Patent application title: Adjustable Tension Rod
Inventors:
Alan Arthur Ford (Sturgis, MI, US)
Alan Arthur Ford (Sturgis, MI, US)
Assignees:
House of Atlas, LLC
IPC8 Class: AA47H1022FI
USPC Class:
2111054
Class name: Single horizontal rod type extensible screw adjusted
Publication date: 2014-09-18
Patent application number: 20140263123
Abstract:
There is provided an improved adjustable tension rod that allows length
adjustment and activation of end cap adjustment without having to move
one's holding position on the rod.Claims:
1. An adjustable rod comprising: an outer tube; an inner tube slidably
received in the outer tube; a lock between the outer and inner tube to
lock the tubes relative to one another; and an adjustable end cap
associated with each of the tubes, each end cap having a threaded
engagement with its respective one of the tubes such that rotation of the
tubes in a same direction causes the end caps to move in opposite
directions.
2. The adjustable rod of claim 1 wherein the adjustable end caps each include an end cap, a threaded stud fitted in the end cap and an insert with threading fitted in the respective tube.
3. The adjustable rod of claim 2 wherein the threaded stud and insert for one of the tubes include right hand threading and left hand threading respectively.
4. The adjustable rod of claim 3 wherein the threaded stud and the insert for the other of the tubes include left hand threading and right hand threading respectively.
5. The adjustable rod of claim 2 wherein the inserts include a recess that cooperates with the tubes to restrict rotation relative to the tubes.
6. The adjustable rod of claim 5 wherein the tubes include a seam and the recess of each insert receives the tube.
7. The adjustable rod of claim 1 wherein the lock further comprises a disc configured to restrict relative axial movement between the tubes.
8. The adjustable rod of claim 7 wherein the disc includes at least one radial slot.
9. The adjustable rod of claim 8 wherein the disc includes a plurality of radial slots.
10. The adjustable rod of claim 8 wherein the outer rod includes a seam and the disc includes a recess that receives the seam.
11. The adjustable rod of claim 7 wherein the lock further includes an insert that fits in one of the tubes and supports the disc.
12. The adjustable rod of claim 11 wherein the insert includes a first recess that receives a portion of the tube to lock the insert against rotation relative to the tube.
13. The adjustable rod of claim 12 wherein the first recess receives a seam extending along the tube.
14. The adjustable rod of claim 13 wherein the insert includes a second recess that receives a portion of the tube to lock the insert against axial movement relative to the tube.
15. The adjustable rod of claim 1 wherein the lock includes a wedge that locks the tubes against axial movement relative to one another.
16. The adjustable rod of claim 15 wherein the wedge is generally conical.
17. The adjustable rod of claim 15 the lock includes an expandable sleeve that the wedge fits into and expands to wedge against one of the tubes to restrict relative axial movement between the tubes.
18. The adjustable rod of claim 17 wherein the lock includes an insert in one of the tubes and the wedge being in the other of the tubes.
19. The adjustable rod of claim 18 wherein the insert includes threading and the wedge includes a threaded portion threadingly engaged in the insert.
20. The adjustable rod of claim 17 wherein the wedge has at least one groove and sleeve has at least one rib received in the at least one groove.
21. The adjustable rod of claim 18 wherein the insert has a recess and the tube has a projection received in the recess to restrict axial movement of the insert relative to the tube.
Description:
CROSS REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No. 61/780,609, filed Mar. 13, 2013, which is incorporated herein by reference in its entirety.
FIELD
[0002] The present invention relates generally to an adjustable tension rod and, more particularly, to an adjustable tension rod that installs in a more convenient manner.
BACKGROUND
[0003] Adjustable tension rods are commonly used to support curtains, such as shower curtains. Adjustable tension rods commonly have two tubes where one slides inside the other one to adjust the relative length of the combined tubes. The tensions rods include a locking system to set the tubes relative to one another and adjustable end caps to apply the appropriate amount of pressure on a pair mounting walls between which the rod extends. This will secure the rod in place.
[0004] Known shortcomings with current tension rods include their difficulty to install. For example, they commonly require movement of one's hands to a different position on the rod during installation. That is, one uses one position to adjust the tubes relative lengths and another position to adjust the end caps. This latter adjustment commonly requires going to one or both ends of the rod to adjust the end caps, while still having to hold the rod from one end so that it does not slide relative to the mounting walls. This process tends to permit the rod to slip on the walls and be installed in an out of level manner.
[0005] Thus, there exists the need for an improved adjustable tension rod that is more easily installed in a level manner.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1 is a perspective view of a tension rod in accordance with a preferred embodiment of the present invention;
[0007] FIG. 2 is longitudinal cross-section showing an adjustment mechanism for the tension rod of FIG. 1;
[0008] FIG. 3 is a perspective view of an insert of a lock assembly of the adjustment mechanism of FIG. 2;
[0009] FIG. 4 is a top plan view of the insert of FIG. 3;
[0010] FIG. 5 is a perspective view of the insert of FIG. 3 with a lock disc attached thereto;
[0011] FIG. 6 is a top plan view of the lock disc of FIG. 5;
[0012] FIG. 7 is a perspective view down an inside of an inner tube of the tension rod of FIG. 1 showing the insert of the lock assembly of FIG. 3;
[0013] FIG. 8 is a perspective view down an inside of an outer tube of the tension rod of FIG. 1 showing the lock disc of FIG. 6;
[0014] FIG. 9 is a perspective view of a left end cap of the adjustment mechanism of FIG. 2;
[0015] FIG. 10 is a perspective view of a right end cap of the adjustment mechanism FIG. 2;
[0016] FIG. 11 is a perspective view of a left end cap adjustment screw insert of the adjustment mechanism FIG. 2;
[0017] FIG. 12 is a perspective view of a right end cap adjustment screw insert of the adjustment mechanism FIG. 2;
[0018] FIG. 13 is a perspective view of a left end outer tube insert of the adjustment mechanism FIG. 2;
[0019] FIG. 14 is a perspective view of a right end inner tube insert of the adjustment mechanism FIG. 2;
[0020] FIG. 15 is a cross-section view of an alternative adjustment mechanism for the tension rod of FIG. 1;
[0021] FIG. 16 is a perspective view of a lock assembly for the alternative adjustment mechanism of FIG. 15;
[0022] FIG. 17 is a perspective view of a lock ramp of the lock assembly of FIG. 16;
[0023] FIG. 18 is a perspective view of an inner tube left end insert of the lock assembly of FIG. 16; and
[0024] FIG. 19 is a perspective view of a lock sleeve of the lock assembly of FIG. 16;
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0025] With reference to FIG. 1, there is illustrated a universal tension rod 10 designed to be easily installed between two walls to support hanging items, such as for supporting a shower curtain in a shower enclosure. The shower rod adjusts in length from a contracted length to an extended length to accommodate different distances between the mounting walls. Once adjusted to a level distance between the mounting walls, the tension rod if further adjusted to apply the appropriate amount of force on the walls to facilitate sufficient supporting strength. The adjustment mechanisms described herein permits simple installation of the tension rod without having to move one's hands along the rod during installation and without undesired walking of the ends of the rod on the mounting wall.
[0026] More specifically, the tension rod 10 includes an inner tube 12 partially received in an outer tube 14. The inner tube 12 extends telescopically from the outer tube 14 to provide a coarse adjustment of the rod 10 to engage the mounting walls. The outer tube 14 includes a left end cap 16, and the inner tube 12 includes a right end cap 18. The end caps 16, 18 adjust relative to their respective tubes 14, 12 to provide fine adjustments to further apply force against the mounting walls. These adjustments, as explained further below, place the rod 10 in sufficient tension between the mounting walls to enable the rod 10 to support items such as a shower curtain.
[0027] With reference to FIGS. 2-14, there is illustrated one embodiment of an adjustment mechanism for the tension rod 10. The adjustment mechanism includes a lock assembly 20 intermediate the end caps 16, 18 to lock the inner and outer tubes 12, 14 relative to one another for the coarse adjustment. The adjustment mechanism further includes a left end cap adjustment assembly 22 and a right end cap adjustment assembly 24. The end cap adjustment assembles 22, 24 provide the fine adjustments to apply the appropriate amount of force against the mounting walls. For the adjustment mechanism of FIG. 2, the inner and outer tubes 12, 14 are roll formed from metal with a longitudinal folded seam along the inside to secure the rounded cross-section (see FIGS. 7 and 8).
[0028] The lock assembly 20 includes a lock assembly insert 26 that fits in an inner end portion 28 of the inner tube 12 such that it is fixed against movement relative to the inner tube 12 and a lock disc 30 that is attached to an outer end 32 of the insert 26 that extends beyond an end 34 of the inner tube 12. The lock disc 30 engages an inside surface 36 of the outer tube 14 to enable the tubes 12, 14 to be extended relative to another but not contracted once extended.
[0029] With reference to FIGS. 3 and 4, the lock assembly insert 26 has a cylindrical, hollow body configuration with a flat end wall 38 at one end surrounded by a perimeter flange 40 extending radially from the insert 26. The flange 40 engages the end 34 of the inner tube 12 as a stop against complete insertion into the inner tube 12. The flat end wall 38 includes a central threaded bore. The threading may be provided by a metal insert 41 friction fitted into the bore in the flat end wall 38. The outer diameter of the insert 26 is such that it provides a friction fit with an inner surface 42 of the inner end portion 28 of the inner tube 12 to resist unintentional removal from the inner tube 12. The insert 26 includes a longitudinal groove 44 extending the entire length for receiving a folded seam 46 (FIG. 7) to resist rotation of the lock assembly relative to the inner tube 12. The insert 26 also may include a circumferential groove 48 near an inner end 23 of the insert 26. The circumferential groove 48 may be used to further secure the insert 26 in the inner tube 12. A portion of inner tube at the groove 48 can be indented into to the groove 48 to provide an interlocking engagement. The insert may be made, such as molded, from a rigid plastic material.
[0030] With reference to FIGS. 5 and 6, the lock disc 30 is attached to the flat end wall 38 of the insert 26 with a threaded screw 50 in into the central threaded bore 41. The lock disc 30 includes a series of radials slits 52 that define a series of petals 54 with an arcuate outer edge 56. A seam cutout 55 is located at one of the slits 52. The seam cutout 55 receives the folded seam 57 of the outer tube 12 (FIG. 8).
[0031] The petals 54 enable the lock disc 30 to take on a concave shape facing into the outer tube 14 (FIG. 2). The diameter of the lock disc 30 is sufficiently large so that the outer arcuate edge 56 of the petals 54 engages the inner surface 36 of the outer tube 14. The concave shape enables the petals 54 to slide along the inner surface 36 as the inner and outer tubes 12, 14 are extended relative to one another but wedges against the inner surface 36 to prevent contraction of the inner tube 12 into the outer tube 14. This provides a one way slip lock configuration for the coarse extension of the tubes 12, 14 relative to one another between the mounting walls. The lock disc 30 is preferably made of a metal material, such as spring steel, that retains its shape and of sufficient integrity to lock against the inner wall 36 of the outer tube 14.
[0032] The left and right end cap assemblies 22, 24 are the same except that they are threaded so the rotation of both the inner and outer tubes 12, 14 in the same direction causes both the left and right end caps 16, 18 to translate in opposite directions with respect to one another. That is, rotation of the tubes 12, 14 in clockwise direction when looking at the right end cap 18 causes the end caps 16, 18 to translate away from one another (outward) to apply pressure on the mounting walls to secure the tension rod 10 and when rotated in the counterclockwise direction, the end caps 16, 18 move toward each other to release the tension rod 10 from the mounting walls. During installation, one simply pulls the tubes 12, 14 apart to the desired length between the mounting walls and without moving their hands begins to turn the tubes 12, 14 together in the clockwise direction (i.e., toward their body) to translate the end caps 16, 18 outward to apply pressure on the mounting walls to secure the tension rod 10.
[0033] With reference to FIGS. 9 and 10, the left end cap 16 and the right end cap 18 are identical. The end caps 16, 18 each include an end wall 62 with an outer surface 64 that is generally flat, a tapering outer surface 66 extending away from the outer surface 64 to the other end of the end cap, and a cylindrical, hollow interior 68. A driver 70 projects from a center of the end wall into the interior 68 of the end cap. The driver 70 may be hexagonal in form. The end caps 16, 18 may be made a rubber type material designed to provide a friction engagement with the mounting walls to prevent the end caps from rotating and walking on the mounting walls during rotation of the tubes for installation.
[0034] With reference to FIGS. 11 and 12, the left and right end cap assemblies 22, 24 include a left and right end cap adjustment screw insert 72, 74, respectively. A head 76 of each screw insert 72, 74 includes a drive socket 78 to receive the driver 70 of the end caps 16, 18. The socket may be hexagonal in configuration. The diameter of the head 76 is sized to provide a friction fit with an inner surface 80 of the interior 68 (FIG. 10) of the end caps 16, 18. The left end cap adjustment screw insert 72 includes right hand threading 82, and the right end cap adjustment screw insert 74 includes a left hand threading 84. The left and right end cap adjustment screw inserts 72, 74 may be made, such as molded, from a rigid plastic material.
[0035] With reference to FIGS. 13 and 14, the left and right end cap assemblies 22, 24 include a left and right end tube insert 86, 88, respectively. Each insert 86, 88 is generally cylindrical with a hollow pass through 90. The left end cap insert 86 fits with a friction fit in a left end 94 of the outer tube 14, and the right end cap insert 88 fits in a right end 96 of the inner tube 12 with a friction fit (FIG. 2). An outer diameter of the left end cap insert 86 is slightly larger than that of the right end cap insert 88 to accommodate a larger diameter of the outer tube 14. A circumferential flange 92 extends about the perimeter of one end of the left and right end cap inserts 86, 88 for engaging the left and right ends 94, 96 of the outer and inner tubes 14, respectively, to prevent complete insertion therein. Each insert 86, 88 includes a longitudinal extending groove 98 that receives the outer tube seam 57 and the inner tube seam 46, respectively. This engagement fixes the left and right end tube inserts 86, 88 for rotation with the outer and inner tubes 14, 12 during installation.
[0036] The left end cap insert 86 includes a left hand thread 100 in its interior 90, and the right end cap insert 88 includes a right hand thread 102 in its interior 90. The right and left hand threads 100, 102 cooperate with the right and left hand threading 82, 84 of the right and left end cap adjustment screw inserts 72, 74. These threading engagements enable the end caps 16, 18 to move away from one another as the tubes 12, 14 are rotated during installation. More specifically, the friction between the mounting walls and the end surfaces 64 of the end caps 16, 18 limits rotation of the end caps 16, 18 as the tubes 12, 14 are rotated. The driver 70 of the end caps 16, 18 and the sockets 78 lock the left and right end cap adjustment screw inserts 72, 74 against rotation relative to the end caps 16, 18. Accordingly, as the tubes 12, 14 are rotated toward an installer, the left and right end tube inserts 86, 88 are turned causing the end caps 16, 18 to move away from one another, thereby applying force on the mounting surface to further lock the tension rod 10 to the mounting walls. Rotating the tubes 12, 14 away from the installer causes the end caps to move towards one another, thereby removing force from the mounting surface to uninstall the tension rod 10. The left and right end cap inserts may be made, such as molded, from a rigid plastic material.
[0037] To install the tension rod 10 with the locking mechanism 20 and the left and right end cap adjustment assemblies 22, 24, the outer tube 14 is held with one's left hand, and the inner tube 12 is held with one's right hand. The tubes 12, 14 are extended from one another until their respective end caps 16, 18 engage the mounting walls. Next, one rotates both the inner and outer tubes 12, 14 in the same direction toward one's body (i.e., clockwise looking at the right end cap 18). This will cause the end caps 16, 18 to move away from another to provide the appropriate force on the mounting walls to secure the tension rod 10. The tubes 12, 14 can be rotated in the opposite direction to release the pressure to remove the tension rod 10, such as for repositioning.
[0038] With references to FIGS. 15-19, there is illustrated another embodiment of an adjustment mechanism for the tension rod 10. The adjustment mechanism includes a lock assembly 220 intermediate the end caps 16, 18 to lock the inner and outer tubes 12, 14 relative to one another for the coarse adjustment. The adjustment mechanism further includes a left end cap adjustment assembly 222 and a right end cap adjustment assembly 224. The end cap adjustment assemblies 222, 224 provide the fine adjustments to apply the appropriate amount of force against the mounting walls. The end cap assemblies 222 and 224 are identical to the end assemblies 22 and 24 discussed above. For the adjustment mechanism of FIG. 15, the inner and outer tubes 12, 14 are roll formed from metal with a longitudinal welded seam along the inside to secure the rounded cross-section.
[0039] With reference to FIGS. 16-19, the lock assembly 220 includes a lock ramp 226, an inner tube left end insert 228, and a lock sleeve 230. The lock ramp 226 and the inner left end insert 228 may be molded from a rigid plastic material. The lock sleeve 230 also may be molded from rigid type plastic but must be flexible enough to expand and provide a sufficient frictional engagement with an inner surface of the outer tube to lock the tubes against relative movement.
[0040] The lock ramp 226 includes a frusto-conical wedge portion 232 and a threaded portion 234 with a right hand thread 236. The wedge portion 232 includes a circumferential flange 238 at its free end and a pair of diametrically opposed grooves 240 extending longitudinally from the flange 238 to the threaded portion 234. The flange 238 centers the lock ramp 226 in the outer tube 14 and provides a small amount of frictional engagement with an inner surface 242 of the outer tube 14. The longitudinal grooves 240 guide longitudinal movement of the lock sleeve 230 along the wedge portion 232.
[0041] The inner tube left end insert 228 is generally a hollow cylindrical with a through hole 244. The insert 228 fits with a friction fit in a left end 246 of the inner tube 12. A circumferential flange 248 extends about a perimeter of one end of the insert 228 for engaging the left end 246 of the inner tube 12 to prevent complete insertion therein. The friction engagement in the inner tube 12 fixes the insert 228 against rotation relative to the inner tube. The insert 228 includes a left hand thread 250 in its interior. The thread 236 of the threaded portion 234 of the lock ramp 226 meshes with the thread 250 of the insert 228. As the threaded portion 234 is turned into the insert 228 the lock sleeve 230 expands to lock to tubes 12, 14 relative to one another.
[0042] More specifically, the lock sleeve 230 has an elongated slot 252 its entire axial length to form a split ring configuration. This enables the lock sleeve 230 to be expanded from a first state that allows relative movement of the tubes 12, 14 to a second state to lock the tubes 12, 14 against relative movement. The lock sleeve 230 includes a pair of longitudinally extending ribs 254 on its inside that are offset 90 degrees from the slot 252. The lock sleeve 230 receives the wedge portion 232 of the lock ramp 226 with the ribs 254 each in one of the grooves 240 of the lock ramp.
[0043] To install the tension rod 10 with the locking mechanism 220 and the left and right end cap adjustment assemblies 222, 224, the outer tube 14 is held with one's left hand, and the inner tube 12 is held with one's right hand. The tubes 12, 14 are extended from one another until their respective end caps 16, 18 engage the mounting walls. Then, the outer tube 14 is held stationary with the left hand, and the inner tube 12 is rotated clockwise (when looking at the right end cap 18--i.e., toward an installer's body) with the right hand. This causes the threaded engagement between the lock ramp 226 and the insert 228 to draw the wedge portion 232 toward the insert 228 which, in turn, causes the wedge portion 232 to push into the lock sleeve 230 guided by the grooves 240 and ribs 254 and expand the lock sleeve 230. Once expanded sufficiently, the lock sleeve 230 becomes wedged tightly between the wedge portion 232 and the inner surface 242 of the outer tube 14 causing the inner and outer tubes 12, 14 to be locked against relative movement.
[0044] Next, one rotates both the inner and outer tubes 12, 14 in the same direction toward the one's body (i.e., clockwise looking at the right end cap 18). This will cause the end caps 16, 18 to move away from another to provide the appropriate force on the mounting walls to secure the tension rod 10. The tubes 12, 14 can be rotated in the opposite direction to release the pressure to remove the tension rod 10, such as for repositioning.
[0045] It will be understood that various changes in the details, materials, and arrangements of parts and components which have been herein described and illustrated in order to explain the nature of the sprinkler may be made by those skilled in the art within the principle and scope of the tension rod as expressed in the appended claims. Furthermore, while various features have been described with regard to particular embodiments, it will be appreciated that features described for one embodiment also may be incorporated with the other described embodiments.
User Contributions:
Comment about this patent or add new information about this topic: