Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING MULTIPLE SCLEROSIS

Inventors:  Bio-Pharm Solutions Co., Ltd. (Gyeonggi-Do, KR)  Yong Moon Choi (Irvine, CA, US)  Yong Moon Choi (Irvine, CA, US)
Assignees:  Bio-Pharm Solutions Co., Ltd.
IPC8 Class: AC07C27128FI
USPC Class: 514487
Class name: Ring in acid moiety the ring is a benzene ring the benzene ring is attached to nitrogen through an acyclic carbon or carbon chain
Publication date: 2013-07-18
Patent application number: 20130184338



Abstract:

A phenyl carbamate compound, and a method of treating and/or preventing multiple sclerosis comprising administering a pharmaceutically effective amount of the phenyl carbamate compound to a subject in need of treating and/or preventing multiple sclerosis, are provided.

Claims:

1. A method of preventing or treating multiple sclerosis comprising administering a pharmaceutically effective amount of a phenyl carbamate compound represented by Chemical Formula 1 or a pharmaceutically acceptable salt thereof, to a subject in need of preventing or treating multiple sclerosis: ##STR00241## wherein X is a halogen; n is an integer from 1 to 5; R1 is a linear or branched alkyl group of C1-C4; A is hydrogen or a carbamoyl derivative represented by ##STR00242## B is hydrogen, a carbamoyl derivative represented by ##STR00243## trialkyl silyl groups, trialkylaryl silyl groups (wherein the total number of alkyl and aryl groups is three), or a trialkyl silyl ether group, wherein each alkyl group is independently selected from the group consisting of linear, branched, or cyclic C1-C4 alkyl groups, and each aryl group is independently selected from the group consisting of C5-C8 aryl groups; A and B are not the carbamoyl derivative at same time; and R2 and R3 may be the same as or different from each other, and independently selected from the group consisting of hydrogen, a linear or branched alkyl group of C1-C4, a cycloalkyl group of C3-C8, and benzyl group.

2. The method according to claim 1, wherein X is chlorine, fluorine, iodine, or bromine; n is 1 or 2; R1 is methyl group, ethyl group, isopropyl group, or butyl group; A is hydrogen or a carbamoyl derivative represented by ##STR00244## B is hydrogen, a carbamoyl derivative represented by ##STR00245## a trimethyl silyl (TMS) group, a triethyl silyl (TES) group, a triisopropyl silyl (TIPS) group, t-butyl dimethyl silyl (TBDMS) group, a t-butyl diphenyl silyl (TBDPS) group, or a trialkyl silyl ether group, wherein each alkyl group is independently selected from the group consisting of linear, branched, or cyclic C1-C4 alkyl groups; A and B are not the carbamoyl derivative at same time; and R2 and R3 are the same as or different from each other, and independently selected from the group consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

3. The method according to claim 1, wherein the compound is selected from the group consisting of: 1-(2-chlorophenyl)-1-hydroxypropyl-2-carbamate, 1-(2-chlorophenyl)-1-hydroxybutyl-2-carbamate, 1-(2-chlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate, 1-(2-chlorophenyl)-1-hydroxyhexyl-2-carbamate, 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-methylcarbamate, 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-propylcarbamate, 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-isopropylcarbamate, 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-cyclopropylcarbamate, 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-cyclohexylcarbamate, 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-benzylcarbamate, 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-bicyclo[2,2,1]heptanecarbamate, 1-(2,4-dichlorophenyl)-1-hydroxypropyl-2-carbamate, 1-(2,6-dichlorophenyl)-1-hydroxypropyl-2-carbamate, 1-(2,4-dichlorophenyl)-1-hydroxybutyl-2-carbamate, 1-(2,6-dichlorophenyl)-1-hydroxybutyl-2-carbamate, 1-(2,4-dichlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate, 1-(2,6-dichlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate, 1-(2,4-dichlorophenyl)-1-hydroxyhexyl-2-carbamate, 1-(2,6-dichlorophenyl)-1-hydroxyhexyl-2-carbamate, 1-(2-chlorophenyl)-2-hydroxypropyl-1-carbamate, 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-methylcarbamate, 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-propylcarbamate, 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-isopropylcarbamate, 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-cyclopropylcarbamate, 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-cyclohexylcarbamate, 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-benzylcarbamate, 1-(2,4-dichlorophenyl)-2-hydroxypropyl-1-carbamate, 1-(2,6-dichlorophenyl)-2-hydroxypropyl-1-carbamate, 1-(2,4-dichlorophenyl)-2-hydroxybutyl-1-carbamate, 1-(2,6-dichlorophenyl)-2-hydroxybutyl-1-carbamate, 1-(2,4-dichlorophenyl)-2-hydroxy-3-methyl-butyl-1-carbamate, 1-(2,6-dichlorophenyl)-2-hydroxy-3-methyl-butyl-1-carbamate, 1-(2,4-dichlorophenyl)-2-hydroxyhexyl-1-carbamate, 1-(2,6-dichlorophenyl)-2-hydroxyhexyl-1-carbamate, 1-(2-fluorophenyl)-1-hydroxypropyl-2-carbamate, 1-(2-iodophenyl)-1-hydroxypropyl-2-carbamate, 1-(2-iodophenyl)-1-hydroxybutyl-2-carbamate, 1-(2,3-dichlorophenyl)-1-hydroxypropyl-2-carbamate, and 1-(2,3-dichlorophenyl)-2-hydroxypropyl-1-carbamate.

4. The method according to claim 1, wherein the compound is in the form of racemate, enantiomer, diastereomer, a mixture of enantiomer, or a mixture of diastereomer.

Description:

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to and the benefit of U.S. Provisional Application No. 61/580,409, filed in the United States Patent and Trademark Office on Dec. 27, 2011, the entire contents of which are incorporated herein by reference.

TECHNICAL FIELD

[0002] The present invention provides a pharmaceutical composition for treating and/or preventing multiple sclerosis comprising a phenyl carbamate compound as an active ingredient, a use of the phenyl carbamate compound for phenyl carbamate compound, and a method of treating and/or preventing multiple sclerosis comprising administering a pharmaceutically effective amount of the phenyl carbamate compound to a subject in need of treating and/or preventing multiple sclerosis.

BACKGROUND ART

[0003] Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), where the fatty myelin sheaths around the axons of the brain and spinal column are damaged, resulting in the inhibition of normal neurotransmission. As a result of this damage, the ability of nerve cells in the brain and spinal cord to communicate with each other is compromised. Almost any neurological symptom, including physical and cognitive disability, can appear with the disease.

[0004] Axonal pathology is an early feature of multiple sclerosis lesions and is initially associated with inflammation; likewise, axonal damage is a feature in experimental allergic encephalomyelitis (EAE), an autoimmune model of multiple sclerosis. During multiple sclerosis and EAE, destruction of myelin results in the redistribution and aberrant expression of axonal ion channels, and demyelinated axons are particularly sensitive to the damaging effects of free-radicals and glutamate excitotoxicity, which may additionally contribute to chronic neurodegeneration in CNS autoimmune disease.

[0005] There is a need for developing agents for inhibiting multiple sclerosis.

SUMMARY OF THE INVENTION

[0006] An embodiment provides an organic compound, i.e., phenyl carbamate compound. More particularly, the embodiment provides a phenyl carbamate compound of the following Chemical Formula 1, an enantiomer or a diastereomer thereof, or a mixture of enantiomers or diastereomers; or a pharmaceutically acceptable salt of organic acid or inorganic acid thereof; which has remarkably excellent treatment effect on multiple sclerosis as well as very low toxicity. Also, the compounds of formula I may be useful as a drug especially for the treatment of multiple sclerosis:

##STR00001##

[0007] wherein,

[0008] X is a halogen, for example, chlorine, fluorine, iodine, or bromine,

[0009] n, that means the number of substituent X, is an integer from 1 to 5, for example, 1 or 2,

[0010] R1 is a linear or branched alkyl group of C1-C4, for example, methyl group, ethyl group, isopropyl group, or butyl group,

[0011] A is hydrogen or a carbamoyl derivative represented by

##STR00002##

[0012] B is hydrogen, a carbamoyl derivative represented by

##STR00003##

trialkyl silyl groups (e.g., a trimethyl silyl (TMS) group, a triethyl silyl (TES) group, a triisopropyl silyl (TIPS) group, t-butyl dimethyl silyl (TBDMS) group, and the like), trialkylaryl silyl groups (wherein the total number of alkyl and aryl groups is three; e.g., a t-butyl diphenyl silyl (TBDPS) group and the like), or a trialkyl silyl ether group, wherein each alkyl group may be independently selected from the group consisting of linear, branched, or cyclic C1-C4 alkyl groups, and each aryl group may be independently selected from the group consisting of C5-C8 aryl groups, preferably a phenyl group,

[0013] A and B are not the carbamoyl derivative at same time, and

[0014] R2 and R3 may be the same as or different from each other, and independently selected from the group consisting of hydrogen, a linear or branched alkyl group of C1-C4, for example C1-C3, a cycloalkyl group of C3-C8, for example C3-C7, and benzyl group, and more specifically, R2 and R3 may be the same as or different from each other, and independently selected from the group consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

[0015] Another embodiment provides a pharmaceutical composition for of preventing and/or treating multiple sclerosis containing a compound of Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, as an active ingredient.

[0016] Another embodiment provides a method of preventing and/or treating multiple sclerosis comprising administering a pharmaceutically effective amount of a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, to a subject in need of preventing and/or treating multiple sclerosis.

[0017] Another embodiment provides a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, for use in the prevention and/or treatment of multiple sclerosis or the manufacture of a pharmaceutical composition for preventing and/or treating multiple sclerosis.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0018] Continuing its research work in the field of multiple sclerosis, the present inventors, as results of studies on the development of anti-multiple sclerosis drugs, found that a substituted phenyl carbamate compounds of the following Chemical Formula 1 exhibits remarkably excellent anti-multiple sclerosis activity in various emulation models and simultaneously has very low toxicity, and completed the invention.

[0019] Therefore, an embodiment provides an organic compound, i.e., phenyl carbamate derivatives, more particularly, a phenyl carbamate compound represented by following Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof:

##STR00004##

[0020] wherein,

[0021] X is a halogen, for example, chlorine, fluorine, iodine, or bromine,

[0022] n, that means the number of substituent X, is an integer from 1 to 5, for example, 1 or 2,

[0023] R1 is a linear or branched alkyl group of C1-C4, for example, methyl group, ethyl group, isopropyl group, or butyl group,

[0024] A is hydrogen or a carbamoyl derivative represented by

##STR00005##

[0025] B is hydrogen, a carbamoyl derivative represented by

##STR00006##

trialkyl silyl groups (e.g., a trimethyl silyl (TMS) group, a triethyl silyl (TES) group, a triisopropyl silyl (TIPS) group, t-butyl dimethyl silyl (TBDMS) group, and the like), trialkylaryl silyl groups (wherein the total number of alkyl and aryl groups is three; e.g., a t-butyl diphenyl silyl (TBDPS) group and the like), or a trialkyl silyl ether group, wherein each alkyl group may be independently selected from the group consisting of linear, branched, or cyclic C1-C4 alkyl groups, and each aryl group may be independently selected from the group consisting of C5-C8 aryl groups, preferably a phenyl group,

[0026] A and B are not the carbamoyl derivative at same time, and

[0027] R2 and R3 may be the same as or different from each other, and independently selected from the group consisting of hydrogen, a linear or branched alkyl group of C1-C4, for example C1-C3, a cycloalkyl group of C3-C8, for example C3-C7, and benzyl group, and more specifically, R2 and R3 may be the same as or different from each other, and independently selected from the group consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

[0028] In concrete embodiment, the phenyl carbamate compound may be selected from the group consisting of:

[0029] 1-(2-chlorophenyl)-1-hydroxypropyl-2-carbamate,

[0030] 1-(2-chlorophenyl)-1-hydroxybutyl-2-carbamate,

[0031] 1-(2-chlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate,

[0032] 1-(2-chlorophenyl)-1-hydroxyhexyl-2-carbamate,

[0033] 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-methylcarbamate,

[0034] 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-propylcarbamate,

[0035] 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-isopropylcarbamate,

[0036] 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-cyclopropylcarbamate,

[0037] 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-cyclohexylcarbamate,

[0038] 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-benzylcarbamate,

[0039] 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-bicyclo[2,2,1]heptanecarbamate,

[0040] 1-(2,4-dichlorophenyl)-1-hydroxypropyl-2-carbamate,

[0041] 1-(2,6-dichlorophenyl)-1-hydroxypropyl-2-carbamate,

[0042] 1-(2,4-dichlorophenyl)-1-hydroxybutyl-2-carbamate,

[0043] 1-(2,6-dichlorophenyl)-1-hydroxybutyl-2-carbamate,

[0044] 1-(2,4-dichlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate,

[0045] 1-(2,6-dichlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate,

[0046] 1-(2,4-dichlorophenyl)-1-hydroxyhexyl-2-carbamate,

[0047] 1-(2,6-dichlorophenyl)-1-hydroxyhexyl-2-carbamate,

[0048] 1-(2-chlorophenyl)-2-hydroxypropyl-1-carbamate,

[0049] 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-methylcarbamate,

[0050] 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-propylcarbamate,

[0051] 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-isopropylcarbamate,

[0052] 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-cyclopropylcarbamate,

[0053] 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-cyclohexylcarbamate,

[0054] 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-benzylcarbamate,

[0055] 1-(2,4-dichlorophenyl)-2-hydroxypropyl-1-carbamate,

[0056] 1-(2,6-dichlorophenyl)-2-hydroxypropyl-1-carbamate,

[0057] 1-(2,4-dichlorophenyl)-2-hydroxybutyl-1-carbamate,

[0058] 1-(2,6-dichlorophenyl)-2-hydroxybutyl-1-carbamate,

[0059] 1-(2,4-dichlorophenyl)-2-hydroxy-3-methyl-butyl-1-carbamate,

[0060] 1-(2,6-dichlorophenyl)-2-hydroxy-3-methyl-butyl-1-carbamate,

[0061] 1-(2,4-dichlorophenyl)-2-hydroxyhexyl-1-carbamate,

[0062] 1-(2,6-dichlorophenyl)-2-hydroxyhexyl-1-carbamate,

[0063] 1-(2-fluorophenyl)-1-hydroxypropyl-2-carbamate,

[0064] 1-(2-iodophenyl)-1-hydroxypropyl-2-carbamate,

[0065] 1-(2-iodophenyl)-1-hydroxybutyl-2-carbamate,

[0066] 1-(2,3-dichlorophenyl)-1-hydroxypropyl-2-carbamate, and

[0067] 1-(2,3-dichlorophenyl)-2-hydroxypropyl-1-carbamate.

[0068] In this compound, 2 chiral carbons exist at positions 1 and 2 from phenyl group substituted with X; thus, the compound may exist in the form of an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers, as well as a racemate.

[0069] Alternatively, the compound may be in the form of a pharmaceutically acceptable salt. The pharmaceutically acceptable salt may include an additional salt of acid or base, and its stereochemical isomer. For example, the compound may be in the form of an additional salt of an organic or inorganic acid. The salt may not be specially limited, and include any salts that maintain the activities of their parent compounds, with no undesirable effects, in the subject, when they are administered to the subject. Such salts may include inorganic and organic salts, such as salts of acetic acid, nitric acid, aspartic acid, sulfonic acid, sulfuric acid, maleic acid, glutamic acid, formic acid, succinic acid, phosphoric acid, phthalic acid, tannic acid, tartaric acid, hydrobromic acid, propionic acid, benzene sulfonic acid, benzoic acid, stearic acid, lactic acid, bicarbonic acid, bisulfuric acid, bitartaric acid, oxalic acid, butyric acid, calcium edetate, carbonic acid, chlorobezoic acid, citric acid, edetic acid, toluenesulfonic acid, fumaric acid, gluceptic acid, esilic acid, pamoic acid, gluconic acid, methyl nitric acid, malonic acid, hydrochloric acid, hydroiodic, hydroxynaphtholic acid, isethionic acid, lactobionic acid, mandelic acid, mucic acid, naphthylic acid, muconic acid, p-nitromethanesulfonic acid, hexamic acid, pantothenic acid, monohydrogen phosphoric acid, dihydrogen phosphoric acid, salicylic acid, sulfamic acid, sulfanilic acid, methane sulfonic acid, and the like. The additional salts of base may include salts of akali metal or alkaline earth metal, such as salts of ammonium, lithium, sodium, potassium, magnesium, calcium, and the like; salts having an organic base, such as benzathine, N-methyl-D-glucamine, hydrabamine, and the like; and salts having an amino acid such as arginine, lysine, and the like. In addition, these salts may be converted to a released form by treating with a proper base or acid.

[0070] As demonstrated in the following experimental examples, the compound of Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or pharmaceutically acceptable salt thereof exhibits an excellent effect on preventing, improving and/or treating multiple sclerosis. Therefore, another embodiment provides a pharmaceutical composition for preventing and/or treating multiple sclerosis containing a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, as an active ingredient.

[0071] Another embodiment provides a method of preventing and/or treating multiple sclerosis comprising administering a pharmaceutically effective amount of a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, to a subject in need of preventing and/or treating multiple sclerosis. The method may further comprise a step of identifying the subject in need of preventing and/or treating multiple sclerosis prior to the step of administering.

[0072] Another embodiment provides a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, for use in the prevention and/or treatment of multiple sclerosis.

[0073] Another embodiment provides a use of a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof for the manufacture of a pharmaceutical composition for preventing and/or treating multiple sclerosis.

[0074] In a concrete embodiment, the multiple sclerosis to be treated may include a neurodegeneration associated multiple sclerosis. In another concrete embodiment, the multiple sclerosis to be treated may not be a muscle spasm associated multiple sclerosis.

[0075] The pharmaceutical composition may be formulated in various forms for oral or parenteral administration. For example, the pharmaceutical composition may be formulated in the oral administration form, such as a tablet, pill, soft or hard capsule, liquid, suspension, emulsion, syrup, granules, elixirs, and the like. In addition to the active ingredient, the oral administration form may further include pharmaceutically acceptable and conventional components, for example, a diluent such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, and the like; a lubricant such as silica, talc, stearic acid, magnesium or calcium salt thereof, polyethyleneglycol, and the like.

[0076] In the case that the oral administration form is a tablet, it may further include a binder such as magnesium aluminium silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, polyvinylpirrolidine, and the like; and optionally include one or more additives selected from the group consisting of a disintegrant such as starch, agar, arginic acid or sodium salt thereof, an absorbent, a colorant, a flavoring, a sweetener, and the like.

[0077] Alternatively, the pharmaceutical composition may also be formulated in a parenteral administration form, which can be administered by subcutaneous injection, intravenous injection, intramuscular injection, injection into thoracic cavity, and the like. In order to formulate the parenteral administration form, the pharmaceutical composition may be prepared as a solution or suspension wherein the active ingredient is dissolved in water together with a stabilizer and/or a buffering agent, and such solution or suspension formulation may be prepared as a dosage form in ample or vial.

[0078] The pharmaceutical composition may be sterilized, and/or include further additives such as a preservative, a stabilizer, a hydrating agent, an emulsification accelerator, a salt and/or buffering agent for osmoregulation, and the like, and/or further therapeutically effective ingredients. The pharmaceutical composition may be formulated by any conventional method for mixing, granulating, coating, and the like.

[0079] The pharmaceutical composition may be administered to a mammal including human, in the pharmaceutically effective amount of 0.01 to 750 mg/kg (body weight), or 0.1 to 500 mg/kg (body weight) per one day, based on the active ingredient. The pharmaceutically effective amount may refers to an amount capable of exhibiting a desired effect, i.e., an effect of treating and/or preventing multiple sclerosis. The pharmaceutically effective amount may be administered through oral or parenteral pathway (e.g., an intravenous injection, an intramusclular injection, etc.), one or two or more times per one day.

[0080] The pharmaceutically effective amount and the administration pathway of the present pharmaceutical composition may be properly adjusted by a person skilled in the relevant field considering the conditions of the subject (patient), desired effects, and the like.

[0081] The subject may be a mammal including human or cells and/or tissues obtained therefrom.

[0082] The carbamate compound of the present invention may prepared by the following reaction formula.

[0083] Reaction Formula I: Synthesis of Diol-1

##STR00007##

[0084] A diol compound used in the synthesis of the carbamate compound may be synthesized by dihydroxylation of a trans-olefin compound. A diol compound having optical activity may be synthesized using a sharpless asymmetric dihydroxylation catalyst.

[0085] Reaction Formula II: Synthesis of Diol-2

##STR00008##

[0086] As indicated in the Reaction Formula II, the optically active substance of diol may also be synthesized using a reduction reagent after synthesizing a hydroxy-ketone compound using Haloro-Mandelic acid. In the Reaction Formula II, PG (protecting group) may be selected from the group consisting of trialkyl silyl group (e.g., a trimethyl silyl (TMS) group, a triethyl silyl (TES) group, a triisopropyl silyl (TIPS) group, t-butyl dimethyl silyl (TBDMS) group, and the like), trialkylaryl silyl groups (wherein the total number of alkyl and aryl groups is three; e.g., a t-butyl diphenyl silyl (TBDPS) group and the like), ester group[Ac (acetate), Bz (benzoate), Pv (pivaloate), Cbz (benzyl carbonate), BOC (t-butyl carbonate), Fmoc (9-fluoroenylmethyl)carbaonate, Alloc (allyl Carbonate), Troc (trichloroethyl carbonate), p-methoxybenzoate, methyl carbonate, and so on] and the like, wherein each alkyl group may be independently selected from the group consisting of linear, branched, or cyclic C1-C4 alkyl groups, and each aryl group may be independently selected from the group consisting of C5-C8 aryl groups, preferably a phenyl group.

[0087] Reaction Formula III: Carbamation Reaction-1

##STR00009##

[0088] As a highly selectivity form of regioisomer of single carbamate of diol having halogen substituent at phenyl ring. (Example 1˜14 and 36˜67 are synthesized by reaction formula III)

[0089] Reaction Formula IV: Carbamation Reaction-2

##STR00010##

[0090] Two substances in the form of regioisomers of a single carbamate of diol having halogen substituent at phenyl ring may be separated by flash column chromatography to obtain two kinds of single carbamate compounds. (Example 15˜35 and 68˜115 are synthesized by reaction formula IV)

[0091] Reaction Formula V: Protection Reaction

##STR00011##

[0092] In the Reaction Formula V, PG (protecting group) may be selected from the group consisting of trialkyl silyl group (e.g., a trimethyl silyl (TMS) group, a triethyl silyl (TES) group, a triisopropyl silyl (TIPS) group, t-butyl dimethyl silyl (TBDMS) group, and the like), trialkylaryl silyl groups (wherein the total number of alkyl and aryl groups is three; e.g., a t-butyl diphenyl silyl (TBDPS) group and the like), ester group[Ac (acetate), Bz (benzoate), Pv (pivaloate), Cbz (benzyl carbonate), BOC (t-butyl carbonate), Fmoc (9-fluoroenylmethyl)carbaonate, Alloc (allyl Carbonate), Troc (trichloroethyl carbonate), p-methoxybenzoate, methyl carbonate, and so on] and the like, wherein each alkyl group may be independently selected from the group consisting of linear, branched, or cyclic C1-C4 alkyl groups, and each aryl group may be independently selected from the group consisting of C5-C8 aryl groups, preferably a phenyl group.

[0093] In the Reaction Formula IV and V, R4 and R5 may be the same as or different from each other, and independently selected from the group consisting of hydrogen, a linear or branched alkyl group of C1-C4, for example C1-C3, a cycloalkyl group of C3-C8, for example C3-C7, and benzyl group, and more specifically, R4 and R5 may be the same as or different from each other, and independently selected from the group consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

[0094] Two substances in the form of regioisomers of a single carbamate of diol having halogen substituent at phenyl ring may be separated by flash column chromatography to obtain two kinds of single carbamate compounds.

BRIEF DESCRIPTION OF DRAWINGS

[0095] FIG. 1 schematically shows a study protocol of measurement of anti-Multiple sclerosis Activity by MOG EAE rat.

[0096] FIG. 2 shows the effects of administration of compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg) and vehicle on body weight.

[0097] FIG. 3 shows the effects of administration of compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg) and vehicle on Mean Disease Onset, wherein the data are presented as mean±SEM.

[0098] FIG. 4 shows the effects of administration of compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg) and vehicle on demyelination area (% of white matter area), wherein the data are presented as mean±SEM. #p<0.05, ##p<0.01, ###p<0.001 Vehicle vs. Compound 1 groups.

[0099] FIG. 5 shows the effects of administration of compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg) and vehicle on demyelination area (% of white matter area), wherein the data are presented as mean±SEM. #p<0.05, ##p<0.01, ###p<0.001 Vehicle vs. Compound 1 groups.

EXAMPLE

[0100] The present invention is further explained in more detail with reference to the following examples. These examples, however, should not be interpreted as limiting the scope of the present invention in any manner.

Preparation Example 1

Synthesis of 1-(2-chlorophenyl)-trans-1-propene

##STR00012##

[0102] 48 ml of 2-chlorobenzenaldehyde (0.42 mol) and 49.7 ml of 3-pentanone

[0103] (0.47 mol) were dissolved in 600 mL of hexane in flask, and then stirred with raising the temperature. 53.6 ml of Boron trifluoride etherate (BF3OEt2, 0.42 mol) was added to the resultant under reflux conditions. When the reaction was completed, water was added thereto. After layer separation, the obtained organic layer was washed twice with 1M sodium hydroxide solution (1M NaOH), and then the separated organic layer was washed with water. The separated organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4) and concentrated. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (38 g, yield 58%).

[0104] 1H NMR (400 MHz, CDCl3) δ1.94 (d, J=4.8 Hz, 3H), 6.24 (m, 1H), 6.78 (d, J=14 Hz, 1H), 7.11˜7.51 (m, 4H)

Preparation Example 2

Synthesis of 1-(2-chlorophenyl)-trans-1-butene

##STR00013##

[0106] The substantially same method as described in Preparation Example 1 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (2.9 g, yield 83%).

[0107] 1H NMR (400 MHz, CDCl3) δ1.14 (d, J=7.6 Hz, 3H), 2.29˜2.33 (m, 2H), 6.28 (dt, J=16 Hz, 6.4 Hz, 1H), 6.78 (d, J=15.6 Hz, 1H), 7.13˜7.54 (m, 4H)

Preparation Example 3

Synthesis of 1-(2-chlorophenyl)-3-methyl-trans-1-butene

##STR00014##

[0109] The substantially same method as described in Preparation Example 1 was conducted, except that 2,6-dimethyl-heptan-4-one was used instead of 3-pentanone, to obtain the title compound (8.0 g, yield 50˜90%).

[0110] 1H NMR (400 MHz, CDCl3) δ1.14 (d, J=6.8 Hz, 6H), 2.25˜2.57 (m, 1H), 6.20 (dd, J=16 Hz, 7.2 Hz, 1H), 7.64 (d, J=16 Hz, 1H), 7.12˜7.54 (m, 4H)

Preparation Example 4

Synthesis of 1-(2-chlorophenyl)-trans-1-hexene

##STR00015##

[0112] The substantially same method as described in Preparation Example 1 was conducted, except that 6-undecanone was used instead of 3-pentanone, to obtain the title compound (10 g, yield 85%).

[0113] 1H NMR (400 MHz, CDCl3) δ0.96 (t, J=7.2 Hz, 3H), 1.33˜1.56 (m, 4H), 2.26˜2.32 (m, 4H), 6.24 (dt, J=15.6 Hz, 7 Hz, 1H), 6.78 (d, J=16 Hz, 1H), 7.13˜7.54 (m, 4H)

Preparation Example 5

Synthesis of 1-(2,4-dichlorophenyl)-trans-1-propene

##STR00016##

[0115] The substantially same method as described in Preparation Example 1 was conducted, except that 2,4-dichlorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (2.4 g, yield 57%).

[0116] 1H NMR (400 MHz, CDCl3) δ1.95 (dd, J=6.8 Hz, 1.6 Hz, 3H), 6.24 (m, 1H), 6.72 (d, J=15.6 Hz, 1H), 7.18˜7.44 (m, 3H)

Preparation Example 6

Synthesis of 1-(2,4-dichlorophenyl)-trans-1-butene

##STR00017##

[0118] The substantially same method as described in Preparation Example 5 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (2.1 g, yield 90%).

[0119] 1H NMR (400 MHz, CDCl3) δ1.14 (d, J=7.6 Hz, 3H), 2.20˜2.33 (m, 2H), 6.26 (dt, J=16 Hz, 6.8 Hz, 1H), 6.70 (d, J=15.6 Hz, 1H), 7.18˜7.46 (m, 3H)

Preparation Example 7

Synthesis of 1-(2,6-dichlorophenyl)-3-methyl-trans-1-butene

##STR00018##

[0121] The substantially same method as described in Preparation Example 5 was conducted, except that 2,6-dimethyl-heptan-4-one was used instead of 3-pentanone, to obtain the title compound (0.23 g, yield 10˜40%).

[0122] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.8 Hz, 6H), 2.53˜2.58 (m, 1H), 6.19 (dd, J=16.4 Hz, 6.8 Hz, 1H), 6.31 (d, J=16.4 Hz, 1H), 7.18˜7.46 (m, 3H)

Preparation Example 8

Synthesis of 1-(2,4-dichlorophenyl)-trans-1-hexene

##STR00019##

[0124] The substantially same method as described in Preparation Example 5 was conducted, except that 6-undecanone was used instead of 3-pentanone, to obtain the title compound (3.2 g, yield 40˜80%).

[0125] 1H NMR (400 MHz, CDCl3) δ0.96 (t, J=7.2 Hz, 3H), 1.38˜1.52 (m, 4H), 2.25˜2.31 (m, 2H), 6.22 (dt, J=15.6 Hz, 6.8 Hz, 1H), 6.70 (d, J=15.6 Hz, 1H), 7.18˜7.46 (m, 3H)

Preparation Example 9

Synthesis of 1-(2,6-dichlorophenyl)-trans-1-propene

##STR00020##

[0127] The substantially same method as described in Preparation Example 1 was conducted, except that 2,6-dichlorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (0.4 g, yield 10˜40%).

[0128] 1H NMR (400 MHz, CDCl3) δ1.98 (d, J=8 Hz, 3H), 6.23˜6.31 (m, 1H), 6.40 (d, J=16 Hz, 1H), 7.05˜7.32 (m, 3H)

Preparation Example 10

Synthesis of 1-(2,6-dichlorophenyl)-trans-1-butene

##STR00021##

[0130] The substantially same method as described in Preparation Example 9 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (1.2 g, yield 10˜40%).

[0131] 1H NMR (400 MHz, CDCl3) δ1.17 (t, J=7.6 Hz, 3H), 2.30˜2.37 (m, 2H), 6.29 (dt, J=16.4 Hz, 6 Hz, 1H), 6.37 (d, J=16.4 Hz, 1H), 7.05˜7.32 (m, 3H)

Preparation Example 11

Synthesis of 1-(2,6-dichlorophenyl)-3-methyl-trans-1-butene

##STR00022##

[0133] The substantially same method as described in Preparation Example 9 was conducted, except that 2,6-dimethyl-heptan-4-one was used instead of 3-pentanone, to obtain the title compound (0.23 g, yield 10˜40%).

[0134] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.8 Hz, 6H), 2.53˜2.58 (m, 1H), 6.19 (dd, J=16.4 Hz, 6.8 Hz, 1H), 6.31 (d, J=16.4 Hz, 1H), 7.05˜7.32 (m, 3H)

Preparation Example 12

Synthesis of 1-(2,6-dichlorophenyl)-trans-1-hexene

##STR00023##

[0136] The substantially same method as described in Preparation Example 9 was conducted, except that 6-undecanone was used instead of 3-pentanone, to obtain the title compound (0.2 g, yield 10˜40%).

[0137] 1H NMR (400 MHz, CDCl3) δ0.99 (t, J=7.2 Hz, 3H), 1.14˜1.59 (m, 4H), 2.30˜2.36 (m, 2H), 6.24 (dt, J=16 Hz, 6.6 Hz, 1H), 6.38 (d, J=16.4 Hz, 1H), 7.05˜7.33 (m, 3H)

Preparation Example 13

Synthesis of 1-(2,3-dichlorophenyl)-trans-1-propene

##STR00024##

[0139] The substantially same method as described in Preparation Example 1 was conducted, except that 2,3-dichlorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (0.2 g, yield 10˜40%).

[0140] 1H NMR (400 MHz, CDCl3) δ1.94 (d, J=4.8 Hz, 3H), 6.24 (m, 1H), 6.78 (d, J=14 Hz, 1H), 7.11˜7.51 (m, 3H)

Preparation Example 14

Synthesis of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol

##STR00025##

[0142] 1-(2-chlorophenyl)-trans-1-propene (1.5 g, Preparation Example 1) was dissolved in 30 mL of the mixture of t-BuOH/H2O (1:1(V/V)). At 0° C., AD-mix-α (Aldrich, U.S.A.) (13.7 g) and methane sulfone amide (CH3SO2NH2, 0.76 g, 0.0080 mol) were added thereto and stirred for overnight. When the reaction was completed, the obtained product was washed with an aqueous solution of sodium sulfite (Na2SO3) and ethylacetate (EA). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (1.65 g, yield 90%).

[0143] 1H NMR (400 MHz, CDCl3) δ1.20 (d, J=6.4 Hz, 3H), 2.48 (d, J=4.0 Hz 1H), 2.92 (d, J=4.4 Hz, 1H), 3.93˜3.97 (m, 1H), 4.97 (t, J=4.8 Hz, 1H), 7.22˜7.51 (m, 4H)

[0144] 13CNMR (100 MHz, CDCl3) δ18.8, 71.5, 74.4, 127.1, 128.1, 128.9, 129.5, 132.6, 138.9

Preparation Example 15

Synthesis of 1-(2-chlorophenyl)-(R,R)-1,2-propanediol

##STR00026##

[0146] 1-(2-chlorophenyl)-trans-1-propene (2.5 g, Preparation Example 1) was dissolved in 50 mL of the mixture of t-BuOH/H2O (1:1(V/V)). At 0° C., AD-mix-α (Aldrich, U.S.A.) (23.5 g) and methane sulfone amide (CH3SO2NH2, 1.27 g, 0.013 mol) were added thereto and stirred for overnight. When the reaction was completed, the obtained product was washed with an aqueous solution of sodium sulfite (Na2SO3) and ethylacetate (EA). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (2.96 g, yield 90%).

[0147] 1H NMR (400 MHz, CDCl3) δ1.20 (d, J=6.4 Hz, 3H), 2.48 (d, J=4.0 Hz, 1H), 2.92 (d, J=4.4 Hz, 1H), 3.93˜3.97 (m, 1H), 4.97 (t, J=4.8 Hz, 1H), 7.22˜7.51 (m, 4H)

Preparation Example 16

Synthesis of the mixture of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol and 1-(2-chlorophenyl)-(R,R)-1,2-propanediol

##STR00027##

[0149] 1-(2-chlorophenyl)-trans-1-prop ene (6.53 g, Preparation Example 1) was dissolved in 45 mL of the mixture of acetone/t-BuOH/H2O (5:1:1 V/V). At the room temperature, N-methylmorpholine-N-oxide (7.51 g) and OsO4 (0.54 g) were added thereto and stirred for 2-3 hours. When the reaction was completed, the obtained product was washed with water and methylenechloride (MC). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (6.42 g, yield 80%).

[0150] 1H NMR (400 MHz, CDCl3) δ1.20 (d, J=6.4 Hz, 3H), 2.48 (d, J=4.0 Hz, 1H), 2.92 (d, J=4.4 Hz, 1H), 3.93˜3.97 (m, 1H), 4.97 (t, J=4.8 Hz, 1H), 7.22˜7.51 (m, 4H)

Preparation Example 17

Synthesis of 1-(2-chlorophenyl)-(S,S)-1,2-butanediol

##STR00028##

[0152] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2-chlorophenyl)-trans-1-butene (Preparation Example 2) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.36 g, yield 95%).

[0153] 1H NMR (400 MHz, CDCl3) δ1.01 (t, J=7.4 Hz, 3H), 1.52˜1.65 (m, 2H), 2.01 (d, J=4.4 Hz, 1H), 2.74 (d, J=5.2 Hz, 1H), 3.69˜3.75 (m, 1H), 5.05 (t, J=5.0 Hz, 1H), 7.23˜7.54 (m, 4H)

Preparation Example 18

Synthesis of 1-(2-chlorophenyl)-(R,R)-1,2-butanediol

##STR00029##

[0155] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2-chlorophenyl)-trans-1-butene (Preparation Example 2) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.84 g, yield 60˜95%).

[0156] 1H NMR (400 MHz, CDCl3) δ1.01 (t, J=7.4 Hz, 3H), 1.52˜1.65 (m, 2H), 2.01 (d, J=4.4 Hz, 1H), 2.74 (d, J=5.2 Hz, 1H), 3.69˜3.75 (m, 1H), 5.05 (t, J=5.0 Hz, 1H), 7.23˜7.54 (m, 4H)

Preparation Example 19

Synthesis of the mixture of 1-(2-chlorophenyl)-(S,S)-1,2-butanediol and 1-(2-chlorophenyl)-(R,R)-1,2-butanediol

##STR00030##

[0158] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2-chlorophenyl)-trans-1-butene (Preparation Example 2) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (5.1 g, yield 60˜90%).

[0159] 1H NMR (400 MHz, CDCl3) δ1.01 (t, J=7.4 Hz, 3H), 1.52˜1.65 (m, 2H), 2.01 (d, J=4.4 Hz, 1H), 2.74 (d, J=5.2 Hz, 1H), 3.69˜3.75 (m, 1H), 5.05 (t, J=5.0 Hz, 1H), 7.23˜7.54 (m, 4H)

Preparation Example 20

Synthesis of 1-(2-chlorophenyl)-3-methyl-(S,S)-1,2-butanediol

##STR00031##

[0161] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2-chlorophenyl)-3-methyl-trans-1-butene (Preparation Example 3) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.96 g, yield 60˜90%).

[0162] 1H NMR (400 MHz, CDCl3) δ1.07 (t, J=7.2 Hz, 6H), 1.83˜1.89 (m, 1H), 1.92 (d, J=5.6 Hz, 1H), 2.69 (d, J=6.4 Hz, 1H), 3.53˜3.56 (m, 1H), 5.22˜5.25 (m, 1H), 7.23˜7.55 (m, 4H)

Preparation Example 21

Synthesis of 1-(2-chlorophenyl)-3-methyl-(R,R)-1,2-butanediol

##STR00032##

[0164] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2-chlorophenyl)-3-methyl-trans-1-butene (Preparation Example 3) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (4.2 g, yield 60˜90%).

[0165] 1H NMR (400 MHz, CDCl3) δ1.07 (t, J=7.2 Hz, 6H), 1.82˜1.90 (m, 1H), 1.93 (d, J=5.6 Hz, 1H), 2.79 (d, J=6 Hz, 1H), 3.53˜3.57 (m, 1H), 5.23˜5.25 (m, 1H), 7.23˜7.54 (m, 4H)

Preparation Example 22

Synthesis of the mixture of 1-(2-chlorophenyl)-3-methyl-(S,S)-1,2-butanediol and 1-(2-chlorophenyl)-3-methyl-(R,R)-1,2-butanediol

##STR00033##

[0167] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2-chlorophenyl)-3-methyl-trans-1-butene (Preparation Example 3) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.8 g, yield 60˜90%).

[0168] 1H NMR (400 MHz, CDCl3) δ1.07 (t, J=7.2 Hz, 6H), 1.83˜1.90 (m, 1H), 1.92 (d, J=5.6 Hz, 1H), 2.69 (d, J=6.4 Hz, 1H), 3.53˜3.56 (m, 1H), 5.22˜5.25 (m, 1H), 7.23˜7.55 (m, 4H)

Preparation Example 23

Synthesis of 1-(2-chlorophenyl)-(S,S)-1,2-hexanediol

##STR00034##

[0170] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2-chlorophenyl)-trans-1-hexene (Preparation Example 4) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.37 g, yield 90%).

[0171] 1H NMR (400 MHz, CDCl3) δ0.90 (t, J=7.2 Hz, 3H), 1.35˜1.65 (m, 6H), 2.08 (d, J=4.4 Hz, 1H), 2.71 (d, J=5.2 Hz, 1H), 3.78˜3.83 (m, 1H), 5.04 (t, J=5.0 Hz, 1H), 7.23˜7.53 (m, 4H)

Preparation Example 24

Synthesis of 1-(2-chlorophenyl)-(R,R)-1,2-hexanediol

##STR00035##

[0173] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2-chlorophenyl)-trans-1-hexene (Preparation Example 4) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (4.2 g, yield 60˜90%).

[0174] 1H NMR (400 MHz, CDCl3) δ0.91 (t, J=6.6 Hz, 3H), 1.35˜1.65 (m, 6H), 2.08 (d, J=4.8 Hz, 1H), 2.70 (d, J=5.2 Hz, 1H), 3.80˜3.83 (m, 1H), 5.05 (t, J=5.0 Hz, 1H), 7.24˜7.56 (m, 4H)

Preparation Example 25

Synthesis of the mixture of 1-(2-chlorophenyl)-(S,S)-1,2-hexanediol and 1-(2-chlorophenyl)-(R,R)-1,2-hexanediol

##STR00036##

[0176] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2-chlorophenyl)-trans-1-hexene (Preparation Example 4) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (7.9 g, yield 60˜90%).

[0177] 1H NMR (400 MHz, CDCl3) δ0.90 (t, J=7.2 Hz, 3H), 1.26˜1.55 (m, 6H), 2.08 (d, J=4.4 Hz, 1H), 2.71 (d, J=5.6 Hz, 1H), 3.78˜3.84 (m, 1H), 5.04 (t, J=3.2 Hz, 1H), 7.24˜7.55 (m, 4H)

Preparation Example 26

Synthesis of 1-(2,4-dichlorophenyl)-(S,S)-1,2-propanediol

##STR00037##

[0179] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-propene (Preparation Example 5) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.33 g, yield 60˜95%).

[0180] 1H NMR (400 MHz, CDCl3) δ1.22 (d, J=6.4 Hz, 3H), 2.10 (d, J=4.4 Hz, 1H), 2.71 (d, J=4.8 Hz, 1H), 3.90˜3.95 (m, 1H), 4.94 (t, J=5.0 Hz, 1H), 7.31 (dd, J=2.0 Hz, J=8.0 Hz, 1H), 7.40 (d, J=2.0 Hz, 1H), 7.49 (d, J=8.4 Hz, 1H)

Preparation Example 27

Synthesis of 1-(2,4-dichlorophenyl)-(R,R)-1,2-propanediol

##STR00038##

[0182] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-propene (Preparation Example 5) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.45 g, yield 60˜95%).

[0183] 1H NMR (400 MHz, CDCl3) δ1.22 (d, J=6.4 Hz, 3H), 2.10 (d, J=4.4 Hz, 1H), 2.71 (d, J=4.8 Hz, 1H), 3.90˜3.95 (m, 1H), 4.94 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 28

Synthesis of the mixture of 1-(2,4-dichlorophenyl)-(S,S)-1,2-propanediol and 1-(2,4-dichlorophenyl)-(R,R)-1,2-propanediol

##STR00039##

[0185] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-propene (Preparation Example 5) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.45 g, yield 60˜95%).

[0186] 1H NMR (400 MHz, CDCl3) δ1.22 (d, J=6.4 Hz, 3H), 2.10 (d, J=4.4 Hz, 1H), 2.71 (d, J=4.8 Hz, 1H), 3.90˜3.95 (m, 1H), 4.94 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 29

Synthesis of 1-(2,4-dichlorophenyl)-(S,S)-1,2-butanediol

##STR00040##

[0188] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-butene (Preparation Example 6) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.32 g, yield 90%).

[0189] 1H NMR (400 MHz, CDCl3) δ1.02 (t, J=7.4 Hz, 3H), 1.54˜1.61 (m, 2H), 2.07 (d, J=4.8 Hz, 1H), 2.74 (d, J=4.8 Hz, 1H), 3.65˜3.68 (m, 1H), 5.01 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 30

Synthesis of 1-(2,4-dichlorophenyl)-(R,R)-1,2-butanediol

##STR00041##

[0191] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-butene (Preparation Example 6) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.43 g, yield 60˜90%).

[0192] 1H NMR (400 MHz, CDCl3) δ1.02 (t, J=7.4 Hz, 3H), 1.54˜1.61 (m, 2H), 2.07 (d, J=4.8 Hz, 1H), 2.74 (d, J=4.8 Hz, 1H), 3.65˜3.68 (m, 1H), 5.01 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 31

Synthesis of the mixture of 1-(2,4-dichlorophenyl)-(S,S)-1,2-butanediol and 1-(2,4-dichlorophenyl)-(R,R)-1,2-butanediol

##STR00042##

[0194] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-butene (Preparation Example 6) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.33 g, yield 60˜90%).

[0195] 1H NMR (400 MHz, CDCl3) δ1.02 (t, J=7.4 Hz, 3H), 1.54˜1.61 (m, 2H), 2.07 (d, J=4.8 Hz, 1H), 2.74 (d, J=4.8 Hz, 1H), 3.65˜3.68 (m, 1H), 5.01 (t, J=5.0 Hz, 1H), 77.31˜7.49 (m, 3H)

Preparation Example 32

Synthesis of 1-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol

##STR00043##

[0197] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-trans-1-butene (Preparation Example 7) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.25 g, yield 60˜95%).

[0198] 1H NMR (400 MHz, CDCl3) δ1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 2.35 (d, J=4.0 Hz, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 33

Synthesis of 1-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol

##STR00044##

[0200] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-trans-1-butene (Preparation Example 7) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.36 g, yield 60˜95%).

[0201] 1H NMR (400 MHz, CDCl3) δ1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 2.35 (d, J=4.0 Hz, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 34

Synthesis of the mixture of 1-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol and 1-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol

##STR00045##

[0203] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-trans-1-butene (Preparation Example 7) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.26 g, yield 60˜95%).

[0204] 1H NMR (400 MHz, CDCl3) δ1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 2.35 (d, J=4.0 Hz, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 35

Synthesis of 1-(2,4-dichlorophenyl)-(S,S)-1,2-hexanediol

##STR00046##

[0206] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-hexene (Preparation Example 8) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (1.1 g, yield 60˜90%).

[0207] 1H NMR (400 MHz, CDCl3) δ0.89˜0.93 (m, 3H), 1.30˜1.39 (m, 2H), 1.49˜1.52 (m, 2H), 1.56˜1.62 (m, 2H), 2.05 (d, J=5.2 Hz, 1H), 2.74 (d, J=5.2 Hz, 1H), 3.72˜3.77 (m, 1H), 4.98 (t, J=4.8 Hz, 1H), 7.28˜7.50 (m, 3H)

Preparation Example 36

Synthesis of 1-(2,4-dichlorophenyl)-(R,R)-1,2-hexanediol

##STR00047##

[0209] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-hexene (Preparation Example 8) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (1.2 g, yield 60˜95%).

[0210] 1H NMR (400 MHz, CDCl3) δ0.89˜0.93 (m, 3H), 1.30˜1.39 (m, 2H), 1.49˜1.52 (m, 2H), 1.56˜1.62 (m, 2H), 2.05 (d, J=5.2 Hz, 1H), 2.74 (d, J=5.2 Hz, 1H), 3.72˜3.77 (m, 1H), 4.98 (t, J=4.8 Hz, 1H), 7.28˜7.50 (m, 3H)

Preparation Example 37

Synthesis of the mixture of 1-(2,4-dichlorophenyl)-(S,S)-1,2-hexanediol and 1-(2,4-dichlorophenyl)-(R,R)-1,2-hexanediol

##STR00048##

[0212] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,4-dichlorophenyl)-trans-1-hexene (Preparation Example 8) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.67 g, yield 60˜95%).

[0213] 1H NMR (400 MHz, CDCl3) δ0.89˜0.93 (m, 3H), 1.30˜1.39 (m, 2H), 1.49˜1.52 (m, 2H), 1.56˜1.62 (m, 2H), 2.05 (d, J=5.2 Hz, 1H), 2.74 (d, J=5.2 Hz, 1H), 3.72˜3.77 (m, 1H), 4.98 (t, J=4.8 Hz, 1H), 7.28˜7.50 (m, 3H)

Preparation Example 38

Synthesis of 1-(2,6-dichlorophenyl)-(S,S)-1,2-propanediol

##STR00049##

[0215] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-propene (Preparation Example 9) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.9 g, yield 60˜90%).

[0216] 1H NMR (400 MHz, CDCl3) δ1.10 (d, J=6.4 Hz, 3H), 2.72 (d, J=2.4 Hz, 1H), 3.10 (d, J=8.4 Hz, 1H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.36 (m, 3H)

Preparation Example 39

Synthesis of 1-(2,6-dichlorophenyl)-(R,R)-1,2-propanediol

##STR00050##

[0218] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-propene (Preparation Example 9) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.84 g, yield 60˜90%).

[0219] 1H NMR (400 MHz, CDCl3) δ1.10 (d, J=6.4 Hz, 3H), 2.72 (d, J=2.4 Hz, 1H), 3.10 (d, J=8.4 Hz, 1H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.36 (m, 3H)

Preparation Example 40

Synthesis of the mixture of 1-(2,6-dichlorophenyl)-(S,S)-1,2-propanediol and 1-(2,6-dichlorophenyl)-(R,R)-1,2-propanediol

##STR00051##

[0221] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-propene (Preparation Example 9) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.91 g, yield 60˜90%).

[0222] 1H NMR (400 MHz, CDCl3) δ1.10 (d, J=6.4 Hz, 3H), 2.72 (d, J=2.4 Hz, 1H), 3.10 (d, J=8.4 Hz, 1H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.36 (m, 3H)

Preparation Example 41

Synthesis of 1-(2,6-dichlorophenyl)-(S,S)-1,2-butanediol

##STR00052##

[0224] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-butene (Preparation Example 10) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (1.23 g, yield 60˜95%).

[0225] 1H NMR (400 MHz, CDCl3) δ0.97 (t, J=7.6 Hz, 3H), 1.26˜1.53 (m, 2H), 2.64 (dd, J=0.8 Hz, J=4.0 Hz, 1H), 3.14 (d, J=8.4 Hz, 1H), 4.22˜4.26 (m, 1H), 5.26 (t, J=8.4 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 42

Synthesis of 1-(2,6-dichlorophenyl)-(R,R)-1,2-butanediol

##STR00053##

[0227] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-butene (Preparation Example 10) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.96 g, yield 60˜95%).

[0228] 1H NMR (400 MHz, CDCl3) δ0.97 (t, J=7.6 Hz, 3H), 1.26˜1.53 (m, 2H), 2.64 (dd, J=0.8 Hz, J=4.0 Hz, 1H), 3.14 (d, J=8.4 Hz, 1H), 4.22˜4.26 (m, 1H), 5.26 (t, J=8.4 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 43

Synthesis of the mixture of 1-(2,6-dichlorophenyl)-(S,S)-1,2-butanediol and 1-(2,6-dichlorophenyl)-(R,R)-1,2-butanediol

##STR00054##

[0230] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-butene (Preparation Example 10) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.86 g, yield 60˜95%).

[0231] 1H NMR (400 MHz, CDCl3) δ0.97 (t, J=7.6 Hz, 3H), 1.26˜1.53 (m, 2H), 2.64 (dd, J=0.8 Hz, J=4.0 Hz, 1H), 3.14 (d, J=8.4 Hz, 1H), 4.22˜4.26 (m, 1H), 5.26 (t, J=8.4 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 44

Synthesis of 1-(2,6-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol

##STR00055##

[0233] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-trans-1-butene (Preparation Example 11) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.25 g, yield 60˜95%).

[0234] 1H NMR (400 MHz, CDCl3) δ1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 2.35 (d, J=4.0 Hz, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 45

Synthesis of 1-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol

##STR00056##

[0236] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-trans-1-butene (Preparation Example 11) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.37 g, yield 60˜95%).

[0237] 1H NMR (400 MHz, CDCl3) δ1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 2.35 (d, J=4.0 Hz, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 46

Synthesis of the mixture of 1-(2,6-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol and 1-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol

##STR00057##

[0239] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-trans-1-butene (Preparation Example 11) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.47 g, yield 60˜95%).

[0240] 1H NMR (400 MHz, CDCl3) δ1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 2.35 (d, J=4.0 Hz, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 47

Synthesis of 1-(2,6-dichlorophenyl)-(S,S)-1,2-hexanediol

##STR00058##

[0242] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-hexene (Preparation Example 12) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.36 g, yield 60˜90%).

[0243] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=6.8 Hz, 3H), 1.20˜1.31 (m, 4H), 1.45˜1.53 (m, 2H), 2.61˜2.62 (m, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.28˜4.33 (m, 1H), 5.25 (t, J=8.4 Hz, 1H), 7.18˜7.35 (m, 3H)

Preparation Example 48

Synthesis of 1-(2,6-dichlorophenyl)-(R,R)-1,2-hexanediol

##STR00059##

[0245] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-hexene (Preparation Example 12) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.58 g, yield 60˜90%).

[0246] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=6.8 Hz, 3H), 1.20˜1.31 (m, 4H), 1.45˜1.53 (m, 2H), 2.61˜2.62 (m, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.28˜4.33 (m, 1H), 5.25 (t, J=8.4 Hz, 1H), 7.18˜7.35 (m, 3H)

Preparation Example 49

Synthesis of the mixture of 1-(2,6-dichlorophenyl)-(S,S)-1,2-hexanediol and 1-(2,6-dichlorophenyl)-(R,R)-1,2-hexanediol

##STR00060##

[0248] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-hexene (Preparation Example 12) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.62 g, yield 60˜90%).

[0249] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=6.8 Hz, 3H), 1.20˜1.31 (m, 4H), 1.45˜1.53 (m, 2H), 2.61˜2.62 (m, 1H), 3.12 (d, J=8.4 Hz, 1H), 4.28˜4.33 (m, 1H), 5.25 (t, J=8.4 Hz, 1H), 7.18˜7.35 (m, 3H)

Preparation Example 50

Synthesis of methyl 2-(2-chlorophenyl)-(R)-2-hydroxyacetate

##STR00061##

[0251] 15 g of (R)-2-chloromandelic acid was mixed with methanol (CH3OH, 150 ml) and phosphorus chloride oxide (POCl3, 0.76 ml) in a flask by stiffing using a magnetic stirrer at the room temperature for 6 hours. When the reaction was completed, the obtained product was washed with an aqueous solution of sodium sulfite (Na2SO3) and ethylacetate (EA). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (15.64 g, yield 95%).

[0252] 1H NMR (400 MHz, CDCl3) δ 3.59 (d, J=5.2, 1H), 3.79 (t, J=6.0, 3H), 5.59 (d, J=5.2, 1H), 7.28˜7.43 (m, 4H)

Preparation Example 51

Synthesis of 2-(2-chlorophenyl)-(R)-2-hydroxy-N-methoxy-N-methylacetamide

##STR00062##

[0254] N,O-dimethylhydroxylamine hydrochloride (N,O-dimethylhydroxylamine.HCl, 15.2 g) was dissolved in dichloromethane (DCM, 150 ml), and cooled to 0° C. using an ice-bath. Then, 77.7 ml of 2.0M trimethylaluminium in hexane was slowly added thereto in drop-wise manner for 30 minutes. Thereafter, the ice-bath was removed, and the obtained product was stirred at the room temperature for 2 hours. Methyl-2-(2-chlorophenyl)-(R)-2-hydroxyacetate (15.64 g) dissolved in dichloromethane (DCM, 150 ml) was added in drop-wise manner thereto at the room temperature for 30 minutes, and subjected to reflux for 12 hours. When the reaction was completed, the obtained product was cooled to 0° C., and washed by a slow drop-wise addition of hydrochloric acid (HCl, 200 ml). The obtained organic layer was washed with distilled water and brine, dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (14.68 g, yield 82%).

[0255] 1H NMR (400 MHz, CDCl3) δ3.23 (s, 3H), 3.28 (s, 3H), 4.33 (d, J=6.0 Hz, 1H), 5.81 (d, J=5.6 Hz, 1H), 7.23˜7.42 (m, 4H)

Preparation Example 52

Synthesis of 2-(2-chlorophenyl)-N-methoxy-(R)-2-(t-butyl dimethlysiloxy)-N-methylacetamide

##STR00063##

[0257] 2-(2-chlorophenyl)-(R)-2-hydroxy-N-methoxy-N-methylacetamide (0.81 g, 3.52 mmol) obtained in Preparation Example 51 was dissolved in dichloromethane (DCM), and cooled to 0° C. Imedazole (0.36 g, 5.28 mmol) was slowly added, and stirred. TBDMS-Cl (t-butyldimethylsily chloride, 0.79 g, 5.28 mmol) was slowly added. When the reaction was completed, the reaction mixture was quenched with H2O. The organic layer was separated and collected. The aqueous layer was extracted with CH2Cl2 (300 mL), dried over MgSO4. Concentration under vacuum provided a title compound. (0.97 g, 80˜95%).

[0258] 1H NMR (400 MHz, CDCl3) δ-0.03 (s, 3H), 0.14 (s, 3H), 0.94 (s, 9H), 2.97 (s, 3H), 3.02 (s, 3H), 5.83 (s, 1H), 7.25˜7.60 (m, 4H)

Preparation Example 53

Synthesis of 1-(2-chlorophenyl)-(R)-1-(t-butyldimethyl-siloxy)propane-2-on

##STR00064##

[0260] 2-(2-chlorophenyl)-N-methoxy-(R)-2-(t-butyldimethylsiloxy)-N-methyl- acetamide (0.9 g) obtained in Preparation Example 52 was dissolved in tetrahydrofuran (THF), and cooled to 0° C. 3.0M methyl magnesium bromide (MeMgBr, 2.18 ml) solution in ether was added thereto in drop-wise manner for 30 minutes, and the obtained product was stirred at 0° C. When the reaction was completed, diethylether was added thereto. The obtained product was washed with 10% (w/v) potassium hydrogen sulfate (KHSO4, 100 ml) and then, washed again with brine. The obtained organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (0.69 g, yield 85˜95%).

[0261] 1H NMR (400 MHz, CDCl3) δ-0.3 (s, 3H), 0.14 (s, 3H), 0.94 (s, 9H), 2.18 (s, 3H), 5.50 (s, 1H), 7.27˜7.56 (m, 4H)

Preparation Example 54

Synthesis of 1-(2-chlorophenyl)-(R)-1-(t-butyldimethyl-siloxy)-(S)-2-propanol

##STR00065##

[0263] 1-(2-chlorophenyl)-(R)-1-(t-butyldimethyl-siloxy)propane-2-on (0.14 g) obtained in Preparation Example 53 was dissolved in ether, and cooled to -78° C. Zinc borohydride (Zn(BH4)2) was slowly added thereto and the obtained product was stirred. When the reaction was completed, the obtained product was washed by H2O. The obtained organic layer was washed with H2O, dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (0.04 g, yield 25˜33%, cis:trans=2:1).

[0264] 1H NMR (400 MHz, CDCl3) δ-0.11 (s, 3H), 0.11 (s, 3H), 0.93 (S, 9H), 1.07 (d, J=6.4 3H), 2.05 (d, J=6.4 1H), 4.01˜4.05 (m, 1H), 5.18 (d, J=4.0, 1H), 7.20˜7.56 (m, 4H))

Preparation Example 55

Synthesis of 1-(2-chlorophenyl)-(R,S)-1,2-propanediol

##STR00066##

[0266] 1-(2-chlorophenyl)-(R)-1-(t-butyldimethyl-siloxy)-(S)-2-propanol (10.38 g) obtained in Preparation Example 54 was dissolved in methanol (CH3OH, 100 ml), and then, cooled to 0° C. 8M hydrochloric acid (HCl, 56.2 ml) was slowly added in drop-wise manner to the obtained product, and then, the obtained product was warmed to the room temperature, and stirred for 15 hours. When the reaction was completed, the obtained product was cooled to 0° C. 5N sodium hydroxide (NaOH, 30 ml) was slowly added thereto, and the obtained product was subjected to vacuum concentration. The obtained product was diluted with ethylacetate. The obtained organic layer was washed with distilled water, dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (7.05 g, yield 60˜90%).

[0267] 1H NMR (400 MHz, CDCl3) δ1.07 (d, J=6.8, 3H), 2.01 (d, J=5.6, 1H), 2.61 (s, 1H), 4.21˜4.27 (m, 1H), 5.24 (d, J=3.6, 1H), 7.22˜7.64 (m, 4H)

Preparation Example 56

Synthesis of 1-(2-chlorophenyl)-(S,R)-1,2-propanediol

##STR00067##

[0269] The substantially same method as described in Preparation Example 50˜55 was conducted, except that (S)-2-chloromandelic acid was used instead of (R)-2-chloromandelic acid, to obtain the title compound (5.04 g, yield 84%).

[0270] 1H NMR (400 MHz, CDCl3) δ1.07 (d, J=6.8, 3H), 2.00 (d, J=5.6, 1H), 2.54 (d, J=3.6, 1H), 4.22˜4.26 (m, 1H), 5.25 (t, J=3.2, 1H), 7.22˜7.65 (m, 4H)

Preparation Example 57

Synthesis of 1-(2,3-dichlorophenyl)-(S,S)-1,2-propanediol

##STR00068##

[0272] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,3-dichlorophenyl)-trans-1-propene (Preparation Example 13) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.9 g, yield 60˜90%).

[0273] 1H NMR (400 MHz, CDCl3) δ1.10 (d, J=6.4 Hz, 3H), 2.72 (d, J=2.4 Hz, 1H), 3.10 (d, J=8.4 Hz, 1H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜(m, 3H)

Preparation Example 58

Synthesis of 1-(2,3-dichlorophenyl)-(R,R)-1,2-propanediol

##STR00069##

[0275] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,3-dichlorophenyl)-trans-1-propene (Preparation Example 13) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.84 g, yield 60˜90%).

[0276] 1H NMR (400 MHz, CDCl3) δ1.10 (d, J=6.4 Hz, 3H), 2.72 (d, J=2.4 Hz, 1H), 3.10 (d, J=8.4 Hz, 1H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜(m, 3H)

Preparation Example 59

Synthesis of the mixture of 1-(2,3-dichlorophenyl)-(S,S)-1,2-propanediol and 1-(2,3-dichlorophenyl)-(R,R)-1,2-propanediol

##STR00070##

[0278] The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,3-dichlorophenyl)-trans-1-propene (Preparation Example 13) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.91 g, yield 60˜90%).

[0279] 1H NMR (400 MHz, CDCl3) δ1.10 (d, J=6.4 Hz, 3H), 2.72 (d, J=2.4 Hz, 1H), 3.10 (d, J=8.4 Hz, 1H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜(m, 3H)

Preparation Example 60

Synthesis of 1-(2-fluorophenyl)-trans-1-propene

##STR00071##

[0281] The substantially same method as described in Preparation Example 1 was conducted, except that 2-fluorobenzenaldehyde was used instead of 2-chlorobenzenealdehyde, to obtain the title compound (6.67 g, yield 61%).

[0282] 1H NMR (400 MHz, CDCl3) δ1.94 (d, J=6.8 Hz, 3H), 6.30˜6.38 (m, 1H), 6.57 (d, J=16 Hz, 1H), 7.00˜7.41 (m, 4H)

Preparation Example 61

Synthesis of 1-(2-fluorophenyl)-(S,S)-1,2-propanediol

##STR00072##

[0284] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2-fluorophenyl)-trans-1-propene (Preparation Example 60) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (6.46 g, yield 78%).

[0285] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 2.43 (d, J=3.6 Hz, 1H), 2.69 (d, J=4.8 Hz, 1H), 3.90˜3.98 (m, 1H), 4.78 (dd, J=4.4, 7.2 Hz, 1H), 7.04˜7.50 (m, 4H)

Preparation Example 62

Synthesis of 1-(2-fluorophenyl)-(R,R)-1,2-propanediol

##STR00073##

[0287] The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2-fluorophenyl)-trans-1-propene (Preparation Example 60) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (3.29 g, yield 79%).

[0288] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 2.43 (d, J=3.6 Hz, 1H), 2.69 (d, J=4.8 Hz, 1H), 3.90˜3.98 (m, 1H), 4.78 (dd, J=4.4, 7.2 Hz, 1H), 7.04˜7.50 (m, 4H)

Preparation Example 63

Synthesis of 2-iodobenzenealdehyde

##STR00074##

[0290] In a flask, 2-iodobenzyl alcohol (4 g, 17.09 mmol) was dissolved in dichloromethane (MC, 85 ml), and then, manganese oxide (MnO2, 14.86 g, 170.92 mmol) was added thereto. The obtained reaction product was stirred under the reflux condition. When the reaction was completed, the obtained reaction product was cooled to the room temperature, and then, fiteated and concentrated using celite, to obtain the title compound (3.6 g, yield 91%).

[0291] 1H NMR (400 MHz, CDCl3) δ7.30˜7.99 (m, 4H), 10.10 (s, 1H)

Preparation Example 64

Synthesis of 1-(2-iodophenyl)-trans-1-propene

##STR00075##

[0293] The substantially same method as described in Preparation Example 1 was conducted, except that 2-iodobenzenealdehyde (Preparation Example 63) was used instead of 2-chlorobenzenealdehyde, to obtain the title compound (3.4 g, yield 65%).

[0294] 1H NMR (400 MHz, CDCl3) δ1.95 (dd, J=6.8 Hz, 1.6 Hz, 3H), 6.09˜6.18 (m, 1H), 6.60 (dd, J=15.66 Hz, 1.8 Hz, 1H), 6.89˜7.84 (m, 4H)

Preparation Example 65

Synthesis of 1-(2-iodophenyl)-trans-1-butene

##STR00076##

[0296] The substantially same method as described in Preparation Example 64 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (8.5 g, yield 75%).

[0297] 1H NMR (400 MHz, CDCl3) δ1.46 (t, J=7.6 Hz, 3H), 2.26˜2.34 (m, 2H), 6.17 (dt, J=15.6 Hz, 6.6 Hz 1H), 6.57 (d, J=15.6 Hz, 1H), 6.89˜7.85 (m, 4H)

Preparation Example 66

Synthesis of 1-(2-iodophenyl)-(S,S)-1,2-propanediol

##STR00077##

[0299] The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2-iodophenyl)-trans-1-propene (Preparation Example 64) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (3.4 g, yield 88%).

[0300] 1H NMR (400 MHz, CDCl3) δ1.27 (d, J=6.4 Hz, 3H), 2.26 (br s, 1H), 2.74 (br s, 1H), 3.99 (t, J=6.0 Hz, 1H), 4.81 (d, J=4.0 Hz, 1H), 7.01˜7.87 (m, 4H)

Preparation Example 67

Synthesis of 1-(2-iodorophenyl)-(R,R)-1,2-propanediol

##STR00078##

[0302] The substantially same method as described in Preparation Example 15 was conducted was conducted, except that 1-(2-iodophenyl)-trans-1-propene (Preparation Example 64) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (7.4 g, yield 84%).

[0303] 1H NMR (400 MHz, CDCl3) δ1.26 (d, J=6.4 Hz, 3H), 2.35 (br s, 1H), 2.85 (br d, J=4.0 Hz, 1H), 3.98 (t, J=6.2 Hz, 1H), 4.80 (dd, J=5.0, 4.4 Hz, 1H), 7.00˜7.87 (m, 4H)

Preparation Example 68

Synthesis of 1-(2-iodophenyl)-(S,S)-1,2-butanediol

##STR00079##

[0305] The substantially same method as described in Preparation Example 14 was conducted was conducted, except that 1-(2-iodophenyl)-trans-1-butene (Preparation Example 65) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (9.5 g, yield 84%).

[0306] 1H NMR (400 MHz, CDCl3) δ1.04 (t, J=7.6 Hz, 3H), 1.60˜1.71 (m, 2H), 2.07 (br s, 1H), 2.74 (br s, 1H), 3.71˜3.76 (m, 1H), 4.87 (d, J=4.8 Hz, 1H), 7.01˜7.87 (m, 4H)

Preparation Example 69

Preparation of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane

##STR00080##

[0308] To a stirred solution of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14, 67 g, 0.35 mol) in CH2Cl2 (670 ml) was added Et3N (200 mL, 1.43 mol) and TMSCl (113.9 mL, 0.89 mol) at 0° C. under N2. The reaction mixture was allowed to stir at 0° C. for 3 hr. The reaction mixture was quenched with H2O (650 mL) at 0° C. The organic layer was separated and collected. The aqueous layer was extracted with CH2Cl2 (300 mL), dried over MgSO4 Concentration under vacuum provided a crude product. 104.18 g (117.44%).

[0309] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.15 (d, J=5.6 Hz, 3H), 3.977˜3.918 (m, 1H), 4.973 (d, J=6.4 Hz, 1H), 7.207˜7.165 (m, 1H), 7.321˜7.245 (m, 2H), 7.566˜7.543 (m, 1H)

Preparation Example 70

Preparation of 1-(2-chlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy) propane

##STR00081##

[0311] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-propanediol (Preparation example 15) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (8.5 g, yield 90˜120%).

[0312] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.15 (d, J=5.6 Hz, 3H), 3.977˜3.918 (m, 1H), 4.973 (d, J=6.4 Hz, 1H), 7.21˜7.54 (m, 4H)

Preparation Example 71

Preparation of 1-(2-chlorophenyl)-1,2-(Bis-trimethylsilanyloxy) propane

##STR00082##

[0314] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)propane-1,2-diol (Preparation example 16) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (5.2 g, yield 90˜120%).

[0315] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.15 (d, J=5.6 Hz, 3H), 3.977˜3.918 (m, 1H), 4.973 (d, J=6.4 Hz, 1H), 7.21˜7.54 (m, 4H)

Preparation Example 72

Preparation of 1-(2-chlorophenyl)-(S,R)-1,2-(Bis-trimethylsilanyloxy) propane

##STR00083##

[0317] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-(S,R)-1,2-propanediol (Preparation example 56) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.4 g, yield 90˜120%).

[0318] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.15 (d, J=5.6 Hz, 3H), 3.977˜3.918 (m, 1H), 4.973 (d, J=6.4 Hz, 1H), 7.21˜7.54 (m, 4H)

Preparation Example 73

Preparation of 1-(2-chlorophenyl)-(R,S)-1,2-(Bis-trimethylsilanyloxy) propane

##STR00084##

[0320] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-(R,S)-1,2-propanediol (Preparation example 55) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.2 g, yield 90˜120%).

[0321] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.15 (d, J=5.6 Hz, 3H), 3.977˜3.918 (m, 1H), 4.973 (d, J=6.4 Hz, 1H), 7.21˜7.54 (m, 4H)

Preparation Example 74

Preparation of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) butane

##STR00085##

[0323] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-(S,S)-1,2-butanediol (Preparation example 17) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.6 g, yield 90˜120%).

[0324] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.01 (t, J=7.4 Hz, 3H), 1.52˜1.65 (m, 2H), 3.69˜3.75 (m, 1H), 5.05 (t, J=5.0 Hz, 1H), 7.23˜7.54 (m, 4H)

Preparation Example 75

Preparation of 1-(2-chlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy) butane

##STR00086##

[0326] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-butanediol (Preparation example 18) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.5 g, yield 90˜120%).

[0327] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.01 (t, J=7.4 Hz, 3H), 1.52˜1.65 (m, 2H), 3.69˜3.75 (m, 1H), 5.05 (t, J=5.0 Hz, 1H), 7.23˜7.54 (m, 4H)

Preparation Example 76

Preparation of 1-(2-chlorophenyl)-1,2-(Bis-trimethylsilanyloxy) butane

##STR00087##

[0329] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-1,2-butanediol (Preparation example 19) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.0 g, yield 90˜120%).

[0330] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.01 (t, J=7.4 Hz, 3H), 1.52˜1.65 (m, 2H), 3.69˜3.75 (m, 1H), 5.05 (t, J=5.0 Hz, 1H), 7.23˜7.54 (m, 4H)

Preparation Example 77

Preparation of 1-(2-chlorophenyl)-3-methyl-(S,S)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00088##

[0332] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 20) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title (2.7 g, yield 90˜120%).

[0333] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.07 (t, J=7.2 Hz, 6H), 1.83˜1.89 (m, 1H), 3.53˜3.56 (m, 1H), 5.22˜5.25 (m, 1H), 7.23˜7.55 (m, 4H)

Preparation Example 78

Preparation of 1-(2-chlorophenyl)-3-methyl-(R,R)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00089##

[0335] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-3-methyl-(R,R)-1,2-butanediol (Preparation example 21) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.4 g, yield 90˜120%).

[0336] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.07 (t, J=7.2 Hz, 6H), 1.83˜1.89 (m, 1H), 3.53˜3.56 (m, 1H), 5.22˜5.25 (m, 1H), 7.23˜7.55 (m, 4H)

Preparation Example 79

Preparation of 1-(2-chlorophenyl)-3-methyl-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00090##

[0338] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-3-methyl-1,2-butanediol (Preparation example 22) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.8 g, yield 90˜120%).

[0339] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.07 (t, J=7.2 Hz, 6H), 1.83˜1.89 (m, 1H), 3.53˜3.56 (m, 1H), 5.22˜5.25 (m, 1H), 7.23˜7.55 (m, 4H)

Preparation Example 80

Preparation of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00091##

[0341] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-(S,S)-1,2-hexanediol (Preparation example 23) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.1 g, yield 90˜120%).

[0342] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.90 (t, J=7.2 Hz, 3H), 1.35˜1.65 (m, 6H), 3.78˜3.83 (m, 1H), 5.04 (t, J=5.0 Hz, 1H), 7.23˜7.53 (m, 4H)

Preparation Example 81

Preparation of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00092##

[0344] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-hexanediol (Preparation example 24) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.3 g, yield 90˜120%).

[0345] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.90 (t, J=7.2 Hz, 3H), 1.35˜1.65 (m, 6H), 3.78˜3.83 (m, 1H), 5.04 (t, J=5.0 Hz, 1H), 7.23˜7.53 (m, 4H)

Preparation Example 82

Preparation of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00093##

[0347] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-chlorophenyl)-1,2-hexanediol (Preparation example 25) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.2 g, yield 90˜120%).

[0348] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.90 (t, J=7.2 Hz, 3H), 1.35˜1.65 (m, 6H), 3.78˜3.83 (m, 1H), 5.04 (t, J=5.0 Hz, 1H), 7.23˜7.53 (m, 4H)

Preparation Example 83

Preparation of 1-(2,4-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00094##

[0350] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-propanediol (Preparation example 26) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.4 g, yield 90˜120%).

[0351] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.22 (d, J=6.4 Hz, 3H), 3.90˜3.95 (m, 1H), 4.94 (t, J=5.0 Hz, 1H), 7.31 (dd, J=2.0 Hz, J=8.0 Hz, 1H), 7.40 (d, J=2.0 Hz, 1H), 7.49 (d, J=8.4 Hz, 1H)

Preparation Example 84

Preparation of 1-(2,6-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00095##

[0353] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-propanediol (Preparation example 38) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.4 g, yield 90˜120%).

[0354] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.10 (d, J=6.4 Hz, 3H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.13˜7.36 (m, 3H)

Preparation Example 85

Preparation of 1-(2,3-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00096##

[0356] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,3-dichlorophenyl)-(S,S)-1,2-propanediol (Preparation example 57) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.2 g, yield 90˜120%).

[0357] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.10 (d, J=6.4 Hz, 3H,), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.22 (m, 3H)

Preparation Example 86

Preparation of 1-(2,4-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00097##

[0359] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-butanediol (Preparation example 29) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.1 g, yield 90˜120%).

[0360] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.02 (t, J=7.4 Hz, 3H), 1.54˜1.61 (m, 2H), 3.65˜3.68 (m, 1H), 5.01 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 87

Preparation of 1-(2,6-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00098##

[0362] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-butanediol (Preparation example 41) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.8 g, yield 90˜120%).

[0363] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.97 (t, J=7.6 Hz, 3H), 1.26˜1.53 (m, 2H), 4.22˜4.26 (m, 1H), 5.26 (t, J=8.4 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 88

Preparation of 1-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-(Bis-trimethylsilanyloxy)-butan- e

##STR00099##

[0365] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 32) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.7 g, yield 90˜120%).

[0366] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.30˜7.53 (m, 3H)

Preparation Example 89

Preparation of 1-(2,6-dichlorophenyl)-3-methyl-(S,S)-1,2-(Bis-trimethylsilanyloxy)-butan- e

##STR00100##

[0368] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 44) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.3 g, yield 90˜120%).

[0369] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 90

Preparation of 1-(2,4-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00101##

[0371] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-hexanediol (Preparation example 90) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.6 g, yield 90˜120%).

[0372] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.89˜0.93 (m, 3H), 1.30˜1.39 (m, 2H), 1.49˜1.52 (m, 2H), 1.56˜1.6 (m, 2H), 3.72˜3.77 (m, 1H), 4.98 (t, J=4.8 Hz, 1H), 7.28˜7.50 (m, 3H)

Preparation Example 91

Preparation of 1-(2,6-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00102##

[0374] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-hexanediol (Preparation example 47) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.8 g, yield 90˜120%).

[0375] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.85 (t, J=6.7 Hz, 3H), 1.20˜1.31 (m, 4H), 1.45˜1.53 (m, 2H), 4.28˜4.33 (m, 1H), 5.25 (t, J=8.4 Hz, 1H), 7.18˜7.35 (m, 3H)

Preparation Example 92

Preparation of 1-(2,4-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00103##

[0377] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-propanediol (Preparation example 27) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.2 g, yield 90˜120%).

[0378] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.22 (d, J=6.4 Hz, 3H), 3.90˜3.95 (m, 1H), 4.94 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 93

Preparation of 1-(2,6-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00104##

[0380] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-propanediol (Preparation example 39) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.6 g, yield 90˜120%).

[0381] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.10 (d, J=6.4 Hz, 3H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.36 (m, 3H)

Preparation Example 94

Preparation of 1-(2,3-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00105##

[0383] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,3-dichlorophenyl)-(R,R)-1,2-propanediol (Preparation example 58) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.9 g, yield 90˜120%).

[0384] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.10 (d, J=6.4 Hz, 3H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.22 (m, 3H)

Preparation Example 95

Preparation of 1-(2,4-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00106##

[0386] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-butanediol (Preparation example 30) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.6 g, yield 90˜120%).

[0387] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.02 (t, J=7.4 Hz, 3H), 1.54˜1.61 (m, 2H), 3.65˜3.68 (m, 1H), 5.01 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 96

Preparation of 1-(2,6-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00107##

[0389] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-butanediol (Preparation example 42) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.3 g, yield 90˜120%).

[0390] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.97 (t, J=7.6 Hz, 3H), 1.26˜1.53 (m, 2H), 4.22˜4.26 (m, 1H), 5.26 (t, J=8.4 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 97

Preparation of 1-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-(Bis-trimethylsilanyloxy)-butan- e

##STR00108##

[0392] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol (Preparation example 33) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.5 g, yield 90˜120%).

[0393] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.30˜7.53 (m, 3H)

Preparation Example 98

Preparation of 1-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-(Bis-trimethylsilanyloxy)-butan- e

##STR00109##

[0395] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol (Preparation example 45) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.4 g, yield 90˜120%).

[0396] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 99

Preparation of 1-(2,4-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00110##

[0398] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-hexanediol (Preparation example 36) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.6 g, yield 90˜120%).

[0399] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.89˜0.93 (m, 3H), 1.30˜1.39 (m, 2H), 1.49˜1.52 (m, 2H), 1.56˜1.62 (m, 2H), 3.72˜3.77 (m, 1H), 4.98 (t, J=4.8 Hz, 1H), 7.28˜7.50 (m, 3H)

Preparation Example 100

Preparation of 1-(2,6-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00111##

[0401] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-hexanediol (Preparation example 48) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.3 g, yield 90˜120%)

[0402] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.85 (t, J=6.7 Hz, 3H), 1.20˜1.31 (m, 4H), 1.45˜1.53 (m, 2H), 4.28˜4.33 (m, 1H), 5.25 (t, J=8.4 Hz, 1H), 7.18˜7.35 (m, 3H)

Preparation Example 101

Preparation of 1-(2,4-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00112##

[0404] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-propanediol (Preparation example 28) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.6 g, yield 90˜120%).

[0405] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.22 (d, J=6.4 Hz, 3H), 3.90˜3.95 (m, 1H), 4.94 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 102

Preparation of 1-(2,6-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00113##

[0407] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-propanediol (Preparation example 40) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.1 g, yield 90˜120%).

[0408] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.10 (d, J=6.4 Hz, 3H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.36 (m, 3H)

Preparation Example 103

Preparation of 1-(2,3-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00114##

[0410] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,3-dichlorophenyl)-1,2-propanediol (Preparation example 59) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.7 g, yield 90˜120%).

[0411] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.10 (d, J=6.4 Hz, 3H), 4.47˜4.54 (m, 1H), 5.24 (t, J=8.8 Hz, 1H), 7.18˜7.22 (m, 3H)

Preparation Example 104

Preparation of 1-(2,4-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00115##

[0413] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-butanediol (Preparation example 31) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.9 g, yield 90˜120%).

[0414] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.02 (t, J=7.4 Hz, 3H), 1.54˜1.61 (m, 2H), 3.65˜3.68 (m, 1H), 5.01 (t, J=5.0 Hz, 1H), 7.31˜7.49 (m, 3H)

Preparation Example 105

Preparation of 1-(2,6-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00116##

[0416] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-butanediol (Preparation example 43) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.1 g, yield 90˜120%).

[0417] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.97 (t, J=7.6 Hz, 3H), 1.26˜1.53 (m, 2H), 4.22˜4.26 (m, 1H), 5.26 (t, J=8.4 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 106

Preparation of 1-(2,4-dichlorophenyl)-3-methyl-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00117##

[0419] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-1,2-butanediol (Preparation example 34) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.7 g, yield 90˜120%).

[0420] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.30˜7.53 (m, 3H)

Preparation Example 107

Preparation of 1-(2,6-dichlorophenyl)-3-methyl-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00118##

[0422] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-1,2-butanediol (Preparation example 46) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.6 g, yield 90˜120%).

[0423] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.00 (d, J=6.8 Hz, 6H), 1.60˜1.65 (m, 1H), 4.13˜4.18 (m, 1H), 5.36 (t, J=7.6 Hz, 1H), 7.17˜7.35 (m, 3H)

Preparation Example 108

Preparation of 1-(2,4-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00119##

[0425] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-hexanediol (Preparation example 37) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.7 g, yield 90˜120%).

[0426] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.89˜0.93 (m, 3H), 1.30˜1.39 (m, 2H), 1.49˜1.52 (m, 2H), 1.56˜1.62 (m, 2H), 3.72˜3.77 (m, 1H), 4.98 (t, J=4.8 Hz, 1H), 7.28˜7.50 (m, 3H)

Preparation Example 109

Preparation of 1-(2,6-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)-hexane

##STR00120##

[0428] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-hexanediol (Preparation example 49) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.2 g, yield 90˜120%).

[0429] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 0.85 (t, J=6.7 Hz, 3H), 1.20˜1.31 (m, 4H), 1.45˜1.53 (m, 2H), 4.28˜4.33 (m, 1H), 5.25 (t, J=8.4 Hz, 1H), 7.18˜7.35 (m, 3H)

Preparation Example 110

Preparation of 1-(2-fluoroophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00121##

[0431] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-fluoroophenyl)-(S,S)-1,2-propanediol (Preparation example 61) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.8 g, yield 90˜120%).

[0432] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.15 (d, J=6.4 Hz, 3H), 3.90˜3.98 (m, 1H), 4.78 (dd, J=4.4, 7.2 Hz, 1H), 7.04˜7.50 (m, 4H)

Preparation Example 111

Preparation of 1-(2-fulorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00122##

[0434] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-fluoroophenyl)-(R,R)-1,2-propanediol (Preparation example 62) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.5 g, yield 90˜120%).

[0435] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.15 (d, J=6.4 Hz, 3H), 3.90˜3.98 (m, 1H), 4.78 (dd, J=4.4, 7.2 Hz, 1H), 7.04˜7.50 (m, 4H)

Preparation Example 112

Preparation of 1-(2-iodophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00123##

[0437] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-propanediol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.1 g, yield 90˜120%).

[0438] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.27 (d, J=6.4 Hz, 3H), 3.99 (t, J=6.0 Hz, 1H), 4.81 (d, J=4.0 Hz, 1H), 7.01˜7.87 (m, 4H)

Preparation Example 113

Preparation of 1-(2-iodophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)-propane

##STR00124##

[0440] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-iodophenyl)-(R,R)-1,2-propanediol (Preparation example 67) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (2.8 g, yield 90˜120%).

[0441] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.26 (d, J=6.4 Hz, 3H), 3.98 (t, J=6.2 Hz, 1H), 4.88 (d, J=4.4 Hz, 1H), 7.00˜7.87 (m, 4H)

Preparation Example 114

Preparation of 1-(2-iodophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)-butane

##STR00125##

[0443] The substantially same method as described in Preparation Example 69 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (3.3 g, yield 90˜120%).

[0444] 1H NMR (400 MHz, CDCl3) δ-0.053 (s, 9H), 0.044 (s, 9H), 1.04 (t, J=7.6 Hz, 3H), 1.60˜1.71 (m, 2H), 3.71˜3.76 (m, 1H), 4.87 (d, J=4.8 Hz, 1H), 7.01˜7.87 (m, 4H)

Example 1

Preparation of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(S)-2-carbamate(1)

##STR00126##

[0446] To a stirred solution of crude 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (preparation example 69, 104 g, 0.31 mol) in toluene (670 mL) was added by Chlorosulfonyl isocynate (62.5 mL, 0.71 mol) at 0° C. The reaction mixture was stirred for 2 hr. The reaction mixture was quenched with ice water and then was stirred by additional cold H2O (500 mL) for 2 hr. After separation of organic layer, the aqueous was adjusted pH2˜3 with sat. NaHCO3 (400 mL) and extracted with EtOAc (300 mL×3). The EtOAc layer was washed with sat. NaHCO3 (500 mL) and H2O (500 mL). The organic phase was treated with Charcol for 1.5 hr. The organic phase was filtered with Cellite, dreid over MgSO4. Filterion and concentration under vacuum provided the title compound of white solid (yield 85% (71.1 g), ee=99.9% MP=83˜84° C.,

[0447] [α]D=+57.8 (c=0.25, MeOH))

[0448] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.4, 3H), 2.91 (d, J=4.8, 1H), 4.68 (br s, 2H), 5.06˜5.09 (m, 1H), 5.18˜5.21 (m, 1H), 7.23˜7.39 (m, 3H), 7.55 (dd, J=1.6, J=7.8, 1H)

[0449] 13C NMR (100 MHz, CDCl3) δ16.4, 73.1, 75.0, 127.0, 128.4, 129.1, 129.5, 132.7, 138.0, 156.6

Example 2

Preparation of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate(2)

##STR00127##

[0451] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 70) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (5.7 g, yield 60˜90%).

[0452] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.4, 3H), 2.91 (d, J=4.8, 1H), 4.68 (br s, 2H), 5.06˜5.09 (m, 1H), 5.18˜5.21 (m, 1H), 7.23˜7.39 (m, 3H), 7.55 (dd, J=1.6, J=7.8, 1H)

Example 3

Preparation of 1-(2-chlorophenyl)-1-hydroxypropyl-2-carbamate(3)

##STR00128##

[0454] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 71) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (3.8 g, yield 60˜90%).

[0455] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.4, 3H), 2.91 (d, J=4.8, 1H), 4.68 (br s, 2H), 5.06˜5.09 (m, 1H), 5.18˜5.21 (m, 1H), 7.23˜7.39 (m, 3H), 7.55 (dd, J=1.6, J=7.8, 1H)

Example 4

Preparation of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(R)-2-carbamate(4)

##STR00129##

[0457] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(S,R)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 72) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.4 g, yield 60˜90%).

[0458] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.4, 3H), 2.91 (d, J=4.8, 1H), 4.68 (br s, 2H), 5.06˜5.09 (m, 1H), 5.18˜5.21 (m, 1H), 7.23˜7.39 (m, 3H), 7.55 (dd, J=1.6, J=7.8, 1H)

Example 5

Preparation of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(S)-2-carbamate(5)

##STR00130##

[0460] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(R,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 73) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.3 g, yield 60˜90%).

[0461] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.4, 3H), 2.91 (d, J=4.8, 1H), 4.68 (br s, 2H), 5.06˜5.09 (m, 1H), 5.18˜5.21 (m, 1H), 7.23˜7.39 (m, 3H), 7.55 (dd, J=1.6, J=7.8, 1H)

Example 6

Preparation of 1-(2-chlorophenyl)-(S)-1-hydroxybutyl-(S)-2-carbamate(6)

##STR00131##

[0463] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation example 74) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.6 g, yield 60˜90%).

[0464] 1H NMR (400 MHz, CDCl3) δ0.96 (t, J=7.4 Hz, 3H), 1.57˜1.73 (m, 2H), 3.01 (d, J=5.6 Hz, 1H), 4.74 (br s, 2H), 4.95 (dt, J=7.2, 8.8 Hz, 1H), 5.23 (t, J=5.6 Hz, 1H), 7.22˜7.54 (m, 4H)

Example 7

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxybtyl-(R)-2-carbamate(7)

##STR00132##

[0466] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 75) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.5 g, yield 60˜90%).

[0467] 1H NMR (400 MHz, CDCl3) δ 0.94 (t, J=7.4 Hz, 3H), 1.53˜1.73 (m, 2H), 2.92 (s, 1H), 4.78 (br s, 2H), 4.91˜4.96 (m, 1H), 5.22 (d, J=5.5 Hz, 1H), 7.20˜7.54 (m, 4H)

Example 8

Synthesis of 1-(2-chlorophenyl)-1-hydroxybutyl-2-carbamate(8)

##STR00133##

[0469] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 76) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.9 g, yield 60˜90%).

[0470] 1H NMR (400 MHz, CDCl3) δ 0.97 (t, J=7 Hz, 3H), 1.58˜1.74 (m, 2H), 2.94 (d, J=6 Hz, 1H), 4.69 (br s, 2H), 4.94˜4.99 (m, 1H), 5.24 (t, J=6 Hz, 1H), 7.23˜7.56 (m, 4H)

Example 9

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxy-3-methyl-butyl-(S)-2-carbamate(9)

##STR00134##

[0472] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-3-methyl-(S,S)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 77) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%).

[0473] 1H NMR (400 MHz, CDCl3) δ1.01 (d, J=6.4 Hz, 3H), 1.09 (d, J=6.8 Hz, 3H), 2.06 (m, 1H), 2.75 (d, J=6.8 Hz, 1H), 4.58 (br s, 2H), 4.85˜4.88 (m, 1H), 5.34˜5.37 (m, 1H), 7.22˜7.33 (m, 2H), 7.35˜7.37 (m, 1H), 7.51˜7.53 (m, 1H)

Example 10

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxy-3-methyl-butyl-(R)-2-carbamate(10)

##STR00135##

[0475] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-3-methyl-(R,R)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 78) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.6 g, yield 60˜90%).

[0476] 1H NMR (400 MHz, CDCl3) δ1.01 (d, J=6.8 Hz, 3H), 1.09 (d, J=6.8 Hz, 3H), 2.06 (m, 1H), 2.73 (d, J=6.8 Hz, 1H), 4.57 (br s, 2H), 4.85˜4.88 (m, 1H), 5.34˜5.37 (m, 1H), 7.24˜7.30 (m, 2H), 7.35˜7.37 (m, 1H), 7.51˜7.53 (m, 1H)

Example 11

Synthesis of 1-(2-chlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate(11)

##STR00136##

[0478] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-3-methyl-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 79) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%).

[0479] 1H NMR (400 MHz, CDCl3) δ1.00 (d, J=6.4 Hz, 3H), 1.09 (d, J=6.4 Hz, 3H), 2.08 (m, 1H), 2.76 (d, J=6.0 Hz, 1H), 4.59 (br s, 2H), 4.87 (dd, J=7.2 Hz, 4.4 Hz, 1H), 5.36 (t, J=4.6, 1H), 7.23˜7.54 (m, 4H)

Example 12

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxyhexyl-(S)-2-carbamate(12)

##STR00137##

[0481] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 80) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.3 g, yield 60˜90%).

[0482] 1H NMR (400 MHz, CDCl3) δ0.88 (t, J=7 Hz, 3H), 1.33˜1.42 (m, 4H), 1.53˜1.71 (m, 2H), 2.89 (d, J=5.6 Hz, 1H) 4.64 (br s, 2H), 5.04 (dt, J=5.0, 9.0 Hz, 1H), 5.20 (t, J=5.6 Hz, 1H), 7.23˜7.55 (m, 4H)

Example 13

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxyhexyl-(R)-2-carbamate(13)

##STR00138##

[0484] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 81) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.2 g, yield 60˜90%).

[0485] 1H NMR (400 MHz, CDCl3) δ 0.89 (dd, J=5 Hz, 3H), 1.28˜1.43 (m, 4H), 1.52˜1.58 (m, 1H), 1.65˜1.72 (m, 1H), 2.90 (d, J=6 Hz, 1H), 4.64 (br s, 2H), 5.01˜5.06 (m, 1H), 5.22 (t, J=6 Hz, 1H), 7.22˜7.56 (m, 4H)

Example 14

Synthesis of 1-(2-chlorophenyl)-1-hydroxyhexyl-2-carbamate(14)

##STR00139##

[0487] The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 82) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.1 g, yield 60˜90%).

[0488] 1H NMR (400 MHz, CDCl3) δ 0.88 (dd, J=5 Hz, 3H), 1.31˜1.43 (m, 4H), 1.63˜1.70 (m, 1H), 1.52˜1.60 (m, 1H), 3.06 (d, J=6 Hz, 1H), 4.75 (br s, 2H), 5.00˜5.05 (m, 1H), 5.21 (t, J=6 Hz, 1H), 7.22˜7.55 (m, 4H)

Example 15

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(S)-2-N-methylcarbamate(15)

##STR00140##

[0490] 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (2.4 g) obtained in Preparation Example 14, tetrahydrofuran (THF, 12 ml), and carbonyldiimidazole (CDI, 3.12 g) were put into a flask and stirred at the room temperature. After approximately 3 hours, methylamine solution (CH3NH2, 4 ml (33% in EtOH)) was added thereto. When the reaction was completed, the obtained product was washed with 1M HCl solution and ethylacetate (EA). The separated organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography, to obtain the title compound (1.6 g, yield 51%).

[0491] 1H NMR (400 MHz, CDCl3) δ1.03˜1.25 (m, 3H), 2.76 (s, 3H), 3.34 (s, 1H), 4.80 (br s 1H), 5.04 (t, J=12.5 Hz, 1H), 5.14 (s, 1H), 7.20˜7.53 (m, 4H)

Example 16

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(S)-2-N-propylcarbamate(16)

##STR00141##

[0493] The substantially same method as described in Example 15 was conducted, except that propylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (0.79 g, yield 25%).

[0494] 1H NMR (400 MHz, CDCl3) δ0.90 (t, J=6.8 Hz, 3H), 1.20 (d, J=5.96 Hz, 3H), 1.49 (dd, J=14.2 Hz, 2H), 3.11 (d, J=6.28 Hz, 2H), 3.34 (s, 1H), 4.84 (br s, 1H), 5.05 (t, J=5.88 Hz, 1H), 5.14 (s, 1H), 7.22˜7.53 (m, 4H)

Example 17

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(R)-2-N-isopropylcarbamate(17)

##STR00142##

[0496] The substantially same method as described in Example 15 was conducted, except that isopropylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.5 g, yield 41%).

[0497] 1H NMR (400 MHz, CDCl3) δ1.14 (dd, J=6.5 Hz, 6H), 1.19 (d, J=6.4 Hz, 3H), 3.21 (s, 1H), 3.73˜3.82 (m, 1H), 4.59 (br s, 1H), 5.01˜5.07 (m, 1H), 5.14 (t, J=5.8 Hz, 1H), 7.20˜7.53 (m, 4H)

Example 18

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(R)-2-N-cyclopropylcarbamate(18)

##STR00143##

[0499] The substantially same method as described in Example 15 was conducted, except that cyclopropylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (2.2 g, yield 43%).

[0500] 1H NMR (400 MHz, CDCl3) δ0.50˜0.56 (m, 2H), 0.74 (d, J=7.21 Hz, 2H), 1.25 (s, 3H), 2.56˜2.61 (m, 1H), 3.72 (s, 1H), 4.98 (br s, 1H), 5.05˜5.11 (m, 1H), 7.16 (s, 1H), 7.23˜7.54 (m, 4H)

Example 19

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(R)-2-N-cyclohexyl carbamate(19)

##STR00144##

[0502] The substantially same method as described in Example 15 was conducted, except that cyclohexylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.1 g, yield 26%).

[0503] 1H NMR (400 MHz, CDCl3) δ1.06˜1.40 (m, 7H), 1.56˜1.61 (m, 2H), 1.69˜1.71 (m, 2H), 1.87˜1.94 (m, 2H), 3.19 (d, J=4.32 Hz, 1H), 3.45 (s, 1H), 4.64 (br s 1H), 5.02˜5.07 (m, 1H), 5.14 (t, J=6.08 Hz, 1H) 7.20˜7.53 (m, 4H)

Example 20

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(S)-2-N-benzyl carbamate(20)

##STR00145##

[0505] The substantially same method as described in Example 15 was conducted, except that benzylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.2 g, yield 18%).

[0506] 1H NMR (400 MHz, CDCl3) δ 1.27 (d, J=10 Hz, 3H), 3.12 (d, J=5 Hz, 1H), 4.37 (d, J=6 Hz, 2H), 5.12˜5.19 (m, 3H), 7.15˜7.56 (m, 9H)

Example 21

Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(S)-2-N-bicyclo[2,2,1]heptanescarb- amate(21)

##STR00146##

[0508] The substantially same method as described in Example 15 was conducted, except that 2-aminonorbornane was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.7 g, yield 32%).

[0509] 1H NMR (400 MHz, CDCl3) δ1.08˜1.35 (m, 9H), 1.65 (br s, 1H), 1.75˜1.71 (m, 1H), 2.14˜2.24 (m, 1H), 2.27˜2.30 (m, 1H), 3.23˜3.29 (m, 1H), 3.47˜3.52 (m, 1H), 4.67 (br s, 1H), 5.01˜5.09 (m, 1H), 5.12˜5.18 (m, 1H), 7.22˜7.55 (m, 4H)

Example 22

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-N-methylcarbamate(22)

##STR00147##

[0511] The substantially same method as described in Example 15 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-propanediol (Preparation example 15) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (3.36 g, yield 60%).

[0512] 1H NMR (400 MHz, CDCl3) δ 1.20 (d, J=6.8 Hz, 3H), 2.80 (d, J=4.8 Hz, 3H), 3.20 (d, J=4.4 Hz, 1H), 4.75 (br s, 1H), 5.03˜5.09 (m, 1H), 5.14˜5.17 (m, 1H), 7.22˜7.55 (m, 4H)

Example 23

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-N-propylcarbamate(23)

##STR00148##

[0514] The substantially same method as described in Example 22 was conducted, except that propylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (3.1 g, yield 53%).

[0515] 1H NMR (400 MHz, CDCl3) δ0.92 (t, J=7.6 Hz, 3H), 1.21 (d, J=6.4 Hz, 3H), 1.51 (m, 2H), 3.09˜3.14 (m, 2H), 3.28 (d, J=4.4 Hz, 1H), 4.82 (br s, 1H), 5.03˜5.09 (m, 1H), 5.14˜5.17 (m, 1H), 7.22˜7.55 (m. 4H)

Example 24

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-N-isopropylcarbamate(24)

##STR00149##

[0517] The substantially same method as described in Example 22 was conducted, except that isopropylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (0.16 g, yield 27%).

[0518] 1H NMR (400 MHz, CDCl3) δ0.88˜1.16 (m, 6H), 1.19˜1.26 (m, 3H), 3.34 (s, 1H), 3.71˜3.78 (m, 1H), 4.62 (br s, 1H), 5.03 (t, J=5.8 Hz, 1H), 5.13 (d, J=4.9 Hz, 1H), 7.20˜7.53 (m, 4H)

Example 25

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-N-cyclopropylcarbamate(25)

##STR00150##

[0520] The substantially same method as described in Example 22 was conducted, except that cyclopropylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (3.7 g, yield 60%).

[0521] 1H NMR (400 MHz, CDCl3) δ0.49˜0.54 (m, 2H), 0.74 (d, J=7.2 Hz, 2H), 1.22 (s, 3H), 2.55˜2.60 (m, 1H), 3.16 (s, 1H), 5.00 (s, 1H), 5.04˜5.11 (m, 1H), 5.16 (s, 1H), 7.23˜7.54 (m, 4H)

Example 26

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-N-cyclohexyl carbamate(26)

##STR00151##

[0523] The substantially same method as described in Example 22 was conducted, except that cyclohexylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.9 g, yield 28%).

[0524] 1H NMR (400 MHz, CDCl3) δ1.05˜1.38 (m, 8H), 1.58˜1.70 (m, 3H), 1.85˜1.95 (m, 2H), 3.39˜3.47 (m, 1H), 3.56 (s, 1H), 4.79 (br s, 1H), 5.01˜5.07 (m, 1H), 5.14 (t, J=5.2 Hz, 1H), 7.20˜7.54 (m, 4H)

Example 27

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-N-benzylcarbamate(27)

##STR00152##

[0526] The substantially same method as described in Example 22 was conducted, except that benzylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (0.52 g, yield 19%).

[0527] 1H NMR (400 MHz, CDCl3) δ1.25 (d, J=6 Hz, 3H), 1.64 (s, 1H), 3.13 (d, J=4.4 Hz, 1H), 4.37 (d, J=5.6 Hz, 2H), 5.12˜5.19 (m, 2H), 7.23˜7.55 (m, 9H)

Example 28

Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-N-bicyclo[2,2,1]heptanecarba- mate(28)

##STR00153##

[0529] The substantially same method as described in Example 22 was conducted, except that 2-aminonorbornane was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.7 g, yield 20˜50%).

[0530] 1H NMR (400 MHz, CDCl3) δ1.08˜1.35 (m, 9H), 1.65 (br s, 1H), 1.75˜1.71 (m, 1H), 2.14˜2.24 (m, 1H), 2.27˜2.30 (m, 1H), 3.23˜3.29 (m, 1H), 3.47˜3.52 (m, 1H), 4.67 (br s, 1H), 5.01˜5.09 (m, 1H), 5.12˜5.18 (m, 1H), 7.22˜7.55 (m, 4H)

Example 29

Synthesis of 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-methylcarbamate(29)

##STR00154##

[0532] The substantially same method as described in Example 15 was conducted, except that 1-(2-chlorophenyl)-1,2-propanediol (Preparation example 16) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (2.6 g, yield 45%).

[0533] 1H NMR (400 MHz, CDCl3) δ 1.21 (d, J=6 Hz, 3H), 2.81 (d, J=5 Hz, 3H), 3.14 (d, J=4 Hz, 1H), 4.72 (br s, 1H), 5.07 (dd, J=6 Hz, 1H), 5.16 (t, J=6 Hz, 1H), 7.22˜7.56 (m, 4H)

Example 30

Synthesis of 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-propylcarbamate(30)

##STR00155##

[0535] The substantially same method as described in Example 29 was conducted, except that propylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.0 g, yield 17%).

[0536] 1H NMR (400 MHz, CDCl3) δ 0.92 (t, J=7 Hz, 3H), 1.21 (d, J=6 Hz, 3H), 1.53 (dd, J=7 Hz, 2H), 3.13 (dd, J=7 Hz, 2H), 3.28 (d, 1H), 4.82 (S, 1H), 5.06 (dd, J=7 Hz, 1H), 5.16 (t, J=5 Hz, 1H), 7.21˜7.56 (m, 4H)

Example 31

Synthesis of 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-isopropylcarbamate(31)

##STR00156##

[0538] The substantially same method as described in Example 29 was conducted, except that isopropylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (0.54 g, yield 16%).

[0539] 1H NMR (400 MHz, CDCl3) δ 1.16 (dd, J=6 Hz, 6H), 1.21 (d, J=6 Hz, 3H), 3.23 (d, J=6 Hz, 1H), 3.75˜3.84 (m, 1H), 4.61 (br s, 1H), 5.06 (t, J=6 Hz, 1H), 5.16 (t, J=6 Hz, 1H), 7.22˜7.56 (m, 4H)

Example 32

Synthesis of 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-cyclopropylcarbamate(32)

##STR00157##

[0541] The substantially same method as described in Example 29 was conducted, except that cyclopropylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.0 g, yield 17%).

[0542] 1H NMR (400 MHz, CDCl3) δ 0.50 (t, J=6 Hz, 2H), 0.77 (t, J=3 Hz, 2H), 1.12 (d, J=7 Hz, 3H), 2.53˜2.59 (m, 1H), 3.22 (d, J=4 Hz, 1H), 5.08 (dd, J=6 Hz, 1H), 5.15 (S, 1H), 7.22˜7.55 (m, 4H)

Example 33

Synthesis of 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-cyclohexylcarbamate(33)

##STR00158##

[0544] The substantially same method as described in Example 29 was conducted, except that cyclohexylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (2.2 g, yield 33%).

[0545] 1H NMR (400 MHz, CDCl3) δ 1.07˜1.17 (m, 3H), 1.21 (d, J=6 Hz, 3H), 1.29˜1.42 (m, 3H), 1.72 (dd, J=6 Hz, 2H), 1.92 (dd, J=6 Hz, 2H), 3.26 (d, J=4 Hz, 1H), 3.46 (t, J=4 Hz, 1H), 4.68 (d, J=6 Hz, 1H), 5.07 (dd, J=6 Hz, 1H), 5.16 (t, J=6 Hz, 1H), 7.22˜7.55 (m, 4H)

Example 34

Synthesis of 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-benzylcarbamate(34)

##STR00159##

[0547] The substantially same method as described in Example 29 was conducted, except that benzylamine was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.3 g, yield 19%).

[0548] 1H NMR (400 MHz, CDCl3) δ 1.25 (d, J=6 Hz, 3H), 3.16 (d, J=4 Hz, 1H), 4.36 (d, J=6 Hz, 2H), 5.14 (dd, J=6 Hz, 3H), 7.23˜7.56 (m, 9H), yield: 19% (1.3 g)

Example 35

Synthesis of 1-(2-chlorophenyl)-1-hydroxypropyl-2-N-bicyclo[2,2,1]heptanecarbamate(35)

##STR00160##

[0550] The substantially same method as described in Example 29 was conducted, except that 2-aminonorbornane was used instead of methylamine solution (CH3NH2 in EtOH), to obtain the title compound (1.7 g, yield 20˜50%).

[0551] 1H NMR (400 MHz, CDCl3) δ1.08˜1.35 (m, 9H), 1.65 (br s, 1H), 1.75˜1.71 (m, 1H), 2.14˜2.24 (m, 1H), 2.27˜2.30 (m, 1H), 3.23˜3.29 (m, 1H), 3.47˜3.52 (m, 1H), 4.67 (br s, 1H), 5.01˜5.09 (m, 1H), 5.12˜5.18 (m, 1H), 7.22˜7.55 (m, 4H)

Example 36

Synthesis of 1-(2,4-dichlorophenyl)-(S)-1-hydroxypropyl-(S)-2-carbamate(36)

##STR00161##

[0553] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 83) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.8 g, yield 60˜90%).

[0554] 1H NMR (400 MHz, CDCl3) δ1.22 (d, J=6.4 Hz, 3H), 4.16 (br t, 1H) 4.96 (br t, 3H), 5.07 (t, J=4.8 Hz, 1H), 7.23˜7.52 (m, 3H)

Example 37

Synthesis of 1-(2,6-dichlorophenyl)-(S)-1-hydroxypropyl-(S)-2-carbamate(37)

##STR00162##

[0556] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 84) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.6 g, yield 60˜90%)

Example 38

Synthesis of 1-(2,3-dichlorophenyl)-(S)-1-hydroxypropyl-(S)-2-carbamate(38)

##STR00163##

[0558] The substantially same method as described in Example 1 was conducted, except that 1-(2,3-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 85) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.4 g, yield 60˜90%)

[0559] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 39

Synthesis of 1-(2,4-dichlorophenyl)-(S)-1-hydroxybutyl-(S)-2-carbamate(39)

##STR00164##

[0561] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 86) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.3 g, yield 60˜90%).

[0562] 1H NMR (400 MHz, CDCl3) δ0.96 (t, J=7.4 Hz, 3H), 1.58˜1.74 (m, 2H), 2.98 (d, J=5.6 Hz, 1H) 4.68 (br s, 2H), 5.59 (dt, J=5.2, 8.8 Hz, 1H), 5.19 (t, J=5.4 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 40

Synthesis of 1-(2,6-dichlorophenyl)-(S)-1-hydroxybutyl-(S)-2-carbamate(40)

##STR00165##

[0564] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 87) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%).

[0565] 1H NMR (400 MHz, CDCl3) δ0.92 (t, J=7.4 Hz, 3H), 1.30˜1.38 (m, 1H), 1.57˜1.64 (m, 1H), 3.74 (d, J=9.2 Hz, 1H), 4.80 (br s, 2H), 5.40˜5.50 (m, 2H), 7.17˜7.34 (m, 3H)

Example 41

Synthesis of 1-(2,4-dichlorophenyl)-(S)-1-hydroxy-3-methyl-butyl-(S)-2-carbamate(41)

##STR00166##

[0567] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 88) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.9 g, yield 60˜90%).

[0568] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.85 (br s, 2H), 5.40˜5.43 (m, 1H), 5.49˜5.54 (m, 1H), 7.30˜7.50 (m, 3H)

Example 42

Synthesis of 1-(2,6-dichlorophenyl)-(S)-1-hydroxy-3-methyl-butyl-(S)-2-carbamate(42)

##STR00167##

[0570] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-(S,S)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 89) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.4 g, yield 60˜90%).

[0571] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.85 (br s, 2H), 5.40˜5.43 (m, 1H), 5.49˜5.54 (m, 1H), 7.16˜7.33 (m, 3H)

Example 43

Synthesis of 1-(2,4-dichlorophenyl)-(S)-1-hydroxyhexyl-(S)-2-carbamate(43)

##STR00168##

[0573] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 90) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.2 g, yield 60˜90%).

[0574] 1H NMR (400 MHz, CDCl3) δ0.89 (t, J=3.6 Hz, 3H), 1.28˜1.42 (m, 4H), 1.52˜1.59 (m, 1H), 1.64˜1.71 (m, 1H), 2.98 (d, J=5.6 Hz, 1H), 4.67 (br s, 2H), 4.96˜5.00 (m, 1H), 5.17 (t, J=5.6 Hz, 1H), 7.30˜7.49 (m 3H)

Example 44

Synthesis of 1-(2,6-dichlorophenyl)-(S)-1-hydroxyhexyl-(S)-2-carbamate(44)

##STR00169##

[0576] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 91) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.1 g, yield 60˜90%)

[0577] 1H NMR (400 MHz, CDCl3) δ0.84 (t, J=7.0 Hz, 3H), 1.20˜1.35 (m, 4H), 1.36˜1.41 (m, 1H), 1.59˜1.63 (m, 1H), 3.71 (d, J=10.0 Hz, 1H), 4.74 (br s, 2H), 5.40˜5.44 (m, 1H), 5.52˜5.57 (m, 1H), 7.17˜7.35 (m, 3H)

Example 45

Synthesis of 1-(2,4-dichlorophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate(45)

##STR00170##

[0579] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 92) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.2 g, yield 60˜90%),

[0580] 1H NMR (400 MHz, CDCl3) δ1.22 (d, J=6.4 Hz, 3H), 4.16 (br t, 1H) 4.96 (br t, 3H), 5.07 (t, J=4.8 Hz, 1H), 7.23˜7.52 (m, 3H)

Example 46

Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate(46)

##STR00171##

[0582] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 93) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%),

[0583] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 47

Synthesis of 1-(2,3-dichlorophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate(47)

##STR00172##

[0585] The substantially same method as described in Example 1 was conducted, except that 1-(2,3-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 94) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.0 g, yield 60˜90%)

[0586] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 48

Synthesis of 1-(2,4-dichlorophenyl)-(R)-1-hydroxybutyl-(R)-2-carbamate(48)

##STR00173##

[0588] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 95) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.3 g, yield 60˜90%).

[0589] 1H NMR (400 MHz, CDCl3) δ0.96 (t, J=7.4 Hz, 3H), 1.58˜1.74 (m, 2H), 2.98 (d, J=5.6 Hz, 1H) 4.68 (br s, 2H), 5.59 (dt, J=5.2, 8.8 Hz, 1H), 5.19 (t, J=5.4 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 49

Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-hydroxybutyl-(R)-2-carbamate(49)

##STR00174##

[0591] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 96) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.5 g, yield 60˜90%).

[0592] 1H NMR (400 MHz, CDCl3) δ0.92 (t, J=7.4 Hz, 3H), 1.30˜1.38 (m, 1H), 1.57˜1.64 (m, 1H), 3.74 (d, J=9.2 Hz, 1H), 4.80 (br s, 2H), 5.40˜5.50 (m, 2H), 7.17˜7.34 (m, 3H)

Example 50

Synthesis of 1-(2,4-dichlorophenyl)-(R)-1-hydroxy-3-methyl-butyl-(R)-2-carbamate(50)

##STR00175##

[0594] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 97) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.8 g, yield 60˜90%).

[0595] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.85 (br s, 2H), 5.40˜5.43 (m, 1H), 5.49˜5.54 (m, 1H), 7.30˜7.50 (m, 3H)

Example 51

Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-hydroxy-3-methyl-butyl-(R)-2-carbamate(51)

##STR00176##

[0597] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 98) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.6 g, yield 60˜90%).

[0598] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.85 (br s, 2H), 5.40˜5.43 (m, 1H), 5.49˜5.54 (m, 1H), 7.16˜7.33 (m, 3H)

Example 52

Synthesis of 1-(2,4-dichlorophenyl)-(R)-1-hydroxyhexyl-(R)-2-carbamate(52)

##STR00177##

[0600] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 99) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.5 g, yield 60˜90%).

[0601] 1H NMR (400 MHz, CDCl3) δ0.89 (t, J=3.6 Hz, 3H), 1.28˜1.42 (m, 4H), 1.52˜1.59 (m, 1H), 1.64˜1.71 (m, 1H), 2.98 (d, J=5.6 Hz, 1H), 4.67 (br s, 2H), 4.96˜5.00 (m, 1H), 5.17 (t, J=5.6 Hz, 1H), 7.30˜7.49 (m, 3H)

Example 53

Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-hydroxyhexyl-(R)-2-carbamate(53)

##STR00178##

[0603] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 100) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.4 g, yield 60˜90%).

[0604] 1H NMR (400 MHz, CDCl3) δ0.84 (t, J=7.0 Hz, 3H), 1.20˜1.35 (m, 4H), 1.36˜1.41 (m, 1H), 1.59˜1.63 (m, 1H), 3.71 (d, J=10.0 Hz, 1H), 4.74 (br s, 2H), 5.40˜5.44 (m, 1H), 5.52˜5.57 (m, 1H), 7.17˜7.35 (m, 3H)

Example 54

Synthesis of 1-(2,4-dichlorophenyl)-1-hydroxypropyl-2-carbamate(54)

##STR00179##

[0606] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 101) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%).

[0607] 1H NMR (400 MHz, CDCl3) δ1.22 (d, J=6.4 Hz, 3H), 4.16 (br t, 1H) 4.96 (br t, 3H), 5.07 (t, J=4.8 Hz, 1H), 7.23˜7.52 (m, 3H)

Example 55

Synthesis of 1-(2,6-dichlorophenyl)-1-hydroxypropyl-2-carbamate(55)

##STR00180##

[0609] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 102) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.4 g, yield 60˜90%).

[0610] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 56

Synthesis of 1-(2,3-dichlorophenyl)-1-hydroxypropyl-2-carbamate(56)

##STR00181##

[0612] The substantially same method as described in Example 1 was conducted, except that 1-(2,3-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 103) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.6 g, yield 60˜90%).

[0613] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 57

Synthesis of 1-(2,4-dichlorophenyl)-1-hydroxybutyl-2-carbamate(57)

##STR00182##

[0615] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 104) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%).

[0616] 1H NMR (400 MHz, CDCl3) δ0.96 (t, J=7.4 Hz, 3H), 1.58˜1.74 (m, 2H), 2.98 (d, J=5.6 Hz, 1H) 4.68 (br s, 2H), 5.59 (dt, J=5.2, 8.8 Hz, 1H), 5.19 (t, J=5.4 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 58

Synthesis of 1-(2,6-dichlorophenyl)-1-hydroxybutyl-2-carbamate(58)

##STR00183##

[0618] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 105) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.4 g, yield 60˜90%).

[0619] 1H NMR (400 MHz, CDCl3) δ0.92 (t, J=7.4 Hz, 3H), 1.30˜1.38 (m, 1H), 1.57˜1.64 (m, 1H), 3.74 (d, J=9.2 Hz, 1H), 4.80 (br s, 2H), 5.40˜5.50 (m, 2H), 7.17˜7.34 (m, 3H)

Example 59

Synthesis of 1-(2,4-dichlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate(59)

##STR00184##

[0621] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 106) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.9 g, yield 60˜90%).

[0622] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.85 (br s, 2H), 5.40˜5.43 (m, 1H), 5.49˜5.54 (m, 1H), 7.30˜7.50 (m, 3H)

Example 60

Synthesis of 1-(2,6-dichlorophenyl)-1-hydroxy-3-methyl-butyl-2-carbamate(60)

##STR00185##

[0624] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 107) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%).

[0625] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.85 (br s, 2H), 5.40˜5.43 (m, 1H), 5.49˜5.54 (m, 1H), 7.16˜7.33 (m, 3H)

Example 61

Synthesis of 1-(2,4-dichlorophenyl)-1-hydroxyhexyl-2-carbamate(61)

##STR00186##

[0627] The substantially same method as described in Example 1 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 108) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.6 g, yield 60˜90%).

[0628] 1H NMR (400 MHz, CDCl3) δ0.89 (t, J=3.6 Hz, 3H), 1.28˜1.42 (m, 4H), 1.52˜1.59 (m, 1H), 1.64˜1.71 (m, 1H), 2.98 (d, J=5.6 Hz, 1H), 4.67 (br s, 2H), 4.96˜5.00 (m, 1H), 5.17 (t, J=5.6 Hz, 1H), 7.30˜7.49 (m, 3H)

Example 62

Synthesis of 1-(2,6-dichlorophenyl)-1-hydroxyhexyl-2-carbamate(62)

##STR00187##

[0630] The substantially same method as described in Example 1 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-(Bis-trimethylsilanyloxy)hexane (Preparation Example 109) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.5 g, yield 60˜90%).

[0631] 1H NMR (400 MHz, CDCl3) δ0.84 (t, J=7.0 Hz, 3H), 1.20˜1.35 (m, 4H), 1.36˜1.41 (m, 1H), 1.59˜1.63 (m, 1H), 3.71 (d, J=10.0 Hz, 1H), 4.74 (br s, 2H), 5.40˜5.44 (m, 1H), 5.52˜5.57 (m, 1H), 7.17˜7.35 (m, 3H)

Example 63

Synthesis of 1-(2-fluorophenyl)-(S)-1-hydroxypropyl-(S)-2-carbamate(63)

##STR00188##

[0633] The substantially same method as described in Example 1 was conducted, except that 1-(2-fluorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 110) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.8 g, yield 60˜90%).

[0634] 1H NMR (400 MHz, CDCl3) δ1.19 (d, J=5.2 Hz, 3H), 2.93 (d, J=4.4 Hz, 1H), 4.71 (br s, 2H), 4.99˜5.06 (m, H), 7.04˜7.48 (m, 4H)

Example 64

Synthesis of 1-(2-fluorophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate(64)

##STR00189##

[0636] The substantially same method as described in Example 1 was conducted, except that 1-(2-fluorophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 111) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.6 g, yield 60˜90%).

[0637] 1H NMR (400 MHz, CDCl3) δ1.19 (d, J=5.2 Hz, 3H), 2.93 (d, J=4.4 Hz, 1H), 4.71 (br s, 2H), 4.99˜5.06 (m, H), 7.04˜7.48 (m, 4H)

Example 65

Synthesis of 1-(2-iodophenyl)-(S)-1-hydroxypropyl-(S)-2-carbamate(65)

##STR00190##

[0639] The substantially same method as described in Example 1 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 112) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.2 g, yield 60˜90%).

[0640] 1H NMR (400 MHz, CDCl3) δ1.27 (d, J=6.4 Hz, 3H), 3.09 (br s, 1H), 4.83 (br s, 2H), 5.00˜5.10 (m, 2H), 7.00˜7.76 (m, 4H)

Example 66

Synthesis of 1-(2-iodophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate(66)

##STR00191##

[0642] The substantially same method as described in Example 1 was conducted, except that 1-(2-iodophenyl)-(R,R)-1,2-(Bis-trimethylsilanyloxy)propane (Preparation Example 113) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (1.7 g, yield 60˜90%).

[0643] 1H NMR (400 MHz, CDCl3) δ1.27 (d, J=6.4 Hz, 3H), 2.95 (d, J=3.6 Hz, 1H), 4.73 (br s, 2H), 5.01˜5.11 (m, 2H), 7.01˜7.86 (m, 4H)

Example 67

Synthesis of 1-(2-iodophenyl)-(S)-1-hydroxybutyl-(S)-2-carbamate(67)

##STR00192##

[0645] The substantially same method as described in Example 1 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy)butane (Preparation Example 114) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-(Bis-trimethylsilanyloxy) propane (Preparation example 69) to obtain the title compound (2.1 g, yield 60˜90%).

[0646] 1H NMR (400 MHz, CDCl3) δ1.27 (d, J=6.4 Hz, 3H), 3.09 (br s, 1H), 4.83 (br s, 2H), 5.00˜5.10 (m, 2H), 7.00˜7.76 (m, 4H)

Example 68

Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-1-carbamate(68)

##STR00193##

[0648] 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (2.33 g, Preparation example 14) obtained in Preparation Example 14, tetrahydrofuran (THF, 12 ml), and carbonyldiimidazole (CDI, 3.04 g) were put into a flask and stirred at the room temperature. After approximately 3 hours, ammonia solution (NH4OH, 4 ml) was added thereto. When the reaction was completed, the obtained product was washed with 1M HCl solution and ethylacetate (EA). The separated organic layer was dehydrated with anhydrous magnesium sulfate (MgSO4), filtrated, and concented under reduced pressure. The concentrated residue was purified by a silica gel column chromatography, to obtain the title compound (0.28 g, yield 10˜30%).

[0649] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.8 Hz, 3H), 2.13 (d, J=4.4 Hz, 1H), 4.12˜4.16 (m, 1H), 4.85 (br s, 2H), 5.98 (d, J=5.6 Hz, 1H), 7.24˜7.43 (m, 4H)

Example 69

Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-carbamate(69)

##STR00194##

[0651] The substantially same method as described in Example 68 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-propanediol (Preparation Example 15) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (0.77 g, yield 16%).

[0652] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.4 Hz, 3H), 2.04 (d, J=4.8 Hz, 1H), 4.11˜4.18 (m, 1H), 4.74 (br s, 2H), 6.00 (d, J=5.6 Hz, 1H), 7.24˜7.43 (m, 4H)

Example 70

Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-carbamate(70)

##STR00195##

[0654] The substantially same method as described in Example 68 was conducted, except that 1-(2-chlorophenyl)-(R,R)-1,2-propanediol (Preparation Example 16) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14) to obtain the title compound (0.16 g, yield 10˜30%).

[0655] 1H NMR (400 MHz, CDCl3) δ1.24 (d, J=6.4 Hz, 3H), 2.04 (d, J=4.8 Hz, 1H), 4.11˜4.18 (m, 1H), 4.74 (br s, 2H), 6.00 (d, J=5.6 Hz, 1H), 7.24˜7.43 (m, 4H)

Example 71

Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-1-N-methylcarbamate(71)

##STR00196##

[0657] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 15, to obtain the title compound (0.70 g, yield 10˜30%).

[0658] 1H NMR (400 MHz, CDCl3) δ1.21 (d, J=6.4 Hz, 3H), 2.80 (d, J=4.8 Hz, 3H), 3.12 (s, 1H), 4.09˜4.16 (m, 1H), 4.86 (br s, 1H), 5.99 (d, J=6.0 Hz, 1H), 7.23˜7.40 (m, 4H)

Example 72

Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-N-methylcarbamate(72)

##STR00197##

[0660] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 22, to obtain the title compound (0.69 g, yield 10˜30%).

[0661] 1H NMR (400 MHz, CDCl3) δ1.21 (d, J=6.4 Hz, 3H), 2.80 (d, J=4.8 Hz, 3H), 3.12 (s, 1H), 4.09˜4.16 (m, 1H), 4.86 (br s, 1H), 5.99 (d, J=6.0 Hz, 1H), 7.23˜7.40 (m, 4H)

Example 73

Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-methylcarbamate(73)

##STR00198##

[0663] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 29, to obtain the title compound (0.73 g, yield 10˜30%).

[0664] 1H NMR (400 MHz, CDCl3) δ 1.22 (d, J=6 Hz, 3H), 2.15 (d, J=4 Hz, 1H), 2.81 (d, J=5 Hz, 3H), 4.12 (dd, J=6 Hz, 1H), 4.83 (br s, 1H), 6.00 (d, J=6 Hz, 1H), 7.23˜7.41 (m, 4H)

Example 74

Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-1-N-propylcarbamate(74)

##STR00199##

[0666] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 16, to obtain the title compound (0.15 g, yield 10˜30%).

[0667] 1H NMR (400 MHz, CDCl3) δ 0.91 (t, J=7 Hz, 3H), 1.22 (d, J=6 Hz, 3H), 1.52 (dd, J=7 Hz, 2H), 2.23 (d, J=4 Hz, 1H), 3.09˜3.21 (m, 2H), 4.09˜4.17 (m, 1H), 4.93 (s, 1H), 5.99 (d, J=6 Hz, 1H), 7.23˜7.47 (m, 4H)

Example 75

Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-N-propylcarbamate(75)

##STR00200##

[0669] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 23, to obtain the title compound (0.04 g, yield 10˜30%).

[0670] 1H NMR (400 MHz, CDCl3) δ 0.91 (t, J=7 Hz, 3H), 1.22 (d, J=6 Hz, 3H), 1.52 (dd, J=7 Hz, 2H), 2.23 (d, J=4 Hz, 1H), 3.09˜3.21 (m, 2H), 4.09˜4.17 (m, 1H), 4.93 (s, 1H), 5.99 (d, J=6 Hz, 1H), 7.23˜7.47 (m, 4H)

Example 76

Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-propylcarbamate(76)

##STR00201##

[0672] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 30, to obtain the title compound (0.15 g, yield 10˜30%).

[0673] 1H NMR (400 MHz, CDCl3) δ 0.91 (t, J=7 Hz, 3H), 1.22 (d, J=6 Hz, 3H), 1.52 (dd, J=7 Hz, 2H), 2.23 (d, J=4 Hz, 1H), 3.09˜3.21 (m, 2H), 4.09˜4.17 (m, 1H), 4.93 (s, 1H), 5.99 (d, J=6 Hz, 1H), 7.23˜7.47 (m, 4H)

Example 77

Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-1-N-isopropylcarbamate(77)

##STR00202##

[0675] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 17, to obtain the title compound (0.42 g, yield 10˜30%).

[0676] 1H NMR (400 MHz, CDCl3) δ1.10 (d, J=6.0 Hz, 3H), 1.15˜1.19 (m, 6H), 2.41 (s, 1H), 3.76˜4.08 (m, 1H), 4.34 (s, 1H), 4.83 (br s 1H), 5.95 (d, J=5.3 Hz, 1H), 7.19˜7.39 (m, 4H)

Example 78

Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-N-isopropylcarbamate(78)

##STR00203##

[0678] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 24, to obtain the title compound (0.5 g, yield 10˜30%).

[0679] 1H NMR (400 MHz, CDCl3) δ1.13 (d, J=6 Hz, 3H), 1.20 (dd, J=9.2 Hz, 6H), 2.23 (s, 1H), 3.77˜3.82 (m, 1H), 4.10 (s, 1H), 4.76 (br s, 1H), 5.98 (d, J=5.6 Hz, 1H), 7.23˜7.41 (m, 4H)

Example 79

Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-isopropylcarbamate(79)

##STR00204##

[0681] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 31, to obtain the title compound (0.09 g, yield 10˜30%).

[0682] 1H NMR (400 MHz, CDCl3) δ 1.14 (d, J=6 Hz, 3H), 1.21 (dd, J=6 Hz, 6H), 2.16 (d, J=5 Hz, 1H), 3.81 (t, J=6 Hz, 1H), 4.11 (d, J=5 Hz, 1H), 4.73 (br s, 1H), 5.98 (d, J=5 Hz, 1H), 7.24˜741 (m, 4H)

Example 80

Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-1-N-cyclopropylcarbamate(80)

##STR00205##

[0684] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 18, to obtain the title compound (0.53 g, yield 10˜30%).

[0685] 1H NMR (400 MHz, CDCl3) δ0.53˜0.60 (m, 2H), 0.74 (s, 2H), 1.21 (d, J=6.0 Hz, 3H), 2.19 (s, 1H), 2.59 (s, 1H), 4.11˜4.15 (m, 1H), 5.13 (br s, 1H), 5.99 (d, J=5.20 Hz, 1H), 7.23˜7.40 (m, 4H)

Example 81

Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-N-cyclopropylcarbamate(81)

##STR00206##

[0687] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 25, to obtain the title compound (0.58 g, yield 10%).

[0688] 1H NMR (400 MHz, CDCl3) δ0.53˜0.60 (m, 2H), 0.74 (s, 2H), 1.21 (d, J=6.0 Hz, 3H), 2.19 (s, 1H), 2.59 (s, 1H), 4.11˜4.15 (m, 1H), 5.13 (br s, 1H), 5.99 (d, J=5.20 Hz, 1H), 7.23˜7.40 (m, 4H)

Example 82

Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-cyclopropylcarbamate(82)

##STR00207##

[0690] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 32, to obtain the title compound (0.38 g, yield 14%).

[0691] 1H NMR (400 MHz, CDCl3) δ 0.71 (s, 2H), 1.19 (d, J=6 Hz, 3H), 2.45 (S, 1H), 2.57 (S, 1H), 4.08˜4.12 (m, 1H), 5.26 (s, 1H), 5.97 (d, J=4 Hz, 1H), 7.22˜7.54 (m, 4H)

Example 83

Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-1-N-cyclohexylcarbamate(83)

##STR00208##

[0693] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 19, to obtain the title compound (0.24 g, yield 10˜30%).

[0694] 1H NMR (400 MHz, CDCl3) δ1.10˜1.39 (m, 7H), 1.61 (s, 3H), 1.71˜1.74 (m, 2H), 1.87 (d, J=11.2 Hz, 1H), 2.48 (d, J=10.8 Hz, 1H), 3.46 (t, J=4 Hz, 1H), 4.10˜4.11 (m, 1H), 4.80 (br s 1H), 5.97 (d, J=5.6 Hz, 1H), 7.23˜7.41 (m, 4H)

Example 84

Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-N-cyclohexylcarbamate(84)

##STR00209##

[0696] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 26, to obtain the title compound (0.35 g, yield 10%).

[0697] 1H NMR (400 MHz, CDCl3) δ1.10˜1.39 (m, 7H), 1.61 (s, 3H), 1.71˜1.74 (m, 2H), 1.87 (d, J=11.2 Hz, 1H), 2.48 (d, J=10.8 Hz, 1H), 3.46 (t, J=4 Hz, 1H), 4.10˜4.11 (m, 1H), 4.80 (br s 1H), 5.97 (d, J=5.6 Hz, 1H), 7.23˜7.41 (m, 4H)

Example 85

Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-cyclohexylcarbamate(85)

##STR00210##

[0699] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 33, to obtain the title compound (0.26 g, yield 10%).

[0700] 1H NMR (400 MHz, CDCl3) δ 1.12˜1.19 (m, 3H), 1.22 (d, J=6 Hz, 3H), 1.27˜1.37 (m, 1H), 1.71 (t, J=6 Hz, 2H), 1.86˜1.88 (m, 1H), 1.97˜2.00 (m, 1H), 2.18 (d, J=4 Hz, 1H), 3.47 (S, 1H), 4.12 (t, J=6 Hz, 1H), 4.78 (S, 1H), 5.97 (d, J=6 Hz, 1H), 7.23˜7.40 (m, 4H)

Example 86

Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-1-N-benzylcarbamate(86)

##STR00211##

[0702] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 20, to obtain the title compound (0.19 g, yield 10˜30%).

[0703] 1H NMR (400 MHz, CDCl3) δ 1.23 (d, J=6 Hz, 3H), 2.16 (d, J=4 Hz, 1H), 4.12 (t, J=6 Hz, 1H), 4.31˜4.44 (m, 2H), 5.22 (br S, 1H), 6.04 (d, J=6 Hz, 1H), 7.27˜7.42 (m, 9H)

Example 87

Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-N-benzylcarbamate(87)

##STR00212##

[0705] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 27, to obtain the title compound (0.07 g, yield 10˜30%).

[0706] 1H NMR (400 MHz, CDCl3) δ 1.23 (d, J=6 Hz, 3H), 2.16 (d, J=4 Hz, 1H), 4.12 (t, J=6 Hz, 1H), 4.31˜4.44 (m, 2H), 5.22 (br S, 1H), 6.04 (d, J=6 Hz, 1H), 7.27˜7.42 (m, 9H)

Example 88

Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-N-benzylcarbamate(88)

##STR00213##

[0708] A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Example 34, to obtain the title compound (0.21 g, yield 14%).

[0709] 1H NMR (400 MHz, CDCl3) δ 1.23 (d, J=6 Hz, 3H), 2.16 (d, J=4 Hz, 1H), 4.12 (t, J=6 Hz, 1H), 4.31˜4.44 (m, 2H), 5.22 (br S, 1H), 6.04 (d, J=6 Hz, 1H), 7.27˜7.42 (m, 9H)

Example 89

Synthesis of 1-(2,4-dichlorophenyl)-(S)-2-hydroxypropyl-(S)-1-carbamate(89)

##STR00214##

[0711] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-propanediol (Preparation example 26) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.05 g, yield 10˜30%).

[0712] 1H NMR (400 MHz, CDCl3) δ1.13 (d, J=6.8 Hz, 3H), 2.49 (d, J=4.0 Hz, 1H), 4.66˜4.74 (m, 1H), 4.76 (br s, 2H), 6.20 (d, J=8.8 Hz, 1H), 7.30 (d, J=8.4 Hz, 1H), 7.39 (d, J=2.0 Hz, 2H), 7.50 (dd, J=8.4 Hz, 2.0 Hz, 1H)

Example 90

Synthesis of 1-(2,6-dichlorophenyl)-(S)-2-hydroxypropyl-(S)-1-carbamate(90)

##STR00215##

[0714] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-propanediol (Preparation example 38) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.07 g, yield 24%).

[0715] 1H NMR (400 MHz, CDCl3) δ1.13 (d, J=6.8 Hz, 3H), 2.49 (d, J=4.0 Hz, 1H), 4.66˜4.74 (m, 1H), 4.76 (br s, 2H), 6.20 (d, J=8.8 Hz, 1H), 7.25˜7.40 (m, 3H)

Example 91

Synthesis of 1-(2,3-dichlorophenyl)-(S)-2-hydroxypropyl-(S)-1-carbamate(91)

##STR00216##

[0717] The substantially same method as described in Example 68 was conducted, except that 1-(2,3-dichlorophenyl)-(S,S)-1,2-propanediol (Preparation example 57) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.08 g, yield 10˜30%).

[0718] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 92

Synthesis of 1-(2,4-dichlorophenyl)-(S)-2-hydroxybutyl-(S)-1-carbamate(92)

##STR00217##

[0720] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-butanediol (Preparation example 29) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.07 g, yield 10˜30%).

[0721] 1H NMR (400 MHz, CDCl3) δ0.77 (t, J=7.4 Hz, 3H), 0.92˜1.01 (m, 1H), 1.18˜1.28 (m, 1H), 4.06˜4.13 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.4 (br s, 2H), 7.30˜7.50 (m, 3H)

Example 93

Synthesis of 1-(2,6-dichlorophenyl)-(S)-2-hydroxybutyl-(S)-1-carbamate(93)

##STR00218##

[0723] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-butanediol (Preparation example 41) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.11 g, yield 29%).

[0724] 1H NMR (400 MHz, CDCl3) δ0.77 (t, J=7.4 Hz, 3H), 0.92˜1.01 (m, 1H), 1.18˜1.28 (m, 1H), 4.06˜4.13 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.4 (br s, 2H), 7.25˜7.40 (m, 3H)

Example 94

Synthesis of 1-(2,4-dichlorophenyl)-(S)-2-hydroxy-3-methyl-butyl-(S)-1-carbamate(94)

##STR00219##

[0726] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 32) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.01 g, yield 10˜30%).

[0727] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.42 (br s, 2H), 7.30˜7.50 (m, 3H)

Example 95

Synthesis of 1-(2,6-dichlorophenyl)-(S)-2-hydroxy-3-methyl-butyl-(S)-1-carbamate(95)

##STR00220##

[0729] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 44) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.03 g, yield 10˜30%).

[0730] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.42 (br s, 2H), 7.25˜7.40 (m, 3H)

Example 96

Synthesis of 1-(2,4-dichlorophenyl)-(S)-2-hydroxyhexyl-(S)-1-carbamate(96)

##STR00221##

[0732] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-hexanediol (Preparation example 35) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.21 g, yield 10˜30%).

[0733] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=7.2 Hz, 3H), 1.18˜1.33 (m, 4H), 1.48˜1.55 (m, 2H), 2.35 (d, J=4.4 Hz, 1H), 4.45˜4.50 (m, 1H), 4.76 (br s, 2H), 6.21 (d, J=8.4 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 97

Synthesis of 1-(2,6-dichlorophenyl)-(S)-2-hydroxyhexyl-(S)-1-carbamate(97)

##STR00222##

[0735] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-hexanediol (Preparation example 47) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.06 g, yield 29%).

[0736] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=7.2 Hz, 3H), 1.18˜1.33 (m, 4H), 1.48˜1.55 (m, 2H), 2.35 (d, J=4.4 Hz, 1H), 4.45˜4.50 (m, 1H), 4.76 (br s, 2H), 6.21 (d, J=8.4 Hz, 1H), 7.16˜7.34 (m, 3H)

Example 98

Synthesis of 1-(2,4-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-1-carbamate(98)

##STR00223##

[0738] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-propanediol (Preparation example 27) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.04 g, yield 10˜30%).

[0739] 1H NMR (400 MHz, CDCl3) δ1.13 (d, J=6.8 Hz, 3H), 2.49 (d, J=4.0 Hz, 1H), 4.66˜4.74 (m, 1H), 4.76 (br s, 2H), 6.20 (d, J=8.8 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 99

Synthesis of 1-(2,6-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-1-carbamate(99)

##STR00224##

[0741] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-propanediol (Preparation example 39) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.09 g, yield 10˜30%).

[0742] 1H NMR (400 MHz, CDCl3) δ1.13 (d, J=6.8 Hz, 3H), 2.49 (d, J=4.0 Hz, 1H), 4.66˜4.74 (m, 1H), 4.76 (br s, 2H), 6.20 (d, J=8.8 Hz, 1H), 7.25˜7.40 (m, 3H)

Example 100

Synthesis of 1-(2,3-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-1-carbamate(100)

##STR00225##

[0744] The substantially same method as described in Example 68 was conducted, except that 1-(2,3-dichlorophenyl)-(R,R)-1,2-propanediol (Preparation example 58) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.25 g, yield 10˜30%).

[0745] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 101

Synthesis of 1-(2,4-dichlorophenyl)-(R)-2-hydroxybutyl-(R)-1-carbamate(101)

##STR00226##

[0747] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-butanediol (Preparation example 30) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.08 g, yield 10˜30%).

[0748] 1H NMR (400 MHz, CDCl3) δ0.77 (t, J=7.4 Hz, 3H), 0.92˜1.01 (m, 1H), 1.18˜1.28 (m, 1H), 4.06˜4.13 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.4 (br s, 2H), 7.30˜7.50 (m, 3H)

Example 102

Synthesis of 1-(2,6-dichlorophenyl)-(R)-2-hydroxybutyl-(R)-1-carbamate(102)

##STR00227##

[0750] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-butanediol (Preparation example 42) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.09 g, yield 10˜30%). 1H NMR (400 MHz, CDCl3) δ0.77 (t, J=7.4 Hz, 3H), 0.92˜1.01 (m, 1H), 1.18˜1.28 (m, 1H), 4.06˜4.13 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.4 (br s, 2H), 7.25˜7.40 (m, 3H)

Example 103

Synthesis of 1-(2,4-dichlorophenyl)-(R)-2-hydroxy-3-methyl-butyl-(R)-1-carbamate(103)

##STR00228##

[0752] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-propanediol (Preparation example 33) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.01 g, yield 10˜30%).

[0753] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.42 (br s, 2H), 7.30˜7.50 (m, 3H)

Example 104

Synthesis of 1-(2,6-dichlorophenyl)-(R)-2-hydroxy-3-methyl-butyl-(R)-1-carbamate(104)

##STR00229##

[0755] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-propanediol (Preparation example 45) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.01 g, yield 10˜30%).

[0756] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.42 (br s, 2H), 7.25˜7.40 (m, 3H)

Example 105

Synthesis of 1-(2,4-dichlorophenyl)-(R)-2-hydroxyhexyl-(R)-1-carbamate(105)

##STR00230##

[0758] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-hexanediol (Preparation example 36) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.21 g, yield 10˜30%).

[0759] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=7.2 Hz, 3H), 1.18˜1.33 (m, 4H), 1.48˜1.55 (m, 2H), 2.35 (d, J=4.4 Hz, 1H), 4.45˜4.50 (m, 1H), 4.76 (br s, 2H), 6.21 (d, J=8.4 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 106

Synthesis of 1-(2,6-dichlorophenyl)-(R)-2-hydroxyhexyl-(R)-1-carbamate(106)

##STR00231##

[0761] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-hexanediol (Preparation example 48) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.12 g, yield 10˜30%).

[0762] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=7.2 Hz, 3H), 1.18˜1.33 (m, 4H), 1.48˜1.55 (m, 2H), 2.35 (d, J=4.4 Hz, 1H), 4.45˜4.50 (m, 1H), 4.76 (br s, 2H), 6.21 (d, J=8.4 Hz, 1H), 7.16˜7.34 (m, 3H)

Example 107

Synthesis of 1-(2,4-dichlorophenyl)-2-hydroxypropyl-1-carbamate(107)

##STR00232##

[0764] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-propanediol (Preparation example 28) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.05 g, yield 10˜30%).

[0765] 1H NMR (400 MHz, CDCl3) δ1.13 (d, J=6.8 Hz, 3H), 2.49 (d, J=4.0 Hz, 1H), 4.66˜4.74 (m, 1H), 4.76 (br s, 2H), 6.20 (d, J=8.8 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 108

Synthesis of 1-(2,6-dichlorophenyl)-2-hydroxypropyl-1-carbamate(108)

##STR00233##

[0767] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-propanediol (Preparation example 40) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.06 g, yield 10˜30%).

[0768] 1H NMR (400 MHz, CDCl3) δ1.13 (d, J=6.8 Hz, 3H), 2.49 (d, J=4.0 Hz, 1H), 4.66˜4.74 (m, 1H), 4.76 (br s, 2H), 6.20 (d, J=8.8 Hz, 1H), 7.25˜7.40 (m, 3H)

Example 109

Synthesis of 1-(2,3-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-1-carbamate(109)

##STR00234##

[0770] The substantially same method as described in Example 68 was conducted, except that 1-(2,3-dichlorophenyl)-1,2-propanediol (Preparation example 59) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.02 g, yield 10˜30%).

[0771] 1H NMR (400 MHz, CDCl3) δ1.15 (d, J=6.4 Hz, 3H), 3.66 (d, J=9.2 Hz, 1H), 4.73 (br s, 2H), 5.43 (t, J=9.0 Hz, 1H), 5.62˜5.69 (m, 1H), 7.18˜7.22 (m, 3H),

Example 110

Synthesis of 1-(2,4-dichlorophenyl)-2-hydroxybutyl-1-carbamate(110)

##STR00235##

[0773] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-butanediol (Preparation example 31) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.07 g, yield 10˜30%).

[0774] 1H NMR (400 MHz, CDCl3) δ0.77 (t, J=7.4 Hz, 3H), 0.92˜1.01 (m, 1H), 1.18˜1.28 (m, 1H), 4.06˜4.13 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.4 (br s, 2H), 7.30˜7.50 (m, 3H)

Example 111

Synthesis of 1-(2,6-dichlorophenyl)-2-hydroxybutyl-1-carbamate(111)

##STR00236##

[0776] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-butanediol (Preparation example 43) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.10 g, yield 10˜30%).

[0777] 1H NMR (400 MHz, CDCl3) δ0.77 (t, J=7.4 Hz, 3H), 0.92˜1.01 (m, 1H), 1.18˜1.28 (m, 1H), 4.06˜4.13 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.4 (br s, 2H), 7.25˜7.40 (m, 3H)

Example 112

Synthesis of 1-(2,4-dichlorophenyl)-2-hydroxy-3-methyl-butyl-1-carbamate(112)

##STR00237##

[0779] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-3-methyl-1,2-propanediol (Preparation example 34) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.04 g, yield 10˜30%).

[0780] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.42 (br s, 2H), 7.30˜7.50 (m, 3H)

Example 113

Synthesis of 1-(2,6-dichlorophenyl)-2-hydroxy-3-methyl-butyl-1-carbamate(113)

##STR00238##

[0782] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-1,2-propanediol (Preparation example 46) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.01 g, yield 10˜30%).

[0783] 1H NMR (400 MHz, CDCl3) δ1.00 (t, J=7.2 Hz, 6H), 1.73˜1.79 (m, 1H), 3.67˜3.69 (m, 1H), 4.96 (d, J=6.0 Hz, 1H), 5.91 (d, J=8.8 Hz, 1H), 6.42 (br s, 2H), 7.25˜7.40 (m, 3H)

Example 114

Synthesis of 1-(2,4-dichlorophenyl)-2-hydroxyhexyl-1-carbamate(114)

##STR00239##

[0785] The substantially same method as described in Example 68 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-hexanediol (Preparation example 37) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.21 g, yield 10˜30%).

[0786] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=7.2 Hz, 3H), 1.18˜1.33 (m, 4H), 1.48˜1.55 (m, 2H), 2.35 (d, J=4.4 Hz, 1H), 4.45˜4.50 (m, 1H), 4.76 (br s, 2H), 6.21 (d, J=8.4 Hz, 1H), 7.30˜7.50 (m, 3H)

Example 115

Synthesis of 1-(2,6-dichlorophenyl)-2-hydroxyhexyl-1-carbamate(115)

##STR00240##

[0788] The substantially same method as described in Example 68 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-hexanediol (Preparation example 49) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation example 14), to obtain the title compound (0.12 g, yield 10˜30%).

[0789] 1H NMR (400 MHz, CDCl3) δ0.85 (t, J=7.2 Hz, 3H), 1.18˜1.33 (m, 4H), 1.48˜1.55 (m, 2H), 2.35 (d, J=4.4 Hz, 1H), 4.45˜4.50 (m, 1H), 4.76 (br s, 2H), 6.21 (d, J=8.4 Hz, 1H), 7.16˜7.34 (m, 3H)

[0790] Compounds 1 to 115 produced in Examples 1 to 115 were summarized in following Tables 1 and 2.

TABLE-US-00001 TABLE 1 Compounds 1 to 67 having the structure of Chemical Formula 1 where `A` is a carbamoyl derivative and `B` is H A A = carbamoyl n derivative B No. X (position) 1st Chiral 2nd Chiral R1 R2 = B = H 1 Cl 1(2-) S S Me H H 2 Cl 1(2-) R R Me H H 3 Cl 1(2-) Rac. Rac. Me H H 4 Cl 1(2-) S R Me H H 5 Cl 1(2-) R S Me H H 6 Cl 1(2-) S S Et H H 7 Cl 1(2-) R R Et H H 8 Cl 1(2-) Rac. Rac. Et H H 9 Cl 1(2-) S S Isopropyl H H 10 Cl 1(2-) R R Isopropyl H H 11 Cl 1(2-) Rac. Rac. Isopropyl H H 12 Cl 1(2-) S S butyl H H 13 Cl 1(2-) R R butyl H H 14 Cl 1(2-) Rac. Rac. butyl H H 15 Cl 1(2-) S S Me Me H 16 Cl 1(2-) S S Me Propyl H 17 Cl 1(2-) S S Me Isopropyl H 18 Cl 1(2-) S S Me Cyclopropyl H 19 Cl 1(2-) S S Me Cyclohexyl H 20 Cl 1(2-) S S Me Benzyl H 21 Cl 1(2-) S S Me Bicyclo[2.2.1]heptane H 22 Cl 1(2-) R R Me Me H 23 Cl 1(2-) R R Me Propyl H 24 Cl 1(2-) R R Me Isopropyl H 25 Cl 1(2-) R R Me Cyclopropyl H 26 Cl 1(2-) R R Me Cyclohexyl H 27 Cl 1(2-) R R Me Benzyl H 28 Cl 1(2-) R R Me Bicyclo[2.2.1]heptane H 29 Cl 1(2-) Rac. Rac. Me Me H 30 Cl 1(2-) Rac. Rac. Me Propyl H 31 Cl 1(2-) Rac. Rac. Me Isopropyl H 32 Cl 1(2-) Rac. Rac. Me Cyclopropyl H 33 Cl 1(2-) Rac. Rac. Me Cyclohexyl H 34 Cl 1(2-) Rac. Rac. Me Benzyl H 35 Cl 1(2-) Rac, Rac. Me Bicyclo[2.2.1]heptane H 36 Cl 2(2,4-) S S Me H H 37 Cl 2(2,6-) S S Me H H 38 Cl 2(2,3-) S S Me H H 39 Cl 2(2,4-) S S Et H H 40 Cl 2(2,6-) S S Et H H 41 Cl 2(2,4-) S S Isopropyl H H 42 Cl 2(2,6-) S S Isopropyl H H 43 Cl 2(2,4-) S S butyl H H 44 Cl 2(2,6-) S S butyl H H 45 Cl 2(2,4-) R R Me H H 46 Cl 2(2,6-) R R Me H H 47 Cl 2(2,3-) R R Me H H 48 Cl 2(2,4-) R R Et H H 49 Cl 2(2,6-) R R Et H H 50 Cl 2(2,4-) R R Isopropyl H H 51 Cl 2(2,6-) R R Isopropyl H H 52 Cl 2(2,4-) R R butyl H H 53 Cl 2(2,6-) R R butyl H H 54 Cl 2(2,4-) Rac, Rac. Me H H 55 Cl 2(2,6-) Rac, Rac. Me H H 56 Cl 2(2,3-) Rac, Rac. Me H H 57 Cl 2(2,4-) Rac, Rac. Et H H 58 Cl 2(2,6-) Rac, Rac. Et H H 59 Cl 2(2,4-) Rac, Rac. Isopropyl H H 60 Cl 2(2,6-) Rac, Rac. Isopropyl H H 61 Cl 2(2,4-) Rac, Rac. butyl H H 62 Cl 2(2,6-) Rac, Rac. butyl H H 63 F 1(2-) S S Me H H 64 F 1(2-) R R Me H H 65 I 1(2-) S S Me H H 66 I 1(2-) R R Me H H 67 I 1(2-) S S Et H H

TABLE-US-00002 TABLE 2 Compounds 68 to 115 having the structure of Chemical Formula 1 where `A` is H and `B` is a carbamoyl derivative B B = n A carbamoyl (po- 1st 2nd A = derivative No. X sition) Chiral Chiral R1 H R3 = 68 Cl 1(2-) S S Me H H 69 Cl 1(2-) R R Me H H 70 Cl 1(2-) Rac. Rac. Me H H 71 Cl 1(2-) S S Me H Me 72 Cl 1(2-) R R Me H Me 73 Cl 1(2-) Rac. Rac. Me H Me 74 Cl 1(2-) S S Me H Propyl 75 Cl 1(2-) R R Me H Propyl 76 Cl 1(2-) Rac. Rac. Me H Propyl 77 Cl 1(2-) S S Me H Isopropyl 78 Cl 1(2-) R R Me H Isopropyl 79 Cl 1(2-) Rac. Rac. Me H Isopropyl 80 Cl 1(2-) S S Me H Cyclopropyl 81 Cl 1(2-) R R Me H Cyclopropyl 82 Cl 1(2-) Rac. Rac. Me H Cyclopropyl 83 Cl 1(2-) S S Me H Cyclohexyl 84 Cl 1(2-) R R Me H Cyclohexyl 85 Cl 1(2-) Rac. Rac. Me H Cyclohexyl 86 Cl 1(2-) S S Me H Benzyl 87 Cl 1(2-) R R Me H Benzyl 88 Cl 1(2-) Rac. Rac. Me H Benzyl 89 Cl 2(2,4-) S S Me H H 90 Cl 2(2,6-) S S Me H H 91 Cl 2(2,3-) S S Me H H 92 Cl 2(2,4-) S S Et H H 93 Cl 2(2,6-) S S Et H H 94 Cl 2(2,4-) S S Isopropyl H H 95 Cl 2(2,6-) S S Isopropyl H H 96 Cl 2(2,4-) S S Butyl H H 97 Cl 2(2,6-) S S Butyl H H 98 Cl 2(2,4-) R R Me H H 99 Cl 2(2,6-) R R Me H H 100 Cl 2(2,3-) R R Me H H 101 Cl 2(2,4-) R R Et H H 102 Cl 2(2,6-) R R Et H H 103 Cl 2(2,4-) R R Isopropyl H H 104 Cl 2(2,6-) R R Isopropyl H H 105 Cl 2(2,4-) R R Butyl H H 106 Cl 2(2,6-) R R Butyl H H 107 Cl 2(2,4-) Rac. Rac. Me H H 108 Cl 2(2,6-) Rac. Rac. Me H H 109 Cl 2(2,3-) Rac. Rac. Me H H 110 Cl 2(2,4-) Rac. Rac. Et H H 111 Cl 2(2,6-) Rac. Rac. Et H H 112 Cl 2(2,4-) Rac. Rac. Isopropyl H H 113 Cl 2(2,6-) Rac. Rac. Isopropyl H H 114 Cl 2(2,4-) Rac. Rac. Butyl H H 115 Cl 2(2,6-) Rac. Rac. Butyl H H

Biological Experimental Example I

Measurement of Anti-Multiple Sclerosis Activity

[0791] I.1. MES (Maximal Electroshock Seizure) Test

[0792] In the MES test (Ref., G. Villetti et al. Neuropharmacology 40 (2001) 866-878), an electrical stimulus (mice; 50 mA, 60 Hz, 0.2 sec and rats; 150 mA 60 Hz, 0.2 sec in the test animal) supplied by 11A Shocker (IITC Life Science Company) was delivered through corneal electrodes. All mice or rats assigned to any electroshock at peak time were treated with each test compound sample which was dissolved in 30% PEG400 prepared by saline solvent applied to oral before the test. If the test animal stretching their hind limb in a straight line weren't observed in the MES test, the results indicate that the test sample had an anti-multiple sclerosis activity. Three doses of the test sample were administered orally to over 18 mice (6 mice per dose) for evaluating the respective doses at which 50% of the animals are protected from seizure (ED50). The value of ED50 (median effective dose) is calculated by Litchfield and Wicoxon log-probit method which is a dose-response relationship. Then, the test results are shown in following Table 3. Experimental animal, male ICR mice and male SD rats, were purchased from OrientBio or Nara biotech, Korea, and housed 4-5 mice per a cage for 4-5 days. The range of mice body weight was used between 19 and 26 grams and range of rats body weight was used between 100 and 130 grams.

[0793] I.2. Measurement of Neurotoxicity

[0794] The measurement of neurotoxicity of the test compounds was conducted by the method of Dunham and Miya [Dunham, N. W. and Miya, T. S. 1957. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc. (Baltimore) 46: 208-209]. In the method, motor abilities of the test animals can be determined by observing whether the test animals can walk without falling from a rotator, thereby determining the value of neurotoxicity of each compound. Term "TD50" means the respective dose of the test compound at which 50% of the test animal exhibit neurotoxicity. They were pre-trained on the rotarod (Rotarod; Columbus instrument, rota-max, USA) at 6 rpm for 5 min 24 hr prior to the test. The peak time was determined by administration test material's random dose for 0.5, 1, 2, 4 hour. To evaluate the minimal neurotoxicity of the compound, the mice were placed on the Rotarod (rod circle; 3 Cm) at 6 rpm and the test animal fails to maintain walking once or more during 1 minute, it can be regarded that the test animal exhibits neurotoxicity. The ratio of TD50 to ED50 (TD50/ED50) is called as a protective index, and useful as a parameter for comparison of pharmaceutical efficacy and neurotoxicity. The obtained results are shown in following Table 3.

[0795] [Statistical Analysis]

[0796] The obtained results are shown as mean±sem. The difference between the groups was statistically analyzed by ANOVA, and then, further examined by Dunnett's test or Bonferroni test. If p is less than 0.05, it was determined that the difference between the groups had statistical significance.

TABLE-US-00003 TABLE 3 Measurement results of anti-excitotoxicity activity of compounds in the test animals (Mice and Rats) Compound MES test (po) TD50 No. ED50 (mg/kg) Peak Time (h) (mg/kg po) 1 13.0 2 218.1 2 51.0 0.25 372.0 3 31.4 2 378.3 4 82.4 0.5 5 84.1 0.5 275.2 6 22.2 1 8 100a (100%) 9 67.1 0.5 12 100a (75%) 13 200a (75%) 14 200a (100%) 15 100a (75%) 16 200a (25%) 18 200a (100%) 23 200a (25%) 25 200a (25%) 29 200a (75%) 30 200a (25%) 31 200a (25%) 32 200a (100%) 36 82.8 37 25.8 0.25 131.6 38 91.4 2 39 41.2 1 40 46.9 42 35.2 0.5 43 100a (25%) 44 100a (75%) 45 200a (0%) 46 35.2 1 63 50a (100%) 65 50a (100%) 67 100a (100%) #aInjection amount (mg/kg), Protection % (4 mice); b: Injection amount (mg/kg), Protection % (6 Rats);

[0797] I.3. Measurement of Pharmaceutical Efficacy Duration Time Through MES

[0798] The ED50 values according to time were measured in the test animals (mice and rats) after oral administration of test compound 1 as described in Biological Experimental Example I. The obtained results are shown in following Table 4.

TABLE-US-00004 TABLE 4 Duration of MES test ED50 (mg/kg), (po) Time No species 0.25 h 0.5 h 1 h 2 h 3 h 4 h 6 h 8 h 12 h 1 Mouse 21.2 22.5 13.3 13.0 14.7 18.7 30.0 49.4 118.8 Rat -- 5.9 3.3 1.4 -- 6.9 -- 14.4 36.1

[0799] As shown in Table 4 and FIG. 1, the test compound 1 exhibits the efficacy duration time of at least 12 hours in both of the tested rats and mice.

Biological Experimental Example II

The Screening Model of Muscle Relaxation Activity

[0800] II.1. Animal Testing Examples

[0801] For testing, male mice (ICR) were purchased from ORIENT BIO INC. (Korea), divided into several groups with 6 mice in each group, and were adapted for 4-5 days. The mice having the weight ranging from 19 g to 26 g were employed for the test. The pharmacological effect of the test compounds on muscle relaxation was evaluated by Rotarod test, grip strength test, and muscular force (wire hang) test. All mice were adapted to the test environment at one hour before starting the tests. The pharmacological effects of all the test compounds were evaluated by administration through peritoneal cavity of the mice (10 ul/g, bw).

[0802] II.2. Measurement of Muscle Relaxation Activity by Endurance Time on a Rotarod Rotating at Accelerated Speed

[0803] At 24 hours before testing, the mice to be tested were preliminarily trained for 5 minutes on a rod rotating at the rate of 6 revolutions per a minute. The pharmacological effect on muscle relaxation of the test compounds were evaluated by observing the mice on a rod for 5 minutes, where the rod was accelerated from 4 to 40 revolutions per a minute during the test time. The endurance time that each mouse endures on the acceleratedly rotated rod without falling off from the rod was recorded. As test time for evaluation, a maximum of 5 minutes was applied. In case the mouse does not fall off from the rod for testing time, the endurance time was recorded as 5 minutes. All the test compounds were intraperitoneally administered (10 ul/g, bw) to the mice at 15 minutes, 30 minutes, 1 hour, and 2 hours prior to the testing, and the median effective concentration (ED50) was determined at the time that the drug exhibits its maximum pharmacological effect. The obtained results were shown in following Table 7. This experimentation was conducted according to the method described in the reference, `Monville et al. (2006) Comparison of incremental and accelerating protocol of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J. Neurosci. Meth. 158: 219-223`.

[0804] II.3. Measurement of muscle relaxation activity by residence time on a rotarod rotating at a fixed speed

[0805] All the mice to be tested were preliminarily trained for 5 minutes on a rod rotating at the rate of 15 revolutions per a minute. The mice that could not remain on the rod without falling off therefrom for a minimum of 2 minutes were excluded from this testing. After the training, all the mice were allowed to rest for 45-60 minutes. Before the administration of the test compounds, the mice were subjected to a further training for one minute on the rod rotating under the same condition, where the mice falling off from the rod were excluded from this experimentation. All the test compounds were intraperitoneally administered (10 ul/g, bw) to the mice at 15 minutes, 30 minutes, 1 hour, and 2 hours prior to the testing, and the median effective concentration (ED50) was determined at the time (generally 15 min, 30 min or 60 min) that the compounds exhibit their maximum pharmacological effect. In case a mouse stays on the rod until the test is finished, the time was recorded as 10 minutes. As test time for evaluation, a maximum of 10 minutes was applied. The obtained results were shown in following Table 7. This experimentation was conducted according to the method described in the reference, `Yasuda et al. (2005) Antipyretic, analgesic and muscle relaxant activities of Pueraria isoflavonoids and their metabolites from Pueraria lobata Ohwi--a traditional Chinese drug. Biol. Pharm. Bull. 28: 1224-1228`.

[0806] II.4. Measurement of Muscle Relaxation Activity by Grip Strength

[0807] A grip strength test using the test animals' forelimbs was performed using an instrument equipped with triangle ring and designed so as to easily grip with the forelimbs of experimental animals, manufactured from Ugo Basile Inc. (Ugo Basile, Model47106, Italy). The test was conducted before and after administration of the compounds to evaluate the effects thereof. All the test compounds were intraperitoneally administered (10 ul/g, bw) at 15 minutes, 30 minutes, 1 hour, and 2 hours before test, and the median effective concentration (ED50) was determined at the time (generally 15 min, 30 min or 60 min) that the compounds exhibits therir maximum pharmacological effect. The mouse was made to grip the rod with its forelimbs, and its tail was pulled, where the force at which the mouse detached from the rod was recorded. The instrument indicated the force in grams. All of the mice were given 3 opportunities for test, and the 3 highest values among the test opportunities were selected and the mean value was used as the test result. The obtained results are shown in Table 7. This experimentation was conducted according to the method described in the reference, `Nevins et al. (1993) Quantitative grip strength assessment as a means of evaluating muscle relaxation in mice. Psychopharmacol. 110: 92-96`.

[0808] II.5. Measurement of Muscle Relaxation Activity by Wire Hang

[0809] This experimentation was conducted using a metal wire of 30 cm in length, which was suspended between two pillars at a height of about 40 cm from the bottom covered with a soft pad. All the test compounds were administered to the mice through peritoneal cavity (10 ul/g, bw) at 15 minutes, 30 minutes, 1 hour, and 2 hours prior to the testing, and the median effective concentration (ED50) was determined at the time that the compound exhibits the maximum pharmacological effect. Each mouse was made to grip the wire using two forelimbs, and the elapse time before the mouse fell off from the wire to the pad on the bottom was recorded in seconds. Each mouse was given 5 opportunities for this test at an interval of 2 minutes period. The highest 3 records among the test opportunities were selected and the mean value was used as the test result. The obtained results are shown in Table 7. This experimentation was conducted according to the method described in the reference, `Jacqueline N. Crawley (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835: 18-26`.

[0810] [Statistical Analysis]

[0811] The obtained results are shown as mean±sem. The difference between the groups was statistically analyzed by ANOVA, and then, further examined by Dunnett's test or Bonferroni test. If p is less than 0.05, it was determined that the difference between the groups had statistical significance.

[0812] II.6. Results

[0813] The results of muscle relaxation activity of the phenyl carbamate compounds measured in above Experimental Examples 11.2 to 11.5 are shown in following Table 5. In the Table 5, the ED50 was represented by the concentration where the compound shows the 50% of muscle relaxation activity compared to the vehicle only (100%).

TABLE-US-00005 TABLE 5 Results of the measurements of muscle relaxation activity of the phenyl carbamate compounds MR test (ED50; mg/kg, bw) No. I II III IV control 1 39.7 23.3 40.9 13.3 1 2 66.3 76.5 110.0 43.3 1 3 57.1 47.7 72.6 34.0 1 4 69.3 65.0 124.2 40.0 1 5 66.9 65.5 95.0 52.5 1 6 -- -- 70.7 -- 1 7 -- -- 248.4 -- 1 8 50.6 -- 69.5 -- 1 9 -- -- 103.9 -- 1 11 102.5 -- 126.1 -- 1 15 51.4 42.8 83.6 25.4 1 16 48.7 61.6 67.8 16.1 2 17 73.1 66.4 91.5 41.4 2 18 59.2 61.2 87.4 29.5 2 19 95.3 -- 109.8 28.5 2 22 25.7 25.1 28.3 22.4 1 23 -- -- 73.8 46.0 2 24 38.6 44.3 48.8 17.8 2 25 30.0 18.3 46.1 32.9 1 26 -- -- -- 63.8 2 29 30.2 41.0 46.0 38.0 2 30 -- -- 65.4 31.7 2 31 -- -- 50.4 52.1 1 32 -- -- 45.2 36.6 2 33 -- -- -- 74.6 2 63 118.3 100a (84.2%) 1 64 120a (35.4%) 100a (30.8%) 1 65 28.0 42.9 23.4 2 66 67.9 46.0 76.3 2 67 30.2 69.1 26.2 2 I = Acc. Rotatod (accelerated rotating ratarod test; Experimental Example 1), II = Fixed 15 r.p.m. Rotarod (constantly rotating ratarod test; Experimental Example 2), III = Grip strength (Experimental Example 3), IV = Wire hang (Experimental Example 4) a= the concentration administered and effect (%) compared to that of control treated with vehicle only Control 1: administered with vehicle only (Vehicle 1: 30% PEG400(Polyethylene Glycol 400)) Control 2: administered with vehicle only (Vehicle 2: 20% Tween 80)

Biological Experimental Example III

Measurement of Anti-Multiple Sclerosis Activity by MOG EAE Rat

[0814] III.1. Animals

[0815] All animal experiments were carried out according to the National Institute of Health (NIH) guidelines for the care and use of laboratory animals, and approved by the Finnish National Laboratory Animal Experiment Board. Altogether 100 female Dark Agouti rats weighing 120-170 g and purchased from Harlan Laboratories, United Kingdom were used in experiments Animals were housed at a standard temperature (22±1° C.) and in a light-controlled environment (lights on from 7 am to 8 pm) with ad libitum access to food and water.

[0816] EAE (experimental autoimmune encephalomyelitis) rats were induced by administration of 100 μL inoculum intradermally at the base of each tail. The inoculum consists of 20 μg of recombinant MOG (myelin Oligodendrocyte Glycoprotein)1-125 (NordicBioSite, lot#: KC1101) in PBS emulsified with incomplete Freund's adjuvant (IFA) (1:1 (v/v)) containing 200 μg of heat-inactivated Mycobacterium tuberculosis (strain H 37 RA; Difco, Detroit, Mich.).

[0817] Animals were grouped as follows:

[0818] Group A: 20 EAE rats treated p.o. twice a day with compound 1 (3 mg/kg) starting on day 0 after inoculation and continued until day 29.

[0819] Group B: 20 EAE rats treated p.o. twice a day with compound 1 (10 mg/kg) starting on day 0 after inoculation and continued until day 29.

[0820] Group C: 20 EAE rats treated p.o. twice a day with compound 1 (50 mg/kg) starting on day 0 after inoculation and continued until day 29.

[0821] Group D: 20 EAE rats treated p.o. twice a day with vehicle 30% PEG400 starting on day 0 after inoculation and continued until day 29.

[0822] All rats received compound 1 or corresponding vehicle on days 0-29. Compound 1 (at the doses of 3, 10 and 50 mg/kg, JBPOS0101) or corresponding vehicle (30% PEG400 in physiological saline solution) was administered orally (p.o: 10 ml/kg) twice a day (7-11 AM and 4-8 PM) starting at day 0 after induction of MOG EAE and continued until day 29.

[0823] The objective of this experimental example was to investigate whether treatment with compound 1 starting on day 0 after inoculation in MOG EAE in rats provides functional recovery during the course of disease. At the end-point, plasma, brain and spinal cord samples were collected for analytical, histological and biochemical analysis. Demyelinated area and CD68 immunoreactivity were evaluated in T-segment and C-segment of spinal cord at the end-point, day 30.

[0824] As the pharmaceutical efficacy duration time of a drug is longer, the administration number of the drug becomes decreased, thereby increasing the administration convenience of a patient. Such advantages may be particularly preferable for a patient suffered from a disease that requires long term administration of a drug, such as multiple sclerosis. In addition, the decrease of the administration number may be profitable in economic aspect and helpful to increase the quality of life of the patient.

[0825] III.2. Methods

[0826] Altogether 100 female Dark Agouti rats weighing 120-170 g and purchased from Harlan Laboratories, United Kingdom were used in the study. After inoculation with MOG MOG1-125 in PBS emulsified with incomplete Freund's adjuvant containing heat-inactivated Mycobacterium tuberculosis, the rats were treated with compound 1 (3 mg/kg, 10 mg/kg or 50 mg/kg, JBPOS0101) twice a day from day 0.

[0827] Body weight and clinical symptoms of the rats were monitored daily starting from day 0 and continued until day 30. At the end-point, brain and spinal cord samples were collected for histological and biochemical analysis. Furthermore, plasma samples were collected for sponsor's own analysis. Area of demyelinated lesions and level of inflammation in spinal cord sections were evaluated from MBP and CD68 immunostained slices with ImageJ 1.46j image analysis software (Fiji image analysis software), respectively.

[0828] The above method is schematically shown in FIG. 1.

[0829] III.2.1. End-Point Tissue and Plasma Collection

[0830] Rats were randomly allocated to two separate groups for sampling for histology and biochemical analysis on the basis of day 29 clinical score. Samples for histology were taken from 8 to 10 rats in each group and the rest of the rats alive were used for sampling for biochemical analysis.

[0831] At the end-point, day 30, 24 hours after last morning dosing all rats were deeply anesthetized with pentobarbital and blood samples were collected by cardiac puncture. Total of 800-1000 μl of blood was collected into Li-heparin microtubes, centrifuged (2000 g, 10 min, +4° C.). Two 200 μl aliquots of plasma were collected to two separate plasma collecting plasma matrix tubes, frozen on dry ice and stored at -80° C. until shipped to sponsor.

[0832] For histological samples, rats were transcardially perfused 10 min with cold heparinized (2.5 IU/ml) saline followed by at least 10 min perfusion with cold 4% paraformaldehyde in 0.1M phosphate buffer. The cerebellum and the rest of brains and spinal cord C and T-segments (1 cm each) were excised and post-fixed by immersion in 4% paraformaldehyde in 0.1M phosphate buffer at +4° C. for at about 24 h. The samples were then stored at +4° C. in 0.01M PBS containing 0.001% sodium azide as preservative until used for histological analysis.

[0833] For biochemical sampling, rats were processed the same way until saline perfusion, after which the brains and spinal cord sections were excised and dissected on ice. Brains were divided into cerebellum and left and right hemispheres. Hemispheres, cerebellum and spinal samples were weighed and put into polypropylene tubes and snap frozen in liquid nitrogen. Frozen plasma, brain and spinal cord samples were stored at -80° C. until sent to the sponsor for analytical/biochemical purposes.

[0834] III.2.2. Histological Analysis

[0835] Histological evaluation was performed on paraformaldehyde-fixed and paraffin embedded spinal cord sections at the end-point (day 30) from 10 randomly selected rats from each group. Four μm thick sections were cut at 500 lam intervals throughout C and T-segment of the spinal cord. Altogether 10 spinal cord sections from C and T-segment were stained with primary anti-MBP antibodies (Abcam, 1:400 dilution #ab40390) and appropriate secondary antibodies to assess demyelination. The surface area of demyelinated lesions (% of demyelination from total white matter/section) in the sections was evaluated.

[0836] In addition to demyelination analysis, one set of slides from each selected rat was used for evaluation of inflammation by using anti-CD68 (Abcam, 1:500 dilution #ab31630) and appropriate secondary antibodies (BioSite Histo for anti-MBP antibodies, KDB-10046/for anti-CD68 antibodies, KDB-10007).

[0837] The slices were converted to images captured at defined light and filter settings in a bright field microscope (Axio Imager M2, Zeiss) equipped with a color CCD-camera (AxioCam MRc). Sections from each selected rats were analyzed for immunostaining intensity by Fiji image analysis software (ImageJ 1.46j): MBP immunostained sections were analyzed for unstained (demyelinated) areas and CD68 immunostained sections were analyzed for stained areas (CD68 immunoreactivity). The results were expressed as demyelinated lesion or CD68 stained surface area (mm2) as % of white matter area (mm2) covered by the sectioned area.

[0838] III.3. Statistical Analysis

[0839] All values are presented as mean±standard deviation (SD) and standard error of mean (SEM), and differences were considered to be statistically significant at the P<0.05 level. Statistical analysis was performed using StatsDirect statistical software. Differences among means were analyzed by using 1-way-ANOVA followed by Dunnet's test (comparison to the vehicle group). Non-parametric data was analyzed with Kruskal-Wallis ANOVA.

[0840] III.4. Results

[0841] III.4.1. Disease Incidence and Survival

[0842] Disease incidence was 100% (20/20) in all groups. Two animals had to be excluded from the study due to dosing error and worsened health status. Both animals were from the group dosed with compound 1 at the dose of 50 mg/kg.

[0843] To the end of the experiment, the overall survival rate was 72.4% (71/98). By groups, the mortality was as follows: 15.0% (3/20) in vehicle group, 0.0% (0/20) in compound 13 mg/kg group, 5.0% (1/20) in compound 110 mg/kg group of all the MOG1-125 inoculated rats in the study

[0844] III.4.2. Body Weight

[0845] The test animals were weighted during the experiment and the obtained results are shown in FIG. 2. FIG. 2 shows the effects of administration of compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg), and vehicle on body weight. As shown in FIG. 2, all rats from groups dosed with compound 1 (3 mg/kg, 10 mg/kg and 50 mg/kg) gained weight similarly than vehicle group during the course of the experiment (p>0.05).

[0846] III.4.3. Mean Disease Onset

[0847] Day of disease onset (DO) is the day when first visible symptoms are seen. The effects of orally administered compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg) and vehicle on mean disease onset are presented in FIG. 3. FIG. 3 shows the effects of administration of compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg), and vehicle on Mean Disease Onset, wherein data are presented as mean±SEM.

[0848] As shown in FIG. 3, visible symptoms started on the average between 7.65 and 8.55 days after MOG1-125 inoculation in all groups. There were differences in mean disease onset between vehicle and other treatment groups.

[0849] III.4.4. Histological Analysis

[0850] Histological evaluation was performed on paraformaldehyde-fixed and paraffin embedded spinal cord sections at the end-point (day 30) from 10 randomly selected rats from each group. The surface area of demyelinated lesions (% of demyelination from total white matter/section) in the sections was evaluated. In addition, one set of slides from each selected rat was used for evaluation of inflammation by using anti-CD68 and appropriate secondary antibodies.

[0851] The effects of orally administered compound 1 (doses 3 mg/kg, 10 mg/kg and 50 mg/kg), and vehicle on demyelination are presented in FIG. 4. FIG. 4 shows the effects of administration of compound 1 (doses 3 mg/kg (represented by Comp.1/3 mg), 10 mg/kg (represented by Comp.1/10 mg) and 50 mg/kg (represented by Comp.1/50 mg)), and vehicle on demyelination area (% of white matter area). As shown in FIG. 4, in demyelination analysis, test compound 1 treated groups showed significantly less demyelination than vehicle treated animals at all doses in all segments.

[0852] In addition, the proportional immunoreactivity (% of white matter area) of different groups in C and T segments is presented in FIG. 5. FIG. 5 shows the effects of compound 1 (doses 3 mg/kg (represented by Comp.1/3 mg), 10 mg/kg (represented by Comp.1/10 mg) and 50 mg/kg (represented by Comp.1/50 mg)), and vehicle on demyelination area (% of white matter area). As shown in FIG. 5, in histological CD68 immunoreactivity analysis, the test compound treated animals showed significantly less immunoreactivity in T segment and in combined C+T segments at all doses tested. In C segment, the immunoreactivity of compound 150 mg/kg treated group was significantly smaller than in vehicle group. (p<0.05, one-way ANOVA).

[0853] In conclusion, the test compound 1 treated animals showed significantly diminished demyelinated lesion volumes at all doses tested when compared to the vehicle treated animals. Furthermore, the test compound treated animals showed significantly reduced immunoreactivity at all doses in T-segment and combined C+T segments, and the highest dose (50 mg/kg) of test compound treated group showed also reduced immunoreactivity when only C-segment was analyzed.


Patent applications by Yong Moon Choi, Irvine, CA US

Patent applications by Bio-Pharm Solutions Co., Ltd.

Patent applications in class The benzene ring is attached to nitrogen through an acyclic carbon or carbon chain

Patent applications in all subclasses The benzene ring is attached to nitrogen through an acyclic carbon or carbon chain


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
PHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and imagePHENYLPROPYL CARBAMATE DERIVATIVES FOR USE IN PREVENTING OR TREATING     MULTIPLE SCLEROSIS diagram and image
Similar patent applications:
DateTitle
2012-11-01Warmi.rtm., natural alternative for the treatment of menopause
2012-10-25Adamantyl diamide derivatives and uses of same
2012-11-01Microrna-10 antagonists and microrna-10 targets for use in the treatment of a glioma
2012-09-06Plasma protein effective for suppressing cough
2012-10-25Mannose derivatives as antagonists of bacterial adhesion
New patent applications in this class:
DateTitle
2016-05-26N-optionally substituted aryl-2-oligomer-3-alkoxypropionamides
2016-01-21Phenyl carbamate compound and a composition for preventing or treating a memory loss-related disease comprising the same
2015-11-05Anhydrous and hemihydrate crystalline forms of an (r)-baclofen prodrug, methods of synthesis and methods of use
2015-05-14Phenylcarbamate compound and muscle relaxant containing the same
2014-10-02N-optionally substituted aryl-2-oligomer-3-alkoxypropionamides
New patent applications from these inventors:
DateTitle
2022-07-14Sulfamate derivative compounds for use in treating or alleviating a psychiatric disorder
2016-10-13Phenyl carbamate compounds for use in preventing or treating pediatric epilepsy and epilepsy-related syndromes
2014-09-18Phenyl carbamate compounds for use in preventing or treating pediatric epilesy and epilesy-related syndromes
2013-08-08Phenyl carbamate compounds for use in preventing or treating als
Top Inventors for class "Drug, bio-affecting and body treating compositions"
RankInventor's name
1Anthony W. Czarnik
2Ulrike Wachendorff-Neumann
3Ken Chow
4John E. Donello
5Rajinder Singh
Website © 2025 Advameg, Inc.