Patent application title: PROGNOSTIC AND PREDICTIVE GENE SIGNATURE FOR NON-SMALL CELL LUNG CANCER AND ADJUVANT CHEMOTHERAPY
Inventors:
Ming-Sound Tsao (Toronto, CA)
Ming-Sound Tsao (Toronto, CA)
Frances A. Shepherd (Toronto, CA)
Igor Jurisica (Toronto, CA)
Sandy D. Der (Toronto, CA)
Chang-Qi Zhu (Thornhill, CA)
Dan Strumpf (Toronto, CA)
Lesley Seymour (Kingston, CA)
Keyue Ding (Kingston, CA)
IPC8 Class:
USPC Class:
705 2
Class name: Data processing: financial, business practice, management, or cost/price determination automated electrical financial or business practice or management arrangement health care management (e.g., record management, icda billing)
Publication date: 2012-12-20
Patent application number: 20120323594
Abstract:
The application provides methods of prognosing and classifying lung
cancer patients into poor survival groups or good survival groups and for
determining the benefit of adjuvant chemotherapy by way of a multigene
signature. The application also includes kits and computer products for
use in the methods of the application.Claims:
1-44. (canceled)
45. A method for prognosing or classifying a subject with non-small cell lung cancer (NSCLC) comprising: determining relative expression levels of at least 15 biomarkers in a tumor sample from the subject, wherein the at least 15 biomarkers comprise FAM64A, MB, EDN3, ZNF236, FOSL2, MYT1L, MLANA, L1CAM, TRIM14, STMN2, UMPS, ATP1B1, HEXIM1, IKBKAP, and MDM2; calculating a combined score from the relative expression levels, including the relative expression levels of FAM64A, MB, EDN3, ZNF236, FOSL2, MYT1L, MLANA, L1CAM, TRIM14, STMN2, UMPS, ATP1B1, HEXIM1, IKBKAP, and MDM2, and classifying the subject into a high or low risk group based on the combined score.
46. The method of claim 45, further comprising selecting adjuvant chemotherapy if the subject is in the high risk group.
47. The method of claim 45, further comprising selecting resection alone for the low risk group.
48. The method of claim 45, wherein the combined score is calculated from the relative expression levels of 16, 17, or 18 biomarkers.
49. The method of claim 48, wherein the one, two or three additional biomarkers are selected from Table 3.
50. The method of claim 45, wherein the additional one, two, or three biomarkers are selected from RGS4, UGT2B4, and MCF2.
51. The method of claim 45, wherein the combined score is calculated according to Formula I: Combined score=0.557.times.PC1+0.328.times.PC2+0.43.times.PC3+0.335.times.PC4 (Formula I), wherein PC1 is the sum of the relative expression level for each biomarker multiplied by a first principal component for each biomarker, PC2 is the sum of the relative expression level for each biomarker multiplied by a second principal component for each biomarker, PC3 is the sum of the relative expression level for each biomarker multiplied by a third principal component for each biomarker, and PC4 is the sum of the relative expression level of each biomarker multiplied by a fourth principal component for each biomarker.
52. The method of claim 45, and wherein the subject has stage I or stage II NSCLC.
53. The method of claim 45, wherein the relative expression levels are determined by microarray.
54. The method of claim 45, wherein the relative expression levels are determined by quantitative PCR.
55. A method for prognosing or classifying a subject with stage I or stage II non-small cell lung cancer (NSCLC) comprising: determining relative expression levels of at least 15 biomarkers in a tumor sample from the subject, wherein the at least 15 biomarkers comprise FAM64A, MB, EDN3, ZNF236, FOSL2, MYT1L, MLANA, L1CAM, TRIM14, STMN2, UMPS, ATP1B1, HEXIM1, IKBKAP, and MDM2; calculating a combined score from the relative expression levels, including the relative expression levels of FAM64A, MB, EDN3, ZNF236, FOSL2, MYT1L, MLANA, L1CAM, TRIM14, STMN2, UMPS, ATP1B1, HEXIM1, IKBKAP, and MDM2, and classifying the subject into a high or low risk group based on the combined score, and selecting adjuvant chemotherapy if the subject is in the high risk group, and selecting resection alone for the low risk group.
56. The method of claim 55, wherein the combined score is calculated from the relative expression levels of 16, 17, or 18 biomarkers.
57. The method of claim 56, wherein the one, two or three additional biomarkers are selected from Table 3.
58. The method of claim 57, wherein the additional one, two, or three biomarkers are selected from RGS4, UGT2B4, and MCF2.
59. The method of claim 55, wherein the combined score is calculated according to Formula I: Combined score=0.557.times.PC1+0.328'PC2+0.43.times.PC3+0.335.times.PC4 (Formula I), wherein PC1 is the sum of the relative expression level for each biomarker multiplied by a first principal component for each biomarker, PC2 is the sum of the relative expression level for each biomarker multiplied by a second principal component for each biomarker, PC3 is the sum of the relative expression level for each biomarker multiplied by a third principal component for each biomarker, and PC4 is the sum of the relative expression level of each biomarker multiplied by a fourth principal component for each biomarker.
60. The method of claim 55, wherein the relative expression levels are determined by microarray.
61. The method of claim 55, wherein the relative expression levels are determined by quantitative PCR.
Description:
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims benefit under 35 U.S.C. §119(e) to U.S. provisional application Ser. No. 61/071,728, filed 14 May 2008, incorporated herein by reference in its entirety.
FIELD
[0002] The application relates to compositions and methods for prognosing and classifying non-small cell lung cancer and for determining the benefit of adjuvant chemotherapy.
BACKGROUND OF THE INVENTION
[0003] In North America, lung cancer is the leading cancer in males and the leading cause of cancer deaths in both males and females'. Non-small cell lung cancer (NSCLC) represents 80% of all lung cancers and has an overall 5-year survival rate of only 16% 1. Tumor stage is the primary determinant for treatment selection for NSCLC patients. Recent clinical trials have led to the adoption of adjuvant cisplatin-based chemotherapy in early stage NSCLC patients (Stages IB-IIIA). The 5-year survival advantage conferred by adjuvant chemotherapy in recent trials are 4% in the International Adjuvant Lung Trial (IALT) involving 1,867 stage I-III patients2, 15% in the National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) BR.10 Trial involving 483 stage IB-II patients3, and 9% in the Adjuvant Navelbine International Trialist Association (ANITA) trial involving 840 stage IB-IIIA patients4. Pre-planned stratification analysis in the later two trials showed no significant survival benefit for stage IB patients3,4. This was also demonstrated in the Cancer and Leukemia Group (CALGB) Trial 9633 that tested the benefit of chemotherapy on 344 stage IB patients receiving carboplatin and paclitaxel or observation5. Although initially presented in 2004 as a positive trial, recent survival analyses show no significant survival advantage with chemotherapy for either disease-free survival (HR=0.80, p=0.065) or overall survival (HR=0.83, p=0.12)5. In an attempt to draw an overall conclusion regarding the effectiveness of adjuvant cisplatin-based chemotherapy, the Lung Adjuvant Cisplatin Evaluation (LACE) meta-analysis6 was conducted which synthesized information from the 5 largest published, cisplatin-based trials that did not administer concurrent thoracic radiation [Adjuvant Lung Project Italy (ALPI)7, Big Lung Trial (BLT)8, IALT2, BR.103, and ANITA9]. The study found a 5.3% absolute survival advantage at 5-year (HR=0.89, 95% Cl 0.82-0.96, p=0.004). However, stratified analysis by stage showed that the stage IB patients did not benefit significantly from cisplatin treatment (HR=0.92, 95% Cl 0.78-1.10). Moreover, a detriment for chemotherapy was suggested in stage IA patients (HR=1.41, 95% Cl 0.96-2.09)6. Therefore, the current standard of treatment for patients with stage I NSCLC remains surgical resection alone. However, 30 to 40 percent of these stage I patients are expected to relapse after the initial surgery10,11, indicating that a subgroup of these patients might benefit from adjuvant chemotherapy.
[0004] The lack of consistent prognostic molecular markers for early stage NSCLC patients led to attempts to identify novel gene expression signatures using genome wide microarray platforms. Such multi-gene signatures might be stronger than individual genes to predict poor prognosis and poor prognostic patients could potentially benefit from adjuvant therapies. Previous microarray studies have identified prognostic signatures that demonstrated minimal overlaps in the gene sets.12-20 While only one of the early studies involved secondary signature validation in independent datasets12, all recently reported signatures were tested for validation13-16, 20. Nevertheless, lack of direct overlaps between signatures remains. One of the potential confounding factors is that signatures were derived from patients operated at single institutions, which may introduce biases.
SUMMARY OF THE INVENTION
[0005] As discussed in the Background section, certain patients suffering from NSCLC benefit from adjuvant chemotherapy. Attempts to identify systematically patient subpopulations in which adjuvant therapy would lead to increased survival or improve patient prognosis have generally failed. Efforts to assemble prognostic molecular markers have yielded various non-overlapping gene sets but have fallen short of establishing a gene signature with a minimal set of genes that is predictive regardless of the form of NSCLC (eg. adenocarcinoma or squamous cell carcinoma) or stage, and serves as a reliable classifier for adjuvant therapy benefit.
[0006] As will be discussed in more detail below, Applicants have identified from historical patient data a minimal set of fifteen genes whose expression levels, either alone or in combination with that of one to 3 additional genes, is prognostic of survival outcome and diagnostic of adjuvant therapy benefit. The fifteen genes are provided in Table 4. Optional additional genes may be selected from those provided in Table 3. The prognostic and diagnostic value of the gene sets identified by Applicants was verified by validation against independent data sets, as set forth in the Examples below. The present disclosure provides methods and kits useful for obtaining and utilizing expression information for the fifteen, and optionally one to 3 additional genes, to obtain prognostic and diagnostic information for patient with NSCLC.
[0007] The methods of the present disclosure generally involve obtaining from a patient relative expression data, at the DNA, mRNA, or protein level, for each of the fifteen, and optional additional, genes, processing the data and comparing the resulting information to one or more reference values. Relative expression levels are expression data normalized according to techniques known to those skilled in the art. Expression data may be normalized with respect to one or more genes with invariant expression, such as "housekeeping" genes. In some embodiments, expression data may be processed using standard techniques, such as transformation to a z-score, and/or software tools, such as RMAexpress v0.3.
[0008] In one aspect, a multi-gene signature is provided for prognosing or classifying patients with lung cancer. In some embodiments, a fifteen-gene signature is provided, comprising reference values for each of fifteen different genes based on relative expression data for each gene from a historical data set with a known outcome, such as good or poor survival, and/or known treatment, such as adjuvant chemotherapy. In one embodiment, four reference values are provided for each of the fifteen genes listed in Table 4. In one embodiment, the reference values for each of the fifteen genes are principal component values set forth in Table 10.
[0009] In some embodiments, a sixteen-, seventeen-, or eighteen-gene signature comprises reference values for each of sixteen, seventeen, or eighteen different genes based on relative expression data for each gene from a historical data set with a known outcome and/or known treatment. In some embodiments, reference values are provided for one, two, three genes in addition to those listed in Table 4, and the genes are selected from those listed in Table 3. In some embodiments, a single reference value for each gene is provided.
[0010] In one aspect, relative expression data from a patient are combined with the gene-specific reference values on a gene-by-gene basis for each of the fifteen, and optional additional, genes, to generate a test value which allows prognosis or therapy recommendation. In some embodiments, relative expression data are subjected to an algorithm that yields a single test value, or combined score, which is then compared to a control value obtained from the historical expression data for a patient or pool of patients. In some embodiments, the control value is a numerical threshold for predicting outcomes, for example good and poor outcome, or making therapy recommendations, for example adjuvant therapy in addition to surgical resection or surgical resection alone. In some embodiments, a test value or combined score greater than the control value is predictive, for example, of high risk (poor outcome) or benefit from adjuvant therapy, whereas a combined score falling below the control value is predictive, for example, of low risk (good outcome) or lack of benefit from adjuvant therapy.
[0011] In one embodiment, the combined score is calculated from relative expression data multiplied by reference values, determined from historical data, for each gene. Accordingly, the combined score may be calculated using the algorithm of Formula I below:
Combined score=0.557×PC1+0.328×PC2+0.43×PC3+0.335.time- s.PC4
Where PC1 is the sum of the relative expression level for each gene in a multi-gene signature multiplied by a first principal component for each gene in the multi-gene signature, PC2 is the sum of the relative expression level for each gene multiplied by a second principal component for each gene, PC3 is the sum of the relative expression level for each gene multiplied by a third principal component for each gene, and PC4 is the sum of the relative expression level for each gene multiplied by a fourth principal component for each gene. In some embodiments, the combined score is referred to as a risk score. A risk score for a subject can be calculated by applying Formula I to relative expression data from a test sample obtained from the subject.
[0012] In some embodiments, PC1 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a first principal component for each gene, respectively, as set forth in Table 10; PC2 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a second principal component for each gene, respectively, as set forth in Table 10; PC3 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a third principal component for each gene, respectively, as set forth in Table 10; and PC4 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a fourth principal component for each gene, respectively, as set forth in Table 10.
[0013] The present inventors have identified a gene signature that is prognostic for survival as well as predictive for benefit from adjuvant chemotherapy.
[0014] Accordingly in one embodiment, the application provides a method of prognosing or classifying a subject with non-small cell lung cancer comprising the steps: [0015] a. determining the expression of fifteen biomarkers in a test sample from the subject, wherein the biomarkers correspond to genes in Table 4, and [0016] b. comparing the expression of the fifteen biomarkers in the test sample with expression of the fifteen biomarkers in a control sample, wherein a difference or a similarity in the expression of the fifteen biomarkers between the control and the test sample is used to prognose or classify the subject with NSCLC into a poor survival group or a good survival group.
[0017] In an aspect, the application provides a method of predicting prognosis in a subject with non-small cell lung cancer comprising the steps: [0018] a. obtaining a subject biomarker expression profile in a sample of the subject; [0019] b. obtaining a biomarker reference expression profile associated with a prognosis, wherein the subject biomarker expression profile and the biomarker reference expression profile each have fifteen values, each value representing the expression level of a biomarker, wherein each biomarker corresponds to one gene in Table 4; and [0020] c. selecting the biomarker reference expression profile most similar to the subject biomarker expression profile, to thereby predict a prognosis for the subject.
[0021] In another aspect, the prognoses and classifying methods of the application can be used to select treatment. For example, the methods can be used to select or identify subjects who might benefit from adjuvant chemotherapy. Accordingly, in one embodiment, the application provides a method of selecting a therapy for a subject with NSCLC, comprising the steps: [0022] a. classifying the subject with NSCLC into a poor survival group or a good survival group according to the method of the application; and [0023] b. selecting adjuvant chemotherapy for the poor survival group or no adjuvant chemotherapy for the good survival group.
[0024] In another embodiment, the application provides a method of selecting a therapy for a subject with NSCLC, comprising the steps: [0025] a. determining the expression of fifteen biomarkers in a test sample from the subject, wherein the fifteen biomarkers correspond to the fifteen genes in Table 4; [0026] b. comparing the expression of the fifteen biomarkers in the test sample with the fifteen biomarkers in a control sample; [0027] c. classifying the subject in a poor survival group or a good survival group, wherein a difference or a similarity in the expression of the fifteen biomarkers between the control sample and the test sample is used to classify the subject into a poor survival group or a good survival group; [0028] d. selecting adjuvant chemotherapy if the subject is classified in the poor survival group and selecting no adjuvant chemotherapy if the subject is classified in the good survival group.
[0029] Another aspect of the application provides compositions useful for use with the methods described herein.
[0030] The application also provides for kits used to prognose or classify a subject with NSCLC into a good survival group or a poor survival group or for selecting therapy for a subject with NSCLC that includes detection agents that can detect the expression products of the biomarkers.
[0031] In one aspect, the present disclosure provides kits useful for carrying out the diagnostic and prognostic tests described herein. The kits generally comprise reagents and compositions for obtaining relative expression data for the fifteen, and optional additional, genes described in Tables 3 and 4. As will be recognized by the skilled artisans, the contents of the kits will depend upon the means used to obtain the relative expression information.
[0032] Kits may comprise a labeled compound or agent capable of detecting protein product(s) or nucleic acid sequence(s) in a sample and means for determining the amount of the protein or mRNA in the sample (e.g., an antibody which binds the protein or a fragment thereof, or an oligonucleotide probe which binds to DNA or mRNA encoding the protein). Kits can also include instructions for interpreting the results obtained using the kit.
[0033] In some embodiments, the kits are oligonucleotide-based kits, which may comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a marker protein or (2) a pair of primers useful for amplifying a marker nucleic acid molecule. Kits may also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent. The kits can further comprise components necessary for detecting the detectable label (e.g., an enzyme or a substrate). The kits can also contain a control sample or a series of control samples which can be assayed and compared to the test sample. Each component of a kit can be enclosed within an individual container and all of the various containers can be within a single package, along with instructions for interpreting the results of the assays performed using the kit.
[0034] In some embodiments, the kits are antibody-based kits, which may comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a marker protein; and, optionally, (2) a second, different antibody which binds to either the protein or the first antibody and is conjugated to a detectable label.
[0035] A further aspect provides computer implemented products, computer readable mediums and computer systems that are useful for the methods described herein.
[0036] Other features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the invention are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0037] The invention will now be described in relation to the drawings in which:
[0038] FIG. 1 shows the derivation and testing of the prognostic signature.
[0039] FIG. 2 shows the survival outcome based on the 15-gene signature in training and test sets.
[0040] FIG. 3 shows a comparison of chemotherapy vs. observation in low and high risk patients with microarray data.
[0041] FIG. 4 shows a consort diagram for microarray study of BR. 10 patients.
[0042] FIG. 5 shows the effect of adjuvant chemotherapy in microarray profiled patients.
[0043] FIG. 6 shows the effect of microarray batch processing at 2 different times. The samples were profiled in 2 batches at 2 times (January 2004 and June 2005). Unsupervised clustering shows that the expression patterns of these two batches differed significantly with samples arrayed on January 2004 aggregated in cluster 1 (93%) and samples arrayed on June 2005 in cluster 2 (73%).
DETAILED DESCRIPTION OF THE INVENTION
[0044] The application relates to 15 biomarkers that form a 15-gene signature, and provides methods, compositions, computer implemented products, detection agents and kits for prognosing or classifying a subject with non-small cell lung cancer (NSCLC) and for determining the benefit of adjuvant chemotherapy.
[0045] The term "biomarker" as used herein refers to a gene that is differentially expressed in individuals with non-small cell lung cancer (NSCLC) according to prognosis and is predictive of different survival outcomes and of the benefit of adjuvant chemotherapy. In some embodiments, a 15-gene signature comprises 15 biomarker genes listed in Table 4. Optional additional biomarkers for a 16-, 17-, or 18-gene signature may be selected from the genes listed in Table 3.
[0046] Accordingly, one aspect of the invention is a method of prognosing or classifying a subject with non-small cell lung cancer, comprising the steps: [0047] a. determining the expression of fifteen biomarkers in a test sample from the subject, wherein the biomarkers correspond to genes in Table 4, and [0048] b. comparing the expression of the fifteen biomarkers in the test sample with expression of the fifteen biomarkers in a control sample, [0049] wherein a difference or a similarity in the expression of the fifteen biomarkers between the control and the test sample is used to prognose or classify the subject with NSCLC into a poor survival group or a good survival group.
[0050] In another aspect, the application provides a method of predicting prognosis in a subject with non-small cell lung cancer (NSCLC) comprising the steps: [0051] a. obtaining a subject biomarker expression profile in a sample of the subject; [0052] b. obtaining a biomarker reference expression profile associated with a prognosis, wherein the subject biomarker expression profile and the biomarker reference expression profile each have fifteen values, each value representing the expression level of a biomarker, wherein each biomarker corresponds to a gene in Table 4; and [0053] c. selecting the biomarker reference expression profile most similar to the subject biomarker expression profile, to thereby predict a prognosis for the subject.
[0054] The term "reference expression profile" as used herein refers to the expression of the 15 biomarkers or genes listed in Table 4 associated with a clinical outcome in a NSCLC patient. The reference expression profile comprises 15 values, each value representing the expression level of a biomarker, wherein each biomarker corresponds to one gene in Table 4. The reference expression profile is identified using one or more samples comprising tumor wherein the expression is similar between related samples defining an outcome class or group such as poor survival or good survival and is different to unrelated samples defining a different outcome class such that the reference expression profile is associated with a particular clinical outcome. The reference expression profile is accordingly a reference profile of the expression of the 15 genes in Table 4, to which the subject expression levels of the corresponding genes in a patient sample are compared in methods for determining or predicting clinical outcome.
[0055] As used herein, the term "control" refers to a specific value or dataset that can be used to prognose or classify the value e.g expression level or reference expression profile obtained from the test sample associated with an outcome class. In one embodiment, a dataset may be obtained from samples from a group of subjects known to have NSCLC and good survival outcome or known to have NSCLC and have poor survival outcome or known to have NSCLC and have benefited from adjuvant chemotherapy or known to have NSCLC and not have benefited from adjuvant chemotherapy. The expression data of the biomarkers in the dataset can be used to create a "control value" that is used in testing samples from new patients. A control value is obtained from the historical expression data for a patient or pool of patients with a known outcome. In some embodiments, the control value is a numerical threshold for predicting outcomes, for example good and poor outcome, or making therapy recommendations, for example adjuvant therapy in addition to surgical resection or surgical resection alone.
[0056] In some embodiments, the "control" is a predetermined value for the set of 15 biomarkers obtained from NSCLC patients whose biomarker expression values and survival times are known. Alternatively, the "control" is a predetermined reference profile for the set of fifteen biomarkers obtained from NSCLC patients whose survival times are known. Using values from known samples allows one to develop an algorithm for classifying new patient samples into good and poor survival groups as described in the Example.
[0057] Accordingly, in one embodiment, the control is a sample from a subject known to have NSCLC and good survival outcome. In another embodiment, the control is a sample from a subject known to have NSCLC and poor survival outcome.
[0058] A person skilled in the art will appreciate that the comparison between the expression of the biomarkers in the test sample and the expression of the biomarkers in the control will depend on the control used. For example, if the control is from a subject known to have NSCLC and poor survival, and there is a difference in expression of the biomarkers between the control and test sample, then the subject can be prognosed or classified in a good survival group. If the control is from a subject known to have NSCLC and good survival, and there is a difference in expression of the biomarkers between the control and test sample, then the subject can be prognosed or classified in a poor survival group. For example, if the control is from a subject known to have NSCLC and good survival, and there is a similarity in expression of the biomarkers between the control and test sample, then the subject can be prognosed or classified in a good survival group. For example, if the control is from a subject known to have NSCLC and poor survival, and there is a similarity in expression of the biomarkers between the control and test sample, then the subject can be prognosed or classified in a poor survival group.
[0059] As used herein, a "reference value" refers to a gene-specific coefficient derived from historical expression data. The multi-gene signatures of the present disclosure comprise gene-specific reference values. In some embodiments, the multi-gene signature comprises one reference value for each gene in the signature. In some embodiments, the multi-gene signature comprises four reference values for each gene in the signature. In some embodiments, the reference values are the first four components derived from principal component analysis for each gene in the signature.
[0060] The term "differentially expressed" or "differential expression" as used herein refers to a difference in the level of expression of the biomarkers that can be assayed by measuring the level of expression of the products of the biomarkers, such as the difference in level of messenger RNA transcript expressed or proteins expressed of the biomarkers. In a preferred embodiment, the difference is statistically significant. The term "difference in the level of expression" refers to an increase or decrease in the measurable expression level of a given biomarker as measured by the amount of messenger RNA transcript and/or the amount of protein in a sample as compared with the measurable expression level of a given biomarker in a control. In one embodiment, the differential expression can be compared using the ratio of the level of expression of a given biomarker or biomarkers as compared with the expression level of the given biomarker or biomarkers of a control, wherein the ratio is not equal to 1.0. For example, an RNA or protein is differentially expressed if the ratio of the level of expression in a first sample as compared with a second sample is greater than or less than 1.0. For example, a ratio of greater than 1, 1.2, 1.5, 1.7, 2, 3, 3, 5, 10, 15, 20 or more, or a ratio less than 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.001 or less. In another embodiment the differential expression is measured using p-value. For instance, when using p-value, a biomarker is identified as being differentially expressed as between a first sample and a second sample when the p-value is less than 0.1, preferably less than 0.05, more preferably less than 0.01, even more preferably less than 0.005, the most preferably less than 0.001.
[0061] The term "similarity in expression" as used herein means that there is no or little difference in the level of expression of the biomarkers between the test sample and the control or reference profile. For example, similarity can refer to a fold difference compared to a control. In a preferred embodiment, there is no statistically significant difference in the level of expression of the biomarkers.
[0062] The term "most similar" in the context of a reference profile refers to a reference profile that is associated with a clinical outcome that shows the greatest number of identities and/or degree of changes with the subject profile.
[0063] The term "prognosis" as used herein refers to a clinical outcome group such as a poor survival group or a good survival group associated with a disease subtype which is reflected by a reference profile such as a biomarker reference expression profile or reflected by an expression level of the fifteen biomarkers disclosed herein. The prognosis provides an indication of disease progression and includes an indication of likelihood of death due to lung cancer. In one embodiment the clinical outcome class includes a good survival group and a poor survival group.
[0064] The term "prognosing or classifying" as used herein means predicting or identifying the clinical outcome group that a subject belongs to according to the subject's similarity to a reference profile or biomarker expression level associated with the prognosis. For example, prognosing or classifying comprises a method or process of determining whether an individual with NSCLC has a good or poor survival outcome, or grouping an individual with NSCLC into a good survival group or a poor survival group.
[0065] The term "good survival" as used herein refers to an increased chance of survival as compared to patients in the "poor survival" group. For example, the biomarkers of the application can prognose or classify patients into a "good survival group". These patients are at a lower risk of death after surgery.
[0066] The term "poor survival" as used herein refers to an increased risk of death as compared to patients in the "good survival" group. For example, biomarkers or genes of the application can prognose or classify patients into a "poor survival group". These patients are at greater risk of death from surgery.
[0067] Accordingly, in one embodiment, the biomarker reference expression profile comprises a poor survival group. In another embodiment, the biomarker reference expression profile comprises a good survival group.
[0068] The term "subject" as used herein refers to any member of the animal kingdom, preferably a human being that has NSCLC or that is suspected of having NSCLC.
[0069] NSCLC patients are classified into stages, which are used to determine therapy. Staging classification testing may include any or all of history, physical examination, routine laboratory evaluations, chest x-rays, and chest computed tomography scans or positron emission tomography scans with infusion of contrast materials. For example, stage I includes cancer in the lung, but has not spread to adjacent lymph nodes or outside the chest. Stage I is divided into two categories based on the size of the tumor (IA and IB). Stage II includes cancer located in the lung and proximal lymph nodes. Stage II is divided into 2 categories based on the size of tumor and nodal status (IIA and IIB). Stage III includes cancer located in the lung and the lymph nodes. Stage III is divided into 2 categories based on the size of tumor and nodal status (IIIA and IIIB). Stage IV includes cancer that has metastasized to distant locations. The term "early stage NSCLC" includes patients with Stage I to IIIA NSCLC. These patients are treated primarily by complete surgical resection.
[0070] In an aspect, a multi-gene signature is prognostic of patient outcome and/or response to adjuvant chemotherapy. In some embodiments, a minimal signature for 15 genes is provided. In one embodiment, the signature comprises reference values for each of the 15 genes listed in Table 4. In some embodiments, the 15-gene signature is associated with the early stages of NSCLC. Accordingly, in one embodiment, the subject has stage I NSCLC. In another embodiment, the subject has stage II NSCLC. In some embodiments, a 16-, 17-, 18-gene signature is prognostic of patient outcome and/or response to adjuvant chemotherapy. In some embodiments, the signature comprises reference values for one, two or three genes selected from those listed in Table 3, in addition to reference values for each of the genes listed in Table 4. In some embodiments, the additional one, two, or three genes are selected from RGS4, UGT2B4, and MCF2 listed in Table 3.
[0071] In some embodiments, the multi-gene signature comprises four coefficients, or reference values, for each gene in the signature. In one embodiment, the four coefficients are the first four principal components derived from principal component analysis described in Example 1 below. In one embodiment, the 15-gene signature comprises the principal component values listed in Table 10 below. In some embodiments, a 16-, 17-, 18-gene signature comprises coefficients for a sixteenth, seventeenth, and eighteenth gene, respectively, derived from principal component analysis as described in Example 1 below. In some embodiments, the coefficients for a sixteenth, seventeenth, and eighteenth gene, respectively, are the first four principal components derived according to Example 1. In some embodiments, the additional one, two, or three genes are selected from RGS4, UGT2B4, and MCF2 listed in Table 3.
[0072] The term "test sample" as used herein refers to any cancer-affected fluid, cell or tissue sample from a subject which can be assayed for biomarker expression products and/or a reference expression profile, e.g. genes differentially expressed in subjects with NSCLC according to survival outcome.
[0073] The phrase "determining the expression of biomarkers" as used herein refers to determining or quantifying RNA or proteins expressed by the biomarkers. The term "RNA" includes mRNA transcripts, and/or specific spliced variants of mRNA. The terms "RNA product of the biomarker," "biomarker RNA," or "target RNA" as used herein refers to RNA transcripts transcribed from the biomarkers and/or specific spliced variants. In the case of "protein", it refers to proteins translated from the RNA transcripts transcribed from the biomarkers. The term "protein product of the biomarker" or "biomarker protein" refers to proteins translated from RNA products of the biomarkers.
[0074] A person skilled in the art will appreciate that a number of methods can be used to detect or quantify the level of RNA products of the biomarkers within a sample, including arrays, such as microarrays, RT-PCR (including quantitative PCR), nuclease protection assays and Northern blot analyses. Any analytical procedure capable of permitting specific and quantifiable (or semi-quantifiable) detection of the and, optionally, additional biomarkers may be used in the methods herein presented, such as the microarray methods set forth herein, and methods known to those skilled in the art.
[0075] Accordingly, in one embodiment, the biomarker expression levels are determined using arrays, optionally microarrays, RT-PCR, optionally quantitative RT-PCR, nuclease protection assays or Northern blot analyses.
[0076] In some embodiments, the biomarker expression levels are determined by using an array. cDNA microarrays consist of multiple (usually thousands) of different cDNAs spotted (usually using a robotic spotting device) onto known locations on a solid support, such as a glass microscope slide. Microarrays for use in the methods described herein comprise a solid substrate onto which the probes are covalently or non-covalently attached. The cDNAs are typically obtained by PCR amplification of plasmid library inserts using primers complementary to the vector backbone portion of the plasmid or to the gene itself for genes where sequence is known. PCR products suitable for production of microarrays are typically between 0.5 and 2.5 kB in length. In a typical microarray experiment, RNA (either total RNA or poly A RNA) is isolated from cells or tissues of interest and is reverse transcribed to yield cDNA. Labeling is usually performed during reverse transcription by incorporating a labeled nucleotide in the reaction mixture. A microarray is then hybridized with labeled RNA, and relative expression levels calculated based on the relative concentrations of cDNA molecules that hybridized to the cDNAs represented on the microarray. Microarray analysis can be performed by commercially available equipment, following manufactuer's protocols, such as by using Affymetrix GeneChip technology, Agilent Technologies cDNA microarrays, Illumina Whole-Genome DASL array assays, or any other comparable microarray technology.
[0077] In some embodiments, probes capable of hybridizing to one or more biomarker RNAs or cDNAs are attached to the substrate at a defined location ("addressable array"). Probes can be attached to the substrate in a wide variety of ways, as will be appreciated by those in the art. In some embodiments, the probes are synthesized first and subsequently attached to the substrate. In other embodiments, the probes are synthesized on the substrate. In some embodiments, probes are synthesized on the substrate surface using techniques such as photopolymerization and photolithography.
[0078] In some embodiments, microarrays are utilized in a RNA-primed, Array-based Klenow Enzyme ("RAKE") assay. See Nelson, P. T. et al. (2004) Nature Methods 1(2):1-7; Nelson, P. T. et al. (2006) RNA 12(2):1-5, each of which is incorporated herein by reference in its entirety. In these embodiments, total RNA is isolated from a sample. Optionally, small RNAs can be further purified from the total RNA sample. The RNA sample is then hybridized to DNA probes immobilized at the 5'-end on an addressable array. The DNA probes comprise a base sequence that is complementary to a target RNA of interest, such as one or more biomarker RNAs capable of specifically hybridizing to a nucleic acid comprising a sequence that is identically present in one of the genes listed in Table 4 under standard hybridization conditions.
[0079] In some embodiments, the addressable array comprises DNA probes for no more than the 15 genes listed in Table 4. In some embodiments, the addressable array comprises DNA probes for each of the 15 genes listed in Table 4 and optionally, no more than one, two, or three additional genes selected from those listed in Table 3. In one embodiment, the addressable array comprises DNA probes for each of the 15 genes listed in Table 4 and DNA probes for one, two, or all three of RGS4, UGT2B4, and MCF2 listed in Table 3.
[0080] In some embodiments, quantitation of biomarker RNA expression levels requires assumptions to be made about the total RNA per cell and the extent of sample loss during sample preparation. In some embodiments, the addressable array comprises DNA probes for each of the 15 genes listed in Table 4 and, optionally, one, two, three, or four housekeeping genes. In one embodiment, the addressable array comprises DNA probes for each of the 15 genes listed in Table 4, one, two, three, or four housekeeping genes, and, additionally, no more than one, two, three or four additional genes selected from those listed in Table 3.
[0081] In some embodiments, expression data are pre-processed to correct for variations in sample preparation or other non-experimental variables affecting expression measurements. For example, background adjustment, quantile adjustment, and summarization may be performed on microarray data, using standard software programs such as RMAexpress v0.3, followed by centering of the data to the mean and scaling to the standard deviation.
[0082] After the sample is hybridized to the array, it is exposed to exonuclease I to digest any unhybridized probes. The Klenow fragment of DNA polymerase I is then applied along with biotinylated dATP, allowing the hybridized biomarker RNAs to act as primers for the enzyme with the DNA probe as template. The slide is then washed and a streptavidin-conjugated fluorophore is applied to detect and quantitate the spots on the array containing hybridized and Klenow-extended biomarker RNAs from the sample.
[0083] In some embodiments, the RNA sample is reverse transcribed using a biotin/poly-dA random octamer primer. The RNA template is digested and the biotin-containing cDNA is hybridized to an addressable microarray with bound probes that permit specific detection of biomarker RNAs. In typical embodiments, the microarray includes at least one probe comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, even at least 20, 21, 22, 23, or 24 contiguous nucleotides identically present in each of the genes listed in Table 4. After hybridization of the cDNA to the microarray, the microarray is exposed to a streptavidin-bound detectable marker, such as a fluorescent dye, and the bound cDNA is detected. See Liu C. G. et al. (2008) Methods 44:22-30, which is incorporated herein by reference in its entirety.
[0084] In one embodiment, the array is a U133A chip from Affymetrix. In another embodiment, a plurality of nucleic acid probes that are complementary or hybridizable to an expression product of the genes listed in Table 4 are used on the array. In a particular embodiment, the probe target sequences are listed in Table 9. In some embodiments, the probe target sequences are selected from SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169. In one embodiment, fifteen probes are used, each probe hybridizable to a different target sequence selected from SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169. In some embodiments, a plurality of nucleic acid probes that are complementary or hybridizable to an expression product of some or all the genes listed in Table 3 are used on the array. In some embodiments, the probe target sequences are selected from those listed in Table 11. In some embodiments, the probe target sequences are selected from SEQ ID NO:1-172.
[0085] The term "nucleic acid" includes DNA and RNA and can be either double stranded or single stranded.
[0086] The term "hybridize" or "hybridizable" refers to the sequence specific non-covalent binding interaction with a complementary nucleic acid. In a preferred embodiment, the hybridization is under high stringency conditions. Appropriate stringency conditions which promote hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 6.3.6. For example, 6.0× sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0×SSC at 50° C. may be employed.
[0087] The term "probe" as used herein refers to a nucleic acid sequence that will hybridize to a nucleic acid target sequence. In one example, the probe hybridizes to an RNA product of the biomarker or a nucleic acid sequence complementary thereof. The length of probe depends on the hybridization conditions and the sequences of the probe and nucleic acid target sequence. In one embodiment, the probe is at least 8, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 400, 500 or more nucleotides in length.
[0088] In some embodiments, compositions are provided that comprise at least one biomarker or target RNA-specific probe. The term "target RNA-specific probe" encompasses probes that have a region of contiguous nucleotides having a sequence that is either (i) identically present in one of the genes listed in Tables 3 or 4, or (ii) complementary to the sequence of a region of contiguous nucleotides found in one of the genes listed in Tables 3 or 4, where "region" can comprise the full length sequence of any one of the genes listed in Tables 3 or 4, a complementary sequence of the full length sequence of any one of the genes listed in Tables 3 or 4, or a subsequence thereof.
[0089] In some embodiments, target RNA-specific probes consist of deoxyribonucleotides. In other embodiments, target RNA-specific probes consist of both deoxyribonucleotides and nucleotide analogs. In some embodiments, biomarker RNA-specific probes comprise at least one nucleotide analog which increases the hybridization binding energy. In some embodiments, a target RNA-specific probe in the compositions described herein binds to one biomarker RNA in the sample.
[0090] In some embodiments, more than one probe specific for a single biomarker RNA is present in the compositions, the probes capable of binding to overlapping or spatially separated regions of the biomarker RNA.
[0091] It will be understood that in some embodiments in which the compositions described herein are designed to hybridize to cDNAs reverse transcribed from biomarker RNAs, the composition comprises at least one target RNA-specific probe comprising a sequence that is identically present in a biomarker RNA (or a subsequence thereof).
[0092] In some embodiments, a biomarker RNA is capable of specifically hybridizing to at least one probe comprising a base sequence that is identically present in one of the genes listed in Table 4. In some embodiments, a biomarker RNA is capable of specifically hybridizing to at least one nucleic acid probe comprising a sequence that is identically present in one of the genes listed in Table 3. In some embodiments, a target RNA is capable of specifically hybridizing to at least one nucleic acid probe, and comprises a sequence that is identical to a sequence selected from SEQ ID NO:1-172, or a sequence listed in Table 11. In some embodiments, a target RNA is capable of specifically hybridizing to at least one nucleic acid probe, and comprises a sequence that is identical to a sequence listed in Table 9. In some embodiments, a target RNA is capable of specifically hybridizing to at least one nucleic acid probe, and comprises a sequence that is identical to a sequence selected from SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169. In some embodiments, a biomarker RNA is capable of specifically hybridizing to at least one probe comprising a base sequence that is identically present in one of the genes listed in Table 4.
[0093] In some embodiments, the composition comprises a plurality of target or biomarker RNA-specific probes each comprising a region of contiguous nucleotides comprising a base sequence that is identically present in one or more of the genes listed in Table 4, or in a subsequence thereof. In some embodiments, the composition comprises a plurality of target or biomarker RNA-specific probes each comprising a region of contiguous nucleotides comprising a base sequence that is complementary to a sequence listed in Table 9. In some embodiments, the composition comprises a plurality of target RNA-specific probes each comprising a region of contiguous nucleotides comprising a base sequence that is complementary to a sequence selected from SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169.
[0094] As used herein, the terms "complementary" or "partially complementary" to a biomarker or target RNA (or target region thereof), and the percentage of "complementarity" of the probe sequence to that of the biomarker RNA sequence is the percentage "identity" to the reverse complement of the sequence of the biomarker RNA. In determining the degree of "complementarity" between probes used in the compositions described herein (or regions thereof) and a biomarker RNA, such as those disclosed herein, the degree of "complementarity" is expressed as the percentage identity between the sequence of the probe (or region thereof) and the reverse complement of the sequence of the biomarker RNA that best aligns therewith. The percentage is calculated by counting the number of aligned bases that are identical as between the 2 sequences, dividing by the total number of contiguous nucleotides in the probe, and multiplying by 100.
[0095] In some embodiments, the microarray comprises probes comprising a region with a base sequence that is fully complementary to a target region of a biomarker RNA. In other embodiments, the microarray comprises probes comprising a region with a base sequence that comprises one or more base mismatches when compared to the sequence of the best-aligned target region of a biomarker RNA.
[0096] As noted above, a "region" of a probe or biomarker RNA, as used herein, may comprise or consist of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or more contiguous nucleotides from a particular gene or a complementary sequence thereof. In some embodiments, the region is of the same length as the probe or the biomarker RNA. In other embodiments, the region is shorter than the length of the probe or the biomarker RNA.
[0097] In some embodiments, the microarray comprises fifteen probes each comprising a region of at least 10 contiguous nucleotides, such as at least 11 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, such as at least 17 contiguous nucleotides, such as at least 18 contiguous nucleotides, such as at least 19 contiguous nucleotides, such as at least 20 contiguous nucleotides, such as at least 21 contiguous nucleotides, such as at least 22 contiguous nucleotides, such as at least 23 contiguous nucleotides, such as at least 24 contiguous nucleotides, such as at least 25 contiguous nucleotides with a base sequence that is identically present in one of the genes listed in Table 4.
[0098] In some embodiments, the microarray component comprises fifteen probes each comprising a region with a base sequence that is identically present in each of the genes listed in Table 4. In some embodiments, the microarray comprises sixteen, seventeen, eighteen probes, each of which comprises a region with a base sequence that is identically present in each of the genes listed in Table 4 and, optionally, one, two, or three of the genes listed in Table 3. In one embodiment, the one, two, or three genes from Table 3 are selected from RGS4, UGT2B4, and MCF2.
[0099] In another embodiment, the biomarker expression levels are determined by using quantitative RT-PCR. RT-PCR is one of the most sensitive, flexible, and quantitative methods for measuring expression levels. The first step is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines. General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andres et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Numerous RNA isolation kits are commercially available.
[0100] In some embodiments, the primers used for quantitative RT-PCR comprise a forward and reverse primer for each gene listed in Table 4. In one embodiment, the primers used for quantitative RT-PCR are listed in Table 7. In one embodiment, primers comprising sequences identical to the sequences of SEQ ID NO: 173-202 are used for quantitative RT-PCR, wherein primers with sequences identifical to SEQ ID NO:173-187 are forward primers and primers with sequences identifical to SEQ ID NO:188-202 are reverse primers.
[0101] In some embodiments the analytical method used for detecting at least one biomarker RNA in the methods set forth herein includes real-time quantitative RT-PCR. See Chen, C. et al. (2005) Nucl. Acids Res. 33:e179, which is incorporated herein by reference in its entirety. Although PCR can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5'-3' nuclease activity but lacks a 3'-5' proofreading endonuclease activity. In some embodiments, RT-PCR is done using a TaqMan® assay sold by Applied Biosystems, Inc. In a first step, total RNA is isolated from the sample. In some embodiments, the assay can be used to analyze about 10 ng of total RNA input sample, such as about 9 ng of input sample, such as about 8 ng of input sample, such as about 7 ng of input sample, such as about 6 ng of input sample, such as about 5 ng of input sample, such as about 4 ng of input sample, such as about 3 ng of input sample, such as about 2 ng of input sample, and even as little as about 1 ng of input sample containing RNA.
[0102] The TaqMan® assay utilizes a stem-loop primer that is specifically complementary to the 3'-end of a biomarker RNA. The step of hybridizing the stem-loop primer to the biomarker RNA is followed by reverse transcription of the biomarker RNA template, resulting in extension of the 3' end of the primer. The result of the reverse transcription step is a chimeric (DNA) amplicon with the step-loop primer sequence at the 5' end of the amplicon and the cDNA of the biomarker RNA at the 3' end. Quantitation of the biomarker RNA is achieved by RT-PCR using a universal reverse primer comprising a sequence that is complementary to a sequence at the 5' end of all stem-loop biomarker RNA primers, a biomarker RNA-specific forward primer, and a biomarker RNA sequence-specific TaqMan® probe.
[0103] The assay uses fluorescence resonance energy transfer ("FRET") to detect and quantitate the synthesized PCR product. Typically, the TaqMan® probe comprises a fluorescent dye molecule coupled to the 5'-end and a quencher molecule coupled to the 3'-end, such that the dye and the quencher are in close proximity, allowing the quencher to suppress the fluorescence signal of the dye via FRET. When the polymerase replicates the chimeric amplicon template to which the TaqMan® probe is bound, the 5'-nuclease of the polymerase cleaves the probe, decoupling the dye and the quencher so that FRET is abolished and a fluorescence signal is generated. Fluorescence increases with each RT-PCR cycle proportionally to the amount of probe that is cleaved.
[0104] In some embodiments, quantitation of the results of RT-PCR assays is done by constructing a standard curve from a nucleic acid of known concentration and then extrapolating quantitative information for biomarker RNAs of unknown concentration. In some embodiments, the nucleic acid used for generating a standard curve is an RNA of known concentration. In some embodiments, the nucleic acid used for generating a standard curve is a purified double-stranded plasmid DNA or a single-stranded DNA generated in vitro.
[0105] In some embodiments, where the amplification efficiencies of the biomarker nucleic acids and the endogenous reference are approximately equal, quantitation is accomplished by the comparative Ct (cycle threshold, e.g., the number of PCR cycles required for the fluorescence signal to rise above background) method. Ct values are inversely proportional to the amount of nucleic acid target in a sample. In some embodiments, Ct values of the target RNA of interest can be compared with a control or calibrator, such as RNA from normal tissue. In some embodiments, the Ct values of the calibrator and the target RNA samples of interest are normalized to an appropriate endogenous housekeeping gene (see above).
[0106] In addition to the TaqMan® assays, other RT-PCR chemistries useful for detecting and quantitating PCR products in the methods presented herein include, but are not limited to, Molecular Beacons, Scorpion probes and SYBR Green detection.
[0107] In some embodiments, Molecular Beacons can be used to detect and quantitate PCR products. Like TaqMan® probes, Molecular Beacons use FRET to detect and quantitate a PCR product via a probe comprising a fluorescent dye and a quencher attached at the ends of the probe. Unlike TaqMan® probes, Molecular Beacons remain intact during the PCR cycles. Molecular Beacon probes form a stem-loop structure when free in solution, thereby allowing the dye and quencher to be in close enough proximity to cause fluorescence quenching. When the Molecular Beacon hybridizes to a target, the stem-loop structure is abolished so that the dye and the quencher become separated in space and the dye fluoresces. Molecular Beacons are available, e.g., from Gene Link® (see http://www.genelink.com/newsite/products/mbintro.asp).
[0108] In some embodiments, Scorpion probes can be used as both sequence-specific primers and for PCR product detection and quantitation. Like Molecular Beacons, Scorpion probes form a stem-loop structure when not hybridized to a target nucleic acid. However, unlike Molecular Beacons, a Scorpion probe achieves both sequence-specific priming and PCR product detection. A fluorescent dye molecule is attached to the 5'-end of the Scorpion probe, and a quencher is attached to the 3'-end. The 3' portion of the probe is complementary to the extension product of the PCR primer, and this complementary portion is linked to the 5'-end of the probe by a non-amplifiable moiety. After the Scorpion primer is extended, the target-specific sequence of the probe binds to its complement within the extended amplicon, thus opening up the stem-loop structure and allowing the dye on the 5'-end to fluoresce and generate a signal. Scorpion probes are available from, e.g, Premier Biosoft International (see http://www.premierbiosoft.com/tech_notes/Scorpion.html).
[0109] In some embodiments, RT-PCR detection is performed specifically to detect and quantify the expression of a single biomarker RNA. The biomarker RNA, in typical embodiments, is selected from a biomarker RNA capable of specifically hybridizing to a nucleic acid comprising a sequence that is identically present in one of the genes set forth in Table 4. In some embodiments, the biomarker RNA specifically hybridizes to a nucleic acid comprising a sequence that is identically present in at least one of the genes in Table 3.
[0110] In various other embodiments, RT-PCR detection is utilized to detect, in a single multiplex reaction, each of 15, each of 16, each of 17, even each of 18 biomarker RNAs. The biomarker RNAs, in some embodiments, are capable of specifically hybridizing to a nucleic acid comprising a sequence that is identically present in one of the fifteen genes listed in Table 4 and optionally one, two, or three additional genes listed in Table 3.
[0111] In some multiplex embodiments, a plurality of probes, such as TaqMan probes, each specific for a different RNA target, is used. In typical embodiments, each target RNA-specific probe is spectrally distinguishable from the other probes used in the same multiplex reaction.
[0112] In some embodiments, quantitation of RT-PCR products is accomplished using a dye that binds to double-stranded DNA products, such as SYBR Green. In some embodiments, the assay is the QuantiTect SYBR Green PCR assay from Qiagen. In this assay, total RNA is first isolated from a sample. Total RNA is subsequently poly-adenylated at the 3'-end and reverse transcribed using a universal primer with poly-dT at the 5'-end. In some embodiments, a single reverse transcription reaction is sufficient to assay multiple biomarker RNAs. RT-PCR is then accomplished using biomarker RNA-specific primers and an miScript Universal Primer, which comprises a poly-dT sequence at the 5'-end. SYBR Green dye binds non-specifically to double-stranded DNA and upon excitation, emits light. In some embodiments, buffer conditions that promote highly-specific annealing of primers to the PCR template (e.g., available in the QuantiTect SYBR Green PCR Kit from Qiagen) can be used to avoid the formation of non-specific DNA duplexes and primer dimers that will bind SYBR Green and negatively affect quantitation. Thus, as PCR product accumulates, the signal from SYBR green increases, allowing quantitation of specific products.
[0113] RT-PCR is performed using any RT-PCR instrumentation available in the art. Typically, instrumentation used in real-time RT-PCR data collection and analysis comprises a thermal cycler, optics for fluorescence excitation and emission collection, and optionally a computer and data acquisition and analysis software.
[0114] In some embodiments, the method of detectably quantifying one or more biomarker RNAs includes the steps of: (a) isolating total RNA; (b) reverse transcribing a biomarker RNA to produce a cDNA that is complementary to the biomarker RNA; (c) amplifying the cDNA from step (b); and (d) detecting the amount of a biomarker RNA with RT-PCR.
[0115] As described above, in some embodiments, the RT-PCR detection is performed using a FRET probe, which includes, but is not limited to, a TaqMan® probe, a Molecular beacon probe and a Scorpion probe. In some embodiments, the RT-PCR detection and quantification is performed with a TaqMan® probe, i.e., a linear probe that typically has a fluorescent dye covalently bound at one end of the DNA and a quencher molecule covalently bound at the other end of the DNA. The FRET probe comprises a base sequence that is complementary to a region of the cDNA such that, when the FRET probe is hybridized to the cDNA, the dye fluorescence is quenched, and when the probe is digested during amplification of the cDNA, the dye is released from the probe and produces a fluorescence signal. In such embodiments, the amount of biomarker RNA in the sample is proportional to the amount of fluorescence measured during cDNA amplification.
[0116] The TaqMan® probe typically comprises a region of contiguous nucleotides comprising a base sequence that is complementary to a region of a biomarker RNA or its complementary cDNA that is reverse transcribed from the biomarker RNA template (i.e., the sequence of the probe region is complementary to or identically present in the biomarker RNA to be detected) such that the probe is specifically hybridizable to the resulting PCR amplicon. In some embodiments, the probe comprises a region of at least 6 contiguous nucleotides having a base sequence that is fully complementary to or identically present in a region of a cDNA that has been reverse transcribed from a biomarker RNA template, such as comprising a region of at least 8 contiguous nucleotides, or comprising a region of at least 10 contiguous nucleotides, or comprising a region of at least 12 contiguous nucleotides, or comprising a region of at least 14 contiguous nucleotides, or even comprising a region of at least 16 contiguous nucleotides having a base sequence that is complementary to or identically present in a region of a cDNA reverse transcribed from a biomarker RNA to be detected.
[0117] Preferably, the region of the cDNA that has a sequence that is complementary to the TaqMan® probe sequence is at or near the center of the cDNA molecule. In some embodiments, there are independently at least 2 nucleotides, such as at least 3 nucleotides, such as at least 4 nucleotides, such as at least 5 nucleotides of the cDNA at the 5'-end and at the 3'-end of the region of complementarity.
[0118] In typical embodiments, all biomarker RNAs are detected in a single multiplex reaction. In these embodiments, each TaqMan® probe that is targeted to a unique cDNA is spectrally distinguishable when released from the probe. Thus, each biomarker RNA is detected by a unique fluorescence signal.
[0119] In some embodiments, expression levels may be represented by gene transcript numbers per nanogram of cDNA. To control for variability in cDNA quantity, integrity and the overall transcriptional efficiency of individual primers, RT-PCR data can be subjected to standardization and normalization against one or more housekeeping genes as has been previously described. See e.g., Rubie et al., Mol. Cell. Probes 19(2):101-9 (2005).
[0120] Appropriate genes for normalization in the methods described herein include those as to which the quantity of the product does not vary between between different cell types, cell lines or under different growth and sample preparation conditions. In some embodiments, endogenous housekeeping genes useful as normalization controls in the methods described herein include, but are not limited to, ACTB, BAT1, B2M, TBP, U6 snRNA, RNU44, RNU 48, and U47. In typical embodiments, the at least one endogenous housekeeping gene for use in normalizing the measured quantity of RNA is selected from ACTB, BAT1, B2M, TBP, U6 snRNA, U6 snRNA, RNU44, RNU 48, and U47. In some embodiments, normalization to the geometric mean of two, three, four or more housekeeping genes is performed. In some embodiments, one housekeeping gene is used for normalization. In some embodiments, two, three, four or more housekeeping genes are used for normalization.
[0121] In some embodiments, labels that can be used on the FRET probes include colorimetric and fluorescent labels such as Alexa Fluor dyes, BODIPY dyes, such as BODIPY FL; Cascade Blue; Cascade Yellow; coumarin and its derivatives, such as 7-amino-4-methylcoumarin, aminocoumarin and hydroxycoumarin; cyanine dyes, such as Cy3 and Cy5; eosins and erythrosins; fluorescein and its derivatives, such as fluorescein isothiocyanate; macrocyclic chelates of lanthanide ions, such as Quantum Dye®; Marina Blue; Oregon Green; rhodamine dyes, such as rhodamine red, tetramethylrhodamine and rhodamine 6G; Texas Red; fluorescent energy transfer dyes, such as thiazole orange-ethidium heterodimer; and, TOTAB.
[0122] Specific examples of dyes include, but are not limited to, those identified above and the following: Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 500. Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 700, and, Alexa Fluor 750; amine-reactive BODIPY dyes, such as BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, BODIPY 650/655, BODIPY FL, BODIPY R6G, BODIPY TMR, and, BODIPY-TR; Cy3, Cy5, 6-FAM, Fluorescein Isothiocyanate, HEX, 6-JOE, Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, REG, Rhodamine Green, Rhodamine Red, Renographin, ROX, SYPRO, TAMRA, 2',4',5',7'-Tetrabromosulfonefluorescein, and TET.
[0123] Specific examples of fluorescently labeled ribonucleotides useful in the preparation of RT-PCR probes for use in some embodiments of the methods described herein are available from Molecular Probes (Invitrogen), and these include, Alexa Fluor 488-5-UTP, Fluorescein-12-UTP, BODIPY FL-14-UTP, BODIPY TMR-14-UTP, Tetramethylrhodamine-6-UTP, Alexa Fluor 546-14-UTP, Texas Red-5-UTP, and BODIPY TR-14-UTP. Other fluorescent ribonucleotides are available from Amersham Biosciences (GE Healthcare), such as Cy3-UTP and Cy5-UTP.
[0124] Examples of fluorescently labeled deoxyribonucleotides useful in the preparation of RT-PCR probes for use in the methods described herein include Dinitrophenyl (DNP)-1'-dUTP, Cascade Blue-7-dUTP, Alexa Fluor 488-5-dUTP, Fluorescein-12-dUTP, Oregon Green 488-5-dUTP, BODIPY FL-14-dUTP, Rhodamine Green-5-dUTP, Alexa Fluor 532-5-dUTP, BODIPY TMR-14-dUTP, Tetramethylrhodamine-6-dUTP, Alexa Fluor 546-14-dUTP, Alexa Fluor 568-5-dUTP, Texas Red-12-dUTP, Texas Red-5-dUTP, BODIPY TR-14-dUTP, Alexa Fluor 594-5-dUTP, BODIPY 630/650-14-dUTP, BODIPY 650/665-14-dUTP; Alexa Fluor 488-7-OBEA-dCTP, Alexa Fluor 546-16-OBEA-dCTP, Alexa Fluor 594-7-OBEA-dCTP, Alexa Fluor 647-12-OBEA-dCTP. Fluorescently labeled nucleotides are commercially available and can be purchased from, e.g., Invitrogen.
[0125] In some embodiments, dyes and other moieties, such as quenchers, are introduced into nucleic acids used in the methods described herein, such as FRET probes, via modified nucleotides. A "modified nucleotide" refers to a nucleotide that has been chemically modified, but still functions as a nucleotide. In some embodiments, the modified nucleotide has a chemical moiety, such as a dye or quencher, covalently attached, and can be introduced into an oligonucleotide, for example, by way of solid phase synthesis of the oligonucleotide. In other embodiments, the modified nucleotide includes one or more reactive groups that can react with a dye or quencher before, during, or after incorporation of the modified nucleotide into the nucleic acid. In specific embodiments, the modified nucleotide is an amine-modified nucleotide, i.e., a nucleotide that has been modified to have a reactive amine group. In some embodiments, the modified nucleotide comprises a modified base moiety, such as uridine, adenosine, guanosine, and/or cytosine. In specific embodiments, the amine-modified nucleotide is selected from 5-(3-aminoallyl)-UTP; 8-[(4-amino)butyl]-amino-ATP and 8-[(6-amino)butyl]-amino-ATP; N6-(4-amino)butyl-ATP, N6-(6-amino)butyl-ATP, N4-[2,2-oxy-bis-(ethylamine)]-CTP; N6-(6-Amino)hexyl-ATP; 8-[(6-Amino)hexyl]-amino-ATP; 5-propargylamino-CTP, 5-propargylamino-UTP. In some embodiments, nucleotides with different nucleobase moieties are similarly modified, for example, 5-(3-aminoallyl)-GTP instead of 5-(3-aminoallyl)-UTP. Many amine modified nucleotides are commercially available from, e.g., Applied Biosystems, Sigma, Jena Bioscience and TriLink.
[0126] In some embodiments, the methods of detecting at least one biomarker RNA described herein employ one or more modified oligonucleotides, such as oligonucleotides comprising one or more affinity-enhancing nucleotides. Modified oligonucleotides useful in the methods described herein include primers for reverse transcription, PCR amplification primers, and probes. In some embodiments, the incorporation of affinity-enhancing nucleotides increases the binding affinity and specificity of an oligonucleotide for its target nucleic acid as compared to oligonucleotides that contain only deoxyribonucleotides, and allows for the use of shorter oligonucleotides or for shorter regions of complementarity between the oligonucleotide and the target nucleic acid.
[0127] In some embodiments, affinity-enhancing nucleotides include nucleotides comprising one or more base modifications, sugar modifications and/or backbone modifications.
[0128] In some embodiments, modified bases for use in affinity-enhancing nucleotides include 5-methylcytosine, isocytosine, pseudoisocytosine, 5-bromouracil, 5-propynyluracil, 6-aminopurine, 2-aminopurine, inosine, diaminopurine, 2-chloro-6-aminopurine, xanthine and hypoxanthine.
[0129] In some embodiments, affinity-enhancing modifications include nucleotides having modified sugars such as 2'-substituted sugars, such as 2'-O-alkyl-ribose sugars, 2'-amino-deoxyribose sugars, 2'-fluoro-deoxyribose sugars, 2'-fluoro-arabinose sugars, and 2'-O-methoxyethyl-ribose (2'MOE) sugars. In some embodiments, modified sugars are arabinose sugars, or d-arabino-hexitol sugars.
[0130] In some embodiments, affinity-enhancing modifications include backbone modifications such as the use of peptide nucleic acids (e.g., an oligomer including nucleobases linked together by an amino acid backbone). Other backbone modifications include phosphorothioate linkages, phosphodiester modified nucleic acids, combinations of phosphodiester and phosphorothioate nucleic acid, methylphosphonate, alkylphosphonates, phosphate esters, alkylphosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidates, carboxymethyl esters, methylphosphorothioate, phosphorodithioate, p-ethoxy, and combinations thereof.
[0131] In some embodiments, the oligomer includes at least one affinity-enhancing nucleotide that has a modified base, at least nucleotide (which may be the same nucleotide) that has a modified sugar, and at least one internucleotide linkage that is non-naturally occurring.
[0132] In some embodiments, the affinity-enhancing nucleotide contains a locked nucleic acid ("LNA") sugar, which is a bicyclic sugar. In some embodiments, an oligonucleotide for use in the methods described herein comprises one or more nucleotides having an LNA sugar. In some embodiments, the oligonucleotide contains one or more regions consisting of nucleotides with LNA sugars. In other embodiments, the oligonucleotide contains nucleotides with LNA sugars interspersed with deoxyribonucleotides. See, e.g., Frieden, M. et al. (2008) Curr. Pharm. Des. 14(11):1138-1142.
[0133] The term "primer" as used herein refers to a nucleic acid sequence, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand is induced (e.g. in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon factors, including temperature, sequences of the primer and the methods used. A primer typically contains 15-25 or more nucleotides, although it can contain less. The factors involved in determining the appropriate length of primer are readily known to one of ordinary skill in the art. In one embodiment, primer sets for the 15 genes are those listed in Table 7.
[0134] In addition, a person skilled in the art will appreciate that a number of methods can be used to determine the amount of a protein product of the biomarker of the invention, including immunoassays such as Western blots, ELISA, and immunoprecipitation followed by SDS-PAGE and immunocytochemistry.
[0135] Accordingly, in another embodiment, an antibody is used to detect the polypeptide products of the fifteen biomarkers listed in Table 4. In another embodiment, the sample comprises a tissue sample. In a further embodiment, the tissue sample is suitable for immunohistochemistry.
[0136] The term "antibody" as used herein is intended to include monoclonal antibodies, polyclonal antibodies, and chimeric antibodies. The antibody may be from recombinant sources and/or produced in transgenic animals. The term "antibody fragment" as used herein is intended to include Fab, Fab', F(ab')2, scFv, dsFv, ds-scFv, dimers, minibodies, diabodies, and multimers thereof and bispecific antibody fragments. Antibodies can be fragmented using conventional techniques. For example, F(ab')2 fragments can be generated by treating the antibody with pepsin. The resulting F(ab')2 fragment can be treated to reduce disulfide bridges to produce Fab' fragments. Papain digestion can lead to the formation of Fab fragments. Fab, Fab' and F(ab')2, scFv, dsFv, ds-scFv, dimers, minibodies, diabodies, bispecific antibody fragments and other fragments can also be synthesized by recombinant techniques.
[0137] Conventional techniques of molecular biology, microbiology and recombinant DNA techniques are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Second Edition; Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Nucleic Acid Hybridization (B. D. Harnes & S. J. Higgins, eds., 1984); A Practical Guide to Molecular Cloning (B. Perbal, 1984); and a series, Methods in Enzymology (Academic Press, Inc.); Short Protocols In Molecular Biology, (Ausubel et al., ed., 1995).
[0138] For example, antibodies having specificity for a specific protein, such as the protein product of a biomarker, may be prepared by conventional methods. A mammal, (e.g. a mouse, hamster, or rabbit) can be immunized with an immunogenic form of the peptide which elicits an antibody response in the mammal. Techniques for conferring immunogenicity on a peptide include conjugation to carriers or other techniques well known in the art. For example, the peptide can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassay procedures can be used with the immunogen as antigen to assess the levels of antibodies. Following immunization, antisera can be obtained and, if desired, polyclonal antibodies isolated from the sera.
[0139] To produce monoclonal antibodies, antibody producing cells (lymphocytes) can be harvested from an immunized animal and fused with myeloma cells by standard somatic cell fusion procedures thus immortalizing these cells and yielding hybridoma cells. Such techniques are well known in the art, (e.g. the hybridoma technique originally developed by Kohler and Milstein (Nature 256:495-497 (1975)) as well as other techniques such as the human B-cell hybridoma technique (Kozbor et al., Immunol. Today 4:72 (1983)), the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., Methods Enzymol, 121:140-67 (1986)), and screening of combinatorial antibody libraries (Huse et al., Science 246:1275 (1989)). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with the peptide and the monoclonal antibodies can be isolated.
[0140] In some embodiments, recombinant antibodies are provided that specifically bind protein products of the fifteen genes listed in Table 4, and optionally expression products of one or more genes listed in Table 3. Recombinant antibodies include, but are not limited to, chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, single-chain antibodies and multi-specific antibodies. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine monoclonal antibody (mAb) and a human immunoglobulin constant region. (See, e.g., Cabilly et al., U.S. Pat. No. 4,816,567; and Boss et al., U.S. Pat. No. 4,816,397, which are incorporated herein by reference in their entirety.) Single-chain antibodies have an antigen binding site and consist of single polypeptides. They can be produced by techniques known in the art, for example using methods described in Ladner et. al U.S. Pat. No. 4,946,778 (which is incorporated herein by reference in its entirety); Bird et al., (1988) Science 242:423-426; Whitlow et al., (1991) Methods in Enzymology 2:1-9; Whitlow et al., (1991) Methods in Enzymology 2:97-105; and Huston et al., (1991) Methods in Enzymology Molecular Design and Modeling: Concepts and Applications 203:46-88. Multi-specific antibodies are antibody molecules having at least two antigen-binding sites that specifically bind different antigens. Such molecules can be produced by techniques known in the art, for example using methods described in Segal, U.S. Pat. No. 4,676,980 (the disclosure of which is incorporated herein by reference in its entirety); Holliger et al., (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Whitlow et al., (1994) Protein Eng 7:1017-1026 and U.S. Pat. No. 6,121,424.
[0141] Monoclonal antibodies directed against any of the expression products of the genes listed in Table 4 and, optionally, against expression products of one or more genes listed in Table 3, can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide(s) of interest. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Pat. No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734.
[0142] Humanized antibodies are antibody molecules from non-human species having one or more complementarity determining regions (CDRs) from the non-human species and a framework region from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Pat. No. 5,585,089, which is incorporated herein by reference in its entirety.) Humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Pat. No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Cancer Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) Bio/Techniques 4:214; U.S. Pat. No. 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.
[0143] In some embodiments, humanized antibodies can be produced, for example, using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide corresponding to a protein product. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995) Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., U.S. Pat. Nos. 5,625,126; 5,633,425; 5,569,825; 5,661,016; and 5,545,806. In addition, companies such as Abgenix, Inc. (Fremont, Calif.), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.
[0144] Antibodies may be isolated after production (e.g., from the blood or serum of the subject) or synthesis and further purified by well-known techniques. For example, IgG antibodies can be purified using protein A chromatography. Antibodies specific for a protein can be selected or (e.g., partially purified) or purified by, e.g., affinity chromatography. For example, a recombinantly expressed and purified (or partially purified) expression product may be produced, and covalently or non-covalently coupled to a solid support such as, for example, a chromatography column. The column can then be used to affinity purify antibodies specific for the protein products of the genes listed in Tables 3 and 4 from a sample containing antibodies directed against a large number of different epitopes, thereby generating a substantially purified antibody composition, i.e., one that is substantially free of contaminating antibodies. By a substantially purified antibody composition it is meant, in this context, that the antibody sample contains at most only 30% (by dry weight) of contaminating antibodies directed against epitopes other than those of the protein products of the genes listed in Tables 3 and 4, and preferably at most 20%, yet more preferably at most 10%, and most preferably at most 5% (by dry weight) of the sample is contaminating antibodies. A purified antibody composition means that at least 99% of the antibodies in the composition are directed against the desired protein.
[0145] In some embodiments, substantially purified antibodies may specifically bind to a signal peptide, a secreted sequence, an extracellular domain, a transmembrane or a cytoplasmic domain or cytoplasmic membrane of a protein product of one of the genes listed in Tables 3 and 4. In an embodiment, substantially purified antibodies specifically bind to a secreted sequence or an extracellular domain of the amino acid sequences of a protein product of one of the genes listed in Tables 3 and 4.
[0146] In some embodiments, antibodies directed against a protein product of one of the genes listed in Tables 3 and 4 can be used to detect the protein products or fragment thereof (e.g., in a cellular lysate or cell supernatant) in order to evaluate the level and pattern of expression of the protein. Detection can be facilitated by the use of an antibody derivative, which comprises an antibody coupled to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.
[0147] A variety of techniques can be employed to measure expression levels of each of the fifteen, and optional additional, genes given a sample that contains protein products that bind to a given antibody. Examples of such formats include, but are not limited to, enzyme immunoassay (EIA), radioimmunoassay (RIA), Western blot analysis and enzyme linked immunoabsorbant assay (ELISA). A skilled artisan can readily adapt known protein/antibody detection methods for use in determining protein expression levels of the fifteen, and optional additional products of the genes listed in Tables 4 and 3.
[0148] In one embodiment, antibodies, or antibody fragments or derivatives, can be used in methods such as Western blots or immunofluorescence techniques to detect the expressed proteins. In some embodiments, either the antibodies or proteins are immobilized on a solid support. Suitable solid phase supports or carriers include any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite.
[0149] One skilled in the art will know many other suitable carriers for binding antibody or antigen, and will be able to adapt such support for use with the present disclosure. The support can then be washed with suitable buffers followed by treatment with the detectably labeled antibody. The solid phase support can then be washed with the buffer a second time to remove unbound antibody. The amount of bound label on the solid support can then be detected by conventional means.
[0150] Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic markers. In some embodiments, antibodies or antisera, including polyclonal antisera, and monoclonal antibodies specific for each marker may be used to detect expression. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.
[0151] Immunological methods for detecting and measuring complex formation as a measure of protein expression using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), fluorescence-activated cell sorting (FACS) and antibody arrays. Such immunoassays typically involve the measurement of complex formation between the protein and its specific antibody. These assays and their quantitation against purified, labeled standards are well known in the art (Ausubel, supra, unit 10.1-10.6). A two-site, monoclonal-based immunoassay utilizing antibodies reactive to two non-interfering epitopes is preferred, but a competitive binding assay may be employed (Pound (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).
[0152] Numerous labels are available which can be generally grouped into the following categories: [0153] (a) Radioisotopes, such as 36S, 14C, 1251, 3H, and 131I. The antibody variant can be labeled with the radioisotope using the techniques described in Current Protocols in Immunology, vol 1-2, Coligen et al., Ed., Wiley-Interscience, New York, Pubs. (1991) for example and radioactivity can be measured using scintillation counting. [0154] (b) Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red are available. The fluorescent labels can be conjugated to the antibody variant using the techniques disclosed in Current Protocols in Immunology, supra, for example. Fluorescence can be quantified using a fluorimeter. [0155] (c) Various enzyme-substrate labels are available and U.S. Pat. Nos. 4,275,149, 4,318,980 provides a review of some of these. The enzyme generally catalyzes a chemical alteration of the chromogenic substrate which can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, β-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for conjugating enzymes to antibodies are described in O'Sullivan et al., Methods for the Preparation of Enzyme-Antibody Conjugates for Use in Enzyme Immunoassay, in Methods in Enzyme. (Ed. J. Langone & H. Van Vunakis), Academic press, New York, 73: 147-166 (1981).
[0156] In some embodiments, a detection label is indirectly conjugated with the antibody. The skilled artisan will be aware of various techniques for achieving this. For example, the antibody can be conjugated with biotin and any of the three broad categories of labels mentioned above can be conjugated with avidin, or vice versa. Biotin binds selectively to avidin and thus, the label can be conjugated with the antibody in this indirect manner. Alternatively, to achieve indirect conjugation of the label with the antibody, the antibody is conjugated with a small hapten (e.g. digoxin) and one of the different types of labels mentioned above is conjugated with an anti-hapten antibody (e.g. anti-digoxin antibody). In some embodiments, the antibody need not be labeled, and the presence thereof can be detected using a labeled antibody, which binds to the antibody.
[0157] The 15-gene signature described herein can be used to select treatment for NCSLC patients. As explained herein, the biomarkers can classify patients with NSCLC into a poor survival group or a good survival group and into groups that might benefit from adjuvant chemotherapy or not.
[0158] Accordingly, in one embodiment, the application provides a method of selecting a therapy for a subject with NSCLC, comprising the steps:
[0159] (a) classifying the subject with NSCLC into a poor survival group or a good survival group according to the methods described herein; and
[0160] (b) selecting adjuvant chemotherapy for the subject classified as being in the poor survival group or no adjuvant chemotherapy for the subject classified as being in the good survival group.
[0161] In another embodiment, the application provides a method of selecting a therapy for a subject with NSCLC, comprising the steps:
[0162] (a) determining the expression of fifteen biomarkers in a test sample from the subject, wherein the fifteen biomarkers correspond to the fifteen genes in Table 4;
[0163] (b) comparing the expression of the fifteen biomarkers in the test sample with the fifteen biomarkers in a control sample;
[0164] (c) classifying the subject in a poor survival group or a good survival group, wherein a difference or a similarity in the expression of the fifteen biomarkers between the control sample and the test sample is used to classify the subject into a poor survival group or a good survival group; and
[0165] (d) selecting adjuvant chemotherapy if the subject is classified in the poor survival group and selecting no adjuvant chemotherapy if the subject is classified in the good survival group.
[0166] The term "adjuvant chemotherapy" as used herein means treatment of cancer with chemotherapeutic agents after surgery where all detectable disease has been removed, but where there still remains a risk of small amounts of remaining cancer. Typical chemotherapeutic agents include cisplatin, carboplatin, vinorelbine, gemcitabine, doccetaxel, paclitaxel and navelbine.
[0167] In another aspect, the application provides compositions useful in detecting changes in the expression levels of the 15 genes listed in Table 4. Accordingly in one embodiment, the application provides a composition comprising a plurality of isolated nucleic acid sequences wherein each isolated nucleic acid sequence hybridizes to:
[0168] (a) a RNA product of one of the 15 genes listed in Table 4; and/or
[0169] (b) a nucleic acid complementary to a),
wherein the composition is used to measure the level of RNA expression of the 15 genes. In a particular embodiment, the plurality of isolated nucleic acid sequences comprise isolated nucleic acids hybridizable to the 15 probe target sequences as set out in Table 9. In one embodiment, the plurality of isolated nucleic acid sequences comprise isolated nucleic acids hybridizable to SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169.
[0170] In another embodiment, the application provides a composition comprising 15 forward and 15 reverse primers for amplifying a region of each gene listed in Table 4. In particular embodiment, the 30 primers are as set out in Table 7. In one embodiment, the 30 primers each comprise a sequence that is identical to the sequence of one of SEQ ID NO: 173-202.
[0171] In a further aspect, the application also provides an array that is useful in detecting the expression levels of the 15 genes set out in Table 4. Accordingly, in one embodiment, the application provides an array comprising for each gene shown in Table 4 one or more nucleic acid probes complementary and hybridizable to an expression product of the gene. In a particular embodiment, the array comprises the nucleic acid probes hybridizable to the probe target sequences listed in Table 9. In one embodiment, the array comprises the nucleic acid probes hybridizable to sequences identical to each of SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169.
[0172] In yet another aspect, the application also provides for kits used to prognose or classify a subject with NSCLC into a good survival group or a poor survival group or to select a therapy for a subject with NSCLC that includes detection agents that can detect the expression products of the biomarkers. Accordingly, in one embodiment, the application provides a kit to prognose or classify a subject with early stage NSCLC comprising detection agents that can detect the expression products of 15 biomarkers, wherein the 15 biomarkers comprise 15 genes in Table 4. In another embodiment, kits for classifying a subject comprise detection agents that can detect the expression of 16, 17, or 18 biomarkers, wherein 15 biomarkers comprise the 15 genes in Table 4, and the additional biomarkers are selected from the genes listed in Table 3. In one embodiment, the additional sixteenth, seventeenth, and eighteenth biomarkers may be selected from RGS4, UGT2B4, and MCF2 listed in Table 3.
[0173] In one embodiment, the application provides a kit to select a therapy for a subject with NSCLC, comprising detection agents that can detect the expression products of 15 biomarkers, wherein the 15 biomarkers comprise 15 genes in Table 4. In some embodiments, kits for selecting therapy for a subject comprise detection agents that can detect the expression of 16, 17, or 18 biomarkers, wherein 15 biomarkers comprise the 15 genes in Table 4, and the additional biomarkers are selected from the genes listed in Table 3. In one embodiment, the additional sixteenth, seventeenth, and eighteenth biomarkers may be selected from RGS4, UGT2B4, and MCF2 listed in Table 3.
[0174] The materials and methods of the present disclosure are ideally suited for preparation of kits produced in accordance with well known procedures. In some embodiments, kits comprise agents (like the polynucleotides and/or antibodies described herein as non-limiting examples) for the detection of expression of the disclosed sequences, such as for example, SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169, the target sequences listed in Table 9, or the target sequences listed in Table 11. Kits, may comprise containers, each with one or more of the various reagents (sometimes in concentrated form), for example, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more primer complexes (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). A set of instructions will also typically be included.
[0175] In some embodiments, a kit may comprise a plurality of reagents, each of which is capable of binding specifically with a target nucleic acid or protein. Suitable reagents for binding with a target protein include antibodies, antibody derivatives, antibody fragments, and the like. Suitable reagents for binding with a target nucleic acid (e.g. a genomic DNA, an mRNA, a spliced mRNA, a cDNA, or the like) include complementary nucleic acids. For example, nucleic acid reagents may include oligonucleotides (labeled or non-labeled) fixed to a substrate, labeled oligonucleotides not bound with a substrate, pairs of PCR primers, molecular beacon probes, and the like.
[0176] In some embodiments, kits may comprise additional components useful for detecting gene expression levels. By way of example, kits may comprise fluids (e.g. SSC buffer) suitable for annealing complementary nucleic acids or for binding an antibody with a protein with which it specifically binds, one or more sample compartments, a material which provides instruction for detecting expression levels, and the like.
[0177] In some embodiments, kits for use in the RT-PCR methods described herein comprise one or more target RNA-specific FRET probes and one or more primers for reverse transcription of target RNAs or amplification of cDNA reverse transcribed therefrom.
[0178] In some embodiments, one or more of the primers is "linear". A "linear" primer refers to an oligonucleotide that is a single stranded molecule, and typically does not comprise a short region of, for example, at least 3, 4 or 5 contiguous nucleotides, which are complementary to another region within the same oligonucleotide such that the primer forms an internal duplex. In some embodiments, the primers for use in reverse transcription comprise a region of at least 4, such as at least 5, such as at least 6, such as at least 7 or more contiguous nucleotides at the 3'-end that has a base sequence that is complementary to region of at least 4, such as at least 5, such as at least 6, such as at least 7 or more contiguous nucleotides at the 5'-end of a target RNA.
[0179] In some embodiments, the kit further comprises one or more pairs of linear primers (a "forward primer" and a "reverse primer") for amplification of a cDNA reverse transcribed from a target RNA. Accordingly, in some embodiments, the forward primer comprises a region of at least 4, such as at least 5, such as at least 6, such as at least 7, such as at least 8, such as at least 9, such as at least 10 contiguous nucleotides having a base sequence that is complementary to the base sequence of a region of at least 4, such as at least 5, such as at least 6, such as at least 7, such as at least 8, such as at least 9, such as at least 10 contiguous nucleotides at the 5'-end of a target RNA. Furthermore, in some embodiments, the reverse primer comprises a region of at least 4, such as at least 5, such as at least 6, such as at least 7, such as at least 8, such as at least 9, such as at least 10 contiguous nucleotides having a base sequence that is complementary to the base sequence of a region of at least 4, such as at least 5, such as at least 6, such as at least 7, such as at least 8, such as at least 9, such as at least 10 contiguous nucleotides at the 3'-end of a target RNA.
[0180] In some embodiments, the kit comprises at least a first set of primers for amplification of a cDNA that is reverse transcribed from a target RNA capable of specifically hybridizing to a nucleic acid comprising a sequence identically present in one of the genes listed in Table 4. In some embodiments, the kit comprises at least fifteen sets of primers, each of which is for amplification of a different target RNA capable of specifically hybridizing to a nucleic acid comprising a sequence identically present in a different gene listed in Table 4. In one embodiment, the kit comprises fifteen forward and fifteen reverse primers described in Table 7, comprising sequences identical to SEQ ID NOs 173-202. In some embodiments, the kit comprises one, two, or three more sets of primers, in addition to the fifteen sets of primers, each of the additional sets being for amplification of a different target RNA capable of specifically hybridizing to a nucleic acid comprising a sequence identically present in a different gene listed in Table 3. In some embodiments, the kit comprises one, two, or three more sets of primers, in addition to the fifteen sets of primers, each of the additional sets being for amplification of a different target RNA capable of specifically hybridizing to a nucleic acid comprising a sequence identically present in RGS4, UGT2B4, or MCF2 listed in Table 3. In some embodiments, the kit comprises at least one set of primers that is capable of amplifying more than one cDNA reverse transcribed from a target RNA in a sample.
[0181] In some embodiments, probes and/or primers for use in the compositions described herein comprise deoxyribonucleotides. In some embodiments, probes and/or primers for use in the compositions described herein comprise deoxyribonucleotides and one or more nucleotide analogs, such as LNA analogs or other duplex-stabilizing nucleotide analogs described above. In some embodiments, probes and/or primers for use in the compositions described herein comprise all nucleotide analogs. In some embodiments, the probes and/or primers comprise one or more duplex-stabilizing nucleotide analogs, such as LNA analogs, in the region of complementarity.
[0182] In some embodiments, the compositions described herein also comprise probes, and in the case of RT-PCR, primers, that are specific to one or more housekeeping genes for use in normalizing the quantities of target RNAs. Such probes (and primers) include those that are specific for one or more products of housekeeping genes selected from ACTB, BAT1, B2M, TBP, U6 snRNA, RNU44, RNU 48, and U47.
[0183] In some embodiments, the kits for use in real time RT-PCR methods described herein further comprise reagents for use in the reverse transcription and amplification reactions. In some embodiments, the kits comprise enzymes such as reverse transcriptase, and a heat stable DNA polymerase, such as Taq polymerase. In some embodiments, the kits further comprise deoxyribonucleotide triphosphates (dNTP) for use in reverse transcription and amplification. In further embodiments, the kits comprise buffers optimized for specific hybridization of the probes and primers.
[0184] In some embodiments, kits are provided containing antibodies to each of the protein products of the genes listed in Table 4, conjugated to a detectable substance, and instructions for use. In some embodiments, the kits comprise antibodies to one, two, or three protein products of the genes listed in Table 3, in addition to antibodies to each of the protein products of the genes listed in Table 4.
[0185] In some embodiments, the kit comprises antibodies to the protein product of one, two, or all three of RGS4, UGT2B4, or MCF2 listed in Table 3, in addition to antibodies to each of the protein products of the genes listed in Table 4. Kits may comprise an antibody, an antibody derivative, or an antibody fragment, which binds specifically with a marker protein, or a fragment of the protein. Such kits may also comprise a plurality of antibodies, antibody derivatives, or antibody fragments wherein the plurality of such antibody agents binds specifically with a marker protein, or a fragment of the protein.
[0186] In some embodiments, kits may comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such kits can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail herein for nucleic acid arrays and similar methods have been developed for antibody arrays.
[0187] A person skilled in the art will appreciate that a number of detection agents can be used to determine the expression of the biomarkers. For example, to detect RNA products of the biomarkers, probes, primers, complementary nucleotide sequences or nucleotide sequences that hybridize to the RNA products can be used. To detect protein products of the biomarkers, ligands or antibodies that specifically bind to the protein products can be used.
[0188] Accordingly, in one embodiment, the detection agents are probes that hybridize to the 15 biomarkers. In a particular embodiment, the probe target sequences are as set out in Table 9. In one embodiment, the probe target sequences are identical to SEQ ID NO: 3, 11-15, 22, 26, 35, 49, 78, 85, 130, 133, and 169. In another embodiment, the detection agents are forward and reverse primers that amplify a region of each of the 15 genes listed in Table 4. In a particular embodiment, the primers are as set out in Table 7. In one embodiment, the primers comprise the polynucleotide sequences of SEQ ID NO: 173-202.
[0189] A person skilled in the art will appreciate that the detection agents can be labeled.
[0190] The label is preferably capable of producing, either directly or indirectly, a detectable signal. For example, the label may be radio-opaque or a radioisotope, such as 3H, 14C, 32P, 35S, 123I, 125I, 131I; a fluorescent (fluorophore) or chemiluminescent (chromophore) compound, such as fluorescein isothiocyanate, rhodamine or luciferin; an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase; an imaging agent; or a metal ion.
[0191] The kit can also include a control or reference standard and/or instructions for use thereof. In addition, the kit can include ancillary agents such as vessels for storing or transporting the detection agents and/or buffers or stabilizers.
[0192] In some aspects, a multi-gene signature is provided for prognosis or classifying patients with lung cancer. In some embodiments, a fifteen-gene signature is provided, comprising reference values for each of the fifteen genes based on relative expression data from a historical data set with a known outcome, such as good or poor survival, and/or known treatment, such as adjuvant chemotherapy. In one embodiment, four reference values are provided for each of the fifteen genes listed in Table 4. In one embodiment, the reference values for each of the fifteen genes are principal component values set forth in Table 10.
[0193] In one aspect, relative expression data from a patient are combined with the gene-specific reference values on a gene-by-gene basis for each of the fifteen, and, optionally, additional genes, to generate a test value which allows prognosis or therapy recommendation. In some embodiments, relative expression data are subjected to an algorithm that yields a single test value, or combined score, which is then compared to a control value obtained from the historical expression data for a patient or pool of patients.
[0194] In some embodiments, the control value is a numerical threshold for predicting outcomes, for example good and poor outcome, or making therapy recommendations for a subject, for example adjuvant chemotherapy in addition to surgical resection or surgical resection alone. In some embodiments, a test value or combined score greater than the control value is predictive, for example, of a poor outcome or benefit from adjuvant chemotherapy, whereas a combined score falling below the control value is predictive, for example, of a good outcome or lack of benefit from adjuvant chemotherapy for a subject.
[0195] In some embodiments, a method for prognosing or classifying a subject with NSCLC comprises: [0196] (a) measuring expression levels of at least 15 biomarkers from Table 4, and optionally, an additional one, two, or three biomarkers from Table 3 in a test sample, [0197] (b) calculating a combined score or test value for the subject from the expression levels of the, and, [0198] (c) comparing the combined score to a control value, Wherein a combined score greater than the control value is used to classify a subject into a high risk or poor survival group and a combined score lower than the control value is used to classify a subject into a lower risk or good survival group.
[0199] In one embodiment, the combined score is calculated from relative expression data multiplied by reference values, determined from historical data, for each gene. Accordingly, the combined score may be calculated using Formula I below:
Combined score=0.557×PC1+0.328×PC2+0.43×PC3+0.335.time- s.PC4
Where PC1 is the sum of the relative expression level for each gene in a multi-gene signature multiplied by a first principal component for each gene in the multi-gene signature, PC2 is the sum of the relative expression level for each gene multiplied by a second principal component for each gene, PC3 is the sum of the relative expression level for each gene multiplied by a third principal component for each gene, and PC4 is the sum of the relative expression level for each gene multiplied by a fourth principal component for each gene. In some embodiments, the combined score is referred to as a risk score. A risk score for a subject can be calculated by applying Formula I to relative expression data from a test sample obtained from the subject.
[0200] In some embodiments, PC1 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a first principal component for each gene, respectively, as set forth in Table 10; PC2 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a second principal component for each gene, respectively, as set forth in Table 10; PC3 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a third principal component for each gene, respectively, as set forth in Table 10; and PC4 is the sum of the relative expression level for each gene provided in Table 4 multiplied by a fourth principal component for each gene, respectively, as set forth in Table 10.
[0201] In one embodiment, the control value is equal to -0.1. A subject with a risk score of more than -0.1 is classified as high risk (poor prognosis). A patient with a risk score of less than -0.1 is classified as lower risk (good prognosis). In some embodiments, adjuvant chemotherapy is recommended for a subject with a risk score of more than -0.1 and not recommended for a subject with a risk score of less than -0.1.
[0202] In a further aspect, the application provides computer programs and computer implemented products for carrying out the methods described herein. Accordingly, in one embodiment, the application provides a computer program product for use in conjunction with a computer having a processor and a memory connected to the processor, the computer program product comprising a computer readable storage medium having a computer mechanism encoded thereon, wherein the computer program mechanism may be loaded into the memory of the computer and cause the computer to carry out the methods described herein.
[0203] In another embodiment, the application provides a computer implemented product for predicting a prognosis or classifying a subject with NSCLC comprising:
[0204] (a) a means for receiving values corresponding to a subject expression profile in a subject sample; and
[0205] (b) a database comprising a reference expression profile associated with a prognosis, wherein the subject biomarker expression profile and the biomarker reference profile each has fifteen values, each value representing the expression level of a biomarker, wherein each biomarker corresponds to one gene in Table 4; wherein the computer implemented product selects the biomarker reference expression profile most similar to the subject biomarker expression profile, to thereby predict a prognosis or classify the subject.
[0206] In yet another embodiment, the application provides a computer implemented product for determining therapy for a subject with NSCLC comprising:
[0207] (a) a means for receiving values corresponding to a subject expression profile in a subject sample; and
[0208] (b) a database comprising a reference expression profile associated with a therapy, wherein the subject biomarker expression profile and the biomarker reference profile each has fifteen values, each value representing the expression level of a biomarker, wherein each biomarker corresponds to one gene in Table 4; wherein the computer implemented product selects the biomarker reference expression profile most similar to the subject biomarker expression profile, to thereby predict the therapy.
[0209] Another aspect relates to computer readable mediums such as CD-ROMs. In one embodiment, the application provides computer readable medium having stored thereon a data structure for storing a computer implemented product described herein.
[0210] In one embodiment, the data structure is capable of configuring a computer to respond to queries based on records belonging to the data structure, each of the records comprising:
[0211] (a) a value that identifies a biomarker reference expression profile of the 15 genes in Table 4;
[0212] (b) a value that identifies the probability of a prognosis associated with the biomarker reference expression profile.
[0213] In another aspect, the application provides a computer system comprising
[0214] (a) a database including records comprising a biomarker reference expression profile of fifteen genes in Table 4 associated with a prognosis or therapy;
[0215] (b) a user interface capable of receiving a selection of gene expression levels of the 15 genes in Table 4 for use in comparing to the biomarker reference expression profile in the database; and
[0216] (c) an output that displays a prediction of prognosis or therapy according to the biomarker reference expression profile most similar to the expression levels of the fifteen genes.
[0217] In some embodiments, the application provides a computer implemented product comprising
[0218] (a) a means for receiving values corresponding to relative expression levels in a subject, of at least 15 biomarkers comprising the fifteen genes in Table 4, and optionally, additional one, two, or three genes selected from the genes listed in Table 3;
[0219] (b) an algorithm for calculating a combined scire based on the relative expression levels of the at least 15 biomarkers;
[0220] (c) an output that displays the combined score; and, optionally,
[0221] (d) an output that displays a prognosis or therapy recommendation based on the combined score.
[0222] The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples. These examples are described solely for the purpose of illustration and are not intended to limit the scope of the invention. Changes in form and substitution of equivalents are contemplated as circumstances might suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitation.
[0223] The following non-limiting example is illustrative of the present invention:
Example 1
Results
[0224] Table 1 compared the demographic features of 133 patients with microarray profiling to 349 without the profiling. Stage IB patients had more representation in the observation cohort (55% vs. 42%, p=0.01), but all other factors were similarly distributed. There was no significant difference in the overall survivals of patients with or without gene profiling (FIG. 2A). For these 133 patients, adjuvant chemotherapy reduced the death rate by 20% (HR 0.80, 95% Cl 0.48-1.32, p=0.38; FIG. 5).
Prognostic Gene Expression Signature in JBR.10 Patients
[0225] Using a p0.005 as cut-off, 172 of 19,619 probe sets were significantly associated with prognosis in 62 observation patients (FIG. 1A and Table 3). Using a method that was designed to identify the minimum expression gene set that can distinguish most patients with poor and good survival outcomes, a 15-gene prognostic signature was identified (FIG. 1A and Table 4). This signature was able to separate the 62 non-adjuvant treated patients into 31 low-risk and 31 high-risk patients for death (HR 15.020, 95% Cl 5.12-44.04, p<0.0001; FIG. 2B). Furthermore, stratified analysis showed that the signature was also highly prognostic in 34 stage IB patients (HR 13.32, 95% Cl 2.86-62.11, p<0.0001, FIG. 2C) and 28 stage 11 patients (HR 13.47, 95% Cl 3.0-60.43, p<0.0001, FIG. 2D). Multivariate analysis adjusting for tumor stage, age, gender and histology showed that the prognostic signature was an independent prognostic marker (HR 18.0, 95% Cl 5.8-56.1; p<0.0001, Table 2). This did not differ following additional adjustment for surgical procedure and tumor size.
Validation of General Applicability of Prognostic Signature (Summary)
[0226] Applying the risk score algorithm (equation) established from the 62 BR.10 observation patients, the 15-gene signature was demonstrated to be an independent prognostic marker among all 169 DCC patients (HR 2.9, 95% Cl 1.5-5.6, p=0.002; Table 2). Subgroup analyses also showed significant results among patients from DCC-UM (HR 1.5, 95% Cl 0.54-4.31, p=0.4; Table 2) and HLM (HR 1.2, 95% Cl 0.43-3.6, p=0.7; Table 2). The signature was also prognostic among UM-SQ patients (HR 2.3, 95% Cl 1.1-4.7, p=0.026; Table 2), and in the Duke's patients (HR 1.5, 95% Cl 0.81-2.89, p=0.19; Table 2).
[0227] The prognostic value of the signature was tested in stage I patients of the DCC (n=141) patients and was able to identify patients with significantly different survival outcome (Table 8).
Prediction of Chemotherapy Benefit
[0228] When tested on the microarray data of 71 JBR.10 patients who received adjuvant chemotherapy, the 15-gene signature was not prognostic (HR 1.5, 95% Cl 0.7-3.3, p=0.28, Table 2). The signature was also not prognostic when applied separately to stage IB and stage II patients (Table 2). Among the Director's Challenge patients, 41 were identified as having received adjuvant chemotherapy with or without radiotherapy. The 15-gene signature was also not prognostic for these 41 patients (HR 1.1, 95% Cl 0.5-2.5, p=0.8) (Table 2).
[0229] Stratified analysis showed that in JBR.10 patients with microarray data, only patients classified to the high-risk group derived benefit from the adjuvant chemotherapy (FIGS. 3C and 3D). High-risk patients showed 67% improved survival when treated by adjuvant chemotherapy compared to observation (HR=0.33, 95% Cl 0.17-0.63, p=0.0005, FIG. 3D), while those assigned to the low risk group did not benefit (FIG. 3C). These results were reproduced when applied separately to both the stage IB (FIGS. 3E and 3F) and stage II (FIGS. 3G and 3H) patients.
[0230] Multivariate analysis showed that the decrease of survival associated with adjuvant chemotherapy was independent of the stage (HR=2.26, 95% Cl 1.03-4.96, p=0.04). A Cox regression model with chemotherapy received and risk group indicator and their interaction term as independent covariates were performed to fit the overall survival data on the 133 patients with microarray data. This analysis revealed that the interaction term is highly significant (p=0.0003) with the high-risk group deriving significantly greater benefit from adjuvant chemotherapy.
The Initial Study Population
[0231] The initial study population comprised a subset of the patients randomized in the JBR.10 trial. There were 169 frozen tumor samples collected from patients who had their surgery at one of the BR.10 Canadian Centres have consented to the use of their samples for "future" studies in addition to RAS mutation analysis. The samples were harvested using a standardized protocol that was agreed upon during trial protocol development by designated pathologists from each participating centre. All tumors and corresponding normal lung tissue were collected as soon as or within 30 min after resection, and were snap-frozen in liquid nitrogen. For each frozen tissue fragment, a 1 mm cross-section slice was fixed in 10% buffered formalin and submitted for paraffin embedding. Histological evaluation of the HE stained sections revealed 166 samples that contained a 20% tumor cellularity. Among the latter, gene expression profiling was completed successfully in samples from 133 patients. These included 58 patients randomized to the observation (OBS) arm and 75 to the adjuvant chemotherapy (ACT) arm. However, 4 ACT patients refused chemotherapy, and for the purpose of this analysis, they were assigned to the OBS arm. Therefore, the final distribution included 62 OBS patients and 71 ACT patients (FIGS. 1 and 4).
Microarray Data Analysis
[0232] The raw microarray data from Affymetrix U133A (Affymetrix, Santa Clara, Calif.) were pre-processed using RMAexpress v0.32, then were twice log 2 transformed since the distribution of additional log 2 transformed data appeared more normal. Probe sets were annotated using NetAffx v4.2 annotation tool and only grade A level probe sets 3 (NA24) were included for further analysis. Affymetrix U133A chip contains 22,215 probe sets (19,619 probe sets with grade A annotation). Since the microarray hybridizations were performed in two batches at two separate occasions (January 2004, and June 2005), and unsupervised clustering showed that a batch difference was significant (FIG. 6), a distance-weighted discrimination (DWD) algorithm (https://genome.unc.edu/pubsup/dwd/index.html) was applied to homogenize the two batches. The DWD algorithm first finds a hyperplane that separates the two batches and adjusts the data by projecting the different batches on the DWD plane, finds the batch mean, and then subtracts out the DWD plane multiplied by this mean. In addition, the data were Z score transformed which made the validation across different datasets possible.
Univariate Analysis
[0233] The association of the expression of the individual probe set with overall survival (date of randomization to date of last follow up or death) was evaluated by Cox proportional hazards regression. The expression data for 62 patients in observation arm revealed 1312 probe sets that were associated with overall survival at p<0.05. Using a more stringent selection criteria of p<0.005, 172 probe sets with grade A annotation were prognostic.
Gene Set Signature Selection
[0234] To generate the gene expression signature, an exclusion selection procedure was firstly applied and followed by an inclusion process. The MAximizing R Square Algorithm (MARSA) included 3 sequential steps: a) probe set pre-selection; b) signature optimization; and c) leave-one-out-cross-validation. First, the candidate probe sets were pre-selected by their associations with survival at p<0.005 level. To remove the cross platform variation, expression data was z score transformed and risk score (z score weighted by the coefficient of the univariate Cox regression) was used to synthesize the information of the probe set combination. The candidate probe sets were then subjected to an exclusion followed by an inclusion selection procedure. For the preselected 172 probe sets, the exclusion procedure excluded one probe at a time, summed up the risk score of the remaining 171 probes, the calculated the R square (R2, Goodness-of-fit) of the Cox model5,6. Risk score was dichotomized by an outcome-orientated optimization of cutoff macro based on log-rank statistics (http://ndc.mayo.edu/mayo/research/biostat/sasmacros.cfm) before being introduced to the Cox proportional hazards model. A probe set was excluded if its exclusion resulted in obtaining the largest R2. The procedure was repeated until there was only one probe set left. An inclusion procedure was followed using the probe set left by the exclusion procedure as the starting probe set. It included one probe set at a time, summed up the risk score of the included probe sets and risk score was dichotomized and R2 was calculated. The probe set was included if its inclusion resulted in obtaining the largest R2. The exclusion procedure produced a largest R square of 0.67 by a minimal 7 probe combination and the inclusion procedure generated a largest R2 of 0.78 by a minimal 15 probe combination (FIG. 1B), therefore, the 15 gene combination (Table 4) was selected as a candidate signature. Finally, the 15-gene signature (Table 4) was established after passing the internal validation by leave-one-out-cross-validation (LOOCV) and external validation on other datasets (listed below). All statistical analyses were performed using SAS v9.1 (SAS Institute, CA). The risk score was calculated as Table 4.
Prognostic Modeling by Principal Component Analysis of Signature Genes
[0235] Principal components analysis (PCA) (based on correlation matrix) was carried out to synthesize the information across the chosen gene probe sets and reduce the number of covariates in building the prognostic model. The eigenvalue of greater than or equal to 1 was used as cutoff point in determining how many proponents to include in the model, and those significantly correlated to disease-specific survival (DSS) were included in the final multivariable model. The PCA analysis was done based on all 133 patients with microarray data. When correlated to the DSS based on the 62 observation patients, the first 4 principal components were found to satisfy the criteria and were included in the prognostic model. Table 10 lists the four principal components for each of the 15 genes in the 15-gene signature. The same analysis can be applied to derive principal component coefficients for additional genes selected from the 172 genes listed in Table 3, such as for example, RGS4, UGT2B4, and/or MCF2. Furthermore, one of skill will appreciate from the above description how to obtain the first four principal component coefficients for any of the genes listed in Table 3.
[0236] To determine the gene signature prognostic group, multivariate Cox regression model with the first 4 principal components were fitted to the disease specific survival of the 62 observation patients. The linear prognostic scores were calculated by the sum of the multiplication of the estimated coefficient from Cox model and the corresponding principal component value. Using the prognostic score, patients were divided into low and high risk group based on the median of the prognostic score, i.e., those with prognostic score less than the median as low risk group, while those with score no less than the median as high risk group. For the 62 observation patients with microarray data, 31 patients were classified in each group. Applying the same rule to the 73 chemo-treated patients, 36 patients were classified in low risk group and 37 patients in high-risk group.
Validation of General Applicability of Prognostic Signature
[0237] Validation of the 15-gene signature was carried out on stage I-11 cases from Duke, Raponi, and DC who did not receive adjuvant chemotherapy. When the risk score was dichotomized using the cutoff determined from the BR.10 training set, the 15-gene signature was able to separate 38 cases of low risk from 47 cases of high risk (log rank p=0.226) of NSCLC in the Duke dataset. Multivariate analysis (adjusted for stage, histology and patients' age and gender) showed that the 15-gene signature was an independent prognostic factor (HR=1.5, 95% Cl 0.81-2.89, p=0.19, Table 2). Raponi contains squamous cell carcinoma only and the cases have the worst survival rate. However, the 15-gene signature was still able to separate 50 cases of low risk from 56 cases with high risk (log rank p=0.0447) and this separation was independent of stage and patients' age and gender (HR=2.3, 95% Cl 1.1-4.7 p=0.026, Table 2). The DC dataset contained only adenocarcinoma cases. Applying the 15-gene signature on DC stage I and II, was able to separate 87 low risk cases from the 82 high risk cases (log rank p=0.0002, FIG. 2E). Multivariate analysis (adjusted for stage and patients' age and gender) showed that the prognostic value of the 15-gene signature was independent prognostic factor (HR=2.9, 95% Cl 1.5-5.6, p=0.002, Table 2). There were 67 stage IB-II cases without chemotherapy in MI, the 15-gene signature was able to separate 44 low risk cases from the 23 high risk cases (log rank p=0.013). Multivariate analysis (adjusted for stage and patients' age and gender) showed that the prognostic value of the 15-gene signature was independent prognostic factor (HR=1.5, 95% Cl 0.54-4.31, p=0.4, Table 2). Cases from MSKCC had a significantly better 5-year overall survival compared to other datasets. However, the 15-gene signature was able to separate 32 cases of low risk from 32 cases of high risk in MSKCC (log rank p=0.16). Multivariate analysis (adjusted for stage) revealed that the 15-gene signature was an independent prognostic factor. Validation of the 15-gene signature on HLM revealed that the 15-gene signature was able to separate 26 cases of low risk from 24 cases of high risk (log rank p=0.0084). Multivariate analysis (adjusted for stage) showed that there was a trend to separation by the 15-gene signature (HR=1.2, 95% Cl 0.43-3.6, p=0.7). These validation data confirm that the 15-gene signature is a strong prognostic signature and its power of predicting the outcome of NSCLC is independent of and superior to that of stage.
The Benefit of Chemotherapy was Limited to High Risk Patients
[0238] A total of 30 deaths were observed in the ACT. Six of them were due to other malignancies. The 15-gene signature was unable to separate the good/bad outcome patients (p=0.83, data not shown) in the ACT. However, stratified analysis showed that only patients with high risk derived benefit from adjuvant chemotherapy (FIG. 3D). Upon receiving adjuvant chemotherapy, the survival rate of the 36 high-risk patients was significantly improved (HR=0.33, 95% Cl 0.17-0.63, p=0.0005, FIG. 3D). On the other hand, the application of chemotherapy on low risk patients resulted in a decrease in survival rate (HR=3.67, 95% Cl 1.22-11.06, p=0.0133, FIG. 3C). Death was evenly distributed between the low and high risk groups in the ACT arm (15 deaths in low and high risk group, respectively). Each of these two groups contained 3 deaths that were not due to lung cancer. Stratification by risk group and stage showed that the survival rate of high risk patients from both stage IB and stage II was significantly improved by chemotherapy (FIGS. 3F and H). Moreover, for low risk patients of stage II, chemotherapy was associated with significantly decreased survival (FIGS. 3E and G). A Cox regression model with chemotherapy received and risk group indicator and their interaction term as independent covariates was performed to fit the overall survival data on the 133 patients with microarray data. This analysis revealed that the interaction term is highly significant (p=0.0002) with the high-risk group deriving significantly greater benefit from adjuvant chemotherapy.
Discussion:
[0239] Gene expression signature is thought to represent the altered key pathways in carcinogenesis and thus is able to predict patients' outcome. However, being able to faithfully represent the altered key pathways, the signature must be generated from genome-wide gene expression data. The present study used all information generated by Affymetrix U133A chip on NSCLC samples from a randomized clinical trial to derive a 15-gene signature. The 15-gene signature was able to identify 50% (31/62) stage IB-II NSCLC patients had relative good outcome. Multivariate analysis indicated that the 15-gene signature was an independent prognostic factor. Moreover, its independent prognostic effect had been in silico validated on 169 adenocarcinomas without adjuvant chemo- or radio-therapy from DC and 85 NSCLC from Duke and 106 squamous cell carcinomas of the lung from the University of Michigan. Importantly, the 15-gene signature was able to predict the response to adjuvant chemotherapy with high-risk patients across the stages being benefited from adjuvant chemotherapy. This finding was also validated on DC dataset.
[0240] Adjuvant chemotherapy for completely resected early stage NSCLC was a research question until the results of a series of positive trials2,4, including BR.103, were published. However, whether chemotherapy played a beneficial role in stage IB remained to be clarified2-6. The present study showed that the stage IB patients were potentially able to be separated into low (49.3%, 36/73) and high (50.7%, 37/73) risk groups using the 15-gene signature. Upon administering the adjuvant chemotherapy to stage IB patients, the survival rate of patients with high risk was significantly improved (p=0.0698, FIG. 3F) whereas patients with low risk did not experience a benefit in survival (p=0.0758, FIG. 3E). Therefore the effect of chemotherapy on stage IB NSCLC was neutralized and thus gave an incorrect impression that no beneficial effect was existed3. Based on the evidence provided here and from the meta-analysis6, it may be concluded that 50.7% (37/73) stage IB NSCLC patients have the potential to benefit from adjuvant chemotherapy.
[0241] Another significance of the present study was that the signature was able to identify a subgroup (50%, 30/60) of patients from stage II who did not benefit from adjuvant chemotherapy (p=0.1498, FIG. 3G). In current practice, adjuvant chemotherapy is recommended for all patients. However, the 15-gene signature suggests that about a half of the stage II patients may not benefit from adjuvant chemotherapy.
[0242] The gene ontology analysis showed that in the 15-gene signature, 4 genes (FOSL2, HEXIM1, IKBKAP, MYT1L, and ZNF236) were involved in the regulation of transcription. EDN3 and STMN2 played a role in signal transduction. Transformed 3T3 cell double minute 2 (MDM2), an E3 ubiquitin ligase, which targets p53 protein for degradation, plays a key role in cell cycle and apoptosis. Dworakowska D. et al.24 reported that overexpression of MDM2 protein was correlated with low apoptotic index, which was associated with poorer survival. Myoglobin (MB) palyed a role in response to hypoxia and Uridine monophosphate synthetase (UMPS) participated in the `de novo` pyrimidine base biosynthetic process, however, none of them has not been explored in lung cancer. The L1 cell adhesion molecule (L1CAM) involved in cell adhesion whose overexpression was associated with tumor metastasis and poor prognosis25-28. ATPase, Na+/K+ transporting, beta 1 polypeptide (ATP1B1) was involved in ion transport which was reported recently to be able to discriminate the serous low malignant potential and invasive epithelial ovarian tumors29. These findings indicated that cellular transcription, cell cycle and apoptosis, cell adhesion and response to hypoxia were important for lung cancer progression.
[0243] The range of expression levels of members of the 15-gene signature was broad, from very low expression level such as MDM2 and ZNF236 to fairly high expression such as TRIM14 or very high expression such as ATP1B1 (Table 4). Least variable gene (<5%), such as UMPS (Table 4), was also a member of the signature. These data suggested that it may not be a good practice to exclude low expressed and least variable probe set in the data pre-selection process in an arbitrary way. The signature generated using the present strategy performed better than that of Raponi's method of using the top 50 genes. There are only 3 genes (IKBKAP, L1CAM, and FAM64A) whose significance in association with survival is in the top 50 genes (Table 4).
Materials and Methods:
Patients and Samples
[0244] Included in the JBR.10 protocol was the collection of snap-frozen or formalin-fixed paraffin embedded tumor samples for KRAS mutation analysis and tissue banking for future laboratory studies3. Altogether 445 of 482 randomized patients consented to banking. Snap-frozen tissues were collected from 169 Canadian patients (FIG. 4). Histological evaluation of the HE section from the snap-frozen tumor samples revealed 166 that contained an estimated >20% tumor cellularity; gene expression profiling was completed in 133 of these patient samples, using the U133A oligonucleotide microarrays (Affymetrix, Santa Clara, Calif.). Profiling was not completed in 33 patient samples. Of 133 patients with microarray profiles, 62 did not received post-operative adjuvant chemotherapy and were group as observation patients, while 71 patients were received chemotherapy. University Health Network Research Ethics Board approved the study protocol.
RNA Isolation and Microarray Profiling
[0245] Total RNA was isolated from frozen tumor samples after homogenization in guanidium isothiocyanate solution and acid phenol-chloroform extraction. The quality of isolated RNA was assessed initially by gel electrophoresis, followed by the Agilent Bioanalyzer. Ten micrograms of total RNA was processed, labeled, and hybridized to Affymetrix's HG-U133A GeneChips. Microarray hybridization was performed at the Center for Cancer Genome Discovery of Dana Farber Cancer Institute.
Microarray Data Analysis and Gene Annotation
[0246] The raw microarray data were pre-processed using RMAexpress v0.322. Probe sets were annotated using NetAffx v4.2 annotation tool and only grade A level probe sets23 (NA22) were included for further analysis. Because the microarray profiling was done in two separate batches at different times and unsupervised heuristic K-means clustering identified a systematic difference between the two batches (FIG. 6), the distance-weighted discrimination (DWD) method (https://genome.unc.edu/pubsup/dwd/index.html) was used to adjust the difference. The DWD method first finds a separating hyperplane between the two batches and adjusts the data by projecting the different batches on the DWD plane, discover the batch mean, and then subtracts out the DWD plane multiplied by this mean. The data were then transformed to Z score by centering to its mean and scaling to its standard deviation. This transformation was necessary for validation on different datasets in which different expression ranges are likely to exist, and for validation on different platforms, such as qPCR where the data scale is different.
Derivation of Signature
[0247] The pre-selected probe sets by univariate analysis at p<0.005 were selected by an exclusion procedure. The exclusion selection excluded one probe set at a time based on the resultant R square (R2, Goodness-of-fit 15,16) of the Cox model. It kept repeating until there was only one probe set left. The procedure was repeated until there was only one probe set left. An inclusion procedure was followed using the probe set left by the exclusion procedure as the starting probe set. It included one probe set at a time based on the resultant R2 of the Cox model. Finally, the R2 was plotted against the probe set and a set of minimum number of probe sets yet having the largest R2 was chosen as candidate signature. Gene signature was established after passing the internal validation by leave-one-out-cross-validation (LOOCV) and external validation on other datasets (listed below). All statistical analyses were performed using SAS v9.1 (SAS Institute, CA).
Validation in Separate Microarray Datasets
[0248] The prognostic value of this 15-gene signature was tested on separate microarray datasets. Three represented subsets of microarray data from the NCl Director's Challenge Consortium (DCC) for the Molecular Classification of Lung Adenocarcinoma (Nature Medicine, in review/in press). In total, the Consortium analyzed the profiles of 442 tumors, including 177 from University of Michigan (UM), 79 from H. L. Moffitt Cancer Centre (HLM), 104 from Memorial Sloan-Kettering Cancer Centre (MSK), and 82 from our group. As 39 of the latter tumors overlap with samples used in this study, only data from the first 3 groups were used for validation. In addition, patients who were noted as either unknown or having received adjuvant chemotherapy and/or radiotherapy were excluded. Therefore, the DCC dataset used in this validation study included only 169 patients: 67 from UM, 46 from HLM, 56 from MSK. Two additional published microarray datasets were also used for validation: the Duke's University dataset of 85 non-small cell lung cancer patients (Potti, et al, NEJM), and the University of Michigan dataset of 106 squamous cell carcinomas patients (UM-SQ) (Rapponi et al). Raw data of these microarray studies were downloaded and RMA pre-processed. The expression levels were Z score transformed after double log 2 transformation. Risk score was the Z score weighted by the coefficient of the Cox model from the OBS. Demographic data of the DC cohort was listed in Table 5.
Statistical Analysis
[0249] Risk score was the product of coefficient of Cox proportional model and the standardized expression level. The univariate association of the expression of the individual probe set with overall survival (date of randomization to date of last followup or death) was evaluated by Cox proportional hazards regression. A stringent p<0.005 was set as a selection criteria in order to minimize the possibility of false-positive results.
[0250] While the present invention has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the invention is not limited to the disclosed examples. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
[0251] All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
TABLE-US-00001 TABLE 1 Baseline factors of BR.10 patients with and without microarray profiles Microarray No microarray All profiled profiled Patients (n = 133) (n = 349) Factor (n = 482) n % n % P value Treatment received ACT 231 71 53% 160 46% 0.14 OBS 251 62 47% 189 54% Age <65 324 87 65% 237 68% 0.6 ≧65 158 46 35% 112 32% Gender Male 314 91 68% 223 64% 0.35 Female 168 42 32% 126 36% Performance Status 0 236 67 50% 169 49% 0.72 1 245 66 50% 179 51% Stage of Disease IB 219 73 55% 146 42% 0.01 II 263 60 45% 203 58% Surgery Pneumonectomy 113 33 25% 80 23% 0.66 Other Resection 369 100 75% 269 77% Pathologic type Adenocarcinoma 256 71 53% 185 53% 0.56 Squamous 179 52 39% 127 36% Other 47 10 8% 37 11% Ras Mutation Status Present 117 28 21% 89 26% 0.12* Absent 333 105 79% 228 65% Unknown 32 0 0% 32 9% *P-value: Without include those missing or unknown.
TABLE-US-00002 TABLE 2 Comparison of 5-yr Survival (multivariate) of High and Low Risk Groups in Untreated Patients and Patients who Received Adjuvant Chemotherapy. n HR* 95% CI p value Observation/untreated Patients JBR.10 (randomized with 62 18.0 5.8-56.1 <0.0001 microarray) Stage IB 34 29.9 4.5-197.4 0.0004 Stage II 28 16.4 3.0-88.1 0.001 DCC (no adjuvant 169 2.9 1.5-5.6 0.002 therapy) UM 67 1.5 0.54-4.31 0.4 HLM 46 1.2 0.43-3.60 0.7 MSK 56 NA** NA Duke 85 1.5 0.81-2.89 0.19 UM-Squamous 106 2.3 1.1-4.7 0.026 Patients Treated With Adjuvant Chemotherapy BR.10 (randomized with 71 1.5 0.7-3.3 0.28 microarray) BR.10 Stage I 39 1.7 0.5-5.6 0.36 BR.10 Stage II 32 1.2 0.4-3.6 0.8 DCC (not randomized) 41 1.1 0.5-2.5 0.8 n: number of patients; HR: hazard ratio; CI: confidence interval *HR compares the survival of the poor prognostic group to that of the good prognostic group as determined by the 15-gene signature with the adjustment of stage and patients' age and gender. For BR.10, and Duke, the effect of histology was also adjusted **All events were in high risk group and female patients.
TABLE-US-00003 TABLE 3 172 U133A probe sets that were prognostic at p < 0.005 for the 62 BR.10 observation arm patients. Representative p Probe Set ID Public ID UniGene ID Gene Symbol Coefficients HR HRL HRH value 200878_at AF052094 Hs.468410 EPAS1 -0.58 0.56 0.37 0.84 0.0048 201228_s_at NM_006321 Hs.31387 ARIH2 0.47 1.60 1.17 2.18 0.0029 201242_s_at BC000006 Hs.291196 ATP1B1 -0.69 0.50 0.35 0.71 0.0001 201243_s_at NM_001677 Hs.291196 ATP1B1 -0.54 0.58 0.41 0.83 0.0028 201301_s_at NM_001153 Hs.422986 ANXA4 -0.55 0.58 0.40 0.83 0.0028 201502_s_at NM_020529 Hs.81328 NFKBIA -0.62 0.54 0.36 0.79 0.0016 202023_at NM_004428 Hs.516664 EFNA1 -0.67 0.51 0.35 0.76 0.0009 202035_s_at AF017987 Hs.213424 SFRP1 0.69 1.99 1.39 2.86 0.0002 202036_s_at AF017987 Hs.213424 SFRP1 0.84 2.31 1.56 3.44 0.0000 202037_s_at AF017987 Hs.213424 SFRP1 0.74 2.09 1.43 3.07 0.0002 202490_at AF153419 Hs.494738 IKBKAP 0.42 1.53 1.17 1.99 0.0018 202707_at NM_000373 Hs.2057 UMPS 0.60 1.81 1.24 2.66 0.0023 202814_s_at NM_006460 Hs.15299 HEXIM1 0.59 1.80 1.20 2.70 0.0045 203001_s_at NM_007029 Hs.521651 STMN2 0.55 1.73 1.21 2.47 0.0027 203147_s_at NM_014788 Hs.575631 TRIM14 -0.56 0.57 0.39 0.82 0.0028 203438_at AI435828 Hs.233160 STC2 0.67 1.96 1.29 2.96 0.0015 203444_s_at NM_004739 Hs.173043 MTA2 0.38 1.46 1.12 1.89 0.0046 203475_at NM_000103 Hs.511367 CYP19A1 0.56 1.76 1.23 2.52 0.0021 203509_at NM_003105 Hs.368592 SORL1 -0.58 0.56 0.39 0.81 0.0020 203928_x_at AI870749 Hs.101174 MAPT 0.44 1.55 1.15 2.10 0.0044 203973_s_at M83667 Hs.440829 CEBPD -0.61 0.54 0.38 0.77 0.0005 204179_at NM_005368 Hs.517586 MB 0.47 1.60 1.16 2.22 0.0044 204267_x_at NM_004203 Hs.77783 PKMYT1 0.63 1.87 1.28 2.73 0.0011 204338_s_at AL514445 Hs.386726 RGS4 0.57 1.77 1.23 2.53 0.0021 204531_s_at NM_007295 Hs.194143 BRCA1 0.60 1.82 1.21 2.75 0.0043 204584_at AI653981 Hs.522818 L1CAM 0.56 1.75 1.30 2.35 0.0002 204684_at NM_002522 Hs.645265 NPTX1 0.48 1.61 1.18 2.19 0.0024 204810_s_at NM_001824 Hs.334347 CKM 0.46 1.58 1.20 2.09 0.0012 204817_at NM_012291 -- ESPL1 0.53 1.70 1.24 2.34 0.0010 204933_s_at BF433902 Hs.81791 TNFRSF11B 0.51 1.67 1.27 2.20 0.0003 204953_at NM_014841 Hs.368046 SNAP91 0.59 1.81 1.31 2.49 0.0003 205046_at NM_001813 Hs.75573 CENPE 0.62 1.86 1.28 2.70 0.0012 205189_s_at NM_000136 Hs.494529 FANCC 0.53 1.70 1.21 2.40 0.0023 205217_at NM_004085 Hs.447877 TIMM8A 0.64 1.90 1.26 2.85 0.0020 205386_s_at NM_002392 Hs.567303 MDM2 0.49 1.63 1.19 2.23 0.0025 205433_at NM_000055 Hs.420483 BCHE 0.58 1.79 1.23 2.62 0.0024 205481_at NM_000674 Hs.77867 ADORA1 0.49 1.63 1.20 2.23 0.0020 205491_s_at NM_024009 Hs.522561 GJB3 0.46 1.58 1.18 2.11 0.0021 205501_at AI143879 Hs.348762 -- 0.40 1.49 1.13 1.97 0.0043 205825_at NM_000439 Hs.78977 PCSK1 0.59 1.81 1.24 2.65 0.0023 205893_at NM_014932 Hs.478289 NLGN1 0.40 1.49 1.13 1.97 0.0048 205938_at NM_014906 Hs.245044 PPM1E 0.52 1.68 1.22 2.31 0.0013 205946_at NM_003382 Hs.490817 VIPR2 0.50 1.65 1.17 2.33 0.0043 206043_s_at NM_014861 Hs.6168 ATP2C2 -0.55 0.57 0.39 0.84 0.0044 206096_at AI809774 Hs.288658 ZNF35 0.55 1.73 1.20 2.49 0.0034 206228_at AW769732 Hs.155644 PAX2 0.50 1.65 1.27 2.15 0.0002 206232_s_at NM_004775 Hs.591063 B4GALT6 0.44 1.56 1.17 2.07 0.0021 206401_s_at J03778 Hs.101174 MAPT 0.39 1.48 1.13 1.94 0.0049 206426_at NM_005511 Hs.154069 MLANA 0.63 1.87 1.26 2.77 0.0018 206496_at NM_006894 Hs.445350 FMO3 0.53 1.70 1.22 2.37 0.0018 206505_at NM_021139 Hs.285887 UGT2B4 0.61 1.84 1.26 2.69 0.0017 206524_at NM_003181 Hs.389457 T 0.78 2.18 1.35 3.53 0.0015 206552_s_at NM_003182 Hs.2563 TAC1 0.97 2.63 1.53 4.53 0.0005 206619_at NM_014420 Hs.159311 DKK4 0.54 1.72 1.20 2.45 0.0029 206622_at NM_007117 Hs.182231 TRH 0.53 1.70 1.23 2.37 0.0015 206661_at NM_025104 Hs.369998 DBF4B 0.55 1.73 1.27 2.36 0.0005 206672_at NM_000486 Hs.130730 AQP2 0.37 1.45 1.13 1.84 0.0030 206678_at NM_000806 Hs.175934 GABRA1 0.39 1.48 1.16 1.89 0.0014 206799_at NM_006551 Hs.204096 SCGB1D2 0.41 1.51 1.15 1.99 0.0032 206835_at NM_003154 Hs.250959 STATH 0.46 1.59 1.16 2.18 0.0042 206940_s_at NM_006237 Hs.493062 POU4F1 0.54 1.72 1.23 2.40 0.0017 206984_s_at NM_002930 Hs.464985 RIT2 0.47 1.59 1.16 2.20 0.0045 207003_at NM_002098 Hs.778 GUCA2A 0.62 1.85 1.23 2.79 0.0032 207028_at NM_006316 Hs.651453 MYCNOS 0.48 1.61 1.19 2.18 0.0020 207208_at NM_014469 Hs.121605 HNRNPG-T 0.51 1.66 1.23 2.26 0.0010 207219_at NM_023070 Hs.133034 ZNF643 0.60 1.82 1.27 2.60 0.0011 207529_at NM_021010 -- DEFA5 0.65 1.91 1.38 2.64 0.0001 207597_at NM_014237 Hs.127930 ADAM18 0.63 1.87 1.36 2.58 0.0001 207814_at NM_001926 Hs.711 DEFA6 0.61 1.85 1.21 2.81 0.0041 207843_x_at NM_001914 Hs.465413 CYB5A -0.55 0.58 0.39 0.84 0.0047 207878_at NM_015848 -- KRT76 0.41 1.51 1.17 1.95 0.0017 207937_x_at NM_023110 Hs.264887 FGFR1 0.43 1.54 1.14 2.08 0.0045 208157_at NM_009586 Hs.146186 SIM2 0.45 1.56 1.19 2.05 0.0013 208233_at NM_013317 Hs.468675 PDPN 0.54 1.72 1.18 2.49 0.0043 208292_at NM_014482 Hs.158317 BMP10 0.44 1.55 1.17 2.05 0.0025 208314_at NM_006583 Hs.352262 RRH 0.56 1.75 1.19 2.58 0.0044 208368_s_at NM_000059 Hs.34012 BRCA2 0.62 1.86 1.26 2.73 0.0018 208399_s_at NM_000114 Hs.1408 EDN3 0.48 1.61 1.18 2.20 0.0028 208511_at NM_021000 Hs.647156 PTTG3 0.49 1.63 1.17 2.29 0.0043 208684_at U24105 Hs.162121 COPA -0.52 0.59 0.41 0.85 0.0041 208992_s_at BC000627 Hs.463059 STAT3 -0.67 0.51 0.34 0.77 0.0012 209434_s_at U00238 -- PPAT 0.43 1.54 1.15 2.06 0.0033 209839_at AL136712 Hs.584880 DNM3 0.54 1.72 1.18 2.50 0.0049 209859_at AF220036 Hs.368928 TRIM9 0.45 1.57 1.16 2.12 0.0032 210016_at BF223003 Hs.434418 MYT1L 0.60 1.82 1.31 2.52 0.0003 210247_at AW139618 Hs.445503 SYN2 0.64 1.89 1.30 2.75 0.0008 210302_s_at AF262032 Hs.584852 MAB21L2 0.59 1.81 1.34 2.44 0.0001 210315_at AF077737 Hs.445503 SYN2 0.66 1.94 1.31 2.87 0.0009 210455_at AF050198 Hs.419800 C10orf28 0.57 1.76 1.24 2.50 0.0015 210758_at AF098482 Hs.493516 PSIP1 0.42 1.52 1.17 1.97 0.0015 210918_at AF130075 -- -- 0.46 1.59 1.24 2.04 0.0003 211204_at L34035 Hs.21160 ME1 0.54 1.72 1.26 2.33 0.0006 211264_at M81882 Hs.231829 GAD2 0.53 1.71 1.19 2.44 0.0034 211341_at L20433 Hs.493062 POU4F1 0.57 1.77 1.21 2.58 0.0031 211516_at M96651 Hs.68876 IL5RA 0.60 1.82 1.26 2.62 0.0013 211772_x_at BC006114 Hs.89605 CHRNA3 0.52 1.69 1.22 2.33 0.0014 212359_s_at W89120 Hs.65135 KIAA0913 -0.53 0.59 0.42 0.82 0.0019 212528_at AI348009 Hs.633087 -- -0.79 0.45 0.29 0.70 0.0004 212531_at NM_005564 Hs.204238 LCN2 -0.57 0.56 0.38 0.84 0.0049 213197_at AB006627 Hs.495897 ASTN1 0.66 1.93 1.36 2.74 0.0002 213260_at AU145890 Hs.599993 -- 0.51 1.67 1.18 2.35 0.0036 213458_at AB023191 -- KIAA0974 0.43 1.54 1.19 1.99 0.0010 213482_at BF593175 Hs.476284 DOCK3 0.53 1.70 1.19 2.42 0.0032 213603_s_at BE138888 Hs.517601 RAC2 -0.62 0.54 0.37 0.79 0.0017 213917_at BE465829 Hs.469728 PAX8 0.52 1.69 1.21 2.36 0.0022 214457_at NM_006735 Hs.592177 HOXA2 0.72 2.06 1.40 3.03 0.0002 214608_s_at AJ000098 Hs.491997 EYA1 0.55 1.73 1.24 2.42 0.0013 214665_s_at AK000095 Hs.406234 CHP -0.52 0.59 0.43 0.82 0.0014 214822_at AF131833 Hs.495918 FAM5B 0.54 1.72 1.23 2.41 0.0017 215102_at AK026768 Hs.633705 DPY19L1P1 0.49 1.64 1.22 2.20 0.0011 215180_at AL109703 Hs.651358 -- 0.43 1.54 1.16 2.06 0.0029 215289_at BE892698 -- ZNF749 0.46 1.58 1.19 2.09 0.0017 215356_at AK023134 Hs.646351 ECAT8 0.46 1.58 1.15 2.17 0.0048 215476_at AF052103 Hs.159157 -- 0.49 1.63 1.21 2.21 0.0016 215705_at BC000750 -- PPP5C 0.52 1.68 1.22 2.32 0.0016 215715_at BC000563 Hs.78036 SLC6A2 0.75 2.12 1.37 3.29 0.0008 215850_s_at AK022209 Hs.651219 NDUFA5 0.48 1.62 1.18 2.23 0.0030 215944_at U80773 -- -- 0.49 1.64 1.20 2.24 0.0019 215953_at AL050020 Hs.127384 DKFZP564C196 0.47 1.59 1.16 2.19 0.0038 215973_at AF036973 -- HCG4P6 0.55 1.74 1.30 2.32 0.0002 216050_at AK024584 Hs.406847 -- 0.44 1.55 1.15 2.08 0.0035 216066_at AK024328 Hs.429294 ABCA1 0.50 1.65 1.22 2.22 0.0010 216240_at M34428 Hs.133107 PVT1 0.46 1.58 1.15 2.18 0.0046 216881_x_at X07882 Hs.528651 PRB4 0.41 1.51 1.14 1.99 0.0042 216989_at L13779 Hs.121494 SPAM1 0.46 1.58 1.15 2.16 0.0044 217004_s_at X13230 Hs.387262 MCF2 0.39 1.48 1.14 1.91 0.0032 217253_at L37198 Hs.632861 -- 0.51 1.66 1.17 2.35 0.0041 217995_at NM_021199 Hs.511251 SQRDL -0.82 0.44 0.29 0.66 0.0001 218768_at NM_020401 Hs.524574 NUP107 0.63 1.88 1.31 2.70 0.0006 218881_s_at NM_024530 Hs.220971 FOSL2 -0.52 0.60 0.42 0.85 0.0044 218980_at NM_025135 Hs.436636 FHOD3 0.63 1.88 1.29 2.74 0.0011 219000_s_at NM_024094 Hs.315167 DCC1 1.06 2.90 1.89 4.44 0.0000 219171_s_at NM_007345 Hs.189826 ZNF236 0.56 1.76 1.20 2.56 0.0035 219182_at NM_024533 Hs.156784 FLJ22167 0.48 1.62 1.18 2.22 0.0027 219425_at NM_014351 Hs.189810 SULT4A1 0.74 2.11 1.41 3.14 0.0003 219520_s_at NM_018458 Hs.527524 WWC3 -0.49 0.61 0.44 0.84 0.0029 219537_x_at NM_016941 Hs.127792 DLL3 0.55 1.73 1.23 2.44 0.0018 219617_at NM_024766 Hs.468349 C2orf34 0.53 1.70 1.19 2.43 0.0035 219643_at NM_018557 Hs.470117 LRP1B 0.55 1.73 1.30 2.30 0.0001 219704_at NM_015982 Hs.567494 YBX2 0.75 2.12 1.42 3.16 0.0002 219882_at NM_024686 Hs.445826 TTLL7 0.51 1.66 1.18 2.35 0.0038 219937_at NM_013381 Hs.199814 TRHDE 0.54 1.71 1.23 2.38 0.0015 219955_at NM_019079 Hs.562195 L1TD1 0.60 1.82 1.25 2.65 0.0018 220029_at NM_017770 Hs.408557 ELOVL2 0.52 1.68 1.18 2.40 0.0038 220076_at NM_019847 Hs.156727 ANKH 0.77 2.17 1.53 3.07 0.0000 220294_at NM_014379 Hs.13285 KCNV1 0.45 1.56 1.16 2.11 0.0036 220366_at NM_022142 Hs.104894 ELSPBP1 0.53 1.69 1.19 2.41 0.0034 220394_at NM_019851 Hs.199905 FGF20 0.61 1.84 1.30 2.60 0.0006 220397_at NM_020128 Hs.591036 MDM1 0.41 1.51 1.17 1.95 0.0015 220541_at NM_021801 Hs.204732 MMP26 0.50 1.64 1.24 2.18 0.0006 220653_at NM_015363 -- ZIM2 0.60 1.83 1.33 2.53 0.0002 220700_at NM_018543 Hs.188495 WDR37 0.59 1.80 1.22 2.66 0.0029 220703_at NM_018470 Hs.644603 C10orf110 0.59 1.80 1.26 2.58 0.0012 220771_at NM_016181 Hs.633593 LOC51152 0.60 1.81 1.23 2.67 0.0025 220817_at NM_016179 Hs.262960 TRPC4 0.47 1.60 1.19 2.14 0.0019 220834_at NM_017716 Hs.272789 MS4A12 0.52 1.68 1.27 2.22 0.0003 220847_x_at NM_013359 Hs.631598 ZNF221 0.50 1.65 1.19 2.28 0.0025 220852_at NM_014099 Hs.621386 PRO1768 0.48 1.62 1.19 2.20 0.0022 220970_s_at NM_030977 Hs.406714 KRTAP2-4/ 0.49 1.64 1.16 2.31 0.0050 LOC644350 220981_x_at NM_022053 Hs.648337 NXF2 0.45 1.56 1.19 2.05 0.0014 220993_s_at NM_030784 Hs.632612 GPR63 0.38 1.46 1.13 1.88 0.0041 221018_s_at NM_031278 Hs.333132 TDRD1 0.81 2.25 1.51 3.37 0.0001 221077_at NM_018076 Hs.127530 ARMC4 0.56 1.76 1.25 2.47 0.0013 221137_at AF118071 -- -- 0.46 1.59 1.15 2.20 0.0049 221168_at NM_021620 Hs.287386 PRDM13 0.68 1.96 1.33 2.91 0.0007 221258_s_at NM_031217 Hs.301052 KIF18A 0.62 1.86 1.34 2.58 0.0002 221319_at NM_019120 Hs.287793 PCDHB8 0.40 1.49 1.14 1.96 0.0041 221393_at NM_014627 -- TAAR3 0.50 1.64 1.17 2.31 0.0043 221591_s_at BC005004 Hs.592116 FAM64A 0.72 2.05 1.38 3.05 0.0004 221609_s_at AY009401 Hs.29764 WNT6 0.40 1.50 1.15 1.95 0.0028 221718_s_at M90360 Hs.459211 AKAP13 -0.64 0.53 0.36 0.78 0.0013 221950_at AI478455 Hs.202095 EMX2 0.67 1.96 1.41 2.72 0.0001
TABLE-US-00004 TABLE 4 Features of 15 probe sets in the gene signature Rank of Rank of Rank of Entrez expression variation significant Gene Gene [n = 19619 [n = 19619 [n = 172 Probe Set Symbol Gene Title ID Coef.* (%)] (%)] (%)] 201243_s_at ATP1B1 ATPase, Na+/K+ transporting, beta 1 481 -0.54 517 (2.6) 2224 (11.3) 111 (64.5) polypeptide 203147_s_at TRIM14 Tripartite motif-containing 14 8518 -0.56 3532 (18.0) 9499 (48.4) 112 (65.1) 221591_s_at FAM64A Family with sequence similarity 64, member A 7372 0.72 6171 (31.5) 6108 (31.1) 29 (16.9) 218881_s_at FOSL2 FOS-like antigen 2 10614 -0.52 6526 (33.3) 12445 (63.4) 155 (90.1) 202814_s_at HEXIM1 Hexamethylene bis-acetamide inducible 1 11075 0.59 7415 (37.8) 9026 (46.0) 161 (93.6) 204179_at MB myoglobin 9830 0.47 7703 (39.3) 7942 (40.5) 156 (90.7) 204584_at L1CAM L1 cell adhesion molecule 4151 0.56 9327 (47.5) 3329 (17.0) 17 (9.9) 202707_at UMPS Uridine monophosphate synthetase 3897 0.60 12311 (62.8) 18737 (95.5) 101 (58.7) 208399_s_at EDN3 Endothelin 3 4193 0.48 16344 (83.3) 8234 (42.0) 110 (64.0) 203001_s_at STMN2 Stathmin-like 2 2315 0.55 16948 (86.4) 5690 (29.0) 109 (63.4) 210016_at MYT1L Myelin transcription factor 1-like 1908 0.60 17902 (91.2) 18637 (95.0) 27 (15.7) 202490_at IKBKAP Inhibitor of kappa light polypeptide gene 23040 0.42 18769 (95.7) 10412 (53.1) 84 (48.8) enhancer in B-cells, kinase complex- associated protein 206426_at MLANA Melan-A 2355 0.63 19159 (97.7) 17172 (87.5) 81 (47.1) 205386_s_at MDM2 Mdm2, transformed 3T3 cell double minute 2 7776 0.49 19251 (98.1) 14275 (72.8) 104 (60.5) 219171_s_at ZNF236 Zinc finger protein 236 54478 0.56 19383 (98.8) 17046 (86.9) 132 (76.7) *Coefficient of the Cox model
TABLE-US-00005 TABLE 5 Demographic distributions of patients in validation sets Clinical DCC, All DCC, UM DCC, HLM DCC, MSK Duke UM-SQ Factors n = 360 (%) n = 177 (%) n = 79 (%) n = 104 (%) n = 89 (%) n = 129 (%) Pathology Type Adeno 360 (100) 177 (100) 79 (100) 104 (100) 43 (48) 0 Non-Adeno 0 (0) 0 (0) 0 (0) 0 (0) 46 (52) 129 (100) Disease stage I 220 (61) 116 (66) 41 (52) 63 (61) 67 (75) 73 (57) II 69 (19) 29 (16) 20 (25) 20 (19) 18 (20) 33 (25) III 69 (19) 32 (18) 16 (20) 21 (20) 3 (3) 23 (18) IV 0 (0) 0 (0) 0 (0) 0 (0) 1 (2) 0 (0) Unknown 2 (1) 0 (0) 2 (3) 0 (0) 0 (0) 0 (0) Adjuvant chemotherapy No 210 (58) 76 (43) 61 (77) 73 (70) 89 (100) NS Yes 64 (18) 17 (10) 16 (20) 31 (30) 0 (0) NS Unknown 86 (24) 84 (47) 2 (3) 0 (0) 0 (0) NS Adjuvant radiotherapy No 209 (58) 76 (43) 57 (72) 76 (73) 89 (100) NS Yes 64 (18) 17 (10) 19 (24) 28 (27) 0 (0) NS Unknown 87 (24) 84 (47) 3 (4) 0 (0) 0 (0) NS Age (year) <65 163 (45) 87 (49) 17 (34) 49 (47) 33 (37) 52 (40) ≧65 197 (55) 90 (51) 25 (66) 55 (53) 56 (63) 77 (60) Gender Male 177 (49) 100 (56) 40 (51) 37 (36) 54 (61) 82 (64) Female 183 (51) 77 (44) 39 (49) 67 (64) 35 (39) 47 (36) DCC: Directors' Challenge Consortium; UM: University of Michigan; HLM: H. Lee Moffitt Cancer Center; MSK: Memorial Sloan-Kettering Cancer Center; NS: Not specified
TABLE-US-00006 TABLE 6 Adjuvant therapies in the Director's Challenge Consortium (DCC) Patients Adjuvant radiotherapy Adjuvant Chemotherapy No Yes Unknown Total All No 190 20 0 210 Yes 19 44 1 64 Unknown 0 0 86 86 University of Michigan (UM) No 76 0 0 76 Yes 0 17 0 17 Unknown 0 0 84 84 H. Lee Moffitt (HLM) No 51 10 0 61 Yes 6 9 1 16 Unknown 0 0 2 2 Memorial Sloan-Kettering (MSK) No 63 10 0 73 Yes 13 18 0 31 Unknown 0 0 0 0
TABLE-US-00007 TABLE 7 Primers for qPCR validation SEQ SEQ Amplicon Gene ID NO Forward ID NO Reverse Length Tm FAM64A 173 AGTCACTCACCCACTGTGTTTCTG 188 GGTAGGGAAAGGAGGGATGAGA 71 83 MB 174 CTGTGTTCTGCATGGTTTGGAT 189 GGTTGGAAGAAGTTCGGTTGG 71 76 EDN3 175 ATTTGAGTGGGTGTCCAGGG 190 GGTCAAGGCCAATGCTCTGT 71 80 ZNF236 176 AAAGGACCGCATCAGTGAGC 191 AGCAGTTGGCGTGCTTGG 71 85 FOSL2 177 AAGAAGATTGGGCAGTTGGGT 192 TCCTGCTACTCCTGGCTCATTC 71 80 MYT1L 178 AAGATAAACAGCCCCAGGAACC 193 CCACTGAGGAGCTGTCTGCTTT 72 81 MLANA 179 GTAGGAAAAATGCAAGCCATCTCT 194 CATGATTAGTACTGCTAGCGGACC 77 74 L1CAM 180 AAAGGAAAGATTGGTTCTCCCAG 195 AGTAGACCAAGCACAGGCATACAG 71 81 TRIM14 181 TCACAGCTCCCTCCAGAAGC 196 GATGAGGACTGGGAGAGGGTT 71 82 STMN2 182 CAGGCTTTTGAGCTGATCTTGAA 197 TTTGGAGAAGCTAAAGTTCGTGG 71 79 UMPS 183 GCCAACAGTACAATAGCCCACAA 198 CCACGACCTACAATGATGATATCG 70 78 ATP1B1 184 AGTTGGAAATGTGGAGTATTTTGGA 199 CATAGTACGGATAATACTGCAGAGGAA 71 78 HEXIM1 185 CTGACCGAGAACGAACTGCA 200 AGTCCCCTTTGCCCCCTC 99 83 IKBKAP 186 AGCGATTCACGTAGGATCTGC 201 ATCACCAGTGTTGGAAGTGGG 71 82 MDM2 187 TGCCCCTTAATGCCATTGAA 202 TTTTGCCATGGACAATGCA 75 77
TABLE-US-00008 TABLE 8 Risk group based on 15-gene signature in stage I patients n HR 95% CI p value BR.10 34 13.3 2.9-62.1 <0.0001 Observation arm DCC 141 3.3 1.5-7.4 0.002 No adjuvant therapy UM 57 1.9 0.6-6.1 0.28 HLM 37 2.5 0.9-6.9 0.07 MSK 47 NA NA 0.05 Duke 67 1.06 0.5-2.2 0.88 UM-SQ 73 1.4 0.6-3.1 0.44 n: number of patients; HR: hazard ratio; CI: confidence interval *HR and CI cannot be calculated as no death occurred in the good prognosis group, p value the score test.
TABLE-US-00009 TABLE 9 Probe set target sequences of the 15-gene signature SEQ ID NO: Probe setID Targetsequence 35 205386_S_AT tttcccctagttgacctgtctataagagaattatatatttctaactatataaccctaggaatttagacaa cctgaaatttattcacatatatcaaagtgagaaaatgcctcaattcacatagatttcttctctttagtat aattgacctactttggtagtggaatagtgaatacttactataatttgacttgaatatgtagctcatcctt tacaccaactcctaattttaaataatttctactctgtcttaaatgagaagtacttggttttttttttctt aaatatgtatatgacatttaaatgtaacttattattttttttgagaccgagtcttgctctgttacccagg ctggagtgcagtgggtgatcttggctcactgcaagctctgccctccccgggttcgcaccattctcctgcc tcagcctcccaattagcttggcctacagtcatctgcc 78 208399_S_AT ccgagccgagcttactgtgagtgtggagatgttatcccaccatgtaaagtcgcctgcgcaggggagggct gcccatctccccaacccagtcacagagagataggaaacggcatttgagtgggtgtccagggccccgtaga gagacatttaagatggtgtatgacagagcattggccttgaccaaatgttaaatcctctgtgtgtatttca taagttattacaggtataaaagtgatgacctatcatgaggaaatgaaagtggctgatttgctggtaggat tttgtacagtttagagaagcgattatttattgtgaaactgttctccactccaactcctttatgtggatct gttcaaagtagtcactgtatatacgtatagagaggtagataggtaggtagattttaaattgcattctgaa tacaaactcatactccttagagcttgaattacatttttaaaatgcatatgtgctgtttggcaccgtggca agatggtatcagagagaaacccatcaattgctcaaatactc 4 201243_S_AT ggtgatgggttgtgttatgcttgtattgaatgctgtcttgacatctcttgccttgtcctccggtatgttc taaagctgtgtctgagatctggatctgcccatcactttggcctagggacagggctaattaatttgcttta tacattttcttttactttccttttttcctttctggaggcatcacatgctggtgctgtgtctttatgaatg ttttaaccattttcatggtggaagaattttatatttatgcagttgtacaattttatttttttctgcaaga aaaagtgtaatgtatgaaataaaccaaagtcacttgtttgaaaataaatctttattttgaactttataaa agcaatgcagtacccatagactggtgttaaatgttgtctacagtgcaaaatccatgttctaacatatgta ataattgccaggagtacagtgctcttgttgatcttgtattcagtcaggttaaaa 22 204179_AT tgttccggaaggacatggcctccaactacaaggagctgggcttccagggctaggcccctgccgctcccac ccccacccatctgggccccgggttcaagagagagcggggtctgatctcgtgtagccatatagagtttgct tctgagtgtctgctttgtttagtagaggtgggcaggaggagctgaggggctggggctggggtgttgaagt tggctttgcatgcccagcgatgcgcctccctgtgggatgtcatcaccctgggaaccgggagtgcccttgg ctcactgtgttctgcatggtttggatctgaattaattgtcctttcttctaaatcccaaccgaacttcttc caacctccaaactggctgtaaccccaaatccaagccattaactacacctgacagtagcaattgtctgatt aatcactggccccttgaagacagcagaatgtccctttgcaatgaggaggagatctgggctgggcgggcca gctggggaagcatttgactatctggaacttgtgtgtgcctcctcaggtatggca 169 221591_S_AT cacatctggacccatcagtgactgcctgccatagcctgagagtgtcttggggagaccttgcagaggggga gaattgttccttctgctttcctaggggactcttgagcttagaaactcatcgtacacttgaccttgagcct tctatttgcctcatctataacatgaagtgctagcatcagatatttgagagctcttagctctgtacccggg tgcctggtttttggggagtcatccgcagagtcactcacccactgtgtttctggtgccaaggctcttgagg gccccactctcatccctcctttccctaccagggactcggaggaaggcataggagatatttccaggcttac gaccctgggctcacgggtacctatttatatgctcagtgcagagcactgtggatgtgccaggaggggtagc cctgttcaagagcaatttctgccctttgtaaattatttaagaaacctgctttgtcattttattagaaaga aaccagcgtgtgactttcctagataacactgctttc 15 203147_S_AT accaatcacgcctacagtgctttgaaggtttcctctcctaggctagtttcaaacaggccctaaacaagtc tgctgctgccctctcatcagacctccgcaccctcaccccaccatcacttanactactttaatccagttcc ttcaaagtgatacccccacaggtaagccctcagcatcctgaatacatcatccgcagcctgggaaccttct ccctcgtacagcacaggaacctgacacatagtaggcacacagtaaacgtttgtgaatgaatgggagtcat ccagtcctgactcttctgtctcttgaggtcccttgaatcttccgcttcctccccaccgatttcagcgtgt ccacatcacagctccctccagaagctgcaagagcttcttagcagttcctggtctgaaccctctcccagtc ctcatcttccaccctaaaactagagtgatcttcctaaaacttcacttaacccctcagctatgaaaaggct tccaggagtttccatgaa 130 218881_S_AT aggtcacagtatcctcgtttgaaagataattaagatcccccgtggagaaagcagtgacacattcacacag ctgttccctcgcatgttatttcatgaacatgacctgttttcgtgcactagacacacagagtggaacagcc gtatgcttaaagtacatgggccagtgggactggaagtgacctgtacaagtgatgcagaaaggagggtttc aaagaaaaaggattttgtttaaaatactttaaaaatgttatttcctgcatcccttggctgtgatgcccct ctcccgatttcccaggggctctgggagggacccttctaagaagattgggcagttgggtttctggcttgag atgaatccaagcagcagaatgagccaggagtagcaggagatgggcaaagaaaactggggtgcactcagct ctcacaggggtaatca 85 210016_AT ataacagcatatgcatttccccaccgcgttgtgtctgcagcttctttgccaatatagtaatgcttttagt agagtactagatagtatcagttttggattcttattgttatcacctatgtacaatggaaagggattttaag cacaaacctgctgctcatctaacgttggtacataatctcaaatcaaaagttatctgtgactattatatag ggatcacaaaagtgtcacatattagaatgctgacctttcatatggattattgtgagtcatcagagtttat tataacttattgttcatattcatttctaagttaatttaagtaatcatttattaagacagaattttgtata aactatttattgtgctctctgtggaactgaagtttgatttatttttgtactacacggcatgggtttgttg acactttaattttgctataaatgtgtggaatcacaagttgctgtgatacttcatttttaaattgtgaact ttgtacaaattttgtcatgctggatgttaacacat 11 202490_AT gaggatggcacaagcgattcacgtaggatctgcccctgtgaccaaaacacctcccattgggccccacttc caacactggtgatcacatttcaacatgaggtttagggaaacaaatgcctaaactacagcactgtacataa actaacaggaaatgctgcttttgatcctcaaagaagtgatatagccaaaattgtaatttaagaagccttt gtcagtatagcaagatgttaactatagaatcaatctaggagtattcactgtaaaattcaacttttctgta tgtttgaacattttcacaatctcataggagtttttaaaaagaagagaaagaagatatactttgctttgga gaaatctactttttgacttacatgggtttgctgtaattaagtgcccaatattgaaaggctgcaagtactt tgtaatcactctttggcatgggtaaataagcatggtaacttatattgaaatatagtgctcttgctttgga taactgtaaagggacccatgctgatagactggaaa 12 202707_AT aagttcattcttaagcttgctttttttgagactggtgtttgttagacagccacagtcctgtctgggttag ggtcttccacatttgaggatccttcctatctctccatgggactagactgctttgttattctatttatttt ttaatttttttcgagacaggatctcactctgttgcccaggatggagtgcagtggtgagatcacggctcat tgcagcctcgacctcccaggtgatcctcccacctcagcttccagattagctggtgctataggcatgcacc accacgtccatctaaatttctttattatttgtagagatgaggtcttgccatgttacccaggctggtctca actcctgggctcaagcgatcctcctgcctcagtctctcaaagtgctgggattacaggtgtgagccactgt gcccagcctaattgcagtaagacaa 14 203001_S_AT acctcgcaacatcaacatctatacttacgatgatatggaagtgaagcaaatcaacaaacgtgcctctggc caggcttttgagctgatcttgaagccaccatctcctatctcagaagccccacgaactttagcttctccaa agaagaaagacctgtccctggaggagatccagaagaaactggaggctgcaggggaaagaagaaagtctca ggaggcccaggtgctgaaacaattggcagagaagagggaacacgagcgagaagtccttcagaaggctttg gaggagaacaacaacttcagcaagatggcggaggaaaagctgatcctgaaaatggaacaaattaaggaaa accgtgaggctaatctagctgctattattgaacgtctgcaggaaaaggagaggcatgctgcggaggtgcg caggaacaaggaactccaggttgaactgtctggctgaagcaagggagggtctggcacgcc 13 202814_S_AT tgcctctcgcgcatggaggacgagaacaaccggctgcggctggagagcaagcggctgggtggcgacgacg cgcgtgtgcgggagctggagctggagctggaccggctgcgcgccgagaacctccagctgctgaccgagaa cgaactgcaccggcagcaggagcgagcgccgctttccaagtttggagactagactgaaacttttttgggg gagggggcaaaggggactttttacagtgatggaatgtaacattatatacatgtgtatataagacagtgga cctttttatgacacataatcagaagagaaatccccctggctttggttggtttcgtaaatttagctatatg tagcttgcgtgctttctcctgttcttttaattatgtgaaactgaagagttgcttttcttgttttcctttt tagaagtttttttccttaatgtgaaagtaatttgaccaagttataatgcatttttgtttttaacaaatcc cctccttaaacggagctataaggtggccaaatctga 133 219171_S_AT cttttgttcttgctgggttatttattttgattttagcattaaatgtcatctcaggatatctctaaaaagg ggttgtttaattcctaattgtatagaaagctagtttggtgaattgtattggttaattgactgtttaaggc cttaacaggtgaatctagagcctacttttattttggttaaagaaaaagaaaatatcaataattcaatttt gtgtcttttctcaatttattagcaaacacaagacattttatgtattatttcgatttacttcctaattata aaagctgcttttttgcagaacattccttgaaaatataaggttttgaaaagacataattttacttgaatct ttgtggggtacaggttgatctttatattttactggttgttttaaaaattctagaaaagagatttctaggc ctcatgtataaccagggttttgaggataaagaactgtatttttagaactatctcatcatagcatatctgc tttggaataactat 49 206426_AT gtaaagatcctatagctctttttttttgagatggagtttcgcttttgttgcccaggctggagtgcaatgg cgcgatcttggctcaccataacctccgcctcccaggttcaagcaattctcctgccttagcctcctgagta gctgggattacaggcgtgcgccactatgcctgactaattttgtagttttagtagagacggggtttctcca tgttggtcaggctggtctcaaactcctgacctcaggtgatctgcccgcctcagcctcccaaagtgctgga attacaggcgtgagccaccacgcctggctggatcctatatcttaggtaagacatataacgcagtctaatt actttcacttcaaggctcaatgctattctaactaatgacaagtattttctactaaaccagaaattggtag aaggatttaaataagtaaaagctactatgtactgccttagtgctgatgcctgtgtactgccttaaatgta cctatggcaatttagctctcttgggttcccaaatccctctcacaagaatgt 26 204584_AT cctccctatcgtctgaacagttgtcttcctcagcctcctcccgcccccaccttgggaatgtaaatacacc gtgactttgaaagtttgtacccctgtccttccctttacgccactagtgtgtaggcagatgtctgagtccc taggtggtttctaggattgatagcaattagctttgatgaacccatcccaggaaaaataaaaacagacaaa aaaaaaggaaagattggttctcccagcactgctcagcagccacagcctccctgtatgcctgtgcttggtc tactgataagccctctacaaaa
TABLE-US-00010 TABLE 10 Coefficient of individual genes in 15-gene signature: Principal Component values Gene Gene Symbol Probe set pc1 pc2 pc3 pc4 1 ATP1B1 201243_s_at -0.189 -0.423 0.229 0.059 2 IKBKAP 202490_at 0.364 0.070 -0.357 -0.120 3 UMPS 202707_at 0.353 -0.009 0.136 0.011 4 HEXIM1 202814_s_at -0.108 0.504 0.265 0.279 5 STMN2 203001_s_at 0.326 0.044 -0.100 -0.122 6 TRIM14 203147_s_at -0.148 0.212 0.132 -0.368 7 MB 204179_at 0.197 0.028 0.548 -0.161 8 L1CAM 204584_at 0.042 0.510 0.077 0.276 9 MDM2 205386_s_at 0.180 0.081 0.325 -0.500 10 MLANA 206426_at 0.366 -0.240 0.114 0.157 11 EDN3 208399_s_at 0.413 0.042 -0.188 -0.260 12 MYT1L 210016_at 0.270 0.014 0.273 0.245 13 FOSL2 218881_s_at 0.036 -0.209 -0.225 0.190 14 ZNF236 219171_s_at 0.188 -0.313 0.297 0.332 15 FAM64A 221591_s_at 0.283 0.216 -0.174 0.320 Eigenvalues of principal 3.33 1.82 1.37 1.32 components Weight of each PC for risk 0.557 0.328 0.430 0.335 score Risk score = 0.557 * PC1 + 0.328 * PC2 + 0.43 * PC3 + 0.335 * PC4 where PC1 = Sum [pc1 * (expression data)]Gene 1-15 PC2 = Sum [pc2 * (expression data)]Gene 1-15 PC3 = Sum [pc3 * (expression data)]Gene 1-15 PC4 = Sum [pc4 * (expression data)]Gene 1-15 Patients classified as high risk or lower risk according to risk score ≧-0.1 or <-0.1.
TABLE-US-00011 TABLE 11 Probe set target sequences for 172 genes SEQ Probe Gene ID NO: Set ID Symbol Target Sequence 1 200878_at EPAS1 cactttgcaactccctgggtaagagggacgacacctctggtttttcaataccaattacatgg aacttttctgtaatgggtacnaatgaagaagtttctaaaaacacacacaaagcacattgggc caactatttagtaagcccggatagacttattgccaaaaacaaaaaatagctttcaaaagaaa tttaagttctatgagaaattccttagtcatggtgttgcgtaaatcatattttagctgcacgg cattaccccacacagggtggcagaacttgaagggttactgacgtgtaaatgctggtatttga tttcctgtgtgtgttgccctggcattaagggcattttacccttgcagttttactaaaacact gaaaaatattccaagcttcatattaaccctacctgtcaacgtaacgat 2 201228_s_at ARIH2 cctacccacctcaaaatgtctgtactgcaagagggccctgggcctctgctttccatattcac gtttggccagagttgtagtcccaaagaagagcatgggtggcagatggtagggaattgaactg gcctgtgcaatgggcatggagcacaaggggtcacagcatgcctcctgccttaccgtggcagt acggagacagtccagaacatggtcttcttgccacggggtgttgttgtctctggtggtgctgc atgtctgtggctcacctttattcttgaaactgaggtttacctggatctggctactgaggcta gagcccacagcagaatggggttgggcctgtggccccccaaactagggggtgtgggttcatca cagtgttgccttttgtctcctaaagatagggatctacttttgaagggaattgttcctcccaa ata 3 20124_s_at2 ATP1B1 agagctgatcacaagcacaaatctttcccactagccatttaataagttaaaaaaagatacaa aaacaaaaacctactagtcttgaacaaactgtcatacgtatgggacctacacttaatctata tgctttacactagctttctgcatttaataggttagaa 4 201243_s_at ATP1B1 ggtgatgggttgtgttatgcttgtattgaatgctgtcttgacatctcttgccttgtcctccg gtatgttctaaagctgtgtctgagatctggatctgcccatcactttggcctagggacagggc taattaatttgctttatacattttcttttactttccttttttcctttctggaggcatcacat gctggtgctgtgtctttatgaatgttttaaccattttcatggtggaagaattttatatttat gcagttgtacaattttatttttttctgcaagaaaaagtgtaatgtatgaaataaaccaaagt cacttgtttgaaaataaatctttattttgaactttataaaagcaatgcagtaccccatagac tggtgttaaatgttgtctacagtgcaaaatccatgttctaacatatgtaataattgccagga gtacagtgctcttgttgatcttgtattcagtcaggttaaaa 5 201301_s_at ANXA4 ggtgaaatttctaactgttctctgttcccggaaccgaaatcacctgttgcatgtgtttgatg aatacaaaaggatatcacagaaggatattgaacagagtattaaatctgaaacatctggtagc tttgaagatgctctgctggctatagtaaagtgcatgaggaacaaatctgcatattttgctga aaagctctataaatcgatgaagggcttgggcaccgatgataacaccctcatcagagtgatgg tttctcgagcagaaattgacatgttggatatccgggcacacttcaagagactctatggaaag tctctgtactcgttcatcaagggtgacacatctggagactacaggaaagtactgcttgttct ctgtggaggagatgattaaaataaaaatcccagaaggacaggaggattctcaacactttgaa tttttttaacttcatttttctacactgctattatcattatctc 6 20150_s_at 2NFKBIA ccaactacaatggccacacgtgtctacacttagcctctatccatggctacctgggcatcgtg gagcttttggtgtccttgggtgctgatgtcaatgctcaggagccctgtaatggccggactgc ccttcacctcgcagtggacctgcaaaatcctgacctggtgtcactcctgttgaagtgtgggg ctgatgtcaacagagttacctaccagggctattctccctaccagctcacctggggccgccca agcacccggatacagcagcagctgggccagctgacactagaaaaccttcagatgctgccaga gagtgaggatgaggagagctatgacacagagtcagagttcacggagttcacagaggacgagc tgccctatgatgactgtgtgtttggaggccagcgtctgacgttatgag 7 202023_at EFNA1 ccaccttcacctcggagggacggagaaagaagtggagacagtcctttcccaccattcctgcc tttaagccaaagaaacaagctgtgcaggcatggtcattaaggcacagtgggagctgagctgg aaggggccacgtggatgggcaaagcttgtcaaagatgccccctccaggagagagccaggatg cccagatgaactgactgaaggaaaagcaagaaacagtttcttgcttggaagccaggtacagg agaggcagcatgcttgggctgacccagcatctcccagcaagacctcatctgtggagctgcca cagagaagtttgtagccaggtactgcattctctcccatcctggggcagcactccccagagct gtgccagcaggggggctgtgccaacctgttcttagagtgtagctgtaagggcagtgcccatg tgtacattctgcctagagtgtagcctaaagggcagggcccacgtgtatagtatctgta 8 202035_s_at SFRP1 tcggccagcgagtacgactacgtgagcttccagtcggacatcggcccgtaccagagcgggcg cttctacaccaagccacctcagtgcgtggacatccccgcggacctgcggctgtgccacaacg tgggctacaagaagatggtgctgcccaacctgctggagcacgagaccatggcggaggtgaag cagcaggccagcagctgggtgcccctgctcaacaagaactgccacgccggcacccaggtctt cctctgctcgctcttcgcgcccgtctgcctggaccggcccatctacccgtgtcgctggctct gcgaggccgtgcgcgactcgtgcgagccggtcatgcagttcttcggcttctactggcccgag atgcttaagtgtgacaagttccccgagggggacgtctgcatcgccatgacgccgcccaatgc caccgaagcctccaagccccaaggcacaacggtgtgtcctccctgtgacaacgagttgaaat ctgaggccatcattgaacatctctgt 9 202036_s_at SFRP1 gacaaaccatttccaacagcaacacagccactaaaacacaaaaagggggattgggcggaaag tgagagccagcagcaaaaactacattttgcaacttgttggtgtggatctattggctgatcta tgcctttcaactagaaaattctaatgattggcaagtcacgttgttttcaggtccagagtagt ttctttctgtctgctttaaatggaaacagactcataccacacttacaattaaggtcaagccc agaaagtgataagtgcagggaggaaaagtgcaagtccattatgtaatagtgacagcaaaggc ccaggggagaggcattgccttctctgcccacagtctttccgtgtgattgtctttgaatctga atcagccagtctcagatgccccaaagtttcggttcctatgagcccggggcatgatctgatcc ccaagacatg 10 202037_s_at SFRP1 taacacttggctcttggtacctgtgggttagcatcaagttctccccagggtagaattcaatc agagctccagtttgcatttggatgtgtaaattacagtaatcccatttcccaaacctaaaatc tgtttttctcatcagactctgagtaactggttgctgtgtcataacttcatagatgcaggagg ctcaggtgatctgtttgaggagagcaccctaggcagcctgcagggaataacatactggccgt tctgacctgttgccagcagatacacaggacatggatgaaattcccgtttcctctagtttctt cctgtagtactcctcttttagatcc 11 202490_at IKBKAP gaggatggcacaagcgattcacgtaggatctgcccctgtgaccaaaacacctcccattgggc cccacttccaacactggtgatcacatttcaacatgaggtttagggaaacaaatgcctaaact acagcactgtacataaactaacaggaaatgctgcttttgatcctcaaagaagtgatatagcc aaaattgtaatttaagaagcctttgtcagtatagcaagatgttaactatagaatcaatctag gagtattcactgtaaaattcaacttttctgtatgtttgaacattttcacaatctcataggag tttttaaaaagaagagaaagaagatatactttgctttggagaaatctactttttgacttaca tgggtttgctgtaattaagtgcccaatattgaaaggctgcaagtactttgtaatcactcttt ggcatgggtaaataagcatggtaacttatattgaaatatagtgctcttgctttggataactg taaagggacccatgctgatagactggaaa 12 202707_at UMPS aagttcattcttaagcttgctttttttgagactggtgtttgttagacagccacagtcctgtc tgggttagggtcttccacatttgaggatccttcctatctctccatgggactagactgctttg ttattctatttattttttaatttttttcgagacaggatctcactctgttgcccaggatggag tgcagtggtgagatcacggctcattgcagcctcgacctcccaggtgatcctcccacctcagc ttccagattagctggtgctataggcatgcaccaccacgtccatctaaatttctttattattt gtagagatgaggtcttgccatgttacccaggctggtctcaactcctgggctcaagcgatcct cctgcctcagtctctcaaagtgctgggattacaggtgtgagccactgtgcccagcctaattg cagtaagacaa 13 202814_s_at HEXIM1 tgcctctcgcgcatggaggacgagaacaaccggctgcggctggagagcaagcggctgggtgg cgacgacgcgcgtgtgcgggagctggagctggagctggaccggctgcgcgccgagaacctcc agctgctgaccgagaacgaactgcaccggcagcaggagcgagcgccgctttccaagtttgga gactagactgaaacttttttgggggagggggcaaaggggactttttacagtgatggaatgta acattatatacatgtgtatataagacagtggacctttttatgacacataatcagaagagaaa tccccctggctttggttggtttcgtaaatttagctatatgtagcttgcgtgctttctcctgt tcttttaattatgtgaaactgaagagttgcttttcttgttttcctttttagaagtttttttc cttaatgtgaaagtaatttgaccaagttataatgcatttttgtttttaacaaatcccctcct taaacggagctataaggtggccaaatctga 14 203001_s_at STMN2 acctcgcaacatcaacatctatacttacgatgatatggaagtgaagcaaatcaacaaacgtg cctctggccaggcttttgagctgatcttgaagccaccatctcctatctcagaagccccacga actttagcttctccaaagaagaaagacctgtccctggaggagatccagaagaaactggaggc tgcaggggaaagaagaaagtctcaggaggcccaggtgctgaaacaattggcagagaagaggg aacacgagcgagaagtccttcagaaggctttggaggagaacaacaacttcagcaagatggcg gaggaaaagctgatcctgaaaatggaacaaattaaggaaaaccgtgaggctaatctagctgc tattattgaacgtctgcaggaaaaggagaggcatgctgcggaggtgcgcaggaacaaggaac tccaggttgaactgtctggctgaagcaagggagggtctggcacgcc 15 203147_s_at TRIM14 accaatcacgcctacagtgctttgaaggtttcctctcctaggctagtttcaaacaggcccta aacaagtctgctgctgccctctcatcagacctccgcaccctcaccccaccatcacttanact actttaatccagttccttcaaagtgatacccccacaggtaagccctcagcatcctgaataca tcatccgcagcctgggaaccttctccctcgtacagcacaggaacctgacacatagtaggcac acagtaaacgtttgtgaatgaatgggagtcatccagtcctgactcttctgtctcttgaggtc ccttgaatcttccgcttcctccccaccgatttcagcgtgtccacatcacagctccctccaga agctgcaagagcttcttagcagttcctggtctgaaccctctcccagtcctcatcttccaccc taaaactagagtgatcttcctaaaacttcacttaacccctcagctatgaaaaggcttccagg agtttccatgaa 16 203438_at STC2 gtccacattcctgcaagcattgattgagacatttgcacaatctaaaatgtaagcaaagtagt cattaaaaatacaccctctacttgggctttatactgcatacaaatttactcatgagccttcc tttgaggaaggatgtggatctccaaataaagatttagtgtttattttgagctctgcatctta acaagatgatctgaacacctctcctttgtatcaataaatagccctgttattctgaagtgaga ggaccaagtatagtaaaatgctgacatctaaaactaaataaatagaaaacaccaggccagaa ctatagtcatactcacacaaagggagaaatttaaactcgaaccaagcaaaaggcttcacgga aatagcatggaaaaacaatgcttccagtggccacttcctaaggaggaacaaccccgtctgat ctcagaattggcaccacgtgagcttgctaagtgataatatctgtttctactacggatttagg caacaggacctgtacattgtcacattgcat 17 203444_s_at MTA2 cacaaaggataccagggccctacggaaggctctgacccatctggaaatgcggcgagctgctc gccgacccaacttgcccctgaaggtgaagccaacgctgattgcagtgcggccccctgtccct ctacctgcaccctcacatcctgccagcaccaatgagcctattgtcctggaggactgagcacc tgtggggaagggaggtgggctgagaggtagagggtggatgcccagggcacccaaacctccct tccctttcgtgtcgaagggagtgaggagtgaattaaggaagagagcaagtgagtgtgtgtcc ctggaggggttgggcgccctctggtgttaccacctcgagacttgtctcatgcctccatgctt gccgatggaggacagactgcaggaacttggcccatgtgggaacctagcctgttttggggggt aggacccacagatgtcttggac 18 203475_at CYP19A1 gaaattctttcccagtctgtcgatttatgcctcagccacttgcctgtgctacaattcattgt gttacctgtagattcaggtaatacaaaccatatataatcatcaagtaatacaaactaattta gtaatagcctgggttaagtattattagggccctgtgtctgcatgtagaaaaaaaaattcaca tgatgcacttcaaattcaaataaaaatccttttggcatgttcccatttttgcttagctcaat tagtgtggctaaccaagagataactgtaaatgtgacattgatttgctcttactacagctaca gtgattgggggaggaaaagtcccaacccaatgggctcaaacttctaaggggtactcctctca tccccttatccttctccctcgacattttctccctctttcttcccatgaccccaaagccaagg gcaacagatcagtaaagaacgtggtcagagtagaacccctg 19 203509_at SORL1 gaatatcacagcttaccttgggaatactactgacaatttctttaaaatttccaacctgaaga tgggtcataattacacgttcaccgtccaagcaagatgcctttttggcaaccagatctgtggg gagcctgccatcctgctgtacgatgagctggggtctggtgcagatgcatctgcaacgcaggc tgccagatctacggatgttgctgctgtggtggtgcccatcttattcctgatactgctgagcc tgggggtggggtttgccatcctgtacacgaagcaccggaggctgcagagcagcttcaccgcc ttcgccaacagccactacagctccaggctggggtccgcaatcttctcctctggggatgacct gggggaagatgatgaagatgcccctatgataactggattttcagatgacgtccccatggtga tagcctgaaagagctttcctcactagaaacca 20 203928_x_at MAPT gagtccagtcgaagattgggtccctggacaatatcacccacgtccctggcggaggaaataaa aagattgaaacccacaagctgaccttccgcgagaacgccaaagccaagacagaccacggggc ggagatcgtgtacaagtcgccagtggtgtctggggacacgtctccacggcatctcagcaatg tctcctccaccggcagcatcgacatggtagactcgccccagctcgccacgctagctgacgag gtgtctgcctccctggccaagcagggtttgtgatcaggcccctggggcggtcaataatngtg gagaggagagaatgagagagtgtggaaaaaaaaagaataatgacccggcccccgccctctgc ccccagctgctcctcgcagttcggttaattggttaatcacttaacctgcttttgtcactc 21 203973_s_at CEBPD aagcggcgcaaccaggagatgcagcagaagttggtggagctgtcggctgagaacgagaagct gcaccagcgcgtggagcagctcacgcgggacctggccggcctccggcagttcttcaagcagc tgcccagcccgcccttcctgccggccgccgggacagcagactgccggtaacgcgcggccggg gcgggagagactcagcaacgacccatacctcagacccgacggcccggagcggagcgcgccct gccctggcgcagccagagccgccgggtgcccgctgcagtttcttgggacataggagcgcaaa gaagctacagcctggacttaccaccactaaactgcgagagaagctaaacgtgtttattttcc cttaaattattttgtaatggtagctttttctacatcttactcctgttgatgcagctaaggta catttgtaaaaagaaaaaaaaccagacttttcagacaaaccctttgtattgtagataagagg aaaagactgagcatgctcacttttttatattaa 22 204179_at MB tgttccggaaggacatggcctccaactacaaggagctgggcttccagggctaggcccctgcc gctcccacccccacccatctgggccccgggttcaagagagagcggggtctgatctcgtgtag ccatatagagtttgcttctgagtgtctgctttgtttagtagaggtgggcaggaggagctgag gggctggggctggggtgttgaagttggctttgcatgcccagcgatgcgcctccctgtgggat gtcatcaccctgggaaccgggagtgcccttggctcactgtgttctgcatggtttggatctga attaattgtcctttcttctaaatcccaaccgaacttcttccaacctccaaactggctgtaac cccaaatccaagccattaactacacctgacagtagcaattgtctgattaatcactggcccct tgaagacagcagaatgtccctttgcaatgaggaggagatctgggctgggcgggccagctggg gaagcatttgactatctggaacttgtgtgtgcctcctcaggtatggca 23 204267_x_at PKMYT1 ctgtggtgcatggcagcggaggccctgagccgagggtgggccctgtggcaggccctgcttgc cctgctctgctggctctggcatgggctggctcaccctgccagctggctacagcccctgggcc cgccagccaccccgcctggctcaccaccctgcagtttgctcctggacagcagcctctccagc aactgggatgacgacagcctagggccttcactctcccctgaggctgtcctggcccggactgt ggggagcacctccaccccccggagcaggtgcacacccagggatgccctggacctaagtgaca tcaactcagagcctcctcggggctccttcccctcctttgagcctcggaacctcctcagcctg tttgaggacaccctagacccaacctgagccccagactctgcctctgcacttttaacctttta tcctgtgtctctcccgtcgcccttgaaagctggggcccctcgggaactcccatggtcttctc tgcctggccgtgtctaataa 24 204338_s_at RGS4 gaaacatcggctaggtttcctgctgcaaaaatctgattcctgtgaacacaattcttcccaca acaagaaggacaaagtggttatttccagagagtgagccaagaggaagtcaagaaatgggctg aatcactggaaaacctgattagtcatgaatgtgggctggcagctttcaaagctttcttgaag tctgaatatagtgaggagaatattgacttctggatcagctgtgaagagtacaagaaaatcaa atcaccatctaaactaagtcccaaggccaaaaagatctataatgaattcatctcagtccagg caaccaaagaggtgaacctggattcttgcaccagggaagagacaagccggaacatgctagag cctacaataacctgctttgatgaggcccagaagaagattttcaacctgatggagaaggattc ctaccgccgcttcctcaagtctcgattctatcttgatttggtcaacccgtcca 25 204531_s_at BRCA1 ttcaagaaccggtttccaaagacagtcttctaattcctcattagtaataagtaaaatgttta ttgttgtagctctggtatataatccattcctcttaaaatataagacctctggcatgaatatt tcatatctataaaatgacagatcccaccaggaaggaagctgttgctttctttgaggtgattt ttttcctttgctccctgttgctgaaaccatacagcttcataaataattttgcttgctgaagg aagaaaaagtgtttttcataaacccattatccaggactgtttatagctgttggaaggactag
gtcttccctagcccccccagtgtgcaagggcagtgaagacttgattgtaca 26 204584_at L1CAM cctccctatcgtctgaacagttgtcttcctcagcctcctcccgcccccaccttgggaatgta aatacaccgtgactttgaaagtttgtacccctgtccttccctttacgccactagtgtgtagg cagatgtctgagtccctaggtggtttctaggattgatagcaattagctttgatgaacccatc ccaggaaaaataaaaacagacaaaaaaaaaggaaagattggttctcccagcactgctcagca gccacagcctccctgtatgcctgtgcttggtctactgataagccctctacaaaa 27 204684_at NPTX1 ttccttttgtagattcccagtttattttctaagactgcaaagatcactttgtcaccagccct gggacctgagaccaagggggtgtcttgtgggcagtgagggggtgaggagaggctggcatgag gttcagtcattccagtgagctccaaagaggggccacctgttctcaaaagcatgttggggacc aggaggtaaaactggccatttatggtgaacctgtgtcttggagctgacttactaagtggaat gagccgaggatttgaatatcagttctaaccttgatagaagaaccttgggttacatgtggttc acattaagaggatagaatcctttggaatcttatggcaaccaaatgtggcttgacgaagtcgt ggtttcatctctt 28 204810_s_at CKM gcaagcaccccaagttcgaggagatcctcacccgcctgcgtctgcagaagaggggtacaggt gcggtggacacagctgccgtgggctcagtatttgacgtgtccaacgctgatcggctgggctc gtccgaagtagaacaggtgcagctggtggtggatggtgtgaagctcatggtggaaatggaga agaagttggagaaaggccagtccatcgacgacatgatccccgcccagaagtaggcgcctgcc cacctgccaccgactgctggaaccccagccagtgggagggcctggcccaccagagtcctgct ccctcactcctcgccccgccccctgtcccagagtccacctgggggctctctccacccttctc agagttccagtttcaaccagagttccaaccaatgggctccatcctctggattctggccaatg aaatatctccctggcagggtcctcttcttttcccagagctcctccccaaccaggagctctag ttaatg 29 204817_at ESPL1 tgtttggctgtagcagtgcggccctggctgtgcatggaaacctggagggggctggcatcgtg ctcaagtacatcatggctggttgccccttgtttctgggtaatctctgggatgtgactgaccg cgacattgaccgctacacggaagctctgctgcaaggctggcttggagcaggcccaggggccc cccttctctactatgtaaaccaggcccgccaagctccccgactcaagtatcttattggggct gcacctatagcctatggcttgcctgtctctctgcggtaaccccatggagctgtcttattgat gctagaagcctcataactgttctacctc 30 204933_s_at TNFRSF gataaaacggcaacacagctcacaagaacagactttccagctgctgaagttatggaaacatc 11B aaaacaaagcccaagatatagtcaagaagatcatccaagatattgacctctgtgaaaacagc gtgcagcggcacattggacatgctaacctcaccttcgagcagcttcgtagcttgatggaaag cttaccgggaaagaaagtgggagcagaagacattgaaaaaacaataaaggcatgcaaaccca gtgaccagatcctgaagctgctcagtttgtggcgaataaaaaatggcgaccaagacaccttg aagggcctaatgcacgcactaaagcactcaaagacgtaccactttcccaaaactgtcactca gagtctaaagaagaccatcaggttccttcacagc 31 204953_at SNAP91 agagaggtgctattcaagtgattctgaaggcaccccaaggtatatctgtaatttaaagatta ctgcaaatatctttactttactgtgggtttttagtacatctgttaatttagtgtttctttgt gtgttttgtagactagtgttcttccatccttcaactgagctcaaagtaggttttgttgtaac attgtgattaggatttaaactaattcagagaattgtatcttttactgtacatactgtattct ttaagttttaatttgttgtcatactgtctgtgctgatggcttggcttaagattttgatgcat aaatgaggtcactgttgatcagtgttgctagtagcttggcagctcttcataaaagcatattg ggttggaaaggtgtttgcctatttttca 32 205046_at CENPE aatcagcatctttccaatgaggtcaaaacttggaaggaaagaacccttaaaagagaggctca caaacaagtaacttgtgagaattctccaaagtctcctaaagtgactggaacagcttctaaaa agaaacaaattacaccctctcaatgcaaggaacggaatttacaagatcctgtgccaaaggaa tcaccaaaatcttgtttttttgatagccgatcaaagtctttaccatcacctcatccagttcg ctattttgataactcaagtttaggcctttgtccagaggtgcaaaatgcaggagcagagagtg tggattctcagccaggtccttggcacgcctcctcaggcaaggatgtgcctgagtgcaaaact cagtagactcctctttgtcacttctctggagatccagcattccttatttggaaatgactttg tttatgtgtctatccctggtaatgatgttgtagtgcagcttaatttcaattcagtctttact ttgccactag 33 205189_s_at FANCC ttccctccacctccaagacaggtggcggccgggcaggcactcttaagcccacctccccctct tgttgccttcgatttcggcaaagcctgggcaggtgccaccgggaaggaatggcatcgagatg ctgggcggggacgcggcgtggcgagggggcttgacggcgttggcggggctgggcacaggggc agccgcagggaggcagggatggcaaggcgtgaagccaccctggaaggaactggaccaaggtc ttcagaggtgcgacagggtctggaatctgaccttactctagcaggagtttttgtagactctc cctgatagtttagtttttgataaagcatgctggtaaaaccactaccctcagagagagccaaa aatacagaagaggcggagagcgcccctccaaccaggctgttattcccctggactc 34 205217_at TIMM8A gtacatgggactatgcttttctcaaagccccattaactgcttcctataattttgatagtggg accacatacgtaaaaatctctcatttgtgtggagtcatttctgatttcaggggagatccttg tgtttatcagaaagggcagaagtaggggaagaataatttggtatccttatctagtgtttgat tgtcaatgctggagaaaaatatctgtaagagtgtttatacagtacacttcagttatcttgat ctccctttcctatatgatgatttgcttaaatatccatattaagtaagtctcaaggtagggta ggcagcctgagagtctagaggcctttagttataaaggaatctagccagtgaacataattctt attactagactgccacaaggaagaaattaacttaccctgtatatcagggtacaaaaaattca gtgatgtgcctaaataagttataaagatttaggccaatcagaagctaacagcagtttcaggt agaggtgcatgcctaatgttagttagtgtagattccatttactgcattctt 35 205386_s_at MDM2 tttcccctagttgacctgtctataagagaattatatatttctaactatataaccctaggaat ttagacaacctgaaatttattcacatatatcaaagtgagaaaatgcctcaattcacatagat ttcttctctttagtataattgacctactttggtagtggaatagtgaatacttactataattt gacttgaatatgtagctcatcctttacaccaactcctaattttaaataatttctactctgtc ttaaatgagaagtacttggttttttttttcttaaatatgtatatgacatttaaatgtaactt attattttttttgagaccgagtcttgctctgttacccaggctggagtgcagtgggtgatctt ggctcactgcaagctctgccctccccgggttcgcaccattctcctgcctcagcctcccaatt agcttggcctacagtcatctgcc 36 205433_at BCHE ggaaagcaggattccatcgctggaacaattacatgatggactggaaaaatcaatttaacgat tacactagcaagaaagaaagttgtgtgggtctctaattaatagatttaccctttatagaaca tattttcctttagatcaaggcaaaaatatcaggagcttttttacacacctactaaaaaagtt attatgtagctgaaacaaaaatgccagaaggataatattgattcctcacatctttaacttag tattttacctagcatttcaaaacccaaatggctagaacatgtttaattaaatttcacaatat aaagttctacagttaattatgtgcatattaaaacaatggcctggttcaatttctttctttcc ttaataaatttaagttttttccccccaaaattatcagtgctctgcttttagtcacgtgtatt ttcattaccactcgtaaaaaggtatcttttttaaatgaattaaatattgaaacactgtacac catagtttaca 37 205481_at ADORA1 gaggagaacactagacatgccaactcgggagcattctgcctgcctgggaacggggtggacga gggagtgtctgtaaggactcagtgttgactgtaggcgcccctggggtgggtttagcaggctg cagcaggcagaggaggagtacccccctgagagcatgtgggggaaggccttgctgtcatgtga atccctcaatacccctagtatctggctgggttttcaggggctttggaagctctgttgcaggt gtccgggggtctaggactttagggatctgggatctggggaaggaccaacccatgccctgcca agcctggagcccctgtgttggggggcaaggtgggggagcctggagcccctgtgtgggagggc gaggcgggggagcctggagcccctgtgtgggagggcgaggcgggggatcctggagcccctgt gtcggggggcgagggaggggaggtggccgtcggttgaccttctgaacatgagtgtcaactcc aggacttgcttccaagcccttccctctgttggaaattgggtgtgccctggctcc 38 205491_s_at GJB3 tgcttccagccttcgtaattagacttcaccctgagtacacacacaatcactgccactctcac tatagacaaaccacactccctcctctgtcacccagtcactgccatctcaacacacatcccca ccctgtgtacacacaatctctgttattcatactctcactccttatgcgcactctcaacaggg catgtagtctgcactcaagcatgccatcccagcctcaccctgcattttattcggctcatccc attttccctgaacattttcgctgaactagggccctggcaggatgctgggactgtgcaaggag gtaggacctatgcccacggagctaagagacaggaacacaggctcatctcccgcactaaccaa cccctgggatggctcacagcctgctcccagtgctgtgtcatgacctgaa 39 205501_at PDE10A atgcttgcccaacacactgtgaaatagttaccaaaatttgtacaaatgcagcatcttcattc tttctgagaagacaagatggttttctttacatgaacaaatgaacaaaagagatcctagatcc ataacgtagctaaggcatctaagagtttgctgttgataatcttgctgaccaaaaactactgg agagtaacacaggttatatgccatcacaaatacaatgctcatgaagaactgatttgtagagt caatgaacctgtgtccagaattttaataggctctctattggaaggagaaagaatttcaagtt aacagtatctaactttatcatagttgatgttagtaaattttaaaaaatgattttatatgtat gacaaaaatctttgtaaaatgcgcaagtgcaataatttaaagaggtcttaactttgcattta taaattataaatattgtacatgtgtgtaattttttcatgtattcatttgcagtctttgtatt taaaa 40 205825_at PCSK1 tttccattcccaatctagtgctagatgtataaatctttcttttgattcttcctaacaaaata ttttctgggttaaaaccccagccaactcattgggttgtagccaaaggttcactctcaagaag ctttaatatttaaataaaatcatattgaatgtttccaacctggagtataatattcagatata aaacagttttgtcagtctttcttagtgcctgtgtggatttttgtgaaaatgtcaaagagaaa acttatatactatttcccttgaaattttaaactatattttctttacaggtatttataatata ccaatgcttttatcaaacagaattttaaagagcataataaattatattaaagaaccaaaagt tttcctgagaataagaaagtttcacccaataaaatatttttgaaaggcatgttcctctgtca atgaaaaaaagtacatgtatgtgttgtgatattaaaagtgacatttgtctaatagcctaata caacatgtagctgagtttaacatgtgtggtcttg 41 205893_at NLGN1 gaacctaggagagtcaacatctggaggattttagtctttcttacacatatgtgtgattttaa acgaatattctcagaccacaggaaactcttcatccccctgttgtttaccagtaacagtatat cacagacctttccaaatgtttgtatatgtaatcagatgtacatttatattgaaaaacaaatg agatggacttaaagagcacatcctgataaatactttctctctcacctgtactatatttctat tagactaaagttatgtgattttttttttacattttttcagatgactagcaattttgatagtt tataagataatgcaaagaactttctctgacaaactaactgcagtaacagaaacctttctttt cagttactctttttcaagaatgaaagattattatacaaaaaattgtatactacttgatggaa ccaactttgtacatcttggccatgtcactggtcattg 42 205938_at PPM1E catgctaggctttctcagtggggaaaaaaatggctggatagaactgggacaaacacagaccc atctttaggggtctggattttgtaggtccgactacacagcagtgttaactcatttctcatgc cattagctctctacaaaataaagcaaagtagttctagtgtggtcgttataaaccaatattgt gaaaaatagcaactattcatttgttcacaacatgcgtatttatagagtagttaggtaccatt tgtaaggtaaatcctttaaaattctataatacatactaaaatagtggttattggtctgatat atgctgctcttggttctataaactagataaaagcagtgctttgtgaaatgcagtgttctctc ttaacgccactggtgataggaagtagttcccttcagttcaaatc 43 205946_at VIPR2 ttcctcccctgtagggtttggacagacccacccccagccttgcccagctttcaaaggacaaa agggagcatcccccacctactctcaggtttttgaggaaacaaagatttgtggtaactgaagg tgttgggtcagtggccaggtgccgacactgagctgtgacccagaggggacgctgaggaagtg ggcgtgagtggacntgtcaggtggttaccaggcactggttgttgatggtcggtggttgggtg tgggcagtcatcagtcatcaggtgtgctcaggggacaatctcccctcaaccgcacatgtgcc actgttcagcggagctgactggtttcncctggtagagggnccggctgtttcctgacagatgc ctggtgagcaggggaagcaggacccagtggtcancaggtgtctttaactgtcattgtgtgtg gaatgtcgcagactcctccacgtggcgggaatgagct 44 206043_s_at ATP2C2 gcaccacgacgatgacgttcacttgttttgtgtttttcgatctcttcaacgccttgacctgc cgctctcagaccaagctgatatttgagatcggctttctcaggaaccacatgttcctctactc cgtcctggggtccatcctggggcagctggcggtcatttacatccccccgctgcagagggtct tccagacggagaacctgggagcgcttgatttgctgtttttaactggattggcctcatccgtc ttcattttgtcagagctcctcaaactatgtgaaaaatactgttgcagccccaagagagtcca gatgcaccctgaagatgtgtagtggaccgcactccgcggcaccttccctaatcatctcgatc tggttgtgactgtggcccctgccgtgtctcctcgtcaggggagacttttaggaggccgcagc cttccatcaccggatcagtttttcctcttaggaaagctgcaggaacctcgtgggc 45 206096_at ZNF35 gtggctttcctaggaatgggtcgtacaaagctaagtggtaatgatgctatttggggaaaggt cttttttgcttaantttgttttttaaaactctgatgattncttgagcaacaggcaggttatc tgcctggttgaattctggttgaaccgtgtattctaatatttctggttaagtggtgactgggt aaggaaaccacttggggtagcagttcaacaattcacttacgaatgtttataagctttccatt tcctaggtaattttttaaaagccagtcaaaacaaaaactttactgaaaatggacagaaatag gaaatggactttttccttactgtctatacctcctgaaccttggtattgtaaagatctgggga cctctgggtctgttctgaccattccctagtctccatggccaagcactcaaggattgatggac accacacaccagctatattcatttgccaagatcaacagctccttctccaaacaactcaagcc cccaattccnatcgcattcnnttngggtgagatgcaactaacagcccctt 46 206228_at PAX2 gcaggctagatccgaggtggcagctccagcccccgggctcgccccctngcgggcgtgccccg cgcgccccgggcggccgaaggccgggccgccccgtcccgccccgtagttgctctttcggtag tggcgatgcgccctgcatgtctcctcacccgtggatcgtgacgactcgaaataacagaaaca aagtcaataaagtgaaaataaataaaaatccttgaacaaatccgaaaaggcttggagtcctc gcccagatctctctcccctgcgagccctttttatttgagaaggaaaaagagaaaagagaatc gtttaagggaacccggcgcccagccaggctccagtggcccgaacggggcggcgagggcggcg agggcgccgaggtccggcccatcccagtcctgtggggctggccgggcagagaccccggaccc aggcccaggcctaacctgctaaatgtccccggacggttctggtctcctcggccactttcagt gcgtcggttcgttttgattctttt 47 206232_s_at B4GALT6 tgcagttttgcatgtaatcggttatacctttattggacttttatagacattttttatttgca tgaaaaaaactcactaaatttacatcactaaacaaaggttaacccttgtgtgaaatgaagga actgtcaataattgacagccaactaatacagtaaactgttatactagttttgagctttagac ctcagccttttgtgtggaagaagtcacagctttcttaggctttaaaggaaaagaaggaagga cttaaatagcttttcttcctaccgggattacctatgtttttccttgcttgcaatctcatctg attttgctagaaatcacaaccatattgtttatgcatattgcatgagtattaccaagaaaaaa atctttaaaagttgtgatgtgacatgatataaaggatctctttatgttaaatgtctttccat gtacctctggtgtgtcagggattttgtgcctcaaaaaatgtttccaaggttgtgtgtttata ctgtgtattttttttaaattcacggtgaacagcacttttattatttcca 48 206401_s_at MAPT aggtggcagtggtccgtactccacccaagtcgccgtcttccgccaagagccgcctgcagaca gcccccgtgcccatgccagacctgaagaatgtcaagtccaagatcggctccactgagaacct gaagcaccagccgggaggcgggaaggtgcaaatagtctacaaaccagttgacctgagcaagg tgacctccaagtgtggctcattaggcaacatccatcataaaccaggaggtggccaggtggaa gtaaaatctgagaagcttgacttcaaggacagagtccagtcgaagattgggtccctggacaa tatcacccacgtccctggcggaggaaataaaaagattgaaacccacaagctgaccttccgcg agaacgccaaagccaagacagaccacggggcggagatcgtgtacaagtcgccagtggtgtct ggggacacgtctccacggcatctcagcaatgtctcctccaccggcagcatcgacatggtaga ctcgccccagctcgccacgctagctgacgaggtgtctgcctcc 49 206426_at MLANA gtaaagatcctatagctctttttttttgagatggagtttcgcttttgttgcccaggctggag tgcaatggcgcgatcttggctcaccataacctccgcctcccaggttcaagcaattctcctgc cttagcctcctgagtagctgggattacaggcgtgcgccactatgcctgactaattttgtagt tttagtagagacggggtttctccatgttggtcaggctggtctcaaactcctgacctcaggtg atctgcccgcctcagcctcccaaagtgctggaattacaggcgtgagccaccacgcctggctg gatcctatatcttaggtaagacatataacgcagtctaattacatttcacttcaaggctcaat gctattctaactaatgacaagtattttctactaaaccagaaattggtagaaggatttaaata agtaaaagctactatgtactgccttagtgctgatgcctgtgtactgccttaaatgtacctat ggcaatttagctctcttgggttcccaaatccctctcacaagaatgt 50 206496_at FMO3 aaagcccaacatcccatggctgtttctcacagatcccaaattggccatggaagtttattttg gcccttgtagtccctaccagtttaggctggtgggcccagguagtggccaggagccagaaatg ccatgctgacccagtgggaccggtcgttgaaacccatgcagacacgagtggtcgggagactt cagaagccttgcttctttttccattggctgaagctctttgcaattcctattctgttaatcgc tgttttccttgtgttgacctaatcatcattttctctaggatttctgaaagttactgacaata cccagacaggggctttgc
51 206505_at UGT2B4 taattacgtctgaggctggaagctgggaaacccaataaatgaactcctttagtttattacaa caagaagacgttgtgatacaagagattcctttcttcttgtgacaaaacatctttcaaaactt accttgtcaagtcaaaatttgttttagtacctgtttaaccattagaaatatttcatgtcaag gaggaaaacattagggaaaacaaaaatgatataaagccatatgaggttatattgaaatgtat tgagcttatattgaaatttattgttccaattcacaggttacatgaaaaaaaatttactaagc ttaactacatgtcacacattgtacatggaaacaagaacattaagaagtccgactgacagtat cagtactgttttgcaaatactcagcatactttggatccatttcatgcaggattgtgttgttt taac 52 206524_at T agcagtggaggagcacacggacctttccccagagcccccagcatcccttgctcacacctgca gtagcggtgctgtccaggtggcttacagatgaacccaactgtggagatgatgcagttggccc aacctcactgacggtgaaaaaatgtttgccagggtccagaaactttttttggtttatttctc atacagtgtattggcaactttggcacaccagaatttgtaaactccaccagtcctactttagt gagataaaaagcacactcttaatcttcttccttgttgctttcaagtagttagagttgagctg ttaaggacagaataaaatcatagttgaggacagcaggttttagttgaattgaaaatttgact gctctgccccctagaatgtgtgtattttaagcatatgtagctaatctcttgtgtt 53 206552_s_at TAC1 ttcagcttcatttgtgtcaatgggcaatgacaggtaaattaagacatgcactatgaggaata attatttatttaataacaattgtttggggttgaaaattcaaaaagtgtttatttttcatatt gtgccaatatgtattgtaaacatgtgttttaattccaatatgatgactcccttaaaatagaa ataagtggttatttctcaacaaagcacagtgttaaatgaaattgtaaaacctgtcaatgata cagtccctaaagaaaaaaaatcattgctttgaagcagttgtgtcagctactgcggaaaagga aggaaactcctgacagtcttgtgcttttcctatttgttttcatggtgaaaatgtactgagat tttggtattacactgtatttgtatctctgaagcatgtttcatgttttgtgactatatagaga tgtttttaaaagtttcaatgtgattctaatgtcttcatttcattgtatgatg 54 206619_at DKK4 ctgtctgacacggactgcaataccagaaagttctgcctccagccccgcgatgagaagccgtt ctgtgctacatgtcgtgggttgcggaggaggtgccagcgagatgccatgtgctgccctggga cactctgtgtgaacgatgtttgtactacgatggaagatgcaaccccaatattagaaaggcag cttgatgagcaagatggcacacatgcagaaggaacaactgggcacccagtccaggaaaacca acccaaaaggaagccaagtattaagaaatcacaaggcaggaagggacaagagggagaaagtt gtctgagaacttttgactgtggccctggactttgctgtgctcgtcatttttggacgaaaatt tgtaagccagtccttttggagggacaggtctgctccagaagagggcataaagacactgctca agctccagaaatcttccagcgttgcgactgtggccctggactactgtgtcgaagccaattga ccagcaatcggcagcatgctcgat 55 206622_at TRH gccctcttcctttaggcatgtgagaaaatcagcctagcagtttaaaccccactttcctccac ttagcaccataggcaagggggcagatcccagagcccctctcaccccccccaccacaggcctg ctccttccttagccttggctaagatggtccttctgtgtcttgcaaagactccccaagtggac agggagcccctgggagggcagccagtgagggtggggtgggactgaagcgttgtgtgcaaatc cagcttccatcccctccccaacctggcaggattctccatgtgtaaacttcacccccaggacc caggatcttctcctttctgggcatccctttgtgggtgggcagagccctgacccacagctgtg ttactgcttggagaagcatatgtaggggcataccctgtggtgttgtgctgtgtctggctgtg ggataaatgtgtgtgggaatattgaaacatcgcctaggaattgtggtttgtatataaccctc taagcccctatcccttgtcgatgacagtca 56 206661_at DBF4B accaggagtgtcagcttttagaaggatcatggtcatgtgagcttctggtcaccggaagccag aaatactcagctgccatgttgatccacaaaggtgggaggatgtggggaagggggaaagcggt gaggacgcagagtgcaggctgtggcctcggcatcccgcaggaggtccctagaacatgccgtt tcatgtcacctgctacagctctcccccagctagtatgatgatccgttttacaaatgcagaaa tgatcttaatattcatgaccactggccaggcgaggtggctcacacctgtaatcccagcactt tgggaggccaaggcgggtggatcacaaggtcaagagttcgagaccagcctgaccaacgtggt gaaaccccgtctctactaaaaatagaagcattagccgagcctggtgg 57 206672_at AQP2 gcgcagagtagctgcttcctggacgtgcgcgcccaggccagtgctgtgagcaggcggggagg aggctgccggaggagcctgagcctggcaggttcccctgccctgaggctgtgagcagctagtg gtggcttctcctgcctttttcagggaactgggaaacttaggggactgagctggggagggagg caggtgggtggtaagagggaaactctggagagcctgcacccaggtactgagtggggagtgta cagaccctgccttgggggttctgggaatgatgcaactggttttactagtgtgcaagtgtgtt catccccaagttctcttttgtcctcacatgcagagttgtgcatgcccctgagtgtgaacagg tttgcctacgttggtgca 58 206678_at GABRA1 tggtttattgccgtgtgctatgcctttgtgttctcagctctgattgagtttgccacagtaaa ctatttcactaagagaggttatgcatgggatggcaaaagtgtggttccagaaaagccaaaga aagtaaaggatcctcttattaagaaaaacaacacttacgctccaacagcaaccagctacacc cctaatttggccaggggcgacccgggcttagccaccattgctaaaagtgcaaccatagaacc taaagaggtcaagcccgaaacaaaaccaccagaacccaagaaaacctttaacagtgtcagca aaattgaccgactgtcaagaatagccttcccgctgctatttggaatctttaacttagtctac tgggctacgtatttaaacagagagcctcagctaaaagcccccacaccacatcaatagatctt ttactcacattctgttgttcagttcctctgcactgggaatttatttatgttctcaacgcagt aattccca 59 206799_at SCGB1D2 tagaagtccaaatcactcattgffigtgaaagctgagctcacagcaaaacaagccaccatga agctgtcggtgtgtctcctgctggtcacgctggccctctgctgctaccaggccaatgccgag ttctgcccagctcttgtttctgagctgttagacttcttcttcattagtgaacctctgttcaa gttaagtcttgccaaatttgatgcccctccggaagctgttgcagccaagttaggagtgaaga gatgcacggatcagatgtcccttcagaaacgaagcctcattgcggaagtcctggtgaaaata ttgaagaaatgtagtgtgtgacatgtaaaaactttcatcctggtttccactgtctttcaatg acaccctgatctt 60 206835_at STATH aagcttcacttcaacttcactacttctgtagtctcatcttgagtaaaagagaacccagccaa ctatgaagttccttgtctttgccttcatcttggctctcatggtttccatgattggagctgat tcatctgaagagaaatttttgcgtagaattggaagattcggttatgggtatggcccttatca gccagttccagaacaaccactatacccacaaccataccaaccacaataccaacaatatacct tttaatatcatcagtaactgcaggacatgattattgaggcttgattggcaaatacgacttct acatccatattctcatctttcataccatatcacactactaccactttttgaagaatcatcaa agagcaatgcaaatgaaaaacactataatttactgtatactctttgtttcaggatacttgcc ttttcaattgtcacttgatgatataattgcaatttaaactgttaagctgtgttcagtactgt ttc 61 206940_s_at LOC100 ggtttgttaccatcctttaatcataactaaaacattgaaaacagaacaaatgagaaaagaaa 131317 aaaaacctgccgattaacaatgacgaaaatcatgcatgatctgaaaggtgtggaaagaaaca /// caattaggtctcactctggttaggcattatttatttaattatgttgtatatcattgtttgca POU4F1 gggcaacattctatgcattgaactgagcactaactgggctagcttctggtagacgtttgtgg ctagtgcgattcacagtctactgcctgttccactgaaacattttgtcatattcttgtattca aagaaaaaaggaaaaaaagattattgtaaatattttatttaatgcacacattcacacagtgg taacagactgccagtgttcatcctgaaatgtctcacggattgatctacctgtccatgtatgt ctgctgagctttctccttggttatgttttt 62 206984_s_at RIT2 taaagagctcatttttcaggtccgccacacctatgaaattcccctggtgctggtgggtaaca aaattgatctggaacagttccgccaggtttctacagaagaaggcttgagtcttgcccaagaa tataattgtggtttttttgagacctctgcagccctcagattctgtattgatgatgcttttca tggcttagtgagggaaattcgcaagaaggagtccatgccatccttgatggaaaagaaactga agagaaaagacagcctgtggaagaagctcaaaggttctttgaagaagaagagagaaaatatg acatgatatctttgcttttgagttcctcacgctctctgaattttattagttggacaattcca tatgtagcattctgcttcaatattatctctctatgtgtctctctctctttaaatatctgcct gtaggtaaaagcaagctctgcatatctgtacctcttgagatagttttgttttgcctttaaca gttggatgga 63 207003_at GUCA2A gaggggtcaccgtgcaggatggaaatttctccttttctctggagtcagtgaagaagctcaaa gacctccaggagccccaggagcccagggttgggaaactcaggaactttgcacccatccctgg tgaacctgtggttcccatcctctgtagcaacccgaactttccagaagaactcaagcctctct gcaaggagcccaatgcccaggagatacttcagaggctggaggaaatcgctgaggacccgggc acatgtgaaatctgtgcctacgctgcctgtaccggatgctaggggggcttgcccactgcctg cctcccctccgcagcagggaagctcttttctcctgcagaaagggccacccatgatactccac tcccagcagctcaacctaccctggtccagtcgggaggagcagcccggggaggaactgggtga ct 64 207028_at LOC100 ctccccccgagagaaggctgcaaagctgggaagcccagggtgtgctcctcccgcccttttgg 129296 acccccgggcttgcaccggctgcactctgagaaccagctgcgcgcggagcggtgcaatgcag /// cacccaccctgcgagcctggcaattgcttgtcattaaaagaaaaaaaaattacggagggctc MYCNO cgggggtgtgtgttggggaggggagaccgatgcttctaacccagcccccgctttgactgcgt S gttgtgcagctgagcgcgaggccaacgttgagcaaggccttgcagggaggttgctcctgtgt aattacgaaagaaggctagtccgaaggtgcaaaatagcagggagaggacgcgcccccttagg aacaagacctctggatgtttccagtttcaaattgaaagaagaggggcgccccccttg 65 207208_at RBMXL2 acagcagcagttatggccggagcgaccgctactcgaggggccgacaccgggtgggcagacca gatcgtgggctctctctgtccatggaaaggggctgccctccccagcgtgattcttacagccg gtcaggctgcagggtgcccaggggcggaggccgtctaggaggccgcttggagagaggaggag gccggagcagatactaagcaggaacagacttgggaccaaaaatcccttttcaacgaaactaa caaaaagaagaacctgttgtatggtaactacccaaggactagtacaaggaagagttgttttt accttttaagaatttcctgttaagatcgtctccatttttatgcttttgggagaaaaaactta aaattcgtttagtttagttttggaattgttaacgtttctttcaacaagctcctgttaaaagt atatgaacctgagtactagtcttcttacatttacaagtagaaattcgattaatggcttcttc ccttgtaaattttcttg 66 207219_at ZNF643 cagccagagcattggactgatccagcatttgagaactcatgttagagagaaaccttttacat gcaaagactgtggaaaagcgtttttccagattagacaccttaggcaacatgagattattcat actggtgtgaaaccctatatttgtaatgtatgtagtaaaaccttcagccatagtacatacct aactcaacaccagagaactcatactggagaaagaccatataaatgtaaggaatgtgggaaag cctttagccagagaatacatctttctatccatcagagagtccatactggagtaaaaccttat gaatgcagtcattgtgggaaagcctttaggcatgattcatcctttgctaaacatcagagaat tcatactggagaaaaaccttatgattgtaatgagtgtggaaaagccttcagctgtagttcat cccttattagacactgcaaaacacatttaagaaataccttcagcaatgttgtgtgaaatata ctaaacatcaaagaatctatgttggagcacaagattctaaatcagtggttccctg 67 207529_at DEFA5 gagtcactccaggaaagagctgatgaggctacaacccagaagcagtctggggaagacaacca ggaccttgctatctcctttgcaggaaatggactctctgdatagaacctcaggttctcaggca agagccacctgctattgccgaaccggccgttgtgctacccgtgagtccctctccggggtgtg tgaaatcagtggccgcctctacagactctgctgtcgctgagcttcctagatagaaaccaaag cagtgcaagattcagttcaaggtcctgaaaaaagaaaaacattttactctgtgtaccttgtg tctt 68 207597_at ADAM1 gtgacgctcaatctacagtttattcatatattcaagaccatgtatgtgtatctatagccact 8 ggttcctccatgagatcagatggaacagacaatgcctatgtggctgatggcaccatgtgtgg tccagaaatgtactgtgtaaataaaacctgcagaaaagttcatttaatgggatataactgta atgccaccacaaaatgcaaagggaaagggatatgtaataattttggtaattgtcaatgcttc cctggacatagacctccagattgtaaattccagtttggttccccagggggtagtattgatga tggaaattttcagaaatctggtgacttttatactgaaaaaggctacaatacacactggaaca actggtttattctgagtttctgcatttttctgccgtttttcatagttttcaccactgtgatc tttaaaagaaatgaaataagtaaatcatgtaacagagagaatgcagagtataatcgtaattc atccgttgtatcag 69 207814_at DEFA6 gagccactccaagctgaggatgatccactgcaggcaaaagcttatgaggctgatgcccagga gcagcgtggggcaaatgaccaggactttgccgtctcctttgcagaggatgcaagctcaagtc ttagagctttgggctcaacaagggctttcacttgccattgcagaaggtcctgttattcaaca gaatattcctatgggacctgcactgtcatgggtattaaccacagattctgctgcctctgagg gatgagaacagagagaaatatattcataatttactttatgacctagaaggaaactgtcgtgt gtcccatacattgccatcaactttgtttcctcat 70 207843_x_at CYB5A gctggaggtgacgctactgagaactttgaggatgtcgggcactctacagatgccagggaaat gtccaaaacattcatcattggggagctccatccagatgacagaccaaagttaaacaagcctc cagaaccttaaaggcggtgtttcaaggaaactcttatcactactattgattctagttccagt tggtggaccaactgggtgatccctgccatctctgcagtggccgtcgccttgatgtatcgcct atacatggcagaggactgaacacctcctcagaagtcagcgcaggaagagcctgctttggaca cgggagaaaagaagccattgctaactacttcaactgacagaaaccttcacttgaaaacaatg attttaatatatctctttctttttcttccgacattagaaacaaaacaaaaagaactgtcctt tctgcgctcaaattMcgagtgtgcctttttattcatctacttt 71 207878_at KRT76 gagctcaagccagcatagctccaccaagtgatctactgttccaaatctctataaccacctgc ttcccactcagcctgcaatagtgtttcccactctctgcttggcatcaatagatgcataaggg tcaaccacatttttcctcaagttccctggagaagaagctgaactcctggtttctccatcccc atgaccttcccagggccatggaggtcctgctgctggtctgggatgatgatgcccctggaaac cttcctgcaatggccccttactttggacagcaacccctgagcccaagccagttttggccttc acagcctggccggttcccactctggcccatctcccattcttactgggagttggagatttgaa gccagtcatctcagcactgtctgaggagggcagagccatgggttctgtgctggagggtgcac ggccaagatctccagactgctggttcccagggaaccctccctacatctgggcttcagatcct gactcccttctgtcccctaattccctgagctgtagatcctctggt 72 207937_x_at FGFR1 cgcacccgcatcacaggggaggaggtggaggtgcaggactccgtgcccgcagactccggcct ctatgcttgcgtaaccagcagcccctcgggcagtgacaccacctacttctccgtcaatgttt cagcttgcccagatctccaggaggctaagtggtgctcggccagcttccactccatcactccc ttgccatttggacttggtactcggcttagtgattagaggccctgaacaggtggtggtatccc tgctctgctggagaggaacccagatgctctcccctcctcggaggatgatgatgatgatgatg actcctcttcagaggagaaagaaacagataacaccaaaccaaaccccgtagctccatattgg acatccccagaaaagatggaaaagaaattgcatgcagtgccggctgccaagacagtgaagtt caaatgcccttccagtgggaccccaaaccccacactgcgctggttgaaaaatggcaaagaat tcaaacctgaccacagaattggaggctacaaggtccgttatgccacctgga 73 208157_at SIM2 ctgccctgtacatgctagttcaacagaaaggaatggcctttcaccttctcctggtggcaggc aagcagatgtcctctgcggagataccgccagctccccaggacgcagactgactcctgtttgc tcgctggaccaaccccaggcagaaggtggaaggtgggaacagaggtttagctgcaggacatg tattcccattgcaccgagacctaactgccgctcagagtgtagaccgagatggtgcagatgcc tgcagtgccattaaaatgtgggtgaaggtgacatcaggattatgtgccccaggccgggctca gtggctcacacctgtaatcccagcactttgggaggccaaggtgggcggatcacctgaggtca ggagtttgcgacaagcctgccaacaagctgaaacc 74 208233_at PDPN gaaatctctgatataagctgggtgtggtggctcgtgcctgtagtctcagctgctgggcaact gcagaccagcctgggcaacatagtaagaccctgtctcaaaaaaataatctctggtacaatgg tcatgttccaaagttccttacttgggcctcttgagtgcagtggctcacacctggaatcccag tgctttgagaggctgaggaggcaggaggttcacttgtgcccaggaatttgaggctgcagtga gctatgattgtgccactgcactccagcctgggtgacagagcaagactgtgctctcttaaaaa taagaaagagcctcttcatcttcaaaaggactacatctgaagtttccccagaaggacaaatg tctacttagaccttataaatttccaaaataagagagtcagagccagaggtggcttgtaagtt gacttctgttgagatctgaccacatttgatctcttgttttaattttccaactaactgaactt ggaagaaaacccaaaccaagttttaatctgatgccta 75 208292_at BMP10 ccatgagcaacttccagagctggacaacttgggcctggatagcttttccagtggacctgggg aagaggctttgttgcagatgagatcaaacatcatctatgactccactgcccgaatcagaagg aacgccaaaggaaactactgtaagaggaccccgctctacatcgacttcaaggagattgggtg ggactcctggatcatcgctccgcctggatacgaagcctatgaatgccgtggtgtttgtaact accccctggcagagcatctcacacccacaaagcatgcaattatccaggccttggtccacctc aagaattcccagaaagcttccaaagcctgctgtgtgcccacaaagctagagcccatctccat cctctatttagacaaaggcgtcgtcacctacaagtttaaatacgaaggcatggccgtctccg aatgtggctgtagatagaagaagagtcctatggcttatttaataactgtaaatgtgtatatt tggtgttcctatttaatgagattatttaataagggtgtacagtaatagaggcttgctgcctt
caggaa 76 208314_at RRH atgatctgcatgtttctggtggcatggtccccttattccatcgtgtgcttatgggcttcttt tggtgacccaaagaagattcctccccccatggccatcatagctccactgtttgcaaaatctt ctacattctataacccctgcatttatgtggttgctaataaaaagtttcggagggcaatgctt gccatgttcaaatgtcagactcaccaaacaatgcctgtgacaagtattttacccatggatgt atctcaaaacccattggcttctggaagaatctgaaataagagaaaaggacacgctatcaaaa cactttagttttttgacaatgcttttcttttaaatatgagcccatttagatcaagtgcagac atggatcattgtcctatgagagtgtaagctcctcaagcacagctcgtgcttccgtttgtgca ctctggctgctgtagtgtatgcttctctgtgtcctgatatatcaacttattgctcatctcct ttgatgaattaggcatcagaggttaaggtcccctttc 77 208368_s_at BRCA2 gaacaggagagttcccaggccagtacggaagaatgtgagaaaaataagcaggacacaattac aactaaaaaatatatctaagcatttgcaaaggcgacaataaattattgacgcttaacctttc cagtttataagactggaatataatttcaaaccacacattagtacttatgttgcacaatgaga aaagaaattagtttcaaatttacctcagcgtttgtgtatcgggcaaaaatcgttttgcccga ttccgtattggtatacttttgcttcagttgcatatcttaaaactaaatgtaatttattaact aatcaagaaaaacatctttggctgagctcggtggctcatgcctgtaatcccaacactttgag aagctgaggtgggaggagtgcttgaggccaggagttcaagaccagcctgggcaacataggga gacccccatctttacgaagaaaaaaaaaaaggggaaaagaaaatcttttaaatctttggatt tgatcactacaagt 78 208399_s_at EDN3 ccgagccgagcttactgtgagtgtggagatgttatcccaccatgtaaagtcgcctgcgcagg ggagggctgcccatctccccaacccagtcacagagagataggaaacggcatttgagtgggtg tccagggccccgtagagagacatttaagatggtgtatgacagagcattggccttgaccaaat gttaaatcctctgtgtgtatttcataagttattacaggtataaaagtgatgacctatcatga ggaaatgaaagtggctgatttgctggtaggattttgtacagtttagagaagcgattatttat tgtgaaactgttctccactccaactcctttatgtggatctgttcaaagtagtcactgtatat acgtatagagaggtagataggtaggtagattttaaattgcattctgaatacaaactcatact ccttagagcttgaattacatttttaaaatgcatatgtgctgtttggcaccgtggcaagatgg tatcagagagaaacccatcaattgctcaaatactc 79 208511_at PTTG3 ttgtggctacaaaggatgggctgaagctggggtctggaccttcaatcaaagccttagatggg agatctcaagtttcaatatcatgttttggcaaaacattcgatgctcccacatccttacctaa agctaccagaaaggctttgggaactgtcaacagagctacagaaaagtcagtaaagaccaatg gacccctcaaacaaaaacagccaagcttttctgccaaaaagatgactgagaagactgttaaa gcaaaaaactctgttcctgcctcagatgatggctatccagaaatagaaaaattatttccctt caatcctctaggcttcgagagttttgacctgcctgaagagcaccagattgcacatctcccct tgagtgaagtgcctctcatgatacttgatgaggagagagagcttgaaaagctgtttcagctg ggccccccttcacctttgaagatgccctctccaccatggaaatccaatctgttgcagtctcc tttaagcattctgttgaccctggatg 80 208684_at COPA ggtttaaggatcagtcctctgcagtttcgctaaggccccctttgtgtgcatgggtcagtcac catatgttccccccagagaatgtgtctatatcctccttctaacagcaccttccccctgcagc tactcttcagatctggctctctgtaccctaaaacctagtatctttttctcttctatggaaaa tccgaaggtctaaacttgacttttttgaggtcttctcaacttgactacagttgtgctcataa ttgtccttgcctttccagcttaattattttaaggaacaaatgaaaactctgggctgggtgga gtggctcatacctgtaatcccagcactttgggaggctacggtgggcagatcatctgaggcca ggagttcgagacctgcctggccaacatggcaacaccccgtctctaataaaaatataaaaatt agcctggcatggtagcatgcgcctatagtcccagctgctcaggaggctgaggcatgagaatc gcttgaacctaggaggtggaggttgcattcaactgagatcatacc 81 208992_s_at STAT3 actggtctatctctatcctgacattcccaaggaggaggcattcggaaagtattgtcggccag agagccaggagcatcctgaagctgacccaggcgctgccccatacctgaagaccaagtttatc tgtgtgacaccaacgacctgcagcaataccattgacctgccgatgtccccccgcactttaga ttcattgatgcagtttggaaataatggtgaaggtgctgaaccctcagcaggagggcagtttg agtccctcacctttgacatggagttgacctcggagtgcgctacctcccccatgtgaggagct gagaacggaagctgcagaaagatacgactgaggcgcctacctgcattctgccacccctcaca cagccaaaccccagatcatctgaaactactaactttgtggttccagattttttttaatctcc tacttctgctatctttgagc 82 209434_s_at PPAT ttgacagctctttaagcccacatgcagcagtgggtcagataaccctgtggcagtgacacggg caaattggcatttgaataaagccctgggaccacctcaacatgcgtagcctcttgtcttaaat gtactccccatggcagcatggaggaggcaagacctgtgggtcaattttgaactggccttact ttgatttttaaaacaagagactcagggaaagtactaaaccaaaatctctgattttactttgc gttttctgtagtttttgttttactgagatgcttttgtaaaggaaaataatactgtgacagtt tagtaattctacagattcttaatatttctccatcatggccttttacttcacaattttctgaa gtctgaattcaattacaattttttttttttaccaatttaatctcaaatgttgtttaactgct ttaaattcatatacgtagagtattataaactgcagagatgaaaaatgtgttttcacgggatt tatattgtgaactaaactaagcctactttttgtgact 83 209839_at DNM3 gagacttctcacttctggttggaggtttcacatatggctcaactcaagtcattaatctcttt ttaatttttactcttgaattccttaaacttcgctcattatgaaatgttttaaaattatgaca aaaattactctgtctaaccacttgccttgtctgctaccagtttgttaaaaattattcccccc aaccagtaattccaccagtactacttgatttgtgttatatttcctatgtacatgtacagcct ttgttttgcttgcttgtctatttttactttcccttttttgggtcaaatttttcttttgcttt gtttgaagaaggaatatacagaagtaaaatcttgtcttctctgctgattctttaattaatat gagccggatactttccactgtcttcttggcactttcaggatttcttaatgctgatatatgga ctcttagaatggaatttttgaagaaaaatctcaaagcctgtatcgttct 84 209859_at TRIM9 ataggttacccttgaaattcattagtttgtcataaagttttaggaaaggtaggacccggaaa gaagttctaattagttgtctaaatatttttcagtgagccaagaaattcaccatgaaaaaaca agaataacaaatagaagggaagagataggatgggaaagctaacaaattaaagttttggcaaa aaggaatatatgtaaatagctaattatttacttttgtgcttactttatttagattatttcta tcagttacaatctttttctagttaagtgtacctaatttatggaatgggtgctatcctgttta tgtgtgtcttggtttttcttggctacagaaaaactgttgcagggcaacactagtttgatatt tgatttactctccaatgagactcaatggctgggccgtggtagactcatagttcctcttgttc tttattaaattcatcctgctaattagatttctagtgacttgtaacatgtagtttacactgaa ttgcaattacagatgcatacaactactatacta 85 210016_at LOC100 ataacagcatatgcatttccccaccgcgttgtgtctgcagcttctttgccaatatagtaatg 134306 cttttagtagagtactagatagtatcagttttggattcttattgttatcacctatgtacaat /// ggaaagggattttaagcacaaacctgctgctcatctaacgttggtacataatctcaaatcaa MYT1L aagttatctgtgactattatatagggatcacaaaagtgtcacatattagaatgctgaccttt catatggattattgtgagtcatcagagtttattataacttattgttcatattcatttctaag ttaatttaagtaatcatttattaagacagaattttgtataaactatttattgtgctctctgt ggaactgaagtttgatttatttttgtactacacggcatgggtttgttgacactttaattttg ctataaatgtgtggaatcacaagttgctgtgatacttcatttttaaattgtgaactttgtac aaattttgtcatgctggatgttaacacat 86 210247_at SYN2 tcatgtcttattcttccctgtgaaaccaggattaatcgtggactcctggcagcttaacctag ctcagttgcagtgctaagcatgccccgcccccattcagtgatacctgtttgggaagtatata cttccccaaaagtactcttggccctaagttttaggaactttccccgacctggatcccttgtc atacctgtgttactgtttaaagcacacccacccaacttacaagatcttaggctgctgtggtg gtgaagcaccttgagtctgctgatattcgggagaacaaggatctgcagtttccccttttctc ccctctgaagagtggttcttatgtgcaatctgcagtaaccttgaactccagagctgcactat agaggagaatgcatgccactatgacagcagtatgccaagctttgtgttcatctcctaata 87 210302_s_at MAB21L atttcgttttgcttttggttgcctgaatgttgtcaccaagtgaaaaaattatttaactatat 2 gtaaaatttctcttttaaaaaaaagttttactgatgttaaacgttctcagtgccaatgtcag actgtgctcctccctctcctgaacctctaccctcaccctgagctgtcttgttgaaaacagt 88 210315_at SYN2 tattctcgactgtaatggcattgcagtagggccaaaacaagtccaagcttcttaaaatgatt ggtggttaatttttcaaagcagaaattttaagccaaaaacaaacgaaaggaaagcggggagg ggaaaacagaccctcccactggtgccgttgctgcgttctttcaatgctgactggactgtgtt tttcctatgcagtgtcagctcctctgtctggttgtttacctgttcctgttcgtgcttgtaat gctcacttatgttttctctgtataacttgtgattccagggctgtttgtcaacagtatacaaa agaattgtgcctctcccaagtccagtgtgactttatcttctgggtggtttg 89 210455_at C10orf2 gaaatcagcgaggctcaagttccaagcaaaccattccaaaatgtggaattctgtgacttcag 8 taggcatgaacctgatggggaagcatttgaagacaaagatttggaaggcagaattgaaactg ataccaaggttttggagatactatatgagtttcctagagtttttagttctgtcatgaaacct gagaatatgattgtaccaataaaactaagctctgattctgaaattgtacaacaaagcatgca aacatcagatggaatattgaatcccagcagcggaggcatcaccactacttctgttcctggaa gtccagatggtgtctttgatcaaacttgcgtagattttgaagttgagagtgtaggtggtata gccaatagtacaggtttcatcttagatcaaaagatacagattccattcctgcaactatgggt cacatctctctgtcagagagcacaaatgacactgttagtccagtaatgattagagaatgtga gaagaatgacagcactgctgatgagttacatgtaaagcacgaacctcctgatacag 90 210758_at PSIP1 gggctcaaagcattaatccagttactgaaaagagaatacaagtggagcaaacaagagatgaa gatcttgatacagactcattggactgaatttcccccttccccccatgatggaagaatgttca gattctaaattgaggacttcattattaatggcattactgtgttatgattaacaaatttcttg taaggtacacactacatactaaggtcggccatcattccgttttttttttttttttttttttt aaccaagcttaaaatgaagcttaaaatgaagctttgtgtttgaaagtaataacaagctcaga cgaagatggtggttgtacattattcatctagaaaatataaaaattcattttgttttgaagct agttattaaactggaatagcagttatatccctgagaatggggccctt 91 210918_at -- gctgctgttttcttctaactgcagggaaaatgctgtctaaaagaaaataataaatttgtatc tgctgagttctcttagcataaggcaccaacaaaacaaccttcaggaagggagaagaaaccat cctcccactcatccttcagaggatttagataaagtgaagggaagaatcgttctccagctcct tcggaatttacgccggcatcagggcaggcttgttactgctggatccattgtctgctcaaggt tacttattccactaagacgtacatcctaccacggaccacggctttgtagctagccaggctct gagtgtgtgtgtagatgaaccatttctctctccagtaaatgaatgacagtctttctagggct cttgtcttctgctgggaggcag 92 211204_at ME1 agtcactctcccagatggacggactctgtttcctggccaaggcaacaattcctacgtgttcc ctggagttgctcttggggtggtggcctgcggactgagacacatcgatgataaggtcttcctc accactgctgaggtcatatctcagcaagtgtcagataaacacctgcaagaaggccggctcta tcctcctttgaataccattcgagacgtttcgttgaaaattgcagtaaagattgtgcaagatg catacaaagaaaagatggccactgtttatcctgaaccccaaaacaaagaagaatttgtctcc tcccagatgtacagcactaattatgaccagatcctacctgattgttatccgtggcctgcaga agtccagaaaatacagaccaaagtcaaccagtaacgcaacagcta 93 211264_at GAD2 gttccacttctctaggtagacaattaagttgtcacaaactgtgtgaatgtatttgtagtttg ttccaaagtaaatctatttctatattgtggtgtcaaagtagagtttaaaaattaaacaaaaa agacattgctccttttaaaagtcctttcttaagtttagaatacctctctaagaattcgtgac aaaaggctatgttctaatcaataaggaaaagcttaaaattgttataaatacttcccttactt ttaatatagtgtgcaaagcaaactttattttcacttcagactagtaggactgaatagtgcca aattgcccctgaatcataaaaggttctttggggtgcagtaaaaaggacaaagtaaatataaa atatatgttgacaataaaaactcttgcctttttcatagtattagaaaaaaatttctaattta cctatagcaacatttcaaat 94 211341_at LOC100 gcatttgaaactgagcactaaactgggctagctttctggtagaccgttttgtggctagtgcg 131317 atttcacagtctactgcctgtttccactgaaaacatttttgtcatattcttgtattcaaaga /// aaacaggaaaaaagttattgtaaatattttatttaatgcacacattcacacagtggtaacag POU4F1 actgccagtgttcatcctgaaatgtctcacggattgatctacctgtctatgtatgtctgctg agctttctccttggttatgttttttctcttttacctttctcctcccttacttctatcagaac caattctatgcgccaaatacaacagggggatgtgtcccagtacacttacaaaataaaacata actgaaagaagagcagttttatgatttgggtgcgtttttgtgtttatactgggccaggtcct g 95 211516_at IL5RA ggcagccttccttgtgatcaaaaaaggtaatcccagaaacgtacccgttcactcgtgggtct taaaatggtttcatatctctattgtgactaattttctctcggtctactgccttttcaatcag gaatagatttgccatgaagccagtgaagtttttaagtgtctaggcttctcattagtgccaac tctcctagacctggtgcctgttttttttccaagttttgtttctacttctatccattttttaa attaaactttttattttgaaataattatcacactcacaagctgtgggaagaaataatagaga tcctgtgtctctttcatccagttttcctcaagggtaacatct 96 211772_x_at CHRNA3 tgctcaacgtgcactacagaaccccgacgacacacacaatgccctcatgggtgaagactgta ttcttgaacctgctccccagggtcatgttcatgaccaggccaacaagcaacgagggcaacgc tcagaagccgaggcccctctacggtgccgagctctcaaatctgaattgcttcagccgcgcag agtccaaaggctgcaaggagggctacccctgccaggacgggatgtgtggttactgccaccac cgcaggataaaaatctccaatttcagtgctaacctcacgagaagctctagttctgaatctgt tgatgctgtgctgtccctctctgctttgtcaccagaaatcaaagaagccatccaaagtgtca agtatattgctgaaaatatgaaagcacaaaatgaagccaaagaggaacaaaaagcccaagag atccaacaattgaaacgaaaagaaaagtccacagaaacatccgatcaagaacctgggctatg aatttccaatcttcaacaacctgtt 97 212359_s_at KIAA091 cagcgctgccagcaggcatacatgcagtacatccaccaccgcttgattcacctgactcctgc 3 ggactacgacgactttgtgaatgcgatccggagtgcccgcagcgccttctgcctgacgccca tgggcatgatgcagttcaacgacatcctacagaacctcaagcgcagcaaacagaccaaggag ctgtggcagcgggtctcactcgagatggccaccttctccccctgagtctttcacccttaggg tcctatacagggacccaggcctgtggctatgggggcccctcacacagggggagtgaaacttg gctggacagatcatcctcactcagttccctggtagcacagactgacagctgctcttgggcta tagcttggggccaagatgtctcacaccctagaagcctagggctgggggagacagccctgtct gggagggggcgttgggtggcctctggtatttattt 98 212528_at -- gtcactcatttccttgaacagcacccccctttatactagcagccatttgtgccattgcctgt gccctagggtttgtggggagagagcgagggatcactgagcagttttcccagagctccatggg aaggcaagctctccctcccaatgggagccccactgtcactaactgtaaactcaggctcaggc ttcaactgcctacccccatcctcatatttctgtctgtcccagcacctcaggagcattctcat tgtggccggctaactccgcctggatgtgaacaggcaagcacagtgggaaatgagtcacgtac ttgtattgcacagtggacacctctagaggtccattggtttaaagggatagggaaggaggagg gatgagaccatcaccccctcccagaagtaaatctagtatctgagttttctttat 99 212531_at LCN2 caagagctacaatgtcacctccgtcctgtttaggaaaaagaagtgtgactactggatcagga cttttgttccaggttgccagcccggcgagttcacgctgggcaacattaagagttaccctgga ttaacgagttacctcgtccgagtggtgagcaccaactacaaccagcatgctatggtgttctt caagaaagtttctcaaaacagggagtacttcaagatcaccctctacgggagaaccaaggagc tgacttcggaactaaaggagaacttcatccgcttctccaaatctctgggcctccctgaaaac cacatcgtcttccctgtcccaatcgaccagtgtatcgacggctgagtgcacaggtgccgcca gntgccgcaccagcccgaacaccattgaggga 100 213197_at ASTN1 tttccccttggaagacactattgatctcaacctgctgacttttcctaatgcttacctgaagg aacccatcctggctagaaagggtgatggtactggaccggtattcaaccttgagttttcaagc tgccaaacaggtcttaagggaggtgcttatatcccaccaacactctcccagctcccatgtcc ccaagacctctggagtttcctcttgaatgtacatgaaccactgtaatagcattagactttta attgagtgtgcaatcgttttccatggagtttggtccgttcattattttttagttaactacac ttcttgatattcaaatgttctattaaaaaaactgagtatgaagaaaaacactttactactgc agaa 101 213260_at FOXC1 tcccccatttacaatccttcatgtattacatagaaggattgcttttttaaaaatatactgcg ggttggaaagggatatttaatctttgngaaactattttagaaaatatgtttgtagaacaatt atttttgaaaaagatttaaagcaataacaagaaggaaggcgagaggagcagaacattttggt ctagggtggtttctttttaaaccattttttcttgttaatttacagttaaacctaggggacaa
tccggattggccctcccccttttgtaaataacccaggaaatgtaataaattcattatcttag ggtgatctgccctguaatcagactttggggagatggcgatttgattacagacgttcgggggg gtggggggcttgcagtttgttttggagataatacagtttcctgctatctgccgctcctatct agaggcaacacttaagcagtaattgctgttgcttgttgtca 102 213458_at FAM149 agcctgaaacaggaactcacatgagactcagggccaccaggaaatgcttaaaatacatactc tttcccaaaagcaaatctataattctgtttcaattttatgaatatatgaatagacaaaatga atcgaattacataactatgtcattcattaaatggcaacaatgctgacagcaagcagtagatc ctctgattccaattaccatttgttttttacccaattctatttgctagaggtagtaagtactc tggcactcataaatcacatgatgataaaaaggaacatgaggccgggtatggtggctcacaac tgtaatccccataccttggg 103 213482_at DOCK3 tatgggtcagttacagcagccctcacctcaaagggctggcctgcttctcagcctacattcat ttgcaagcttcaatctctggaccatctggtgttcacaggtgttagagggttaggggttaggg gctagttttggatttgattcataggtaggagggcttagattttaaggcacttctgaaagtca atccctggacaaggcagtcatcacataagaacagctaccttctccacttggtggcacaagag gtagggaggggagtatgggttcatttgncttcgcattatgcaaggtgaaaccgtttgttttc cctctccattttccctaactaaatgaaaaggacacattctgaaatcccttttgttggagaat aagtcagtctgaggggaaatgggaggccagagatgagaaccctttgaaaagattgtaaaata ctgattttcattctttcaagcttatttgtaaatacctatttgaatgctgtgtatttgtacag gaatttgagcaaaaaatgtatagagtgtgatgtccaattggtattcagcactat 104 213603_s_at RAC2 gagcttcgttgatggtcttttctgtactggaggcctcctgaggcnnnnnnagccccaggacc cattaagccacccccgtgttcctgccgtcagtgccaactnnnnnatgtggaagcatctaccc gttcactccagtcccaccccacgcctgactcccctctggaaactgcaggccagatggttgct gccacaacttgtgtaccttcagggatggggctcttactccctcctgaggccagctgctctaa tatcgatggtcctgcttgccagagagttcctctacccagcaaaaatgagtgtctcagaagtg tgctcctctggcctcagttctcctcttttggaacaacataaaacaaatttaattttctacgc ctctggggatatctgctcagccaatggaaaatctgggttcaaccagcccctgccatttctta agactttctgctccactcacaggatcctgagctgcacttacctgtgagagtcttcaaacttt taaaccttgccagtcaggacttttgctattgcaaatagaaaacccaactcaacctgctt 105 213917_at PAX8 ctgcctggttaccgtggcgatgtgcttaatgcagcgttgaaaatacagaatactgactcctc tgtccctcctggccccggactccctccctccctcccttcctcttctggagcgtgaaatgaga ttggtcaagataaaaaaggaaaagattcggttatttttttaagagtgtggataatggggcct ctcaatcaaaatcccagtctccagtcggttccccuattuccttccaacccctccaccttccc ctgccgcctgcttagaggaggaggaagaaacataaagcacaaggcttttctcttaattatga atcattccctgagggcaggcccagggcaaggggttcctggggcccagagtctgacctgtgag gtagctagaaggcttgagcctctcatcaaagtcc 106 214457_at HOXA2 ctttgcaggactttagcgttttctccacagattcctgcctgcagctttcagatgcagtttca cccagtttgccaggttccctcgacagtcccgtagatatttcagctgacagcttagacttttt tacagacacactcaccacaatcgacttgcagcatctgaattactaaaaacattaaagcaaaa caaagcatcaccaaacaaaaactcctttgaccaggtggttttgccttcttttatttgggagt ttattttttattttcttcttgacctaccccttccctcctttaagtgttgaggattttctgtt tagtgattccctgacccagtttcaaacagagccatcttttacagattattttggagttttag ttgttttaaacctaactcaacaaccctttatgtgattcctgagagc 107 214608_s_at EYA1 gtcaccctgaggaaggttcattgccattgtcatcaccatggaaacaacgttcctctccacct gcattatgtactacatgacaggcatcaatctggggaaataataaaattatcacctttgtcag accataagagtttctccaaaagtggtcagtttggctgggcaatatttnctctcatctaacaa acacaatccattgtcatgaaattacccttaggatgagtcttctttaatcaatcatatattgg gcggaaaaaacaccagctttgacccgaagtagttgaagagctacttcattcttttctgaagt tgtgtgttgctgctagaaatagtcatttgtgaattatccaaattgtttaaattcacaattga attagttttttcttcctttttgcttgaagcaaacagttgacaatttttaaccttttcatttt atgtttttgtactctgcagactgaaaagacaaagtttatcttggccttactgtataaaggtg tgctgtgtccaccgttgtgtacaga 108 214665_s_at CHP gaggtctggcactagtagcacaacctaaggtggcattacagatctttgagcgagccacagca acttttctgccaagtcagcttnagttnagacttcagtgaatcaggntattgctatcctaatg tatgtctctatgagtgtatntagccacanantctgcccttggttgantttctgactcattgc ttgcttgcttgtttccttgctttggaaaactatnnaagattgctaaaaaataccactgcaaa gtgatggaaaagggtggagaacaggggagtagccaggctggatggctcaaatataaatgaat gaggaattctttatgaagtatcagtcagattttatgattaagtgatgtaatataggaattat gtaaaagggaagaatgtctgatactgatctattagagaggtactttagaggcttcttgattg gcataaagttcctaaggttatagattttccccccttttggctgtatagcaaagtgttttaat ccacggttgtgccttattgttccattaaaa 109 214822_at FAM5B caatgggaggggtcggagctcttccttcccctctgtggagtcacttttgtattctttttaac cagatttcttaaaatgttgttgttttgtgaatcctgacattggttcttacttttgtatgctg cctcctctgtgccctcccagacgctgactgggaaacacaagaagtacaaccaacaggaacca gcgccaagggcaggcagcggcctccttgctcccctcccttactcctccctctgctgcctcct ccccccaccaagtttcagggccctggattgttcccagttcccattgtggtcccttcagagct cctttccaacagcatctctctgtcgaagaaagaagctctgtcaagttagagagagacaatgt gtaggaaatgttcttttttaaaaaaaaataacaaaaacaaaacaaaactatnnannntgtga ttgttttccttgttaatctgctccaaccacctgaacatctaagta 110 215102_at DPY19L gagacgggagtttaccccgatcacagaaaccataccaactgaaagacaaatcagcatcttgc 1P1 tggacgacccctcacagagctcctagatccttgaagtgtgaacttcagcagctgagagagat ggggtctcactatgttgcccaggctggtcttgaactcctggactcaagcaatcctctcacct cagcctcccaaagtgctgggattacagattttataaatattgttgatctttttgaaaaacca actgttggcttcattttntttattgtgtaatactaccttagaggacagcagttcctaatacc tacttttattatgagtctctgccatttataaagaactgtggacagcacagggaatgggggaa gaaaactctggtgcagcttgaatcttggtagcaaaacagtgacttcatcagaaaattttgtc actctctattagatataatggagtttgaccatttggaatttggaatttttcaaatgaatatg acaaaaatttaaaaaactcttgtattactatgtgataacacagatctttacaacttta 111 215180_at -- aagccttcaccagatggtcaagcagatgctggtgccatgcccttgancntcncnccaccatc ccccacctagccactatatgggttgttagatattttgaccacctcctcttcnctcactccac tattcaactcactgcatcatcaatgtacttattacaaacctgtcacaagccaggtcttatgc taggtgctcctctcaacaggttcttgagctggcaggggagagagagacattcaaacaccaag gattaatataccattacaggtttaaagacagaggcctataagggtcccctggcagtgccatg gaggtagggcatggtcggctgtacctgtagaggtgtctaaagggaggcttgcaagctgcccc ttgaaggacgagcagaaaattgtacatgaggacaagtaggaaaggaattccaggaggaggga tcagcatgtgca 112 215289_at HLA-DRB1 ggactaaatcgagccttattatacatcagcagtctcacactggagaaagtccttttaagtta /// aggganngnnnnnnannntnnancaaatgtaatactggtcagcgccaaaaaactcacactgg HLA-DRB2 agaaaggtcttatgagtgtggtgaatccagcaaagtgtttaaatacaactccagcctcatta /// aacatcagataattcatactggaaaaaggccttagtggagtgaatgcaggaaagtcaccaaa HLA/DRB3 actgtcacctcattcagcaccaaaaggttcacatcggaccaagaacctattaatatatgtaa /// atctaatgttgaaagagttcagatggaaatctgcgaggatttcctgctgggaactacatta HLA-DRB4 /// HLA-DRB5 /// LOC100 133484 /// LOC100 133661 /// LOC100 133811 /// LOC730 415 /// RNASE2 /// ZNF749 113 215356_at TDRD12 aattgggcaggctcttgggaagtagaaagttctggtgtttttgctggtgaaggttttgactg tggagctcttctaacacccatatcagtgtctgtttctctgcatgtggctgctgccctgttgg tggagctctgggggcagagaccaggccgccgtccagtggcgcnccgtgcgcaccagctgcct gctgtttacacccaggtgcgccgagtctctttcatacagcacagcaaatgataatagctagt gacaatgtgtttcctgtgcactcgtgaaaatgcagggaggacaactgcatgcttagatctgt ttcttttttcagacattcaaatgttctaatatctgaagctaacattttgtaggatataggat gctgattatgtgaacaattagtcattggttttctgtactgctatgaatatgtctgatttcaa gttttggtcaaatatctaaaatgcaaggtgaaagtgcctttgtctctatgcttctaaaatcg ctcatgcttagttgtggtatggatgtcttccgcagtg 114 215476_at -- cttggtaagccttgcctgtagcggctccgctgccgagtgctttgacaccaggcgctcccaga gctctgcccccactgccaagcggcagctgctccggagggcacggggggctggatttggctgt ggcttctccagctctgcacaagagccccccttccctggccctgctgcagcatgactgcctcc tggctcgtgtcacccactctgtctctgtctctcttcatacgtttccagctgagctgggatcc atagtctgtttccctctccacgaccaatctatttatcttctctggaacttcttgtaatgccg ggagtgcagagcttacaagttggggcaggaagctttagaagcccaggnagccctgagaggct ctttccttgtaagtgggtctctccccaggagcctcttggaatatttagcagggacttttacc catgctgggtctagagaccctcccgcccctctgtttcctgccctcctacttagactgggatc tggtttccctcagctggttcccttgctagcgtgtgactctgtgtgtct 115 215705_at PPP5C gttcacagcagtgggtaggcccagcagtggttcttgacatcacacgatgaggcgngcatctc ccgtcatccagggagaccagaggacccttgtctcactcccagttggctnttagtcacagccc cgctttgtctttgacatggacgtttgtgatgatcacgttcctcccgctccccgtgtntgaag agtgctccctgactggctgccgtctcctccctgtcgggtctggctgggttctccanagggag tgctgcggaggggacacagcanaggccccatgctcgtgatgtatgttgcagatcattttccc ccattctgtccttttttgttaaattgtggtaaaaagcacataacataaactgtaccncctta accatttgaaagtatatatcccagactgtcttttatctttagacttcacttgtggtttgttg cc 116 215715_at SLC6A2 tcccctggaagttgtcctttctgatcctctcttcttttcccatttacaaatgatttcgtgac tgtagtttttgttcaccttctgtgcatctggcctgggggctgttagctcagaggagaggagc aaacaggaaaatgacttctgttctgtccccgctgttttgggggaagtctctcccactttggg atcctgctgaagctaggttcatgaggtcggaaatccccaccacatttgcctagactttgggc acaggagttcttagtccaccaaatcaga 117 215850_s_at NDUFA5 cattttctctaactttatctcctatgcatttccttatgtgtcctgtacagcagtatattcca aaatccccagtggatgtctgaaaaccacatatagtaccaaactgtatatatgctatgttttg tttcatacatacctataataaagtttaatttatgaattaggcacaataagagataagcaggc tggacgtgctggctcacgcctgtaatcccagcactttgggaggctgaggcgggtggattgct ttagcccaggagtttaagaccagcctggccaacatggcaaaaccccgtctctataaaaaatg tggaaattaatcaggtgtggt 118 215944_at -- gagatgaccgaaaacttcaacccctgcagtcagcaatggtcaacagaaagggcccaattctc cacgacaatgcatgatcgcacattacacaactaaagcttcaaaagttgaactaactgggcta cgaagttttgcctcatccaccatattcacctgacctcccgccaaccgactaccacttcttca atcatctcgacaactttttgcaaggaaaacacttccacaaccagtagaatgcaaaaagtgct ttccaagagttcactgaatcctgaagcacggatttttatgctacaggaataaacaaacttat ttttcattggtaaaaatgtgttgattgtaatggatcctattttgattaatgaagatgtgttt gagcctagttataatgatttaaaattcacgatccaaaaccgcaattacttttgcatcagcct aatatgaggaagtaatagttgaacagaataattctttcctggaagtct 119 215953_at DKFZP5 ttggtttggtctggtttggctacctgattcctgctgtctttttctacgccaggtgaagaggc 64C196 actttcaagatccttctctgagacctgcaccaataagactataccaatgttcagttgaaaca tcaggtataagtttagcggaaacgaaagtacaacctgctttgaaataaattccaaggacaga ttgtcattaacgaaatagaaagtggactatgcccctcatgctgccagcgcctggtatgatgc ggcgtgacacgcagcgcttgcggcagtacaatgcccccaatcacccgccccgccccgacgcg ccgcccactcacggcaaagagagccacctagtgagggattattctcatttccgcggtggggt tctgcttttctttctaccatgagcgcccaaggatagacactcctactacctattacctcaaa tagcctacatttctttccgaa 120 215973_at HCG4P6 agaacactgagcgaggctctgtagatggatgtaataaaaatctataaaacaatgtgtttaaa cctaagaattctactgctttccaattccttccctctgctccttttcctaacctcctgcttct ccagcccttccctctgtccctttcanccctcaggccctcctctccccttagtccccaccacc ctgtcacttctaaattgtggctctagcattgtcccattacctgctangtgactgttctctcc acagtggtcctgctcctgtgagtcagagtgtgtcatttcctcacctaaaacactccagtggc tccacctcggtcttgtgaagcttctagaatgtcaggcacgtgagcatatgagggcatacctg gttcatcttaggcactaaattnnnntttgttgactgaatgaatgaaatatgaatgtattaaa ttgcatcacagaaagttataaaatgtaaaacactgaaaaattaagaaatattttatnttatg taactagtgtgcatatcaattcattccgagtctgttgagcctgtgtat 121 216050_at -- aatgattcaactcatgtgatccagtgttacattcagtgtggtaatgaagaacagtcaaaaca ggcttttgaagaattgggagataatttggttgaattaagtaaagccaaatactccagaaata ttttaaagaaatgtctcacgttgtgaacatgtaccctagaacttaaagtataataaaaaaaa aaaaaannggaaagtatcttgcacaagctcacgtagctggtaagttacatagttgggatctg aattcagttgtggcttcatgcctgagcttttaactactactactaaactgagaaggcacttg cttgagtaaattatgtcatcctcttaat 122 216066_at ABCA1 gatgtggcatgtgatgacattgcacatggncagttaantgngccaagaagngcagcagtagc agcaacnggagatgcaaagcccaacatgatggggagagaaantnttctttcaatatgtgctt ctgtaccaaaagtggaatttcacgagagacatattttggaacatttttccttttgtgtgtgc gtgagtgtttccctgtttccagccaagggtattgtgagtttctcctgggcctccttcagaat ctgggtgctctggaaagcagtgttttggcaacatggggaaagtatggcagtgtgggagggtc agctgggtctgggtttgaatattgcatttgaatattttaccagcattgatgtcggataaatt atttagtccctgtaagcctcagttttntcttnttctacatacacataatatatttgactctt tgttgtgat 123 216240_at PVT1 tttcctaactttctgatcccttggaggtgataatcaaatattctagtctgaggcattgggat acatggtgctaggttctgagactctgcgtcaggcctgaaccctgcattttgtggaggtgggt gggagaatgtncccctggggaacatgcctagacacgggggacaacagttgccctcatgggga ggtacctgtttactcgctgttatgggaccgctttcacaaaaccactgcaggtgagtgagttc ctgctgaatatcaggcctggtgtctctagactcattattncccccacccaacccctatgtta gttcatctcgagccacatttttattgccataatccaggcctggacaggccaagatcttttaa caattttaattactgaaaataataactgcattttttttnaaagcccaacttttnggtanagt cagcccaaaatacagtctttgtgttgccatctgggaactggatttggaattgttcttccatg agactgcagagcag 124 216881_x_at PRB1 ccacctcctccaggaaagccagaaagaccacccccacaaggaggtaaccagtcccaaggtcc /// cccacctcatccaggaaagccagaaggaccacccccacaggaaggaaacaagtcccgaagtg PRB4 cccgatctcctccaggaaagccacaaggaccaccccaacaagaaggcaacaagcctcaaggt /// cccccacctcctggaaagccacaaggcccacccccagcaggaggcaatccccagcagcctca PRH1 ggcacctcctgctggaaagccccaggggccacctccacctcctcaagggggcaggccaccca /// gacctgcccagggacaacagcctccccagtaatctaggattcaatgacaggaagtgaataag PRH2 aagatatcagtgaattcaaataattcaattgctacaaatgccgtgacattggaacaaggtca /// tcatagctctaac PRR4
125 216989_at SPAM1 gtttgatgtctattatctcacttcatcctcaccaggaccccatccgagccttaatttcagtt gacagtaactattggatccccaggaatatgtttgcatatttggggagaaaatactattggag gggaacagaaatgctactaagggtctcactgtgtcacccaggctggagtccatcaaagctca ctgcagccttaaccttctgtgctcaagggatcctcccacttaagcctcctgagtagctggaa ctacaggcatatgccaccgagcctggctaatctttgatttttttgtacagattgtgtctcct tatgttgctcaggctggactcaaacttctggtctcaagcgatctttccatcttagcttccca aattgttggaattatggacatgagccagtgtgcttggcctgattttttttttttttttaatg agaaaaacgttccttaagaaaagtttcattgtaagacgaggacttgctatgttgccagtttg gtcttgaactcggtctcaagtgattctcctgccttgggttcccaaagcgtttgggccggcag atgt 126 217004_s_at MCF2 ctgaattggaacacaccagcactgtggtggaggtctgtgaggcaattgcgtcagttcaggca gaagcaaatacagtttggactgaggcatcacaatctgcagaaatctctgaagaacctgcgga atggtcaagcaactatttctaccctacttatgatgaaaatgaagaagaaaataggcccctca tgagacctgtgtcggagatggctctcctatattgatgaagctactatgtcaaatggcaagta gctctttcctgcctgcttctcagctcatttggaaaaatactgcgcaaaagacattgagctca aatgatgcagatgttgttttcaggttaatggacacgcaaagaaaccacagcacatacttctt ttctttcatttaataaagcttttaattatggtacgctgtctttttaaaatcatgtatttaat gtgtcagatattgtgcttgaaagattctcatctcagaatacttttggact 127 217253_at SH3BP2 gagtgtcttgactattctggctctttgtattttcatgtaaggtttttctcccatataagttt taaaatcagcttgtcaattccaacaacaatgatgcacttgatagtttgggaatttattatag ctatcaatcagttttgggaaaattgacgtctttacaatattgagttttctgattcatgaaca tggtttacctctcttcccatgggggtctcctttaaggtttaccaataggattttatatttgg ggccattgnggtcttgcttatcttaagtnnnnnnnnnnnnnnnaaatctcttgaccncatga tctgcccgccttgtcctcccaaagtgctgggattacaggcgtgagccaccgcacctggcctg caatacagtattgttaaccgtcttcaccatgttgtacgttagagctccagaaattatttanc atgcataactgaaactttatactctttgaacaccacctccccatttccctctcccggcagcc atttgtgcctctcggttctctttattagcttccattttgtgggtcagt 128 217995_at SQRDL tacgtcaaagaccgctgctgcagtagctgcccagtcaggaatacttgataggacaatttctg taattatgaagaatcaaacaccaacaaagaagtatgatggctacacatcatgtccactggtg accggctacaaccgtgtgattcttgctgagtttgactacaaagcagagccgctagaaacctt cccctttgatcaaagcaaagagcgcctttccatgtatctcatgaaagctgacctgatgcctt tcctgtattggaatatgatgctaaggggttactggggaggaccagcgtttctgcgcaagttg tttcatctaggtatgagttaaggatggctcagcacttgctcatcttggatggcttctgggcc aaaactgcagtcactgaatgaccaagagcagcacgaaggacttggaacctatccttgtaaag agttccttgatgggtaatggtgaccaaatgcctcccttttcagtacctttgaacagcaacca tgtgggctactcatgatgggcttgat 129 218768_at NUP107 ttggatgccctaactgctgatgtgaaggagaaaatgtataacgtcttgttgtttgttgatgg agggtggatggtggatgttagagaggatgccaaagaagaccatgaaagaacacatcaaatgg tcttactgagaaagctttgtctgccaatgttgtgttttctgcttcatacgatattgcacagt actggtcagtatcaggaatgcctacagttagcagatatggtatcctctgagcgccacaaact gtacctggtattttctaaggaagagctaaggaagttgctgcagaagctcagagagtcctctc taatgctcctagaccagggacttgacccattagggtatgaaattcagttatagtttaatctt tgtaatctcactaattttcatgataaatgaagtttttaataaaatatacttgttattagtaa ttttttcttttgcattaccatgtaaaatttagacatttgaattttgtacttttcagaatatt atcgtgacactttcaacatgtagggatatcagcgtttctctgtgtgct 130 218881_s_at FOSL2 aggtcacagtatcctcgtttgaaagataattaagatcccccgtggagaaagcagtgacacat tcacacagctgttccctcgcatgttatttcatgaacatgacctgttttcgtgcactagacac acagagtggaacagccgtatgcttaaagtacatgggccagtgggactggaagtgacctgtac aagtgatgcagaaaggagggtttcaaagaaaaaggattttgtttaaaatactttaaaaatgt tatttcctgcatcccttggctgtgatgcccctctcccgatttcccaggggctctgggaggga cccttctaagaagattgggcagttgggtttctggcttgagatgaatccaagcagcagaatga gccaggagtagcaggagatgggcaaagaaaactggggtgcactcagctctcacaggggtaat ca 131 218980_at FHOD3 gcacctcggagttgcagctgtgacactcataggttactcccaggagtgtgctgagcagaagg caagctcttgctggatgaaacccctccaggtggggttggggagacttgatattcacatccaa cagtttgaaaagggagagctcaattcccagcgtcaccccatggcttgtgttgcctgctacgc attgacttggatctccaggagtcccctgcacataccttctccatcgtgtcagctgtgtttct cttgattccgtgacacccggtttattagttcaaaagtgtgacaccttttctgggcaaggaac agcccctttaaggagcaaatcacttctgtcacagttattatggtaatatgaggcaatctgat tagcttcacagactgagtctccacaacacc 132 219000_s_at DSCC1 tcaagtgagtgagttcccctctacttttagccttccacccaaactggaagcctctaggtgct atcaattatttatatccatcgtttacatccatgaaattggctgaataattactcctctgcct ggcgtagacatgtgctttgggaaaaaaacgagtttataatcctataatgaagaatactggca caggcaatgctcactcgaaaacttcaagtaatttctagttggttttggaatgcttgataaag ttcctttacagctttattttcctgatttgttttggtttagatcaaagttcaaattaatttta acttagctaatgaactcatcaccaggacagttggagggggtaggccgaggttaaatggtcca cgtttcaaaaatgttaat 133 219171_s_at ZNF236 cttttgttcttgctgggttatttattttgattttagcattaaatgtcatctcaggatatctc taaaaggggttgtttaattcctaattgtatagaaagctagtttggtgaattgtattggttaa ttgactgtttaaggccttaacaggtgaatctagagcctacttttattttggttaaagaaaaa gaaaatatcaataattcaattttgtgtcttttctcaatttattagcaaacacaagacatttt atgtattatttcgatttacttcctaattataaaagctgcttttttgcagaacattccttgaa aatataaggttttgaaaagacataattttacttgaatctttgtggggtacaggttgatcttt atattttactggttgttttaaaaattctagaaaagagatttctaggcctcatgtataaccag ggttttgaggataaagaactgtatttttagaactatctcatcatagcatatctgctttggaa taactat 134 219182_at FLJ2216 ttaccctcgtggctaagcaagtgtctgcaggagcagagatggctggaaggggcctctgcaca 7 cggaagatggcttgttcagcccattcacctcctgaggatgtgggcagtctcctccaagaaca catggagctgcttcctgatcccaagcaggtcattgccactggaaggacatggccccggtgat ccatgcttcatgcccacccagaaacacacccctcagtgtgtgcctcagtttactttggagat cagttgtcgtttttagtgctcctttaggcttactaaaacagttttggaaacaaagctatttt gaagtattcaagcagaggaattccctaacactgacc 135 219425_at SULT4A gaccattttgcgagtgtagccctgtttcactcggatcaggttggcacggccgcctgcgtgtc 1 tgtccacctcatccctccgtgtatctgagggagtaaaggtgaggtctttattgcttcactgc ctaattttctcacccacattcgctgaagcgatggagagtcgggggccagtagccagccaacc ccgtggggaccggggttgtctgtcatttatgtggctggaaagcacccaaagtggtggtcagg agggtcgctgctgtggaaggggtctccgttcttggtgctgtatttgaaacgggtgtagagag aagcttgtgtttttgtttgtaatggggagaagcgtggccaggcagtggcacgtggcatcgca tggtgggctcggcagcaccttgcctgtgtttctgtgagggaggctgctttctgtgaaatttc tttatatttttctatttttagtactgtatggatgttactgagcactacacatgatccttctg tgcttgcttg 136 219520_s_at WWC3 aaggaaggccagagagccgcgcagttctctgcaggtgcagatgcaggcagtggaggtggcct gagcaggcagaaggacaccaagcgccctatgttgcttgtcattcatgacgtggtcttggagc ttctgactagttcagactgccacgccaaccccagaaaataccccacatgccagaaaagtgaa gtcctaggtgtttccatctatgtttcaatctgtccatctaccaggcctcgcgataaaaacaa aacaaaaaaacgctgccaggttttagaagcagttctggtctcaaaaccatcaggatcctgcc accagggttcttttgaaatagtaccacatgtaaaagggaatttggctttcacttcatctaat cactga 137 219537_x_at DLL3 tcccggctacatgggagcgcggtgtgagttcccagtgcaccccgacggcgcaagcgccttgc ccgcggccccgccgggcctcaggcccggggaccctcagcgctaccttttgcctccggctctg ggactgctcgtggccgcgggcgtggccggcgctgcgctcttgctggtccacgtgcgccgccg tggccactcccaggatgctgggtctcgcttgctggctgggaccccggagccgtcagtccacg cactcccggatgcactcaacaacctaaggacgcaggagggttccggggatggtccgagctcg tccgtagattggaatcgccctgaagatgtagaccctcaagggatttatgtcatatctgctcc ttccatctacgctcgggaggtagcgacgccccttttccccccgctacacactgggcgcgctg ggcagaggcagcacctgctttttccctacccttcctcgattctgtccgtgaaatgaattggg tagagtctctggaaggttttaagcccattttcagttctaacttactttcatcctattttgca tccc 138 219617_at C2orf34 tgaagaaaaccttcattacccgcttctgcttattttgaccaaacatggatagaagattaagc ttctcaaagacgaagaaacgtatcaagtgcatagggaatatttttacaaaaacggaaatctg taaggggtataatcgcctgcctgcgccctttgcagcatttcacgtgtgggctatggactcca cctgtcctcacccacgttattccccagctgccctctccagctccctccccgcctctttttac actctgcttgttgctcgtcctgccctaaacctttgtttgtctttaaatgtgtataagctgcc tgtctgtgacttgaatttgactggtgaacaaactaaatatttttccctgtaattgagacaga atttcttttgatgatacccatccctccttcattttttttttttttttggtctttgttctgtt ttggtggtggtagtttttaatcagtaaacccagcaaatatcatgattctttcctggttagaa aaataaataaagtgtatctttttatctccctc 139 219643_at LRP1B tattcacaagttttggagggctttttgttcctctgatagacatgactgacttttagctgtca taatgtattaacctaacagatgaaatatgttaaatatgtggttgctctttatccctttgtac aagcattaaaaaaactgctgttttataagaagactttttgttgtactatgtgcatgcatact acctatttctaaactttgccatattgaggcctttataaactattgatttatgtaatactagt gcaattttgcttgaacaatgttatgcatatcataaactttttcaggttcttgtttaagtaca ttttttaaattgaacagtatttttcattttggttataatatagtcattttgcctatgtttc 140 219704_at YBX2 ctcagcccctgtcaacagtggggaccccaccaccaccatcctggagtgattccaactcaact caaaggacacccagagctgccatctggtatctgccagtttttccaaatgacctgtaccctac ccagtaccctgctccccctttcccataattcatgacatcaaaacaccagcttttcacctttt ccttgagactcaggaggaccaaagcagcagccttttgctttttcttttttcttccctcccct tatcaagggttgaaggaagggagccatccttactgttcagagacagcaactccctcccgtaa ctcaggctgagaag 141 219882_at TTLL7 gtttctgtgattcaggatcctcttgggagagtatattcaataaaagcccggaggtggtgact cctttgcagctccagtgttgccagcgcctagtggagctttgtaaacagtgcctgctagtggt ttacaaatatgcaactgacaaaagaggatcactttcaggcattggtcctgactggggtaatt ccaggtatttactaccagggagcacccaattcttcttgagaacaccaacctacaacttgaag tacaattcacctggaatgactcgctccaatgttttgtttacatccagatatggccatctgtg aaacagaagggaagatcgccattggttat 142 219937_at TRHDE ggaggtcccaaatatgtggtctatcaccactgaattcatgtaatagataagaaaaaaattag aggtggatgtcttgttttgtgtcatgaattactaaaatctcttagtagttgtggtatatttt tgagtaaaattaccatttccagatttgagtttgaagggcttttatagttgtattttcctcct cactgttaataatcataatcctttttcagtattttagtggccttgaacaactggtttatcta caatctcaaatcctaagtgtataattatgtgcaatgttcaatacctcatataatacttgctc aacagtatagtggtaccaatggcattaagatggtgtttttgttctacatatttttcaataat ttattctttctaatgttgaaattatatcaggctttaccggtt 143 219955_at L1TD1 gaagttgcaacattcgtttgataggaattccagaaaaggagagttatgagaatagggcagag gacataattaaagaaataattgatgaaaactttgcagaactaaagaaaggttcaagtcttga gattgtcagtgcttgtcgagtacctagtaaaattgatgaaaagagactgactcctagacaca tcttggtgaaattttggaattctagtgataaagagaaaataataagggcttctagagagaga agagaaattacctaccaaggaacaagaatcaggttgacagcagacttatcactggacacact ggatgctagaagtaaatggagcaatgtcttcaaagttctgctggaaaaaggctttaatccta gaatcctatatccagccaaaatggcatttgattttaggggcaaaacaaaggtatttcttagt attgaagaatttagagattatgttttgcatatgcccaccttgagagaattactggggaataa tataccttagcacgccagggtgactaca 144 220029_at ELOVL2 gttatacagatgccatgctccacaccacgagcagtgtacaaatctggctgcccgtttacttt ctgagcaagcactggagtccactccgacctttttctttgaacatgcatgctgctggaatatg tataaatcagaactagcagaagtagcagagtgatgggagcaaaataggcactgaattcgtca actcttttttgtgagcctacttgtgaatattacctcagatacctgttgtcactcttcacagg ttatttaagttcttgaagctgggaggaaaaagatggagtagcttggaaagattccagcactg agccgtgagccggtcatgagccacgataaaaaatgccagtttggcaaactcagcactcctgt tccctgctcaggtatatgcgatctctactgagaagcaagcacaaaagtagaccaaagtatta atgagtatttcctttctccataagtgcaggactgttactcactactaaactct 145 220076_at ANKH gaacgtcgtatgagatcctacaatggaagaataaaatcacctcattcttcatttcagatctg aacattagcagtgatctagatttttttttttttaaacaaaattaagtgtgcttagagtcatc cctctacatgggctgtggctgtcagcccataggtttgtcagtttcacatcaaaactgtgggt ataaactgttgaaaccaatcacattaaaatatttagctgggcacagtggtgtgcatctgtag tcccagctacttgggaggctgaggcaggaggatcgcttaagcacaggagttggaatccagcc tgagcaacagagcaaaaccccgtctctaaaatacaaataaaatatttgtgtagtttttgatt aaaattgactacagcggtcagtataaaatacatgtcgcttttaaggaagtgctctttatgta tctaacagatggaagtttttgcattggtaagagcatttatatatgctttgtttcagggttta tggatttgtattcatatattgtcaaataggtttcatactctaattttactt 146 220294_at KCNV1 agattatatccctatcttctttttcatgtaaaccactggtcacaaatgaactgatctctgta tcccattattactataagaggtgggaatcccaaaactgcttagattgcagtacatgagttta cacaaagacttcaacaattgcacatcttcattctcccaactgagtgtagtatgtggagcata aaacagcatattcttagtatttcatgaatatcagatggtctttaaatgtctctttatggatg tattgttcacattatggctttaaaataatgaatatgtaaaagtgaggtagtgaacatcctaa atttctacactggaattactaaataatcttatttcataaaatgggaaatatatgttaaatga catcactggatgaacttgaagatcttttacttgttaacaaaaaaatactatggacagctttc tgattgttggggtaaatagcaaatgttcaaactttgcaggcattttgacattcatcataaca acacaattcctagacatt 147 220366_at ELSPBP1 ttaggcagtctgtggtgctcagtcacctctgtcttcgatgagaaacagcagtggaaattctg tgaaacgaatgagtatgggggaaattctctcaggaagccctgcatcttcccctccatctaca gaaataatgtggtctctgattgcatggaggatgaaagcaacaagctctggtgcccaaccaca gagaacatggataaggatggaaagtggagtttctgtgccgacaccagaatttccgcgttggt ccctggctttccttgtcactttccgttcaactataaaaacaagaattattttaactgcacta acaaaggatcaaaggagaaccttgtgtggtgtgcaacttcttacaactacgaccaagaccac acctgggtgtattgctgatgctgaggaaaggagaaatatcttcagaggaagactgccgccat actgaggctgagcacagatttgtctttttcattgcatctgtcaa 148 220394_at FGF20 gtgtggcagtgggactggtcagtattagaggtgtggacagtggtctctatcttggaatgaat gacaaaggagaactctatggatcagagaaacttacttccgaatgcatctttagggagcagtt tgaagagaactggtataacacctattcatctaacatatataaacatggagacactggccgca ggtattttgtggcacttaacaaagacggaactccaagagatggcgccaggtccaagaggcat cagaaatttacacatttcttacctagaccagtggatccagaaagagttccagaattgtacaa ggacctactgatgtacacttgaagtgcgatagtgacattatggaagagtcaaaccacaacca ttctttcttgtcatagttcccatcataaaataatgacccaagcagacgttcaaa 149 220397_at MDM1 tatgcattttttaccacaatttttaaaaagtttgaatagaaatttttaatgtctttgagtgg attttgttttttgaacagttggatagacttctgcgtaagaaagctggattgactgttgttcc ttcatataatgccttgagaaattctgaatatcaaaggcagtttgtttggaagacttctaaag aaactgctccagcttttgcagccaatcaggtagcttaatggatgtaatacatttctgagtac cattatcttatctagtaatgtagatttacatagaattaagagttgaaagaaattaagtactt aagtagcctggaggtaggttctagaaaaccaaaatgagagttttgctaaaatcatcctatta cttatgatttatggtagtaatattatactgtcctaggcttctgatgatcattgttgccagat gcagcacatatactaaatatgagacagggtaatgaaaacttggggaactggtaagtttttgc atgctac
150 220541_at MMP26 tgacccctttgatattccagcaagtgcagaatggagatgcagacatcaaggtttctttctgg cagtgggcccatgaagatggttggccctttgatgggccaggtggtatcttaggccatgcctt tttaccaaattctggaaatcctggagttgtccattttgacaagaatgaacactggtcagctt cagacactggatataatctgttcctggttgcaactcatgagattgggcattctttgggcctg cagcactctgggaatcagagctccataatgtaccccacttactggtatcacgaccctagaac cttccagctcagtgccgatgatatccaaaggatccagcatttgtatggagaaaaatgttcat ctgacataccttaatgttagcacagaggacttattcaacctgtcctttcagggagtttattg gaggatcaaagaactgaaagcactagagcagccttggggactgctaggatgaagccctaaag aatgcaacctagtcaggttagctgaaccgacactcaaaacgctac 151 220653_at PEG3 aaggtagaaagccttccgtccagtgtgcgaatctctgtgaacgtgtaagaattcacagtcag /// gaggactactttgaatgttttcagtgcggcaaagcttttctccagaatgtgcatcttcttca ZIM2 acatctcaaagcccatgaggcagcaagagtccttcctcctgggttgtcccacagcaagacat acttaattcgttatcagcggaaacatgactacgttggagagagagcctgccagtgttgtgac tgtggcagagtcttcagtcggaattcatatctcattcagcattatagaactcacactcaaga gaggccttaccagtgtcagctatgtgggaaatgtttcggccgaccctcatacctcactcaac attatcaactccattctcaagagaaaactgttgagtgcgatcactgttgagaaacctttagt cacagcacacacttttctcaacattattggcttcctcctagagtgttgtgagtgtgagaagg cctttcactagcccc 152 220700_at -- atgttactacaaacttgattaaacttctggtggaaattccatcacattttatgcaattttca atttatttctccaatttatttttaatgccacatggacattatattccttaaccattcttttg catgtgattaacatttgtgaaattaaccacttaagcaagtgtttttgctttgatgaaagaaa aatgtttaaaatcctactggatatgaaactgaaagtaatgttttgtgttttttgtttcaaat gaaagtgtaaattaagaatttgttggcagggcgtggtggctcatgcctgtaatcccagcact ttgggaggccgaggtgggcagatcacctgaggtcagcagtccaagaccaccctggccaacat ggtgaagtcccgtctctactaaaaatacaaaaatcagctgggcatggtggcgggcacttgta gtcccagctactcaggaggctgaagcaggagaatcacttgaactcaggaggcagaagttgcg gttagccga 153 220703_at C10orf1 cctctctccactctctagaaatattaaggctaggctgctgctgtatgtcagggctagtcccc 10 tcttctatgaatccagaataactctgaagaagccgagtaacaggcatgaagtgaagagaaat cgctgtaacaggaagacagcaaagcagatgctaatgaccacactatttaacgaactggaacc aacgagaaaatacggtattactgaagactgcacttccttgaacagagtgctcttctcagcaa atcggaaatgcctacacaaatcgctttacaagaaagactgtttcaaagcagcacctttctca atgttctcgttcaggtgacaattcttcttggtctcagctccaattttattgtcattttcatc aataaggatacacatctctgccaggagttgaacctgttgcttgtcgaggtggttagtgttta tttcaggcatcattacaaaatgtctgatctgttctagaaccct 154 220771_at LOC511 aagtatctccatacaaaatacggttgaattacaaaaagaaaattgtaacattagcatggaca 52 aacctggcaggtactccttaactctcctaagtaataaaaactgtaaaatgcaaataagcctt cgatgacatttactaacctttactaaagtatcaatgatgacttggttgtttaaacagctgac atttgggcaatttgagtatgtcaaactcaataatactggttttcatttgcaagatccactta aaacttaaggaggccaaaaaacatcatttaaaataccctataaattataatcatacatatga tacgaaaaatatcctacttcag 155 220817_at TRPC4 catacacatacgtattttccgtagtgctctgggtgggggaaaatgtttaaattgtattagca aatgctaacttacactttatagcatttatcagctgtggcatattacctgtaacatgtttaaa ttaaggcaaaggcaatcaaaaacctttttgttttgtagcctgcttttgctttcacaatttgt cttacaatt 156 220834_at MS4A12 gctggccaagactactgggccgtgctttctggaaaaggcatttcagccacgctgatgatctt ctccctcttggagttcttcgtagcttgtgccacagcccattttgccaaccaagcaaacacca caaccaatatgtctgtcctggttattccaaatatgtatgaaagcaaccctgtgacaccagcg tcttcttcagctcctcccagatgcaacaactactcagctaatgcccctaaatagtaaaagaa aaaggggtatcagtctaatctcatggagaaaaactacttgcaaaaacttcttaagaagatgt cttttattgtctacaatgatttctagtctttaaaaactgtgtttgagatttgtttttaggtt ggtcgctaatgatggctgtatctcccttcactgtctcttcctacattaccactactacatgc tggcaaaggtgaaggatcagaggactgaaaaatgattctgcaactctcttaaa 157 220847_x_at ZNF221 tgacatgcaccagagggtccacaggggagagcgaccctataattgtaaggaatgtggaaaga gctttggctgggcttcatgtcttttgaaacatcagagactccacagtggagaaaagccattg aaatctggagtgtgggaagagatctactcagaattcacagcttcatttacatcagtaagtct atgtgggagaaaagccatataaatgtgagaagtgtgggaagggctttggctgggcctcaact catctgacccatcaattctccacagcagagaaaaaccattcaaatatgagaactgtgggaag agctttgtacatagatcatatctttttttttttttttgagacagagtctcactctttcaccc aagcctgactgcagtggcg 158 220852_at PRO176 gaaaagcgccctgtgctgagtaaagcagccagtcttctcttgtcacagtaaaaggctgggag 8 taaaatttcccataaacacaggggaaacctacatttactcacatgccaaggaaaatggcacg gaagacccacgtgtagccacagcagagtctatgcagagggcctgcaaatgcctggggtgcga gtgaatgcctggaggggcggagtttccaagataacagctattgtgttttctttttcacactt cagaagagaatcctaaggactagactccgctcagtgcattcctttttcatacactgatctca agtacaatcacataattttgaaaatccatgtagtcctccctaaataaaattataaggatagg tttctatttccttccgattacctagatacctccgtcttctggaaaaccccaaaaagaccagt agacgaatcaggaaggtcctaggagtgattcctccaat 159 220970_s_at KAP2.1B tgcccccacagagcaatacactgaagcctaaacatctatctggtgtttttaaaaagttaaaa /// gaaaaatagattttttttcacaaggtgacaatagtgatttttaccatctggatacagcctgg KRTAP2- tgtaagcagacgtccattaccaccctcacccacattttcaggtgtctacatcagccttagtc 4 /// attatggatagtaaatcgacctttaagaattcctggggtggactttgcaaacacattctaca LOC644 acctgatggtttttactgctcaaactgtcaccatcatcttttgcaatgtgttgctcactgtt 350 /// gtcaata LOC728 285 /// LOC728 934 /// LOC730 755 160 220981_x_at LOC650 ggacagtctcagggttctgttctcgccttcacccggaccttcattgctacccctggcagcag 686 /// ttccagtctgtgcatcgtgaatgacgagctgtttgtgagggatgccagcccccaagagactc NXF2 agagtgccttctccatcccagtgtccacactctcctccagctctgagccctccctctcccag /// gagcagcaggaaatggtgcaggctttctctgcccagtctgggatgaaactggagtggtctca NXF2B gaagtgccttcaggacaatgagtggaactacactagagctggccaggccttcactatgctcc agaccgagggcaagatccccgcagaggccttcaagcaaatctcctaaaaggagccctccgat gtcttctttgtcttcgttcacatcctctttgtttcctcttttcaccagcctaaggcctggct gaccaggaagccaacgttaacttgcaggccacgtgacataac 161 220993_s_at GPR63 aagtctgcattgaatccgctgatctactactggaggattaagaaattccatgatgcttgcct ggacatgatgcctaagtccttcaagtttttgccgcagctccctggtcacacaaagcgacgga tacgtcctagtgctgtctatgtgtgtggggaacatcggacggtggtgtgaatattggaactg gctgacattttgggtgatgcttgttctttattgacattgaattctctttctcatagcctctc cactttatttttttttatagggtttgtgtatgtatgtgtgtgagcagtgtaaagaaagaatg gtaattatagttctgttaccaagaataaataataggaaagtgattacaaatattacctccag ggttcaatagaaatcctcaatttagggtgaggagacttttttttggttttggggtttttcct tgattgattttgttttcatagtgggaatcaggattgtgctttattgagcctgcagttacatt gaattgtaggtgtttcgtgtgctgctaaggta 162 221018_s_at TDRD1 gggactgtcgatgtagctgataagctagtgacatttggtctggcaaaaaacatcacacctca aaggcagagtgctttaaatacagaaaagatgtataggacgaattgctgctgcacagagttac agaaacaagttgaaaaacatgaacatattcttctcttcctcttaaacaattcaaccaatcaa aataaatttattgaaatgaaaaaactggtaaaaagttaagtaagttaaatcgtatgttttcg cctcttctgtgatcaccaataggacatcttcaggcatattggcaggatagagctaatggagt gaaacctattgtaaggctgtactttcgtgatttaatgacctgaggtttggtcataatgcttc tgctgtttttgtaggtttatctgatcgttttcctttgctactgctaatggaactgaaccccc aggggtattccagttgtaatagcctttccttactgttgtttgg 163 221077_at ARMC4 gttgagttgaaattctgccgcttactcaatggccttgggtgatgatgctgtaccctaattct aaaggaagcaatgaacccccttttcagctaccttactgataagcacttatgttctgccttct gctatcctgatggttcgggttgtctgtcttactatctacttcttgagtagagagaccacatt aaatttattgctgtatctcacagggcatcttgctagtgtgcacaggctcgcctccctacctc tgccccgatggtgtgaaggggagagggcgaggttccttagtggcagggctttgctgttcttc actctcagccccctgaaagcagttcttcctgcctctgagcctgtctttccttctgctgttaa cttctttcctacttttcttgcatccctctcccttccttttcctgccgtctttcttgtagaca t 164 221137_at -- aaaaggactaactcacatggctgcagtaagtgctggctgttagctggaagcacaaccaaggc tgttaacaggtgtgccttggttctcttccatatggcttctcttttgttttcagtactctgca gtttaattatgatgcatgcaggtgtgaatttctgtttattctgcttgggatgtgttttcctt ctgggatctgtgaatcggtttctcattatttttgtaaaacctgaagccagttatctcttaaa ataccagctctccttg 165 221168_at PRDM1 ctggacttcttggatgagctcaccctgaaccgcccaggcggtctgctcttggtgttcagaat 3 cacatcaatgcgaacgtcacagcgccttcgagggcgcagattttaactgccacgtattttta agttgtacttttctgtggaggaaattgtgccttttgaaacgacgttttgtgtgtgtatttca cgttagcatttcattgcataggcaaaacactagtcacaattgggtagatgtgacatccatat acttgtttacattttatctgttctcatgtcaaagactactccttgccccattgaatatatag tggtagcaggtgtacaaattggtcaagttgcaattatttatgagagaataatgataaatgta aaatatctaaagcatgaatctaagagcacgcaatatataattttaaagaaaatattctattt ggtagaatacaaatgtggtgtgtgttgttttataatgactgctgtacagtgggtatagtatt ttggttttggttccagattgtgcaatc 166 221258_s_at KIF18A gtgaagacatcaagagctcgaagtgtaaattacccgaacaagaatcactaccaaatgataac aaagacattttacaacggcttgatccttcttcattctcaactaagcattctatgcctgtacc aagcatggtgccatcctacatggcaatgactactgctgccaaaaggaaacggaaattaacaa gttctacatcaaacagttcgttaactgcagacgtaaattctggatttgccaaacgtgttcga caagataattcaagtgagaagcacttacaagaaaacaaaccaacaatggaacataaaagaaa catctgtaaaataaatccaagcatggttagaaaatttggaagaaatatttcaaaaggaaatc taagataaatcacttcaaaaccaagcaaaatgaagttgatcaaatctgcttttcaaagttta tcaataccctttcaaaaatatatttaaaatctttgaaagaagacccatcttaaagctaagtt tacccaagtactttcagcaagc 167 221319_at PCDHB8 cgggagcctgtctcagaactatcagtacgaggtgtgcctggcaggaggctcagggacgaatg agttccagttcctgaaaccagtattacctaatattcagggccattcttttgggccagaaatg gaacaaaactctaactttaggaatggctttggtttcagccttcagttaaagta 168 221393_at TAAR3 gaactccaccataaagcaactgctggcattttgctggtcagttcctgctcttttttcttttg gtttagttctatctgaggccgatgtttccggtatgcagagctataagatacttgttgcttgc ttcaatttctgtgcccttactttcaacaaattctgggggacaatattgttcactacatgttt ctttacccctggctccatcatggttggtatttatggcaaaatctttatcgtttccaaacagc atgctcgagtcatcagccatgtgcctgaaaacacaaagggggcagtgaaaaaacacctatcc aagaaaaaggacaggaaagcagcgaagacactgggtatagtaatgggggtgtttctggcttg ctggttgccttgttttcttgctgttctgattgacccatacctagactactccactcccatac taatattggatcttttagtgtggctccggtacttcaactctacttgcaaccctcttattcat ggcttttttaatccatggtttcagaaagcattcaagtacatagtgtcaggaaaaatatttag ctcccattcagaaactgc 169 221591_s_at FAM64A cacatctggacccatcagtgactgcctgccatagcctgagagtgtcttggggagaccttgca gagggggagaattgttccttctgctttcctaggggactcttgagcttagaaactcatcgtac acttgaccttgagccttctatttgcctcatctataacatgaagtgctagcatcagatatttg agagctcttagctctgtacccgggtgcctggtttttggggagtcatccgcagagtcactcac ccactgtgtttctggtgccaaggctcttgagggccccactctcatccctcctttccctacca gggactcggaggaaggcataggagatatttccaggcttacgaccctgggctcacgggtacct atttatatgctcagtgcagagcactgtggatgtgccaggaggggtagccctgttcaagagca atttctgccctttgtaaattatttaagaaacctgctttgtcattttattagaaagaaaccag cgtgtgactttcctagataacactgctttc 170 221609_s_at WNT6 ccgccaggagagcgtgcagctcgaagagaactgcctgtgccgcttccactggtgctgcgtag tacagtgccaccgttgccgtgtgcgcaaggagctcagcctctgcctgtgacccgccgcccgg ccgctagactgacttcgcgcagcggtggctcgcacctgtgggacctcagggcaccggcaccg ggcgcctctcgccgctcgagcccagcctctccctgccaaagcccaactcccagggctctgga aatggtgaggcgaggggcttgagaggaacgcccacccacgaaggcccagggcgccagacggc cccgaaaaggcgctcggggagcgtttaaaggacactgtacaggccctccctccccttggcct ctaggaggaaacagttttttagactggaaaaaagccagtctaaaggcctctggatactgggc tccccagaactgc 171 221718_s_at AKAP13 gcgatgcagaaatgaaccaccggagttcaatgcgagttcttggggatgttgtcaggagacct cccattcataggagaagtttcagtctagaaggcttgacaggaggagctggtgtcggaaacaa gccatcctcatctctagaagtaagctctgcaaatgccgaagagctcagacacccattcagtg gtgaggaacgggttgactctttggtgtcactttcagaagaggatctggagtcagaccagaga gaacataggatgtttgatcagcagatatgtcacagatctaagcagcagggatttaattactg tacatcagccatttcctctccattgacaaaatccatctcattaatgacaatcagccatcctg gattggacaattcacggccctt 172 221950_at EMX2 gtaggctcagcgatagtggtcctcttacagagaaacggggagcaggacgacgggggngctgg ggntggcgggggagggtgcccacaaaaagaatcaggacttgtactgggaaaaaaacccctaa attaattatatttcttggacattccctttcctaacatcctgaggcttaaaaccctgatgcaa acttctcctttcagtggttggagaaattggccgagttcaaccattcactgcaatgcctattc caaactttaaatctatctattgcaaaacctgaaggactgtagttagcggggatgatgttaag tgtggccaagcgcacggcggcaagttttcaagcactgagtttctattccaagatcatagact tactaaagagagtgacaaatgcttccttaatgtcttctataccagaatgtaaatatttttgt gttttgtgttaatttgttagaattctaacacactatatacttccaa
REFERENCES
[0252] 1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun M J. Cancer Statistics, 2007. CA Cancer J Clin 2007; 57:43-66. [0253] 2. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon J P, Vansteenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 2004; 350:351-60. [0254] 3. Winton T, Livingston R, Johnson D, et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med 2005; 352:2589-97. [0255] 4. Douillard J Y, Rosell R, De Lena M, et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol 2006; 7:719-27. [0256] 5. Strauss G M, Herndon J E, II, Maddaus M A, et al. Adjuvant chemotherapy in stage IB non-small cell lung cancer (NSCLC): Update of Cancer and Leukemia Group B (CALGB) protocol 9633. ASCO Meeting Abstracts 2006; 24:7007-. [0257] 6. Pignon J P, Tribodet H, Scagliotti G V, et al. Lung Adjuvant Cisplatin Evaluation (LACE): A pooled analysis of five randomized clinical trials including 4,584 patients. ASCO Meeting Abstracts 2006; 24:7008-. [0258] 7. Scagliotti G V, Fossati R, Torri V, et al. Randomized study of adjuvant chemotherapy for completely resected stage I, II, or IIIA non-small-cell Lung cancer. J Natl Cancer Inst 2003; 95:1453-61. [0259] 8. Waller D, Peake M D, Stephens R J, et al. Chemotherapy for patients with non-small cell lung cancer: the surgical setting of the Big Lung Trial. Eur Cardiothorac Surg 2004; 26:173-82. [0260] 9. Douillard J Y, Rosell R, Delena M, Legroumellec A, Torres A, Carpagnano F. ANITA: Phase III adjuvant vinorelbine (N) and cisplatin (P) versus observation (OBS) in completely resected (stage I-III) non-small-cell lung cancer (NSCLC) patients (pts): Final results after 70-month median follow-up. On behalf of the Adjuvant Navelbine International Trialist Association. ASCO Meeting Abstracts 2005; 23:7013-. [0261] 10. Hoffman P C, Mauer A M, Vokes E E. Lung cancer. Lancet 2000; 355:479-85. [0262] 11. Nesbitt J C, Putnam J B, Jr., Walsh G L, Roth J A, Mountain C F. Survival in early-stage non-small cell lung cancer. Ann Thorac Surg 1995; 60:466-72. [0263] 12. Beer D G, Kardia S L, Huang C C, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002; 8:816-24. [0264] 13. Chen H Y, Yu S L, Chen C H, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 2007; 356:11-20. [0265] 14. Lu Y, Lemon W, Liu P Y, et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006;3:e467. [0266] 15. Potti A, Mukherjee S, Petersen R, et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 2006; 355:570-80. [0267] 16. Raponi M, Zhang Y, Yu J, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res 2006; 66:7466-72. [0268] 17. Wigle D A, Jurisica I, Radulovich N, et al. Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res 2002; 62:3005-8. [0269] 18. Bianchi F, Nuciforo P, Vecchi M, et al. Survival prediction of stage I lung adenocarcinomas by expression of 10 genes. J Clin Invest 2007; 117:3436-44. [0270] 19. Sun Z, Wigle D A, Yang P. Non-overlapping and non-cell-type-specific gene expression signatures predict lung cancer survival. J Clin Oncol 2008; 26:877-83. [0271] 20. Lau S K, Boutros P C, Pintilie M, et al. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol 2007; 25:5562-9. [0272] 21. Oshita F, Ikehara M, Sekiyama A, et al. Genomic-wide cDNA microarray screening to correlate gene expression profile with chemoresistance in patients with advanced lung cancer. J Exp Ther Oncol 2004; 4:155-60. [0273] 22. Bolstad B M, Irizarry R A, Astrand M, Speed T P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19:185-93. [0274] 23. Affymetrix, ed. Transcript assignment for NetAffx® annotation; 2006. [0275] 24. Dworakowska D, Jassem E, Jassem J, et al. Clinical significance of apoptotic index in non-small cell lung cancer: correlation with p53, mdm2, pRb and p21WAF1/CIP1 protein expression. J Cancer Res Clin Oncol 2005; 131:617-23. [0276] 25. Allory Y, Matsuoka Y, Bazille C, Christensen El, Ronco P, Debiec H. The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. Clin Cancer Res 2005; 11:1190-7. [0277] 26. Boo Y J, Park J M, Kim J, et al. L1 expression as a marker for poor prognosis, tumor progression, and short survival in patients with colorectal cancer. Ann Surg Oncol 2007; 14:1703-11. [0278] 27. Gast D, Riedle S, Schabath H, et al. L1 augments cell migration and tumor growth but not beta3 integrin expression in ovarian carcinomas. Int J Cancer 2005; 115:658-65. [0279] 28. Thies A, Schachner M, Moll I, et al. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 2002; 38:1708-16. [0280] 29. Ouellet V, Provencher D M, Maugard C M, et al. Discrimination between serous low malignant potential and invasive epithelial ovarian tumors using molecular profiling. Oncogene 2005; 24:4672-87.
Sequence CWU
1
2021420DNAHomo sapiensmisc_feature(83)..(83)n is a, c, g, or t 1cactttgcaa
ctccctgggt aagagggacg acacctctgg tttttcaata ccaattacat 60ggaacttttc
tgtaatgggt acnaatgaag aagtttctaa aaacacacac aaagcacatt 120gggccaacta
tttagtaagc ccggatagac ttattgccaa aaacaaaaaa tagctttcaa 180aagaaattta
agttctatga gaaattcctt agtcatggtg ttgcgtaaat catattttag 240ctgcacggca
ttaccccaca cagggtggca gaacttgaag ggttactgac gtgtaaatgc 300tggtatttga
tttcctgtgt gtgttgccct ggcattaagg gcattttacc cttgcagttt 360tactaaaaca
ctgaaaaata ttccaagctt catattaacc ctacctgtca acgtaacgat 4202437DNAHomo
sapiens 2cctacccacc tcaaaatgtc tgtactgcaa gagggccctg ggcctctgct
ttccatattc 60acgtttggcc agagttgtag tcccaaagaa gagcatgggt ggcagatggt
agggaattga 120actggcctgt gcaatgggca tggagcacaa ggggtcacag catgcctcct
gccttaccgt 180ggcagtacgg agacagtcca gaacatggtc ttcttgccac ggggtgttgt
tgtctctggt 240ggtgctgcat gtctgtggct cacctttatt cttgaaactg aggtttacct
ggatctggct 300actgaggcta gagcccacag cagaatgggg ttgggcctgt ggccccccaa
actagggggt 360gtgggttcat cacagtgttg ccttttgtct cctaaagata gggatctact
tttgaaggga 420attgttcctc ccaaata
4373161DNAHomo sapiens 3agagctgatc acaagcacaa atctttccca
ctagccattt aataagttaa aaaaagatac 60aaaaacaaaa acctactagt cttgaacaaa
ctgtcatacg tatgggacct acacttaatc 120tatatgcttt acactagctt tctgcattta
ataggttaga a 1614475DNAHomo sapiens 4ggtgatgggt
tgtgttatgc ttgtattgaa tgctgtcttg acatctcttg ccttgtcctc 60cggtatgttc
taaagctgtg tctgagatct ggatctgccc atcactttgg cctagggaca 120gggctaatta
atttgcttta tacattttct tttactttcc ttttttcctt tctggaggca 180tcacatgctg
gtgctgtgtc tttatgaatg ttttaaccat tttcatggtg gaagaatttt 240atatttatgc
agttgtacaa ttttattttt ttctgcaaga aaaagtgtaa tgtatgaaat 300aaaccaaagt
cacttgtttg aaaataaatc tttattttga actttataaa agcaatgcag 360taccccatag
actggtgtta aatgttgtct acagtgcaaa atccatgttc taacatatgt 420aataattgcc
aggagtacag tgctcttgtt gatcttgtat tcagtcaggt taaaa 4755477DNAHomo
sapiens 5ggtgaaattt ctaactgttc tctgttcccg gaaccgaaat cacctgttgc
atgtgtttga 60tgaatacaaa aggatatcac agaaggatat tgaacagagt attaaatctg
aaacatctgg 120tagctttgaa gatgctctgc tggctatagt aaagtgcatg aggaacaaat
ctgcatattt 180tgctgaaaag ctctataaat cgatgaaggg cttgggcacc gatgataaca
ccctcatcag 240agtgatggtt tctcgagcag aaattgacat gttggatatc cgggcacact
tcaagagact 300ctatggaaag tctctgtact cgttcatcaa gggtgacaca tctggagact
acaggaaagt 360actgcttgtt ctctgtggag gagatgatta aaataaaaat cccagaagga
caggaggatt 420ctcaacactt tgaatttttt taacttcatt tttctacact gctattatca
ttatctc 4776420DNAHomo sapiens 6ccaactacaa tggccacacg tgtctacact
tagcctctat ccatggctac ctgggcatcg 60tggagctttt ggtgtccttg ggtgctgatg
tcaatgctca ggagccctgt aatggccgga 120ctgcccttca cctcgcagtg gacctgcaaa
atcctgacct ggtgtcactc ctgttgaagt 180gtggggctga tgtcaacaga gttacctacc
agggctattc tccctaccag ctcacctggg 240gccgcccaag cacccggata cagcagcagc
tgggccagct gacactagaa aaccttcaga 300tgctgccaga gagtgaggat gaggagagct
atgacacaga gtcagagttc acggagttca 360cagaggacga gctgccctat gatgactgtg
tgtttggagg ccagcgtctg acgttatgag 4207493DNAHomo sapiens 7ccaccttcac
ctcggaggga cggagaaaga agtggagaca gtcctttccc accattcctg 60cctttaagcc
aaagaaacaa gctgtgcagg catggtccct taaggcacag tgggagctga 120gctggaaggg
gccacgtgga tgggcaaagc ttgtcaaaga tgccccctcc aggagagagc 180caggatgccc
agatgaactg actgaaggaa aagcaagaaa cagtttcttg cttggaagcc 240aggtacagga
gaggcagcat gcttgggctg acccagcatc tcccagcaag acctcatctg 300tggagctgcc
acagagaagt ttgtagccag gtactgcatt ctctcccatc ctggggcagc 360actccccaga
gctgtgccag caggggggct gtgccaacct gttcttagag tgtagctgta 420agggcagtgc
ccatgtgtac attctgccta gagtgtagcc taaagggcag ggcccacgtg 480tatagtatct
gta 4938522DNAHomo
sapiens 8tcggccagcg agtacgacta cgtgagcttc cagtcggaca tcggcccgta
ccagagcggg 60cgcttctaca ccaagccacc tcagtgcgtg gacatccccg cggacctgcg
gctgtgccac 120aacgtgggct acaagaagat ggtgctgccc aacctgctgg agcacgagac
catggcggag 180gtgaagcagc aggccagcag ctgggtgccc ctgctcaaca agaactgcca
cgccggcacc 240caggtcttcc tctgctcgct cttcgcgccc gtctgcctgg accggcccat
ctacccgtgt 300cgctggctct gcgaggccgt gcgcgactcg tgcgagccgg tcatgcagtt
cttcggcttc 360tactggcccg agatgcttaa gtgtgacaag ttccccgagg gggacgtctg
catcgccatg 420acgccgccca atgccaccga agcctccaag ccccaaggca caacggtgtg
tcctccctgt 480gacaacgagt tgaaatctga ggccatcatt gaacatctct gt
5229444DNAHomo sapiens 9gacaaaccat ttccaacagc aacacagcca
ctaaaacaca aaaaggggga ttgggcggaa 60agtgagagcc agcagcaaaa actacatttt
gcaacttgtt ggtgtggatc tattggctga 120tctatgcctt tcaactagaa aattctaatg
attggcaagt cacgttgttt tcaggtccag 180agtagtttct ttctgtctgc tttaaatgga
aacagactca taccacactt acaattaagg 240tcaagcccag aaagtgataa gtgcagggag
gaaaagtgca agtccattat gtaatagtga 300cagcaaaggc ccaggggaga ggcattgcct
tctctgccca cagtctttcc gtgtgattgt 360ctttgaatct gaatcagcca gtctcagatg
ccccaaagtt tcggttccta tgagcccggg 420gcatgatctg atccccaaga catg
44410335DNAHomo sapiens 10taacacttgg
ctcttggtac ctgtgggtta gcatcaagtt ctccccaggg tagaattcaa 60tcagagctcc
agtttgcatt tggatgtgta aattacagta atcccatttc ccaaacctaa 120aatctgtttt
tctcatcaga ctctgagtaa ctggttgctg tgtcataact tcatagatgc 180aggaggctca
ggtgatctgt ttgaggagag caccctaggc agcctgcagg gaataacata 240ctggccgttc
tgacctgttg ccagcagata cacaggacat ggatgaaatt cccgtttcct 300ctagtttctt
cctgtagtac tcctctttta gatcc 33511525DNAHomo
sapiens 11gaggatggca caagcgattc acgtaggatc tgcccctgtg accaaaacac
ctcccattgg 60gccccacttc caacactggt gatcacattt caacatgagg tttagggaaa
caaatgccta 120aactacagca ctgtacataa actaacagga aatgctgctt ttgatcctca
aagaagtgat 180atagccaaaa ttgtaattta agaagccttt gtcagtatag caagatgtta
actatagaat 240caatctagga gtattcactg taaaattcaa cttttctgta tgtttgaaca
ttttcacaat 300ctcataggag tttttaaaaa gaagagaaag aagatatact ttgctttgga
gaaatctact 360ttttgactta catgggtttg ctgtaattaa gtgcccaata ttgaaaggct
gcaagtactt 420tgtaatcact ctttggcatg ggtaaataag catggtaact tatattgaaa
tatagtgctc 480ttgctttgga taactgtaaa gggacccatg ctgatagact ggaaa
52512445DNAHomo sapiens 12aagttcattc ttaagcttgc tttttttgag
actggtgttt gttagacagc cacagtcctg 60tctgggttag ggtcttccac atttgaggat
ccttcctatc tctccatggg actagactgc 120tttgttattc tatttatttt ttaatttttt
tcgagacagg atctcactct gttgcccagg 180atggagtgca gtggtgagat cacggctcat
tgcagcctcg acctcccagg tgatcctccc 240acctcagctt ccagattagc tggtgctata
ggcatgcacc accacgtcca tctaaatttc 300tttattattt gtagagatga ggtcttgcca
tgttacccag gctggtctca actcctgggc 360tcaagcgatc ctcctgcctc agtctctcaa
agtgctggga ttacaggtgt gagccactgt 420gcccagccta attgcagtaa gacaa
44513526DNAHomo sapiens 13tgcctctcgc
gcatggagga cgagaacaac cggctgcggc tggagagcaa gcggctgggt 60ggcgacgacg
cgcgtgtgcg ggagctggag ctggagctgg accggctgcg cgccgagaac 120ctccagctgc
tgaccgagaa cgaactgcac cggcagcagg agcgagcgcc gctttccaag 180tttggagact
agactgaaac ttttttgggg gagggggcaa aggggacttt ttacagtgat 240ggaatgtaac
attatataca tgtgtatata agacagtgga cctttttatg acacataatc 300agaagagaaa
tccccctggc tttggttggt ttcgtaaatt tagctatatg tagcttgcgt 360gctttctcct
gttcttttaa ttatgtgaaa ctgaagagtt gcttttcttg ttttcctttt 420tagaagtttt
tttccttaat gtgaaagtaa tttgaccaag ttataatgca tttttgtttt 480taacaaatcc
cctccttaaa cggagctata aggtggccaa atctga 52614480DNAHomo
sapiens 14acctcgcaac atcaacatct atacttacga tgatatggaa gtgaagcaaa
tcaacaaacg 60tgcctctggc caggcttttg agctgatctt gaagccacca tctcctatct
cagaagcccc 120acgaacttta gcttctccaa agaagaaaga cctgtccctg gaggagatcc
agaagaaact 180ggaggctgca ggggaaagaa gaaagtctca ggaggcccag gtgctgaaac
aattggcaga 240gaagagggaa cacgagcgag aagtccttca gaaggctttg gaggagaaca
acaacttcag 300caagatggcg gaggaaaagc tgatcctgaa aatggaacaa attaaggaaa
accgtgaggc 360taatctagct gctattattg aacgtctgca ggaaaaggag aggcatgctg
cggaggtgcg 420caggaacaag gaactccagg ttgaactgtc tggctgaagc aagggagggt
ctggcacgcc 48015508DNAHomo sapiensmisc_feature(121)..(121)n is a, c,
g, or t 15accaatcacg cctacagtgc tttgaaggtt tcctctccta ggctagtttc
aaacaggccc 60taaacaagtc tgctgctgcc ctctcatcag acctccgcac cctcacccca
ccatcactta 120nactacttta atccagttcc ttcaaagtga tacccccaca ggtaagccct
cagcatcctg 180aatacatcat ccgcagcctg ggaaccttct ccctcgtaca gcacaggaac
ctgacacata 240gtaggcacac agtaaacgtt tgtgaatgaa tgggagtcat ccagtcctga
ctcttctgtc 300tcttgaggtc ccttgaatct tccgcttcct ccccaccgat ttcagcgtgt
ccacatcaca 360gctccctcca gaagctgcaa gagcttctta gcagttcctg gtctgaaccc
tctcccagtc 420ctcatcttcc accctaaaac tagagtgatc ttcctaaaac ttcacttaac
ccctcagcta 480tgaaaaggct tccaggagtt tccatgaa
50816526DNAHomo sapiens 16gtccacattc ctgcaagcat tgattgagac
atttgcacaa tctaaaatgt aagcaaagta 60gtcattaaaa atacaccctc tacttgggct
ttatactgca tacaaattta ctcatgagcc 120ttcctttgag gaaggatgtg gatctccaaa
taaagattta gtgtttattt tgagctctgc 180atcttaacaa gatgatctga acacctctcc
tttgtatcaa taaatagccc tgttattctg 240aagtgagagg accaagtata gtaaaatgct
gacatctaaa actaaataaa tagaaaacac 300caggccagaa ctatagtcat actcacacaa
agggagaaat ttaaactcga accaagcaaa 360aggcttcacg gaaatagcat ggaaaaacaa
tgcttccagt ggccacttcc taaggaggaa 420caaccccgtc tgatctcaga attggcacca
cgtgagcttg ctaagtgata atatctgttt 480ctactacgga tttaggcaac aggacctgta
cattgtcaca ttgcat 52617456DNAHomo sapiens 17cacaaaggat
accagggccc tacggaaggc tctgacccat ctggaaatgc ggcgagctgc 60tcgccgaccc
aacttgcccc tgaaggtgaa gccaacgctg attgcagtgc ggccccctgt 120ccctctacct
gcaccctcac atcctgccag caccaatgag cctattgtcc tggaggactg 180agcacctgtg
gggaagggag gtgggctgag aggtagaggg tggatgccca gggcacccaa 240acctcccttc
cctttcgtgt cgaagggagt gaggagtgaa ttaaggaaga gagcaagtga 300gtgtgtgtcc
ctggaggggt tgggcgccct ctggtgttac cacctcgaga cttgtctcat 360gcctccatgc
ttgccgatgg aggacagact gcaggaactt ggcccatgtg ggaacctagc 420ctgttttggg
gggtaggacc cacagatgtc ttggac 45618475DNAHomo
sapiens 18gaaattcttt cccagtctgt cgatttatgc ctcagccact tgcctgtgct
acaattcatt 60gtgttacctg tagattcagg taatacaaac catatataat catcaagtaa
tacaaactaa 120tttagtaata gcctgggtta agtattatta gggccctgtg tctgcatgta
gaaaaaaaaa 180ttcacatgat gcacttcaaa ttcaaataaa aatccttttg gcatgttccc
atttttgctt 240agctcaatta gtgtggctaa ccaagagata actgtaaatg tgacattgat
ttgctcttac 300tacagctaca gtgattgggg gaggaaaagt cccaacccaa tgggctcaaa
cttctaaggg 360gtactcctct catcccctta tccttctccc tcgacatttt ctccctcttt
cttcccatga 420ccccaaagcc aagggcaaca gatcagtaaa gaacgtggtc agagtagaac
ccctg 47519466DNAHomo sapiens 19gaatatcaca gcttaccttg ggaatactac
tgacaatttc tttaaaattt ccaacctgaa 60gatgggtcat aattacacgt tcaccgtcca
agcaagatgc ctttttggca accagatctg 120tggggagcct gccatcctgc tgtacgatga
gctggggtct ggtgcagatg catctgcaac 180gcaggctgcc agatctacgg atgttgctgc
tgtggtggtg cccatcttat tcctgatact 240gctgagcctg ggggtggggt ttgccatcct
gtacacgaag caccggaggc tgcagagcag 300cttcaccgcc ttcgccaaca gccactacag
ctccaggctg gggtccgcaa tcttctcctc 360tggggatgac ctgggggaag atgatgaaga
tgcccctatg ataactggat tttcagatga 420cgtccccatg gtgatagcct gaaagagctt
tcctcactag aaacca 46620432DNAHomo
sapiensmisc_feature(307)..(307)n is a, c, g, or t 20gagtccagtc gaagattggg
tccctggaca atatcaccca cgtccctggc ggaggaaata 60aaaagattga aacccacaag
ctgaccttcc gcgagaacgc caaagccaag acagaccacg 120gggcggagat cgtgtacaag
tcgccagtgg tgtctgggga cacgtctcca cggcatctca 180gcaatgtctc ctccaccggc
agcatcgaca tggtagactc gccccagctc gccacgctag 240ctgacgaggt gtctgcctcc
ctggccaagc agggtttgtg atcaggcccc tggggcggtc 300aataatngtg gagaggagag
aatgagagag tgtggaaaaa aaaagaataa tgacccggcc 360cccgccctct gcccccagct
gctcctcgca gttcggttaa ttggttaatc acttaacctg 420cttttgtcac tc
43221530DNAHomo sapiens
21aagcggcgca accaggagat gcagcagaag ttggtggagc tgtcggctga gaacgagaag
60ctgcaccagc gcgtggagca gctcacgcgg gacctggccg gcctccggca gttcttcaag
120cagctgccca gcccgccctt cctgccggcc gccgggacag cagactgccg gtaacgcgcg
180gccggggcgg gagagactca gcaacgaccc atacctcaga cccgacggcc cggagcggag
240cgcgccctgc cctggcgcag ccagagccgc cgggtgcccg ctgcagtttc ttgggacata
300ggagcgcaaa gaagctacag cctggactta ccaccactaa actgcgagag aagctaaacg
360tgtttatttt cccttaaatt atttttgtaa tggtagcttt ttctacatct tactcctgtt
420gatgcagcta aggtacattt gtaaaaagaa aaaaaaccag acttttcaga caaacccttt
480gtattgtaga taagaggaaa agactgagca tgctcacttt tttatattaa
53022544DNAHomo sapiens 22tgttccggaa ggacatggcc tccaactaca aggagctggg
cttccagggc taggcccctg 60ccgctcccac ccccacccat ctgggccccg ggttcaagag
agagcggggt ctgatctcgt 120gtagccatat agagtttgct tctgagtgtc tgctttgttt
agtagaggtg ggcaggagga 180gctgaggggc tggggctggg gtgttgaagt tggctttgca
tgcccagcga tgcgcctccc 240tgtgggatgt catcaccctg ggaaccggga gtgcccttgg
ctcactgtgt tctgcatggt 300ttggatctga attaattgtc ctttcttcta aatcccaacc
gaacttcttc caacctccaa 360actggctgta accccaaatc caagccatta actacacctg
acagtagcaa ttgtctgatt 420aatcactggc cccttgaaga cagcagaatg tccctttgca
atgaggagga gatctgggct 480gggcgggcca gctggggaag catttgacta tctggaactt
gtgtgtgcct cctcaggtat 540ggca
54423516DNAHomo sapiens 23ctgtggtgca tggcagcgga
ggccctgagc cgagggtggg ccctgtggca ggccctgctt 60gccctgctct gctggctctg
gcatgggctg gctcaccctg ccagctggct acagcccctg 120ggcccgccag ccaccccgcc
tggctcacca ccctgcagtt tgctcctgga cagcagcctc 180tccagcaact gggatgacga
cagcctaggg ccttcactct cccctgaggc tgtcctggcc 240cggactgtgg ggagcacctc
caccccccgg agcaggtgca cacccaggga tgccctggac 300ctaagtgaca tcaactcaga
gcctcctcgg ggctccttcc cctcctttga gcctcggaac 360ctcctcagcc tgtttgagga
caccctagac ccaacctgag ccccagactc tgcctctgca 420cttttaacct tttatcctgt
gtctctcccg tcgcccttga aagctggggc ccctcgggaa 480ctcccatggt cttctctgcc
tggccgtgtc taataa 51624488DNAHomo sapiens
24gaaacatcgg ctaggtttcc tgctgcaaaa atctgattcc tgtgaacaca attcttccca
60caacaagaag gacaaagtgg ttatttgcca gagagtgagc caagaggaag tcaagaaatg
120ggctgaatca ctggaaaacc tgattagtca tgaatgtggg ctggcagctt tcaaagcttt
180cttgaagtct gaatatagtg aggagaatat tgacttctgg atcagctgtg aagagtacaa
240gaaaatcaaa tcaccatcta aactaagtcc caaggccaaa aagatctata atgaattcat
300ctcagtccag gcaaccaaag aggtgaacct ggattcttgc accagggaag agacaagccg
360gaacatgcta gagcctacaa taacctgctt tgatgaggcc cagaagaaga ttttcaacct
420gatggagaag gattcctacc gccgcttcct caagtctcga ttctatcttg atttggtcaa
480cccgtcca
48825361DNAHomo sapiens 25ttcaagaacc ggtttccaaa gacagtcttc taattcctca
ttagtaataa gtaaaatgtt 60tattgttgta gctctggtat ataatccatt cctcttaaaa
tataagacct ctggcatgaa 120tatttcatat ctataaaatg acagatccca ccaggaagga
agctgttgct ttctttgagg 180tgattttttt cctttgctcc ctgttgctga aaccatacag
cttcataaat aattttgctt 240gctgaaggaa gaaaaagtgt ttttcataaa cccattatcc
aggactgttt atagctgttg 300gaaggactag gtcttcccta gcccccccag tgtgcaaggg
cagtgaagac ttgattgtac 360a
36126302DNAHomo sapiens 26cctccctatc gtctgaacag
ttgtcttcct cagcctcctc ccgcccccac cttgggaatg 60taaatacacc gtgactttga
aagtttgtac ccctgtcctt ccctttacgc cactagtgtg 120taggcagatg tctgagtccc
taggtggttt ctaggattga tagcaattag ctttgatgaa 180cccatcccag gaaaaataaa
aacagacaaa aaaaaaggaa agattggttc tcccagcact 240gctcagcagc cacagcctcc
ctgtatgcct gtgcttggtc tactgataag ccctctacaa 300aa
30227385DNAHomo sapiens
27ttccttttgt agattcccag tttattttct aagactgcaa agatcacttt gtcaccagcc
60ctgggacctg agaccaaggg ggtgtcttgt gggcagtgag ggggtgagga gaggctggca
120tgaggttcag tcattccagt gagctccaaa gaggggccac ctgttctcaa aagcatgttg
180gggaccagga ggtaaaactg gccatttatg gtgaacctgt gtcttggagc tgacttacta
240agtggaatga gccgaggatt tgaatatcag ttctaacctt gatagaagaa ccttgggtta
300catgtggttc acattaagag gatagaatcc tttggaatct tatggcaacc aaatgtggct
360tgacgaagtc gtggtttcat ctctt
38528502DNAHomo sapiens 28gcaagcaccc caagttcgag gagatcctca cccgcctgcg
tctgcagaag aggggtacag 60gtgcggtgga cacagctgcc gtgggctcag tatttgacgt
gtccaacgct gatcggctgg 120gctcgtccga agtagaacag gtgcagctgg tggtggatgg
tgtgaagctc atggtggaaa 180tggagaagaa gttggagaaa ggccagtcca tcgacgacat
gatccccgcc cagaagtagg 240cgcctgccca cctgccaccg actgctggaa ccccagccag
tgggagggcc tggcccacca 300gagtcctgct ccctcactcc tcgccccgcc ccctgtccca
gagtccacct gggggctctc 360tccacccttc tcagagttcc agtttcaacc agagttccaa
ccaatgggct ccatcctctg 420gattctggcc aatgaaatat ctccctggca gggtcctctt
cttttcccag agctcctccc 480caaccaggag ctctagttaa tg
50229338DNAHomo sapiens 29tgtttggctg tagcagtgcg
gccctggctg tgcatggaaa cctggagggg gctggcatcg 60tgctcaagta catcatggct
ggttgcccct tgtttctggg taatctctgg gatgtgactg 120accgcgacat tgaccgctac
acggaagctc tgctgcaagg ctggcttgga gcaggcccag 180gggcccccct tctctactat
gtaaaccagg cccgccaagc tccccgactc aagtatctta 240ttggggctgc acctatagcc
tatggcttgc ctgtctctct gcggtaaccc catggagctg 300tcttattgat gctagaagcc
tcataactgt tctacctc 33830406DNAHomo sapiens
30gataaaacgg caacacagct cacaagaaca gactttccag ctgctgaagt tatggaaaca
60tcaaaacaaa gcccaagata tagtcaagaa gatcatccaa gatattgacc tctgtgaaaa
120cagcgtgcag cggcacattg gacatgctaa cctcaccttc gagcagcttc gtagcttgat
180ggaaagctta ccgggaaaga aagtgggagc agaagacatt gaaaaaacaa taaaggcatg
240caaacccagt gaccagatcc tgaagctgct cagtttgtgg cgaataaaaa atggcgacca
300agacaccttg aagggcctaa tgcacgcact aaagcactca aagacgtacc actttcccaa
360aactgtcact cagagtctaa agaagaccat caggttcctt cacagc
40631400DNAHomo sapiens 31agagaggtgc tattcaagtg attctgaagg caccccaagg
tatatctgta atttaaagat 60tactgcaaat atctttactt tactgtgggt ttttagtaca
tctgttaatt tagtgtttct 120ttgtgtgttt tgtagactag tgttcttcca tccttcaact
gagctcaaag taggttttgt 180tgtaacattg tgattaggat ttaaactaat tcagagaatt
gtatctttta ctgtacatac 240tgtattcttt aagttttaat ttgttgtcat actgtctgtg
ctgatggctt ggcttaagat 300tttgatgcat aaatgaggtc actgttgatc agtgttgcta
gtagcttggc agctcttcat 360aaaagcatat tgggttggaa aggtgtttgc ctatttttca
40032506DNAHomo sapiens 32aatcagcatc tttccaatga
ggtcaaaact tggaaggaaa gaacccttaa aagagaggct 60cacaaacaag taacttgtga
gaattctcca aagtctccta aagtgactgg aacagcttct 120aaaaagaaac aaattacacc
ctctcaatgc aaggaacgga atttacaaga tcctgtgcca 180aaggaatcac caaaatcttg
tttttttgat agccgatcaa agtctttacc atcacctcat 240ccagttcgct attttgataa
ctcaagttta ggcctttgtc cagaggtgca aaatgcagga 300gcagagagtg tggattctca
gccaggtcct tggcacgcct cctcaggcaa ggatgtgcct 360gagtgcaaaa ctcagtagac
tcctctttgt cacttctctg gagatccagc attccttatt 420tggaaatgac tttgtttatg
tgtctatccc tggtaatgat gttgtagtgc agcttaattt 480caattcagtc tttactttgc
cactag 50633427DNAHomo sapiens
33ttccctccac ctccaagaca ggtggcggcc gggcaggcac tcttaagccc acctccccct
60cttgttgcct tcgatttcgg caaagcctgg gcaggtgcca ccgggaagga atggcatcga
120gatgctgggc ggggacgcgg cgtggcgagg gggcttgacg gcgttggcgg ggctgggcac
180aggggcagcc gcagggaggc agggatggca aggcgtgaag ccaccctgga aggaactgga
240ccaaggtctt cagaggtgcg acagggtctg gaatctgacc ttactctagc aggagttttt
300gtagactctc cctgatagtt tagtttttga taaagcatgc tggtaaaacc actaccctca
360gagagagcca aaaatacaga agaggcggag agcgcccctc caaccaggct gttattcccc
420tggactc
42734547DNAHomo sapiens 34gtacatggga ctatgctttt ctcaaagccc cattaactgc
ttcctataat tttgatagtg 60ggaccacata cgtaaaaatc tctcatttgt gtggagtcat
ttctgatttc aggggagatc 120cttgtgttta tcagaaaggg cagaagtagg ggaagaataa
tttggtatcc ttatctagtg 180tttgattgtc aatgctggag aaaaatatct gtaagagtgt
ttatacagta cacttcagtt 240atcttgatct ccctttccta tatgatgatt tgcttaaata
tccatattaa gtaagtctca 300aggtagggta ggcagcctga gagtctagag gcctttagtt
ataaaggaat ctagccagtg 360aacataattc ttattactag actgccacaa ggaagaaatt
aacttaccct gtatatcagg 420gtacaaaaaa ttcagtgatg tgcctaaata agttataaag
atttaggcca atcagaagct 480aacagcagtt tcaggtagag gtgcatgcct aatgttagtt
agtgtagatt ccatttactg 540cattctt
54735457DNAHomo sapiens 35tttcccctag ttgacctgtc
tataagagaa ttatatattt ctaactatat aaccctagga 60atttagacaa cctgaaattt
attcacatat atcaaagtga gaaaatgcct caattcacat 120agatttcttc tctttagtat
aattgaccta ctttggtagt ggaatagtga atacttacta 180taatttgact tgaatatgta
gctcatcctt tacaccaact cctaatttta aataatttct 240actctgtctt aaatgagaag
tacttggttt tttttttctt aaatatgtat atgacattta 300aatgtaactt attatttttt
ttgagaccga gtcttgctct gttacccagg ctggagtgca 360gtgggtgatc ttggctcact
gcaagctctg ccctccccgg gttcgcacca ttctcctgcc 420tcagcctccc aattagcttg
gcctacagtc atctgcc 45736507DNAHomo sapiens
36ggaaagcagg attccatcgc tggaacaatt acatgatgga ctggaaaaat caatttaacg
60attacactag caagaaagaa agttgtgtgg gtctctaatt aatagattta ccctttatag
120aacatatttt cctttagatc aaggcaaaaa tatcaggagc ttttttacac acctactaaa
180aaagttatta tgtagctgaa acaaaaatgc cagaaggata atattgattc ctcacatctt
240taacttagta ttttacctag catttcaaaa cccaaatggc tagaacatgt ttaattaaat
300ttcacaatat aaagttctac agttaattat gtgcatatta aaacaatggc ctggttcaat
360ttctttcttt ccttaataaa tttaagtttt ttccccccaa aattatcagt gctctgcttt
420tagtcacgtg tattttcatt accactcgta aaaaggtatc ttttttaaat gaattaaata
480ttgaaacact gtacaccata gtttaca
50737550DNAHomo sapiens 37gaggagaaca ctagacatgc caactcggga gcattctgcc
tgcctgggaa cggggtggac 60gagggagtgt ctgtaaggac tcagtgttga ctgtaggcgc
ccctggggtg ggtttagcag 120gctgcagcag gcagaggagg agtacccccc tgagagcatg
tgggggaagg ccttgctgtc 180atgtgaatcc ctcaataccc ctagtatctg gctgggtttt
caggggcttt ggaagctctg 240ttgcaggtgt ccgggggtct aggactttag ggatctggga
tctggggaag gaccaaccca 300tgccctgcca agcctggagc ccctgtgttg gggggcaagg
tgggggagcc tggagcccct 360gtgtgggagg gcgaggcggg ggagcctgga gcccctgtgt
gggagggcga ggcgggggat 420cctggagccc ctgtgtcggg gggcgaggga ggggaggtgg
ccgtcggttg accttctgaa 480catgagtgtc aactccagga cttgcttcca agcccttccc
tctgttggaa attgggtgtg 540ccctggctcc
55038421DNAHomo sapiens 38tgcttccagc cttcgtaatt
agacttcacc ctgagtacac acacaatcac tgccactctc 60actatagaca aaccacactc
cctcctctgt cacccagtca ctgccatctc aacacacatc 120cccaccctgt gtacacacaa
tctctgttat tcatactctc actccttatg cgcactctca 180acagggcatg tagtctgcac
tcaagcatgc catcccagcc tcaccctgca ttttattcgg 240ctcatcccat tttccctgaa
cattttcgct gaactagggc cctggcagga tgctgggact 300gtgcaaggag gtaggaccta
tgcccacgga gctaagagac aggaacacag gctcatctcc 360cgcactaacc aacccctggg
atggctcaca gcctgctccc agtgctgtgt catgacctga 420a
42139501DNAHomo sapiens
39atgcttgccc aacacactgt gaaatagtta ccaaaatttg tacaaatgca gcatcttcat
60tctttctgag aagacaagat ggttttcttt acatgaacaa atgaacaaaa gagatcctag
120atccataacg tagctaaggc atctaagagt ttgctgttga taatcttgct gaccaaaaac
180tactggagag taacacaggt tatatgccat cacaaataca atgctcatga agaactgatt
240tgtagagtca atgaacctgt gtccagaatt ttaataggct ctctattgga aggagaaaga
300atttcaagtt aacagtatct aactttatca tagttgatgt tagtaaattt taaaaaatga
360ttttatatgt atgacaaaaa tctttgtaaa atgcgcaagt gcaataattt aaagaggtct
420taactttgca tttataaatt ataaatattg tacatgtgtg taattttttc atgtattcat
480ttgcagtctt tgtatttaaa a
50140530DNAHomo sapiens 40tttccattcc caatctagtg ctagatgtat aaatctttct
tttgattctt cctaacaaaa 60tattttctgg gttaaaaccc cagccaactc attgggttgt
agccaaaggt tcactctcaa 120gaagctttaa tatttaaata aaatcatatt gaatgtttcc
aacctggagt ataatattca 180gatataaaac agttttgtca gtctttctta gtgcctgtgt
ggatttttgt gaaaatgtca 240aagagaaaac ttatatacta tttcccttga aattttaaac
tatattttct ttacaggtat 300ttataatata ccaatgcttt tatcaaacag aattttaaag
agcataataa attatattaa 360agaaccaaaa gttttcctga gaataagaaa gtttcaccca
ataaaatatt tttgaaaggc 420atgttcctct gtcaatgaaa aaaagtacat gtatgtgttg
tgatattaaa agtgacattt 480gtctaatagc ctaatacaac atgtagctga gtttaacatg
tgtggtcttg 53041471DNAHomo sapiens 41gaacctagga gagtcaacat
ctggaggatt ttagtctttc ttacacatat gtgtgatttt 60aaacgaatat tctcagacca
caggaaactc ttcatccccc tgttgtttac cagtaacagt 120atatcacaga cctttccaaa
tgtttgtata tgtaatcaga tgtacattta tattgaaaaa 180caaatgagat ggacttaaag
agcacatcct gataaatact ttctctctca cctgtactat 240atttctatta gactaaagtt
atgtgatttt ttttttacat tttttcagat gactagcaat 300tttgatagtt tataagataa
tgcaaagaac tttctctgac aaactaactg cagtaacaga 360aacctttctt ttcagttact
ctttttcaag aatgaaagat tattatacaa aaaattgtat 420actacttgat ggaaccaact
ttgtacatct tggccatgtc actggtcatt g 47142416DNAHomo sapiens
42catgctaggc tttctcagtg gggaaaaaaa tggctggata gaactgggac aaacacagac
60ccatctttag gggtctggat tttgtaggtc cgactacaca gcagtgttaa ctcatttctc
120atgccattag ctctctacaa aataaagcaa agtagttcta gtgtggtcgt tataaaccaa
180tattgtgaaa aatagcaact attcatttgt tcacaacatg cgtatttata gagtagttag
240gtaccatttg taaggtaaat cctttaaaat tctataatac atactaaaat agtggttatt
300ggtctgatat atgctgctct tggttctata aactagataa aagcagtgct ttgtgaaatg
360cagtgttctc tcttaacgcc actggtgata ggaagtagtt cccttcagtt caaatc
41643471DNAHomo sapiensmisc_feature(200)..(200)n is a, c, g, or t
43ttcctcccct gtagggtttg gacagaccca cccccagcct tgcccagctt tcaaaggaca
60aaagggagca tcccccacct actctcaggt ttttgaggaa acaaagattt gtggtaactg
120aaggtgttgg gtcagtggcc aggtgccgac actgagctgt gacccagagg ggacgctgag
180gaagtgggcg tgagtggacn tgtcaggtgg ttaccaggca ctggttgttg atggtcggtg
240gttgggtgtg ggcagtcatc agtcatcagg tgtgctcagg ggacaatctc ccctcaaccg
300cacatgtgcc actgttcagc ggagctgact ggtttcncct ggtagagggn ccggctgttt
360cctgacagat gcctggtgag caggggaagc aggacccagt ggtcancagg tgtctttaac
420tgtcattgtg tgtggaatgt cgcagactcc tccacgtggc gggaatgagc t
47144489DNAHomo sapiens 44gcaccacgac gatgacgttc acttgttttg tgtttttcga
tctcttcaac gccttgacct 60gccgctctca gaccaagctg atatttgaga tcggctttct
caggaaccac atgttcctct 120actccgtcct ggggtccatc ctggggcagc tggcggtcat
ttacatcccc ccgctgcaga 180gggtcttcca gacggagaac ctgggagcgc ttgatttgct
gtttttaact ggattggcct 240catccgtctt cattttgtca gagctcctca aactatgtga
aaaatactgt tgcagcccca 300agagagtcca gatgcaccct gaagatgtgt agtggaccgc
actccgcggc accttcccta 360atcatctcga tctggttgtg actgtggccc ctgccgtgtc
tcctcgtcag gggagacttt 420taggaggccg cagccttcca tcaccggatc agtttttcct
cttaggaaag ctgcaggaac 480ctcgtgggc
48945546DNAHomo sapiensmisc_feature(76)..(76)n is
a, c, g, or t 45gtggctttcc taggaatggg tcgtacaaag ctaagtggta atgatgctat
ttggggaaag 60gtcttttttg cttaantttg ttttttaaaa ctctgatgat tncttgagca
acaggcaggt 120tatctgcctg gttgaattct ggttgaaccg tgtattctaa tatttctggt
taagtggtga 180ctgggtaagg aaaccacttg gggtagcagt tcaacaattc acttacgaat
gtttataagc 240tttccatttc ctaggtaatt ttttaaaagc cagtcaaaac aaaaacttta
ctgaaaatgg 300acagaaatag gaaatggact ttttccttac tgtctatacc tcctgaacct
tggtattgta 360aagatctggg gacctctggg tctgttctga ccattcccta gtctccatgg
ccaagcactc 420aaggattgat ggacaccaca caccagctat attcatttgc caagatcaac
agctccttct 480ccaaacaact caagccccca attccnatcg cattcnnttn gggtgagatg
caactaacag 540cccctt
54646520DNAHomo sapiensmisc_feature(48)..(48)n is a, c, g, or
t 46gcaggctaga tccgaggtgg cagctccagc ccccgggctc gccccctngc gggcgtgccc
60cgcgcgcccc gggcggccga aggccgggcc gccccgtccc gccccgtagt tgctctttcg
120gtagtggcga tgcgccctgc atgtctcctc acccgtggat cgtgacgact cgaaataaca
180gaaacaaagt caataaagtg aaaataaata aaaatccttg aacaaatccg aaaaggcttg
240gagtcctcgc ccagatctct ctcccctgcg agcccttttt atttgagaag gaaaaagaga
300aaagagaatc gtttaaggga acccggcgcc cagccaggct ccagtggccc gaacggggcg
360gcgagggcgg cgagggcgcc gaggtccggc ccatcccagt cctgtggggc tggccgggca
420gagaccccgg acccaggccc aggcctaacc tgctaaatgt ccccggacgg ttctggtctc
480ctcggccact ttcagtgcgt cggttcgttt tgattctttt
52047545DNAHomo sapiens 47tgcagttttg catgtaatcg gttatacctt tattggactt
ttatagacat tttttatttg 60catgaaaaaa actcactaaa tttacatcac taaacaaagg
ttaacccttg tgtgaaatga 120aggaactgtc aataattgac agccaactaa tacagtaaac
tgttatacta gttttgagct 180ttagacctca gccttttgtg tggaagaagt cacagctttc
ttaggcttta aaggaaaaga 240aggaaggact taaatagctt ttcttcctac cgggattacc
tatgtttttc cttgcttgca 300atctcatctg attttgctag aaatcacaac catattgttt
atgcatattg catgagtatt 360accaagaaaa aaatctttaa aagttgtgat gtgacatgat
ataaaggatc tctttatgtt 420aaatgtcttt ccatgtacct ctggtgtgtc agggattttg
tgcctcaaaa aatgtttcca 480aggttgtgtg tttatactgt gtattttttt taaattcacg
gtgaacagca cttttattat 540ttcca
54548539DNAHomo sapiens 48aggtggcagt ggtccgtact
ccacccaagt cgccgtcttc cgccaagagc cgcctgcaga 60cagcccccgt gcccatgcca
gacctgaaga atgtcaagtc caagatcggc tccactgaga 120acctgaagca ccagccggga
ggcgggaagg tgcaaatagt ctacaaacca gttgacctga 180gcaaggtgac ctccaagtgt
ggctcattag gcaacatcca tcataaacca ggaggtggcc 240aggtggaagt aaaatctgag
aagcttgact tcaaggacag agtccagtcg aagattgggt 300ccctggacaa tatcacccac
gtccctggcg gaggaaataa aaagattgaa acccacaagc 360tgaccttccg cgagaacgcc
aaagccaaga cagaccacgg ggcggagatc gtgtacaagt 420cgccagtggt gtctggggac
acgtctccac ggcatctcag caatgtctcc tccaccggca 480gcatcgacat ggtagactcg
ccccagctcg ccacgctagc tgacgaggtg tctgcctcc 53949542DNAHomo sapiens
49gtaaagatcc tatagctctt tttttttgag atggagtttc gcttttgttg cccaggctgg
60agtgcaatgg cgcgatcttg gctcaccata acctccgcct cccaggttca agcaattctc
120ctgccttagc ctcctgagta gctgggatta caggcgtgcg ccactatgcc tgactaattt
180tgtagtttta gtagagacgg ggtttctcca tgttggtcag gctggtctca aactcctgac
240ctcaggtgat ctgcccgcct cagcctccca aagtgctgga attacaggcg tgagccacca
300cgcctggctg gatcctatat cttaggtaag acatataacg cagtctaatt acatttcact
360tcaaggctca atgctattct aactaatgac aagtattttc tactaaacca gaaattggta
420gaaggattta aataagtaaa agctactatg tactgcctta gtgctgatgc ctgtgtactg
480ccttaaatgt acctatggca atttagctct cttgggttcc caaatccctc tcacaagaat
540gt
54250329DNAHomo sapiens 50aaagcccaac atcccatggc tgtttctcac agatcccaaa
ttggccatgg aagtttattt 60tggcccttgt agtccctacc agtttaggct ggtgggccca
gggcagtggc caggagccag 120aaatgccatg ctgacccagt gggaccggtc gttgaaaccc
atgcagacac gagtggtcgg 180gagacttcag aagccttgct tctttttcca ttggctgaag
ctctttgcaa ttcctattct 240gttaatcgct gttttccttg tgttgaccta atcatcattt
tctctaggat ttctgaaagt 300tactgacaat acccagacag gggctttgc
32951438DNAHomo sapiens 51taattacgtc tgaggctgga
agctgggaaa cccaataaat gaactccttt agtttattac 60aacaagaaga cgttgtgata
caagagattc ctttcttctt gtgacaaaac atctttcaaa 120acttaccttg tcaagtcaaa
atttgtttta gtacctgttt aaccattaga aatatttcat 180gtcaaggagg aaaacattag
ggaaaacaaa aatgatataa agccatatga ggttatattg 240aaatgtattg agcttatatt
gaaatttatt gttccaattc acaggttaca tgaaaaaaaa 300tttactaagc ttaactacat
gtcacacatt gtacatggaa acaagaacat taagaagtcc 360gactgacagt atcagtactg
ttttgcaaat actcagcata ctttggatcc atttcatgca 420ggattgtgtt gttttaac
43852427DNAHomo sapiens
52agcagtggag gagcacacgg acctttcccc agagccccca gcatcccttg ctcacacctg
60cagtagcggt gctgtccagg tggcttacag atgaacccaa ctgtggagat gatgcagttg
120gcccaacctc actgacggtg aaaaaatgtt tgccagggtc cagaaacttt ttttggttta
180tttctcatac agtgtattgg caactttggc acaccagaat ttgtaaactc caccagtcct
240actttagtga gataaaaagc acactcttaa tcttcttcct tgttgctttc aagtagttag
300agttgagctg ttaaggacag aataaaatca tagttgagga cagcaggttt tagttgaatt
360gaaaatttga ctgctctgcc ccctagaatg tgtgtatttt aagcatatgt agctaatctc
420ttgtgtt
42753486DNAHomo sapiens 53ttcagcttca tttgtgtcaa tgggcaatga caggtaaatt
aagacatgca ctatgaggaa 60taattattta tttaataaca attgtttggg gttgaaaatt
caaaaagtgt ttatttttca 120tattgtgcca atatgtattg taaacatgtg ttttaattcc
aatatgatga ctcccttaaa 180atagaaataa gtggttattt ctcaacaaag cacagtgtta
aatgaaattg taaaacctgt 240caatgataca gtccctaaag aaaaaaaatc attgctttga
agcagttgtg tcagctactg 300cggaaaagga aggaaactcc tgacagtctt gtgcttttcc
tatttgtttt catggtgaaa 360atgtactgag attttggtat tacactgtat ttgtatctct
gaagcatgtt tcatgttttg 420tgactatata gagatgtttt taaaagtttc aatgtgattc
taatgtcttc atttcattgt 480atgatg
48654520DNAHomo sapiens 54ctgtctgaca cggactgcaa
taccagaaag ttctgcctcc agccccgcga tgagaagccg 60ttctgtgcta catgtcgtgg
gttgcggagg aggtgccagc gagatgccat gtgctgccct 120gggacactct gtgtgaacga
tgtttgtact acgatggaag atgcaacccc aatattagaa 180aggcagcttg atgagcaaga
tggcacacat gcagaaggaa caactgggca cccagtccag 240gaaaaccaac ccaaaaggaa
gccaagtatt aagaaatcac aaggcaggaa gggacaagag 300ggagaaagtt gtctgagaac
ttttgactgt ggccctggac tttgctgtgc tcgtcatttt 360tggacgaaaa tttgtaagcc
agtccttttg gagggacagg tctgctccag aagagggcat 420aaagacactg ctcaagctcc
agaaatcttc cagcgttgcg actgtggccc tggactactg 480tgtcgaagcc aattgaccag
caatcggcag catgctcgat 52055526DNAHomo sapiens
55gccctcttcc tttaggcatg tgagaaaatc agcctagcag tttaaacccc actttcctcc
60acttagcacc ataggcaagg gggcagatcc cagagcccct ctcacccccc ccaccacagg
120cctgctcctt ccttagcctt ggctaagatg gtccttctgt gtcttgcaaa gactccccaa
180gtggacaggg agcccctggg agggcagcca gtgagggtgg ggtgggactg aagcgttgtg
240tgcaaatcca gcttccatcc cctccccaac ctggcaggat tctccatgtg taaacttcac
300ccccaggacc caggatcttc tcctttctgg gcatcccttt gtgggtgggc agagccctga
360cccacagctg tgttactgct tggagaagca tatgtagggg cataccctgt ggtgttgtgc
420tgtgtctggc tgtgggataa atgtgtgtgg gaatattgaa acatcgccta ggaattgtgg
480tttgtatata accctctaag cccctatccc ttgtcgatga cagtca
52656419DNAHomo sapiens 56accaggagtg tcagctttta gaaggatcat ggtcatgtga
gcttctggtc accggaagcc 60agaaatactc agctgccatg ttgatccaca aaggtgggag
gatgtgggga agggggaaag 120cggtgaggac gcagagtgca ggctgtggcc tcggcatccc
gcaggaggtc cctagaacat 180gccgtttcat gtcacctgct acagctctcc cccagctagt
atgatgatcc gttttacaaa 240tgcagaaatg atcttaatat tcatgaccac tggccaggcg
aggtggctca cacctgtaat 300cccagcactt tgggaggcca aggcgggtgg atcacaaggt
caagagttcg agaccagcct 360gaccaacgtg gtgaaacccc gtctctacta aaaatagaag
cattagccga gcctggtgg 41957390DNAHomo sapiens 57gcgcagagta gctgcttcct
ggacgtgcgc gcccaggcca gtgctgtgag caggcgggga 60ggaggctgcc ggaggagcct
gagcctggca ggttcccctg ccctgaggct gtgagcagct 120agtggtggct tctcctgcct
ttttcaggga actgggaaac ttaggggact gagctgggga 180gggaggcagg tgggtggtaa
gagggaaact ctggagagcc tgcacccagg tactgagtgg 240ggagtgtaca gaccctgcct
tgggggttct gggaatgatg caactggttt tactagtgtg 300caagtgtgtt catccccaag
ttctcttttg tcctcacatg cagagttgtg catgcccctg 360agtgtgaaca ggtttgccta
cgttggtgca 39058504DNAHomo sapiens
58tggtttattg ccgtgtgcta tgcctttgtg ttctcagctc tgattgagtt tgccacagta
60aactatttca ctaagagagg ttatgcatgg gatggcaaaa gtgtggttcc agaaaagcca
120aagaaagtaa aggatcctct tattaagaaa aacaacactt acgctccaac agcaaccagc
180tacaccccta atttggccag gggcgacccg ggcttagcca ccattgctaa aagtgcaacc
240atagaaccta aagaggtcaa gcccgaaaca aaaccaccag aacccaagaa aacctttaac
300agtgtcagca aaattgaccg actgtcaaga atagccttcc cgctgctatt tggaatcttt
360aacttagtct actgggctac gtatttaaac agagagcctc agctaaaagc ccccacacca
420catcaataga tcttttactc acattctgtt gttcagttcc tctgcactgg gaatttattt
480atgttctcaa cgcagtaatt ccca
50459385DNAHomo sapiens 59tagaagtcca aatcactcat tgtttgtgaa agctgagctc
acagcaaaac aagccaccat 60gaagctgtcg gtgtgtctcc tgctggtcac gctggccctc
tgctgctacc aggccaatgc 120cgagttctgc ccagctcttg tttctgagct gttagacttc
ttcttcatta gtgaacctct 180gttcaagtta agtcttgcca aatttgatgc ccctccggaa
gctgttgcag ccaagttagg 240agtgaagaga tgcacggatc agatgtccct tcagaaacga
agcctcattg cggaagtcct 300ggtgaaaata ttgaagaaat gtagtgtgtg acatgtaaaa
actttcatcc tggtttccac 360tgtctttcaa tgacaccctg atctt
38560499DNAHomo sapiens 60aagcttcact tcaacttcac
tacttctgta gtctcatctt gagtaaaaga gaacccagcc 60aactatgaag ttccttgtct
ttgccttcat cttggctctc atggtttcca tgattggagc 120tgattcatct gaagagaaat
ttttgcgtag aattggaaga ttcggttatg ggtatggccc 180ttatcagcca gttccagaac
aaccactata cccacaacca taccaaccac aataccaaca 240atataccttt taatatcatc
agtaactgca ggacatgatt attgaggctt gattggcaaa 300tacgacttct acatccatat
tctcatcttt cataccatat cacactacta ccactttttg 360aagaatcatc aaagagcaat
gcaaatgaaa aacactataa tttactgtat actctttgtt 420tcaggatact tgccttttca
attgtcactt gatgatataa ttgcaattta aactgttaag 480ctgtgttcag tactgtttc
49961464DNAHomo sapiens
61ggtttgttac catcctttaa tcataactaa aacattgaaa acagaacaaa tgagaaaaga
60aaaaaaacct gccgattaac aatgacgaaa atcatgcatg atctgaaagg tgtggaaaga
120aacacaatta ggtctcactc tggttaggca ttatttattt aattatgttg tatatcattg
180tttgcagggc aacattctat gcattgaact gagcactaac tgggctagct tctggtagac
240gtttgtggct agtgcgattc acagtctact gcctgttcca ctgaaacatt ttgtcatatt
300cttgtattca aagaaaaaag gaaaaaaaga ttattgtaaa tattttattt aatgcacaca
360ttcacacagt ggtaacagac tgccagtgtt catcctgaaa tgtctcacgg attgatctac
420ctgtccatgt atgtctgctg agctttctcc ttggttatgt tttt
46462506DNAHomo sapiens 62taaagagctc atttttcagg tccgccacac ctatgaaatt
cccctggtgc tggtgggtaa 60caaaattgat ctggaacagt tccgccaggt ttctacagaa
gaaggcttga gtcttgccca 120agaatataat tgtggttttt ttgagacctc tgcagccctc
agattctgta ttgatgatgc 180ttttcatggc ttagtgaggg aaattcgcaa gaaggagtcc
atgccatcct tgatggaaaa 240gaaactgaag agaaaagaca gcctgtggaa gaagctcaaa
ggttctttga agaagaagag 300agaaaatatg acatgatatc tttgcttttg agttcctcac
gctctctgaa ttttattagt 360tggacaattc catatgtagc attctgcttc aatattatct
ctctatgtgt ctctctctct 420ttaaatatct gcctgtaggt aaaagcaagc tctgcatatc
tgtacctctt gagatagttt 480tgttttgcct ttaacagttg gatgga
50663436DNAHomo sapiens 63gaggggtcac cgtgcaggat
ggaaatttct ccttttctct ggagtcagtg aagaagctca 60aagacctcca ggagccccag
gagcccaggg ttgggaaact caggaacttt gcacccatcc 120ctggtgaacc tgtggttccc
atcctctgta gcaacccgaa ctttccagaa gaactcaagc 180ctctctgcaa ggagcccaat
gcccaggaga tacttcagag gctggaggaa atcgctgagg 240acccgggcac atgtgaaatc
tgtgcctacg ctgcctgtac cggatgctag gggggcttgc 300ccactgcctg cctcccctcc
gcagcaggga agctcttttc tcctgcagaa agggccaccc 360atgatactcc actcccagca
gctcaaccta ccctggtcca gtcgggagga gcagcccggg 420gaggaactgg gtgact
43664429DNAHomo sapiens
64ctccccccga gagaaggctg caaagctggg aagcccaggg tgtgctcctc ccgccctttt
60ggacccccgg gcttgcaccg gctgcactct gagaaccagc tgcgcgcgga gcggtgcaat
120gcagcaccca ccctgcgagc ctggcaattg cttgtcatta aaagaaaaaa aaattacgga
180gggctccggg ggtgtgtgtt ggggagggga gaccgatgct tctaacccag cccccgcttt
240gactgcgtgt tgtgcagctg agcgcgaggc caacgttgag caaggccttg cagggaggtt
300gctcctgtgt aattacgaaa gaaggctagt ccgaaggtgc aaaatagcag ggagaggacg
360cgccccctta ggaacaagac ctctggatgt ttccagtttc aaattgaaag aagaggggcg
420ccccccttg
42965513DNAHomo sapiens 65acagcagcag ttatggccgg agcgaccgct actcgagggg
ccgacaccgg gtgggcagac 60cagatcgtgg gctctctctg tccatggaaa ggggctgccc
tccccagcgt gattcttaca 120gccggtcagg ctgcagggtg cccaggggcg gaggccgtct
aggaggccgc ttggagagag 180gaggaggccg gagcagatac taagcaggaa cagacttggg
accaaaaatc ccttttcaac 240gaaactaaca aaaagaagaa cctgttgtat ggtaactacc
caaggactag tacaaggaag 300agttgttttt accttttaag aatttcctgt taagatcgtc
tccattttta tgcttttggg 360agaaaaaact taaaattcgt ttagtttagt tttggaattg
ttaacgtttc tttcaacaag 420ctcctgttaa aagtatatga acctgagtac tagtcttctt
acatttacaa gtagaaattc 480gattaatggc ttcttccctt gtaaattttc ttg
51366551DNAHomo sapiens 66cagccagagc attggactga
tccagcattt gagaactcat gttagagaga aaccttttac 60atgcaaagac tgtggaaaag
cgtttttcca gattagacac cttaggcaac atgagattat 120tcatactggt gtgaaaccct
atatttgtaa tgtatgtagt aaaaccttca gccatagtac 180atacctaact caacaccaga
gaactcatac tggagaaaga ccatataaat gtaaggaatg 240tgggaaagcc tttagccaga
gaatacatct ttctatccat cagagagtcc atactggagt 300aaaaccttat gaatgcagtc
attgtgggaa agcctttagg catgattcat cctttgctaa 360acatcagaga attcatactg
gagaaaaacc ttatgattgt aatgagtgtg gaaaagcctt 420cagctgtagt tcatccctta
ttagacactg caaaacacat ttaagaaata ccttcagcaa 480tgttgtgtga aatatactaa
acatcaaaga atctatgttg gagcacaaga ttctaaatca 540gtggttccct g
55167316DNAHomo sapiens
67gagtcactcc aggaaagagc tgatgaggct acaacccaga agcagtctgg ggaagacaac
60caggaccttg ctatctcctt tgcaggaaat ggactctctg ctcttagaac ctcaggttct
120caggcaagag ccacctgcta ttgccgaacc ggccgttgtg ctacccgtga gtccctctcc
180ggggtgtgtg aaatcagtgg ccgcctctac agactctgct gtcgctgagc ttcctagata
240gaaaccaaag cagtgcaaga ttcagttcaa ggtcctgaaa aaagaaaaac attttactct
300gtgtaccttg tgtctt
31668510DNAHomo sapiens 68gtgacgctca atctacagtt tattcatata ttcaagacca
tgtatgtgta tctatagcca 60ctggttcctc catgagatca gatggaacag acaatgccta
tgtggctgat ggcaccatgt 120gtggtccaga aatgtactgt gtaaataaaa cctgcagaaa
agttcattta atgggatata 180actgtaatgc caccacaaaa tgcaaaggga aagggatatg
taataatttt ggtaattgtc 240aatgcttccc tggacataga cctccagatt gtaaattcca
gtttggttcc ccagggggta 300gtattgatga tggaaatttt cagaaatctg gtgactttta
tactgaaaaa ggctacaata 360cacactggaa caactggttt attctgagtt tctgcatttt
tctgccgttt ttcatagttt 420tcaccactgt gatctttaaa agaaatgaaa taagtaaatc
atgtaacaga gagaatgcag 480agtataatcg taattcatcc gttgtatcag
51069344DNAHomo sapiens 69gagccactcc aagctgagga
tgatccactg caggcaaaag cttatgaggc tgatgcccag 60gagcagcgtg gggcaaatga
ccaggacttt gccgtctcct ttgcagagga tgcaagctca 120agtcttagag ctttgggctc
aacaagggct ttcacttgcc attgcagaag gtcctgttat 180tcaacagaat attcctatgg
gacctgcact gtcatgggta ttaaccacag attctgctgc 240ctctgaggga tgagaacaga
gagaaatata ttcataattt actttatgac ctagaaggaa 300actgtcgtgt gtcccataca
ttgccatcaa ctttgtttcc tcat 34470479DNAHomo sapiens
70gctggaggtg acgctactga gaactttgag gatgtcgggc actctacaga tgccagggaa
60atgtccaaaa cattcatcat tggggagctc catccagatg acagaccaaa gttaaacaag
120cctccagaac cttaaaggcg gtgtttcaag gaaactctta tcactactat tgattctagt
180tccagttggt ggaccaactg ggtgatccct gccatctctg cagtggccgt cgccttgatg
240tatcgcctat acatggcaga ggactgaaca cctcctcaga agtcagcgca ggaagagcct
300gctttggaca cgggagaaaa gaagccattg ctaactactt caactgacag aaaccttcac
360ttgaaaacaa tgattttaat atatctcttt ctttttcttc cgacattaga aacaaaacaa
420aaagaactgt cctttctgcg ctcaaatttt tcgagtgtgc ctttttattc atctacttt
47971541DNAHomo sapiens 71gagctcaagc cagcatagct ccaccaagtg atctactgtt
ccaaatctct ataaccacct 60gcttcccact cagcctgcaa tagtgtttcc cactctctgc
ttggcatcaa tagatgcata 120agggtcaacc acatttttcc tcaagttccc tggagaagaa
gctgaactcc tggtttctcc 180atccccatga ccttcccagg gccatggagg tcctgctgct
ggtctgggat gatgatgccc 240ctggaaacct tcctgcaatg gccccttact ttggacagca
acccctgagc ccaagccagt 300tttggccttc acagcctggc cggttcccac tctggcccat
ctcccattct tactgggagt 360tggagatttg aagccagtca tctcagcact gtctgaggag
ggcagagcca tgggttctgt 420gctggagggt gcacggccaa gatctccaga ctgctggttc
ccagggaacc ctccctacat 480ctgggcttca gatcctgact cccttctgtc ccctaattcc
ctgagctgta gatcctctgg 540t
54172547DNAHomo sapiens 72cgcacccgca tcacagggga
ggaggtggag gtgcaggact ccgtgcccgc agactccggc 60ctctatgctt gcgtaaccag
cagcccctcg ggcagtgaca ccacctactt ctccgtcaat 120gtttcagctt gcccagatct
ccaggaggct aagtggtgct cggccagctt ccactccatc 180actcccttgc catttggact
tggtactcgg cttagtgatt agaggccctg aacaggtggt 240ggtatccctg ctctgctgga
gaggaaccca gatgctctcc cctcctcgga ggatgatgat 300gatgatgatg actcctcttc
agaggagaaa gaaacagata acaccaaacc aaaccccgta 360gctccatatt ggacatcccc
agaaaagatg gaaaagaaat tgcatgcagt gccggctgcc 420aagacagtga agttcaaatg
cccttccagt gggaccccaa accccacact gcgctggttg 480aaaaatggca aagaattcaa
acctgaccac agaattggag gctacaaggt ccgttatgcc 540acctgga
54773407DNAHomo sapiens
73ctgccctgta catgctagtt caacagaaag gaatggcctt tcaccttctc ctggtggcag
60gcaagcagat gtcctctgcg gagataccgc cagctcccca ggacgcagac tgactcctgt
120ttgctcgctg gaccaacccc aggcagaagg tggaaggtgg gaacagaggt ttagctgcag
180gacatgtatt cccattgcac cgagacctaa ctgccgctca gagtgtagac cgagatggtg
240cagatgcctg cagtgccatt aaaatgtggg tgaaggtgac atcaggatta tgtgccccag
300gccgggctca gtggctcaca cctgtaatcc cagcactttg ggaggccaag gtgggcggat
360cacctgaggt caggagtttg cgacaagcct gccaacaagc tgaaacc
40774533DNAHomo sapiens 74gaaatctctg atataagctg ggtgtggtgg ctcgtgcctg
tagtctcagc tgctgggcaa 60ctgcagacca gcctgggcaa catagtaaga ccctgtctca
aaaaaataat ctctggtaca 120atggtcatgt tccaaagttc cttacttggg cctcttgagt
gcagtggctc acacctggaa 180tcccagtgct ttgagaggct gaggaggcag gaggttcact
tgtgcccagg aatttgaggc 240tgcagtgagc tatgattgtg ccactgcact ccagcctggg
tgacagagca agactgtgct 300ctcttaaaaa taagaaagag cctcttcatc ttcaaaagga
ctacatctga agtttcccca 360gaaggacaaa tgtctactta gaccttataa atttccaaaa
taagagagtc agagccagag 420gtggcttgta agttgacttc tgttgagatc tgaccacatt
tgatctcttg ttttaatttt 480ccaactaact gaacttggaa gaaaacccaa accaagtttt
aatctgatgc cta 53375564DNAHomo sapiens 75ccatgagcaa cttccagagc
tggacaactt gggcctggat agcttttcca gtggacctgg 60ggaagaggct ttgttgcaga
tgagatcaaa catcatctat gactccactg cccgaatcag 120aaggaacgcc aaaggaaact
actgtaagag gaccccgctc tacatcgact tcaaggagat 180tgggtgggac tcctggatca
tcgctccgcc tggatacgaa gcctatgaat gccgtggtgt 240ttgtaactac cccctggcag
agcatctcac acccacaaag catgcaatta tccaggcctt 300ggtccacctc aagaattccc
agaaagcttc caaagcctgc tgtgtgccca caaagctaga 360gcccatctcc atcctctatt
tagacaaagg cgtcgtcacc tacaagttta aatacgaagg 420catggccgtc tccgaatgtg
gctgtagata gaagaagagt cctatggctt atttaataac 480tgtaaatgtg tatatttggt
gttcctattt aatgagatta tttaataagg gtgtacagta 540atagaggctt gctgccttca
ggaa 56476533DNAHomo sapiens
76atgatctgca tgtttctggt ggcatggtcc ccttattcca tcgtgtgctt atgggcttct
60tttggtgacc caaagaagat tcctcccccc atggccatca tagctccact gtttgcaaaa
120tcttctacat tctataaccc ctgcatttat gtggttgcta ataaaaagtt tcggagggca
180atgcttgcca tgttcaaatg tcagactcac caaacaatgc ctgtgacaag tattttaccc
240atggatgtat ctcaaaaccc attggcttct ggaagaatct gaaataagag aaaaggacac
300gctatcaaaa cactttagtt ttttgacaat gcttttcttt taaatatgag cccatttaga
360tcaagtgcag acatggatca ttgtcctatg agagtgtaag ctcctcaagc acagctcgtg
420cttccgtttg tgcactctgg ctgctgtagt gtatgcttct ctgtgtcctg atatatcaac
480ttattgctca tctcctttga tgaattaggc atcagaggtt aaggtcccct ttc
53377510DNAHomo sapiens 77gaacaggaga gttcccaggc cagtacggaa gaatgtgaga
aaaataagca ggacacaatt 60acaactaaaa aatatatcta agcatttgca aaggcgacaa
taaattattg acgcttaacc 120tttccagttt ataagactgg aatataattt caaaccacac
attagtactt atgttgcaca 180atgagaaaag aaattagttt caaatttacc tcagcgtttg
tgtatcgggc aaaaatcgtt 240ttgcccgatt ccgtattggt atacttttgc ttcagttgca
tatcttaaaa ctaaatgtaa 300tttattaact aatcaagaaa aacatctttg gctgagctcg
gtggctcatg cctgtaatcc 360caacactttg agaagctgag gtgggaggag tgcttgaggc
caggagttca agaccagcct 420gggcaacata gggagacccc catctttacg aagaaaaaaa
aaaaggggaa aagaaaatct 480tttaaatctt tggatttgat cactacaagt
51078531DNAHomo sapiens 78ccgagccgag cttactgtga
gtgtggagat gttatcccac catgtaaagt cgcctgcgca 60ggggagggct gcccatctcc
ccaacccagt cacagagaga taggaaacgg catttgagtg 120ggtgtccagg gccccgtaga
gagacattta agatggtgta tgacagagca ttggccttga 180ccaaatgtta aatcctctgt
gtgtatttca taagttatta caggtataaa agtgatgacc 240tatcatgagg aaatgaaagt
ggctgatttg ctggtaggat tttgtacagt ttagagaagc 300gattatttat tgtgaaactg
ttctccactc caactccttt atgtggatct gttcaaagta 360gtcactgtat atacgtatag
agaggtagat aggtaggtag attttaaatt gcattctgaa 420tacaaactca tactccttag
agcttgaatt acatttttaa aatgcatatg tgctgtttgg 480caccgtggca agatggtatc
agagagaaac ccatcaattg ctcaaatact c 53179522DNAHomo sapiens
79ttgtggctac aaaggatggg ctgaagctgg ggtctggacc ttcaatcaaa gccttagatg
60ggagatctca agtttcaata tcatgttttg gcaaaacatt cgatgctccc acatccttac
120ctaaagctac cagaaaggct ttgggaactg tcaacagagc tacagaaaag tcagtaaaga
180ccaatggacc cctcaaacaa aaacagccaa gcttttctgc caaaaagatg actgagaaga
240ctgttaaagc aaaaaactct gttcctgcct cagatgatgg ctatccagaa atagaaaaat
300tatttccctt caatcctcta ggcttcgaga gttttgacct gcctgaagag caccagattg
360cacatctccc cttgagtgaa gtgcctctca tgatacttga tgaggagaga gagcttgaaa
420agctgtttca gctgggcccc ccttcacctt tgaagatgcc ctctccacca tggaaatcca
480atctgttgca gtctccttta agcattctgt tgaccctgga tg
52280541DNAHomo sapiens 80ggtttaagga tcagtcctct gcagtttcgc taaggccccc
tttgtgtgca tgggtcagtc 60accatatgtt ccccccagag aatgtgtcta tatcctcctt
ctaacagcac cttccccctg 120cagctactct tcagatctgg ctctctgtac cctaaaacct
agtatctttt tctcttctat 180ggaaaatccg aaggtctaaa cttgactttt ttgaggtctt
ctcaacttga ctacagttgt 240gctcataatt gtccttgcct ttccagctta attattttaa
ggaacaaatg aaaactctgg 300gctgggtgga gtggctcata cctgtaatcc cagcactttg
ggaggctacg gtgggcagat 360catctgaggc caggagttcg agacctgcct ggccaacatg
gcaacacccc gtctctaata 420aaaatataaa aattagcctg gcatggtagc atgcgcctat
agtcccagct gctcaggagg 480ctgaggcatg agaatcgctt gaacctagga ggtggaggtt
gcattcaact gagatcatac 540c
54181454DNAHomo sapiens 81actggtctat ctctatcctg
acattcccaa ggaggaggca ttcggaaagt attgtcggcc 60agagagccag gagcatcctg
aagctgaccc aggcgctgcc ccatacctga agaccaagtt 120tatctgtgtg acaccaacga
cctgcagcaa taccattgac ctgccgatgt ccccccgcac 180tttagattca ttgatgcagt
ttggaaataa tggtgaaggt gctgaaccct cagcaggagg 240gcagtttgag tccctcacct
ttgacatgga gttgacctcg gagtgcgcta cctcccccat 300gtgaggagct gagaacggaa
gctgcagaaa gatacgactg aggcgcctac ctgcattctg 360ccacccctca cacagccaaa
ccccagatca tctgaaacta ctaactttgt ggttccagat 420tttttttaat ctcctacttc
tgctatcttt gagc 45482533DNAHomo sapiens
82ttgacagctc tttaagccca catgcagcag tgggtcagat aaccctgtgg cagtgacacg
60ggcaaattgg catttgaata aagccctggg accacctcaa catgcgtagc ctcttgtctt
120aaatgtactc cccatggcag catggaggag gcaagacctg tgggtcaatt ttgaactggc
180cttactttga tttttaaaac aagagactca gggaaagtac taaaccaaaa tctctgattt
240tactttgcgt tttctgtagt ttttgtttta ctgagatgct tttgtaaagg aaaataatac
300tgtgacagtt tagtaattct acagattctt aatatttctc catcatggcc ttttacttca
360caattttctg aagtctgaat tcaattacaa tttttttttt ttaccaattt aatctcaaat
420gttgtttaac tgctttaaat tcatatacgt agagtattat aaactgcaga gatgaaaaat
480gtgttttcac gggatttata ttgtgaacta aactaagcct actttttgtg act
53383483DNAHomo sapiens 83gagacttctc acttctggtt ggaggtttca catatggctc
aactcaagtc attaatctct 60ttttaatttt tactcttgaa ttccttaaac ttcgctcatt
atgaaatgtt ttaaaattat 120gacaaaaatt actctgtcta accacttgcc ttgtctgcta
ccagtttgtt aaaaattatt 180ccccccaacc agtaattcca ccagtactac ttgatttgtg
ttatatttcc tatgtacatg 240tacagccttt gttttgcttg cttgtctatt tttactttcc
cttttttggg tcaaattttt 300cttttgcttt gtttgaagaa ggaatataca gaagtaaaat
cttgtcttct ctgctgattc 360tttaattaat atgagccgga tactttccac tgtcttcttg
gcactttcag gatttcttaa 420tgctgatata tggactctta gaatggaatt tttgaagaaa
aatctcaaag cctgtatcgt 480tct
48384529DNAHomo sapiens 84ataggttacc cttgaaattc
attagtttgt cataaagttt taggaaaggt aggacccgga 60aagaagttct aattagttgt
ctaaatattt ttcagtgagc caagaaattc accatgaaaa 120aacaagaata acaaatagaa
gggaagagat aggatgggaa agctaacaaa ttaaagtttt 180ggcaaaaagg aatatatgta
aatagctaat tatttacttt tgtgcttact ttatttagat 240tatttctatc agttacaatc
tttttctagt taagtgtacc taatttatgg aatgggtgct 300atcctgttta tgtgtgtctt
ggtttttctt ggctacagaa aaactgttgc agggcaacac 360tagtttgata tttgatttac
tctccaatga gactcaatgg ctgggccgtg gtagactcat 420agttcctctt gttctttatt
aaattcatcc tgctaattag atttctagtg acttgtaaca 480tgtagtttac actgaattgc
aattacagat gcatacaact actatacta 52985525DNAHomo sapiens
85ataacagcat atgcatttcc ccaccgcgtt gtgtctgcag cttctttgcc aatatagtaa
60tgcttttagt agagtactag atagtatcag ttttggattc ttattgttat cacctatgta
120caatggaaag ggattttaag cacaaacctg ctgctcatct aacgttggta cataatctca
180aatcaaaagt tatctgtgac tattatatag ggatcacaaa agtgtcacat attagaatgc
240tgacctttca tatggattat tgtgagtcat cagagtttat tataacttat tgttcatatt
300catttctaag ttaatttaag taatcattta ttaagacaga attttgtata aactatttat
360tgtgctctct gtggaactga agtttgattt atttttgtac tacacggcat gggtttgttg
420acactttaat tttgctataa atgtgtggaa tcacaagttg ctgtgatact tcatttttaa
480attgtgaact ttgtacaaat tttgtcatgc tggatgttaa cacat
52586432DNAHomo sapiens 86tcatgtctta ttcttccctg tgaaaccagg attaatcgtg
gactcctggc agcttaacct 60agctcagttg cagtgctaag catgccccgc ccccattcag
tgatacctgt ttgggaagta 120tatacttccc caaaagtact cttggcccta agttttagga
actttccccg acctggatcc 180cttgtcatac ctgtgttact gtttaaagca cacccaccca
acttacaaga tcttaggctg 240ctgtggtggt gaagcacctt gagtctgctg atattcggga
gaacaaggat ctgcagtttc 300cccttttctc ccctctgaag agtggttctt atgtgcaatc
tgcagtaacc ttgaactcca 360gagctgcact atagaggaga atgcatgcca ctatgacagc
agtatgccaa gctttgtgtt 420catctcctaa ta
43287185DNAHomo sapiens 87atttcgtttt gcttttggtt
gcctgaatgt tgtcaccaag tgaaaaaatt atttaactat 60atgtaaaatt tctcttttaa
aaaaaagttt tactgatgtt aaacgttctc agtgccaatg 120tcagactgtg ctcctccctc
tcctgaacct ctaccctcac cctgagctgt cttgttgaaa 180acagt
18588361DNAHomo sapiens
88tattctcgac tgtaatggca ttgcagtagg gccaaaacaa gtccaagctt cttaaaatga
60ttggtggtta atttttcaaa gcagaaattt taagccaaaa acaaacgaaa ggaaagcggg
120gaggggaaaa cagaccctcc cactggtgcc gttgctgcgt tctttcaatg ctgactggac
180tgtgtttttc ctatgcagtg tcagctcctc tgtctggttg tttacctgtt cctgttcgtg
240cttgtaatgc tcacttatgt tttctctgta taacttgtga ttccagggct gtttgtcaac
300agtatacaaa agaattgtgc ctctcccaag tccagtgtga ctttatcttc tgggtggttt
360g
36189552DNAHomo sapiens 89gaaatcagcg aggctcaagt tccaagcaaa ccattccaaa
atgtggaatt ctgtgacttc 60agtaggcatg aacctgatgg ggaagcattt gaagacaaag
atttggaagg cagaattgaa 120actgatacca aggttttgga gatactatat gagtttccta
gagtttttag ttctgtcatg 180aaacctgaga atatgattgt accaataaaa ctaagctctg
attctgaaat tgtacaacaa 240agcatgcaaa catcagatgg aatattgaat cccagcagcg
gaggcatcac cactacttct 300gttcctggaa gtccagatgg tgtctttgat caaacttgcg
tagattttga agttgagagt 360gtaggtggta tagccaatag tacaggtttc atcttagatc
aaaagataca gattccattc 420ctgcaactat gggtcacatc tctctgtcag agagcacaaa
tgacactgtt agtccagtaa 480tgattagaga atgtgagaag aatgacagca ctgctgatga
gttacatgta aagcacgaac 540ctcctgatac ag
55290419DNAHomo sapiens 90gggctcaaag cattaatcca
gttactgaaa agagaataca agtggagcaa acaagagatg 60aagatcttga tacagactca
ttggactgaa tttccccctt ccccccatga tggaagaatg 120ttcagattct aaattgagga
cttcattatt aatggcatta ctgtgttatg attaacaaat 180ttcttgtaag gtacacacta
catactaagg tcggccatca ttccgttttt tttttttttt 240ttttttttaa ccaagcttaa
aatgaagctt aaaatgaagc tttgtgtttg aaagtaataa 300caagctcaga cgaagatggt
ggttgtacat tattcatcta gaaaatataa aaattcattt 360tgttttgaag ctagttatta
aactggaata gcagttatat ccctgagaat ggggccctt 41991394DNAHomo sapiens
91gctgctgttt tcttctaact gcagggaaaa tgctgtctaa aagaaaataa taaatttgta
60tctgctgagt tctcttagca taaggcacca acaaaacaac cttcaggaag ggagaagaaa
120ccatcctccc actcatcctt cagaggattt agataaagtg aagggaagaa tcgttctcca
180gctccttcgg aatttacgcc ggcatcaggg caggcttgtt actgctggat ccattgtctg
240ctcaaggtta cttattccac taagacgtac atcctaccac ggaccacggc tttgtagcta
300gccaggctct gagtgtgtgt gtagatgaac catttctctc tccagtaaat gaatgacagt
360ctttctaggg ctcttgtctt ctgctgggag gcag
39492417DNAHomo sapiens 92agtcactctc ccagatggac ggactctgtt tcctggccaa
ggcaacaatt cctacgtgtt 60ccctggagtt gctcttgggg tggtggcctg cggactgaga
cacatcgatg ataaggtctt 120cctcaccact gctgaggtca tatctcagca agtgtcagat
aaacacctgc aagaaggccg 180gctctatcct cctttgaata ccattcgaga cgtttcgttg
aaaattgcag taaagattgt 240gcaagatgca tacaaagaaa agatggccac tgtttatcct
gaaccccaaa acaaagaaga 300atttgtctcc tcccagatgt acagcactaa ttatgaccag
atcctacctg attgttatcc 360gtggcctgca gaagtccaga aaatacagac caaagtcaac
cagtaacgca acagcta 41793454DNAHomo sapiens 93gttccacttc tctaggtaga
caattaagtt gtcacaaact gtgtgaatgt atttgtagtt 60tgttccaaag taaatctatt
tctatattgt ggtgtcaaag tagagtttaa aaattaaaca 120aaaaagacat tgctcctttt
aaaagtcctt tcttaagttt agaatacctc tctaagaatt 180cgtgacaaaa ggctatgttc
taatcaataa ggaaaagctt aaaattgtta taaatacttc 240ccttactttt aatatagtgt
gcaaagcaaa ctttattttc acttcagact agtaggactg 300aatagtgcca aattgcccct
gaatcataaa aggttctttg gggtgcagta aaaaggacaa 360agtaaatata aaatatatgt
tgacaataaa aactcttgcc tttttcatag tattagaaaa 420aaatttctaa tttacctata
gcaacatttc aaat 45494435DNAHomo sapiens
94gcatttgaaa ctgagcacta aactgggcta gctttctggt agaccgtttt gtggctagtg
60cgatttcaca gtctactgcc tgtttccact gaaaacattt ttgtcatatt cttgtattca
120aagaaaacag gaaaaaagtt attgtaaata ttttatttaa tgcacacatt cacacagtgg
180taacagactg ccagtgttca tcctgaaatg tctcacggat tgatctacct gtctatgtat
240gtctgctgag ctttctcctt ggttatgttt tttctctttt acctttctcc tcccttactt
300ctatcagaac caattctatg cgccaaatac aacaggggga tgtgtcccag tacacttaca
360aaataaaaca taactgaaag aagagcagtt ttatgatttg ggtgcgtttt tgtgtttata
420ctgggccagg tcctg
43595352DNAHomo sapiens 95ggcagccttc cttgtgatca aaaaaggtaa tcccagaaac
gtacccgttc actcgtgggt 60cttaaaatgg tttcatatct ctattgtgac taattttctc
tcggtctact gccttttcaa 120tcaggaatag atttgccatg aagccagtga agtttttaag
tgtctaggct tctcattagt 180gccaactctc ctagacctgg tgcctgtttt ttttccaagt
tttgtttcta cttctatcca 240ttttttaaat taaacttttt attttgaaat aattatcaca
ctcacaagct gtgggaagaa 300ataatagaga tcctgtgtct ctttcatcca gttttcctca
agggtaacat ct 35296521DNAHomo sapiens 96tgctcaacgt gcactacaga
accccgacga cacacacaat gccctcatgg gtgaagactg 60tattcttgaa cctgctcccc
agggtcatgt tcatgaccag gccaacaagc aacgagggca 120acgctcagaa gccgaggccc
ctctacggtg ccgagctctc aaatctgaat tgcttcagcc 180gcgcagagtc caaaggctgc
aaggagggct acccctgcca ggacgggatg tgtggttact 240gccaccaccg caggataaaa
atctccaatt tcagtgctaa cctcacgaga agctctagtt 300ctgaatctgt tgatgctgtg
ctgtccctct ctgctttgtc accagaaatc aaagaagcca 360tccaaagtgt caagtatatt
gctgaaaata tgaaagcaca aaatgaagcc aaagaggaac 420aaaaagccca agagatccaa
caattgaaac gaaaagaaaa gtccacagaa acatccgatc 480aagaacctgg gctatgaatt
tccaatcttc aacaacctgt t 52197469DNAHomo sapiens
97cagcgctgcc agcaggcata catgcagtac atccaccacc gcttgattca cctgactcct
60gcggactacg acgactttgt gaatgcgatc cggagtgccc gcagcgcctt ctgcctgacg
120cccatgggca tgatgcagtt caacgacatc ctacagaacc tcaagcgcag caaacagacc
180aaggagctgt ggcagcgggt ctcactcgag atggccacct tctccccctg agtctttcac
240ccttagggtc ctatacaggg acccaggcct gtggctatgg gggcccctca cacaggggga
300gtgaaacttg gctggacaga tcatcctcac tcagttccct ggtagcacag actgacagct
360gctcttgggc tatagcttgg ggccaagatg tctcacaccc tagaagccta gggctggggg
420agacagccct gtctgggagg gggcgttggg tggcctctgg tatttattt
46998426DNAHomo sapiens 98gtcactcatt tccttgaaca gcacccccct ttatactagc
agccatttgt gccattgcct 60gtgccctagg gtttgtgggg agagagcgag ggatcactga
gcagttttcc cagagctcca 120tgggaaggca agctctccct cccaatggga gccccactgt
cactaactgt aaactcaggc 180tcaggcttca actgcctacc cccatcctca tatttctgtc
tgtcccagca cctcaggagc 240attctcattg tggccggcta actccgcctg gatgtgaaca
ggcaagcaca gtgggaaatg 300agtcacgtac ttgtattgca cagtggacac ctctagaggt
ccattggttt aaagggatag 360ggaaggagga gggatgagac catcaccccc tcccagaagt
aaatctagta tctgagtttt 420ctttat
42699404DNAHomo sapiensmisc_feature(374)..(374)n
is a, c, g, or t 99caagagctac aatgtcacct ccgtcctgtt taggaaaaag aagtgtgact
actggatcag 60gacttttgtt ccaggttgcc agcccggcga gttcacgctg ggcaacatta
agagttaccc 120tggattaacg agttacctcg tccgagtggt gagcaccaac tacaaccagc
atgctatggt 180gttcttcaag aaagtttctc aaaacaggga gtacttcaag atcaccctct
acgggagaac 240caaggagctg acttcggaac taaaggagaa cttcatccgc ttctccaaat
ctctgggcct 300ccctgaaaac cacatcgtct tccctgtccc aatcgaccag tgtatcgacg
gctgagtgca 360caggtgccgc cagntgccgc accagcccga acaccattga ggga
404100376DNAHomo sapiens 100tttccccttg gaagacacta ttgatctcaa
cctgctgact tttcctaatg cttacctgaa 60ggaacccatc ctggctagaa agggtgatgg
tactggaccg gtattcaacc ttgagttttc 120aagctgccaa acaggtctta agggaggtgc
ttatatccca ccaacactct cccagctccc 180atgtccccaa gacctctgga gtttcctctt
gaatgtacat gaaccactgt aatagcatta 240gacttttaat tgagtgtgca atcgttttcc
atggagtttg gtccgttcat tattttttag 300ttaactacac ttcttgatat tcaaatgttc
tattaaaaaa actgagtatg aagaaaaaca 360ctttactact gcagaa
376101476DNAHomo
sapiensmisc_feature(89)..(89)n is a, c, g, or t 101tcccccattt acaatccttc
atgtattaca tagaaggatt gcttttttaa aaatatactg 60cgggttggaa agggatattt
aatctttgng aaactatttt agaaaatatg tttgtagaac 120aattattttt gaaaaagatt
taaagcaata acaagaagga aggcgagagg agcagaacat 180tttggtctag ggtggtttct
ttttaaacca ttttttcttg ttaatttaca gttaaaccta 240ggggacaatc cggattggcc
ctcccccttt tgtaaataac ccaggaaatg taataaattc 300attatcttag ggtgatctgc
cctgccaatc agactttggg gagatggcga tttgattaca 360gacgttcggg ggggtggggg
gcttgcagtt tgttttggag ataatacagt ttcctgctat 420ctgccgctcc tatctagagg
caacacttaa gcagtaattg ctgttgcttg ttgtca 476102330DNAHomo sapiens
102agcctgaaac aggaactcac atgagactca gggccaccag gaaatgctta aaatacatac
60tctttcccaa aagcaaatct ataattctgt ttcaatttta tgaatatatg aatagacaaa
120atgaatcgaa ttacataact atgtcattca ttaaatggca acaatgctga cagcaagcag
180tagatcctct gattccaatt accatttgtt ttttacccaa ttctatttgc tagaggtagt
240aagtactctg gcactcataa atcacatgat gataaaaagg aacatgaggc cgggtatggt
300ggctcacaac tgtaatcccc ataccttggg
330103550DNAHomo sapiensmisc_feature(276)..(276)n is a, c, g, or t
103tatgggtcag ttacagcagc cctcacctca aagggctggc ctgcttctca gcctacattc
60atttgcaagc ttcaatctct ggaccatctg gtgttcacag gtgttagagg gttaggggtt
120aggggctagt tttggatttg attcataggt aggagggctt agattttaag gcacttctga
180aagtcaatcc ctggacaagg cagtcatcac ataagaacag ctaccttctc cacttggtgg
240cacaagaggt agggagggga gtatgggttc atttgncttc gcattatgca aggtgaaacc
300gtttgttttc cctctccatt ttccctaact aaatgaaaag gacacattct gaaatccctt
360ttgttggaga ataagtcagt ctgaggggaa atgggaggcc agagatgaga accctttgaa
420aagattgtaa aatactgatt ttcattcttt caagcttatt tgtaaatacc tatttgaatg
480ctgtgtattt gtacaggaat ttgagcaaaa aatgtataga gtgtgatgtc caattggtat
540tcagcactat
550104555DNAHomo sapiensmisc_feature(45)..(50)n is a, c, g, or t
104gagcttcgtt gatggtcttt tctgtactgg aggcctcctg aggcnnnnnn agccccagga
60cccattaagc cacccccgtg ttcctgccgt cagtgccaac tnnnnnatgt ggaagcatct
120acccgttcac tccagtccca ccccacgcct gactcccctc tggaaactgc aggccagatg
180gttgctgcca caacttgtgt accttcaggg atggggctct tactccctcc tgaggccagc
240tgctctaata tcgatggtcc tgcttgccag agagttcctc tacccagcaa aaatgagtgt
300ctcagaagtg tgctcctctg gcctcagttc tcctcttttg gaacaacata aaacaaattt
360aattttctac gcctctgggg atatctgctc agccaatgga aaatctgggt tcaaccagcc
420cctgccattt cttaagactt tctgctccac tcacaggatc ctgagctgca cttacctgtg
480agagtcttca aacttttaaa ccttgccagt caggactttt gctattgcaa atagaaaacc
540caactcaacc tgctt
555105408DNAHomo sapiens 105ctgcctggtt accgtggcga tgtgcttaat gcagcgttga
aaatacagaa tactgactcc 60tctgtccctc ctggccccgg actccctccc tccctccctt
cctcttctgg agcgtgaaat 120gagattggtc aagataaaaa aggaaaagat tcggttattt
ttttaagagt gtggataatg 180gggcctctca atcaaaatcc cagtctccag tcggttcccc
ccattcccct tccaacccct 240ccaccttccc ctgccgcctg cttagaggag gaggaagaaa
cataaagcac aaggcttttc 300tcttaattat gaatcattcc ctgagggcag gcccagggca
aggggttcct ggggcccaga 360gtctgacctg tgaggtagct agaaggcttg agcctctcat
caaagtcc 408106418DNAHomo sapiens 106ctttgcagga
ctttagcgtt ttctccacag attcctgcct gcagctttca gatgcagttt 60cacccagttt
gccaggttcc ctcgacagtc ccgtagatat ttcagctgac agcttagact 120tttttacaga
cacactcacc acaatcgact tgcagcatct gaattactaa aaacattaaa 180gcaaaacaaa
gcatcaccaa acaaaaactc ctttgaccag gtggttttgc cttcttttat 240ttgggagttt
attttttatt ttcttcttga cctacccctt ccctccttta agtgttgagg 300attttctgtt
tagtgattcc ctgacccagt ttcaaacaga gccatctttt acagattatt 360ttggagtttt
agttgtttta aacctaactc aacaaccctt tatgtgattc ctgagagc
418107521DNAHomo sapiensmisc_feature(172)..(172)n is a, c, g, or t
107gtcaccctga ggaaggttca ttgccattgt catcaccatg gaaacaacgt tcctctccac
60ctgcattatg tactacatga caggcatcaa tctggggaaa taataaaatt atcacctttg
120tcagaccata agagtttctc caaaagtggt cagtttggct gggcaatatt tnctctcatc
180taacaaacac aatccattgt catgaaatta cccttaggat gagtcttctt taatcaatca
240tatattgggc ggaaaaaaca ccagctttga cccgaagtag ttgaagagct acttcattct
300tttctgaagt tgtgtgttgc tgctagaaat agtcatttgt gaattatcca aattgtttaa
360attcacaatt gaattagttt tttcttcctt tttgcttgaa gcaaacagtt gacaattttt
420aaccttttca ttttatgttt ttgtactctg cagactgaaa agacaaagtt tatcttggcc
480ttactgtata aaggtgtgct gtgtccaccg ttgtgtacag a
521108526DNAHomo sapiensmisc_feature(84)..(84)n is a, c, g, or t
108gaggtctggc actagtagca caacctaagg tggcattaca gatctttgag cgagccacag
60caacttttct gccaagtcag cttnagttna gacttcagtg aatcaggnta ttgctatcct
120aatgtatgtc tctatgagtg tatntagcca canantctgc ccttggttga ntttctgact
180cattgcttgc ttgcttgttt ccttgctttg gaaaactatn naagattgct aaaaaatacc
240actgcaaagt gatggaaaag ggtggagaac aggggagtag ccaggctgga tggctcaaat
300ataaatgaat gaggaattct ttatgaagta tcagtcagat tttatgatta agtgatgtaa
360tataggaatt atgtaaaagg gaagaatgtc tgatactgat ctattagaga ggtactttag
420aggcttcttg attggcataa agttcctaag gttatagatt ttcccccctt ttggctgtat
480agcaaagtgt tttaatccac ggttgtgcct tattgttcca ttaaaa
526109479DNAHomo sapiensmisc_feature(424)..(425)n is a, c, g, or t
109caatgggagg ggtcggagct cttccttccc ctctgtggag tcacttttgt attcttttta
60accagatttc ttaaaatgtt gttgttttgt gaatcctgac attggttctt acttttgtat
120gctgcctcct ctgtgccctc ccagacgctg actgggaaac acaagaagta caaccaacag
180gaaccagcgc caagggcagg cagcggcctc cttgctcccc tcccttactc ctccctctgc
240tgcctcctcc ccccaccaag tttcagggcc ctggattgtt cccagttccc attgtggtcc
300cttcagagct cctttccaac agcatctctc tgtcgaagaa agaagctctg tcaagttaga
360gagagacaat gtgtaggaaa tgttcttttt taaaaaaaaa taacaaaaac aaaacaaaac
420tatnnannnt gtgattgttt tccttgttaa tctgctccaa ccacctgaac atctaagta
479110554DNAHomo sapiensmisc_feature(266)..(266)n is a, c, g, or t
110gagacgggag tttaccccga tcacagaaac cataccaact gaaagacaaa tcagcatctt
60gctggacgac ccctcacaga gctcctagat ccttgaagtg tgaacttcag cagctgagag
120agatggggtc tcactatgtt gcccaggctg gtcttgaact cctggactca agcaatcctc
180tcacctcagc ctcccaaagt gctgggatta cagattttat aaatattgtt gatctttttg
240aaaaaccaac tgttggcttc attttnttta ttgtgtaata ctaccttaga ggacagcagt
300tcctaatacc tacttttatt atgagtctct gccatttata aagaactgtg gacagcacag
360ggaatggggg aagaaaactc tggtgcagct tgaatcttgg tagcaaaaca gtgacttcat
420cagaaaattt tgtcactctc tattagatat aatggagttt gaccatttgg aatttggaat
480ttttcaaatg aatatgacaa aaatttaaaa aactcttgta ttactatgtg ataacacaga
540tctttacaac ttta
554111446DNAHomo sapiensmisc_feature(47)..(47)n is a, c, g, or t
111aagccttcac cagatggtca agcagatgct ggtgccatgc ccttgancnt cncnccacca
60tcccccacct agccactata tgggttgtta gatattttga ccacctcctc ttcnctcact
120ccactattca actcactgca tcatcaatgt acttattaca aacctgtcac aagccaggtc
180ttatgctagg tgctcctctc aacaggttct tgagctggca ggggagagag agacattcaa
240acaccaagga ttaatatacc attacaggtt taaagacaga ggcctataag ggtcccctgg
300cagtgccatg gaggtagggc atggtcggct gtacctgtag aggtgtctaa agggaggctt
360gcaagctgcc ccttgaagga cgagcagaaa attgtacatg aggacaagta ggaaaggaat
420tccaggagga gggatcagca tgtgca
446112371DNAHomo sapiensmisc_feature(68)..(69)n is a, c, g, or t
112ggactaaatc gagccttatt atacatcagc agtctcacac tggagaaagt ccttttaagt
60taaggganng nnnnnnannn tnnancaaat gtaatactgg tcagcgccaa aaaactcaca
120ctggagaaag gtcttatgag tgtggtgaat ccagcaaagt gtttaaatac aactccagcc
180tcattaaaca tcagataatt catactggaa aaaggcctta gtggagtgaa tgcaggaaag
240tcaccaaaac tgtcacctca ttcagcacca aaaggttcac atcggaccaa gaacctatta
300atatatgtaa atctaatgtt gaaagagttc agatggaaat ctgcgaggat ttcctgctgg
360gaactacatt a
371113533DNAHomo sapiensmisc_feature(167)..(167)n is a, c, g, or t
113aattgggcag gctcttggga agtagaaagt tctggtgttt ttgctggtga aggttttgac
60tgtggagctc ttctaacacc catatcagtg tctgtttctc tgcatgtggc tgctgccctg
120ttggtggagc tctgggggca gagaccaggc cgccgtccag tggcgcnccg tgcgcaccag
180ctgcctgctg tttacaccca ggtgcgccga gtctctttca tacagcacag caaatgataa
240tagctagtga caatgtgttt cctgtgcact cgtgaaaatg cagggaggac aactgcatgc
300ttagatctgt ttcttttttc agacattcaa atgttctaat atctgaagct aacattttgt
360aggatatagg atgctgatta tgtgaacaat tagtcattgg ttttctgtac tgctatgaat
420atgtctgatt tcaagttttg gtcaaatatc taaaatgcaa ggtgaaagtg cctttgtctc
480tatgcttcta aaatcgctca tgcttagttg tggtatggat gtcttccgca gtg
533114544DNAHomo sapiensmisc_feature(358)..(358)n is a, c, g, or t
114cttggtaagc cttgcctgta gcggctccgc tgccgagtgc tttgacacca ggcgctccca
60gagctctgcc cccactgcca agcggcagct gctccggagg gcacgggggg ctggatttgg
120ctgtggcttc tccagctctg cacaagagcc ccccttccct ggccctgctg cagcatgact
180gcctcctggc tcgtgtcacc cactctgtct ctgtctctct tcatacgttt ccagctgagc
240tgggatccat agtctgtttc cctctccacg accaatctat ttatcttctc tggaacttct
300tgtaatgccg ggagtgcaga gcttacaagt tggggcagga agctttagaa gcccaggnag
360ccctgagagg ctctttcctt gtaagtgggt ctctccccag gagcctcttg gaatatttag
420cagggacttt tacccatgct gggtctagag accctcccgc ccctctgttt cctgccctcc
480tacttagact gggatctggt ttccctcagc tggttccctt gctagcgtgt gactctgtgt
540gtct
544115436DNAHomo sapiensmisc_feature(55)..(55)n is a, c, g, or t
115gttcacagca gtgggtaggc ccagcagtgg ttcttgacat cacacgatga ggcgngcatc
60tcccgtcatc cagggagacc agaggaccct tgtctcactc ccagttggct nttagtcaca
120gccccgcttt gtctttgaca tggacgtttg tgatgatcac gttcctcccg ctccccgtgt
180ntgaagagtg ctccctgact ggctgccgtc tcctccctgt cgggtctggc tgggttctcc
240anagggagtg ctgcggaggg gacacagcan aggccccatg ctcgtgatgt atgttgcaga
300tcattttccc ccattctgtc cttttttgtt aaattgtggt aaaaagcaca taacataaac
360tgtaccncct taaccatttg aaagtatata tcccagactg tcttttatct ttagacttca
420cttgtggttt gttgcc
436116276DNAHomo sapiens 116tcccctggaa gttgtccttt ctgatcctct cttcttttcc
catttacaaa tgatttcgtg 60actgtagttt ttgttcacct tctgtgcatc tggcctgggg
gctgttagct cagaggagag 120gagcaaacag gaaaatgact tctgttctgt ccccgctgtt
ttgggggaag tctctcccac 180tttgggatcc tgctgaagct aggttcatga ggtcggaaat
ccccaccaca tttgcctaga 240ctttgggcac aggagttctt agtccaccaa atcaga
276117331DNAHomo sapiens 117cattttctct aactttatct
cctatgcatt tccttatgtg tcctgtacag cagtatattc 60caaaatcccc agtggatgtc
tgaaaaccac atatagtacc aaactgtata tatgctatgt 120tttgtttcat acatacctat
aataaagttt aatttatgaa ttaggcacaa taagagataa 180gcaggctgga cgtgctggct
cacgcctgta atcccagcac tttgggaggc tgaggcgggt 240ggattgcttt agcccaggag
tttaagacca gcctggccaa catggcaaaa ccccgtctct 300ataaaaaatg tggaaattaa
tcaggtgtgg t 331118482DNAHomo sapiens
118gagatgaccg aaaacttcaa cccctgcagt cagcaatggt caacagaaag ggcccaattc
60tccacgacaa tgcatgatcg cacattacac aactaaagct tcaaaagttg aactaactgg
120gctacgaagt tttgcctcat ccaccatatt cacctgacct cccgccaacc gactaccact
180tcttcaatca tctcgacaac tttttgcaag gaaaacactt ccacaaccag tagaatgcaa
240aaagtgcttt ccaagagttc actgaatcct gaagcacgga tttttatgct acaggaataa
300acaaacttat ttttcattgg taaaaatgtg ttgattgtaa tggatcctat tttgattaat
360gaagatgtgt ttgagcctag ttataatgat ttaaaattca cgatccaaaa ccgcaattac
420ttttgcatca gcctaatatg aggaagtaat agttgaacag aataattctt tcctggaagt
480ct
482119455DNAHomo sapiens 119ttggtttggt ctggtttggc tacctgattc ctgctgtctt
tttctacgcc aggtgaagag 60gcactttcaa gatccttctc tgagacctgc accaataaga
ctataccaat gttcagttga 120aacatcaggt ataagtttag cggaaacgaa agtacaacct
gctttgaaat aaattccaag 180gacagattgt cattaacgaa atagaaagtg gactatgccc
ctcatgctgc cagcgcctgg 240tatgatgcgg cgtgacacgc agcgcttgcg gcagtacaat
gcccccaatc acccgccccg 300ccccgacgcg ccgcccactc acggcaaaga gagccaccta
gtgagggatt attctcattt 360ccgcggtggg gttctgcttt tctttctacc atgagcgccc
aaggatagac actcctacta 420cctattacct caaatagcct acatttcttt ccgaa
455120544DNAHomo sapiensmisc_feature(150)..(150)n
is a, c, g, or t 120agaacactga gcgaggctct gtagatggat gtaataaaaa
tctataaaac aatgtgttta 60aacctaagaa ttctactgct ttccaattcc ttccctctgc
tccttttcct aacctcctgc 120ttctccagcc cttccctctg tccctttcan ccctcaggcc
ctcctctccc cttagtcccc 180accaccctgt cacttctaaa ttgtggctct agcattgtcc
cattacctgc tangtgactg 240ttctctccac agtggtcctg ctcctgtgag tcagagtgtg
tcatttcctc acctaaaaca 300ctccagtggc tccacctcgg tcttgtgaag cttctagaat
gtcaggcacg tgagcatatg 360agggcatacc tggttcatct taggcactaa attnnnnttt
gttgactgaa tgaatgaaat 420atgaatgtat taaattgcat cacagaaagt tataaaatgt
aaaacactga aaaattaaga 480aatattttat nttatgtaac tagtgtgcat atcaattcat
tccgagtctg ttgagcctgt 540gtat
544121338DNAHomo sapiensmisc_feature(193)..(194)n
is a, c, g, or t 121aatgattcaa ctcatgtgat ccagtgttac attcagtgtg
gtaatgaaga acagtcaaaa 60caggcttttg aagaattggg agataatttg gttgaattaa
gtaaagccaa atactccaga 120aatattttaa agaaatgtct cacgttgtga acatgtaccc
tagaacttaa agtataataa 180aaaaaaaaaa aannggaaag tatcttgcac aagctcacgt
agctggtaag ttacatagtt 240gggatctgaa ttcagttgtg gcttcatgcc tgagctttta
actactacta ctaaactgag 300aaggcacttg cttgagtaaa ttatgtcatc ctcttaat
338122443DNAHomo sapiensmisc_feature(30)..(30)n is
a, c, g, or t 122gatgtggcat gtgatgacat tgcacatggn cagttaantg ngccaagaag
ngcagcagta 60gcagcaacng gagatgcaaa gcccaacatg atggggagag aaantnttct
ttcaatatgt 120gcttctgtac caaaagtgga atttcacgag agacatattt tggaacattt
ttccttttgt 180gtgtgcgtga gtgtttccct gtttccagcc aagggtattg tgagtttctc
ctgggcctcc 240ttcagaatct gggtgctctg gaaagcagtg ttttggcaac atggggaaag
tatggcagtg 300tgggagggtc agctgggtct gggtttgaat attgcatttg aatattttac
cagcattgat 360gtcggataaa ttatttagtc cctgtaagcc tcagttttnt cttnttctac
atacacataa 420tatatttgac tctttgttgt gat
443123510DNAHomo sapiensmisc_feature(135)..(135)n is a, c, g,
or t 123tttcctaact ttctgatccc ttggaggtga taatcaaata ttctagtctg aggcattggg
60atacatggtg ctaggttctg agactctgcg tcaggcctga accctgcatt ttgtggaggt
120gggtgggaga atgtncccct ggggaacatg cctagacacg ggggacaaca gttgccctca
180tggggaggta cctgtttact cgctgttatg ggaccgcttt cacaaaacca ctgcaggtga
240gtgagttcct gctgaatatc aggcctggtg tctctagact cattattncc cccacccaac
300ccctatgtta gttcatctcg agccacattt ttattgccat aatccaggcc tggacaggcc
360aagatctttt aacaatttta attactgaaa ataataactg catttttttt naaagcccaa
420cttttnggta nagtcagccc aaaatacagt ctttgtgttg ccatctggga actggatttg
480gaattgttct tccatgagac tgcagagcag
510124447DNAHomo sapiens 124ccacctcctc caggaaagcc agaaagacca cccccacaag
gaggtaacca gtcccaaggt 60cccccacctc atccaggaaa gccagaagga ccacccccac
aggaaggaaa caagtcccga 120agtgcccgat ctcctccagg aaagccacaa ggaccacccc
aacaagaagg caacaagcct 180caaggtcccc cacctcctgg aaagccacaa ggcccacccc
cagcaggagg caatccccag 240cagcctcagg cacctcctgc tggaaagccc caggggccac
ctccacctcc tcaagggggc 300aggccaccca gacctgccca gggacaacag cctccccagt
aatctaggat tcaatgacag 360gaagtgaata agaagatatc agtgaattca aataattcaa
ttgctacaaa tgccgtgaca 420ttggaacaag gtcatcatag ctctaac
447125562DNAHomo sapiens 125gtttgatgtc tattatctca
cttcatcctc accaggaccc catccgagcc ttaatttcag 60ttgacagtaa ctattggatc
cccaggaata tgtttgcata tttggggaga aaatactatt 120ggaggggaac agaaatgcta
ctaagggtct cactgtgtca cccaggctgg agtccatcaa 180agctcactgc agccttaacc
ttctgtgctc aagggatcct cccacttaag cctcctgagt 240agctggaact acaggcatat
gccaccgagc ctggctaatc tttgattttt ttgtacagat 300tgtgtctcct tatgttgctc
aggctggact caaacttctg gtctcaagcg atctttccat 360cttagcttcc caaattgttg
gaattatgga catgagccag tgtgcttggc ctgatttttt 420tttttttttt aatgagaaaa
acgttcctta agaaaagttt cattgtaaga cgaggacttg 480ctatgttgcc agtttggtct
tgaactcggt ctcaagtgat tctcctgcct tgggttccca 540aagcgtttgg gccggcagat
gt 562126484DNAHomo sapiens
126ctgaattgga acacaccagc actgtggtgg aggtctgtga ggcaattgcg tcagttcagg
60cagaagcaaa tacagtttgg actgaggcat cacaatctgc agaaatctct gaagaacctg
120cggaatggtc aagcaactat ttctacccta cttatgatga aaatgaagaa gaaaataggc
180ccctcatgag acctgtgtcg gagatggctc tcctatattg atgaagctac tatgtcaaat
240ggcaagtagc tctttcctgc ctgcttctca gctcatttgg aaaaatactg cgcaaaagac
300attgagctca aatgatgcag atgttgtttt caggttaatg gacacgcaaa gaaaccacag
360cacatacttc ttttctttca tttaataaag cttttaatta tggtacgctg tctttttaaa
420atcatgtatt taatgtgtca gatattgtgc ttgaaagatt ctcatctcag aatacttttg
480gact
484127544DNAHomo sapiensmisc_feature(257)..(257)n is a, c, g, or t
127gagtgtcttg actattctgg ctctttgtat tttcatgtaa ggtttttctc ccatataagt
60tttaaaatca gcttgtcaat tccaacaaca atgatgcact tgatagtttg ggaatttatt
120atagctatca atcagttttg ggaaaattga cgtctttaca atattgagtt ttctgattca
180tgaacatggt ttacctctct tcccatgggg gtctccttta aggtttacca ataggatttt
240atatttgggg ccattgnggt cttgcttatc ttaagtnnnn nnnnnnnnnn naaatctctt
300gaccncatga tctgcccgcc ttgtcctccc aaagtgctgg gattacaggc gtgagccacc
360gcacctggcc tgcaatacag tattgttaac cgtcttcacc atgttgtacg ttagagctcc
420agaaattatt tancatgcat aactgaaact ttatactctt tgaacaccac ctccccattt
480ccctctcccg gcagccattt gtgcctctcg gttctcttta ttagcttcca ttttgtgggt
540cagt
544128522DNAHomo sapiens 128tacgtcaaag accgctgctg cagtagctgc ccagtcagga
atacttgata ggacaatttc 60tgtaattatg aagaatcaaa caccaacaaa gaagtatgat
ggctacacat catgtccact 120ggtgaccggc tacaaccgtg tgattcttgc tgagtttgac
tacaaagcag agccgctaga 180aaccttcccc tttgatcaaa gcaaagagcg cctttccatg
tatctcatga aagctgacct 240gatgcctttc ctgtattgga atatgatgct aaggggttac
tggggaggac cagcgtttct 300gcgcaagttg tttcatctag gtatgagtta aggatggctc
agcacttgct catcttggat 360ggcttctggg ccaaaactgc agtcactgaa tgaccaagag
cagcacgaag gacttggaac 420ctatccttgt aaagagttcc ttgatgggta atggtgacca
aatgcctccc ttttcagtac 480ctttgaacag caaccatgtg ggctactcat gatgggcttg
at 522129544DNAHomo sapiens 129ttggatgccc
taactgctga tgtgaaggag aaaatgtata acgtcttgtt gtttgttgat 60ggagggtgga
tggtggatgt tagagaggat gccaaagaag accatgaaag aacacatcaa 120atggtcttac
tgagaaagct ttgtctgcca atgttgtgtt ttctgcttca tacgatattg 180cacagtactg
gtcagtatca ggaatgccta cagttagcag atatggtatc ctctgagcgc 240cacaaactgt
acctggtatt ttctaaggaa gagctaagga agttgctgca gaagctcaga 300gagtcctctc
taatgctcct agaccaggga cttgacccat tagggtatga aattcagtta 360tagtttaatc
tttgtaatct cactaatttt catgataaat gaagttttta ataaaatata 420cttgttatta
gtaatttttt cttttgcatt accatgtaaa atttagacat ttgaattttg 480tacttttcag
aatattatcg tgacactttc aacatgtagg gatatcagcg tttctctgtg 540tgct
544130436DNAHomo
sapiens 130aggtcacagt atcctcgttt gaaagataat taagatcccc cgtggagaaa
gcagtgacac 60attcacacag ctgttccctc gcatgttatt tcatgaacat gacctgtttt
cgtgcactag 120acacacagag tggaacagcc gtatgcttaa agtacatggg ccagtgggac
tggaagtgac 180ctgtacaagt gatgcagaaa ggagggtttc aaagaaaaag gattttgttt
aaaatacttt 240aaaaatgtta tttcctgcat cccttggctg tgatgcccct ctcccgattt
cccaggggct 300ctgggaggga cccttctaag aagattgggc agttgggttt ctggcttgag
atgaatccaa 360gcagcagaat gagccaggag tagcaggaga tgggcaaaga aaactggggt
gcactcagct 420ctcacagggg taatca
436131402DNAHomo sapiens 131gcacctcgga gttgcagctg tgacactcat
aggttactcc caggagtgtg ctgagcagaa 60ggcaagctct tgctggatga aacccctcca
ggtggggttg gggagacttg atattcacat 120ccaacagttt gaaaagggag agctcaattc
ccagcgtcac cccatggctt gtgttgcctg 180ctacgcattg acttggatct ccaggagtcc
cctgcacata ccttctccat cgtgtcagct 240gtgtttctct tgattccgtg acacccggtt
tattagttca aaagtgtgac accttttctg 300ggcaaggaac agccccttta aggagcaaat
cacttctgtc acagttatta tggtaatatg 360aggcaatctg attagcttca cagactgagt
ctccacaaca cc 402132390DNAHomo sapiens
132tcaagtgagt gagttcccct ctacttttag ccttccaccc aaactggaag cctctaggtg
60ctatcaatta tttatatcca tcgtttacat ccatgaaatt ggctgaataa ttactcctct
120gcctggcgta gacatgtgct ttgggaaaaa aacgagttta taatcctata atgaagaata
180ctggcacagg caatgctcac tcgaaaactt caagtaattt ctagttggtt ttggaatgct
240tgataaagtt cctttacagc tttattttcc tgatttgttt tggtttagat caaagttcaa
300attaatttta acttagctaa tgaactcatc accaggacag ttggaggggg taggccgagg
360ttaaatggtc cacgtttcaa aaatgttaat
390133503DNAHomo sapiens 133cttttgttct tgctgggtta tttattttga ttttagcatt
aaatgtcatc tcaggatatc 60tctaaaaggg gttgtttaat tcctaattgt atagaaagct
agtttggtga attgtattgg 120ttaattgact gtttaaggcc ttaacaggtg aatctagagc
ctacttttat tttggttaaa 180gaaaaagaaa atatcaataa ttcaattttg tgtcttttct
caatttatta gcaaacacaa 240gacattttat gtattatttc gatttacttc ctaattataa
aagctgcttt tttgcagaac 300attccttgaa aatataaggt tttgaaaaga cataatttta
cttgaatctt tgtggggtac 360aggttgatct ttatatttta ctggttgttt taaaaattct
agaaaagaga tttctaggcc 420tcatgtataa ccagggtttt gaggataaag aactgtattt
ttagaactat ctcatcatag 480catatctgct ttggaataac tat
503134346DNAHomo sapiens 134ttaccctcgt ggctaagcaa
gtgtctgcag gagcagagat ggctggaagg ggcctctgca 60cacggaagat ggcttgttca
gcccattcac ctcctgagga tgtgggcagt ctcctccaag 120aacacatgga gctgcttcct
gatcccaagc aggtcattgc cactggaagg acatggcccc 180ggtgatccat gcttcatgcc
cacccagaaa cacacccctc agtgtgtgcc tcagtttact 240ttggagatca gttgtcgttt
ttagtgctcc tttaggctta ctaaaacagt tttggaaaca 300aagctatttt gaagtattca
agcagaggaa ttccctaaca ctgacc 346135506DNAHomo sapiens
135gaccattttg cgagtgtagc cctgtttcac tcggatcagg ttggcacggc cgcctgcgtg
60tctgtccacc tcatccctcc gtgtatctga gggagtaaag gtgaggtctt tattgcttca
120ctgcctaatt ttctcaccca cattcgctga agcgatggag agtcgggggc cagtagccag
180ccaaccccgt ggggaccggg gttgtctgtc atttatgtgg ctggaaagca cccaaagtgg
240tggtcaggag ggtcgctgct gtggaagggg tctccgttct tggtgctgta tttgaaacgg
300gtgtagagag aagcttgtgt ttttgtttgt aatggggaga agcgtggcca ggcagtggca
360cgtggcatcg catggtgggc tcggcagcac cttgcctgtg tttctgtgag ggaggctgct
420ttctgtgaaa tttctttata tttttctatt tttagtactg tatggatgtt actgagcact
480acacatgatc cttctgtgct tgcttg
506136378DNAHomo sapiens 136aaggaaggcc agagagccgc gcagttctct gcaggtgcag
atgcaggcag tggaggtggc 60ctgagcaggc agaaggacac caagcgccct atgttgcttg
tcattcatga cgtggtcttg 120gagcttctga ctagttcaga ctgccacgcc aaccccagaa
aataccccac atgccagaaa 180agtgaagtcc taggtgtttc catctatgtt tcaatctgtc
catctaccag gcctcgcgat 240aaaaacaaaa caaaaaaacg ctgccaggtt ttagaagcag
ttctggtctc aaaaccatca 300ggatcctgcc accagggttc ttttgaaata gtaccacatg
taaaagggaa tttggctttc 360acttcatcta atcactga
378137562DNAHomo sapiens 137tcccggctac atgggagcgc
ggtgtgagtt cccagtgcac cccgacggcg caagcgcctt 60gcccgcggcc ccgccgggcc
tcaggcccgg ggaccctcag cgctaccttt tgcctccggc 120tctgggactg ctcgtggccg
cgggcgtggc cggcgctgcg ctcttgctgg tccacgtgcg 180ccgccgtggc cactcccagg
atgctgggtc tcgcttgctg gctgggaccc cggagccgtc 240agtccacgca ctcccggatg
cactcaacaa cctaaggacg caggagggtt ccggggatgg 300tccgagctcg tccgtagatt
ggaatcgccc tgaagatgta gaccctcaag ggatttatgt 360catatctgct ccttccatct
acgctcggga ggtagcgacg ccccttttcc ccccgctaca 420cactgggcgc gctgggcaga
ggcagcacct gctttttccc tacccttcct cgattctgtc 480cgtgaaatga attgggtaga
gtctctggaa ggttttaagc ccattttcag ttctaactta 540ctttcatcct attttgcatc
cc 562138528DNAHomo sapiens
138tgaagaaaac cttcattacc cgcttctgct tattttgacc aaacatggat agaagattaa
60gcttctcaaa gacgaagaaa cgtatcaagt gcatagggaa tatttttaca aaaacggaaa
120tctgtaaggg gtataatcgc ctgcctgcgc cctttgcagc atttcacgtg tgggctatgg
180actccacctg tcctcaccca cgttattccc cagctgccct ctccagctcc ctccccgcct
240ctttttacac tctgcttgtt gctcgtcctg ccctaaacct ttgtttgtct ttaaatgtgt
300ataagctgcc tgtctgtgac ttgaatttga ctggtgaaca aactaaatat ttttccctgt
360aattgagaca gaatttcttt tgatgatacc catccctcct tcattttttt tttttttttg
420gtctttgttc tgttttggtg gtggtagttt ttaatcagta aacccagcaa atatcatgat
480tctttcctgg ttagaaaaat aaataaagtg tatcttttta tctccctc
528139371DNAHomo sapiens 139tattcacaag ttttggaggg ctttttgttc ctctgataga
catgactgac ttttagctgt 60cataatgtat taacctaaca gatgaaatat gttaaatatg
tggttgctct ttatcccttt 120gtacaagcat taaaaaaact gctgttttat aagaagactt
tttgttgtac tatgtgcatg 180catactacct atttctaaac tttgccatat tgaggccttt
ataaactatt gatttatgta 240atactagtgc aattttgctt gaacaatgtt atgcatatca
taaacttttt caggttcttg 300tttaagtaca ttttttaaat tgaacagtat ttttcatttt
ggttataata tagtcatttt 360gcctatgttt c
371140324DNAHomo sapiens 140ctcagcccct gtcaacagtg
gggaccccac caccaccatc ctggagtgat tccaactcaa 60ctcaaaggac acccagagct
gccatctggt atctgccagt ttttccaaat gacctgtacc 120ctacccagta ccctgctccc
cctttcccat aattcatgac atcaaaacac cagcttttca 180ccttttcctt gagactcagg
aggaccaaag cagcagcctt ttgctttttc ttttttcttc 240cctcccctta tcaagggttg
aaggaaggga gccatcctta ctgttcagag acagcaactc 300cctcccgtaa ctcaggctga
gaag 324141339DNAHomo sapiens
141gtttctgtga ttcaggatcc tcttgggaga gtatattcaa taaaagcccg gaggtggtga
60ctcctttgca gctccagtgt tgccagcgcc tagtggagct ttgtaaacag tgcctgctag
120tggtttacaa atatgcaact gacaaaagag gatcactttc aggcattggt cctgactggg
180gtaattccag gtatttacta ccagggagca cccaattctt cttgagaaca ccaacctaca
240acttgaagta caattcacct ggaatgactc gctccaatgt tttgtttaca tccagatatg
300gccatctgtg aaacagaagg gaagatcgcc attggttat
339142414DNAHomo sapiens 142ggaggtccca aatatgtggt ctatcaccac tgaattcatg
taatagataa gaaaaaaatt 60agaggtggat gtcttgtttt gtgtcatgaa ttactaaaat
ctcttagtag ttgtggtata 120tttttgagta aaattaccat ttccagattt gagtttgaag
ggcttttata gttgtatttt 180cctcctcact gttaataatc ataatccttt ttcagtattt
tagtggcctt gaacaactgg 240tttatctaca atctcaaatc ctaagtgtat aattatgtgc
aatgttcaat acctcatata 300atacttgctc aacagtatag tggtaccaat ggcattaaga
tggtgttttt gttctacata 360tttttcaata atttattctt tctaatgttg aaattatatc
aggctttacc ggtt 414143524DNAHomo sapiens 143gaagttgcaa
cattcgtttg ataggaattc cagaaaagga gagttatgag aatagggcag 60aggacataat
taaagaaata attgatgaaa actttgcaga actaaagaaa ggttcaagtc 120ttgagattgt
cagtgcttgt cgagtaccta gtaaaattga tgaaaagaga ctgactccta 180gacacatctt
ggtgaaattt tggaattcta gtgataaaga gaaaataata agggcttcta 240gagagagaag
agaaattacc taccaaggaa caagaatcag gttgacagca gacttatcac 300tggacacact
ggatgctaga agtaaatgga gcaatgtctt caaagttctg ctggaaaaag 360gctttaatcc
tagaatccta tatccagcca aaatggcatt tgattttagg ggcaaaacaa 420aggtatttct
tagtattgaa gaatttagag attatgtttt gcatatgccc accttgagag 480aattactggg
gaataatata ccttagcacg ccagggtgac taca
524144487DNAHomo sapiens 144gttatacaga tgccatgctc cacaccacga gcagtgtaca
aatctggctg cccgtttact 60ttctgagcaa gcactggagt ccactccgac ctttttcttt
gaacatgcat gctgctggaa 120tatgtataaa tcagaactag cagaagtagc agagtgatgg
gagcaaaata ggcactgaat 180tcgtcaactc ttttttgtga gcctacttgt gaatattacc
tcagatacct gttgtcactc 240ttcacaggtt atttaagttc ttgaagctgg gaggaaaaag
atggagtagc ttggaaagat 300tccagcactg agccgtgagc cggtcatgag ccacgataaa
aaatgccagt ttggcaaact 360cagcactcct gttccctgct caggtatatg cgatctctac
tgagaagcaa gcacaaaagt 420agaccaaagt attaatgagt atttcctttc tccataagtg
caggactgtt actcactact 480aaactct
487145547DNAHomo sapiens 145gaacgtcgta tgagatccta
caatggaaga ataaaatcac ctcattcttc atttcagatc 60tgaacattag cagtgatcta
gatttttttt tttttaaaca aaattaagtg tgcttagagt 120catccctcta catgggctgt
ggctgtcagc ccataggttt gtcagtttca catcaaaact 180gtgggtataa actgttgaaa
ccaatcacat taaaatattt agctgggcac agtggtgtgc 240atctgtagtc ccagctactt
gggaggctga ggcaggagga tcgcttaagc acaggagttg 300gaatccagcc tgagcaacag
agcaaaaccc cgtctctaaa atacaaataa aatatttgtg 360tagtttttga ttaaaattga
ctacagcggt cagtataaaa tacatgtcgc ttttaaggaa 420gtgctcttta tgtatctaac
agatggaagt ttttgcattg gtaagagcat ttatatatgc 480tttgtttcag ggtttatgga
tttgtattca tatattgtca aataggtttc atactctaat 540tttactt
547146514DNAHomo sapiens
146agattatatc cctatcttct ttttcatgta aaccactggt cacaaatgaa ctgatctctg
60tatcccatta ttactataag aggtgggaat cccaaaactg cttagattgc agtacatgag
120tttacacaaa gacttcaaca attgcacatc ttcattctcc caactgagtg tagtatgtgg
180agcataaaac agcatattct tagtatttca tgaatatcag atggtcttta aatgtctctt
240tatggatgta ttgttcacat tatggcttta aaataatgaa tatgtaaaag tgaggtagtg
300aacatcctaa atttctacac tggaattact aaataatctt atttcataaa atgggaaata
360tatgttaaat gacatcactg gatgaacttg aagatctttt acttgttaac aaaaaaatac
420tatggacagc tttctgattg ttggggtaaa tagcaaatgt tcaaactttg caggcatttt
480gacattcatc ataacaacac aattcctaga catt
514147478DNAHomo sapiens 147ttaggcagtc tgtggtgctc agtcacctct gtcttcgatg
agaaacagca gtggaaattc 60tgtgaaacga atgagtatgg gggaaattct ctcaggaagc
cctgcatctt cccctccatc 120tacagaaata atgtggtctc tgattgcatg gaggatgaaa
gcaacaagct ctggtgccca 180accacagaga acatggataa ggatggaaag tggagtttct
gtgccgacac cagaatttcc 240gcgttggtcc ctggctttcc ttgtcacttt ccgttcaact
ataaaaacaa gaattatttt 300aactgcacta acaaaggatc aaaggagaac cttgtgtggt
gtgcaacttc ttacaactac 360gaccaagacc acacctgggt gtattgctga tgctgaggaa
aggagaaata tcttcagagg 420aagactgccg ccatactgag gctgagcaca gatttgtctt
tttcattgca tctgtcaa 478148426DNAHomo sapiens 148gtgtggcagt
gggactggtc agtattagag gtgtggacag tggtctctat cttggaatga 60atgacaaagg
agaactctat ggatcagaga aacttacttc cgaatgcatc tttagggagc 120agtttgaaga
gaactggtat aacacctatt catctaacat atataaacat ggagacactg 180gccgcaggta
ttttgtggca cttaacaaag acggaactcc aagagatggc gccaggtcca 240agaggcatca
gaaatttaca catttcttac ctagaccagt ggatccagaa agagttccag 300aattgtacaa
ggacctactg atgtacactt gaagtgcgat agtgacatta tggaagagtc 360aaaccacaac
cattctttct tgtcatagtt cccatcataa aataatgacc caagcagacg 420ttcaaa
426149503DNAHomo
sapiens 149tatgcatttt ttaccacaat ttttaaaaag tttgaataga aatttttaat
gtctttgagt 60ggattttgtt ttttgaacag ttggatagac ttctgcgtaa gaaagctgga
ttgactgttg 120ttccttcata taatgccttg agaaattctg aatatcaaag gcagtttgtt
tggaagactt 180ctaaagaaac tgctccagct tttgcagcca atcaggtagc ttaatggatg
taatacattt 240ctgagtacca ttatcttatc tagtaatgta gatttacata gaattaagag
ttgaaagaaa 300ttaagtactt aagtagcctg gaggtaggtt ctagaaaacc aaaatgagag
ttttgctaaa 360atcatcctat tacttatgat ttatggtagt aatattatac tgtcctaggc
ttctgatgat 420cattgttgcc agatgcagca catatactaa atatgagaca gggtaatgaa
aacttgggga 480actggtaagt ttttgcatgc tac
503150541DNAHomo sapiens 150tgaccccttt gatattccag caagtgcaga
atggagatgc agacatcaag gtttctttct 60ggcagtgggc ccatgaagat ggttggccct
ttgatgggcc aggtggtatc ttaggccatg 120cctttttacc aaattctgga aatcctggag
ttgtccattt tgacaagaat gaacactggt 180cagcttcaga cactggatat aatctgttcc
tggttgcaac tcatgagatt gggcattctt 240tgggcctgca gcactctggg aatcagagct
ccataatgta ccccacttac tggtatcacg 300accctagaac cttccagctc agtgccgatg
atatccaaag gatccagcat ttgtatggag 360aaaaatgttc atctgacata ccttaatgtt
agcacagagg acttattcaa cctgtccttt 420cagggagttt attggaggat caaagaactg
aaagcactag agcagccttg gggactgcta 480ggatgaagcc ctaaagaatg caacctagtc
aggttagctg aaccgacact caaaacgcta 540c
541151511DNAHomo sapiens 151aaggtagaaa
gccttccgtc cagtgtgcga atctctgtga acgtgtaaga attcacagtc 60aggaggacta
ctttgaatgt tttcagtgcg gcaaagcttt tctccagaat gtgcatcttc 120ttcaacatct
caaagcccat gaggcagcaa gagtccttcc tcctgggttg tcccacagca 180agacatactt
aattcgttat cagcggaaac atgactacgt tggagagaga gcctgccagt 240gttgtgactg
tggcagagtc ttcagtcgga attcatatct cattcagcat tatagaactc 300acactcaaga
gaggccttac cagtgtcagc tatgtgggaa atgtttcggc cgaccctcat 360acctcactca
acattatcaa ctccattctc aagagaaaac tgttgagtgc gatcactgtt 420gagaaacctt
tagtcacagc acacactttt ctcaacatta ttggcttcct cctagagtgt 480tgtgagtgtg
agaaggcctt tcactagccc c
511152505DNAHomo sapiens 152atgttactac aaacttgatt aaacttctgg tggaaattcc
atcacatttt atgcaatttt 60caatttattt ctccaattta tttttaatgc cacatggaca
ttatattcct taaccattct 120tttgcatgtg attaacattt gtgaaattaa ccacttaagc
aagtgttttt gctttgatga 180aagaaaaatg tttaaaatcc tactggatat gaaactgaaa
gtaatgtttt gtgttttttg 240tttcaaatga aagtgtaaat taagaatttg ttggcagggc
gtggtggctc atgcctgtaa 300tcccagcact ttgggaggcc gaggtgggca gatcacctga
ggtcagcagt ccaagaccac 360cctggccaac atggtgaagt cccgtctcta ctaaaaatac
aaaaatcagc tgggcatggt 420ggcgggcact tgtagtccca gctactcagg aggctgaagc
aggagaatca cttgaactca 480ggaggcagaa gttgcggtta gccga
505153477DNAHomo sapiens 153cctctctcca ctctctagaa
atattaaggc taggctgctg ctgtatgtca gggctagtcc 60cctcttctat gaatccagaa
taactctgaa gaagccgagt aacaggcatg aagtgaagag 120aaatcgctgt aacaggaaga
cagcaaagca gatgctaatg accacactat ttaacgaact 180ggaaccaacg agaaaatacg
gtattactga agactgcact tccttgaaca gagtgctctt 240ctcagcaaat cggaaatgcc
tacacaaatc gctttacaag aaagactgtt tcaaagcagc 300acctttctca atgttctcgt
tcaggtgaca attcttcttg gtctcagctc caattttatt 360gtcattttca tcaataagga
tacacatctc tgccaggagt tgaacctgtt gcttgtcgag 420gtggttagtg tttatttcag
gcatcattac aaaatgtctg atctgttcta gaaccct 477154332DNAHomo sapiens
154aagtatctcc atacaaaata cggttgaatt acaaaaagaa aattgtaaca ttagcatgga
60caaacctggc aggtactcct taactctcct aagtaataaa aactgtaaaa tgcaaataag
120ccttcgatga catttactaa cctttactaa agtatcaatg atgacttggt tgtttaaaca
180gctgacattt gggcaatttg agtatgtcaa actcaataat actggttttc atttgcaaga
240tccacttaaa acttaaggag gccaaaaaac atcatttaaa ataccctata aattataatc
300atacatatga tacgaaaaat atcctacttc ag
332155195DNAHomo sapiens 155catacacata cgtattttcc gtagtgctct gggtggggga
aaatgtttaa attgtattag 60caaatgctaa cttacacttt atagcattta tcagctgtgg
catattacct gtaacatgtt 120taaattaagg caaaggcaat caaaaacctt tttgttttgt
agcctgcttt tgctttcaca 180atttgtctta caatt
195156487DNAHomo sapiens 156gctggccaag actactgggc
cgtgctttct ggaaaaggca tttcagccac gctgatgatc 60ttctccctct tggagttctt
cgtagcttgt gccacagccc attttgccaa ccaagcaaac 120accacaacca atatgtctgt
cctggttatt ccaaatatgt atgaaagcaa ccctgtgaca 180ccagcgtctt cttcagctcc
tcccagatgc aacaactact cagctaatgc ccctaaatag 240taaaagaaaa aggggtatca
gtctaatctc atggagaaaa actacttgca aaaacttctt 300aagaagatgt cttttattgt
ctacaatgat ttctagtctt taaaaactgt gtttgagatt 360tgtttttagg ttggtcgcta
atgatggctg tatctccctt cactgtctct tcctacatta 420ccactactac atgctggcaa
aggtgaagga tcagaggact gaaaaatgat tctgcaactc 480tcttaaa
487157391DNAHomo sapiens
157tgacatgcac cagagggtcc acaggggaga gcgaccctat aattgtaagg aatgtggaaa
60gagctttggc tgggcttcat gtcttttgaa acatcagaga ctccacagtg gagaaaagcc
120attgaaatct ggagtgtggg aagagatcta ctcagaattc acagcttcat ttacatcagt
180aagtctatgt gggagaaaag ccatataaat gtgagaagtg tgggaagggc tttggctggg
240cctcaactca tctgacccat caattctcca cagcagagaa aaaccattca aatatgagaa
300ctgtgggaag agctttgtac atagatcata tctttttttt tttttttgag acagagtctc
360actctttcac ccaagcctga ctgcagtggc g
391158472DNAHomo sapiens 158gaaaagcgcc ctgtgctgag taaagcagcc agtcttctct
tgtcacagta aaaggctggg 60agtaaaattt cccataaaca caggggaaac ctacatttac
tcacatgcca aggaaaatgg 120cacggaagac ccacgtgtag ccacagcaga gtctatgcag
agggcctgca aatgcctggg 180gtgcgagtga atgcctggag gggcggagtt tccaagataa
cagctattgt gttttctttt 240tcacacttca gaagagaatc ctaaggacta gactccgctc
agtgcattcc tttttcatac 300actgatctca agtacaatca cataattttg aaaatccatg
tagtcctccc taaataaaat 360tataaggata ggtttctatt tccttccgat tacctagata
cctccgtctt ctggaaaacc 420ccaaaaagac cagtagacga atcaggaagg tcctaggagt
gattcctcca at 472159317DNAHomo sapiens 159tgcccccaca
gagcaataca ctgaagccta aacatctatc tggtgttttt aaaaagttaa 60aagaaaaata
gatttttttt cacaaggtga caatagtgat ttttaccatc tggatacagc 120ctggtgtaag
cagacgtcca ttaccaccct cacccacatt ttcaggtgtc tacatcagcc 180ttagtcatta
tggatagtaa atcgaccttt aagaattcct ggggtggact ttgcaaacac 240attctacaac
ctgatggttt ttactgctca aactgtcacc atcatctttt gcaatgtgtt 300gctcactgtt
gtcaata
317160476DNAHomo sapiens 160ggacagtctc agggttctgt tctcgccttc acccggacct
tcattgctac ccctggcagc 60agttccagtc tgtgcatcgt gaatgacgag ctgtttgtga
gggatgccag cccccaagag 120actcagagtg ccttctccat cccagtgtcc acactctcct
ccagctctga gccctccctc 180tcccaggagc agcaggaaat ggtgcaggct ttctctgccc
agtctgggat gaaactggag 240tggtctcaga agtgccttca ggacaatgag tggaactaca
ctagagctgg ccaggccttc 300actatgctcc agaccgaggg caagatcccc gcagaggcct
tcaagcaaat ctcctaaaag 360gagccctccg atgtcttctt tgtcttcgtt cacatcctct
ttgtttcctc ttttcaccag 420cctaaggcct ggctgaccag gaagccaacg ttaacttgca
ggccacgtga cataac 476161528DNAHomo sapiens 161aagtctgcat
tgaatccgct gatctactac tggaggatta agaaattcca tgatgcttgc 60ctggacatga
tgcctaagtc cttcaagttt ttgccgcagc tccctggtca cacaaagcga 120cggatacgtc
ctagtgctgt ctatgtgtgt ggggaacatc ggacggtggt gtgaatattg 180gaactggctg
acattttggg tgatgcttgt tctttattga cattgaattc tctttctcat 240agcctctcca
ctttattttt ttttataggg tttgtgtatg tatgtgtgtg agcagtgtaa 300agaaagaatg
gtaattatag ttctgttacc aagaataaat aataggaaag tgattacaaa 360tattacctcc
agggttcaat agaaatcctc aatttagggt gaggagactt ttttttggtt 420ttggggtttt
tccttgattg attttgtttt catagtggga atcaggattg tgctttattg 480agcctgcagt
tacattgaat tgtaggtgtt tcgtgtgctg ctaaggta
528162477DNAHomo sapiens 162gggactgtcg atgtagctga taagctagtg acatttggtc
tggcaaaaaa catcacacct 60caaaggcaga gtgctttaaa tacagaaaag atgtatagga
cgaattgctg ctgcacagag 120ttacagaaac aagttgaaaa acatgaacat attcttctct
tcctcttaaa caattcaacc 180aatcaaaata aatttattga aatgaaaaaa ctggtaaaaa
gttaagtaag ttaaatcgta 240tgttttcgcc tcttctgtga tcaccaatag gacatcttca
ggcatattgg caggatagag 300ctaatggagt gaaacctatt gtaaggctgt actttcgtga
tttaatgacc tgaggtttgg 360tcataatgct tctgctgttt ttgtaggttt atctgatcgt
tttcctttgc tactgctaat 420ggaactgaac ccccaggggt attccagttg taatagcctt
tccttactgt tgtttgg 477163435DNAHomo sapiens 163gttgagttga
aattctgccg cttactcaat ggccttgggt gatgatgctg taccctaatt 60ctaaaggaag
caatgaaccc ccttttcagc taccttactg ataagcactt atgttctgcc 120ttctgctatc
ctgatggttc gggttgtctg tcttactatc tacttcttga gtagagagac 180cacattaaat
ttattgctgt atctcacagg gcatcttgct agtgtgcaca ggctcgcctc 240cctacctctg
ccccgatggt gtgaagggga gagggcgagg ttccttagtg gcagggcttt 300gctgttcttc
actctcagcc ccctgaaagc agttcttcct gcctctgagc ctgtctttcc 360ttctgctgtt
aacttctttc ctacttttct tgcatccctc tcccttcctt ttcctgccgt 420ctttcttgta
gacat
435164264DNAHomo sapiens 164aaaaggacta actcacatgg ctgcagtaag tgctggctgt
tagctggaag cacaaccaag 60gctgttaaca ggtgtgcctt ggttctcttc catatggctt
ctcttttgtt ttcagtactc 120tgcagtttaa ttatgatgca tgcaggtgtg aatttctgtt
tattctgctt gggatgtgtt 180ttccttctgg gatctgtgaa tcggtttctc attatttttg
taaaacctga agccagttat 240ctcttaaaat accagctctc cttg
264165523DNAHomo sapiens 165ctggacttct tggatgagct
caccctgaac cgcccaggcg gtctgctctt ggtgttcaga 60atcacatcaa tgcgaacgtc
acagcgcctt cgagggcgca gattttaact gccacgtatt 120tttaagttgt acttttctgt
ggaggaaatt gtgccttttg aaacgacgtt ttgtgtgtgt 180atttcacgtt agcatttcat
tgcataggca aaacactagt cacaattggg tagatgtgac 240atccatatac ttgtttacat
tttatctgtt ctcatgtcaa agactactcc ttgccccatt 300gaatatatag tggtagcagg
tgtacaaatt ggtcaagttg caattattta tgagagaata 360atgataaatg taaaatatct
aaagcatgaa tctaagagca cgcaatatat aattttaaag 420aaaatattct atttggtaga
atacaaatgt ggtgtgtgtt gttttataat gactgctgta 480cagtgggtat agtattttgg
ttttggttcc agattgtgca atc 523166518DNAHomo sapiens
166gtgaagacat caagagctcg aagtgtaaat tacccgaaca agaatcacta ccaaatgata
60acaaagacat tttacaacgg cttgatcctt cttcattctc aactaagcat tctatgcctg
120taccaagcat ggtgccatcc tacatggcaa tgactactgc tgccaaaagg aaacggaaat
180taacaagttc tacatcaaac agttcgttaa ctgcagacgt aaattctgga tttgccaaac
240gtgttcgaca agataattca agtgagaagc acttacaaga aaacaaacca acaatggaac
300ataaaagaaa catctgtaaa ataaatccaa gcatggttag aaaatttgga agaaatattt
360caaaaggaaa tctaagataa atcacttcaa aaccaagcaa aatgaagttg atcaaatctg
420cttttcaaag tttatcaata ccctttcaaa aatatattta aaatctttga aagaagaccc
480atcttaaagc taagtttacc caagtacttt cagcaagc
518167177DNAHomo sapiens 167cgggagcctg tctcagaact atcagtacga ggtgtgcctg
gcaggaggct cagggacgaa 60tgagttccag ttcctgaaac cagtattacc taatattcag
ggccattctt ttgggccaga 120aatggaacaa aactctaact ttaggaatgg ctttggtttc
agccttcagt taaagta 177168576DNAHomo sapiens 168gaactccacc
ataaagcaac tgctggcatt ttgctggtca gttcctgctc ttttttcttt 60tggtttagtt
ctatctgagg ccgatgtttc cggtatgcag agctataaga tacttgttgc 120ttgcttcaat
ttctgtgccc ttactttcaa caaattctgg gggacaatat tgttcactac 180atgtttcttt
acccctggct ccatcatggt tggtatttat ggcaaaatct ttatcgtttc 240caaacagcat
gctcgagtca tcagccatgt gcctgaaaac acaaaggggg cagtgaaaaa 300acacctatcc
aagaaaaagg acaggaaagc agcgaagaca ctgggtatag taatgggggt 360gtttctggct
tgctggttgc cttgttttct tgctgttctg attgacccat acctagacta 420ctccactccc
atactaatat tggatctttt agtgtggctc cggtacttca actctacttg 480caaccctctt
attcatggct tttttaatcc atggtttcag aaagcattca agtacatagt 540gtcaggaaaa
atatttagct cccattcaga aactgc
576169526DNAHomo sapiens 169cacatctgga cccatcagtg actgcctgcc atagcctgag
agtgtcttgg ggagaccttg 60cagaggggga gaattgttcc ttctgctttc ctaggggact
cttgagctta gaaactcatc 120gtacacttga ccttgagcct tctatttgcc tcatctataa
catgaagtgc tagcatcaga 180tatttgagag ctcttagctc tgtacccggg tgcctggttt
ttggggagtc atccgcagag 240tcactcaccc actgtgtttc tggtgccaag gctcttgagg
gccccactct catccctcct 300ttccctacca gggactcgga ggaaggcata ggagatattt
ccaggcttac gaccctgggc 360tcacgggtac ctatttatat gctcagtgca gagcactgtg
gatgtgccag gaggggtagc 420cctgttcaag agcaatttct gccctttgta aattatttaa
gaaacctgct ttgtcatttt 480attagaaaga aaccagcgtg tgactttcct agataacact
gctttc 526170447DNAHomo sapiens 170ccgccaggag
agcgtgcagc tcgaagagaa ctgcctgtgc cgcttccact ggtgctgcgt 60agtacagtgc
caccgttgcc gtgtgcgcaa ggagctcagc ctctgcctgt gacccgccgc 120ccggccgcta
gactgacttc gcgcagcggt ggctcgcacc tgtgggacct cagggcaccg 180gcaccgggcg
cctctcgccg ctcgagccca gcctctccct gccaaagccc aactcccagg 240gctctggaaa
tggtgaggcg aggggcttga gaggaacgcc cacccacgaa ggcccagggc 300gccagacggc
cccgaaaagg cgctcgggga gcgtttaaag gacactgtac aggccctccc 360tccccttggc
ctctaggagg aaacagtttt ttagactgga aaaaagccag tctaaaggcc 420tctggatact
gggctcccca gaactgc
447171394DNAHomo sapiens 171gcgatgcaga aatgaaccac cggagttcaa tgcgagttct
tggggatgtt gtcaggagac 60ctcccattca taggagaagt ttcagtctag aaggcttgac
aggaggagct ggtgtcggaa 120acaagccatc ctcatctcta gaagtaagct ctgcaaatgc
cgaagagctc agacacccat 180tcagtggtga ggaacgggtt gactctttgg tgtcactttc
agaagaggat ctggagtcag 240accagagaga acataggatg tttgatcagc agatatgtca
cagatctaag cagcagggat 300ttaattactg tacatcagcc atttcctctc cattgacaaa
atccatctca ttaatgacaa 360tcagccatcc tggattggac aattcacggc cctt
394172480DNAHomo sapiensmisc_feature(57)..(57)n is
a, c, g, or t 172gtaggctcag cgatagtggt cctcttacag agaaacgggg agcaggacga
cgggggngct 60ggggntggcg ggggagggtg cccacaaaaa gaatcaggac ttgtactggg
aaaaaaaccc 120ctaaattaat tatatttctt ggacattccc tttcctaaca tcctgaggct
taaaaccctg 180atgcaaactt ctcctttcag tggttggaga aattggccga gttcaaccat
tcactgcaat 240gcctattcca aactttaaat ctatctattg caaaacctga aggactgtag
ttagcgggga 300tgatgttaag tgtggccaag cgcacggcgg caagttttca agcactgagt
ttctattcca 360agatcataga cttactaaag agagtgacaa atgcttcctt aatgtcttct
ataccagaat 420gtaaatattt ttgtgttttg tgttaatttg ttagaattct aacacactat
atacttccaa 48017324DNAHomo sapiens 173agtcactcac ccactgtgtt tctg
2417422DNAHomo sapiens 174ctgtgttctg
catggtttgg at 2217520DNAHomo
sapiens 175atttgagtgg gtgtccaggg
2017620DNAHomo sapiens 176aaaggaccgc atcagtgagc
2017721DNAHomo sapiens 177aagaagattg
ggcagttggg t 2117822DNAHomo
sapiens 178aagataaaca gccccaggaa cc
2217924DNAHomo sapiens 179gtaggaaaaa tgcaagccat ctct
2418023DNAHomo sapiens 180aaaggaaaga
ttggttctcc cag 2318120DNAHomo
sapiens 181tcacagctcc ctccagaagc
2018223DNAHomo sapiens 182caggcttttg agctgatctt gaa
2318323DNAHomo sapiens 183gccaacagta
caatagccca caa 2318425DNAHomo
sapiens 184agttggaaat gtggagtatt ttgga
2518520DNAHomo sapiens 185ctgaccgaga acgaactgca
2018621DNAHomo sapiens 186agcgattcac
gtaggatctg c 2118720DNAHomo
sapiens 187tgccccttaa tgccattgaa
2018822DNAHomo sapiens 188ggtagggaaa ggagggatga ga
2218921DNAHomo sapiens 189ggttggaaga
agttcggttg g 2119020DNAHomo
sapiens 190ggtcaaggcc aatgctctgt
2019118DNAHomo sapiens 191agcagttggc gtgcttgg
1819222DNAHomo sapiens 192tcctgctact
cctggctcat tc 2219322DNAHomo
sapiens 193ccactgagga gctgtctgct tt
2219424DNAHomo sapiens 194catgattagt actgctagcg gacc
2419524DNAHomo sapiens 195agtagaccaa
gcacaggcat acag 2419621DNAHomo
sapiens 196gatgaggact gggagagggt t
2119723DNAHomo sapiens 197tttggagaag ctaaagttcg tgg
2319824DNAHomo sapiens 198ccacgaccta
caatgatgat atcg 2419927DNAHomo
sapiens 199catagtacgg ataatactgc agaggaa
2720018DNAHomo sapiens 200agtccccttt gccccctc
1820121DNAHomo sapiens 201atcaccagtg
ttggaagtgg g 2120219DNAHomo
sapiens 202ttttgccatg gacaatgca
19
User Contributions:
Comment about this patent or add new information about this topic: