 PENCNOT05 The PENCNOT05 library was constructed using RNA isolated from penis left corpus cavernosum tissue.
TABLE-US-00007 TABLE 5 Program Description Reference Parameter Threshold ABI/FACTURA A program that removes vector sequences and masks Perkin-Elmer Applied Biosystems, ambiguous bases in nucleic acid sequences. Foster City, CA. ABI/PARACEL FDF A Fast Data Finder useful in comparing and annotating Perkin-Elmer Applied Biosystems, Mismatch <50% amino acid or nucleic acid sequences. Foster City, CA; Paracel Inc., Pasadena, CA. ABI/AutoAssembler A program that assembles nucleic acid sequences. Perkin-Elmer Applied Biosystems, Foster City, CA. BLAST A Basic Local Alignment Search Tool useful in sequence Altschul, S. F. et al. (1990) J. Mol. Biol. ESTs: Probability value = 1.0E-8 similarity search for amino acid and nucleic acid sequences. 215: 403-410; Altschul, S. F. et al. (1997) or less BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx. Nucleic Acids Res. 25: 3389-3402. Full Length sequences: Probability value = 1.0E-10 or less FASTA A Pearson and Lipman algorithm that searches for Pearson, W. R. and D. J. Lipman (1988) Proc. ESTs: fasta E value = 1.06E-6 similarity between a query sequence and a group of Natl. Acad Sci. 85: 2444-2448; Pearson, W. R. Assembled ESTs: fasta Identity = sequences of the same type. FASTA comprises as least (1990) Methods Enzymol. 183: 63-98; and 95% or greater and Match five functions: fasta, tfasta, fastx, tfastx, and ssearch. Smith, T. F. and M. S. Waterman (1981) Adv. length = 200 bases or greater; fastx Appl. Math. 2: 482-489. E value = 1.0E-8 or less Full Length sequences: fastx score = 100 or greater BLIMPS A BLocks IMProved Searcher that matches a sequence Henikoff, S and J. G. Henikoff, Nucl. Acid Res., Score = 1000 or greater; Ratio of against those in BLOCKS and PRINTS databases to search 19: 6565-72, 1991. J. G. Henikoff and S. Henikoff Score/Strength = 0.75 or larger; for gene families, sequence homology, and structural fingerprint regions. (1996) Methods Enzymol. 266: 88-105; and Probability value = 1.0E-3 or less and Attwood, T. K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424. PFAM A Hidden Markov Models-based application useful for protein family search. Krogh, A. et al. (1994) J. Mol. Biol., 235: 1501-1531; Score = 10-50 bits, depending Sonnhammer, E. L. L. et al. (1988) on individual protein families Nucleic Acids Res. 26: 320-322. ProfileScan An algorithm that searches for structural and sequence Gribskov, M. et al. (1988) CABIOS 4: 61-66; Score = 4.0 or greater motifs in protein sequences that match sequence patterns Gribskov, et al. (1989) Methods Enzymol. defined in Prosite. 183: 146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221. Phred A base-calling algorithm that examines automated Ewing, B. et al. (1998) Genome sequencer traces with high sensitivity and probability. Res. 8: 175-185; Ewing, B. and P. Green (1998) Genome Res. 8: 186-194. Phrap A Phils Revised Assembly Program including SWAT and Smith, T. F. and M. S. Waterman (1981) Adv. Score = 120 or greater; Match CrossMatch, programs based on efficient implementation of Appl. Math. 2: 482-489; Smith, T. F. and M. S. Waterman length = 56 or greater the Smith-Waterman algorithm, useful in searching (1981) J. Mol. Biol. 147: 195-197; sequence homology and assembling DNA sequences. and Green, P., University of Washington, Seattle, WA. Consed A graphical tool for viewing and editing Phrap assemblies Gordon, D. et al. (1998) Genome Res. 8: 195-202. SPScan A weight matrix analysis program that scans protein sequences for the presence of Nielson, H. et al. (1997) Protein Engineering Score = 5 or greater secretory signal peptides. 10: 1-6; Claverie, J. M. and S. Audic (1997) CABIOS 12: 431-439. Motifs A program that searches amino acid sequences for patterns that matched those Bairoch et al. supra; Wisconsin defined in Prosite. Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.
Sequence CWU
1
1
1581240PRTHomo sapiensmisc_featureIncyte ID No 153831 1Met Gly Asn Cys Gln
Ala Gly His Asn Leu His Leu Cys Leu Ala 1 5
10 15His His Pro Pro Leu Val Cys Ala Thr Leu Ile Leu
Leu Leu Leu 20 25 30Gly
Leu Ser Gly Leu Gly Leu Gly Ser Phe Leu Leu Thr His Arg
35 40 45Thr Gly Leu Arg Ser Pro Asp Ile
Pro Gln Asp Trp Val Ser Phe 50 55
60Leu Arg Ser Phe Gly Gln Leu Thr Leu Cys Pro Arg Asn Gly Thr
65 70 75Val Thr Gly Lys
Trp Arg Gly Ser His Val Val Gly Leu Leu Thr 80
85 90Thr Leu Asn Phe Gly Asp Gly Pro Asp Arg Asn
Lys Thr Arg Thr 95 100
105Phe Gln Ala Thr Val Leu Gly Ser Gln Met Gly Leu Lys Gly Ser
110 115 120Ser Ala Gly Gln Leu Val
Leu Ile Thr Ala Arg Val Thr Thr Glu 125
130 135Arg Thr Ala Gly Thr Cys Leu Tyr Phe Ser Ala Val
Pro Gly Ile 140 145 150Leu
Pro Ser Ser Gln Pro Pro Ile Ser Cys Ser Glu Glu Gly Ala
155 160 165Gly Asn Ala Thr Leu Ser Pro
Arg Met Gly Glu Glu Cys Val Ser 170 175
180Val Trp Ser His Glu Gly Leu Val Leu Thr Lys Leu Leu Thr
Ser 185 190 195Glu Glu Leu
Ala Leu Cys Gly Ser Arg Leu Leu Val Leu Gly Ser 200
205 210Phe Leu Leu Leu Phe Cys Gly Leu Leu Cys
Cys Val Thr Ala Met 215 220
225Cys Phe His Pro Arg Arg Glu Ser His Trp Ser Arg Thr Arg Leu
230 235 2402100PRTHomo
sapiensmisc_featureIncyte ID No 350629 2Met Glu Gly Leu Arg Ser Ser Val
Glu Leu Asp Pro Glu Leu Thr 1 5 10
15Pro Gly Lys Leu Asp Glu Glu Met Val Gly Leu Pro Pro His Asp
20 25 30Ala Ser Pro Gln
Val Thr Phe His Ser Leu Asp Gly Lys Thr Val 35
40 45Val Cys Pro His Phe Met Gly Leu Leu Leu Gly
Leu Leu Leu Leu 50 55
60Leu Thr Leu Ser Val Arg Asn Gln Leu Cys Val Arg Gly Glu Arg
65 70 75Gln Leu Ala Glu Thr Leu His
Ser Gln Val Lys Glu Lys Ser Gln 80 85
90Leu Ile Gly Lys Lys Thr Asp Cys Arg Asp
95 1003416PRTHomo sapiensmisc_featureIncyte ID No 729171
3Met Ser Gly His Arg Ser Thr Arg Lys Arg Cys Gly Asp Ser His 1
5 10 15Pro Glu Ser Pro Val Gly Phe
Gly His Met Ser Thr Thr Gly Cys 20 25
30Val Leu Asn Lys Leu Phe Gln Leu Pro Thr Pro Pro Leu Ser
Arg 35 40 45His Gln Leu
Lys Arg Leu Glu Glu His Arg Tyr Gln Ser Ala Gly 50
55 60Arg Ser Leu Leu Glu Pro Leu Val Gln Gly
Tyr Trp Glu Trp Leu 65 70
75Val Arg Arg Val Pro Ser Trp Ile Ala Pro Asn Leu Ile Thr Ile
80 85 90Ile Gly Leu Ser Ile Asn
Ile Cys Thr Thr Ile Leu Leu Val Phe 95
100 105Tyr Cys Pro Thr Ala Thr Glu Gln Ala Pro Leu Trp
Ala Tyr Ile 110 115 120Ala
Cys Ala Cys Gly Leu Phe Ile Tyr Gln Ser Leu Asp Ala Ile
125 130 135Gly Gly Lys Gln Ala Arg Arg
Thr Asn Ser Ser Ser Pro Leu Gly 140 145
150Glu Leu Phe Asp His Gly Cys Asp Ser Leu Ser Thr Val Phe
Val 155 160 165Val Leu Gly
Thr Cys Ile Ala Val Gln Leu Gly Thr Asn Pro Asp 170
175 180Trp Met Phe Phe Cys Cys Phe Ala Gly Thr
Phe Met Phe Tyr Cys 185 190
195Ala His Trp Gln Thr Tyr Val Ser Gly Thr Leu Arg Phe Gly Ile
200 205 210Ile Asp Val Thr Glu Val
Gln Ile Phe Ile Ile Ile Met His Leu 215
220 225Leu Ala Val Met Gly Gly Pro Pro Phe Trp Gln Ser
Met Ile Pro 230 235 240Val
Leu Asn Ile Gln Met Lys Ile Phe Pro Ala Leu Cys Thr Val
245 250 255Ala Gly Thr Ile Phe Pro Val
Thr Asn Tyr Phe Arg Val Ile Phe 260 265
270Thr Gly Gly Val Gly Lys Asn Gly Ser Thr Ile Ala Gly Thr
Ser 275 280 285Val Leu Ser
Pro Phe Leu His Ile Gly Ser Val Ile Thr Leu Ala 290
295 300Ala Met Ile Tyr Lys Lys Ser Ala Val Gln
Leu Phe Glu Lys His 305 310
315Pro Cys Leu Tyr Ile Leu Thr Phe Gly Phe Val Ser Ala Lys Ile
320 325 330Thr Asn Lys Leu Val Val
Ala His Met Thr Lys Ser Glu Met His 335
340 345Leu His Asp Thr Ala Phe Ile Gly Pro Ala Leu Leu
Phe Leu Asp 350 355 360Gln
Tyr Phe Asn Ser Phe Ile Asp Glu Tyr Ile Val Leu Trp Ile
365 370 375Ala Leu Val Phe Ser Phe Phe
Asp Leu Ile Arg Tyr Cys Val Ser 380 385
390Val Cys Asn Gln Ile Ala Ser His Leu His Ile His Val Phe
Arg 395 400 405Ile Lys Val
Ser Thr Ala His Ser Asn His His 410
4154224PRTHomo sapiensmisc_featureIncyte ID No 1273641 4Met Thr Ile Thr
Ser Phe Tyr Ala Val Cys Phe Tyr Leu Leu Met 1 5
10 15Leu Val Met Val Glu Gly Phe Gly Gly Lys Glu
Ala Val Leu Arg 20 25
30Thr Leu Arg Asp Thr Pro Met Met Val His Thr Gly Pro Cys Cys
35 40 45Cys Cys Cys Pro Cys Cys Gln
Arg Leu Leu Leu Thr Arg Lys Lys 50 55
60Leu Gln Leu Leu Met Leu Gly Pro Phe Gln Tyr Ala Phe Leu
Lys 65 70 75Ile Thr Leu
Thr Trp Trp Ala Leu Phe Ser Ser Pro Thr Glu Ser 80
85 90Tyr Asp Pro Ala Asp Ile Ser Glu Gly Ser
Thr Ala Leu Trp Ile 95 100
105Asn Thr Phe Leu Gly Val Ser Thr Leu Leu Ala Leu Trp Thr Leu
110 115 120Gly Ile Ile Ser Arg Gln
Ala Arg Leu His Leu Gly Glu Gln Asn 125
130 135Met Gly Ala Lys Phe Ala Leu Phe Gln Val Leu Leu
Ile Leu Thr 140 145 150Ala
Leu Gln Pro Ser Ile Phe Ser Val Leu Ala Asn Gly Gly Gln
155 160 165Ile Ala Cys Ser Pro Pro Tyr
Ser Ser Lys Thr Arg Ser Gln Val 170 175
180Met Asn Cys His Leu Leu Ile Leu Glu Thr Phe Leu Met Thr
Val 185 190 195Leu Thr Arg
Met Tyr Tyr Arg Arg Lys Asp His Lys Val Gly Tyr 200
205 210Glu Thr Phe Ser Ser Pro Asp Leu Asp Leu
Asn Leu Lys Ala 215 2205247PRTHomo
sapiensmisc_featureIncyte ID No 1427389 5Met Gly Ala Ala Val Phe Phe Gly
Cys Thr Phe Val Ala Phe Gly 1 5 10
15Pro Ala Phe Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu
20 25 30Arg Val Ile Ile
Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser 35
40 45Leu Leu Leu Ala Ser Val Val Trp Phe Ile Leu
Val His Val Thr 50 55
60Asp Arg Ser Asp Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly
65 70 75Ala Ala Val Ser Val Leu Leu
Gln Glu Val Phe Arg Phe Ala Tyr 80 85
90Tyr Lys Leu Leu Lys Lys Ala Asp Glu Gly Leu Ala Ser Leu
Ser 95 100 105Glu Asp Gly
Arg Ser Pro Ile Ser Ile Arg Gln Met Ala Tyr Val 110
115 120Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly
Val Phe Ser Val Ile 125 130
135Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val Val Gly Ile His
140 145 150Gly Asp Ser Pro Tyr Tyr
Phe Leu Thr Ser Ala Phe Leu Thr Ala 155
160 165Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val
Phe Phe Asp 170 175 180Ala
Cys Glu Arg Arg Arg Tyr Trp Ala Leu Gly Leu Val Val Gly
185 190 195Ser His Leu Leu Thr Ser Gly
Leu Thr Phe Leu Asn Pro Trp Tyr 200 205
210Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met
Gly 215 220 225Leu Trp Ala
Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln 230
235 240Arg Ser Leu Leu Cys Lys Asp
245672PRTHomo sapiensmisc_featureIncyte ID No 1458357 6Met Tyr Trp Leu
His Gln Asp Met Phe Trp Leu Leu Val Leu Ile 1 5
10 15Leu Ile Cys Leu Val Thr His Leu Ile Thr Arg
Glu Thr Ile Tyr 20 25
30Val Lys Ser Leu Phe Tyr Phe Lys Ile Leu Phe Val Tyr Leu Glu
35 40 45Ser Lys Pro Ala His Cys Asn
Leu Cys Leu Tyr Ala Lys Glu Leu 50 55
60Asp Phe Phe Val Phe Val Leu Phe Phe Lys Leu Leu
65 707106PRTHomo sapiensmisc_featureIncyte ID No
1482837 7Met His Tyr Gly Phe Leu Leu Trp Ser Gly Lys Lys Arg Gly Leu 1
5 10 15Ala Gly Pro Gln Gly
Ile Cys Lys Ser Gln Lys Thr Val Phe Leu 20
25 30Thr Ala Arg Cys His Ser Thr Leu Val Gly Lys Glu
Glu Lys Lys 35 40 45Ile
Lys Leu Phe His Arg Thr Ser Trp Pro Pro His Ser His Ala
50 55 60Leu Pro Thr Gln Pro Gly Pro Leu
Pro Ala Pro Phe Ile Lys Ala 65 70
75Glu Arg Val Glu Leu Ile Phe Thr Asn Cys Asn Ile Phe Val Val
80 85 90Ser Val Ser Ser
Phe Val Ser Ser Ala Glu Pro Cys Pro Phe Leu 95
100 105Leu8239PRTHomo sapiensmisc_featureIncyte ID
No 1517434 8Met Cys Val Thr Gln Leu Arg Leu Ile Phe Tyr Met Gly Ala Met
1 5 10 15Asn Asn Ile Leu
Lys Phe Leu Val Ser Gly Asp Gln Lys Thr Val 20
25 30Gly Leu Tyr Thr Ser Ile Phe Gly Val Leu Gln
Leu Leu Cys Leu 35 40
45Leu Thr Ala Pro Val Ile Gly Tyr Ile Met Asp Trp Arg Leu Lys
50 55 60Glu Cys Glu Asp Ala Ser Glu
Glu Pro Glu Glu Lys Asp Ala Asn 65 70
75Gln Gly Glu Lys Lys Lys Lys Lys Arg Asp Arg Gln Ile Gln
Lys 80 85 90Ile Thr Asn
Ala Met Arg Ala Phe Ala Phe Thr Asn Leu Leu Leu 95
100 105Val Gly Phe Gly Val Thr Cys Leu Ile Pro
Asn Leu Pro Leu Gln 110 115
120Ile Leu Ser Phe Ile Leu His Thr Ile Val Arg Gly Phe Ile His
125 130 135Ser Ala Val Gly Gly Leu
Tyr Ala Ala Val Tyr Pro Ser Thr Gln 140
145 150Phe Gly Ser Leu Thr Gly Leu Gln Ser Leu Ile Ser
Ala Leu Phe 155 160 165Ala
Leu Leu Gln Gln Pro Leu Phe Leu Ala Met Met Gly Pro Leu
170 175 180Gln Gly Asp Pro Leu Trp Val
Asn Val Gly Leu Leu Leu Leu Ser 185 190
195Leu Leu Gly Phe Cys Leu Pro Leu Tyr Leu Ile Cys Tyr Arg
Arg 200 205 210Gln Leu Glu
Arg Gln Leu Gln Gln Arg Gln Glu Asp Asp Lys Leu 215
220 225Phe Leu Lys Ile Asn Gly Ser Ser Asn Gln
Glu Ala Phe Val 230 2359150PRTHomo
sapiensmisc_featureIncyte ID No 1536052 9Met Trp Leu Pro Trp Ala Leu Leu
Leu Leu Trp Val Pro Ala Ser 1 5 10
15Thr Ser Met Thr Pro Ala Ser Ile Thr Ala Ala Lys Thr Ser Thr
20 25 30Ile Thr Thr Ala
Phe Pro Pro Val Ser Ser Thr Thr Leu Phe Ala 35
40 45Val Gly Ala Thr His Ser Ala Ser Ile Gln Glu
Glu Thr Glu Glu 50 55
60Val Val Asn Ser Gln Leu Pro Leu Leu Leu Ser Leu Leu Ala Leu
65 70 75Leu Leu Leu Leu Leu Val Gly
Ala Ser Leu Leu Ala Trp Arg Met 80 85
90Phe Gln Lys Trp Ile Lys Ala Gly Asp His Ser Glu Leu Ser
Gln 95 100 105Asn Pro Lys
Gln Ala Ser Pro Arg Glu Glu Leu His Tyr Ala Ser 110
115 120Val Val Phe Asp Ser Asn Thr Asn Arg Ile
Ala Ala Gln Arg Pro 125 130
135Arg Glu Glu Glu Pro Asp Ser Asp Tyr Ser Val Ile Arg Lys Thr
140 145 15010110PRTHomo
sapiensmisc_featureIncyte ID No 1666118 10Met Pro Ala Cys Ile Leu Glu Asp
Val Glu Ile Ser Phe Arg Gln 1 5 10
15Lys Trp Ser Ile Asn Ser Asp Thr Leu Leu Gly Cys Leu Thr Leu
20 25 30Phe Ile Ser Ala
Phe Phe Ala Ser Glu Thr Trp Gln Lys Leu Val 35
40 45Ser Gln Ser Thr Ala Phe Leu Thr Met Cys Gly
Val Thr Tyr Ala 50 55
60Trp Tyr Met Pro Leu Leu Leu Leu Lys Phe Tyr Ser Leu Leu Leu
65 70 75Ala Gln Val Leu Leu Asn Pro
Phe Leu Met Cys Thr Gly Trp Arg 80 85
90Lys Asn Tyr Ser Gln His Phe Glu Arg Lys Val Phe Arg Asn
Asn 95 100 105Ile Asn Trp
His Tyr 1101158PRTHomo sapiensmisc_featureIncyte ID No
1675560 11Met Leu Val Thr Asn Ile Thr Val Asn Arg Ser Leu Leu His Ala 1
5 10 15Lys Asp Gln Cys Asp
Leu Trp Met Glu Met Ile Val Met Lys Phe 20
25 30Leu Phe His Gly Ala Val Phe Leu Phe Ile Ser Leu
Gly Ser Arg 35 40 45Phe
Ser Glu Ala Val Arg Cys Cys Cys Cys Gly Phe Leu 50
5512221PRTHomo sapiensmisc_featureIncyte ID No 1687323 12Met
Ala Ala Ser Ser Ile Ser Ser Pro Trp Gly Lys His Val Phe 1
5 10 15Lys Ala Ile Leu Met Val Leu Val
Ala Leu Ile Leu Leu His Ser 20 25
30Ala Leu Ala Gln Ser Arg Arg Asp Phe Ala Pro Pro Gly Gln Gln
35 40 45Lys Arg Glu Ala
Pro Val Asp Val Leu Thr Gln Ile Gly Arg Ser 50
55 60Val Arg Gly Thr Leu Asp Ala Trp Ile Gly Pro
Glu Thr Met His 65 70
75Leu Val Ser Glu Ser Ser Ser Gln Val Leu Trp Ala Ile Ser Ser
80 85 90Ala Ile Ser Val Ala Phe Phe
Ala Leu Ser Gly Ile Ala Ala Gln 95 100
105Leu Leu Asn Ala Leu Gly Leu Ala Gly Asp Tyr Leu Ala Gln
Gly 110 115 120Leu Lys Leu
Ser Pro Gly Gln Val Gln Thr Phe Leu Leu Trp Gly 125
130 135Ala Gly Ala Leu Val Val Tyr Trp Leu Leu
Ser Leu Leu Leu Gly 140 145
150Leu Val Leu Ala Leu Leu Gly Arg Ile Leu Trp Gly Leu Lys Leu
155 160 165Val Ile Phe Leu Ala Gly
Phe Val Ala Leu Met Arg Ser Val Pro 170
175 180Asp Pro Ser Thr Arg Ala Leu Leu Leu Leu Ala Leu
Leu Ile Leu 185 190 195Tyr
Ala Leu Leu Ser Arg Leu Thr Gly Ser Arg Ala Ser Gly Ala
200 205 210Gln Leu Glu Ala Lys Val Arg
Gly Leu Glu Arg 215 22013262PRTHomo
sapiensmisc_featureIncyte ID No 1692236 13Met Ala Leu Gly Leu Lys Cys Phe
Arg Met Val His Pro Thr Phe 1 5 10
15Arg Asn Tyr Leu Ala Ala Ser Ile Arg Pro Val Ser Glu Val Thr
20 25 30Leu Lys Thr Val
His Glu Arg Gln His Gly His Arg Gln Tyr Met 35
40 45Ala Tyr Ser Ala Val Pro Val Arg His Phe Ala
Thr Lys Lys Ala 50 55
60Lys Ala Lys Gly Lys Gly Gln Ser Gln Thr Arg Val Asn Ile Asn
65 70 75Ala Ala Leu Val Glu Asp Ile
Ile Asn Leu Glu Glu Val Asn Glu 80 85
90Glu Met Lys Ser Val Ile Glu Ala Leu Lys Asp Asn Phe Asn
Leu 95 100 105Thr Leu Asn
Ile Arg Ala Ser Pro Gly Ser Leu Asp Lys Ile Ala 110
115 120Val Val Thr Ala Asp Gly Lys Leu Ala Leu
Asn Gln Ile Ser Gln 125 130
135Ile Ser Met Lys Ser Pro Gln Leu Ile Leu Val Asn Met Ala Ser
140 145 150Phe Pro Glu Cys Thr Ala
Ala Ala Ile Lys Ala Ile Arg Glu Ser 155
160 165Gly Met Asn Leu Asn Pro Glu Val Glu Gly Thr Leu
Ile Arg Val 170 175 180Pro
Ile Pro Gln Val Thr Arg Glu His Arg Glu Met Leu Val Lys
185 190 195Leu Ala Lys Gln Asn Thr Asn
Lys Ala Lys Asp Ser Leu Arg Lys 200 205
210Val Arg Thr Asn Ser Met Asn Lys Leu Lys Lys Ser Lys Asp
Thr 215 220 225Val Ser Glu
Asp Thr Ile Arg Leu Ile Glu Lys Gln Ile Ser Gln 230
235 240Met Ala Asp Asp Thr Val Ala Glu Leu Asp
Arg His Leu Ala Val 245 250
255Lys Thr Lys Glu Leu Leu Gly 2601490PRTHomo
sapiensmisc_featureIncyte ID No 1720847 14Met Glu Ala Ala Met Glu Trp Glu
Gly Gly Ala Ile Arg His Pro 1 5 10
15Ser Thr Glu Leu Gly Ile Met Gly Ser Trp Phe Tyr Leu Phe Leu
20 25 30Ala Pro Leu Phe
Lys Gly Leu Ala Gly Ser Leu Pro Phe Gly Cys 35
40 45Leu Ser Leu Leu Gln Pro Thr Glu Lys Thr Ala
Leu Gln Arg Trp 50 55
60Arg Val Phe Met Lys His Ser Cys Gln Glu Pro Arg His Arg Ala
65 70 75Gly Gly Leu Glu Lys Gly Gly
His Thr Gly Gly Gly Arg Ser Trp 80 85
9015208PRTHomo sapiensmisc_featureIncyte ID No 1752821
15Met Ala Ser Ser Leu Leu Ala Gly Glu Arg Leu Val Arg Ala Leu 1
5 10 15Gly Pro Gly Gly Glu Leu Glu
Pro Glu Arg Leu Pro Arg Lys Leu 20 25
30Arg Ala Glu Leu Glu Ala Ala Leu Gly Lys Lys His Lys Gly
Gly 35 40 45Asp Ser Ser
Ser Gly Pro Gln Arg Leu Val Ser Phe Arg Leu Ile 50
55 60Arg Asp Leu His Gln His Leu Arg Glu Arg
Asp Ser Lys Leu Tyr 65 70
75Leu His Glu Leu Leu Glu Gly Ser Glu Ile Tyr Leu Pro Glu Val
80 85 90Val Lys Pro Pro Arg Asn
Pro Glu Leu Val Ala Arg Leu Glu Lys 95
100 105Ile Lys Ile Gln Leu Ala Asn Glu Glu Tyr Lys Arg
Ile Thr Arg 110 115 120Asn
Val Thr Cys Gln Asp Thr Arg His Gly Gly Thr Leu Ser Asp
125 130 135Leu Gly Lys Gln Val Arg Ser
Leu Lys Ala Leu Val Ile Thr Ile 140 145
150Phe Asn Phe Ile Val Thr Val Val Ala Ala Phe Val Cys Thr
Tyr 155 160 165Leu Gly Ser
Gln Tyr Ile Phe Thr Glu Met Ala Ser Arg Val Leu 170
175 180Ala Ala Leu Ile Val Ala Ser Val Val Gly
Leu Ala Glu Leu Tyr 185 190
195Val Met Val Arg Ala Met Glu Gly Glu Leu Gly Glu Leu
200 2051697PRTHomo sapiensmisc_featureIncyte ID No
1810923 16Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile 1
5 10 15Asp Gly Leu Glu Glu
Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu 20
25 30Ala Val Asn Ser Arg Leu His Ser Arg Glu Leu Ser
Pro Glu Ala 35 40 45Arg
Arg Ser Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala
50 55 60Ser Asn Tyr Glu Lys Glu Leu Lys
Phe Leu Arg Gln Glu Asn Arg 65 70
75Lys Asn Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu
80 85 90Val Tyr Ala Tyr
Trp Thr Met 9517243PRTHomo sapiensmisc_featureIncyte ID
No 1822315 17Met Phe Phe Leu Ser Ser Ser Lys Leu Thr Lys Trp Lys Gly Glu
1 5 10 15Val Lys Lys Arg
Leu Asp Ser Glu Tyr Lys Glu Gly Gly Gln Arg 20
25 30Asn Trp Val Gln Val Phe Cys Asn Gly Ala Val
Pro Thr Glu Leu 35 40
45Ala Leu Leu Tyr Met Ile Glu Asn Gly Pro Gly Glu Ile Pro Val
50 55 60Asp Phe Ser Lys Gln Tyr Ser
Ala Ser Trp Met Cys Leu Ser Leu 65 70
75Leu Ala Ala Leu Ala Cys Ser Ala Gly Asp Thr Trp Ala Ser
Glu 80 85 90Val Gly Pro
Val Leu Ser Lys Ser Ser Pro Arg Leu Ile Thr Thr 95
100 105Trp Glu Lys Val Pro Val Gly Thr Asn Gly
Gly Val Thr Val Val 110 115
120Gly Leu Val Ser Ser Leu Leu Gly Gly Thr Phe Val Gly Ile Ala
125 130 135Tyr Phe Leu Thr Gln Leu
Ile Phe Val Asn Asp Leu Asp Ile Ser 140
145 150Ala Pro Gln Trp Pro Ile Ile Ala Phe Gly Gly Leu
Ala Gly Leu 155 160 165Leu
Gly Ser Ile Val Asp Ser Tyr Leu Gly Ala Thr Met Gln Tyr
170 175 180Thr Gly Leu Asp Glu Ser Thr
Gly Met Val Val Asn Ser Pro Thr 185 190
195Asn Lys Ala Arg His Ile Ala Gly Lys Pro Ile Leu Asp Asn
Asn 200 205 210Ala Trp Ile
Cys Phe Leu Leu Phe Leu Leu Pro Ser Cys Ser Gln 215
220 225Leu Leu Leu Gly Val Phe Gly Pro Gly Gly
Glu Leu Tyr Phe Ile 230 235
240Ser Thr Gly18162PRTHomo sapiensmisc_featureIncyte ID No 1877777 18Met
Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln Phe 1
5 10 15Leu Leu Leu Ser Tyr Asp Leu Phe
Val Asn Ser Phe Ser Glu Leu 20 25
30Leu Gln Lys Thr Pro Val Ile Gln Leu Val Leu Phe Ile Ile Gln
35 40 45Asp Ile Ala Val
Leu Phe Asn Ile Ile Ile Ile Phe Leu Met Phe 50
55 60Phe Asn Thr Phe Val Phe Gln Ala Gly Leu Val
Asn Leu Leu Phe 65 70
75His Lys Phe Lys Gly Thr Ile Ile Leu Thr Ala Val Tyr Phe Ala
80 85 90Leu Ser Ile Ser Leu His Val
Trp Val Met Asn Leu Arg Trp Lys 95 100
105Asn Ser Asn Ser Phe Ile Trp Thr Asp Gly Leu Gln Met Leu
Phe 110 115 120Val Phe Gln
Arg Leu Ala Ala Val Leu Tyr Cys Tyr Phe Tyr Lys 125
130 135Arg Thr Ala Val Arg Leu Gly Asp Pro His
Phe Tyr Gln Asp Ser 140 145
150Leu Trp Leu Arg Lys Glu Phe Met Gln Val Arg Arg 155
16019470PRTHomo sapiensmisc_featureIncyte ID No 1879819
19Met Leu Ser Pro Ser Pro Gly Lys Gly Pro Pro Pro Ala Val Ala 1
5 10 15Pro Arg Pro Lys Ala Pro Leu
Gln Leu Gly Pro Ser Ser Ser Ile 20 25
30Lys Glu Lys Gln Gly Pro Leu Leu Asp Leu Phe Gly Gln Lys
Leu 35 40 45Pro Ile Ala
His Thr Pro Pro Pro Pro Pro Ala Pro Pro Leu Pro 50
55 60Leu Pro Glu Asp Pro Gly Thr Leu Ser Ala
Glu Arg Arg Cys Leu 65 70
75Thr Gln Pro Val Glu Asp Gln Gly Val Ser Thr Gln Leu Leu Ala
80 85 90Pro Ser Gly Ser Val Cys
Phe Ser Tyr Thr Gly Thr Pro Trp Lys 95
100 105Leu Phe Leu Arg Lys Glu Val Phe Tyr Pro Arg Glu
Asn Phe Ser 110 115 120His
Pro Tyr Tyr Leu Arg Leu Leu Cys Glu Gln Ile Leu Arg Asp
125 130 135Thr Phe Ser Glu Ser Cys Ile
Arg Ile Ser Gln Asn Glu Arg Arg 140 145
150Lys Met Lys Asp Leu Leu Gly Gly Leu Glu Val Asp Leu Asp
Ser 155 160 165Leu Thr Thr
Thr Glu Asp Ser Val Lys Lys Arg Ile Val Val Ala 170
175 180Ala Arg Asp Asn Trp Ala Asn Tyr Phe Ser
Arg Phe Phe Pro Val 185 190
195Ser Gly Glu Ser Gly Ser Asp Val Gln Leu Leu Ala Val Ser His
200 205 210Arg Gly Leu Arg Leu Leu
Lys Val Thr Gln Gly Pro Gly Leu Arg 215
220 225Pro Asp Gln Leu Lys Ile Leu Cys Ser Tyr Ser Phe
Ala Glu Val 230 235 240Leu
Gly Val Glu Cys Arg Gly Gly Ser Thr Leu Glu Leu Ser Leu
245 250 255Lys Ser Glu Gln Leu Val Leu
His Thr Ala Arg Ala Arg Ala Ile 260 265
270Glu Ala Leu Val Glu Leu Phe Leu Asn Glu Leu Lys Lys Asp
Ser 275 280 285Gly Tyr Val
Ile Ala Leu Arg Ser Tyr Ile Thr Asp Asn Cys Ser 290
295 300Leu Leu Ser Phe His Arg Gly Asp Leu Ile
Lys Leu Leu Pro Val 305 310
315Cys His Pro Gly Ala Arg Leu Ala Val Trp Leu Cys Arg Gly Pro
320 325 330Phe Arg Thr Leu Ser Cys
Arg His Ser Ala Ala Gly Cys Arg Ser 335
340 345Arg Leu Phe Leu Leu Gln Gly Ala Glu Glu Trp Leu
Ala Gln Gly 350 355 360Ser
Ala Val Gln Arg Gly Thr Arg Ala Gly Ser Val Gly Gln Gly
365 370 375Leu Arg Gly Glu Glu Asp Gly
Arg Gly Thr Ser Arg Gly Lys Ala 380 385
390Cys Leu Arg Leu Arg Lys Glu Arg Gly Leu Thr Thr Pro Glu
Ala 395 400 405Ala Met Arg
Trp Asp His Pro Ala Val Arg Leu Leu Trp Leu Pro 410
415 420Leu Cys Pro Leu Leu Met Ala Arg Leu Val
Ser Pro Ala Arg Leu 425 430
435Cys Thr Pro Cys Arg Gln Gly Leu Gly Trp Met Leu Leu Leu Cys
440 445 450Pro Thr Trp Tyr Leu Val
Gln Gly Cys Pro Ser Arg Cys Leu Ile 455
460 465Asn Ser Ser Ser Leu 47020144PRTHomo
sapiensmisc_featureIncyte ID No 1932945 20Met Glu Arg Glu Gly Ser Gly Gly
Ser Gly Gly Ser Ala Gly Leu 1 5 10
15Leu Gln Gln Ile Leu Ser Leu Lys Val Val Pro Arg Val Gly Asn
20 25 30Gly Thr Leu Cys
Pro Asn Ser Thr Ser Leu Cys Ser Phe Pro Glu 35
40 45Met Trp Tyr Gly Val Phe Leu Trp Ala Leu Val
Ser Ser Leu Phe 50 55
60Phe His Val Pro Ala Gly Leu Leu Ala Leu Phe Thr Leu Arg His
65 70 75His Lys Tyr Gly Arg Phe Met
Ser Val Ser Ile Leu Leu Met Gly 80 85
90Ile Val Gly Pro Ile Thr Ala Gly Ile Leu Thr Ser Ala Ala
Ile 95 100 105Ala Gly Val
Tyr Arg Ala Ala Gly Lys Glu Met Ile Pro Phe Glu 110
115 120Ala Leu Thr Leu Gly Thr Gly Gln Thr Phe
Cys Val Leu Val Val 125 130
135Ser Phe Leu Arg Ile Leu Ala Thr Leu 14021221PRTHomo
sapiensmisc_featureIncyte ID No 2061026 21Met Ala Leu Ala Leu Ala Ala Leu
Ala Ala Val Glu Pro Ala Cys 1 5 10
15Gly Ser Arg Tyr Gln Gln Leu Gln Asn Glu Glu Glu Ser Gly Glu
20 25 30Pro Glu Gln Ala
Ala Gly Asp Ala Pro Pro Pro Tyr Ser Ser Ile 35
40 45Ser Ala Glu Ser Ala Ala Tyr Phe Asp Tyr Lys
Asp Glu Ser Gly 50 55
60Phe Pro Lys Pro Pro Ser Tyr Asn Val Ala Thr Thr Leu Pro Ser
65 70 75Tyr Asp Glu Ala Glu Arg Thr
Lys Ala Glu Ala Thr Ile Pro Leu 80 85
90Val Pro Gly Arg Asp Glu Asp Phe Val Gly Arg Asp Asp Phe
Asp 95 100 105Asp Ala Asp
Gln Leu Arg Ile Gly Asn Asp Gly Ile Phe Met Leu 110
115 120Thr Phe Phe Met Ala Phe Leu Phe Asn Trp
Ile Gly Phe Phe Leu 125 130
135Ser Phe Cys Leu Thr Thr Ser Ala Ala Gly Arg Tyr Gly Ala Ile
140 145 150Ser Gly Phe Gly Leu Ser
Leu Ile Lys Trp Ile Leu Ile Val Arg 155
160 165Phe Ser Thr Tyr Phe Pro Gly Tyr Phe Asp Gly Gln
Tyr Trp Leu 170 175 180Trp
Trp Val Phe Leu Val Leu Gly Phe Leu Leu Phe Leu Arg Gly
185 190 195Phe Ile Asn Tyr Ala Lys Val
Arg Lys Met Pro Glu Thr Phe Ser 200 205
210Asn Leu Pro Arg Thr Arg Val Leu Phe Ile Tyr
215 22022688PRTHomo sapiensmisc_featureIncyte ID No
2096687 22Met Ser Ala Glu Ser Gly Pro Gly Thr Arg Leu Arg Asn Leu Pro 1
5 10 15Val Met Gly Asp Gly
Leu Glu Thr Ser Gln Met Ser Thr Thr Gln 20
25 30Ala Gln Ala Gln Pro Gln Pro Ala Asn Ala Ala Ser
Thr Asn Pro 35 40 45Pro
Pro Pro Glu Thr Ser Asn Pro Asn Lys Pro Lys Arg Gln Thr
50 55 60Asn Gln Leu Gln Tyr Leu Leu Arg
Val Val Leu Lys Thr Leu Trp 65 70
75Lys His Gln Phe Ala Trp Pro Phe Gln Gln Pro Val Asp Ala Val
80 85 90Lys Leu Asn Leu
Pro Asp Tyr Tyr Lys Ile Ile Lys Thr Pro Met 95
100 105Asp Met Gly Thr Ile Lys Lys Arg Leu Glu Asn
Asn Tyr Tyr Trp 110 115
120Asn Ala Gln Glu Cys Ile Gln Asp Phe Asn Thr Met Phe Thr Asn
125 130 135Cys Tyr Ile Tyr Asn Lys
Pro Gly Asp Asp Ile Val Leu Met Ala 140
145 150Glu Ala Leu Glu Lys Leu Phe Leu Gln Lys Ile Asn
Glu Leu Pro 155 160 165Thr
Glu Glu Thr Glu Ile Met Ile Val Gln Ala Lys Gly Arg Gly
170 175 180Arg Gly Arg Lys Glu Thr Gly
Thr Ala Lys Pro Gly Val Ser Thr 185 190
195Val Pro Asn Thr Thr Gln Ala Ser Thr Pro Pro Gln Thr Gln
Thr 200 205 210Pro Gln Pro
Asn Pro Pro Pro Val Gln Ala Thr Pro His Pro Phe 215
220 225Pro Ala Val Thr Pro Asp Leu Ile Val Gln
Thr Pro Val Met Thr 230 235
240Val Val Pro Pro Gln Pro Leu Gln Thr Pro Pro Pro Val Pro Pro
245 250 255Gln Pro Gln Pro Pro Pro
Ala Pro Ala Pro Gln Pro Val Gln Ser 260
265 270His Pro Pro Ile Ile Ala Ala Thr Pro Gln Pro Val
Lys Thr Lys 275 280 285Lys
Gly Val Lys Arg Lys Ala Asp Thr Thr Thr Pro Thr Thr Ile
290 295 300Asp Pro Ile His Glu Pro Pro
Ser Leu Pro Pro Glu Pro Lys Thr 305 310
315Thr Lys Leu Gly Gln Arg Arg Glu Ser Ser Arg Pro Val Lys
Pro 320 325 330Pro Lys Lys
Asp Val Pro Asp Ser Gln Gln His Pro Ala Pro Glu 335
340 345Lys Ser Ser Lys Val Ser Glu Gln Leu Lys
Cys Cys Ser Gly Ile 350 355
360Leu Lys Glu Met Phe Ala Lys Lys His Ala Ala Tyr Ala Trp Pro
365 370 375Phe Tyr Lys Pro Val Asp
Val Glu Ala Leu Gly Leu His Asp Tyr 380
385 390Cys Asp Ile Ile Lys His Pro Met Asp Met Ser Thr
Ile Lys Ser 395 400 405Lys
Leu Glu Ala Arg Glu Tyr Arg Asp Ala Gln Glu Phe Gly Ala
410 415 420Asp Val Arg Leu Met Phe Ser
Asn Cys Tyr Lys Tyr Asn Pro Pro 425 430
435Asp His Glu Val Val Ala Met Ala Arg Lys Leu Gln Asp Val
Phe 440 445 450Glu Met Arg
Phe Ala Lys Met Pro Asp Glu Pro Glu Glu Pro Val 455
460 465Val Ala Val Ser Ser Pro Ala Val Pro Pro
Pro Thr Lys Val Val 470 475
480Ala Pro Pro Ser Ser Ser Asp Ser Ser Ser Asp Ser Ser Ser Asp
485 490 495Ser Asp Ser Ser Thr Asp
Asp Ser Glu Glu Glu Arg Ala Gln Arg 500
505 510Leu Ala Glu Leu Gln Glu Gln Leu Lys Ala Val His
Glu Gln Leu 515 520 525Ala
Ala Leu Ser Gln Pro Gln Gln Asn Lys Pro Lys Lys Lys Glu
530 535 540Lys Asp Lys Lys Glu Lys Lys
Lys Glu Lys His Lys Arg Lys Glu 545 550
555Glu Val Glu Glu Asn Lys Lys Ser Lys Ala Lys Glu Pro Pro
Pro 560 565 570Lys Lys Thr
Lys Lys Asn Asn Ser Ser Asn Ser Asn Val Ser Lys 575
580 585Lys Glu Pro Ala Pro Met Lys Ser Lys Pro
Pro Pro Thr Tyr Glu 590 595
600Ser Glu Glu Glu Asp Lys Cys Lys Pro Met Ser Tyr Glu Glu Lys
605 610 615Arg Gln Leu Ser Leu Asp
Ile Asn Lys Leu Pro Gly Glu Lys Leu 620
625 630Gly Arg Val Val His Ile Ile Gln Ser Arg Glu Pro
Ser Leu Lys 635 640 645Asn
Ser Asn Pro Asp Glu Ile Glu Ile Asp Phe Glu Thr Leu Lys
650 655 660Pro Ser Thr Leu Arg Glu Leu
Gly Ala Leu Cys His Leu Leu Phe 665 670
675Ala Glu Glu Lys Glu Thr Phe Lys Leu Arg Lys Leu Met
680 68523439PRTHomo sapiensmisc_featureIncyte ID
No 2100530 23Met Gly Ser Gln Glu Val Leu Gly His Ala Ala Arg Leu Ala Ser
1 5 10 15Ser Gly Leu Leu
Leu Gln Val Leu Phe Arg Leu Ile Thr Phe Val 20
25 30Leu Asn Ala Phe Ile Leu Arg Phe Leu Ser Lys
Glu Ile Val Gly 35 40
45Val Val Asn Val Arg Leu Thr Leu Leu Tyr Ser Thr Thr Leu Phe
50 55 60Leu Ala Arg Glu Ala Phe Arg
Arg Ala Cys Leu Ser Gly Gly Thr 65 70
75Gln Arg Asp Trp Ser Gln Thr Leu Asn Leu Leu Trp Leu Thr
Val 80 85 90Pro Leu Gly
Val Phe Trp Ser Leu Phe Leu Gly Trp Ile Trp Leu 95
100 105Gln Leu Leu Glu Val Pro Asp Pro Asn Val
Val Pro His Tyr Ala 110 115
120Thr Gly Val Val Leu Phe Gly Leu Ser Ala Val Val Glu Leu Leu
125 130 135Gly Glu Pro Phe Trp Val
Leu Ala Gln Ala His Met Phe Val Lys 140
145 150Leu Lys Val Ile Ala Glu Ser Leu Ser Val Ile Leu
Lys Ser Val 155 160 165Leu
Thr Ala Phe Leu Val Leu Trp Leu Pro His Trp Gly Leu Tyr
170 175 180Ile Phe Ser Leu Ala Gln Leu
Phe Tyr Thr Thr Val Leu Val Leu 185 190
195Cys Tyr Val Ile Tyr Phe Thr Lys Leu Leu Gly Ser Pro Glu
Ser 200 205 210Thr Lys Leu
Gln Thr Leu Pro Val Ser Arg Ile Thr Asp Leu Leu 215
220 225Pro Asn Ile Thr Arg Asn Gly Ala Phe Ile
Asn Trp Lys Glu Ala 230 235
240Lys Leu Thr Trp Ser Phe Phe Lys Gln Ser Phe Leu Lys Gln Ile
245 250 255Leu Thr Glu Gly Glu Arg
Tyr Val Met Thr Phe Leu Asn Val Leu 260
265 270Asn Phe Gly Asp Gln Gly Val Tyr Asp Ile Val Asn
Asn Leu Gly 275 280 285Ser
Leu Val Ala Arg Leu Ile Phe Gln Pro Ile Glu Glu Ser Phe
290 295 300Tyr Ile Phe Phe Ala Lys Val
Leu Glu Arg Gly Lys Asp Ala Thr 305 310
315Leu Gln Lys Gln Glu Asp Val Ala Val Ala Ala Ala Val Leu
Glu 320 325 330Ser Leu Leu
Lys Leu Ala Leu Leu Ala Gly Leu Thr Ile Thr Val 335
340 345Phe Gly Phe Ala Tyr Ser Gln Leu Ala Leu
Asp Ile Tyr Gly Gly 350 355
360Thr Met Leu Ser Ser Gly Ser Gly Pro Val Leu Leu Arg Ser Tyr
365 370 375Cys Leu Tyr Val Leu Leu
Leu Ala Ile Asn Gly Val Thr Glu Cys 380
385 390Phe Thr Phe Ala Ala Met Ser Lys Glu Glu Val Asp
Arg Tyr Ser 395 400 405Ser
Ala Val Ser Arg Ala Gly Gln Pro Asp Trp His Thr Leu Leu
410 415 420Trp Gly Pro Ser Val Trp Glu
Gln Leu Ser Gly Gln His Xaa Ser 425 430
435Gln Arg Pro Ser24192PRTHomo sapiensmisc_featureIncyte ID
No 2357636 24Met Thr Ala Val Gly Val Gln Ala Gln Arg Pro Leu Gly Gln Arg
1 5 10 15Gln Pro Arg Arg
Ser Phe Phe Glu Ser Phe Ile Arg Thr Leu Ile 20
25 30Ile Thr Cys Val Ala Leu Ala Val Val Leu Ser
Ser Val Ser Ile 35 40
45Cys Asp Gly His Trp Leu Leu Ala Glu Asp Arg Leu Phe Gly Leu
50 55 60Trp His Phe Cys Thr Thr Thr
Asn Gln Ser Val Pro Ile Cys Phe 65 70
75Arg Asp Leu Gly Gln Ala His Val Pro Gly Leu Ala Val Gly
Met 80 85 90Gly Leu Val
Arg Ser Val Gly Ala Leu Ala Val Val Ala Ala Ile 95
100 105Phe Gly Leu Glu Phe Leu Met Val Ser Gln
Leu Cys Glu Asp Lys 110 115
120His Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val
125 130 135Ser Phe Val Leu Ser Ser
Gly Gly Leu Leu Gly Phe Val Ile Leu 140
145 150Leu Arg Asn Gln Val Thr Leu Ile Gly Phe Thr Leu
Met Phe Trp 155 160 165Cys
Glu Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser
170 175 180Gly Leu His Ile Asn Ser Ile
Thr His Pro Trp Glu 185 19025175PRTHomo
sapiensmisc_featureIncyte ID No 2365230 25Met Lys Glu Val Thr Arg Thr Trp
Lys Ile Val Gly Gly Val Thr 1 5 10
15His Ala Asn Ser Tyr Tyr Lys Asn Gly Trp Ile Val Met Ile Ala
20 25 30Ile Gly Trp Ala
Arg Gly Ala Gly Gly Thr Ile Ile Thr Asn Phe 35
40 45Glu Arg Leu Val Lys Gly Asp Trp Lys Pro Glu
Gly Asp Glu Trp 50 55
60Leu Lys Met Ser Tyr Pro Ala Lys Val Thr Leu Leu Gly Ser Val
65 70 75Ile Phe Thr Phe Gln His Thr
Gln His Leu Ala Ile Ser Lys His 80 85
90Asn Leu Met Phe Leu Tyr Thr Ile Phe Ile Val Ala Thr Lys
Ile 95 100 105Thr Met Met
Thr Thr Gln Thr Ser Thr Met Thr Phe Ala Pro Phe 110
115 120Glu Asp Thr Leu Ser Trp Met Leu Phe Gly
Trp Gln Gln Pro Phe 125 130
135Ser Ser Cys Glu Lys Lys Ser Glu Ala Lys Ser Pro Ser Asn Gly
140 145 150Val Gly Ser Leu Ala Ser
Lys Pro Val Asp Val Ala Ser Asp Asn 155
160 165Val Lys Lys Lys His Thr Lys Lys Asn Glu
170 1752691PRTHomo sapiensmisc_featureIncyte ID No
2455121 26Met Tyr Pro Pro Pro Pro Pro Pro Pro His Arg Asp Phe Ile Ser 1
5 10 15Val Thr Leu Ser Phe
Gly Glu Ser Tyr Asp Asn Ser Lys Ser Trp 20
25 30Arg Arg Arg Ser Cys Trp Arg Lys Trp Lys Gln Leu
Ser Arg Leu 35 40 45Gln
Arg Asn Met Ile Leu Phe Leu Leu Ala Phe Leu Leu Phe Cys
50 55 60Gly Leu Leu Phe Tyr Ile Asn Leu
Ala Asp His Trp Lys Ala Leu 65 70
75Ala Phe Arg Leu Gly Glu Glu Gln Lys Met Arg Pro Glu Ile Ala
80 85 90Gly27214PRTHomo
sapiensmisc_featureIncyte ID No 2472514 27Met Gln Pro Thr Ser Trp Ala Val
Ser Cys Gly Leu Arg Pro Leu 1 5 10
15Pro Ser Trp Lys Pro Gln Gly Gly Glu Gly Arg Gly Gly Glu Glu
20 25 30Arg Arg Gly Thr
Val Met Gly Pro Trp Ser Arg Val Arg Val Ala 35
40 45Lys Cys Gln Met Leu Val Thr Cys Phe Phe Ile
Leu Leu Leu Gly 50 55
60Leu Ser Val Ala Thr Met Val Thr Leu Thr Tyr Phe Gly Ala His
65 70 75Phe Ala Val Ile Arg Arg Ala
Ser Leu Glu Lys Asn Pro Tyr Gln 80 85
90Ala Val His Gln Trp Ala Phe Ser Ala Gly Leu Ser Leu Val
Gly 95 100 105Leu Leu Thr
Leu Gly Ala Val Leu Ser Ala Ala Ala Thr Val Arg 110
115 120Glu Ala Gln Gly Leu Met Ala Gly Gly Phe
Leu Cys Phe Ser Leu 125 130
135Ala Phe Cys Ala Gln Val Gln Val Val Phe Trp Arg Leu His Ser
140 145 150Pro Thr Gln Val Glu Asp
Ala Met Leu Asp Thr Tyr Asp Leu Val 155
160 165Tyr Glu Gln Ala Met Lys Gly Thr Ser His Val Arg
Arg Gln Glu 170 175 180Leu
Ala Ala Ile Gln Asp Val Val Ser Val Gly Thr Ala Gly Trp
185 190 195Gln Gly Gly Gln Leu Leu Leu
Gly Leu Gln Phe Arg Glu Gln Ala 200 205
210Gln Gly Gly Gln28250PRTHomo sapiensmisc_featureIncyte ID
No 2543486 28Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly
1 5 10 15Leu Pro Leu Ser
Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe 20
25 30Leu Glu Trp Arg Arg Arg Leu Lys Ser Leu Ala
Leu Arg Leu Ala 35 40
45Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile
50 55 60His Phe Ser Ser Phe Gly Asp
Val Ala Cys Met Ala Ile Cys Ser 65 70
75Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr
Leu 80 85 90Trp Trp Glu
Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu 95
100 105Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe
Asp Ser Ile Ile Gln 110 115
120Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu
125 130 135Cys Ser Leu Glu Lys Ile
Gln Glu Glu Leu Lys Leu Gln Pro Pro 140
145 150Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn
Gly Val Met 155 160 165Asn
Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg
170 175 180Met Glu Pro Val Thr Ala Leu
Gly Ile Leu Ser Leu Ile Leu Asn 185 190
195Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu
Ala 200 205 210Glu His Ser
Leu Gln Val Ala His Glu Glu Ile Gly Asn Ile Leu 215
220 225Ala Phe Leu Val Pro Phe Val Ala Cys Ile
Phe Gln Asp Pro Arg 230 235
240Ser Trp Phe Cys Trp Leu Asp Gln Thr Ser 245
2502984PRTHomo sapiensmisc_featureIncyte ID No 2778171 29Met Ala Thr
Gly Thr Asp Gln Val Val Gly Leu Gly Leu Val Ala 1 5
10 15Val Ser Leu Ile Ile Phe Thr Tyr Tyr Thr
Ala Trp Val Ile Leu 20 25
30Leu Pro Phe Ile Asp Ser Gln His Val Ile His Lys Tyr Phe Leu
35 40 45Pro Arg Ala Tyr Ala Val
Ala Ile Pro Leu Ala Ala Gly Leu Leu 50
55 60Leu Leu Leu Phe Val Gly Leu Phe Ile Ser Tyr Val Met
Leu Lys 65 70 75Ser Lys
Arg Val Thr Lys Lys Ala Gln 8030277PRTHomo
sapiensmisc_featureIncyte ID No 2799575 30Met Ala Ser Ala Glu Leu Asp Tyr
Thr Ile Glu Ile Pro Asp Gln 1 5 10
15Pro Cys Trp Ser Gln Lys Asn Ser Pro Ser Pro Gly Gly Lys Glu
20 25 30Ala Glu Thr Arg
Gln Pro Val Val Ile Leu Leu Gly Trp Gly Gly 35
40 45Cys Lys Asp Lys Asn Leu Ala Lys Tyr Ser Ala
Ile Tyr His Lys 50 55
60Arg Gly Cys Ile Val Ile Arg Tyr Thr Ala Pro Trp His Met Val
65 70 75Phe Phe Ser Glu Ser Leu Gly
Ile Pro Ser Leu Arg Val Leu Ala 80 85
90Gln Lys Leu Leu Glu Leu Leu Phe Asp Tyr Glu Ile Glu Lys
Glu 95 100 105Pro Leu Leu
Phe His Val Phe Ser Asn Gly Gly Val Met Leu Tyr 110
115 120Arg Tyr Val Leu Glu Leu Leu Gln Thr Arg
Arg Phe Cys Arg Leu 125 130
135Arg Val Val Gly Thr Ile Phe Asp Ser Ala Pro Gly Asp Ser Asn
140 145 150Leu Val Gly Ala Leu Arg
Ala Leu Ala Ala Ile Leu Glu Arg Arg 155
160 165Ala Ala Met Leu Arg Leu Leu Leu Leu Val Ala Phe
Ala Leu Val 170 175 180Val
Val Leu Phe His Val Leu Leu Ala Pro Ile Thr Ala Leu Phe
185 190 195His Thr His Phe Tyr Asp Arg
Leu Gln Asp Ala Gly Ser Arg Trp 200 205
210Pro Glu Leu Tyr Leu Tyr Ser Arg Ala Asp Glu Val Val Leu
Ala 215 220 225Arg Asp Ile
Glu Arg Met Val Glu Ala Arg Leu Ala Arg Arg Val 230
235 240Leu Ala Arg Ser Val Asp Phe Val Ser Ser
Ala His Val Ser His 245 250
255Leu Arg Asp Tyr Pro Thr Tyr Tyr Thr Ser Leu Cys Val Asp Phe
260 265 270Met Arg Asn Cys Val Arg
Cys 27531273PRTHomo sapiensmisc_featureIncyte ID No
2804955 31Met Ser Gly Ser Gln Ser Glu Val Ala Pro Ser Pro Gln Ser Pro 1
5 10 15Arg Ser Pro Glu Met
Gly Arg Asp Leu Arg Pro Gly Ser Arg Val 20
25 30Leu Leu Leu Leu Leu Leu Leu Leu Leu Val Tyr Leu
Thr Gln Pro 35 40 45Gly
Asn Gly Asn Glu Gly Ser Val Thr Gly Ser Cys Tyr Cys Gly
50 55 60Lys Arg Ile Ser Ser Asp Ser Pro
Pro Ser Val Gln Phe Met Asn 65 70
75Arg Leu Arg Lys His Leu Arg Ala Tyr His Arg Cys Leu Tyr Tyr
80 85 90Thr Arg Phe Gln
Leu Leu Ser Trp Ser Val Cys Gly Gly Asn Lys 95
100 105Asp Pro Trp Val Gln Glu Leu Met Ser Cys Leu
Asp Leu Lys Glu 110 115
120Cys Gly His Ala Tyr Ser Gly Ile Val Ala His Gln Lys His Leu
125 130 135Leu Pro Thr Ser Pro Pro
Ile Ser Gln Ala Ser Glu Gly Ala Ser 140
145 150Ser Asp Ile His Thr Pro Ala Gln Met Leu Leu Ser
Thr Leu Gln 155 160 165Ser
Thr Gln Arg Pro Thr Leu Pro Val Gly Ser Leu Ser Ser Asp
170 175 180Lys Glu Leu Thr Arg Pro Asn
Glu Thr Thr Ile His Thr Ala Gly 185 190
195His Ser Leu Ala Ala Gly Pro Glu Ala Gly Glu Asn Gln Lys
Gln 200 205 210Pro Glu Lys
Asn Ala Gly Pro Thr Ala Arg Thr Ser Ala Thr Val 215
220 225Pro Val Leu Cys Leu Leu Ala Ile Ile Phe
Ile Leu Thr Ala Ala 230 235
240Leu Ser Tyr Val Leu Cys Lys Arg Arg Arg Gly Gln Ser Pro Gln
245 250 255Ser Ser Pro Asp Leu Pro
Val His Tyr Ile Pro Val Ala Pro Asp 260
265 270Ser Asn Thr32524PRTHomo sapiensmisc_featureIncyte
ID No 2806395 32Met Ser Gln Gly Ser Pro Gly Asp Trp Ala Pro Leu Asp Pro
Thr 1 5 10 15Pro Gly Pro
Pro Ala Ser Pro Asn Pro Phe Val His Glu Leu His 20
25 30Leu Ser Arg Leu Gln Arg Val Lys Phe Cys
Leu Leu Gly Ala Leu 35 40
45Leu Ala Pro Ile Arg Val Leu Leu Ala Phe Ile Val Leu Phe Leu
50 55 60Leu Trp Pro Phe Ala Trp
Leu Gln Val Ala Gly Leu Ser Glu Glu 65
70 75Gln Leu Gln Glu Pro Ile Thr Gly Trp Arg Lys Thr Val
Cys His 80 85 90Asn Gly
Val Leu Gly Leu Ser Arg Leu Leu Phe Phe Leu Leu Gly 95
100 105Phe Leu Arg Ile Arg Val Arg Gly Gln
Arg Ala Ser Arg Leu Gln 110 115
120Ala Pro Val Leu Val Ala Ala Pro His Ser Thr Phe Phe Asp Pro
125 130 135Ile Val Leu Leu Pro
Cys Asp Leu Pro Lys Val Val Ser Arg Ala 140
145 150Glu Asn Leu Ser Val Pro Val Ile Gly Ala Leu Leu
Arg Phe Asn 155 160 165Gln
Ala Ile Leu Val Ser Arg His Asp Pro Ala Ser Arg Arg Arg
170 175 180Val Val Glu Glu Val Arg Arg
Arg Ala Thr Ser Gly Gly Lys Trp 185 190
195Pro Gln Val Leu Phe Phe Pro Glu Gly Thr Cys Ser Asn Lys
Lys 200 205 210Ala Leu Leu
Lys Phe Lys Pro Gly Ala Phe Ile Ala Gly Val Pro 215
220 225Val Gln Pro Val Leu Ile Arg Tyr Pro Asn
Ser Leu Asp Thr Thr 230 235
240Ser Trp Ala Trp Arg Gly Pro Gly Val Leu Lys Val Leu Trp Leu
245 250 255Thr Ala Ser Gln Pro Cys
Ser Ile Val Asp Val Glu Phe Leu Pro 260
265 270Val Tyr His Pro Ser Pro Glu Glu Ser Arg Asp Pro
Thr Leu Tyr 275 280 285Ala
Asn Asn Val Gln Arg Val Met Ala Gln Ala Leu Gly Ile Pro
290 295 300Ala Thr Glu Cys Glu Phe Val
Gly Ser Leu Pro Val Ile Val Val 305 310
315Gly Arg Leu Lys Val Ala Leu Glu Pro Gln Leu Trp Glu Leu
Gly 320 325 330Lys Val Leu
Arg Lys Ala Gly Leu Ser Ala Gly Tyr Val Asp Ala 335
340 345Gly Ala Glu Pro Gly Arg Ser Arg Met Ile
Ser Gln Glu Glu Phe 350 355
360Ala Arg Gln Leu Gln Leu Ser Asp Pro Gln Thr Val Ala Gly Ala
365 370 375Phe Gly Tyr Phe Gln Gln
Asp Thr Lys Gly Leu Val Asp Phe Arg 380
385 390Asp Val Ala Leu Ala Leu Ala Ala Leu Asp Gly Gly
Arg Ser Leu 395 400 405Glu
Glu Leu Thr Arg Leu Ala Phe Glu Leu Phe Ala Glu Glu Gln
410 415 420Ala Glu Gly Pro Asn Arg Leu
Leu Tyr Lys Asp Gly Phe Ser Thr 425 430
435Ile Leu His Leu Leu Leu Gly Ser Pro His Pro Ala Ala Thr
Ala 440 445 450Leu His Ala
Glu Leu Cys Gln Ala Gly Ser Ser Gln Gly Leu Ser 455
460 465Leu Cys Gln Phe Gln Asn Phe Ser Leu His
Asp Pro Leu Tyr Gly 470 475
480Lys Leu Phe Ser Thr Tyr Leu Arg Pro Pro His Thr Ser Arg Gly
485 490 495Thr Ser Gln Thr Pro Asn
Ala Ser Ser Pro Gly Asn Pro Thr Ala 500
505 510Leu Ala Asn Gly Thr Val Gln Ala Pro Lys Gln Lys
Gly Asp 515 52033257PRTHomo
sapiensmisc_featureIncyte ID No 2836858 33Met Asp Phe Ser Arg Leu His Met
Tyr Ser Pro Pro Gln Cys Val 1 5 10
15Pro Glu Asn Thr Gly Tyr Thr Tyr Ala Leu Ser Ser Ser Tyr Ser
20 25 30Ser Asp Ala Leu
Asp Phe Glu Thr Glu His Lys Leu Asp Pro Val 35
40 45Phe Asp Ser Pro Arg Met Ser Arg Arg Ser Leu
Arg Leu Ala Thr 50 55
60Thr Ala Cys Thr Leu Gly Asp Gly Glu Ala Val Gly Ala Asp Ser
65 70 75Gly Thr Ser Ser Ala Val Ser
Leu Lys Asn Arg Ala Ala Arg Thr 80 85
90Thr Lys Gln Arg Arg Ser Thr Asn Lys Ser Ala Phe Ser Ile
Asn 95 100 105His Val Ser
Arg Gln Val Thr Ser Ser Gly Val Ser His Gly Gly 110
115 120Thr Val Ser Leu Gln Asp Ala Val Thr Arg
Arg Pro Pro Val Leu 125 130
135Asp Glu Ser Trp Ile Arg Glu Gln Thr Thr Val Asp His Phe Trp
140 145 150Gly Leu Asp Asp Asp Gly
Asp Leu Lys Gly Gly Asn Lys Ala Ala 155
160 165Ile Gln Gly Asn Gly Asp Val Gly Ala Ala Ala Ala
Thr Ala His 170 175 180Asn
Gly Phe Ser Cys Ser Asn Cys Ser Met Leu Ser Glu Arg Lys
185 190 195Asp Val Leu Thr Ala His Pro
Ala Ala Pro Gly Pro Val Ser Arg 200 205
210Val Tyr Ser Arg Asp Arg Asn Gln Lys Cys Lys Ser Gln Ser
Phe 215 220 225Lys Thr Gln
Lys Lys Val Cys Phe Pro Asn Leu Ile Phe Pro Phe 230
235 240Cys Lys Ser Gln Cys Leu His Tyr Leu Ser
Trp Arg Leu Lys Ile 245 250
255Ile Pro34274PRTHomo sapiensmisc_featureIncyte ID No 2844513 34Met Arg
Ala Ala Gly Val Gly Leu Val Asp Cys His Cys His Leu 1 5
10 15Ser Ala Pro Asp Phe Asp Arg Asp Leu
Asp Asp Val Leu Glu Lys 20 25
30Ala Lys Lys Ala Asn Val Val Ala Leu Val Ala Val Ala Glu His
35 40 45Ser Gly Glu Phe Glu
Lys Ile Met Gln Leu Ser Glu Arg Tyr Asn 50
55 60Gly Phe Val Leu Pro Cys Leu Gly Val His Pro Val
Gln Gly Leu 65 70 75Pro
Pro Glu Asp Gln Arg Ser Val Thr Leu Lys Asp Leu Asp Val
80 85 90Ala Leu Pro Ile Ile Glu Asn Tyr
Lys Asp Arg Leu Leu Ala Ile 95 100
105Gly Glu Val Gly Leu Asp Phe Ser Pro Arg Phe Ala Gly Thr Gly
110 115 120Glu Gln Lys Glu
Glu Gln Arg Gln Val Leu Ile Arg Gln Ile Gln 125
130 135Leu Ala Lys Arg Leu Asn Leu Pro Val Asn Val
His Ser Arg Ser 140 145
150Ala Gly Arg Pro Thr Ile Asn Leu Leu Gln Glu Gln Gly Ala Glu
155 160 165Lys Val Leu Leu His Ala
Phe Asp Gly Arg Pro Ser Val Ala Met 170
175 180Glu Gly Val Arg Ala Gly Tyr Phe Phe Ser Ile Pro
Pro Ser Ile 185 190 195Ile
Arg Ser Gly Gln Lys Gln Lys Leu Val Lys Gln Leu Pro Leu
200 205 210Thr Ser Ile Cys Leu Glu Thr
Asp Ser Pro Ala Leu Gly Pro Glu 215 220
225Lys Gln Val Arg Asn Glu Pro Trp Asn Ile Ser Ile Ser Ala
Glu 230 235 240Tyr Ile Ala
Gln Val Lys Gly Ile Ser Val Glu Glu Val Ile Glu 245
250 255Val Thr Thr Gln Asn Ala Leu Lys Leu Phe
Pro Lys Leu Arg His 260 265
270Leu Leu Gln Lys35281PRTHomo sapiensmisc_featureIncyte ID No 3000380
35Met Ser Glu Pro Gln Pro Asp Leu Glu Pro Pro Gln His Gly Leu 1
5 10 15Tyr Met Leu Phe Leu Leu Val
Leu Val Phe Phe Leu Met Gly Leu 20 25
30Val Gly Phe Met Ile Cys His Val Leu Lys Lys Lys Gly Tyr
Arg 35 40 45Cys Arg Thr
Ser Arg Gly Ser Glu Pro Asp Asp Ala Gln Leu Gln 50
55 60Pro Pro Glu Asp Asp Asp Met Asn Glu Asp
Thr Val Glu Arg Ile 65 70
75Val Arg Cys Ile Ile Gln Asn Glu Val Trp Met Pro Pro Pro Ala
80 85 90Cys Arg Thr Glu Pro Pro
Pro Ile Ile Thr Gln Cys Thr Trp Ala 95
100 105Leu Gln Pro Leu Ala Val His Cys Ser Arg Ser Lys
Arg Pro Pro 110 115 120Leu
Val Arg Gln Gly Arg Ser Lys Glu Gly Lys Ser Arg Pro Arg
125 130 135Thr Gly Glu Thr Thr Val Phe
Ser Val Gly Arg Phe Arg Val Thr 140 145
150His Ile Glu Lys Arg Tyr Gly Leu His Glu His Arg Asp Gly
Ser 155 160 165Pro Thr Asp
Arg Ser Trp Gly Ser Arg Gly Gly Gln Asp Pro Gly 170
175 180Gly Gly Gln Gly Ser Gly Gly Gly His Pro
Lys Ala Gly Met Leu 185 190
195Pro Trp Arg Gly Cys Pro Pro Glu Arg Pro Gln Pro Gln Val Leu
200 205 210Ala Ser Pro Pro Val Gln
Asn Gly Gly Leu Arg Asp Ser Ser Leu 215
220 225Thr Pro Arg Ala Leu Glu Gly Asn Pro Arg Ala Ser
Ala Glu Pro 230 235 240Thr
Leu Arg Ala Gly Gly Arg Gly Pro Ser Pro Gly Leu Pro Thr
245 250 255Gln Glu Ala Asn Gly Gln Pro
Ser Lys Pro Asp Thr Ser Asp His 260 265
270Gln Val Ser Leu Pro Gln Gly Ala Gly Ser Met
275 28036335PRTHomo sapiensmisc_featureIncyte ID No
182532 36Met Gly Pro Leu Ser Ala Pro Pro Cys Thr His Leu Ile Thr Trp 1
5 10 15Lys Gly Val Leu Leu
Thr Ala Ser Leu Leu Asn Phe Trp Asn Pro 20
25 30Pro Thr Thr Ala Gln Val Thr Ile Glu Ala Gln Pro
Pro Lys Val 35 40 45Ser
Glu Gly Lys Asp Val Leu Leu Leu Val His Asn Leu Pro Gln
50 55 60Asn Leu Ala Gly Tyr Ile Trp Tyr
Lys Gly Gln Met Thr Tyr Val 65 70
75Tyr His Tyr Ile Ile Ser Tyr Ile Val Asp Gly Lys Ile Ile Ile
80 85 90Tyr Gly Pro Ala
Tyr Ser Gly Arg Glu Arg Val Tyr Ser Asn Ala 95
100 105Ser Leu Leu Ile Gln Asn Val Thr Gln Glu Asp
Ala Gly Ser Tyr 110 115
120Thr Leu His Ile Ile Lys Arg Gly Asp Gly Thr Arg Gly Glu Thr
125 130 135Gly His Phe Thr Phe Thr
Leu Tyr Leu Glu Thr Pro Lys Pro Ser 140
145 150Ile Ser Ser Ser Asn Leu Tyr Pro Arg Glu Asp Met
Glu Ala Val 155 160 165Ser
Leu Thr Cys Asp Pro Glu Thr Pro Asp Ala Ser Tyr Leu Trp
170 175 180Trp Met Asn Gly Gln Ser Leu
Pro Met Thr His Ser Leu Gln Leu 185 190
195Ser Lys Asn Lys Arg Thr Leu Phe Leu Phe Gly Val Thr Lys
Tyr 200 205 210Thr Ala Gly
Pro Tyr Glu Cys Glu Ile Arg Asn Pro Val Ser Gly 215
220 225Ile Arg Ser Asp Pro Val Thr Leu Asn Val
Leu Tyr Gly Pro Asp 230 235
240Leu Pro Ser Ile Tyr Pro Ser Phe Thr Tyr Tyr Arg Ser Gly Glu
245 250 255Asn Leu Tyr Leu Ser Cys
Phe Ala Glu Ser Asn Pro Arg Ala Gln 260
265 270Tyr Ser Trp Thr Ile Asn Gly Lys Phe Gln Leu Ser
Gly Gln Lys 275 280 285Leu
Phe Ile Pro Gln Ile Thr Thr Lys His Ser Gly Leu Tyr Ala
290 295 300Cys Ser Val Arg Asn Ser Ala
Thr Gly Met Glu Ser Ser Lys Ser 305 310
315Met Thr Val Lys Val Ser Ala Pro Ser Gly Thr Gly His Leu
Pro 320 325 330Gly Leu Asn
Pro Leu 33537280PRTHomo sapiensmisc_featureIncyte ID No
239589 37Met Asp Leu Gln Gly Arg Gly Val Pro Ser Ile Asp Arg Leu Arg 1
5 10 15Val Leu Leu Met Leu
Phe His Thr Met Ala Gln Ile Met Ala Glu 20
25 30Gln Glu Val Glu Asn Leu Ser Gly Leu Ser Thr Asn
Pro Glu Lys 35 40 45Asp
Ile Phe Val Val Arg Glu Asn Gly Thr Thr Cys Leu Met Ala
50 55 60Glu Phe Ala Ala Lys Phe Ile Val
Pro Tyr Asp Val Trp Ala Ser 65 70
75Asn Tyr Val Asp Leu Ile Thr Glu Gln Ala Asp Ile Ala Leu Thr
80 85 90Arg Gly Ala Glu
Val Lys Gly Arg Cys Gly His Ser Gln Ser Glu 95
100 105Leu Gln Val Phe Trp Val Asp Arg Ala Tyr Ala
Leu Lys Met Leu 110 115
120Phe Val Lys Glu Ser His Asn Met Ser Lys Gly Pro Glu Ala Thr
125 130 135Trp Arg Leu Ser Lys Val
Gln Phe Val Tyr Asp Ser Ser Glu Lys 140
145 150Thr His Phe Lys Asp Ala Val Ser Ala Gly Lys His
Thr Ala Asn 155 160 165Ser
His His Leu Ser Ala Leu Val Thr Pro Ala Gly Lys Ser Tyr
170 175 180Glu Cys Gln Ala Gln Gln Thr
Ile Ser Leu Ala Ser Ser Asp Pro 185 190
195Gln Lys Thr Val Thr Met Ile Leu Ser Ala Val His Ile Gln
Pro 200 205 210Phe Asp Ile
Ile Ser Asp Phe Val Phe Ser Glu Glu His Lys Cys 215
220 225Pro Val Asp Glu Arg Glu Gln Leu Glu Glu
Thr Leu Pro Leu Ile 230 235
240Leu Gly Leu Ile Leu Gly Leu Val Ile Met Val Thr Leu Ala Ile
245 250 255Tyr His Val His His Lys
Met Thr Ala Asn Gln Val Gln Ile Pro 260
265 270Arg Asp Arg Ser Gln Tyr Lys His Met Gly
275 28038210PRTHomo sapiensmisc_featureIncyte ID No
1671302 38Met Ser Arg Met Phe Cys Gln Ala Ala Arg Val Asp Leu Thr Leu 1
5 10 15Asp Pro Asp Thr Ala
His Pro Ala Leu Met Leu Ser Pro Asp Arg 20
25 30Arg Gly Val Arg Leu Ala Glu Arg Arg Gln Glu Val
Ala Asp His 35 40 45Pro
Lys Arg Phe Ser Ala Asp Cys Cys Val Leu Gly Ala Gln Gly
50 55 60Phe Arg Ser Gly Arg His Tyr Trp
Glu Val Glu Val Gly Gly Arg 65 70
75Arg Gly Trp Ala Val Gly Ala Ala Arg Glu Ser Thr His His Lys
80 85 90Glu Lys Val Gly
Pro Gly Gly Ser Ser Val Gly Ser Gly Asp Ala 95
100 105Ser Ser Ser Arg His His His Arg Arg Arg Arg
Leu His Leu Pro 110 115
120Gln Gln Pro Leu Leu Gln Arg Glu Val Trp Cys Val Gly Thr Asn
125 130 135Gly Lys Arg Tyr Gln Ala
Gln Ser Ser Thr Glu Gln Thr Leu Leu 140
145 150Ser Pro Ser Glu Lys Pro Arg Arg Phe Gly Val Tyr
Leu Asp Tyr 155 160 165Glu
Ala Gly Arg Leu Gly Phe Tyr Asn Ala Glu Thr Leu Ala His
170 175 180Val His Thr Phe Ser Ala Ala
Phe Leu Gly Glu Arg Val Phe Pro 185 190
195Phe Phe Arg Val Leu Ser Lys Gly Thr Arg Ile Lys Leu Cys
Pro 200 205
21039279PRTHomo sapiensmisc_featureIncyte ID No 2041858 39Met Glu Ala Val
Val Asn Leu Tyr Gln Glu Val Met Lys His Ala 1 5
10 15Asp Pro Arg Ile Gln Gly Tyr Pro Leu Met Gly
Ser Pro Leu Leu 20 25
30Met Thr Ser Ile Leu Leu Thr Tyr Val Tyr Phe Val Leu Ser Leu
35 40 45Gly Pro Arg Ile Met Ala Asn
Arg Lys Pro Phe Gln Leu Arg Gly 50 55
60Phe Met Ile Val Tyr Asn Phe Ser Leu Val Ala Leu Ser Leu
Tyr 65 70 75Ile Val Tyr
Glu Phe Leu Met Ser Gly Trp Leu Ser Thr Tyr Thr 80
85 90Trp Arg Cys Asp Pro Val Asp Tyr Ser Asn
Ser Pro Glu Ala Leu 95 100
105Arg Met Val Arg Val Ala Trp Leu Phe Leu Phe Ser Lys Phe Ile
110 115 120Glu Leu Met Asp Thr Val
Ile Phe Ile Leu Arg Lys Lys Asp Gly 125
130 135Gln Val Thr Phe Leu His Val Phe His His Ser Val
Leu Pro Trp 140 145 150Ser
Trp Trp Trp Gly Val Lys Ile Ala Pro Gly Gly Met Gly Ser
155 160 165Phe His Ala Met Ile Asn Ser
Ser Val His Val Ile Met Tyr Leu 170 175
180Tyr Tyr Gly Leu Ser Ala Phe Gly Pro Val Ala Gln Pro Tyr
Leu 185 190 195Trp Trp Lys
Lys His Met Thr Ala Ile Gln Leu Ile Gln Phe Val 200
205 210Leu Val Ser Leu His Ile Ser Gln Tyr Tyr
Phe Met Ser Ser Cys 215 220
225Asn Tyr Gln Tyr Pro Val Ile Ile His Leu Ile Trp Met Tyr Gly
230 235 240Thr Ile Phe Phe Met Leu
Phe Ser Asn Phe Trp Tyr His Ser Tyr 245
250 255Thr Lys Gly Lys Arg Leu Pro Arg Ala Leu Gln Gln
Asn Gly Ala 260 265 270Pro
Gly Ile Ala Lys Val Lys Ala Asn 27540154PRTHomo
sapiensmisc_featureIncyte ID No 2198863 40Met Gly Lys Ser Ala Ser Lys Gln
Phe His Asn Glu Val Leu Lys 1 5 10
15Ala His Asn Glu Tyr Arg Gln Lys His Gly Val Pro Pro Leu Lys
20 25 30Leu Cys Lys Asn
Leu Asn Arg Glu Ala Gln Gln Tyr Ser Glu Ala 35
40 45Leu Ala Ser Thr Arg Ile Leu Lys His Ser Pro
Glu Ser Ser Arg 50 55
60Gly Gln Cys Gly Glu Asn Leu Ala Trp Ala Ser Tyr Asp Gln Thr
65 70 75Gly Lys Glu Val Ala Asp Arg
Trp Tyr Ser Glu Ile Lys Asn Tyr 80 85
90Asn Phe Gln Gln Pro Gly Phe Thr Ser Gly Thr Gly His Phe
Thr 95 100 105Ala Met Val
Trp Lys Asn Thr Lys Lys Met Gly Val Gly Lys Ala 110
115 120Ser Ala Ser Asp Gly Ser Ser Phe Val Val
Ala Arg Tyr Phe Pro 125 130
135Ala Gly Asn Val Val Asn Glu Gly Phe Phe Glu Glu Asn Val Leu
140 145 150Pro Pro Lys
Lys41582PRTHomo sapiensmisc_featureIncyte ID No 3250703 41Met Lys Pro Asn
Ile Ile Phe Val Leu Ser Leu Leu Leu Ile Leu 1 5
10 15Glu Lys Gln Ala Ala Val Met Gly Gln Lys Gly
Gly Ser Lys Gly 20 25
30Arg Leu Pro Ser Glu Phe Ser Gln Phe Pro His Gly Gln Lys Gly
35 40 45Gln His Tyr Ser Gly Gln Lys
Gly Lys Gln Gln Thr Glu Ser Lys 50 55
60Gly Ser Phe Ser Ile Gln Tyr Thr Tyr His Val Asp Ala Asn
Asp 65 70 75His Asp Gln
Ser Arg Lys Ser Gln Gln Tyr Asp Leu Asn Ala Leu 80
85 90His Lys Thr Thr Lys Ser Gln Arg His Leu
Gly Gly Ser Gln Gln 95 100
105Leu Leu His Asn Lys Gln Glu Gly Arg Asp His Asp Lys Ser Lys
110 115 120Gly His Phe His Arg Val
Val Ile His His Lys Gly Gly Lys Ala 125
130 135His Arg Gly Thr Gln Asn Pro Ser Gln Asp Gln Gly
Asn Ser Pro 140 145 150Ser
Gly Lys Gly Ile Ser Ser Gln Tyr Ser Asn Thr Glu Glu Arg
155 160 165Leu Trp Val His Gly Leu Ser
Lys Glu Gln Thr Ser Val Ser Gly 170 175
180Ala Gln Lys Gly Arg Lys Gln Gly Gly Ser Gln Ser Ser Tyr
Val 185 190 195Leu Gln Thr
Glu Glu Leu Val Ala Asn Lys Gln Gln Arg Glu Thr 200
205 210Lys Asn Ser His Gln Asn Lys Gly His Tyr
Gln Asn Val Val Glu 215 220
225Val Arg Glu Glu His Ser Ser Lys Val Gln Thr Ser Leu Cys Pro
230 235 240Ala His Gln Asp Lys Leu
Gln His Gly Ser Lys Asp Ile Phe Ser 245
250 255Thr Gln Asp Glu Leu Leu Val Tyr Asn Lys Asn Gln
His Gln Thr 260 265 270Lys
Asn Leu Asn Gln Asp Gln Gln His Gly Arg Lys Ala Asn Lys
275 280 285Ile Ser Tyr Gln Ser Ser Ser
Thr Glu Glu Arg Arg Leu His Tyr 290 295
300Gly Glu Asn Gly Val Gln Lys Asp Val Ser Gln Ser Ser Ile
Tyr 305 310 315Ser Gln Thr
Glu Glu Lys Ile His Gly Lys Ser Gln Asn Gln Val 320
325 330Thr Ile His Ser Gln Asp Gln Glu His Gly
His Lys Glu Asn Lys 335 340
345Ile Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg His Leu Asn Cys
350 355 360Gly Glu Lys Gly Ile Gln
Lys Gly Val Ser Lys Gly Ser Ile Ser 365
370 375Ile Gln Thr Glu Glu Gln Ile His Gly Lys Ser Gln
Asn Gln Val 380 385 390Arg
Ile Pro Ser Gln Ala Gln Glu Tyr Gly His Lys Glu Asn Lys
395 400 405Ile Ser Tyr Gln Ser Ser Ser
Thr Glu Glu Arg Arg Leu Asn Ser 410 415
420Gly Glu Lys Asp Val Gln Lys Gly Val Ser Lys Gly Ser Ile
Ser 425 430 435Ile Gln Thr
Glu Glu Lys Ile His Gly Lys Ser Gln Asn Gln Val 440
445 450Thr Ile Pro Ser Gln Asp Gln Glu His Gly
His Lys Glu Asn Lys 455 460
465Met Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg Arg Leu Asn Tyr
470 475 480Gly Gly Lys Ser Thr Gln
Lys Asp Val Ser Gln Ser Ser Ile Ser 485
490 495Phe Gln Ile Glu Lys Leu Val Glu Gly Lys Ser Gln
Ile Gln Thr 500 505 510Pro
Asn Pro Asn Gln Asp Gln Trp Ser Gly Gln Asn Ala Lys Gly
515 520 525Lys Ser Gly Gln Ser Ala Asp
Ser Lys Gln Asp Leu Leu Ser His 530 535
540Glu Gln Lys Gly Arg Tyr Lys Gln Glu Ser Ser Glu Ser His
Asn 545 550 555Ile Val Ile
Thr Glu His Glu Val Ala Gln Asp Asp His Leu Thr 560
565 570Gln Gln Tyr Asn Glu Asp Arg Asn Pro Ile
Ser Thr 575 5804271PRTHomo
sapiensmisc_featureIncyte ID No 350287 42Met Phe Thr Ala Pro Leu Phe Phe
Phe Phe Phe Phe Glu Ile Ile 1 5 10
15Asn Ser Met Arg Asn Leu Gly Leu Asn Ile Cys Leu Leu Cys Leu
20 25 30Leu Ile Glu His
His Ser Arg Pro Ser Val Cys Leu Pro Phe Thr 35
40 45Pro Lys Ile Phe Thr Lys Lys Ile Leu Arg Gln
Gln Val Thr Ile 50 55
60Tyr Arg Cys Leu Asn Asp Phe Leu Ile Phe Ile 65
7043102PRTHomo sapiensmisc_featureIncyte ID No 1618171 43Met Ala
Val Leu Pro Ser Val Leu Leu Val Tyr Ser Leu Phe Phe 1 5
10 15Cys Leu Arg Phe Cys Met Leu Leu Leu
Leu Pro Ser Tyr Ser His 20 25
30Ser Arg Ser Gly Arg Gly Pro Gly Arg Tyr Gly His Ile Thr Leu
35 40 45Ile Asp Val Ile His
Val Ser Val Tyr Trp Phe Phe Glu Ala Leu 50
55 60Ser Thr Phe Gln Ile Phe Tyr Tyr Cys Ile Thr Arg
Thr Ile Thr 65 70 75Val
Arg Lys Gly Ile Val Val Ser Arg His Val Asn Glu Ala Gly
80 85 90Val Ser Phe Val Ser Tyr Leu Cys
Ile Asn Phe Lys 95 10044226PRTHomo
sapiensmisc_featureIncyte ID No 1625863 44Met Pro Thr Thr Lys Lys Thr Leu
Met Phe Leu Ser Ser Phe Phe 1 5 10
15Thr Ser Leu Gly Ser Phe Ile Val Ile Cys Ser Ile Leu Gly Thr
20 25 30Gln Ala Trp Ile
Thr Ser Thr Ile Ala Val Arg Asp Ser Ala Ser 35
40 45Asn Gly Ser Ile Phe Ile Thr Tyr Gly Leu Phe
Arg Gly Glu Ser 50 55
60Ser Glu Glu Leu Ser His Gly Leu Ala Glu Pro Lys Lys Lys Phe
65 70 75Ala Val Leu Glu Ile Leu Asn
Asn Ser Ser Gln Lys Thr Leu His 80 85
90Ser Val Thr Ile Leu Phe Leu Val Leu Ser Leu Ile Thr Ser
Leu 95 100 105Leu Ser Ser
Gly Phe Thr Phe Tyr Asn Ser Ile Ser Asn Pro Tyr 110
115 120Gln Thr Phe Leu Gly Pro Thr Gly Val Tyr
Thr Trp Asn Gly Leu 125 130
135Gly Ala Ser Phe Val Phe Val Thr Met Ile Leu Phe Val Ala Asn
140 145 150Thr Gln Ser Asn Gln Leu
Ser Glu Glu Leu Phe Gln Met Leu Tyr 155
160 165Pro Ala Thr Thr Ser Lys Gly Thr Thr His Ser Tyr
Gly Tyr Ser 170 175 180Phe
Trp Leu Ile Leu Leu Val Ile Leu Leu Asn Ile Val Thr Val
185 190 195Thr Ile Ile Ile Phe Tyr Gln
Lys Ala Arg Tyr Gln Arg Lys Gln 200 205
210Glu Gln Arg Lys Pro Met Glu Tyr Ala Pro Arg Asp Gly Ile
Leu 215 220
225Phe45154PRTHomo sapiensmisc_featureIncyte ID No 1638353 45Met Ala Leu
Leu Leu Ser Val Leu Arg Val Leu Leu Gly Gly Phe 1 5
10 15Phe Ala Leu Val Gly Leu Ala Lys Leu Ser
Glu Glu Ile Ser Ala 20 25
30Pro Val Ser Glu Arg Met Asn Ala Leu Phe Val Gln Phe Ala Glu
35 40 45Val Phe Pro Leu Lys Val
Phe Gly Tyr Gln Pro Asp Pro Leu Asn 50
55 60Tyr Gln Ile Ala Val Gly Phe Leu Glu Leu Leu Ala Gly
Leu Leu 65 70 75Leu Val
Met Gly Pro Pro Met Leu Gln Glu Ile Ser Asn Leu Phe 80
85 90Leu Ile Leu Leu Met Met Gly Ala Ile
Phe Thr Leu Ala Ala Leu 95 100
105Lys Glu Ser Leu Ser Thr Cys Ile Pro Ala Ile Val Cys Leu Gly
110 115 120Phe Leu Leu Leu Leu
Asn Val Gly Gln Leu Leu Ala Gln Thr Lys 125
130 135Lys Val Val Arg Pro Thr Arg Lys Lys Thr Leu Ser
Thr Phe Lys 140 145 150Glu
Ser Trp Lys46167PRTHomo sapiensmisc_featureIncyte ID No 1726843 46Met Ala
Ser Pro Arg Thr Val Thr Ile Val Ala Leu Ser Val Ala 1 5
10 15Leu Gly Leu Phe Phe Val Phe Met Gly
Thr Ile Lys Leu Thr Pro 20 25
30Arg Leu Ser Lys Asp Ala Tyr Ser Glu Met Lys Arg Ala Tyr Lys
35 40 45Ser Tyr Val Arg Ala
Leu Pro Leu Leu Lys Lys Met Gly Ile Asn 50
55 60Ser Ile Leu Leu Arg Lys Ser Ile Gly Ala Leu Glu
Val Ala Cys 65 70 75Gly
Ile Val Met Thr Leu Val Pro Gly Arg Pro Lys Asp Val Ala
80 85 90Asn Phe Phe Leu Leu Leu Leu Val
Leu Ala Val Leu Phe Phe His 95 100
105Gln Leu Val Gly Asp Pro Leu Lys Arg Tyr Ala His Ala Leu Val
110 115 120Phe Gly Ile Leu
Leu Thr Cys Arg Leu Leu Ile Ala Arg Lys Pro 125
130 135Glu Asp Arg Ser Ser Glu Lys Lys Pro Leu Pro
Gly Asn Ala Glu 140 145
150Glu Gln Pro Ser Leu Tyr Glu Lys Ala Pro Gln Gly Lys Val Lys
155 160 165Val Ser47545PRTHomo
sapiensmisc_featureIncyte ID No 1754506 47Met Ala Gly Ala Ile Ile Glu Asn
Met Ser Thr Lys Lys Leu Cys 1 5 10
15Ile Val Gly Gly Ile Leu Leu Val Phe Gln Ile Ile Ala Phe Leu
20 25 30Val Gly Gly Leu
Ile Ala Pro Gly Pro Thr Thr Ala Val Ser Tyr 35
40 45Met Ser Val Lys Cys Val Asp Ala Arg Lys Asn
His His Lys Thr 50 55
60Lys Trp Phe Val Pro Trp Gly Pro Asn His Cys Asp Lys Ile Arg
65 70 75Asp Ile Glu Glu Ala Ile Pro
Arg Glu Ile Glu Ala Asn Asp Ile 80 85
90Val Phe Ser Val His Ile Pro Leu Pro His Met Glu Met Ser
Pro 95 100 105Trp Phe Gln
Phe Met Leu Phe Ile Leu Gln Leu Asp Ile Ala Phe 110
115 120Lys Leu Asn Asn Gln Ile Arg Glu Asn Ala
Glu Val Ser Met Asp 125 130
135Val Ser Leu Ala Tyr Arg Asp Asp Ala Phe Ala Glu Trp Thr Glu
140 145 150Met Ala His Glu Arg Val
Pro Arg Lys Leu Lys Cys Thr Phe Thr 155
160 165Ser Pro Lys Thr Pro Glu His Glu Gly Arg Tyr Tyr
Glu Cys Asp 170 175 180Val
Leu Pro Phe Met Glu Ile Gly Ser Val Ala His Lys Phe Tyr
185 190 195Leu Leu Asn Ile Arg Leu Pro
Val Asn Glu Lys Lys Lys Ile Asn 200 205
210Val Gly Ile Gly Glu Ile Lys Asp Ile Arg Leu Val Gly Ile
His 215 220 225Gln Asn Gly
Gly Phe Thr Lys Val Trp Phe Ala Met Lys Thr Phe 230
235 240Leu Thr Pro Ser Ile Phe Ile Ile Met Val
Trp Tyr Trp Arg Arg 245 250
255Ile Thr Met Met Ser Arg Pro Pro Val Leu Leu Glu Lys Val Ile
260 265 270Phe Ala Leu Gly Ile Ser
Met Thr Phe Ile Asn Ile Pro Val Glu 275
280 285Trp Phe Ser Ile Gly Phe Asp Trp Thr Trp Met Leu
Leu Phe Gly 290 295 300Asp
Ile Arg Gln Gly Ile Phe Tyr Ala Met Leu Leu Ser Phe Trp
305 310 315Ile Ile Phe Cys Gly Glu His
Met Met Asp Gln His Glu Arg Asn 320 325
330His Ile Ala Gly Tyr Trp Lys Gln Val Gly Pro Ile Ala Val
Gly 335 340 345Ser Phe Cys
Leu Phe Ile Phe Asp Met Cys Glu Arg Gly Val Gln 350
355 360Leu Thr Asn Pro Phe Tyr Ser Ile Trp Thr
Thr Asp Ile Gly Thr 365 370
375Glu Leu Ala Met Ala Phe Ile Ile Val Ala Gly Ile Cys Leu Cys
380 385 390Leu Tyr Phe Leu Phe Leu
Cys Phe Met Val Phe Gln Val Phe Arg 395
400 405Asn Ile Ser Gly Lys Gln Ser Ser Leu Pro Ala Met
Ser Lys Val 410 415 420Arg
Arg Leu His Tyr Glu Gly Leu Ile Phe Arg Phe Lys Phe Leu
425 430 435Met Leu Ile Thr Leu Ala Cys
Ala Ala Met Thr Val Ile Phe Phe 440 445
450Ile Val Ser Gln Val Thr Glu Gly His Trp Lys Trp Gly Gly
Val 455 460 465Thr Val Gln
Val Asn Ser Ala Phe Phe Thr Gly Ile Tyr Gly Met 470
475 480Trp Asn Leu Tyr Val Phe Ala Leu Met Phe
Leu Tyr Ala Pro Ser 485 490
495His Lys Asn Tyr Gly Glu Asp Gln Ser Asn Gly Met Gln Leu Pro
500 505 510Cys Lys Ser Arg Glu Asp
Cys Ala Leu Phe Val Ser Glu Leu Tyr 515
520 525Gln Glu Leu Phe Ser Ala Ser Lys Tyr Ser Phe Ile
Asn Asp Asn 530 535 540Ala
Ala Ser Gly Ile 54548570PRTHomo sapiensmisc_featureIncyte
ID No 1831378 48Met Gly Phe Leu Gln Leu Leu Val Val Ala Val Leu Ala Ser
Glu 1 5 10 15His Arg Val
Ala Gly Ala Ala Glu Val Phe Gly Asn Ser Ser Glu 20
25 30Gly Leu Ile Glu Phe Ser Val Gly Lys Phe
Arg Tyr Phe Glu Leu 35 40
45Asn Arg Pro Phe Pro Glu Glu Ala Ile Leu His Asp Ile Ser Ser
50 55 60Asn Val Thr Phe Leu Ile
Phe Gln Ile His Ser Gln Tyr Gln Asn 65
70 75Thr Thr Val Ser Phe Ser Pro Thr Leu Leu Ser Asn Ser
Ser Glu 80 85 90Thr Gly
Thr Ala Ser Gly Leu Val Phe Ile Leu Arg Pro Glu Gln 95
100 105Ser Thr Cys Thr Trp Tyr Leu Gly Thr
Ser Gly Ile Gln Pro Val 110 115
120Gln Asn Met Ala Ile Leu Leu Ser Tyr Ser Glu Arg Asp Pro Val
125 130 135Pro Gly Gly Cys Asn
Leu Glu Phe Asp Leu Asp Ile Asp Pro Asn 140
145 150Ile Tyr Leu Glu Tyr Asn Phe Phe Glu Thr Thr Ile
Lys Phe Ala 155 160 165Pro
Ala Asn Leu Gly Tyr Ala Arg Gly Val Asp Pro Pro Pro Cys
170 175 180Asp Ala Gly Thr Asp Gln Asp
Ser Arg Trp Arg Leu Gln Tyr Asp 185 190
195Val Tyr Gln Tyr Phe Leu Pro Glu Asn Asp Leu Thr Glu Glu
Met 200 205 210Leu Leu Lys
His Leu Gln Arg Met Val Ser Val Pro Gln Val Lys 215
220 225Ala Ser Ala Leu Lys Val Val Thr Leu Thr
Ala Asn Asp Lys Thr 230 235
240Ser Val Ser Phe Ser Ser Leu Pro Gly Gln Gly Val Ile Tyr Asn
245 250 255Val Ile Val Trp Asp Pro
Phe Leu Asn Thr Ser Ala Ala Tyr Ile 260
265 270Pro Ala His Thr Tyr Ala Cys Ser Phe Glu Ala Gly
Glu Gly Ser 275 280 285Cys
Ala Ser Leu Gly Arg Val Ser Ser Lys Val Phe Phe Thr Leu
290 295 300Phe Ala Leu Leu Gly Phe Phe
Ile Cys Phe Phe Gly His Arg Phe 305 310
315Trp Lys Thr Glu Leu Phe Phe Ile Gly Phe Ile Ile Met Gly
Phe 320 325 330Phe Phe Tyr
Ile Leu Ile Thr Arg Leu Thr Pro Ile Lys Tyr Asp 335
340 345Val Asn Leu Ile Leu Thr Ala Val Thr Gly
Ser Val Gly Gly Met 350 355
360Phe Leu Val Ala Val Trp Trp Arg Phe Gly Ile Leu Ser Ile Cys
365 370 375Met Leu Cys Val Gly Leu
Val Leu Gly Phe Leu Ile Ser Ser Val 380
385 390Thr Phe Phe Thr Pro Leu Gly Asn Leu Lys Ile Phe
His Asp Asp 395 400 405Gly
Val Phe Trp Val Thr Phe Ser Cys Ile Ala Ile Leu Ile Pro
410 415 420Val Val Phe Met Gly Cys Leu
Arg Ile Leu Asn Ile Leu Thr Cys 425 430
435Gly Val Ile Gly Ser Tyr Ser Val Val Leu Ala Ile Asp Ser
Tyr 440 445 450Trp Ser Thr
Ser Leu Ser Tyr Ile Thr Leu Asn Val Leu Lys Arg 455
460 465Ala Leu Asn Lys Asp Phe His Arg Ala Phe
Thr Asn Val Pro Phe 470 475
480Gln Thr Asn Asp Phe Ile Ile Leu Ala Val Trp Gly Met Leu Ala
485 490 495Val Ser Gly Ile Thr Leu
Gln Ile Arg Arg Glu Arg Gly Arg Pro 500
505 510Phe Phe Pro Pro His Pro Tyr Lys Leu Trp Lys Gln
Glu Arg Glu 515 520 525Arg
Arg Val Thr Asn Ile Leu Asp Pro Ser Tyr His Ile Pro Pro
530 535 540Leu Arg Glu Arg Leu Tyr Gly
Arg Leu Thr Gln Ile Lys Gly Leu 545 550
555Phe Gln Lys Glu Gln Pro Ala Gly Glu Arg Thr Pro Leu Leu
Leu 560 565
57049127PRTHomo sapiensmisc_featureIncyte ID No 1864943 49Met Arg Arg Arg
Phe Trp Gly Val Phe Asn Cys Leu Cys Ala Gly 1 5
10 15Ala Phe Gly Ala Leu Ala Ala Ala Ser Ala Lys
Leu Ala Phe Gly 20 25
30Ser Glu Val Ser Met Gly Leu Cys Val Leu Gly Ile Ile Val Met
35 40 45Ala Ser Thr Asn Ser Leu Met
Trp Thr Phe Phe Ser Arg Gly Leu 50 55
60Ser Phe Ser Met Ser Ser Ala Ile Ala Ser Val Thr Val Thr
Phe 65 70 75Ser Asn Ile
Leu Ser Ser Ala Phe Leu Gly Tyr Val Leu Tyr Gly 80
85 90Glu Cys Gln Glu Val Leu Trp Trp Gly Gly
Val Phe Leu Ile Leu 95 100
105Cys Gly Leu Thr Leu Ile His Arg Lys Leu Pro Pro Thr Trp Lys
110 115 120Pro Leu Pro His Lys Gln
Gln 12550152PRTHomo sapiensmisc_featureIncyte ID No
1911316 50Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe 1
5 10 15Ser Val Lys Gly His
Val Lys Met Leu Arg Leu Ala Leu Thr Val 20
25 30Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro
Glu Pro Tyr 35 40 45Ile
Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile
50 55 60Leu Leu Tyr Val Leu Arg Leu Asp
Arg Leu Met Lys Trp Leu Phe 65 70
75Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe
80 85 90Met Leu Ile Val
Ser Val Leu Ala Leu Ile Pro Glu Thr Thr Thr 95
100 105Leu Thr Val Gly Gly Gly Val Phe Ala Leu Val
Thr Ala Val Cys 110 115
120Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn
125 130 135Pro Ser Gly Pro Tyr Gln
Lys Lys Pro Val His Glu Lys Lys Glu 140
145 150Val Leu51777PRTHomo sapiensmisc_featureIncyte ID
No 1943120 51Met Thr Phe Tyr Pro Phe Val Ala Ser Ser Ser Thr Arg Arg Val
1 5 10 15Asp Asn Ser Asn
Thr Arg Leu Ala Val Gln Ile Glu Arg Asp Pro 20
25 30Gly Asn Asp Asp Asn Asn Leu Asn Ser Ile Phe
Tyr Glu His Leu 35 40
45Thr Arg Thr Leu Leu Glu Ser Leu Cys Gly Asp Leu Val Leu Gly
50 55 60Arg Trp Gly Asn Tyr Ser Ser
Gly Asp Cys Phe Ile Leu Ala Ser 65 70
75Asp Asp Leu Asn Ala Phe Val His Leu Ile Glu Ile Gly Asn
Gly 80 85 90Leu Val Thr
Phe Gln Leu Arg Gly Leu Glu Phe Arg Gly Thr Tyr 95
100 105Cys Gln Gln Arg Glu Val Glu Ala Ile Met
Glu Gly Asp Glu Glu 110 115
120Asp Arg Gly Cys Cys Cys Cys Lys Pro Gly His Leu Pro His Leu
125 130 135Leu Ser Arg Asn Ala Ala
Phe His Leu Arg Trp Leu Thr Trp Glu 140
145 150Ile Thr Gln Thr Gln Tyr Ile Leu Glu Gly Tyr Ser
Ile Leu Asp 155 160 165Asn
Asn Ala Ala Thr Met Leu Gln Val Phe Asp Leu Arg Arg Ile
170 175 180Leu Ile Arg Tyr Tyr Ile Lys
Ser Ile Ile Tyr Tyr Met Val Thr 185 190
195Ser Pro Lys Leu Leu Ser Trp Ile Lys Asn Glu Ser Leu Leu
Lys 200 205 210Ser Leu Gln
Pro Phe Ala Lys Trp His Tyr Ile Glu Arg Asp Leu 215
220 225Ala Met Phe Asn Ile Asn Ile Asp Asp Asp
Tyr Val Pro Cys Leu 230 235
240Gln Gly Ile Thr Arg Ala Ser Phe Cys Asn Val Tyr Leu Glu Trp
245 250 255Ile Gln His Cys Ala Arg
Lys Arg Gln Glu Pro Ser Thr Thr Leu 260
265 270Asp Ser Asp Glu Asp Ser Pro Leu Val Thr Leu Ser
Phe Ala Leu 275 280 285Cys
Thr Leu Gly Arg Arg Ala Leu Gly Thr Ala Ala His Asn Met
290 295 300Ala Ile Ser Leu Asp Ser Phe
Leu Tyr Gly Leu His Val Leu Phe 305 310
315Lys Gly Asp Phe Arg Ile Thr Ala Arg Asp Glu Trp Val Phe
Ala 320 325 330Asp Met Asp
Leu Leu His Lys Val Val Ala Pro Ala Ile Arg Met 335
340 345Ser Leu Lys Leu His Gln Asp Gln Phe Thr
Cys Pro Asp Glu Tyr 350 355
360Glu Asp Pro Ala Val Leu Tyr Glu Ala Ile Gln Ser Phe Glu Lys
365 370 375Lys Val Val Ile Cys His
Glu Gly Asp Pro Ala Trp Arg Gly Ala 380
385 390Val Leu Ser Asn Lys Glu Glu Leu Leu Thr Leu Arg
His Val Val 395 400 405Asp
Glu Gly Ala Asp Glu Tyr Lys Val Ile Met Leu His Arg Ser
410 415 420Phe Leu Ser Phe Lys Val Ile
Lys Val Asn Lys Glu Cys Val Arg 425 430
435Gly Leu Trp Ala Gly Gln Gln Gln Glu Leu Ile Phe Leu Arg
Asn 440 445 450Arg Asn Pro
Glu Arg Gly Ser Ile Gln Asn Asn Lys Gln Val Leu 455
460 465Arg Asn Leu Ile Asn Ser Ser Cys Asp Gln
Pro Leu Gly Tyr Pro 470 475
480Met Tyr Val Ser Pro Leu Thr Thr Ser Tyr Leu Gly Thr His Arg
485 490 495Gln Leu Lys Asn Ile Trp
Gly Gly Pro Ile Thr Leu Asp Arg Ile 500
505 510Arg Thr Trp Phe Trp Thr Lys Trp Val Arg Met Arg
Lys Asp Cys 515 520 525Asn
Ala Arg Gln His Ser Gly Gly Asn Ile Glu Asp Val Asp Gly
530 535 540Gly Gly Ala Pro Thr Thr Gly
Gly Asn Asn Ala Pro Asn Gly Gly 545 550
555Ser Gln Glu Ser Ser Ala Glu Gln Pro Arg Lys Gly Gly Ala
Gln 560 565 570His Gly Val
Ser Ser Cys Glu Gly Thr Gln Arg Thr Gly Arg Arg 575
580 585Lys Gly Arg Ser Gln Ser Val Gln Ala His
Ser Ala Leu Ser Gln 590 595
600Arg Pro Pro Met Leu Ser Ser Ser Gly Pro Ile Leu Glu Ser Arg
605 610 615Gln Thr Phe Leu Gln Thr
Ser Thr Ser Val His Glu Leu Ala Gln 620
625 630Arg Leu Ser Gly Ser Arg Leu Ser Leu His Ala Ser
Ala Thr Ser 635 640 645Leu
His Ser Gln Pro Pro Pro Val Thr Thr Thr Gly His Leu Ser
650 655 660Val Arg Glu Arg Ala Glu Ala
Leu Ile Arg Ser Ser Leu Gly Ser 665 670
675Ser Thr Ser Ser Thr Leu Ser Phe Leu Phe Gly Lys Arg Ser
Phe 680 685 690Ser Ser Ala
Leu Val Ile Ser Gly Leu Ser Ala Ala Glu Gly Gly 695
700 705Asn Thr Ser Asp Thr Gln Ser Ser Ser Ser
Val Asn Ile Val Met 710 715
720Gly Pro Ser Ala Arg Ala Ala Ser Gln Ala Thr Arg Val Arg Gly
725 730 735Trp Ala Gly Leu Thr Arg
Thr Gly Trp Asp Gly Gly Thr Gly Ser 740
745 750Trp Pro Glu Arg Gly Thr Cys Leu Ala Phe Pro Pro
Phe Cys Leu 755 760 765Gln
Asn Pro Ile Pro Phe Ser Met Gly Leu Pro Glu 770
77552108PRTHomo sapiensmisc_featureIncyte ID No 2314236 52Met Phe
Lys His Glu Leu Glu Glu Leu Arg Thr Thr Ile Met Tyr 1 5
10 15Arg Asp Ser His Ser Val Leu Ala Leu
Asn Trp Lys Val Val Ala 20 25
30Thr Leu Lys Tyr Phe Leu Leu Tyr Val Ile Ile Leu Tyr Asn Leu
35 40 45Glu Arg Asp Asn Gly
His Ser Asn Tyr Glu Asn Tyr Glu Leu Gly 50
55 60Asp Lys Ser Leu Asn Leu Leu Leu Phe Tyr Asn Ser
Met Tyr Lys 65 70 75Leu
Val Phe Pro Tyr Ile Phe Thr Phe Ser Ser Phe Leu Ile Ser
80 85 90Ser Tyr Thr Ser Ile Leu Tyr Lys
Met Phe Tyr Ile Gln Arg Thr 95 100
105Val Lys Ser5366PRTHomo sapiensmisc_featureIncyte ID No
2479409 53Met Asn Leu Ser Lys Lys Ser Ile Leu Leu Thr Gln Val Ile Lys 1
5 10 15Phe Val Asp Ile Arg
Leu Phe Ile Met Val Pro Ser Tyr Pro Phe 20
25 30Asn Val Phe Arg Ser Cys Val Asp Asn Phe Leu Phe
Ile Met Ile 35 40 45Leu
Val Ile Ser Val Leu Thr Phe Leu Ile Arg Leu Gly Arg Gly
50 55 60Leu Ser Val Leu Leu Ile
6554540PRTHomo sapiensmisc_featureIncyte ID No 2683149 54Met Met
Gly Ser Pro Val Ser His Leu Leu Ala Gly Phe Cys Val 1 5
10 15Trp Val Val Leu Gly Trp Val Gly Gly
Ser Val Pro Asn Leu Gly 20 25
30Pro Ala Glu Gln Glu Gln Asn His Tyr Leu Ala Gln Leu Phe Gly
35 40 45Leu Tyr Gly Glu Asn
Gly Thr Leu Thr Ala Gly Gly Leu Ala Arg 50
55 60Leu Leu His Ser Leu Gly Leu Gly Arg Val Gln Gly
Leu Arg Leu 65 70 75Gly
Gln His Gly Pro Leu Thr Gly Arg Ala Ala Ser Pro Ala Ala
80 85 90Asp Asn Ser Thr His Arg Pro Gln
Asn Pro Glu Leu Ser Val Asp 95 100
105Val Trp Ala Gly Met Pro Leu Gly Pro Ser Gly Trp Gly Asp Leu
110 115 120Glu Glu Ser Lys
Ala Pro His Leu Pro Arg Gly Pro Ala Pro Ser 125
130 135Gly Leu Asp Leu Leu His Arg Leu Leu Leu Leu
Asp His Ser Leu 140 145
150Ala Asp His Leu Asn Glu Asp Cys Leu Asn Gly Ser Gln Leu Leu
155 160 165Val Asn Phe Gly Leu Ser
Pro Ala Ala Pro Leu Thr Pro Arg Gln 170
175 180Phe Ala Leu Leu Cys Pro Ala Leu Leu Tyr Gln Ile
Asp Ser Arg 185 190 195Val
Cys Ile Gly Ala Pro Ala Pro Ala Pro Pro Gly Asp Leu Leu
200 205 210Ser Ala Leu Leu Gln Ser Ala
Leu Ala Val Leu Leu Leu Ser Leu 215 220
225Pro Ser Pro Leu Ser Leu Leu Leu Leu Arg Leu Leu Gly Pro
Arg 230 235 240Leu Leu Arg
Pro Leu Leu Gly Phe Leu Gly Ala Leu Ala Val Gly 245
250 255Thr Leu Cys Gly Asp Ala Leu Leu His Leu
Leu Pro His Ala Gln 260 265
270Glu Gly Arg His Ala Gly Pro Gly Gly Leu Pro Glu Lys Asp Leu
275 280 285Gly Pro Gly Leu Ser Val
Leu Gly Gly Leu Phe Leu Leu Phe Val 290
295 300Leu Glu Asn Met Leu Gly Leu Leu Arg His Arg Gly
Leu Arg Pro 305 310 315Arg
Cys Cys Arg Arg Lys Arg Arg Asn Leu Glu Thr Arg Asn Leu
320 325 330Asp Pro Glu Asn Gly Ser Gly
Met Ala Leu Gln Pro Leu Gln Ala 335 340
345Ala Pro Glu Pro Gly Ala Gln Gly Gln Arg Glu Lys Asn Ser
Gln 350 355 360His Pro Pro
Ala Leu Ala Pro Pro Gly His Gln Gly His Ser His 365
370 375Gly His Gln Gly Gly Thr Asp Ile Thr Trp
Met Val Leu Leu Gly 380 385
390Asp Gly Leu His Asn Leu Thr Asp Gly Leu Ala Ile Gly Ala Ala
395 400 405Phe Ser Asp Gly Phe Ser
Ser Gly Leu Ser Thr Thr Leu Ala Val 410
415 420Phe Cys His Glu Leu Pro His Glu Leu Gly Asp Phe
Ala Met Leu 425 430 435Leu
Gln Ser Gly Leu Ser Phe Arg Arg Leu Leu Leu Leu Ser Leu
440 445 450Val Ser Gly Ala Leu Gly Leu
Gly Gly Ala Val Leu Gly Val Gly 455 460
465Leu Ser Leu Gly Pro Val Pro Leu Thr Pro Trp Val Phe Gly
Val 470 475 480Thr Ala Gly
Val Phe Leu Tyr Val Ala Leu Val Asp Met Leu Pro 485
490 495Ala Leu Leu Arg Pro Pro Glu Pro Leu Pro
Thr Pro His Val Leu 500 505
510Leu Gln Gly Leu Gly Leu Leu Leu Gly Gly Gly Leu Met Leu Ala
515 520 525Ile Thr Leu Leu Glu Glu
Arg Leu Leu Pro Val Thr Thr Glu Gly 530
535 5405587PRTHomo sapiensmisc_featureIncyte ID No
2774051 55Met Pro Phe Thr Leu Asp Asp Tyr Gly Ala Tyr Ser Ser Gln Lys 1
5 10 15Gln Tyr Thr Cys Gln
Phe Pro Ser Thr Ile Ala Ile His Ala Glu 20
25 30Asp Lys Arg Pro Pro Gln Ser Arg Arg Gly Ile Val
Leu Gly Pro 35 40 45Ile
Phe Leu Ile Val Leu Lys Ile Ile Ile Arg Trp Thr Val Phe
50 55 60Cys Glu Asp Phe Leu Phe Pro Ser
Ser Lys Lys Pro Cys Gly Lys 65 70
75Asn Ser Leu Ile Thr Val Leu Ile Phe Phe Phe Phe
80 8556100PRTHomo sapiensmisc_featureIncyte ID No
2869038 56Met Ile Met Ala Gln Lys Ile Gly Gly Leu Thr Trp Trp Ala Ile 1
5 10 15Met Phe Ile Ile Leu
Phe Glu Ile Thr Gly Thr Ser Ser Ser Phe 20
25 30Leu Arg Ile Asn Ala Leu Pro His Phe Ser Met Asn
Arg Cys Gly 35 40 45Glu
Ala Tyr Phe Pro Phe Ser Tyr Leu Tyr Thr Ser Leu Gln Lys
50 55 60Gln Phe Leu Met Lys Val Ser Gly
Ile Val Lys Asn Leu Arg Gly 65 70
75Met Met Thr Gly Gly Val Trp Gly Phe Phe Leu Tyr Ser Phe Phe
80 85 90Asn Glu Lys Ser
Phe Lys Cys Ser Thr Gly 95 1005758PRTHomo
sapiensmisc_featureIncyte ID No 2918334 57Met Asp Leu Leu Tyr Glu Ile Leu
Leu Ala Leu Tyr Tyr Asn Ile 1 5 10
15Cys Tyr Asp Ile Pro Phe Ile Phe Phe Asn Leu Asn Met Met Phe
20 25 30Tyr Ile Val Leu
Asp Leu Arg Ile Val Phe Phe Arg Thr Ile Arg 35
40 45Glu Tyr Leu Ser Pro Pro Ser Leu Ser Phe Tyr
Ile Tyr 50 555861PRTHomo
sapiensmisc_featureIncyte ID No 2949916 58Met Arg Arg Ile Ile Arg Leu Arg
Leu Arg Phe Ser Asp Thr Phe 1 5 10
15Met Ala Ala Phe Leu Leu Cys Leu Gly Phe Val Leu Met Leu Phe
20 25 30Pro Ser Leu Leu
Arg Asp Gly Gly Ser Ile Ser Ser Cys Arg Asn 35
40 45Ser Cys Ser Ser Pro Ser Ser Glu Glu Arg His
Phe Ser Asn Leu 50 55
60Glu5950PRTHomo sapiensmisc_featureIncyte ID No 2989375 59Met Cys Leu
Thr Pro His Arg Asp Ser Met Cys Glu Asp Ser Pro 1 5
10 15Phe Thr His Gln Ile Ile Ser Met Ala Thr
Ala Cys Ser Leu Leu 20 25
30Leu Glu Cys Phe Val Leu Ala Ala Ser Leu Leu Val Cys Val Trp
35 40 45Ser Glu Trp Arg Arg
5060310PRTHomo sapiensmisc_featureIncyte ID No 3316764 60Met
Arg Arg Thr Ala Phe Ile Leu Gly Ser Gly Leu Leu Ser Phe 1
5 10 15Val Ala Phe Trp Asn Ser Val Thr
Trp His Leu Gln Arg Phe Trp 20 25
30Gly Ala Ser Gly Tyr Phe Trp Gln Ala Gln Trp Glu Arg Leu Leu
35 40 45Thr Thr Phe Glu
Gly Lys Glu Trp Ile Leu Phe Phe Ile Gly Ala 50
55 60Ile Gln Val Pro Cys Leu Phe Phe Trp Ser Phe
Asn Gly Leu Leu 65 70
75Leu Val Val Asp Thr Thr Gly Lys Pro Asn Phe Ile Ser Arg Tyr
80 85 90Arg Ile Gln Val Gly Lys Asn
Glu Pro Val Asp Pro Val Lys Leu 95 100
105Arg Gln Ser Ile Arg Thr Val Leu Phe Asn Gln Cys Met Ile
Ser 110 115 120Phe Pro Met
Val Val Phe Leu Tyr Pro Phe Leu Lys Trp Trp Arg 125
130 135Asp Pro Cys Arg Arg Glu Leu Pro Thr Phe
His Trp Phe Leu Leu 140 145
150Glu Leu Ala Ile Phe Thr Leu Ile Glu Glu Val Leu Phe Tyr Tyr
155 160 165Ser His Arg Leu Leu His
His Pro Thr Phe Tyr Lys Lys Ile His 170
175 180Lys Lys His His Glu Trp Thr Ala Pro Ile Gly Val
Ile Ser Leu 185 190 195Tyr
Ala His Pro Ile Glu His Ala Val Ser Asn Met Leu Pro Val
200 205 210Ile Val Gly Pro Leu Val Met
Gly Ser His Leu Ser Ser Ile Thr 215 220
225Met Trp Phe Ser Leu Ala Leu Ile Ile Thr Thr Ile Ser His
Cys 230 235 240Gly Tyr His
Leu Pro Phe Leu Pro Ser Pro Glu Phe His Asp Tyr 245
250 255His His Leu Lys Phe Asn Gln Cys Tyr Gly
Val Leu Gly Val Leu 260 265
270Asp His Leu His Gly Thr Asp Thr Met Phe Lys Gln Thr Lys Ala
275 280 285Tyr Glu Arg His Val Leu
Leu Leu Gly Phe Thr Pro Leu Ser Glu 290
295 300Ser Ile Pro Asp Ser Pro Lys Arg Met Glu
305 31061160PRTHomo sapiensmisc_featureIncyte ID No
3359559 61Met Ala Pro Ala Leu Trp Arg Ala Cys Asn Gly Leu Met Ala Ala 1
5 10 15Phe Phe Ala Leu Ala
Ala Leu Val Gln Val Asn Asp Pro Asp Ala 20
25 30Glu Val Trp Val Val Val Tyr Thr Ile Pro Ala Val
Leu Thr Leu 35 40 45Leu
Val Gly Leu Asn Pro Glu Val Thr Gly Asn Val Ile Trp Lys
50 55 60Ser Ile Ser Ala Ile His Ile Leu
Phe Cys Thr Val Trp Ala Val 65 70
75Gly Leu Ala Ser Tyr Leu Leu His Arg Thr Gln Gln Asn Ile Leu
80 85 90His Glu Glu Glu
Gly Arg Glu Leu Ser Gly Leu Val Ile Ile Thr 95
100 105Ala Trp Ile Ile Leu Cys His Ser Ser Ser Lys
Asn Pro Val Gly 110 115
120Gly Arg Ile Gln Leu Ala Ile Ala Ile Val Ile Thr Leu Phe Pro
125 130 135Phe Ile Ser Trp Val Tyr
Ile Tyr Ile Asn Lys Glu Met Arg Ser 140
145 150Ser Trp Pro Thr His Cys Lys Thr Val Ile
155 1606235PRTHomo sapiensmisc_featureIncyte ID No
4289208 62Met Ala Val Val Asp Ala Gly Asn Asn Gly Lys Val Leu Asp Arg 1
5 10 15Val Cys Val Arg Ser
Val Pro Ala Leu Phe Leu Ser Lys Cys Ile 20
25 30Ser Leu Asp Met Glu
3563323PRTHomo sapiensmisc_featureIncyte ID No 2454013 63Met Ala Ala Pro
Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly 1 5
10 15Leu Pro Pro Leu Leu Leu Leu Thr Met Ala Leu
Ala Gly Gly Ser 20 25
30Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr
35 40 45Ala Ser Cys His Arg Ala Cys
Gln Leu Thr Tyr Pro Leu His Thr 50 55
60Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys
Arg 65 70 75Leu Phe Ser
Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn 80
85 90Arg Thr Lys Leu Glu Cys Glu Ser Ala Cys
Thr Glu Ala Tyr Ser 95 100
105Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln
110 115 120Leu Pro Phe Ala Glu Leu
Arg Gln Glu Gln Leu Met Ser Leu Met 125
130 135Pro Lys Met His Leu Leu Phe Pro Leu Thr Leu Val
Arg Ser Phe 140 145 150Trp
Ser Asp Met Met Asp Ser Ala Gln Ser Phe Ile Thr Ser Ser
155 160 165Trp Thr Phe Tyr Leu Gln Ala
Asp Asp Gly Lys Ile Val Ile Phe 170 175
180Gln Ser Lys Pro Glu Ile Gln Tyr Ala Pro His Leu Glu Gln
Glu 185 190 195Pro Thr Asn
Leu Arg Glu Ser Ser Leu Ser Lys Met Ser Tyr Leu 200
205 210Gln Met Arg Asn Ser Gln Ala His Arg Asn
Phe Leu Glu Asp Gly 215 220
225Glu Ser Asp Gly Phe Leu Arg Cys Leu Ser Leu Asn Ser Gly Trp
230 235 240Ile Leu Thr Thr Thr Leu
Val Leu Ser Val Met Val Leu Leu Trp 245
250 255Ile Cys Cys Ala Thr Val Ala Thr Ala Val Glu Gln
Tyr Val Pro 260 265 270Ser
Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn Glu
275 280 285Gln Lys Leu Asn Arg Tyr Pro
Ala Ser Ser Leu Val Val Val Arg 290 295
300Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr
Lys 305 310 315Val Asn Leu
Ala His Ser Glu Ile 32064129PRTHomo
sapiensmisc_featureIncyte ID No 2454048 64Met Ala Arg Gly Ser Leu Arg Arg
Leu Leu Arg Leu Leu Val Leu 1 5 10
15Gly Leu Trp Leu Ala Leu Leu Arg Ser Val Ala Gly Glu Gln Ala
20 25 30Pro Gly Thr Ala
Pro Cys Ser Arg Gly Ser Ser Trp Ser Ala Asp 35
40 45Leu Asp Lys Cys Met Asp Cys Ala Ser Cys Arg
Ala Arg Pro His 50 55
60Ser Asp Phe Cys Leu Gly Cys Ala Ala Ala Pro Pro Ala Pro Phe
65 70 75Arg Leu Leu Trp Pro Ile Leu
Gly Gly Ala Leu Ser Leu Thr Phe 80 85
90Val Leu Gly Leu Leu Ser Gly Phe Leu Val Trp Arg Arg Cys
Arg 95 100 105Arg Arg Glu
Lys Phe Thr Thr Pro Ile Glu Glu Thr Gly Gly Glu 110
115 120Gly Cys Pro Ala Val Ala Leu Ile Gln
12565461PRTHomo sapiensmisc_featureIncyte ID No 2479282 65Met
Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly 1
5 10 15Met Leu Leu Gly Leu Leu Met Ala
Ala Cys Phe Thr Phe Cys Leu 20 25
30Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys
35 40 45Ser Ser Thr Lys
Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu 50
55 60Glu Leu Asp Ala Glu Val Leu Glu Val Phe His
Pro Thr His Glu 65 70
75Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His
80 85 90Val Arg Leu Asn Leu Gln Thr
Gly Glu Arg Glu Ala Lys Leu Gln 95 100
105Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu
Asp 110 115 120Ile Asn Thr
Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu 125
130 135Ala Lys Phe Lys Glu Gly Ala Glu Met Glu
Ser Ser Lys Glu Asp 140 145
150Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu
155 160 165Glu Leu Lys Lys Asp Phe
Asp Glu Leu Asn Val Val Ile Glu Thr 170
175 180Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe
Asn Ser Ser 185 190 195Ser
Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu
200 205 210Tyr Tyr Val His Gln Met Asp
Asn Ala Gln Asp Leu Leu Ser Phe 215 220
225Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu
Pro 230 235 240Leu Val Lys
Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser 245
250 255Ser Asn Pro Lys Val Gln Val Glu Ala Ile
Glu Gly Gly Ala Leu 260 265
270Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala
275 280 285Lys Lys Lys Val Leu Phe
Ala Leu Cys Ser Leu Leu Arg His Phe 290
295 300Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly
Leu Gln Val 305 310 315Leu
Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val
320 325 330Arg Val Val Thr Leu Leu Tyr
Asp Leu Val Thr Glu Lys Met Phe 335 340
345Ala Glu Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu
Lys 350 355 360Leu Gln Gln
Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu 365
370 375Gln Gly Trp Cys Glu Ile Thr Ala His Leu
Leu Ala Leu Pro Glu 380 385
390His Asp Ala Arg Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu
395 400 405Thr Thr Cys Arg Asp Arg
Tyr Arg Gln Asp Pro Gln Leu Gly Arg 410
415 420Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu
Ala Ser Leu 425 430 435Glu
Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu
440 445 450Gly Ser Val Asn Ser Leu Leu
Lys Glu Leu Arg 455 46066264PRTHomo
sapiensmisc_featureIncyte ID No 2483432 66Met Arg Pro Leu Leu Gly Leu Leu
Leu Val Phe Ala Gly Cys Thr 1 5 10
15Phe Ala Leu Tyr Leu Leu Ser Thr Arg Leu Pro Arg Gly Arg Arg
20 25 30Leu Gly Ser Thr
Glu Glu Ala Gly Gly Arg Ser Leu Trp Phe Pro 35
40 45Ser Asp Leu Ala Glu Leu Arg Glu Leu Ser Glu
Val Leu Arg Glu 50 55
60Tyr Arg Lys Glu His Gln Ala Tyr Val Phe Leu Leu Phe Cys Gly
65 70 75Ala Tyr Leu Tyr Lys Gln Gly
Phe Ala Ile Pro Gly Ser Ser Phe 80 85
90Leu Asn Val Leu Ala Gly Ala Leu Phe Gly Pro Trp Leu Gly
Leu 95 100 105Leu Leu Cys
Cys Val Leu Thr Ser Val Gly Ala Thr Cys Cys Tyr 110
115 120Leu Leu Ser Ser Ile Phe Gly Lys Gln Leu
Val Val Ser Tyr Phe 125 130
135Pro Asp Lys Val Ala Leu Leu Gln Arg Lys Val Glu Glu Asn Arg
140 145 150Asn Ser Leu Phe Phe Phe
Leu Leu Phe Leu Arg Leu Phe Pro Met 155
160 165Thr Pro Asn Trp Phe Leu Asn Leu Ser Ala Pro Ile
Leu Asn Ile 170 175 180Pro
Ile Val Gln Phe Phe Phe Ser Val Leu Ile Gly Leu Ile Pro
185 190 195Tyr Asn Phe Ile Cys Val Gln
Thr Gly Ser Ile Leu Ser Thr Leu 200 205
210Thr Ser Leu Asp Ala Leu Phe Ser Trp Asp Thr Val Phe Lys
Leu 215 220 225Leu Ala Ile
Ala Met Val Ala Leu Ile Pro Gly Thr Leu Ile Lys 230
235 240Lys Phe Ser Gln Lys His Leu Gln Leu Asn
Glu Thr Ser Thr Ala 245 250
255Asn His Ile His Ser Arg Lys Asp Thr 26067339PRTHomo
sapiensmisc_featureIncyte ID No 2493824 67Met Ala Ala Ala Cys Gly Pro Gly
Ala Ala Gly Tyr Cys Leu Leu 1 5 10
15Leu Gly Leu His Leu Phe Leu Leu Thr Ala Gly Pro Ala Leu Gly
20 25 30Trp Asn Asp Pro
Asp Arg Met Leu Leu Arg Asp Val Lys Ala Leu 35
40 45Thr Leu His Tyr Asp Arg Tyr Thr Thr Ser Arg
Arg Leu Asp Pro 50 55
60Ile Pro Gln Leu Lys Cys Val Gly Gly Thr Ala Gly Cys Asp Ser
65 70 75Tyr Thr Pro Lys Val Ile Gln
Cys Gln Asn Lys Gly Trp Asp Gly 80 85
90Tyr Asp Val Gln Trp Glu Cys Lys Thr Asp Leu Asp Ile Ala
Tyr 95 100 105Lys Phe Gly
Lys Thr Val Val Ser Cys Glu Gly Tyr Glu Ser Ser 110
115 120Glu Asp Gln Tyr Val Leu Arg Gly Ser Cys
Gly Leu Glu Tyr Asn 125 130
135Leu Asp Tyr Thr Glu Leu Gly Leu Gln Lys Leu Lys Glu Ser Gly
140 145 150Lys Gln His Gly Phe Ala
Ser Phe Ser Asp Tyr Tyr Tyr Lys Trp 155
160 165Ser Ser Ala Asp Ser Cys Asn Met Ser Gly Leu Ile
Thr Ile Val 170 175 180Val
Leu Leu Gly Ile Ala Phe Val Val Tyr Lys Leu Phe Leu Ser
185 190 195Asp Gly Gln Tyr Ser Pro Pro
Pro Tyr Ser Glu Tyr Pro Pro Phe 200 205
210Ser His Arg Tyr Gln Arg Phe Thr Asn Ser Ala Gly Pro Pro
Pro 215 220 225Pro Gly Phe
Lys Ser Glu Phe Thr Gly Pro Gln Asn Thr Gly His 230
235 240Gly Ala Thr Ser Gly Phe Gly Ser Ala Phe
Thr Gly Gln Gln Gly 245 250
255Tyr Glu Asn Ser Gly Pro Gly Phe Trp Thr Gly Leu Gly Thr Gly
260 265 270Gly Ile Leu Gly Tyr Leu
Phe Gly Ser Asn Arg Ala Ala Thr Pro 275
280 285Phe Ser Asp Ser Trp Tyr Tyr Pro Ser Tyr Pro Pro
Ser Tyr Pro 290 295 300Gly
Thr Trp Asn Arg Ala Tyr Ser Pro Leu His Gly Gly Ser Gly
305 310 315Ser Tyr Ser Val Cys Ser Asn
Ser Asp Thr Lys Thr Arg Thr Ala 320 325
330Ser Gly Tyr Gly Gly Thr Arg Arg Arg
33568397PRTHomo sapiensmisc_featureIncyte ID No 2555823 68Met Val Arg Pro
Gly Ala Arg Leu Cys Leu Gly Ser Val Gly Arg 1 5
10 15Gly Leu Cys Leu Val Leu Pro Leu Leu Cys Leu
Gly Ala Gly Phe 20 25
30Leu Phe Leu Asn Thr Leu Phe Ile Gln Arg Gly Arg His Glu Thr
35 40 45Thr Trp Thr Ile Leu Arg Arg
Phe Gly Tyr Ser Asp Ala Leu Glu 50 55
60Leu Thr Ala Asp Tyr Leu Ser Pro Leu Ile His Val Pro Pro
Gly 65 70 75Cys Ser Thr
Glu Leu Asn His Leu Gly Tyr Gln Phe Val Gln Arg 80
85 90Val Phe Glu Lys His Asp Gln Asp Arg Asp
Gly Ala Leu Ser Pro 95 100
105Val Glu Leu Gln Ser Leu Phe Ser Val Phe Pro Ala Ala Pro Trp
110 115 120Gly Pro Glu Leu Pro Arg
Thr Val Arg Thr Glu Ala Gly Arg Leu 125
130 135Pro Leu His Gly Tyr Leu Cys Gln Trp Thr Leu Val
Thr Tyr Leu 140 145 150Asp
Val Arg Ser Cys Leu Gly His Leu Gly Tyr Leu Gly Tyr Pro
155 160 165Thr Leu Cys Glu Gln Asp Gln
Ala His Ala Ile Thr Val Thr Arg 170 175
180Glu Lys Arg Leu Asp Gln Glu Lys Gly Gln Thr Gln Arg Ser
Val 185 190 195Leu Leu Cys
Lys Val Val Gly Ala Arg Gly Val Gly Lys Ser Ala 200
205 210Phe Leu Gln Ala Phe Leu Gly Arg Gly Leu
Gly His Gln Asp Thr 215 220
225Arg Glu Gln Pro Pro Gly Tyr Ala Ile Asp Thr Val Gln Val Asn
230 235 240Gly Gln Glu Lys Tyr Leu
Ile Leu Cys Glu Val Gly Thr Asp Gly 245
250 255Leu Leu Ala Thr Ser Leu Asp Ala Thr Cys Asp Val
Ala Cys Leu 260 265 270Met
Phe Asp Gly Ser Asp Pro Lys Ser Phe Ala His Cys Ala Ser
275 280 285Val Tyr Lys His His Tyr Met
Asp Gly Gln Thr Pro Cys Leu Phe 290 295
300Val Ser Ser Lys Ala Asp Leu Pro Glu Gly Val Ala Val Ser
Gly 305 310 315Pro Ser Pro
Ala Glu Phe Cys Arg Lys His Arg Leu Pro Ala Pro 320
325 330Val Pro Phe Ser Cys Ala Gly Pro Ala Glu
Pro Ser Thr Thr Ile 335 340
345Phe Thr Gln Leu Ala Thr Met Ala Ala Phe Pro His Leu Val His
350 355 360Ala Glu Leu His Pro Ser
Ser Phe Trp Leu Arg Gly Leu Leu Gly 365
370 375Val Val Gly Ala Ala Val Ala Ala Val Leu Ser Phe
Ser Leu Tyr 380 385 390Arg
Val Leu Val Lys Ser Gln 39569301PRTHomo
sapiensmisc_featureIncyte ID No 2598242 69Met Glu Leu Ser Asp Val Thr Leu
Ile Glu Gly Val Gly Asn Glu 1 5 10
15Val Met Val Val Ala Gly Val Val Val Leu Ile Leu Ala Leu Val
20 25 30Leu Ala Trp Leu
Ser Thr Tyr Val Ala Asp Ser Gly Ser Asn Gln 35
40 45Leu Leu Gly Ala Ile Val Ser Ala Gly Asp Thr
Ser Val Leu His 50 55
60Leu Gly His Val Asp His Leu Val Ala Gly Gln Gly Asn Pro Glu
65 70 75Pro Thr Glu Leu Pro His Pro
Ser Glu Gly Asn Asp Glu Lys Ala 80 85
90Glu Glu Ala Gly Glu Gly Arg Gly Asp Ser Thr Gly Glu Ala
Gly 95 100 105Ala Gly Gly
Gly Val Glu Pro Ser Leu Glu His Leu Leu Asp Ile 110
115 120Gln Gly Leu Pro Lys Arg Gln Ala Gly Ala
Gly Ser Ser Ser Pro 125 130
135Glu Ala Pro Leu Arg Ser Glu Asp Ser Thr Cys Leu Pro Pro Ser
140 145 150Pro Gly Leu Ile Thr Val
Arg Leu Lys Phe Leu Asn Asp Thr Glu 155
160 165Glu Leu Ala Val Ala Arg Pro Glu Asp Thr Val Gly
Ala Leu Lys 170 175 180Ser
Lys Tyr Phe Pro Gly Gln Glu Ser Gln Met Lys Leu Ile Tyr
185 190 195Gln Gly Arg Leu Leu Gln Asp
Pro Ala Arg Thr Leu Arg Ser Leu 200 205
210Asn Ile Thr Asp Asn Cys Val Ile His Cys His Arg Ser Pro
Pro 215 220 225Gly Ser Ala
Val Pro Gly Pro Ser Ala Ser Leu Ala Pro Ser Ala 230
235 240Thr Glu Pro Pro Ser Leu Gly Val Asn Val
Gly Ser Leu Met Val 245 250
255Pro Val Phe Val Val Leu Leu Gly Val Val Trp Tyr Phe Arg Ile
260 265 270Asn Tyr Arg Gln Phe Phe
Thr Ala Pro Ala Thr Val Ser Leu Val 275
280 285Gly Val Thr Val Phe Phe Ser Phe Leu Val Phe Gly
Met Tyr Gly 290 295
300Arg70217PRTHomo sapiensmisc_featureIncyte ID No 2634120 70Met Val Glu
Val Gln Leu Glu Ser Asp His Glu Tyr Pro Pro Gly 1 5
10 15Leu Leu Val Ala Phe Ser Ala Cys Thr Thr
Val Leu Val Ala Val 20 25
30His Leu Phe Ala Leu Met Val Ser Thr Cys Leu Leu Pro His Ile
35 40 45Glu Ala Val Ser Asn Ile
His Asn Leu Asn Ser Val His Gln Ser 50
55 60Pro His Gln Arg Leu His Arg Tyr Val Glu Leu Ala Trp
Gly Phe 65 70 75Ser Thr
Ala Leu Gly Thr Phe Leu Phe Leu Ala Glu Val Val Leu 80
85 90Val Gly Trp Val Lys Phe Val Pro Ile
Gly Ala Pro Leu Asp Thr 95 100
105Pro Thr Pro Met Val Pro Thr Ser Arg Val Pro Gly Thr Leu Ala
110 115 120Pro Val Ala Thr Ser
Leu Ser Pro Ala Ser Asn Leu Pro Arg Ser 125
130 135Ser Ala Ser Ala Ala Pro Ser Gln Ala Glu Pro Ala
Cys Pro Pro 140 145 150Arg
Gln Ala Cys Gly Gly Gly Gly Ala His Gly Pro Gly Trp Gln
155 160 165Ala Ala Met Ala Ser Thr Ala
Ile Met Val Pro Val Gly Leu Val 170 175
180Phe Val Ala Phe Ala Leu His Phe Tyr Arg Ser Leu Val Ala
His 185 190 195Lys Thr Asp
Arg Tyr Lys Gln Glu Leu Glu Glu Leu Asn Arg Leu 200
205 210Gln Gly Glu Leu Gln Ala Val
21571143PRTHomo sapiensmisc_featureIncyte ID No 2765411 71Met Phe Pro
Val Leu Gly Trp Ile Leu Ile Ala Val Val Ile Ile 1 5
10 15Ile Leu Leu Ile Phe Thr Ser Val Thr Arg
Cys Leu Ser Pro Val 20 25
30Ser Phe Leu Gln Leu Lys Phe Trp Lys Ile Tyr Leu Glu Gln Glu
35 40 45Gln Gln Ile Leu Lys Ser
Lys Ala Thr Glu His Ala Thr Glu Leu 50
55 60Ala Lys Glu Asn Ile Lys Cys Phe Phe Glu Gly Ser His
Pro Lys 65 70 75Glu Tyr
Asn Thr Pro Ser Met Lys Glu Trp Gln Gln Ile Ser Ser 80
85 90Leu Tyr Thr Phe Asn Pro Lys Gly Gln
Tyr Tyr Ser Met Leu His 95 100
105Lys Tyr Val Asn Arg Lys Glu Lys Thr His Ser Ile Arg Ser Thr
110 115 120Glu Gly Asp Thr Val
Ile Pro Val Leu Gly Phe Val Asp Ser Ser 125
130 135Gly Ile Asn Ser Thr Pro Glu Leu
14072186PRTHomo sapiensmisc_featureIncyte ID No 2769412 72Met Ser Gly Ile
Ser Gly Cys Pro Phe Phe Leu Trp Gly Leu Leu 1 5
10 15Ala Leu Leu Gly Leu Ala Leu Val Ile Ser Leu
Ile Phe Asn Ile 20 25
30Ser His Tyr Val Glu Lys Gln Arg Gln Asp Lys Met Tyr Ser Tyr
35 40 45Ser Ser Asp His Thr Arg Val
Asp Glu Tyr Tyr Ile Glu Asp Thr 50 55
60Pro Ile Tyr Gly Asn Leu Asp Asp Met Ile Ser Glu Pro Met
Asp 65 70 75Glu Asn Cys
Tyr Glu Gln Met Lys Ala Arg Pro Glu Lys Ser Val 80
85 90Asn Lys Met Gln Glu Ala Thr Pro Ser Ala
Gln Ala Thr Asn Glu 95 100
105Thr Gln Met Cys Tyr Ala Ser Leu Asp His Ser Val Lys Gly Lys
110 115 120Arg Arg Lys Pro Arg Lys
Gln Asn Thr His Phe Ser Asp Lys Asp 125
130 135Gly Asp Glu Gln Leu His Ala Ile Asp Ala Ser Val
Ser Lys Thr 140 145 150Thr
Leu Val Asp Ser Phe Ser Pro Glu Ser Gln Ala Val Glu Glu
155 160 165Asn Ile His Asp Asp Pro Ile
Arg Leu Phe Gly Leu Ile Arg Ala 170 175
180Lys Arg Glu Pro Ile Asn 18573364PRTHomo
sapiensmisc_featureIncyte ID No 2842779 73Met Pro Gly Cys Pro Cys Pro Gly
Cys Gly Met Ala Gly Pro Arg 1 5 10
15Leu Leu Phe Leu Thr Ala Leu Ala Leu Glu Leu Leu Gly Arg Ala
20 25 30Gly Gly Ser Gln
Pro Ala Leu Arg Ser Arg Gly Thr Ala Thr Ala 35
40 45Cys Arg Leu Asp Asn Lys Glu Ser Glu Ser Trp
Gly Ala Leu Leu 50 55
60Ser Gly Glu Arg Leu Asp Thr Trp Ile Cys Ser Leu Leu Gly Ser
65 70 75Leu Met Val Gly Leu Ser Gly
Val Phe Pro Leu Leu Val Ile Pro 80 85
90Leu Glu Met Gly Thr Met Leu Arg Ser Glu Ala Gly Ala Trp
Arg 95 100 105Leu Lys Gln
Leu Leu Ser Phe Ala Leu Gly Gly Leu Leu Gly Asn 110
115 120Val Phe Leu His Leu Leu Pro Glu Ala Trp
Ala Tyr Thr Cys Ser 125 130
135Ala Ser Pro Gly Gly Glu Gly Gln Ser Leu Gln Gln Gln Gln Gln
140 145 150Leu Gly Leu Trp Val Ile
Ala Gly Ile Leu Thr Phe Leu Ala Leu 155
160 165Glu Lys Met Phe Leu Asp Ser Lys Glu Glu Gly Thr
Ser Gln Ala 170 175 180Pro
Asn Lys Asp Pro Thr Ala Ala Ala Ala Ala Leu Asn Gly Gly
185 190 195His Cys Leu Ala Gln Pro Ala
Ala Glu Pro Gly Leu Gly Ala Val 200 205
210Val Arg Ser Ile Lys Val Ser Gly Tyr Leu Asn Leu Leu Ala
Asn 215 220 225Thr Ile Asp
Asn Phe Thr His Gly Leu Ala Val Ala Ala Ser Phe 230
235 240Leu Val Ser Lys Lys Ile Gly Leu Leu Thr
Thr Met Ala Ile Leu 245 250
255Leu His Glu Ile Pro His Glu Val Gly Asp Phe Ala Ile Leu Leu
260 265 270Arg Ala Gly Phe Asp Arg
Trp Ser Ala Ala Lys Leu Gln Leu Ser 275
280 285Thr Ala Leu Gly Gly Leu Leu Gly Ala Gly Phe Ala
Ile Cys Thr 290 295 300Gln
Ser Pro Lys Gly Val Glu Glu Thr Ala Ala Trp Val Leu Pro
305 310 315Phe Thr Ser Gly Gly Phe Leu
Tyr Ile Ala Leu Val Asn Val Leu 320 325
330Pro Asp Leu Leu Glu Glu Glu Asp Pro Trp Arg Ser Leu Gln
Gln 335 340 345Leu Leu Leu
Leu Cys Ala Gly Ile Val Val Met Val Leu Phe Ser 350
355 360Leu Phe Val Asp74605PRTHomo
sapiensmisc_featureIncyte ID No 2966260 74Met Gly Arg Leu Leu Arg Ala Ala
Arg Leu Pro Pro Leu Leu Ser 1 5 10
15Pro Leu Leu Leu Leu Leu Val Gly Gly Ala Phe Leu Gly Ala Cys
20 25 30Val Ala Gly Ser
Asp Glu Pro Gly Pro Glu Gly Leu Thr Ser Thr 35
40 45Ser Leu Leu Asp Leu Leu Leu Pro Thr Gly Leu
Glu Pro Leu Asp 50 55
60Ser Glu Glu Pro Ser Glu Thr Met Gly Leu Gly Ala Gly Leu Gly
65 70 75Ala Pro Gly Ser Gly Phe Pro
Ser Glu Glu Asn Glu Glu Ser Arg 80 85
90Ile Leu Gln Pro Pro Gln Tyr Phe Trp Glu Glu Glu Glu Glu
Leu 95 100 105Asn Asp Ser
Ser Leu Asp Leu Gly Pro Thr Ala Asp Tyr Val Phe 110
115 120Pro Asp Leu Thr Glu Lys Ala Gly Ser Ile
Glu Asp Thr Ser Gln 125 130
135Ala Gln Glu Leu Pro Asn Leu Pro Ser Pro Leu Pro Lys Met Asn
140 145 150Leu Val Glu Pro Pro Trp
His Met Pro Pro Arg Glu Glu Glu Glu 155
160 165Glu Glu Glu Glu Glu Glu Glu Met Glu Lys Glu Glu
Val Glu Lys 170 175 180Gln
Asp Val Glu Glu Glu Glu Glu Leu Leu Pro Val Asn Gly Ser
185 190 195Gln Glu Glu Ala Lys Pro Gln
Val Arg Asp Phe Ser Leu Thr Ser 200 205
210Ser Ser Gln Thr Pro Gly Ala Thr Lys Ser Arg His Glu Asp
Ser 215 220 225Gly Asp Gln
Ala Ser Ser Gly Val Glu Val Glu Ser Ser Met Gly 230
235 240Pro Ser Leu Leu Leu Pro Ser Val Thr Pro
Thr Ile Val Thr Pro 245 250
255Gly Asp Gln Asp Ser Thr Ser Gln Glu Ala Glu Ala Thr Val Leu
260 265 270Pro Ala Ala Gly Leu Gly
Val Glu Phe Glu Ala Pro Gln Glu Ala 275
280 285Ser Glu Glu Ala Thr Ala Gly Ala Ala Gly Leu Ser
Gly Gln His 290 295 300Glu
Glu Val Pro Ala Leu Pro Ser Phe Pro Gln Thr Thr Ala Pro
305 310 315Ser Gly Ala Glu His Pro Asp
Glu Asp Pro Leu Gly Ser Arg Thr 320 325
330Ser Ala Ser Ser Pro Leu Ala Pro Gly Asp Met Glu Leu Thr
Pro 335 340 345Ser Ser Ala
Thr Leu Gly Gln Glu Asp Leu Asn Gln Gln Leu Leu 350
355 360Glu Gly Gln Ala Ala Glu Ala Gln Ser Arg
Ile Pro Trp Asp Ser 365 370
375Thr Gln Val Ile Cys Lys Asp Trp Ser Asn Leu Ala Gly Lys Asn
380 385 390Tyr Ile Ile Leu Asn Met
Thr Glu Asn Ile Asp Cys Glu Val Phe 395
400 405Arg Gln His Arg Gly Pro Gln Leu Leu Ala Leu Val
Glu Glu Val 410 415 420Leu
Pro Arg His Gly Ser Gly His His Gly Ala Trp His Ile Ser
425 430 435Leu Ser Lys Pro Ser Glu Lys
Glu Gln His Leu Leu Met Thr Leu 440 445
450Val Gly Glu Gln Gly Val Val Pro Thr Gln Asp Val Leu Ser
Met 455 460 465Leu Gly Asp
Ile Arg Arg Ser Leu Glu Glu Ile Gly Ile Gln Asn 470
475 480Tyr Ser Thr Thr Ser Ser Cys Gln Ala Arg
Ala Ser Gln Val Arg 485 490
495Ser Asp Tyr Gly Thr Leu Phe Val Val Leu Val Val Ile Gly Ala
500 505 510Ile Cys Ile Ile Ile Ile
Ala Leu Gly Leu Leu Tyr Asn Cys Trp 515
520 525Gln Arg Arg Leu Pro Lys Leu Lys His Val Ser His
Gly Glu Glu 530 535 540Leu
Arg Phe Val Glu Asn Gly Cys His Asp Asn Pro Thr Leu Asp
545 550 555Val Ala Ser Asp Ser Gln Ser
Glu Met Gln Glu Lys His Pro Ser 560 565
570Leu Asn Gly Gly Gly Ala Leu Asn Gly Pro Gly Ser Trp Gly
Ala 575 580 585Leu Met Gly
Gly Lys Arg Asp Pro Glu Asp Ser Asp Val Phe Glu 590
595 600Glu Asp Thr His Leu
6057597PRTHomo sapiensmisc_featureIncyte ID No 2993326 75Met Thr Gly Arg
Phe Lys Ala Cys Gln Val Ile Leu Gly Leu Leu 1 5
10 15Val Ala Ile Ser Leu Ala Ala Gly Thr Gly Gly
Ala Ala Gly Ala 20 25
30Ala Leu Val Ile Val Phe Ile Gly Ala Phe Leu Val Leu Leu Phe
35 40 45Leu Gly Arg Leu Thr Thr Gly
Gly Ser Met Ala Arg Glu Ser Leu 50 55
60Val Ala Ala Asn Arg Val Cys Ile Ser Arg Thr Leu Ser Ser
Ser 65 70 75Val Val Ser
Val Cys Ile Ser Gly Gly Lys Gly Ser Pro Arg Leu 80
85 90Pro Gly Gly Gly Arg Gly Pro
9576247PRTHomo sapiensmisc_featureIncyte ID No 3001124 76Met Val Thr
Leu Val Ser Asp Thr Ala Met Thr Pro Ile Ala Ser 1 5
10 15Val Asp Thr Ile Ala Val Cys Leu Phe Ala
Gly Ala Trp Gly Gly 20 25
30Ala Met Val Pro Met His Leu Leu Gly Arg Leu Glu Lys Pro Leu
35 40 45Leu Leu Leu Cys Cys Ala
Ser Phe Leu Leu Gly Leu Ala Leu Leu 50
55 60Gly Ile Lys Thr Asp Ile Thr Pro Val Ala Tyr Phe Phe
Leu Thr 65 70 75Leu Gly
Gly Phe Phe Leu Phe Ala Tyr Leu Leu Val Arg Phe Leu 80
85 90Glu Trp Gly Leu Arg Ser Gln Leu Gln
Ser Met Gln Thr Glu Ser 95 100
105Pro Gly Pro Ser Gly Asn Ala Arg Asp Asn Glu Ala Phe Glu Val
110 115 120Pro Val Tyr Glu Glu
Ala Val Val Gly Leu Glu Ser Gln Cys Arg 125
130 135Pro Gln Glu Leu Asp Gln Pro Pro Pro Tyr Ser Thr
Val Val Ile 140 145 150Pro
Pro Ala Pro Glu Glu Glu Gln Pro Ser His Pro Glu Gly Ser
155 160 165Arg Arg Ala Lys Leu Glu Gln
Arg Arg Met Ala Ser Glu Gly Ser 170 175
180Met Ala Gln Glu Gly Ser Pro Gly Arg Ala Pro Ile Asn Leu
Arg 185 190 195Leu Arg Gly
Pro Arg Ala Val Ser Thr Ala Pro Asp Leu Gln Ser 200
205 210Leu Ala Ala Val Pro Thr Leu Glu Pro Leu
Thr Pro Pro Pro Ala 215 220
225Tyr Asp Val Cys Phe Gly His Pro Asp Asp Asp Ser Val Phe Tyr
230 235 240Glu Asp Asn Trp Ala Pro
Pro 24577193PRTHomo sapiensmisc_featureIncyte ID No
3120070 77Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu 1
5 10 15Pro Leu Leu Leu Leu
Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu 20
25 30Ala Gly Arg Gly Trp Leu Gln Ser Ser Asp His Gly
Gln Thr Ser 35 40 45Ser
Leu Trp Trp Lys Cys Ser Gln Glu Gly Gly Gly Ser Gly Ser
50 55 60Tyr Glu Glu Gly Cys Gln Ser Leu
Met Glu Tyr Ala Trp Gly Arg 65 70
75Ala Ala Ala Ala Met Leu Phe Cys Gly Phe Ile Ile Leu Val Ile
80 85 90Cys Phe Ile Leu
Ser Phe Phe Ala Leu Cys Gly Pro Gln Met Leu 95
100 105Val Phe Leu Arg Val Ile Gly Gly Leu Leu Ala
Leu Ala Ala Val 110 115
120Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Val Lys Tyr Thr Gln
125 130 135Thr Phe Thr Leu His Ala
Asn Pro Ala Val Thr Tyr Ile Tyr Asn 140
145 150Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Ile Ile
Leu Ile Gly 155 160 165Cys
Ala Phe Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp Leu
170 175 180Leu Gly Asn Ala Lys Pro Arg
Tyr Phe Tyr Thr Ser Ala 185
19078128PRTHomo sapiensmisc_featureIncyte ID No 3133035 78Met Asn Met Lys
Gln Lys Ser Val Tyr Gln Gln Thr Lys Ala Leu 1 5
10 15Leu Cys Lys Asn Phe Leu Lys Lys Trp Arg Met
Lys Arg Glu Ser 20 25
30Leu Leu Glu Trp Gly Leu Ser Ile Leu Leu Gly Leu Cys Ile Ala
35 40 45Leu Phe Ser Ser Ser Met Arg
Asn Val Gln Phe Pro Gly Met Ala 50 55
60Pro Gln Asn Leu Gly Arg Val Asp Lys Phe Asn Ser Ser Ser
Leu 65 70 75Met Val Val
Tyr Thr Pro Ile Ser Asn Leu Thr Gln Gln Ile Met 80
85 90Asn Lys Thr Ala Leu Ala Pro Leu Leu Lys
Gly Thr Ser Val Ile 95 100
105Gly Ala Gln Ile Ile His Thr Trp Thr Lys Tyr Phe Trp Lys Ile
110 115 120Tyr Ile Cys Tyr Gly Asn
His Leu 12579115PRTHomo sapiensmisc_featureIncyte ID No
3436879 79Met Ala Val Ala Val Leu Leu Cys Gly Cys Ile Val Ala Thr Val 1
5 10 15Ser Phe Phe Trp Glu
Glu Ser Leu Thr Gln His Val Ala Gly Leu 20
25 30Leu Phe Leu Met Thr Gly Ile Phe Cys Thr Ile Ser
Leu Cys Thr 35 40 45Tyr
Ala Ala Ser Ile Ser Tyr Asp Leu Asn Arg Leu Pro Lys Leu
50 55 60Ile Tyr Ser Leu Pro Ala Asp Val
Glu His Gly Tyr Ser Trp Ser 65 70
75Ile Phe Cys Ala Trp Cys Ser Leu Gly Phe Ile Val Ala Ala Gly
80 85 90Gly Leu Cys Ile
Ala Tyr Pro Phe Ile Ser Arg Thr Lys Ile Ala 95
100 105Gln Leu Lys Ser Gly Arg Asp Ser Thr Val
110 115801869DNAHomo sapiensmisc_featureIncyte
ID No 153831 80gcgagcggct ggcggatccg acgcgcgaga ccgggagggg acgagggcgt
tgcaatcgtt 60cggggcgggg gctttccggg gagggggtgc tcaggtgcac cagcggcggc
ggaccctcag 120actctgccct cccctccctt taaccccctt ccagccggac gggaggcggg
gcagggctga 180gcatttgtga cacctacatt tccgtggctc ccttcttttc ccccgacccc
tgtttatctc 240ttcgccttcc agaagttctt ttccatcagg ccgtcgcacc ttgcgtggga
aggagcaccc 300cacttggaag caggaggcgg ggttcagatc ttggccctac ccctcctgtg
ttaaagtccg 360cgagcctcag tttccctcac agtatttttt gcctcgcctt acccggtttt
gaggatctgt 420acgagaaaga gaaaggaagt ggacatttgt tgaattcctg catggccaaa
taccacgcag 480actgcttcat ccgccacgtt taatccttat tacttggtgt tctcagaact
cccatttcat 540ggattcttaa gctcacagag tcagtgaata acagaaaggg attcagatct
agccgtttag 600ctgcacagtg gagttcttct ccagagtctt cccttgtctg ggctctggct
ggaactattc 660ctcagccaaa tcctcgcccc agaacagtgc ttcctgtttc tccagctgag
aagtctccct 720ttcagtttcc ttcttccagc acggagtaca ctgctctgcc tccacttaga
ttacttcaga 780aatgaaatgc agcaaatatt tatccagcag tgcagggagt tgaacttttg
gagtcgggaa 840ccttggattc ttgttctggc tctgccactt actgtgtggc cttgggaagt
cctttgtctt 900ctctgagctt tcttttctct ttgcgtaaaa gcggtgctct tgtcccattc
tccctccctg 960tcttccagca ggctctcccc ggaggctcag ccccctctgc tccccatggg
caactgccag 1020gcagggcaca acctgcacct gtgtctggcc caccacccac ctctggtctg
tgccactttg 1080atcctgctgc tccttggcct ctctggcctg ggccttggca gcttcctcct
cacccacagg 1140actggcctgc gcagccctga catcccccag gactgggtct cttttttgag
atcttttggc 1200cagctgaccc tgtgtcccag gaatgggaca gtcacaggga agtggcgagg
gtctcacgtc 1260gtgggcttgc tgaccacctt gaacttcgga gacggtccag acaggaacaa
gacccggaca 1320ttccaggcca cagtcctggg aagtcagatg ggattgaaag gatcttctgc
aggacaactg 1380gtccttatca cagccagggt gaccacagaa aggactgcag gaacctgcct
atattttagt 1440gctgttccag gaatcctacc ctccagccag ccacccatat cctgctcaga
ggagggggct 1500ggaaatgcca ccctgagccc tagaatgggt gaggaatgtg ttagtgtctg
gagccatgaa 1560ggccttgtgc tgaccaagct gctcacctcg gaggagctgg ctctgtgtgg
ctccaggctg 1620ctggtcttgg gctccttcct gcttctcttc tgtggccttc tctgctgtgt
cactgctatg 1680tgcttccacc cgcgccggga gtcccactgg tctagaaccc ggctctgagg
gcactggcct 1740agttcccgac ttgtttctca ggtgtgaatc aacttcttgg gccttggctc
tgagttggaa 1800aaggttttag aaaaagtgaa gagctggaat gtgggggaaa ataaaaagct
tttttgccca 1860aaaaaaaaa
1869811044DNAHomo sapiensmisc_featureIncyte ID No 350629
81tgcagttaac atctgcacac ttcactatat tttaagtttt tgttaatata aaagaataag
60aaaacagaaa agtattactg ttaaacaata atagagaaat gtatacttta tttacaaatt
120tctccctcta gctgatcata cagttgacca gttcagggtg cccgctgctg gttggatgcc
180aggcggaatg tcagggtgtt ctctggtgtc tgttgtggct gtgggatcca cggttactgg
240gcggagcctg tggtggctgt ggtgccatgg aggggctgcg atcttctgtg gagctggacc
300ctgagctgac tccagggaag ctggatgagg agatggtggg gctgccaccc catgacgcga
360gtcctcaagt cactttccac agcctcgatg ggaagacagt ggtgtgtcca cacttcatgg
420gcttactgct gggtctctta cttttattga ctttgtctgt taggaaccaa ctctgtgtaa
480gaggtgaaag gcagcttgca gaaacactgc attcacaggt gaaggagaaa tcccagctca
540ttggcaagaa aacagattgt agagactgag gcatctttaa aagatgtcag ggtacagaaa
600aagtctttca acacccccgg ctttgtagat gcctacaaga aggtgaatag caccaacgag
660atgctgatgg agaaatttac caccctcgtt caagaactga aagaagagac atcctccaga
720ctctcctcaa tgggcggtgc ctccaaatct aaagaatatg gaggtcctgg agcacaccaa
780gaaatgaggg actttttctt tgcagaaagt ttgaattctg tcttaatgag acagaatgcc
840atacttgagc acctcatctt ttgctcaaat tgaaatgtca tcgaactgta tttctcaagt
900caatggtctg taaatatgat ttatgtatta atctcctaag tgaacaattt atattttatc
960ctctacataa ttatcgtatt atgctttaaa tatatattta gtttatcaat aaagacattc
1020agtactcaat agcaaaaaaa aaaa
1044823079DNAHomo sapiensmisc_featureIncyte ID No 729171 82cggctcgagg
tcggctggag tcggaggcga tatttctagg ggtgtacttg ttggggtcag 60ggtaagcacc
agccacaaaa acctacaaaa gaagggaaat tactgtcttt aaatattaaa 120aaaaaacaag
atccatgagt gggcatcgat caacaaggaa aagatgtgga gattcccacc 180cggagtcccc
agtgggcttc gggcatatga gtactacagg atgtgtatta aataaattgt 240ttcagttacc
aacaccacca ttgtcaagac accaactaaa gcggctagaa gaacacagat 300atcaaagtgc
tggacggtcc ctgcttgagc ccttagtgca agggtattgg gaatggctcg 360ttagaagagt
tccctcctgg attgccccaa atctcatcac catcattgga ctgtcaataa 420acatctgtac
aactatttta ttagtcttct actgccctac agctacagag caggcacctc 480tgtgggcata
tattgcttgt gcctgtggcc ttttcattta ccagtctttg gatgctattg 540gtgggaaaca
ggcaagaaga accaatagta gttctcctct gggagaactt tttgatcatg 600gctgtgattc
actatcaaca gtttttgtgg ttcttggaac ttgtatagca gtgcagctgg 660ggacaaaccc
tgattggatg tttttttgtt gttttgcggg gacatttatg ttctattgtg 720cgcactggca
aacgtatgtt tctggaacat tgcgatttgg aataattgat gtgactgaag 780tgcaaatctt
cataataatc atgcatttgc tggcagtgat gggaggacca cctttttggc 840aatctatgat
tccagtgctg aatattcaaa tgaaaatttt tcctgcactt tgtactgtag 900cagggaccat
atttcctgta acaaattact tccgtgtaat cttcacaggt ggtgttggca 960aaaatggatc
aacaatagca ggaacaagtg tcctttctcc ttttctccat attggatcag 1020tgattacatt
agctgcaatg atctacaaga aatctgcagt tcagcttttt gaaaagcatc 1080cctgtcttta
tatactgaca tttggttttg tgtctgctaa aatcactaat aagcttgtgg 1140ttgcacacat
gacgaaaagt gaaatgcatt tgcatgacac agcattcata ggtccggcac 1200ttttgtttct
ggaccagtat tttaacagct ttattgatga atatattgta ctttggattg 1260ccctggtttt
ctctttcttt gatttgatcc gctactgtgt cagtgtttgc aatcagattg 1320cgtctcacct
gcacatacat gtcttcagaa tcaaggtctc tacagctcat tctaatcatc 1380attaatgatg
taattggtat ataggaacat catgttttct gcaggaaaga aagtaacata 1440ttaaggagaa
tgggggtgga taagaacaaa tataatttat aataatcaat gttgtataac 1500ttttattctt
tattattggt aacacgccct aactatcctg tgtgagaatg ggaatttcaa 1560gtcccatctt
gtaaattgta tatgttgtca tgcagggttt gggccaagaa agcatgcaga 1620aaaaaatgcc
atgtgattgt aattatcctg gattcagaat aatactgtga tggggagcca 1680gatccgcagt
ggtggagagt tctaatgttg actgtttgca ggccaaaaga tgattgcttt 1740ataattttaa
caaatcattg tcttttagta acatccttgt ttagtgtctt ctcaagcttt 1800ctttactgag
gaattcagct tgtgacacag atacatccca ctagcttgtg aggtggaact 1860agtaataaag
accttgaatt tggattgaaa agtttcctat ctttacattg ttgaggaagt 1920cctttttttt
tttttttttt tttttaattg ctcaagaaat gattctctca caggcttggg 1980aaatcctgtt
agcatgcaga ataatgtggt aactttgtca atttcccatt ttattttttt 2040aaataaatat
atgatctaaa agccaacttt ttctcagttt tactcagtgg aaagataaac 2100taagttttaa
tgttattttt ttaaatttaa gcaaaattta tttctgttct ttaataaata 2160agaaaatgtg
gtccactgca ttgttgtgat gtgtcttgtg acatttctat tttgtagaaa 2220ctttaaaaag
gagaactatg ttcatttttc ctgtcaatgg tttttttgtg ttgtagttgt 2280cacctgtgtg
attatcaatc atttagaaat ctcataccct tcccctaaat tttcagcaag 2340tgcctgggcc
tctctaagag gtcactttgt actctccttt tctggcagtc tcctctttgg 2400tatctgtact
atcgtttgaa atgggaacca gatatgtttc cattttatac agataattca 2460gttgcttgaa
gaagagggac acaggagaaa agatttaaac tattggctaa aatgaggtgt 2520cttattattg
attttcatct atatcttgtc ccataatcag gaataaacag tagctacact 2580gccttgtatg
gcagccagag cgctgcttgc ttgcactttt aatgattcca tcaataccat 2640gtagattgaa
ttagcaagga gaagtaaacc tttcatttct ttgccagact atattgggaa 2700atgaaaatcc
gtcattactt ttccttgcta gcaattgttc gaatatctgg gataaagaaa 2760tacatacagg
aaaatgttag ggcagaccaa gtattaaaag ctaggacaga gcaggacaaa 2820ggaggaagga
taattctact tgtttggcaa agttacatca gttgtcttac tgacacatca 2880ggtactatct
atagtggaaa ttgaggcccg gagaggttaa atggcatgcc agtgtcactt 2940gctatttttc
agaacaaaaa ttagaatcca gatctgaatc ctggtgcagt gttctctcct 3000atgccctact
gggctttagt gggctaaagt tctgaagcaa gatgttaagg gctaattgaa 3060atgcgtttat
tctcctaga
3079831298DNAHomo sapiensmisc_featureIncyte ID No 1273641 83cccggtgcct
gcgggattgc tggagagaac gcggcgatgg agccgggcag gacccagata 60aagcttgacc
ccaggtacac agcagatctt ctggaggtgc tgaagaccaa ttacggcatc 120ccctccgcct
gcttctctca gcctcccaca gcagcccact cctgagagcc ctgggccctg 180tggaacttgc
cctcactagc atcctgacct tgctggcgct gggctccatt gccatcttcc 240tggaggatgc
cgtctacctg tacaagaaca ccctttgccc catcaagagg cggactctgc 300tctggaagag
ctcggcaccc acggtggtgt ctgtgctgtg ctgctttggt ctctggatcc 360ctcgttccct
ggtgctggtg gaaatgacca tcacctcgtt ttatgccgtg tgcttttacc 420tgctgatgct
ggtcatggtg gaaggctttg gggggaagga ggcagtgctg aggacgctga 480gggacacccc
gatgatggtc cacacaggcc cctgctgctg ctgctgcccc tgctgtcaac 540ggctgctgct
caccaggaag aagcttcagc tgctgatgtt gggccctttc caatacgcct 600tcttgaagat
aacgctgacc tggtgggcct tgttctcgtc cccgacggaa tcttatgacc 660cagcagacat
ttctgagggg agcacagctc tatggatcaa cactttcctt ggcgtgtcca 720cactgctggc
tctctggacc ctgggcatca tttcccgtca agccaggcta cacctgggtg 780agcagaacat
gggagccaaa tttgctctgt tccaggttct cctcatcctg actgccctac 840agccctccat
cttctcagtc ttggccaacg gtgggcagat tgcttgttcg cctccctatt 900cctctaaaac
caggtctcaa gtgatgaatt gccacctcct catactggag acttttctaa 960tgactgtgct
gacacgaatg tactaccgaa ggaaagacca caaggttggg tatgaaactt 1020tctcttctcc
agacctggac ttgaacctca aagcctaagg tggatggctt ggacaatgaa 1080aggatgctgt
actcattaga atacaagatt cctttactgt ccctcaacct tgaccaaatg 1140ggaagcattc
ccccttgtca acacaagctg gcagatacat ttgactctac agatgaaggt 1200gaacaatgtt
aggataaaat tgctttggat cttgcctgga aggtgtttta agttttgtaa 1260taaacaagat
gatgtctgaa aatgtgaaaa aaaaaaaa
1298842106DNAHomo sapiensmisc_featureIncyte ID No 1427389 84gtggggctgc
ggccgggatt tgtcccctct tcggcttccg tagaggaagt ggcgcggacc 60ttcatttggg
gtttcggttc ccccccttcc ccttccccgg ggtctggggg tgacattgca 120ccgcgcccct
cgtggggtcg cgttgccacc ccacgcggac tccccagctg gcgcgcccct 180cccatttgcc
tgtcctggtc aggcccccac cccccttccc acctgaccag ccatgggggc 240tgcggtgttt
ttcggctgca ctttcgtcgc gttcggcccg gccttcgcgc ttttcttgat 300cactgtggct
ggggacccgc ttcgcgttat catcctggtc gcaggggcat ttttctggct 360ggtctccctg
ctcctggcct ctgtggtctg gttcatcttg gtccatgtga ccgaccggtc 420agatgcccgg
ctccagtacg gcctcctgat ttttggtgct gctgtctctg tccttctaca 480ggaggtgttc
cgctttgcct actacaagct gcttaagaag gcagatgagg ggttagcatc 540gctgagtgag
gacggaagat cacccatctc catccgccag atggcctatg tttctggtct 600ctccttcggt
atcatcagtg gtgtcttctc tgttatcaat attttggctg atgcacttgg 660gccaggtgtg
gttgggatcc atggagactc accctattac ttcctgactt cagcctttct 720gacagcagcc
attatcctgc tccatacctt ttggggagtt gtgttctttg atgcctgtga 780gaggagacgg
tactgggctt tgggcctggt ggttgggagt cacctactga catcgggact 840gacattcctg
aacccctggt atgaggccag cctgctgccc atctatgcag tcactgtttc 900catggggctc
tgggccttca tcacagctgg agggtccctc cgaagtattc agcgcagcct 960cttgtgtaag
gactgactac ctggactgat cgcctgacag atcccacctg cctgtccact 1020gcccatgact
gagcccagcc ccagcccggg tccattgccc acattctctg tctccttctc 1080gtcggtctac
cccactacct ccagggtttt gctttgtcct tttgtgaccg ttagtctcta 1140agctttacca
ggagcagcct gggttcagcc agtcagtgac tggtgggttt gaatctgcac 1200ttatccccac
cacctgggga cccccttgtt gtgtccagga ctccccctgt gtcagtgctc 1260tgctctcacc
ctgcccaaga ctcacctccc ttcccctctg caggccgacg gcaggaggac 1320agtcgggtga
tggtgtattc tgccctgcgc atcccacccg aggactgagg gaacctaggg 1380gggacccctg
ggcctggggt gccctcctga tgtcctcgcc ctgtatttct ccatctccag 1440ttctggacag
tgcaggttgc caagaaaagg gacctagttt agccattgcc ctggagatga 1500aattaatgga
ggctcaagga tagatgagct ctgagtttct cagtactccc tcaagactgg 1560acatcttggt
ctttttctca ggcctgaggg ggaaccattt ttggtgtgat aaatacccta 1620aactgccttt
ttttcttttt tgaggtgggg ggagggagga ggtatattgg aactcttcta 1680acctccttgg
gctatatttt ctctcctcga gttgctcctc atggctgggc tcatttcggt 1740ccctttctcc
ttggtcccag accttggggg aaaggaagga agtgcatgtt tgggaactgg 1800cattactgga
actaatggtt ttaacctcct taaccaccag catccctcct ctccccaagg 1860tgaagtggag
ggtgctgtgg tgagctggcc actccagagc tgcagtgcca ctggaggagt 1920cagactacca
tgacatcgta gggaaggagg ggagattttt ttgtagtttt taattggggt 1980gtgggagggg
cggggaggtt ttctataaac tgtatcattt tctgctgagg gtggagtgtc 2040ccatcctttt
aatcaaggtg attgtgattt tgactaataa aaaagaattt gtaaaaaaaa 2100aaaaaa
210685899DNAHomo
sapiensmisc_featureIncyte ID No 1458357 85gctgtattca ggtccccgat
gggcatatac atcttagccg gtgatacact acctcttacg 60tgttgcctct ttgtgttgct
tggtgctctt tcgaaaacaa ggtgcttatg gctttcatag 120actatttcct ttttcatctt
tgtcattctt taaaagtgta tgtactggtt acatcaagat 180atgttttggt tgttagtact
tattttaatt tgtttggtca cacacttaat aacacgtgaa 240actatttatg tgaagtcctt
gttttatttt aaaattctct ttgtgtattt ggaatcaaag 300ccagcacatt gtaacctgtg
cttgtacgca aaagaattag atttctttgt ttttgtttta 360ttttttaaat tgttgtaaaa
attattatag gccagctaca tctagtagta ggtttggggt 420acagattggg ggttgtgcca
tactgttttt aaagttcatg atcatctgga atgatactta 480gtgtatatat attttgtaaa
gttttaattc agcaaatttt ttgaaattgc tgctgtttta 540aattataaaa cctttatatt
tctgctttgt agaaattata tgttttgtag tattcattga 600ttttctttca ctgtacttaa
atttagtgtt agtactttaa aatttttaat ttaccagtct 660ttaaagcaac atccagaaaa
aaaaaagtct tttcccattt aaaataggct cagccagttc 720aatgtcgcct tgttatcaga
gaaatattag ttcaatactg aaagaaaaat attatacctc 780ttggtatcta gaaaaacttg
ttcatccatt ataaatatat ctttagccac agcaaaccac 840acttaaccta tctataataa
aaatgtgctt taaataaaac caaaaaaaga aaaaaaaaa 899862000DNAHomo
sapiensmisc_featureIncyte ID No 1482837 86tttgtccagt tgttcttttg
ttcctttccc gcctcccatt ctgctgctct tcctccctct 60tttccccaac ctcccccgac
cctcctgaat tttggaaagc acatttgcaa tattcgtgtt 120tgctttggga cggaccctcc
gtttcatctc atgctttatg tgtaagagtt ttttattatt 180attttttctt tcctttctct
ctctgagaaa gttgtggctg cgttttgatc ttaggtttta 240caaagtggtt tagggaagcg
gttttgggga gaaggatcac gaggaatgta gggaagccgg 300agggatgggt gctgctgcga
cgaccccccc gtccctcggc cccagccctc ctgccctccc 360cgtcaatctc atccaccaaa
tctgaaggcc ttaaaattgt gtgttgggag gatgtgaatt 420gggaggacgg tgtcactaga
ctgtggatta gggatggtaa agtagggagg atgctatttt 480gcaactatag taacgactta
gtgttttgga aaggaaaaga agttaaactt gaaatacgtg 540actagaacag ttgtcatgtt
tataatgtga aaagggtgaa atcatttaga ggaggggccg 600tctgtaagaa atcattatgc
actatggctt cctcctctgg tctgggaaga agcggggact 660ggctggccct caggggatct
gtaaatccca gaaaacagta tttttaacag caagatgtca 720ttcaacattg gtggggaagg
aagagaaaaa aatcaaacta ttccatagaa ctagctggcc 780ccctcactcc catgcccttc
ccactcagcc tgggcccctc cccgctccat tcataaaagc 840tgagagggtt gagctaatct
tcacaaattg taatattttt gtagtatctg ttagttcctt 900cgtcagttct gcagaacctt
gccctttcct tttgtaatgt gaataggaag acaaaagaca 960aaaaaaaaat ccaccaccac
caaaatatcc ctttgtacat gtatgtgcgt gtgcgcgtgt 1020gctttgtgtg tgtggttgtg
tgttaaatca tgcagtattg tcgtaatctg gtgttgcagc 1080aatggatggt actaaatcag
cacctggatg ccccacccaa ccccgtgggc cctgcagacc 1140ccagtaggga ggtatgggga
gagctcaggg gagtgtggtt tctgagggct actgtctggg 1200gacacctctg aacttactgt
accttcctct ccccatgaag acacctgaat agagtctaac 1260atgcctcttc tccaacttcc
tacctacaac aacagaacag ttctaatgtt gcacggccta 1320gtggccaggg ggcaagctaa
gaggctgtct ggaggcttta tatgtgtctg gagttaaggg 1380gagaggagga gggtagacag
gggtctctcc ccaggtggga tctgaatatc tgtcctcccc 1440tcttcttcat gccacctgac
tccttcggcc ccctggctgc ctttagctgt ggtactgctg 1500acaaccctgc ttgctactgc
cttatccagc acagtgaaaa acttctccag cctggcaagg 1560ccacgttggt taatagtccc
tttcccatgt ccagctccta caaatatgtc ccttaatgca 1620tttggtgaca tttacacctc
actcatgtgc tctttcccta ttcactcctt cactcattca 1680aagcattaaa atcctatgta
tatataggat agacaaatat atagatatat agatatatat 1740atatatagca agagattgat
ataaaatagt aaatatcatt gctgctttgg gctgctttgg 1800aggaggaggc catgaatatg
gggaaggcag atctggggtg caggggtagg tagggaggct 1860gggggaccca gtgattcagt
acaatccaag ggatgcaacg cgggcttgtt taatctttgt 1920gcctgaacag tttttccatg
ttgagaaaac tgttcaggca cagagattaa acagttttct 1980caacatggga aaaaaaaaaa
2000871359DNAHomo
sapiensmisc_featureIncyte ID No 1517434 87tgcccatcct gctgctcagc
ctggtcacca tgtgcgtcac gcagctgcgg ctcatcttct 60acatgggggc tatgaacaac
atcctcaagt tcctggtcag cggcgaccag aagacagttg 120gcctctacac ctccatcttc
ggcgtgctcc agctgctgtg cctgctgacg gcccccgtca 180ttggctacat catggactgg
aggctgaagg agtgtgaaga cgcctccgag gagcccgagg 240agaaagacgc caaccaaggc
gagaagaaaa agaagaagcg ggaccggcag atccagaaga 300tcactaatgc catgcgggcc
ttcgccttca ccaacctgct gctcgtgggc tttggggtga 360cctgcctcat tcccaacctg
cctctccaga tcctctcctt catcctgcac acaatcgtgc 420gaggattcat ccactccgct
gtcgggggcc tgtacgctgc cgtgtacccc tccacccagt 480tcggcagcct cacgggactg
cagtctctga tcagcgcgct cttcgccctt ctgcagcagc 540cgctgtttct ggccatgatg
ggtcctctcc agggagaccc tctgtgggtg aacgtggggc 600tgctccttct cagcctgctg
ggcttctgcc tcccgctcta cctgatctgc taccggcgcc 660agctggagcg gcagctgcag
cagaggcagg aggatgacaa actcttcctc aaaatcaacg 720gctcgtccaa ccaggaggcc
ttcgtgtagt ggctgccgcc tcggaactgc ggtctcctgc 780ctgtgcttca gtgactgacc
cctgtcctgc ccctccagag taccccacgc acccccagga 840ccttcgccgt ctccgtgcca
gcgttcacgc tccctcccgg ggccctgcct cggagctctg 900tggtggaagg acgggagagg
gccccggaca cgcgcgtttt ctcctgccga acgcaggggc 960tgccctgact ttgctctgcc
gccccccggg gacccggggc ctggggtctc tgtggtgcct 1020gcagcaggag ccaggaacgc
ccggcaggca ggcgctctcc cgccagtgtc tggattctgc 1080ctcttgccaa agcagagggg
gctgccatcc cctgcctgcc acctgcccct cggctgcatg 1140cccacagccg tacctgcctg
aggacaaagg cttgcactgt ctcgcccgcg cctggccccc 1200accccctccc cgaccagcct
gatcaacatg gtgaagcccc gtctctacta aagatacaaa 1260aattaggggg gcatggtggt
ggatgcctgt aatcccggct gctcgggagg ctgaggcgga 1320tgaatcgctt gaaccaggag
gtggaggttg cagtgaggg 1359881397DNAHomo
sapiensmisc_featureIncyte ID No 1536052 88gctggggaag ggaccatgtg
gctgccttgg gctctgttgc ttctctgggt cccagcatca 60acgtcaatga cacctgcaag
tatcactgcg gccaagacct caacaatcac aactgcattt 120ccacctgtat catccactac
cctgtttgca gtgggtgcca cccacagtgc cagcatccag 180gaggaaactg aggaggtggt
gaactcacag ctcccgctgc tcctctccct gctggcattg 240ttgctgcttc tgttggtggg
ggcctccctg ctagcctgga ggatgtttca gaaatggatc 300aaagctggtg accattcaga
gctgtcccag aaccccaagc aggcctcccc cagggaagaa 360cttcactatg cctcggtggt
gtttgattct aacaccaaca ggatagctgc tcagaggcct 420cgggaggagg aaccagattc
agattacagt gtgataagga agacataggc ttttgtcctg 480cctcgccatc ggagctctca
tgggccccag gaagtccagg gacagctccc ttatacctgg 540cccacgtcct tctcagcctg
ccctcgacaa cagtgaccaa cagacaggca gctgggtttc 600ccaggccatc cctctgttgc
catcagcttg attggcttcc ccgagggcca gcagggctgg 660gggctccgga gagcagcagg
aagcactccc agccaccagt gcctgtcacc tctttcccct 720ttgcccctgc ttcatcccag
ctctgtgtgt ggaggacaaa gcttcttcct gcgtggctcc 780aggaaaagat gtggctcacg
taggtggcac ctgccaatag ctttgtcaat cacagcccca 840taggaacgtc tggaattgct
tgggagttgg ggagaactgt caagaagagt gaagagagtg 900ccaaagcgga gatctgttca
cctgggggcc atggaggggg gacccactaa agatcaagat 960caaagattct ccccatctca
cagacaagga aactgaggcc agagggagga gagaattgct 1020catggctcca gaactggtgg
caagtttctc tggactctta ggtttatttt taatatgaaa 1080tataaaaaca gtttcaaata
tcttattgag ggagaagtaa aaacttattt aaacaataaa 1140aaaataaaaa aaaggggcgg
gggtcccgag cccgaatccg aaatcaggta aaagctgttc 1200cctgtgtaaa attgttaccc
gcccaaaatt ccacaaaata taggaccggg agccttaaag 1260tttaaacccc tgggggccca
aattgggtgg gccatccccc atttaattgg cttggccccc 1320aatggccggt tttcacattg
ggggaaacct ttttggccca acggctttta atgaaatcgg 1380cccaaaccgc gggggaa
1397891570DNAHomo
sapiensmisc_featureIncyte ID No 1666118 89atgtccatca tgtcagcagg
tgcaaatcac ttttcccctt tgcatgatct gaggcacctc 60ctcagttgtt tcactgccaa
ctcttatttc agaacctgtt tacaaacaag ccttccagtt 120ggtgaatggt tagccattgg
agctcctacc ctgtacatca gcacatcttc tggtttacaa 180gttgggtaac aatgaaagct
ggagatacta aatggaaatc cagcattgca tacccttaga 240cctgatcaca taccagtaaa
agccttaatt tagatgttag ttgtatgtgt tggacagatc 300cttgcaaaag tgtgtctgtc
tattagttgt aaatttgaaa attataaatc tctgaatctg 360ctactatcca agtttcatcc
cttttgaaga tgaggcatga gcctattaaa atatttataa 420tcatttttcg tcccctactg
caagactttt agattcttac aaatgattac tacaggaata 480gtggccactt aatgtcagtt
actccggtgg aagaatttat ctagtttttt ttcttttctt 540ttttggaagg atggtgtgaa
aaatagcaag attagagaat gagttgtata gttttttcta 600tcacatttca tctaaaatga
tttgaaggac ttttgaagat ttttaccaac atccttaaat 660caactccagg ttggatgaac
aactgattta aaacaaacta agagaacatt aactagatgt 720gggcttttta aaatatatag
gtattgcatt tcctaccttg ttatttattc cactttgaat 780actttagagg gcttaacttt
caactcttta aggtagtaat ggatagtttt atacttgttc 840tcacaaaatt gttatggtca
gtttatatca ttgctccatg cattgattat aaaaattcag 900tattaatttt ttctgatctt
ataagcttta taggagtttt cttttctctt ataaagtgtt 960tcaccttatg taaaacaaat
gcctgcttgc atattggaag atgttgaaat tagttttaga 1020caaaagtggt ccatcaattc
agacactctg cttggatgcc ttaccctttt cattagtgca 1080ttctttgctt ctgaaacttg
gcagaaactc gttagccagt ccactgcctt tctgacaatg 1140tgtggagtca cgtatgcttg
gtatatgcct ttactacttt taaagttcta cagtttatta 1200cttgcccaag tgttactaaa
tccttttctt atgtgtactg gatggagaaa aaattatagc 1260cagcactttg agaggaaagt
tttcagaaac aatattaact ggcactacta actgaaggcc 1320acaggagatg ctatcaatgt
tatttgtaat ctgaagattg aacaaggctg tgaggctcat 1380ttcaaactat tttgaggtgt
taaaatatat atatgctgtt tctcagctgt tccactcaaa 1440ccgtgttagg actctcaaag
gtaaaatgtc acaggggctt ttcagttgtt acagagctca 1500gcagctgtgg ttgcccctgt
tctacaccaa tttcagttca ataaaaatgt taactttgaa 1560aaaaaaaaaa
157090718DNAHomo
sapiensmisc_featureIncyte ID No 1675560 90ggtggtgcgt gcctgtaatc
ccaactactt gggaggctga ggcaggagaa tcgcttgaac 60ctgggaggca gcggttgcag
taagccaaga ctatgccact gcactcccgc ctgggtgaca 120aagcaatatt ctgtgtcaaa
taaataaatt cattcttctg ctctcctgac ttagagaaat 180ggtttgctta aaatgctagt
aacaaacatc acagtcaaca ggagcttgct tcatgcgaag 240gatcaatgtg atttgtggat
ggagatgata gtgatgaaat tcctgtttca tggggctgtt 300tttcttttca tctcactggg
cagcaggttt agtgaggcag tgagatgctg ctgctgtgga 360ttcttgtagc tatgcctcgg
cttcttggca tatcaggtag gaacctgtta caagtgaaat 420acttgaaacc tctctgacca
agagcctctg atggagtggg aggtgagcta attctctgac 480cagcttaggg cactgtttca
gccactggtc acattccttg cttcaaactg aaattcagtt 540tggctttgag tatagggata
catggtggat tcatgtactt cagtgtttgt tttgaccaaa 600gtttattttt ctagtgcatt
ttctaagtca aagtggtgaa aatatgtaat aattttagta 660tgcatgactc agtctgaaac
aataaaaatc tctgaaaaat gaaaaaaaaa aaaaaagg 71891904DNAHomo
sapiensmisc_featureIncyte ID No 1687323 91gcttgtgggg ggaaaaagaa
acgcaataga taaagcgggg cgcatgcgct cccggcacag 60gcttcgattg tgaggaaggc
cggctagtct ccgagctcat cccgccttgc gcatgcggag 120aaggtaaacc agcgccccga
gttgaggcgc gggtttggtg gcgcgtttca gcgaagtcgc 180acgtgaagga tagcagtggc
ctgagaaaga cccagtcatg gcagcctcca gcatcagttc 240accatgggga aagcatgtgt
tcaaagccat tctgatggtc ctagtggccc ttatcctcct 300ccactcagca ttggcccagt
cccgtcgaga ctttgcacca ccaggccaac agaagagaga 360agccccagtt gatgtcttga
cccagatagg tcgatctgtg cgagggacac tggatgcctg 420gattgggcca gagaccatgc
acctggtgtc agagtcttcg tcccaagtgt tgtgggccat 480ctcatcagcc atttctgtgg
ccttctttgc tctgtctggg atcgccgcac agctgctgaa 540tgccttggga ctagctggtg
attacctcgc ccagggcctg aagctcagcc ctggccaggt 600ccagaccttc ctgctgtggg
gagcaggggc cctggtcgtc tactggctgc tgtctctgct 660cctcggcttg gtcttggcct
tgctggggcg gatcctgtgg ggcctgaagc ttgtcatctt 720cctggccggc ttcgtggccc
tgatgaggtc ggtgcccgac ccttccaccc gggccctgct 780actcctggcc ttgctgatcc
tctacgccct gctgagccgg ctcactggct cccgagcctc 840tggggcccaa ctcgaggcca
aggtgcgagg gctggaacgc taggtggagg agctgcgctg 900gcgc
904921948DNAHomo
sapiensmisc_featureIncyte ID No 1692236 92gaagacctct tagcgggccc
atcgctgagg tgcagggaca tgtcgcggcc gaactcacct 60cgtggcctcg gcgtggtgct
ctcagctcat gcccggaaac caggtcccga cgccgcggtc 120agacggacct ctagacgcgt
ccgcctcaat gccgccagct gccaggccgc ccgtgacgcg 180ttacgcctgc gccgcctcct
ggcttcgtga cgtcacgacg tccgcgcagt gcggtcgccg 240ccgtcgcacg agtctttcct
tagtaacctg ggcgatactg tggatgtttc caaggattgt 300cttcagtcat ggccttggga
ttaaagtgct tccgcatggt ccaccctacc tttcgcaatt 360atcttgcagc ctctatcaga
cccgtttcag aagttacact gaagacagtg catgaaagac 420aacatggcca taggcaatac
atggcctatt cagctgtacc agtccgccat tttgctacca 480agaaagccaa agccaaaggg
aaaggacagt cccaaaccag agtgaatatt aatgctgcct 540tggttgagga tataatcaac
ttggaagagg tgaatgaaga aatgaagtct gtgatagaag 600ctctcaagga taatttcaat
ctgactctca atataagggc ctcaccagga tcccttgaca 660agattgctgt ggtaactgct
gacgggaagc ttgctttaaa ccagattagc cagatctcca 720tgaagtcgcc acagctgatt
ttggtgaata tggccagctt cccagagtgt acagctgcag 780ctatcaaggc tataagagaa
agtggaatga atctgaaccc agaagtggaa gggacgctaa 840ttcgggtacc cattccccaa
gtaaccagag agcacagaga aatgctggtg aaactggcca 900aacagaacac caacaaggcc
aaagactctt tacggaaggt tcgcaccaac tcaatgaaca 960agctgaagaa atccaaggat
acagtctcag aggacaccat taggctaata gagaaacaga 1020tcagccaaat ggccgatgac
acagtggcag aactggacag gcatctggca gtgaagacca 1080aagaactcct tggatgaaag
tccactgggg ccagcaatac tccagagccc agtttctgct 1140ggatcccatg ggtggcacat
tgggacttct ctccctcccc catctacaca gaagactgtc 1200accatgctga cagaagcctg
tccttgtaag gcccagcctt ccaggggaac actcagacat 1260gttcattctc ttcctgcttc
tgctctgggc cggtgggtgg ctctcagaaa atacttgctg 1320ctggcaaaag gcctgtactc
aggcatttgc tttgacttga tgttgccaag ggactgaggc 1380cattggcagg cttagtacca
cctgctcctc atcttaggag tctccttttc aaataattag 1440gctctgttcc cattttaaaa
ctctgatatt ggccttcacc tgtgactgga cactttacta 1500gaggcccatt ttcactaaac
aataaaatct aaataaattg gaaggaataa caaccacaaa 1560ggaaagaata gagttggtct
ggattgatga tcactgagga tctgtatgtg aggcacccat 1620aacagtagtt ttgcctgtga
gtcgtcttca cacatgctgt tttctctgcc tggctctctc 1680ttcccctcct tacctggcca
gtcctgttta tcatcaggcc ttgtcttgga tatcacgtcc 1740tctgggaagt cttcttttcc
cctctaacct aggaccctca ttaccggctc tcatagcaca 1800gtctactgct ttgtacgaat
tctaagtatt cttgttgcac ttaattagcc tgtatatcct 1860cagaactttg tgtaatgcct
ggagcatagt aggcagtcat atgttgtatc gtgaataaat 1920tgcacatagt agctacccaa
aaaaaaaa 194893990DNAHomo
sapiensmisc_featureIncyte ID No 1720847 93acagagactg gcacaggacc
tcttcattgc aggaagatgg tagtgtaggc aggtaacatt 60gagctctttt caaaaaagga
gagctcttct tcaagataag gaagtggtag ttatggtggt 120aacccccggc tatcagtccg
gatggttgcc acccctcctg ctgtaggatg gaagcagcca 180tggagtggga gggaggcgca
ataagacacc cctccacaga gcttggcatc atgggaagct 240ggttctacct cttcctggct
cctttgttta aaggcctggc tgggagcctt ccttttgggt 300gtctttctct tctccaacca
acagaaaaga ctgctcttca aaggtggagg gtcttcatga 360aacacagctg ccaggagccc
aggcacaggg ctgggggcct ggaaaaagga gggcacacag 420gaggagggag gagctggtag
ggagatgctg gctttaccta aggtctcgaa acaaggaggg 480cagaataggc agaggcctct
ccgttccagg cccatttttg acagatggcg ggacggaaat 540gcaatagacc agcctgcaag
aaagacatgt gttttgatga caggcagtgt ggccgggtgg 600aacaagcaca ggccttggaa
tccaatggac tgaatcagaa ccctaggcct gccatctgtc 660agccgggtga cctgggtcaa
ttttagcctc taaaagcctc agtctcctta tctgcaaaat 720gaggcttgtg atacctgttt
tgaagggttg ctgagaaaat taaagataag ggtatccaaa 780atagtctacg gccataccac
cctgaacgtg cctaatctcg taagctaagc agggtcaggc 840ctggttagta cctggatggg
gagagtatgg aaaacatacc tgcccgcagt tggagttgga 900ctctgtctta acagtagcgt
ggcacacaga aggcactcag taaatacttg ttgaataaat 960gaagtagcga tttggtgtga
aaaaaaaaaa 990941638DNAHomo
sapiensmisc_featureIncyte ID No 1752821 94tagatatggc gtcctctttg
cttgcgggcg agcgattggt gcgtgctttg ggccccggcg 60gggagctgga gccagagcgg
ctaccccgaa agctgcgggc cgagcttgag gccgcgctgg 120ggaagaagca caagggcggt
gatagctcca gtggccccca acgcttggtt tctttccgtc 180tcatccggga tctgcaccag
catctgagag aaagggattc caaactatac ctccatgagc 240tcctagaagg cagtgaaatc
tatctcccag aggttgtgaa gcctccacgg aacccagaac 300tagttgcccg gctggagaag
attaagatac agctggccaa tgaggaatat aaacggatca 360cccgcaacgt cacttgtcag
gatacaagac atggtgggac tctcagcgac ctgggaaagc 420aagtgagatc attgaaggct
ctggtcatca ccatcttcaa tttcattgtc acggtggttg 480ctgccttcgt ctgcacttac
cttggaagcc aatatatctt cacagaaatg gcctcgcggg 540tgctagctgc attgatcgtc
gcctctgtgg tgggtctggc cgagctgtat gtcatggtgc 600gggcaatgga aggcgagctg
ggagaactgt aactggtgct tcatcatcaa gtctagagaa 660gactttgggg gcttcaggct
ccaattggca gtcaccgact cagtcaaccc atcagacttt 720ttgtattcag ctccagttag
tcagaagacc agcccaggcc agctgctgtt tctgtgggga 780gccctaatct tctgtgaatt
tccaaaggga gcattggagg agattgagat aacacatctt 840taaaacagaa agaactggtc
ttggtctatc agtacctctt cctgaatctg gtacccatct 900gccttctcca gttcattcta
aacactgctg ggactagggt ttttccatca ggagcaaatg 960gaatccaggc cttcccagaa
gtagaccata ctgccttgaa cttgtccata tgtacaaact 1020aatcaccagc tttctccata
catttttaat gcagacctgt aattgagttc agaagcctcc 1080aagaaaacag aaaggatccc
ctttctccag tttgtgctgg aagaggagct gatcagagac 1140atcaaataag agaaagatgg
gttgctagag gatggtagaa ctggaagcaa ggcagctacc 1200tttttgcaaa aggaaatggt
gttaggcccc ttttccagaa gataagacag actcatagag 1260attaaatgat cactatggtc
cttcttctgt taaatggagc caaagacgcc tatgttgttc 1320tgaagtcttg taatgtttaa
cttctgagaa cttagattag tggtgtgatg atagagtctg 1380tataacgcat tgaaaagggt
atcaggctta gttatttatc caataaatat ttattgtatg 1440cagggtattc ctattttaac
tcctgtgaca acacaaagca tagcgatttc catagttcta 1500actgttcagg gtctgctcct
cctggtacac tctttttggt tcactgtatg tactcctgtt 1560gtcttttttt ttttttccaa
agcacttttc tgttttcata aattatatac tcattcactc 1620agtggacaaa aaaaaaaa
163895595DNAHomo
sapiensmisc_featureIncyte ID No 1810923 95gtgggcgcgt ccagtgatga
ctgggggatc ccggcaagta acatgactaa aaagaagcgg 60gagaatctgg gcgtcgctct
agagatcgat gggctagagg agaagctgtc ccagtgtcgg 120agagacctgg aggccgtgaa
ctccagactc cacagccggg agctgagccc agaggccagg 180aggtccctgg agaaggagaa
aaacagccta atgaacaaag cctccaacta cgagaaggaa 240ctgaagtttc ttcggcaaga
gaaccggaag aacatgctgc tctctgtggc catctttatc 300ctcctgacgc tcgtctatgc
ctactggacc atgtgagcct ggcacttccc cacaaccagc 360acaggcttcc acttggcccc
ttgatcagga tcaagcaggc acttcaagcc tcaataggac 420caaggtgctg gggtgttccc
ctcccaacct agtgttcaag catggcttcc tggcggccca 480ggccttgcct ccctggcctg
ctggggggtt ccgggtctcc agaaggacat ggtgctggtc 540cctcccttag cccaagggag
aggcaataaa gaacacaaag ctgtaaaaaa aaaaa 595961858DNAHomo
sapiensmisc_featureIncyte ID No 1822315 96aaaagtctag atcacagtgg
ggctctagga gggctagtcg ttggatttat cctaaccatt 60gcaaatttca gcttttttac
ctctttgctg atgtttttct tgtcttcttc gaaactcact 120aaatggaagg gagaagtgaa
gaagcgtcta gattcagaat ataaggaagg tgggcaaagg 180aattgggttc aggtgttctg
taatggagct gtacccacag aactggccct gctgtacatg 240atagaaaatg gccccgggga
aatcccagtc gatttttcca agcagtactc cgcttcctgg 300atgtgtttgt ctctcttggc
tgcactggcc tgctctgctg gagacacatg ggcttcagaa 360gttggcccag ttctgagtaa
aagttctcca agactgataa caacctggga gaaagttcca 420gttggtacca atggaggagt
tacagtggtg ggccttgtct ccagtctcct tggtggtacc 480tttgtgggca ttgcatactt
cctcacacag ctgatttttg tgaatgattt agacatttct 540gccccgcagt ggccaattat
tgcatttggt ggtttagctg gattactagg atcaattgtg 600gactcatact taggggctac
aatgcagtat actgggttgg atgaaagcac tggcatggtg 660gtcaacagcc caacaaataa
ggcaaggcac atagcaggga aacccattct tgataacaac 720gcgtggatct gttttcttct
gttcttattg ccctcttgct cccaactgct gcttggggtt 780tttggcccag ggggtgaact
ttatttcatt tccacaggtt gaaactggtg agtccagcta 840aatttgcaat tccaactttc
atcctaagaa taataactgt aatggcaaag cggaaatgcc 900agttcctcct gtattccatt
gagatgggat ttcacatttt cctctcatca actcccctgt 960aatagctagc gtctttctag
tgaaagagaa gaattcctag aacttatgca tttttttcct 1020gctgaatgga agtcttgagc
aatgaagcta tattgtccct acatattact atatattgaa 1080ctgaaagttc ttacataatc
aatgtcaagt tttgtcttat tttgttttgt ttgtttaaac 1140cagtgtagga aataaaagtg
atgatattta aaatagttct cagttgaagc agagaaatgc 1200cactgtgcta gttgcccaaa
tgttgtatct attttaaata gtttaagctg atgtgtatgg 1260gagcctaaac aagtgtagta
tcctgaactt ctcccattaa ttgctattca caattgggaa 1320aagtgtggag attggttcct
agtgagtttt gtggcctact ccacatttgt tcttccttcc 1380tcagggttag tgatgaaaaa
aagtaaatat ctttttcata tgtccattag aatgtatgaa 1440aaaaatcatt ttaactaaaa
gcaaaagaat tttatcttat atctaaaaaa tatataactt 1500actatatgtt tcagttgctc
tctgaacaaa aattatcttc aatttaatat gtggaatgtg 1560ttttctagct ttctttgaat
tatgtatggc aacctggttt agcactggca tcctgaacag 1620ttaagagtca ctgggaaatt
attgtatttc tttataaatt tactgtcata tcaattgctg 1680gaaaatgcta tgatttttct
attattacct tctaagttgt attctctctt acactgtagc 1740ctcaactaag gcaattctgc
tatgtttgtt cttcactatg atttactgtg tgccaaagga 1800gttttgacag ggtacagagt
attttactaa aagtattttt aaatgttaaa aaaaaaaa 185897698DNAHomo
sapiensmisc_featureIncyte ID No 1877777 97tgggtgtccg catgacaacc
gacgttggag tttggaggtg cttgccttag agcaagggaa 60acagctctca ttcaaaggaa
ctagaagcct ctccctcagt ggtagggaga cagccaggag 120cggttttctg ggaactgtgg
gatgtgccct tgggggcccg agaaaacaga aggaagatgc 180tccagaccag taactacagc
ctggtgctct ctctgcagtt cctgctgctg tcctatgacc 240tctttgtcaa ttccttctca
gaactgctcc aaaagactcc tgtcatccag cttgtgctct 300tcatcatcca ggatattgca
gtcctcttca acatcatcat cattttcctc atgttcttca 360acaccttcgt cttccaggct
ggcctggtca acctcctatt ccataagttc aaagggacca 420tcatcctgac agctgtgtac
tttgccctca gcatctccct tcatgtctgg gtcatgaact 480tacgctggaa aaactccaac
agcttcatat ggacagatgg acttcaaatg ctgtttgtat 540tccagagact agcagcagtg
ttgtactgct acttctataa acggacagcc gtaagactag 600gcgatcctca cttctaccag
gactctttgt ggctgcgcaa ggagttcatg caagttcgaa 660ggtgacctct tgtcacactg
atggatactt ttccttcc 698981476DNAHomo
sapiensmisc_featureIncyte ID No 1879819 98caaggacgag gctctggcca
agctgggtat caacggtgcc cactcgtccc cgccgatgct 60gtcccccagc ccaggaaagg
gccccccgcc agctgtggct cctcgaccca aggccccgct 120acagcttggg ccctctagct
ccatcaagga aaagcagggg ccccttctgg acctgtttgg 180ccagaagctg cctattgccc
acacaccccc acctccacca gcgccaccac tgcctctgcc 240cgaggaccca gggacccttt
cagcagagcg tcgttgcttg acacagcccg tggaggacca 300gggggtctcc acccagctac
tcgcgccctc tggcagcgtg tgcttctcct acaccggcac 360gccctggaag ttgttcctac
gcaaggaggt gttctaccca cgggagaact tcagccatcc 420ctactacctg aggctcctct
gtgagcagat cctacgggac accttctccg agtcctgtat 480ccggatttcc cagaatgagc
ggcggaaaat gaaagacctg ctgggaggct tggaggtgga 540cctggattct ctcaccacca
ccgaagacag cgtcaagaag cgcatcgtgg tggccgctcg 600ggacaactgg gccaattact
tctcccgctt ctttcctgtc tcgggcgaga gtggcagcga 660cgtgcagctg ttagccgtgt
cccaccgtgg gctgcgactg ctcaaggtga cccaaggccc 720cggcctccgc cccgaccagc
tgaagattct ctgctcatac agctttgcgg aggtgctggg 780tgtggagtgc cggggcggct
ccaccctgga gctgtcactg aagagcgagc agctggtgct 840gcacacagcc cgggcaaggg
ccatcgaggc gctggttgag ctattcctga atgagcttaa 900gaaggactcc ggctatgtca
tcgccctgcg cagctacatc actgacaact gcagcctcct 960cagcttccac cgtggggacc
tcatcaagct gctgccggtg tgccaccctg gagccaggct 1020ggcagtttgg ctctgccggg
ggccgttccg gactctttcc tgccgacata gtgcagccgg 1080ctgccgctcc cgacttttcc
ttctccaagg agcagaggag tggctggcac aagggtcagc 1140tgtccaacgg ggaaccaggg
ctggctcggt gggacagggc ctcagaggtg aggaagatgg 1200gagagggaca agcagaggca
aggcctgcct gagactgagg aaggaaaggg gtttgaccac 1260tcccgaggct gccatgcggt
gggaccaccc tgctgtccgt ctcctgtggc tgcccctctg 1320cccgctcctg atggctcgcc
ttgtctctcc agcaagactg tgcactcctt gcaggcaggg 1380gctgggctgg atgctgctct
tgtgtcccac gtggtactta gttcaaggct gccccagcag 1440atgcttaata aacagctctt
cactttaaaa aaaaaa 147699646DNAHomo
sapiensmisc_featureIncyte ID No 1932945 99ccggctggag gtgacgctga
ggcggcgagg gtgagtcggc gccggccgct accgcacttc 60gggcgctcgt ccctcatttc
tctgtggtga atggcgacgg gatggagcgc gaggggagcg 120gcggcagcgg cgggtcggcc
gggctcctgc agcagatcct gagcctgaag gttgtgccgc 180gggtgggcaa cgggaccctg
tgccccaact ctacttccct ctgctccttc ccagagatgt 240ggtatggtgt attcctgtgg
gcactggtgt cttctctctt ctttcatgtc cctgctggat 300tactggccct cttcaccctc
agacatcaca aatatggtag gttcatgtct gtaagcatcc 360tgttgatggg catcgtggga
ccaattactg ctggaatctt gacaagtgca gctattgctg 420gagtttaccg agcagcaggg
aaggaaatga taccatttga agccctcaca ctgggcactg 480gacagacatt ttgcgtcttg
gtggtctcct ttttacggat tttagctact ctatagcata 540catccttatg ctgagatgtt
gaacttaaac tttatggaat cctccaaaag aatacattat 600ggagtgtagt gttttcttag
ttcttccaaa gggagccact tggatg 6461001735DNAHomo
sapiensmisc_featureIncyte ID No 2061026 100gccggctgcg ccatggcgtt
ggcgttggcg gcgctggcgg cggtcgagcc ggcctgcggc 60agccggtacc agcagttgca
gaatgaagaa gagtctggag aacctgaaca ggctgcaggt 120gatgctcctc caccttacag
cagcatttct gcagagagcg cagcatattt tgactacaag 180gatgagtctg ggtttccaaa
gcccccatct tacaatgtag ctacaacact gcccagttat 240gatgaagcgg agaggaccaa
ggctgaagct actatccctt tggttcctgg gagagatgag 300gattttgtgg gtcgggatga
ttttgatgat gctgaccagc tgaggatagg aaatgatggg 360attttcatgt taactttttt
catggcattc ctctttaact ggattgggtt tttcctgtct 420ttttgcctga ccacttcagc
tgcaggaagg tatggggcca tttcaggatt tggtctctct 480ctaattaaat ggatcctgat
tgtcaggttt tccacctatt tccctggata ttttgatggt 540cagtactggc tctggtgggt
gttccttgtt ttaggctttc tcctgtttct cagaggattt 600atcaattatg caaaagttcg
gaagatgcca gaaactttct caaatctccc caggaccaga 660gttctcttta tttattaaag
atgttttctg gcaaaggcct tcctgcattt atgaattctc 720tctcaagaag caagagaaca
cctgcaggaa gtgaatcaag atgcagaaca cagaggaata 780atcacctgct ttaaaaaaat
aaagtactgt tgaaaagatc atttctctct atttgttcct 840aggtgtaaaa ttttaatagt
taatgcagaa ttctgtaatc attgaatcat tagtggttaa 900tgtttgaaaa agctcttgca
atcaagtctg tgatgtatta ataatgcctt atatattgtt 960tgtagtcatt ttaagtagca
tgagccatgt ccctgtagtc ggtagggggc agtcttgctt 1020tattcatcct ccatctcaaa
atgaacttgg aattaaatat tgtaagatat gtataatgct 1080ggccatttta aaggggtttt
ctcaaaagtt aaacttttgt tatgactgtg tttttgcaca 1140taatccatat ttgctgttca
agttaatcta gaaatttatt caattctgta tgaacacctg 1200gaagcaaaat catagtgcaa
aaatacattt aaggtgtggt caaaaataag tctttaattg 1260gtaaataata agcattaatt
ttttatagcc tgtattcaca attctgcggt accttattgt 1320acctaaggga ttctaaaggt
gttgtcactg tataaaacag aaagcactag gatacaaatg 1380aagcttaatt actaaaatgt
aattcttgac actctttcta taattagcgt tcttcacccc 1440cacccccacc cccacccccc
ttattttcct tttgtctcct ggtgattagg ccaaagtctg 1500ggagtaagga gaggattagg
tacttaggag caaagaaaga agtagcttgg aacttttgag 1560atgatcccta acatactgta
ctacttgctt ttacaatgtg ttagcagaaa ccagtgggtt 1620ataatgtaga atgatgtgct
ttctgcccaa gtggtaattc atcttggttt gctatgttaa 1680aactgtaaat acaacagaac
attaataaat atctcttgtg tagcaaaaaa aaaaa 17351012329DNAHomo
sapiensmisc_featureIncyte ID No 2096687 101gcagggatca ctagcatgtc
tgcggagagc ggccctggga cgagattgag aaatctgcca 60gtaatggggg atggactaga
aacttcccaa atgtctacaa cacaggccca ggcccaaccc 120cagccagcca acgcagccag
caccaacccc ccgcccccag agacctccaa ccctaacaag 180cccaagaggc agaccaacca
actgcaatac ctgctcagag tggtgctcaa gacactatgg 240aaacaccagt ttgcatggcc
tttccagcag cctgtggatg ccgtcaagct gaacctccct 300gattactata agatcattaa
aacgcctatg gatatgggaa caataaagaa gcgcttggaa 360aacaactatt actggaatgc
tcaggaatgt atccaggact tcaacactat gtttacaaat 420tgttacatct acaacaagcc
tggagatgac atagtcttaa tggcagaagc tctggaaaag 480ctcttcttgc aaaaaataaa
tgagctaccc acagaagaaa ccgagatcat gatagtccag 540gcaaaaggaa gaggacgtgg
gaggaaagaa acagggacag caaaacctgg cgtttccacg 600gtaccaaaca caactcaagc
atcgactcct ccgcagaccc agacccctca gccgaatcct 660cctcctgtgc aggccacgcc
tcaccccttc cctgccgtca ccccggacct catcgtccag 720acccctgtca tgacagtggt
gcctccccag ccactgcaga cgcccccgcc agtgcccccc 780cagccacaac ccccacccgc
tccagctccc cagcccgtac agagccaccc acccatcatc 840gcggccaccc cacagcctgt
gaagacaaag aagggagtga agaggaaagc agacaccacc 900acccccacca ccattgaccc
cattcacgag ccaccctcgc tgcccccgga gcccaagacc 960accaagctgg gccagcggcg
ggagagcagc cggcctgtga aacctccaaa gaaggacgtg 1020cccgactctc agcagcaccc
agcaccagag aagagcagca aggtctcgga gcagctcaag 1080tgctgcagcg gcatcctcaa
ggagatgttt gccaagaagc acgccgccta cgcctggccc 1140ttctacaagc ctgtggacgt
ggaggcactg ggcctacacg actactgtga catcatcaag 1200caccccatgg acatgagcac
aatcaagtct aaactggagg cccgtgagta ccgtgatgct 1260caggagtttg gtgctgacgt
ccgattgatg ttctccaact gctataagta caaccctcct 1320gaccatgagg tggtggccat
ggcccgcaag ctccaggatg tgttcgaaat gcgctttgcc 1380aagatgccgg acgagcctga
ggagccagtg gtggccgtgt cctccccggc agtgccccct 1440cccaccaagg ttgtggcccc
gccctcatcc agcgacagca gcagcgatag ctcctcggac 1500agtgacagtt cgactgatga
ctctgaggag gagcgagccc agcggctggc tgagctccag 1560gagcagctca aagccgtgca
cgagcagctt gcagccctct ctcagcccca gcagaacaaa 1620ccaaagaaaa aggagaaaga
caagaaggaa aagaaaaaag aaaagcacaa aaggaaagag 1680gaagtggaag agaataaaaa
aagcaaagcc aaggaacctc ctcctaaaaa gacgaagaaa 1740aataatagca gcaacagcaa
tgtgagcaag aaggagccag cgcccatgaa gagcaagccc 1800cctcccacgt atgagtcgga
ggaagaggac aagtgcaagc ctatgtccta tgaggagaag 1860cggcagctca gcttggacat
caacaagctc cccggcgaga agctgggccg cgtggtgcac 1920atcatccagt cacgggagcc
ctccctgaag aattccaacc ccgacgagat tgaaatcgac 1980tttgagaccc tgaagccgtc
cacactgcgt gagcttggag cgctatgtca cctcctgttt 2040gcggaagaaa aggaaacctt
caagctgaga aagttgatgt gatntgccgg gttcctccaa 2100natgaaaggn ttctcggtct
tcaagagncg ggagagnctc ccagttgaat tccaanttct 2160tttgacaagc ggaaganttc
cggaaaacaa agggtccttg gccttaaatt caatttggga 2220aaaccnggga cttccttaaa
tttaaaaaaa gggggctttt caagntttcc caaggaattt 2280ccttttcccc caaggnaaag
gcntaattan gcctttaaaa ggttnccca 23291021451DNAHomo
sapiensmisc_featureIncyte ID No 2100530 102ctcgagcggc ggcatttcct
ggtgtctgag cctggcgcgg aggctatggg cagccaggag 60gtgctgggcc acgcggcccg
gctggcctcc tccggtctcc tcctgcaggt gttgtttcgg 120ttgatcacct ttgtcttgaa
tgcatttatt cttcgcttcc tgtcaaagga aatcgttggc 180gtagtaaatg taagactaac
gctgctttac tcaaccaccc tcttcctggc cagagaggcc 240ttccgcagag catgtctcag
tgggggcacc cagcgagact ggagccagac cctcaacctg 300ctgtggctaa cagtccccct
gggtgtgttt tggtccttat tcctgggctg gatctggttg 360cagctgcttg aagtgcctga
tcctaatgtt gtccctcact atgcaactgg agtggtgctg 420tttggtctct cggcagtggt
ggagcttcta ggagagccct tttgggtctt ggcacaagca 480catatgtttg tgaagctcaa
ggtgattgca gagagcctgt cggtaattct taagagcgtt 540ctgacagctt ttctcgtgct
gtggttgcct cactggggat tgtacatttt ctctttggcc 600cagcttttct ataccacagt
tctggtgctc tgctatgtta tttatttcac aaagttactg 660ggttccccag aatcaaccaa
gcttcaaact cttcctgtct ccagaataac agatctgtta 720cccaatatta caagaaatgg
agcgtttata aactggaaag aggctaaact gacttggagt 780tttttcaaac agtctttctt
gaaacagatt ttgacagaag gcgagcgata tgtgatgaca 840tttttgaatg tattgaactt
tggtgatcag ggtgtgtatg atatagtgaa taatcttggc 900tcccttgtgg ccagattaat
tttccagcca atagaggaaa gtttttatat attttttgct 960aaggtgctgg agaggggaaa
ggatgccaca cttcagaagc aggaggacgt tgctgtggct 1020gctgcagtct tggagtccct
gctcaagctg gccctgctgg ccggcctgac catcactgtt 1080tttggctttg cctattctca
gctggctctg gatatctacg gagggaccat gcttagctca 1140ggatccggtc ctgttttgct
gcgttcctac tgtctctatg ttctcctgct tgccatcaat 1200ggagtgacag agtgtttcac
atttgctgcc atgagcaaag aggaggtcga caggtattcc 1260tctgctgtga gcagggctgg
ccagccagac tggcacacat tgctgtgggg gccttctgtc 1320tgggagcaac tctcgggaca
gcattnctca cagagaccaa gctgatccat ttnctcagga 1380ctcagttagg tgtgcccaga
cggactgaca aaatgacgtg acttcagggn aggctgggac 1440aaacgaggca a
14511031685DNAHomo
sapiensmisc_featureIncyte ID No 2357636 103gcgatcgagg ctgcagcgcg
gccgccgggc gcacatgact gccgtcggcg tgcaggccca 60gaggcctttg ggccaaaggc
agccccgccg gtccttcttt gaatccttca tccggaccct 120catcatcacg tgtgtggccc
tggctgtggt cctgtcctcg gtctccattt gtgatgggca 180ctggctcctg gctgaggacc
gcctcttcgg gctctggcac ttctgcacca ccaccaacca 240gagtgtgccg atctgcttca
gagacctggg ccaggcccat gtgcccgggc tggccgtggg 300catgggcctg gtacgcagcg
tgggcgcctt ggccgtggtg gccgccattt ttggcctgga 360gttcctcatg gtgtcccagt
tgtgcgagga caaacactca cagtgcaagt gggtcatggg 420ttccatcctc ctcctggtgt
ctttcgtcct ctcctccggc gggctcctgg gttttgtgat 480cctcctcagg aaccaagtca
cactcatcgg cttcacccta atgttttggt gcgaattcac 540tgcctccttc ctcctcttcc
tgaacgccat cagcggcctt cacatcaaca gcatcaccca 600tccctgggaa tgaccgtgga
aattttaggc cccctccagg gacatcagat tccacaagaa 660aatatggtca aaatgggact
tttccagcat gtggcctctg gtggggctgg gttggacaag 720ggccttgaaa cggctgcctg
tttgccgata acttgtgggt ggtcagccag aaatggccgg 780ggggcctctg cacctggtct
gcagggccag aggccaggag ggtgcctcag tgccaccaac 840tgcacaggct tagccagatg
ttgattttag aggaagaaaa aaacatttta aaactccttc 900ttgaattttc ttccctggac
tggaatacag ttggaagcac aggggtaact ggtacctgag 960ctagctgcac agccaaggat
agttcatgcc tgtttcattg acacgtgctg ggataggggc 1020tgcagaatcc ctggggctcc
cagggttgtt aagaatggat cattcttcca gctaagggtc 1080caatcagtgc ctattcttcc
accagctcaa agggccttcg tatgtatgtc cctggcttca 1140gctttggtca tgccaaagag
gcagagttca ggattccctc agaatgccct gcacacagta 1200ggtttccaaa ccatttgact
cggtttgcct ccctgcccgt tgtttaaacc ttacaaaccc 1260tggataaccc catcttctag
cagctggctg tcccctctgg gagctctgcc tatcagaacc 1320ctaccttaag gtgggtttcc
ttccgagaag agttcttgag caagctctcc caggagggcc 1380cacctgactg ctaatacaca
gccctcccca aggcccgtgt gtgcatgtgt ctgtcttttg 1440tgagggttag acagcctcag
ggcaccattt ttaatcccag aacacatttc aaagagcacg 1500tatctagacc tgctggactc
tgcagggggt gagggggaac agcgagagct tgggtaatga 1560ttaacaccca tgctggggat
gcatggaggt gaagggggcc aggaaccagt ggagatttcc 1620atccttgcca gcacgtctgt
acttctgttc attaaagtgc tccctttcta gtcaaaaaaa 1680aaaaa
16851042674DNAHomo
sapiensmisc_featureIncyte ID No 2365230 104ctactcctca ccgcgcgagc
gcggggaacc agtagccgcg gctgcttcgg ttgccgcggt 60cggtggtcgt tatggattct
ccatgggacg agttggctct ggccttctcc cgcacgtcca 120tgtttccctt ttttgacatc
gcgcactatc tagtgtcagt gatggcggtg aaacgtcagc 180cgggagcagc tgcattggca
tggaagaatc ctatttcaag ctggtttact gctatgctcc 240actgttttgg tggaggaatt
ttatcctgtc tactgcttgc agagcctcca ttgaagtttc 300ttgcaaacca cactaacata
ttactggcat cttcaatctg ggtatattac atttttttgc 360ccgcatgacc tagtttccca
gggctattca tatctacctg ttcaactact ggcttcggga 420atgaaggaag tgaccagaac
ttggaaaata gtaggtggag tcacacatgc taatagctat 480tacaaaaatg gctggatagt
catgatagct attggatggg cccgaggtgc aggtggtacc 540attataacga attttgagag
gttggtaaaa ggagattgga aaccagaagg tgatgaatgg 600ctgaagatgt cataccctgc
caaggtaacc ctgctggggt cagttatctt cacattccag 660cacacccagc atctggcaat
atcaaagcat aatcttatgt tcctttatac catctttatt 720gtggccacaa agataaccat
gatgactaca cagacttcta ctatgacatt tgctcctttt 780gaggatacat tgagttggat
gctatttggc tggcagcagc cgttttcatc atgtgagaag 840aaaagtgaag caaagtcacc
ttccaatggc gttgggtcat tggcctcaaa gccggtagat 900gttgcctcag ataatgttaa
aaagaaacat actaagaaga atgaataaat ttacgtgatg 960agctctagca agccaaaaat
tttttttctt atctacctgt tatattgtgc taattttcta 1020tgtatgtgat gtgaaatgaa
gactatatat atggaatgga ggtgacagaa agaaagaaat 1080tctttgtttg agggagactt
cccctttctg gattgtattt gtagagtgtt acgagtgtat 1140catgtgatta tgctttaccg
gtataagaga ttctgttgtg attatttgaa tagttttata 1200ttaataaaag aagacaaaat
tttttaaatg ttagaaaaag cagatctgtc attgcaaagt 1260aacaaaaatt ttaagctttt
aaaaatgtag atttttcata tttttaaaat ttgaatctat 1320ttgagcttta gttcagcaga
attaaatttt tacttgacat tatcattaaa attgctaggt 1380atggagaaca attcctattt
tattttgaac actgagaaga gtaaactttt cctaaaacac 1440tttatattat aaatgaaaat
aaattgctag tttatatttt agatataaac atcatatttt 1500ttattaatac ctacatcaaa
tggaaaatat ctgaaatttt ttttccatag caggtatttt 1560ctactagaag tagttttact
acttttcatt tagaacagag tatgagtctt aatctgaagt 1620ctttttcatg cccttgtttt
aaaaaaacta ctttttttgg cctcaaaaaa atcaagggtg 1680taatttttaa taaattgtta
atcctatgtt ttgtaatttt cattttagga gcttgactta 1740ttttttttct ctctcataaa
aacacatttg ttttaattgt aggagaaatt ttctcagcat 1800tttgcatgtt ctttctaatc
tttgttggtc tgaatatatt ggtagtaatt actgtaatta 1860ttcaacaaaa agcatatccg
ttcaaaaatt tttccactat gtcttttttc tagtggctac 1920tgttttagtt ttctagttga
atatctctga caagctttcg tatggttttg ttatattttc 1980atctacatgt aatgtgttat
taattttatt aaatgaaaac taatcacctt catgtggaaa 2040tgctctgaga attgtcctta
ggcatttggt agtaaccagc taaccaagaa gaaacagaga 2100aaccagaact tcatatggca
gtccatttag atgaagaatg atgatataaa atctggttcc 2160ttcttagcaa aataaaaaac
aaacaagaaa agatactaaa tgatgttaat tttcttactt 2220tatgatttag aagtccagtt
ataatattaa aactctgtga catagtttct tttaccaaaa 2280ccatgaacct actccccgta
tcaggtattt tcgatggttt agaagtactc aagtcacatc 2340acattcaagt tagaagtttt
ttttttgttg ttgttatttt aaatttttaa caaatataaa 2400caccagcaga tactattact
tgcttaaaaa attgggaggg ggcacttttc atagtcttgg 2460aatgctaaga agttttattt
ttaatattgt gacagaaagc tttaagtatt taagagctct 2520gtattatatt tgatactctt
acagttaaaa acttttcaaa attaatacat tgttaattat 2580tgaccagttt tgaagtttgg
gtttaactgt agttgaaatg gaaggactct tgttttacac 2640ttgtattaaa gataaattta
ttaaaataag ttat 2674105488DNAHomo
sapiensmisc_featureIncyte ID No 2455121 105gactacgggg ctgttgacgg
cgctgcgatg gctgcctgcg agggcaggag aagcggactc 60tcggttcctc tcagtcggac
ttcctgacgc cgccagttgg cggggcccct tgggccgtcg 120ccaccactgt agtcatgtac
ccaccgccgc cgccgccgcc tcatcgggac ttcatctcgg 180tgacgctgag ctttggcgag
agctatgaca acagcaagag ttggcggcgg cgctcgtgct 240ggaggaaatg gaagcaactg
tcgagattgc agcggaatat gattctcttc ctccttgcct 300ttctgctttt ctgtggactc
ctcttctaca tcaacttggc tgaccattgg aaagctctgg 360ctttcaggct aggggaagag
cagaagatga ggccagaaat tgctgggtaa aaccagcaaa 420tccacccgtc ttaccagctc
ctcagaaggc ggacaccggc cctgagaact tacctgagat 480ttcgtcac
4881061028DNAHomo
sapiensmisc_featureIncyte ID No 2472514 106ccagcagctc ggtcctaggg
cgatgttgac agacagacag aggggcggat gcagcctacc 60tcctgggcag tgagctgcgg
tctgaggccc ctgcccagct ggaaaccaca gggaggggaa 120gggaggggag gagaggagag
gagaggaacc gtcatggggc cttggagtcg agtcagggtt 180gccaaatgcc agatgctggt
cacctgcttc tttatcttgc tgctgggcct ctctgtggcc 240accatggtga ctcttaccta
cttcggggcc cactttgctg tcatccgccg agcgtccctg 300gagaagaacc cgtaccaggc
tgtgcaccaa tgggccttct ctgcggggtt gagcctggtg 360ggcctcctga ctctgggagc
cgtgctgagc gctgcagcca ccgtgaggga ggcccagggc 420ctcatggcag ggggcttcct
gtgcttctcc ctggcgttct gcgcacaggt gcaggtggtg 480ttctggagac tccacagccc
cacccaggtg gaggacgcca tgctggacac ctacgacctg 540gtatatgagc aggcgatgaa
aggtacgtcc cacgtccggc ggcaggagct ggcggccatc 600caggacgtgg tgagcgtggg
gacggctggg tggcagggcg gtcagcttct gcttggactg 660cagttcagag aacaggcgca
gggtggccag tgagaggtct ggccaggcac cgagggggtt 720ccaggacaca ggccagagtt
gcccctcagg gctgggggca aaaagctccc accctctgtc 780tgcccaggac aaggccgcct
accagattct cgaggcccag tgcaaaacga gagggcaggg 840ccctgtattc agaaacactg
aaggatttca agagcattaa agcaaatacg gggccgaaca 900tagtggctca cacctgtaat
cccagcactt tgggaggagg ttgaggcagg tgaattgctt 960gagcccagga gttcgagacc
agcctgagca acatagggag accttgtctc tactttaaaa 1020aaaaaaaa
10281071551DNAHomo
sapiensmisc_featureIncyte ID No 2543486 107ctgcgcctgg gctgccggtg
acctgggccg agccctcccg gtcggctaag attgctgagg 60aggcggcggg tagctggcag
gcgccgactt ccgaaggccg ccgtccgggc gaggtgtcct 120catgacttct cttgtggacc
atgtccgtga tcttttttgc ctgcgtggta cgggtaaggg 180atggactgcc cctctcagcc
tctactgatt tttaccacac ccaagatttt ttggaatgga 240ggagacggct caagagttta
gccttgcgac tggcccagta tccaggtcga ggttctgcag 300aaggttgtga ctttagtata
catttttctt ctttcgggga cgtggcctgc atggctatct 360gctcctgcca gtgtccagca
gccatggcct tctgcttcct ggagaccctg tggtgggaat 420tcacagcttc ctatgacact
acctgcattg gcctagcctc caggccatac gcttttcttg 480agtttgacag catcattcag
aaagtgaagt ggcattttaa ctatgtaagt tcctctcaga 540tggagtgcag cttggaaaaa
attcaggagg agctcaagtt gcagcctcca gcggttctca 600ctctggagga cacagatgtg
gcaaatgggg tgatgaatgg tcacacaccg atgcacttgg 660agcctgctcc taatttccga
atggaaccag tgacagccct gggtatcctc tccctcattc 720tcaacatcat gtgtgctgcc
ctgaatctca ttcgaggagt tcaccttgca gaacattctt 780tacaggttgc ccatgaggaa
attggaaaca ttctggcttt tcttgttcct ttcgtagcct 840gcattttcca ggatccaagg
agctggttct gctggttgga ccaaacctcg tgagccagcc 900acccctgacc caaatgagga
gagctctgat tctcccatcc gggagcagtg atgtcaaact 960tctgctgctg gggaaatctc
atcagcaggg agcctgtgga aaagggcatg tcagtgaaat 1020ctgggaatgg ctggattcgg
aaacatctgc ccatgtgtat tgatggcaga gctgttgccc 1080acaagcgcct tttatttagg
gtaaaattaa caaatccatt ctattcctct gacccatgct 1140tagtacatat gacctttaac
ccttacattt atatgattct ggggttgctt cagaagtgtt 1200atttcatgaa tcattcatat
gatttgatcc cccaggattc tattttgttt aatgggcttt 1260tctactaaaa gcataaaata
ctgaggctga tttagtcagg gcaaaaccat ttactttaca 1320tattcgtttt caatacttgc
tgttcatgtt acacaagctt cttacggttt tcttgtaaca 1380ataaatattt tgagtaaata
atgggtacat tttaacaaac tcagtagtac aacctaaact 1440tgtataaaag tgtgtaaaaa
tgtatagcca tttatatcct atgtataaat taaatgaggt 1500ggcttcagaa atggcagaat
aaatctaaag tgtttattaa caaaaaaaaa a 1551108922DNAHomo
sapiensmisc_featureIncyte ID No 2778171 108gcttgcggct cgggtggctg
agcgcgcggg gaaatggcca cggggacaga ccaggtggtg 60ggactcggcc tcgtcgccgt
tagcctgatc atcttcacct actacaccgc ctgggtgatt 120ctcttgccat tcatcgacag
tcagcatgtc atccacaagt atttcctgcc ccgagcctat 180gctgtcgcca tcccactggc
tgcaggcctc ctgctgctcc tgtttgtggg actgttcatc 240tcctacgtga tgctgaagag
caagagagtg accaagaagg ctcagtgaag gtcccgcagg 300atgaggctgc cagccccttc
tctgcttccc ctccagcaca gggaccaagt gggggagcct 360gcagaacctg tccaggcaca
gtggctcctc aagcctgcct gtcctgcaga gtccccatgg 420catggagctt acacctgact
gactggagcc ccctccccga ctcccacttc cagaagctag 480gagggaggga tacctggaag
actccggtca cctccttctt gctcagggcc taaaagatgc 540tggtcctccc aacctcactc
tcagactccc tgccaccttt tcccctgggt tctgccgtct 600tgcctcactt cccctcctgt
cacatgctga cgttggactt agcaggttct aaggccacat 660gtgtgacctc tctgacttct
cttcctccac caaggcagct ttccttaccc tgacacagcc 720ccagacccca caaagccttc
tggacctgga aagcctgggg aaggactgac agaccccagg 780accagccctg gggctcaggg
cagccacccc gggccgctga ccgactgacc tctcctcacg 840gaggcccagc cccaaagccc
cagggctggc ccgtttggga cagctgacca ataaacactg 900atggtgtgtt aaaaaaaaaa
aa 922109985DNAHomo
sapiensmisc_featureIncyte ID No 2799575 109gcccaggagg cgcccgggtg
aggcacgggt gcgcaagcga ggagttccgg ctggagaccc 60gtgctctggg ccggcgcctt
caccatggcc tcggcagagc tggactacac catcgagatc 120ccggatcagc cctgctggag
ccagaagaac agccccagcc caggtgggaa ggaggcagaa 180actcggcagc ctgtggtgat
tctcttgggc tggggtggct gcaaggacaa gaaccttgcc 240aagtacagtg ccatctacca
caaaaggggc tgcatcgtaa tccgatacac agccccgtgg 300cacatggtct tcttctccga
gtcactgggt atcccttcac ttcgtgtttt ggcccagaag 360ctgctcgagc tgctctttga
ttatgagatt gagaaggagc ccctgctctt ccatgtcttc 420agcaacggtg gcgtcatgct
gtaccgctac gtgctggagc tcctgcagac ccgtcgcttc 480tgccgcctgc gtgtggtggg
caccatcttt gacagcgctc ctggtgacag caacctggta 540ggggctctgc gggccctggc
agccatcctg gagcgccggg ccgccatgct gcgcctgttg 600ctgctggtgg cctttgccct
ggtggtcgtc ctgttccacg tcctgcttgc tcccatcaca 660gccctcttcc acacccactt
ctatgacagg ctacaggacg cgggctctcg ctggcccgag 720ctctacctct actcgagggc
tgacgaagta gtcctggcca gagacataga acgcatggtg 780gaggcacgcc tggcacgccg
ggtcctggcg cgttctgtgg atttcgtgtc atctgcacac 840gtcagccacc tccgtgacta
ccctacttac tacacaagcc tctgtgtcga cttcatgcgc 900aactgcgtcc gctgctgagg
ccattgctcc atctcacctc tgctccagaa ataaatgcct 960gacacctccc cacaaaaaaa
aaaaa 9851101562DNAHomo
sapiensmisc_featureIncyte ID No 2804955 110tgcgtccaga ggctggcatg
gcgcgggccg agtactgagc gcacggtcgg ggcacagcag 60ggccggtggg tgcagctggc
tcgcgcctcc tctccggccg ccgtctcctc cggtccccgg 120cgaaagcatt gagacaccag
ctggacgtca cgcgccggag catgtctggg agtcagagcg 180aggtggctcc atccccgcag
agtccgcgga gccccgagat gggacgggac ttgcggcccg 240ggtcccgcgt gctcctgctc
ctgcttctgc tcctgctggt gtacctgact cagccaggca 300atggcaacga gggcagcgtc
actggaagtt gttattgtgg taaaagaatt tcttccgact 360ccccgccatc ggttcagttc
atgaatcgtc tccggaaaca cctgagagct taccatcggt 420gtctatacta cacgaggttc
cagctccttt cctggagcgt gtgtggaggc aacaaggacc 480catgggttca ggaattgatg
agctgtcttg atctcaaaga atgtggacat gcttactcgg 540ggattgtggc ccaccagaag
catttacttc ctaccagccc cccaatttct caggcctcag 600agggggcatc ttcagatatc
cacacccctg cccagatgct cctgtccacc ttgcagtcca 660ctcagcgccc caccctccca
gtaggatcac tgtcctcgga caaagagctc actcgtccca 720atgaaaccac cattcacact
gcgggccaca gtctggcagc tgggcctgag gctggggaga 780accagaagca gccggaaaaa
aatgctggtc ccacagccag gacatcagcc acagtgccag 840tcctgtgcct cctggccatc
atcttcatcc tcaccgcagc cctttcctat gtgctgtgca 900agaggaggag ggggcagtca
ccgcagtcct ctccagatct gccggttcat tatatacctg 960tggcacctga ctctaatacc
tgagccaaga atggaagttt gtgaggagac ggactctatg 1020ttgcccaggc tgttatggaa
ctcctgagtc aagtgatcct cccaccttgg cctctgaagg 1080tgcgaggatt ataggcgtca
cctaccacat ccagcctaca cgtatttgtt aatatctaac 1140ataggactaa ccagccactg
ccctctctta ggcccctcat ttaaaaacgg ttatactata 1200aaatctgctt ttcacactgg
gtgataataa cttggacaaa ttctatgtgt attttgtttt 1260gttttgcttt gctttgtttt
gagacggagt ctcgctctgt catccaggct ggagtgcagt 1320ggcatgatct cggctcactg
caacccccat ctcccaggtt caagcgattc tcctgcctcc 1380tcctaagtag ctgggactac
aggtgctcac caccacaccc ggctaatttt ttgtattttt 1440agtagagacg gggtttcacc
atgttgacca ggctggtctc gaactcctga cctggtgatc 1500tgcccaccag gcctcccaaa
gtgctgggat taaaggtgtg agccacatgg ctggcctatg 1560tt
15621111851DNAHomo
sapiensmisc_featureIncyte ID No 2806395 111gctctgcaga gtggtggccg
gggccagggc cggggtgccc tccctcccac cttctcccgc 60catgagccag ggaagtccgg
gggactgggc ccccctagat cccacccccg gacccccagc 120atcccccaac cccttcgtgc
atgagttaca tctctctcgc ctccagaggg ttaagttctg 180cctcctgggg gcattgctgg
cccccatccg agtgcttctg gcctttatcg tcctctttct 240cctctggccc tttgcctggc
ttcaagtggc cggtcttagt gaggagcagc ttcaggagcc 300aattacagga tggaggaaga
ctgtgtgcca caacggggtg ctaggcctga gccgcctgct 360gtttttcctg ctgggcttcc
tccggattcg cgttcgtggc cagcgagcct ctcgccttca 420agcccctgtc cttgttgctg
ccccacactc cactttcttt gaccccattg ttctgctgcc 480ctgtgacctg cccaaagttg
tgtcccgagc tgagaacctt tccgttcctg tcattggagc 540ccttcttcga ttcaaccaag
ccatcctggt atcccggcat gacccggctt ctcgacgcag 600agtggtggag gaggtccgaa
ggcgggccac ctcaggaggc aagtggccgc aggtgctatt 660ctttcctgag ggcacctgtt
ccaacaagaa ggctttgctt aagttcaaac caggagcctt 720catcgcaggg gtgcctgtgc
agcctgtcct catccgctac cccaacagtc tggacaccac 780cagctgggca tggaggggtc
ctggagtact caaagtcctc tggctcacag cctctcagcc 840ctgcagcatt gtggatgtgg
agttccttcc tgtgtatcac cccagccctg aggagagcag 900ggaccccacc ctctatgcca
acaatgttca gagggtcatg gcacaggctc tgggcattcc 960agccaccgaa tgtgagtttg
tagggagctt acctgtgatt gtggtgggcc ggctgaaggt 1020ggcgttggaa ccacagctct
gggaactggg aaaagtgctt cggaaggctg ggctgtccgc 1080tggctatgtg gacgctgggg
cagagccagg ccggagtcga atgatcagcc aggaagagtt 1140tgccaggcag ctacagctct
ctgatcctca gacggtggct ggtgcctttg gctacttcca 1200gcaggatacc aagggtttgg
tggacttccg agatgtggcc cttgcactag cagctctgga 1260tgggggcagg agcctggaag
agctaactcg tctggccttt gagctctttg ctgaagagca 1320agcagagggt cccaaccgcc
tgctgtacaa agacggcttc agcaccatcc tgcacctgct 1380gctgggttca ccccaccctg
ctgccacagc tttgcatgct gagctgtgcc aggcaggatc 1440cagccaaggc ctctccctct
gtcagttcca gaacttctcc ctccatgacc cactctatgg 1500gaaactcttc agcacctacc
tgcgcccccc acacacctct cgaggcacct cccagacacc 1560aaatgcctca tccccaggca
accccactgc tctggccaat gggactgtgc aagcacccaa 1620gcagaaggga gactgagtgc
ctcagcctct caccccctcc tcctcagggc agcgctaggg 1680gcctccccta tgcctcagcc
ccatctctgc tcctgtttga attttgttat tgttgtttgg 1740ttgttgtttt tttaagttga
ttttaatttt ttgtttggtt gatttttttg taaaaaacta 1800ttttatatat aaatataaat
ctatatctat atctattaaa aaaaatgaat t 1851112992DNAHomo
sapiensmisc_featureIncyte ID No 2836858 112ggcgcgaggc agtatggttt
gaagtggtga acatggattt ttctcggctt cacatgtaca 60gtcctcccca gtgtgtgccg
gagaacacgg gctacacgta tgcgctcagt tccagctatt 120cttcagatgc tctggatttt
gagacggagc acaaattgga ccctgtattt gattctccac 180ggatgtcccg ccgtagtttg
cgcctggcca cgacagcatg caccctgggg gatggtgagg 240ctgtgggtgc cgacagcggc
accagcagcg ctgtctccct gaagaaccga gcggccagaa 300caacaaaaca gcgcagaagc
acaaacaaat cagcttttag tatcaaccac gtgtcaaggc 360aggtcacgtc ctctggcgtc
agccacggcg gcactgtcag cctgcaggat gctgtgactc 420gacggcctcc tgtattggac
gagtcttgga ttcgtgaaca gaccacagtg gaccacttct 480ggggtcttga tgatgatggt
gatcttaaag gtggaaataa agctgccatt cagggaaacg 540gggatgtggg agccgccgcc
gccaccgcgc acaacggctt ctcctgcagc aactgcagca 600tgctgtccga gcgcaaggac
gtgctcacgg cgcaccccgc ggcccccggg cccgtgtcga 660gagtttattc tagggacagg
aatcaaaaat gtaagtctca gtcctttaaa actcagaaaa 720aggtgtgttt tccaaattta
atatttcctt tctgtaagtc tcagtgtctg cactatttgt 780cttggagact taaaattatc
ccttgaaagc ataagaagta caccccaaac cagctttgtc 840cttcctgtcc tcttctagtt
tacattttat gtggttagta attttgtacc taaaagtatt 900tgaaattcta taaatttgga
cttgacgtga gcaaaagaaa atttctacgt aagcgaaact 960aataaaacta cagtcacttt
caaaaaaaaa aa 9921131251DNAHomo
sapiensmisc_featureIncyte ID No 2844513 113ctctgctggc cggtctaaag
cggcagccgc cggggcgcaa tgcgagcggc tggcgtaggc 60ttggtggact gtcactgcca
cctctccgcc ccggactttg accgcgattt ggatgatgtg 120ttggagaaag ccaagaaggc
caatgttgtg gcccttgtgg cagttgccga acattcagga 180gaatttgaaa agattatgca
actttcagaa aggtataatg ggtttgtcct gccatgcttg 240ggtgttcatc cagttcaagg
acttccacca gaagaccaaa gaagtgtcac actaaaggat 300ttggatgtag ctttgcccat
tattgagaat tataaggatc ggttgttggc aattggagag 360gttggactag atttctcccc
cagatttgct ggcactggtg aacagaagga agagcaaaga 420caagtcctaa tcagacagat
ccagttagcc aaaagactaa atttgcctgt aaatgtgcac 480tcacgctctg ctggaagacc
taccatcaac cttttacaag agcaaggtgc tgagaaggta 540ctgctgcatg catttgatgg
tcggccatct gtagccatgg aaggagtaag agctgggtac 600ttcttctcaa ttcccccttc
tatcataaga agtggacaga agcagaaact tgtgaaacaa 660ttgcctttaa cttctatatg
cttagaaaca gattcacctg cactaggacc agaaaaacag 720gtacggaatg agccctggaa
catttctatt tcagcagaat atattgccca ggtgaaaggg 780atctcagtgg aagaagttat
agaagtgacg acacagaatg cattaaaact gtttcctaag 840ctccgacact tgctccagaa
atagcttcaa aaccatccat tacaaaatcg aatcaactgc 900agggggcagc atttgaaaaa
tagaaatgtt ctgatgaaga atctgaactg aagaagctgt 960tttatagggt tatagaagat
tgtaattgta gagaaatatt tctcttagaa ataaaactgg 1020gcttggatcc tgaaaccctg
ggttctgatt ctagccttgt gctgcttttc aattagccga 1080gttctggcag gatattggga
aaatactgct acttcttaca ttgccctttt atatagaacc 1140accacctgaa ctgaaaccat
tgctactggg aagggtggct cccacaggaa gagtataagc 1200actactgtga tgaggatgga
gtaagctaaa gtatactttt tttttttttt g 12511141397DNAHomo
sapiensmisc_featureIncyte ID No 3000380 114ctaggacgcc cctggagccg
gaaccccagc agaagccgga accagaacca aatcaccggt 60accggctgca gccccctaaa
cccaggaggc gccctggccc gcgctcgccc cccagggcct 120catgtcggaa ccacagcctg
acctggaacc gccccaacat gggctatata tgctcttcct 180gcttgtgctg gtcttcttcc
tcatgggcct ggtaggcttc atgatctgcc acgtgctcaa 240gaagaagggc taccgctgcc
gcacgtcgag gggctctgag cctgacgatg cccagcttca 300gccccctgag gacgatgaca
tgaatgagga cacagtagag aggattgttc gctgcatcat 360ccagaatgaa gtgtggatgc
cacctccagc ctgcaggacg gagccccctc ccatcatcac 420acagtgcacc tgggctctgc
agccccttgc cgtccattgc agccgcagca agaggcctcc 480acttgtccgt cagggacgct
ccaaggaagg aaaaagccgc ccccggacag gggagaccac 540tgtgttctct gtgggcaggt
tccgggtgac acacattgag aagcgctatg gactgcacga 600acaccgtgat ggctccccca
cagacaggag ctggggctct cgtgggggac aggacccagg 660gggtggtcag gggtctgggg
gagggcaccc caaggcaggg atgctgccat ggagaggctg 720cccccctgag aggccacagc
cccaggtcct agccagcccc ccagtacaga atggaggact 780cagggacagc agcctaaccc
ctcgtgcact tgaagggaac cccagagctt ctgcagagcc 840aacactgagg gccggaggga
ggggcccaag cccagggctg cccactcaag aggcaaatgg 900gcagccaagc aaaccagaca
cttctgatca ccaggtgtct ctaccacagg gagcagggag 960tatgtgagtc tccttcattg
tgctgatgga ctaccagctg gcagggccag ggggtgggtg 1020ggcgtgaaag ccctcccctc
cactggacag cactgccccc cagctgaggg accagctcta 1080cttccacctg gagttgcaca
gtctcaggct gggggcctca ggagaggtca cagcccctca 1140gtctcttctc cttcccctgc
ctgcaacagg ctgcctgccc cgccttcccc aacacctcgc 1200tccatatgat agagcgtggc
agctgggagc aggcccctgc ccgtggtggg cccctaaagc 1260aatagcaccg taggccccct
gccctcttag cacaagaggc ccaggccctg gcctggcctt 1320cgtgcccttt attcattgtc
aataaatccg ctcagaccat taaaaaatac aactcaaggg 1380gtagccaaaa aaaaaaa
13971151581DNAHomo
sapiensmisc_featureIncyte ID No 182532 115acagcacagc tgacagccgt
actcaggaag cttctggtat cctaggctta tctccacaga 60ggagaacaca caagcagcag
agaccatggg gcccctctca gcccctccct gcacacacct 120catcacttgg aagggggtcc
tgctcacagc atcactttta aacttctgga atccgcccac 180aactgcccaa gtcacgattg
aagcccagcc acccaaagtt tctgagggga aggatgttct 240tctacttgtc cacaatttgc
cccagaatct tgctggctac atttggtaca aagggcaaat 300gacatacgtc taccattaca
ttatatcgta tatagttgat ggtaaaataa ttatatatgg 360gcctgcatac agtggaagag
aaagagtata ttccaatgca tccctgctga tccagaatgt 420cacgcaggag gatgcaggat
cctacacctt acacatcata aagcgaggtg atgggactag 480aggagaaact ggacatttca
ccttcacctt atacctggag actcccaagc cctccatctc 540cagcagcaac ttatacccca
gggaggacat ggaggctgtg agcttaacct gtgatcctga 600gactccggac gcaagctacc
tgtggtggat gaatggtcag agcctcccta tgactcacag 660cttgcagttg tccaaaaaca
aaaggaccct ctttctattt ggtgtcacaa agtacactgc 720aggaccctat gaatgtgaaa
tacggaaccc agtgagtggc atccgcagtg acccagtcac 780cctgaatgtc ctctatggtc
cagacctccc cagcatttac ccttcattca cctattaccg 840ttcaggagaa aacctctact
tgtcctgctt cgccgagtct aacccacggg cacaatattc 900ttggacaatt aatgggaagt
ttcagctatc aggacaaaag ctctttatcc cccaaattac 960tacaaagcat agtgggctct
atgcttgctc tgttcgtaac tcagccactg gcatggaaag 1020ctccaaatcc atgacagtca
aagtctctgc tccttcagga acaggacatc ttcctggcct 1080taatccatta tagcagccgt
gatgtcattt ctgtatttca ggaagactgg cagacagttg 1140ctttcattct tcctcaaagt
atttaccatc agctacagtc caaaattgct ttttgttcaa 1200ggagatttat gaaaagactc
tgacaaggac tcttgaatac aagttcctga taacttcaag 1260atcataccac tggactaaga
actttcaaaa ttttaatgaa caggctgata cttcatgaaa 1320ttcaagacaa agaaaaaaac
ccaattttat tggactaaat agtcaaaaca atgttttcat 1380aattttctat ttgaaaatgt
gctgattctt tgaatgtttt attctccaga tttatgcact 1440ttttttcttc agcaattggt
aaagtatact tttgtaaaca aaaattgaaa catttgcttt 1500tgctccctaa gtgccccaga
attgggaaac tattcatgag tattcatatg tttatggtaa 1560taaagttatc tgcacaagtt c
15811161566DNAHomo
sapiensmisc_featureIncyte ID No 239589 116cggctcgagt atggatctcc
aaggaagagg ggtccccagc atcgacagac ttcgagttct 60cctgatgttg ttccatacaa
tggctcaaat catggcagaa caagaagtgg aaaatctctc 120aggcctttcc actaaccctg
aaaaagatat atttgtggtg cgggaaaatg ggacgacgtg 180tctcatggca gagtttgcag
ccaaatttat tgtaccttat gatgtgtggg ccagcaacta 240cgtagatctg atcacagaac
aggccgatat cgcattgacc cggggagctg aggtgaaggg 300ccgctgtggc cacagccagt
cggagctgca agtgttctgg gtggatcgcg catatgcact 360caaaatgctc tttgtaaagg
aaagccacaa catgtccaag ggacctgagg cgacttggag 420gctgagcaaa gtgcagtttg
tctacgactc ctcggagaaa acccacttca aagacgcagt 480cagtgctggg aagcacacag
ccaactcgca ccacctctct gccttggtca cccccgctgg 540gaagtcctat gagtgtcaag
ctcaacaaac catttcactg gcctctagtg atccgcagaa 600gacggtcacc atgatcctgt
ctgcggtcca catccaacct tttgacatta tctcagattt 660tgtcttcagt gaagagcata
aatgcccagt ggatgagcgg gagcaactgg aagaaacctt 720gcccctgatt ttggggctca
tcttgggcct cgtcatcatg gtaacactcg cgatttacca 780cgtccaccac aaaatgactg
ccaaccaggt gcagatccct cgggacagat cccagtataa 840gcacatgggc tagaggccgt
taggcaggca ccccctattc ctgctccccc aactggatca 900ggtagaacaa caaaagcact
tttccatctt gtacacgaga tacaccaaca tagctacaat 960caaacaggcc tgggtatctg
aggcttgctt ggcttgtgtc catgcttaaa cccacggaag 1020ggggagactc tttcggattt
gtagggtgaa atggcaatta ttctctccat gctggggagg 1080aggggaggag ggtctcagac
agctttcgtg ctcatggtgg cttggctttg actctccaaa 1140gagcaataaa tgccacttgg
agctgtatct ggccccaaag tttagggatt gaaaacatgc 1200ttctttgagg aggaaacccc
tttaggttca gaagaatatg gggtgctttg ctcccttgga 1260cacagctggc ttatcctata
cagttgtcaa tgcacacaga atacaacctc atgctccctg 1320cagcaagacc cctgaaagtg
attcatgctt ctggctggca ttctgcatgt ttagtgattg 1380tcttgggaat gtttcactgc
tacccgcatc cagcgactgc agcaccagaa aacgactaat 1440gtaactatgc agagttgttt
ggacttcttc ctgtgccagg tccaagtcgg gggacctgaa 1500gaatcaatct gtgtgagtct
gtttttcaaa atgaaataaa acacactatt ctctggcaaa 1560aaaaaa
15661171815DNAHomo
sapiensmisc_featureIncyte ID No 1671302 117tttgtttctc ttattcccag
gacatcaagg agactttcaa taggtgtgaa gaggtacagc 60tgcagccccc agaggtctgg
tcccctgacc cgtgccaacc ccatagccat gacttcctga 120cagatgccat cgtgaggaaa
atgagccgga tgttctgtca ggctgcgaga gtggacctga 180cgctggaccc tgacacggct
cacccggccc tgatgctgtc ccctgaccgc cggggggtcc 240gcctggcaga gcggcggcag
gaggttgctg accatcccaa gcgcttctcg gccgactgct 300gcgtactggg ggcccagggc
ttccgctccg gccggcacta ctgggaggta gaggtgggcg 360ggcggcgggg ctgggcggtg
ggtgctgccc gtgaatcaac ccatcataag gaaaaggtgg 420gccctggggg ttcctccgtg
ggcagcgggg atgccagctc ctcgcgccat caccatcgcc 480gccgccggct ccacctgccc
cagcagcccc tgctccagcg ggaagtgtgg tgcgtgggca 540ccaacggcaa acgctatcag
gcccagagct ccacagaaca gacgctgctg agccccagtg 600agaaaccaag gcgctttggt
gtgtacctgg actatgaagc tgggcgcctg ggcttctaca 660acgcagagac tctagcccac
gtgcacacct tctcggctgc cttcctgggc gagcgtgtct 720ttcctttctt ccgggtgctc
tccaagggca cccgcatcaa gctctgccct tgattatcct 780gccacccgca gggcccctct
gtcagcactt ggggggtggg tggtggaggg tggcccgtaa 840gtttgagggc tcaaaggctc
ttcccactgc ttgttactgt gttgcttccc actccccctt 900gaccccaggc ccctgcttct
ccctctagga gcctaaagaa ccctcctggc ctccagctca 960gccttctctc acctactatg
tctgtccaac aggtctgcat gggtccctga taatgagaac 1020agctgcctgg tcttctctcc
cagtctgcct agcccagccc tgggactgga atttgagtag 1080gggatgaggg gaaattgtaa
tttcattcct taacttcctt ttccccaccc ctgctcttca 1140acctctttat cagttctgag
gctggagggt ttgggcaagg caacatcccc attccaattc 1200cattttctga tgcagatttt
agctgaggga tttggaagcc atttggggag gcaggctggg 1260ccaaagggta gagctgggta
ataaatgtct attctcctgg ggaggaggga ttctaaactt 1320tccttccgtc ctcaatttct
acctccatag accggccaga atttagcttc acttgagaga 1380gatctggaat ggtcgccatg
attgaaacca cgcaccatta catcatcatt acattaatta 1440catcaacata aattatttct
tcccccttcc cttttccagc actcaaccaa ggagcaaagc 1500tcatcccacc ccacacccct
cccaggtctg ctcactgcca ggctcctctc ccctttgttc 1560agtggagctg gcttttctcc
cagccccttt ccatgccttt cactccattt ggcaagctct 1620gagggggagc ctggggacgg
gtttgggtcc ccaggaggag agccttgggt ataatctatt 1680tttctaggag cctcttgcct
tgtcacttgc agctttcgcc ctctgctttg atggctgagg 1740tgaactcatg ttctttggga
aaagggaagg cgtgctgtgg aaataaaatg tttatttgct 1800tctctaaaaa aaaaa
18151181566DNAHomo
sapiensmisc_featureIncyte ID No 2041858 118caaagagcca ggctccagga
gaggaagggc tctgcgagag gagagaggag agcgctggag 60aggagaggct ggaggtgaga
gtcccaggaa aggcagagga gaatcgtagg gacataagtg 120tcccagcaca ggcaaggagg
aatccgagga taaggttctg gagggacaga agggcccaga 180gagagtcctt agccaggatg
gaggctgttg tgaacttgta ccaagaggtg atgaagcacg 240cagatccccg gatccagggc
taccctctga tggggtcccc cttgctaatg acctccattc 300tcctgaccta cgtgtacttc
gttctctcac ttgggcctcg catcatggct aatcggaagc 360ccttccagct ccgtggcttc
atgattgtct acaacttctc actggtggca ctctccctct 420acattgtcta tgagttcctg
atgtcgggct ggctgagcac ctatacctgg cgctgtgacc 480ctgtggacta ttccaacagc
cctgaggcac ttaggatggt tcgggtggcc tggctcttcc 540tcttctccaa gttcattgag
ctgatggaca cagtgatctt tattctccga aagaaagacg 600ggcaggtgac cttcctacat
gtcttccatc actctgtgct tccctggagc tggtggtggg 660gggtaaagat tgccccggga
ggaatgggct ctttccatgc catgataaac tcttccgtgc 720atgtcataat gtacctgtac
tacggattat ctgcctttgg ccctgtggca caaccctacc 780tttggtggaa aaagcacatg
acagccattc agctgatcca gtttgtcctg gtctcactgc 840acatctccca gtactacttt
atgtccagct gtaactacca gtacccagtc attattcacc 900tcatctggat gtatggcacc
atcttcttca tgctgttctc caacttctgg tatcactctt 960ataccaaggg caagcggctg
ccccgtgcac ttcagcaaaa tggagctcca ggtattgcca 1020aggtcaaggc caactgagaa
gcatggccta gataggcgcc cacctaagtg cctcaggact 1080gcaccttagg gcagtgtccg
tcagtgccct ctccacctac acctgtgacc aaggcttatg 1140tggtcaggac tgagcagggg
actggccctc ccctccccac agctgctcta cagggaccac 1200ggctttggtt cctcacccac
ttcccccggg cagctccagg gatgtggcct cattgctgtc 1260tgccactcca gagctggggg
ctaaaagggc tgtacagtta tttccccctc cctgccttaa 1320aacttgggag aggagcactc
agggctggcc ccacaaaggg tctcgtggcc tttttcctca 1380cacagaagag gtcagcaata
atgtcactgt ggacccagtc tcactcctcc accccacaca 1440ctgaagcagt agcttctggg
ccaaaggtca gggtgggcgg gggcctggga atacagcctg 1500tggaggctgc ttactcaact
tgtgtcttaa ttaaaagtga cagaggaaac cacggaaaaa 1560aaaaaa
15661191055DNAHomo
sapiensmisc_featureIncyte ID No 2198863 119tcagcagcca gcaaggtctt
tgagaaacac atggagctca ctgccctgct ccctttcagt 60ggcttcccat tgccttggat
aaagacccaa atgcctaaca gggcccataa ggccccacat 120gatccacggg ctttagatgt
gcagagatgt ggagcgcgat gccaggtagg gtgagcagtg 180gcgtggagca gggccacttg
gctggggtgc caggtgttgg aggggagcag cagcctgtcc 240acatggccta aggtttgagc
tgggtgttgc tgctgggccg ggcgagcgca gtgcagcgca 300ccgcggggag cgaggagcgc
gcggaccggc catgggcaag tcagcttcca aacagtttca 360taatgaggtc ctgaaggccc
acaatgagta ccggcagaag cacggcgtcc ccccactgaa 420gctctgcaag aacctcaacc
gggaggctca acagtattct gaggccctgg ccagcacgag 480gatcctcaag cacagcccgg
agtccagccg tggccagtgt ggggagaacc ttgcatgggc 540atcctatgat cagacaggaa
aggaggtggc tgatagatgg tacagtgaaa tcaagaacta 600taacttccag cagcctggct
tcacctcggg gactggacac ttcacggcca tggtatggaa 660gaacaccaag aagatgggcg
tggggaaggc gtccgcaagt gacgggtcct cctttgtggt 720ggccagatac ttcccagcgg
ggaatgttgt caatgagggc ttcttcgaag aaaacgtcct 780gccgccgaag aagtaacttg
ttaaatgtaa tgggaaggtg gcagacttaa gaacgtggat 840atgaagtgcc tagaaccacc
acaacctggc tgtgcgtctg tccctgtggg tgaatgtgct 900tgtgtgtgtg atgcatgtga
gcgtctctgg cacacacatt ggcatacagt tccgtgttcg 960cccatcttat tacaggagtg
agcaaaggaa gcatttaccc cgatggttac ctagaccacg 1020attaattgga tnccccngaa
anggggatcg gtttt 10551201956DNAHomo
sapiensmisc_featureIncyte ID No 3250703 120cactcaagga agatataaat
gacaaggtcg gctcagctct cagacaaggt tttccaagca 60agatgaagcc caacatcatc
tttgtacttt ccctgctcct catcttggag aagcaagcag 120ctgtgatggg acaaaaaggt
ggatcaaaag gccgattacc aagtgaattt tcccaatttc 180cacacggaca aaagggccag
cactattctg gacaaaaagg caagcaacaa actgaatcca 240aaggcagttt ttctattcaa
tacacatatc atgtagatgc caatgatcat gaccagtccc 300gaaaaagtca gcaatatgat
ttgaatgccc tacataagac gacaaaatca caacgacatc 360taggtggaag tcaacaactg
ctccataata aacaagaagg cagagaccat gataaatcaa 420aaggtcattt tcacagggta
gttatacacc ataaaggagg caaagctcat cgtgggacac 480aaaatccttc tcaagatcag
gggaatagcc catctggaaa gggaatatcc agtcaatatt 540caaacacaga agaaaggctg
tgggttcatg gactaagtaa agaacaaact tccgtctctg 600gtgcacaaaa aggtagaaaa
caaggcggat cccaaagcag ttatgttctc caaactgaag 660agctagtagc taacaaacaa
caacgtgaga ctaaaaattc tcatcaaaat aaagggcatt 720accaaaatgt ggttgaagtg
agagaggaac attcaagtaa agtacaaacc tcactctgtc 780ctgcgcacca agacaaactc
caacatggat ccaaagacat tttttctacc caagatgagc 840tcctagtata taacaagaat
caacaccaga caaaaaatct caatcaagat caacagcatg 900gccgaaaggc aaataaaata
tcataccaat cttcaagtac agaagaaaga cgactccact 960atggagaaaa tggtgtgcag
aaagatgtat cccaaagcag tatttatagc caaactgaag 1020agaaaataca tggcaagtct
caaaaccagg taacaattca tagtcaagat caagagcatg 1080gccataagga aaataaaata
tcataccaat cttcaagtac agaagaaaga catctcaact 1140gtggagaaaa gggcatccag
aaaggtgtat ccaaaggcag tatttcgatc caaactgaag 1200agcaaataca tggcaagtct
caaaaccagg taagaattcc tagtcaagct caagagtatg 1260gccataagga aaataaaata
tcataccaat cttcgagtac agaagaaaga cgtctcaaca 1320gtggagaaaa ggatgtacag
aaaggtgtat ccaaaggcag tatttctatc caaactgaag 1380agaaaataca tggcaagtct
caaaaccagg taacaattcc tagtcaagat caagagcatg 1440gccataagga aaataaaatg
tcataccaat cttcaagtac agaagaaaga cgactcaact 1500atggaggaaa gagcacgcag
aaagatgtat cccaaagcag tatttctttc caaattgaaa 1560agctagtaga aggcaagtct
caaatccaga caccaaatcc taatcaagat caatggtctg 1620gccaaaatgc aaaaggaaag
tctggtcaat ctgcagatag caaacaagac ctactcagtc 1680atgaacaaaa aggcagatac
aaacaggaat ccagtgagtc acataatatt gtaattactg 1740agcatgaggt tgcccaagat
gatcatttga cacaacaata taatgaagac agaaatccaa 1800tatctacata gccctgttgc
ttagcaaccc attgaaaagc tggaccaata gcaaggtgtc 1860accccgacct cagtgagtta
gggttcgttt ganccngant aggaangggt nccggaaggc 1920naaaannnnt anttnagccn
ctgttgtntn nanacc 19561211737DNAHomo
sapiensmisc_featureIncyte ID No 350287 121gaaatacagt ggctctttat
taaaaataat agttggataa tataaactga actatttatg 60catttttata tacttataaa
tccttccaaa tagttttaat tctatccttt tacatataaa 120taacttaata agtgtgctgg
aaaaacacag atgttcacag caccactgtt tttttttttt 180ttttttgaga taataaattc
catgagaaat ctgggtttga atatttgttt actttgtctc 240ctaattgaac accactccag
gccttctgtc tgtctcccct ttacccccaa aatattcaca 300aaaaaaattt taagacaaca
agtaaccata tataggtgtt tgaatgattt tctcattttt 360atctaatttc atttcataag
tcccgagtaa tttacctacc ataggctact atactgataa 420tataaatgaa accgaacatt
ttttgctact aactctcccc aatttaatgt gttttcgaaa 480taaaaattta aatttttttc
cttttaatta aaaagtcatc tttgaagtcc ttattggctg 540tacattttac atgtttgctg
gtactattat tttgtcagtg agttaaagct ggcatgtaca 600gctcttggct ttaatgaaaa
gcacattgac ataatgttag taaattccaa accccggcac 660agaatgtgag ttaaaattaa
gtcttgctgg gttagtgtac aataaactat acctacagac 720ttttttttaa tagaaagaag
acaaagctgc tggtatagga tttgttcctt tgaagaaaaa 780atgagggaaa caaacacaaa
aacctcaatg cagtgtataa ataacatttt gttcaactac 840ctcttaatgt ggaattatct
actttaatag tttcctgaca gtaatgttaa atagtaactg 900ccaaatttgt tattttccca
tctctcttaa aaaagtcttt atgattattt tatatagttt 960tgagaacttt aaagccactt
ttttttaacc ttacatttgc ataaaaatgt ttagctttta 1020agtagagagc aaattatgat
catatatttt gatattcatg acctgtttga ctataggatt 1080ttttttaaaa aaatgcactt
tggctataaa accatggatg atttgatcca taagatttaa 1140atgtgccacc attatagtat
tcctagacat gagcttgatg aatggtattc tgtaattata 1200acgtgccaca cattattgtg
tcttaattgc ccttagcctg aattttaatg atcaatttgt 1260tattgttgca gatgtgaata
ttgtgcataa acttactaaa tttatgtaaa attgtataaa 1320atagaattag aagtcactaa
gttctttctg tgtagaagta ataaatttat tgtaacacaa 1380tgcagttgtg tatatgacat
tctgtaattc cttgaactgg atcatatatt cataagttct 1440gtagatactt atgcatgaac
attttctcat ttagttcttg ggttcattat ttgtattgtg 1500tttactactt gtgatcatgt
agttgtgcct tactttgtga gaaaggttag ctcagtaaat 1560actgcaattt ctaaactcag
tgattggaag gttattaatt ataaatgtaa ctgataaagt 1620acgtgacagc atttaaatct
gtataaagaa caatggaagg atccttattg aattgttgct 1680tttttttaat atgtttaaat
attatattaa aaacatttct ttctaaaaaa aaaaaaa 1737122789DNAHomo
sapiensmisc_featureIncyte ID No 1618171 122caagatataa agtagcagtt
ggctacctaa aatgaaaaga gcaatgttcc atggcacctg 60aaatgttaaa aatattagaa
actctcccca ccccatattc ctcccacccc aattgagtct 120ctcgcaataa tcttctcgct
tctctaacta gttgactttc attatggatg gggataggct 180aaaaaacggg cccctgggat
ggctgtgctg ccatcagtgc tgttggttta ctcactcttt 240ttctgtcttc gtttttgcat
gctactgctc ctgccctctt acagccacag tagaagcggt 300agaggcccgg gaaggtatgg
ccatattact ctgatagatg tgatccatgt gtctgtgtac 360tggtttttcg aagctttatc
aacatttcaa atattttatt attgcatcac cagaactata 420acagtgagaa aaggtatagt
tgtttctagg catgttaacg aagcaggtgt ttcctttgtg 480tcctatcttt gcattaattt
taaataacct tcaccacagc tacagttttt tttctgggct 540ctatcagctt taatgcaacg
gcagaagctt aagcaactgg tcatgagagg tcaagtggtt 600tacttctgta tcccttccat
gtacaagaga catccatttg attctcaaga gagccaaata 660ggtcagcctc ttcagcgatt
ctaaaagatt tcaagagcag aggcaggaag taggactggg 720aatttagttc aattcattat
ctgaggttgc cctaaggtag ggcaagttta aatttaactt 780tgtttctat
7891231116DNAHomo
sapiensmisc_featureIncyte ID No 1625863 123tttatatttg acaataaagt
gttagactcc atttctaaat accagacttc aaaagataag 60gttcaaaagt gttataagaa
gatattcctt tttttgtcct agagaactta ttttcctgtg 120aaaatgccta ccacaaagaa
gacattgatg ttcttatcaa gctttttcac cagccttggg 180tccttcattg taatttgctc
tattcttggg acacaagcat ggatcaccag tacaattgct 240gttagagact ctgcttcaaa
tgggagcatt ttcatcactt acggactttt tcgtggggag 300agtagtgaag aattgagtca
cggacttgca gaaccaaaga aaaagtttgc agttttagag 360atactgaata attcttccca
aaaaactctg cattcggtga ctatcctgtt cctggtcctg 420agtttgatca cgtcgctgct
gagctctggg tttaccttct acaacagcat cagcaaccct 480taccagacat tcctggggcc
gacgggggtg tacacctgga acgggctcgg tgcatccttc 540gtttttgtga ccatgatact
gtttgtggcg aacacgcagt ccaaccaact ctccgaagag 600ttgttccaaa tgctttaccc
ggcaaccacc agtaaaggaa cgacccacag ttacggatac 660tcgttctggc tcatactgct
cgtcattctt ctaaatatag tcactgtaac catcatcatt 720ttctaccaga aggccagata
ccagcggaag caggagcaga gaaagccaat ggaatatgct 780ccaagggacg gaattttatt
ctgaattctc tttcatctca ttttggcgtt gcatctattg 840tacatcagcc ctgagtagta
actggttagc ttctctggac aattcagcat ggtaacgtga 900ctgtcatctg tgacagcatt
tgtgtttcat gacactgtgt tcttcattga tgctgtactc 960ctgaaaattt ttcccacaag
gttggggaaa tgaatgggaa atgtcgctgg tctgtgtggt 1020attcaaagca gtagtatcat
gatgagcgta acgacccttc tgacctggtc tcacgatctg 1080aaataataaa aggctgtgtc
atgtttcttt tcaaaa 1116124914DNAHomo
sapiensmisc_featureIncyte ID No 1638353 124ggccaaccca cggtgggggg
agcgcggcca tggcgctcct gctttcggtg ctgcgtgtac 60tgctgggcgg cttcttcgcg
ctcgtggggt tggccaagct ctcggaggag atctcggctc 120cagtttcgga gcggatgaat
gccctgttcg tgcagtttgc tgaggtgttc ccgctgaagg 180tatttggcta ccagccagat
cccctgaact accaaatagc tgtgggcttt ctggaactgc 240tggctgggtt gctgctggtc
atgggcccac cgatgctgca agagatcagt aacttgttct 300tgattctgct catgatgggg
gctatcttca ccttggcagc tctgaaagag tcactaagca 360cctgtatccc agccattgtc
tgcctggggt tcctgctgct gctgaatgtc ggccagctct 420tagcccagac taagaaggtg
gtcagaccca ctaggaagaa gactctaagt acattcaagg 480aatcctggaa gtagagcatc
tctgtctctt tatgccatgc agctgtcaca gcaggaacat 540ggtagaacac agagtctatc
atcttgttac cagtataata tccagggtca gccagtgttg 600aaagagacat tttgtctacc
tggcactgct ttctcttttt agctttacta ctcttttgtg 660aggagtacat gttatgcata
ttaacattcc tcatgtcata tgaaaataca aaataagcag 720aaaagaaatt taaatcaacc
aaaattctga tgccccaaat aaccactttt aatgccttgg 780tgtaagtata cctctgaact
tttttctgtg cctttaaaca gatatatatt ttttttaaat 840gaaaataaaa ccatatatcc
tattttattt cctcctttta aaaccttata aactataaca 900ctgtaaaaaa aaaa
9141252016DNAHomo
sapiensmisc_featureIncyte ID No 1726843 125gctgcctgct gcctccgcag
cgtcccccca gctctccctg tgctaactgc ctgcaccttg 60gacagagcgg gtgcgcaaat
cagaaggatt agttgggacc tgccttggcg accccatggc 120atcccccaga accgtaacta
ttgtggccct ctcagtggcc ctgggactct tctttgtttt 180catggggact atcaagctga
cccccaggct cagcaaggat gcctacagtg agatgaaacg 240tgcttacaag agctatgttc
gagccctccc tctgctgaag aaaatgggga tcaattccat 300tctcctccga aaaagcattg
gtgcccttga agtggcctgt ggcatcgtca tgacccttgt 360gcctgggcgt cccaaagatg
tggccaactt cttcctactg ttgctggtgt tggctgtgct 420cttcttccac cagctggtcg
gtgatcctct caaacgctac gcccatgctc tggtgtttgg 480aatcctgctc acttgccgcc
tgctgattgc tcgcaagccc gaagaccggt cttctgagaa 540gaagcctttg ccagggaatg
ctgaggagca accctcctta tatgagaagg cccctcaggg 600caaagtgaag gtgtcataga
aaagtggaag tgcaaagagt ggaccttcca ggcagttgcg 660tccatgacac caggaagatg
tcagtgtgtg tttttcattt gatttattta tcttggggaa 720agtgaaaaat gtaatctgca
agttaatgac cctattggct tgtgtacatc tatatgctaa 780aatgacttcc ccacattgac
atttgtgcgc cacctttaat cactctgggg caactctcac 840atcttgctgc atgtacatgt
atacggctac tattgaagtg taattgtgag atggactcca 900acaagcatgt gactgtgaga
ttgtgtgtgg gaaaatgtat ttaactactc tgtgtgtgtg 960tgtgtgtgtg tgtgtgcgcg
cgcgcgcacg cgcacacact cacgcacaca caagcagaga 1020aggcgctgat cttgaactaa
tcctgcacag gcatccttcc ctttatagat tgattccagc 1080aaaggcggaa taaaacaaat
ttcctatgaa gagaatcctg atatgaaaca agtcatgtag 1140tctcatggcc gggaatctct
ccacagatac taacaactta aacttactac tttaggagaa 1200aaaaaaaaac attcaatttc
ggacactgag ttatatatga aattaattag gctctagtcc 1260aacagttgtt tacattttaa
atagtccata ttgaatttaa ttaaaacaag ggatgcatgc 1320agtcaaattg atagtttaat
tcttcaagtg ataatatgga agtttcacct tgcctttgtc 1380caagccccac ctattaaaac
cctttactca cagtttgaaa ctgaagcagt aaacttgttt 1440ccagacatct ttttcagatt
gtcttaagcc caaagttgcc tcacttccac tattctcagc 1500agccaaccag gatttggcag
ctgctccact gttacggttg agggaacagg gatcagtcct 1560gttagaagtc tgtgagcctc
aaactctacc tgttctctgc aatcatccaa aatttgaaaa 1620agaagctata tccagtgttt
cactgccaaa cagattcact actcttactg attcttcact 1680gagctttgct agtataagca
gagttccaag tctcccctag ggttgtctct acatttcttt 1740atcattccag tgggtagggt
ttagctgggg gaaggacatt tcataagggt tagttggact 1800gagcagtatg gacatttgct
tttttcatta cgtactgttg tttttccttg ttaggtgtgc 1860tttggtggtt ttaatattat
tgtgccaggg atggggaaat ggggggggtt gtgtgggaag 1920agtacttatt attgtgtttt
cttcagtgta attgttcttg gtaattgata cctctctgtt 1980ttatttctct cattctttca
aaataaaact ttttgt 20161262067DNAHomo
sapiensmisc_featureIncyte ID No 1754506 126tgctccttta agcgtccaca
ggcggcggac ggccacaatc acagctccgg gcattggggg 60aacccgagcc ggctgcgccg
ggggaatccg tgcgggcgcc ttccgtcccg gtcccatcct 120cgccgcgctc cagcacctct
gaagttttgc agcgcccaga aaggaggcga ggaaggaggg 180agtgtgtgag aggagggagc
aaaaagctca ccctaaaaca tttatttcaa ggagaaaaga 240aaaagggggg gcgcaaaaat
ggctggggca attatagaaa acatgagcac caagaagctg 300tgcattgttg gtgggattct
gctcgtgttc caaatcatcg cctttctggt gggaggcttg 360attgctccag ggcccacaac
ggcagtgtcc tacatgtcgg tgaaatgtgt ggatgcccgt 420aagaaccatc acaagacaaa
atggttcgtg ccttggggac ccaatcattg tgacaagatc 480cgagacattg aagaggcaat
tccaagggaa attgaagcca atgacatcgt gttttctgtt 540cacattcccc tcccccacat
ggagatgagt ccttggttcc aattcatgct gtttatcctg 600cagctggaca ttgccttcaa
gctaaacaac caaatcagag aaaatgcaga agtctccatg 660gacgtttccc tggcttaccg
tgatgacgcg tttgctgagt ggactgaaat ggcccatgaa 720agagtaccac ggaaactcaa
atgcaccttc acatctccca agactccaga gcatgagggc 780cgttactatg aatgtgatgt
ccttcctttc atggaaattg ggtctgtggc ccataagttt 840taccttttaa acatccggct
gcctgtgaat gagaagaaga aaatcaatgt gggaattggg 900gagataaagg atatccggtt
ggtggggatc caccaaaatg gaggcttcac caaggtgtgg 960tttgccatga agaccttcct
tacgcccagc atcttcatca ttatggtgtg gtattggagg 1020aggatcacca tgatgtcccg
acccccagtg cttctggaaa aagtcatctt tgcccttggg 1080atttccatga cctttatcaa
tatcccagtg gaatggtttt ccatcgggtt tgactggacc 1140tggatgctgc tgtttggtga
catccgacag ggcatcttct atgcgatgct tctgtccttc 1200tggatcatct tctgtggcga
gcacatgatg gatcagcacg agcggaacca catcgcaggg 1260tattggaagc aagtcggacc
cattgccgtt ggctccttct gcctcttcat atttgacatg 1320tgtgagagag gggtacaact
cacgaatccc ttctacagta tctggactac agacattgga 1380acagagctgg ccatggcctt
catcatcgtg gctggaatct gcctctgcct ctacttcctg 1440tttctatgct tcatggtatt
tcaggtgttt cggaacatca gtgggaagca gtccagcctg 1500ccagctatga gcaaagtccg
gcggctacac tatgaggggc taatttttag gttcaagttc 1560ctcatgctta tcaccttggc
ctgcgctgcc atgactgtca tcttcttcat cgttagtcag 1620gtaacggaag gccattggaa
atggggcggc gtcacagtcc aagtgaacag tgcctttttc 1680acaggcatct atgggatgtg
gaatctgtat gtctttgctc tgatgttctt gtatgcacca 1740tcccataaaa actatggaga
agaccagtcc aatggaatgc aactcccatg taaatcgagg 1800gaagattgtg ctttgtttgt
ttcggaactt tatcaagaat tgttcagcgc ttcgaaatat 1860tccttcatca atgacaacgc
agcttctggt atttgagtca acaaggcaac acatgtttat 1920cagctttgca tttgcagttg
tcacagtcac attgattgta cttgtatacg cacacaaata 1980cactcattta gcctttatct
caaaatgtta aatataagga aaaaagcgtc aacaataaat 2040attctttgag tattgaaaaa
aaaaaaa 20671272180DNAHomo
sapiensmisc_featureIncyte ID No 1831378 127gcgaacgtct gcacctggcg
ggcgatgacg cccgatgcgg gcgccccggg atagcgtggg 60cgaggctgcg gggccccggc
gcgcacgccc gcacctctcc ccagccctgg cgtgggccca 120gcccggccca ggcagcaatg
gggttcctgc agctgctggt cgtagcggtg ctggcatccg 180aacaccgggt ggctggtgca
gccgaggtct tcgggaattc cagcgagggt cttattgaat 240tttctgtggg gaaatttaga
tacttcgagc tcaataggcc ctttccagag gaagctattt 300tgcatgatat ttcaagcaat
gtgacttttc ttattttcca aatacactca cagtatcaga 360atacaactgt ttccttttct
ccgactctcc tttccaattc ctcggaaaca ggcactgcca 420gtggactggt tttcatcctt
agaccagagc agagtacatg cacttggtac ttggggactt 480caggcataca gcctgtccag
aatatggcta tcctactctc ctactcagaa agagatcctg 540tccctggagg ctgtaatttg
gagttcgatt tagatattga tcccaacatt tacttggagt 600ataatttctt tgaaacgact
atcaagtttg ccccagcaaa cctaggctat gcgagaggcg 660tagatccccc accatgtgac
gctgggacag accaggactc caggtggagg ttgcagtatg 720atgtctatca gtattttctg
cctgagaatg acctcactga ggagatgttg ctgaagcatc 780tgcagaggat ggtcagtgtg
ccccaggtga aggccagtgc tctcaaggtg gttaccctaa 840cagctaatga taagacaagt
gtttccttct cctccctccc gggacaaggt gtcatataca 900atgtcattgt ttgggacccg
tttctaaata catctgctgc ctacattcct gctcacacat 960acgcttgcag ctttgaggca
ggagagggta gttgtgcttc cctaggaaga gtgtcttcca 1020aagtgttctt cactcttttt
gccctgcttg gtttcttcat ttgtttcttt ggacacagat 1080tctggaaaac agaattattc
ttcataggct ttatcatcat gggattcttc ttttatatac 1140tgattacaag actgacacct
atcaagtatg atgtgaatct gattctgaca gctgtcactg 1200gaagcgtcgg tggaatgttc
ttggtagctg tgtggtggcg atttggaatc ctctcgatct 1260gcatgctctg tgttggacta
gtgctggggt tcctcatctc gtcagtgact ttctttactc 1320cactgggaaa cctaaagatt
tttcatgatg atggtgtatt ctgggtcact ttctcttgca 1380tagctatcct cattccagta
gttttcatgg gctgcctaag aatactgaac atactgactt 1440gtggagtcat tggctcctat
tcggtggttt tagccattga cagttactgg tccacaagcc 1500tttcctacat cactttgaac
gtactcaaga gagcgctcaa caaggatttc cacagagctt 1560tcacaaatgt gccttttcaa
actaatgact tcattatcct ggcagtatgg ggcatgctgg 1620ctgtaagtgg aattacgtta
cagattcgaa gagagagagg acgaccgttc ttccctcccc 1680acccatacaa gttatggaag
caagagagag agcgccgagt gacaaacatt ctggacccta 1740gctaccacat tcctccattg
agagagaggc tctatggccg attaacccag attaaagggc 1800tcttccagaa ggagcagcca
gctggagaga gaacgccttt gcttctgtag atgcccaggg 1860gcttggtcag tgtgcctcag
ctttggagtt catgcctgga gtggttcaac agtctctggt 1920gcaagtctaa taagagatca
ggcatatata tctgttcttt gcataatatt atggtgccct 1980tattgatata tggtaagggt
gtactagggg attaggatga ttgtaagaga atgagaaaga 2040tgaccaaaag gttggtggta
gggaggcttt ttcttatttc caaatacttg agaaattacc 2100ttttggttta caaatctatg
atcaacttat tccattaaat agatacatta aaaaaattaa 2160aaactgaaaa aaaaaaaaaa
2180128991DNAHomo
sapiensmisc_featureIncyte ID No 1864943 128cacggtgtca gcaggcaaca
tggccgagag gcggggcctc cgggcggcgc cgtgtccgcg 60accgcgtacc ctgacacccc
cgcggaattc cctccgcacc tccaggcggg tgcgatgcgg 120cgccgctttt ggggcgtatt
caactgtctg tgcgccggcg cgttcggggc cctggccgcc 180gcctccgcca agctggcctt
cggcagcgag gtgagcatgg gtttatgcgt cttaggcatt 240attgtgatgg cgagcaccaa
ttctctgatg tggaccttct ttagccgggg cctcagtttc 300tccatgtctt cagccattgc
atctgtcaca gtgacttttt caaatatcct cagctcggcc 360ttcctgggct atgtgctgta
tggagagtgc caggaggtct tgtggtgggg aggagtgttc 420cttattctct gcggactcac
cctaatccac aggaagctcc cacccacctg gaagcccctt 480ccacacaagc agcagtagca
ccacttggct agacggacca gctggaaaga tcatgatggt 540ggcccagcct tgggatgtca
tgtgggactg tgtcctaggg cgatccagtt gtgcagcctt 600ctgaccatca gccaagggaa
gcaggcctct gatggagcag gctctggctc tgtaaggaga 660ggtgcagctg cagcagtgtt
ctaccggaag tgttttgatc atctgtacag tgctttggat 720tcttcctccc aggcctaccc
cagtgagcct tcgcagatgc tggagatcct ggggttggtc 780tgctttgtgt atggtacttg
aaaccacgct gtaattattg tcctgttgcc aaacaaaagc 840cagtcatgta actctagaag
cagtgactgg tggggctttc tgacagttcc atgctgatgt 900atcaggccat ctgtgtcatg
cttatgtatt atggcaagaa gaggaaaact ggattaataa 960atacgttttt ttgtaagtta
aaaaaaaaaa a 991129637DNAHomo
sapiensmisc_featureIncyte ID No 1911316 129ggagggcggt gctccgccgc
ggtggcggtt gctatcgctt cgcagaacct actcaggcag 60ccagctgaga agagttgagg
gaaagtgctg ctgctgggtc tgcagacgcg atggataacg 120tgcagccgaa aataaaacat
cgccccttct gcttcagtgt gaaaggccac gtgaagatgc 180tgcggctggc actaactgtg
acatctatga ccttttttat catcgcacaa gcccctgaac 240catatattgt tatcactgga
tttgaagtca ccgttatctt atttttcata cttttatatg 300tactcagact tgatcgatta
atgaagtggt tattttggcc tttgcttgat attatcaact 360cactggtaac aacagtattc
atgctcatcg tatctgtgtt ggcactgata ccagaaacca 420caacattgac agttggtgga
ggggtgtttg cacttgtgac agcagtatgc tgtcttgccg 480acggggccct tatttaccgg
aagcttctgt tcaatcccag cggtccttac cagaaaaagc 540ctgtgcatga aaaaaaagaa
gttttgtaat tttatattac tttttagttt gatactaagt 600attaaacata tttctgtatt
cttccaaaaa aaaaaaa 6371302631DNAHomo
sapiensmisc_featureIncyte ID No 1943120 130ctctcttcct gcagtgtggt
aaaactacag caatcgtctt aacctgtgag atctgtcacc 60tttgcatttt ccactcatgc
agctggttct ataaaccaac tcttctgctt ggggggatct 120aatcatgacc ttttaccctt
ttgtggcctc ttctagtaca aggcgagtgg ataattccaa 180cacaagactg gcagtccaaa
ttgaaagaga tccagggaat gatgacaaca atctcaattc 240cattttttat gaacacttga
caaggaccct cctggagtcc ctctgtggag acttagttct 300tggacgttgg ggcaactaca
gctctggcga ttgctttatt ttggcttcag atgacctcaa 360tgcctttgtt cacctgattg
aaattggaaa tggtcttgtc acctttcaac ttcgaggact 420ggaattccga ggaacctact
gccagcagag ggaggtagaa gccatcatgg agggcgacga 480ggaggacaga ggctgctgct
gctgcaaacc aggccacttg cctcacctgc tgtcccgcaa 540cgctgccttt cacctccgct
ggctcacctg ggaaatcacg cagacccagt acatcctgga 600gggctacagc atcctggaca
acaacgcggc caccatgctg caggtgtttg acctccgaag 660gatcctcatc cgctactaca
tcaagagtat aatatactat atggtaacgt ctcccaaact 720cctctcctgg atcaaaaatg
aatcacttct gaagtccctg cagccctttg ccaagtggca 780ttacattgag cgtgaccttg
caatgttcaa cattaacatt gatgatgact acgtcccgtg 840tctccagggg atcacacgag
ctagcttctg caatgtttat ctagaatgga ttcaacactg 900tgcacggaaa agacaagagc
cttcaacgac cctggacagt gacgaggact ctcccttggt 960gactctgtcc ttcgccctgt
gcaccctggg gaggagagct ctgggaacag ccgctcacaa 1020tatggccatc agcctggatt
ctttcctgta tggcctccat gtcctcttca aaggtgactt 1080cagaataaca gcacgtgacg
agtgggtatt tgctgacatg gacctactgc ataaagttgt 1140agctccagct atcaggatgt
ccctgaaact tcaccaggac cagttcactt gccctgacga 1200gtatgaagac ccagcagtcc
tctacgaggc catccagtcc ttcgagaaga aggtggtcat 1260ctgccacgag ggcgacccgg
cctggcgggg cgcagtgctg tccaacaagg aagagctgct 1320caccctgcgg cacgtggtgg
acgagggtgc cgacgagtac aaggtcatca tgctccacag 1380aagcttcctg agcttcaagg
tgatcaaggt taacaaagaa tgcgtccgag gactttgggc 1440cgggcagcag caggagctta
tatttcttcg caaccgcaat ccggagcgcg gcagtatcca 1500gaacaataag caggtcctgc
ggaacttgat taactcctcc tgcgatcagc ccctggggta 1560ccccatgtat gtctccccac
taaccacatc ctacctaggg acacacaggc agctgaagaa 1620catctggggt ggacccatca
ctttggacag aattaggacc tggttctgga ccaagtgggt 1680aaggatgcgg aaggattgca
atgcccgcca gcacagtggc ggcaacattg aagacgtgga 1740cggaggaggg gccccgacga
caggtggcaa caatgccccg aatggtggca gccaggagag 1800cagcgcagaa cagcccagaa
aaggcggtgc tcagcacggg gtgtcatcct gtgaagggac 1860acagagaaca ggcaggagga
aaggcaggag ccagtccgtg caggcacact cagcgctaag 1920ccaaaggccg cccatgctga
gctcatctgg ccccatctta gagagccgcc aaacattcct 1980ccagacgtcc acctcagtgc
acgagctggc ccagaggctc tcgggcagcc ggctctcctt 2040gcacgcctcg gccacgtccc
tgcactctca gcccccgccc gtcaccacca ccggccacct 2100gagtgtccgt gagcgggccg
aggcgctcat caggtccagc ctgggctcct ccaccagctc 2160caccctgagc ttcctcttcg
gcaagaggag cttttccagc gcgctcgtca tttccggact 2220ctctgctgcg gaggggggca
ataccagtga cacccagtca tccagcagcg tcaacatcgt 2280gatgggcccc tcagccaggg
ctgccagcca ggccactcgg gtaaggggct gggcagggct 2340caccaggaca ggctgggatg
gtggcacggg ctcctggcct gagcgtggca cctgccttgc 2400gttcccaccc ttctgcctgc
agaaccccat ccccttctct atggggctcc cagagtgaca 2460aaggacagtg attagacacg
aagtggctta gctgctcttg aaagcagaca agatacagag 2520cagatatcct gtaaacgata
atgcccaggc aggcactgaa aggagtcacc ggatacagag 2580gttctgcaga actgtggcca
tctgccctac accggggcat gacggagaat g 2631131646DNAHomo
sapiensmisc_featureIncyte ID No 2314236 131tacatttact aaaatgatgt
aataaataac atgttaatag actcaagctt taccttatga 60aattgatgta tttttaccag
ttatttctaa tgtaacattg aatatataag atctgacaaa 120tgtatgttta aacatgaatt
agaagagttg agaactacca ttatgtatag ggattctcat 180agtgtcttgg cccttaattg
gaaagttgtg gcaactttaa agtacttttt actgtatgtt 240ataattcttt ataacttaga
gagagacaat ggtcactcaa actatgagaa ctatgaatta 300ggagataaaa gtttaaattt
gttgttgttt tataacagta tgtacaagtt agttttccct 360tatatattta cgttttcaag
ttttttaatc tcatcatata catccatact ctataaaatg 420ttttatattc aaagaactgt
aaaatcctaa acattagttt tcactattga aattgttttt 480taaagatagg cataaatagt
tgtccttaga cttattcata caaatatagt catttacttc 540tatgtagttt gagattctga
gagttattcc aactttatga agattgattt caatgtgcct 600gctaagtcct aaaagattca
gaaagaaaat ttatatatta ttgatt 646132541DNAHomo
sapiensmisc_featureIncyte ID No 2479409 132ttcacatttt ttggtttgat
cttggtgtca tttaggtaat gaatctatcc aagaaatcta 60tccttttgac ccaggttatc
aaatttgtag acataaggtt atttataatg gtcccttctt 120acccttttaa tgtctttagg
agctgtgttg ataatttcct tttcattatg atactggtaa 180tttctgttct cactttccta
atcaggttgg gtaggggttt atcagtttta ctgatctgac 240tttttatttt attttatttt
ttttgagaca gtcttacact gtctcccagg ctggagtgca 300gtggcgcgat ctcggcttac
tgcaagctct gccttccggg ttcatgccat tctcctgcct 360cagcctcccc agtagctggg
actacaggct cccacaacac gcccggctaa ttttttaaat 420tcttagtgga gactggggtt
caccggggta accaagaatg gctcggatct ctttaacccc 480ggggtccacc cgcctcagcc
tcccaaaagt gctggggatt acaggggtga gcaccgggcc 540c
5411331922DNAHomo
sapiensmisc_featureIncyte ID No 2683149 133tggcctccga tccacctgga
cacctggagg ctaagcctgg attccccctt ccctgactca 60ggaactgctt aacgtctaca
gcaaggccta ataggggacc tgagggcaca gtcctcagga 120tgtttcgggg agaataggag
ccagaacctg agcccctaag ccattcccct caccaatgat 180ggggtcccca gtgagtcatc
tgctggccgg cttctgtgtg tgggtcgtct tgggctgggt 240agggggctca gtccccaacc
tgggccctgc tgagcaggag cagaaccatt acctggccca 300gctgtttggc ctgtacggcg
agaatgggac gctgactgca gggggcttgg cgcggcttct 360ccacagcctg gggctaggcc
gagttcaggg gcttcgcctg ggacagcatg ggcctctgac 420tggacgggct gcatccccag
ctgcagacaa ttccacacac aggccacaga accctgagct 480gagtgtggat gtctgggcag
ggatgcctct gggtccctca gggtggggtg acctggaaga 540gtcaaaggcc cctcacctac
cccgtgggcc agccccctcg ggcctggacc tgcttcacag 600gcttctgttg ctggaccact
cattggctga ccacctgaat gaggattgtc tgaacggctc 660ccagctgctg gtcaattttg
gcttgagccc cgctgctcct ctgacccctc gtcagtttgc 720tctgctgtgc ccagccctgc
tttatcagat cgacagccgc gtctgcatcg gcgctccggc 780ccctgcaccc ccaggggatc
tactatctgc cctgcttcag agtgccctgg cagtcctgtt 840gctcagcctc ccttctcccc
tatccctgct gctgctgcgg ctcctgggac ctcgtctact 900acggcccttg ctgggcttcc
tgggggccct ggcggtgggc actctttgtg gggatgcact 960gctacatctg ctaccgcatg
cacaagaagg gcggcacgca ggacctggcg gactaccaga 1020gaaggacctg ggcccggggc
tgtcagtgct cggaggcctc ttcctgctct ttgtgctgga 1080gaacatgctg gggcttttgc
ggcaccgagg gctcaggcca agatgctgca ggcgaaaacg 1140aaggaatctc gaaacacgca
acttggatcc ggagaatggc agtgggatgg cccttcagcc 1200cctacaggca gctccagagc
caggggctca gggccagagg gagaagaaca gccagcaccc 1260accagctctg gcccctcctg
ggcaccaagg ccacagtcat gggcaccagg gtggcactga 1320tatcacgtgg atggtcctcc
tgggagatgg tctacacaac ctcactgatg ggctggccat 1380aggtgctgcc ttctctgatg
gcttctccag cggcctcagt accaccttag cggtcttctg 1440ccatgagctg ccccacgaac
tgggtgactt tgccatgctg ctccagtcag ggctgtcctt 1500tcggcggctg ctgctgctga
gcctcgtgtc tggagccctg ggattggggg gtgcagtcct 1560gggggtgggg ctcagcctgg
gccctgtccc cctcactccc tgggtgtttg gggtcactgc 1620tggggtcttc ctctatgtgg
cccttgtgga catgctacca gccctgcttc gtcctccgga 1680gcccctgcct acgccccatg
tgctcctgca ggggctgggg ctgctgctgg ggggcggcct 1740catgcttgcc ataaccctgc
tggaggagcg gctactgccc gtgaccactg agggctgatg 1800gggccagtgg aaaggggtcg
ggttgccctt ccttcccccc aaccacagga atggaggcgg 1860gacacagggc cagtaggagc
aataggattt taataaacag aacccatccc aaaaaaaaaa 1920aa
1922134840DNAHomo
sapiensmisc_featureIncyte ID No 2774051 134ggtaattcgt actggtcatc
ttctctgggt gtgagtcaaa tataagttta acaattagct 60ctgaaaacat tccattgagc
tggggaatgc aacagtctta ttacctcatc atggaattct 120ctagcttagt taatttaaat
attgtttctt agtttctggg tcaattaaat ttaaatgatg 180tagtttatgc ttcgtgacca
attaaattac taggttatta caaaaaaaat tatcatcttt 240tttgattaaa gagctgtggg
tacagtatat tttataagca attttcatta gttcaaaaat 300gttcctttag gctagattaa
gcagccattc attgttagag cctggagacc ttattcgaag 360gtgttcatcg tattcacagt
gcactattac ttagaactaa agccaattga acctacttag 420caatagcgtt atgcctttca
cccttgatga ttatggagct tatagctctc agaaacaata 480cacctgtcag tttccatcaa
ctatagcaat ccatgcagaa gacaagaggc cccctcaaag 540caggaggggt attgttttag
gtccaatttt tcttattgtt ctcaaaatca ttataaggtg 600gacagtgttt tgtgaagatt
ttcttttccc cagctctaag aaaccatgtg gaaagaattc 660attgataact gttttgattt
ttttcttttt ttaagtacag gttttgctaa gtaatcaccc 720ttagtgagcc tgtgtagttc
agctgcctgt gagatgtttg gtgaccagct cagtggtatc 780ttgtattcct gatagagaat
atttcagggg acanagtgct ctttcagaca gactcaaata 8401351344DNAHomo
sapiensmisc_featureIncyte ID No 2869038 135gcaaattgat ctaaaagcca
ctaataaatt ctagggtttg agtctagaag ccaagcaaac 60tgtcaccaat gtcagttgta
aattagaatg caacatgagg cttcagactc atgacaatga 120tatacatgaa aacaaaaata
taattgtgtc taccttccta ctttcccttt tgacatatgt 180agttggaatt ttacatagtc
ttaaaatcca tatttagaat cttacctgtt tctataataa 240ttagtaaaat gccaaagtag
tgatagaata ttgtggcatt gaagtagccg aaaaattgtt 300agttttagca tcaaaaaagt
aaatagatgt tgaaatgaat ttttgtatgt gccaggttga 360agagagtgtg ccagtgacag
gaagtagtct aaaaaattaa cagttatggt tttaatagga 420tctgaaagac aatctttaaa
gaaatgggag aaattggggg tatcagtgaa cctataccaa 480cctctctttg tacataaata
tggtgatgta gctagatata aaaatcagtg tcttactggc 540accatttaca gtttagaaaa
caatcttttt cttaaaaatg cccatctgat ttctattttt 600aggagctact tggatttgta
tgtatttttt ctacgtgaaa atatatgtac tcttcacttt 660tgttccagta ctataattgc
tcatgcactc tttctcccct ttgagaacat tcagtgaaat 720acaacttcat caaagatttg
ctcaaaggag aagaatcgca tgagtgtgaa aagtagatgc 780tcgtagccag aacagaaaag
gttacacatg atcatggcac agaagatagg aggtttgact 840tggtgggcca taatgtttat
tatccttttt gaaataacag ggaccagcag cagttttctc 900aggataaatg ctctacccca
cttctctatg aacaggtgtg gggaggctta ctttccattt 960tcatatttat acacctctct
acaaaagcaa tttttaatga aggttagtgg aattgttaaa 1020aatctgagag gaatgatgac
tggaggtgtt tggggttttt ttctgtattc attttttaat 1080gagaaaagtt ttaaatgtag
tacaggttag acccaactac taccttacta ttataggacg 1140attctatgtt tctgttaaag
tattcaagta gctttctctg ggggaaaaag taccacttgg 1200acacttaaag gaattgggat
ttttgtctac tttggataag gcagttgact tcttaagtaa 1260aagcaatagt gtaaaatgtc
attttgtttg gaatgttaag tgagcaaata aaaaacatgt 1320tgaaattgtt gtaaaaaaaa
aaaa 1344136443DNAHomo
sapiensmisc_featureIncyte ID No 2918334 136ctcgagattt tttatattta
tgcatgccat ttagtttgct cctaaaaata gtgatactgg 60ttttagtttt ttacttacta
aatcagtata gccaaatgtc catcttccta gtggtaatat 120gcgatcagaa tttctgagat
tatttatgtg actatttttg gaaaagtttc ttttgataaa 180acatggattt attatatgaa
attcttcttg cactgtatta caatatatgc tatgatatcc 240cttttatttt tttcaactta
aatatgatgt tttatattgt tttagactta cgaatcgtgt 300ttttcagaac cataagggaa
tatctatctc ctccctcact ttccttttac atatattgaa 360aagtctatga aattcaagtc
tagcatttga attctctatg ctatcattgc atttacctaa 420ttatttactt ttaaatttta
ggg 443137467DNAHomo
sapiensmisc_featureIncyte ID No 2949916 137gccatttaag gagatctgtt
ttgcttgaat attctgactg tcagtccgca gacataggga 60gtgtgtgagt gtgagtgtgt
accaagatga ggaggataat caggctccgg ctccgttttt 120ctgacacttt tatggctgcc
tttcttctgt gcctgggctt cgttctcatg ctctttccct 180cgttgttgcg ggatggtggc
agcatcagca gctgcagaaa ctcttgttca tctcctagct 240ccgaggagcg tcatttctcc
aacttggaat aaaagcccat cctctacctg attgggccac 300tcagatcaag ggcttaacac
tagcaacagt tgctaaggca ctgctagata ccgattagct 360gaagcctggg tgtctgaacc
aatcattgcc aagggggcgg gacttgcccc atccctggaa 420ctatgaatgt ctcagcccct
tgagatcacc tgggcgtgga agaaagt 467138902DNAHomo
sapiensmisc_featureIncyte ID No 2989375 138cactgcactc cagtctaggt
gacagagaag gactcgtctc aaaaaataaa aataaataaa 60aaggaagcaa ggctaatcat
cagtatgtgc ttgttacaag agctatgatg aaggcactcc 120ttcgagttta accaaatgag
atcatctctg tcatgtgcct cacgcctcac agggactcca 180tgtgtgaaga ttcccccttc
actcaccaga tcatctccat ggcaacagct tgcagcctgc 240tcttggagtg ctttgttttg
gcagcttctc tgctagtttg tgtatggagt gaatggagga 300ggtaaatcca cagattaaga
atatgctgtc aggagtcagg cagccaaggt cagaagccag 360ctctgcttct cagtgctttc
tctttacaac acaggacttt gcaaggaaca tataattctg 420tgactagcgc catttggaaa
atgttgaaac tgaagtagag atgagagatc ttacgtctgc 480ctacccagtg agatacgagg
aaggtcaagg gaaaaaaaat tccaagctct tctttatctg 540ctataggaaa tgaacattca
attttttgca tgcaacgaca agaggtcaag gaccccagaa 600gccagcccgc tacttccaag
ttgagagccc ctggtcatac cctccagttg agctcagatt 660tgtcacaaat ttacccctct
cctttccttc cattccccat gacctgcaga gagagatgtc 720agataccttc ctcttggcct
cccatgggca tccataagaa acttacttga agcaagaagc 780ccagtatagg tgtctgggca
gttggacatt tcctctagcc agatctgtcc gaatagagcc 840atctgggtac atgacgcaga
gggcatttga taaataactg gaaaagtcaa taaatctttg 900tc
9021391332DNAHomo
sapiensmisc_featureIncyte ID No 3316764 139cgcagatgtg ccttcctggt
tggttgagat gctgatccta cagcactccc gctgtgcctc 60agcagtgagc tgggtgtaaa
ggcaggaggc ttgctggggt ctgacacttc cctgccctcc 120tccaggaggg acacatctgg
ggctctatga ggaggacagc tttcatcctg ggctctggac 180ttctctcatt tgtggccttc
tggaactcag tgacatggca tcttcagaga ttttggggtg 240cttctggcta cttttggcaa
gcccagtggg agaggctgct gactacattt gaagggaagg 300agtggatcct cttctttata
ggtgccatcc aagtgccttg tctcttcttc tggagcttca 360atgggcttct attggtggtt
gacacaacag gaaaacctaa cttcatctct cgctaccgaa 420ttcaggtcgg caagaatgaa
cctgtggatc ctgtgaaact gcgccagtct atccgcacag 480ttcttttcaa ccagtgcatg
atatctttcc ccatggtggt cttcctctat cccttcctca 540aatggtggag agacccctgc
cgccgtgagc tacccacctt ccactggttc ctcctggagc 600tggccatctt cacgctgatc
gaggaagtct tgttctacta ttcacaccgg ctccttcacc 660acccaacatt ctacaagaaa
atccacaaga aacaccatga gtggacagct cccattggcg 720tgatctctct ctatgcccac
cctatagagc atgcagtctc caacatgcta ccggtgatag 780tgggcccatt agtaatgggc
tcccacttgt cctccatcac catgtggttt tccttggccc 840tcatcatcac caccatctcc
cactgtggct accaccttcc cttcctgcct tcgcctgaat 900tccacgacta ccaccatctc
aagttcaacc agtgctatgg ggtgctgggt gtgctggacc 960acctccatgg gactgacacc
atgttcaagc agaccaaggc ctacgagaga catgtcctcc 1020tgctgggctt caccccgctc
tctgagagca tcccagactc cccaaagagg atggagtgag 1080agacagccta agtgtcatcc
tggctgtccc tcagccatgg gatgcagaca cggcttcctg 1140attgcaccta acaatttgcc
tccttcggcc acacgcccta atgatggcac caccagggta 1200gagggaaggt cggcttcccg
gaaaagcagg gccaaggatg aggctttctt caaactactg 1260cccttgatgt ccctcaatgg
gatcaggagt tagcttaaaa aaaaaaaaaa acaactgcgg 1320ccgcaagctt at
13321401252DNAHomo
sapiensmisc_featureIncyte ID No 3359559 140gtgaggaagg tagctttagt
gaaaacaggg tttggagttg aacctatacg ggttcaaatt 60cgacttccgt ccaccaccga
gacctgcgct ccctgaggga ctcgctttcc catccgcgaa 120accaggacgg cgccgcctac
accccgcggc gttcggggcg ggctgaatgg gtcgctgagt 180aggggctaca cccacgccct
tcgctccccg cccccggcac ggagcgacgg ccacggcagt 240gtccccaagg caccgaaacc
gaggcggggg tctcggtccc tccgcgcaag gagggaggcg 300gaccgtacgt ggcaggactc
accgccccgc acgtggcagg actcaccgcc ccgcgccgtg 360ttctccgagc catggcgcca
gcgctgtggc gggcctgcaa cggactcatg gccgccttct 420tcgcgctggc ggccttggtg
caggtaaatg acccagatgc agaggtgtgg gtggtggtgt 480acacaatccc tgcagtactg
accctgcttg ttggacttaa ccctgaagtc acaggtaatg 540ttatttggaa aagtatctct
gcaatacaca tactcttttg tacggtgtgg gctgttggct 600tggcgtccta cctcttgcat
cgtacacaac agaacatctt acatgaggaa gaaggcaggg 660agctgtctgg tctggtgatt
attacagcat ggattatcct gtgccacagt tcctcaaaga 720atccagttgg tggaagaatt
caattggcta ttgccattgt aatcacactt ttcccattta 780tctcatgggt ctacatatat
attaacaagg aaatgcggtc ctcttggcca actcactgca 840agacagtaat ttaaataaat
tcaagaactt cgtttttaaa atgaatattt tcaatcaatt 900ttttataaac attaggggaa
caagccagga gtttatttca ggtaatttgg gctaatagtt 960ttaaaactcc aaataacttt
ttaagggtgc atataattcg atgtaagatt ggatgggaca 1020agtaagagat ggtctgatat
tttccagacg actttctgca gggtcttgtg tcataatgta 1080gtggaaaagg ctagagaata
gaagtttaaa aatacgagtt ctaacttaac tttgtaacta 1140tgtaatttgg gcaaatatat
aaacctcctg gtggatattt atctataaaa taggattaat 1200gccagagtgt acttacttac
acagtaacaa ggatcaatct agataatgta tg 1252141721DNAHomo
sapiensmisc_featureIncyte ID No 4289208 141ggagactgca ttccctgccc
tgaaggaatg tatttctaag gcaaataggc aacttggtac 60tatcttattc tgagtagaga
gtggagaaag tattttcaga ctgaagaaaa ctttgaaaag 120tcaggagcta agctgctcgg
agctcagtgc cgcagcatgg ctgtggtgga cgcgggaaac 180aacgggaaag ttcttgacag
agtctgtgtc cgctcagtcc ctgcactttt cctttccaaa 240tgcatctcgt tggatatgga
atagatcgta gatgttgtag actgagattt gggactatgt 300tgggaccgta caggtgaatg
tgccacctcc acaaatggct tctccgagtg agtcacgtca 360cctggtgcgt ggaggtggag
ctgcggctgg agtaaggctt gctgtgggac gccctcgtac 420tttgctcccc ttgcgggtgg
ttgccgaccc gagagcattg ggatcctccc ccgactggtg 480gctaagtttg tcctgtcccg
ggttggctgg ggaaaggggg gttgtgggtt cgggaaaaaa 540aagttccggg gaaattcctc
ctggcaaaat tccggttggt tcacattggg aacctggtta 600acctaaattt gggtaaaagg
ggtccctaat aattcgccct gggaaattcg tgggggggtt 660ccccaaggaa ccccctcgga
gtcccagggg ggagaaattt gaagagcccc tttcgaaatg 720g
7211421704DNAHomo
sapiensmisc_featureIncyte ID No 2454013 142cgcttcgcgc taacgcttgc
gatggttgaa ttcccctcct cacgccagcc taggagaaga 60agttcgtagt cccagaggtg
aggcaggagg cggcagtttc tggcgggtga gggcggagct 120gaagtgacag cggaggcgga
agcaacggtc ggtggggcgg agaagggggc tggccccagg 180aggaggagga aacccttccg
agaaaacagc aacaagctga gctgctgtga cagaggggaa 240caagatggcg gcgccgaagg
ggagcctctg ggtgaggacc caactggggc tcccgccgct 300gctgctgctg accatggcct
tggccggagg ttcggggacc gcttcggctg aagcatttga 360ctcggtcttg ggtgatacgg
cgtcttgcca ccgggcctgt cagttgacct accccttgca 420cacctaccct aaggaagagg
agttgtacgc atgtcagaga ggttgcaggc tgttttcaat 480ttgtcagttt gtggatgatg
gaattgactt aaatcgaact aaattggaat gtgaatctgc 540atgtacagaa gcatattccc
aatctgatga gcaatatgct tgccatcttg gttgccagaa 600tcagctgcca ttcgctgaac
tgagacaaga acaacttatg tccctgatgc caaaaatgca 660cctactcttt cctctaactc
tggtgaggtc attctggagt gacatgatgg actccgcaca 720gagcttcata acctcttcat
ggacttttta tcttcaagcc gatgacggaa aaatagttat 780attccagtct aagccagaaa
tccagtacgc accacatttg gagcaggagc ctacaaattt 840gagagaatca tctctaagca
aaatgtccta tctgcaaatg agaaattcac aagcgcacag 900gaattttctt gaagatggag
aaagtgatgg ctttttaaga tgcctctctc ttaactctgg 960gtggatttta actacaactc
ttgtcctctc ggtgatggta ttgctttgga tttgttgtgc 1020aactgttgct acagctgtgg
agcagtatgt tccctctgag aagctgagta tctatggtga 1080cttggagttt atgaatgaac
aaaagctaaa cagatatcca gcttcttctc ttgtggttgt 1140tagatctaaa actgaagatc
atgaagaagc agggcctcta cctacaaaag tgaatcttgc 1200tcattctgaa atttaagcat
ttttctttta aaagacaagt gtaatagaca tctaaaattc 1260cactcctcat agagctttta
aaatggtttc attggatata ggccttaaga aatcactata 1320aaatgcaaat aaagttactc
aaatctgtga agactgtatt tgctataact ttattggtat 1380tgtttttgta gtaatttaag
aggtggatgt ttgggattgt attattattt tactaatatc 1440tgtagctatt ttgttttttg
ctttggttat tgtttttttc ccttttctta gctatgagct 1500gatcattgct ccttctcacc
tcctgccatg atactgtcag ttaccttagt taacaagctg 1560aatatttagt agaaatgatg
cttctgctca ggaatggccc acaaatctgt aatttgaaat 1620ttagcaggaa atgaccttta
atgacactac attttcagga actgaaatca ttaaaatttt 1680atttgaataa ttaaaaaaaa
aaaa 1704143964DNAHomo
sapiensmisc_featureIncyte ID No 2454048 143cagacagcgg cgggcgcagg
acgtgcacta tggctcgggg ctcgctgcgc cggttgctgc 60ggctcctcgt gctggggctc
tggctggcgt tgctgcgctc cgtggccggg gagcaagcgc 120caggcaccgc cccctgctcc
cgcggcagct cctggagcgc ggacctggac aagtgcatgg 180actgcgcgtc ttgcagggcg
cgaccgcaca gcgacttctg cctgggctgc gctgcagcac 240ctcctgcccc cttccggctg
ctttggccca tccttggggg cgctctgagc ctgaccttcg 300tgctggggct gctttctggc
tttttggtct ggagacgatg ccgcaggaga gagaagttca 360ccacccccat agaggagacc
ggcggagagg gctgcccagc tgtggcgctg atccagtgac 420aatgtgcccc ctgccagccg
gggctcgccc actcatcatt cattcatcca ttctagagcc 480agtctctgcc tcccagacgc
ggcgggagcc aagctcctcc aaccacaagg ggggtggggg 540gcggtgaatc acctctgagg
cctgggccca gggttcaggg gaaccttcca aggtgtctgg 600ttgccctgcc tctggctcca
gaacagaaag ggagcctcac gctggctcac acaaaacagc 660tgacactgac taaggaactg
cagcatttgc acaggggagg ggggtgccct ccttcctaga 720ggccctgggg gccaggctga
cttggggggc agacttgaca ctaggcccca ctcactcaga 780tgtcctgaaa ttccaccacg
ggggtcaccc tggggggtta gggacctatt tttaacacta 840gggggctggc ccactaggag
ggctggccct aagatacaga cccccccaac tccccaaagc 900ggggaggaga tatttatttt
ggggagagtt tggaggggag ggagaattta ttaataaaag 960aatc
9641441564DNAHomo
sapiensmisc_featureIncyte ID No 2479282 144ggaattgtgg gagttgtgtc
tgccactcgg ctgccggagg ccgaaggtcc ctgactatgg 60ctccccagag cctgccttca
tctaggatgg ctcctctggg catgctgctt gggctgctga 120tggccgcctg cttcaccttc
tgcctcagtc atcagaacct gaaggagttt gccctgacca 180acccagagaa gagcagcacc
aaagaaacag agagaaaaga aaccaaagcc gaggaggagc 240tggatgccga agtcctggag
gtgttccacc cgacgcatga gtggcaggcc cttcagccag 300ggcaggctgt ccctgcagga
tcccacgtac ggctgaatct tcagactggg gaaagagagg 360caaaactcca atatgaggac
aagttccgaa ataatttgaa aggcaaaagg ctggatatca 420acaccaacac ctacacatct
caggatctca agagtgcact ggcaaaattc aaggaggggg 480cagagatgga gagttcaaag
gaagacaagg caaggcaggc tgaggtaaag cggctcttcc 540gccccattga ggaactgaag
aaagactttg atgagctgaa tgttgtcatt gagactgaca 600tgcagatcat ggtacggctg
atcaacaagt tcaatagttc cagctccagt ttggaagaga 660agattgctgc gctctttgat
cttgaatatt atgtccatca gatggacaat gcgcaggacc 720tgctttcctt tggtggtctt
caagtggtga tcaatgggct gaacagcaca gagcccctcg 780tgaaggagta tgctgcgttt
gtgctgggcg ctgccttttc cagcaacccc aaggtccagg 840tggaggccat cgaaggggga
gccctgcaga agctgctggt catcctggcc acggagcagc 900cgctcactgc aaagaagaag
gtcctgtttg cactgtgctc cctgctgcgc cacttcccct 960atgcccagcg gcagttcctg
aagctcgggg ggctgcaggt cctgaggacc ctggtgcagg 1020agaagggcac ggaggtgctc
gccgtgcgcg tggtcacact gctctacgac ctggtcacgg 1080agaagatgtt cgccgaggag
gaggctgagc tgacccagga gatgtcccca gagaagctgc 1140agcagtatcg ccaggtacac
ctcctgccag gcctgtggga acagggctgg tgcgagatca 1200cggcccacct cctggcgctg
cccgagcatg atgcccgtga gaaggtgctg cagacactgg 1260gcgtcctcct gaccacctgc
cgggaccgct accgtcagga cccccagctc ggcaggacac 1320tggccagcct gcaggctgag
taccaggtgc tggccagcct ggagctgcag gatggtgagg 1380acgagggcta cttccaggag
ctgctgggct ctgtcaacag cttgctgaag gagctgagat 1440gaggccccac accaggactg
gactgggatg ccgctagtga ggctgagggg tgccagcgtg 1500ggtgggcttc tcaggcagga
ggacatcttg gcagtgctgg cttggccatt aaatggaaac 1560ctgg
15641451385DNAHomo
sapiensmisc_featureIncyte ID No 2483432 145gtccgcccgc cgctgcgtcc
cggagtgcaa gtgagcttct cggctgcccc gcgggccggg 60gtgcggagcc gacatgcgcc
cgcttctcgg cctccttctg gtcttcgccg gctgcacctt 120cgccttgtac ttgctgtcga
cgcgactgcc ccgcgggcgg agactgggct ccaccgagga 180ggctggaggc aggtcgctgt
ggttcccctc cgacctggca gagctgcggg agctctctga 240ggtccttcga gagtaccgga
aggagcacca ggcctacgtg ttcctgctct tctgcggcgc 300ctacctctac aaacagggct
ttgccatccc cggctccagc ttcctgaatg ttttagctgg 360tgccttgttt gggccatggc
tggggcttct gctgtgctgt gtgttgacct cggtgggtgc 420cacatgctgc tacctgctct
ccagtatttt tggcaaacag ttggtggtgt cctactttcc 480tgataaagtg gccctgctgc
agagaaaggt ggaggagaac agaaacagct tgtttttttt 540cttattgttt ttgagacttt
tccccatgac accaaactgg ttcttgaacc tctcggcccc 600aattctgaac attcccatcg
tgcagttctt cttctcagtt cttatcggtt tgatcccata 660taatttcatc tgtgtgcaga
cagggtccat cctgtcaacc ctaacctctc tggatgctct 720tttctcctgg gacactgtct
ttaagctgtt ggccattgcc atggtggcat taattcctgg 780aaccctcatt aaaaaattta
gtcagaaaca tctgcaattg aatgaaacaa gtactgctaa 840tcatatacac agtagaaaag
acacatgatc tggattttct gtttgccaca tccctggact 900cagttgctta tttgtgtaat
ggatgtggtc ctctaaagcc cctcattgtt tttgattgcc 960ttctataggt gatgtggaca
ctgtgcatca atgtgcagtg tcttttcaga aaggacactc 1020tgctcttgaa ggtgtattac
atcaggtttt caaaccagcc ctggtgtagc agacactgca 1080acagatgcct cctagaaaat
gctgtttgtg gccgggcgcg gtggctcacg cctgtaatcc 1140cagcactttg ggaggccgag
gccggtgatt cacaaggtca ggagttcaag accagcctgg 1200ccaagatggt gaaatcctgt
ctctaataaa aatacaaaaa ttagccaggc gtggtggcag 1260gcacctgtaa tcccagctac
tcgggaggct gaggcaggag aattgcttga accaaggtgg 1320cagaggttgc agtaagccaa
gatcacacca ctgcactcca gcctgggtga tagagtgaga 1380ccaca
13851462031DNAHomo
sapiensmisc_featureIncyte ID No 2493824 146tgggcggggg cccacggcgg
ccactcactg agccccacgg gccgcagcgg cagtgacgta 60gggttggcgc acggatccgt
tgcggctgca gctctgcagt cgggccgttc cttcgccgcc 120gccaggggta gcggtgtagc
tgcgcagcgt cgcgcgcgct accgcaccca ggttcggccc 180ataggcgtct ggcagcccgg
cgccatcttc atcgagcgcc atggccgcag cctgcgggcc 240gggagcggcc gggtactgct
tgctcctcgg cttgcatttg tttctgctga ccgcgggccc 300tgccctgggc tggaacgacc
ctgacagaat gttgctgcgg gatgtaaaag ctcttaccct 360ccactatgac cgctatacca
cctcccgcag gctggatccc atcccacagt tgaaatgtgt 420tggaggcaca gctggttgtg
attcttatac cccaaaagtc atacagtgtc agaacaaagg 480ctgggatggg tatgatgtac
agtgggaatg taagacggac ttagatattg catacaaatt 540tggaaaaact gtggtgagct
gtgaaggcta tgagtcctct gaagaccagt atgtactaag 600aggttcttgt ggcttggagt
ataatttaga ttatacagaa cttggcctgc agaaactgaa 660ggagtctgga aagcagcacg
gctttgcctc tttctctgat tattattata agtggtcctc 720ggcggattcc tgtaacatga
gtggattgat taccatcgtg gtactccttg ggatcgcctt 780tgtagtctat aagctgttcc
tgagtgacgg gcagtattct cctccaccgt actctgagta 840tcctccattt tcccaccgtt
accagagatt caccaactca gcaggacctc ctcccccagg 900ctttaagtct gagttcacag
gaccacagaa tactggccat ggtgcaactt ctggttttgg 960cagtgctttt acaggacaac
aaggatatga aaattcagga ccagggttct ggacaggctt 1020gggaactggt ggaatactag
gatatttgtt tggcagcaat agagcggcaa cacccttctc 1080agactcgtgg tactacccgt
cctatcctcc ctcctaccct ggcacgtgga atagggctta 1140ctcacccctt catggaggct
cgggcagcta ttcggtatgt tcaaactcag acacgaaaac 1200cagaactgca tcaggatatg
gtggtaccag gagacgataa agtagaaagt tggagtcaaa 1260cactggatgc agaaattttg
gatttttcat cactttctct ttagaaaaaa agtactacct 1320gttaacaatt gggaaaaggg
gatattcaaa agttctgtgg tgttatgtcc agtgtagctt 1380tttgtattct attatttgag
gctaaaagtt gatgtgtgac aaaatactta tgtgttgtat 1440gtcagtgtaa catgcagatg
tatattgcag tttttgaaag tgatcattac tgtggaatgc 1500taaaaataca ttaatttcta
aaacctgtga tgccctaaga agcattaaga atgaaggtgt 1560tgtactaata gaaactaagt
acagaaaatt tcagttttag gtggttgtag ctgatgagtt 1620attacctcat agagactata
atattctatt tggtattata ttatttgatg tttgctgttc 1680ttcaaacatt taaatcaagc
tttggactaa ttatgctaat ttgtgagttc tgatcacttt 1740tgagctctga agctttgaat
cattcagtgg tggagatggc cttctggtaa ctgaatatta 1800ccttctgtag gaaaaggtgg
aaaataagca tctagaaggt tgttgtgaat gactctgtgc 1860tggcaaaaat gcttgaaacc
tctatatttc tttcgttcat aagaggtaaa ggtcaaattt 1920ttcaacaaaa gtcttttaat
aacaaaagca tgcagttctc tgtgaaatct caaatattgt 1980tgtaatagtc tgtttcaatc
ttaaaaagaa tcaataaaaa caaaaaaaaa a 20311471790DNAHomo
sapiensmisc_featureIncyte ID No 2555823 147gcgggaggac cggctgaccc
tggatggtga ggccgggtgc ccgcctgtgc ctggggagtg 60tggggagggg gctgtgcctg
gtgctccccc tgctttgtct cggtgcaggt ttcctcttcc 120tgaacacgct cttcatccag
cgcggccggc acgagaccac ctggaccatc ctgcggcgct 180tcggctacag cgatgccctg
gagctgactg cggactatct ctcccctctg atccacgtgc 240cccccggctg cagcacggag
ctcaaccacc ttggctacca gtttgtgcag agagtgtttg 300agaagcacga ccaggaccgc
gacggcgccc tctcgcccgt ggagctgcaa agccttttca 360gtgtgttccc agcagcgccc
tggggccccg agctcccacg cacagtccgc acagaggccg 420gccggttgcc cctgcacgga
tacctctgcc agtggaccct ggtgacctac ctggacgtcc 480ggagctgcct tggacaccta
ggctacctgg gctaccccac cctctgtgag caggaccagg 540cccatgccat cacagtcact
cgtgagaaga ggctggacca ggagaaggga cagacgcagc 600ggagcgtcct cctgtgcaag
gtggtagggg cccgtggagt gggcaagtct gccttcctgc 660aggcctttct cggccgcggc
ctggggcacc aggacacgag ggagcagcct cccggctacg 720ccatcgacac ggtgcaggtc
aatggacagg agaagtactt gatcctctgt gaggtgggca 780cagatggtct gctggccaca
tcgctggacg ccacctgtga cgttgcctgc ttgatgtttg 840atggcagtga cccaaagtcc
tttgcacatt gtgccagcgt ctacaagcac cattacatgg 900acgggcagac cccctgcctc
tttgtctcct ccaaggccga cctgcccgaa ggtgtcgcgg 960tgtctggccc atcaccggcc
gagttttgcc gcaagcaccg gctacccgct cccgtgccgt 1020tctcctgtgc tggcccagcc
gagcccagca ccaccatctt cacccagctc gccaccatgg 1080ccgccttccc acatttggtc
cacgcagagc tgcatccctc ttccttctgg ctccgggggc 1140tgctgggggt tgtcggggcc
gccgtggccg cagtcctcag cttctcactc tacagggtcc 1200tggtgaagag ccagtgaggc
ccctggtacc caagccccct cccctgacct gggtgtgcct 1260cgctgctggg gctctgcagg
ggcagcacag ctggggtgca ggccaggctg ccactccggg 1320aacgcctttg cgccgggact
ttttgtttct gaaggcagtc gatctgcagc ggggccttat 1380gctgccatgc actgccctgg
ctcctgccgg acccccaggg tgggccgtgg caggtggctg 1440agcaggagct cccaagtgcc
ggccaccgct gtcagggatt gcccacccct gggcatcatg 1500tgtgtggggc cggggagcac
aggtgtggga gctggtgacc ccagacccag aattctcagg 1560gctctacccc cctttcctgg
tcctaggtgg ccagtgggta tgaggagggc tggaaggcag 1620agctttgggc caaaagcagg
cgttgggggg tcccccctca agtttggagc cgtttccgtg 1680gttgtagcag aggaccggag
gttgggttcc tgattaaact tcactgtgtg ttttctatct 1740cggatcccag tctctgaaga
caacttgctt tgattcaacc taaaaaaaaa 17901481979DNAHomo
sapiensmisc_featureIncyte ID No 2598242 148ctactcctca ctggccggga
caactggtct tatcacggag gctggggcca ggcagccctt 60cggttcgggt gggcccatgg
accccagtcc aacgccgagg gaataggacc atccaaaagc 120ggaaccttcg cctcagaaaa
agggtgcggg acccctcctc accgtgcggt cacgcgtgga 180ccctgccagc agccaggcca
tggagctctc tgatgtcacc ctcattgagg gtgtgggtaa 240tgaggtgatg gtggtggcag
gtgtggtggt gctgattcta gccttggtcc tagcttggct 300ctctacctac gtagcagaca
gcggtagcaa ccagctcctg ggcgctattg tgtcagcagg 360cgacacatcc gtcctccacc
tggggcatgt ggaccacctg gtggcaggcc aaggcaaccc 420cgagccaact gaactccccc
atccatcaga gggtaatgat gagaaggctg aagaggcggg 480tgaaggtcgg ggagactcca
ctggggaggc tggagctggg ggtggtgttg agcccagcct 540tgagcatctc cttgacatcc
aaggcctgcc caaaagacaa gcaggtgcag gcagcagcag 600tccagaggcc cccctgagat
ctgaggatag cacctgcctc cctcccagcc ctggcctcat 660cactgtgcgg ctcaaattcc
tcaatgatac cgaggagctg gctgtggcta ggccagagga 720taccgtgggt gccctgaaga
gcaaatactt ccctggacaa gaaagccaga tgaaactgat 780ctaccagggc cgcctgctac
aagacccagc ccgcacactg cgttctctga acattaccga 840caactgtgtg attcactgcc
accgctcacc cccagggtca gctgttccag gcccctcagc 900ctccttggcc ccctcggcca
ctgagccacc cagccttggt gtcaatgtgg gcagcctcat 960ggtgcctgtc tttgtggtgc
tgttgggtgt ggtctggtac ttccgaatca attaccgcca 1020attcttcaca gcacctgcca
ctgtctccct ggtgggagtc accgtcttct tcagcttcct 1080agtatttggg atgtatggac
gataaggaca taggaagaaa atgaaaggca tggtctttct 1140cctttatggc ctccccactt
ttcctggcca gagctgggcc caagggccgg ggagggaggg 1200gtggaaagga tgtgatggaa
atctcctcca taggacacag gaggcaagta tgcggcctcc 1260ccttctcatc cacaggagta
cagatgtccc tcccgtgcga gcacaactca ggtagaaatg 1320aggatgtcat cttccttcac
ttttagggtc ctctgaagga gttcaaagct gctggccaag 1380ctcagtgggg agcctgggct
ctgagattcc ctcccacctg tggttctgac tcttcccagt 1440gtcctgcatg tctgccccca
gcacccaggg ctgcctgcaa gggcagctca gcatggcccc 1500agcacaactc cgtagggagc
ctggagtatc cttccatttc tcagccaaat actcatcttt 1560tgagactgaa atcacactgg
cgggaatgaa gattgtgcca gccttctctt atgggcacct 1620agccgccttc accttcttcc
tctacccctt agcaggaata gggtgtcctc ccttctttca 1680aagcactttg cttgcatttt
attttatttt tttaagagtc cttcatagag ctcagtcagg 1740aaggggatgg ggcaccaagc
caagccccca gcattgggag cggccaggcc acagctgctg 1800ctcccgtagt cctcaggctg
taagcaagag acagcactgg cccttggcca gcgtcctacc 1860ctgcccaact ccaaggactg
ggtatggatt gctgggccct aggctcttgc ttctggggct 1920attggagggt cagtgtctgt
gactgaataa agttccattt tgtggtcaaa aaaaaaaaa 19791491810DNAHomo
sapiensmisc_featureIncyte ID No 2634120 149ccccctgccc gcctctccgc
acaatacttg aacattcatc tgtactgaag tgttacttga 60accgggggaa tctcggacct
gggggagccg gggtgtgagg ggactggacc agcttggact 120gagacctgag accgggccgg
tgggcgccca tttgggactg cgccaccccc aggcttgttc 180ttgttttact gtattgagcg
gcggcacccg ccggacccgc attatggctg ggggcgccag 240ccaagaatgg ggaccatggg
actcctccag cctggctctt cccactcttt catcgtcatg 300gaaacttgta tcccatttgc
ccagggaact gccactcctg gttgccatgg aaatagcagc 360caacggacac ctcccgatgc
cagtgctaag gctggaaatg gccccctctt agttgccatg 420ggaacctagt aacagactct
gctggccctc cttccctgcc ccttcctcga gcgcggggtg 480gggcttcggg accccgggga
tgagccgggc caggtcccgc ccctccgcgc aggcctccgg 540ggggccgggg cttaccatgt
aggggagggg agatctatcc acatacctca ggtggccatg 600gtggaggtgc agctggagag
tgaccacgag tacccaccag gcctgctggt ggccttcagt 660gcctgcacca ccgtgctggt
ggctgtgcac ctctttgcac tcatggtctc cacgtgtctg 720ctgccccaca ttgaagctgt
gagcaacatc cacaacctca actctgtcca ccagtcgcca 780caccagagac tgcaccgcta
cgtggagctg gcctggggct tctccactgc cctgggcacc 840tttctcttcc ttgctgaagt
tgtcctggtt ggttgggtca agtttgtgcc cattggggct 900cccttggaca caccgacccc
catggtgccc acatcccggg tgcccgggac tctggcacca 960gtggctacct cccttagtcc
agcttccaat ctcccacggt cctctgcgtc tgcagcaccg 1020tcccaggctg agccagcctg
cccaccccgg caagcctgtg gtggtggtgg ggcccatggg 1080ccaggctggc aagcagccat
ggcctccaca gccatcatgg tacccgtggg gctcgtgttt 1140gtggcctttg ccctgcattt
ctaccgctcc ttggtggcac acaagacaga ccgctacaag 1200caggaactag aggaactgaa
tcgcctgcag ggggagctgc aggctgtgtg agactggtgt 1260tagccaccgc tcactgcaag
cactgcctcc ctccggggtc tgtaagaggc cgcaggggcc 1320tacagacctc atccccccat
cccctggctg gagccacttc cagtggccac tctcaggcag 1380agttcagatt cctgcccgca
ggtcctctgg gctgggcctt ggggcagctc ccacattccc 1440agggattttc cccatcagtc
tgtcccttgg gttttgcaag ctactctgca cctgggctgg 1500cctcagttga aggatcatgc
agtagataga ggggaggcag ggagagcttg tgggaccttc 1560agtgctgact ttagccacca
tttccattcc tatacaggat gtgaaggtca gaaggcagcc 1620aattgttggt ttaatttttt
ttttttttga gacagtctgt ttcccaggct ggagtgtagt 1680gatacagtca cagctcactg
tagcctcgac cttccaggct caaaagatgc tcccaccaca 1740gcctcccagg tagtgagtag
ctggtactac aggtgtgtgc tgccacaccc gactaatttt 1800tttgtagaga
1810150535DNAHomo
sapiensmisc_featureIncyte ID No 2765411 150gaggaaccag aaatttgtcc
ttgaataatg tttcccgtgt tgggctggat cttgatagca 60gttgttatca tcattcttct
gatttttaca tctgtcaccc gatgcctatc tccagttagt 120tttctgcagc tgaaattctg
gaaaatctat ttggaacagg agcagcagat ccttaaaagt 180aaagccacag agcatgcaac
tgaattggca aaagagaata ttaaatgttt ctttgagggc 240tcgcatccaa aagaatataa
cactccaagc atgaaagagt ggcagcaaat ttcatcactg 300tatactttca atccgaaggg
ccagtactac agcatgttgc acaaatatgt caacagaaaa 360gagaagactc acagtatcag
gtctactgaa ggagatacgg tgattcctgt tcttggcttt 420gtagattcat ctggtataaa
cagcactcct gagttatgac cttttgaatg agtagaaaaa 480aaaattgttt tgaattattg
ctttattaaa aaataaacat tggtaaaaaa aaaaa 535151891DNAHomo
sapiensmisc_featureIncyte ID No 2769412 151gaaaagaatc cgaggcacag
ataaagataa gttttactgt catgctgctt ttaacataac 60agagcaacat cacctaggaa
aaaagtttgt aggaggattt ttaatccata tatttgtctt 120atggctagat aaagatttct
ctgaaaaaaa gaagcatgtc aggaatctct gggtgcccct 180ttttcctctg gggacttcta
gcattgttgg gcttggcttt ggttatatca ctgatcttca 240atatttccca ctatgtggaa
aagcaacgac aagataaaat gtacagctac tccagtgacc 300acaccagggt tgatgagtat
tatattgaag acacaccaat ttatggtaac ttagatgata 360tgatttcaga accaatggat
gaaaattgct atgaacaaat gaaagcccga ccagagaaat 420ctgtaaataa gatgcaggaa
gccaccccat ctgcacaggc aaccaatgaa acacagatgt 480gctacgcctc acttgatcac
agcgttaagg ggaagcgtag aaagcccagg aaacagaata 540ctcatttctc agacaaggat
ggagatgagc aactacatgc aatagatgcc agcgtttcta 600agaccacctt agtagacagt
ttctccccag aaagccaggc agtagaggaa aacattcatg 660atgatcccat cagactgttt
ggattgatcc gtgctaagag agaacctata aactagctgg 720accatgatct agttcaatga
tttggctcct attgaagatg gcttctaaga aaacaagatg 780cacagaggac acagaaggac
ttggcagcag ggtgatgacc tgatcatttg ttgatgggat 840ggtggcttac ctcttattca
cagcttacac ttatgcatgc caaatgtaag g 8911522311DNAHomo
sapiensmisc_featureIncyte ID No 2842779 152gggcgcggca ccgcagctgg
atggctgggg ccgcccggat cgccgccgcc gccgccgccg 60cacgtacgtg gcatgcctgg
atgtccctgc cctggctgtg gcatggcggg cccaaggctc 120ctcttcctca ctgcccttgc
cctggagctc ttgggaaggg ctgggggttc ccagccggcc 180ctccggagcc gggggactgc
gacggcctgt cgcctggaca acaaggaaag cgagtcctgg 240ggggctctgc tgagcggaga
gcggctggac acctggatct gctccctcct gggttccctc 300atggtggggc tcagtggggt
cttcccgttg cttgtcattc ccctagagat ggggaccatg 360ctgcgctcag aagctggggc
ctggcgcctg aagcagctgc tcagcttcgc cctgggggga 420ctcttgggca atgtgtttct
gcatctgctg cccgaagcct gggcctacac gtgcagcgcc 480agccctggtg gtgaggggca
gagcctgcag cagcagcaac agctggggct gtgggtcatt 540gctggcatcc tgaccttcct
ggcgttggag aagatgttcc tggacagcaa ggaggagggg 600accagccagg cccccaacaa
agaccccact gctgctgccg ccgcactcaa tggaggccac 660tgtctggccc agccggctgc
agagcccggc ctcggtgccg tggtccggag catcaaagtc 720agcggctacc tcaacctgct
ggccaacacc atcgataact tcacccacgg gctggctgtg 780gctgccagct tccttgtgag
caagaagatc gggctcctga caaccatggc catcctcctg 840catgagatcc cccatgaggt
gggcgacttt gccatcctgc tccgggccgg ctttgaccga 900tggagcgcag ccaagctgca
actctcaaca gcgctggggg gcctactggg cgctggcttc 960gccatctgta cccagtcccc
caagggagta gaggagacgg cagcctgggt cctgcccttc 1020acctctggcg gctttctcta
catcgccttg gtgaacgtgc tccctgacct cttggaagaa 1080gaggacccgt ggcgctccct
gcagcagctg cttctgctct gtgcgggcat cgtggtaatg 1140gtgctgttct cgctcttcgt
ggattaactt tccctgatgc cgacgcccct gccccctgca 1200gcaataagat gctcggattc
actctgtgac cgcatatgtg agaggcagag agggcgagtg 1260gctgcgagag agaatgagcc
tcccgccaga caggagggag gtgcgtgtgg atgtatgtgg 1320tgtgcacatg tggccagagg
tgtgtgcgcg agaccgacac tgtgatccct gtgctgggtc 1380cggggcccag tgtagcgcct
gtccccagcc atgctgtggt tacctctcct tgccgccctg 1440tcaccttcac ctcctggagt
aagcagcgag gaagagcagc actggtccca agcagaggcc 1500ttgccctgct gggaccccgg
gagtgagagc agcccaagga tcccagggtg cagggaactc 1560cagagctgcc cacctcccac
tgccccctca gcacacacac agtccccagg cggcctaggg 1620gccaaggctg gggcggcttt
ggtccctttt cctggccctt ccttccccac ttctaagcca 1680aagaaaggag aggcaggtgc
tcctgtaccc cagccccact cagcactgac agtccccagc 1740tcctagtagt gagctgggag
gcgcttccta agaccctttc ctcagggctg ccctgggagc 1800tcattcctgg ccaacacgcc
ctggcagcac cagcagctct tgccacctcc agctgccaaa 1860cagcagcctg ccgggcaggg
agcagcccca ggccagagag gcctcccggt ccagctcagg 1920gatgctcctg ccagcacagg
ggccagggac tcctggagca ggcacatagt gagcccgggc 1980agccctgccc agctcaggcc
cctttccttc cccattgagg ttggggtagg tgggggcggt 2040gagggctcca cgttgtcagc
gctcaggaat gtgctccggc agagtgctga agccataatc 2100cccaaccatt tcccttgtct
gacgcccagg tactcagctg gcccactcca cagccaggcc 2160tggccctgcc cttcaccgtg
gatgttttca gaagtggcca tcgagaggtc tggatggttt 2220tatagcaact ttgctgtgat
tccgtttgta tctgtaaata tttgttctat agataagata 2280caaataaata ttatccacat
aaaaaaaaaa a 23111532169DNAHomo
sapiensmisc_featureIncyte ID No 2966260 153gctgcaggcg gcgacggcta
caccatgggc cggctgctgc gggccgcccg gctgccgccg 60ctgctttcgc cgctgctgct
tctgctggtt gggggagcgt tcctgggtgc ctgtgtggct 120gggtctgatg agcctggccc
agagggcctc acctccacct ccctgctaga cctcctgctg 180cccactggct tggagccact
ggactcagag gagcctagtg agaccatggg cctgggagct 240gggctgggag cccctggctc
aggcttcccc agcgaagaga atgaagagtc tcggattctg 300cagccaccac agtacttctg
ggaagaggag gaagagctga atgactcaag tctggacctg 360ggacccactg cagattatgt
ttttcctgac ttaactgaga aggcaggttc cattgaagac 420accagccagg ctcaagagct
gccaaacctc ccctctccct tgcccaagat gaatctggtt 480gagcctccct ggcatatgcc
tcccagagag gaggaagaag aggaagagga agaggaggag 540atggagaagg aagaggtaga
gaaacaagat gtggaggaag aggaggagct gctccctgtg 600aatggatccc aagaagaagc
caagcctcag gtccgtgact tttctctcac cagcagcagc 660cagaccccag gggccaccaa
aagcaggcat gaagactccg gggaccaggc ctcatcaggt 720gtggaggtgg agagcagcat
ggggcccagc ttgctgctgc cttcagtcac cccaactata 780gtgactccgg gggaccagga
ctccaccagc caagaggcag aggccacagt gctgccagct 840gcagggcttg gggtagagtt
cgaggctcct caggaagcaa gcgaggaagc cactgcagga 900gcagctggtt tgtctggcca
gcacgaggag gtgccggcct tgccttcatt ccctcaaacc 960acagctccca gtggggccga
gcacccagat gaagatcccc ttggctctag aacctcagcc 1020tcttccccac tggcccctgg
agacatggaa ctgacacctt cctctgctac cttgggacaa 1080gaagatctca accagcagct
cctagaaggg caggcagctg aagctcaatc caggataccc 1140tgggattcta cgcaggtgat
ctgcaaggac tggagcaatc tggctgggaa aaactacatc 1200attctgaaca tgacagagaa
catagactgt gaggtgttcc ggcagcaccg ggggccacag 1260ctcctggccc tggtggaaga
ggtgctgccc cgccatggca gtggccacca tggggcctgg 1320cacatctctc tgagcaagcc
cagcgagaag gagcagcacc ttctcatgac actggtgggc 1380gagcaggggg tggtgcccac
tcaagatgtc ctttccatgc tgggtgacat ccgcaggagc 1440ctggaggaga ttggcatcca
gaactattcc acaaccagca gctgccaggc gcgggccagc 1500caggtgcgca gcgactacgg
cacgctcttc gtggtgctgg tggtcattgg ggccatctgc 1560atcatcatca ttgcgcttgg
cctgctctac aactgctggc agcgccggct gcccaagctc 1620aagcacgtgt cgcacggcga
ggagctgcgc ttcgtggaga acggctgcca cgacaacccc 1680acgctggacg tggccagcga
cagccagtcg gagatgcagg agaagcaccc cagcctgaac 1740ggcggcgggg ccctcaacgg
cccggggagc tggggggcgc tcatgggggg caagcgggac 1800cccgaggact cggacgtgtt
cgaggaggac acgcacctgt gagcgcagcc gaggcgcagg 1860ccgagtgggc cgccaggacc
aagcgaggtg gaccccgaaa cggacggccc ggagccagca 1920caagccccga gcctacccgg
gccgcccccg cggcctggcc ctcggcgcgg gctccttccc 1980gcttcccccg acttcacacg
gcggacttcg gaccaactcc ctcactcccg cccgaggggc 2040aggcctcaaa gcccgccttg
gccccgcttt cccgcccctg aaccccggcc ccgcgggcgg 2100cgggcggcgc ttcctgcgcc
ccgggactca attaaacccg cccggagacc acgccgggcc 2160cagcgaaaa
21691541480DNAHomo
sapiensmisc_featureIncyte ID No 2993326 154ggatggggat ctttgtctgg
tccttaacca acaggtattt caccaactta ttagcccttt 60cttgtaaaat ggccacatct
cgcggtggtg caggcctccg gccccatggg atccgcctgt 120aattactgcc acttctctca
tccccattca gatgcttgga ctttcggttt cttttgcccc 180gggtcctggt tgtgggctcc
aggctcaact gagccagata gtcatctgcc agggcctgga 240cagcagcagc aacctgagtc
tcaagggcac ttacgttggt ctgagcagag gctatcttgg 300cctgggcccc ttggtcagca
tttggagtct ggctttcagt tgcccgagcc ttagtggcag 360ccttccgagc cctagaccct
ctcttgaccc gcagggtggc tgccagggct tggtttgtga 420ctatctgagt ggcaagtggg
gcctcagaga tctcagagac agaatttggg cccctgctgg 480cagccttctt gcccttggat
tttttgggcc tgatagccac tactgaggcc tcaatctgcc 540tggtagctgc gtcagtgaca
tttagagcct ctatatgctc agtgtcagta tttatgacct 600tagcaattgt cttcctggct
ttggaggctt tcttggttcg gatggaggct gctgtggtgt 660ggatactggc tgtctcattg
gtaatttggc cttgggtggt agctgtatgg gtggcagttg 720cagccagcga gacctcggtg
gcactagcta tggccttatt tgcagccttc ttagccttgg 780aagctttctt aggcttgata
gaggttatca aggcttggga actggctgac tcattggcaa 840ttggagcgtg aatattctgt
gagatgactg gtagctttag gacctgcaag ggtgacttca 900gctgtatagt gccaccctca
tggccagttg gggattggga gccttgggct gccttggcag 960taactctctt catcttgttg
gctttcttag gctgagcagt gactgaagaa gcctgagtat 1020tggttacctc agtggtaggt
aaagcctggc tgatctgggt aatgactggc aggtttaaag 1080cctgccaagt tattttgggc
ttgttggtgg caatctcatt ggcagctggg actggagggg 1140cagcaggtgc agccttagta
atagtcttta taggggcctt cttggtcttg cttttcttag 1200gccggttgac aactggtggg
tccatggcca gggagtcctt ggttgccgcc aacagggtat 1260gcatcagcag gacactgtcc
tcttctgtgg tctcagtctg tatatctgga gggaagggaa 1320gccccaggct ccccggggga
ggcagagggc cctgaaatag aggcacccta tatccgtagt 1380catttctcct atccatcttt
ctgggaggcc gagtaacagg tgagcctcgt cttcttgaat 1440ccagaaggcg tctgctctct
ccaagtctgc tctctccaag 14801551222DNAHomo
sapiensmisc_featureIncyte ID No 3001124 155agaaatatca tatggttact
ttggtatctg acacagccat gacaccaatt gctagtgtag 60acacaatagc tgtgtgtctt
tttgcaggag cctggggagg ggccatggtg ccaatgcact 120tactggggag actggagaag
ccgcttctcc tcctgtgctg cgcctccttc ctactggggc 180tggctttgct gggcataaag
acggacatca cccccgttgc ttatttcttt ctcacattgg 240gtggcttctt cttgtttgcc
tatctcctgg tccggtttct ggaatggggg cttcggtccc 300agctccaatc aatgcagact
gagagcccag ggccctcagg caatgcacgg gacaatgaag 360cctttgaagt gccagtctat
gaagaggccg tggtgggact agaatcccag tgccgccccc 420aagagttgga ccaaccaccc
ccctacagca ctgttgtgat acccccagca cctgaggagg 480aacaacctag ccatccagag
gggtccagga gagccaaact ggaacagagg cgaatggcct 540cagaggggtc catggcccag
gaaggaagcc ctggaagagc tccaatcaac cttcggcttc 600ggggaccacg ggctgtgtcc
actgctcctg atctgcagag cttggcggca gtccccacat 660tagagcctct gactccaccc
cctgcctatg atgtctgctt tggtcaccct gatgatgata 720gtgtttttta tgaggacaac
tgggcacccc cttaaatgac tctcccaaga tttctcttct 780ctccacacca gacctcgttc
atttgactaa cattttccag cgcctactat gtgtcagaaa 840caagtgtttc tgcctggaca
tcataaatgg ggacttggac cctgaggaga gtcaggccac 900ggtaagccct tcccagctga
gatatgggtg gcataatttg agtcttctgg caacatttgg 960tgacctaccc catatccaat
atttccagcg ttagattgag gatgaggtag ggaggtgatc 1020cagagaaggc ggagaaggaa
gaagtaacct ctgagtggcg gctattgctt ctgttccagg 1080tgctgttcga gctgttagaa
cccttaggct tgacagcttt gtgagttatt attgaaaaat 1140gaggattcca agagtcagag
gagtttgata atgtgcacga gggcacactg ctagtaaata 1200acattaaaat aactcgaatg
ac 12221561983DNAHomo
sapiensmisc_featureIncyte ID No 3120070 156ggaaccgcct ccccgcggcc
tcttcgcttt tgtggcggcg cccgcgctcg caggccactc 60tctgctgtcg cccgtcccgc
gcgctcctcc gacccgctcc gctccgctcc gctcggcccc 120gcgccgcccg tcaacatgat
ccgctgcggc ctggcctgcg agcgctgccg ctggatcctg 180cccctgctcc tactcagcgc
catcgccttc gacatcatcg cgctggccgg ccgcggctgg 240ttgcagtcta gcgaccacgg
ccagacgtcc tcgctgtggt ggaaatgctc ccaagagggc 300ggcggcagcg ggtcctacga
ggagggctgt cagagcctca tggagtacgc gtggggtaga 360gcagcggctg ccatgctctt
ctgtggcttc atcatcctgg tgatctgttt catcctctcc 420ttcttcgccc tctgtggacc
ccagatgctt gtcttcctga gagtgattgg aggtctcctt 480gccttggctg ctgtgttcca
gatcatctcc ctggtaattt accccgtgaa gtacacccag 540accttcaccc ttcatgccaa
ccctgctgtc acttacatct ataactgggc ctacggcttt 600gggtgggcag ccacgattat
cctgattggc tgtgccttct tcttctgctg cctccccaac 660tacgaagatg accttctggg
caatgccaag cccaggtact tctacacatc tgcctaactt 720gggaatgaat gtgggagaaa
atcgctgctg ctgagatgga ctccagaaga agaaactgtt 780tctccaggcg actttgaacc
cattttttgg cagtgttcat attattaaac tagtcaaaaa 840tgctaaaata atttgggaga
aaatattttt taagtagtgt tatagtttca tgtttatctt 900ttattatgtt ttgtgaagtt
gtgtcttttc actaattacc tatactatgc caatatttcc 960ttatatctat ccataacatt
tatactacat ttgtaagaga atatgcacgt gaaacttaac 1020actttataag gtaaaaatga
ggtttccaag atttaataat ctgatcaagt tcttgttatt 1080tccaaataga atggactcgg
tctgttaagg gctaaggaga agaggaagat aaggttaaaa 1140gttgttaatg accaaacatt
ctaaaagaaa tgcaaaaaaa aagtttattt tcaagccttc 1200gaactattta aggaaagcaa
aatcatttcc taaatgcata tcatttgtga gaatttctca 1260ttaatatcct gaatcattca
tttcagctaa ggcttcatgt tgactcgata tgtcatctag 1320gaaagtacta tttcatggtc
caaacctgtt gccatagttg gtaaggcttt cctttaagtg 1380tgaaatattt agatgaaatt
ttctctttta aagttcttta tagggttagg gtgtgggaaa 1440atgctatatt aataaatctg
tagtgttttg tgtttatatg ttcagaacca gagtagactg 1500gattgaaaga tggactgggt
ctaatttatc atgactgata gatctggtta agttgtgtag 1560taaagcatta gggtcattcc
tgtcacaaaa gtgccactaa aacagcctca ggagaataaa 1620tgacttgctt ttctaaatct
caggtttatc tgggctctat catatagaca ggcttctgat 1680agtttgcaac tgtaagcaga
aacctacata tagttaaaat cctggtcttt cttggtaaac 1740agattttaaa tgtctgatat
aaaacatgcc acaggagaat tcggggattt gagtttctct 1800gaatagcata tatatgatgc
atcggatagg tcattatgat tttttaccat ttcgacttac 1860ataatgaaaa ccaattcatt
ttaaatatca gattattatt ttgtaagttg tggaaaaagc 1920taattgtagt tttcattatg
aagttttccc aataaaccag gtattctaaa cttgaaaaaa 1980aaa
19831571835DNAHomo
sapiensmisc_featureIncyte ID No 3133035 157accaggctgt gtaagagctg
ctggagtagg cacccattta aagaaaaaat gaagaagcag 60caataaagaa gttgtaatcg
ttacctagac aaacagagaa ctggttttga cagtgtttct 120agagtgcttt ttattatttt
cctgacagtt gtgttccacc atgattactt tctccttcag 180cgaataggct aaatgaatat
gaaacagaaa agcgtgtatc agcaaaccaa agcacttctg 240tgcaagaatt ttcttaagaa
atggaggatg aaaagagaga gcttattgga atggggcctc 300tcaatacttc taggactgtg
tattgctctg ttttccagtt ccatgagaaa tgtccagttt 360cctggaatgg ctcctcagaa
tctgggaagg gtagataaat ttaatagctc ttctttaatg 420gttgtgtata caccaatatc
taatttaacc cagcagataa tgaataaaac agcacttgct 480cctcttttga aaggaacaag
tgtcattggg gcacaaataa tacacacatg gacgaaatac 540ttctggaaaa tttacatatg
ctatgggaat catctttaat gaaactttct cttataagtt 600aatatttttc cagggatata
acagtccact ttggaaagaa gatttctcag gtgactttcc 660atatcaaata tcattatgga
atttttcatg ttttcaacat aaagaacaga ggaggttggg 720caacagagat gctttcaatg
acacatgaga aaacagggaa agcccatttc attgctgaac 780ttatttcaag gtcaatcgta
tgttcctact acaggatgac tgcaaaaatt gtagagtcat 840ccaacatata tgtgttgagc
atgcagatgc atgtgtcaaa ggacacatga gtaacccaag 900actgacaggc cccagcctca
ggtgagattc caggttagca gcaaagacag acattgaaca 960attaatgaca agtacaagaa
aaagtgtttc atgggcactt agaccagggg ttcctaatag 1020tgggacctag agaagtccta
cctggggaaa tgatgtttaa agggagacca gaatgaatag 1080caggtgtgag gtgctagaag
cattgtgttt cagatagaag aaaggtaatt gtgaagaccc 1140tgaggtgaga aaggacatct
gttcctagat ctggaagaag agcagtatag ctgaacaagg 1200aacatgaaaa ggaatgtaat
gggagagtga agctgaagtc actcaagtgc tacctcctgt 1260ggcatcttgt aaacctaggc
aaggaatagc cactgagtca ctttaatcac ggcaaaagtg 1320taattcggtt tccaaaatta
ggggaacact ccagatatag cccggggaat agattgccaa 1380gaggctatgg agaatgtcaa
gaaacaagga gtccattatg gctggagcag agtgtttgct 1440ttcatctcct ttttattttc
taagactttc taagcatgct gtggtctgca agaataaaat 1500tgctttatta aaaactttca
tttatttgct tcctttttct atgtagttaa aagtctactg 1560gtgggccagc catggtggct
cacacctgta atcccagcac tttgagaggc cgaggtgcac 1620ggatcacctg aggtcaggag
ttcgagacca gcctggccaa catggtgaaa gcctgtctct 1680actaaaaata caaaaattag
ctagacaacg tggcctgtgc ctataatccc agctttggga 1740ggctgaggta ggagaatcac
ttgaacccag gaggtggagg ttgcagtgag ctgagatcgc 1800accactgcac tccagcatgg
gcaacagagt gagat 1835158819DNAHomo
sapiensmisc_featureIncyte ID No 3436879 158cacgactcac tatagggaat
ttggccctcg aggcaagaat tcggcacgag gtcgacaccc 60tcatcctgaa aggtattgcg
cacgatgcac ggccatcaag taccactttt ctcagcccat 120ccgcttgcga aacattcctt
ttaatttaac caagaccata cagcaagatg agtggcacct 180gcttcattta agaagaatca
ctgctggctt cctcggcatg gccgtagccg tccttctctg 240cggctgcatt gtggccacag
tcagtttctt ctgggaggag agcttgaccc agcacgtggc 300tggactcctg ttcctcatga
cagggatatt ttgcaccatt tccctctgta cttatgccgc 360cagtatctcg tatgatttga
accggctccc aaagctaatt tatagcctgc ctgctgatgt 420ggaacatggt tacagctggt
ccatcttttg cgcctggtgc agtttaggct ttattgtggc 480agctggaggt ctctgcatcg
cttatccgtt tattagccgg accaagattg cacagctaaa 540gtctggcaga gactccacgg
tatgactgtc ctcactgggc ctgtccacag tgcgagcgac 600tcctgagggg aacagcgcgg
agttcaggag tccaagcaca aagcggtctt ttacattcca 660acctgttgcc tgccagccct
ttctggatta ctgatagaaa atcatgcaaa acctcccaac 720ctttctaagg acaagactac
tgtggattca agtgctttaa tgactattta tgcgttgact 780gtgagaatag ggagccatgc
catgggacat ttctaggtg 819
User Contributions:
Comment about this patent or add new information about this topic: