Patent application title: HUMAN TIMP-1 ANTIBODIES
Inventors:
Clark Pan (Sudbury, MA, US)
Andreas M. Knorr (Erkrath, DE)
Michael Schauer (Wuppertal, DE)
Claudia Hirth-Dietrich (Wuppertal, DE)
Sabine Kraft (Planegg, DE)
Barbara Krebs (Bergisch Gladbach, DE)
IPC8 Class: AC07K1638FI
USPC Class:
4241391
Class name: Drug, bio-affecting and body treating compositions immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material binds antigen or epitope whose amino acid sequence is disclosed in whole or in part (e.g., binds specifically-identified amino acid sequence, etc.)
Publication date: 2013-11-14
Patent application number: 20130302340
Abstract:
Human antibodies that bind to TIMP-1 can be used as reagents to diagnose
and treat disorders in which TIMP-1 is elevated, such as liver fibrosis,
alcoholic liver disease, cardiac fibrosis, acute coronary syndrome, lupus
nephritis, glomerulosclerotic renal disease, benign prostate hypertrophy,
colon cancer, lung cancer, and idiopathic pulmonary fibrosis.Claims:
1. A method of ameliorating symptoms of a disorder in which TIMP-1 is
elevated, comprising the step of: administering to a patient having the
disorder an effective amount of an antibody, wherein the antibody binds
to a tissue inhibitor of metalloprotease-1 (TIMP-1); neutralizes a matrix
metalloprotease (MMP)-inhibiting activity of the TIMP-1; and comprises: a
VHCDR1 region comprising an amino acid sequence as set forth in SEQ ID
NO:356; a VHCDR2 region comprising an amino acid sequence as set forth in
SEQ ID NO:358; a VHCDR3 region comprising an amino acid sequence as set
forth in SEQ ID NO:3; a VLCDR1 region comprising an amino acid sequence
as set forth in SEQ ID NO:363; a VLCDR2 region comprising an amino acid
sequence as set forth in SEQ ID NO:364; and a VLCDR3 region comprising an
amino acid sequence as set forth in SEQ ID NO:365, wherein the disorder
is liver fibrosis.
2. The method of claim 1, wherein the MMP is human MMP-1.
3. The method of claim 1, wherein the TIMP-1 is a human TIMP-1.
4. A method of ameliorating symptoms of a disorder in which TIMP-1 is elevated, comprising the step of: administering to a patient having the disorder an effective amount of a composition comprising a human purified antibody which (1) binds to a TIMP-1; (2) neutralizes an MMP-inhibiting activity of the TIMP-1; and (3) comprises a VHCDR1 region comprising an amino acid sequence as set forth in SEQ ID NO:356; a VHCDR2 region comprising an amino acid sequence as set forth in SEQ ID NO:358; a VHCDR3 region comprising an amino acid sequence as set forth in SEQ ID NO:3; a VLCDR1 region comprising an amino acid sequence as set forth in SEQ ID NO:363; a VLCDR2 region comprising an amino acid sequence as set forth in SEQ ID NO:364; and a VLCDR3 region comprising an amino acid sequence as set forth in SEQ ID NO:365; and a pharmaceutically acceptable carrier, wherein the disorder is liver fibrosis.
5. The method of claim 4, wherein the MMP is human MMP-1.
6. The method of claim 4, wherein the TIMP-1 is a human TIMP-1.
Description:
[0001] Under 35 USC §120, this application is a continuation
application of U.S. patent application Ser. No. 13/174,510, filed Jun.
30, 2011, which is a Divisional application of U.S. patent application
Ser. No. 12/195,286, filed Aug. 20, 2008, now issued as U.S. Pat. No.
7,993,849, which is a continuation application of U.S. patent application
Ser. No. 11/504,527, filed Aug. 14, 2006, now issued as U.S. Pat. No.
7,432,364, which is a continuation application of U.S. patent application
Ser. No. 10/128,520, filed Apr. 24, 2002, now issued as U.S. Pat. No.
7,091,323, which claims the benefit under 35 USC §119(e) to U.S.
Patent Application Ser. No. 60/285,683 filed Apr. 24, 2001. The
disclosure of each of the prior applications is considered part of and is
incorporated by reference in the disclosure of this application.
[0002] This application incorporates by reference the sequence listing entitled "Human TIMP-1 Antibodies," which is part of the application.
FIELD OF THE INVENTION
[0003] The invention relates to TIMP-1-binding human antibodies.
BACKGROUND OF THE INVENTION
[0004] Tissue inhibitors of metalloproteases (TIMPs) inhibit metalloproteases, a family of endopeptide hydrolases. Metalloproteases are secreted by connective tissue and hematopoietic cells, use Zn2+ or Ca2+ for catalysis, and may be inactivated by metal chelators as well as TIMP molecules. Matrix metalloproteases (MMPs) participate in a variety of biologically important processes, including the degradation of many structural components of tissues, particularly the extracellular matrix (ECM).
[0005] Degradation of extracellular matrix tissue is desirable in processes where destruction of existing tissues is necessary, e.g., in embryo implantation (Reponen et al., Dev. Dyn. 202, 388-96, 1995), embryogenesis, and tissue remodeling. Imbalance between synthesis and degradation of matrix proteins, however, can result in diseases such as liver fibrosis (Iredale et al., Hepatology 24, 176-84, 1996). This imbalance can occur, for example, if levels of TIMPs are increased. Disorders in which TIMP-1 levels of increased include, for example, liver fibrosis, alcoholic liver disease, cardiac fibrosis, acute coronary syndrome, lupus nephritis, glomerulosclerotic renal disease, idiopathic pulmonary fibrosis, benign prostate hypertrophy, lung cancer, and colon cancer. See, e.g., Inokubo et al., Am. Heart J. 141, 211-17, 2001; Ylisirnio et al., Anticancer Res. 20, 1311-16, 2000; Holten-Andersen et al., Clin. Cancer Res. 6, 4292-99, 2000; Holten-Andersen et al., Br. J. Cancer 80, 495-503, 1999; Peterson et al., Cardiovascular Res. 46, 307-15, 2000; Arthur et al., Alcoholism: Clinical and Experimental Res. 23, 840-43, 1999; Iredale et al., Hepatol. 24, 176-84, 1996.
[0006] There is a need in the art for reagents and methods of inhibiting TIMP-1 activity, which can be used to provide therapeutic effects.
BRIEF SUMMARY OF THE INVENTION
[0007] It is an object of the present invention to provide reagents and methods of inhibiting TIMP-1 activity. This and other objects of the invention are provided by one or more of the embodiments described below.
[0008] One embodiment of the invention is a purified preparation of a human antibody, wherein the antibody binds to a tissue inhibitor of metalloprotease-1 (TIMP-1) and neutralizes a matrix metalloprotease (MMP)-inhibiting activity of the TIMP-1.
[0009] Another embodiment of the invention is a purified preparation of a first human antibody which comprises a VHCDR3 region comprising an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360.
[0010] Still another embodiment of the invention is a purified preparation of a first human antibody which comprises a VLCDR3 region comprising an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379.
[0011] Yet another embodiment of the invention is a purified preparation of a first human antibody which has TIMP-1 binding and MMP-inhibiting activity characteristics of a second human antibody. The second antibody comprises a VHCDR3 and VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS: 27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.
[0012] Even another embodiment of the invention is a purified preparation of a human antibody comprising a VHCDR3 and VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS: 27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.
[0013] A further embodiment of the invention is a purified preparation of a human antibody which comprises a heavy chain and a light chain amino acid pair selected from the group consisting of SEQ ID NOS:140 and 97, SEQ ID NOS:141 and 98, SEQ ID NOS:142 and 99, SEQ ID NOS:143 and 100, SEQ ID NOS:144 and 101, SEQ ID NOS:145 and 102, SEQ ID NOS:146 and 103, SEQ ID NOS:142 and 97, SEQ ID NOS:142 and 98, SEQ ID NOS:142 and 100, SEQ ID NOS:142 and 101, SEQ ID NOS:142 and 102, SEQ ID NOS:142 and 103, SEQ ID NOS:146 and 97, SEQ ID NOS:146 and 98, SEQ ID NO:146 and 100, SEQ ID NOS:146 and 101, SEQ ID NOS:148 and 104, SEQ ID NOS:148 and 105, SEQ ID NOS:149 and 106, SEQ ID NOS:150 and 107, SEQ ID NOS:151 and 108, SEQ ID NOS:152 and 109, SEQ ID NOS:153 and 110, SEQ ID NOS:154 and 111, SEQ ID NOS:155 and 112, SEQ ID NOS:156 and 113, SEQ ID NOS:157 and 114, SEQ ID NOS:158 and 115, SEQ ID NOS:159 and 116, SEQ ID NOS:160 and 117, SEQ ID NOS:161 and 118, SEQ ID NOS:162 and 119, SEQ ID NOS:163 and 120, SEQ ID NOS:164 and 121, SEQ ID NOS:165 and 122, SEQ ID NOS:166 and 123, SEQ ID NOS:167 and 124, SEQ ID NOS:168 and 125, SEQ ID NOS:169 and 126, SEQ ID NOS:170 and 127, SEQ ID NOS:171 and 128, SEQ ID NOS:172 and 129, SEQ ID NOS:173 and 130, SEQ ID NOS:174 and 131, SEQ ID NOS:175 and 132, SEQ ID NOS:176 and 133, SEQ ID NOS:177 and 134, SEQ ID NOS:178 and 135, SEQ ID NOS:179 and 136, SEQ ID NOS:180 and 137, SEQ ID NOS:181 and 138, and SEQ ID NOS:182 and 139.
[0014] Another embodiment of the invention is a pharmaceutical composition comprising a human antibody and a pharmaceutically acceptable carrier. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
[0015] Yet another embodiment of the invention is a purified polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
[0016] Even another embodiment of the invention is a purified polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
[0017] Still another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
[0018] A further embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VHCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:227-269.
[0019] Another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
[0020] Yet another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VLCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:184-226.
[0021] Still another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182.
[0022] Even another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182. The heavy chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:269-311.
[0023] A further embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139.
[0024] Another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139. The light chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:312-354.
[0025] Yet another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
[0026] Yet another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VHCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:227-269.
[0027] Still another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
[0028] A further embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VLCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:184-226.
[0029] Another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182.
[0030] Still another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182. The heavy chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:269-311.
[0031] Yet another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139.
[0032] Even another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139. The light chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:312-354.
[0033] A further embodiment of the invention is a method of making a human antibody. The host cell of claim 43 is cultured under conditions whereby the antibody is expressed. The human antibody is purified from the host cell culture.
[0034] Another embodiment of the invention is a method of decreasing an MMP-inhibiting activity of a TIMP-1. The TIMP-1 is contacted with a human antibody that binds to the TIMP-1. The MMP-inhibiting activity of the TIMP-1 is decreased relative to MMP-inhibiting activity of the TIMP-1 in the absence of the antibody.
[0035] Still another embodiment of the invention is a method of ameliorating symptoms of a disorder in which TIMP-1 is elevated. An effective amount of a human antibody which neutralizes an MMP-inhibiting activity of the TIMP-1 is administered to a patient having the disorder. Symptoms of the disorder are thereby ameliorated.
[0036] A further embodiment of the invention is a method of detecting a TIMP-1 in a test preparation. The test preparation is contacted with a human antibody that specifically binds to the TIMP-1. The test preparation is assayed for the presence of an antibody-TIMP-1 complex.
[0037] Even another embodiment of the invention is a method to aid in diagnosing a disorder in which a TIMP-1 level is elevated. A sample from a patient suspected of having the disorder is contacted with a human antibody that binds to TIMP-1. The sample is assayed for the presence of an antibody-TIMP-1 complex. Detection of an amount of the complex which is greater than an amount of the complex in a normal sample identifies the patient as likely to have the disorder.
[0038] The invention thus provides human antibodies which bind to TIMP-1 and neutralize MMP-inhibiting activity of TIMP-1. These antibodies can be used, inter alia, in diagnostic and therapeutic methods.
BRIEF DESCRIPTION OF THE FIGURES
[0039] FIGS. 1A-1C. Protein sequences encoded by the HuCAL® VH and VL Fab master genes. Seven VH and VL sequences are aligned, and the approximate location of restriction endonuclease sites introduced into the corresponding DNA sequences are indicated. The numbering is according to VBASE except for the gap in V1 position 9. In VBASE the gap is set at position 10. See also Chothia et al. (1992) J. Mol. Biol. 227, 776-798, Tomlinson et al. (1995) EMBO J. 14, 4628-4638 and Williams et al. (1996) J. Mol. Biol. 264, 220-232).
[0040] FIGS. 2A-2C. Nucleotide sequences of the HuCAL® VH and VL Fab master genes.
[0041] FIG. 3. Fab display vector pMORPH® 18 Fab 1.
[0042] FIG. 4. Vector map of pMORPH® x9Fab1_FS.
[0043] FIG. 5. Sequence comparison between human and rat TIMP-1. Sequence regions in bold were used for peptide synthesis. Residues that make stronger direct contacts with MMP-3 are italicized, and residues that make weaker direct contacts with MMP-3 are underlined (Gomis-Ruth et al., 1997).
[0044] FIG. 6. Activity of MS-BW-3 in human TIMP-1/MMP-1 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM), and peptide substrate (final conc. 50 μM) and incubation for 1-3 h at 37° C. fluorescence at Ex320 nm/Em 430 nm was measured. IC50 was calculated as outlined in material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 27% MMP-1 activity (in absence of antibody) as reference values.
[0045] FIG. 7. Activity of MS-BW-44 in human TIMP-1/MMP-1 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM), and peptide substrate (final conc. 50 μM) and incubation for 1-3 h at 37° C. fluorescence at Ex320 nm/Em 430 nm was measured. IC50 was calculated as outlined in material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 25% MMP-1 activity (in absence of antibody) as reference values.
[0046] FIG. 8. Activity of MS-BW-44, -44-2, 44-6 in human TIMP-1/MMP-1 assay. Fab antibody fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 0.4 nM), MMP (final conc. 0.4 nM) and peptide substrate (final conc. 50 μM) and incubation for 7 h at 37° C. fluorescence at Ex320 nm/Em 430 nm was measured. IC50 was calculated as outlined in material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 55% MMP-1 activity (in absence of antibody) as reference values.
[0047] FIG. 9. Activity of MS-BW-44, -44-2-4, 44-6-1 in human TIMP-1/MMP-1 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 0.4 nM), MMP (final conc. 0.4 nM), and peptide substrate (final conc. 50 μM) and incubation for 7 h at 37° C. fluorescence at Ex320 nm/Em 430 nm was measured. IC50 was calculated as outlined in material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 50% MMP-1 activity (in absence of antibody) as reference values.
[0048] FIG. 10. Binding of Fab fragments to human TIMP-1, -2, -3 and -4. TIMP-1, -2, -3, -4 proteins were immobilized on an ELISA plate, and binding of purified Fab fragments was measured by incubation with alkaline phosphatase conjugated anti-Fab antibody (Dianova) followed by development with Attophos substrate (Roche) and measurement at Ex405 nm/Em535 nm.
[0049] FIG. 11. Activity of MS-BW-14, -17, -54 in rat TIMP-1/MMP-13 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM), and peptide substrate (to final conc. 50 μM) and incubation for 1-3 h at 37° C. fluorescence at Ex320 nm/Em 430 nm was measured. IC50 was calculated as outlined in material and methods section, using 100% MMP-13 (in absence of TIMP-1) activity and 20% MMP-13 activity (in absence of antibody) as reference values.
[0050] FIG. 12. Activity of MS-BW-14 Fab and IgG1 and MS-BW-3 IgG1 in rat TIMP-1/MMP-13 assay. Antibodies were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM) and peptide substrate (to final conc. 50 μM) and incubation for 1-3 h at 37° C., fluorescence at Ex320 nm/Em 430 nm was measured. IC50 was calculated as outlined in material and methods section, using 100% MMP-13 activity (in absence of TIMP-1) and 30% MMP-13 activity (in absence of antibody) as reference values.
[0051] FIG. 13. Activity of MS-BW-17-1 Fab and IgG1 in rat TIMP-1/MMP-13 assay. Fab antibody fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM) and peptide substrate (to final conc. 50 μM) and incubation for 1-3 h at 37° C. fluorescence at Ex320 nm/Em 430 nm was measured. IC50 was calculated as outlined in material and methods section, using 100% MMP-13 activity (in absence of TIMP-1) and 15% MMP-13 activity (in absence of antibody) as reference values.
[0052] FIG. 14. Effect of the inhibitory effect of MS-BW-17-1 TIMP-1 antibody on bleomycin-induced lung fibrotic collagen.
[0053] FIG. 15. Effect of anti-TIMP-1 antibody on fibrotic collagen as stained by Sirus Red in carbon tetrachloride-induced rat liver fibrosis model. Sirius Red-stained area as percent of total field in carbon tetrachloride-treated rats treated with PBS, control antibody, and MS-BW-14 anti-TIMP-1 antibody.
DETAILED DESCRIPTION OF THE INVENTION
[0054] The invention provides human antibodies that bind to TIMP-1. These antibodies are useful for a variety of therapeutic and diagnostic purposes.
Characteristics of Human TIMP-1 Antibodies
[0055] "Antibody" as used herein includes intact immunoglobulin molecules (e.g., IgG1, IgG2a, IgG2b, IgG3, IgM, IgD, IgE, IgA), as well as fragments thereof, such as Fab, F(ab')2, scFv, and Fv, which are capable of specific binding to an epitope of a human and/or rat TIMP-1 protein. Antibodies that specifically bind to TIMP-1 provide a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, antibodies that specifically bind to human and/or rat TIMP-1 do not detect other proteins in immunochemical assays and can immunoprecipitate the TIMP-1 from solution.
[0056] The Kd of human antibody binding to TIMP-1 can be assayed using any method known in the art, including technologies such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63, 2338-45, 1991, and Szabo et al., Curr. Opin. Struct. Biol. 5, 699-705, 1995). BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore®) Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
[0057] In a BIAcore® assay, some human antibodies of the invention specifically bind to human TIMP-1 with a Kd of about 0.1 nM to about 10 μM, about 2 nM to about 1 μM, about 2 nM to about 200 nM, about 2 nM to about 150 nM, about 50 nM to about 100 nM, about 0.2 nM to about 13 nM, about 0.2 nM to about 0.5 nM, about 2 nM to about 13 nM, and about 0.5 nM to about 2 nM. More preferred human antibodies specifically bind to human TIMP-1 with a Kd selected from the group consisting of about 0.2 nM, about 0.3 nM, about 0.5 M, about 0.6 nM, about 2 nM, about 7 nM, about 10 nM, about 11 nM, and about 13 nM.
[0058] Other human antibodies of the invention specifically bind to rat TIMP-1 with a Kd of about 0.1 nM to about 10 μM, about 2 nM to about 1 μM, about 2 nM to about 200 nM, about 2 nM to about 150 nM, about 50 nM to about 100 nM, about 1.3 nM to about 13 nM, about 1.8 nM to about 10 nM, about 2 nM to about 9 nM, about 1.3 nM to about 9 nM, and about 2 nM to about 10 nM. Preferred Kd s range from about 0.8 nM, about 1 nM, about 1.3 nM, about 1.9 nM, about 2 nM, about 3 nM, about 9 nM, about 10 nM, about 13 nM, about 14 nM, and about 15 nM.
[0059] Preferably, antibodies of the invention neutralize an MMP-inhibiting activity of the TIMP-1. The MMP can be, for example, MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-19, MMP-20 or MMP-23.
[0060] IC50 for neutralizing MMP-inhibiting activity of TIMP-1 can be measured by any means known in the art. Preferably, IC50 is determined using the high throughput fluorogenic assay described in Bickett et al., Anal. Biochem. 212, 58-64, 1993. In a typical fluorogenic assay, the IC50 of a human antibody for neutralizing human TIMP-1 MMP-inhibiting activity ranges from about 0.1 nM to about 200 nM, about 1 nM to about 100 nM, about 2 nM to about 50 nM, about 5 nM to about 25 nM, about 10 nM to about 15 nM, about 0.2 nM to about 11 nM, about 0.2 nM to about 4 nM, and about 4 nM to about 11 nM. The IC50 for neutralizing human TIMP-1 MMP-inhibiting activity of some human antibodies is about 0.2 nM, about 0.3 nM, about 0.4 nM, about 4 nM, about 7 nM, about 9 nM, and about 11 nM.
[0061] A typical IC50 for neutralizing rat TIMP-1 MMP-inhibiting activity ranges from about 0.1 nM to about 300 nM, about 1 nM to about 100 nM, about 2 nM to about 50 nM, about 5 nM to about 25 nM, about 10 nM to about 15 nM, about 1.1 nM to about 14 nM, about 1.6 nM to about 11 nM, about 3 nM to about 7 nM, about 1.1 nM to about 7 nM, about 1.1 nM to about 11 nM, about 3 nM to about 11 nM, and about 3 nM to about 14 nM. The IC50 for neutralizing rat TIMP-1 MMP-inhibiting activity of some human antibodies is about 1.1 nM, about 1.6 nM, about 3 nM, about 7 nM, about 11 nM, about 14 nM, about 19 nM, about 20 nM, about 30 nM, and about 100 nM.
[0062] Preferred human antibodies of the invention are those for which the Kd for binding to TIMP-1 and the IC50 for neutralizing the MMP-inhibiting activity of the TIMP-1 are approximately equal.
[0063] A number of human antibodies having the TIMP-1 binding and MMP-inhibiting activity neutralizing characteristics described above have been identified by screening the MorphoSys HuCAL® Fab 1 library. The CDR cassettes assembled for the HuCAL® library were designed to achieve a length distribution ranging from 5 to 28 amino acid residues, covering the stretch from position 95 to 102. Knappik et al., J. Mol. Biol. 296, 57-86, 2000. Some clones, however, had shorter VHCDR3 regions. In fact, it is a striking feature of anti-human TIMP-1 human antibodies identified from this library that they all exhibit the combination VH312 and a relatively short VHCDR3 region, typically four amino acids.
[0064] In some embodiments of the invention, the VHCDR3 region of a human antibody has an amino acid sequence shown in SEQ ID NOS:1-43. In other embodiments of the invention, the VLCDR3 region of a human antibody has an amino acid sequence shown in SEQ ID NOS:44-86. See Tables 2, 3, and 7. Human antibodies which have TIMP-1 binding and MMP-inhibiting activity neutralizing characteristics of antibodies such as those described above and in Tables 2, 3, and 7 also are human antibodies of the invention.
Obtaining Human Antibodies
[0065] Human antibodies with the TIMP-1 binding and MMP-activity neutralizing characteristics described above can be identified from the MorphoSys HuCAL® library as follows. Human or rat TIMP-1, for example, is coated on a microtiter plate and incubated with the MorphoSys HuCAL® Fab phage library (see Example 1, below). Those phage-linked Fabs not binding to TIMP-1 can be washed away from the plate, leaving only phage which tightly bind to TIMP-1. The bound phage can be eluted, for example, by a change in pH or by elution with E. coli and amplified by infection of E. coli hosts. This panning process can be repeated once or twice to enrich for a population of antibodies that tightly bind to TIMP-1. The Fabs from the enriched pool are then expressed, purified, and screened in an ELISA assay. The identified hits are then screened in the enzymatic assay described in Bickett et al., 1993, and Bodden et al., 1994. Those Fabs that lead to the degradation of the peptide are likely the ones which bind to TIMP-1, thereby blocking its interaction to MMP-1.
[0066] The initial panning of the HuCAL® Fab 1 library also can be performed with TIMP-1 as the antigen in round one, followed in round 2 by TIMP-1 peptides fused to carrier proteins, such as BSA or transferrin, and in round 3 by TIMP-1 again. Human TIMP-1 peptides which can be used for panning include human TIMP-1 residues 2-12 (TCVPPHPQTAF, SEQ ID NO:87; CTSVPPHPQTAF, SEQ ID NO:88; STCVPPHPQTAF, SEQ ID NO:89; STSVPPHPQTAFC, SEQ ID NO:90), 28-36 (CEVNQTTLYQ, SEQ ID NO:91), 64-75 (PAMESVCGYFHR, SEQ ID NO:92), 64-79 (PAMESVCGYFHRSHNR, SEQ ID NO:93; CPAMESVSGYFHRSHNR, SEQ ID NO:94; PAMESVSGYFHRSHNRC, SEQ ID NO:95), and 145-157 (CLWTDQLLQGSE, SEQ ID NO:96). These peptide sequences are selected from regions of human TIMP-1 that are predicted to interact with MMPs. See Gomis-Ruth et al., Nature 389, 77-81, 1997. Directing Fabs toward the MMP-interacting region of human TIMP-1 in round 2 should increase the chance of identifying Fabs that can block the ability of human TIMP-1 to inhibit human MMP-1 activity.
[0067] Another method that can be used to improve the likelihood of isolating neutralizing Fabs is the panning on human TIMP-1 and eluting the binding Fabs with human MMP-1. This strategy should yield higher affinity antibodies than would otherwise be obtained.
[0068] Details of the screening process are described in the specific examples, below. Other selection methods for highly active specific antibodies or antibody fragments can be envisioned by those skilled in the art and used to identify human TIMP-1 antibodies.
[0069] Human antibodies with the characteristics described above also can be purified from any cell that expresses the antibodies, including host cells that have been transfected with antibody-encoding expression constructs. The host cells are cultured under conditions whereby the human antibodies are expressed. A purified human antibody is separated from other compounds that normally associate with the antibody in the cell, such as certain proteins, carbohydrates, or lipids, using methods well known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis. A preparation of purified human antibodies is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis. A preparation of purified human antibodies of the invention can contain more than one type of human antibody with the TIMP-1 binding and neutralizing characteristics described above.
[0070] Alternatively, human antibodies can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, J. Am. Chem. Soc. 85, 2149-54, 1963; Roberge et al., Science 269, 202-04, 1995). Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of human antibodies can be separately synthesized and combined using chemical methods to produce a full-length molecule.
[0071] The newly synthesized molecules can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983). The composition of a synthetic polypeptide can be confirmed by amino acid analysis or sequencing (e.g., using Edman degradation).
Assessment of Therapeutic Utility of Human Antibodies
[0072] To assess the ability of a particular antibody to be therapeutically useful to treat, liver fibrosis, for example, the antibody can be tested in vivo in a rat liver fibrosis model. Thus, preferred human antibodies of the invention are able to block both human and rat TIMP-1 activity. If desired, human Fab TIMP-1 antibodies can be converted into full immunoglobulins, for example IgG1 antibodies, before therapeutic assessment. This conversion is described in Example 5, below.
[0073] To identify antibodies that cross-react with human and rat TIMP-1, an ELISA can be carried out using rat TIMP-1. Functional cross-reactivity can be confirmed in an enzymatic assay, as described in Bickett et al., Anal. Biochem. 212, 58-64, 1993. The assay uses human or rat TIMP-1, human MMP-1 or rat MMP-13 (the rat counterpart of human MMP-1), and a synthetic fluorogenic peptide substrate. Enzyme activity of uncomplexed MMP-1 (or MMP-13) is assessed by observing an increase in a fluorescence signal.
[0074] Antibodies that block human and/or rat TIMP-1 activity can be screened in an ELISA assay that detects the decrease of TIMP-1/MMP-1 complex formation in cultures of HepG2 cells. Antibodies that meet this criteria can then be tested in a rat liver fibrosis model to assess therapeutic efficacy and correlate this efficacy with the ability of the antibodies to block TIMP-1 inhibition of MMP-1 in vitro.
[0075] Antibodies that demonstrate therapeutic efficacy in the rat liver fibrosis model can then be tested for binding to and blockade of TIMP-2, -3, and -4 in an in vitro enzymatic assay. Blocking the minimum number of TIMPs necessary for efficacy in liver fibrosis or other TIMP-associated pathology is preferable to minimize potential side effects.
Polynucleotides Encoding Human TIMP-1 Antibodies
[0076] The invention also provides polynucleotides encoding human TIMP-1 antibodies. These polynucleotides can be used, for example, to produce quantities of the antibodies for therapeutic or diagnostic use.
[0077] Polynucleotides that can be used to encode the VHCDR3 regions shown in SEQ ID NOS:1-43 are shown in SEQ ID NOS:226-268, respectively. Polynucleotides that can be used to encode the VLCDR3 region shown in SEQ ID NOS:44-86 are shown in SEQ ID NOS:183-225, respectively. Polynucleotides that encode heavy chains (SEQ ID NOS:140-182) and light chains (SEQ ID NOS:97-139) of human antibodies of the invention that have been isolated from the MorphoSys HuCAL® library are shown in SEQ ID NOS:269-311 and SEQ ID NOS:312-354, respectively.
[0078] Polynucleotides of the invention present in a host cell can be isolated free of other cellular components such as membrane components, proteins, and lipids. Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated polynucleotides encoding antibodies of the invention. For example, restriction enzymes and probes can be used to isolate polynucleotides which encode the antibodies. Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.
[0079] Human antibody-encoding DNA molecules of the invention can be made with standard molecular biology techniques, using mRNA as a template. Thereafter, DNA molecules can be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989). An amplification technique, such as PCR, can be used to obtain additional copies of the polynucleotides.
[0080] Alternatively, synthetic chemistry techniques can be used to synthesize polynucleotides encoding antibodies of the invention. The degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized that will encode an antibody having, for example, one of the VHCDR3, VLCDR3, light chain, or heavy chain amino acid sequences shown in SEQ ID NOS:1-43, 44-86, 97-139, or 140-182, respectively.
[0081] Expression of Polynucleotides
[0082] To express a polynucleotide encoding a human antibody of the invention, the polynucleotide can be inserted into an expression vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods that are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding human antibodies and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al. (1989) and in Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1995. See also Examples 1-3, below.
[0083] A variety of expression vector/host systems can be utilized to contain and express sequences encoding a human antibody of the invention. These include, but are not limited to, microorganisms, such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.
[0084] The control elements or regulatory sequences are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORT1 plasmid (Life Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO, and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) can be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding a human antibody, vectors based on SV40 or EBV can be used with an appropriate selectable marker.
[0085] Large scale production of human TIMP-1 antibodies can be carried out using methods such as those described in Wurm et al., Ann. N.Y. Acad. Sci. 782, 70-78, 1996, and Kim et al., Biotechnol. Bioengineer. 58, 73-84, 1998.
Pharmaceutical Compositions
[0086] Any of the human TIMP-1 antibodies described above can be provided in a pharmaceutical composition comprising a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier preferably is non-pyrogenic. The compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. A variety of aqueous carriers may be employed, e.g., 0.4% saline, 0.3% glycine, and the like. These solutions are sterile and generally free of particulate matter. These solutions may be sterilized by conventional, well known sterilization techniques (e.g., filtration). The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc. The concentration of the antibody of the invention in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected. See U.S. Pat. No. 5,851,525. If desired, more than one type of human antibody, for example with different Kd for TIMP-1 binding or with different IC50s for MMP-inhibiting activity neutralization, can be included in a pharmaceutical composition.
[0087] The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones. In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means.
[0088] After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.
Methods of Decreasing MMP-Inhibiting Activity of Human TIMP-1
[0089] The invention provides methods of decreasing an MMP-inhibiting activity of human or rat TIMP-1. Such methods can be used therapeutically, as described below, or in a research setting. Thus, the methods can be carried out in a cell-free system, in a cell culture system, or in vivo. In vivo methods of decreasing MMP-inhibiting activity of human or rat TIMP-1 are described below.
[0090] Human TIMP-1 is contacted with a human antibody that binds to the human TIMP-1, thereby decreasing the MMP-inhibiting activity of the human TIMP-1 relative to human TIMP-1 activity in the absence of the antibody. The antibody can be added directly to the cell-free system, cell culture system, or to an animal subject or patient, or can be provided by means of an expression vector encoding the antibody.
Diagnostic Methods
[0091] The invention also provides diagnostic methods, with which human or rat TIMP-1 can be detected in a test preparation, including without limitation a sample of serum, lung, liver, heart, kidney, colon, a cell culture system, or a cell-free system (e.g., a tissue homogenate). Such diagnostic methods can be used, for example, to diagnose disorders in which TIMP-1 is elevated. Such disorders include, but are not limited to, liver fibrosis, alcoholic liver disease, cardiac fibrosis, acute cardiac syndrome, lupus nephritis, glomerulosclerotic renal disease, benign prostate hypertrophy, lung cancer, colon cancer, and idiopathic pulmonary fibrosis. When used for diagnosis, detection of an amount of the antibody-TIMP-1 complex in a test sample from a patient which is greater than an amount of the complex in a normal sample identifies the patient as likely to have the disorder.
[0092] The test preparation is contacted with a human antibody of the invention, and the test preparation is then assayed for the presence of an antibody-TIMP-1 complex. If desired, the human antibody can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
[0093] Optionally, the antibody can be bound to a solid support, which can accommodate automation of the assay. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads). Any method known in the art can be used to attach the antibody to the solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached to the antibody and the solid support. Binding of TIMP-1 and the antibody can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.
Therapeutic Methods
[0094] The invention also provides methods of ameliorating symptoms of a disorder in which TIMP-1 is elevated. These disorders include, without limitation, liver fibrosis alcoholic liver disease, cardiac fibrosis, acute coronary syndrome, lupus nephritis, glomerulosclerotic renal disease, idiopathic pulmonary fibrosis, benign prostate hypertrophy, lung cancer, colon cancer, and scarring. See, e.g., Inokubo et al., Am. Heart J. 141, 211-17, 2001; Ylisirnio et al., Anticancer Res. 20, 1311-16, 2000; Holten-Andersen et al., Clin. Cancer Res. 6, 4292-99, 2000; Holten-Andersen et al., Br. J. Cancer 80, 495-503, 1999; Peterson et al., Cardiovascular Res. 46, 307-15, 2000; Arthur et al., Alcoholism: Clinical and Experimental Res. 23, 840-43, 1999; Iredale et al., Hepatol. 24, 176-84, 1996.
[0095] Human antibodies of the invention are particularly useful for treating liver fibrosis. All chronic liver diseases cause the development of fibrosis in the liver. Fibrosis is a programmed uniform wound healing response. Toxic damage or injury caused by foreign proteins cause the deposition of extracellular matrix such as collagen, fibronectin, and laminin. Liver fibrosis and cirrhosis can be caused by chronic degenerative diseases of the liver such as viral hepatitis, alcohol hepatitis, autoimmune hepatitis, primary biliary cirrhosis, cystic fibrosis, hemochromatosis, Wilson's disease, and non-alcoholic steato-hepatitis, as well as chemical damage.
[0096] Altered degradation and synthesis of extracellular matrix (particularly collagens) play central roles in pathogenesis of liver fibrosis. In the early phases, hepatic stellate cells (HSC) are initially activated and release matrix metalloproteases with the ability to degrade the normal liver matrix. When HSC are fully activated, there is a net down-regulation of matrix degradation mediated by increased synthesis and extracellular release of tissue inhibitors of metalloprotease (TIMP)-1 and -2. The dynamic regulation of activity of metalloproteases during liver fibrosis makes them and their inhibitors targets for therapeutic intervention.
[0097] Human antibodies of the invention are also particularly useful for treating lung fibrosis. Lung airway fibrosis is a hallmark of airway remodeling in patients with chronic asthma, so human antibodies of the invention are also particularly useful for chronic asthma. Airway remodeling is a well-recognized feature in patients with chronic asthma. TIMP-1 but not TIMP-2 levels were significantly higher in untreated asthmatic subjects than in glucocorticoid-treated subjects or controls (p<0.0001), and were far greater than those of MMP-1, MMP-2, MMP-3, and MMP-9 combined (Mautino et al., Am J Respir Crit. Care Med 1999 160:324-330). TIMP-1 mRNA and protein expression are selectively and markedly increased in a murine model of bleomycin-induced pulmonary fibrosis (Am. J. Respir. Cell Mol. Biol. 24:599-607, 2001). This specific elevation of TIMP-1 without increase in MMPs in asthma patients suggests that inhibition of TIMP-1 by an antibody can restore normal collagen degradation in the lung.
[0098] Human antibodies of the invention are also particularly useful for treating cancer. TIMP-1 protein has been found to be elevated in plasma of colon (Holten-Andersen et al., Br J Cancer 1999, 80:495-503) and prostate (Jung et al., Int J Cancer, 1997, 74:220-223) cancer patients, and high TIMP-1 plasma level correlates with poor clinical outcome of colon cancer (Holten-Andersen et al., Clin Cancer Res 2000 6:4292-4299). TIMP-1 induces dose-dependent proliferation of breast tumorigenic clonal cell line and tyrosine phosphorylation (Luparello et al, Breast Cancer Res Treat, 1999, 54:235-244). Therefore, the use of antibody against TIMP-1 may block its ability to induce cancer.
[0099] Human TIMP-1 antibodies can be used to prevent or diminish scar formation, such as scar formation after surgery (particularly ophthalmic surgery) or injury (such as a burn, scrape, crush, cut or tear injury).
[0100] In one embodiment of the invention, a therapeutically effective dose of a human antibody of the invention is administered to a patient having a disorder in which TIMP-1 is elevated, such as those disorders described above. Symptoms of the disorder, including deposition of extracellular matrix, as well as loss of tissue or organ function, are thereby ameliorated.
[0101] Determination of a Therapeutically Effective Dose
[0102] The determination of a therapeutically effective dose is well within the capability of those skilled in the art. A therapeutically effective dose refers to that amount of human antibody that reduces MMP-inhibiting activity of the TIMP-1 relative to the activity which occurs in the absence of the therapeutically effective dose.
[0103] The therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually rats, mice, rabbits, dogs, or pigs. The animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A rat liver fibrosis model is described in Example 6.
[0104] Therapeutic efficacy and toxicity, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population) of a human antibody, can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50.
[0105] Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
[0106] The exact dosage will be determined by the practitioner, in light of factors related to the patient who requires treatment. Dosage and administration are adjusted to provide sufficient levels of the human antibody or to maintain the desired effect. Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.
[0107] Polynucleotides encoding human antibodies of the invention can be constructed and introduced into a cell either ex vivo or in vivo using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.
[0108] Effective in vivo dosages of an antibody are in the range of about 5 mg to about 50 mg/kg, about 50 mg to about 5 mg/kg, about 100 mg to about 500 mg/kg of patient body weight, and about 200 to about 250 mg/kg of patient body weight. For administration of polynucleotides encoding the antibodies, effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 mg to about 2 mg, about 5 mg to about 500 mg, and about 20 mg to about 100 mg of DNA.
[0109] The mode of administration of human antibody-containing pharmaceutical compositions of the invention can be any suitable route which delivers the antibody to the host. Pharmaceutical compositions of the invention are particularly useful for parenteral administration, i.e., subcutaneous, intramuscular, intravenous, or intranasal administration.
[0110] All patents, patent applications, and references cited in this disclosure are expressly incorporated herein by reference. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples, which are provided for purposes of illustration only and are not intended to limit the scope of the invention.
Example 1
Construction of a Human Combinatorial Antibody Library (HuCAL® Fab 1)
[0111] Cloning of HuCAL® Fab 1.
[0112] HuCAL® Fab 1 is a fully synthetic, modular human antibody library in the Fab antibody fragment format. HuCAL® Fab 1 was assembled starting from an antibody library in the single-chain format (HuCAL®-scFv; Knappik et al., J. Mol. Biol. 296, 55, 2000). HuCAL® Fab 1 was cloned into a phagemid expression vector pMORPH® 18 Fab1 (FIG. 3). This vector comprises the Fd fragment with a phoA signal sequence fused at the C-terminus to a truncated gene III protein of filamentous phage, and further comprises the light chain VL-CL with an ompA signal sequence. Both chains are under the control of the lac operon. The constant domains Cλ, Cκ, and CH are synthetic genes fully compatible with the modular system of HuCAL® (Knappik et al., 2000).
[0113] First, the Vλ and Vκ libraries were isolated from HuCAL®-scFv. Vλ1 fragments were amplified by 15 PCR cycles (Pwo polymerase) with primers 5'-GTGGTGGTTCCGATATC-3' (SEQ ID NO:380) and 5'-AGCGTCACA-CTCGGTGCGGCTTTCGGCTGGCCAAGAACGGTTA-3' (SEQ ID NO:381). PCR-products were digested with EcoRV/DraIII and gel-purified. VLκ-chains were obtained by restriction digest with EcoRV/BsiWI and gel-purified. These Vλ and Vκ libraries were cloned into pMORPH® 18 Fab1 cut with EcoRV/DraIII and EcoRV/BsiWI, respectively. After ligation and transformation in E. coli TG-1, library sizes of 4.14×108 and 1.6×108, respectively, were obtained, in both cases exceeding the Vλ diversity of HuCAL®-scFv.
[0114] Similarly, the VH library was isolated from HuCAL®-scFv by restriction digest using StyI/MunI. This VH library was cloned into the pMORPH® 18-Vλ and Vκ libraries cut with StyI/MunI. After ligation and transformation in E. coli TG-1, a total library size of 2.09×1010 was obtained, with 67% correct clones (as identified by sequencing of 207 clones).
[0115] Phagemid Rescue, Phage Amplification and Purification.
[0116] HuCAL® Fab was amplified in 2×TY medium containing 34 μg/ml chloramphenicol and 1% glucose (2×TY-CG). After helper phage infection (VCSM13) at 37° C. at an OD600 of about 0.5, centrifugation and resuspension in 2×TY/34 μg/ml chloramphenicol/50 μg/ml kanamycin, cells were grown overnight at 30° C. Phage were PEG-precipitated from the supernatant (Ausubel et al., 1998), resuspended in PBS/20% glycerol, and stored at -80° C. Phage amplification between two panning rounds was conducted as follows: mid-log phase TG1-cells were infected with eluted phage and plated onto LB-agar supplemented with 1% of glucose and 34 μg/ml of chloramphenicol. After overnight incubation at 30° C., colonies were scraped off and adjusted to an OD600 of 0.5. Helper phage were added as described above.
Example 2
Solid Phase Panning
[0117] Wells of MaxiSorp® microtiter plates (Nunc) were coated with rat- or human TIMP protein diluted to 50 μg/ml dissolved in PBS (2 μg/well). After blocking with 5% non-fat dried milk in PBS, 1-5×1012 HuCAL® Fab phage purified as above were added for 1 h at 20° C. After several washing steps, bound phage were eluted by pH-elution with 100 mM triethylamine and subsequent neutralization with 1M TRIS-Cl pH 7.0. See Krebs et al., J. Immunol. Meth. 254, 67, 2001. Two to three rounds of panning were performed with phage amplification conducted between each round as described above.
Example 3
Solution Panning
[0118] Biotinylated antigen was diluted to 40 nM in PBS, 1013 HuCAL®-Fab 1 phage were added and incubated for 1 h at 20° C. Phage-antigen complexes were captured on Neutravidin plates (Pierce). After several washing steps, bound phages were eluted by different methods (Krebs et al., 2001). Two rounds of panning were routinely performed.
Example 4
Subcloning of Selected Fab Fragments for Expression
[0119] The Fab-encoding inserts of the selected HuCAL® Fab 1 fragments were subcloned into the expression vector pMORPH® x7_FS (Knappik et al., J. Mol. Biol. 296, 55, 2000) to facilitate rapid expression of soluble Fab. The DNA preparation of the selected HuCAL® Fab 1 clones was digested with XbaI/EcoRI, thus cutting out the Fab encoding insert (ompA-VL and phoA-Fd). Subcloning of the purified inserts into the XbaI/EcoRI cut vector pMORPH® x7, previously carrying a scFv insert, produces a Fab expression vector designated pMORPH® x9_Fab1_FS (FIG. 4). Fabs expressed in this vector carry two C-terminal tags (FLAG® and Strep-tagII) for detection and purification.
Example 5
Identification of TIMP-Binding Fab Fragments by ELISA
[0120] The wells of 384-well Maxisorp ELISA plates were coated with 20 μl/well solutions of rat TIMP or human TIMP at a concentration of 5 μg/ml diluted in coating buffer. Expression of individual Fab in E. coli TG-1 from expression vector pMORPH® x9_FS was induced with 0.5 mM IPTG for 12 h at 30° C. Soluble Fab was extracted from the periplasm by osmotic shock (Ausubel et al., 1998) and used in an ELISA. The Fab fragment was detected after incubation with alkaline phosphatase-conjugated anti-Fab antibody (Dianova), followed by development with Attophos substrate (Roche) and measurement at Ex450 nm/Em535 nm. Values at 370 nm were read out after addition of horseradish peroxidase-conjugated anti-mouse IgG antibody and POD soluble substrate (Roche Diagnostics).
Example 6
Expression and Purification of HuCAL®-Fab 1 Antibodies in E. Coli
[0121] Expression of Fab fragments encoded by pMORPH® x9_FS in TG-1 cells was carried out in shaker flask cultures with 1 liter of 2×TY medium supplemented with 34 μg/ml chloramphenicol. After induction with 0.5 mM IPTG, cells were grown at 22° C. for 16 h. Periplasmic extracts of cell pellets were prepared, and Fab fragments were isolated by Strep-tactin® chromatography (IBA, Goettingen, Germany). The apparent molecular weights were determined by size exclusion chromatography (SEC) with calibration standards. Concentrations were determined by UV-spectrophotometry.
Example 7
Construction of HuCAL® Immunoglobulin Expression Vectors
[0122] Heavy chain cloning. The multiple cloning site of pcDNA3.1+ (Invitrogen) was removed (NheI/ApaI), and a stuffer compatible with the restriction sites used for HuCAL® design was inserted for the ligation of the leader sequences (NheI/EcoRI), VH-domains (EcoRI/BlpI), and the immunoglobulin constant regions (BlpI/ApaI). The leader sequence (EMBL M83133) was equipped with a Kozak sequence (Kozak, 1987). The constant regions of human IgG1 (PIR J00228), IgG4 (EMBL K01316), and serum IgA1 (EMBL J00220) were dissected into overlapping oligonucleotides with lengths of about 70 bases. Silent mutations were introduced to remove restriction sites non-compatible with the HuCAL® design. The oligonucleotides were spliced by overlap extension-PCR.
[0123] Light Chain Cloning.
[0124] The multiple cloning site of pcDNA3.1/Zeo+ (Invitrogen) was replaced by two different stuffers. The κ-stuffer provided restriction sites for insertion of a κ-leader (NheI/EcoRV), HuCAL®-scFv Vκ-domains (EcoRV/BsiWI) and the κ-chain constant region (BsiWI/ApaI). The corresponding restriction sites in the λ-stuffer were NheI/EcoRV (λ-leader), EcoRV/HpaI (Vλ-domains), and HpaI/ApaI (λ-chain constant region). The κ-leader (EMBL Z00022) as well as the λ-leader (EMBL L27692) were both equipped with Kozak sequences. The constant regions of the human κ- (EMBL J00241) and λ-chain (EMBL M18645) were assembled by overlap extension-PCR as described above.
[0125] Generation of IgG-Expressing CHO-Cells.
[0126] CHO-K1 cells were co-transfected with an equimolar mixture of IgG heavy and light chain expression vectors. Double-resistant transfectants were selected with 600 μg/ml G418 and 300 μg/ml Zeocin (Invitrogen) followed by limiting dilution. The supernatant of single clones was assessed for IgG expression by capture-ELISA (see below). Positive clones were expanded in RPMI-1640 medium supplemented with 10% ultra-low IgG-FCS (Life Technologies). After adjusting the pH of the supernatant to 8.0 and sterile filtration, the solution was subjected to standard protein A column chromatography (Poros 20 A, PE Biosystems).
Example 8
Design of the CDR3 Libraries
[0127] Vλ Positions 1 and 2.
[0128] The original HuCAL® master genes were constructed with their authentic N-termini: Vλ11: QS (CAGAGC), Vλ12: QS (CAGAGC), and Vλ13: SY (AGCTAT). Sequences containing these amino acids are shown in WO 97/08320. During HuCAL® library construction, the first two amino acids were changed to DI to facilitate library cloning (EcORI site). All HuCAL® libraries contain Vλ1 genes with the EcoRV site GATATC (DI) at the 5'-end. All HuCAL® kappa genes (master genes and all genes in the library) contain DI at the 5'-end.
[0129] VH Position 1.
[0130] The original HuCAL® master genes were constructed with their authentic N-termini: VH1A, VH1B, VH2, VH4, and VH6 with Q (=CAG) as the first amino acid and VH3 and VH5 with E (=GAA) as the first amino acid. Sequences containing these amino acids are shown in WO 97/08320. In the HuCAL® Fab 1 library, all VH chains contain Q (=CAG) at the first position.
[0131] Vκ1/Vκ3 Position 85.
[0132] Because of the cassette mutagenesis procedure used to introduce the CDR3 library (Knappik et al., J. Mol. Biol. 296, 57-86, 2000), position 85 of Vκ1 and Vκ3 can be either T or V. Thus, during HuCAL® scFv 1 library construction, position 85 of Vκ1 and Vκ3 was varied as follows: Vκ1 original, 85T (codon ACC); Vκ1 library, 85T or 85V (TRIM codons ACT or GTT); Vκ3 original, 85V (codon GTG); Vκ3 library, 85T or 85V (TRIM codons ACT or GTT); the same applies to HuCAL® Fab1.
[0133] CDR3 Design.
[0134] All CDR3 residues which were kept constant are indicated in FIG. 1.
[0135] CDR3 Length.
[0136] The designed CDR3 length distribution is as follows. Residues which were varied are shown in brackets (x) in FIG. 1. V kappa CDR3, 8 amino acid residues (position 89 to 96) (occasionally 7 residues), with Q90 fixed; V lambda CDR3, 8 to 10 amino acid residues (position 89 to 96) (occasionally 7-10 residues), with Q89, S90, and D92 fixed; and VH CDR3, 5 to 28 amino acid residues (position 95 to 102) (occasionally 4-28), with D101 fixed.
Example 9
Chronic Carbon Tetrachloride-Induced Liver Fibrosis
[0137] Sprague Dawley rats (200-220 g) are used in an in vivo model of liver fibrosis. To maximally induce microsomal metabolism of carbon tetrachloride metabolism, animals receive 1 g/l isoniazid with their drinking water starting one week before the administration of carbon tetrachloride. Carbon tetrachloride (1:1 in mineral oil) is administered orally every fifth day at a dose of 0.2 ml/100 g body weight. A human TIMP-1 antibody is administered intravenously, either once or repeatedly, during the period of carbon tetrachloride treatment. Necropsy is performed after 5-7 weeks of treatment. McLean et al., Br. J. Exp. Pathol. 50, 502-06, 1969.
[0138] Transverse cylinders of liver tissue are cut from the right liver lobe, fixed in formaldehyde, and embedded in paraffin. The amount of fibrosis in the liver is indicated by the picrosirius red-stained fibrotic areas. Picrosirius-positive areas are determined in several centrilobular fields in each section. Parameters of color detection are standardized and kept constant throughout the experiment. The field are selected using a standardized grid which covers an area of 31 mm2. A Leica Quantimed 500 MC system is used for morphometry.
Example 10
Hydroxyproline Determination
[0139] The method of Prockop & Udenfried, Anal. Biochem. 1, 228-39, 1960, can be used to determine hydroxyproline is liver tissues, with the following modifications. Liver specimens of 60-90 mg wet weight are dried and hydrolyzed in 6 N HCl at 100° C. for 17 h. The hydrolyzed material is dried and reconstituted in 5 ml of deionized water. Two hundred microliters of this hydrolysate are mixed with 200 ml of ethanol and 200 ml chloramin T solution (0.7% in citrate buffer [5.7 g sodium acetate, 3.75 g trisodium citrate, 0.55 g citric acid, 38.5 ml ethanol, made up to 100 ml with water]) and allowed to oxidize for 20 min at room temperature. Four hundred microliters of Ehrlich's reagent (12 g p-dimethylaminobenzldehyde in 40 ml ethanol and 2.7 ml H2SO4) are added. After incubation for 3 h at 35° C., absorbance at 573 nm is measured.
Example 11
Affinity Determination by Surface Plasmon Resonance Measurements (Biacore®)
[0140] For affinity determination, monomeric fractions of affinity and SEC purified Fab fragments or purified IgG1 molecules were used. All experiments were conducted in HBS buffer at a flow rate of 20 μl/min at 25° C. on a BIAcore® instrument. Antigens in 100 mM sodium acetate pH 5.0 were coupled to a CM 5 sensor chip using standard EDC-NHS coupling chemistry. Applying 3-4 μl of 5 μg/ml TIMP-1 typically resulted in 500 resonance units for kinetic measurements. All sensograms were fitted globally using BIA evaluation software. For monovalent Fab fragments a monovalent fit (Langmuir binding) and for IgGs a bivalent fit was applied.
Example 12
IC50 Determination in Human TIMP-1/Human MMP-1 and Rat TIMP-1/Rat MMP-13 Assay
[0141] Purified Fab fragments or IgGs were used for IC50 determination. Antibodies were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM or 0.4 nM for modified in human TIMP-1/human MMP-1 assay), MMP (final conc. 1.2 nM or 0.4 nM for modified in human TIMP-1/human MMP-1 assay), and peptide substrate (final conc. 50 μM) and incubation for 1-3 h at 37° C., fluorescence at Ex320 nm/Em430 nm was measured.
[0142] The following controls were included in the assay and used as reference values for IC50 determination:
[0143] A: MMP+substrate: this value was defined as 100% MMP activity in absence of antibody and TIMP.
[0144] B: MMP+TIMP+substrate: this value was defined as maximum inhibition achieved in the assay and calculated as a % of total MMP activity.
[0145] To define the concentration of antibody that resulted in 50% reversal of inhibition (IC50), the following procedure was used:
[0146] The value for 50% reversal of inhibition (expressed as % activity MMP) was calculated as: Y=[(A-B)/2]+B.
[0147] MMP activity was plotted against concentration of antibody in the assay.
[0148] The concentration of antibody that results in 50% reversal of inhibition (Y) was read on the x-axis and defined as IC50.
[0149] Error bars in the graphs were derived from triplicate wells in one assay.
[0150] Standard deviations for IC50 values were calculated from 3 independent assays.
Example 13
Affinity Maturation of Selected Fab by Stepwise Exchange of CDR Cassettes
[0151] To increase affinity and biological activity of selected antibody fragments, CDR regions were optimized by cassette mutagenesis using trinucleotide directed mutagenesis (Virnekas et al., 1994). Fab fragments in expression vector pMORPH® x9 were cloned into phagemid vector pMORPH®--18 using EcoRI/XbaI restriction sites. CDR cassettes containing several diversified positions were synthesized and cloned into Fab fragments in pMORPH®--18 using unique restriction sites (Knappik et al., 2000). Affinity maturation libraries were generated by transformation into E. coli TOP10F, and phage were prepared as described above. Phage displaying Fab fragments with improved affinity were selected by 2-3 rounds solution panning using stringent washing conditions (e.g., competition with 1 μM non-biotinylated antigen or washing for up to 48 h with frequent buffer exchange) and limited amounts of antigen (0.04-4 nM). Seventeen human TIMP-1 antibodies were tested for affinity to human TIMP-1 (with some tested for affinity to rat TIMP-1) using a BIAcore® assay. The Kd of these antibodies for human TIMP-1 and rat TIMP-1 are shown in Table 1.
TABLE-US-00001 TABLE 1 Overview of species cross-reactive Fab Monovalent KD Monovalent KD IC50 in human IC50 in rat Fab human TIMP-1 rat TIMP-1 protease assay protease assay MS-BW-25 25 +/- 16 nM* 4517 +/- 2400 nM 115 +/- 15 nM >300 nM MS-BW-27 ~74 nM ~3200 nM Non blocking MS-BW-21 520 +/- 20 nM 36 +/- 2 nM >300 nM 67 +/- 5 nM MS-BW-38 ~3 nM ~353 nM ~11 nM >300 nM MS-BW-39 ~7500 nM ~108 nM >100 nM >100 nM *In cases were standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications. ~Indicates preliminary data, in cases where measurement was done only once.
Example 14
Screening for Fab with Improved Off-Rates by Koff Ranking Using Surface Plasmon Resonance
[0152] Phage eluted after solution panning were used to infect E. coli TG-1 and plated on agar plates containing 34 μg/ml chloramphenicol. Clones were picked into 96 well plates and used to produce Fab fragments. On the same plate, parental clones were inoculated as controls. Soluble Fab was extracted from the periplasm by osmotic shock (Ausubel et al., 1998) and used for koff ranking in BIAcore®
[0153] All measurements were conducted in HBS buffer at a flow rate of 20 μl/min at 25° C. on a BIAcore® instrument. Antigens in 100 mM sodium acetate pH 4.5 were coupled to a CM 5 sensor chip using standard EDC-NHS coupling chemistry. Applying 10 μl of 25 μg/ml TIMP-1 typically resulted in 5000 resonance units for koff ranking All sensograms were fitted using BIA evaluation software. Clones with improved off rate were selected by comparison to parental clones.
Example 15
Generation of Species Cross-Reactive Antibodies
[0154] To maximize the likelihood of obtaining blocking antibodies that are cross-reactive between human and rat TIMP-1, alternating pannings were carried out on rat and human protein. Additionally, all antibodies selected by pannings on solely the human or rat TIMP-1 protein were analyzed for cross-reactivity in order to check for cross-reactive antibodies that might be selected by chance. Antibodies selected from these pannings were analyzed for cross-reactivity in ELISA using crude E. coli extracts. Cross-reactive antibodies in this assay were subjected to expression in 1-liter scale followed by purification. Purified antibodies were tested for cross-reactivity in BIAcore® and protease assays (Table 1).
[0155] As shown in Table 1, a total of five different Fab cross-reactive with human and rat TIMP-1 were generated. BIAcore® measurements revealed that although these antibodies clearly bind to human and rat TIMP-1, affinities for both species differ by at least a factor of 50. An antibody used for human therapy or in an animal model should have an affinity to the target protein in the low nanomolar, preferably in the sub-nanomolar range. As none of the above-described antibodies had affinities in this range for both species, these antibodies were not considered useful for further experiments or development.
Example 16
Generation of Blocking Antibodies Against Human TIMP-1
[0156] To generate blocking antibodies against human TIMP-1, the HuCAL®-Fab 1 library was used for antibody selection (AutoPan®) on purified TIMP-1 protein followed by subcloning and expression of the selected Fab fragments in E. coli. Crude antibody-containing E. coli extracts were used for primary antibody characterization in ELISA (AutoScreen®). Purified Fab proteins were subjected to further characterization in ELISA, TIMP-1/MMP-1 assay and BIAcore®. A total of 6100 clones were analyzed in AutoScreen®, 670 of them showed binding to human TIMP-1. Sequence analysis revealed that in total seven unique antibody clones had been selected (Table 2). For these seven Fab clones, the affinities measured in BIAcore® were in the range of 10-180 nM (Table 4). When tested in the human protease assay, five of them were able to block the interaction between human TIMP-1 and MMP-1. The concentration of monovalent Fab needed to reverse the inhibitory effect of human TIMP-1 on human MMP-1 activity by 50% (IC50) was in the range of 11-100 nM (Table 2). The most active Fab clones are MS-BW-3 (Kd 13 nM; IC50 11 nM) and MS-BW-28 (Kd 10 nM; IC50 22 nM).
[0157] A striking feature of antibodies selected against human TIMP-1 is that they all exhibit the combination VH312 and a relatively short VH-CDR3 region, predominantly four amino acids (see Table 2). The HCDR3 cassettes assembled for the HuCAL®-Fab 1 library were designed to achieve a length distribution ranging from 5 to 28 amino acid residues. A four amino acid HCDR3 can occur in the library due to TRIM deletion, but is considered a very rare event. Another remarkable feature was the high degree of sequence homology among the selected LCDR3 sequences.
TABLE-US-00002 TABLE 2 Overview of anti-human TIMP-1 Fab Framework + CDR 3 sequence Monovalent KD IC50 in human Fab VH HCDR3 VL LCDR3 to human TIMP-1 protease assay MS-BW-1 H3 FMDI, λ2 QSYDYQQFT, 65 +/- 13 nM* >100 nM SEQ ID NO: 1 SEQ ID NO: 44 MS-BW-2 H3 GFDY, λ2 QSYDFKTYL, 180 +/- 28 nM >100 nM SEQ ID NO: 2 SEQ ID NO: 45 MS-BW-3 H3 FLDI, λ2 QSYDFLRFS, 13 +/- 2 nM 11 +/- 2 nM SEQ ID NO: 3 SEQ ID NO: 46 MS-BW-25 H3 TFPIDADS, λ2 QSYDFINVI, 25 +/- 16 nM 115 +/- 15 nM SEQ ID NO: 4 SEQ ID NO: 47 MS-BW-26 H3 GHVDY, λ2 QSYDFVRFM, ~100 nM non blocking SEQ ID NO: 5 SEQ ID NO: 48 MS-BW-27 H3 YWRGLSFDI, λ2 QSYDFYKFN, ~74 non blocking SEQ ID NO: 6 SEQ ID NO: 49 MS-BW-28 H3 FFDY, λ2 QSYDFRRFS, 10 +/- 1 nM 22 +/- 2 nM SEQ ID NO: 7 SEQ ID NO: 50 *In cases were standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications. ~Indicates preliminary data, in cases where measurement was done only once.
Example 17
Increasing the Affinity of Selected Anti-Human TIMP-1 Antibodies
[0158] In order to increase the affinity of monovalent anti-human TIMP-1 Fab fragments to the sub-nanomolar range, a step-wise affinity maturation approach was applied, by optimizing CDR sequences and keeping framework regions constant.
[0159] Affinity Maturation by Light Chain Cloning
[0160] The CDR3 sequences of the two antibody fragments with highest affinity (MS-BW-3 and MS-BW-28) had the remarkable feature of an unusually short four amino acid HCDR3 sequence. Furthermore, each Fab had a very similar LCDR3 sequence. This indicates that MS-BW-3 and MS-BW-28 bind to the same epitope and that this epitope might tolerate only a very small subset of CDR3 sequences. As a four amino acid HCDR3 is a very rare event in the library, it can be anticipated that in the initial library not all possible combinations of the short HCDR3 and the preferred LCDR3 are present. Therefore, it was considered that another combination of the selected HCDR3 and LCDR3 sequences might increase the affinity. For this approach, the heavy chain of MS-BW-3 and MS-BW-28 were paired with the light chains of MS-BW-1, -2, -3, -25, -26, -27, and -28 by cloning.
[0161] The resulting constructs were transformed into E. coli and expressions/purifications in 1-liter scale were performed. Of the 12 new constructs, 10 resulted in functional Fab molecules. These were analyzed in BIAcore® and human protease assay as summarized in Table 3. The best antibody named MS-BW-44 had a monovalent affinity of 2 nM and an IC50 of 4 nM (FIG. 7) and was thus improved by a factor of 6.5 (Kd) or 2.75 (IC50).
TABLE-US-00003 TABLE 3 Overview of Fab derived from light chain cloning Framework + CDR 3 sequence Monovalent KD IC50* in human Fab VH HCDR3 VL LCDR3 to human TIMP-1 protease assay MS-BW-43 H3 FLDI, λ2 QSYDYQQFT, ~49 nM >100 nM SEQ ID NO: 3 SEQ ID NO: 44 MS-BW-44 H3 FLDI, λ2 QSYDFKTYL, ~6 nM 29 +/- 6 nM SEQ ID NO: 3 SEQ ID NO: 45 MS-BW-45 H3 FLDI, λ2 QSYDFINVI, ~65 nM >100 nM SEQ ID NO: 3 SEQ ID NO: 47 MS-BW-46 H3 FLDI, λ2 QSYDFVRFM, 2 +/- 0.4 nM* 4 +/- 1 nM SEQ ID NO: 3 SEQ ID NO: 48 MS-BW-47 H3 FLDI, λ2 QSYDFYKFN, 8 +/- 5 nM 9 +/- 3 nM SEQ ID NO: 3 SEQ ID NO: 49 MS-BW-48 H3 FLDI, λ2 QSYDFRRFS, 6 +/- 3 nM 4 +/- 0.5 nM SEQ ID NO: 3 SEQ ID NO: 50 MS-BW-49 H3 FFDY, λ2 QSYDYQQFT, ~152 nM >100 nM SEQ ID NO: 7 SEQ ID NO: 44 MS-BW-50 H3 FFDY, λ2 QSYDFKTYL, ~21 nM >100 nM SEQ ID NO: 7 SEQ ID NO: 45 MS-BW-51 H3 FFDY, λ2 QSYDFINVI, ~7 nM 7 +/- 1 nM SEQ ID NO: 7 SEQ ID NO: 47 MS-BW-52 H3 FFDY, λ2 QSYDFVRFM, ~11 nM 9 +/- 1 nM SEQ ID NO: 7 SEQ ID NO: 48 *In cases were standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications. ~Indicates preliminary data, in cases where measurement was done only once.
[0162] Affinity Maturation by Optimizing HCDR1 and HCDR2
[0163] In the HuCAL®-Fab 1 library, only the CDRs HCDR3 and LCDR3 are diversified to a high extent. Although it is known from crystallographic studies that amino acids from these two CDRs make most of the antibody antigen contacts, the residual four CDRs are also important for antigen binding. However, their contribution to the binding energy can vary from antibody to antibody. In the HuCAL®-Fab 1 library those CDRs exhibit only a limited variability due to the presence of the different master frameworks (Knappik et al., 2000). In order to improve the affinity of the selected antibodies, an affinity maturation approach by randomizing HCDR1 and HCDR2 was applied. For this approach two affinity maturation libraries based on MS-BW-44 cloned into phage display vector pMORPH® 18 were created. In library 1, only HCDR2 of MS-BW-44 was diversified using "TRIM technology" as described in Virnekas et al., Nucl. Acids. Res. 22, 5600-07, 1994; Knappik et al., J. Mol. Biol. 296, 57-86, 2000. In library 2, both HCDR1 and HCDR2 were diversified using the TRIM technology. In both cases, phage antibody libraries comprising 1×108 different clones were obtained. Both libraries were mixed and used as input for a modified AutoPan® procedure. In order to select antibodies having an increased affinity to human TIMP-1, solution panning using limiting amounts of biotinylated antigen and stringent washing conditions were applied. Antibody off rates were ranked by BIAcore® using crude E. coli extracts of selected antibodies. Clones with slower off rate than parental clone MS-BW-44 were subjected to 1-liter scale expression and purification. Purified Fab were analyzed in BIAcore® and human protease assay (Table 4).
TABLE-US-00004 TABLE 4 Comparison of Fab derived from HCDR1 and HCDR2 optimization with parental clone MS-BW-44 Monovalent KD IC50 in human Fab to human TIMP-1 protease assay* MS-BW-44 .sup. 2 +/- 0.4 nM .sup. 2 +/- 0.5 nM MS-BW-44-2 0.5 +/- 0.2 nM 0.4 +/- 0.3 nM MS-BW-44-6 0.6 +/- 0.2 nM 0.2 +/- 0.1 nM *IC50 values derived from modified protease assay using decreased amounts of TIMP-1 and MMP-1 (0.4 nM each).
[0164] Clone MS-BW-44-2 was derived from library 1 thus having a modified HCDR2 cassette. Its affinity measured by BIAcore® was 0.5 nM. Clone MS-BW-44-6 was derived from library 2 having a modified HCDR 1 and HCDR 2 cassette and the affinity measured by BIAcore® was 0.6 nM. A sequence comparison between the affinity matured antibodies and their parental clones is shown in Table 8.
TABLE-US-00005 TABLE 8 Overview and sequence comparison of affinity matured Fab fragments against human TIMP-1. Sequence changes compared to parental Fab fragments (bold) are italicized VH Clone HCDR1 HCDR2 HCDR3 VL MS- Frame- sequence sequence sequence Frame- BW- work (SEQ ID NO:) (SEQ ID NO:) (SEQ ID NO:) work 3 VH3 GFTFSSYAMS AISGSGGSTYYADSVKG FLDI (3) VL2 (355) (357) 44 VH3 GFTFSSYAMS AISGSGGSTYYADSVKG FLDI (3) VL2 (355) (357) 44-6 VH3 GFTFNSYAMS VISGNGSNTYYADSVKG FLDI (3) VL2 (356) (358) 44-2 VH3 GFTFSSYAMS GISGNGVLIFYADSVKG FLDI (3) VL2 (355) (359) 44-2-4 VH3 GFTFSSYAMS GISGNGVLIFYADSVKG GLMDY (360) VL2 (355) (359) 44-2-15 VH3 GFTFSSYAMS GISGNGVLIFYADSVKG WFDH (361) VL2 (355) (359) 44-2-16 VH3 GFTFSSYAMS GISGNGVLIFYADSVKG WFDV (362) VL2 (355) (359) 44-6-1 VH3 GFTFNSYAMS VISGNGSNTYYADSVKG FLDI (3) VL2 (356) (358) VL Monov. KD IC50 in Clone LCDR1 LCDR2 LCDR3 to human human MS- sequence sequence sequence TIMP-1 protease BW- (SEQ ID NO:) (SEQ ID NO:) (SEQ ID NO:) (nM) assay (nM) 3 TGTSSDVGGYNYVS DVSNRPS QSYDFLRFS 13 +/- 2 11 +/- 2 (363) (364) (47) 44 TGTSSDVGGYNYVS DVSNRPS QSYDFVRFM 2 +/- 0.4 4 +/- 1 (363) (364) (48) 44-6 TGTSSDVGGYNYVS DVSNRPS QSYDFVRFM 0.6 +/- 0.2 0.2 +/- 0.1 * (363) (364) (48) 44-2 TGTSSDVGGYNYVS DVSNRPS QSYDFVRFM 0.5 +/- 0.2 0.4 +/- 0.3 * (363) (364) (48) 44-2-4 TGTSSDVGGYNYVS DVSNRPS QSYDFVRFM 0.2 +/- 0.02 0.2 +/- 0.1 * (363) (364) (48) 44-2-15 TGTSSDVGGYNYVS DVSNRPS QSYDFVRFM 0.3 +/- 0.1 0.2 +/- 0.1 * (363) (364) (48) 44-2-16 TGTSSDVGGYNYVS DVSNRPS QSYDFVRFM 0.5 +/- 0.2 0.3 +/- 0.1 * (363) (364) (48) 44-6-1 TGTSSDVGGYNYVS DVSNRPS QSYDFIRFM 0.2 +/- 0.04 0.2 +/- 0.1 * (363) (364) (365) * IC50 values derived from modified protease assay using decreased amounts of TIMP-1 and MMP-1; IC50 of MS-BW-44 is 2nM under these conditions
[0165] When initially analyzed in the human TIMP-1/MMP-1 assay, it was not possible to distinguish a Fab with a sub-nanomolar affinity from a Fab with 1 nM affinity, most likely because the concentration of Fab required to reverse the inhibitory effect of human TIMP-1 on human MMP-1 activity by 50% was below the concentration of total TIMP-1 in the assay. When a modified assay was used with concentrations of TIMP-1 and MMP-1 decreased from 1.2 nM to 0.4 nM, it was possible to distinguish a 2 nM Fab from a sub-nanomolar Fab (Table 4, FIG. 8). Using this modified protease assay, MS-BW-44-2 and MS-BW-44-6 had IC50 values of 0.4 nM and 0.2 nM respectively. Parental clone MS-BW-44 had an IC50 of 2 nM under these conditions. Thus, by this affinity maturation approach, an affinity gain of a factor of 5 (Kd) or 5-10 (IC50) was achieved.
[0166] Affinity Maturation by Optimizing HCDR3
[0167] As mentioned above, amino acid residues in HCDR3 and LCDR3 are considered the most important for antigen binding. Taking into account that a four amino acid HCDR3 was not planned in the design of HuCAL®-Fab 1 and thus only occurs as a rare case due to a TRIM deletion, probably not all possible combinations of the four amino acids in HCDR3 were represented in the original HuCAL®-Fab 1 library. Therefore, an affinity maturation library was constructed with four and five amino acid HCDR3 maturation cassettes inserted into Fab derived from the previous maturation cycle (among them MS-BW-44-2 and MS-BW-44-6). The obtained affinity maturation library had a diversity of 1×108 clones, therefore theoretically covering all possible four and five amino acid HCDR3 variations. Applying very stringent panning conditions, the best antibody identified, MS-BW-44-2-4, had an affinity measured by BIAcore® of 0.2 nM and an IC50 in human TIMP-1/MMP-1 assay of 0.2 nM. A sequence comparison between the affinity matured antibodies and their parental clones is shown in Table 8. The improvement factor gained by this affinity maturation approach is 2.5 with respect to the affinity and 2 with respect to the IC50.
[0168] Affinity Maturation by Optimizing LCDR3
[0169] As an alternative approach, a maturation strategy was used to further optimize the light chain CDR3 sequence. This was due to the fact that in the first maturation cycle where light chain exchange cloning between selected antibodies was applied, only a very limited subset of sequence variation had been exploited. Therefore, a maturation library was constructed in which, using TRIM technology, a diversified LCDR3 cassette was inserted into Fab derived from HCDR1 and HCDR2 optimization (among them MS-BW-44-2 and MS-BW-44-6). The best Fab identified with this maturation strategy was MS-BW-44-6-1 with an affinity measured by BIAcore® of 0.15 nM and an IC50 in a human TIMP-1/MMP-1 assay of 0.2 nM. A sequence comparison between the affinity matured antibody and its parental clones is shown in Table 8. The improvement factor gained by this maturation approach is 4 with respect to affinity. A further improvement of the IC50 in the protease assay could not be measured due to limitations in the assay.
[0170] As a result of a step-wise affinity maturation approach using four different maturation strategies, the monovalent affinity of an anti-human TIMP-1 specific Fab fragment was improved by a factor of 87 and its activity in human TIMP-1/MMP-1 assay by a factor of 55. The decision for defining the best Fab fragment has been made on the basis of Kd measurements using BIAcore®, as this method proved to be reliable for ranking antibodies with sub-nanomolar affinities, whereas the sensitivity of the human TIMP-1/MMP-1 assay was considered not suitable to rank activity of the best Fabs in the sub-nanomolar range with respect to each other.
[0171] The best Fab MS-BW-44-6-1 has an affinity measured by BIAcore® of 0.15 nM and an IC50 in human TIMP-1/MMP-1 assay of 0.2 nM. Compared to its parental clone, MS-BW-3, it has optimized LCDR3, HCDR1 and HCDR2 sequences.
Example 18
Cross Reactivity of Selected Anti-Human TIMP-1 Fab with TIMP-2, TIMP-3, and TIMP-4
[0172] TIMP-1 belongs to a family of closely related protease inhibitors all binding to various members of the MMP family of proteases. To date there are four human TIMP proteins described. To investigate potential cross-reactivity of antibody fragments selected against human TIMP-1 with other members of the human TIMP family, an ELISA was performed in which binding of antibody fragments to immobilized purified human TIMP-1, -2, -3 or -4 was analyzed (FIG. 10). Antibody fragments binding to immobilized human TIMP-1 showed no binding to human TIMP-2, -3, -4 above background level when compared to unrelated control protein BSA.
Example 19
Generation of Blocking Antibodies Against Rat TIMP-1
[0173] To generate blocking antibodies against rat TIMP-1, the HuCAL®-Fab 1 library was used for antibody selection (AutoPan®) on immobilized rat TIMP-1 followed by subcloning and expression of the selected Fab fragments in E. coli. Crude antibody-containing E. coli extracts were used for primary antibody characterization in ELISA (AutoScreen®). Purified Fab proteins were subjected to further characterization in ELISA, protease assays, and BIAcore®. Of the 8,450 selected clones were analyzed in AutoScreen®, 750 of them showed binding to rat TIMP-1. Sequence analysis revealed that in total 36 unique Fab clones specific for rat TIMP-1 were enriched during selection (Table 7). Their affinities were measured by BIAcore® and were found to be in the range of 9-1000 nM (Table 7). When tested in the rat protease assay, all but one of them were able to block the interaction between rat TIMP-1 and rat MMP-13 (Table 7). The concentration of monovalent Fab needed to reverse the inhibitory effect of rat TIMP-1 on rat MMP-13 activity by 50% (IC50) was in the range of 7-300 nM. The most active Fab clones are MS-BW-14 (Kd 10 nM; IC50 14 nM), MS-BW-17 (Kd 13 nM; IC50 11 nM), and MS-BW-54 (Kd 9 nM; IC50 7 nM).
TABLE-US-00006 TABLE 7 Overview of anti-rat TIMP-1 Fab Framework + CDR 3 sequence Monovalent KD IC50* in rat Fab VH HCDR3 VL LCDR3 to rat TIMP-1 protease assay MS-BW-5 H1A GLYWAVYPYFDF, λ1 QSRDFNRGP, ~210 nM non blocking SEQ ID NO: 8 SEQ ID NO: 51 MS-BW-6 H3 LDTYYPDLFDY, λ1 QSYDQRKW, ~68 nM ~100 nM SEQ ID NO: 9 SEQ ID NO: 52 MS-BW-7 H1A TYYYFDS, κ3 QQLYGTVS, ~168 nM >300 nM SEQ ID NO: 10 SEQ ID NO: 53 MS-BW-9 H3 YMAYMAEAIDV, λ1 QSYDGFKTH, ~256 nM >300 nM SEQ ID NO: 11 SEQ ID NO: 54 MS-BW-10 H1B LVGIVGYKPDELLYFDV, λ3 QSYDYSLL, ~200 nM ~30 nM SEQ ID NO: 12 SEQ ID NO: 55 MS-BW-11 H3 YGAYFGLDY, λ3 QSYDFNFH, ~200 nM >300 nM SEQ ID NO: 13 SEQ ID NO: 56 MS-BW-12 H6 GYADISFDY, λ2 QSYDMIARYP, ~419 nM >300 nM SEQ ID NO: 14 SEQ ID NO: 57 MS-BW-13 H3 YYLLLDY, λ3 QSWDIHPFDV, ~939 nM not tested SEQ ID NO: 15 SEQ ID NO: 58 MS-BW-14 H1A WSDQSYHYYWHPYFDV, λ1 QSWDLEPY, 10 +/- 5 nM 14 +/- 3 nM SEQ ID NO: 16 SEQ ID NO: 59 MS-BW-15 H3 LIGYFDL, λ2 QSYDVLDSE, ~80 nM ~200 nM SEQ ID NO: 17 SEQ ID NO: 60 MS-BW-17 H5 LTNYFDSIYYDH, λ2 QSYDPSHPSK, 13 +/- 3 nM 11 +/- 3 nM SEQ ID NO: 18 SEQ ID NO: 61 MS-BW-18 H5 LVGGGYDLMFDS, λ2 QSYDDMQF, ~159 nM >300 nM SEQ ID NO: 19 SEQ ID NO: 62 MS-BW-19 H5 YVTYGYDDYHFDY, λ2 QSWDINHAI, ~187 nM >300 nM SEQ ID NO: 20 SEQ ID NO: 63 MS-BW-20 H1A SGYLDY, λ2 QSYDYYDYG, ~70 nM >300 nM SEQ ID NO: 21 SEQ ID NO: 64 MS-BW-21 H1A YIGYTNVMDIRPGYFLDY, κ3 QQANDFPI, 36 +/- 2 nM 67 +/- 5 nM SEQ ID NO: 22 SEQ ID NO: 65 MS-BW-22 H5 FRAYGDDFYFDV, λ2 QSWDNLKMPV, 35 nM 65 +/- 11 nM SEQ ID NO: 23 SEQ ID NO: 66 MS-BW-23 H1B JMWSDYGQLVKGGDI, λ2 QSYDVFPINR, ~207 nM >300 nM SEQ ID NO: 24 SEQ ID NO: 67 MS-BW-24 H5 YYVTDTAYFDY, λ2 QSDLYFP, 23 nM 20 +/- 1 nM SEQ ID NO: 25 SEQ ID NO: 68 MS-BW-29 H5 HDFDGSIFMDF, λ2 QSYDVTPR, ~214 nM >100 nM SEQ ID NO: 26 SEQ ID NO: 69 MS-BW-30 H5 YAGHQYEFFFDF, λ3 QSRDPVGFP, ~36 nM >100 nM SEQ ID NO: 27 SEQ ID NO: 70 MS-BW-31 H5 LYADADIYFDY, λ2 QSYDLSPR, ~13 +/- 9 nM >100 nM SEQ ID NO: 28 SEQ ID NO: 71 MS-BW-32 H1A TKYVGSEDV, λ2 QSYDFSHYFF, ~92 nM >100 nM SEQ ID NO: 29 SEQ ID NO: 72 MS-BW-36 H5 YRYPHMFDF, λ3 QSYDLRYSH, ~42 nM ~75 nM SEQ ID NO: 30 SEQ ID NO: 73 MS-BW-37 H5 LFAGLELYFDY, λ2 QSYDLRNR, 10 +/- 9 nM >100 nM SEQ ID NO: 31 SEQ ID NO: 74 MS-BW-38 H3 GGFFNMDY, λ2 QSYDFTYGS, ~353 nM >100 nM SEQ ID NO: 32 SEQ ID NO: 75 MS-BW-39 H1A GYIPYHLFDY, κ3 QQFNDSPY, ~108 nM >100 nM SEQ ID NO: 33 SEQ ID NO: 76 MS-BW-54 H5 YYGFEYDLLFDN, λ2 QSYDISGYP, 9 +/- 1 nM 7 nM SEQ ID NO: 34 SEQ ID NO: 77 MS-BW-55 H1B ITYIGYDF, λ2 QSRDLYYVYY, ~23 nM ~100 nM SEQ ID NO: 35 SEQ ID NO: 78 MS-BW-56 H1A QEWYMDY, λ3 QSYDRSMW, ~170 nM >100 nM SEQ ID NO: 36 SEQ ID NO: 79 MS-BW-57 H5 LYPEDLIYFDY, λ2 QSWDVQTDK, ~39 nM ~60 nM SEQ ID NO: 37 SEQ ID NO: 80 MS-BW-58 H6 WMTPPGHYYGYTFDV, λ3 QSWDPSHYY, ~138 nM not tested SEQ ID NO: 38 SEQ ID NO: 81 MS-BW-59 H5 LRVHDYAMYFDL, λ2 QSYDIMPER, ~15 nM 30 +/- 5 nM SEQ ID NO: 39 SEQ ID NO: 82 MS-BW-60 H5 FVSYNGSVPYFDY, λ2 QSMDFRLMH, ~30 nM >100 nM SEQ ID NO: 40 SEQ ID NO: 83 MS-BW-61 H5 IIGDYVIFFDV, λ2 QSFDMIHPY, ~51 nM >100 nM SEQ ID NO: 41 SEQ ID NO: 84 MS-BW-62 H5 LFTYPFLYFDV, λ2 QSDFPVM, ~36 nM 19 +/- 2 SEQ ID NO: 42 SEQ ID NO: 85 MS-BW-63 H5 ILTGHVLLFDY, λ2 QSDNPYL, ~14 nM 20 +/- 1 nM SEQ ID NO: 43 SEQ ID NO: 86 *In cases were standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications. ~Indicates preliminary data, in cases where measurement was done only once.
Example 20
Increasing the Affinity of Selected Anti-Rat TIMP-1 Antibodies
[0174] Affinity maturation was applied to increase the affinity of monovalent anti-rat TIMP-1 Fab fragments to the sub-nanomolar range. No clear sequence homology could be identified among the light chain CDR3 sequences of the selected antibody fragments, indicating that an optimal light chain CDR3 sequence was probably not present or had not been selected from the original HuCAL®-Fab 1 library. We therefore started with modification of LCDR3 to increase the affinity of Fabs.
[0175] Two affinity maturation libraries based on MS-BW-14, -17, and -54 cloned into phage display vector pMORPH® 18 were created. In library 1, only LCDR3 was diversified using TRIM technology, as described in Virnekas et al., Nucl. Acids. Res. 22, 5600-07, 1994; Knappik et al., J. Mol. Biol. 296, 57-86, 2000. In library 2, LCDR1, LCDR2, and LCDR3 were diversified simultaneously using the TRIM technology, while the connecting framework regions were kept constant. In both cases, phage antibody libraries comprising 3×108 different clones were obtained. Both libraries were mixed and used as input for a modified AutoPan® procedure. To select antibodies having an increased affinity to rat TIMP-1, solution panning using limiting amounts of biotinylated antigen and stringent washing conditions were applied.
[0176] Antibody-off-rates were ranked by BIAcore® using crude E. coli extracts. Clones with slower off rate than parental clones MS-BW-14, -17, or -54 were subjected to expression and purification in 1-liter scale. Purified Fab were analyzed in BIAcore® and rat protease assays (Table 6). MS-BW-17-1 (Kd 0.8 nM, IC50 1.6 nM), MS-BW-17-2 (Kd 1.3 nM, IC50 1.1 nM), and MS-BW-17-3 (Kd 1.9 nM, IC50 3 nM) were derived from affinity maturation library 1 having an optimized LCDR3 sequence, whereas MS-BW-54-1 (Kd 2 nM, IC50 3 nM) was derived from affinity maturation library 2 having an optimized LCDR1, -2, and -3 sequence (Table 9).
TABLE-US-00007 TABLE 9 Overview and sequence comparison of affinity matured Fab fragments against rat TIMP-1. Sequence changes compared to parental Fab fragments (bold) are italicized. VL Clone HCDR1 VH (MS- Frame- sequence HCDR2 sequence HCDR3 sequence Frame- BW-) work (SEQ ID NO:) (SEQ ID NO:) (SEQ ID NO:) work 14 VH1A GGTFSSYAIS GIIPIFGTANYAQKFQG WSDQSYHYYWHPYFDV VL1 (366) (368) (370) 17 VH5 GYSFTSYWIG IIYPGDSDTRYSPSFQG LTNYFDSIYYDH VL2 (367) (369) (18) 54 VH5 GYSFTSYWIG IIYPGDSDTRYSPSFQG YYGFEYDLLFDN VL2 (367) (369) (34) 17-1 VH5 GYSFTSYWIG IIYPGDSDTRYSPSFQG LTNYFDSIYYDH VL2 (367) (369) (18) 17-2 VH5 GYSFTSYWIG IIYPGDSDTRYSPSFQG LTNYFDSIYYDH VL2 (367) (369) (18) 17-3 VH5 GYSFTSYWIG IIYPGDSDTRYSPSFQG LTNYFDSIYYDH VL2 (367) (369) (18) 54-1 VH5 GYSFTSYWIG IIYPGDSDTRYSPSFQG YYGFEYDLLFDN VL2 (367) (369) (34) VH Monov. KD Clone LCDR1 LCDR2 LCDR3 to rat IC50 in rat (MS- sequence sequence sequence TIMP-1 protease BW-) (SEQ ID NO:) (SEQ ID NO:) (SEQ ID NO:) (nM) assay (nM) 14 SGSSSNIGSNYVS LMIYDNNQRPS QSWDLEPY 10 +/- 5 14 +/- 3 (371) (373) (59) 17 TGTSSDVGGYNYVS LMIYDVSNRPS QSYDPSHPSK 13 +/- 3 11 +/- 3 (363) (374) (61) 54 TGTSSDVGGYNYVS LMIYDVSNRPS QSYDISGYP 9 +/- 1 7 (363) (374) (77) 17-1 TGTSSDVGGYNYVS LMIYDVSNRPS QAFDVAPNGK 0.8 1.6 (363) (374) (376) 17-2 TGTSSDVGGYNYVS LMIYDVSNRPS QAFAVMPNVE 1.3 1.1 (363) (374) (377) 17-3 TGTSSDVGGYNYVS LMIYDVSNRPS QSFTVSPGAD 1.9 3 (363) (374) (378) 54-1 TGTSSDLGGYNYVS LMIYAGNNRPS QAYDSSGYP 2 3 (372) (375) (379)
[0177] The improvement gained by these different one-step maturation strategies was up to a factor of 16.3 with regard to affinity and 10 with regard to functional activity in the protease assay.
Example 21
Conversion of Anti-TIMP-1 Fab Fragments into Human IgG1 Molecules for Use in the Rat Model of Chronic Carbon Tetrachloride-Induced Liver Fibrosis
[0178] Anti-TIMP-1 Fab fragments were converted into human IgG1 molecules to create antibody molecules with prolonged in vivo half-lives for the use in the rat model of chronic carbon tetrachloride-induced liver fibrosis. This was done by cloning the heavy and light chain variable regions of the Fab into two separate vectors for mammalian IgG1 expression (Krebs et al., 2001)
[0179] Anti-rat TIMP-1 clone MS-BW-14 was chosen for the first in vivo study, and IgG1 protein was produced by transient expression. Anti-human TIMP-1 clone MS-BW-3 was selected as a negative control IgG1 and was also produced by transient expression. Purified IgG1 proteins MS-BW-14 and MS-BW-3 were subjected to quality control in BIAcore® and rat TIMP-1/rat MMP-13 assays. Bivalent affinity for rat TIMP-1 measured in BIAcore® (chip density 500 RU, fitting model for bivalent analyte) is 0.2 nM for MS-BW-14, compared to 13 nM for the corresponding monovalent Fab fragment. This increase in affinity for the IgG1 is due to the avidity effects caused by binding of bivalent IgG1 to immobilized rat TIMP-1 protein on the BIAcore® chip. As expected, the negative control IgG1 MS-BW-3 showed no binding to rat TIMP-1 but bound to human TIMP-1 with a bivalent affinity of approximately 0.4 nM.
[0180] FIG. 12 shows the activity of MS-BW-14 Fab and IgG1 and MS-BW-3 IgG1 in a rat TIMP-1/rat MMP-13 assay. The IC50 of MS-BW-14 Fab and IgG1 are nearly identical. The avidity effect seen in BIAcore® does not occur in this assay because, in contrast to the BIAcore® experiment, this assay is based on a monovalent interaction in solution between TIMP-1 and the IgG1. As expected, MS-BW-3 has no effect on rat TIMP-1 binding to rat MMP-13 and thus is a suitable negative control for a rat in vivo study.
[0181] Affinity matured clone MS-BW-17-1 was then converted from a monovalent Fab fragment to a bivalent IgG1. Protein was produced by stable transfection. Purified protein was subjected to quality control in BIAcore® and rat TIMP-1/rat MMP-13 assays (FIG. 13). In BIAcore® an increased bivalent affinity (avidity) of 0.04 nM for IgG1 compared to 0.8 nM for monovalent Fab fragment was seen, whereas the activity in the rat TIMP-1/rat MMP-13 assay was comparable for IgG1 and Fab as expected.
Example 22
Cross-Reactivity of Anti-Rat TIMP-1 IgG1 MS-BW-17-1 with Mouse TIMP-1
[0182] Species cross-reactivity of MS-BW-17-1 IgG1 and Fab with mouse TIMP-1 was determined by BIAcore® to investigate the feasibility of alternative in vivo models that use mice instead of rats. Although MS-BW-17-1 clearly bound to mouse TIMP-1 immobilized to the chip surface, the affinity of both Fab (180 nM) and IgG1 (9 nM) was 225-fold weaker than the affinity to rat TIMP-1. As the interaction between mouse TIMP-1 and BW-17-1 IgG1 in serum is most likely monovalent, the affinity of BW-17-1 Fab probably reflects the "real" affinity of this interaction. Therefore, the Fab affinity value should be considered when calculating the feasibility of using BW-17-1 IgG1 in a mouse in vivo study.
Example 23
Effect of Timp-1 Antibody on the Development of Bleomycin-Induced Pulmonary Fibrosis
[0183] The following example demonstrates the ability of a human anti-rat Timp-1 antibody (BW17.1) to prevent fibrotic collagen deposition in a bleomycin-induced rat lung fibrosis model.
[0184] Male Lewis rats (6 weeks of age) received a single intratracheal challenge with bleomycin (0.3 mg/rat, in saline) or vehicle (saline) on day 0. Fourteen days later, animals were euthanized, the lung excised, fixed, and processed for evaluation of lung fibrosis. Lung tissue sections were cut, and quantitative assessment by image analysis of lung collagen in lung tissue sections stained with Mason Trichrome stain performed.
[0185] Antibody administration: A 20 mg/kg dose of human ant-rat TIMP-1 antibody or control human antibody (IgG) was administered subcutaneously on day -1. Subsequently, a 10 mg/kg dose of human ant-rat TIMP-1 antibody or control human antibody (IgG) was administered s.c. on days 2, 5, 8, and 11. The following five groups of animals were studied: Saline i.t. challenge+antibody vehicle (PBS); Saline i.t. challenge+TIMP-1 antibody; Bleomycin i.t. challenge+TIMP-1 antibody; Bleomycin i.t. challenge+antibody vehicle (PBS); Bleomycin i.t. challenge+control antibody.
[0186] FIG. 14 shows the effect of the inhibitory effect of TIMP-1 antibody on bleomycin-induced lung fibrotic collagen.
Example 24
Effect of BW-14 Anti-TIMP-1 Antibody in a Rat Model with CCl4-Induced Liver Fibrosis
[0187] Carbon tetrachloride (CCl4) was used to induce liver fibrosis as described in Example 9. A single intravenous dose of 3 mg/kg BW-14 or control antibody BW-3, respectively, was administered on day 19. At this time, total liver collagen (hydroxyproline determined according to Prockop and Udenfried) is already significantly increased by CCl4, and fibrotic collagen rapidly accumulates during the following weeks. The rats were sacrificed on day 28. The treatment groups were: no CCl4+ control antibody BW 3 (n=10 rats), CCl4+ control antibody BW 3 (n=20 rats), and CCl4+BW 14 (n=20 rats).
[0188] The effect of control vs. TIMP-1 antibody as reflected in morphometric measurements of fibrous collagen (Sirius Red stained area as percentage of the total field) is shown in FIG. 15. Comparison of both control antibody treated groups shows that CCl4 caused an approximately three-fold increase in collagen area. BW-14 antibody treatment reduced the pathological collagen increment by 26%. The lower fibrous collagen value of the CCl4+BW-14 group compared to the CCl4+BW-3 group was statistically significant (p<0.05, Kolmogorow-Smirnow test).
REFERENCES
[0189] Ausubel et al. (1998) Current Protocols in Molecular Biology. Wiley, New York, USA.
[0190] Better et al., (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041.
[0191] Bruggeman et al., (1996) Phage antibodies against an unstable hapten: oxygen sensitive reduced flavin. FEBS Lett. 388, 242.
[0192] Butler et al., (1999) Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions. J Biol. Chem. 274, 10846.
[0193] Gomis-Ruth et al., (1996). Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 389, 77.
[0194] Griffiths, A. D. and Duncan, A. R. (1998) Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102.
[0195] Hoogenboom, H. R. and Winter, G. (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381.
[0196] Iredale et al., (1996) Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. Hepatology. 24, 176.
[0197] Knappik et al., (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs diversified with trinucleotides. J. Mol. Biol. 296, 55.
[0198] Krebs et al., (2001) High-throughput generation and engineering of recombinant human antibodies. J Immunol Methods. 254, 67.
[0199] Lowman, H. B. (1997) Bacteriophage display and discovery of peptide leads for drug development. Annu Rev. Biophys. Biomol. Struct. 26, 401.
[0200] McCafferty et al., (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552.
[0201] Meng et al., (1999) Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1' residue of substrate. J Biol. Chem. 274, 10184.
[0202] Meulemans et al., (1994) Selection of phage-displayed antibodies specific for a cytoskeletal antigen by competitive elution with a monoclonal antibody. J. Mol. Biol. 244, 353.
[0203] Miyazaki et al., (1999) Changes in the specificity of antibodies by site-specific mutagenesis followed by random mutagenesis. Protein Eng. 12, 407.
[0204] Sheets et al., (1998) Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. U.S.A. 95, 6157.
[0205] Skerra, A. and Pliickthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038.
[0206] Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315.
[0207] Smith, G. P. and Petrenko, V. A. (1997) Phage display. Chem. Rev. 97, 391.
[0208] Stausbol-Gron et al., (1996) A model phage display subtraction method with potential for analysis of differential gene expression. FEBS Lett. 391, 71.
[0209] Virnekas et al. (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucl. Acids Res. 22, 5600.
Sequence CWU
1
1
38114PRTHomo sapiens 1Phe Met Asp Ile 1 24PRTHomo sapiens
2Gly Phe Asp Tyr 1 34PRTHomo sapiens 3Phe Leu Asp Ile 1
48PRTHomo sapiens 4Thr Phe Pro Ile Asp Ala Asp Ser 1
5 55PRTHomo sapiens 5Gly His Val Asp Tyr 1
5 69PRTHomo sapiens 6Tyr Trp Arg Gly Leu Ser Phe Asp Ile 1
5 74PRTHomo sapiens 7Phe Phe Asp Tyr 1
812PRTHomo sapiens 8Gly Leu Tyr Trp Ala Val Tyr Pro Tyr Phe Asp Phe 1
5 10 911PRTHomo sapiens 9Leu Asp Thr
Tyr Tyr Pro Asp Leu Phe Asp Tyr 1 5 10
107PRTHomo sapiens 10Thr Tyr Tyr Tyr Phe Asp Ser 1 5
1111PRTHomo sapiens 11Tyr Met Ala Tyr Met Ala Glu Ala Ile Asp Val 1
5 10 1217PRTHomo sapiens 12Leu Val
Gly Ile Val Gly Tyr Lys Pro Asp Glu Leu Leu Tyr Phe Asp 1 5
10 15 Val 139PRTHomo sapiens
13Tyr Gly Ala Tyr Phe Gly Leu Asp Tyr 1 5
149PRTHomo sapiens 14Gly Tyr Ala Asp Ile Ser Phe Asp Tyr 1
5 157PRTHomo sapiens 15Tyr Tyr Leu Leu Leu Asp Tyr 1
5 1616PRTHomo sapiens 16Trp Ser Asp Gln Ser Tyr His
Tyr Tyr Trp His Pro Tyr Phe Asp Val 1 5
10 15 177PRTHomo sapiens 17Leu Ile Gly Tyr Phe Asp
Leu 1 5 1812PRTHomo sapiens 18Leu Thr Asn Tyr Phe
Asp Ser Ile Tyr Tyr Asp His 1 5 10
1912PRTHomo sapiens 19Leu Val Gly Gly Gly Tyr Asp Leu Met Phe Asp Ser 1
5 10 2013PRTHomo sapiens 20Tyr
Val Thr Tyr Gly Tyr Asp Asp Tyr His Phe Asp Tyr 1 5
10 216PRTHomo sapiens 21Ser Gly Tyr Leu Asp Tyr 1
5 2218PRTHomo sapiens 22Tyr Ile Gly Tyr Thr Asn Val
Met Asp Ile Arg Pro Gly Tyr Phe Leu 1 5
10 15 Asp Tyr 2312PRTHomo sapiens 23Phe Arg Ala Tyr
Gly Asp Asp Phe Tyr Phe Asp Val 1 5 10
2415PRTHomo sapiensmisc_feature(1)..(1)Xaa can be any naturally
occurring amino acid 24Xaa Met Trp Ser Asp Tyr Gly Gln Leu Val Lys Gly
Gly Asp Ile 1 5 10 15
2511PRTHomo sapiens 25Tyr Tyr Val Thr Asp Thr Ala Tyr Phe Asp Tyr 1
5 10 2611PRTHomo sapiens 26His Asp Phe Asp
Gly Ser Ile Phe Met Asp Phe 1 5 10
2712PRTHomo sapiens 27Tyr Ala Gly His Gln Tyr Glu Phe Phe Phe Asp Phe 1
5 10 2811PRTHomo sapiens 28Leu Tyr
Ala Asp Ala Asp Ile Tyr Phe Asp Tyr 1 5
10 299PRTHomo sapiens 29Thr Lys Tyr Val Gly Ser Glu Asp Val 1
5 309PRTHomo sapiens 30Tyr Arg Tyr Pro His Met
Phe Asp Phe 1 5 3111PRTHomo sapiens 31Leu
Phe Ala Gly Leu Glu Leu Tyr Phe Asp Tyr 1 5
10 328PRTHomo sapiens 32Gly Gly Phe Phe Asn Met Asp Tyr 1
5 3310PRTHomo sapiens 33Gly Tyr Ile Pro Tyr His Leu
Phe Asp Tyr 1 5 10 3412PRTHomo sapiens
34Tyr Tyr Gly Phe Glu Tyr Asp Leu Leu Phe Asp Asn 1 5
10 358PRTHomo sapiens 35Ile Thr Tyr Ile Gly Tyr Asp
Phe 1 5 367PRTHomo sapiens 36Gln Glu Trp Tyr
Met Asp Tyr 1 5 3711PRTHomo sapiens 37Leu Tyr Pro
Glu Asp Leu Ile Tyr Phe Asp Tyr 1 5 10
3815PRTHomo sapiens 38Trp Met Thr Pro Pro Gly His Tyr Tyr Gly Tyr Thr
Phe Asp Val 1 5 10 15
3912PRTHomo sapiens 39Leu Arg Val His Asp Tyr Ala Met Tyr Phe Asp Leu 1
5 10 4013PRTHomo sapiens 40Phe Val
Ser Tyr Asn Gly Ser Val Pro Tyr Phe Asp Tyr 1 5
10 4111PRTHomo sapiens 41Ile Ile Gly Asp Tyr Val Ile
Phe Phe Asp Val 1 5 10 4211PRTHomo
sapiens 42Leu Phe Thr Tyr Pro Phe Leu Tyr Phe Asp Val 1 5
10 4311PRTHomo sapiens 43Ile Leu Thr Gly His Val Leu
Leu Phe Asp Tyr 1 5 10 449PRTHomo
sapiens 44Gln Ser Tyr Asp Tyr Gln Gln Phe Thr 1 5
459PRTHomo sapiens 45Gln Ser Tyr Asp Phe Lys Thr Tyr Leu 1
5 469PRTHomo sapiens 46Gln Ser Tyr Asp Phe Leu
Arg Phe Ser 1 5 479PRTHomo sapiens 47Gln
Ser Tyr Asp Phe Ile Asn Val Ile 1 5
489PRTHomo sapiens 48Gln Ser Tyr Asp Phe Val Arg Phe Met 1
5 499PRTHomo sapiens 49Gln Ser Tyr Asp Phe Tyr Lys Phe
Asn 1 5 509PRTHomo sapiens 50Gln Ser Tyr
Asp Phe Arg Arg Phe Ser 1 5 519PRTHomo
sapiens 51Gln Ser Arg Asp Phe Asn Arg Gly Pro 1 5
528PRTHomo sapiens 52Gln Ser Tyr Asp Gln Arg Lys Trp 1
5 538PRTHomo sapiens 53Gln Gln Leu Tyr Gly Thr Val Ser 1
5 549PRTHomo sapiens 54Gln Ser Tyr Asp Gly
Phe Lys Thr His 1 5 558PRTHomo sapiens
55Gln Ser Tyr Asp Tyr Ser Leu Leu 1 5
568PRTHomo sapiens 56Gln Ser Tyr Asp Phe Asn Phe His 1 5
5710PRTHomo sapiens 57Gln Ser Tyr Asp Met Ile Ala Arg Tyr Pro
1 5 10 5810PRTHomo sapiens 58Gln Ser Trp
Asp Ile His Pro Phe Asp Val 1 5 10
598PRTHomo sapiens 59Gln Ser Trp Asp Leu Glu Pro Tyr 1 5
609PRTHomo sapiens 60Gln Ser Tyr Asp Val Leu Asp Ser Glu 1
5 6110PRTHomo sapiens 61Gln Ser Tyr Asp Pro
Ser His Pro Ser Lys 1 5 10 628PRTHomo
sapiens 62Gln Ser Tyr Asp Asp Met Gln Phe 1 5
639PRTHomo sapiens 63Gln Ser Trp Asp Ile Asn His Ala Ile 1
5 649PRTHomo sapiens 64Gln Ser Tyr Asp Tyr Tyr Asp Tyr
Gly 1 5 658PRTHomo sapiens 65Gln Gln Ala
Asn Asp Phe Pro Ile 1 5 6610PRTHomo sapiens
66Gln Ser Trp Asp Asn Leu Lys Met Pro Val 1 5
10 6710PRTHomo sapiens 67Gln Ser Tyr Asp Val Phe Pro Ile Asn Arg 1
5 10 687PRTHomo sapiens 68Gln Ser Asp Leu
Tyr Phe Pro 1 5 698PRTHomo sapiens 69Gln Ser Tyr
Asp Val Thr Pro Arg 1 5 709PRTHomo sapiens
70Gln Ser Tyr Asp Pro Val Gly Phe Pro 1 5
718PRTHomo sapiens 71Gln Ser Tyr Asp Leu Ser Pro Arg 1 5
7210PRTHomo sapiens 72Gln Ser Tyr Asp Phe Ser His Tyr Phe Phe
1 5 10 739PRTHomo sapiens 73Gln Ser Tyr
Asp Leu Arg Tyr Ser His 1 5 748PRTHomo
sapiens 74Gln Ser Tyr Asp Leu Arg Asn Arg 1 5
759PRTHomo sapiens 75Gln Ser Tyr Asp Phe Thr Tyr Gly Ser 1
5 768PRTHomo sapiens 76Gln Gln Phe Asn Asp Ser Pro Tyr
1 5 779PRTHomo sapiens 77Gln Ser Tyr Asp Ile
Ser Gly Tyr Pro 1 5 7810PRTHomo sapiens
78Gln Ser Arg Asp Leu Tyr Tyr Val Tyr Tyr 1 5
10 798PRTHomo sapiens 79Gln Ser Tyr Asp Arg Ser Met Trp 1
5 809PRTHomo sapiens 80Gln Ser Trp Asp Val Gln Thr Asp
Lys 1 5 819PRTHomo sapiens 81Gln Ser Trp
Asp Pro Ser His Tyr Tyr 1 5 829PRTHomo
sapiens 82Gln Ser Tyr Asp Ile Met Pro Glu Arg 1 5
839PRTHomo sapiens 83Gln Ser Met Asp Phe Arg Leu Met His 1
5 849PRTHomo sapiens 84Gln Ser Phe Asp Met Ile
His Pro Tyr 1 5 857PRTHomo sapiens 85Gln
Ser Asp Phe Pro Val Met 1 5 867PRTHomo sapiens
86Gln Ser Asp Asn Pro Tyr Leu 1 5 8711PRTHomo
sapiens 87Thr Cys Val Pro Pro His Pro Gln Thr Ala Phe 1 5
10 8812PRTHomo sapiens 88Cys Thr Ser Val Pro Pro His
Pro Gln Thr Ala Phe 1 5 10
8912PRTHomo sapiens 89Ser Thr Cys Val Pro Pro His Pro Gln Thr Ala Phe 1
5 10 9013PRTHomo sapiens 90Ser Thr
Ser Val Pro Pro His Pro Gln Thr Ala Phe Cys 1 5
10 9110PRTHomo sapiens 91Cys Glu Val Asn Gln Thr Thr
Leu Tyr Gln 1 5 10 9212PRTHomo sapiens
92Pro Ala Met Glu Ser Val Cys Gly Tyr Phe His Arg 1 5
10 9316PRTHomo sapiens 93Pro Ala Met Glu Ser Val Cys
Gly Tyr Phe His Arg Ser His Asn Arg 1 5
10 15 9417PRTHomo sapiens 94Cys Pro Ala Met Glu Ser
Val Ser Gly Tyr Phe His Arg Ser His Asn 1 5
10 15 Arg 9517PRTHomo sapiens 95Pro Ala Met Glu
Ser Val Ser Gly Tyr Phe His Arg Ser His Asn Arg 1 5
10 15 Cys 9612PRTHomo sapiens 96Cys Leu
Trp Thr Asp Gln Leu Leu Gln Gly Ser Glu 1 5
10 97215PRTHomo sapiens 97Asp Ile Ala Leu Thr Gln Pro Ala Ser
Val Ser Gly Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly
Gly Tyr 20 25 30
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
35 40 45 Met Ile Tyr Asp
Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly Asn Thr
Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser
Tyr Asp Tyr Gln 85 90
95 Gln Phe Thr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105 110 Pro Lys Ala
Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 115
120 125 Leu Gln Ala Asn Lys Ala Thr Leu
Val Cys Leu Ile Ser Asp Phe Tyr 130 135
140 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser
Pro Val Lys 145 150 155
160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
165 170 175 Ala Ala Ser Ser
Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 180
185 190 Arg Ser Tyr Ser Cys Gln Val Thr His
Glu Gly Ser Thr Val Glu Lys 195 200
205 Thr Val Ala Pro Thr Glu Ala 210 215
98215PRTHomo sapiens 98Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly
Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val
Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg
Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Lys
85 90 95 Thr Tyr Leu Val
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr Leu
Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu Thr
Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro
Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
Lys 195 200 205 Thr
Val Ala Pro Thr Glu Ala 210 215 99211PRTHomo sapiens
99Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1
5 10 15 Ser Ile Thr Ile
Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20
25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu 35 40
45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65
70 75 80 Gln Ala Glu Asp Glu
Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Leu 85
90 95 Arg Phe Ser Val Phe Gly Gly Gly Thr Lys
Leu Thr Val Leu Gly Gln 100 105
110 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
Glu 115 120 125 Leu
Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 130
135 140 Pro Gly Ala Val Thr Val
Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145 150
155 160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln
Ser Asn Asn Lys Tyr 165 170
175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
180 185 190 Arg Ser
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 195
200 205 Thr Val Ala 210
100215PRTHomo sapiens 100Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly
Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val
Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg
Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Ile
85 90 95 Asn Val Ile Val
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr Leu
Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu Thr
Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro
Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
Lys 195 200 205 Thr
Val Ala Pro Thr Glu Ala 210 215 101215PRTHomo sapiens
101Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1
5 10 15 Ser Ile Thr Ile
Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20
25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu 35 40
45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65
70 75 80 Gln Ala Glu Asp Glu
Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Val 85
90 95 Arg Phe Met Val Phe Gly Gly Gly Thr Lys
Leu Thr Val Leu Gly Gln 100 105
110 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
Glu 115 120 125 Leu
Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 130
135 140 Pro Gly Ala Val Thr Val
Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145 150
155 160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln
Ser Asn Asn Lys Tyr 165 170
175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
180 185 190 Arg Ser
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 195
200 205 Thr Val Ala Pro Thr Glu Ala
210 215 102215PRTHomo sapiens 102Asp Ile Ala Leu Thr
Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser
Ser Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys
Leu 35 40 45 Met
Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly
Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln
Ser Tyr Asp Phe Tyr 85 90
95 Lys Phe Asn Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105 110 Pro Lys
Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 115
120 125 Leu Gln Ala Asn Lys Ala Thr
Leu Val Cys Leu Ile Ser Asp Phe Tyr 130 135
140 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser
Ser Pro Val Lys 145 150 155
160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
165 170 175 Ala Ala Ser
Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 180
185 190 Arg Ser Tyr Ser Cys Gln Val Thr
His Glu Gly Ser Thr Val Glu Lys 195 200
205 Thr Val Ala Pro Thr Glu Ala 210
215 103215PRTHomo sapiens 103Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser
Gly Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr
Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn
Arg Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr
Ile Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Arg
85 90 95 Arg Phe Ser
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr
Leu Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser
Asp Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu
Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr
Pro Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val
Glu Lys 195 200 205
Thr Val Ala Pro Thr Glu Ala 210 215 104214PRTHomo
sapiens 104Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly
Gln 1 5 10 15 Arg
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
20 25 30 Tyr Val Ser Trp Tyr
Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35
40 45 Ile Tyr Asp Asn Asn Gln Arg Pro Ser
Gly Val Pro Asp Arg Phe Ser 50 55
60 Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr
Gly Leu Gln 65 70 75
80 Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Arg Asp Phe Asn Arg
85 90 95 Gly Pro Val Phe
Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 100
105 110 Lys Ala Ala Pro Ser Val Thr Leu Phe
Pro Pro Ser Ser Glu Glu Leu 115 120
125 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
Tyr Pro 130 135 140
Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala 145
150 155 160 Gly Val Glu Thr Thr
Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala 165
170 175 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu
Gln Trp Lys Ser His Arg 180 185
190 Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
Thr 195 200 205 Val
Ala Pro Thr Glu Ala 210 105213PRTHomo sapiens 105Asp
Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1
5 10 15 Arg Val Thr Ile Ser Cys
Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20
25 30 Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly
Thr Ala Pro Lys Leu Leu 35 40
45 Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg
Phe Ser 50 55 60
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65
70 75 80 Ser Glu Asp Glu Ala
Asp Tyr Tyr Cys Gln Ser Tyr Asp Gln Arg Lys 85
90 95 Trp Val Phe Gly Gly Gly Thr Lys Leu Thr
Val Leu Gly Gln Pro Lys 100 105
110 Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu
Gln 115 120 125 Ala
Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130
135 140 Ala Val Thr Val Ala Trp
Lys Ala Asp Ser Ser Pro Val Lys Ala Gly 145 150
155 160 Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn
Asn Lys Tyr Ala Ala 165 170
175 Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser
180 185 190 Tyr Ser
Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195
200 205 Ala Pro Thr Glu Ala 210
106215PRTHomo sapiens 106Asp Ile Val Leu Thr Gln Ser Pro Ala
Thr Leu Ser Leu Ser Pro Gly 1 5 10
15 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser
Ser Ser 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45 Ile Tyr Gly Ala
Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50
55 60 Gly Ser Gly Ser Gly Thr Asp Phe
Thr Leu Thr Ile Ser Ser Leu Glu 65 70
75 80 Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu
Tyr Gly Thr Ser 85 90
95 Val Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala
100 105 110 Ala Pro Ser
Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115
120 125 Gly Thr Ala Ser Val Val Cys Leu
Leu Asn Asn Phe Tyr Pro Arg Glu 130 135
140 Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
Gly Asn Ser 145 150 155
160 Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
165 170 175 Ser Ser Thr Leu
Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180
185 190 Tyr Ala Cys Glu Val Thr His Gln Gly
Leu Ser Ser Pro Val Thr Lys 195 200
205 Ser Phe Asn Arg Gly Glu Ala 210 215
107214PRTHomo sapiens 107Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly
Ala Pro Gly Gln 1 5 10
15 Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
20 25 30 Tyr Val Ser
Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35
40 45 Ile Tyr Asp Asn Asn Gln Arg Pro
Ser Gly Val Pro Asp Arg Phe Ser 50 55
60 Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr
Gly Leu Gln 65 70 75
80 Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Gly Phe Lys
85 90 95 Thr His Val Phe
Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 100
105 110 Lys Ala Ala Pro Ser Val Thr Leu Phe
Pro Pro Ser Ser Glu Glu Leu 115 120
125 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
Tyr Pro 130 135 140
Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala 145
150 155 160 Gly Val Glu Thr Thr
Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala 165
170 175 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu
Gln Trp Lys Ser His Arg 180 185
190 Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
Thr 195 200 205 Val
Ala Pro Thr Glu Ala 210 108211PRTHomo sapiens 108Asp
Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1
5 10 15 Thr Ala Arg Ile Ser Cys
Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20
25 30 Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala
Pro Val Leu Val Ile Tyr 35 40
45 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser
Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65
70 75 80 Asp Glu Ala Asp Tyr
Tyr Cys Gln Ser Tyr Asp Tyr Ser Leu Leu Val 85
90 95 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
Gly Gln Pro Lys Ala Ala 100 105
110 Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala
Asn 115 120 125 Lys
Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val 130
135 140 Thr Val Ala Trp Lys Ala
Asp Ser Ser Pro Val Lys Ala Gly Val Glu 145 150
155 160 Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
Tyr Ala Ala Ser Ser 165 170
175 Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr Ser
180 185 190 Cys Gln
Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro 195
200 205 Thr Glu Ala 210
109211PRTHomo sapiens 109Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val
Ala Pro Gly Gln 1 5 10
15 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
20 25 30 Ser Trp Tyr
Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35
40 45 Asp Asp Ser Asp Arg Pro Ser Gly
Ile Pro Glu Arg Phe Ser Gly Ser 50 55
60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr
Gln Ala Glu 65 70 75
80 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Asn Phe His Val
85 90 95 Phe Gly Gly Gly
Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala Ala 100
105 110 Pro Ser Val Thr Leu Phe Pro Pro Ser
Ser Glu Glu Leu Gln Ala Asn 115 120
125 Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly
Ala Val 130 135 140
Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu 145
150 155 160 Thr Thr Thr Pro Ser
Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser 165
170 175 Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys
Ser His Arg Ser Tyr Ser 180 185
190 Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala
Pro 195 200 205 Thr
Glu Ala 210 110216PRTHomo sapiens 110Asp Ile Ala Leu Thr Gln Pro
Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser
Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys
Leu 35 40 45 Met
Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly
Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln
Ser Tyr Asp Met Ile 85 90
95 Ala Arg Tyr Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105 110 Gln Pro
Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu 115
120 125 Glu Leu Gln Ala Asn Lys Ala
Thr Leu Val Cys Leu Ile Ser Asp Phe 130 135
140 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp
Ser Ser Pro Val 145 150 155
160 Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
165 170 175 Tyr Ala Ala
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser 180
185 190 His Arg Ser Tyr Ser Cys Gln Val
Thr His Glu Gly Ser Thr Val Glu 195 200
205 Lys Thr Val Ala Pro Thr Glu Ala 210
215 111213PRTHomo sapiens 111Asp Ile Glu Leu Thr Gln Pro Pro Ser
Val Ser Val Ala Pro Gly Gln 1 5 10
15 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys
Tyr Ala 20 25 30
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45 Asp Asp Ser Asp
Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50
55 60 Asn Ser Gly Asn Thr Ala Thr Leu
Thr Ile Ser Gly Thr Gln Ala Glu 65 70
75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Ile
His Pro Phe Asp 85 90
95 Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys
100 105 110 Ala Ala Pro
Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115
120 125 Ala Asn Lys Ala Thr Leu Val Cys
Leu Ile Ser Asp Phe Tyr Pro Gly 130 135
140 Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val
Lys Ala Gly 145 150 155
160 Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala
165 170 175 Ser Ser Tyr Leu
Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180
185 190 Tyr Ser Cys Gln Val Thr His Glu Gly
Ser Thr Val Glu Lys Thr Val 195 200
205 Ala Pro Thr Glu Ala 210 112213PRTHomo
sapiens 112Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly
Gln 1 5 10 15 Arg
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
20 25 30 Tyr Val Ser Trp Tyr
Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35
40 45 Ile Tyr Asp Asn Asn Gln Arg Pro Ser
Gly Val Pro Asp Arg Phe Ser 50 55
60 Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr
Gly Leu Gln 65 70 75
80 Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Leu Glu Pro
85 90 95 Tyr Val Phe Gly
Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100
105 110 Ala Ala Pro Ser Val Thr Leu Phe Pro
Pro Ser Ser Glu Glu Leu Gln 115 120
125 Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly 145
150 155 160 Val Glu Thr Thr Thr
Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165
170 175 Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln
Trp Lys Ser His Arg Ser 180 185
190 Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
Val 195 200 205 Ala
Pro Thr Glu Ala 210 113215PRTHomo sapiens 113Asp Ile Ala
Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly
Thr Ser Ser Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala
Pro Lys Leu 35 40 45
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys
Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr
Cys Gln Ser Tyr Asp Val Leu 85 90
95 Asp Ser Glu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
Gly Gln 100 105 110
Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
115 120 125 Leu Gln Ala Asn
Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 130
135 140 Pro Gly Ala Val Thr Val Ala Trp
Lys Ala Asp Ser Ser Pro Val Lys 145 150
155 160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser
Asn Asn Lys Tyr 165 170
175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
180 185 190 Arg Ser Tyr
Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 195
200 205 Thr Val Ala Pro Thr Glu Ala
210 215 114216PRTHomo sapiens 114Asp Ile Ala Leu Thr Gln
Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser
Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys
Leu 35 40 45 Met
Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly
Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln
Ser Tyr Asp Pro Ser 85 90
95 His Pro Ser Lys Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105 110 Gln Pro
Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu 115
120 125 Glu Leu Gln Ala Asn Lys Ala
Thr Leu Val Cys Leu Ile Ser Asp Phe 130 135
140 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp
Ser Ser Pro Val 145 150 155
160 Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
165 170 175 Tyr Ala Ala
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser 180
185 190 His Arg Ser Tyr Ser Cys Gln Val
Thr His Glu Gly Ser Thr Val Glu 195 200
205 Lys Thr Val Ala Pro Thr Glu Ala 210
215 115214PRTHomo sapiens 115Asp Ile Ala Leu Thr Gln Pro Ala Ser
Val Ser Gly Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly
Gly Tyr 20 25 30
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
35 40 45 Met Ile Tyr Asp
Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly Asn Thr
Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser
Tyr Asp Asp Met 85 90
95 Gln Phe Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro
100 105 110 Lys Ala Ala
Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu 115
120 125 Gln Ala Asn Lys Ala Thr Leu Val
Cys Leu Ile Ser Asp Phe Tyr Pro 130 135
140 Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro
Val Lys Ala 145 150 155
160 Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala
165 170 175 Ala Ser Ser Tyr
Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg 180
185 190 Ser Tyr Ser Cys Gln Val Thr His Glu
Gly Ser Thr Val Glu Lys Thr 195 200
205 Val Ala Pro Thr Glu Ala 210
116215PRTHomo sapiens 116Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly
Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val
Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg
Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Ile Asn
85 90 95 His Ala Ile Val
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr Leu
Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu Thr
Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro
Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
Lys 195 200 205 Thr
Val Ala Pro Thr Glu Ala 210 215 117215PRTHomo sapiens
117Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1
5 10 15 Ser Ile Thr Ile
Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20
25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu 35 40
45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65
70 75 80 Gln Ala Glu Asp Glu
Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Tyr 85
90 95 Asp Tyr Gly Val Phe Gly Gly Gly Thr Lys
Leu Thr Val Leu Gly Gln 100 105
110 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
Glu 115 120 125 Leu
Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 130
135 140 Pro Gly Ala Val Thr Val
Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145 150
155 160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln
Ser Asn Asn Lys Tyr 165 170
175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
180 185 190 Arg Ser
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 195
200 205 Thr Val Ala Pro Thr Glu Ala
210 215 118215PRTHomo sapiens 118Asp Ile Val Leu Thr
Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 1 5
10 15 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser
Gln Ser Val Ser Ser Ser 20 25
30 Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu
Leu 35 40 45 Ile
Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50
55 60 Gly Ser Gly Ser Gly Thr
Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu 65 70
75 80 Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln
Ala Asn Asp Phe Pro 85 90
95 Ile Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala
100 105 110 Ala Pro
Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115
120 125 Gly Thr Ala Ser Val Val Cys
Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135
140 Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
Ser Gly Asn Ser 145 150 155
160 Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
165 170 175 Ser Ser Thr
Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180
185 190 Tyr Ala Cys Glu Val Thr His Gln
Gly Leu Ser Ser Pro Val Thr Lys 195 200
205 Ser Phe Asn Arg Gly Glu Ala 210
215 119216PRTHomo sapiens 119Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser
Gly Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr
Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn
Arg Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr
Ile Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Asn Leu
85 90 95 Lys Met Pro
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100
105 110 Gln Pro Lys Ala Ala Pro Ser Val
Thr Leu Phe Pro Pro Ser Ser Glu 115 120
125 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile
Ser Asp Phe 130 135 140
Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val 145
150 155 160 Lys Ala Gly Val
Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys 165
170 175 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu
Thr Pro Glu Gln Trp Lys Ser 180 185
190 His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr
Val Glu 195 200 205
Lys Thr Val Ala Pro Thr Glu Ala 210 215
120216PRTHomo sapiens 120Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly
Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val
Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg
Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Val Phe
85 90 95 Pro Ile Asn Arg
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100
105 110 Gln Pro Lys Ala Ala Pro Ser Val Thr
Leu Phe Pro Pro Ser Ser Glu 115 120
125 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser
Asp Phe 130 135 140
Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val 145
150 155 160 Lys Ala Gly Val Glu
Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys 165
170 175 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr
Pro Glu Gln Trp Lys Ser 180 185
190 His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val
Glu 195 200 205 Lys
Thr Val Ala Pro Thr Glu Ala 210 215 121213PRTHomo
sapiens 121Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly
Gln 1 5 10 15 Ser
Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val Ser Trp
Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg Pro
Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Asp Leu Tyr Phe
85 90 95 Pro Val Phe Gly
Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100
105 110 Ala Ala Pro Ser Val Thr Leu Phe Pro
Pro Ser Ser Glu Glu Leu Gln 115 120
125 Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly 145
150 155 160 Val Glu Thr Thr Thr
Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165
170 175 Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln
Trp Lys Ser His Arg Ser 180 185
190 Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
Val 195 200 205 Ala
Pro Thr Glu Ala 210 122214PRTHomo sapiens 122Asp Ile Ala
Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly
Thr Ser Ser Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala
Pro Lys Leu 35 40 45
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys
Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr
Cys Gln Ser Tyr Asp Val Thr 85 90
95 Pro Arg Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
Gln Pro 100 105 110
Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu
115 120 125 Gln Ala Asn Lys
Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro 130
135 140 Gly Ala Val Thr Val Ala Trp Lys
Ala Asp Ser Ser Pro Val Lys Ala 145 150
155 160 Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn
Asn Lys Tyr Ala 165 170
175 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg
180 185 190 Ser Tyr Ser
Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr 195
200 205 Val Ala Pro Thr Glu Ala 210
123212PRTHomo sapiens 123Asp Ile Glu Leu Thr Gln Pro Pro
Ser Val Ser Val Ala Pro Gly Gln 1 5 10
15 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp
Lys Tyr Ala 20 25 30
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45 Asp Asp Ser Asp
Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50
55 60 Asn Ser Gly Asn Thr Ala Thr Leu
Thr Ile Ser Gly Thr Gln Ala Glu 65 70
75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Arg Asp Pro
Val Gly Phe Pro 85 90
95 Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala
100 105 110 Ala Pro Ser
Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala 115
120 125 Asn Lys Ala Thr Leu Val Cys Leu
Ile Ser Asp Phe Tyr Pro Gly Ala 130 135
140 Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
Ala Gly Val 145 150 155
160 Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser
165 170 175 Ser Tyr Leu Ser
Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr 180
185 190 Ser Cys Gln Val Thr His Glu Gly Ser
Thr Val Glu Lys Thr Val Ala 195 200
205 Pro Thr Glu Ala 210 124214PRTHomo sapiens
124Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1
5 10 15 Ser Ile Thr Ile
Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20
25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu 35 40
45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65
70 75 80 Gln Ala Glu Asp Glu
Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Ser 85
90 95 Pro Arg Val Phe Gly Gly Gly Thr Lys Leu
Thr Val Leu Gly Gln Pro 100 105
110 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
Leu 115 120 125 Gln
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro 130
135 140 Gly Ala Val Thr Val Ala
Trp Lys Ala Asp Ser Ser Pro Val Lys Ala 145 150
155 160 Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser
Asn Asn Lys Tyr Ala 165 170
175 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg
180 185 190 Ser Tyr
Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr 195
200 205 Val Ala Pro Thr Glu Ala
210 125216PRTHomo sapiens 125Asp Ile Ala Leu Thr Gln Pro
Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser
Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys
Leu 35 40 45 Met
Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly
Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln
Ser Tyr Asp Phe Ser 85 90
95 His Tyr Phe Phe Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105 110 Gln Pro
Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu 115
120 125 Glu Leu Gln Ala Asn Lys Ala
Thr Leu Val Cys Leu Ile Ser Asp Phe 130 135
140 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp
Ser Ser Pro Val 145 150 155
160 Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
165 170 175 Tyr Ala Ala
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser 180
185 190 His Arg Ser Tyr Ser Cys Gln Val
Thr His Glu Gly Ser Thr Val Glu 195 200
205 Lys Thr Val Ala Pro Thr Glu Ala 210
215 126212PRTHomo sapiens 126Asp Ile Glu Leu Thr Gln Pro Pro Ser
Val Ser Val Ala Pro Gly Gln 1 5 10
15 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys
Tyr Ala 20 25 30
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45 Asp Asp Ser Asp
Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50
55 60 Asn Ser Gly Asn Thr Ala Thr Leu
Thr Ile Ser Gly Thr Gln Ala Glu 65 70
75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu
Arg Tyr Ser His 85 90
95 Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala
100 105 110 Ala Pro Ser
Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala 115
120 125 Asn Lys Ala Thr Leu Val Cys Leu
Ile Ser Asp Phe Tyr Pro Gly Ala 130 135
140 Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
Ala Gly Val 145 150 155
160 Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser
165 170 175 Ser Tyr Leu Ser
Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr 180
185 190 Ser Cys Gln Val Thr His Glu Gly Ser
Thr Val Glu Lys Thr Val Ala 195 200
205 Pro Thr Glu Ala 210 127214PRTHomo sapiens
127Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1
5 10 15 Ser Ile Thr Ile
Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20
25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu 35 40
45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65
70 75 80 Gln Ala Glu Asp Glu
Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Arg 85
90 95 Asn Arg Val Phe Gly Gly Gly Thr Lys Leu
Thr Val Leu Gly Gln Pro 100 105
110 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
Leu 115 120 125 Gln
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro 130
135 140 Gly Ala Val Thr Val Ala
Trp Lys Ala Asp Ser Ser Pro Val Lys Ala 145 150
155 160 Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser
Asn Asn Lys Tyr Ala 165 170
175 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg
180 185 190 Ser Tyr
Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr 195
200 205 Val Ala Pro Thr Glu Ala
210 128215PRTHomo sapiens 128Asp Ile Ala Leu Thr Gln Pro
Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser
Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys
Leu 35 40 45 Met
Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly
Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln
Ser Tyr Asp Phe Thr 85 90
95 Tyr Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105 110 Pro Lys
Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 115
120 125 Leu Gln Ala Asn Lys Ala Thr
Leu Val Cys Leu Ile Ser Asp Phe Tyr 130 135
140 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser
Ser Pro Val Lys 145 150 155
160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
165 170 175 Ala Ala Ser
Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 180
185 190 Arg Ser Tyr Ser Cys Gln Val Thr
His Glu Gly Ser Thr Val Glu Lys 195 200
205 Thr Val Ala Pro Thr Glu Ala 210
215 129215PRTHomo sapiens 129Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu
Ser Leu Ser Pro Gly 1 5 10
15 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30 Tyr Leu
Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35
40 45 Ile Tyr Gly Ala Ser Ser Arg
Ala Thr Gly Val Pro Ala Arg Phe Ser 50 55
60 Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
Ser Ser Leu Glu 65 70 75
80 Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Phe Asn Asp Ser Pro
85 90 95 Tyr Thr Phe
Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala 100
105 110 Ala Pro Ser Val Phe Ile Phe Pro
Pro Ser Asp Glu Gln Leu Lys Ser 115 120
125 Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145
150 155 160 Gln Glu Ser Val
Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165
170 175 Ser Ser Thr Leu Thr Leu Ser Lys Ala
Asp Tyr Glu Lys His Lys Val 180 185
190 Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val
Thr Lys 195 200 205
Ser Phe Asn Arg Gly Glu Ala 210 215 130215PRTHomo
sapiens 130Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly
Gln 1 5 10 15 Ser
Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val Ser Trp
Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg Pro
Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ile Ser
85 90 95 Gly Tyr Pro Val
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr Leu
Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu Thr
Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro
Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
Lys 195 200 205 Thr
Val Ala Pro Thr Glu Ala 210 215 131216PRTHomo sapiens
131Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1
5 10 15 Ser Ile Thr Ile
Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20
25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu 35 40
45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65
70 75 80 Gln Ala Glu Asp Glu
Ala Asp Tyr Tyr Cys Gln Ser Arg Asp Leu Tyr 85
90 95 Tyr Val Tyr Tyr Val Phe Gly Gly Gly Thr
Lys Leu Thr Val Leu Gly 100 105
110 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser
Glu 115 120 125 Glu
Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe 130
135 140 Tyr Pro Gly Ala Val Thr
Val Ala Trp Lys Ala Asp Ser Ser Pro Val 145 150
155 160 Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys
Gln Ser Asn Asn Lys 165 170
175 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser
180 185 190 His Arg
Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu 195
200 205 Lys Thr Val Ala Pro Thr Glu
Ala 210 215 132211PRTHomo sapiens 132Asp Ile Glu
Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5
10 15 Thr Ala Arg Ile Ser Cys Ser Gly
Asp Ala Leu Gly Asp Lys Tyr Ala 20 25
30 Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu
Val Ile Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50
55 60 Asn Ser Gly Asn
Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70
75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser
Tyr Asp Arg Ser Met Trp Val 85 90
95 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys
Ala Ala 100 105 110
Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn
115 120 125 Lys Ala Thr Leu
Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val 130
135 140 Thr Val Ala Trp Lys Ala Asp Ser
Ser Pro Val Lys Ala Gly Val Glu 145 150
155 160 Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
Ala Ala Ser Ser 165 170
175 Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr Ser
180 185 190 Cys Gln Val
Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro 195
200 205 Thr Glu Ala 210
133215PRTHomo sapiens 133Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly
Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val
Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg
Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Val Gln
85 90 95 Thr Asp Lys Val
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr Leu
Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu Thr
Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro
Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
Lys 195 200 205 Thr
Val Ala Pro Thr Glu Ala 210 215 134212PRTHomo sapiens
134Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1
5 10 15 Thr Ala Arg Ile
Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20
25 30 Ser Trp Tyr Gln Gln Lys Pro Gly Gln
Ala Pro Val Leu Val Ile Tyr 35 40
45 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser
Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65
70 75 80 Asp Glu Ala Asp Tyr
Tyr Cys Gln Ser Trp Asp Pro Ser His Tyr Tyr 85
90 95 Val Phe Gly Gly Gly Thr Lys Leu Thr Val
Leu Gly Gln Pro Lys Ala 100 105
110 Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln
Ala 115 120 125 Asn
Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala 130
135 140 Val Thr Val Ala Trp Lys
Ala Asp Ser Ser Pro Val Lys Ala Gly Val 145 150
155 160 Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn
Lys Tyr Ala Ala Ser 165 170
175 Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr
180 185 190 Ser Cys
Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala 195
200 205 Pro Thr Glu Ala 210
135215PRTHomo sapiens 135Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser
Gly Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr
Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn
Arg Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr
Ile Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ile Met
85 90 95 Pro Glu Arg
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr
Leu Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser
Asp Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu
Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr
Pro Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val
Glu Lys 195 200 205
Thr Val Ala Pro Thr Glu Ala 210 215 136215PRTHomo
sapiens 136Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly
Gln 1 5 10 15 Ser
Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val Ser Trp
Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg Pro
Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Met Asp Phe Arg
85 90 95 Leu Met His Val
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100
105 110 Pro Lys Ala Ala Pro Ser Val Thr Leu
Phe Pro Pro Ser Ser Glu Glu 115 120
125 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
Phe Tyr 130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145
150 155 160 Ala Gly Val Glu Thr
Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165
170 175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro
Glu Gln Trp Lys Ser His 180 185
190 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
Lys 195 200 205 Thr
Val Ala Pro Thr Glu Ala 210 215 137215PRTHomo sapiens
137Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1
5 10 15 Ser Ile Thr Ile
Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20
25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu 35 40
45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65
70 75 80 Gln Ala Glu Asp Glu
Ala Asp Tyr Tyr Cys Gln Ser Phe Asp Met Ile 85
90 95 His Pro Tyr Val Phe Gly Gly Gly Thr Lys
Leu Thr Val Leu Gly Gln 100 105
110 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
Glu 115 120 125 Leu
Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 130
135 140 Pro Gly Ala Val Thr Val
Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 145 150
155 160 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln
Ser Asn Asn Lys Tyr 165 170
175 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
180 185 190 Arg Ser
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 195
200 205 Thr Val Ala Pro Thr Glu Ala
210 215 138213PRTHomo sapiens 138Asp Ile Ala Leu Thr
Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5
10 15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser
Ser Asp Val Gly Gly Tyr 20 25
30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys
Leu 35 40 45 Met
Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50
55 60 Ser Gly Ser Lys Ser Gly
Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70
75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln
Ser Asp Phe Pro Val 85 90
95 Met Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys
100 105 110 Ala Ala
Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115
120 125 Ala Asn Lys Ala Thr Leu Val
Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135
140 Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro
Val Lys Ala Gly 145 150 155
160 Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala
165 170 175 Ser Ser Tyr
Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180
185 190 Tyr Ser Cys Gln Val Thr His Glu
Gly Ser Thr Val Glu Lys Thr Val 195 200
205 Ala Pro Thr Glu Ala 210
139213PRTHomo sapiens 139Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly
Ser Pro Gly Gln 1 5 10
15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30 Asn Tyr Val
Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35
40 45 Met Ile Tyr Asp Val Ser Asn Arg
Pro Ser Gly Val Ser Asn Arg Phe 50 55
60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile
Ser Gly Leu 65 70 75
80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Asp Asn Pro Tyr
85 90 95 Leu Val Phe Gly
Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100
105 110 Ala Ala Pro Ser Val Thr Leu Phe Pro
Pro Ser Ser Glu Glu Leu Gln 115 120
125 Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly 145
150 155 160 Val Glu Thr Thr Thr
Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165
170 175 Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln
Trp Lys Ser His Arg Ser 180 185
190 Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
Val 195 200 205 Ala
Pro Thr Glu Ala 210 140217PRTHomo sapiens 140Gln Val Gln
Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Arg Leu Ser Cys Ala Ala
Ser Gly Phe Thr Phe Ser Ser Tyr 20 25
30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
Glu Trp Val 35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50
55 60 Lys Gly Arg Phe
Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70
75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu
Asp Thr Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Phe Met Asp Ile Trp Gly Gln Gly Thr Leu Val Thr
Val Ser 100 105 110
Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser
115 120 125 Lys Ser Thr Ser
Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 130
135 140 Tyr Phe Pro Glu Pro Val Thr Val
Ser Trp Asn Ser Gly Ala Leu Thr 145 150
155 160 Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
Ser Gly Leu Tyr 165 170
175 Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln
180 185 190 Thr Tyr Ile
Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 195
200 205 Lys Lys Val Glu Pro Lys Ser Glu
Phe 210 215 141217PRTHomo sapiens 141Gln Val
Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Arg Leu Ser Cys Ala
Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25
30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly
Leu Glu Trp Val 35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60 Lys Gly Arg
Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65
70 75 80 Leu Gln Met Asn Ser Leu Arg
Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Gly Phe Asp Tyr Trp Gly Gln Gly Thr
Leu Val Thr Val Ser 100 105
110 Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser
Ser 115 120 125 Lys
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 130
135 140 Tyr Phe Pro Glu Pro Val
Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 145 150
155 160 Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
Ser Ser Gly Leu Tyr 165 170
175 Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln
180 185 190 Thr Tyr
Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 195
200 205 Lys Lys Val Glu Pro Lys Ser
Glu Phe 210 215 142217PRTHomo sapiens 142Gln
Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1
5 10 15 Ser Leu Arg Leu Ser Cys
Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20
25 30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly
Lys Gly Leu Glu Trp Val 35 40
45 Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp
Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65
70 75 80 Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Phe Leu Asp Ile Trp Gly Gln Gly
Thr Leu Val Thr Val Ser 100 105
110 Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser
Ser 115 120 125 Lys
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 130
135 140 Tyr Phe Pro Glu Pro Val
Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 145 150
155 160 Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
Ser Ser Gly Leu Tyr 165 170
175 Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln
180 185 190 Thr Tyr
Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 195
200 205 Lys Lys Val Glu Pro Lys Ser
Glu Phe 210 215 143221PRTHomo sapiens 143Gln
Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1
5 10 15 Ser Leu Arg Leu Ser Cys
Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20
25 30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly
Lys Gly Leu Glu Trp Val 35 40
45 Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp
Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65
70 75 80 Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Thr Phe Pro Ile Asp Ala Asp Ser
Trp Gly Gln Gly Thr Leu 100 105
110 Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
Leu 115 120 125 Ala
Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys 130
135 140 Leu Val Lys Asp Tyr Phe
Pro Glu Pro Val Thr Val Ser Trp Asn Ser 145 150
155 160 Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro
Ala Val Leu Gln Ser 165 170
175 Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
180 185 190 Leu Gly
Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn 195
200 205 Thr Lys Val Asp Lys Lys Val
Glu Pro Lys Ser Glu Phe 210 215 220
144218PRTHomo sapiens 144Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu
Val Gln Pro Gly Gly 1 5 10
15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30 Ala Met
Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ser Ala Ile Ser Gly Ser Gly
Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys
Asn Thr Leu Tyr 65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Arg Gly
His Val Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val 100
105 110 Ser Ser Ala Ser Thr Lys Gly Pro
Ser Val Phe Pro Leu Ala Pro Ser 115 120
125 Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys
Leu Val Lys 130 135 140
Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu 145
150 155 160 Thr Ser Gly Val
His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu 165
170 175 Tyr Ser Leu Ser Ser Val Val Thr Val
Pro Ser Ser Ser Leu Gly Thr 180 185
190 Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
Lys Val 195 200 205
Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210 215
145222PRTHomo sapiens 145Gln Val Gln Leu Val Glu Ser Gly Gly Gly
Leu Val Gln Pro Gly Gly 1 5 10
15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser
Tyr 20 25 30 Ala
Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ser Ala Ile Ser Gly Ser
Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
Lys Asn Thr Leu Tyr 65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Arg
Tyr Trp Arg Gly Leu Ser Phe Asp Ile Trp Gly Gln Gly Thr 100
105 110 Leu Val Thr Val Ser Ser Ala
Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120
125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr
Ala Ala Leu Gly 130 135 140
Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145
150 155 160 Ser Gly Ala
Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165
170 175 Ser Ser Gly Leu Tyr Ser Leu Ser
Ser Val Val Thr Val Pro Ser Ser 180 185
190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
Lys Pro Ser 195 200 205
Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210
215 220 146217PRTHomo sapiens 146Gln Val
Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Arg Leu Ser Cys Ala
Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25
30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly
Leu Glu Trp Val 35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60 Lys Gly Arg
Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65
70 75 80 Leu Gln Met Asn Ser Leu Arg
Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Phe Phe Asp Tyr Trp Gly Gln Gly Thr
Leu Val Thr Val Ser 100 105
110 Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser
Ser 115 120 125 Lys
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 130
135 140 Tyr Phe Pro Glu Pro Val
Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 145 150
155 160 Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
Ser Ser Gly Leu Tyr 165 170
175 Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln
180 185 190 Thr Tyr
Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 195
200 205 Lys Lys Val Glu Pro Lys Ser
Glu Phe 210 215 147225PRTHomo sapiens 147Gln
Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1
5 10 15 Ser Val Lys Val Ser Cys
Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20
25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly
Gln Gly Leu Glu Trp Met 35 40
45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln
Lys Phe 50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65
70 75 80 Met Glu Leu Ser Ser
Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Gly Leu Tyr Trp Ala Val Tyr Pro
Tyr Phe Asp Phe Trp Gly 100 105
110 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro
Ser 115 120 125 Val
Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala 130
135 140 Ala Leu Gly Cys Leu Val
Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150
155 160 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
His Thr Phe Pro Ala 165 170
175 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
180 185 190 Pro Ser
Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His 195
200 205 Lys Pro Ser Asn Thr Lys Val
Asp Lys Lys Val Glu Pro Lys Ser Glu 210 215
220 Phe 225 148224PRTHomo sapiens 148Gln Val Gln
Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Arg Leu Ser Cys Ala Ala
Ser Gly Phe Thr Phe Ser Ser Tyr 20 25
30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
Glu Trp Val 35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50
55 60 Lys Gly Arg Phe
Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70
75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu
Asp Thr Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Leu Asp Thr Tyr Tyr Pro Asp Leu Phe Asp Tyr Trp
Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125 Phe Pro Leu Ala
Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130
135 140 Leu Gly Cys Leu Val Lys Asp Tyr
Phe Pro Glu Pro Val Thr Val Ser 145 150
155 160 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
Phe Pro Ala Val 165 170
175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190 Ser Ser Ser
Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195
200 205 Pro Ser Asn Thr Lys Val Asp Lys
Lys Val Glu Pro Lys Ser Glu Phe 210 215
220 149220PRTHomo sapiens 149Gln Val Gln Leu Val Gln
Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5
10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly
Thr Phe Ser Ser Tyr 20 25
30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp
Met 35 40 45 Gly
Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50
55 60 Gln Gly Arg Val Thr Ile
Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70
75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr
Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Thr Tyr Tyr Tyr Phe Asp Ser Trp Gly Gln Gly Thr Leu Val
100 105 110 Thr Val
Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala 115
120 125 Pro Ser Ser Lys Ser Thr Ser
Gly Gly Thr Ala Ala Leu Gly Cys Leu 130 135
140 Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
Trp Asn Ser Gly 145 150 155
160 Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
165 170 175 Gly Leu Tyr
Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu 180
185 190 Gly Thr Gln Thr Tyr Ile Cys Asn
Val Asn His Lys Pro Ser Asn Thr 195 200
205 Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
210 215 220 150224PRTHomo sapiens 150Gln
Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1
5 10 15 Ser Leu Arg Leu Ser Cys
Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20
25 30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly
Lys Gly Leu Glu Trp Val 35 40
45 Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp
Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65
70 75 80 Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Tyr Met Ala Tyr Met Ala Glu Ala
Ile Asp Val Trp Gly Gln 100 105
110 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
Val 115 120 125 Phe
Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130
135 140 Leu Gly Cys Leu Val Lys
Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 145 150
155 160 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
Thr Phe Pro Ala Val 165 170
175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190 Ser Ser
Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195
200 205 Pro Ser Asn Thr Lys Val Asp
Lys Lys Val Glu Pro Lys Ser Glu Phe 210 215
220 151230PRTHomo sapiens 151Gln Val Gln Leu Val
Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5
10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly
Tyr Thr Phe Thr Ser Tyr 20 25
30 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp
Met 35 40 45 Gly
Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50
55 60 Gln Gly Arg Val Thr Met
Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70
75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr
Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Leu Val Gly Ile Val Gly Tyr Lys Pro Asp Glu Leu Leu Tyr
100 105 110 Phe Asp
Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser 115
120 125 Thr Lys Gly Pro Ser Val Phe
Pro Leu Ala Pro Ser Ser Lys Ser Thr 130 135
140 Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys
Asp Tyr Phe Pro 145 150 155
160 Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
165 170 175 His Thr Phe
Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser 180
185 190 Ser Val Val Thr Val Pro Ser Ser
Ser Leu Gly Thr Gln Thr Tyr Ile 195 200
205 Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp
Lys Lys Val 210 215 220
Glu Pro Lys Ser Glu Phe 225 230 152222PRTHomo sapiens
152Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1
5 10 15 Ser Leu Arg Leu
Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20
25 30 Ala Met Ser Trp Val Arg Gln Ala Pro
Gly Lys Gly Leu Glu Trp Val 35 40
45 Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp
Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65
70 75 80 Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Tyr Gly Ala Tyr Phe Gly Leu Asp
Tyr Trp Gly Gln Gly Thr 100 105
110 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
Pro 115 120 125 Leu
Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130
135 140 Cys Leu Val Lys Asp Tyr
Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150
155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe
Pro Ala Val Leu Gln 165 170
175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
180 185 190 Ser Leu
Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195
200 205 Asn Thr Lys Val Asp Lys Lys
Val Glu Pro Lys Ser Glu Phe 210 215
220 153225PRTHomo sapiens 153Gln Val Gln Leu Gln Gln Ser Gly Pro
Gly Leu Val Lys Pro Ser Gln 1 5 10
15 Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser
Ser Asn 20 25 30
Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu
35 40 45 Trp Leu Gly Arg
Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala 50
55 60 Val Ser Val Lys Ser Arg Ile Thr
Ile Asn Pro Asp Thr Ser Lys Asn 65 70
75 80 Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu
Asp Thr Ala Val 85 90
95 Tyr Tyr Cys Ala Arg Gly Tyr Ala Asp Ile Ser Phe Asp Tyr Trp Gly
100 105 110 Gln Gly Thr
Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115
120 125 Val Phe Pro Leu Ala Pro Ser Ser
Lys Ser Thr Ser Gly Gly Thr Ala 130 135
140 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
Val Thr Val 145 150 155
160 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
165 170 175 Val Leu Gln Ser
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180
185 190 Pro Ser Ser Ser Leu Gly Thr Gln Thr
Tyr Ile Cys Asn Val Asn His 195 200
205 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys
Ser Glu 210 215 220
Phe 225 154220PRTHomo sapiens 154Gln Val Gln Leu Val Glu Ser Gly Gly Gly
Leu Val Gln Pro Gly Gly 1 5 10
15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser
Tyr 20 25 30 Ala
Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ser Ala Ile Ser Gly Ser
Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
Lys Asn Thr Leu Tyr 65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Arg
Tyr Tyr Leu Leu Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val 100
105 110 Thr Val Ser Ser Ala Ser Thr
Lys Gly Pro Ser Val Phe Pro Leu Ala 115 120
125 Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
Leu Gly Cys Leu 130 135 140
Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly 145
150 155 160 Ala Leu Thr
Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser 165
170 175 Gly Leu Tyr Ser Leu Ser Ser Val
Val Thr Val Pro Ser Ser Ser Leu 180 185
190 Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
Ser Asn Thr 195 200 205
Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210
215 220 155229PRTHomo sapiens 155Gln Val Gln Leu Val Gln
Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5
10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly
Thr Phe Ser Ser Tyr 20 25
30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp
Met 35 40 45 Gly
Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50
55 60 Gln Gly Arg Val Thr Ile
Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70
75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr
Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Trp Ser Asp Gln Ser Tyr His Tyr Tyr Trp His Pro Tyr Phe
100 105 110 Asp Val
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr 115
120 125 Lys Gly Pro Ser Val Phe Pro
Leu Ala Pro Ser Ser Lys Ser Thr Ser 130 135
140 Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp
Tyr Phe Pro Glu 145 150 155
160 Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
165 170 175 Thr Phe Pro
Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser 180
185 190 Val Val Thr Val Pro Ser Ser Ser
Leu Gly Thr Gln Thr Tyr Ile Cys 195 200
205 Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
Lys Val Glu 210 215 220
Pro Lys Ser Glu Phe 225 156220PRTHomo sapiens 156Gln
Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1
5 10 15 Ser Leu Arg Leu Ser Cys
Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20
25 30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly
Lys Gly Leu Glu Trp Val 35 40
45 Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp
Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65
70 75 80 Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Leu Ile Gly Tyr Phe Asp Leu Trp
Gly Gln Gly Thr Leu Val 100 105
110 Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
Ala 115 120 125 Pro
Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu 130
135 140 Val Lys Asp Tyr Phe Pro
Glu Pro Val Thr Val Ser Trp Asn Ser Gly 145 150
155 160 Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
Val Leu Gln Ser Ser 165 170
175 Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
180 185 190 Gly Thr
Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr 195
200 205 Lys Val Asp Lys Lys Val Glu
Pro Lys Ser Glu Phe 210 215 220
157225PRTHomo sapiens 157Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Lys Pro Gly Glu 1 5 10
15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly
Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser
Asp Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Leu Thr
Asn Tyr Phe Asp Ser Ile Tyr Tyr Asp His Trp Gly 100
105 110 Gln Gly Thr Leu Val Thr Val Ser Ser
Ala Ser Thr Lys Gly Pro Ser 115 120
125 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly
Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145
150 155 160 Ser Trp Asn Ser Gly
Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165
170 175 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
Ser Ser Val Val Thr Val 180 185
190 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn
His 195 200 205 Lys
Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu 210
215 220 Phe 225 158225PRTHomo
sapiens 158Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
Glu 1 5 10 15 Ser
Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly Trp Val
Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp
Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Leu Val
Gly Gly Gly Tyr Asp Leu Met Phe Asp Ser Trp Gly 100
105 110 Gln Gly Thr Leu Val Thr Val Ser Ser
Ala Ser Thr Lys Gly Pro Ser 115 120
125 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly
Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145
150 155 160 Ser Trp Asn Ser Gly
Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165
170 175 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
Ser Ser Val Val Thr Val 180 185
190 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn
His 195 200 205 Lys
Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu 210
215 220 Phe 225 159226PRTHomo
sapiens 159Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
Glu 1 5 10 15 Ser
Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly Trp Val
Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp
Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Tyr Val
Thr Tyr Gly Tyr Asp Asp Tyr His Phe Asp Tyr Trp 100
105 110 Gly Gln Gly Thr Leu Val Thr Val Ser
Ser Ala Ser Thr Lys Gly Pro 115 120
125 Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
Gly Thr 130 135 140
Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 145
150 155 160 Val Ser Trp Asn Ser
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 165
170 175 Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
Leu Ser Ser Val Val Thr 180 185
190 Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val
Asn 195 200 205 His
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser 210
215 220 Glu Phe 225
160219PRTHomo sapiens 160Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Lys Pro Gly Ser 1 5 10
15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30 Ala Ile Ser
Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35
40 45 Gly Gly Ile Ile Pro Ile Phe Gly
Thr Ala Asn Tyr Ala Gln Lys Phe 50 55
60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser
Thr Ala Tyr 65 70 75
80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Arg Ser Gly
Tyr Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 100
105 110 Val Ser Ser Ala Ser Thr Lys Gly Pro
Ser Val Phe Pro Leu Ala Pro 115 120
125 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys
Leu Val 130 135 140
Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 145
150 155 160 Leu Thr Ser Gly Val
His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 165
170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val
Pro Ser Ser Ser Leu Gly 180 185
190 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
Lys 195 200 205 Val
Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210 215
161231PRTHomo sapiens 161Gln Val Gln Leu Val Gln Ser Gly Ala
Glu Val Lys Lys Pro Gly Ser 1 5 10
15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser
Ser Tyr 20 25 30
Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45 Gly Gly Ile Ile
Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50
55 60 Gln Gly Arg Val Thr Ile Thr Ala
Asp Glu Ser Thr Ser Thr Ala Tyr 65 70
75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala
Val Tyr Tyr Cys 85 90
95 Ala Arg Tyr Ile Gly Tyr Thr Asn Val Met Asp Ile Arg Pro Gly Phe
100 105 110 Tyr Leu Asp
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala 115
120 125 Ser Thr Lys Gly Pro Ser Val Phe
Pro Leu Ala Pro Ser Ser Lys Ser 130 135
140 Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys
Asp Tyr Phe 145 150 155
160 Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly
165 170 175 Val His Thr Phe
Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 180
185 190 Ser Ser Val Val Thr Val Pro Ser Ser
Ser Leu Gly Thr Gln Thr Tyr 195 200
205 Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp
Lys Lys 210 215 220
Val Glu Pro Lys Ser Glu Phe 225 230 162225PRTHomo
sapiens 162Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
Glu 1 5 10 15 Ser
Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly Trp Val
Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp
Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Phe Arg
Ala Tyr Gly Asp Asp Phe Tyr Phe Asp Val Trp Gly 100
105 110 Gln Gly Thr Leu Val Thr Val Ser Ser
Ala Ser Thr Lys Gly Pro Ser 115 120
125 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly
Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145
150 155 160 Ser Trp Asn Ser Gly
Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165
170 175 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
Ser Ser Val Val Thr Val 180 185
190 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn
His 195 200 205 Lys
Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu 210
215 220 Phe 225 163228PRTHomo
sapiens 163Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
Ala 1 5 10 15 Ser
Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30 Tyr Met His Trp Val
Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35
40 45 Gly Trp Ile Asn Pro Asn Ser Gly Gly
Thr Asn Tyr Ala Gln Lys Phe 50 55
60 Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Arg Ile Met
Trp Ser Asp Tyr Gly Gln Leu Val Lys Gly Gly Asp 100
105 110 Ile Trp Gly Gln Gly Thr Leu Val Thr
Val Ser Ser Ala Ser Thr Lys 115 120
125 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr
Ser Gly 130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145
150 155 160 Val Thr Val Ser Trp
Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165
170 175 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu
Tyr Ser Leu Ser Ser Val 180 185
190 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys
Asn 195 200 205 Val
Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro 210
215 220 Lys Ser Glu Phe 225
164224PRTHomo sapiens 164Gln Val Gln Leu Val Gln Ser Gly Ala Glu
Val Lys Lys Pro Gly Glu 1 5 10
15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser
Tyr 20 25 30 Trp
Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly
Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser
Ile Ser Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg
Tyr Tyr Val Thr Asp Thr Ala Tyr Phe Asp Tyr Trp Gly Gln 100
105 110 Gly Thr Leu Val Thr Val Ser
Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120
125 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
Gly Thr Ala Ala 130 135 140
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 145
150 155 160 Trp Asn Ser
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165
170 175 Leu Gln Ser Ser Gly Leu Tyr Ser
Leu Ser Ser Val Val Thr Val Pro 180 185
190 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val
Asn His Lys 195 200 205
Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210
215 220 165224PRTHomo
sapiens 165Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
Glu 1 5 10 15 Ser
Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly Trp Val
Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp
Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg His Asp
Phe Asp Gly Ser Ile Phe Met Asp Phe Trp Gly Gln 100
105 110 Gly Thr Leu Val Thr Val Ser Ser Ala
Ser Thr Lys Gly Pro Ser Val 115 120
125 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr
Ala Ala 130 135 140
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 145
150 155 160 Trp Asn Ser Gly Ala
Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165
170 175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
Ser Val Val Thr Val Pro 180 185
190 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
Lys 195 200 205 Pro
Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210
215 220 166225PRTHomo sapiens
166Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1
5 10 15 Ser Leu Lys Ile
Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr 20
25 30 Trp Ile Gly Trp Val Arg Gln Met Pro
Gly Lys Gly Leu Glu Trp Met 35 40
45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro
Ser Phe 50 55 60
Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65
70 75 80 Leu Gln Trp Ser Ser
Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85
90 95 Ala Arg Tyr Ala Gly His Gln Tyr Glu Phe
Phe Phe Asp Phe Trp Gly 100 105
110 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro
Ser 115 120 125 Val
Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala 130
135 140 Ala Leu Gly Cys Leu Val
Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150
155 160 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
His Thr Phe Pro Ala 165 170
175 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
180 185 190 Pro Ser
Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His 195
200 205 Lys Pro Ser Asn Thr Lys Val
Asp Lys Lys Val Glu Pro Lys Ser Glu 210 215
220 Phe 225 167224PRTHomo sapiens 167Gln Val Gln
Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5
10 15 Ser Leu Lys Ile Ser Cys Lys Gly
Ser Gly Tyr Ser Phe Thr Ser Tyr 20 25
30 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu
Glu Trp Met 35 40 45
Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50
55 60 Gln Gly Gln Val
Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70
75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser
Asp Thr Ala Met Tyr Tyr Cys 85 90
95 Ala Arg Leu Tyr Ala Asp Ala Asp Ile Tyr Phe Asp Tyr Trp
Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125 Phe Pro Leu Ala
Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130
135 140 Leu Gly Cys Leu Val Lys Asp Tyr
Phe Pro Glu Pro Val Thr Val Ser 145 150
155 160 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
Phe Pro Ala Val 165 170
175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190 Ser Ser Ser
Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195
200 205 Pro Ser Asn Thr Lys Val Asp Lys
Lys Val Glu Pro Lys Ser Glu Phe 210 215
220 168222PRTHomo sapiens 168Gln Val Gln Leu Val Gln
Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5
10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly
Thr Phe Ser Ser Tyr 20 25
30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp
Met 35 40 45 Gly
Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50
55 60 Gln Gly Arg Val Thr Ile
Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70
75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr
Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Thr Lys Tyr Val Gly Ser Glu Asp Val Trp Gly Gln Gly Thr
100 105 110 Leu Val
Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115
120 125 Leu Ala Pro Ser Ser Lys Ser
Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135
140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr
Val Ser Trp Asn 145 150 155
160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
165 170 175 Ser Ser Gly
Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180
185 190 Ser Leu Gly Thr Gln Thr Tyr Ile
Cys Asn Val Asn His Lys Pro Ser 195 200
205 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu
Phe 210 215 220 169222PRTHomo
sapiens 169Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
Glu 1 5 10 15 Ser
Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly Trp Val
Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp
Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Tyr Arg
Tyr Pro His Met Phe Asp Phe Trp Gly Gln Gly Thr 100
105 110 Leu Val Thr Val Ser Ser Ala Ser Thr
Lys Gly Pro Ser Val Phe Pro 115 120
125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
Leu Gly 130 135 140
Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145
150 155 160 Ser Gly Ala Leu Thr
Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165
170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
Val Thr Val Pro Ser Ser 180 185
190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
Ser 195 200 205 Asn
Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210
215 220 170224PRTHomo sapiens 170Gln Val Gln
Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5
10 15 Ser Leu Lys Ile Ser Cys Lys Gly
Ser Gly Tyr Ser Phe Thr Ser Tyr 20 25
30 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu
Glu Trp Met 35 40 45
Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50
55 60 Gln Gly Gln Val
Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70
75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser
Asp Thr Ala Met Tyr Tyr Cys 85 90
95 Ala Arg Leu Phe Ala Gly Leu Glu Leu Tyr Phe Asp Tyr Trp
Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125 Phe Pro Leu Ala
Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130
135 140 Leu Gly Cys Leu Val Lys Asp Tyr
Phe Pro Glu Pro Val Thr Val Ser 145 150
155 160 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
Phe Pro Ala Val 165 170
175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190 Ser Ser Ser
Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195
200 205 Pro Ser Asn Thr Lys Val Asp Lys
Lys Val Glu Pro Lys Ser Glu Phe 210 215
220 171221PRTHomo sapiens 171Gln Val Gln Leu Val Glu
Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
Thr Phe Ser Ser Tyr 20 25
30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
Val 35 40 45 Ser
Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50
55 60 Lys Gly Arg Phe Thr Ile
Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70
75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Gly Gly Phe Phe Asn Met Asp Tyr Trp Gly Gln Gly Thr Leu
100 105 110 Val Thr
Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu 115
120 125 Ala Pro Ser Ser Lys Ser Thr
Ser Gly Gly Thr Ala Ala Leu Gly Cys 130 135
140 Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
Ser Trp Asn Ser 145 150 155
160 Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
165 170 175 Ser Gly Leu
Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser 180
185 190 Leu Gly Thr Gln Thr Tyr Ile Cys
Asn Val Asn His Lys Pro Ser Asn 195 200
205 Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
210 215 220 172223PRTHomo sapiens
172Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1
5 10 15 Ser Val Lys Val
Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20
25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro
Gly Gln Gly Leu Glu Trp Met 35 40
45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln
Lys Phe 50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65
70 75 80 Met Glu Leu Ser Ser
Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Gly Tyr Ile Pro Tyr His Leu Phe
Asp Tyr Trp Gly Gln Gly 100 105
110 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
Phe 115 120 125 Pro
Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130
135 140 Gly Cys Leu Val Lys Asp
Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150
155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
Phe Pro Ala Val Leu 165 170
175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190 Ser Ser
Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195
200 205 Ser Asn Thr Lys Val Asp Lys
Lys Val Glu Pro Lys Ser Glu Phe 210 215
220 173225PRTHomo sapiens 173Gln Val Gln Leu Val Gln Ser
Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5
10 15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr
Ser Phe Thr Ser Tyr 20 25
30 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp
Met 35 40 45 Gly
Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50
55 60 Gln Gly Gln Val Thr Ile
Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70
75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr
Ala Met Tyr Tyr Cys 85 90
95 Ala Arg Tyr Tyr Gly Phe Glu Tyr Asp Leu Leu Phe Asp Asn Trp Gly
100 105 110 Gln Gly
Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115
120 125 Val Phe Pro Leu Ala Pro Ser
Ser Lys Ser Thr Ser Gly Gly Thr Ala 130 135
140 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu
Pro Val Thr Val 145 150 155
160 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
165 170 175 Val Leu Gln
Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180
185 190 Pro Ser Ser Ser Leu Gly Thr Gln
Thr Tyr Ile Cys Asn Val Asn His 195 200
205 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro
Lys Ser Glu 210 215 220
Phe 225 174221PRTHomo sapiens 174Gln Val Gln Leu Val Gln Ser Gly Ala
Glu Val Lys Lys Pro Gly Ser 1 5 10
15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser
Ser Tyr 20 25 30
Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45 Gly Trp Ile Asn
Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50
55 60 Gln Gly Arg Val Thr Met Thr Arg
Asp Thr Ser Ile Ser Thr Ala Tyr 65 70
75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala
Val Tyr Tyr Cys 85 90
95 Ala Arg Ile Thr Tyr Ile Gly Tyr Asp Phe Trp Gly Gln Gly Thr Leu
100 105 110 Val Thr Val
Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu 115
120 125 Ala Pro Ser Ser Lys Ser Thr Ser
Gly Gly Thr Ala Ala Leu Gly Cys 130 135
140 Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
Trp Asn Ser 145 150 155
160 Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
165 170 175 Ser Gly Leu Tyr
Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser 180
185 190 Leu Gly Thr Gln Thr Tyr Ile Cys Asn
Val Asn His Lys Pro Ser Asn 195 200
205 Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
210 215 220 175220PRTHomo sapiens
175Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1
5 10 15 Ser Val Lys Val
Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20
25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro
Gly Gln Gly Leu Glu Trp Met 35 40
45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln
Lys Phe 50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65
70 75 80 Met Glu Leu Ser Ser
Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Gln Glu Trp Tyr Met Asp Tyr Trp
Gly Gln Gly Thr Leu Val 100 105
110 Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
Ala 115 120 125 Pro
Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu 130
135 140 Val Lys Asp Tyr Phe Pro
Glu Pro Val Thr Val Ser Trp Asn Ser Gly 145 150
155 160 Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
Val Leu Gln Ser Ser 165 170
175 Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
180 185 190 Gly Thr
Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr 195
200 205 Lys Val Asp Lys Lys Val Glu
Pro Lys Ser Glu Phe 210 215 220
176224PRTHomo sapiens 176Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Lys Pro Gly Glu 1 5 10
15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly
Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser
Asp Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Leu Tyr
Pro Glu Asp Leu Ile Tyr Phe Asp Tyr Trp Gly Gln 100
105 110 Gly Thr Leu Val Thr Val Ser Ser Ala
Ser Thr Lys Gly Pro Ser Val 115 120
125 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr
Ala Ala 130 135 140
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 145
150 155 160 Trp Asn Ser Gly Ala
Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165
170 175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
Ser Val Val Thr Val Pro 180 185
190 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
Lys 195 200 205 Pro
Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210
215 220 177231PRTHomo sapiens
177Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1
5 10 15 Thr Leu Ser Leu
Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn 20
25 30 Ser Ala Ala Trp Asn Trp Ile Arg Gln
Ser Pro Gly Arg Gly Leu Glu 35 40
45 Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp
Tyr Ala 50 55 60
Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn 65
70 75 80 Gln Phe Ser Leu Gln
Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val 85
90 95 Tyr Tyr Cys Ala Arg Trp Met Thr Pro Pro
Gly His Tyr Tyr Gly Tyr 100 105
110 Thr Phe Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
Ala 115 120 125 Ser
Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser 130
135 140 Thr Ser Gly Gly Thr Ala
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe 145 150
155 160 Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
Ala Leu Thr Ser Gly 165 170
175 Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
180 185 190 Ser Ser
Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr 195
200 205 Ile Cys Asn Val Asn His Lys
Pro Ser Asn Thr Lys Val Asp Lys Lys 210 215
220 Val Glu Pro Lys Ser Glu Phe 225
230 178225PRTHomo sapiens 178Gln Val Gln Leu Val Gln Ser Gly Ala Glu
Val Lys Lys Pro Gly Glu 1 5 10
15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser
Tyr 20 25 30 Trp
Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly
Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser
Ile Ser Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg
Leu Arg Val His Asp Tyr Ala Met Tyr Phe Asp Leu Trp Gly 100
105 110 Gln Gly Thr Leu Val Thr Val
Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120
125 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser
Gly Gly Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145
150 155 160 Ser Trp Asn
Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165
170 175 Val Leu Gln Ser Ser Gly Leu Tyr
Ser Leu Ser Ser Val Val Thr Val 180 185
190 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
Val Asn His 195 200 205
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu 210
215 220 Phe 225
179226PRTHomo sapiens 179Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Lys Pro Gly Glu 1 5 10
15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly
Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser
Asp Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Phe Val
Ser Tyr Asn Gly Ser Val Pro Tyr Phe Asp Tyr Trp 100
105 110 Gly Gln Gly Thr Leu Val Thr Val Ser
Ser Ala Ser Thr Lys Gly Pro 115 120
125 Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
Gly Thr 130 135 140
Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 145
150 155 160 Val Ser Trp Asn Ser
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 165
170 175 Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
Leu Ser Ser Val Val Thr 180 185
190 Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val
Asn 195 200 205 His
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser 210
215 220 Glu Phe 225
180224PRTHomo sapiens 180Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Lys Pro Gly Glu 1 5 10
15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30 Trp Ile Gly
Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Ile Ile Tyr Pro Gly Asp Ser
Asp Thr Arg Tyr Ser Pro Ser Phe 50 55
60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser
Thr Ala Tyr 65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95 Ala Arg Ile Ile
Gly Asp Tyr Val Ile Phe Phe Asp Val Trp Gly Gln 100
105 110 Gly Thr Leu Val Thr Val Ser Ser Ala
Ser Thr Lys Gly Pro Ser Val 115 120
125 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr
Ala Ala 130 135 140
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 145
150 155 160 Trp Asn Ser Gly Ala
Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165
170 175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
Ser Val Val Thr Val Pro 180 185
190 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
Lys 195 200 205 Pro
Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe 210
215 220 181224PRTHomo sapiens
181Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1
5 10 15 Ser Leu Lys Ile
Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr 20
25 30 Trp Ile Gly Trp Val Arg Gln Met Pro
Gly Lys Gly Leu Glu Trp Met 35 40
45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro
Ser Phe 50 55 60
Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65
70 75 80 Leu Gln Trp Ser Ser
Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85
90 95 Ala Arg Leu Phe Thr Tyr Pro Phe Leu Tyr
Phe Asp Val Trp Gly Gln 100 105
110 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
Val 115 120 125 Phe
Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130
135 140 Leu Gly Cys Leu Val Lys
Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 145 150
155 160 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
Thr Phe Pro Ala Val 165 170
175 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190 Ser Ser
Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195
200 205 Pro Ser Asn Thr Lys Val Asp
Lys Lys Val Glu Pro Lys Ser Glu Phe 210 215
220 182224PRTHomo sapiens 182Gln Val Gln Leu Val
Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5
10 15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly
Tyr Ser Phe Thr Ser Tyr 20 25
30 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp
Met 35 40 45 Gly
Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50
55 60 Gln Gly Gln Val Thr Ile
Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70
75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr
Ala Met Tyr Tyr Cys 85 90
95 Ala Arg Ile Leu Thr Gly His Val Leu Leu Phe Asp Tyr Trp Gly Gln
100 105 110 Gly Thr
Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115
120 125 Phe Pro Leu Ala Pro Ser Ser
Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135
140 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
Val Thr Val Ser 145 150 155
160 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
165 170 175 Leu Gln Ser
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180
185 190 Ser Ser Ser Leu Gly Thr Gln Thr
Tyr Ile Cys Asn Val Asn His Lys 195 200
205 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys
Ser Glu Phe 210 215 220
18327DNAHomo sapiens 183cagagctatg actatcagca gtttact
2718426DNAHomo sapiens 184cagagctatg actttaagac
ttatct 2618526DNAHomo sapiens
185cagagctatg actttcttcg tttttc
2618627DNAHomo sapiens 186cagagctatg actttattaa tgttatt
2718727DNAHomo sapiens 187cagagctatg actttgttcg
ttttatg 2718827DNAHomo sapiens
188cagagctatg acttttataa gtttaat
2718927DNAHomo sapiens 189cagagctatg actttcgtcg tttttct
2719027DNAHomo sapiens 190cagagccgtg actttaatcg
tggtcct 2719124DNAHomo sapiens
191cagagctatg accagcgtaa gtgg
2419224DNAHomo sapiens 192cagcagcttt atggtacttc tgtt
2419327DNAHomo sapiens 193cagagctatg acggttttaa
gactcat 2719424DNAHomo sapiens
194cagagctatg actattctct tctt
2419524DNAHomo sapiens 195cagagctatg actttaattt tcat
2419630DNAHomo sapiens 196cagagctatg acatgattgc
tcgttatcct 3019730DNAHomo sapiens
197cagagctggg acattcatcc ttttgatgtt
3019824DNAHomo sapiens 198cagagctggg accttgagcc ttat
2419927DNAHomo sapiens 199cagagctatg acgttcttga
ttctgag 2720030DNAHomo sapiens
200cagagctatg acccttctca tccttctaag
3020124DNAHomo sapiens 201cagagctatg acgatatgca gttt
2420227DNAHomo sapiens 202cagagctggg acattaatca
tgctatt 2720327DNAHomo sapiens
203cagagctatg actattatga ttatggt
2720424DNAHomo sapiens 204cagcaggcta atgattttcc tatt
2420530DNAHomo sapiens 205cagagctggg acaatcttaa
gatgcctgtt 3020630DNAHomo sapiens
206cagagctatg acgtttttcc tattaatcgt
3020721DNAHomo sapiens 207cagagcgatc tttattttcc t
2120824DNAHomo sapiens 208cagagctatg acgttactcc
tcgt 2420927DNAHomo sapiens
209cagagccgtg accctgttgg ttttcct
2721024DNAHomo sapiens 210cagagctatg acctttctcc tcgt
2421130DNAHomo sapiens 211cagagctatg acttttctca
ttattttttt 3021227DNAHomo sapiens
212cagagctatg accttcgtta ttctcat
2721324DNAHomo sapiens 213cagagctatg accttcgtaa tcgt
2421427DNAHomo sapiens 214cagagctatg actttactta
tggttct 2721524DNAHomo sapiens
215cagcagttta atgattctcc ttat
2421627DNAHomo sapiens 216cagagctatg acatttctgg ttatcct
2721730DNAHomo sapiens 217cagagccgtg acctttatta
tgtttattat 3021824DNAHomo sapiens
218cagagctatg accgttctat gtgg
2421927DNAHomo sapiens 219cagagctggg acgttcagac tgataag
2722027DNAHomo sapiens 220cagagctggg acccttctca
ttattat 2722127DNAHomo sapiens
221cagagctatg acattatgcc tgagcgt
2722227DNAHomo sapiens 222cagagcatgg actttcgtct tatgcat
2722327DNAHomo sapiens 223cagagctttg acatgattca
tccttat 2722421DNAHomo sapiens
224cagagcgact ttcctgttat g
2122521DNAHomo sapiens 225cagagcgaca atccttatct t
2122612DNAHomo sapiens 226tttatggata tt
1222712DNAHomo sapiens
227ggttttgatt at
1222812DNAHomo sapiens 228tttcttgata tt
1222924DNAHomo sapiens 229acttttccta ttgatgctga
ttct 2423015DNAHomo sapiens
230ggtcatgttg attat
1523127DNAHomo sapiens 231tattggcgtg gtctttcttt tgatatt
2723212DNAHomo sapiens 232ttttttgatt at
1223336DNAHomo sapiens
233ggtctttatt gggctgttta tccttatttt gatttt
3623433DNAHomo sapiens 234cttgatactt attatcctga tctttttgat tat
3323521DNAHomo sapiens 235acttattatt attttgattc t
2123633DNAHomo sapiens
236tatatggctt atatggctga ggctattgat gtt
3323751DNAHomo sapiens 237cttgttggta ttgttggtta taagcctgat gagcttcttt
attttgatgt t 5123827DNAHomo sapiens 238tatggtgctt attttggtct
tgattat 2723927DNAHomo sapiens
239ggttatgctg atatttcttt tgattat
2724021DNAHomo sapiens 240tattatcttc ttcttgatta t
2124148DNAHomo sapiens 241tggtctgatc agtcttatca
ttattattgg catccttatt ttgatgtt 4824221DNAHomo sapiens
242cttattggtt attttgatct t
2124336DNAHomo sapiens 243cttactaatt attttgattc tatttattat gatcat
3624436DNAHomo sapiens 244cttgttggtg gtggttatga
tcttatgttt gattct 3624539DNAHomo sapiens
245tatgttactt atggttatga tgattatcat tttgattat
3924618DNAHomo sapiens 246tctggttatc ttgattat
1824754DNAHomo sapiens 247tatattggtt atactaatgt
tatggatatt cgtcctggtt tttatcttga ttat 5424836DNAHomo sapiens
248tttcgtgctt atggtgatga tttttatttt gatgtt
3624945DNAHomo sapiens 249attatgtggt ctgattatgg tcagcttgtt aagggtggtg
atatt 4525033DNAHomo sapiens 250tattatgtta ctgatactgc
ttattttgat tat 3325133DNAHomo sapiens
251catgattttg atggttctat ttttatggat ttt
3325236DNAHomo sapiens 252tatgctggtc atcagtatga gttttttttt gatttt
3625333DNAHomo sapiens 253ctttatgctg atgctgatat
ttattttgat tat 3325427DNAHomo sapiens
254actaagtatg ttggttctga ggatgtt
2725527DNAHomo sapiens 255tatcgttatc ctcatatgtt tgatttt
2725633DNAHomo sapiens 256ctttttgctg gtcttgagct
ttattttgat tat 3325724DNAHomo sapiens
257ggtggttttt ttaatatgga ttat
2425830DNAHomo sapiens 258ggttatattc cttatcatct ttttgattat
3025936DNAHomo sapiens 259tattatggtt ttgagtatga
tcttcttttt gataat 3626024DNAHomo sapiens
260attacttata ttggttatga tttt
2426121DNAHomo sapiens 261caggagtggt atatggatta t
2126233DNAHomo sapiens 262ctttatcctg aggatcttat
ttattttgat tat 3326345DNAHomo sapiens
263tggatgactc ctcctggtca ttattatggt tatacttttg atgtt
4526436DNAHomo sapiens 264cttcgtgttc atgattatgc tatgtatttt gatctt
3626539DNAHomo sapiens 265tttgtttctt ataatggttc
tgttccttat tttgattat 3926633DNAHomo sapiens
266attattggtg attatgttat tttttttgat gtt
3326733DNAHomo sapiens 267ctttttactt atccttttct ttattttgat gtt
3326833DNAHomo sapiens 268attcttactg gtcacgttct
tctttttgat tat 33269645DNAHomo sapiens
269caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg
60agctgcgcgg cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc
120cctgggaagg gtctcgagtg ggtgagcgcg attagcggta gcggcggcag cacctattat
180gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat
240ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgttttatg
300gatatttggg gccaaggcac cctggtgacg gttagctcag cgtcgaccaa aggtccaagc
360gtgtttccgc tggctccgag cagcaaaagc accagcggcg gcacggctgc cctgggctgc
420ctggttaaag attatttccc ggaaccagtc accgtgagct ggaacagcgg ggcgctgacc
480agcggcgtgc atacctttcc ggcggtgctg caaagcagcg gcctgtatag cctgagcagc
540gttgtgaccg tgccgagcag cagcttaggc actcagacct atatttgcaa cgtgaaccat
600aaaccgagca acaccaaagt ggataaaaaa gtggaaccga aaagc
645270645DNAHomo sapiens 270caggtgcaat tggtggaaag cggcggcggc ctggtgcaac
cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt tacctttagc agctatgcga
tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg ggtgagcgcg attagcggta
gcggcggcag cacctattat 180gcggatagcg tgaaaggccg ttttaccatt tcacgtgata
attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg tgcggaagat acggccgtgt
attattgcgc gcgtggtttt 300gattattggg gccaaggcac cctggtgacg gttagctcag
cgtcgaccaa aggtccaagc 360gtgtttccgc tggctccgag cagcaaaagc accagcggcg
gcacggctgc cctgggctgc 420ctggttaaag attatttccc ggaaccagtc accgtgagct
ggaacagcgg ggcgctgacc 480agcggcgtgc atacctttcc ggcggtgctg caaagcagcg
gcctgtatag cctgagcagc 540gttgtgaccg tgccgagcag cagcttaggc actcagacct
atatttgcaa cgtgaaccat 600aaaccgagca acaccaaagt ggataaaaaa gtggaaccga
aaagc 645271645DNAHomo sapiens 271caggtgcaat
tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60agctgcgcgg
cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc 120cctgggaagg
gtctcgagtg ggtgagcgcg attagcggta gcggcggcag cacctattat 180gcggatagcg
tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240ctgcaaatga
acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgttttctt 300gatatttggg
gccaaggcac cctggtgacg gttagctcag cgtcgaccaa aggtccaagc 360gtgtttccgc
tggctccgag cagcaaaagc accagcggcg gcacggctgc cctgggctgc 420ctggttaaag
attatttccc ggaaccagtc accgtgagct ggaacagcgg ggcgctgacc 480agcggcgtgc
atacctttcc ggcggtgctg caaagcagcg gcctgtatag cctgagcagc 540gttgtgaccg
tgccgagcag cagcttaggc actcagacct atatttgcaa cgtgaaccat 600aaaccgagca
acaccaaagt ggataaaaaa gtggaaccga aaagc
645272657DNAHomo sapiens 272caggtgcaat tggtggaaag cggcggcggc ctggtgcaac
cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt tacctttagc agctatgcga
tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg ggtgagcgcg attagcggta
gcggcggcag cacctattat 180gcggatagcg tgaaaggccg ttttaccatt tcacgtgata
attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg tgcggaagat acggccgtgt
attattgcgc gcgtactttt 300cctattgatg ctgattcttg gggccaaggc accctggtga
cggttagctc agcgtcgacc 360aaaggtccaa gcgtgtttcc gctggctccg agcagcaaaa
gcaccagcgg cggcacggct 420gccctgggct gcctggttaa agattatttc ccggaaccag
tcaccgtgag ctggaacagc 480ggggcgctga ccagcggcgt gcataccttt ccggcggtgc
tgcaaagcag cggcctgtat 540agcctgagca gcgttgtgac cgtgccgagc agcagcttag
gcactcagac ctatatttgc 600aacgtgaacc ataaaccgag caacaccaaa gtggataaaa
aagtggaacc gaaaagc 657273648DNAHomo sapiens 273caggtgcaat
tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60agctgcgcgg
cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc 120cctgggaagg
gtctcgagtg ggtgagcgcg attagcggta gcggcggcag cacctattat 180gcggatagcg
tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240ctgcaaatga
acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtggtcat 300gttgattatt
ggggccaagg caccctggtg acggttagct cagcgtcgac caaaggtcca 360agcgtgtttc
cgctggctcc gagcagcaaa agcaccagcg gcggcacggc tgccctgggc 420tgcctggtta
aagattattt cccggaacca gtcaccgtga gctggaacag cggggcgctg 480accagcggcg
tgcatacctt tccggcggtg ctgcaaagca gcggcctgta tagcctgagc 540agcgttgtga
ccgtgccgag cagcagctta ggcactcaga cctatatttg caacgtgaac 600cataaaccga
gcaacaccaa agtggataaa aaagtggaac cgaaaagc
648274660DNAHomo sapiens 274caggtgcaat tggtggaaag cggcggcggc ctggtgcaac
cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt tacctttagc agctatgcga
tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg ggtgagcgcg attagcggta
gcggcggcag cacctattat 180gcggatagcg tgaaaggccg ttttaccatt tcacgtgata
attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg tgcggaagat acggccgtgt
attattgcgc gcgttattgg 300cgtggtcttt cttttgatat ttggggccaa ggcaccctgg
tgacggttag ctcagcgtcg 360accaaaggtc caagcgtgtt tccgctggct ccgagcagca
aaagcaccag cggcggcacg 420gctgccctgg gctgcctggt taaagattat ttcccggaac
cagtcaccgt gagctggaac 480agcggggcgc tgaccagcgg cgtgcatacc tttccggcgg
tgctgcaaag cagcggcctg 540tatagcctga gcagcgttgt gaccgtgccg agcagcagct
taggcactca gacctatatt 600tgcaacgtga accataaacc gagcaacacc aaagtggata
aaaaagtgga accgaaaagc 660275645DNAHomo sapiens 275caggtgcaat
tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60agctgcgcgg
cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc 120cctgggaagg
gtctcgagtg ggtgagcgcg attagcggta gcggcggcag cacctattat 180gcggatagcg
tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240ctgcaaatga
acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgttttttt 300gattattggg
gccaaggcac cctggtgacg gttagctcag cgtcgaccaa aggtccaagc 360gtgtttccgc
tggctccgag cagcaaaagc accagcggcg gcacggctgc cctgggctgc 420ctggttaaag
attatttccc ggaaccagtc accgtgagct ggaacagcgg ggcgctgacc 480agcggcgtgc
atacctttcc ggcggtgctg caaagcagcg gcctgtatag cctgagcagc 540gttgtgaccg
tgccgagcag cagcttaggc actcagacct atatttgcaa cgtgaaccat 600aaaccgagca
acaccaaagt ggataaaaaa gtggaaccga aaagc
645276669DNAHomo sapiens 276caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac
cgggcagcag cgtgaaagtg 60agctgcaaag cctccggagg cacttttagc agctatgcga
ttagctgggt gcgccaagcc 120cctgggcagg gtctcgagtg gatgggcggc attattccga
tttttggcac ggcgaactac 180gcgcagaagt ttcagggccg ggtgaccatt accgcggatg
aaagcaccag caccgcgtat 240atggaactga gcagcctgcg tagcgaagat acggccgtgt
attattgcgc gcgtggtctt 300tattgggctg tttatcctta ttttgatttt tggggccaag
gcaccctggt gacggttagc 360tcagcgtcga ccaaaggtcc aagcgtgttt ccgctggctc
cgagcagcaa aagcaccagc 420ggcggcacgg ctgccctggg ctgcctggtt aaagattatt
tcccggaacc agtcaccgtg 480agctggaaca gcggggcgct gaccagcggc gtgcatacct
ttccggcggt gctgcaaagc 540agcggcctgt atagcctgag cagcgttgtg accgtgccga
gcagcagctt aggcactcag 600acctatattt gcaacgtgaa ccataaaccg agcaacacca
aagtggataa aaaagtggaa 660ccgaaaagc
669277666DNAHomo sapiens 277caggtgcaat tggtggaaag
cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt
tacctttagc agctatgcga tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg
ggtgagcgcg attagcggta gcggcggcag cacctattat 180gcggatagcg tgaaaggccg
ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg
tgcggaagat acggccgtgt attattgcgc gcgtcttgat 300acttattatc ctgatctttt
tgattattgg ggccaaggca ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag
cgtgtttccg ctggctccga gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg
cctggttaaa gattatttcc cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac
cagcggcgtg catacctttc cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag
cgttgtgacc gtgccgagca gcagcttagg cactcagacc 600tatatttgca acgtgaacca
taaaccgagc aacaccaaag tggataaaaa agtggaaccg 660aaaagc
666278654DNAHomo sapiens
278caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg
60agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc
120cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac
180gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat
240atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtacttat
300tattattttg attcttgggg ccaaggcacc ctggtgacgg ttagctcagc gtcgaccaaa
360ggtccaagcg tgtttccgct ggctccgagc agcaaaagca ccagcggcgg cacggctgcc
420ctgggctgcc tggttaaaga ttatttcccg gaaccagtca ccgtgagctg gaacagcggg
480gcgctgacca gcggcgtgca tacctttccg gcggtgctgc aaagcagcgg cctgtatagc
540ctgagcagcg ttgtgaccgt gccgagcagc agcttaggca ctcagaccta tatttgcaac
600gtgaaccata aaccgagcaa caccaaagtg gataaaaaag tggaaccgaa aagc
654279666DNAHomo sapiens 279caggtgcaat tggtggaaag cggcggcggc ctggtgcaac
cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt tacctttagc agctatgcga
tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg ggtgagcgcg attagcggta
gcggcggcag cacctattat 180gcggatagcg tgaaaggccg ttttaccatt tcacgtgata
attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg tgcggaagat acggccgtgt
attattgcgc gcgttatatg 300gcttatatgg ctgaggctat tgatgtttgg ggccaaggca
ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag cgtgtttccg ctggctccga
gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg cctggttaaa gattatttcc
cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac cagcggcgtg catacctttc
cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag cgttgtgacc gtgccgagca
gcagcttagg cactcagacc 600tatatttgca acgtgaacca taaaccgagc aacaccaaag
tggataaaaa agtggaaccg 660aaaagc
666280684DNAHomo sapiens 280caggtgcaat tggttcagag
cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg 60agctgcaaag cctccggata
tacctttacc agctattata tgcactgggt ccgccaagcc 120cctgggcagg gtctcgagtg
gatgggctgg attaacccga atagcggcgg cacgaactac 180gcgcagaagt ttcagggccg
ggtgaccatg acccgtgata ccagcattag caccgcgtat 240atggaactga gcagcctgcg
tagcgaagat acggccgtgt attattgcgc gcgtcttgtt 300ggtattgttg gttataagcc
tgatgagctt ctttattttg atgtttgggg ccaaggcacc 360ctggtgacgg ttagctcagc
gtcgaccaaa ggtccaagcg tgtttccgct ggctccgagc 420agcaaaagca ccagcggcgg
cacggctgcc ctgggctgcc tggttaaaga ttatttcccg 480gaaccagtca ccgtgagctg
gaacagcggg gcgctgacca gcggcgtgca tacctttccg 540gcggtgctgc aaagcagcgg
cctgtatagc ctgagcagcg ttgtgaccgt gccgagcagc 600agcttaggca ctcagaccta
tatttgcaac gtgaaccata aaccgagcaa caccaaagtg 660gataaaaaag tggaaccgaa
aagc 684281660DNAHomo sapiens
281caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg
60agctgcgcgg cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc
120cctgggaagg gtctcgagtg ggtgagcgcg attagcggta gcggcggcag cacctattat
180gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat
240ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgttatggt
300gcttattttg gtcttgatta ttggggccaa ggcaccctgg tgacggttag ctcagcgtcg
360accaaaggtc caagcgtgtt tccgctggct ccgagcagca aaagcaccag cggcggcacg
420gctgccctgg gctgcctggt taaagattat ttcccggaac cagtcaccgt gagctggaac
480agcggggcgc tgaccagcgg cgtgcatacc tttccggcgg tgctgcaaag cagcggcctg
540tatagcctga gcagcgttgt gaccgtgccg agcagcagct taggcactca gacctatatt
600tgcaacgtga accataaacc gagcaacacc aaagtggata aaaaagtgga accgaaaagc
660282669DNAHomo sapiens 282caggtgcaat tgcaacagtc tggtccgggc ctggtgaaac
cgagccaaac cctgagcctg 60acctgtgcga tttccggaga tagcgtgagc agcaacagcg
cggcgtggaa ctggattcgc 120cagtctcctg ggcgtggcct cgagtggctg ggccgtacct
attatcgtag caaatggtat 180aacgattatg cggtgagcgt gaaaagccgg attaccatca
acccggatac ttcgaaaaac 240cagtttagcc tgcaactgaa cagcgtgacc ccggaagata
cggccgtgta ttattgcgcg 300cgtggttatg ctgatatttc ttttgattat tggggccaag
gcaccctggt gacggttagc 360tcagcgtcga ccaaaggtcc aagcgtgttt ccgctggctc
cgagcagcaa aagcaccagc 420ggcggcacgg ctgccctggg ctgcctggtt aaagattatt
tcccggaacc agtcaccgtg 480agctggaaca gcggggcgct gaccagcggc gtgcatacct
ttccggcggt gctgcaaagc 540agcggcctgt atagcctgag cagcgttgtg accgtgccga
gcagcagctt aggcactcag 600acctatattt gcaacgtgaa ccataaaccg agcaacacca
aagtggataa aaaagtggaa 660ccgaaaagc
669283654DNAHomo sapiens 283caggtgcaat tggtggaaag
cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt
tacctttagc agctatgcga tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg
ggtgagcgcg attagcggta gcggcggcag cacctattat 180gcggatagcg tgaaaggccg
ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg
tgcggaagat acggccgtgt attattgcgc gcgttattat 300cttcttcttg attattgggg
ccaaggcacc ctggtgacgg ttagctcagc gtcgaccaaa 360ggtccaagcg tgtttccgct
ggctccgagc agcaaaagca ccagcggcgg cacggctgcc 420ctgggctgcc tggttaaaga
ttatttcccg gaaccagtca ccgtgagctg gaacagcggg 480gcgctgacca gcggcgtgca
tacctttccg gcggtgctgc aaagcagcgg cctgtatagc 540ctgagcagcg ttgtgaccgt
gccgagcagc agcttaggca ctcagaccta tatttgcaac 600gtgaaccata aaccgagcaa
caccaaagtg gataaaaaag tggaaccgaa aagc 654284681DNAHomo sapiens
284caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg
60agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc
120cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac
180gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat
240atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgttggtct
300gatcagtctt atcattatta ttggcatcct tattttgatg tttggggcca aggcaccctg
360gtgacggtta gctcagcgtc gaccaaaggt ccaagcgtgt ttccgctggc tccgagcagc
420aaaagcacca gcggcggcac ggctgccctg ggctgcctgg ttaaagatta tttcccggaa
480ccagtcaccg tgagctggaa cagcggggcg ctgaccagcg gcgtgcatac ctttccggcg
540gtgctgcaaa gcagcggcct gtatagcctg agcagcgttg tgaccgtgcc gagcagcagc
600ttaggcactc agacctatat ttgcaacgtg aaccataaac cgagcaacac caaagtggat
660aaaaaagtgg aaccgaaaag c
681285654DNAHomo sapiens 285caggtgcaat tggtggaaag cggcggcggc ctggtgcaac
cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt tacctttagc agctatgcga
tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg ggtgagcgcg attagcggta
gcggcggcag cacctattat 180gcggatagcg tgaaaggccg ttttaccatt tcacgtgata
attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg tgcggaagat acggccgtgt
attattgcgc gcgtcttatt 300ggttattttg atctttgggg ccaaggcacc ctggtgacgg
ttagctcagc gtcgaccaaa 360ggtccaagcg tgtttccgct ggctccgagc agcaaaagca
ccagcggcgg cacggctgcc 420ctgggctgcc tggttaaaga ttatttcccg gaaccagtca
ccgtgagctg gaacagcggg 480gcgctgacca gcggcgtgca tacctttccg gcggtgctgc
aaagcagcgg cctgtatagc 540ctgagcagcg ttgtgaccgt gccgagcagc agcttaggca
ctcagaccta tatttgcaac 600gtgaaccata aaccgagcaa caccaaagtg gataaaaaag
tggaaccgaa aagc 654286669DNAHomo sapiens 286caggtgcaat
tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt 60agctgcaaag
gttccggata ttcctttacg agctattgga ttggctgggt gcgccagatg 120cctgggaagg
gtctcgagtg gatgggcatt atttatccgg gcgatagcga tacccgttat 180tctccgagct
ttcagggcca ggtgaccatt agcgcggata aaagcattag caccgcgtat 240cttcaatgga
gcagcctgaa agcgagcgat acggccatgt attattgcgc gcgtcttact 300aattattttg
attctattta ttatgatcat tggggccaag gcaccctggt gacggttagc 360tcagcgtcga
ccaaaggtcc aagcgtgttt ccgctggctc cgagcagcaa aagcaccagc 420ggcggcacgg
ctgccctggg ctgcctggtt aaagattatt tcccggaacc agtcaccgtg 480agctggaaca
gcggggcgct gaccagcggc gtgcatacct ttccggcggt gctgcaaagc 540agcggcctgt
atagcctgag cagcgttgtg accgtgccga gcagcagctt aggcactcag 600acctatattt
gcaacgtgaa ccataaaccg agcaacacca aagtggataa aaaagtggaa 660ccgaaaagc
669287669DNAHomo
sapiens 287caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag
cctgaaaatt 60agctgcaaag gttccggata ttcctttacg agctattgga ttggctgggt
gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt atttatccgg gcgatagcga
tacccgttat 180tctccgagct ttcagggcca ggtgaccatt agcgcggata aaagcattag
caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat acggccatgt attattgcgc
gcgtcttgtt 300ggtggtggtt atgatcttat gtttgattct tggggccaag gcaccctggt
gacggttagc 360tcagcgtcga ccaaaggtcc aagcgtgttt ccgctggctc cgagcagcaa
aagcaccagc 420ggcggcacgg ctgccctggg ctgcctggtt aaagattatt tcccggaacc
agtcaccgtg 480agctggaaca gcggggcgct gaccagcggc gtgcatacct ttccggcggt
gctgcaaagc 540agcggcctgt atagcctgag cagcgttgtg accgtgccga gcagcagctt
aggcactcag 600acctatattt gcaacgtgaa ccataaaccg agcaacacca aagtggataa
aaaagtggaa 660ccgaaaagc
669288672DNAHomo sapiens 288caggtgcaat tggttcagag cggcgcggaa
gtgaaaaaac cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata ttcctttacg
agctattgga ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt
atttatccgg gcgatagcga tacccgttat 180tctccgagct ttcagggcca ggtgaccatt
agcgcggata aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat
acggccatgt attattgcgc gcgttatgtt 300acttatggtt atgatgatta tcattttgat
tattggggcc aaggcaccct ggtgacggtt 360agctcagcgt cgaccaaagg tccaagcgtg
tttccgctgg ctccgagcag caaaagcacc 420agcggcggca cggctgccct gggctgcctg
gttaaagatt atttcccgga accagtcacc 480gtgagctgga acagcggggc gctgaccagc
ggcgtgcata cctttccggc ggtgctgcaa 540agcagcggcc tgtatagcct gagcagcgtt
gtgaccgtgc cgagcagcag cttaggcact 600cagacctata tttgcaacgt gaaccataaa
ccgagcaaca ccaaagtgga taaaaaagtg 660gaaccgaaaa gc
672289651DNAHomo sapiens 289caggtgcaat
tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60agctgcaaag
cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc 120cctgggcagg
gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac 180gcgcagaagt
ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240atggaactga
gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgttctggt 300tatcttgatt
attggggcca aggcaccctg gtgacggtta gctcagcgtc gaccaaaggt 360ccaagcgtgt
ttccgctggc tccgagcagc aaaagcacca gcggcggcac ggctgccctg 420ggctgcctgg
ttaaagatta tttcccggaa ccagtcaccg tgagctggaa cagcggggcg 480ctgaccagcg
gcgtgcatac ctttccggcg gtgctgcaaa gcagcggcct gtatagcctg 540agcagcgttg
tgaccgtgcc gagcagcagc ttaggcactc agacctatat ttgcaacgtg 600aaccataaac
cgagcaacac caaagtggat aaaaaagtgg aaccgaaaag c
651290687DNAHomo sapiens 290caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac
cgggcagcag cgtgaaagtg 60agctgcaaag cctccggagg cacttttagc agctatgcga
ttagctgggt gcgccaagcc 120cctgggcagg gtctcgagtg gatgggcggc attattccga
tttttggcac ggcgaactac 180gcgcagaagt ttcagggccg ggtgaccatt accgcggatg
aaagcaccag caccgcgtat 240atggaactga gcagcctgcg tagcgaagat acggccgtgt
attattgcgc gcgttatatt 300ggttatacta atgttatgga tattcgtcct ggtttttatc
ttgattattg gggccaaggc 360accctggtga cggttagctc agcgtcgacc aaaggtccaa
gcgtgtttcc gctggctccg 420agcagcaaaa gcaccagcgg cggcacggct gccctgggct
gcctggttaa agattatttc 480ccggaaccag tcaccgtgag ctggaacagc ggggcgctga
ccagcggcgt gcataccttt 540ccggcggtgc tgcaaagcag cggcctgtat agcctgagca
gcgttgtgac cgtgccgagc 600agcagcttag gcactcagac ctatatttgc aacgtgaacc
ataaaccgag caacaccaaa 660gtggataaaa aagtggaacc gaaaagc
687291669DNAHomo sapiens 291caggtgcaat tggttcagag
cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata
ttcctttacg agctattgga ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg
gatgggcatt atttatccgg gcgatagcga tacccgttat 180tctccgagct ttcagggcca
ggtgaccatt agcgcggata aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa
agcgagcgat acggccatgt attattgcgc gcgttttcgt 300gcttatggtg atgattttta
ttttgatgtt tggggccaag gcaccctggt gacggttagc 360tcagcgtcga ccaaaggtcc
aagcgtgttt ccgctggctc cgagcagcaa aagcaccagc 420ggcggcacgg ctgccctggg
ctgcctggtt aaagattatt tcccggaacc agtcaccgtg 480agctggaaca gcggggcgct
gaccagcggc gtgcatacct ttccggcggt gctgcaaagc 540agcggcctgt atagcctgag
cagcgttgtg accgtgccga gcagcagctt aggcactcag 600acctatattt gcaacgtgaa
ccataaaccg agcaacacca aagtggataa aaaagtggaa 660ccgaaaagc
669292678DNAHomo sapiens
292caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg
60agctgcaaag cctccggata tacctttacc agctattata tgcactgggt ccgccaagcc
120cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac
180gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat
240atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtattatg
300tggtctgatt atggtcagct tgttaagggt ggtgatattt ggggccaagg caccctggtg
360acggttagct cagcgtcgac caaaggtcca agcgtgtttc cgctggctcc gagcagcaaa
420agcaccagcg gcggcacggc tgccctgggc tgcctggtta aagattattt cccggaacca
480gtcaccgtga gctggaacag cggggcgctg accagcggcg tgcatacctt tccggcggtg
540ctgcaaagca gcggcctgta tagcctgagc agcgttgtga ccgtgccgag cagcagctta
600ggcactcaga cctatatttg caacgtgaac cataaaccga gcaacaccaa agtggataaa
660aaagtggaac cgaaaagc
678293666DNAHomo sapiens 293caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac
cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata ttcctttacg agctattgga
ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt atttatccgg
gcgatagcga tacccgttat 180tctccgagct ttcagggcca ggtgaccatt agcgcggata
aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat acggccatgt
attattgcgc gcgttattat 300gttactgata ctgcttattt tgattattgg ggccaaggca
ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag cgtgtttccg ctggctccga
gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg cctggttaaa gattatttcc
cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac cagcggcgtg catacctttc
cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag cgttgtgacc gtgccgagca
gcagcttagg cactcagacc 600tatatttgca acgtgaacca taaaccgagc aacaccaaag
tggataaaaa agtggaaccg 660aaaagc
666294666DNAHomo sapiens 294caggtgcaat tggttcagag
cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata
ttcctttacg agctattgga ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg
gatgggcatt atttatccgg gcgatagcga tacccgttat 180tctccgagct ttcagggcca
ggtgaccatt agcgcggata aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa
agcgagcgat acggccatgt attattgcgc gcgtcatgat 300tttgatggtt ctatttttat
ggatttttgg ggccaaggca ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag
cgtgtttccg ctggctccga gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg
cctggttaaa gattatttcc cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac
cagcggcgtg catacctttc cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag
cgttgtgacc gtgccgagca gcagcttagg cactcagacc 600tatatttgca acgtgaacca
taaaccgagc aacaccaaag tggataaaaa agtggaaccg 660aaaagc
666295669DNAHomo sapiens
295caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt
60agctgcaaag gttccggata ttcctttacg agctattgga ttggctgggt gcgccagatg
120cctgggaagg gtctcgagtg gatgggcatt atttatccgg gcgatagcga tacccgttat
180tctccgagct ttcagggcca ggtgaccatt agcgcggata aaagcattag caccgcgtat
240cttcaatgga gcagcctgaa agcgagcgat acggccatgt attattgcgc gcgttatgct
300ggtcatcagt atgagttttt ttttgatttt tggggccaag gcaccctggt gacggttagc
360tcagcgtcga ccaaaggtcc aagcgtgttt ccgctggctc cgagcagcaa aagcaccagc
420ggcggcacgg ctgccctggg ctgcctggtt aaagattatt tcccggaacc agtcaccgtg
480agctggaaca gcggggcgct gaccagcggc gtgcatacct ttccggcggt gctgcaaagc
540agcggcctgt atagcctgag cagcgttgtg accgtgccga gcagcagctt aggcactcag
600acctatattt gcaacgtgaa ccataaaccg agcaacacca aagtggataa aaaagtggaa
660ccgaaaagc
669296614DNAHomo sapiens 296tgaaaattag ctgcaaaggt tccggatatt cctttacgag
ctattggatt ggctgggtgc 60gccagatgcc tgggaagggt ctcgagtgga tgggcattat
ttatccgggc gatagcgata 120cccgttattc tccgagcttt cagggccagg tgaccattag
cgcggataaa agcattagca 180ccgcgtatct tcaatggagc agcctgaaag cgagcgatac
ggccatgtat tattgcgcgc 240gtctttatgc tgatgctgat atttattttg attattgggg
ccaaggcacc ctggtgacgg 300ttagctcagc gtcgaccaaa ggtccaagcg tgtttccgct
ggctccgagc agcaaaagca 360ccagcggcgg cacggctgcc ctgggctgcc tggttaaaga
ttatttcccg gaaccagtca 420ccgtgagctg gaacagcggg gcgctgacca gcggcgtgca
tacctttccg gcggtgctgc 480aaagcagcgg cctgtatagc ctgagcagcg ttgtgaccgt
gccgagcagc agcttaggca 540ctcagaccta tatttgcaac gtgaaccata aaccgagcaa
caccaaagtg gataaaaaag 600tggaaccgaa aagc
614297660DNAHomo sapiens 297caggtgcaat tggttcagtc
tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60agctgcaaag cctccggagg
cacttttagc agctatgcga ttagctgggt gcgccaagcc 120cctgggcagg gtctcgagtg
gatgggcggc attattccga tttttggcac ggcgaactac 180gcgcagaagt ttcagggccg
ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240atggaactga gcagcctgcg
tagcgaagat acggccgtgt attattgcgc gcgtactaag 300tatgttggtt ctgaggatgt
ttggggccaa ggcaccctgg tgacggttag ctcagcgtcg 360accaaaggtc caagcgtgtt
tccgctggct ccgagcagca aaagcaccag cggcggcacg 420gctgccctgg gctgcctggt
taaagattat ttcccggaac cagtcaccgt gagctggaac 480agcggggcgc tgaccagcgg
cgtgcatacc tttccggcgg tgctgcaaag cagcggcctg 540tatagcctga gcagcgttgt
gaccgtgccg agcagcagct taggcactca gacctatatt 600tgcaacgtga accataaacc
gagcaacacc aaagtggata aaaaagtgga accgaaaagc 660298660DNAHomo sapiens
298caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt
60agctgcaaag gttccggata ttcctttacg agctattgga ttggctgggt gcgccagatg
120cctgggaagg gtctcgagtg gatgggcatt atttatccgg gcgatagcga tacccgttat
180tctccgagct ttcagggcca ggtgaccatt agcgcggata aaagcattag caccgcgtat
240cttcaatgga gcagcctgaa agcgagcgat acggccatgt attattgcgc gcgttatcgt
300tatcctcata tgtttgattt ttggggccaa ggcaccctgg tgacggttag ctcagcgtcg
360accaaaggtc caagcgtgtt tccgctggct ccgagcagca aaagcaccag cggcggcacg
420gctgccctgg gctgcctggt taaagattat ttcccggaac cagtcaccgt gagctggaac
480agcggggcgc tgaccagcgg cgtgcatacc tttccggcgg tgctgcaaag cagcggcctg
540tatagcctga gcagcgttgt gaccgtgccg agcagcagct taggcactca gacctatatt
600tgcaacgtga accataaacc gagcaacacc aaagtggata aaaaagtgga accgaaaagc
660299666DNAHomo sapiens 299caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac
cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata ttcctttacg agctattgga
ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt atttatccgg
gcgatagcga tacccgttat 180tctccgagct ttcagggcca ggtgaccatt agcgcggata
aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat acggccatgt
attattgcgc gcgtcttttt 300gctggtcttg agctttattt tgattattgg ggccaaggca
ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag cgtgtttccg ctggctccga
gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg cctggttaaa gattatttcc
cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac cagcggcgtg catacctttc
cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag cgttgtgacc gtgccgagca
gcagcttagg cactcagacc 600tatatttgca acgtgaacca taaaccgagc aacaccaaag
tggataaaaa agtggaaccg 660aaaagc
666300657DNAHomo sapiens 300caggtgcaat tggtggaaag
cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60agctgcgcgg cctccggatt
tacctttagc agctatgcga tgagctgggt gcgccaagcc 120cctgggaagg gtctcgagtg
ggtgagcgcg attagcggta gcggcggcag cacctattat 180gcggatagcg tgaaaggccg
ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240ctgcaaatga acagcctgcg
tgcggaagat acggccgtgt attattgcgc gcgtggtggt 300ttttttaata tggattattg
gggccaaggc accctggtga cggttagctc agcgtcgacc 360aaaggtccaa gcgtgtttcc
gctggctccg agcagcaaaa gcaccagcgg cggcacggct 420gccctgggct gcctggttaa
agattatttc ccggaaccag tcaccgtgag ctggaacagc 480ggggcgctga ccagcggcgt
gcataccttt ccggcggtgc tgcaaagcag cggcctgtat 540agcctgagca gcgttgtgac
cgtgccgagc agcagcttag gcactcagac ctatatttgc 600aacgtgaacc ataaaccgag
caacaccaaa gtggataaaa aagtggaacc gaaaagc 657301663DNAHomo sapiens
301caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg
60agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc
120cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac
180gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat
240atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtggttat
300attccttatc atctttttga ttattggggc caaggcaccc tggtgacggt tagctcagcg
360tcgaccaaag gtccaagcgt gtttccgctg gctccgagca gcaaaagcac cagcggcggc
420acggctgccc tgggctgcct ggttaaagat tatttcccgg aaccagtcac cgtgagctgg
480aacagcgggg cgctgaccag cggcgtgcat acctttccgg cggtgctgca aagcagcggc
540ctgtatagcc tgagcagcgt tgtgaccgtg ccgagcagca gcttaggcac tcagacctat
600atttgcaacg tgaaccataa accgagcaac accaaagtgg ataaaaaagt ggaaccgaaa
660agc
663302669DNAHomo sapiens 302caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac
cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata ttcctttacg agctattgga
ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt atttatccgg
gcgatagcga tacccgttat 180tctccgagct ttcagggcca ggtgaccatt agcgcggata
aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat acggccatgt
attattgcgc gcgttattat 300ggttttgagt atgatcttct ttttgataat tggggccaag
gcaccctggt gacggttagc 360tcagcgtcga ccaaaggtcc aagcgtgttt ccgctggctc
cgagcagcaa aagcaccagc 420ggcggcacgg ctgccctggg ctgcctggtt aaagattatt
tcccggaacc agtcaccgtg 480agctggaaca gcggggcgct gaccagcggc gtgcatacct
ttccggcggt gctgcaaagc 540agcggcctgt atagcctgag cagcgttgtg accgtgccga
gcagcagctt aggcactcag 600acctatattt gcaacgtgaa ccataaaccg agcaacacca
aagtggataa aaaagtggaa 660ccgaaaagc
669303657DNAHomo sapiens 303caggtgcaat tggttcagtc
tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60agctgcaaag cctccggagg
cacttttagc agctatgcga ttagctgggt gcgccaagcc 120cctgggcagg gtctcgagtg
gatgggctgg attaacccga atagcggcgg cacgaactac 180gcgcagaagt ttcagggccg
ggtgaccatg acccgtgata ccagcattag caccgcgtat 240atggaactga gcagcctgcg
tagcgaagat acggccgtgt attattgcgc gcgtattact 300tatattggtt atgatttttg
gggccaaggc accctggtga cggttagctc agcgtcgacc 360aaaggtccaa gcgtgtttcc
gctggctccg agcagcaaaa gcaccagcgg cggcacggct 420gccctgggct gcctggttaa
agattatttc ccggaaccag tcaccgtgag ctggaacagc 480ggggcgctga ccagcggcgt
gcataccttt ccggcggtgc tgcaaagcag cggcctgtat 540agcctgagca gcgttgtgac
cgtgccgagc agcagcttag gcactcagac ctatatttgc 600aacgtgaacc ataaaccgag
caacaccaaa gtggataaaa aagtggaacc gaaaagc 657304654DNAHomo sapiens
304caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg
60agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc
120cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac
180gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat
240atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtcaggag
300tggtatatgg attattgggg ccaaggcacc ctggtgacgg ttagctcagc gtcgaccaaa
360ggtccaagcg tgtttccgct ggctccgagc agcaaaagca ccagcggcgg cacggctgcc
420ctgggctgcc tggttaaaga ttatttcccg gaaccagtca ccgtgagctg gaacagcggg
480gcgctgacca gcggcgtgca tacctttccg gcggtgctgc aaagcagcgg cctgtatagc
540ctgagcagcg ttgtgaccgt gccgagcagc agcttaggca ctcagaccta tatttgcaac
600gtgaaccata aaccgagcaa caccaaagtg gataaaaaag tggaaccgaa aagc
654305666DNAHomo sapiens 305caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac
cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata ttcctttacg agctattgga
ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt atttatccgg
gcgatagcga tacccgttat 180tctccgagct ttcagggcca ggtgaccatt agcgcggata
aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat acggccatgt
attattgcgc gcgtctttat 300cctgaggatc ttatttattt tgattattgg ggccaaggca
ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag cgtgtttccg ctggctccga
gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg cctggttaaa gattatttcc
cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac cagcggcgtg catacctttc
cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag cgttgtgacc gtgccgagca
gcagcttagg cactcagacc 600tatatttgca acgtgaacca taaaccgagc aacaccaaag
tggataaaaa agtggaaccg 660aaaagc
666306687DNAHomo sapiens 306caggtgcaat tgcaacagtc
tggtccgggc ctggtgaaac cgagccaaac cctgagcctg 60acctgtgcga tttccggaga
tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc 120cagtctcctg ggcgtggcct
cgagtggctg ggccgtacct attatcgtag caaatggtat 180aacgattatg cggtgagcgt
gaaaagccgg attaccatca acccggatac ttcgaaaaac 240cagtttagcc tgcaactgaa
cagcgtgacc ccggaagata cggccgtgta ttattgcgcg 300cgttggatga ctcctcctgg
tcattattat ggttatactt ttgatgtttg gggccaaggc 360accctggtga cggttagctc
agcgtcgacc aaaggtccaa gcgtgtttcc gctggctccg 420agcagcaaaa gcaccagcgg
cggcacggct gccctgggct gcctggttaa agattatttc 480ccggaaccag tcaccgtgag
ctggaacagc ggggcgctga ccagcggcgt gcataccttt 540ccggcggtgc tgcaaagcag
cggcctgtat agcctgagca gcgttgtgac cgtgccgagc 600agcagcttag gcactcagac
ctatatttgc aacgtgaacc ataaaccgag caacaccaaa 660gtggataaaa aagtggaacc
gaaaagc 687307669DNAHomo sapiens
307caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt
60agctgcaaag gttccggata ttcctttacg agctattgga ttggctgggt gcgccagatg
120cctgggaagg gtctcgagtg gatgggcatt atttatccgg gcgatagcga tacccgttat
180tctccgagct ttcagggcca ggtgaccatt agcgcggata aaagcattag caccgcgtat
240cttcaatgga gcagcctgaa agcgagcgat acggccatgt attattgcgc gcgtcttcgt
300gttcatgatt atgctatgta ttttgatctt tggggccaag gcaccctggt gacggttagc
360tcagcgtcga ccaaaggtcc aagcgtgttt ccgctggctc cgagcagcaa aagcaccagc
420ggcggcacgg ctgccctggg ctgcctggtt aaagattatt tcccggaacc agtcaccgtg
480agctggaaca gcggggcgct gaccagcggc gtgcatacct ttccggcggt gctgcaaagc
540agcggcctgt atagcctgag cagcgttgtg accgtgccga gcagcagctt aggcactcag
600acctatattt gcaacgtgaa ccataaaccg agcaacacca aagtggataa aaaagtggaa
660ccgaaaagc
669308672DNAHomo sapiens 308caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac
cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata ttcctttacg agctattgga
ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt atttatccgg
gcgatagcga tacccgttat 180tctccgagct ttcagggcca ggtgaccatt agcgcggata
aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat acggccatgt
attattgcgc gcgttttgtt 300tcttataatg gttctgttcc ttattttgat tattggggcc
aaggcaccct ggtgacggtt 360agctcagcgt cgaccaaagg tccaagcgtg tttccgctgg
ctccgagcag caaaagcacc 420agcggcggca cggctgccct gggctgcctg gttaaagatt
atttcccgga accagtcacc 480gtgagctgga acagcggggc gctgaccagc ggcgtgcata
cctttccggc ggtgctgcaa 540agcagcggcc tgtatagcct gagcagcgtt gtgaccgtgc
cgagcagcag cttaggcact 600cagacctata tttgcaacgt gaaccataaa ccgagcaaca
ccaaagtgga taaaaaagtg 660gaaccgaaaa gc
672309666DNAHomo sapiens 309caggtgcaat tggttcagag
cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata
ttcctttacg agctattgga ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg
gatgggcatt atttatccgg gcgatagcga tacccgttat 180tctccgagct ttcagggcca
ggtgaccatt agcgcggata aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa
agcgagcgat acggccatgt attattgcgc gcgtattatt 300ggtgattatg ttattttttt
tgatgtttgg ggccaaggca ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag
cgtgtttccg ctggctccga gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg
cctggttaaa gattatttcc cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac
cagcggcgtg catacctttc cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag
cgttgtgacc gtgccgagca gcagcttagg cactcagacc 600tatatttgca acgtgaacca
taaaccgagc aacaccaaag tggataaaaa agtggaaccg 660aaaagc
666310609DNAHomo sapiens
310attagctgca aaggttccgg atattccttt acgagctatt ggattggctg ggtgcgccag
60atgcctggga agggtctcga gtggatgggc attatttatc cgggcgatag cgatacccgt
120tattctccga gctttcaggg ccaggtgacc attagcgcgg ataaaagcat tagcaccgcg
180tatcttcaat ggagcagcct gaaagcgagc gatacggcca tgtattattg cgcgcgtctt
240tttacttatc cttttcttta ttttgatgtt tggggccaag gcaccctggt gacggttagc
300tcagcgtcga ccaaaggtcc aagcgtgttt ccgctggctc cgagcagcaa aagcaccagc
360ggcggcacgg ctgccctggg ctgcctggtt aaagattatt tcccggaacc agtcaccgtg
420agctggaaca gcggggcgct gaccagcggc gtgcatacct ttccggcggt gctgcaaagc
480agcggcctgt atagcctgag cagcgttgtg accgtgccga gcagcagctt aggcactcag
540acctatattt gcaacgtgaa ccataaaccg agcaacacca aagtggataa aaaagtggaa
600ccgaaaagc
609311666DNAHomo sapiens 311caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac
cgggcgaaag cctgaaaatt 60agctgcaaag gttccggata ttcctttacg agctattgga
ttggctgggt gcgccagatg 120cctgggaagg gtctcgagtg gatgggcatt atttatccgg
gcgatagcga tacccgttat 180tctccgagct ttcagggcca ggtgaccatt agcgcggata
aaagcattag caccgcgtat 240cttcaatgga gcagcctgaa agcgagcgat acggccatgt
attattgcgc gcgtattctt 300actggtcacg ttcttctttt tgattattgg ggccaaggca
ccctggtgac ggttagctca 360gcgtcgacca aaggtccaag cgtgtttccg ctggctccga
gcagcaaaag caccagcggc 420ggcacggctg ccctgggctg cctggttaaa gattatttcc
cggaaccagt caccgtgagc 480tggaacagcg gggcgctgac cagcggcgtg catacctttc
cggcggtgct gcaaagcagc 540ggcctgtata gcctgagcag cgttgtgacc gtgccgagca
gcagcttagg cactcagacc 600tatatttgca acgtgaacca taaaccgagc aacaccaaag
tggataaaaa agtggaaccg 660aaaagc
666312645DNAHomo sapiens 312gatatcgcac tgacccagcc
agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg gtactagcag
cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga aggcgccgaa
actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc
caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag acgaagcgga
ttattattgc cagagctatg actatcagca gtttactgtg 300tttggcggcg gcacgaagtt
aaccgttctt ggccagccga aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga
agaattgcag gcgaacaaag cgaccctggt gtgcctgatt 420agcgactttt atccgggagc
cgtgacagtg gcctggaagg cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac
accctccaaa caaagcaaca acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga
gcagtggaag tcccacagaa gctacagctg ccaggtcacg 600catgagggga gcaccgtgga
aaaaaccgtt gcgccgactg aggcc 645313645DNAHomo sapiens
313gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc
60tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag
120catcccggga aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg
180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg
240caagcggaag acgaagcgga ttattattgc cagagctatg actttaagac ttatcttgtg
300tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg
360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctggt gtgcctgatt
420agcgactttt atccgggagc cgtgacagtg gcctggaagg cagatagcag ccccgtcaag
480gcgggagtgg agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc
540tatctgagcc tgacgcctga gcagtggaag tcccacagaa gctacagctg ccaggtcacg
600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg aggcc
645314645DNAHomo sapiens 314gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctatg
actttcttcg tttttctgtg 300tttggcggcg gcacgaagtt aaccgttctt ggccagccga
aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag
cgaccctggt gtgcctgatt 420agcgactttt atccgggagc cgtgacagtg gcctggaagg
cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac accctccaaa caaagcaaca
acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga gcagtggaag tcccacagaa
gctacagctg ccaggtcacg 600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg
aggcc 645315638DNAHomo sapiens 315gatatcgcac
tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg
gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga
aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt
ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag
acgaagcgga ttattattgc cagagctatg actttattaa tgttattgtg 300tttggcggcg
gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg 360ctgtttccgc
cgagcagcga agaattgcag gcgaacaaag cgaccctggt gtgcctgatt 420agcgactttt
atccgggagc cgtgacagtg gcctggaagg cagatagcag ccccgtcaag 480gcgggagtgg
agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc 540tatctgagcc
tgacgcctga gcagtggaag tcccacagaa gctacagctg ccaggtcacg 600catgagggga
gcaccgtgga aaaaaccgtt gcgccgac
638316645DNAHomo sapiens 316gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctatg
actttgttcg ttttatggtg 300tttggcggcg gcacgaagtt aaccgttctt ggccagccga
aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag
cgaccctggt gtgcctgatt 420agcgactttt atccgggagc cgtgacagtg gcctggaagg
cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac accctccaaa caaagcaaca
acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga gcagtggaag tcccacagaa
gctacagctg ccaggtcacg 600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg
aggcc 645317638DNAHomo sapiens 317gatatcgcac
tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg
gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga
aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt
ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag
acgaagcgga ttattattgc cagagctatg acttttataa gtttaatgtg 300tttggcggcg
gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg 360ctgtttccgc
cgagcagcga agaattgcag gcgaacaaag cgaccctggt gtgcctgatt 420agcgactttt
atccgggagc cgtgacagtg gcctggaagg cagatagcag ccccgtcaag 480gcgggagtgg
agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc 540tatctgagcc
tgacgcctga gcagtggaag tcccacagaa gctacagctg ccaggtcacg 600catgagggga
gcaccgtgga aaaaaccgtt gcgccgac
638318638DNAHomo sapiens 318gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctatg
actttcgtcg tttttctgtg 300tttggcggcg gcacgaagtt aaccgttctt ggccagccga
aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag
cgaccctggt gtgcctgatt 420agcgactttt atccgggagc cgtgacagtg gcctggaagg
cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac accctccaaa caaagcaaca
acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga gcagtggaag tcccacagaa
gctacagctg ccaggtcacg 600catgagggga gcaccgtgga aaaaaccgtt gcgccgac
638319642DNAHomo sapiens 319gatatcgtgc tgacccagcc
gccttcagtg agtggcgcac caggtcagcg tgtgaccatc 60tcgtgtagcg gcagcagcag
caacattggc agcaactatg tgagctggta ccagcagttg 120cccgggacgg cgccgaaact
gctgatttat gataacaacc agcgtccctc aggcgtgccg 180gatcgtttta gcggatccaa
aagcggcacc agcgcgagcc ttgcgattac gggcctgcaa 240agcgaagacg aagcggatta
ttattgccag agccgtgact ttaatcgtgg tcctgtgttt 300ggcggcggca cgaagttaac
cgttcttggc cagccgaaag ccgcaccgag tgtgacgctg 360tttccgccga gcagcgaaga
attgcaggcg aacaaagcga ccctggtgtg cctgattagc 420gacttttatc cgggagccgt
gacagtggcc tggaaggcag atagcagccc cgtcaaggcg 480ggagtggaga ccaccacacc
ctccaaacaa agcaacaaca agtacgcggc cagcagctat 540ctgagcctga cgcctgagca
gtggaagtcc cacagaagct acagctgcca ggtcacgcat 600gaggggagca ccgtggaaaa
aaccgttgcg ccgactgagg cc 642320639DNAHomo sapiens
320gatatcgtgc tgacccagcc gccttcagtg agtggcgcac caggtcagcg tgtgaccatc
60tcgtgtagcg gcagcagcag caacattggc agcaactatg tgagctggta ccagcagttg
120cccgggacgg cgccgaaact gctgatttat gataacaacc agcgtccctc aggcgtgccg
180gatcgtttta gcggatccaa aagcggcacc agcgcgagcc ttgcgattac gggcctgcaa
240agcgaagacg aagcggatta ttattgccag agctatgacc agcgtaagtg ggtgtttggc
300ggcggcacga agttaaccgt tcttggccag ccgaaagccg caccgagtgt gacgctgttt
360ccgccgagca gcgaagaatt gcaggcgaac aaagcgaccc tggtgtgcct gattagcgac
420ttttatccgg gagccgtgac agtggcctgg aaggcagata gcagccccgt caaggcggga
480gtggagacca ccacaccctc caaacaaagc aacaacaagt acgcggccag cagctatctg
540agcctgacgc ctgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgag
600gggagcaccg tggaaaaaac cgttgcgccg actgaggcc
639321672DNAHomo sapiens 321gatatcgtgc tgacccagag cccggcgacc ctgagcctgt
ctccgggcga acgtgcgacc 60ctgagctgca gagcgagcca gagcgtgagc agcagctatc
tggcgtggta ccagcagaaa 120ccaggtcaag caccgcgtct attaatttat ggcgcgagca
gccgtgcaac tggggtcccg 180gcgcgtttta gcggctctgg atccggcacg gattttaccc
tgaccattag cagcctggaa 240cctgaagact ttgcgactta ttattgccag cagctttatg
gtacttctgt tacctttggc 300cagggtacga aagttgaaat taaacgtacg gtggctgctc
cgagcgtgtt tatttttccg 360ccgagcgatg aacaactgaa aagcggcacg gcgagcgtgg
tgtgcctgct gaacaacttt 420tatccgcgtg aagcgaaagt tcagtggaaa gtagacaacg
cgctgcaaag cggcaacagc 480caggaaagcg tgaccgaaca ggatagcaaa gatagcacct
attctctgag cagcaccctg 540accctgagca aagcggatta tgaaaaacat aaagtgtatg
cgtgcgaagt gacccatcaa 600ggtctgagca gcccggtgac taaatctttt aatcgtggcg
aggcctgata agcatgcgta 660ggagaaaata aa
672322642DNAHomo sapiens 322gatatcgtgc tgacccagcc
gccttcagtg agtggcgcac caggtcagcg tgtgaccatc 60tcgtgtagcg gcagcagcag
caacattggc agcaactatg tgagctggta ccagcagttg 120cccgggacgg cgccgaaact
gctgatttat gataacaacc agcgtccctc aggcgtgccg 180gatcgtttta gcggatccaa
aagcggcacc agcgcgagcc ttgcgattac gggcctgcaa 240agcgaagacg aagcggatta
ttattgccag agctatgacg gttttaagac tcatgtgttt 300ggcggcggca cgaagttaac
cgttcttggc cagccgaaag ccgcaccgag tgtgacgctg 360tttccgccga gcagcgaaga
attgcaggcg aacaaagcga ccctggtgtg cctgattagc 420gacttttatc cgggagccgt
gacagtggcc tggaaggcag atagcagccc cgtcaaggcg 480ggagtggaga ccaccacacc
ctccaaacaa agcaacaaca agtacgcggc cagcagctat 540ctgagcctga cgcctgagca
gtggaagtcc cacagaagct acagctgcca ggtcacgcat 600gaggggagca ccgtggaaaa
aaccgttgcg ccgactgagg cc 642323633DNAHomo sapiens
323gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc
60tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg
120caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc
180tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa
240gacgaagcgg attattattg ccagagctat gactattctc ttcttgtgtt tggcggcggc
300acgaagttaa ccgttcttgg ccagccgaaa gccgcaccga gtgtgacgct gtttccgccg
360agcagcgaag aattgcaggc gaacaaagcg accctggtgt gcctgattag cgacttttat
420ccgggagccg tgacagtggc ctggaaggca gatagcagcc ccgtcaaggc gggagtggag
480accaccacac cctccaaaca aagcaacaac aagtacgcgg ccagcagcta tctgagcctg
540acgcctgagc agtggaagtc ccacagaagc tacagctgcc aggtcacgca tgaggggagc
600accgtggaaa aaaccgttgc gccgactgag gcc
633324633DNAHomo sapiens 324gatatcgaac tgacccagcc gccttcagtg agcgttgcac
caggtcagac cgcgcgtatc 60tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct
ggtaccagca gaaacccggg 120caggcgccag ttctggtgat ttatgatgat tctgaccgtc
cctcaggcat cccggaacgc 180tttagcggat ccaacagcgg caacaccgcg accctgacca
ttagcggcac tcaggcggaa 240gacgaagcgg attattattg ccagagctat gactttaatt
ttcatgtgtt tggcggcggc 300acgaagttaa ccgttcttgg ccagccgaaa gccgcaccga
gtgtgacgct gtttccgccg 360agcagcgaag aattgcaggc gaacaaagcg accctggtgt
gcctgattag cgacttttat 420ccgggagccg tgacagtggc ctggaaggca gatagcagcc
ccgtcaaggc gggagtggag 480accaccacac cctccaaaca aagcaacaac aagtacgcgg
ccagcagcta tctgagcctg 540acgcctgagc agtggaagtc ccacagaagc tacagctgcc
aggtcacgca tgaggggagc 600accgtggaaa aaaccgttgc gccgactgag gcc
633325648DNAHomo sapiens 325gatatcgcac tgacccagcc
agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg gtactagcag
cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga aggcgccgaa
actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc
caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag acgaagcgga
ttattattgc cagagctatg acatgattgc tcgttatcct 300gtgtttggcg gcggcacgaa
gttaaccgtt cttggccagc cgaaagccgc accgagtgtg 360acgctgtttc cgccgagcag
cgaagaattg caggcgaaca aagcgaccct ggtgtgcctg 420attagcgact tttatccggg
agccgtgaca gtggcctgga aggcagatag cagccccgtc 480aaggcgggag tggagaccac
cacaccctcc aaacaaagca acaacaagta cgcggccagc 540agctatctga gcctgacgcc
tgagcagtgg aagtcccaca gaagctacag ctgccaggtc 600acgcatgagg ggagcaccgt
ggaaaaaacc gttgcgccga ctgaggcc 648326639DNAHomo sapiens
326gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc
60tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg
120caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc
180tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa
240gacgaagcgg attattattg ccagagctgg gacattcatc cttttgatgt tgtgtttggc
300ggcggcacga agttaaccgt tcttggccag ccgaaagccg caccgagtgt gacgctgttt
360ccgccgagca gcgaagaatt gcaggcgaac aaagcgaccc tggtgtgcct gattagcgac
420ttttatccgg gagccgtgac agtggcctgg aaggcagata gcagccccgt caaggcggga
480gtggagacca ccacaccctc caaacaaagc aacaacaagt acgcggccag cagctatctg
540agcctgacgc ctgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgag
600gggagcaccg tggaaaaaac cgttgcgccg actgaggcc
639327639DNAHomo sapiens 327gatatcgtgc tgacccagcc gccttcagtg agtggcgcac
caggtcagcg tgtgaccatc 60tcgtgtagcg gcagcagcag caacattggc agcaactatg
tgagctggta ccagcagttg 120cccgggacgg cgccgaaact gctgatttat gataacaacc
agcgtccctc aggcgtgccg 180gatcgtttta gcggatccaa aagcggcacc agcgcgagcc
ttgcgattac gggcctgcaa 240agcgaagacg aagcggatta ttattgccag agctgggacc
ttgagcctta tgtgtttggc 300ggcggcacga agttaaccgt tcttggccag ccgaaagccg
caccgagtgt gacgctgttt 360ccgccgagca gcgaagaatt gcaggcgaac aaagcgaccc
tggtgtgcct gattagcgac 420ttttatccgg gagccgtgac agtggcctgg aaggcagata
gcagccccgt caaggcggga 480gtggagacca ccacaccctc caaacaaagc aacaacaagt
acgcggccag cagctatctg 540agcctgacgc ctgagcagtg gaagtcccac agaagctaca
gctgccaggt cacgcatgag 600gggagcaccg tggaaaaaac cgttgcgccg actgaggcc
639328645DNAHomo sapiens 328gatatcgcac tgacccagcc
agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg gtactagcag
cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga aggcgccgaa
actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc
caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag acgaagcgga
ttattattgc cagagctatg acgttcttga ttctgaggtg 300tttggcggcg gcacgaagtt
aaccgttctt ggccagccga aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga
agaattgcag gcgaacaaag cgaccctggt gtgcctgatt 420agcgactttt atccgggagc
cgtgacagtg gcctggaagg cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac
accctccaaa caaagcaaca acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga
gcagtggaag tcccacagaa gctacagctg ccaggtcacg 600catgagggga gcaccgtgga
aaaaaccgtt gcgccgactg aggcc 645329648DNAHomo sapiens
329gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc
60tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag
120catcccggga aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg
180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg
240caagcggaag acgaagcgga ttattattgc cagagctatg acccttctca tccttctaag
300gtgtttggcg gcggcacgaa gttaaccgtt cttggccagc cgaaagccgc accgagtgtg
360acgctgtttc cgccgagcag cgaagaattg caggcgaaca aagcgaccct ggtgtgcctg
420attagcgact tttatccggg agccgtgaca gtggcctgga aggcagatag cagccccgtc
480aaggcgggag tggagaccac cacaccctcc aaacaaagca acaacaagta cgcggccagc
540agctatctga gcctgacgcc tgagcagtgg aagtcccaca gaagctacag ctgccaggtc
600acgcatgagg ggagcaccgt ggaaaaaacc gttgcgccga ctgaggcc
648330642DNAHomo sapiens 330gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctatg
acgatatgca gtttgtgttt 300ggcggcggca cgaagttaac cgttcttggc cagccgaaag
ccgcaccgag tgtgacgctg 360tttccgccga gcagcgaaga attgcaggcg aacaaagcga
ccctggtgtg cctgattagc 420gacttttatc cgggagccgt gacagtggcc tggaaggcag
atagcagccc cgtcaaggcg 480ggagtggaga ccaccacacc ctccaaacaa agcaacaaca
agtacgcggc cagcagctat 540ctgagcctga cgcctgagca gtggaagtcc cacagaagct
acagctgcca ggtcacgcat 600gaggggagca ccgtggaaaa aaccgttgcg ccgactgagg
cc 642331645DNAHomo sapiens 331gatatcgcac
tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg
gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga
aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt
ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag
acgaagcgga ttattattgc cagagctggg acattaatca tgctattgtg 300tttggcggcg
gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg 360ctgtttccgc
cgagcagcga agaattgcag gcgaacaaag cgaccctggt gtgcctgatt 420agcgactttt
atccgggagc cgtgacagtg gcctggaagg cagatagcag ccccgtcaag 480gcgggagtgg
agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc 540tatctgagcc
tgacgcctga gcagtggaag tcccacagaa gctacagctg ccaggtcacg 600catgagggga
gcaccgtgga aaaaaccgtt gcgccgactg aggcc
645332645DNAHomo sapiens 332gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctatg
actattatga ttatggtgtg 300tttggcggcg gcacgaagtt aaccgttctt ggccagccga
aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag
cgaccctggt gtgcctgatt 420agcgactttt atccgggagc cgtgacagtg gcctggaagg
cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac accctccaaa caaagcaaca
acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga gcagtggaag tcccacagaa
gctacagctg ccaggtcacg 600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg
aggcc 645333645DNAHomo sapiens 333gatatcgtgc
tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc 60ctgagctgca
gagcgagcca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa 120ccaggtcaag
caccgcgtct attaatttat ggcgcgagca gccgtgcaac tggggtcccg 180gcgcgtttta
gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa 240cctgaagact
ttgcggttta ttattgccag caggctaatg attttcctat tacctttggc 300cagggtacga
aagttgaaat taaacgtacg gtggctgctc cgagcgtgtt tatttttccg 360ccgagcgatg
aacaactgaa aagcggcacg gcgagcgtgg tgtgcctgct gaacaacttt 420tatccgcgtg
aagcgaaagt tcagtggaaa gtagacaacg cgctgcaaag cggcaacagc 480caggaaagcg
tgaccgaaca ggatagcaaa gatagcacct attctctgag cagcaccctg 540accctgagca
aagcggatta tgaaaaacat aaagtgtatg cgtgcgaagt gacccatcaa 600ggtctgagca
gcccggtgac taaatctttt aatcgtggcg aggcc
645334648DNAHomo sapiens 334gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctggg
acaatcttaa gatgcctgtt 300gtgtttggcg gcggcacgaa gttaaccgtt cttggccagc
cgaaagccgc accgagtgtg 360acgctgtttc cgccgagcag cgaagaattg caggcgaaca
aagcgaccct ggtgtgcctg 420attagcgact tttatccggg agccgtgaca gtggcctgga
aggcagatag cagccccgtc 480aaggcgggag tggagaccac cacaccctcc aaacaaagca
acaacaagta cgcggccagc 540agctatctga gcctgacgcc tgagcagtgg aagtcccaca
gaagctacag ctgccaggtc 600acgcatgagg ggagcaccgt ggaaaaaacc gttgcgccga
ctgaggcc 648335648DNAHomo sapiens 335gatatcgcac
tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg
gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga
aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt
ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag
acgaagcgga ttattattgc cagagctatg acgtttttcc tattaatcgt 300gtgtttggcg
gcggcacgaa gttaaccgtt cttggccagc cgaaagccgc accgagtgtg 360acgctgtttc
cgccgagcag cgaagaattg caggcgaaca aagcgaccct ggtgtgcctg 420attagcgact
tttatccggg agccgtgaca gtggcctgga aggcagatag cagccccgtc 480aaggcgggag
tggagaccac cacaccctcc aaacaaagca acaacaagta cgcggccagc 540agctatctga
gcctgacgcc tgagcagtgg aagtcccaca gaagctacag ctgccaggtc 600acgcatgagg
ggagcaccgt ggaaaaaacc gttgcgccga ctgaggcc
648336639DNAHomo sapiens 336gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagcgatc
tttattttcc tgtgtttggc 300ggcggcacga agttaaccgt tcttggccag ccgaaagccg
caccgagtgt gacgctgttt 360ccgccgagca gcgaagaatt gcaggcgaac aaagcgaccc
tggtgtgcct gattagcgac 420ttttatccgg gagccgtgac agtggcctgg aaggcagata
gcagccccgt caaggcggga 480gtggagacca ccacaccctc caaacaaagc aacaacaagt
acgcggccag cagctatctg 540agcctgacgc ctgagcagtg gaagtcccac agaagctaca
gctgccaggt cacgcatgag 600gggagcaccg tggaaaaaac cgttgcgccg actgaggcc
639337642DNAHomo sapiens 337gatatcgcac tgacccagcc
agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg gtactagcag
cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga aggcgccgaa
actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc
caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag acgaagcgga
ttattattgc cagagctatg acgttactcc tcgtgtgttt 300ggcggcggca cgaagttaac
cgttcttggc cagccgaaag ccgcaccgag tgtgacgctg 360tttccgccga gcagcgaaga
attgcaggcg aacaaagcga ccctggtgtg cctgattagc 420gacttttatc cgggagccgt
gacagtggcc tggaaggcag atagcagccc cgtcaaggcg 480ggagtggaga ccaccacacc
ctccaaacaa agcaacaaca agtacgcggc cagcagctat 540ctgagcctga cgcctgagca
gtggaagtcc cacagaagct acagctgcca ggtcacgcat 600gaggggagca ccgtggaaaa
aaccgttgcg ccgactgagg cc 642338636DNAHomo sapiens
338gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc
60tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg
120caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc
180tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa
240gacgaagcgg attattattg ccagagccgt gaccctgttg gttttcctgt gtttggcggc
300ggcacgaagt taaccgttct tggccagccg aaagccgcac cgagtgtgac gctgtttccg
360ccgagcagcg aagaattgca ggcgaacaaa gcgaccctgg tgtgcctgat tagcgacttt
420tatccgggag ccgtgacagt ggcctggaag gcagatagca gccccgtcaa ggcgggagtg
480gagaccacca caccctccaa acaaagcaac aacaagtacg cggccagcag ctatctgagc
540ctgacgcctg agcagtggaa gtcccacaga agctacagct gccaggtcac gcatgagggg
600agcaccgtgg aaaaaaccgt tgcgccgact gaggcc
636339642DNAHomo sapiens 339gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctatg
acctttctcc tcgtgtgttt 300ggcggcggca cgaagttaac cgttcttggc cagccgaaag
ccgcaccgag tgtgacgctg 360tttccgccga gcagcgaaga attgcaggcg aacaaagcga
ccctggtgtg cctgattagc 420gacttttatc cgggagccgt gacagtggcc tggaaggcag
atagcagccc cgtcaaggcg 480ggagtggaga ccaccacacc ctccaaacaa agcaacaaca
agtacgcggc cagcagctat 540ctgagcctga cgcctgagca gtggaagtcc cacagaagct
acagctgcca ggtcacgcat 600gaggggagca ccgtggaaaa aaccgttgcg ccgactgagg
cc 642340648DNAHomo sapiens 340gatatcgcac
tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg
gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga
aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt
ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag
acgaagcgga ttattattgc cagagctatg acttttctca ttattttttt 300gtgtttggcg
gcggcacgaa gttaaccgtt cttggccagc cgaaagccgc accgagtgtg 360acgctgtttc
cgccgagcag cgaagaattg caggcgaaca aagcgaccct ggtgtgcctg 420attagcgact
tttatccggg agccgtgaca gtggcctgga aggcagatag cagccccgtc 480aaggcgggag
tggagaccac cacaccctcc aaacaaagca acaacaagta cgcggccagc 540agctatctga
gcctgacgcc tgagcagtgg aagtcccaca gaagctacag ctgccaggtc 600acgcatgagg
ggagcaccgt ggaaaaaacc gttgcgccga ctgaggcc
648341636DNAHomo sapiens 341gatatcgaac tgacccagcc gccttcagtg agcgttgcac
caggtcagac cgcgcgtatc 60tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct
ggtaccagca gaaacccggg 120caggcgccag ttctggtgat ttatgatgat tctgaccgtc
cctcaggcat cccggaacgc 180tttagcggat ccaacagcgg caacaccgcg accctgacca
ttagcggcac tcaggcggaa 240gacgaagcgg attattattg ccagagctat gaccttcgtt
attctcatgt gtttggcggc 300ggcacgaagt taaccgttct tggccagccg aaagccgcac
cgagtgtgac gctgtttccg 360ccgagcagcg aagaattgca ggcgaacaaa gcgaccctgg
tgtgcctgat tagcgacttt 420tatccgggag ccgtgacagt ggcctggaag gcagatagca
gccccgtcaa ggcgggagtg 480gagaccacca caccctccaa acaaagcaac aacaagtacg
cggccagcag ctatctgagc 540ctgacgcctg agcagtggaa gtcccacaga agctacagct
gccaggtcac gcatgagggg 600agcaccgtgg aaaaaaccgt tgcgccgact gaggcc
636342642DNAHomo sapiens 342gatatcgcac tgacccagcc
agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg gtactagcag
cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga aggcgccgaa
actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc
caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag acgaagcgga
ttattattgc cagagctatg accttcgtaa tcgtgtgttt 300ggcggcggca cgaagttaac
cgttcttggc cagccgaaag ccgcaccgag tgtgacgctg 360tttccgccga gcagcgaaga
attgcaggcg aacaaagcga ccctggtgtg cctgattagc 420gacttttatc cgggagccgt
gacagtggcc tggaaggcag atagcagccc cgtcaaggcg 480ggagtggaga ccaccacacc
ctccaaacaa agcaacaaca agtacgcggc cagcagctat 540ctgagcctga cgcctgagca
gtggaagtcc cacagaagct acagctgcca ggtcacgcat 600gaggggagca ccgtggaaaa
aaccgttgcg ccgactgagg cc 642343645DNAHomo sapiens
343gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc
60tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag
120catcccggga aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg
180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg
240caagcggaag acgaagcgga ttattattgc cagagctatg actttactta tggttctgtg
300tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg
360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctggt gtgcctgatt
420agcgactttt atccgggagc cgtgacagtg gcctggaagg cagatagcag ccccgtcaag
480gcgggagtgg agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc
540tatctgagcc tgacgcctga gcagtggaag tcccacagaa gctacagctg ccaggtcacg
600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg aggcc
645344645DNAHomo sapiens 344gatatcgtgc tgacccagag cccggcgacc ctgagcctgt
ctccgggcga acgtgcgacc 60ctgagctgca gagcgagcca gagcgtgagc agcagctatc
tggcgtggta ccagcagaaa 120ccaggtcaag caccgcgtct attaatttat ggcgcgagca
gccgtgcaac tggggtcccg 180gcgcgtttta gcggctctgg atccggcacg gattttaccc
tgaccattag cagcctggaa 240cctgaagact ttgcggttta ttattgccag cagtttaatg
attctcctta tacctttggc 300cagggtacga aagttgaaat taaacgtacg gtggctgctc
cgagcgtgtt tatttttccg 360ccgagcgatg aacaactgaa aagcggcacg gcgagcgtgg
tgtgcctgct gaacaacttt 420tatccgcgtg aagcgaaagt tcagtggaaa gtagacaacg
cgctgcaaag cggcaacagc 480caggaaagcg tgaccgaaca ggatagcaaa gatagcacct
attctctgag cagcaccctg 540accctgagca aagcggatta tgaaaaacat aaagtgtatg
cgtgcgaagt gacccatcaa 600ggtctgagca gcccggtgac taaatctttt aatcgtggcg
aggcc 645345649DNAHomo sapiens 345ggccgatatc
gcactgaccc agccagcttc agtgagcggc tcaccaggtc agagcattac 60catctcgtgt
acgggtacta gcagcgatgt gggcggctat aactatgtga gctggtacca 120gcagcatccc
gggaaggcgc cgaaactgat gatttatgat gtgagcaacc gtccctcagg 180cgtgagcaac
cgttttagcg gatccaaaag cggcaacacc gcgagcctga ccattagcgg 240cctgcaagcg
gaagacgaag cggattatta ttgccagagc tatgacattt ctggttatcc 300tgtgtttggc
ggcggcacga agttaaccgt tcttggccag ccgaaagccg caccgagtgt 360gacgctgttt
ccgccgagca gcgaagaatt gcaggcgaac aaagcgaccc tggtgtgcct 420gattagcgac
ttttatccgg gagccgtgac agtggcctgg aaggcagata gcagccccgt 480caaggcggga
gtggagacca ccacaccctc caaacaaagc aacaacaagt acgcggccag 540cagctatctg
agcctgacgc ctgagcagtg gaagtcccac agaagctaca gctgccaggt 600cacgcatgag
gggagcaccg tggaaaaaac cgttgcgccg actgaggcc
649346648DNAHomo sapiens 346gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagccgtg
acctttatta tgtttattat 300gtgtttggcg gcggcacgaa gttaaccgtt cttggccagc
cgaaagccgc accgagtgtg 360acgctgtttc cgccgagcag cgaagaattg caggcgaaca
aagcgaccct ggtgtgcctg 420attagcgact tttatccggg agccgtgaca gtggcctgga
aggcagatag cagccccgtc 480aaggcgggag tggagaccac cacaccctcc aaacaaagca
acaacaagta cgcggccagc 540agctatctga gcctgacgcc tgagcagtgg aagtcccaca
gaagctacag ctgccaggtc 600acgcatgagg ggagcaccgt ggaaaaaacc gttgcgccga
ctgaggcc 648347633DNAHomo sapiens 347gatatcgaac
tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60tcgtgtagcg
gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg 120caggcgccag
ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc 180tttagcggat
ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240gacgaagcgg
attattattg ccagagctat gaccgttcta tgtgggtgtt tggcggcggc 300acgaagttaa
ccgttcttgg ccagccgaaa gccgcaccga gtgtgacgct gtttccgccg 360agcagcgaag
aattgcaggc gaacaaagcg accctggtgt gcctgattag cgacttttat 420ccgggagccg
tgacagtggc ctggaaggca gatagcagcc ccgtcaaggc gggagtggag 480accaccacac
cctccaaaca aagcaacaac aagtacgcgg ccagcagcta tctgagcctg 540acgcctgagc
agtggaagtc ccacagaagc tacagctgcc aggtcacgca tgaggggagc 600accgtggaaa
aaaccgttgc gccgactgag gcc
633348645DNAHomo sapiens 348gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctggg
acgttcagac tgataaggtg 300tttggcggcg gcacgaagtt aaccgttctt ggccagccga
aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag
cgaccctggt gtgcctgatt 420agcgactttt atccgggagc cgtgacagtg gcctggaagg
cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac accctccaaa caaagcaaca
acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga gcagtggaag tcccacagaa
gctacagctg ccaggtcacg 600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg
aggcc 645349636DNAHomo sapiens 349gatatcgaac
tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60tcgtgtagcg
gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg 120caggcgccag
ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc 180tttagcggat
ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240gacgaagcgg
attattattg ccagagctgg gacccttctc attattatgt gtttggcggc 300ggcacgaagt
taaccgttct tggccagccg aaagccgcac cgagtgtgac gctgtttccg 360ccgagcagcg
aagaattgca ggcgaacaaa gcgaccctgg tgtgcctgat tagcgacttt 420tatccgggag
ccgtgacagt ggcctggaag gcagatagca gccccgtcaa ggcgggagtg 480gagaccacca
caccctccaa acaaagcaac aacaagtacg cggccagcag ctatctgagc 540ctgacgcctg
agcagtggaa gtcccacaga agctacagct gccaggtcac gcatgagggg 600agcaccgtgg
aaaaaaccgt tgcgccgact gaggcc
636350645DNAHomo sapiens 350gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctatg
acattatgcc tgagcgtgtg 300tttggcggcg gcacgaagtt aaccgttctt ggccagccga
aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag
cgaccctggt gtgcctgatt 420agcgactttt atccgggagc cgtgacagtg gcctggaagg
cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac accctccaaa caaagcaaca
acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga gcagtggaag tcccacagaa
gctacagctg ccaggtcacg 600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg
aggcc 645351645DNAHomo sapiens 351gatatcgcac
tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg
gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga
aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt
ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag
acgaagcgga ttattattgc cagagcatgg actttcgtct tatgcatgtg 300tttggcggcg
gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg 360ctgtttccgc
cgagcagcga agaattgcag gcgaacaaag cgaccctggt gtgcctgatt 420agcgactttt
atccgggagc cgtgacagtg gcctggaagg cagatagcag ccccgtcaag 480gcgggagtgg
agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc 540tatctgagcc
tgacgcctga gcagtggaag tcccacagaa gctacagctg ccaggtcacg 600catgagggga
gcaccgtgga aaaaaccgtt gcgccgactg aggcc
645352645DNAHomo sapiens 352gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagctttg
acatgattca tccttatgtg 300tttggcggcg gcacgaagtt aaccgttctt ggccagccga
aagccgcacc gagtgtgacg 360ctgtttccgc cgagcagcga agaattgcag gcgaacaaag
cgaccctggt gtgcctgatt 420agcgactttt atccgggagc cgtgacagtg gcctggaagg
cagatagcag ccccgtcaag 480gcgggagtgg agaccaccac accctccaaa caaagcaaca
acaagtacgc ggccagcagc 540tatctgagcc tgacgcctga gcagtggaag tcccacagaa
gctacagctg ccaggtcacg 600catgagggga gcaccgtgga aaaaaccgtt gcgccgactg
aggcc 645353639DNAHomo sapiens 353gatatcgcac
tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60tcgtgtacgg
gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120catcccggga
aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180agcaaccgtt
ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240caagcggaag
acgaagcgga ttattattgc cagagcgact ttcctgttat ggtgtttggc 300ggcggcacga
agttaaccgt tcttggccag ccgaaagccg caccgagtgt gacgctgttt 360ccgccgagca
gcgaagaatt gcaggcgaac aaagcgaccc tggtgtgcct gattagcgac 420ttttatccgg
gagccgtgac agtggcctgg aaggcagata gcagccccgt caaggcggga 480gtggagacca
ccacaccctc caaacaaagc aacaacaagt acgcggccag cagctatctg 540agcctgacgc
ctgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgag 600gggagcaccg
tggaaaaaac cgttgcgccg actgaggcc
639354639DNAHomo sapiens 354gatatcgcac tgacccagcc agcttcagtg agcggctcac
caggtcagag cattaccatc 60tcgtgtacgg gtactagcag cgatgtgggc ggctataact
atgtgagctg gtaccagcag 120catcccggga aggcgccgaa actgatgatt tatgatgtga
gcaaccgtcc ctcaggcgtg 180agcaaccgtt ttagcggatc caaaagcggc aacaccgcga
gcctgaccat tagcggcctg 240caagcggaag acgaagcgga ttattattgc cagagcgaca
atccttatct tgtgtttggc 300ggcggcacga agttaaccgt tcttggccag ccgaaagccg
caccgagtgt gacgctgttt 360ccgccgagca gcgaagaatt gcaggcgaac aaagcgaccc
tggtgtgcct gattagcgac 420ttttatccgg gagccgtgac agtggcctgg aaggcagata
gcagccccgt caaggcggga 480gtggagacca ccacaccctc caaacaaagc aacaacaagt
acgcggccag cagctatctg 540agcctgacgc ctgagcagtg gaagtcccac agaagctaca
gctgccaggt cacgcatgag 600gggagcaccg tggaaaaaac cgttgcgccg actgaggcc
63935510PRTHomo sapiens 355Gly Phe Thr Phe Ser Ser
Tyr Ala Met Ser 1 5 10 35610PRTHomo
sapiens 356Gly Phe Thr Phe Asn Ser Tyr Ala Met Ser 1 5
10 35717PRTHomo sapiens 357Ala Ile Ser Gly Ser Gly Gly Ser
Thr Tyr Tyr Ala Asp Ser Val Lys 1 5 10
15 Gly 35817PRTHomo sapiens 358Val Ile Ser Gly Asn Gly
Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 5
10 15 Gly 35917PRTHomo sapiens 359Gly Ile Ser Gly
Asn Gly Val Leu Ile Phe Tyr Ala Asp Ser Val Lys 1 5
10 15 Gly 3605PRTHomo sapiens 360Gly Leu
Met Asp Tyr 1 5 3614PRTHomo sapiens 361Trp Phe Asp His 1
3624PRTHomo sapiens 362Trp Phe Asp Val 1
36314PRTHomo sapiens 363Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr Asn Tyr
Val Ser 1 5 10
3647PRTHomo sapiens 364Asp Val Ser Asn Arg Pro Ser 1 5
3659PRTHomo sapiens 365Gln Ser Tyr Asp Phe Ile Arg Phe Met 1
5 36610PRTHomo sapiens 366Gly Gly Thr Phe Ser Ser
Tyr Ala Ile Ser 1 5 10 36710PRTHomo
sapiens 367Gly Tyr Ser Phe Thr Ser Tyr Trp Ile Gly 1 5
10 36817PRTHomo sapiens 368Gly Ile Ile Pro Ile Phe Gly Thr
Ala Asn Tyr Ala Gln Lys Phe Gln 1 5 10
15 Gly 36917PRTHomo sapiens 369Ile Ile Tyr Pro Gly Asp
Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gln 1 5
10 15 Gly 37016PRTHomo sapiens 370Trp Ser Asp Gln
Ser Tyr His Tyr Tyr Trp His Pro Tyr Phe Asp Val 1 5
10 15 37113PRTHomo sapiens 371Ser Gly Ser
Ser Ser Asn Ile Gly Ser Asn Tyr Val Ser 1 5
10 37214PRTHomo sapiens 372Thr Gly Thr Ser Ser Asp Leu Gly
Gly Tyr Asn Tyr Val Ser 1 5 10
37311PRTHomo sapiens 373Leu Met Ile Tyr Asp Asn Asn Gln Arg Pro Ser
1 5 10 37411PRTHomo sapiens 374Leu
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser 1 5
10 37511PRTHomo sapiens 375Leu Met Ile Tyr Ala Gly Asn Asn Arg Pro
Ser 1 5 10 37610PRTHomo sapiens
376Gln Ala Phe Asp Val Ala Pro Asn Gly Lys 1 5
10 37710PRTHomo sapiens 377Gln Ala Phe Ala Val Met Pro Asn Val Glu
1 5 10 37810PRTHomo sapiens 378Gln Ser
Phe Thr Val Ser Pro Gly Ala Asp 1 5 10
3799PRTHomo sapiens 379Gln Ala Tyr Asp Ser Ser Gly Tyr Pro 1
5 38017DNAHomo sapiens 380gtggtggttc cgatatc
1738143DNAHomo sapiens
381agcgtcacac tcggtgcggc tttcggctgg ccaagaacgg tta
43
User Contributions:
Comment about this patent or add new information about this topic: