Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES

Inventors:  Reginald Christophe Xavier Brys (Mechelen, BE)  Reginald Christophe Xavier Brys (Mechelen, BE)  Nick Ernest Rene Vandeghinste (Mechelen, BE)
IPC8 Class: AG01N3353FI
USPC Class: 514 44 A
Class name: Nitrogen containing hetero ring polynucleotide (e.g., rna, dna, etc.) antisense or rna interference
Publication date: 2014-06-05
Patent application number: 20140155461



Abstract:

The present invention relates to methods for identifying agents capable of inhibiting the expression or activity of proteins involved in the processes modulating osteoclastogenesis, which inhibition is useful in the prevention and/or treatment of bone and joint degenerative diseases and diseases involving aberrant activity or differentiation of osteoclasts. In particular, the present invention provides methods for identifying agents for use in the prevention and/or treatment of rheumatoid arthritis.

Claims:

1. A method for identifying a compound that inhibits bone resorption, comprising: (a) contacting a compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-69 and 80, and fragments thereof; and (b) measuring a compound-polypeptide property related to bone resorption.

2. The method according to claim 1, wherein said polypeptide is in an in vitro cell-free preparation.

3. The method according to claim 1, wherein said polypeptide is present in a mammalian cell.

4. The method of claim 2, wherein said property is a binding affinity of said compound to said polypeptide.

5. The method of claim 4, which additionally comprises the steps of: c) contacting a population of mammalian cells expressing said polypeptide with the compound that exhibits a binding affinity of at least 10 micromolar; and d) identifying a compound that inhibits bone resorption.

6. The method of claim 1, wherein said property is upregulation of a biological pathway producing a biochemical marker indicative of the inhibition of bone resorption.

7. The method of claim 6 wherein said indicator is osteoprotegerin.

8. The method of claim 1, wherein said property is the activity of said polypeptide.

9. The method of claim 1, wherein said property is the expression of said polypeptide.

10. The method according to claim 8 or 9, which additionally comprises the steps of: c) contacting a population of mammalian cells expressing said polypeptide with the compound that significantly inhibits the expression or activity of the polypeptide; and d) identifying the compound that inhibits bone resorption.

11. The method according to claim 1, which additionally comprises the step of comparing the compound to be tested to a control.

12. The method according to claim 11, wherein said control is where the polypeptide has not been contacted with said compound.

13. The method according to claim 5 or 10, which additionally comprises the step of comparing the compound to a control, wherein said control is a population of mammalian cells that does not express said polypeptide.

14. The method according to claim 1, wherein said compound is selected from the group consisting of compounds of a commercially available screening library and compounds having binding affinity for a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-69 and 80.

15. The method according to claim 1, wherein said compound is a peptide in a phage display library or an antibody fragment library.

16. An agent effective in inhibiting bone resorption, selected from the group consisting of an antisense polynucleotide, a ribozyme, and a small interfering RNA (siRNA), wherein said agent comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-29 and 40.

17. The agent according to claim 16, wherein a vector in a mammalian cell expresses said agent.

18. The agent according to claim 16, which is effective in inducing osteoprotegerin (OPG) expression in the OPG assay.

19. The agent according to claim 17, wherein said vector is an adenoviral, retroviral, adeno-associated viral, lentiviral, a herpes simplex viral or a sendaiviral vector.

20. The agent according to claim 16, wherein said antisense polynucleotide and said siRNA comprise an antisense strand of 17-25 nucleotides complementary to a sense strand, wherein said sense strand is selected from 17-25 continuous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-29 and 40.

21. The agent according to claim 20, wherein said siRNA further comprises said sense strand.

22. The agent according to claim 21, wherein said sense strand is selected from the group consisting of SEQ ID NO: 81-97 and 107.

23. The agent according to claim 20, wherein said siRNA further comprises a loop region connecting said sense and said antisense strand.

24. The agent according to claim 23, wherein said loop region comprises a nucleic acid sequence selected from the group consisting of UUGCUAUA or GUUUGCUAUAAC (SEQ ID NO: 108).

25. The agent according to claim 16, wherein said agent is an antisense polynucleotide, ribozyme, or siRNA comprising a nucleic acid sequence complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 81-97 and 107.

26. A bone resorption inhibiting pharmaceutical composition comprising a therapeutically effective amount of an agent according to claim 16 in admixture with a pharmaceutically acceptable carrier.

27. A method for treatment and/or prevention of a disease involving an imbalance in bone metabolism in a subject suffering from or susceptible to the disease comprising administering to the subject the pharmaceutical composition of claim 26.

28. The method according to claim 27 wherein the disease is a joint degenerative disease.

29. The method according to claim 28, wherein the disease is rheumatoid arthritis.

30. A method for treatment and/or prevention of a disease involving abnormal bone resorption in a subject comprising administering to the subject the agent of claim 16.

31. The method according to claim 30, wherein the disease is selected from the group consisting of joint degenerative and inflammation diseases.

32. The method according to claim 30, wherein the disease is rheumatoid arthritis.

33. A method for treatment or prevention of a condition characterized by abnormal osteoprotegrin (OPG) expression and/or activity in a subject comprising administering to the subject the agent of claim 16.

34. The method of any of claim 27, 30 or 33 wherein the treatment and/or prevention additionally comprises administering said pharmaceutical composition or said OPG inducing agent in combination with a disease-modifying anti-rheumatic drug (DMARD) or an anti-inflammatory compound.

35. The method according to claim 34, wherein said DMARD is selected from the group consisting of Infliximab, Etanercept, Adalimumab, Rituximab, CTLA4-Ig methotrexate, leflunomide and sulfasalazine.

36. The method according to claim 34, wherein said anti-inflammatory agent is selected from the group consisting of corticosteroids or non-steroidal anti-inflammatory agents.

37. A method for diagnosing a pathological condition involving abnormal bone resorption or a susceptibility to the condition in a subject, comprising determining a first amount of polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-67 and 80 present in a biological sample obtained from said subject, and comparing said first amount with the ranges of amounts of the polypeptide determined in a population of healthy subjects, wherein an increase of the amount of polypeptide in said biological sample compared to the range of amounts determined for healthy subjects is indicative of the presence of the pathological condition.

Description:

RELATED APPLICATION

[0001] The present application claims the benefit under 35 U.S.C. §119 of U.S. Provisional application No. 936,569, filed Jun. 20, 2007, and the entire disclosure of said application is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to methods for identifying agents capable of inhibiting the expression or activity of proteins involved in the processes modulating osteoclastogenesis, which inhibition is useful in the prevention and/or treatment of bone and joint degenerative diseases and diseases involving aberrant activity of osteoclasts. In particular, the present invention provides methods for identifying agents for use in the prevention and/or treatment of rheumatoid arthritis.

[0003] Rheumatoid arthritis (RA) is a chronic joint degenerative disease, characterized by inflammation and destruction of the joint structures. When the disease is unchecked, it leads to substantial disability and pain due to the loss of joint functionality and even premature death. The aim of an RA therapy, therefore, is not to slow down the disease but to attain remission in order to stop the joint destruction. Besides the severity of the disease outcome, the high prevalence of RA (˜0.8% of adults are affected worldwide) means a high socio-economic impact (For reviews on RA, we refer to Smolen and Steiner (2003); Lee and Weinblatt (2001); Choy and Panayi (2001); O'Dell (2004) and Firestein (2003)).

[0004] Histological analysis of the joints of RA patients clearly evidences the mechanisms involved in the RA-associated degradative processes. The synovium is a cell layer, composed of a sublining and a lining region that separates the joint capsule from the synovial cavity. The inflamed synovium is central to the pathophysiology of RA. The synovial joint is shown as composed of two adjacent bony ends each covered with a layer of cartilage, separated by a joint space and surrounded by the synovial membrane and joint capsule. The synovial membrane is composed of the synovial lining (facing the cartilage and bone), which consists of a thin (1-3 cells) layer of synoviocytes and the sublining connective tissue layer that is highly vascularised. Histological differences in the synovium between normal and RA patients are indicated in FIG. 1.

[0005] Like many other forms of arthritis, rheumatoid arthritis (RA) is initially characterized by an inflammatory response of the synovial membrane (`synovitis`) that is characterized by an important influx of various types of mononuclear cells as well as by the activation of the local or infiltrated mononuclear cells. The lining layer becomes hyperplastic (it can have a thickness of >20 cells) and the synovial membrane expands. However, in addition, the hallmark of RA is joint destruction: the joint spaces narrow or disappear as a sign of cartilage degradation and destructions of the adjacent bone, also termed `erosions`, have occurred. The destructive portion of the synovial membrane is termed `pannus`. Various forms of bone degradation are apparent in RA. Besides a generalized osteoporosis, RA is also characterized by the erosion of the bone under and adjacent to the cartilage. These focal erosions result principally from the presence of an increased population of osteoclasts at the interface of bone and pannus (for a review on bone degradation in RA, we refer to Gravallese, 2002). Osteoclasts are multinucleated cells that attach to bone and secrete bone matrix degrading enzymes (e.g. Cathepsin K, MMP9) in an acidified space between the cell and the bone tissue (the resorption lacuna). In healthy individuals, the remodeling of bone is controlled by the activity of these osteoclasts, which resorb bone, and the activity of osteoblasts, which are involved in the production of the calcified bone matrix. Osteoblasts differentiate from mesenchymal stem cells, while osteoclasts differentiate from hematopoietic monocyte/macrophage precursors.

[0006] In RA, the concentration of the factors inducing osteoclast differentiation is increased at the interface between bone and the pannus (Pettit et al., 2006), leading to the dysregulation of the balance between bone formation and bone degradation. Key players in osteoclast differentiation are the receptor activator of NF-κB (RANK) and its ligand (RANKL) and osteoprotegerin (OPG).

[0007] RANKL is a membrane-anchored ligand of the TNF superfamily In normal bone tissue, RANKL is expressed by osteoblasts, but in RA, synovial fibroblasts as well as activated T lymphocytes are important sources of RANKL. RANKL exerts its effect on osteoclasts or osteoclast precursor cells through RANK, a member of the TNF receptor superfamily. Another key player in osteoclast biology is OPG, a RANKL decoy receptor, which belongs to the TNF receptor superfamily and competes with RANK for the binding of RANKL. OPG, therefore, effectively inhibits osteoclast maturation and osteoclast activation. OPG-transgenic mice have a high bone mass (osteopetrosic phenotype), whereas the absence of OPG results in severe osteoporosis, as shown in OPG-knockout mice (Bucay et al., 1998). In summary, the balance between RANK/RANKL signaling and levels of OPG, the soluble decoy receptor for RANKL, regulates the development and activation of osteoclasts and therefore is strongly involved in bone metabolism. Thus, inhibition of RANKL function via OPG might prevent bone destruction in several diseases, e.g., RA. Of significance in this respect is the observation that RANKL knock-out mice are less prone to bone erosion when subjected to CIA (Pettit et al., 2001) and that recombinant OPG, alone or in combination with an anti-TNFα, prevents bone erosions in animal models for RA (Redlich et al., 2004). In addition, the capacity of drugs inducing OPG expression to protect bone in animal models of arthritis, in PTH induced bone resorption in rats and in metastasis of breast cancer cells to bone has been demonstrated (Onyia et al., 2004).

[0008] From the description of the biology of RANK, RANKL and OPG, it is clear that influencing the activity or differentiation of osteoclasts through modulation of these factors has potential not only in RA, but also for the treatment of osteoporosis. In addition, as bone metastasis associated with cancer also requires bone remodeling, inhibitors of osteoclast activity or differentiation could also be of use for this indication. For a review on bone metastasis, see Roodman, 2004.

Reported Developments

[0009] NSAIDS (Non-steroidal anti-inflammatory drugs) are used to reduce the pain associated with RA and improve life quality of the patients. These drugs will not, however, put a brake on the RA-associated joint destruction.

[0010] Corticosteroids are found to decrease the progression of RA as detected radiographically and are used at low doses to treat a subset of RA patients (30 to 60%). Serious side effects, however, are associated with long corticosteroid use (e.g. skin thinning, osteoporosis, cataracts, hypertension, hyperlipidemia).

[0011] Synthetic Disease-Modifying Anti-Rheumatic Drugs (DMARDs, e.g. methotrexate, leflunomide, sulfasalazine) mainly tackle the immuno-inflammatory component of RA. As a main disadvantage, these drugs only have a limited efficacy (joint destruction is only slowed down but not blocked by DMARDs such that disease progression in the long term continues). The lack of efficacy is indicated by the fact that, on average, only 30% of the patients achieve an ACR50 score after 24 months treatment with methotrexate, meaning that, according to the American College of Rheumatology, only 30% of the patients achieve a 50% improvement of their symptoms (O'Dell et al., 1996). In addition, the precise mechanism of action of DMARDs is often unclear.

[0012] Biological DMARDs (Infliximab, Etanercept, Adalimumab, Rituximab, CTLA4-Ig) are therapeutic proteins that inactivate cytokines (for example, TNF-α) or cells (for example, T-cells or B-cells) that have an important role in the RA pathophysiology (Kremer et al., 2003; Edwards et al., 2004). Although the TNF-α-blockers (Infliximab, Etanercept, Adalimumab) and methotrexate combination therapy is the most effective RA treatment currently available, it is striking that even this therapy only achieves a 50% improvement (ACR50) in disease symptoms in 50-60% of patients after 12 months therapy (St Clair et al., 2004). Increased risk of infections (tuberculosis), hematologic events and demyelinating disorders have been described for the TNF-α blockers (see also Gomez-Reino et al., 2003). TNF-α blockers, which are biological therapies, also require an unpleasant method of administration (frequent injections accompanied by infusion site reactions) and have high production cost. The fact that a variety of targeted therapies have similar but limited efficacies, suggests that there is a multiplicity of pathogenic factors for RA.

[0013] This calls for additional strategies to achieve remission. Remission is required since residual disease bears the risk of progressive joint damage and thus progressive disability Inhibiting the immuno-inflammatory component of the RA disease, which represents the main target of drugs currently used for RA treatment, does not result in a blockade of joint degradation, the major hallmark of the disease.

[0014] Additionally, bisphosphonates are inhibitors of OC activity that are accepted as the most potent inhibitors of bone resorption clinically available and as a mainstay in the treatment of osteoporosis. Remarkably, however, bisphosphonate treatment does not prevent radiologic progression in RA patients (Valleala et al., 2004), potentially because of a poor bioavailability of bisphosphonates at the level of the OC in the pannus. A clear need exists, therefore, for innovative antiresorptive therapies in the field of RA.

[0015] The present invention is based on the discovery that agents which inhibit the expression and/or activity of the TARGETS disclosed herein are able to increase the expression of osteoprotegrin and thus have utility in decreasing bone resorption in joints. The present invention therefore provides TARGETS which are involved in the pathway leading to OPG expression and osteoclastogenesis, methods for screening for agents capable of inhibiting the expression and/or activity of TARGETS and uses of these agents in the prevention and/or treatment of joint degenerative conditions such as rheumatoid arthritis.

SUMMARY OF THE INVENTION

[0016] The present invention relates to a method for identifying compounds that inhibit osteoclastogenesis, comprising contacting a compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-69 and 80 (hereinafter "TARGETS") and fragments thereof, under conditions that allow said polypeptide to bind to said compound, and measuring a compound-polypeptide property related to osteoclastogenesis. In a specific embodiment the compound-polypeptide property measured is OPG expression levels.

[0017] Aspects of the present method include the in vitro assay of compounds using the polypeptide corresponding to a TARGET, or fragments thereof, such fragments being fragments of the amino acid sequences described by SEQ ID NO: 41-69 and 80, and cellular assays wherein TARGET inhibition is followed by observing indicators of efficacy including, for example, TARGET expression levels, TARGET enzymatic activity and/or OPG levels.

[0018] The present invention also relates to

[0019] (1) expression inhibitory agents comprising a polynucleotide selected from the group of an antisense polynucleotide, a ribozyme, and a small interfering RNA (siRNA), wherein said polynucleotide comprises a nucleic acid sequence complementary to, or engineered from, a naturally occurring polynucleotide sequence encoding a TARGET polypeptide said polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO: 1-29 and 40, and

[0020] (2) pharmaceutical compositions comprising said agent(s), useful in the treatment, or prevention, of chronic joint degenerative diseases such as rheumatoid arthritis.

[0021] Another aspect of the invention is a method of treatment, or prevention, of a condition related to bone and/or joint degeneration, in a subject suffering or susceptible thereto, by administering a pharmaceutical composition comprising an effective TARGET-expression inhibiting amount of a expression-inhibitory agent or an effective TARGET activity inhibiting amount of a activity-inhibitory agent.

[0022] A further aspect of the present invention is a method for diagnosis of a condition related to bone and/or joint degeneration comprising measurement of indicators of levels of TARGET expression in a subject.

[0023] Another aspect of this invention relates to the use of agents which inhibit a TARGET as disclosed herein in a therapeutic method, a pharmaceutical composition, and the manufacture of such composition, useful for the treatment of a disease involving bone and/or joint degeneration. In particular, the present method relates to the use of the agents which inhibit a TARGET in the treatment of a disease characterized by osteoclastogenesis, and in particular, a disease characterized by abnormal OPG expression. The agents are useful for amelioration or treatment of bone disease, particularly wherein it is desired to reduce or control osteoclast function and differentiation, including but not limited to osteoporosis, juvenile osteoporosis, osteogenesis imperfecta, hypercalcemia, hyperparathyroidism, osteomalacia, osteohalisteresis, osteolytic bone disease, osteonecrosis, Paget's disease of bone, bone loss due to rheumatoid arthritis, inflammatory arthritis, osteomyelitis, corticosteroid treatment, metastatic bone diseases, periodontal bone loss, bone loss due to cancer, age-related loss of bone mass, other forms of osteopenia, as well as in instances where facilitation of bone repair or replacement is desired such as bone fractures, bone defects, plastic surgery, dental and other implantations. In a particular embodiment the disease is rheumatoid arthritis.

[0024] Other objects and advantages will become apparent from a consideration of the ensuing description taken in conjunction with the following illustrative drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1: Schematic view of a normal joint and its changes in rheumatoid arthritis (From Smolen and Steiner, 2003).

[0026] FIG. 2: Example of the performance of the OPG ELISA.

[0027] FIG. 3: Schematic representation of the primary screening: Principle of the screening of the SilenceSelect® collection in the OPG assay.

[0028] FIG. 4: Layout and performance of the control plate used in the screening of the SilenceSelect® collection in the OPG assay.

[0029] FIG. 5: Scatterplot representing the datapoints obtained in the primary screen of the OPG assay against the SilenceSelect® collection.

[0030] FIG. 6A Principle of the osteoclast--RASF coculture assay.

[0031] FIG. 6B Principle of the screening of Ad5-siRNA's in the osteoclast--RASF coculture assay.

[0032] FIG. 7A: αvβ3 and calcitonin receptor cELISA of an osteoclast monoculture.

[0033] FIG. 7B: αvβ3 and calcitonin receptor staining of a RASF-osteoclast coculture.

[0034] FIG. 7C: Inhibition of osteoclast differentiation in a OC-RASF coculture by adenovirus induced overexpression of OPG.

[0035] FIG. 8: Target analysis: data obtained for 6 targets

[0036] FIG. 9A: Tabulated raw data from secondary assay and MOI rescreen (screen A) for particular targets.

[0037] FIG. 9B: Tabulated raw data from secondary assay and MOI rescreen (screen B) for particular targets.

[0038] FIG. 10: Layout of the "hit plates" used for the MMP1 assay. For selected OPG hits, the original OPG hit KD viruses as well as independent KD viruses targeting the same genes through the expression of different shRNAs are collected and grouped in wells C1 to F11. 3 different negative control viruses (Ad5-Luc-KD_v13, Ad5-eGFP-KD_v5, Ad5-M6 PR-KD_v1) and one positive control virus (Ad5-MMP1-KD) are grouped in rows B and G. The content of the "hit plates" is repropagated to generate a sufficient amount of virus crude lysate for the tests and to ensure homogeneity of the titers of the viruses. During the MMP1 experiments, the wells B2, B3 and B4 (shown in italics) of the plates containing the RASFs tranduced with the content of the "hit plates" are left untriggered, whereas all other wells are activated with "TNFalpha based trigger"

[0039] FIG. 11: Representative example of the outcome of a MMP1 assay experiment. The normalized reduction in MMP1 expression is shown for 14 KD viruses tested at 3 multiplicity of infections (MOIs) and compared to the performance of the positive control (Ad5-MMP1-KD) and of the untriggered or triggered negative controls. The negative control data represent the average of the data obtained for the 3 (untriggered condition) or 13 (triggered condition) negative controls present on the "hit plates". The cutoff for hit calling is represented with a dotted line. All 14 KD viruses tested significantly reduced the cytokine-induced MMP1 expression in RASFs.

[0040] FIG. 12: Neutralization of OPG by a selected anti-OPG antibody. Pre-osteoclasts are seeded on top of RASFs in presence of indicated amounts of recombinant OPG and anti-OPG antibody and after overnight incubation osteoclast differentiation is triggered by addition of indicated amounts sRANKL. The number of osteoclasts formed after another 11 days incubation is quantified using a vitronectin cELISA readout. Without the addition of the anti-OPG (Cat. No A805; R&D Systems), osteoclast formation is dependent on the dose of sRANKL and is blocked by the addition of OPG; the ability of OPG to prevent osteoclast formation is dependent upon the dose of sRANKL used to trigger osteoclast differentiation: the higher the dose of sRANKL, the more OPG that is needed to prevent osteoclast differentiation. Addition of the anti-OPG antibody is able to rescue osteoclast differentiation in the presence of OPG. The ability to rescue osteoclast differentiation is dependent upon the dose of the antibody, upon the concentration of OPG added and upon the dose of sRANKL: the more antibody, the more OPG can be neutralized and the lower the dose of RANKL at which rescue of OPG inhibition can be observed. As can be seen, dose-response of sRANKL when no OPG is added is already shifted to lower sRANKL concentrations when anti-OPG antibody is added due to neutralization of endogenous secreted OPG by RASFs. For the experiments, the anti-OPG Ab is used at a concentration of 3 μg/mL and 15 ng/mL sRANKL is used to trigger osteoclast differentiation.

DETAILED DESCRIPTION

[0041] The following terms are intended to have the meanings presented therewith below and are useful in understanding the description and intended scope of the present invention.

[0042] The term `agent` means any molecule, including polypeptides, antibodies, polynucleotides, chemical compounds and small molecules. In particular the term agent includes compounds such as test compounds or drug candidate compounds.

[0043] The term `agonist` refers to a ligand that stimulates the receptor the ligand binds to in the broadest sense.

[0044] The term `assay` means any process used to measure a specific property of a compound. A `screening assay` means a process used to characterize or select compounds based upon their activity from a collection of compounds.

[0045] The term `binding affinity` is a property that describes how strongly two or more compounds associate with each other in a non-covalent relationship. Binding affinities can be characterized qualitatively, (such as `strong`, `weak`, `high`, or `low`) or quantitatively (such as measuring the KO.

[0046] The term `carrier` means a non-toxic material used in the formulation of pharmaceutical compositions to provide a medium, bulk and/or useable form to a pharmaceutical composition. A carrier may comprise one or more of such materials such as an excipient, stabilizer, or an aqueous pH buffered solution. Examples of physiologically acceptable carriers include aqueous or solid buffer ingredients including phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®.

[0047] The term `complex` means the entity created when two or more compounds bind to, contact, or associate with each other.

[0048] The term `compound` is used herein in the context of a `test compound` or a `drug candidate compound` described in connection with the assays of the present invention. As such, these compounds comprise organic or inorganic compounds, derived synthetically or from natural sources. The compounds include inorganic or organic compounds such as polynucleotides, lipids or hormone analogs. Other biopolymeric organic test compounds include peptides comprising from about 2 to about 40 amino acids and larger polypeptides comprising from about 40 to about 500 amino acids, including polypeptide ligands, enzymes, receptors, channels, antibodies or antibody conjugates.

[0049] The term `condition` or `disease` means the overt presentation of symptoms (i.e., illness) or the manifestation of abnormal clinical indicators (for example, biochemical indicators or diagnostic indicators). Alternatively, the term `disease` refers to a genetic or environmental risk of or propensity for developing such symptoms or abnormal clinical indicators.

[0050] The term `contact` or `contacting` means bringing at least two moieties together, whether in an in vitro system or an in vivo system.

[0051] The term `derivatives of a polypeptide` relates to those peptides, oligopeptides, polypeptides, proteins and enzymes that comprise a stretch of contiguous amino acid residues of the polypeptide and that retain a biological activity of the protein, for example, polypeptides that have amino acid mutations compared to the amino acid sequence of a naturally-occurring form of the polypeptide. A derivative may further comprise additional naturally occurring, altered, glycosylated, acylated or non-naturally occurring amino acid residues compared to the amino acid sequence of a naturally occurring form of the polypeptide. It may also contain one or more non-amino acid substituents, or heterologous amino acid substituents, compared to the amino acid sequence of a naturally occurring form of the polypeptide, for example a reporter molecule or other ligand, covalently or non-covalently bound to the amino acid sequence.

[0052] The term `derivatives of a polynucleotide` relates to DNA-molecules, RNA-molecules, and oligonucleotides that comprise a stretch of nucleic acid residues of the polynucleotide, for example, polynucleotides that may have nucleic acid mutations as compared to the nucleic acid sequence of a naturally occurring form of the polynucleotide. A derivative may further comprise nucleic acids with modified backbones such as PNA, polysiloxane, and 2'-O-(2-methoxy) ethyl-phosphorothioate, non-naturally occurring nucleic acid residues, or one or more nucleic acid substituents, such as methyl-, thio-, sulphate, benzoyl-, phenyl-, amino-, propyl-, chloro-, and methanocarbanucleosides, or a reporter molecule to facilitate its detection.

[0053] The term `osteoclast` refers to the large multinucleate cells found in growing bone that resorbs bony tissue, as in the formation of canals and cavities.

[0054] The term costeoclastogenesis' refers to the process by which osteoclasts are generated by fusion of cells of the monocyte-macrophage cell line.

[0055] The term `effective amount` or `therapeutically effective amount` means that amount of a compound or agent that will elicit the biological or medical response of a subject that is being sought by a medical doctor or other clinician.

[0056] The term `endogenous` shall mean a material that a mammal naturally produces. Endogenous in reference to the term `protease`, `kinase`, or G-Protein Coupled Receptor (`GPCR`) shall mean that which is naturally produced by a mammal (for example, and not limitation, a human) In contrast, the term non-endogenous in this context shall mean that which is not naturally produced by a mammal (for example, and not limitation, a human). Both terms can be utilized to describe both in vivo and in vitro systems. For example, and without limitation, in a screening approach, the endogenous or non-endogenous TARGET may be in reference to an in vitro screening system. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous TARGET, screening of a candidate compound by means of an in vivo system is viable.

[0057] The term `expressible nucleic acid` means a nucleic acid coding for a proteinaceous molecule, an RNA molecule, or a DNA molecule.

[0058] The term `expression` comprises both endogenous expression and overexpression by transduction.

[0059] The term `expression inhibitory agent` means a polynucleotide designed to interfere selectively with the transcription, translation and/or expression of a specific polypeptide or protein normally expressed within a cell. More particularly, `expression inhibitory agent` comprises a DNA or RNA molecule that contains a nucleotide sequence identical to or complementary to at least about 15-30, particularly at least 17, sequential nucleotides within the polyribonucleotide sequence coding for a specific polypeptide or protein. Exemplary expression inhibitory molecules include ribozymes, double stranded siRNA molecules, self-complementary single-stranded siRNA molecules, genetic antisense constructs, and synthetic RNA antisense molecules with modified stabilized backbones.

[0060] The term `fragment of a polynucleotide` relates to oligonucleotides that comprise a stretch of contiguous nucleic acid residues that exhibit substantially a similar, but not necessarily identical, activity as the complete sequence. In a particular aspect, `fragment` may refer to a oligonucleotide comprising a nucleic acid sequence of at least 5 nucleic acid residues (preferably, at least 10 nucleic acid residues, at least 15 nucleic acid residues, at least 20 nucleic acid residues, at least 25 nucleic acid residues, at least 40 nucleic acid residues, at least 50 nucleic acid residues, at least 60 nucleic residues, at least 70 nucleic acid residues, at least 80 nucleic acid residues, at least 90 nucleic acid residues, at least 100 nucleic acid residues, at least 125 nucleic acid residues, at least 150 nucleic acid residues, at least 175 nucleic acid residues, at least 200 nucleic acid residues, or at least 250 nucleic acid residues) of the nucleic acid sequence of said complete sequence.

[0061] The term `fragment of a polypeptide` relates to peptides, oligopeptides, polypeptides, proteins, monomers, subunits and enzymes that comprise a stretch of contiguous amino acid residues, and exhibit substantially a similar, but not necessarily identical, functional or expression activity as the complete sequence. In a particular aspect, `fragment` may refer to a peptide or polypeptide comprising an amino acid sequence of at least 5 amino acid residues (preferably, at least 10 amino acid residues, at least 15 amino acid residues, at least 20 amino acid residues, at least 25 amino acid residues, at least 40 amino acid residues, at least 50 amino acid residues, at least 60 amino residues, at least 70 amino acid residues, at least 80 amino acid residues, at least 90 amino acid residues, at least 100 amino acid residues, at least 125 amino acid residues, at least 150 amino acid residues, at least 175 amino acid residues, at least 200 amino acid residues, or at least 250 amino acid residues) of the amino acid sequence of said complete sequence.

[0062] The term `hybridization` means any process by which a strand of nucleic acid binds with a complementary strand through base pairing. The term `hybridization complex` refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (for example, C0t or R0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (for example, paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed). The term "stringent conditions" refers to conditions that permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, for example, formamide, temperature, and other conditions well known in the art. In particular, reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature can increase stringency. The term `standard hybridization conditions` refers to salt and temperature conditions substantially equivalent to 5×SSC and 65° C. for both hybridization and wash. However, one skilled in the art will appreciate that such `standard hybridization conditions` are dependent on particular conditions including the concentration of sodium and magnesium in the buffer, nucleotide sequence length and concentration, percent mismatch, percent formamide, and the like. Also important in the determination of "standard hybridization conditions" is whether the two sequences hybridizing are RNA-RNA, DNA-DNA or RNA-DNA. Such standard hybridization conditions are easily determined by one skilled in the art according to well known formulae, wherein hybridization is typically 10-20N C below the predicted or determined Tm with washes of higher stringency, if desired.

[0063] The term `inhibit` or `inhibiting`, in relationship to the term `response` means that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

[0064] The term `inhibition` refers to the reduction, down regulation of a process or the elimination of a stimulus for a process, which results in the absence or minimization of the expression or activity of a protein or polypeptide.

[0065] The term `induction` refers to the inducing, up-regulation, or stimulation of a process, which results in the expression or activity of a protein or polypeptide.

[0066] The term `ligand` means an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

[0067] The term `pharmaceutically acceptable salts` refers to the non-toxic, inorganic and organic acid addition salts, and base addition salts, of compounds which inhibit the expression or activity of TARGETS as disclosed herein. These salts can be prepared in situ during the final isolation and purification of compounds useful in the present invention.

[0068] The term `polypeptide` relates to proteins (such as TARGETS), proteinaceous molecules, fragments of proteins, monomers, subunits or portions of polymeric proteins, peptides, oligopeptides and enzymes (such as kinases, proteases, GPCR's etc.).

[0069] The term `polynucleotide` means a polynucleic acid, in single or double stranded form, and in the sense or antisense orientation, complementary polynucleic acids that hybridize to a particular polynucleic acid under stringent conditions, and polynucleotides that are homologous in at least about 60 percent of its base pairs, and more particularly 70 percent of its base pairs are in common, most particularly 90 percent, and in a particular embodiment, 100 percent of its base pairs. The polynucleotides include polyribonucleic acids, polydeoxyribonucleic acids, and synthetic analogues thereof. It also includes nucleic acids with modified backbones such as peptide nucleic acid (PNA), polysiloxane, and 2'-O-(2-methoxy)ethylphosphorothioate. The polynucleotides are described by sequences that vary in length, that range from about 10 to about 5000 bases, particularly about 100 to about 4000 bases, more particularly about 250 to about 2500 bases. One polynucleotide embodiment comprises from about 10 to about 30 bases in length. A particular embodiment of polynucleotide is the polyribonucleotide of from about 17 to about 22 nucleotides, more commonly described as small interfering RNAs (siRNAs). Another particular embodiment are nucleic acids with modified backbones such as peptide nucleic acid (PNA), polysiloxane, and 2'-O-(2-methoxy)ethylphosphorothioate, or including non-naturally occurring nucleic acid residues, or one or more nucleic acid substituents, such as methyl-, thio-, sulphate, benzoyl-, phenyl-, amino-, propyl-, chloro-, and methanocarbanucleosides, or a reporter molecule to facilitate its detection. Polynucleotides herein are selected to be `substantially` complementary to different strands of a particular target DNA sequence. This means that the polynucleotides must be sufficiently complementary to hybridize with their respective strands. Therefore, the polynucleotide sequence need not reflect the exact sequence of the target sequence. For example, a non-complementary nucleotide fragment may be attached to the 5' end of the polynucleotide, with the remainder of the polynucleotide sequence being complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the polynucleotide, provided that the polynucleotide sequence has sufficient complementarity with the sequence of the strand to hybridize therewith under stringent conditions or to form the template for the synthesis of an extension product.

[0070] The term `preventing` or `prevention` refers to a reduction in risk of acquiring or developing a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop) in a subject that may be exposed to a disease-causing agent, or predisposed to the disease in advance of disease onset.

[0071] The term `prophylaxis` is related to `prevention`, and refers to a measure or procedure the purpose of which is to prevent, rather than to treat or cure a disease. Non-limiting examples of prophylactic measures may include the administration of vaccines; the administration of low molecular weight heparin to hospital patients at risk for thrombosis due, for example, to immobilization; and the administration of an anti-malarial agent such as chloroquine, in advance of a visit to a geographical region where malaria is endemic or the risk of contracting malaria is high.

[0072] The term `solvate` means a physical association of a compound useful in this invention with one or more solvent molecules. This physical association includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Representative solvates include hydrates, ethanolates and methanolates.

[0073] The term `subject` includes humans and other mammals.

[0074] The term `TARGET` or `TARGETS` means the protein(s) or polypeptide(s) identified in accordance with the assays described herein and determined to be involved in the modulation of OPG expression levels.

[0075] `Therapeutically effective amount` means that amount of a drug, compound, expression inhibitory agent, or pharmaceutical agent that will elicit the biological or medical response of a subject that is being sought by a medical doctor or other clinician. In particular, with regard to treating an disease condition characterized by the activation of osteoclastogenesis, the term `effective bone resorption inhibiting amount` is intended to mean that effective amount of a compound that inhibits a TARGET as disclosed herein that will bring about a biologically meaningful increase in the expression of OPG in the subject's disease affected tissues such that osteoclastogenesis is inhibited and bone resorption is reduced.

[0076] A compound having OPG inducing properties or an `OPG inducing compound` means a compound that when provided to a cell in effective amounts is able to cause a biologically meaningful increase in the expression or production of OPG in such cells.

[0077] The term `treating` or `treatment` of any disease or disorder refers, in one embodiment, to ameliorating the disease or disorder (i.e., arresting the disease or reducing the manifestation, extent or severity of at least one of the clinical symptoms thereof). In another embodiment `treating` or `treatment` refers to ameliorating at least one physical parameter, which may not be discernible by the subject. In yet another embodiment, `treating` or `treatment` refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In a further embodiment, `treating` or `treatment` relates to slowing the progression of the disease.

[0078] Applicants' invention is relevant to the reduction of bone resorption and osteoclastogenesis, and is in part based on the TARGET's relationship to OPG expression and osteoclast differentiation. The TARGETs are relevant in bone and joint diseases which involve or invoke bone resorption or degradation. In particular, the TARGETs are relevant in rheumatoid arthritis.

[0079] OPG expression is relevant to bone resorption as it inversely correlates to the stimulation of osteoclastogenesis towards an activated phenotype that, in vivo, is responsible for bone resorption. This is supported by the observation that RANKL knock-out mice are less prone to bone erosion when subjected to CIA (Pettit et al., 2001) and recombinant OPG, alone or in combination with an anti-TNFα, prevents bone erosions in animal models for RA (Redlich et al., 2004).

[0080] Therefore, induction of OPG expression represents a valuable therapeutic approach towards the treatment of RA. Accordingly, if the reduction in expression of a candidate protein in synovial fibroblasts or another cell composing the joint leads to an increased in OPG expression and/or activity levels, then such protein is involved in the regulation of OPG expression and is a relevant target for the development of therapeutic strategies for the treatment of RA. The present inventors have identified such target proteins by screening recombinant adenoviruses mediating the expression of a library of shRNAs, referred to herein as `Ad-siRNAs`. The collection used herein is further referred to as an `adenoviral siRNA library` or the SilenceSelect® collection. These libraries contain recombinant adenoviruses, further referred to as knock-down (KD) viruses or Ad-siRNAs, that mediate the expression in cells of shRNAs which reduce the expression levels of targeted genes by a RNA interference (RNAi)-based mechanism (WO03/020931). The screening work is described below in Example 1.

[0081] As noted above, the present invention is based on the present inventors' discovery that the TARGET polypeptides, identified as a result of a variety of screens described below in the Examples, are factors not only in the regulation of expression of OPG, but also in the modulation of osteoclastogenesis. A reduced activity of the OPG-inducing proteins is believed to be causative and to correlate with the progression of various diseases associated with an increased bone resorption, including diseases that involve the degradation of the joint, e.g. rheumatoid arthritis. OPG expression is involved in bone disease, including but not limited to osteoporosis, juvenile osteoporosis, osteogenesis imperfecta, hypercalcemia, hyperparathyroidism, osteomalacia, osteohalisteresis, osteolytic bone disease, osteonecrosis, Paget's disease of bone, bone loss due to rheumatoid arthritis, inflammatory arthritis, osteomyelitis, corticosteroid treatment, metastatic bone diseases, periodontal bone loss, bone loss due to cancer, age-related loss of bone mass, other forms of osteopenia. Modulation of OPG may also be useful in instances where facilitation of bone repair or replacement is desired such as bone fractures, bone defects, plastic surgery, dental and other implantations.

[0082] In one aspect, the present invention relates to a method for assaying for drug candidate compounds that inhibit bone resorption, comprising contacting the compound with a polypeptide comprising an amino acid sequence of SEQ ID NO: 41-69 and 80, or fragment thereof, under conditions that allow said polypeptide to bind to the compound, and detecting the formation of a complex between the polypeptide and the compound. One particular means of measuring the complex formation is to determine the binding affinity of said compound to said polypeptide.

[0083] More particularly, the invention relates to a method for identifying an agent that inhibits bone resorption, the method comprising:

[0084] (a) contacting a population of mammalian cells with one or more compound that exhibits binding affinity for a TARGET polypeptide, or fragment thereof, and

[0085] (b) measuring a compound-polypeptide property related to bone resorption.

[0086] In a further aspect, the present invention relates to a method for assaying for drug candidate compounds that inhibit bone resorption, comprising contacting the compound with a polypeptide comprising an amino acid sequence of SEQ ID NO: 41-69 and 80, or fragment thereof, under conditions that allow said compound to modulate the activity or expression of the polypeptide, and determining the activity or expression of the polypeptide. One particular means of measuring the activity or expression of the polypeptide is to determine the amount of said polypeptide using a polypeptide binding agent, such as an antibody, or to determine the activity of said polypeptide in a biological or biochemical measure, for instance the amount of phosphorylation of a target of a kinase polypeptide.

[0087] The compound-polypeptide property referred to above is related to the expression and/or activity of the TARGET, and is a measurable phenomenon chosen by the person of ordinary skill in the art. The measurable property may be, for example, the binding affinity of said compound for a peptide domain of the polypeptide TARGET or the level of any one of a number of biochemical marker levels of bone resorption. An event or activity related to bone resorption can be measured, for example, the measurement of the amount or activity of osteoclasts or the measurement of markers indicative for bone resorption, as e.g. CTX-I or osteocalcin. The compound may be incubated with osteoclasts, osteoclast precursors, or related cell lines and the differentiation, maturation activation and functional status of said cells determined There are multiple osteoclast culture systems or methods and bone formation assays that can be used successfully to screen potential osteogenic compounds of this invention. See, e.g., U.S. Pat. No. 6,080,779. One osteoclast culture for use in screening is a neonatal mouse calvaria assay. In addition to this assay, the effect of compounds on murine calvarial bone growth can also be tested in vivo. In addition, osteoclast cultures, containing macrophages, osteoclast precursors and osteoclasts, can be generated from bone marrow precursors, particularly from bone marrow macrophages and utilized in assessment of compounds for osteoclast modulating activity. Bone marrow macrophages are cultured in 48- or 96-well cell culture dishes in the presence of M-CSF (10 ng/mL), RANKL (100 ng/mL), with or without addition of compound(s) or control(s), and medium changed (e.g. on day 3). Osteoclast-like cells are characterized by staining for tartrate-resistant acid phosphatase (TRAP) activity. In assessing bone resorption, for instance using a pit assay, osteoclasts are generated on whale dentin slices from bone marrow macrophages. After three days of culture to generate osteoclasts, compound(s) or control(s) are added to the culture for two days. At the end of the experiment, cells are TRAP stained and photographed to document cell number. Cells are then removed from the dentin slices with 0.5M ammonium hydroxide and mechanical agitation. Maximum resorption lacunae depth is measured using a confocal microscope (Microradiance, Bio-Rad Laboratories, Hercules, Calif.). For evaluation of pit number and resorbed area, dentin slices are stained with Coumassie brilliant blue and analyzed with light microscopy using Osteomeasure software (Osteometrics, Decatur, Ga.) for quantitation.

[0088] In an additional aspect, the present invention relates to a method for assaying for drug candidate compounds that inhibit bone resorption, comprising contacting the compound with a nucleic acid encoding a TARGET polypeptide, including comprising a nucleic acid sequence of SEQ ID NO: 1-29 and 40, or fragment/portion thereof, under conditions that allow said nucleic acid to bind to or otherwise associate with the compound, and detecting the formation of a complex between the nucleic acid and the compound. One particular means of measuring the complex formation is to determine the binding affinity of said compound to said nucleic acid or the presence of a complex by virtue of resistance to nucleases or by gel mobility assays. Alternatively, complex formation may be determined by inhibition of nucleic acid transcription or translation.

[0089] In a particular embodiment of the invention, the TARGET polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID No: 41-69 and 80 as listed in Table 1. In an embodiment of the invention, the nucleic acid capable of encoding the TARGET polypeptide comprises a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-29 and 40 as listed in Table 1.

TABLE-US-00001 TABLE 1 SEQ Target GenBank ID SEQ ID Gene Nucleic Acid NO: GenBank NO: Symbol Acc #: DNA Protein Acc # Protein NAME Class NTRK2 NM_006180 1 NP_006171 41 neurotrophic Kinase tyrosine kinase, receptor, type 2, transcript variant a NM_001007097 2 NP_001007098 42 neurotrophic tyrosine kinase, receptor, type 2, transcript variant b NM_001018064 3 NP_001018074 43 neurotrophic tyrosine kinase, receptor, type 2, transcript variant c NM_001018065 4 NP_001018075 44 neurotrophic tyrosine kinase, receptor, type 2, transcript variant d NM_001018066 5 NP_001018076 45 neurotrophic tyrosine kinase, receptor, type 2, transcript variant e MAP4K4 NM_004834 6 NP_004825 46 mitogen-activated Kinase protein kinase kinase kinase kinase 4, transcript variant 1 NM_145686 7 NP_663719 47 mitogen-activated protein kinase kinase kinase kinase 4, transcript variant 2 NM_145687 8 NP_663720 48 mitogen-activated protein kinase kinase kinase kinase 4, transcript variant 3 SK437 9 n/a 49 kinase SK437 from Manning et al., Science. MMP17 NM_016155 10 NP_057239 50 matrix Protease metalloproteinase 17 (membrane-inserted) PLA2G12A NM_030821 11 NP_110448 51 phospholipase A2, Enzyme group XIIA MGLL NM_007283 12 NP_009214 52 monoglyceride Enzyme lipase, transcript variant 1 NM_001003794 13 NP_001003794 53 monoglyceride lipase, transcript variant 2 GPR44 NM_004778 14 NP_004769 54 G protein-coupled GPCR receptor 44 MIR16 NM_016641 15 NP_057725 55 membrane PDE interacting protein of RGS16 PTK6 NM_005975 16 NP_005966 56 PTK6 protein Kinase tyrosine kinase 6 MRAS NM_012219 17 NP_036351 57 muscle RAS Enzyme oncogene homolog SLC4A8 NM_004858 18 NP_004849 58 solute carrier family Ion 4, sodium Channel bicarbonate cotransporter, member 8 ENPP2 NM_006209 19 NP_006200 59 ectonucleotide PDE pyrophosphatase/phosphodiesterase 2 (autotaxin) MAP3K3 NM_002401 20 NP_002392 60 mitogen-activated Kinase protein kinase kinase kinase 3, transcript variant 2 NM_203351 21 NP_976226 61 mitogen-activated Kinase protein kinase kinase kinase 3, transcript variant 1 P2RY14 NM_014879 22 NP_055694 62 purinergic receptor GPCR P2Y, G-protein coupled, 14 NEK3 NM_002498 23 NP_002489 63 NIMA (never in Kinase mitosis gene a)- related kinase 3, transcript variant 1 NM_152720 24 NP_689933 64 NIMA (never in mitosis gene a)- related kinase 3, transcript variant 2 KLKB1 NM_000892 25 NP_000883 65 kallikrein B, plasma Protease (Fletcher factor) 1 FNTA NM_002027 26 NP_002018 66 farnesyltransferase, Enzyme CAAX box, alpha, transcript variant 1 NM_001018676 27 NP_001018196 67 farnesyltransferase, CAAX box, alpha, transcript variant 2 NM_001018677 28 NP_001018197 68 farnesyltransferase, CAAX box, alpha, transcript variant 3 LOC283226 XM_208554 29 XP_208554 69 similar to Protein farnesyltransferase/geranylgeranyltransferase type I alpha subunit (CAAX farnesyltransferase alpha subunit) (Ras proteins prenyltransferase alpha) (FTase-alpha) (Type I protein geranyl- geranyltransferase alpha subunit) (GGTase-I- . . . USP9Y NM_004654 30 NP_004645 70 ubiquitin specific Protease peptidase 9, Y-linked (fat facets-like, Drosophila) CDC7 NM_003503 31 NP_003494 71 CDC7 cell division Kinase cycle 7 (S. cerevisiae) PPIA NM_021130 32 NP_066953 72 peptidylprolyl Enzyme isomerase A (cyclophilin A), transcript variant 1 TOP2B NM_001068 33 NP_001059 73 topoisomerase Kinase (DNA) II beta 180 kDa PPP2CB NM_004156 34 NP_004147 74 protein phosphatase Phosphatase 2 (formerly 2A), catalytic subunit, beta isoform, transcript variant 1 NM_001009552 35 NP_001009552 75 protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform, transcript variant 2 COX10 NM_001303 36 NP_001294 76 COX10 homolog, Enzyme cytochrome c oxidase assembly protein, heme A: farnesyltransferase (yeast), nuclear gene encoding mitochondrial protein CCR1 NM_001295 37 NP_001286 77 chemokine (C-C GPCR motif) receptor 1 B3GALT1 NM_020981 38 NP_066191 78 UDP- Enzyme Gal:betaGlcNAc beta 1,3- galactosyltransferase, polypeptide 1 SLC9A8 NM_015266 39 NP_056081 79 solute carrier family Ion 9 (sodium/hydrogen Channel exchanger), isoform 8 CXCR6 NM_006564 40 NP_006555 80 chemokine (C--X--C GPCR motif) receptor 6

[0090] Another particular embodiment of the invention comprises the TARGETS identified as SEQ ID NOS. 56, 57, 59-61 and 80. Another particular embodiment of the invention comprises the ion channel TARGET identified as SEQ ID NO: 58. A further particular embodiment of the invention comprises the GPCR TARGETs identified as SEQ ID NOs: 54, 62 and 80. A further particular embodiment of the invention comprises the kinase TARGETs identified as SEQ ID NOs: 41-49, 56, 60-61 and 63-64. A further particular embodiment of the invention comprises the protease TARGETs identified as SEQ ID NOs: 50 and 65. A further particular embodiment of the invention comprises the enzyme TARGETs identified as SEQ ID NOs: 51-53, 57, 66-69. A further particular embodiment of the invention comprises the phosphodiesterase TARGETs identified as SEQ ID NOs: 55 and 59. It will be appreciated by a person of skill in the art that one protein may have a number of reported sequences and these sequences may interchangeably be used to explore the same TARGET. In particular, in one embodiment the TARGET is NTRK2 which may be described by any one of SEQ ID NOs: 41, 42, 43, 44 or 45. In a further embodiment the TARGET is MAP4K4 which may be described by any one of SEQ ID NOs: 46, 47, 48 or 49. In a further embodiment the TARGET is MGLL which may be described by SEQ ID NO: 52 or 53. In a further embodiment the TARGET is MAP3K3 which may be described by SEQ ID NO: 60 or 61. In a further embodiment the TARGET is NEK3 which may be described by SEQ ID NO: 63 or 64. In a further embodiment the TARGET is FNTA which may be described by any one of SEQ ID NOs: 66, 65, 68 or 69.

[0091] Depending on the choice of the skilled artisan, the present assay method may be designed to function as a series of measurements, each of which is designed to determine whether the drug candidate compound is indeed acting on the polypeptide to thereby inhibit bone resorption. For example, an assay designed to determine the binding affinity of a compound to the polypeptide, or fragment thereof, may be necessary, but not sufficient, to ascertain whether the test compound would be useful for inhibiting bone resorption when administered to a subject.

[0092] Such binding information would be useful in identifying a set of test compounds for use in an assay that would measure a different property, such as one further down the biochemical pathway, such as for example OPG expression. Such second assay may be designed to confirm that the test compound, having binding affinity for the polypeptide, actually inhibits bone resorption. Such assay may be designed to confirm that the test compound inhibits osteoclast differentiation, affects RANK or RANKL, has anti-inflammatory effects, such as effects on MMP1. Suitable and exemplary assays are known in the art and/or described further herein. Suitable controls should always be in place to insure against false positive or false negative readings. In a particular embodiment of the present invention the screening method comprises the additional step of comparing the compound to a suitable control. In one embodiment, the control may be a cell or a sample that has not been in contact with the test compound. In an alternative embodiment, the control may be a cell that does not express the TARGET; for example in one aspect of such an embodiment the test cell may naturally express the TARGET and the control cell may have been contacted with an agent, e.g. an siRNA, which inhibits or prevents expression of the TARGET. Alternatively, in another aspect of such an embodiment, the cell in its native state does not express the TARGET and the test cell has been engineered so as to express the TARGET, so that in this embodiment, the control could be the untransformed native cell.

[0093] Whilst exemplary controls are described herein, this should not be taken as limiting; it is within the scope of a person of skill in the art to select appropriate controls for the experimental conditions being used.

[0094] The order of taking these measurements or of performing said steps is not believed to be critical to the practice of the present invention, which may be practiced in any order. For example, one may first perform a screening assay of a set of compounds for which no information is known respecting the compounds' binding affinity for the polypeptide. Alternatively, one may screen a set of compounds identified as having binding affinity for a polypeptide domain, or a class of compounds identified as being an inhibitor of the polypeptide. However, for the present assay to be meaningful to the ultimate use of the drug candidate compounds, a measurement of bone resorption activity may be necessary. Validation studies including controls and measurements of binding affinity to the polypeptides of the invention are nonetheless useful in identifying a compound useful in any therapeutic or diagnostic application.

[0095] The present assay method may be practiced in vitro, using one or more of the TARGET proteins, or fragments thereof, including monomers, portions or subunits of polymeric proteins, peptides, oligopeptides and enzymatically active portions thereof.

[0096] The binding affinity of a compound with the polypeptide TARGET can be measured by methods known in the art, such as using surface plasmon resonance biosensors (Biacore®), by saturation binding analysis with a labeled compound (for example, Scatchard and Lindmo analysis), by differential UV spectrophotometer, fluorescence polarization assay, Fluorometric Imaging Plate Reader (FLIPR®) system, Fluorescence resonance energy transfer, and Bioluminescence resonance energy transfer. The binding affinity of compounds can also be expressed in dissociation constant (Kd) or as IC50 or EC50. The IC50 represents the concentration of a compound that is required for 50% inhibition of binding of another ligand to the polypeptide. The EC50 represents the concentration required for obtaining 50% of the maximum effect in any assay that measures TARGET function. The dissociation constant, Kd, is a measure of how well a ligand binds to the polypeptide, it is equivalent to the ligand concentration required to saturate exactly half of the binding-sites on the polypeptide. Compounds with a high affinity binding have low Kd, IC50 and EC50 values, for example, in the range of 100 nM to 1 pM; a moderate- to low-affinity binding relates to high Kd, IC50 and EC50 values, for example in the micromolar range.

[0097] The present assay method may also be practiced in a cellular assay. A host cell expressing the TARGET, or fragment(s) thereof, can be a cell with endogenous expression or a cell over-expressing the TARGET, for example, by transduction. When the endogenous expression of the polypeptide is not sufficient to determine a baseline that can easily be measured, one may use host cells that over-express TARGET. Over-expression has the advantage that the level of the TARGET substrate end-products is higher than the activity level by endogenous expression. Accordingly, measuring such levels using presently available techniques is easier. Alternatively, a non-endogenous form of TARGET may be expressed or overexpressed in a cell and utilized in screening.

[0098] One embodiment of the present method for identifying a compound that increases OPG expression and/or activity comprises culturing a population of mammalian cells expressing a TARGET polypeptide, or a functional fragment or derivative thereof; determining a first level of OPG expression and/or activity in said population of cells; eventually activating the population of cells; exposing said population of cells to a compound, or a mixture of compounds; determining a second level of OPG expression and/or activity in said population of cells during or after exposure of said population of cells to said compound, or the mixture of said compounds; and identifying the compound(s) that induce OPG expression and/or activity.

[0099] As noted above, inhibition of osteoclastogenesis and bone resorption may be determined by measuring the expression and/or activity of the TARGET polypeptide and/or a known osteoclastogenesis and/or bone resorption inhibiting protein. In a particular embodiment, said osteoclastogenesis and/or bone resorption inhibiting protein is able to prevent the formation of activated osteoclasts which act to remove bone tissue. In a specific embodiment of the present invention, said osteoclastogenesis and/or bone resorption inhibiting protein is osteoprotegerin (OPG).

[0100] The expression of an osteoclastogenesis and/or bone resorption inhibiting protein can be determined by methods known in the art such as Western blotting using specific antibodies, or an ELISA using antibodies specifically recognizing a particular osteoclastogenesis and/or bone resorption inhibiting protein.

[0101] The present inventors have developed a protocol allowing the detection, in a high throughput mode, of the level of OPG in complex media such as the supernatant of cultured cells.

[0102] The present inventors have developed a protocol allowing the detection, in a high throughput mode, of the level of osteoclast differentiation in complex media and in monoculture or coculture, based on a cell-based ELISA for αvβ3 integrin.

[0103] The present inventors identified TARGET genes involved in osteoclastogenesis and/or bone resorption by using a `knock-down` library. This type of library is a screen in which siRNA molecules are transduced into cells by recombinant adenoviruses, which siRNA molecules inhibit or repress the expression of a specific gene as well as expression and activity of the corresponding gene product in a cell. Each siRNA in a viral vector corresponds to a specific natural gene. By identifying a siRNA that induces OPG expression, a direct correlation can be drawn between the specific gene expression and the pathway between OPG expression and activity and osteoclastogenesis leading to bone resorption. The TARGET genes identified using the knock-down library (the protein expression products thereof herein referred to as "TARGET" polypeptides) are then used in the present inventive method for identifying compounds that can be used to prevent bone resorption. Indeed, shRNA compounds comprising the sequences listed in Table 2 (particularly SEQ ID NOs: 81-97 and 107, particularly SEQ ID NOs: 88, 89, 91, 92 and 107) inhibit the expression and/or activity of these TARGET genes and increase the OPG expression in cells, confirming the role of the TARGETS in the pathway from OPG expression to inhibition of bone resorption.

TABLE-US-00002 TABLE 2 Exemplary KD target sequences useful in the practice of the present expression- inhibitory agent invention TARGET SEQ ID HIT ID SYMBOL TARGET KD Sequence NO: H51-082 NTRK2 ATGCAGTGCCTCTCGGATC 81 H51-054 MAP4K4 TGGCACCTATGGACAAGTC 82 H51-104 MMP17 CTGTTTGCAGTGGCTGTCC 83 H51-172 PLA2G12A TGCAGTGACGGATCTAAGC 84 H51-181 MGLL CATGTTCTCCACAAGGAGC 85 H51-225 GPR44 CATGTTCGCCAGCGGCTTC 86 H51-236 MIR16 GTGGTCAGCTAAAGGAATC 87 H51-240 PTK6 GAAGCTGCGGCACAAACAC 88 H51-137 MRAS AGAAATGGCGACCAAACAC 89 H51-121 SLC4A8 AGCATGAGGGTTAAAGTGC 90 H51-122 ENPP2 CTGCAGTGCTTTATCGGAC 91 H51-014 MAP3K3 TTCCTTGTCTGGAAGCTGC 92 H51-018 P2RY14 GATCCTTGGTGACTCAGGC 93 H51-041 P2RY14 AGCTCAGAATGACCTAGAC 94 H51-040 NEK3 GCAGTGGCTCAAAGAGACC 95 H51-046 KLKB1 CATCTGCACCTATCACCCC 96 H51-142 FNTA/ TGGCTAAGAGATCCATCTC 97 LOC283226 H51-103 USP9Y ATGAACTCTGTGATCCAGC 98 H51-119 CDC7 TTCAGTGCCTAACAGTGGC 99 H51-145 PPIA GCATGAATATTGTGGAGGC 100 H51-153 TOP2B AGCATGATGATAGTTCCTC 101 H51-177 PPP2CB TGTGCAAGAGGTTCGTTGC 102 H51-183 COX10 TGCATGATGTCGGTCACCC 103 H51-206 CCR1 AGCCTACGAGAGTGGAAGC 104 H51-251 B3GALT1 AGTTTGTGTAGGTATCGCC 105 H51-270 SLC9A8 TGTTCTTTGGCTCTGCAGC 106 H51-261 CXCR6 CTTCTACACGTCCATGCTC 107

[0104] Table 1 lists the TARGETS identified using applicants' knock-down library in the OPG assay described below, including the class of polypeptides identified. TARGETS have been identified in polypeptide classes including kinase, protease, enzyme, ion channel, GPCR, phosphodiesterase and phosphatase, for instance. Specific methods to determine the activity of a kinase by measuring the phosphorylation of a substrate by the kinase, which measurements are performed in the presence or absence of a compound, are well known in the art.

[0105] Ion channels are membrane protein complexes and their function is to facilitate the diffusion of ions across biological membranes. Membranes, or phospholipid bilayers, build a hydrophobic, low dielectric barrier to hydrophilic and charged molecules. Ion channels provide a high conducting, hydrophilic pathway across the hydrophobic interior of the membrane. The activity of an ion channel can be measured using classical patch clamping. High-throughput fluorescence-based or tracer-based assays are also widely available to measure ion channel activity. These fluorescent-based assays screen compounds on the basis of their ability to either open or close an ion channel thereby changing the concentration of specific fluorescent dyes across a membrane. In the case of the tracer-based assay, the changes in concentration of the tracer within and outside the cell are measured by radioactivity measurement or gas absorption spectrometry.

[0106] Specific methods to determine the inhibition by a compound by measuring the cleavage of the substrate by the polypeptide, which is a protease, are well known in the art. Classically, substrates are used in which a fluorescent group is linked to a quencher through a peptide sequence that is a substrate that can be cleaved by the target protease. Cleavage of the linker separates the fluorescent group and quencher, giving rise to an increase in fluorescence.

[0107] G-protein coupled receptors (GPCR) are capable of activating an effector protein, resulting in changes in second messenger levels in the cell. The activity of a GPCR can be measured by measuring the activity level of such second messengers. Two important and useful second messengers in the cell are cyclic AMP (cAMP) and Ca2+. The activity levels can be measured by methods known to persons skilled in the art, either directly by ELISA or radioactive technologies or by using substrates that generate a fluorescent or luminescent signal when contacted with Ca2+ or indirectly by reporter gene analysis. The activity level of the one or more secondary messengers may typically be determined with a reporter gene controlled by a promoter, wherein the promoter is responsive to the second messenger. Promoters known and used in the art for such purposes are the cyclic-AMP responsive promoter that is responsive for the cyclic-AMP levels in the cell, and the NF-AT responsive promoter that is sensitive to cytoplasmic Ca2+-levels in the cell. The reporter gene typically has a gene product that is easily detectable. The reporter gene can either be stably infected or transiently transfected in the host cell. Useful reporter genes are alkaline phosphatase, enhanced green fluorescent protein, destabilized green fluorescent protein, luciferase and β-galactosidase.

[0108] It should be understood that the cells expressing the polypeptides, may be cells naturally expressing the polypeptides, or the cells may be transfected to express the polypeptides, as described above. Also, the cells may be transduced to overexpress the polypeptide, or may be transfected to express a non-endogenous form of the polypeptide, which can be differentially assayed or assessed.

[0109] In one particular embodiment the methods of the present invention further comprise the step of contacting the population of cells with an agonist of the polypeptide. This is useful in methods wherein the expression of the polypeptide in a certain chosen population of cells is too low for a proper detection of its activity. By using an agonist the polypeptide may be triggered, enabling a proper read-out if the compound inhibits the polypeptide. Similar considerations apply to the measurement of bone resorption. In a particular embodiment, the cells used in the present method are mammalian synovial fibroblasts The fibroblasts, in the assay contemplated, may be activated (e.g. by cytokines).

[0110] A method for identifying a compound that inhibits bone resorption, comprising:

[0111] (a) contacting a compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-69 and 80, and fragments thereof; and

[0112] (b) measuring a compound-polypeptide property related to bone resorption.

[0113] In one embodiment of the present invention the compound-polypeptide property related to bone resorption is binding affinity.

[0114] In one embodiment of the present invention the compound-polypeptide property related to bone resorption is upregulation of a biological pathway producing a biochemical marker indicative of the inhibition of bone resorption. In particular, in one embodiment the compound induces or upregulates OPG activity or expression.

[0115] In one embodiment of the present invention the compound-polypeptide property related to bone resorption is the activity of said polypeptide. In particular, in one embodiment the compound inhibits the activity of said polypeptide.

[0116] In one embodiment of the present invention the compound-polypeptide property related to bone resorption is the expression of said polypeptide. In particular, in one embodiment the compound inhibits the expression of said polypeptide.

[0117] The present invention further relates to a method for identifying a compound that inhibits bone resorption, comprising:

[0118] a) contacting a compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-69 and 80;

[0119] b) determining the binding affinity of the compound to the polypeptide;

[0120] c) contacting a population of mammalian cells expressing said polypeptide with the compound that exhibits a binding affinity of at least 10 micromolar; and

[0121] d) identifying the compound that inhibits bone resorption.

[0122] The present invention further relates to a method for identifying a compound that inhibits bone resorption, comprising:

[0123] a) contacting a compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-69 and 80;

[0124] b) determining the ability of the compound inhibit the expression or activity of the polypeptide;

[0125] c) contacting a population of mammalian cells expressing said polypeptide with the compound that significantly inhibits the expression or activity of the polypeptide; and

[0126] d) identifying the compound that inhibits bone resorption.

[0127] In a particular aspect of the present invention the methods described above include the additional step of comparing the compound to be tested to a control, where the control is a population of cells that have not been contacted with the test compound.

[0128] In a particular aspect of the present invention the methods described above include the additional step of comparing the compound to be tested to a control, where the control is a population of cells that do not express said polypeptide.

[0129] The methods of the present invention may be performed in the presence of, or in combination with, a Disease-Modifying Anti-Rheumatic Drug (DMARD), or an anti-inflammatory compound. The population of cells may be exposed to the compound or the mixture of compounds through different means, for instance by direct incubation in the medium, or by nucleic acid transfer into the cells. Such transfer may be achieved by a wide variety of means, for instance by direct transfection of naked isolated DNA, or RNA, or by means of delivery systems, such as recombinant vectors. Other delivery means such as liposomes, or other lipid-based vectors may also be used. Particularly, the nucleic acid compound is delivered by means of a (recombinant) vector such as a recombinant virus.

[0130] For high-throughput purposes, libraries of compounds may be used such as antibody fragment libraries, peptide phage display libraries, peptide libraries (for example, LOPAP®, Sigma Aldrich), lipid libraries (BioMol), synthetic compound libraries (for example, LOPAC®, Sigma Aldrich; BioFocus DPI) or natural compound libraries (Specs, TimTec).

[0131] Particular drug candidate compounds are low molecular weight compounds. Low molecular weight compounds, for example with a molecular weight of 500 Dalton or less, are likely to have good absorption and permeation in biological systems and are consequently more likely to be successful drug candidates than compounds with a molecular weight above 500 Dalton (Lipinski et al., (1997)). Peptides comprise another particular class of drug candidate compounds. Peptides may be excellent drug candidates and there are multiple examples of commercially valuable peptides such as fertility hormones and platelet aggregation inhibitors. Natural compounds are another particular class of drug candidate compound. Such compounds are found in and extracted from natural sources, and which may thereafter be synthesized. The lipids are another particular class of drug candidate compound.

[0132] Another particular class of drug candidate compounds is an antibody. The present invention also provides antibodies directed against a TARGET. These antibodies may be endogenously produced to bind to the TARGET within the cell, or added to the tissue to bind to TARGET polypeptide present outside the cell. These antibodies may be monoclonal antibodies or polyclonal antibodies. The present invention includes chimeric, single chain, and humanized antibodies, as well as Fab fragments and the products of a Fab expression library, and Fv fragments and the products of an Fv expression library. In another embodiment, the compound may be a nanobody, the smallest functional fragment of naturally occurring single-domain antibodies (Cortez-Retamozo et al. 2004).

[0133] In certain embodiments, polyclonal antibodies may be used in the practice of the invention. The skilled artisan knows methods of preparing polyclonal antibodies. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. Antibodies may also be generated against the intact TARGET protein or polypeptide, or against a fragment, derivatives including conjugates, or other epitope of the TARGET protein or polypeptide, such as the TARGET embedded in a cellular membrane, or a library of antibody variable regions, such as a phage display library.

[0134] It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants that may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). One skilled in the art without undue experimentation may select the immunization protocol.

[0135] In some embodiments, the antibodies may be monoclonal antibodies. Monoclonal antibodies may be prepared using methods known in the art. The monoclonal antibodies of the present invention may be "humanized" to prevent the host from mounting an immune response to the antibodies. A "humanized antibody" is one in which the complementarity determining regions (CDRs) and/or other portions of the light and/or heavy variable domain framework are derived from a non-human immunoglobulin, but the remaining portions of the molecule are derived from one or more human immunoglobulins. Humanized antibodies also include antibodies characterized by a humanized heavy chain associated with a donor or acceptor unmodified light chain or a chimeric light chain, or vice versa. The humanization of antibodies may be accomplished by methods known in the art (see, for example, Mark and Padlan, (1994) "Chapter 4. Humanization of Monoclonal Antibodies", The Handbook of Experimental Pharmacology Vol. 113, Springer-Verlag, New York). Transgenic animals may be used to express humanized antibodies.

[0136] Human antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom and Winter, (1991) J. Mol. Biol. 227:381-8; Marks et al. (1991). J. Mol. Biol. 222:581-97). The techniques of Cole, et al. and Boerner, et al. are also available for the preparation of human monoclonal antibodies (Cole, et al. (1985) Monoclonal Antibodies and Cancer Therapy, Alan R Liss, p. 77; Boerner, et al (1991). J. Immunol., 147(1):86-95).

[0137] Techniques known in the art for the production of single chain antibodies can be adapted to produce single chain antibodies to the TARGET polypeptides and proteins of the present invention. The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain cross-linking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent cross-linking

[0138] Bispecific antibodies are monoclonal, particularly human or humanized, antibodies that have binding specificities for at least two different antigens and particularly for a cell-surface protein or receptor or receptor subunit. In the present case, one of the binding specificities is for one domain of the TARGET, while the other one is for another domain of the same or different TARGET.

[0139] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, (1983) Nature 305:537-9). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. Affinity chromatography steps usually accomplish the purification of the correct molecule. Similar procedures are disclosed in Trauneeker, et al. (1991) EMBO J. 10:3655-9.

[0140] According to another particular embodiment, the assay method uses a drug candidate compound identified as having a binding affinity for a TARGET, and/or has already been identified as having down-regulating activity such as antagonist activity vis-a-vis one or more TARGET.

[0141] The present invention further relates to a method for inhibiting bone resorption comprising contacting mammalian cells with an expression inhibitory agent comprising a polyribonucleotide sequence that complements at least about 15 to about 30, particularly at least 17 to about 30, most particularly at least 17 to about 25 contiguous nucleotides of a nucleotide sequence encoding a polypeptide TARGET or portion thereof, including the nucleotide sequence selected from the group consisting of SEQ ID NO: 1-29 and 40, particularly selected from the group consisting of SEQ ID NO: 16, 17, 19-21 and 40.

[0142] Another aspect of the present invention relates to a method for inhibiting bone resorption, comprising by contacting mammalian cells with an expression-inhibiting agent that inhibits the translation in the cell of a polyribonucleotide encoding a TARGET polypeptide. A particular embodiment relates to a composition comprising a polynucleotide including at least one antisense strand that functions to pair the agent with the TARGET mRNA, and thereby down-regulate or block the expression of TARGET polypeptide. The inhibitory agent particularly comprises antisense polynucleotide, a ribozyme, and a small interfering RNA (siRNA), wherein said agent comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence selected from the group consisting of SEQ ID NO: 1-29 and 40, particularly selected from the group consisting of SEQ ID NO: 16, 17, 19-21 and 40.

[0143] A particular embodiment of the present invention relates to a method wherein the expression-inhibiting agent is selected from the group consisting of antisense RNA, antisense oligodeoxynucleotide (ODN), a ribozyme that cleaves the polyribonucleotide coding for SEQ ID NO: 41-69 and 80, a small interfering RNA (siRNA, particularly shRNA,) that is sufficiently homologous to a portion of the polyribonucleotide corresponding to SEQ ID NO: 1-29 and 40, particularly selected from the group consisting of SEQ ID NO: 16, 17, 19-21 and 40, such that the siRNA, particularly shRNA, interferes with the translation of the TARGET polyribonucleotide to the TARGET polypeptide.

[0144] Another embodiment of the present invention relates to a method wherein the expression-inhibiting agent is a nucleic acid expressing the antisense RNA, antisense oligodeoxynucleotide (ODN), a ribozyme that cleaves the polyribonucleotide corresponding to SEQ ID NO: 1-29 and 40, particularly selected from the group consisting of SEQ ID NO: 16, 17, 19-21 and 40, a small interfering RNA (siRNA, particularly shRNA,) that is sufficiently complementary to a portion of the polyribonucleotide corresponding to SEQ ID NO: 1-29 and 40, particularly selected from the group consisting of SEQ ID NO: 16, 17, 19-21 and 40, such that the siRNA, particularly shRNA, interferes with the translation of the TARGET polyribonucleotide to the TARGET polypeptide. Particularly the expression-inhibiting agent is an antisense RNA, ribozyme, antisense oligodeoxynucleotide, or siRNA, particularly shRNA, comprising a polyribonucleotide sequence that complements at least about 17 to about 30 contiguous nucleotides of a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-29 and 40, particularly selected from the group consisting of SEQ ID NO: 16, 17, 19-21 and 40. More particularly, the expression-inhibiting agent is an antisense RNA, ribozyme, antisense oligodeoxynucleotide, or siRNA, particularly shRNA, comprising a polyribonucleotide sequence that complements at least 15 to about 30, particularly at least 17 to about 30, most particularly at least 17 to about 25 contiguous nucleotides of a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-29 and 40, particularly selected from the group consisting of SEQ ID NO: 16, 17, 19-21 and 40. A particular embodiment comprises a polyribonucleotide sequence that complements a polynucleotide sequence selected from the group consisting of SEQ ID NO: 81-97 and 107. A particular embodiment comprises a polyribonucleotide sequence that complements a polynucleotide sequence selected from the group consisting of 88, 89, 91, 92 and 107.

[0145] The down regulation of gene expression using antisense nucleic acids can be achieved at the translational or transcriptional level. Antisense nucleic acids of the invention are particularly nucleic acid fragments capable of specifically hybridizing with all or part of a nucleic acid encoding a TARGET polypeptide or the corresponding messenger RNA. In addition, antisense nucleic acids may be designed which decrease expression of the nucleic acid sequence capable of encoding a TARGET polypeptide by inhibiting splicing of its primary transcript. Any length of antisense sequence is suitable for practice of the invention so long as it is capable of down-regulating or blocking expression of a nucleic acid coding for a TARGET. Particularly, the antisense sequence is at least about 15-30, and particularly at least 17 nucleotides in length. The preparation and use of antisense nucleic acids, DNA encoding antisense RNAs and the use of oligo and genetic antisense is known in the art.

[0146] One embodiment of expression-inhibitory agent is a nucleic acid that is antisense to a nucleic acid comprising SEQ ID NO: 1-29 and 40, particularly SEQ ID NO: 16, 17, 19-21 and 40, for example, an antisense nucleic acid (for example, DNA) may be introduced into cells in vitro, or administered to a subject in vivo, as gene therapy to inhibit cellular expression of nucleic acids comprising SEQ ID NO: 1-29 and 40, particularly SEQ ID NO: 16, 17, 19-21 and 40. Antisense oligonucleotides may comprise a sequence containing from about 15 to about 100 nucleotides, more particularly from about 15 to about 30 nucleotides, and most particularly, from about 17 to about 25 nucleotides. Antisense nucleic acids may be prepared from about 15 to about 30 contiguous nucleotides selected from the sequences of SEQ ID NO: 1-29 and 40, particularly SEQ ID NO: 16, 17, 19-21 and 40, expressed in the opposite orientation.

[0147] The skilled artisan can readily utilize any of several strategies to facilitate and simplify the selection process for antisense nucleic acids and oligonucleotides effective in inhibition of TARGET and/or OPG expression. Predictions of the binding energy or calculation of thermodynamic indices between an olionucleotide and a complementary sequence in an mRNA molecule may be utilized (Chiang et al. (1991) J. Biol. Chem. 266:18162-18171; Stull et al. (1992) Nucl. Acids Res. 20:3501-3508). Antisense oligonucleotides may be selected on the basis of secondary structure (Wickstrom et al (1991) in Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS, Wickstrom, ed., Wiley-Liss, Inc., New York, pp. 7-24; Lima et al. (1992) Biochem. 31:12055-12061). Schmidt and Thompson (U.S. Pat. No. 6,416,951) describe a method for identifying a functional antisense agent comprising hybridizing an RNA with an oligonucleotide and measuring in real time the kinetics of hybridization by hybridizing in the presence of an intercalation dye or incorporating a label and measuring the spectroscopic properties of the dye or the label's signal in the presence of unlabelled oligonucleotide. In addition, any of a variety of computer programs may be utilized which predict suitable antisense oligonucleotide sequences or antisense targets utilizing various criteria recognized by the skilled artisan, including for example the absence of self-complementarity, the absence hairpin loops, the absence of stable homodimer and duplex formation (stability being assessed by predicted energy in kcal/mol). Examples of such computer programs are readily available and known to the skilled artisan and include the OLIGO 4 or OLIGO 6 program (Molecular Biology Insights, Inc., Cascade, Colo.) and the Oligo Tech program (Oligo Therapeutics Inc., Wilsonville, Oreg.). In addition, antisense oligonucleotides suitable in the present invention may be identified by screening an oligonucleotide library, or a library of nucleic acid molecules, under hybridization conditions and selecting for those which hybridize to the target RNA or nucleic acid (see for example U.S. Pat. No. 6,500,615). Mishra and Toulme have also developed a selection procedure based on selective amplification of oligonucleotides that bind target (Mishra et al (1994) Life Sciences 317:977-982). Oligonucleotides may also be selected by their ability to mediate cleavage of target RNA by RNAse H, by selection and characterization of the cleavage fragments (Ho et al (1996) Nucl Acids Res 24:1901-1907; Ho et al (1998) Nature Biotechnology 16:59-630). Generation and targeting of oligonucleotides to GGGA motifs of RNA molecules has also been described (U.S. Pat. No. 6,277,981).

[0148] The antisense nucleic acids are particularly oligonucleotides and may consist entirely of deoxyribo-nucleotides, modified deoxyribonucleotides, or some combination of both. The antisense nucleic acids can be synthetic oligonucleotides. The oligonucleotides may be chemically modified, if desired, to improve stability and/or selectivity. Specific examples of some particular oligonucleotides envisioned for this invention include those containing modified backbones, for example, phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Since oligonucleotides are susceptible to degradation by intracellular nucleases, the modifications can include, for example, the use of a sulfur group to replace the free oxygen of the phosphodiester bond. This modification is called a phosphorothioate linkage. Phosphorothioate antisense oligonucleotides are water soluble, polyanionic, and resistant to endogenous nucleases. In addition, when a phosphorothioate antisense oligonucleotide hybridizes to its TARGET site, the RNA-DNA duplex activates the endogenous enzyme ribonuclease (RNase) H, which cleaves the mRNA component of the hybrid molecule. Oligonucleotides may also contain one or more substituted sugar moieties. Particular oligonucleotides comprise one of the following at the 2' position: OH, SH, SCH3, F, OCN, heterocycloalkyl; heterocycloalkaryl; aminoalkylamino; polyalkylamino; substituted silyl; an RNA cleaving group; a reporter group; an intercalator; a group for improving the pharmacokinetic properties of an oligonucleotide; or a group for improving the pharmacodynamic properties of an oligonucleotide and other substituents having similar properties. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide and the 5' position of 5' terminal nucleotide.

[0149] In addition, antisense oligonucleotides with phosphoramidite and polyamide (peptide) linkages can be synthesized. These molecules should be very resistant to nuclease degradation. Furthermore, chemical groups can be added to the 2' carbon of the sugar moiety and the 5 carbon (C-5) of pyrimidines to enhance stability and facilitate the binding of the antisense oligonucleotide to its TARGET site. Modifications may include 2'-deoxy, O-pentoxy, O-propoxy, O-methoxy, fluoro, methoxyethoxy phosphorothioates, modified bases, as well as other modifications known to those of skill in the art.

[0150] Another type of expression-inhibitory agent that reduces the levels of TARGETS is the ribozyme. Ribozymes are catalytic RNA molecules (RNA enzymes) that have separate catalytic and substrate binding domains The substrate binding sequence combines by nucleotide complementarity and, possibly, non-hydrogen bond interactions with its TARGET sequence. The catalytic portion cleaves the TARGET RNA at a specific site. The substrate domain of a ribozyme can be engineered to direct it to a specified mRNA sequence. The ribozyme recognizes and then binds a TARGET mRNA through complementary base pairing. Once it is bound to the correct TARGET site, the ribozyme acts enzymatically to cut the TARGET mRNA. Cleavage of the mRNA by a ribozyme destroys its ability to direct synthesis of the corresponding polypeptide. Once the ribozyme has cleaved its TARGET sequence, it is released and can repeatedly bind and cleave at other mRNAs.

[0151] Ribozyme forms include a hammerhead motif, a hairpin motif, a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) motif or Neurospora VS RNA motif. Ribozymes possessing a hammerhead or hairpin structure are readily prepared since these catalytic RNA molecules can be expressed within cells from eukaryotic promoters (Chen, et al. (1992) Nucleic Acids Res. 20:4581-9). A ribozyme of the present invention can be expressed in eukaryotic cells from the appropriate DNA vector. If desired, the activity of the ribozyme may be augmented by its release from the primary transcript by a second ribozyme (Ventura, et al. (1993) Nucleic Acids Res. 21:3249-55).

[0152] Ribozymes may be chemically synthesized by combining an oligodeoxyribonucleotide with a ribozyme catalytic domain (20 nucleotides) flanked by sequences that hybridize to the TARGET mRNA after transcription. The oligodeoxyribonucleotide is amplified by using the substrate binding sequences as primers. The amplification product is cloned into a eukaryotic expression vector.

[0153] Ribozymes are expressed from transcription units inserted into DNA, RNA, or viral vectors. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol (I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on nearby gene regulatory sequences. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Gao and Huang, (1993) Nucleic Acids Res. 21:2867-72). It has been demonstrated that ribozymes expressed from these promoters can function in mammalian cells (Kashani-Sabet, et al. (1992) Antisense Res. Dev. 2:3-15).

[0154] A particular inhibitory agent is a small interfering RNA (siRNA, particularly small hairpin RNA, "shRNA"). siRNA, particularly shRNA, mediate the post-transcriptional process of gene silencing by double stranded RNA (dsRNA) that is homologous in sequence to the silenced RNA. siRNA according to the present invention comprises a sense strand of 15-30, particularly 17-30, most particularly 17-25 nucleotides complementary or homologous to a contiguous 17-25 nucleotide sequence selected from the group of sequences described in SEQ ID NO: 1-29 and 40, particularly SEQ ID NO: 16, 17, 19-21 and 40, particularly from the group of sequences described in SEQ ID No: 81-97 and 107, most particularly those described in SEQ ID NO: 88, 89, 91, 92 and 107, and an antisense strand of 15-30, particularly 17-30, most particularly 17-25 nucleotides complementary to the sense strand. The most particular siRNA comprises sense and anti-sense strands that are 100 percent complementary to each other and the TARGET polynucleotide sequence. Particularly the siRNA further comprises a loop region linking the sense and the antisense strand.

[0155] A self-complementing single stranded shRNA molecule polynucleotide according to the present invention comprises a sense portion and an antisense portion connected by a loop region linker. Particularly, the loop region sequence is 4-30 nucleotides long, more particularly 5-15 nucleotides long and most particularly 8 or 12 nucleotides long. In a most particular embodiment the linker sequence is UUGCUAUA or GUUUGCUAUAAC (SEQ ID NO: 108). Self-complementary single stranded siRNAs form hairpin loops and are more stable than ordinary dsRNA. In addition, they are more easily produced from vectors.

[0156] Analogous to antisense RNA, the siRNA can be modified to confer resistance to nucleolytic degradation, or to enhance activity, or to enhance cellular distribution, or to enhance cellular uptake, such modifications may consist of modified internucleoside linkages, modified nucleic acid bases, modified sugars and/or chemical linkage the siRNA to one or more moieties or conjugates. The nucleotide sequences may be selected according to siRNA designing rules that give an improved reduction of the TARGET sequences compared to nucleotide sequences that do not comply with these siRNA designing rules (For a discussion of these rules and examples of the preparation of siRNA, WO 2004/094636 and US 2003/0198627, are hereby incorporated by reference).

[0157] The present invention also relates to compositions, and methods using said compositions, comprising a DNA expression vector capable of expressing a polynucleotide capable of inhibiting bone resorption and described hereinabove as an expression inhibition agent.

[0158] A particular aspect of these compositions and methods relates to the down-regulation or blocking of the expression of a TARGET polypeptide by the induced expression of a polynucleotide encoding an intracellular binding protein that is capable of selectively interacting with the TARGET polypeptide. An intracellular binding protein includes any protein capable of selectively interacting, or binding, with the polypeptide in the cell in which it is expressed and neutralizing or otherwise inhibiting or blocking the function of the polypeptide. Particularly, the intracellular binding protein is a neutralizing antibody or a fragment of a neutralizing antibody having binding affinity to an epitope of the TARGET polypeptide of SEQ ID NO: 41-69 and 80, particularly to an epitope of the TARGET polypeptide of SEQ ID NO: 56, 57, 59-61 and 80. More particularly, the intracellular binding protein is a single chain antibody.

[0159] A particular embodiment of this composition comprises the expression-inhibiting agent selected from the group consisting of antisense RNA, antisense oligodeoxynucleotide (ODN), a ribozyme that cleaves the polyribonucleotide coding for SEQ ID NO: 41-69 or 80, particularly SEQ ID NO: 56, 57, 59-61 or 80, and a small interfering RNA (siRNA) that is sufficiently homologous to a portion of the polyribonucleotide corresponding to SEQ ID NO: 1-29 and 40, particularly SEQ ID NO: 16, 17, 19-21 and 40, such that the siRNA interferes with the translation of the TARGET polyribonucleotide to the TARGET polypeptide.

[0160] The polynucleotide expressing the expression-inhibiting agent, or a polynucleotide expressing the TARGET polypeptide in cells, is particularly included within a vector. The polynucleic acid is operably linked to signals enabling expression of the nucleic acid sequence and is introduced into a cell utilizing, particularly, recombinant vector constructs, which will express the nucleic acid or antisense nucleic acid once the vector is introduced into the cell. A variety of viral-based systems are available, including adenoviral, retroviral, adeno-associated viral, lentiviral, herpes simplex viral or a sendaviral vector systems. All may be used to introduce and express polynucleotide sequence for the expression-inhibiting agents in TARGET cells.

[0161] Particularly, the viral vectors used in the methods of the present invention are replication defective. Such replication defective vectors will usually pack at least one region that is necessary for the replication of the virus in the infected cell. These regions can either be eliminated (in whole or in part), or be rendered non-functional by any technique known to a person skilled in the art. These techniques include the total removal, substitution, partial deletion or addition of one or more bases to an essential (for replication) region. Such techniques may be performed in vitro (on the isolated DNA) or in situ, using the techniques of genetic manipulation or by treatment with mutagenic agents. Particularly, the replication defective virus retains the sequences of its genome, which are necessary for encapsidating, the viral particles.

[0162] In a particular embodiment, the viral element is derived from an adenovirus. Particularly, the vehicle includes an adenoviral vector packaged into an adenoviral capsid, or a functional part, derivative, and/or analogue thereof. Adenovirus biology is also comparatively well known on the molecular level. Many tools for adenoviral vectors have been and continue to be developed, thus making an adenoviral capsid a particular vehicle for incorporating in a library of the invention. An adenovirus is capable of infecting a wide variety of cells. However, different adenoviral serotypes have different preferences for cells. To combine and widen the TARGET cell population that an adenoviral capsid of the invention can enter in a particular embodiment, the vehicle includes adenoviral fiber proteins from at least two adenoviruses. Particular adenoviral fiber protein sequences are serotype 17, 45 and 51. Techniques or construction and expression of these chimeric vectors are disclosed in US 2003/0180258 and US 2004/0071660, hereby incorporated by reference.

[0163] In a particular embodiment, the nucleic acid derived from an adenovirus includes the nucleic acid encoding an adenoviral late protein or a functional part, derivative, and/or analogue thereof. An adenoviral late protein, for instance an adenoviral fiber protein, may be favorably used to TARGET the vehicle to a certain cell or to induce enhanced delivery of the vehicle to the cell. Particularly, the nucleic acid derived from an adenovirus encodes for essentially all adenoviral late proteins, enabling the formation of entire adenoviral capsids or functional parts, analogues, and/or derivatives thereof. Particularly, the nucleic acid derived from an adenovirus includes the nucleic acid encoding adenovirus E2A or a functional part, derivative, and/or analogue thereof. Particularly, the nucleic acid derived from an adenovirus includes the nucleic acid encoding at least one E4-region protein or a functional part, derivative, and/or analogue thereof, which facilitates, at least in part, replication of an adenoviral derived nucleic acid in a cell. The adenoviral vectors used in the examples of this application are exemplary of the vectors useful in the present method of treatment invention.

[0164] Certain embodiments of the present invention use retroviral vector systems. Retroviruses are integrating viruses that infect dividing cells, and their construction is known in the art. Retroviral vectors can be constructed from different types of retrovirus, such as, MoMuLV ("Moloney murine leukemia virus" MSV ("Moloney murine sarcoma virus"), HaSV ("Harvey sarcoma virus"); SNV ("spleen necrosis virus"); RSV ("Rous sarcoma virus") and Friend virus. Lentiviral vector systems may also be used in the practice of the present invention. Retroviral systems and herpes virus system may be particular vehicles for transfection of neuronal cells.

[0165] In other embodiments of the present invention, adeno-associated viruses ("AAV") are utilized. The AAV viruses are DNA viruses of relatively small size that integrate, in a stable and site-specific manner, into the genome of the infected cells. They are able to infect a wide spectrum of cells without inducing any effects on cellular growth, morphology or differentiation, and they do not appear to be involved in human pathologies.

[0166] In the vector construction, the polynucleotide agents of the present invention may be linked to one or more regulatory regions. Selection of the appropriate regulatory region or regions is a routine matter, within the level of ordinary skill in the art. Regulatory regions include promoters, and may include enhancers, suppressors, etc.

[0167] Promoters that may be used in the expression vectors of the present invention include both constitutive promoters and regulated (inducible) promoters. The promoters may be prokaryotic or eukaryotic depending on the host. Among the prokaryotic (including bacteriophage) promoters useful for practice of this invention are lac, lacZ, T3, T7, lambda Pr, Pl, and trp promoters. Among the eukaryotic (including viral) promoters useful for practice of this invention are ubiquitous promoters (for example, HPRT, vimentin, actin, tubulin), intermediate filament promoters (for example, desmin, neurofilaments, keratin, GFAP), therapeutic gene promoters (for example, MDR type, CFTR, factor VIII), tissue-specific promoters (for example, actin promoter in smooth muscle cells, or Flt and Flk promoters active in endothelial cells), including animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift, et al. (1984) Cell 38:639-46; Ornitz, et al. (1986) Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, (1987) Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, (1985) Nature 315:115-22), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl, et al. (1984) Cell 38:647-58; Adames, et al. (1985) Nature 318:533-8; Alexander, et al. (1987) Mol. Cell. Biol. 7:1436-44), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder, et al. (1986) Cell 45:485-95), albumin gene control region which is active in liver (Pinkert, et al. (1987) Genes and Devel. 1:268-76), alpha-fetoprotein gene control region which is active in liver (Krumlauf, et al. (1985) Mol. Cell. Biol., 5:1639-48; Hammer, et al. (1987) Science 235:53-8), alpha 1-antitrypsin gene control region which is active in the liver (Kelsey, et al. (1987) Genes and Devel., 1: 161-71), beta-globin gene control region which is active in myeloid cells (Mogram, et al. (1985) Nature 315:338-40; Kollias, et al. (1986) Cell 46:89-94), myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead, et al. (1987) Cell 48:703-12), myosin light chain-2 gene control region which is active in skeletal muscle (Sani, (1985) Nature 314.283-6), and gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason, et al. (1986) Science 234:1372-8).

[0168] Other promoters which may be used in the practice of the invention include promoters which are preferentially activated in dividing cells, promoters which respond to a stimulus (for example, steroid hormone receptor, retinoic acid receptor), tetracycline-regulated transcriptional modulators, cytomegalovirus immediate-early, retroviral LTR, metallothionein, SV-40, E1a, and MLP promoters.

[0169] Additional vector systems include the non-viral systems that facilitate introduction of polynucleotide agents into a patient, for example, a DNA vector encoding a desired sequence can be introduced in vivo by lipofection. Synthetic cationic lipids designed to limit the difficulties encountered with liposome-mediated transfection can be used to prepare liposomes for in vivo transfection of a gene encoding a marker (Felgner, et al. (1987) Proc. Natl. Acad. Sci. USA 84:7413-7); see Mackey, et al. (1988) Proc. Natl. Acad. Sci. USA 85:8027-31; Ulmer, et al. (1993) Science 259:1745-8). The use of cationic lipids may promote encapsulation of negatively charged nucleic acids, and also promote fusion with negatively charged cell membranes (Felgner and Ringold, (1989) Nature 337:387-8). Particularly useful lipid compounds and compositions for transfer of nucleic acids are described in International Patent Publications WO 95/18863 and WO 96/17823, and in U.S. Pat. No. 5,459,127. The use of lipofection to introduce exogenous genes into the specific organs in vivo has certain practical advantages and directing transfection to particular cell types would be particularly advantageous in a tissue with cellular heterogeneity, for example, pancreas, liver, kidney, and the brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. Targeted peptides, for example, hormones or neurotransmitters, and proteins, for example, antibodies, or non-peptide molecules could be coupled to liposomes chemically. Other molecules are also useful for facilitating transfection of a nucleic acid in vivo, for example, a cationic oligopeptide (for example, International Patent Publication WO 95/21931), peptides derived from DNA binding proteins (for example, International Patent Publication WO 96/25508), or a cationic polymer (for example, International Patent Publication WO 95/21931).

[0170] It is also possible to introduce a DNA vector in vivo as a naked DNA plasmid (see U.S. Pat. Nos. 5,693,622; 5,589,466; and 5,580,859). Naked DNA vectors for therapeutic purposes can be introduced into the desired host cells by methods known in the art, for example, transfection, electro-poration, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter (see, for example, Wilson, et al. (1992) J. Biol. Chem. 267:963-7; Wu and Wu, (1988) J. Biol. Chem. 263:14621-4; Hartmut, et al. Canadian Patent Application No. 2,012,311, filed Mar. 15, 1990; Williams, et al (1991). Proc. Natl. Acad. Sci. USA 88:2726-30). Receptor-mediated DNA delivery approaches can also be used (Curiel, et al. (1992) Hum. Gene Ther. 3:147-54; Wu and Wu, (1987) J. Biol. Chem. 262:4429-32).

[0171] The present invention also provides biologically compatible, bone resorption inhibiting compositions comprising an effective amount of one or more compounds identified as TARGET inhibitors, and/or the expression-inhibiting agents as described hereinabove.

[0172] A biologically compatible composition is a composition, that may be solid, liquid, gel, or other form, in which the compound, polynucleotide, vector, or antibody of the invention is maintained in an active form, for example, in a form able to affect a biological activity. For example, a compound of the invention would have inverse agonist or antagonist activity on the TARGET; a nucleic acid would be able to replicate, translate a message, or hybridize to a complementary mRNA of a TARGET; a vector would be able to transfect a TARGET cell and express the antisense, antibody, ribozyme or siRNA as described hereinabove; an antibody would bind a TARGET polypeptide domain.

[0173] A particular biologically compatible composition is an aqueous solution that is buffered using, for example, Tris, phosphate, or HEPES buffer, containing salt ions. Usually the concentration of salt ions will be similar to physiological levels. Biologically compatible solutions may include stabilizing agents and preservatives. In a more particular embodiment, the biocompatible composition is a pharmaceutically acceptable composition. Such compositions can be formulated for administration by topical, oral, parenteral, intranasal, subcutaneous, and intraocular, routes. Parenteral administration is meant to include intravenous injection, intramuscular injection, intraarterial injection or infusion techniques. The composition may be administered parenterally in dosage unit formulations containing standard, well-known non-toxic physiologically acceptable carriers, adjuvants and vehicles as desired.

[0174] A particular embodiment of the present composition invention is a bone resorption inhibiting pharmaceutical composition comprising a therapeutically effective amount of an expression-inhibiting agent as described hereinabove, in admixture with a pharmaceutically acceptable carrier. Another particular embodiment is a pharmaceutical composition for the treatment or prevention of a condition involving bone resorption, or a susceptibility to the condition, comprising an effective bone resorption inhibiting amount of a TARGET antagonist or inverse agonist, its pharmaceutically acceptable salts, hydrates, solvates, or prodrugs thereof in admixture with a pharmaceutically acceptable carrier.

[0175] Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient. Pharmaceutical compositions for oral use can be prepared by combining active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethyl-cellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate. Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinyl-pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

[0176] Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

[0177] Particular sterile injectable preparations can be a solution or suspension in a non-toxic parenterally acceptable solvent or diluent. Examples of pharmaceutically acceptable carriers are saline, buffered saline, isotonic saline (for example, monosodium or disodium phosphate, sodium, potassium; calcium or magnesium chloride, or mixtures of such salts), Ringer's solution, dextrose, water, sterile water, glycerol, ethanol, and combinations thereof 1,3-butanediol and sterile fixed oils are conveniently employed as solvents or suspending media. Any bland fixed oil can be employed including synthetic mono- or di-glycerides. Fatty acids such as oleic acid also find use in the preparation of injectables.

[0178] The compounds or compositions of the invention may be combined for administration with or embedded in polymeric carrier(s), biodegradable or biomimetic matrices or in a scaffold. The carrier, matrix or scaffold may be of any material that will allow composition to be incorporated and expressed and will be compatible with the addition of cells or in the presence of cells. Particularly, the carrier matrix or scaffold is predominantly non-immunogenic and is biodegradable. Examples of biodegradable materials include, but are not limited to, polyglycolic acid (PGA), polylactic acid (PLA), hyaluronic acid, catgut suture material, gelatin, cellulose, nitrocellulose, collagen, albumin, fibrin, alginate, cotton, or other naturally-occurring biodegradable materials. It may be preferable to sterilize the matrix or scaffold material prior to administration or implantation, e.g., by treatment with ethylene oxide or by gamma irradiation or irradiation with an electron beam. In addition, a number of other materials may be used to form the scaffold or framework structure, including but not limited to: nylon (polyamides), dacron (polyesters), polystyrene, polypropylene, polyacrylates, polyvinyl compounds (e.g., polyvinylchloride), polycarbonate (PVC), polytetrafluorethylene (PTFE, teflon), thermanox (TPX), polymers of hydroxy acids such as polylactic acid (PLA), polyglycolic acid (PGA), and polylactic acid-glycolic acid (PLGA), polyorthoesters, polyanhydrides, polyphosphazenes, and a variety of polyhydroxyalkanoates, and combinations thereof. Matrices suitable include a polymeric mesh or sponge and a polymeric hydrogel. In the particular embodiment, the matrix is biodegradable over a time period of less than a year, more particularly less than six months, most particularly over two to ten weeks. The polymer composition, as well as method of manufacture, can be used to determine the rate of degradation. For example, mixing increasing amounts of polylactic acid with polyglycolic acid decreases the degradation time. Meshes of polyglycolic acid that can be used can be obtained commercially, for instance, from surgical supply companies (e.g., Ethicon, N.J). In general, these polymers are at least partially soluble in aqueous solutions, such as water, buffered salt solutions, or aqueous alcohol solutions, that have charged side groups, or a monovalent ionic salt thereof.

[0179] The composition medium can also be a hydrogel, which is prepared from any biocompatible or non-cytotoxic homo- or hetero-polymer, such as a hydrophilic polyacrylic acid polymer that can act as a drug absorbing sponge. Certain of them, such as, in particular, those obtained from ethylene and/or propylene oxide are commercially available. A hydrogel can be deposited directly onto the surface of the tissue to be treated, for example during surgical intervention.

[0180] Embodiments of pharmaceutical compositions of the present invention comprise a replication defective recombinant viral vector encoding the agent of the present invention and a transfection enhancer, such as poloxamer. An example of a poloxamer is Poloxamer 407, which is commercially available (BASF, Parsippany, N.J.) and is a non-toxic, biocompatible polyol. A poloxamer impregnated with recombinant viruses may be deposited directly on the surface of the tissue to be treated, for example during a surgical intervention. Poloxamer possesses essentially the same advantages as hydrogel while having a lower viscosity.

[0181] The active agents may also be entrapped in microcapsules prepared, for example, by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences (1980) 16th edition, Osol, A. Ed.

[0182] Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, for example, films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT®. (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S--S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

[0183] As defined above, therapeutically effective dose means that amount of compound, agent, protein, polynucleotide, peptide, or its antibodies, agonists or antagonists, which ameliorate a condition or one or more symptoms thereof. Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, for example, ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50. Pharmaceutical compositions that exhibit large therapeutic indices are particular. The data obtained from cell culture assays and animal studies are used in formulating a range of dosage for human use. The dosage of such compounds lies particularly within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

[0184] For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. The exact dosage is chosen by the individual physician in view of the patient to be treated. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Additional factors which may be taken into account include the severity of the disease state, age, weight and gender of the patient; diet, desired duration of treatment, method of administration, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long acting pharmaceutical compositions might be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

[0185] The pharmaceutical compositions according to this invention may be administered to a subject by a variety of methods. They may be added directly to targeted tissues, complexed with cationic lipids, packaged within liposomes, or delivered to targeted cells by other methods known in the art. Localized administration to the desired tissues may be done by direct injection, transdermal absorption, catheter, infusion pump or stent. The DNA, DNA/vehicle complexes, or the recombinant virus particles are locally administered to the site of treatment. Alternative routes of delivery include, but are not limited to, intravenous injection, intramuscular injection, subcutaneous injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. Examples of ribozyme delivery and administration are provided in Sullivan et al. WO 94/02595.

[0186] Antibodies according to the invention may be delivered as a bolus only, infused over time or both administered as a bolus and infused over time. Those skilled in the art may employ different formulations for polynucleotides than for proteins. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

[0187] As discussed hereinabove, recombinant viruses may be used to introduce DNA encoding polynucleotide agents useful in the present invention. Recombinant viruses according to the invention are generally formulated and administered in the form of doses of between about 104 and about 1014 pfu. In the case of AAVs and adenoviruses, doses of from about 106 to about 1011 pfu are particularly used. The term pfu ("plaque-forming unit") corresponds to the infective power of a suspension of virions and is determined by infecting an appropriate cell culture and measuring the number of plaques formed. The techniques for determining the pfu titre of a viral solution are well documented in the prior art.

[0188] The present invention also provides methods of inhibiting bone or joint degradation, comprising administering, to a subject suffering from a disease condition involving bone or joint degradation, a bone or joint degradation inhibiting pharmaceutical composition as described herein, particularly a therapeutically effective amount of an expression-inhibiting agent of the present invention.

[0189] The present invention further provides methods of reducing the number or prevalence of bone fractures, comprising administering, to a subject suffering from a disease condition involving bone or joint degradation, a bone or joint degradation inhibiting pharmaceutical composition as described herein, particularly a therapeutically effective amount of an expression-inhibiting agent of the present invention. The diseases involving bone resorption, include osteoporosis, juvenile osteoporosis, osteogenesis imperfecta, hypercalcemia, hyperparathyroidism, osteomalacia, osteohalisteresis, osteolytic bone disease, osteonecrosis, Paget's disease of bone, bone loss due to rheumatoid arthritis, inflammatory arthritis, osteomyelitis, corticosteroid treatment, metastatic bone diseases, periodontal bone loss, bone loss due to cancer, age-related loss of bone mass, other forms of osteopenia. More particular diseases for treatment in accordance with the present invention are the degenerative joint diseases such as rheumatoid arthritis, psoriatic arthritis, juvenile arthritis, early arthritis, reactive arthritis, osteoarthritis, ankylosing spondylitis. The most particular degenerative joint disease for treatment in accordance with the present method is rheumatoid arthritis.

[0190] The present invention also provides methods of inhibiting bone or joint degradation, comprising administering, to a subject suffering from a disease condition involving bone or joint degradation, a bone resorption inhibiting pharmaceutical composition as described herein, particularly a therapeutically effective amount of an agent which inhibits the expression or activity of a TARGET as identified herein. The diseases involving bone or joint degradation, include osteoporosis, juvenile osteoporosis, osteogenesis imperfecta, hypercalcemia, hyperparathyroidism, osteomalacia, osteohalisteresis, osteolytic bone disease, osteonecrosis, Paget's disease of bone, bone loss due to rheumatoid arthritis, inflammatory arthritis, osteomyelitis, corticosteroid treatment, metastatic bone diseases, periodontal bone loss, bone loss due to cancer, age-related loss of bone mass, other forms of osteopenia. More particular diseases for treatment in accordance with the present invention are the degenerative joint diseases such as rheumatoid arthritis, psoriatic arthritis, juvenile arthritis, early arthritis, reactive arthritis, osteoarthritis, ankylosing spondylitis. The most particular degenerative joint disease for treatment in accordance with the present method is rheumatoid arthritis.

[0191] In a further aspect the present invention provides methods of inhibiting bone or joint degradation, comprising administering, to a subject suffering from a disease condition involving bone or joint degradation, a bone resorption inhibiting pharmaceutical composition as described herein, particularly a therapeutically effective amount of an agent which inhibits the expression or activity of a TARGET as identified herein in combination with a disease-modifying anti-rheumatic drug (DMARD) or an anti-inflammatory compound. The diseases involving bone or joint degradation, include osteoporosis, juvenile osteoporosis, osteogenesis imperfecta, hypercalcemia, hyperparathyroidism, osteomalacia, osteohalisteresis, osteolytic bone disease, osteonecrosis, Paget's disease of bone, bone loss due to rheumatoid arthritis, inflammatory arthritis, osteomyelitis, corticosteroid treatment, metastatic bone diseases, periodontal bone loss, bone loss due to cancer, age-related loss of bone mass, other forms of osteopenia. Particular anti-inflammatory compounds include corticosteroids or non-steroidal anti-inflammatory agents. Particular DMARDs include biological DMARDs such as Infliximab, Etanercept, Adalimumab, Rituximab or CTLA4-Ig or synthetic DMARDs such as methotrexate, leflunomide or sulfasalazine. More particular diseases for treatment in accordance with the present invention are the degenerative joint diseases such as rheumatoid arthritis, psoriatic arthritis, juvenile arthritis, early arthritis, reactive arthritis, osteoarthritis, ankylosing spondylitis. The most particular degenerative joint disease for treatment in accordance with the present method is rheumatoid arthritis.

[0192] Administration of the expression-inhibiting agent of the present invention to the subject patient includes both self-administration and administration by another person. The patient may be in need of treatment for an existing disease or medical condition, or may desire prophylactic treatment to prevent or reduce the risk for diseases and medical conditions affected by a disturbance in bone metabolism. The expression-inhibiting agent of the present invention may be delivered to the subject patient orally, transdermally, via inhalation, injection, nasally, rectally or via a sustained release formulation.

[0193] A particular regimen of the present method comprises the administration to a subject suffering from a disease condition characterized by a disturbance in bone metabolism, an effective bone resorption inhibiting amount of an expression-inhibiting agent of the present invention for a period of time sufficient to reduce the abnormal levels of bone resorption in the patient, and particularly terminate, the self-perpetuating processes responsible for said resorption. A particular embodiment of the method comprises administering of an effective OPG inducing amount of a expression-inhibiting agent of the present invention to a subject patient suffering from or susceptible to the development of rheumatoid arthritis, for a period of time sufficient to reduce or prevent, respectively, bone resorption in the joints of said patient, and particularly terminate, the self-perpetuating processes responsible for said resorption.

[0194] The invention also relates to the use of an agent as described above for the preparation of a medicament for treating or preventing a disease involving bone resorption. Particularly the pathological condition is arthritis. More particularly, the pathological condition is rheumatoid arthritis.

[0195] The polypeptides and polynucleotides useful in the practice of the present invention described herein may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. To perform the methods it is feasible to immobilize either the TARGET polypeptide or the compound to facilitate separation of complexes from uncomplexed forms of the polypeptide, as well as to accommodate automation of the assay. Interaction (for example, binding of) of the TARGET polypeptide with a compound can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and microcentrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows the polypeptide to be bound to a matrix. For example, the TARGET polypeptide can be "His" tagged, and subsequently adsorbed onto Ni-NTA microtitre plates, or ProtA fusions with the TARGET polypeptides can be adsorbed to IgG, which are then combined with the cell lysates (for example, 35S-labelled) and the candidate compound, and the mixture incubated under conditions favorable for complex formation (for example, at physiological conditions for salt and pH). Following incubation, the plates are washed to remove any unbound label, and the matrix is immobilized. The amount of radioactivity can be determined directly, or in the supernatant after dissociation of the complexes. Alternatively, the complexes can be dissociated from the matrix, separated by SD S-PAGE, and the level of the protein binding to the TARGET protein quantified from the gel using standard electro-phoretic techniques.

[0196] Other techniques for immobilizing protein on matrices can also be used in the method of identifying compounds. For example, either the TARGET or the compound can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated TARGET protein molecules can be prepared from biotin-NHS(N-hydroxy-succinimide) using techniques well known in the art (for example, biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with the TARGETS but which do not interfere with binding of the TARGET to the compound can be derivatized to the wells of the plate, and the TARGET can be trapped in the wells by antibody conjugation. As described above, preparations of a labeled candidate compound are incubated in the wells of the plate presenting the TARGETS, and the amount of complex trapped in the well can be quantitated.

[0197] The polynucleotides encoding the TARGET polypeptides are identified as SEQ ID NO: 1-29 and 40. The present inventors show herein that transfection of mammalian cells with Ad-siRNAs targeting these genes decreases the release of factors that promote osteoclast differentiation and bone resorption.

[0198] The present invention also relates to a method for diagnosis of a pathological condition involving bone resorption, comprising determining the nucleic acid sequence of at least one of the genes of SEQ ID NO: 1-29 and 40, particularly SEQ ID NO: 16, 17, 19-21 and 40 within the genomic DNA of a subject; comparing the sequence with the nucleic acid sequence obtained from a database and/or a healthy subject; and identifying any difference(s) related to the onset of the pathological condition.

[0199] Still another aspect of the invention relates to a method for diagnosing a pathological condition involving bone resorption or a susceptibility to the condition in a subject, comprising determining the amount of polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41-69 and 80, particularly SEQ ID NO: 56, 57, 59-61 and 80 in a biological sample, and comparing the amount with the amount of the polypeptide in a healthy subject, wherein an increase of the amount of polypeptide compared to the healthy subject is indicative of the presence of the pathological condition.

[0200] The invention is further illustrated in the following figures and examples.

EXAMPLES

[0201] As described in the introduction, OPG has been identified in the arthritis and osteoporosis literature as one of the key players involved in the regulation of the differentiation and activity of osteoclasts and therefore of the maintenance of bone. Current bone protective therapies display a lack of efficacy in rheumatoid arthritis. Increased concentration of RANKL, originating from synovial fibroblasts and T-cells, has been observed in the joints of RA patients. This is believed to lead to an increased differentiation and activity of osteoclasts (OCs). It was decided, based on these observations, to initiate a functional genomics effort in order to identify factors that modulate the expression of OPG in primary human synovial fibroblasts derived from RA patients (RASF). The following assays, when used in combination with arrayed adenoviral shRNA (small hairpin RNA) expression libraries (the production and use of which are described in WO99/64582), are useful for the discovery of factors that modulate the capacity of synovial fibroblasts (SFs) to produce OPG. Candidate factors are filtered first through a primary assay (further referred to as the "OPG assay") followed by a secondary assay. These factors can be used as the basis for the development of novel therapies for the protection, maintenance, or stabilization of bone in rheumatoid arthritis, osteoporosis and also to reduce metastasis of cancer cells to bone.

[0202] Example 1 describes the development and setup of the primary assay screen of an adenoviral siRNA library using an ELISA for detection of protein levels of osteoprotegerin (OPG), and is referred to herein as the "OPG assay".

[0203] Example 2 describes the screening and its results.

[0204] Example 3 describes the 3M01 rescreen procedure.

[0205] Example 4 describes the setup of the secondary assay, referred to as the OC-RASF-coculture assay.

[0206] Example 5. describes the validation of the OPG hits in the OC-RASF-coculture assay.

[0207] Example 6 describes the determination of the endogenous expression levels of the target genes in RASFs.

[0208] Example 7 describes the confirmation of the OPG upregulation with independent Ad5-siRNAs.

[0209] Example 8 describes the determination of the anti-inflammatory effects of TARGETS.

[0210] Example 9 describes the OPG dependency of Ad-siRNA-mediated inhibition of osteoclast differentiation.

Example 1

Design and Setup of a High-Throughput Screening Method for the Identification of Regulators of OPG Expression by RASFs

[0211] The OPG assay that has been developed for the screening of the SilenceSelect® collection has following distinctive features:

[0212] 1) The assay is run with primary human synovial fibroblasts, but with minimal adaptations, could be used for any other source of primary cells or even cell lines susceptible to express OPG.

[0213] 2) The assay has been optimized for the use with arrayed adenoviral collections for functional genomics purposes.

[0214] 3) With minimal adaptations, the assay can also be used to screen compounds or compound collections.

[0215] 4) The assay can be run in high throughput mode.

[0216] The protocol of the OPG ELISA is described below. This protocol is the result of the testing of various antibodies and various protocols:

[0217] The supernatant of cultures of primary human synovial fibroblasts derived from RA patients (RASF cultures) to be analysed is diluted 8 times in dilution buffer (1×PBS+0.1% BSA), and 35 μL is transferred to a pre-coated ELISA plate. The coating of this plate is performed as follows: a capture antibody (anti-hOsteoprotegerin Purified Mouse Monoclonal IgG2A (Clone 69127.1), R&D systems, Cat.No. MAB8051, 500 μg/mL) is diluted to 1 μg/mL in PBS. 40 μL, of this dilution is added per well and an overnight incubation is performed at 4° C. The next day (day 2), the plates are washed once with PBST (1×PBS with 0.5% Tween) and once with 1×PBS (GIBCO). After the washes, the plates are blocked with 100 μL blocking buffer (1% BSA, 5% sucrose, 0.05% NaN3) for 4 hours. Another wash step is performed with PBST, and a detection antibody mixture (50 ng/mL) is then added to the plates. This detection mixture contains following detection antibody: biotinylated hOPG affinity purified Goat IgG (R&D systems Cat.No. BAF805) diluted in PBS+1% BSA. The plate is then stored in the dark for 2 hours and After this incubation time, 2 wash steps are performed, the first with PBST and the second with PBS. In every well, 35 μL of a streptavidine-HRP conjugate (BioSource Cat.No. SN2004) is added. This conjugate is diluted 1/3000 in 1×PBS supplemented with 1% BSA before addition. After a 45 min incubation step, 2 wash steps are performed, the first with PBST and the second with PBS. The PBS is then removed and 50 μL POD chemiluminescence substrate (Luminol (POD Roche, 1582950) is added to the plates. After a 5 min incubation in the dark, readout is performed on a LumiAscent luminometer (Labsystems), PMT default voltage, 100 msec read time.

[0218] An example of the performance of the control plate is shown in FIG. 2. Recombinant OPG (R&D cat185-05-025) is diluted from 25 μg/mL to 8 ng/mL in dilution buffer (PBS+0.1% BSA). After that, a 2-fold dilution is made, also in the dilution buffer to become the standard curve. The samples are then tested in the OPG ELISA according to the protocol described above. A dose-dependent increase in the signal detected indicates the quality of the assay developed.

Example 2

Screening of 11330 "Ad-siRNA's" in the OPG Assay

[0219] The OPG assay, the development of which is described in Example 1, has been screened against an arrayed collection of 11330 different recombinant adenoviruses mediating the expression of shRNAs in primary human synovial fibroblasts derived from RA patients (RASFs). These shRNAs cause a reduction in expression levels of genes that contain homologous sequences by a mechanism known as RNA interference (RNAi). The 11330Ad-siRNAs contained in the arrayed collection target 5046 different transcripts. On average, every transcript is targeted by 2 to 3 independent Ad-siRNAs. The principle of the screening is illustrated in FIG. 3. In brief, synovial fibroblasts (SFs) are seeded in 384 well plates and they are infected the day after seeding with the arrayed shRNA library, whereby each well is infected with one individual Ad-siRNA. Five days after infection, the medium on the cells is refreshed and cells are subject to a further incubation of 2 days. Two days later, supernatant is collected and subjected to the OPG ELISA.

[0220] RASFs, passage 1, were acquired from Cell Applications, Inc. and cultured in DMEM medium (Invitrogen), supplemented with 10% fetal bovine serum (HyClone), 100 units/ml penicillin (Invitrogen) and 100 μg/mL streptomycin (Invitrogen), and incubated at 37° C. and 10% CO2 until passage 6. The cells are typically passaged once a week by a 1/3 split. At passage 6, a "master cell stock" is generated that is stored in liquid nitrogen. Cells from this master stock are used for the complete screening. When a cell stock is thawed, cells are subcultured and used for experiments between passages 10 and 12.

[0221] For screening, RASFs are seeded in transparent 384 well plates (Greiner) coated with 0.1% gelatin (Merck) at a density of 1000 cells/well in 50 μL Synovial Cell growth medium (Cell Applications,

[0222] Inc.). One day post seeding, 2.5 μL Ad-siRNA virus from each well of the SilenceSelect® collection (WO 03/020931), stored in 384 well plates (estimated titer of 2.5×109 viral particles per mL) is transferred with the aid of a 96/384 channel dispenser (Tecan Freedom 200 equipped with TeMO96, TeMO384 and RoMa, Tecan A G, Switzerland) to individual wells of the 384 well plates containing SFs. Five days after infection, the medium is removed with a VacuSafe device (Integra) and 80 μL of aMEM (Invitrogen)+10% FBS(HI)+Pen/Strep medium is added to the wells by means of a Multidrop. After two days incubation, the supernatant was collected in 384 well plates (Greiner) and stored at -80° C. till further processing in the OPG ELISA (described in Example 1). For analysis, 35 μl of an 8-fold dilution--made by transfer of 8.57 μL supernatant into 384-wells filled with 60 μL dilution buffer (PBS 1×+1% (w/v) BSA)--is subjected to the OPG ELISA. Dilution and transfer to the ELISA plate is performed with the TECAN Freedom workstation.

[0223] A 384 well control plate is generated to assess the quality of each assay. The control plate is run in parallel with and under the same conditions as the aliquot plates from the SilenceSelect® collection during the different screening runs. The composition of this plate is shown in FIG. 4, upper panel. The control plate contains control viruses that are produced under the same conditions as the SilenceSelect® adenoviral collection. The viruses include three sets of negative control viruses (N1 (Ad5-eGFP_v1_KI), N2 (Ad5-Luc_v13--1(D), N3 (Ad5-eGFP_v5--1(D)), arranged in diagonal, interspaced with positive control viruses (P1═P3=P3 (Ad5-OPGv1--1(I), B1: blanco, uninfected). Every well of a control plate contains 50 μl of virus crude lysate. Multiple aliquots of this control plate are produced and stored at -80° C. A representative example of the layout and performance of the control plate tested with the screening protocol described above is shown in FIG. 4, lower panel. In this figure, the layout of the control plate is indicated (upper panel) and the raw OPG signal detected upon performing the assay for every recombinant adenovirus on the plate is shown in the lower panel. When the value for the OPG level exceeds the cutoff value (defined as 2.6 fold the standard deviation over the negative controls), the format of the field in the table is black background, white characters.

[0224] The complete SilenceSelect® collection (11330 Ad-siRNAs targeting 5046 transcripts, contained in 30 384 well plates) is screened in the OPG assay according to the protocol described above in two phases. In the first screening round (screen A), 7 virus library plates are screened and rescreened in single, resulting in 2 datapoints for every Ad-siRNA. In a second screening round (screen B) the remaining 23 virus library plates are screened in duplicate on independent assay plates in both a primary and an independent rescreen. As such, 4 datapoints are thus obtained for every Ad-siRNA in screen B. Ad-siRNA viruses are nominated as primary hits if half of the data points scored above threshold. Threshold settings for screen A and screen B are set at average of all data points per plate plus 2.6 times standard deviation over all data points per plate. A total of 271 hits (80 out of screen A and 193 out of screen B) were isolated that scored above the threshold.

[0225] In FIG. 5, all datapoints obtained in the screening of the SilenceSelect® collection in the OPG assay are shown. The averaged relative luminescence data obtained from the duplicate samples in the primary screen (PS) is plotted against the averaged relative luminescence data for the corresponding Ad-siRNA obtained in the rescreen (DS). The threshold (2.6 times standard deviation) is indicated by dotted lines. The data for the most particular targets are shown as filled circles, the data for Ad-siRNA's nominated as hits are indicated as filled triangles, the data for the non-hit Ad-siRNA's are indicated as crosses. The strong symmetry observed between the data of the primary screen and that of the rescreen (the datapoints are concentrated around a straight line) demonstrates the quality and reproducibility of the screening. The relative OPG expression levels obtained in the primary screens for all targets, expressed in terms of "fold standard deviation above plate average", are listed in Table 3 below.

TABLE-US-00003 TABLE 3 The relative OPG expression levels obtained in the primary screens for all targets, expressed in terms of "fold standard deviation above plate average" Primary screen Double screen Hit # 1 2 1 2 H51-082 2.751 2.666 4.204 4.216 H51-054 2.245 n/a 2.679 n/a H51-104 3.385 3.266 2.719 2.53 H51-172 3.175 4.384 3.916 5.817 H51-181 6.299 6.04 4.736 4.661 H51-225 1.635 1.563 3.322 3.365 H51-236 1.742 1.435 2.755 3.245 H51-240 1.507 2.316 3.818 3.12 H51-137 4.012 3.055 2.765 2.33 H51-121 5.804 5.205 5.981 5.477 H51-122 3.611 3.201 3.274 3.653 H51-014 2.88 n/a 3.453 n/a H51-018 3.598 n/a 1.503 n/a H51-040 2.985 n/a 4.703 n/a H51-046 5.154 n/a 6.711 n/a H51-142 3.058 2.758 1.605 1.711 H51-103 3.183 3.134 1.729 2.077 H51-119 2.645 2.616 3.456 2.28 H51-145 3.318 4.329 2.654 3.524 H51-153 3.332 3.519 3.57 2.16 H51-177 2.61 2.559 3.26 3.02 H51-183 4.587 3.653 3.665 2.972 H51-206 2.576 2.753 2.511 3.351 H51-251 2.016 2.266 3.387 3.512 H51-270 1.516 1.376 2.76 3.182 H51-261 2.067 1.979 2.664 3.086

[0226] In this primary screen certain targets are obtained, which have been identified previously in rheumatoid arthritis (RA) and/or osteoporosis (OP) independently designed and unrelated screens. This serves to validate these polypeptides as RA/OP targets and demonstrates the accuracy and relevance of the screen utilized herein. These targets relate to hits H51-103, H51-119, H51-145, H51-153, H51-177, H51-183, H51-206, H51-251 and H51-270. Their nucleic acid sequences are given in SEQ ID NO: 30-39 and their amino acid sequences are SEQ ID NO: 70-79, and their appropriate particulars are provided in Tables 1-5 herein. These are described in WO 2005/063976, WO 2005/121778 and WO 2005/124342 each and all of which are incorporated herein by reference.

Example 3

Three MOI Rescreen of the Primary Hits Using Independent Repropagation Material

[0227] To confirm the results of the identified Ad-siRNA in the OPG ELISA the following approach may be taken: the Ad-siRNA hits are repropagated using PerC6 cells (Crucell, Leiden, The Netherlands) at a 96-well plate level, followed by retesting in the OPG assay at three MOIs (multiplicity of infection). First, tubes containing the crude lysates of the identified hit Ad-siRNA's samples are picked from the SilenceSelect® collection and rearranged in 96 well plates together with negative/positive controls. The primary hits from screen A and screen B are each rearranged over four 96-well plates. As the tubes are labeled with a barcode (Screenmates®, Matrix technologies), quality checks are performed on the rearranged plates. To propagate the rearranged hit viruses, 40.000 PerC6.E2A cells are seeded in 200 μL of DMEM containing 10% non-heat inactivated FBS into each well of a 96 well plate and incubated overnight at 39° C. in a humidified incubator at 10% CO2. Subsequently, 2 μL of crude lysate from the hit Ad-siRNA's rearranged in the 96 well plates as indicated above is added to the PerC6.E2A cells using a 96 well dispenser. The plates may then be incubated at 34° C. in a humidified incubator at 10% CO2 for 7 to 10 days. After this period, the repropagation plates are frozen at -20° C., provided that complete CPE could be seen. The propagated Ad-siRNAs are rescreened in the OPG assay at 3 MOI's (4 μL, 2 μL and 1 ML). Infection at 3 MOIs is carried out as follows: using the 96/384 TeMo pipettor, a 1/2 and 1/4 dilution is made of each 96-well plate that contains the crude lysate of repropagated hits. Subsequently, an aliquot of each of the four 96-well plates containing the undiluted crude lysate of the repropagated hits of screen A or screen B are transferred to one 384-well plate. Similarly, aliquots of the 1/2 or 1/4 (respectively) dilutions are combined into one 384-well plate resulting in three 384 well plates containing undiluted, 1/2 or 1/4 diluted crude lysates of repropagated hits of screen A (or of screen B). Finally, 4 μL of each of these three 384-well plates is transferred to the assay plates, resulting in the 4 μL, 2 μL and 1 μL infections. Within one 3 MOI rescreen, infections at each MOI is performed in duplicate, with each singular on a different assay plate.

[0228] For most of the primary hits (screen B) the identified Ad-siRNAs are retested in two independent three MOI rescreens. Data analysis for each of the three MOI screen is performed as follows. For every plate the average and standard deviation is calculated for the negative controls and may be used to convert each data point into a "cutoff value" that indicates the difference between the sample and the average of all negatives in terms of standard deviation of all negatives. For each MOI, a threshold setting is defined as the minimal "cutoff value" at which none of the negatives would score positive. Threshold settings for the first three MOI rescreen are 2.3-2.0-2.0 (for each MOI 4 μL/2 μL/1 μL, respectively). Threshold settings for the second 3 MOI rescreen are 2.2-2.4-2.3 for each MOI respectively. Within one of the three MOI rescreens the Ad-siRNA must to score in duplicate in at least one MOI to be positive. Hits that are found to be positive in both 3 MOI experiments are defined as "confirmed OPG hits". 159 of the 193 primary hits (screen B) are confirmed in this way.

[0229] For a minority of the primary hits (screen A) the identified Ad-siRNAs are retested in only one 3 MOI rescreen. Cutoff settings here are as follow 5-3.6-3.2 (for each MOI 4 μL/2 μL/1 μL respectively) and are based on 2 negative controls (N2 and N3). 63 out of the 80 primary hits from screen A are found to score in duplicate in at least one MOI within this 3 MOI rescreen and are confirmed.

[0230] In summary, 222 out of the 273 primary hits (or 81.3%) are confirmed using repropagated Ad-siRNA material. The 3M01 screening data are summarized in Table 4: overview of performance of primary OPG hits identified in screen A (A) or screen B (B) in further validation experiments: OPG 3M01 retesting (this example) and testing in coculture OC assay (see next example). Each of these validation experiments is done at 3 MOIs (duplicates within one MOI)(*). The table indicates the number of MOIs at which a hit scored in duplicate above the cutoff setting (for OPG) or below the cutoff setting (for the osteoclast assay, OC) for each repeat that is performed (RUN A, B, C). The table also indicates if a hit is confirmed (1) or not (0) within each of the validation experiments according to hit calling criteria outlined discussed above.

[0231] All data for the most particular targets obtained in the OPG three MOI retesting (this example) and testing in coculture OC assay (see next example) are shown in FIG. 9B. This figure summarizes the cutoff settings and performance of some primary OPG hits identified in screen A (A) or screen B (B) in further validation experiments: OPG 3MOI retesting and testing in coculture OC assay. Values having cutoff setting above cutoff value (for OPG assay) or below cutoff value (for OC assay) are indicated by gray shading.

[0232] A quality control of target Ad-siRNAs is performed as follows: Target Ad-siRNAs are propagated using derivatives of PER.C6© cells (Crucell, Leiden, The Netherlands) in 96-well plates, followed by sequencing the siRNAs encoded by the target Ad-siRNA viruses. PERC6.E2A cells are seeded in 96 well plates at a density of 40,000 cells/well in 180 μl PER.E2A medium. Cells are then incubated overnight at 39° C. in a 10% CO2 humidified incubator. One day later, cells are infected with 1 μl of crude cell lysate from SilenceSelect® stocks containing target Ad-siRNAs. Cells are incubated further at 34° C., 10% CO2 until appearance of cytopathic effect (as revealed by the swelling and rounding up of the cells, typically 7 days post infection). The supernatant is collected, and the virus crude lysate is treated with proteinase K by adding to 4 μL Lysis buffer (1× Expand High Fidelity buffer with MgCl2 (Roche Molecular Biochemicals, Cat. No 1332465) supplemented with 1 mg/mL proteinase K (Roche Molecular Biochemicals, Cat No 745 723) and 0.45% Tween-20 (Roche Molecular Biochemicals, Cat No 1335465) to 12 μL crude lysate in sterile PCR tubes. These tubes are incubated at 55° C. for 2 hours followed by a 15 minutes inactivation step at 95° C. For the PCR reaction, 1 μL lysate is added to a PCR master mix composed of 5 μL 10× Expand High Fidelity buffer with MgCl2, 0.5 μL of dNTP mix (10 mM for each dNTP), 1 μL of "Forward primer" (10 mM stock, sequence: 5' CCG TTT ACG TGG AGA CTC GCC 3') (SEQ. ID NO: 110), 1 μL of "Reverse Primer" (10 mM stock, sequence: 5' CCC CCA CCT TAT ATA TAT TCT TTC C) (SEQ. ID NO: 111), 0.2 μL of Expand High Fidelity DNA polymerase (3.5 U/μL, Roche Molecular Biochemicals) and 41.3 μL of H2O. PCR is performed in a PE Biosystems GeneAmp PCR system 9700 as follows: the PCR mixture (50 μL in total) is incubated at 95° C. for 5 minutes; each cycle runs at 95° C. for 15 sec., 55° C. for 30 sec., 68° C. for 4 minutes, and is repeated for 35 cycles. A final incubation at 68° C. is performed for 7 minutes, 5 μL of the PCR mixture is mixed with 2 μL of 6× gel loading buffer, loaded on a 0.8% agarose gel containing 0.5 μg/μL ethidium bromide to resolve the amplification products. The size of the amplified fragments is estimated from a standard DNA ladder loaded on the same gel. The expected size is approximately 500 bp. For sequencing analysis, the siRNA constructs expressed by the target adenoviruses are amplified by PCR using primers complementary to vector sequences flanking the SapI site of the plPspAdapt6-U6 plasmid. The sequence of the PCR fragments is determined and compared with the expected sequence. All sequences are found to be identical to the expected sequence.

Example 4

Design and Setup of a Screening Method for the Identification of Regulators of Osteoclast Differentiation in Coculture

Background and Principle of the Osteoclast Coculture Assay.

[0233] FIG. 6A represents the principle of the osteoclast coculture assay. In this assay, RASFs are seeded in a multi-well plate. These cells are capable of expressing factors that modulate the differentiation of osteoclast precursor cells either in a negative way (e.g. OPG) or in a positive way (e.g. TNF or RANKL). Osteoclast precursor cells are then seeded on top of the RASFs and M-CSF as well as RANKL are added to the coculture. In this setting, the osteoclast precursor cells will differentiate unless an inhibiting factor is expressed by the cocultured RASFs. As such, this assay allows one to functionally monitor the expression of factors modulating osteoclast differentiation by RASFs. The readout applied to quantify the differentiation of the osteoclasts in coculture is a cell-based ELISA that measures the expression of a marker specific for differentiated osteoclasts (vitronectin receptor, also called alphav-beta3 integrin). The principle of the screening of arrayed adenoviral collections in the osteoclast coculture assay is illustrated in FIG. 6B. In brief, RASFs are seeded in multi-well plates and infected with the Ad-siRNA's in an arrayed fashion on day 1. On day 7, the osteoclast precursor cells and M-CSF are added on top of the RASFs. Day 8, sRANKL is added and day 19 (after 10 days incubation), the vitronectin cELISA is performed.

4.1 Selection of a Readout for the Osteoclast-RASF Coculture.

[0234] Antibody-based detection methods are amenable to HTS development. Therefore, we aimed at evaluating a cELISA detection method for αvβ3 integrin (vitronectin receptor) and calcitonin receptor, two markers that are frequently used to assay OC differentiation and for which antibodies are commercially available.

[0235] Readouts for these markers are evaluated using the commercially available Poetics® Osteoclast Precursor Cell System (Cambrex). This cell system contains cryopreserved human OC precursors for which, upon thawing and culturing in the provided optimized differentiation medium, differentiate towards mature functional multinucleated OCs. These specific precursor cells will be further referred to as OCPs. A cELISA-based readout with commercially available antibodies for αvβ3 integrin and calcitonin receptor is tested (See FIG. 7A). For the experiment depicted, primary human OCPs cells are seeded at a density of 10,000 cells/well in a 96-well plate format and cultured for 10 days in medium (proprietary Cambrex medium) containing both rRANKL (66 ng/mL) and M-CSF (33 ng/mL) or in medium containing only M-CSF (undifferentiated control) Immunostaining is performed using primary antibodies for αvβ3 (Monosan) or calcitonin receptor (Serotec) in combination with the Alkaline Phosphatase-Fast Red staining kit (Dako) to visualise the bound primary antibody. The expression of αvβ3 integrin and calcitonin receptor is barely detected on undifferentiated control cultures but is clearly increased if culture conditions allow OC differentiation, validating the approach for the detection of osteoclasts.

[0236] While these results prove the feasibility of a cELISA-based measurement of αvβ3 integrin and calcitonin receptor expression to assay OC differentiation in monocultures of OCPs, we aim at developing a co-culture assay in which differentiation takes place on top of RASFs. Therefore, we need to show the absence of background signal when RASF cultures, run under conditions suited to OC differentiation, are subjected to the cELISA procedure for αvβ3 and calcitonin receptor detection. While no background staining is detected for αvβ3, a clear signal is detected when the cells are assayed for calcitonin receptor expression (See FIG. 7B). The experiment depicted is performed as follows. RASF are seeded at 3000 cells/well in a 96-well plate. After 3 days of culture, cell layers are fixed and stained using antibodies for αvβ3 and calcitonin receptor, as described below. A clear staining is observed with the calcitonin receptor mAb, while no signal higher than background (only 2nd Ab or no Ab) when cells are incubated with the αvβ3 mAb. Only the αvβ3 integrin cELISA readout, therefore, is considered for further assay development.

[0237] In next experiments, proof of principle is delivered for the inhibition of RANKL induced OC differentiation by RASFs. RASFs (1100 cells/well) are seeded in 384 well plates and infected with either Ad5-eGFP or Ad5-OPG (FIG. 7C, panel A) or left uninfected (FIG. 7C, panel B). 24 hrs after seeding, OC precursor cells (OCP, Cambrex, 1500 cells/well) and M-CSF (40 ng/mL, R&D systems) are added to all wells, as well as the recombinant OPG (rOPG, 22 ng/mL or 66 ng/mL, R&D systems) and IL4 (10 ng/mL, R&D systems) (panel B). After one day rRANKL (0 to 60 ng/mL, Cambrex) is added and incubation is performed for 11 days before the αvβ3 integrin cELISA luminescent readout. Luminescence data are expressed as percentage of the signal obtained for the negative controls at 15 ng/mL rRANKL concentration (=100%). Results are shown in FIG. 7C. A clear rRANKL dose-dependent induction of OC differentiation is obtained in this experiment (as seen in the uninfected and Ad5-eGFP infected samples). The differentiation is inhibited by OPG (either recombinant or expressed by SFs). The rOPG dose added (22 ng/mL) is sufficient to inhibit the effect of up to 7.5 ng/mL rRANKL. As expected, a higher dose of rOPG is able to inhibit even higher concentrations of rRANKL: up to 15 ng/mL of rRANKL is efficiently inhibited by 66 ng/mL rOPG. Also rIL4 addition could potently block the rRANKL-driven OC differentiation through the inhibition of the RANKL signalisation in pre-OCs. Taken together, this experiment demonstrates that the rRANKL-driven OC differentiation process can be blocked by various secreted factors and represents a proof of principle experiment for the `inhibition of RANKL induced OC differentiation assay`.

[0238] The protocol of the vitronectin receptor cELISA used for the detection of osteoclasts in screening setting is as follows:

[0239] The medium on top of an osteoclast monoculture or of a osteoclast-RASF coculture or is removed and 50 μL ice cold MeOH (Riedel-de-Haen, cat No 32213) is added for fixation of the cells. The MeOH is refreshed with 80 μL MeOH. After incubation for 20 min at -20° C., the MeOH is removed and the plates were dried in air for 20 minutes. The plates are then washed twice with 80 μL PBS 1× (GIBCO) and 75 μL of 0.1% casein buffer are immediately added to block the plates. The casein buffer is prepared as follows: 2 g casein in 80 mL Milli Q, adjust to PH 12, stir 15 min at RT, adding 200 mL 10×PBS, adjust to 2 L Milli Q and adjust to PH7.4. The plates are blocked for at least 2 hours at RT and the casein buffer is then removed. 25 μL of EC buffer is then added to the plates. The EC buffer is prepared as follows: 8 g casein, 4.26 g Na2HPO4, 4 g albumine bovine, 1.38 g NaH2PO4.H2O, 1 g CHAPS, 46.6 g NaCl in 150 mL MilliQ, 8 mL EDTA pH8, adjusting to pH12, stirring 15 min at low heat, adding 10 mL NaN3 10%, adjusting to 2 L with MilliQ, adjusting to pH7.0. The EC buffer is then removed and 35 μL of the primary antibody (Monosan, Mon2033) is added to the plates. The plates are incubated overnight at 4° C. and then washed twice, once with PBST (1×PBS with 0.05% Tween20) and once with 1×PBS. The secondary antibody (2000-fold dilution of goat anti-mouse immunoglobulins from DAKO) is then added to the plate in buffer C. Buffer C is prepared as follows: 0.82 g NaH2PO4.H2O, 4.82 g Na2HPO4, 46.6 g NaCl, 20 g Albumin bovine, adjust to 2 L with MilliQ, add 8 mL 0.5M EDTA pH8.0, adjusting to pH7.0 and sterilize. An incubation of maximally 1 hour is performed. After the incubation, the plates are washed twice with PBST (1×PBS with 0.05% Tween20) and once with 1×PBS. The read out is performed with Luminol (POD Roche, 1582950), a chemiluminescence substrate.

[0240] The vitronectin receptor cELISA is adapted for the screening of an arrayed adenoviral collection on a coculture as follows. Day 1, the RASF cells (1000 cells/well) are seeded on a 0.1% gelatin coated plate (Greiner, cat. No 781080) in 50 μL medium (Synovial Growth medium, CellApplication). One day later (day 2) the cells are infected with 4 μL of Ad-siRNA material from library (at 3 dilutions). On day 7, the medium was refreshed with 30 μL co-culture medium (aMEM, (GIBCO, cat. No 22571-020) supplemented with 10% FBS and a mixture of penicillin and streptomycin), containing 60 ng/mL rhMCSF (Cambrex; PT-9010). 1250 osteoclast precursor cells (Cambrex; Cat. No 2T-110, contained in 30 μl medium) are then added on top of the RASFs. Day 8, sRANKL (Cambrex, osteoclast culture bullet kit) is added to a concentration of 30 ng/mL. On day 19 (after 10 days incubation at 37° C.; 5% CO2), the vitronectin receptor cELISA is performed.

Example 5

Validation of the OPG Hits in the Osteoclast-RASF Coculture Assay

[0241] Confirmed OPG hits are further analyzed in the osteoclast RASF co-culture assay that is developed and performed described above (Example 4). The desired effect is the following: knock-down of the Ad-siRNA target gene expression in the RASFs monolayer should inhibit osteoclast differentiation driven by RANKL and MCSF. For the majority of the confirmed OPG hits (hits originating from screen B) testing in the osteoclast differentiation assay is as follows. Ad-siRNA are tested in two independent experiments, each carried out at 3 MOIs. The virus material for the Ad-siRNA and positive and negative controls is the same as that prepared for retesting of the primary hits in 3 MOI OPG. The results obtained after read out of the osteoclast differentiation assay are converted into "cutoff values" based on the average and standard deviation of the negative controls on each plate as described for the 3 MOI OPG ELISA, except that results for even and odd rows are first separated in order to correct for an observed difference in signal strength of controls on even/odd rows. For each MOI, a threshold for hitcalling is set. The threshold is the lowest "cutoff" value at which none of the negatives score positive (i.e. have a cutoff values lower than the threshold). Settings in the two independent three MOI OC testings are -1.8/-1.8/-1.8 (for the 3 MOIs 4 μL/2 μL/1 μL respectively). The Ad-siRNA is required to score in duplicate in at least one of the MOIs to be positive within a three MOI experiment. 53 of the 159 confirmed OPG hits (screen B) are positive in both three MOI experiments and passed this control test. 33 others, were positive in only one of the two three MOI experiments. These 33 Ad-siRNAs are cherry picked out of the virus plates together with the controls and tested for a 3rd time in the OC assay at 3 MOIs. 7 of the 33 are found to have a positive score after analysis and passed the OC differentiation control test. Therefore, 60 out of the 159 OPG confirmed hits originating from screen B (i.e 37.7%) are thus found to pass the OC co-culture assay.

[0242] For a minority of the confirmed OPG hits (originating out of screen A), Ad-siRNAs are tested in 3 independent OC co-culture experiments. One of these is performed at only one MOI (2.5 μL infection out of SilenceSelect® collection tubes) and 2 are performed at 3 MOIs using repropagated virus material obtained after primary screening. Threshold settings for hitcalling are based on the results of the appropriate negative controls as described above. To pass the OC differentiation criterium, Ad-siRNAs are required to have a positive score in 2 out of the 3 experiments. Of the 63 confirmed OPG hits, 23 (i.e. 36.5%) passed this criterium.

[0243] In summary, 83 of the 222 confirmed OPG hits (or 37.4%) are also found to inhibit OC differentiation in the co-culture assay. The results obtained in the secondary assay for the TARGETS are summarized in Table 4 (screen A and screen B) and the raw data obtained for the particular targets are shown in FIG. 9 (screen A and screen B).

TABLE-US-00004 TABLE 4 Summary of the data obtained for the MOI rescreen and secondary assay (osteoclast differentiation assay) for all hits Screen A. Data for the hits from 7 SilenceSelect ® plates: 3 MOI OPG 3 MOI OC RUN A OPG RUN A RUN C OC score @ confirmed score @ RUN B score @ confirmed HIT REF SYMBOL # MOIs Hit #MOIs Hit #MOIs Hit H51-014 MAP3K3 2 1 2 1 2 1 H51-018 P2RY14 1 1 1 1 0 1 H51-040 NEK3 3 1 0 1 1 1 H51-046 KLKB1 2 1 2 1 0 1 H51-054 MAP4K4 3 1 3 1 2 1 Screen B. Data for the hits from the screening 23 SilenceSelect ® plates: 3 MOI OPG 3 MOI OC RUN A RUN B RUN A RUN B RUN C score @ score @ OPG score @ score @ score @ OC # # confirmed # # # confirmed HIT REF SYMBOL MOIs MOIs Hit MOIs MOIs MOIs Hit H51-082 NTRK2 3 3 1 3 3 NA 1 H51-104 MMP17 3 3 1 3 1 NA 1 H51-121 SLC4A8 3 3 1 3 3 NA 1 H51-122 ENPP2 3 3 1 3 2 NA 1 H51-137 MRAS 3 3 1 3 1 NA 1 H51-142 FNTA 1 2 1 3 1 NA 1 H51-172 PLA2G12A 3 2 1 3 3 NA 1 H51-181 MGLL 3 3 1 1 2 NA 1 H51-225 GPR44 3 2 1 3 3 NA 1 H51-236 MIR16 3 3 1 1 2 NA 1 H51-240 PTK6 3 2 1 2 3 NA 1 H51-103 USP9Y 3 3 1 3 2 NA 1 H51-119 CDC7 3 2 1 1 1 NA 1 H51-145 PPIA 3 3 1 3 3 NA 1 H51-153 TOP2B 3 3 1 2 3 NA 1 H51-177 PPP2CB 3 3 1 3 1 NA 1 H51-183 COX10 3 3 1 2 2 NA 1 H51-206 CCR1 3 1 1 1 1 NA 1 H51-251 B3GALT1 3 3 1 2 2 NA 1 H51-261 CXCR6 3 3 1 3 3 NA 1 H51-270 SLC9A8 2 3 1 2 1 NA 1 NA = not applicable (a third run of the OC assay was not done because it scored in previous two). (*) = OC run B for hits identified out of screen A was done at only 1 MOI in two independent experiments. To be a hit in this run, the Ad-siRNA had to score in one of the two experiments.

Example 6

Analysis of the Expression Levels for Certain Targets Identified in Human Primary Synovial Fibroblasts Derived from Synovium of RA Patients

[0244] Expression levels for certain identified targets are determined in different isolates of primary human synovial fibroblasts as follows.

[0245] The RASFs isolates are obtained as cryo-preserved passage 2 cells from Cell Applications Inc. (Cat. No. 404-05). These cells are cultured and propagated in DMEM (Invitrogen) supplemented with 10% (v/v) heat-inactivated FBS (ICN) and 1× Pen/Strep (Invitrogen). For expression analysis, cells are cultured to passage 11.

[0246] For RNA preparation, the primary human synovial fibroblasts are seeded in 10-cm Petri dishes (500,000 cells/dish) in 6-well plates. After overnight incubation, medium is refreshed with 6 mL of M199 medium supplemented with 1% (v/v) heat-inactivated FBS containing 1× Pen/Strep. 24 hours later, total RNA is extracted using the "SV Total RNA Isolation kit" (Promega).

[0247] The concentration of RNA in each sample is fluorimetrically quantified using the "Ribogreen RNA quantitation kit" (Molecular Probes). A similar amount of RNA from each preparation is reverse transcribed into first strand cDNA with the "Taqman reverse transcription kit" from Applied Biosystems. Briefly, 40 ng RNA is included per 20 μL reaction mix containing 50 pmol of random hexamers, 10 U Rnase inhibitor, 25 U Multiscribe reverse transcriptase, 5 mM MgCl2 and 0.5 mM of each dNTP. The reaction mixture is incubated at 25° C. for 10 minutes, followed by 30 minutes incubation at 48° C. and heat inactivation (5 minutes 95° C.) of the reverse transcriptase in a thermocycler (Dyad, MJ Research). Reactions are immediately chilled to 4° C. at the end of the program. To avoid multiple freeze/thaw cycles of the obtained cDNA, the different samples are pooled in 96-well plates, aliquoted and stored at -20° C.

[0248] Real-time PCR reactions are performed and monitored using the "ABI PRISM 7000 Sequence Detection System Instrument" (Applied Biosystems). Pre-designed, gene-specific Taqman probe and primer sets for quantitative gene expression are purchased from Applied Biosystems as part of the "Assays on Demand" Gene expression products. These commercially available kits are quality checked by the supplier and allow quantitative determination of the amount of target cDNA in the sample. The "Assays on Demand" gene expression products are used according to the protocol delivered by the supplier. The PCR mixture consisted of 1×"Taqman Universal PCR Mastermix no AmpErase UNG" and 1× "Taqman Gene Expression Assay on Demand mix" and 5 μL of the retro-transcription reaction product (1-100 ng of RNA converted into cDNA) in a total volume of 25 μL. After an initial denaturation step at 95° C. for 10 minutes, the cDNA products are amplified with 40 cycles consisting of 95° C. for 15 sec, and 60° C. for 1 minute. To normalize for variability in the initial quantities of cDNA between different samples, amplification reactions with the same cDNA are performed for the housekeeping gene β-actin using the predeveloped β-actin "Assays on demand" primer set and Taqman probe mix and "Taqman Universal PCR Mastermix" (all Applied Biosystems) according to the manufacturer's instructions. To identify any contamination resulting from residual genomic DNA, real-time PCR reactions with product from a control (--RT) reverse transcription reaction that is performed under the same conditions but without the addition of the reverse transcriptase are included for each sample. Threshold cycle values (Ct), for example, the cycle number at which the amount of amplified gene of interest reached a fixed threshold are determined for each sample. For each sample, the ΔCt value is determined by subtracting the Ct value of the endogenous control (β-actin) from the Ct value obtained for the target gene. A gene is considered as expressed in primary human SFs if the ΔCt value obtained for this hit is lower than 13.3 in at least one of the available 2 synovial isolates, activated or not. Genes with a ΔCt value below 9.9 are considered highly expressed in RASFs. The results of the expression profiling experiments are summarized in Table 5. The ΔCt value relative to β-actin obtained for various targets in 2 isolates of untriggered SFs are given in this Table 5.

TABLE-US-00005 TABLE 5 Determination of the Relative Expression Levels of the TARGETS in Primary Synovial Fibroblasts by Real-Time PCR RASF cells - RASF cells - THP1 SEQ Accession Assay on Untriggered Triggered expressed Target ID ID # No. demand Ct DCt (*) Ct DCt (*) in RASFs KLKB1 25 NM_000892 Hs00168478_m1 35.09 13.68 35.15 13.64 yes ENPP2 19 NM_006209 Hs00196470_m1 23.78 2.37 23.95 2.44 yes FNTA 26 NM_002027 Hs00357739_m1 24.69 3.28 24.86 3.35 yes MAP3K3 20 NM_002401 Hs00176747_m1 26.39 4.81 26.29 4.58 yes MAP4K4 6 NM_004834 Hs00377415_m1 24.47 2.89 24.53 2.82 yes MMP17 10 NM_016155 Hs00211754_m1 28.79 7.21 28.32 6.61 yes GPR44 14 NM_004778 Hs00173717_m1 # 38.15 16.64 MGLL 13 NM_007283 Hs00200752_m1 24.11 2.7 23.55 2.04 yes MRAS 17 NM_012219 Hs00171926_m1 25.96 4.38 26.78 5.07 yes PLA2G12A 11 NM_030821 Hs00830106_s1 27.34 5.76 27.57 5.86 yes MIR16 15 NM_016641 Hs00213347_m1 26.45 4.87 26.85 5.14 Yes NTRK2 1 NM_006180 Hs00178811_m1 25.23 3.82 25.49 3.98 Yes NEK3 23 NM_002498 Hs00300928_m1 31.11 9.53 31.66 9.95 Yes PTK6 16 NM_005975 Hs00178742_m1 35.36 15.94 35.26 15.97 Yes SLC4A8 18 NM_004858 Hs00191516_m1 30.08 8.5 30.8 9.09 Yes CXCR6 40 NM_006564 Sybr Green 28.45 6.87 29.76 8.05 Yes Primers CCR1 37 NM_001295 Hs00174298_m1 36.96 15.55 38.07 16.56 Yes

Example 7

"On Target Analysis" Using KD Viruses

[0249] To strengthen the validation of a hit, it is helpful to recapitulate its effect using a completely independent siRNA targeting the same target gene through a different sequence. This analysis is called the "on target analysis". In practice, this is done by designing multiple new shRNA oligonucleotides against the target using a specialised algorithm described, and incorporating these into adenoviruses according to WO 03/020931. After virus production, these viruses are arrayed in 96 well plates, together with positive and negative control viruses. On average, 6 new independent Ad-siRNAs are produced for a set of targets. Two independent repropagations of these virus plates are then performed as described above for the 3 MOI rescreen. The plates produced in these 2 independent repropagations are tested in the OPG assay at 3 MOIS and in duplicate in 2 independent experiments according to the protocol described for the 3 MOI rescreen (Example 3). Ad-siRNAs mediating an increase in OPG levels above the set cutoff value in at least 1 MOI in the 2 independent experiments are nominated as hits scoring in the "on target analysis". The cutoff value in these experiments is defined as the average over the negative controls+2 times the standard deviation over the negative controls. Through this exercise, the following most particular targets are identified: ENPP2, CXCR6, MAP3K3, PTK6, MRAS. The data obtained for these targets in one of the "on target analysis" tests are shown in FIG. 8. In this Figure, the raw data obtained in the determination of the OPG levels are shown. For every target, the average of the raw OPG data obtained for the negative controls tested on the same plate are shown and allow to appreciate the increase in OPG expression for the hit Ad-siRNAs.

Example 8

Determination of the Anti-Inflammatory Effects of OPG Targets

[0250] In addition to the bone erosion aspect described above, rheumatoid arthritis has also a strong inflammatory component, as indicated by the efficacy of TNFα blocking agents. To further strengthen the profile of a selection of OPG hits an additional investigation may be performed. The aim of this exercise is to demonstrate, besides the OPG-inducing and thus bone-protective properties, the additional anti-inflammatory character of these OPG hits. Basically, the additional testing performed is aimed at demonstrating which OPG hits are able to reduce cytokine activation of RASFs as monitored by the expression of a cytokine-induced marker, MMP1. This additional testing allows the identification of more preferred hits. This additional testing may be performed as follows:

8.1 Virus Collection and Handling:

[0251] For a selection of OPG hits targeting expression of a certain gene, a set of independent KD viruses are collected, that mediate the reduction of the expression of the same target gene through different sequences on the target mRNA. These viruses, together with the original OPG hit viruses, are arrayed in 96 well plates ("hit plates"), together with positive and negative control viruses. The general layout of the plate is depicted in FIG. 10h. As the outer wells are left empty to avoid edge effects, every control plate can accommodate 60 samples in total: 40 hit viruses and 20 control viruses. A KD virus that targets MMP1 is selected as positive control (4 wells per plate), whereas 3 different types of negative control viruses were used that target either luciferase gene transcripts (8 wells per plate), M6PR gene transcripts (4 wells per plate) or eGFP gene transcripts (4 wells per plate). The reconstituted plates are repropagated to ensure homogeneity of the titers of the viruses tested.

8.2 Cell Handling and Transduction of RASFs

[0252] At day 0, RASFs (with passage number below 11) are seeded in 96 well plates at a density of 3000 cells/well in 50 μL of medium. One day later (day 1), 8, 16 or 24 μL of the virus crude lysate contained in the virus plates is transferred to the plates containing the cells. As every virus load is tested in duplicate, 6×60 datapoints are generated for every "hit plate" tested.

8.3 Cell Triggering and Supernatant Collection

[0253] Five days after transduction of the cells, the reduction in the expression of the target gene mediated by the KD viruses is fully effective. Day 6, medium is removed and replaced by M199 medium+1% FBS containing an eight-fold dilution of a "TNFα based trigger". This trigger is prepared as follows. The production of the "TNFα based trigger" is initiated by seeding THP-1 monocytic cells in M199 medium supplemented with 1% serum at a density of 1×10E6 cells/mL. One day after seeding, recombinant human TNFalpha (Sigma) is added to the culture flasks to a final concentration of 25 ng/mL. 48 hours after addition of the cytokine, the supernatant is collected and stored at -80° C. in aliquots until further use. Every new batch of "TNFα based trigger" is characterized for its efficacy at inducing MMP1 expression by RASFs. This trigger contains a variety of inflammatory mediators that activate diverse signal transduction pathways in RASFs. Day 8, supernatant on top of the triggered cells is collected and subjected to a MMP1 ELISA.

8.4 MMP1 ELISA

[0254] The MMP1 ELISA is performed in 384 well format as described in WO 2006/040357. The following protocol is applied: white Lumitrac 600 384 well plates (Greiner) are coated with 2 μg/ml anti-MMP1 antibody MAB1346 (Chemicon). The antibody is diluted in buffer 40 (1.21 g Tris base (Sigma), 0.58 g NaCl (Calbiochem) and 5 mL 10% NaN3 (Sigma) in 1 L milliQ water and adjusted to pH 8.5). After overnight incubation at 4° C., plates are washed with PBS (80 g NaCl, 2 g KCl (Sigma), 11.5 g Na2HPO4.7H2O and 2 g KH2PO4 in 10 L milliQ; pH 7.4) and blocked with 100 μl/well Casein buffer (2% Casein (VWR International) in PBS). Next day, casein buffer is removed from ELISA plates and replaced by 50 μL/well EC buffer (4 g casein, 2.13 g Na2HPO4 (Sigma), 2 g bovine albumin (Sigma), 0.69 g NaH2PO4.H2O (Sigma), 0.5 g CHAPS (Roche), 23.3 g NaCl, 4 ml 0,5 M EDTA pH 8 (Invitrogen), 5 mL 10% NaN3 in 1 L milliQ and adjusted to pH 7.0). 0.25 mM DTT (Sigma) is added to the thawed samples plates. After removal of the EC buffer, 20 μL of sample is transferred to the ELISA plates. After overnight incubation at 4° C., the plates are washed twice with PBS, once with PBST (PBS with 0,05% Tween-20 (Sigma)), and incubated with 35 μL/well biotinylated anti-MMP1 antibody solution (R&D). This secondary antibody is diluted in buffer C (0.82 g NaH2PO4.H2O, 4.82 g Na2HPO4, 46.6 g NaCl, 20 g bovine albumin and 4 mL 0.5M EDTA pH 8 in 2 L milliQ and adjusted to pH 7.0) at a concentration of 5 μg/mL. After 2 hours of incubation at RT, the plates are washed as described above and incubated with 50 μl/well streptavidin-HRP conjugate (Biosource). Streptavidin-HRP conjugate is diluted in buffer C at a concentration of 0.25 μg/mL. After 45 minutes, the plates are washed as described above and incubated for 5 minutes with 50 μl/well BM Chem ELISA Substrate (Roche). Readout is performed on the Luminoscan Ascent Luminometer (Labsystems) with an integration time of 200 msec or with an Envision reader (Perkin Elmer).

8.5 Hit analysis

[0255] The ability of the collected viruses to reduce the expression of MMP1 by RASFs activated with a "TNFα-based trigger" may be determined as follows. For every plate, 3 control wells are left untriggered, allowing to determine if the MMP1 expression is induced as expected. 17 control wells (containing 13 negative controls and 4 positive controls) are triggered. The average and standard deviation is calculated for the MMP1 signal over the 13 triggered negative control wells. For every datapoint, the normalized reduction in MMP 1 expression is calculated as follows:

Normalized reduction of MMP1 signal for KD virus X=[(Average signal for 13 negative controls-signal for KD virus X)/(standard deviation of the MMP1 signal over the 13 negative controls)].

[0256] Every datapoint for which the normalized reduction of MMP1 expression exceeding 2 is considered "positive", i.e. the "TNFα-based trigger"--induced MMP1 expression is considered to be reduced in a significant way in these samples. For these viruses, the difference between MMP1 signal for the virus X and of the negative controls exceeds 2 times the standard deviation over the negative controls. As such, 6 independent normalized MMP1 datapoints are generated for every tested KD virus. Viruses for which at least 3 out of the 6 datapoints are "positive" are considered a hit in the MMP 1 assay. A summary of the data obtained for 7 OPG hits is shown in Table 6. For 6 out of the 7 targets tested, at least one KD virus is identified that significantly reduces "TNFα-based trigger" induced MMP1 expression. As such, the inhibition of the activity of these genes is expected to increase the OPG expression by RASFs and to reduce the response of RASFs to inflammatory cytokines. An example of the data obtained in the MMP1 assay is given in FIG. 11.

TABLE-US-00006 TABLE 6 Outcome of the additional testing of OPG hits in the "MMP1 assay" Nr of constructs inhibiting Target Nr of independent "TNFα-based trigger"- Name SEQ ID NOs KD viruses tested induced MMP1 expression ENPP2 19 7 3 GPR44 14 3 2 KLKB1 25 10 3 MAP4K4 6, 7, 8, 9 8 3 MMP17 10 3 2 NTRK2 1, 2, 3, 4, 5 4 0

[0257] For 7 selected OPG hits, up to 9 additional KD virus constructs ("independent KD viruses") targeting the expression of the same gene are collected. The number of constructs per OPG hit that mediated a significant reduction of the "TNFα-based trigger"-induced MMP1 expression is indicated in the table.

Example 9

OPG Dependency of Ad-siRNA-Mediated Inhibition of Osteoclast Differentiation In RASF-Osteoclast Cocultures

[0258] In example 5, Ad-siRNA OPG hits are selected based their ability to reduce RANKL-induced osteoclast differentiation in cocultures with transduced RASFs. The aim of the assay described in this example (further referred to as the "OPG dependency assay") is to demonstrate that the observed inhibition of osteoclast differentiation in the co-culture assay is due to the increased OPG release by RASFs, that were transduced with selected Ad-siRNAs. The principle of this assay is depicted in FIG. 6A. In brief, Ad-siRNAs are tested in the osteoclast co-culture assay with or without inclusion of an anti-OPG antibody that can neutralize OPG bioactivity. The desired profile for the Ad-siRNAs is the following: inhibition RANKL-driven osteoclast differentiation when the co-culture assay is performed in absence of the anti-OPG antibody and absence of effects when the assay is performed in presence of the anti-OPG antibody. The anti-OPG antibody (Cat. No AF805, R&D Systems) selected for the experiments is a goat polyclonal IgG antibody and as shown in FIG. 7C, is able to neutralize soluble OPG and prevent OPG-mediated inhibition of sRANKL-driven osteoclast formation in the co-culture assay. The additional testing is performed as follows:

9.1 Virus Collection and Handing.

[0259] Confirmed OPG hits that are also found to inhibit OC differentiation in the co-culture assay (Example 5) may be selected for testing in the "OPG dependency assay". The virus material used for this experiment is the same as that prepared for retesting of the primary hits in the 3 MOI OPG (Example 3). Selected Ad-siRNAs are cherry picked out of these virus plates and re-arrayed in 96-well plates ("hit plates"), together with the respective positive and negative control viruses (i.e. control viruses that were repropagated simultaneously with the Ad-siRNAs upon preparing the material for the 3M01 retesting). The general layout of a plate is depicted in FIG. 4. Every plate contains 4 wells for 3 different types of negative control viruses (N1=Ad5-eGFP_v1_KI, N2=Ad5-Luc_v13--1(D), N3=Ad5-eGFP_v5--1(D), and one well containing a positive control (P=Ad5-OPG_v1_KI). In the assay, transduction is performed as follows: 3 μL out of the virus hit plates are transferred 4 times to a 384-well assay plate such that all four quadrants are infected with the same virus.

9.2 Assay description

[0260] Day 1, RASFs cells (1000 cells/well) are seeded on a 0.1% gelatin coated 384-well plate (Greiner, cat No 781080) in 50 μL medium. The following day (Day 2) the cells are infected with 3 μL of Ad-siRNA material. Transfection is done in quadruplo (all 4 quadrants relative to one 96-well, are infected with the same Ad-siRNA). On day 7, the medium is refreshed with 30 μL coculture medium and osteoclast precursor cells (1600 cells contained in 30 μL co-culture medium with 105 ng/ml rhMCSF) are then added on top of the RASFs, followed by addition of 10 μL, of co-culture medium that does not (uneven columns only) or does (even columns only) contain the neutralizing anti-OPG antibody at a concentration of 24 μg/mL. In this way, four datapoints are generated for every "hit plate" tested, two in presence and two in absence of the anti-OPG antibody. After overnight incubation (Day 8), 10 μL, of co-culture medium containing 40 ng/mL rhMCSF and 120 ng/mL sRANKL is added to all wells to induce osteoclast differentiation. Final concentrations of reagents at this time are 15 ng/mL sRANKL, 40 ng/mL rhMCSF and 3 μg/mL anti-OPG antibody (if added). On day 20 (after 11 days of incubation at 37° C.; 5% CO2), osteoclast differentiation is read out by quantifying vitronectin receptor expression by cELISA.

9.3 Hit Analysis

[0261] For each hit virus, duplicate values in presence or absence of anti-OPG antibody are averaged and a threshold value was set. Hit viruses that generate values that are under the threshold value are considered to inhibit osteoclast differentiation driven by RANKL. The threshold signal for hit calling is defined such that none of the values generated by individual negative controls (in presence or absence of anti-OPG Ab) would score positive. The observed osteoclast inhibition for a hit virus is said to be OPG-dependent, when the averaged value in absence of the anti-OPG Ab is below the threshold and the value in presence of the anti-OPG Ab is above the threshold. An example of the data obtained in a representative experiment is given in FIG. 12.

REFERENCES



[0262] Roodman G D (2004) Mechanisms of Bone Metastasis. N Engl J Med 350:1655

[0263] Pettit A R, Ji H, von Stechow D, Goldring S R, Choi Y, Benoist C, Gravallese E M (2001) TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159: 1689.

[0264] Pettit A R, Walsh N C, Manning C, Goldring S R, Gravallese E M. (2006) RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology 45:1068-76.

[0265] Bucay N, Sarosi I, Dunstan C R, Morony S, Tarpley J, Capparelli C, Scully S, Tan H L, Xu W, Lacey D L, Boyle W J, Simonet W S. (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12:1260-8.

[0266] Kim N, Odgren P R, Kim D K, Marks S C Jr, Choi Y. (2000) Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA. 97:10905-10.

[0267] Gravallese E M. (2002) Bone destruction in arthritis. Ann Rheum Dis. 61 Suppl 2:ii84-6.

[0268] Onyia J E, Galvin R J, Ma Y L, Halladay D L, Miles R R, Yang X, Fuson T, Cain R L, Zeng Q Q,

[0269] Chandrasekhar S, Emkey R, Xu Y, Thirunavukkarasu K, Bryant H U, Martin T J. (2004) Novel and selective small molecule stimulators of osteoprotegerin expression inhibit bone resorption. J Pharmacol Exp Ther. 309:369-79

[0270] Valleala H, Laasonen L, Koivula M K, Mandelin J, Friman C, Risteli J, Konttinen Y T. (2003) Two year randomized controlled trial of etidronate in rheumatoid arthritis: changes in serum aminoterminal telopeptides correlate with radiographic progression of disease. J. Rheumatol. 30: 468-73.

[0271] Redlich K, Gortz B, Bayer S, Zwerina J, Doerr N, Kostenuik P, Bergmeister H, Kollias G, Steiner G, Smolen J S, Schett G. (2004) Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am J Pathol. 164: 543-55.

[0272] Smolen and Steiner (2003); Lee and Weinblatt (2001); Choy and Panayi (2001); O'Dell (2004) and Firestein (2003)

[0273] From the foregoing description, various modifications and changes in the compositions and methods of this invention will occur to those skilled in the art. All such modifications coming within the scope of the appended claims are intended to be included therein.

[0274] All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.

Sequence CWU 1

1

10815608DNAHomo sapiens 1aagacggatt ctcagacaag gcttgcaaat gccccgcagc catcatttaa ctgcacccgc 60agaatagtta cggtttgtca cccgaccctc ccggatcgcc taatttgtcc ctagtgagac 120cccgaggctc tgcccgcgcc tggcttcttc gtagctggat gcatatcgtg ctccgggcag 180cgcgggcgca gggcacgcgt tcgcgcacac cctagcacac atgaacacgc gcaagagctg 240aaccaagcac ggtttccatt tcaaaaaggg agacagcctc taccgcgatt gtagaagaga 300ctgtggtgtg aattagggac cgggaggcgt cgaacggagg aacggttcat cttagagact 360aattttctgg agtttctgcc cctgctctgc gtcagccctc acgtcacttc gccagcagta 420gcagaggcgg cggcggcggc tcccggaatt gggttggagc aggagcctcg ctggctgctt 480cgctcgcgct ctacgcgctc agtccccggc ggtagcagga gcctggaccc aggcgccgcc 540ggcgggcgtg aggcgccgga gcccggcctc gaggtgcata ccggaccccc attcgcatct 600aacaaggaat ctgcgcccca gagagtcccg ggagcgccgc cggtcggtgc ccggcgcgcc 660gggccatgca gcgacggccg ccgcggagct ccgagcagcg gtagcgcccc cctgtaaagc 720ggttcgctat gccggggcca ctgtgaaccc tgccgcctgc cggaacactc ttcgctccgg 780accagctcag cctctgataa gctggactcg gcacgcccgc aacaagcacc gaggagttaa 840gagagccgca agcgcaggga aggcctcccc gcacgggtgg gggaaagcgg ccggtgcagc 900gcggggacag gcactcgggc tggcactggc tgctagggat gtcgtcctgg ataaggtggc 960atggacccgc catggcgcgg ctctggggct tctgctggct ggttgtgggc ttctggaggg 1020ccgctttcgc ctgtcccacg tcctgcaaat gcagtgcctc tcggatctgg tgcagcgacc 1080cttctcctgg catcgtggca tttccgagat tggagcctaa cagtgtagat cctgagaaca 1140tcaccgaaat tttcatcgca aaccagaaaa ggttagaaat catcaacgaa gatgatgttg 1200aagcttatgt gggactgaga aatctgacaa ttgtggattc tggattaaaa tttgtggctc 1260ataaagcatt tctgaaaaac agcaacctgc agcacatcaa ttttacccga aacaaactga 1320cgagtttgtc taggaaacat ttccgtcacc ttgacttgtc tgaactgatc ctggtgggca 1380atccatttac atgctcctgt gacattatgt ggatcaagac tctccaagag gctaaatcca 1440gtccagacac tcaggatttg tactgcctga atgaaagcag caagaatatt cccctggcaa 1500acctgcagat acccaattgt ggtttgccat ctgcaaatct ggccgcacct aacctcactg 1560tggaggaagg aaagtctatc acattatcct gtagtgtggc aggtgatccg gttcctaata 1620tgtattggga tgttggtaac ctggtttcca aacatatgaa tgaaacaagc cacacacagg 1680gctccttaag gataactaac atttcatccg atgacagtgg gaagcagatc tcttgtgtgg 1740cggaaaatct tgtaggagaa gatcaagatt ctgtcaacct cactgtgcat tttgcaccaa 1800ctatcacatt tctcgaatct ccaacctcag accaccactg gtgcattcca ttcactgtga 1860aaggcaaccc caaaccagcg cttcagtggt tctataacgg ggcaatattg aatgagtcca 1920aatacatctg tactaaaata catgttacca atcacacgga gtaccacggc tgcctccagc 1980tggataatcc cactcacatg aacaatgggg actacactct aatagccaag aatgagtatg 2040ggaaggatga gaaacagatt tctgctcact tcatgggctg gcctggaatt gacgatggtg 2100caaacccaaa ttatcctgat gtaatttatg aagattatgg aactgcagcg aatgacatcg 2160gggacaccac gaacagaagt aatgaaatcc cttccacaga cgtcactgat aaaaccggtc 2220gggaacatct ctcggtctat gctgtggtgg tgattgcgtc tgtggtggga ttttgccttt 2280tggtaatgct gtttctgctt aagttggcaa gacactccaa gtttggcatg aaagatttct 2340catggtttgg atttgggaaa gtaaaatcaa gacaaggtgt tggcccagcc tccgttatca 2400gcaatgatga tgactctgcc agcccactcc atcacatctc caatgggagt aacactccat 2460cttcttcgga aggtggccca gatgctgtca ttattggaat gaccaagatc cctgtcattg 2520aaaatcccca gtactttggc atcaccaaca gtcagctcaa gccagacaca tttgttcagc 2580acatcaagcg acataacatt gttctgaaaa gggagctagg cgaaggagcc tttggaaaag 2640tgttcctagc tgaatgctat aacctctgtc ctgagcagga caagatcttg gtggcagtga 2700agaccctgaa ggatgccagt gacaatgcac gcaaggactt ccaccgtgag gccgagctcc 2760tgaccaacct ccagcatgag cacatcgtca agttctatgg cgtctgcgtg gagggcgacc 2820ccctcatcat ggtctttgag tacatgaagc atggggacct caacaagttc ctcagggcac 2880acggccctga tgccgtgctg atggctgagg gcaacccgcc cacggaactg acgcagtcgc 2940agatgctgca tatagcccag cagatcgccg cgggcatggt ctacctggcg tcccagcact 3000tcgtgcaccg cgatttggcc accaggaact gcctggtcgg ggagaacttg ctggtgaaaa 3060tcggggactt tgggatgtcc cgggacgtgt acagcactga ctactacagg gtcggtggcc 3120acacaatgct gcccattcgc tggatgcctc cagagagcat catgtacagg aaattcacga 3180cggaaagcga cgtctggagc ctgggggtcg tgttgtggga gattttcacc tatggcaaac 3240agccctggta ccagctgtca aacaatgagg tgatagagtg tatcactcag ggccgagtcc 3300tgcagcgacc ccgcacgtgc ccccaggagg tgtatgagct gatgctgggg tgctggcagc 3360gagagcccca catgaggaag aacatcaagg gcatccatac cctccttcag aacttggcca 3420aggcatctcc ggtctacctg gacattctag gctagggccc ttttccccag accgatcctt 3480cccaacgtac tcctcagacg ggctgagagg atgaacatct tttaactgcc gctggaggcc 3540accaagctgc tctccttcac tctgacagta ttaacatcaa agactccgag aagctctcga 3600gggaagcagt gtgtacttct tcatccatag acacagtatt gacttctttt tggcattatc 3660tctttctctc tttccatctc ccttggttgt tcctttttct ttttttaaat tttctttttc 3720tttttttttt cgtcttccct gcttcacgat tcttaccctt tcttttgaat caatctggct 3780tctgcattac tattaactct gcatagacaa aggccttaac aaacgtaatt tgttatatca 3840gcagacactc cagtttgccc accacaacta acaatgcctt gttgtattcc tgcctttgat 3900gtggatgaaa aaaagggaaa acaaatattt cacttaaact ttgtcacttc tgctgtacag 3960atatcgagag tttctatgga ttcacttcta tttatttatt attattactg ttcttattgt 4020ttttggatgg cttaagcctg tgtataaaaa agaaaacttg tgttcaatct gtgaagcctt 4080tatctatggg agattaaaac cagagagaaa gaagatttat tatgaaccgc aatatgggag 4140gaacaaagac aaccactggg atcagctggt gtcagtccct acttaggaaa tactcagcaa 4200ctgttagctg ggaagaatgt attcggcacc ttcccctgag gacctttctg aggagtaaaa 4260agactactgg cctctgtgcc atggatgatt cttttcccat caccagaaat gatagcgtgc 4320agtagagagc aaagatggct tccgtgagac acaagatggc gcatagtgtg ctcggacaca 4380gttttgtctt cgtaggttgt gatgatagca ctggtttgtt tctcaagcgc tatccacaga 4440acctttgtca acttcagttg aaaagaggtg gattcatgtc cagagctcat ttcggggtca 4500ggtgggaaag ccaagaactt ggaaaagata agacaagcta taaattcgga ggcaagtttc 4560ttttacaatg aacttttcag atctcacttc cctccgaccc ctaacttcca tgcccacccg 4620tccttttaac tgtgcaagca aaattgtgca tggtcttcgt cgattaatac cttgtgtgca 4680gacactactg ctccagacgt cgtttccctg ataggtagag cagatccata aaaaggtatg 4740acttatacaa ttaggggaag ctaatggagt ttattagctg agtatcaatg tctctgcgtt 4800gtacggtggt gatgggtttt aatgaatatg gaccctgaag cctggaaatc ctcatccacg 4860tcgaacccac aggactgtgg gaagggcaga atcaatccct aagggaaagg aaacctcacc 4920ctgagggcat cacatgcact catgttcagt gtacacaggt caagtccctt gctctgggct 4980ctagttggga gagtggtttc attccaagtg tactccattg tcagtatgct gtttttgttt 5040ccttcactcc attcaaaaag tcaaaataca aaatttggca cagcatgcca acgggaggct 5100gtgcccagac caagcactgg aagtgtgctt ctaggcatag tcattggttt tgcaaaaaga 5160gggctcaaat ttaaatagaa atttacagct atttgaatgg tcagatatac caagaaagaa 5220aaatatttct gttcctcaag aaaacttgct accctctgtg aggggaattt tgctaaactt 5280gacatcttta taacatgagc cagattgaaa gggagtgatt ttcattcatc ttaggtcatg 5340ttatttcata tttgtttctg aaggtgcgat agctctgttt taggttttgc ttgcgcctgt 5400taattactgg aacaccttat ttttcattaa aggctttgaa agccaattct caaaaattca 5460aaagtgcaaa ttaacagaac aaaaggaaat ccagtagcaa ctgcagtcaa gcgagggagt 5520tgacaagata aaccttacgt ccattcaagt tatatgctgg cctatgagag atgagagttg 5580ggtcgtttgt tctctttgtt gatgattt 560827111DNAHomo sapiens 2gcgtcagccc tcacgtcact tcgccagcag tagcagaggc ggcggcggcg gctcccggaa 60ttgggttgga gcaggagcct cgctggctgc ttcgctcgcg ctctacgcgc tcagtccccg 120gcggtagcag gagcctggac ccaggcgccg ccggcgggcg tgaggcgccg gagcccggcc 180tcgaggtgca taccggaccc ccattcgcat ctaacaagga atctgcgccc cagagagtcc 240cgggagcgcc gccggtcggt gcccggcgcg ccgggccatg cagcgacggc cgccgcggag 300ctccgagcag cggtagcgcc cccctgtaaa gcggttcgct atgccggggc cactgtgaac 360cctgccgcct gccggaacac tcttcgctcc ggaccagctc agcctctgat aagctggact 420cggcacgccc gcaacaagca ccgaggagtt aagagagccg caagcgcagg gaaggcctcc 480ccgcacgggt gggggaaagc ggccggtgca gcgcggggac aggcactcgg gctggcactg 540gctgctaggg atgtcgtcct ggataaggtg gcatggaccc gccatggcgc ggctctgggg 600cttctgctgg ctggttgtgg gcttctggag ggccgctttc gcctgtccca cgtcctgcaa 660atgcagtgcc tctcggatct ggtgcagcga cccttctcct ggcatcgtgg catttccgag 720attggagcct aacagtgtag atcctgagaa catcaccgaa attttcatcg caaaccagaa 780aaggttagaa atcatcaacg aagatgatgt tgaagcttat gtgggactga gaaatctgac 840aattgtggat tctggattaa aatttgtggc tcataaagca tttctgaaaa acagcaacct 900gcagcacatc aattttaccc gaaacaaact gacgagtttg tctaggaaac atttccgtca 960ccttgacttg tctgaactga tcctggtggg caatccattt acatgctcct gtgacattat 1020gtggatcaag actctccaag aggctaaatc cagtccagac actcaggatt tgtactgcct 1080gaatgaaagc agcaagaata ttcccctggc aaacctgcag atacccaatt gtggtttgcc 1140atctgcaaat ctggccgcac ctaacctcac tgtggaggaa ggaaagtcta tcacattatc 1200ctgtagtgtg gcaggtgatc cggttcctaa tatgtattgg gatgttggta acctggtttc 1260caaacatatg aatgaaacaa gccacacaca gggctcctta aggataacta acatttcatc 1320cgatgacagt gggaagcaga tctcttgtgt ggcggaaaat cttgtaggag aagatcaaga 1380ttctgtcaac ctcactgtgc attttgcacc aactatcaca tttctcgaat ctccaacctc 1440agaccaccac tggtgcattc cattcactgt gaaaggcaac cccaaaccag cgcttcagtg 1500gttctataac ggggcaatat tgaatgagtc caaatacatc tgtactaaaa tacatgttac 1560caatcacacg gagtaccacg gctgcctcca gctggataat cccactcaca tgaacaatgg 1620ggactacact ctaatagcca agaatgagta tgggaaggat gagaaacaga tttctgctca 1680cttcatgggc tggcctggaa ttgacgatgg tgcaaaccca aattatcctg atgtaattta 1740tgaagattat ggaactgcag cgaatgacat cggggacacc acgaacagaa gtaatgaaat 1800cccttccaca gacgtcactg ataaaaccgg tcgggaacat ctctcggtct atgctgtggt 1860ggtgattgcg tctgtggtgg gattttgcct tttggtaatg ctgtttctgc ttaagttggc 1920aagacactcc aagtttggca tgaaaggttt tgttttgttt cataagatcc cactggatgg 1980gtagctgaaa taaaggaaaa gacagagaaa ggggctgtgg tgcttgttgg ttgatgctgc 2040catgtaagct ggactcctgg gactgctgtt ggcttatccc gggaagtgct gcttatctgg 2100ggttttctgg tagatgtggg cggtgtttgg aggctgtact atatgaagcc tgcatatact 2160gtgagctgtg attggggaac accaatgcag aggtaactct caggcagcta agcagcacct 2220caagaaaaca tgttaaatta atgcttctct tcttacagta gttcaaatac aaaactgaaa 2280tgaaatccca ttggattgta cttctcttct gaaaagtgtg ctttttgacc ctactggaca 2340tttattgact taattgcttc tgtttattaa aattgacctg caaagttaaa aaaaaattaa 2400agttgagaac aggtataagt gcacactgaa tagtctaatc tacatgtaac acatatttta 2460gtgtgatttt ctatactcta atcagcactg aattcagagg gtttgacttt ttcatctata 2520acacagtgac taaaagagtt aagggtatat ataccatcac tttgggactt ggtagtatta 2580ttaaaaggtt atttccttca ctgtcaataa aagtccaaat gtttagctta ggtctgagag 2640tcaaacaatg ttaaggattg tcttaaagtt ccttagccag caaaacaaaa caaaacaaaa 2700caaacaaatg aaaaacgttt aaaaagaaga agaagaaaaa aaacaagaac aagcagcaac 2760agctgttttg ttggggctat agatttaagt taggcatagt caatttcaga ataactaaga 2820gtggaatata tgcatatggt gaaattataa ccttgccctt ttttatttgc cctctgcgat 2880ccacctgctt tttagaagtc tgccgagtga gaaggccaca gtatctcatg ctgtttgcat 2940tacagaactg cagcttttct actctgaaaa ggcctgggag cagaatggct ggcctgctgt 3000gagcaggaga ggagattcta agaaggatag tcccccctac aacatactgt catactgctg 3060ggttttcatg ggtaggaaag cttgtcctga ccccagcagc aaagaggtgg caggtcgcta 3120atgaatatat gctttataat gtccttcttc attgctgaga gggcagcctt agagctgtgg 3180atttctgcat cccccctgag tctgacccat ggacacctgt ttcattcact ttagcatcac 3240agtgaccttt gtatgctctg ttcagtctgt gtcaggcagt atgcttgtcc tgaagagagg 3300tttggctatc cccaccccac cccaccccac cctgttcctt ttttatcagg aggacttcag 3360agccaggcct gcagcatttt gtttgaaaac acaatcagct ctgacagtta gacatgcaca 3420cagacgccat agctggattg gaaacattga tgttttaaaa atttattttt tttggaaata 3480gttgcacaaa tgctgcaatt tagctttaag gttctataga tttttaacta gtccaacaca 3540gtcagaaaca ttgttttgaa tcctctgtaa accaaggcat taatcttaat aaaccaggat 3600ccatttaggt accacttgat ataaaaagga tatccataat gaatatttta tactgcatcc 3660tttacattag ccactaaata cgttattgct tgatgaagac ctttcacaga atcctatgga 3720ttgcagcatt tcacttggct acttcatacc catgccttaa agaggggcag tttctcaaaa 3780gcagaaacat gccgccagtt ctcaagtttt cctcctaact ccatttgaat gtaagggcag 3840ctggccccca atgtggggag gtccgaacat tttctgaatt cccattttct tgttcgcggc 3900taaatgacag tttctgtcat tacttagatt ccgatctttc ccaaaggtgt tgatttacaa 3960agaggccagc taatagcaga aatcatgacc ctgaaagaga gatgaaattc aagctgtgag 4020ccaggcagga gctcagtatg gcaaaggttc ttgagaatca gccatttggt acaaaaaaga 4080tttttaaagc ttttatgtta taccatggag ccatagaaag gctatggatt gtttaagaac 4140tattttaaag tgttccagac ccaaaaagga aaaataaaaa aaaaggaata tttgtaccca 4200acagctagaa ggattgcaag gtagattttt gttttaaaat ggagagaagt ggacagataa 4260ggccatttaa tatatcaaag atcagttgac atctcctagg gaatgatgaa aacagcaggc 4320tattagaaaa ttatttcata tagttctcgt gttcttttct tttttttaat ccctgaaggg 4380atgatcagta acatagcttc tcttttctgt actctagacc accccttttc atcattttgc 4440tttttatgtc tcccataaga aatgtgcttt ttagagcttc ctaatgcatg tgttgcatta 4500ttgcagcatt agaaaaggag aggtagcatt tttgctgaaa tcgggcctgt cactctccaa 4560taaaggttct ggcacttcaa tgccaggcag gtctcctaaa tgaacagaat gatctgtgtg 4620agccgatgcc tgcccttcca gaggggccac tgtccccagc cgcagccaac tgtgtcccac 4680aggaatggga gcctaggttt ccaaatcttg tgattcttta ggagaaacat gaaacctgga 4740tttcgtgtga aatgtcccga ttgttaaaaa gttggctcaa ttatttttaa aacattttgt 4800aagccaacaa aagtctgtgg gctgccagtt tattactttt gtcttaaaac atgatcattg 4860ttctctcacg gtatccttct gtcttcccgt tgcaaattca cttttctttc ttcctgacat 4920tgccattgag ggctttgtta ccacaagcta agaaactgag tttaacagcc cagttatctg 4980caacatgtca attacctttg ctcctctcct gtgattccca ccatgctgtg accctcagct 5040gtctcccttt gctgggaatt ctgcaccaat gtctcccctc aacccattcc ctggttggtc 5100ctactcccgt gtggccagag acatcctagc aaatccttcc tcctattata tctgacacta 5160atttcttttc aacagcgctc atgtctcttg gcccagtcag gtgctgccag gtttagatag 5220gaaagtacat gtcccatttt catgggtgcc cttaatgtgg tccacgtcct atatcttatt 5280atatttactc atggctcaat gggggcctcc agagaccctc tcaggctgct gagctagact 5340aaggaatgca tccaccgtca tcacatgaga cactgactct gtgacgacaa aagtacaaac 5400agtctgaggc taagaaaggt tcatctcaca acaggaaaaa caaatctcaa cacacattag 5460agataattga ttcaggggtt ttctctccca gtctcccagc agggactgat ttcatttctg 5520acccactagg ttttctttcc agaaataggt agcaaggaca agaactaaac aatcccagcc 5580ccacccagca acacagaaca caggagtttg cttttggctt ctcactctcc aagtaaccct 5640gaattaggcc cagaatggct gaggcttgga gcatctcctc agacagagca gaggcgacac 5700ctcttcaggg gtgtgtggag taaatagctc gaagagctga agacagaaaa ccagtttcac 5760gccaggtgcg agagagagca taatggaggg aagcccgctt tctctctcct cttcttttct 5820ctttatttct ttagagcact tgactttttt ttctctctct ctctagtatt ctaaactgac 5880cccatgacca actgagaatt tatttttgtt tcattggttg tttcacagaa ttagaacaca 5940cacgactttt tattcctcca ttgcaaaatg gaatcaagat actacacaag acctgtgctt 6000tcttcctttg catgatttac acctccgcct gttttggtgc tagctgtcta gaacttctct 6060cttggtttga atctgattcc ttcacactac actagaagtt tatttcatct tgttttgtct 6120agactccaga tacagaggga cagctggact gaggacaagc aattccatct agcatagggt 6180ctctcagggt tggtgcatcc agccacatgg gcagggccag tcacatctag tctatgtccc 6240cagagccctt ggagttgcgc agcttagctg acttgactcc aaggaaatta gtacagaagt 6300aaccactcta ttaagtgtgt tctgctatgt tcacatgcct gtagtacctg caaaccatgc 6360caggttcatc taaagacata ggggaagatt aaggactctt ttggacagac catgaattga 6420atttgctgcc aggtgctgcc agactgaatt tggctgacag aactcccagc ccaggaaagt 6480tccatgacaa tgactgtcgc agaaggaaat ttcccactaa agtcagtcca ttttcaagtt 6540ttggtcttca gagacaaaag aacgtcccag ccacctgatt ttgatggtga ggtaactcta 6600agttgaattc aggctagtgt tgcagtatag ctttggcatg ttcatgagtg agcacccaga 6660atgtgttgaa ccaaccccca cccctaacta ctgactatga ctgcagtggg tttttatggg 6720gaaaaaaagt gtgaaaagca aaaagaaagg aacagagatt ttttatcacc tttattgtaa 6780gacagtccat ttatgaattg agtataaaca catacaaagt aacaagagat tcctaagaaa 6840cgcaaatcct tgagtttcac gcacttcatg ttcaaccatt tgctgtaatc cagaggcagc 6900ctgtgaatca ttctcatgcc ctgttttttt tttttttttc ctataatgtt ctgggtttaa 6960aagccatctt ttccacattt tctgtaaata atggataatc attttaaaaa tttttatttt 7020tagtgctgtt ttaacaatgt agatagatca taaatgtact tgctgaattc aatcattttt 7080aacaagccaa taaagtttga taattcatct c 711135560DNAHomo sapiens 3aagacggatt ctcagacaag gcttgcaaat gccccgcagc catcatttaa ctgcacccgc 60agaatagtta cggtttgtca cccgaccctc ccggatcgcc taatttgtcc ctagtgagac 120cccgaggctc tgcccgcgcc tggcttcttc gtagctggat gcatatcgtg ctccgggcag 180cgcgggcgca gggcacgcgt tcgcgcacac cctagcacac atgaacacgc gcaagagctg 240aaccaagcac ggtttccatt tcaaaaaggg agacagcctc taccgcgatt gtagaagaga 300ctgtggtgtg aattagggac cgggaggcgt cgaacggagg aacggttcat cttagagact 360aattttctgg agtttctgcc cctgctctgc gtcagccctc acgtcacttc gccagcagta 420gcagaggcgg cggcggcggc tcccggaatt gggttggagc aggagcctcg ctggctgctt 480cgctcgcgct ctacgcgctc agtccccggc ggtagcagga gcctggaccc aggcgccgcc 540ggcgggcgtg aggcgccgga gcccggcctc gaggtgcata ccggaccccc attcgcatct 600aacaaggaat ctgcgcccca gagagtcccg ggagcgccgc cggtcggtgc ccggcgcgcc 660gggccatgca gcgacggccg ccgcggagct ccgagcagcg gtagcgcccc cctgtaaagc 720ggttcgctat gccggggcca ctgtgaaccc tgccgcctgc cggaacactc ttcgctccgg 780accagctcag cctctgataa gctggactcg gcacgcccgc aacaagcacc gaggagttaa 840gagagccgca agcgcaggga aggcctcccc gcacgggtgg gggaaagcgg ccggtgcagc 900gcggggacag gcactcgggc tggcactggc tgctagggat gtcgtcctgg ataaggtggc 960atggacccgc catggcgcgg ctctggggct tctgctggct ggttgtgggc ttctggaggg 1020ccgctttcgc ctgtcccacg tcctgcaaat gcagtgcctc tcggatctgg tgcagcgacc 1080cttctcctgg catcgtggca tttccgagat tggagcctaa cagtgtagat cctgagaaca 1140tcaccgaaat tttcatcgca aaccagaaaa ggttagaaat catcaacgaa gatgatgttg 1200aagcttatgt gggactgaga aatctgacaa ttgtggattc tggattaaaa tttgtggctc 1260ataaagcatt tctgaaaaac agcaacctgc agcacatcaa ttttacccga aacaaactga 1320cgagtttgtc taggaaacat ttccgtcacc ttgacttgtc tgaactgatc ctggtgggca 1380atccatttac atgctcctgt gacattatgt ggatcaagac tctccaagag gctaaatcca 1440gtccagacac tcaggatttg tactgcctga atgaaagcag caagaatatt cccctggcaa 1500acctgcagat acccaattgt ggtttgccat ctgcaaatct ggccgcacct aacctcactg 1560tggaggaagg aaagtctatc acattatcct gtagtgtggc aggtgatccg gttcctaata 1620tgtattggga tgttggtaac ctggtttcca aacatatgaa tgaaacaagc cacacacagg 1680gctccttaag gataactaac atttcatccg atgacagtgg gaagcagatc tcttgtgtgg 1740cggaaaatct tgtaggagaa gatcaagatt ctgtcaacct cactgtgcat tttgcaccaa 1800ctatcacatt tctcgaatct ccaacctcag accaccactg gtgcattcca ttcactgtga 1860aaggcaaccc caaaccagcg cttcagtggt tctataacgg ggcaatattg aatgagtcca 1920aatacatctg tactaaaata catgttacca atcacacgga gtaccacggc tgcctccagc 1980tggataatcc cactcacatg aacaatgggg actacactct aatagccaag aatgagtatg 2040ggaaggatga gaaacagatt tctgctcact tcatgggctg gcctggaatt gacgatggtg 2100caaacccaaa ttatcctgat gtaatttatg aagattatgg aactgcagcg aatgacatcg 2160gggacaccac gaacagaagt aatgaaatcc cttccacaga cgtcactgat aaaaccggtc

2220gggaacatct ctcggtctat gctgtggtgg tgattgcgtc tgtggtggga ttttgccttt 2280tggtaatgct gtttctgctt aagttggcaa gacactccaa gtttggcatg aaaggcccag 2340cctccgttat cagcaatgat gatgactctg ccagcccact ccatcacatc tccaatggga 2400gtaacactcc atcttcttcg gaaggtggcc cagatgctgt cattattgga atgaccaaga 2460tccctgtcat tgaaaatccc cagtactttg gcatcaccaa cagtcagctc aagccagaca 2520catttgttca gcacatcaag cgacataaca ttgttctgaa aagggagcta ggcgaaggag 2580cctttggaaa agtgttccta gctgaatgct ataacctctg tcctgagcag gacaagatct 2640tggtggcagt gaagaccctg aaggatgcca gtgacaatgc acgcaaggac ttccaccgtg 2700aggccgagct cctgaccaac ctccagcatg agcacatcgt caagttctat ggcgtctgcg 2760tggagggcga ccccctcatc atggtctttg agtacatgaa gcatggggac ctcaacaagt 2820tcctcagggc acacggccct gatgccgtgc tgatggctga gggcaacccg cccacggaac 2880tgacgcagtc gcagatgctg catatagccc agcagatcgc cgcgggcatg gtctacctgg 2940cgtcccagca cttcgtgcac cgcgatttgg ccaccaggaa ctgcctggtc ggggagaact 3000tgctggtgaa aatcggggac tttgggatgt cccgggacgt gtacagcact gactactaca 3060gggtcggtgg ccacacaatg ctgcccattc gctggatgcc tccagagagc atcatgtaca 3120ggaaattcac gacggaaagc gacgtctgga gcctgggggt cgtgttgtgg gagattttca 3180cctatggcaa acagccctgg taccagctgt caaacaatga ggtgatagag tgtatcactc 3240agggccgagt cctgcagcga ccccgcacgt gcccccagga ggtgtatgag ctgatgctgg 3300ggtgctggca gcgagagccc cacatgagga agaacatcaa gggcatccat accctccttc 3360agaacttggc caaggcatct ccggtctacc tggacattct aggctagggc ccttttcccc 3420agaccgatcc ttcccaacgt actcctcaga cgggctgaga ggatgaacat cttttaactg 3480ccgctggagg ccaccaagct gctctccttc actctgacag tattaacatc aaagactccg 3540agaagctctc gagggaagca gtgtgtactt cttcatccat agacacagta ttgacttctt 3600tttggcatta tctctttctc tctttccatc tcccttggtt gttccttttt ctttttttaa 3660attttctttt tctttttttt ttcgtcttcc ctgcttcacg attcttaccc tttcttttga 3720atcaatctgg cttctgcatt actattaact ctgcatagac aaaggcctta acaaacgtaa 3780tttgttatat cagcagacac tccagtttgc ccaccacaac taacaatgcc ttgttgtatt 3840cctgcctttg atgtggatga aaaaaaggga aaacaaatat ttcacttaaa ctttgtcact 3900tctgctgtac agatatcgag agtttctatg gattcacttc tatttattta ttattattac 3960tgttcttatt gtttttggat ggcttaagcc tgtgtataaa aaagaaaact tgtgttcaat 4020ctgtgaagcc tttatctatg ggagattaaa accagagaga aagaagattt attatgaacc 4080gcaatatggg aggaacaaag acaaccactg ggatcagctg gtgtcagtcc ctacttagga 4140aatactcagc aactgttagc tgggaagaat gtattcggca ccttcccctg aggacctttc 4200tgaggagtaa aaagactact ggcctctgtg ccatggatga ttcttttccc atcaccagaa 4260atgatagcgt gcagtagaga gcaaagatgg cttccgtgag acacaagatg gcgcatagtg 4320tgctcggaca cagttttgtc ttcgtaggtt gtgatgatag cactggtttg tttctcaagc 4380gctatccaca gaacctttgt caacttcagt tgaaaagagg tggattcatg tccagagctc 4440atttcggggt caggtgggaa agccaagaac ttggaaaaga taagacaagc tataaattcg 4500gaggcaagtt tcttttacaa tgaacttttc agatctcact tccctccgac ccctaacttc 4560catgcccacc cgtcctttta actgtgcaag caaaattgtg catggtcttc gtcgattaat 4620accttgtgtg cagacactac tgctccagac gtcgtttccc tgataggtag agcagatcca 4680taaaaaggta tgacttatac aattagggga agctaatgga gtttattagc tgagtatcaa 4740tgtctctgcg ttgtacggtg gtgatgggtt ttaatgaata tggaccctga agcctggaaa 4800tcctcatcca cgtcgaaccc acaggactgt gggaagggca gaatcaatcc ctaagggaaa 4860ggaaacctca ccctgagggc atcacatgca ctcatgttca gtgtacacag gtcaagtccc 4920ttgctctggg ctctagttgg gagagtggtt tcattccaag tgtactccat tgtcagtatg 4980ctgtttttgt ttccttcact ccattcaaaa agtcaaaata caaaatttgg cacagcatgc 5040caacgggagg ctgtgcccag accaagcact ggaagtgtgc ttctaggcat agtcattggt 5100tttgcaaaaa gagggctcaa atttaaatag aaatttacag ctatttgaat ggtcagatat 5160accaagaaag aaaaatattt ctgttcctca agaaaacttg ctaccctctg tgaggggaat 5220tttgctaaac ttgacatctt tataacatga gccagattga aagggagtga ttttcattca 5280tcttaggtca tgttatttca tatttgtttc tgaaggtgcg atagctctgt tttaggtttt 5340gcttgcgcct gttaattact ggaacacctt atttttcatt aaaggctttg aaagccaatt 5400ctcaaaaatt caaaagtgca aattaacaga acaaaaggaa atccagtagc aactgcagtc 5460aagcgaggga gttgacaaga taaaccttac gtccattcaa gttatatgct ggcctatgag 5520agatgagagt tgggtcgttt gttctctttg ttgatgattt 556048696DNAHomo sapiens 4aagacggatt ctcagacaag gcttgcaaat gccccgcagc catcatttaa ctgcacccgc 60agaatagtta cggtttgtca cccgaccctc ccggatcgcc taatttgtcc ctagtgagac 120cccgaggctc tgcccgcgcc tggcttcttc gtagctggat gcatatcgtg ctccgggcag 180cgcgggcgca gggcacgcgt tcgcgcacac cctagcacac atgaacacgc gcaagagctg 240aaccaagcac ggtttccatt tcaaaaaggg agacagcctc taccgcgatt gtagaagaga 300ctgtggtgtg aattagggac cgggaggcgt cgaacggagg aacggttcat cttagagact 360aattttctgg agtttctgcc cctgctctgc gtcagccctc acgtcacttc gccagcagta 420gcagaggcgg cggcggcggc tcccggaatt gggttggagc aggagcctcg ctggctgctt 480cgctcgcgct ctacgcgctc agtccccggc ggtagcagga gcctggaccc aggcgccgcc 540ggcgggcgtg aggcgccgga gcccggcctc gaggtgcata ccggaccccc attcgcatct 600aacaaggaat ctgcgcccca gagagtcccg ggagcgccgc cggtcggtgc ccggcgcgcc 660gggccatgca gcgacggccg ccgcggagct ccgagcagcg gtagcgcccc cctgtaaagc 720ggttcgctat gccggggcca ctgtgaaccc tgccgcctgc cggaacactc ttcgctccgg 780accagctcag cctctgataa gctggactcg gcacgcccgc aacaagcacc gaggagttaa 840gagagccgca agcgcaggga aggcctcccc gcacgggtgg gggaaagcgg ccggtgcagc 900gcggggacag gcactcgggc tggcactggc tgctagggat gtcgtcctgg ataaggtggc 960atggacccgc catggcgcgg ctctggggct tctgctggct ggttgtgggc ttctggaggg 1020ccgctttcgc ctgtcccacg tcctgcaaat gcagtgcctc tcggatctgg tgcagcgacc 1080cttctcctgg catcgtggca tttccgagat tggagcctaa cagtgtagat cctgagaaca 1140tcaccgaaat tttcatcgca aaccagaaaa ggttagaaat catcaacgaa gatgatgttg 1200aagcttatgt gggactgaga aatctgacaa ttgtggattc tggattaaaa tttgtggctc 1260ataaagcatt tctgaaaaac agcaacctgc agcacatcaa ttttacccga aacaaactga 1320cgagtttgtc taggaaacat ttccgtcacc ttgacttgtc tgaactgatc ctggtgggca 1380atccatttac atgctcctgt gacattatgt ggatcaagac tctccaagag gctaaatcca 1440gtccagacac tcaggatttg tactgcctga atgaaagcag caagaatatt cccctggcaa 1500acctgcagat acccaattgt ggtttgccat ctgcaaatct ggccgcacct aacctcactg 1560tggaggaagg aaagtctatc acattatcct gtagtgtggc aggtgatccg gttcctaata 1620tgtattggga tgttggtaac ctggtttcca aacatatgaa tgaaacaagc cacacacagg 1680gctccttaag gataactaac atttcatccg atgacagtgg gaagcagatc tcttgtgtgg 1740cggaaaatct tgtaggagaa gatcaagatt ctgtcaacct cactgtgcat tttgcaccaa 1800ctatcacatt tctcgaatct ccaacctcag accaccactg gtgcattcca ttcactgtga 1860aaggcaaccc caaaccagcg cttcagtggt tctataacgg ggcaatattg aatgagtcca 1920aatacatctg tactaaaata catgttacca atcacacgga gtaccacggc tgcctccagc 1980tggataatcc cactcacatg aacaatgggg actacactct aatagccaag aatgagtatg 2040ggaaggatga gaaacagatt tctgctcact tcatgggctg gcctggaatt gacgatggtg 2100caaacccaaa ttatcctgat gtaatttatg aagattatgg aactgcagcg aatgacatcg 2160gggacaccac gaacagaagt aatgaaatcc cttccacaga cgtcactgat aaaaccggtc 2220gggaacatct ctcggtctat gctgtggtgg tgattgcgtc tgtggtggga ttttgccttt 2280tggtaatgct gtttctgctt aagttggcaa gacactccaa gtttggcatg aaagatttct 2340catggtttgg atttgggaaa gtaaaatcaa gacaaggtgt tggcccagcc tccgttatca 2400gcaatgatga tgactctgcc agcccactcc atcacatctc caatgggagt aacactccat 2460cttcttcgga aggtggccca gatgctgtca ttattggaat gaccaagatc cctgtcattg 2520aaaatcccca gtactttggc atcaccaaca gtcagctcaa gccagacaca tggcccagag 2580gttcccccaa gaccgcctga taataatttg gtatttggag gctcctgtgt cactgcagga 2640actaaaggag gctaaatcca tgcctgatgg aggagaagag ttctatggtt atctgcaaat 2700tctggccaga caacatcttg acgtcactcc ttagcttcca taacctagcc aagcaagaag 2760ttgcctttcc aagacaaagc agtgtgctct aatgactaac ccctcaaagt actatgccac 2820tttaactata gacccatctc ctcgatcaat caggatggca agatggagct gaggagctca 2880gcaacatcaa gtctggagtt ggtctttaac tcaactagct cgtttagacg tgtctgaaca 2940ccacatcacc tgacagcacg gggtggtttc ccagtaaaat ttacaaactc agctcaaggg 3000cagctgtgtt gctttccttt ccttgactgc tgagaaactt tttgacaggg aacaatggaa 3060acacaccttc tgagctgaaa caaacaaaca gaaacaaaac atactaacca gcaaaatccc 3120caaatcatca atcttgggtt ctcttgaagg gcaggagtgt gttttatctt ctcccgtcgg 3180agcaaacact atagatgtcc tccctaaaat tctgtcttcc ctagagcagc cttgtaaatt 3240agctagggtc ctagggttga ggcctaaatc aacttaaaat tgtctctaaa tatgtacctg 3300gatgtgtttg tacttgcaga gcatgccctc ttcatgtgcc tagggctagt aactccctgt 3360ggcagaggca tgtaaagtat tctgactttt tttttttcaa cttaattcca tttccaatga 3420aatggatttt taaaaatttt ctccagagtg tgccatactt ctccagctat tatagttaat 3480gtgtgtgtat ccttgtgtat atgtgtgttt gtgtgtgcat atgtgttttc ctagtggtta 3540catgcttact aggcaattat gtaaataagc acagattcat aggccagcta ggcctgagga 3600aagaagacat tataaaggga gggagtattt taacattagc taaagctatc acacaaggca 3660cccattctgc tcccctcaac agccacagcc cacttcgtcc ttgtcttacc aataagggga 3720aaggctggag gtgatatttt tcacagaacc gcagaggttt tgaacatatt tgcaacatta 3780ctttgagtac acatgagcaa aaattctgaa ttacatccag gaccccagaa gctcattaga 3840tcaaagagtg cggggcccct cagagttacc agagattatc tgcagacttc agtgcaatcg 3900aatgaccatg gtccattttg atggtcagag gtaggactga aaaacgggta gaaacaattg 3960ctttagcgct tccttctgta ctttgcctat taatgttttg tctttcaaaa atatattttc 4020tcctaattgt ttaattggcc aaataatggc tgctttggga gttgtttgta tgccttggaa 4080ggccatggcc tgcactttaa aaataagcta agtccattct gcccagcacg agcattagga 4140cagagaatgc acttatttta ggatccttaa aaattgcttc ttttatggca cactgggttg 4200acgactcatc tcgtgggagc cttcatggca cattgctgct gttctgcagg tcccaataca 4260attccttccc cctctcagtg ccacggcccc cccattgcta gctacacaat ttgatatcat 4320attccctttt caactccaaa ggagatgata agaagctatc aaataatgct ttaaaaaagc 4380aacttgagtt tcttaaaaga aaggaaatga atacatgctg cataattaca tttaaaatgt 4440aagccatgtt attataagcc gcactgagat gaagatttgt tagcaaacca gtttcaagca 4500cactcacagt gaagtaaaat catgttttta gcatctgacc attgggtaat attattcttt 4560gttatcaaaa gagaaatatc acccaagtat agtatactta gacctcctag aggaaacact 4620ccagtcctaa gcttggtgtc tgaaaagaaa aacaaaaata aagattatgg atttaggtca 4680gggagacaga gtgatattct gaagactgtg tttactccct catcatcggc caaccaagat 4740ggagttctgc atcctgcaca tatcagacat ttcagtccaa tttcaccaaa gcatcagtga 4800tgttctagaa gcatcccagc agatggagga tcctaatgta tttgttctgg gtatttccca 4860aggcccagcc tgactggagt gtgtgtacca acaggatgaa tccaatcaag ctacgccccc 4920attttggttt cggattggcc actcttgcat gtgctagtag attgtggacc aggaccagct 4980gagcaaacac agttgcagag tagcctccta tgttgctaag aagctcctgc tacccaggtg 5040ctttgaacaa ttgagtgctc cctctggtta agtagagatg gcaccaccgg agtttttctt 5100ggatgtgagg ctcaatcctt tacggcagct attataacaa agtgaaggtt ttctccctgg 5160gaaatgcagc ttttctctgt ctttactaat tctgccagcc tgtgagagta accaccgtag 5220ctgggcttct tctcagatta attgtcatgc caggtctcct tcctggggag ctgtgatgct 5280gctctgaggt tgattgctga ggttgtagtg ggtttttgtt tgtttttgtt tagtttttct 5340tgattgttct tctttctctt gaatggcaag agaagaaaca ctttctctaa cccacggcca 5400ggaaggaaat ggggagagag ctacttctta gttcaacctg gttgccacat aaaggaatct 5460ctctccttgg actcagcccc taactggaag caagagccac tgccctctga gactgagaga 5520gcagcccgag gaggagatga atccattctg ccctttgttt gggtttgctt cctgtcagtg 5580agagaatgct gaggcagttc ctgttatgtg aaactttcat ttttaaaacc aggacagtcc 5640taaacagact ggaatgagtt ggtcaatccc agttggtata ggcccaatga tttttgctag 5700taagatagga ttgtcttcct cacccaaaat gccttcaagt gccctaaaat gggtatttta 5760aaataagaat aaataatgta gatttagtag aaaacctgga aaacataaga aacaaagatg 5820aaacgaaaag tcccatgtaa ttccaccagt tagagttaac cactgatatc gtttggatat 5880atggctttct agtcttgtgg atatcctttt aatctcttgt aatataaagt ctgaccatat 5940gtgtccttgc atttgtttgt actggactct gttaatattt ctatagtaat ggctcacttt 6000ggggagattg tgctgcacag tgtgtaggaa gcacattggg tgtattattc ccagttttgt 6060attttgtatt tccttggaga tgtgcagggg ttaagagcgg gggtctggcc atagctggcc 6120acgtcagact ctcatatggt aagtatcaca gagcacatga ggcctgtgtt atgcgctgga 6180aagactcagg aaatgagagg ctctcttgtt ctgacaaggc aggctgagag ctctcattta 6240gggtcatcac tccagataac tccaaatgca gtttattgct caactgaagc agatgatcac 6300tttttgcctc caagttcttc accctagcta gctcctttca aagagccgag tatgctggat 6360cttaaagggc caaactagtt acatctcata catttcctga tgtttaggga tgccttcact 6420tccatcaagg ataccttggc tgtgcaagga cctctgatag ctggagtctc cttttggtca 6480ctcccagctt tgcttaaact tgatggagtt tgctgtccag tgatccccgg atctttcatc 6540atgaaagcct tccttcctct cctgatgtct caggcctcta gacctagact ggggttctgg 6600caaggaggcc tctatcaata gtatgacatc caataatatg ttagtgttga tattttgcac 6660agtaatatta agtttaagag attataaaaa tgagttcaaa tgaataagtt cctgtgatgt 6720aagagattag atatgtgtga tttcagaacc aaagccaggg gggaatccca gaaagaaaac 6780aataatataa tcctagtttc tatatattat ttttattcat tactgtatat gggtagagat 6840caatattctt tcttatgctg ttactattaa ttaacacatt ttttaaccat gccattgaac 6900ttttgggtgc attaaagtgg aacccaagct cctcattaga taataatggc atttggactg 6960agtgccatat tcctaaattt ccaataaagt ggttgatata gagaggacag gataaagccc 7020tatagtgtgc agttatatca aaacagctag tctccacttt agggaatgcc tttactagag 7080attacatgaa atgtctgctt ataaaataag cagagatggc accactaagc agccacctga 7140attgttttcc tacaggaatg attacttttc agatccattt atgttttcat gctcaatact 7200tactcccctt ccctgcaaca cccaaagagt ttacttttgc aagtcatttg gtcttcagtc 7260tactactgag gaatagagag gcactaactg ctttacccag gatcagaact catgttctta 7320ccttctatta atagagtact tgagccagat ggactaactg gtctcacatt ttctctatct 7380tggttttact tccataaaca tcaatatctt tacccacatg atttttccat cctcccattt 7440ttttccatat gtattagggt tcaggaacta tgatgctaat gatcacattt cttcctagtt 7500cctaatttca ttagtgccat ttcctgatat ctacagaaac aattatcaat acatgtagct 7560gcttgagcct tatttagaag gctagccttt cttttccaag tgctgtcaga atgtatacat 7620ttagtctgtc tttttccctt ttaggagtct ttgttctggg ttgatggcaa aattcctctt 7680tttacatgtg agatttttga tttcactgaa ttctacctag atttttatgg acattggatt 7740ttaaagagga aaacactcat tttcttagta agatattggt gatacatagc tatgccattg 7800atttccatac tcctgagctt tggggaggga gacagtggcc aagtagcagg cagaataaga 7860tcatcactca tgtcctgaat caatcacact ttccttctcg gattgtgtat atgctctgcc 7920acttcctaca tattacatcc tgagttttta agtaaagtgg atcttagcca gatttgagtc 7980taatggctga ttcatcggca tagttcttgg cgttaacatc tcagtgtcct ctttagttct 8040ctttgaggat tcatgtcatt gagggccttt gtgcctccac ttgtctcagt atgaggaaga 8100actttggtgt gagggcggag ctatgtgaag ggttgctggg ttgggggatt agttcatatg 8160gtccccatgc catctattta cttttggaga gaggggactt tgagtgggtg ggtatggata 8220gatgttcctc aaggaaaccc tgctggctaa tgggcactac atctgtgtat tactgtgatt 8280ctctctgtaa gctccccatg tggccaagga cccccctcct accagggcac ttcctgccac 8340ctcattgcac tggtctcaac cattcagcct gctgctgctg caccatgttg ggctgcggta 8400ggatagggaa ggggttctgt tgattgctaa atgttgccta actttatttc cctctcccac 8460atttcatgca agggagcgga cctaacacat gacttgcatt ctcttcctat gttcagaaac 8520tccagggctt gcccacgtgt atgtatgagt gaccaatgga gcttggaatt ctttatctat 8580atgatctgtc cgaaaatgag atcttttgta ctggaatttg tgatgtagtt gatcattcag 8640agccaaacgc atataccaat aaagacaaga ctgtcatata aaaaaaaaaa aaaaaa 869658648DNAHomo sapiens 5aagacggatt ctcagacaag gcttgcaaat gccccgcagc catcatttaa ctgcacccgc 60agaatagtta cggtttgtca cccgaccctc ccggatcgcc taatttgtcc ctagtgagac 120cccgaggctc tgcccgcgcc tggcttcttc gtagctggat gcatatcgtg ctccgggcag 180cgcgggcgca gggcacgcgt tcgcgcacac cctagcacac atgaacacgc gcaagagctg 240aaccaagcac ggtttccatt tcaaaaaggg agacagcctc taccgcgatt gtagaagaga 300ctgtggtgtg aattagggac cgggaggcgt cgaacggagg aacggttcat cttagagact 360aattttctgg agtttctgcc cctgctctgc gtcagccctc acgtcacttc gccagcagta 420gcagaggcgg cggcggcggc tcccggaatt gggttggagc aggagcctcg ctggctgctt 480cgctcgcgct ctacgcgctc agtccccggc ggtagcagga gcctggaccc aggcgccgcc 540ggcgggcgtg aggcgccgga gcccggcctc gaggtgcata ccggaccccc attcgcatct 600aacaaggaat ctgcgcccca gagagtcccg ggagcgccgc cggtcggtgc ccggcgcgcc 660gggccatgca gcgacggccg ccgcggagct ccgagcagcg gtagcgcccc cctgtaaagc 720ggttcgctat gccggggcca ctgtgaaccc tgccgcctgc cggaacactc ttcgctccgg 780accagctcag cctctgataa gctggactcg gcacgcccgc aacaagcacc gaggagttaa 840gagagccgca agcgcaggga aggcctcccc gcacgggtgg gggaaagcgg ccggtgcagc 900gcggggacag gcactcgggc tggcactggc tgctagggat gtcgtcctgg ataaggtggc 960atggacccgc catggcgcgg ctctggggct tctgctggct ggttgtgggc ttctggaggg 1020ccgctttcgc ctgtcccacg tcctgcaaat gcagtgcctc tcggatctgg tgcagcgacc 1080cttctcctgg catcgtggca tttccgagat tggagcctaa cagtgtagat cctgagaaca 1140tcaccgaaat tttcatcgca aaccagaaaa ggttagaaat catcaacgaa gatgatgttg 1200aagcttatgt gggactgaga aatctgacaa ttgtggattc tggattaaaa tttgtggctc 1260ataaagcatt tctgaaaaac agcaacctgc agcacatcaa ttttacccga aacaaactga 1320cgagtttgtc taggaaacat ttccgtcacc ttgacttgtc tgaactgatc ctggtgggca 1380atccatttac atgctcctgt gacattatgt ggatcaagac tctccaagag gctaaatcca 1440gtccagacac tcaggatttg tactgcctga atgaaagcag caagaatatt cccctggcaa 1500acctgcagat acccaattgt ggtttgccat ctgcaaatct ggccgcacct aacctcactg 1560tggaggaagg aaagtctatc acattatcct gtagtgtggc aggtgatccg gttcctaata 1620tgtattggga tgttggtaac ctggtttcca aacatatgaa tgaaacaagc cacacacagg 1680gctccttaag gataactaac atttcatccg atgacagtgg gaagcagatc tcttgtgtgg 1740cggaaaatct tgtaggagaa gatcaagatt ctgtcaacct cactgtgcat tttgcaccaa 1800ctatcacatt tctcgaatct ccaacctcag accaccactg gtgcattcca ttcactgtga 1860aaggcaaccc caaaccagcg cttcagtggt tctataacgg ggcaatattg aatgagtcca 1920aatacatctg tactaaaata catgttacca atcacacgga gtaccacggc tgcctccagc 1980tggataatcc cactcacatg aacaatgggg actacactct aatagccaag aatgagtatg 2040ggaaggatga gaaacagatt tctgctcact tcatgggctg gcctggaatt gacgatggtg 2100caaacccaaa ttatcctgat gtaatttatg aagattatgg aactgcagcg aatgacatcg 2160gggacaccac gaacagaagt aatgaaatcc cttccacaga cgtcactgat aaaaccggtc 2220gggaacatct ctcggtctat gctgtggtgg tgattgcgtc tgtggtggga ttttgccttt 2280tggtaatgct gtttctgctt aagttggcaa gacactccaa gtttggcatg aaaggcccag 2340cctccgttat cagcaatgat gatgactctg ccagcccact ccatcacatc tccaatggga 2400gtaacactcc atcttcttcg gaaggtggcc cagatgctgt cattattgga atgaccaaga 2460tccctgtcat tgaaaatccc cagtactttg gcatcaccaa cagtcagctc aagccagaca 2520catggcccag aggttccccc aagaccgcct gataataatt tggtatttgg aggctcctgt 2580gtcactgcag gaactaaagg aggctaaatc catgcctgat ggaggagaag agttctatgg 2640ttatctgcaa attctggcca gacaacatct tgacgtcact ccttagcttc cataacctag 2700ccaagcaaga agttgccttt ccaagacaaa gcagtgtgct ctaatgacta acccctcaaa 2760gtactatgcc actttaacta tagacccatc tcctcgatca atcaggatgg caagatggag 2820ctgaggagct cagcaacatc aagtctggag ttggtcttta actcaactag ctcgtttaga 2880cgtgtctgaa caccacatca cctgacagca cggggtggtt tcccagtaaa atttacaaac 2940tcagctcaag ggcagctgtg

ttgctttcct ttccttgact gctgagaaac tttttgacag 3000ggaacaatgg aaacacacct tctgagctga aacaaacaaa cagaaacaaa acatactaac 3060cagcaaaatc cccaaatcat caatcttggg ttctcttgaa gggcaggagt gtgttttatc 3120ttctcccgtc ggagcaaaca ctatagatgt cctccctaaa attctgtctt ccctagagca 3180gccttgtaaa ttagctaggg tcctagggtt gaggcctaaa tcaacttaaa attgtctcta 3240aatatgtacc tggatgtgtt tgtacttgca gagcatgccc tcttcatgtg cctagggcta 3300gtaactccct gtggcagagg catgtaaagt attctgactt tttttttttc aacttaattc 3360catttccaat gaaatggatt tttaaaaatt ttctccagag tgtgccatac ttctccagct 3420attatagtta atgtgtgtgt atccttgtgt atatgtgtgt ttgtgtgtgc atatgtgttt 3480tcctagtggt tacatgctta ctaggcaatt atgtaaataa gcacagattc ataggccagc 3540taggcctgag gaaagaagac attataaagg gagggagtat tttaacatta gctaaagcta 3600tcacacaagg cacccattct gctcccctca acagccacag cccacttcgt ccttgtctta 3660ccaataaggg gaaaggctgg aggtgatatt tttcacagaa ccgcagaggt tttgaacata 3720tttgcaacat tactttgagt acacatgagc aaaaattctg aattacatcc aggaccccag 3780aagctcatta gatcaaagag tgcggggccc ctcagagtta ccagagatta tctgcagact 3840tcagtgcaat cgaatgacca tggtccattt tgatggtcag aggtaggact gaaaaacggg 3900tagaaacaat tgctttagcg cttccttctg tactttgcct attaatgttt tgtctttcaa 3960aaatatattt tctcctaatt gtttaattgg ccaaataatg gctgctttgg gagttgtttg 4020tatgccttgg aaggccatgg cctgcacttt aaaaataagc taagtccatt ctgcccagca 4080cgagcattag gacagagaat gcacttattt taggatcctt aaaaattgct tcttttatgg 4140cacactgggt tgacgactca tctcgtggga gccttcatgg cacattgctg ctgttctgca 4200ggtcccaata caattccttc cccctctcag tgccacggcc cccccattgc tagctacaca 4260atttgatatc atattccctt ttcaactcca aaggagatga taagaagcta tcaaataatg 4320ctttaaaaaa gcaacttgag tttcttaaaa gaaaggaaat gaatacatgc tgcataatta 4380catttaaaat gtaagccatg ttattataag ccgcactgag atgaagattt gttagcaaac 4440cagtttcaag cacactcaca gtgaagtaaa atcatgtttt tagcatctga ccattgggta 4500atattattct ttgttatcaa aagagaaata tcacccaagt atagtatact tagacctcct 4560agaggaaaca ctccagtcct aagcttggtg tctgaaaaga aaaacaaaaa taaagattat 4620ggatttaggt cagggagaca gagtgatatt ctgaagactg tgtttactcc ctcatcatcg 4680gccaaccaag atggagttct gcatcctgca catatcagac atttcagtcc aatttcacca 4740aagcatcagt gatgttctag aagcatccca gcagatggag gatcctaatg tatttgttct 4800gggtatttcc caaggcccag cctgactgga gtgtgtgtac caacaggatg aatccaatca 4860agctacgccc ccattttggt ttcggattgg ccactcttgc atgtgctagt agattgtgga 4920ccaggaccag ctgagcaaac acagttgcag agtagcctcc tatgttgcta agaagctcct 4980gctacccagg tgctttgaac aattgagtgc tccctctggt taagtagaga tggcaccacc 5040ggagtttttc ttggatgtga ggctcaatcc tttacggcag ctattataac aaagtgaagg 5100ttttctccct gggaaatgca gcttttctct gtctttacta attctgccag cctgtgagag 5160taaccaccgt agctgggctt cttctcagat taattgtcat gccaggtctc cttcctgggg 5220agctgtgatg ctgctctgag gttgattgct gaggttgtag tgggtttttg tttgtttttg 5280tttagttttt cttgattgtt cttctttctc ttgaatggca agagaagaaa cactttctct 5340aacccacggc caggaaggaa atggggagag agctacttct tagttcaacc tggttgccac 5400ataaaggaat ctctctcctt ggactcagcc cctaactgga agcaagagcc actgccctct 5460gagactgaga gagcagcccg aggaggagat gaatccattc tgccctttgt ttgggtttgc 5520ttcctgtcag tgagagaatg ctgaggcagt tcctgttatg tgaaactttc atttttaaaa 5580ccaggacagt cctaaacaga ctggaatgag ttggtcaatc ccagttggta taggcccaat 5640gatttttgct agtaagatag gattgtcttc ctcacccaaa atgccttcaa gtgccctaaa 5700atgggtattt taaaataaga ataaataatg tagatttagt agaaaacctg gaaaacataa 5760gaaacaaaga tgaaacgaaa agtcccatgt aattccacca gttagagtta accactgata 5820tcgtttggat atatggcttt ctagtcttgt ggatatcctt ttaatctctt gtaatataaa 5880gtctgaccat atgtgtcctt gcatttgttt gtactggact ctgttaatat ttctatagta 5940atggctcact ttggggagat tgtgctgcac agtgtgtagg aagcacattg ggtgtattat 6000tcccagtttt gtattttgta tttccttgga gatgtgcagg ggttaagagc gggggtctgg 6060ccatagctgg ccacgtcaga ctctcatatg gtaagtatca cagagcacat gaggcctgtg 6120ttatgcgctg gaaagactca ggaaatgaga ggctctcttg ttctgacaag gcaggctgag 6180agctctcatt tagggtcatc actccagata actccaaatg cagtttattg ctcaactgaa 6240gcagatgatc actttttgcc tccaagttct tcaccctagc tagctccttt caaagagccg 6300agtatgctgg atcttaaagg gccaaactag ttacatctca tacatttcct gatgtttagg 6360gatgccttca cttccatcaa ggataccttg gctgtgcaag gacctctgat agctggagtc 6420tccttttggt cactcccagc tttgcttaaa cttgatggag tttgctgtcc agtgatcccc 6480ggatctttca tcatgaaagc cttccttcct ctcctgatgt ctcaggcctc tagacctaga 6540ctggggttct ggcaaggagg cctctatcaa tagtatgaca tccaataata tgttagtgtt 6600gatattttgc acagtaatat taagtttaag agattataaa aatgagttca aatgaataag 6660ttcctgtgat gtaagagatt agatatgtgt gatttcagaa ccaaagccag gggggaatcc 6720cagaaagaaa acaataatat aatcctagtt tctatatatt atttttattc attactgtat 6780atgggtagag atcaatattc tttcttatgc tgttactatt aattaacaca ttttttaacc 6840atgccattga acttttgggt gcattaaagt ggaacccaag ctcctcatta gataataatg 6900gcatttggac tgagtgccat attcctaaat ttccaataaa gtggttgata tagagaggac 6960aggataaagc cctatagtgt gcagttatat caaaacagct agtctccact ttagggaatg 7020cctttactag agattacatg aaatgtctgc ttataaaata agcagagatg gcaccactaa 7080gcagccacct gaattgtttt cctacaggaa tgattacttt tcagatccat ttatgttttc 7140atgctcaata cttactcccc ttccctgcaa cacccaaaga gtttactttt gcaagtcatt 7200tggtcttcag tctactactg aggaatagag aggcactaac tgctttaccc aggatcagaa 7260ctcatgttct taccttctat taatagagta cttgagccag atggactaac tggtctcaca 7320ttttctctat cttggtttta cttccataaa catcaatatc tttacccaca tgatttttcc 7380atcctcccat ttttttccat atgtattagg gttcaggaac tatgatgcta atgatcacat 7440ttcttcctag ttcctaattt cattagtgcc atttcctgat atctacagaa acaattatca 7500atacatgtag ctgcttgagc cttatttaga aggctagcct ttcttttcca agtgctgtca 7560gaatgtatac atttagtctg tctttttccc ttttaggagt ctttgttctg ggttgatggc 7620aaaattcctc tttttacatg tgagattttt gatttcactg aattctacct agatttttat 7680ggacattgga ttttaaagag gaaaacactc attttcttag taagatattg gtgatacata 7740gctatgccat tgatttccat actcctgagc tttggggagg gagacagtgg ccaagtagca 7800ggcagaataa gatcatcact catgtcctga atcaatcaca ctttccttct cggattgtgt 7860atatgctctg ccacttccta catattacat cctgagtttt taagtaaagt ggatcttagc 7920cagatttgag tctaatggct gattcatcgg catagttctt ggcgttaaca tctcagtgtc 7980ctctttagtt ctctttgagg attcatgtca ttgagggcct ttgtgcctcc acttgtctca 8040gtatgaggaa gaactttggt gtgagggcgg agctatgtga agggttgctg ggttggggga 8100ttagttcata tggtccccat gccatctatt tacttttgga gagaggggac tttgagtggg 8160tgggtatgga tagatgttcc tcaaggaaac cctgctggct aatgggcact acatctgtgt 8220attactgtga ttctctctgt aagctcccca tgtggccaag gacccccctc ctaccagggc 8280acttcctgcc acctcattgc actggtctca accattcagc ctgctgctgc tgcaccatgt 8340tgggctgcgg taggataggg aaggggttct gttgattgct aaatgttgcc taactttatt 8400tccctctccc acatttcatg caagggagcg gacctaacac atgacttgca ttctcttcct 8460atgttcagaa actccagggc ttgcccacgt gtatgtatga gtgaccaatg gagcttggaa 8520ttctttatct atatgatctg tccgaaaatg agatcttttg tactggaatt tgtgatgtag 8580ttgatcattc agagccaaac gcatatacca ataaagacaa gactgtcata taaaaaaaaa 8640aaaaaaaa 864867033DNAHomo sapiens 6cacagagcga cagagacatt tattgttatt tgttttttgg tggcaaaaag ggaaaatggc 60gaacgactcc cctgcaaaaa gtctggtgga catcgacctc tcctccctgc gggatcctgc 120tgggattttt gagctggtgg aagtggttgg aaatggcacc tatggacaag tctataaggg 180tcgacatgtt aaaacgggtc agttggcagc catcaaagtt atggatgtca ctgaggatga 240agaggaagaa atcaaactgg agataaatat gctaaagaaa tactctcatc acagaaacat 300tgcaacatat tatggtgctt tcatcaaaaa gagccctcca ggacatgatg accaactctg 360gcttgttatg gagttctgtg gggctgggtc cattacagac cttgtgaaga acaccaaagg 420gaacacactc aaagaagact ggatcgctta catctccaga gaaatcctga ggggactggc 480acatcttcac attcatcatg tgattcaccg ggatatcaag ggccagaatg tgttgctgac 540tgagaatgca gaggtgaaac ttgttgactt tggtgtgagt gctcagctgg acaggactgt 600ggggcggaga aatacgttca taggcactcc ctactggatg gctcctgagg tcatcgcctg 660tgatgagaac ccagatgcca cctatgatta cagaagtgat ctttggtctt gtggcattac 720agccattgag atggcagaag gtgctccccc tctctgtgac atgcatccaa tgagagcact 780gtttctcatt cccagaaacc ctcctccccg gctgaagtca aaaaaatggt cgaagaagtt 840ttttagtttt atagaagggt gcctggtgaa gaattacatg cagcggccct ctacagagca 900gcttttgaaa catcctttta taagggatca gccaaatgaa aggcaagtta gaatccagct 960taaggatcat atagatcgta ccaggaagaa gagaggcgag aaagatgaaa ctgagtatga 1020gtacagtggg agtgaggaag aagaggagga agtgcctgaa caggaaggag agccaagttc 1080cattgtgaac gtgcctggtg agtctactct tcgccgagat ttcctgagac tgcagcagga 1140gaacaaggaa cgttccgagg ctcttcggag acaacagtta ctacaggagc aacagctccg 1200ggagcaggaa gaatataaaa ggcaactgct ggcagagaga cagaagcgga ttgagcagca 1260gaaagaacag aggcgacggc tagaagagca acaaaggaga gagcgggaag ctagaaggca 1320gcaggaacgt gaacagcgaa ggagagaaca agaagaaaag aggcgtctag aggagttgga 1380gagaaggcgc aaagaagaag aggagaggag acgggcagaa gaagaaaaga ggagagttga 1440aagagaacag gagtatatca ggcgacagct agaagaggag cagcggcact tggaagtcct 1500tcagcagcag ctgctccagg agcaggccat gttactgcat gaccatagga ggccgcaccc 1560gcagcactcg cagcagccgc caccaccgca gcaggaaagg agcaagccaa gcttccatgc 1620tcccgagccc aaagcccact acgagcctgc tgaccgagcg cgagaggttc ctgtgagaac 1680aacatctcgc tcccctgttc tgtcccgtcg agattcccca ctgcagggca gtgggcagca 1740gaatagccag gcaggacaga gaaactccac cagcagtatt gagcccaggc ttctgtggga 1800gagagtggag aagctggtgc ccagacctgg cagtggcagc tcctcagggt ccagcaactc 1860aggatcccag cccgggtctc accctgggtc tcagagtggc tccggggaac gcttcagagt 1920gagatcatca tccaagtctg aaggctctcc atctcagcgc ctggaaaatg cagtgaaaaa 1980acctgaagat aaaaaggaag ttttcagacc cctcaagcct gctggcgaag tggatctgac 2040cgcactggcc aaagagcttc gagcagtgga agatgtacgg ccacctcaca aagtaacgga 2100ctactcctca tccagtgagg agtcggggac gacggatgag gaggacgacg atgtggagca 2160ggaaggggct gacgagtcca cctcaggacc agaggacacc agagcagcgt catctctgaa 2220tttgagcaat ggtgaaacgg aatctgtgaa aaccatgatt gtccatgatg atgtagaaag 2280tgagccggcc atgaccccat ccaaggaggg cactctaatc gtccgccaga ctcagtccgc 2340tagtagcaca ctccagaaac acaaatcttc ctcctccttt acacctttta tagaccccag 2400attactacag atttctccat ctagcggaac aacagtgaca tctgtggtgg gattttcctg 2460tgatgggatg agaccagaag ccataaggca agatcctacc cggaaaggct cagtggtcaa 2520tgtgaatcct accaacacta ggccacagag tgacaccccg gagattcgta aatacaagaa 2580gaggtttaac tctgagattc tgtgtgctgc cttatgggga gtgaatttgc tagtgggtac 2640agagagtggc ctgatgctgc tggacagaag tggccaaggg aaggtctatc ctcttatcaa 2700ccgaagacga tttcaacaaa tggacgtact tgagggcttg aatgtcttgg tgacaatatc 2760tggcaaaaag gataagttac gtgtctacta tttgtcctgg ttaagaaata aaatacttca 2820caatgatcca gaagttgaga agaagcaggg atggacaacc gtaggggatt tggaaggatg 2880tgtacattat aaagttgtaa aatatgaaag aatcaaattt ctggtgattg ctttgaagag 2940ttctgtggaa gtctatgcgt gggcaccaaa gccatatcac aaatttatgg cctttaagtc 3000atttggagaa ttggtacata agccattact ggtggatctc actgttgagg aaggccagag 3060gttgaaagtg atctatggat cctgtgctgg attccatgct gttgatgtgg attcaggatc 3120agtctatgac atttatctac caacacatgt aagaaagaac ccacactcta tgatccagtg 3180tagcatcaaa ccccatgcaa tcatcatcct ccccaataca gatggaatgg agcttctggt 3240gtgctatgaa gatgaggggg tttatgtaaa cacatatgga aggatcacca aggatgtagt 3300tctacagtgg ggagagatgc ctacatcagt agcatatatt cgatccaatc agacaatggg 3360ctggggagag aaggccatag agatccgatc tgtggaaact ggtcacttgg atggtgtgtt 3420catgcacaaa agggctcaaa gactaaaatt cttgtgtgaa cgcaatgaca aggtgttctt 3480tgcctctgtt cggtctggtg gcagcagtca ggtttatttc atgaccttag gcaggacttc 3540tcttctgagc tggtagaagc agtgtgatcc agggattact ggcctccaga gtcttcaaga 3600tcctgagaac ttggaattcc ttgtaactgg agctcggagc tgcaccgagg gcaaccagga 3660cagctgtgtg tgcagacctc atgtgttggg ttctctcccc tccttcctgt tcctcttata 3720taccagttta tccccattct tttttttttt cttactccaa aataaatcaa ggctgcaatg 3780cagctggtgc tgttcagatt ctaccatcag gtgctataag tgtttgggat tgagcatcat 3840actggaaagc aaacaccttt cctccagctc cagaattcct tgtctctgaa tgactctgtc 3900ttgtgggtgt ctgacagtgg cgacgatgaa catgccgttg gttttattgg cagtgggcac 3960aaggaggtga gaagtggtgg taaaaggagc ggagtgctga agcagagagc agatttaata 4020tagtaacatt aacagtgtat ttaattgaca tttctttttt gtaatgtgac gatatgtgga 4080caaagaagaa gatgcaggtt taagaagtta atatttataa aatgtgaaag acacagttac 4140taggataact tttttgtggg tggggcttgg gagatggggt ggggtgggtt aaggggtccc 4200attttgtttc tttggatttg gggtgggggt cctggccaag aactcagtca tttttctgtg 4260taccaggttg cctaaatcat gtgcagatgg ttctaaaaaa aaaaaaaaaa aaaaaaaaaa 4320aaggaaaaaa aaaaagaaaa agaaaacgtg tgcattttgt ataatggcca gaactttgtc 4380gtgtgacagt attagcactg cctcagttaa aggtttaatt tttgtttaaa cctagacgtg 4440caacaaaagt tttaccacag tctgcacttg cagaagaaag aaaaaaattc aaaccacatg 4500tttatttttt ttttgcctac ctcattgttc ttaatgcatt gagaggtgat ttagtttata 4560tgtttttgga agaaaccatt aatgtttaat ttaatcttaa taccaaaacg accagattga 4620agtttgactt ttattgtcac aaatcagcag gcacaagaac tgtccatgaa gatgggaaat 4680agccttaagg ctgatgcagt ttacttacaa gtttagaaac cagaatgctt tgtttttacc 4740agattcacca ttagaggttg atggggcaac tgcagcccat gacacaagat ctcattgttc 4800tcgatgtaga ggggttggta gcagacaggt ggttacatta gaatagtcac acaaactgtt 4860cagtgttgca ggaacctttt cttgggggtg ggggagtttc ccttttctaa aaatgcaatg 4920cactaaaact attttaagaa tgtagttaat tctgcttatt cataaagtgg gcatcttctg 4980tgttttaggt gtaatatcga agtcctggct tttctcgttt tctcacttgc tctcttgttc 5040tctgtttttt taaaccaatt ttactttatg aatatattca tgacatttgt aataaatgtc 5100ttgagaaaga atttgtttca tggcttcatg gtcatcactc aagctcccgt aaggatatta 5160ccgtctcagg aaaggatcag gactccatgt cacagtcctg ccatcttact ttcctcttgt 5220cgagttctga gtggaaataa ctgcattatg gctgctttaa cctcagtcat caaaagaaac 5280ttgctgtttt ttaggcttga tctttttcct ttgtggttaa ttttcctgta tattgtgaaa 5340atgggggatt ttccctctgc tcccacccac ctaaacacag cagccatttg tacctgtttg 5400cttcccatcc cacttggcac ccactctgac ctcttgtcag tttcctgttc ctggttccat 5460ctttttgaaa aaggccctcc tttgagctac aaacatctgg taagacaagt acatccactc 5520atgaatgcag acacagcagc tggtggtttt gtgtatacct gtaaagacaa gctgagaagc 5580ttactttttg gggaagtaaa agaagatgga aatggatgtt tcatttgtat gagtttggag 5640cagtgctgaa ggccaaagcc gcctactggt ttgtagttaa cctagagaag gttgaaaaat 5700taatcctacc tttaaaggga tttgaggtag gctggattcc atcgccacag gactttagtt 5760agaattaaat tcctgcttgt aatttatatc catgtttagg cttttcataa gatgaaacat 5820gccacagtga acacactcgt gtacatatca agagaagaag gaaaggcaca ggtggagaac 5880agtaaaaggt gggcagatgt ctttgaagaa atgctcaatg tctgatgcta agtgggagaa 5940ggcagagaac aaaggatgtg gcataatggt cttaacatta tccaaagact tgaagctcca 6000tgtctgtaag tcaaatgtta cacaaaaaaa aatgcaaatg gtgtttcatt ggaattacca 6060agtgcttaga acttgctggc tttcccatag gtggtaaagg ggtctgagct cacaccgagt 6120tgtgcttggc ttgcttgtgc agctccaggc acccggtggg cactctggtg gtgtttgtgg 6180tgaactgaat tgaatccatt gttgggctta agttactgaa attggaacac cctttgtcct 6240tctcggcggg ggcttcctgg tctgtgcttt acttggcttt tttccttccc gtcttagcct 6300cacccccttg tcaaccagat tgagttgcta tagcttgatg cagggaccca gtgaagtttc 6360tccgttaaag attgggagtc gtcgaaatgt ttagattctt ttaggaaagg aattattttc 6420ccccctttta cagggtagta acttctccac agaagtgcca atatggcaaa attacacaag 6480aaaacagtat tgcaatgaca ccattacata aggaacattg aactgttaga ggagtgctct 6540tccaaacaaa acaaaaatgt ctctaggttt agtcagagct ttcacaagta ataacctttc 6600tgtattaaaa tcagagtaac cctttctgta ttgagtgcag tgttttttac tcttttctca 6660tgcacatgtt acgttggaga aaatgtttac aaaaatggtt ttgttacact aatgcgcacc 6720acatatttat ggtttatttt aagtgacttt ttatgggtta tttaggtttt cgtcttagtt 6780gtagcacact taccctaatt ttgccaatta ttaatttgct aaatagtaat acaaatgaca 6840aactgcatta aatttactaa ttataaaagc tgcaaagcag actggtggca agtacacagc 6900cctttttttt gcagtgctaa cttgtctact gtgtattatg aaaattactg ttgtcccccc 6960accctttttt ccttaaataa agtaaaaatg acacctaaaa aaaaaaaaaa aaaaaaaaaa 7020aaaaaaaaaa aaa 703377495DNAHomo sapiens 7cacagagcga cagagacatt tattgttatt tgttttttgg tggcaaaaag ggaaaatggc 60gaacgactcc cctgcaaaaa gtctggtgga catcgacctc tcctccctgc gggatcctgc 120tgggattttt gagctggtgg aagtggttgg aaatggcacc tatggacaag tctataaggg 180tcgacatgtt aaaacgggtc agttggcagc catcaaagtt atggatgtca ctgaggatga 240agaggaagaa atcaaactgg agataaatat gctaaagaaa tactctcatc acagaaacat 300tgcaacatat tatggtgctt tcatcaaaaa gagccctcca ggacatgatg accaactctg 360gcttgttatg gagttctgtg gggctgggtc cattacagac cttgtgaaga acaccaaagg 420gaacacactc aaagaagact ggatcgctta catctccaga gaaatcctga ggggactggc 480acatcttcac attcatcatg tgattcaccg ggatatcaag ggccagaatg tgttgctgac 540tgagaatgca gaggtgaaac ttgttgactt tggtgtgagt gctcagctgg acaggactgt 600ggggcggaga aatacgttca taggcactcc ctactggatg gctcctgagg tcatcgcctg 660tgatgagaac ccagatgcca cctatgatta cagaagtgat ctttggtctt gtggcattac 720agccattgag atggcagaag gtgctccccc tctctgtgac atgcatccaa tgagagcact 780gtttctcatt cccagaaacc ctcctccccg gctgaagtca aaaaaatggt cgaagaagtt 840ttttagtttt atagaagggt gcctggtgaa gaattacatg cagcggccct ctacagagca 900gcttttgaaa catcctttta taagggatca gccaaatgaa aggcaagtta gaatccagct 960taaggatcat atagatcgta ccaggaagaa gagaggcgag aaagatgaaa ctgagtatga 1020gtacagtggg agtgaggaag aagaggagga agtgcctgaa caggaaggag agccaagttc 1080cattgtgaac gtgcctggtg agtctactct tcgccgagat ttcctgagac tgcagcagga 1140gaacaaggaa cgttccgagg ctcttcggag acaacagtta ctacaggagc aacagctccg 1200ggagcaggaa gaatataaaa ggcaactgct ggcagagaga cagaagcgga ttgagcagca 1260gaaagaacag aggcgacggc tagaagagca acaaaggaga gagcgggaag ctagaaggca 1320gcaggaacgt gaacagcgaa ggagagaaca agaagaaaag aggcgtctag aggagttgga 1380gagaaggcgc aaagaagaag aggagaggag acgggcagaa gaagaaaaga ggagagttga 1440aagagaacag gagtatatca ggcgacagct agaagaggag cagcggcact tggaagtcct 1500tcagcagcag ctgctccagg agcaggccat gttactggag tgccgatggc gggagatgga 1560ggagcaccgg caggcagaga ggctccagag gcagttgcaa caagaacaag catatctcct 1620gtctctacag catgaccata ggaggccgca cccgcagcac tcgcagcagc cgccaccacc 1680gcagcaggaa aggagcaagc caagcttcca tgctcccgag cccaaagccc actacgagcc 1740tgctgaccga gcgcgagagg tggaagatag atttaggaaa actaaccaca gctcccctga 1800agcccagtct aagcagacag gcagagtatt ggagccacca gtgccttccc gatcagagtc 1860tttttccaat ggcaactccg agtctgtgca tcccgccctg cagagaccag cggagccaca 1920ggtacagtgg tcccacctgg catctctcaa gaacaatgtt tcccctgtct cgcgatccca 1980ttccttcagt gacccttctc ccaaatttgc acaccaccat cttcgttctc aggacccatg 2040tccaccttcc cgcagtgagg tgctcagtca gagctctgac tctaagtcag aggcgcctga 2100ccctacccaa aaggcttggt ctagatcaga cagtgacgag gtgcctccaa gggttcctgt 2160gagaacaaca tctcgctccc ctgttctgtc ccgtcgagat

tccccactgc agggcagtgg 2220gcagcagaat agccaggcag gacagagaaa ctccaccagc agtattgagc ccaggcttct 2280gtgggagaga gtggagaagc tggtgcccag acctggcagt ggcagctcct cagggtccag 2340caactcagga tcccagcccg ggtctcaccc tgggtctcag agtggctccg gggaacgctt 2400cagagtgaga tcatcatcca agtctgaagg ctctccatct cagcgcctgg aaaatgcagt 2460gaaaaaacct gaagataaaa aggaagtttt cagacccctc aagcctgctg gcgaagtgga 2520tctgaccgca ctggccaaag agcttcgagc agtggaagat gtacggccac ctcacaaagt 2580aacggactac tcctcatcca gtgaggagtc ggggacgacg gatgaggagg acgacgatgt 2640ggagcaggaa ggggctgacg agtccacctc aggaccagag gacaccagag cagcgtcatc 2700tctgaatttg agcaatggtg aaacggaatc tgtgaaaacc atgattgtcc atgatgatgt 2760agaaagtgag ccggccatga ccccatccaa ggagggcact ctaatcgtcc gccagactca 2820gtccgctagt agcacactcc agaaacacaa atcttcctcc tcctttacac cttttataga 2880ccccagatta ctacagattt ctccatctag cggaacaaca gtgacatctg tggtgggatt 2940ttcctgtgat gggatgagac cagaagccat aaggcaagat cctacccgga aaggctcagt 3000ggtcaatgtg aatcctacca acactaggcc acagagtgac accccggaga ttcgtaaata 3060caagaagagg tttaactctg agattctgtg tgctgcctta tggggagtga atttgctagt 3120gggtacagag agtggcctga tgctgctgga cagaagtggc caagggaagg tctatcctct 3180tatcaaccga agacgatttc aacaaatgga cgtacttgag ggcttgaatg tcttggtgac 3240aatatctggc aaaaaggata agttacgtgt ctactatttg tcctggttaa gaaataaaat 3300acttcacaat gatccagaag ttgagaagaa gcagggatgg acaaccgtag gggatttgga 3360aggatgtgta cattataaag ttgtaaaata tgaaagaatc aaatttctgg tgattgcttt 3420gaagagttct gtggaagtct atgcgtgggc accaaagcca tatcacaaat ttatggcctt 3480taagtcattt ggagaattgg tacataagcc attactggtg gatctcactg ttgaggaagg 3540ccagaggttg aaagtgatct atggatcctg tgctggattc catgctgttg atgtggattc 3600aggatcagtc tatgacattt atctaccaac acatatccag tgtagcatca aaccccatgc 3660aatcatcatc ctccccaata cagatggaat ggagcttctg gtgtgctatg aagatgaggg 3720ggtttatgta aacacatatg gaaggatcac caaggatgta gttctacagt ggggagagat 3780gcctacatca gtagcatata ttcgatccaa tcagacaatg ggctggggag agaaggccat 3840agagatccga tctgtggaaa ctggtcactt ggatggtgtg ttcatgcaca aaagggctca 3900aagactaaaa ttcttgtgtg aacgcaatga caaggtgttc tttgcctctg ttcggtctgg 3960tggcagcagt caggtttatt tcatgacctt aggcaggact tctcttctga gctggtagaa 4020gcagtgtgat ccagggatta ctggcctcca gagtcttcaa gatcctgaga acttggaatt 4080ccttgtaact ggagctcgga gctgcaccga gggcaaccag gacagctgtg tgtgcagacc 4140tcatgtgttg ggttctctcc cctccttcct gttcctctta tataccagtt tatccccatt 4200cttttttttt ttcttactcc aaaataaatc aaggctgcaa tgcagctggt gctgttcaga 4260ttctaccatc aggtgctata agtgtttggg attgagcatc atactggaaa gcaaacacct 4320ttcctccagc tccagaattc cttgtctctg aatgactctg tcttgtgggt gtctgacagt 4380ggcgacgatg aacatgccgt tggttttatt ggcagtgggc acaaggaggt gagaagtggt 4440ggtaaaagga gcggagtgct gaagcagaga gcagatttaa tatagtaaca ttaacagtgt 4500atttaattga catttctttt ttgtaatgtg acgatatgtg gacaaagaag aagatgcagg 4560tttaagaagt taatatttat aaaatgtgaa agacacagtt actaggataa cttttttgtg 4620ggtggggctt gggagatggg gtggggtggg ttaaggggtc ccattttgtt tctttggatt 4680tggggtgggg gtcctggcca agaactcagt catttttctg tgtaccaggt tgcctaaatc 4740atgtgcagat ggttctaaaa aaaaaaaaaa aaaaaaaaaa aaaaggaaaa aaaaaaagaa 4800aaagaaaacg tgtgcatttt gtataatggc cagaactttg tcgtgtgaca gtattagcac 4860tgcctcagtt aaaggtttaa tttttgttta aacctagacg tgcaacaaaa gttttaccac 4920agtctgcact tgcagaagaa agaaaaaaat tcaaaccaca tgtttatttt ttttttgcct 4980acctcattgt tcttaatgca ttgagaggtg atttagttta tatgtttttg gaagaaacca 5040ttaatgttta atttaatctt aataccaaaa cgaccagatt gaagtttgac ttttattgtc 5100acaaatcagc aggcacaaga actgtccatg aagatgggaa atagccttaa ggctgatgca 5160gtttacttac aagtttagaa accagaatgc tttgttttta ccagattcac cattagaggt 5220tgatggggca actgcagccc atgacacaag atctcattgt tctcgatgta gaggggttgg 5280tagcagacag gtggttacat tagaatagtc acacaaactg ttcagtgttg caggaacctt 5340ttcttggggg tgggggagtt tcccttttct aaaaatgcaa tgcactaaaa ctattttaag 5400aatgtagtta attctgctta ttcataaagt gggcatcttc tgtgttttag gtgtaatatc 5460gaagtcctgg cttttctcgt tttctcactt gctctcttgt tctctgtttt tttaaaccaa 5520ttttacttta tgaatatatt catgacattt gtaataaatg tcttgagaaa gaatttgttt 5580catggcttca tggtcatcac tcaagctccc gtaaggatat taccgtctca ggaaaggatc 5640aggactccat gtcacagtcc tgccatctta ctttcctctt gtcgagttct gagtggaaat 5700aactgcatta tggctgcttt aacctcagtc atcaaaagaa acttgctgtt ttttaggctt 5760gatctttttc ctttgtggtt aattttcctg tatattgtga aaatggggga ttttccctct 5820gctcccaccc acctaaacac agcagccatt tgtacctgtt tgcttcccat cccacttggc 5880acccactctg acctcttgtc agtttcctgt tcctggttcc atctttttga aaaaggccct 5940cctttgagct acaaacatct ggtaagacaa gtacatccac tcatgaatgc agacacagca 6000gctggtggtt ttgtgtatac ctgtaaagac aagctgagaa gcttactttt tggggaagta 6060aaagaagatg gaaatggatg tttcatttgt atgagtttgg agcagtgctg aaggccaaag 6120ccgcctactg gtttgtagtt aacctagaga aggttgaaaa attaatccta cctttaaagg 6180gatttgaggt aggctggatt ccatcgccac aggactttag ttagaattaa attcctgctt 6240gtaatttata tccatgttta ggcttttcat aagatgaaac atgccacagt gaacacactc 6300gtgtacatat caagagaaga aggaaaggca caggtggaga acagtaaaag gtgggcagat 6360gtctttgaag aaatgctcaa tgtctgatgc taagtgggag aaggcagaga acaaaggatg 6420tggcataatg gtcttaacat tatccaaaga cttgaagctc catgtctgta agtcaaatgt 6480tacacaaaaa aaaatgcaaa tggtgtttca ttggaattac caagtgctta gaacttgctg 6540gctttcccat aggtggtaaa ggggtctgag ctcacaccga gttgtgcttg gcttgcttgt 6600gcagctccag gcacccggtg ggcactctgg tggtgtttgt ggtgaactga attgaatcca 6660ttgttgggct taagttactg aaattggaac accctttgtc cttctcggcg ggggcttcct 6720ggtctgtgct ttacttggct tttttccttc ccgtcttagc ctcaccccct tgtcaaccag 6780attgagttgc tatagcttga tgcagggacc cagtgaagtt tctccgttaa agattgggag 6840tcgtcgaaat gtttagattc ttttaggaaa ggaattattt tccccccttt tacagggtag 6900taacttctcc acagaagtgc caatatggca aaattacaca agaaaacagt attgcaatga 6960caccattaca taaggaacat tgaactgtta gaggagtgct cttccaaaca aaacaaaaat 7020gtctctaggt ttagtcagag ctttcacaag taataacctt tctgtattaa aatcagagta 7080accctttctg tattgagtgc agtgtttttt actcttttct catgcacatg ttacgttgga 7140gaaaatgttt acaaaaatgg ttttgttaca ctaatgcgca ccacatattt atggtttatt 7200ttaagtgact ttttatgggt tatttaggtt ttcgtcttag ttgtagcaca cttaccctaa 7260ttttgccaat tattaatttg ctaaatagta atacaaatga caaactgcat taaatttact 7320aattataaaa gctgcaaagc agactggtgg caagtacaca gccctttttt ttgcagtgct 7380aacttgtcta ctgtgtatta tgaaaattac tgttgtcccc ccaccctttt ttccttaaat 7440aaagtaaaaa tgacacctaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 749587171DNAHomo sapiens 8cacagagcga cagagacatt tattgttatt tgttttttgg tggcaaaaag ggaaaatggc 60gaacgactcc cctgcaaaaa gtctggtgga catcgacctc tcctccctgc gggatcctgc 120tgggattttt gagctggtgg aagtggttgg aaatggcacc tatggacaag tctataaggg 180tcgacatgtt aaaacgggtc agttggcagc catcaaagtt atggatgtca ctgaggatga 240agaggaagaa atcaaactgg agataaatat gctaaagaaa tactctcatc acagaaacat 300tgcaacatat tatggtgctt tcatcaaaaa gagccctcca ggacatgatg accaactctg 360gcttgttatg gagttctgtg gggctgggtc cattacagac cttgtgaaga acaccaaagg 420gaacacactc aaagaagact ggatcgctta catctccaga gaaatcctga ggggactggc 480acatcttcac attcatcatg tgattcaccg ggatatcaag ggccagaatg tgttgctgac 540tgagaatgca gaggtgaaac ttgttgactt tggtgtgagt gctcagctgg acaggactgt 600ggggcggaga aatacgttca taggcactcc ctactggatg gctcctgagg tcatcgcctg 660tgatgagaac ccagatgcca cctatgatta cagaagtgat ctttggtctt gtggcattac 720agccattgag atggcagaag gtgctccccc tctctgtgac atgcatccaa tgagagcact 780gtttctcatt cccagaaacc ctcctccccg gctgaagtca aaaaaatggt cgaagaagtt 840ttttagtttt atagaagggt gcctggtgaa gaattacatg cagcggccct ctacagagca 900gcttttgaaa catcctttta taagggatca gccaaatgaa aggcaagtta gaatccagct 960taaggatcat atagatcgta ccaggaagaa gagaggcgag aaagatgaaa ctgagtatga 1020gtacagtggg agtgaggaag aagaggagga agtgcctgaa caggaaggag agccaagttc 1080cattgtgaac gtgcctggtg agtctactct tcgccgagat ttcctgagac tgcagcagga 1140gaacaaggaa cgttccgagg ctcttcggag acaacagtta ctacaggagc aacagctccg 1200ggagcaggaa gaatataaaa ggcaactgct ggcagagaga cagaagcgga ttgagcagca 1260gaaagaacag aggcgacggc tagaagagca acaaaggaga gagcgggaag ctagaaggca 1320gcaggaacgt gaacagcgaa ggagagaaca agaagaaaag aggcgtctag aggagttgga 1380gagaaggcgc aaagaagaag aggagaggag acgggcagaa gaagaaaaga ggagagttga 1440aagagaacag gagtatatca ggcgacagct agaagaggag cagcggcact tggaagtcct 1500tcagcagcag ctgctccagg agcaggccat gttactgcat gaccatagga ggccgcaccc 1560gcagcactcg cagcagccgc caccaccgca gcaggaaagg agcaagccaa gcttccatgc 1620tcccgagccc aaagcccact acgagcctgc tgaccgagcg cgagaggtgg aagatagatt 1680taggaaaact aaccacagct cccctgaagc ccagtctaag cagacaggca gagtattgga 1740gccaccagtg ccttcccgat cagagtcttt ttccaatggc aactccgagt ctgtgcatcc 1800cgccctgcag agaccagcgg agccacaggt tcctgtgaga acaacatctc gctcccctgt 1860tctgtcccgt cgagattccc cactgcaggg cagtgggcag cagaatagcc aggcaggaca 1920gagaaactcc accagcagta ttgagcccag gcttctgtgg gagagagtgg agaagctggt 1980gcccagacct ggcagtggca gctcctcagg gtccagcaac tcaggatccc agcccgggtc 2040tcaccctggg tctcagagtg gctccgggga acgcttcaga gtgagatcat catccaagtc 2100tgaaggctct ccatctcagc gcctggaaaa tgcagtgaaa aaacctgaag ataaaaagga 2160agttttcaga cccctcaagc ctgctggcga agtggatctg accgcactgg ccaaagagct 2220tcgagcagtg gaagatgtac ggccacctca caaagtaacg gactactcct catccagtga 2280ggagtcgggg acgacggatg aggaggacga cgatgtggag caggaagggg ctgacgagtc 2340cacctcagga ccagaggaca ccagagcagc gtcatctctg aatttgagca atggtgaaac 2400ggaatctgtg aaaaccatga ttgtccatga tgatgtagaa agtgagccgg ccatgacccc 2460atccaaggag ggcactctaa tcgtccgcca gactcagtcc gctagtagca cactccagaa 2520acacaaatct tcctcctcct ttacaccttt tatagacccc agattactac agatttctcc 2580atctagcgga acaacagtga catctgtggt gggattttcc tgtgatggga tgagaccaga 2640agccataagg caagatccta cccggaaagg ctcagtggtc aatgtgaatc ctaccaacac 2700taggccacag agtgacaccc cggagattcg taaatacaag aagaggttta actctgagat 2760tctgtgtgct gccttatggg gagtgaattt gctagtgggt acagagagtg gcctgatgct 2820gctggacaga agtggccaag ggaaggtcta tcctcttatc aaccgaagac gatttcaaca 2880aatggacgta cttgagggct tgaatgtctt ggtgacaata tctggcaaaa aggataagtt 2940acgtgtctac tatttgtcct ggttaagaaa taaaatactt cacaatgatc cagaagttga 3000gaagaagcag ggatggacaa ccgtagggga tttggaagga tgtgtacatt ataaagttgt 3060aaaatatgaa agaatcaaat ttctggtgat tgctttgaag agttctgtgg aagtctatgc 3120gtgggcacca aagccatatc acaaatttat ggcctttaag tcatttggag aattggtaca 3180taagccatta ctggtggatc tcactgttga ggaaggccag aggttgaaag tgatctatgg 3240atcctgtgct ggattccatg ctgttgatgt ggattcagga tcagtctatg acatttatct 3300accaacacat atccagtgta gcatcaaacc ccatgcaatc atcatcctcc ccaatacaga 3360tggaatggag cttctggtgt gctatgaaga tgagggggtt tatgtaaaca catatggaag 3420gatcaccaag gatgtagttc tacagtgggg agagatgcct acatcagtag catatattcg 3480atccaatcag acaatgggct ggggagagaa ggccatagag atccgatctg tggaaactgg 3540tcacttggat ggtgtgttca tgcacaaaag ggctcaaaga ctaaaattct tgtgtgaacg 3600caatgacaag gtgttctttg cctctgttcg gtctggtggc agcagtcagg tttatttcat 3660gaccttaggc aggacttctc ttctgagctg gtagaagcag tgtgatccag ggattactgg 3720cctccagagt cttcaagatc ctgagaactt ggaattcctt gtaactggag ctcggagctg 3780caccgagggc aaccaggaca gctgtgtgtg cagacctcat gtgttgggtt ctctcccctc 3840cttcctgttc ctcttatata ccagtttatc cccattcttt ttttttttct tactccaaaa 3900taaatcaagg ctgcaatgca gctggtgctg ttcagattct accatcaggt gctataagtg 3960tttgggattg agcatcatac tggaaagcaa acacctttcc tccagctcca gaattccttg 4020tctctgaatg actctgtctt gtgggtgtct gacagtggcg acgatgaaca tgccgttggt 4080tttattggca gtgggcacaa ggaggtgaga agtggtggta aaaggagcgg agtgctgaag 4140cagagagcag atttaatata gtaacattaa cagtgtattt aattgacatt tcttttttgt 4200aatgtgacga tatgtggaca aagaagaaga tgcaggttta agaagttaat atttataaaa 4260tgtgaaagac acagttacta ggataacttt tttgtgggtg gggcttggga gatggggtgg 4320ggtgggttaa ggggtcccat tttgtttctt tggatttggg gtgggggtcc tggccaagaa 4380ctcagtcatt tttctgtgta ccaggttgcc taaatcatgt gcagatggtt ctaaaaaaaa 4440aaaaaaaaaa aaaaaaaaaa ggaaaaaaaa aaagaaaaag aaaacgtgtg cattttgtat 4500aatggccaga actttgtcgt gtgacagtat tagcactgcc tcagttaaag gtttaatttt 4560tgtttaaacc tagacgtgca acaaaagttt taccacagtc tgcacttgca gaagaaagaa 4620aaaaattcaa accacatgtt tatttttttt ttgcctacct cattgttctt aatgcattga 4680gaggtgattt agtttatatg tttttggaag aaaccattaa tgtttaattt aatcttaata 4740ccaaaacgac cagattgaag tttgactttt attgtcacaa atcagcaggc acaagaactg 4800tccatgaaga tgggaaatag ccttaaggct gatgcagttt acttacaagt ttagaaacca 4860gaatgctttg tttttaccag attcaccatt agaggttgat ggggcaactg cagcccatga 4920cacaagatct cattgttctc gatgtagagg ggttggtagc agacaggtgg ttacattaga 4980atagtcacac aaactgttca gtgttgcagg aaccttttct tgggggtggg ggagtttccc 5040ttttctaaaa atgcaatgca ctaaaactat tttaagaatg tagttaattc tgcttattca 5100taaagtgggc atcttctgtg ttttaggtgt aatatcgaag tcctggcttt tctcgttttc 5160tcacttgctc tcttgttctc tgttttttta aaccaatttt actttatgaa tatattcatg 5220acatttgtaa taaatgtctt gagaaagaat ttgtttcatg gcttcatggt catcactcaa 5280gctcccgtaa ggatattacc gtctcaggaa aggatcagga ctccatgtca cagtcctgcc 5340atcttacttt cctcttgtcg agttctgagt ggaaataact gcattatggc tgctttaacc 5400tcagtcatca aaagaaactt gctgtttttt aggcttgatc tttttccttt gtggttaatt 5460ttcctgtata ttgtgaaaat gggggatttt ccctctgctc ccacccacct aaacacagca 5520gccatttgta cctgtttgct tcccatccca cttggcaccc actctgacct cttgtcagtt 5580tcctgttcct ggttccatct ttttgaaaaa ggccctcctt tgagctacaa acatctggta 5640agacaagtac atccactcat gaatgcagac acagcagctg gtggttttgt gtatacctgt 5700aaagacaagc tgagaagctt actttttggg gaagtaaaag aagatggaaa tggatgtttc 5760atttgtatga gtttggagca gtgctgaagg ccaaagccgc ctactggttt gtagttaacc 5820tagagaaggt tgaaaaatta atcctacctt taaagggatt tgaggtaggc tggattccat 5880cgccacagga ctttagttag aattaaattc ctgcttgtaa tttatatcca tgtttaggct 5940tttcataaga tgaaacatgc cacagtgaac acactcgtgt acatatcaag agaagaagga 6000aaggcacagg tggagaacag taaaaggtgg gcagatgtct ttgaagaaat gctcaatgtc 6060tgatgctaag tgggagaagg cagagaacaa aggatgtggc ataatggtct taacattatc 6120caaagacttg aagctccatg tctgtaagtc aaatgttaca caaaaaaaaa tgcaaatggt 6180gtttcattgg aattaccaag tgcttagaac ttgctggctt tcccataggt ggtaaagggg 6240tctgagctca caccgagttg tgcttggctt gcttgtgcag ctccaggcac ccggtgggca 6300ctctggtggt gtttgtggtg aactgaattg aatccattgt tgggcttaag ttactgaaat 6360tggaacaccc tttgtccttc tcggcggggg cttcctggtc tgtgctttac ttggcttttt 6420tccttcccgt cttagcctca cccccttgtc aaccagattg agttgctata gcttgatgca 6480gggacccagt gaagtttctc cgttaaagat tgggagtcgt cgaaatgttt agattctttt 6540aggaaaggaa ttattttccc cccttttaca gggtagtaac ttctccacag aagtgccaat 6600atggcaaaat tacacaagaa aacagtattg caatgacacc attacataag gaacattgaa 6660ctgttagagg agtgctcttc caaacaaaac aaaaatgtct ctaggtttag tcagagcttt 6720cacaagtaat aacctttctg tattaaaatc agagtaaccc tttctgtatt gagtgcagtg 6780ttttttactc ttttctcatg cacatgttac gttggagaaa atgtttacaa aaatggtttt 6840gttacactaa tgcgcaccac atatttatgg tttattttaa gtgacttttt atgggttatt 6900taggttttcg tcttagttgt agcacactta ccctaatttt gccaattatt aatttgctaa 6960atagtaatac aaatgacaaa ctgcattaaa tttactaatt ataaaagctg caaagcagac 7020tggtggcaag tacacagccc ttttttttgc agtgctaact tgtctactgt gtattatgaa 7080aattactgtt gtccccccac ccttttttcc ttaaataaag taaaaatgac acctaaaaaa 7140aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 717194837DNAHomo sapiens 9cgaggagagt accgggccgg cccggctgcc gcgcgaggag cgcggtcggc ggcctggtct 60gcggctgaga tacacagagc gacagagaca tttattgtta tttgtttttt ggtggcaaaa 120agggaaaatg gcgaacgact cccctgcaaa aagtctggtg gacatcgacc tctcctccct 180gcgggatcct gctgggattt ttgagctggt ggaagtggtt ggaaatggca cctatggaca 240agtctataag ggtcgacatg ttaaaacggg tcagttggca gccatcaaag ttatggatgt 300cactgaggat gaagaggaag aaatcaaact ggagataaat atgctaaaga aatactctca 360tcacagaaac attgcaacat attatggtgc tttcatcaaa aagagccctc caggacatga 420tgaccaactc tggcttgtta tggagttctg tggggctggg tccattacag accttgtgaa 480gaacaccaaa gggaacacac tcaaagaaga ctggatcgct tacatctcca gagaaatcct 540gaggggactg gcacatcttc acattcatca tgtgattcac cgggatatca agggccagaa 600tgtgttgctg actgagaatg cagaggtgaa acttgttgac tttggtgtga gtgctcagct 660ggacaggact gtggggcgga gaaatacgtt cataggcact ccctactgga tggctcctga 720ggtcatcgcc tgtgatgaga acccagatgc cacctatgat tacagaagtg atctttggtc 780ttgtggcatt acagccattg agatggcaga aggtgctccc cctctctgtg acatgcatcc 840aatgagagca ctgtttctca ttcccagaaa ccctcctccc cggctgaagt caaaaaaatg 900gtcgaagaag ttttttagtt ttatagaagg gtgcctggtg aagaattaca tgcagcggcc 960ctctacagag cagcttttga aacatccttt tataagggat cagccaaatg aaaggcaagt 1020tagaatccag cttaaggatc atatagatcg taccaggaag aagagaggcg agaaagatga 1080aactgagtat gagtacagtg ggagtgagga agaagaggag gaagtgcctg aacaggaagg 1140agagccaagt tccattgtga acgtgcctgg tgagtctact cttcgccgag atttcctgag 1200actgcagcag gagaacaagg aacgttccga ggctcttcgg agacaacagt tactacagga 1260gcaacagctc cgggagcagg aagaatataa aaggcaactg ctggcagaga gacagaagcg 1320gattgagcag cagaaagaac agaggcgacg gctagaagag caacaaagga gagagcggga 1380agctagaagg cagcaggaac gtgaacagcg aaggagagaa caagaagaaa agaggcgtct 1440agaggagttg gagagaaggc gcaaagaaga agaggagagg agacgggcag aagaagaaaa 1500gaggagagtt gaaagagaac aggagtatat caggcgacag ctagaagagg agcagcggca 1560cttggaagtc cttcagcagc agctgctcca ggagcaggcc atgttactgg agtgccgatg 1620gcgggagatg gaggagcacc ggcaggcaga gaggctccag aggcagttgc aacaagaaca 1680agcatatctc ctgtctctac agcatgacca taggaggccg cacccgcagc actcgcagca 1740gccgccacca ccgcagcagg aaaggagcaa gccaagcttc catgctcccg agcccaaagc 1800ccactacgag cctgctgacc gagcgcgaga ggtggaagat agatttagga aaactaacca 1860cagctcccct gaagcccagt ctaagcagac aggcagagta ttggagccac cagtgccttc 1920ccgatcagag tctttttcca atggcaactc cgagtctgtg catcccgccc tgcagagacc 1980agcggagcca caggtacagt ggtcccacct ggcatctctc aagaacaatg tttcccctgt 2040ctcgcgatcc cattccttca gtgacccttc tcccaaattt gcacaccacc atcttcgttc 2100tcaggaccca tgtccacctt cccgcagtga ggtgctcagt cagagctctg actctaagtc 2160agaggcgcct gaccctaccc aaaaggcttg gtctagatca gacagtgacg aggtgcctcc 2220aagggttcct gtgagaacaa catctcgctc ccctgttctg tcccgtcgag attccccact 2280gcagggcagt gggcagcaga atagccaggc aggacagaga aactccacca gcagtattga 2340gcccaggctt ctgtgggaga gagtggagaa gctggtgccc agacctggca gtggcagctc 2400ctcagggtcc agcaactcag gatcccagcc cgggtctcac cctgggtctc agagtggctc 2460cggggaacgc ttcagagtga gatcatcatc caagtctgaa ggctctccat ctcagcgcct

2520ggaaaatgca gtgaaaaaac ctgaagataa aaaggaagtt ttcagacccc tcaagcctgc 2580tggcgaagtg gatctgaccg cactggccaa agagcttcga gcagtggaag atgtacggcc 2640acctcacaaa gtaacggact actcctcatc cagtgaggag tcggggacga cggatgagga 2700ggacgacgat gtggagcagg aaggggctga cgagtccacc tcaggaccag aggacaccag 2760agcagcgtca tctctgaatt tgagcaatgg tgaaacggaa tctgtgaaaa ccatgattgt 2820ccatgatgat gtagaaagtg agccggccat gaccccatcc aaggagggca ctctaatcgt 2880ccgccagagt acagttgacc aaaagcgtgc cagccatcat gagagcaatg gctttgccgg 2940tcgcattcac ctcttgccag atctcttaca gcaaagccat tcctcctcca cttcctccac 3000ctcctcctcc ccatcctcca gccagccgac acccaccatg tccccacaga caccccagga 3060caagctcact gctaatgaga ctcagtccgc tagtagcaca ctccagaaac acaaatcttc 3120ctcctccttt acacctttta tagaccccag attactacag atttctccat ctagcggaac 3180aacagtgaca tctgtggtgg gattttcctg tgatgggatg agaccagaag ccataaggca 3240agatcctacc cggaaaggct cagtggtcaa tgtgaatcct accaacacta ggccacagag 3300tgacaccccg gagattcgta aatacaagaa gaggtttaac tctgagattc tgtgtgctgc 3360cttatgggga gtgaatttgc tagtgggtac agagagtggc ctgatgctgc tggacagaag 3420tggccaaggg aaggtctatc ctcttatcaa ccgaagacga tttcaacaaa tggacgtact 3480tgagggcttg aatgtcttgg tgacaatatc tggcaaaaag gataagttac gtgtctacta 3540tttgtcctgg ttaagaaata aaatacttca caatgatcca gaagttgaga agaagcaggg 3600atggacaacc gtaggggatt tggaaggatg tgtacattat aaagttgtaa aatatgaaag 3660aatcaaattt ctggtgattg ctttgaagag ttctgtggaa gtctatgcgt gggcaccaaa 3720gccatatcac aaatttatgg cctttaagtc atttggagaa ttggtacata agccattact 3780ggtggatctc actgttgagg aaggccagag gttgaaagtg atctatggat cctgtgctgg 3840attccatgct gttgatgtgg attcaggatc agtctatgac atttatctac caacacatgt 3900aagaaagaac ccacactcta tgatccagtg tagcatcaaa ccccatgcaa tcatcatcct 3960ccccaataca gatggaatgg agcttctggt gtgctatgaa gatgaggggg tttatgtaaa 4020cacatatgga aggatcacca aggatgtagt tctacagtgg ggagagatgc ctacatcagt 4080agcatatatt cgatccaatc agacaatggg ctggggagag aaggccatag agatccgatc 4140tgtggaaact ggtcacttgg atggtgtgtt catgcacaaa agggctcaaa gactaaaatt 4200cttgtgtgaa cgcaatgaca aggtgttctt tgcctctgtt cggtctggtg gcagcagtca 4260ggtttatttc atgaccttag gcaggacttc tcttctgagc tggtagaagc agtgtgatcc 4320agggattact ggcctccaga gtcttcaaga tcctgagaac ttggaattcc ttgtaactgg 4380agctcggagc tgcaccgagg gcaaccagga cagctgtgtg tgcagacctc atgtgttggg 4440ttctctcccc tccttcctgt tcctcttata taccagttta tccccattct tttttttttt 4500cttactccaa aataaatcaa ggctgcaatg cagctggtgc tgttcagatt ctaccatcag 4560gtgctataag tgtttgggat tgagcatcat actggaaagc aaacaccttt cctccagctc 4620cagaattcct tgtctctgaa tgactctgtc ttgtgggtgt ctgacagtgg cgacgatgaa 4680catgccgttg gttttattgg cagtgggcac aaggaggtga gaagtggtgg taaaagaagc 4740agagtgctga agcagagagc agatttaata tagtaacatt aacagtgtat ttaattgaca 4800tttctttttt gtaaacctga cgagatgtgg acaaaga 4837102429DNAHomo sapiens 10ccggcggggg cgccgcggag agcggagggc gccgggctgc ggaacgcgaa gcggagggcg 60cgggaccctg cacgccgccc gcgggcccat gtgagcgcca tgcggcgccg cgcagcccgg 120ggacccggcc cgccgccccc agggcccgga ctctcgcggc tgccgctgcc gctgctgctg 180ctgctggcgc tggggacccg cgggggctgc gccgcgcccg cacccgcgcc gcgcgccgag 240gacctcagcc tgggagtgga gtggctaagc aggttcggtt acctgccccc ggctgacccc 300acaacagggc agctgcagac gcaagaggag ctgtctaagg ccatcacagc catgcagcag 360tttggtggcc tggaggccac cggcatcctg gacgaggcca ccctggccct gatgaaaacc 420ccacgctgct ccctgccaga cctccctgtc ctgacccagg ctcgcaggag acgccaggct 480ccagccccca ccaagtggaa caagaggaac ctgtcgtgga gggtccggac gttcccacgg 540gactcaccac tggggcacga cacggtgcgt gcactcatgt actacgccct caaggtctgg 600agcgacattg cgcccctgaa cttccacgag gtggcgggca gcgccgccga catccagatc 660gacttctcca aggccgacca taacgacggc taccccttcg acggccccgg cggcaccgtg 720gcccacgcct tcttccccgg ccaccaccac accgccgggg acacccactt tgacgatgac 780gaggcctgga ccttccgctc ctcggatgcc cacgggatgg acctgtttgc agtggctgtc 840cacgagtttg gccacgccat tgggttaagc catgtggccg ctgcacactc catcatgcgg 900ccgtactacc agggcccggt gggtgacccg ctgcgctacg ggctccccta cgaggacaag 960gtgcgcgtct ggcagctgta cggtgtgcgg gagtctgtgt ctcccacggc gcagcccgag 1020gagcctcccc tgctgccgga gcccccagac aaccggtcca gcgccccgcc caggaaggac 1080gtgccccaca gatgcagcac tcactttgac gcggtggccc agatccgggg tgaagctttc 1140ttcttcaaag gcaagtactt ctggcggctg acgcgggacc ggcacctggt gtccctgcag 1200ccggcacaga tgcaccgctt ctggcggggc ctgccgctgc acctggacag cgtggacgcc 1260gtgtacgagc gcaccagcga ccacaagatc gtcttcttta aaggagacag gtactgggtg 1320ttcaaggaca ataacgtaga ggaaggatac ccgcgccccg tctccgactt cagcctcccg 1380cctggcggca tcgacgctgc cttctcctgg gcccacaatg acaggactta tttctttaag 1440gaccagctgt actggcgcta cgatgaccac acgaggcaca tggaccccgg ctaccccgcc 1500cagagccccc tgtggagggg tgtccccagc acgctggacg acgccatgcg ctggtccgac 1560ggtgcctcct acttcttccg tggccaggag tactggaaag tgctggatgg cgagctggag 1620gtggcacccg ggtacccaca gtccacggcc cgggactggc tggtgtgtgg agactcacag 1680gccgatggat ctgtggctgc gggcgtggac gcggcagagg ggccccgcgc ccctccagga 1740caacatgacc agagccgctc ggaggacggt tacgaggtct gctcatgcac ctctggggca 1800tcctctcccc cgggggcccc aggcccactg gtggctgcca ccatgctgct gctgctgccg 1860ccactgtcac caggcgccct gtggacagcg gcccaggccc tgacgctatg acacacagcg 1920cgagcccatg agaggacaga ggcggtggga cagcctggcc acagagggca aggactgtgc 1980cggagtccct gggggaggtg ctggcgcggg atgaggacgg gccaccctgg caccggaagg 2040ccagcagagg gcactgcccg ccagggctgg gcaggctcag gtggcaagga cggagctgtc 2100ccctagtgag ggactgtgtt gactgacgag ccgaggggtg gccgctccag aagggtgccc 2160agtcaggccg caccgccgcc agcctcctcc ggccctggag ggagcatctc gggctggggg 2220cccacccctc tctgtgccgg cgccaccaac cccacccaca ctgctgcctg gtgctcccgc 2280cggcccacag ggcctccgtc cccaggtccc cagtggggca gccctcccca cagacgagcc 2340ccccacatgg tgccgcggca cgtcccccct gtgacgcgtt ccagaccaac atgacctctc 2400cctgctttgt aaaaaaaaaa aaaaaaaaa 2429111699DNAHomo sapiens 11gctggcccag gtgagcgggc gcgctggtcc aggtgagcgg gcgcgtcccc gcgacggcgc 60tgcctgcccg aggcggttca cgtaaagaca gcgagatcct gagggccagc cgggaaggag 120gcgtggatat ggagctggct gctgccaagt ccggggcccg cgccgctgcc tagcgcgtcc 180tggggactct gtggggacgc gccccgcgcc gcggctcggg gacccgtaga gcccggcgct 240gcgcgcatgg ccctgctctc gcgccccgcg ctcaccctcc tgctcctcct catggccgct 300gttgtcaggt gccaggagca ggcccagacc accgactgga gagccaccct gaagaccatc 360cggaacggcg ttcataagat agacacgtac ctgaacgccg ccttggacct cctgggaggc 420gaggacggtc tctgccagta taaatgcagt gacggatcta agcctttccc acgttatggt 480tataaaccct ccccaccgaa tggatgtggc tctccactgt ttggtgttca tcttaacatt 540ggtatccctt ccctgacaaa gtgttgcaac caacacgaca ggtgctatga gacctgtggc 600aaaagcaaga atgactgtga tgaagaattc cagtattgcc tctccaagat ctgccgagat 660gtacagaaaa cactaggact aactcagcat gttcaggcat gtgaaacaac agtggagctc 720ttgtttgaca gtgttataca tttaggttgt aaaccatatc tggacagcca acgagccgca 780tgcaggtgtc attatgaaga aaaaactgat ctttaaagga gatgccgaca gctagtgaca 840gatgaagatg gaagaacata cctttgacaa ataactaatg tttttacaac ataaaactgt 900cttatttttg tgaaaggatt attttgagac cttaaaataa tttatatctt gatgttaaaa 960cctcaaagca aaaaaagtga gggagatagt gaggggaggg cacgcttgtc ttctcaggta 1020tcttccccag cattgctccc ttacttagta tgccaaatgt cttgaccaat atcaaaaaca 1080agtgcttgtt tagcggagaa ttttgaaaag aggaatatat aactcatttt cacaaccaca 1140tttaccaaaa aaagagatca aatataaaat tcatcataat gtctgttcaa cattatctta 1200tttggaaaat ggggaaatta tcacttacaa gtatttgttt actatgaaat tttaaataca 1260catttatgcc tagaaggaac ggactttttt ttttctattt taattacaca taatatgtaa 1320ttaaagtaca acataatatg ttgtttctct gtagcccgtt gagcatatga gtaagtcaca 1380tttctattag gactacttac aaggacaagg tttccatttt tccagttgta aaattggaac 1440catcagctga taacctcgta gggagcaacc ccaggatagc taagtgttat gtaatatgcc 1500tagaaggtga tgtgaatgcg attcagaagc atagccactc ccattttatg agctactcac 1560atgacaaatg tcatcttttg ctataacctt tgccaagtta gagaaaagat ggatttaatg 1620agataaatga aaagatattt aacctaatat atcaaggcaa aaaaaaaaaa aaaaaaaaaa 1680aaaaaaaaaa aaaaaaaaa 1699124617DNAHomo sapiens 12ctccatcttt ctagtcccca ccttccccgg tgcagacacc cggcgaagcc cacccggttt 60tcccagcggc atttccgatg acagcttcgg ggctacgtgt cctgtgctgt cggagacgca 120caggaagcaa agtttgtgag aagccttggg ggcgactttg ccttgggcac ccgcatttgt 180gcgtctgcga ggtgcctcgg tgtgcgcgga gctagtttcc cagtttcccg ggcccctccc 240ttctccgagc ccctctagcg atttgtttag gaaaagtgat gacatgaact agtagtggag 300aatcgcagcg ccgctccccg ccctggggag ggaggggagc cccggagagc ctgccggtgg 360gagctggaag caggctcccg gctgagcgcc ccagcccgaa aggcagggtc tgggtgcggg 420aagagggctc ggagctgcct tcctgctgcc ttggggccgc ccagatgagg gaacagcccg 480atttgcctgg ttctgattct ccaggctgtc gtggttgtgg aatgcaaacg ccagcacata 540atggaaacag gacctgaaga cccttccagc atgccagagg aaagttcccc caggcggacc 600ccgcagagca ttccctacca ggacctccct cacctggtca atgcagacgg acagtacctc 660ttctgcaggt actggaaacc cacaggcaca cccaaggccc tcatctttgt gtcccatgga 720gccggagagc acagtggccg ctatgaagag ctggctcgga tgctgatggg gctggacctg 780ctggtgttcg cccacgacca tgttggccac ggacagagcg aaggggagag gatggtagtg 840tctgacttcc acgttttcgt cagggatgtg ttgcagcatg tggattccat gcagaaagac 900taccctgggc ttcctgtctt ccttctgggc cactccatgg gaggcgccat cgccatcctc 960acggccgcag agaggccggg ccacttcgcc ggcatggtac tcatttcgcc tctggttctt 1020gccaatcctg aatctgcaac aactttcaag gtccttgctg cgaaagtgct caaccttgtg 1080ctgccaaact tgtccctcgg gcccatcgac tccagcgtgc tctctcggaa taagacagag 1140gtcgacattt ataactcaga ccccctgatc tgccgggcag ggctgaaggt gtgcttcggc 1200atccaactgc tgaatgccgt ctcacgggtg gagcgcgccc tccccaagct gactgtgccc 1260ttcctgctgc tccagggctc tgccgatcgc ctatgtgaca gcaaaggggc ctacctgctc 1320atggagttag ccaagagcca ggacaagact ctcaagattt atgaaggtgc ctaccatgtt 1380ctccacaagg agcttcctga agtcaccaac tccgtcttcc atgaaataaa catgtgggtc 1440tctcaaagga cagccacggc aggaactgcg tccccaccct gaatgcattg gccggtgccc 1500ggctcatggt ctgggggatg caggcagggg aagggcagag atggcttctc agatatggct 1560tgccaaaaaa aaaaaaaaaa aaaaatcaga aattggagaa atccttagca caattttcta 1620aaaaataaca gacatttttg ttatacatta gactatcaga cactggacct accttaatgg 1680ttagacactt tatgcaaaaa aagagaaagg tcccaggtga ttttccacaa agaatgtgct 1740aaaatgtcca ctgaaaacaa agccaagcct ctgccctgcc tctcccagct cccacaaggg 1800ttccaggaat tcctggtgtt cccaggacac cagactgcaa taactggagg cgcctccttc 1860ctgcccaccc ttcgctcacg ccccagcgcc ctctctgacc agcctccgct tggtggcctt 1920cctctggccg tgtgatgagg tggttgctgt ctccataggg gccagctccc cagggcagac 1980tcacgtgccc ctctgaggct cagaaaatgc ccagcccttc ctcaaaatga gcagccaccc 2040atgactttgt gggctccttg ttagcctgag accaggcttt gcagaggggc ggggggtgag 2100gcttagccca gaaggagaac tgagcaggaa accaaggctc ttctctgtcc cctgcccttc 2160ccctcctgcc agggggaggc tcaggttggt ccccgagtgc cgcctgtact cacaaaggct 2220gcctttcctc tagagtcact aattttacct gatgctatga gagaatcata ttgaagatga 2280aatgtctaat atataatgta tattttaaag cagagactat tttggtggat aggtgggagg 2340gagcaagggg agtttgaggg aatcagagct tgatgctact gtacagaact ggacaggttg 2400ggccggcagt ggtggggcca gagggctctg tgctctagga gctaagccag cagcccccga 2460gaggggactt ggctgggcct ttcctatggg caaggcccag tgctcttcct gcccaccagg 2520gaccatggag cagtggcacc ctatggggct atgatcccta ggcctgggcc tgggcctgcc 2580tatggcccag agctaccctg ggagtgtcag tgctagcagc acagctacct ctggtggcag 2640gagaagagag gcccagcaca gcagcaggcc aggccttcct gtccaggtct gcatggagca 2700ctcggtgacc cagagcaggg actggaggca cccccagccc tgccccaggc cacagcagga 2760caggccggga caggcctcac ccaaggccaa ggctggcatc agccaatcat tcagagctga 2820ggccctgggc ctagcctgcc cttctcaggt gccaatacca ccccagccct gcccttggcc 2880tcactttttc ccagcaataa gtggggttca ccacccgcct cgggaatact ttccccttct 2940aaatgggact tgctgttacc tcaggaggct ccttagtgca aatatgaccc tggtcagggc 3000tttgccaccg ttgaagccct gcagaaggtg caatgtaggg gttctggggc cacagaggag 3060aggccacttc ccaccaggac ccccaacatg aagtctaggc ctcaggggct cccgcccttc 3120ttcctccagc agcgggaact gccactgctc tcccaggccc tgttctggag gctaaccttg 3180gttcctggag agtgtgcccc tccaccctcc ctccagcagc cctgatcaca ccatgagagc 3240caggaacggg tcaccctgct gaagatcact ctgtgccctg ggggaggagc caagccctca 3300ccccacaagg ggcaggtggg ggcttggttg ctgacccggc ccaagtcccc acagagcacc 3360ttctgtagct ccagcttgtc tccctggctt ctctttgaag gagaaaaatg taaaatatgc 3420actgagaaag ccagccccgc ctgcttagtc agccccggca gcagggcagc catgggaact 3480caggaaaagc aggaaccctt tccaaaagcc cagagatgcc ctgggctcag atctgtaatt 3540ctcccaggag ctgtgataga gcaggccaca caaagtccct acgcctccct gctgcctccc 3600ccagatgcat gtggtggcat caccattccc caaattgaat atcagcatgc ggcctgacca 3660gggactcttt agatgcatga atttatttat atgaaggctc tcacagagac acacacagca 3720cttcagtagc atttgcattc ctggttaaag aatcaccaat atttaaaata aaaactttcc 3780tgaaattggg actgtcatgt tatccagaag ggctggtaca tccgcccacc atgtccccct 3840gctgggtcag gagccaacac aggaccctgc gtgtgagcgt gcctgacatc tcacgcacgg 3900ccactccaga gccggtccct gtccttggaa agctgtgaag ccttgcgttg agttccttct 3960cgatactgac ggctccgtgc tgacattctg agctctggag tcacaccagc gcaggggcgt 4020ggaggaactg aggtttggaa ggaatgccag gtctcgcaca gcttggcctc gagaaggtga 4080gaggaaggca aaggccaggg aggggaccca gagaggcctg gcacacaagg cccaagcacc 4140accgtcaaca cagcccagtc catacagaaa tgggtttcat gcctgaaaag ctttttacag 4200aaagatgccg cctgtagcca gtgacagccg caaccctaca ggcctcagtt ccttgcagag 4260gtgaggggta gagagtcagc ctccctccct tccagcagcg acccagcttc cctccacttc 4320caggtggtgc tgggctcacc gagggagcac tggtgggtgc tctgaaaacc cacaggatcc 4380cacctccagg cccacctggg tcccatctca ctctcttctt ctttcaccaa ttgctaacat 4440agaccttgtt gggatcacga tggcttcaca agccagctgt tgggtttgct atgtcactgt 4500ggctcagtca catccctgcg tgtatactgt ctgcggggca catatgtatc catttagagc 4560taaaggaatc agtgtacact acagctaatc ctaataaatc cgatgttttc ggaaaaa 4617134192DNAHomo sapiens 13tggcggcgca gacgccgcac cctgtcgccg cgaagccggt cgcgcgcagc tcgtcccggc 60cctggcccgc cgcaaacgag gatccgctgc gctcggggaa cgcgacagcg gcgctcgtgg 120ccccggacct gaagaccctt ccagcatgcc agaggaaagt tcccccaggc ggaccccgca 180gagcattccc taccaggacc tccctcacct ggtcaatgca gacggacagt acctcttctg 240caggtactgg aaacccacag gcacacccaa ggccctcatc tttgtgtccc atggagccgg 300agagcacagt ggccgctatg aagagctggc tcggatgctg atggggctgg acctgctggt 360gttcgcccac gaccatgttg gccacggaca gagcgaaggg gagaggatgg tagtgtctga 420cttccacgtt ttcgtcaggg atgtgttgca gcatgtggat tccatgcaga aagactaccc 480tgggcttcct gtcttccttc tgggccactc catgggaggc gccatcgcca tcctcacggc 540cgcagagagg ccgggccact tcgccggcat ggtactcatt tcgcctctgg ttcttgccaa 600tcctgaatct gcaacaactt tcaaggtcct tgctgcgaaa gtgctcaacc ttgtgctgcc 660aaacttgtcc ctcgggccca tcgactccag cgtgctctct cggaataaga cagaggtcga 720catttataac tcagaccccc tgatctgccg ggcagggctg aaggtgtgct tcggcatcca 780actgctgaat gccgtctcac gggtggagcg cgccctcccc aagctgactg tgcccttcct 840gctgctccag ggctctgccg atcgcctatg tgacagcaaa ggggcctacc tgctcatgga 900gttagccaag agccaggaca agactctcaa gatttatgaa ggtgcctacc atgttctcca 960caaggagctt cctgaagtca ccaactccgt cttccatgaa ataaacatgt gggtctctca 1020aaggacagcc acggcaggaa ctgcgtcccc accctgaatg cattggccgg tgcccggctc 1080atggtctggg ggatgcaggc aggggaaggg cagagatggc ttctcagata tggcttgcca 1140aaaaaaaaaa aaaaaaaaaa tcagaaattg gagaaatcct tagcacaatt ttctaaaaaa 1200taacagacat ttttgttata cattagacta tcagacactg gacctacctt aatggttaga 1260cactttatgc aaaaaaagag aaaggtccca ggtgattttc cacaaagaat gtgctaaaat 1320gtccactgaa aacaaagcca agcctctgcc ctgcctctcc cagctcccac aagggttcca 1380ggaattcctg gtgttcccag gacaccagac tgcaataact ggaggcgcct ccttcctgcc 1440cacccttcgc tcacgcccca gcgccctctc tgaccagcct ccgcttggtg gccttcctct 1500ggccgtgtga tgaggtggtt gctgtctcca taggggccag ctccccaggg cagactcacg 1560tgcccctctg aggctcagaa aatgcccagc ccttcctcaa aatgagcagc cacccatgac 1620tttgtgggct ccttgttagc ctgagaccag gctttgcaga ggggcggggg gtgaggctta 1680gcccagaagg agaactgagc aggaaaccaa ggctcttctc tgtcccctgc ccttcccctc 1740ctgccagggg gaggctcagg ttggtccccg agtgccgcct gtactcacaa aggctgcctt 1800tcctctagag tcactaattt tacctgatgc tatgagagaa tcatattgaa gatgaaatgt 1860ctaatatata atgtatattt taaagcagag actattttgg tggataggtg ggagggagca 1920aggggagttt gagggaatca gagcttgatg ctactgtaca gaactggaca ggttgggccg 1980gcagtggtgg ggccagaggg ctctgtgctc taggagctaa gccagcagcc cccgagaggg 2040gacttggctg ggcctttcct atgggcaagg cccagtgctc ttcctgccca ccagggacca 2100tggagcagtg gcaccctatg gggctatgat ccctaggcct gggcctgggc ctgcctatgg 2160cccagagcta ccctgggagt gtcagtgcta gcagcacagc tacctctggt ggcaggagaa 2220gagaggccca gcacagcagc aggccaggcc ttcctgtcca ggtctgcatg gagcactcgg 2280tgacccagag cagggactgg aggcaccccc agccctgccc caggccacag caggacaggc 2340cgggacaggc ctcacccaag gccaaggctg gcatcagcca atcattcaga gctgaggccc 2400tgggcctagc ctgcccttct caggtgccaa taccacccca gccctgccct tggcctcact 2460ttttcccagc aataagtggg gttcaccacc cgcctcggga atactttccc cttctaaatg 2520ggacttgctg ttacctcagg aggctcctta gtgcaaatat gaccctggtc agggctttgc 2580caccgttgaa gccctgcaga aggtgcaatg taggggttct ggggccacag aggagaggcc 2640acttcccacc aggaccccca acatgaagtc taggcctcag gggctcccgc ccttcttcct 2700ccagcagcgg gaactgccac tgctctccca ggccctgttc tggaggctaa ccttggttcc 2760tggagagtgt gcccctccac cctccctcca gcagccctga tcacaccatg agagccagga 2820acgggtcacc ctgctgaaga tcactctgtg ccctggggga ggagccaagc cctcacccca 2880caaggggcag gtgggggctt ggttgctgac ccggcccaag tccccacaga gcaccttctg 2940tagctccagc ttgtctccct ggcttctctt tgaaggagaa aaatgtaaaa tatgcactga 3000gaaagccagc cccgcctgct tagtcagccc cggcagcagg gcagccatgg gaactcagga 3060aaagcaggaa ccctttccaa aagcccagag atgccctggg ctcagatctg taattctccc 3120aggagctgtg atagagcagg ccacacaaag tccctacgcc tccctgctgc ctcccccaga 3180tgcatgtggt ggcatcacca ttccccaaat tgaatatcag catgcggcct gaccagggac 3240tctttagatg catgaattta tttatatgaa ggctctcaca gagacacaca cagcacttca 3300gtagcatttg cattcctggt taaagaatca ccaatattta aaataaaaac tttcctgaaa 3360ttgggactgt catgttatcc agaagggctg gtacatccgc ccaccatgtc cccctgctgg 3420gtcaggagcc aacacaggac cctgcgtgtg agcgtgcctg acatctcacg cacggccact 3480ccagagccgg tccctgtcct tggaaagctg tgaagccttg cgttgagttc cttctcgata 3540ctgacggctc cgtgctgaca ttctgagctc tggagtcaca ccagcgcagg ggcgtggagg 3600aactgaggtt tggaaggaat gccaggtctc gcacagcttg gcctcgagaa ggtgagagga 3660aggcaaaggc cagggagggg acccagagag gcctggcaca caaggcccaa gcaccaccgt 3720caacacagcc cagtccatac agaaatgggt ttcatgcctg aaaagctttt tacagaaaga 3780tgccgcctgt agccagtgac agccgcaacc ctacaggcct

cagttccttg cagaggtgag 3840gggtagagag tcagcctccc tcccttccag cagcgaccca gcttccctcc acttccaggt 3900ggtgctgggc tcaccgaggg agcactggtg ggtgctctga aaacccacag gatcccacct 3960ccaggcccac ctgggtccca tctcactctc ttcttctttc accaattgct aacatagacc 4020ttgttgggat cacgatggct tcacaagcca gctgttgggt ttgctatgtc actgtggctc 4080agtcacatcc ctgcgtgtat actgtctgcg gggcacatat gtatccattt agagctaaag 4140gaatcagtgt acactacagc taatcctaat aaatccgatg ttttcggaaa aa 4192142910DNAHomo sapiens 14cagcctccct ctcccacctc tgtctgcccg ctgcctcttg tctagctgct gtcaggagct 60gactgcctcc agggctggaa tcctgtgctc cctctgtgcc cagagcccca cgatgtcggc 120caacgccaca ctgaagccac tctgccccat cctggagcag atgagccgtc tccagagcca 180cagcaacacc agcatccgct acatcgacca cgcggccgtg ctgctgcacg ggctggcctc 240gctgctgggc ctggtggaga atggagtcat cctcttcgtg gtgggctgcc gcatgcgcca 300gaccgtggtc accacctggg tgctgcacct ggcgctgtcc gacctgttgg cctctgcttc 360cctgcccttc ttcacctact tcttggccgt gggccactcg tgggagctgg gcaccacctt 420ctgcaaactg cactcctcca tcttctttct caacatgttc gccagcggct tcctgctcag 480cgccatcagc ctggaccgct gcctgcaggt ggtgcggccg gtgtgggcgc agaaccaccg 540caccgtggcc gcggcgcaca aagtctgcct ggtgctttgg gcactagcgg tgctcaacac 600ggtgccctat ttcgtgttcc gggacaccat ctcgcggctg gacgggcgca ttatgtgcta 660ctacaatgtg ctgctcctga acccggggcc tgaccgcgat gccacgtgca actcgcggca 720ggtggccctg gccgtcagca agttcctgct ggccttcctg gtgccgctgg cgatcatcgc 780ctcgagccac gcggccgtga gcctgcggtt gcagcaccgc ggccgccggc ggccaggccg 840cttcgtgcgc ctggtggcgg ccgtcgtggc cgccttcgcg ctctgctggg ggccctacca 900cgtgttcagc ctgctggagg cgcgggcgca cgcaaacccg gggctgcggc cgctcgtgtg 960gcgcgggctg cccttcgtca ccagcctggc cttcttcaac agcgtggcca acccggtgct 1020ctacgtgctc acctgccccg acatgctgcg caagctgcgg cgctcgctgc gcacggtgct 1080ggagagcgtg ctggtggacg acagcgagct gggtggcgcg ggaagcagcc gccgccgccg 1140cacctcctcc accgcccgct cggcctcccc tttagctctc tgcagccgcc cggaggaacc 1200gcggggcccc gcgcgtctcc tcggctggct gctgggcagc tgcgcagcgt ccccgcagac 1260gggccccctg aaccgggcgc tgagcagcac ctcgagttag aacccggccc acgtagggcg 1320gcactcacac gcgaaagtat caccagggtg ccgcggttca attcgatatc cggactcctg 1380ccgcagtgat caaagtccga ggggcgggac ccaggcacct gcattttaaa gcgccccggg 1440agactctgaa tctttttcag aaacagtgag ttaaagcagt gcttctcaaa ccttgatgtg 1500cctgtgaatc acctaggggt cttgttaagt gcagtctgat ccaggaggcc ggggccgggt 1560actgagagtc tgcacttaac aagctcccag gccgagaagc cagtgcggca ggttcacagg 1620cgaggcctgg agtaacacaa agtgaaactc ataatagact tcccactcta gggcagtgga 1680gtcggaaggg cacacggggt gcgtctcccc ggagttcagt tttaccagat gatgggggag 1740gggggaagga gttttatgtt aaaccatcca tgtatttttg gagaagagag aggaaaggtt 1800tgagaagcac tgttccagcc tgccctcttc atttagccaa tgcttactgc gctagacgct 1860tcatcccaca atcttaaggg gcagcttcta ttagccagtc tttacagctg agcacattct 1920ggctcaggga ggttaagtga cttgcccagt ttcagggcta acgaccacag ggtctgcact 1980ctaaccctag gcatcacatg ctcaatgact ctctggtgag cgaggacatt ctctgaccta 2040ctcgagggac ttaagatgct accttgtgac ccagcactgc ccaaagtgct tccaaggcag 2100aagcagcagg ggatggcgtg gtcaagcact cgggaaacct ggggctaatc aaatccaatg 2160ggggaaatga ctaaaagtct tcggtcgtta gaagttgaat gggcacagca actctaagac 2220tacagcacac gtcatttctt agctaagcgg accagcctcc ctgtcggcct ggtgttctgt 2280gggatccctc tgggcactgg taatcccaag atctgtgcag ccccgcctcc aggccacatg 2340gggctgggca gctaccattt cccttttgcg gatgggaggg gtaacttgca cctctgacct 2400atcacttcca ctgcaccccg tctcattcct ccacctgccg tggacttggg gtcagagact 2460gctgtgtttg agctctgcag cccagggacc gaaaagttgg tgtcaatgaa ttttgcttgg 2520tggatgaaat gtcagtggaa gaagcagatg agaaactctt gagatcttgg tcctgtgttt 2580tttctgccac caaaggccag ggtcactgaa ggcctggccc acagcaggtg ctgagcaaag 2640ggaacagtga ggtgcccagc tagctgcaga gccaccctgt gttgacacct cgcccctgct 2700ccctcccatc ccttccccct ttactcatag cacttccccc attggacacg tggtgcattt 2760tgcttgttta ttatgttttc tctccatcag aatgaaagct cctcgagggc agggactttg 2820gtctattgtc tgtatttgcc ggtgcctagg attgtgcctg tatgcaacag gcactcaata 2880aatatttttg ctgtagactg gacaggcatg 2910152960DNAHomo sapiens 15actccctctc tggatgtgtc tgctgccgcc attgtgcggc gctggtcccc tcagagggtt 60cctgctgctg ccggtgcctt ggaccctccc cctcgcttct cgttctactg ccccaggagc 120ccggcgggtc cgggactccc gtccgtgccg gtgcgggcgc cggcatgtgg ctgtgggagg 180accagggcgg cctcctgggc cctttctcct tcctgctgct agtgctgctg ctggtgacgc 240ggagcccggt caatgcctgc ctcctcaccg gcagcctctt cgttctactg cgcgtcttca 300gctttgagcc ggtgccctct tgcagggccc tgcaggtgct caagccccgg gaccgcattt 360ctgccatcgc ccaccgtggc ggcagccacg acgcgcccga gaacacgctg gcggccattc 420ggcaggcagc taagaatgga gcaacaggcg tggagttgga cattgagttt acttctgacg 480ggattcctgt cttaatgcac gataacacag tagataggac gactgatggg actgggcgat 540tgtgtgattt gacatttgaa caaattagga agctgaatcc tgcagcaaac cacagactca 600ggaatgattt ccctgatgaa aagatcccta ccctaaggga agctgttgca gagtgcctaa 660accataacct cacaatcttc tttgatgtca aaggccatgc acacaaggct actgaggctc 720taaagaaaat gtatatggaa tttcctcaac tgtataataa tagtgtggtc tgttctttct 780tgccagaagt tatctacaag atgagacaaa cagatcggga tgtaataaca gcattaactc 840acagaccttg gagcctaagc catacaggag atgggaaacc acgctatgat actttctgga 900aacattttat atttgttatg atggacattt tgctcgattg gagcatgcat aatatcttgt 960ggtacctgtg tggaatttca gctttcctca tgcaaaagga ttttgtatcc ccggcctact 1020tgaagaagtg gtcagctaaa ggaatccagg ttgttggttg gactgttaat acctttgatg 1080aaaagagtta ctacgaatcc catcttggtt ccagctatat cactgacagc atggtagaag 1140actgcgaacc tcacttctag actttcacgg tgggacgaaa cgggttcaga aactgccagg 1200ggcctcatac agggatatca aaataccctt tgtgctagcc caggccctgg ggaatcaggt 1260gactcacaca aatgcaatag ttggtcactg catttttacc tgaaccaaag ctaaacccgg 1320tgttgccacc atgcaccatg gcatgccaga gttcaacact gttgctcttg aaaatctggg 1380tctgaaaaaa cgcacaagag cccctgccct gccctagctg aggcacacag ggagacccag 1440tgaggataag cacagattga attgtacagt ttgcagatgc agatgtaaat gcatgggaca 1500tgcatgataa ctcagagttg acattttaaa acttgccaca cttatttcaa atatttgtac 1560tcagctatgt taacatgtac tgtagacatc aaacttgtgg ccatactaat aaaattatta 1620aaaggagcac taaaggaaaa ctgtgtgcca agcatcatat cctaaggcat acggaatttg 1680gggaagccac catgcaatcc agtgaggctt cagtgtacag caaccaaaat ggtagggagg 1740tcttgaagcc aatgagggat ttatagcatc ttgaatagag agctgcaaac caccaggggg 1800cagagttgca tttttccagg ctttttagga agctctgcaa cagatgtgat ctgatcatag 1860gcaattagaa ctggaagaaa cttccaaaaa tatctaggtt tgtcctcatt ttacaaatga 1920ggaaactaaa ctctgtggaa gggaaggggt tgcctcaaaa gtcacagctt agctgggcac 1980agtggctcat gccgataatc ccagcaattc agaaagctga ggcaggagga ttacttgagg 2040ccagactggg caatatagca agaccccatc tctaaaaaat taggcatggt ggtgcatgcc 2100tgtattccca gctactcagg aggttgaggt gggaggatca cttgagccca gaagttcaag 2160gctgcaatga gccatgatta caccacggca ctacaacctt ggtggcacag tgagaacctg 2220actcttaaaa aaaaaaaaaa aaaaaaaaaa aaaaagataa ctagaacttc tagaacatct 2280tgtttacagt tagccagaaa ctatacaagt ggtttaacat gcattatctt actcaatcca 2340tacaaaagtc ttatggaggt gttagcactc tttctactga tgaagaactg aggtacttca 2400taaaaccact tacccaaggt gtcttgagtc tggtacaact ggcattcaaa tctaggtcag 2460tctgccccca gagccactac ccttacccct cactgaatct gcctttatat tgttgagccc 2520atgaccccaa actgctcttt ccaatttgaa cttccaggga ttttattgtg aacttacata 2580gcaacattaa aatgaagttg aattgttttt aatggcaacg ccgtctgtct cctctagctt 2640accgcttctc acctttcaac cccatctgtg gcctttgtcc aggcccacag cttagccatg 2700gcttccctcc tgcatccctg ccgtgggttg ctggcctcac acttgcagca gctggacagt 2760gattttagaa ggccaccagt ccccatagct atgtgacaat gagaagcaaa cttttttgtg 2820acagattgta ttggcatagg catgatagat ggggattggt acgttttgaa tcagcatttg 2880caaaaaaatt gtcttgaatt ttaaaataaa caacaaagat ttgttcattg agtgcaaaaa 2940aaaaaaaaaa aaaaaaaaaa 2960162519DNAHomo sapiens 16gctgggccac agcctggtcc tgccgctgcg cccgcccgcc atggtgtccc gggaccaggc 60tcacctgggc cccaagtatg tgggcctctg ggacttcaag tcccggacgg acgaggagct 120gagcttccgc gcgggggacg tcttccacgt ggccaggaag gaggagcagt ggtggtgggc 180cacgctgctg gacgaggcgg gtggggccgt ggcccagggc tatgtgcccc acaactacct 240ggccgagagg gagacggtgg agtcggaacc gtggttcttt ggctgcatct cccgctcgga 300agctgtgcgt cggctgcagg ccgagggcaa cgccacgggc gccttcctga tcagggtcag 360cgagaagccg agtgccgact acgtcctgtc ggtgcgggac acgcaggctg tgcggcacta 420caagatctgg cggcgtgccg ggggccggct gcacctgaac gaggcggtgt ccttcctcag 480cctgcccgag cttgtgaact accacagggc ccagagcctg tcccacggcc tgcggctggc 540cgcgccctgc cggaagcacg agcctgagcc cctgccccat tgggatgact gggagaggcc 600gagggaggag ttcacgctct gcaggaagct ggggtccggc tactttgggg aggtcttcga 660ggggctctgg aaagaccggg tccaggtggc cattaaggtg atttctcgag acaacctcct 720gcaccagcag atgctgcagt cggagatcca ggccatgaag aagctgcggc acaaacacat 780cctggcgctg tacgccgtgg tgtccgtggg ggaccccgtg tacatcatca cggagctcat 840ggccaagggc agcctgctgg agctgctccg cgactctgat gagaaagtcc tgcccgtttc 900ggagctgctg gacatcgcct ggcaggtggc tgagggcatg tgttacctgg agtcgcagaa 960ttacatccac cgggacctgg ccgccaggaa catcctcgtc ggggaaaaca ccctctgcaa 1020agttggggac ttcgggttag ccaggcttat caaggaggac gtctacctct cccatgacca 1080caatatcccc tacaagtgga cggcccctga agcgctctcc cgaggccatt actccaccaa 1140atccgacgtc tggtcctttg ggattctcct gcatgagatg ttcagcaggg gtcaggtgcc 1200ctacccaggc atgtccaacc atgaggcctt cctgagggtg gacgccggct accgcatgcc 1260ctgccctctg gagtgcccgc ccagcgtgca caagctgatg ctgacatgct ggtgcaggga 1320ccccgagcag agaccctgct tcaaggccct gcgggagagg ctctccagct tcaccagcta 1380cgagaacccg acctgagctg ctgtggagcg ggcatggccg ggccctgctg aggaggggcc 1440tgggcagagg gcctggacct gggatcaagg cccacgcgct tccctggggt ttactgaggt 1500gatgggtgca ggaaaggttc acaaatgtgg agtgtctgcg tccaatacac gcgtgtgctc 1560ctctccttac tccatcgtgt gtgccttggg tctcagctgc tgacacgcag cctgctctgg 1620agcctgcaga tgagatccgg gagactgaca cgaagccagc agaggtcaga ggggactctg 1680accacagccc gctctctggc tgtctgtctg cagtgcccgg ctgagggtgg gaggcaaaca 1740cgccttgttc ctgctcttcc cagttcagct tggtgggaga aagtcattcg cgtggctcgg 1800gacgctcatg taaatttggt tttggtgctc aagggttctt tcctcccagg ggcaggtgtt 1860tctttcctgt ttgtcttgtg tcttgagagc ttggccttat gaccagtgag aactctctcc 1920ctggtctctg ccagcccaag catcactgcc cgaggcgcca gctcagtttc accgtccacg 1980tccacaaggg gcttttccca ccttcacctt tgtcgctggg tcagtgctgg aaagcgcccc 2040tcactcctgc gctgacaagg gcccttctct actgtctgtg gggtggttcc gggctggggg 2100ggctgcctcc tttgcacctg attttgaagg tgtctctttc atccatggtt aagtcataaa 2160aagcttattg gttttggttt tgactcacct gaaagttttt ttggtttaaa agaagaatag 2220gcggggcacg gtggctcatg cctgtaatcc cagcactttg ggaggctgag gcaggtggat 2280cacgaggtca ggagatcgac accatcctgg ctaacacggt gaaaccccgt ctctactaaa 2340aaatacaaaa aattagctgg gtgtggtggt gggggtgggc gcctgtagtc ccagctacgt 2400gggaggctga ggcagcagac tggtgtgaac ccgggaggtg gagcttgcag tgagccgaga 2460tcgcgccact gcactccagc ctgggcgaca gagcgagact ccatctcaaa aaaaaaaaa 2519174454DNAHomo sapiens 17gggtttcacc atgttgccta ggctggtctt gaactcctga cctcaggcga ttcacccgcc 60tcggcctccc aaagtgttag gattacaggc gtgagccacc gcgcccggct tgaattgtac 120acttcaaaag gtggaatttt atggtgttga attatatctt tattttttta acggggggaa 180aatgacgccg ctggagagga gttagcggaa ctgaaacaat gaaatggtgc gcgagtgtcg 240cctgtccccg tcgcatccat cccaacgaag tttgggccct ggaacggtgc acccagaagg 300cctgcgggga gagacgctgg ggcatgatct ggaagaaaga cgtctcagga ttcgaaggga 360atgcagctaa ggtggcggcg gaggttcgcc taggactggg gaggcgtccc taggctcaga 420agttggcccg gccggagcgg agatttaaag gttggagcgc agaggctctt aaagaggccg 480agtcgaattc ccactcggcg tccaccttaa agccagctcc ccggcaccac ggatctgacc 540cgggtctgac ctacgagaaa catggcaacc agcgccgtcc ccagtgacaa cctccccaca 600tacaagctgg tggtggtggg ggatgggggt gtgggcaaaa gtgccctcac catccagttt 660ttccagaaga tctttgtgcc tgactatgac cccaccattg aagactccta cctgaaacat 720acggagattg acaatcaatg ggccatcttg gacgttctgg acacagctgg gcaggaggaa 780ttcagcgcca tgcgggagca atacatgcgc acgggggatg gcttcctcat cgtctactcc 840gtcactgaca aggccagctt tgagcacgtg gaccgcttcc accagcttat cctgcgcgtc 900aaagacaggg agtcattccc gatgatcctc gtggccaaca aggtcgattt gatgcacttg 960aggaagatca ccagggagca aggaaaagaa atggcgacca aacacaatat tccgtacata 1020gaaaccagtg ccaaggaccc acctctcaat gtcgacaaag ccttccatga cctcgttaga 1080gtaattaggc aacagattcc ggaaaaaagc cagaagaaga agaagaaaac caaatggcgg 1140ggagaccggg ccacaggcac ccacaaactg caatgtgtga tcttgtgaca ggcctgaggc 1200cctgggcaca gtgacggtgg cctggccagc cctcgggacc cctccccacc taactgcact 1260gaaaccattt ctaaccacaa cccttggccc aaggacttgg tacaggaagg gagaagggca 1320ggtgggcagg gagcagacag ggtctggctt tgcccagagg gcacgggctt tcccacctct 1380caaagagaca aggaagccac ctgtaagcag aagcagcatc caagtgcccc tggccccccc 1440atgtgttgat tcaacccggt tcctccccct ctctcggtgg gtgtgttgtt tattgtaact 1500acatagtgtt ggtttgatgt ggaagtgttt atccacatac aaagtacaaa acaagccatg 1560aacaagcttc tttcccttac cccccatcca caatgtctga gcttggatgt cttttataga 1620tttttaaatt attttagtga ttattatttt attaaagggg tctgggctca ctgcctggtg 1680aagtttcaag tgttcagcag acctctctgg taacatatct ggaatattgt tgttgttttt 1740taaccgagtt ttcccatcag tgccaaaact caactcaatc tgaaagtaga gtgtctgaga 1800ggacagaagg taatgggaac tgtagctgga ggcctcaggc catgggtcaa acctgggagg 1860gaaagagacc ctacacatgg cctagaaatg agagaagaga gaggtattta cccagaggat 1920tttcctatgg ttggggatgc aaatattaga aaacagattg tattttgctg aggggagtgg 1980ctgtcatgag catgtcagtt ctaaaagggg ttttcattat cctggaaatg tataaactaa 2040agtaagctga ttggctttgc aaacatgttc atttgttttt cagacagtat gggttaagtt 2100ctctgccctc cccaggggtc tgaggaggct ctgggtttct cagatctgtc tcttgctgcg 2160ttttcacatc agctgtgctg cttggtgcct ctctgatacg aatacactga cacgtcaaag 2220taacctaatg tggacaccat ccagaaaact ccagttcatg ctggatctta accaaaaatg 2280attcaatact gttatcacta aaacagcacc aagacctgaa gccatcttcc cttggagtca 2340actgactacc acctctataa gcctagtcaa tgagcagacc ccttccagta tttgtaaaag 2400tagtactagg ttgccttttt ggcaattttt attgacctgt tgaatcttga ctataaaatg 2460atctgagaag taaggaaggc tgggctgatg tgtggctctc atataccttc tgcaaggggg 2520cagtctcccc agctccctga tgatgctcac ccccgccccc ccacctcagg tgctgctggt 2580gtgagccaaa gactggagtt tttccagctg gggtgggagt ggagagacaa caggaacaac 2640gctgcaccaa agaaaaggtc agaataaaag gcagcacagc tggtgacctt attttctaga 2700tgttacaaat caggtcacta tgcaaactag aatatcctca gcaggtggcc tggccactct 2760ggagaaagaa acccaaggaa agtgagcacc caactggatg ccaagacacc cgggttctga 2820aaatgtgctg tgttcctacc tcggcaagat caccagcact gaggggccca gctggagaat 2880gattctgcta caaaaggaga cagttgagac ttttgcttgt tggaaatcaa acttcttatt 2940tgtctaaatt gccccttttt ctgttcctaa aaggaaggat aagagagaac attccaggtg 3000aggcacttca aagtttcctt agaccctata gtgttaagag gtattttaaa cactaaaagg 3060acaaagctct tcccaatcct tatgcttccc taagtggtat ctgcagcagt ttgttgtgtg 3120cagtttgatg gcagctgcaa actggaggtg aggcggagga aaggcaggta ggaaggagta 3180aggatggaga tgctcagaat caagagcatg gcggagtagg agaagaagcc ctgcacacag 3240ggcagtgtcc acagccagaa aactcctgct gggcaccaac cactacgagc ataccccatg 3300cccaccgtgg agctgcaact cctcgacagc actgagtttg atagtctcac tggaagcaga 3360tcagctgatg tagaacagag acctcggcca taaaggtgag aagacatagg gatttcaacc 3420acacagttgg gacagaaggg acagtgcatc tgttcatcca tcctgcactt ggcccacgtt 3480gaactccatg gtgcctgaga gagactagtt aagggttggt cttctgtatc ctctgctgtt 3540gagcctctgg taagctttca tctcccatga actcatttcc ccataaatga aatgggtaaa 3600taatgcccca tttgtagaag tgggccctca tgactgaggt agcttccaga taggccagag 3660tagagtgtag agtgtgcccc gtgacatccc tccatcttct cctccattat catctagcag 3720ggtcagactg ggaaacctgg ttggccacgc cacaccatga ccgaggagcc aactgggact 3780tctggctgtt tgacatcctc atgttcccgt tggtcttccg gagaatagtg ctaccctcac 3840atcccctgga gcacagcctt cctgaaatgc cctcacccca tgcctttgcc attgtgtgct 3900ctcagatttc ttccactgtt tgacaccctc cttagagggc tgctcttttt tttccagaga 3960taatcctagc catcctctcc actcccacgg ctggggacaa tggccactta ctacctgtgc 4020actttgccac tcgggacacc tggatggttt ctcttaggac tttgcccacc tccttctcat 4080ggcacttgct gtggaaaatg cctggctggc ctcgtggggc ctgtctcact tttccaggag 4140acatgaccca ctaacgtggc aactttaacc caaaggcccc tcagacatgt tacagcaaat 4200ctggagccac agacaggttc cctccattgg cagcccattg tgtttgaaat tccatgtcgg 4260gtttacttgg aatgaaagat acttgaatta ttgtgcgcct gtgagcgccc agcttctgtt 4320tcatagtctt aacaggtggc cattgtcgtg aaacgagtga tgcctgaaga tctcagtgat 4380gtttgaacct tctgtgtaac tttttattaa gtctttgtat ctctcgactg attaataaag 4440aagagaaaca cgta 4454184010DNAHomo sapiens 18attggttgcg gcggatgcct cgcgggccgg tggctatgga ggcggcggcg gttgatggtt 60gaccgttggc tccggggtgg gggtcgccgt tcgagtgatc tgctcagacc cgaccagagg 120gcgcgggctg ctgatgcttg gcttggagcc cgtgggggag acctagttcg gctccgccat 180gccggccgcc gggagtaacg agccggacgg cgtcctcagc tatcagagac cagatgaaga 240agctgtggtg gatcagggtg ggaccagtac aattctcaac attcactatg aaaaagaaga 300gctggaaggt cacagaactc tgtatgtggg agttcggatg ccgcttggcc ggcagagcca 360tcggcatcac cgcactcatg gccagaagca ccggagacga gggcggggca aaggagccag 420ccagggggag gaaggcctgg aagccctggc ccacgacaca ccatctcagc gtgttcagtt 480cattcttggc accgaggaag atgaagagca tgtgcctcat gagctgttta cagagctgga 540tgagatctgt atgaaagagg gagaagatgc tgagtggaag gaaacagcca ggtggctgaa 600gtttgaagaa gatgttgaag atgggggaga acgctggagc aagccttatg tggcaaccct 660ttcattgcac agcctgtttg agctaaggag ctgccttatt aatggaacag tcctcctgga 720tatgcatgca aatagcatag aagaaatttc agacctgatc ctggatcagc aagaactgtc 780cagtgacctg aatgacagca tgagggttaa agtgcgggaa gcccttctca aaaagcatca 840tcatcagaat gaaaagaaga gaaacaacct cattcccatt gttcgctcct ttgctgaggt 900tggcaagaag cagtctgatc ctcatttgat ggataaacat ggtcaaaccg tgtctcctca 960gtctgttcca actacaaatc ttgaagtaaa aaatggagtg aattgtgaac atagtcctgt 1020ggatttaagc aaggtagacc ttcatttcat gaaaaaaatt cctactgggg ccgaggcctc 1080caatgtcctg gttggagagg tggatatttt ggaccgtccc attgttgcct ttgtgaggct 1140gtctccagct gttcttctct caggcctaac agaagtgcca atcccaacaa gatttttgtt 1200tatcttattg ggtccagtag ggaaaggtca gcagtaccat gagattggca gatccatggc 1260caccatcatg acagatgaga tttttcatga cgtagcatat aaggcaaaag agcgagatga 1320tctcctggcg gggattgatg agttcctaga ccaggtgacg gtgctccctc caggagagtg 1380ggatccctcc attagaattg agccacccaa aaatgtccct tcccaggaga aaaggaaaat 1440gcctggagtt ccaaatggaa atgtttgcca catagaacag gaaccacatg ggggtcacag 1500tgggccagaa cttcagcgca ctgggcggct atttgggggc ttggtgctgg acatcaagcg 1560gaaggccccc tggtactgga gcgactaccg agatgcactc agcttacagt gtttggcttc

1620ctttctgttc ctgtactgtg cctgcatgtc acctgtcatc acctttgggg gactgcttgg 1680agaagccact gagggacgca taagtgcaat tgaatccttg tttggagctt ccatgactgg 1740gattgcttat tccttgtttg cgggacaggc tctcaccatc ctgggaagta ctggaccagt 1800gcttgtgttt gaaaagattt tgttcaaatt ctgcaaagac tatgctcttt catacctctc 1860cctgcgagct tgtattggac tgtggaccgc tttcctgtgt attgtccttg tggcaactga 1920tgccagttcc cttgtctgct acattacccg tttcactgaa gaagcatttg cctccctaat 1980ttgcattatt ttcatctatg aagcaataga aaaactgatt cacctggcag agacctaccc 2040catccacatg cacagccagc tggaccacct tagcctctat tactgcaggt gtactctgcc 2100agagaatcca aacaatcaca ccctccagta ctggaaggac cacaacatcg tgacagcaga 2160agtccactgg gctaacctga ctgtcagtga atgccaggag atgcatggag agttcatggg 2220atctgcgtgc ggccatcatg gaccctacac tcctgatgtc ctcttttggt cctgtattct 2280ctttttcacc accttcatcc tctcaagcac cttaaagacg tttaagacga gccgttattt 2340cccaaccaga gtacgctcca tggtgagtga ctttgctgtt ttcctcacta tcttcacaat 2400ggtgattatt gattttttga ttggagtccc atcaccaaag cttcaagttc ccagtgtgtt 2460caagccaaca agggatgatc gcggatggat tattaatccc attggcccca atccctggtg 2520gactgtgata gctgcaatta tcccagctct tctctgtact atcttgatat tcatggatca 2580gcagatcaca gccgtcatta ttaacaggaa ggaacataag ctcaagaaag gctgtggcta 2640ccacctggac ctactgatgg tggccatcat gctgggtgtc tgctccatca tgggcctgcc 2700ctggtttgta gctgcaactg tcttgtccat cacacatgtg aacagcctca agctagaatc 2760tgaatgctct gctcctggag aacagcccaa gttcctgggc atccgagaac agagagtgac 2820aggccttatg atctttgtgc tgatgggctg ctcagtcttc atgacggcta tcttaaagtt 2880tattccaatg ccagtactct acggagtttt cctttacatg ggagtttctt cactacaggg 2940aattcagttc tttgatcgtc taaagctctt tgggatgccc gcaaagcacc agccagattt 3000catctacctg cggcatgtgc cgctgcgcaa agtgcacctc ttcaccctca tccagttgac 3060ctgtctcgtc ctgctctggg tcatcaaggc atctccagct gccattgttt tcccaatgat 3120ggttttggcc ttggtctttg tcaggaaagt catggatctc tgtttctcta agcgagagct 3180gagctggcta gatgatctca tgcctgaaag caaaaagaag aagttggatg atgccaaaaa 3240gaaggccaag gaggaagagg tcatagtcct tgcaccaact gtatacctgg gggcctcaaa 3300ttacagaaca taggaagggt catgtgaaaa gtcagcatgt ctggaatccc gagggttata 3360tttaggagct gggaagatta cccccaaaga tgttctcagc taagaatgga ttagggattc 3420ttgcttctgt ctgttcttaa tttttgggtt tgacaaccac ttattttttc ctttgtttac 3480aatctactca ccaggctcat acctacaatg tgaacataca gtatgccctt attagcagat 3540tcaatggctc acattctttc aaaaggtcta atttgacaaa tacataagac ccattatttc 3600ctagaatgtt tgtaatatat ctaattgcaa atggtgctgt ggttggcacc atgcaaagat 3660aacttgcata ggactttctg tcttttttca tttccctcag cacttggcat cttgtcatct 3720acacaatgga ccctcaataa atggcctata tgtgcaaaga aagaatgtgt agcaaatgaa 3780aataccagac caagaaatga gtgagctggg aagtgtttcc aaatacagtt agtgcctaaa 3840atagtgtcct ttgaaaaaac ttttaaaaga ctttttttta ggccaggcat aatgggttat 3900ccctgtaatt ccagggcttt tgggagttga agctggagga ttacttgagg ccagaagttt 3960gagactagcc taggcaatat aatgagaccc tgtctctaca aaaaaaaaaa 4010193276DNAHomo sapiens 19aatagactaa acccagagcc tcaaagcagt gcactccgtg aaggcaaaga gaacacgctg 60caaaaggctt tccaagaatc ctcgacatgg caaggaggag ctcgttccag tcgtgtcaga 120taatatccct gttcactttt gccgttggag tcaatatctg cttaggattc actgcacatc 180gaattaagag agcagaagga tgggaggaag gtcctcctac agtgctatca gactccccct 240ggaccaacat ctccggatct tgcaagggca ggtgctttga acttcaagag gctggacctc 300ctgattgtcg ctgtgacaac ttgtgtaaga gctataccag ttgctgccat gactttgatg 360agctgtgttt gaagacagcc cgtggctggg agtgtactaa ggacagatgt ggagaagtca 420gaaatgaaga aaatgcctgt cactgctcag aggactgctt ggccagggga gactgctgta 480ccaattacca agtggtttgc aaaggagagt cgcattgggt tgatgatgac tgtgaggaaa 540taaaggccgc agaatgccct gcagggtttg ttcgccctcc attaatcatc ttctccgtgg 600atggcttccg tgcatcatac atgaagaaag gcagcaaagt catgcctaat attgaaaaac 660taaggtcttg tggcacacac tctccctaca tgaggccggt gtacccaact aaaacctttc 720ctaacttata cactttggcc actgggctat atccagaatc acatggaatt gttggcaatt 780caatgtatga tcctgtattt gatgccactt ttcatctgcg agggcgagag aaatttaatc 840atagatggtg gggaggtcaa ccgctatgga ttacagccac caagcaaggg gtgaaagctg 900gaacattctt ttggtctgtt gtcatccctc acgagcggag aatattaacc atattgcagt 960ggctcaccct gccagatcat gagaggcctt cggtctatgc cttctattct gagcaacctg 1020atttctctgg acacaaatat ggccctttcg gccctgagga gagtagttat ggctcacctt 1080ttactccggc taagagacct aagaggaaag ttgcccctaa gaggagacag gaaagaccag 1140ttgctcctcc aaagaaaaga agaagaaaaa tacataggat ggatcattat gctgcggaaa 1200ctcgtcagga caaaatgaca aatcctctga gggaaatcga caaaattgtg gggcaattaa 1260tggatggact gaaacaacta aaactgcatc ggtgtgtcaa cgtcatcttt gtcggagacc 1320atggaatgga agatgtcaca tgtgatagaa ctgagttctt gagtaattac ctaactaatg 1380tggatgatat tactttagtg cctggaactc taggaagaat tcgatccaaa tttagcaaca 1440atgctaaata tgaccccaaa gccattattg ccaatctcac gtgtaaaaaa ccagatcagc 1500actttaagcc ttacttgaaa cagcaccttc ccaaacgttt gcactatgcc aacaacagaa 1560gaattgagga tatccattta ttggtggaac gcagatggca tgttgcaagg aaacctttgg 1620atgtttataa gaaaccatca ggaaaatgct ttttccaggg agaccacgga tttgataaca 1680aggtcaacag catgcagact gtttttgtag gttatggctc aacatttaag tacaagacta 1740aagtgcctcc atttgaaaac attgaacttt acaatgttat gtgtgatctc ctgggattga 1800agccagctcc taataatggg acccatggaa gtttgaatca tctcctgcgc actaatacct 1860tcaggccaac catgccagag gaagttacca gacccaatta tccagggatt atgtaccttc 1920agtctgattt tgacctgggc tgcacttgtg atgataaggt agagccaaag aacaagttgg 1980atgaactcaa caaacggctt catacaaaag ggtctacaga agagagacac ctcctctatg 2040ggcgacctgc agtgctttat cggactagat atgatatctt atatcacact gactttgaaa 2100gtggttatag tgaaatattc ctaatgccac tctggacatc atatactgtt tccaaacagg 2160ctgaggtttc cagcgttcct gaccatctga ccagttgcgt ccggcctgat gtccgtgttt 2220ctccgagttt cagtcagaac tgtttggcct acaaaaatga taagcagatg tcctacggat 2280tcctctttcc tccttatctg agctcttcac cagaggctaa atatgatgca ttccttgtaa 2340ccaatatggt tccaatgtat cctgctttca aacgggtctg gaattatttc caaagggtat 2400tggtgaagaa atatgcttcg gaaagaaatg gagttaacgt gataagtgga ccaatcttcg 2460actatgacta tgatggctta catgacacag aagacaaaat aaaacagtac gtggaaggca 2520gttccattcc tgttccaact cactactaca gcatcatcac cagctgtctg gatttcactc 2580agcctgccga caagtgtgac ggccctctct ctgtgtcctc cttcatcctg cctcaccggc 2640ctgacaacga ggagagctgc aatagctcag aggacgaatc aaaatgggta gaagaactca 2700tgaagatgca cacagctagg gtgcgtgaca ttgaacatct caccagcctg gacttcttcc 2760gaaagaccag ccgcagctac ccagaaatcc tgacactcaa gacatacctg catacatatg 2820agagcgagat ttaactttct gagcatctgc agtacagtct tatcaactgg ttgtatattt 2880ttatattgtt tttgtattta ttaatttgaa accaggacat taaaaatgtt agtattttaa 2940tcctgtacca aatctgacat attatgcctg aatgactcca ctgtttttct ctaatgcttg 3000atttaggtag ccttgtgttc tgagtagagc ttgtaataaa tactgcagct tgagttttta 3060gtggaagctt ctaaatggtg ctgcagattt gatatttgca ttgaggaaat attaattttc 3120caatgcacag ttgccacatt tagtcctgta ctgtatggaa acactgattt tgtaaagttg 3180cctttatttg ctgttaactg ttaactatga cagatatatt taagccttat aaaccaatct 3240taaacataat aaatcacaca ttcagttttt tctggt 3276204750DNAHomo sapiens 20gagaacggtg gccggacgga gagactgcgg gtctgaggga ctggcgggcg ggcgggccga 60gcggcgccgc cgaggccggg ctgggccgag cccaggagcg cccgggatgt agcgggccac 120cctgccgatg ccacagcgcc cggccgcggg cggagccgga gccggagcct ggggaggcgg 180cgggggccca gagcgcagcc cgcgcccccc gcgcggagcc aggcccgctg ccgtccccgc 240cgcccgggcc cccggcatgc agccccggct gcggaggtga cactcacgga ccttagccac 300cgccgccgcc atcgccacca tggacgaaca ggaggcattg aactcaatca tgaacgatct 360ggtggccctc cagatgaacc gacgtcaccg gatgcctgga tatgagacca tgaagaacaa 420agacacaggt cactcaaata ggcagagtga cgtcagaatc aagttcgagc acaacgggga 480gaggcgaatt atagcgttca gccggcctgt gaaatatgaa gatgtggagc acaaggtgac 540aacagtattt ggacaacctc ttgatctaca ttacatgaac aatgagctct ccatcctgct 600gaaaaaccaa gatgatcttg ataaagcaat tgacatttta gatagaagct caagcatgaa 660aagccttagg atattgctgt tgtcccagga cagaaaccat aacagttcct ctccccactc 720tggggtgtcc agacaggtgc ggatcaaggc ttcccagtcc gcaggggata taaatactat 780ctaccagccc cccgagccca gaagcaggca cctctctgtc agctcccaga accctggccg 840aagctcacct ccccctggct atgttcctga gcggcagcag cacattgccc ggcaggggtc 900ctacaccagc atcaacagtg agggggagtt catcccagag accagcgagc agtgcatgct 960ggatcccctg agcagtgcag aaaattcctt gtctggaagc tgccaatcct tggacaggtc 1020agcagacagc ccatccttcc ggaaatcacg aatgtcccgt gcccagagct tccctgacaa 1080cagacaggaa tactcagatc gggaaactca gctttatgac aaaggggtca aaggtggaac 1140ctacccccgg cgctaccacg tgtctgtgca ccacaaggac tacagtgatg gcagaagaac 1200atttccccga atacggcgtc atcaaggcaa cttgttcacc ctggtgccct ccagccgctc 1260cctgagcaca aatggcgaga acatgggtct ggctgtgcaa tacctggacc cccgtgggcg 1320cctgcggagt gcggacagcg agaatgccct ctctgtgcag gagaggaatg tgccaaccaa 1380gtctcccagt gcccccatca actggcgccg gggaaagctc ctgggccagg gtgccttcgg 1440cagggtctat ttgtgctatg acgtggacac gggacgtgaa cttgcttcca agcaggtcca 1500atttgatcca gacagtcctg agacaagcaa ggaggtgagt gctctggagt gcgagatcca 1560gttgctaaag aacttgcagc atgagcgcat cgtgcagtac tatggctgtc tgcgggaccg 1620cgctgagaag accctgacca tcttcatgga gtacatgcca gggggctcgg tgaaagacca 1680gttgaaggct tacggtgctc tgacagagag cgtgacccga aagtacacgc ggcagatcct 1740ggagggcatg tcctacctgc acagcaacat gattgttcac cgggacatta agggagccaa 1800catcctccga gactctgctg ggaatgtaaa gctgggggac tttggggcca gcaaacgcct 1860gcagacgatc tgtatgtcgg ggacgggcat gcgctccgtc actggcacac cctactggat 1920gagccctgag gtgatcagcg gcgagggcta tggaaggaaa gcagacgtgt ggagcctggg 1980ctgcactgtg gtggagatgc tgacagagaa accaccgtgg gcagagtatg aagctatggc 2040cgccatcttc aagattgcca cccagcccac caatcctcag ctgccctccc acatctctga 2100acatggccgg gacttcctga ggcgcatttt tgtggaggct cgccagagac cttcagctga 2160ggagctgctc acacaccact ttgcacagct catgtactga gctctcacgg ccacacagct 2220gccggtcgcc ctttgctgca tggcaggggg ctgctgctgg gctcagtgaa gttgctgctt 2280ctcccaggca aggctgtgga ccatggagtg gcagcccagc cagcgtcggt ctgtgcccct 2340tccgccactg gggctcagag ccggggtggg gtggctgcag cctcaggact gggagccccc 2400agcctgtcag atccaggagc tccagtgtcc tgagctcagc gtggaggggt aggggctggg 2460aacagtgtgc aaggcagccg tgggccccac cctcggggat gtgtcctgac actgcaattg 2520gcaccgaagc ccagagggtc tgggggcaca agactgacgc cagggtatga agagtgttat 2580tttcattcaa agtgttattt tgtttttcct tccaatgtct ggagaccacc agggcatctc 2640tgggctggat gagctcccac aagcctgagg gaaaggccag cactcgctag cagtggcagg 2700cagaggccca ggctgccgtc ccctagagtc ccaggttggc tctgccagtc ctgtccttta 2760ccaaagatga atgaagcaaa tgtcatgctg ccttattcag ggaaggagga gcctgtcctg 2820cctgtggcca tgaccctgcc tctcccaggc aggggcccgc gatgtggaac tgctgccact 2880gaggggggat ccagttttgt caatgcagtt gtctctgttt tacaagttgg agtcactctt 2940atgctgtacc cagtttctaa actggagact gtgtgtgccc tctgggctct gagtacccct 3000gctttgggct tgggcctagg ctgcattgaa aagagctgaa ggttgtggcc tttgcgctcc 3060tggcccagcc tttgttcccc actggagcag aaggggagat ggacgacacg gtcggggcat 3120ctggcctggc cagtgccctg atcccagaga gcccgaggag gtgtctcagg ctgcctgagt 3180cgtgacctgc taggccagag cccactccat ctggtagaag ggaaagccca tatgctacca 3240ccagctgtgt ccaaaaccgc cagctctgtt cttcctcagc cagcctcgcc catccccttg 3300aggtctcagc ccctttccct tgtagctcct cccctggagg gggaatggca gcaggggttg 3360gggaaacagc atctccaagc agcttagagt tggccatatt tacctcagcc tgggcgctgg 3420tcctttcttc cggcccctcc cctccaaaat gtgcctattg ctagagctcc tccctctcaa 3480cacccagttt ccttgggagt tgtcattaaa ggaaaaaaaa aaaaaaaaaa gccagtgccc 3540agggatgggc atctccaggg agctggggat tagtgccagg cagccctgcc agccatgcct 3600acatccccat gggcacagaa caagccaaag ccttcgttgt atgttgacga tgcactttta 3660tgaatgtagt ttctatcgct gtttttagcc ttttcacatc atgtaatgtg aggccttgta 3720cttgttaatt tatatctcag atcatatttg atggttttta tatatatcaa ttctagactg 3780ttacaggtga cggacgcctc aagagagaga agagaaaatg aaagcagctg gttttgcaga 3840agtgtgtgtc gcatgcgcca gttgggcctg gaccctcctg tgtccatccc tgttccccca 3900ggggctctat cagcccctgt accccacact gccctctgaa gacaacacag gctcctgctt 3960ccacctcggc ccttgcccag ggtggggcct ggccctcatc ttgaccaaag ctgctgtgtg 4020gcagctcggc ctctctacga ccccatcttg gtggctgcac actcttcctg gcccgcaccc 4080ccatccccag tccctgttcc ccaagaggat acagagcacg gtgctggctg actcaactgt 4140gcgtcccagg ttcagggtct tacagagctc caccccctgg ggtcttacct cactgggaat 4200gtgttttgaa aatgaatttg aagacaagcc aacaaaccct gcactccaaa aaagcaaaac 4260agaccctaat ttttttgtgc caaaaactgt ggacatgctg gctcagcatc ctcaggacca 4320agttgttgct taatttattg ttttttaata actaatccag ataaaaagtt gtggggcttc 4380agggtgacct gggcccaaag gttctgaagg gcagttcctg gcagccccag gcttgctgtg 4440ggaaggggcc gtgccgtcac tttctcatca ttccatgggg tgtgtctgcc tgggccaact 4500ctgcatggag aggccagggc tggggacagt ccgcactctg ccaccctcct gccccttcca 4560cccaccccag ctctatgtct gtgtctgaat tgtggatcgt gcagccatgg ttattgtgga 4620actgtggaac ctgcagccat agttatttga ctatatcttg accgagggct tgcagtgcaa 4680agccaggcca gtgttgcgca ttacttacaa taaaagggat catttatatc agaaaaaaaa 4740aaaaaaaaaa 4750214843DNAHomo sapiens 21gagaacggtg gccggacgga gagactgcgg gtctgaggga ctggcgggcg ggcgggccga 60gcggcgccgc cgaggccggg ctgggccgag cccaggagcg cccgggatgt agcgggccac 120cctgccgatg ccacagcgcc cggccgcggg cggagccgga gccggagcct ggggaggcgg 180cgggggccca gagcgcagcc cgcgcccccc gcgcggagcc aggcccgctg ccgtccccgc 240cgcccgggcc cccggcatgc agccccggct gcggaggtga cactcacgga ccttagccac 300cgccgccgcc atcgccacca tggacgaaca ggaggcattg aactcaatca tgaacgatct 360ggtggccctc cagatgaacc gacgtcaccg gatgcctgga tatgagacca tgaagaacaa 420agacacaggt cactcaaata ggcagaaaaa acacaacagc agcagctcag cccttctgaa 480cagccccaca gtaacaacaa gctcatgtgc aggggccagt gagaaaaaga aatttttgag 540tgacgtcaga atcaagttcg agcacaacgg ggagaggcga attatagcgt tcagccggcc 600tgtgaaatat gaagatgtgg agcacaaggt gacaacagta tttggacaac ctcttgatct 660acattacatg aacaatgagc tctccatcct gctgaaaaac caagatgatc ttgataaagc 720aattgacatt ttagatagaa gctcaagcat gaaaagcctt aggatattgc tgttgtccca 780ggacagaaac cataacagtt cctctcccca ctctggggtg tccagacagg tgcggatcaa 840ggcttcccag tccgcagggg atataaatac tatctaccag ccccccgagc ccagaagcag 900gcacctctct gtcagctccc agaaccctgg ccgaagctca cctccccctg gctatgttcc 960tgagcggcag cagcacattg cccggcaggg gtcctacacc agcatcaaca gtgaggggga 1020gttcatccca gagaccagcg agcagtgcat gctggatccc ctgagcagtg cagaaaattc 1080cttgtctgga agctgccaat ccttggacag gtcagcagac agcccatcct tccggaaatc 1140acgaatgtcc cgtgcccaga gcttccctga caacagacag gaatactcag atcgggaaac 1200tcagctttat gacaaagggg tcaaaggtgg aacctacccc cggcgctacc acgtgtctgt 1260gcaccacaag gactacagtg atggcagaag aacatttccc cgaatacggc gtcatcaagg 1320caacttgttc accctggtgc cctccagccg ctccctgagc acaaatggcg agaacatggg 1380tctggctgtg caatacctgg acccccgtgg gcgcctgcgg agtgcggaca gcgagaatgc 1440cctctctgtg caggagagga atgtgccaac caagtctccc agtgccccca tcaactggcg 1500ccggggaaag ctcctgggcc agggtgcctt cggcagggtc tatttgtgct atgacgtgga 1560cacgggacgt gaacttgctt ccaagcaggt ccaatttgat ccagacagtc ctgagacaag 1620caaggaggtg agtgctctgg agtgcgagat ccagttgcta aagaacttgc agcatgagcg 1680catcgtgcag tactatggct gtctgcggga ccgcgctgag aagaccctga ccatcttcat 1740ggagtacatg ccagggggct cggtgaaaga ccagttgaag gcttacggtg ctctgacaga 1800gagcgtgacc cgaaagtaca cgcggcagat cctggagggc atgtcctacc tgcacagcaa 1860catgattgtt caccgggaca ttaagggagc caacatcctc cgagactctg ctgggaatgt 1920aaagctgggg gactttgggg ccagcaaacg cctgcagacg atctgtatgt cggggacggg 1980catgcgctcc gtcactggca caccctactg gatgagccct gaggtgatca gcggcgaggg 2040ctatggaagg aaagcagacg tgtggagcct gggctgcact gtggtggaga tgctgacaga 2100gaaaccaccg tgggcagagt atgaagctat ggccgccatc ttcaagattg ccacccagcc 2160caccaatcct cagctgccct cccacatctc tgaacatggc cgggacttcc tgaggcgcat 2220ttttgtggag gctcgccaga gaccttcagc tgaggagctg ctcacacacc actttgcaca 2280gctcatgtac tgagctctca cggccacaca gctgccggtc gccctttgct gcatggcagg 2340gggctgctgc tgggctcagt gaagttgctg cttctcccag gcaaggctgt ggaccatgga 2400gtggcagccc agccagcgtc ggtctgtgcc ccttccgcca ctggggctca gagccggggt 2460ggggtggctg cagcctcagg actgggagcc cccagcctgt cagatccagg agctccagtg 2520tcctgagctc agcgtggagg ggtaggggct gggaacagtg tgcaaggcag ccgtgggccc 2580caccctcggg gatgtgtcct gacactgcaa ttggcaccga agcccagagg gtctgggggc 2640acaagactga cgccagggta tgaagagtgt tattttcatt caaagtgtta ttttgttttt 2700ccttccaatg tctggagacc accagggcat ctctgggctg gatgagctcc cacaagcctg 2760agggaaaggc cagcactcgc tagcagtggc aggcagaggc ccaggctgcc gtcccctaga 2820gtcccaggtt ggctctgcca gtcctgtcct ttaccaaaga tgaatgaagc aaatgtcatg 2880ctgccttatt cagggaagga ggagcctgtc ctgcctgtgg ccatgaccct gcctctccca 2940ggcaggggcc cgcgatgtgg aactgctgcc actgaggggg gatccagttt tgtcaatgca 3000gttgtctctg ttttacaagt tggagtcact cttatgctgt acccagtttc taaactggag 3060actgtgtgtg ccctctgggc tctgagtacc cctgctttgg gcttgggcct aggctgcatt 3120gaaaagagct gaaggttgtg gcctttgcgc tcctggccca gcctttgttc cccactggag 3180cagaagggga gatggacgac acggtcgggg catctggcct ggccagtgcc ctgatcccag 3240agagcccgag gaggtgtctc aggctgcctg agtcgtgacc tgctaggcca gagcccactc 3300catctggtag aagggaaagc ccatatgcta ccaccagctg tgtccaaaac cgccagctct 3360gttcttcctc agccagcctc gcccatcccc ttgaggtctc agcccctttc ccttgtagct 3420cctcccctgg agggggaatg gcagcagggg ttggggaaac agcatctcca agcagcttag 3480agttggccat atttacctca gcctgggcgc tggtcctttc ttccggcccc tcccctccaa 3540aatgtgccta ttgctagagc tcctccctct caacacccag tttccttggg agttgtcatt 3600aaaggaaaaa aaaaaaaaaa aaagccagtg cccagggatg ggcatctcca gggagctggg 3660gattagtgcc aggcagccct gccagccatg cctacatccc catgggcaca gaacaagcca 3720aagccttcgt tgtatgttga cgatgcactt ttatgaatgt agtttctatc gctgttttta 3780gccttttcac atcatgtaat gtgaggcctt gtacttgtta atttatatct cagatcatat 3840ttgatggttt ttatatatat caattctaga ctgttacagg tgacggacgc ctcaagagag 3900agaagagaaa atgaaagcag ctggttttgc agaagtgtgt gtcgcatgcg ccagttgggc 3960ctggaccctc ctgtgtccat ccctgttccc ccaggggctc tatcagcccc tgtaccccac 4020actgccctct gaagacaaca caggctcctg cttccacctc ggcccttgcc cagggtgggg 4080cctggccctc atcttgacca aagctgctgt gtggcagctc ggcctctcta cgaccccatc 4140ttggtggctg cacactcttc ctggcccgca cccccatccc cagtccctgt tccccaagag 4200gatacagagc acggtgctgg ctgactcaac tgtgcgtccc aggttcaggg tcttacagag 4260ctccaccccc tggggtctta cctcactggg aatgtgtttt gaaaatgaat ttgaagacaa 4320gccaacaaac cctgcactcc aaaaaagcaa aacagaccct aatttttttg tgccaaaaac 4380tgtggacatg ctggctcagc atcctcagga ccaagttgtt gcttaattta ttgtttttta 4440ataactaatc cagataaaaa gttgtggggc ttcagggtga cctgggccca aaggttctga

4500agggcagttc ctggcagccc caggcttgct gtgggaaggg gccgtgccgt cactttctca 4560tcattccatg gggtgtgtct gcctgggcca actctgcatg gagaggccag ggctggggac 4620agtccgcact ctgccaccct cctgcccctt ccacccaccc cagctctatg tctgtgtctg 4680aattgtggat cgtgcagcca tggttattgt ggaactgtgg aacctgcagc catagttatt 4740tgactatatc ttgaccgagg gcttgcagtg caaagccagg ccagtgttgc gcattactta 4800caataaaagg gatcatttat atcagaaaaa aaaaaaaaaa aaa 4843222504DNAHomo sapiens 22gggacccact atcttgtggt ttctgtcaag ttcctgattt tcatccgtag ttgaagatga 60gcaagaactc tgtaacagtg ttaccttgga gcctacaatg agaggtattt caaaatgagt 120gaagcatgac tctcacagat gaaggcctag acgcaggatc tttaatgaaa aaacacttgg 180gccacttcaa gacgacaaac gctcactggg caaaacacct tcactgaaaa gagacctcat 240attatgcaaa aaaaatctta aaaggcctct gccttcagaa gttacaagat gatcaattca 300acctccacac agcctccaga tgaatcctgc tctcagaacc tcctgatcac tcagcagatc 360attcctgtgc tgtactgtat ggtcttcatt gcaggaatcc tactcaatgg agtgtcagga 420tggatattct tttacgtgcc cagctctaag agtttcatca tctatctcaa gaacattgtt 480attgctgact ttgtgatgag cctgactttt cctttcaaga tccttggtga ctcaggcctt 540ggtccctggc agctgaacgt gtttgtgtgc agggtctctg ccgtgctctt ctacgtcaac 600atgtacgtca gcattgtgtt ctttgggctc atcagctttg acagatatta taaaattgta 660aagcctcttt ggacttcttt catccagtca gtgagttaca gcaaacttct gtcagtgata 720gtatggatgc tcatgctcct ccttgctgtt ccaaatatta ttctcaccaa ccagagtgtt 780agggaggtta cacaaataaa atgtatagaa ctgaaaagtg aactgggacg gaagtggcac 840aaagcatcaa actacatctt cgtggccatc ttctggattg tgtttctttt gttaatcgtt 900ttctatactg ctatcacaaa gaaaatcttt aagtcccacc ttaagtcaag tcggaattcc 960acttcggtca aaaagaaatc tagccgcaac atattcagca tcgtgtttgt gttttttgtc 1020tgttttgtac cttaccatat tgccagaatc ccctacacaa agagtcagac cgaagctcat 1080tacagctgcc agtcaaaaga aatcttgcgg tatatgaaag aattcactct gctactatct 1140gctgcaaatg tatgcttgga ccctattatt tatttctttc tatgccagcc gtttagggaa 1200atcttatgta agaaattgca cattccatta aaagctcaga atgacctaga catttccaga 1260atcaaaagag gaaatacaac acttgaaagc acagatactt tgtgagttcc taccctcttc 1320caaagaaaga ccacgtgtgc atgttgtcat cttcaattac ataacagaaa tcaataagat 1380atgtgccctc atcataaata tcatctctag cactgccatc caatttagtt caataaaatt 1440caaatataag tttccatgct tttttgtaac atcaaagaaa acatacccat cagtaatttc 1500tctaatactg acctttctat tctctattaa taaaaaatta atacatacaa ttattcaatt 1560ctattatatt aaaataagtt aaagtttata accactagtc tggtcagtta atgtagaaat 1620ttaaatagta aataaaacac aacataatca aagacaactc actcaggcat cttctttctc 1680taaataccag aatctagtat gtaattgttt tcaacactgt ccttaaagac taacttgaaa 1740gcaggcacag tttgatgaag ggctagagag ctgtttgcaa taaaaagtca ggtttttttc 1800ctgatttgaa gaagcaggaa aagctgacac ccagacaatc acttaagaaa ccccttattg 1860atgtatttca tggcactgca aaggaagagg aatattaatt gtatacttag caagaaaatt 1920ttttttttct gatagcactt tgaggatatt agatacatgc taaatatgtt ttctacaaag 1980acttacgtca tttaatgagc ctggggttct ggtgttagaa tatttttaag taggctttac 2040tgagagaaac taaatattgg catacgttat cagcaacttc ccctgttcaa tagtatggga 2100aaaataagat gactgggaaa aagacacacc cacaccgtag aacatatatt aatctactgg 2160cgaatgggaa aggagaccat tttcttagaa agcaaataaa cttgattttt ttaaatctaa 2220aatttacatt aatgagtgca aaataacaca taaaatgaaa attcacacat cacatttttc 2280tggaaaacag acggatttta cttctggaga catggcatac ggttactgac ttatgagcta 2340ccaaaactaa attctttctc tgctattaac tggctagaag acattcatct atttttcaaa 2400tgttctttca aaacattttt ataagtaatg tttgtatcta tttcatgctt tactgtctat 2460atactaataa agaaatgttt taatactgaa aaaaaaaaaa aaaa 2504232396DNAHomo sapiens 23cacatagcta gtaagttcta gctagcactg agtgctgtgc ccgtgaaatt tatctacata 60ggctttcact taacctgcag acagaactca gttagtcggg gacaatttcc ctcaatgtta 120acagcactgt tccaccgcaa cgtggaacaa cagctttaaa acgtgctctt cgtaggcccg 180gctactccaa gaacagtgcc tcccgccaga cccaggcggc ttccttcacc cgcaacccga 240gagacgaccc gccgggcccg ccccgcggaa gccgccggtt gccaggccaa ggagtggact 300agggtcgccg gggaagcggt ttgggagagc ccatggtgac tgcgtgagtg gagcccagct 360gtgtggatgc cccagcatgg atgactacat ggtcctgaga atgattgggg agggctcctt 420cggcagagct cttttggttc agcatgaaag cagtaatcag atgtttgcca tgaaagaaat 480aaggcttccc aagtctttct ctaatacaca gaattctagg aaggaggctg ttcttttagc 540caaaatgaaa caccctaata ttgttgcctt caaagaatca tttgaagctg aaggacactt 600gtatattgtg atggaatact gtgatggagg ggatctaatg caaaagatta aacagcagaa 660aggaaagtta tttcctgaag acatgatact taattggttt acccaaatgt gccttggagt 720aaatcacatt cacaagaaac gtgtgctaca cagagatatc aagtccaaga atatcttcct 780cactcagaat ggaaaagtga aattgggaga ctttggatct gcccgtcttc tctccaatcc 840gatggcattt gcttgtacct atgtgggaac tccttattat gtgcctccag aaatttggga 900aaacctgcct tataacaata aaagtgacat ctggtccttg ggttgcatcc tgtatgaact 960ctgtaccctt aagcatccat ttcaggcaaa tagttggaaa aatcttatcc tcaaagtatg 1020tcaagggtgc atcagtccac tgccgtctca ttactcctat gaacttcagt tcctagtcaa 1080gcagatgttt aaaaggaatc cctcacatcg cccctcggct acaacgcttc tctctcgagg 1140catcgtagct cggcttgtcc agaagtgctt accccccgag atcatcatgg aatatggtga 1200ggaagtatta gaagaaataa aaaattcgaa gcataacaca ccaagaaaaa aaacaaaccc 1260cagcagaatc aggatagctt tgggaaatga agcaagcaca gtgcaagagg aagaacaaga 1320tagaaagggt agccatactg atttggaaag cattaatgaa aatttagttg aaagtgcatt 1380gagaagagta aacagagaag aaaaaggtaa taagtcagtc catctgagga aagccagttc 1440accaaatctt catagacgac agtgggagaa aaatgtaccc aatacagctc ttacagcttt 1500ggaaaatgca tccatactca cctccagttt aacagcagag gacgatagag gtggttctgt 1560aataaagtac agcaaaaata ctactcgtaa gcagtggctc aaagagaccc ctgacacttt 1620gttgaacatc cttaagaatg ctgatctcag cttggctttt caaacataca caatatatag 1680accaggttca gaagggttct tgaaaggccc cctgtctgaa gaaacagaag catcggacag 1740tgttgatgga ggtcacgatt ctgtcatttt ggatccagag cgacttgagc ctgggctaga 1800tgaggaggac acggactttg aggaggaaga tgacaacccc gactgggtgt cagagctgaa 1860gaagcgagct ggatggcaag gcctgtgcga cagataatgc ctgaggaaat gttcctgagt 1920cacgctgagg agaggcttca ctcaggagtt catgctgaga tgatcatgag ttcatgcgac 1980gtatattttc ctttggaaac agaatgaagc agaggaaact cttaatactt aaaatcgttc 2040ttgattagta tcgtgagttt gaaaagtcta gaactcctgt aagtttttga actcaaggga 2100gaaggtatag tggaatgagt gtgagcatcg ggctttgcag tcccatagaa cagaaatggg 2160atgctagcgt gccactacct acttgtgtga ttgtgggaaa ttacttaacc tcttcaagcc 2220ccaatttcct caaccataaa atgaagataa taatgcctac ctcagaggga tgctgaccac 2280agacctttat agcagcccgt atgatattat tcacattatg atatgtgttt attattatgt 2340gactcttttt acatttccta aaggtttgag aattaaatat atttaattat gattta 2396242255DNAHomo sapiens 24cgccgccttg gggtctgggc gcgcggtgcc gtgggggtca gcagggcgga gcggcttttc 60caggagaaag ggccctcacg ggtgagcggg gcgactgggc tcccccgcgg tgcagttgcc 120ccgcgggcgc cggccccggc tcaacggatt cttctcgctc gctgcccgga aagaaccatt 180tgggagagcc catggtgact gcgtgagtgg agcccagctg tgtggatgcc ccagcatgga 240tgactacatg gtcctgagaa tgattgggga gggctccttc ggcagagctc ttttggttca 300gcatgaaagc agtaatcaga tgtttgccat gaaagaaata aggcttccca agtctttctc 360taatacacag aattctagga aggaggctgt tcttttagcc aaaatgaaac accctaatat 420tgttgccttc aaagaatcat ttgaagctga aggacacttg tatattgtga tggaatactg 480tgatggaggg gatctaatgc aaaagattaa acagcagaaa ggaaagttat ttcctgaaga 540catgatactt aattggttta cccaaatgtg ccttggagta aatcacattc acaagaaacg 600tgtgctacac agagatatca agtccaagaa tatcttcctc actcagaatg gaaaagtgaa 660attgggagac tttggatctg cccgtcttct ctccaatccg atggcatttg cttgtaccta 720tgtgggaact ccttattatg tgcctccaga aatttgggaa aacctgcctt ataacaataa 780aagtgacatc tggtccttgg gttgcatcct gtatgaactc tgtaccctta agcatccatt 840tcaggcaaat agttggaaaa atcttatcct caaagtatgt caagggtgca tcagtccact 900gccgtctcat tactcctatg aacttcagtt cctagtcaag cagatgttta aaaggaatcc 960ctcacatcgc ccctcggcta caacgcttct ctctcgaggc atcgtagctc ggcttgtcca 1020gaagtgctta ccccccgaga tcatcatgga atatggtgag gaagtattag aagaaataaa 1080aaattcgaag cataacacac caagaaaaaa aacaaacccc agcagaatca ggatagcttt 1140gggaaatgaa gcaagcacag tgcaagagga agaacaagat agaaagggta gccatactga 1200tttggaaagc attaatgaaa atttagttga aagtgcattg agaagagtaa acagagaaga 1260aaaaggtaat aagtcagtcc atctgaggaa agccagttca ccaaatcttc atagacgaca 1320gtgggagaaa aatgtaccca atacagctct tacagctttg gaaaatgcat ccatactcac 1380ctccagttta acagcagagg acgatagagg tggttctgta ataaagtaca gcaaaaatac 1440tactcgtaag cagtggctca aagagacccc tgacactttg ttgaacatcc ttaagaatgc 1500tgatctcagc ttggcttttc aaacatacac aatatataga ccaggttcag aagggttctt 1560gaaaggcccc ctgtctgaag aaacagaagc atcggacagt gttgatggag gtcacgattc 1620tgtcattttg gatccagagc gacttgagcc tgggctagat gaggaggaca cggactttga 1680ggaggaagat gacaaccccg actgggtgtc agagctgaag aagcgagctg gatggcaagg 1740cctgtgcgac agataatgcc tgaggaaatg ttcctgagtc acgctgagga gaggcttcac 1800tcaggagttc atgctgagat gatcatgagt tcatgcgacg tatattttcc tttggaaaca 1860gaatgaagca gaggaaactc ttaatactta aaatcgttct tgattagtat cgtgagtttg 1920aaaagtctag aactcctgta agtttttgaa ctcaagggag aaggtatagt ggaatgagtg 1980tgagcatcgg gctttgcagt cccatagaac agaaatggga tgctagcgtg ccactaccta 2040cttgtgtgat tgtgggaaat tacttaacct cttcaagccc caatttcctc aaccataaaa 2100tgaagataat aatgcctacc tcagagggat gctgaccaca gacctttata gcagcccgta 2160tgatattatt cacattatga tatgtgttta ttattatgtg actcttttta catttcctaa 2220aggtttgaga attaaatata tttaattatg attta 2255252252DNAHomo sapiens 25agaacagctt gaagaccgtt catttttaag tgacaagaga ctcacctcca agaagcaatt 60gtgttttcag aatgatttta ttcaagcaag caacttattt catttccttg tttgctacag 120tttcctgtgg atgtctgact caactctatg aaaacgcctt cttcagaggt ggggatgtag 180cttccatgta caccccaaat gcccaatact gccagatgag gtgcacattc cacccaaggt 240gtttgctatt cagttttctt ccagcaagtt caatcaatga catggagaaa aggtttggtt 300gcttcttgaa agatagtgtt acaggaaccc tgccaaaagt acatcgaaca ggtgcagttt 360ctggacattc cttgaagcaa tgtggtcatc aaataagtgc ttgccatcga gacatttata 420aaggagttga tatgagagga gtcaatttta atgtgtctaa ggttagcagt gttgaagaat 480gccaaaaaag gtgcaccagt aacattcgct gccagttttt ttcatatgcc acgcaaacat 540ttcacaaggc agagtaccgg aacaattgcc tattaaagta cagtcccgga ggaacaccta 600ccgctataaa ggtgctgagt aacgtggaat ctggattctc actgaagccc tgtgcccttt 660cagaaattgg ttgccacatg aacatcttcc agcatcttgc gttctcagat gtggatgttg 720ccagggttct cactccagat gcttttgtgt gtcggaccat ctgcacctat caccccaact 780gcctcttctt tacattctat acaaatgtat ggaaaatcga gtcacaaaga aatgtttgtc 840ttcttaaaac atctgaaagt ggcacaccaa gttcctctac tcctcaagaa aacaccatat 900ctggatatag ccttttaacc tgcaaaagaa ctttacctga accctgccat tctaaaattt 960acccgggagt tgactttgga ggagaagaat tgaatgtgac ttttgttaaa ggagtgaatg 1020tttgccaaga gacttgcaca aagatgattc gctgtcagtt tttcacttat tctttactcc 1080cagaagactg taaggaagag aagtgtaagt gtttcttaag attatctatg gatggttctc 1140caactaggat tgcgtatggg acacaaggga gctctggtta ctctttgaga ttgtgtaaca 1200ctggggacaa ctctgtctgc acaacaaaaa caagcacacg cattgttgga ggaacaaact 1260cttcttgggg agagtggccc tggcaggtga gcctgcaggt gaagctgaca gctcagaggc 1320acctgtgtgg agggtcactc ataggacacc agtgggtcct cactgctgcc cactgctttg 1380atgggcttcc cctgcaggat gtttggcgca tctatagtgg cattttaaat ctgtcagaca 1440ttacaaaaga tacacctttc tcacaaataa aagagattat tattcaccaa aactataaag 1500tctcagaagg gaatcatgat atcgccttga taaaactcca ggctcctttg aattacactg 1560aattccaaaa accaatatgc ctaccttcca aaggtgacac aagcacaatt tataccaact 1620gttgggtaac cggatggggc ttctcgaagg agaaaggtga aatccaaaat attctacaaa 1680aggtaaatat tcctttggta acaaatgaag aatgccagaa aagatatcaa gattataaaa 1740taacccaacg gatggtctgt gctggctata aagaaggggg aaaagatgct tgtaagggag 1800attcaggtgg tcccttagtt tgcaaacaca atggaatgtg gcgtttggtg ggcatcacca 1860gctggggtga aggctgtgcc cgcagggagc aacctggtgt ctacaccaaa gtcgctgagt 1920acatggactg gattttagag aaaacacaga gcagtgatgg aaaagctcag atgcagtcac 1980cagcatgaga agcagtccag agtctaggca atttttacaa cctgagttca agtcaaattc 2040tgagcctggg gggtcctcat ctgcaaagca tggagagtgg catcttcttt gcatcctaag 2100gacgaaaaac acagtgcact cagagctgct gaggacaatg tctggctgaa gcccgctttc 2160agcacgccgt aaccaggggc tgacaatgcg aggtcgcaac tgagatctcc atgactgtgt 2220gttgtgaaat aaaatggtga aagatcaaaa aa 2252261710DNAHomo sapiens 26gggaggggcg gggcctccgc caccacctca gctgcggacc gaggcgagat ggcggccacc 60gagggggtcg gggaggctgc gcaagggggc gagcccgggc agccggcgca acccccgccc 120cagccgcacc caccgccgcc ccagcagcag cacaaggaag agatggcggc cgaggctggg 180gaagccgtgg cgtcccccat ggacgacggg tttgtgagcc tggactcgcc ctcctatgtc 240ctgtacaggg acagagcaga atgggctgat atagatccgg tgccgcagaa tgatggcccc 300aatcccgtgg tccagatcat ttatagtgac aaatttagag atgtttatga ttacttccga 360gctgtcctgc agcgtgatga aagaagtgaa cgagctttta agctaacccg ggatgctatt 420gagttaaatg cagccaatta tacagtgtgg catttccgga gagttctttt gaagtcactt 480cagaaggatc tacatgagga aatgaactac atcactgcaa taattgagga gcagcccaaa 540aactatcaag tttggcatca taggcgagta ttagtggaat ggctaagaga tccatctcag 600gagcttgaat ttattgctga tattcttaat caggatgcaa agaattatca tgcctggcag 660catcgacaat gggttattca ggaatttaaa ctttgggata atgagctgca gtatgtggac 720caacttctga aagaggatgt gagaaataac tctgtctgga accaaagata cttcgttatt 780tctaacacca ctggctacaa tgatcgtgct gtattggaga gagaagtcca atacactctg 840gaaatgatta aactagtacc acataatgaa agtgcatgga actatttgaa agggattttg 900caggatcgtg gtctttccaa atatcctaat ctgttaaatc aattacttga tttacaacca 960agtcatagtt ccccctacct aattgccttt cttgtggata tctatgaaga catgctagaa 1020aatcagtgtg acaataagga agacattctt aataaagcat tagagttatg tgaaatccta 1080gctaaagaaa aggacactat aagaaaggaa tattggagat acattggaag atcccttcaa 1140agcaaacaca gcacagaaaa tgactcacca acaaatgtac agcaataaca ccatccagaa 1200gaacttgatg gaatgctttt attttttatt aagggaccct gcaggagttt cacacgagag 1260tggtccttcc ctttgcctgt ggtgtaaaag tgcatcacac aggtattgct ttttaacaag 1320aactgatgct ccttgggtgc tgctgctact cagactagct ctaagtaatg tgattcttct 1380aaagcaaagt cattggatgg gaggaggaag aaaaagtccc ataaaggaac ttttgtagtc 1440ttatcaacat ataatctaat cccttagcat cagctcctcc ctcagtggta catgcgtcaa 1500gatttgtagc agtaataact gcaggtcact tgtatgtaat ggatgtgagg tagccgaagt 1560ttggttcagt aagcagggaa tacagtcgtt ccatcagagc tggtctgcac actcacatta 1620tcttgctatc actgtaacca actaatgcca aaagaacggt tttgtaataa aattatagct 1680gtatctaaaa acaaaaaaaa aaaaaaaaaa 1710271624DNAHomo sapiens 27gggaggggcg gggcctccgc caccacctca gctgcggacc gaggcgagat ggcggccacc 60gagggggtcg gggaggctgc gcaagggggc gagcccgggc agccggcgca acccccgccc 120cagccgcacc caccgccgcc ccagcagcag cacaaggaag agatggcggc cgaggctggg 180gaagccgtgg cgtcccccat ggacgacggg tttgtgagcc tggactcgcc ctcctatgtc 240ctgtacagtt agagatgttt atgattactt ccgagctgtc ctgcagcgtg atgaaagaag 300tgaacgagct tttaagctaa cccgggatgc tattgagtta aatgcagcca attatacagt 360gtggcatttc cggagagttc ttttgaagtc acttcagaag gatctacatg aggaaatgaa 420ctacatcact gcaataattg aggagcagcc caaaaactat caagtttggc atcataggcg 480agtattagtg gaatggctaa gagatccatc tcaggagctt gaatttattg ctgatattct 540taatcaggat gcaaagaatt atcatgcctg gcagcatcga caatgggtta ttcaggaatt 600taaactttgg gataatgagc tgcagtatgt ggaccaactt ctgaaagagg atgtgagaaa 660taactctgtc tggaaccaaa gatacttcgt tatttctaac accactggct acaatgatcg 720tgctgtattg gagagagaag tccaatacac tctggaaatg attaaactag taccacataa 780tgaaagtgca tggaactatt tgaaagggat tttgcaggat cgtggtcttt ccaaatatcc 840taatctgtta aatcaattac ttgatttaca accaagtcat agttccccct acctaattgc 900ctttcttgtg gatatctatg aagacatgct agaaaatcag tgtgacaata aggaagacat 960tcttaataaa gcattagagt tatgtgaaat cctagctaaa gaaaaggaca ctataagaaa 1020ggaatattgg agatacattg gaagatccct tcaaagcaaa cacagcacag aaaatgactc 1080accaacaaat gtacagcaat aacaccatcc agaagaactt gatggaatgc ttttattttt 1140tattaaggga ccctgcagga gtttcacacg agagtggtcc ttccctttgc ctgtggtgta 1200aaagtgcatc acacaggtat tgctttttaa caagaactga tgctccttgg gtgctgctgc 1260tactcagact agctctaagt aatgtgattc ttctaaagca aagtcattgg atgggaggag 1320gaagaaaaag tcccataaag gaacttttgt agtcttatca acatataatc taatccctta 1380gcatcagctc ctccctcagt ggtacatgcg tcaagatttg tagcagtaat aactgcaggt 1440cacttgtatg taatggatgt gaggtagccg aagtttggtt cagtaagcag ggaatacagt 1500cgttccatca gagctggtct gcacactcac attatcttgc tatcactgta accaactaat 1560gccaaaagaa cggttttgta ataaaattat agctgtatct aaaaacaaaa aaaaaaaaaa 1620aaaa 1624281509DNAHomo sapiens 28gggaggggcg gggcctccgc caccacctca gctgcggacc gaggcgagat ggcggccacc 60gagggggtcg gggaggctgc gcaagggggc gagcccgggc agccggcgca acccccgccc 120cagccgcacc caccgccgcc ccagcagcag cacaaggaag agatggcggc cgaggctggg 180gaagccgtgg cgtcccccat ggacgacggg tttgtgagcc tggactcgcc ctcctatgtc 240ctgtacaggc atttccggag agttcttttg aagtcacttc agaaggatct acatgaggaa 300atgaactaca tcactgcaat aattgaggag cagcccaaaa actatcaagt ttggcatcat 360aggcgagtat tagtggaatg gctaagagat ccatctcagg agcttgaatt tattgctgat 420attcttaatc aggatgcaaa gaattatcat gcctggcagc atcgacaatg ggttattcag 480gaatttaaac tttgggataa tgagctgcag tatgtggacc aacttctgaa agaggatgtg 540agaaataact ctgtctggaa ccaaagatac ttcgttattt ctaacaccac tggctacaat 600gatcgtgctg tattggagag agaagtccaa tacactctgg aaatgattaa actagtacca 660cataatgaaa gtgcatggaa ctatttgaaa gggattttgc aggatcgtgg tctttccaaa 720tatcctaatc tgttaaatca attacttgat ttacaaccaa gtcatagttc cccctaccta 780attgcctttc ttgtggatat ctatgaagac atgctagaaa atcagtgtga caataaggaa 840gacattctta ataaagcatt agagttatgt gaaatcctag ctaaagaaaa ggacactata 900agaaaggaat attggagata cattggaaga tcccttcaaa gcaaacacag cacagaaaat 960gactcaccaa caaatgtaca gcaataacac catccagaag aacttgatgg aatgctttta 1020ttttttatta agggaccctg caggagtttc acacgagagt ggtccttccc tttgcctgtg 1080gtgtaaaagt gcatcacaca ggtattgctt tttaacaaga actgatgctc cttgggtgct 1140gctgctactc agactagctc taagtaatgt gattcttcta aagcaaagtc attggatggg 1200aggaggaaga aaaagtccca taaaggaact tttgtagtct tatcaacata taatctaatc 1260ccttagcatc agctcctccc tcagtggtac atgcgtcaag atttgtagca gtaataactg 1320caggtcactt gtatgtaatg gatgtgaggt agccgaagtt tggttcagta agcagggaat 1380acagtcgttc catcagagct ggtctgcaca ctcacattat cttgctatca ctgtaaccaa 1440ctaatgccaa aagaacggtt ttgtaataaa attatagctg tatctaaaaa caaaaaaaaa 1500aaaaaaaaa 150929936DNAHomo sapiens 29atggcggcca ccgagggggt cggggaggct gcgcaaggcg gtgagccccg gcagctggag 60cagcccccgc cccagccgca

cccaccgctg ccccaggagc agcacgagga agagatggca 120gcagaggctg gggaagccgt ggcgtccccc atggacgacg ggtttctgag cctggattcg 180ccctcctatg tcccgtacag gcatttccgg agagttctct taaagtcact tcagaaggat 240ctacatgagg aaatgaacta catcactgaa ataattgagg ggcagcccaa aaactatcta 300gtttgtcaca ataggcgagt aatagtggaa tggctaagag atccatctca ggagcctgaa 360tttattgata atattcttaa tcaggatgca aagaattatc atgcctggca gcatcgacaa 420tgggttattc aggaatttaa actttgggat aatgagctgc agtatgtgga ccaacttctc 480aaagaggatg tgagaaataa ctctgtctgg aaccgaagat attttgttat ttccaacacc 540actggctaca atgattgtgc tgtattggag agagaagtcc aatacactct ggaaatgatt 600caactagtac cacataatag ttcatggaac tatttgaaag gaattttgca ggatcgtggt 660ctttccaaat atcctaatct gttaaatcaa ttacttgatt tacaaccaag tcatagttcc 720ccctacctaa ttgcctttct tgtgggtatc tatgaagaca tgctagaaaa ccagtgtgtc 780aataaggaag acattcttaa taatgcatta gggttatgtg aaatcctagc taaagaaaag 840gacatgataa gaaaggaata ttggagataa attggaagat cctttcaaag caaacacagc 900acagaaaatg actcaccaac aaatgtacag caataa 9363010048DNAHomo sapiens 30tgaataattg aactttgttt atttctccat atttttgcag tggtaattcc attataaaac 60ctaatgaaac aatgttttta tagatggtgt ggaaagactt ttctgggctc agaggtgaaa 120ctgacccttg tgtatcagca gcatttctga ctgactgaga gagtgtagtg attaacagag 180ttgtgatgtt agttaagaaa cttagatttg ccattgtagc ttttctacca attagcagat 240tgtttaactc actgaaattg taaagtggta gacgtggact tagtcattac tgggcagctt 300atgaattgta ttcatttact catgatgtaa aaatggttag tctccacttt taaggctcta 360gttctagtgg ctaaataggt acttatttat acagtatgat aactgctgta ttaaaataca 420tgtctcaaat gtggaatagt agaagaggtg aagaaaatca tagtttgagg tagaatactg 480tttgctggtc ttaaaaactg tggtattttg gtgattccat aaattaggtc agatacttcc 540actggaggga aacagtttaa aggatatatg tgatactatt aatagaatga ggaagacaca 600ccagatattt aggagggaat tagcgagctt gaaactaaga gctggtttga atgagactgg 660gtcataagtg atttcaagta ccagattaag gcactgagat tttattttta agcactgaag 720tcagattttt tccttttaaa agaaaggatt catgatgaaa tctgcttttt gttttgcaga 780gagcttggag ataattctgg tggctgtgtg gagtatgtgt tggaggtatt aaattttcac 840agtatatata aggcagcaat tgataggcct ttcacagatt cttctgataa ctacataaag 900agacaaaaaa aagaaaaaag agcaaagatc tgtgctgtgt caagtatgac agccatcact 960catggctctc cagtaggagg gaacgacagc cagggccagg ttcttgatgg ccagtctcag 1020catctcttcc aacagaacca gacttcatca cctgattctt ccaatgagaa ttccgtagca 1080actcctcctc cagaggaaca agggcaaggt gatgccccac cacagcatga agatgaagag 1140cctgcatttc cacatactga gctggcaaac ctggatgaca tgatcaacag gcctcgatgg 1200gtggttcctg ttttgccaaa aggggaatta gaagtgcttt tagaagctgc tattgatctt 1260agtgtaaaag gccttgatgt taaaagtgaa gcatgccaac gtttttttcg agatggacta 1320acaatatctt tcactaaaat tcttatggat gaggctgtga gtggctggaa gtttgaaatt 1380catagatgta ttattaacaa tactcatcgc ctagtggagc tttgtgtggc caagttgtcc 1440caagattggt ttccacttct agaacttctc gccatggcct taaatcctca ctgcaagttt 1500catatctaca atggtacacg tccgtgtgaa ttaatttcct caaatgctca gttgcctgaa 1560gatgaattat ttgctcgttc ttcagatcct cgatcaccaa aaggttggct agtggatctc 1620atcaataaat ttggcacatt aaatgggttc cagattttgc atgatcgttt ttttaatgga 1680tcagcattaa atattcaaat aattgcagct cttattaaac catttggaca atgctatgag 1740tttctcagtc aacatacact gaaaaagtac ttcattccag ttatagaaat agttccacat 1800ttattggaaa acttaactga tgaagaactg aaaaaggagg caaagaatga agccaaaaat 1860gatgcccttt caatgattat taaatctttg aagaacttag cttcaagaat ttcaggacaa 1920gatgagacta taaaaaattt ggaaattttt aggttaaaga tgatactcag attgttgcaa 1980atttcctctt ttaatggaaa gatgaatgca ctgaatgaaa taaataaggt tatatctagt 2040gtatcatatt atactcatcg gcatagtaat cctgaggagg aagaatggct gacagctgag 2100cgaatggcag aatggataca gcaaaataat atcttatcca tagtcttgca agacagtctt 2160catcaaccac aatatgtaga aaagctagag aaaattcttc gttttgtgat taaagaaaag 2220gctcttacat tacaggacct tgataatatc tgggcagcac aggcaggaaa acatgaagcc 2280attgtgaaga atgtacatga tctgctagca aagttggctt gggatttttc tcctggacaa 2340cttgatcatc tttttgattg ctttaaggca agttggacaa atgcaagtaa aaagcaacgt 2400gaaaagctcc ttgagttgat acgccgtctt gcagaagatg ataaagatgg tgtgatggca 2460cacaaagtgt tgaaccttct ttggaacctg gctcagagtg atgatgtgcc tgtagacatc 2520atggaccttg ctcttagtgc ccacataaaa atactagatt atagttgttc ccaggatcga 2580gatgcacaga agatccagtg gatagatcac tttatagaag aacttcgcac aaatgacaag 2640tgggtaattc ctgctctgaa acaaataaga gaaatttgta gtttgtttgg tgaagcatct 2700caaaatttga gtcaaactca gcgaagtccc cacatatttt atcgccatga tttaatcaac 2760cagcttcaac aaaatcatgc tttagttact ttggtagcag aaaaccttgc aacctacatg 2820aatagcatca gattgtatgc tggagatcat gaagactatg atccacaaac agtgaggctt 2880ggaagtcgat acagtcatgt tcaagaagtt caagaacgac taaacttcct tagattttta 2940ctgaaggatg gccaactgtg gctctgtgct cctcaggcaa aacaaatatg gaagtgctta 3000gcagaaaatg cagtttatct ttgtgatcgt gaagcctgtt ttaagtggta ttccaagtta 3060atgggggatg aaccagactt ggatcctgat attaataagg acttctttga aagtaatgta 3120cttcagcttg atccttccct tttaactgaa aatggaatga aatgctttga aagatttttc 3180aaagctgtca attgtcgaga aaggaaacta atagcaaaaa gaagatccta tatgatggat 3240gatttggaat taattggact agactacctt tggagggttg tgattcagag tagtgacgag 3300attgctaaca gagctataga tcttcttaaa gagatataca caaaccttgg cccaagatta 3360aaagccaatc aggtggttat ccatgaagac ttcattcagt cttgctttga tcgtttaaaa 3420gcatcatatg atacactgtg tgtttttgat ggtgacaaaa acagcattaa ttgtgcaaga 3480caagaagcca ttcgaatggt tagagtatta actgttataa aagagtacat taatgaatgt 3540gacagtgatt atcacaagga aagaatgatt ctacctatgt cgagagcatt tcgtggcaaa 3600cacctctctc ttatagttcg gtttccaaac cagggcagac aggttgatga gttggatata 3660tggtctcata cgaatgacac aattggttca gtacggcgat gtattgttaa tcgtattaaa 3720gccaatgtag cccacaaaaa aattgaactt tttgtgggtg gtgagctgat agattctgaa 3780gatgacagaa agctaattgg acaattaaac ttaaaagata aatctctaat tacagccaaa 3840cttacacaaa taaatttcaa tatgccatca agtcctgata gctcttccga ttcctcaact 3900gcatctcctg gaaaccaccg taatcattac aatgatggtc ccaatctaga ggtggaaagt 3960tgtttgcctg gggtgataat gtcagtgcat cccagataca tctctttcct ttggcaagtt 4020gcagacttag gtagcaacct gaatatgcca cctcttagag atggagcaag agtacttatg 4080aaacttatgc caccagatag aacagctgta gaaaaattac gagctgtttg tttggaccat 4140gcaaaacttg gagaaggcaa acttagtcca ccccttgact ctcttttctt tggtccttct 4200gcctcccaag ttctatacct aacagaggta gtttatgcct tgttaatgcc tgctggtgtg 4260cctctaactg atgggtcctc tgactttcaa gttcacttct tgaaaagtgg tggcttacct 4320cttgtactga gtatgctaat aagaaataac ttcttgccaa atacagatat ggaaactcga 4380aggggtgctt atttaaatgc tcttaaaata gccaaactgt tgttaactgc gattggctat 4440ggccatgttc gagctgtagc agaagcttgt cagccagttg tagatggtac agaccccata 4500acacagatta accaagttac tcatgatcaa gcagtggtgc tacaaagtgc ccttcagagc 4560attcctaatc cctcatccga gtgcgtactt agaaatgagt ccatacttct tgctcaggaa 4620atatctaatg aggcttcaag atatatgcct gatatttgtg taattagggc tatacagaaa 4680attatctggg catcagcatg tggggcatta ggactagttt ttagcccaaa tgaagaaata 4740actaaaattt atcagatgac caccaatgga agcaataagc tggaggtgga agatgaacaa 4800gtttgctgtg aagcactgga agtgatgacc ttatgttttg ctttacttcc aacagcgttg 4860gatgcactta gtaaagaaaa agcctggcag accttcatca ttgacttatt attgcactgt 4920ccaagcaaaa ctgttcgtca gttggcacag gagcagttct ttttaatgtg caccagatgt 4980tgcatgggac acaggcctct gcttttcttc attactttac tctttaccat actggggagc 5040acagcaagag agaagggtaa atattcaggt gattatttca cacttttacg gcaccttctc 5100aattatgctt acaatggcaa tattaacata cccaatgctg aagttcttct tgtcagtgaa 5160attgattggc tcaaaaggat tagggataat gttaaaaaca caggtgaaac aggtgtcgaa 5220gagccaatac tggaaggcca ccttggggta acaaaagagt tattggcctt tcaaacttct 5280gagaaaaagt atcactttgg ttgtgaaaaa ggaggtgcta atctcattaa agaattaatt 5340gatgatttca tctttcccgc atccaaagtt tacctgcagt atttaagaag tggagaacta 5400ccagctgagc aggctattcc agtctgtagt tcacccgtta ccatcaatgc cggttttgag 5460ctacttgtag cattagctat tggctgtgtg aggaatctca aacagatagt agactgtttg 5520actgaaatgt attacatggg cacagcaatt actacttgtg aagcacttac tgagtgggaa 5580tatctgcccc ctgttggacc ccgcccacca aaaggatttg tgggactcaa aaatgctggt 5640gctacgtgtt acatgaactc tgtgatccag cagctataca tgattccttc tatcaggaac 5700agtattcttg caattgaagg cacaggtagt gatttacacg atgatatgtt cggggatgag 5760aagcaggaca gtgagagtaa tgttgatccc cgagatgatg tatttggata tcctcatcaa 5820tttgaagaca agccagcatt aagtaagaca gaagatagga aagagtataa tattggtgtc 5880ctaagacacc ttcaggtcat ctttggtcat ttagctgctt cccaactaca atactatgta 5940cccagaggat tttggaaaca gttcaggctt tggggtgaac ctgttaatct ccgtgaacaa 6000catgatgcct tagagttttt taattctttg gtggatagtt tagatgaagc tttaaaagct 6060ttaggacacc cggctatact aagtaaagtc ctaggaggct cctttgctga tcagaagatc 6120tgccaaggct gcccacatag gtatgaatgt gaagaatctt ttacaacttt gaatgtggat 6180attagaaatc atcaaaatct tcttgactct ttggaacagt atatcaaagg agatttattg 6240gaaggtgcaa atgcatatca ttgtgaaaaa tgtgataaaa aggttgacac agtaaagcgc 6300ctgctaatta aaaaattgcc tcgggttctt gctatccaac tcaaacgatt tgactatgac 6360tgggaaagag aatgtgcaat taaattcaat gattattttg aatttcctcg agagctggat 6420atgggacctt acacagtagc aggtgttgca aacctggaaa gggataatgt aaactcagaa 6480aatgagttga ttgaacagaa agagcagtct gacaatgaaa ctgcaggagg cacaaagtac 6540agacttgtag gagtgcttgt acacagtggt caagcaagcg gtgggcatta ttattcttac 6600atcattcaaa ggaatggtaa agatgatcag acagatcact ggtataaatt tgatgatgga 6660gatgtaacag aatgcaaaat ggatgatgat gaagaaatga aaaatcagtg ttttggtgga 6720gagtacatgg gagaagtatt tgatcacatg atgaagcgca tgtcatatag gcgacagaag 6780aggtggtgga atgcttacat acttttttat gaacaaatgg atatgataga tgaagatgat 6840gagatgataa gatacatatc agagctaact attgcaagac cccatcagat cattatgtca 6900ccagccattg agagaagtgt acggaaacaa aatgtgaaat ttatgcataa ccgattgcaa 6960tatagtttag agtattttca gtttgtgaaa aaactgctta catgtaatgg tgtttattta 7020aaccctgctc cagggcagga ttatttgttg cctgaagcag aagaaattac tatgattagt 7080attcagcttg ctgctagatt cctctttacc actggatttc acaccaagaa aatagttcgt 7140ggtcctgcca gtgactggta tgatgcactg tgcgttcttc tccgtcacag caaaaatgta 7200cgtttttggt ttactcataa tgtccttttt aatgtatcaa atcgcttctc tgaatacctt 7260ctggagtgcc ctagtgcaga agtgaggggt gcatttgcaa aacttatagt gtttattgca 7320cacttttcct tgcaagatgg gtcttgtcct tctccttttg catctccagg accttctagt 7380caggcatgtg ataacttgag cttgagtgac cacttactaa gagccacact aaatctcttg 7440agaagggaag tttcagagca tggacatcat ttacagcaat attttaattt gtttgtaatg 7500tatgccaatt taggtgtggc agaaaaaaca cagcttctga aattgaatgt acctgctacc 7560tttatgcttg tgtctttaga cgaaggacca ggtcctccaa tcaaatatca gtatgctgaa 7620ttaggcaagt tatattcagt agtgtctcag ctgattcgtt gttgcaatgt gtcatcaaca 7680atgcagtctt caatcaatgg taatccccct ctccccaatc ctttcggtga ccttaattta 7740tcacagccta taatgccaat tcagcagaat gtgttagaca ttttatttgt gagaacaagt 7800tatgtgaaga aaattattga agactgcagt aactcagagg ataccatcaa attacttcgc 7860ttttgctctt gggagaatcc tcagttctca tctactgtcc tcagcgaact tctctggcag 7920gttgcatatt catataccta tgaacttcgg ccatatttag atctactttt ccaaatttta 7980ctgattgagg actcctggca gactcacaga attcataatg cacttaaagg aattccagat 8040gacagagatg ggctgttcga tacaatacag cgctcgaaga atcactatca aaaacgagca 8100tatcagtgca taaaatgtat ggtagctcta tttagcagtt gtcctgttgc ttaccagatc 8160ttacagggta acggagatct taaaagaaaa tggacctggg cagtggaatg gctaggagat 8220gaacttgaaa gaagaccata tactggcaat cctcagtata gttacaacaa ttggtctcct 8280ccagtacaaa gcaatgaaac agcaaatggt tatttcttag aaagatcaca tagtgctagg 8340atgacacttg caaaagcttg tgaactctgt ccagaagagg agccagatga ccaggatgcc 8400ccagatgagc atgagccctc tccatcagaa gatgccccat tatatcctca ttcacctgcc 8460tctcagtatc aacagaataa tcatgtacat ggacagccat atacaggacc agcagcacat 8520cacttgaaca accctcagaa aacaggccaa cgaacacaag aaaattatga aggcaatgaa 8580gaagtatcct cacctcagat gaaggatcag tgaaaagcaa taattaactg cttcctttat 8640gactatgcac taaggtctta tagtccaaac tttctctgtg tctggctagt attgaaaact 8700agataaactg ctccaaacca acatggagta aagagcatat tcactggttt atttgcagta 8760atttgcaatt tgtcagtgta taagacacat gcagggtgaa gtgtacagag ttttgtaaca 8820aatgactggt cctaatctgt aaatgagaaa ggtatatata ctatgttaat gtctgactgt 8880taattcttaa gcaagaaact ttttttgatg aaaacaagtc agatctacac agtcacacaa 8940ttattttttg ttgtgttcac tacattgtgc aattgatatt gcctgctttg agcagtttgg 9000tcaacttacc aacttccccc caaaaaaggg aacataaaag agcccatctt tgtcagttta 9060caccaatagt ttcttgttaa tccttctttc ctggatatat aaggctggtg gtaacttttg 9120aattatatgg ttgatgtgga aaattggcag tgtaacattt ctagatactt ttcattacct 9180ttttattctg gtatataggc taaccacttt aaagctattc ttatgctgta acagttagca 9240tggcttcaca ctgtttgtgt agccaagagg acagaattac atgaatgaca gtgcccagag 9300tgacagctgt atattgctca gagcttttat ttcttatacc tagaataaat ataaaatggg 9360ggaaaaatgt gacagacaag cagtttttca ttgcacacat attcttcaca tttaatgttt 9420gatagttcaa tttcttgagc tgaagaatat caaagtatcg ataatacgaa ttttaaaata 9480ttaaaaccaa tacacaaaat tttcctatgt cagaatgtgg tggagcataa tagattgtat 9540ttggtgtgct tgcgattttt tttttccata gaatttatta agtgaagttt ctaaaacttt 9600gcttctcctg atcccggtga agtgtacatc ataagaatcc atagtacttt gaagtaccat 9660tgcaccaaga tgtctgactg aattcatagt cacactttta tttgaaagaa agaattgttg 9720tagttttttt tcattattct aaaactcttg ttgttagata caagatttaa ttaagatcta 9780agctcctgct tatttaatgt aattctaagg taccatttta gaaaaaacat ttgttttaag 9840attccaagaa acctgtgagt taatactata tttaaaagag aattggtaaa ttttgaatgt 9900gtgtaatatt ttggaacctg tttaaaaacc aaatatacct gcaaatagat acagcctatc 9960ctatactatt taaatgtttg gctgttttgt tttatagaaa ttattttgct gaattcacaa 10020ataaaattta agaagacttt aaaaaaaa 10048313178DNAHomo sapiens 31gatctcttgg agacggcgac ccaggcatct ggggagccac agaagtcgta ctcccttaaa 60ccctgctttg ctccccctgt ggatgtaacc ccttagctgg cattttgcat ctcaattggc 120ttgtgatgga ggcgtctttg gggattcaga tggatgagcc aatggctttt tctccccagc 180gtgaccggtt tcaggctgaa ggctctttaa aaaaaaacga gcagaatttt aaacttgcag 240gtgttaaaaa agatattgag aagctttatg aagctgtacc acagcttagt aatgtgttta 300agattgagga caaaattgga gaaggcactt tcagctctgt ttatttggcc acagcacagt 360tacaagtagg acctgaagag aaaattgctc taaaacactt gattccaaca agtcatccta 420taagaattgc agctgaactt cagtgcctaa cagtggctgg ggggcaagat aatgtcatgg 480gagttaaata ctgctttagg aagaatgatc atgtagttat tgctatgcca tatctggagc 540atgagtcgtt tttggacatt ctgaattctc tttcctttca agaagtacgg gaatatatgc 600ttaatctgtt caaagctttg aaacgcattc atcagtttgg tattgttcac cgtgatgtta 660agcccagcaa ttttttatat aataggcgcc tgaaaaagta tgccttggta gactttggtt 720tggcccaagg aacccatgat acgaaaatag agcttcttaa atttgtccag tctgaagctc 780agcaggaaag gtgttcacaa aacaaatccc acataatcac aggaaacaag attccactga 840gtggcccagt acctaaggag ctggatcagc agtccaccac aaaagcttct gttaaaagac 900cctacacaaa tgcacaaatt cagattaaac aaggaaaaga cggaaaggag ggatctgtag 960gcctttctgt ccagcgctct gtttttggag aaagaaattt caatatacac agctccattt 1020cacatgagag ccctgcagtg aaactcatga agcagtcaaa gactgtggat gtactgtcta 1080gaaagttagc aacaaaaaag aaggctattt ctacgaaagt tatgaatagt gctgtgatga 1140ggaaaactgc cagttcttgc ccagctagcc tgacctgtga ctgctatgca acagataaag 1200tttgtagtat ttgcctttca aggcgtcagc aggttgcccc tagggcaggt acaccaggat 1260tcagagcacc agaggtcttg acaaagtgcc ccaatcaaac tacagcaatt gacatgtggt 1320ctgcaggtgt catatttctt tctttgctta gtggacgata tccattttat aaagcaagtg 1380atgatttaac tgctttggcc caaattatga caattagggg atccagagaa actatccaag 1440ctgctaaaac ttttgggaaa tcaatattat gtagcaaaga agttccagca caagacttga 1500gaaaactctg tgagagactc aggggtatgg attctagcac tcccaagtta acaagtgata 1560tacaagggca tgcttctcat caaccagcta tttcagagaa gactgaccat aaagcttctt 1620gcctcgttca aacacctcca ggacaatact cagggaattc atttaaaaag ggggatagta 1680atagctgtga gcattgtttt gatgagtata ataccaattt agaaggctgg aatgaggtac 1740ctgatgaagc ttatgacctg cttgataaac ttctagatct aaatccagct tcaagaataa 1800cagcagaaga agctttgttg catccatttt ttaaagatat gagcttgtga taatggatct 1860tcatttaatg tttactgtta tgaggtagaa taaaaaagaa tactttgtaa tagccacaag 1920ttcttgttta gagaccagag caggattaat aatttatttt aacattttag tgtttggtgg 1980cacattctaa aatatagatt aagaatactt aaaatgcctg ggatagttct tgggactaac 2040aacatgatct tctttgagtt aaacctacct aagtagattt taggtgggtt cctattaggt 2100cagattttta gcttccctaa ttacctttca ctgacataca gaaaaaggag cagttttagt 2160tttaattaat taaaattaac agatgtgatg aggattaaat gaatcaaaag acttaatttg 2220tagattcttt tagagttatg agctaggtat agtttgggga aactcaacct ggtgctggtg 2280ctcttaacaa ttttgtaaat aaagaagata atttcctttt ctagaggtac atattaggcc 2340ttttatgaac actaaaacaa tgaggaaatg ttggtcatgg ggcaaagtat cacttaaaat 2400tgaattcatc catttttaaa aaacacttca tgaaagcatt ctggtgtgaa ttgccatttt 2460tttcttactg gcttctcaat tttcttcctt ctctgcccct acctaaaaca ttctcctcgg 2520aaattacatg gtgctgacca caaagtttct ggatgtttta ttaaatattg tacgtgttta 2580cagttgggaa tttaaaataa tacatacact ggttgataaa gggaagctgc aggaccaagg 2640tgaagattga tagtccaaat gcttttcttt tttgagttgt atattttttc acaccatctt 2700agatataatt aggtagctgc tgaaaggaaa agtgaataca gaattgacgg tattattgga 2760gatttttcct ctgcgtagag ccatccagat ctctgtatcc tgttttgact aagtcttagg 2820tgggttggga agacagataa tgaagtaggc aaagagaaaa ggacccaaga tagaggttta 2880tattcagaaa tggtatatat caatgacagc atatcaaact tcctatggga aaaagtctgg 2940tgggtggtca gctgacagat ttcccattta gtagtcatag aatacagaaa tagtttaggg 3000acatgtattc attttgttat tttgagcatt gataggtcag tatatctacc taatctgttt 3060ggtaagtata ggatatataa accattacca ttgatctgtc ttatgccata atcttaaaaa 3120aaaattgaat gctcttgaat ttgtatattc aataaagtta tccttttata aaaaaaaa 3178322276DNAHomo sapiens 32gaacgtggta taaaaggggc gggaggccag gctcgtgccg ttttgcagac gccaccgccg 60aggaaaaccg tgtactatta gccatggtca accccaccgt gttcttcgac attgccgtcg 120acggcgagcc cttgggccgc gtctcctttg agctgtttgc agacaaggtc ccaaagacag 180cagaaaattt tcgtgctctg agcactggag agaaaggatt tggttataag ggttcctgct 240ttcacagaat tattccaggg tttatgtgtc agggtggtga cttcacacgc cataatggca 300ctggtggcaa gtccatctat ggggagaaat ttgaagatga gaacttcatc ctaaagcata 360cgggtcctgg catcttgtcc atggcaaatg ctggacccaa cacaaatggt tcccagtttt 420tcatctgcac tgccaagact gagtggttgg atggcaagca tgtggtgttt ggcaaagtga 480aagaaggcat gaatattgtg gaggccatgg agcgctttgg gtccaggaat ggcaagacca 540gcaagaagat caccattgct gactgtggac aactcgaata agtttgactt gtgttttatc 600ttaaccacca gatcattcct tctgtagctc aggagagcac ccctccaccc catttgctcg 660cagtatccta gaatctttgt gctctcgctg cagttccctt tgggttccat gttttccttg 720ttccctccca tgcctagctg gattgcagag ttaagtttat gattatgaaa taaaaactaa 780ataacaattg tcctcgtttg agttaagagt gttgatgtag gctttatttt aagcagtaat 840gggttacttc tgaaacatca

cttgtttgct taattctaca cagtacttag atttttttta 900ctttccagtc ccaggaagtg tcaatgtttg ttgagtggaa tattgaaaat gtaggcagca 960actgggcatg gtggctcact gtctgtaatg tattacctga ggcagaagac cacctgaggg 1020taggagtcaa gatcagcctg ggcaacatag tgagacgctg tctctacaaa aaataattag 1080cctggcctgg tggtgcatgc ctagtcctag ctgatctgga ggctgacgtg ggaggattgc 1140ttgagcctag agtgagctat tatcatgcca ctgtacagcc tgggtgttca cagatcttgt 1200gtctcaaagg taggcagagg caggaaaagc aaggagccag aattaagagg ttgggtcagt 1260ctgcagtgag ttcatgcatt tagaggtgtt cttcaagatg actaatgtca aaaattgaga 1320catctgttgc ggtttttttt tttttttttt cccctggaat gcagtggcgt gatctcagct 1380cactgcagcc tccgcctcct gggttcaagt gattctagtg cctcagcctc ctgagtagct 1440gggataatgg gcgtgtgcca ccatgcccag ctaatttttg tatttttagt atagatgggg 1500tttcatcatt ttgaccaggc tggtctcaaa ctcttgacct cagctgatgc gcctgccttg 1560gcctcccaaa ctgctgagat tacagatgtg agccaccgca ccctacctca ttttctgtaa 1620caaagctaag cttgaacact gttgatgttc ttgagggaag catattgggc tttaggctgt 1680aggtcaagtt tatacatctt aattatggtg gaattcctat gtagagtcta aaaagccagg 1740tacttggtgc tacagtcagt ctccctgcag agggttaagg cgcagactac ctgcagtgag 1800gaggtactgc ttgtagcata tagagcctct ccctagcttt ggttatggag gctttgaggt 1860tttgcaaacc tgaccaattt aagccataag atctggtcaa agggataccc ttcccactaa 1920ggacttggtt tctcaggaaa ttatatgtac agtgcttgct ggcagttaga tgtcaggaca 1980atctaagctg agaaaacccc ttctctgccc accttaacag acctctaggg ttcttaaccc 2040agcaatcaag tttgcctatc ctagaggtgg cggatttgat catttggtgt gttgggcaat 2100ttttgtttta ctgtctggtt ccttctgcgt gaattaccac caccaccact tgtgcatctc 2160agtcttgtgt gttgtctggt tacgtattcc ctgggtgata ccattcaatg tcttaatgta 2220cttgtggctc agacctgagt gcaaggtgga aataaacatc aaacatcttt tcatta 2276335189DNAHomo sapiens 33atggccaagt cgggtggctg cggcgcggga gccggcgtgg gcggcggcaa cggggcactg 60acctgggtga acaatgctgc aaaaaaagaa gagtcagaaa ctgccaacaa aaatgattct 120tcaaagaagt tgtctgttga gagagtgtat cagaagaaga cacaacttga acacattctt 180cttcgtcctg atacatatat tgggtcagtg gagccattga cgcagttcat gtgggtgtat 240gatgaagatg taggaatgaa ttgcagggag gttacctttg tgccaggttt atacaagatc 300tttgatgaaa ttttggttaa tgctgctgac aataaacaga gggataagaa catgacttgt 360attaaagttt ctattgatcc tgaatctaac attataagca tttggaataa tgggaaaggc 420attccagtag tagaacacaa ggtagagaaa gtttatgttc ctgctttaat ttttggacag 480cttttaacat ccagtaacta tgatgatgat gagaaaaaag ttacaggtgg tcgtaatggt 540tatggtgcaa aactttgtaa tattttcagt acaaagttta cagtagaaac agcttgcaaa 600gaatacaaac acagttttaa gcagacatgg atgaataata tgatgaagac ttctgaagcc 660aaaattaaac attttgatgg tgaagattac acatgcataa cattccaacc agatctgtcc 720aaatttaaga tggaaaaact tgacaaggat attgtggccc tcatgactag aagggcatat 780gatttggctg gttcgtgtag aggggtcaag gtcatgttta atggaaagaa attgcctgta 840aatggatttc gcagttatgt agatctttat gtgaaagaca aattggatga aactggggtg 900gccctgaaag ttattcatga gcttgcaaat gaaagatggg atgtttgtct cacattgagt 960gaaaaaggat tccagcaaat cagctttgta aatagtattg caactacaaa aggtggacgg 1020cacgtggatt atgtggtaga tcaagttgtt ggtaaactga ttgaagtagt taagaaaaag 1080aacaaagctg gtgtatcagt gaaaccattt caagtaaaaa accatatatg ggtttttatt 1140aattgcctta ttgaaaatcc aacttttgat tctcagacta aggaaaacat gactctgcag 1200cccaaaagtt ttgggtctaa atgccagctg tcagaaaaat tttttaaagc agcctctaat 1260tgtggcattg tagaaagtat cctgaactgg gtgaaattta aggctcagac tcagctgaat 1320aagaagtgtt catcagtaaa atacagtaaa atcaaaggta ttcccaaact ggatgatgct 1380aatgatgctg gtggtaaaca ttccctggag tgtacactga tattaacaga gggagactct 1440gccaaatcac tggctgtgtc tggattaggt gtgattggac gagacagata cggagttttt 1500ccactcaggg gcaaaattct taatgtacgg gaagcttctc ataaacagat catggaaaat 1560gctgaaataa ataatattat taaaatagtt ggtctacaat ataagaaaag ttacgatgat 1620gcagaatctc tgaaaacctt acgctatgga aagattatga ttatgaccga tcaggatcaa 1680gatggttctc acataaaagg cctgcttatt aatttcatcc atcacaattg gccatcactt 1740ttgaagcatg gttttcttga agagttcatt actcctattg taaaggcaag caaaaataag 1800caggaacttt ccttctacag tattcctgaa tttgacgaat ggaaaaaaca tatagaaaac 1860cagaaagcct ggaaaataaa gtactataaa ggattgggta ctagtacagc taaagaagca 1920aaggaatatt ttgctgatat ggaaaggcat cgcatcttgt ttagatatgc tggtcctgaa 1980gatgatgctg ccattacctt ggcatttagt aagaagaaga ttgatgacag aaaagaatgg 2040ttaacaaatt ttatggaaga ccggagacag cgtaggctac atggcttacc agagcaattt 2100ttatatggta ctgcaacaaa gcatttgact tataatgatt tcatcaacaa ggaattgatt 2160ctcttctcaa actcagacaa tgaaagatct ataccatctc ttgttgatgg ctttaaacct 2220ggccagcgga aagttttatt tacctgtttc aagaggaatg ataaacgtga agtaaaagtt 2280gcccagttgg ctggctctgt tgctgagatg tcggcttatc atcatggaga acaagcattg 2340atgatgacta ttgtgaattt ggctcagaac tttgtgggaa gtaacaacat taacttgctt 2400cagcctattg gtcagtttgg aactcggctt catggtggca aagatgctgc aagccctcgt 2460tatattttca caatgttaag cactttagca aggctacttt ttcctgctgt ggatgacaac 2520ctccttaagt tcctttatga tgataatcaa cgtgtagagc ctgagtggta tattcctata 2580attcccatgg ttttaataaa tggtgctgag ggcattggta ctggatgggc ttgtaaacta 2640cccaactatg atgctaggga aattgtgaac aatgtcagac gaatgctaga tggcctggat 2700cctcatccca tgcttccaaa ctacaaaaac tttaaaggca cgattcaaga acttggtcaa 2760aaccagtatg cagtcagtgg tgaaatattt gtagtggaca gaaacacagt agaaattaca 2820gagcttccag ttagaacttg gacacaggta tataaagaac aggttttaga acctatgcta 2880aatggaacag ataaaacacc agcattaatt tctgattata aagaatatca tactgacaca 2940actgtgaaat ttgtggtgaa aatgactgaa gagaaactag cacaagcaga agctgctgga 3000ctgcataaag tttttaaact tcaaactact cttacttgta attccatggt actttttgat 3060catatgggat gtctgaagaa atatgaaact gtgcaagaca ttctgaaaga attctttgat 3120ttacgattaa gttattacgg tttacgtaag gagtggcttg tgggaatgtt gggagcagaa 3180tctacaaagc ttaacaatca agcccgtttc attttagaga agatacaagg gaaaattact 3240atagagaata ggtcaaagaa agatttgatt caaatgttag tccagagagg ttatgaatct 3300gacccagtga aagcctggaa agaagcacaa gaaaaggcag cagaagagga tgaaacacaa 3360aaccagcatg atgatagttc ctccgattca ggaactcctt caggcccaga ttttaattat 3420attttaaata tgtctctgtg gtctcttact aaagaaaaag ttgaagaact gattaaacag 3480agagatgcaa aagggcgaga ggtcaatgat cttaaaagaa aatctccttc agatctttgg 3540aaagaggatt tagcggcatt tgttgaagaa ctggataaag tggaatctca agaacgagaa 3600gatgttctgg ctggaatgtc tggaaaagca attaaaggta aagttggcaa acctaaggtg 3660aagaaactcc agttggaaga gacaatgccc tcaccttatg gcagaagaat aattcctgaa 3720attacagcta tgaaggcaga tgccagcaaa aagttgctga agaagaagaa gggtgatctt 3780gatactgcag cagtaaaagt ggaatttgat gaagaattca gtggagcacc agtagaaggt 3840gcaggagaag aggcattgac tccatcagtt cctataaata aaggtcccaa acctaagagg 3900gagaagaagg agcctggtac cagagtgaga aaaacaccta catcatctgg taaacctagt 3960gcaaagaaag tgaagaaacg gaatccttgg tcagatgatg aatccaagtc agaaagtgat 4020ttggaagaaa cagaacctgt ggttattcca agagattctt tgcttaggag agcagcagcc 4080gaaagaccta aatacacatt tgatttctca gaagaagagg atgatgatgc tgatgatgat 4140gatgatgaca ataatgattt agaggaattg aaagttaaag catctcccat aacaaatgat 4200ggggaagatg aatttgttcc ttcagatggg ttagataaag atgaatatac attttcacca 4260ggcaaatcaa aagccactcc agaaaaatct ttgcatgaca aaaaaagtca ggattttgga 4320aatctcttct catttccttc atattctcag aagtcagaag atgattcagc taaatttgac 4380agtaatgaag aagattctgc ttctgttttt tcaccatcat ttggtctgaa acagacagat 4440aaagttccaa gtaaaacggt agctgctaaa aagggaaaac cgtcttcaga tacagtccct 4500aagcccaaga gagccccaaa acagaagaaa gtagtagagg ctgtaaactc tgactcggat 4560tcagaatttg gcattccaaa gaagactaca acaccaaaag gtaaaggccg aggggcaaag 4620aaaaggaaag catctggctc tgaaaatgaa ggcgattata accctggcag gaaaacatcc 4680aaaacaacaa gcaagaaacc gaagaagaca tcttttgatc aggattcaga tgtggacatc 4740ttcccctcag acttccctac tgagccacct tctctgccac gaaccggtcg ggctaggaaa 4800gaagtaaaat attttgcaga gtctgatgaa gaagaagatg atgttgattt tgcaatgttt 4860aattaagtgc ccaaagagca caaacatttt tcaacaaata tcttgtgttg tccttttgtc 4920ttctctgtct cagacttttg tacatctggc ttattttaat gtgatgatgt aattgacggt 4980tttttattat tgtggtaggc cttttaacat tttgttctta cacatacagt tttatgctct 5040tttttactca ttgaaatgtc acgtactgtc tgattggctt gtagaattgt tatagactgc 5100cgtgcattag cacagatttt aattgtcatg gttacaaact acagacctgc tttttgaaat 5160gaaatttaaa cattaaaaat ggaactgtg 5189341807DNAHomo sapiens 34ggaggggaga gaaagagcga gagaagggga aagacaagtc gggagaggcc ggtaggcgtg 60aggcgggcct gaagcggcag cgggcggcct tcgtccggcg agagctaggc cgaggacccg 120cgccgcgctc cccggcacct caccgcgtcc ttcaccgact cccgcggcgc gcggccgggc 180ggggaagggc ggcggccggg ctggggctcg ggatccgcat cgggatcggg ccgccatgga 240cgacaaggcg ttcaccaagg agctggacca gtgggtcgag cagctgaacg agtgtaagca 300gctgaacgag aaccaagtgc ggacgctgtg cgagaaggca aaggaaattt taacaaaaga 360atcaaatgtg caagaggttc gttgccctgt tactgtctgt ggagatgtgc atggtcaatt 420tcatgatctt atggaactct ttagaattgg tggaaaatca ccggatacaa actacttatt 480catgggtgac tatgtagaca gaggatatta ttcagtggag actgtgactc ttcttgtagc 540attaaaggtg cgttatccag aacgcattac aatattgaga ggaaatcacg aaagccgaca 600aattacccaa gtatatggct tttatgatga atgtctgcga aagtatggga atgccaacgt 660ttggaaatat tttacagatc tctttgatta tcttccactt acagctttag tagatggaca 720gatattctgc ctccatggtg gcctctctcc atccatagac acactggatc atataagagc 780cctggatcgt ttacaggaag ttccacatga gggcccaatg tgtgatctgt tatggtcaga 840tccagatgat cgtggtggat ggggtatttc accacgtggt gctggctaca catttggaca 900agacatttct gaaaccttta accatgccaa tggtctcaca ctggtttctc gtgcccacca 960gcttgtaatg gagggataca attggtgtca tgatcggaat gtggttacca ttttcagtgc 1020acccaattac tgttatcgtt gtgggaacca ggctgctatc atggaattag atgacacttt 1080aaaatattcc ttccttcaat ttgacccagc gcctcgtcgt ggtgagcctc atgttacacg 1140gcgcacccca gactacttcc tataaatttc tcctgggaaa cctgcctttg tatgtggaag 1200tatacctggc tttttaaaat atatgtattt aaaaacaaaa agcaacagta atctatgtgt 1260ttctgtaaca aattgggatc tgtcttggca ttaaaccaca tcatggacca aatgtgccat 1320actaatgatg agcatttagc acaatttgag actgaaattt agtacactat gttctaggtc 1380agtctaacag tttgcctgct gtatttatag taaccatttt cctttggact gttcaagcaa 1440aaaaggtaac taactgcttc atctcctttt gcgcttattt ggaaatttta gttatagtgt 1500ttaactggca tggattaata gagttggagt tttattttta agaaaaattc acaagctaac 1560ttccactaat ccattatcct ttattttatt gaaatgtata attaacttaa ctgaagaaaa 1620ggttcttctt gggagtatgt tgtcataaca tttaaagaga tttcccttca tttaaactaa 1680attactgttt tatgttgatc tgcatatttc tgtatatttg tcatgacagt gcttgcatcc 1740tatttggtgt actcagcaaa taaacttttc attttaaaca aaaacattca aaaaaaaaaa 1800aaaaaaa 1807351987DNAHomo sapiens 35ggaggggaga gaaagagcga gagaagggga aagacaagtc gggagaggcc ggtaggcgtg 60aggcgggcct gaagcggcag cgggcggcct tcgtccggcg agagctaggc cgaggacccg 120cgccgcgctc cccggcacct caccgcgtcc ttcaccgact cccgcggcgc gcggccgggc 180ggggaagggc gggcgggggt ctcctccagg ctgcgcgctc ggagccgcct gctgggcttg 240ggcggggcgc ggggcccgcg gccgccctac ccggctcagt cctccccctg tgggacctgg 300cgacggcggc ggagggagag gggagcggcg cccgggccgg ggccgggggc gggtggggag 360gggggagggc ggcggccggg ctggggctcg ggatccgcat cgggatcggg ccgccatgga 420cgacaaggcg ttcaccaagg agctggacca gtgggtcgag cagctgaacg agtgtaagca 480gctgaacgag aaccaagtgc ggacgctgtg cgagaaggca aaggaaattt taacaaaaga 540atcaaatgtg caagaggttc gttgccctgt tactgtctgt ggagatgtgc atggtcaatt 600tcatgatctt atggaactct ttagaattgg tggaaaatca ccggatacaa actacttatt 660catgggtgac tatgtagaca gaggatatta ttcagtggag actgtgactc ttcttgtagc 720attaaaggtg cgttatccag aacgcattac aatattgaga ggaaatcacg aaagccgaca 780aattacccaa gtatatggct tttatgatga atgtctgcga aagtatggga atgccaacgt 840ttggaaatat tttacagatc tctttgatta tcttccactt acagctttag tagatggaca 900gatattctgc ctccatggtg gcctctctcc atccatagac acactggatc atataagagc 960cctggatcgt ttacaggaag ttccacatga gggcccaatg tgtgatctgt tatggtcaga 1020tccagatgat cgtggtggat ggggtatttc accacgtggt gctggctaca catttggaca 1080agacatttct gaaaccttta accatgccaa tggtctcaca ctggtttctc gtgcccacca 1140gcttgtaatg gagggataca attggtgtca tgatcggaat gtggttacca ttttcagtgc 1200acccaattac tgttatcgtt gtgggaacca ggctgctatc atggaattag atgacacttt 1260aaaatattcc ttccttcaat ttgacccagc gcctcgtcgt ggtgagcctc atgttacacg 1320gcgcacccca gactacttcc tataaatttc tcctgggaaa cctgcctttg tatgtggaag 1380tatacctggc tttttaaaat atatgtattt aaaaacaaaa agcaacagta atctatgtgt 1440ttctgtaaca aattgggatc tgtcttggca ttaaaccaca tcatggacca aatgtgccat 1500actaatgatg agcatttagc acaatttgag actgaaattt agtacactat gttctaggtc 1560agtctaacag tttgcctgct gtatttatag taaccatttt cctttggact gttcaagcaa 1620aaaaggtaac taactgcttc atctcctttt gcgcttattt ggaaatttta gttatagtgt 1680ttaactggca tggattaata gagttggagt tttattttta agaaaaattc acaagctaac 1740ttccactaat ccattatcct ttattttatt gaaatgtata attaacttaa ctgaagaaaa 1800ggttcttctt gggagtatgt tgtcataaca tttaaagaga tttcccttca tttaaactaa 1860attactgttt tatgttgatc tgcatatttc tgtatatttg tcatgacagt gcttgcatcc 1920tatttggtgt actcagcaaa taaacttttc attttaaaca aaaacattca aaaaaaaaaa 1980aaaaaaa 1987363016DNAHomo sapiens 36ctcagacctg tcagcccgcc acactccagc cagtcccttc cgatcacctc cagacaccac 60gctctccttt cggagcccgc ccgccggaag tggcggcccg gaactactcc cacagggggg 120cggggaagga agatggcggc gcccagcgtc ccgtgaggag agaggacaca gggatcccgg 180ggagcggccc cagactcgta aattatggcc gcatctccgc acactctctc ctcacgcctc 240ctgacaggtt gcgtaggagg ctctgtctgg tatcttgaaa gaagaactat acaggactcc 300cctcacaagt tcttacatct tctcaggaat gtcaataagc agtggattac atttcagcac 360tttagcttcc tcaaacgcat gtatgtcaca cagctgaaca gaagccacaa ccagcaagta 420agacccaagc cagaaccagt agcatctcct ttccttgaaa aaacatcttc aggtcaagcc 480aaagcagaaa tatatgagat gagacctctc tcaccgccca gcctatcttt gtccagaaag 540ccaaatgaaa aggaattgat agaactagag ccagactcag taattgaaga ctcaatagat 600gtagggaaag agacaaaaga ggaaaagcgg tggaaagaga tgaagctgca agtgtatgat 660ttgccaggaa ttttggctcg actatccaaa atcaaactca cagctctggt tgtaagtacc 720actgcagctg gatttgcatt ggctccgggc ccttttgact ggccctgttt cctgcttact 780tctgttggga caggccttgc atcctgtgct gccaactcca tcaatcagtt ttttgaggtg 840ccatttgact caaacatgaa taggacaaag aacagaccgc tggttcgtgg acagatcagc 900ccattgctag ctgtgtcctt tgccacttgt tgtgctgttc cgggagttgc cattctgacc 960ttgggggtga atccactcac aggagccctg gggctcttca acattttcct gtatacctgc 1020tgctacacac cactgaaaag gatcagcatt gccaacacat gggtcggagc tgtggttggg 1080gccatcccgc ctgtcatggg ctggacagcg gccacgggca gcctcgatgc tggcgcattt 1140ctcctgggag gaatcctcta ctcctggcag tttcctcatt tcaacgccct gagctggggc 1200ctccgtgaag actactcccg gggcggctac tgcatgatgt cggtcaccca cccgggcctg 1260tgccggcgcg tggcgctgcg ccactgcctg gccctgctcg tgctgtccgc agcagcccct 1320gtgctggaca tcaccacatg gaccttcccc atcatggccc ttcccatcaa tgcgtacatc 1380tcctacctcg gcttccgctt ctacgtggac gcagaccgca ggagctcgcg gagactgttc 1440ttctgcagcc tgtggcacct gccgctgctg ctgctgctca tgctcacctg caagcggccg 1500agcggaggcg gggacgcagg gccccctccc agctgagagc actgggacgc ccaccgcccc 1560tttccctccg ctgccaggcg agcatgttgt ggtaattctg gaacacaaga agagaaattg 1620ctgggtttag aacaagatta taaacgaatt cggtgctcag tgatcacttg acagtttttt 1680ttttttttaa atattaccca aaatgctccc caaataagaa atgcatcagc tcagtcagtg 1740aatacaaaaa aggaattatt tttccctttg agggtcttta tacatctctc ctccaacccc 1800accctctatt ctgtttcttc ctcctcacat gggggtacac atacacagct tcctcttttg 1860gttccatcct taccaccaca ccacacgcac actccacatg cccagcagag tggcacttgg 1920tggccagaaa gtgtgagcct catgatctgc tgtctgtagt tctgtgagct caggtccctc 1980aaaggcctcg gagcaccccc ttcctggtga ctgagccagg gcctgcattt ttggttttcc 2040ccaccccaca cattctcaac catagtcctt ctaacaatac caatagctag gacccggctg 2100ctgtgcactg ggactgggga ttccacatgt ttgccttggg agtctcaagc tggactgcca 2160gcccctgtcc tcccttcacc cccattgcgt atgagcattt cagaactcca aggagtcaca 2220ggcatcttta tagttcacgt taacatatag acactgttgg aagcagttcc ttctaaaagg 2280gtagccctgg acttaatacc agccggatac ctctggcccc caccccatta ctgtacctct 2340ggagtcacta ctgtgggtcg ccactcctct gctacacagc acggcttttt caaggctgta 2400ttgagaaggg aagttaggaa gaagggtgtg ctgggctaac cagcccacag agctcacatt 2460cctgtccctt gggtgaaaaa tacatgtcca tcctgatatc tcctgaattc agaaattagc 2520ctccacatgt gcaatggctt taagagccag aagcagggtt ctgggaattt tgcaagttat 2580cctgtggcca ggtgtggtct cggttaccaa atacggttac ctgcagcttt ttagtccttt 2640gtgctcccac gggtctgcag agtcccatct gcccaaaggt cttgaagctt gacaggatgt 2700tttcattact cagtctccca gggcactgct ggtccgtagg gattcattgg tcggggtggg 2760agagttaaac aacatttaaa cagagttctc tcaaaaatgt ctaaagggat tgtaggtaga 2820taacatccaa tcactgtttg cacttatctg aaatcttccc tcttggctgc ccccaggtat 2880ttactgtgga gaacattgca taggaatgtc tggaaaaagc ctctacaact tgttacagcc 2940ttcacatttg tacaattcat tgattctctt ttccttccac aataaaatgg tatacaagaa 3000caaaaaaaaa aaaaaa 3016372690DNAHomo sapiens 37ataaaaaccc agaaagcccc agaaacaaag acttcacgga caaagtccct tggaaccaga 60gagaagccgg gatggaaact ccaaacacca cagaggacta tgacacgacc acagagtttg 120actatgggga tgcaactccg tgccagaagg tgaacgagag ggcctttggg gcccaactgc 180tgccccctct gtactccttg gtatttgtca ttggcctggt tggaaacatc ctggtggtcc 240tggtccttgt gcaatacaag aggctaaaaa acatgaccag catctacctc ctgaacctgg 300ccatttctga cctgctcttc ctgttcacgc ttcccttctg gatcgactac aagttgaagg 360atgactgggt ttttggtgat gccatgtgta agatcctctc tgggttttat tacacaggct 420tgtacagcga gatctttttc atcatcctgc tgacgattga caggtacctg gccatcgtcc 480acgccgtgtt tgccttgcgg gcacggaccg tcacttttgg tgtcatcacc agcatcatca 540tttgggccct ggccatcttg gcttccatgc caggcttata cttttccaag acccaatggg 600aattcactca ccacacctgc agccttcact ttcctcacga aagcctacga gagtggaagc 660tgtttcaggc tctgaaactg aacctctttg ggctggtatt gcctttgttg gtcatgatca 720tctgctacac agggattata aagattctgc taagacgacc aaatgagaag aaatccaaag 780ctgtccgttt gatttttgtc atcatgatca tcttttttct cttttggacc ccctacaatt 840tgactatact tatttctgtt ttccaagact tcctgttcac ccatgagtgt gagcagagca 900gacatttgga cctggctgtg caagtgacgg aggtgatcgc ctacacgcac tgctgtgtca 960acccagtgat ctacgccttc gttggtgaga ggttccggaa gtacctgcgg cagttgttcc 1020acaggcgtgt ggctgtgcac ctggttaaat ggctcccctt cctctccgtg gacaggctgg 1080agagggtcag ctccacatct ccctccacag gggagcatga actctctgct gggttctgac 1140tcagaccata ggaggccaac ccaaaataag caggcgtgac ctgccaggca cactgagcca 1200gcagcctggc tctcccagcc aggttctgac tcttggcaca gcatggagtc acagccactt 1260gggatagaga gggaatgtaa tggtggcctg gggcttctga ggcttctggg gcttcagtct 1320tttccatgaa cttctcccct ggtagaaaga agatgaatga

gcaaaaccaa atattccaga 1380gactgggact aagtgtacca gagaagggct tggactcaag caagatttca gatttgtgac 1440cattagcatt tgtcaacaaa gtcacccact tcccactatt gcttgcacaa accaattaaa 1500cccagtagtg gtgactgtgg gctccattca aagtgagctc ctaagccatg ggagacactg 1560atgtatgagg aatttctgtt cttccatcac ctcccccccc ccgccaccct cccactgcca 1620aagaacttgg aaatagtgat ttccacagtg actccactct gagtcccaga gccaatcagt 1680agccagcatc tgcctcccct tcactcccac cgcaggattt gggctcttgg aatcctgggg 1740aacatagaac tcatgacgga agagttgaga cctaacgaga aatagaaatg gggaactact 1800gctggcagtg gaactaagaa agcccttagg aagaattttt atatccacta aaatcaaaca 1860attcagggag tgggctaagc acgggccata tgaataacat ggtgtgcttc ttaaaatagc 1920cataaagggg agggactcat catttccatt tacccttctt ttctgactat ttttcagaat 1980ctctcttctt ttcaagttgg gtgatatgtt ggtagattct aatggcttta ttgcagcgat 2040taataacagg caaaaggaag cagggttggt ttcccttctt tttgttcttc atctaagcct 2100tctggtttta tgggtcagag ttccgactgc catcttggac ttgtcagcaa aaaaaaaaaa 2160taataataat aataaggcct gctgtgtaag ctgacagtat ttgtagctga tagggggttg 2220ggaggaaagt gtctactagg agggtggggt gagattctgt gttgatgtag gaggccgaga 2280aggcccttaa ctcaaagtag cttatttatc caaaatgttc tggatgcatc atctccaacc 2340aaggacccct tatttatcat gcctttgttc tcttttccct cagatgtata tttctttaaa 2400aataattttc ctaataacaa aacttatttc taaaacagct taaaaattca aagaaaaacc 2460ccaaacactg acattaccta cacttccact acccaaagac aaaatgtgcc cactgtgtgc 2520ttttgagtgt attttctttt agtttgtttt ttgttgggtg catatttatg ataataacaa 2580tgatggactt caattgtact cactgttcta ttgttggttt taattagcag caagttgtga 2640tcactttccc aggtgaataa atcatttcaa agcattaaaa aaaaaaaaaa 2690382168DNAHomo sapiens 38ggctacgcag cttgctcctg gcacgggcac cttgaatctc ctcctcacac agatggagac 60catgcttgat ttcctgaact tgtagtaaga agaaggaaaa cacagcacgc tggagccaac 120agagttaaga ggaagattta tgagtcatgg aaccctccat cagatttgga agaaagtaga 180atgagcgcag aggtgacaga cagccactga ggcccatgga caatctccac ctcacgcttc 240tctatcaaac ttgaagattt attagtaata tgctgccttt ggaagatgaa aacaaactag 300tgccaaggag gcgtattctt caatatttgg aatagacgtg ttctcaagac aatggcttca 360aaggtctcct gtttgtatgt tttgacagtt gtgtgctggg ccagcgctct ctggtacttg 420agtataactc gccctacttc ttcttacact ggctccaaac cattcagcca cctaacagtt 480gccaggaaaa acttcacctt tggcaacata agaactcgac ctatcaaccc acattctttt 540gaatttctta tcaacgagcc caataaatgt gagaaaaaca ttccttttct tgttatcctc 600atcagcacca ctcacaagga atttgatgcc cgtcaggcaa tcagagagac gtggggggat 660gagaacaact ttaaggggat caagatagcc accctgttcc tcctgggcaa gaatgctgat 720cctgttctca atcagatggt ggagcaagag agccaaatct tccatgatat catcgtggag 780gactttattg actcctacca taaccttacc ctcaaaacat taatggggat gagatgggtg 840gccacttttt gttcaaaagc caagtatgtc atgaaaacag acagcgacat ttttgtaaac 900atggacaatc ttatttataa attactgaaa ccctccacca agccacgaag aaggtatttt 960actggctatg tcattaatgg aggaccgatt cgggatgtcc gcagtaaatg gtatatgccc 1020agggatttgt acccagacag taactaccca cctttctgtt cggggactgg ctacatcttt 1080tcagccgatg tagctgaact catttacaag acctcactcc acacaaggct gcttcacctt 1140gaagacgtat atgtgggact gtgtcttcga aagctgggca tacatccttt ccagaacagt 1200ggcttcaatc actggaaaat ggcctacagt ttgtgtaggt atcgccgagt tatcactgtg 1260catcagatct ctccagaaga aatgcacaga atctggaatg acatgtcaag caagaaacat 1320ctcagatgtt aggattttta ccaatgtaaa tatgtttctt ttcttttttt aagaaatggg 1380acctaaggtg ttggtatttt ccaggtgtcg ggggaaatga actggtgaag gggttttgta 1440aagtttttgc ttcctgctat aagttctttt cttggattac caatttatga atgttagact 1500ctggtcatag aaacaataaa tgagttagaa gggccagatt tcattctcag tcccagagca 1560ttgctattta tctcaaaaag tgacttccaa acaactctta ggattgacgt accgtgcatc 1620tgagataaaa atttggttct gggaaactga aactcacagt aatgtgtcat atcatccctg 1680caaaaattaa tacacaaata gaaaccattt tcaaaagcaa ttcagaaagg atgcacagtc 1740aggaagacac actggatgtg attattaata tcgtgtgtgt tgttacatta tatttttaca 1800tatattccca tgtaatgtgt acagtctttg cagttccacc aagaaatgaa cttggtacct 1860gcagagtggc tgcagttaaa tagatgggag tttaaatttg agaatcaaac attctatgtg 1920tttggaagac aactctgctt gctcatccaa ggattaaatc tggtcagcag gtggaatgtg 1980tataaaatgc tacttaacaa agtaaacaaa agattttttt tttctttttt tttctttctt 2040ttttgttttg ctctttcaga acaaacatta aatggtgcct ccaaggaaac tttgccaaat 2100ataatctcac ctgcttcctt ccagacagtg tcgctaagtg catttcacag tttttggatc 2160tggcaggc 2168396255DNAHomo sapiens 39ccgaaagccc cgagagagac taagaagcaa tcctcccacg cgctttctcc caccctcggg 60ccactgagac ggagggacag agggccgccc tcgcgcggcc gaggccccgc ctcccgctcg 120cccgcccgcg cctccagcgg aagccggaag caaaagcggg ttctgctagc cccgcggctc 180cgaactcggt ggtcctggaa gctccgcagg atgggggaga agatggcgga agaggagagg 240ttccccaata caactcatga gggtttcaat gtcaccctcc acaccaccct ggttgtcacg 300acgaaactgg tgctcccgac ccctggcaag cccatcctcc ccgtgcagac aggggagcag 360gcccagcaag aggagcagtc cagcggcatg accattttct tcagcctcct tgtcctagct 420atctgcatca tattggtgca tttactgatc cgatacagat tacatttctt gccagagagt 480gttgctgttg tttctttagg tattctcatg ggagcagtta taaaaattat agagtttaaa 540aaactggcga attggaagga agaagaaatg tttcgtccaa acatgttttt cctcctcctg 600cttcccccta ttatctttga gtctggatat tcattacaca agggtaactt ctttcaaaat 660attggttcca tcaccctgtt tgctgttttt gggacggcaa tctccgcttt tgtagtaggt 720ggaggaattt attttctggg tcaggctgat gtaatctcta aactcaacat gacagacagt 780tttgcgtttg gctccctaat atctgctgtc gatccagtgg ccactattgc cattttcaat 840gcacttcatg tggaccccgt gctcaacatg ctggtctttg gagaaagtat tctcaacgat 900gcagtctcca ttgttctgac caacacagct gaaggtttaa caagaaaaaa tatgtcagat 960gtcagtgggt ggcaaacatt tttacaagcc cttgactact tcctcaaaat gttctttggc 1020tctgcagcgc tcggcactct cactggctta atttctgcat tagtgctgaa gcatattgac 1080ttgaggaaaa cgccttcctt ggagtttggc atgatgatca tttttgctta tctgccttat 1140gggcttgcag aaggaatctc actctcaggc atcatggcca tccttttctc aggcatcgtg 1200atgtcccact acacgcacca taacctctcc ccagtcaccc agatcctcat gcagcagacc 1260ctccgcaccg tggccttctt atgtgaaaca tgtgtgtttg catttcttgg cctgtccatt 1320tttagttttc ctcacaagtt tgaaatttcc tttgtcatct ggtgcatagt gcttgtacta 1380tttggcagag cggtaaacat tttccctctt tcctacctcc tgaatttctt ccgggatcat 1440aaaatcacac cgaagatgat gttcatcatg tggtttagtg gcctgcgggg agccatcccc 1500tatgccctga gcctacacct ggacctggag cccatggaga agcggcagct catcggcacc 1560accaccatcg tcatcgtgct cttcaccatc ctgctgctgg gcggcagcac catgcccctc 1620attcgcctca tggacatcga ggacgccaag gcacaccgca ggaacaagaa ggacgtcaac 1680ctcagcaaga ctgagaagat gggcaacact gtggagtcgg agcacctgtc ggagctcacg 1740gaggaggagt acgaggccca ctacatcagg cggcaggacc ttaagggctt cgtgtggctg 1800gacgccaagt acctgaaccc cttcttcact cggaggctga cgcaggagga cctgcaccac 1860gggcgcatcc agatgaaaac tctcaccaac aagtggtacg aggaggtacg ccagggcccc 1920tccggctccg aggacgacga gcaggagctg ctctgacgcc aggtgccaag gcttcaggca 1980ggcaggccca ggatgggcgt ttgctgcgca cagacactca gcaggggcct cgcagagatg 2040cgtgcatcca gcagcccctt caagacataa gagggcgggg cgaggtactg gctgcagagt 2100cgccttagtc cagaacctga caggcctctg gagccaggcg acttcttggg aaactgtcat 2160ctcccgactc ctccctgagc cagcctccgc tcagtgtggc tcctcagccc acagagggga 2220gggagcatgg ggccaggtgc cagtcatctg tgaagctagg gcgcctaccc ccccacccgg 2280aggacccctg cggccccctg cctagaggag caccatctac agttgtgcca ttccccagcc 2340actgccttca tgctgccccc gccggactgg cagagccagg ggtcagccac ctgcctttga 2400gtcatcaaga tgcctctgca gccacaattc tgacctaagt ggcagggccc agaaatcctg 2460aaaacctccc gctgcctttt gtgatacttc ctgtgctccc tcagagagaa acggagtgac 2520cttttgtcct ttacctgatt ggcacttcgc agtctatctc cctgggtagc agacggctgc 2580tgcccttctc tgggcatgtt ctgaatgttt acactggtac cttctggtat cttctttaga 2640gccccctgca agctgcaact ctaggctttt atcttgcggg gtcagagcgc cctctagagg 2700gaaaagctag aggcacaggg tttctgccgg cccacaactg ctgtcttgat ttgcatttta 2760cagcaaagtg ctgagagcct ctagtcgcct cctgccatct gatctccctc cccaccattc 2820ccgtactcag ttgttctttt gtctaatcgg aggccactgt gctgaggccc tgcagtgtct 2880gctcactgct gccatcttcg ctgctagtca gggttccatc ctctttcccc tctcccagtt 2940ccctaccacg ttggatccca ttcgtcaccc atgctagggt ccccaaagca ctggggcagg 3000ggccagagca gcagcaccca gtgctccctc ctctactctg acctggggcc ccagcatcct 3060ggagcacacg ctccacgcac acacacccca gccctgtccc aggggcctgg ccccctcagc 3120catctcaggg tgaggagctg ccagtcatgt ccagatggaa tgactcccat cctctcctca 3180tctccccttt gacgagcctc aaactgctca gctcatcaaa gagccattgc caacttccgt 3240atgtggttct gggtcccagg gagccttgga acctggcacc ctggggtggt ttaattcatc 3300attaagaagc attcctgctt ctcaagggac acagtggcct gcatgggcca gcatggaccc 3360tgggctgatc atgtgcattc ctgcttctct ggggacacag tgggcccaca tgggccagca 3420tggaccctgg gctagagcaa gcacatctcc atctcttcca cctcaggcag tgtggctcca 3480gatgtcagga gggactgacc tcaggacctt ccaggttcct ctgtgccagg aatgagaggc 3540caggcccgat cctaccacct cgccttgacc ctgaagtcag agcaggccag ccaagcagga 3600agcacactgt ttactttttg catgaaaagt aaatgtgtac ttgatagagc taaaatatga 3660tcttttttaa tttctcaacc ccataatttg agccattgcc ttgcttaatt ttggtttcca 3720ccatttcctt ttagtggaga agagaggaag tcagagggta gggacctttg cctgcccctg 3780ggcgagtgcg ggcagggatc tgagaccaga ttgttctcgc acccctgcca gaactcactc 3840tcccctgaag tttagggtcc catctcccag atgtaagttg ttttgcaaac tcagtttgcc 3900aggatttctt tctttcctaa tcttaaattc acagataaag caatgaaaag agtcagatcc 3960catttccgtc tgccccctcg tcaccaggtg tgatagcccc agccaggtca cacctggcct 4020cacactttga gctgagactt gaaaacgatg ctgtggcgga agagcatgtg gggcttggtg 4080gaggggcccc aggatttgtt gggggcaaag ggggtggcgg gaccgttccc aggaggtacc 4140agcacctgcc tcgatctcct ctgagcctct tctgccccct gtcggccagg tgaggtcagc 4200agcctgggag agtgccccca agagatgagg gcaccccgtg ttccttggca atcttggctc 4260accttggtaa caaaaggcca tagaagtctg tttttctggg tcagtttttt ttgcctgaga 4320ataacaaatt gctgctgtct acctttagca cacccaataa ttctatttgg ggcagtgaat 4380gcatagaaga tataaaaata cgcagcttaa ctatatcttc ctgcgtgtgt atttattttc 4440ttctgggtct aggccatggt acaggagaac tgtggcgtgt aggaggaata cttcaggatg 4500agtgaaggct ggagccaggg agcgctggag gaaaccagcc ctttagccag cagcccctcc 4560accacaggca ctgctgtgtg gaacgagttc ttggaatgaa tcccatgctt tctgcagcct 4620gtagttgtta tgacccctcg gaacaaccac cccgtggctt gtgtggggtc tcgcagggaa 4680aagggctggc ttctaggtcc ccgagataag tgtgcagggg gatgggccag ggccaggcta 4740agggtggctc agttccatca tctggaggtc agacacactg tccagaggca gaactgaagc 4800cctctcggcc cctaccctaa gccagccacc cctcttcaca gtgggtgagc tgggctgggc 4860tggctggcat gaggccaagg ggtaggcctg agcgccagag tcgcccaggt tagcccacag 4920gattcctttg tgtgccatgg aatgctgaaa gatgggtgac tggggaccct tcttaaaacc 4980tttggcaaag gtgccatcgg cagggcttgg cctcatgaag tctcaggtcc gtgttcccgc 5040agggcgcaca tgcttggaga gtcctcagca gggtagccga ggccaggcca cttctgctga 5100ggatggggca ggctggggtg tgggtgtggc ctggggtggc tcagggctgg aactgctgcc 5160tgattcctgt gtggggagaa gctcagtggc cgtttgctgc cactgacaag gatttcacat 5220gcagaagaga aaaggccccc ctccaccccc cgcattccct gccgagtgag agccagtgtt 5280tgctgccctt gctgggggcg ggtaggaaac cctgagcttc ctgatgcgga gtcatgaagc 5340agagtcctcg ggaaggcatc tccacagccc cgggtcctct gtctaacgcc ctccatttca 5400cgccctccat ctcacagtca agataaaggc ctcgagaata aagagccagc ccccttccat 5460ttagtctcct gccgtttccc aaacagttgt ccaacagtta gacattgagg ggcttcactg 5520ttaccaggca tgtaacagaa ggaggaagac taacacacac cccctgcccc atcccatccc 5580cctctcccga gctattttct tgctgtggcc tctggtgccc ttgagttggt ctccccggct 5640gctctgcggg ggcttcactg gcttcggagt gagcgcgaag tgctggtgag cagtgggcct 5700gtgattggat gggaagatgt gcatccgtgg tcaaaagtca gctgccagcc ctgcggaacc 5760agagcctcag gctgggatgg ggaggcctcc ctgcttccac ctgcatggtg ggcatggcct 5820ggcttacacc aaaggctttg acggtttctc caagtaagga tctgcaaatc ttgaatcgtc 5880ctcaaaatga cgaagcttga attgtcctca agatggatgt gaatcttaca ttccttttca 5940tcatttcctt tgtaaaaatg acgagtgctg ggtttttgtt ttaagaagca ttatgaaggc 6000cagacttact catttttctc ccccaagtga gctgcaagag gcccctgtta ggcccctgtt 6060tcctgagcag tgatgtgctg ctcttcttgg tggggctttg ggctgggagg ggaaggcggg 6120tcagagatgg gggacctgtg gctgccatgc aggagcccct gcgtcatctc gttggactct 6180ttaagggagt caggaataga tgtatgaaca gtcgtgtcac tggatgccta tttagaaata 6240aagtgtatgc tgctg 6255401953DNAHomo sapiens 40gcagaccttg cttcatgagc aagctcatct ctggaacaaa ctggcaaagc atctctgctg 60gtgttcatca gaacagacac catggcagag catgattacc atgaagacta tgggttcagc 120agtttcaatg acagcagcca ggaggagcat caagacttcc tgcagttcag caaggtcttt 180ctgccctgca tgtacctggt ggtgtttgtc tgtggtctgg tggggaactc tctggtgctg 240gtcatatcca tcttctacca taagttgcag agcctgacgg atgtgttcct ggtgaaccta 300cccctggctg acctggtgtt tgtctgcact ctgcccttct gggcctatgc aggcatccat 360gaatgggtgt ttggccaggt catgtgcaag agcctactgg gcatctacac tattaacttc 420tacacgtcca tgctcatcct cacctgcatc actgtggatc gtttcattgt agtggttaag 480gccaccaagg cctacaacca gcaagccaag aggatgacct ggggcaaggt caccagcttg 540ctcatctggg tgatatccct gctggtttcc ttgccccaaa ttatctatgg caatgtcttt 600aatctcgaca agctcatatg tggttaccat gacgaggcaa tttccactgt ggttcttgcc 660acccagatga cactggggtt cttcttgcca ctgctcacca tgattgtctg ctattcagtc 720ataatcaaaa cactgcttca tgctggaggc ttccagaagc acagatctct aaagatcatc 780ttcctggtga tggctgtgtt cctgctgacc cagatgccct tcaacctcat gaagttcatc 840cgcagcacac actgggaata ctatgccatg accagctttc actacaccat catggtgaca 900gaggccatcg catacctgag ggcctgcctt aaccctgtgc tctatgcctt tgtcagcctg 960aagtttcgaa agaacttctg gaaacttgtg aaggacattg gttgcctccc ttaccttggg 1020gtctcacatc aatggaaatc ttctgaggac aattccaaga ctttttctgc ctcccacaat 1080gtggaggcca ccagcatgtt ccagttatag gccttgccag ggtttcgaga agctgctctg 1140gaatttgcaa gtcatggctg tgccctcttg atgtggtgag gcaggctttg tttatagctt 1200gcgcattctc atggagaagt tatcagacac tctggctggt ttggaatgct tcttctcagg 1260catgaacatg tactgttctc ttcttgaaca ctcatgctga aagcccaagt agggggtcta 1320aaatttttaa ggactttcct tcctccatct ccaagaatgc tgaaaccaag ggggatgaca 1380tgtgactcct atgatctcag gttctccttg attgggactg gggctgaagg ttgaagaggt 1440gagcacggcc aacaaagctg ttgatggtag gtggcacact gggtgcccaa gctcagaagg 1500ctcttctgac tactgggcaa agagtgtaga tcagagcagc agtgaaaaca agtgctggca 1560ccaccaggca cctcacagaa atgagatcag gctctgcctc accttggggc ttgacttttg 1620tataggtaga tgttcagatt gctttgatta atccagaata actagcacca gggactatga 1680atgggcaaaa ctgaattata agaggctgat aattccagtg gtccatggaa tgcttgaaaa 1740atgtgcaaaa cagcgtttaa gactgtaatg aatctaagca gcatttctga agtggactct 1800ttggtggctt tgcattttaa aaatgaaatt ttccaatgtc tgccacacaa acgtatgtaa 1860atgtatatac ccacacacat acacacatat gtcatatatt actagcatat gagtttcata 1920gctaagaaat aaaactgtta aagtctccaa act 195341838PRTHomo sapiens 41Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp 1 5 10 15 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys 20 25 30 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro 35 40 45 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp 50 55 60 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu 65 70 75 80 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu 85 90 95 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu 100 105 110 Lys Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr 115 120 125 Ser Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile 130 135 140 Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys 145 150 155 160 Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys 165 170 175 Leu Asn Glu Ser Ser Lys Asn Ile Pro Leu Ala Asn Leu Gln Ile Pro 180 185 190 Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val 195 200 205 Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro 210 215 220 Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met 225 230 235 240 Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser 245 250 255 Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val 260 265 270 Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr 275 280 285 Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro 290 295 300 Phe Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn 305 310 315 320 Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val 325 330 335 Thr Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr 340 345 350 His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly 355 360 365 Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile 370 375 380 Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr 385 390 395 400 Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu 405 410 415 Ile Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser 420 425 430 Val Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu 435 440 445 Val Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met 450 455 460 Lys Asp Phe Ser Trp Phe Gly Phe Gly Lys Val Lys Ser Arg Gln Gly 465 470 475 480 Val Gly Pro

Ala Ser Val Ile Ser Asn Asp Asp Asp Ser Ala Ser Pro 485 490 495 Leu His His Ile Ser Asn Gly Ser Asn Thr Pro Ser Ser Ser Glu Gly 500 505 510 Gly Pro Asp Ala Val Ile Ile Gly Met Thr Lys Ile Pro Val Ile Glu 515 520 525 Asn Pro Gln Tyr Phe Gly Ile Thr Asn Ser Gln Leu Lys Pro Asp Thr 530 535 540 Phe Val Gln His Ile Lys Arg His Asn Ile Val Leu Lys Arg Glu Leu 545 550 555 560 Gly Glu Gly Ala Phe Gly Lys Val Phe Leu Ala Glu Cys Tyr Asn Leu 565 570 575 Cys Pro Glu Gln Asp Lys Ile Leu Val Ala Val Lys Thr Leu Lys Asp 580 585 590 Ala Ser Asp Asn Ala Arg Lys Asp Phe His Arg Glu Ala Glu Leu Leu 595 600 605 Thr Asn Leu Gln His Glu His Ile Val Lys Phe Tyr Gly Val Cys Val 610 615 620 Glu Gly Asp Pro Leu Ile Met Val Phe Glu Tyr Met Lys His Gly Asp 625 630 635 640 Leu Asn Lys Phe Leu Arg Ala His Gly Pro Asp Ala Val Leu Met Ala 645 650 655 Glu Gly Asn Pro Pro Thr Glu Leu Thr Gln Ser Gln Met Leu His Ile 660 665 670 Ala Gln Gln Ile Ala Ala Gly Met Val Tyr Leu Ala Ser Gln His Phe 675 680 685 Val His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly Glu Asn Leu 690 695 700 Leu Val Lys Ile Gly Asp Phe Gly Met Ser Arg Asp Val Tyr Ser Thr 705 710 715 720 Asp Tyr Tyr Arg Val Gly Gly His Thr Met Leu Pro Ile Arg Trp Met 725 730 735 Pro Pro Glu Ser Ile Met Tyr Arg Lys Phe Thr Thr Glu Ser Asp Val 740 745 750 Trp Ser Leu Gly Val Val Leu Trp Glu Ile Phe Thr Tyr Gly Lys Gln 755 760 765 Pro Trp Tyr Gln Leu Ser Asn Asn Glu Val Ile Glu Cys Ile Thr Gln 770 775 780 Gly Arg Val Leu Gln Arg Pro Arg Thr Cys Pro Gln Glu Val Tyr Glu 785 790 795 800 Leu Met Leu Gly Cys Trp Gln Arg Glu Pro His Met Arg Lys Asn Ile 805 810 815 Lys Gly Ile His Thr Leu Leu Gln Asn Leu Ala Lys Ala Ser Pro Val 820 825 830 Tyr Leu Asp Ile Leu Gly 835 42477PRTHomo sapiens 42Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp 1 5 10 15 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys 20 25 30 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro 35 40 45 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp 50 55 60 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu 65 70 75 80 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu 85 90 95 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu 100 105 110 Lys Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr 115 120 125 Ser Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile 130 135 140 Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys 145 150 155 160 Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys 165 170 175 Leu Asn Glu Ser Ser Lys Asn Ile Pro Leu Ala Asn Leu Gln Ile Pro 180 185 190 Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val 195 200 205 Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro 210 215 220 Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met 225 230 235 240 Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser 245 250 255 Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val 260 265 270 Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr 275 280 285 Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro 290 295 300 Phe Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn 305 310 315 320 Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val 325 330 335 Thr Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr 340 345 350 His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly 355 360 365 Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile 370 375 380 Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr 385 390 395 400 Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu 405 410 415 Ile Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser 420 425 430 Val Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu 435 440 445 Val Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met 450 455 460 Lys Gly Phe Val Leu Phe His Lys Ile Pro Leu Asp Gly 465 470 475 43822PRTHomo sapiens 43Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp 1 5 10 15 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys 20 25 30 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro 35 40 45 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp 50 55 60 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu 65 70 75 80 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu 85 90 95 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu 100 105 110 Lys Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr 115 120 125 Ser Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile 130 135 140 Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys 145 150 155 160 Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys 165 170 175 Leu Asn Glu Ser Ser Lys Asn Ile Pro Leu Ala Asn Leu Gln Ile Pro 180 185 190 Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val 195 200 205 Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro 210 215 220 Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met 225 230 235 240 Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser 245 250 255 Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val 260 265 270 Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr 275 280 285 Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro 290 295 300 Phe Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn 305 310 315 320 Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val 325 330 335 Thr Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr 340 345 350 His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly 355 360 365 Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile 370 375 380 Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr 385 390 395 400 Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu 405 410 415 Ile Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser 420 425 430 Val Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu 435 440 445 Val Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met 450 455 460 Lys Gly Pro Ala Ser Val Ile Ser Asn Asp Asp Asp Ser Ala Ser Pro 465 470 475 480 Leu His His Ile Ser Asn Gly Ser Asn Thr Pro Ser Ser Ser Glu Gly 485 490 495 Gly Pro Asp Ala Val Ile Ile Gly Met Thr Lys Ile Pro Val Ile Glu 500 505 510 Asn Pro Gln Tyr Phe Gly Ile Thr Asn Ser Gln Leu Lys Pro Asp Thr 515 520 525 Phe Val Gln His Ile Lys Arg His Asn Ile Val Leu Lys Arg Glu Leu 530 535 540 Gly Glu Gly Ala Phe Gly Lys Val Phe Leu Ala Glu Cys Tyr Asn Leu 545 550 555 560 Cys Pro Glu Gln Asp Lys Ile Leu Val Ala Val Lys Thr Leu Lys Asp 565 570 575 Ala Ser Asp Asn Ala Arg Lys Asp Phe His Arg Glu Ala Glu Leu Leu 580 585 590 Thr Asn Leu Gln His Glu His Ile Val Lys Phe Tyr Gly Val Cys Val 595 600 605 Glu Gly Asp Pro Leu Ile Met Val Phe Glu Tyr Met Lys His Gly Asp 610 615 620 Leu Asn Lys Phe Leu Arg Ala His Gly Pro Asp Ala Val Leu Met Ala 625 630 635 640 Glu Gly Asn Pro Pro Thr Glu Leu Thr Gln Ser Gln Met Leu His Ile 645 650 655 Ala Gln Gln Ile Ala Ala Gly Met Val Tyr Leu Ala Ser Gln His Phe 660 665 670 Val His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly Glu Asn Leu 675 680 685 Leu Val Lys Ile Gly Asp Phe Gly Met Ser Arg Asp Val Tyr Ser Thr 690 695 700 Asp Tyr Tyr Arg Val Gly Gly His Thr Met Leu Pro Ile Arg Trp Met 705 710 715 720 Pro Pro Glu Ser Ile Met Tyr Arg Lys Phe Thr Thr Glu Ser Asp Val 725 730 735 Trp Ser Leu Gly Val Val Leu Trp Glu Ile Phe Thr Tyr Gly Lys Gln 740 745 750 Pro Trp Tyr Gln Leu Ser Asn Asn Glu Val Ile Glu Cys Ile Thr Gln 755 760 765 Gly Arg Val Leu Gln Arg Pro Arg Thr Cys Pro Gln Glu Val Tyr Glu 770 775 780 Leu Met Leu Gly Cys Trp Gln Arg Glu Pro His Met Arg Lys Asn Ile 785 790 795 800 Lys Gly Ile His Thr Leu Leu Gln Asn Leu Ala Lys Ala Ser Pro Val 805 810 815 Tyr Leu Asp Ile Leu Gly 820 44553PRTHomo sapiens 44Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp 1 5 10 15 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys 20 25 30 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro 35 40 45 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp 50 55 60 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu 65 70 75 80 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu 85 90 95 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu 100 105 110 Lys Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr 115 120 125 Ser Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile 130 135 140 Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys 145 150 155 160 Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys 165 170 175 Leu Asn Glu Ser Ser Lys Asn Ile Pro Leu Ala Asn Leu Gln Ile Pro 180 185 190 Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val 195 200 205 Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro 210 215 220 Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met 225 230 235 240 Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser 245 250 255 Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val 260 265 270 Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr 275 280 285 Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro 290 295 300 Phe Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn 305 310 315 320 Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val 325 330 335 Thr Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr 340 345 350 His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly 355 360 365 Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile 370 375 380 Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr 385 390 395 400 Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu 405 410 415 Ile Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser 420 425 430 Val Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu 435 440 445 Val Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met 450 455 460 Lys Asp Phe Ser Trp Phe Gly Phe Gly Lys Val Lys Ser Arg Gln Gly 465 470 475 480 Val Gly Pro Ala Ser Val Ile Ser Asn Asp Asp Asp Ser Ala Ser Pro 485 490 495 Leu His His Ile Ser Asn Gly Ser Asn Thr Pro Ser Ser Ser Glu Gly 500 505 510 Gly Pro Asp Ala Val Ile Ile Gly Met Thr Lys Ile Pro Val Ile Glu 515 520 525 Asn Pro Gln Tyr Phe Gly Ile Thr Asn Ser Gln Leu Lys Pro Asp Thr 530 535 540 Trp Pro Arg Gly Ser Pro Lys Thr Ala 545 550 45537PRTHomo sapiens 45Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp 1 5 10 15 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys 20 25 30 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro 35 40 45 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp 50 55 60 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu 65 70 75 80 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val

Gly Leu Arg Asn Leu 85 90 95 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu 100 105 110 Lys Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr 115 120 125 Ser Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile 130 135 140 Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys 145 150 155 160 Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys 165 170 175 Leu Asn Glu Ser Ser Lys Asn Ile Pro Leu Ala Asn Leu Gln Ile Pro 180 185 190 Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val 195 200 205 Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro 210 215 220 Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met 225 230 235 240 Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser 245 250 255 Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val 260 265 270 Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr 275 280 285 Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro 290 295 300 Phe Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn 305 310 315 320 Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val 325 330 335 Thr Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr 340 345 350 His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly 355 360 365 Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile 370 375 380 Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr 385 390 395 400 Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu 405 410 415 Ile Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser 420 425 430 Val Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu 435 440 445 Val Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met 450 455 460 Lys Gly Pro Ala Ser Val Ile Ser Asn Asp Asp Asp Ser Ala Ser Pro 465 470 475 480 Leu His His Ile Ser Asn Gly Ser Asn Thr Pro Ser Ser Ser Glu Gly 485 490 495 Gly Pro Asp Ala Val Ile Ile Gly Met Thr Lys Ile Pro Val Ile Glu 500 505 510 Asn Pro Gln Tyr Phe Gly Ile Thr Asn Ser Gln Leu Lys Pro Asp Thr 515 520 525 Trp Pro Arg Gly Ser Pro Lys Thr Ala 530 535 461166PRTHomo sapiens 46Met Ala Asn Asp Ser Pro Ala Lys Ser Leu Val Asp Ile Asp Leu Ser 1 5 10 15 Ser Leu Arg Asp Pro Ala Gly Ile Phe Glu Leu Val Glu Val Val Gly 20 25 30 Asn Gly Thr Tyr Gly Gln Val Tyr Lys Gly Arg His Val Lys Thr Gly 35 40 45 Gln Leu Ala Ala Ile Lys Val Met Asp Val Thr Glu Asp Glu Glu Glu 50 55 60 Glu Ile Lys Leu Glu Ile Asn Met Leu Lys Lys Tyr Ser His His Arg 65 70 75 80 Asn Ile Ala Thr Tyr Tyr Gly Ala Phe Ile Lys Lys Ser Pro Pro Gly 85 90 95 His Asp Asp Gln Leu Trp Leu Val Met Glu Phe Cys Gly Ala Gly Ser 100 105 110 Ile Thr Asp Leu Val Lys Asn Thr Lys Gly Asn Thr Leu Lys Glu Asp 115 120 125 Trp Ile Ala Tyr Ile Ser Arg Glu Ile Leu Arg Gly Leu Ala His Leu 130 135 140 His Ile His His Val Ile His Arg Asp Ile Lys Gly Gln Asn Val Leu 145 150 155 160 Leu Thr Glu Asn Ala Glu Val Lys Leu Val Asp Phe Gly Val Ser Ala 165 170 175 Gln Leu Asp Arg Thr Val Gly Arg Arg Asn Thr Phe Ile Gly Thr Pro 180 185 190 Tyr Trp Met Ala Pro Glu Val Ile Ala Cys Asp Glu Asn Pro Asp Ala 195 200 205 Thr Tyr Asp Tyr Arg Ser Asp Leu Trp Ser Cys Gly Ile Thr Ala Ile 210 215 220 Glu Met Ala Glu Gly Ala Pro Pro Leu Cys Asp Met His Pro Met Arg 225 230 235 240 Ala Leu Phe Leu Ile Pro Arg Asn Pro Pro Pro Arg Leu Lys Ser Lys 245 250 255 Lys Trp Ser Lys Lys Phe Phe Ser Phe Ile Glu Gly Cys Leu Val Lys 260 265 270 Asn Tyr Met Gln Arg Pro Ser Thr Glu Gln Leu Leu Lys His Pro Phe 275 280 285 Ile Arg Asp Gln Pro Asn Glu Arg Gln Val Arg Ile Gln Leu Lys Asp 290 295 300 His Ile Asp Arg Thr Arg Lys Lys Arg Gly Glu Lys Asp Glu Thr Glu 305 310 315 320 Tyr Glu Tyr Ser Gly Ser Glu Glu Glu Glu Glu Glu Val Pro Glu Gln 325 330 335 Glu Gly Glu Pro Ser Ser Ile Val Asn Val Pro Gly Glu Ser Thr Leu 340 345 350 Arg Arg Asp Phe Leu Arg Leu Gln Gln Glu Asn Lys Glu Arg Ser Glu 355 360 365 Ala Leu Arg Arg Gln Gln Leu Leu Gln Glu Gln Gln Leu Arg Glu Gln 370 375 380 Glu Glu Tyr Lys Arg Gln Leu Leu Ala Glu Arg Gln Lys Arg Ile Glu 385 390 395 400 Gln Gln Lys Glu Gln Arg Arg Arg Leu Glu Glu Gln Gln Arg Arg Glu 405 410 415 Arg Glu Ala Arg Arg Gln Gln Glu Arg Glu Gln Arg Arg Arg Glu Gln 420 425 430 Glu Glu Lys Arg Arg Leu Glu Glu Leu Glu Arg Arg Arg Lys Glu Glu 435 440 445 Glu Glu Arg Arg Arg Ala Glu Glu Glu Lys Arg Arg Val Glu Arg Glu 450 455 460 Gln Glu Tyr Ile Arg Arg Gln Leu Glu Glu Glu Gln Arg His Leu Glu 465 470 475 480 Val Leu Gln Gln Gln Leu Leu Gln Glu Gln Ala Met Leu Leu His Asp 485 490 495 His Arg Arg Pro His Pro Gln His Ser Gln Gln Pro Pro Pro Pro Gln 500 505 510 Gln Glu Arg Ser Lys Pro Ser Phe His Ala Pro Glu Pro Lys Ala His 515 520 525 Tyr Glu Pro Ala Asp Arg Ala Arg Glu Val Pro Val Arg Thr Thr Ser 530 535 540 Arg Ser Pro Val Leu Ser Arg Arg Asp Ser Pro Leu Gln Gly Ser Gly 545 550 555 560 Gln Gln Asn Ser Gln Ala Gly Gln Arg Asn Ser Thr Ser Ser Ile Glu 565 570 575 Pro Arg Leu Leu Trp Glu Arg Val Glu Lys Leu Val Pro Arg Pro Gly 580 585 590 Ser Gly Ser Ser Ser Gly Ser Ser Asn Ser Gly Ser Gln Pro Gly Ser 595 600 605 His Pro Gly Ser Gln Ser Gly Ser Gly Glu Arg Phe Arg Val Arg Ser 610 615 620 Ser Ser Lys Ser Glu Gly Ser Pro Ser Gln Arg Leu Glu Asn Ala Val 625 630 635 640 Lys Lys Pro Glu Asp Lys Lys Glu Val Phe Arg Pro Leu Lys Pro Ala 645 650 655 Gly Glu Val Asp Leu Thr Ala Leu Ala Lys Glu Leu Arg Ala Val Glu 660 665 670 Asp Val Arg Pro Pro His Lys Val Thr Asp Tyr Ser Ser Ser Ser Glu 675 680 685 Glu Ser Gly Thr Thr Asp Glu Glu Asp Asp Asp Val Glu Gln Glu Gly 690 695 700 Ala Asp Glu Ser Thr Ser Gly Pro Glu Asp Thr Arg Ala Ala Ser Ser 705 710 715 720 Leu Asn Leu Ser Asn Gly Glu Thr Glu Ser Val Lys Thr Met Ile Val 725 730 735 His Asp Asp Val Glu Ser Glu Pro Ala Met Thr Pro Ser Lys Glu Gly 740 745 750 Thr Leu Ile Val Arg Gln Thr Gln Ser Ala Ser Ser Thr Leu Gln Lys 755 760 765 His Lys Ser Ser Ser Ser Phe Thr Pro Phe Ile Asp Pro Arg Leu Leu 770 775 780 Gln Ile Ser Pro Ser Ser Gly Thr Thr Val Thr Ser Val Val Gly Phe 785 790 795 800 Ser Cys Asp Gly Met Arg Pro Glu Ala Ile Arg Gln Asp Pro Thr Arg 805 810 815 Lys Gly Ser Val Val Asn Val Asn Pro Thr Asn Thr Arg Pro Gln Ser 820 825 830 Asp Thr Pro Glu Ile Arg Lys Tyr Lys Lys Arg Phe Asn Ser Glu Ile 835 840 845 Leu Cys Ala Ala Leu Trp Gly Val Asn Leu Leu Val Gly Thr Glu Ser 850 855 860 Gly Leu Met Leu Leu Asp Arg Ser Gly Gln Gly Lys Val Tyr Pro Leu 865 870 875 880 Ile Asn Arg Arg Arg Phe Gln Gln Met Asp Val Leu Glu Gly Leu Asn 885 890 895 Val Leu Val Thr Ile Ser Gly Lys Lys Asp Lys Leu Arg Val Tyr Tyr 900 905 910 Leu Ser Trp Leu Arg Asn Lys Ile Leu His Asn Asp Pro Glu Val Glu 915 920 925 Lys Lys Gln Gly Trp Thr Thr Val Gly Asp Leu Glu Gly Cys Val His 930 935 940 Tyr Lys Val Val Lys Tyr Glu Arg Ile Lys Phe Leu Val Ile Ala Leu 945 950 955 960 Lys Ser Ser Val Glu Val Tyr Ala Trp Ala Pro Lys Pro Tyr His Lys 965 970 975 Phe Met Ala Phe Lys Ser Phe Gly Glu Leu Val His Lys Pro Leu Leu 980 985 990 Val Asp Leu Thr Val Glu Glu Gly Gln Arg Leu Lys Val Ile Tyr Gly 995 1000 1005 Ser Cys Ala Gly Phe His Ala Val Asp Val Asp Ser Gly Ser Val 1010 1015 1020 Tyr Asp Ile Tyr Leu Pro Thr His Val Arg Lys Asn Pro His Ser 1025 1030 1035 Met Ile Gln Cys Ser Ile Lys Pro His Ala Ile Ile Ile Leu Pro 1040 1045 1050 Asn Thr Asp Gly Met Glu Leu Leu Val Cys Tyr Glu Asp Glu Gly 1055 1060 1065 Val Tyr Val Asn Thr Tyr Gly Arg Ile Thr Lys Asp Val Val Leu 1070 1075 1080 Gln Trp Gly Glu Met Pro Thr Ser Val Ala Tyr Ile Arg Ser Asn 1085 1090 1095 Gln Thr Met Gly Trp Gly Glu Lys Ala Ile Glu Ile Arg Ser Val 1100 1105 1110 Glu Thr Gly His Leu Asp Gly Val Phe Met His Lys Arg Ala Gln 1115 1120 1125 Arg Leu Lys Phe Leu Cys Glu Arg Asn Asp Lys Val Phe Phe Ala 1130 1135 1140 Ser Val Arg Ser Gly Gly Ser Ser Gln Val Tyr Phe Met Thr Leu 1145 1150 1155 Gly Arg Thr Ser Leu Leu Ser Trp 1160 1165 471320PRTHomo sapiens 47Met Ala Asn Asp Ser Pro Ala Lys Ser Leu Val Asp Ile Asp Leu Ser 1 5 10 15 Ser Leu Arg Asp Pro Ala Gly Ile Phe Glu Leu Val Glu Val Val Gly 20 25 30 Asn Gly Thr Tyr Gly Gln Val Tyr Lys Gly Arg His Val Lys Thr Gly 35 40 45 Gln Leu Ala Ala Ile Lys Val Met Asp Val Thr Glu Asp Glu Glu Glu 50 55 60 Glu Ile Lys Leu Glu Ile Asn Met Leu Lys Lys Tyr Ser His His Arg 65 70 75 80 Asn Ile Ala Thr Tyr Tyr Gly Ala Phe Ile Lys Lys Ser Pro Pro Gly 85 90 95 His Asp Asp Gln Leu Trp Leu Val Met Glu Phe Cys Gly Ala Gly Ser 100 105 110 Ile Thr Asp Leu Val Lys Asn Thr Lys Gly Asn Thr Leu Lys Glu Asp 115 120 125 Trp Ile Ala Tyr Ile Ser Arg Glu Ile Leu Arg Gly Leu Ala His Leu 130 135 140 His Ile His His Val Ile His Arg Asp Ile Lys Gly Gln Asn Val Leu 145 150 155 160 Leu Thr Glu Asn Ala Glu Val Lys Leu Val Asp Phe Gly Val Ser Ala 165 170 175 Gln Leu Asp Arg Thr Val Gly Arg Arg Asn Thr Phe Ile Gly Thr Pro 180 185 190 Tyr Trp Met Ala Pro Glu Val Ile Ala Cys Asp Glu Asn Pro Asp Ala 195 200 205 Thr Tyr Asp Tyr Arg Ser Asp Leu Trp Ser Cys Gly Ile Thr Ala Ile 210 215 220 Glu Met Ala Glu Gly Ala Pro Pro Leu Cys Asp Met His Pro Met Arg 225 230 235 240 Ala Leu Phe Leu Ile Pro Arg Asn Pro Pro Pro Arg Leu Lys Ser Lys 245 250 255 Lys Trp Ser Lys Lys Phe Phe Ser Phe Ile Glu Gly Cys Leu Val Lys 260 265 270 Asn Tyr Met Gln Arg Pro Ser Thr Glu Gln Leu Leu Lys His Pro Phe 275 280 285 Ile Arg Asp Gln Pro Asn Glu Arg Gln Val Arg Ile Gln Leu Lys Asp 290 295 300 His Ile Asp Arg Thr Arg Lys Lys Arg Gly Glu Lys Asp Glu Thr Glu 305 310 315 320 Tyr Glu Tyr Ser Gly Ser Glu Glu Glu Glu Glu Glu Val Pro Glu Gln 325 330 335 Glu Gly Glu Pro Ser Ser Ile Val Asn Val Pro Gly Glu Ser Thr Leu 340 345 350 Arg Arg Asp Phe Leu Arg Leu Gln Gln Glu Asn Lys Glu Arg Ser Glu 355 360 365 Ala Leu Arg Arg Gln Gln Leu Leu Gln Glu Gln Gln Leu Arg Glu Gln 370 375 380 Glu Glu Tyr Lys Arg Gln Leu Leu Ala Glu Arg Gln Lys Arg Ile Glu 385 390 395 400 Gln Gln Lys Glu Gln Arg Arg Arg Leu Glu Glu Gln Gln Arg Arg Glu 405 410 415 Arg Glu Ala Arg Arg Gln Gln Glu Arg Glu Gln Arg Arg Arg Glu Gln 420 425 430 Glu Glu Lys Arg Arg Leu Glu Glu Leu Glu Arg Arg Arg Lys Glu Glu 435 440 445 Glu Glu Arg Arg Arg Ala Glu Glu Glu Lys Arg Arg Val Glu Arg Glu 450 455 460 Gln Glu Tyr Ile Arg Arg Gln Leu Glu Glu Glu Gln Arg His Leu Glu 465 470 475 480 Val Leu Gln Gln Gln Leu Leu Gln Glu Gln Ala Met Leu Leu Glu Cys 485 490 495 Arg Trp Arg Glu Met Glu Glu His Arg Gln Ala Glu Arg Leu Gln Arg 500 505 510 Gln Leu Gln Gln Glu Gln Ala Tyr Leu Leu Ser Leu Gln His Asp His 515 520 525 Arg Arg Pro His Pro Gln His Ser Gln Gln Pro Pro Pro Pro Gln Gln 530 535 540 Glu Arg Ser Lys Pro Ser Phe His Ala Pro Glu Pro Lys Ala His Tyr 545 550 555 560 Glu Pro Ala Asp Arg Ala Arg Glu Val Glu Asp Arg Phe Arg Lys Thr 565 570 575 Asn His Ser Ser Pro Glu Ala Gln Ser Lys Gln Thr Gly Arg Val Leu 580 585 590 Glu Pro Pro Val Pro Ser Arg Ser Glu Ser Phe Ser Asn Gly Asn Ser 595 600 605 Glu Ser Val His Pro Ala Leu Gln Arg Pro Ala Glu Pro Gln Val Gln 610 615 620 Trp Ser His Leu Ala Ser Leu Lys Asn Asn Val Ser Pro Val Ser Arg 625 630 635 640 Ser His Ser Phe Ser Asp Pro Ser Pro Lys Phe Ala His His His Leu 645 650 655 Arg Ser Gln Asp Pro Cys Pro Pro Ser Arg Ser Glu Val Leu Ser Gln 660 665 670 Ser Ser Asp Ser Lys Ser Glu Ala Pro

Asp Pro Thr Gln Lys Ala Trp 675 680 685 Ser Arg Ser Asp Ser Asp Glu Val Pro Pro Arg Val Pro Val Arg Thr 690 695 700 Thr Ser Arg Ser Pro Val Leu Ser Arg Arg Asp Ser Pro Leu Gln Gly 705 710 715 720 Ser Gly Gln Gln Asn Ser Gln Ala Gly Gln Arg Asn Ser Thr Ser Ser 725 730 735 Ile Glu Pro Arg Leu Leu Trp Glu Arg Val Glu Lys Leu Val Pro Arg 740 745 750 Pro Gly Ser Gly Ser Ser Ser Gly Ser Ser Asn Ser Gly Ser Gln Pro 755 760 765 Gly Ser His Pro Gly Ser Gln Ser Gly Ser Gly Glu Arg Phe Arg Val 770 775 780 Arg Ser Ser Ser Lys Ser Glu Gly Ser Pro Ser Gln Arg Leu Glu Asn 785 790 795 800 Ala Val Lys Lys Pro Glu Asp Lys Lys Glu Val Phe Arg Pro Leu Lys 805 810 815 Pro Ala Gly Glu Val Asp Leu Thr Ala Leu Ala Lys Glu Leu Arg Ala 820 825 830 Val Glu Asp Val Arg Pro Pro His Lys Val Thr Asp Tyr Ser Ser Ser 835 840 845 Ser Glu Glu Ser Gly Thr Thr Asp Glu Glu Asp Asp Asp Val Glu Gln 850 855 860 Glu Gly Ala Asp Glu Ser Thr Ser Gly Pro Glu Asp Thr Arg Ala Ala 865 870 875 880 Ser Ser Leu Asn Leu Ser Asn Gly Glu Thr Glu Ser Val Lys Thr Met 885 890 895 Ile Val His Asp Asp Val Glu Ser Glu Pro Ala Met Thr Pro Ser Lys 900 905 910 Glu Gly Thr Leu Ile Val Arg Gln Thr Gln Ser Ala Ser Ser Thr Leu 915 920 925 Gln Lys His Lys Ser Ser Ser Ser Phe Thr Pro Phe Ile Asp Pro Arg 930 935 940 Leu Leu Gln Ile Ser Pro Ser Ser Gly Thr Thr Val Thr Ser Val Val 945 950 955 960 Gly Phe Ser Cys Asp Gly Met Arg Pro Glu Ala Ile Arg Gln Asp Pro 965 970 975 Thr Arg Lys Gly Ser Val Val Asn Val Asn Pro Thr Asn Thr Arg Pro 980 985 990 Gln Ser Asp Thr Pro Glu Ile Arg Lys Tyr Lys Lys Arg Phe Asn Ser 995 1000 1005 Glu Ile Leu Cys Ala Ala Leu Trp Gly Val Asn Leu Leu Val Gly 1010 1015 1020 Thr Glu Ser Gly Leu Met Leu Leu Asp Arg Ser Gly Gln Gly Lys 1025 1030 1035 Val Tyr Pro Leu Ile Asn Arg Arg Arg Phe Gln Gln Met Asp Val 1040 1045 1050 Leu Glu Gly Leu Asn Val Leu Val Thr Ile Ser Gly Lys Lys Asp 1055 1060 1065 Lys Leu Arg Val Tyr Tyr Leu Ser Trp Leu Arg Asn Lys Ile Leu 1070 1075 1080 His Asn Asp Pro Glu Val Glu Lys Lys Gln Gly Trp Thr Thr Val 1085 1090 1095 Gly Asp Leu Glu Gly Cys Val His Tyr Lys Val Val Lys Tyr Glu 1100 1105 1110 Arg Ile Lys Phe Leu Val Ile Ala Leu Lys Ser Ser Val Glu Val 1115 1120 1125 Tyr Ala Trp Ala Pro Lys Pro Tyr His Lys Phe Met Ala Phe Lys 1130 1135 1140 Ser Phe Gly Glu Leu Val His Lys Pro Leu Leu Val Asp Leu Thr 1145 1150 1155 Val Glu Glu Gly Gln Arg Leu Lys Val Ile Tyr Gly Ser Cys Ala 1160 1165 1170 Gly Phe His Ala Val Asp Val Asp Ser Gly Ser Val Tyr Asp Ile 1175 1180 1185 Tyr Leu Pro Thr His Ile Gln Cys Ser Ile Lys Pro His Ala Ile 1190 1195 1200 Ile Ile Leu Pro Asn Thr Asp Gly Met Glu Leu Leu Val Cys Tyr 1205 1210 1215 Glu Asp Glu Gly Val Tyr Val Asn Thr Tyr Gly Arg Ile Thr Lys 1220 1225 1230 Asp Val Val Leu Gln Trp Gly Glu Met Pro Thr Ser Val Ala Tyr 1235 1240 1245 Ile Arg Ser Asn Gln Thr Met Gly Trp Gly Glu Lys Ala Ile Glu 1250 1255 1260 Ile Arg Ser Val Glu Thr Gly His Leu Asp Gly Val Phe Met His 1265 1270 1275 Lys Arg Ala Gln Arg Leu Lys Phe Leu Cys Glu Arg Asn Asp Lys 1280 1285 1290 Val Phe Phe Ala Ser Val Arg Ser Gly Gly Ser Ser Gln Val Tyr 1295 1300 1305 Phe Met Thr Leu Gly Arg Thr Ser Leu Leu Ser Trp 1310 1315 1320 481212PRTHomo sapiens 48Met Ala Asn Asp Ser Pro Ala Lys Ser Leu Val Asp Ile Asp Leu Ser 1 5 10 15 Ser Leu Arg Asp Pro Ala Gly Ile Phe Glu Leu Val Glu Val Val Gly 20 25 30 Asn Gly Thr Tyr Gly Gln Val Tyr Lys Gly Arg His Val Lys Thr Gly 35 40 45 Gln Leu Ala Ala Ile Lys Val Met Asp Val Thr Glu Asp Glu Glu Glu 50 55 60 Glu Ile Lys Leu Glu Ile Asn Met Leu Lys Lys Tyr Ser His His Arg 65 70 75 80 Asn Ile Ala Thr Tyr Tyr Gly Ala Phe Ile Lys Lys Ser Pro Pro Gly 85 90 95 His Asp Asp Gln Leu Trp Leu Val Met Glu Phe Cys Gly Ala Gly Ser 100 105 110 Ile Thr Asp Leu Val Lys Asn Thr Lys Gly Asn Thr Leu Lys Glu Asp 115 120 125 Trp Ile Ala Tyr Ile Ser Arg Glu Ile Leu Arg Gly Leu Ala His Leu 130 135 140 His Ile His His Val Ile His Arg Asp Ile Lys Gly Gln Asn Val Leu 145 150 155 160 Leu Thr Glu Asn Ala Glu Val Lys Leu Val Asp Phe Gly Val Ser Ala 165 170 175 Gln Leu Asp Arg Thr Val Gly Arg Arg Asn Thr Phe Ile Gly Thr Pro 180 185 190 Tyr Trp Met Ala Pro Glu Val Ile Ala Cys Asp Glu Asn Pro Asp Ala 195 200 205 Thr Tyr Asp Tyr Arg Ser Asp Leu Trp Ser Cys Gly Ile Thr Ala Ile 210 215 220 Glu Met Ala Glu Gly Ala Pro Pro Leu Cys Asp Met His Pro Met Arg 225 230 235 240 Ala Leu Phe Leu Ile Pro Arg Asn Pro Pro Pro Arg Leu Lys Ser Lys 245 250 255 Lys Trp Ser Lys Lys Phe Phe Ser Phe Ile Glu Gly Cys Leu Val Lys 260 265 270 Asn Tyr Met Gln Arg Pro Ser Thr Glu Gln Leu Leu Lys His Pro Phe 275 280 285 Ile Arg Asp Gln Pro Asn Glu Arg Gln Val Arg Ile Gln Leu Lys Asp 290 295 300 His Ile Asp Arg Thr Arg Lys Lys Arg Gly Glu Lys Asp Glu Thr Glu 305 310 315 320 Tyr Glu Tyr Ser Gly Ser Glu Glu Glu Glu Glu Glu Val Pro Glu Gln 325 330 335 Glu Gly Glu Pro Ser Ser Ile Val Asn Val Pro Gly Glu Ser Thr Leu 340 345 350 Arg Arg Asp Phe Leu Arg Leu Gln Gln Glu Asn Lys Glu Arg Ser Glu 355 360 365 Ala Leu Arg Arg Gln Gln Leu Leu Gln Glu Gln Gln Leu Arg Glu Gln 370 375 380 Glu Glu Tyr Lys Arg Gln Leu Leu Ala Glu Arg Gln Lys Arg Ile Glu 385 390 395 400 Gln Gln Lys Glu Gln Arg Arg Arg Leu Glu Glu Gln Gln Arg Arg Glu 405 410 415 Arg Glu Ala Arg Arg Gln Gln Glu Arg Glu Gln Arg Arg Arg Glu Gln 420 425 430 Glu Glu Lys Arg Arg Leu Glu Glu Leu Glu Arg Arg Arg Lys Glu Glu 435 440 445 Glu Glu Arg Arg Arg Ala Glu Glu Glu Lys Arg Arg Val Glu Arg Glu 450 455 460 Gln Glu Tyr Ile Arg Arg Gln Leu Glu Glu Glu Gln Arg His Leu Glu 465 470 475 480 Val Leu Gln Gln Gln Leu Leu Gln Glu Gln Ala Met Leu Leu His Asp 485 490 495 His Arg Arg Pro His Pro Gln His Ser Gln Gln Pro Pro Pro Pro Gln 500 505 510 Gln Glu Arg Ser Lys Pro Ser Phe His Ala Pro Glu Pro Lys Ala His 515 520 525 Tyr Glu Pro Ala Asp Arg Ala Arg Glu Val Glu Asp Arg Phe Arg Lys 530 535 540 Thr Asn His Ser Ser Pro Glu Ala Gln Ser Lys Gln Thr Gly Arg Val 545 550 555 560 Leu Glu Pro Pro Val Pro Ser Arg Ser Glu Ser Phe Ser Asn Gly Asn 565 570 575 Ser Glu Ser Val His Pro Ala Leu Gln Arg Pro Ala Glu Pro Gln Val 580 585 590 Pro Val Arg Thr Thr Ser Arg Ser Pro Val Leu Ser Arg Arg Asp Ser 595 600 605 Pro Leu Gln Gly Ser Gly Gln Gln Asn Ser Gln Ala Gly Gln Arg Asn 610 615 620 Ser Thr Ser Ser Ile Glu Pro Arg Leu Leu Trp Glu Arg Val Glu Lys 625 630 635 640 Leu Val Pro Arg Pro Gly Ser Gly Ser Ser Ser Gly Ser Ser Asn Ser 645 650 655 Gly Ser Gln Pro Gly Ser His Pro Gly Ser Gln Ser Gly Ser Gly Glu 660 665 670 Arg Phe Arg Val Arg Ser Ser Ser Lys Ser Glu Gly Ser Pro Ser Gln 675 680 685 Arg Leu Glu Asn Ala Val Lys Lys Pro Glu Asp Lys Lys Glu Val Phe 690 695 700 Arg Pro Leu Lys Pro Ala Gly Glu Val Asp Leu Thr Ala Leu Ala Lys 705 710 715 720 Glu Leu Arg Ala Val Glu Asp Val Arg Pro Pro His Lys Val Thr Asp 725 730 735 Tyr Ser Ser Ser Ser Glu Glu Ser Gly Thr Thr Asp Glu Glu Asp Asp 740 745 750 Asp Val Glu Gln Glu Gly Ala Asp Glu Ser Thr Ser Gly Pro Glu Asp 755 760 765 Thr Arg Ala Ala Ser Ser Leu Asn Leu Ser Asn Gly Glu Thr Glu Ser 770 775 780 Val Lys Thr Met Ile Val His Asp Asp Val Glu Ser Glu Pro Ala Met 785 790 795 800 Thr Pro Ser Lys Glu Gly Thr Leu Ile Val Arg Gln Thr Gln Ser Ala 805 810 815 Ser Ser Thr Leu Gln Lys His Lys Ser Ser Ser Ser Phe Thr Pro Phe 820 825 830 Ile Asp Pro Arg Leu Leu Gln Ile Ser Pro Ser Ser Gly Thr Thr Val 835 840 845 Thr Ser Val Val Gly Phe Ser Cys Asp Gly Met Arg Pro Glu Ala Ile 850 855 860 Arg Gln Asp Pro Thr Arg Lys Gly Ser Val Val Asn Val Asn Pro Thr 865 870 875 880 Asn Thr Arg Pro Gln Ser Asp Thr Pro Glu Ile Arg Lys Tyr Lys Lys 885 890 895 Arg Phe Asn Ser Glu Ile Leu Cys Ala Ala Leu Trp Gly Val Asn Leu 900 905 910 Leu Val Gly Thr Glu Ser Gly Leu Met Leu Leu Asp Arg Ser Gly Gln 915 920 925 Gly Lys Val Tyr Pro Leu Ile Asn Arg Arg Arg Phe Gln Gln Met Asp 930 935 940 Val Leu Glu Gly Leu Asn Val Leu Val Thr Ile Ser Gly Lys Lys Asp 945 950 955 960 Lys Leu Arg Val Tyr Tyr Leu Ser Trp Leu Arg Asn Lys Ile Leu His 965 970 975 Asn Asp Pro Glu Val Glu Lys Lys Gln Gly Trp Thr Thr Val Gly Asp 980 985 990 Leu Glu Gly Cys Val His Tyr Lys Val Val Lys Tyr Glu Arg Ile Lys 995 1000 1005 Phe Leu Val Ile Ala Leu Lys Ser Ser Val Glu Val Tyr Ala Trp 1010 1015 1020 Ala Pro Lys Pro Tyr His Lys Phe Met Ala Phe Lys Ser Phe Gly 1025 1030 1035 Glu Leu Val His Lys Pro Leu Leu Val Asp Leu Thr Val Glu Glu 1040 1045 1050 Gly Gln Arg Leu Lys Val Ile Tyr Gly Ser Cys Ala Gly Phe His 1055 1060 1065 Ala Val Asp Val Asp Ser Gly Ser Val Tyr Asp Ile Tyr Leu Pro 1070 1075 1080 Thr His Ile Gln Cys Ser Ile Lys Pro His Ala Ile Ile Ile Leu 1085 1090 1095 Pro Asn Thr Asp Gly Met Glu Leu Leu Val Cys Tyr Glu Asp Glu 1100 1105 1110 Gly Val Tyr Val Asn Thr Tyr Gly Arg Ile Thr Lys Asp Val Val 1115 1120 1125 Leu Gln Trp Gly Glu Met Pro Thr Ser Val Ala Tyr Ile Arg Ser 1130 1135 1140 Asn Gln Thr Met Gly Trp Gly Glu Lys Ala Ile Glu Ile Arg Ser 1145 1150 1155 Val Glu Thr Gly His Leu Asp Gly Val Phe Met His Lys Arg Ala 1160 1165 1170 Gln Arg Leu Lys Phe Leu Cys Glu Arg Asn Asp Lys Val Phe Phe 1175 1180 1185 Ala Ser Val Arg Ser Gly Gly Ser Ser Gln Val Tyr Phe Met Thr 1190 1195 1200 Leu Gly Arg Thr Ser Leu Leu Ser Trp 1205 1210 491392PRTHomo sapiens 49Met Ala Asn Asp Ser Pro Ala Lys Ser Leu Val Asp Ile Asp Leu Ser 1 5 10 15 Ser Leu Arg Asp Pro Ala Gly Ile Phe Glu Leu Val Glu Val Val Gly 20 25 30 Asn Gly Thr Tyr Gly Gln Val Tyr Lys Gly Arg His Val Lys Thr Gly 35 40 45 Gln Leu Ala Ala Ile Lys Val Met Asp Val Thr Glu Asp Glu Glu Glu 50 55 60 Glu Ile Lys Leu Glu Ile Asn Met Leu Lys Lys Tyr Ser His His Arg 65 70 75 80 Asn Ile Ala Thr Tyr Tyr Gly Ala Phe Ile Lys Lys Ser Pro Pro Gly 85 90 95 His Asp Asp Gln Leu Trp Leu Val Met Glu Phe Cys Gly Ala Gly Ser 100 105 110 Ile Thr Asp Leu Val Lys Asn Thr Lys Gly Asn Thr Leu Lys Glu Asp 115 120 125 Trp Ile Ala Tyr Ile Ser Arg Glu Ile Leu Arg Gly Leu Ala His Leu 130 135 140 His Ile His His Val Ile His Arg Asp Ile Lys Gly Gln Asn Val Leu 145 150 155 160 Leu Thr Glu Asn Ala Glu Val Lys Leu Val Asp Phe Gly Val Ser Ala 165 170 175 Gln Leu Asp Arg Thr Val Gly Arg Arg Asn Thr Phe Ile Gly Thr Pro 180 185 190 Tyr Trp Met Ala Pro Glu Val Ile Ala Cys Asp Glu Asn Pro Asp Ala 195 200 205 Thr Tyr Asp Tyr Arg Ser Asp Leu Trp Ser Cys Gly Ile Thr Ala Ile 210 215 220 Glu Met Ala Glu Gly Ala Pro Pro Leu Cys Asp Met His Pro Met Arg 225 230 235 240 Ala Leu Phe Leu Ile Pro Arg Asn Pro Pro Pro Arg Leu Lys Ser Lys 245 250 255 Lys Trp Ser Lys Lys Phe Phe Ser Phe Ile Glu Gly Cys Leu Val Lys 260 265 270 Asn Tyr Met Gln Arg Pro Ser Thr Glu Gln Leu Leu Lys His Pro Phe 275 280 285 Ile Arg Asp Gln Pro Asn Glu Arg Gln Val Arg Ile Gln Leu Lys Asp 290 295 300 His Ile Asp Arg Thr Arg Lys Lys Arg Gly Glu Lys Asp Glu Thr Glu 305 310 315 320 Tyr Glu Tyr Ser Gly Ser Glu Glu Glu Glu Glu Glu Val Pro Glu Gln 325 330 335 Glu Gly Glu Pro Ser Ser Ile Val Asn Val Pro Gly Glu Ser Thr Leu 340 345 350 Arg Arg Asp Phe Leu Arg Leu Gln Gln Glu Asn Lys Glu Arg Ser Glu 355 360 365 Ala Leu Arg Arg Gln Gln Leu Leu Gln Glu Gln Gln Leu Arg Glu Gln 370 375 380 Glu Glu Tyr Lys Arg Gln Leu Leu Ala Glu Arg Gln Lys Arg Ile Glu 385 390 395 400 Gln Gln Lys Glu Gln Arg Arg Arg Leu Glu Glu Gln Gln Arg Arg Glu 405 410 415 Arg Glu Ala

Arg Arg Gln Gln Glu Arg Glu Gln Arg Arg Arg Glu Gln 420 425 430 Glu Glu Lys Arg Arg Leu Glu Glu Leu Glu Arg Arg Arg Lys Glu Glu 435 440 445 Glu Glu Arg Arg Arg Ala Glu Glu Glu Lys Arg Arg Val Glu Arg Glu 450 455 460 Gln Glu Tyr Ile Arg Arg Gln Leu Glu Glu Glu Gln Arg His Leu Glu 465 470 475 480 Val Leu Gln Gln Gln Leu Leu Gln Glu Gln Ala Met Leu Leu Glu Cys 485 490 495 Arg Trp Arg Glu Met Glu Glu His Arg Gln Ala Glu Arg Leu Gln Arg 500 505 510 Gln Leu Gln Gln Glu Gln Ala Tyr Leu Leu Ser Leu Gln His Asp His 515 520 525 Arg Arg Pro His Pro Gln His Ser Gln Gln Pro Pro Pro Pro Gln Gln 530 535 540 Glu Arg Ser Lys Pro Ser Phe His Ala Pro Glu Pro Lys Ala His Tyr 545 550 555 560 Glu Pro Ala Asp Arg Ala Arg Glu Val Glu Asp Arg Phe Arg Lys Thr 565 570 575 Asn His Ser Ser Pro Glu Ala Gln Ser Lys Gln Thr Gly Arg Val Leu 580 585 590 Glu Pro Pro Val Pro Ser Arg Ser Glu Ser Phe Ser Asn Gly Asn Ser 595 600 605 Glu Ser Val His Pro Ala Leu Gln Arg Pro Ala Glu Pro Gln Val Gln 610 615 620 Trp Ser His Leu Ala Ser Leu Lys Asn Asn Val Ser Pro Val Ser Arg 625 630 635 640 Ser His Ser Phe Ser Asp Pro Ser Pro Lys Phe Ala His His His Leu 645 650 655 Arg Ser Gln Asp Pro Cys Pro Pro Ser Arg Ser Glu Val Leu Ser Gln 660 665 670 Ser Ser Asp Ser Lys Ser Glu Ala Pro Asp Pro Thr Gln Lys Ala Trp 675 680 685 Ser Arg Ser Asp Ser Asp Glu Val Pro Pro Arg Val Pro Val Arg Thr 690 695 700 Thr Ser Arg Ser Pro Val Leu Ser Arg Arg Asp Ser Pro Leu Gln Gly 705 710 715 720 Ser Gly Gln Gln Asn Ser Gln Ala Gly Gln Arg Asn Ser Thr Ser Ser 725 730 735 Ile Glu Pro Arg Leu Leu Trp Glu Arg Val Glu Lys Leu Val Pro Arg 740 745 750 Pro Gly Ser Gly Ser Ser Ser Gly Ser Ser Asn Ser Gly Ser Gln Pro 755 760 765 Gly Ser His Pro Gly Ser Gln Ser Gly Ser Gly Glu Arg Phe Arg Val 770 775 780 Arg Ser Ser Ser Lys Ser Glu Gly Ser Pro Ser Gln Arg Leu Glu Asn 785 790 795 800 Ala Val Lys Lys Pro Glu Asp Lys Lys Glu Val Phe Arg Pro Leu Lys 805 810 815 Pro Ala Gly Glu Val Asp Leu Thr Ala Leu Ala Lys Glu Leu Arg Ala 820 825 830 Val Glu Asp Val Arg Pro Pro His Lys Val Thr Asp Tyr Ser Ser Ser 835 840 845 Ser Glu Glu Ser Gly Thr Thr Asp Glu Glu Asp Asp Asp Val Glu Gln 850 855 860 Glu Gly Ala Asp Glu Ser Thr Ser Gly Pro Glu Asp Thr Arg Ala Ala 865 870 875 880 Ser Ser Leu Asn Leu Ser Asn Gly Glu Thr Glu Ser Val Lys Thr Met 885 890 895 Ile Val His Asp Asp Val Glu Ser Glu Pro Ala Met Thr Pro Ser Lys 900 905 910 Glu Gly Thr Leu Ile Val Arg Gln Ser Thr Val Asp Gln Lys Arg Ala 915 920 925 Ser His His Glu Ser Asn Gly Phe Ala Gly Arg Ile His Leu Leu Pro 930 935 940 Asp Leu Leu Gln Gln Ser His Ser Ser Ser Thr Ser Ser Thr Ser Ser 945 950 955 960 Ser Pro Ser Ser Ser Gln Pro Thr Pro Thr Met Ser Pro Gln Thr Pro 965 970 975 Gln Asp Lys Leu Thr Ala Asn Glu Thr Gln Ser Ala Ser Ser Thr Leu 980 985 990 Gln Lys His Lys Ser Ser Ser Ser Phe Thr Pro Phe Ile Asp Pro Arg 995 1000 1005 Leu Leu Gln Ile Ser Pro Ser Ser Gly Thr Thr Val Thr Ser Val 1010 1015 1020 Val Gly Phe Ser Cys Asp Gly Met Arg Pro Glu Ala Ile Arg Gln 1025 1030 1035 Asp Pro Thr Arg Lys Gly Ser Val Val Asn Val Asn Pro Thr Asn 1040 1045 1050 Thr Arg Pro Gln Ser Asp Thr Pro Glu Ile Arg Lys Tyr Lys Lys 1055 1060 1065 Arg Phe Asn Ser Glu Ile Leu Cys Ala Ala Leu Trp Gly Val Asn 1070 1075 1080 Leu Leu Val Gly Thr Glu Ser Gly Leu Met Leu Leu Asp Arg Ser 1085 1090 1095 Gly Gln Gly Lys Val Tyr Pro Leu Ile Asn Arg Arg Arg Phe Gln 1100 1105 1110 Gln Met Asp Val Leu Glu Gly Leu Asn Val Leu Val Thr Ile Ser 1115 1120 1125 Gly Lys Lys Asp Lys Leu Arg Val Tyr Tyr Leu Ser Trp Leu Arg 1130 1135 1140 Asn Lys Ile Leu His Asn Asp Pro Glu Val Glu Lys Lys Gln Gly 1145 1150 1155 Trp Thr Thr Val Gly Asp Leu Glu Gly Cys Val His Tyr Lys Val 1160 1165 1170 Val Lys Tyr Glu Arg Ile Lys Phe Leu Val Ile Ala Leu Lys Ser 1175 1180 1185 Ser Val Glu Val Tyr Ala Trp Ala Pro Lys Pro Tyr His Lys Phe 1190 1195 1200 Met Ala Phe Lys Ser Phe Gly Glu Leu Val His Lys Pro Leu Leu 1205 1210 1215 Val Asp Leu Thr Val Glu Glu Gly Gln Arg Leu Lys Val Ile Tyr 1220 1225 1230 Gly Ser Cys Ala Gly Phe His Ala Val Asp Val Asp Ser Gly Ser 1235 1240 1245 Val Tyr Asp Ile Tyr Leu Pro Thr His Val Arg Lys Asn Pro His 1250 1255 1260 Ser Met Ile Gln Cys Ser Ile Lys Pro His Ala Ile Ile Ile Leu 1265 1270 1275 Pro Asn Thr Asp Gly Met Glu Leu Leu Val Cys Tyr Glu Asp Glu 1280 1285 1290 Gly Val Tyr Val Asn Thr Tyr Gly Arg Ile Thr Lys Asp Val Val 1295 1300 1305 Leu Gln Trp Gly Glu Met Pro Thr Ser Val Ala Tyr Ile Arg Ser 1310 1315 1320 Asn Gln Thr Met Gly Trp Gly Glu Lys Ala Ile Glu Ile Arg Ser 1325 1330 1335 Val Glu Thr Gly His Leu Asp Gly Val Phe Met His Lys Arg Ala 1340 1345 1350 Gln Arg Leu Lys Phe Leu Cys Glu Arg Asn Asp Lys Val Phe Phe 1355 1360 1365 Ala Ser Val Arg Ser Gly Gly Ser Ser Gln Val Tyr Phe Met Thr 1370 1375 1380 Leu Gly Arg Thr Ser Leu Leu Ser Trp 1385 1390 50603PRTHomo sapiens 50Met Arg Arg Arg Ala Ala Arg Gly Pro Gly Pro Pro Pro Pro Gly Pro 1 5 10 15 Gly Leu Ser Arg Leu Pro Leu Pro Leu Leu Leu Leu Leu Ala Leu Gly 20 25 30 Thr Arg Gly Gly Cys Ala Ala Pro Ala Pro Ala Pro Arg Ala Glu Asp 35 40 45 Leu Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro 50 55 60 Ala Asp Pro Thr Thr Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys 65 70 75 80 Ala Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Ala Thr Gly Ile 85 90 95 Leu Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu 100 105 110 Pro Asp Leu Pro Val Leu Thr Gln Ala Arg Arg Arg Arg Gln Ala Pro 115 120 125 Ala Pro Thr Lys Trp Asn Lys Arg Asn Leu Ser Trp Arg Val Arg Thr 130 135 140 Phe Pro Arg Asp Ser Pro Leu Gly His Asp Thr Val Arg Ala Leu Met 145 150 155 160 Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile Ala Pro Leu Asn Phe His 165 170 175 Glu Val Ala Gly Ser Ala Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala 180 185 190 Asp His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala 195 200 205 His Ala Phe Phe Pro Gly His His His Thr Ala Gly Asp Thr His Phe 210 215 220 Asp Asp Asp Glu Ala Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met 225 230 235 240 Asp Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu 245 250 255 Ser His Val Ala Ala Ala His Ser Ile Met Arg Pro Tyr Tyr Gln Gly 260 265 270 Pro Val Gly Asp Pro Leu Arg Tyr Gly Leu Pro Tyr Glu Asp Lys Val 275 280 285 Arg Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala 290 295 300 Gln Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro Asp Asn Arg Ser 305 310 315 320 Ser Ala Pro Pro Arg Lys Asp Val Pro His Arg Cys Ser Thr His Phe 325 330 335 Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe Phe Lys Gly Lys 340 345 350 Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser Leu Gln Pro 355 360 365 Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His Leu Asp Ser 370 375 380 Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile Val Phe Phe 385 390 395 400 Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val Glu Glu Gly 405 410 415 Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly Gly Ile Asp 420 425 430 Ala Ala Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe Phe Lys Asp 435 440 445 Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met Asp Pro Gly 450 455 460 Tyr Pro Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser Thr Leu Asp 465 470 475 480 Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe Arg Gly Gln 485 490 495 Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala Pro Gly Tyr 500 505 510 Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp Ser Gln Ala 515 520 525 Asp Gly Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly Pro Arg Ala 530 535 540 Pro Pro Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly Tyr Glu Val 545 550 555 560 Cys Ser Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala Pro Gly Pro 565 570 575 Leu Val Ala Ala Thr Met Leu Leu Leu Leu Pro Pro Leu Ser Pro Gly 580 585 590 Ala Leu Trp Thr Ala Ala Gln Ala Leu Thr Leu 595 600 51189PRTHomo sapiens 51Met Ala Leu Leu Ser Arg Pro Ala Leu Thr Leu Leu Leu Leu Leu Met 1 5 10 15 Ala Ala Val Val Arg Cys Gln Glu Gln Ala Gln Thr Thr Asp Trp Arg 20 25 30 Ala Thr Leu Lys Thr Ile Arg Asn Gly Val His Lys Ile Asp Thr Tyr 35 40 45 Leu Asn Ala Ala Leu Asp Leu Leu Gly Gly Glu Asp Gly Leu Cys Gln 50 55 60 Tyr Lys Cys Ser Asp Gly Ser Lys Pro Phe Pro Arg Tyr Gly Tyr Lys 65 70 75 80 Pro Ser Pro Pro Asn Gly Cys Gly Ser Pro Leu Phe Gly Val His Leu 85 90 95 Asn Ile Gly Ile Pro Ser Leu Thr Lys Cys Cys Asn Gln His Asp Arg 100 105 110 Cys Tyr Glu Thr Cys Gly Lys Ser Lys Asn Asp Cys Asp Glu Glu Phe 115 120 125 Gln Tyr Cys Leu Ser Lys Ile Cys Arg Asp Val Gln Lys Thr Leu Gly 130 135 140 Leu Thr Gln His Val Gln Ala Cys Glu Thr Thr Val Glu Leu Leu Phe 145 150 155 160 Asp Ser Val Ile His Leu Gly Cys Lys Pro Tyr Leu Asp Ser Gln Arg 165 170 175 Ala Ala Cys Arg Cys His Tyr Glu Glu Lys Thr Asp Leu 180 185 52313PRTHomo sapiens 52Met Glu Thr Gly Pro Glu Asp Pro Ser Ser Met Pro Glu Glu Ser Ser 1 5 10 15 Pro Arg Arg Thr Pro Gln Ser Ile Pro Tyr Gln Asp Leu Pro His Leu 20 25 30 Val Asn Ala Asp Gly Gln Tyr Leu Phe Cys Arg Tyr Trp Lys Pro Thr 35 40 45 Gly Thr Pro Lys Ala Leu Ile Phe Val Ser His Gly Ala Gly Glu His 50 55 60 Ser Gly Arg Tyr Glu Glu Leu Ala Arg Met Leu Met Gly Leu Asp Leu 65 70 75 80 Leu Val Phe Ala His Asp His Val Gly His Gly Gln Ser Glu Gly Glu 85 90 95 Arg Met Val Val Ser Asp Phe His Val Phe Val Arg Asp Val Leu Gln 100 105 110 His Val Asp Ser Met Gln Lys Asp Tyr Pro Gly Leu Pro Val Phe Leu 115 120 125 Leu Gly His Ser Met Gly Gly Ala Ile Ala Ile Leu Thr Ala Ala Glu 130 135 140 Arg Pro Gly His Phe Ala Gly Met Val Leu Ile Ser Pro Leu Val Leu 145 150 155 160 Ala Asn Pro Glu Ser Ala Thr Thr Phe Lys Val Leu Ala Ala Lys Val 165 170 175 Leu Asn Leu Val Leu Pro Asn Leu Ser Leu Gly Pro Ile Asp Ser Ser 180 185 190 Val Leu Ser Arg Asn Lys Thr Glu Val Asp Ile Tyr Asn Ser Asp Pro 195 200 205 Leu Ile Cys Arg Ala Gly Leu Lys Val Cys Phe Gly Ile Gln Leu Leu 210 215 220 Asn Ala Val Ser Arg Val Glu Arg Ala Leu Pro Lys Leu Thr Val Pro 225 230 235 240 Phe Leu Leu Leu Gln Gly Ser Ala Asp Arg Leu Cys Asp Ser Lys Gly 245 250 255 Ala Tyr Leu Leu Met Glu Leu Ala Lys Ser Gln Asp Lys Thr Leu Lys 260 265 270 Ile Tyr Glu Gly Ala Tyr His Val Leu His Lys Glu Leu Pro Glu Val 275 280 285 Thr Asn Ser Val Phe His Glu Ile Asn Met Trp Val Ser Gln Arg Thr 290 295 300 Ala Thr Ala Gly Thr Ala Ser Pro Pro 305 310 53303PRTHomo sapiens 53Met Pro Glu Glu Ser Ser Pro Arg Arg Thr Pro Gln Ser Ile Pro Tyr 1 5 10 15 Gln Asp Leu Pro His Leu Val Asn Ala Asp Gly Gln Tyr Leu Phe Cys 20 25 30 Arg Tyr Trp Lys Pro Thr Gly Thr Pro Lys Ala Leu Ile Phe Val Ser 35 40 45 His Gly Ala Gly Glu His Ser Gly Arg Tyr Glu Glu Leu Ala Arg Met 50 55 60 Leu Met Gly Leu Asp Leu Leu Val Phe Ala His Asp His Val Gly His 65 70 75 80 Gly Gln Ser Glu Gly Glu Arg Met Val Val Ser Asp Phe His Val Phe 85 90 95 Val Arg Asp Val Leu Gln His Val Asp Ser Met Gln Lys Asp Tyr Pro 100 105 110 Gly Leu Pro Val Phe Leu Leu Gly His Ser Met Gly Gly Ala Ile Ala 115 120 125 Ile Leu Thr Ala Ala Glu Arg Pro Gly His Phe Ala Gly Met Val Leu 130 135 140 Ile Ser Pro Leu Val Leu Ala Asn Pro Glu Ser Ala Thr Thr Phe Lys 145 150 155 160 Val Leu Ala Ala Lys Val Leu Asn Leu Val Leu Pro Asn Leu Ser Leu 165 170 175 Gly Pro Ile Asp Ser Ser Val Leu Ser Arg Asn Lys Thr Glu Val Asp 180 185 190 Ile Tyr

Asn Ser Asp Pro Leu Ile Cys Arg Ala Gly Leu Lys Val Cys 195 200 205 Phe Gly Ile Gln Leu Leu Asn Ala Val Ser Arg Val Glu Arg Ala Leu 210 215 220 Pro Lys Leu Thr Val Pro Phe Leu Leu Leu Gln Gly Ser Ala Asp Arg 225 230 235 240 Leu Cys Asp Ser Lys Gly Ala Tyr Leu Leu Met Glu Leu Ala Lys Ser 245 250 255 Gln Asp Lys Thr Leu Lys Ile Tyr Glu Gly Ala Tyr His Val Leu His 260 265 270 Lys Glu Leu Pro Glu Val Thr Asn Ser Val Phe His Glu Ile Asn Met 275 280 285 Trp Val Ser Gln Arg Thr Ala Thr Ala Gly Thr Ala Ser Pro Pro 290 295 300 54395PRTHomo sapiens 54Met Ser Ala Asn Ala Thr Leu Lys Pro Leu Cys Pro Ile Leu Glu Gln 1 5 10 15 Met Ser Arg Leu Gln Ser His Ser Asn Thr Ser Ile Arg Tyr Ile Asp 20 25 30 His Ala Ala Val Leu Leu His Gly Leu Ala Ser Leu Leu Gly Leu Val 35 40 45 Glu Asn Gly Val Ile Leu Phe Val Val Gly Cys Arg Met Arg Gln Thr 50 55 60 Val Val Thr Thr Trp Val Leu His Leu Ala Leu Ser Asp Leu Leu Ala 65 70 75 80 Ser Ala Ser Leu Pro Phe Phe Thr Tyr Phe Leu Ala Val Gly His Ser 85 90 95 Trp Glu Leu Gly Thr Thr Phe Cys Lys Leu His Ser Ser Ile Phe Phe 100 105 110 Leu Asn Met Phe Ala Ser Gly Phe Leu Leu Ser Ala Ile Ser Leu Asp 115 120 125 Arg Cys Leu Gln Val Val Arg Pro Val Trp Ala Gln Asn His Arg Thr 130 135 140 Val Ala Ala Ala His Lys Val Cys Leu Val Leu Trp Ala Leu Ala Val 145 150 155 160 Leu Asn Thr Val Pro Tyr Phe Val Phe Arg Asp Thr Ile Ser Arg Leu 165 170 175 Asp Gly Arg Ile Met Cys Tyr Tyr Asn Val Leu Leu Leu Asn Pro Gly 180 185 190 Pro Asp Arg Asp Ala Thr Cys Asn Ser Arg Gln Val Ala Leu Ala Val 195 200 205 Ser Lys Phe Leu Leu Ala Phe Leu Val Pro Leu Ala Ile Ile Ala Ser 210 215 220 Ser His Ala Ala Val Ser Leu Arg Leu Gln His Arg Gly Arg Arg Arg 225 230 235 240 Pro Gly Arg Phe Val Arg Leu Val Ala Ala Val Val Ala Ala Phe Ala 245 250 255 Leu Cys Trp Gly Pro Tyr His Val Phe Ser Leu Leu Glu Ala Arg Ala 260 265 270 His Ala Asn Pro Gly Leu Arg Pro Leu Val Trp Arg Gly Leu Pro Phe 275 280 285 Val Thr Ser Leu Ala Phe Phe Asn Ser Val Ala Asn Pro Val Leu Tyr 290 295 300 Val Leu Thr Cys Pro Asp Met Leu Arg Lys Leu Arg Arg Ser Leu Arg 305 310 315 320 Thr Val Leu Glu Ser Val Leu Val Asp Asp Ser Glu Leu Gly Gly Ala 325 330 335 Gly Ser Ser Arg Arg Arg Arg Thr Ser Ser Thr Ala Arg Ser Ala Ser 340 345 350 Pro Leu Ala Leu Cys Ser Arg Pro Glu Glu Pro Arg Gly Pro Ala Arg 355 360 365 Leu Leu Gly Trp Leu Leu Gly Ser Cys Ala Ala Ser Pro Gln Thr Gly 370 375 380 Pro Leu Asn Arg Ala Leu Ser Ser Thr Ser Ser 385 390 395 55331PRTHomo sapiens 55Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly Pro Phe Ser Phe 1 5 10 15 Leu Leu Leu Val Leu Leu Leu Val Thr Arg Ser Pro Val Asn Ala Cys 20 25 30 Leu Leu Thr Gly Ser Leu Phe Val Leu Leu Arg Val Phe Ser Phe Glu 35 40 45 Pro Val Pro Ser Cys Arg Ala Leu Gln Val Leu Lys Pro Arg Asp Arg 50 55 60 Ile Ser Ala Ile Ala His Arg Gly Gly Ser His Asp Ala Pro Glu Asn 65 70 75 80 Thr Leu Ala Ala Ile Arg Gln Ala Ala Lys Asn Gly Ala Thr Gly Val 85 90 95 Glu Leu Asp Ile Glu Phe Thr Ser Asp Gly Ile Pro Val Leu Met His 100 105 110 Asp Asn Thr Val Asp Arg Thr Thr Asp Gly Thr Gly Arg Leu Cys Asp 115 120 125 Leu Thr Phe Glu Gln Ile Arg Lys Leu Asn Pro Ala Ala Asn His Arg 130 135 140 Leu Arg Asn Asp Phe Pro Asp Glu Lys Ile Pro Thr Leu Arg Glu Ala 145 150 155 160 Val Ala Glu Cys Leu Asn His Asn Leu Thr Ile Phe Phe Asp Val Lys 165 170 175 Gly His Ala His Lys Ala Thr Glu Ala Leu Lys Lys Met Tyr Met Glu 180 185 190 Phe Pro Gln Leu Tyr Asn Asn Ser Val Val Cys Ser Phe Leu Pro Glu 195 200 205 Val Ile Tyr Lys Met Arg Gln Thr Asp Arg Asp Val Ile Thr Ala Leu 210 215 220 Thr His Arg Pro Trp Ser Leu Ser His Thr Gly Asp Gly Lys Pro Arg 225 230 235 240 Tyr Asp Thr Phe Trp Lys His Phe Ile Phe Val Met Met Asp Ile Leu 245 250 255 Leu Asp Trp Ser Met His Asn Ile Leu Trp Tyr Leu Cys Gly Ile Ser 260 265 270 Ala Phe Leu Met Gln Lys Asp Phe Val Ser Pro Ala Tyr Leu Lys Lys 275 280 285 Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thr Val Asn Thr Phe 290 295 300 Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser Ser Tyr Ile Thr 305 310 315 320 Asp Ser Met Val Glu Asp Cys Glu Pro His Phe 325 330 56451PRTHomo sapiens 56Met Val Ser Arg Asp Gln Ala His Leu Gly Pro Lys Tyr Val Gly Leu 1 5 10 15 Trp Asp Phe Lys Ser Arg Thr Asp Glu Glu Leu Ser Phe Arg Ala Gly 20 25 30 Asp Val Phe His Val Ala Arg Lys Glu Glu Gln Trp Trp Trp Ala Thr 35 40 45 Leu Leu Asp Glu Ala Gly Gly Ala Val Ala Gln Gly Tyr Val Pro His 50 55 60 Asn Tyr Leu Ala Glu Arg Glu Thr Val Glu Ser Glu Pro Trp Phe Phe 65 70 75 80 Gly Cys Ile Ser Arg Ser Glu Ala Val Arg Arg Leu Gln Ala Glu Gly 85 90 95 Asn Ala Thr Gly Ala Phe Leu Ile Arg Val Ser Glu Lys Pro Ser Ala 100 105 110 Asp Tyr Val Leu Ser Val Arg Asp Thr Gln Ala Val Arg His Tyr Lys 115 120 125 Ile Trp Arg Arg Ala Gly Gly Arg Leu His Leu Asn Glu Ala Val Ser 130 135 140 Phe Leu Ser Leu Pro Glu Leu Val Asn Tyr His Arg Ala Gln Ser Leu 145 150 155 160 Ser His Gly Leu Arg Leu Ala Ala Pro Cys Arg Lys His Glu Pro Glu 165 170 175 Pro Leu Pro His Trp Asp Asp Trp Glu Arg Pro Arg Glu Glu Phe Thr 180 185 190 Leu Cys Arg Lys Leu Gly Ser Gly Tyr Phe Gly Glu Val Phe Glu Gly 195 200 205 Leu Trp Lys Asp Arg Val Gln Val Ala Ile Lys Val Ile Ser Arg Asp 210 215 220 Asn Leu Leu His Gln Gln Met Leu Gln Ser Glu Ile Gln Ala Met Lys 225 230 235 240 Lys Leu Arg His Lys His Ile Leu Ala Leu Tyr Ala Val Val Ser Val 245 250 255 Gly Asp Pro Val Tyr Ile Ile Thr Glu Leu Met Ala Lys Gly Ser Leu 260 265 270 Leu Glu Leu Leu Arg Asp Ser Asp Glu Lys Val Leu Pro Val Ser Glu 275 280 285 Leu Leu Asp Ile Ala Trp Gln Val Ala Glu Gly Met Cys Tyr Leu Glu 290 295 300 Ser Gln Asn Tyr Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val 305 310 315 320 Gly Glu Asn Thr Leu Cys Lys Val Gly Asp Phe Gly Leu Ala Arg Leu 325 330 335 Ile Lys Glu Asp Val Tyr Leu Ser His Asp His Asn Ile Pro Tyr Lys 340 345 350 Trp Thr Ala Pro Glu Ala Leu Ser Arg Gly His Tyr Ser Thr Lys Ser 355 360 365 Asp Val Trp Ser Phe Gly Ile Leu Leu His Glu Met Phe Ser Arg Gly 370 375 380 Gln Val Pro Tyr Pro Gly Met Ser Asn His Glu Ala Phe Leu Arg Val 385 390 395 400 Asp Ala Gly Tyr Arg Met Pro Cys Pro Leu Glu Cys Pro Pro Ser Val 405 410 415 His Lys Leu Met Leu Thr Cys Trp Cys Arg Asp Pro Glu Gln Arg Pro 420 425 430 Cys Phe Lys Ala Leu Arg Glu Arg Leu Ser Ser Phe Thr Ser Tyr Glu 435 440 445 Asn Pro Thr 450 57208PRTHomo sapiens 57Met Ala Thr Ser Ala Val Pro Ser Asp Asn Leu Pro Thr Tyr Lys Leu 1 5 10 15 Val Val Val Gly Asp Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln 20 25 30 Phe Phe Gln Lys Ile Phe Val Pro Asp Tyr Asp Pro Thr Ile Glu Asp 35 40 45 Ser Tyr Leu Lys His Thr Glu Ile Asp Asn Gln Trp Ala Ile Leu Asp 50 55 60 Val Leu Asp Thr Ala Gly Gln Glu Glu Phe Ser Ala Met Arg Glu Gln 65 70 75 80 Tyr Met Arg Thr Gly Asp Gly Phe Leu Ile Val Tyr Ser Val Thr Asp 85 90 95 Lys Ala Ser Phe Glu His Val Asp Arg Phe His Gln Leu Ile Leu Arg 100 105 110 Val Lys Asp Arg Glu Ser Phe Pro Met Ile Leu Val Ala Asn Lys Val 115 120 125 Asp Leu Met His Leu Arg Lys Ile Thr Arg Glu Gln Gly Lys Glu Met 130 135 140 Ala Thr Lys His Asn Ile Pro Tyr Ile Glu Thr Ser Ala Lys Asp Pro 145 150 155 160 Pro Leu Asn Val Asp Lys Ala Phe His Asp Leu Val Arg Val Ile Arg 165 170 175 Gln Gln Ile Pro Glu Lys Ser Gln Lys Lys Lys Lys Lys Thr Lys Trp 180 185 190 Arg Gly Asp Arg Ala Thr Gly Thr His Lys Leu Gln Cys Val Ile Leu 195 200 205 581044PRTHomo sapiens 58Met Pro Ala Ala Gly Ser Asn Glu Pro Asp Gly Val Leu Ser Tyr Gln 1 5 10 15 Arg Pro Asp Glu Glu Ala Val Val Asp Gln Gly Gly Thr Ser Thr Ile 20 25 30 Leu Asn Ile His Tyr Glu Lys Glu Glu Leu Glu Gly His Arg Thr Leu 35 40 45 Tyr Val Gly Val Arg Met Pro Leu Gly Arg Gln Ser His Arg His His 50 55 60 Arg Thr His Gly Gln Lys His Arg Arg Arg Gly Arg Gly Lys Gly Ala 65 70 75 80 Ser Gln Gly Glu Glu Gly Leu Glu Ala Leu Ala His Asp Thr Pro Ser 85 90 95 Gln Arg Val Gln Phe Ile Leu Gly Thr Glu Glu Asp Glu Glu His Val 100 105 110 Pro His Glu Leu Phe Thr Glu Leu Asp Glu Ile Cys Met Lys Glu Gly 115 120 125 Glu Asp Ala Glu Trp Lys Glu Thr Ala Arg Trp Leu Lys Phe Glu Glu 130 135 140 Asp Val Glu Asp Gly Gly Glu Arg Trp Ser Lys Pro Tyr Val Ala Thr 145 150 155 160 Leu Ser Leu His Ser Leu Phe Glu Leu Arg Ser Cys Leu Ile Asn Gly 165 170 175 Thr Val Leu Leu Asp Met His Ala Asn Ser Ile Glu Glu Ile Ser Asp 180 185 190 Leu Ile Leu Asp Gln Gln Glu Leu Ser Ser Asp Leu Asn Asp Ser Met 195 200 205 Arg Val Lys Val Arg Glu Ala Leu Leu Lys Lys His His His Gln Asn 210 215 220 Glu Lys Lys Arg Asn Asn Leu Ile Pro Ile Val Arg Ser Phe Ala Glu 225 230 235 240 Val Gly Lys Lys Gln Ser Asp Pro His Leu Met Asp Lys His Gly Gln 245 250 255 Thr Val Ser Pro Gln Ser Val Pro Thr Thr Asn Leu Glu Val Lys Asn 260 265 270 Gly Val Asn Cys Glu His Ser Pro Val Asp Leu Ser Lys Val Asp Leu 275 280 285 His Phe Met Lys Lys Ile Pro Thr Gly Ala Glu Ala Ser Asn Val Leu 290 295 300 Val Gly Glu Val Asp Ile Leu Asp Arg Pro Ile Val Ala Phe Val Arg 305 310 315 320 Leu Ser Pro Ala Val Leu Leu Ser Gly Leu Thr Glu Val Pro Ile Pro 325 330 335 Thr Arg Phe Leu Phe Ile Leu Leu Gly Pro Val Gly Lys Gly Gln Gln 340 345 350 Tyr His Glu Ile Gly Arg Ser Met Ala Thr Ile Met Thr Asp Glu Ile 355 360 365 Phe His Asp Val Ala Tyr Lys Ala Lys Glu Arg Asp Asp Leu Leu Ala 370 375 380 Gly Ile Asp Glu Phe Leu Asp Gln Val Thr Val Leu Pro Pro Gly Glu 385 390 395 400 Trp Asp Pro Ser Ile Arg Ile Glu Pro Pro Lys Asn Val Pro Ser Gln 405 410 415 Glu Lys Arg Lys Met Pro Gly Val Pro Asn Gly Asn Val Cys His Ile 420 425 430 Glu Gln Glu Pro His Gly Gly His Ser Gly Pro Glu Leu Gln Arg Thr 435 440 445 Gly Arg Leu Phe Gly Gly Leu Val Leu Asp Ile Lys Arg Lys Ala Pro 450 455 460 Trp Tyr Trp Ser Asp Tyr Arg Asp Ala Leu Ser Leu Gln Cys Leu Ala 465 470 475 480 Ser Phe Leu Phe Leu Tyr Cys Ala Cys Met Ser Pro Val Ile Thr Phe 485 490 495 Gly Gly Leu Leu Gly Glu Ala Thr Glu Gly Arg Ile Ser Ala Ile Glu 500 505 510 Ser Leu Phe Gly Ala Ser Met Thr Gly Ile Ala Tyr Ser Leu Phe Ala 515 520 525 Gly Gln Ala Leu Thr Ile Leu Gly Ser Thr Gly Pro Val Leu Val Phe 530 535 540 Glu Lys Ile Leu Phe Lys Phe Cys Lys Asp Tyr Ala Leu Ser Tyr Leu 545 550 555 560 Ser Leu Arg Ala Cys Ile Gly Leu Trp Thr Ala Phe Leu Cys Ile Val 565 570 575 Leu Val Ala Thr Asp Ala Ser Ser Leu Val Cys Tyr Ile Thr Arg Phe 580 585 590 Thr Glu Glu Ala Phe Ala Ser Leu Ile Cys Ile Ile Phe Ile Tyr Glu 595 600 605 Ala Ile Glu Lys Leu Ile His Leu Ala Glu Thr Tyr Pro Ile His Met 610 615 620 His Ser Gln Leu Asp His Leu Ser Leu Tyr Tyr Cys Arg Cys Thr Leu 625 630 635 640 Pro Glu Asn Pro Asn Asn His Thr Leu Gln Tyr Trp Lys Asp His Asn 645 650 655 Ile Val Thr Ala Glu Val His Trp Ala Asn Leu Thr Val Ser Glu Cys 660 665 670 Gln Glu Met His Gly Glu Phe Met Gly Ser Ala Cys Gly His His Gly 675 680 685 Pro Tyr Thr Pro Asp Val Leu Phe Trp Ser Cys Ile Leu Phe Phe Thr 690 695 700 Thr Phe Ile Leu Ser Ser Thr Leu Lys Thr Phe Lys Thr Ser Arg Tyr 705 710 715 720 Phe Pro Thr Arg Val Arg Ser Met Val Ser Asp Phe Ala Val Phe Leu 725 730 735 Thr Ile Phe Thr Met Val Ile Ile Asp Phe Leu Ile Gly Val Pro Ser 740 745 750 Pro Lys Leu Gln Val Pro Ser Val Phe Lys Pro Thr Arg Asp Asp Arg 755 760 765 Gly Trp Ile Ile Asn Pro Ile Gly Pro Asn Pro Trp Trp Thr Val Ile 770 775 780 Ala Ala Ile Ile Pro Ala Leu Leu Cys Thr Ile Leu Ile Phe Met Asp 785 790

795 800 Gln Gln Ile Thr Ala Val Ile Ile Asn Arg Lys Glu His Lys Leu Lys 805 810 815 Lys Gly Cys Gly Tyr His Leu Asp Leu Leu Met Val Ala Ile Met Leu 820 825 830 Gly Val Cys Ser Ile Met Gly Leu Pro Trp Phe Val Ala Ala Thr Val 835 840 845 Leu Ser Ile Thr His Val Asn Ser Leu Lys Leu Glu Ser Glu Cys Ser 850 855 860 Ala Pro Gly Glu Gln Pro Lys Phe Leu Gly Ile Arg Glu Gln Arg Val 865 870 875 880 Thr Gly Leu Met Ile Phe Val Leu Met Gly Cys Ser Val Phe Met Thr 885 890 895 Ala Ile Leu Lys Phe Ile Pro Met Pro Val Leu Tyr Gly Val Phe Leu 900 905 910 Tyr Met Gly Val Ser Ser Leu Gln Gly Ile Gln Phe Phe Asp Arg Leu 915 920 925 Lys Leu Phe Gly Met Pro Ala Lys His Gln Pro Asp Phe Ile Tyr Leu 930 935 940 Arg His Val Pro Leu Arg Lys Val His Leu Phe Thr Leu Ile Gln Leu 945 950 955 960 Thr Cys Leu Val Leu Leu Trp Val Ile Lys Ala Ser Pro Ala Ala Ile 965 970 975 Val Phe Pro Met Met Val Leu Ala Leu Val Phe Val Arg Lys Val Met 980 985 990 Asp Leu Cys Phe Ser Lys Arg Glu Leu Ser Trp Leu Asp Asp Leu Met 995 1000 1005 Pro Glu Ser Lys Lys Lys Lys Leu Asp Asp Ala Lys Lys Lys Ala 1010 1015 1020 Lys Glu Glu Glu Val Ile Val Leu Ala Pro Thr Val Tyr Leu Gly 1025 1030 1035 Ala Ser Asn Tyr Arg Thr 1040 59915PRTHomo sapiens 59Met Ala Arg Arg Ser Ser Phe Gln Ser Cys Gln Ile Ile Ser Leu Phe 1 5 10 15 Thr Phe Ala Val Gly Val Asn Ile Cys Leu Gly Phe Thr Ala His Arg 20 25 30 Ile Lys Arg Ala Glu Gly Trp Glu Glu Gly Pro Pro Thr Val Leu Ser 35 40 45 Asp Ser Pro Trp Thr Asn Ile Ser Gly Ser Cys Lys Gly Arg Cys Phe 50 55 60 Glu Leu Gln Glu Ala Gly Pro Pro Asp Cys Arg Cys Asp Asn Leu Cys 65 70 75 80 Lys Ser Tyr Thr Ser Cys Cys His Asp Phe Asp Glu Leu Cys Leu Lys 85 90 95 Thr Ala Arg Gly Trp Glu Cys Thr Lys Asp Arg Cys Gly Glu Val Arg 100 105 110 Asn Glu Glu Asn Ala Cys His Cys Ser Glu Asp Cys Leu Ala Arg Gly 115 120 125 Asp Cys Cys Thr Asn Tyr Gln Val Val Cys Lys Gly Glu Ser His Trp 130 135 140 Val Asp Asp Asp Cys Glu Glu Ile Lys Ala Ala Glu Cys Pro Ala Gly 145 150 155 160 Phe Val Arg Pro Pro Leu Ile Ile Phe Ser Val Asp Gly Phe Arg Ala 165 170 175 Ser Tyr Met Lys Lys Gly Ser Lys Val Met Pro Asn Ile Glu Lys Leu 180 185 190 Arg Ser Cys Gly Thr His Ser Pro Tyr Met Arg Pro Val Tyr Pro Thr 195 200 205 Lys Thr Phe Pro Asn Leu Tyr Thr Leu Ala Thr Gly Leu Tyr Pro Glu 210 215 220 Ser His Gly Ile Val Gly Asn Ser Met Tyr Asp Pro Val Phe Asp Ala 225 230 235 240 Thr Phe His Leu Arg Gly Arg Glu Lys Phe Asn His Arg Trp Trp Gly 245 250 255 Gly Gln Pro Leu Trp Ile Thr Ala Thr Lys Gln Gly Val Lys Ala Gly 260 265 270 Thr Phe Phe Trp Ser Val Val Ile Pro His Glu Arg Arg Ile Leu Thr 275 280 285 Ile Leu Gln Trp Leu Thr Leu Pro Asp His Glu Arg Pro Ser Val Tyr 290 295 300 Ala Phe Tyr Ser Glu Gln Pro Asp Phe Ser Gly His Lys Tyr Gly Pro 305 310 315 320 Phe Gly Pro Glu Glu Ser Ser Tyr Gly Ser Pro Phe Thr Pro Ala Lys 325 330 335 Arg Pro Lys Arg Lys Val Ala Pro Lys Arg Arg Gln Glu Arg Pro Val 340 345 350 Ala Pro Pro Lys Lys Arg Arg Arg Lys Ile His Arg Met Asp His Tyr 355 360 365 Ala Ala Glu Thr Arg Gln Asp Lys Met Thr Asn Pro Leu Arg Glu Ile 370 375 380 Asp Lys Ile Val Gly Gln Leu Met Asp Gly Leu Lys Gln Leu Lys Leu 385 390 395 400 His Arg Cys Val Asn Val Ile Phe Val Gly Asp His Gly Met Glu Asp 405 410 415 Val Thr Cys Asp Arg Thr Glu Phe Leu Ser Asn Tyr Leu Thr Asn Val 420 425 430 Asp Asp Ile Thr Leu Val Pro Gly Thr Leu Gly Arg Ile Arg Ser Lys 435 440 445 Phe Ser Asn Asn Ala Lys Tyr Asp Pro Lys Ala Ile Ile Ala Asn Leu 450 455 460 Thr Cys Lys Lys Pro Asp Gln His Phe Lys Pro Tyr Leu Lys Gln His 465 470 475 480 Leu Pro Lys Arg Leu His Tyr Ala Asn Asn Arg Arg Ile Glu Asp Ile 485 490 495 His Leu Leu Val Glu Arg Arg Trp His Val Ala Arg Lys Pro Leu Asp 500 505 510 Val Tyr Lys Lys Pro Ser Gly Lys Cys Phe Phe Gln Gly Asp His Gly 515 520 525 Phe Asp Asn Lys Val Asn Ser Met Gln Thr Val Phe Val Gly Tyr Gly 530 535 540 Ser Thr Phe Lys Tyr Lys Thr Lys Val Pro Pro Phe Glu Asn Ile Glu 545 550 555 560 Leu Tyr Asn Val Met Cys Asp Leu Leu Gly Leu Lys Pro Ala Pro Asn 565 570 575 Asn Gly Thr His Gly Ser Leu Asn His Leu Leu Arg Thr Asn Thr Phe 580 585 590 Arg Pro Thr Met Pro Glu Glu Val Thr Arg Pro Asn Tyr Pro Gly Ile 595 600 605 Met Tyr Leu Gln Ser Asp Phe Asp Leu Gly Cys Thr Cys Asp Asp Lys 610 615 620 Val Glu Pro Lys Asn Lys Leu Asp Glu Leu Asn Lys Arg Leu His Thr 625 630 635 640 Lys Gly Ser Thr Glu Glu Arg His Leu Leu Tyr Gly Arg Pro Ala Val 645 650 655 Leu Tyr Arg Thr Arg Tyr Asp Ile Leu Tyr His Thr Asp Phe Glu Ser 660 665 670 Gly Tyr Ser Glu Ile Phe Leu Met Pro Leu Trp Thr Ser Tyr Thr Val 675 680 685 Ser Lys Gln Ala Glu Val Ser Ser Val Pro Asp His Leu Thr Ser Cys 690 695 700 Val Arg Pro Asp Val Arg Val Ser Pro Ser Phe Ser Gln Asn Cys Leu 705 710 715 720 Ala Tyr Lys Asn Asp Lys Gln Met Ser Tyr Gly Phe Leu Phe Pro Pro 725 730 735 Tyr Leu Ser Ser Ser Pro Glu Ala Lys Tyr Asp Ala Phe Leu Val Thr 740 745 750 Asn Met Val Pro Met Tyr Pro Ala Phe Lys Arg Val Trp Asn Tyr Phe 755 760 765 Gln Arg Val Leu Val Lys Lys Tyr Ala Ser Glu Arg Asn Gly Val Asn 770 775 780 Val Ile Ser Gly Pro Ile Phe Asp Tyr Asp Tyr Asp Gly Leu His Asp 785 790 795 800 Thr Glu Asp Lys Ile Lys Gln Tyr Val Glu Gly Ser Ser Ile Pro Val 805 810 815 Pro Thr His Tyr Tyr Ser Ile Ile Thr Ser Cys Leu Asp Phe Thr Gln 820 825 830 Pro Ala Asp Lys Cys Asp Gly Pro Leu Ser Val Ser Ser Phe Ile Leu 835 840 845 Pro His Arg Pro Asp Asn Glu Glu Ser Cys Asn Ser Ser Glu Asp Glu 850 855 860 Ser Lys Trp Val Glu Glu Leu Met Lys Met His Thr Ala Arg Val Arg 865 870 875 880 Asp Ile Glu His Leu Thr Ser Leu Asp Phe Phe Arg Lys Thr Ser Arg 885 890 895 Ser Tyr Pro Glu Ile Leu Thr Leu Lys Thr Tyr Leu His Thr Tyr Glu 900 905 910 Ser Glu Ile 915 60626PRTHomo sapiens 60Met Asp Glu Gln Glu Ala Leu Asn Ser Ile Met Asn Asp Leu Val Ala 1 5 10 15 Leu Gln Met Asn Arg Arg His Arg Met Pro Gly Tyr Glu Thr Met Lys 20 25 30 Asn Lys Asp Thr Gly His Ser Asn Arg Gln Ser Asp Val Arg Ile Lys 35 40 45 Phe Glu His Asn Gly Glu Arg Arg Ile Ile Ala Phe Ser Arg Pro Val 50 55 60 Lys Tyr Glu Asp Val Glu His Lys Val Thr Thr Val Phe Gly Gln Pro 65 70 75 80 Leu Asp Leu His Tyr Met Asn Asn Glu Leu Ser Ile Leu Leu Lys Asn 85 90 95 Gln Asp Asp Leu Asp Lys Ala Ile Asp Ile Leu Asp Arg Ser Ser Ser 100 105 110 Met Lys Ser Leu Arg Ile Leu Leu Leu Ser Gln Asp Arg Asn His Asn 115 120 125 Ser Ser Ser Pro His Ser Gly Val Ser Arg Gln Val Arg Ile Lys Ala 130 135 140 Ser Gln Ser Ala Gly Asp Ile Asn Thr Ile Tyr Gln Pro Pro Glu Pro 145 150 155 160 Arg Ser Arg His Leu Ser Val Ser Ser Gln Asn Pro Gly Arg Ser Ser 165 170 175 Pro Pro Pro Gly Tyr Val Pro Glu Arg Gln Gln His Ile Ala Arg Gln 180 185 190 Gly Ser Tyr Thr Ser Ile Asn Ser Glu Gly Glu Phe Ile Pro Glu Thr 195 200 205 Ser Glu Gln Cys Met Leu Asp Pro Leu Ser Ser Ala Glu Asn Ser Leu 210 215 220 Ser Gly Ser Cys Gln Ser Leu Asp Arg Ser Ala Asp Ser Pro Ser Phe 225 230 235 240 Arg Lys Ser Arg Met Ser Arg Ala Gln Ser Phe Pro Asp Asn Arg Gln 245 250 255 Glu Tyr Ser Asp Arg Glu Thr Gln Leu Tyr Asp Lys Gly Val Lys Gly 260 265 270 Gly Thr Tyr Pro Arg Arg Tyr His Val Ser Val His His Lys Asp Tyr 275 280 285 Ser Asp Gly Arg Arg Thr Phe Pro Arg Ile Arg Arg His Gln Gly Asn 290 295 300 Leu Phe Thr Leu Val Pro Ser Ser Arg Ser Leu Ser Thr Asn Gly Glu 305 310 315 320 Asn Met Gly Leu Ala Val Gln Tyr Leu Asp Pro Arg Gly Arg Leu Arg 325 330 335 Ser Ala Asp Ser Glu Asn Ala Leu Ser Val Gln Glu Arg Asn Val Pro 340 345 350 Thr Lys Ser Pro Ser Ala Pro Ile Asn Trp Arg Arg Gly Lys Leu Leu 355 360 365 Gly Gln Gly Ala Phe Gly Arg Val Tyr Leu Cys Tyr Asp Val Asp Thr 370 375 380 Gly Arg Glu Leu Ala Ser Lys Gln Val Gln Phe Asp Pro Asp Ser Pro 385 390 395 400 Glu Thr Ser Lys Glu Val Ser Ala Leu Glu Cys Glu Ile Gln Leu Leu 405 410 415 Lys Asn Leu Gln His Glu Arg Ile Val Gln Tyr Tyr Gly Cys Leu Arg 420 425 430 Asp Arg Ala Glu Lys Thr Leu Thr Ile Phe Met Glu Tyr Met Pro Gly 435 440 445 Gly Ser Val Lys Asp Gln Leu Lys Ala Tyr Gly Ala Leu Thr Glu Ser 450 455 460 Val Thr Arg Lys Tyr Thr Arg Gln Ile Leu Glu Gly Met Ser Tyr Leu 465 470 475 480 His Ser Asn Met Ile Val His Arg Asp Ile Lys Gly Ala Asn Ile Leu 485 490 495 Arg Asp Ser Ala Gly Asn Val Lys Leu Gly Asp Phe Gly Ala Ser Lys 500 505 510 Arg Leu Gln Thr Ile Cys Met Ser Gly Thr Gly Met Arg Ser Val Thr 515 520 525 Gly Thr Pro Tyr Trp Met Ser Pro Glu Val Ile Ser Gly Glu Gly Tyr 530 535 540 Gly Arg Lys Ala Asp Val Trp Ser Leu Gly Cys Thr Val Val Glu Met 545 550 555 560 Leu Thr Glu Lys Pro Pro Trp Ala Glu Tyr Glu Ala Met Ala Ala Ile 565 570 575 Phe Lys Ile Ala Thr Gln Pro Thr Asn Pro Gln Leu Pro Ser His Ile 580 585 590 Ser Glu His Gly Arg Asp Phe Leu Arg Arg Ile Phe Val Glu Ala Arg 595 600 605 Gln Arg Pro Ser Ala Glu Glu Leu Leu Thr His His Phe Ala Gln Leu 610 615 620 Met Tyr 625 61657PRTHomo sapiens 61Met Asp Glu Gln Glu Ala Leu Asn Ser Ile Met Asn Asp Leu Val Ala 1 5 10 15 Leu Gln Met Asn Arg Arg His Arg Met Pro Gly Tyr Glu Thr Met Lys 20 25 30 Asn Lys Asp Thr Gly His Ser Asn Arg Gln Lys Lys His Asn Ser Ser 35 40 45 Ser Ser Ala Leu Leu Asn Ser Pro Thr Val Thr Thr Ser Ser Cys Ala 50 55 60 Gly Ala Ser Glu Lys Lys Lys Phe Leu Ser Asp Val Arg Ile Lys Phe 65 70 75 80 Glu His Asn Gly Glu Arg Arg Ile Ile Ala Phe Ser Arg Pro Val Lys 85 90 95 Tyr Glu Asp Val Glu His Lys Val Thr Thr Val Phe Gly Gln Pro Leu 100 105 110 Asp Leu His Tyr Met Asn Asn Glu Leu Ser Ile Leu Leu Lys Asn Gln 115 120 125 Asp Asp Leu Asp Lys Ala Ile Asp Ile Leu Asp Arg Ser Ser Ser Met 130 135 140 Lys Ser Leu Arg Ile Leu Leu Leu Ser Gln Asp Arg Asn His Asn Ser 145 150 155 160 Ser Ser Pro His Ser Gly Val Ser Arg Gln Val Arg Ile Lys Ala Ser 165 170 175 Gln Ser Ala Gly Asp Ile Asn Thr Ile Tyr Gln Pro Pro Glu Pro Arg 180 185 190 Ser Arg His Leu Ser Val Ser Ser Gln Asn Pro Gly Arg Ser Ser Pro 195 200 205 Pro Pro Gly Tyr Val Pro Glu Arg Gln Gln His Ile Ala Arg Gln Gly 210 215 220 Ser Tyr Thr Ser Ile Asn Ser Glu Gly Glu Phe Ile Pro Glu Thr Ser 225 230 235 240 Glu Gln Cys Met Leu Asp Pro Leu Ser Ser Ala Glu Asn Ser Leu Ser 245 250 255 Gly Ser Cys Gln Ser Leu Asp Arg Ser Ala Asp Ser Pro Ser Phe Arg 260 265 270 Lys Ser Arg Met Ser Arg Ala Gln Ser Phe Pro Asp Asn Arg Gln Glu 275 280 285 Tyr Ser Asp Arg Glu Thr Gln Leu Tyr Asp Lys Gly Val Lys Gly Gly 290 295 300 Thr Tyr Pro Arg Arg Tyr His Val Ser Val His His Lys Asp Tyr Ser 305 310 315 320 Asp Gly Arg Arg Thr Phe Pro Arg Ile Arg Arg His Gln Gly Asn Leu 325 330 335 Phe Thr Leu Val Pro Ser Ser Arg Ser Leu Ser Thr Asn Gly Glu Asn 340 345 350 Met Gly Leu Ala Val Gln Tyr Leu Asp Pro Arg Gly Arg Leu Arg Ser 355 360 365 Ala Asp Ser Glu Asn Ala Leu Ser Val Gln Glu Arg Asn Val Pro Thr 370 375 380 Lys Ser Pro Ser Ala Pro Ile Asn Trp Arg Arg Gly Lys Leu Leu Gly 385 390 395 400 Gln Gly Ala Phe Gly Arg Val Tyr Leu Cys Tyr Asp Val Asp Thr Gly 405 410 415 Arg Glu Leu Ala Ser Lys Gln Val Gln Phe Asp Pro Asp Ser Pro Glu 420 425 430 Thr Ser Lys Glu Val Ser Ala Leu Glu Cys Glu Ile Gln Leu Leu Lys 435 440 445 Asn Leu Gln His Glu Arg Ile Val Gln Tyr Tyr Gly Cys Leu Arg Asp 450 455 460 Arg Ala Glu Lys Thr Leu Thr Ile Phe Met Glu Tyr Met Pro Gly Gly 465 470 475 480 Ser Val Lys Asp Gln Leu Lys Ala Tyr Gly Ala Leu Thr Glu Ser Val 485 490 495 Thr Arg Lys Tyr Thr Arg Gln Ile Leu Glu Gly Met Ser Tyr Leu His 500 505

510 Ser Asn Met Ile Val His Arg Asp Ile Lys Gly Ala Asn Ile Leu Arg 515 520 525 Asp Ser Ala Gly Asn Val Lys Leu Gly Asp Phe Gly Ala Ser Lys Arg 530 535 540 Leu Gln Thr Ile Cys Met Ser Gly Thr Gly Met Arg Ser Val Thr Gly 545 550 555 560 Thr Pro Tyr Trp Met Ser Pro Glu Val Ile Ser Gly Glu Gly Tyr Gly 565 570 575 Arg Lys Ala Asp Val Trp Ser Leu Gly Cys Thr Val Val Glu Met Leu 580 585 590 Thr Glu Lys Pro Pro Trp Ala Glu Tyr Glu Ala Met Ala Ala Ile Phe 595 600 605 Lys Ile Ala Thr Gln Pro Thr Asn Pro Gln Leu Pro Ser His Ile Ser 610 615 620 Glu His Gly Arg Asp Phe Leu Arg Arg Ile Phe Val Glu Ala Arg Gln 625 630 635 640 Arg Pro Ser Ala Glu Glu Leu Leu Thr His His Phe Ala Gln Leu Met 645 650 655 Tyr 62338PRTHomo sapiens 62Met Ile Asn Ser Thr Ser Thr Gln Pro Pro Asp Glu Ser Cys Ser Gln 1 5 10 15 Asn Leu Leu Ile Thr Gln Gln Ile Ile Pro Val Leu Tyr Cys Met Val 20 25 30 Phe Ile Ala Gly Ile Leu Leu Asn Gly Val Ser Gly Trp Ile Phe Phe 35 40 45 Tyr Val Pro Ser Ser Lys Ser Phe Ile Ile Tyr Leu Lys Asn Ile Val 50 55 60 Ile Ala Asp Phe Val Met Ser Leu Thr Phe Pro Phe Lys Ile Leu Gly 65 70 75 80 Asp Ser Gly Leu Gly Pro Trp Gln Leu Asn Val Phe Val Cys Arg Val 85 90 95 Ser Ala Val Leu Phe Tyr Val Asn Met Tyr Val Ser Ile Val Phe Phe 100 105 110 Gly Leu Ile Ser Phe Asp Arg Tyr Tyr Lys Ile Val Lys Pro Leu Trp 115 120 125 Thr Ser Phe Ile Gln Ser Val Ser Tyr Ser Lys Leu Leu Ser Val Ile 130 135 140 Val Trp Met Leu Met Leu Leu Leu Ala Val Pro Asn Ile Ile Leu Thr 145 150 155 160 Asn Gln Ser Val Arg Glu Val Thr Gln Ile Lys Cys Ile Glu Leu Lys 165 170 175 Ser Glu Leu Gly Arg Lys Trp His Lys Ala Ser Asn Tyr Ile Phe Val 180 185 190 Ala Ile Phe Trp Ile Val Phe Leu Leu Leu Ile Val Phe Tyr Thr Ala 195 200 205 Ile Thr Lys Lys Ile Phe Lys Ser His Leu Lys Ser Ser Arg Asn Ser 210 215 220 Thr Ser Val Lys Lys Lys Ser Ser Arg Asn Ile Phe Ser Ile Val Phe 225 230 235 240 Val Phe Phe Val Cys Phe Val Pro Tyr His Ile Ala Arg Ile Pro Tyr 245 250 255 Thr Lys Ser Gln Thr Glu Ala His Tyr Ser Cys Gln Ser Lys Glu Ile 260 265 270 Leu Arg Tyr Met Lys Glu Phe Thr Leu Leu Leu Ser Ala Ala Asn Val 275 280 285 Cys Leu Asp Pro Ile Ile Tyr Phe Phe Leu Cys Gln Pro Phe Arg Glu 290 295 300 Ile Leu Cys Lys Lys Leu His Ile Pro Leu Lys Ala Gln Asn Asp Leu 305 310 315 320 Asp Ile Ser Arg Ile Lys Arg Gly Asn Thr Thr Leu Glu Ser Thr Asp 325 330 335 Thr Leu 63506PRTHomo sapiens 63Met Asp Asp Tyr Met Val Leu Arg Met Ile Gly Glu Gly Ser Phe Gly 1 5 10 15 Arg Ala Leu Leu Val Gln His Glu Ser Ser Asn Gln Met Phe Ala Met 20 25 30 Lys Glu Ile Arg Leu Pro Lys Ser Phe Ser Asn Thr Gln Asn Ser Arg 35 40 45 Lys Glu Ala Val Leu Leu Ala Lys Met Lys His Pro Asn Ile Val Ala 50 55 60 Phe Lys Glu Ser Phe Glu Ala Glu Gly His Leu Tyr Ile Val Met Glu 65 70 75 80 Tyr Cys Asp Gly Gly Asp Leu Met Gln Lys Ile Lys Gln Gln Lys Gly 85 90 95 Lys Leu Phe Pro Glu Asp Met Ile Leu Asn Trp Phe Thr Gln Met Cys 100 105 110 Leu Gly Val Asn His Ile His Lys Lys Arg Val Leu His Arg Asp Ile 115 120 125 Lys Ser Lys Asn Ile Phe Leu Thr Gln Asn Gly Lys Val Lys Leu Gly 130 135 140 Asp Phe Gly Ser Ala Arg Leu Leu Ser Asn Pro Met Ala Phe Ala Cys 145 150 155 160 Thr Tyr Val Gly Thr Pro Tyr Tyr Val Pro Pro Glu Ile Trp Glu Asn 165 170 175 Leu Pro Tyr Asn Asn Lys Ser Asp Ile Trp Ser Leu Gly Cys Ile Leu 180 185 190 Tyr Glu Leu Cys Thr Leu Lys His Pro Phe Gln Ala Asn Ser Trp Lys 195 200 205 Asn Leu Ile Leu Lys Val Cys Gln Gly Cys Ile Ser Pro Leu Pro Ser 210 215 220 His Tyr Ser Tyr Glu Leu Gln Phe Leu Val Lys Gln Met Phe Lys Arg 225 230 235 240 Asn Pro Ser His Arg Pro Ser Ala Thr Thr Leu Leu Ser Arg Gly Ile 245 250 255 Val Ala Arg Leu Val Gln Lys Cys Leu Pro Pro Glu Ile Ile Met Glu 260 265 270 Tyr Gly Glu Glu Val Leu Glu Glu Ile Lys Asn Ser Lys His Asn Thr 275 280 285 Pro Arg Lys Lys Thr Asn Pro Ser Arg Ile Arg Ile Ala Leu Gly Asn 290 295 300 Glu Ala Ser Thr Val Gln Glu Glu Glu Gln Asp Arg Lys Gly Ser His 305 310 315 320 Thr Asp Leu Glu Ser Ile Asn Glu Asn Leu Val Glu Ser Ala Leu Arg 325 330 335 Arg Val Asn Arg Glu Glu Lys Gly Asn Lys Ser Val His Leu Arg Lys 340 345 350 Ala Ser Ser Pro Asn Leu His Arg Arg Gln Trp Glu Lys Asn Val Pro 355 360 365 Asn Thr Ala Leu Thr Ala Leu Glu Asn Ala Ser Ile Leu Thr Ser Ser 370 375 380 Leu Thr Ala Glu Asp Asp Arg Gly Gly Ser Val Ile Lys Tyr Ser Lys 385 390 395 400 Asn Thr Thr Arg Lys Gln Trp Leu Lys Glu Thr Pro Asp Thr Leu Leu 405 410 415 Asn Ile Leu Lys Asn Ala Asp Leu Ser Leu Ala Phe Gln Thr Tyr Thr 420 425 430 Ile Tyr Arg Pro Gly Ser Glu Gly Phe Leu Lys Gly Pro Leu Ser Glu 435 440 445 Glu Thr Glu Ala Ser Asp Ser Val Asp Gly Gly His Asp Ser Val Ile 450 455 460 Leu Asp Pro Glu Arg Leu Glu Pro Gly Leu Asp Glu Glu Asp Thr Asp 465 470 475 480 Phe Glu Glu Glu Asp Asp Asn Pro Asp Trp Val Ser Glu Leu Lys Lys 485 490 495 Arg Ala Gly Trp Gln Gly Leu Cys Asp Arg 500 505 64506PRTHomo sapiens 64Met Asp Asp Tyr Met Val Leu Arg Met Ile Gly Glu Gly Ser Phe Gly 1 5 10 15 Arg Ala Leu Leu Val Gln His Glu Ser Ser Asn Gln Met Phe Ala Met 20 25 30 Lys Glu Ile Arg Leu Pro Lys Ser Phe Ser Asn Thr Gln Asn Ser Arg 35 40 45 Lys Glu Ala Val Leu Leu Ala Lys Met Lys His Pro Asn Ile Val Ala 50 55 60 Phe Lys Glu Ser Phe Glu Ala Glu Gly His Leu Tyr Ile Val Met Glu 65 70 75 80 Tyr Cys Asp Gly Gly Asp Leu Met Gln Lys Ile Lys Gln Gln Lys Gly 85 90 95 Lys Leu Phe Pro Glu Asp Met Ile Leu Asn Trp Phe Thr Gln Met Cys 100 105 110 Leu Gly Val Asn His Ile His Lys Lys Arg Val Leu His Arg Asp Ile 115 120 125 Lys Ser Lys Asn Ile Phe Leu Thr Gln Asn Gly Lys Val Lys Leu Gly 130 135 140 Asp Phe Gly Ser Ala Arg Leu Leu Ser Asn Pro Met Ala Phe Ala Cys 145 150 155 160 Thr Tyr Val Gly Thr Pro Tyr Tyr Val Pro Pro Glu Ile Trp Glu Asn 165 170 175 Leu Pro Tyr Asn Asn Lys Ser Asp Ile Trp Ser Leu Gly Cys Ile Leu 180 185 190 Tyr Glu Leu Cys Thr Leu Lys His Pro Phe Gln Ala Asn Ser Trp Lys 195 200 205 Asn Leu Ile Leu Lys Val Cys Gln Gly Cys Ile Ser Pro Leu Pro Ser 210 215 220 His Tyr Ser Tyr Glu Leu Gln Phe Leu Val Lys Gln Met Phe Lys Arg 225 230 235 240 Asn Pro Ser His Arg Pro Ser Ala Thr Thr Leu Leu Ser Arg Gly Ile 245 250 255 Val Ala Arg Leu Val Gln Lys Cys Leu Pro Pro Glu Ile Ile Met Glu 260 265 270 Tyr Gly Glu Glu Val Leu Glu Glu Ile Lys Asn Ser Lys His Asn Thr 275 280 285 Pro Arg Lys Lys Thr Asn Pro Ser Arg Ile Arg Ile Ala Leu Gly Asn 290 295 300 Glu Ala Ser Thr Val Gln Glu Glu Glu Gln Asp Arg Lys Gly Ser His 305 310 315 320 Thr Asp Leu Glu Ser Ile Asn Glu Asn Leu Val Glu Ser Ala Leu Arg 325 330 335 Arg Val Asn Arg Glu Glu Lys Gly Asn Lys Ser Val His Leu Arg Lys 340 345 350 Ala Ser Ser Pro Asn Leu His Arg Arg Gln Trp Glu Lys Asn Val Pro 355 360 365 Asn Thr Ala Leu Thr Ala Leu Glu Asn Ala Ser Ile Leu Thr Ser Ser 370 375 380 Leu Thr Ala Glu Asp Asp Arg Gly Gly Ser Val Ile Lys Tyr Ser Lys 385 390 395 400 Asn Thr Thr Arg Lys Gln Trp Leu Lys Glu Thr Pro Asp Thr Leu Leu 405 410 415 Asn Ile Leu Lys Asn Ala Asp Leu Ser Leu Ala Phe Gln Thr Tyr Thr 420 425 430 Ile Tyr Arg Pro Gly Ser Glu Gly Phe Leu Lys Gly Pro Leu Ser Glu 435 440 445 Glu Thr Glu Ala Ser Asp Ser Val Asp Gly Gly His Asp Ser Val Ile 450 455 460 Leu Asp Pro Glu Arg Leu Glu Pro Gly Leu Asp Glu Glu Asp Thr Asp 465 470 475 480 Phe Glu Glu Glu Asp Asp Asn Pro Asp Trp Val Ser Glu Leu Lys Lys 485 490 495 Arg Ala Gly Trp Gln Gly Leu Cys Asp Arg 500 505 65638PRTHomo sapiens 65Met Ile Leu Phe Lys Gln Ala Thr Tyr Phe Ile Ser Leu Phe Ala Thr 1 5 10 15 Val Ser Cys Gly Cys Leu Thr Gln Leu Tyr Glu Asn Ala Phe Phe Arg 20 25 30 Gly Gly Asp Val Ala Ser Met Tyr Thr Pro Asn Ala Gln Tyr Cys Gln 35 40 45 Met Arg Cys Thr Phe His Pro Arg Cys Leu Leu Phe Ser Phe Leu Pro 50 55 60 Ala Ser Ser Ile Asn Asp Met Glu Lys Arg Phe Gly Cys Phe Leu Lys 65 70 75 80 Asp Ser Val Thr Gly Thr Leu Pro Lys Val His Arg Thr Gly Ala Val 85 90 95 Ser Gly His Ser Leu Lys Gln Cys Gly His Gln Ile Ser Ala Cys His 100 105 110 Arg Asp Ile Tyr Lys Gly Val Asp Met Arg Gly Val Asn Phe Asn Val 115 120 125 Ser Lys Val Ser Ser Val Glu Glu Cys Gln Lys Arg Cys Thr Ser Asn 130 135 140 Ile Arg Cys Gln Phe Phe Ser Tyr Ala Thr Gln Thr Phe His Lys Ala 145 150 155 160 Glu Tyr Arg Asn Asn Cys Leu Leu Lys Tyr Ser Pro Gly Gly Thr Pro 165 170 175 Thr Ala Ile Lys Val Leu Ser Asn Val Glu Ser Gly Phe Ser Leu Lys 180 185 190 Pro Cys Ala Leu Ser Glu Ile Gly Cys His Met Asn Ile Phe Gln His 195 200 205 Leu Ala Phe Ser Asp Val Asp Val Ala Arg Val Leu Thr Pro Asp Ala 210 215 220 Phe Val Cys Arg Thr Ile Cys Thr Tyr His Pro Asn Cys Leu Phe Phe 225 230 235 240 Thr Phe Tyr Thr Asn Val Trp Lys Ile Glu Ser Gln Arg Asn Val Cys 245 250 255 Leu Leu Lys Thr Ser Glu Ser Gly Thr Pro Ser Ser Ser Thr Pro Gln 260 265 270 Glu Asn Thr Ile Ser Gly Tyr Ser Leu Leu Thr Cys Lys Arg Thr Leu 275 280 285 Pro Glu Pro Cys His Ser Lys Ile Tyr Pro Gly Val Asp Phe Gly Gly 290 295 300 Glu Glu Leu Asn Val Thr Phe Val Lys Gly Val Asn Val Cys Gln Glu 305 310 315 320 Thr Cys Thr Lys Met Ile Arg Cys Gln Phe Phe Thr Tyr Ser Leu Leu 325 330 335 Pro Glu Asp Cys Lys Glu Glu Lys Cys Lys Cys Phe Leu Arg Leu Ser 340 345 350 Met Asp Gly Ser Pro Thr Arg Ile Ala Tyr Gly Thr Gln Gly Ser Ser 355 360 365 Gly Tyr Ser Leu Arg Leu Cys Asn Thr Gly Asp Asn Ser Val Cys Thr 370 375 380 Thr Lys Thr Ser Thr Arg Ile Val Gly Gly Thr Asn Ser Ser Trp Gly 385 390 395 400 Glu Trp Pro Trp Gln Val Ser Leu Gln Val Lys Leu Thr Ala Gln Arg 405 410 415 His Leu Cys Gly Gly Ser Leu Ile Gly His Gln Trp Val Leu Thr Ala 420 425 430 Ala His Cys Phe Asp Gly Leu Pro Leu Gln Asp Val Trp Arg Ile Tyr 435 440 445 Ser Gly Ile Leu Asn Leu Ser Asp Ile Thr Lys Asp Thr Pro Phe Ser 450 455 460 Gln Ile Lys Glu Ile Ile Ile His Gln Asn Tyr Lys Val Ser Glu Gly 465 470 475 480 Asn His Asp Ile Ala Leu Ile Lys Leu Gln Ala Pro Leu Asn Tyr Thr 485 490 495 Glu Phe Gln Lys Pro Ile Cys Leu Pro Ser Lys Gly Asp Thr Ser Thr 500 505 510 Ile Tyr Thr Asn Cys Trp Val Thr Gly Trp Gly Phe Ser Lys Glu Lys 515 520 525 Gly Glu Ile Gln Asn Ile Leu Gln Lys Val Asn Ile Pro Leu Val Thr 530 535 540 Asn Glu Glu Cys Gln Lys Arg Tyr Gln Asp Tyr Lys Ile Thr Gln Arg 545 550 555 560 Met Val Cys Ala Gly Tyr Lys Glu Gly Gly Lys Asp Ala Cys Lys Gly 565 570 575 Asp Ser Gly Gly Pro Leu Val Cys Lys His Asn Gly Met Trp Arg Leu 580 585 590 Val Gly Ile Thr Ser Trp Gly Glu Gly Cys Ala Arg Arg Glu Gln Pro 595 600 605 Gly Val Tyr Thr Lys Val Ala Glu Tyr Met Asp Trp Ile Leu Glu Lys 610 615 620 Thr Gln Ser Ser Asp Gly Lys Ala Gln Met Gln Ser Pro Ala 625 630 635 66379PRTHomo sapiens 66Met Ala Ala Thr Glu Gly Val Gly Glu Ala Ala Gln Gly Gly Glu Pro 1 5 10 15 Gly Gln Pro Ala Gln Pro Pro Pro Gln Pro His Pro Pro Pro Pro Gln 20 25 30 Gln Gln His Lys Glu Glu Met Ala Ala Glu Ala Gly Glu Ala Val Ala 35 40 45 Ser Pro Met Asp Asp Gly Phe Val Ser Leu Asp Ser Pro Ser Tyr Val 50 55 60 Leu Tyr Arg Asp Arg Ala Glu Trp Ala Asp Ile Asp Pro Val Pro Gln 65 70 75 80 Asn Asp Gly Pro Asn Pro Val Val Gln Ile Ile Tyr Ser Asp Lys Phe 85 90 95 Arg Asp Val Tyr Asp Tyr Phe Arg Ala Val Leu Gln Arg Asp Glu Arg 100 105 110 Ser Glu Arg Ala Phe Lys Leu Thr Arg Asp Ala Ile Glu Leu Asn Ala 115 120 125 Ala Asn Tyr Thr Val Trp His Phe Arg Arg Val Leu Leu Lys Ser Leu 130 135 140 Gln Lys Asp Leu His Glu Glu Met Asn Tyr Ile Thr Ala Ile Ile Glu 145 150

155 160 Glu Gln Pro Lys Asn Tyr Gln Val Trp His His Arg Arg Val Leu Val 165 170 175 Glu Trp Leu Arg Asp Pro Ser Gln Glu Leu Glu Phe Ile Ala Asp Ile 180 185 190 Leu Asn Gln Asp Ala Lys Asn Tyr His Ala Trp Gln His Arg Gln Trp 195 200 205 Val Ile Gln Glu Phe Lys Leu Trp Asp Asn Glu Leu Gln Tyr Val Asp 210 215 220 Gln Leu Leu Lys Glu Asp Val Arg Asn Asn Ser Val Trp Asn Gln Arg 225 230 235 240 Tyr Phe Val Ile Ser Asn Thr Thr Gly Tyr Asn Asp Arg Ala Val Leu 245 250 255 Glu Arg Glu Val Gln Tyr Thr Leu Glu Met Ile Lys Leu Val Pro His 260 265 270 Asn Glu Ser Ala Trp Asn Tyr Leu Lys Gly Ile Leu Gln Asp Arg Gly 275 280 285 Leu Ser Lys Tyr Pro Asn Leu Leu Asn Gln Leu Leu Asp Leu Gln Pro 290 295 300 Ser His Ser Ser Pro Tyr Leu Ile Ala Phe Leu Val Asp Ile Tyr Glu 305 310 315 320 Asp Met Leu Glu Asn Gln Cys Asp Asn Lys Glu Asp Ile Leu Asn Lys 325 330 335 Ala Leu Glu Leu Cys Glu Ile Leu Ala Lys Glu Lys Asp Thr Ile Arg 340 345 350 Lys Glu Tyr Trp Arg Tyr Ile Gly Arg Ser Leu Gln Ser Lys His Ser 355 360 365 Thr Glu Asn Asp Ser Pro Thr Asn Val Gln Gln 370 375 67288PRTHomo sapiens 67Met Ser Cys Thr Val Arg Asp Val Tyr Asp Tyr Phe Arg Ala Val Leu 1 5 10 15 Gln Arg Asp Glu Arg Ser Glu Arg Ala Phe Lys Leu Thr Arg Asp Ala 20 25 30 Ile Glu Leu Asn Ala Ala Asn Tyr Thr Val Trp His Phe Arg Arg Val 35 40 45 Leu Leu Lys Ser Leu Gln Lys Asp Leu His Glu Glu Met Asn Tyr Ile 50 55 60 Thr Ala Ile Ile Glu Glu Gln Pro Lys Asn Tyr Gln Val Trp His His 65 70 75 80 Arg Arg Val Leu Val Glu Trp Leu Arg Asp Pro Ser Gln Glu Leu Glu 85 90 95 Phe Ile Ala Asp Ile Leu Asn Gln Asp Ala Lys Asn Tyr His Ala Trp 100 105 110 Gln His Arg Gln Trp Val Ile Gln Glu Phe Lys Leu Trp Asp Asn Glu 115 120 125 Leu Gln Tyr Val Asp Gln Leu Leu Lys Glu Asp Val Arg Asn Asn Ser 130 135 140 Val Trp Asn Gln Arg Tyr Phe Val Ile Ser Asn Thr Thr Gly Tyr Asn 145 150 155 160 Asp Arg Ala Val Leu Glu Arg Glu Val Gln Tyr Thr Leu Glu Met Ile 165 170 175 Lys Leu Val Pro His Asn Glu Ser Ala Trp Asn Tyr Leu Lys Gly Ile 180 185 190 Leu Gln Asp Arg Gly Leu Ser Lys Tyr Pro Asn Leu Leu Asn Gln Leu 195 200 205 Leu Asp Leu Gln Pro Ser His Ser Ser Pro Tyr Leu Ile Ala Phe Leu 210 215 220 Val Asp Ile Tyr Glu Asp Met Leu Glu Asn Gln Cys Asp Asn Lys Glu 225 230 235 240 Asp Ile Leu Asn Lys Ala Leu Glu Leu Cys Glu Ile Leu Ala Lys Glu 245 250 255 Lys Asp Thr Ile Arg Lys Glu Tyr Trp Arg Tyr Ile Gly Arg Ser Leu 260 265 270 Gln Ser Lys His Ser Thr Glu Asn Asp Ser Pro Thr Asn Val Gln Gln 275 280 285 68312PRTHomo sapiens 68Met Ala Ala Thr Glu Gly Val Gly Glu Ala Ala Gln Gly Gly Glu Pro 1 5 10 15 Gly Gln Pro Ala Gln Pro Pro Pro Gln Pro His Pro Pro Pro Pro Gln 20 25 30 Gln Gln His Lys Glu Glu Met Ala Ala Glu Ala Gly Glu Ala Val Ala 35 40 45 Ser Pro Met Asp Asp Gly Phe Val Ser Leu Asp Ser Pro Ser Tyr Val 50 55 60 Leu Tyr Arg His Phe Arg Arg Val Leu Leu Lys Ser Leu Gln Lys Asp 65 70 75 80 Leu His Glu Glu Met Asn Tyr Ile Thr Ala Ile Ile Glu Glu Gln Pro 85 90 95 Lys Asn Tyr Gln Val Trp His His Arg Arg Val Leu Val Glu Trp Leu 100 105 110 Arg Asp Pro Ser Gln Glu Leu Glu Phe Ile Ala Asp Ile Leu Asn Gln 115 120 125 Asp Ala Lys Asn Tyr His Ala Trp Gln His Arg Gln Trp Val Ile Gln 130 135 140 Glu Phe Lys Leu Trp Asp Asn Glu Leu Gln Tyr Val Asp Gln Leu Leu 145 150 155 160 Lys Glu Asp Val Arg Asn Asn Ser Val Trp Asn Gln Arg Tyr Phe Val 165 170 175 Ile Ser Asn Thr Thr Gly Tyr Asn Asp Arg Ala Val Leu Glu Arg Glu 180 185 190 Val Gln Tyr Thr Leu Glu Met Ile Lys Leu Val Pro His Asn Glu Ser 195 200 205 Ala Trp Asn Tyr Leu Lys Gly Ile Leu Gln Asp Arg Gly Leu Ser Lys 210 215 220 Tyr Pro Asn Leu Leu Asn Gln Leu Leu Asp Leu Gln Pro Ser His Ser 225 230 235 240 Ser Pro Tyr Leu Ile Ala Phe Leu Val Asp Ile Tyr Glu Asp Met Leu 245 250 255 Glu Asn Gln Cys Asp Asn Lys Glu Asp Ile Leu Asn Lys Ala Leu Glu 260 265 270 Leu Cys Glu Ile Leu Ala Lys Glu Lys Asp Thr Ile Arg Lys Glu Tyr 275 280 285 Trp Arg Tyr Ile Gly Arg Ser Leu Gln Ser Lys His Ser Thr Glu Asn 290 295 300 Asp Ser Pro Thr Asn Val Gln Gln 305 310 69311PRTHomo sapiensmisc_feature(290)..(290)Xaa can be any naturally occurring amino acid 69Met Ala Ala Thr Glu Gly Val Gly Glu Ala Ala Gln Gly Gly Glu Pro 1 5 10 15 Arg Gln Leu Glu Gln Pro Pro Pro Gln Pro His Pro Pro Leu Pro Gln 20 25 30 Glu Gln His Glu Glu Glu Met Ala Ala Glu Ala Gly Glu Ala Val Ala 35 40 45 Ser Pro Met Asp Asp Gly Phe Leu Ser Leu Asp Ser Pro Ser Tyr Val 50 55 60 Pro Tyr Arg His Phe Arg Arg Val Leu Leu Lys Ser Leu Gln Lys Asp 65 70 75 80 Leu His Glu Glu Met Asn Tyr Ile Thr Glu Ile Ile Glu Gly Gln Pro 85 90 95 Lys Asn Tyr Leu Val Cys His Asn Arg Arg Val Ile Val Glu Trp Leu 100 105 110 Arg Asp Pro Ser Gln Glu Pro Glu Phe Ile Asp Asn Ile Leu Asn Gln 115 120 125 Asp Ala Lys Asn Tyr His Ala Trp Gln His Arg Gln Trp Val Ile Gln 130 135 140 Glu Phe Lys Leu Trp Asp Asn Glu Leu Gln Tyr Val Asp Gln Leu Leu 145 150 155 160 Lys Glu Asp Val Arg Asn Asn Ser Val Trp Asn Arg Arg Tyr Phe Val 165 170 175 Ile Ser Asn Thr Thr Gly Tyr Asn Asp Cys Ala Val Leu Glu Arg Glu 180 185 190 Val Gln Tyr Thr Leu Glu Met Ile Gln Leu Val Pro His Asn Ser Ser 195 200 205 Trp Asn Tyr Leu Lys Gly Ile Leu Gln Asp Arg Gly Leu Ser Lys Tyr 210 215 220 Pro Asn Leu Leu Asn Gln Leu Leu Asp Leu Gln Pro Ser His Ser Ser 225 230 235 240 Pro Tyr Leu Ile Ala Phe Leu Val Gly Ile Tyr Glu Asp Met Leu Glu 245 250 255 Asn Gln Cys Val Asn Lys Glu Asp Ile Leu Asn Asn Ala Leu Gly Leu 260 265 270 Cys Glu Ile Leu Ala Lys Glu Lys Asp Met Ile Arg Lys Glu Tyr Trp 275 280 285 Arg Xaa Ile Gly Arg Ser Phe Gln Ser Lys His Ser Thr Glu Asn Asp 290 295 300 Ser Pro Thr Asn Val Gln Gln 305 310 702555PRTHomo sapiens 70Met Thr Ala Ile Thr His Gly Ser Pro Val Gly Gly Asn Asp Ser Gln 1 5 10 15 Gly Gln Val Leu Asp Gly Gln Ser Gln His Leu Phe Gln Gln Asn Gln 20 25 30 Thr Ser Ser Pro Asp Ser Ser Asn Glu Asn Ser Val Ala Thr Pro Pro 35 40 45 Pro Glu Glu Gln Gly Gln Gly Asp Ala Pro Pro Gln His Glu Asp Glu 50 55 60 Glu Pro Ala Phe Pro His Thr Glu Leu Ala Asn Leu Asp Asp Met Ile 65 70 75 80 Asn Arg Pro Arg Trp Val Val Pro Val Leu Pro Lys Gly Glu Leu Glu 85 90 95 Val Leu Leu Glu Ala Ala Ile Asp Leu Ser Val Lys Gly Leu Asp Val 100 105 110 Lys Ser Glu Ala Cys Gln Arg Phe Phe Arg Asp Gly Leu Thr Ile Ser 115 120 125 Phe Thr Lys Ile Leu Met Asp Glu Ala Val Ser Gly Trp Lys Phe Glu 130 135 140 Ile His Arg Cys Ile Ile Asn Asn Thr His Arg Leu Val Glu Leu Cys 145 150 155 160 Val Ala Lys Leu Ser Gln Asp Trp Phe Pro Leu Leu Glu Leu Leu Ala 165 170 175 Met Ala Leu Asn Pro His Cys Lys Phe His Ile Tyr Asn Gly Thr Arg 180 185 190 Pro Cys Glu Leu Ile Ser Ser Asn Ala Gln Leu Pro Glu Asp Glu Leu 195 200 205 Phe Ala Arg Ser Ser Asp Pro Arg Ser Pro Lys Gly Trp Leu Val Asp 210 215 220 Leu Ile Asn Lys Phe Gly Thr Leu Asn Gly Phe Gln Ile Leu His Asp 225 230 235 240 Arg Phe Phe Asn Gly Ser Ala Leu Asn Ile Gln Ile Ile Ala Ala Leu 245 250 255 Ile Lys Pro Phe Gly Gln Cys Tyr Glu Phe Leu Ser Gln His Thr Leu 260 265 270 Lys Lys Tyr Phe Ile Pro Val Ile Glu Ile Val Pro His Leu Leu Glu 275 280 285 Asn Leu Thr Asp Glu Glu Leu Lys Lys Glu Ala Lys Asn Glu Ala Lys 290 295 300 Asn Asp Ala Leu Ser Met Ile Ile Lys Ser Leu Lys Asn Leu Ala Ser 305 310 315 320 Arg Ile Ser Gly Gln Asp Glu Thr Ile Lys Asn Leu Glu Ile Phe Arg 325 330 335 Leu Lys Met Ile Leu Arg Leu Leu Gln Ile Ser Ser Phe Asn Gly Lys 340 345 350 Met Asn Ala Leu Asn Glu Ile Asn Lys Val Ile Ser Ser Val Ser Tyr 355 360 365 Tyr Thr His Arg His Ser Asn Pro Glu Glu Glu Glu Trp Leu Thr Ala 370 375 380 Glu Arg Met Ala Glu Trp Ile Gln Gln Asn Asn Ile Leu Ser Ile Val 385 390 395 400 Leu Gln Asp Ser Leu His Gln Pro Gln Tyr Val Glu Lys Leu Glu Lys 405 410 415 Ile Leu Arg Phe Val Ile Lys Glu Lys Ala Leu Thr Leu Gln Asp Leu 420 425 430 Asp Asn Ile Trp Ala Ala Gln Ala Gly Lys His Glu Ala Ile Val Lys 435 440 445 Asn Val His Asp Leu Leu Ala Lys Leu Ala Trp Asp Phe Ser Pro Gly 450 455 460 Gln Leu Asp His Leu Phe Asp Cys Phe Lys Ala Ser Trp Thr Asn Ala 465 470 475 480 Ser Lys Lys Gln Arg Glu Lys Leu Leu Glu Leu Ile Arg Arg Leu Ala 485 490 495 Glu Asp Asp Lys Asp Gly Val Met Ala His Lys Val Leu Asn Leu Leu 500 505 510 Trp Asn Leu Ala Gln Ser Asp Asp Val Pro Val Asp Ile Met Asp Leu 515 520 525 Ala Leu Ser Ala His Ile Lys Ile Leu Asp Tyr Ser Cys Ser Gln Asp 530 535 540 Arg Asp Ala Gln Lys Ile Gln Trp Ile Asp His Phe Ile Glu Glu Leu 545 550 555 560 Arg Thr Asn Asp Lys Trp Val Ile Pro Ala Leu Lys Gln Ile Arg Glu 565 570 575 Ile Cys Ser Leu Phe Gly Glu Ala Ser Gln Asn Leu Ser Gln Thr Gln 580 585 590 Arg Ser Pro His Ile Phe Tyr Arg His Asp Leu Ile Asn Gln Leu Gln 595 600 605 Gln Asn His Ala Leu Val Thr Leu Val Ala Glu Asn Leu Ala Thr Tyr 610 615 620 Met Asn Ser Ile Arg Leu Tyr Ala Gly Asp His Glu Asp Tyr Asp Pro 625 630 635 640 Gln Thr Val Arg Leu Gly Ser Arg Tyr Ser His Val Gln Glu Val Gln 645 650 655 Glu Arg Leu Asn Phe Leu Arg Phe Leu Leu Lys Asp Gly Gln Leu Trp 660 665 670 Leu Cys Ala Pro Gln Ala Lys Gln Ile Trp Lys Cys Leu Ala Glu Asn 675 680 685 Ala Val Tyr Leu Cys Asp Arg Glu Ala Cys Phe Lys Trp Tyr Ser Lys 690 695 700 Leu Met Gly Asp Glu Pro Asp Leu Asp Pro Asp Ile Asn Lys Asp Phe 705 710 715 720 Phe Glu Ser Asn Val Leu Gln Leu Asp Pro Ser Leu Leu Thr Glu Asn 725 730 735 Gly Met Lys Cys Phe Glu Arg Phe Phe Lys Ala Val Asn Cys Arg Glu 740 745 750 Arg Lys Leu Ile Ala Lys Arg Arg Ser Tyr Met Met Asp Asp Leu Glu 755 760 765 Leu Ile Gly Leu Asp Tyr Leu Trp Arg Val Val Ile Gln Ser Ser Asp 770 775 780 Glu Ile Ala Asn Arg Ala Ile Asp Leu Leu Lys Glu Ile Tyr Thr Asn 785 790 795 800 Leu Gly Pro Arg Leu Lys Ala Asn Gln Val Val Ile His Glu Asp Phe 805 810 815 Ile Gln Ser Cys Phe Asp Arg Leu Lys Ala Ser Tyr Asp Thr Leu Cys 820 825 830 Val Phe Asp Gly Asp Lys Asn Ser Ile Asn Cys Ala Arg Gln Glu Ala 835 840 845 Ile Arg Met Val Arg Val Leu Thr Val Ile Lys Glu Tyr Ile Asn Glu 850 855 860 Cys Asp Ser Asp Tyr His Lys Glu Arg Met Ile Leu Pro Met Ser Arg 865 870 875 880 Ala Phe Arg Gly Lys His Leu Ser Leu Ile Val Arg Phe Pro Asn Gln 885 890 895 Gly Arg Gln Val Asp Glu Leu Asp Ile Trp Ser His Thr Asn Asp Thr 900 905 910 Ile Gly Ser Val Arg Arg Cys Ile Val Asn Arg Ile Lys Ala Asn Val 915 920 925 Ala His Lys Lys Ile Glu Leu Phe Val Gly Gly Glu Leu Ile Asp Ser 930 935 940 Glu Asp Asp Arg Lys Leu Ile Gly Gln Leu Asn Leu Lys Asp Lys Ser 945 950 955 960 Leu Ile Thr Ala Lys Leu Thr Gln Ile Asn Phe Asn Met Pro Ser Ser 965 970 975 Pro Asp Ser Ser Ser Asp Ser Ser Thr Ala Ser Pro Gly Asn His Arg 980 985 990 Asn His Tyr Asn Asp Gly Pro Asn Leu Glu Val Glu Ser Cys Leu Pro 995 1000 1005 Gly Val Ile Met Ser Val His Pro Arg Tyr Ile Ser Phe Leu Trp 1010 1015 1020 Gln Val Ala Asp Leu Gly Ser Asn Leu Asn Met Pro Pro Leu Arg 1025 1030 1035 Asp Gly Ala Arg Val Leu Met Lys Leu Met Pro Pro Asp Arg Thr 1040 1045 1050 Ala Val Glu Lys Leu Arg Ala Val Cys Leu Asp His Ala Lys Leu 1055 1060 1065 Gly Glu Gly Lys Leu Ser Pro Pro Leu Asp Ser Leu Phe Phe Gly 1070 1075 1080 Pro Ser Ala Ser Gln Val Leu Tyr Leu Thr Glu Val Val Tyr Ala 1085 1090 1095 Leu Leu Met Pro Ala Gly Val Pro Leu Thr Asp Gly Ser Ser Asp 1100 1105 1110 Phe Gln Val His Phe Leu Lys Ser Gly Gly Leu Pro Leu Val Leu 1115 1120 1125 Ser Met Leu Ile Arg Asn Asn Phe Leu Pro Asn Thr Asp Met Glu 1130 1135 1140 Thr Arg

Arg Gly Ala Tyr Leu Asn Ala Leu Lys Ile Ala Lys Leu 1145 1150 1155 Leu Leu Thr Ala Ile Gly Tyr Gly His Val Arg Ala Val Ala Glu 1160 1165 1170 Ala Cys Gln Pro Val Val Asp Gly Thr Asp Pro Ile Thr Gln Ile 1175 1180 1185 Asn Gln Val Thr His Asp Gln Ala Val Val Leu Gln Ser Ala Leu 1190 1195 1200 Gln Ser Ile Pro Asn Pro Ser Ser Glu Cys Val Leu Arg Asn Glu 1205 1210 1215 Ser Ile Leu Leu Ala Gln Glu Ile Ser Asn Glu Ala Ser Arg Tyr 1220 1225 1230 Met Pro Asp Ile Cys Val Ile Arg Ala Ile Gln Lys Ile Ile Trp 1235 1240 1245 Ala Ser Ala Cys Gly Ala Leu Gly Leu Val Phe Ser Pro Asn Glu 1250 1255 1260 Glu Ile Thr Lys Ile Tyr Gln Met Thr Thr Asn Gly Ser Asn Lys 1265 1270 1275 Leu Glu Val Glu Asp Glu Gln Val Cys Cys Glu Ala Leu Glu Val 1280 1285 1290 Met Thr Leu Cys Phe Ala Leu Leu Pro Thr Ala Leu Asp Ala Leu 1295 1300 1305 Ser Lys Glu Lys Ala Trp Gln Thr Phe Ile Ile Asp Leu Leu Leu 1310 1315 1320 His Cys Pro Ser Lys Thr Val Arg Gln Leu Ala Gln Glu Gln Phe 1325 1330 1335 Phe Leu Met Cys Thr Arg Cys Cys Met Gly His Arg Pro Leu Leu 1340 1345 1350 Phe Phe Ile Thr Leu Leu Phe Thr Ile Leu Gly Ser Thr Ala Arg 1355 1360 1365 Glu Lys Gly Lys Tyr Ser Gly Asp Tyr Phe Thr Leu Leu Arg His 1370 1375 1380 Leu Leu Asn Tyr Ala Tyr Asn Gly Asn Ile Asn Ile Pro Asn Ala 1385 1390 1395 Glu Val Leu Leu Val Ser Glu Ile Asp Trp Leu Lys Arg Ile Arg 1400 1405 1410 Asp Asn Val Lys Asn Thr Gly Glu Thr Gly Val Glu Glu Pro Ile 1415 1420 1425 Leu Glu Gly His Leu Gly Val Thr Lys Glu Leu Leu Ala Phe Gln 1430 1435 1440 Thr Ser Glu Lys Lys Tyr His Phe Gly Cys Glu Lys Gly Gly Ala 1445 1450 1455 Asn Leu Ile Lys Glu Leu Ile Asp Asp Phe Ile Phe Pro Ala Ser 1460 1465 1470 Lys Val Tyr Leu Gln Tyr Leu Arg Ser Gly Glu Leu Pro Ala Glu 1475 1480 1485 Gln Ala Ile Pro Val Cys Ser Ser Pro Val Thr Ile Asn Ala Gly 1490 1495 1500 Phe Glu Leu Leu Val Ala Leu Ala Ile Gly Cys Val Arg Asn Leu 1505 1510 1515 Lys Gln Ile Val Asp Cys Leu Thr Glu Met Tyr Tyr Met Gly Thr 1520 1525 1530 Ala Ile Thr Thr Cys Glu Ala Leu Thr Glu Trp Glu Tyr Leu Pro 1535 1540 1545 Pro Val Gly Pro Arg Pro Pro Lys Gly Phe Val Gly Leu Lys Asn 1550 1555 1560 Ala Gly Ala Thr Cys Tyr Met Asn Ser Val Ile Gln Gln Leu Tyr 1565 1570 1575 Met Ile Pro Ser Ile Arg Asn Ser Ile Leu Ala Ile Glu Gly Thr 1580 1585 1590 Gly Ser Asp Leu His Asp Asp Met Phe Gly Asp Glu Lys Gln Asp 1595 1600 1605 Ser Glu Ser Asn Val Asp Pro Arg Asp Asp Val Phe Gly Tyr Pro 1610 1615 1620 His Gln Phe Glu Asp Lys Pro Ala Leu Ser Lys Thr Glu Asp Arg 1625 1630 1635 Lys Glu Tyr Asn Ile Gly Val Leu Arg His Leu Gln Val Ile Phe 1640 1645 1650 Gly His Leu Ala Ala Ser Gln Leu Gln Tyr Tyr Val Pro Arg Gly 1655 1660 1665 Phe Trp Lys Gln Phe Arg Leu Trp Gly Glu Pro Val Asn Leu Arg 1670 1675 1680 Glu Gln His Asp Ala Leu Glu Phe Phe Asn Ser Leu Val Asp Ser 1685 1690 1695 Leu Asp Glu Ala Leu Lys Ala Leu Gly His Pro Ala Ile Leu Ser 1700 1705 1710 Lys Val Leu Gly Gly Ser Phe Ala Asp Gln Lys Ile Cys Gln Gly 1715 1720 1725 Cys Pro His Arg Tyr Glu Cys Glu Glu Ser Phe Thr Thr Leu Asn 1730 1735 1740 Val Asp Ile Arg Asn His Gln Asn Leu Leu Asp Ser Leu Glu Gln 1745 1750 1755 Tyr Ile Lys Gly Asp Leu Leu Glu Gly Ala Asn Ala Tyr His Cys 1760 1765 1770 Glu Lys Cys Asp Lys Lys Val Asp Thr Val Lys Arg Leu Leu Ile 1775 1780 1785 Lys Lys Leu Pro Arg Val Leu Ala Ile Gln Leu Lys Arg Phe Asp 1790 1795 1800 Tyr Asp Trp Glu Arg Glu Cys Ala Ile Lys Phe Asn Asp Tyr Phe 1805 1810 1815 Glu Phe Pro Arg Glu Leu Asp Met Gly Pro Tyr Thr Val Ala Gly 1820 1825 1830 Val Ala Asn Leu Glu Arg Asp Asn Val Asn Ser Glu Asn Glu Leu 1835 1840 1845 Ile Glu Gln Lys Glu Gln Ser Asp Asn Glu Thr Ala Gly Gly Thr 1850 1855 1860 Lys Tyr Arg Leu Val Gly Val Leu Val His Ser Gly Gln Ala Ser 1865 1870 1875 Gly Gly His Tyr Tyr Ser Tyr Ile Ile Gln Arg Asn Gly Lys Asp 1880 1885 1890 Asp Gln Thr Asp His Trp Tyr Lys Phe Asp Asp Gly Asp Val Thr 1895 1900 1905 Glu Cys Lys Met Asp Asp Asp Glu Glu Met Lys Asn Gln Cys Phe 1910 1915 1920 Gly Gly Glu Tyr Met Gly Glu Val Phe Asp His Met Met Lys Arg 1925 1930 1935 Met Ser Tyr Arg Arg Gln Lys Arg Trp Trp Asn Ala Tyr Ile Leu 1940 1945 1950 Phe Tyr Glu Gln Met Asp Met Ile Asp Glu Asp Asp Glu Met Ile 1955 1960 1965 Arg Tyr Ile Ser Glu Leu Thr Ile Ala Arg Pro His Gln Ile Ile 1970 1975 1980 Met Ser Pro Ala Ile Glu Arg Ser Val Arg Lys Gln Asn Val Lys 1985 1990 1995 Phe Met His Asn Arg Leu Gln Tyr Ser Leu Glu Tyr Phe Gln Phe 2000 2005 2010 Val Lys Lys Leu Leu Thr Cys Asn Gly Val Tyr Leu Asn Pro Ala 2015 2020 2025 Pro Gly Gln Asp Tyr Leu Leu Pro Glu Ala Glu Glu Ile Thr Met 2030 2035 2040 Ile Ser Ile Gln Leu Ala Ala Arg Phe Leu Phe Thr Thr Gly Phe 2045 2050 2055 His Thr Lys Lys Ile Val Arg Gly Pro Ala Ser Asp Trp Tyr Asp 2060 2065 2070 Ala Leu Cys Val Leu Leu Arg His Ser Lys Asn Val Arg Phe Trp 2075 2080 2085 Phe Thr His Asn Val Leu Phe Asn Val Ser Asn Arg Phe Ser Glu 2090 2095 2100 Tyr Leu Leu Glu Cys Pro Ser Ala Glu Val Arg Gly Ala Phe Ala 2105 2110 2115 Lys Leu Ile Val Phe Ile Ala His Phe Ser Leu Gln Asp Gly Ser 2120 2125 2130 Cys Pro Ser Pro Phe Ala Ser Pro Gly Pro Ser Ser Gln Ala Cys 2135 2140 2145 Asp Asn Leu Ser Leu Ser Asp His Leu Leu Arg Ala Thr Leu Asn 2150 2155 2160 Leu Leu Arg Arg Glu Val Ser Glu His Gly His His Leu Gln Gln 2165 2170 2175 Tyr Phe Asn Leu Phe Val Met Tyr Ala Asn Leu Gly Val Ala Glu 2180 2185 2190 Lys Thr Gln Leu Leu Lys Leu Asn Val Pro Ala Thr Phe Met Leu 2195 2200 2205 Val Ser Leu Asp Glu Gly Pro Gly Pro Pro Ile Lys Tyr Gln Tyr 2210 2215 2220 Ala Glu Leu Gly Lys Leu Tyr Ser Val Val Ser Gln Leu Ile Arg 2225 2230 2235 Cys Cys Asn Val Ser Ser Thr Met Gln Ser Ser Ile Asn Gly Asn 2240 2245 2250 Pro Pro Leu Pro Asn Pro Phe Gly Asp Leu Asn Leu Ser Gln Pro 2255 2260 2265 Ile Met Pro Ile Gln Gln Asn Val Leu Asp Ile Leu Phe Val Arg 2270 2275 2280 Thr Ser Tyr Val Lys Lys Ile Ile Glu Asp Cys Ser Asn Ser Glu 2285 2290 2295 Asp Thr Ile Lys Leu Leu Arg Phe Cys Ser Trp Glu Asn Pro Gln 2300 2305 2310 Phe Ser Ser Thr Val Leu Ser Glu Leu Leu Trp Gln Val Ala Tyr 2315 2320 2325 Ser Tyr Thr Tyr Glu Leu Arg Pro Tyr Leu Asp Leu Leu Phe Gln 2330 2335 2340 Ile Leu Leu Ile Glu Asp Ser Trp Gln Thr His Arg Ile His Asn 2345 2350 2355 Ala Leu Lys Gly Ile Pro Asp Asp Arg Asp Gly Leu Phe Asp Thr 2360 2365 2370 Ile Gln Arg Ser Lys Asn His Tyr Gln Lys Arg Ala Tyr Gln Cys 2375 2380 2385 Ile Lys Cys Met Val Ala Leu Phe Ser Ser Cys Pro Val Ala Tyr 2390 2395 2400 Gln Ile Leu Gln Gly Asn Gly Asp Leu Lys Arg Lys Trp Thr Trp 2405 2410 2415 Ala Val Glu Trp Leu Gly Asp Glu Leu Glu Arg Arg Pro Tyr Thr 2420 2425 2430 Gly Asn Pro Gln Tyr Ser Tyr Asn Asn Trp Ser Pro Pro Val Gln 2435 2440 2445 Ser Asn Glu Thr Ala Asn Gly Tyr Phe Leu Glu Arg Ser His Ser 2450 2455 2460 Ala Arg Met Thr Leu Ala Lys Ala Cys Glu Leu Cys Pro Glu Glu 2465 2470 2475 Glu Pro Asp Asp Gln Asp Ala Pro Asp Glu His Glu Pro Ser Pro 2480 2485 2490 Ser Glu Asp Ala Pro Leu Tyr Pro His Ser Pro Ala Ser Gln Tyr 2495 2500 2505 Gln Gln Asn Asn His Val His Gly Gln Pro Tyr Thr Gly Pro Ala 2510 2515 2520 Ala His His Leu Asn Asn Pro Gln Lys Thr Gly Gln Arg Thr Gln 2525 2530 2535 Glu Asn Tyr Glu Gly Asn Glu Glu Val Ser Ser Pro Gln Met Lys 2540 2545 2550 Asp Gln 2555 71574PRTHomo sapiens 71Met Glu Ala Ser Leu Gly Ile Gln Met Asp Glu Pro Met Ala Phe Ser 1 5 10 15 Pro Gln Arg Asp Arg Phe Gln Ala Glu Gly Ser Leu Lys Lys Asn Glu 20 25 30 Gln Asn Phe Lys Leu Ala Gly Val Lys Lys Asp Ile Glu Lys Leu Tyr 35 40 45 Glu Ala Val Pro Gln Leu Ser Asn Val Phe Lys Ile Glu Asp Lys Ile 50 55 60 Gly Glu Gly Thr Phe Ser Ser Val Tyr Leu Ala Thr Ala Gln Leu Gln 65 70 75 80 Val Gly Pro Glu Glu Lys Ile Ala Leu Lys His Leu Ile Pro Thr Ser 85 90 95 His Pro Ile Arg Ile Ala Ala Glu Leu Gln Cys Leu Thr Val Ala Gly 100 105 110 Gly Gln Asp Asn Val Met Gly Val Lys Tyr Cys Phe Arg Lys Asn Asp 115 120 125 His Val Val Ile Ala Met Pro Tyr Leu Glu His Glu Ser Phe Leu Asp 130 135 140 Ile Leu Asn Ser Leu Ser Phe Gln Glu Val Arg Glu Tyr Met Leu Asn 145 150 155 160 Leu Phe Lys Ala Leu Lys Arg Ile His Gln Phe Gly Ile Val His Arg 165 170 175 Asp Val Lys Pro Ser Asn Phe Leu Tyr Asn Arg Arg Leu Lys Lys Tyr 180 185 190 Ala Leu Val Asp Phe Gly Leu Ala Gln Gly Thr His Asp Thr Lys Ile 195 200 205 Glu Leu Leu Lys Phe Val Gln Ser Glu Ala Gln Gln Glu Arg Cys Ser 210 215 220 Gln Asn Lys Ser His Ile Ile Thr Gly Asn Lys Ile Pro Leu Ser Gly 225 230 235 240 Pro Val Pro Lys Glu Leu Asp Gln Gln Ser Thr Thr Lys Ala Ser Val 245 250 255 Lys Arg Pro Tyr Thr Asn Ala Gln Ile Gln Ile Lys Gln Gly Lys Asp 260 265 270 Gly Lys Glu Gly Ser Val Gly Leu Ser Val Gln Arg Ser Val Phe Gly 275 280 285 Glu Arg Asn Phe Asn Ile His Ser Ser Ile Ser His Glu Ser Pro Ala 290 295 300 Val Lys Leu Met Lys Gln Ser Lys Thr Val Asp Val Leu Ser Arg Lys 305 310 315 320 Leu Ala Thr Lys Lys Lys Ala Ile Ser Thr Lys Val Met Asn Ser Ala 325 330 335 Val Met Arg Lys Thr Ala Ser Ser Cys Pro Ala Ser Leu Thr Cys Asp 340 345 350 Cys Tyr Ala Thr Asp Lys Val Cys Ser Ile Cys Leu Ser Arg Arg Gln 355 360 365 Gln Val Ala Pro Arg Ala Gly Thr Pro Gly Phe Arg Ala Pro Glu Val 370 375 380 Leu Thr Lys Cys Pro Asn Gln Thr Thr Ala Ile Asp Met Trp Ser Ala 385 390 395 400 Gly Val Ile Phe Leu Ser Leu Leu Ser Gly Arg Tyr Pro Phe Tyr Lys 405 410 415 Ala Ser Asp Asp Leu Thr Ala Leu Ala Gln Ile Met Thr Ile Arg Gly 420 425 430 Ser Arg Glu Thr Ile Gln Ala Ala Lys Thr Phe Gly Lys Ser Ile Leu 435 440 445 Cys Ser Lys Glu Val Pro Ala Gln Asp Leu Arg Lys Leu Cys Glu Arg 450 455 460 Leu Arg Gly Met Asp Ser Ser Thr Pro Lys Leu Thr Ser Asp Ile Gln 465 470 475 480 Gly His Ala Ser His Gln Pro Ala Ile Ser Glu Lys Thr Asp His Lys 485 490 495 Ala Ser Cys Leu Val Gln Thr Pro Pro Gly Gln Tyr Ser Gly Asn Ser 500 505 510 Phe Lys Lys Gly Asp Ser Asn Ser Cys Glu His Cys Phe Asp Glu Tyr 515 520 525 Asn Thr Asn Leu Glu Gly Trp Asn Glu Val Pro Asp Glu Ala Tyr Asp 530 535 540 Leu Leu Asp Lys Leu Leu Asp Leu Asn Pro Ala Ser Arg Ile Thr Ala 545 550 555 560 Glu Glu Ala Leu Leu His Pro Phe Phe Lys Asp Met Ser Leu 565 570 72165PRTHomo sapiens 72Met Val Asn Pro Thr Val Phe Phe Asp Ile Ala Val Asp Gly Glu Pro 1 5 10 15 Leu Gly Arg Val Ser Phe Glu Leu Phe Ala Asp Lys Val Pro Lys Thr 20 25 30 Ala Glu Asn Phe Arg Ala Leu Ser Thr Gly Glu Lys Gly Phe Gly Tyr 35 40 45 Lys Gly Ser Cys Phe His Arg Ile Ile Pro Gly Phe Met Cys Gln Gly 50 55 60 Gly Asp Phe Thr Arg His Asn Gly Thr Gly Gly Lys Ser Ile Tyr Gly 65 70 75 80 Glu Lys Phe Glu Asp Glu Asn Phe Ile Leu Lys His Thr Gly Pro Gly 85 90 95 Ile Leu Ser Met Ala Asn Ala Gly Pro Asn Thr Asn Gly Ser Gln Phe 100 105 110 Phe Ile Cys Thr Ala Lys Thr Glu Trp Leu Asp Gly Lys His Val Val 115 120 125 Phe Gly Lys Val Lys Glu Gly Met Asn Ile Val Glu Ala Met Glu Arg 130 135 140 Phe Gly Ser Arg Asn Gly Lys Thr Ser Lys Lys Ile Thr Ile Ala Asp 145 150 155 160 Cys Gly Gln Leu Glu 165 731621PRTHomo sapiens 73Met Ala Lys Ser Gly Gly Cys Gly Ala Gly Ala Gly Val Gly Gly Gly 1 5 10 15 Asn Gly Ala Leu Thr Trp Val Asn Asn Ala Ala Lys Lys Glu Glu Ser 20 25 30 Glu Thr Ala Asn Lys Asn Asp Ser Ser Lys Lys Leu Ser Val Glu Arg 35 40 45 Val Tyr Gln Lys Lys Thr Gln Leu Glu His Ile Leu Leu Arg Pro Asp 50 55 60 Thr Tyr Ile Gly Ser Val Glu Pro Leu Thr Gln Phe Met Trp Val Tyr 65 70

75 80 Asp Glu Asp Val Gly Met Asn Cys Arg Glu Val Thr Phe Val Pro Gly 85 90 95 Leu Tyr Lys Ile Phe Asp Glu Ile Leu Val Asn Ala Ala Asp Asn Lys 100 105 110 Gln Arg Asp Lys Asn Met Thr Cys Ile Lys Val Ser Ile Asp Pro Glu 115 120 125 Ser Asn Ile Ile Ser Ile Trp Asn Asn Gly Lys Gly Ile Pro Val Val 130 135 140 Glu His Lys Val Glu Lys Val Tyr Val Pro Ala Leu Ile Phe Gly Gln 145 150 155 160 Leu Leu Thr Ser Ser Asn Tyr Asp Asp Asp Glu Lys Lys Val Thr Gly 165 170 175 Gly Arg Asn Gly Tyr Gly Ala Lys Leu Cys Asn Ile Phe Ser Thr Lys 180 185 190 Phe Thr Val Glu Thr Ala Cys Lys Glu Tyr Lys His Ser Phe Lys Gln 195 200 205 Thr Trp Met Asn Asn Met Met Lys Thr Ser Glu Ala Lys Ile Lys His 210 215 220 Phe Asp Gly Glu Asp Tyr Thr Cys Ile Thr Phe Gln Pro Asp Leu Ser 225 230 235 240 Lys Phe Lys Met Glu Lys Leu Asp Lys Asp Ile Val Ala Leu Met Thr 245 250 255 Arg Arg Ala Tyr Asp Leu Ala Gly Ser Cys Arg Gly Val Lys Val Met 260 265 270 Phe Asn Gly Lys Lys Leu Pro Val Asn Gly Phe Arg Ser Tyr Val Asp 275 280 285 Leu Tyr Val Lys Asp Lys Leu Asp Glu Thr Gly Val Ala Leu Lys Val 290 295 300 Ile His Glu Leu Ala Asn Glu Arg Trp Asp Val Cys Leu Thr Leu Ser 305 310 315 320 Glu Lys Gly Phe Gln Gln Ile Ser Phe Val Asn Ser Ile Ala Thr Thr 325 330 335 Lys Gly Gly Arg His Val Asp Tyr Val Val Asp Gln Val Val Gly Lys 340 345 350 Leu Ile Glu Val Val Lys Lys Lys Asn Lys Ala Gly Val Ser Val Lys 355 360 365 Pro Phe Gln Val Lys Asn His Ile Trp Val Phe Ile Asn Cys Leu Ile 370 375 380 Glu Asn Pro Thr Phe Asp Ser Gln Thr Lys Glu Asn Met Thr Leu Gln 385 390 395 400 Pro Lys Ser Phe Gly Ser Lys Cys Gln Leu Ser Glu Lys Phe Phe Lys 405 410 415 Ala Ala Ser Asn Cys Gly Ile Val Glu Ser Ile Leu Asn Trp Val Lys 420 425 430 Phe Lys Ala Gln Thr Gln Leu Asn Lys Lys Cys Ser Ser Val Lys Tyr 435 440 445 Ser Lys Ile Lys Gly Ile Pro Lys Leu Asp Asp Ala Asn Asp Ala Gly 450 455 460 Gly Lys His Ser Leu Glu Cys Thr Leu Ile Leu Thr Glu Gly Asp Ser 465 470 475 480 Ala Lys Ser Leu Ala Val Ser Gly Leu Gly Val Ile Gly Arg Asp Arg 485 490 495 Tyr Gly Val Phe Pro Leu Arg Gly Lys Ile Leu Asn Val Arg Glu Ala 500 505 510 Ser His Lys Gln Ile Met Glu Asn Ala Glu Ile Asn Asn Ile Ile Lys 515 520 525 Ile Val Gly Leu Gln Tyr Lys Lys Ser Tyr Asp Asp Ala Glu Ser Leu 530 535 540 Lys Thr Leu Arg Tyr Gly Lys Ile Met Ile Met Thr Asp Gln Asp Gln 545 550 555 560 Asp Gly Ser His Ile Lys Gly Leu Leu Ile Asn Phe Ile His His Asn 565 570 575 Trp Pro Ser Leu Leu Lys His Gly Phe Leu Glu Glu Phe Ile Thr Pro 580 585 590 Ile Val Lys Ala Ser Lys Asn Lys Gln Glu Leu Ser Phe Tyr Ser Ile 595 600 605 Pro Glu Phe Asp Glu Trp Lys Lys His Ile Glu Asn Gln Lys Ala Trp 610 615 620 Lys Ile Lys Tyr Tyr Lys Gly Leu Gly Thr Ser Thr Ala Lys Glu Ala 625 630 635 640 Lys Glu Tyr Phe Ala Asp Met Glu Arg His Arg Ile Leu Phe Arg Tyr 645 650 655 Ala Gly Pro Glu Asp Asp Ala Ala Ile Thr Leu Ala Phe Ser Lys Lys 660 665 670 Lys Ile Asp Asp Arg Lys Glu Trp Leu Thr Asn Phe Met Glu Asp Arg 675 680 685 Arg Gln Arg Arg Leu His Gly Leu Pro Glu Gln Phe Leu Tyr Gly Thr 690 695 700 Ala Thr Lys His Leu Thr Tyr Asn Asp Phe Ile Asn Lys Glu Leu Ile 705 710 715 720 Leu Phe Ser Asn Ser Asp Asn Glu Arg Ser Ile Pro Ser Leu Val Asp 725 730 735 Gly Phe Lys Pro Gly Gln Arg Lys Val Leu Phe Thr Cys Phe Lys Arg 740 745 750 Asn Asp Lys Arg Glu Val Lys Val Ala Gln Leu Ala Gly Ser Val Ala 755 760 765 Glu Met Ser Ala Tyr His His Gly Glu Gln Ala Leu Met Met Thr Ile 770 775 780 Val Asn Leu Ala Gln Asn Phe Val Gly Ser Asn Asn Ile Asn Leu Leu 785 790 795 800 Gln Pro Ile Gly Gln Phe Gly Thr Arg Leu His Gly Gly Lys Asp Ala 805 810 815 Ala Ser Pro Arg Tyr Ile Phe Thr Met Leu Ser Thr Leu Ala Arg Leu 820 825 830 Leu Phe Pro Ala Val Asp Asp Asn Leu Leu Lys Phe Leu Tyr Asp Asp 835 840 845 Asn Gln Arg Val Glu Pro Glu Trp Tyr Ile Pro Ile Ile Pro Met Val 850 855 860 Leu Ile Asn Gly Ala Glu Gly Ile Gly Thr Gly Trp Ala Cys Lys Leu 865 870 875 880 Pro Asn Tyr Asp Ala Arg Glu Ile Val Asn Asn Val Arg Arg Met Leu 885 890 895 Asp Gly Leu Asp Pro His Pro Met Leu Pro Asn Tyr Lys Asn Phe Lys 900 905 910 Gly Thr Ile Gln Glu Leu Gly Gln Asn Gln Tyr Ala Val Ser Gly Glu 915 920 925 Ile Phe Val Val Asp Arg Asn Thr Val Glu Ile Thr Glu Leu Pro Val 930 935 940 Arg Thr Trp Thr Gln Val Tyr Lys Glu Gln Val Leu Glu Pro Met Leu 945 950 955 960 Asn Gly Thr Asp Lys Thr Pro Ala Leu Ile Ser Asp Tyr Lys Glu Tyr 965 970 975 His Thr Asp Thr Thr Val Lys Phe Val Val Lys Met Thr Glu Glu Lys 980 985 990 Leu Ala Gln Ala Glu Ala Ala Gly Leu His Lys Val Phe Lys Leu Gln 995 1000 1005 Thr Thr Leu Thr Cys Asn Ser Met Val Leu Phe Asp His Met Gly 1010 1015 1020 Cys Leu Lys Lys Tyr Glu Thr Val Gln Asp Ile Leu Lys Glu Phe 1025 1030 1035 Phe Asp Leu Arg Leu Ser Tyr Tyr Gly Leu Arg Lys Glu Trp Leu 1040 1045 1050 Val Gly Met Leu Gly Ala Glu Ser Thr Lys Leu Asn Asn Gln Ala 1055 1060 1065 Arg Phe Ile Leu Glu Lys Ile Gln Gly Lys Ile Thr Ile Glu Asn 1070 1075 1080 Arg Ser Lys Lys Asp Leu Ile Gln Met Leu Val Gln Arg Gly Tyr 1085 1090 1095 Glu Ser Asp Pro Val Lys Ala Trp Lys Glu Ala Gln Glu Lys Ala 1100 1105 1110 Ala Glu Glu Asp Glu Thr Gln Asn Gln His Asp Asp Ser Ser Ser 1115 1120 1125 Asp Ser Gly Thr Pro Ser Gly Pro Asp Phe Asn Tyr Ile Leu Asn 1130 1135 1140 Met Ser Leu Trp Ser Leu Thr Lys Glu Lys Val Glu Glu Leu Ile 1145 1150 1155 Lys Gln Arg Asp Ala Lys Gly Arg Glu Val Asn Asp Leu Lys Arg 1160 1165 1170 Lys Ser Pro Ser Asp Leu Trp Lys Glu Asp Leu Ala Ala Phe Val 1175 1180 1185 Glu Glu Leu Asp Lys Val Glu Ser Gln Glu Arg Glu Asp Val Leu 1190 1195 1200 Ala Gly Met Ser Gly Lys Ala Ile Lys Gly Lys Val Gly Lys Pro 1205 1210 1215 Lys Val Lys Lys Leu Gln Leu Glu Glu Thr Met Pro Ser Pro Tyr 1220 1225 1230 Gly Arg Arg Ile Ile Pro Glu Ile Thr Ala Met Lys Ala Asp Ala 1235 1240 1245 Ser Lys Lys Leu Leu Lys Lys Lys Lys Gly Asp Leu Asp Thr Ala 1250 1255 1260 Ala Val Lys Val Glu Phe Asp Glu Glu Phe Ser Gly Ala Pro Val 1265 1270 1275 Glu Gly Ala Gly Glu Glu Ala Leu Thr Pro Ser Val Pro Ile Asn 1280 1285 1290 Lys Gly Pro Lys Pro Lys Arg Glu Lys Lys Glu Pro Gly Thr Arg 1295 1300 1305 Val Arg Lys Thr Pro Thr Ser Ser Gly Lys Pro Ser Ala Lys Lys 1310 1315 1320 Val Lys Lys Arg Asn Pro Trp Ser Asp Asp Glu Ser Lys Ser Glu 1325 1330 1335 Ser Asp Leu Glu Glu Thr Glu Pro Val Val Ile Pro Arg Asp Ser 1340 1345 1350 Leu Leu Arg Arg Ala Ala Ala Glu Arg Pro Lys Tyr Thr Phe Asp 1355 1360 1365 Phe Ser Glu Glu Glu Asp Asp Asp Ala Asp Asp Asp Asp Asp Asp 1370 1375 1380 Asn Asn Asp Leu Glu Glu Leu Lys Val Lys Ala Ser Pro Ile Thr 1385 1390 1395 Asn Asp Gly Glu Asp Glu Phe Val Pro Ser Asp Gly Leu Asp Lys 1400 1405 1410 Asp Glu Tyr Thr Phe Ser Pro Gly Lys Ser Lys Ala Thr Pro Glu 1415 1420 1425 Lys Ser Leu His Asp Lys Lys Ser Gln Asp Phe Gly Asn Leu Phe 1430 1435 1440 Ser Phe Pro Ser Tyr Ser Gln Lys Ser Glu Asp Asp Ser Ala Lys 1445 1450 1455 Phe Asp Ser Asn Glu Glu Asp Ser Ala Ser Val Phe Ser Pro Ser 1460 1465 1470 Phe Gly Leu Lys Gln Thr Asp Lys Val Pro Ser Lys Thr Val Ala 1475 1480 1485 Ala Lys Lys Gly Lys Pro Ser Ser Asp Thr Val Pro Lys Pro Lys 1490 1495 1500 Arg Ala Pro Lys Gln Lys Lys Val Val Glu Ala Val Asn Ser Asp 1505 1510 1515 Ser Asp Ser Glu Phe Gly Ile Pro Lys Lys Thr Thr Thr Pro Lys 1520 1525 1530 Gly Lys Gly Arg Gly Ala Lys Lys Arg Lys Ala Ser Gly Ser Glu 1535 1540 1545 Asn Glu Gly Asp Tyr Asn Pro Gly Arg Lys Thr Ser Lys Thr Thr 1550 1555 1560 Ser Lys Lys Pro Lys Lys Thr Ser Phe Asp Gln Asp Ser Asp Val 1565 1570 1575 Asp Ile Phe Pro Ser Asp Phe Pro Thr Glu Pro Pro Ser Leu Pro 1580 1585 1590 Arg Thr Gly Arg Ala Arg Lys Glu Val Lys Tyr Phe Ala Glu Ser 1595 1600 1605 Asp Glu Glu Glu Asp Asp Val Asp Phe Ala Met Phe Asn 1610 1615 1620 74309PRTHomo sapiens 74Met Asp Asp Lys Ala Phe Thr Lys Glu Leu Asp Gln Trp Val Glu Gln 1 5 10 15 Leu Asn Glu Cys Lys Gln Leu Asn Glu Asn Gln Val Arg Thr Leu Cys 20 25 30 Glu Lys Ala Lys Glu Ile Leu Thr Lys Glu Ser Asn Val Gln Glu Val 35 40 45 Arg Cys Pro Val Thr Val Cys Gly Asp Val His Gly Gln Phe His Asp 50 55 60 Leu Met Glu Leu Phe Arg Ile Gly Gly Lys Ser Pro Asp Thr Asn Tyr 65 70 75 80 Leu Phe Met Gly Asp Tyr Val Asp Arg Gly Tyr Tyr Ser Val Glu Thr 85 90 95 Val Thr Leu Leu Val Ala Leu Lys Val Arg Tyr Pro Glu Arg Ile Thr 100 105 110 Ile Leu Arg Gly Asn His Glu Ser Arg Gln Ile Thr Gln Val Tyr Gly 115 120 125 Phe Tyr Asp Glu Cys Leu Arg Lys Tyr Gly Asn Ala Asn Val Trp Lys 130 135 140 Tyr Phe Thr Asp Leu Phe Asp Tyr Leu Pro Leu Thr Ala Leu Val Asp 145 150 155 160 Gly Gln Ile Phe Cys Leu His Gly Gly Leu Ser Pro Ser Ile Asp Thr 165 170 175 Leu Asp His Ile Arg Ala Leu Asp Arg Leu Gln Glu Val Pro His Glu 180 185 190 Gly Pro Met Cys Asp Leu Leu Trp Ser Asp Pro Asp Asp Arg Gly Gly 195 200 205 Trp Gly Ile Ser Pro Arg Gly Ala Gly Tyr Thr Phe Gly Gln Asp Ile 210 215 220 Ser Glu Thr Phe Asn His Ala Asn Gly Leu Thr Leu Val Ser Arg Ala 225 230 235 240 His Gln Leu Val Met Glu Gly Tyr Asn Trp Cys His Asp Arg Asn Val 245 250 255 Val Thr Ile Phe Ser Ala Pro Asn Tyr Cys Tyr Arg Cys Gly Asn Gln 260 265 270 Ala Ala Ile Met Glu Leu Asp Asp Thr Leu Lys Tyr Ser Phe Leu Gln 275 280 285 Phe Asp Pro Ala Pro Arg Arg Gly Glu Pro His Val Thr Arg Arg Thr 290 295 300 Pro Asp Tyr Phe Leu 305 75309PRTHomo sapiens 75Met Asp Asp Lys Ala Phe Thr Lys Glu Leu Asp Gln Trp Val Glu Gln 1 5 10 15 Leu Asn Glu Cys Lys Gln Leu Asn Glu Asn Gln Val Arg Thr Leu Cys 20 25 30 Glu Lys Ala Lys Glu Ile Leu Thr Lys Glu Ser Asn Val Gln Glu Val 35 40 45 Arg Cys Pro Val Thr Val Cys Gly Asp Val His Gly Gln Phe His Asp 50 55 60 Leu Met Glu Leu Phe Arg Ile Gly Gly Lys Ser Pro Asp Thr Asn Tyr 65 70 75 80 Leu Phe Met Gly Asp Tyr Val Asp Arg Gly Tyr Tyr Ser Val Glu Thr 85 90 95 Val Thr Leu Leu Val Ala Leu Lys Val Arg Tyr Pro Glu Arg Ile Thr 100 105 110 Ile Leu Arg Gly Asn His Glu Ser Arg Gln Ile Thr Gln Val Tyr Gly 115 120 125 Phe Tyr Asp Glu Cys Leu Arg Lys Tyr Gly Asn Ala Asn Val Trp Lys 130 135 140 Tyr Phe Thr Asp Leu Phe Asp Tyr Leu Pro Leu Thr Ala Leu Val Asp 145 150 155 160 Gly Gln Ile Phe Cys Leu His Gly Gly Leu Ser Pro Ser Ile Asp Thr 165 170 175 Leu Asp His Ile Arg Ala Leu Asp Arg Leu Gln Glu Val Pro His Glu 180 185 190 Gly Pro Met Cys Asp Leu Leu Trp Ser Asp Pro Asp Asp Arg Gly Gly 195 200 205 Trp Gly Ile Ser Pro Arg Gly Ala Gly Tyr Thr Phe Gly Gln Asp Ile 210 215 220 Ser Glu Thr Phe Asn His Ala Asn Gly Leu Thr Leu Val Ser Arg Ala 225 230 235 240 His Gln Leu Val Met Glu Gly Tyr Asn Trp Cys His Asp Arg Asn Val 245 250 255 Val Thr Ile Phe Ser Ala Pro Asn Tyr Cys Tyr Arg Cys Gly Asn Gln 260 265 270 Ala Ala Ile Met Glu Leu Asp Asp Thr Leu Lys Tyr Ser Phe Leu Gln 275 280 285 Phe Asp Pro Ala Pro Arg Arg Gly Glu Pro His Val Thr Arg Arg Thr 290 295 300 Pro Asp Tyr Phe Leu 305 76443PRTHomo sapiens 76Met Ala Ala Ser Pro His Thr Leu Ser Ser Arg Leu Leu Thr Gly Cys 1 5 10 15 Val Gly Gly Ser Val Trp Tyr Leu Glu Arg Arg Thr Ile Gln Asp Ser 20 25 30 Pro His Lys Phe Leu His Leu Leu Arg Asn Val Asn Lys Gln Trp Ile 35 40 45 Thr Phe Gln His Phe Ser Phe Leu Lys Arg Met Tyr Val Thr Gln Leu 50 55 60 Asn Arg Ser His Asn Gln Gln Val Arg Pro Lys Pro Glu Pro Val Ala 65 70 75 80 Ser Pro Phe Leu Glu Lys Thr Ser Ser Gly Gln Ala Lys Ala Glu Ile 85 90 95 Tyr Glu Met Arg Pro Leu Ser Pro Pro Ser Leu

Ser Leu Ser Arg Lys 100 105 110 Pro Asn Glu Lys Glu Leu Ile Glu Leu Glu Pro Asp Ser Val Ile Glu 115 120 125 Asp Ser Ile Asp Val Gly Lys Glu Thr Lys Glu Glu Lys Arg Trp Lys 130 135 140 Glu Met Lys Leu Gln Val Tyr Asp Leu Pro Gly Ile Leu Ala Arg Leu 145 150 155 160 Ser Lys Ile Lys Leu Thr Ala Leu Val Val Ser Thr Thr Ala Ala Gly 165 170 175 Phe Ala Leu Ala Pro Gly Pro Phe Asp Trp Pro Cys Phe Leu Leu Thr 180 185 190 Ser Val Gly Thr Gly Leu Ala Ser Cys Ala Ala Asn Ser Ile Asn Gln 195 200 205 Phe Phe Glu Val Pro Phe Asp Ser Asn Met Asn Arg Thr Lys Asn Arg 210 215 220 Pro Leu Val Arg Gly Gln Ile Ser Pro Leu Leu Ala Val Ser Phe Ala 225 230 235 240 Thr Cys Cys Ala Val Pro Gly Val Ala Ile Leu Thr Leu Gly Val Asn 245 250 255 Pro Leu Thr Gly Ala Leu Gly Leu Phe Asn Ile Phe Leu Tyr Thr Cys 260 265 270 Cys Tyr Thr Pro Leu Lys Arg Ile Ser Ile Ala Asn Thr Trp Val Gly 275 280 285 Ala Val Val Gly Ala Ile Pro Pro Val Met Gly Trp Thr Ala Ala Thr 290 295 300 Gly Ser Leu Asp Ala Gly Ala Phe Leu Leu Gly Gly Ile Leu Tyr Ser 305 310 315 320 Trp Gln Phe Pro His Phe Asn Ala Leu Ser Trp Gly Leu Arg Glu Asp 325 330 335 Tyr Ser Arg Gly Gly Tyr Cys Met Met Ser Val Thr His Pro Gly Leu 340 345 350 Cys Arg Arg Val Ala Leu Arg His Cys Leu Ala Leu Leu Val Leu Ser 355 360 365 Ala Ala Ala Pro Val Leu Asp Ile Thr Thr Trp Thr Phe Pro Ile Met 370 375 380 Ala Leu Pro Ile Asn Ala Tyr Ile Ser Tyr Leu Gly Phe Arg Phe Tyr 385 390 395 400 Val Asp Ala Asp Arg Arg Ser Ser Arg Arg Leu Phe Phe Cys Ser Leu 405 410 415 Trp His Leu Pro Leu Leu Leu Leu Leu Met Leu Thr Cys Lys Arg Pro 420 425 430 Ser Gly Gly Gly Asp Ala Gly Pro Pro Pro Ser 435 440 77355PRTHomo sapiens 77Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe 1 5 10 15 Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe 20 25 30 Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly 35 40 45 Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg 50 55 60 Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp 65 70 75 80 Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys 85 90 95 Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu Ser Gly Phe 100 105 110 Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr 115 120 125 Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala 130 135 140 Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Leu 145 150 155 160 Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp 165 170 175 Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu 180 185 190 Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu 195 200 205 Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly Ile Ile Lys 210 215 220 Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu 225 230 235 240 Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr Pro Tyr Asn 245 250 255 Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu 260 265 270 Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val 275 280 285 Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val 290 295 300 Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val 305 310 315 320 Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Leu 325 330 335 Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Leu Ser 340 345 350 Ala Gly Phe 355 78326PRTHomo sapiens 78Met Ala Ser Lys Val Ser Cys Leu Tyr Val Leu Thr Val Val Cys Trp 1 5 10 15 Ala Ser Ala Leu Trp Tyr Leu Ser Ile Thr Arg Pro Thr Ser Ser Tyr 20 25 30 Thr Gly Ser Lys Pro Phe Ser His Leu Thr Val Ala Arg Lys Asn Phe 35 40 45 Thr Phe Gly Asn Ile Arg Thr Arg Pro Ile Asn Pro His Ser Phe Glu 50 55 60 Phe Leu Ile Asn Glu Pro Asn Lys Cys Glu Lys Asn Ile Pro Phe Leu 65 70 75 80 Val Ile Leu Ile Ser Thr Thr His Lys Glu Phe Asp Ala Arg Gln Ala 85 90 95 Ile Arg Glu Thr Trp Gly Asp Glu Asn Asn Phe Lys Gly Ile Lys Ile 100 105 110 Ala Thr Leu Phe Leu Leu Gly Lys Asn Ala Asp Pro Val Leu Asn Gln 115 120 125 Met Val Glu Gln Glu Ser Gln Ile Phe His Asp Ile Ile Val Glu Asp 130 135 140 Phe Ile Asp Ser Tyr His Asn Leu Thr Leu Lys Thr Leu Met Gly Met 145 150 155 160 Arg Trp Val Ala Thr Phe Cys Ser Lys Ala Lys Tyr Val Met Lys Thr 165 170 175 Asp Ser Asp Ile Phe Val Asn Met Asp Asn Leu Ile Tyr Lys Leu Leu 180 185 190 Lys Pro Ser Thr Lys Pro Arg Arg Arg Tyr Phe Thr Gly Tyr Val Ile 195 200 205 Asn Gly Gly Pro Ile Arg Asp Val Arg Ser Lys Trp Tyr Met Pro Arg 210 215 220 Asp Leu Tyr Pro Asp Ser Asn Tyr Pro Pro Phe Cys Ser Gly Thr Gly 225 230 235 240 Tyr Ile Phe Ser Ala Asp Val Ala Glu Leu Ile Tyr Lys Thr Ser Leu 245 250 255 His Thr Arg Leu Leu His Leu Glu Asp Val Tyr Val Gly Leu Cys Leu 260 265 270 Arg Lys Leu Gly Ile His Pro Phe Gln Asn Ser Gly Phe Asn His Trp 275 280 285 Lys Met Ala Tyr Ser Leu Cys Arg Tyr Arg Arg Val Ile Thr Val His 290 295 300 Gln Ile Ser Pro Glu Glu Met His Arg Ile Trp Asn Asp Met Ser Ser 305 310 315 320 Lys Lys His Leu Arg Cys 325 79581PRTHomo sapiens 79Met Gly Glu Lys Met Ala Glu Glu Glu Arg Phe Pro Asn Thr Thr His 1 5 10 15 Glu Gly Phe Asn Val Thr Leu His Thr Thr Leu Val Val Thr Thr Lys 20 25 30 Leu Val Leu Pro Thr Pro Gly Lys Pro Ile Leu Pro Val Gln Thr Gly 35 40 45 Glu Gln Ala Gln Gln Glu Glu Gln Ser Ser Gly Met Thr Ile Phe Phe 50 55 60 Ser Leu Leu Val Leu Ala Ile Cys Ile Ile Leu Val His Leu Leu Ile 65 70 75 80 Arg Tyr Arg Leu His Phe Leu Pro Glu Ser Val Ala Val Val Ser Leu 85 90 95 Gly Ile Leu Met Gly Ala Val Ile Lys Ile Ile Glu Phe Lys Lys Leu 100 105 110 Ala Asn Trp Lys Glu Glu Glu Met Phe Arg Pro Asn Met Phe Phe Leu 115 120 125 Leu Leu Leu Pro Pro Ile Ile Phe Glu Ser Gly Tyr Ser Leu His Lys 130 135 140 Gly Asn Phe Phe Gln Asn Ile Gly Ser Ile Thr Leu Phe Ala Val Phe 145 150 155 160 Gly Thr Ala Ile Ser Ala Phe Val Val Gly Gly Gly Ile Tyr Phe Leu 165 170 175 Gly Gln Ala Asp Val Ile Ser Lys Leu Asn Met Thr Asp Ser Phe Ala 180 185 190 Phe Gly Ser Leu Ile Ser Ala Val Asp Pro Val Ala Thr Ile Ala Ile 195 200 205 Phe Asn Ala Leu His Val Asp Pro Val Leu Asn Met Leu Val Phe Gly 210 215 220 Glu Ser Ile Leu Asn Asp Ala Val Ser Ile Val Leu Thr Asn Thr Ala 225 230 235 240 Glu Gly Leu Thr Arg Lys Asn Met Ser Asp Val Ser Gly Trp Gln Thr 245 250 255 Phe Leu Gln Ala Leu Asp Tyr Phe Leu Lys Met Phe Phe Gly Ser Ala 260 265 270 Ala Leu Gly Thr Leu Thr Gly Leu Ile Ser Ala Leu Val Leu Lys His 275 280 285 Ile Asp Leu Arg Lys Thr Pro Ser Leu Glu Phe Gly Met Met Ile Ile 290 295 300 Phe Ala Tyr Leu Pro Tyr Gly Leu Ala Glu Gly Ile Ser Leu Ser Gly 305 310 315 320 Ile Met Ala Ile Leu Phe Ser Gly Ile Val Met Ser His Tyr Thr His 325 330 335 His Asn Leu Ser Pro Val Thr Gln Ile Leu Met Gln Gln Thr Leu Arg 340 345 350 Thr Val Ala Phe Leu Cys Glu Thr Cys Val Phe Ala Phe Leu Gly Leu 355 360 365 Ser Ile Phe Ser Phe Pro His Lys Phe Glu Ile Ser Phe Val Ile Trp 370 375 380 Cys Ile Val Leu Val Leu Phe Gly Arg Ala Val Asn Ile Phe Pro Leu 385 390 395 400 Ser Tyr Leu Leu Asn Phe Phe Arg Asp His Lys Ile Thr Pro Lys Met 405 410 415 Met Phe Ile Met Trp Phe Ser Gly Leu Arg Gly Ala Ile Pro Tyr Ala 420 425 430 Leu Ser Leu His Leu Asp Leu Glu Pro Met Glu Lys Arg Gln Leu Ile 435 440 445 Gly Thr Thr Thr Ile Val Ile Val Leu Phe Thr Ile Leu Leu Leu Gly 450 455 460 Gly Ser Thr Met Pro Leu Ile Arg Leu Met Asp Ile Glu Asp Ala Lys 465 470 475 480 Ala His Arg Arg Asn Lys Lys Asp Val Asn Leu Ser Lys Thr Glu Lys 485 490 495 Met Gly Asn Thr Val Glu Ser Glu His Leu Ser Glu Leu Thr Glu Glu 500 505 510 Glu Tyr Glu Ala His Tyr Ile Arg Arg Gln Asp Leu Lys Gly Phe Val 515 520 525 Trp Leu Asp Ala Lys Tyr Leu Asn Pro Phe Phe Thr Arg Arg Leu Thr 530 535 540 Gln Glu Asp Leu His His Gly Arg Ile Gln Met Lys Thr Leu Thr Asn 545 550 555 560 Lys Trp Tyr Glu Glu Val Arg Gln Gly Pro Ser Gly Ser Glu Asp Asp 565 570 575 Glu Gln Glu Leu Leu 580 80342PRTHomo sapiens 80Met Ala Glu His Asp Tyr His Glu Asp Tyr Gly Phe Ser Ser Phe Asn 1 5 10 15 Asp Ser Ser Gln Glu Glu His Gln Asp Phe Leu Gln Phe Ser Lys Val 20 25 30 Phe Leu Pro Cys Met Tyr Leu Val Val Phe Val Cys Gly Leu Val Gly 35 40 45 Asn Ser Leu Val Leu Val Ile Ser Ile Phe Tyr His Lys Leu Gln Ser 50 55 60 Leu Thr Asp Val Phe Leu Val Asn Leu Pro Leu Ala Asp Leu Val Phe 65 70 75 80 Val Cys Thr Leu Pro Phe Trp Ala Tyr Ala Gly Ile His Glu Trp Val 85 90 95 Phe Gly Gln Val Met Cys Lys Ser Leu Leu Gly Ile Tyr Thr Ile Asn 100 105 110 Phe Tyr Thr Ser Met Leu Ile Leu Thr Cys Ile Thr Val Asp Arg Phe 115 120 125 Ile Val Val Val Lys Ala Thr Lys Ala Tyr Asn Gln Gln Ala Lys Arg 130 135 140 Met Thr Trp Gly Lys Val Thr Ser Leu Leu Ile Trp Val Ile Ser Leu 145 150 155 160 Leu Val Ser Leu Pro Gln Ile Ile Tyr Gly Asn Val Phe Asn Leu Asp 165 170 175 Lys Leu Ile Cys Gly Tyr His Asp Glu Ala Ile Ser Thr Val Val Leu 180 185 190 Ala Thr Gln Met Thr Leu Gly Phe Phe Leu Pro Leu Leu Thr Met Ile 195 200 205 Val Cys Tyr Ser Val Ile Ile Lys Thr Leu Leu His Ala Gly Gly Phe 210 215 220 Gln Lys His Arg Ser Leu Lys Ile Ile Phe Leu Val Met Ala Val Phe 225 230 235 240 Leu Leu Thr Gln Met Pro Phe Asn Leu Met Lys Phe Ile Arg Ser Thr 245 250 255 His Trp Glu Tyr Tyr Ala Met Thr Ser Phe His Tyr Thr Ile Met Val 260 265 270 Thr Glu Ala Ile Ala Tyr Leu Arg Ala Cys Leu Asn Pro Val Leu Tyr 275 280 285 Ala Phe Val Ser Leu Lys Phe Arg Lys Asn Phe Trp Lys Leu Val Lys 290 295 300 Asp Ile Gly Cys Leu Pro Tyr Leu Gly Val Ser His Gln Trp Lys Ser 305 310 315 320 Ser Glu Asp Asn Ser Lys Thr Phe Ser Ala Ser His Asn Val Glu Ala 325 330 335 Thr Ser Met Phe Gln Leu 340 8119DNAArtificialTarget Knock-Down sequence 81atgcagtgcc tctcggatc 198219DNAArtificialTarget Knock-Down sequence 82tggcacctat ggacaagtc 198319DNAArtificialTarget Knock-Down sequence 83ctgtttgcag tggctgtcc 198419DNAArtificialTarget Knock-Down sequence 84tgcagtgacg gatctaagc 198519DNAArtificialTarget Knock-Down sequence 85catgttctcc acaaggagc 198619DNAArtificialTarget Knock-Down sequence 86catgttcgcc agcggcttc 198719DNAArtificialTarget Knock-Down sequence 87gtggtcagct aaaggaatc 198819DNAArtificialTarget Knock-Down sequence 88gaagctgcgg cacaaacac 198919DNAArtificialTarget Knock-Down sequence 89agaaatggcg accaaacac 199019DNAArtificialTarget Knock-Down sequence 90agcatgaggg ttaaagtgc 199119DNAArtificialTarget Knock-Down sequence 91ctgcagtgct ttatcggac 199219DNAArtificialTarget Knock-Down sequence 92ttccttgtct ggaagctgc 199319DNAArtificialTarget Knock-Down sequence 93gatccttggt gactcaggc 199419DNAArtificialTarget Knock-Down sequence 94agctcagaat gacctagac 199519DNAArtificialTarget Knock-Down sequence 95gcagtggctc aaagagacc 199619DNAArtificialTarget Knock-Down sequence 96catctgcacc tatcacccc 199719DNAArtificialTarget Knock-Down sequence 97tggctaagag atccatctc 199819DNAArtificialTarget knock-down sequence 98atgaactctg tgatccagc 199919DNAArtificialTarget Knock-Down sequence 99ttcagtgcct aacagtggc 1910019DNAArtificialTarget knock-down sequence 100gcatgaatat tgtggaggc 1910119DNAArtificialTarget knock-down sequence 101agcatgatga tagttcctc 1910219DNAArtificialTarget knock-down sequence 102tgtgcaagag gttcgttgc 1910319DNAArtificialTarget knock-down sequence 103tgcatgatgt cggtcaccc

1910419DNAArtificialTarget knock-down sequence 104agcctacgag agtggaagc 1910519DNAArtificialTarget knock-down sequence 105agtttgtgta ggtatcgcc 1910619DNAArtificialTarget knock-down sequence 106tgttctttgg ctctgcagc 1910719DNAArtificialTarget knock-down sequence 107cttctacacg tccatgctc 1910812RNAArtificialLoop region 108guuugcuaua ac 12


Patent applications by Nick Ernest Rene Vandeghinste, Mechelen BE

Patent applications by Reginald Christophe Xavier Brys, Mechelen BE

Patent applications in class Antisense or RNA interference

Patent applications in all subclasses Antisense or RNA interference


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
People who visited this patent also read:
Patent application numberTitle
20210301581DEVICE SYSTEM AND SOUND QUALITY CONTROL METHOD
20210301580VEHICLE OPERATION DETECTION DEVICE AND VEHICLE OPERATION DETECTION METHOD
20210301579DEVICE HAVING COMPONENTS WHICH ARE MOVABLE WITH RESPECT TO ONE ANOTHER
20210301578REFRIGERATOR AND CONTROL METHOD FOR REFRIGERATOR
20210301577SYSTEMS AND METHODS FOR OPERATING A POWER TAILGATE SYSTEM
Images included with this patent application:
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and imageMOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL     IN THE TREATMENT OF BONE AND JOINT DEGENERATIVE DISEASES diagram and image
Similar patent applications:
DateTitle
2014-05-15Mutation mimicking compounds that bind to the kinase domain of egfr
2014-05-15Enema composition for treatment of ulcerative colitis having long term stability
2014-05-15Pantothenate derivatives for the treatment of neurologic disorders
2014-05-15Aqueous volatile organic compound free disinfectant and/or cleaning composition and method of preparation
2014-05-08Polycyclic compounds and methods related thereto
New patent applications in this class:
DateTitle
2022-05-05Kit, device, and method for detecting uterine leiomyosarcoma
2022-05-05Prevention or treatment of fibrotic disease
2022-05-05Compositions for suppressing trim28 and uses thereof
2022-05-05Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment
2022-05-05Anti-mirna carrier conjugated with a peptide binding to a cancer cell surface protein and use thereof
New patent applications from these inventors:
DateTitle
2022-09-22Novel compounds and pharmaceutical compositions thereof for the treatment of inflammatory disorders
2022-07-14Novel compounds and pharmaceutical compositions thereof for the treatment of inflammatory disorders
2022-06-30Novel compounds and pharmaceutical compositions thereof for the treatment of kidney diseases
2016-10-13Aminotriazolopyridine for use in the treatment of inflammation, and pharmaceutical compositions thereof
2015-11-19Screening methods to identify compounds useful in the prevention and/or treatment of inflammatory conditions
Top Inventors for class "Drug, bio-affecting and body treating compositions"
RankInventor's name
1Anthony W. Czarnik
2Ulrike Wachendorff-Neumann
3Ken Chow
4John E. Donello
5Rajinder Singh
Website © 2025 Advameg, Inc.