Patent application title: Compositions and Methods Relating to Proteins Requiring Gamma-Carboxylation
Inventors:
Medimmune Limited (Cambridge, GB)
Ann Lovgren (Sodertalje, SE)
Assignees:
MEDIMMUNE LIMITED
IPC8 Class: AC12N950FI
USPC Class:
435219
Class name: Hydrolase (3. ) acting on peptide bond (e.g., thromboplastin, leucine amino-peptidase, etc., (3.4)) proteinase
Publication date: 2013-03-14
Patent application number: 20130065295
Abstract:
The present invention relates a host cell comprising an expression vector
comprising a nucleic acid molecule encoding a protein requiring
gamma-carboxylation and associated expression control sequences and a
nucleic acid molecule encoding a vitamin K epoxido reductase and
associated expression control sequences and a nucleic acid molecule
encoding a γ-glutamyl carboxylase and associated control sequences.
The invention further relates to a method of producing a protein
requiring gamma-carboxylation in high yields.Claims:
1.-32. (canceled)
33. An in vitro host cell comprising: a first DNA comprising a sequence encoding factor VII operably linked to a first expression control sequence; a recombinant second DNA comprising a sequence encoding a vitamin K epoxidoreductase (VKOR) operably linked to a second expression control sequence; and a third DNA comprising a sequence encoding a γ-glutamyl carboxylase operably linked to a third expression control sequence, wherein mRNA encoding the factor VII and mRNA encoding the VKOR are expressed in the cell in a ratio of at least 10:1.
34. The in vitro host cell of claim 33, wherein mRNA encoding factor VII and mRNA encoding the γ-glutamyl carboxylase are expressed in the cell in a ratio of at least 10:1.
35. The in vitro host cell of claim 33, wherein the first DNA and the second DNA are located on a single expression vector in the cell.
36. The in vitro host cell of claim 33, wherein the first DNA, the second DNA, and the third DNA are located on a single expression vector in the cell.
37. The in vitro host cell of claim 33, wherein the first expression control sequence comprises a first promoter, the second expression control sequence comprises a second promoter, and the activity of the first promoter is greater than the activity of the second promoter in the host cell.
38. The in vitro host cell of claim 37, wherein the first promoter is selected from the group consisting of: human cytomegalovirus (hCMV) immediate-early promoter, human elongation factor-1.alpha.subunit gene promoter (eEF-1.alpha.), Rous sarcoma virus promoter (pRSV), and human ubiquitin promoter (pUbC).
39. The in vitro host cell of claim 38, wherein the first promoter is hCMV immediate-early promoter, and the second promoter is simian virus 40 (SV40) early promoter.
40. The in vitro host cell of claim 37, wherein the third expression control sequence comprises a third promoter, and the activity of the first promoter is greater than the activity of the third promoter in the host cell.
41. The in vitro host cell of claim 33, wherein the host cell is a mammalian cell.
42. The in vitro host cell of claim 33, wherein the host cell is a yeast cell or an insect cell.
43. The host cell of claim 33, wherein the cell is a Chinese hamster ovary (CHO) cell, a human embryonic kidney (HEK) cell, a mouse myeloma (NS0) cell, a human retinal (Per C.6) cell, or an African green monkey fibroblast-like kidney (COS) cell.
44. A method for producing a composition, the method comprising: (a) providing a recombinant cell comprising a first DNA encoding factor VII operably linked to a first expression control sequence, a recombinant second DNA encoding a vitamin K epoxidoreductase (VKOR) operably linked to a second expression control sequence, and a third DNA encoding a γ-glutamyl carboxylase operably linked to a third expression control sequence; (b) culturing the cell in vitro under conditions suitable for expressing each DNA, wherein (i) mRNA encoding factor VII and mRNA encoding the VKOR are expressed in the cell in a ratio of at least 10:1, and (ii) the factor VII is carboxylated in the cell, thereby producing γ-carboxylated factor VII; and (c) isolating the γ-carboxylated factor VII or an activated form thereof.
45. The method of claim 44, further comprising: (d) preparing a pharmaceutical composition comprising the isolated γ-carboxylated factor VII or an activated form thereof.
46. The method of claim 44, wherein mRNA encoding factor VII and mRNA encoding the γ-glutamyl carboxylase are expressed in the cell in a ratio of at least 10:1.
47. The method of claim 44, wherein both the first and third DNA are located on a single expression vector in the cell.
48. The method of claim 44, wherein the first, second, and third DNA are located on a single expression vector in the cell.
49. The method of claim 44, wherein the first expression control sequence comprises a first promoter, the second expression control sequence comprises a second promoter, and the activity of the first promoter is greater than the activity of the second promoter in the cell.
50. The method of claim 44, wherein the first promoter is selected from the group consisting of: human cytomegalovirus (hCMV) immediate-early promoter, human elongation factor-1.alpha. subunit gene promoter (eEF-1.alpha.), Rous sarcoma virus promoter (pRSV), and human ubiquitin promoter (pUbC).
51. The method of claim 50, wherein the first promoter is hCMV immediate-early promoter and the second promoter is simian virus 40 (SV40) early promoter.
52. The method of claim 44, wherein the first expression control sequence comprises a first promoter, the second expression control sequence comprises a second promoter, the third expression control sequence comprises a third promoter, and the activity of the first promoter is greater than the activity of the third promoter in the cell.
53. The method of claim 52, wherein the first promoter is selected from the group consisting of: hCMV immediate-early promoter, pEF-1.alpha., pRSV, and pUbC.
54. The method of claim 52, wherein the first promoter is hCMV immediate-early promoter, and the third promoter is SV40 early promoter.
55. The method of claim 52, wherein the activity of the first promoter is greater than the activity of each of the second and third promoters in the cell.
56. The method of claim 55, wherein the first promoter is selected from the group consisting of: hCMV immediate-early promoter, pEF-1.alpha., pRSV, and pUbC.
57. The method of claim 55, wherein the first promoter is hCMV immediate-early promoter, and each of the second and third promoters is SV40 early promoter.
58. The method of claim 44, wherein the cell is a mammalian cell.
59. The method of claim 44, wherein the cell is a yeast cell or an insect cell.
60. The method of claim 44, wherein the cell is a Chinese hamster ovary (CHO) cell, a human embryonic kidney (HEK) cell, a mouse myeloma (NS0) cell, a human retinal (Per C.6) cell, or an African green monkey fibroblast-like kidney (COS) cell.
Description:
TECHNICAL FIELD
[0001] The present invention relates a host cell comprising an expression vector comprising a nucleic acid molecule encoding a protein requiring gamma-carboxylation and associated expression control sequences and a nucleic acid molecule encoding a vitamin K epoxido reductase and associated expression control sequences, and a γ-glutamyl carboxylase and associated control sequences. The invention further relates to a method of producing a protein requiring gamma-carboxylation in high yields.
BACKGROUND TO THE INVENTION
[0002] Bleeding is a common clinical problem. It is a consequence of disease, trauma, surgery and medicinal treatment. It is imperative to mechanically stop the bleeding. This may be difficult or even impossible due to the location of the bleeding or because it diffuses from many (small) vessels. Patients who are bleeding may thus require treatment with agents that support haemostasis. This may be blood-derived products (haemotherapy), agents that cause the release of endogenous haemostatic agents, recombinant coagulation factors (F), or agents that delay the dissolution of blood clots.
[0003] The first line treatment among the blood derived products, often obtained from the local hospital, are whole blood for volume substitution and support of haemostasis, packed red cells for the improvement of oxygen transporting capacity, platelet concentrates to raise the number of platelets (if low or defective) and fresh frozen plasma for support of the haemostasis (blood coagulation and platelet aggregation). Second line plasma derived products that support haemostasis are plasma cryoprecipitate, prothrombin complex concentrates, activated prothrombin complex concentrates and purified coagulation factors. Several coagulation factors are today available as human recombinant proteins, inactive (coagulation factors VIII and IX) and activated (coagulation factor VIIa).
[0004] Haemophilia is an inherited or acquired bleeding disorder with either abnormal or deficient coagulation factor or antibodies directed towards a coagulation factor which inhibits the procoagulant function. The most common haemophilias are haemophilia A (lack coagulation factor VIII) and haemophilia B (factor IX). The purified or recombinant single coagulation factors are the main treatment of patients with haemophilia. Patients with inhibitory antibodies posses a treatment problem as they may also neutralise the coagulation factor that is administered to the patient.
[0005] The active form of Protein C (APC) is an inhibitor of plasma coagulation by degradation of the activated coagulation factors Va and VIIIa. Recombinant APC has been shown to be an effective treatment of undue plasma coagulation in patients with sepsis.
[0006] Coagulation factors for therapeutic use can be obtained from human plasma, although the purification process is not simple and requires many steps of which several aim at eliminating contaminating viruses. But even with extensive safety measures and testing of blood-derived products, contamination with infectious viruses or prions cannot be ruled out. Because of this risk it is highly desirable to produce human therapeutic proteins from recombinant cells grown in media without animal derived components. This is not always straightforward as many proteins require a mammalian host to be produced in a fully functional form, i.e. be correctly post-translationally modified. Among the coagulation factors commercially produced in recombinant cells are FVII (NovoSeven), FVIII (Kogenate, Recombinate, Refacto) and FIX (BeneFix) (Boddie and Ludlam. Blood Rev. 11:169-177, 1997) and Active Protein C (Xigris). One of the major obstacles in obtaining large amounts of fully functional recombinant human coagulation factors lies in the Gla-domain present in FE, FVII, FIX, FX, Protein S and Protein C. This domain contains glutamic acid residues that are post-translationally modified by addition of carboxyl groups. The production of these factors are hampered by the fact that over-expression of them result in under-carboxylated, and hence inactive, protein. The Gla modifications are a result of the action of a vitamin K-dependent enzyme called γ-glutamyl carboxylase (GGCX). This enzyme has been extensively studied by many scientists, particularly those involved in coagulation factor research (WO-A-8803926; Wu et al. Science 254(5038):1634-1636, 1991; Rehemtulla et al., Proc Nail Acad Sci USA 90:4611-4615, 1993; Stanley J. Biol. Chem. 274(24):16940-16944, 1999; Vo et al., FEBS letters 445:256-260, 1999; Begley et al., The Journal of Biological Chemistry 275(46):36245-36249, 2000; Walker et al., The Journal of Biological Chemistry 276(11):7769-7774, 2001; Bandyopadhyay, et al. Proc Natl Acad Sci USA 99(3):1264-1269, 2002; Czerwiec et al., Eur J Biochem 269:6162-6172, 2002; Hallgren et al., Biochemistry 41(50):15045-15055, 2002; Harvey et al., The Journal of Biological Chemistry 278(10):8363-8369, 2003). Attempts to co-express GGCX with coagulation factor FIX has been tried by at least two scientific groups but were not successful (Rehemtulla, et al. 1993, ibid; Hallgren et al. 2002, ibid). Considering the large interest in GGCX enzymes, it may be assumed that many more trials have failed and thus have not been reported. GGCX requires reduced vitamin K as a cofactor. The reduced vitamin K is by GGCX converted to vitamin K epoxide, which is recycled to reduced vitamin K by Vitamin K epoxidoreductase (VKOR). Thus for efficient vitamin K dependent carboxylation of proteins two enzymes are required, GGCX and VKOR. Cloning and identification of VKOR was reported 2004 (Li et al., Nature 427:541-543, 2004, Rost et al., Nature 427:537-541, 2004). The VKOR protein is a 163 amino acid polypeptide with at least one predicted transmembrane region. From recombinant cells expressing VKOR activity is localized to the microsomal subcellular fraction.
[0007] For human FII (prothrombin) at least 8 out of 10 Glu residues have to be correctly modified in order to obtain fully functional prothrombin (Malhotra, et al., J. Biol. Chem. 260:279-287, 1985; Seegers and Walz Prothrombin and other vitamin K proteins', CRC Press, 1986). Similarly, human coagulation factor IX clotting activity require γ-carboxylation of at lest 10 out of 12 glutamic residues in the Gla-domain (White et al, Thromb. Haemost. 78:261-265, 1997). Extensive efforts to obtain high production levels of rhFII have been made using several different systems such as CHO cells, BHK cells, 293 cells and vaccinia virus expression systems, but have all failed or resulted in an under-carboxylated product and thus functionally inactive prothrombin (Jorgensen et al., J. Biol. Chem. 262:6729-6734, 1987; Russo et al., Biotechnol Appl Biochem 14(2):222-233, 1991; Fischer et al., J Biotechnol 38(2):129-136, 1995; Herlitschka et al. Protein Expr. Purif. 8(3):358-364, 1996; Russo et al., Protein Expr. Purif. 10:214-225, 1997; Vo et al. 1999, ibid; Wu and Suttie Thromb Res 96(2):91-98, 1999). Earlier reported productivities for carboxylated recombinant human prothrombin are low; 20 mg/L for mutant prothrombin (Cote et al., J. Biol. Chem 269:11374-11380, 1994), 0.55 mg/L for human prothrombin expressed in CHO cells (fully carboxylated, Jorgensen et al. 1987, ibid), 25 mg/L in CHO cells (degree of carboxylation not shown, Russo et al. 1997, ibid).
[0008] As far as known co-expression of a protein requiring γ-carboxylation and VKOR has not been reported earlier.
[0009] WO 92/19636 discloses the cloning and sequence identification of a human and bovine vitamin K dependent carboxylase. The application suggests co-expressing the vitamin K dependent carboxylase and a vitamin K dependent protein in a suitable host cell in order to prepare the vitamin K dependent protein. No co-expression of the carboxylase and vitamin K dependent protein is exemplified.
[0010] WO 92/19636 discloses the cloning and sequence identification of a human and bovine vitamin K dependent carboxylase. The application suggests co-expressing the vitamin K dependent carboxylase (GGCX) and a vitamin K dependent protein in a suitable host cell in order to prepare the vitamin K dependent protein. No co-expression of the carboxylase and vitamin K dependent protein is exemplified.
[0011] WO 2005/038019 claims a method of increasing the overall productivity of ?-carboxylated protein by a controlled co-expression of ?-carboxylated protein and GGCX. The invention is examplified with improved productivity of coagulation factors II and FIX.
[0012] WO 2005/030039 suggests co-expression of vitamin K dependent proteins with Vitamin K epoxide reductase (VKOR) in order to improve ?-carboxylation. However, no such co-expression expression is exemplified.
[0013] Co-expression of coagulation factor X (FX) and VKOR has been shown to improve the share of ?-carboxylated protein by Sun et al. (Blood 106: 3811-3815, 2005). Wajih et al. (JBC 280:31603-31607, 2005) has in addition demonstrated improved share of ?-carboxylated coagulation factor IX (FIX) by co-expression with VKOR. Both publications reported that VKOR incresed the share of ?-carboxylated protein but VKOR co-expression did not improve the overall productivity of coagulation factor.
[0014] There is a need for improved methods to produce activated blood clotting factors in high yields. The present invention sets out to address this need.
SUMMARY OF THE INVENTION
[0015] According to a first aspect of the invention there is provided a host cell comprising an expression vector comprising a nucleic acid molecule encoding a protein requiring gamma-carboxylation and associated expression control sequences, and an expression vector comprising a nucleic acid molecule encoding a vitamin K epoxidoreductase and associated expression control sequences, wherein the host cell further comprises a nucleic acid. molecule encoding a γ-glutamyl carboxylase and associated expression control sequences.
[0016] In another aspect, a cell is provided which is engineered to express (i) a protein which requires gamma-carboxylation, and (ii) vitamin K epoxidoreductase, wherein the proteins (i) and (ii) are expressed in a ratio between 10:1 and 500:1.
[0017] According to a further aspect a genetically modified eukaryotic host cell is provided comprising: (i) a polynucleotide encoding vitamin K epoxidoreductase protein wherein said vitamin K epoxidoreductase protein encoding sequence is operably linked to expression control sequences permitting expression of vitamin K epoxidoreductase protein by said cell; (ii) a polynucleotide encoding a protein requiring carboxylation by the γ-glutamyl carboxylase protein operably linked to expression control sequences permitting expression of said protein requiring carboxylation by said cell, and (iii) a polynucleotide encoding gamma-glutamyl carboxylase
[0018] According to yet another aspect a vector is provided comprising a nucleic acid molecule encoding a protein requiring gamma-carboxylation and associated expression control sequences and a nucleic acid molecule encoding a vitamin K epoxidoreductase and associated expression control sequences.
[0019] According to another aspect a method is provided for producing gamma-carboxylated protein comprising: (i) culturing a cell expressing a recombinant protein which requires gamma-carboxylation, vitamin K epoxidoreductase and a γ-glutamyl carboxylase and (ii) isolating gamma-carboxylated protein.
[0020] According to another aspect a method is provided of producing a pharmaceutical composition suitable for inducing blood clotting or promoting increased or decreased coagulation, comprising purifying active carboxylated protein produced according to the above methods and admixing the purified carboxylated protein with one or more pharmaceutically acceptable carriers or excipients.
[0021] According to a further aspect a method is provided of promoting increased or decreased coagulation in a subject comprising administering a pharmacologically effective amount of an isolated gamma-carboxylated protein obtained by the above methods to a patient in need thereof.
[0022] The protein requiring gamma-carboxylation produced by the methods of the present invention can be used in haemostatic or antithrombothic therapy.
BRIEF DESCRIPTION OF FIGURES
[0023] FIG. 1 shows a plasmid map of F10NopA (factor X+GGCX) co-expression vector and a plasmid map of VKORzeo (VKOR) expression vector.
[0024] FIG. 2. shows plasmid maps of vectors used for co-expression of FII, GGCX and VKOR
DETAILED DESCRIPTION OF THE INVENTION
[0025] According to a first aspect of the invention there is provided a host cell comprising an expression vector comprising a nucleic acid molecule encoding a protein requiring gamma-carboxylation and associated expression control sequences, and an expression vector comprising a nucleic acid molecule encoding a vitamin K epoxidoreductase and associated expression control sequences, wherein the host cell further comprises a nucleic acid molecule encoding a γ-glutamyl carboxylase and associated expression control sequences. In one embodiment said nucleic acid molecule encoding a protein requiring gamma-carboxylation and associated expression control sequences comprises a first promoter, and said nucleic acid molecule encoding a vitamin K epoxidoreductase and associated expression control sequences comprises a second promoter. In another embodiment the first promoter is sufficiently stronger than the second promoter so that the protein requiring gamma-carboxylation and the vitamin K epoxidoreductase are expressed in a ratio of at least 10:1. In another embodiment the first promoter is sufficiently stronger than the second promoter so that the protein requiring gamma-carboxylation and the vitamin K epoxidoreductase are expressed in a ratio of at least 5:1.
[0026] In another embodiment the cell further comprises a nucleic acid molecule encoding a γ-glutamyl carboxylase and associated expression control sequences. In one embodiment, the nucleic acid molecule encoding a γ-glutamyl carboxylase and associated expression control sequences further comprises a third promoter, wherein the first promoter is sufficiently stronger than the third promoter so that the protein requiring gamma-carboxylation and the γ-glutamyl carboxylase are expressed in a ratio of at least 10:1. In another embodiment the first promoter is sufficiently stronger than the second promoter so that the protein requiring gamma-carboxylation and the vitamin K epoxidoreductase are expressed in a ratio of at least 5:1.
[0027] The first promoter can be human cytomegalovirus (hCMV) immediate-early promoter and the second and third promoter can be SV40 early promoter.
[0028] In one particular embodiment, both the nucleic acid molecule encoding the protein requiring gamma-carboxylation and associated expression control sequences, and the nucleic acid molecule encoding the Vitamin K epoxidoreductase, and optionally the γ-glutamyl carboxylase, and associated expression control sequences are located on the same expression vector. In another embodiment these two or optionally three nucleic acid molecules are located on two or more separate expression vectors.
[0029] In another aspect a cell is provided which is engineered to express (i) a protein which requires gamma-carboxylation, and (ii) vitamin K epoxidoreductase, wherein the proteins (i) and (ii) are expressed in a ratio between 10:1 and 500:1. In another embodiment, the proteins (i) and (ii) are expressed in a ratio between 5:1 and 500:1
[0030] The protein which requires gamma-carboxylation is selected from the group consisting of coagulation factor VII, coagulation FVII, coagulation factor IX, coagulation FIX, prothrombin, coagulation factor II, coagulation FIT, coagulation factor X, coagulation FIX, and their activated forms FVIIa, FIXa, FXa, Protein C, Protein S, Protein Z, Bone Gla protein, Matrix Gla protein, Growth arrest-specific protein 6, snake venom proteases similar to coagulation factors such as Factor X-like snake venom proteases, and Acanthophiinae FXa-like protein.
[0031] In one embodiment, the protein which requires gamma-carboxylation is a vitamin K dependent coagulation factor. In another embodiment, the protein which requires gamma-carboxylation is Factor IX. In a third embodiment, the protein which requires gamma-carboxylation is prothrombin. In a forth embodiment, the protein which requires gamma-carboxylation is Factor X. In a fifth embodiment, the protein which requires gamma-carboxylation is factor VII.
[0032] The protein which requires gamma-carboxylation is preferably a human protein but all eukaryotic proteins is encompassed by the invention. Vitamin K epoxidoreductase is preferably a human protein but all eukaryotic Vitamin K epoxidoreductases can be used in the present invention. γ-glutamyl carboxylase is preferably a human protein but all eukaryotic γ-glutamyl carboxylases can be used in the present invention.
[0033] According to a further aspect a genetically modified eukaryotic host cell is provided comprising:
(i) a polynucleotide encoding vitamin K epoxidoreductase protein wherein said vitamin K epoxidoreductase protein encoding sequence is operably linked to expression control sequences permitting expression of vitamin K epoxidoreductase protein by said cell; and (ii) a polynucleotide encoding a protein requiring carboxylation by the γ-glutamyl carboxylase protein operably linked to expression control sequences permitting expression of said protein requiring carboxylation by said cell. (iii) a polynucleotide encoding gamma-glutamyl carboxylase wherein said gamma-glutamyl carboxylase protein encoding sequence is operably linked to expression control sequences permitting expression of gamma-glutamyl carboxylase protein by said cell
[0034] In one embodiment, the cell is capable of expressing the vitamin K epoxidoreductase protein and the protein requiring carboxylation in the ratio of at least 1:10. In another embodiment, said ratio is at least 1:5.
[0035] The host cell is preferably a eukaryotic cell. Typical host cells include, but are not limited to insect cells, yeast cells, and mammalian cells. Mammalian cells are particularly preferred. Suitable mammalian cells lines include, but are not limited to, CHO, HEK, NS0, 293, Per C.6, BHK and COS cells, and derivatives thereof. In one embodiment the host cell is the mammalian cell line CHO-S.
[0036] According to yet another aspect a vector is provided comprising a nucleic acid molecule encoding a protein requiring gamma-carboxylation and associated expression control sequences and a nucleic acid molecule encoding a vitamin K epoxidoreductase and associated expression control sequences. In one embodiment the nucleic acid molecule encodes a protein requiring gamma-carboxylation and associated expression control sequences comprises a first promoter, and the nucleic acid molecule encoding a vitamin K epoxidoreductase and associated expression control sequences comprises a second promoter. The first promoter can be sufficiently stronger than the second promoter so that the protein requiring gamma-carboxylation and the vitamin K epoxidoreductase are expressed in a ratio of at least 10:1. In another embodiment this ratio is 5:1. The vector could also comprise a nucleic acid molecule encoding a γ-glutamyl carboxylase and associated expression control sequences. Said nucleic acid molecule encoding a γ-glutamyl carboxylase and associated expression control sequences could comprise a third promoter, wherein the first promoter is sufficiently stronger than the third promoter so that the protein requiring gamma-carboxylation and γ-glutamyl carboxylase are expressed in a ratio) of at least 10:1. In another embodiment this ratio is 5:1. The protein which requires gamma-carboxylation can be selected from the group consisting of coagulation factor VII, coagulation FVII, coagulation factor IX, coagulation FIX, prothrombin, coagulation factor II, coagulation FII, coagulation factor X, coagulation FX, and their activated forms FVIIa, FIXa, Fxa, snake venom proteases similar to coagulation factors such as Factor X-like snake venom proteases and Acanthophiinae FXa-like protein, Protein C, Protein S, Protein Z, Bone Gla protein, Matrix Gla protein, Growth arrest-specific protein 6.
[0037] According to another aspect a method is provided for producing gamma-carboxylated protein comprising: (i) culturing a cell expressing a recombinant protein which requires gamma-carboxylation, vitamin. K epoxidoreductase and a γ-glutamyl carboxylase and (ii) isolating gamma-carboxylated protein.
[0038] Said cell expresses the protein which requires gamma-carboxylation and vitamin K epoxidoreductase in a ratio of at least 10:1, under conditions suitable for expression of both proteins.
[0039] The vitamin K dependent coagulation factors (EII, FVII, FIX, FX and their activated forms EIIa or thrombin, FVIIa, FIXa, FXa) produced by the present method of co-expression with VKOR alone or in combination with GGCX can be expected to be useful in the prevention and treatment of bleeding following trauma, surgery or diseases of the liver, kidneys, platelets or blood coagulation factors (haemophilia). Likewise the coagulation factor Protein C and its activated form APC can be expected to be useful in the prevention and treatment of disorders of increased coagulation with or without decreased levels of Protein C. The method is also applicable to other proteins that require post-translational carboxylation.
[0040] The present invention will be applicable to improve the productivity of any protein that is dependent on γ-carboxylation, such proteins include, but are not limited to: prothrombin, coagulation factor II (FII), coagulation factor VII (FVII), coagulation factor IX (FIX), coagulation factor X (FX), Protein C, Protein S, Protein Z, Bone Gla protein (also known as: BGP or osteocalcin), Matrix Gla protein (MGP), proline rich Gla polypeptide 1 (PRRG1), proline rich Gla polypeptide 2 (PRRG2), Growth arrest-specific protein 6 (Gas 6). Other suitable proteins are: FXa-like protein in venom of elapid snake (subfamily Acanthophiinae) and cone snail venom (Conus textile).
[0041] Each of these proteins, including their nucleic acid and amino acid sequences, are well known. Table 1 identifies representative sequences of wild-type and mutant forms of the various proteins that can be used in the present invention.
TABLE-US-00001 TABLE 1 CDNA SPLICE VARIANTS GENE EMBL DESCRIPTION EMBL ACC# (PROTEIN) MUTATIONS ACC# Glutamate gamma BC013979 2; BC013979; AF253530 1 SNP (EMBL# U65896 carboxylase U65896); 2 SNPs (OMIM# 137167) Prothrombin V00595 1; V00595 approx. 100 SNP's AF478696 (EMBL# AF478696) Factor VII AF466933 4; AF466933; AF272774; 21 SNPs (OMIM# J02933 AR030786; AAN60063 277500) Factor IX A01819 3; A01819; A34669; 5 SNPs (EMBL# AF536327 M19063 AF536327); 108 SNPs (OMIM# 306900) Factor X BC046125 4; BC040125; M57285; 118 SNPs AF503510 AR095306; AB005892 (EMBL# AF503510); 14 SNPs (OMIM# 227600) Protein C BC034377 7; AB083690; AB083693; 57 SNPs (EMBL# AF378903 I09623; S50739; S72338 AF378903); 25 SNPs (OMIM# 176860) Osteocalcin AF141310 5; AF141310; AF141310; X04143 BC033656; X04143; X51699 Matrix GLA protein BC005272 1; BC005272 Growth arrest- BC038984 1; BC038984 specific 6; AXL stimulatory factor Protein Z M55670 2; AB033749; AB033749 Proline-rich Gla (G- AF009242 2; AF009242; BC030786 carboxyglutamic acid) polypeptide 1 Proline-rich Gla (G- AF009243 2; AF009243; BC026032 carboxyglutamic acid) polypeptide 2 Vitamin K- BC015801 1; BC015801 approx. 100 AY308744 dependent protein SNPs (EMBL# S precursor AY308744); 8 SNPs (OMIM# 176880) Snake venom FX- AY769963 Add more? like proteases AAT42490 AAT42491 AAX37260 AAX37261 AAX37262 AAX37263 AAX37264 AAV34695
[0042] It will be appreciated that the invention is not restricted to a particular protein or protein encoding sequence of one of these proteins to be co-expressed. Moreover, and in particular with respect to blood coagulation factors, numerous mutant forms of the proteins have been disclosed in the art. The present invention is equally applicable to these mutant forms, including naturally occurring allelic variants, of the proteins as it is to wild-type sequence. In one embodiment the invention can be undertaking with any wild-type protein or one with at least 90%, preferably at least 95% sequence identity thereto.
[0043] The sequence identity between two sequences can be determined by pair-wise computer alignment analysis, using programs such as, BestFit, Gap or FrameAlign. The preferred alignment tool is BestFit. In practise, when searching for similar/identical sequences to the query search, from within a sequence database, it is generally necessary to perform an initial identification of similar sequences using suitable software such as Blast, Blast2, NCBI Blast2, WashU Blast2, FastA, Fasta3 and PILEUP, and a scoring matrix such as Blosum 62. Such software packages endeavour to closely approximate the "gold-standard" alignment algorithm of Smith-Wateinian. Thus, the preferred software/search engine program for use in assessing similarity, i.e., how two primary polypeptide sequences line up is Smith-Waterman. Identity refers to direct matches, similarity allows for conservative substitutions.
[0044] The term vitamin K epoxidoreductase or "VKOR", as used herein, refers to an enzyme that catalyses reduction of vitamin K epoxide and vitamin K to form reduced vitamin K.
[0045] Vitamin K reductases are widely distributed, and have been cloned from, several different species such as mouse (Mus musculus), rat (Rattus norveigicus), chicken (Gallus gallus) and cow (Bos taurus). Homolgous proteins can be predicted from sequences from organisms of widely dispersed phylogenetic origin such as mammals, birds, amphibians, bony fishes, flies, kinetoplastids and bacteria. Table 2 represents a non-limiting list of representative sequences of predicted proteins homologous to human VKOR (sorted after species origin) that can be used in the present invention.
TABLE-US-00002 TABLE 2 Species Data base accession #/ID Homo sapiens (man) NP_775788 NP_996560 AAR28759 AAQ13668 AAQ88821 CAH10673 Bos taurus (bovine) NP_001003903 Mus musculus (mouse) NP_848715 BAB26325 NP_001001327 Rattus norveigicus (rat) NP_976080 NP_976083 AAQ91028 Gallus gallus (chicken) NP_001001328 NP_996530 Xenopus laevis (clawed frog) AAH43742 AAH77384 Xenopus tropicalis (amphibians) AAH76993 Tetraodon nigroviridis (bony fishes) CAF98534 CAG07588 Takifugo rubripes (torafugo) AAR82913 AAR82912 Anopheles gambiae (mosquito) XP_310541 EAA06271 Drosophila melanogaster (fruit fly) DAA02561 Trypanosoma brucei (protozoa) XP_340583 Corynebacterium efficiens (high GC Gram+ NP_737490 bacteria) Corynebacterium glutamicum (high GC NP_600038 Gram+ bacteria) Mycobacterium leprae (high GC Gram+ NP_302145 bacteria)
[0046] The term "γ-glutamyl carboxylase" or "GGCX", as used herein, refers to a vitamin K dependent enzyme that catalyses carboxylation of glutamic acid residues.
[0047] GGCX enzymes are widely distributed, and have been cloned from many different species such as the beluga whale Delphinapterus leucas, the toadfish Opsanus tau, chicken (Gallus gallus), hagfish (Myxine glutinosa), horseshoe crab (Limulus polyphemus), and the cone snail Conus textile (Begley et al., 2000, ibid; Bandyopadhyay et al. 2002, ibid). The carboxylase from conus snail is similar to bovine carboxylase and has been expressed in COS cells (Czerwiec et al. 2002, ibid). Additional proteins similar to GGCX can be found in insects and prokaryotes such as Anopheles gambiae, Drosophila melanogaster and Leptospira with NCBI accession numbers: gi 31217234, gi 21298685, gi 24216281, gi 24197548 and (Bandyopadhyay et al., 2002, ibid), respectively. The carboxylase enzyme displays remarkable evolutionary conservation. Several of the non-human enzymes have shown, or may be predicted to have, activity similar to that of the human GGCX we have used, and may therefore be used as an alternative to the human enzyme.
[0048] Table 3 identifies representative sequences of predicted proteins homologous to human GGXC (sorted after species origin) that can be used in the present invention.
TABLE-US-00003 TABLE 3 Species Data base accession #/ID Homo sapiens (man) NM_000821.2 HUMGLUCARB HUMHGCA BC004422 HSU65896 AF253530.1 Papio hamadryas (red baboon) AC116665.1 Delphinapterus leucas (white whale) AF278713 Bos taurus (bovine) NM_174066.2 BOVCARBOXG BOVBGCA Ovis aries (domestic sheep) AF312035 Rattus norvegicus (brown rat) NM_031756.1 AF065387 Mus musculus (mouse) NM_019802.1 AP087938 Opsanus tau (bony fishes) AF278714.1 Conus textile (molluscs) AY0044904.1 AP382823.2 Conus imperialis (molluscs) AF448234.1 Conus episcopatus (molluscs) AF448233.1 Conus omaria (molluscs) AF448235.1 Drosophila melanogaster (fruit fly) NM_079161.2 Anopheles gambiae (mosquito) XM_316389.1 Secale cereale (monocots) SCE314767 Triticum aestivum (common wheat) AF280606.1 Triticum urartu (monocots) AY245579.1 Hordeum vulgare (barley) BLYHORDCA Leptospira interrogans (spirochetes) AE011514.1 Streptomyces coelicolor (high GC SCO939109 Gram+ bacteria) SCO939124 AF425987.1 Streptomyces lividans (high GC SLU22894 Gram+ bacteria) Streptomyces viginiae (high GC SVSNBDE Gram+ bacteria) Micrococcus luteus (high GC Gram+ MLSPCOPER bacteria) Chlamydomonas reinhardtii (green AF479588.1 algae) Dictyostelium discoideum (slime AC115612.2 mold) Coturnix coturnix (birds) AF364329.1 Bradyrhizobium japonicum AP005937.1 (α-protoebacteria) Rhodobacter sphaeroides RSY14197 (α-proteobacteria) Sinorhizobium meliloti RME603647 (α-proteobacteria) AF119834 Mesorhizobium loti AP003014.2 (α-proteobacteria) Chromobacterium violaceum AE016910.1 (β-proteobacteria) AE016918.1 Pseudomonas aeruginosa AE004613.1 (γ-proteobacteria) AF165882 Xanthomonas axonopodis AE011706.1 (γ-proteobacteria) Human herpesvirus 8 KSU52064 KSU75698 AF305694 AF360120 AF192756
[0049] Each of the above-identified GGCX proteins can be used as the carboxylase enzyme in the present invention.
[0050] One way to effect the co-expressed proteins is to use different promoters as part of the respective expression control sequences. The art is replete with examples of different cloning vectors, promoters and other expression control sequences that are capable of expressing heterologous proteins to differing degrees or extents. Recombinant expression technology is suitably advanced such that a person skilled in the art of protein expression is able to select promoters and other control sequences to bring about co-expression of the protein requiring carboxylation, vitamin K epoxidoreductase and, optionally, the γ-carboxylase. The selection of which particular promoters and other expression control sequences to use is a matter of individual choice
[0051] In one embodiment, the control sequences associated with the protein requiring gamma-carboxylation comprise a strong promoter. In one embodiment this is the human cytomegalovirus (hCMV) immediate-early promoter. A strong promoter is here defined as a promoter giving rise to at least 5-fold higher numbers of mRNA transcripts than a weak promoter used in the same cell under similar conditions.
[0052] In another embodiment, the control sequences associated with the vitamin K epoxido reductase, and when present the γ-glutamyl carboxylase, comprises a weak promoter. In one embodiment this is SV40 early promoter. In another embodiment the protein requiring gamma-carboxylation and the vitamin K epoxido reductase, and optionally the γ-glutamyl carboxylase, are under the control of different promoter elements with the promoter controlling expression of the vitamin K epoxido reductase, and optionally the γ-glutamyl carboxylase, being weaker that the promoter controlling expression of the protein requiring gamma-carboxylation.
[0053] The invention has been exemplified by use of the strong CMV promoter (Boshart et al. Cell 41:521-530, 1985) to over-express Factor X and the weaker SV40 promoter (Wenger et al. Anal Biochem 221:416-418, 1994) to control the expression of vitamin K epoxido reductase and optionally the GGCX expression. Other strong promoter that could be used according to the present invention include, but are not limited to, pEF-1α [human elongation factor-1α subunit gene) (Mizushima and Nagata, Nuc Acids Res 18:5322, 1990; Goldman et al., BioTechniques 21:1013-1015, 1996)], pRSV [Rous sarcoma virus (Gorman et al., Proc Natl Acad Sci USA 79:6777-6781, 1982)] and pUbC [human ubiquitin (Schorpp et al., Nuc Acids Res 24:1787-1788, 1996)].
[0054] The invention also extends to purified gamma carboxylated protein produced by the methods of the present invention and their use in coagulant therapy.
[0055] According to yet another aspect of the invention there is provided a method of promoting increased or decreased coagulation in a subject comprising administering a pharmacologically effective amount of an isolated gamma-carboxylated protein obtained by the above-described methods to a patient in need thereof.
[0056] According to a further aspect of the invention there is provided a method of producing a pharmaceutical composition suitable for inducing blood clotting, comprising purifying active carboxylated protein expressed from a host cell adapted to express a protein requiring gamma-carboxylation and γ-glutamyl carboxylase in a ratio of at least 5:1 and admixing the purified carboxylated protein with one or more pharmaceutically acceptable carriers or excipients.
[0057] The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art, but will most likely be in a form suitable for injection, either parenterally or directly into the wound site.
[0058] Powders suitable for preparation of an aqueous preparation for injection, by the addition of a suitable diluent, generally contain the active ingredient together with suitable carriers and excipients, suspending agent and one or more stabilisers or preservatives. The diluent may contain other suitable excipients, such as preservatives, tonicity modifiers and stabilizers.
[0059] The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these. Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate.
[0060] The pharmaceutical compositions of the invention may also be in the form of a sterile solution or suspension in a non-toxic parenterally acceptable diluent or solvent, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above. A sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1,3-butanediol.
[0061] For further information on Formulation the reader is referred to Chapter 25.2 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990; or, Volume 99 of Drugs and the pharmaceutical sciences; Protein formulation and delivery (Eugen J. McNally, executive editor), Marcel Dekker Inc 2000.
[0062] The amount of active ingredient that is combined with one or more excipients to produce a single dosage faun will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for injection to humans will generally contain, for example, from 0.2 mg to 6 g or from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. Dosage unit forms will generally contain about 0.2 mg to about 10 g or about 1 mg to about 500 mg of the active ingredient. Proteinaceous therapeutics are usually stored frozen or freeze-dried. For further information on Routes of Administration and Dosage Regimes the reader is referred to Chapter 25.3 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.
[0063] The size of the dose for therapeutic or prophylactic purposes of a compound will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine. In using a compound for therapeutic or prophylactic purposes it will generally be administered so that a daily dose in the range, for example, 20 μg to 75 mg per kg body or from 0.5 mg to 75 mg per kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed. Thus, for example, for intravenous administration, a dose in the range, for example, 20 μg to 30 mg per kg body weight or from 0.5 mg to 30 mg per kg body weight will generally be used. Similarly, for administration by inhalation, a dose in the range, for example, 20 μg to 30 mg per kg or from 0.5 mg to 25 mg per kg body weight will be used. As an alternative the compound can be administered as an infusion of 1 μg-10 mg per kilo body weight and hour during a time period of a few hours to several days.
EXPERIMENTAL SECTION
[0064] The invention will be further described by the following non-limiting examples.
[0065] The practice of the present invention will employ, unless otherwise indicated, conventional methods of molecular biology and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook et al., eds., Molecular Cloning: A Laboratory Manual (3rd ed.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001); Ausubel et al., eds., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y. (2002); Glover & Hames, eds., DNA Cloning 3: A Practical Approach, Vols. I, II, & III, IRL Press, Oxford (1995); Colowick & Kaplan, eds., Methods in Enzymology, Academic Press; Weir et al., eds., Handbook of Experimental Immunology, 5th ed., Blackwell Scientific Publications, Ltd., Edinburgh, (1997).
Example 1
[0066] To investigate the importance of VKOR in expression of carboxylated proteins we have expressed human coagulation factor X (FX) in CHO cells. Fully functional FX has been expressed earlier by Camire et al. 2000 (Biochemistry 39:14322-14329) who obtained approximately 1 μg carboxylated FX per million cells and day, and by Himmelspach et al 2000 (Thromb Res 97:51-67) who claimed obtaining up to 25% (19.5 μg) active FX per million cells and day using a CHO cell line that has been subjected to DHFR amplification. Himmelspach et al. reported incomplete processing of recombinant FX and the maximal productivity of active FX actually shown was 5 μg/ml culture medium In both publications cells were grown as adherent cells in serum-containing medium. Cells were grown to desired confluence, the medium replaced with serum free medium and incubation continued to allow accumulation of product. The amount of product was then estimated from this "serum-free" medium. This culture procedure is not suitable for large scale protein production as the cells will only produce product for a short period. In addition the product will be contaminated with serum proteins such as bovine FX which is highly undesirable as serum proteins will be difficult to remove and may cause antibody formation if present in a product injected to patients The obtained cell lines have thus not been shown suitable for commercial production of pharmaceutical FX.
Establishment of Stable Cell Lines Producing Recombinant Human Factor X
[0067] The FX coding sequence was PCR amplified from human liver cDNA using primers:
TABLE-US-00004 (SEQ ID NO: 2) F10F1: 5'-CACACCATGGGGCGCCCACT-3' (SEQ ID NO: 3) F10R1: 5'-GAGTGGGATCTCACTTTAATGGA-3'
[0068] Cloning of the PCR product was first done by TA-TOPO cloning into pCDNA3.1-V5His (Invitrogen). Clones containing the correct FX sequence were identified by DNA sequencing and by transient expression in COS-7 cells. A blunt-end fragment containing the FX encoding sequence was then cloned into the EcoRV-digested and phosphatase-treated expression vector nopA. Obtained F10nopA (SEQ ID NO: 6) clones were veriefied by DNA sequencing of the inserted sequence and by transient expression in COS-7.
[0069] The VKOR coding sequence was PCR amplified from human liver cDNA using primers:
TABLE-US-00005 (SEQ ID NO: 4) VF1: 5'-CACCATGGGCAGCACCTGGGGGA-3' (SEQ ID NO: 5) VR1: 5'-GCTCAGTGCCTCTTAGCCTT-3'
[0070] Cloning of the PCR product was first done by TA-TOPO cloning into pCDNA3.1-V5H is (Invitrogen). Clones containing the correct VKOR encoding sequence (SEQ ID NO: 1) were identified by DNA sequencing. A HindIII-NotI fragment containing the VKOR sequence was then transferred to the expression vector pZeoSV2+ (Invitrogen) digested with the same enzymes. VKORzeo clones (SEQ ID NO: 7) obtained were verified by DNA sequencing.
[0071] CHO-S cells (Invitrogen) were grown in DMEM F12 medium containing Glutamax I and 9% heat treated FBS, essentially as recommended by Invitrogen. Transfection of CHO-S was done with PvuI-digested (linearized) F10nopA, SspI-digested VKORzeo and Lipofectamine 2000 essentially as recommended by Invitrogen. The DNA transfection mix contained a 1.6-fold molar excess of F10NopA compared to VKORzeo. On the day after transfection, transfected cells were seeded in selection medium; growth medium plus 400 μg/ml G418, to 96-well plates. The VKORzeo construct was thus not selected for, but was randomly integrated in the G418-resistant transfectants. Following days plates were inspected to confirm that a suitable number of clones per well (5-10) were obtained. Six days post transfection the selection medium was replaced by growth medium supplemented with Vitamin K (1 μg/ml). The next day plates were sampled and assayed for FX activity using an assay based on Russels' Viper Venom (RVV-X), which activates FX to FXa. FXa activity was then measured using a chromogenic substrate (S2765, Chromogenix, Molndal, Sweden). The RVV-X assay is egivalent to the assay used by Himmelspach et al. for the same purpose. Wells with the highest activity were identified and the clones contained were expanded and subjected to limiting dilution cloning. After limiting dilution cloning and selection of the best clones, chosen clones were expanded and transferred to growth in protein-free medium (CD-CHO supplemented as recommended by Invitrogen plus 1 μg/ml vitamin K). Productivity of recombinant FX was estimated from T-flask cultures. The expression of VKOR was assayed by Real-Time PCR analyses. It was found that all selected clones expressing fully active FX also expressed VKOR. From this we conclude that co-expression of VKOR improves the expression of fully active human coagulation Factor X. The obtained cell lines grow well in protein and animal component free medium and produce FX in the absence of antibiotic selection pressure. Obtained cell lines are therefore considered suitable for large scale protein production and is are capable of producing high amounts of active FX. The share of fully active FX is also significantly higher than previously reported.
Example 2
Analyses of Productivity and mRNA Ratios for Co-Expression of FX, VKOR and GGCX
[0072] Clones obtained in Example 1 were grown in T-flasks in protein free chemically defined
[0073] CHO medium without antibiotics (Invitrogen). Samples were collected from 4 day cultures for preparation of cDNA and samples for productivity estimates were collected from cultures 5 days after routine split. Control samples were also prepared from the parent non-transfected CHO-S cell line grown in the same medium and analyses of the control samples gave the expected results. Spinner cultures were grown in CD-CHO with or without supplementation of animal component free additives. The amount of active rhFX was estimated by an assay based on RVV-X as in example 1, and a standard of serially diluted purified plasma derived human Factor X (Haematologic Technologies Inc., Vermont, USA). RNA was isolated with Trizol® according to the protocol supplied by the vendor, Invitrogen. The isolated RNA was DNaseI treated with the kit DNA-free® from Ambion. cDNA synthesis was carried out using hexamer primers and kit contents from Superscript® First-Strand Synthesis System for RT-PCR (Invitrogen). Primers and Vic-labeled probes for Real-Time RT-PCR were selected using the software Primer Express® from Applied Biosystems.
Human γ-Carboxylase Oligonucleotides
TABLE-US-00006
[0074] (SEQ ID NO: 8) 5'ACACCTCTGGTTCAGACCTTTCTT 3' Forward primer (SEQ ID NO: 9) 5' AATCGCTCATGGAAAGGAGTATTT 3' Reverse primer (SEQ ID NO: 10) 5' CAACAAAGGCTCCAGGAGATTGAACGC 3' Probe
Human Factor X Oligonucleotides
[0075] Primers were manufactured by Operon/Qiagen and the probes were ordered from Applied Biosystems.
TABLE-US-00007 (SEQ ID NO: 11) 5'CCGCAACAGCTGCAAGCT-3' Forward primer (SEQ ID NO: 12) 5'TGTCGTAGCCGGCACAGA-3' Reverse primer (SEQ ID NO: 13) 5' CAGCAGCTTCATCATCACCCAGAACATG Probe
Human VKOR Oligonucleotides
TABLE-US-00008
[0076] Seq(SEQ ID NO: 14) 5'GCTGGGCCTCTGTCCTGAT-3' Forward primer Se(SEQ ID NO: 15) 5' ATCCAGGCCAGGTAGACAGAAC-3' Reverse primer S(SEQ ID NO: 16) 5'CTGCTGAGCTCCCTGGTGTCTCTCG Probe
[0077] Rodent GAPDH control primers and probe were also used (Applied Biosystems; ABI #4308318 TaqMan® Rodent GAPDH Control Reagents Protocol)-Amplicon length 177 bp. The Real-Time RT-PCR reactions were performed on the 7500 Real Time PCR System Applied Biosystems. The expected length of the amplified PCR products was confirmed on agarose gels.
TABLE-US-00009 TABLE 4 Results from Real-Time PCR analyses of FX expressing clones. Clone FX VKOR GGCX GAPDH name mRNA/cell mRNA/cell mRNA/cell mRNA/cell FX1-5 137 0.62 1 1553 FX2-5 13 0.48 0.26 2985 FX3-9 3 0.03 0.17 1891 FX6 267 3 11 2289 FX17-2 319 2 37 2381
TABLE-US-00010 TABLE 5 Productivity estimates and mRNA ratios. Ratios are calculated from data in table 4. Productivity was estimated from activity assays of diluted culture samples. Ratio Ratio Active FX Active FX Clone name FX:VKOR FX:GGCX μg/ml T-flask μg/ml spinner FX1-5 221:1 137:1 0.5 Not done FX2-5 27:1 50:1 2.4 Not done FX3-9 100:1 18:1 0.8 Not done FX6 89:1 24:1 6.9 14 FX17-2 160:1 9:1 8.7 21
[0078] The productivities listed in Table 5 are all above those previously obtained from non-amplified cell lines. Estimates of total FX concentration, including inactive FX, was done using a Biacore assay and by SDS-PAGE and Western blotting.
Biacore Assay for the Estimation of the Concentration of Total rhFX
[0079] The BIAcore3000® analytical systenis, the running buffer (10 mM HEPES, 0.15 M NaCl, 3.4 mM EDTA and 0.05% P20, pH 7.4), rabbit anti-mouse Fc in 0.15 M NaCl (RAM Fc, lot no. 610) and the CM5 sensor chips were purchased from Biacore AB (Uppsala, Sweden). The procedure was run at 5 μl/min at 25° C. A standardised amine coupling procedure (35 μl activation time) at 25° C. was used to covalently couple 11000 RU of the capturing antibody RAM Fc (35 μl, 30 μg/ml in 10 mM sodium-acetate, pH 5.0) to channel 4 of the CM5 chip. After immobilisation the surface was regenerated with 5 μl mM glycine buffer pH 1.8 and further equilibrated with the running buffer. With a 20 μl flow of the mouse anti-FX monoclonal IgG antibody N77121M (Biodesign, Me., USA) (diluted 1/100 in running buffer) 660 RU was captured. Binding of FX in medium resulted in a very stable complex with negligible dissociation. For each new sample of FX the RAM Fc surface was reproducibly regenerated for multiple sandwich experiments. The difference in RU between channel 4 with coupled RAM Fc and channel 3 with a clean surface was used to quantify the binding of 5 μl FX. A standard (2, 4, 6, 8, 10, 15 and 20 μg/ml in medium) of pdFX from Haematologic Technologies Inc. (Vermont, USA) was run and the difference in RU was plotted against the concentration of phFX and the equation for one binding site was fitted to the data. The difference in RU of the unknown samples was used to calculate the concentration of rhFX from the standard curve.
TABLE-US-00011 TABLE 6 Share of fully active rhFX produced. Total amount of rhFX was estimated from spinner culture samples using a Biacore assay and amount of active rhFX was estimated by an RVV-X assay. All samples are from spinner cultures in animal component free growth medium. Total FX μg/ml Active FX μg/ml Clone/sample (Biacore assay) (RVV-X) % active FX FX17-2/p050131 18.6 10.1 54 FX17-2/p050202 20.6 9.6 47 FX17-2/p050225 11.8 12.1 103 FX17-2/sp2050309 38.3 16.3 43 FX17-2/sp1050309 25.1 13.6 54 FX17-2/sp2050310 39.7 21.1 53 FX17-2/sp1050310 28.1 13 46
[0080] Results in table 6 indicates that co-expression of VKOR enhances the expression of fully active rhFX. The high share (43-103%) of fully active rhFX is in agreement with data from SDS-PAGE, Western blot and protein purification.
Example 3
Co-Expression of Human Prothrombin, GGCX and VKOR
[0081] To obtain a cell line capable of producing high levels of fully active human prothrombin (hFII) we have earlier co-expressed the vitamin K dependent modification enzyme glutamyl carboxylase (GGCX) and hFII. Using this strategy we obtained the P1E2 clone. P1E2 is a highly productive clone expressing rhFII, but, although expression of correctly modified rhFII is vastely improved compared to other FII-producing clones, still only 20-60% (depending on the culture conditions) of the total amount of this rhFII produced is fully ?-carboxylated. In an attempt to further improve the level of fully ?-carboxylated rhFII and hence lower the production costs of rhFII, a new expression strategy was tested using vitamin K epoxide reductase (VKOR). We have cloned VKOR into two different vectors under the control of two different promoters; pCMV in the pHygro vector and pSV40 in the pZeo vector. In CHO-cells, the pCMV promoter is estimated to have an ˜6× higher promoter activity than the pSV40 promoter. Both constructs were used in two separate co-transfections to obtain rhFII producing cell lines.
Cell Line Development and Productivity Estimates
[0082] Cell line development was initiated by cotransfecting CHO-S with the PP6 construct (encoding hFII and hGGCX) (SEQ ID NO: 20) and either of the VKOR constructs (FIG. 1-2). Molar ratios used in the transfections were 2:3 (PP6:VKOR). After seeding and selection of transfectants in 96-well plates totally 5500-8500 clones per transfection were then screened using an ecarin based chromogenic-assay. 18 clone pools were selected after the initial screen. After the second screen 9 clone pools were selected, expanded and subjected to a third screening assay. For each transfection the best producing clone pool was selected for limiting dilution. Six 96-well plates were seeded with 0.5 cells/well. 24 clones was selected and upscaled after screening. As the vectors encoding VKOR have not been selected for, Taqman analyses were done to verify VKOR expression. In all the three top clones selected; A3F4 (PP6/pZeoVKOR), B11E8 and B9A12 (PP6/pHygroVKOR), VKOR mRNA was detected. Four runs of spinner experiments were done to evaluate and compare the productivity of rhFII for the PP6/VKOR clones compared to the P1E2 clone.
TABLE-US-00012 TABLE 7 Production of rhFII in spinner flasks. Experi- Active Share of active rhFII Cell Sample ment rhFII SPR (active rhFII/total line ID run (μg/mL) (pg/cell/day) rhFII in %) A3F4 050317 A 10.3 1.38 100 A3F4 050415 B 27.6 1 100 A3F4 050425 C 23 2.6 100 B9A12 050317 A 10.3 0.84 68 B9A12 050413 B 27.4 1 100 B9A12 050424 C 14.4 6.06 79 B11E8 050317 A 13 1.74 75 B11E8 050414 B 27.4 2.2 80 B11E8 050424 C 22.2 4 78 P1E2 050415 B 37.6 2.1 61 P1E2 050424 C 25.4 2.5 21
[0083] The novel approach to co-express VKOR, GGCX and rhFII resulted in several rhFII-expressing clones producing a much higher share (60-100%) of fully active rhFII compared to the P1E2 clone (20-60%, see table 1). For two of the clones, B11E8 and B9A12 (both PP6/pHygroVKOR cotransfection) a higher specific productivity rate (amount of active protein produced per cell and day, SPR) than the P1E2 clone was obtained under some culture conditions. The A3F4 clone produced 100% fully carboxylated rhFII in all the culture experiments run. This clone has the highest mRNA ratio of both modification enzymes (GGCX and VKOR) to FII compared with the other two clones. However, A3F4 does not produce more fully active rhEII than the other clones.
Example 4
Improved ?-Carboxylation by Supertransfection with VKOR
[0084] In a second attempt to use VKOR for improvement of rhFII production, the P1E2 clone (example 3) was modified to co-express VKOR. The pHygroVKOR construct (SEQ ID NO: 22) was in this case used to transfect P1E2 (see Appendix, FIG. 1) and clones were screened for improved productivity by a prothrombinase activity assay. Totally 7000-8000 clones were screened using an end-point prothrombinase assay adapted to 96-well format. Sixteen clone pools were selected after the initial screen. Chosen clone pools were expanded and screened both with both ecarin and prothrombinase assay in order to estimate the share of active rhFII. After this screen 6 clone pools were selected and expanded. The three best producing clone pools were selected for limiting dilution cloning. Twentyeigth clones originating from all three pools were selected and up-scaled after the initial prothrombinase screen. After a second screen, eight clones were selected and up-scaled. Taqman analyses were done to verify VKOR expression in one clone from each cloned pool. In all the three top clones selected; M3F6, P4A4 and O3G3, VKOR mRNA was detected. Three runs of shaker or spinner cultures were done to evaluate the productivity of rhFII for the P1E2NKOR clones compared to the parent P1E2 clone.
[0085] Taqman analyses were done to verify VKOR expression in one clone from each cloned pool. In all three top clones selected; M3F6, P4A4 and O3G3, VKOR mRNA was detected. Because of the selection and screening procedures used to obtain these clones, they are considered to express an optimal level of VKOR expression. This optimal expression level is further characterized in example 5.
TABLE-US-00013 TABLE 8 Production of rhFII at peak productivity in spinner/shaker cultures using animal component free media. The P1E2 parent cell line not containing the VKOR construct was grown in paralell under the same conditions as a control. SPR; Sample Viable Active/ specific (Clone cell Total Active total productivity and Experiment densities Viability rhFII rhFII rhFII rate Date) series (cells/ml) (%) mg/L mg/L (%) pg/cell/day P1E2 A 1700000 87 211.9 40 19 7.2 050622 P1E2 B 3866666 93 94.7 48.4 51 1.7 050610 P1E2 C 2500000 nd 47.9 38.4 80 nd 051011 M3F6 A 2550000 83 181.6 74.7 41 21.5 050622 M3F6 B 1950000 59 80.2 55 69 1.8 050609 O3G3 A 3525000 >95 194.6 63.7 33 3.1 050621 O3G3 B 3200000 85 128.7 68.6 53 4.2 050609 O3G3 C 6400000 nd 72.8 76.8 105 nd 051010 P4A4 A 2700000 >95 176.9 34.1 19 3.3 050621 P4A4 B 2233333 81 101.6 64.2 63 3.8 050610
[0086] Results from the culture experiments showed that the amount and share of active rhFII during different culture conditions varied, but for most runs the amount of fully active rhFII produced was better for the novel P1E2/VKOR clones than for the original P1E2 cell line.
Example 5
Establishment of Optimal mRNA Expression Ratios
[0087] Messenger RNA prepared from the cell lines in Example 4 and 5 was analysed with Real-Time PCR similarly as in Example 3. For GGCX and VKOR the same oligonucleotides as in Example 3 were used.
[0088] Oligonucleotides for prothrombin were:
TABLE-US-00014 (SEQ ID NO: 17) 5'TGGAGGACAAAACCGAAAGAGA 3' Forward primer (SEQ ID NO: 18) 5' CATCCGAGCCCTCCACAA 3' Reverse primer (SEQ ID NO: 19) 5' CTCCTGGAATCCTACATCGACGGGC 3' Probe
TABLE-US-00015 TABLE 9 Analyses of mRNA ratios at peak expression of human prothrombin (rhFII) Best productivity mRNA mRNA mRNA obtained * ratio ratio ratio (active rhFII Cell line FII/GGCX FII/VKOR VKOR/GGCX mg/L) A3F4 5 13 0.4 27.6 B9A12 86 32 3 27.4 B11E8 29 33 0.9 27.4 M3F6 304 15 20 74.7 O3G3 218 17 13 76.8 P4A4 255 128 2 64.2 P1E2 (control 221 No VKOR No VKOR 48.4 without detected detected VKOR) * Measurement of productivity done under similar conditions in spinner or shake flasks.
[0089] Results in table 9 indicates that there is an optimal expression level of GGCX and VKOR in relation to the ?-carboxylated protein produced. Clones M3F4, O3G3 and P4A4 were obtained by transfecting P1E2 (earlier obtained by transfection with a construct containing rhFII+GGCX) with a construct containing VKOR under the control of the strong CMV promoter. Screening was performed with an assay specifically detecting clones with an improved productivity of fully active rhFII. Clones with an optimal expression level of VKOR in relation to rhFII and GGCX have thus been selected.
[0090] Messenger RNA prepared from the cell lines in Example 4 and 5 was analysed with Real-Time PCR similarity as in Example 3. All analyses included a GAPDH control reaction as in Example 3.
Sequence CWU
1
1
221492DNAHomo sapiens 1atgggcagca cctgggggag ccctggctgg gtgcggctcg
ctctttgcct gacgggctta 60gtgctctcgc tctacgcgct gcacgtgaag gcggcgcgcg
cccgggaccg ggattaccgc 120gcgctctgcg acgtgggcac cgccatcagc tgttcgcgcg
tcttctcctc caggtggggc 180aggggtttcg ggctggtgga gcatgtgctg ggacaggaca
gcatcctcaa tcaatccaac 240agcatattcg gttgcatctt ctacacacta cagctattgt
taggttgcct gcggacacgc 300tgggcctctg tcctgatgct gctgagctcc ctggtgtctc
tcgctggttc tgtctacctg 360gcctggatcc tgttcttcgt gctctatgat ttctgcattg
tttgtatcac cacctatgct 420atcaacgtga gcctgatgtg gctcagtttc cggaaggtcc
aagaacccca gggcaaggct 480aagaggcact ga
492220DNApArtificial Sequenceprimer 2cacaccatgg
ggcgcccact
20323DNAArtificial Sequenceprimer 3gagtgggatc tcactttaat gga
23423DNAArtificial Sequenceprimer
4caccatgggc agcacctggg gga
23520DNAArtificial Sequenceprimer 5gctcagtgcc tcttagcctt
2069707DNAArtificial SequenceSynthetic
construct-F10nopA 6gacggatcgg gagatctccc gatcccctat ggtgcactct cagtacaatc
tgctctgatg 60ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct
gagtagtgcg 120cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg
aagaatctgc 180ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg
cgttgacatt 240gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat
agcccatata 300tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg
cccaacgacc 360cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata
gggactttcc 420attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta
catcaagtgt 480atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc
gcctggcatt 540atgcccagta catgacctta tgggactttc ctacttggca gtacatctac
gtattagtca 600tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga
tagcggtttg 660actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg
ttttggcacc 720aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg
caaatgggcg 780gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact
agagaaccca 840ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa
gctggctagc 900gtttaaactt aagcttggta ccgagctcgg atccactagt ccagtgtggt
ggaattctgc 960agatcacacc atggggcgcc cactgcacct cgtcctgctc agtgcctccc
tggctggcct 1020cctgctgctc ggggaaagtc tgttcatccg cagggagcag gccaacaaca
tcctggcgag 1080ggtcacgagg gccaattcct ttcttgaaga gatgaagaaa ggacacctcg
aaagagagtg 1140catggaagag acctgctcat acgaagaggc ccgcgaggtc tttgaggaca
gcgacaagac 1200gaatgaattc tggaataaat acaaagatgg cgaccagtgt gagaccagtc
cttgccagaa 1260ccagggcaaa tgtaaagacg gcctcgggga atacacctgc acctgtttag
aaggattcga 1320aggcaaaaac tgtgaattat tcacacggaa gctctgcagc ctggacaacg
gggactgtga 1380ccagttctgc cacgaggaac agaactctgt ggtgtgctcc tgcgcccgcg
ggtacaccct 1440ggctgacaac ggcaaggcct gcattcccac agggccctac ccctgtggga
aacagaccct 1500ggaacgcagg aagaggtcag tggcccaggc caccagcagc agcggggagg
cccctgacag 1560catcacatgg aagccatatg atgcagccga cctggacccc accgagaacc
ccttcgacct 1620gcttgacttc aaccagacgc agcctgagag gggcgacaac aacctcacca
ggatcgtggg 1680gggccaggaa tgcaaggacg gggagtgtcc ctggcaggcc ctgctcatca
atgaggaaaa 1740cgagggtttc tgtggtggaa ccattctgag cgagttctac atcctaacgg
cagcccactg 1800tctctaccaa gccaagagat tcaaggtgag ggtaggggac cggaacacgg
agcaggagga 1860gggcggtgag gcggtgcacg aggtggaggt ggtcatcaag cacaaccggt
tcacaaagga 1920gacctatgac ttcgacatcg ccgtgctccg gctcaagacc cccatcacct
tccgcatgaa 1980cgtggcgcct gcctgcctcc ccgagcgtga ctgggccgag tccacgctga
tgacgcagaa 2040gacggggatt gtgagcggct tcgggcgcac ccacgagaag ggccggcagt
ccaccaggct 2100caagatgctg gaggtgccct acgtggaccg caacagctgc aagctgtcca
gcagcttcat 2160catcacccag aacatgttct gtgccggcta cgacaccaag caggaggatg
cctgccaggg 2220ggacagcggg ggcccgcacg tcacccgctt caaggacacc tacttcgtga
caggcatcgt 2280cagctgggga gagggctgtg cccgtaaggg gaagtacggg atctacacca
aggtcaccgc 2340cttcctcaag tggatcgaca ggtccatgaa aaccaggggc ttgcccaagg
ccaagagcca 2400tgccccggag gtcataacgt cctctccatt aaagtgagat cccactcatc
cagcacagtg 2460gcggccgctc gagtctagag ggcccgttta aacccgctga tcagcctcga
ctgtgccttc 2520tagttgccag ccatctgttg tttgcccctc ccccgtgcct tccttgaccc
tggaaggtgc 2580cactcccact gtcctttcct aataaaatga ggaaattgca tcgcattgtc
tgagtaggtg 2640tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt
gggaagacaa 2700tagcaggcat gctggggatg cggtgggctc tatggcttct gaggcggaaa
gaaccagctg 2760gggctctagg gggtatcccc acgcgccctg tagcggcgca ttaagcgcgg
cgggtgtggt 2820ggttacgcgc agcgtgaccg ctacacttgc cagcgcccta gcgcccgctc
ctttcgcttt 2880cttcccttcc tttctcgcca cgttcgccgg ctttccccgt caagctctaa
atcgggggct 2940ccctttaggg ttccgattta gtgctttacg gcaccttcga ccccaaaaaa
cttgattagg 3000gctgtggaat gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag
caggcagaag 3060tatgcaaagc atgcatctca attagtcagc aaccaggtgt ggaaagtccc
caggctcccc 3120agcaggcaga agtatgcaaa gcatgcatct caattagtca gcaaccatag
tcccgcccct 3180aactccgccc atcccgcccc taactccgcc cagttccgcc cattctccgc
cccatggctg 3240actaattttt tttatttatg cagaggccga ggccgcctcg gcctctgagc
tattccagaa 3300gtagtgagga ggcttttttg gaggcctagg cttttgcaaa aagctctctg
gctaactaga 3360gaacccactg cttactggct tatcgaaatt aatacgactc actataggga
gacccaagct 3420ggctagcgtt taaacttaag cttggtaccg agctcggatc cactagtcca
gtgtggtgga 3480attgcccttt ccgcagagca atggcggtgt ctgccgggtc cgcgcggacc
tcgcccagct 3540cagataaagt acagaaagac aaggctgaac tgatctcagg gcccaggcag
gacagccgaa 3600tagggaaact cttgggtttt gagtggacag atttgtccag ttggcggagg
ctggtgaccc 3660tgctgaatcg accaacggac cctgcaagct tagctgtctt tcgttttctt
tttgggttct 3720tgatggtgct agacattccc caggagcggg ggctcagctc tctggaccgg
aaataccttg 3780atgggctgga tgtgtgccgc ttccccttgc tggatgccct acgcccactg
ccacttgact 3840ggatgtatct tgtctacacc atcatgtttc tgggggcact gggcatgatg
ctgggcctgt 3900gctaccggat aagctgtgtg ttattcctgc tgccatactg gtatgtgttt
ctcctggaca 3960agacatcatg gaacaaccac tcctatctgt atgggttgtt ggcctttcag
ctaacattca 4020tggatgcaaa ccactactgg tctgtggacg gtctgctgaa tgcccatagg
aggaatgccc 4080acgtgcccct ttggaactat gcagtgctcc gtggccagat cttcattgtg
tacttcattg 4140cgggtgtgaa aaagctggat gcagactggg ttgaaggcta ttccatggaa
tatttgtccc 4200ggcactggct cttcagtccc ttcaaactgc tgttgtctga ggagctgact
agcctgctgg 4260tcgtgcactg gggtgggctg ctgcttgacc tctcagctgg tttcctgctc
ttttttgatg 4320tctcaagatc cattggcctg ttctttgtgt cctacttcca ctgcatgaat
tcccagcttt 4380tcagcattgg tatgttctcc tacgtcatgc tggccagcag ccctctcttc
tgctcccctg 4440agtggcctcg gaagctggtg tcctactgcc cccgaaggtt gcaacaactg
ttgcccctca 4500aggcagcccc tcagcccagt gtttcctgtg tgtataagag gagccggggc
aaaagtggcc 4560agaagccagg gctgcgccat cagctgggag ctgccttcac cctgctctac
ctcctggagc 4620agctattcct gccctattct cattttctca cccagggcta taacaactgg
acaaatgggc 4680tgtatggcta ttcctgggac atgatggtgc actcccgctc ccaccagcac
gtgaagatca 4740cctaccgtga tggccgcact ggcgaactgg gctaccttaa ccctggggta
tttacacaga 4800gtcggcgatg gaaggatcat gcagacatgc tgaagcaata tgccacttgc
ctgagccgcc 4860tgcttcccaa gtataatgtc actgagcccc agatctactt tgatatttgg
gtctccatca 4920atgaccgctt ccagcagagg atttttgacc ctcgtgtgga catcgtgcag
gccgcttggt 4980caccctttca gcgcacatcc tgggtgcaac cactcttgat ggacctgtct
ccctggaggg 5040ccaagttaca ggaaatcaag agcagcctag acaaccacac tgaggtggtc
ttcattgcag 5100atttccctgg actgcacttg gagaattttg tgagtgaaga cctgggcaac
actagcatcc 5160agctgctgca gggggaagtg actgtggagc ttgtggcaga acagaagaac
cagactcttc 5220gagagggaga aaaaatgcag ttgcctgctg gtgagtacca taaggtgtat
acgacatcac 5280ctagcccttc ttgctacatg tacgtctatg tcaacactac agagcttgca
ctggagcaag 5340acctggcata tctgcaagaa ttaaaggaaa aggtggagaa tggaagtgaa
acagggcctc 5400tacccccaga gctgcagcct ctgttggaag gggaagtaaa agggggccct
gagccaacac 5460ctctggttca gacctttctt agacgccaac aaaggctcca ggagattgaa
cgccggcgaa 5520atactccttt ccatgagcga ttcttccgct tcttgttgcg aaagctctat
gtctttcgcc 5580gcagcttcct gatgacttgt atctcacttc gaaatctgat attaggccgt
ccttccctgg 5640agcagctggc ccaggaggtg acttatgcaa acttgagacc ctttgaggca
gttggagaac 5700tgaatccctc aaacacggat tcttcacatt ctaatcctcc tgagtcaaat
cctgatcctg 5760tccactcaga gttctgaagg gggccagatg ttggaagggc aattcgagtc
tagagggccc 5820gccctgatag acggtttttc gccctttgac gttggagtcc acgttcttta
atagtggact 5880cttgttccaa actggaacaa cactcaaccc tatctcggtc tattcttttg
atttataagg 5940gattttgccg atttcggcct attggttaaa aaatgagctg atttaacaaa
aatttaacgc 6000gaattaattc tgtggaatgt gtgtcagtta gggtgtggaa agtccccagg
ctccccagca 6060ggcagaagta tgcaaagcat gcatctcaat tagtcagcaa ccaggtgtgg
aaagtcccca 6120ggctccccag caggcagaag tatgcaaagc atgcatctca attagtcagc
aaccatagtc 6180ccgcccctaa ctccgcccat cccgccccta actccgccca gttccgccca
ttctccgccc 6240catggctgac taattttttt tatttatgca gaggccgagg ccgcctctgc
ctctgagcta 6300ttccagaagt agtgaggagg cttttttgga ggcctaggct tttgcaaaaa
gctcccggga 6360gcttgtatat ccattttcgg atctgatcaa gagacaggat gaggatcgtt
tcgcatgatt 6420gaacaagatg gattgcacgc aggttctccg gccgcttggg tggagaggct
attcggctat 6480gactgggcac aacagacaat cggctgctct gatgccgccg tgttccggct
gtcagcgcag 6540gggcgcccgg ttctttttgt caagaccgac ctgtccggtg ccctgaatga
actgcaggac 6600gaggcagcgc ggctatcgtg gctggccacg acgggcgttc cttgcgcagc
tgtgctcgac 6660gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg
gcaggatctc 6720ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc
aatgcggcgg 6780ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca
tcgcatcgag 6840cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga
cgaagagcat 6900caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc
cgacggcgag 6960gatctcgtcg tgacccatgg cgatgcctgc ttgccgaata tcatggtgga
aaatggccgc 7020ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca
ggacatagcg 7080ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg
cttcctcgtg 7140ctttacggta tcgccgctcc cgattcgcag cgcatcgcct tctatcgcct
tcttgacgag 7200ttcttctgag cgggactctg gggttcgaaa tgaccgacca agcgacgccc
aacctgccat 7260cacgagattt cgattccacc gccgccttct atgaaaggtt gggcttcgga
atcgttttcc 7320gggacgccgg ctggatgatc ctccagcgcg gggatctcat gctggagttc
ttcgcccacc 7380ccaacttgtt tattgcagct tataatggtt acaaataaag caatagcatc
acaaatttca 7440caaataaagc atttttttca ctgcattcta gttgtggttt gtccaaactc
atcaatgtat 7500cttatcatgt ctgtataccg tcgacctcta gctagagctt ggcgtaatca
tggtcatagc 7560tgtttcctgt gtgaaattgt tatccgctca caattccaca caacatacga
gccggaagca 7620taaagtgtaa agcctggggt gcctaatgag tgagctaact cacattaatt
gcgttgcgct 7680cactgcccgc tttccagtcg ggaaacctgt cgtgccagct gcattaatga
atcggccaac 7740gcgcggggag aggcggtttg cgtattgggc gctcttccgc ttcctcgctc
actgactcgc 7800tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg
gtaatacggt 7860tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc
cagcaaaagg 7920ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc
ccccctgacg 7980agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga
ctataaagat 8040accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc
ctgccgctta 8100ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat
agctcacgct 8160gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg
cacgaacccc 8220ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc
aacccggtaa 8280gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga
gcgaggtatg 8340taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact
agaagaacag 8400tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt
ggtagctctt 8460gatccggcaa acaaaccacc gctggtagcg gtttttttgt ttgcaagcag
cagattacgc 8520gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc tacggggtct
gacgctcagt 8580ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg
atcttcacct 8640agatcctttt aaattaaaaa tgaagtttta aatcaatcta aagtatatat
gagtaaactt 8700ggtctgacag ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc
tgtctatttc 8760gttcatccat agttgcctga ctccccgtcg tgtagataac tacgatacgg
gagggcttac 8820catctggccc cagtgctgca atgataccgc gagacccacg ctcaccggct
ccagatttat 8880cagcaataaa ccagccagcc ggaagggccg agcgcagaag tggtcctgca
actttatccg 8940cctccatcca gtctattaat tgttgccggg aagctagagt aagtagttcg
ccagttaata 9000gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt gtcacgctcg
tcgtttggta 9060tggcttcatt cagctccggt tcccaacgat caaggcgagt tacatgatcc
cccatgttgt 9120gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag
ttggccgcag 9180tgttatcact catggttatg gcagcactgc ataattctct tactgtcatg
ccatccgtaa 9240gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag
tgtatgcggc 9300gaccgagttg ctcttgcccg gcgtcaatac gggataatac cgcgccacat
agcagaactt 9360taaaagtgct catcattgga aaacgttctt cggggcgaaa actctcaagg
atcttaccgc 9420tgttgagatc cagttcgatg taacccactc gtgcacccaa ctgatcttca
gcatctttta 9480ctttcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca
aaaaagggaa 9540taagggcgac acggaaatgt tgaatactca tactcttcct ttttcaatat
tattgaagca 9600tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag
aaaaataaac 9660aaataggggt tccgcgcaca tttccccgaa aagtgccacc tgacgtc
970774029DNAArtificial SequenceSynthetic construct-VKOR zeo
7ggatcgatcc ggctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc aggctcccca
60gcaggcagaa gtatgcaaag catgcatctc aattagtcag caaccaggtg tggaaagtcc
120ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc agcaaccata
180gtcccgcccc taactccgcc catcccgccc ctaactccgc ccagttccgc ccattctccg
240ccccatggct gactaatttt ttttatttat gcagaggccg aggccgcctc ggcctctgag
300ctattccaga agtagtgagg aggctttttt ggaggcctag gcttttgcaa aaagctctct
360ggctaactag agaacccact gcttactggc ttatcgaaat taatacgact cactataggg
420agacccaagc tggctagcgt ttaaacttaa gcttggtacc gagctcggat ccactagtcc
480agtgtggtgg aattgccctt caccatgggc agcacctggg ggagccctgg ctgggtgcgg
540ctcgctcttt gcctgacggg cttagtgctc tcgctctacg cgctgcacgt gaaggcggcg
600cgcgcccggg accgggatta ccgcgcgctc tgcgacgtgg gcaccgccat cagctgttcg
660cgcgtcttct cctccaggtg gggcaggggt ttcgggctgg tggagcatgt gctgggacag
720gacagcatcc tcaatcaatc caacagcata ttcggttgca tcttctacac actacagcta
780ttgttaggtt gcctgcggac acgctgggcc tctgtcctga tgctgctgag ctccctggtg
840tctctcgctg gttctgtcta cctggcctgg atcctgttct tcgtgctcta tgatttctgc
900attgtttgta tcaccaccta tgctatcaac gtgagcctga tgtggctcag tttccggaag
960gtccaagaac cccagggcaa ggctaagagg cactgaacaa gggcaattct gcagatatcc
1020agcacagtgg cggccgctcg agtctagagg gcccgtttaa acccgctgat cagcctcgac
1080tgtgccttct agttgccagc catctgttgt ttgcccctcc cccgtgcctt ccttgaccct
1140ggaaggtgcc actcccactg tcctttccta ataaaatgag gaaattgcat cgcattgtct
1200gagtaggtgt cattctattc tggggggtgg ggtggggcag gacagcaagg gggaggattg
1260ggaagacaat agcaggcatg ctggggatgc ggtgggctct atggcttctg aggcggaaag
1320aaccagcatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct
1380ggcgtttttc cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca
1440gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct
1500cgtgcgctct cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc
1560gggaagcgtg gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt
1620tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc
1680cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc
1740cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg
1800gtggcctaac tacggctaca ctagaagaac agtatttggt atctgcgctc tgctgaagcc
1860agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag
1920cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga
1980tcctttgatc ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat
2040tttggtcatg acattaacct ataaaaatag gcgtatcacg aggccctttc gtctcgcgcg
2100tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg tcacagcttg
2160tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg gtgttggcgg
2220gtgtcggggc tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat
2280gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcagga cgcgccctgt
2340agcggcgcat taagcgcggc gggtgtggtg gttacgcgca gcgtgaccgc tacacttgcc
2400agcgccctag cgcccgctcc tttcgctttc ttcccttcct ttctcgccac gttcgccggc
2460tttccccgtc aagctctaaa tcgggggctc cctttagggt tccgatttag tgctttacgg
2520cacctcgacc ccaaaaaact tgattagggt gatggttcac gtagtgggcc atcgccctga
2580tagacggttt ttcgcccttt gacgttggag tccacgttct ttaatagtgg actcttgttc
2640caaactggaa caacactcaa ccctatctcg gtctattctt ttgatttata agggattttg
2700ccgatttcgg cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaatttt
2760aacaaaatat taacgcttac aatttccatt cgccattcag gctgaactag atctagagtc
2820cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
2880gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
2940atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
3000aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
3060catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac
3120catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg
3180atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg
3240ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt
3300acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg cctggagacg
3360ccatccacgc tgttttgacc tccatagaag acaccgggac cgatccagcc tccgcggccg
3420ggaacggtgc attggaacgg accgtgttga caattaatca tcggcatagt atatcggcat
3480agtataatac gacaaggtga ggaactaaac catggccaag ttgaccagtg ccgttccggt
3540gctcaccgcg cgcgacgtcg ccggagcggt cgagttctgg accgaccggc tcgggttctc
3600ccgggacttc gtggaggacg acttcgccgg tgtggtccgg gacgacgtga ccctgttcat
3660cagcgcggtc caggaccagg tggtgccgga caacaccctg gcctgggtgt gggtgcgcgg
3720cctggacgag ctgtacgccg agtggtcgga ggtcgtgtcc acgaacttcc gggacgcctc
3780cgggccggcc atgaccgaga tcggcgagca gccgtggggg cgggagttcg ccctgcgcga
3840cccggccggc aactgcgtgc acttcgtggc cgaggagcag gactgacact cgacctcgaa
3900acttgtttat tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa
3960ataaagcatt tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt
4020atcatgtct
4029824DNAArtificial Sequenceprimer 8acacctctgg ttcagacctt tctt
24924DNAArtificial Sequenceprimer
9aatcgctcat ggaaaggagt attt
241027DNAArtificial SequenceProbe sequence 10caacaaaggc tccaggagat
tgaacgc 271118DNAArtificial
Sequenceprimer 11ccgcaacagc tgcaagct
181218DNAArtificial Sequenceprimer 12tgtcgtagcc ggcacaga
181328DNAArtificial
SequenceProbe sequence 13cagcagcttc atcatcaccc agaacatg
281419DNAArtificial Sequenceprimer 14gctgggcctc
tgtcctgat
191522DNAArtificial Sequenceprimer 15atccaggcca ggtagacaga ac
221625DNAArtificial SequenceProbe
sequence 16ctgctgagct ccctggtgtc tctcg
251722DNAArtificial SequencePrimer 17tggaggacaa aaccgaaaga ga
221818DNAArtificial
SequencePrimer 18catccgagcc ctccacaa
181925DNAArtificial SequenceProbe sequence 19ctcctggaat
cctacatcga cgggc
252010238DNAArtificial SequenceSynthetic construct-PP6 20gacggatcgg
gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctgatg 60ccgcatagtt
aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120cgagcaaaat
ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180ttagggttag
gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240gattattgac
tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300tggagttccg
cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360cccgcccatt
gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420attgacgtca
atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 480atcatatgcc
aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540atgcccagta
catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600tcgctattac
catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660actcacgggg
atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720aaaatcaacg
ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780gtaggcgtgt
acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840ctgcttactg
gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900gtttaaactt
aagcttggta ccgagctcgg atccactagt ccagtgtggt ggaattgccc 960ttattcctca
gtgacccagg agctgacaca ctatggcgca cgtccgaggc ttgcagctgc 1020ctggctgcct
ggccctggct gccctgtgta gccttgtgca cagccagcat gtgttcctgg 1080ctcctcagca
agcacggtcg ctgctccagc gggtccggcg agccaacacc ttcttggagg 1140aggtgcgcaa
gggcaacctg gagcgagagt gcgtggagga gacgtgcagc tacgaggagg 1200ccttcgaggc
tctggagtcc tccacggcta cggatgtgtt ctgggccaag tacacagctt 1260gtgagacagc
gaggacgcct cgagataagc ttgctgcatg tctggaaggt aactgtgctg 1320agggtctggg
tacgaactac cgagggcatg tgaacatcac ccggtcaggc attgagtgcc 1380agctatggag
gagtcgctac ccacataagc ctgaaatcaa ctccactacc catcctgggg 1440ccgacctaca
ggagaatttc tgccgcaacc ccgacagcag caccacggga ccctggtgct 1500acactacaga
ccccaccgtg aggaggcagg aatgcagcat ccctgtctgt ggccaggatc 1560aagtcactgt
agcgatgact ccacgctccg aaggctccag tgtgaatctg tcacctccat 1620tggagcagtg
tgtccctgat cgggggcagc agtaccaggg gcgcctggcg gtgaccacac 1680atgggctccc
ctgcctggcc tgggccagcg cacaggccaa ggccctgagc aagcaccagg 1740acttcaactc
agctgtgcag ctggtggaga acttctgccg caacccagac ggggatgagg 1800agggcgtgtg
gtgctatgtg gccgggaagc ctggcgactt tgggtactgc gacctcaact 1860attgtgagga
ggccgtggag gaggagacag gagatgggct ggatgaggac tcagacaggg 1920ccatcgaagg
gcgtaccgcc accagtgagt accagacttt cttcaatccg aggacctttg 1980gctcgggaga
ggcagactgt gggctgcgac ctctgttcga gaagaagtcg ctggaggaca 2040aaaccgaaag
agagctcctg gaatcctaca tcgacgggcg cattgtggag ggctcggatg 2100cagagatcgg
catgtcacct tggcaggtga tgcttttccg gaagagtccc caggagctgc 2160tgtgtggggc
cagcctcatc agtgaccgct gggtcctcac cgccgcccac tgcctcctgt 2220acccgccctg
ggacaagaac ttcaccgaga atgaccttct ggtgcgcatt ggcaagcact 2280cccgcaccag
gtacgagcga aacattgaaa agatatccat gttggaaaag atctacatcc 2340accccaggta
caactggcgg gagaacctgg accgggacat tgccctgatg aagctgaaga 2400agcctgttgc
cttcagtgac tacattcacc ctgtgtgtct gcccgacagg gagacggcag 2460ccagcttgct
ccaggctgga tacaaggggc gggtgacagg ctggggcaac ctgaaggaga 2520cgtggacagc
caacgttggt aaggggcagc ccagtgtcct gcaggtggtg aacctgccca 2580ttgtggagcg
gccggtctgc aaggactcca cccggatccg catcactgac aacatgttct 2640gtgctggtta
caagcctgat gaagggaaac gaggggatgc ctgtgaaggt gacagtgggg 2700gaccctttgt
catgaagagc ccctttaaca accgctggta tcaaatgggc atcgtctcat 2760ggggtgaagg
ctgtgaccgg gatgggaaat atggcttcta cacacatgtg ttccgcctga 2820agaagtggat
acagaaggtc attgatcagt ttggagagta gaagggcaat tctgcagata 2880tccagcacag
tggcggccgc tcggttccta gagggcccgt ttaaacccgc tgatcagcct 2940cgactgtgcc
ttctagttgc cagccatctg ttgtttgccc ctcccccgtg ccttccttga 3000ccctggaagg
tgccactccc actgtccttt cctaataaaa tgaggaaatt gcatcgcatt 3060gtctgagtag
gtgtcattct attctggggg gtggggtggg gcaggacagc aagggggagg 3120attgggaaga
caatagcagg catgctgggg atgcggtggg ctctatggct tctgaggcgg 3180aaagaaccag
ctggggctct agggggtatc cccacgcgcc ctgtagcggc gcattaagcg 3240cggcgggtgt
ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ctagcgcccg 3300ctcctttcgc
tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc 3360taaatcgggg
gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa 3420aacttgatta
gggtgatggt tcacatcgat gcaatttcct cattttatta ggaaaggaca 3480gtgggagtgg
caccttccag ggtcaaggaa ggcacggggg aggggcaaac aacagatggc 3540tggcaactag
aaggcacagt cgaggctgat cagcgggttt aaacgggccc tctagactcg 3600aattgccctt
ccaacatctg gcccccttca gaactctgag tggacaggat caggatttga 3660ctcaggagga
ttagaatgtg aagaatccgt gtttgaggga ttcagttctc caactgcctc 3720aaagggtctc
aagtttgcat aagtcacctc ctgggccagc tgctccaggg aaggacggcc 3780taatatcaga
tttcgaagtg agatacaagt catcaggaag ctgcggcgaa agacatagag 3840ctttcgcaac
aagaagcgga agaatcgctc atggaaagga gtatttcgcc ggcgttcaat 3900ctcctggagc
ctttgttggc gtctaagaaa ggtctgaacc agaggtgttg gctcagggcc 3960cccttttact
tccccttcca acagaggctg cagctctggg ggtagaggcc ctgtttcact 4020tccattctcc
accttttcct ttaattcttg cagatatgcc aggtcttgct ccagtgcaag 4080ctctgtagtg
ttgacataga cgtacatgta gcaagaaggg ctaggtgatg tcgtatacac 4140cttatggtac
tcaccagcag gcaactgcat tttttctccc tctcgaagag tctggttctt 4200ctgttctgcc
acaagctcca cagtcacttc cccctgcagc agctggatgc tagtgttgcc 4260caggtcttca
ctcacaaaat tctccaagtg cagtccaggg aaatctgcaa tgaagaccac 4320ctcagtgtgg
ttgtctaggc tgctcttgat ttcctgtaac ttggccctcc agggagacag 4380gtccatcaag
agtggttgca cccaggatgt gcgctgaaag ggtgaccaag cggcctgcac 4440gatgtccaca
cgagggtcaa aaatcctctg ctggaagcgg tcattgatgg agacccaaat 4500atcaaagtag
atctggggct cagtgacatt atacttggga agcaggcggc tcaggcaagt 4560ggcatattgc
ttcagcatgt ctgcatgatc cttccatcgc cgactctgtg taaatacccc 4620agggttaagg
tagcccagtt cgccagtgcg gccatcacgg taggtgatct tcacgtgctg 4680gtgggagcgg
gagtgcacca tcatgtccca ggaatagcca tacagcccat ttgtccagtt 4740gttatagccc
tgggtgagaa aatgagaata gggcaggaat agctgctcca ggaggtagag 4800cagggtgaag
gcagctccca gctgatggcg cagccctggc ttctggccac ttttgccccg 4860gctcctctta
tacacacagg aaacactggg ctgaggggct gccttgaggg gcaacagttg 4920ttgcaacctt
cgggggcagt aggacaccag cttccgaggc cactcagggg agcagaagag 4980agggctgctg
gccagcatga cgtaggagaa cataccaatg ctgaaaagct gggaattcat 5040gcagtggaag
taggacacaa agaacaggcc aatggatctt gagacatcaa aaaagagcag 5100gaaaccagct
gagaggtcaa gcagcagccc accccagtgc acgaccagca ggctagtcag 5160ctcctcagac
aacagcagtt tgaagggact gaagagccag tgccgggaca aatattccat 5220ggaatagcct
tcaacccagt ctgcatccag ctttttcaca cccgcaatga agtacacaat 5280gaagatctgg
ccacggagca ctgcatagtt ccaaaggggc acgtgggcat tcctcctatg 5340ggcattcagc
agaccgtcca cagaccagta gtggtttgca tccatgaatg ttagctgaaa 5400ggccaacaac
ccatacagat aggagtggtt gttccatgat gtcttgtcca ggagaaacac 5460ataccagtat
ggcagcagga ataacacaca gcttatccgg tagcacaggc ccagcatcat 5520gcccagtgcc
cccagaaaca tgatggtgta gacaagatac atccagtcaa gtggcagtgg 5580gcgtagggca
tccagcaagg ggaagcggca cacatccagc ccatcaaggt atttccggtc 5640cagagagctg
agcccccgct cctggggaat gtctagcacc atcaagaacc caaaaagaaa 5700acgaaagaca
gctaagcttg cagggtccgt tggtcgattc agcagggtca ccagcctccg 5760ccaactggac
aaatctgtcc actcaaaacc caagagtttc cctattcggc tgtcctgcct 5820gggccctgag
atcagttcag ccttgtcttt ctgtacttta tctgagctgg gcgaggtccg 5880cgcggacccg
gcagacaccg ccattgctct gcggaaaggg caattccacc acactggact 5940agtggatccg
agctcggtac caagcttaag tttaaacgct agccagcttg ggtctcccta 6000tagtgagtcg
tattaatttc gataagccag taagcagtgg gttctctagt tagccagaga 6060gctttttgca
aaagcctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag 6120aggccgaggc
ggcctcggcc tctgcataaa taaaaaaaat tagtcagcca tggggcggag 6180aatgggcgga
actgggcgga gttaggggcg ggatgggcgg agttaggggc gggactatgg 6240ttgctgacta
attgagatgc atgctttgca tacttctgcc tgctggggag cctggggact 6300ttccacaccc
taactgacac acattccaca gccggatcga tgtgggccat cgccctgata 6360gacggttttt
cgccctttga cgttggagtc cacgttcttt aatagtggac tcttgttcca 6420aactggaaca
acactcaacc ctatctcggt ctattctttt gatttataag ggattttgcc 6480gatttcggcc
tattggttaa aaaatgagct gatttaacaa aaatttaacg cgaattaatt 6540ctgtggaatg
tgtgtcagtt agggtgtgga aagtccccag gctccccagc aggcagaagt 6600atgcaaagca
tgcatctcaa ttagtcagca accaggtgtg gaaagtcccc aggctcccca 6660gcaggcagaa
gtatgcaaag catgcatctc aattagtcag caaccatagt cccgccccta 6720actccgccca
tcccgcccct aactccgccc agttccgccc attctccgcc ccatggctga 6780ctaatttttt
ttatttatgc agaggccgag gccgcctctg cctctgagct attccagaag 6840tagtgaggag
gcttttttgg aggcctaggc ttttgcaaaa agctcccggg agcttgtata 6900tccattttcg
gatctgatca agagacagga tgaggatcgt ttcgcatgat tgaacaagat 6960ggattgcacg
caggttctcc ggccgcttgg gtggagaggc tattcggcta tgactgggca 7020caacagacaa
tcggctgctc tgatgccgcc gtgttccggc tgtcagcgca ggggcgcccg 7080gttctttttg
tcaagaccga cctgtccggt gccctgaatg aactgcagga cgaggcagcg 7140cggctatcgt
ggctggccac gacgggcgtt ccttgcgcag ctgtgctcga cgttgtcact 7200gaagcgggaa
gggactggct gctattgggc gaagtgccgg ggcaggatct cctgtcatct 7260caccttgctc
ctgccgagaa agtatccatc atggctgatg caatgcggcg gctgcatacg 7320cttgatccgg
ctacctgccc attcgaccac caagcgaaac atcgcatcga gcgagcacgt 7380actcggatgg
aagccggtct tgtcgatcag gatgatctgg acgaagagca tcaggggctc 7440gcgccagccg
aactgttcgc caggctcaag gcgcgcatgc ccgacggcga ggatctcgtc 7500gtgacccatg
gcgatgcctg cttgccgaat atcatggtgg aaaatggccg cttttctgga 7560ttcatcgact
gtggccggct gggtgtggcg gaccgctatc aggacatagc gttggctacc 7620cgtgatattg
ctgaagagct tggcggcgaa tgggctgacc gcttcctcgt gctttacggt 7680atcgccgctc
ccgattcgca gcgcatcgcc ttctatcgcc ttcttgacga gttcttctga 7740gcgggactct
ggggttcgaa atgaccgacc aagcgacgcc caacctgcca tcacgagatt 7800tcgattccac
cgccgccttc tatgaaaggt tgggcttcgg aatcgttttc cgggacgccg 7860gctggatgat
cctccagcgc ggggatctca tgctggagtt cttcgcccac cccaacttgt 7920ttattgcagc
ttataatggt tacaaataaa gcaatagcat cacaaatttc acaaataaag 7980catttttttc
actgcattct agttgtggtt tgtccaaact catcaatgta tcttatcatg 8040tctgtatacc
gtcgacctct agctagagct tggcgtaatc atggtcatag ctgtttcctg 8100tgtgaaattg
ttatccgctc acaattccac acaacatacg agccggaagc ataaagtgta 8160aagcctgggg
tgcctaatga gtgagctaac tcacattaat tgcgttgcgc tcactgcccg 8220ctttccagtc
gggaaacctg tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga 8280gaggcggttt
gcgtattggg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg 8340tcgttcggct
gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag 8400aatcagggga
taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc 8460gtaaaaaggc
cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca 8520aaaatcgacg
ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 8580ttccccctgg
aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 8640tgtccgcctt
tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc 8700tcagttcggt
gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc 8760ccgaccgctg
cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact 8820tatcgccact
ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg 8880ctacagagtt
cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta 8940tctgcgctct
gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca 9000aacaaaccac
cgctggtagc ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 9060aaggatctca
agaagatcct ttgatctttt ctacggggtc tgacgctcag tggaacgaaa 9120actcacgtta
agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatccttt 9180taaattaaaa
atgaagtttt aaatcaatct aaagtatata tgagtaaact tggtctgaca 9240gttaccaatg
cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 9300tagttgcctg
actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc 9360ccagtgctgc
aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa 9420accagccagc
cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc 9480agtctattaa
ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca 9540acgttgttgc
cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat 9600tcagctccgg
ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 9660cggttagctc
cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac 9720tcatggttat
ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 9780ctgtgactgg
tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt 9840gctcttgccc
ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc 9900tcatcattgg
aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 9960ccagttcgat
gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca 10020gcgtttctgg
gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 10080cacggaaatg
ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg 10140gttattgtct
catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 10200ttccgcgcac
atttccccga aaagtgccac ctgacgtc
102382110139DNAArtificial SequenceSynthetic construct-PN32 21gacggatcgg
gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctgatg 60ccgcatagtt
aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120cgagcaaaat
ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180ttagggttag
gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240gattattgac
tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300tggagttccg
cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360cccgcccatt
gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420attgacgtca
atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 480atcatatgcc
aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540atgcccagta
catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600tcgctattac
catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660actcacgggg
atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720aaaatcaacg
ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780gtaggcgtgt
acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840ctgcttactg
gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900gtttaaactt
aagcttggta ccgagctcgg atccactagt ccagtgtggt ggaattgccc 960ttattcctca
gtgacccagg agctgacaca ctatggcgca cgtccgaggc ttgcagctgc 1020ctggctgcct
ggccctggct gccctgtgta gccttgtgca cagccagcat gtgttcctgg 1080ctcctcagca
agcacggtcg ctgctccagc gggtccggcg agccaacacc ttcttggagg 1140aggtgcgcaa
gggcaacctg gagcgagagt gcgtggagga gacgtgcagc tacgaggagg 1200ccttcgaggc
tctggagtcc tccacggcta cggatgtgtt ctgggccaag tacacagctt 1260gtgagacagc
gaggacgcct cgagataagc ttgctgcatg tctggaaggt aactgtgctg 1320agggtctggg
tacgaactac cgagggcatg tgaacatcac ccggtcaggc attgagtgcc 1380agctatggag
gagtcgctac ccacataagc ctgaaatcaa ctccactacc catcctgggg 1440ccgacctaca
ggagaatttc tgccgcaacc ccgacagcag caccacggga ccctggtgct 1500acactacaga
ccccaccgtg aggaggcagg aatgcagcat ccctgtctgt ggccaggatc 1560aagtcactgt
agcgatgact ccacgctccg aaggctccag tgtgaatctg tcacctccat 1620tggagcagtg
tgtccctgat cgggggcagc agtaccaggg gcgcctggcg gtgaccacac 1680atgggctccc
ctgcctggcc tgggccagcg cacaggccaa ggccctgagc aagcaccagg 1740acttcaactc
agctgtgcag ctggtggaga acttctgccg caacccagac ggggatgagg 1800agggcgtgtg
gtgctatgtg gccgggaagc ctggcgactt tgggtactgc gacctcaact 1860attgtgagga
ggccgtggag gaggagacag gagatgggct ggatgaggac tcagacaggg 1920ccatcgaagg
gcgtaccgcc accagtgagt accagacttt cttcaatccg aggacctttg 1980gctcgggaga
ggcagactgt gggctgcgac ctctgttcga gaagaagtcg ctggaggaca 2040aaaccgaaag
agagctcctg gaatcctaca tcgacgggcg cattgtggag ggctcggatg 2100cagagatcgg
catgtcacct tggcaggtga tgcttttccg gaagagtccc caggagctgc 2160tgtgtggggc
cagcctcatc agtgaccgct gggtcctcac cgccgcccac tgcctcctgt 2220acccgccctg
ggacaagaac ttcaccgaga atgaccttct ggtgcgcatt ggcaagcact 2280cccgcaccag
gtacgagcga aacattgaaa agatatccat gttggaaaag atctacatcc 2340accccaggta
caactggcgg gagaacctgg accgggacat tgccctgatg aagctgaaga 2400agcctgttgc
cttcagtgac tacattcacc ctgtgtgtct gcccgacagg gagacggcag 2460ccagcttgct
ccaggctgga tacaaggggc gggtgacagg ctggggcaac ctgaaggaga 2520cgtggacagc
caacgttggt aaggggcagc ccagtgtcct gcaggtggtg aacctgccca 2580ttgtggagcg
gccggtctgc aaggactcca cccggatccg catcactgac aacatgttct 2640gtgctggtta
caagcctgat gaagggaaac gaggggatgc ctgtgaaggt gacagtgggg 2700gaccctttgt
catgaagagc ccctttaaca accgctggta tcaaatgggc atcgtctcat 2760ggggtgaagg
ctgtgaccgg gatgggaaat atggcttcta cacacatgtg ttccgcctga 2820agaagtggat
acagaaggtc attgatcagt ttggagagta gaagggcaat tctgcagata 2880tccagcacag
tggcggccgc tcgagtctag agggcccgtt taaacccgct gatcagcctc 2940gactgtgcct
tctagttgcc agccatctgt tgtttgcccc tcccccgtgc cttccttgac 3000cctggaaggt
gccactccca ctgtcctttc ctaataaaat gaggaaattg catcgcattg 3060tctgagtagg
tgtcattcta ttctgggggg tggggtgggg caggacagca agggggagga 3120ttgggaagac
aatagcaggc atgctgggga tgcggtgggc tctatggctt ctgaggcgga 3180aagaaccagc
tggggctcta gggggtatcc ccacgcgccc tgtagcggcg cattaagcgc 3240ggcgggtgtg
gtggttacgc gcagcgtgac cgctacactt gccagcgccc tagcgcccgc 3300tcctttcgct
ttcttccctt cctttctcgc cacgttcgcc ggctttcccc gtcaagctct 3360aaatcggggg
ctccctttag ggttccgatt tagtgcttta cggcaccttc gaccccaaaa 3420aacttgatta
gggctgtgga atgtgtgtca gttagggtgt ggaaagtccc caggctcccc 3480agcaggcaga
agtatgcaaa gcatgcatct caattagtca gcaaccaggt gtggaaagtc 3540cccaggctcc
ccagcaggca gaagtatgca aagcatgcat ctcaattagt cagcaaccat 3600agtcccgccc
ctaactccgc ccatcccgcc cctaactccg cccagttccg cccattctcc 3660gccccatggc
tgactaattt tttttattta tgcagaggcc gaggccgcct cggcctctga 3720gctattccag
aagtagtgag gaggcttttt tggaggccta ggcttttgca aaaagctctc 3780tggctaacta
gagaacccac tgcttactgg cttatcgaaa ttaatacgac tcactatagg 3840gagacccaag
ctggctagcg tttaaactta agcttggtac cgagctcgga tccactagtc 3900cagtgtggtg
gaattgccct ttccgcagag caatggcggt gtctgccggg tccgcgcgga 3960cctcgcccag
ctcagataaa gtacagaaag acaaggctga actgatctca gggcccaggc 4020aggacagccg
aatagggaaa ctcttgggtt ttgagtggac agatttgtcc agttggcgga 4080ggctggtgac
cctgctgaat cgaccaacgg accctgcaag cttagctgtc tttcgttttc 4140tttttgggtt
cttgatggtg ctagacattc cccaggagcg ggggctcagc tctctggacc 4200ggaaatacct
tgatgggctg gatgtgtgcc gcttcccctt gctggatgcc ctacgcccac 4260tgccacttga
ctggatgtat cttgtctaca ccatcatgtt tctgggggca ctgggcatga 4320tgctgggcct
gtgctaccgg ataagctgtg tgttattcct gctgccatac tggtatgtgt 4380ttctcctgga
caagacatca tggaacaacc actcctatct gtatgggttg ttggcctttc 4440agctaacatt
catggatgca aaccactact ggtctgtgga cggtctgctg aatgcccata 4500ggaggaatgc
ccacgtgccc ctttggaact atgcagtgct ccgtggccag atcttcattg 4560tgtacttcat
tgcgggtgtg aaaaagctgg atgcagactg ggttgaaggc tattccatgg 4620aatatttgtc
ccggcactgg ctcttcagtc ccttcaaact gctgttgtct gaggagctga 4680ctagcctgct
ggtcgtgcac tggggtgggc tgctgcttga cctctcagct ggtttcctgc 4740tcttttttga
tgtctcaaga tccattggcc tgttctttgt gtcctacttc cactgcatga 4800attcccagct
tttcagcatt ggtatgttct cctacgtcat gctggccagc agccctctct 4860tctgctcccc
tgagtggcct cggaagctgg tgtcctactg cccccgaagg ttgcaacaac 4920tgttgcccct
caaggcagcc cctcagccca gtgtttcctg tgtgtataag aggagccggg 4980gcaaaagtgg
ccagaagcca gggctgcgcc atcagctggg agctgccttc accctgctct 5040acctcctgga
gcagctattc ctgccctatt ctcattttct cacccagggc tataacaact 5100ggacaaatgg
gctgtatggc tattcctggg acatgatggt gcactcccgc tcccaccagc 5160acgtgaagat
cacctaccgt gatggccgca ctggcgaact gggctacctt aaccctgggg 5220tatttacaca
gagtcggcga tggaaggatc atgcagacat gctgaagcaa tatgccactt 5280gcctgagccg
cctgcttccc aagtataatg tcactgagcc ccagatctac tttgatattt 5340gggtctccat
caatgaccgc ttccagcaga ggatttttga ccctcgtgtg gacatcgtgc 5400aggccgcttg
gtcacccttt cagcgcacat cctgggtgca accactcttg atggacctgt 5460ctccctggag
ggccaagtta caggaaatca agagcagcct agacaaccac actgaggtgg 5520tcttcattgc
agatttccct ggactgcact tggagaattt tgtgagtgaa gacctgggca 5580acactagcat
ccagctgctg cagggggaag tgactgtgga gcttgtggca gaacagaaga 5640accagactct
tcgagaggga gaaaaaatgc agttgcctgc tggtgagtac cataaggtgt 5700atacgacatc
acctagccct tcttgctaca tgtacgtcta tgtcaacact acagagcttg 5760cactggagca
agacctggca tatctgcaag aattaaagga aaaggtggag aatggaagtg 5820aaacagggcc
tctaccccca gagctgcagc ctctgttgga aggggaagta aaagggggcc 5880ctgagccaac
acctctggtt cagacctttc ttagacgcca acaaaggctc caggagattg 5940aacgccggcg
aaatactcct ttccatgagc gattcttccg cttcttgttg cgaaagctct 6000atgtctttcg
ccgcagcttc ctgatgactt gtatctcact tcgaaatctg atattaggcc 6060gtccttccct
ggagcagctg gcccaggagg tgacttatgc aaacttgaga ccctttgagg 6120cagttggaga
actgaatccc tcaaacacgg attcttcaca ttctaatcct cctgagtcaa 6180atcctgatcc
tgtccactca gagttctgaa gggggccaga tgttggaagg gcaattcgag 6240tctagagggc
ccgccctgat agacggtttt tcgccctttg acgttggagt ccacgttctt 6300taatagtgga
ctcttgttcc aaactggaac aacactcaac cctatctcgg tctattcttt 6360tgatttataa
gggattttgc cgatttcggc ctattggtta aaaaatgagc tgatttaaca 6420aaaatttaac
gcgaattaat tctgtggaat gtgtgtcagt tagggtgtgg aaagtcccca 6480ggctccccag
caggcagaag tatgcaaagc atgcatctca attagtcagc aaccaggtgt 6540ggaaagtccc
caggctcccc agcaggcaga agtatgcaaa gcatgcatct caattagtca 6600gcaaccatag
tcccgcccct aactccgccc atcccgcccc taactccgcc cagttccgcc 6660cattctccgc
cccatggctg actaattttt tttatttatg cagaggccga ggccgcctct 6720gcctctgagc
tattccagaa gtagtgagga ggcttttttg gaggcctagg cttttgcaaa 6780aagctcccgg
gagcttgtat atccattttc ggatctgatc aagagacagg atgaggatcg 6840tttcgcatga
ttgaacaaga tggattgcac gcaggttctc cggccgcttg ggtggagagg 6900ctattcggct
atgactgggc acaacagaca atcggctgct ctgatgccgc cgtgttccgg 6960ctgtcagcgc
aggggcgccc ggttcttttt gtcaagaccg acctgtccgg tgccctgaat 7020gaactgcagg
acgaggcagc gcggctatcg tggctggcca cgacgggcgt tccttgcgca 7080gctgtgctcg
acgttgtcac tgaagcggga agggactggc tgctattggg cgaagtgccg 7140gggcaggatc
tcctgtcatc tcaccttgct cctgccgaga aagtatccat catggctgat 7200gcaatgcggc
ggctgcatac gcttgatccg gctacctgcc cattcgacca ccaagcgaaa 7260catcgcatcg
agcgagcacg tactcggatg gaagccggtc ttgtcgatca ggatgatctg 7320gacgaagagc
atcaggggct cgcgccagcc gaactgttcg ccaggctcaa ggcgcgcatg 7380cccgacggcg
aggatctcgt cgtgacccat ggcgatgcct gcttgccgaa tatcatggtg 7440gaaaatggcc
gcttttctgg attcatcgac tgtggccggc tgggtgtggc ggaccgctat 7500caggacatag
cgttggctac ccgtgatatt gctgaagagc ttggcggcga atgggctgac 7560cgcttcctcg
tgctttacgg tatcgccgct cccgattcgc agcgcatcgc cttctatcgc 7620cttcttgacg
agttcttctg agcgggactc tggggttcga aatgaccgac caagcgacgc 7680ccaacctgcc
atcacgagat ttcgattcca ccgccgcctt ctatgaaagg ttgggcttcg 7740gaatcgtttt
ccgggacgcc ggctggatga tcctccagcg cggggatctc atgctggagt 7800tcttcgccca
ccccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca 7860tcacaaattt
cacaaataaa gcattttttt cactgcattc tagttgtggt ttgtccaaac 7920tcatcaatgt
atcttatcat gtctgtatac cgtcgacctc tagctagagc ttggcgtaat 7980catggtcata
gctgtttcct gtgtgaaatt gttatccgct cacaattcca cacaacatac 8040gagccggaag
cataaagtgt aaagcctggg gtgcctaatg agtgagctaa ctcacattaa 8100ttgcgttgcg
ctcactgccc gctttccagt cgggaaacct gtcgtgccag ctgcattaat 8160gaatcggcca
acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc 8220tcactgactc
gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 8280cggtaatacg
gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 8340gccagcaaaa
ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 8400gcccccctga
cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 8460gactataaag
ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 8520ccctgccgct
taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 8580atagctcacg
ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 8640tgcacgaacc
ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt 8700ccaacccggt
aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 8760gagcgaggta
tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 8820ctagaagaac
agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 8880ttggtagctc
ttgatccggc aaacaaacca ccgctggtag cggttttttt gtttgcaagc 8940agcagattac
gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt 9000ctgacgctca
gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa 9060ggatcttcac
ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat 9120atgagtaaac
ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga 9180tctgtctatt
tcgttcatcc atagttgcct gactccccgt cgtgtagata actacgatac 9240gggagggctt
accatctggc cccagtgctg caatgatacc gcgagaccca cgctcaccgg 9300ctccagattt
atcagcaata aaccagccag ccggaagggc cgagcgcaga agtggtcctg 9360caactttatc
cgcctccatc cagtctatta attgttgccg ggaagctaga gtaagtagtt 9420cgccagttaa
tagtttgcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacgct 9480cgtcgtttgg
tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat 9540cccccatgtt
gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt gtcagaagta 9600agttggccgc
agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca 9660tgccatccgt
aagatgcttt tctgtgactg gtgagtactc aaccaagtca ttctgagaat 9720agtgtatgcg
gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac 9780atagcagaac
tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa 9840ggatcttacc
gctgttgaga tccagttcga tgtaacccac tcgtgcaccc aactgatctt 9900cagcatcttt
tactttcacc agcgtttctg ggtgagcaaa aacaggaagg caaaatgccg 9960caaaaaaggg
aataagggcg acacggaaat gttgaatact catactcttc ctttttcaat 10020attattgaag
catttatcag ggttattgtc tcatgagcgg atacatattt gaatgtattt 10080agaaaaataa
acaaataggg gttccgcgca catttccccg aaaagtgcca cctgacgtc
10139226115DNAArtificial SequenceSynthetic construct-VKORhygro
22gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
60ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
120cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc
180ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt
240gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
300tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
360cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
420attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt
480atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
540atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
600tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg
660actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc
720aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg
780gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca
840ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc
900gtttaaactt aagcttggta ccgagctcgg atccactagt ccagtgtggt ggaattgccc
960ttcaccatgg gcagcacctg ggggagccct ggctgggtgc ggctcgctct ttgcctgacg
1020ggcttagtgc tctcgctcta cgcgctgcac gtgaaggcgg cgcgcgcccg ggaccgggat
1080taccgcgcgc tctgcgacgt gggcaccgcc atcagctgtt cgcgcgtctt ctcctccagg
1140tggggcaggg gtttcgggct ggtggagcat gtgctgggac aggacagcat cctcaatcaa
1200tccaacagca tattcggttg catcttctac acactacagc tattgttagg ttgcctgcgg
1260acacgctggg cctctgtcct gatgctgctg agctccctgg tgtctctcgc tggttctgtc
1320tacctggcct ggatcctgtt cttcgtgctc tatgatttct gcattgtttg tatcaccacc
1380tatgctatca acgtgagcct gatgtggctc agtttccgga aggtccaaga accccagggc
1440aaggctaaga ggcactgaac aagggcaatt ctgcagatat ccagcacagt ggcggccgct
1500cgagtctaga gggcccgttt aaacccgctg atcagcctcg actgtgcctt ctagttgcca
1560gccatctgtt gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac
1620tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat
1680tctggggggt ggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca
1740tgctggggat gcggtgggct ctatggcttc tgaggcggaa agaaccagct ggggctctag
1800ggggtatccc cacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg
1860cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc
1920ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcggggca tccctttagg
1980gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc
2040acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt
2100ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc
2160ttttgattta taagggattt tggggatttc ggcctattgg ttaaaaaatg agctgattta
2220acaaaaattt aacgcgaatt aattctgtgg aatgtgtgtc agttagggtg tggaaagtcc
2280ccaggctccc caggcaggca gaagtatgca aagcatgcat ctcaattagt cagcaaccag
2340gtgtggaaag tccccaggct ccccagcagg cagaagtatg caaagcatgc atctcaatta
2400gtcagcaacc atagtcccgc ccctaactcc gcccatcccg cccctaactc cgcccagttc
2460cgcccattct ccgccccatg gctgactaat tttttttatt tatgcagagg ccgaggccgc
2520ctctgcctct gagctattcc agaagtagtg aggaggcttt tttggaggcc taggcttttg
2580caaaaagctc ccgggagctt gtatatccat tttcggatct gatcagcacg tgatgaaaaa
2640gcctgaactc accgcgacgt ctgtcgagaa gtttctgatc gaaaagttcg acagcgtctc
2700cgacctgatg cagctctcgg agggcgaaga atctcgtgct ttcagcttcg atgtaggagg
2760gcgtggatat gtcctgcggg taaatagctg cgccgatggt ttctacaaag atcgttatgt
2820ttatcggcac tttgcatcgg ccgcgctccc gattccggaa gtgcttgaca ttggggaatt
2880cagcgagagc ctgacctatt gcatctcccg ccgtgcacag ggtgtcacgt tgcaagacct
2940gcctgaaacc gaactgcccg ctgttctgca gccggtcgcg gaggccatgg atgcgatcgc
3000tgcggccgat cttagccaga cgagcgggtt cggcccattc ggaccgcaag gaatcggtca
3060atacactaca tggcgtgatt tcatatgcgc gattgctgat ccccatgtgt atcactggca
3120aactgtgatg gacgacaccg tcagtgcgtc cgtcgcgcag gctctcgatg agctgatgct
3180ttgggccgag gactgccccg aagtccggca cctcgtgcac gcggatttcg gctccaacaa
3240tgtcctgacg gacaatggcc gcataacagc ggtcattgac tggagcgagg cgatgttcgg
3300ggattcccaa tacgaggtcg ccaacatctt cttctggagg ccgtggttgg cttgtatgga
3360gcagcagacg cgctacttcg agcggaggca tccggagctt gcaggatcgc cgcggctccg
3420ggcgtatatg ctccgcattg gtcttgacca actctatcag agcttggttg acggcaattt
3480cgatgatgca gcttgggcgc agggtcgatg cgacgcaatc gtccgatccg gagccgggac
3540tgtcgggcgt acacaaatcg cccgcagaag cgcggccgtc tggaccgatg gctgtgtaga
3600agtactcgcc gatagtggaa accgacgccc cagcactcgt ccgagggcaa aggaatagca
3660cgtgctacga gatttcgatt ccaccgccgc cttctatgaa aggttgggct tcggaatcgt
3720tttccgggac gccggctgga tgatcctcca gcgcggggat ctcatgctgg agttcttcgc
3780ccaccccaac ttgtttattg cagcttataa tggttacaaa taaagcaata gcatcacaaa
3840tttcacaaat aaagcatttt tttcactgca ttctagttgt ggtttgtcca aactcatcaa
3900tgtatcttat catgtctgta taccgtcgac ctctagctag agcttggcgt aatcatggtc
3960atagctgttt cctgtgtgaa attgttatcc gctcacaatt ccacacaaca tacgagccgg
4020aagcataaag tgtaaagcct ggggtgccta atgagtgagc taactcacat taattgcgtt
4080gcgctcactg cccgctttcc agtcgggaaa cctgtcgtgc cagctgcatt aatgaatcgg
4140ccaacgcgcg gggagaggcg gtttgcgtat tgggcgctct tccgcttcct cgctcactga
4200ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat
4260acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca
4320aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc
4380tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata
4440aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc
4500gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcaatgctc
4560acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga
4620accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc
4680ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag
4740gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag
4800gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag
4860ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca
4920gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga
4980cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat
5040cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga
5100gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg
5160tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga
5220gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc
5280agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac
5340tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc
5400agttaatagt ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc
5460gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc
5520catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt
5580ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc
5640atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg
5700tatgcggcga ccgagttgct cttgcccggc gtcaatacgg gataataccg cgccacatag
5760cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat
5820cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc
5880atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa
5940aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta
6000ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa
6060aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtc
6115
User Contributions:
Comment about this patent or add new information about this topic: