Patent application title: METHOD FOR PRODUCTION OF RECOMBINANT HUMAN THROMBIN
Inventors:
Anna Harrysson (Molndal, SE)
Ann Lövgren (Molndal, SE)
Ann Lövgren (Molndal, SE)
Assignees:
MEDIMMUNE LIMITED
IPC8 Class: AC12N974FI
USPC Class:
424 9464
Class name: Hydrolases (3. ) (e.g., urease, lipase, asparaginase, muramidase, etc.) acting on peptide bonds (3.4) (e.g., urokinease, etc.) serine proteinases (3.4.21) (e.g., trypsin, chymotrypsin, plasmin, thrombin, elastase, kallikrein, fibrinolysin, streptokinease, etc.)
Publication date: 2012-10-11
Patent application number: 20120258090
Abstract:
The present invention relates to a method is provided for producing
recombinant human thrombin from recombinant prothrombin using recombinant
ecarin having the sequence SEQ ID NO 2 or a homologue thereof.Claims:
1. A method for producing recombinant human thrombin from recombinant
prothrombin using recombinant ecarin having the sequence SEQ ID NO 2 or a
homologue thereof.
2. A method according to claim 1, wherein the recombinant ecarin is being expressed and secreted by a cell containing the gene comprising the nucleotide sequence SEQ ID NO 2 or a homologue thereof in CHO-S cells, which ecarin has an amino acid sequence equal to that of wild type ecarin.
3. A method according to claim 1 or 2, wherein recombinant protrombin is subjected to recombinant ecarin, which recombinant ecarin was isolated in active form after extra-cellular expression by CHO-S cells, said cells being left to apoptosis/necrosis for a time sufficient to activate said ecarin, whereupon a human recombinant thrombin is isolated.
4. A method according to any of the preceding claims, wherein the recombinant prothrombin is produced by a cell-line comprising a prothrombin expressing gene having a nucleotide sequence comprising the sequence SEQ. ID. NO. 1.
5. A method according to any of the preceding claims, wherein the recombinant prothrombin is a mixture of fully carboxylated prothrombin and incompletely carboxylated prothrombin.
6. A method according to any of the preceding claims, wherein the recombinant prothrombin is a fully carboxylated prothrombin.
7. A method according to any of the preceding claims, wherein the recombinant prothrombin is an incompletely carboxylated prothrombin.
8. A recombinant thrombin obtained by the method according to any of the preceding claims.
9. A pharmaceutical composition comprising a recombinant thrombin according to claim 8, in combination with pharmaceutically acceptable carriers, vehicles and/or adjuvants.
10. A pharmaceutical composition according to claim 9, wherein the composition is in an applicable form.
11. An isolated DNA sequence encoding ecarin according to SEQ ID NO 2 or a homologue thereof, having at least 80% identity to SEQ ID NO 2.
12. An isolated DNA according claim 11, wherein the homologue has an identity of at least 90% to SEQ ID NO 2.
13. A vector comprising the isolated DNA sequence of any of the claims 11 to 12.
14. An amino acid sequence encoded by SEQ ID NO 2 or a homologue thereof.
15. A host cell comprising the vector of claim 13.
16. A host cell according to claim 15, wherein the host cell is a mammalian cell.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation (and claims the benefit of priority under 35 U.S.C. §120) of U.S. application Ser. No. 12/167,614, filed Jul. 3, 2008, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/948,207 (US) filed on Jul. 6, 2007, both of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
[0002] The present application relates to a method for producing recombinant human thrombin from recombinant prothrombin using recombinant ecarin.
BACKGROUND OF THE INVENTION
[0003] Thrombin is a key enzyme in the coagulation cascade. By thrombin mediated proteolytic digestion of fibrinogen into fibrin monomer, a cascade reaction leading to clot formation is started. Clot formation is the first step in wound healing. In addition thrombin is a chemo attractant to cells involved in wound healing, and, the fibrin network formed act as a scaffold for collagen-producing fibroblasts, increases phagocytosis, promotes angiogenesis and binds growth factors thus further supporting the healing process. The rate of clot formation is dependent on the concentration of thrombin and fibrinogen. Because of the important function in clot formation thrombin has been utilised in a number of products intended for haemostasis and/or as tissue sealants or "glues", both as stand-alone products (i.e. Thrombin-JMI) or in combination with fibrin or other compounds (i.e. Tisseel, Hemaseel, Crosseal). The potential fields of use are numerous; skin grafting, neuro surgery, cardiac surgery, toracic surgery, vascular surgery, oncologic surgery, plastic surgery, ophthalmologic surgery, orthopedic surgery, trauma surgery, head and neck surgery, gynecologic and urologic surgery, gastrointestinal surgery, dental surgery, drug delivery, tissue engineering and dental cavity haemostasis.
[0004] So far the thrombin in approved thrombin-containing products on the market is derived either from human or bovine plasma. Using plasma derived protein confers several disadvantages as limited availability and safety concerns such as risk for transmission of viruses and prions and the risk of triggering autoantibody formation (bovine products). Cases where antibody formation due to bovine thrombin exposure has lead to significant bleeding disorders are known.
[0005] In vivo thrombin is obtained from activation of prothrombin through the coagulation cascade. Activation through the coagulation cascade is dependent on the presence of a functional GLA-domain containing 8-10 glutamic residues converted to gamma-carboxyglutamate. In vitro, also incomplete gamma-carboxylated prothrombin can be converted to thrombin by the use of prothrombin activators such as ecarin. Ecarin, a snake venom derived from the Kenyan viper Echis carinatus is a procoagulant, a protease which cleaves human prothrombin between residues Arg320-IIe321 to generate meizothrombin. Further autocatalytic processing results in the formation of meizothrombin desF1 and then alpha-thrombin, which is the mature active form of thrombin.
[0006] An ideal commercial thrombin manufacturing process would use a recombinant thrombin precursor and a recombinant protease produced at high productivity without addition of animal-derived components. Further requirements would be robust performance, convenience and low cost.
[0007] A big obstacle for efficient recombinant human thrombin (rh-thrombin) has been to obtain high yields of prothrombin. Although extensive efforts have been spent, obtaining high yields of prothrombin under conditions suitable for production of biologicals has long remained a challenge. Yonemura et al. (J Biochem 135:577-582, 2004) have used recombinant GLA-domain-less prethrombin digested with recombinant ecarin to generate recombinant human thrombin. The productivity of prethrombin at process scale was 150-200 mg/L, which is a modest productivity for commercial scale production. Recombinant production of ecarin has also been described in WO 01/04146. In this publication generation of rh-thrombin is exemplified by conversion of recombinant prothrombin produced in COS cells by a recombinant ecarin produced from CHO cells. However, the exemplified methods are not suitable for large-scale production and animal-derived components are used.
[0008] Recombinant ecarin is produced as a prepro-protein that needs to be activated. Problems to efficiently activate the r-ecarin are described in both publications and the suggested activation procedures are far from optimal.
[0009] Thus there is a need for improved methods to obtain recombinant human thrombin. During our efforts to obtain improved productivity of gamma-carboxylated human prothrombin we made the surprising discovery that co-expression with gamma-glutamyl carboxylase (GGCX) vastly improved also the productivity of incompletely carboxylated prothrombin (see WO2005038019).
[0010] The present invention describes a process to efficiently produce human thrombin from recombinant prothrombin obtained by the expression method as described in WO2005038019. Recombinant carboxylated or incompletely carboxylated prothrombin combined with recombinant ecarin has not previously been used for manufacturing of recombinant thrombin. Further, the procedure for activating recombinant ecarin is new. The methods described would be suitable for large scale rh-thrombin manufacturing without the addition of animal-derived components.
SUMMARY OF THE INVENTION
[0011] According to a first aspect of the invention, a method is provided for producing recombinant human thrombin from recombinant prothrombin using recombinant ecarin having the sequence SEQ ID NO 2 or a homologue thereof.
[0012] According to a another aspect, a pharmaceutical composition is provided comprising a recombinant thrombin according to said method, in combination with pharmaceutically acceptable carriers, vehicles and/or adjuvants.
[0013] According to further aspect, an isolated DNA sequence is provided coding for recombinant ecarin according to SEQ ID NO 2 or a homologue thereof, having at least 80% identity to SEQ ID NO 2.
[0014] According to another aspect, a vector is provided comprising an isolated DNA sequence coding for recombinant ecarin according to SEQ ID NO 2 or a homologue thereof, having at least 80% identity to SEQ ID NO 2.
[0015] According to yet another aspect, a cell line is provided comprising a vector comprising an isolated DNA sequence coding for recombinant ecarin according to SEQ ID NO 2 or a homologue thereof, having at least 80% identity to SEQ ID NO 2.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1. FII+GGCX construct (SEQ ID NO:1).
[0017] FIG. 2. Ecarin construct (SEQ ID NO:3).
[0018] FIG. 3. Example of a process outline for thrombin manufacturing.
[0019] FIGS. 4A-4C. Nucleotide sequence alignment of the nucleic acid sequence encoding recombinant ecarin (SEQ ID NO:2) used in the present invention and wild type ecarin nucleic acid sequence (SEQ ID NO:4).
[0020] FIG. 5. Amino acid sequence alignment of recombinant ecarin (encoded by SEQ ID NO:2) used in the present invention and wild type ecarin (both having the amino acid sequence of SEQ ID NO:5).
[0021] FIG. 6. Graph showing the activation of recombinant ecarin during cell death over time.
[0022] FIG. 7. Activation of recombinant ecarin in cell cultures over time, assayed by SDS-PAGE.
[0023] FIG. 8. Chromatogram from CIEX purification of rh-thrombin.
[0024] FIG. 9. Non-reduced SDS-PAGE analyses of fractions obtained by CIEX purification.
DETAILED DESCRIPTION OF THE INVENTION
[0025] The invention consists in one part of a cell line derived by stable transfection with a vector (FIG. 1) encoding human prothrombin (FII) associated by suitable control sequences and human gamma-glutamyl carboxylase (GGCX) associated by suitable control sequences. Control sequences should be chosen so that prothrombin expression is in excess of the GGCX expression by at least a factor of 10. The host cell is preferably a eukaryotic cell. Typical host cells include, but are not limited to insect cells, yeast cells, and mammalian cells. Mammalian cells are particularly preferred. Suitable mammalian cells lines include, but are not limited to, CHO, HEK, NS0, 293, Per C.6, BHK and COS cells, and derivatives thereof. In one embodiment the host cell is the mammalian cell line CHO-S. The obtained prothrombin producing cell line is grown under culture conditions optimised for high yield of prothrombin disregarding gamma-carboxylation. Vitamin K may or may not be added to the growth medium.
[0026] It will be appreciated that the invention is not restricted to a particular prothrombin or gamma-glutamyl caboxylase or protein encoding sequence of one of these proteins to be co-expressed. Moreover, and in particular with respect to blood coagulation factors, numerous mutant forms of the proteins have been disclosed in the art. The present invention is equally applicable to prothrombin and gamma-glutamyl caboxylase mutant forms, including naturally occurring allelic variants, of the proteins as it is to wild-type sequence. In one embodiment the invention can be undertaking with any wild-type protein or one with at least 90%, preferably at least 95% sequence identity thereto. In another embodiment, sequences listed in Table 1 can be used.
TABLE-US-00001 TABLE 1 CDNA SPLICE GENE EMBL VARIANTS EMBL PROTEIN ACC# (PROTEIN) MUTATIONS ACC# Glutamate BC013979 2; BC013979; 1 SNP U65896 gamma AF253530 (EMBL# carboxylase U65896); 2 SNPs (OMIM# 137167) Prothrombin V00595 1; V00595 approx. 100 AF478696 SNP's (EMBL# AF478696)
[0027] Each of these proteins, including their nucleic acid and amino acid sequences, are well known. Table 2 identifies representative sequences of wild-type and mutant forms of the various proteins that can be used in the present invention.
[0028] The term "gamma-glutamyl carboxylase" or "GGCX", as used herein, refers to a vitamin K dependent enzyme that catalyses carboxylation of glutamic acid residues.
[0029] GGCX enzymes are widely distributed, and have been cloned from many different species such as the beluga whale Delphinapterus leucas, the toadfish Opsanus tau, chicken (Gallus gallus), hagfish (Myxine glutinosa), horseshoe crab (Limulus polyphemus), and the cone snail Conus textile (Begley et al., 2000, ibid; Bandyopadhyay et al. 2002, ibid). The carboxylase from conus snail is similar to bovine carboxylase and has been expressed in COS cells (Czerwiec et al. 2002, ibid). Additional proteins similar to GGCX can be found in insects and prokaryotes such as Anopheles gambiae, Drosophila melanogaster and Leptospira with NCBI accession numbers: gi 31217234, gi 21298685, gi 24216281, gi 24197548 and (Bandyopadhyay et al., 2002, ibid), respectively. The carboxylase enzyme displays remarkable evolutionary conservation. Several of the non-human enzymes have shown, or may be predicted to have, activity similar to that of the human GGCX we have used, and may therefore be used as an alternative to the human enzyme.
[0030] Table 2 identifies representative sequences of predicted proteins homologous to human GGXC (sorted after species origin) that can be used in the present invention.
TABLE-US-00002 TABLE 2 Data base accession Species #/ID Homo sapiens (man) NM_000821.2 HUMGLUCARB HUMHGCA BC004422 HSU65896 AF253530.1 Papio hamadryas (red baboon) AC116665.1 Delphinapterus leucas (white whale) AF278713 Bos taurus (bovine) NM_174066.2 BOVCARBOXG BOVBGCA Ovis aries (domestic sheep) AF312035 Rattus norvegicus (brown rat) NM_031756.1 AF065387 Mus musculus (mouse) NM_019802.1 AF087938 Opsanus tau (bony fishes) AF278714.1 Conus textile (molluscs) AY0044904.1 AF382823.2 Conus imperialis (molluscs) AF448234.1 Conus episcopatus (molluscs) AF448233.1 Conus omaria (molluscs) AF448235.1 Drosophila melanogaster (fruit fly) NM_079161.2 Anopheles gambiae (mosquito) XM_316389.1 Secale cereale (monocots) SCE314767 Triticum aestivum (common wheat) AF280606.1 Triticum urartu (monocots) AY245579.1 Hordeum vulgare (barley) BLYHORDCA Leptospira interrogans (spirochetes) AE011514.1 Streptomyces coelicolor (high GC Gram+ SCO939109 bacteria) SCO939124 AF425987.1 Streptomyces lividans (high GC Gram+ bacteria) SLU22894 Streptomyces viginiae (high GC Gram+ bacteria) SVSNBDE Micrococcus luteus (high GC Gram+ bacteria) MLSPCOPER Chlamydomonas reinhardtii (green algae) AF479588.1 Dictyostelium discoideum (slime mold) AC115612.2 Coturnix coturnix (birds) AF364329.1 Bradyrhizobium japonicum (α-protoebacteria) AP005937.1 Rhodobacter sphaeroides (α-proteobacteria) RSY14197 Sinorhizobium meliloti (α-proteobacteria) RME603647 AF119834 Mesorhizobium loti (α-proteobacteria) AP003014.2 Chromobacterium violaceum (β-proteobacteria) AE016910.1 AE016918.1 Pseudomonas aeruginosa (γ-proteobacteria) AE004613.1 AF165882 Xanthomonas axonopodis(γ-proteobacteria) AE011706.1 Human herpesvirus 8 KSU52064 KSU75698 AF305694 AF360120 AF192756
[0031] Each of the above-identified GGCX proteins and GGCX proteins from other species can be used as the carboxylase enzyme in the present invention.
[0032] A second part of the invention is a cell line stably transfected with a polynucleotide encoding ecarin and associated control elements (FIG. 2). The ecarin encoding sequence may be optimised for expression in mammalian cells, but is not limited to such sequences. In one embodiment of the invention the sequence according to SEQ ID NO 2 or a homologue thereof is used to express ecarin. A homologue of
[0033] SEQ ID NO 2 coding for ecarin may have at least 80%, 85%, 90%, 95%, 97%, 98% or 99% identity to the sequence SEQ ID NO 2. The host cell is preferably a eukaryotic cell. Typical host cells include, but are not limited to insect cells, yeast cells, and mammalian cells. Mammalian cells are particularly preferred. Suitable mammalian cells lines include, but are not limited to, CHO, HEK, NS0, 293, Per C.6, BHK and COS cells, and derivatives thereof. In one embodiment the host cell is the mammalian cell line CHO-S.
[0034] In one embodiment prothrombin and ecarin are produced from cells originating from the same parent cell line. This cell line origin may be, but is not limited to, Chinese Hamster Ovary cells (CHO) including derivatives and NSO (myeloma BALB/c mouse) including derivatives. The purpose of using the same cell line background is to facilitate purification and evaluation of purity of the thrombin product.
[0035] In another embodiment ecarin and prothrombin are produced from different host cell line; i.e. CHO and NSO, respectively.
[0036] In one aspect of the invention use of recombinant ecarin is preferred as this facilitates detection of non-thrombin product derived components during the thrombin generation process and in the final thrombin product. In a second aspect recombinant ecarin is preferred due to reduced risk for exposure to allergenic or toxic components that may be present in ecarin derived from snake venom. In a third aspect ecarin from snake venom is not preferred due to batch variation and limited batch size of ecarin preparations.
[0037] The crude prothrombin and the crude ecarin are mixed and incubated under conditions that allow formation of thrombin, such as described in Example 3. Generated thrombin is then purified by methods described in Example 4 or by other methods known by persons skilled in the art. Alternatively prothrombin and/or ecarin can first be purified by methods known in the art and then mixed to obtain thrombin. Thrombin is then purified from non-product components.
[0038] An example of a suitable thrombin manufacturing process is outlined in FIG. 3.
[0039] A method is provided for producing recombinant human thrombin from recombinant prothrombin using recombinant ecarin having the sequence SEQ ID NO 2 or a homologue thereof. The recombinant ecarin can be expressed and secreted by a cell containing the gene comprising the nucleotide sequence SEQ ID NO 2 or a homologue thereof in CHO-S cells, which ecarin has an amino acid sequence equal to that of wild type ecarin.
[0040] In the above method the recombinant protrombin is subjected to recombinant ecarin, which recombinant ecarin can be isolated in active form after extra-cellular expression by CHO-S cells, said cells being left to apoptosis/necrosis for a time sufficient to activate said ecarin, whereupon a human recombinant thrombin is isolated.
[0041] The recombinant prothrombin can be produced by a cell-line comprising a prothrombin expressing gene having a nucleotide sequence comprising the sequence SEQ. ID. NO. 1 or an homologue thereof. A homologue of SEQ ID NO 1 coding for prothrombin may have at least 80%, 85%, 90%, 95%, 97%, 98% or 99% identity to the sequence SEQ ID NO 1. The recombinant prothrombin can be a mixture of fully carboxylated prothrombin and incompletely carboxylated prothrombin. In one embodiment, the recombinant prothrombin is a fully carboxylated prothrombin and in another embodiment, the recombinant prothrombin is an incompletely carboxylated prothrombin.
[0042] A further aspect of the invention relates to the recombinant thrombin obtained by the method according to the invention. A pharmaceutical composition can be designed comprising the recombinant thrombin obtained be the method according to the invention, in combination with pharmaceutically acceptable carriers, vehicles and/or adjuvants. The pharmaceutical composition can be in an applicable form.
[0043] In one embodiment thrombin produced by the described method can be used in the manufacturing of tissue sealants ("glues") in combination with other proteins, i.e. fibrin originating from recombinant cells, transgenic animals or human plasma. In another embodiment thrombin produced by the described method can be used as a stand-alone product, freeze dried as single active component or in combination with a non-protein matrix, or, in solution as single active component or in combination with other active components.
[0044] Suitable mix-in components would be, but is not limited to, collagen, chitin, degradable polymers, cellulose, recombinant coagulation factors and fibrinogen from transgenic or recombinant sources.
[0045] The potential fields of use for the tissue sealants ("glues") are numerous; skin grafting, neuro surgery, cardiac surgery, toracic surgery, vascular surgery, oncologic surgery, plastic surgery, ophthalmologic surgery, orthopedic surgery, trauma surgery, head and neck surgery, gynecologic and urologic surgery, gastrointestinal surgery, dental surgery, drug delivery, tissue engineering and dental cavity haemostasis.
[0046] A further aspect of the invention relates to a method for obtaining coagulation by administering a therapeutically effective amount of a recombinant human thrombin obtained using the method according to the invention to a patient.
[0047] Another aspect of the present invention is an isolated DNA sequence according SEQ ID NO 2 or homologues thereof coding for a recombinant ecarin. A homologue of SEQ ID NO 2 coding for ecarin may have at least 80%, 85%, 90%, 95%, 97%, 98% or 99% identity to the sequence SEQ ID NO 2. SEQ ID NO 2 is a designed sequence that has been optimised for optimal expression. The sequence is particularly suited for expression in mammalian cell systems.
[0048] According to another aspect a vector comprising SEQ ID NO 2 or a homologue thereof is provided. Said vector can be designed to overexpress SEQ ID NO 2 or a homologue thereof and is operably linked to expression control sequences permitting expression of ecarin encoded by SEQ ID NO 2 or a homologue thereof. According to a third aspect a host cell comprising said vector is provided that is capable of expressing ecarin encoded by SEQ ID NO 2 or a homologue thereof. This host cell is preferably a eukaryotic cell. Typical host cells include, but are not limited to insect cells, yeast cells, and mammalian cells. Mammalian cells are particularly preferred. Suitable mammalian cells lines include, but are not limited to, CHO, HEK, NSO, 293, Per C.6, BHK and COS cells, and derivatives thereof. In one embodiment the host cell is the mammalian cell line CHO-S.
[0049] According to another embodiment of the present invention a polypeptide comprising an amino acid sequence encoded by SEQ ID NO: 2 or a homologue thereof and obtained by the method described in Example 2.
[0050] The sequence identity between two sequences can be determined by pair-wise computer alignment analysis, using programs such as, BestFit, PILEUP, Gap or FrameAlign. The preferred alignment tool is BestFit. In practise, when searching for similar/identical sequences to the query search, from within a sequence database, it is generally necessary to perform an initial identification of similar sequences using suitable algorithms such as Blast, Blast2, NCBI Blast2, WashU Blast2, FastA, or Fasta3, and a scoring matrix such as Blosum 62. Such algorithms endeavour to closely approximate the "gold-standard" alignment algorithm of Smith-Waterman. Thus, the preferred software/search engine program for use in assessing similarity, i.e., how two primary polypeptide sequences line up is Smith-Waterman. Identity refers to direct matches, similarity allows for conservative substitutions.
Experimental Section
[0051] The invention will be further described by means of the following examples which shall not be interpreted as limiting the scope of the appended claims.
EXAMPLE 1
High Yield Production of Recombinant Human Prothrombin in CHO Cells
[0052] The P1E2 cell line containing the construct PN32 shown in FIG. 1 having the nucleotide sequence SEQ ID NO: 1, was grown in a fermentor according to the method described in WO2005038019, using a protein and animal component free growth medium in order to produce prothrombin for use in thrombin manufacturing. The cells were grown either by batch or perfusion culture methods (Table 1) and the amount of prothrombin produced was measured by an ecarin assay. This ecarin assay was performed essentially as the Chromogenix assay (Molndal, Sweden) using purified plasma-derived human prothrombin (Haematologic Technologies Inc., Vermont, USA) as standard.
TABLE-US-00003 TABLE 1 Examples of yield of prothrombin in experimental fermentor runs Culture method & Viable cells Prothrombin Experiment ID time (million cells/mL) mg/L CC2LC (272-8) Batch, 238 h 5.9 281 CC2LD (272-8) Batch, 238 h 6.2 276 326-11B Perfusion, 259 h 18 722
[0053] The fermentor experiments showed that both batch and perfusion culture methods can be used to produce prothrombin suitable for production of recombinant thrombin (Table 1). The share of fully carboxylated prothrombin obtained in these fermentor runs was about 55-87%, the rest being incompletely carboxylated prothrombin.
EXAMPLE 2
Production of Recombinant Ecarin in CHO Cells
[0054] An ecarin encoding sequence having the nucleotide sequence SEQ ID NO: 2 optimised for expression in mammalian cells was synthesized and cloned into the Invitrogen vector pCDNA 3.1+(FIG. 2). An alignment of the nucleotide sequence of the recombinant ecarin used in the present invention to the sequence of wild type ecarin (GI:717090) is seen in FIG. 4. As can be seen in FIG. 5 this recombinant ecarin is 100% homologous to the amino acid sequence for wild type ecarin. This construct, AZ ecarin (SEQ ID NO. 3), was used to stably transfect CHO-S cells (Invitrogen). Ecarin is secreted by the host cell to the extra-cellular space, and in order to screen for ecarin producing clones, culture supernatant samples were removed and mixed with recombinant human prothrombin (rhFII) to a final concentration of 1 mg rhFII/L in assay buffer (50 mM Tris-HCl, pH 7.4 containing 0.1% BSA). This mix was incubated 20-40 minutes at 37° C. The thrombin generated by the action of ecarin present in the sample was then detected by adding a 1-2 mM solution of the chromogenic thrombin substrate S-2238 (Chromogenix, Molndal). Colour development was monitored and stopped when suitable using 20% acetic acid. To estimate the activity of the recombinant ecarin produced, snake venom derived ecarin with a declared activity was purchased from Sigma and used as standard. The best producing cell line obtained produced up to 7000 U ecarin per litre culture in lab scale shaker cultures grown in animal component free medium.
Activation of Recombinant Ecarin
[0055] The above method produces the recombinant ecarin as a pro protein Thus, activation by removal of the pro-part is necessary for optimal activity. To our surprise, we found that activation was most conveniently obtained by continued incubation of the culture for at least 7 days after the death of the ecarin producing cells (FIG. 6). The culture medium used was CD-CHO supplemented with HT-supplement, non-essential amino acids and Glutamax I (as recommended by Invitrogen for CHO-S), and growth conditions were shaker bottles at 37° C. in an atmosphere containing 5% carbon dioxide. Culture samples were assayed for activity as described above. As can be seen from FIG. 6, the activity of recombinant ecarin increased during the activation period.
[0056] Samples from culture supernatants were also separated by SDS-PAGE and blotted to nitrocellulose mebranes. Labelling of the membrane was performed with polyclonal rabbit serum directed towards the mature part of ecarin expressed as inclusion bodies in E. coli. "M" indicates the molecular weight marker and numbers refer to day of sample collection. As can be seen from FIG. 7 the recombinant ecarin remains stable for more than a week after the death of the cells. Activation of ecarin may also take place at lower temperatures, for instance as low as room temperature, but will then require longer times for activation. Ecarin will remain stable for severable months in room temperature in the presence of dead host cells. The activity will increase gradually until it levels out. A decrease in activity has not been observed except in the presence of bacterial infections or high temperatures. Efforts to use trypsin for activation of ecarin were made, but were not successful.
EXAMPLE 3
Conversion of Prothrombin to Thrombin by Ecarin
[0057] The ecarin protease converts prothrombin to meizothrombin, an intermediate form of thrombin that has thrombin catalytic activity. Further processing into thrombin is achieved by auto-catalyses. To determine the estimated amount of ecarin culture needed for converting prothrombin into thrombin, we performed a series of test digests. Different amounts of ecarin-containing culture supernatants as obtained in Example 2, were mixed with 1 mg/ml prothrombin (as obtained in example 1) in PBS buffer (Cambrex). Incubation of the mixtures was done at 37° C. for 1-3 hours. Samples were then analysed by SDS-PAGE to identify the amount of recombinant ecarin needed for complete conversion of prothrombin into thrombin. By this procedure we found that the recombinant ecarin was very potent; one litre of ecarin culture supernatant at 7000 U/L is capable of complete conversion of 64 grams of prothrombin into thrombin in less than 3 hours at 37° C. Normally recombinantly produced prothrombin has to be purified in order to separate fully-carboxylated prothrombin from the incompletely carboxylated prothrombin. However this is not necessary for the present invention as the recombinant ecarin is able to efficiently activate both the fully carboxylated and the incompletely carboxylated prothrombins.
EXAMPLE 4
Purification of Thrombin
[0058] Thrombin obtained by the procedure described in example 3 was purified by cation-exchange chromatography (CIEX) using AKTA-FPLC (GE Healthcare) and an SP-Sepharose HP column (GE Healthcare) equilibrated with 25 mM sodium-phosphate buffer, pH 6.5. Ecarin-digested prothrombin prepared as in example 3 was adjusted to pH 6.2 and a conductivity of approximately 8 mS/cm. Thrombin was eluted with a 1M sodium chloride gradient in column equilibration buffer over 20 column volumes (FIG. 8). Selected fractions were analysed by SDS-PAGE (FIG. 9). Thrombin activity was confirmed by incubation with the chromogenic thrombin substrate S-2238 (Chromogenix, Molndal).
EXAMPLE 5
Analyses of rh-thrombin Obtained
[0059] To further analyse the obtained thrombin, kinetic parameters were determined using the chromogenic thrombin substrate S-2366 (Chromogenix). Activity was estimated by titration with hirudin. The rh-thrombin was for all parameters; Activity, Kkat and Vmax, similar to plasma-derived human a-thrombin from Haematologic Technologies Inc. (Vermont, USA).
[0060] Purified thrombin was also subjected to N-terminal sequencing: Reduced thrombin heavy and light polypeptide chains were separated by SDS-PAGE and blotted to Immobilon P membrane (Millipor). The excised bands were sequenced by the Edman degradation method. Heavy chain N-terminal first five amino acids were confirmed to be IVEGS, and the light chain five N-terminal amino acids were TFGS as expected.
[0061] Below are the sequences for SEQ ID NOS. 3, 2, and 1:
TABLE-US-00004 SEQ ID NO. 3 gacggatcgggagatctcccgatcccctatggtcgactctcagtacaatctgctctgatgccgcatagttaagc- cagtat ctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggctt- gaccg acaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgt- tgacatt gattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgtt- acataactta cggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccata- gtaa cgccaatagggactttccattgacgtcaatgggtggactatttacggtaaactgcccacttggcagtacatcaa- gtgtat catatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgac- cttat gggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtac- atcaatggg cgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggca- ccaaaat caacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtggga- ggt ctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcact- ataggg agacccaagctggctagcgtttaaacttaagcttggtaccgagctcggatccactagtccagtgtggtggaatt- ctgca gatatccaccatgatccagatcctgctggtgatcatctgcctggccgtgttcccctaccagggctgctccatca- tcctggg cagcggcaacgtgaacgactacgaggtggtgtacccccagaaggtgaccgccctgcccaagggcgccgtgcagc agcccgagcagaaatacgaggacgccatgcagtacgagttcgaggtgaagggcgagcccgtggtgctgcacctg gagaagaacaaggagctgttcagcgaggactacagcgagacccactacagcagcgacgacagggagatcacc accaaccccagcgtggaggaccactgctactaccacggccggatccagaacgacgccgagagcaccgccagca tcagcgcctgtaatggcctgaagggccacttcaagctgagaggcgagacctacttcatcgagcccctgaagatc- ccc gacagcgaggcccacgccgtgtacaagtacgagaacatcgagaacgaggacgaggcccctaagatgtgtggcgt gacccaggacaactgggagagcgacgagcccatcaagaaaaccctgggcctgatcgtgcccccccacgagaga aagttcgagaagaagttcatcgaactggtggtcgtggtggaccacagcatggtgaccaagtacaacaacgacag- ca ccgccatcaggacctggatctacgagatgctgaacaccgtgaacgagatctacctgcccttcaacatcagagtg- gcc ctggtgggcctggagttctggtgtaacggcgacctgatcaacgtgaccagcaccgccgacgacaccctgcacag- ctt cggcgagtggagagccagcgacctgctgaaccggaagagacacgatcacgcccagctgctgaccaatgtgaccc tggaccactccaccctgggcatcaccttcgtgtacggcatgtgtaagagcgaccggagcgtggagctgatcctg- gact acagcaacatcaccttcaacatggcctacatcatcgcccacgagatgggccacagcctgggcatgctgcacgac- ac caagttctgtacctgtggcgccaagccctgtatcatgttcggcaaggagagcatccctccccctaaggagttca- gcag ctgctcctacgaccagtacaataagtacctgctgaagtacaaccccaagtgtatcctggacccccccctgagaa- agg acatcgccagccctgccgtgtgtggcaatgagatctgggaggagggcgaggagtgtgactgtggcagcccagcc- g actgtagaaacccctgctgtgatgccgccacctgtaagctgaagcctggcgccgagtgtggcaacggcgagtgc- tgt gacaagtgtaagatccggaaggccggcaccgagtgtagacccgccagggacgattgtgacgtggccgagcactg- t accggccagagcgccgagtgccccagaaacgagttccagaggaacggccagccttgcctgaacaacagcggct actgctacaacggcgactgccccatcatgctgaaccagtgtatcgccctgttcagccccagcgccaccgtggcc- cag gacagctgcttccagagaaacctgcagggcagctactacggctactgtaccaaggagatcggctactacggaaa- g aggttcccctgtgcccctcaggacgtgaagtgtggcaggctgtactgcctggacaactccttcaagaaaaacat- gagg tgtaagaacgactacagctacgccgacgagaacaagggcatcgtggagcccggcaccaagtgtgaggacggca aagtgtgtatcaaccggaagtgtgtggacgtgaacaccgcctactgatgagcggccgctcgagtctagagggcc- cgt ttaaacccgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgcctt- ccttgaccct ggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcatt- ctattctg gggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgg gctctatggcttctgaggcggaaagaaccagctggggctctagggggtatccccacgcgccctgtagcggcgca- tta agcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgc- tttctt cccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcggggcatccctttagggttccgat- ttagtgcttt acggcactcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttt- tcgc cctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctc- ggtctattct tttgatttataagggattttggggatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgc- gaattaattc tgtggaatgtgtgtcagttagggtgtggaaagtccccaggctccccaggcaggcagaagtatgcaaagcatgca- tctc aattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaa- tt agtcagcaaccatagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccg- cccc atggctgactaattttttttatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtga- ggaggcttt tttggaggcctaggcttttgcaaaaagctcccgggagcttgtatatccattttcggatctgatcaagagacagg- atgagg atcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggct- atgact gggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttcttttt- gtcaa gaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggctggccacgacgggcg- tt ccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggca- gga tctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgc- ttgatcc ggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttg- tc gatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcat- g cccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgctt- ttctg gattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgct- gaaga gcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgcct- tctatcg ccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacctgccatc- acga gatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgccggctggatgat- cctccag cgcggggatctcatgctggagttcttcgcccaccccaacttgtttattgcagcttataatggttacaaataaag- caatagc atcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatc- ttatcatgtctgt ataccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgct- cacaattcc acacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattg- cgtt gcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgggga- gag gcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcga- gcggtatc agctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaag gccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgag- ca tcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctg- ga agctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaag- cgtggcg ctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacga- acccccc gttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgcc- actgg cagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcct- aac tacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttgg- tagctc ttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaa- aagg atctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattt- tggtcatg agattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatata- tgagtaaa cttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccata- gttgcctgac tccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagac- cca cgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaac- tt tatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgc- aacgttgtt gccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatc- aaggcga
gttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagtt- ggccgca gtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgt- gactggtgagt actcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataat- accgc gccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttac- cgctg ttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttc- tgggtgagc aaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcc- t ttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaa- ataaacaaat aggggttccgcgcacatttccccgaaaagtgccacctgacgtc// SEQ ID NO. 2 atgatccagatcctgctggtgatcatctgcctggccgtgttcccctaccagggctgctccatcatcctgggcag- cggcaa cgtgaacgactacgaggtggtgtacccccagaaggtgaccgccctgcccaagggcgccgtgcagcagcccgagc- agaaat acgaggacgccatgcagtacgagttcgaggtgaagggcgagcccgtggtgctgcacctggagaagaacaaggag- ctgttc agcgaggactacagcgagacccactacagcagcgacgacagggagatcaccaccaaccccagcgtggaggacca- ctgcta ctaccacggccggatccagaacgacgccgagagcaccgccagcatcagcgcctgtaatggcctgaagggccact- tcaagc tgagaggcgagacctacttcatcgagcccctgaagatccccgacagcgaggcccacgccgtgtacaagtacgag- aacatc gagaacgaggacgaggcccctaagatgtgtggcgtgacccaggacaactgggagagcgacgagcccatcaagaa- aaccct gggcctgatcgtgcccccccacgagagaaagttcgagaagaagttcatcgaactggtggtcgtggtggaccaca- gcatgg tgaccaagtacaacaacgacagcaccgccatcaggacctggatctacgagatgctgaacaccgtgaacgagatc- tacctg cccttcaacatcagagtggccctggtgggcctggagttctggtgtaacggcgacctgatcaacgtgaccagcac- cgccga cgacaccctgcacagcttcggcgagtggagagccagcgacctgctgaaccggaagagacacgatcacgcccagc- tgctga ccaatgtgaccctggaccactccaccctgggcatcaccttcgtgtacggcatgtgtaagagcgaccggagcgtg- gagctg atcctggactacagcaacatcaccttcaacatggcctacatcatcgcccacgagatgggccacagcctgggcat- gctgca cgacaccaagttctgtacctgtggcgccaagccctgtatcatgttcggcaaggagagcatccctccccctaagg- agttca gcagctgctcctacgaccagtacaataagtacctgctgaagtacaaccccaagtgtatcctggacccccccctg- agaaag gacatcgccagccctgccgtgtgtggcaatgagatctgggaggagggcgaggagtgtgactgtggcagcccagc- cgactg tagaaacccctgctgtgatgccgccacctgtaagctgaagcctggcgccgagtgtggcaacggcgagtgctgtg- acaagt gtaagatccggaaggccggcaccgagtgtagacccgccagggacgattgtgacgtggccgagcactgtaccggc- cagagc gccgagtgccccagaaacgagttccagaggaacggccagccttgcctgaacaacagcggctactgctacaacgg- cgactg ccccatcatgctgaaccagtgtatcgccctgttcagccccagcgccaccgtggcccaggacagctgcttccaga- gaaacc tgcagggcagctactacggctactgtaccaaggagatcggctactacggaaagaggttcccctgtgcccctcag- gacgtg aagtgtggcaggctgtactgcctggacaactccttcaagaaaaacatgaggtgtaagaacgactacagctacgc- cgacga gaacaagggcatcgtggagcccggcaccaagtgtgaggacggcaaagtgtgtatcaaccggaagtgtgtggacg- tgaaca ccgcctactga SEQ ID NO. 1 gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagc- cagtat ctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggctt- gaccg acaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgt- tgacatt gattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgtt- acataactta cggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccata- gtaa cgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaa- gtgtat catatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgac- cttat gggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtac- atcaatggg cgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggca- ccaaaat caacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtggga- ggt ctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcact- ataggg agacccaagctggctagcgtttaaacttaagcttggtaccgagctcggatccactagtccagtgtggtggaatt- gccctt attcctcagtgacccaggagctgacacactatggcgcacgtccgaggcttgcagctgcctggctgcctggccct- ggct gccctgtgtagccttgtgcacagccagcatgtgttcctggctcctcagcaagcacggtcgctgctccagcgggt- ccggc gagccaacaccttcttggaggaggtgcgcaagggcaacctggagcgagagtgcgtggaggagacgtgcagctac gaggaggccttcgaggctctggagtcctccacggctacggatgtgttctgggccaagtacacagcttgtgagac- agc gaggacgcctcgagataagcttgctgcatgtctggaaggtaactgtgctgagggtctgggtacgaactaccgag- ggc atgtgaacatcacccggtcaggcattgagtgccagctatggaggagtcgctacccacataagcctgaaatcaac- tcc actacccatcctggggccgacctacaggagaatttctgccgcaaccccgacagcagcaccacgggaccctggtg- ct acactacagaccccaccgtgaggaggcaggaatgcagcatccctgtctgtggccaggatcaagtcactgtagcg- at gactccacgctccgaaggctccagtgtgaatctgtcacctccattggagcagtgtgtccctgatcgggggcagc- agta ccaggggcgcctggcggtgaccacacatgggctcccctgcctggcctgggccagcgcacaggccaaggccctga gcaagcaccaggacttcaactcagctgtgcagctggtggagaacttctgccgcaacccagacggggatgaggag- g gcgtgtggtgctatgtggccgggaagcctggcgactttgggtactgcgacctcaactattgtgaggaggccgtg- gagg aggagacaggagatgggctggatgaggactcagacagggccatcgaagggcgtaccgccaccagtgagtacca gactttcttcaatccgaggacctttggctcgggagaggcagactgtgggctgcgacctctgttcgagaagaagt- cgctg gaggacaaaaccgaaagagagctcctggaatcctacatcgacgggcgcattgtggagggctcggatgcagagat- c ggcatgtcaccttggcaggtgatgcttttccggaagagtccccaggagctgctgtgtggggccagcctcatcag- tgacc gctgggtcctcaccgccgcccactgcctcctgtacccgccctgggacaagaacttcaccgagaatgaccttctg- gtgc gcattggcaagcactcccgcaccaggtacgagcgaaacattgaaaagatatccatgttggaaaagatctacatc- ca ccccaggcaagcactggcgggagaacctggaccgggacattgccctgatgaagctgaagaagcctgttgccttc- agtg actacattcaccctgtgtgtctgcccgacagggagacggcagccagcttgctccaggctggatacaaggggcgg- gtg acaggctggggcaacctgaaggagacgtggacagccaacgttggtaaggggcagcccagtgtcctgcaggtggt- g aacctgcccattgtggagcggccggtctgcaaggactccacccggatccgcatcactgacaacatgttctgtgc- tggtt acaagcctgatgaagggaaacgaggggatgcctgtgaaggtgacagtgggggaccctttgtcatgaagagcccc- tt taacaaccgctggtatcaaatgggcatcgtctcatggggtgaaggctgtgaccgggatgggaaatatggcttct- acac acatgtgttccgcctgaagaagtggatacagaaggtcattgatcagtttggagagtagaagggcaattctgcag- atatc cagcacagtggcggccgctcgagtctagagggcccgtttaaacccgctgatcagcctcgactgtgccttctagt- tgcca gccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaat- aaaatgag gaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaaggggga- ggat tgggaagacaatagcaggcatgctggggatgcggtgggctctatggcttctgaggcggaaagaaccagctgggg- ct ctagggggtatccccacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgacc- gct acacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttcc- ccgtcaagct ctaaatcgggggctccctttagggttccgatttagtgctttacggcaccttcgaccccaaaaaacttgattagg- gctgtgg aatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaa- ttag tcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtc- ag caaccatagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccat- ggctg actaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattccagaagtagtgaggaggct- tttttggag gcctaggcttttgcaaaaagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacga- ctcacta tagggagacccaagctggctagcgtttaaacttaagcttggtaccgagctcggatccactagtccagtgtggtg- gaatt gccctttccgcagagcaatggcggtgtctgccgggtccgcgcggacctcgcccagctcagataaagtacagaaa- ga caaggctgaactgatctcagggcccaggcaggacagccgaatagggaaactcttgggttttgagtggacagatt- tgtc
cagttggcggaggctggtgaccctgctgaatcgaccaacggaccctgcaagcttagctgtctttcgttttcttt- ttgggttctt gatggtgctagacattccccaggagcgggggctcagctctctggaccggaaataccttgatgggctggatgtgt- gccg cttccccttgctggatgccctacgcccactgccacttgactggatgtatcttgtctacaccatcatgtttctgg- gggcactgg gcatgatgctgggcctgtgctaccggataagctgtgtgttattcctgctgccatactggtatgtgtttctcctg- gacaagac atcatggaacaaccactcctatctgtatgggttgttggcctttcagctaacattcatggatgcaaaccactact- ggtctgtg gacggtctgctgaatgcccataggaggaatgcccacgtgcccctttggaactatgcagtgctccgtggccagat- cttca ttgtgtacttcattgcgggtgtgaaaaagctggatgcagactgggttgaaggctattccatggaatatttgtcc- cggcact ggctcttcagtcccttcaaactgctgttgtctgaggagctgactagcctgctggtcgtgcactggggtgggctg- ctgcttga cctctcagctggtttcctgctcttttttgatgtctcaagatccattggcctgttctttgtgtcctacttccact- gcatgaattcccag cttttcagcattggtatgttctcctacgtcatgctggccagcagccctctcttctgctcccctgagtggcctcg- gaagctggt gtcctactgcccccgaaggttgcaacaactgttgcccctcaaggcagcccctcagcccagtgtttcctgtgtgt- ataaga ggagccggggcaaaagtggccagaagccagggctgcgccatcagctgggagctgccttcaccctgctctacctc- ct ggagcagctattcctgccctattctcattttctcacccagggctataacaactggacaaatgggctgtatggct- attcctgg gacatgatggtgcactcccgctcccaccagcacgtgaagatcacctaccgtgatggccgcactggcgaactggg- cta ccttaaccctggggtatttacacagagtcggcgatggaaggatcatgcagacatgctgaagcaatatgccactt- gcct gagccgcctgcttcccaagtataatgtcactgagccccagatctactttgatatttgggtctccatcaatgacc- gcttcca gcagaggatttttgaccctcgtgtggacatcgtgcaggccgcttggtcaccctttcagcgcacatcctgggtgc- aacca ctcttgatggacctgtctccctggagggccaagttacaggaaatcaagagcagcctagacaaccacactgaggt- ggt cttcattgcagatttccctggactgcacttggagaattttgtgagtgaagacctgggcaacactagcatccagc- tgctgc agggggaagtgactgtggagcttgtggcagaacagaagaaccagactcttcgagagggagaaaaaatgcagttg- c ctgctggtgagtaccataaggtgtatacgacatcacctagcccttcttgctacatgtacgtctatgtcaacact- acagagc ttgcactggagcaagacctggcatatctgcaagaattaaaggaaaaggtggagaatggaagtgaaacagggcct- ct acccccagagctgcagcctctgttggaaggggaagtaaaagggggccctgagccaacacctctggttcagacct- ttc ttagacgccaacaaaggctccaggagattgaacgccggcgaaatactcctttccatgagcgattcttccgcttc- ttgttg cgaaagctctatgtctttcgccgcagcttcctgatgacttgtatctcacttcgaaatctgatattaggccgtcc- ttccctgga gcagctggcccaggaggtgacttatgcaaacttgagaccctttgaggcagttggagaactgaatccctcaaaca- cgg attcttcacattctaatcctcctgagtcaaatcctgatcctgtccactcagagttctgaagggggccagatgtt- ggaaggg caattcgagtctagagggcccgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaata- gtggactct tgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcg- gcctattggtt aaaaaatgagctgatttaacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtggaaa- gtcccc aggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccag- gc tccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgcccctaactccgcc- cat cccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagagg- ccgaggcc gcctctgcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctccc- gggagc ttgtatatccattttcggatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaagatggattgc- acgcag gttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgcc- gccgt gttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgc- aggac gaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagc- ggg aagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaag- tatcc atcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaaca- tcgc atcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggct- cg cgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgat- gc ctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcgg- accgct atcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtg- ctttac ggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgagcgggactctg- gggttcga aatgaccgaccaagcgacgcccaacctgccatcacgagatttcgattccaccgccgccttctatgaaaggttgg- gctt cggaatcgttttccgggacgccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacc- ccaac ttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttc- actgcattct agttgtggtttgtccaaactcatcaatgtatcttatcatgtctgtataccgtcgacctctagctagagcttggc- gtaatcatgg tcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtg- taaagc ctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacc- tgtcgtg ccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgc- tcact gactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccac- agaa tcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgc gttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggc- gaaa cccgacaggactataaagataccaggcgtttccccctggaagaccctcgtgcgctctcctgttccgaccctgcc- gctta ccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagt- tcggtgta ggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaact- atcgt cttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgag- gt atgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatc- tgcgct ctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcgg- tttttt tgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctg- acgctc agtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatcctttta- aattaaa aatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgag- gcacctat ctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagg- gcttacca tctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagcc- agc cggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaag- ctaga gtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtc- gtttggtat ggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggtta- gctcct tcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataat- tctcttact gtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcg- gcgaccg agttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattgg- aaaa cgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacc- caactg atcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagg- gaat aagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttatt- gtctcatgag cggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccac- ctgac gtc//
Sequence CWU
1
5110139DNAArtificial SequenceSynthetic construct 1gacggatcgg gagatctccc
gatcccctat ggtgcactct cagtacaatc tgctctgatg 60ccgcatagtt aagccagtat
ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120cgagcaaaat ttaagctaca
acaaggcaag gcttgaccga caattgcatg aagaatctgc 180ttagggttag gcgttttgcg
ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240gattattgac tagttattaa
tagtaatcaa ttacggggtc attagttcat agcccatata 300tggagttccg cgttacataa
cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360cccgcccatt gacgtcaata
atgacgtatg ttcccatagt aacgccaata gggactttcc 420attgacgtca atgggtggag
tatttacggt aaactgccca cttggcagta catcaagtgt 480atcatatgcc aagtacgccc
cctattgacg tcaatgacgg taaatggccc gcctggcatt 540atgcccagta catgacctta
tgggactttc ctacttggca gtacatctac gtattagtca 600tcgctattac catggtgatg
cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660actcacgggg atttccaagt
ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720aaaatcaacg ggactttcca
aaatgtcgta acaactccgc cccattgacg caaatgggcg 780gtaggcgtgt acggtgggag
gtctatataa gcagagctct ctggctaact agagaaccca 840ctgcttactg gcttatcgaa
attaatacga ctcactatag ggagacccaa gctggctagc 900gtttaaactt aagcttggta
ccgagctcgg atccactagt ccagtgtggt ggaattgccc 960ttattcctca gtgacccagg
agctgacaca ctatggcgca cgtccgaggc ttgcagctgc 1020ctggctgcct ggccctggct
gccctgtgta gccttgtgca cagccagcat gtgttcctgg 1080ctcctcagca agcacggtcg
ctgctccagc gggtccggcg agccaacacc ttcttggagg 1140aggtgcgcaa gggcaacctg
gagcgagagt gcgtggagga gacgtgcagc tacgaggagg 1200ccttcgaggc tctggagtcc
tccacggcta cggatgtgtt ctgggccaag tacacagctt 1260gtgagacagc gaggacgcct
cgagataagc ttgctgcatg tctggaaggt aactgtgctg 1320agggtctggg tacgaactac
cgagggcatg tgaacatcac ccggtcaggc attgagtgcc 1380agctatggag gagtcgctac
ccacataagc ctgaaatcaa ctccactacc catcctgggg 1440ccgacctaca ggagaatttc
tgccgcaacc ccgacagcag caccacggga ccctggtgct 1500acactacaga ccccaccgtg
aggaggcagg aatgcagcat ccctgtctgt ggccaggatc 1560aagtcactgt agcgatgact
ccacgctccg aaggctccag tgtgaatctg tcacctccat 1620tggagcagtg tgtccctgat
cgggggcagc agtaccaggg gcgcctggcg gtgaccacac 1680atgggctccc ctgcctggcc
tgggccagcg cacaggccaa ggccctgagc aagcaccagg 1740acttcaactc agctgtgcag
ctggtggaga acttctgccg caacccagac ggggatgagg 1800agggcgtgtg gtgctatgtg
gccgggaagc ctggcgactt tgggtactgc gacctcaact 1860attgtgagga ggccgtggag
gaggagacag gagatgggct ggatgaggac tcagacaggg 1920ccatcgaagg gcgtaccgcc
accagtgagt accagacttt cttcaatccg aggacctttg 1980gctcgggaga ggcagactgt
gggctgcgac ctctgttcga gaagaagtcg ctggaggaca 2040aaaccgaaag agagctcctg
gaatcctaca tcgacgggcg cattgtggag ggctcggatg 2100cagagatcgg catgtcacct
tggcaggtga tgcttttccg gaagagtccc caggagctgc 2160tgtgtggggc cagcctcatc
agtgaccgct gggtcctcac cgccgcccac tgcctcctgt 2220acccgccctg ggacaagaac
ttcaccgaga atgaccttct ggtgcgcatt ggcaagcact 2280cccgcaccag gtacgagcga
aacattgaaa agatatccat gttggaaaag atctacatcc 2340accccaggta caactggcgg
gagaacctgg accgggacat tgccctgatg aagctgaaga 2400agcctgttgc cttcagtgac
tacattcacc ctgtgtgtct gcccgacagg gagacggcag 2460ccagcttgct ccaggctgga
tacaaggggc gggtgacagg ctggggcaac ctgaaggaga 2520cgtggacagc caacgttggt
aaggggcagc ccagtgtcct gcaggtggtg aacctgccca 2580ttgtggagcg gccggtctgc
aaggactcca cccggatccg catcactgac aacatgttct 2640gtgctggtta caagcctgat
gaagggaaac gaggggatgc ctgtgaaggt gacagtgggg 2700gaccctttgt catgaagagc
ccctttaaca accgctggta tcaaatgggc atcgtctcat 2760ggggtgaagg ctgtgaccgg
gatgggaaat atggcttcta cacacatgtg ttccgcctga 2820agaagtggat acagaaggtc
attgatcagt ttggagagta gaagggcaat tctgcagata 2880tccagcacag tggcggccgc
tcgagtctag agggcccgtt taaacccgct gatcagcctc 2940gactgtgcct tctagttgcc
agccatctgt tgtttgcccc tcccccgtgc cttccttgac 3000cctggaaggt gccactccca
ctgtcctttc ctaataaaat gaggaaattg catcgcattg 3060tctgagtagg tgtcattcta
ttctgggggg tggggtgggg caggacagca agggggagga 3120ttgggaagac aatagcaggc
atgctgggga tgcggtgggc tctatggctt ctgaggcgga 3180aagaaccagc tggggctcta
gggggtatcc ccacgcgccc tgtagcggcg cattaagcgc 3240ggcgggtgtg gtggttacgc
gcagcgtgac cgctacactt gccagcgccc tagcgcccgc 3300tcctttcgct ttcttccctt
cctttctcgc cacgttcgcc ggctttcccc gtcaagctct 3360aaatcggggg ctccctttag
ggttccgatt tagtgcttta cggcaccttc gaccccaaaa 3420aacttgatta gggctgtgga
atgtgtgtca gttagggtgt ggaaagtccc caggctcccc 3480agcaggcaga agtatgcaaa
gcatgcatct caattagtca gcaaccaggt gtggaaagtc 3540cccaggctcc ccagcaggca
gaagtatgca aagcatgcat ctcaattagt cagcaaccat 3600agtcccgccc ctaactccgc
ccatcccgcc cctaactccg cccagttccg cccattctcc 3660gccccatggc tgactaattt
tttttattta tgcagaggcc gaggccgcct cggcctctga 3720gctattccag aagtagtgag
gaggcttttt tggaggccta ggcttttgca aaaagctctc 3780tggctaacta gagaacccac
tgcttactgg cttatcgaaa ttaatacgac tcactatagg 3840gagacccaag ctggctagcg
tttaaactta agcttggtac cgagctcgga tccactagtc 3900cagtgtggtg gaattgccct
ttccgcagag caatggcggt gtctgccggg tccgcgcgga 3960cctcgcccag ctcagataaa
gtacagaaag acaaggctga actgatctca gggcccaggc 4020aggacagccg aatagggaaa
ctcttgggtt ttgagtggac agatttgtcc agttggcgga 4080ggctggtgac cctgctgaat
cgaccaacgg accctgcaag cttagctgtc tttcgttttc 4140tttttgggtt cttgatggtg
ctagacattc cccaggagcg ggggctcagc tctctggacc 4200ggaaatacct tgatgggctg
gatgtgtgcc gcttcccctt gctggatgcc ctacgcccac 4260tgccacttga ctggatgtat
cttgtctaca ccatcatgtt tctgggggca ctgggcatga 4320tgctgggcct gtgctaccgg
ataagctgtg tgttattcct gctgccatac tggtatgtgt 4380ttctcctgga caagacatca
tggaacaacc actcctatct gtatgggttg ttggcctttc 4440agctaacatt catggatgca
aaccactact ggtctgtgga cggtctgctg aatgcccata 4500ggaggaatgc ccacgtgccc
ctttggaact atgcagtgct ccgtggccag atcttcattg 4560tgtacttcat tgcgggtgtg
aaaaagctgg atgcagactg ggttgaaggc tattccatgg 4620aatatttgtc ccggcactgg
ctcttcagtc ccttcaaact gctgttgtct gaggagctga 4680ctagcctgct ggtcgtgcac
tggggtgggc tgctgcttga cctctcagct ggtttcctgc 4740tcttttttga tgtctcaaga
tccattggcc tgttctttgt gtcctacttc cactgcatga 4800attcccagct tttcagcatt
ggtatgttct cctacgtcat gctggccagc agccctctct 4860tctgctcccc tgagtggcct
cggaagctgg tgtcctactg cccccgaagg ttgcaacaac 4920tgttgcccct caaggcagcc
cctcagccca gtgtttcctg tgtgtataag aggagccggg 4980gcaaaagtgg ccagaagcca
gggctgcgcc atcagctggg agctgccttc accctgctct 5040acctcctgga gcagctattc
ctgccctatt ctcattttct cacccagggc tataacaact 5100ggacaaatgg gctgtatggc
tattcctggg acatgatggt gcactcccgc tcccaccagc 5160acgtgaagat cacctaccgt
gatggccgca ctggcgaact gggctacctt aaccctgggg 5220tatttacaca gagtcggcga
tggaaggatc atgcagacat gctgaagcaa tatgccactt 5280gcctgagccg cctgcttccc
aagtataatg tcactgagcc ccagatctac tttgatattt 5340gggtctccat caatgaccgc
ttccagcaga ggatttttga ccctcgtgtg gacatcgtgc 5400aggccgcttg gtcacccttt
cagcgcacat cctgggtgca accactcttg atggacctgt 5460ctccctggag ggccaagtta
caggaaatca agagcagcct agacaaccac actgaggtgg 5520tcttcattgc agatttccct
ggactgcact tggagaattt tgtgagtgaa gacctgggca 5580acactagcat ccagctgctg
cagggggaag tgactgtgga gcttgtggca gaacagaaga 5640accagactct tcgagaggga
gaaaaaatgc agttgcctgc tggtgagtac cataaggtgt 5700atacgacatc acctagccct
tcttgctaca tgtacgtcta tgtcaacact acagagcttg 5760cactggagca agacctggca
tatctgcaag aattaaagga aaaggtggag aatggaagtg 5820aaacagggcc tctaccccca
gagctgcagc ctctgttgga aggggaagta aaagggggcc 5880ctgagccaac acctctggtt
cagacctttc ttagacgcca acaaaggctc caggagattg 5940aacgccggcg aaatactcct
ttccatgagc gattcttccg cttcttgttg cgaaagctct 6000atgtctttcg ccgcagcttc
ctgatgactt gtatctcact tcgaaatctg atattaggcc 6060gtccttccct ggagcagctg
gcccaggagg tgacttatgc aaacttgaga ccctttgagg 6120cagttggaga actgaatccc
tcaaacacgg attcttcaca ttctaatcct cctgagtcaa 6180atcctgatcc tgtccactca
gagttctgaa gggggccaga tgttggaagg gcaattcgag 6240tctagagggc ccgccctgat
agacggtttt tcgccctttg acgttggagt ccacgttctt 6300taatagtgga ctcttgttcc
aaactggaac aacactcaac cctatctcgg tctattcttt 6360tgatttataa gggattttgc
cgatttcggc ctattggtta aaaaatgagc tgatttaaca 6420aaaatttaac gcgaattaat
tctgtggaat gtgtgtcagt tagggtgtgg aaagtcccca 6480ggctccccag caggcagaag
tatgcaaagc atgcatctca attagtcagc aaccaggtgt 6540ggaaagtccc caggctcccc
agcaggcaga agtatgcaaa gcatgcatct caattagtca 6600gcaaccatag tcccgcccct
aactccgccc atcccgcccc taactccgcc cagttccgcc 6660cattctccgc cccatggctg
actaattttt tttatttatg cagaggccga ggccgcctct 6720gcctctgagc tattccagaa
gtagtgagga ggcttttttg gaggcctagg cttttgcaaa 6780aagctcccgg gagcttgtat
atccattttc ggatctgatc aagagacagg atgaggatcg 6840tttcgcatga ttgaacaaga
tggattgcac gcaggttctc cggccgcttg ggtggagagg 6900ctattcggct atgactgggc
acaacagaca atcggctgct ctgatgccgc cgtgttccgg 6960ctgtcagcgc aggggcgccc
ggttcttttt gtcaagaccg acctgtccgg tgccctgaat 7020gaactgcagg acgaggcagc
gcggctatcg tggctggcca cgacgggcgt tccttgcgca 7080gctgtgctcg acgttgtcac
tgaagcggga agggactggc tgctattggg cgaagtgccg 7140gggcaggatc tcctgtcatc
tcaccttgct cctgccgaga aagtatccat catggctgat 7200gcaatgcggc ggctgcatac
gcttgatccg gctacctgcc cattcgacca ccaagcgaaa 7260catcgcatcg agcgagcacg
tactcggatg gaagccggtc ttgtcgatca ggatgatctg 7320gacgaagagc atcaggggct
cgcgccagcc gaactgttcg ccaggctcaa ggcgcgcatg 7380cccgacggcg aggatctcgt
cgtgacccat ggcgatgcct gcttgccgaa tatcatggtg 7440gaaaatggcc gcttttctgg
attcatcgac tgtggccggc tgggtgtggc ggaccgctat 7500caggacatag cgttggctac
ccgtgatatt gctgaagagc ttggcggcga atgggctgac 7560cgcttcctcg tgctttacgg
tatcgccgct cccgattcgc agcgcatcgc cttctatcgc 7620cttcttgacg agttcttctg
agcgggactc tggggttcga aatgaccgac caagcgacgc 7680ccaacctgcc atcacgagat
ttcgattcca ccgccgcctt ctatgaaagg ttgggcttcg 7740gaatcgtttt ccgggacgcc
ggctggatga tcctccagcg cggggatctc atgctggagt 7800tcttcgccca ccccaacttg
tttattgcag cttataatgg ttacaaataa agcaatagca 7860tcacaaattt cacaaataaa
gcattttttt cactgcattc tagttgtggt ttgtccaaac 7920tcatcaatgt atcttatcat
gtctgtatac cgtcgacctc tagctagagc ttggcgtaat 7980catggtcata gctgtttcct
gtgtgaaatt gttatccgct cacaattcca cacaacatac 8040gagccggaag cataaagtgt
aaagcctggg gtgcctaatg agtgagctaa ctcacattaa 8100ttgcgttgcg ctcactgccc
gctttccagt cgggaaacct gtcgtgccag ctgcattaat 8160gaatcggcca acgcgcgggg
agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc 8220tcactgactc gctgcgctcg
gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 8280cggtaatacg gttatccaca
gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 8340gccagcaaaa ggccaggaac
cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 8400gcccccctga cgagcatcac
aaaaatcgac gctcaagtca gaggtggcga aacccgacag 8460gactataaag ataccaggcg
tttccccctg gaagctccct cgtgcgctct cctgttccga 8520ccctgccgct taccggatac
ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 8580atagctcacg ctgtaggtat
ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 8640tgcacgaacc ccccgttcag
cccgaccgct gcgccttatc cggtaactat cgtcttgagt 8700ccaacccggt aagacacgac
ttatcgccac tggcagcagc cactggtaac aggattagca 8760gagcgaggta tgtaggcggt
gctacagagt tcttgaagtg gtggcctaac tacggctaca 8820ctagaagaac agtatttggt
atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 8880ttggtagctc ttgatccggc
aaacaaacca ccgctggtag cggttttttt gtttgcaagc 8940agcagattac gcgcagaaaa
aaaggatctc aagaagatcc tttgatcttt tctacggggt 9000ctgacgctca gtggaacgaa
aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa 9060ggatcttcac ctagatcctt
ttaaattaaa aatgaagttt taaatcaatc taaagtatat 9120atgagtaaac ttggtctgac
agttaccaat gcttaatcag tgaggcacct atctcagcga 9180tctgtctatt tcgttcatcc
atagttgcct gactccccgt cgtgtagata actacgatac 9240gggagggctt accatctggc
cccagtgctg caatgatacc gcgagaccca cgctcaccgg 9300ctccagattt atcagcaata
aaccagccag ccggaagggc cgagcgcaga agtggtcctg 9360caactttatc cgcctccatc
cagtctatta attgttgccg ggaagctaga gtaagtagtt 9420cgccagttaa tagtttgcgc
aacgttgttg ccattgctac aggcatcgtg gtgtcacgct 9480cgtcgtttgg tatggcttca
ttcagctccg gttcccaacg atcaaggcga gttacatgat 9540cccccatgtt gtgcaaaaaa
gcggttagct ccttcggtcc tccgatcgtt gtcagaagta 9600agttggccgc agtgttatca
ctcatggtta tggcagcact gcataattct cttactgtca 9660tgccatccgt aagatgcttt
tctgtgactg gtgagtactc aaccaagtca ttctgagaat 9720agtgtatgcg gcgaccgagt
tgctcttgcc cggcgtcaat acgggataat accgcgccac 9780atagcagaac tttaaaagtg
ctcatcattg gaaaacgttc ttcggggcga aaactctcaa 9840ggatcttacc gctgttgaga
tccagttcga tgtaacccac tcgtgcaccc aactgatctt 9900cagcatcttt tactttcacc
agcgtttctg ggtgagcaaa aacaggaagg caaaatgccg 9960caaaaaaggg aataagggcg
acacggaaat gttgaatact catactcttc ctttttcaat 10020attattgaag catttatcag
ggttattgtc tcatgagcgg atacatattt gaatgtattt 10080agaaaaataa acaaataggg
gttccgcgca catttccccg aaaagtgcca cctgacgtc 1013921851DNAArtificial
SequenceSynthetically generated oligonucleotide 2atgatccaga tcctgctggt
gatcatctgc ctggccgtgt tcccctacca gggctgctcc 60atcatcctgg gcagcggcaa
cgtgaacgac tacgaggtgg tgtaccccca gaaggtgacc 120gccctgccca agggcgccgt
gcagcagccc gagcagaaat acgaggacgc catgcagtac 180gagttcgagg tgaagggcga
gcccgtggtg ctgcacctgg agaagaacaa ggagctgttc 240agcgaggact acagcgagac
ccactacagc agcgacgaca gggagatcac caccaacccc 300agcgtggagg accactgcta
ctaccacggc cggatccaga acgacgccga gagcaccgcc 360agcatcagcg cctgtaatgg
cctgaagggc cacttcaagc tgagaggcga gacctacttc 420atcgagcccc tgaagatccc
cgacagcgag gcccacgccg tgtacaagta cgagaacatc 480gagaacgagg acgaggcccc
taagatgtgt ggcgtgaccc aggacaactg ggagagcgac 540gagcccatca agaaaaccct
gggcctgatc gtgccccccc acgagagaaa gttcgagaag 600aagttcatcg aactggtggt
cgtggtggac cacagcatgg tgaccaagta caacaacgac 660agcaccgcca tcaggacctg
gatctacgag atgctgaaca ccgtgaacga gatctacctg 720cccttcaaca tcagagtggc
cctggtgggc ctggagttct ggtgtaacgg cgacctgatc 780aacgtgacca gcaccgccga
cgacaccctg cacagcttcg gcgagtggag agccagcgac 840ctgctgaacc ggaagagaca
cgatcacgcc cagctgctga ccaatgtgac cctggaccac 900tccaccctgg gcatcacctt
cgtgtacggc atgtgtaaga gcgaccggag cgtggagctg 960atcctggact acagcaacat
caccttcaac atggcctaca tcatcgccca cgagatgggc 1020cacagcctgg gcatgctgca
cgacaccaag ttctgtacct gtggcgccaa gccctgtatc 1080atgttcggca aggagagcat
ccctccccct aaggagttca gcagctgctc ctacgaccag 1140tacaataagt acctgctgaa
gtacaacccc aagtgtatcc tggacccccc cctgagaaag 1200gacatcgcca gccctgccgt
gtgtggcaat gagatctggg aggagggcga ggagtgtgac 1260tgtggcagcc cagccgactg
tagaaacccc tgctgtgatg ccgccacctg taagctgaag 1320cctggcgccg agtgtggcaa
cggcgagtgc tgtgacaagt gtaagatccg gaaggccggc 1380accgagtgta gacccgccag
ggacgattgt gacgtggccg agcactgtac cggccagagc 1440gccgagtgcc ccagaaacga
gttccagagg aacggccagc cttgcctgaa caacagcggc 1500tactgctaca acggcgactg
ccccatcatg ctgaaccagt gtatcgccct gttcagcccc 1560agcgccaccg tggcccagga
cagctgcttc cagagaaacc tgcagggcag ctactacggc 1620tactgtacca aggagatcgg
ctactacgga aagaggttcc cctgtgcccc tcaggacgtg 1680aagtgtggca ggctgtactg
cctggacaac tccttcaaga aaaacatgag gtgtaagaac 1740gactacagct acgccgacga
gaacaagggc atcgtggagc ccggcaccaa gtgtgaggac 1800ggcaaagtgt gtatcaaccg
gaagtgtgtg gacgtgaaca ccgcctactg a 185137280DNAArtificial
SequenceSynthetic construct 3gacggatcgg gagatctccc gatcccctat ggtcgactct
cagtacaatc tgctctgatg 60ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt
ggaggtcgct gagtagtgcg 120cgagcaaaat ttaagctaca acaaggcaag gcttgaccga
caattgcatg aagaatctgc 180ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc
cagatatacg cgttgacatt 240gattattgac tagttattaa tagtaatcaa ttacggggtc
attagttcat agcccatata 300tggagttccg cgttacataa cttacggtaa atggcccgcc
tggctgaccg cccaacgacc 360cccgcccatt gacgtcaata atgacgtatg ttcccatagt
aacgccaata gggactttcc 420attgacgtca atgggtggac tatttacggt aaactgccca
cttggcagta catcaagtgt 480atcatatgcc aagtacgccc cctattgacg tcaatgacgg
taaatggccc gcctggcatt 540atgcccagta catgacctta tgggactttc ctacttggca
gtacatctac gtattagtca 600tcgctattac catggtgatg cggttttggc agtacatcaa
tgggcgtgga tagcggtttg 660actcacgggg atttccaagt ctccacccca ttgacgtcaa
tgggagtttg ttttggcacc 720aaaatcaacg ggactttcca aaatgtcgta acaactccgc
cccattgacg caaatgggcg 780gtaggcgtgt acggtgggag gtctatataa gcagagctct
ctggctaact agagaaccca 840ctgcttactg gcttatcgaa attaatacga ctcactatag
ggagacccaa gctggctagc 900gtttaaactt aagcttggta ccgagctcgg atccactagt
ccagtgtggt ggaattctgc 960agatatccac catgatccag atcctgctgg tgatcatctg
cctggccgtg ttcccctacc 1020agggctgctc catcatcctg ggcagcggca acgtgaacga
ctacgaggtg gtgtaccccc 1080agaaggtgac cgccctgccc aagggcgccg tgcagcagcc
cgagcagaaa tacgaggacg 1140ccatgcagta cgagttcgag gtgaagggcg agcccgtggt
gctgcacctg gagaagaaca 1200aggagctgtt cagcgaggac tacagcgaga cccactacag
cagcgacgac agggagatca 1260ccaccaaccc cagcgtggag gaccactgct actaccacgg
ccggatccag aacgacgccg 1320agagcaccgc cagcatcagc gcctgtaatg gcctgaaggg
ccacttcaag ctgagaggcg 1380agacctactt catcgagccc ctgaagatcc ccgacagcga
ggcccacgcc gtgtacaagt 1440acgagaacat cgagaacgag gacgaggccc ctaagatgtg
tggcgtgacc caggacaact 1500gggagagcga cgagcccatc aagaaaaccc tgggcctgat
cgtgcccccc cacgagagaa 1560agttcgagaa gaagttcatc gaactggtgg tcgtggtgga
ccacagcatg gtgaccaagt 1620acaacaacga cagcaccgcc atcaggacct ggatctacga
gatgctgaac accgtgaacg 1680agatctacct gcccttcaac atcagagtgg ccctggtggg
cctggagttc tggtgtaacg 1740gcgacctgat caacgtgacc agcaccgccg acgacaccct
gcacagcttc ggcgagtgga 1800gagccagcga cctgctgaac cggaagagac acgatcacgc
ccagctgctg accaatgtga 1860ccctggacca ctccaccctg ggcatcacct tcgtgtacgg
catgtgtaag agcgaccgga 1920gcgtggagct gatcctggac tacagcaaca tcaccttcaa
catggcctac atcatcgccc 1980acgagatggg ccacagcctg ggcatgctgc acgacaccaa
gttctgtacc tgtggcgcca 2040agccctgtat catgttcggc aaggagagca tccctccccc
taaggagttc agcagctgct 2100cctacgacca gtacaataag tacctgctga agtacaaccc
caagtgtatc ctggaccccc 2160ccctgagaaa ggacatcgcc agccctgccg tgtgtggcaa
tgagatctgg gaggagggcg 2220aggagtgtga ctgtggcagc ccagccgact gtagaaaccc
ctgctgtgat gccgccacct 2280gtaagctgaa gcctggcgcc gagtgtggca acggcgagtg
ctgtgacaag tgtaagatcc 2340ggaaggccgg caccgagtgt agacccgcca gggacgattg
tgacgtggcc gagcactgta 2400ccggccagag cgccgagtgc cccagaaacg agttccagag
gaacggccag ccttgcctga 2460acaacagcgg ctactgctac aacggcgact gccccatcat
gctgaaccag tgtatcgccc 2520tgttcagccc cagcgccacc gtggcccagg acagctgctt
ccagagaaac ctgcagggca 2580gctactacgg ctactgtacc aaggagatcg gctactacgg
aaagaggttc ccctgtgccc 2640ctcaggacgt gaagtgtggc aggctgtact gcctggacaa
ctccttcaag aaaaacatga 2700ggtgtaagaa cgactacagc tacgccgacg agaacaaggg
catcgtggag cccggcacca 2760agtgtgagga cggcaaagtg tgtatcaacc ggaagtgtgt
ggacgtgaac accgcctact 2820gatgagcggc cgctcgagtc tagagggccc gtttaaaccc
gctgatcagc ctcgactgtg 2880ccttctagtt gccagccatc tgttgtttgc ccctcccccg
tgccttcctt gaccctggaa 2940ggtgccactc ccactgtcct ttcctaataa aatgaggaaa
ttgcatcgca ttgtctgagt 3000aggtgtcatt ctattctggg gggtggggtg gggcaggaca
gcaaggggga ggattgggaa 3060gacaatagca ggcatgctgg ggatgcggtg ggctctatgg
cttctgaggc ggaaagaacc 3120agctggggct ctagggggta tccccacgcg ccctgtagcg
gcgcattaag cgcggcgggt 3180gtggtggtta cgcgcagcgt gaccgctaca cttgccagcg
ccctagcgcc cgctcctttc 3240gctttcttcc cttcctttct cgccacgttc gccggctttc
cccgtcaagc tctaaatcgg 3300ggcatccctt tagggttccg atttagtgct ttacggcacc
tcgaccccaa aaaacttgat 3360tagggtgatg gttcacgtag tgggccatcg ccctgataga
cggtttttcg ccctttgacg 3420ttggagtcca cgttctttaa tagtggactc ttgttccaaa
ctggaacaac actcaaccct 3480atctcggtct attcttttga tttataaggg attttgggga
tttcggccta ttggttaaaa 3540aatgagctga tttaacaaaa atttaacgcg aattaattct
gtggaatgtg tgtcagttag 3600ggtgtggaaa gtccccaggc tccccaggca ggcagaagta
tgcaaagcat gcatctcaat 3660tagtcagcaa ccaggtgtgg aaagtcccca ggctccccag
caggcagaag tatgcaaagc 3720atgcatctca attagtcagc aaccatagtc ccgcccctaa
ctccgcccat cccgccccta 3780actccgccca gttccgccca ttctccgccc catggctgac
taattttttt tatttatgca 3840gaggccgagg ccgcctctgc ctctgagcta ttccagaagt
agtgaggagg cttttttgga 3900ggcctaggct tttgcaaaaa gctcccggga gcttgtatat
ccattttcgg atctgatcaa 3960gagacaggat gaggatcgtt tcgcatgatt gaacaagatg
gattgcacgc aggttctccg 4020gccgcttggg tggagaggct attcggctat gactgggcac
aacagacaat cggctgctct 4080gatgccgccg tgttccggct gtcagcgcag gggcgcccgg
ttctttttgt caagaccgac 4140ctgtccggtg ccctgaatga actgcaggac gaggcagcgc
ggctatcgtg gctggccacg 4200acgggcgttc cttgcgcagc tgtgctcgac gttgtcactg
aagcgggaag ggactggctg 4260ctattgggcg aagtgccggg gcaggatctc ctgtcatctc
accttgctcc tgccgagaaa 4320gtatccatca tggctgatgc aatgcggcgg ctgcatacgc
ttgatccggc tacctgccca 4380ttcgaccacc aagcgaaaca tcgcatcgag cgagcacgta
ctcggatgga agccggtctt 4440gtcgatcagg atgatctgga cgaagagcat caggggctcg
cgccagccga actgttcgcc 4500aggctcaagg cgcgcatgcc cgacggcgag gatctcgtcg
tgacccatgg cgatgcctgc 4560ttgccgaata tcatggtgga aaatggccgc ttttctggat
tcatcgactg tggccggctg 4620ggtgtggcgg accgctatca ggacatagcg ttggctaccc
gtgatattgc tgaagagctt 4680ggcggcgaat gggctgaccg cttcctcgtg ctttacggta
tcgccgctcc cgattcgcag 4740cgcatcgcct tctatcgcct tcttgacgag ttcttctgag
cgggactctg gggttcgaaa 4800tgaccgacca agcgacgccc aacctgccat cacgagattt
cgattccacc gccgccttct 4860atgaaaggtt gggcttcgga atcgttttcc gggacgccgg
ctggatgatc ctccagcgcg 4920gggatctcat gctggagttc ttcgcccacc ccaacttgtt
tattgcagct tataatggtt 4980acaaataaag caatagcatc acaaatttca caaataaagc
atttttttca ctgcattcta 5040gttgtggttt gtccaaactc atcaatgtat cttatcatgt
ctgtataccg tcgacctcta 5100gctagagctt ggcgtaatca tggtcatagc tgtttcctgt
gtgaaattgt tatccgctca 5160caattccaca caacatacga gccggaagca taaagtgtaa
agcctggggt gcctaatgag 5220tgagctaact cacattaatt gcgttgcgct cactgcccgc
tttccagtcg ggaaacctgt 5280cgtgccagct gcattaatga atcggccaac gcgcggggag
aggcggtttg cgtattgggc 5340gctcttccgc ttcctcgctc actgactcgc tgcgctcggt
cgttcggctg cggcgagcgg 5400tatcagctca ctcaaaggcg gtaatacggt tatccacaga
atcaggggat aacgcaggaa 5460agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg
taaaaaggcc gcgttgctgg 5520cgtttttcca taggctccgc ccccctgacg agcatcacaa
aaatcgacgc tcaagtcaga 5580ggtggcgaaa cccgacagga ctataaagat accaggcgtt
tccccctgga agctccctcg 5640tgcgctctcc tgttccgacc ctgccgctta ccggatacct
gtccgccttt ctcccttcgg 5700gaagcgtggc gctttctcaa tgctcacgct gtaggtatct
cagttcggtg taggtcgttc 5760gctccaagct gggctgtgtg cacgaacccc ccgttcagcc
cgaccgctgc gccttatccg 5820gtaactatcg tcttgagtcc aacccggtaa gacacgactt
atcgccactg gcagcagcca 5880ctggtaacag gattagcaga gcgaggtatg taggcggtgc
tacagagttc ttgaagtggt 5940ggcctaacta cggctacact agaaggacag tatttggtat
ctgcgctctg ctgaagccag 6000ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa
acaaaccacc gctggtagcg 6060gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa
aaaaggatct caagaagatc 6120ctttgatctt ttctacgggg tctgacgctc agtggaacga
aaactcacgt taagggattt 6180tggtcatgag attatcaaaa aggatcttca cctagatcct
tttaaattaa aaatgaagtt 6240ttaaatcaat ctaaagtata tatgagtaaa cttggtctga
cagttaccaa tgcttaatca 6300gtgaggcacc tatctcagcg atctgtctat ttcgttcatc
catagttgcc tgactccccg 6360tcgtgtagat aactacgata cgggagggct taccatctgg
ccccagtgct gcaatgatac 6420cgcgagaccc acgctcaccg gctccagatt tatcagcaat
aaaccagcca gccggaaggg 6480ccgagcgcag aagtggtcct gcaactttat ccgcctccat
ccagtctatt aattgttgcc 6540gggaagctag agtaagtagt tcgccagtta atagtttgcg
caacgttgtt gccattgcta 6600caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc
attcagctcc ggttcccaac 6660gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa
agcggttagc tccttcggtc 6720ctccgatcgt tgtcagaagt aagttggccg cagtgttatc
actcatggtt atggcagcac 6780tgcataattc tcttactgtc atgccatccg taagatgctt
ttctgtgact ggtgagtact 6840caaccaagtc attctgagaa tagtgtatgc ggcgaccgag
ttgctcttgc ccggcgtcaa 6900tacgggataa taccgcgcca catagcagaa ctttaaaagt
gctcatcatt ggaaaacgtt 6960cttcggggcg aaaactctca aggatcttac cgctgttgag
atccagttcg atgtaaccca 7020ctcgtgcacc caactgatct tcagcatctt ttactttcac
cagcgtttct gggtgagcaa 7080aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc
gacacggaaa tgttgaatac 7140tcatactctt cctttttcaa tattattgaa gcatttatca
gggttattgt ctcatgagcg 7200gatacatatt tgaatgtatt tagaaaaata aacaaatagg
ggttccgcgc acatttcccc 7260gaaaagtgcc acctgacgtc
728041848DNAEchis carinatus 4atgatccaga ttctcttggt
aattatatgc ttagcagttt ttccatatca aggttgctct 60ataatcctgg gatctgggaa
tgttaatgat tatgaagtag tgtatccaca aaaagtcact 120gcattgccca aaggagcagt
tcagcagcct gagcaaaagt atgaagatgc catgcaatat 180gaatttgaag tgaagggaga
gccagtggtc cttcacctag aaaaaaataa agaacttttt 240tcagaagatt acagtgagac
tcattattcg tctgatgaca gagaaattac aacaaaccct 300tcagttgagg atcactgcta
ttatcatgga cggatccaga atgatgctga gtcaactgca 360agcatcagtg catgcaatgg
tttgaaagga catttcaagc ttcgagggga gacgtacttt 420attgaaccct tgaagattcc
cgacagtgaa gcccatgcag tctacaaata tgaaaacata 480gaaaatgagg atgaagcccc
caaaatgtgt ggggtaaccc aggataattg ggaatcagat 540gaacccatca aaaagacttt
ggggttaatt gttcctcctc atgaacgaaa atttgagaaa 600aaattcattg agcttgtcgt
agttgtggac cacagtatgg tcacaaaata caacaatgat 660tcaactgcta taagaacatg
gatatatgaa atgctcaaca ctgtaaatga gatatactta 720cctttcaata ttcgtgtagc
actggttggc ctagaatttt ggtgcaatgg agacttgatt 780aacgtgacat ccacagcaga
tgatactttg cactcatttg gagaatggag agcatcagat 840ttgctgaatc gaaaaagaca
tgatcatgct cagttactca cgaacgtgac actggatcat 900tccactcttg gaatcacgtt
cgtatatggc atgtgcaaat cagatcgttc tgtagaactt 960attctggatt acagcaacat
aacttttaat atggcatata taatagccca tgagatgggt 1020catagtctgg gcatgttaca
tgacacaaaa ttctgtactt gtggggctaa accatgcatt 1080atgtttggca aagaaagcat
tccaccgccc aaagaattca gcagttgtag ttatgaccag 1140tataacaagt atcttcttaa
atataaccca aaatgcattc ttgattcacc tttgagaaaa 1200gatattgctt cacctgcagt
ttgtggaaat gaaatttggg aggaaggaga agaatgtgat 1260tgtggttctc ctgcagattg
tcgaaatcca tgctgtgatg ctgcaacatg taaactgaaa 1320ccaggggcag aatgtggaaa
tggagagtgt tgtgacaagt gcaagattag gaaagcagga 1380acagaatgcc ggccagcaag
ggatgactgt gatgtcgctg aacactgcac tggccaatct 1440gctgagtgtc ccagaaatga
gttccaaagg aatggacaac catgccttaa caactcgggt 1500tattgctaca atggggattg
ccccatcatg ttaaaccaat gtattgctct ctttagtcca 1560agtgcaactg tggctcaaga
ttcatgtttt cagaggaact tgcaaggcag ttactatggc 1620tactgcacaa aggaaattgg
ttactatggt aaaaggtttc catgtgcacc acaagatgta 1680aaatgtggca gattatactg
cttagataat tcattcaaaa aaaatatgcg ttgcaagaac 1740gactattcat acgcggatga
aaataaggga atagttgaac ctggaacaaa atgtgaagat 1800ggaaaggtct gcatcaacag
gaagtgtgtt gatgtgaata cagcctac 18485616PRTKenyan Echis
carinatusecarin derived from Kenyan Echis carinatus 5Met Ile Gln Ile Leu
Leu Val Ile Ile Cys Leu Ala Val Phe Pro Tyr1 5
10 15Gln Gly Cys Ser Ile Ile Leu Gly Ser Gly Asn
Val Asn Asp Tyr Glu 20 25
30Val Val Tyr Pro Gln Lys Val Thr Ala Leu Pro Lys Gly Ala Val Gln
35 40 45Gln Pro Glu Gln Lys Tyr Glu Asp
Ala Met Gln Tyr Glu Phe Glu Val 50 55
60Lys Gly Glu Pro Val Val Leu His Leu Glu Lys Asn Lys Glu Leu Phe65
70 75 80Ser Glu Asp Tyr Ser
Glu Thr His Tyr Ser Ser Asp Asp Arg Glu Ile 85
90 95Thr Thr Asn Pro Ser Val Glu Asp His Cys Tyr
Tyr His Gly Arg Ile 100 105
110Gln Asn Asp Ala Glu Ser Thr Ala Ser Ile Ser Ala Cys Asn Gly Leu
115 120 125Lys Gly His Phe Lys Leu Arg
Gly Glu Thr Tyr Phe Ile Glu Pro Leu 130 135
140Lys Ile Pro Asp Ser Glu Ala His Ala Val Tyr Lys Tyr Glu Asn
Ile145 150 155 160Glu Asn
Glu Asp Glu Ala Pro Lys Met Cys Gly Val Thr Gln Asp Asn
165 170 175Trp Glu Ser Asp Glu Pro Ile
Lys Lys Thr Leu Gly Leu Ile Val Pro 180 185
190Pro His Glu Arg Lys Phe Glu Lys Lys Phe Ile Glu Leu Val
Val Val 195 200 205Val Asp His Ser
Met Val Thr Lys Tyr Asn Asn Asp Ser Thr Ala Ile 210
215 220Arg Thr Trp Ile Tyr Glu Met Leu Asn Thr Val Asn
Glu Ile Tyr Leu225 230 235
240Pro Phe Asn Ile Arg Val Ala Leu Val Gly Leu Glu Phe Trp Cys Asn
245 250 255Gly Asp Leu Ile Asn
Val Thr Ser Thr Ala Asp Asp Thr Leu His Ser 260
265 270Phe Gly Glu Trp Arg Ala Ser Asp Leu Leu Asn Arg
Lys Arg His Asp 275 280 285His Ala
Gln Leu Leu Thr Asn Val Thr Leu Asp His Ser Thr Leu Gly 290
295 300Ile Thr Phe Val Tyr Gly Met Cys Lys Ser Asp
Arg Ser Val Glu Leu305 310 315
320Ile Leu Asp Tyr Ser Asn Ile Thr Phe Asn Met Ala Tyr Ile Ile Ala
325 330 335His Glu Met Gly
His Ser Leu Gly Met Leu His Asp Thr Lys Phe Cys 340
345 350Thr Cys Gly Ala Lys Pro Cys Ile Met Phe Gly
Lys Glu Ser Ile Pro 355 360 365Pro
Pro Lys Glu Phe Ser Ser Cys Ser Tyr Asp Gln Tyr Asn Lys Tyr 370
375 380Leu Leu Lys Tyr Asn Pro Lys Cys Ile Leu
Asp Pro Pro Leu Arg Lys385 390 395
400Asp Ile Ala Ser Pro Ala Val Cys Gly Asn Glu Ile Trp Glu Glu
Gly 405 410 415Glu Glu Cys
Asp Cys Gly Ser Pro Ala Asp Cys Arg Asn Pro Cys Cys 420
425 430Asp Ala Ala Thr Cys Lys Leu Lys Pro Gly
Ala Glu Cys Gly Asn Gly 435 440
445Glu Cys Cys Asp Lys Cys Lys Ile Arg Lys Ala Gly Thr Glu Cys Arg 450
455 460Pro Ala Arg Asp Asp Cys Asp Val
Ala Glu His Cys Thr Gly Gln Ser465 470
475 480Ala Glu Cys Pro Arg Asn Glu Phe Gln Arg Asn Gly
Gln Pro Cys Leu 485 490
495Asn Asn Ser Gly Tyr Cys Tyr Asn Gly Asp Cys Pro Ile Met Leu Asn
500 505 510Gln Cys Ile Ala Leu Phe
Ser Pro Ser Ala Thr Val Ala Gln Asp Ser 515 520
525Cys Phe Gln Arg Asn Leu Gln Gly Ser Tyr Tyr Gly Tyr Cys
Thr Lys 530 535 540Glu Ile Gly Tyr Tyr
Gly Lys Arg Phe Pro Cys Ala Pro Gln Asp Val545 550
555 560Lys Cys Gly Arg Leu Tyr Cys Leu Asp Asn
Ser Phe Lys Lys Asn Met 565 570
575Arg Cys Lys Asn Asp Tyr Ser Tyr Ala Asp Glu Asn Lys Gly Ile Val
580 585 590Glu Pro Gly Thr Lys
Cys Glu Asp Gly Lys Val Cys Ile Asn Arg Lys 595
600 605Cys Val Asp Val Asn Thr Ala Tyr 610
615
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20150163376 | APPARATUS FOR AND METHOD OF PROCESSING DOCUMENT IMAGE |
20150163375 | BINARY PERIODIC TO MULTIBIT APERIODIC HALFTONE AND RESOLUTION CONVERSION |
20150163374 | COMMUNICATION APPARATUS, CONTROL METHOD, AND COMPUTER-USABLE MEDIUM FOR SELCTING A NETWORK FOR DATA TRANSMISSION |
20150163373 | DATA PROCESS SYSTEM, DATA PROCESS APPARATUS, AND DATA PROCESS METHOD |
20150163372 | COMPUTER SYSTEM FOR MANUFACTURING A PHYSICAL MEDIUM CONFIGURED TO STORE DATA |