Patent application title: Molecular Markers Associated with Soybean Tolerance to Low Iron Growth Conditions
Inventors:
Hongwu Jia (Grover, MO, US)
Bradley La Vallee (Clarkson Valley, MO, US)
Roger L. Lussenden (Grover, MO, US)
Jennifer L. Yates (St. Louis, MO, US)
Jennifer L. Yates (St. Louis, MO, US)
Xianghai Ye (Ankeny, IA, US)
IPC8 Class: AC12Q168FI
USPC Class:
800267
Class name: Method of using a plant or plant part in a breeding process which includes a step of sexual hybridization method of breeding involving a genotypic or phenotypic marker molecular marker is used
Publication date: 2014-12-11
Patent application number: 20140366214
Abstract:
The present invention provides methods and compositions for identifying
soybean plants that are tolerant or have improved tolerance, or those
that are susceptible to, iron deficient growth conditions. The methods
use molecular markers to identify, select, and/or introgress genetic loci
modulating phenotypic expression of an iron deficiency tolerance trait in
soybean plant breeding. Methods are provided for screening germplasm
entries for the performance and expression of this trait.Claims:
1. A method of creating a population of soybean plants with a low iron
growth condition tolerant phenotype, comprising: a. providing a first
population of soybean plants; b. detecting in said soybean plant an
allele in at least one polymorphic nucleic acid marker locus associated
with the low iron growth condition tolerant phenotype wherein the marker
locus genetically linked by less than 20 cM to a: i. linkage group J
genomic region flanked by loci ASMBL--10470 and TC370075, ii.
linkage group E genomic region flanked by loci DB975811 and
GLYMA15G06010, iii. linkage group M genomic region flanked by loci
TA75172.sub.--3847 and TC380682, iv. linkage group D2 genomic region
flanked by loci TC350035 and Gm_W82_CR17.G8870, or v. linkage group O
genomic region flanked by loci NA and Cf16144d; c. selecting said plant
containing said allele to provide a plant having a genotype associated
with a low iron growth condition tolerant phenotype; and d. producing a
population of offspring from at least one of said selected soybean
plants.
2. A method of claim 1 wherein the marker locus is genetically linked by less than 15 cM to the: a. linkage group J genomic region flanked by loci ASMBL--10470 and TC370075, b. linkage group E genomic region flanked by loci DB975811 and GLYMA15G06010, c. linkage group M genomic region flanked by loci TA75172.sub.--3847 and TC380682, d. linkage group D2 genomic region flanked by loci TC350035 and Gm_W82_CR17.G8870, or e. linkage group 0 genomic region flanked by loci NA and Cf16144d.
3. The method of claim 1 wherein the marker locus is genetically linked by less than 10 cM to the: a. linkage group J genomic region flanked by loci ASMBL--10470 and TC370075, b. linkage group E genomic region flanked by loci DB975811 and GLYMA15G06010, c. linkage group M genomic region flanked by loci TA75172.sub.--3847 and TC380682, d. linkage group D2 genomic region flanked by loci TC350035 and Gm_W82_CR17.G8870, or e. linkage group 0 genomic region flanked by loci NA and Cf16144d.
4. A method of claim 1 wherein the marker locus is in the linkage group J genomic region flanked by loci ASMBL--10470 and TC370075.
5. The method of claim 1 wherein a second marker locus is in the linkage group E genomic region flanked by loci DB975811 and GLYMA15G06010.
6. The method of claim 1, wherein a second marker locus is in the linkage group M genomic region flanked by loci TA75172.sub.--3847 and TC380682.
7. The method of claim 1, wherein a second marker locus is in the linkage group D2 genomic region flanked by loci TC350035 and Gm_W82_CR17.G8870.
8. The method of claim 1 wherein a second marker locus is in the linkage group 0 genomic region flanked by loci NA and Cf16144d.
9. A method of creating a population of soybean plants comprising at least one allele associated with the low iron growth condition tolerant phenotype comprising at least one of SEQ ID NOS 1-147, the method comprising the steps of: a. genotyping a first population of soybean plants, said population containing at least one allele associated with the low iron growth condition tolerant phenotype, the at least one allele associated with the low iron growth condition tolerant phenotype comprising at least one of SEQ ID NOS 1-147; b. selecting from said first population one or more identified soybean plants containing said at least one allele associated with the low iron growth condition tolerant phenotype comprising at least one of SEQ ID NOS 1-147; and c. producing from said selected soybean plants a second population, thereby creating a population of soybean plants comprising at least one allele associated with the low iron growth condition tolerant phenotype comprising at least one of SEQ ID NOS 1-147.
Description:
CROSS REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of priority to U.S. Provisional Application Ser. No. 61/833,129 filed Jun. 10, 2013.
INCORPORATION OF SEQUENCE LISTING
[0002] A sequence listing containing the file named "46-21-59627.txt" which is 99,843 bytes (measured in MS-Windows®) and created on May 30, 2014, comprises "147" nucleotide sequences, is provided herewith via the USPTO's EFS system and is herein incorporated by reference in its entirety.
BACKGROUND OF INVENTION
[0003] Soybean, Glycine max (L.) Merril, is a major economic crop worldwide and is a primary source of vegetable oil and protein (Sinclair and Backman, Compendium of Soybean Diseases, 3rd Ed. APS Press, St. Paul, Minn., p. 106. (1989). Growing demand for low cholesterol and high fiber diets has increased soybean's importance as a health food.
[0004] Soybean varieties grown in the United States have a narrow genetic base. Six introductions, `Mandarin,` `Manchu,` `Mandarin` (Ottawa), `Richland,` `AK` (Harrow), and `Mukden,` contributed nearly 70% of the germplasm represented in 136 cultivar releases. To date, modern day cultivars can be traced back from these six soybean strains from China. In a study conducted by Cox et al., Crop Sci. 25:529-532 (1988), the soybean germplasm is comprised of 90% adapted materials, 9% un-adapted, and only 1% from exotic species. The genetic base of cultivated soybean could be widened through exotic species. In addition, exotic species may possess such key traits as disease, stress, and insect resistance.
[0005] The availability of a specific micronutrient, such as iron (Fe), is often related to soil characteristics. Soil pH has a major impact on the availability of Fe. Iron deficiency has been a common, serious, and yield-limiting problem for soybean production in some parts of the United States.
[0006] Iron is one of the necessary micronutrients for soybean plant growth and development. It is also needed for the development of chlorophyll. Iron is involved in energy transfer, plant respiration, and plant metabolism. It is also a constituent of certain enzymes and proteins in plants. Iron is necessary for soybean root nodule formation and plays a role in N-fixation; thus, low levels of Fe can lead to reduced nitrogen content and poor yield.
[0007] When iron is limited, soybean plants can develop iron deficiency chlorosis (IDC). Soybean IDC is the result of a complex interaction among many factors including soil chemistry, environmental conditions, and soybean physiology and genetics. The most common IDC symptom is interveinal chlorosis in which leaf tissue of newly developed soybean leaves turn yellow, while the veins remain green. The leaves may develop necrotic spots that eventually coalesce and fall off the plant. Iron deficiency symptoms are similar to that of Manganese (Mn) deficiency; therefore, only soil and tissue analysis can distinguish the two micronutrient deficiencies.
[0008] Severe yield reductions due to IDC have been reported throughout the North-Central U.S with losses estimated to be around $120 million annually. In some instances, yield loss can be greater than 50%. Typically, soybean IDC symptoms occur between the first and third trifoliate stage, so under less-severe iron deficiency conditions, symptoms may improve later in the season.
[0009] Soybean plants grown in calcareous soils with a pH of greater than 7.4 or in heavy, poorly drained, and compacted soils may exhibit IDC symptoms due to insufficient iron uptake. However, soil pH is not a good indicator and does not correlate very well with IDC. Symptoms are highly variable between years and varieties and depend on other soil factors and weather conditions.
[0010] There is, however, a direct relationship between IDC incidence and concentrations of calcium carbonate and soluble salts. Iron uptake is adversely impacted by high concentrations of phosphorous (P), manganese (Mn), and zinc (Zn). Moreover, high levels of calcium (Ca) in the soil cause Fe molecules to bind tightly to the soil particles, making them unavailable for uptake. Therefore it is important to monitor the levels of calcium carbonate and soluble salts in the soil. Sandy soils with low organic matter may also lead to a greater incidence of IDC symptoms.
[0011] Weather also plays a role in IDC symptoms. Cool soil temperature and wet weather, combined with marginal levels of available Fe in the soil can increase IDC symptoms.
[0012] Soybean producers have sought to develop plants tolerant to low iron growth conditions (thus not exhibiting IDC) as a cost-effective alternative or supplement to standard foliar, soil and/or seed treatments (e.g., Hintz et al. (1987) "Population development for the selection of high-yielding soybean cultivars with resistance to iron deficiency chlorosis," Crop Sci. 28:369-370). Studies also suggest that cultivar selection is more reliable and universally applicable than foliar sprays or iron seed treatment methods, though environmental and cultivar selection methods can also be used effectively in combination (Goos and Johnson (2000) "A Comparison of Three Methods for Reducing Iron-Deficiency Chlorosis in Soybean" Agronomy Journal 92:1135-1139; and Goos and Johnson "Seed Treatment, Seeding Rate, and Cultivar Effects on Iron Deficiency Chlorosis of Soybean" Journal of Plant Nutrition 24 (8) 1255-1268).
[0013] Soybean cultivar improvement for IDC tolerance can be performed using classical breeding methods, or, more preferably, using marker assisted selection (MAS). Genetic markers for low iron growth condition tolerance/susceptibility have been identified (e.g., Lin et al. (2000) "Molecular characterization of iron deficiency chlorosis in soybean" Journal of Plant Nutrition 23:1929-1939). Recent work suggests that marker assisted selection is particularly beneficial when selecting plants because the strength of environmental effects on chlorosis expression impedes progress in improving tolerance. See also, Charlson et al., "Associating SSR Markers with Soybean Resistance to Iron Chlorosis," Journal of Plant Nutrition, vol. 26, nos. 10 & 11; 2267-2276 (2003). U.S. Pat. Nos. 7,977,533 and 7,582,806 disclose genetic loci associated with iron deficiency tolerance in soybean.
[0014] There is a need in the art of plant breeding to identify additional markers linked to genomic regions associated with tolerance to low iron growth conditions (e.g., IDC tolerance) in soybean. There is, in particular, a need for numerous markers that are closely associated with low iron growth condition tolerance in soybean that permit introgression of such regions in the absence of extraneous linked DNA from the source germplasm containing the regions. Additionally, there is a need for rapid, cost-efficient methods to assay the absence or presence of IDC tolerance loci in soybean.
SUMMARY OF INVENTION
[0015] The present invention provides for methods of creating a population of soybean plants with a low iron growth condition tolerant phenotype, comprising a.) providing a first population of soybean plants; b.) detecting in said soybean plant an allele in at least one polymorphic nucleic acid marker locus associated with the low iron growth condition tolerant phenotype wherein the marker locus genetically linked by less than 20 cM to a linkage group J genomic region flanked by loci ASMBL--10470 and TC370075, linkage group E genomic region flanked by loci DB975811 and GLYMA15G06010, linkage group M genomic region flanked by loci TA75172--3847 and TC380682, linkage group D2 genomic region flanked by loci TC350035 and Gm_W82_CR17.G8870, or linkage group O genomic region flanked by loci NA and Cf16144d; c.) selecting said plant containing said allele to provide a plant having a genotype associated with a low iron growth condition tolerant phenotype; and d.) producing a population of offspring from at least on of said selected soybean plants.
[0016] In some embodiments of the invention, the marker locus is genetically linked by less than 15 cM to the linkage group J genomic region flanked by loci ASMBL--10470 and TC370075, linkage group E genomic region flanked by loci DB975811 and GLYMA15G06010, linkage group M genomic region flanked by loci TA75172--3847 and TC380682, linkage group D2 genomic region flanked by loci TC350035 and Gm_W82_CR17.G8870, or linkage group 0 genomic region flanked by loci NA and Cf16144d.
[0017] In some embodiments of the invention, the marker locus is genetically linked by less than 10 cM to the linkage group J genomic region flanked by loci ASMBL--10470 and TC370075, linkage group E genomic region flanked by loci DB975811 and GLYMA15G06010, linkage group M genomic region flanked by loci TA75172--3847 and TC380682, linkage group D2 genomic region flanked by loci TC350035 and Gm_W82_CR17.G8870, or linkage group 0 genomic region flanked by loci NA and Cf16144d.
[0018] In some embodiments of the invention a second marker locus associated with the low iron growth condition tolerant phenotype is in linkage group J genomic region flanked by loci ASMBL--10470 and TC370075.
[0019] In some embodiments of the invention a second marker locus associated with the low iron growth condition tolerant phenotype is in linkage group E genomic region flanked by loci DB975811 and GLYMA15G06010.
[0020] In some embodiments of the invention a second marker locus associated with the low iron growth condition tolerant phenotype is in linkage group M genomic region flanked by loci TA75172--3847 and TC380682.
[0021] In some embodiments of the invention a second marker locus associated with the low iron growth condition tolerant phenotype is in linkage group D2 genomic region flanked by loci TC350035 and Gm_W82_CR17.G8870.
[0022] In some embodiments of the invention a second marker locus associated with the low iron growth condition tolerant phenotype is in linkage group 0 genomic region flanked by loci NA and Cf16144d.
[0023] Also provided herein are methods for creating a population of soybean plants comprising at least one allele associated with the low iron growth phenotype comprising at least one of SEQ ID NOs: 1-147. In certain embodiments, these methods comprise a.) genotyping a first population of soybean plants, said population containing at least one allele associated with the low iron growth condition tolerant phenotype, the at least one allele associated with the low iron growth condition tolerant phenotype comprising at least one of SEQ ID NOS 1-147; b.) selecting from said first population one or more identified soybean plants containing said at least one allele associated with the low iron growth condition tolerant phenotype comprising at least one of SEQ ID NOS 1-147; and c.) producing from said selected soybean plants a second population, thereby creating a population of soybean plants comprising at least one allele associated with the low iron growth condition tolerant phenotype comprising at lest one of SEQ ID NOS 1-147.
[0024] Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
DESCRIPTION OF INVENTION
I. Definitions
[0025] Unless otherwise indicated herein, nucleic acid sequences are written left to right in 5' to 3' orientation. Numeric ranges recited within the specification are inclusive of the numbers defining the range and include each integer or any non-integer fraction within the defined range. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.
[0026] As used herein, an "allele" refers to one of two or more alternative forms of a genomic sequence at a given locus on a chromosome. When all the alleles present at a given locus on a chromosome are the same, that plant is homozygous at that locus. If the alleles present at a given locus on a chromosome differ, that plant is heterozygous at that locus.
[0027] As used herein, the term "bulk" refers to a method of managing a segregating population during inbreeding that involves growing the population in a bulk plot, harvesting the self-pollinated seed of plants in bulk, and using a sample of the bulk to plant the next generation.
[0028] As used herein, the term "comprising" means "including but not limited to".
[0029] As used herein, the term "locus" refers to a position on a genomic sequence that is usually found by a point of reference; e.g., a short DNA sequence that is a gene, or part of a gene or intergenic region. A locus may refer to a nucleotide position at a reference point on a chromosome, such as a position from the end of the chromosome.
[0030] As used herein, "linkage group J" corresponds to the soybean linkage group J described in Choi, et al., Genetics. 2007 May; 176(1): 685-696. Linkage group J, as used herein, also corresponds to soybean chromosome 16 (as described on the World Wide Web at soybase.org/LG2Xsome.php).
[0031] As used herein, "linkage group E" corresponds to the soybean linkage group E described in Choi, et al., Genetics. 2007 May; 176(1): 685-696. Linkage group E, as used herein, also corresponds to soybean chromosome 15 (as described on the World Wide Web at soybase.org/LG2Xsome.php).
[0032] As used herein, "linkage group M" corresponds to the soybean linkage group M described in Choi, et al., Genetics. 2007 May; 176(1): 685-696. Linkage group M, as used herein, also corresponds to soybean chromosome 7 (as described on the World Wide Web at soybase.org/LG2Xsome.php).
[0033] As used herein, "linkage group D2" corresponds to the soybean linkage group D2 described in Choi, et al., Genetics. 2007 May; 176(1): 685-696. Linkage group D2, as used herein, also corresponds to soybean chromosome 17 (as described on the World Wide Web at soybase.org/LG2Xsome.php).
[0034] As used herein, "linkage group O" corresponds to the soybean linkage group 0 described in Choi, et al., Genetics. 2007 May; 176(1): 685-696. Linkage group 0, as used herein, also corresponds to soybean chromosome 10 (as described on the World Wide Web at soybase.org/LG2Xsome.php).
[0035] As used herein, "polymorphism" means the presence of one or more variations of a nucleic acid sequence at one or more loci in a population of at least two members. The variation can comprise, but is not limited to, one or more nucleotide base substitutions, the insertion of one or more nucleotides, a nucleotide sequence inversion, and/or the deletion of one or more nucleotides.
[0036] As used herein, "genotype" means the genetic component of the phenotype and it can be indirectly characterized using markers or directly characterized by nucleic acid sequencing.
[0037] As used herein, the term "introgressed," when used in reference to a genetic locus, refers to a genetic locus that has been introduced into a new genetic background. Introgression of a genetic locus can thus be achieved through both plant breeding methods or by molecular genetic methods. Such molecular genetic methods include, but are not limited to, various plant transformation techniques and/or methods that provide for homologous recombination, non-homologous recombination, site-specific recombination, and/or genomic modifications that provide for locus substitution or locus conversion. In certain embodiments, introgression could thus be achieved by substitution of a locus not associated with tolerance to low iron growth conditions with a corresponding locus that is associated with low iron growth condition tolerance or by conversion of a locus from a non-tolerant genotype to a tolerant genotype.
[0038] As used herein, "linkage" refers to relative frequency at which types of gametes are produced in a cross. For example, if locus A has genes "A" or "a" and locus B has genes "B" or "b," then a cross between parent 1 with AABB and parent 2 with aabb can produce four possible gametes segregating into AB, Ab, aB and ab genotypes. The null expectation is that there will be independent equal segregation into each of the four possible genotypes, i.e. no linkage between locus A and locus B results in 1/4 of the gametes from each genotype (AB, Ab, aB, and ab). Segregation of gametes into genotype ratios differing from 1/4 indicates linkage between locus A and locus B. As used herein, linkage can be between two markers, or alternatively between a marker and a phenotype. A marker locus can be associated with (linked to) a trait, e.g., a marker locus can be associated with tolerance or improved tolerance to a plant pathogen when the marker locus is in linkage disequilibrium (LD) with the tolerance trait. The degree of linkage of a molecular marker to a phenotypic trait (e.g., a QTL) is measured, e.g., as a statistical probability of co-segregation of that molecular marker with the phenotype.
[0039] As used herein, the linkage relationship between a molecular marker and a phenotype is given is the statistical likelihood that the particular combination of a phenotype and the presence or absence of a particular marker allele is random. Thus, the lower the probability score, the greater the likelihood that a phenotype and a particular marker will cosegregate. In some embodiments, a probability score of 0.05 (p=0.05, or a 5% probability) of random assortment is considered a significant indication of co-segregation. However, the present invention is not limited to this particular standard, and an acceptable probability can be any probability of less than 50% (p<0.5). For example, a significant probability can be less than 0.25, less than 0.20, less than 0.15, or less than 0.1.
[0040] As used herein, the term "linked" or "genetically linked," when used in the context of markers and/or genomic regions, means that recombination between two linked loci occurs with a frequency of equal to or less than about 10% (i.e., are separated on a genetic map by not more than 10 cM). In one aspect, any marker of the invention is linked (genetically and physically) to any other marker that is at or less than 50 cM distant. In another aspect, any marker of the invention is closely linked (genetically and physically) to any other marker that is in close proximity, e.g., at or less than 10 cM distant. Two closely linked markers on the same chromosome can be positioned 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.75, 0.5 or 0.25 cM or less from each other.
[0041] As used herein, "marker," "genetic marker," "molecular marker," and "marker locus" refer to a nucleotide sequence or encoded product thereof (e.g., a protein) used as a point of reference when identifying a linked locus. A marker can be derived from genomic nucleotide sequence or from expressed nucleotide sequences (e.g., from a spliced RNA, a cDNA, etc.), or from an encoded polypeptide, and can be represented by one or more particular variant sequences, or by a consensus sequence. In another sense, a marker is an isolated variant or consensus of such a sequence. The term also refers to nucleic acid sequences complementary to or flanking the marker sequences, such as nucleic acids used as probes or primer pairs capable of amplifying the marker sequence. A "marker probe" is a nucleic acid sequence or molecule that can be used to identify the presence of a marker locus, e.g., a nucleic acid probe that is complementary to a marker locus sequence. Alternatively, in some aspects, a marker probe refers to a probe of any type that is able to distinguish (i.e., genotype) the particular allele that is present at a marker locus. A "marker locus" is a locus that can be used to track the presence of a second linked locus, e.g., a linked locus that encodes or contributes to expression of a phenotypic trait. For example, a marker locus can be used to monitor segregation of alleles at a locus, such as a QTL, that are genetically or physically linked to the marker locus. Thus, a "marker allele," alternatively an "allele of a marker locus" is one of a plurality of polymorphic nucleotide sequences found at a marker locus in a population that is polymorphic for the marker locus.
[0042] As used herein, "marker assay" means a method for detecting a polymorphism at a particular locus using a particular method. Marker assays thus include, but are not limited to, measurement of at least one phenotype (such as disease resistance, seed color, flower color, or other visually detectable trait as well as any biochemical trait), restriction fragment length polymorphism (RFLP), single base extension, electrophoresis, sequence alignment, allelic specific oligonucleotide hybridization (ASO), random amplified polymorphic DNA (RAPD), microarray-based polymorphism detection technologies, and the like.
[0043] As used herein, "phenotype" means the detectable characteristics of a cell or organism which can be influenced by gene expression.
[0044] As used herein, a "nucleic acid molecule," of naturally occurring origins or otherwise, may be an "isolated" nucleic acid molecule. An isolated nucleic acid molecule is one removed from its native cellular and chromosomal environment. The term "isolated" is not intended to encompass molecules present in their native state. If desired, an isolated nucleic acid may be substantially purified, meaning that it is the predominant species present in a preparation. A substantially purified molecule may be at least about 60% free, preferably at least about 75% free, more preferably at least about 90% free, and most preferably at least about 95% free from the other molecules (exclusive of solvent) present in the preparation.
[0045] As used herein, "quantitative trait locus (QTL)" means a genetic domain that effects a phenotype that can be described in quantitative terms and can be assigned a "phenotypic value" which corresponds to a quantitative value for the phenotypic trait. A QTL can act through a single gene mechanism or by a polygenic mechanism. In some aspects, the invention provides QTL genomic regions, where a QTL (or multiple QTLs) that segregates with low iron tolerance is contained in those regions. In one embodiment of this invention, the boundaries of genomic regions are drawn to encompass markers that will be linked to one or more QTL. In other words, the chromosome interval is drawn such that any marker that lies within that region (including the terminal markers that define the boundaries of the region) is genetically linked to the QTL. Each region comprises at least one QTL, and furthermore, may indeed comprise more than one QTL. Close proximity of multiple QTL in the same region may obfuscate the correlation of a particular marker with a particular QTL, as one marker may demonstrate linkage to more than one QTL. Conversely, e.g., if two markers in close proximity show co-segregation with the desired phenotypic trait, it is sometimes unclear if each of those markers identifying the same QTL or two different QTL. Regardless, knowledge of how many QTL are in a particular interval is not necessary to make or practice the invention.
[0046] As used herein, the term "soybean" means Glycine max and includes all plant varieties that can be bred with soybean, including wild soybean species. In certain embodiments, soybean plants from the species Glycine max and the subspecies Glycine max L. ssp. max or Glycine max ssp. formosana can be genotyped using the compositions and methods of the present invention. In an additional aspect, the soybean plant is from the species Glycine soja, otherwise known as wild soybean, can be genotyped using these compositions and methods. Alternatively, soybean germplasm derived from any of Glycine max, Glycine max L. ssp. max, Glycine max ssp. Formosana, and/or Glycine soja can be genotyped using compositions and methods provided herein.
[0047] As used herein, the term "single nucleotide polymorphism," also referred to by the abbreviation "SNP," means a polymorphism at a single site wherein the polymorphism constitutes any or all of a single base pair change, an insertion of one or more base pairs, and/or a deletion of one or more base pairs.
[0048] As used herein, the phrases "low iron," "low-available iron," "low soluble iron," "low iron conditions," "low iron growth conditions," iron shortage" or "iron deficiency" or the like refer to conditions where iron availability is less than optimal for soybean growth, and can cause plant pathology, e.g., IDC, due to the lack of metabolically-available iron. It is recognized that under "iron deficient" conditions, the absolute concentration of atomic iron may be sufficient, but the form of the iron (e.g., its incorporation into various molecular structures) and other environmental factors may make the iron unavailable for plant use. For example, high carbonate levels, high pH, high salt content, herbicide applications, cool temperatures, saturated soils, or other environmental factors can decrease iron solubility, and reduce the solubilized forms of iron that the plant requires for uptake. One of skill in the art is familiar with assays to measure iron content of soil, as well as those concentrations of iron that are optimal or sub-optimal for plant growth.
[0049] As used herein, the terms "tolerance" or "improved tolerance" in reference to a soybean plant grown in low iron growth conditions is an indication that the soybean plant is less affected by the low-available iron conditions with respect to yield, survivability and/or other relevant agronomic measures, compared to a less tolerant, more "susceptible" plant. Tolerance is a relative term, indicating that a tolerant" plant survives and/or produces better yield of soybean in low-available iron growth conditions compared to a different (less tolerant) plant (e.g., a different soybean strain) grown in similar low-available iron conditions. That is, the low-available iron growth conditions cause a reduced decrease in soybean survival and/or yield in a tolerant soybean plant, as compared to a susceptible soybean plant. As used in the art, iron-deficiency "tolerance" is sometimes used interchangeably with iron-deficiency "resistance."
[0050] One of skill will appreciate that soybean plant tolerance to low-available iron conditions varies widely, and can represent a spectrum of more-tolerant or less-tolerant phenotypes. However, by simple observation, one of skill can generally determine the relative tolerance or susceptibility of different plants, plant lines or plant families under low-available iron conditions, and furthermore, will also recognize the phenotypic gradations of "tolerant."
[0051] In one example, a plant's tolerance can be approximately quantitated using a chlorosis scoring system. In such a system, a plant that is grown in a known iron-deficient area, or in low-available iron experimental conditions, and is assigned a tolerance rating of between 1 (highly susceptible; most or all plants dead; those that live are stunted and have little living tissue) to 9 (highly tolerant; yield and survivability not significantly affected; all plants normal green color). See also, Dahiya and Singh (1979) "Effect of salinity, alkalinity and iron sources on availability of iron," Plant and Soil 51:13-18.
II. Description of the Invention: Overview
[0052] In accordance with the present invention, Applicants have discovered genomic regions, associated markers, and associated methods for identifying and associating genotypes that affect an iron deficient growth condition tolerance trait.
[0053] The advent of molecular genetic markers has facilitated mapping and selection of agriculturally important traits in soybean. Markers tightly linked to tolerance genes are an asset in the rapid identification of tolerant soybean lines on the basis of genotype by the use of marker assisted selection (MAS). Introgressing tolerance genes into a desired cultivar is also facilitated by using suitable nucleic acid markers.
[0054] The use of markers to infer a phenotype of interest results in the economization of a breeding program by substituting costly, time-intensive phenotyping assays with genotyping assays. Further, breeding programs can be designed to explicitly drive the frequency of specific, favorable phenotypes by targeting particular genotypes (U.S. Pat. No. 6,399,855). Fidelity of these associations may be monitored continuously to ensure maintained predictive ability and, thus, informed breeding decisions (U.S. Patent Application 2005/0015827). In this case, costly, time-intensive phenotyping assays required for determining if a plant or plants contains a genomic region associated with a low iron growth condition tolerant phenotype can be supplanted by genotypic assays that provide for identification of a plant or plants that contain the desired genomic region.
III. QTL Associated with Tolerance to Low Iron Growth Conditions
[0055] Provided herewith are certain other QTL that have also been identified as associated with a desirable phenotype of tolerance to growth in low iron conditions when present in certain allelic forms.
[0056] These several soybean QTL provided--that can be associated with a desirable low iron growth condition tolerant phenotype when present in certain allelic forms--are located on soybean chromosome 16 (soybean linkage group J), soybean chromosome 15 (soybean linkage group E), soybean chromosome 7 (soybean linkage group M), soybean chromosome 17 (soybean linkage group D2), and soybean chromosome 10 (soybean linkage group O).
[0057] Tables 1, 3, 5, 7, 9 (corresponding to chromosomes 16, 15, 7, 17, and 10, respectively) shows the relative positions of certain markers that have been disclosed in public databases and non-public (bolded) polymorphic nucleic acid markers, designated SEQ ID NOs, genetic positions (cM) on the chromosome, the allelic forms of certain polymorphic nucleic acid markers associated with a low iron growth condition tolerant phenotype, the allelic forms of those polymorphic nucleic acid markers not associated with the low iron growth condition tolerant phenotype, and the polymorphic position within the sequence of the polymorphic nucleic acid marker. The bolded markers have been identified as within a genomic region associated with a low iron growth condition tolerant phenotype.
[0058] Tables 2, 4, 6, 8, 10 (corresponding to chromosomes 16, 15, 7, 17, and 10, respectively) provides for each polymorphic nucleic acid marker/SEQ ID NO: the linkage group corresponding to the chromosome and the relative physical map positions of the markers.
TABLE-US-00001 TABLE 1 Chromosome 16--QTL on chromosome 16 associated with a low iron growth condition tolerant phenotype. Allelic Allelic cM Form(s) Form(s) Map Associated Not- Position With Associated Marker on Low with Locus Chromo- Fe Low Name/ some Tolerance Fe Poly- SEQ Sixteen [-LOG10 Pheno- Tolerance morphic ID NO. (16) (P)] type1 Phenotype1 Position asmbl_10470 * * * * * BI427060 * * * * * 1 104.6 3.2 GG AA 201 2 104.9 3.9 CC GG 201 3 105.2 2.9 GG AA 201 4 105.5 3.9 CC AA 281 5 105.6 3.2 CC TT 618 6 105.6 2.8 CC AA 201 7 105.7 3.0 CC TT 201 8 106.2 2.9 CC TT 201 9 106.3 3.1 GG CC 201 10 106.4 3.8 CC TT 201 11 107.1 3.6 AA CC 201 12 107.2 3.2 GG CC 201 13 107.3 2.7 AA GG 201 14 107.6 3.6 GG AA 201 15 107.6 2.5 CC TT 176 16 107.9 2.5 CC TT 201 17 108.5 2.7 CC TT 201 18 108.8 3.3 TT CC 201 19 108.8 2.6 CC TT 201 20 108.8 3.0 AA CC 925 21 109.5 2.2 TT CC 201 22 109.8 2.4 TT AA 380 23 110.1 2.5 GG AA 201 24 110.5 4.0 TT AA 201 25 110.8 4.3 CC AA 639 26 113.8 3.3 TT AA 123 27 111.1 5.0 CC TT 201 28 111.3 2.5 TT CC 201 29 111.4 2.4 TT CC 201 30 111.5 2.8 CC AA 201 31 111.7 3.7 AA GG 201 32 112 2.8 AA GG 201 33 112.1 2.6 GG CC 201 34 112.3 4.4 AA GG 201 35 112.6 3.3 CC AA 201 36 112.8 3.1 TT CC 347 37 112.9 2.9 TT CC 201 38 113.1 2.8 AA GG 201 39 113.4 2.9 TT GG 201 40 113.6 2.6 TT CC 201 41 113.7 2.7 CC TT 201 42 113.7 2.8 TT CC 155 43 113.7 3.0 AA GG 261 44 113.8 2.4 TT CC 201 45 113.8 2.3 AA GG 194 46 113.9 2.7 GG TT 201 47 114.1 2.4 TT CC 201 48 114.4 2.4 TT CC 285 TA67482_3847 * * * * * TC370075 * * * * *
TABLE-US-00002 TABLE 2 Chromosome 16--Physical positions of certain genetic markers on soybean chromosome 16 in proximity to QTL associated with a low iron growth condition tolerant phenotype. Marker Locus Name/SEQ ID Linkage Chromo- Middle Start End NO. Group some Position Position Position asmbl_10470 J 16 31363336 31362972 31363701 BI427060 J 16 31363515 31363238 31363792 1 J 16 31369584 31369434 31369735 2 J 16 31443226 31443076 31443377 3 J 16 31477826 31478015 31477638 4 J 16 31480456 31480836 31480077 5 J 16 31486792 31486642 31486943 6 J 16 31480983 31480833 31481134 7 J 16 31510525 31510375 31510676 8 J 16 31516209 31516059 31516360 9 J 16 31521798 31521648 31521949 10 J 16 31553067 31552917 31553218 11 J 16 31557341 31557191 31557492 12 J 16 31563379 31563229 31563530 13 J 16 31574585 31574435 31574736 14 J 16 31575341 31575137 31575545 15 J 16 31577004 31576854 31577155 16 J 16 31580785 31580635 31580936 17 J 16 31614520 31614370 31614671 18 J 16 31614870 31615435 31614305 19 J 16 31618039 31617889 31618190 20 J 16 31643780 31643630 31643931 21 J 16 31785190 31785040 31785341 22 J 16 31804506 31804356 31804657 23 J 16 31831923 31831773 31832074 24 J 16 31889649 31889499 31889800 25 J 16 31904942 31904792 31905093 26 J 16 31911271 31911121 31911422 27 J 16 31925976 31925826 31926127 28 J 16 31952216 31952066 31952367 29 J 16 31990398 31990248 31990549 30 J 16 31997204 31997054 31997355 31 J 16 32031978 32031828 32032129 32 J 16 32079262 32079112 32079413 33 J 16 32100628 32100039 32101218 34 J 16 32154510 32154694 32154327 35 J 16 32161907 32161757 32162058 36 J 16 32204175 32204025 32204326 37 J 16 32242461 32242311 32242612 38 J 16 32279082 32278743 32279421 39 J 16 32291528 32291900 32291157 40 J 16 32347306 32347156 32347457 41 J 16 32434829 32446198 32423461 42 J 16 32484745 32484595 32484896 43 J 16 32519227 32519077 32519378 44 J 16 32672805 32672655 32672956 45 J 16 32852516 32852366 32852667 46 J 16 32852826 32852442 32853211 47 J 16 32854325 32854591 32854059 48 J 16 31374689 31374539 31374840 TA67482_3847 J 16 32859166 32858544 32859789 TC370075 J 16 32859832 32859787 32859877
TABLE-US-00003 TABLE 3 Chromosome 15--QTL on chromosome 15 associated with a low iron growth condition tolerant phenotype. Allelic cM Allelic Form(s) Map Form(s) Not- Position Associated Associated on With with Marker Chromo- Low Low Locus some Fe Fe Poly- Name/ Fifteen [-LOG Tolerance Tolerance morphic SEQ ID NO (15) 10(P)] Phenotype1 Phenotype1 Position DB975811 * * * * * TA67841_3847 * * * * * 49 22.5 3.0 TT CC 201 50 22.7 4.1 CC TT 201 51 22.9 3.1 CC GG 201 52 23.6 3.4 TT CC 201 53 23.7 3.6 CC TT 201 54 23.9 3.4 TT GG 354 55 23.9 4.1 CC CC 355 56 24.1 3.2 TT AA 61 57 24.7 4.1 AA GG 201 58 24.7 4.1 GG AA 240 59 24.7 4.1 GG AA 428 60 24.9 3.3 CC TT 993 61 25.4 3.9 TT CC 201 62 25.6 5.6 TT CC 201 63 26.4 3.9 CC AA 201 64 31.4 3.0 TT CC 201 65 31.6 3.0 TT GG 201 66 31.7 3.1 AA GG 201 67 31.8 4.6 GG AA 201 68 32.4 3.1 AA GG 201 69 32.5 3.3 GG AA 201 TC370174 * * * * * Glyma15g06010 * * * * *
TABLE-US-00004 TABLE 4 Chromosome 15--Physical positions of certain genetic markers on soybean chromosome 5 in proximity to QTL associated with a low iron growth condition tolerant phenotype. Marker Locus Linkage Chromo- Middle Start End Name/SEQ ID NO. Group some Position Position Position DB975811 E 15 2656905 2656345 2657466 TA67841_3847 E 15 2656990 2656430 2657551 49 E 15 2657551 2657401 2657702 50 E 15 2674098 2673948 2674249 51 E 15 2701610 2701460 2701761 52 E 15 2796176 2796026 2796327 53 E 15 2822719 2822569 2822870 54 E 15 2847164 2847410 2846919 55 E 15 2847207 2847057 2847358 56 E 15 3039453 3039024 3039882 57 E 15 3043572 3043814 3043331 58 E 15 3048934 3048784 3049085 59 E 15 3154544 3154394 3154695 60 E 15 3178097 3177947 3178248 61 E 15 3301037 3300887 3301188 62 E 15 3402856 3402706 3403007 63 E 15 3756773 3756509 3757037 64 E 15 2662233 2662435 2662031 65 E 15 2663725 2663953 2663497 66 E 15 2667350 2667200 2667501 67 E 15 2697692 2697542 2697843 68 E 15 2722948 2722798 2723099 69 E 15 2729212 2729062 2729363 TC370174 E 15 2772449 2772299 2772600 Glyma15g06010 E 15 2790560 2790410 2790711
TABLE-US-00005 TABLE 5 Chromosome 7--QTL on chromosome 7 associated with a low iron growth condition tolerant phenotype. Allelic cM Allelic Form(s) Map Form(s) Not- Position Associated Associated on With Low with Marker Chromo Fe Low Locus some Tolerance Fe Poly- Name/ Seven [-LOG10 Pheno- Tolerance morphic SEQ ID NO. (7) (P)] type1 Phenotype1 Position TA75172_3847 * * * * * Contig4349 * * * * * 70 46.7 1.5 AA GG 201 71 51.8 1.5 AA GG 650 72 53.5 1.9 AA TT 201 73 53.7 2.0 TT GG 201 74 54.5 1.8 GG TT 201 75 58.6 1.4 GG AA 201 76 58.9 1.5 GG AA 201 77 59.6 1.4 TT CC 201 78 59.7 2.4 GG AA 201 79 59.8 2.1 TT CC 201 80 96.4 3.0 TT CC 201 81 98.2 3.0 GG CC 201 82 98.6 3.2 TT CC 201 83 102.1 2.3 GG AA 201 84 102.8 2.2 AA GG 201 85 102.9 2.2 AA GG 201 AW705305 * * * * * TC380682 * * * * *
TABLE-US-00006 TABLE 6 Chromosome 7--Physical positions of certain genetic markers on soybean chromosome 7 in proximity to QTL associated with a low iron growth condition tolerant phenotype. Marker Locus Name/ Linkage Chromo- Middle Start End SEQ ID NO. Group some Position Position Position TA75172_3847 M 7 5421539 5421375 5421704 Contig4349 M 7 5422610 5422460 5422761 70 M 7 6777792 6777642 6777943 71 M 7 6814309 6814159 6814460 72 M 7 6911064 6910914 6911215 73 M 7 7602143 7601993 7602294 74 M 7 7671547 7671397 7671698 75 M 7 7801323 7801173 7801474 76 M 7 7821649 7821499 7821800 77 M 7 7829639 7829489 7829790 78 M 7 17390045 17389895 17390196 79 M 7 17724916 17724766 17725067 80 M 7 17812664 17812514 17812815 81 M 7 18464522 18464372 18464673 82 M 7 18592542 18592392 18592693 83 M 7 18594332 18594182 18594483 84 M 7 18592542 18592392 18592693 85 M 7 18594332 18594182 18594483 AW705305 M 7 18594647 18594463 18594831 TC380682 M 7 18594649 18594451 18594848
TABLE-US-00007 TABLE 7 Chromosome 17--QTL on chromosome 17 associated with a low iron growth condition tolerant phenotype. Allelic Allelic cM Form(s) Form(s) Map Associated Not- Position With Associated Marker on Low with Locus Chromo Fe Low Fe Name/ some Tolerance Tolerance Poly- SEQ ID Seven- [-LOG10 Pheno- Pheno- morphic NO teen (17) (P)] type1 type1 Position TC350035 * * * * * TA43074_3847 * * * * * 86 5.2 2.0 GG TT 201 87 5.4 2.0 TT GG 201 88 5.6 3.2 CC TT 201 89 5.7 3.3 AA TT 201 90 5.8 3.2 TT GG 201 91 5.8 3.3 AA GG 201 92 5.9 3.1 GG CC 201 93 6 3.2 TT GG 201 94 6.1 3.1 GG AA 201 95 6.3 3.1 AA CC 201 96 6.5 3.1 AA TT 201 97 6.6 3.0 TT AA 201 98 6.8 3.0 GG AA 201 99 7.1 3.0 GG CC 439 100 7.3 3.0 CC TT 201 101 7.5 2.4 CC GG 201 102 7.7 2.4 CC AA 201 103 8 3.2 AA TT 201 104 8.1 3.0 GG AA 201 105 8.2 2.8 TT CC 201 106 8.2 2.7 GG AA 201 107 8.4 2.7 TT CC 201 108 8.5 2.8 CC TT 201 109 8.8 3.0 TT CC 201 110 9 2.8 AA CC 201 111 9.2 3.5 TT GG 201 112 9.3 3.6 TT AA 201 Glyma17g01380 * * * * * Gm_W82_ * * * * * CR17.G8870
TABLE-US-00008 TABLE 8 Chromosome 17--Physical positions of certain genetic markers on soybean chromosome 17 in proximity to QTL associated with a low iron growth condition tolerant phenotype. Marker Locus Name/ Linkage Chromo- Middle Start End SEQ ID NO Group some Position Position Position TC350035 D2 17 280819 279005 282633 TA43074_3847 D2 17 280856 279080 282633 86 D2 17 282695 282545 282846 87 D2 17 317160 317010 317311 88 D2 17 342956 342806 343107 89 D2 17 349222 349072 349373 90 D2 17 358930 358780 359081 91 D2 17 368357 368207 368508 92 D2 17 384568 384418 384719 93 D2 17 397053 396903 397204 94 D2 17 408927 408777 409078 95 D2 17 435118 434968 435269 96 D2 17 464163 464013 464314 97 D2 17 479395 479245 479546 98 D2 17 495991 495841 496142 99 D2 17 545090 544843 545337 100 D2 17 574773 574623 574924 101 D2 17 602079 601929 602230 102 D2 17 618344 618194 618495 103 D2 17 670615 670465 670766 104 D2 17 683816 683666 683967 105 D2 17 685126 684976 685277 106 D2 17 693456 693306 693607 107 D2 17 717263 717113 717414 108 D2 17 732375 732225 732526 109 D2 17 782062 781912 782213 110 D2 17 809659 809509 809810 111 D2 17 823632 823482 823783 112 D2 17 840172 840022 840323 Glyma17g01380 D2 17 844200 842706 845694 Gm_W82_CR17.G8870 D2 17 844200 842706 845694
TABLE-US-00009 TABLE 9 Chromosome 10--QTL on chromosome 10 associated with a low iron growth condition tolerant phenotype. Allelic Allelic cM Form(s) Form(s) Map Asso- Not-Asso- Position ciated ciated on With with Poly- Chromo- Low Fe Low Fe mor- some Tolerance Tolerance phic Marker Locus Seven- [-LOG10 Pheno- Pheno- Posi- Name/SEQ ID NO teen (10) (P)] type1 type1 tion NA * * * * * WmFPC_Contig227 * * * * * 113 85.9 2.4 TT CC 201 114 86.3 2.7 CC TT 201 115 86.6 2.5 AA GG 201 116 86.7 2.6 CC TT 201 117 86.8 2.3 CC GG 201 118 86.9 2.6 GG AA 201 119 87.2 2.5 CC TT 201 120 87.3 2.7 TT AA 201 121 87.4 2.4 GG AA 201 122 87.5 2.2 CC TT 201 123 87.6 2.8 CC TT 201 124 87.7 2.9 CC TT 201 125 87.8 2.7 GG AA 136 126 88 2.5 TT GG 201 127 88.1 2.6 CC TT 219 128 89.7 2.5 AA GG 201 129 89.8 2.5 GG AA 201 130 90.1 2.7 AA TT 201 131 90.9 2.8 TT CC 201 132 91.2 3.7 AA GG 201 133 91.3 2.8 AA CC 201 134 91.4 2.1 GG CC 201 135 91.5 3.9 AA GG 201 136 91.7 2.2 TT GG 201 137 91.9 3.9 TT AA 201 138 92 3.7 GG AA 201 139 92.1 3.7 CC AA 201 140 92.2 3.7 GG AA 201 141 92.4 3.9 TT CC 201 142 93.9 2.1 GG CC 201 143 94.3 2.1 GG AA 201 144 94.4 2.1 TT CC 201 145 94.5 2.1 CC AA 201 146 95.8 2.4 TT AA 201 147 101 2.1 CC TT 201 Glyma10g28920 * * * * * Cf16144d * * * * *
TABLE-US-00010 TABLE 10 Chromosome 10--Physical positions of certain genetic markers on soybean chromosome 10 in proximity to QTL associated with a low iron growth condition tolerant phenotype. Marker Locus Link- Name/ age Chromo- Middle Start End SEQ ID NO Group some Position Position Position NA O 10 29358961 11677282 47040641 WmFPC_Contig227 O 10 29398139 28618646 30177632 113 O 10 29720865 29720715 29721016 114 O 10 30158032 30157882 30158183 115 O 10 30164795 30164645 30164946 116 O 10 30168646 30168496 30168797 117 O 10 30173472 30173322 30173623 118 O 10 30197793 30197643 30197944 119 O 10 30250601 30250451 30250752 120 O 10 30265182 30265032 30265333 121 O 10 30296454 30296304 30296605 122 O 10 30302927 30302777 30303078 123 O 10 30338781 30338631 30338932 124 O 10 30339883 30339733 30340034 125 O 10 30368472 30368234 30368710 126 O 10 30785142 30784992 30785293 127 O 10 30923459 30923014 30923904 128 O 10 36092106 36091956 36092257 129 O 10 36297861 36297711 36298012 130 O 10 37237431 37237281 37237582 131 O 10 37349903 37349753 37350054 132 O 10 37364859 37364709 37365010 133 O 10 37381677 37381527 37381828 134 O 10 37396158 37396008 37396309 135 O 10 37396896 37396746 37397047 136 O 10 37428843 37428693 37428994 137 O 10 37453860 37453710 37454011 138 O 10 37465158 37465008 37465309 139 O 10 37479303 37479153 37479454 140 O 10 37492059 37491909 37492210 141 O 10 37525000 37524850 37525151 142 O 10 37718944 37718794 37719095 143 O 10 37753981 37753831 37754132 144 O 10 37761477 37761327 37761628 145 O 10 37763485 37763284 37763687 146 O 10 37898074 37897924 37898225 147 O 10 38394420 38394270 38394571 Glyma10g28920 O 10 38395822 38395602 38396043 Cf16144d O 10 38397079 38396831 38397328
IV. Identification of Plants Exhibiting Tolerance to Low Iron Growth Conditions
[0059] To observe the presence or absence of low iron growth condition tolerant phenotypes, soybean plants comprising genotypes of interest can be exposed to low iron or iron deficient growth conditions in seedling stages, early to mid-vegetative growth stages, or in early reproductive stages. Experienced plant breeders can recognize tolerant soybean plants in the field, and can select the tolerant individuals or populations for breeding purposes or for propagation. In this context, the plant breeder recognizes "tolerant" and "susceptible" soybean plants in fortuitous naturally-occurring filed observations.
[0060] Breeders will appreciate that plant tolerance is a phenotypic spectrum consisting of extremes in tolerance, susceptibility, and a continuum of intermediate phenotypes. Tolerance also varies due to environmental effects. Evaluation of phenotypes using reproducible assays and tolerance scoring methods are of value to scientists who seek to identify genetic loci that impart tolerance, conduct marker assisted selection to create tolerant soybean populations, and for introgression techniques to breed a tolerance trait into an elite soybean line, for example.
[0061] In contrast to fortuitous field observations that classify plants as either "tolerant" or "susceptible," various methods are known in the art for determining (and quantitating) the tolerance of a soybean plant to iron-deficient growth conditions. These techniques can be applied to different fields at different times, or to experimental greenhouse or laboratory settings, and provide approximate tolerance scores that can be used to characterize the tolerance of a given strain or line regardless of growth conditions or location. See, for example, Diers et al. (1992) "Possible identification of quantitative trait loci affecting iron efficiency in soybean," J. Plant Nutr. 15:217-2136; Dahiya and M. Singh (1979) "Effect of salinity, alkalinity and iron sources on availability of iron," Plant and Soil 51:13-18; and Gonzalez-Vallejo et al. (2000) "Iron Deficiency Decreases the Fe(III)-Chelate Reducing Activity of Leaf Protoplasts" Plant Physiol. 122 (2): 337-344.
[0062] The degree of IDC in a particular plant or stand of plants can be quantitated by using a system to score the severity of the disease in each plant. A plant strain or variety or a number of plant strains or varieties are planted and grown in a single stand in soil that is known to produce chlorotic plants as a result of iron deficiency ("field screens," i.e., in fields that have previously demonstrated IDC), or alternatively, in controlled nursery hydroponic conditions. When the assay is conducted in controlled nursery conditions, defined soils can be used, where the concentration of iron (e.g., available iron) has been previously measured. The plants can be scored at maturity, or at any time before maturity.
[0063] Fifteen (15) to twenty (20) soybean plants are planted and grown in a greenhouse. After a ten (10) day period, the plants are moved to a growth chamber. The growth chamber is kept at 25° C. day, 22° C. night with a relative humidity of 60% and light intensity of 200-500 microeinsteins and under a 16 hr photo-period. Water (3.5 gallons) plus the IDC nutrient solution is added to each test box. Water (3.5 gallons) plus the IDC nutrient solution and iron is added to the control box. Once boxes are filled with water and the solution, the pH is measured and adjusted to a range of 7.8-8.0. Nine (9) of the 15-20 plants are selected from each line. Two 3-plant groupings will be placed in two different boxes and the third grouping will be placed in the control box. Plants are kept in the growth chamber for a period of five (5) days. During that time, pH is measured and adjusted as necessary. At day five (5), all three (3) plants are evaluated as a group with a phenotypic score of 1-5. Plants receive a score of 1 if their leaves remain green, show no yellowing, and are comparable to the control within the control box. Additional scores will be given from a range of 1 (no yellowing) to 5 (severe yellowing) compared to their internal check lines. Nursey hydroponic conditions are normalized (1-9 scale) to correspond with disease ratings of soybean plants in field conditions.
[0064] The scoring system rates each plant on a scale of one (1) (most tolerant-no disease) to nine (9) (most susceptible-most severe disease), as shown in Table 11.
TABLE-US-00011 TABLE 11 IDC Score Ratings Plant or Plant Stand Score Symptoms 9 Most plants are completely dead. The plants that are still alive are approximately 10% of normal height, and have very little living tissue. 8 Most leaves are almost dead, most stems are still green. Plants are severely stunted (10-20% of normal height). 7 Most plants are yellow and necrosis is seen on most leaves. Most plants are approximately 20-40% of normal height. 6 Most plants are yellow, and necrosis is seen on the edges of less than half the leaves. Most plants are approximately 50% of normal height. 5 Most plants are light green to yellow, and no necrosis is seen on the leaves. Most plants are stunted (50-75% of normal height). 4 More than half the plants show moderate chlorosis, but no necrosis is seen on the leaves. 3 Less than half of the plants showing moderate chlorosis (light green leaves). 2 A few plants are showing very light chlorosis on one or two leaves. 1 All plants are normal green color.
[0065] It will be appreciated that any such scale is relative, and furthermore, there may be variability between practitioners as to how the individual plants and the entire stand as a whole are scored. Optionally, the degree of chlorosis can be measured using a chlorophyll meter, e.g., a Minolta SPAD-502 Chlorophyll Meter, where readings off a single plant or a stand of plants can be made. Optionally, multiple readings can be obtained and averaged.
[0066] In general, while there is a certain amount of subjectivity to assigning severity measurements for disease symptoms, assignment to a given scale as noted above is well within the ordinary skill of a practitioner in the field. Measurements can also be averaged across multiple scores to reduce variation in field measurements.
V. Introgression of a Genomic Region Associated with a Low Iron Growth Condition Tolerance Phenotype
[0067] Provided herewith are unique soybean germplasms comprising one or more introgressed genomic regions, QTL, or polymorphic nucleic acid markers associated with a low iron growth condition tolerant phenotype and methods of obtaining the same. Marker-assisted introgression involves the transfer of a chromosomal region, defined by one or more markers, from one germplasm to a second germplasm. Offspring of a cross that contain the introgressed genomic region can be identified by the combination of markers characteristic of the desired introgressed genomic locus from a first germplasm (e.g., a low iron growth condition tolerant germplasm) and both linked and unlinked markers characteristic of the desired genetic background of a second germplasm (e.g., a low iron growth condition susceptible germplasm). In addition to the polymorphic nucleic acid markers provided herewith that identify alleles of certain QTL associated with a low iron growth condition tolerant phenotype, flanking markers that fall on both the telomere proximal end and the centromere proximal end of the genomic intervals comprising the QTL are also provided in Tables 1-10. Such flanking markers are useful in a variety of breeding efforts that include, but are not limited to, introgression of genomic regions associated with a low iron growth condition tolerant phenotype into a genetic background comprising markers associated with germplasm that ordinarily contains a genotype associated with a susceptible phenotype and maintenance of those genomic regions associated with a low iron growth condition tolerant phenotype in a plant population. Numerous markers that are linked and either immediately adjacent or adjacent to a low iron growth condition tolerant QTL in soybean that permit introgression of low iron growth condition tolerant QTL in the absence of extraneous linked DNA from the source germplasm containing the QTL are provided herewith. In certain embodiments, the linked and immediately adjacent markers are within about 105 kilobases (kB), 80 kB, 60 kB, 50 kB, 40 kB, 30 kB, 20 kB, 10 kB, 5 kB, 1 kB, 0.5 kB, 0.2 kB, or 0.1 kB of the introgressed genomic region. In certain embodiments, the linked and adjacent markers are within 1,000 kB, 600 kB, 500 kB, 400 kB, 300 kB, 200 kB, or 150 kB of the introgressed genomic region. In certain embodiments, the linked markers are genetically linked within about 50 cM, 40 cM, 30 cM, 20 cM, 10 cM, 5 cM, 4 cM, 3 cM, 2 cM, or 1 cM of the introgressed genomic region. In certain embodiments, genomic regions comprising some or all of one or more of a low iron growth condition tolerant QTL described herein can be introgressed into the genomes of susceptible varieties by using markers that include, but are not limited to, genetically linked markers, adjacent markers, and/or immediately adjacent markers provided in Tables 1-10. Those skilled in the art will appreciate that when seeking to introgress a smaller genomic region comprising a low iron growth condition tolerant QTL locus described herein, that any of the telomere proximal or centromere proximal markers that are genetically linked to or immediately adjacent to a larger genomic region comprising a low iron growth condition tolerant QTL locus can also be used to introgress that smaller genomic region.
[0068] Provided herein are methods of introgressing any of the genomic regions comprising a low iron growth condition tolerance QTL locus of Tables 1-10 into soybean germplasm that lacks such a locus. In certain embodiments, the soybean germplasm that lacks such a genomic region comprising a low iron growth condition tolerance QTL locus of Tables 1-10 is susceptible or has less than optimal levels of tolerance to low iron growth conditions. In certain embodiments, the methods of introgression provided herein can yield soybean plants comprising introgressed genomic regions comprising one or more low iron growth condition tolerance QTL loci of Tables 1-10, where the immediately adjacent genomic DNA and/or some or all of the adjacent genomic DNA between the introgressed genomic region and the telomere or centromere will comprise allelic forms of the markers of Tables 1-11 that are characteristic of the germplasm into which the genomic region is introgressed and distinct from the germplasm from which the genomic region is derived. In certain embodiments, the soybean germplasm into which the genomic region is introgressed is germplasm that lacks such a low iron growth condition tolerance locus. In certain embodiments, the soybean germplasm into which the genomic region is introgressed is germplasm that lacks such a low iron growth condition tolerance locus and is either susceptible to low iron growth conditions or has less than optimal tolerance to low iron growth conditions.
[0069] Also provided herein are soybean plants produced by the aforementioned methods of introgression. In certain embodiments, the soybean plants will comprise introgressed genomic regions comprising a low iron growth condition tolerance QTL locus of Tables 1-10, where the immediately adjacent genomic DNA and/or some or all of the adjacent genomic DNA between the introgressed genomic region and the telomere or centromere will comprise allelic forms of the markers of Tables 1-10 that are characteristic of the germplasm into which the genomic region is introgressed and distinct from the germplasm from which the genomic region is derived.
[0070] Soybean plants or germplasm comprising an introgressed genomic region that is associated with a low iron growth condition tolerant phenotype, wherein at least 10%, 25%, 50%, 75%, 90%, or 99% of the remaining genomic sequences carry markers characteristic of soybean plants or germplasm that are otherwise or ordinarily comprise a genomic region associated with susceptibility to low iron growth conditions, are thus provided. Furthermore soybean plants comprising an introgressed region where closely linked regions adjacent and/or immediately adjacent to the genomic regions, QTL, and markers provided herewith that comprise genomic sequences carrying markers characteristic of soybean plants or germplasm that are otherwise or ordinarily comprise a genomic region associated with the susceptibility to low iron growth conditions are also provided.
[0071] Also provided herein are methods of creating a population of soybean plants with enhanced tolerance to low iron growth conditions. In certain embodiments, the maintenance of a low iron growth condition tolerance QTL locus is achieved by providing a population of soybean plants, detecting the presence of a genetic marker that is genetically linked to the QTL, selecting one or more soybean plants containing said marker from the first population of soybean plants, and producing a population of offspring from the at least one selected soybean plants. In certain embodiments, the tolerance QTL are selected from Tables 1-10. In certain embodiments, the markers are genetically linked to the QTL in Tables 1-10. In certain embodiments, the markers are genetically linked to the tolerance QTL within 20 cM, 15 cM, 10 cM, 5 cM, 4 cM, or 3 cM. In certain embodiments, the genetic markers are selected from SEQ ID NOs. 1-147.
VI. Soybean Donor Plants Comprising Genomic Region Associated with Low Iron Growth Condition Phenotypes
[0072] Low iron growth condition tolerance QTL allele or alleles can be introduced from any plant that contains that allele (donor) to any recipient soybean plant. In one aspect, the recipient soybean plant can contain additional low iron growth condition tolerance loci. In another aspect, the recipient soybean plant can contain a transgene. In another aspect, while maintaining the introduced QTL, the genetic contribution of the plant providing the low iron growth condition tolerance QTL can be reduced by back-crossing or other suitable approaches. In one aspect, the nuclear genetic material derived from the donor material in the soybean plant can be less than or about 50%, less than or about 25%, less than or about 13%, less than or about 5%, 3%, 2% or 1%, but that genetic material contains the low iron growth condition tolerance locus or loci of interest.
[0073] Plants containing one or more of the low iron growth condition tolerance loci described herein can be donor plants. In certain embodiments, a donor plant can be a susceptible line. In certain embodiments, a donor plant can also be a recipient soybean plant. A non-limiting and exemplary list of soybean varieties that are believed to comprise genomic regions associated with a low iron growth condition tolerance phenotype include, but are not limited to AG00501, AG00901, AG0131, AG0202, AG0231, AG0331, AG0401, AG801, AG0808, AG1031, AG1102, AG1230, AG2131, DKB22-52, AG3039, and AG3830 (Branded names of ASGROW (designated "AG") and DEKALB soybean varieties from Monsanto CO., 800 N. Lindbergh Blvd., St. Louis, Mo., USA.)
[0074] In a preferred embodiment, the soybean plants that comprise a genomic region associated with a low iron growth condition tolerance phenotype that are identified by use of the markers provided in Tables 1-10 and/or methods provided herein are soybean pre-commercial lines evaluated in an association study using a linear model and which is adjusted for stratification by principle components in the R GenABEL package.
[0075] In certain embodiment, a donor soybean plant is AG801 and derivatives thereof, and is used as the resistant parent in a bi-parental mapping population to select for genomic regions associated with a low iron growth condition tolerance phenotype.
[0076] Also provided herewith are additional soybean plants that comprise a genomic region associated with a low iron growth condition tolerance phenotype that are identified by use of the markers provided in Tables 1-11 and/or methods provided herein. Any of the soybean plants identified above or other soybean plants that are otherwise identified using the markers or methods provided herein can be used in methods that include, but are not limited to, methods of obtaining soybean plants with an introgressed low iron growth condition tolerance locus, obtaining a soybean plant that exhibits a low iron growth condition tolerance phenotype, or obtaining a soybean plant comprising in its genome a genetic region associated with a low iron growth condition tolerance phenotype.
[0077] In certain embodiments, the soybean plants provided herein or used in the methods provided herein can comprise a transgene that confers tolerance to glyphosate. Transgenes that can confer tolerance to glyphosate include, but are not limited to, transgenes that encode glyphosate tolerant Class I EPSPS (5-enolpyruvylshikimate-3-phosphate synthases) enzymes or glyphosate tolerant Class II EPSPS (5-enolpyruvylshikimate-3-phosphate synthases) enzymes. Useful glyphosate tolerant EPSPS enzymes provided herein are disclosed in U.S. Pat. No. 6,803,501, RE39,247, U.S. Pat. No. 6,225,114, U.S. Pat. No. 5,188,642, and U.S. Pat. No. 4,971,908. In certain embodiments, the glyphosate tolerant soybean plants can comprise a transgene encoding a glyphosate oxidoreductase or other enzyme which degrades glyphosate. Glyphosate oxidoreductase enzymes had been described in U.S. Pat. No. 5,776,760 and U.S. Reissue Pat. No. RE38,825. In certain embodiments the soybean plant can comprise a transgene encoding a glyphosate N-acetyltransferase gene that confers tolerance to glyphosate. In certain embodiments, the soybean plant can comprise a glyphosate n-acetyltransferase encoding transgene such as those described in U.S. Pat. No. 7,666,644. In still other embodiments, soybean plants comprising combinations of transgenes that confer glyphosate tolerance are provided. Soybean plants comprising both a glyphosate resistant EPSPS and a glyphosate N-acetyltransferase are also provided herewith. In certain embodiments, it is contemplated that the soybean plants used herein can comprise one or more specific genomic insertion(s) of a glyphosate tolerant transgene including, but not limited to, as those found in: i) MON89788 soybean (deposited under ATCC accession number PTA-6708 and described in US Patent Application Publication Number 20100099859), ii) GTS 40-3-2 soybean (Padgette et al., Crop Sci. 35: 1451-1461, 1995), iii) event 3560.4.3.5 soybean (seed deposited under ATCC accession number PTA-8287 and described in U.S. Patent Publication 20090036308), or any combination of i (MON89788 soybean), ii (GTS 40-3-2 soybean), and iii (event 3560.4.3.5 soybean).
[0078] A low iron growth condition tolerance associated QTL of the present invention may also be introduced into a soybean line comprising one or more transgenes that confer tolerance to herbicides including, but not limited to, glufosinate, dicamba, chlorsulfuron, and the like, increased yield, insect control, fungal disease resistance, virus resistance, nematode resistance, bacterial disease resistance, mycoplasma disease resistance, modified oils production, high oil production, high protein production, germination and seedling growth control, enhanced animal and human nutrition, low raffinose, environmental stress resistant, increased digestibility, industrial enzymes, pharmaceutical proteins, peptides and small molecules, improved processing traits, improved flavor, nitrogen fixation, hybrid seed production, reduced allergenicity, biopolymers, and biofuels among others. These agronomic traits can be provided by the methods of plant biotechnology as transgenes in soybean.
[0079] In certain embodiments, it is contemplated that genotypic assays that provide for non-destructive identification of the plant or plants can be performed either in seed, the emergence stage, the "VC" stage (i.e. cotyledons unfolded), the V1 stage (appearance of first node and unifoliate leaves), the V2 stage (appearance of the first trifoliate leaf), and thereafter. In certain embodiments, non-destructive genotypic assays are performed in seed using apparati and associated methods as described in U.S. Pat. Nos. 6,959,617; 7,134,351; 7,454,989; 7,502,113; 7,591,101; 7,611,842; and 7,685,768, which are incorporated herein by reference in their entireties. In certain embodiments, non-destructive genotypic assays are performed in seed using apparati and associated methods as described in U.S. Patent Application Publications 20100086963, 20090215060, and 20090025288, which are incorporated herein by reference in their entireties. Published U.S. Patent Applications US 2006/0042527, US 2006/0046244, US 2006/0046264, US 2006/0048247, US 2006/0048248, US 2007/0204366, and US 2007/0207485, which are incorporated herein by reference in their entirety, also disclose apparatus and systems for the automated sampling of seeds as well as methods of sampling, testing and bulking seeds. Thus, in certain embodiments, any of the methods provided herein can comprise screening for markers in individual seeds of a population wherein only seed with at least one genotype of interest is advanced.
VII. Molecular Assisted Breeding Techniques
[0080] Genetic markers that can be used in the practice of the instant invention include, but are not limited to, are Restriction Fragment Length Polymorphisms (RFLP), Amplified Fragment Length Polymorphisms (AFLP), Simple Sequence Repeats (SSR), Single Nucleotide Polymorphisms (SNP), Insertion/Deletion Polymorphisms (Indels), Variable Number Tandem Repeats (VNTR), and Random Amplified Polymorphic DNA (RAPD), and others known to those skilled in the art. Marker discovery and development in crops provides the initial framework for applications to marker-assisted breeding activities (U.S. Patent Applications 2005/0204780, 2005/0216545, 2005/0218305, and 2006/00504538). The resulting "genetic map" is the representation of the relative position of characterized loci (DNA markers or any other locus for which alleles can be identified) along the chromosomes. The measure of distance on this map is relative to the frequency of crossover events between sister chromatids at meiosis.
[0081] As a set, polymorphic markers serve as a useful tool for fingerprinting plants to inform the degree of identity of lines or varieties (U.S. Pat. No. 6,207,367). These markers can form a basis for determining associations with phenotype and can be used to drive genetic gain. The implementation of marker-assisted selection is dependent on the ability to detect underlying genetic differences between individuals.
[0082] Certain genetic markers for use in the present invention include "dominant" or "codominant" markers. "Codominant markers" reveal the presence of two or more alleles (two per diploid individual). "Dominant markers" reveal the presence of only a single allele. The presence of the dominant marker phenotype (e.g., a band of DNA) is an indication that one allele is present in either the homozygous or heterozygous condition. The absence of the dominant marker phenotype (e.g., absence of a DNA band) is merely evidence that "some other" undefined allele is present. In the case of populations where individuals are predominantly homozygous and loci are predominantly dimorphic, dominant and codominant markers can be equally valuable. As populations become more heterozygous and multiallelic, codominant markers often become more informative of the genotype than dominant markers.
[0083] In another embodiment, markers that include. but are not limited, to single sequence repeat markers (SSR), AFLP markers, RFLP markers, RAPD markers, phenotypic markers, isozyme markers, single nucleotide polymorphisms (SNPs), insertions or deletions (Indels), single feature polymorphisms (SFPs, for example, as described in Borevitz et al. 2003 Gen. Res. 13:513-523), microarray transcription profiles, DNA-derived sequences, and RNA-derived sequences that are genetically linked to or correlated with low iron growth condition tolerance loci, regions flanking low iron growth condition tolerance loci, regions linked to low iron growth condition tolerance loci, and/or regions that are unlinked to low iron growth condition tolerance loci can be used in certain embodiments of the instant invention.
[0084] In one embodiment, nucleic acid-based analyses for determining the presence or absence of the genetic polymorphism (i.e. for genotyping) can be used for the selection of seeds in a breeding population. A wide variety of genetic markers for the analysis of genetic polymorphisms are available and known to those of skill in the art. The analysis may be used to select for genes, portions of genes, QTL, alleles, or genomic regions (Genotypes) that comprise or are linked to a genetic marker that is linked to or correlated with low iron growth condition tolerance loci, regions flanking low iron growth condition tolerance loci, regions linked to low iron growth condition tolerance loci, and/or regions that are unlinked to low iron growth condition tolerance loci can be used in certain embodiments of the instant invention.
[0085] Herein, nucleic acid analysis methods include, but are not limited to, PCR-based detection methods (for example, TaqMan assays), microarray methods, mass spectrometry-based methods and/or nucleic acid sequencing methods. In one embodiment, the detection of polymorphic sites in a sample of DNA, RNA, or cDNA may be facilitated through the use of nucleic acid amplification methods. Such methods specifically increase the concentration of polynucleotides that span the polymorphic site, or include that site and sequences located either distal or proximal to it. Such amplified molecules can be readily detected by gel electrophoresis, fluorescence detection methods, or other means.
[0086] A method of achieving such amplification employs the polymerase chain reaction (PCR) (Mullis et al. 1986 Cold Spring Harbor Symp. Quant. Biol. 51:263-273; European Patent 50,424; European Patent 84,796; European Patent 258,017; European Patent 237,362; European Patent 201,184; U.S. Pat. No. 4,683,202; U.S. Pat. No. 4,582,788; and U.S. Pat. No. 4,683,194), using primer pairs that are capable of hybridizing to the proximal sequences that define a polymorphism in its double-stranded form.
[0087] Methods for typing DNA based on mass spectrometry can also be used. Such methods are disclosed in U.S. Pat. Nos. 6,613,509 and 6,503,710, and references found therein.
[0088] Polymorphisms in DNA sequences can be detected or typed by a variety of effective methods well known in the art including, but not limited to, those disclosed in U.S. Pat. Nos. 5,468,613, 5,217,863; 5,210,015; 5,876,930; 6,030,787; 6,004,744; 6,013,431; 5,595,890; 5,762,876; 5,945,283; 5,468,613; 6,090,558; 5,800,944; 5,616,464; 7,312,039; 7,238,476; 7,297,485; 7,282,355; 7,270,981 and 7,250,252 all of which are incorporated herein by reference in their entireties. However, the compositions and methods of the present invention can be used in conjunction with any polymorphism typing method to type polymorphisms in genomic DNA samples. These genomic DNA samples used include but are not limited to genomic DNA isolated directly from a plant, cloned genomic DNA, or amplified genomic DNA.
[0089] For instance, polymorphisms in DNA sequences can be detected by hybridization to allele-specific oligonucleotide (ASO) probes as disclosed in U.S. Pat. Nos. 5,468,613 and 5,217,863. U.S. Pat. No. 5,468,613 discloses allele specific oligonucleotide hybridizations where single or multiple nucleotide variations in nucleic acid sequence can be detected in nucleic acids by a process in which the sequence containing the nucleotide variation is amplified, spotted on a membrane and treated with a labeled sequence-specific oligonucleotide probe.
[0090] Target nucleic acid sequence can also be detected by probe ligation methods as disclosed in U.S. Pat. No. 5,800,944 where sequence of interest is amplified and hybridized to probes followed by ligation to detect a labeled part of the probe.
[0091] Microarrays can also be used for polymorphism detection, wherein oligonucleotide probe sets are assembled in an overlapping fashion to represent a single sequence such that a difference in the target sequence at one point would result in partial probe hybridization (Borevitz et al., Genome Res. 13:513-523 (2003); Cui et al., Bioinformatics 21:3852-3858 (2005)). On any one microarray, it is expected there will be a plurality of target sequences, which may represent genes and/or noncoding regions wherein each target sequence is represented by a series of overlapping oligonucleotides, rather than by a single probe. This platform provides for high throughput screening a plurality of polymorphisms. A single-feature polymorphism (SFP) is a polymorphism detected by a single probe in an oligonucleotide array, wherein a feature is a probe in the array. Typing of target sequences by microarray-based methods is disclosed in U.S. Pat. Nos. 6,799,122; 6,913,879; and 6,996,476.
[0092] Target nucleic acid sequence can also be detected by probe linking methods as disclosed in U.S. Pat. No. 5,616,464, employing at least one pair of probes having sequences homologous to adjacent portions of the target nucleic acid sequence and having side chains which non-covalently bind to form a stem upon base pairing of the probes to the target nucleic acid sequence. At least one of the side chains has a photoactivatable group which can form a covalent cross-link with the other side chain member of the stem.
[0093] Other methods for detecting SNPs and Indels include single base extension (SBE) methods. Examples of SBE methods include, but are not limited, to those disclosed in U.S. Pat. Nos. 6,004,744; 6,013,431; 5,595,890; 5,762,876; and 5,945,283. SBE methods are based on extension of a nucleotide primer that is adjacent to a polymorphism to incorporate a detectable nucleotide residue upon extension of the primer. In certain embodiments, the SBE method uses three synthetic oligonucleotides. Two of the oligonucleotides serve as PCR primers and are complementary to sequence of the locus of genomic DNA which flanks a region containing the polymorphism to be assayed. Following amplification of the region of the genome containing the polymorphism, the PCR product is mixed with the third oligonucleotide (called an extension primer) which is designed to hybridize to the amplified DNA adjacent to the polymorphism in the presence of DNA polymerase and two differentially labeled dideoxynucleosidetriphosphates. If the polymorphism is present on the template, one of the labeled dideoxynucleosidetriphosphates can be added to the primer in a single base chain extension. The allele present is then inferred by determining which of the two differential labels was added to the extension primer. Homozygous samples will result in only one of the two labeled bases being incorporated and thus only one of the two labels will be detected. Heterozygous samples have both alleles present, and will thus direct incorporation of both labels (into different molecules of the extension primer) and thus both labels will be detected.
[0094] In another method for detecting polymorphisms, SNPs and Indels can be detected by methods disclosed in U.S. Pat. Nos. 5,210,015; 5,876,930; and 6,030,787 in which an oligonucleotide probe having a 5' fluorescent reporter dye and a 3' quencher dye covalently linked to the 5' and 3' ends of the probe. When the probe is intact, the proximity of the reporter dye to the quencher dye results in the suppression of the reporter dye fluorescence, e.g. by Forster-type energy transfer. During PCR forward and reverse primers hybridize to a specific sequence of the target DNA flanking a polymorphism while the hybridization probe hybridizes to polymorphism-containing sequence within the amplified PCR product. In the subsequent PCR cycle DNA polymerase with 5'→3' exonuclease activity cleaves the probe and separates the reporter dye from the quencher dye resulting in increased fluorescence of the reporter.
[0095] In another embodiment, the locus or loci of interest can be directly sequenced using nucleic acid sequencing technologies. Methods for nucleic acid sequencing are known in the art and include technologies provided by 454 Life Sciences (Branford, Conn.), Agencourt Bioscience (Beverly, Mass.), Applied Biosystems (Foster City, Calif.), LI-COR Biosciences (Lincoln, Nebr.), NimbleGen Systems (Madison, Wis.), Illumina (San Diego, Calif.), and VisiGen Biotechnologies (Houston, Tex.). Such nucleic acid sequencing technologies comprise formats such as parallel bead arrays, sequencing by ligation, capillary electrophoresis, electronic microchips, "biochips," microarrays, parallel microchips, and single-molecule arrays, as reviewed by R.F. Service Science (2006) 311:1544-1546.
[0096] The markers to be used in the methods of the present invention should preferably be diagnostic of origin in order for inferences to be made about subsequent populations. Experience to date suggests that SNP markers may be ideal for mapping because the likelihood that a particular SNP allele is derived from independent origins in the extant populations of a particular species is very low. As such, SNP markers appear to be useful for tracking and assisting introgression of QTLs, particularly in the case of genotypes.
Sequence CWU
1
1
1471301DNAGlycine maxunsure(1)..(301)unsure at all n locations 1ttgctttcat
ttgttacaaa gcaacaattc tctctttagt acatgttgag caaagtgaat 60caggcaactt
atcaaagtag tcccatgttg catgataaag aagaggaaaa tagaaagaat 120tttcagttaa
ccgaaaaagt acaatgtncc ntttagataa attgaaaatg aaacaatatg 180ttatcatgnt
tctatcctcc aattcataca tgaccttttt gctttacgtg aaggaggacc 240tcatccaatt
gttggataat caaaatgaga aaagtcctca tctnaatgat tatttctctc 300g
3012301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 2ttaacctnct atatgtatct
cagtctcttc cttttctttc atttgctcat aattagaact 60ataaaatagg cttaacccga
caaactgacc cattagcctg ttagggcggg tcaagctggg 120cccaagaaaa ttcggcctga
atagaacttg gtcaatctgg gtactctgat aggcccagac 180cgagctcaag aattacaaat
ccaagttcaa tcaggnctat tatagtccaa cattattttt 240attttttatc ctttaaattt
atataaatcc agacaaaatt ttaaaacggg ccattgggct 300a
3013301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 3gtatacagaa acagacaata
atctcttact taattttcca ctagtcattg tttaacccaa 60tgctggaaag tgatctttct
aaagactcat tttatcatat tgaaaagtag ctttgaccga 120ataaagcatt gtacattctt
ttttgtgctt tgcggtaggt tccattggaa tgcacttcga 180tatgtttaca tctaaatcca
attttgggtc atacattcat tattatgttt ctaagccata 240aatataagat aagtgttgca
tatatttaag tttattggat tgcacttcgt attatntata 300t
3014378DNAGlycine max
4agatctaaca aggtaatttt tcccttaact atttgaaact cattatcaca acttggtaaa
60agttaccttt caattgtcaa atttaaaacc catcacataa aatgccacaa atacatgcca
120caccaaaatt tgcaagagaa ttcaaccaca ctgcagatct gcttcaggta gcagttcatc
180gtgatacttt caccatactc aagcagaaag gtatatacaa agtactcatt tttttttgtt
240aagaatgtga gggtaaagac caatttctga cccaatctgt aagagttgcc acatttctac
300taacgtcttc tatattatca ctcttcattg caatcacttt ctcctccgag taactttctt
360tagcctcctc aagcaaaa
3785760DNAGlycine max 5gccttgggtt cttgatgttg ccaagaaatt tgggctactt
ggtgctactt tcttcactca 60gacatgcaca acaaacaaca tatacttcca tgtttataag
aagttgatag agttgcctct 120tacacaggca gaatatttgt tgccagggtt gccaaaactt
gcagctgggg acttgccatc 180tttcttgaac aaatatgggt cctatccagg ctactttgat
gtagttgtga atcaatttgt 240caacattgat aaagcagatt gggttcttgc aaacagtttt
tatgaactgg agcaaggggt 300aagtgacttg actagctgaa aattctcttc attaatttga
tttgtactta tttgttggaa 360tgaattagac agcagtagtt atctgggtaa aaagtttttc
cttcaaattt tggtcaaaat 420ttgtcctagt tcctattact tcaggatgat tctggtcttc
ttttttattt ataattgatg 480gattttgtct ctcatcctag tatcctaagt tccataaaaa
gagaaaaaat tcatcaatta 540taaaaagaat tcaaagacca aaaatatcat ttttaaagta
taacgactaa gaacaatttt 600gattgaaatt agagagatct agaatacatt tttatcctag
ttattttgtt ggataatatt 660gatgattgaa atttgaaatg aaatttattg taggttgtgg
attggctggt gaagatttgg 720ccattaaagc caataggacc atgcctgcca tctatctact
7606301DNAGlycine max 6taggacccat atttgttcaa
gaaagatggc aagtccccag ctgcaagttt tggcaaccct 60ggcaacaaat attctgcctg
tgtaagaggc aactctatca acttcttata aacatggaag 120tatatgttgt ttgttgtgca
tgtctgagtg aagaaagtag caccaagtag cccaaatttc 180ttggcaacat caagaaccca
aggcatgaaa gcatcataga taacacaatc tggagggtgg 240cttgaccctg caagcttctg
aacaagctca gcaaaagttt gtgatccaac cctccaaaag 300g
3017301DNAGlycine max
7agaacagaac aattcattta tgcggttatt gtttggtttt gcaggttaga gctgcagagc
60tgaggaagat attggtggag cttgggccgg tatgtaatgc tggattgaat gcataataat
120tcagttttag tagtggtttt tcttaattgc tattttcttt taattggttg atttggttca
180ttgctgtttt atactacttt tttgcaggca tatatcaaaa ttgcccaggc tatatcatcc
240cgtgctgtaa gttttggttt atctgtcaca ttattaaaac tgatctccat gttctttggt
300t
3018301DNAGlycine maxunsure(1)..(301)unsure at all n locations
8tatcctttgc gatggtttgg gcatgaatac ttgatactta cctagagaaa aggttaaatt
60taatatcatc atgatcttct tcctaaatga tgttgtgtgc cttttgagtt tcgagattta
120gttcttggat atatgcctga agtgtttctc ccttgaaaac aagttaaggc atatagggaa
180aatttgtctt tacacattct tgtttgttgc ttgctgaaaa aagttgagaa ttctgctgat
240gcactatggt atggctattg tagggggnaa agttgtctga agtgaaggat ctctacctga
300t
3019301DNAGlycine maxunsure(1)..(301)unsure at all n locations
9ttttcttgtt ggntcgtaaa ttgcaatatg gggatctttt ttggatttta cttgttttat
60tatacctgac ttttagtcaa tcgttcagca ataggtatat taaacttgga acgctanatg
120gacaatcatt ttactgtttt gtttatccta ataaaaaaaa ttgtactttt catcaatgac
180atgtaggaaa gcanacaggc cagtcctgac aagaatcaaa tactgtacat ggaggagttg
240tcgttagttt taaatcaagt tgaatccatt caagacattc ttcctataat ttctgtcatt
300c
30110301DNAGlycine maxunsure(1)..(301)unsure at all n locations
10aatgaaccaa tttgaaggaa acaaacaaat taaagctgta aaaatnaana atatccaatt
60attaccccgt gttcttttag aaattgaatg gaatcatgtg tactgcacta taaatgacca
120ccaaataaat ggtttattta acaaagtgga atccatgtct tcaaacaagt agcacgaagg
180acatcaaaac catagttcac tgaaggacgc tagtttaaat ttcatcnttt tagtgaactt
240caatgtaatt aaataaatca aaggatggga tatacatgtt gtttgaagac tcattggacg
300g
30111301DNAGlycine maxunsure(1)..(301)unsure at all n locations
11tttcttggtt gaaatttccg caacctcctc ctttgtaatt tccttgacct ttacctctat
60aatttcctct tcctccattg ttgagattat nacaaacttt gctttgtgca ctttgacttg
120attcaacaac acttttgaga ttcacctgac tctttaaggc ttcttcagtt actttttcaa
180tcttcttcaa gattctactc atgtgacttt ttgatgcttc cctgcaaata tgctattgtc
240gtggtgtaga atgggatggt gttaggattt tgtccactac cttgttgtct aggatgtctt
300c
30112301DNAGlycine max 12gtttactaac tactatatgt tttgttgtgt tttgtataac
ttcattcaat tgtacaggaa 60tgaaaatgaa tacgatttta ttgggaagat tgttaaagag
gtctcccaaa aaattaatcg 120cactctttta catgttgtgg attaccctgt tggattggag
tctcgagtgc tacaggtaat 180ctcactttta gatgatggtt cagacgaagt ccacatggta
ggaatccatg gaattggtgg 240ggtaggaaaa acaacaattg ctcgagcagt ttataatttg
attgctgatc aatttgaagg 300g
30113301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 13ataaaatatt attttatttt attaaaaaga aaagaaaaaa ataattttca
ataacaacaa 60cttaattatt tttatattct taatttactt gtgaatgaag cttctgatga
tgcaacatat 120gtgatgagta aagaaaagag gatttcaana actcgttgat gtggaatacc
gagagtatct 180cattgattcg ttagaatacc aagaggttga tataagggtt tgactgctcg
ttgattcaag 240agaaagccga gggttgagaa ttgagaaaaa cttnaaattt ttgttcaata
ataatctttt 300c
30114301DNAGlycine max 14tgacattact aatgtgcaca tttttgtggt
taaattgtgc tttggacctg gaagggaact 60gataaaatag aattcataaa gcttgaaggg
tacaacaaca tacaagtgca atggaatgga 120aaagccttcc agaagatgaa gaacctgaga
attttgataa ttgaaaatac aaccttttct 180acaggccctg agcatctacc aaatagtttg
agatttctag actggagctg ctatccttca 240ccatctttac catctgattt caatccaaaa
cgagttgaga tactcaaaat gcctgaaagt 300t
30115409DNAGlycine max 15ccaagatggg
aaagagttga gtttagaagt gtttccaaag gccattcttg tttgccatct 60tgatcccagg
cattatcatc atcttgacct gtattatctg tacatgagtc ctaataatgt 120catccaagta
tgcagtccta atctgtatat gctctgtgat ttcgatttgt tgttccaaaa 180gcttgcattg
ggtgtcgaga aggactggtt tcgcagatgc aggaaatggt caatgaattt 240ctcgtttcga
aaaaagtttc ctaagattgc ggtatgttgt tctataatat ctagattgaa 300aagtgtcatg
gaaatggtgt tgattttgaa gttcagcgta ctcatcaatg gcactatgca 360atttagttct
tcatgtaatt acatatttag aacatgggac ccgataatc
40916301DNAGlycine maxunsure(1)..(301)unsure at all n locations
16agacaattaa taagcatggc ctcntccaac tccaagaaat gctaccctct gaaatactca
60aggagaaata tatcaaagtg ggagatgttt actgagtaat tccaataata aaaaggaggc
120ttgaacaaaa gaaggttctt ctggttctag atgatgttga caaattagag cagttaaaag
180tacttgcggg acaatatgat tggttaggct ctggaaggac aatcattgtc accacaagag
240agacaaacac ttgctagcta ctcatggagt gataaactta tacgaggtta aaccattaaa
300t
30117301DNAGlycine maxunsure(1)..(301)unsure at all n locations
17attatatcta taataattta tgattatacg taagagattt tgttacatta ttcgtacata
60attattaata aaatgattta nttanatcga tagaaaagtt agaaatccac caaaaatcat
120tttaacattt ttttcaaatc tattgattat ttttaacaac atattagnaa ttcgtttaat
180ttaacaatat attagtaatt tgtctaatta gggcataact ggttggattt ttttatttaa
240aatccaagca tatactcatt ttggcccatt ggttacgcaa aaactctaca tatgccgtaa
300c
30118301DNAGlycine maxunsure(1)..(301)unsure at all n locations
18tattgttagc acattgccct ctatcagttc atncctcaaa tctgagcaaa ctaagctttg
60atgtctctca cataaaccga ttcaacacaa caatgtcatt ttcattgtca agaaggttca
120gctcttttct ttcaaacctc acttcccctc cttgctttca cttagcctcc ccattgacaa
180tgacaatgtt gttgatgatg tgttccccaa ttcaatgaca tgctccttgt gcgtcatacc
240ccacccacca tctaatttaa caagatgtta ggatcattnt aaagatgaag cattatccca
300c
30119301DNAGlycine max 19gcagtcagat ccagcatagc atgaattgca ttcacaacga
gacttattca tatctttaag 60aataagacca tctaagtagg ctcttccatg tcctgaacat
ggtattgctg ccacagcctc 120agcttcttct gcagctcttg tgctccaagt tggctcccat
tctcccatac atacaaacgt 180gctaattgag gcacacaata taataataaa ttttaatttc
attggacttt ggacttgttc 240ttttggcgat tctagtcttc gtttctttgt gaaatcttca
agcaatttct tggttgcact 300t
301201154DNAGlycine maxunsure(1)..(1154)unsure at
all n locations 20tgattcgcca gcttgctgcc tgcgggcaca tttctccata tcagaccaca
cctctctttt 60ctgtaagcct cttattggtt ccctaacgaa tgttgttaat tacattgttg
ttctgactat 120ttattcagct tcggttgtag ccacggattc atgacagaga ttatcaactc
atgcttagtt 180cgaagactat tttaactgtt ttagttttga gttcagaata aagcacgcag
cagaggtatc 240tatctcctca gcttaaagct tttcaattca tcactttgaa tattattttt
gtttttttag 300tgagctataa cacaatcaga cttgaaaaat agtatcttat agaaaagtca
attacaaatt 360ttcttgtgaa atataaccac taaatcacat gaaaaaaata tgnaataatc
gagaattaaa 420aagttgagtt ttaggattta aggttttatc tccttttaga aataccagag
ccatacaatt 480ggtgtgcagt cttctccaat cttctatctt tattacattt ttattttgtt
tttctaattc 540tttttttaac tatttaatta gttagnttta ttttgttttt cattttttta
attagttaca 600tgacatatca caaataactt taaaattgct gactgatatg atcgaccaca
tgatcacatt 660taactgcaca agcaaattga gttaggaaaa naattataat ctgatatttc
taaaatttta 720gaaattaaat gcaaagaata aaattcaaag gactacatat aaatttggtg
tattttcaga 780ataaaaaaac atatttaatc cctctatata ataatgaggt aggaacgggg
aagaattttc 840aaatattaat gtgaatacaa ttttctccta tagttcatta tatttcgacc
gtcttaattt 900gtccttactc ttgaaaactt attaagctga aatttttacc tatatctaaa
tgcatggaca 960acatggctac ttcacttcag aaatctcgaa gtgcaaccaa gaaattgctt
gaagatttca 1020caaagaaacg aagactagaa tcgccaaaag aacaagtcca aagtccaatg
aaattaaaat 1080ttattattgt attgtgtgcc tcaattagca cgtttgtatg tatgggagaa
tgggagccaa 1140cttggagcac aaga
115421301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 21cctttaaaac gttacaccat atccattggt ggaagaggag ggatggaaaa
gnaagggtcg 60ttgcttaagg acttnttctt aggttaatga cattaatatg tgaaaattta
aaatacattc 120tttttaattg acgttacata acatgattgg aggggcatga aaagggacag
acttttagga 180ggaatgtgat ttcaatccgt ttgaaataat aagaaatata ttagaacggg
ttgaatatta 240gataatttat tataaatatt tattttaata aaataagtat ttttttacta
aattattttt 300a
30122910DNAGlycine max 22actaaaacta cctcaactgt tatagatgtg
gtcatttcac ttaaatactg ctttagcaaa 60tgtccatagc aattgttcag tgtcaatgct
gctactgcac cagctattgt gttccatttc 120ttcaaaattg gactataatt ttgtctctct
ttcaatgcca aatattcagt ttcctgagct 180aattgaagca taacttcacc tatttctttc
tttgtttcag actcagcaga tttggcattt 240gctgcttcca tcatctacag tcattaggca
acaaagacat tatgatattt tctttttact 300tttaaattaa aaagcagaaa atactataag
tttgacacca ttagggatta aaaagcagaa 360aatactacaa gcagaaaact ctacaagtta
tatacatgct tctaacgtat caaccttttg 420gattgtttct taacaaatac ctaccttttc
aaaagcattt ttcaaggaag aacagatata 480gtcatcaatc cggccctcag aggaattcgc
tctagttttt tctccttttt cttgcctttc 540ttcagaattt gtaacatctc ccaaaatctt
ggatgctaat aacaccacag gggagaaggt 600tttcaatttg tccaatatca ccctccctcg
aaatacctct gggagttaaa gaaacctttt 660atctgccccc ttcttggcgg gaactgagga
cacatttcaa tatcttcaaa ataaccagga 720ctccccttct ctttcttaaa ctcatttgcg
ccctccattt ataatgtttg gaaggcaaaa 780aagggaggtt taatttccca tttctcattt
gtggaacatc ccctgaaaac acttgtgtgg 840gctttttcca cggggccttt ttttaaaaga
atgtcctttt taaaaaagta tcactctcaa 900acatgcggga
91023301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 23tcccttagct gaaanaaaag
gtcaatgtca gtatagggac atggaagtct ttcattgant 60attactaatg gagttatggt
gtttattttt gtatgtccaa tttccatagg gcatagtgcc 120actcaattct ntaattgata
tagatttctt ctgagttctc tttgtaaatt tccagccact 180tgtatgtgca gtggtctttc
atttttttgg tttgctataa tcaataggat taatacnaaa 240gtgctgtttg gttagtggtt
ttcaaattta cagttcagta taaagttatc caggtaatac 300a
30124301DNAGlycine max
24attggtcaaa ataaaacgtc cacgtgcact tgaatgatga gtttgaaccc ttattttgtg
60tgtgtgaatg atgatgagta tgaagctatt atgtaaaaga tgatgtgaac aaagattcca
120ataatttaaa aacaggcaag tggcatatat tattagactg gagatcactc aagtcaaatt
180taatgttatt agttattact agctagaggg atagttacgg actttgcatg gtgagggaac
240tcaatttaaa tgtaacaaga atttttattt tttttaagta acaagaaaaa attgaataaa
300a
30125864DNAGlycine maxunsure(1)..(864)unsure at all n locations
25ttgttttctt ctctgtattt acaatagggg aaagatgcat gaagcaatac gtcttgtgtt
60gtcttagtga gatgctttgt ctcatggaca aaggagttat aaagctttat aatctgacag
120ttttttcttt tttcttaccg aactgtctgt ctgctcaaga tggtgcatgc ttagttttgg
180tttatggaat tcaggaagat aaggaagtat cttgaatttg agcttttaat caatttctat
240atgcntattg tgatggtagt tttcatttaa aacaaaaatt gtgtttgtca gttggggtta
300caatcactgg atcgcatcat ttttatgttg gatggcattc gtgtcaatat attttatctg
360gttctgtgct aagctaccat ggaggagttt atgtcttgtt ttggtgaaat ttcttctctt
420tgattaaaag tgaagttaaa ctggaaaaaa atgagattta attaatgaac gagtgacaaa
480tggtatgggt ttggtttttg gtttgtttat attggtttaa catgggatgt tgcgatgata
540tagaggggtc catgctatgt tctgtatgat accaataagc ttgtggtaga gtaaactcca
600aaaggatgaa gaaaaaagtt agcataaggc atagagtgca ttattatgtt aaagaatgag
660aaattgcaat ggcttagagt gcattattat taactatatg ctggaatata tatgataagg
720ctccattggt ttatgagaaa ctacgggtgg agattttccc ccctattaaa tagtaacaaa
780tttggaagat taaatacaca aatgttcact tctcttgtgt atgttggtct ctcagtgctt
840gcatatggta gtaatctgca ttat
864261068DNAGlycine maxunsure(1)..(1068)unsure at all n locations
26cccaggcatt aaccagggag atggcacaaa gttgaacaat cacattaaaa ttattatttt
60aaccagctcc accaatgaac catactatca aggctctatc agtttgcttc caaagtcggg
120cttccttaca caaacagaca agacaatgct tacataagac agacaaaact gctcatttac
180actgtttgga agggatgaat atgggaggga agaaacacag ataacaatgt catttccttt
240gtttggttgg agaggaagtg gaaagaaaat gagaagaaaa gttgacttct agagataaaa
300attcaaactt ttttgtactt tctctccaat ttcaatttca aacttttctc tcctccctca
360ctttctttcc tctcgaccaa acatagggct aaagttgcac aattcaaaaa attacactct
420cccaaagcaa ctttgacaaa ctcaaccaat agctttgacc taactaagag acacnagctt
480gttcacacat ctctccccca ctagaaaaga caaaactcta cagaaaaagc caaaaaccag
540ctgcagctta atttcattta gcattgtgct tttggatcca ctataggcta ctcggatcca
600atggttgttt caatggaatt gtgacttccc tctcttcttt gtaataaata aatctttttt
660tgtcatcaaa tatatgtaaa acttatcctt gttaaatata accacaactt cctaataata
720tactaccaat tttttttaat caataacaag aaaaaaatgt ctaaccatta gtcatttgct
780atgcaagtga aaacatcctt tggaacccat gttatccgaa gtgacacgat gatttgagtc
840tcatatgtga gaatcaatat ttaacattta attttagtag ataaataaac cccaaaagat
900aggaggtaga aaccatgctc agatgtgtat aaagaaggtt gtaccttttg ggactttttc
960tttttccctt catcagcttc ttcactctct tcactttcaa catatgatac cttcctgact
1020gtcctactag aagtgcgaat ctcactgttg cgcgaagaaa aacctgtg
106827301DNAGlycine maxunsure(1)..(301)unsure at all n locations
27tgttaaaagt ttaaacgtcg tataatctga aatggataaa gtgttttttt tnnaaaaaaa
60tatttaaata ttaaaaattt ctctagagaa acaatcttat attataattg ttatcaaatg
120gttctataga ttatatatat aagcaaaatc tttatgttag tgattctaag gactttaaaa
180cttcaataat cctcggaagg ttataatatt ttaattctng aattacattt tgaatcaaat
240agttcaacag ttttgtttct taacttaaaa tcaaattgat gtttcacacc aatgagtctt
300g
30128301DNAGlycine maxunsure(1)..(301)unsure at all n locations
28ctttgtcacc atgttngttt cacagtcacc tacngttatt tattacacaa attcttnacc
60atgcattacc tttttaagtt naggcaaata tttttatatt tttntttacc aaatcaaact
120ttatgcaaat taggaataaa aataagttag attactcaac gggaggcttg gccaatatga
180cttaacctac atcaggccta tgggtcaaat tggacttttt cngaaaataa attattccaa
240gactttcatt aaaaaanaaa aaacaaaaaa cacatatatt tcaaacttaa aaagaaaaaa
300g
30129301DNAGlycine max 29aatttaggaa aaagacacgt atattctcta gttttttatt
ttattttgaa gactttcata 60attctttttg ttttagatta ggatgattaa tcaaagtaaa
caccgcccct agctttcttt 120ttaacttgca ttacggataa cttaaccccc ttgctttgca
cccaattaaa aagcaataca 180ttcacgtgga gatacgagag tgactacata tgatttgtgg
gagagaaaaa ggaataagaa 240ggaaaaagta aatgaatgac atggataagt acatatatgg
gtcctcactc atattagtca 300c
30130301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 30ggaaccaaaa ctaccagatg taacaactcg tgttgaatca tcgatggctc
ccatgtacct 60cagcatacca tattcaagtt ctgcaaatcc ctgcacttca atcctcttag
ttgaaggaac 120attcaagttc aaagtctgtt aatagattaa aaattcactc atctgctaaa
ttaactattt 180tgnacattac tattggtata aaatgtcaac ctaacacatg agtcacctac
taactagtga 240ggtctcggga gggtagatat actcagctcc accctcataa gctgagaggc
tgtctctagc 300a
30131301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 31aacttgagtg tntntttttt tcctttcaaa tattcttccg ttctagtccc
tgacctaagt 60ctattttctt gctgtaaagg ttttttcggt cgattggagt ccagatggag
agaaggtagc 120ctctggtggt aaggataaag tgttgaagtt gtggatgggc taggctaatt
tttggatgan 180tattgggaat ccaacgaagt acaatctcaa tggagttttg cggatgcatg
gatttcatgg 240aaatcaatgg ttggtattat gtggatgcaa ggtctttaaa ttatatagac
agcatagaag 300a
30132301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 32caaaatgaaa tattttattt tactctnttt cctttttaat tacactcttt
cagtaaaaan 60aaaanatgcc atgttttaaa ccttgtatcc ttattttaat ttttatttat
aaaatacncc 120agatataaaa caggacgtac attctgtcat nttttaacac cttcgggcat
atatgagaag 180aggattctgt gttttgactt acacaagtac aacaaaggcc atgttgttca
gtgacagtac 240tgccttattc agttatttac cttttcaaaa taaaaaagtt atttacttgg
agagtttcca 300a
30133301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 33gccgggttaa gattatcctt atatccaggc ctttttattt gctnatgaat
aaaacactaa 60tcgttacaat aattgaggtg gacaatatga gatgaatgaa ttttcaatta
cttcattcaa 120cctaagaaat antgatgctt cttttcntga gtctcctcat gttctttctt
ctcatgatgc 180tcaggatctt tatgggcctt ctgcctctca tgctgtaggc atagatgatt
aaacaaaatt 240tgccatgtta tttaatattt gttactttaa aaaatnataa caattcacca
aacttaaatg 300a
30134301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 34tataaacatt tagatttttt atataagaaa ttattctcaa gaatccactc
tgtcatgtca 60gcttgtttca atgcaaaaaa aaatattaag gaacggtttc ttaatttcca
ttaagcactt 120ggaaagaaac ctgcattgga gntggagatg ctgtaaggag tcactcttag
gtaaagcttt 180gtgtgaacaa tttgtgcacc anaaactatt tcccttctat atatatttca
gaaaccaaaa 240aacaatttgt gcaccacaaa aattaaacta ataaaaaaaa ttataaaggt
ggtggaggng 300t
30135301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 35gcatggttct cgacgtttac tgattttgtg ggttgtcacc ttgtggagga
cccaccttga 60ctgtgcttgt acgaggcttc tttctatttt gagcaangct aattaaccac
acattattaa 120aaaaaataca aaattttnat ggtttttctt atttatttta ataaatttta
atcaattata 180atagaaatat tttagaaaga atgagatcac tgggaaaaac tttaacgcat
gaaagcatac 240aacttcatgc gatatagctt attcgtggac caatattggg ttaggatcct
ttcttcattt 300t
301361185DNAGlycine maxunsure(1)..(1185)unsure at all n
locations 36gcatcttgag caccttgggg nattggtgct gcggctgccg gtgcttatgc
cttggnnnnt 60nattatatat cttccttcaa taatatattt tgttcacgat cgtttattta
atttgaaata 120gatttatata ttacttatgt gagatgattc acaccccctt tttatatatt
ttagctttaa 180aatgttacct tcaccagaat aaataaaaga agtgcaaact ctttggtaat
cgagggaaat 240atatatacct cccccacata tacatcatca cttagacttg gacgtatcta
aatcggttaa 300ttttaatatg tttatatgta tgcgtgtgca ttaataattt tcatattttt
ttttgtaagc 360attttaaagc cttacatatt gaaaaaattg tcattaattt gtgttttgga
catgaattaa 420tcctatcatc ttgaatcatg tccacaaata atttcaattt gacattttct
ttttaaggcg 480gccaacatat atacatactt gatctttgta cttttggatt gtgatgcttt
aataattgtg 540gataatagat ataaaaatat attatagcta tatagtatta tttctctcta
cccactgtgt 600gtaactatac tgtctataca tctcatgtgg tttgtttttt cttaaatgaa
aattgttggg 660gtcatgggtg tatagagtat agtactttta tgacgccatc agaagagaaa
caataaaagt 720tcataaaaaa ttaggtgtag aaaaagatgg aacttaagaa agaaaaaaga
gagagagaaa 780gtgattaagt gatgtaatat ataatgagaa atgaagaaaa agataggaag
acaaataaag 840taaaaaaaag aaagaaagaa agaaagatat ataacaaaaa attgaaatgt
atattctaat 900atgtattgaa aacaaaattg atcccttttt gctgcaatgg ttaattttat
gacagcatga 960gaagcatgag gccaagaaag acccagagca tgctcacagg cacaaggtag
aagaggagat 1020tgcggcagca gctactgttg gtgctggtgg ttttgtcttg catgaacacc
atgagaaaaa 1080ggaagttaag aaagaagatg aggaagctca tggaaagaag caccaccatc
tgtttggctg 1140aacatgataa atattcatat ataattaata ttcaagctcc aaacg
118537301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 37ctaatggtag aggaatccac gcattctagg aaattaagct ccctaccttg
tgccatatcc 60tcatactgca cctccacatt caacattaaa tcaacattta gccnatccgc
aagagtaaac 120tttgctctat tcatcattgc ntcaacttgt tccaattttg cattccacac
catttcattc 180attttcttcc aaatgttgca tatactcatg gccacaagat ctatcacggt
acataactac 240tggagaggat aggcacatcg cattgcacaa cgcagagggg ttcttgttaa
ctcaacattt 300g
30138301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 38ctcctctcct cattagttgt agccctctaa gctctaaaaa ctctctcctc
tcatgttcca 60caacttgatg aaggaagagt tcaagacttc naagttagtg atgatacttc
acaacaatat 120tattcacagt tcaatatgtg atatcgtaaa cttgtttcga cctttagcaa
catcctacct 180taggtcaatg ttggtcgacg atgaaacctc actactacaa aatcattttt
ttacgacgca 240nattntaaga ctgttattaa taaccatctt agaatgtgtc acaatgacat
ttttgtaatt 300a
30139301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 39taactaactc tcaacaactt aactgtcatt ctttctcttc ttattcttcc
tactctacat 60tagatgattt ctcttgccta accgtttttt ctttactatt ttctttcctt
ccatccaaac 120atacaattaa tgtgcatttc acttngcttt gaacaacact taaccgttta
tgctagctcg 180aagttggatt gaggtatctt ttacgttgaa cggggactga gctttaaatc
caatctagaa 240caaataatat tttgtatgta cgtattatta tatgaaaaaa aaggttttta
aaagtagaat 300t
30140301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 40cattcacaac aaaagccaaa acccttttag aggctcaccg gcgaagaagc
tcaacaactt 60ctctgatcaa aatcttcaca aaatctgaca cccttagaag caaagattga
aactttntct 120caaaatcaag ctgagaaccc tgaaacaaag acaaacaact aaaaagaaca
catcctcagt 180caccaaggag tgaagaagtg tcgtaagaaa acaagggaaa aagagaagaa
aaagagcgaa 240atcactaaag acaaggatta gtttgtgatg ngaactagtt actatgtaac
naggctatat 300a
30141301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 41aaaagacaaa gaaagaaatn atgttaagca tncaaaactt gatgtctaag
tttatgttta 60tgcttttgnc aatgttgaag tgaagctacn tgtaaggatg ttcacgagta
tgagccactc 120naattgaccc aaacacgttg gatgtttaat gtgttttagt tgagcccaaa
tcaatccatt 180caaactactt aacttttggg ttgtgtcaca agattttaat tcttgcactc
actgacccga 240cccatgaaca tctttttaat attaaattat tatatatata tatatatttc
ataatatata 300t
30142679DNAGlycine maxunsure(1)..(679)unsure at all n
locations 42ataatttgat catcatattc ctaaactttt ntgcttaagc agagacaagc
tgctcaatgt 60gtgggtcgtg taatccgttc aaaggctgat tatggaatga tgatttttgc
agacaaaagg 120ttagtatcct tgagtccttt tgcttccatg aacatgttga acatttggga
aaatgtgagg 180gttgcttata gtattctacg ctgacgttaa tttgatgaag ncaacttgct
agtttctagt 240tttgattcaa aaagcacaat gcactcttct ctttgtaact ttatggaatt
tgtcctgaaa 300tggattggaa gttattggtt gtctctaata atgaatgaca aaccaaaaga
aacttgacaa 360tcttcagaat ccagtttgtc aagcaaagaa agaaatatgt ttgttcaggt
ccatgacatg 420tttagtttca aaaaccaatg taactaacag atataannag caaaaattgg
taaatgtctc 480tgtaaatatc aataattaca gtcacaaatt ctatacattn tataggaaat
anccaattta 540aacttatgaa agtctgcatg aataaatggc ctattttacc tatgatgatt
gctccattta 600tggttttggc ttctactttt ctctatgaca gtgttctgac agtaaatagt
aatacattgt 660tggttataac ttctgcact
67943744DNAGlycine max 43ctaagtacga aaatcgttat ccgccgcaac
agccactaag atgttctttg agtcttggca 60cgccacgtgt cagaactgcc aacagatagc
cccatctctt tctccttctc cctaaacctc 120gaactcagca cccccatcca ctggtccctc
cccactccat catttattat actttcttct 180tcttctttat tattgttgat taatataaca
tacacccaca tatttcatat gggtacttgt 240taatttgggt gtggattgtt agtttgttac
ttgttttgtt ccgttcaggt gattgtttga 300ttgagccttg aagaaatgga ccacagcgct
gatgcacatc gcacggactt gatgaccata 360acgcggttcg tgctgaacga gcaatccaag
caccccgagt cacgcggcga tttcaccatc 420ttgctcagtc acattgttct cggttgcaag
ttcgtttgtt ccgctgtcag caaggtaagc 480tatccctact ttgtgtgttt tttatcgaca
aatattaatt gttagtatta ttaatccttt 540ttcttttctt ctcttttcgt cattagacta
atcttatatc tcgttatcat gtatttattt 600cactctattc aaatatatta ttctggtctt
aaatataaga agaagaaaaa aaaatgattc 660atgctgacta agaatgaaat attgattaga
gttatgtgtt gtgacctgtg caggctggtc 720ttgctaaact tattggactc gctg
74444301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 44accaagacgg tcatagacaa
cgaccntcat tgtgttcatt caatttattt acaaaattgt 60cattangtgg cattctagga
cggttcttta tgatggtctt aaaacctctc acgtaaataa 120taattataat nncattaatn
acaanaatgt cactatgtta ttttctaaga aggcggctct 180acaaaaccgt cttagaatga
ttgtcgtaga acgtaacttt tctggtagtg tctatctcaa 240tggcaaccaa ttattagaag
gntttttgcn agaatctttg tccaattgca attatntgca 300g
30145766DNAGlycine
maxunsure(1)..(766)unsure at all n locations 45attgcactcc gtgtagttgg
gtccagaaga agcatttaca gaaacttcca tgtattggct 60ataggcatgt agagcaacgt
tgttcatcgc ttcaaatttt ttaatgtagg cttttggtat 120tgggccgctg aagttgttgn
aagagacatc aaaaatgact aaacngggga atccatgctt 180gatctttaaa ccggcaatgg
gaccgtacaa cttgttggct cgcaaaacca atactttcaa 240ttctggtaga gtttgaagcc
aatggggaaa cacatccttt atttgattgt ttccaagatc 300taaaacctcc agatgaatgc
aattggacaa agattctggc aaaaaacctt ctaatanttg 360gttgccattg agatccagag
ttctgagctg acagtccttt gaaaagatac ttggcaaagt 420gccatgaagc ttgttcagtt
gtagatccaa aactagaagg gatnatgagt ttgcaaggca 480ttgtggaatg gttcctgtca
acttgttgtg agacaagttg agaatctcaa ttgcacttgc 540attgcaaatt gaggaagaga
agtcaccagt gattgagtta aaactaagat caaggtaacc 600gagttgttgg ttccatgaga
attggtgcaa tgattgtgtc aataggttat gagagaggtc 660caattcagat aacgatattt
catgcaacca atttggcact ctacctttaa agttgttatt 720ggacaaatag agcgattttc
agattgggga ctttttcccc ataatt 76646301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 46atttccattc aacaaagtga
atagtatttt ttacaaatta taattaaata tcaatanaaa 60gattgctata ttacaattat
acatcattgt ataatattaa aatatataat aattgaatta 120ttaaaattac atatatatat
atatatatat atatatatat atatatatat atatatatat 180atatnttgct gaagcaactt
tacctcttca cactttctct atataggtac aggtgttctt 240cgtgtgtttt ataaattgga
cttttnttaa gntaccgtac attaaaagtc gttatgatga 300t
30147301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 47tttcagtctt tattgttttc
ctttattgtt tntttttact actttgattt cttgttttca 60tttcatatac ttttcattta
tatttccaac ctttgtcttt tacacaaant cntatcttct 120acattcttct tcattcacct
aaacctaatt tcttttagga gtaatttgag aacccatcat 180aatcaagaag catattcccc
tttctttgca cnaatcnttt gattattctg gcctttccag 240atcttgttga gactagggaa
aacatatttc gtctgatttt gaatttttaa gtgacatnaa 300t
30148533DNAGlycine
maxunsure(1)..(533)unsure at all n locations 48attgaaaatg agaccagtat
tcattnacaa gctgattgaa tagcgatcct tctttcttca 60tcaggcacat tggatcatca
tactccacca attttcctgt caatacaagt atccctttga 120agaaaacaag taatagtaaa
aaaatattct tcacctttat tctaatnaaa attcaacagt 180gaaaatcaag tacccaatat
tttacaagtt atcactaaat caactaattg tctattataa 240taccctttaa ccaggtgaat
gcaattaaat cctctgctaa acaacataac atgcctatct 300atggggtgtg tcaaacccag
tggtataggt agaatagttt aacataacca taagaaaatg 360gaattagagn tatgaattag
cccgaaaaag gtttgttgaa tgacataaag gagtcggaaa 420tatgcatttt taccatctct
gattgaaaga accatagtgc aatccatcac ggttggtatc 480ctgtgtgcta ctgtgatcac
tgtacaatct gcaaactcag tcctaatggt ctt 53349301DNAGlycine max
49gttcacaagc gctgttggag gtacatacca aatgtagtaa aagcattaga aagctcaaca
60aacttaacga gctcaacaga cagtggctta aaagttgaaa ctgaagcaag ttgatgcttt
120ctagtgactt tgggtattta ggtcatcgac attataccat gccttagagt tgattttcaa
180tcggcattgt tgttttcgac tatggttgca ttttttagtc gaccatgaaa tgtgctctga
240gggagtaatc tagttggatt tggttctttc tttgtgtttg tctttgaccc atattttcga
300a
30150301DNAGlycine max 50atcatagtag gatcttgaag ttcaactgaa aatagataga
gagaaagaga gaatttaccc 60aacaaaagga gaaaaaacag taaaaataaa aaaagaagaa
gaagaagcaa aaggaacgtg 120gagtcccgtt tttgttggtt gggtttatga gggaattaga
ctgaagtgtg aagccacgct 180agctgctaca attaaattca tagtgatcat tagtcatata
ttggatatct atcttgtact 240ttgaaatgac atttcaagaa gctctgaccc tattttctct
cacaaagctg ccatcaagat 300c
30151301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 51tccacttagt taatccagac tgtcgatgca tttaacaaac aaacaaacat
taaaagccat 60aactgaaggc caacactata taaagggtca ggatgcatac tttgcaaagc
aagcatagag 120cataggtcat ccaaacaacg actggtgcag cacactgaca gaagatggga
acttcagcag 180ggccgaggca ttggcctcaa ctcatctata cgttggcatt ttgcctaatt
gctgtcagtg 240ttgtcgctgg tcatgataat ccttactatg cctctccacc atttaatgaa
gaactcccnc 300c
30152301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 52aattggaata gcgtgcaatc ttattgggtc ttactcaaaa aaataaaatt
gggtcttaaa 60tagacgtaag attgatttat aatgcattta atatttttac atttctcata
catatanatg 120tgagctttga tgtccaaaag gtgtttcatt ttccaggtca tatatgtgaa
ctgtatcgac 180ttgagattga tacatcatac ttcaatttgt ttgaggtttg acgtgttgcg
gtgtgaattc 240aacagagtcc taagtggaca taacactgat tcataacgta aagaatttaa
tatttttaca 300t
30153301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 53caccncaaca caagacaaca aacacccttc ctttaataat agctagtgat
gaggtgaatt 60aatttcactg ggcatggttc ataaatacgc attgcttttg gaagaaacta
cacaaagtag 120atggctcggg aaatgaagca atagctggat gttcccagcc tctggttgga
gtacttttac 180cctcattcat accattattc tcattcttct ctgatgttcg aacttgaata
gtgatatctg 240cataaattgg ctgtggagaa agaacgagtg gagataacaa tggtattgcc
cttgaagcct 300c
30154492DNAGlycine max 54atattgtggc tgcattgtct ggcatgaatc
tgtcagctga tgatgtgtta gatggtgata 60gccatttccc gtcacaggtt gagtcagatg
ttgataatca tcagagatac ctatttggca 120tgcaaggtgg tcaggatcct ggcaaacaac
atgcatactt aaagaagtct gaatcaggac 180acttgcataa atctgcttac tctgattcag
gtaagaatgg tgggagtatg tcagacatca 240acaatccatc tttggatagg catgctgagc
tacaaaagtg tgctgttcct cccaataact 300catacttcaa gggatcacct acctcagctt
ttagtggtgg aggtggcgtg cctgctcagt 360actcgccctt agatggtact aattcagcat
ttacttacta tggcctgagt gggtacgctg 420gaaatccagc attggcatcc ttggtggcta
gccaacttgg aactagtaat ctgccaccct 480tatttgaaaa tg
49255586DNAGlycine max 55tagttcattt
gaatgcattg aaaaagtaca cctatgggaa gcatattgtt gctcgtgtag 60agaaacttgt
tgctgctgga ggtaattatt tcttgcttgc attaccgcta cattctctga 120atatgtgcat
gaataggaga tacacacctg aactaccctg ccaattatat gcctttagtt 180gcatacttta
ctgtttactt ttgatctgct aaggtattac gttacattac gtgtagtttg 240ccaactgggt
catgtaattt gttgcagaga ggagaattgc tgctcagtct cctcatcctg 300cttaggtggg
catagaaagt tgtttgtaca gctaactgag gctagtgtga gctttctcct 360ctcttttcct
gcatccggag gttatgttta ttcctatctc aatctgtcgt gatgggtagt 420ggccgattgg
aaataaaaac actatcggtt ttaatgaaga actgtacatt ttgtagtcca 480aagtttatac
atagaagaag aatttaagtg aggcgaggct cagatgtgta atactcacct 540gatgcccccc
tgcagcagag gagataaagc gacaatacga gccttt
58656121DNAGlycine max 56aaataaccta catcgtttgg aatattatgt cttaggttac
atcaagctca aattaattaa 60atagacctat ttgataaata cgtgtggctt gggcttattt
taaaatttat tcattttaaa 120a
12157301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 57ttaatgtaac angcataagg gcaaccagcc aagctagaca acctcaacca
ggctagctca 60attacttcaa gtcagattaa aaagatataa attggtaggg agaaaaccaa
agtttttgga 120attgagtttc aaaaactgta tttagttttc aaaatccaac taaactaggt
tgcttagaaa 180actggtggag gggtgtgcaa agcatagagc agaatgtgca attgagggag
aggttgaaca 240aaataaaaac atcttctagc tatttcngtt ttatggtctt taaaacactt
gtttttttgg 300g
30158895DNAGlycine max 58ttcggactcg tacgggggac ctctaaatcg
acctgcagcc gatgtaaaga tcatatccta 60tctcttttta agttttactt gacctagcta
accatggcat attttgggca atgacagcgt 120atttattatt atgagctata gatttaagta
gtttatagaa cataaatcca aacaatttgc 180tcagatttct aatatatatt acgagattag
aagcaagcaa gtctacaatt atcttagcga 240gtgtttggaa ctaattccac aacgcacatc
atatctacta gaagcaacaa gaagtaattt 300ctgcatcata tgggcttggt gacgtgattt
ttataggacg caattccagt ggaaattctg 360aatatacaag cagtcaattt ttatagcatc
taaagcgatt cagtaaagcg caacagcaaa 420acaccagtct tatatcattt atcgcttaat
ggtgaagctg aagaactcta aagaaacgca 480atgtgaaaat agaatattta cataaataaa
aaggctaaat tgtttctttt gccccctcaa 540atatgagaca agaatcagtt taatcccata
acatattgaa gtcaaatcat gacgggtgca 600cagacgatga ccgtctatta ctttccgctc
tcctttttct cttggctgga aattgtggcc 660aaaatacaat attttttttc ttgtcaactc
gaatggagta agatgggatc aaatcaaatt 720gacaatgttt tgtgggatac aaaataattt
tacaagttac aaccacacac gcaagaaaag 780aaaagtgaag aatgggacta aaacgaaact
ggcctaatga ggataaaaaa gaacacttca 840gtccaaacca aataataaaa gaagcttcag
gttagcaaag ccagtcttga tggca 89559484DNAGlycine max 59tggaaaacga
atcaagcgtt gaattggttt gaatttgcat cccaatccaa ccaacgtcgc 60aatttcattc
ttttcatcca ataattcaat tcaccaatgg agcttttgaa gcctttgcac 120cctcaccatg
cacccatttt gcgaattccc tttcacgctg ttccctcctc ctcttcttct 180tcttctcaat
ctaaggttcc ccttcctatg atttctaagg ttcatgtagc tgttgggaaa 240tcgctcgaca
aagctgtccc cttgcttcga tggactttaa atcacttccg gaacgcggaa 300atcgtcattg
ttcatgctta tcaaccttct ctcaccatcc ccactctatg taagctcatt 360tcattcaatt
ttgattctga attttcatga tctccacttt ttcccccctt ttgcgctaat 420tgattggatg
tatttgaatt ttgtgcgttg aacagtgggg aaattgccag catcacaggc 480tagt
484601056DNAGlycine max 60aaagaaatat gttctgcgta agggtcgtga ttcagagtat
gcatggcatg ttgtccaaaa 60tcatgcagac aatgcattgt attgtgaaac acctgccagg
gctttttaga aagtgaatct 120gggcattttc ttagatgctt gtgattgtct tttaacataa
ctgaaaagaa ttgtatatat 180cccttttaac acttttcata ggatccctgc tcacctaacg
cttttgatct tttggccata 240atgcattact aacaacactt tcaacattga gtgcccatat
taataattga cattcagtat 300ttcccttgct tttccattaa gtacctgata tcacatcctt
atttcctctc tccgctttaa 360ttttaaataa ataaatccgt tgcgaaccac ttggataaat
gagtataaaa tctggagaaa 420ctaggcttgc atgtagatta ctagatttct cgtttgtggg
gttttaaata cgtatgcgta 480agtgatggca atactgctct taaaagtgaa ggctctactg
ccgccacctc cttcgtggag 540cagcacaatg cctccgcaat tgctccaaaa aggaagaaat
attgaattgc tacttctgaa 600tcgaggacat caaagtcatt acgatatgac aaatgttaaa
ttaagaaatt taaagtaaaa 660atatttttat tgggaaatac aatattatat tattcattgt
ttttttataa tttatataat 720aaatattttt ttaatttcct aattcatgtc ctaaaaataa
tttaataaga tccataagaa 780attagtagtt ttttcttaat tatgaccggt tagtgtaacg
acacaatgat tctgtttctc 840tttattgtcg acagagctat agaaaaagct gatgagcatg
gctattggct attgcaaatt 900aatgataaag cattctcact cgttatgtca ctctttttga
ccccattctt gctctaattg 960gacttggatt ttaccaacag cgtctcttta ttcacagttc
ttggcaataa ttctcagttt 1020ctatgcattg cacagaacaa caaggagtgg acgatt
105661301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 61aagactgcag catgtcacta caaattttgc tgtttgtaag acgattgaat
tgaaattctt 60tcctttattc tggttatctt ttcaactttc ctttgttaag tgtctttgag
aactgagctt 120gaggaatttt aattacatag tccggaatca tcatgccatt tactctgatg
caaggtgtac 180acacaagtga tgatgtgaaa ttgattcaca atatctagtn gaattttgtt
tngaattgta 240taattcanct tgtctggagc tagaactaat ctgtagttag ttttacatga
ttattttctg 300c
30162301DNAGlycine max 62tataggatcc aaagctagat cagctgaatg
ataagggcag agtcagcaaa agggcatttg 60agaagagaga gaaagcgcaa gacaaacaga
aacacacctt gggtaactag tccgaatgga 120gagaacaact tcttgagctg ctcctgtgta
gtgtaaagca taatcatgaa aaatgaaatg 180aagcaatggt gagagagggg ttgggcttca
atttattgaa gagagggagg agagaagaac 240cctaactgtg gacgaagagc tttgtcccga
ttctccgtga catctccact ttccgattga 300t
30163301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 63aatatatttt tggtgataaa
aatganagtg gaaaatatac aagtatgtca gtcaagttga 60atacggctag tgaataattc
aatgaacatg anagatatag gaattattaa agatacaaga 120ataacaatta ataattcacc
taatatattt ccgaaaatgt cttacccctc ctaataaatg 180tggctagcta gcaatagaaa
atttgtaata caaataagga taaatagtna cttttgtttc 240ttgaaatagt cacttttgtt
ttttgatgtg taattcattg ataaatacat ccctaaaagt 300g
30164301DNAGlycine max
64aataaagaaa aacaaaaaaa atattattat agtagtagta taaattagtg tttgaattgt
60tatctgtatg actgtatcat atatttaatt atatccgttc tcattatata agagttatat
120atattgtaat atctccctcc ctccctcgaa agctaaacgc ctacatggcc caactctctt
180cagagtcaac gccacctaaa tctaaacgtt attttctgta gcacacaatc agacagcaac
240cctttcatgt gtgctgcaat cccatgatta aaaattggcg gtcaacggct acgctctcca
300t
30165301DNAGlycine maxunsure(1)..(301)unsure at all n locations
65gncatggctc cctggngtta gaggnggngg caatctcgtc gacccagaat ggcttgatgg
60atcgtgagtc cacccnaatt ccttcccnct ttttggtttc aaaatgtgtt ttctataata
120attccatgca tattcagcaa tccatttgtc atattctgaa aattgtttct aaaattaagt
180gttttgtggt ctgagcttac tggtgtgagt catctgtatt ggtgttgaat atggtcctaa
240cttaagggtg tgagtcattt gaaatgatgt cgaanggtga ggcatgaact tggtttagtc
300t
30166301DNAGlycine maxunsure(1)..(301)unsure at all n locations
66aggtatttat aagtgtggtt tagtcaactt ttgggtatct caaaaaaaca aaagtcaact
60tttggagaaa gagtaagcaa agccggctac atgcaatgca agtgtattga aatgatgata
120tggctaaggg ttcacataca tatgaaaccg ngctcacggg ttttgtcttg tgccgaggca
180cggtctactg tgatgcngct agtgcaaata aaaatgatac cgcgtgagag tgtgtattta
240gtcaaagttt tccattttgg tgaccaccac accaaaaagt agagctttat gcgggaaagc
300t
30167301DNAGlycine maxunsure(1)..(301)unsure at all n locations
67atatggaaca tacccttnct gactcacccc ttatgtgcac aaagcattat gattcaagct
60ttacaaaatg aaagaattct aaatctctgc catttcaaat tccttgcaat tttgaaattt
120ctcatccaaa acacaaggta aagacaaatg tcaaatttta actgttatac cggtacagct
180ggcaactggc acctgggaag agaaataact caagttgaag ctaacaagct ttaatttgtc
240cagaatttca tgatgaaact caaatctttt gttaccaaat tcagtttata tgctgtagtt
300t
30168301DNAGlycine maxunsure(1)..(301)unsure at all n locations
68atttaaacat aaacatggca ttaatgaatt actaacactg gggctcggct atacacaggg
60aaggaaagag aaaaagagag agtagattaa tcgataaaga gaaacaaaaa gaaaagaaaa
120acaacatagt atgtagatac ccaaatagca tgtggaagta agatttagtg gccagctgac
180cacgtgattt ttatattgct atagactata aataagtgcc cactagtgtt tgtataaact
240tatgtattaa tattaantca tgcatggagc tttaatataa gctatcggct gngtttatga
300t
30169301DNAGlycine maxunsure(1)..(301)unsure at all n locations
69tacggccaga ttctgaaagc tgcttcctag aaagtaccta ttgcttttat tcacggtctt
60cataatcact aagtggattt acttcggata ttgtctggta ataattatct accttgggga
120ttttgctgtt gaaagancat catgatatag atttaattaa atagtattgc taattaatgc
180taatgtttgc tttggaccgt acaggagaat ttcaagtagc catcaaaaca gaaccggagt
240gatggtctct ggtttattta taatggaagt tggcggtacg tcaaatttgg cttcttctat
300a
30170301DNAGlycine maxunsure(1)..(301)unsure at all n locations
70ttaacttttt catttttatt taatataaaa tttcacctca aacttataat tcaataatat
60aagcttgtag gcaaggttac ctaagtgaga tnagttcata ttaaaagtgt gaatatattt
120cagtgtgttt gtcggaaatg aataattatt ttcctttcct agttaaccaa ttgctcataa
180caaacttttg ttcgtttggc aaaactcaaa ttgcaacata ttccctcatt ttngttaaaa
240gagaaaattg ccatgaaaca gcttgaaaat tgaatacaca aagggagact atctagtatg
300t
301711102DNAGlycine maxunsure(1)..(1102)unsure at all n locations
71gtttcgccag cttgcactgc ctgagatgaa gtaattgctg ctgcggtgct gctccggcac
60cgccttgtgc tggtgcccgg ccaccaggta gagcaaaaga tgtcactcac tctgttcatg
120aaaaatgggc tcaaggtcaa tgtgcatgag agggatttga gaggggttat cacaagtatt
180aaaaaggaaa gggaggaaga tgttgatttg agaagtaacg aaagttagtg tggtgttcaa
240tagatgaagc agagggtgtt ggaggttttt gaatgtggag acaagttcaa atgagaaaaa
300ttcagaccct ggggctttag cttatagaac aagagaacat aatttccttt taagaaaagg
360gtatattcag agtatttata attcttatga taaattgtgg atggattctt tttccagggt
420cgtgggatgg atgattgctt tctcaatcca tcgttccttg tagaatcctt gcaaatattc
480attgtattct ttatttcttg tcggttttga tgtttctatt taattttact ggtggtgaga
540gctaaactca catttcacaa tgttgaatgt tgatgttcat aaaagaatgc cttacgtttt
600atgaaagtat aatgatcgga tttgactctt ttgtcatata taatggatga tgcttaagtg
660gtagtggtat actcaaaaac tgcaaaattt agctttacag ttcatctgca ttttttggtg
720aatattcatc tgtgatttta gattctgttt ccaggatcct tgcctatgac aatgaaattg
780aaatgcacan attgaaccag tagtaaaagt agatatactg atgtcttttg ttaggggaca
840ttgaatcaga aaactgtgcg accaattttc tcagccatgt atgatgaaga agcagagttg
900gccatataac atgtatttta actttaagca taagtatgct tgagttatat aagtggacat
960tatccaccat ctatacagaa accatttaga tcatgggaca agacatttgc aaaaggtgcc
1020tagttaatcc aagatttcta gataaaatgt aaaggctttc agctatttga tcaaaaactt
1080tgatggttgc tctcttcgat tt
110272301DNAGlycine maxunsure(1)..(301)unsure at all n locations
72tattttaacc aattagcata agagacaata aaaaataact ccataatatt aacaagattg
60tgacttaagt tgcctatcca caatttgnaa aataatttat caaaatgcaa gcacaaaaat
120aaatttacga aattgaacaa aatgcaattt ttaaggaaat aaacattgaa atgctatcct
180tggattagtt ttaaggctct agtggtacca taacttgatg tgccgcacgc tcacgtattc
240tacaattcgg ataagaggta tagactatag agaaatattg tctgattttt agtttctctc
300a
30173301DNAGlycine maxunsure(1)..(301)unsure at all n locations
73aaatcacact ttactctcaa gtgcactttt gcactttata atatccaaat tnatatataa
60tttttccccc acttagaaga gacgttaaat gatgtcagtg ttgtcaactg ggtactctaa
120ctttaatatt agtctgtttg gatataagtc ataagctctt ttgagagttt ctctactaaa
180aatataccat tttcttgttc tcatgccttc ttcatgcttg aacttgaaca tccctttaac
240aaatgcagga agaagtgcta gttaatgcct ccgtggtgaa aagtggaaga aaattgactg
300t
30174301DNAGlycine maxunsure(1)..(301)unsure at all n locations
74tttgcttnca ttttacttag ttattacttg agattttcta tgaaaatgca tgttttaaca
60agccgatgat ttcttcaatt gcttagcaga tatantnatt gtcataatgt taagagtagc
120tacatctttt caacaangtt aaaatgcact actaagcatt taaacacaca ttagccaaca
180agtccatttt ctgcaatgtc ttttccaatt taaatgactt ccaaaacata tgcactcatg
240ctccaaatca agtaaaaata tcttcaactt tttttcatgt atatacagac agagaaacac
300c
30175301DNAGlycine maxunsure(1)..(301)unsure at all n locations
75tagtgaaata cgtaatgcgt tagttgaaga gaacaaaagn ttacatgttc anatatcaaa
60agtctaacaa tttggctaca tgcccaacac gttatgcant ggagatgagt gtactataaa
120gggaaggcca atgtatgcag gtgtattcaa tcaatgtttg tcaaatctgg tgagctaaac
180tgatgttggg naaattttan agaaggaggt tgattttgtg gttggaaaag aaaggtttga
240aggacggagt gagttcaaat tttatcacta atattttaat aaaaattaat aattaaagtt
300g
30176301DNAGlycine maxunsure(1)..(301)unsure at all n locations
76ttaaaataat taatatttta tgtatgcaac cttanttaac ccccaatgtg tttctttcct
60tgggtgtgac tcgacctaag tcagtgagtc actngactaa ntgcaaacnn gattgggtta
120cactaagttt aacgcttnat caatctgata ggcaactcga ctcagtcaaa cttttgagtc
180gcagtcaaac cagttcaatc agttgggttg gtctngattt taaaacatta tcaccaccat
240cactattgtc attactacta tttcaccccn accactattg tcattgctag caccaccatt
300c
30177301DNAGlycine maxunsure(1)..(301)unsure at all n locations
77tcttcataaa aaagacatcc aaanaataaa ttctagatga tagaaattta aattntatga
60taaattattt tncttaatta aaattcttta tccaaataaa ntctagatat tttngggaga
120aaggaaatga tttatttcta ggatagagat agtgaagatg gtcctcccac atgtgattct
180aatttgggct catatgtagc ttttagaatc cacgtcttat ccttttgtcc attccatctt
240gctacttctt cctcttgaac tgacaaataa cattcttaaa gagcagcata attcttcaaa
300c
30178301DNAGlycine maxunsure(1)..(301)unsure at all n locations
78aggcaactta actaacaaaa acaaatttct aaagtaaaat cagaaaacac aggtagcaat
60tctgagctta accataataa aaacaaggaa taaataaatg gagtcattta cgaaaattcc
120tttattgtta atatgaaaaa aagaaaataa atttctgata gaaacaagtt actaatacta
180tgaacagnaa caaatgtgag aacacaagca cacagtacac acatggcatg tgcgcataca
240tttgccaatg tgagcttata gccttctact ttacaggcac atcttcctag agacacatgc
300a
30179301DNAGlycine maxunsure(1)..(301)unsure at all n locations
79gtggatgcca tgtcaaaaga aggtgtttca aggatgaatt ttaaaatttt catattcctc
60ttaaccacat gaattataag attccctcta cgggtctgaa ctanaaantt tttcatattn
120cttgggttga ataaacctga ctacatttaa aaacagccat cacgagccaa cccttcgcta
180tgagcctact actgtaataa ttaagaggat tttccaaaca aaaactaaaa attttcacgt
240tcaacaaagc aagctagcta acttgaattt aaattgatgc agtgtaacct tctataaact
300a
30180301DNAGlycine max 80aagtgcattc ccctcatatt tctatcgacg tgggactcca
tgataggtaa aatgatttaa 60taactgataa ttcaagcctc agtgcaggac atgagggtat
ctatcgatgt gagacttatt 120tagagaactg ccattgttaa actgatgata tagatgtggg
actacttctt atgcctcaac 180atgatgtggg agtgggacta ttgctagctt aatatatgct
tagtttaaat cactactcac 240aattaaaata gtccttgcaa tattcaatat tttagctttg
gtccttgttg ttacttaatt 300t
30181301DNAGlycine max 81caatatggca tgtttatctg
gtaagcgtag ataattagtc tgaaactgac actcaaaaaa 60ctttaagcca acgttatgtg
aaccagtcaa atcagtatca taaaaaaaaa cagtcaaatc 120agtagggacc aatcctagca
aattagacca ccaaaaggga ttaattacaa aggagaaatg 180attttcttgt aattaatatt
ccaactaata tggcattgaa caggaagcta gagaaacatc 240ctaatgagga aaatagtagg
gcaaaacaaa ataaaaataa tgcccttctc tataacagaa 300t
30182301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 82actttgtcaa aaagaaaagc
tttcccatgc ctgcattgga aagactaaga gaaaagnagg 60gttagcttgt gtgcaagtta
caaattttac tcatacattt agtttgcatg atgagctgta 120caattaaggg ttcagataca
tattggcaag tggcaacaaa gggaagttgg aagtgaaaca 180gctactattc tcatcgttcc
taaaatgttt ctttcattta acaaaatgaa tttgcaagag 240taaacatatc acagaaggca
ttaatcaggt gccataatca gggcagagaa taattttaat 300g
30183301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 83aggtttttgg gcttagcgca
cangtgtgcg ctgagcgagt tatgcaactc ttattggcct 60gcaactttcg ttaagtagga
catggctcac ttatcgaatt aaatgcctca tgatgcagta 120gaggggtcac gcttagcgag
atgggctcgc ttagcgctat gccattttag agagagttat 180gggcttagcg ggtatggtac
acttagtcca atagccatga aaatccaaga agagagcctt 240ctacgcttat cgcatagaca
cgcttagcga gagactatgt cgcgtttagc cctattccat 300t
30184301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 84catantctta attcgaatgc
tattttcttc tttgaaacgt tgntttattg taagagaatt 60gaggaaataa aataaagtta
ggttttgatt attttttntt gttgattgtt caggaagaaa 120tgatggttta actttttttc
tgtaggaaac ctttccactc tcaacttaat aggtactcta 180gacaagccaa cttggagact
aattggtttt tatggattcc cngagaaaaa taggaggaag 240gattcttgng attttattga
gaactcttgc ataggatcat tctctcccnt ggtgtataat 300a
30185301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 85ttggcaagga cctattttga
gtctctctat tctcgtgatg acggggacca tgcaaaacta 60ttttnttttt tttattcttc
agtaaatatt agtttgaact tttcatgttt ttacaattta 120ttataaaatc taattattta
tataattaga gtaaaagtat tttcgtgtat gtttcacgtg 180tgtgtagtga atcaaaacta
acataattct acatagatag atagatagat aattttttta 240cagaagtata cacatattta
atctgctatt aatttatgta aagaatgttg cataaaagaa 300t
30186301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 86catatcctgc aagataagat
agaactggaa atcttctttt tcaataaata gcgatcaaac 60aatgaactta aaaatccttt
agtcttgttt atcttagatt tatgattaag ttagtgaagt 120gttttaagat aaaatatcaa
acttattgga attgatattt ttttgggtat ttaattgagc 180atttttacaa gacaacgatg
ttcgggtacg cccaatgtgg tagttaagtt cttgaatttt 240tggcagataa ttaatcatat
acacngtcaa taaaaaacat ccttatttca aaaatatatg 300t
30187301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 87tagaactctt tttcttattt
gtcttgatca aagaatgaaa cccaatatat gtatataggt 60aaatgctgtg gcataacata
agaaattaaa gtgaaaaaaa taaaacggta atttcatttt 120caacgtaatg ctttattaaa
cagaaaagaa gagaaccccn atctcctcaa ttatatgatt 180aggattaggg cttctgcgtg
tgtaattatc attcgccaaa aatgacatct ttgttaccca 240gctattgcgg gaaatataga
tatattactt atgagaaatt aaagctgcgt acattactca 300a
30188301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 88gcgctggttn tcttcgcttg
tacaaacgaa agtaattgtg attactataa aataggcaaa 60taacaaatgg tcagtgatgg
cctcaaactg ggatgcttgt caatttttgg ggcagggtct 120ttcacatttg atgaaccttg
ttggctatcg agcagggtat ttccaaagtt tggtctgcaa 180aacagattac tgagaaacca
tcaattngac caaatattta gatgtctatc ttcaagctca 240aggagcgatc ataacagata
tcaaatgtct tgaaactcat gggagttggt tactgatcac 300g
30189301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 89tccttggtgc taccgtatac
cattttgtat tttcaattta cagttgtcac atgttacata 60aaattctgtt cctcttaaaa
aattatttgt gtactgttgg tctattaaat tgtcatagta 120tgtatgtatg atagttctcc
taacaagaga tgcaaacagg ctagtaaaga tgcagcgagg 180aggctgaaaa ttttgggcct
agtcatcaca gtttagtcat gtttcactct tgggatgtag 240tagtattaat taaaatgttc
ttataagact tgaacaatcn ttcttaattc aaataaaaat 300a
30190301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 90ttcccctatt ttttatgtag
aaaaaatgta aatatgcact aaaaatttta ctattttcat 60taaaaaaatt gataatttta
attttaaact ttatacattt ttagtgcaca atgccactat 120aaagtttgnt tttttttccg
tcaagggtgg ctgaaggcca tacgaacaga acgggggaat 180gaaaccccta aaaaaagttt
taatctcaaa cttttacaac tagaaccacc ctaataggtt 240atttaaatta ataaaatata
ataaagttaa tatgaattgg taaacactaa ttaatgaatt 300g
30191301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 91gacacttgat cgttaataga
nanatatata tatatatata tatatatnna tagagagaga 60gagagagaga gacttttttg
agtaacttga aagggtgaca atgtaaaact ataagaggat 120aatgtaccca aattataatt
acaaaaggga gaaaatgaag atcacatcct tgaccaaagg 180ggctatatac tgatggcacc
atagcaatac aacatggtga taaaacatga cattttcaac 240aaggcttctg aaattctaaa
gaagtatttt cacactaaaa gaacaattgc gaatatttac 300t
30192301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 92aaggagttga gctctggtaa
ttaacgaatg caacacaana caagtgagtg aagagaaaaa 60acggggttgg gttgggtgcg
attctgaaan tgacggaaac gtcccattca cgccaacaca 120ctcatnatta accaactaac
ttcaactaag aaagtgaaac ctctcccctc cttacctttg 180cttttaccaa tgtttccttc
cccaaccaaa caaccacaaa tcttgtctcc ttacttccca 240tttctttttc tctttttggt
tttattcttt acaatatatt aatttaattt taatcttttc 300a
30193301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 93ttactcaaat tttctcctcc
tttagttagt tgaatncttt ctaggctgat tggtgattcg 60gattcattat tagaggctcc
acattggatg acagaggcct ataacacatg ttgaggttgg 120ttcgaggtgg tgaatacata
aaacatgatg gaatttgata actttaagtg gtaggggttt 180ctcattggat gaaagaggcc
tataccactt gttgngattg attgaaaatg gtggatacat 240ataatgttgg aaaatttgag
aattgtcatc ggtaagggat gattgatttt gcaaaagatt 300g
30194301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 94ttgcaatctg actcaaacaa
tatgttgtta atattgagct ccctcctgca gcagacccat 60tgctcgaata aattggccat
ggtcatcacg taagtaagat tcctattcca aagcactgct 120gctgttaaaa tatgttagca
tcttgcgttt aatttcacct tttggagtgc tgcatttgct 180gttgttggaa gtggcattat
atatgattcg aatcatatgt tttgttcaat attttttatg 240aaattaatct tntaaagtga
ataaatattt ttaaataaaa atatatttac cattaattta 300a
30195301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 95ctgatattag tggttactat
cgacagccga caggcaaagt atcatcgatc cacaaccaac 60tgaagaaaat aaaattagtt
ttttttttat tatttacata agtaacaagg gaataacgat 120aaaaagtaaa aaaaatataa
aagaaacttt ccactacata gcctataatc tagtgtcatt 180tttgggctct ctttccccac
atctatcaac aacattgacc atattaaaac atantgttgc 240aatgatcgaa aatgattttt
ttcacaataa ctaaaaataa aagcaactat accttttcat 300a
30196301DNAGlycine max
96aaatagaaca aaatgtttta gagaattcag aatgagaatg ctttcttatt caagagaaca
60tgaaatccat ctaggttaat attaattcag cccaacttca taaatactaa ttcccacgaa
120cactaaatgc atcttatcat gtgatacata tactattacc tagtgcattg actcttataa
180tttccagcag aaacagcctc accgattaaa ttcaaaatga tgctggtgaa gtaatagacc
240taaaaattac taaggtaaag aaaaatacgt aaaacagacc agaaaaataa aatacaaaga
300a
30197301DNAGlycine max 97gcattaatga aaaatggagt acacggaaaa gatcacacgc
aaacaatatt ttgtcaagga 60aaacgccata cctatacata cacagaaaat tcatatttga
cagggatgga gaaaaacata 120tctgtaccta cacaagggat agacaggtaa tcttccccca
agcttcctcc ttcttcaagt 180ctttttctct attatccggt atttcttagc cgggaaggca
ggatacctgt caaaagtatc 240ccaatgctca agttatatct cagacaaaaa aaatagaatg
cgtacttaat gtgatgaaca 300a
30198301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 98acgattattt atcttttctt tgggaacaag tccctttaaa tatttaaatt
tctaatgtaa 60aaaggtccct aatcaancat ttgtttttaa tttttatagt aatttagcat
agaaantcaa 120tttcacaatt gctaggaagt tcttttaagt gaattaggaa cccaatngaa
ggacaaaagc 180ctccctcaaa tcaattgcta agagagaatc atctgtggtt aatccgttgc
taccgctgaa 240cagacgcaaa attcacacca acaaattcat acaaaaaaat atgaaagtaa
agagacacaa 300c
30199495DNAGlycine max 99ggagttatat ttcttgtttt aagagcacca
aacaaagaaa ctggattctc cacacacgac 60aatcttgttg atgtttcctt tgaaaaaata
tctaacaagc gttcattttc ataccaatag 120gcagccatac tgaactttcc tctcagaatt
atactttcca ttttcatacc atgggcagtc 180atttgtttgg caatggtggt aacttgctct
tcctttgttc cttcatcaga ttcttttgat 240ggacataggg catttgtaat aagacagaga
cgtttctttc ccttgtttgt cattccaaat 300ttttttatta acatatccac gccaacaatg
acaacatcaa gaactaacat caaagtcaag 360gtgatatgat cagggataaa aacaagaaca
atttagtaat tcctagcatt cgaggtctag 420gaacctccag agaagaagct aagaaaggga
agttttattt tctgcttgct tcatcacgat 480acatcattca ttctt
495100301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 100aaaactccga taancattan
aaccggcgat aaaaatgagt gatcaaaact acacattaaa 60ngcacttttt tttaataata
aaaatgttag gaagaatgta cgtgatagta gtaaggaaga 120aacaagatag ggctagcttc
ggatgtacgg ccaagagtgg aatcttgttt tgcagctcta 180tgaccagttt ggtttattca
tcacaggaag gagaaatgga agatggaaac acttgctatg 240gcatgctacg tgttggtgta
tgtggaatgc taggaacaac atcgatatca tttgtccgga 300c
301101301DNAGlycine max
101ttaatattta atagattttg aatgagaaat tgattgctga gtactgtgag attgttttag
60aaaacaattt ttaatattta taaccaaaaa atgagaatgg aatcaaatag gccctaaatc
120ttttacaact taatgaggac tatacaatcc acttgtttcc tcatgtttca tgtcgctgaa
180gcatgtgacc aacttggtta ctgtgtaaaa ctcacttcac aaaacatgtc atttatccaa
240atatagagga agatgttgaa cgctaatgtt tgtacagaaa ctgattctca aacttccttt
300c
301102301DNAGlycine maxunsure(1)..(301)unsure at all n locations
102actgctcttt tttcccctac ctacctgcat acgatgttat ctacttctac tttacaagct
60tcattgatct cacttcaact gcttcaattc agatggtaat aactaataac tctcgatcga
120gagccaaata atgttttgag ttcagtttca ccatgcacca tgcccatctg ttttcgtaat
180ttgatggatc taagaagcaa atttgctctg ttttttactg tatacgtgac agagaagtaa
240acacgcactt gatccaattc ctttcgtgga aatcaacagt antagcaaca ataaaacata
300t
301103301DNAGlycine maxunsure(1)..(301)unsure at all n locations
103ttaaattatt aagaaattta tctttttttt tcataaaagt agttctaaaa aagcctatcc
60aaatatcttt gttggtgttt ttactgacaa aggaatgcga agttttggtt gctttggatc
120aattgaagta ataagccggg aagcttggtt tggaaagatc atgtgtttat cggacctctt
180gtttgaaaac atctcatgcc aaatccaatt cacattgcag gcttagcgtg aaggagtcca
240aaccacaatg gtgtttcgtt ttttgtcatg cttatcgctt gtttttgtat tggntttatt
300t
301104301DNAGlycine maxunsure(1)..(301)unsure at all n locations
104ctaaaaagat ctaaattatc atttcttaaa atatctcaat taattcatta ccatcatgat
60tgacgttatc attaccatga gcatccttgc attcatcacc ataaatcatc attgtcatca
120cctctgtcac catcaccttt ttgtcatcat cgtcgttgtc atcaactgtc accatcatta
180tcgttgctat cgtcattacc accatcacaa caacaatgac aagatcatga cggtggagnt
240gttgatcgac ttacaaaatt ataagaatat ctttctaaaa ataactactt ataaactttt
300t
301105301DNAGlycine max 105tttatacact taacatataa ccaataaact cttatatatg
taataaattt ttatttatga 60caaatattta atataattat atatttataa tttaaatttg
agttcacaag ttatattaac 120tatcggttaa ttaaattaaa atcattttac actggttaat
gcacacacta acaataataa 180agttgataat cagatttttt ttttcttaaa aaaaaagaac
gacaatatgt tgcctccagt 240ccatggaaat gtggaattct tgatttgatt ggaagataac
aaataaaata tgagcaatga 300a
301106301DNAGlycine max 106aaaatggccc aaatctcctt
attttgcgaa ttaaataaca tcatctatga tttagcaaat 60aaagaatgtg attttttata
tatttttaat ggattaaata atgtgattta tctcctaaat 120attattatta ttattattat
tattattatt attttatgat agggttgggt actcacatac 180ccataaccac catcgttttc
attaaaattt gtggataatt agtgtacctc agctcataat 240ccattaagtg gataattact
ttatttatga tggataattt ttttgagtaa tagtagaatt 300t
301107301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 107ttttctaaat tataaccaca
gaagtgtcta atgcaaacaa ttngatttgc attattcttt 60ttatttattt atttattaat
atttgcatta ttcatatcaa ctacttctta gcataggtgt 120caagataaat taaagtgttg
gcgttgccaa cttcaagcag agaaagatca agtggccttg 180actgtaactt tttgactgga
tcatcaagtc tattattttg ggaatttatt gaaatatact 240gataatataa ataattttta
tattaccaat taattagagt ttgttatatt attataaaat 300t
301108301DNAGlycine max
108aatttgcagt tagtgctaca agagtgagct tcacgatgac gaggagtctc tcccatattt
60gtcgttgaat atttgtgaat tgcggatcac cacacgacca tttccttccc tctttgttgc
120cttcttgaca tcttttgttg ctgcaacact catttttttt caattaacct tttcttcctc
180aacgaagttc aattcttctt tcttttgcac gtaagttgga caattcaatt caattatctt
240cgtagcgggt tttcttgtgt ttcaaactgg ctaggtggtg gttcttgtaa aaagctagct
300t
301109301DNAGlycine maxunsure(1)..(301)unsure at all n locations
109gtattattag canaatgcct ctatgcaaaa cctttggtct tatgaattgt gttatgtttc
60acttcaacga acaagaaaaa cactcattat tctccagacc agtaaaagta acaatggtct
120caattctcaa actcagcaag aaacgcttca aacgtcctag aaagcaagcc attatgacca
180tcataatcaa accaaaaagg ttacaagtgt atcagctttt gaacagagtc cactcggctc
240aaagtgaaga aattttaaac acttacacgt cctctgcact tttttcgact tttnaatcca
300a
301110301DNAGlycine max 110gaagaaaact tacaaagtga aaaatatatt tcaaaaagtt
attatttcta cattattaga 60gttatttatt tagaggccat tcgaatgaga tgttttgcaa
acaagcgttg gagaaaatag 120agtcgactat gtatttgagc aaaaaactat aagcagtact
ttcttttacc aaatgctcat 180agcaaaagga aactgtgggg aaatgattct tggggttagt
ggttacaaaa ataagtaaat 240aactgccctg gtgcagttgt aaatctaaca agagatatct
ctaaatgaag agtttcatta 300t
301111301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 111aaaataaatc ctatgaataa taacttattt gctgttgctt ttgtaatgtt
ataaaagctt 60ttttctttcg gacgcttttt ttatttgccc tttttgcaca gcacttgcca
atttatggaa 120tagcccgtga gatctgtaat tttctgtatc ccttccccac attggagaac
taggctaatt 180tatatccatc tcttagactt tgtacgaaat cgaaatgcaa ataaataatg
agaaatcata 240gatgcagagc ctactaantg tatatattag taattattac tatagtgcca
acaaaagcaa 300a
301112301DNAGlycine max 112attatttgta agggctggat cctttgaata
attactccta taaagactgg gctgatctta 60tataagaaat atgttaaatt ataaatttct
acaagtatta ctgcaatttt atgagaattt 120gtttttctat tgtaaattgc aatatattcc
cccggatccg gaatagcctc atattgactc 180caaatagtca tgacaaatga agattgaggc
gggatttggc atttttaaac cactgctagt 240gcttggtttc cattttggtt gcaagtgtaa
ccaaccagct attaaagata caattggaag 300a
301113301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 113tctcctcgat gagatccagc
ttctcccttt cctccacggt ctgaggcagt ctccctactg 60agaagtgcag aggttgcagt
gggcggtgtt gatgagctcc catggcattg ggctgaggca 120taccatcaaa tgtcggtccc
tcancggtga atgtggagta tagttcaaag tcacccacaa 180catgatctcg agggtcttca
tagggttccc ccataggctg agggatgggt gtacgtccca 240antggggttg ctggccctca
aanggaatgg gaanggagtg gttggcgttc tcggtgggca 300t
301114301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 114ctcctcgagg ccaccatcat
tnggatcaaa atattccggt ctacctatcc tagaagttat 60tgtcctggcc tcccatccac
gtgcgtgttt tttcaagcnc caaacaacac cttgtgttgg 120tgcttcttgg cagngcatcc
gaccnncttt tcggctgccn tttctagcga cagactcacc 180ggaccgaggc gcacaaagtg
tctcacctta ttttgggcca ttctgagatt ctttcctttg 240ccgtacctta ttttagttca
cgttgtttgg tcattgtttt gcccttgttt tcaagttcga 300c
301115301DNAGlycine
maxunsure(1)..(301)unsure at all n locations 115tgctatggta gatcagtaag
gaaccaagta ntattnacct ctaatgcttt aatctttgca 60ttcatagctt caatccagtt
aggatcttta gaggcnacan tgtatgattg aggttcaact 120tgttgtgtaa caaacaagat
aaccttttga taggaagtag atagtctgtt ataagaaaga 180acagaacaga gaggataaag
agtagtacct gtagagagat tggcaacaat tgatgatgga 240tatgtgatgt gaaagtcttt
tatacttgct tggcctttgt ctctgtctca ttggccttct 300a
301116301DNAGlycine max
116acttgtaact aactaagcta actctagtta caatgtgatc aatctgaatt aaccattatc
60aaaacagtat ctatgctaag acatagcttg ccttaattgt gacctctttg gaggttgcct
120taattgcagc agcctagagg gggtgtgttt aggccacatt gcctacaaat atggcctaga
180tagtgcttac aaggcttggg taatcctcac attacaatgc ggtgttttgg agctgagata
240ggttctaagc tcaaattcta agagattttg gtggcctgaa gactgaacaa cattttctgc
300t
301117301DNAGlycine maxunsure(1)..(301)unsure at all n locations
117ttatttgttt cttccttttg ctgctgactt ataattgaag gagtttctgc tgtgtttgtg
60tcatcccgcg aaaagagagc ctcacatttc tgggctaatt tctttttgcc cccncctttt
120cgggaataca ccagccagga gttatttggg catggtgtgt ggccttttgg gcttgctttt
180tggggagcaa atgtttttgg aggggtgtaa atatcacagc ccaagtccac taggctttcc
240acctccttgt cacgtgcctt ttgtctccca tatttaaaac tgccgagctc ttcaacgttc
300a
301118301DNAGlycine maxunsure(1)..(301)unsure at all n locations
118aaaaantaaa ttctaaaatg gttttttgaa aaatcgtctt agaatgcata tccttttaag
60atggttttta acaacgaacc gtcttagaaa agtatcattg taagacagtt tttaccaaag
120aaccgtctta gaatgatatc tttttttcta agacggttac ttaaaaacta tcgtaaaaag
180taaagacttt ttataatgtt atctacgacg aaggttaata atcgtcgtca aaggtctctt
240ttaaccgaca taaaaagcgc tttgtgtaac agtgcatatc cataatttat acccgtttat
300a
301119301DNAGlycine maxunsure(1)..(301)unsure at all n locations
119gtcccttgtc attgcctaat aaattaaggt ggcttcattg ggatcaatgc tttcttaagt
60cttttctaac taacttttgt gttgaacaac ttgtagttct ttggatgant ggttgcaagc
120ttaaaaagct ttgggatggg gttcaggtat gcatgttgct atacataata caattttctt
180tcaatttttt atggcatggg tacaagagag agtcctaagc ggtaattggt ttcatgttgc
240ctcaagtgaa gctcattcct aagagcaagg gctacactta ggatgttttg cttctattta
300t
301120301DNAGlycine maxunsure(1)..(301)unsure at all n locations
120ataaatgaaa aaaactaatt attattgtat taaaaaatta aaataataat tatctttaga
60taagtttttt nttctcacac aacaattatt ataggacaaa gactgtactt gtagggttat
120gcaaacgagt ctgacttcct agtttaaaaa atgaggttgg ccttggaacc tctgaggtta
180gaagcctccc caagtctcga agtgcatgac aaatcaagga gtggccttga atgtataccc
240ttactaggca ttgttaaacc ctagggaagc gtgataaagg ggaagggaaa tggttaggag
300a
301121301DNAGlycine maxunsure(1)..(301)unsure at all n locations
121gaganaggct agcgcttgtc tggcttgtgc ctcttgtccg gcttgtgcaa gtcagccttg
60gngtttattt tgcacttgtc acgcttctat ctggcttagt ggacttcatt ctgtaatctn
120gacaatgctt ccatgtggat gtagcccttg gctcactcgt gcagctagtc catgcaattg
180agtggtcttt tgcacaaact atctgtgaac ttgtcgagga ataatgtgag gagcattgaa
240tggaacacta cctcggggta agatttcgga tctggacggt tgtgcgccca aatctgccca
300t
301122301DNAGlycine max 122caataaatat aagattgact taattaatga taaagaaaaa
aaaaagaaaa aagttatgaa 60tttaaattct ccacaaataa aaattaataa ttaactttta
tggatctaaa aaaaattacc 120tcatagactg tgccatcacc caactgaaca agggtaaaaa
gctttctgtc tgtagtgctt 180gcagccacag aaagtaacca tggagcataa acagacattg
tagaaagctc tggaccctca 240ttaccagcag aatgggacgt taatattcct ttcttcattg
catggaaagc cccaatggcg 300a
301123301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 123ggggtatgcg aggctacnga gaggggaagt agggaaaaat gatgaaggct
aggatgtgga 60cggctccgga gacctttgcg gtgctctagg agtttctcct cctgaagatg
ggccaagtcg 120gtggcatgca ccagcgtcaa cggctanaga gcttggaatt cangccggat
gtccgattcg 180aggcctgaga tgaagcaacn tagaagtgat gatggtgaca acccaacaat
gcgattggcg 240agtgcttcaa attgagccag gtattctctc antgaatctt tctgggttaa
tttaaagagg 300a
301124301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 124aggtatcgtg gcctgttgat tctccttttt gtcccttgtt cttcttcttc
atttggttct 60aatattgatt ctgagttttg ctttgtaatt gttgactctg ttttcataac
acctaattaa 120attaaatata ctcttatgcg acttttggtg tacaaaattc atcatgagct
ccttcgtcat 180ttcaagggct cttcgaaagc tnacaagcgt cttattctca ttggtatcta
tctccatctc 240tctctttctc tctctctctc tctctcaata tatatattaa aataaaagaa
aaattgccat 300a
301125477DNAGlycine maxunsure(1)..(477)unsure at all n
locations 125accttgcaac atataagaca gatagcacaa gaatcaagtg gagaaattca
gtatggtggc 60ggacaccaac ttgctgtttt aagaacattt agccacagac tttgcaggta
attaaggcag 120actttaatgt ccttggtagt tcgaaccaat gcattgtgca ttttagttat
tgacttggca 180ttttaaactt gatgtaatta agtagtagtt tgttcattaa ttattctnat
tcttgctaaa 240attcaagctt gtncattacc attgcttcat aattactatg ttttattgaa
attgcattcc 300ttaggggctt taatgatgtt gtgaatgggt ttgttgatga tggctggtca
ctgatggggt 360ggaagatgta actatagcca aaaactcatc tccaaacaaa tttttgggat
ccaattacaa 420tgcatcaatg tttccagcat ttgggggtgg ggtcttgtgt gtcaaggcat
caatgct 477126301DNAGlycine max 126ttttacttaa catggtatct agagtctaac
tgagggaata atgaaaatca tgccccacca 60agaacctaca agatagtagg tccccgatgg
atctttctac tcatctccct tcttttggca 120acttgtttct gcattccgat ggaccctttt
tgctcgttgt tgaacaacaa ccttttcatg 180cttttctggc caccatcgtt tgtcattatt
gaaacttcag caacctatcc agactctaac 240catcaaatct ggtgcacctt tggccgacct
gtctagattc aaccaccgca agtcaattgg 300a
301127902DNAGlycine max 127atggacaagt
ttaatctcac cttttacaat ggtttgtgat gacattagga aagacctaca 60gtaacatgtc
ctgtatttac tgtgtattat tttaaattct tgatatccgg ccctcatatt 120agaagggatc
cttacggaag gaaagtttta tgtggtcttg ctcgtaggcc aagtaaacgc 180aaaaacgtat
gaaagatcaa gaaaggaaat ccagaaaata tgtcatttga taaacctaat 240tgaacccatt
ttctatattt tcctttcctg cccaaatatt tatgtataag cttccttcaa 300cttgtctaca
tctctgtcac tttatgactg ccctttatag catctccaat aatgaacatc 360atttagtttt
tttaactctt ttaatggctc ttaccatccc acatcggttt taagaacttt 420agcaactttt
cactccaatg atgcatctct gtaagaactt aaacaggtct caagtttttt 480acatcttaat
ttttctttaa tgggtctcag acgttacctt tcaattgttt tttaatggtt 540aagagtcagt
tcttttataa gaacagttct tactcgtaat gtccatatca tcttcctcca 600gtggtgaacc
tagttaaaaa tggttcttaa ctttaagaac ctacacaaga actatcttag 660agatgctctt
gtagtgaagg tataggttgt tctaagatgg tcacatcaat cacagatcac 720cttatgtgtt
ctatatttag aatttacctt gtctgttaca tcttaaagac gatactgaat 780tactgatgct
tatgcagttt gaggatgatg tgtacttgcc aacggatgag ccacatgggt 840caattcaagc
tagtatgagc cgcttgtgtc aaagctgtag aaactgcagg catacaaggt 900tg
902128301DNAGlycine maxunsure(1)..(301)unsure at all n locations
128tagtatgact aagattaaaa aaaaaaagaa gtcagtggaa gatttttcaa attgaaataa
60aaaaaatacg aatcttctac tccttaaaga atttgggaaa aggggtagag tgattataca
120tgcatttgaa ataaaaaaac acacacgcca aagagcccgt taatattggc cacagggtgg
180tgttgacgag ttataactat atgccttgaa ggaaagaagt tttttttttn aaaaaaaaaa
240aaaaaaaagc caaatggtat tataaacaac aaacaaagca caagtagtgc ctaatacaag
300a
301129301DNAGlycine maxunsure(1)..(301)unsure at all n locations
129aacacaacat gaactattta tacttcacat ttgctcacgc atttcatcaa ataagttgta
60ggcaagttgg ttaaatactt aaatcccaaa agtcctaaca accagcccaa cacaaggcat
120caactaccat tcaacatcat gtaggacaag tgaacaaagc acagtagatt aggtgggaga
180aggacatacc tacggacacg acagagcgtg acaaataacc accaggacat gatgatgagt
240gtgcattttc agtttgcgag gtggaccttg cgncggagag tgttttggca ggctggagaa
300g
301130301DNAGlycine maxunsure(1)..(301)unsure at all n locations
130aattgatgct tctaagttct aatcgcactt caacacngaa atttaggagt gacgagaaat
60agagccctac tttctttctt gccgcgtttt atataataat ttgggttgtg aaagttgggc
120ttggacngng gaacacagat gncccacaac aaatgggccc taatggagaa agaaaatgtg
180gcccaggtca ctttaaaaaa aggaaaagga aaaggaatac tgccaatcaa aataaaataa
240aataaagtan attgatanca tgggctaaca tgtcttgccc cattacaagt cctttttttt
300t
301131301DNAGlycine max 131taatgctctt aggcgtattt ttcgtttatg ctacttttat
aacatcgaac atttttattt 60tcttttagga gaaagaaaga aataaggtcg ggatatgcct
ttggctgtct gtttgtaagc 120atgcatgcat acatccggcc ggtgctggag aatatttgct
tatcaccatg gcacaaacgc 180attattcatt attttcccct ttttaccaac ttaaaacagt
ttcttatatt atcgagtttc 240atagatataa tcatttcagt taagcttaaa aaattggaga
atctctataa tttaaattga 300t
301132301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 132tttcttaaat ctaacaatgt tgncttaatc tccaagatgg tttggaccat
catggtctct 60attaatctcc acatgacacc taattaagta ttattaattt tttcttgtaa
attaacaaaa 120tngagtacat gtcaattaag attattcaag gcaatagaca ggtagtggtt
ccaaactact 180tatctatatc ctaagacaac anaaatctan attgagcata taccttgtcc
tcgataaggg 240gagagtcatc agcaaaccat gtctcctgtc tctcagactg acaatgagca
aaacaagaat 300t
301133301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 133aatgatggtt ccttatttat atattttatt ttaatataag attattttta
atgaaaatgt 60acaacttaaa ttatttccaa caacatgtta taaggaatta tcttgaaaaa
tgaatctaag 120gtttcaatct cattggatag agtctcacaa gtttcttttc aatacactct
acatgaaggc 180aactcgtgcg gattggcttg acaagcatgg atcatctcat gatgaagctt
tttaatttga 240aatacttatc cacagattat tttagccgat gctntgggga ttatgaggat
tcgcgtttag 300t
301134301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 134actttgcaat gaganaaaaa cgaaccttgt atctgtcagg gatgaagctc
aaaaagtcac 60tctcaagact gtgcaaacac atcaattcga atgagttatg taattaatga
tatattgtgg 120atcatacaaa aaaaatgaat acaagtatag ttcactcgtc actgctcatt
ttgtaaatct 180tcatgcttgg gcttatacgc cctctagaat atcttcaagg tctggaccac
cctgatcttt 240acgttgaagg ttgaaccaat atgccatttt agactttaga gttaagagag
agtttacaat 300g
301135301DNAGlycine maxunsure(1)..(301)unsure at all n
locations 135tttctgtatt ttctaaatcc aatcccacct ccaacgaaat gtctatagta
ttaggcactg 60catattgaga gatatgtatt gaatgttggc naaaaaaaaa tgcactcaaa
ctttaaattt 120attaaacgat atagcacang ctttgtcaaa ttctatcagt tttccagcac
acagtggtgt 180tatatctgta aattgggtgg atattatgtt ttctatgtag gtggtatttt
agacgtggat 240gtatggtttg gagaaatatc aagggaggaa atttactata agtgtgctgg
aaaactgata 300g
301136301DNAGlycine max 136cgtgcttctg aaaaagcctt tttggaacac
cttttcctag ttatggaaac gctattccaa 60aagcattttt ggttatggga tggtccttcc
ggaagttgtt taacatataa ttagatttga 120ttttgttatt ttacagtttt agtaattttt
tattttatag atttattctt gatttgtatg 180gaggatgatt acttcaacaa tatgtcagat
gaagttggca tggatatgaa tgtgttaact 240gattgacaag tgtaccaaaa gtctaaataa
taaagactcg aaagttcgag tgtcgatttc 300c
301137301DNAGlycine max 137taaccattat
tgcattgcca tactgttcag cttctcgtag gatatcttct tttaatcgag 60cctccatttt
ctctaccctt tcacgaccaa ttccctgaaa gcacaaattg caatatccaa 120ttcagagaat
ttggcacaaa attgacaaac tgctgtgaaa ttatgaggca ccaaatggca 180tcttagattc
tacttagata agcttcatgc tatatctact tcagcattag catgaatgtg 240tatatttttt
gaaatttccc ctaacctgca gcaaacaaag tgaaggggat ttggccagat 300t
301138301DNAGlycine maxunsure(1)..(301)unsure at all n locations
138gccatcgcct ctagcgttgc agttttttgt tttatttttc cctcgccaca cccanaaaag
60gcaaatgagt tgcaatctnt gggaggaaac ctgacccata ncgaattgaa gaaaagctca
120aagtggcaat gtnaagggtc cattnttgtc atcatctctt agtcgaaggc cactatagaa
180gtaggaagga agtgttcacc aatctttgtg ctccccgaca aacctgtaat ttgccgatga
240gttttcgacn acaataattg cactcgaaca cttaccctag ccattttagt ttatcatagc
300t
301139301DNAGlycine maxunsure(1)..(301)unsure at all n locations
139caaactttta tgtgatatcg aaacgactat tgggcttcaa ttaagtagaa acaaagggcc
60tacataggat tattagttta ttaaaacatg tgatgtcacg gtgggccaca ngaagcagta
120acaaaagacc ctcacagtat gggctaatat ttcacgcatt gccgacgtaa cgaggtgtca
180cctttttcac cgtcttcaac atttagccgg gtcactttaa cccgattaca gcccacaaac
240ctgaatagaa acctaatgat ttctctagcc aacacggaac tcatcgttta aatttnnaga
300a
301140301DNAGlycine maxunsure(1)..(301)unsure at all n locations
140atggatgggg tggcaatggc ggaaggaacg gaagagagtg tggcgtcacg gttacgggga
60agggngttga agaaaacgga ggtggttgtg gcggctggtc ttttgaagag ttgaaaagag
120ggggttttgt atatggagat ggaagaagag atacctatgg ttgaagccat ttggagggag
180gaaatgaaag aagaagaaga agaggaggag gcggcgaggg gataaggcca cgcacctttc
240tgtctctgaa cttaaagcct tttaaacctc cctgtgctgc gtgcgtatca ctgtgtgtct
300g
301141301DNAGlycine maxunsure(1)..(301)unsure at all n locations
141taatctctcc caagtccnga ccaaaccaan caatcctctt gataatnggt cttcagtctt
60gatactgtaa ttgtctccac tgattgtgaa tcgtgtgcac atcgtagata cagaaatggt
120tgacttactt caaacacgac gacaggtcct gagtgtatnt ggattttaac taaattaact
180aattgatngg ttattttctc tttcgcacct tgaataccta tcaccgttcg atttcataga
240atgccattgc caccattttt tttttatctt ttttaaattt gctctacnga tttttnctcc
300a
301142301DNAGlycine maxunsure(1)..(301)unsure at all n locations
142ttgattataa gatattatat aaattaccaa aatttctatc attaatttga caaagtacta
60ataacgggtc agaagtgata aggatttata tctcttaatc aagtnntata aggtttgatt
120cctgcacgtt gatntttgaa tatagaataa atcatgttgg accagagaag aatactcatc
180ttgtgtgtca tcattccgac caagattaat caccacttcc aacaaaacta cttcatacta
240atattatcat tagaaaaaaa antaacttaa tgaattttta tgaacaggaa tatagctaca
300t
301143301DNAGlycine max 143ggggcttgac aaactcatca cccccctact tgtcaaggct
actaccccga atatcagaca 60atcttcaaca ctggataacc tctttcacct tcaatctagc
tcagagcttg gggggcttat 120gtactgtcca gggtccgcaa aatacatgta gcatcctaca
tggcactctg aaacttgtgt 180catccctcca tgtcaaccca agaacaggag cactaacatt
cgatccttat tagctaggct 240cccccaacca acaggttatc cctaacctct taatatttga
atatattgtt accattttat 300c
301144301DNAGlycine maxunsure(1)..(301)unsure at
all n locations 144gctgaggtcg aaaaatccga cgattctctg gcgttagagg cttctgctga
agatagtgtg 60aaacatgaca gggntgagga agcacaaagt gcaacaccac ccccaacaga
aggagatgat 120cacaaggttg agcctgctgt tgcagtagaa aagattgaag attctgtgcc
atcagatgaa 180tctgtcgttg cagttgaaga tagtgtaaag gaggagaagg aagtggttcc
tgactcacac 240actatcagtg acattgaacc agttcatcag gcnccatcca cagaacaagc
tgtggagaaa 300a
301145301DNAGlycine max 145gtttcacttc tttgagtttt ggatttgttg
ttattattat aaggaaaggg tttagaataa 60tcatttgaaa ttataagaaa ggatttaatt
gattaaagac aagtgcttta atcaattgtc 120atcaggtaga atctaagaaa ttgctaagcc
tttagttcgt tttaatacat gtggtcccct 180tatttaaatg tcacttggat atccctcgtg
ccctttgttt taagcaaaga taacattatg 240gtacggaggt cattgtcgcc attttccaag
gatgcatttt aatttagttt agataacttg 300a
301146301DNAGlycine max 146tccagagctc
aacttgttat taggacgtga gataggaaga cttatcagta cgtgagatag 60ataaaagatg
aatgcgtgat ttgttactga aggtgattgc aaatatattt gcaaagatat 120gggttgaatg
tagataaaaa atgaatcaga ttcagaaata actaaatttt ccaaaataat 180aaaatataaa
aagaacgtcg agaatgcaac gtggcttcca acatacatgt tagaacattg 240ttcttgtgac
ttcgaaatat cacctcctta aaaatttagt ctcactcaag gaccaacctc 300a
301147301DNAGlycine max 147ctgattagtg tgcgtgtgta gcagctaggt gtcgaatata
taaccattgt aatgcattgg 60aaaatcagaa aatgaaggaa ttcagtttaa atatctattt
cttctctctt cctaatcttt 120atcgagttct ctcttactgg aaaaaggtct tgtattactt
tgttttcgtg aaaagtttaa 180tatcggattt gttggacatg tatacatttt ctatttttct
tgtgattttc ataataataa 240aaaaaaaatt ataattttga ttttaatttt caaattcatg
attttaaaac atttgatttc 300c
301
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20210240718 | PER-QUERY DATA OWNERSHIP VIA OWNERSHIP SEQUENCE NUMBERS IN A DATABASE SYSTEM AND METHODS FOR USE THEREWITH |
20210240717 | VIRTUAL SEGMENT PARALLELISM IN A DATABASE SYSTEM AND METHODS FOR USE THEREWITH |
20210240716 | MAXIMIZING IO THROUGHPUT VIA A SEGMENT SCHEDULER OF A DATABASE SYSTEM AND METHODS FOR USE THEREWITH |
20210240715 | SIGNALING AND RESOLUTION MODEL FOR MULTI-LEVEL SESSION-BASED DESCRIPTION DESCRIPTORS |
20210240714 | MECHANISM TO SYNCHRONIZE, CONTROL, AND MERGE DATA STREAMS OF DISPARATE FLOW CHARACTERISTICS |